

Neutron Irradiation Test Results of the RH1086MK 1.5A Low Dropout Positive Adjustable Regulator

19 January 2015

Duc Nguyen, Sana Rezgui

Acknowledgements

The authors would like to thank the S-Power Product Engineering Groups from Linear Technology for the data collection pre- and post-irradiations. Special thanks are also for Thomas Regan from University of Massachusetts, Lowell (UMASS) for the help with the neutrons irradiation tests.

Neutron Radiation Testing of the RH1086MK 1.5A Low Dropout Positive Adjustable Regulator

Part Type Tested: RH1086MK 1.5A Low Dropout Positive Adjustable Regulator

Traceability Information: Fab Lot# W10913024.1; Wafer # 17; Assembly Lot # 540912.1; Date Code 0941A. See photograph of unit under test in Appendix A.

Quantity of Units: 7 units received, 2 units for control, and 5 units for unbiased irradiation. Leads of devices, serial numbers 54-56, 64, and 66 were shorted together using anti-static foam during irradiation. Serial numbers 69 and 70 were used as control. See Appendix B for the radiation bias connection tables.

Radiation Dose: Total fluence of 1E12 neutron/cm².

Radiation Test Standard: MIL-STD-883 TM1017 and Linear Technology RH1086MK SPEC No. 05-08-5021.

Test Hardware and Software: LTX test program EFCR1086.05

Facility and Radiation Source: University of Massachusetts, Lowell and Reactor Facility-FNI.

Irradiation and Test Temperature: Room temperature controlled to 24°C±6°C per MIL-STD-883 and MIL-STD-750.

SUMMARY

ALL FIVE PARTS PASSED THE ELECTRICAL TEST LIMITS AS SPECIFIED IN THE DATASHEET AFTER IRRADIATION TO 1E12 N/cm². ADDITIONAL INFORMATION CAN BE PROVIDED PER REQUEST.

1.0 Overview and Background

Neutron particles incident on semiconductor materials lose energy along their paths. The energy loss produces electron-hole pairs (ionization) and displaces atoms in the material lattice (displacement damage defects or DDD). DDD induces a mixture of isolated and clustered defects or broken bonds. Such defects elevate the energy level of the material and consequently change material and electrical properties. The altering energy level creates the combination of any of the following processes, thermal generation of electron-hole pairs, recombination, trapping, compensation, tunneling, affecting hence the devices' basic features. We run the electrical tests after we had made sure that the parts are not radioactive anymore to be shipped to LTC.

Bipolar technology is susceptible to neutron displacement damage around a fluence level of 1E12 neutron/cm². The neutron radiation test for the RH1086MK determines the change in device performance as a function of neutrons' fluence.

2.0 Radiation Facility:

Five samples were irradiated unbiased at the University of Massachusetts, Lowell, using the Reactor Facility-FNI. The neutron flux was determined by system S/P-32, method ASTM E-265, to be 4.05E9 N/cm²-s (1MeV equivalent) for each irradiation step. Refer to Appendix C for the certificate of dosimetry.

3.0 Test Conditions

Five samples and two control units were electrically tested at 25°C prior to irradiation. The testing was performed on the two control units to confirm the operation of the test system prior to the electrical testing of the 7 units (5 irradiated and 2 control). During irradiation, devices leads were shorted together using anti-static foam and devices then were placed into an anti-static bag. Devices were then vertically aligned with the radiation source.

The criteria to pass the neutron displacement damage test is that five irradiated samples must pass the datasheet limits. If any of the tested parameters of these five units do not meet the required limits then a failure-analysis of the part should be conducted in accordance with method 5004, MIL-STD-883, and if valid the lot will be scrapped.

4.0 Tested Parameters

The following parameters were measured pre- and post-irradiations:

- Reference Voltage (V) @ $I_{OUT} = 10mA$, ($V_{IN} V_{OUT}$) = 3V
- Reference Voltage (V) @ 10mA $\leq I_{OUT} \leq 1.5A$, $1.5V \leq (V_{IN} V_{OUT}) \leq 15V$
- Line Regulation (%) @ I_{OUT} = 10mA, 1.5V ≤ (V_{IN} − V_{OUT}) ≤ 15V
- Load Regulation (%) @ $(V_{IN} V_{OUT}) = 3V$, 10mA $\leq I_{OUT} \leq 1.5A$
- Dropout Voltage (V) @ $\Delta V_{REF} = 1\%$, $I_{OUT} = 1.5A$
- Current Limit (A) @ $(V_{IN} V_{OUT}) = 5V$
- Current Limit (A) @ $(V_{IN} V_{OUT}) = 25V$
- Minimum Load Current (mA) @ (V_{IN} − V_{OUT}) = 25V
- Adjust Pin Current (uA)
- Adjust Pin Current Change (uA) @10mA $\leq I_{OUT} \leq 1.5A$, $1.5V \leq (V_{IN} V_{OUT}) \leq 15V$

Appendix D details the test conditions, minimum and maximum values at different accumulated doses.

5.0 Test Results

All five samples passed the post-irradiation electrical tests. All measurements of the ten listed parameters in section 4.0 are within the specification limits.

The used statistics in this report are based on the tolerance limits, which are bounds to gage the quality of the manufactured products. It assumes that if the quality of the items is normally distributed with known mean and known standard deviation, the two-sided tolerance limits can be calculated as follows:

 $+K_{TL} = mean + (K_{TL})$ (standard deviation)

 $-K_{TL} = mean - (K_{TL})$ (standard deviation)

Where $+K_{TL}$ is the upper tolerance limit and $-K_{TL}$ is the lower tolerance limit. These tolerance limits are defined in a table of inverse normal probability distribution.

However, in most cases, mean and standard deviations are unknown and therefore it is practical to estimate both of them from a sample. Hence the tolerance limit depends greatly on the sample size. The Ps90%/90% K_{TL} factor for a lot quality P of 0.9, confidence C of 0.9 with a sample size of 5, can be found from the tabulated table (MIL-HDBK-814, page 94, table IX-B). The K_{TL} factor in this report is 2.742.

In the plots, the dashed lines with X-markers are the measured data points of five post-irradiated samples. The solid lines with square symbols are the computed KTL values of five post-irradiated samples with the application of the K_{TL} statistics. The orange solid lines with circle markers are the datasheet specification limits.

The post-irradiation test limits are using Linear Technology datasheets 100 Krads(Si) specification limits.

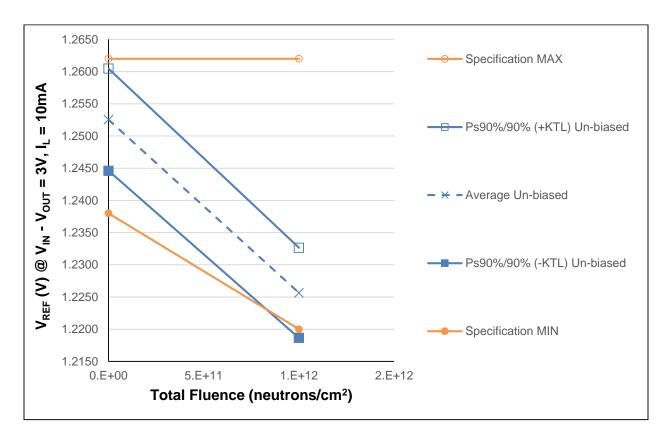


Figure 5.1 Plot Reference Voltage @ $I_{OUT} = 10mA$, $(V_{IN} - V_{OUT}) = 3V$ versus Total Fluence

Parameter	r V _{REF} @ V _{IN} -V _{OUT} =3V; I _L =10mA <mark>Total Fluence (neutrons/cm</mark>			
Units	(V)	0	1.E+12	
54	Un-biased Irradiation	1.25186	1.22590	
55	Un-biased Irradiation	1.25504	1.22670	
56	Un-biased Irradiation	1.25605	1.22924	
64	Un-biased Irradiation	1.24980	1.22300	
66	Un-biased Irradiation	1.24991	1.22341	
69	Control Unit	1.24868	1.24845	
70	Control Unit	1.25692	1.25681	
	Un-biased Irradiation Statistics			
	Average Un-biased	1.25253	1.22565	
	Std-Dev Un-biased	0.00289	0.00255	
	Ps90%/90% (+KTL) Un-biased	1.26046	1.23265	
	Ps90%/90% (-KTL) Un-biased	1.24460	1.21865	
	Specification MIN	1.238	1.220	
	Status (Measurements)	PASS	PASS	
	Specification MAX	1.262	1.262	
	Status (Measurements)	PASS	PASS	
	Status (-KTL) Un-biased	PASS	FAIL	
	Status (+KTL) Un-biased	PASS	PASS	

Table 5.1: Raw data table for Reference Voltage @ $I_{OUT} = 10$ mA, $(V_{IN} - V_{OUT}) = 3V$ of pre- and post-irradiation (1E12 N/cm²)

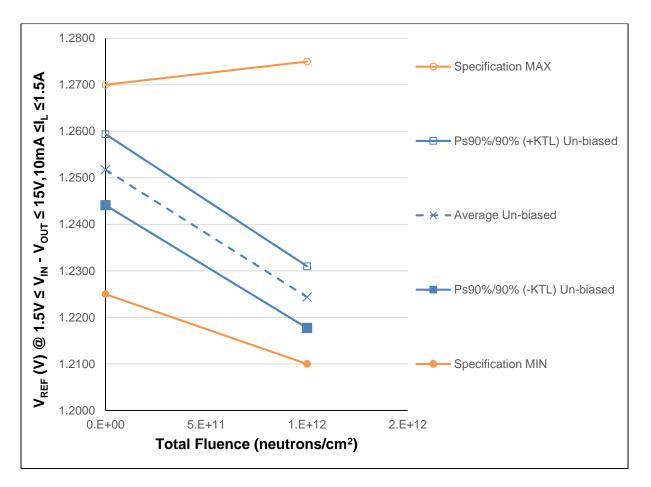


Figure 5.2: Plot of versus Reference Voltage @ $10mA \le I_{OUT} \le 1.5A$, $1.5V \le (V_{IN} - V_{OUT}) \le 15V$ versus Total Fluence

or pre- and	post-inadiation (TETZ N/ChT)		
Parameter	$V_{\text{REF}}.$ @ 1.5V to 15V;10mA \leq I_ \leq 1.5A	Total Fluence ((neutrons/cm ²)
Units	(V)	0	1.E+12
54	Un-biased Irradiation	1.25121	1.22473
55	Un-biased Irradiation	1.25414	1.22526
56	Un-biased Irradiation	1.25513	1.22778
64	Un-biased Irradiation	1.24906	1.22188
66	Un-biased Irradiation	1.24922	1.22221
69	Control Unit	1.24785	1.24768
70	Control Unit	1.25590	1.25593
	Un-biased Irradiation Statistics		
	Average Un-biased	1.25175	1.22437
	Std-Dev Un-biased	0.00279	0.00242
	Ps90%/90% (+KTL) Un-biased	1.25939	1.23100
	Ps90%/90% (-KTL) Un-biased	1.24411	1.21774
	Specification MIN	1.225	1.210
	Status (Measurements)	PASS	PASS
	Specification MAX	1.270	1.275
	Status (Measurements)	PASS	PASS
	Status (-KTL) Un-biased	PASS	PASS
	Status (+KTL) Un-biased	PASS	PASS
	Parameter Units 54 55 56 64 66 69	54 Un-biased Irradiation 55 Un-biased Irradiation 56 Un-biased Irradiation 64 Un-biased Irradiation 66 Un-biased Irradiation 69 Control Unit 70 Control Unit 1 Un-biased Irradiation 69 Control Unit 1 Un-biased Irradiation Statistics Average Un-biased Std-Dev Un-biased Std-Dev Un-biased Ps90%/90% (+KTL) Un-biased Ps90%/90% (-KTL) Un-biased Specification MIN Status (Measurements) Status (Measurements) Status (Measurements) Status (Measurements) Status (-KTL) Un-biased Status (-KTL) Un-biased	Parameter V_{REF} . @ 1.5V to 15V;10mA $\leq I_{L} \leq 1.5A$ Total Fluence ofUnits(V)054Un-biased Irradiation1.2512155Un-biased Irradiation1.2541456Un-biased Irradiation1.2551364Un-biased Irradiation1.2490666Un-biased Irradiation1.2492269Control Unit1.2478570Control Unit1.25590Un-biased Irradiation Statistics1.25175Std-Dev Un-biased0.00279Ps90%/90% (+KTL) Un-biased1.25939Ps90%/90% (-KTL) Un-biased1.24411Specification MIN1.225Status (Measurements)PASSStatus (Measurements)PASSStatus (Measurements)PASS

Table 5.2: Raw data table for Reference Voltage @ $10mA \le I_{OUT} \le 1.5A$, $1.5V \le (V_{IN} - V_{OUT}) \le 15V$ of pre- and post-irradiation (1E12 N/cm²)

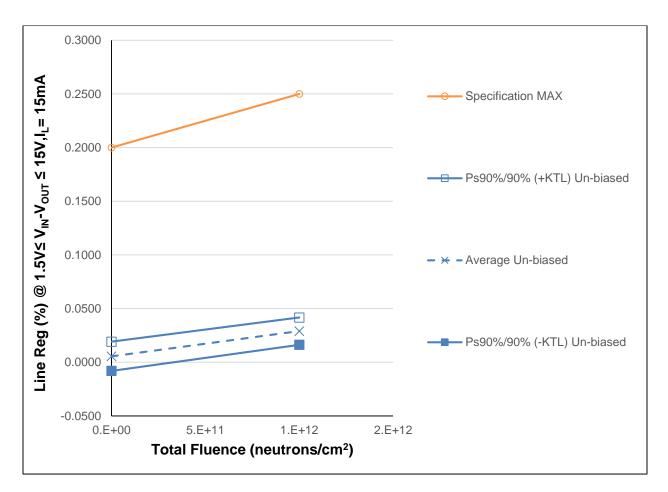


Figure 5.3: Plot of Line Regulation @ I_{OUT} = 10mA, 1.5V \leq (V_{IN} - V_{OUT}) \leq 15V versus Total Fluence

Table 5.3: Raw data table for Line Regulation @ $I_{OUT} = 10$ mA, $1.5V \le (V_{IN} - V_{OUT}) \le 15V$ of preand post-irradiation (1E12 N/cm²)

Parameter	Line Reg @ 1.5V TO 15V; I $_{\rm L}$ =10mA	Total Fluence (neutrons/cm ²)		
Units	(%)	0	1.E+12	
54	Un-biased Irradiation	0.00000	0.03120	
55	Un-biased Irradiation	0.01147	0.02333	
56	Un-biased Irradiation	0.00076	0.03096	
64	Un-biased Irradiation	0.00771	0.03432	
66	Un-biased Irradiation	0.00771	0.02495	
69	Control Unit	0.01344	-0.00153	
70	Control Unit	0.00038	0.00000	
	Un-biased Irradiation Statistics			
	Average Un-biased	0.00553	0.02895	
	Std-Dev Un-biased	0.00495	0.00462	
	Ps90%/90% (+KTL) Un-biased	0.01911	0.04163	
	Ps90%/90% (-KTL) Un-biased	-0.00805	0.01627	
	Specification MIN			
	Status (Measurements)			
	Specification MAX	0.2	0.25	
	Status (Measurements)	PASS	PASS	
	Status (-KTL) Un-biased			
	Status (+KTL) Un-biased	PASS	PASS	

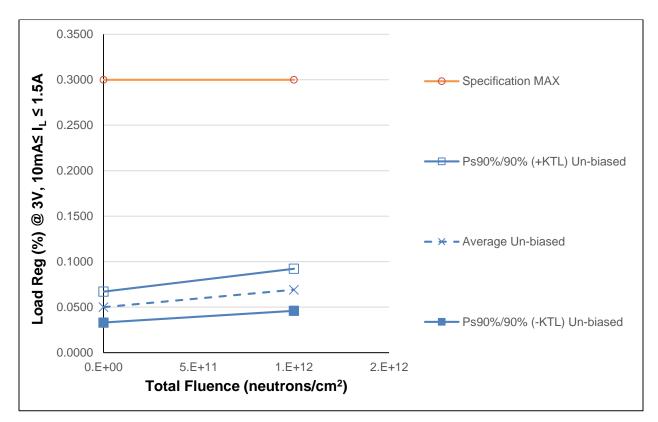


Figure 5.4: Plot of Load Regulation @ $(V_{IN} - V_{OUT}) = 3V$, $10mA \le I_{OUT} \le 1.5A$ versus Total Fluence

Table 5.4: Raw data table for Load Regulation @ $(V_{IN} - V_{OUT}) = 3V$, 10mA $\leq I_{OUT} \leq 1.5A$ of preand post-irradiation (1E12 N/cm²)

Parameter	Load Reg @ 3V;I _L from 10mA to 1.5A	Total Fluence (neutrons/cm ²)		
Units	(%)	0	1.E+12	
54	Un-biased Irradiation	0.04380	0.06067	
55	Un-biased Irradiation	0.06011	0.07907	
56	Un-biased Irradiation	0.04715	0.07712	
64	Un-biased Irradiation	0.04800	0.06261	
66	Un-biased Irradiation	0.05119	0.06625	
69	Control Unit	0.04720	0.04988	
70	Control Unit	0.06647	0.06450	
	Un-biased Irradiation Statistics			
	Average Un-biased	0.05005	0.06915	
	Std-Dev Un-biased	0.00621	0.00844	
	Ps90%/90% (+KTL) Un-biased	0.06707	0.09228	
	Ps90%/90% (-KTL) Un-biased	0.03303	0.04601	
	Specification MIN			
	Status (Measurements)			
	Specification MAX	0.3	0.3	
	Status (Measurements)	PASS	PASS	
	Status (-KTL) Un-biased			
	Status (+KTL) Un-biased	PASS	PASS	

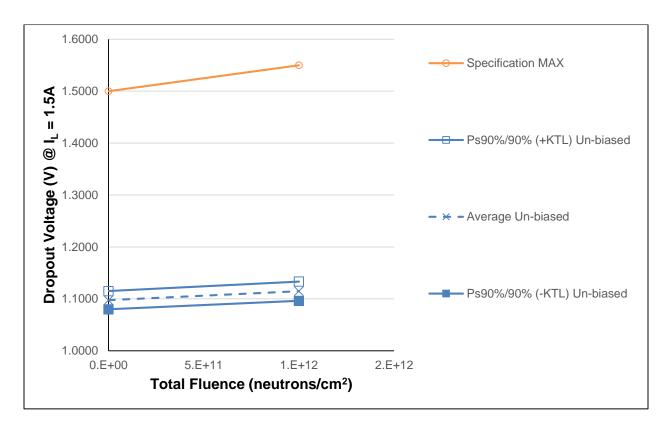


Figure 5.5: Plot of Dropout Voltage @ $\Delta V_{REF} = 1\%$, $I_{OUT} = 1.5A$ versus Total Fluence

Table 5.5: I	Raw data	table for	r Dropout	Voltage	@	ΔV_{REF}	= 1%,	I _{OUT} =	1.5A	of pre-	and	post-
irradiation (1E12 N/cm	า ²)		-								

Parameter	Dropout Voltage at 1.5A	Total Fluence (neutrons/cm ²)		
Units	(V)	0	1.E+12	
54	Un-biased Irradiation	1.09636	1.11244	
55	Un-biased Irradiation	1.10142	1.11887	
56	Un-biased Irradiation	1.10550	1.12360	
64	Un-biased Irradiation	1.09505	1.11323	
66	Un-biased Irradiation	1.08863	1.10577	
69	Control Unit	1.09680	1.10008	
70	Control Unit	1.10742	1.10998	
	Un-biased Irradiation Statistics			
	Average Un-biased	1.09739	1.11478	
	Std-Dev Un-biased	0.00643	0.00677	
	Ps90%/90% (+KTL) Un-biased	1.11502	1.13335	
	Ps90%/90% (-KTL) Un-biased	1.07977	1.09621	
	Specification MIN			
	Status (Measurements)			
	Specification MAX	1.50	1.55	
	Status (Measurements)	PASS	PASS	
	Status (-KTL) Un-biased			
	Status (+KTL) Un-biased	PASS	PASS	

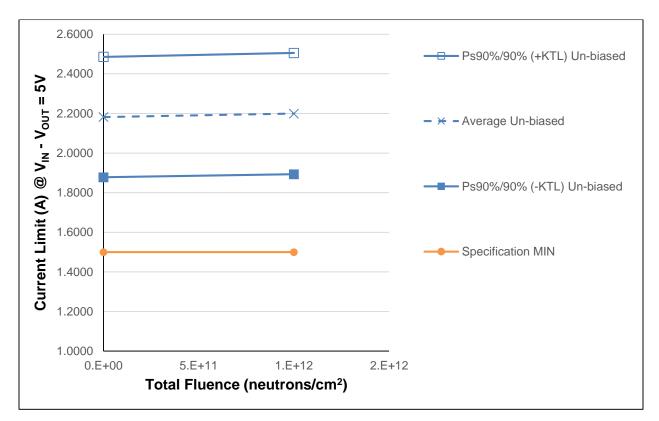


Figure 5.6: Plot of Current Limit @ $(V_{IN} - V_{OUT}) = 5V$ versus Total Fluence

Parameter	Current Limit @ $V_{IN} - V_{OUT} = 5V$	Total Fluence	(neutrons/cm ²)
Units	(A)	0	1.E+12
54	Un-biased Irradiation	2.27413	2.28915
55	Un-biased Irradiation	2.07586	2.09228
56	Un-biased Irradiation	2.04867	2.06558
64	Un-biased Irradiation	2.27556	2.29695
66	Un-biased Irradiation	2.23527	2.25298
69	Control Unit	2.24102	2.23374
70	Control Unit	2.04885	2.04079
	Un-biased Irradiation Statistics		
	Average Un-biased	2.18190	2.19939
	Std-Dev Un-biased	0.11082	0.11161
	Ps90%/90% (+KTL) Un-biased	2.48576	2.50542
	Ps90%/90% (-KTL) Un-biased	1.87804	1.89336
	Specification MIN	1.5	1.5
	Status (Measurements)	PASS	PASS
	Specification MAX		
	Status (Measurements)		
	Status (-KTL) Un-biased	PASS	PASS
	Status (+KTL) Un-biased		

Table 5.6: Raw data table for Current Limit @ $(V_{IN} - V_{OUT}) = 5V$ of pre- and post-irradiation (1E12 N/cm²)

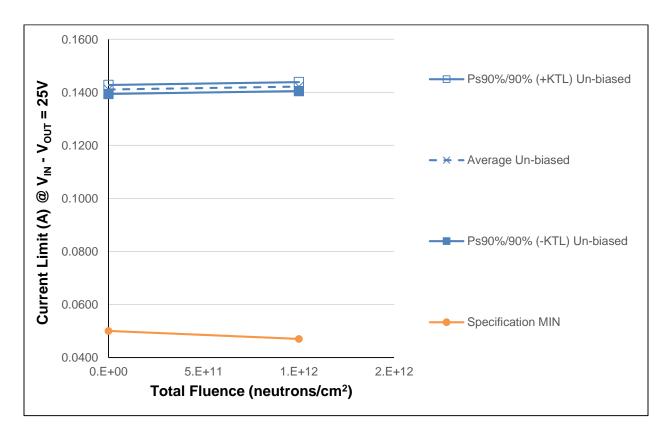
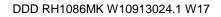



Figure 5.7: Plot of Current Limit @ $(V_{IN} - V_{OUT}) = 25V$ versus Total Fluence

Table 5.7: Raw data table for Current Limit @ (V _{IN} − V _{OUT}) = 25V of pre- and post-irradiation (1E	E12
N/cm ²)	

Parameter	Current Limit V_{IN} - V_{OUT} = 25V	Total Fluence	(neutrons/cm ²)
Units	(A)	0	1.E+12
54	Un-biased Irradiation	0.14140	0.14133
55	Un-biased Irradiation	0.14200	0.14241
56	Un-biased Irradiation	0.14098	0.14184
64	Un-biased Irradiation	0.14075	0.14295
66	Un-biased Irradiation	0.14040	0.14245
69	Control Unit	0.14118	0.14348
70	Control Unit	0.14051	0.14229
	Un-biased Irradiation Statistics		
	Average Un-biased	0.14111	0.14220
	Std-Dev Un-biased	0.00062	0.00062
	Ps90%/90% (+KTL) Un-biased	0.14280	0.14391
	Ps90%/90% (-KTL) Un-biased	0.13941	0.14049
	Specification MIN	0.05	0.047
	Status (Measurements)	PASS	PASS
	Specification MAX		
	Status (Measurements)		
	Status (-KTL) Un-biased	PASS	PASS
	Status (+KTL) Un-biased		

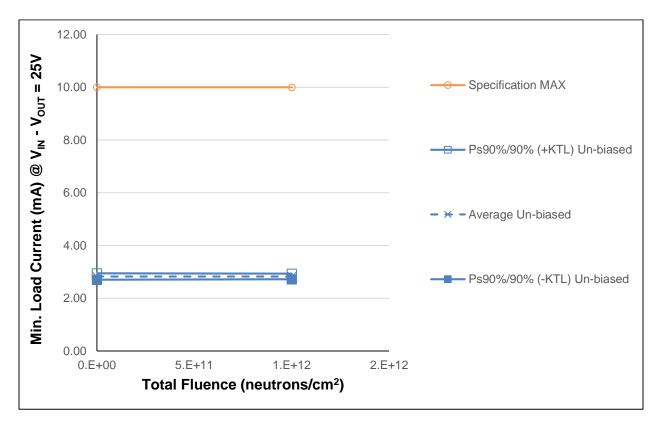
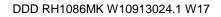


Figure 5.8: Plot of Minimum Load Current @ $(V_{IN} - V_{OUT}) = 25V$ versus Total Fluence

Table 5.8: Raw data table for Minimum Load Current @ (V _{IN} − V _{OUT}) = 25V of pre- and pos	st-
irradiation (1E12 N/cm ²)	

Parameter	Min. Load Current @ V _{IN} -V _{OUT} = 25V	Total Fluence (neutrons/cm ²		
Units	(mA)	0	1.E+12	
54	Un-biased Irradiation	2.86230	2.87291	
55	Un-biased Irradiation	2.78085	2.79063	
56	Un-biased Irradiation	2.77740	2.78933	
64	Un-biased Irradiation	2.82502	2.82364	
66	Un-biased Irradiation	2.87360	2.86131	
69	Control Unit	2.75930	2.76370	
70	Control Unit	2.77200	2.77476	
	Un-biased Irradiation Statistics			
	Average Un-biased	2.82383	2.82756	
	Std-Dev Un-biased	0.04461	0.03885	
	Ps90%/90% (+KTL) Un-biased	2.94616	2.93408	
	Ps90%/90% (-KTL) Un-biased	2.70150	2.72105	
	Specification MIN			
	Status (Measurements)			
	Specification MAX	10	10	
	Status (Measurements)	PASS	PASS	
	Status (-KTL) Un-biased			
	Status (+KTL) Un-biased	PASS	PASS	



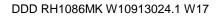


Figure 5.9: Plot of versus Adjust Pin Current versus Total Fluence

ble 5.9. Raw data table for Adjust Pin Current of pre- and post-irradiation (1E12 N/cm-)					
Adjust Pin Current	Total Fluence ((neutrons/cm ²)			
(uA)	0	1.E+12			
Un-biased Irradiation	53.16989	51.46558			
Un-biased Irradiation	50.52086	48.76309			
Un-biased Irradiation	50.45754	48.43474			
Un-biased Irradiation	52.34979	49.97215			
Un-biased Irradiation	53.11135	51.0384			
Control Unit	50.82547	50.76115			
Control Unit	50.17204	50.43983			
Un-biased Irradiation Statistics					
Average Un-biased	51.92189	49.93479			
Std-Dev Un-biased	1.34746	1.34031			
Ps90%/90% (+KTL) Un-biased	55.61663	53.60992			
Ps90%/90% (-KTL) Un-biased	48.22714	46.25967			
Specification MIN					
Status (Measurements)					
Specification MAX	120	120			
Status (Measurements)	PASS	PASS			
Status (-KTL) Un-biased					
Status (+KTL) Un-biased	PASS	PASS			
	Adjust Pin Current (uA) Un-biased Irradiation Un-biased Irradiation Un-biased Irradiation Un-biased Irradiation Un-biased Irradiation Control Unit Control Unit Un-biased Irradiation Statistics Average Un-biased Std-Dev Un-biased Std-Dev Un-biased Ps90%/90% (+KTL) Un-biased Ps90%/90% (-KTL) Un-biased Specification MIN Status (Measurements) Status (Measurements)	Adjust Pin CurrentTotal Fluence (U(A)(uA)0Un-biased Irradiation53.16989Un-biased Irradiation50.52086Un-biased Irradiation50.45754Un-biased Irradiation52.34979Un-biased Irradiation53.11135Control Unit50.82547Control Unit50.17204Un-biased Irradiation StatisticsAverage Un-biased1.34746Ps90%/90% (+KTL) Un-biased55.61663Ps90%/90% (-KTL) Un-biased48.22714Specification MIN120Status (Measurements)PASSStatus (-KTL) Un-biasedPASS			

Table 5.9: Raw data table for Adjust Pin Current of pre- and pos	st-irradiation ($1E12 N/cm^{2}$
-rapie 0.3. Naw usia labe for Aujust i in Current of pre- and pos	s_{1}	

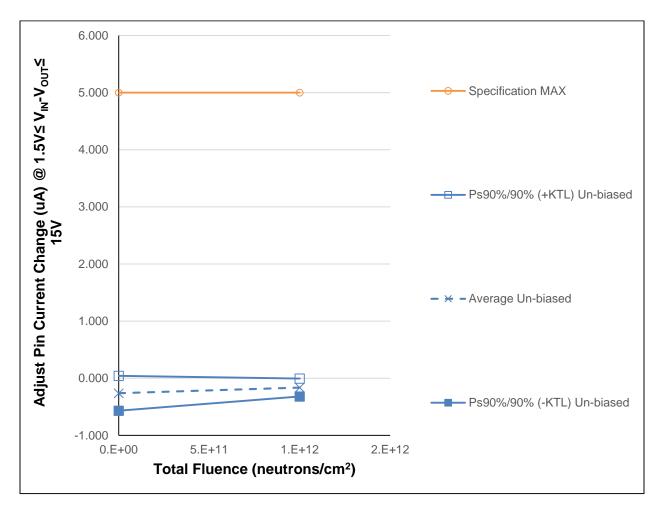


Figure 5.10: Plot of Adjust Pin Current Change @10mA $\leq I_{OUT} \leq 1.5A$, $1.5V \leq (V_{IN} - V_{OUT}) \leq 15V$ versus Total Fluence

01/ 101 01						
Parameter	Delta Adjust Pin I @ I_L =10mA to 1.5A	Total Fluence (neutrons/cm ²)			
Units	(uA)	0	1.E+12			
54	Un-biased Irradiation	-0.28730	-0.16185			
55	Un-biased Irradiation	-0.41332	-0.25463			
56	Un-biased Irradiation	-0.17502	-0.13445			
64	Un-biased Irradiation	-0.13319	-0.10111			
66	Un-biased Irradiation	-0.30582	-0.16052			
69	Control Unit	-0.18696	-0.17245			
70	Control Unit	-0.32134	-0.07861			
	Un-biased Irradiation Statistics					
	Average Un-biased	-0.26293	-0.16251			
	Std-Dev Un-biased	0.11137	0.05711			
	Ps90%/90% (+KTL) Un-biased	0.04244	-0.00590			
	Ps90%/90% (-KTL) Un-biased	-0.56830	-0.31912			
	Specification MIN					
	Status (Measurements)					
	Specification MAX	5	5			
	Status (Measurements)	PASS	PASS			
	Status (-KTL) Un-biased					
	Status (+KTL) Un-biased	PASS	PASS			

Table 5.10: Raw data table for Adjust Pin Current Change @10mA $\leq I_{OUT} \leq 1.5A$, $1.5V \leq (V_{IN} - V_{OUT}) \leq 15V$ of pre- and post-irradiation (1E12 N/cm²)

Appendix A

Pictures of one among five samples used in the test.

Figure A1: Top View showing date code

Figure A2: Bottom View showing serial number

Appendix B

Radiation Bias Connection Table

Table B1: Unbias condition

Pin	Function	Connection
1	Adjust	Float
2	V _{IN}	Float
3	Vout	Float

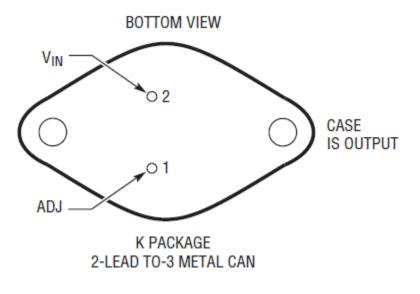


Figure B1: Pin-Out

DDD RH1086MK W10913024.1 W17

Appendix C

niversity of **Aassachusetts** owell

7/2/2012 Linear Technology Corporation Attention: Sana Rezgui 1530 Buckeye Drive Milpitas, CA 95035

Subject:

Product:

Irradiation Date: Irradiation Facility: Dosimetry system:

Neutron Dosimetry Results:

Pinanski Building One University Avenue Lowell, Massachusetts 01854 978,934,3548 tel 978.934.4067 fax. e-mail: Thomas Regan@uml.edu

Thomas Regan Reactor Engine

RADIATION LABORATORY

Certificate of Neutron Exposure

Multiple products see attached table

June, 27th, 2012 Reactor Facility- FNI S/P-32, ASTM E-265

Irradiation	Requested Fluence (n/cm ²)	Reactor Power (kW)	Time (s)	Fluence Rate (n/cm ² -s) ^(2,3)	Gamma Dose rad (Si) ⁽¹⁾	Measured Fluence (n/cm ²) ⁽⁴⁾	Total Integral Fluence (n/cm ²)
Group 1	1.00E+12	45.0	228	4.05E+09	117	1.03E+12	1.03E+12
Group 2	1.00E+12	45.0	228	4.05E+09	117	9.41E+11	9.41E+11
Group 3	1.00E+13	475	234	4.28E+10	1266	9.22E+12	9.22E+12
Group 4	1.00E+13	90	1235	8.10E+09	1266	9.03E+12	9.03E+12

(1) Based on reactor power at 1,000kW, the gamma dose is 41+/- 5.3% krad(Si)/hr as mapped by TLD-based dosimetry

(2) Dosimetry method: ASTM E-265

The neutron fluence rate is determined from "Initial Testing of the New Ex-Core Fast Neutron Irradiator at UMass Lowell " (6/18/02) Validated by S-32 flux monitors Ì)

(4)

The neutron fluence for this irradiation was determined using the previously measured neutron radiation field for this facility, measured with ASTM E-265 "Measuring Reaction Rates and Fast Neutron Fluence by Radioactivation of Sulfur-32" and correlated to the measured reactor power level.

Group 1	Average Integrated Neutron Fluence (1 MeV Si Eq.) =1.03E12 n/cm^2
Group 2	Average Integrated Neutron Fluence (1 MeV Si Eq.) =9.41E11 n/cm^2
Group 3	Average Integrated Neutron Fluence (1 MeV Si Eq.) =9.22E12 n/cm^2
Group 4	Average Integrated Neutron Fluence (1 MeV Si Eq.) =9.03E12 n/cm^2

Reviewed by Thomas Regan Reactor Engineer

Appendix D

Table D1: Electrical Characteristics of Device-Under-Test Pre-Irradiation

PARAMETER	CONDITIONS	NOTES	MIN	Г _А = 25°(ТҮР	; MAX	SUB- GROUP	–55°C Min	≤ T _A ≤ TYP	125°C Max	SUB- Group	UNITS
Reference Voltage	$I_{OUT} = 10 \text{mA}, (V_{IN} - V_{OUT}) = 3 \text{V} (\text{K})$		1.238		1.262	1					V
	$\begin{array}{l} 10mA \leq I_{OUT} \leq I_{FULL\ LOAD}, \\ 1.5V \leq (V_{IN} - V_{OUT}) \leq 25V \end{array}$	6	1.225		1.270		1.225		1.270	2,3	V
Line Regulation	I_{LOAD} = 10mA, 1.5V \leq (V _{IN} - V _{OUT}) \leq 15V	2, 3			0.2	1			0.2	2,3	%
Load Regulation	$(V_{IN} - V_{OUT}) = 3V,$ 10mA $\leq I_{OUT} \leq I_{FULL \ LOAD}$	2, 3, 6			0.3	1			0.4	2,3	%
Dropout Voltage	$\begin{array}{l} \Delta V_{REF} = 1\%, \ I_{OUT} = 1.5A \ (K) \\ \Delta V_{REF} = 1\%, \ I_{OUT} = 0.5A \ (H) \end{array}$	4 4			1.5 1.25	1			1.5 1.25	2,3 2,3	V V
Current Limit	$\begin{array}{l} (V_{IN}-V_{OUT})=5V~(K)\\ (V_{IN}-V_{OUT})=5V~(H)\\ (V_{IN}-V_{OUT})=25V~(K)\\ (V_{IN}-V_{OUT})=25V~(H) \end{array}$		1.5 0.5 0.05 0.020			1 1 1	1.5 0.5 0.05 0.020			2,3 2,3 2,3 2,3	A A A A
Minimum Load Current	$(V_{IN} - V_{OUT}) = 25V$				10	1			10	2,3	mA
Thermal Regulation	T _A = 25°C, 30ms Pulse				0.04	4					%/W
Ripple Rejection	f = 120Hz, C _{ADJ} = 25µF, C _{OUT} = 25µF Tantalum, I _{OUT} = I _{FULL LOAD} , (V _{IN} - V _{OUT}) = 3V	6	60			4	60			5,6	dB
Adjust Pin Current	T _J = 25°C			55	120	1			120	2,3	μA
Adjust Pin Current Change	$\begin{array}{l} 10mA \leq I_{OUT} \leq I_{FULL\ LOAD}, \\ 1.5V \leq (V_{IN} - V_{OUT}) \leq 15V \end{array}$	6			5	1			5	2,3	μA
Temperature Stability				0.5				0.5			%
Long Term Stability	T _A = 125°C, 1000 Hours	5		0.3							%
RMS Output Noise (% of V _{OUT})	$10Hz \le f \le 10kHz$			0.003							%
Thermal Resistance Junction-to-Case	Control Circuitry (K) Control Circuitry (H) Power Transistor (K) Power Transistor (H)	5 5 5 5		1.7 15.0 4.0 20.0							°C/W °C/W °C/W °C/W

PARAMETER	CONDITIONS	10KR/ Min	AD (Si) Max	20KRA Min	ND (Si) Max	50KRA Min	AD (Si) Max	100KR Min	AD (Si) Max	200KR Min	AD (Si) Max	UNITS
Reference Voltage	$I_{OUT} = 10 \text{mA} (V_{IN} - V_{OUT}) = 3 \text{V} (\text{K})$	1.234	1.262	1.230	1.262	1.225	1.262	1.220	1.262	1.205	1.262	V
(Note 6)	$\begin{array}{l} 10mA \leq I_{OUT} \leq I_{FULL \ LOAD} \\ 1.5V \leq (V_{IN} - V_{OUT}) \leq 15V \end{array}$	1.220	1.275	1.219	1.275	1.215	1.275	1.210	1.275	1.20	1.275	V
Line Regulation (Notes 2, 3)	$\begin{array}{l} I_{OUT} = 10mA \\ 1.5V \leq (V_{IN} - V_{OUT}) \leq 15V \end{array}$		0.2		0.21		0.23		0.25		0.3	%
Load Regulation (Notes 2, 3, 6)	$(V_{IN} - V_{OUT}) = 3V$ 10mA $\leq I_{OUT} \leq I_{FULL \ LOAD}$		0.3		0.3		0.3		0.3		0.3	%
Dropout Voltage (Note 4)	$\begin{array}{l} \Delta V_{REF} = 1\%, \ I_{OUT} = 1.5A \ (K) \\ \Delta V_{REF} = 1\%, \ I_{OUT} = 0.5A \ (H) \end{array}$		1.5 1.25		1.51 1.26		1.52 1.27		1.55 1.29		1.575 1.32	V V
Current Limit	$\begin{array}{l} (V_{IN}-V_{OUT})=5V~(K)\\ (V_{IN}-V_{OUT})=25V~(K)\\ (V_{IN}-V_{OUT})=5V~(H)\\ (V_{IN}-V_{OUT})=25V~(H) \end{array}$	1.5 0.05 0.5 0.020		1.5 0.049 0.5 0.019		1.5 0.048 0.5 0.019		1.5 0.047 0.5 0.018		1.5 0.045 0.5 0.017		A A A
Minimum Load Current	$(V_{IN} - V_{OUT}) = 25V$		10		10		10		10		10	mA
Adjust Pin Current			120		120		120		120		120	μA
Adjust Pin Current Change (Note 6)	$\begin{array}{l} 10mA \leq I_{OUT} \leq I_{FULL \ LOAD} \\ 1.5V \leq (V_{IN} - V_{OUT}) \leq 15V \end{array}$		5		5		5		5		5	μA

Table D2: Electrical Characteristics of Device-Under-Test Post-Irradiation