

# Total Ionization Dose (TID) Test Results of the RH1086MH 0.5A Low Dropout Positive Adjustable Regulator @ High Dose Rate (HDR)

HDR = 50 rads(Si)/s

20 November 2014

Duc Nguyen, Sana Rezgui

### Acknowledgements

The authors would like to thank the Product Engineering and Design S-Power groups from Linear Technology for their help with the board design and assembly as well as the data collection pre- and post-irradiations. Special thanks are also for Thomas Shepherd from Defense Microelectronics Activity (DMEA) for the extensive work for board setup and continuous dosimetry monitoring throughout the ELDRS tests.



## TID HDR Testing of the RH1086MH 0.5A Low Dropout Positive Adjustable Regulator

Part Type Tested: RH1086MH 0.5A Low Dropout Positive Adjustable Regulator

**Traceability Information:** Fab Lot # W1231270.1; Assembly Lot # 719601.1; Wafer # 4; Date Code 1328A. See photograph of unit under test in Appendix A.

**Quantity of Units:** 42 units received, 2 units for control, 20 units for biased irradiation, and 20 units for unbiased irradiation. Serial numbers 620-624, 630-634, 640-644, and 650-654, and had all pins tied to ground during irradiation. Serial numbers 625-629, 635-639, 645-649, and 655-659 were biased during irradiation. Serial numbers 660 and 661 were used as control. See Appendix B for the radiation bias connection tables.

Radiation and Electrical Test Increments: 40 samples were divided into four groups of 10 each. Serial numbers 620-629 of group 1 were irradiated to 10 Krads(Si). Serial numbers 630-639 of group 2 were irradiated to 30 Krads(Si). Serial numbers 640-649 of group 3 were irradiated to 50 Krads(Si). Serial numbers 650-659 of group 4 were irradiated to 100 Krads(Si).

Radiation dose: 50 rads(Si)/sec.

Radiation Test Standard: MIL-STD-883 TM1019.9 Condition A.

**Test Hardware and Software:** LTX pre- and post-irradiation test program EFCR1086H.02.

Facility and Radiation Source: Defense Micro Electronic Activity (DMEA) and Cobalt-60.

**Irradiation and Test Temperature:** Room temperature controlled to 24°C±6°C per MIL-STD-883 and MIL-STD-750.

### SUMMARY

ALL 42 PARTS PASSED THE ELECTRICAL TEST LIMITS AS SPECIFIED IN THE DATASHEET AFTER EACH IRRADIATION INCREMENT. ADDITIONAL INFORMATION CAN BE PROVIDED PER REQUEST.



### 1.0 Overview and Background

Among other radiation effects, Total Ionizing Dose (TID) may affect electrical characteristics, causing parametric and/or functional failures in integrated circuits. During gamma-irradiations, TID-induced and transported electron-hole pairs may result in charge trapping in a transistor's dielectrics and interface regions, affecting the device's basic features. Such effects warrant testing and monitoring of circuits to TID, after which annealing and/or Time Dependent Effects (TDE) may take place, depending on the circuit's design and process technology. Hence the requirement per Condition A (for high-dose rates ranging from 50 and 300 rads(Si)/sec) in TM1019, MIL-STD-883 is to not exceed the allowed time from the end of an incremented irradiation and an electrical test to more than one hour. Additionally, the total time from the end of one incremental irradiation to the start of the next incremental step should be less than two hours.

### 2.0 Radiation Facility and Test Equipment

The samples were irradiated at Defense Micro-Electronics Activity (DMEA) facility in Sacramento, California. DMEA utilizes J.L. Shepherd model 81-22/484 to provide the dose-rate of 50 rads(Si)/s. A special design screw-driven automatic cart inside the exposure tunnel positions the Device-Under-Test (DUT) precisely and repeatedly from the source to attain optimal rate verified by ion chamber detectors. See Appendix C for the certificate of dosimetry.

#### 3.0 Test Conditions

The 40 test samples and two control units were electrically tested at 25°C prior to irradiation. The parts were then placed in a lead/aluminum container and aligned with the radiation source, Cobalt-60, at DMEA facility in Sacramento, California. During irradiation, five units of six separate groups were biased at +/- 15V and other five of similar groups had all pads grounded. Ten units of group 1 were irradiated to 10 Krads(Si); group 2 to 30 Krads(Si); group 3 to 50 Krads(Si); and group 4 to 100 Krads(Si). After irradiation, the samples were transported in dry ice to Linear Technology testing facility. Testing was performed on the two control units to confirm the operation of the test system prior to the electrical testing of the 42 units (40 irradiated and 2 control).

The criteria to pass the high dose-rate test is that five samples in each corresponding dose group irradiated under electrical bias must pass the datasheet limits. If any of the tested parameters of these five units do not meet the required limits then a failure-analysis of the part should be conducted and if valid the lot will be scrapped.



### 4.0 Tested Parameters

The following parameters were measured pre- and post-irradiations:

- $V_{REF}$  (V) @  $10mA \le I_{OUT} \le I_{FULL\ LOAD}$ ,  $1.5V \le (V_{IN} V_{OUT}) \le 15V$
- Line Regulation (%) @  $I_{LOAD} = 10$ mA, 1.5V  $\leq (V_{IN} V_{OUT}) \leq 15$ V
- Load Regulation (%) @  $(V_{IN} V_{OUT}) = 3V$ ,  $10mA \le I_{OUT} \le I_{FULL\ LOAD}$
- Dropout Voltage (V) @  $I_{OUT} = 0.5A$ ,  $\Delta V_{REF} = 1\%$
- Current Limit (A) @  $(V_{IN} V_{OUT}) = 5V$
- Current Limit (A) @  $(V_{IN} V_{OUT}) = 25V$
- Minimum Load Current (mA) @ (V<sub>IN</sub> V<sub>OUT</sub>) = 25V
- Adjust Pin Current (uA)
- Delta Adjust Current (uA) @ 10mA ≤ I<sub>OUT</sub> ≤ I<sub>FULL LOAD</sub>, 1.5V ≤ (V<sub>IN</sub> V<sub>OUT</sub>) ≤ 15V

Appendix D details the test conditions, minimum and maximum values at different accumulated doses.



#### 5.0 Test Results

All 40 samples passed the post-irradiation electrical tests. All measurements of the nine listed parameters in section 4.0 are within the specification limits.

The used statistics in this report are based on the tolerance limits, which are bounds to gage the quality of the manufactured products. It assumes that if the quality of the items is normally distributed with known mean and known standard deviation, the two-sided tolerance limits can be calculated as follows:

```
+K_{TL} = mean + (K_{TL}) (standard deviation)
```

 $-K_{TL}$  = mean -  $(K_{TL})$  (standard deviation)

Where  $+K_{TL}$  is the upper tolerance limit and  $-K_{TL}$  is the lower tolerance limit. These tolerance limits are defined in a table of inverse normal probability distribution.

However, in most cases, mean and standard deviations are unknown and therefore it is practical to estimate both of them from a sample. Hence the tolerance limit depends greatly on the sample size. The Ps90%/90%  $K_{TL}$  factor for a lot quality P of 0.9, confidence C of 0.9 with a sample size of 5, can be found from the tabulated table (MIL-HDBK-814, page 94, table IX-B). The  $K_{TL}$  factor in this report is 2.742.

In the plots, the dotted lines with diamond markers are the average of the measured data points of five samples irradiated under electrical bias while the dashed lines with X-markers are the average of measured data points of five units irradiated with all pins tied to ground. The solid lines with triangle markers are the average of the data points after the calculation of the  $K_{TL}$  statistics on the sample irradiated in the biased setup. The solid lines with square symbols are the average of the measured points after the application of the  $K_{TL}$  statistics on the five samples irradiated with all pins grounded. The orange solid lines with circle markers are the specification limits.

The 30 Krads(Si) test limits are using Linear Technology datasheet 20 Krads(Si) specification limits.



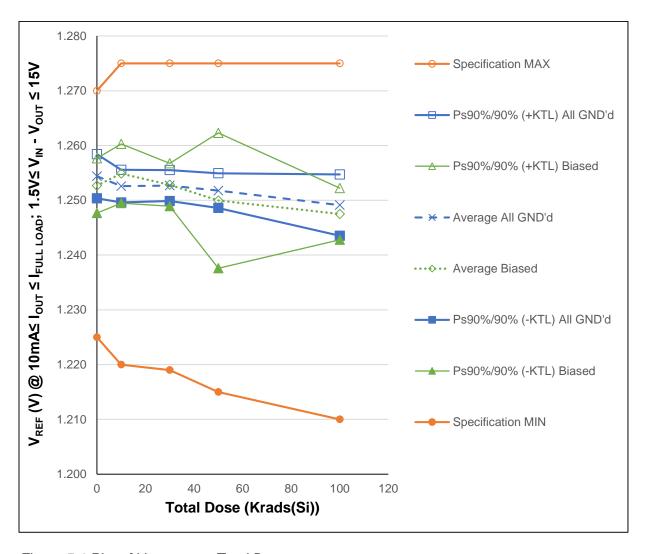



Figure 5.1 Plot of V<sub>REF</sub> versus Total Dose



Table 5.1: Raw data for reference voltage versus total dose including the statistical calculations, minimum specification, maximum specification, and the status of the test (PASS/FAIL) under the orange headers)

| orange hea | iders)                                                   |                    |              |                    |           |                    |
|------------|----------------------------------------------------------|--------------------|--------------|--------------------|-----------|--------------------|
|            | Vref @ 10mA≤ I <sub>OUT</sub> ≤ I <sub>FULL LOAD</sub> ; | _                  |              |                    | . = 0     | . ,                |
| Parameter  | 1.5V≤ V <sub>IN</sub> - V <sub>OUT</sub> ≤ 15V           | To                 | otal Dose (K | (rads(Si)) @       | 50rads(Si | )/S                |
| Units      | (V)                                                      | 0                  | 10           | 30                 | 50        | 100                |
| 620        | All GND'd Irradiation                                    | 1.25510            | 1.25185      |                    |           |                    |
| 621        | All GND'd Irradiation                                    | 1.25510            | 1.25183      |                    |           |                    |
| 622        | All GND'd Irradiation                                    | 1.25212            | 1.25443      |                    |           |                    |
| 623        | All GND'd Irradiation                                    | 1.25586            | 1.25215      |                    |           |                    |
| 624        | All GND'd Irradiation                                    | 1.25379            | 1.25264      |                    |           |                    |
| 625        | Biased Irradiation                                       | 1.25571            | 1.25322      |                    |           |                    |
| 626        |                                                          | 1.25112            | 1.25615      |                    |           |                    |
| 627        | Biased Irradiation                                       | 1.25146            | 1.25661      |                    |           |                    |
| 628        | Biased Irradiation                                       | 1.25223            | 1.25230      |                    |           |                    |
| 629        | Biased Irradiation                                       | 1.25284            | 1.25611      |                    |           |                    |
| 630        | All GND'd Irradiation                                    | 1.24976            |              | 1.25291            |           |                    |
| 631        | All GND'd Irradiation                                    | 1.24610            |              | 1.25093            |           |                    |
| 632        | All GND'd Irradiation                                    | 1.25311            |              | 1.25294            |           |                    |
| 633        | All GND'd Irradiation                                    | 1.25345            |              | 1.25298            |           |                    |
| 634        |                                                          | 1.25143            |              | 1.25367            |           |                    |
| 635<br>636 | Biased Irradiation Biased Irradiation                    | 1.24915<br>1.24488 |              | 1.25141<br>1.25447 |           |                    |
| 637        | Biased Irradiation                                       | 1.25304            |              | 1.25291            |           |                    |
| 638        | Biased Irradiation                                       | 1.25511            |              | 1.25139            |           |                    |
| 639        | Biased Irradiation                                       | 1.25192            |              | 1.25398            |           |                    |
| 640        | All GND'd Irradiation                                    | 1.24610            |              | 1.2000             | 1.25227   |                    |
| 641        | All GND'd Irradiation                                    | 1.25410            |              |                    | 1.25288   |                    |
| 642        | All GND'd Irradiation                                    | 1.24804            |              |                    | 1.25244   |                    |
| 643        | All GND'd Irradiation                                    | 1.24983            |              |                    | 1.25122   |                    |
| 644        | All GND'd Irradiation                                    | 1.25471            |              |                    | 1.25000   |                    |
| 645        | Biased Irradiation                                       | 1.25373            |              |                    | 1.25183   |                    |
| 646        | Biased Irradiation                                       | 1.25349            |              |                    | 1.24251   |                    |
| 647        | Biased Irradiation                                       | 1.24499            |              |                    | 1.25414   |                    |
| 648        | Biased Irradiation                                       | 1.24990            |              |                    | 1.25201   |                    |
| 649        | Biased Irradiation                                       | 1.24999            |              |                    | 1.24925   |                    |
| 650        | All GND'd Irradiation                                    | 1.25182            |              |                    |           | 1.24878            |
| 651        | All GND'd Irradiation                                    | 1.25196            |              |                    |           | 1.24687            |
| 652        | All GND'd Irradiation                                    | 1.25471            |              |                    |           | 1.24806            |
| 653        | All GND'd Irradiation                                    | 1.25318            |              |                    |           | 1.25230            |
| 654        | All GND'd Irradiation                                    | 1.25440            |              |                    |           | 1.24962            |
| 655        | Biased Irradiation                                       | 1.25449            |              |                    |           | 1.24478            |
| 656        | Biased Irradiation                                       | 1.24480            |              |                    |           | 1.24849            |
| 657<br>658 | Biased Irradiation Biased Irradiation                    | 1.25192            |              |                    |           | 1.24707            |
| 659        | Biased Irradiation Biased Irradiation                    | 1.25478<br>1.25129 |              |                    |           | 1.24928<br>1.24790 |
| 660        | Control Unit                                             | 1.25129            | 1.25528      | 1.25528            | 1.25528   | 1.25528            |
| 661        | Control Unit                                             | 1.25674            | 1.25646      | 1.25646            | 1.25646   | 1.25646            |
| 001        | All GND'd Irradiation Statistics                         | 1.23074            | 1.23040      | 1.23040            | 1.23040   | 1.23040            |
|            | Average All GND'd                                        | 1.25439            | 1.25258      | 1.25269            | 1.25176   | 1.24912            |
|            | Std Dev All GND'd                                        | 0.00147            | 0.00109      | 0.00103            | 0.00116   | 0.00204            |
|            | Ps90%/90% (+KTL) All GND'd                               | 1.25843            | 1.25556      | 1.25551            | 1.25493   | 1.25472            |
|            | Ps90%/90% (-KTL) All GND'd                               | 1.25036            | 1.24960      | 1.24986            | 1.24859   | 1.24353            |
|            | Biased Irradiation Statistics                            |                    |              |                    |           |                    |
|            | Average Biased                                           | 1.25267            | 1.25488      | 1.25283            | 1.24995   | 1.24750            |
|            | Std Dev Biased                                           | 0.00182            | 0.00197      | 0.00143            | 0.00450   | 0.00172            |
|            | Ps90%/90% (+KTL) Biased                                  | 1.25767            | 1.26028      | 1.25674            | 1.26230   | 1.25223            |
|            | Ps90%/90% (-KTL) Biased                                  | 1.24767            | 1.24947      | 1.24892            | 1.23760   | 1.24278            |
|            | Specification MIN                                        | 1.225              | 1.220        | 1.219              | 1.215     | 1.210              |
|            | Status (Measurements) All GND'd                          | _                  | PASS         | PASS               | PASS      | PASS               |
|            | Status (Measurements) Biased                             | PASS               | PASS         | PASS               | PASS      | PASS               |
|            | Specification MAX                                        | 1.270              | 1.275        | 1.275              | 1.275     | 1.275              |
|            | Status (Measurements) All GND'd                          | _                  | PASS         | PASS               | PASS      | PASS               |
|            | Status (Measurements) Biased                             | PASS               | PASS         | PASS               | PASS      | PASS               |
|            | Status ( IZTL ) All CNIDIS                               | DAGG               | DAGG         | DAGG               | DAGG      | DACC               |
|            | Status (-KTL) All GND'd                                  | PASS               | PASS         | PASS               | PASS      | PASS               |
|            | Status (+KTL) All GND'd                                  | PASS               | PASS         | PASS               | PASS      | PASS               |
|            | Status (-KTL) Biased                                     | PASS               | PASS         | PASS               | PASS      | PASS               |
|            | Status (+KTL) Biased                                     | PASS               | PASS         | PASS               | PASS      | PASS               |
|            | Diased (TRTE) Diased                                     | 1 700              | 1 700        | 1 700              | 1 700     | 1 700              |



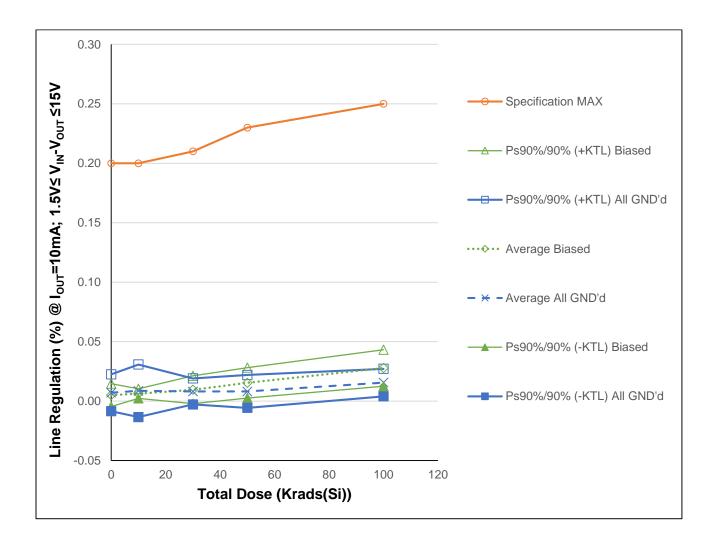



Figure 5.2: Plot of Line Regulation versus Total Dose



Table 5.2: Raw data for line regulation versus total dose including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL under the second orange header)

| <u>maximum</u> | specification, and the status of the test                                      | t (PASS/F          | AIL unde                  | r the secc         | nd orang  | <u>e header)</u>   |
|----------------|--------------------------------------------------------------------------------|--------------------|---------------------------|--------------------|-----------|--------------------|
| Parameter      | Line Reg @ I <sub>OUT</sub> =10mA; 1.5V≤V <sub>IN</sub> -V <sub>OUT</sub> ≤15V | To                 | <mark>ital Dose (K</mark> | (rads(Si)) @       | 50rads(Si | )/s                |
| Units          | (%)                                                                            | 0                  | 10                        | 30                 | 50        | 100                |
| 620            | All GND'd Irradiation                                                          | 0.01290            | 0.00076                   |                    |           |                    |
| 621            | All GND'd Irradiation                                                          | 0.00304            | 0.00769                   |                    |           |                    |
| 622            | All GND'd Irradiation                                                          | 0.00076            | 0.00692                   |                    |           |                    |
| 623            | All GND'd Irradiation                                                          | 0.01299            | 0.00564                   |                    |           |                    |
| 624            | All GND'd Irradiation                                                          | 0.00532            | 0.02223                   |                    |           |                    |
| 625            | Biased Irradiation                                                             | 0.00304            | 0.00464                   |                    |           |                    |
| 626            | Biased Irradiation                                                             | 0.00305            | 0.00531                   |                    |           |                    |
| 627            | Biased Irradiation                                                             | 0.01074            | 0.00691                   |                    |           |                    |
| 628<br>629     | Biased Irradiation Biased Irradiation                                          | 0.00228<br>0.00609 | 0.00617<br>0.00843        |                    |           |                    |
| 630            | All GND'd Irradiation                                                          | 0.00687            | 0.00643                   | 0.01050            |           |                    |
| 631            | All GND'd Irradiation                                                          | 0.00612            |                           | 0.00869            |           |                    |
| 632            | All GND'd Irradiation                                                          | 0.00532            |                           | 0.00304            |           |                    |
| 633            | All GND'd Irradiation                                                          | 0.01215            |                           | 0.00533            |           |                    |
| 634            | All GND'd Irradiation                                                          | 0.00685            |                           | 0.01301            |           |                    |
| 635            | Biased Irradiation                                                             | 0.01152            |                           | 0.00838            |           |                    |
| 636            | Biased Irradiation                                                             | -0.00023           |                           | 0.00608            |           |                    |
| 637            | Biased Irradiation                                                             | 0.00684            |                           | 0.01256            |           |                    |
| 638            | Biased Irradiation                                                             | 0.00213            |                           | 0.00533            |           |                    |
| 639            | Biased Irradiation                                                             | 0.00533            |                           | 0.01529            |           |                    |
| 640            | All GND'd Irradiation                                                          | 0.01155            |                           |                    | 0.01378   |                    |
| 641            | All GND'd Irradiation                                                          | 0.00540            |                           |                    | 0.01225   |                    |
| 642            | All GND'd Irradiation                                                          | 0.01230            |                           |                    | 0.00381   |                    |
| 643            | All GND'd Irradiation                                                          | 0.00610            |                           |                    | 0.00846   |                    |
| 644            | All GND'd Irradiation                                                          | 0.00608            |                           |                    | 0.00229   |                    |
| 645            | Biased Irradiation                                                             | 0.00661            |                           |                    | 0.01897   |                    |
| 646            | Biased Irradiation                                                             | 0.00532            |                           |                    | 0.01543   |                    |
| 647            | Biased Irradiation                                                             | 0.00994            |                           |                    | 0.00768   |                    |
| 648            | Biased Irradiation                                                             | 0.00663            |                           |                    | 0.01919   |                    |
| 649            | Biased Irradiation                                                             | 0.00663            |                           |                    | 0.01542   | 0.04774            |
| 650<br>651     | All GND'd Irradiation All GND'd Irradiation                                    | 0.00015<br>0.00685 |                           |                    |           | 0.01771<br>0.00841 |
| 652            | All GND'd Irradiation                                                          | 0.00228            |                           |                    |           | 0.00841            |
| 653            | All GND'd Irradiation                                                          | 0.00228            |                           |                    |           | 0.01719            |
| 654            | All GND'd Irradiation                                                          | 0.00000            |                           |                    |           | 0.01534            |
| 655            | Biased Irradiation                                                             | 0.00661            |                           |                    |           | 0.01953            |
| 656            | Biased Irradiation                                                             | 0.00076            |                           |                    |           | 0.03025            |
| 657            | Biased Irradiation                                                             | 0.00822            |                           |                    |           | 0.03487            |
| 658            | Biased Irradiation                                                             | 0.00684            |                           |                    |           | 0.02687            |
| 659            | Biased Irradiation                                                             | 0.00000            |                           |                    |           | 0.02766            |
| 660            | Control Unit                                                                   | 0.01291            | 0.00691                   | 0.00691            | 0.00691   | 0.00691            |
| 661            | Control Unit                                                                   | 0.00531            | 0.01093                   | 0.01093            | 0.01093   | 0.01093            |
|                | All GND'd Irradiation Statistics                                               |                    |                           |                    |           |                    |
|                | Average All GND'd                                                              | 0.00700            | 0.00865                   | 0.00811            | 0.00812   | 0.01557            |
|                | Std Dev All GND'd                                                              | 0.00566            | 0.00806                   | 0.00398            | 0.00505   | 0.00423            |
|                | Ps90%/90% (+KTL) All GND'd                                                     | 0.02252            | 0.03074                   | 0.01903            | 0.02196   | 0.02717            |
|                | Ps90%/90% (-KTL) All GND'd                                                     | -0.00852           | -0.01345                  | -0.00281           | -0.00572  | 0.00397            |
|                | Biased Irradiation Statistics                                                  | 0.00504            | 0.00629                   | 0.00053            | 0.01534   | 0.02783            |
|                | Average Biased Std Dev Biased                                                  | 0.00504<br>0.00351 | 0.00629                   | 0.00953<br>0.00428 | 0.01534   | 0.02783            |
|                | Ps90%/90% (+KTL) Biased                                                        | 0.00351            | 0.00147                   | 0.00428            | 0.00466   | 0.00339            |
|                | Ps90%/90% (-KTL) Biased                                                        | -0.00458           | 0.01032                   | -0.00220           | 0.0257    | 0.04317            |
|                | Specification MIN                                                              | 0.00 100           | 5.55 <u>L</u> L5          | 0.00220            | 0.00207   | 5.5.255            |
|                | Status (Measurements) All GND'd                                                |                    |                           |                    |           |                    |
|                | Status (Measurements) Biased                                                   |                    |                           |                    |           |                    |
|                | Specification MAX                                                              | 0.20               | 0.20                      | 0.21               | 0.23      | 0.25               |
|                | Status (Measurements) All GND'd                                                | PASS               | PASS                      | PASS               | PASS      | PASS               |
|                | Status (Measurements) Biased                                                   | PASS               | PASS                      | PASS               | PASS      | PASS               |
|                |                                                                                |                    |                           |                    |           |                    |
|                | Status (-KTL) All GND'd                                                        |                    |                           |                    |           |                    |
|                | Status (+KTL) All GND'd                                                        | PASS               | PASS                      | PASS               | PASS      | PASS               |
|                |                                                                                |                    |                           |                    |           |                    |
|                | Status (-KTL) Biased                                                           | DAGG               | DAGG                      | DAGG               | DAGG      | DAGG               |
|                | Status (+KTL) Biased                                                           | PASS               | PASS                      | PASS               | PASS      | PASS               |



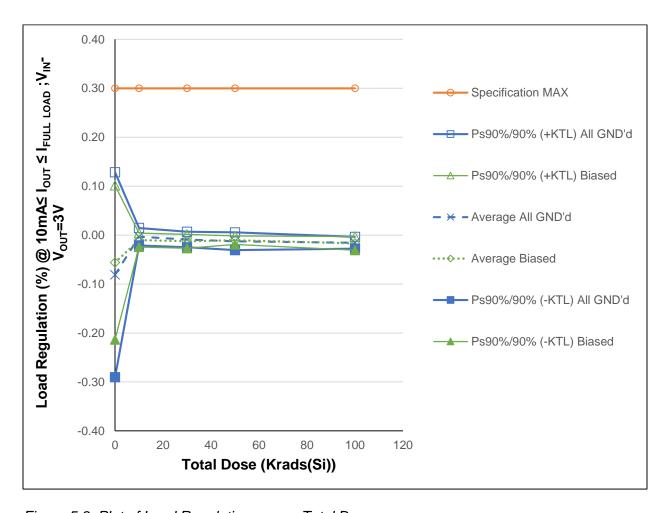



Figure 5.3: Plot of Load Regulation versus Total Dose

All measured post-irradiation data points are within the datasheet specification limits.



*Table 5.3*: Raw data for load regulation versus total dose including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL).

| iaximum s  | specification, and the status of the                         | test (PAS            | S/FAIL).             |             |                      |                      |
|------------|--------------------------------------------------------------|----------------------|----------------------|-------------|----------------------|----------------------|
| Doromotor  | Load Reg @ 10mA≤ l <sub>OUT</sub> ≤ l <sub>FULL LOAD</sub> , | To                   | etal Daga (K         | rodo(Si)) @ | 50rads(Si            | V/o                  |
| Parameter  | $V_{IN} - V_{OUT} = 3V$                                      | 10                   | nai Dose (K          | raus(Si)) @ | soliaus(Si           | //S                  |
| Units      | (%)                                                          | 0                    | 10                   | 30          | 50                   | 100                  |
| 620        | All GND'd Irradiation                                        | -0.11310             | -0.00609             |             |                      |                      |
| 621        |                                                              | -0.00091             | -0.01074             |             |                      |                      |
| 622        | All GND'd Irradiation                                        | -0.14147             | 0.00616              |             |                      |                      |
| 623        | All GND'd Irradiation                                        | 0.00311              | -0.00541             |             |                      |                      |
| 624        | All GND'd Irradiation                                        | -0.15264             | 0.00000              |             |                      |                      |
| 625        | Biased Irradiation                                           | -0.03493             | -0.01301             |             |                      |                      |
| 626        | Biased Irradiation                                           | -0.09207             | -0.01222             |             |                      |                      |
| 627        | Biased Irradiation                                           | -0.03679             | -0.00311             |             |                      |                      |
| 628        | Biased Irradiation                                           | -0.13234             | -0.00609             |             |                      |                      |
| 629        | Biased Irradiation                                           | 0.01667              | -0.01556             |             |                      |                      |
| 630        | All GND'd Irradiation                                        | 0.00008              |                      | -0.00228    |                      |                      |
| 631        | All GND'd Irradiation                                        | -0.10391             |                      | -0.01532    |                      |                      |
| 632        | All GND'd Irradiation                                        | -0.09291             |                      | -0.01454    |                      |                      |
| 633        | All GND'd Irradiation                                        | -0.17628             |                      | -0.00533    |                      |                      |
| 634        | All GND'd Irradiation                                        | -0.16518             |                      | -0.00685    |                      |                      |
| 635        |                                                              | -0.09237             |                      | -0.01234    |                      |                      |
| 636        |                                                              | -0.05512             |                      | -0.00844    |                      |                      |
| 637        |                                                              | -0.10865             |                      | -0.01378    |                      |                      |
| 638        |                                                              | -0.02294             |                      | -0.02065    |                      |                      |
| 639        |                                                              | -0.03808             |                      | -0.00768    |                      |                      |
| 640        |                                                              | -0.07334             |                      |             | -0.01074             |                      |
| 641        |                                                              | -0.03261             |                      |             | -0.01096             |                      |
| 642        |                                                              | -0.01849             |                      |             | -0.01919             |                      |
| 643        |                                                              | -0.02822             |                      |             | -0.00305             |                      |
| 644        |                                                              | -0.05470             |                      |             | -0.01846             |                      |
| 645        |                                                              | -0.14660             |                      |             | -0.01280             |                      |
| 646        |                                                              | -0.02198             |                      |             | -0.01159             |                      |
| 647        |                                                              | -0.14151             |                      |             | -0.00540             |                      |
| 648        |                                                              | -0.15374             |                      |             | -0.00922             |                      |
| 649        |                                                              | -0.04652             |                      |             | -0.01305             | 0.04077              |
| 650        |                                                              | -0.09142             |                      |             |                      | -0.01077             |
| 651        |                                                              | -0.13237             |                      |             |                      | -0.01231             |
| 652        |                                                              | -0.03495             |                      |             |                      | -0.02147             |
| 653        |                                                              | -0.05477             |                      |             |                      | -0.01477             |
| 654<br>655 |                                                              | -0.05934<br>-0.08880 |                      |             |                      | -0.01847<br>-0.02336 |
| 656        |                                                              | -0.14688             |                      |             |                      | -0.02336             |
| 657        |                                                              |                      |                      |             |                      | -0.015667            |
|            |                                                              | -0.08684<br>-0.05849 |                      |             |                      |                      |
| 658        |                                                              | -0.05649             |                      |             |                      | -0.00924<br>-0.01849 |
| 659<br>660 |                                                              |                      | -0.00615             | -0.00615    | 0.00615              | -0.01649             |
| 661        |                                                              | -0.02360             | -0.00613             | -0.00613    | -0.00615<br>-0.00683 | -0.00613             |
| 001        | All GND'd Irradiation Statistics                             | -0.02360             | -0.00663             | -0.0063     | -0.0063              | -0.00663             |
|            | Average All GND'd                                            | -0.08100             | -0.00322             | -0.00886    | -0.01248             | -0.01556             |
|            | Std Dev All GND'd                                            |                      | 0.00648              | 0.00578     |                      | 0.00440              |
|            | Ps90%/90% (+KTL) All GND'd                                   | 0.07634              | 0.00648              | 0.00578     | 0.00566              | -0.00349             |
|            | Ps90%/90% (+KTL) All GND'd                                   | -0.29031             | -0.02098             | -0.02472    | -0.03062             | -0.00349             |
|            | Biased Irradiation Statistics                                | 0.23031              | 0.02030              | 0.02472     | 0.00002              | 0.02703              |
|            | Average Biased                                               | -0.05589             | -0.01000             | -0.01258    | -0.01041             | -0.01673             |
|            | Std Dev Biased                                               | 0.05749              | 0.00519              | 0.00519     | 0.00319              | 0.00510              |
|            | Ps90%/90% (+KTL) Biased                                      | 0.10176              | 0.00319              | 0.00319     | -0.00167             | -0.00275             |
|            | Ps90%/90% (-KTL) Biased                                      | -0.21354             | -0.02423             | -0.02681    | -0.01915             | -0.03070             |
|            | Specification MIN                                            | 5.21554              | 5.52 <del>1</del> 25 | 0.02001     | 5.51515              | 5.55570              |
|            | Status (Measurements) All GND'd                              |                      |                      |             |                      |                      |
|            | Status (Measurements) Biased                                 |                      |                      |             |                      |                      |
|            | Specification MAX                                            | 0.3                  | 0.3                  | 0.3         | 0.3                  | 0.3                  |
|            | Status (Measurements) All GND'd                              | PASS                 | PASS                 | PASS        | PASS                 | PASS                 |
|            | Status (Measurements) Biased                                 | PASS                 | PASS                 | PASS        | PASS                 | PASS                 |
|            | (                                                            | 1                    |                      |             | 00                   |                      |
|            | Status (-KTL) All GND'd                                      |                      |                      |             |                      |                      |
|            | Status (+KTL) All GND'd                                      | PASS                 | PASS                 | PASS        | PASS                 | PASS                 |
|            | ISIAIUS (+KTL) All GIND II                                   |                      |                      |             |                      |                      |
|            | Status (+KTL) All GND d                                      |                      |                      |             |                      |                      |
|            | Status (-KTL) Biased                                         |                      |                      |             |                      |                      |



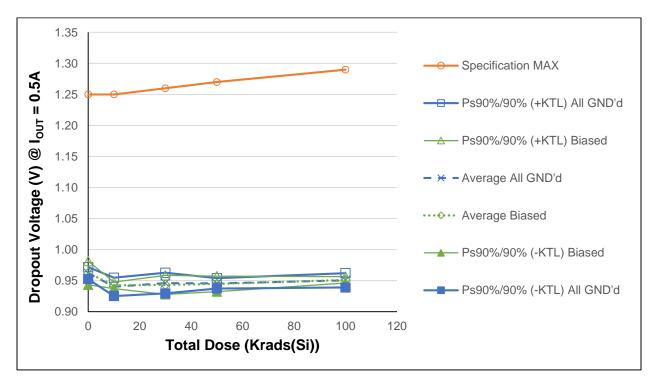



Figure 5.4: Plot of Dropout Voltage versus Total Dose

All measured data points are within datasheet specification limits.



Table 5.4: Raw data for dropout voltage versus total dose including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL).

|            | specification, and the status of the                     | ,                  |                    |         |           |         |
|------------|----------------------------------------------------------|--------------------|--------------------|---------|-----------|---------|
| Parameter  | . 3                                                      |                    |                    |         | 50rads(Si |         |
| Units      | (V)                                                      | 0                  | 10                 | 30      | 50        | 100     |
| 620        | All GND'd Irradiation                                    | 0.96293            | 0.94423            |         |           |         |
| 621        | All GND'd Irradiation                                    | 0.95758            | 0.93093            |         |           |         |
| 622        | All GND'd Irradiation                                    | 0.95966            | 0.93952            |         |           |         |
| 623        | All GND'd Irradiation All GND'd Irradiation              | 0.96621            | 0.94217            |         |           |         |
| 624        |                                                          | 0.96445            | 0.94332            |         |           |         |
| 625<br>626 | Biased Irradiation Biased Irradiation                    | 0.97341<br>0.96194 | 0.94222<br>0.94541 |         |           |         |
| 627        | Biased Irradiation                                       | 0.95476            | 0.94013            |         |           |         |
| 628        | Biased Irradiation                                       | 0.96281            | 0.94300            |         |           |         |
| 629        | Biased Irradiation                                       | 0.95866            | 0.94156            |         |           |         |
| 630        | All GND'd Irradiation                                    | 0.94645            | 0.94130            | 0.95461 |           |         |
| 631        | All GND'd Irradiation                                    | 0.97062            |                    | 0.94880 |           |         |
| 632        | All GND'd Irradiation                                    | 0.96073            |                    | 0.93843 |           |         |
| 633        | All GND'd Irradiation                                    | 0.96476            |                    | 0.94517 |           |         |
| 634        | All GND'd Irradiation                                    | 0.96612            |                    | 0.94343 |           |         |
| 635        | Biased Irradiation                                       | 0.95400            |                    | 0.94498 |           |         |
| 636        | Biased Irradiation                                       | 0.96537            |                    | 0.94956 |           |         |
| 637        | Biased Irradiation                                       | 0.96377            |                    | 0.94144 |           |         |
| 638        | Biased Irradiation                                       | 0.96239            |                    | 0.93466 |           |         |
| 639        | Biased Irradiation                                       | 0.95462            |                    | 0.94567 |           |         |
| 640        |                                                          | 0.97017            |                    |         | 0.94811   |         |
| 641        | All GND'd Irradiation                                    | 0.96307            |                    |         | 0.94423   |         |
| 642        | All GND'd Irradiation                                    | 0.94797            |                    |         | 0.94896   |         |
| 643        | All GND'd Irradiation                                    | 0.95052            |                    |         | 0.94522   |         |
| 644        | All GND'd Irradiation                                    | 0.96502            |                    |         | 0.94145   |         |
| 645        | Biased Irradiation                                       | 0.96262            |                    |         | 0.93799   |         |
| 646        | Biased Irradiation                                       | 0.95835            |                    |         | 0.94766   |         |
| 647        | Biased Irradiation                                       | 0.97222            |                    |         | 0.94938   |         |
| 648        | Biased Irradiation                                       | 0.95622            |                    |         | 0.94628   |         |
| 649        | Biased Irradiation                                       | 0.95200            |                    |         | 0.94240   |         |
| 650        | All GND'd Irradiation                                    | 0.95543            |                    |         |           | 0.95472 |
| 651        | All GND'd Irradiation                                    | 0.95872            |                    |         |           | 0.94801 |
| 652        | All GND'd Irradiation                                    | 0.97162            |                    |         |           | 0.94505 |
| 653        | All GND'd Irradiation                                    | 0.96415            |                    |         |           | 0.95469 |
| 654        | All GND'd Irradiation                                    | 0.96120            |                    |         |           | 0.95018 |
| 655        | Biased Irradiation                                       | 0.96223            |                    |         |           | 0.94903 |
| 656        | Biased Irradiation                                       | 0.97764            |                    |         |           | 0.94980 |
| 657        | Biased Irradiation                                       | 0.96101            |                    |         |           | 0.95353 |
| 658        | Biased Irradiation                                       | 0.96941            |                    |         |           | 0.95239 |
| 659        | Biased Irradiation                                       | 0.95159            |                    |         |           | 0.95171 |
| 660        |                                                          | 0.96246            | 0.90696            | 0.90696 | 0.90696   | 0.90696 |
| 661        | Control Unit                                             | 0.96399            | 0.93826            | 0.93826 | 0.93826   | 0.93826 |
|            | All GND'd Irradiation Statistics                         | 0.00010            | 0.04000            | 0.04000 | 0.04550   | 0.05050 |
|            | Average All GND'd                                        | 0.96216            | 0.94003            | 0.94609 | 0.94559   | 0.95053 |
|            | Std Dev All GND'd                                        | 0.00352            | 0.00538            | 0.00605 | 0.00303   | 0.00422 |
|            | Ps90%/90% (+KTL) All GND'd<br>Ps90%/90% (-KTL) All GND'd | 0.97181            | 0.95480            | 0.00200 | 0.95391   | 0.96211 |
|            | Biased Irradiation Statistics                            | 0.95252            | 0.92527            | 0.92949 | 0.93728   | 0.93895 |
|            | Average Biased                                           | 0.96231            | 0.94246            | 0.94326 | 0.94474   | 0.95129 |
|            | Std Dev Biased                                           | 0.96231            | 0.94246            | 0.94326 | 0.94474   | 0.95129 |
|            | Ps90%/90% (+KTL) Biased                                  | 0.00696            | 0.00196            | 0.00561 | 0.00457   | 0.00185 |
|            | Ps90%/90% (+KTL) Blased                                  | 0.94322            | 0.94763            | 0.92789 | 0.93221   | 0.94621 |
|            | Specification MIN                                        | 0.04022            | 0.337 10           | 0.32103 | 0.90221   | 0.04021 |
|            | Status (Measurements) All GND'd                          |                    |                    |         |           |         |
|            | Status (Measurements) Biased                             |                    |                    |         |           |         |
|            | Specification MAX                                        | 1.25               | 1.25               | 1.26    | 1.27      | 1.29    |
|            | Status (Measurements) All GND'd                          | PASS               | PASS               | PASS    | PASS      | PASS    |
|            | Status (Measurements) Biased                             | PASS               | PASS               | PASS    | PASS      | PASS    |
|            | and the second second                                    |                    |                    |         |           |         |
|            | Status (-KTL) All GND'd                                  |                    |                    |         |           |         |
|            | Status (+KTL) All GND'd                                  | PASS               | PASS               | PASS    | PASS      | PASS    |
|            | , , , , , , , , , , , , , , , , , , , ,                  |                    |                    |         |           |         |
|            | Status (-KTL) Biased                                     |                    |                    |         |           |         |
|            | Status (+KTL) Biased                                     | PASS               | PASS               | PASS    | PASS      | PASS    |
|            |                                                          |                    |                    |         |           |         |



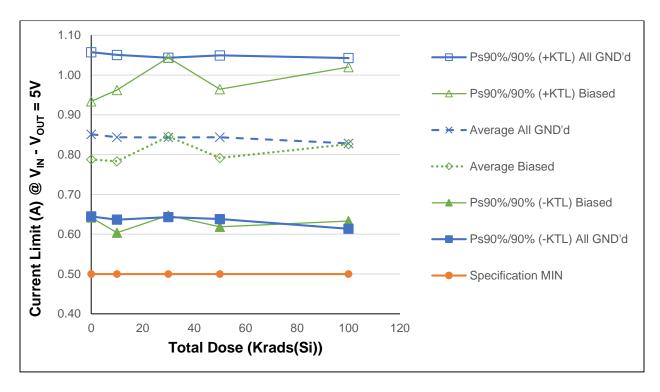



Figure 5.5: Plot of Current Limit versus Total Dose

The measured post-irradiation average data points are within datasheet specification limits.



Table 5.5: Raw data for current limit versus total dose including the statistical calculations, minimum specification, maximum specification, and the status of the test (PASS/FAIL)

|            | specification, maximum specificati        |                    |                    |         |         | \/o                |
|------------|-------------------------------------------|--------------------|--------------------|---------|---------|--------------------|
| Parameter  | 114 001                                   |                    | otal Dose (K       |         |         |                    |
| Units      | (A)                                       | 0<br>0.89874       | 10                 | 30      | 50      | 100                |
| 620        |                                           |                    | 0.75688            |         |         |                    |
| 621<br>622 |                                           | 0.91618<br>0.77254 | 0.90786<br>0.89656 |         |         |                    |
| 623        |                                           | 0.76552            | 0.76588            |         |         |                    |
| 624        |                                           | 0.90259            | 0.89149            |         |         |                    |
| 625        |                                           | 0.76734            | 0.89938            |         |         |                    |
| 626        |                                           | 0.75959            | 0.75097            |         |         |                    |
| 627        |                                           | 0.76175            | 0.75553            |         |         |                    |
| 628        |                                           | 0.88284            | 0.76501            |         |         |                    |
| 629        |                                           | 0.76782            | 0.74490            |         |         |                    |
| 630        |                                           | 0.76624            |                    | 0.76305 |         |                    |
| 631        |                                           | 0.76370            |                    | 0.76371 |         |                    |
| 632        | All GND'd Irradiation                     | 0.76926            |                    | 0.89970 |         |                    |
| 633        | All GND'd Irradiation                     | 0.90391            |                    | 0.89434 |         |                    |
| 634        | All GND'd Irradiation                     | 0.89760            |                    | 0.89582 |         |                    |
| 635        | Biased Irradiation                        | 0.76423            |                    | 0.90207 |         |                    |
| 636        | Biased Irradiation                        | 0.89398            |                    | 0.76415 |         |                    |
| 637        |                                           | 0.75873            |                    | 0.76857 |         |                    |
| 638        |                                           | 0.89065            |                    | 0.89827 |         |                    |
| 639        |                                           | 0.90394            |                    | 0.89444 |         |                    |
| 640        |                                           | 0.75965            |                    |         | 0.89225 |                    |
| 641        |                                           | 0.89989            |                    |         | 0.89776 |                    |
| 642        |                                           | 0.91130            |                    |         | 0.76655 |                    |
| 643        |                                           | 0.90524            |                    |         | 0.75709 |                    |
| 644        |                                           | 0.75477            |                    |         | 0.90518 |                    |
| 645        |                                           | 0.75730            |                    |         | 0.77670 |                    |
| 646        |                                           | 0.88780            |                    |         | 0.75517 |                    |
| 647        | Biased Irradiation                        | 0.90085            |                    |         | 0.75688 |                    |
| 648        |                                           | 0.76694            |                    |         | 0.90336 |                    |
| 649        |                                           | 0.90639            |                    |         | 0.76621 | 0.00440            |
| 650        |                                           | 0.90571            |                    |         |         | 0.92112            |
| 651        | All GND'd Irradiation                     | 0.77458            |                    |         |         | 0.77665            |
| 652<br>653 |                                           | 0.90312            |                    |         |         | 0.76358            |
| 654        |                                           | 0.75988<br>0.90203 |                    |         |         | 0.90590<br>0.77369 |
| 655        |                                           | 0.89635            |                    |         |         | 0.77161            |
| 656        |                                           | 0.75684            |                    |         |         | 0.78104            |
| 657        |                                           | 0.77037            |                    |         |         | 0.77248            |
| 658        |                                           | 0.76202            |                    |         |         | 0.90354            |
| 659        |                                           | 0.89654            |                    |         |         | 0.90366            |
| 660        |                                           | 0.75971            | 0.87387            | 0.87387 | 0.87387 | 0.87387            |
| 661        |                                           | 0.89711            | 0.89484            | 0.89484 | 0.89484 | 0.89484            |
| 231        | All GND'd Irradiation Statistics          |                    |                    |         |         |                    |
|            | Average All GND'd                         | 0.85112            | 0.84373            | 0.84332 | 0.84377 | 0.82819            |
|            | Std Dev All GND'd                         | 0.07525            | 0.07548            | 0.07301 | 0.07502 | 0.07822            |
|            | Ps90%/90% (+KTL) All GND'd                | 1.05746            | 1.05070            | 1.04351 | 1.04948 | 1.04268            |
|            | Ps90%/90% (-KTL) All GND'd                | 0.64477            | 0.63677            | 0.64314 | 0.63805 | 0.61370            |
|            | Biased Irradiation Statistics             |                    |                    |         |         |                    |
|            | Average Biased                            | 0.78787            | 0.78316            | 0.84550 | 0.79166 | 0.82646            |
|            | Std Dev Biased                            | 0.05321            | 0.06538            | 0.07231 | 0.06303 | 0.07051            |
|            | Ps90%/90% (+KTL) Biased                   | 0.93376            | 0.96243            | 1.04378 | 0.96449 | 1.01980            |
|            | Ps90%/90% (-KTL) Biased                   | 0.64197            | 0.60388            | 0.64722 | 0.61884 | 0.63312            |
|            | Specification MIN                         | 0.5                | 0.5                | 0.5     | 0.5     | 0.5                |
|            | Status (Measurements) All GND'd           | PASS               | PASS               | PASS    | PASS    | PASS               |
|            | Status (Measurements) Biased              | PASS               | PASS               | PASS    | PASS    | PASS               |
|            | Specification MAX                         |                    |                    |         |         |                    |
|            | Status (Measurements) All GND'd           |                    |                    |         |         |                    |
|            | Status (Measurements) Biased              |                    |                    |         |         |                    |
|            | Ctatus (ICTL) All CNDLI                   | DAGG               | DAGG               | DAGG    | DAGG    | DAGG               |
|            | Status (-KTL) All GND'd                   | PASS               | PASS               | PASS    | PASS    | PASS               |
|            | Status (+KTL) All GND'd                   |                    |                    |         |         |                    |
| -          | Status ( KTL) Bissed                      | DACC               | DACC               | DACC    | DASS    | BASS               |
|            |                                           |                    |                    |         |         |                    |
|            | Status (-KTL) Biased Status (+KTL) Biased | PASS               | PASS               | PASS    | PASS    | PASS               |



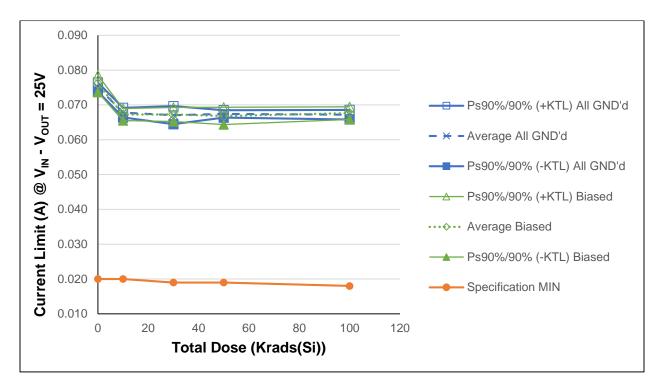



Figure 5.6: Plot of Current Limit versus Total Dose

All measured average data points are within datasheet specification limits.



Table 5.6: Raw data for current limit versus total dose including the statistical calculations, minimum specification, and the status of the test (PASS/FAIL)

| n <u>inimum sp</u> | ecification, and the status of the                       | test (PAS          | SS/FAIL)           |              |                    |         |
|--------------------|----------------------------------------------------------|--------------------|--------------------|--------------|--------------------|---------|
| Parameter          | Current Limit @ V <sub>IN</sub> - V <sub>OUT</sub> = 25V | To                 | tal Dose (K        | (rads(Si)) @ | 50rads(Si          | )/s     |
| Units              | (A)                                                      | 0                  | 10                 | 30           | 50                 | 100     |
| 620                | All GND'd Irradiation                                    | 0.07453            | 0.06780            |              |                    |         |
| 621                | All GND'd Irradiation                                    | 0.07515            | 0.06863            |              |                    |         |
| 622                | All GND'd Irradiation All GND'd Irradiation              | 0.07580            | 0.06758            |              |                    |         |
| 623<br>624         |                                                          | 0.07493<br>0.07532 | 0.06746<br>0.06737 |              |                    |         |
| 625                | Biased Irradiation                                       | 0.07332            | 0.06737            |              |                    |         |
| 626                | Biased Irradiation                                       | 0.07491            | 0.06756            |              |                    |         |
| 627                | Biased Irradiation                                       | 0.07723            | 0.06704            |              |                    |         |
| 628                | Biased Irradiation                                       | 0.07556            | 0.06707            |              |                    |         |
| 629                | Biased Irradiation                                       | 0.07634            | 0.06641            |              |                    |         |
| 630                | All GND'd Irradiation                                    | 0.07672            |                    | 0.06734      |                    |         |
| 631                | All GND'd Irradiation                                    | 0.07459            |                    | 0.06791      |                    |         |
| 632                | All GND'd Irradiation                                    | 0.07508            |                    | 0.06668      |                    |         |
| 633                | All GND'd Irradiation                                    | 0.07583            |                    | 0.06777      |                    |         |
| 634                | All GND'd Irradiation                                    | 0.07541            |                    | 0.06559      |                    |         |
| 635                | Biased Irradiation                                       | 0.07683            |                    | 0.06779      |                    |         |
| 636                | Biased Irradiation                                       | 0.07423            |                    | 0.06748      |                    |         |
| 637                | Biased Irradiation                                       | 0.07522            |                    | 0.06711      |                    |         |
| 638                | Biased Irradiation                                       | 0.07413            |                    | 0.06788      |                    |         |
| 639                | Biased Irradiation                                       | 0.07625            |                    | 0.06607      | 0.00004            |         |
| 640                |                                                          | 0.07498            |                    |              | 0.06694            |         |
| 641                | All GND'd Irradiation                                    | 0.07442            |                    |              | 0.06757            |         |
| 642                | All GND'd Irradiation                                    | 0.07626            |                    |              | 0.06705            |         |
| 643<br>644         |                                                          | 0.07682            |                    |              | 0.06773            |         |
| 645                | Biased Irradiation                                       | 0.07449            |                    |              | 0.06777<br>0.06597 |         |
| 646                |                                                          | 0.07367            |                    |              | 0.06597            |         |
| 647                | Biased Irradiation                                       | 0.07447            |                    |              | 0.06773            |         |
| 648                | Biased Irradiation                                       | 0.07661            |                    |              | 0.06645            |         |
| 649                | Biased Irradiation                                       | 0.07639            |                    |              | 0.06788            |         |
| 650                | All GND'd Irradiation                                    | 0.07606            |                    |              |                    | 0.06721 |
| 651                | All GND'd Irradiation                                    | 0.07637            |                    |              |                    | 0.06690 |
| 652                | All GND'd Irradiation                                    | 0.07461            |                    |              |                    | 0.06777 |
| 653                | All GND'd Irradiation                                    | 0.07526            |                    |              |                    | 0.06651 |
| 654                | All GND'd Irradiation                                    | 0.07508            |                    |              |                    | 0.06754 |
| 655                | Biased Irradiation                                       | 0.07520            |                    |              |                    | 0.06827 |
| 656                | Biased Irradiation                                       | 0.07493            |                    |              |                    | 0.06747 |
| 657                | Biased Irradiation                                       | 0.07578            |                    |              |                    | 0.06836 |
| 658                |                                                          | 0.07444            |                    |              |                    | 0.06730 |
| 659                |                                                          | 0.07650            | 0.05075            | 0.05075      | 0.05075            | 0.06679 |
| 660                |                                                          | 0.07456            | 0.05975            | 0.05975      | 0.05975            | 0.05975 |
| 661                | Control Unit All GND'd Irradiation Statistics            | 0.07399            | 0.06724            | 0.06724      | 0.06724            | 0.06724 |
|                    | Average All GND'd                                        | 0.07515            | 0.06777            | 0.06706      | 0.06741            | 0.06719 |
|                    | Std Dev All GND'd                                        | 0.00047            | 0.00051            | 0.00095      | 0.00039            | 0.00050 |
|                    | Ps90%/90% (+KTL) All GND'd                               | 0.07644            | 0.06916            |              | 0.06848            | 0.06856 |
|                    | Ps90%/90% (-KTL) All GND'd                               | 0.07386            | 0.06638            | 0.06445      | 0.06634            | 0.06581 |
|                    | Biased Irradiation Statistics                            |                    |                    |              |                    |         |
|                    | Average Biased                                           | 0.07609            | 0.06723            | 0.06726      | 0.06683            | 0.06764 |
|                    | Std Dev Biased                                           | 0.00089            | 0.00063            | 0.00073      | 0.00090            | 0.00067 |
|                    | Ps90%/90% (+KTL) Biased                                  | 0.07852            | 0.06895            | 0.06928      | 0.06931            | 0.06947 |
|                    | Ps90%/90% (-KTL) Biased                                  | 0.07366            | 0.06552            | 0.06525      | 0.06435            | 0.06581 |
|                    | Specification MIN                                        | 0.02               | 0.02               | 0.019        | 0.019              | 0.018   |
|                    | Status (Measurements) All GND'd                          | PASS               | PASS               | PASS         | PASS               | PASS    |
|                    | Status (Measurements) Biased                             | PASS               | PASS               | PASS         | PASS               | PASS    |
|                    | Specification MAX                                        |                    |                    |              |                    |         |
|                    | Status (Measurements) All GND'd                          |                    |                    |              |                    |         |
|                    | Status (Measurements) Biased                             |                    |                    |              |                    |         |
|                    | Status (-KTL) All GND'd                                  | PASS               | PASS               | PASS         | PASS               | PASS    |
|                    | Status (+KTL) All GND'd                                  | FASS               | FASS               | FASS         | FASS               | FASS    |
|                    | Claids (TRTE) / III OND U                                |                    |                    |              |                    |         |
|                    | Status (-KTL) Biased                                     | PASS               | PASS               | PASS         | PASS               | PASS    |
|                    | Status (+KTL) Biased                                     |                    |                    |              |                    |         |
|                    |                                                          |                    |                    |              |                    |         |



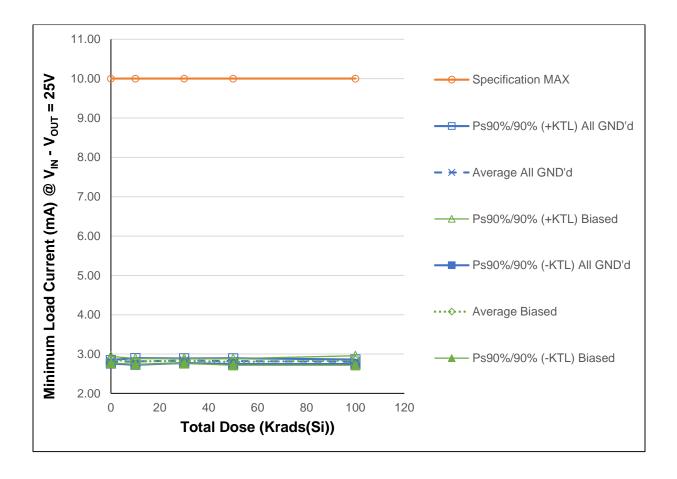



Figure 5.7: Plot of Minimum Load Current versus Total Dose

The average measured values of all samples pass the datasheet specification maximum limit.



Table 5.7: Raw data table for minimum load current versus total dose including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL)

|            | ns, maximum specification, and the sta            | atus of the        | e test (PA         | SS/FAIL)     |                    |         |
|------------|---------------------------------------------------|--------------------|--------------------|--------------|--------------------|---------|
| Parameter  | Minimum Load Current @ $V_{IN}$ - $V_{OUT}$ = 25V | To                 | otal Dose (K       | (rads(Si)) @ | 50rads(Si          | )/s     |
| Units      | (mA)                                              | 0                  | 10                 | 30           | 50                 | 100     |
| 620        |                                                   | 2.78890            | 2.81004            |              |                    |         |
| 621        |                                                   | 2.80192            | 2.83628            |              |                    |         |
| 622        |                                                   | 2.80620<br>2.79835 | 2.85265            |              |                    |         |
| 623<br>624 |                                                   | 2.79835            | 2.77874<br>2.79081 |              |                    |         |
| 625        |                                                   | 2.82847            | 2.83406            |              |                    |         |
| 626        |                                                   | 2.86177            | 2.81782            |              |                    |         |
| 627        |                                                   | 2.88914            | 2.83997            |              |                    |         |
| 628        |                                                   | 2.82320            | 2.79204            |              |                    |         |
| 629        |                                                   | 2.88129            | 2.77544            |              |                    |         |
| 630        |                                                   | 2.85020            |                    | 2.82150      |                    |         |
| 631        | All GND'd Irradiation                             | 2.80246            |                    | 2.81851      |                    |         |
| 632        | All GND'd Irradiation                             | 2.78371            |                    | 2.84119      |                    |         |
| 633        | All GND'd Irradiation                             | 2.84279            |                    | 2.86528      |                    |         |
| 634        | All GND'd Irradiation                             | 2.80322            |                    | 2.81311      |                    |         |
| 635        | Biased Irradiation                                | 2.88313            |                    | 2.83866      |                    |         |
| 636        |                                                   | 2.78562            |                    | 2.83357      |                    |         |
| 637        |                                                   | 2.79278            |                    | 2.79112      |                    |         |
| 638        |                                                   | 2.77815            |                    | 2.85327      |                    |         |
| 639        |                                                   | 2.83915            |                    | 2.82273      |                    |         |
| 640        |                                                   | 2.80376            |                    |              | 2.78590            |         |
| 641        |                                                   | 2.78212            |                    |              | 2.85350            |         |
| 642        |                                                   | 2.88213            |                    |              | 2.82651            |         |
| 643        |                                                   | 2.83983<br>2.77509 |                    |              | 2.80212            |         |
| 644<br>645 |                                                   | 2.82274            |                    |              | 2.83444<br>2.80273 |         |
| 646        |                                                   | 2.78172            |                    |              | 2.78560            |         |
| 647        |                                                   | 2.80613            |                    |              | 2.83258            |         |
| 648        |                                                   | 2.88771            |                    |              | 2.75749            |         |
| 649        |                                                   | 2.86598            |                    |              | 2.82273            |         |
| 650        |                                                   | 2.85874            |                    |              |                    | 2.83743 |
| 651        |                                                   | 2.82633            |                    |              |                    | 2.79728 |
| 652        | All GND'd Irradiation                             | 2.82198            |                    |              |                    | 2.81575 |
| 653        | All GND'd Irradiation                             | 2.80254            |                    |              |                    | 2.78959 |
| 654        | All GND'd Irradiation                             | 2.80895            |                    |              |                    | 2.78644 |
| 655        |                                                   | 2.81482            |                    |              |                    | 2.84843 |
| 656        |                                                   | 2.84226            |                    |              |                    | 2.79258 |
| 657        | Biased Irradiation                                | 2.85446            |                    |              |                    | 2.88413 |
| 658        |                                                   | 2.79530            |                    |              |                    | 2.86897 |
| 659        |                                                   | 2.85408            | 0.00050            | 0.00050      | 0.00050            | 2.79158 |
| 660<br>661 |                                                   | 2.78371<br>2.78890 | 2.92352<br>2.85188 | 2.92352      | 2.92352            | 2.92352 |
| 001        | All GND'd Irradiation Statistics                  | 2.76690            | 2.00100            | 2.85188      | 2.85188            | 2.85188 |
|            | Average All GND'd                                 | 2.80532            | 2.81371            | 2.83192      | 2.82049            | 2.80530 |
|            | Std Dev All GND'd                                 | 0.01581            | 0.03077            | 0.02145      | 0.02671            | 0.02126 |
|            | Ps90%/90% (+KTL) All GND'd                        | 2.84867            | 2.89807            |              | 2.89374            | 2.86360 |
|            | Ps90%/90% (-KTL) All GND'd                        | 2.76196            | 2.72934            | 2.77309      | 2.74725            | 2.74699 |
|            | Biased Irradiation Statistics                     |                    |                    |              |                    |         |
|            | Average Biased                                    | 2.85677            | 2.81186            | 2.82787      | 2.80022            | 2.83714 |
|            | Std Dev Biased                                    | 0.03001            | 0.02756            | 0.02330      | 0.03000            | 0.04304 |
|            | Ps90%/90% (+KTL) Biased                           | 2.93906            | 2.88742            | 2.89175      | 2.88248            | 2.95515 |
|            | Ps90%/90% (-KTL) Biased                           | 2.77449            | 2.73631            | 2.76399      | 2.71797            | 2.71912 |
|            | Specification MIN                                 |                    |                    |              |                    |         |
|            | Status (Measurements) All GND'd                   |                    |                    |              |                    |         |
|            | Status (Measurements) Biased                      | 10                 | 10                 | 10           | 10                 | 10      |
|            | Specification MAX                                 | 10                 | 10                 | 10           | 10                 | 10      |
|            | Status (Measurements) All GND'd                   | PASS               | PASS               | PASS         | PASS               | PASS    |
|            | Status (Measurements) Biased                      | PASS               | PASS               | PASS         | PASS               | PASS    |
|            | Status (-KTL) All GND'd                           |                    |                    |              |                    |         |
|            | Status (+KTL) All GND'd Status (+KTL) All GND'd   | PASS               | PASS               | PASS         | PASS               | PASS    |
|            | OLICIOS (TICTE) ALI GIAD U                        | 1 700              | 1 700              | 1 700        | 1 700              | 1 400   |
|            | Status (-KTL) Biased                              |                    |                    |              |                    |         |
|            | Status (+KTL) Biased                              | PASS               | PASS               | PASS         | PASS               | PASS    |
|            | •                                                 |                    |                    |              |                    |         |



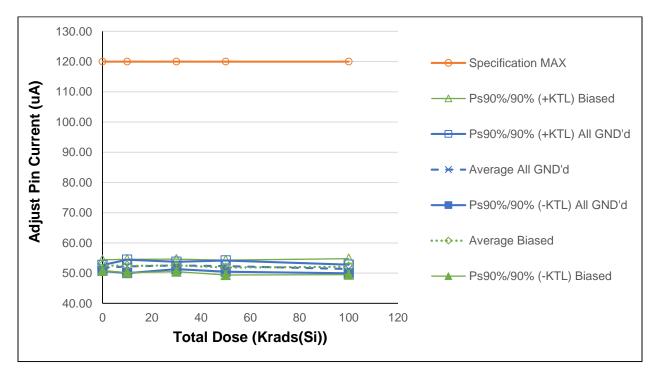



Figure 5.8: Plot of Adjust Pin Current versus Total Dose



Table 5.8: Raw data table for adjust pin current versus total dose including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL)

| Parameter  | Adjust Pin Current                           | Тс                   | ntal Dose (K | (rads(Si)) @ | 50rads(Si | )/s                  |
|------------|----------------------------------------------|----------------------|--------------|--------------|-----------|----------------------|
| Units      | (uA)                                         | 0                    | 10           | 30           | 50        | 100                  |
| 620        | \ /                                          | 51.66626             | 52.35584     |              |           | .00                  |
| 621        |                                              | 51.67128             |              |              |           |                      |
| 622        | All GND'd Irradiation                        | 51.50335             | 53.14195     |              |           |                      |
| 623        | All GND'd Irradiation                        | 51.44524             | 51.12804     |              |           |                      |
| 624        | All GND'd Irradiation                        | 52.33411             | 51.73420     |              |           |                      |
| 625        | Biased Irradiation                           | 52.05342             | 52.64637     |              |           |                      |
| 626        | Biased Irradiation                           | 52.61404             | 52.98154     |              |           |                      |
| 627        |                                              | 53.47535             | 53.15586     |              |           |                      |
| 628        |                                              | 51.81253             | 51.20387     |              |           |                      |
| 629        | Biased Irradiation                           | 52.94736             | 51.97979     |              |           |                      |
| 630        |                                              | 52.28404             |              | 52.33471     |           |                      |
| 631        | All GND'd Irradiation                        | 52.05799             |              | 52.03568     |           |                      |
| 632        | All GND'd Irradiation                        | 50.48202             |              | 53.02933     |           |                      |
| 633        | All GND'd Irradiation                        | 52.78799             |              | 52.98154     |           |                      |
| 634        | All GND'd Irradiation                        | 51.41187             |              | 52.28917     |           |                      |
| 635        |                                              | 52.95969             |              | 53.00289     |           |                      |
| 636        |                                              | 51.15160             |              | 52.87756     |           |                      |
| 637        | Biased Irradiation                           | 50.99628             |              | 51.28181     |           |                      |
| 638        | Biased Irradiation                           | 50.75951             |              | 52.51974     |           |                      |
| 639        | Biased Irradiation                           | 51.90482             |              | 53.13737     |           |                      |
| 640        |                                              | 51.79536             |              |              | 51.46272  |                      |
| 641        | All GND'd Irradiation                        | 50.88761             |              |              | 52.80159  |                      |
| 642        | All GND'd Irradiation                        | 52.30337             |              |              | 52.77596  |                      |
| 643        | All GND'd Irradiation                        | 52.12768             |              |              | 51.73455  |                      |
| 644        |                                              | 50.79623             |              |              | 52.89007  |                      |
| 645        |                                              | 51.96527             |              |              | 52.11939  |                      |
| 646        |                                              | 50.59139             |              |              | 51.19154  |                      |
| 647        | Biased Irradiation                           | 51.64664             |              |              | 53.15346  |                      |
| 648<br>649 |                                              | 53.09697             |              |              | 50.84679  |                      |
|            |                                              | 52.03653             |              |              | 51.87455  | 50.05000             |
| 650<br>651 | All GND'd Irradiation  All GND'd Irradiation | 52.67594<br>52.16105 |              |              |           | 52.25869<br>51.02570 |
| 652        | All GND'd Irradiation                        | 51.98091             |              |              |           | 51.44152             |
| 653        |                                              | 51.47708             |              |              |           | 51.20605             |
| 654        | All GND'd Irradiation                        | 51.96169             |              |              |           | 50.95098             |
| 655        |                                              | 52.14954             |              |              |           | 52.54912             |
| 656        |                                              | 52.41154             |              |              |           | 51.16724             |
| 657        | Biased Irradiation                           | 53.09016             |              |              |           | 52.90524             |
| 658        | Biased Irradiation                           | 51.75587             |              |              |           | 53.02453             |
| 659        |                                              | 52.53522             |              |              |           | 51.04490             |
| 660        | i                                            | 51.05544             | 58.47776     | 58.47776     | 58.47776  | 58.47776             |
| 661        | Control Unit                                 | 51.39640             | 53.44619     |              | 53.44619  | 53.44619             |
|            | All GND'd Irradiation Statistics             |                      |              |              |           |                      |
|            | Average All GND'd                            | 51.72405             | 52.23058     | 52.53409     | 52.33298  | 51.37659             |
|            | Std Dev All GND'd                            | 0.35523              | 0.81001      | 0.44543      | 0.67854   | 0.52813              |
|            | Ps90%/90% (+KTL) All GND'd                   | 52.69808             |              |              |           |                      |
|            | Ps90%/90% (-KTL) All GND'd                   |                      |              | 51.31272     |           |                      |
|            | Biased Irradiation Statistics                |                      |              |              |           |                      |
|            | Average Biased                               | 52.58054             | 52.39349     | 52.56387     | 51.83715  | 52.13821             |
|            | Std Dev Biased                               | 0.67158              | 0.80270      | 0.75261      | 0.89601   | 0.95928              |
|            | Ps90%/90% (+KTL) Biased                      | 54.42200             | 54.59449     | 54.62752     | 54.29401  | 54.76855             |
|            | Ps90%/90% (-KTL) Biased                      | 50.73908             | 50.19249     | 50.50023     | 49.38028  | 49.50787             |
|            | Specification MIN                            |                      |              |              |           |                      |
|            | Status (Measurements) All GND'd              | PASS                 | PASS         | PASS         | PASS      | PASS                 |
|            | Status (Measurements) Biased                 | PASS                 | PASS         | PASS         | PASS      | PASS                 |
|            | Specification MAX                            | 120                  | 120          | 120          | 120       | 120                  |
|            | Status (Measurements) All GND'd              | PASS                 | PASS         | PASS         | PASS      | PASS                 |
|            | Status (Measurements) Biased                 | PASS                 | PASS         | PASS         | PASS      | PASS                 |
|            |                                              |                      |              |              |           |                      |
|            | Status (-KTL) All GND'd                      | PASS                 | PASS         | PASS         | PASS      | PASS                 |
|            | Status (+KTL) All GND'd                      | PASS                 | PASS         | PASS         | PASS      | PASS                 |
|            |                                              |                      |              |              |           |                      |
|            | Status (-KTL) Biased                         | PASS                 | PASS         | PASS         | PASS      | PASS                 |
|            | Status (+KTL) Biased                         | PASS                 | PASS         | PASS         | PASS      | PASS                 |



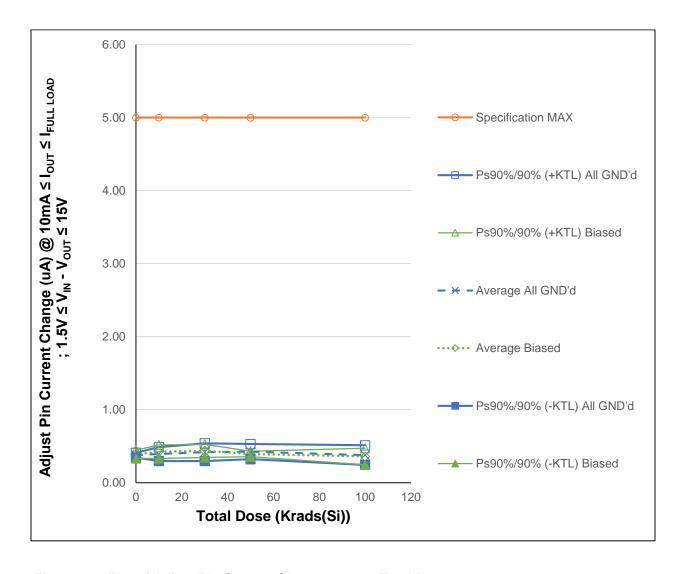



Figure 5.9: Plot of Adjust Pin Current Change versus Total Dose



Table 5.9: Raw data table for adjust pin current change versus total dose including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL)

| calculation  | s, maximum specification, and the st                               | atus of the        | e test (PA         | SS/FAIL)           |                    |                    |
|--------------|--------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|              | Adj Pin I Change @ 10mA≤l <sub>OUT</sub> ≤l <sub>FULL LOAD</sub> ; |                    |                    |                    |                    |                    |
| Parameter    |                                                                    | To                 | ital Dose (K       | (rads(Si)) @       | 50rads(Si          | )/s                |
| Linita       | 1.5V≤V <sub>IN</sub> -V <sub>OUT</sub> ≤15V<br>(uA)                | 0                  | 40                 | 20                 | 50                 | 400                |
| Units<br>620 | (uA) All GND'd Irradiation                                         | 0<br>0.37633       | 10<br>0.44718      | 30                 | 50                 | 100                |
|              |                                                                    |                    |                    |                    |                    |                    |
| 621<br>622   | All GND'd Irradiation                                              | 0.36847            | 0.40006            |                    |                    |                    |
| 623          | All GND'd Irradiation All GND'd Irradiation                        | 0.37215            | 0.38091<br>0.36623 |                    |                    |                    |
| 624          | All GND'd Irradiation All GND'd Irradiation                        | 0.37212<br>0.39874 | 0.36211            |                    |                    |                    |
| 625          | Biased Irradiation                                                 | 0.37470            | 0.47706            |                    |                    |                    |
| 626          | Biased Irradiation Biased Irradiation                              | 0.42288            | 0.39581            |                    |                    |                    |
| 627          | Biased Irradiation                                                 | 0.39859            | 0.40395            |                    |                    |                    |
| 628          | Biased Irradiation                                                 | 0.37749            | 0.40600            |                    |                    |                    |
| 629          | Biased Irradiation                                                 | 0.37599            | 0.43548            |                    |                    |                    |
| 630          | All GND'd Irradiation                                              | 0.35862            | 0.43340            | 0.37698            |                    |                    |
| 631          | All GND'd Irradiation                                              | 0.47815            |                    | 0.41506            |                    |                    |
| 632          | All GND'd Irradiation                                              | 0.35499            |                    | 0.45737            |                    |                    |
| 633          | All GND'd Irradiation                                              | 0.43571            |                    | 0.37263            |                    |                    |
| 634          | All GND'd Irradiation                                              | 0.34353            |                    | 0.46834            |                    |                    |
| 635          | Biased Irradiation                                                 | 0.40396            |                    | 0.42281            |                    |                    |
| 636          | Biased Irradiation                                                 | 0.36421            |                    | 0.42979            |                    |                    |
| 637          | Biased Irradiation                                                 | 0.36659            |                    | 0.40185            |                    |                    |
| 638          | Biased Irradiation Biased Irradiation                              | 0.37877            |                    | 0.43417            |                    |                    |
| 639          | Biased Irradiation                                                 | 0.40948            |                    | 0.43417            |                    |                    |
| 640          | All GND'd Irradiation                                              | 0.40948            |                    | 0.40979            | 0.38615            |                    |
| 641          | All GND'd Irradiation  All GND'd Irradiation                       | 0.43471            |                    |                    | 0.38615            |                    |
| 642          | All GND'd Irradiation                                              |                    |                    |                    |                    |                    |
| 643          | All GND'd Irradiation  All GND'd Irradiation                       | 0.35742            |                    |                    | 0.47652            |                    |
| 644          |                                                                    | 0.43986<br>0.39826 |                    |                    | 0.43593            |                    |
| 645          | All GND'd Irradiation                                              |                    |                    |                    | 0.38907            |                    |
|              | Biased Irradiation                                                 | 0.44284            |                    |                    | 0.40898            |                    |
| 646<br>647   | Biased Irradiation                                                 | 0.44743            |                    |                    | 0.37174            |                    |
| 648          | Biased Irradiation                                                 | 0.37267            |                    |                    | 0.39302            |                    |
| 649          | Biased Irradiation                                                 | 0.43679            |                    |                    | 0.39990            |                    |
| 650          | Biased Irradiation                                                 | 0.38998            |                    |                    | 0.39293            | 0.40115            |
| 651          | All GND'd Irradiation                                              | 0.41713<br>0.43488 |                    |                    |                    | 0.40115            |
| 652          | All GND'd Irradiation                                              |                    |                    |                    |                    | 0.35143            |
| 653          | All GND'd Irradiation                                              | 0.41457<br>0.38717 |                    |                    |                    | 0.45236            |
| 654          | All GND'd Irradiation All GND'd Irradiation                        | 0.36717            |                    |                    |                    | 0.33127<br>0.35342 |
|              |                                                                    |                    |                    |                    |                    |                    |
| 655          | Biased Irradiation                                                 | 0.41066            |                    |                    |                    | 0.35402            |
| 656<br>657   | Biased Irradiation                                                 | 0.35757            |                    |                    |                    | 0.36678            |
|              | Biased Irradiation Biased Irradiation                              | 0.37704<br>0.40067 |                    |                    |                    | 0.32425            |
| 658          | Biased Irradiation Biased Irradiation                              |                    |                    |                    |                    | 0.32365            |
| 659          |                                                                    | 0.45000            | 0.40051            | 0.40054            | 0.40054            | 0.42489            |
| 660<br>661   | Control Unit Control Unit                                          | 0.39923<br>0.44066 | 0.44693            | 0.40051<br>0.44693 | 0.40051<br>0.44693 | 0.40051<br>0.44693 |
| 001          | All GND'd Irradiation Statistics                                   | 0.44066            | 0.44693            | 0.44693            | 0.44693            | 0.44693            |
|              | Average All GND'd                                                  | 0.37756            | 0.39130            | 0.41808            | 0.42529            | 0.37793            |
|              | Std Dev All GND'd                                                  | 0.37756            | 0.39130            | 0.41808            | 0.42529            | 0.37793            |
|              | Ps90%/90% (+KTL) All GND'd                                         | 0.41090            | 0.48616            | 0.04425            | 0.03795            | 0.04888            |
|              | Ps90%/90% (+KTL) All GND d<br>Ps90%/90% (-KTL) All GND'd           | 0.41090            | 0.48616            | 0.53942            | 0.52936            | 0.51197            |
|              | Biased Irradiation Statistics                                      | 0.34422            | 0.23043            | 0.23074            | 0.52121            | 0.24309            |
|              | Average Biased                                                     | 0.38993            | 0.42366            | 0.43568            | 0.39331            | 0.35872            |
|              | Std Dev Biased                                                     | 0.02087            | 0.42366            | 0.43368            | 0.01373            | 0.04148            |
|              | Ps90%/90% (+KTL) Biased                                            | 0.02087            | 0.03342            | 0.03269            | 0.43097            | 0.04146            |
|              | Ps90%/90% (+KTL) Blased<br>Ps90%/90% (-KTL) Blased                 | 0.33271            | 0.33203            | 0.34604            | 0.43097            | 0.47246            |
|              | Specification MIN                                                  | 0.00271            | 0.00200            | 0.04004            | 0.0000             | 0.24431            |
|              | Status (Measurements) All GND'd                                    |                    |                    |                    |                    |                    |
|              | Status (Measurements) Biased                                       |                    |                    |                    |                    |                    |
|              | Specification MAX                                                  | 5                  | 5                  | 5                  | 5                  | 5                  |
|              | Status (Measurements) All GND'd                                    | PASS               | PASS               | PASS               | PASS               | PASS               |
|              | Status (Measurements) Biased                                       | PASS               | PASS               | PASS               | PASS               | PASS               |
|              | Gialus (IVICASUI CITICITIS) DIASCU                                 | FAGG               | FASS               | FAGG               | FASS               | FASS               |
|              | Status (-KTL) All GND'd                                            |                    |                    |                    |                    |                    |
|              | Status (+KTL) All GND'd                                            | PASS               | PASS               | PASS               | PASS               | PASS               |
|              | Oldido (FICIE) All OND U                                           | 1 700              | 1 700              | 1 700              | 1 700              | 1 700              |
|              | Status (-KTL) Biased                                               |                    |                    |                    |                    |                    |
|              | Status (+KTL) Biased Status (+KTL) Biased                          | PASS               | PASS               | PASS               | PASS               | PASS               |
|              | Olalus (TIVIL) Diaseu                                              | F AGG              | - FAGG             | _ F A33            | F AGG              | F AGG              |



### Appendix A



Figure A1: Top View showing ID and Date Code



### Appendix B

### **Radiation Bias Connection Tables**

Table B1: Biased Conditions

| PIN  | FUNCTION | CONNECTION / BIAS             |
|------|----------|-------------------------------|
| 1    | INPUT    | + 15V                         |
| 2    | ADJUST   | -15V                          |
|      |          | To Pin 3 via 150Ω resistor    |
| 3    | OUTPUT   | To pin 2 via 150Ω resistor to |
| CASE |          | - 15V                         |

### Table B2: All GND'd

| PIN | FUNCTION | CONNECTION / BIAS |
|-----|----------|-------------------|
| 1   | INPUT    | Ground            |
| 2   | ADJUST   | Ground            |
| 3   | OUTPUT   | Ground            |



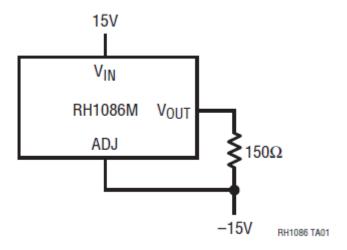



Figure B1: Total Dose Bias Circuit

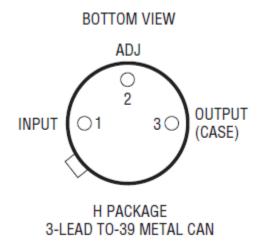



Figure B2: Pin-Out





Figure B3: Bias Board (top view)

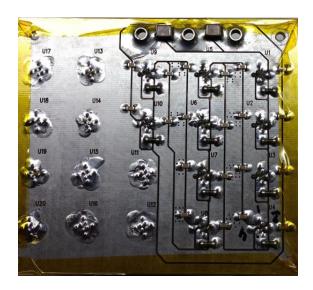



Figure B4: Bias Board (bottom view)



### Appendix C

### TEST CERTIFICATE



Defense Microelectronics Activity
Science and Engineering Gamma Irradiation Test Facility
DMEA/MEBC
4234 54<sup>th</sup> Street
McClellan, CA 95652



Testing Certificate Number: 1691.01

This laboratory is accredited by the American Association for Laboratory Accreditation (A2LA) and the dosimetry reported in this test certificate has been determined in accordance with the laboratory's terms of accreditation. The results contained herein relate only to the items tested. This certificate may not be reproduced, except in full, without the approval of this laboratory.

Date: 2014-02-26 Test Certificate #: 2014-NRC-024 Total Pages (except cover): 2

WARNING - This document contains technical data whose export is restricted by the Arms Export Control Act (Title 22, U.S.C., Sec 2751, et seq.) or the Export Administration Act of 1979 (Title 50, U.S.C., App. 2401 et seq.), as amended. Violations of these export laws are subject to severe criminal penalties. Disseminate in accordance with provisions of DoD Directive 5230.25.



| F                                                                                                                                                                                                                                                                                                                                                                                 | EQUEST F                                                                                                                                                                   | OR AND                                                                                                                                                                          | RESULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S OF TES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PAGE N                                   | 10.               | NO. OF PAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                            |                                                                                                                                                                                 | CTION A - RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                        |                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TO: (Include ZIP Code) Defense Microelectronics Activ Science and Engineering Gann 4234 54th Street McClellan, CA 95652-2100                                                                                                                                                                                                                                                      |                                                                                                                                                                            |                                                                                                                                                                                 | CHON A - RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2. FROM: (Inc.<br>Dr. Sana Rezg<br>Linear Techno<br>1630 McCarth<br>Milpitas, CA<br>Phone: (408)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nude ZIP Code)<br>gui<br>ology Corp.<br>ny Blvd.<br>95035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3. PRIME CONTRACTOR AND Same as block 2                                                                                                                                                                                                                                                                                                                                           | ADDRESS (Include                                                                                                                                                           | ZIP Code)                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4. MANUFACT<br>Linear Techno<br>1630 McCarti<br>Milpitas, CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ology Corp.<br>ry Blvd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NAME AND ADDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RESS (Includ                             | e ZIP             | Code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CONTRACT NUMBER CRAIL                                                                                                                                                                                                                                                                                                                                                             | OA CR-08-17                                                                                                                                                                |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P.O. NUMBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ER TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5. END ITEM AND/OR PROJEC                                                                                                                                                                                                                                                                                                                                                         | T<br>S/A                                                                                                                                                                   |                                                                                                                                                                                 | 6. SAMPLE<br>NUMBER<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7. LOT NO.<br>See below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OR SUBMITTAL<br>iizing Dose (TID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) Testing                                |                   | DATE<br>SUBMITTED<br>2014-02-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10. MATERIAL TO BE TESTED<br>Various biased/unbiased devices - see<br>selow                                                                                                                                                                                                                                                                                                       | 10a. QUANTITY :                                                                                                                                                            |                                                                                                                                                                                 | 11. QUANTITY<br>REPRESEN<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12. SPEC. & A<br>SAMPLE &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ORAWING NO                               | ). & R            | EV. FOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 13. PURCHASED FROM OR SO<br>Linear Tech                                                                                                                                                                                                                                                                                                                                           | DURCE<br>mology Corp.                                                                                                                                                      |                                                                                                                                                                                 | 14. SHIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l carry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15. DATE SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1PLED AND SUBI<br>2014-02-25 by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | nerd              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Description of parts to be irradiated is as<br>MSK196RH (6RH6105BK#IB*01), fab<br>RH1086MH (6RH1086BHK), fab lot #7                                                                                                                                                                                                                                                               | follows:<br>lot #WD34907E.1, ass'y<br>W1231270.1, ass'y lot #71                                                                                                            | lot #N/A, WFR #2: 19601.1, WFR #4: 10                                                                                                                                           | 10, 30, 50, 100 and 2<br>), 30, 50 and 100 krai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00 krad(SiO2), 10 de<br>d(SiO2), 10 devices p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | evices per dose level,<br>per dose level, biased                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dify parameters, device<br>biased/GND'd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                   | customer in dry<br>ements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Description of parts to be irradiated is as MSX 196RH (6RH-6105RK#IB*01), file MSX 196RH (6RH-6105RK#IB*01), file MSX 196RH (6RH-6105RK#IB*01), file for RH1084MK-CS, file for WVD41450E.1, RH1021BMH-10 (6RH1021-10K*14), file RH1021CMH-5#50289 (RH1021-5K*0)  Experiment #: 2014-NRC-024                                                                                       | follows: lot #WD34907E.1, ass/y lot #WD34907E.1, ass/y lot #VD31270.1, ass/y lot #71 ass/y lot #N/A, WFR #5: lab lot #W1245822.1, ass/ 8), fish lot #10214210.1, a  DMEA # | lot #N/A, WFR #2: 19601.1, WFR #4: 10 10, 30, 50, 100 and y lot #724755.1, WF ssry lot #697997.1, V                                                                             | 10, 30, 50, 100 and 2<br>0, 30, 50 and 100 krai<br>200 krad(SiO2), 10 o<br>R #1: 10, 30, 50 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00 krad(SiO2), 10 de<br>d(SiO2), 10 devices per dose leve<br>100 krad(SiO2), 10<br>and 100 krad(SiO2),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | evices per dose level,<br>per dose level, biased<br>d, biased/GND/d<br>devices per dose leve<br>10 devices per dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dify parameters, device<br>biased/GND'd<br>/GND'd<br>1, biased/GND'd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | es, etc. to suit test                    | t require         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Description of parts to be irradiated is as MSX 196RH (GRH-6105RK-#IB*01), the MSX 196RH (GRH-6105RK-#IB*01), the MSX 196RH (GRH-6105RK-#IB*01), the lot #7 RH1084MK-CS, the lot #WTD41450E.1, RH1021BMH-10 (GRH-1021-10K*14), IRH1021CMH-5#50289 (RH1021-5K*0)  Experiment #: 2014-NRC-024                                                                                       | follows: lot #WD34907E.1, assly lot #WD34907E.1, assly lot #VD31270.1, assly lot #71 assly lot #N/A, WFR 45: ab lot #W1245822.1, assl h fish lot #W1245822.1, assl DMEA #  | lot #N/A, WFR #2: 9601.1, WFR #4: 10 10, 30, 50, 100 and y lot #724755.1, WF ssy lot #697997.1, V                                                                               | 10, 30, 50, 100 and 2<br>0, 30, 50 and 100 km<br>200 kmd(SiO2), 10 c<br>R #1: 10, 30, 50 and<br>WFR #10: 10, 30, 50<br>RD.THOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00 krad(SiO2), 10 devices j<br>devices per dose leve<br>100 krad(SiO2), 10<br>and 100 krad(SiO2), 10<br>september 20, 100 krad(SiO2),<br>SHEPHERD.TH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | evices per dose level, biased 1, biased (ND7) devices per dose leve 10 devices per dose level 10 devices per | dify parameters, device this add (GND) discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/disco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | es, etc. lo suit test                    | t require         | emenés.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Description of parts to be irradiated is as MSX 196RH (6RH-6105RK#IR*01), find MSX 196RH (6RH-6105RK#IR*01), find for RH1086MK-CS, fab for #WD41450E.1, RH102IBMH-10 (6RH102I-10K*14), IRH102IBMH-10 (6RH102I-10K*0)  Experiment #: 2014-NRC-024  17. SEND REPORT OF TEST Traditividual identified in Block 2                                                                     | follows: lot #WD34907E.1, ass/y lot #WD34907E.1, ass/y lot #VD31270.1, ass/y lot #71 ass/y lot #N/A, WFR #5: lab lot #W1245822.1, ass/ 8), fish lot #10214210.1, a  DMEA # | lot #N/A, WFR #2: 9601.1, WFR #4: 10 10, 30, 50, 100 and y lot #724755.1, WF say lot #697997.1, V Approval: SHEPHE A5.1.125                                                     | 10, 30, 50, 100 and 2<br>0, 30, 50 and 100 km<br>200 kmd(SiO2), 10 c<br>R #1: 10, 30, 50 and<br>WFR #10: 10, 30, 50<br>RD.THOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00 kmd(SiO2), 10 devices plevices per dose leve 100 kmd(SiO2), 10 and 100 kmd(SiO2), 10 and 100 kmd(SiO2), 10 september 20 per 2 | evices per dose level, biased 1, biased/CND/d devices per dose leve 10 devices per dose leve 10 devices per dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dify parameters, device this add (GND) discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/disco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | es, etc. to suit test                    | t require         | emenés.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Description of parts to be irradiated is as<br>MSK 196RH (6RH6105BK#IB*01), fab<br>RH1086MH (6RH1086BHK), fab lot #T<br>RH1084MK-CS, fab lot #WD41450E.1,<br>RH1021BMH-10 (6RH1021-10K*14), i                                                                                                                                                                                     | follows: lot #WD34907E.1, assly lot #71 assly lot #871, assly lot #71 assly lot #874, WFR #5: ab lot #W1245822.1, assl b, fab lot #W1245822.1, assl DMEA #                 | lot #N/A, WFR #2: 9601.1, WFR #4: 10 10, 30, 50, 100 and y lot #724755.1, WF say lot #697997.1, V Approval: SHEPHE A5.1.125                                                     | 10, 30, 50, 100 and 20, 30, 50 and 100 km 200 km 20 | 00 kmd(SiO2), 10 devices plevices per dose leve 1100 kmd(SiO2), 10 and 100 kmd(SiO2), 10 and 10 and 100 kmd(SiO2), 10 and 10 a | evices per dose level, biased 1, biased/CND/d devices per dose leve 10 devices per dose leve 10 devices per dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dify parameters, device biased/GND/d (GND/d (GND/d ), biased/GND/d level, biased/GND/d ARBHAD MOHAM MAD 1.291959893 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | es, etc. to suit test                    | t require         | ementis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Description of parts to be irradiated is as:  MSK.196RH (6RH6105BK#IB*01), fab.  MSK.196RH (6RH6105BK#IB*01), fab.  RH1086MH (6RH1086BHK), fab. lot #7  RH1084MK-CS, fab. lot #WD41450E1,  RH1021BMH-10 (6RH1021-10K*14), fab.  RH1021CMH-5#50289 (RH1021-5K*0  Experiment #: 2014-NRC-024  17. SEND REPORT OF TEST To  Individual identified in Block 2  1. DATE SAMPLE RECEIVED | follows: lot #WD34907E.1, assly lot #71 assly lot #871, assly lot #71 assly lot #874, WFR #5: ab lot #W1245822.1, assl b, fab lot #W1245822.1, assl DMEA #                 | lot #N/A, WFR #2: 9601.1, WFR #4: 10 10, 30, 50, 100 and y lot #724755.1, WF say lot #697997.1, V Approval: SHEPHE A5.1.125                                                     | 10, 30, 50, 100 and 2 1, 30, 50 and 100 km 200 km 2 | 00 krad(SiO2), 10 devices plevices per dose level 100 krad(SiO2), 10 and 10 and 100 krad(SiO2), 10 and 10  | evices per dose level, biased 1, biased/CND/d devices per dose leve 10 devices per dose leve 10 devices per dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dify parameters, device biased/GND'd (GND'd (GND'd level, biased/GND'd level, biased/GND'd AREHAD MOHAM MAD 123196688)   e space is required to the space is required to th | ME M | require           | emenés.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Description of parts to be irradiated is as MSK196RH (6RH6105BK#IB*01), fab MSK196RH (6RH6105BK#IB*01), fab RH1086MH; CS, fab is w WP-041450E1, RH1021BMH-10 (6RH1021-10K*14), IRRH021BMH-10 (6RH1021-10K*0)  Experiment #: 2014-NRC-024  17. SEND REPORT OF TEST Tondividual identified in Block 2  1. DATE SAMPLE RECEIVED 2014-02-2:                                           | follows: lot #WD34907E.1, assly lot #71 assly lot #871, assly lot #71 assly lot #874, WFR #5: ab lot #W1245822.1, assl b, fab lot #W1245822.1, assl DMEA #                 | lot #N/A, WFR #2: 9601.1, WFR #4: 10 10, 30, 50, 100 and y lot #724755.1, WF say lot #697997.1, V Approval: SHEPHE AS_1125  ESULTS OF T 2. DATE RESU                            | 10, 30, 50, 100 and 20, 30, 50 and 100 km 200 km 20 | 00 krad(SiO2), 10 devices plevices per dose level 100 krad(SiO2), 10 and 10 and 100 krad(SiO2), 10 and 10  | evices per dose level, based, per dose level, per  | dify parameters, device biased/GND'd (GND'd (GND'd level, biased/GND'd level, biased/GND'd AREHAD MOHAM MAD 123196688)   e space is required to the space is required to th | ME M | require           | ARY, See Soll someone and Alexander and Alex |
| Description of parts to be irradiated is as MSX196RH (6RH-6105BK.4IB+01), file RH1096MH (6RH-105BK.4IB+01), file RH1096MK-CS, file los #WD41450E1, RH1021BMH-10 (6RH-1021-10K*14), IRH1021CMH-5#50289 (RH1021-5K*0  Experiment #: 2014-NRC-024  17. SEND REPORT OF TEST Tradividual identified in Block 2  1. DATE SAMPLE RECEIVED 2014-02-2:  4. TEST PERFORMED                  | follows: lot #WD34907E.1, assly lot #71 assly lot #871, assly lot #71 assly lot #874, WFR #5: ab lot #W1245822.1, assl b, fab lot #W1245822.1, assl DMEA #                 | ios #N/A, WFR #2: 19601.1, WFR #4: 10 10, 30, 50, 100 and y lot #724755.1, WF asky lot #697997.1, W Approval: SHEPHE AS 1.125  ESULTS OF T  2. DATE RESULTS OF T  Please see to | 10, 30, 50, 100 and 20, 30, 50 and 100 km 200 km 20 | 00 kmd(SiO2), 10 devices y devices per dose leve 100 kmd(SiO2), 10 and 10 kmd(SiO2), 10 and 100 kmd(SiO2), 10 and | evices per dose level, biased I, biased (IND) devices per dose level to devices per dose level to devices per dose level 10 devices per dose level 1 | dify parameters, device biased/GND'd (GND'd (GND'd level, biased/GND'd level, biased/GND'd AREHAD MOHAM MAD 123196688)   e space is required to the space is required to th | ired)  NUMBER  N/A  REQ                  | ELINE C<br>123185 | MENTS  MANUAL CONCRETE  |

DD FORM 1222, FEB 62 (EF) REPLACES DD FORM 1222, 1 JUL 58, WHICH IS OBSOLETE.



#### TID HDR RH1086MH W1231270.1 W4

| Continuation of DD Form 1222           |                                  | Experiment #: 2014-NRC-024 Page 2 of 2                                                                 |          |
|----------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------|----------|
| <ol> <li>Test Performed</li> </ol>     | Results of Test                  | Sample Result Requirements                                                                             | Step No. |
| 20140225 10:12:30 to 20140225 10:15:44 | 1.000E+04 rad(SiO2) at 3.085E+03 | 3 rad(SiO2)/min RH1086MH (6RH1086BHK), WFR #4, S/Ns 620-629: 10 krad TD                                | 1        |
| 20140225 10:12:30 to 20140225 10:15:44 | 1.000E+04 rad(SiO2) at 3.085E+03 | 3 rad(SiO2)/min RH1021BMH-10 (6RH1021-10K*14), WFR #1, S/Ns 93-97, 99-103: 10 krad TD                  | 1        |
| 20140225 10:12:30 to 20140225 10:15:44 | 1.000E+04 rad(SiO2) at 3.085E+03 | ad(SiO2)/min RH1021CMH-5#50289 (RH1021-5K*08), WFR #10, S/Ns 267-276: 10 krad TD                       | 1        |
| 20140225 10:44:00 to 20140225 10:53:43 | 3.000E+04 rad(SiO2) at 3.085E+03 | 3 rad(SiO2)/min RH1086MH (6RH1086BHK), WFR #4, S/Ns 630-639: 30 krad TD                                | 2        |
| 20140225 10:44:00 to 20140225 10:53:43 | 3.000E+04 rad(SiO2) at 3.085E+03 | 3 rad(SiO2)/min RH1021BMH-10 (6RH1021-10K*14), WFR #1, S/Ns 105-109: 30 krad TD                        | 2        |
| 20140225 10:44:00 to 20140225 10:53:43 | 3.000E+04 rad(SiO2) at 3.085E+03 | 3 rad(SiO2)/min RH1021CMH-5#50289 (RH1021-5K*08), WFR #10, S/Ns 277-286: 30 krad TD                    | 2        |
| 20140225 11:09:00 to 20140225 11:18:43 | 3.000E+04 rad(SiO2) at 3.085E+03 | 3 rad(SiO2)/min RH1021BMH-10 (6RH1021-10K*14), WFR #1, S/Ns 110-114: 30 krad TD                        | 3        |
| 20140225 11:34:00 to 20140225 11:50:12 | 5.000E+04 rad(SiO2) at 3.085E+03 | 3 rad(SiO2)/min RH1086MH (6RH1086BHK), WFR #4, S/Ns 640-649: 50 krad TD                                | 4        |
| 20140225 11:34:00 to 20140225 11:50:12 | 5.000E+04 rad(SiO2) at 3.085E+03 | 3 rad(SiO2)/min RH1021BMH-10 (6RH1021-10K*14), WFR #1, S/Ns 116, 118-120, 180, 182-186: 50 krad TD     | 4        |
| 20140225 11:34:00 to 20140225 11:50:12 |                                  | 3 rad(SiO2)/min RH1021CMH-5#50289 (RH1021-5K*08), WFR #10, S/Ns 287-296: 50 krad TD                    | 4        |
| 20140225 12:07:00 to 20140225 12:39:25 | 1.000E+05 rad(SiO2) at 3.085E+03 | ad(SiO2)/min RH1086MH (6RH1086BHK), WFR #4, S/Ns 650-659: 100 krad TD                                  | 5        |
| 20140225 12:07:00 to 20140225 12:39:25 | 1.000E+05 rad(SiO2) at 3.085E+03 | 3 rad(SiO2)/min RH1021BMH-10 (6RH1021-10K*14), WFR #1, S/Ns 187-193, 196-198: 100 krad TD              | 5        |
| 20140225 12:07:00 to 20140225 12:39:25 | 1.000E+05 rad(SiO2) at 3.085E+03 | 3 rad(SiO2)/min RH1021CMH-5#50289 (RH1021-5K*08), WFR #10, S/N5 297-300, 316-317, 319-322; 100 krad TD | 5        |
| 20140225 14:46:00 to 20140225 14:49:14 | 1.000E+04 rad(SiO2) at 3.085E+03 | 3 rad(SiO2)/min MSK196RH (6RH6105BK#IB*01), WFR #2, S/Ns 1020-1027, 1029-1030: 10 krad TD              | 6        |
|                                        |                                  | arad(SiO2)/min RH1084MK-CS, WFR #5, S/Ns 13-22: 10 krad TD                                             | 6        |
| 20140225 15:00:20 to 20140225 15:10:03 | 3.000E+04 rad(SiO2) at 3.085E+03 | ad(SiO2)/min MSK196RH (6RH6105BK#IB*01), WFR #2, S/Ns 1031, 1042-1050: 30 krad TD                      | 7        |
| 20140225 15:00:20 to 20140225 15:10:03 |                                  | arad(SiO2)/min RH1084MK-CS, WFR #5, S/Ns 23-32: 30 krad TD                                             | 7        |
| 20140225 15:19:40 to 20140225 15:35:52 | 5.000E+04 rad(SiO2) at 3.085E+03 | arad(SiO2)/mim MSK196RH (6RH6105BK#IB*01), WFR #2, S/Ns 1051-1056, 1058-1059, 1061-1062: 50 krad TD    | 8        |
|                                        |                                  | 3 rad(SiO2)/min RH1084MK-CS, WFR #5, S/Ns 33, 35-37, 39-44: 50 krad TD                                 | 8        |
| 20140225 15:45:10 to 20140225 16:17:35 | 1.000E+05 rad(SiO2) at 3.085E+03 | 3 rad(SiO2)/min MSK196RH (6RH6105BK#IB*01), WFR #2, S/Ns 1064-1065, 1067-1074: 100 krad TD             | 9        |
| 20140225 15:45:10 to 20140225 16:17:35 |                                  | 3 rad(SiO2)/min RH1084MK-CS, WFR #5, S/Ns 45-47, 49-55: 100 krad TD                                    | 9        |
| 20140225 16:27:20 to 20140225 17:15:57 | 1.500E+05 rad(SiO2) at 3.085E+03 | 3 rad(SiO2)/min MSK196RH (6RH6105BK#IB*01), WFR #2, S/Ns 1075-1084: 150 krad TD                        | 10       |
| 20140225 16:27:20 to 20140225 17:15:57 | 1.500E+05 rad(SiO2) at 3.085E+03 | rad(SiO2)/min RH1084MK-CS, WFR #5, S/Ns 56-60, 62, 64-67: 150 krad SD, 150 krad TD                     | 10       |
| 20140225 17:22:20 to 20140225 17:38:32 | 5.000E+04 rad(SiO2) at 3.085E+03 | 3 rad(SiO2)/min RH1084MK-CS, WFR #5, S/Ns 56-60, 62, 64-67: 50 krad SD, 200 krad TD                    | 11       |

Uncertainty: Total Doses reported are ±

16.02%

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

#### NOTES:

- ASTM = American Society for Testing and Materials.
- DUT = Device Under Test.
   S/N = Serial Number.
- 4. SD = Step Dose. 5. TD = Total Dose.
- 9.76% 6. Dose rate uniformity across target area:

- 0. Dose rate uniformity across target area: = 9.70%
  All tradiation steps met the requirements of MIL-STD-883H. Test Method 1019.8, Condition A.
  8. After the original Test Request (DD Form 1222) was approved, the following changes were made:
  a. Total number of irradiation steps was 11 instead of 22. The board configuration allowed the irradiation of 2 boards simultaneously.
  b. The MSK196RH (6RH6105BK#IB\*01) highest TD level was incorrect on the original Test Request; it should have been 150 krad(SiO2) instead of 200 krad(SiO2). The 150 krad(SiO2) TD was executed
- correctly during Step No. 10.

  Latitude to change test parameters to suit customer requirements was included in the original Test Request, no Customer Order Change Request (SEGIT Form QP03-4, Rev. 5) was required/issued.
- 9. Source information:
- a. Irradiator = J.L. Shepherd & Associates Model 81-22/484 self-contained irradiation facility, S/Ns 7125/50016.
   b. Source selection = two large Co-60 sources.

- Dosimeter system:
   a. Radcal Model No. 9010 Radiation Monitor Controller, S/N 90-1313.
   b. Radcal Model No. 90X5-0.18 Electrometer/Ion Chamber, S/Ns 95-0478/9771.
- c. This dosimeter system was calibrated per ISO/IEC 17025:2005 by University of Wisconsin Medical Radiation Research Center on 3 Feb 2014 (Report No. ION14426). This calibration is effective for two years.

  11. Irradiation geometry: in accordance with section 7.3.2 of ASTM E1249-00 (2005), the DUT's semiconductor chip plane was perpendicular to the incident radiation beam.

- Filter box: a DMEA Dose Enhancement Chamber (DEC) was used for all testing/dosimetry involved with this experiment.
   The DEC's Po and Al layers are compliant with section 7.2.2 of ASTM El 249-00 (2005) with respect to thickness and geometry.



### Appendix D

Table D1: Pre-Irradiation Electrical Characteristics of Device-Under-Test

| DADAMETED                                    | COMPLETIONS                                                                                                                                                                    | NOTEO            | T <sub>A</sub> = 25°C       |                            |             | SUB-             | -55°C ≤ T <sub>A</sub> ≤ 125°C |     |             | SUB-                     | шито                 |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------|----------------------------|-------------|------------------|--------------------------------|-----|-------------|--------------------------|----------------------|
| PARAMETER                                    | CONDITIONS                                                                                                                                                                     | NOTES            | MIN                         | TYP                        | MAX         | GROUP            | MIN                            | TYP | MAX         | GROUP                    | UNITS                |
| Reference Voltage                            | $I_{OUT} = 10 \text{mA}, (V_{IN} - V_{OUT}) = 3 \text{V (K)}$                                                                                                                  |                  | 1.238                       |                            | 1.262       | 1                |                                |     |             |                          | V                    |
|                                              | $ \begin{aligned} 10 \text{mA} &\leq I_{OUT} \leq I_{FULL\ LOAD}, \\ 1.5 V &\leq \left(V_{IN} - V_{OUT}\right) \leq 25 V \end{aligned} $                                       | 6                | 1.225                       |                            | 1.270       |                  | 1.225                          |     | 1.270       | 2,3                      | V                    |
| Line Regulation                              | $I_{LOAD} = 10 \text{mA}, \ 1.5 \text{V} \le (V_{IN} - V_{OUT}) \le 15 \text{V}$                                                                                               | 2, 3             |                             |                            | 0.2         | 1                |                                |     | 0.2         | 2,3                      | %                    |
| Load Regulation                              | $(V_{IN} - V_{OUT}) = 3V,$<br>$10\text{mA} \le I_{OUT} \le I_{FULL\ LOAD}$                                                                                                     | 2, 3, 6          |                             |                            | 0.3         | 1                |                                |     | 0.4         | 2,3                      | %                    |
| Dropout Voltage                              | $\Delta V_{REF} = 1\%$ , $I_{OUT} = 1.5A$ (K) $\Delta V_{REF} = 1\%$ , $I_{OUT} = 0.5A$ (H)                                                                                    | 4<br>4           |                             |                            | 1.5<br>1.25 | 1<br>1           |                                |     | 1.5<br>1.25 | 2,3<br>2,3               | V                    |
| Current Limit                                | $(V_{IN} - V_{OUT}) = 5V (K)$<br>$(V_{IN} - V_{OUT}) = 5V (H)$<br>$(V_{IN} - V_{OUT}) = 25V (K)$<br>$(V_{IN} - V_{OUT}) = 25V (H)$                                             |                  | 1.5<br>0.5<br>0.05<br>0.020 |                            |             | 1<br>1<br>1<br>1 | 1.5<br>0.5<br>0.05<br>0.020    |     |             | 2,3<br>2,3<br>2,3<br>2,3 | A<br>A<br>A          |
| Minimum Load Current                         | $(V_{IN} - V_{OUT}) = 25V$                                                                                                                                                     |                  |                             |                            | 10          | 1                |                                |     | 10          | 2,3                      | mA                   |
| Thermal Regulation                           | T <sub>A</sub> = 25°C, 30ms Pulse                                                                                                                                              |                  |                             |                            | 0.04        | 4                |                                |     |             |                          | %/W                  |
| Ripple Rejection                             |                                                                                                                                                                                | 6                | 60                          |                            |             | 4                | 60                             |     |             | 5,6                      | dB                   |
| Adjust Pin Current                           | T <sub>J</sub> = 25°C                                                                                                                                                          |                  |                             | 55                         | 120         | 1                |                                |     | 120         | 2,3                      | μА                   |
| Adjust Pin Current<br>Change                 | $ \begin{aligned} &10\text{mA} \leq I_{\text{OUT}} \leq I_{\text{FULL LOAD}}, \\ &1.5\text{V} \leq \left(V_{\text{IN}} - V_{\text{OUT}}\right) \leq 15\text{V} \end{aligned} $ | 6                |                             |                            | 5           | 1                |                                |     | 5           | 2,3                      | μА                   |
| Temperature Stability                        |                                                                                                                                                                                |                  |                             | 0.5                        |             |                  |                                | 0.5 |             |                          | %                    |
| Long Term Stability                          | T <sub>A</sub> = 125°C, 1000 Hours                                                                                                                                             | 5                |                             | 0.3                        |             |                  |                                |     |             |                          | %                    |
| RMS Output Noise<br>(% of V <sub>OUT</sub> ) | 10Hz ≤ f ≤ 10kHz                                                                                                                                                               |                  |                             | 0.003                      |             |                  |                                |     |             |                          | %                    |
| Thermal Resistance<br>Junction-to-Case       | Control Circuitry (K) Control Circuitry (H) Power Transistor (K) Power Transistor (H)                                                                                          | 5<br>5<br>5<br>5 |                             | 1.7<br>15.0<br>4.0<br>20.0 |             |                  |                                |     |             |                          | °C/W<br>°C/W<br>°C/W |



Table D2: Post-Irradiation Electrical Characteristics of Device-Under-Test

| PARAMETER                          | CONDITIONS                                                                                                                         | 10KR/<br>MIN                | AD (Si)<br>Max | 20KR/<br>MIN                 | AD (Si)<br>Max | 50KRA<br>MIN                 | ND (Si)<br>Max | 100KR<br>MIN                 | AD (Si)<br>Max | 200KR                        | AD (Si)<br>Max | UNITS       |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|------------------------------|----------------|------------------------------|----------------|------------------------------|----------------|------------------------------|----------------|-------------|
| Reference Voltage<br>(Note 6)      | I <sub>OUT</sub> = 10mA (V <sub>IN</sub> – V <sub>OUT</sub> ) = 3V (K)                                                             | 1.234                       | 1.262          | 1.230                        | 1.262          | 1.225                        | 1.262          | 1.220                        | 1.262          | 1.205                        | 1.262          | V           |
|                                    |                                                                                                                                    | 1.220                       | 1.275          | 1.219                        | 1.275          | 1.215                        | 1.275          | 1.210                        | 1.275          | 1.20                         | 1.275          | V           |
| Line Regulation (Notes 2, 3)       | $I_{OUT} = 10 \text{mA}$<br>1.5V $\leq (V_{IN} - V_{OUT}) \leq 15 \text{V}$                                                        |                             | 0.2            |                              | 0.21           |                              | 0.23           |                              | 0.25           |                              | 0.3            | %           |
| Load Regulation<br>(Notes 2, 3, 6) | $(V_{IN} - V_{OUT}) = 3V$<br>$10\text{mA} \le I_{OUT} \le I_{FULL\ LOAD}$                                                          |                             | 0.3            |                              | 0.3            |                              | 0.3            |                              | 0.3            |                              | 0.3            | %           |
| Dropout Voltage (Note 4)           | $\Delta V_{REF} = 1\%$ , $I_{OUT} = 1.5A$ (K)<br>$\Delta V_{REF} = 1\%$ , $I_{OUT} = 0.5A$ (H)                                     |                             | 1.5<br>1.25    |                              | 1.51<br>1.26   |                              | 1.52<br>1.27   |                              | 1.55<br>1.29   |                              | 1.575<br>1.32  | V           |
| Current Limit                      | $(V_{IN} - V_{OUT}) = 5V (K)$<br>$(V_{IN} - V_{OUT}) = 25V (K)$<br>$(V_{IN} - V_{OUT}) = 5V (H)$<br>$(V_{IN} - V_{OUT}) = 25V (H)$ | 1.5<br>0.05<br>0.5<br>0.020 |                | 1.5<br>0.049<br>0.5<br>0.019 |                | 1.5<br>0.048<br>0.5<br>0.019 |                | 1.5<br>0.047<br>0.5<br>0.018 |                | 1.5<br>0.045<br>0.5<br>0.017 |                | A<br>A<br>A |
| Minimum Load Current               | (V <sub>IN</sub> – V <sub>OUT</sub> ) = 25V                                                                                        |                             | 10             |                              | 10             |                              | 10             |                              | 10             |                              | 10             | mA          |
| Adjust Pin Current                 |                                                                                                                                    |                             | 120            |                              | 120            |                              | 120            |                              | 120            |                              | 120            | μА          |
| Adjust Pin Current Change (Note 6) |                                                                                                                                    |                             | 5              |                              | 5              |                              | 5              |                              | 5              |                              | 5              | μА          |

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

**Note 2:** See thermal regulation specifications for changes in output voltage due to heating effects. Line and load regulation are measured at a constant junction temperature by low duty cycle pulse testing.

Note 3: Line and load regulation are guaranteed up to the maximum power dissipation of 15W for RH1086MK and 3W for the RH1086MH. Power dissipation is determined by the input/output differential voltage and the output current. Guaranteed maximum power dissipation will not be available over the full input/output voltage range.

Note 4: Dropout voltage is specified over the full output current range of the device. Test points and limits are shown on the Dropout Voltage curve in the LT®1086 data sheet.

Note 5: Guaranteed by design, characterization, or correlation to other tested parameters.

Note 6: I<sub>FULL LOAD</sub> is defined in the Current Limit curves in the standard data sheet. For compliance with 883 revision C current density specifications, the RH1086MK is derated to 1A.