

Total Ionization Dose (TID) Test Results of the RH1086MH 0.5A Low Dropout Positive Adjustable Regulator @ Low Dose Rate (LDR)

LDR = 10 mrads(Si)/s

20 November 2014

Duc Nguyen, Sana Rezgui

Acknowledgements

The authors would like to thank the Product Engineering and Design S-Power groups from Linear Technology for their help with the board design and assembly as well as the data collection pre- and post-irradiations. Special thanks are also for Thomas Shepherd from Defense Microelectronics Activity (DMEA) for the extensive work for board setup and continuous dosimetry monitoring throughout the ELDRS tests.

TID LDR Testing of the RH1086MH 0.5A Low Dropout Positive Adjustable Regulator

Part Type Tested: RH1086MH 0.5A Low Dropout Positive Adjustable Regulator

Traceability Information: Fab Lot # W1231270.1; Assembly Lot # 719601.1; Wafer # 4; Date Code 1328A. See photograph of unit under test in Appendix A.

Quantity of Units: 12 units received, 2 units for control, 5 units for biased irradiation, and 5 units for unbiased irradiation. Serial numbers 667-671 had all pins tied to ground during irradiation. Serial numbers 662-666 were biased during irradiation. Serial numbers 660 and 661 were used as control. See Appendix B for the radiation bias connection tables.

Radiation and Electrical Test Increments: Ionizing radiation with the following electrical test increments: 10 Krads(Si), 20 Krads(Si), 50 Krads(Si), 73 Krads(Si), 107 Krads(Si).

Radiation dose: 10 mrads(Si)/sec.

Radiation Test Standard: MIL-STD-883 TM1019.9 Condition D.

Test Hardware and Software: LTX pre- and post-irradiation test program EFCR1086H.02.

Facility and Radiation Source: Defense Micro Electronic Activity (DMEA) and Cobalt-60.

Irradiation and Test Temperature: Room temperature controlled to 24°C±6°C per MIL-STD-883 and MIL-STD-750.

SUMMARY

ALL 12 PARTS PASSED THE ELECTRICAL TEST LIMITS AS SPECIFIED IN THE DATASHEET AFTER EACH IRRADIATION INCREMENT. ADDITIONAL INFORMATION CAN BE PROVIDED PER REQUEST.

1.0 Overview and Background

Among other radiation effects, Total lonizing Dose (TID) may affect electrical characteristics, causing parametric and/or functional failures in integrated circuits. During gamma-irradiations, TID-induced and transported electron-hole pairs may result in charge trapping in a transistor's dielectrics and interface regions, affecting the device's basic features. Such effects warrant testing and monitoring of circuits to TID, after which annealing and/or Time Dependent Effects (TDE) may take place, depending on the circuit's design and process technology. Hence the requirement per Condition D (for low-dose rates ranging from less than or equal to 10 mrads(Si)/sec) in TM1019, MIL-STD-883 is to not exceed the allowed time from the end of an incremented irradiation and an electrical test to more than one hour. Additionally, the total time from the end of one incremental irradiation to the start of the next incremental step should be less than two hours.

2.0 Radiation Facility and Test Equipment

The samples were irradiated at Defense Micro-Electronics Activity (DMEA) facility in Sacramento, California. DMEA utilizes J.L. Shepherd model 81-22/484 to provide the dose-rate of 10 mrads(Si)/s. A special design screw-driven automatic cart inside the exposure tunnel positions the Device-Under-Test (DUT) precisely and repeatedly from the source to attain optimal rate verified by ion chamber detectors. See Appendix C for the certificate of dosimetry.

3.0 Test Conditions

The 10 samples were placed in a lead/aluminum container and aligned with the radiation source, Cobalt-60, at DMEA facility in Sacramento, California. During irradiation, five units were biased at +/- 15V and other five had all pads grounded. The devices were irradiated up to 107 Krad(Si) with increments of 10, 20, 50, 73 Krads(Si). After each irradiation, the samples were transported in dry ice to Linear Technology testing facility. Testing was performed on the two control units to confirm the operation of the test system prior to the electrical testing of the 12 units (10 irradiated and 2 control).

The criteria to pass the low dose-rate test is that five samples irradiated under electrical bias must pass the datasheet limits. If any of the tested parameters of these five units do not meet the required limits then a failure-analysis of the part should be conducted and if valid the lot will be scrapped.

4.0 Tested Parameters

The following parameters were measured pre- and post-irradiations:

- V_{REF} (V) @ $10mA \le I_{OUT} \le I_{FULL\ LOAD}$, $1.5V \le (V_{IN} V_{OUT}) \le 15V$
- Line Regulation (%) @ $I_{LOAD} = 10$ mA, 1.5V $\leq (V_{IN} V_{OUT}) \leq 15$ V
- Load Regulation (%) @ $(V_{IN} V_{OUT}) = 3V$, $10mA \le I_{OUT} \le I_{FULL\ LOAD}$
- Dropout Voltage (V) @ $I_{OUT} = 0.5A$, $\Delta V_{REF} = 1\%$
- Current Limit (A) @ $(V_{IN} V_{OUT}) = 5V$
- Current Limit (A) @ $(V_{IN} V_{OUT}) = 25V$
- Minimum Load Current (mA) @ (V_{IN} − V_{OUT}) = 25V
- Adjust Pin Current (uA)
- Delta Adjust Current (uA) @ 10mA ≤ I_{OUT} ≤ I_{FULL LOAD}, 1.5V ≤ (V_{IN} V_{OUT}) ≤ 15V

Appendix D details the test conditions, minimum and maximum values at different accumulated doses.

5.0 Test Results

All ten samples passed the post-irradiation electrical tests. All measurements of the nine listed parameters in section 4.0 are within the specification limits.

The used statistics in this report are based on the tolerance limits, which are bounds to gage the quality of the manufactured products. It assumes that if the quality of the items is normally distributed with known mean and known standard deviation, the two-sided tolerance limits can be calculated as follows:

```
+K_{TL} = mean + (K_{TL}) (standard deviation)

-K_{TL} = mean - (K_{TL}) (standard deviation)
```

Where $+K_{TL}$ is the upper tolerance limit and $-K_{TL}$ is the lower tolerance limit. These tolerance limits are defined in a table of inverse normal probability distribution.

However, in most cases, mean and standard deviations are unknown and therefore it is practical to estimate both of them from a sample. Hence the tolerance limit depends greatly on the sample size. The Ps90%/90% K_{TL} factor for a lot quality P of 0.9, confidence C of 0.9 with a sample size of 5, can be found from the tabulated table (MIL-HDBK-814, page 94, table IX-B). The K_{TL} factor in this report is 2.742.

In the plots, the dotted lines with diamond markers are the average of the measured data points of five samples irradiated under electrical bias while the dashed lines with X-markers are the average of measured data points of five units irradiated with all pins tied to ground. The solid lines with triangle markers are the average of the data points after the calculation of the K_{TL} statistics on the sample irradiated in the biased setup. The solid lines with square symbols are the average of the measured points after the application of the K_{TL} statistics on the five samples irradiated with all pins grounded. The orange solid lines with circle markers are the specification limits.

The 107 Krads(Si) test limits are using Linear Technology datasheet 100 Krads(Si) specification limits.

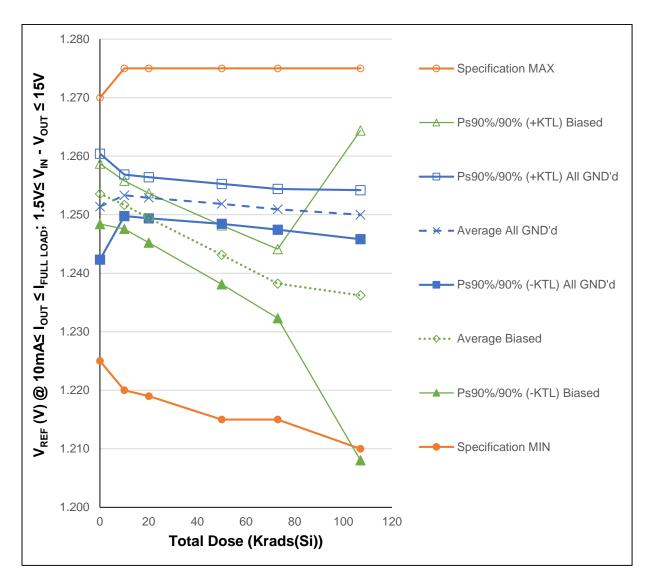


Figure 5.1 Plot of Reference Voltage versus Total Dose

The measured data of 10 samples are within datasheet specification limits. Note the 107 Krads(Si) computed +KTL biased data point is slightly lower than the maximum limit due to the small 5-piece sample size.

Table 5.1: Raw data for reference voltage at full load versus total dose including the statistical calculations, minimum specification, maximum specification, and the status of the test (PASS/FAIL) under the orange headers)

(PASS/F/	AIL) under the orange heade	rs)					
Parameter	Vref @ 10mA≤ l _{OUT} ≤ l _{FULL LOAD} ;		Total Doc	o (Krada/S	i)) @ 10 m	rada(Si)/a	
Parameter	1.5V≤ V _{IN} - V _{OUT} ≤ 15V		TOTAL DOS	se (Krads(S	1)) @ 10 mi	aus(SI)/S	
Units	(V)	0	10	20	50	73	107
667	All GND'd Irradiation	1.25124	1.25185	1.25142	1.25067	1.24991	1.24922
668	All GND'd Irradiation	1.25552	1.25352	1.25302	1.25195	1.25111	1.25028
669	All GND'd Irradiation	1.25060	1.25484	1.25440	1.25325	1.25227	1.25144
670	All GND'd Irradiation	1.24655	1.25422	1.25383	1.25287	1.25196	1.25129
671	All GND'd Irradiation	1.25296	1.25215	1.25180	1.25051	1.24935	1.24777
662	Biased Irradiation	1.25491	1.25207	1.24983	1.24366	1.23909	1.25415
663	Biased Irradiation	1.25593	1.25093	1.24864	1.24210	1.23696	1.23045
664	Biased Irradiation	1.25135	1.24981	1.24753	1.24115	1.23600	1.22988
665	Biased Irradiation	1.25220	1.25169	1.24952	1.24282	1.23754	1.23102
666	Biased Irradiation	1.25342	1.25387	1.25170	1.24599	1.24150	1.23558
660	Control Unit	1.25617	1.25474	1.25461	1.25409	1.25386	1.25402
661		1.25674	1.25185	1.25645	1.25658	1.25600	1.25644
	All GND'd Irradiation Statistics						
	Average All GND'd	1.25138	1.25331	1.25290	1.25185	1.25092	1.25000
	Std Dev All GND'd	0.00330	0.00129	0.00128	0.00124	0.00127	0.00153
	Ps90%/90% (+KTL) All GND'd	1.26042	1.25686	1.25640	1.25526	1.25439	1.25420
	Ps90%/90% (-KTL) All GND'd	1.24233	1.24977	1.24939	1.24844	1.24744	1.24581
	Biased Irradiation Statistics						
	Average Biased	1.25356	1.25168	1.24944	1.24314	1.23822	1.23621
	Std Dev Biased	0.00188	0.00150	0.00154	0.00184	0.00215	0.01027
	Ps90%/90% (+KTL) Biased	1.25872	1.25579	1.25368	1.24818	1.24411	1.26439
	Ps90%/90% (-KTL) Biased	1.24840	1.24756	1.24521	1.23810	1.23233	1.20804
	Specification MIN	1.225	1.220	1.219	1.215		1.210
	Status (Measurements) All GND	PASS	PASS	PASS	PASS		PASS
	Status (Measurements) Biased	PASS	PASS	PASS	PASS		PASS
	Specification MAX	1.270	1.275	1.275	1.275		1.275
	Status (Measurements) All GND	PASS	PASS	PASS	PASS		PASS
	Status (Measurements) Biased	PASS	PASS	PASS	PASS		PASS
	Status (-KTL) All GND'd	PASS	PASS	PASS	PASS		PASS
	Status (+KTL) All GND'd	PASS	PASS	PASS	PASS		PASS
	Status (-KTL) Biased	PASS	PASS	PASS	PASS		FAIL
	Status (+KTL) Biased	PASS	PASS	PASS	PASS		PASS

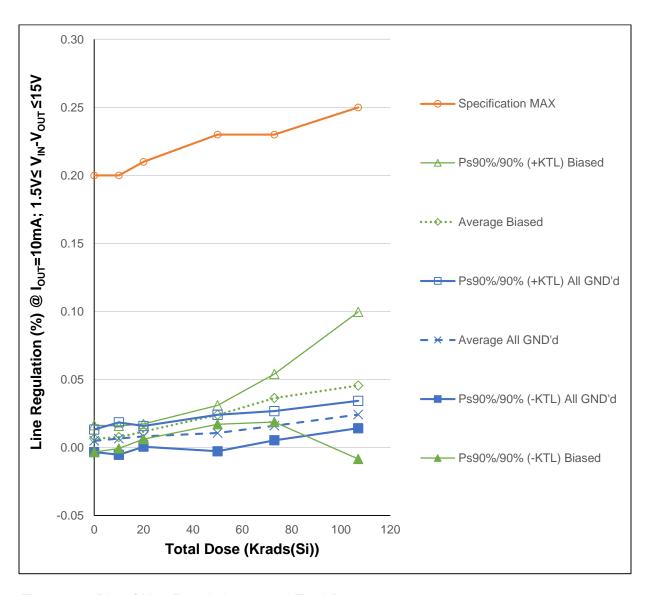


Figure 5.2: Plot of Line Regulation versus Total Dose

Table 5.2: Raw data for line regulation versus total dose including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL under the second orange header)

	n specification, and the status of the	e test (PP					neader)
Parameter	Line Reg @ I _{OUT} =10mA; 1.5V≤V _{IN} -V _{OUT} ≤15V		Total Dos	e (Krads(S	i)) @ 10 mı	rads(Si)/s	
Units	(%)	0	10	20	50	73	107
667	All GND'd Irradiation	0.00533	0.00533	0.00686	0.01677	0.01678	0.02373
668	All GND'd Irradiation	0.00076	0.01225	0.00685	0.00990	0.01372	0.03035
669	All GND'd Irradiation	0.00404	0.00912	0.00601	0.00685	0.01827	0.02133
670	All GND'd Irradiation	0.00918	0.00532	0.01293	0.00533	0.01066	0.02423
671	All GND'd Irradiation	0.00533	0.00076	0.00838	0.01449	0.02068	0.02147
662	Biased Irradiation	0.01139	0.00305	0.01076	0.02461	0.03925	0.01217
663	Biased Irradiation	0.00683	0.00770	0.00924	0.02465	0.02929	0.04658
664	Biased Irradiation	0.00129	0.00763	0.01452	0.02390	0.04552	0.06196
665	Biased Irradiation	0.00685	0.01150	0.01297	0.02693	0.03160	0.05803
666	Biased Irradiation	0.00616	0.00844	0.01143	0.01998	0.03610	0.04932
660	Control Unit	0.01291	0.00000	0.00608	0.01749	0.00837	0.00836
661	Control Unit	0.00531	0.00914	0.00531	0.00228	0.00911	0.01017
	All GND'd Irradiation Statistics						
	Average All GND'd	0.00493	0.00656	0.00820	0.01067	0.01602	0.02422
	Std Dev All GND'd	0.00302	0.00435	0.00278	0.00489	0.00392	0.00366
	Ps90%/90% (+KTL) All GND'd	0.01322	0.01847	0.01582	0.02407	0.02676	0.03427
	Ps90%/90% (-KTL) All GND'd	-0.00336	-0.00536	0.00059	-0.00274	0.00528	0.01417
	Biased Irradiation Statistics						
	Average Biased	0.00651	0.00766	0.01178	0.02401	0.03635	0.04561
	Std Dev Biased	0.00358	0.00303	0.00203	0.00253	0.00642	0.01972
	Ps90%/90% (+KTL) Biased	0.01633	0.01597	0.01736	0.03095	0.05396	0.09967
	Ps90%/90% (-KTL) Biased	-0.00332	-0.00064	0.00621	0.01707	0.01874	-0.00845
	Specification MIN						
	Status (Measurements) All GND'd						
	Status (Measurements) Biased						
	Specification MAX	0.20	0.20	0.21	0.23		0.25
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS		PASS
	Status (Measurements) Biased	PASS	PASS	PASS	PASS		PASS
	Status (-KTL) All GND'd						
	Status (+KTL) All GND'd	PASS	PASS	PASS	PASS		PASS
	Status (-KTL) Biased						
	Status (+KTL) Biased	PASS	PASS	PASS	PASS		PASS

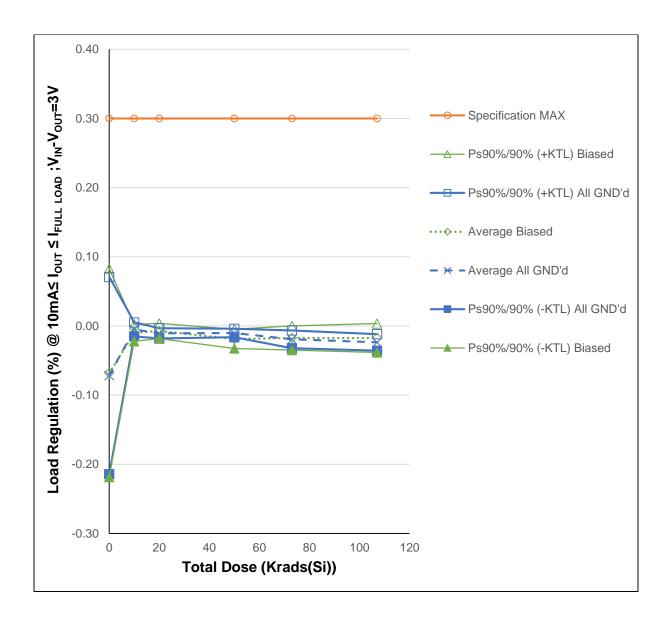


Figure 5.3: Plot of Load Regulation versus Total Dose

Table 5.3: Raw data for load regulation versus total dose including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL).

maximum	n specification, and the status of	the test (I	PASS/FA	IL).			
Doromotor	Load Reg @ 10mA≤ I _{OUT} ≤ I _{FULL LOAD,}		Total Dos	se (Krads(S	i)) @ 10 m	rodo(Si)/o	
Parameter	$V_{IN}-V_{OUT}=3V$		TOTAL DOS	se (Kraus(S	1)) @ 10 1111	aus(SI)/S	
Units	(%)	0	10	20	50	73	107
667	All GND'd Irradiation	-0.10728	-0.00564	-0.01135	-0.00839	-0.02136	-0.02122
668	All GND'd Irradiation	-0.11767	-0.01065	-0.01294	-0.01066	-0.02591	-0.02371
669	All GND'd Irradiation	-0.10048	-0.00152	-0.01368	-0.00989	-0.01447	-0.02971
670	All GND'd Irradiation	-0.00092	-0.00182	-0.00837	-0.00830	-0.01523	-0.01836
671	All GND'd Irradiation	-0.03196	-0.00533	-0.00762	-0.01380	-0.01984	-0.02605
662	Biased Irradiation	-0.07579	-0.01615	-0.01061	-0.02078	-0.02616	-0.00608
663	Biased Irradiation	-0.05237	-0.00541	-0.01153	-0.01082	-0.01310	-0.02410
664	Biased Irradiation	-0.12704	-0.01305	-0.00688	-0.02151	-0.02083	-0.01783
665	Biased Irradiation	-0.10111	-0.00769	-0.00153	-0.01696	-0.01002	-0.01448
666	Biased Irradiation	0.01689	-0.00768	-0.00609	-0.02372	-0.01690	-0.02454
660	Control Unit	0.00008	-0.01072	-0.01285	-0.00304	-0.00844	-0.00608
661	Control Unit	-0.02360	-0.00564	-0.00531	-0.01214	-0.01139	-0.01708
	All GND'd Irradiation Statistics						
	Average All GND'd	-0.07166	-0.00499	-0.01079	-0.01021	-0.01936	-0.02381
	Std Dev All GND'd	0.05195	0.00370	0.00270	0.00225	0.00469	0.00437
	Ps90%/90% (+KTL) All GND'd	0.07080	0.00514	-0.00338	-0.00405	-0.00649	-0.01184
	Ps90%/90% (-KTL) All GND'd	-0.21412	-0.01513	-0.01821	-0.01637	-0.03223	-0.03578
	Biased Irradiation Statistics						
	Average Biased	-0.06788	-0.01000	-0.00733	-0.01876	-0.01740	-0.01741
	Std Dev Biased	0.05499	0.00444	0.00399	0.00506	0.00636	0.00763
	Ps90%/90% (+KTL) Biased	0.08289	0.00217	0.00362	-0.00488	0.00003	0.00350
	Ps90%/90% (-KTL) Biased	-0.21866	-0.02217	-0.01828	-0.03264	-0.03484	-0.03831
	Specification MIN						
	Status (Measurements) All GND'd						
	Status (Measurements) Biased						
	Specification MAX	0.3	0.3	0.3	0.3		0.3
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS		PASS
	Status (Measurements) Biased	PASS	PASS	PASS	PASS		PASS
	Status (-KTL) All GND'd						
	Status (+KTL) All GND'd	PASS	PASS	PASS	PASS		PASS
	Status (-KTL) Biased						
	Status (+KTL) Biased	PASS	PASS	PASS	PASS		PASS

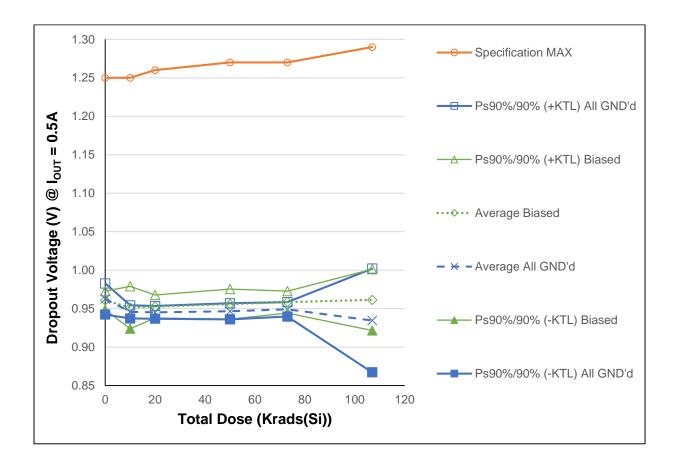


Figure 5.4: Plot of Dropout Voltage versus Total Dose

Table 5.4: Raw data for dropout voltage versus total dose including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL).

maximum	specification, and the status of	or the test	(PASS/F	AIL).			
Parameter	Dropout Voltage @ I _{OUT} = 0.5A		Total Dos	se (Krads(S	i)) @ 10 mı	rads(Si)/s	
Units	(V)	0	10	20	50	73	107
667	All GND'd Irradiation	0.95429	0.94160	0.94231	0.94365	0.94524	0.94335
668	All GND'd Irradiation	0.96995	0.94842	0.94895	0.95059	0.95245	0.95869
669	All GND'd Irradiation	0.96002	0.94865	0.94765	0.95033	0.95276	0.91632
670	All GND'd Irradiation	0.97070	0.94659	0.94418	0.94578	0.94833	0.95290
671	All GND'd Irradiation	0.95784	0.94339	0.94255	0.94222	0.94650	0.90158
662	Biased Irradiation	0.96438	0.93989	0.94948	0.95632	0.95795	0.93707
663	Biased Irradiation	0.96148	0.94958	0.95286	0.95434	0.95654	0.96606
664	Biased Irradiation	0.96517	0.94431	0.94582	0.94465	0.95128	0.95968
665	Biased Irradiation	0.95503	0.96401	0.95510	0.96067	0.96194	0.97113
666	Biased Irradiation	0.95735	0.95912	0.96020	0.96312	0.96485	0.97281
660	Control Unit	0.96246	0.92021	0.92577	0.93924	0.94273	0.93831
661	Control Unit	0.96399	0.95474	0.93904	0.93908	0.93731	0.93276
	All GND'd Irradiation Statistics						
	Average All GND'd	0.96256	0.94573	0.94513	0.94651	0.94906	0.93457
	Std Dev All GND'd	0.00738	0.00312	0.00302	0.00382	0.00342	0.02458
	Ps90%/90% (+KTL) All GND'd	0.98280	0.95429	0.95341	0.95698	0.95844	1.00196
	Ps90%/90% (-KTL) All GND'd	0.94232	0.93716	0.93684	0.93605	0.93968	0.86718
	Biased Irradiation Statistics						
	Average Biased	0.96068	0.95138	0.95269	0.95582	0.95851	0.96135
	Std Dev Biased	0.00440	0.01006	0.00547	0.00714	0.00521	0.01450
	Ps90%/90% (+KTL) Biased	0.97275	0.97895	0.96770	0.97540	0.97279	1.00112
	Ps90%/90% (-KTL) Biased	0.94861	0.92381	0.93769	0.93624	0.94423	0.92158
	Specification MIN						
	Status (Measurements) All GND'd						
	Status (Measurements) Biased						
	Specification MAX	1.25	1.25	1.26	1.27		1.29
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS		PASS
	Status (Measurements) Biased	PASS	PASS	PASS	PASS		PASS
	Status (-KTL) All GND'd						
	Status (+KTL) All GND'd	PASS	PASS	PASS	PASS		PASS
	Status (-KTL) Biased						
	Status (+KTL) Biased	PASS	PASS	PASS	PASS		PASS

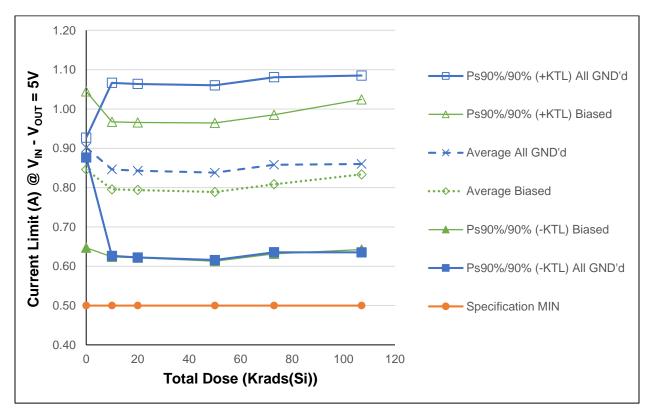


Figure 5.5: Plot of Current Limit versus Total Dose

Table 5.5: Raw data for current limit versus total dose including the statistical calculations, minimum specification, and the status of the test (PASS/FAIL)

minimum	specification, and the status of	the test (I	PASS/FA	IL)			
Parameter	Current Limit (A) @ V_{IN} - V_{OUT} = 5V		Total Dos	se (Krads(S	i)) @ 10 mr	rads(Si)/s	
Units	(A)	0	10	20	50	73	107
667	All GND'd Irradiation	0.90094	0.90733	0.90406	0.89946	0.91953	0.92311
668	All GND'd Irradiation	0.88998	0.90337	0.90065	0.89646	0.91638	0.92448
669	All GND'd Irradiation	0.91463	0.75427	0.75119	0.74592	0.76637	0.76301
670	All GND'd Irradiation	0.89800	0.76303	0.75867	0.75274	0.77222	0.77847
671	All GND'd Irradiation	0.90634	0.90438	0.90065	0.89571	0.91649	0.91201
662	Biased Irradiation	0.89635	0.76702	0.76764	0.76347	0.78303	0.88726
663	Biased Irradiation	0.89857	0.77043	0.76852	0.76280	0.78201	0.78774
664	Biased Irradiation	0.76807	0.76628	0.76593	0.75642	0.77681	0.78184
665	Biased Irradiation	0.90205	0.76729	0.76135	0.75795	0.77703	0.78209
666	Biased Irradiation	0.76528	0.90774	0.90594	0.90340	0.92379	0.92892
660	Control Unit	0.75971	0.88028	0.87549	0.86815	0.88825	0.88786
661	Control Unit	0.89711	0.77171	0.89779	0.88597	0.90136	0.90272
	All GND'd Irradiation Statistics						
	Average All GND'd	0.90198	0.84648	0.84304	0.83805	0.85820	0.86022
	Std Dev All GND'd	0.00922	0.08025	0.08049	0.08104	0.08119	0.08200
	Ps90%/90% (+KTL) All GND'd	0.92725	1.06651	1.06375	1.06028	1.08083	1.08507
	Ps90%/90% (-KTL) All GND'd	0.87670	0.62644	0.62233	0.61583	0.63557	0.63536
	Biased Irradiation Statistics						
	Average Biased	0.84606	0.79575	0.79388	0.78881	0.80853	0.83357
	Std Dev Biased	0.07251	0.06263	0.06271	0.06413	0.06449	0.06964
	Ps90%/90% (+KTL) Biased	1.04487	0.96747	0.96582	0.96466	0.98537	1.02453
	Ps90%/90% (-KTL) Biased	0.64725	0.62403	0.62193	0.61296	0.63170	0.64261
	Specification MIN	0.5	0.5	0.5	0.5		0.5
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS		PASS
	Status (Measurements) Biased	PASS	PASS	PASS	PASS		PASS
	Specification MAX						
	Status (Measurements) All GND'd						
	Status (Measurements) Biased						
	Status (-KTL) All GND'd	PASS	PASS	PASS	PASS		PASS
	Status (+KTL) All GND'd						
	Status (-KTL) Biased	PASS	PASS	PASS	PASS		PASS
	Status (+KTL) Biased						

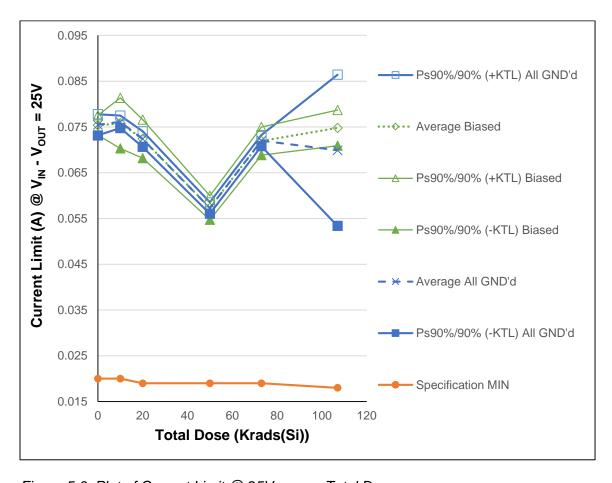


Figure 5.6: Plot of Current Limit @ 25V versus Total Dose

Table 5.6: Raw data for current limit versus total dose including the statistical calculations, minimum specification, and the status of the test (PASS/FAIL)

667 All GND'd Irradiation 0.07617 0.07663 0.07331 0.05801 0.07247 0.07 668 All GND'd Irradiation 0.07455 0.07562 0.07205 0.05729 0.07134 0.07 669 All GND'd Irradiation 0.07628 0.07571 0.07185 0.05681 0.07193 0.06 670 All GND'd Irradiation 0.07457 0.07594 0.07190 0.05702 0.07191 0.07 671 All GND'd Irradiation 0.07569 0.07665 0.07263 0.05729 0.07234 0.06 662 Biased Irradiation 0.07475 0.07299 0.07155 0.05782 0.07198 0.07 663 Biased Irradiation 0.07453 0.07714 0.07428 0.05872 0.07158 0.07 664 Biased Irradiation 0.07611 0.07660 0.07348 0.05665 0.07158 0.07 665 Biased Irradiation 0.07581 0.07662 0.07042 0.05636 0.07063 0.07 6	
667 All GND'd Irradiation 0.07617 0.07663 0.07331 0.05801 0.07247 0.07 668 All GND'd Irradiation 0.07455 0.07562 0.07205 0.05729 0.07134 0.07 669 All GND'd Irradiation 0.07628 0.07571 0.07185 0.05681 0.07193 0.06 670 All GND'd Irradiation 0.07457 0.07594 0.07190 0.05702 0.07191 0.07 671 All GND'd Irradiation 0.07569 0.07665 0.07263 0.05729 0.07234 0.06 662 Biased Irradiation 0.07475 0.07299 0.07155 0.05782 0.07198 0.07 663 Biased Irradiation 0.07453 0.07714 0.07428 0.05872 0.07188 0.07 664 Biased Irradiation 0.07611 0.07660 0.07348 0.05665 0.07158 0.07 665 Biased Irradiation 0.07582 0.07801 0.07218 0.05713 0.07167 0.07 6	
668 All GND'd Irradiation 0.07455 0.07562 0.07205 0.05729 0.07134 0.07 669 All GND'd Irradiation 0.07628 0.07571 0.07185 0.05681 0.07193 0.06 670 All GND'd Irradiation 0.07457 0.07594 0.07190 0.05702 0.07191 0.07 671 All GND'd Irradiation 0.07569 0.07665 0.07263 0.05729 0.07234 0.06 662 Biased Irradiation 0.07475 0.07299 0.07155 0.05782 0.07198 0.07 663 Biased Irradiation 0.07453 0.07714 0.07428 0.05873 0.07371 0.07 664 Biased Irradiation 0.07611 0.07636 0.07348 0.05665 0.07158 0.07 665 Biased Irradiation 0.07628 0.07801 0.07218 0.05713 0.07167 0.07 666 Biased Irradiation 0.07518 0.07462 0.07042 0.05636 0.07063 0.07 661<	107
669 All GND'd Irradiation 0.07628 0.07571 0.07185 0.05681 0.07193 0.066 670 All GND'd Irradiation 0.07457 0.07594 0.07190 0.05702 0.07191 0.07 671 All GND'd Irradiation 0.07569 0.07665 0.07263 0.05729 0.07234 0.06 662 Biased Irradiation 0.07475 0.07299 0.07155 0.05782 0.07198 0.07 663 Biased Irradiation 0.07453 0.07714 0.07428 0.05873 0.07371 0.07 664 Biased Irradiation 0.07611 0.07636 0.07348 0.05665 0.07158 0.07 665 Biased Irradiation 0.07628 0.07801 0.07218 0.05713 0.07167 0.07 666 Biased Irradiation 0.07518 0.07462 0.07042 0.05636 0.07063 0.07 660 Control Unit 0.07456 0.06957 0.06771 0.05672 0.07300 0.07 All GND'd Ir	0.07362
669 All GND'd Irradiation 0.07628 0.07571 0.07185 0.05681 0.07193 0.066 670 All GND'd Irradiation 0.07457 0.07594 0.07190 0.05702 0.07191 0.07 671 All GND'd Irradiation 0.07569 0.07665 0.07263 0.05729 0.07234 0.06 662 Biased Irradiation 0.07475 0.07299 0.07155 0.05782 0.07198 0.07 663 Biased Irradiation 0.07453 0.07714 0.07428 0.05873 0.07371 0.07 664 Biased Irradiation 0.07611 0.07636 0.07348 0.05665 0.07158 0.07 665 Biased Irradiation 0.07628 0.07801 0.07218 0.05713 0.07167 0.07 666 Biased Irradiation 0.07518 0.07462 0.07042 0.05636 0.07063 0.07 660 Control Unit 0.07456 0.06957 0.06771 0.05672 0.07300 0.07 All GND'd Ir	0.07458
671 All GND'd Irradiation 0.07569 0.07665 0.07263 0.05729 0.07234 0.06 662 Biased Irradiation 0.07475 0.07299 0.07155 0.05782 0.07198 0.07 663 Biased Irradiation 0.07453 0.07714 0.07428 0.05873 0.07371 0.07 664 Biased Irradiation 0.07611 0.07636 0.07348 0.05665 0.07158 0.07 665 Biased Irradiation 0.07628 0.07801 0.07218 0.05713 0.07167 0.07 666 Biased Irradiation 0.07518 0.07462 0.07042 0.05636 0.07063 0.07 660 Control Unit 0.07456 0.06957 0.06771 0.05672 0.07300 0.07 661 Control Unit 0.07399 0.07667 0.07145 0.05663 0.07126 0.07 Average All GND'd 0.07545 0.07611 0.07235 0.05728 0.07200 0.068 Std Dev All GND'd 0.07777 <td>0.06379</td>	0.06379
662 Biased Irradiation 0.07475 0.07299 0.07155 0.05782 0.07198 0.0736 663 Biased Irradiation 0.07453 0.07714 0.07428 0.05873 0.07371 0.07 664 Biased Irradiation 0.07611 0.07636 0.07348 0.05665 0.07158 0.07 665 Biased Irradiation 0.07628 0.07801 0.07218 0.05713 0.07167 0.07 666 Biased Irradiation 0.07518 0.07462 0.07042 0.05636 0.07063 0.07 660 Control Unit 0.07456 0.06957 0.06771 0.05672 0.07300 0.07 661 Control Unit 0.07399 0.07667 0.07145 0.05663 0.07126 0.07 Average All GND'd 0.07545 0.07611 0.07235 0.05728 0.07200 0.060 Std Dev All GND'd 0.07777 0.07748 0.07405 0.05852 0.07321 0.08 Ps90%/90% (-KTL) All GND'd 0.07537	0.07463
663 Biased Irradiation 0.07453 0.07714 0.07428 0.05873 0.07371 0.07 664 Biased Irradiation 0.07611 0.07636 0.07348 0.05665 0.07158 0.07 665 Biased Irradiation 0.07628 0.07801 0.07218 0.05713 0.07167 0.07 666 Biased Irradiation 0.07518 0.07462 0.07042 0.05636 0.07063 0.07 660 Control Unit 0.07456 0.06957 0.06771 0.05672 0.07300 0.07 661 Control Unit 0.07399 0.07667 0.07145 0.05663 0.07126 0.07 All GND'd Irradiation Statistics Average All GND'd 0.07545 0.07611 0.07235 0.05728 0.07200 0.068 Std Dev All GND'd 0.07545 0.07611 0.07235 0.05852 0.07321 0.08 Ps90%/90% (+KTL) All GND'd 0.07777 0.07748 0.07405 0.05852 0.07321 0.08 Biased Irradiation Statistics	0.06285
664 Biased Irradiation 0.07611 0.07636 0.07348 0.05665 0.07158 0.07 665 Biased Irradiation 0.07628 0.07801 0.07218 0.05713 0.07167 0.07 666 Biased Irradiation 0.07518 0.07462 0.07042 0.05636 0.07063 0.07 660 Control Unit 0.07456 0.06957 0.06771 0.05672 0.07300 0.07 661 Control Unit 0.07399 0.07667 0.07145 0.05663 0.07126 0.07 All GND'd Irradiation Statistics Average All GND'd 0.07545 0.07611 0.07235 0.05728 0.07200 0.06 Std Dev All GND'd 0.00084 0.00050 0.00062 0.0045 0.00044 0.00 Ps90%/90% (+KTL) All GND'd 0.07777 0.07748 0.07405 0.05852 0.07321 0.08 Biased Irradiation Statistics Average Biased 0.07537 0.07582 0.07238 0.05734 0.07191 0.07 Std Dev Biased	0.07318
665 Biased Irradiation 0.07628 0.07801 0.07218 0.05713 0.07167 0.07367 666 Biased Irradiation 0.07518 0.07462 0.07042 0.05636 0.07063 0.07367 660 Control Unit 0.07456 0.06957 0.06771 0.05672 0.07300 0.07360 661 Control Unit 0.07399 0.07667 0.07145 0.05663 0.07126 0.07360 All GND'd Irradiation Statistics Average All GND'd 0.07545 0.07611 0.07235 0.05728 0.07200 0.0693 Std Dev All GND'd 0.00084 0.00050 0.00062 0.00045 0.00044 0.000 Ps90%/90% (+KTL) All GND'd 0.07777 0.07748 0.07405 0.05852 0.07321 0.0803 Biased Irradiation Statistics Average Biased 0.07537 0.07582 0.07238 0.05734 0.07191 0.0749 Std Dev Biased 0.00079 0.00202 0.00153 0.0096 0.00112 0.00 Ps90%/90% (+KTL) Bia	0.07653
666 Biased Irradiation 0.07518 0.07462 0.07042 0.05636 0.07063 0.075 660 Control Unit 0.07456 0.06957 0.06771 0.05672 0.07300 0.075 661 Control Unit 0.07399 0.07667 0.07145 0.05663 0.07126 0.075 All GND'd Irradiation Statistics Average All GND'd 0.07545 0.07611 0.07235 0.05728 0.07200 0.066 Std Dev All GND'd 0.00084 0.00050 0.00062 0.00045 0.00044 0.00 Ps90%/90% (+KTL) All GND'd 0.07777 0.07748 0.07405 0.05852 0.07321 0.08 Biased Irradiation Statistics 0.07314 0.07475 0.07065 0.05604 0.07079 0.05 Std Dev Biased 0.07537 0.07582 0.07238 0.05734 0.07191 0.07 Ps90%/90% (+KTL) Biased 0.07754 0.08135 0.07659 0.05996 0.07499 0.07 Ps90%/90% (-KTL) Biased 0.07320 0.07029	0.07565
660 Control Unit 0.07456 0.06957 0.06771 0.05672 0.07300 0.07300 661 Control Unit 0.07399 0.07667 0.07145 0.05663 0.07126 0.07300 All GND'd Irradiation Statistics Average All GND'd 0.07545 0.07611 0.07235 0.05728 0.07200 0.066 Std Dev All GND'd 0.00084 0.00050 0.00062 0.00045 0.00044 0.00 Ps90%/90% (+KTL) All GND'd 0.07777 0.07748 0.07405 0.05852 0.07321 0.08 Biased Irradiation Statistics 0.07314 0.07475 0.07065 0.05604 0.07079 0.05 Std Dev Biased 0.07537 0.07582 0.07238 0.05734 0.07191 0.07 Ps90%/90% (+KTL) Biased 0.07754 0.08135 0.07659 0.05996 0.07499 0.07 Ps90%/90% (-KTL) Biased 0.07320 0.07029 0.06818 0.05472 0.06883 0.07	0.07503
661 Control Unit 0.07399 0.07667 0.07145 0.05663 0.07126 0.075 All GND'd Irradiation Statistics Average All GND'd 0.07545 0.07611 0.07235 0.05728 0.07200 0.068 Std Dev All GND'd 0.00084 0.00050 0.00062 0.00045 0.00044 0.00 Ps90%/90% (+KTL) All GND'd 0.07777 0.07748 0.07405 0.05852 0.07321 0.08 Ps90%/90% (-KTL) All GND'd 0.07314 0.07475 0.07065 0.05604 0.07079 0.05 Biased Irradiation Statistics Average Biased 0.07537 0.07582 0.07238 0.05734 0.07191 0.07 Std Dev Biased 0.00079 0.00202 0.00153 0.00096 0.00112 0.00 Ps90%/90% (+KTL) Biased 0.07754 0.08135 0.07659 0.05996 0.07499 0.07 Ps90%/90% (-KTL) Biased 0.07320 0.07029 0.06818 0.05472 0.06883 0.07	0.07350
All GND'd Irradiation Statistics Average All GND'd O.07545 O.07611 O.07235 O.05728 O.07200 O.068 Std Dev All GND'd O.00084 O.00050 O.00062 O.00045 O.00044 O.0004 Ps90%/90% (+KTL) All GND'd O.07777 O.07748 O.07405 O.05852 O.07321 O.0882 Ps90%/90% (-KTL) All GND'd O.07314 O.07475 O.07065 O.05604 O.07079 O.05882 Average Biased O.07537 O.07582 O.07238 O.05734 O.07191 O.074 Std Dev Biased O.00079 O.00079 O.00153 O.00096 O.00112 O.00079 O.07754 O.08135 O.07659 O.05996 O.07499 O.0769 O.076883 O.07690 O.076883 O.076883 O.076883	0.07381
Average All GND'd 0.07545 0.07611 0.07235 0.05728 0.07200 0.066 Std Dev All GND'd 0.00084 0.00050 0.00062 0.00045 0.00044 0.000 Ps90%/90% (+KTL) All GND'd 0.07777 0.07748 0.07405 0.05852 0.07321 0.08 Ps90%/90% (-KTL) All GND'd 0.07314 0.07475 0.07065 0.05604 0.07079 0.05 Biased Irradiation Statistics Average Biased 0.07537 0.07582 0.07238 0.05734 0.07191 0.07 Std Dev Biased 0.00079 0.00202 0.00153 0.0096 0.00112 0.00 Ps90%/90% (+KTL) Biased 0.07754 0.08135 0.07659 0.05996 0.07499 0.076 Ps90%/90% (-KTL) Biased 0.07320 0.07029 0.06818 0.05472 0.06883 0.076	0.07264
Std Dev All GND'd 0.00084 0.00050 0.00062 0.00045 0.00044 0.004 Ps90%/90% (+KTL) All GND'd 0.07777 0.07748 0.07405 0.05852 0.07321 0.088 Ps90%/90% (-KTL) All GND'd 0.07314 0.07475 0.07065 0.05604 0.07079 0.05 Biased Irradiation Statistics Average Biased 0.07537 0.07582 0.07238 0.05734 0.07191 0.07 Std Dev Biased 0.00079 0.00202 0.00153 0.00096 0.00112 0.00 Ps90%/90% (+KTL) Biased 0.07754 0.08135 0.07659 0.05996 0.07499 0.076 Ps90%/90% (-KTL) Biased 0.07320 0.07029 0.06818 0.05472 0.06883 0.076	
Ps90%/90% (+KTL) All GND'd 0.07777 0.07748 0.07405 0.05852 0.07321 0.08852 Ps90%/90% (-KTL) All GND'd 0.07314 0.07475 0.07065 0.05604 0.07079 0.05537 Biased Irradiation Statistics Average Biased 0.07537 0.07582 0.07238 0.05734 0.07191 0.07405 Std Dev Biased 0.00079 0.00202 0.00153 0.00096 0.00112 0.00096 Ps90%/90% (+KTL) Biased 0.07754 0.08135 0.07659 0.05996 0.07499 0.0769 Ps90%/90% (-KTL) Biased 0.07320 0.07029 0.06818 0.05472 0.06883 0.076	0.06989
Ps90%/90% (-KTL) All GND'd 0.07314 0.07475 0.07065 0.05604 0.07079 0.05608	0.00602
Biased Irradiation Statistics Average Biased 0.07537 0.07582 0.07238 0.05734 0.07191 0.07582 Std Dev Biased 0.00079 0.00202 0.00153 0.00096 0.00112 0.00 Ps90%/90% (+KTL) Biased 0.07754 0.08135 0.07659 0.05996 0.07499 0.0769 Ps90%/90% (-KTL) Biased 0.07320 0.07029 0.06818 0.05472 0.06883 0.076	0.08641
Average Biased 0.07537 0.07582 0.07238 0.05734 0.07191 0.07 Std Dev Biased 0.00079 0.00202 0.00153 0.00096 0.00112 0.00 Ps90%/90% (+KTL) Biased 0.07754 0.08135 0.07659 0.05996 0.07499 0.076 Ps90%/90% (-KTL) Biased 0.07320 0.07029 0.06818 0.05472 0.06883 0.076	0.05338
Std Dev Biased 0.00079 0.00202 0.00153 0.00096 0.00112 0.00 Ps90%/90% (+KTL) Biased 0.07754 0.08135 0.07659 0.05996 0.07499 0.076 Ps90%/90% (-KTL) Biased 0.07320 0.07029 0.06818 0.05472 0.06883 0.076	
Ps90%/90% (+KTL) Biased 0.07754 0.08135 0.07659 0.05996 0.07499 0.0769 Ps90%/90% (-KTL) Biased 0.07320 0.07029 0.06818 0.05472 0.06883 0.076	0.07478
Ps90%/90% (-KTL) Biased 0.07320 0.07029 0.06818 0.05472 0.06883 0.070	0.00142
	0.07868
0.00 0.00 0.00	0.07088
Specification MIN 0.02 0.02 0.019 0.019 0.0	0.018
Status (Measurements) All GND'd PASS PASS PASS PASS PASS	PASS
Status (Measurements) Biased PASS PASS PASS PASS PASS	PASS
Specification MAX	
Status (Measurements) All GND'd	
Status (Measurements) Biased	
Status (-KTL) All GND'd PASS PASS PASS PASS PASS	PASS
Status (+KTL) All GND'd	
Status (-KTL) Biased PASS PASS PASS PASS PASS	PASS
Status (+KTL) Biased	

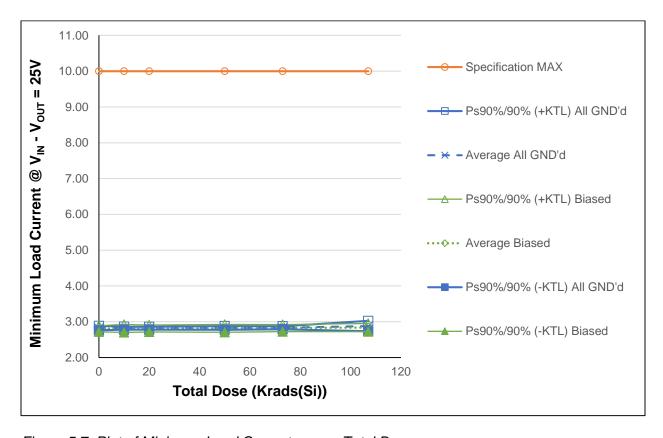


Figure 5.7: Plot of Minimum Load Current versus Total Dose

The average measured values of 10 samples pass the datasheet specification maximum limit.

Table 5.7: Raw data table for minimum load current versus total dose including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL)

	ons, maximum specification, and th	e status	of the tes	st (PASS/	'FAIL)		
Parameter	Minimum Load Current @ $V_{IN} - V_{OUT} = 25V$		Total Dos	e (Krads(S	i)) @ 10 mı	ads(Si)/s	
Units	(mA)	0	10	20	50	73	107
667	All GND'd Irradiation	2.82694	2.83624	2.82941	2.84471	2.84865	2.86407
668	All GND'd Irradiation	2.81329	2.80123	2.79928	2.80581	2.81266	2.81375
669	All GND'd Irradiation	2.85721	2.80508	2.80569	2.80581	2.81571	2.91134
670	All GND'd Irradiation	2.79644	2.82557	2.83201	2.83310	2.83707	2.84881
671	All GND'd Irradiation	2.81352	2.82404	2.82094	2.83921	2.83836	2.94824
662	Biased Irradiation	2.78401	2.82680	2.80943	2.80688	2.80420	2.87748
663	Biased Irradiation	2.77815	2.87314	2.86000	2.87863	2.87862	2.88244
664	Biased Irradiation	2.81543	2.81598	2.81004	2.81809	2.82174	2.82374
665	Biased Irradiation	2.84959	2.78265	2.80996	2.80124	2.81884	2.82007
666	Biased Irradiation	2.77884	2.76954	2.76175	2.77005	2.78133	2.78340
660	Control Unit	2.78371	2.91422	2.90089	2.86375	2.86429	2.87437
661	Control Unit	2.78890	2.78934	2.86915	2.86666	2.87115	2.89083
	All GND'd Irradiation Statistics						
	Average All GND'd	2.82148	2.81843	2.81747	2.82572	2.83049	2.87724
	Std Dev All GND'd	0.02272	0.01478	0.01445	0.01864	0.01558	0.05295
	Ps90%/90% (+KTL) All GND'd	2.88376	2.85896	2.85710	2.87684	2.87322	3.02244
	Ps90%/90% (-KTL) All GND'd	2.75920	2.77791	2.77783	2.77461	2.78777	2.73205
	Biased Irradiation Statistics						
	Average Biased	2.80120	2.81362	2.81023	2.81498	2.82094	2.83743
	Std Dev Biased	0.03111	0.04069	0.03474	0.03979	0.03599	0.04195
	Ps90%/90% (+KTL) Biased	2.88650	2.92520	2.90549	2.92409	2.91964	2.95244
	Ps90%/90% (-KTL) Biased	2.71590	2.70204	2.71498	2.70586	2.72225	2.72241
	Specification MIN						
	Status (Measurements) All GND'd						
	Status (Measurements) Biased						
	Specification MAX	10	10	10	10		10
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS		PASS
	Status (Measurements) Biased	PASS	PASS	PASS	PASS		PASS
	Status (-KTL) All GND'd						
	Status (+KTL) All GND'd	PASS	PASS	PASS	PASS		PASS
	Status (-KTL) Biased						
	Status (+KTL) Biased	PASS	PASS	PASS	PASS		PASS

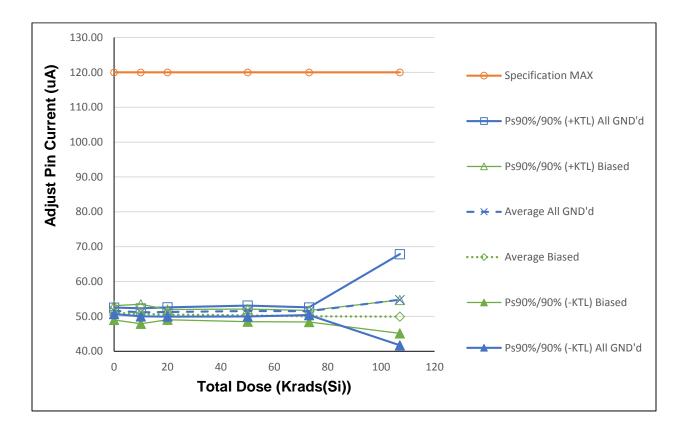


Figure 5.8: Plot of Adjust Pin Current versus Total Dose

Table 5.8: Raw data table for adjust pin current versus total dose including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL)

Parameter Total Dose (Krads(Si)) @ 10 mrads(Si)/s Adjust Pin Current Units 20 50 73 107 (uA) 667 All GND'd Irradiation 51.46739 | 51.16077 51.13360 | 51.35074 | 51.49332 | 52.10466 All GND'd Irradiation 51.54274 | 50.68806 | 50.64878 | 50.89056 | 51.09520 | 50.56190 668 52.17214 | 50.89416 | 51.09883 | 51.21584 51.10828 | 58.76696 669 All GND'd Irradiation 51.53872 | 51.16346 | 51.47364 | 51.77897 670 All GND'd Irradiation 51.59667 | 51.42087 671 All GND'd Irradiation 51.26912 | 51.80642 | 51.95401 | 52.38297 52.07212 61.01048 662 Biased Irradiation 50.51411 51.81381 50.50613 49.85899 49.70883 | 52.93249 50.75986 | 51.66335 51.31272 | 51.14656 51.04864 | 50.00793 663 Biased Irradiation Biased Irradiation 51.45809 | 50.47853 50.27752 | 50.80077 49.93206 49.09832 664 665 Biased Irradiation 52.05428 | 49.61465 | 50.52639 | 50.07566 | 49.97163 | 49.01781 666 Biased Irradiation 50.22866 49.83895 49.84284 49.55891 49.47996 48.61651 660 Control Unit 50.69638 | 55.99811 | 54.86282 | 52.67405 52.26501 | 52.76613 661 Control Unit 50.86432 49.90421 53.07209 | 53.18373 | 53.24805 | 53.96946 All GND'd Irradiation Statistics 51.26177 51.52382 51.59802 | 51.14257 51.47312 | 54.77297 Average All GND'd 0.48549 0.57643 4.76833 Std Dev All GND'd 0.33964 0.42123 0.40324 Ps90%/90% (+KTL) All GND'd 52.52932 | 52.29760 | 52.59300 | 53.10438 52.57880 67.84775 Ps90%/90% (-KTL) All GND'd 50.66672 49.98755 49.93055 | 49.94326 | 50.36744 | 41.69820 Biased Irradiation Statistics Average Biased 51.00300 | 50.68186 | 50.49312 | 50.28818 | 50.02822 | 49.93461 Std Dev Biased 0.74331 | 1.01679 0.53441 0.66347 0.60339 1.75142 Ps90%/90% (+KTL) Biased 53.04115 | 53.46988 51.95847 52.10741 51.68271 54.73702 Ps90%/90% (-KTL) Biased 48.96485 47.89383 49.02777 48.46894 48.37374 45.13221 Specification MIN Status (Measurements) All GND'd Status (Measurements) Biased Specification MAX 120 120 120 120 120 Status (Measurements) All GND'd **PASS PASS** PASS **PASS PASS** Status (Measurements) Biased PASS **PASS PASS PASS PASS** Status (-KTL) All GND'd Status (+KTL) All GND'd PASS **PASS PASS PASS** PASS Status (-KTL) Biased Status (+KTL) Biased **PASS** PASS **PASS** PASS **PASS**

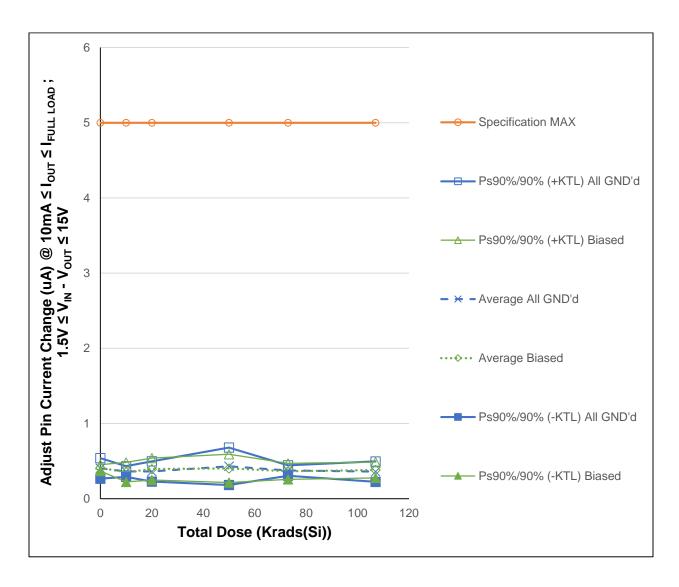


Figure 5.9: Plot of Adjust Pin Current Change versus Total Dose

Table 5.9: Raw data table for adjust pin current change versus total dose including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL)

Calculation	ons, maximum specification, and the	e status (or the tes	I (PASS/	rail)		
Parameter	Adj Pin I Change @ 10mA≤l _{OUT} ≤l _{FULL LOAD} ;		Total Doc	e (Krads(S	i)) @ 10 m	rade(Si)/e	
arameter	1.5V≤V _{IN} -V _{OUT} ≤15V		Total Dos	e (Maus (S	1)) @ 10111	iaus(Si)/s	
Units	(uA)	0	10	20	50	73	107
667	All GND'd Irradiation	0.48135	0.34583	0.42368	0.28232	0.38013	0.42720
668	All GND'd Irradiation	0.41860	0.38151	0.40238	0.49347	0.37982	0.37144
669	All GND'd Irradiation	0.35140	0.35920	0.31177	0.40681	0.34519	0.33960
670	All GND'd Irradiation	0.38688	0.39203	0.35283	0.49311	0.41106	0.37104
671	All GND'd Irradiation	0.37788	0.32857	0.32147	0.48036	0.35751	0.29150
662	Biased Irradiation	0.43090	0.39632	0.40865	0.41517	0.36377	0.40536
663	Biased Irradiation	0.41442	0.33062	0.35594	0.28197	0.33462	0.31876
664	Biased Irradiation	0.40064	0.39657	0.43047	0.44817	0.42177	0.38200
665	Biased Irradiation	0.39054	0.28453	0.32294	0.42327	0.32362	0.38609
666	Biased Irradiation	0.41349	0.35550	0.45191	0.44575	0.37478	0.41783
660	Control Unit	0.39923	0.44516	0.41310	0.44669	0.34369	0.43880
661	Control Unit	0.44066	0.33420	0.42321	0.37922	0.38192	0.42305
	All GND'd Irradiation Statistics						
	Average All GND'd	0.40322	0.36143	0.36242	0.43121	0.37474	0.36016
	Std Dev All GND'd	0.04984	0.02583	0.04920	0.09067	0.02522	0.04969
	Ps90%/90% (+KTL) All GND'd	0.53988	0.43224	0.49734	0.67984	0.44390	0.49641
	Ps90%/90% (-KTL) All GND'd	0.26657	0.29061	0.22751	0.18259	0.30559	0.22391
	Biased Irradiation Statistics						
	Average Biased	0.41000	0.35271	0.39398	0.40287	0.36371	0.38201
	Std Dev Biased	0.01528	0.04735	0.05338	0.06906	0.03856	0.03823
	Ps90%/90% (+KTL) Biased	0.45191	0.48255	0.54035	0.59222	0.46944	0.48683
	Ps90%/90% (-KTL) Biased	0.36809	0.22287	0.24762	0.21352	0.25798	0.27719
	Specification MIN						
	Status (Measurements) All GND'd						
	Status (Measurements) Biased						
	Specification MAX	5	5	5	5		5
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS		PASS
	Status (Measurements) Biased	PASS	PASS	PASS	PASS		PASS
	Status (-KTL) All GND'd						
	Status (+KTL) All GND'd	PASS	PASS	PASS	PASS		PASS
	Status (-KTL) Biased						
	Status (+KTL) Biased	PASS	PASS	PASS	PASS		PASS

Appendix A

Figure A1: Top View showing ID and Date Code

Appendix B

Radiation Bias Connection Tables

Table B1: Biased Conditions

PIN	FUNCTION	CONNECTION / BIAS
1	INPUT	+ 15V
2	ADJUST	-15V To Pin 3 via 150Ω resistor
3 CASE	OUTPUT	To pin 2 via 150Ω resistor to - 15V

Table B2: All GND'd

PIN	FUNCTION	CONNECTION / BIAS
1	INPUT	Ground
2	ADJUST	Ground
3	OUTPUT	Ground

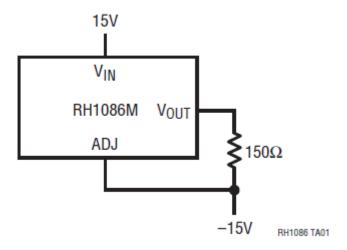


Figure B1: Total Dose Bias Circuit

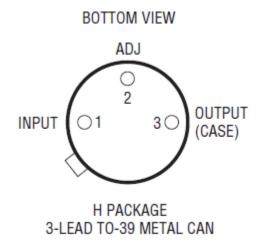


Figure B2: Pin-Out

Figure B3: Bias Board (top view)

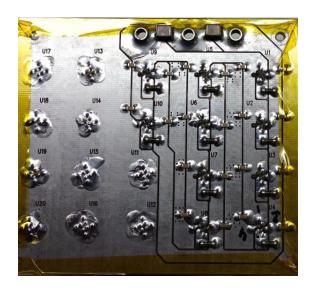


Figure B4: Bias Board (bottom view)

Appendix C

TEST CERTIFICATE

Defense Microelectronics Activity
Science and Engineering Gamma Irradiation Test Facility
DMEA/MEBC
4234 54th Street
McClellan, CA 95652

Testing Certificate Number: 1691.01

This laboratory is accredited by the American Association for Laboratory Accreditation (A2LA) and the dosimetry reported in this test certificate has been determined in accordance with the laboratory's terms of accreditation. The results contained herein relate only to the items tested. This certificate may not be reproduced, except in full, without the approval of this laboratory.

Date: 2014-02-26 Test Certificate #: 2014-NRC-024 Total Pages (except cover): 2

WARNING - This document contains technical data whose export is restricted by the Arms Export Control Act (Title 22, U.S.C., Sec 2751, et seq.) or the Export Administration Act of 1979 (Title 50, U.S.C., App. 2401 et seq.), as amended. Violations of these export laws are subject to severe criminal penalties. Disseminate in accordance with provisions of DoD Directive 5230.25.

F	EQUEST F	OR AND	RESULT	S OF TES	STS		PAGE N	10.	NO. OF PAGES
			CTION A - RE				1		2
TO: (Include ZIP Code) Defense Microelectronics Activ Science and Engineering Gann 4234 54th Street McClellan, CA 95652-2100			CHON A - RE	2. FROM: (Inc. Dr. Sana Rezg Linear Techno 1630 McCarth Milpitas, CA Phone: (408)	nude ZIP Code) gui ology Corp. ny Blvd. 95035				
3. PRIME CONTRACTOR AND Same as block 2	ADDRESS (include	ZIP Code)		4. MANUFACT Linear Techno 1630 McCarti Milpitas, CA	ology Corp. ry Blvd.	NAME AND ADDR	RESS (Includ	e ZIP	Code)
CONTRACT NUMBER CRAIL	OA CR-08-17			P.O. NUMBE	ER TBD				
5. END ITEM AND/OR PROJEC	T S/A		6. SAMPLE NUMBER N/A	7. LOT NO. See below		OR SUBMITTAL iizing Dose (TID)) Testing		DATE SUBMITTED 2014-02-24
10. MATERIAL TO BE TESTED Various biased/unbiased devices - see selow	10a. QUANTITY :		11. QUANTITY REPRESEN N		12. SPEC. & A SAMPLE &		ORAWING NO). & R	EV. FOR
13. PURCHASED FROM OR SO Linear Tech	DURCE mology Corp.		14. SHIPMENT	l carry	15. DATE SAM	1PLED AND SUBI 2014-02-25 by		nerd	
Description of parts to be irradiated is as MSK196RH (6RH6105BK#IB*01), fab RH1086MH (6RH1086BHK), fab lot #7	follows: lot #WD34907E.1, ass'y W1231270.1, ass'y lot #71	lot #N/A, WFR #2: 19601.1, WFR #4: 10	10, 30, 50, 100 and 2), 30, 50 and 100 krai	00 krad(SiO2), 10 de d(SiO2), 10 devices p	evices per dose level, per dose level, biased	dify parameters, device			customer in dry ements.
Description of parts to be irradiated is as MSX 196RH (6RH-6105RK#IB*01), file MSX 196RH (6RH-6105RK#IB*01), file MSX 196RH (6RH-6105RK#IB*01), file for RH1084MK-CS, file for WVD41450E.1, RH1021BMH-10 (6RH-1021-10K*14), file RH1021CMH-5#50289 (RH1021-5K*0) Experiment #: 2014-NRC-024	follows: lot #WD34907E.1, ass/y lot #WD34907E.1, ass/y lot #VD31270.1, ass/y lot #71 ass/y lot #N/A, WFR #5: lab lot #W1245822.1, ass/ 8), fish lot #10214210.1, a DMEA #	lot #N/A, WFR #2: 19601.1, WFR #4: 10 10, 30, 50, 100 and y lot #724755.1, WF ssry lot #697997.1, V	10, 30, 50, 100 and 2 0, 30, 50 and 100 krai 200 krad(SiO2), 10 o R #1: 10, 30, 50 and	00 krad(SiO2), 10 de d(SiO2), 10 devices per dose leve 100 krad(SiO2), 10 and 100 krad(SiO2),	evices per dose level, per dose level, biased d, biased/GND/d devices per dose leve 10 devices per dose	dify parameters, device biased/GND'd /GND'd 1, biased/GND'd	es, etc. to suit test	t require	•
Description of parts to be irradiated is as MSX 196RH (GRH-6105RK-#IB*01), the MSX 196RH (GRH-6105RK-#IB*01), the MSX 196RH (GRH-6105RK-#IB*01), the lot #7 RH1084MK-CS, the lot #WTD41450E.1, RH1021BMH-10 (GRH-1021-10K*14), IRH1021CMH-5#50289 (RH1021-5K*0) Experiment #: 2014-NRC-024	follows: lot #WD34907E.1, assly lot #WD34907E.1, assly lot #VD31270.1, assly lot #71 assly lot #N/A, WFR 45: ab lot #W1245822.1, assl h fish lot #W1245822.1, assl DMEA #	lot #N/A, WFR #2: 9601.1, WFR #4: 10 10, 30, 50, 100 and y lot #724755.1, WF ssy lot #697997.1, V Approval: SHEPHE A5.1.128	10, 30, 50, 100 and 2 0, 30, 50 and 100 km 200 kmd(SiO2), 10 c R #1: 10, 30, 50 and WFR #10: 10, 30, 50 RD.THOM	00 krad(SiO2), 10 devices j devices per dose leve 100 krad(SiO2), 10 and 100 krad(SiO2), 10 september 20, 100 krad(SiO2), SHEPHERD.TH.	evices per dose level, biased 1, biased (ND7) devices per dose leve 10 devices per dose level 10 devices per	dify parameters, device this add (GND) discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/disco	es, etc. lo suit test	t require	emenés.
Description of parts to be irradiated is as MSX 196RH (6RH-6105RK#IR*01), find MSX 196RH (6RH-6105RK#IR*01), find for RH1086MK-CS, fab for #WD41450E.1, RH102IBMH-10 (6RH102I-10K*14), IRH102IBMH-10 (6RH102I-10K*0) Experiment #: 2014-NRC-024 17. SEND REPORT OF TEST Traditividual identified in Block 2	follows: lot #WD34907E.1, ass/y lot #WD34907E.1, ass/y lot #VD31270.1, ass/y lot #71 ass/y lot #N/A, WFR #5: lab lot #W1245822.1, ass/ 8), fish lot #10214210.1, a DMEA #	lot #N/A, WFR #2: 9601.1, WFR #4: 10 10, 30, 50, 100 and y lot #724755.1, WF say lot #697997.1, V Approval: SHEPHE A5.1.125	10, 30, 50, 100 and 2 0, 30, 50 and 100 km 200 kmd(SiO2), 10 c R #1: 10, 30, 50 and WFR #10: 10, 30, 50 RD.THOM	00 kmd(SiO2), 10 devices plevices per dose leve 100 kmd(SiO2), 10 and 100 kmd(SiO2), 10 and 100 kmd(SiO2), 10 september 20 per 2	evices per dose level, biased 1, biased/CND/d devices per dose leve 10 devices per dose leve 10 devices per dose 10 devices per dose 10 devices per dose 10 devices per dose	dify parameters, device this add (GND) discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/discod/GND/disco	es, etc. to suit test	t require	emenés.
Description of parts to be irradiated is as MSK 196RH (6RH6105BK#IB*01), fab RH1086MH (6RH1086BHK), fab lot #T RH1084MK-CS, fab lot #WD41450E.1, RH1021BMH-10 (6RH1021-10K*14), i	follows: lot #WD34907E.1, assly lot #71 assly lot #871, assly lot #71 assly lot #874, WFR #5: ab lot #W1245822.1, assl b, fab lot #W1245822.1, assl DMEA #	lot #N/A, WFR #2: 9601.1, WFR #4: 10 10, 30, 50, 100 and y lot #724755.1, WF say lot #697997.1, V Approval: SHEPHE A5.1.125	10, 30, 50, 100 and 20, 30, 50 and 100 km 200 km 20	00 kmd(SiO2), 10 devices plevices per dose leve 1100 kmd(SiO2), 10 and 100 kmd(SiO2), 10 and 10 km	evices per dose level, biased 1, biased/CND/d devices per dose leve 10 devices per dose leve 10 devices per dose 10 devices per dose 10 devices per dose 10 devices per dose	dify parameters, device biased/GND/d (GND/d (GND/d), biased/GND/d level, biased/GND/d ARBHAD MOHAM MAD 1.291959893 222	es, etc. to suit test	t require	ementis.
Description of parts to be irradiated is as: MSK.196RH (6RH6105BK#IB*01), fab. MSK.196RH (6RH6105BK#IB*01), fab. RH1086MH (6RH1086BHK), fab. lot #7 RH1084MK-CS, fab. lot #WD41450E1, RH1021BMH-10 (6RH1021-10K*14), fab. RH1021CMH-5#50289 (RH1021-5K*0 Experiment #: 2014-NRC-024 17. SEND REPORT OF TEST To Individual identified in Block 2 1. DATE SAMPLE RECEIVED	follows: lot #WD34907E.1, assly lot #71 assly lot #871, assly lot #71 assly lot #874, WFR #5: ab lot #W1245822.1, assl b, fab lot #W1245822.1, assl DMEA #	lot #N/A, WFR #2: 9601.1, WFR #4: 10 10, 30, 50, 100 and y lot #724755.1, WF say lot #697997.1, V Approval: SHEPHE A5.1.125	10, 30, 50, 100 and 2 1, 30, 50 and 100 km 200 km 2	00 krad(SiO2), 10 devices plevices per dose level 100 krad(SiO2), 10 and 10 and 100 krad(SiO2), 10 and 10	evices per dose level, biased 1, biased/CND/d devices per dose leve 10 devices per dose leve 10 devices per dose 10 devices per dose 10 devices per dose 10 devices per dose	dify parameters, device biased/GND'd (GND'd (GND'd level, biased/GND'd level, biased/GND'd AREHAD MOHAM MAD 123196688) e space is required to the space is required to th	ME M	require	emenés.
Description of parts to be irradiated is as MSK196RH (6RH6105BK#IB*01), fab MSK196RH (6RH6105BK#IB*01), fab RH1086MH; CS, fab is w WP-041450E1, RH1021BMH-10 (6RH1021-10K*14), IRRH021BMH-10 (6RH1021-10K*0) Experiment #: 2014-NRC-024 17. SEND REPORT OF TEST Tondividual identified in Block 2 1. DATE SAMPLE RECEIVED 2014-02-2:	follows: lot #WD34907E.1, assly lot #71 assly lot #871, assly lot #71 assly lot #874, WFR #5: ab lot #W1245822.1, assl b, fab lot #W1245822.1, assl DMEA #	lot #N/A, WFR #2: 9601.1, WFR #4: 10 10, 30, 50, 100 and y lot #724755.1, WF say lot #697997.1, V Approval: SHEPHE AS_1125 ESULTS OF T 2. DATE RESU	10, 30, 50, 100 and 20, 30, 50 and 100 km 200 km 20	00 krad(SiO2), 10 devices plevices per dose level 100 krad(SiO2), 10 and 1	evices per dose level, based, per dose level, per	dify parameters, device biased/GND'd (GND'd (GND'd level, biased/GND'd level, biased/GND'd AREHAD MOHAM MAD 123196688) e space is required to the space is required to th	ME M	require	ARY, See Soll someone and Alexander and Alex
Description of parts to be irradiated is as MSX196RH (6RH-6105BK.4IB+01), file RH1096MH (6RH-105BK.4IB+01), file RH1096MK-CS, file los #WD41450E1, RH1021BMH-10 (6RH-1021-10K*14), IRH1021CMH-5#50289 (RH1021-5K*0 Experiment #: 2014-NRC-024 17. SEND REPORT OF TEST Tradividual identified in Block 2 1. DATE SAMPLE RECEIVED 2014-02-2: 4. TEST PERFORMED	follows: lot #WD34907E.1, assly lot #71 assly lot #871, assly lot #71 assly lot #874, WFR #5: ab lot #W1245822.1, assl b, fab lot #W1245822.1, assl DMEA #	ios #N/A, WFR #2: 19601.1, WFR #4: 10 10, 30, 50, 100 and y lot #724755.1, WF asky lot #697997.1, W Approval: SHEPHE AS 1.125 ESULTS OF T 2. DATE RESULTS OF T Please see to	10, 30, 50, 100 and 20, 30, 50 and 100 km 200 km 20	00 kmd(SiO2), 10 devices y devices per dose leve 100 kmd(SiO2), 10 and 10 kmd(SiO2), 10 and 100 kmd(SiO2), 10 and	evices per dose level, biased I, biased (IND) devices per dose level to devices per dose level to devices per dose level 10 devices per dose level 1	dify parameters, device biased/GND'd (GND'd (GND'd level, biased/GND'd level, biased/GND'd AREHAD MOHAM MAD 123196688) e space is required to the space is required to th	ired) NUMBER N/A REQ	ELINE C 123185	MENTS MANUAL CONCRETE

DD FORM 1222, FEB 62 (EF) REPLACES DD FORM 1222, 1 JUL 58, WHICH IS OBSOLETE.

TID LDR RH1086MH W1231270.1 W4

Continuation of DD Form 1222		Experiment #: 2014-NRC-024 Page 2 of 2	
 Test Performed 	Results of Test	Sample Result Requirements	Step No.
20140225 10:12:30 to 20140225 10:15:44	1.000E+04 rad(SiO2) at 3.085E+03	rad(SiO2)/min RH1086MH (6RH1086BHK), WFR #4, S/Ns 620-629: 10 krad TD	1
20140225 10:12:30 to 20140225 10:15:44	1.000E+04 rad(SiO2) at 3.085E+03	rad(SiO2)/min RH1021BMH-10 (6RH1021-10K*14), WFR #1, S/Ns 93-97, 99-103: 10 krad TD	1
20140225 10:12:30 to 20140225 10:15:44	1.000E+04 rad(SiO2) at 3.085E+03	rad(SiO2)/min RH1021CMH-5#50289 (RH1021-5K*08), WFR #10, S/Ns 267-276: 10 krad TD	1
20140225 10:44:00 to 20140225 10:53:43	3.000E+04 rad(SiO2) at 3.085E+03	rad(SiO2)/min RH1086MH (6RH1086BHK), WFR #4, S/Ns 630-639: 30 krad TD	2
20140225 10:44:00 to 20140225 10:53:43	3.000E+04 rad(SiO2) at 3.085E+03	rad(SiO2)/min RH1021BMH-10 (6RH1021-10K*14), WFR #1, S/Ns 105-109: 30 krad TD	2
20140225 10:44:00 to 20140225 10:53:43	3.000E+04 rad(SiO2) at 3.085E+03	rad(SiO2)/min RH1021CMH-5#50289 (RH1021-5K*08), WFR #10, S/Ns 277-286: 30 krad TD	2
20140225 11:09:00 to 20140225 11:18:43	3.000E+04 rad(SiO2) at 3.085E+03	rad(SiO2) min RH1021BMH-10 (6RH1021-10K*14), WFR #1, S/Ns 110-114: 30 krad TD	3
20140225 11:34:00 to 20140225 11:50:12	5.000E+04 rad(SiO2) at 3.085E+03	rad(SiO2)/min RH1086MH (6RH1086BHK), WFR #4, S/Ns 640-649: 50 krad TD	4
20140225 11:34:00 to 20140225 11:50:12	5.000E+04 rad(SiO2) at 3.085E+03	rad(SiO2)/min RH1021BMH-10 (6RH1021-10K*14), WFR #1, S/Ns 116, 118-120, 180, 182-186: 50 krad TD	4
20140225 11:34:00 to 20140225 11:50:12		rad(SiO2)/min RH1021CMH-5#50289 (RH1021-5K*08), WFR #10, S/N5 287-296: 50 krad TD	4
20140225 12:07:00 to 20140225 12:39:25	1.000E+05 rad(SiO2) at 3.085E+03	rad(SiO2)/min RH1086MH (6RH1086BHK), WFR #4, S/Ns 650-659: 100 krad TD	5
20140225 12:07:00 to 20140225 12:39:25	1.000E+05 rad(SiO2) at 3.085E+03	rad(SiO2)/min RH1021BMH-10 (6RH1021-10K*14), WFR #1, S/Ns 187-193, 196-198: 100 krad TD	5
20140225 12:07:00 to 20140225 12:39:25	1.000E+05 rad(SiO2) at 3.085E+03	rad(SiO2)/min RH1021CMH-5#50289 (RH1021-5K*08), WFR #10, S/N5 297-300, 316-317, 319-322: 100 krad TD	5
20140225 14:46:00 to 20140225 14:49:14	1.000E+04 rad(SiO2) at 3.085E+03	rad(SiO2)/min MSK196RH (6RH6105BK#IB*01), WFR #2, S/Ns 1020-1027, 1029-1030: 10 krad TD	6
		rad(SiO2)/min RH1084MK-CS, WFR #5, S/Ns 13-22: 10 krad TD	6
20140225 15:00:20 to 20140225 15:10:03	3.000E+04 rad(SiO2) at 3.085E+03	rad(SiO2)/min MSK196RH (6RH6105BK#IB*01), WFR #2, S/Ns 1031, 1042-1050: 30 krad TD	7
20140225 15:00:20 to 20140225 15:10:03		rad(SiO2)/min RH1084MK-CS, WFR #5, S/Ns 23-32: 30 krad TD	7
20140225 15:19:40 to 20140225 15:35:52	5.000E+04 rad(SiO2) at 3.085E+03	rad(SiO2)/min MSK196RH (6RH6105BK#IB*01), WFR #2, S/Ns 1051-1056, 1058-1059, 1061-1062 : 50 krad TD	8
		rad(SiO2)/min RH1084MK-CS, WFR #5, S/Ns 33, 35-37, 39-44: 50 krad TD	8
20140225 15:45:10 to 20140225 16:17:35	1.000E+05 rad(SiO2) at 3.085E+03	rad(SiO2)/min MSK196RH (6RH6105BK#IB*01), WFR #2, S/Ns 1064-1065, 1067-1074: 100 krad TD	9
20140225 15:45:10 to 20140225 16:17:35		rad(SiO2)/min RH1084MK-CS, WFR #5, S/Ns 45-47, 49-55: 100 krad TD	9
20140225 16:27:20 to 20140225 17:15:57	1.500E+05 rad(SiO2) at 3.085E+03	rad(SiO2)/min MSK196RH (6RH6105BK#IB*01), WFR #2, S/Ns 1075-1084: 150 krad TD	10
20140225 16:27:20 to 20140225 17:15:57	1.500E+05 rad(SiO2) at 3.085E+03	rad(SiO2)/min RH1084MK-CS, WFR #5, S/Ns 56-60, 62, 64-67: 150 krad SD, 150 krad TD	10
20140225 17:22:20 to 20140225 17:38:32	5.000E+04 rad(SiO2) at 3.085E+03	rad(SiO2)/min RH1084MK-CS, WFR #5, S/Ns 56-60, 62, 64-67: 50 krad SD, 200 krad TD	11

Uncertainty: Total Doses reported are ±

16.02%

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

NOTES:

- ASTM = American Society for Testing and Materials.
- DUT = Device Under Test.
 S/N = Serial Number.
- 4. SD = Step Dose. 5. TD = Total Dose.
- 9.76% 6. Dose rate uniformity across target area:

- 0. Dose rate uniformity across target area: = 9.70%
 All tradiation steps met the requirements of MIL-STD-883H. Test Method 1019.8, Condition A.
 8. After the original Test Request (DD Form 1222) was approved, the following changes were made:
 a. Total number of irradiation steps was 11 instead of 22. The board configuration allowed the irradiation of 2 boards simultaneously.
 b. The MSK196RH (6RH6105BK#IB*01) highest TD level was incorrect on the original Test Request; it should have been 150 krad(SiO2) instead of 200 krad(SiO2). The 150 krad(SiO2) TD was executed correctly during Step No. 10.
- Latitude to change test parameters to suit customer requirements was included in the original Test Request, no Customer Order Change Request (SEGIT Form QP03-4, Rev. 5) was required/issued.
- 9. Source information:
- a. Irradiator = J.L. Shepherd & Associates Model 81-22/484 self-contained irradiation facility, S/Ns 7125/50016.
 b. Source selection = two large Co-60 sources.

- Dosimeter system:
 a. Radcal Model No. 9010 Radiation Monitor Controller, S/N 90-1313.
 b. Radcal Model No. 90X5-0.18 Electrometer/Ion Chamber, S/Ns 95-0478/9771.
- c. This dosimeter system was calibrated per ISO/IEC 17025:2005 by University of Wisconsin Medical Radiation Research Center on 3 Feb 2014 (Report No. ION14426). This calibration is effective for two years.

 11. Irradiation geometry: in accordance with section 7.3.2 of ASTM E1249-00 (2005), the DUT's semiconductor chip plane was perpendicular to the incident radiation beam.

- Filter box: a DMEA Dose Enhancement Chamber (DEC) was used for all testing/dosimetry involved with this experiment.
 The DEC's Pb and Al layers are compliant with section 7.2.2 of ASTM El 249-00 (2005) with respect to thickness and geometry.

Appendix D

Table D1: Pre-Irradiation Electrical Characteristics of Device-Under-Test

DADAMETED	COMPITIONS	нотго	T _A = 25°C			SUB-	-55°C ≤ T _A ≤ 125°C			SUB-	
PARAMETER	CONDITIONS	NOTES	MIN	TYP	MAX	GROUP	MIN	TYP	MAX	GROUP	UNITS
Reference Voltage	$I_{OUT} = 10 \text{mA}, (V_{IN} - V_{OUT}) = 3 \text{V (K)}$		1.238		1.262	1					V
	$ \begin{aligned} 10 \text{mA} &\leq I_{OUT} \leq I_{FULL\ LOAD}, \\ 1.5 V &\leq \left(V_{IN} - V_{OUT}\right) \leq 25 V \end{aligned} $	6	1.225		1.270		1.225		1.270	2,3	V
Line Regulation	$I_{LOAD} = 10 \text{mA}, \ 1.5 \text{V} \le (V_{IN} - V_{OUT}) \le 15 \text{V}$	2, 3			0.2	1			0.2	2,3	%
Load Regulation	$(V_{IN} - V_{OUT}) = 3V,$ $10\text{mA} \le I_{OUT} \le I_{FULL\ LOAD}$	2, 3, 6			0.3	1			0.4	2,3	%
Dropout Voltage	$\Delta V_{REF} = 1\%$, $I_{OUT} = 1.5A$ (K) $\Delta V_{REF} = 1\%$, $I_{OUT} = 0.5A$ (H)	4 4			1.5 1.25	1 1			1.5 1.25	2,3 2,3	V
Current Limit	$(V_{IN} - V_{OUT}) = 5V (K)$ $(V_{IN} - V_{OUT}) = 5V (H)$ $(V_{IN} - V_{OUT}) = 25V (K)$ $(V_{IN} - V_{OUT}) = 25V (H)$		1.5 0.5 0.05 0.020			1 1 1 1	1.5 0.5 0.05 0.020			2,3 2,3 2,3 2,3	A A A
Minimum Load Current	$(V_{IN} - V_{OUT}) = 25V$				10	1			10	2,3	mA
Thermal Regulation	T _A = 25°C, 30ms Pulse				0.04	4					%/W
Ripple Rejection		6	60			4	60			5,6	dB
Adjust Pin Current	T _J = 25°C			55	120	1			120	2,3	μА
Adjust Pin Current Change	$ \begin{aligned} &10\text{mA} \leq I_{\text{OUT}} \leq I_{\text{FULL LOAD}}, \\ &1.5\text{V} \leq \left(V_{\text{IN}} - V_{\text{OUT}}\right) \leq 15\text{V} \end{aligned} $	6			5	1			5	2,3	μА
Temperature Stability				0.5				0.5			%
Long Term Stability	T _A = 125°C, 1000 Hours	5		0.3							%
RMS Output Noise (% of V _{OUT})	10Hz ≤ f ≤ 10kHz			0.003							%
Thermal Resistance Junction-to-Case	Control Circuitry (K) Control Circuitry (H) Power Transistor (K) Power Transistor (H)	5 5 5 5		1.7 15.0 4.0 20.0							°C/W °C/W °C/W

Table D2: Post-Irradiation Electrical Characteristics of Device-Under-Test

PARAMETER	CONDITIONS	10KR/ MIN	AD (Si) Max	20KR/ MIN	AD (Si) Max	50KR/ MIN	AD (Si) Max	100KR MIN	AD (Si) Max	200KR	AD (Si) Max	UNITS
Reference Voltage (Note 6)	$I_{OUT} = 10 \text{mA} (V_{IN} - V_{OUT}) = 3 \text{V (K)}$	1.234	1.262	1.230	1.262	1.225	1.262	1.220	1.262	1.205	1.262	V
		1.220	1.275	1.219	1.275	1.215	1.275	1.210	1.275	1.20	1.275	V
Line Regulation (Notes 2, 3)	$I_{OUT} = 10 \text{mA}$ 1.5V $\leq (V_{IN} - V_{OUT}) \leq 15 \text{V}$		0.2		0.21		0.23		0.25		0.3	%
Load Regulation (Notes 2, 3, 6)	$(V_{IN} - V_{OUT}) = 3V$ $10\text{mA} \le I_{OUT} \le I_{FULL\ LOAD}$		0.3		0.3		0.3		0.3		0.3	%
Dropout Voltage (Note 4)	$\Delta V_{REF} = 1\%$, $I_{OUT} = 1.5A$ (K) $\Delta V_{REF} = 1\%$, $I_{OUT} = 0.5A$ (H)		1.5 1.25		1.51 1.26		1.52 1.27		1.55 1.29		1.575 1.32	V
Current Limit	$(V_{IN} - V_{OUT}) = 5V (K)$ $(V_{IN} - V_{OUT}) = 25V (K)$ $(V_{IN} - V_{OUT}) = 5V (H)$ $(V_{IN} - V_{OUT}) = 25V (H)$	1.5 0.05 0.5 0.020		1.5 0.049 0.5 0.019		1.5 0.048 0.5 0.019		1.5 0.047 0.5 0.018		1.5 0.045 0.5 0.017		A A A
Minimum Load Current	$(V_{IN} - V_{OUT}) = 25V$		10		10		10		10		10	mA
Adjust Pin Current			120		120		120		120		120	μА
Adjust Pin Current Change (Note 6)	$ 10\text{mA} \leq I_{OUT} \leq I_{FULL\ LOAD} $		5		5		5		5		5	μА

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: See thermal regulation specifications for changes in output voltage due to heating effects. Line and load regulation are measured at a constant junction temperature by low duty cycle pulse testing.

Note 3: Line and load regulation are guaranteed up to the maximum power dissipation of 15W for RH1086MK and 3W for the RH1086MH. Power dissipation is determined by the input/output differential voltage and the output current. Guaranteed maximum power dissipation will not be available over the full input/output voltage range.

Note 4: Dropout voltage is specified over the full output current range of the device. Test points and limits are shown on the Dropout Voltage curve in the LT®1086 data sheet.

Note 5: Guaranteed by design, characterization, or correlation to other tested parameters.

Note 6: I_{FULL LOAD} is defined in the Current Limit curves in the standard data sheet. For compliance with 883 revision C current density specifications, the RH1086MK is derated to 1A.