

Total Ionization Dose (TID) Test Results of the RH137K Negative Adjustable Regulator @ High Dose Rate (HDR)

HDR = 50 rads(Si)/s

11 March 2015

Duc Nguyen, Sana Rezgui

Acknowledgements

The authors would like to thank the S-Power Product Engineering group from Linear Technology for their help with the board design and assembly as well as the data collection pre- and post-irradiations. Special thanks are also for Thomas Shepherd from Defense Microelectronics Activity (DMEA) for the extensive work for board setup and continuous dosimetry monitoring throughout the tests.

TID HDR Test Results of the RH137K Negative Adjustable Regulator

Part Type Tested: RH137K Negative Adjustable Regulator

Traceability Information: Fab Lot # W1328052.2; Assembly Lot # 732141.1; Wafer #3; Date Code: 1345A. See photograph of unit under test in Appendix A.

Quantity of Units: 42 units received, 2 units for control, 20 units for biased irradiation, and 20 units for unbiased irradiation. Serial numbers 198-202, 208-212, 219-220, 222-224, and 230-234 had all pins tied to ground during irradiation. Serial numbers 191-192, 194, 196-197, 203-207, 213, 215-218, and 225-229 were biased during irradiation. Serial numbers 235 and 236 were used as control. See Appendix B for the radiation bias connection tables.

Radiation and Electrical Test Increments: 40 samples were divided into four groups of 10 each. Serial numbers 191-192, 194, 196-202 of group 1 were irradiated to 10 Krads(Si). Serial numbers 203-212 of group 2 were irradiated to 20 Krads(Si). Serial numbers 213, 215-220 and 222-224 of group 3 were irradiated to 50 Krads(Si). Serial numbers 225-234 of group 4 were irradiated to 100 Krads(Si).

Radiation dose rate: 50 rads(Si)/sec.

Radiation Test Standard: MIL-STD-883 TM1019.9 Condition A.

Test Hardware and Software: LTX pre-irradiation test program: EFLR137K.01 and post-irradiation test program EQ2LR137K.01.

Facility and Radiation Source: Defense Micro Electronic Activity (DMEA) and Cobalt-60.

Irradiation and Test Temperature: Room temperature controlled to 24°C±6°C per MIL-STD-883 and MIL-STD-750.

SUMMARY

ALL 42 PARTS PASSED THE ELECTRICAL TEST LIMITS AS SPECIFIED IN THE DATASHEET AFTER EACH IRRADIATION INCREMENT. ADDITIONAL INFORMATION CAN BE PROVIDED PER REQUEST.

1.0 Overview and Background

Among other radiation effects, Total Ionizing Dose (TID) may affect electrical characteristics, causing parametric and/or functional failures in integrated circuits. During gamma-irradiations, TID-induced and transported electron-hole pairs may result in charge trapping in a transistor's dielectrics and interface regions, affecting the device's basic features. Such effects warrant testing and monitoring of circuits to TID, after which annealing and/or Time Dependent Effects (TDE) may take place, depending on the circuit's design and process technology. Hence the requirement per Condition A (for high-dose rates ranging from 50 and 300 rads(Si)/sec) in TM1019, MIL-STD-883 is to not exceed the allowed time of one hour from the end of an incremented irradiation and an electrical test. Additionally, the total time from the end of one incremental irradiation to the start of the next incremental step should be less than two hours.

2.0 Radiation Facility and Test Equipment

The samples were irradiated at Defense Micro-Electronics Activity (DMEA) facility in Sacramento, California. DMEA utilizes J.L. Shepherd model 81-22/484 to provide the dose-rate of 50 rads(Si)/s. A special design screw-driven automatic cart inside the exposure tunnel positions the Device-Under-Test (DUT) precisely and repeatedly from the source to attain optimal rate verified by ion chamber detectors. See Appendix C for the certificate of dosimetry.

3.0 Test Conditions

The 40 test samples and two control units were electrically tested at 25°C prior to irradiation. The parts were then placed in a lead/aluminum container and aligned with the radiation source, Cobalt-60, at DMEA facility in Sacramento, California. During irradiation, five units of six separate groups were biased at +/- 15V and other five of similar groups had all pads grounded. Ten units of group 1 were irradiated to 10 Krads(Si); group 2 to 20 Krads(Si); group 3 to 50 Krads(Si); and group 4 to 100 Krads(Si). After irradiation, the samples were transported in dry ice to Linear Technology testing facility. Testing was performed on the two control units to confirm the operation of the test system prior to the electrical testing of the 42 units (40 irradiated and 2 control).

The criteria to pass the high dose-rate test is that five samples in each corresponding dose group irradiated under electrical bias must pass the datasheet limits. If any of the tested parameters of these five units of each group do not meet the required limits then a failure-analysis of the part should be conducted and if valid the lot will be scrapped.

4.0 Tested Parameters

The following parameters were measured pre- and post-irradiations:

- V_{REF} (V) @ $|V_{IN} V_{OUT}| \le 5V$, $I_{OUT} = 10mA$
- V_{REF} (V) @ $|V_{IN} V_{OUT}| \le 5V$, $I_{OUT} \le 1.5A$
- V_{REF} (V) @ $|V_{IN} V_{OUT}| \le 3V$, $I_{OUT} = 10mA$
- $V_{REF}(V) @ |V_{IN} V_{OUT}| \le 30V, I_{OUT} = 10mA$
- V_{REF} (V) @ $|V_{IN} V_{OUT}| \le 30V$, $I_{OUT} = 150mA$
- $V_{REF}(V) @ |V_{IN} V_{OUT}| \le 10V, I_{OUT} = 10mA$
- $V_{REF}(V) @ |V_{IN} V_{OUT}| \le 18V, I_{OUT} = 1A$
- Line Regulation (%/V) @ $3V \le |V_{IN} V_{OUT}| \le 30V$
- Load Regulation (mV) @ $V_{OUT} \le 5V$, 10mA $\le I_{OUT} \le 1.5A$
- Load Regulation (%) @ $V_{OUT} \ge 5V$, 10mA $\le I_{OUT} \le 1.5A$
- Adjust Pin Current (uA)
- Adjust Pin Current Change (uA) @ $10mA \le I_{OUT} \le 1.5A$
- Adjust Pin Current Change (uA) @ $3V \le |V_{IN} V_{OUT}| \le 30V$
- Minimum Load Current (mA) @ $|V_{IN} V_{OUT}| = 30V$
- Minimum Load Current (mA) @ $|V_{IN} V_{OUT}| \le 10V$
- Current Limit (A) @ $|V_{IN} V_{OUT}| \le 15V$
- Current Limit (A) @ |V_{IN} V_{OUT}| = 30V

Appendix D details the test conditions, minimum and maximum values at different accumulated doses.

5.0 Test Results

All 40 samples passed the post-irradiation electrical tests. All measurements of the seventeen listed parameters in section 4.0 are within the specification limits.

The used statistics in this report are based on the tolerance limits, which are bounds to gage the quality of the manufactured products. It assumes that if the quality of the items is normally distributed with known mean and known standard deviation, the two-sided tolerance limits can be calculated as follows:

 $+K_{TL} = mean + (K_{TL})$ (standard deviation)

 $-K_{TL} = mean - (K_{TL})$ (standard deviation)

Where $+K_{TL}$ is the upper tolerance limit and $-K_{TL}$ is the lower tolerance limit. These tolerance limits are defined in a table of inverse normal probability distribution.

However, in most cases, mean and standard deviations are unknown and therefore it is practical to estimate both of them from a sample. Hence the tolerance limit depends greatly on the sample size. The Ps90%/90% K_{TL} factor for a lot quality P of 0.9, confidence C of 0.9 with a sample size of 5, can be found from the tabulated table (MIL-HDBK-814, page 94, table IX-B). The K_{TL} factor in this report is 2.742.

In the plots, the dotted lines with diamond markers are the average of the measured data points of five samples irradiated under electrical bias while the dashed lines with X-markers are the average of measured data points of five units irradiated with all pins tied to ground. The solid lines with triangle markers are the 90%/90% minimum and maximum determined from the calculation of the K_{TL} on the samples irradiated in the biased setup. The solid lines with square symbols are the 90%/90% minimum and maximum determined from the calculation of the K_{TL} on the five samples irradiated with all pins grounded. The orange solid lines with circle markers are the specification limits.

Figure 5.1 Plot of V_{REF} @ $|V_1 - V_0| \le 5V$ versus Total Dose

Table 5.1: Raw data for reference voltage @ $|V_1 - V_0| \le 5V$ versus total dose including the statistical calculations, minimum specification, maximum specification, and the status of the test (PASS/FAIL) under the orange headers)

Parameter	$V_{\text{REF}} @ V_{1} - V_{0} \le 5V.$ = 10mA	Total Dose (Krads(Si)) @ 50rads/second				
Units		0	10	20	50	100
198	All GND'd Irradiation	-1.25304	-1.25046			100
199	All GND'd Irradiation	-1.25041	-1.24795			
200	All GND'd Irradiation	-1.25317	-1.25026			
201	All GND'd Irradiation	-1.25103	-1.24791			
202	All GND'd Irradiation	-1.25543	-1.25165			
191	Biased Irradiation	-1.25526	-1.25210			
192	Biased Irradiation	-1.25636	-1.25270			
194	Biased Irradiation	-1.25575	-1.25268			
196	Biased Irradiation	-1.25194	-1.24936			
197	Biased Irradiation	-1.25134	-1.24852	1.05000		
208	All GND'd Irradiation	-1.25872		-1.25390		
209	All GND d Irradiation	-1.25406		-1.25039		
210		-1.25401		-1.25009		
211	All GND'd Irradiation	-1.25007		-1.23280		
203	Biased Irradiation	-1 25343		-1 24927	-	
204	Biased Irradiation	-1.25561		-1.25149		
205	Biased Irradiation	-1.25018		-1.24642		
206	Biased Irradiation	-1.25239		-1.24875		
207	Biased Irradiation	-1.25048		-1.24661		
219	All GND'd Irradiation	-1.25206			-1.24673	
220	All GND'd Irradiation	-1.25240			-1.24645	
222	All GND'd Irradiation	-1.25102			-1.24555	
223	All GND'd Irradiation	-1.25136			-1.24569	
224	All GND'd Irradiation	-1.25636			-1.25005	
213	Biased Irradiation	-1.25055			-1.24428	
215	Biased Irradiation	-1.25201			-1.24590	
216	Biased Irradiation	-1.25498			-1.24828	
217	Biased Irradiation	-1.25445			-1.24866	
218	Biased Irradiation	-1.25126			-1.24596	
230	All GND'd Irradiation	-1.25255				-1.24211
231	All GND d Inadiation	1 25242				1 24230
232	All GND'd Irradiation	-1.25343				-1.24376
233	All GND'd Irradiation	-1.25537				-1.24394
225	Biased Irradiation	-1 25267				-1 24302
226	Biased Irradiation	-1.25313				-1.24459
227	Biased Irradiation	-1.25248				-1.24372
228	Biased Irradiation	-1.25484				-1.24507
229	Biased Irradiation	-1.25209				-1.24374
235	Control Unit	-1.25406	-1.25119	-1.25119	-1.25119	-1.25119
236	Control Unit	-1.25415	-1.25163	-1.25163	-1.25163	-1.25163
	All GND'd Irradiation Statistics					
	Average All GND'd	-1.25262	-1.24964	-1.25102	-1.24689	-1.24437
	Std Dev All GND'd	0.00199	0.00165	0.00257	0.00183	0.00174
	Ps90%/90% (+KTL) All GND'd	-1.24716	-1.24511	-1.24397	-1.24187	-1.23961
	PS90%/90% (-KTL) All GND'd	-1.25807	-1.25418	-1.25806	-1.25191	-1.24913
	Diased Irradiation Statistics	1 25 44 2	1 25407	1 04054	1 24662	1 24402
	Average blased	-1.23413	-1.25107	-1.24851	-1.24062	-1.24403
	Deg0%/00% (TKTL) Bissod	-1 24770	-1 24562	-1 2/277	-1 2/161	-1 2/192
	Ps90%/90% (-KTL) Biased	-1 26049	-1 25651	-1 25/25	-1 25162	-1 24622
	Specification MIN	-1.275	-1.275	-1.275	-1.275	-1.275
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (Measurements) Biased	PASS	PASS	PASS	PASS	PASS
	Specification MAX	-1.225	-1.225	-1.225	-1.225	-1.225
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (Measurements) Biased	PASS	PASS	PASS	PASS	PASS
	Status (-KTL) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (+KTL) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (-KTL) Biased	PASS	PASS	PASS	PASS	PASS
	Status (+KTL) Biased	PASS	PASS	PASS	PASS	PASS

Figure 5.2 Plot of V_{REF} @ $|V_I - V_0| = 5V$, $I_L = 1.5A$ versus Total Dose

Table 5.2: Raw data for reference voltage $@|V_1 - V_0| = 5V$, $I_L = 1.5A$ versus total dose including the statistical calculations, minimum specification, maximum specification, and the status of the test (PASS/FAIL) under the orange headers)

Parameter	V _{REF} @ V _I -V _O ≤ 5V, I _{L=} 1.5A	Tot	al Dose (Kr	ads(Si)) @	50rads/sec	ond
Units	(V)	0	10	20	50	100
198	All GND'd Irradiation	-1.25365	-1.24782			
199	All GND'd Irradiation	-1.25110	-1.24561			
200	All GND'd Irradiation	-1.25370	-1.24797			
201	All GND'd Irradiation	-1.25163	-1.24591			
202	All GND'd Irradiation	-1.25624	-1.24951			
191	Biased Irradiation	-1.25606	-1.25026			
192	Biased Irradiation	-1.25706	-1.25127			
194	Biased Irradiation	-1.25633	-1.25058			
196	Biased Irradiation	-1.25255	-1.24730			
197	Biased Irradiation	-1.25197	-1.24660			
208	All GND'd Irradiation	-1.25950		-1.25195		
209	All GND'd Irradiation	-1.25485		-1.24866		
210	All GND'd Irradiation	-1.25514		-1.24859		
211	All GND'd Irradiation	-1.25742		-1.25096		
212	All GND'd Irradiation	-1.25121		-1.24486		
203	Biased Irradiation	-1.25400		-1.24720		
204	Biased Irradiation	-1.25618		-1.24923		
205	Biased Irradiation	-1.25086		-1.24450		
206	Biased Irradiation	-1.25309		-1.24669		
207	Biased Irradiation	-1.25110		-1.24455		
219	All GND'd Irradiation	-1.25254		1.2 1 100	-1.24428	
220	All GND'd Irradiation	-1 25309			-1 24431	
220	All GND'd Irradiation	-1 25160			-1 24322	
222	All GND'd Irradiation	-1 25195			-1 24325	
220	All GND'd Irradiation	-1 25697			-1 24821	
213	Biased Irradiation	-1.25037			-1.24021	
215	Biased Irradiation	-1.25721			-1.24205	
215	Biased Irradiation	-1.25254			-1.24555	
210	Biased Irradiation	-1.25511			-1.24657	
217	Biased Irradiation	-1.25200			-1.24037	
210		1 25209			-1.24404	1 24009
230		-1.25509				-1.24006
231		-1.25079				-1.24295
232		1 25407				1 24190
233		1 25502				1 24462
234	Right differentiation	1 25249				-1.24403
223	Biased Inadiation	1 25262				1 24221
220	Diased Inadiation	-1.25303			-	-1.24221
227	Biased Inadiation	1 25557				1 24206
220	Biased Inadiation	-1.25557				-1.24306
229		-1.25207	1.24026	1 24026	1 24026	1 24155
235	Control Unit	-1.25469	-1.24936	-1.24930	-1.24936	-1.24930
230		-1.25470	-1.24943	-1.24943	-1.24943	-1.24943
		4.05000	4 0 4 7 0 7	4.04000	4.04465	4.04000
		-1.25326	-1.24/3/	-1.24900	-1.24465	-1.24220
		0.00204	0.00161	1.00274	1 22001	0.00170
	P=00%/90% (+KTL) All GND'd	-1.24768	-1.24295	-1.24149	-1.23901	-1.23/54
	Pissed Irrediction Statistics	-1.25885	-1.25178	-1.25652	-1.25030	-1.24686
		1 05 470	1.04000	1.04040	1 04450	1.04400
	Average Blased	-1.25479	-1.24920	-1.24643	-1.24452	-1.24190
		0.00235	0.00210	0.00199	0.00195	0.00074
	PS90%/90% (+KTL) Blased	-1.24835	-1.24344	-1.24099	-1.23918	-1.23986
	PS90%/90% (-KIL) Blased	-1.26123	-1.25496	-1.25188	-1.24987	-1.24394
		-1.3	-1.3	-1.3	-1.3	-1.3
	Status (Weasurements) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (Measurements) Blased	PASS	PASS	PASS	PASS	PASS
	Specification MAX	-1.2	-1.2	-1.2	-1.2	-1.2
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (Measurements) Biased	PASS	PASS	PASS	PASS	PASS
	Status (-KTL) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (+KTL) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (-KTL) Biased	PASS	PASS	PASS	PASS	PASS
	Status (+KTL) Biased	PASS	PASS	PASS	PASS	PASS

Figure 5.3 Plot of V_{REF} @ $|V_I - V_O| = 3V$, $I_L = 10mA$ versus Total Dose

Table 5.3: Raw data for reference voltage $@|V_1 - V_0| = 3V$, $I_L = 10$ mA versus total dose including the statistical calculations, minimum specification, maximum specification, and the status of the test (PASS/FAIL) under the orange headers)

Deremeter	$V_{} @ V_{} V_{} = 3V_{$	- /	Total Dose	(Krads(Si))	@ 10mr/s	
Parameter		0	1000	20	E 10111/3	100
108		-1 25301	-1 25042	20	50	100
190	All GND'd Irradiation	-1.250/1	-1.23042			
200	All GND'd Irradiation	-1 25323	-1 25019			
200	All GND'd Irradiation	-1 25099	-1 24797			
202	All GND'd Irradiation	-1.25537	-1.25166			
191	Biased Irradiation	-1.25522	-1.25210			
192	Biased Irradiation	-1.25644	-1.25283			
194	Biased Irradiation	-1.25567	-1.25259			
196	Biased Irradiation	-1.25195	-1.24923			
197	Biased Irradiation	-1.25132	-1.24856			
208	All GND'd Irradiation	-1.25872		-1.25392		
209	All GND'd Irradiation	-1.25406		-1.25028		
210	All GND'd Irradiation	-1.25445		-1.25079		
211	All GND'd Irradiation	-1.25667		-1.25279		
212	All GND'd Irradiation	-1.25069		-1.24720		
203	Biased Irradiation	-1.25331		-1.24939		
204	Biased Irradiation	-1.25559		-1.25141		
205	Biased Irradiation	-1.25018		-1.24645		
206	Biased Irradiation	-1.25232		-1.24882		
207	Blased Irradiation	-1.25041		-1.24659	1 24675	
219	All GND d Irradiation	-1.25206			-1.24675	
220	All GND d Irradiation	1.25238			1 24631	
222	All GND'd Irradiation	-1.25095			-1.24560	
223	All GND'd Irradiation	-1.25135			-1 24997	
213	Biased Irradiation	-1 25048			-1 24428	
215	Biased Irradiation	-1.25194			-1.24577	
216	Biased Irradiation	-1.25492			-1.24829	
217	Biased Irradiation	-1.25441			-1.24873	
218	Biased Irradiation	-1.25127			-1.24599	
230	All GND'd Irradiation	-1.25243				-1.24204
231	All GND'd Irradiation	-1.25606				-1.24523
232	All GND'd Irradiation	-1.25345				-1.24371
233	All GND'd Irradiation	-1.25374				-1.24386
234	All GND'd Irradiation	-1.25529				-1.24674
225	Biased Irradiation	-1.25262				-1.24294
226	Biased Irradiation	-1.25301				-1.24447
227	Biased Irradiation	-1.25243				-1.24367
228	Biased Irradiation	-1.25476				-1.24509
229	Biased Irradiation	-1.25209				-1.24363
235	Control Unit	-1.25400	-1.25127	-1.25127	-1.25127	-1.25127
236		-1.25407	-1.25165	-1.25165	-1.25165	-1.25165
	All GND'd Irradiation Statistics	4.05000	4.04000	4.05400	4.04000	4.04400
		-1.25260	-1.24962	-1.25100	-1.24688	-1.24432
-		1 24719	1.24509	0.00258	1 24107	1 22047
		1 25902	1 25415	1 25909	-1.24197	-1.23947
	Riased Irradiation Statistics	-1.23602	-1.23413	-1.23000	-1.23178	-1.24910
		-1 25412	-1 25106	-1 24853	-1 24661	-1 24396
	Std Dev Biased	0.00232	0.00201	0.00207	0.00186	0.00083
	Ps90%/90% +KTL Biased	-1.24775	-1.24555	-1.24285	-1.24152	-1.24167
	Ps90%/90% -KTL Biased	-1.26049	-1.25657	-1.25422	-1.25171	-1.24625
	Specification MIN	-1.3	-1.3	-1.3	-1.3	-1.3
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (Measurements) Biased	PASS	PASS	PASS	PASS	PASS
	Specification MAX	-1.2	-1.2	-1.2	-1.2	-1.2
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (Measurements) Biased	PASS	PASS	PASS	PASS	PASS
	Status (-KTL) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (+KTL) All GND'd	PASS	PASS	PASS	PASS	PASS
	Stauts (-KTL) Biasedd	PASS	PASS	PASS	PASS	PASS
	Stauts (+KTL) Biasedd	PASS	PASS	PASS	PASS	PASS

Figure 5.4 Plot of V_{REF} @ $|V_1 - V_0| = 30V$, $I_L = 10mA$ versus Total Dose

Table 5.4: Raw data for reference voltage $@|V_1 - V_0| = 30V$, $I_L = 10$ mA versus total dose including the statistical calculations, minimum specification, maximum specification, and the status of the test (PASS/FAIL) under the orange headers)

Parameter	V _{REF} @ 30V, I _L = 10mA	Total Dose (Krads(Si)) @ 10mr/s				
Units	(V)	0	10	20	50	100
198	All GND'd Irradiation	-1.25301	-1.25054			
199	All GND'd Irradiation	-1.25041	-1.24798			
200	All GND'd Irradiation	-1.25316	-1.25035			
201	All GND'd Irradiation	-1.25104	-1.24814			
202	All GND'd Irradiation	-1.25545	-1.25195			
191	Biased Irradiation	-1.25522	-1.25237			
192	Biased Irradiation	-1.25640	-1.25287			
194	Biased Irradiation	-1.25574	-1.25271			
196	Blased Irradiation	-1.25201	-1.24936			
208	All GND'd Irradiation	-1.25133	-1.24075	-1.25401		
208	All GND'd Irradiation	-1.25072		-1.25401		
203	All GND'd Irradiation	-1 25457		-1 25102		
211	All GND'd Irradiation	-1 25668		-1 25305		
212	All GND'd Irradiation	-1 25071		-1 24737		
203	Biased Irradiation	-1.25339		-1.24958		
204	Biased Irradiation	-1.25561		-1.25171		
205	Biased Irradiation	-1.25018		-1.24675		
206	Biased Irradiation	-1.25252		-1.24902		
207	Biased Irradiation	-1.25055		-1.24694		
219	All GND'd Irradiation	-1.25201			-1.24692	
220	All GND'd Irradiation	-1.25243			-1.24674	
222	All GND'd Irradiation	-1.25099			-1.24572	
223	All GND'd Irradiation	-1.25131			-1.24585	
224	All GND'd Irradiation	-1.25635			-1.25024	
213	Biased Irradiation	-1.25057			-1.24439	
215	Blased Irradiation	-1.25197			-1.24601	
216	Blased Irradiation	-1.25499			-1.24862	
217	Biased Irradiation	-1.25452			-1.24097	
210	All GND'd Irradiation	-1 25248			-1.24013	-1 24249
231	All GND'd Irradiation	-1.25621				-1.24546
232	All GND'd Irradiation	-1.25339				-1.24409
233	All GND'd Irradiation	-1.25377				-1.24416
234	All GND'd Irradiation	-1.25526				-1.24718
225	Biased Irradiation	-1.25262				-1.24340
226	Biased Irradiation	-1.25304				-1.24481
227	Biased Irradiation	-1.25254				-1.24416
228	Biased Irradiation	-1.25485				-1.24542
229	Biased Irradiation	-1.25209				-1.24404
235	Control Unit	-1.25407	-1.25141	-1.25141	-1.25141	-1.25141
236	Control Unit	-1.25411	-1.25180	-1.25180	-1.25180	-1.25180
		1.05064	1 24070	1 05110	1 24700	1 04469
-		0.00100	0.00170	0.00258	0.00183	0.00175
	Ps90%/90% +KTL All GND'd	-1 24715	-1 24513	-1 24412	-1 24206	-1 23987
	Ps90%/90% -KTL All GND'd	-1 25808	-1 25445	-1 25825	-1 25212	-1 24948
	Biased Irradiation Statistics					
	Average Biased	-1.25414	-1.25121	-1.24880	-1.24683	-1.24436
	Std Dev Biased	0.00230	0.00199	0.00205	0.00193	0.00077
	Ps90%/90% +KTL Biased	-1.24782	-1.24575	-1.24319	-1.24154	-1.24225
	Ps90%/90% -KTL Biased	-1.26046	-1.25667	-1.25442	-1.25212	-1.24648
	Specification MIN	-1.3	-1.3	-1.3	-1.3	-1.3
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (Measurements) Biased	PASS	PASS	PASS	PASS	PASS
	Specification MAX	-1.2	-1.2	-1.2	-1.2	-1.2
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (Weasurements) Blased	PA33	PASS	PASS	PA35	PA55
		DASS	DASS	DASS	DASS	DASS
		PASS	PASS	PASS	PASS	PASS
		17.00	17.00	17.00	17.00	17.00
	Stauts (-KTL) Biasedd	PASS	PASS	PASS	PASS	PASS
	Stauts (+KTL) Biasedd	PASS	PASS	PASS	PASS	PASS

Figure 5.5 Plot of V_{REF} @ $|V_I - V_0| = 30V$, $I_L = 150mA$ versus Total Dose

Table 5.5: Raw data for reference voltage @ $|V_1 - V_0| = 30V$, $I_L = 150$ mA versus total dose including the statistical calculations, minimum specification, maximum specification, and the status of the test (PASS/FAIL) under the orange headers)

Parameter	$V_{\text{REF}} @ V_{1} - V_{0} = 30V I_{1} = 150 \text{ mA}$		Total Dose	(Krads(Si))	@ 10mr/s	
Linite		0	10	20	50	100
198	All GND'd Irradiation	-1 25343	-1 25049	20		100
199	All GND'd Irradiation	-1.25084	-1.24768			
200	All GND'd Irradiation	-1.25354	-1.25019			
201	All GND'd Irradiation	-1.25136	-1.24814			
202	All GND'd Irradiation	-1.25575	-1.25180			
191	Biased Irradiation	-1.25560	-1.25249			
192	Biased Irradiation	-1.25670	-1.25334			
194	Biased Irradiation	-1.25605	-1.25263			
196	Biased Irradiation	-1.25221	-1.24920			
197	Biased Irradiation	-1.25162	-1.24859			
208	All GND'd Irradiation	-1.25911		-1.25432		
209	All GND'd Irradiation	-1.25439		-1.25073		
210	All GND'd Irradiation	-1.25484		-1.25120		
211	All GND d Irradiation	-1.25706		-1.25324		
212	Rissod Irradiation	-1.25095		-1.24740		
203	Biased Irradiation	-1.25591		-1.24903		
204	Biased Irradiation	-1 25055		-1 24657		
206	Biased Irradiation	-1.25272		-1.24927		
207	Biased Irradiation	-1.25079		-1.24710		
219	All GND'd Irradiation	-1.25228			-1.24710	
220	All GND'd Irradiation	-1.25273			-1.24692	
222	All GND'd Irradiation	-1.25121			-1.24603	
223	All GND'd Irradiation	-1.25156			-1.24608	
224	All GND'd Irradiation	-1.25675			-1.25035	
213	Biased Irradiation	-1.25087			-1.24489	
215	Biased Irradiation	-1.25228			-1.24631	
216	Biased Irradiation	-1.25529			-1.24902	
217	Biased Irradiation	-1.25483			-1.24913	
218	Biased Irradiation	-1.25156			-1.24642	4.0.4000
230	All GND'd Irradiation	-1.25278				-1.24302
231	All GND d Irradiation	-1.25648	-			-1.24622
232	All GND'd Irradiation	-1.25375				-1.24403
233	All GND'd Irradiation	-1.25407				-1.24409
225	Biased Irradiation	-1.25304				-1.24401
226	Biased Irradiation	-1.25331				-1.24560
227	Biased Irradiation	-1.25278				-1.24465
228	Biased Irradiation	-1.25522				-1.24629
229	Biased Irradiation	-1.25232				-1.24493
235	Control Unit	-1.25435	-1.25127	-1.25127	-1.25127	-1.25127
236	Control Unit	-1.25439	-1.25152	-1.25152	-1.25152	-1.25152
	All GND'd Irradiation Statistics		-			
	Average All GND'd	-1.25298	-1.24966	-1.25138	-1.24729	-1.24525
	Sta Dev All GND'd	0.00196	0.00172	0.00266	0.00178	0.00177
	PS90%/90% +KTL All GND'd	-1.24760	-1.24495	-1.24407	-1.24243	-1.24040
	Pipeod Irradiation Statistics	-1.25836	-1.25437	-1.25868	-1.25216	-1.25009
-		-1 25444	-1 25125	-1 2/999	-1 2/715	-1 24500
	Std Dev Biased	0.00234	0.00218	0.00212	0.00185	0.00088
	Ps90%/90% +KTL Biased	-1.24801	-1.24526	-1.24307	-1.24207	-1.24269
	Ps90%/90% -KTL Biased	-1 26086	-1 25723	-1 25469	-1 25223	-1 24750
	Specification MIN	-1.3	-1.3	-1.3	-1.3	-1.3
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (Measurements) Biased	PASS	PASS	PASS	PASS	PASS
	Specification MAX	-1.2	-1.2	-1.2	-1.2	-1.2
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (Measurements) Biased	PASS	PASS	PASS	PASS	PASS
	Status (-KTL) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (+KTL) All GND'd	PASS	PASS	PASS	PASS	PASS
			DAGG	DAGG	DAGG	DAGG
	Stauts (-KTL) Biasedd	PASS	PASS	PASS	PASS	PASS
	Stauts (+KIL) Blasedd	PASS	PASS	PASS	PASS	PASS

Figure 5.6 Plot of V_{REF} @ $|V_1 - V_0| = 10V$, $I_L = 10mA$ versus Total Dose

Table 5.6: Raw data for reference voltage @ $|V_1 - V_0| = 30V$, $I_L = 150$ mA versus total dose including the statistical calculations, minimum specification, maximum specification, and the status of the test (PASS/FAIL) under the orange headers)

Parameter	$V_{REF} @ V_1 - V_0 = 10V; I_L = 10mA$	Ŭ	Total Dos	e (Krads(Si)) @ 50r/s	
Units	(V)	0	10	20	50	100
198	All GND'd Irradiation	-1.25301	-1.25030			
199	All GND'd Irradiation	-1.25041	-1.24783			
200	All GND'd Irradiation	-1.25316	-1.25015			
201	All GND'd Irradiation	-1.25104	-1.24805			
202	All GND'd Irradiation	-1.25545	-1.25149			
191	Biased Irradiation	-1.25522	-1.25213			
192	Biased Irradiation	-1.25640	-1.25268	-		-
194	Biased Irradiation	-1.25574	-1.25253			
196	Biased Irradiation	-1.25201	-1.24920			
197	Biased Irradiation	-1.25133	-1.24852			
208	All GND'd Irradiation	-1.25872		-1.25378		-
209	All GND'd Irradiation	-1.25415		-1.25030		-
210	All GND'd Irradiation	-1.25457		-1.25073		
211	All GND'd Irradiation	-1.25668		-1.25279		
212	All GND d Irradiation	-1.25071		-1.24722		
203	Blased Irradiation	-1.25339		-1.24939		
204	Blased Irradiation	-1.25561		-1.25149		
205	Blased Irradiation	-1.25018		-1.24649		
206	Diased Irradiation	-1.25252		-1.24000		
207		1 25201		-1.24075	1 24672	
219		1 25242			-1.24073	
220		1 25000			-1.24031	
222		-1.25099			-1.24569	
223	All GND'd Irradiation	-1.25131			-1.24303	
213	Biased Irradiation	-1 25057			-1 24431	
215	Biased Irradiation	-1 25197			-1 24577	
216	Biased Irradiation	-1 25499			-1 24836	
217	Biased Irradiation	-1.25452			-1.24875	
218	Biased Irradiation	-1.25121			-1.24591	
230	All GND'd Irradiation	-1.25248				-1.24218
231	All GND'd Irradiation	-1.25621				-1.24530
232	All GND'd Irradiation	-1.25339				-1.24386
233	All GND'd Irradiation	-1.25377				-1.24389
234	All GND'd Irradiation	-1.25526				-1.24683
225	Biased Irradiation	-1.25262				-1.24309
226	Biased Irradiation	-1.25304				-1.24463
227	Biased Irradiation	-1.25254				-1.24371
228	Biased Irradiation	-1.25485				-1.24511
229	Biased Irradiation	-1.25209				-1.24369
235	Control Unit	-1.25407	-1.25127	-1.25127	-1.25127	-1.25127
236	Control Unit	-1.25411	-1.25158	-1.25158	-1.25158	-1.25158
	All GND'd Irradiation Statistics					
	Average All GND'd	-1.25261	-1.24957	-1.25097	-1.24686	-1.24441
	Sta Dev All GND'd	0.00199	0.00157	0.00254	0.00180	0.00174
	Ps90%/90% +KTL All GND'd	-1.24715	-1.24525	-1.24400	-1.24192	-1.23963
	PS90%/90% -KIL All GND'd	-1.25808	-1.25388	-1.25793	-1.25180	-1.24920
	Blased Irradiation Statistics	1 05 41 4	1 25101	1 24860	1.24662	1 24405
	Average blased	-1.25414	-1.25101	-1.24660	-1.24002	-1.24405
	Stu Dev Blased Rego%/go% +KTL Riggod	-1 24782	-1 24555	-1 24205	-1 24147	-1 24183
	Ps90%/90% KTL Biased	-1.247.02	-1.24555	-1.24293	-1.24147	-1.24103
	Specification MIN	-1.3	-1.2	-1.2	-1.3	-1.3
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (Measurements) Riased	PASS	PASS	PASS	PASS	PASS
	Specification MAX	-1.2	-1.2	-1.2	-1.2	-1.2
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (Measurements) Biased	PASS	PASS	PASS	PASS	PASS
	Status (-KTL) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (+KTL) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (-KTL) Biased	PASS	PASS	PASS	PASS	PASS
	Status (+KTL) Biased	PASS	PASS	PASS	PASS	PASS

Figure 5.7 Plot of V_{REF} @ $|V_I - V_O| = 18V$, $I_L = 1A$ versus Total Dose

Table 5.7: Raw data for reference voltage $@|V_I - V_O| = 18V$, $I_L = 1A$ versus total dose including the statistical calculations, minimum specification, maximum specification, and the status of the test (PASS/FAIL) under the orange headers)

Deremeter	$V_{} @ V_{} V_{} = 18V_{} + -18$	- /	Total Dos	e (Krads(Si)	0 = 50 r/s	
		0	10	20	50	100
198	All GND'd Irradiation	-1 25391	-1 24951	20		100
190	All GND'd Irradiation	-1.25331	-1 24692			
200	All GND'd Irradiation	-1.25392	-1.24927			
201	All GND'd Irradiation	-1.25191	-1.24713			
202	All GND'd Irradiation	-1.25651	-1.25091			
191	Biased Irradiation	-1.25636	-1.25161			
192	Biased Irradiation	-1.25731	-1.25249			
194	Biased Irradiation	-1.25667	-1.25196			
196	Biased Irradiation	-1.25270	-1.24840			
197	Biased Irradiation	-1.25217	-1.24779			
208	All GND'd Irradiation	-1.25975		-1.25324		
209	All GND'd Irradiation	-1.25498		-1.24978		
210	All GND'd Irradiation	-1.25537		-1.25015		
211	All GND'd Irradiation	-1.25777		-1.25226		
212	All GND'd Irradiation	-1.25145		-1.24645		
203	Biased Irradiation	-1.25423		-1.24852		
204	Biased Irradiation	-1.25650		-1.25059		
205	Biased Irradiation	-1.25099		-1.24561		
206	Biased Irradiation	-1.25328		-1.24842		
207	Biased Irradiation	-1.25136		-1.24615		
219	All GND'd Irradiation	-1.25270			-1.24557	
220	All GND'd Irradiation	-1.25330			-1.24539	
222	All GND'd Irradiation	-1.25163			-1.24477	
223	All GND'd Irradiation	-1.25209			-1.24463	
224	All GND'd Irradiation	-1.25729			-1.24951	
213	Biased Irradiation	-1.25147			-1.24352	
215	Biased Irradiation	-1.25278			-1.24486	
216	Blased Irradiation	-1.25598			-1.24779	
217	Blased Irradiation	-1.25529			-1.24795	
218	Blased Irradiation	-1.25225			-1.24535	4 0 4 4 4 0
230	All GND'd Irradiation	-1.25331				-1.24142
231	All GND d Irradiation	-1.25706			-	-1.24455
232		1 25455				1 24294
233		-1.25408				-1.24309
204	Biased Irradiation	-1.25365				-1.24333
225	Biased Irradiation	-1 25389				-1 24386
227	Biased Irradiation	-1 25331				-1 24276
228	Biased Irradiation	-1.25575				-1.24463
229	Biased Irradiation	-1.25293				-1.24294
235	Control Unit	-1.25498	-1.25066	-1.25066	-1.25066	-1.25066
236	Control Unit	-1.25498	-1.25073	-1.25073	-1.25073	-1.25073
-	All GND'd Irradiation Statistics					
	Average All GND'd	-1.25351	-1.24875	-1.25038	-1.24597	-1.24360
	Std Dev All GND'd	0.00204	0.00170	0.00263	0.00202	0.00174
	Ps90%/90% +KTL All GND'd	-1.24792	-1.24410	-1.24317	-1.24044	-1.23884
	Ps90%/90% -KTL All GND'd	-1.25911	-1.25340	-1.25758	-1.25151	-1.24836
	Biased Irradiation Statistics					
	Average Biased	-1.25504	-1.25045	-1.24786	-1.24589	-1.24339
	Std Dev Biased	0.00241	0.00218	0.00201	0.00193	0.00083
	Ps90%/90% +KTL Biased	-1.24843	-1.24447	-1.24234	-1.24061	-1.24112
	Ps90%/90% -KTL Biased	-1.26166	-1.25643	-1.25337	-1.25117	-1.24566
	Specification MIN	-1.3	-1.3	-1.3	-1.3	-1.3
-	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (Weasurements) Blased	PASS	PASS	PASS	PASS	PASS
	Specification IVIAX	-1.2	-1.2	-1.2	-1.2	-1.2
	Status (Measurements) All GND d	PASS	PASS	PASS	PASS	PASS
-	Status (IMeasureriterits) Diased	FA33	FA33	FASS	FA33	FASS
	Status (-KTL) All GND'd	PASS	PASS	PASS	PASS	PASS
		PASS	PASS	PASS	PASS	PASS
		17.00	17.00	17.00	17.00	17.00
	Status (-KTL) Biased	PASS	PASS	PASS	PASS	PASS
	Status (+KTL) Biased	PASS	PASS	PASS	PASS	PASS
		.,		1,00		1,00

Figure 5.8: Plot of Line Regulation versus Total Dose

Table 5.8: Raw data for line regulation versus total dose including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL under the second orange header)

Parameter	Line Reg @ $3V \le V_1 - V_0 \le 30V$	Total Dose (Krads(Si)) @ 50rads/second				
Units	(%/V)	0	10	20	50	100
198	All GND'd Irradiation	0.00043	0.00037			
199	All GND'd Irradiation	0.00048	0.00037			
200	All GND'd Irradiation	0.00000	0.00048			
201	All GND'd Irradiation	0.00031	0.00051			
202	All GND'd Irradiation	0.00070	0.00088			
191	Biased Irradiation	0.00068	0.00082			
192	Biased Irradiation	0.00026	0.00011			
194	Biased Irradiation	0.00059	0.00034			
196	Biased Irradiation	0.00017	0.00037			
197	Biased Irradiation	0.00025	0.00057	0.00000		
208	All GND'd Irradiation	0.00028		0.00028		
209	All GND'd Irradiation	0.00025		0.00051		
210	All GND d Irradiation	0.00065		0.00066		
211		0.00034		0.00078		
212	Rissod Irradiation	0.00031		0.00057		
203	Biased Irradiation	0.00000		0.00007		
204	Biased Irradiation	0.00040		0.00090		
200	Biased Irradiation	0.00059		0.00057		
207	Biased Irradiation	0.00057		0.00105		
219	All GND'd Irradiation	0.00008		2.30.00	0.00048	
220	All GND'd Irradiation	0.00047			0.00131	
222	All GND'd Irradiation	0.00023			0.00020	
223	All GND'd Irradiation	0.00020			0.00045	
224	All GND'd Irradiation	0.00048			0.00079	
213	Biased Irradiation	0.00060			0.00031	
215	Biased Irradiation	0.00042			0.00071	
216	Biased Irradiation	0.00041			0.00099	
217	Biased Irradiation	0.00070			0.00071	
218	Biased Irradiation	0.00017			0.00048	
230	All GND'd Irradiation	0.00056				0.00134
231	All GND'd Irradiation	0.00044				0.00071
232	All GND'd Irradiation	0.00045				0.00114
233	All GND'd Irradiation	0.00045				0.00088
234	All GND'd Irradiation	0.00000				0.00130
225	Biased Irradiation	0.00059		-		0.00136
226	Biased Irradiation	0.00065				0.00099
227	Blased Irradiation	0.00056				0.00145
228	Blased Irradiation	0.00068				0.00096
229	Blased Irradiation	0.00048	0.00040	0.00040	0.00040	0.00122
230	Control Unit	0.00020	0.00042	0.00042	0.00042	0.00042
230	All GND'd Irradiation Statistics	0.00048	0.00045	0.00045	0.00045	0.00045
		0.00038	0.00052	0.00055	0.00065	0.00107
	Std Dev All GND'd	0.00026	0.00021	0.00019	0.00042	0.00027
	Ps90%/90% (+KTL) All GND'd	0.00109	0.00110	0.00106	0.00181	0.00182
-	Ps90%/90% (-KTL) All GND'd	-0.00032	-0.00005	0.00004	-0.00052	0.00033
	Biased Irradiation Statistics					
	Average Biased	0.00039	0.00044	0.00080	0.00064	0.00120
	Std Dev Biased	0.00023	0.00027	0.00022	0.00026	0.00022
	Ps90%/90% (+KTL) Biased	0.00102	0.00117	0.00140	0.00135	0.00180
	Ps90%/90% (-KTL) Biased	-0.00024	-0.00029	0.00020	-0.00007	0.00060
	Specification MIN					
	Status (Measurements) All GND'd					
	Status (Measurements) Biased					
	Specification MAX	0.02	0.02	0.02	0.02	0.02
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (Measurements) Biased	PASS	PASS	PASS	PASS	PASS
	Status (-KTL) All GND'd					
	Status (+KTL) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (-KIL) Biased					
	Status (+KTL) Biased	PASS	PASS	PASS	PASS	PASS

Figure 5.9: Plot of Load Regulation ($V_{OUT} \leq 5V$) versus Total Dose

Table 5.9: Raw data for load regulation ($V_{OUT} \le 5V$) versus total dose including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL).

Parameter	Load Reg @ 10mA≤I _L ≤1.5A,V _O ≤5V	Tota	al Dose (Kr	ads(Si)) @	50rads/sec	ond
Units	(mV)	0	10	20	50	100
198	All GND'd Irradiation	0.61226	2.63310			
199	All GND'd Irradiation	0.68855	2.33841			
200	All GND'd Irradiation	0.52261	2.28977			
201	All GND'd Irradiation	0.59891	1.99413			
202	All GND'd Irradiation	0.80967	2.13623			
191	Biased Irradiation	0.80204	1.84155			
192	Biased Irradiation	0.69809	1.43147			
194	Biased Irradiation	0.57983	2.09904			
196	Biased Irradiation	0.60844	2.06184			
197	Biased Irradiation	0.63133	1.91784	1.04550		
208	All GND'd Irradiation	0.77343		1.94550		
209		0.79346		1.72710		
210	All GND d Irradiation	0.52261		2.09904		
211		0.74291		1.09077		
212	Rissed Irradiation	0.57125		2.07138		
203	Biased Irradiation	0.57125		2.07130		
204	Biased Irradiation	0.67806		1 91784		
200	Biased Irradiation	0.69427		2 05994		
200	Biased Irradiation	0.61226		2.05994		
219	All GND'd Irradiation	0.47779		2.00004	2,44236	
220	All GND'd Irradiation	0.68474			2 13623	
222	All GND'd Irradiation	0.57983			2.33555	
223	All GND'd Irradiation	0.59319			2.44141	
224	All GND'd Irradiation	0.61226			1.83392	
213	Biased Irradiation	0.65899			2.25163	
215	Biased Irradiation	0.53215			2.35653	
216	Biased Irradiation	0.68855			1.86062	
217	Biased Irradiation	0.65899			2.08950	
218	Biased Irradiation	0.83160			1.91689	
230	All GND'd Irradiation	0.54169				2.03133
231	All GND'd Irradiation	0.64945				2.35558
232	All GND'd Irradiation	0.63801				2.24304
233	All GND'd Irradiation	0.74577				2.13814
234	All GND'd Irradiation	0.55408				2.09999
225	Biased Irradiation	0.81158				1.60313
226	Biased Irradiation	0.50640				2.37465
227	Biased Irradiation	0.68855				2.45094
228	Biased Irradiation	0.72289				2.00272
229	Biased Irradiation	0.58079				2.20394
235	Control Unit	0.63038	1.83201	1.83201	1.83201	1.83201
236	Control Unit	0.55408	2.19345	2.19345	2.19345	2.19345
	All GND'd Irradiation Statistics		0.07000		0.00700	0.17001
		0.64640	2.27833	2.01283	2.23789	2.17361
		0.10860	0.24008	0.25085	0.25802	0.12733
		0.94419	2.93003	2.70065	2.94538	2.52276
	Rissod tradiction Statistics	0.34861	1.62002	1.32501	1.53041	1.02447
		0.66305	1 87025	2 07296	2 00502	2 12709
	Std Dev Biased	0.00395	0.26677	0 12102	0.21101	0.33099
	Pegn%/90% (+KTL) Rised	0.00000	2 60184	2 40818	2 67608	3 05003
	Ps90%/90% (-KTL) Biased	0.42079	1 13885	1 73954	1 51398	1 19512
	Specification MIN	0.12070	1.10000	1.70004	1.01000	1.10012
	Status (Measurements) All GND'd					
	Status (Measurements) Biased					
	Specification MAX	25	25	25	25	25
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (Measurements) Biased	PASS	PASS	PASS	PASS	PASS
	Status (-KTL) All GND'd					
	Status (+KTL) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (-KTL) Biased					
	Status (+KTL) Biased	PASS	PASS	PASS	PASS	PASS

Figure 5.10: Plot of Load Regulation ($V_{OUT} \ge 5V$) versus Total Dose

Table 5.10: Raw data for load regulation ($V_{OUT} \ge 5V$) versus total dose including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL).

Parameter	Load Reg @ 10mA≤V _I -V _O ≤1.5A,V _O ≥5V	Total Dose (Krads(Si)) @ 50rads/second				
Units	(%)	0	10	20	50	100
198	All GND'd Irradiation	0.04886	0.21057			
199	All GND'd Irradiation	0.05507	0.18738			
200	All GND'd Irradiation	0.04170	0.18314			
201	All GND'd Irradiation	0.04787	0.15980			
202	All GND'd Irradiation	0.06449	0.17067			
191	Biased Irradiation	0.06389	0.14708			
192	Biased Irradiation	0.05556	0.11427			
194	Blased Irradiation	0.04617	0.16756			
196	Biased Irradiation	0.04660	0.16503			
208	All CND'd Irradiation	0.05045	0.15561	0 15516		
200	All GND'd Irradiation	0.06327		0.13813		
210	All GND'd Irradiation	0.04166		0.16783		
211	All GND'd Irradiation	0.05912		0.15155		
212	All GND'd Irradiation	0.03820		0.19192		
203	Biased Irradiation	0.04557		0.16581		
204	Biased Irradiation	0.04550		0.18060		
205	Biased Irradiation	0.05424		0.15387		
206	Biased Irradiation	0.05544		0.16496		
207	Biased Irradiation	0.04896		0.16524		
219	All GND'd Irradiation	0.03816			0.19590	
220	All GND'd Irradiation	0.05467			0.17139	
222	All GND'd Irradiation	0.04635			0.18751	
223	All GND'd Irradiation	0.04740			0.19599	
224	All GND d Irradiation	0.04873			0.14671	
213	Biased Irradiation	0.03270			0.18090	
215	Biased Irradiation	0.04230			0.18914	
217	Biased Irradiation	0.05253			0.16734	
218	Biased Irradiation	0.06646			0.15385	
230	All GND'd Irradiation	0.04325				0.16354
231	All GND'd Irradiation	0.05170				0.18916
232	All GND'd Irradiation	0.05090				0.18034
233	All GND'd Irradiation	0.05948				0.17188
234	All GND'd Irradiation	0.04414				0.16844
225	Biased Irradiation	0.06479				0.12897
226	Biased Irradiation	0.04041				0.19080
227	Biased Irradiation	0.05498				0.19707
228	Blased Irradiation	0.05761				0.16085
229		0.04039	0 14642	0 14642	0 14642	0.17720
236	Control Unit	0.03027	0.17525	0.17525	0.17525	0.17525
200	All GND'd Irradiation Statistics	0.04410	0.17020	0.17020	0.17020	0.17020
	Average All GND'd	0.05160	0.18231	0.16092	0.17950	0.17467
	Std Dev All GND'd	0.00863	0.01915	0.02031	0.02089	0.01016
	Ps90%/90% (+KTL) All GND'd	0.07525	0.23483	0.21660	0.23679	0.20252
	Ps90%/90% (-KTL) All GND'd	0.02795	0.12980	0.10524	0.12221	0.14683
	Biased Irradiation Statistics					
	Average Biased	0.05294	0.14951	0.16610	0.16807	0.17098
	Std Dev Biased	0.00703	0.02140	0.00951	0.01714	0.02729
	Ps90%/90% (+KTL) Biased	0.07221	0.20818	0.19218	0.21505	0.24581
	Ps90%/90% (-KTL) Blased	0.03366	0.09084	0.14001	0.12108	0.09614
	Status (Mossurements) All CND/d					
	Status (Measurements) All GND u					
	Specification MAX	0.5	0.5	0.5	0.5	0.5
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (Measurements) Biased	PASS	PASS	PASS	PASS	PASS
	,					
	Status (-KTL) All GND'd					
	Status (+KTL) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (-KTL) Biased					
	Status (+KTL) Biased	PASS	PASS	PASS	PASS	PASS

Figure 5.11: Plot of Adjust Pin Current versus Total Dose

Table 5.11: Raw data for adjust pin current versus total dose including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL)

Parameter	Adjust Pin Current	Tot	al Dose (Kr	ads(Si)) @	50rads/sec	ond
Units	(uA)	0	10	20	50	100
198	All GND'd Irradiation	65.007	63 196		00	
199	All GND'd Irradiation	64 692	63.013			
200	All GND'd Irradiation	65 620	63 622			
201	All GND'd Irradiation	64.274	62.490			
202	All GND'd Irradiation	64.637	62.752			
191	Biased Irradiation	66.339	64.077			
192	Biased Irradiation	65.876	63.415			
194	Biased Irradiation	63.951	62.096			
196	Biased Irradiation	64.050	62.138			
197	Biased Irradiation	66.180	64.328			
208	All GND'd Irradiation	64.859		62.257		
209	All GND'd Irradiation	63.794		61.664		
210	All GND'd Irradiation	67.680		65.200		
211	All GND'd Irradiation	65.329		63.205		
212	All GND'd Irradiation	64.311		61.982		
203	Biased Irradiation	64.348		62.109		
204	Biased Irradiation	63.921		61.525		
205	Biased Irradiation	64.159		62.081		
206	Biased Irradiation	64.665		62.130		
207	Biased Irradiation	66.670		64.136		
219	All GND'd Irradiation	66.318			64.079	
220	All GND'd Irradiation	66.841			64.148	
222	All GND'd Irradiation	65.035			62.472	
223	All GND'd Irradiation	64.198			61.724	
224	All GND'd Irradiation	65.667			63.166	
213	Biased Irradiation	64.484			61.606	
215	Biased Irradiation	64.158			61.569	
216	Biased Irradiation	64.512			61.740	
217	Biased Irradiation	65.624			62.957	
210		64.940			02.300	50.610
230	All GND d Irradiation	64.056				59.610
231		63 780				60.023
232	All GND'd Irradiation	64 246				60.505
233	All GND'd Irradiation	66 101				62 701
225	Biased Irradiation	65,806				61 500
226	Biased Irradiation	66.713				62.557
227	Biased Irradiation	66.538				62.472
228	Biased Irradiation	66.204				61.857
229	Biased Irradiation	68.022				63.717
235	Control Unit	63.988	62.081	62.081	62.081	62.081
236	Control Unit	64.254	62.482	62.482	62.482	62.482
	All GND'd Irradiation Statistics					
	Average All GND'd	64.846	63.015	62.862	63.118	60.569
	Std Dev All GND'd	0.505	0.432	1.428	1.043	1.233
	Ps90%/90% (+KTL) All GND'd	66.230	64.198	66.778	65.976	63.951
	Ps90%/90% (-KTL) All GND'd	63.462	61.831	58.946	60.259	57.188
	Biased Irradiation Statistics					
	Average Biased	65.279	63.211	62.396	62.048	62.421
	Std Dev Biased	1.180	1.053	1.005	0.601	0.847
	Ps90%/90% (+KTL) Biased	68.514	66.097	65.152	63.697	64.742
	Ps90%/90% (-KTL) Biased	62.044	60.325	59.641	60.399	60.099
	Status (Measurements) All GND'd					
	Status (Ivieasurements) Blased	400	400	400	100	100
		100	100	100	100	100
	Status (Ivieasurements) All GND'd	PASS	PASS	PASS	PASS	PASS
-	Status (Weasurements) Blased	PASS	PASS	PASS	PASS	PASS
	Status (+KTL) All GND'd	PASS	PASS	PASS	PASS	PASS
		1 400	1 400	1 400	1 400	1 400
	Status (-KTL) Biased					
	Status (+KTL) Blased	PASS	PASS	PASS	PASS	PASS

Figure 5.12: Plot of Adjust Pin Current Change @ $10mA \le I_L \le 1.5A$ versus Total Dose

Table 5.12: Raw data for adjust pin current change @ $10mA \le I_L \le 1.5A$ versus total dose including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL)

Parameter	, Adj. I Change @ 10mA ≤ I⊨ ≤ 1.5A	5A Total Dose (Krads(Si)) @ 50rads/second				
Units	(uA)	0	10	20	50	100
198	All GND'd Irradiation	-0.07114	-0.10457			
199	All GND'd Irradiation	-0.05602	-0.11659			
200	All GND'd Irradiation	-0.03302	-0.05955			
201	All GND'd Irradiation	0.00000	-0.08575			
202	All GND'd Irradiation	-0.03098	-0.12256			
191	Biased Irradiation	-0.02861	-0.06313			
192	Biased Irradiation	-0.07628	-0.08683			
194	Biased Irradiation	0.02026	-0.07146			
196	Biased Irradiation	-0.02740	-0.11316			
197	Biased Irradiation	-0.07867	-0.06074	0.04400		
208	All GND'd Irradiation	-0.07592		-0.04169		
209	All GND'd Irradiation	-0.07116		-0.04406		
210	All GND'd Irradiation	-0.03814		-0.07372		
211	All GND'd Irradiation	-0.02859		-0.11422		
203	Biased Irradiation	-0.12990		-0.02619		
203	Biased Irradiation	-0.08664		-0.02013		
205	Biased Irradiation	-0.04767		-0.02621		
206	Biased Irradiation	-0.06674		-0.10600		
207	Biased Irradiation	-0.06519		-0.06430		
219	All GND'd Irradiation	-0.10844			-0.03216	
220	All GND'd Irradiation	-0.07472			-0.05837	
222	All GND'd Irradiation	-0.06639			-0.11422	
223	All GND'd Irradiation	-0.01906			-0.07609	
224	All GND'd Irradiation	-0.03337			-0.03692	
213	Biased Irradiation	-0.10607			-0.03811	
215	Biased Irradiation	-0.05125			-0.05943	
216	Biased Irradiation	-0.14265			-0.07372	
217	Biased Irradiation	-0.03660			-0.06540	
218	Biased Irradiation	-0.02979			-0.05943	
230	All GND'd Irradiation	-0.00597				-0.05955
231	All GND'd Irradiation	-0.06793				-0.11075
232	All GND'd Irradiation	-0.01072				-0.06671
233	All GND'd Irradiation	0.00000				-0.08217
234	All GND'd Irradiation	-0.09737				-0.12267
225	Blased Irradiation	-0.02027				-0.08098
220	Biased Inadiation	-0.10809				-0.00009
221	Biased Irradiation	-0.00953				-0.07015
220	Biased Irradiation	-0.00933				-0.07013
225	Control Unit	-0.01788	-0.07622	-0.07622	-0.07622	-0.07622
236	Control Unit	-0 10453	-0.06777	-0.06777	-0.06777	-0.06777
	All GND'd Irradiation Statistics	0.10100	0.00111	0.00111	0.00111	0.00111
	Average All GND'd	-0.03823	-0.09780	-0.07591	-0.06355	-0.08837
	Std Dev All GND'd	0.02712	0.02559	0.03375	0.03334	0.02746
	Ps90%/90% (+KTL) All GND'd	0.03612	-0.02762	0.01662	0.02786	-0.01308
	Ps90%/90% (-KTL) All GND'd	-0.11259	-0.16798	-0.16845	-0.15497	-0.16367
	Biased Irradiation Statistics					
	Average Biased	-0.03814	-0.07906	-0.06191	-0.05922	-0.09426
	Std Dev Biased	0.04097	0.02162	0.03578	0.01317	0.03138
	Ps90%/90% (+KTL) Biased	0.07419	-0.01977	0.03620	-0.02310	-0.00822
	Ps90%/90% (-KTL) Biased	-0.15047	-0.13835	-0.16001	-0.09534	-0.18029
	Specification MIN					
	Status (Measurements) All GND'd					
	Status (Measurements) Biased					
	Specification MAX	5	5	5	5	5
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (Measurements) Biased	PASS	PASS	PASS	PASS	PASS
	Status (-KTL) All GND'd	DAGO	DAGO	DAGO	DAGO	DAGO
	Status (+KTL) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (KTL) Bissad					
	Status (+KTL) Biased	PASS	PASS	PASS	PASS	PASS
		1,00	1,00	1,00	1,00	1,00

Figure 5.13: Plot of Adjust Pin Current Change @ $3V \le |V_1 - V_0| \le 30V$ versus Total Dose

Table 5.13: Raw data table for adjust pin current change @ $3V \le V_1 - V_0 \le 30V$ versus total dos	se
including the statistical calculations, maximum specification, and the status of the test.	

Parameter	Adj. I Change @ 3V ≤ V _I - V _O ≤ 30V	/ Total Dose (Krads(Si)) @ 50rads/second						
Units	(uA)	0	10	20	50	100		
198	All GND'd Irradiation	-0.05566	-0.15697					
199	All GND'd Irradiation	-0.08664	-0.15233					
200	All GND'd Irradiation	-0.11167	-0.11778					
201	All GND'd Irradiation	0.19390	-0.08456					
202	All GND'd Irradiation	-0.11406	-0.08087					
191	Biased Irradiation	-0.11406	-0.08695					
192	Blased Irradiation	-0.06794	-0.13565		-			
194	Biasod Irradiation	-0.10488	-0.03811					
190	Biased Irradiation	-0.03433	-0.02739		-			
208	All GND'd Irradiation	-0.09499	0.027 10	-0.03811				
209	All GND'd Irradiation	-0.05685		-0.11778				
210	All GND'd Irradiation	-0.16888		-0.16781				
211	All GND'd Irradiation	-0.10846		-0.07611				
212	All GND'd Irradiation	-0.13312		-0.07253				
203	Biased Irradiation	-0.01311		-0.12982				
204	Biased Irradiation	-0.02264		-0.16662				
205	Biased Irradiation	-0.12954		-0.11433				
206	Biased Irradiation	-0.13909		-0.09051				
207	Biased Irradiation	-0.14267		-0.10480	0.40000			
219	All GND'd Irradiation	-0.02026			-0.12862			
220	All GND d Irradiation	-0.07592			-0.08562			
222	All GND'd Irradiation	-0.11400			-0.08087			
220	All GND'd Irradiation	-0 15696			-0 13552			
213	Biased Irradiation	-0.08818			-0.10480			
215	Biased Irradiation	-0.06793			-0.07849			
216	Biased Irradiation	-0.09380			-0.04871			
217	Biased Irradiation	-0.11285			-0.00834			
218	Biased Irradiation	-0.10488			-0.03692			
230	All GND'd Irradiation	-0.09415				-0.06671		
231	All GND'd Irradiation	-0.05482				-0.14291		
232	All GND'd Irradiation	-0.13551				-0.07253		
233	All GND'd Irradiation	-0.15220				-0.07969		
234	All GND'd Irradiation	-0.05840				-0.16888		
225	Biased Irradiation	-0.06794				-0.07145		
220	Biased Irradiation	-0.18199				-0.06669		
228	Biased Irradiation	-0.13670				-0.13209		
229	Biased Irradiation	-0.11167				-0.12970		
235	Control Unit	-0.19747	-0.12506	-0.12506	-0.12506	-0.12506		
236	Control Unit	-0.05805	-0.09754	-0.09754	-0.09754	-0.09754		
	All GND'd Irradiation Statistics							
	Average All GND'd	-0.03483	-0.11850	-0.09447	-0.10683	-0.10614		
	Std Dev All GND'd	0.13002	0.03603	0.04979	0.02466	0.04656		
-	Ps90%/90% (+KTL) All GND'd	0.32169	-0.01970	0.04207	-0.03920	0.02154		
	PS90%/90% (-KTL) All GND'd	-0.39134	-0.21730	-0.23100	-0.17445	-0.23382		
		-0.08501	-0.06310	-0 12122	-0.05545	-0.10560		
	Std Dev Biased	0.02747	0.04745	0.02013	0.03733	0.03340		
	Ps90%/90% (+KTL) Biased	-0.01057	0.06701	-0.04134	0.04692	-0.01385		
	Ps90%/90% (-KTL) Biased	-0.16125	-0.19321	-0.20110	-0.15782	-0.19753		
	Specification MIN							
	Status (Measurements) All GND'd							
	Status (Measurements) Biased							
	Specification MAX	5	5	5	5	5		
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS	PASS		
	Status (Measurements) Biased	PASS	PASS	PASS	PASS	PASS		
	Status (-KTL) All GND'd	DAGO	DAGO	DAGG	DAGG	DAGG		
	Status (+KTL) All GND'd	PASS	PASS	PASS	PASS	PASS		
	Status (-KTL) Biasod							
	Status (+KTL) Biased	PASS	PASS	PASS	PASS	PASS		
	olalao (TITE) Diaseu	1,700	1700	1,700	1700	1,700		

Figure 5.14: Plot of Minimum Load Current @ $|V_l - V_0| = 30V$ versus Total Dose

Table 5.14: Raw data table for minimum load current @ $ V_1 - V_0 = 30V$ versus	total dose including
the statistical calculations, maximum specification, and the status of the test	(PASS/FAIL)

Parameter	Min I _L @ V _I - V _O = 30V	Total Dose (Krads(Si)) @ 50rads/second					
Units	(mA)	0	10	20	50	100	
198	All GND'd Irradiation	1.65548	1.67153				
199	All GND'd Irradiation	1.63709	1.64957				
200	All GND'd Irradiation	1.67370	1.68557				
201	All GND'd Irradiation	1.62618	1.63203				
202	All GND'd Irradiation	1.63777	1.64767				
191	Biased Irradiation	1.68170	1.68686				
192	Biased Irradiation	1.67987	1.68076				
194	Biased Irradiation	1.62315	1.63004				
196	Biased Irradiation	1.62315	1.63218				
197	Biased Irradiation	1.68101	1.69175				
208	All GND'd Irradiation	1.63785		1.65766			
209	All GND'd Irradiation	1.62429		1.63622			
210	All GND'd Irradiation	1.70022		1.72004			
211	All GND'd Irradiation	1.65113		1.66269			
212	All GND'd Irradiation	1.62733		1.65202			
203	Biased Irradiation	1.63291		1.64522			
204	Biased Irradiation	1.62924		1.63981			
205	Biased Irradiation	1.61026		1.62578			
206	Biased Irradiation	1.63596		1.65148			
207	Blased Irradiation	1.68588		1.69685	4 70700		
219	All GND'd Irradiation	1.67095			1.70760		
220	All GND'd Irradiation	1.69625			1.71966		
222	All GND'd Irradiation	1.65059			1.68045		
223	All GND'd Irradiation	1.62649			1.65202		
224	All GND d Irradiation	1.65334			1.67580		
213	Biased Irradiation	1.65113			1.66360		
215	Blased Irradiation	1.63222			1.65202		
216	Blased Irradiation	1.63107			1.64873		
217	Biased Irradiation	1.66035			1.68373		
218	Blased Irradiation	1.62131			1.64896	1 62219	
230	All GND'd Irradiation	1.01302				1.03210	
231	All GND'd Irradiation	1.02010				1.04172	
232	All GND'd Irradiation	1.60424				1.02921	
230	All GND'd Irradiation	1.66150				1 70219	
234	Biased Irradiation	1.66522				1.70219	
226	Biased Irradiation	1.68626				1 70608	
220	Biased Irradiation	1.69383				1 70943	
228	Biased Irradiation	1 66942				1.68922	
229	Biased Irradiation	1 70670				1 72125	
235	Control Unit	1.63038	1 63195	1 63195	1 63195	1 63195	
236	Control Unit	1.61948	1.62188	1.62188	1.62188	1.62188	
	All GND'd Irradiation Statistics						
	Average All GND'd	1.64604	1.65727	1.66572	1.68711	1.65262	
	Std Dev All GND'd	0.01869	0.02117	0.03195	0.02685	0.02987	
	Ps90%/90% (+KTL) All GND'd	1.69729	1.71532	1.75333	1.76072	1.73452	
	Ps90%/90% (-KTL) All GND'd	1.59480	1.59922	1.57812	1.61349	1.57072	
	Biased Irradiation Statistics						
	Average Biased	1.65777	1.66432	1.65183	1.65941	1.70063	
	Std Dev Biased	0.03162	0.03057	0.02690	0.01489	0.01741	
	Ps90%/90% (+KTL) Biased	1.74447	1.74815	1.72559	1.70024	1.74837	
	Ps90%/90% (-KTL) Biased	1.57108	1.58049	1.57807	1.61858	1.65289	
	Specification MIN						
	Status (Measurements) All GND'd						
	Status (Measurements) Biased						
	Specification MAX	5	5	5	5	5	
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS	PASS	
	Status (Measurements) Biased	PASS	PASS	PASS	PASS	PASS	
	Status (-KTL) All GND'd						
	Status (+KTL) All GND'd	PASS	PASS	PASS	PASS	PASS	
	Status (-KTL) Biased						
	Status (+KTL) Biased	PASS	PASS	PASS	PASS	PASS	

Figure 5.15: Plot of Minimum Load Current @ $|V_i - V_0| \le 10V$ versus Total Dose

Table 5.15: Raw data table for minimum load current @ $|V_1 - V_0| \le 10V$ versus total dose including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL)

Parameter	Min I _L @ V ₁ - V _O ≤ 10V	Tota	al Dose (Kra			
Units	(mA)	0	10	20	50	100
198	All GND'd Irradiation	1.27846	1.28413			
199	All GND'd Irradiation	1.26055	1.26399			
200	All GND'd Irradiation	1.29767	1.30250			
201	All GND'd Irradiation	1.24918	1.25179			
202	All GND'd Irradiation	1.25650	1.26231			
191	Biased Irradiation	1.30287	1.29572			
192	Biased Irradiation	1.29607	1.28840			
194	Biased Irradiation	1.24972	1.25149			
196	Biased Irradiation	1.25048	1.25637			
197	Biased Irradiation	1.30529	1.31280			
208	All GND'd Irradiation	1.26544		1.26887		
209	All GND'd Irradiation	1.24918		1.25148		
210	All GND'd Irradiation	1.30598		1.31707		
211	All GND'd Irradiation	1.27115		1.27688		
212	All GND'd Irradiation	1.25079		1.26819		
203	Biased Irradiation	1.25650		1.26041		
204	Biased Irradiation	1.25780		1.25880		
205	Biased Irradiation	1.23545		1.24020		
206	Biased Irradiation	1.25894		1.26369		
207	Biased Irradiation	1.29737		1.30006		
219	All GND'd Irradiation	1.28982			1.32256	
220	All GND'd Irradiation	1.30965			1.32958	
222	All GND'd Irradiation	1.27184			1.29876	
223	All GND'd Irradiation	1.24743			1.27078	
224	All GND'd Irradiation	1.27413			1.28535	
213	Biased Irradiation	1.27487			1.28237	
215	Biased Irradiation	1.25955			1.27017	
216	Biased Irradiation	1.25535			1.26491	
217	Biased Irradiation	1.27884			1.29702	
218	Biased Irradiation	1.24888			1.27375	
230	All GND'd Irradiation	1.24401				1.24760
231	All GND'd Irradiation	1.25163				1.25377
232	All GND'd Irradiation	1.23211				1.24088
233	All GND'd Irradiation	1.23828				1.27131
234	All GND'd Irradiation	1.27548				1.31410
225	Biased Irradiation	1.28335				1.27955
226	Biased Irradiation	1.30287				1.31280
227	Biased Irradiation	1.30713				1.31410
228	Biased Irradiation	1.28389				1.28535
229	Biased Irradiation	1.31688				1.31593
235	Control Unit	1.25537	1.24867	1.24867	1.24867	1.24867
236	Control Unit	1.24371	1.24149	1.24149	1.24149	1.24149
	All GND'd Irradiation Statistics					
	Average All GND'd	1.26847	1.27294	1.27650	1.30141	1.26553
	Std Dev All GND'd	0.01956	0.02025	0.02449	0.02472	0.02941
	Ps90%/90% (+KTL) All GND'd	1.32211	1.32846	1.34366	1.36919	1.34617
	Ps90%/90% (-KTL) All GND'd	1.21483	1.21743	1.20934	1.23362	1.18489
	Biased Irradiation Statistics					
	Average Biased	1.28089	1.28096	1.26463	1.27764	1.30155
	Std Dev Biased	0.02831	0.02627	0.02182	0.01256	0.01759
	Ps90%/90% (+KTL) Biased	1.35850	1.35298	1.32447	1.31208	1.34977
	Ps90%/90% (-KTL) Biased	1.20327	1.20893	1.20479	1.24321	1.25332
	Specification MIN					
	Status (Measurements) All GND'd					
	Status (Measurements) Biased					
	Specification MAX	3	3	3	3	3
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (Measurements) Biased	PASS	PASS	PASS	PASS	PASS
	Status (-KTL) All GND'd					
	Status (+KTL) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (-KTL) Biased					
	Status (+KTL) Biased	PASS	PASS	PASS	PASS	PASS

Figure 5.16: Plot of Current Limit @ $|V_i - V_0| \le 15V$ versus Total Dose

Table 5.16: Raw data table for current limit @ $|V_1 - V_0| \le 15V$ versus total dose including the statistical calculations, minimum specification, and the status of the test (PASS/FAIL)

Parameter	I _{LIMIT} @ V _I - V _O ≤ 15V	Total Dose (Krads(Si)) @ 50rads/second						
Units	(A)	0	10	20	50	100		
198	All GND'd Irradiation	2.38387	2.38689					
199	All GND'd Irradiation	2.32919	2.33663					
200	All GND'd Irradiation	2.41343	2.42254					
201	All GND'd Irradiation	2.33767	2.33776					
202	All GND'd Irradiation	2.31334	2.31769					
191	Biased Irradiation	2.29257	2.28591					
192	Biased Irradiation	2.30412	2.29365					
194	Biased Irradiation	2.38069	2.38406					
196	Biased Irradiation	2.43279	2.43125					
197	Biased Irradiation	2.40697	2.41566					
208	All GND'd Irradiation	2.20168		2.20871				
209	All GND'd Irradiation	2.30335		2.30557				
210	All GND'd Irradiation	2.33315		2.35354				
211	All GND'd Irradiation	2.33597		2.34165				
212	All GND'd Irradiation	2.39532		2.42059				
203	Biased Irradiation	2.29740		2.29830				
204	Biased Irradiation	2.32785		2.33224				
205	Biased Irradiation	2.31856		2.32695				
206	Biased Irradiation	2.39140		2.40116				
207	Biased Irradiation	2.35576		2.36496				
219	All GND'd Irradiation	2.38979			2.44390			
220	All GND'd Irradiation	2.31071			2.32925			
222	All GND'd Irradiation	2.40921			2.44087			
223	All GND'd Irradiation	2.38322			2.41205			
224	All GND'd Irradiation	2.20790			2.22840			
213	Biased Irradiation	2.35909			2.36605			
215	Biased Irradiation	2.36770			2.38394			
216	Biased Irradiation	2.25590		-	2.26970			
217	Biased Irradiation	2.35225		-	2.36983			
218	Biased Irradiation	2.41718			2.46611	0.04070		
230	All GND'd Irradiation	2.34452				2.34879		
231	All GND'd Irradiation	2.36213				2.35906		
232	All GND'd Irradiation	2.32250				2.32589		
233	All GND'd Irradiation	2.37904				2.44315		
234	All GND'd Irradiation	2.38040				2.43087		
225	Biased Irradiation	2.29171				2.29520		
226	Blased Irradiation	2.40976				2.42251		
227	Diased Irradiation	2.39599				2.41305		
228	Blased Irradiation	2.28376				2.29312		
229	Control Unit	2.29/17	2.27640	2.27640	2.27640	2.29271		
230	Control Unit	2.29408	2.27049	2.27049	2.27049	2.27049		
230	All GND'd Irradiation Statistics	2.40097	2.30043	2.30043	2.30045	2.30043		
		2 35550	2 36030	2 32601	2 27080	2 28155		
	Std Dev All GND'd	0.04168	0.04320	0.07766	0.09214	0.05221		
	Ps90%/90% (+KTL) All GND'd	2 46978	2 47875	2 53896	2 62354	2 52472		
	Ps90%/90% (-KTL) All GND'd	2 24121	2 24186	2 11306	2 11824	2 23838		
	Biased Irradiation Statistics		1100					
	Average Biased	2.36343	2.36211	2.34472	2.37113	2.34332		
	Std Dev Biased	0.06234	0.06823	0.03944	0.06982	0.06806		
	Ps90%/90% (+KTL) Biased	2.53435	2.54920	2,45286	2.56258	2.52994		
	Ps90%/90% (-KTL) Biased	2.19250	2.17501	2.23659	2.17967	2.15669		
	Specification MIN	1.5	1.5	1.5	1.5	1.5		
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS	PASS		
	Status (Measurements) Biased	PASS	PASS	PASS	PASS	PASS		
	Specification MAX							
	Status (Measurements) All GND'd							
	Status (Measurements) Biased							
	Status (-KTL) All GND'd	PASS	PASS	PASS	PASS	PASS		
	Status (+KTL) All GND'd							
	Status (-KTL) Biased	PASS	PASS	PASS	PASS	PASS		
	Status (+KTL) Biased							

Figure 5.17: Plot of Current Limit @ $|V_1 - V_0| = 30V$ versus Total Dose

Parameter	$I_{\text{LIMIT}} @ V_1 - V_0 = 30V$	Tot	al Dose (Kr	ads(Si)) @	50rads/sec	ond
Units	(mA)	0	10	20	50	100
198	All GND'd Irradiation	1104.068	1093.035			
199	All GND'd Irradiation	1075.201	1069.242			
200	All GND'd Irradiation	1127.001	1120.643			
201	All GND'd Irradiation	1096.150	1087.056			
202	All GND'd Irradiation	1057.531	1050.066			
191	Biased Irradiation	1064.081	1043.435			
192	Biased Irradiation	1066.938	1044.265			
194	Biased Irradiation	1128.834	1120.613			
196	Biased Irradiation	1162.403	1154.014			
197	Biased Irradiation	1105.514	1101.896			
208	All GND'd Irradiation	1007.819		998.378		
209	All GND'd Irradiation	1080.286		1068.659		
210	All GND d Irradiation	1037.774		1033.202		
21		1090.302		1146.820		
212	Right differentiation	1076 410		1067.275		
203	Biased Irradiation	1076.419		1007.275		
205	Biased Irradiation	1090.720		1032.073		
200	Biased Irradiation	1128 565		1122 321		
200	Biased Irradiation	1066 261		1058 229		
210	All GND'd Irradiation	1105.801			1143,156	
220	All GND'd Irradiation	1062.565			1073.744	
222	All GND'd Irradiation	1129.687			1150.627	
223	All GND'd Irradiation	1134.136			1152.401	
224	All GND'd Irradiation	1007.172			1013.694	
213	Biased Irradiation	1095.129			1101.359	
215	Biased Irradiation	1122.868			1135.210	
216	Biased Irradiation	1042.372			1047.513	
217	Biased Irradiation	1101.339			1114.002	
218	Biased Irradiation	1170.632			1208.296	
230	All GND'd Irradiation	1109.973				1112.623
231	All GND'd Irradiation	1115.301				1110.338
232	All GND'd Irradiation	1089.816				1091.125
233	All GND'd Irradiation	1121.181				1164.421
234	All GND d Irradiation	1085.331				1121.139
220	Blased Irradiation	1061.211				1056.405
220		1000 909				1123.333
221	Biased Irradiation	1033.038				1017 358
220	Biased Irradiation	1051 148				1017.330
235	Control Unit	1066 573	1040 649	1040 649	1040 649	1040.649
236	Control Unit	1132,580	1109.090	1109.090	1109.090	1109.090
230	All GND'd Irradiation Statistics					
	Average All GND'd	1091.990	1084.008	1066.177	1106.724	1119.929
	Std Dev All GND'd	26.731	26.472	55.916	61.407	27.185
	Ps90%/90% (+KTL) All GND'd	1165.287	1156.594	1219.499	1275.103	1194.470
	Ps90%/90% (-KTL) All GND'd	1018.693	1011.423	912.856	938.346	1045.389
	Biased Irradiation Statistics					
	Average Biased	1105.554	1092.845	1083.587	1121.276	1069.605
	Std Dev Biased	41.788	48.466	25.062	58.432	44.326
	Ps90%/90% (+KTL) Biased	1220.137	1225.740	1152.307	1281.497	1191.147
	Ps90%/90% (-KTL) Biased	990.971	959.950	1014.867	961.055	948.063
	Specification MIN	240	240	240	240	240
	Status (Measurements) All GND'd	PASS	PASS	PASS	PASS	PASS
	Status (Weasurements) Blased	PASS	PASS	PASS	PASS	PASS
	Status (Massuraments) All CNDI					
	Status (Measurements) All GND'd					
	Status (Ivieasurements) Biased					-
		DV66	DV66	DV66	DV66	DV66
	Status (+KTL) All GND'd	FA33	FA33	FA33	FA33	FA33
	Status (-KTL) Biased	PASS	PASS	PASS	PASS	PASS
	Status (+KTL) Biased	17,00	17.00	17.00	17.00	1,100

Table 5.17: Raw data table for current limit @ $|V_1 - V_0| = 30V$ versus total dose including the statistical calculations, minimum specification, and the status of the test (PASS/FAIL)

Appendix A

Figure A1: Top View showing ID and Date Code

Appendix B

Radiation Bias Connection Tables

Table B1: Biased Conditions

PIN	FUNCTION	CONNECTION / BIAS
1	ADJUST	To +15V via 2KΩ
2	OUTPUT	To +15V via 243Ω
3	INPUT	To -15V

Table B2: All GND'd

PIN	FUNCTION	CONNECTION / BIAS
1	ADJUST	Ground
2	OUTPUT	Ground
3	INPUT	Ground

Figure B1: Total Dose Bias Circuit

Figure B2: Pin-Out

Figure B3: Bias Board (top view)

Figure B4: Bias Board (bottom view)

Appendix C

WARNING - This document contains technical data whose export is restricted by the Arms Export Control Act (Title 22, U.S.C., Sec 2751, et seq.) or the Export Administration Act of 1979 (Title 50, U.S.C., App. 2401 et seq.), as amended. Violations of these export laws are subject to severe criminal penalties. Disseminate in accordance with provisions of DoD Directive 5230.25.

REQUEST FOR AND RESULTS OF TESTS							PAGE NO. 1	NO. OF PAGES 2	
	SECTION A - REQUEST FOR TEST								
1. TO: (Include ZIP Code) Defense Microelectronics Activity Science and Engineering Gamma Irradiation Test Facility 4234 54th Street McClellan, CA 95652-2100				2. FROM: (Inc. Dr. Sana Rezg Linear Techno 1630 McCarth Milpitas, CA Phone: (408) Email: srezgu	2. FROM: (Include ZIP Code) Dr. Sana Rezgui Linear Technology Corp. 1630 McCarthy Blvd. Milpitas, CA 95035 Phone: (408) 432-1900				
3. PRIME CONTRACTOR Same as block 2	R AND ADDRESS (Inclu	de ZIP Code)		4. MANUFACT Linear Techno 1630 McCarth Milpitas, CA	TURING PLAN blogy Corp. by Blvd. 95035	T NAME AND ADDRES	SS (Include ZI	P Code)	
CONTRACT NUMBER	CRADA CR-08-17			P.O. NUMBE	ER TBD				
5. END ITEM AND/OR P	N/A		6. SAMPLE NUMBER N/A	7. LOT NO. See below	8. REASON Total Io	FOR SUBMITTAL onizing Dose (TID) Te	sting	9. DATE SUBMITTED 2014-03-31	
10. MATERIAL TO BE TE Various biased/unbiased devices below	ESTED 10a. QUANTIT -see See	Y SUBMITTED below	11. QUANTIT REPRESE	Y NTED N/A	12. SPEC. & SAMPLE	AMEND AND/OR DRA & DATE N/A	WING NO. &	REV. FOR	
13. PURCHASED FROM Line	OR SOURCE ar Technology Corp.		14. SHIPMEN Han	T METHOD d carry	15. DATE SA	AMPLED AND SUBMIT 2014-03-31 by To	TED BY om Shepherd		
Dose Rate: 3000 Total Dose: see below Security Requirements, ice for transport. Irradiation por Description of parts to be irradia RH117H, fab los #102162551, RH1953MK, fab los #10216255 RH137K (6RH137BKK*12), f Experiment #: 2014-NI 17. SEND REPORT OF T Individual identified in E) ±10% rad(SiO2)/min r ±10% krad(SiO2) Safety or Handling Pre- tion of testing to be conducted, test is a follows: any to #742778.1, WFR #1: 2.1, any to #742, WFR #1: 2.1, any to #742, WFR #1: ab to #W1328052.1, any to # RC-047 DME# TEST TO Block 2	Requeste autions: Custo er MIL-STD-883H, 1 50 and 200 krad(SiO 10, 20, 50, 100 and 20 10, 20, 50, 100 and 20 732141.1, WFR 43: 1	Irradiation Step ed Test Start Dat mer to perform j rest Method 1019.8, C t), 5 devices per dose i to kead(SiO2), 10 devi to kead(SiO2),	s: 11 e: 2014-04-01 pre- and post-irra ondition A. Custome level, biased less per dose level, bia exper dose level, bia (SiO2), 10 devices p	Type of Dimens Idiation electric reserves right to r ased sed er dose level, biase	Test: Customer-Perfor ions: various ical testing. Parts may modify parameters, devices, et d	rmed be packed by to suit test requ to suit test requ MELINE W.1231	y customer in dry irements. ECARY, Managers BS4033 Managers House BS4033 Managers House	
1 DATE SAMPLE RECE	SECTION B -	2 DATE RES	TEST (Continu	e on plain whit	e paper if mo	ore space is required	l) IBER		
2014	-04-01	2. 5772 1120	2014-	04-01			N/A		
 TEST PERFORM 	4. TEST PERFORMED RESULTS OF TEST SAMPLE RESULT REQUIREMENTS Please see next page.								
DATE TYPED NAME AND TITLE OF PERSON CONDUCTING TEST SIGNATURE 2014-04-01 Thomas J. Shepherd, SEGIT Technical Manager SHEPHERD.THOMAS.J.125523594 6 SHEPHERD.THOMAS.J.125523594									
2014-04-02	Mohammad Arsha	1, Alt. SEGIT	Facility Sup	ervisor /	RSHAD.MOH/	AMMAD.1231956693	ATTRACTION OF THE OWNER OF THE	a-040, a-040, a-040, 91460, 7	

DD FORM 1222, FEB 62 (EF) REPLACES DD FORM 1222, 1 JUL 58, WHICH IS OBSOLETE.

Co	tinuation of DD Form 1222	1	Experiment #: 2014-NRC-047 Page 2 of 2	
4.	Test Performed	Results of Test	Sample Result Requirements	Step No.
	20140401 10:00:00 to 20140401 10:15:39	5.000E+04 rad(SiO2) at 3.195E+03 r	ad(SiO2)/min RH117H, WFR #1, S/Ns 101-103, 121-123, 161-163, 181: 50 krad SD, 50 krad TD	1
	20140401 10:24:30 to 20140401 10:40:09	5.000E+04 rad(SiO2) at 3.195E+03 r	ad(SiO2)/min RH117H, WFR #1, S/Ns 123, 161-163, 181: 50 krad SD, 100 krad TD	2
	20140401 11:38:30 to 20140401 11:41:47	1.000E+04 rad(SiO2) at 3.047E+03 r	ad(SiO2)/min RH1963MK, WFR #11, S/Ns 1-2, 4-7, 10-12: 10 krad TD	3
	20140401 11:38:30 to 20140401 11:41:47	1.000E+04 rad(SiO2) at 3.047E+03 r	ad(SiO2)/min RH3083MK, WFR #1, S/Ns 1-10: 10 krad TD	3
	20140401 11:57:15 to 20140401 12:03:49	2.000E+04 rad(SiO2) at 3.047E+03 r	ad(SiO2)/min RH1963MK, WFR #11, S/Ns 14-17, 20-21, 23-24, 26, 30: 20 krad TD	4
	20140401 11:57:15 to 20140401 12:03:49	2.000E+04 rad(SiO2) at 3.047E+03 r	ad(SiO2)/min RH3083MK, WFR #1, S/Ns 11-20: 20 krad TD	4
	20140401 12:17:30 to 20140401 12:33:55	5.000E+04 rad(SiO2) at 3.047E+03 r	ad(SiO2)/min RH1963MK, WFR #11, S/Ns 33-40, 42-43: 50 krad TD	5
	20140401 12:17:30 to 20140401 12:33:55	5.000E+04 rad(SiO2) at 3.047E+03 r	ad(SiO2)/min RH3083MK, WFR #1, S/Ns 21-30: 50 krad TD	5
	20140401 12:47:00 to 20140401 13:19:49	1.000E+05 rad(SiO2) at 3.047E+03 r	ad(SiO2)/min RH1963MK, WFR #11, S/Ns 44-47, 49-51, 53-55: 100 krad TD	6
	20140401 12:47:00 to 20140401 13:19:49	1.000E+05 rad(SiO2) at 3.047E+03 r	ad(SiO2)/min RH3083MK, WFR #1, S/Ns 31-40: 100 krad TD	6
	20140401 13:31:00 to 20140401 14:36:39	2.000E+05 rad(SiO2) at 3.046E+03 r	ad(SiO2)/min RH1963MK, WFR #11, S/Ns 56-57, 59, 61, 63-66, 68-69: 200 krad TD	7
	20140401 13:31:00 to 20140401 14:36:39	2.000E+05 rad(SiO2) at 3.046E+03 r	ad(SiO2)/min RH3083MK, WFR #1, S/Ns 41-50: 200 krad TD	7
	20140401 14:57:00 to 20140401 15:00:08	1.000E+04 rad(SiO2) at 3.194E+03 r	ad(SiO2)/min RH137K (6RH137BKK*12), WFR #3, S/Ns 191-192, 194, 196-202: 10 krad TD	8
	20140401 15:06:30 to 20140401 15:12:46	2.000E+04 rad(SiO2) at 3.194E+03 r	ad(SiO2)/min RH137K (6RH137BKK*12), WFR #3, S/Ns 203-212: 20 krad TD	9
	20140401 15:20:05 to 20140401 15:35:44	5.000E+04 rad(SiO2) at 3.194E+03 r	ad(SiO2)/min RH137K (6RH137BKK*12), WFR #3, S/Ns 213, 215-220, 222-224: 50 krad TD	10
	20140401 15:43:00 to 20140401 16:14:18	1.000E+05 rad(SiO2) at 3.194E+03 r	ad(SiO2)/min RH137K (6RH137BKK*12), WFR #3, S/Ns 225-234: 100 krad TD	11

10.94% (Step Nos. 1-2, 8-11) 16.02% (Step Nos. 3-7) Uncertainty: Total Doses reported are ±

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

...... NOTES:

- 1. ASTM = American Society for Testing and Materials. 2. DUT = Device Under Test.
- 3. S/N = Serial Number.
- SD = Step Dose.
- 5. TD = Total Dose.

- 5. 1D = 1otal Dose.
 6. Dose rate uniformity across target area: ± 4.67% (Step Nos. 1-2, 8-11) ± 9.76% (Step Nos. 3-7)
 7. All irradiation steps met the requirements of MIL-STD-883H, Test Method 1019.8, Condition A.
 8. After the original Test Request (DD Form 1222) was approved, the following changes were made:
 a. TDs for the RH117H devices were changed to 50 and 100 krad(502) per customer request.
 Latitude to change test parameters to suit customer requirements was included in the original Test Request, no Customer Order Change Request (SEGIT Form QP03-4, Rev. 5) was required/issued.
 0. Summe information: 9. Source information: . Jorden information = JL. Shepherd & Associates Model 81-22/484 self-contained irradiation facility, S/Ns 7125/50016. b. Source selection = two large Co-60 sources.

- Dosimeter system:
 a. Radcal Model No. 9010 Radiation Monitor Controller, S/N 90-1313.
- a. Radical induct in the BVF Radiation informed comments of SP-0478/9771.
 b. Radical Model No. 90X5-0.18 Electrometer/and Chamber, SNs 95-0478/9771.
 c. This dosimeter system was calibrated per ISO/EC 17025:2005 by University of Wisconsin Medical Radiation Research Center on 3 Feb 2014 (Report No. ION14426). This calibration is effective for two years.
 11. Irradiation geometry: in accordance with section 7.3.2 of ASTM E1249-00 (2005), the DUT's semiconductor chip plane was perpendicular to the incident radiation beam.
- Filter box: a DMEA Dose Enhancement Chamber (DEC) was used for all testing/dosimetry involved with this experiment. The DEC's Pb and Al layers are compliant with section 7.2.2 of ASTM E1249-00 (2005) with respect to thickness and geometry.

Appendix D

Table D1: Pre-Irradiation Electrical Characteristics of Device-Under-Test

					T,	₄ = 25 °	C	SUB-	-55°C	≤ T _A ≤	150°C	SUB-	
SYMBOL	PARAMETER	CONDITIONS		NOTES	MIN	TYP	MAX	GROUP	MIN	TYP	MAX	GROUP	UNITS
V _{REF}	Reference Voltage	$ V_{IN} - V_{OUT} = 5V, I_{OUT}$	_T = 10mA		-1.225		-1.275	1					V
		$\begin{array}{l} 3V \leq \left V_{IN} - V_{OUT} \right \leq 30 \\ 10mA \leq I_{OUT} \leq I_{MAX}, P \end{array}$	DV, ≤ P _{MAX}		-1.200		-1.300	1	-1.200		-1.300	2, 3	V
$\frac{\Delta V_{OUT}}{\Delta V_{IN}}$	Line Regulation	$3V \le V_{IN} - V_{OUT} \le 30$	V	2			0.02	1			0.05	2, 3	%/V
$\frac{\Delta V_{OUT}}{\Delta I_{OUT}}$	Load Regulation	$\begin{array}{l} 10mA \leq I_{OUT} \leq I_{MAX}, \ \ \\ 10mA \leq I_{OUT} \leq I_{MAX}, \ \ \\ \end{array}$	$V_{OUT} \le 5V$ $V_{OUT} \ge 5V$	2 2			25 0.5	1			50 1	2, 3 2, 3	mV %
	Thermal Regulation	10ms Pulse					0.02	1					%/W
	Ripple Rejection	V _{OUT} = -10V, f = 120Hz	, C _{ADJ} = 0			60							dB
		V _{OUT} = -10V, f = 120Hz C _{ADJ} = 10μF	, ,	3	66				66				dB
I _{ADJ}	Adjust Pin Current						100	1			100	2, 3	μA
ΔI_{ADJ}	Adjust Pin Current Change	$\begin{array}{l} 10mA \leq I_{OUT} \leq I_{MAX} \\ 3V \leq \left V_{IN} - V_{OUT} \right \leq 30 \end{array}$	V				5 5	1 1			5 5	2, 3 2, 3	μιΑ μιΑ
I _{MIN}	Minimum Load Current	$\begin{aligned} V_{IN} - V_{OUT} &= 30V \\ V_{IN} - V_{OUT} &\leq 10V \end{aligned}$					5 3	1			5 3	2, 3 2, 3	mA mA
	Current Limit	$ V_{IN} - V_{OUT} \le 15V$	H Package K Package	5 5	0.5 1.5			1	0.5 1.5			2, 3 2, 3	A
		$ V_{IN} - V_{OUT} = 30V$	H Package K Package	5 5	0.15 0.24			1					A A
$\frac{\Delta V_{OUT}}{\Delta Temp}$	Temperature Stability	$-55^\circ C \leq T_J \leq 125^\circ C$		3						0.6			%
$\frac{\Delta V_{OUT}}{\Delta Time}$	Long Term Stability	T _A = 125°C		3							1		%
en	RMS Output Noise	$10Hz \leq f \leq 10kHz$				0.003							%
θJC	Thermal Resistance (Junction to Case)	H Package K Package		3 3			15 3						°C/W °C/W

			1									· · · · · · · · · · · · · · · · · · ·		
OVMDOL		CONDITIONS	NOTES	10KRA	D(Si)	20KRA	D(Si)	50KR/	AD(Si)	100KR	AD(Si)	200KR	AD(Si)	UNITO
STINBUL	PARAMETER	CONDITIONS	NULES	IVITIN	WAX	IVIIN	INAX	IVIIIN	WAX	INTIN	WAX	IVIIIN	WAX	UNI15
V _{REF}	Reference Voltage	$ V_{IN} - V_{OUT} \le 5V,$ OUT = 10mA		-1.225 -	-1.275	-1.225	-1.275	-1.225	-1.275	-1.225	-1.275	-1.22	-1.28	V
		$\begin{array}{l} 3V \leq \left \left. V_{IN} - V_{OUT} \right \right. \\ 10mA \leq I_{OUT} \leq I_{MAX}, P \leq P_{MAX} \end{array} \end{array} \label{eq:VIN}$		-1.2	-1.3	-1.2	-1.3	-1.2	-1.3	-1.2	-1.3	-1.2	-1.3	V
$\frac{\Delta V_{OUT}}{\Delta V_{IN}}$	Line Regulation	$3V \le \left V_{\text{IN}} - V_{\text{OUT}} \right \le 30V,$	2		0.02		0.02		0.02		0.02		0.02	%/V
$\frac{\Delta V_{OUT}}{\Delta I_{OUT}}$	Load Regulation	$\begin{array}{l} 10mA \leq I_{OUT} \leq I_{MAX}, \\ \left V_{OUT} \right \ \leq 5V \end{array} \label{eq:VOUT}$	2		25		25		25		25		25	mV
		$\begin{array}{l} 10mA \leq I_{OUT} \leq I_{MAX}, \\ \left V_{OUT} \right \ \geq 5V \end{array} \end{array} \label{eq:max_states}$	2		0.5		0.5		0.5		0.5		0.5	%
I _{ADJ}	Adjust Pin Current				100		100		100		100		100	μA
ΔI _{ADJ}	Adjust Pin Current Change	$\begin{array}{l} 10mA \leq I_{OUT} \leq I_{MAX} \\ 3V \leq \left V_{IN} - V_{OUT} \right \leq 30V \end{array}$			5 5		5 5		5 5		5 5		5 5	μΑ μιΑ
I _{MIN}	Minimum Load Current	$\begin{array}{l} V_{IN}-V_{OUT} = 30V \\ V_{IN}-V_{OUT} \le 10V \end{array}$			5 3		5 3		5 3		5 3		5 3	mA mA
	Current Limit H Package	$\begin{split} & V_{IN}-V_{OUT} \leq 15V \\ & V_{IN}-V_{OUT} = 30V \end{split}$		0.5 0.15		0.5 0.15		0.5 0.15		0.5 0.15		0.5 0.15		A
	K Package	$\begin{array}{l} V_{IN}-V_{OUT} \leq 15V \\ V_{IN}-V_{OUT} = 30V \end{array}$		1.5 0.24		1.5 0.24		1.5 0.24		1.5 0.24		1.5 0.24		A A

Table D2: Post-Irradiation Electrical Characteristics of Device-Under-Test

Note 1: Unless otherwise specified, these specifications apply for

 $|V_{IN} - V_{OUT}| = 5V$; and $I_{OUT} = 0.1A$ for the H package (TO-39) and $I_{OUT} = 0.5A$ for the K package (TO-3) package. Although power dissipation is internally limited, these specifications are applicable for power dissipations of 2W for the TO-39 and 20W for the TO-3. I_{MAX} is 0.2A for the TO-39 and 1.5A for the TO-3 package.

Note 2: Regulation is measured at a constant junction temperature using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.

Note 3: Guaranteed by design, characterization or correlation to other tested parameters.

Note 4: T_J = 25°C unless otherwise noted.

Note 5: I_{SC} is tested at the ambient temperatures of 25°C and –55°C. I_{SC} cannot be tested at the maximum ambient temperature of 150°C due to the high power level required. I_{SC} specification at 150°C ambient is guaranteed by characterization and correlation to 25°C testing.