

# Total Ionization Dose (TID) Test Results of the RH137K Negative Adjustable Regulator @ Low Dose Rate (LDR)

# LDR = 10 mrads(Si)/s

11 March 2015

Duc Nguyen, Sana Rezgui

# Acknowledgements

The authors would like to thank the S-Power Product Engineering group from Linear Technology for their help with the board design and assembly as well as the data collection pre- and post-irradiations. Special thanks are also for Thomas Shepherd from Defense Microelectronics Activity (DMEA) for the extensive work for board setup and continuous dosimetry monitoring throughout the ELDRS tests.



# TID LDR Test Results of the RH137K Negative Adjustable Regulator

**Part Type Tested:** RH137K Negative Adjustable Regulator

**Traceability Information:** Fab Lot # W1328052.2; Assembly Lot # 732141.1; Wafer # 3; Date Code: 1345A. See photograph of unit under test in Appendix A.

**Quantity of Units:** 12 units received, 2 units for control, 5 units for biased irradiation, and 5 units for unbiased irradiation. Serial numbers 242,243, and 245-247had all pins tied to ground during irradiation. Serial numbers 237-241 were biased during irradiation. Serial numbers 235 and 236 were used as control. See Appendix B for the radiation bias connection tables.

**Radiation and Electrical Test Increments:** Ionizing radiation with the following electrical test increments: 11 Krads(Si), 20 Krads(Si), 53 Krads(Si), 107 Krads(Si).

Radiation dose rate: 10 mrads(Si)/sec.

Radiation Test Standard: MIL-STD-883 TM1019.9 Condition D.

**Test Hardware and Software:** LTX pre-irradiation test program: EFLR137K.01, and post-irradiation test program EQ2LR137K.01.

Facility and Radiation Source: Defense Micro Electronic Activity (DMEA) and Cobalt-60.

**Irradiation and Test Temperature:** Room temperature controlled to 24°C±6°C per MIL-STD-883 and MIL-STD-750.

## SUMMARY

## ALL 12 PARTS PASSED THE ELECTRICAL TEST LIMITS AS SPECIFIED IN THE DATASHEET AFTER EACH IRRADIATION INCREMENT. ADDITIONAL INFORMATION CAN BE PROVIDED PER REQUEST.



#### 1.0 Overview and Background

Among other radiation effects, Total Ionizing Dose (TID) may affect electrical characteristics, causing parametric and/or functional failures in integrated circuits. During gamma-irradiations, TID-induced and transported electron-hole pairs may result in charge trapping in a transistor's dielectrics and interface regions, affecting the device's basic features. Such effects warrant testing and monitoring of circuits to TID, after which annealing and/or Time Dependent Effects (TDE) may take place, depending on the circuit's design and process technology. Hence the requirement per Condition D (for low-dose rates ranging from less than or equal to 10 mrads(Si)/sec) in TM1019, MIL-STD-883 is to not exceed the allowed time of one hour from the end of an incremented irradiation and an electrical test. Additionally, the total time from the end of one incremental irradiation to the start of the next incremental step should be less than two hours.

#### 2.0 Radiation Facility and Test Equipment

The samples were irradiated at Defense Micro-Electronics Activity (DMEA) facility in Sacramento, California. DMEA utilizes J.L. Shepherd model 81-22/484 to provide the dose-rate of 10 mrads(Si)/s. A special design screw-driven automatic cart inside the exposure tunnel positions the Device-Under-Test (DUT) precisely and repeatedly from the source to attain optimal rate verified by ion chamber detectors. See Appendix C for the certificate of dosimetry.

#### 3.0 Test Conditions

The 10 samples were placed in a lead/aluminum container and aligned with the radiation source, Cobalt-60, at DMEA facility in Sacramento, California. During irradiation, five units were biased at +/- 15V and other five had all pads grounded. The devices were irradiated up to 107 Krad(Si) with increments of 11, 20, 53 Krads(Si). After each irradiation, the samples were transported in dry ice to Linear Technology testing facility. Testing was performed on the two control units to confirm the operation of the test system prior to the electrical testing of the 12 units (10 irradiated and 2 control).

The criteria to pass the low dose-rate test is that five samples irradiated under electrical bias must pass the datasheet limits. If any of the tested parameters of these five units do not meet the required limits then a failure-analysis of the part should be conducted and if valid the lot will be scrapped.



#### 4.0 Tested Parameters

The following parameters were measured pre- and post-irradiations:

- $V_{REF}$  (V) @  $|V_{IN} V_{OUT}| \le 5V$ ,  $I_{OUT} = 10mA$
- $V_{REF}$  (V) @  $|V_{IN} V_{OUT}| \le 5V, I_{OUT} \le 1.5A$
- $V_{REF}$  (V) @  $|V_{IN} V_{OUT}| \le 3V$ ,  $I_{OUT} = 10mA$
- $V_{REF}(V) @ |V_{IN} V_{OUT}| \le 30V, I_{OUT} = 10mA$
- $V_{REF}$  (V) @  $|V_{IN} V_{OUT}| \le 30V$ ,  $I_{OUT} = 150mA$
- $V_{REF}(V) @ |V_{IN} V_{OUT}| \le 10V, I_{OUT} = 10mA$
- $V_{REF}(V) @ |V_{IN} V_{OUT}| \le 18V, I_{OUT} = 1A$
- Line Regulation (%/V) @  $3V \le |V_{IN} V_{OUT}| \le 30V$
- Load Regulation (mV) @  $V_{OUT} \le 5V$ , 10mA  $\le I_{OUT} \le I_{MAX}$
- Load Regulation (%) @  $V_{OUT} \ge 5V$ , 10mA  $\le I_{OUT} \le I_{MAX}$
- Adjust Pin Current (uA)
- Adjust Pin Current Change (uA) @  $10mA \le I_{OUT} \le I_{MAX}$
- Adjust Pin Current Change (uA) @ 3V ≤ |V<sub>IN</sub> V<sub>OUT</sub>| ≤ 30V
- Minimum Load Current (mA) @  $|V_{IN} V_{OUT}| = 30V$
- Minimum Load Current (mA) @  $|V_{IN} V_{OUT}| \le 10V$
- Current Limit (A) @  $|V_{IN} V_{OUT}| \le 15V$
- Current Limit (A) @  $|V_{IN} V_{OUT}| = 30V$

Appendix D details the test conditions, minimum and maximum values at different accumulated doses.



### 5.0 Test Results

All ten samples passed the post-irradiation electrical tests. All measurements of the seventeen listed parameters in section 4.0 are within the specification limits.

The used statistics in this report are based on the tolerance limits, which are bounds to gage the quality of the manufactured products. It assumes that if the quality of the items is normally distributed with known mean and known standard deviation, the two-sided tolerance limits can be calculated as follows:

 $+K_{TL} = mean + (K_{TL})$  (standard deviation)

 $-K_{TL} = mean - (K_{TL})$  (standard deviation)

Where  $+K_{TL}$  is the upper tolerance limit and  $-K_{TL}$  is the lower tolerance limit. These tolerance limits are defined in a table of inverse normal probability distribution.

However, in most cases, mean and standard deviations are unknown and therefore it is practical to estimate both of them from a sample. Hence the tolerance limit depends greatly on the sample size. The Ps90%/90% K<sub>TL</sub> factor for a lot quality P of 0.9, confidence C of 0.9 with a sample size of 5, can be found from the tabulated table (MIL-HDBK-814, page 94, table IX-B). The K<sub>TL</sub> factor in this report is 2.742.

In the plots, the dotted lines with diamond markers are the average of the measured data points of five samples irradiated under electrical bias while the dashed lines with X-markers are the average of measured data points of five units irradiated with all pins tied to ground. The solid lines with triangle markers are the 90%/90% minimum and maximum determined from the calculation of the  $K_{TL}$  on the samples irradiated in the biased setup. The solid lines with square symbols are the 90%/90% minimum and maximum determined from the calculation of the  $K_{TL}$  on the five samples irradiated with all pins grounded. The orange solid lines with circle markers are the specification limits.

The 11 Krads(Si) test limits are taken from the Linear Technology datasheet's 10 Krads(Si) specification limits. The 53 Krads(Si) test limits are taken from the Linear Technology datasheet's 50 Krads(Si) specification limits. The 107 Krads(Si) test limits are taken from the Linear Technology datasheet's 100 Krads(Si) specification limits.





Figure 5.1 Plot of Reference Voltage @  $|V_i - V_0| \le 5V$  versus Total Dose



| Table 5.   | 1: Raw da     | ata for  | reference | voltage     | at  V <sub>IN</sub> -V <sub>OUT</sub> | ≤ 5V    | versus  | total of | dose   | including | the  |
|------------|---------------|----------|-----------|-------------|---------------------------------------|---------|---------|----------|--------|-----------|------|
| statistica | I calculation | ons, mii | nimum sp  | ecification | , maximum                             | specifi | cation, | and th   | e stat | us of the | test |
| (PASS/F    | AIL) under    | r the or | ange head | ders)       |                                       | •       |         |          |        |           |      |

| Parameter | $V_{REF} @  V_{I} - V_{O}  = 5V; I_{L} = 10mA$ | Total Dose (Krads(Si)) @ 10 mrads/s |          |          |          |          |  |  |
|-----------|------------------------------------------------|-------------------------------------|----------|----------|----------|----------|--|--|
| Units     | (V)                                            | 0                                   | 11       | 20       | 53       | 107      |  |  |
| 242       | All GND'd Irradiation                          | -1.25563                            | -1.25072 | -1.24766 | -1.24526 | -1.24148 |  |  |
| 243       | All GND'd Irradiation                          | -1.25469                            | -1.25043 | -1.24959 | -1.24661 | -1.24293 |  |  |
| 245       | All GND'd Irradiation                          | -1.25529                            | -1.25129 | -1.25050 | -1.24783 | -1.24307 |  |  |
| 246       | All GND'd Irradiation                          | -1.25529                            | -1.25099 | -1.25016 | -1.24682 | -1.24232 |  |  |
| 247       | All GND'd Irradiation                          | -1.25545                            | -1.25216 | -1.25140 | -1.24858 | -1.24361 |  |  |
| 237       | Biased Irradiation                             | -1.25378                            | -1.24975 | -1.24925 | -1.24713 | -1.24549 |  |  |
| 238       | Biased Irradiation                             | -1.25170                            | -1.24833 | -1.24766 | -1.24577 | -1.24427 |  |  |
| 239       | Biased Irradiation                             | -1.25384                            | -1.24984 | -1.24925 | -1.24663 | -1.24435 |  |  |
| 240       | Biased Irradiation                             | -1.25110                            | -1.24806 | -1.24736 | -1.24492 | -1.24375 |  |  |
| 241       | Biased Irradiation                             | -1.25103                            | -1.24762 | -1.24680 | -1.24408 | -1.24161 |  |  |
| 235       | Control Unit                                   | -1.25406                            | -1.25153 | -1.25133 | -1.25095 | -1.25128 |  |  |
| 236       | Control Unit                                   | -1.25415                            | -1.25159 | -1.25145 | -1.25144 | -1.25182 |  |  |
|           | All GND'd Irradiation Statistics               |                                     |          |          |          |          |  |  |
|           | Average All GND'd                              | -1.25527                            | -1.25112 | -1.24986 | -1.24702 | -1.24268 |  |  |
|           | Std Dev All GND'd                              | 0.00035                             | 0.00066  | 0.00139  | 0.00126  | 0.00082  |  |  |
|           | Ps90%/90% (+KTL) All GND'd                     | -1.25430                            | -1.24930 | -1.24604 | -1.24356 | -1.24044 |  |  |
|           | Ps90%/90% (-KTL) All GND'd                     | -1.25624                            | -1.25293 | -1.25369 | -1.25048 | -1.24492 |  |  |
|           | Biased Irradiation Statistics                  | -                                   |          |          |          |          |  |  |
|           | Average Biased                                 | -1.25229                            | -1.24872 | -1.24806 | -1.24571 | -1.24389 |  |  |
|           | Std Dev Biased                                 | 0.00141                             | 0.00102  | 0.00112  | 0.00124  | 0.00142  |  |  |
|           | Ps90%/90% (+KTL) Biased                        | -1.24842                            | -1.24594 | -1.24498 | -1.24231 | -1.23999 |  |  |
|           | Ps90%/90% (-KTL) Biased                        | -1.25616                            | -1.25150 | -1.25114 | -1.24910 | -1.24780 |  |  |
|           | Specification MIN                              | -1.275                              | -1.275   | -1.275   | -1.275   | -1.275   |  |  |
|           | Status (Measurements) All GND'd                | PASS                                | PASS     | PASS     | PASS     | PASS     |  |  |
|           | Status (Measurements) Biased                   | PASS                                | PASS     | PASS     | PASS     | PASS     |  |  |
|           | Specification MAX                              | -1.225                              | -1.225   | -1.225   | -1.225   | -1.225   |  |  |
|           | Status (Measurements) All GND'd                | PASS                                | PASS     | PASS     | PASS     | PASS     |  |  |
|           | Status (Measurements) Biased                   | PASS                                | PASS     | PASS     | PASS     | PASS     |  |  |
|           |                                                |                                     |          |          |          |          |  |  |
|           | Status (-KTL) All GND'd                        | PASS                                | PASS     | PASS     | PASS     | PASS     |  |  |
|           | Status (+KTL) All GND'd                        | PASS                                | PASS     | PASS     | PASS     | PASS     |  |  |
|           |                                                |                                     |          |          |          |          |  |  |
|           | Status (-KTL) Biased                           | PASS                                | PASS     | PASS     | PASS     | PASS     |  |  |
|           | Status (+KTL) Biased                           | PASS                                | PASS     | PASS     | PASS     | PASS     |  |  |





Figure 5.2 Plot of Reference Voltage @  $|V_l - V_0| = 5V$ ,  $I_L = 1.5A$  versus Total Dose



*Table 5.2*: Raw data for reference voltage at  $|V_1 - V_0| = 5V$ ,  $I_L = 1.5A$  versus total dose including the statistical calculations, minimum specification, maximum specification, and the status of the test (PASS/FAIL) under the orange headers)

| Parameter | $V_{\text{REF}} @  V_1 - V_0  = 5V; I_1 = 1.5A$ | То       | otal Dose (k | (rads(Si)) | 10 mrads | /s       |
|-----------|-------------------------------------------------|----------|--------------|------------|----------|----------|
| Units     | (V)                                             | 0        | 11           | 20         | 53       | 107      |
| 242       | All GND'd Irradiation                           | -1.25622 | -1.24659     | -1.24624   | -1.24356 | -1.23961 |
| 243       | All GND'd Irradiation                           | -1.25529 | -1.24873     | -1.24784   | -1.24462 | -1.24101 |
| 245       | All GND'd Irradiation                           | -1.25598 | -1.24946     | -1.24870   | -1.24581 | -1.24117 |
| 246       | All GND'd Irradiation                           | -1.25598 | -1.24950     | -1.24852   | -1.24525 | -1.24049 |
| 247       | All GND'd Irradiation                           | -1.25618 | -1.25053     | -1.24962   | -1.24679 | -1.24175 |
| 237       | Biased Irradiation                              | -1.25431 | -1.24802     | -1.24722   | -1.24520 | -1.24327 |
| 238       | Biased Irradiation                              | -1.25240 | -1.24655     | -1.24591   | -1.24403 | -1.24205 |
| 239       | Biased Irradiation                              | -1.25450 | -1.24793     | -1.24746   | -1.24478 | -1.24242 |
| 240       | Biased Irradiation                              | -1.25182 | -1.24579     | -1.24550   | -1.24317 | -1.24181 |
| 241       | Biased Irradiation                              | -1.25160 | -1.24568     | -1.24478   | -1.24234 | -1.23979 |
| 235       | Control Unit                                    | -1.25469 | -1.24971     | -1.24944   | -1.24938 | -1.24972 |
| 236       | Control Unit                                    | -1.25470 | -1.24951     | -1.24974   | -1.24995 | -1.25023 |
|           | All GND'd Irradiation Statistics                |          |              |            |          |          |
|           | Average All GND'd                               | -1.25593 | -1.24896     | -1.24818   | -1.24520 | -1.24080 |
|           | Std Dev All GND'd                               | 0.00037  | 0.00147      | 0.00126    | 0.00122  | 0.00081  |
|           | Ps90%/90% (+KTL) All GND'd                      | -1.25490 | -1.24493     | -1.24474   | -1.24187 | -1.23860 |
|           | Ps90%/90% (-KTL) All GND'd                      | -1.25696 | -1.25299     | -1.25163   | -1.24854 | -1.24301 |
|           | Biased Irradiation Statistics                   |          |              |            |          |          |
|           | Average Biased                                  | -1.25293 | -1.24679     | -1.24617   | -1.24390 | -1.24187 |
|           | Std Dev Biased                                  | 0.00138  | 0.00113      | 0.00114    | 0.00117  | 0.00129  |
|           | Ps90%/90% (+KTL) Biased                         | -1.24914 | -1.24370     | -1.24304   | -1.24071 | -1.23834 |
|           | Ps90%/90% (-KTL) Biased                         | -1.25672 | -1.24989     | -1.24931   | -1.24710 | -1.24540 |
|           | Specification MIN                               | -1.3     | -1.3         | -1.3       | -1.3     | -1.3     |
|           | Status (Measurements) All GND'd                 | PASS     | PASS         | PASS       | PASS     | PASS     |
|           | Status (Measurements) Biased                    | PASS     | PASS         | PASS       | PASS     | PASS     |
|           | Specification MAX                               | -1.2     | -1.2         | -1.2       | -1.2     | -1.2     |
|           | Status (Measurements) All GND'd                 | PASS     | PASS         | PASS       | PASS     | PASS     |
|           | Status (Measurements) Biased                    | PASS     | PASS         | PASS       | PASS     | PASS     |
|           |                                                 |          |              |            |          |          |
|           | Status (-KTL) All GND'd                         | PASS     | PASS         | PASS       | PASS     | PASS     |
|           | Status (+KTL) All GND'd                         | PASS     | PASS         | PASS       | PASS     | PASS     |
|           |                                                 |          |              |            |          |          |
|           | Status (-KTL) Biased                            | PASS     | PASS         | PASS       | PASS     | PASS     |
|           | Status (+KTL) Biased                            | PASS     | PASS         | PASS       | PASS     | PASS     |





Figure 5.3 Plot of Reference Voltage @  $|V_1 - V_0| = 3V$ ,  $I_L = 10$  mA versus Total Dose



*Table 5.3*: Raw data for reference voltage at  $|V_1 - V_0| = 3V$ ,  $I_L = 10$  mA versus total dose including the statistical calculations, minimum specification, maximum specification, and the status of the test (PASS/FAIL) under the orange headers)

| Parameter | $V_{REF} @  V_{I} - V_{O}  = 3V; I_{L} = 10mA$ | ,        | Total Dos | <mark>e (Krads(Si</mark> j | )) @ 50r/s |          |
|-----------|------------------------------------------------|----------|-----------|----------------------------|------------|----------|
| Units     | (V)                                            | 0        | 11        | 20                         | 53         | 107      |
| 242       | All GND'd Irradiation                          | -1.25559 | -1.25065  | -1.24761                   | -1.24517   | -1.24144 |
| 243       | All GND'd Irradiation                          | -1.25467 | -1.25047  | -1.24958                   | -1.24663   | -1.24293 |
| 245       | All GND'd Irradiation                          | -1.25529 | -1.25129  | -1.25050                   | -1.24774   | -1.24316 |
| 246       | All GND'd Irradiation                          | -1.25526 | -1.25095  | -1.25001                   | -1.24682   | -1.24222 |
| 247       | All GND'd Irradiation                          | -1.25537 | -1.25217  | -1.25138                   | -1.24858   | -1.24364 |
| 237       | Biased Irradiation                             | -1.25377 | -1.24981  | -1.24912                   | -1.24733   | -1.24558 |
| 238       | Biased Irradiation                             | -1.25163 | -1.24823  | -1.24760                   | -1.24596   | -1.24398 |
| 239       | Biased Irradiation                             | -1.25383 | -1.24973  | -1.24916                   | -1.24659   | -1.24450 |
| 240       | Biased Irradiation                             | -1.25106 | -1.24782  | -1.24726                   | -1.24496   | -1.24368 |
| 241       | Biased Irradiation                             | -1.25095 | -1.24747  | -1.24672                   | -1.24408   | -1.24163 |
| 235       | Control Unit                                   | -1.25400 | -1.25152  | -1.25111                   | -1.25102   | -1.25128 |
| 236       | Control Unit                                   | -1.25407 | -1.25152  | -1.25138                   | -1.25140   | -1.25182 |
|           | All GND'd Irradiation Statistics               |          |           |                            |            |          |
|           | Average All GND'd                              | -1.25523 | -1.25110  | -1.24982                   | -1.24699   | -1.24268 |
|           | Std Dev All GND'd                              | 0.00034  | 0.00067   | 0.00140                    | 0.00128    | 0.00086  |
|           | Ps90%/90% +KTL All GND'd                       | -1.25430 | -1.24926  | -1.24597                   | -1.24348   | -1.24032 |
|           | Ps90%/90% -KTL All GND'd                       | -1.25617 | -1.25294  | -1.25366                   | -1.25050   | -1.24504 |
|           | Biased Irradiation Statistics                  |          |           |                            |            |          |
|           | Average Biased                                 | -1.25225 | -1.24861  | -1.24797                   | -1.24578   | -1.24387 |
|           | Std Dev Biased                                 | 0.00144  | 0.00109   | 0.00111                    | 0.00129    | 0.00145  |
|           | Ps90%/90% +KTL Biased                          | -1.24830 | -1.24562  | -1.24492                   | -1.24225   | -1.23990 |
|           | Ps90%/90% -KTL Biased                          | -1.25620 | -1.25160  | -1.25102                   | -1.24932   | -1.24785 |
|           | Specification MIN                              | -1.3     | -1.3      | -1.3                       | -1.3       | -1.3     |
|           | Status (Measurements) All GND'd                | PASS     | PASS      | PASS                       | PASS       | PASS     |
|           | Status (Measurements) Biased                   | PASS     | PASS      | PASS                       | PASS       | PASS     |
|           | Specification MAX                              | -1.2     | -1.2      | -1.2                       | -1.2       | -1.2     |
|           | Status (Measurements) All GND'd                | PASS     | PASS      | PASS                       | PASS       | PASS     |
|           | Status (Measurements) Biased                   | PASS     | PASS      | PASS                       | PASS       | PASS     |
|           |                                                |          |           |                            |            |          |
|           | Status (-KTL) All GND'd                        | PASS     | PASS      | PASS                       | PASS       | PASS     |
|           | Status (+KTL) All GND'd                        | PASS     | PASS      | PASS                       | PASS       | PASS     |
|           |                                                |          |           |                            |            |          |
|           | Status (-KTL) Biased                           | PASS     | PASS      | PASS                       | PASS       | PASS     |
|           | Status (+KTL) Biased                           | PASS     | PASS      | PASS                       | PASS       | PASS     |





Figure 5.4 Plot of Reference Voltage @  $|V_l - V_0| = 30V$ ,  $I_L = 10$  mA versus Total Dose



*Table 5.4*: Raw data for reference voltage at  $|V_1 - V_0| = 30V$ ,  $I_L = 10$  mA versus total dose including the statistical calculations, minimum specification, maximum specification, and the status of the test (PASS/FAIL) under the orange headers)

| Parameter | $V_{\text{REF}} @  V_1 - V_0  = 30V; I_1 = 10mA$ | ,<br>    | Total Dos | e (Krads(Si | )) @ 50r/s |          |
|-----------|--------------------------------------------------|----------|-----------|-------------|------------|----------|
| Units     | V                                                | 0        | 11        | 20          | 53         | 107      |
| 242       | All GND'd Irradiation                            | -1.25575 | -1.25102  | -1.24787    | -1.24557   | -1.24171 |
| 243       | All GND'd Irradiation                            | -1.25484 | -1.25066  | -1.24980    | -1.24682   | -1.24316 |
| 245       | All GND'd Irradiation                            | -1.25548 | -1.25145  | -1.25072    | -1.24797   | -1.24344 |
| 246       | All GND'd Irradiation                            | -1.25543 | -1.25144  | -1.25031    | -1.24709   | -1.24246 |
| 247       | All GND'd Irradiation                            | -1.25553 | -1.25240  | -1.25150    | -1.24889   | -1.24399 |
| 237       | Biased Irradiation                               | -1.25391 | -1.24997  | -1.24920    | -1.24737   | -1.24557 |
| 238       | Biased Irradiation                               | -1.25179 | -1.24858  | -1.24775    | -1.24601   | -1.24450 |
| 239       | Biased Irradiation                               | -1.25400 | -1.25001  | -1.24942    | -1.24705   | -1.24457 |
| 240       | Biased Irradiation                               | -1.25126 | -1.24808  | -1.24748    | -1.24526   | -1.24377 |
| 241       | Biased Irradiation                               | -1.25104 | -1.24778  | -1.24698    | -1.24439   | -1.24181 |
| 235       | Control Unit                                     | -1.25407 | -1.25161  | -1.25140    | -1.25117   | -1.25136 |
| 236       | Control Unit                                     | -1.25423 | -1.25171  | -1.25145    | -1.25149   | -1.25182 |
|           | All GND'd Irradiation Statistics                 |          |           |             |            |          |
|           | Average All GND'd                                | -1.25541 | -1.25139  | -1.25004    | -1.24727   | -1.24295 |
|           | Std Dev All GND'd                                | 0.00034  | 0.00065   | 0.00136     | 0.00125    | 0.00089  |
|           | Ps90%/90% +KTL All GND'd                         | -1.25448 | -1.24961  | -1.24631    | -1.24384   | -1.24052 |
|           | Ps90%/90% -KTL All GND'd                         | -1.25633 | -1.25317  | -1.25377    | -1.25070   | -1.24538 |
|           | Biased Irradiation Statistics                    |          |           |             |            |          |
|           | Average Biased                                   | -1.25240 | -1.24888  | -1.24816    | -1.24602   | -1.24404 |
|           | Std Dev Biased                                   | 0.00145  | 0.00105   | 0.00108     | 0.00124    | 0.00140  |
|           | Ps90%/90% +KTL Biased                            | -1.24843 | -1.24601  | -1.24519    | -1.24263   | -1.24020 |
|           | Ps90%/90% -KTL Biased                            | -1.25637 | -1.25176  | -1.25113    | -1.24941   | -1.24789 |
|           | Specification MIN                                | -1.3     | -1.3      | -1.3        | -1.3       | -1.3     |
|           | Status (Measurements) All GND'd                  | PASS     | PASS      | PASS        | PASS       | PASS     |
|           | Status (Measurements) Biased                     | PASS     | PASS      | PASS        | PASS       | PASS     |
|           | Specification MAX                                | -1.2     | -1.2      | -1.2        | -1.2       | -1.2     |
|           | Status (Measurements) All GND'd                  | PASS     | PASS      | PASS        | PASS       | PASS     |
|           | Status (Measurements) Biased                     | PASS     | PASS      | PASS        | PASS       | PASS     |
|           |                                                  |          |           |             |            |          |
|           | Status (-KTL) All GND'd                          | PASS     | PASS      | PASS        | PASS       | PASS     |
|           | Status (+KTL) All GND'd                          | PASS     | PASS      | PASS        | PASS       | PASS     |
|           |                                                  |          |           |             |            |          |
|           | Status (-KTL) Biased                             | PASS     | PASS      | PASS        | PASS       | PASS     |
|           | Status (+KTL) Biased                             | PASS     | PASS      | PASS        | PASS       | PASS     |





Figure 5.5 Plot of Reference Voltage @  $|V_1 - V_0| = 30V$ ,  $I_L = 150$  mA versus Total Dose



*Table 5.5* Raw data for reference voltage at  $|V_1 - V_0| = 30V$ ,  $I_L = 150$  mA versus total dose including the statistical calculations, minimum specification, maximum specification, and the status of the test (PASS/FAIL) under the orange headers)

| Parameter | V <sub>REF</sub> @  V <sub>I</sub> - V <sub>O</sub>   = 30V; I <sub>L</sub> = 150mA | ,        | Total Dos | e (Krads(Si | )) @ 50r/s |          |
|-----------|-------------------------------------------------------------------------------------|----------|-----------|-------------|------------|----------|
| Units     | (V)                                                                                 | 0        | 11        | 20          | 53         | 107      |
| 242       | All GND'd Irradiation                                                               | -1.25598 | -1.24846  | -1.24807    | -1.24600   | -1.24185 |
| 243       | All GND'd Irradiation                                                               | -1.25502 | -1.25072  | -1.24974    | -1.24733   | -1.24361 |
| 245       | All GND'd Irradiation                                                               | -1.25567 | -1.25154  | -1.25065    | -1.24831   | -1.24361 |
| 246       | All GND'd Irradiation                                                               | -1.25567 | -1.25126  | -1.25028    | -1.24751   | -1.24285 |
| 247       | All GND'd Irradiation                                                               | -1.25572 | -1.25236  | -1.25138    | -1.24892   | -1.24443 |
| 237       | Biased Irradiation                                                                  | -1.25400 | -1.24970  | -1.24920    | -1.24779   | -1.24569 |
| 238       | Biased Irradiation                                                                  | -1.25201 | -1.24863  | -1.24767    | -1.24646   | -1.24447 |
| 239       | Biased Irradiation                                                                  | -1.25407 | -1.25011  | -1.24942    | -1.24748   | -1.24488 |
| 240       | Biased Irradiation                                                                  | -1.25145 | -1.24817  | -1.24760    | -1.24516   | -1.24399 |
| 241       | Biased Irradiation                                                                  | -1.25132 | -1.24764  | -1.24680    | -1.24425   | -1.24171 |
| 235       | Control Unit                                                                        | -1.25435 | -1.25126  | -1.25150    | -1.25099   | -1.25106 |
| 236       | Control Unit                                                                        | -1.25439 | -1.25134  | -1.25153    | -1.25129   | -1.25136 |
|           | All GND'd Irradiation Statistics                                                    |          |           |             |            |          |
|           | Average All GND'd                                                                   | -1.25561 | -1.25087  | -1.25003    | -1.24761   | -1.24327 |
|           | Std Dev All GND'd                                                                   | 0.00035  | 0.00147   | 0.00124     | 0.00111    | 0.00097  |
|           | Ps90%/90% +KTL Unbiased                                                             | -1.25464 | -1.24684  | -1.24661    | -1.24458   | -1.24061 |
|           | Ps90%/90% -KTL Unbiased                                                             | -1.25658 | -1.25489  | -1.25344    | -1.25065   | -1.24593 |
|           | Irradiation Statistics Biased                                                       |          |           |             |            |          |
|           | Average Biased                                                                      | -1.25257 | -1.24885  | -1.24814    | -1.24623   | -1.24414 |
|           | Std Dev Biased                                                                      | 0.00136  | 0.00104   | 0.00112     | 0.00151    | 0.00150  |
|           | Ps90%/90% +KTL Biased                                                               | -1.24883 | -1.24601  | -1.24505    | -1.24209   | -1.24004 |
|           | Ps90%/90% -KTL Biased                                                               | -1.25631 | -1.25169  | -1.25122    | -1.25037   | -1.24825 |
|           | Specification MIN                                                                   | -1.3     | -1.3      | -1.3        | -1.3       | -1.3     |
|           | Status (Measurements) All GND'd                                                     | PASS     | PASS      | PASS        | PASS       | PASS     |
|           | Status (Measurements) Biased                                                        | PASS     | PASS      | PASS        | PASS       | PASS     |
|           | Specification MAX                                                                   | -1.2     | -1.2      | -1.2        | -1.2       | -1.2     |
|           | Status (Measurements) All GND'd                                                     | PASS     | PASS      | PASS        | PASS       | PASS     |
|           | Status (Measurements) Biased                                                        | PASS     | PASS      | PASS        | PASS       | PASS     |
|           |                                                                                     |          |           |             |            |          |
|           | Status (-KTL) All GND'd                                                             | PASS     | PASS      | PASS        | PASS       | PASS     |
|           | Status (+KTL) All GND'd                                                             | PASS     | PASS      | PASS        | PASS       | PASS     |
|           |                                                                                     |          |           |             |            |          |
|           | Status (-KTL) Biased                                                                | PASS     | PASS      | PASS        | PASS       | PASS     |
|           | Status (+KTL) Biased                                                                | PASS     | PASS      | PASS        | PASS       | PASS     |





Figure 5.6 Plot of Reference Voltage @  $|V_l - V_0| = 10V$ ,  $I_L = 10$  mA versus Total Dose



| Table 5.6 Raw data for reference voltage at $ V_1 - V_0  = 10V$ , $I_L = 10$ mA versus total dose including |
|-------------------------------------------------------------------------------------------------------------|
| the statistical calculations, minimum specification, maximum specification, and the status of the           |
| test (PASS/FAIL) under the orange headers)                                                                  |

| Parameter | $V_{REF} @  V_{I} - V_{O}  = 10V; I_{L} = 10mA$ |          | Total Dose (Krads(Si)) @ 10mr/s |          |          |          |  |
|-----------|-------------------------------------------------|----------|---------------------------------|----------|----------|----------|--|
| Units     | V                                               | 0        | 11                              | 20       | 53       | 107      |  |
| 242       | All GND'd Irradiation                           | -1.25561 | -1.25067                        | -1.24767 | -1.24530 | -1.24147 |  |
| 243       | All GND'd Irradiation                           | -1.25472 | -1.25038                        | -1.24958 | -1.24668 | -1.24288 |  |
| 245       | All GND'd Irradiation                           | -1.25529 | -1.25134                        | -1.25053 | -1.24785 | -1.24319 |  |
| 246       | All GND'd Irradiation                           | -1.25529 | -1.25110                        | -1.25019 | -1.24691 | -1.24227 |  |
| 247       | All GND'd Irradiation                           | -1.25545 | -1.25215                        | -1.25133 | -1.24858 | -1.24361 |  |
| 237       | Biased Irradiation                              | -1.25378 | -1.24969                        | -1.24920 | -1.24713 | -1.24534 |  |
| 238       | Biased Irradiation                              | -1.25167 | -1.24839                        | -1.24757 | -1.24577 | -1.24406 |  |
| 239       | Biased Irradiation                              | -1.25380 | -1.24974                        | -1.24928 | -1.24663 | -1.24429 |  |
| 240       | Biased Irradiation                              | -1.25110 | -1.24788                        | -1.24737 | -1.24500 | -1.24361 |  |
| 241       | Biased Irradiation                              | -1.25104 | -1.24762                        | -1.24684 | -1.24417 | -1.24162 |  |
| 235       | Control Unit                                    | -1.25407 | -1.25152                        | -1.25114 | -1.25096 | -1.25121 |  |
| 236       | Control Unit                                    | -1.25411 | -1.25145                        | -1.25141 | -1.25146 | -1.25182 |  |
|           | All GND'd Irradiation Statistics                |          |                                 |          |          |          |  |
|           | Average All GND'd                               | -1.25527 | -1.25113                        | -1.24986 | -1.24707 | -1.24268 |  |
|           | Std Dev All GND'd                               | 0.00034  | 0.00068                         | 0.00138  | 0.00124  | 0.00084  |  |
|           | Ps90%/90% +KTL All GN"D'd                       | -1.25435 | -1.24926                        | -1.24608 | -1.24365 | -1.24039 |  |
|           | Ps90%/90% -KTL All GN"D'd                       | -1.25619 | -1.25299                        | -1.25364 | -1.25048 | -1.24498 |  |
|           | Biased Irradiation Statistics                   |          |                                 |          |          |          |  |
|           | Average Biased                                  | -1.25228 | -1.24867                        | -1.24805 | -1.24574 | -1.24379 |  |
|           | Std Dev Biased                                  | 0.00140  | 0.00100                         | 0.00112  | 0.00120  | 0.00137  |  |
|           | Ps90%/90% +KTL Biased                           | -1.24843 | -1.24593                        | -1.24498 | -1.24245 | -1.24004 |  |
|           | Ps90%/90% -KTL Biased                           | -1.25613 | -1.25140                        | -1.25112 | -1.24903 | -1.24753 |  |
|           | Specification MIN                               | -1.3     | -1.3                            | -1.3     | -1.3     | -1.3     |  |
|           | Status (Measurements) All GND'd                 | PASS     | PASS                            | PASS     | PASS     | PASS     |  |
|           | Status (Measurements) Biased                    | PASS     | PASS                            | PASS     | PASS     | PASS     |  |
|           | Specification MAX                               | -1.2     | -1.2                            | -1.2     | -1.2     | -1.2     |  |
|           | Status (Measurements) All GND'd                 | PASS     | PASS                            | PASS     | PASS     | PASS     |  |
|           | Status (Measurements) Biased                    | PASS     | PASS                            | PASS     | PASS     | PASS     |  |
|           |                                                 |          |                                 |          |          |          |  |
|           | Status -KTL All GND'd                           | PASS     | PASS                            | PASS     | PASS     | PASS     |  |
|           | Status +KTL All GND'd                           | PASS     | PASS                            | PASS     | PASS     | PASS     |  |
|           |                                                 |          |                                 |          |          |          |  |
|           | Status -KTL Biased                              | PASS     | PASS                            | PASS     | PASS     | PASS     |  |
|           | Status +KTL Biased                              | PASS     | PASS                            | PASS     | PASS     | PASS     |  |





Figure 5.7 Plot of Reference Voltage @  $|V_l - V_0| = 18V$ ,  $I_L = 1A$  versus Total Dose



*Table 5.7* Raw data for reference voltage at  $|V_1 - V_0| = 18V$ ,  $I_L = 1A$  versus total dose including the statistical calculations, minimum specification, maximum specification, and the status of the test (PASS/FAIL) under the orange headers)

| Parameter | V <sub>REF</sub> @  V <sub>I</sub> - V <sub>O</sub>   = 18V; I <sub>L</sub> =1A | ,        | Total Dose | (Krads(Si)) | @ 10mr/s |          |
|-----------|---------------------------------------------------------------------------------|----------|------------|-------------|----------|----------|
| Units     | V                                                                               | 0        | 10         | 20          | 50       | 100      |
| 242       | All GND'd Irradiation                                                           | -1.25659 | -1.24785   | -1.24741    | -1.24486 | -1.24086 |
| 243       | All GND'd Irradiation                                                           | -1.25563 | -1.24984   | -1.24905    | -1.24601 | -1.24223 |
| 245       | All GND'd Irradiation                                                           | -1.25633 | -1.25080   | -1.24992    | -1.24722 | -1.24242 |
| 246       | All GND'd Irradiation                                                           | -1.25636 | -1.25073   | -1.24966    | -1.24663 | -1.24164 |
| 247       | All GND'd Irradiation                                                           | -1.25644 | -1.25163   | -1.25080    | -1.24805 | -1.24307 |
| 237       | Biased Irradiation                                                              | -1.25453 | -1.24917   | -1.24836    | -1.24677 | -1.24492 |
| 238       | Biased Irradiation                                                              | -1.25262 | -1.24770   | -1.24705    | -1.24526 | -1.24345 |
| 239       | Biased Irradiation                                                              | -1.25476 | -1.24934   | -1.24870    | -1.24622 | -1.24354 |
| 240       | Biased Irradiation                                                              | -1.25201 | -1.24732   | -1.24668    | -1.24446 | -1.24293 |
| 241       | Biased Irradiation                                                              | -1.25179 | -1.24691   | -1.24600    | -1.24364 | -1.24110 |
| 235       | Control Unit                                                                    | -1.25498 | -1.25087   | -1.25072    | -1.25048 | -1.25075 |
| 236       | Control Unit                                                                    | -1.25498 | -1.25075   | -1.25096    | -1.25103 | -1.25123 |
|           | All GND'd Irradiation Statistics                                                |          |            |             |          |          |
|           | Average All GND'd                                                               | -1.25627 | -1.25017   | -1.24937    | -1.24655 | -1.24204 |
|           | Std Dev All GND'd                                                               | 0.00037  | 0.00144    | 0.00126     | 0.00121  | 0.00084  |
|           | Ps90%/90% +KLT All GN"D'd                                                       | -1.25526 | -1.24621   | -1.24591    | -1.24323 | -1.23975 |
|           | Ps90%/90% -KLT All GN"D'd                                                       | -1.25728 | -1.25413   | -1.25283    | -1.24987 | -1.24434 |
|           | Biased Irradiation Statistics                                                   |          |            |             | -        | -        |
|           | Average Biased                                                                  | -1.25314 | -1.24809   | -1.24736    | -1.24527 | -1.24319 |
|           | Std Dev Biased                                                                  | 0.00141  | 0.00110    | 0.00114     | 0.00127  | 0.00138  |
|           | Ps90%/90% +KTL Biased                                                           | -1.24928 | -1.24506   | -1.24423    | -1.24178 | -1.23940 |
|           | Ps90%/90% -KTL Biased                                                           | -1.25700 | -1.25111   | -1.25048    | -1.24875 | -1.24698 |
|           | Specification MIN                                                               | -1.3     | -1.3       | -1.3        | -1.3     | -1.3     |
|           | Status (Measurements) All GND'd                                                 | PASS     | PASS       | PASS        | PASS     | PASS     |
|           | Status (Measurements) Biased                                                    | PASS     | PASS       | PASS        | PASS     | PASS     |
|           | Specification MAX                                                               | -1.2     | -1.2       | -1.2        | -1.2     | -1.2     |
|           | Status (Measurements) All GND'd                                                 | PASS     | PASS       | PASS        | PASS     | PASS     |
|           | Status (Measurements) Biased                                                    | PASS     | PASS       | PASS        | PASS     | PASS     |
|           |                                                                                 |          |            |             |          |          |
|           | Status -KTL All GND'd                                                           | PASS     | PASS       | PASS        | PASS     | PASS     |
|           | Status +KTL All GND'd                                                           | PASS     | PASS       | PASS        | PASS     | PASS     |
|           |                                                                                 |          |            |             |          |          |
|           | Status -KTL Biased                                                              | PASS     | PASS       | PASS        | PASS     | PASS     |
|           | Status +KTL Biased                                                              | PASS     | PASS       | PASS        | PASS     | PASS     |





Figure 5.8: Plot of Line Regulation versus Total Dose



| Table 5.8: | Raw d    | ata fo | r line | regulat | ion ve   | rsus to  | otal dose      | including | g the stat | istical | calculations |
|------------|----------|--------|--------|---------|----------|----------|----------------|-----------|------------|---------|--------------|
| maximum    | specific | ation, | and th | e statu | is of th | e test ( | (PASS/FA       | AIL under | the seco   | nd ora  | ange header  |
|            |          |        |        |         |          |          | <b>T</b> ( ) D |           |            |         |              |

| Parameter | Line Reg @ $3V \le  V_1 - V_{O } \le 30V$ | Total Dose (Krads(Si)) @ 10 mrads/s |          |          |          |          |  |  |  |
|-----------|-------------------------------------------|-------------------------------------|----------|----------|----------|----------|--|--|--|
| Units     | (%/V)                                     | 0                                   | 11       | 20       | 53       | 107      |  |  |  |
| 242       | All GND'd Irradiation                     | 0.00048                             | 0.00110  | 0.00076  | 0.00119  | 0.00080  |  |  |  |
| 243       | All GND'd Irradiation                     | 0.00051                             | 0.00056  | 0.00065  | 0.00057  | 0.00068  |  |  |  |
| 245       | All GND'd Irradiation                     | 0.00056                             | 0.00047  | 0.00065  | 0.00068  | 0.00085  |  |  |  |
| 246       | All GND'd Irradiation                     | 0.00051                             | 0.00147  | 0.00090  | 0.00079  | 0.00071  |  |  |  |
| 247       | All GND'd Irradiation                     | 0.00048                             | 0.00068  | 0.00034  | 0.00093  | 0.00102  |  |  |  |
| 237       | Biased Irradiation                        | 0.00039                             | 0.00048  | 0.00023  | 0.00011  | 0.00003  |  |  |  |
| 238       | Biased Irradiation                        | 0.00048                             | 0.00102  | 0.00042  | 0.00014  | 0.00157  |  |  |  |
| 239       | Biased Irradiation                        | 0.00051                             | 0.00085  | 0.00076  | 0.00139  | 0.00020  |  |  |  |
| 240       | Biased Irradiation                        | 0.00058                             | 0.00076  | 0.00065  | 0.00091  | 0.00026  |  |  |  |
| 241       | Biased Irradiation                        | 0.00025                             | 0.00094  | 0.00077  | 0.00091  | 0.00054  |  |  |  |
| 235       | Control Unit                              | 0.00020                             | 0.00029  | 0.00085  | 0.00042  | 0.00023  |  |  |  |
| 236       | Control Unit                              | 0.00048                             | 0.00057  | 0.00020  | 0.00028  | 0.00000  |  |  |  |
|           | All GND'd Irradiation Statistics          |                                     |          |          |          |          |  |  |  |
|           | Average All GND'd                         | 0.00051                             | 0.00086  | 0.00066  | 0.00083  | 0.00081  |  |  |  |
|           | Std Dev All GND'd                         | 0.00003                             | 0.00042  | 0.00021  | 0.00024  | 0.00014  |  |  |  |
|           | Ps90%/90% (+KTL) All GND'd                | 0.00060                             | 0.00200  | 0.00123  | 0.00150  | 0.00118  |  |  |  |
|           | Ps90%/90% (-KTL) All GND'd                | 0.00041                             | -0.00028 | 0.00009  | 0.00017  | 0.00044  |  |  |  |
|           | Biased Irradiation Statistics             |                                     |          |          |          |          |  |  |  |
|           | Average Biased                            | 0.00044                             | 0.00081  | 0.00057  | 0.00069  | 0.00052  |  |  |  |
|           | Std Dev Biased                            | 0.00013                             | 0.00021  | 0.00024  | 0.00055  | 0.00061  |  |  |  |
|           | Ps90%/90% (+KTL) Biased                   | 0.00079                             | 0.00138  | 0.00121  | 0.00220  | 0.00220  |  |  |  |
|           | Ps90%/90% (-KTL) Biased                   | 0.00010                             | 0.00024  | -0.00008 | -0.00082 | -0.00117 |  |  |  |
|           | Specification MIN                         |                                     |          |          |          |          |  |  |  |
|           | Status (Measurements) All GND'd           |                                     |          |          |          |          |  |  |  |
|           | Status (Measurements) Biased              |                                     |          |          |          |          |  |  |  |
|           | Specification MAX                         | 0.02                                | 0.02     | 0.02     | 0.02     | 0.02     |  |  |  |
|           | Status (Measurements) All GND'd           | PASS                                | PASS     | PASS     | PASS     | PASS     |  |  |  |
|           | Status (Measurements) Biased              | PASS                                | PASS     | PASS     | PASS     | PASS     |  |  |  |
|           |                                           |                                     |          |          |          |          |  |  |  |
|           | Status (-KTL) All GND'd                   |                                     |          |          |          |          |  |  |  |
|           | Status (+KTL) All GND'd                   | PASS                                | PASS     | PASS     | PASS     | PASS     |  |  |  |
|           |                                           |                                     |          |          |          |          |  |  |  |
|           | Status (-KTL) Biased                      |                                     |          |          |          |          |  |  |  |
|           | Status (+KTL) Biased                      | PASS                                | PASS     | PASS     | PASS     | PASS     |  |  |  |





Figure 5.9: Plot of Load Regulation ( $V_0 \le 5V$ ) versus Total Dose



| Parameter | Load Reg @ 10mA≤l <sub>L</sub> ≤1.5A,V <sub>O</sub> ≤5V | То      | Total Dose (Krads(Si)) @ 10 mrads/s |         |         |         |  |
|-----------|---------------------------------------------------------|---------|-------------------------------------|---------|---------|---------|--|
| Units     | (mV)                                                    | 0       | 11                                  | 20      | 53      | 107     |  |
| 242       | All GND'd Irradiation                                   | 0.59032 | 4.12464                             | 1.42193 | 1.70422 | 1.86920 |  |
| 243       | All GND'd Irradiation                                   | 0.59986 | 1.70136                             | 1.74522 | 1.98746 | 1.91689 |  |
| 245       | All GND'd Irradiation                                   | 0.68760 | 1.83201                             | 1.80244 | 2.01893 | 1.89781 |  |
| 246       | All GND'd Irradiation                                   | 0.68760 | 1.49822                             | 1.64032 | 1.57929 | 1.83106 |  |
| 247       | All GND'd Irradiation                                   | 0.72384 | 1.63078                             | 1.78337 | 1.79195 | 1.86920 |  |
| 237       | Biased Irradiation                                      | 0.52547 | 1.73187                             | 2.02179 | 1.93214 | 2.21443 |  |
| 238       | Biased Irradiation                                      | 0.69809 | 1.77383                             | 1.75571 | 1.74332 | 2.21443 |  |
| 239       | Biased Irradiation                                      | 0.65994 | 1.91307                             | 1.78337 | 1.85490 | 1.92833 |  |
| 240       | Biased Irradiation                                      | 0.72384 | 2.26975                             | 1.86062 | 1.75095 | 1.93596 |  |
| 241       | Biased Irradiation                                      | 0.57030 | 1.94454                             | 2.02179 | 1.74141 | 1.82152 |  |
| 235       | Control Unit                                            | 0.63038 | 1.81961                             | 1.89781 | 1.56879 | 1.56403 |  |
| 236       | Control Unit                                            | 0.55408 | 2.08855                             | 1.70708 | 1.49345 | 1.59264 |  |
|           | All GND'd Irradiation Statistics                        |         |                                     |         |         |         |  |
|           | Average All GND'd                                       | 0.65784 | 2.15740                             | 1.67866 | 1.81637 | 1.87683 |  |
|           | Std Dev All GND'd                                       | 0.05926 | 1.10632                             | 0.15660 | 0.18687 | 0.03262 |  |
|           | Ps90%/90% (+KTL) All GND'd                              | 0.82034 | 5.19092                             | 2.10806 | 2.32877 | 1.96628 |  |
|           | Ps90%/90% (-KTL) All GND'd                              | 0.49535 | -0.87612                            | 1.24925 | 1.30396 | 1.78739 |  |
|           | Biased Irradiation Statistics                           |         |                                     |         |         |         |  |
|           | Average Biased                                          | 0.63553 | 1.92661                             | 1.88866 | 1.80454 | 2.02293 |  |
|           | Std Dev Biased                                          | 0.08467 | 0.21184                             | 0.12747 | 0.08577 | 0.18057 |  |
|           | Ps90%/90% (+KTL) Biased                                 | 0.86769 | 2.50749                             | 2.23818 | 2.03972 | 2.51806 |  |
|           | Ps90%/90% (-KTL) Biased                                 | 0.40336 | 1.34574                             | 1.53914 | 1.56937 | 1.52780 |  |
|           | Specification MIN                                       |         |                                     |         |         |         |  |
|           | Status (Measurements) All GND'd                         |         |                                     |         |         |         |  |
|           | Status (Measurements) Biased                            |         |                                     |         |         |         |  |
|           | Specification MAX                                       | 25      | 25                                  | 25      | 25      | 25      |  |
|           | Status (Measurements) All GND'd                         | PASS    | PASS                                | PASS    | PASS    | PASS    |  |
|           | Status (Measurements) Biased                            | PASS    | PASS                                | PASS    | PASS    | PASS    |  |
|           |                                                         |         |                                     |         |         |         |  |
|           | Status (-KTL) All GND'd                                 |         |                                     |         |         |         |  |
|           | Status (+KTL) All GND'd                                 | PASS    | PASS                                | PASS    | PASS    | PASS    |  |
|           |                                                         |         |                                     |         |         |         |  |
|           | Status (-KTL) Biased                                    |         |                                     |         |         |         |  |
|           | Status (+KTL) Biased                                    | PASS    | PASS                                | PASS    | PASS    | PASS    |  |

*Table 5.9*: Raw data for load regulation ( $V_{OUT} \le 5V$ ) versus total dose including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL).







Figure 5.10: Plot of Load Regulation ( $V_0 \ge 5V$ ) versus Total Dose



| Parameter | Load Reg @ 10mA≤I <sub>L</sub> ≤1.5A,V <sub>O</sub> ≥5V | Total Dose (Krads(Si)) @ 10 mrads/s |          |         |         | /s      |
|-----------|---------------------------------------------------------|-------------------------------------|----------|---------|---------|---------|
| Units     | (%)                                                     | 0 11 20 53                          |          |         |         | 107     |
| 242       | All GND'd Irradiation                                   | 0.04701                             | 0.32978  | 0.11397 | 0.13686 | 0.15056 |
| 243       | All GND'd Irradiation                                   | 0.04781                             | 0.13606  | 0.13966 | 0.15943 | 0.15422 |
| 245       | All GND'd Irradiation                                   | 0.05478                             | 0.14641  | 0.14414 | 0.16180 | 0.15267 |
| 246       | All GND'd Irradiation                                   | 0.05478                             | 0.11976  | 0.13121 | 0.12666 | 0.14739 |
| 247       | All GND'd Irradiation                                   | 0.05766                             | 0.13024  | 0.14251 | 0.14352 | 0.15030 |
| 237       | Biased Irradiation                                      | 0.04191                             | 0.13858  | 0.16184 | 0.15493 | 0.17780 |
| 238       | Biased Irradiation                                      | 0.05577                             | 0.14210  | 0.14072 | 0.13994 | 0.17797 |
| 239       | Biased Irradiation                                      | 0.05263                             | 0.15307  | 0.14276 | 0.14879 | 0.15497 |
| 240       | Biased Irradiation                                      | 0.05786                             | 0.18186  | 0.14917 | 0.14065 | 0.15566 |
| 241       | Biased Irradiation                                      | 0.04559                             | 0.15586  | 0.16216 | 0.13998 | 0.14671 |
| 235       | Control Unit                                            | 0.05027                             | 0.14539  | 0.15166 | 0.12541 | 0.12499 |
| 236       | Control Unit                                            | 0.04418                             | 0.16687  | 0.13641 | 0.11934 | 0.12723 |
|           | All GND'd Irradiation Statistics                        |                                     |          |         |         |         |
|           | Average All GND'd                                       | 0.05241                             | 0.17245  | 0.13430 | 0.14565 | 0.15103 |
|           | Std Dev All GND'd                                       | 0.00472                             | 0.08848  | 0.01241 | 0.01494 | 0.00259 |
|           | Ps90%/90% (+KTL) All GND'd                              | 0.06534                             | 0.41506  | 0.16832 | 0.18662 | 0.15814 |
|           | Ps90%/90% (-KTL) All GND'd                              | 0.03947                             | -0.07016 | 0.10027 | 0.10469 | 0.14392 |
|           | Biased Irradiation Statistics                           |                                     |          |         |         |         |
|           | Average Biased                                          | 0.05075                             | 0.15429  | 0.15133 | 0.14486 | 0.16262 |
|           | Std Dev Biased                                          | 0.00678                             | 0.01703  | 0.01023 | 0.00676 | 0.01437 |
|           | Ps90%/90% (+KTL) Biased                                 | 0.06935                             | 0.20098  | 0.17937 | 0.16338 | 0.20203 |
|           | Ps90%/90% (-KTL) Biased                                 | 0.03215                             | 0.10760  | 0.12328 | 0.12633 | 0.12321 |
|           | Specification MIN                                       |                                     |          |         |         |         |
|           | Status (Measurements) All GND'd                         |                                     |          |         |         |         |
|           | Status (Measurements) Biased                            |                                     |          |         |         |         |
|           | Specification MAX                                       | 0.5                                 | 0.5      | 0.5     | 0.5     | 0.5     |
|           | Status (Measurements) All GND'd                         | PASS                                | PASS     | PASS    | PASS    | PASS    |
|           | Status (Measurements) Biased                            | PASS                                | PASS     | PASS    | PASS    | PASS    |
|           |                                                         |                                     |          |         |         |         |
|           | Status (-KTL) All GND'd                                 |                                     |          |         |         |         |
|           | Status (+KTL) All GND'd                                 | PASS                                | PASS     | PASS    | PASS    | PASS    |
|           |                                                         |                                     |          |         |         |         |
|           | Status (-KTL) Biased                                    |                                     |          |         |         |         |
|           | Status (+KTL) Biased                                    | PASS                                | PASS     | PASS    | PASS    | PASS    |

*Table 5.10*: Raw data for line regulation ( $V_{OUT} \ge 5V$ ) versus total dose including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL).







Figure 5.11: Plot of Adjust Pin Current versus Total Dose



| Table 5.11: Raw data for adjust pin current versus | s total dose including the statistical calculations, |
|----------------------------------------------------|------------------------------------------------------|
| maximum specification, and the status of the test  | (PASS/FAIL)                                          |

| Parameter | Adjust Pin Current               | Total Dose (Krads(Si)) @ 10 mrads/s |          |          |          | /s       |
|-----------|----------------------------------|-------------------------------------|----------|----------|----------|----------|
| Units     | (uA)                             | 0                                   | 11       | 20       | 53       | 107      |
| 242       | All GND'd Irradiation            | 64.93076                            | 61.54178 | 62.19240 | 60.44361 | 61.54811 |
| 243       | All GND'd Irradiation            | 64.63711                            | 62.64362 | 62.98359 | 61.21208 | 62.21328 |
| 245       | All GND'd Irradiation            | 64.99596                            | 63.16557 | 63.41309 | 62.23875 | 62.59404 |
| 246       | All GND'd Irradiation            | 65.32895                            | 63.36773 | 63.68911 | 62.30861 | 62.76778 |
| 247       | All GND'd Irradiation            | 63.80703                            | 62.07425 | 62.34231 | 61.14697 | 60.06312 |
| 237       | Biased Irradiation               | 64.11142                            | 62.51170 | 62.42678 | 60.99849 | 62.03836 |
| 238       | Biased Irradiation               | 66.40501                            | 64.19262 | 64.80151 | 63.07486 | 64.43246 |
| 239       | Biased Irradiation               | 64.63949                            | 62.23355 | 62.88126 | 61.20732 | 62.35130 |
| 240       | Biased Irradiation               | 66.04498                            | 63.64706 | 64.31610 | 62.42380 | 64.03742 |
| 241       | Biased Irradiation               | 63.69298                            | 61.74493 | 62.01393 | 60.19299 | 61.51837 |
| 235       | Control Unit                     | 63.98783                            | 62.83863 | 62.42440 | 62.26223 | 62.96055 |
| 236       | Control Unit                     | 64.25407                            | 62.70432 | 63.03593 | 63.20789 | 63.41271 |
|           | All GND'd Irradiation Statistics |                                     |          |          |          |          |
|           | Average All GND'd                | 64.73996                            | 62.55859 | 62.92410 | 61.47000 | 61.83727 |
|           | Std Dev All GND'd                | 0.57658                             | 0.75810  | 0.65226  | 0.79350  | 1.09672  |
|           | Ps90%/90% (+KTL) All GND'd       | 66.32095                            | 64.63729 | 64.71259 | 63.64579 | 64.84446 |
|           | Ps90%/90% (-KTL) All GND'd       | 63.15897                            | 60.47989 | 61.13561 | 59.29422 | 58.83007 |
|           | Biased Irradiation Statistics    |                                     |          |          |          |          |
|           | Average Biased                   | 64.97878                            | 62.86597 | 63.28792 | 61.57949 | 62.87558 |
|           | Std Dev Biased                   | 1.19286                             | 1.01886  | 1.21224  | 1.15623  | 1.28370  |
|           | Ps90%/90% (+KTL) Biased          | 68.24959                            | 65.65968 | 66.61188 | 64.74987 | 66.39550 |
|           | Ps90%/90% (-KTL) Biased          | 61.70796                            | 60.07226 | 59.96396 | 58.40912 | 59.35567 |
|           | Specification MIN                |                                     |          |          |          |          |
|           | Status (Measurements) All GND'd  |                                     |          |          |          |          |
|           | Status (Measurements) Biased     |                                     |          |          |          |          |
|           | Specification MAX                | 100                                 | 100      | 100      | 100      | 100      |
|           | Status (Measurements) All GND'd  | PASS                                | PASS     | PASS     | PASS     | PASS     |
|           | Status (Measurements) Biased     | PASS                                | PASS     | PASS     | PASS     | PASS     |
|           |                                  |                                     |          |          |          |          |
|           | Status (-KTL) All GND'd          |                                     |          |          |          |          |
|           | Status (+KTL) All GND'd          | PASS                                | PASS     | PASS     | PASS     | PASS     |
|           |                                  |                                     |          |          |          |          |
|           | Status (-KTL) Biased             |                                     |          |          |          |          |
|           | Status (+KTL) Biased             | PASS                                | PASS     | PASS     | PASS     | PASS     |





Figure 5.12: Plot of Adjust Pin Current Change @  $10mA \le I_L \le 1.5A$  versus Total Dose



| Parameter | $\Delta$ Adj. Current @ 10mA $\leq$ I <sub>L</sub> $\leq$ 1.5A | Total Dose (Krads(Si)) @ 10 mrads/s |          |          |          |          |
|-----------|----------------------------------------------------------------|-------------------------------------|----------|----------|----------|----------|
| Units     | (uA)                                                           | 0 11 20 53                          |          |          |          | 107      |
| 242       | All GND'd Irradiation                                          | -0.02503                            | 0.81774  | -0.16061 | -0.09498 | -0.08567 |
| 243       | All GND'd Irradiation                                          | -0.01072                            | -0.04860 | -0.02974 | -0.04609 | -0.09044 |
| 245       | All GND'd Irradiation                                          | 0.02384                             | -0.05118 | -0.09399 | -0.06540 | -0.06544 |
| 246       | All GND'd Irradiation                                          | -0.06519                            | -0.04047 | -0.12849 | -0.05084 | -0.04879 |
| 247       | All GND'd Irradiation                                          | -0.00955                            | -0.02500 | -0.06187 | -0.10093 | -0.11067 |
| 237       | Biased Irradiation                                             | -0.04613                            | -0.06885 | 0.00000  | -0.07493 | -0.07021 |
| 238       | Biased Irradiation                                             | -0.07235                            | -0.06527 | -0.08328 | -0.10316 | -0.05831 |
| 239       | Biased Irradiation                                             | -0.10010                            | -0.10217 | -0.03568 | -0.08532 | -0.06187 |
| 240       | Biased Irradiation                                             | -0.07389                            | -0.09881 | -0.03213 | -0.08546 | -0.01905 |
| 241       | Biased Irradiation                                             | -0.06793                            | -0.07478 | -0.05829 | -0.07730 | -0.10352 |
| 235       | Control Unit                                                   | -0.01788                            | -0.05119 | -0.04165 | -0.03181 | -0.04165 |
| 236       | Control Unit                                                   | -0.10453                            | -0.03094 | -0.02499 | -0.08072 | -0.09043 |
|           | All GND'd Irradiation Statistics                               | _                                   | _        | _        |          |          |
|           | Average All GND'd                                              | -0.01733                            | 0.13050  | -0.09494 | -0.07165 | -0.08020 |
|           | Std Dev All GND'd                                              | 0.03221                             | 0.38432  | 0.05192  | 0.02514  | 0.02381  |
|           | Ps90%/90% (+KTL) All GND'd                                     | 0.07098                             | 1.18430  | 0.04742  | -0.00273 | -0.01492 |
|           | Ps90%/90% (-KTL) All GND'd                                     | -0.10564                            | -0.92330 | -0.23731 | -0.14057 | -0.14548 |
|           | Biased Irradiation Statistics                                  | _                                   |          | -        |          |          |
|           | Average Biased                                                 | -0.07208                            | -0.08197 | -0.04188 | -0.08523 | -0.06259 |
|           | Std Dev Biased                                                 | 0.01923                             | 0.01728  | 0.03111  | 0.01107  | 0.03020  |
|           | Ps90%/90% (+KTL) Biased                                        | -0.01935                            | -0.03459 | 0.04342  | -0.05487 | 0.02022  |
|           | Ps90%/90% (-KTL) Biased                                        | -0.12481                            | -0.12936 | -0.12718 | -0.11560 | -0.14540 |
|           | Specification MIN                                              |                                     |          |          |          |          |
|           | Status (Measurements) All GND'd                                |                                     |          |          |          |          |
|           | Status (Measurements) Biased                                   |                                     |          |          |          |          |
|           | Specification MAX                                              | 5                                   | 5        | 5        | 5        | 5        |
|           | Status (Measurements) All GND'd                                | PASS                                | PASS     | PASS     | PASS     | PASS     |
|           | Status (Measurements) Biased                                   | PASS                                | PASS     | PASS     | PASS     | PASS     |
|           |                                                                |                                     |          |          |          |          |
|           | Status (-KTL) All GND'd                                        |                                     |          |          |          |          |
|           | Status (+KTL) All GND'd                                        | PASS                                | PASS     | PASS     | PASS     | PASS     |
|           |                                                                |                                     |          |          |          |          |
|           | Status (-KTL) Biased                                           |                                     |          |          |          |          |
|           | Status (+KTL) Biased                                           | PASS                                | PASS     | PASS     | PASS     | PASS     |

*Table 5.12*: Raw data for adjust pin current change @  $10mA \le I_L \le 1.5A$  versus total dose including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL)





Figure 5.13: Plot of Adjust Pin Current Change @  $3V \le |V_1 - V_0| \le 30V$  versus Total Dose





| Table 5.1 | 3: Ra | w data tabl | e for adjust pir | n current cha | ange @ 3V ≤  \ | /1 – Va | o ≤3 | 0V vers | us f | total | dose |
|-----------|-------|-------------|------------------|---------------|----------------|---------|------|---------|------|-------|------|
| including | the   | statistical | calculations,    | maximum       | specification, | and     | the  | status  | of   | the   | test |
| (PASS/FA  | AIL)  |             |                  |               |                |         |      |         |      |       |      |

| Parameter | $\Delta$ Adj Current @ 3V $\leq$  V <sub>I</sub> -V <sub>O</sub>   $\leq$ 30V | / Total Dose (Krads(Si)) @ 10 mrads/s |          |          |          |          |
|-----------|-------------------------------------------------------------------------------|---------------------------------------|----------|----------|----------|----------|
| Units     | (uA)                                                                          | 0                                     | 11       | 20       | 53       | 107      |
| 242       | All GND'd Irradiation                                                         | -0.12836                              | -0.08928 | -0.10470 | -0.10806 | -0.08568 |
| 243       | All GND'd Irradiation                                                         | -0.10572                              | -0.11407 | -0.11422 | -0.11385 | -0.13446 |
| 245       | All GND'd Irradiation                                                         | -0.13228                              | -0.09146 | -0.01189 | -0.11890 | -0.11899 |
| 246       | All GND'd Irradiation                                                         | -0.13431                              | -0.11883 | -0.08447 | -0.09959 | -0.07854 |
| 247       | All GND'd Irradiation                                                         | -0.15457                              | -0.08073 | -0.10351 | -0.10330 | -0.16540 |
| 237       | Biased Irradiation                                                            | -0.10095                              | -0.07599 | -0.11302 | -0.07135 | 0.27131  |
| 238       | Biased Irradiation                                                            | -0.04409                              | -0.10456 | -0.09517 | -0.07104 | -0.04641 |
| 239       | Biased Irradiation                                                            | -0.07628                              | -0.07381 | -0.12256 | -0.10553 | -0.11185 |
| 240       | Biased Irradiation                                                            | -0.02980                              | -0.09047 | -0.04639 | -0.10330 | -0.09520 |
| 241       | Biased Irradiation                                                            | -0.07270                              | -0.12002 | -0.04283 | -0.10345 | -0.07734 |
| 235       | Control Unit                                                                  | -0.19747                              | -0.06288 | -0.05355 | -0.08651 | -0.04165 |
| 236       | Control Unit                                                                  | -0.05805                              | -0.11407 | -0.12254 | -0.13423 | -0.11067 |
|           | All GND'd Irradiation Statistics                                              |                                       |          |          |          |          |
|           | Average All GND'd                                                             | -0.13105                              | -0.09887 | -0.08376 | -0.10874 | -0.11661 |
|           | Std Dev All GND'd                                                             | 0.01742                               | 0.01662  | 0.04160  | 0.00780  | 0.03574  |
|           | Ps90%/90% (+KTL) All GND'd                                                    | -0.08328                              | -0.05329 | 0.03031  | -0.08737 | -0.01860 |
|           | Ps90%/90% (-KTL) All GND'd                                                    | -0.17882                              | -0.14446 | -0.19782 | -0.13012 | -0.21462 |
|           | Biased Irradiation Statistics                                                 |                                       |          |          |          |          |
|           | Average Biased                                                                | -0.06476                              | -0.09297 | -0.08399 | -0.09093 | -0.01190 |
|           | Std Dev Biased                                                                | 0.02808                               | 0.01954  | 0.03729  | 0.01804  | 0.16016  |
|           | Ps90%/90% (+KTL) Biased                                                       | 0.01224                               | -0.03938 | 0.01827  | -0.04146 | 0.42727  |
|           | Ps90%/90% (-KTL) Biased                                                       | -0.14177                              | -0.14656 | -0.18625 | -0.14041 | -0.45106 |
|           | Specification MIN                                                             |                                       |          |          |          |          |
|           | Status (Measurements) All GND'd                                               |                                       |          |          |          |          |
|           | Status (Measurements) Biased                                                  |                                       |          |          |          |          |
|           | Specification MAX                                                             | 5                                     | 5        | 5        | 5        | 5        |
|           | Status (Measurements) All GND'd                                               | PASS                                  | PASS     | PASS     | PASS     | PASS     |
|           | Status (Measurements) Biased                                                  | PASS                                  | PASS     | PASS     | PASS     | PASS     |
|           |                                                                               |                                       |          |          |          |          |
|           | Status (-KTL) All GND'd                                                       |                                       |          |          |          |          |
|           | Status (+KTL) All GND'd                                                       | PASS                                  | PASS     | PASS     | PASS     | PASS     |
|           |                                                                               |                                       |          |          |          |          |
|           | Status (-KTL) Biased                                                          |                                       |          |          |          |          |
|           | Status (+KTL) Biased                                                          | PASS                                  | PASS     | PASS     | PASS     | PASS     |





Figure 5.14: Plot of Minimum Load Current @  $|V_1 - V_0| = 30V$  versus Total Dose



| Parameter | Min Load Current @ $ V_1 - V_0  = 30V$ | / Total Dose (Krads(Si)) @ 10 mrads/s |         |         |         |         |
|-----------|----------------------------------------|---------------------------------------|---------|---------|---------|---------|
| Units     | (mA)                                   | 0                                     | 11      | 20      | 53      | 107     |
| 242       | All GND'd Irradiation                  | 1.63222                               | 1.64761 | 1.64501 | 1.65626 | 1.67490 |
| 243       | All GND'd Irradiation                  | 1.63839                               | 1.65302 | 1.64799 | 1.65504 | 1.67947 |
| 245       | All GND'd Irradiation                  | 1.64328                               | 1.65821 | 1.65592 | 1.67332 | 1.68709 |
| 246       | All GND'd Irradiation                  | 1.65874                               | 1.66720 | 1.66507 | 1.67956 | 1.69380 |
| 247       | All GND'd Irradiation                  | 1.61270                               | 1.62971 | 1.62458 | 1.63447 | 1.63906 |
| 237       | Biased Irradiation                     | 1.62376                               | 1.64128 | 1.63830 | 1.65177 | 1.67863 |
| 238       | Biased Irradiation                     | 1.67324                               | 1.68503 | 1.68169 | 1.69570 | 1.72369 |
| 239       | Biased Irradiation                     | 1.63709                               | 1.64769 | 1.65020 | 1.66320 | 1.68900 |
| 240       | Biased Irradiation                     | 1.67857                               | 1.69083 | 1.69008 | 1.69943 | 1.72918 |
| 241       | Biased Irradiation                     | 1.60919                               | 1.62407 | 1.62511 | 1.63851 | 1.66346 |
| 235       | Control Unit                           | 1.63038                               | 1.63794 | 1.63220 | 1.63417 | 1.63769 |
| 236       | Control Unit                           | 1.61948                               | 1.62894 | 1.62336 | 1.62939 | 1.62679 |
|           | All GND'd Irradiation Statistics       |                                       |         |         |         |         |
|           | Average All GND'd                      | 1.63707                               | 1.65115 | 1.64771 | 1.65973 | 1.67486 |
|           | Std Dev All GND'd                      | 0.01679                               | 0.01399 | 0.01509 | 0.01767 | 0.02128 |
|           | Ps90%/90% (+KTL) All GND'd             | 1.68310                               | 1.68952 | 1.68909 | 1.70819 | 1.73321 |
|           | Ps90%/90% (-KTL) All GND'd             | 1.59103                               | 1.61278 | 1.60633 | 1.61127 | 1.61652 |
|           | Biased Irradiation Statistics          |                                       |         |         |         |         |
|           | Average Biased                         | 1.64437                               | 1.65778 | 1.65707 | 1.66972 | 1.69679 |
|           | Std Dev Biased                         | 0.03049                               | 0.02892 | 0.02791 | 0.02691 | 0.02861 |
|           | Ps90%/90% (+KTL) Biased                | 1.72797                               | 1.73707 | 1.73361 | 1.74350 | 1.77524 |
|           | Ps90%/90% (-KTL) Biased                | 1.56076                               | 1.57849 | 1.58054 | 1.59594 | 1.61835 |
|           | Specification MIN                      |                                       |         |         |         |         |
|           | Status (Measurements) All GND'd        |                                       |         |         |         |         |
|           | Status (Measurements) Biased           |                                       |         |         |         |         |
|           | Specification MAX                      | 5                                     | 5       | 5       | 5       | 5       |
|           | Status (Measurements) All GND'd        | PASS                                  | PASS    | PASS    | PASS    | PASS    |
|           | Status (Measurements) Biased           | PASS                                  | PASS    | PASS    | PASS    | PASS    |
|           |                                        |                                       |         |         |         |         |
|           | Status (-KTL) All GND'd                |                                       |         |         |         |         |
|           | Status (+KTL) All GND'd                | PASS                                  | PASS    | PASS    | PASS    | PASS    |
|           |                                        |                                       |         |         |         |         |
|           | Status (-KTL) Biased                   |                                       |         |         |         |         |
|           | Status (+KTL) Biased                   | PASS                                  | PASS    | PASS    | PASS    | PASS    |

*Table 5.14*: Raw data table for minimum load current  $@|V_1 - V_0| = 30V$  versus total dose including the statistical calculations, maximum specification, and the status of the test (PASS/FAIL)





Figure 5.15: Plot of Minimum Load Current @  $|V_i - V_0| = 10V$  versus Total Dose



| Table 5.15: Raw data table for minimum load current @ $ V_1 - V_0  = 10V$ versus total dose includin | g |
|------------------------------------------------------------------------------------------------------|---|
| the statistical calculations, maximum specification, and the status of the test (PASS/FAIL)          | - |

| Parameter | Min Load Current @ $ V_1 - V_0  = 10V$ | / Total Dose (Krads(Si)) @ 10 mrads/s |         |         |         |         |
|-----------|----------------------------------------|---------------------------------------|---------|---------|---------|---------|
| Units     | (mA)                                   | 0                                     | 11      | 20      | 53      | 107     |
| 242       | All GND'd Irradiation                  | 1.25469                               | 1.25843 | 1.26688 | 1.26511 | 1.30445 |
| 243       | All GND'd Irradiation                  | 1.25894                               | 1.26559 | 1.27077 | 1.26816 | 1.30338 |
| 245       | All GND'd Irradiation                  | 1.26460                               | 1.26963 | 1.27664 | 1.28482 | 1.31626 |
| 246       | All GND'd Irradiation                  | 1.27413                               | 1.27901 | 1.28625 | 1.28848 | 1.32084 |
| 247       | All GND'd Irradiation                  | 1.23828                               | 1.24440 | 1.25178 | 1.25467 | 1.25901 |
| 237       | Biased Irradiation                     | 1.25537                               | 1.27047 | 1.27230 | 1.27942 | 1.32656 |
| 238       | Biased Irradiation                     | 1.28952                               | 1.28998 | 1.30211 | 1.30158 | 1.34958 |
| 239       | Biased Irradiation                     | 1.25719                               | 1.26217 | 1.27115 | 1.27722 | 1.31817 |
| 240       | Biased Irradiation                     | 1.30348                               | 1.29974 | 1.31278 | 1.30797 | 1.36208 |
| 241       | Biased Irradiation                     | 1.23410                               | 1.24440 | 1.25422 | 1.25749 | 1.30788 |
| 235       | Control Unit                           | 1.25537                               | 1.25996 | 1.25224 | 1.25194 | 1.26259 |
| 236       | Control Unit                           | 1.24371                               | 1.24768 | 1.24637 | 1.25019 | 1.25169 |
|           | All GND'd Irradiation Statistics       |                                       |         |         |         |         |
|           | Average All GND'd                      | 1.25813                               | 1.26341 | 1.27047 | 1.27225 | 1.30079 |
|           | Std Dev All GND'd                      | 0.01327                               | 0.01297 | 0.01274 | 0.01413 | 0.02453 |
|           | Ps90%/90% (+KTL) All GND'd             | 1.29451                               | 1.29897 | 1.30540 | 1.31098 | 1.36805 |
|           | Ps90%/90% (-KTL) All GND'd             | 1.22174                               | 1.22785 | 1.23553 | 1.23351 | 1.23352 |
|           | Biased Irradiation Statistics          |                                       |         |         |         |         |
|           | Average Biased                         | 1.26793                               | 1.27335 | 1.28251 | 1.28473 | 1.33285 |
|           | Std Dev Biased                         | 0.02805                               | 0.02205 | 0.02416 | 0.02032 | 0.02243 |
|           | Ps90%/90% (+KTL) Biased                | 1.34485                               | 1.33380 | 1.34875 | 1.34044 | 1.39437 |
|           | Ps90%/90% (-KTL) Biased                | 1.19101                               | 1.21290 | 1.21628 | 1.22903 | 1.27134 |
|           | Specification MIN                      |                                       |         |         |         |         |
|           | Status (Measurements) All GND'd        |                                       |         |         |         |         |
|           | Status (Measurements) Biased           |                                       |         |         |         |         |
|           | Specification MAX                      | 3                                     | 3       | 3       | 3       | 3       |
|           | Status (Measurements) All GND'd        | PASS                                  | PASS    | PASS    | PASS    | PASS    |
|           | Status (Measurements) Biased           | PASS                                  | PASS    | PASS    | PASS    | PASS    |
|           |                                        |                                       |         |         |         |         |
|           | Status (-KTL) All GND'd                |                                       |         |         |         |         |
|           | Status (+KTL) All GND'd                | PASS                                  | PASS    | PASS    | PASS    | PASS    |
|           |                                        |                                       |         |         |         |         |
|           | Status (-KTL) Biased                   |                                       |         |         |         |         |
|           | Status (+KTL) Biased                   | PASS                                  | PASS    | PASS    | PASS    | PASS    |





Figure 5.16: Plot of Current Limit @  $|V_I - V_O| = 15V$  versus Total Dose



| Parameter | Current Limit @ $ V_1 - V_0  = 15V$ | Total Dose (Krads(Si)) @ 10 mrads/s |         |         |         |         |
|-----------|-------------------------------------|-------------------------------------|---------|---------|---------|---------|
| Units     | (A)                                 | 0                                   | 11      | 20      | 53      | 107     |
| 242       | All GND'd Irradiation               | 2.24928                             | 2.23920 | 2.27772 | 2.28615 | 2.32123 |
| 243       | All GND'd Irradiation               | 2.29793                             | 2.27990 | 2.31844 | 2.33043 | 2.35530 |
| 245       | All GND'd Irradiation               | 2.23461                             | 2.22831 | 2.25810 | 2.28005 | 2.30223 |
| 246       | All GND'd Irradiation               | 2.26244                             | 2.25106 | 2.27677 | 2.29386 | 2.32099 |
| 247       | All GND'd Irradiation               | 2.37463                             | 2.35240 | 2.40354 | 2.41968 | 2.42534 |
| 237       | Biased Irradiation                  | 2.42781                             | 2.42474 | 2.46529 | 2.48619 | 2.53768 |
| 238       | Biased Irradiation                  | 2.29289                             | 2.27296 | 2.30851 | 2.32546 | 2.36928 |
| 239       | Biased Irradiation                  | 2.31524                             | 2.29390 | 2.34091 | 2.35473 | 2.39183 |
| 240       | Biased Irradiation                  | 2.40427                             | 2.37575 | 2.43112 | 2.43866 | 2.48095 |
| 241       | Biased Irradiation                  | 2.39369                             | 2.39016 | 2.44627 | 2.45955 | 2.50753 |
| 235       | Control Unit                        | 2.29468                             | 2.27768 | 2.29914 | 2.30424 | 2.30660 |
| 236       | Control Unit                        | 2.40097                             | 2.37895 | 2.42135 | 2.43379 | 2.42165 |
|           | All GND'd Irradiation Statistics    |                                     |         |         |         |         |
|           | Average All GND'd                   | 2.28378                             | 2.27017 | 2.30691 | 2.32203 | 2.34502 |
|           | Std Dev All GND'd                   | 0.05594                             | 0.04983 | 0.05834 | 0.05799 | 0.04882 |
|           | Ps90%/90% (+KTL) All GND'd          | 2.43716                             | 2.40681 | 2.46687 | 2.48103 | 2.47887 |
|           | Ps90%/90% (-KTL) All GND'd          | 2.13039                             | 2.13353 | 2.14695 | 2.16303 | 2.21117 |
|           | Biased Irradiation Statistics       |                                     |         |         |         |         |
|           | Average Biased                      | 2.36678                             | 2.35150 | 2.39842 | 2.41292 | 2.45745 |
|           | Std Dev Biased                      | 0.05910                             | 0.06507 | 0.06932 | 0.06935 | 0.07345 |
|           | Ps90%/90% (+KTL) Biased             | 2.52883                             | 2.52991 | 2.58850 | 2.60309 | 2.65885 |
|           | Ps90%/90% (-KTL) Biased             | 2.20474                             | 2.17309 | 2.20834 | 2.22275 | 2.25606 |
|           | Specification MIN                   | 1.5                                 | 1.5     | 1.5     | 1.5     | 1.5     |
|           | Status (Measurements) All GND'd     | PASS                                | PASS    | PASS    | PASS    | PASS    |
|           | Status (Measurements) Biased        | PASS                                | PASS    | PASS    | PASS    | PASS    |
|           | Specification MAX                   |                                     |         |         |         |         |
|           | Status (Measurements) All GND'd     |                                     |         |         |         |         |
|           | Status (Measurements) Biased        |                                     |         |         |         |         |
|           |                                     |                                     |         |         |         |         |
|           | Status (-KTL) All GND'd             | PASS                                | PASS    | PASS    | PASS    | PASS    |
|           | Status (+KTL) All GND'd             |                                     |         |         |         |         |
|           |                                     |                                     |         |         |         |         |
|           | Status (-KTL) Biased                | PASS                                | PASS    | PASS    | PASS    | PASS    |
|           | Status (+KTL) Biased                |                                     |         |         |         |         |

*Table 5.16*: Raw data table for current limit @  $|V_1 - V_0| = 15V$  versus total dose including the statistical calculations, minimum specification, and the status of the test (PASS/FAIL)





Figure 5.17: Plot of Current Limit @  $|V_I - V_O| = 30V$  versus Total Dose



| Parameter | Current Limit @ $ V_1 - V_0  = 30V$ | Total Dose (Krads(Si)) @ 10 mrads/s |          |          |          |          |
|-----------|-------------------------------------|-------------------------------------|----------|----------|----------|----------|
| Units     | (mA)                                | 0                                   | 11       | 20       | 53       | 107      |
| 242       | All GND'd Irradiation               | 1039.226                            | 1012.808 | 1050.692 | 1048.336 | 1090.681 |
| 243       | All GND'd Irradiation               | 1056.015                            | 1027.891 | 1063.897 | 1061.075 | 1101.195 |
| 245       | All GND'd Irradiation               | 1021.894                            | 997.936  | 1028.650 | 1039.937 | 1067.998 |
| 246       | All GND'd Irradiation               | 1027.389                            | 1001.463 | 1031.171 | 1037.407 | 1071.602 |
| 247       | All GND'd Irradiation               | 1126.300                            | 1100.503 | 1138.119 | 1147.238 | 1147.356 |
| 237       | Biased Irradiation                  | 1144.373                            | 1129.720 | 1161.099 | 1169.971 | 1229.771 |
| 238       | Biased Irradiation                  | 1046.537                            | 1014.129 | 1051.730 | 1054.049 | 1101.987 |
| 239       | Biased Irradiation                  | 1070.831                            | 1033.377 | 1076.954 | 1079.557 | 1124.497 |
| 240       | Biased Irradiation                  | 1109.104                            | 1070.272 | 1115.380 | 1112.900 | 1168.969 |
| 241       | Biased Irradiation                  | 1135.365                            | 1114.993 | 1157.650 | 1158.752 | 1219.450 |
| 235       | Control Unit                        | 1066.573                            | 1041.905 | 1056.987 | 1061.302 | 1065.859 |
| 236       | Control Unit                        | 1132.580                            | 1100.904 | 1135.668 | 1148.509 | 1139.470 |
|           | All GND'd Irradiation Statistics    |                                     |          |          |          |          |
|           | Average All GND'd                   | 1054.165                            | 1028.120 | 1062.506 | 1066.799 | 1095.766 |
|           | Std Dev All GND'd                   | 42.392                              | 42.117   | 44.685   | 45.906   | 31.905   |
|           | Ps90%/90% (+KTL) All GND'd          | 1170.404                            | 1143.606 | 1185.032 | 1192.674 | 1183.251 |
|           | Ps90%/90% (-KTL) All GND'd          | 937.925                             | 912.634  | 939.980  | 940.924  | 1008.282 |
|           | Biased Irradiation Statistics       |                                     |          |          |          |          |
|           | Average Biased                      | 1101.242                            | 1072.498 | 1112.563 | 1115.046 | 1168.935 |
|           | Std Dev Biased                      | 41.845                              | 50.056   | 48.387   | 49.779   | 56.368   |
|           | Ps90%/90% (+KTL) Biased             | 1215.980                            | 1209.753 | 1245.239 | 1251.539 | 1323.497 |
|           | Ps90%/90% (-KTL) Biased             | 986.504                             | 935.244  | 979.886  | 978.553  | 1014.373 |
|           | Specification MIN                   | 240                                 | 240      | 240      | 240      | 240      |
|           | Status (Measurements) All GND'd     | PASS                                | PASS     | PASS     | PASS     | PASS     |
|           | Status (Measurements) Biased        | PASS                                | PASS     | PASS     | PASS     | PASS     |
|           | Specification MAX                   |                                     |          |          |          |          |
|           | Status (Measurements) All GND'd     |                                     |          |          |          |          |
|           | Status (Measurements) Biased        |                                     |          |          |          |          |
|           |                                     |                                     |          |          |          |          |
|           | Status (-KTL) All GND'd             | PASS                                | PASS     | PASS     | PASS     | PASS     |
|           | Status (+KTL) All GND'd             |                                     |          |          |          |          |
|           |                                     |                                     |          |          |          |          |
|           | Status (-KTL) Biased                | PASS                                | PASS     | PASS     | PASS     | PASS     |
|           | Status (+KTL) Biased                |                                     |          |          |          |          |

*Table 5.17*: Raw data table for current limit @  $|V_1 - V_0| = 30V$  versus total dose including the statistical calculations, minimum specification, and the status of the test (PASS/FAIL)



# Appendix A



Figure A1: Top View showing ID and Date Code



# Appendix B

## **Radiation Bias Connection Tables**

Table B1: Biased Conditions

| PIN | FUNCTION | <b>CONNECTION / BIAS</b> |
|-----|----------|--------------------------|
| 1   | ADJUST   | To +15V via 2KΩ          |
| 2   | OUTPUT   | To +15V via 243Ω         |
| 3   | INPUT    | To -15V                  |

## Table B2: All GND'd

| PIN | FUNCTION | <b>CONNECTION / BIAS</b> |
|-----|----------|--------------------------|
| 1   | ADJUST   | Ground                   |
| 2   | OUTPUT   | Ground                   |
| 3   | INPUT    | Ground                   |













Figure B3: Bias Board (top view)



Figure B4: Bias Board (bottom view)



Appendix C



WARNING - This document contains technical data whose export is restricted by the Arms Export Control Act (Title 22, U.S.C., Sec 2751, et seq.) or the Export Administration Act of 1979 (Title 50, U.S.C., App. 2401 et seq.), as amended. Violations of these export laws are subject to severe criminal penalties. Disseminate in accordance with provisions of DoD Directive 5230.25.



| REQUEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FOR AND                                               | RESULT                                        | S OF TES                                                                                                                                                                     | STS                                  |                                        | PAGE NO.<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NO. OF PAGES<br>36                                                                             |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SE                                                    | CTION A - RE                                  | QUEST FOR                                                                                                                                                                    | TEST                                 |                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                |  |  |
| 1. TO: (Include ZIP Code)<br>Defense Microelectronics Activity<br>Science and Engineering Gamma Irradiation T<br>4234 54th Street<br>McClellan, CA 95652-2100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | est Facility                                          |                                               | 2. FROM: (Include ZIP Code)<br>Dr. Sana Rezgui<br>Linear Technology Corp.<br>1630 McCarthy Blvd.<br>Milpitas, CA 95035<br>Phone: (408) 432-1900<br>Email: wrzezui@linear.com |                                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                |  |  |
| 3. PRIME CONTRACTOR AND ADDRESS (Indi<br>Same as block 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ude ZIP Code)                                         |                                               | <ol> <li>MANUFACTURING PLANT NAME AND ADDRESS (Include ZIP Code)</li> <li>Linear Technology Corp.</li> <li>1630 McCarthy Blvd.</li> <li>Milpitas, CA 95035</li> </ol>        |                                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                |  |  |
| CONTRACT NUMBER CRADA CR-08-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                               | P.O. NUMBE                                                                                                                                                                   | R TBD                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                |  |  |
| 5. END ITEM AND/OR PROJECT<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       | 6. SAMPLE<br>NUMBER<br>N/A                    | 7. LOT NO.<br>See below                                                                                                                                                      | 8. REASON I<br>Total Io              | FOR SUBMITTAL<br>onizing Dose (TID) Te | sting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9. DATE<br>SUBMITTED<br>2013-08-26                                                             |  |  |
| 10. MATERIAL TO BE TESTED 10a. QUANTI<br>Various biased/unbiased devices - see<br>below Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TY SUBMITTED<br>e below                               | 11. QUANTITY<br>REPRESEN<br>N                 | ITED<br>//A                                                                                                                                                                  | 12. SPEC. &<br>SAMPLE                | AMEND AND/OR DRA<br>& DATE<br>N/A      | DR DRAWING NO. & REV. FOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                |  |  |
| 13. PURCHASED FROM OR SOURCE<br>Linear Technology Corp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | 14. SHIPMENT<br>Hand                          | METHOD<br>carry                                                                                                                                                              | 15. DATE SA                          | MPLED AND SUBMIT<br>2013-10-23 by To   | ITED BY<br>Fom Shepherd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                |  |  |
| 10. REMARKS AND/OR SPECIAL INSTRUCTIONS AND/OR WAIVERS.         Dose Rate:       10 ±10% mrad(SiO2)/sec       Irradiation Steps: 4       Type of Test: Customer-Performed         Total Dose:       see below ±10% krad(SiO2)       Requested Test Start Date: 2013-10-21       Dimensions: Various         Security Requirements, Safety or Handling Precautions:       Customer to perform pre- and post-irradiation electrical testing. Parts may be packed by customer in dry         ice for transport.       Irradiation prior of testing to be conducted per MIL-STD-383H, Test Method 1019.8, Condition D. Customer reserves right to modify parameters, devices, etc. to suit test requirements. Some or all of these devices may be irradiated is as follows:         Description of parts to be irradiated is as follows:       MSK1956RH (RH345MK): fab tot #WD005772, assy tot #N/A, WFR #9: 10, 30, 50, and 100 krad; 15 pieces, biased         MSK1956RH (RH345MK): fab tot #WD005772, assy tot #N/A, WFR #9: 10, 30, 50, and 100 krad; 10 pieces, biased         MSK1956RH (RH345MK): fab tot #WD005772, assy tot #N/A, WFR #7: 10, 30, 50 and 100 krad; 10 pieces, biased         RH1086KA7AB-LCS: fab tot #WP0058R1, assy tot #N/A, WFR #7: 10, 30, 50 and 100 krad; 10 pieces, biased         RH1086KA7S-CS: fab tot #WP0058R1, assy tot #N/A, WFR #5: quantity and dose levels TBD         Device boad:       device type, quantity, and dose levels TBD         Experiment #:       2014-NRC-009       DMEA Approval:         MEMEMENT FOR THOM       MEMENTERMENT         MSL128E208940 |                                                       |                                               |                                                                                                                                                                              |                                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                |  |  |
| SECTION B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RESULTS OF T                                          | EST (Continue                                 | e on plain white                                                                                                                                                             | e paper if mo                        | re space is required                   | 1)<br>IDED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                |  |  |
| 2013-10-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 DATE RESU                                           | 2014-1                                        | 2-10                                                                                                                                                                         |                                      | 3. DAB REPORT NON                      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |  |  |
| 4. TEST PERFORMED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RESULTS OF                                            | TEST                                          | s                                                                                                                                                                            | AMPLE RESU                           | JLT                                    | REQUIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IEMENTS                                                                                        |  |  |
| Please see following pages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                               |                                                                                                                                                                              |                                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                |  |  |
| DATE TYPED NAME AND TI<br>2014-12-10 Thomas J. Shephe<br>2014-12-10 Mohammad Arsha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TLE OF PERSON C<br>rd, SEGIT Tecl<br>rd, Alt. SEGIT 1 | ONDUCTING TE<br>inical Manag<br>Facility Supe | er s<br>rvisor A                                                                                                                                                             | IGNATURE<br>HEPHERD.TH<br>RSHAD.MOHA | IOMAS J. 125523594                     | July signal by SHEPHERS I<br>Carling and the Sheet and Carling<br>Sheet and Carling Sheet and Carling<br>Sheet and Carling Sheet and Carling<br>Sheet and Carling Sheet and Carling<br>And Carling Sheet and Carling Sheet and<br>And Carling Sheet and Carling Sheet and<br>Sheet and Carling Sheet and Carling<br>Sheet and Carling Sheet and Carling Sheet and Carling Sheet and Carling<br>Sheet and Carling Sheet and Carlin | NOWALL CREEKE<br>AFORD AFFS, MFORD,<br>2006<br>AFORD AFFS, MFORD<br>AFORD, AFFS, MFORD<br>2007 |  |  |



| Con | tinuation of DD Form 1222              |           |              |           | Experiment #: | 2014-NRC-009                       |                                                                   | Page 12 of 36 |
|-----|----------------------------------------|-----------|--------------|-----------|---------------|------------------------------------|-------------------------------------------------------------------|---------------|
| 4.  | Test Performed                         |           | Results      | of Test   |               | Sample Result                      | Requirements                                                      | Step No.      |
|     | 20140729 20:40:00 to 20140804 13:54:49 | 4.920E+03 | rad(SiO2) at | 5.975E-01 | rad(SiO2)/min | LTC Devices D, F, H, I, WFR #2 - S | Ns D4, F4, H4, I4: 4.92 krad SD, 196.504 krad TD                  | 24            |
|     | 20140729 20:40:00 to 20140804 13:54:49 | 4.920E+03 | rad(SiO2) at | 5.975E-01 | rad(SiO2)/min | LTC Devices G, E, N, WFR #2 - S/N  | vs G4, E4, N4: 4.92 krad SD, 185.584 krad TD                      | 24            |
|     | 20140729 20:40:00 to 20140804 13:54:49 | 4.920E+03 | rad(SiO2) at | 5.975E-01 | rad(SiO2)/min | LTC Devices C, K, L, M, R, S, WFR  | R #2 - S/Ns C4, K4, L4, M4, R4, S4: 4.92 krad SD, 172.284 krad TD | 24            |
|     | 20140729 20:40:00 to 20140804 13:54:49 | 4.920E+03 | rad(SiO2) at | 5.975E-01 | rad(SiO2)/min | BIPC150-RH6016, WFR #10, S/Ns I    | E1, H1, I1: 4.92 krad SD, 93.704 krad TD                          | 24            |
|     | 20140729 20:40:00 to 20140804 13:54:49 | 4.920E+03 | rad(SiO2) at | 5.975E-01 | rad(SiO2)/min | RH1498MW, WFR #7, S/Ns 821-83      | 0: 4.92 krad SD, 61.999 krad TD                                   | 24            |
|     | 20140729 20:40:00 to 20140804 13:54:49 | 4.920E+03 | rad(SiO2) at | 5.975E-01 | rad(SiO2)/min | RH1965MK, WFR #2, S/Ns 1, 3-9, 1   | 11-12: 4.92 krad SD, 61.999 krad TD                               | 24            |
|     | 20140729 20:40:00 to 20140804 13:54:49 | 4.920E+03 | rad(SiO2) at | 5.975E-01 | rad(SiO2)/min | RH1963MK, WFR #11, S/Ns 3-7, 9-    | -11, 13-14: 4.92 krad SD, 61.999 krad TD                          | 24            |
|     | 20140729 20:40:00 to 20140804 13:54:49 | 4.920E+03 | rad(SiO2) at | 5.975E-01 | rad(SiO2)/min | LT1965, WFR #N/A, S/Ns 21-30: 4    | .92 krad SD, 63.693 krad TD                                       | 24            |
|     | 20140729 20:40:00 to 20140804 13:54:49 | 4.920E+03 | rad(SiO2) at | 5.975E-01 | rad(SiO2)/min | RH1086MH (6RH1086BHK), WFR         | #4, S/Ns 662-671: 4.92 krad SD, 61.999 krad TD                    | 24            |
|     | 20140729 20:40:00 to 20140804 13:54:49 | 4.920E+03 | rad(SiO2) at | 5.975E-01 | rad(SiO2)/min | BIPC150, WFR #6, S/Ns D4LTC &      | H4LTC: 4.92 krad SD, 30.705 krad TD                               | 24            |
|     | 20140729 20:40:00 to 20140804 13:54:49 | 4.920E+03 | rad(SiO2) at | 5.975E-01 | rad(SiO2)/min | RH3480-J14, WFR #8, S/Ns 2-8: 4.9  | 92 krad SD, 18.209 krad TD                                        | 24            |
|     | 20140729 20:40:00 to 20140804 13:54:49 | 4.920E+03 | rad(SiO2) at | 5.975E-01 | rad(SiO2)/min | RH1084MK-CS, WFR #5, S/Ns 1-6,     | 8-10: 4.92 krad SD, 110.207 krad TD                               | 24            |
|     | 20140729 20:40:00 to 20140804 13:54:49 | 4.920E+03 | rad(SiO2) at | 5.975E-01 | rad(SiO2)/min | RH137K (6RH137BKK*12), WFR #       | 43, S/Ns 0237-0243, 0245-0247: 4.92 krad SD, 10.2 krad TD         | 24            |
|     | 20140729 20:40:00 to 20140804 13:54:49 | 4.920E+03 | rad(SiO2) at | 5.975E-01 | rad(SiO2)/min | BIPC150 SB Devices, S/Ns H5LTC-    | GP (WFR #1) & H6LTC-GP (WFR #2): 4.92 krad SD, 10.2 krad TD       | 24            |
|     | 20140729 20:40:00 to 20140804 13:54:49 | 4.920E+03 | rad(SiO2) at | 5.975E-01 | rad(SiO2)/min | RH1085MK-CS, WFR #12, S/Ns 1-2     | 10: 4.92 krad SD, 4.92 krad TD                                    | 24            |
|     | 20140804 15:16:00 to 20140805 13:38:18 | 8.010E+02 | rad(SiO2) at | 5.967E-01 | rad(SiO2)/min | RH1498MW, WFR #7, S/Ns 821-83      | 0: 0.801 krad SD, 62.8 krad TD                                    | 25            |
|     | 20140804 15:16:00 to 20140805 13:38:18 | 8.010E+02 | rad(SiO2) at | 5.967E-01 | rad(SiO2)/min | RH1965MK, WFR #2, S/Ns 1, 3-9, 1   | 11-12: 0.801 krad SD, 62.8 krad TD                                | 25            |
|     | 20140804 15:16:00 to 20140805 13:38:18 | 8.010E+02 | rad(SiO2) at | 5.967E-01 | rad(SiO2)/min | RH1963MK, WFR #11, S/Ns 3-7, 9-    | -11, 13-14: 0.801 krad SD, 62.8 krad TD                           | 25            |
|     | 20140804 15:16:00 to 20140805 13:38:18 | 8.010E+02 | rad(SiO2) at | 5.967E-01 | rad(SiO2)/min | LT1965, WFR #N/A, S/Ns 21-30: 0    | .801 krad SD, 64.494 krad TD                                      | 25            |
|     | 20140804 15:16:00 to 20140805 13:38:18 | 8.010E+02 | rad(SiO2) at | 5.967E-01 | rad(SiO2)/min | RH1086MH (6RH1086BHK), WFR         | #4, S/Ns 662-671: 0.801 krad SD, 62.8 krad TD                     | 25            |
|     | 20140804 15:16:00 to 20140805 13:38:18 | 8.010E+02 | rad(SiO2) at | 5.967E-01 | rad(SiO2)/min | RH1084MK-CS, WFR #5, S/Ns 1-6,     | 8-10: 0.801 krad SD, 111.008 krad TD                              | 25            |
|     | 20140804 15:16:00 to 20140805 13:38:18 | 8.010E+02 | rad(SiO2) at | 5.967E-01 | rad(SiO2)/min | RH137K (6RH137BKK*12), WFR #       | 43, S/Ns 0237-0243, 0245-0247: 0.801 krad SD, 11.001 krad TD      | 25            |
|     |                                        |           |              |           |               |                                    |                                                                   |               |

Total Doses reported are ± 12.76% at 95% confidence 12.67% at 95% confidence (Step No. 24) (Step No. 25)

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

#### NOTES

- NOIES: 1. ASTM = American Society for Testing and Materials. 2. DUT = Device Under Test. 3. S/N = Serial Number. 4. SD = Step Dose.

- 5. TD = Total Dose.
   6. WFR = Wafer.

- WINC Water.
   Does rate uniformity across target area:
   6.88%
   Both irradiation steps met the requirements of MIL-STD-883H, Test Method 1019.8, Condition D.
   After the original Test Request (DD Form 1222) was approved, the following changes were made:
   a. The following devices were added to the test intemp:

- HINDSTANCES, WTR #12 HINDSTANCES, WTR #12 Latitude to change test parameters to suit customer requirements was included in the original Test Request; no Customer Order Change Request (SEGIT Form QP03-4, Rev. 5) was required/issued.
- Source information: a. Irradiator = J.L. Shepherd & Associates Model \$1-22/484 self-contained irradiation facility, S/Ns 7133/50017.
- b. Source selection = Co-60.

- Dosineter system: a. Radcal Model No. 9010 Radiation Monitor Controller, S/N 90-1313. b. Radcal Model No. 90X6-60 Electrometer/Ion Chamber, S/N 96-0362.
- Radcal Model No. 9UX6-00 Electrometer/ion Chamber, 5/N 90-902.
   This doininger system was calibrated per ISO/IEC 1703:2005 by University of Wisconsin Medical Radiation Research Center on 3 Feb 2014 (Report No. ION14427). This calibration is effective for two years.
   Indiation geometry: in accordance with section 7.3.2 of ASTM E1249-00 (2005), the DUT's semiconductor chip plane was perpendicular to the incident radiation beam.
   Filter box: a DMEA Dose Enhancement Chamber (DEC) was used for all testing/dosimetry involved with this experiment.
   The DEC's P0 and AI layers are compliant with section 7.2.2 of ASTM E1249-00 (2005) with respect to thickness and geometry.



| Continuation of DD Form 1222           |                        |            | Experiment #: 2014-NRC-009                                         |                                                | Page 13 of 36 |
|----------------------------------------|------------------------|------------|--------------------------------------------------------------------|------------------------------------------------|---------------|
| <ol><li>Test Performed</li></ol>       | Result                 | ts of Test | Sample Result                                                      | Requirements                                   | Step No.      |
| 20140805 14:05:00 to 20140807 14:59:50 | 1.750E+03 rad(SiO2) at | 5.964E-01  | rad(SiO2)/min RH1498MW, WFR #7, S/Ns 821-830: 1.75 krad SD, 6      | 4.55 krad TD                                   | 26            |
| 20140805 14:05:00 to 20140807 14:59:50 | 1.750E+03 rad(SiO2) at | 5.964E-01  | rad(SiO2)/min RH1965MK, WFR #2, S/Ns 1, 3-9, 11-12: 1.75 krad S    | D, 64.55 krad TD                               | 26            |
| 20140805 14:05:00 to 20140807 14:59:50 | 1.750E+03 rad(SiO2) at | 5.964E-01  | rad(SiO2)/min RH1963MK, WFR #11, S/Ns 3-7, 9-11, 13-14: 1.75 kr    | ad SD, 64.55 krad TD                           | 26            |
| 20140805 14:05:00 to 20140807 14:59:50 | 1.750E+03 rad(SiO2) at | 5.964E-01  | rad(SiO2)/min LT1965, WFR #N/A, S/Ns 21-30: 1.75 krad SD, 66.24    | 4 krad TD                                      | 26            |
| 20140805 14:05:00 to 20140807 14:59:50 | 1.750E+03 rad(SiO2) at | 5.964E-01  | rad(SiO2)/min RH1086MH (6RH1086BHK), WFR #4, S/Ns 662-671:         | 1.75 krad SD, 64.55 krad TD                    | 26            |
| 20140807 16:30:00 to 20140818 10:48:14 | 9.250E+03 rad(SiO2) at | 5.968E-01  | rad(SiO2)/min LTC Devices D, F, H, I, WFR #2 - S/Ns D4, F4, H4, I4 | 9.25 krad SD, 205.754 krad TD                  | 27            |
| 20140807 16:30:00 to 20140818 10:48:14 | 9.250E+03 rad(SiO2) at | 5.968E-01  | rad(SiO2)/min LTC Devices G, E, N, WFR #2 - S/Ns G4, E4, N4: 9.2   | 5 krad SD, 194.834 krad TD                     | 27            |
| 20140807 16:30:00 to 20140818 10:48:14 | 9.250E+03 rad(SiO2) at | 5.968E-01  | rad(SiO2)/min LTC Devices C, K, L, M, R, S, WFR #2 - S/Ns C4, K4,  | L4, M4, R4, S4: 9.25 krad SD, 181.534 krad TD  | 27            |
| 20140807 16:30:00 to 20140818 10:48:14 | 9.250E+03 rad(SiO2) at | 5.968E-01  | rad(SiO2)/min BIPC150-RH6016, WFR #10, S/Ns E1, H1, I1: 9.25 ki    | ad SD, 102.954 krad TD                         | 27            |
| 20140807 16:30:00 to 20140818 10:48:14 | 9.250E+03 rad(SiO2) at | 5.968E-01  | rad(SiO2)/min BIPC150, WFR #6, S/Ns D4LTC & H4LTC: 9.25 krad       | 1 SD, 39.955 krad TD                           | 27            |
| 20140807 16:30:00 to 20140818 10:48:14 | 9.250E+03 rad(SiO2) at | 5.968E-01  | rad(SiO2)/min RH3480-J14, WFR #8, S/Ns 2-8: 9.25 krad SD, 27.459   | krad TD                                        | 27            |
| 20140807 16:30:00 to 20140818 10:48:14 | 9.250E+03 rad(SiO2) at | 5.968E-01  | rad(SiO2)/min RH1084MK-CS, WFR #5, S/Ns 1-6, 8-10: 9.25 krad S     | D, 120.258 krad TD                             | 27            |
| 20140807 16:30:00 to 20140818 10:48:14 | 9.250E+03 rad(SiO2) at | 5.968E-01  | rad(SiO2)/min RH137K (6RH137BKK*12), WFR #3, S/Ns 0237-024         | 3, 0245-0247: 9.25 krad SD, 20.251 krad TD     | 27            |
| 20140807 16:30:00 to 20140818 10:48:14 | 9.250E+03 rad(SiO2) at | 5.968E-01  | rad(SiO2)/min BIPC150 SB Devices, S/Ns H5LTC-GP (WFR #1) & F       | i6LTC-GP (WFR #2): 9.25 krad SD, 19.45 krad TD | 27            |
| 20140807 16:30:00 to 20140818 10:48:14 | 9.250E+03 rad(SiO2) at | 5.968E-01  | rad(SiO2)/min RH1085MK-CS, WFR #12, S/Ns 1-10: 9.25 krad SD, 1     | 14.17 krad TD                                  | 27            |
| 20140807 16:30:00 to 20140818 10:48:14 | 9.250E+03 rad(SiO2) at | 5.968E-01  | rad(SiO2)/min RH1498MW, WFR #7, S/Ns 821-830: 9.25 krad SD, 7      | 3.8 krad TD                                    | 27            |
| 20140807 16:30:00 to 20140818 10:48:14 | 9.250E+03 rad(SiO2) at | 5.968E-01  | rad(SiO2)/min RH1965MK, WFR #2, S/Ns 1, 3-9, 11-12: 9.25 krad S    | D, 73.8 krad TD                                | 27            |
| 20140807 16:30:00 to 20140818 10:48:14 | 9.250E+03 rad(SiO2) at | 5.968E-01  | rad(SiO2)/min RH1963MK, WFR #11, S/Ns 3-7, 9-11, 13-14: 9.25 kr    | ad SD, 73.8 krad TD                            | 27            |
| 20140807 16:30:00 to 20140818 10:48:14 | 9.250E+03 rad(SiO2) at | 5.968E-01  | rad(SiO2)/min LT1965, WFR #N/A, S/Ns 21-30: 9.25 krad SD, 75.49    | 4 krad TD                                      | 27            |
| 20140807 16:30:00 to 20140818 10:48:14 | 9.250E+03 rad(SiO2) at | 5.968E-01  | rad(SiO2)/min RH1086MH (6RH1086BHK), WFR #4, S/Ns 662-671:         | 9.25 krad SD, 73.8 krad TD                     | 27            |
| 20140818 12:06:00 to 20140821 11:45:58 | 2.560E+03 rad(SiO2) at | 5.954E-01  | rad(SiO2)/min LTC Devices D, F, H, I, WFR #2 - S/Ns D4, F4, H4, I4 | 2.56 krad SD, 208.314 krad TD                  | 28            |
| 20140818 12:06:00 to 20140821 11:45:58 | 2.560E+03 rad(SiO2) at | 5.954E-01  | rad(SiO2)/min LTC Devices G, E, N, WFR #2 - S/Ns G4, E4, N4: 2.5   | 6 krad SD, 197.394 krad TD                     | 28            |
| 20140818 12:06:00 to 20140821 11:45:58 | 2.560E+03 rad(SiO2) at | 5.954E-01  | rad(SiO2)/min LTC Devices C, K, L, M, R, S, WFR #2 - S/Ns C4, K4,  | L4, M4, R4, S4: 2.56 krad SD, 184.094 krad TD  | 28            |
| 20140818 12:06:00 to 20140821 11:45:58 | 2.560E+03 rad(SiO2) at | 5.954E-01  | rad(SiO2)/min BIPC150-RH6016, WFR #10, S/Ns E1, H1, I1: 2.56 ki    | ad SD, 105.51 krad TD                          | 28            |
| 20140818 12:06:00 to 20140821 11:45:58 | 2.560E+03 rad(SiO2) at | 5.954E-01  | rad(SiO2)/min BIPC150, WFR #6, S/Ns D4LTC & H4LTC: 2.56 krad       | 1 SD, 42.515 krad TD                           | 28            |
| 20140818 12:06:00 to 20140821 11:45:58 | 2.560E+03 rad(SiO2) at | 5.954E-01  | rad(SiO2)/min RH1084MK-CS, WFR #5, S/Ns 1-6, 8-10: 2.56 krad S     | D, 122.818 krad TD                             | 28            |
| 20140818 12:06:00 to 20140821 11:45:58 | 2.560E+03 rad(SiO2) at | 5.954E-01  | rad(SiO2)/min BIPC150 SB Devices, S/Ns H5LTC-GP (WFR #1) & F       | i6LTC-GP (WFR #2): 2.56 krad SD, 22.01 krad TD | 28            |
| Total Doses reported are +             | - 12.69% at 95% confid | lence      | (Sten No. 26)                                                      |                                                |               |

repo 
 12.69%
 at 95% confidence
 (Step No. 26)

 12.64%
 at 95% confidence
 (Step No. 27)

 12.50%
 at 95% confidence
 (Step No. 28)

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

NOTES: 1. ASTM = American Society for Testing and Materials. 2. DUT = Device Under Test. 3. SNA = Sental Number. 4. SD = Step Dose. 5. TD = Total Dose. 6. WFR = Wafer. 7. Dose rate uniformity across target area: ± 6.88% (Step No. 26) ± 6.67% (Step No. 27 & 28) 8. All irradiation steps met the requirements of MIL-STD-883H. Test Method 1019.8, Condition D. 9. Source information:

8. All irradiation steps met the requirements of MIL-STD-883H, Test Method 1019.8, Consumon LA.
9. Source information:

a. Irradiator = J.L. Shepherd & Associates Model 81-22/484 self-contained irradiation facility, SNs 7133/50017.
b. Source selection = Co-60.

10. Dosimeter system:

a. Radical Model No. 9010 Radiation Montol Controller, SN 90-1313.
b. Radical Model No. 90106:400 Electrometer/Ion Chamber, SN 96-0362.
c. This dosimeter system was calibrated per ISO/IEC (1705:2005 by University of Wisconsin Medical Radiation Research Center on 3 Feb 2014 (Report No. ION14427). This calibration is effective for two years.

11. Irradiation geometry: in accordance with section 73.2 of ASTM E1249-00 (2005), the DUT's semiconductor chip plane was perpendicular to the incident radiation beam.
12. Filter box: a DMEA Dose Enhancement Chamber (DEC) was used for all testing/dosimetry involved with this experiment. The DEC's Fb and Al layers are compliant with section 7.2.2 of ASTM E1249-00 (2005) with respect to thickness and geometry.



| Continuation of DD Form 1222           |           |               |           | Experiment #: | 2014-NRC-009                                                                                  | Page 15 of 36 |
|----------------------------------------|-----------|---------------|-----------|---------------|-----------------------------------------------------------------------------------------------|---------------|
| 4. Test Performed                      |           | Kesult        | s of Test |               | Sample Kesult Kequirements                                                                    | Step No.      |
| 20140912 15:55:00 to 20140929 09:01:55 | 1.428E+04 | rad(SiO2) at  | 5.933E-01 | rad(SiO2)/min | BIPC150-RH6016, WFR #10, S/Ns E1, H1, I1: 14.28 krad SD, 136.994 krad TD                      | 31            |
| 20140912 15:55:00 to 20140929 09:01:55 | 1.428E+04 | rad(SiO2) at  | 5.933E-01 | rad(SiO2)/min | BIPC150, WFR #6, S/Ns D4LTC & H4LTC: 14.28 krad SD, 73.995 krad TD                            | 31            |
| 20140912 15:55:00 to 20140929 09:01:55 | 1.428E+04 | rad(SiO2) at  | 5.933E-01 | rad(SiO2)/min | RH3480-J14, WFR #8, S/Ns 2-8: 14.28 krad SD, 58.939 krad TD                                   | 31            |
| 20140912 15:55:00 to 20140929 09:01:55 | 1.428E+04 | rad(SiO2) at  | 5.933E-01 | rad(SiO2)/min | RH1084MK-CS, WFR #5, S/Ns 1-6, 8-10: 14.28 krad SD, 155.898 krad TD                           | 31            |
| 20140912 15:55:00 to 20140929 09:01:55 | 1.428E+04 | rad(SiO2) at  | 5.933E-01 | rad(SiO2)/min | BIPC150 SB Devices, S/Ns H5LTC-GP (WFR #1) & H6LTC-GP (WFR #2): 14.28 krad SD, 53.49 krad TD  | 31            |
| 20140912 15:55:00 to 20140929 09:01:55 | 1.428E+04 | rad(SiO2) at  | 5.933E-01 | rad(SiO2)/min | RH137K (6RH137BKK*12), WFR #3, S/Ns 0237-0243, 0245-0247: 14.28 krad SD, 53.331 krad TD       | 31            |
| 20140912 15:55:00 to 20140929 09:01:55 | 1.428E+04 | rad(SiO2) at  | 5.933E-01 | rad(SiO2)/min | RH1085MK-CS, WFR #12, S/Ns 1-10: 14.28 krad SD, 45.65 krad TD                                 | 31            |
| 20140912 15:55:00 to 20140929 09:01:55 | 1.428E+04 | rad(SiO2) at  | 5.933E-01 | rad(SiO2)/min | RH1498MW, WFR #7, S/Ns 821-830: 14.28 krad SD, 106.88 krad TD                                 | 31            |
| 20140912 15:55:00 to 20140929 09:01:55 | 1.428E+04 | rad(SiO2) at  | 5.933E-01 | rad(SiO2)/min | RH1965MK, WFR #2, S/Ns 1, 3-9, 11-12: 14.28 krad SD, 106.88 krad TD                           | 31            |
| 20140912 15:55:00 to 20140929 09:01:55 | 1.428E+04 | rad(SiO2) at  | 5.933E-01 | rad(SiO2)/min | RH1963MK, WFR #11, S/Ns 3-7, 9-11, 13-14: 14.28 krad SD, 106.88 3krad TD                      | 31            |
| 20140912 15:55:00 to 20140929 09:01:55 | 1.428E+04 | rad(SiO2) at  | 5.933E-01 | rad(SiO2)/min | RH1086MH (6RH1086BHK), WFR #4, S/Ns 662-671: 14.28 krad SD, 106.88 krad TD                    | 31            |
| 20140912 15:55:00 to 20140929 09:01:55 | 1.428E+04 | rad(SiO2) at  | 5.933E-01 | rad(SiO2)/min | RH6016MW, WFR #8, S/Ns 1-5: 14.28 krad SD, 31.48 krad TD                                      | 31            |
| 20140929 10:15:00 to 20141001 11:35:35 | 1.751E+03 | rad(SiO2) at  | 5.913E-01 | rad(SiO2)/min | BIPC150-RH6016, WFR #10, S/Ns E1, H1, I1: 1.751 krad SD, 138.745 krad TD                      | 32            |
| 20140929 10:15:00 to 20141001 11:35:35 | 1.751E+03 | rad(SiO2) at  | 5.913E-01 | rad(SiO2)/min | BIPC150, WFR #6, S/Ns D4LTC & H4LTC: 1.751 krad SD, 75.746 krad TD                            | 32            |
| 20140929 10:15:00 to 20141001 11:35:35 | 1.751E+03 | rad(SiO2) at  | 5.913E-01 | rad(SiO2)/min | BIPC150 SB Devices, S/Ns H5LTC-GP (WFR #1) & H6LTC-GP (WFR #2): 1.751 krad SD, 55.241 krad TD | 32            |
| 20141001 18:47:00 to 20141008 10:56:59 | 5.769E+03 | rad(SiO2) at  | 6.003E-01 | rad(SiO2)/min | BIPC150-RH6016, WFR #10, S/Ns E1, H1, I1: 5.769 krad SD, 144.514 krad TD                      | 33            |
| 20141001 18:47:00 to 20141008 10:56:59 | 5.769E+03 | rad(SiO2) at  | 6.003E-01 | rad(SiO2)/min | BIPC150, WFR #6, S/Ns D4LTC & H4LTC: 5.769 krad SD, 81.515 krad TD                            | 33            |
| 20141001 18:47:00 to 20141008 10:56:59 | 5.769E+03 | rad(SiO2) at  | 6.003E-01 | rad(SiO2)/min | BIPC150 SB Devices, S/Ns H5LTC-GP (WFR #1) & H6LTC-GP (WFR #2): 5.769 krad SD, 61.01 krad TD  | 33            |
| 20141001 18:47:00 to 20141008 10:56:59 | 5.769E+03 | rad(SiO2) at  | 6.003E-01 | rad(SiO2)/min | RH3480-J14, WFR #8, S/Ns 2-8: 5.769 krad SD, 64.708 krad TD                                   | 33            |
| 20141001 18:47:00 to 20141008 10:56:59 | 5.769E+03 | rad(SiO2) at  | 6.003E-01 | rad(SiO2)/min | RH137K (6RH137BKK*12), WFR #3, S/Ns 0237-0243, 0245-0247: 5.769 krad SD, 59.1 krad TD         | 33            |
| 20141001 18:47:00 to 20141008 10:56:59 | 5.769E+03 | rad(SiO2) at  | 6.003E-01 | rad(SiO2)/min | RH1498MW, WFR #7, S/Ns 821-830: 5.769 krad SD, 112.649 krad TD                                | 33            |
| 20141001 18:47:00 to 20141008 10:56:59 | 5.769E+03 | rad(SiO2) at  | 6.003E-01 | rad(SiO2)/min | RH1965MK, WFR #2, S/Ns 1, 3-9, 11-12: 5.769 krad SD, 112.649 krad TD                          | 33            |
| 20141001 18:47:00 to 20141008 10:56:59 | 5.769E+03 | rad(SiO2) at  | 6.003E-01 | rad(SiO2)/min | RH6016MW, WFR #8, S/Ns 1-5: 5.769 krad SD, 37.249 krad TD                                     | 33            |
| 20141001 18:47:00 to 20141008 10:56:59 | 5.769E+03 | rad(SiO2) at  | 6.003E-01 | rad(SiO2)/min | RH1084MK-CS, WFR #5, 4% old, S/Ns 1-8, 11-12; 5,769 krad SD, 5,769 krad TD                    | 33            |
| 20141001 18:47:00 to 20141008 10:56:59 | 5.769E+03 | rad(SiO2) at  | 6.003E-01 | rad(SiO2)/min | RH1084MK-CS, WFR #5, 15%, S/Ns 1-2, 5-7, 9, 11-12, 14-15; 5,769 krad SD, 5,769 krad TD        | 33            |
| 20141001 18:47:00 to 20141008 10:56:59 | 5.769E+03 | rad(SiO2) at  | 6.003E-01 | rad(SiO2)/min | RH1084MK-CS, WFR #5, 4% new, S/Ns 1-3, 6, 8-12, 14: 5,769 krad SD, 5,769 krad TD              | 33            |
| 20141001 18:47:00 to 20141008 10:56:59 | 5.769E+03 | rad(SiO2) at  | 6.003E-01 | rad(SiO2)/min | RH117H. WFR #10. S/Ns 0765-0774: 5.769 krad SD. 5.769 krad TD                                 | 33            |
| 20141001 18:47:00 to 20141008 10:56:59 | 5.769E+03 | rad(SiO2) at  | 6.003E-01 | rad(SiO2)/min | BIPC150-NTK16, WFR #6, S/Ns H8-H9: 5,769 krad SD, 5,769 krad TD                               | 33            |
| 20141001 18:47:00 to 20141008 10:56:59 | 5.769E+03 | rad(SiO2) at  | 6.003E-01 | rad(SiO2)/min | BIPC150-NTK52L, WFR #6, S/Ns H10-H11: 5,769 krad SD, 5,769 krad TD                            | 33            |
|                                        |           |               |           |               | ,,                                                                                            |               |
| Total Doses reported are ±             | 12.89%    | at 95% confid | ence      | (Step No. 31) |                                                                                               |               |
|                                        | 12.63%    | at 95% confid | ence      | (Step No. 32) |                                                                                               |               |
|                                        | 13.80%    | at 95% confid | ence      | (Step No. 33) |                                                                                               |               |
|                                        |           |               |           |               |                                                                                               |               |

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

| ъ.т | 2 | TT | 201     |  |
|-----|---|----|---------|--|
| IN  |   |    | · · · · |  |

NOTES: 1. ASTM = American Society for Testing and Materials. 2. DUT = Device Under Test. 3. S/N = Serial Number.

3. SN = Serial Number:
 4. SD = Step Dose.
 5. TD = Total Dose.
 6. WFR = Wafer.
 7. Dose rate uniformity across target ares: ± 6.81% (Step Nos. 31-32) ± 7.0% (Step Nos. 33)
 8. All irradiation steps met the requirements of MIL-STD-831H, Test Method 1019.8, Condition D. The median dose rate for Step No. 33 was 10.0 mrad(SiO2)/sec, which met the requirements of this condition.
 9. After the original Test Requert (DD Form 1222) was approved. the following changes wase made:

 a. The following devices were added to the test lineup:
 RH1084MK-CS, WFR #5, 4% old
 RH1074MK-CS, WFR #5, 15%
 BIPC150-NTKS2L, WFR #6
 RH1084MK-CS, WFR #5, 4% new
 BIPC150-NTKS2L, WFR #6
 Source information:

Latitude to charge test parameters to suit customer requirements was included in the original Test Kequest; no Customer Grange Request (account of the charge test parameters to suit customer requirements was included in the original Test Kequest; no Customer Grange Request (account of the charge test parameters to suit customer requirements was included in the original Test Kequest; no Customer Grange Request (account of the charge test parameters to suit customer requirements). Some selection = 1... Shellow Test is a Constant of the charge request (account of the charge request) (account of the charge test parameters to suit customer requirements). Some selection = Co-60. The Source sel



| onti | nuation of DD Form 1222                |           |              |           | Experiment #: | 2014-NRC-009                      |                                                         | Page 22 of 36 |
|------|----------------------------------------|-----------|--------------|-----------|---------------|-----------------------------------|---------------------------------------------------------|---------------|
|      | Test Performed                         |           | Results      | of Test   |               | Sample Result                     | Requirements                                            | Step No.      |
| 1    | 20141124 13:55:00 to 20141204 13:48:49 | 8.500E+03 | rad(SiO2) at | 5.905E-01 | rad(SiO2)/min | BIPC150-RH6016, WFR #10, S/N E1:  | 8.5 krad SD, 190.585 krad TD                            | 42            |
| 1    | 20141124 13:55:00 to 20141204 13:48:49 | 8.500E+03 | rad(SiO2) at | 5.905E-01 | rad(SiO2)/min | BIPC150, WFR #6, S/Ns D4LTC & H4  | 4LTC: 8.5 krad SD, 128.136 krad TD                      | 42            |
| 1    | 20141124 13:55:00 to 20141204 13:48:49 | 8.500E+03 | rad(SiO2) at | 5.905E-01 | rad(SiO2)/min | RH137K (6RH137BKK*12), WFR #3,    | S/Ns 0237-0243, 0245-0247: 8.5 krad SD, 107.201 krad TD | 42            |
| 1    | 20141124 13:55:00 to 20141204 13:48:49 | 8.500E+03 | rad(SiO2) at | 5.905E-01 | rad(SiO2)/min | RH6016MW, WFR #8, S/Ns 1-5: 8.51  | krad SD, 84.8 krad TD                                   | 42            |
| 1    | 20141124 13:55:00 to 20141204 13:48:49 | 8.500E+03 | rad(SiO2) at | 5.905E-01 | rad(SiO2)/min | BIPC150-NTK16, WFR #6, S/Ns H8-H  | 19: 8.5 krad SD, 52.39 krad TD                          | 42            |
| 1    | 20141124 13:55:00 to 20141204 13:48:49 | 8.500E+03 | rad(SiO2) at | 5.905E-01 | rad(SiO2)/min | BIPC150-NTK52L, WFR #6, S/Ns H1   | 0-H11: 8.5 krad SD, 52.39 krad TD                       | 42            |
| 1    | 20141124 13:55:00 to 20141204 13:48:49 | 8.500E+03 | rad(SiO2) at | 5.905E-01 | rad(SiO2)/min | RH3083MLCC20M, WFR #2, S/Ns 1-    | 10: 8.5 krad SD, 40.731 krad TD                         | 42            |
| 1    | 20141124 13:55:00 to 20141204 13:48:49 | 8.500E+03 | rad(SiO2) at | 5.905E-01 | rad(SiO2)/min | BIPC150-LCC20M-H1, WFR #8, S/N    | HLCC1: 8.5 krad SD, 40.731 krad TD                      | 42            |
| 1    | 20141124 13:55:00 to 20141204 13:48:49 | 8.500E+03 | rad(SiO2) at | 5.905E-01 | rad(SiO2)/min | BIPC150-RH6016, WFR #10, S/Ns H1  | , I1: 8.5 krad SD, 191.135 krad TD                      | 42            |
| 1    | 20141124 13:55:00 to 20141204 13:48:49 | 8.500E+03 | rad(SiO2) at | 5.905E-01 | rad(SiO2)/min | RH6654-2.5MH, WFR #3, S/Ns 1-10:  | 8.5 krad SD, 30.25 krad TD                              | 42            |
| 1    | 20141124 13:55:00 to 20141204 13:48:49 | 8.500E+03 | rad(SiO2) at | 5.905E-01 | rad(SiO2)/min | RH1084MK-CS, WFR #5, 4% old, S/N  | Is 1-8, 11-12: 8.5 krad SD, 50.1 krad TD                | 42            |
| 1    | 20141124 13:55:00 to 20141204 13:48:49 | 8.500E+03 | rad(SiO2) at | 5.905E-01 | rad(SiO2)/min | RH1084MK-CS, WFR #5, 15%, S/Ns    | 1-2, 5-7, 9, 11-12, 14-15: 8.5 krad SD, 50.1 krad TD    | 42            |
| 1    | 20141124 13:55:00 to 20141204 13:48:49 | 8.500E+03 | rad(SiO2) at | 5.905E-01 | rad(SiO2)/min | RH1084MK-CS, WFR #5, 4% new, S/   | Ns 1-3, 6, 8-12, 14: 8.5 krad SD, 50.1 krad TD          | 42            |
| 1    | 20141124 13:55:00 to 20141204 13:48:49 | 8.500E+03 | rad(SiO2) at | 5.905E-01 | rad(SiO2)/min | RH117H, WFR #10, S/Ns 0765-0774:  | 8.5 krad SD, 50.1 krad TD                               | 42            |
| 1    | 20141124 13:55:00 to 20141204 13:48:49 | 8.500E+03 | rad(SiO2) at | 5.905E-01 | rad(SiO2)/min | RH6016MW, WFR #8, S/Ns 10-13, 16  | i-17, 20, 22, 25-26: 8.5 krad SD, 45.811 krad TD        | 42            |
| 1    | 20141124 13:55:00 to 20141204 13:48:49 | 8.500E+03 | rad(SiO2) at | 5.905E-01 | rad(SiO2)/min | BIPC150-H1NBK & -H2NBK, WFR #     | 6, S/Ns H1NBK & H2NBK: 8.5 krad SD, 28.51 krad TD       | 42            |
| 1    | 20141124 13:55:00 to 20141204 13:48:49 | 8.500E+03 | rad(SiO2) at | 5.905E-01 | rad(SiO2)/min | BIPC150-LCC20M, WFR #8, S/Ns H2   | LCC & H3LCC: 8.5 krad SD, 28.51 krad TD                 | 42            |
| 1    | 20141124 13:55:00 to 20141204 13:48:49 | 8.500E+03 | rad(SiO2) at | 5.905E-01 | rad(SiO2)/min | RH3480-J14-Au1mil, WFR #3, S/Ns 1 | 1-14: 8.5 krad SD, 8.5 krad TD                          | 42            |

Total Doses reported are ± 13.90% at 95% confidence

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

NOTES:

ASTM = American Society for Testing and Materials.
 DUT = Device Under Test.

DOT = Device Onder
 S/N = Serial Number.
 SD = Step Dose.
 TD = Total Dose.

6. WFR = Wafer.

0. WTA Valct.
7. Dose rate uniformity across target area: ± 7.93%
8. The irradiation step met the requirements of MIL-STD-883H, Test Method 1019.8, Condition D.
9. After the original Test Request (DD Form 1222) was approved, the following changes were made:

a. The following devices were added to the test lineup: RH3480-J14-Au1mil, WFR #3

Latitude to change test parameters to suit customer requirements was included in the original Test Request, no Customer Order Change Request (SEGIT Form QP03-4, Rev. 5) was required'issued.

Source information: a. Irradiator = J.L. Shepherd & Associates Model 81-22/484 self-contained irradiation facility, S/Ns 7133/50017.

b. Source selection = Co-60. 11. Dosimeter system:

a. Radcal Model No. 9010 Radiation Monitor Controller, S/N 90-1313. b. Radcal Model No. 90X6-60 Electrometer/Ion Chamber, S/N 96-0362.

c. This dosimeter system was calibrated per ISO/IEC 17025:2005 by University of Wisconsin Medical Radiation Research Center on 3 Feb 2014 (Report No. ION14427). This calibration is effective for two years. 12. Irradiation geometry: in accordance with section 7.3.2 of ASTM E1249-00 (2005), the DUT's semiconductor chip plane was perpendicular to the incident radiation beam.

Filter box: a DMEA Dose Enhancement Chamber (DEC) was used for all testing/dosimetry involved with this experiment. The DEC's Pb and Al layers are compliant with section 7.2.2 of ASTM E1249-00 (2005) with respect to thickness and geometry.



Continuation of DD Form 1222

Experiment #: 2014-NRC-009

Page 31 of 36

## Step Dose and Cumulative Total Dose Summary #8

|          |                       |                      | Dev               | vice                |                                                                    |            |  |  |
|----------|-----------------------|----------------------|-------------------|---------------------|--------------------------------------------------------------------|------------|--|--|
| Step No. | BIPC150,<br>S/Ns D4LT | WFR #6,<br>C & H4LTC | RH3480-J1<br>S/Ns | 4, WFR #8,<br>s 2-8 | RH137K<br>(6RH137BKK*12),<br>WFR #3, S/Ns 0237-<br>0243, 0245-0247 |            |  |  |
|          | SD                    | Cumulative           | SD                | Cumulative          | SD                                                                 | Cumulative |  |  |
|          | in                    | TD in                | in                | TD in               | in                                                                 | TD in      |  |  |
|          | krad(SiO2)            | krad(SiO2)           | krad(SiO2)        | krad(SiO2)          | krad(SiO2)                                                         | krad(SiO2) |  |  |
| 18       | 5.950                 | 5.950                |                   |                     |                                                                    |            |  |  |
| 19       | 5.065                 | 11.015               |                   |                     |                                                                    |            |  |  |
| 20       |                       |                      |                   |                     |                                                                    |            |  |  |
| 21       | 8.009                 | 19.024               | 8.009             | 8.009               |                                                                    |            |  |  |
| 22       | 1.481                 | 20.505               |                   |                     |                                                                    |            |  |  |
| 23       | 5.280                 | 25.785               | 5.280             | 13.289              | 5.280                                                              | 5.280      |  |  |
| 24       | 4.920                 | 30.705               | 4.920             | 18.209              | 4.920                                                              | 10.200     |  |  |
| 25       |                       |                      |                   |                     | 0.801                                                              | 11.001     |  |  |
| 26       |                       |                      |                   |                     |                                                                    |            |  |  |
| 27       | 9.250                 | 39.955               | 9.250             | 27.459              | 9.250                                                              | 20.251     |  |  |
| 28       | 2.560                 | 42.515               |                   |                     |                                                                    |            |  |  |
| 29       | 17.200                | 59.715               | 17.200            | 44.659              | 17.200                                                             | 37.451     |  |  |
| 30       |                       |                      |                   |                     | 1.600                                                              | 39.051     |  |  |
| 31       | 14.280                | 73.995               | 14.280            | 58.939              | 14.280                                                             | 53.331     |  |  |
| 32       | 1.751                 | 75.746               |                   |                     |                                                                    |            |  |  |
| 33       | 5.769                 | 81.515               | 5.769             | 64.708              | 5.769                                                              | 59.100     |  |  |
| 34       | 5.340                 | 86.855               | 5.340             | 70.048              | 5.340                                                              | 64.440     |  |  |
| 35       |                       |                      | 1.480             | 71.528              | 1.480                                                              | 65.920     |  |  |
| 36       | 3.321                 | 90.176               | 3.321             | 74.849              | 3.321                                                              | 69.241     |  |  |
| 37       | 7.710                 | 97.886               | 7.710             | 82.559              | 7.710                                                              | 76.951     |  |  |
| 38       | 0.550                 | 98.436               | 0.550             | 83.109              | 0.550                                                              | 77.501     |  |  |
| 39       | 9.360                 | 107.796              | 9.360             | 92.469              | 9.360                                                              | 86.861     |  |  |
| 40       | 1.740                 | 109.536              | 1.740             | 94.209              | 1.740                                                              | 88.601     |  |  |
| 41       | 10.100                | 119.636              | 10.100            | 104.309             | 10.100                                                             | 98.701     |  |  |
| 42       | 8.500                 | 128.136              |                   |                     | 8.500                                                              | 107.201    |  |  |

NOTES:

1. SD = Step Dose.

- 2. TD = Total Dose.
- 3. WFR = Wafer.



# Appendix D

## Table D1: Pre-Irradiation Electrical Characteristics of Device-Under-Test

|                                         |                                          |                                                                                                                       |                                          |        | T            | a = 25° | C         | SUB-   | -55°C      | ≤ T <sub>A</sub> ≤ | 150°C   | SUB-         |              |
|-----------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------|--------------|---------|-----------|--------|------------|--------------------|---------|--------------|--------------|
| SYMBOL                                  | PARAMETER                                | CONDITIONS                                                                                                            |                                          | NOTES  | MIN          | TYP     | MAX       | GROUP  | MIN        | TYP                | MAX     | GROUP        | UNITS        |
| V <sub>REF</sub>                        | Reference Voltage                        | $ V_{IN} - V_{OUT}  = 5V, I_{OUT}$                                                                                    | <sub>T</sub> = 10mA                      |        | -1.225       |         | -1.275    | 1      |            |                    |         |              | V            |
|                                         |                                          | $\begin{array}{l} 3V \leq \left  V_{IN} - V_{OUT} \right  \leq 30 \\ 10mA \leq I_{OUT} \leq I_{MAX}, \ P \end{array}$ | 0V,<br>≤P <sub>MAX</sub>                 |        | -1.200       |         | -1.300    | 1      | -1.200     |                    | -1.300  | 2, 3         | V            |
| $\frac{\Delta V_{OUT}}{\Delta V_{IN}}$  | Line Regulation                          | $3V \le  V_{IN} - V_{OUT}  \le 30$                                                                                    | OV                                       | 2      |              |         | 0.02      | 1      |            |                    | 0.05    | 2, 3         | %/V          |
| $\frac{\Delta V_{OUT}}{\Delta I_{OUT}}$ | Load Regulation                          | $\begin{array}{l} 10mA \leq I_{OUT} \leq I_{MAX}, \   \ \\ 10mA \leq I_{OUT} \leq I_{MAX}, \   \ \end{array}$         | $V_{OUT}   \le 5V$<br>$V_{OUT}   \ge 5V$ | 2<br>2 |              |         | 25<br>0.5 | 1<br>1 |            |                    | 50<br>1 | 2, 3<br>2, 3 | mV<br>%      |
|                                         | Thermal Regulation                       | 10ms Pulse                                                                                                            |                                          |        |              |         | 0.02      | 1      |            |                    |         |              | %/W          |
|                                         | Ripple Rejection                         | V <sub>OUT</sub> = -10V, f = 120Hz                                                                                    | z, C <sub>ADJ</sub> = 0                  |        |              | 60      |           |        |            |                    |         |              | dB           |
|                                         |                                          | V <sub>OUT</sub> = -10V, f = 120Hz<br>C <sub>ADJ</sub> = 10µF                                                         | Ζ,                                       | 3      | 66           |         |           |        | 66         |                    |         |              | dB           |
| I <sub>ADJ</sub>                        | Adjust Pin Current                       |                                                                                                                       |                                          |        |              |         | 100       | 1      |            |                    | 100     | 2, 3         | μA           |
| $\Delta I_{ADJ}$                        | Adjust Pin Current<br>Change             | $\begin{array}{l} 10mA \leq I_{OUT} \leq I_{MAX} \\ 3V \leq \left  V_{IN} - V_{OUT} \right  \leq 30 \end{array}$      | 0V                                       |        |              |         | 5<br>5    | 1<br>1 |            |                    | 5<br>5  | 2, 3<br>2, 3 | μΑ<br>μΑ     |
| I <sub>MIN</sub>                        | Minimum Load<br>Current                  | $\begin{split}  V_{\text{IN}} - V_{\text{OUT}}  &= 30V \\  V_{\text{IN}} - V_{\text{OUT}}  &\leq 10V \end{split}$     |                                          |        |              |         | 5<br>3    | 1<br>1 |            |                    | 5<br>3  | 2, 3<br>2, 3 | mA<br>mA     |
|                                         | Current Limit                            | $\left V_{\text{IN}} - V_{\text{OUT}}\right  \le 15V$                                                                 | H Package<br>K Package                   | 5<br>5 | 0.5<br>1.5   |         |           | 1<br>1 | 0.5<br>1.5 |                    |         | 2, 3<br>2, 3 | A<br>A       |
|                                         |                                          | $ V_{IN} - V_{OUT}  = 30V$                                                                                            | H Package<br>K Package                   | 5<br>5 | 0.15<br>0.24 |         |           | 1<br>1 |            |                    |         |              | A<br>A       |
| $\frac{\Delta V_{OUT}}{\Delta Temp}$    | Temperature Stability                    | $-55^\circ C \leq T_J \leq 125^\circ C$                                                                               |                                          | 3      |              |         |           |        |            | 0.6                |         |              | %            |
| $\frac{\Delta V_{OUT}}{\Delta Time}$    | Long Term Stability                      | T <sub>A</sub> = 125°C                                                                                                |                                          | 3      |              |         |           |        |            |                    | 1       |              | %            |
| e <sub>n</sub>                          | RMS Output Noise                         | $10Hz \leq f \leq 10kHz$                                                                                              |                                          |        |              | 0.003   |           |        |            |                    |         |              | %            |
| θJC                                     | Thermal Resistance<br>(Junction to Case) | H Package<br>K Package                                                                                                |                                          | 3<br>3 |              |         | 15<br>3   |        |            |                    |         |              | °C/W<br>°C/W |



|                                         |                                 |                                                                                                                                | 1     |             |        | i           |        |             |        |             |        |             |        |          |
|-----------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------|-------------|--------|-------------|--------|-------------|--------|-------------|--------|-------------|--------|----------|
|                                         |                                 |                                                                                                                                |       | 10KRA       | D(Si)  | 20KRA       | D(Si)  | 50KR/       | AD(Si) | 100KR       | AD(Si) | 200KR       | AD(Si) |          |
| SYMBOL                                  | PARAMETER                       | CONDITIONS                                                                                                                     | NOTES | MIN         | MAX    | UNITS    |
| V <sub>REF</sub>                        | Reference<br>Voltage            | $\begin{split}  V_{\text{IN}} - V_{\text{OUT}}  &\leq 5V, \\  _{\text{OUT}} = 10\text{mA} \end{split}$                         |       | -1.225 -    | -1.275 | -1.225      | -1.275 | -1.225      | -1.275 | -1.225      | -1.275 | -1.22       | -1.28  | V        |
|                                         |                                 | $\begin{array}{l} 3V \leq \mid V_{IN} - V_{OUT} \mid \leq 30V, \\ 10mA \leq I_{OUT} \leq I_{MAX},  P \leq P_{MAX} \end{array}$ |       | -1.2        | -1.3   | -1.2        | -1.3   | -1.2        | -1.3   | -1.2        | -1.3   | -1.2        | -1.3   | V        |
| $\frac{\Delta V_{OUT}}{\Delta V_{IN}}$  | Line<br>Regulation              | $3V \le  V_{IN} - V_{OUT}  \le 30V,$                                                                                           | 2     |             | 0.02   |             | 0.02   |             | 0.02   |             | 0.02   |             | 0.02   | %/V      |
| $\frac{\Delta V_{OUT}}{\Delta I_{OUT}}$ | Load<br>Regulation              | $\begin{array}{l} 10mA \leq I_{OUT} \leq I_{MAX}, \\ \left   V_{OUT}  \right  \; \leq 5V \end{array} \label{eq:VOUT}$          | 2     |             | 25     |             | 25     |             | 25     |             | 25     |             | 25     | mV       |
|                                         |                                 | $\begin{array}{l} 10mA \leq I_{OUT} \leq I_{MAX}, \\ \left   V_{OUT}  \right  \ \geq 5V \end{array} \label{eq:VOUT}$           | 2     |             | 0.5    |             | 0.5    |             | 0.5    |             | 0.5    |             | 0.5    | %        |
| I <sub>ADJ</sub>                        | Adjust Pin<br>Current           |                                                                                                                                |       |             | 100    |             | 100    |             | 100    |             | 100    |             | 100    | μA       |
| $\Delta I_{ADJ}$                        | Adjust Pin<br>Current<br>Change | $\begin{array}{l} 10mA \leq I_{OUT} \leq I_{MAX} \\ 3V \leq \mid V_{IN} - V_{OUT} \mid \leq 30V \end{array}$                   |       |             | 5<br>5 | μA<br>μA |
| I <sub>MIN</sub>                        | Minimum<br>Load Current         | $\begin{array}{l}  V_{IN}-V_{OUT}  = 30V \\  V_{IN}-V_{OUT}  \le 10V \end{array}$                                              |       |             | 5<br>3 | mA<br>mA |
|                                         | Current Limit                   |                                                                                                                                |       |             |        |             |        |             |        |             |        |             |        |          |
|                                         | H Package                       | $\begin{array}{l}  V_{IN}-V_{OUT}  \leq 15V \\  V_{IN}-V_{OUT}  = 30V \end{array}$                                             |       | 0.5<br>0.15 |        | 0.5<br>0.15 |        | 0.5<br>0.15 |        | 0.5<br>0.15 |        | 0.5<br>0.15 |        | A<br>A   |
|                                         | K Package                       | $\begin{array}{l}  V_{IN}-V_{OUT}  \leq 15V \\  V_{IN}-V_{OUT}  = 30V \end{array}$                                             |       | 1.5<br>0.24 |        | 1.5<br>0.24 |        | 1.5<br>0.24 |        | 1.5<br>0.24 |        | 1.5<br>0.24 |        | A        |

#### Table D2: Post-Irradiation Electrical Characteristics of Device-Under-Test

Note 1: Unless otherwise specified, these specifications apply for

 $|V_{IN} - V_{OUT}| = 5V$ ; and  $I_{OUT} = 0.1A$  for the H package (TO-39) and  $I_{OUT} = 0.5A$  for the K package (TO-3) package. Although power dissipation is internally limited, these specifications are applicable for power dissipations of 2W for the TO-39 and 20W for the TO-3. I<sub>MAX</sub> is 0.2A for the TO-39 and 1.5A for the TO-3 package.

**Note 2:** Regulation is measured at a constant junction temperature using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.

Note 3: Guaranteed by design, characterization or correlation to other tested parameters.

Note 4:  $T_J = 25^{\circ}C$  unless otherwise noted.

**Note 5:**  $I_{SC}$  is tested at the ambient temperatures of 25°C and –55°C.  $I_{SC}$  cannot be tested at the maximum ambient temperature of 150°C due to the high power level required.  $I_{SC}$  specification at 150°C ambient is guaranteed by characterization and correlation to 25°C testing.