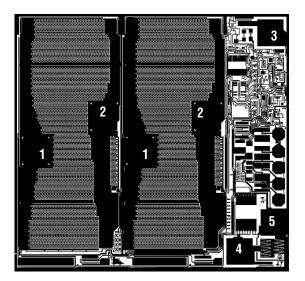


RH1965MK DICE/DWF

0.9A, Low Noise, Low Dropout Linear Regulator

FEATURES


- Output Current: 0.9A
- 500µA Quiescent Current
- Adjustable Output from 1.2V to 19.5V
- No Protection Diodes Needed
- < 1µA Quiescent Current in Shutdown</p>
- Total Ionizing Dose (TID) Tolerance, per TM1019.8,
- MIL-STD-883 up to:
 - 200kRad (Si), per Condition A, at 50Rads(Si)/sec
 - 100kRad (Si), per Condition D, at 10mRads(Si)/sec
 - ELDRS Pass 100kRad(Si)
- MIL-PRF-38535 Class V Compliant

T, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

DESCRIPTION

The RH1965MK is a 0.9A low noise, low dropout linear regulator with a PNP pass transistor, requiring only a single supply for operation. Operating quiescent current is 500µA, reducing to less than 1µA in shutdown. Output voltage ranges from 1.2V to 19.5V. A small 10µF capacitor on the output with an ESR of less than 1Ω is adequate to ensure stability. Applications with large output load transients require a larger output capacitor value to minimize output voltage change. Input circuitry ensures output safe operating area with current limiting and thermal shutdown protection. The rated dropout of an RH1965-based part is dependent on the internal bond wire length/resistance. Linear Technology dice element evaluations are based on parts rated for 0.9A output current that are assembled in 4-Lead TO-3 can packages.

DICE PINOUT

71 mils × 66 mils, Backside metal: Alloyed gold (K) layer Backside potential: GND

PAD FUNCTION

DIE CROSS REFERENCE

1.	OUT	LTC [®] Finished	Order
2.	IN	Part Number	Part Number
3. 4. 5.	SHDN ADJ GND	RH1965MK RH1965MK	RH1965MK DICE RH1965MK DWF*

Please refer to LTC standard product data sheet for other applicable product information. *DWF = DICE in wafer form.

ABSOLUTE MAXIMUM RATINGS

(Note 1)

IN Pin Voltage OUT Pin Voltage	
Input to Output Differential Voltage (Note 2)	
ADJ Pin Voltage	±9V
SHDN Pin Voltage	±22V
Output Short-Circuit Duration	Indefinite
Operating Junction Temperature	
Range (Notes 3, 5, 13)55°C	C to 125°C
Storage Temperature Range65°C	C to 150°C

TABLE 1: DICE/DWF ELECTRICAL TEST LIMITS TA = 25°C (Notes 3, 14, 15, 16)

PARAMETER	CONDITIONS	MIN	MAX	UNITS
ADJ Pin Voltage (Notes 4, 5)	V _{IN} = 2.1V, I _{LOAD} = 1mA	1.182	1.218	V
Line Regulation	ΔV_{IN} = 2.1V to 20V, I _{LOAD} = 1mA (Note 4)		5	mV
Load Regulation	$V_{IN} = 2.3V$, $\Delta I_{LOAD} = 1$ mA to 50mA (Note 4)		7	mV
Dropout Voltage V _{IN} = V _{OUT(NOMINAL)} (Notes 6, 7, 12)	I _{LOAD} = 1mA I _{LOAD} = 50mA		0.08 0.16	V V
$\label{eq:VIN} \hline \hline \\ $	$I_{LOAD} = 0mA$ $I_{LOAD} = 1mA$ $I_{LOAD} = 100mA$		0.7 1 4.5	mA mA mA
ADJ Pin Bias Current (Notes 4, 9)			4.5	μA
Shutdown Threshold	V _{OUT} = Off to On V _{OUT} = On to Off	0.43	1.2	V V
SHDN Pin Current (Note 10)	V _{SHDN} = 0V V _{SHDN} = 20V		1 10	μΑ μΑ
Quiescent Current in Shutdown	$V_{IN} = 6V, V_{\overline{SHDN}} = 0V$		1	μA
Input Reverse-Leakage Current	$V_{IN} = -20V, V_{OUT} = 0V$		1	mA
Reverse-Output Current (Note 11)	V _{OUT} = 1.2V, V _{IN} = 0V (Note 4)		400	μA

rh1965mkf

TABLE 2: ELECTRICAL CHARACTERISTICS

(Preirradiation) (Notes 3, 15, 16)

		T _A =	25°C	SUB-	–55°C <	T _A < 125°C	SUB-	
PARAMETER	CONDITIONS	MIN	MAX	GROUP	MIN	MAX	GROUP	UNITS
Minimum Input Voltage (Notes 4, 12)	I _{LOAD} = 0.9A		2.3	1		2.3	2, 3	V
ADJ Pin Voltage (Notes 4, 5)	V _{IN} = 2.1V, I _{LOAD} = 1mA	1.182	1.218	1	1.164	1.236	2, 3	V
Line Regulation	ΔV_{IN} = 2.1V to 20V, I _{LOAD} = 1mA (Note 4)		6	1		8	2, 3	mV
Load Regulation	V_{IN} = 2.3V, ΔI_{LOAD} = 1mA to 0.9A (Note 4)		8	1		16	2, 3	mV
Dropout Voltage V _{IN} = V _{OUT(NOMINAL)} (Notes 6, 7, 12)	$I_{LOAD} = 1mA$ $I_{LOAD} = 100mA$ $I_{LOAD} = 500mA$ $I_{LOAD} = 0.9A$		80 185 300 435	1 1 1 1		140 295 430 600	2, 3 2, 3 2, 3 2, 3 2, 3	mV mV mV mV
$\label{eq:GND_prod} \hline \\ \hline $	$I_{LOAD} = 0mA$ $I_{LOAD} = 1mA$ $I_{LOAD} = 100mA$ $I_{LOAD} = 500mA$ $I_{LOAD} = 0.9A$		0.85 1.1 4.6 16.5 30	1 1 1 1		1.1 1.5 5.5 20 38	2, 3 2, 3 2, 3 2, 3 2, 3 2, 3	mA mA mA mA mA
Output Voltage Noise	$V_{OUT}\text{=}$ 2.5V, C_{OUT} = 10µF, I_{LOAD} = 0.9A, BW = 10Hz to 100kHz	TYP	= 40	1				μV _{RMS}
ADJ Pin Bias Current (Notes 4, 9)			4.5	1		4.5		μA
Shutdown Threshold	V _{OUT} = Off to On V _{OUT} = On to Off	0.37	1.5	1	0.2	2	2, 3	V V
SHDN Pin Current (Note 10)	V _{SHDN} = 0V V _{SHDN} = 20V		1 10	1				μΑ μΑ
Quiescent Current in Shutdown	$V_{IN} = 6V, V_{\overline{SHDN}} = 0V$		1	1				μA
Ripple Rejection	$V_{IN} - V_{OUT} = 1.5V (AVG), V_{RIPPLE} = 0.5V_{P-P}, f_{RIPPLE} = 120Hz, I_{LOAD} = 0.75A$	57		1				dB
Current Limit (Note 6)	$V_{IN} = V_{OUT(NOMINAL)} + 1V$, $\Delta V_{OUT} = -0.1V$	1.0		1	1.0		2, 3	Α
Input Reverse-Leakage Current	$V_{IN} = -20V$, $V_{OUT} = 0V$		1	1				mA
Reverse-Output Current (Note 11)	$V_{OUT} = 1.2V, V_{IN} = 0V$ (Note 4)		400	1				μA

TABLE 3: ELECTRICAL CHARACTERISTICS

(Postirradiation) $T_A = 25^{\circ}C$ (Notes 3, 15, 16)

		10kRads ((Si)	20kRa	ds (Si)	50kRa	ds (Si)	100kRa	ıds (Si)	200kRa	ds (Si)	
PARAMETER	CONDITIONS	MIN M	IAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
Minimum Input Voltage (Notes 4, 12)	$I_{LOAD} = 0.9A$	2	2.3		2.3		2.3		2.3		2.3	V
ADJ Pin Voltage (Notes 4, 5)	V _{IN} = 2.1V, I _{LOAD} = 1mA	1.176 1.5	224	1.176	1.224	1.176	1.224	1.176	1.224	1.176	1.224	V
Line Regulation (Note 4)	ΔV_{IN} = 2.1V to 20V, I _{LOAD} = 1mA		6		6		6		6		6	mV
Load Regulation	$V_{IN} = 2.3V$, $\Delta I_{LOAD} = 1$ mA to 0.9A (Note 4)		8		8		9		10		12	mV
Dropout Voltage (Notes 6, 7, 12)	$I_{LOAD} = 1mA$ $I_{LOAD} = 100mA$ $I_{LOAD} = 500mA$ $I_{LOAD} = 0.9A$	1	80 85 00 35		80 185 300 440		80 186 305 450		80 188 310 455		80 190 320 465	mV mV mV mV
GND Pin Current $V_{IN} = V_{OUT(NOMINAL)} + 1V$ (Notes 6, 8)	$I_{LOAD} = 0mA$ $I_{LOAD} = 1mA$ $I_{LOAD} = 100mA$ $I_{LOAD} = 500mA$ $I_{LOAD} = 0.9A$	1 4	.85 I.1 I.8 17 31		0.85 1.1 4.9 18 32		0.85 1.1 5.2 19 34		0.85 1.1 6 21 38		0.85 1.1 7 25 45	mA mA mA mA
Output Voltage Noise	V _{OUT} = 2.5V, C _{OUT} = 10µF, I _{LOAD} = 0.9A, BW = 10Hz to 100kHz	TYP = 40	0	TYP	= 40	TYP	= 40	TYP	= 40	TYP	= 40	μV _{RMS}
ADJ Pin Bias Current (Notes 4, 9)		4	1.5		4.5		4.5		4.5		4.5	μA
Shutdown Threshold	$V_{OUT} = Off to On$ $V_{OUT} = On to Off$	1 0.37	1.5	0.37	1.5	0.37	1.5	0.37	1.5	0.37	1.5	V V
SHDN Pin Current (Note 10)	$V_{\overline{SHDN}} = 0V$ $V_{\overline{SHDN}} = 20V$		1 10		1 10		1 10		1 10		1 10	μΑ μΑ
Quiescent Current in Shutdown	$V_{IN} = 6V, V_{\overline{SHDN}} = 0V$		1		1		1		1		1	μA
Ripple Rejection	$V_{IN} = 2.7V + 0.5V_{P-P}, V_{OUT} = 1.2V$ $f_{RIPPLE} = 120Hz, I_{LOAD} = 0.75A$	56		55		54		52		50		dB
Current Limit	$V_{IN} = V_{OUT(NOMINAL)} + 1V,$ $\Delta V_{OUT} = -0.1V$	1.0		1.0		1.0		1.0		1.0		A
Input Reverse-Leakage Current	$V_{IN} = -20V$, $V_{OUT} = 0V$		1		1		1		1		1	mA
Reverse-Output Current (Note 11)	V_{OUT} = 1.2V, V_{IN} = 0V (Note 4)	4	00		400		400		400		400	μA

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: Absolute maximum input to output differential voltage is not achievable with all combinations of rated IN pin and OUT pin voltages. With the IN pin at 22V, the OUT pin may not be pulled below 0V. The total measured voltage from IN to OUT must not exceed \pm 22V.

Note 3: The RH1965MK DICE is tested and specified under pulse load conditions such that $T_J \cong T_A.$

Note 4: The RH1965MK DICE is tested and specified for these conditions with the ADJ pin connected to the output.

Note 5: Maximum junction temperature limits operating conditions. The regulated output voltage specification does not apply for all possible combinations of input voltage and output current. Limit the output current range if operating at the maximum input voltage. Limit the input-to-output voltage differential if operating at the maximum output current.

Note 6: To satisfy minimum input voltage requirements, the RH1965MK DICE is tested and specified for these conditions with an external resistor divider (bottom 4.02k, top 4.32k) for an output voltage of 2.5V. The external resistor divider adds 300μ A of output DC load current. This external current is not factored into GND pin current.

Note 7: Dropout voltage is the minimum input-to-output voltage differential needed to maintain regulation at a specified output current. In dropout, the output voltage equals: $(V_{IN} - V_{DROPOUT})$.

rh1965mkf

ELECTRICAL CHARACTERISTICS

Note 8: GND pin current is tested with $V_{IN} = V_{OUT(NOMINAL)} + 1V$ and a current source load. GND pin current increases slightly in dropout.

Note 9: ADJ pin bias current flows into the ADJ pin.

Note 10: SHDN pin current flows into the SHDN pin.

Note 11: Reverse-output current is tested with the IN pin grounded and the OUT pin forced to 1.2V. This current flows into the OUT pin and out of the GND pin.

Note 12: The minimum input voltage specification limits the dropout voltage under some output voltage/load conditions

Note 13: This IC includes overtemperature protection that is intended to protect the device during momentary overload conditions. Junction temperature exceeds the maximum junction temperature when

overtemperature protection is active. Continuous operation above the specified maximum operating junction temperature may impair device reliability.

Note 14: Dice are probe tested at 25°C to the limits shown in Table 1. Except for high current tests, dice are tested under low current conditions which assure full load current specifications when assembled.

Note 15: Dice that are not qualified by Linear Technology with a can sample are guaranteed to meet specifications of Table 1 only. Dice qualified by Linear Technology with a can sample meet specifications in all tables.

Note 16: Please refer to the LT1965 standard product data sheet for Typical Performance Characteristics, Pin Functions, Applications Information, and Typical Applications.

TABLE 4. POST BURN-IN ENDPOINTS AND DELTA LIMIT REQUIREMENTS $T_{A} = 25^{\circ}C$

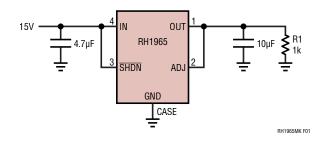
		ENDPOI	ENDPOINT LIMITS		DELTA LIMITS		
PARAMETER	CONDITIONS	MIN	MAX	MIN	MAX	UNITS	
ADJ Pin Voltage (Notes 4, 5)	V _{IN} = 2.1V, I _{LOAD} = 1mA	1.182	1.218	-0.010	0.010	V	
ADJ Pin Bias Current (Notes 4, 9)			4.5	-0.4	0.4	μA	

TABLE 5. ELECTRICAL TEST REQUIREMENTS

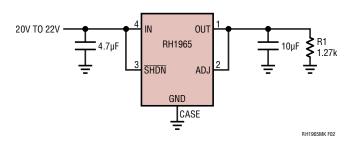
MIL-STD-883 TEST REQUIREMENTS	SUBGROUP
Final Electrical Test Requirements (Method 5004)	1*, 2, 3
Group A Test Requirements (Method 5005)	1, 2, 3
Group B and D for Class S, End Point Electrical Parameters (Method 5005)	1, 2, 3

*PDA applies to subgroup 1. See PDA Test Notes.

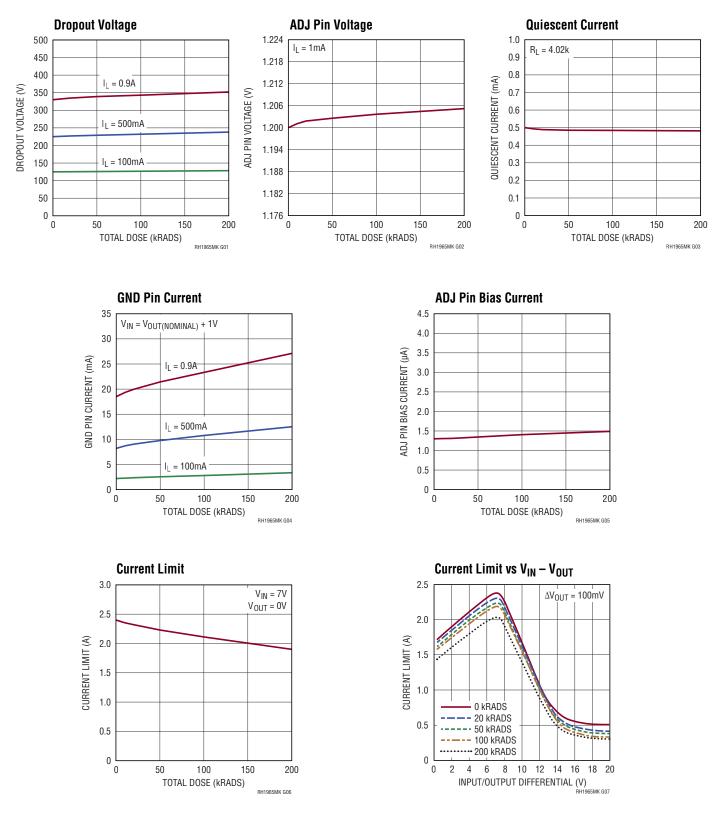
PDA Test Notes

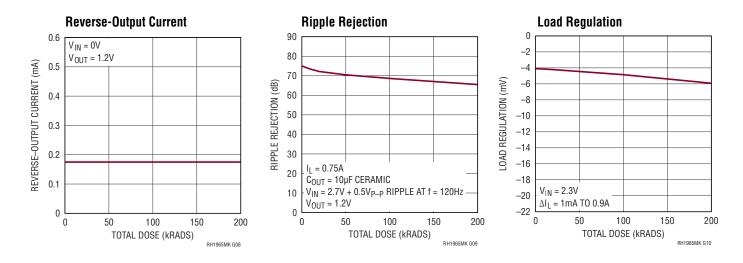

The PDA is specified as 5% based on failures from group A, subgroup 1, tests after cooldown as the final electrical test in accordance with method 5004 of MIL-STD-883. The verified failures of group A, subgroup 1, after burn-in divided by the total number of devices submitted for burn-in in that lot shall be used to determine the percent for the lot.

Linear Technology Corporation reserves the right to test to tighter limits than those given.



TOTAL DOSE BIAS CIRCUIT


BURN-IN CIRCUIT


TYPICAL PERFORMANCE CHARACTERISTICS $T_A = 25 \degree C$

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

TYPICAL PERFORMANCE CHARACTERISTICS T_{A = 25°C}

rh1965mkf

8