High Resolution 14-Bit Sample and Hold Amplifier

 SHAT44FEATURES
$\pm 10 \mathrm{~V}$ min Input/Output Range
50ns Aperture Delay
0.5 ns Aperture Jitter (μ SSegursitlingTime
$\pm 0.001 \%$ Max Gain Linearity Error
Complete with Input Buffer

APPLICATIONS

Track and Hold
Peak Messurement Systems
Data cquisitio 5 stems
Simultaneous sample-and-Nold

GENERAL DESCRTRTLOX
 The SHA1144 is a fast sample-h

 curacy and dynamic performance appropnate for ppplications with fast 14-bit A/D converters. In the "sample" mode, it act as a fast amplifier, tracking the input signal. When switched to the "hold" mode, the output is held at a level corresponding to the input signal voltage at the instant of switching. The droop rate in "hold" is appropriate to allow accurate conversion by 14 -bit A/D converters having conversion times of up to $150 \mu \mathrm{~s}$.
DYNAMIC PERFORMANCE

The SHA1144 was designed to be compatible with fast 14-bit A/D converters such as the Analog Devices' ADC1130 and ADC1131 series, which convert 14 bits in $25 \mu \mathrm{~s}$ and $12 \mu \mathrm{~s}$, respectively. Maximum acquisition time of 8μ s for the SHA1144 permits high sampling rates for 14 -bit conversions. The SHA1144 is guaranteed to have a maximum gain nonlinearity of $\pm 0.001 \%$ of full scale to insure $1 / 2$ LSB accuracy in 14 -bit systems. When in the "hold" mode, the droop rate is $1 \mu \mathrm{~V} / \mu \mathrm{s}$, so the SHA1144 will hold an input signal to $\pm 0.003 \%$ of full scale (20 V p-p) for over $600 \mu \mathrm{~s}$.

PRINCIPLE OF OPERATION

The SHA1144 consists basically of two high speed operational amplifiers, a storage capacitor, and a digitally controlled switch. It differs from typical sample-and-hold modules in one important respect; application versatility. The user completes the SHA1144 feedback circuit external to the module. Therefore, the module may be used in inverting or noninverting configurations and can easily be arranged to provide circuit gain of more than unity to simplify signal conditioning in a subsystem.

[^0] tion or otherwise under any patent or patent rights of Analog Devices.
P.O. Box 280; Norwood, Massachusetts 02062 U.S.A. Telex: 924491

Applying the SHA1144

Figure 2 shows feedback connections to the SHA1144 for the unity gain follower mode. Output (pin 9) is connected to input (pin 4). Input signal is applied to pin 3.

Figure 2. Unity Gain Follower
Figure 3 shows feedback connections for noninverting operation with potentiometric gain. When the indicated values are instrled, gain will be +5 . As in all operational amplifiers, foln-Dunduidth poduct is a constant for a given sample-and-

Figure 3. Noninverting Operation
By using conventional operational amplifier feedback connections, the SHA1144 can be connected for use as an inverter, with various gains (as determined by the $\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{1}$ ratio), or as a differential amplifier.

DATA ACQUISITION APPLICATION

Successive-approximation A/D converters can generate substantial linearity errors if the analog input varies during the period of conversion; even the fast 14 -bit models available cannot tolerate input signal frequencies of greater than a few Hz . For this reason, sample-and-hold amplifiers like the SHA1144 are connected between the A/D and its signal source to hold the analog input constant during conversion.
When the SHA1144 is connected to an A/D, its aperture time uncertainty, rather than the A/D's conversion time, is the factor which limits the allowable input signal frequency. The SHA1144, with a typical aperture delay time of 50 ns and an uncertainty of 0.5 ns , will change from the sample mode to the hold mode 50 to 50.5 ns after the " 1 " to " 0 " transition of the mode control input. If the system timing is so arranged as to initiate the mode control signal 50 ns early, then switching will actually occur within 0.5 ns of the desired time as shown below.

Figure 4. Aperture Uncertainty
The maximum allowable slew rate will thus equal the quotient of the maximum allowable voltage uncertainty and the 0.5 ns aperture uncertainty. For sinewave inputs, the corresponding maximum frequency is expressed by:

Figure 5. Power Supply and Grounding Connections
The $\pm 15 \mathrm{~V}$ power supplies must be externally bypassed as shown. The capacitors should be tantalum types and should be installed as close to the module pins as possible. The analog and digital ground lines should be run separately to their respective power supply commons to prevent coupling of digital switching noise to the sensitive analog circuit section.

OPERATION WITH AN A/D CONVERTER

Figure 6 below shows the appropriate connections between the SHA1144 and a successive approximation A/D converter in block diagram form.

Figure 6. SHA1144 and A/D Connections
The resulting timing sequence at the start of conversion is illustrated in Figure 7.

Note that the leading edge of the convert command pulse causes the converter's STATUS output to go to Logic " 0 " which in turn switches the SHA1144 from sample to hold. As discussed previously, the typical SHA1144 actually changes modes 50 to 50.5 ns after the " 1 " to " 0 " transition of the mode control input. This mode switching causes a transient on the output terminal which decays to within 0.003% of the final value in approximately $1 \mu \mathrm{~s}$. Once the transient has settled, the convert command input is returned to Logic " 0 " and the conversion proceeds. As shown in Figure 8, the STATUS signal returns to Logic " 1 " and the SHA1144 returns to the sample mode at the end of conversion. Within $6 \mu \mathrm{~s}$, it will have acquired the input signal to 0.003% accuracy and a new conversion cycle may be started.

Figure 8. A/D and SHA Timing at End of Conversion

OPERATION WITH AN A/D AND MULTIPLEXER
The subsystem of Figure 9 may also be connected to a multiplexer like the Harris HI508A as shown below.

Figure 9. A/D, SHA, and MPX Connections

The leading edge of the convert command pulse sets the STATUS output to Logic " 0 " thereby switching the SHA1144 to "hold"; the corresponding change to Logic " 1 " of the STATUS output increments the binary counter and changes the multiplexer address. Since the SHA1144's aperture time is small with respect to the multiplexer switching time, it will have switched to the hold mode before the multiplexer actuahanges channels. The multiplexer switching transients will settle out long before the SHA returns to "sample" at the end of conversion. Thetiming sequence described above is

Figure 10. $A / D, S H A$, and MPX Timing

This method of sequencing the multiplexer may be altered to permit random addressing or addressing in a preset pattern. The timing of the multiplexer address changes may also be altered but consideration should be given to the effects of feedthrough in the SHA1144. Feedthrough is the coupling of analog input signals to the output terminal while the SHA is in "hold". Large multiplexer switching transients occuring during A / D conversion may introduce an error.

GENERAL DESCRIPTION

High resolution, high speed data acquisition demands that considerable thought be given to wiring connections, even when simply evaluating the unit in a temporary laboratory bench set-up. To assist with such evaluations, an AC1580 is available. This $41 / 2^{\prime \prime} \times 6^{\prime \prime}$ printed circuit card has sockets that allow a SHA1144 and ADC1130 or ADC1131 to be plugged directly onto it. It also has provisions for two optional Harris HI508A multiplexers. This card includes gain and offset adjustment potentiometers and power supply bypass capacitors. It mates with a Cinch 251-22-30-160 (or equivalent) edge connector (P1) and Cinch 251-06-30-160 (or equivalent) edge connector (P2) which are supplied with every card.
To use the AC1580, program as shown in the wiring chart of Table 1, by installing the appropriate jumpers. An outline drawing nd schematic are provided for reference.
Set up the S roc\& dure 14 the lesired gain per the wiring chart of Table 1. Shet wh whigh dive the SHA YIODE CONTROL
with the SJATUS of the ADC. falil rate offse and gain in the
may be removed and the SHA MODE CONTROL may be driven in accordance with the option chart.

Offset Calibration

For the 0 to +10 V unipolar range set the input voltage precisely to +0.0003 V . Adjust the zero potentiometer until the converter is just on the verge of switching from $00 \ldots 0$ to $00 \ldots .$.
For the +5 V bipolar range, set the input voltage precisely to -4.9997 V ; for $\pm 10 \mathrm{~V}$ units set it to -9.9994 V . Adjust the zero potentiometer until offset binary coded units are just on the verge of switching from $00 \ldots 0$ to $00 \ldots .1$ and two's complement coded units are just on the verge of switching from $100 \ldots 0$ to $100 \ldots .$.
Gain Calibration
Set the input voltage precisely to +9.9991 V for 0 to +10 V units, +4.9991 V for $\pm 5 \mathrm{~V}$ units or +9.9982 V for $\pm 10 \mathrm{~V}$ units. Note that these values are $11 / 2 \mathrm{LSB}$'s less than the nominal full scale. Adjust the gain potentiometer until binary and offset binary coded units are just on the verge of switching from $11 \ldots 0$ to $11 \ldots 1$ and two's complement coded units are just on the verge of switching from $011 \ldots 10$ to $011 \ldots 11$.

Figure 11. Schematic and Pin Designations

OUTLINE DIMENSIONS
Dimensions shown in inches and（mm）．

Figure 12．AC1580 Mounting Board

A to D Converter Options

Range
Jumpers
Jumper W11
Jumper W11 and Jumper G to F on Board Jumper W10 and Jumper G to F on Board

SHA Options

SHA Unity Gain（＋1）
SHA with Gain ${ }^{1,3}$

SHA as an Inverter ${ }^{2,3}$
Jumper W1 and Jumper W7
Jumper W1 and Install RW4 and RW7 in W4 and W7 Locations ${ }^{3}$
Jumper W2 and Jumper W5 and Install RW3 and RW7 in W3 and W7 Locations ${ }^{3}$

SHA Mode Control
Internal
（Driven from Status of the ADC）

Jumper W9
External
（Apply External Signal
to Pin 9 of Connector P1）Jumper W8
Multiplexer Option
When Using Multiplexers Jumper W16
INPUT OPTIONS

Table 1．Option Chart

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implica-

