SAMPLE-AND-HOLD AMPLIFIERS SHA-IA, 2A, 3, 4, 5, 6

GENERAL DESCRIPTION

Anałog Bevices' wide selection of Sample-and-Hold Amplifiers SHA's) pernits the selection of a SHA that is well suited for virfually any applicftion. Esch type offers a unique combina-

ThesHA-1 A is a genferat purpse SHA ffering moderately 0.01% in under $5 u_{s}$, andits dr oprate (desay unep in HOLD) is no greater than 50μ ?

SHA-2A

The SHA-2A is a very fast Sample-and-Hold module with accuracy and dynamic performance that make it appropriate for use with very fast 12 bit A/D converters. It settles to 0.1% in less than 300 ns , and to 0.01% in less than 500 ns .

SHA-3 and SHA-4
These two SHA's were designed for high accuracy at longer hold times. They settle to 0.01% in 75μ s or less. The two differ in that when switched from HOLD to SAMPLE, the SHA-4 settles more rapidly than does the SHA-3.

The SHA-6 was designed as a companhon to the hagh resorttion ADC-16Q A/D converter. It will acquire a signal to 16 bit accuracy (0.00075%) in 5 ms , and then hold it long ough for the $\mathrm{ADC}-16 \mathrm{Q}$ to convert it to a 16 bit digital word. It features excellent gain stability over both time and temperature.

PIN DESIGNATIONS: SHA-5

1. ANALOG GROUND
2. LOGIC GROUND
3. -15 V
4. +15 V
5. N.C.
6. N.C.
7. SIGNAL IN
8. CONTROL IN
9. N.C.
10. N.C.
11. N.C.
12. ANALOG OUTPUT
13. NO PIN
14. N.C.

SPECIFICATION SUMMARY (Typical @ $+25^{\circ} \mathrm{C}$ unless otherwise noted)

| APPLICATIONS |
| :--- | :--- | :--- |
| Model ${ }^{1}$ |

SHA- 1 A

PIN DESIGNATIONS: SHA-6

```
    3. +EOUT
    5. -EOUT
16. -15V
18. ANALOG COMMON
19. +15V
36. MODE CONTROL INPUT
37. MODE CONTROL COMMON
59. --EIN
64. GAIN CONTROL
67. +E EIN
69. GAIN CONTROL
```

NOTE: The pins listed above are the only pins that appear on the SHA-6.

SHA-5

SHA-2A

GENERAL DESCRIPTION

The SHA IA is a fast sample-and-hold module with low droop rate and overall accuracy compatible with 12 -bit A/D conversion systems operating to $1 / 2$ LSB accuracy. When in the "sample" mode, the module appears as a fast amplifier with $5 \mu \mathrm{~s}$ settling time to 0.01%, 1 nA input current, $25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift, and unity gain with $\pm 10 \mathrm{~V}$ at $\pm 20 \mathrm{~mA}$ output current capability. When in the "hold" mode, the droop rate is $50 \mu \mathrm{~V} / \mathrm{ms}$ max, so the SHA IA will hold an input signal to 0.01% of full scale ($20 \mathrm{~V} p-\mathrm{p}$) for 40 ms , sufficient for 12 -bit A/D conversion.

SAMPLE TO HOLD CHARACTERISTICS

Of prime importance in selecting Sample-and-Hold amplifiers is the transition characteristics when the module is commanded into hold by the digital control line. A finite delay will occur between initiation of the hold command, and actual disconnection of the hold capacitor from the input buffer amplifier. In the SHA IA, this delay time is 40 ns maximum. The uncertainty, or jitter over which this delay time will vary from cycle to as the module is repeatedly commanded into hold, is $\pm 5 \mathrm{n} s$. In moft systems, the jitter specification is the limiting factor on overall system speed for a qiver dccuracy, since fixed delays can be removed by odjusting the yystem (innigg. The 5 ns jitter specification means the SH / A car tradk a signal slewing up to $\mathrm{Q} 2 \mathrm{~V} / \mu \mathrm{s}$, and OVERALL ACCURACY
The SHA IA is guaranteed to heve an eleral of 2 mV max over a $\pm 10 \mathrm{~V}$ input range, or 1 LV max over inputs. This specification combines the effects of common mode erkers, gain non linearity and sample to hold offset non linearity. It is notonger necessary to guess at the combined effects of individual errors since the SHA IA specification guarantees that its total non-linearity errors are sufficiently low to insure $1 / 2$ LSB accuracy in 12 -bit systems.

GROUNDING

Many data acquisition systems suffer from digital ground induced noise appearing in the analog system. To counteract this problem, the SHA IA has three separate ground systems. The digital ground is actually one side of a differential amplifier, with the Sample/Hold digital control input being the other input of this amplifier. This effectively prevents digital ground noise from being impressed into the analog signal channel. The power ground and analog input/output grounds are also separate, so that power supply ground noise is reduced by the rejection coefficients of the amplifiers, normally well over 90 dB . Ground connection instructions are given in Figure 1.

A DC path must exist between the Analog, Digital, and power supply grounds. Multiple grounds on signal and power return lines should be avoided. If possible, only one external ground should exist on the Analog ground system

Fig. 1 SHA IA Connections and Grounding

SHA IA

SAMPLE AND HOLD MODULE

FEATURES

12-Bit System Compatible Throughput Non-Linearity $\mathbf{2 m V}$ Max Over $\pm 10 \mathrm{~V}$ Input Range Acquisition Time 5μ s Miax Input Buffer, $10^{12} \Omega R_{\text {in }}$ Independent Digital, Analog, and Power Grounds Modular 0.4" High Construction Standard ± 15 VDC Power No External Adjustments Required

APPLICATIONS

Data Acquisition Systems Data Distribution Systems Track and Hold Sample and Hold Peak Measurement Systems

Represented By

SHA IA
SPECIFICATIONS (typical @ $+25^{\circ} \mathrm{C}$ and nominal supply voltages, unless otherwise noted)

ACCURACY

Gain
Gain Error
Total Throughput Non Linearity (Includes Gain and Sample to Hold Offset Non Linearities)
$+1$
$+0.0,-0.05 \%$ max
2 mV max over $\pm 10 \mathrm{~V}$ input range 1 mV max over 0 to +10 V or 0 to -10 V input range

FREQUENCY RESPONSE IN
 SAMPLE MODE

Small Signal-3dB	500 kHz min
Slew Rate	$4 \mathrm{~V} / \mu \mathrm{s}$

Settling Time to 0.01% for 20 Volt Input Step
$5 \mu \mathrm{~s}$ max

INPUT CHARACTERISTICS
Input Resistance
Input Capacitance
Input Bias Current
Initial Input Offset
Offset vs. Supply
Offset vs. Temp.
Input Voltage, Max. Safe
Input Voltage, Normal Operation

OUTPUT CHARACTERISTICS

Output Voltage, Current
Maximum Load Capacitance at Output 500pF

DIGITAL CONTROL
Logic Levels (DTL/TTL Comp.)
("1") Sample
("0") Hold

POWER REQUIREMENTS

TEMPERATURE RANGE
Rated Accuracy
Storage
10^{12} ohms
5 pF max
1 mV max
$100 \mu \mathrm{~V} / \%$
$\pm 15 \mathrm{~V}$
$\pm 10 \mathrm{~V}$

10nA max, InA typ
$25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
$\pm 10 \mathrm{~V}$ min at $\pm 20 \mathrm{~mA}$ min

$$
+2 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \text { at } 40 \mathrm{nA}
$$

$$
-0.5 \mathrm{~V} \text { to }+0.8 \mathrm{~V} \text { at } 20 \mu \mathrm{~A}
$$

$\pm 15 \mathrm{VDC}$ at $+10 \mathrm{~mA},-15 \mathrm{~mA}$ ($\pm 3 \%$ tolerance on voltage)

Specifications subject to change without notice

Pins: $0.019 \pm .001$ dia, Gold plated half-hard brass, per MIL-G-45204.
Pin designations are shown on bottom view for reference only.

Fig. 2 I/lustration of Dynamic Specifications (not to scale)

OTHER PRODUCTS

Multiplexer MPX-8A

Available with 8 channels, digital addressing, expandable to 64 channels. Input range $\pm 10 \mathrm{~V}$ with standard $\pm 15 \mathrm{VDC}$ supplies. Mosfet design prevents burn out due to power failure, -80 dB crosstalk, $2 \mu \mathrm{~s}$ max switching time. Accuracy to 0.01%.

Analog to Digital Converter ADC-QM

 Available in 8 -, $10-$, or 12 -bit resolution and accuracy. A 25μ s conversion time and low $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ gain TC. $2^{\prime \prime} \mathrm{x}$ $4^{\prime \prime} \times 0.4^{\prime \prime}$ package.Analog to Digital Converter ADC-120Z An economical 12 bit device with a $40 \mu \mathrm{~s}$ conversion time. Package size is $2^{\prime \prime} \times 4^{\prime \prime} \times 0.4^{\prime \prime}$

