
Software Optimization
Guide

for
AMD64 Processors
25112Publication # 3.06Revision:
September 2005Issue Date:

© 2001 – 2005 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro Devices,
Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the
accuracy or completeness of the contents of this publication and reserves the right to make
changes to specifications and product descriptions at any time without notice. No license,
whether express, implied, arising by estoppel or otherwise, to any intellectual property
rights is granted by this publication. Except as set forth in AMD’s Standard Terms and
Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or
implied warranty, relating to its products including, but not limited to, the implied war-
ranty of merchantability, fitness for a particular purpose, or infringement of any intellec-
tual property right.

AMD’s products are not designed, intended, authorized or warranted for use as compo-
nents in systems intended for surgical implant into the body, or in other applications
intended to support or sustain life, or in any other application in which the failure of
AMD’s product could create a situation where personal injury, death, or severe property or
environmental damage may occur. AMD reserves the right to discontinue or make changes
to its products at any time without notice.
Trademarks

AMD, the AMD Arrow logo, AMD Athlon, AMD Opteron, and combinations thereof, 3DNow! and AMD-8151 are trademarks of
Advanced Micro Devices, Inc.

HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.

Microsoft is a registered trademark of Microsoft Corporation.

MMX is a trademark of Intel Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Contents

Revision History .xv

Chapter 1 Introduction .1

1.1 Intended Audience .1

1.2 Getting Started Quickly .1

1.3 Using This Guide .2

1.4 Important New Terms .4

1.5 Key Optimizations .6

Chapter 2 C and C++ Source-Level Optimizations .7

2.1 Declarations of Floating-Point Values .9

2.2 Using Arrays and Pointers .10

2.3 Unrolling Small Loops .13

2.4 Expression Order in Compound Branch Conditions .14

2.5 Long Logical Expressions in If Statements .16

2.6 Arrange Boolean Operands for Quick Expression Evaluation17

2.7 Dynamic Memory Allocation Consideration .19

2.8 Unnecessary Store-to-Load Dependencies .20

2.9 Matching Store and Load Size .22

2.10 SWITCH and Noncontiguous Case Expressions .25

2.11 Arranging Cases by Probability of Occurrence .28

2.12 Use of Function Prototypes .29

2.13 Use of const Type Qualifier .30

2.14 Generic Loop Hoisting .31

2.15 Local Static Functions .34

2.16 Explicit Parallelism in Code .35

2.17 Extracting Common Subexpressions .37

2.18 Sorting and Padding C and C++ Structures .39

2.19 Sorting Local Variables .41
Contents iii

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
2.20 Replacing Integer Division with Multiplication .43

2.21 Frequently Dereferenced Pointer Arguments .44

2.22 Array Indices .46

2.23 32-Bit Integral Data Types .47

2.24 Sign of Integer Operands .48

2.25 Accelerating Floating-Point Division and Square Root .50

2.26 Fast Floating-Point-to-Integer Conversion .52

2.27 Speeding Up Branches Based on Comparisons Between Floats 54

2.28 Improving Performance in Linux Libraries .57

Chapter 3 General 64-Bit Optimizations .59

3.1 64-Bit Registers and Integer Arithmetic .60

3.2 64-Bit Arithmetic and Large-Integer Multiplication .62

3.3 128-Bit Media Instructions and Floating-Point Operations .67

3.4 32-Bit Legacy GPRs and Small Unsigned Integers .68

Chapter 4 Instruction-Decoding Optimizations .71

4.1 DirectPath Instructions .72

4.2 Load-Execute Instructions .73

4.2.1 Load-Execute Integer Instructions .73

4.2.2 Load-Execute Floating-Point Instructions with Floating-Point Operands . . .74

4.2.3 Load-Execute Floating-Point Instructions with Integer Operands74

4.3 Branch Targets in Program Hot Spots .76

4.4 32/64-Bit vs. 16-Bit Forms of the LEA Instruction .77

4.5 Take Advantage of x86 and AMD64 Complex Addressing Modes78

4.6 Short Instruction Encodings .80

4.7 Partial-Register Reads and Writes .81

4.8 Using LEAVE for Function Epilogues .83

4.9 Alternatives to SHLD Instruction .85

4.10 8-Bit Sign-Extended Immediate Values .87

4.11 8-Bit Sign-Extended Displacements .88

4.12 Code Padding with Operand-Size Override and NOP .89
iv Contents

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Chapter 5 Cache and Memory Optimizations .91

5.1 Memory-Size Mismatches .92

5.2 Natural Alignment of Data Objects .95

5.3 Cache-Coherent Nonuniform Memory Access (ccNUMA) .96

5.4 Multiprocessor Considerations .99

5.5 Store-to-Load Forwarding Restrictions .100

5.6 Prefetch Instructions .104

5.7 Streaming-Store/Non-Temporal Instructions .112

5.8 Write-combining .113

5.9 L1 Data Cache Bank Conflicts .114

5.10 Placing Code and Data in the Same 64-Byte Cache Line .116

5.11 Sorting and Padding C and C++ Structures .117

5.12 Sorting Local Variables .119

5.13 Memory Copy .120

5.14 Stack Considerations .122

5.15 Cache Issues when Writing Instruction Bytes to Memory .123

5.16 Interleave Loads and Stores .124

Chapter 6 Branch Optimizations .125

6.1 Density of Branches .126

6.2 Two-Byte Near-Return RET Instruction .128

6.3 Branches That Depend on Random Data .130

6.4 Pairing CALL and RETURN .132

6.5 Recursive Functions .133

6.6 Nonzero Code-Segment Base Values .135

6.7 Replacing Branches with Computation .136

6.8 The LOOP Instruction .141

6.9 Far Control-Transfer Instructions .142

Chapter 7 Scheduling Optimizations .143

7.1 Instruction Scheduling by Latency .144

7.2 Loop Unrolling .145
Contents v

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
7.3 Inline Functions .149

7.4 Address-Generation Interlocks .151

7.5 MOVZX and MOVSX .153

7.6 Pointer Arithmetic in Loops .154

7.7 Pushing Memory Data Directly onto the Stack .157

Chapter 8 Integer Optimizations .159

8.1 Replacing Division with Multiplication .160

8.2 Alternative Code for Multiplying by a Constant .164

8.3 Repeated String Instructions .167

8.4 Using XOR to Clear Integer Registers .169

8.5 Efficient 64-Bit Integer Arithmetic in 32-Bit Mode .170

8.6 Efficient Implementation of Population-Count Function in 32-Bit Mode179

8.7 Efficient Binary-to-ASCII Decimal Conversion .181

8.8 Derivation of Algorithm, Multiplier, and Shift Factor for Integer
Division by Constants .186

8.9 Optimizing Integer Division .192

Chapter 9 Optimizing with SIMD Instructions .193

9.1 Ensure All Packed Floating-Point Data are Aligned .195

9.2 Improving Scalar SSE and SSE2 Floating-Point Performance with MOVLPD and
MOVLPS When Loading Data from Memory .196

9.3 Use MOVLPx/MOVHPx Instructions for Unaligned Data Access 198

9.4 Use MOVAPD and MOVAPS Instead of MOVUPD and MOVUPS 199

9.5 Structuring Code with Prefetch Instructions to Hide Memory Latency200

9.6 Avoid Moving Data Directly Between
General-Purpose and MMX™ Registers .206

9.7 Use MMX™ Instructions to Construct Fast Block-Copy
Routines in 32-Bit Mode .207

9.8 Passing Data between MMX™ and 3DNow!™ Instructions208

9.9 Storing Floating-Point Data in MMX™ Registers .209

9.10 EMMS and FEMMS Usage .210
vi Contents

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
9.11 Using SIMD Instructions for Fast Square Roots and Fast
Reciprocal Square Roots .211

9.12 Use XOR Operations to Negate Operands of SSE, SSE2, and
3DNow!™ Instructions .215

9.13 Clearing MMX™ and XMM Registers with XOR Instructions216

9.14 Finding the Floating-Point Absolute Value of Operands of SSE, SSE2, and
3DNow!™ Instructions .217

9.15 Accumulating Single-Precision Floating-Point Numbers Using SSE, SSE2,
and 3DNow!™ Instructions .218

9.16 Complex-Number Arithmetic Using SSE, SSE2, and 3DNow!™ Instructions221

9.17 Optimized 4 × 4 Matrix Multiplication on 4 × 1 Column Vector Routines230

Chapter 10 x87 Floating-Point Optimizations .237

10.1 Using Multiplication Rather Than Division .238

10.2 Achieving Two Floating-Point Operations per Clock Cycle 239

10.3 Floating-Point Compare Instructions .244

10.4 Using the FXCH Instruction Rather Than FST/FLD Pairs .245

10.5 Floating-Point Subexpression Elimination .246

10.6 Accumulating Precision-Sensitive Quantities in x87 Registers247

10.7 Avoiding Extended-Precision Data .248

Appendix A Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors . .249

A.1 Key Microarchitecture Features .250

A.2 Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors 251

A.3 Superscalar Processor .251

A.4 Processor Block Diagram .251

A.5 L1 Instruction Cache .252

A.6 Branch-Prediction Table .253

A.7 Fetch-Decode Unit .254

A.8 Instruction Control Unit .254

A.9 Translation-Lookaside Buffer .254

A.10 L1 Data Cache .255

A.11 Integer Scheduler .256
Contents vii

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
A.12 Integer Execution Unit .256

A.13 Floating-Point Scheduler .257

A.14 Floating-Point Execution Unit .258

A.15 Load-Store Unit .258

A.16 L2 Cache .259

A.17 Write-combining .260

A.18 Buses for AMD Athlon™ 64 and AMD Opteron™ Processor 260

A.19 Integrated Memory Controller .260

A.20 HyperTransport™ Technology Interface .260

Appendix B Implementation of Write-Combining .263

B.1 Write-Combining Definitions and Abbreviations .263

B.2 Programming Details .264

B.3 Write-combining Operations .264

B.4 Sending Write-Buffer Data to the System .266

B.5 Write-Combining Optimization on Revision D and E
AMD Athlon™ 64 and AMD Opteron™ Processors .266

Appendix C Instruction Latencies .269

C.1 Understanding Instruction Entries .270

C.2 Integer Instructions .273

C.3 MMX™ Technology Instructions .303

C.4 x87 Floating-Point Instructions .307

C.5 3DNow!™ Technology Instructions .314

C.6 3DNow!™ Technology Extensions .316

C.7 SSE Instructions .317

C.8 SSE2 Instructions .326

C.9 SSE3 Instructions .342

Appendix D AGP Considerations .345

D.1 Fast-Write Optimizations .345

D.2 Fast-Write Optimizations for Graphics-Engine Programming346

D.3 Fast-Write Optimizations for Video-Memory Copies .349
viii Contents

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
D.4 Memory Optimizations .351

D.5 Memory Optimizations for Graphics-Engine Programming
Using the DMA Model .352

D.6 Optimizations for Texture-Map Copies to AGP Memory .353

D.7 Optimizations for Vertex-Geometry Copies to AGP Memory353

Appendix E SSE and SSE2 Optimizations .355

E.1 Half-Register Operations .356

E.2 Zeroing Out an XMM Register .357

E.3 Reuse of Dead Registers .359

E.4 Moving Data Between XMM Registers and GPRs .360

E.5 Saving and Restoring Registers of Unknown Format .361

E.6 SSE and SSE2 Copy Loops .362

E.7 Explicit Load Instructions .363

E.8 Data Conversion .364

Index .367
Contents ix

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
x Contents

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Tables

Table 1. Instructions, Macro-ops and Micro-ops ..5
Table 2. Optimizations by Rank..6
Table 3. Comparisons against Zero...55
Table 4. Comparisons against Positive Constant ..55
Table 5. Comparisons among Two Floats...55
Table 6. Latency of Repeated String Instructions ...167
Table 7. L1 Instruction Cache Specifications by Processor..253
Table 8. L1 Instruction TLB Specifications..255
Table 9. L1 Data TLB Specifications..255
Table 10. L2 TLB Specifications by Processor...255
Table 11. L1 Data Cache Specifications by Processor..256
Table 12. Write-Combining Completion Events...265
Table 13. Integer Instructions..273
Table 14. MMX™ Technology Instructions...303
Table 15. x87 Floating-Point Instructions...307
Table 16. 3DNow!™ Technology Instructions...314
Table 17. 3DNow!™ Technology Extensions ..316
Table 18. SSE Instructions ..317
Table 19. SSE2 Instructions ..326
Table 20. SSE3 Instructions ..342
Table 21. Clearing XMM Registers ..357
Table 22. Converting Scalar Values ...364
Table 23. Converting Vector Values...365
Table 24. Converting Directly from Memory ...365
Tables xi

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
xii Tables

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Figures

Figure 1. Simple SMP Block Diagram...97
Figure 2. Dual-Core AMD Opteron™ Processor Configuration ...97
Figure 3. Memory-Limited Code ...109
Figure 4. Processor-Limited Code ...109
Figure 5. AMD Athlon™ 64 and AMD Opteron™ Processors Block Diagram252
Figure 6. Integer Execution Pipeline..256
Figure 7. Floating-Point Unit ...258
Figure 8. Load-Store Unit ..259
Figure 9. AGP 8x Fast-Write Transaction ...346
Figure 10. Cacheable-Memory Command Structure ...347
Figure 11. Northbridge Command Flow ..352
Figures xiii

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
xiv Figures

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Revision History

Date Rev. Description

August 2005 3.06 Updated latency tables in Appendix C. Added section 8.9 on optimizing integer
division. Clarified the use of non-temporal PREFETCHNTA instruction in section
5.6. Added explanatory information to section 5.3 on ccNUMA. Added section 4.5
on AMD64 complx addressing modes. Added new section 5.13 on memory copies.

October 2004 3.05 Updated information on write-combining optimizations in Appendix B,
Implementation of Write-Combining; Added latency information for SSE3
instructions.

March 2004 3.04 Incorporated a section on ccNUMA in Chapter 5. Added sections on moving
unaligned versus unaligned data. Added to PREFETCHNTA information in Chapter
5. Fixed many minor typos.

September 2003 3.03 Made several minor typographical and formatting corrections.

July 2003 3.02 Added index references. Corrected information pertaining to L1 and L2 data and
instruction caches. Corrected information on alignment in Chapter 5, “Cache and
Memory Optimizations”. Amended latency information in Appendix C.

April 2003 3.01 Clarified section 2.22 'Array Indices'. Corrected factual errors and removed
misleading examples from Cache and Memory chapter..

April 2003 3.00 Initial public release.
Revision History xv

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
xvi Revision History

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Chapter 1 Introduction

This guide provides optimization information and recommendations for the AMD Athlon™ 64 and
AMD Opteron™ processors. These optimizations are designed to yield software code that is fast,
compact, and efficient. Toward this end, the optimizations in each of the following chapters are listed
in order of importance.

This chapter covers the following topics:

1.1 Intended Audience
This book is intended for compiler and assembler designers, as well as C, C++, and assembly-
language programmers writing performance-sensitive code sequences. This guide assumes that you
are familiar with the AMD64 instruction set and the AMD64 architecture (registers and programming
modes). For complete information on the AMD64 architecture and instruction set, see the
multivolume AMD64 Architecture Programmer’s Manual available from AMD.com. Documentation
volumes and their order numbers are provided below.

1.2 Getting Started Quickly
More experienced readers may skip to “Key Optimizations” on page 6, which identifies the most
important optimizations.

Topic Page

Intended Audience 1

Getting Started Quickly 1

Using This Guide 2

Important New Terms 4

Key Optimizations 6

Title Order no.

Volume 1, Application Programming 24592

Volume 2, System Programming 24593

Volume 3, General-Purpose and System Instructions 24594

Volume 4, 128-Bit Media Instructions 26568

Volume 5, 64-Bit Media and x87 Floating-Point Instructions 26569
Chapter 1 Introduction 1

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
1.3 Using This Guide
This chapter explains how to get the most benefit from this guide. It defines important new terms you
will need to understand before reading the rest of this guide and lists the most important optimizations
by rank.

Chapter 2 describes techniques that you can use to optimize your C and C++ source code. The
“Application” section for each optimization indicates whether the optimization applies to 32-bit
software, 64-bit software, or both.

Chapter 3 presents general assembly-language optimizations that improve the performance of
software designed to run in 64-bit mode. All optimizations in this chapter apply only to 64-bit
software.

The remaining chapters describe assembly-language optimizations. The “Application” section under
each optimization indicates whether the optimization applies to 32-bit software, 64-bit software, or
both.

Appendix A discusses the internal design, or microarchitecture, of the processor and provides
specifications on the translation-lookaside buffers. It also provides information on other functional
units that are not part of the main processor but are integrated on the chip.

Appendix B describes the memory write-combining feature of the processor.

Appendix C provides a complete listing of all AMD64 instructions. It shows each instruction’s
encoding, decode type, execution latency, and—where applicable—the pipe used in the floating-point
unit.

Appendix D discusses optimizations that improve the throughput of AGP transfers.

Appendix E describes coding practices that improve performance when using SSE and SSE2
instructions.

Chapter 4 Instruction-Decoding Optimizations

Chapter 5 Cache and Memory Optimizations

Chapter 6 Branch Optimizations

Chapter 7 Scheduling Optimizations

Chapter 8 Integer Optimizations

Chapter 9 Optimizing with SIMD Instructions

Chapter 10 x87 Floating-Point Optimizations
2 Introduction Chapter 1

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Special Information

Special information in this guide looks like this:

❖ This symbol appears next to the most important, or key, optimizations.

Numbering Systems

The following suffixes identify different numbering systems:

Typographic Notation

This guide uses the following typographic notations for certain types of information:

Providing Feedback

If you have suggestions for improving this guide, we would like to hear from you. Please send your
comments to the following e-mail address:

code.optimization@amd.com

This suffix Identifies a

b Binary number. For example, the binary equivalent of the number 5 is written 101b.

d Decimal number. Decimal numbers are followed by this suffix only when the possibility of
confusion exists. In general, decimal numbers are shown without a suffix.

h Hexadecimal number. For example, the hexadecimal equivalent of the number 60 is
written 3Ch.

This type of text Identifies

italic Placeholders that represent information you must provide. Italicized text is also used
for the titles of publications and for emphasis.

monowidth Program statements and function names.
Chapter 1 Introduction 3

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
1.4 Important New Terms
This section defines several important terms and concepts used in this guide.

Primitive Operations

AMD Athlon 64 and AMD Opteron processors perform four types of primitive operations:

• Integer (arithmetic or logic)

• Floating-point (arithmetic)

• Load

• Store

Internal Instruction Formats

The AMD64 instruction set is complex; instructions have variable-length encodings and many
perform multiple primitive operations. AMD Athlon 64 and AMD Opteron processors do not execute
these complex instructions directly, but, instead, decode them internally into simpler fixed-length
instructions called macro-ops. Processor schedulers subsequently break down macro-ops into
sequences of even simpler instructions called micro-ops, each of which specifies a single primitive
operation.

A macro-op is a fixed-length instruction that:

• Expresses, at most, one integer or floating-point operation and one load and/or store operation.

• Is the primary unit of work managed (that is, dispatched and retired) by the processor.

A micro-op is a fixed-length instruction that:

• Expresses one and only one of the primitive operations that the processor can perform (for
example, a load).

• Is executed by the processor’s execution units.
4 Introduction Chapter 1

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Table 1 summarizes the differences between AMD64 instructions, macro-ops, and micro-ops.

Table 1. Instructions, Macro-ops and Micro-ops

Types of Instructions

Instructions are classified according to how they are decoded by the processor. There are three types
of instructions:

Comparing AMD64 instructions Macro-ops Micro-ops

Complexity Complex

A single instruction may
specify one or more of
each of the following
operations:

• Integer or floating-point
operation

• Load

• Store

Average

A single macro-op may
specify—at most—one
integer or floating-point
operation and one of the
following operations:

• Load

• Store

• Load and store to the
same address

Simple

A single micro-op
specifies only one of the
following primitive
operations:

• Integer or floating-point

• Load

• Store

Encoded length Variable (instructions are
different lengths)

Fixed (all macro-ops are
the same length)

Fixed (all micro-ops are
the same length)

Regularized
instruction fields

No (field locations and
definitions vary among
instructions)

Yes (field locations and
definitions are the same
for all macro-ops)

Yes (field locations and
definitions are the same
for all micro-ops)

Instruction Type Description

DirectPath Single A relatively common instruction that the processor decodes directly into one macro-op
in hardware.

DirectPath Double A relatively common instruction that the processor decodes directly into two macro-
ops in hardware.

VectorPath A sophisticated or less common instruction that the processor decodes into one or
more (usually three or more) macro-ops using the on-chip microcode-engine ROM
(MROM).
Chapter 1 Introduction 5

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
1.5 Key Optimizations
While all of the optimizations in this guide help improve software performance, some of them have
more impact than others. Optimizations that offer the most improvement are called key optimizations.

Guideline

Concentrate your efforts on implementing key optimizations before moving on to other optimizations,
and incorporate higher-ranking key optimizations first.

Key Optimizations by Rank

Table 1 lists the key optimizations by rank.

Table 2. Optimizations by Rank

Rank Optimization Page

1 Memory-Size Mismatches 92

2 Natural Alignment of Data Objects 95

3 Memory Copy 120

4 Density of Branches 126

5 Prefetch Instructions 104

6 Two-Byte Near-Return RET Instruction 128

7 DirectPath Instructions 72

8 Load-Execute Integer Instructions 73

9 Load-Execute Floating-Point Instructions with Floating-Point Operands 74

10 Load-Execute Floating-Point Instructions with Integer Operands 74

11 Write-combining 113

12 Branches That Depend on Random Data 130

13 Half-Register Operations 356

14 Placing Code and Data in the Same 64-Byte Cache Line 116
6 Introduction Chapter 1

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Chapter 2 C and C++ Source-Level
Optimizations

Although C and C++ compilers generally produce very compact object code, many performance
improvements are possible by careful source code optimization. Most such optimizations result from
taking advantage of the underlying mechanisms used by C and C++ compilers to translate source
code into sequences of AMD64 instructions. This chapter includes guidelines for writing C and C++
source code that result in the most efficiently optimized AMD64 code.

This chapter covers the following topics:

Topic Page

Declarations of Floating-Point Values 9

Using Arrays and Pointers 10

Unrolling Small Loops 13

Expression Order in Compound Branch Conditions 14

Long Logical Expressions in If Statements 16

Arrange Boolean Operands for Quick Expression Evaluation 17

Dynamic Memory Allocation Consideration 19

Unnecessary Store-to-Load Dependencies 20

Matching Store and Load Size 22

SWITCH and Noncontiguous Case Expressions 25

Arranging Cases by Probability of Occurrence 28

Use of Function Prototypes 29

Use of const Type Qualifier 30

Generic Loop Hoisting 31

Local Static Functions 34

Explicit Parallelism in Code 35

Extracting Common Subexpressions 37

Sorting and Padding C and C++ Structures 39

Sorting Local Variables 41

Replacing Integer Division with Multiplication 43

Frequently Dereferenced Pointer Arguments 44

Array Indices 46

32-Bit Integral Data Types 47

Sign of Integer Operands 48
Chapter 2 C and C++ Source-Level Optimizations 7

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Accelerating Floating-Point Division and Square Root 50

Fast Floating-Point-to-Integer Conversion 52

Speeding Up Branches Based on Comparisons Between Floats 54

Topic Page
8 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
2.1 Declarations of Floating-Point Values

Optimization

When working with single precision (float) values:

• Use the f or F suffix (for example, 3.14f) to specify a constant value of type float.

• Use function prototypes for all functions that accept arguments of type float.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

C and C++ compilers treat floating-point constants and arguments as double precision (double)
unless you specify otherwise. However, single precision floating-point values occupy half the
memory space as double precision values and can often provide the precision necessary for a given
computational problem.
Chapter 2 C and C++ Source-Level Optimizations 9

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
2.2 Using Arrays and Pointers

Optimization

Use array notation instead of pointer notation when working with arrays.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

C allows the use of either the array operator ([]) or pointers to access the elements of an array.
However, the use of pointers in C makes work difficult for optimizers in C compilers. Without
detailed and aggressive pointer analysis, the compiler has to assume that writes through a pointer can
write to any location in memory, including storage allocated to other variables. (For example, *p and
*q can refer to the same memory location, while x[0] and x[2] cannot.) Using pointers causes
aliasing, where the same block of memory is accessible in more than one way. Using array notation
makes the task of the optimizer easier by reducing possible aliasing.
10 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Example

Avoid code, such as the following, which uses pointer notation:

typedef struct {
 float x, y, z, w;
} VERTEX;

typedef struct {
 float m[4][4];
} MATRIX;

void XForm(float *res, const float *v, const float *m, int numverts) {

 float dp;
 int i;
 const VERTEX* vv = (VERTEX *)v;

 for (i = 0; i < numverts; i++) {
 dp = vv->x * *m++;
 dp += vv->y * *m++;
 dp += vv->z * *m++;
 dp += vv->w * *m++;

 *res++ = dp; // Write transformed x.

 dp = vv->x * *m++;
 dp += vv->y * *m++;
 dp += vv->z * *m++;
 dp += vv->w * *m++;

 *res++ = dp; // Write transformed y.

 dp = vv->x * *m++;
 dp += vv->y * *m++;
 dp += vv->z * *m++;
 dp += vv->w * *m++;

 *res++ = dp; // Write transformed z.

 dp = vv->x * *m++;
 dp += vv->y * *m++;
 dp += vv->z * *m++;
 dp += vv->w * *m++;

 *res++ = dp; // Write transformed w.

 ++vv; // Next input vertex
 m -= 16; // Reset to start of transform matrix.
 }
}

Chapter 2 C and C++ Source-Level Optimizations 11

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Instead, use the equivalent array notation:

typedef struct {
 float x, y, z, w;
} VERTEX;

typedef struct {
 float m[4][4];
} MATRIX;

void XForm(float *res, const float *v, const float *m, int numverts) {

 int i;
 const VERTEX* vv = (VERTEX *)v;
 const MATRIX* mm = (MATRIX *)m;
 VERTEX* rr = (VERTEX *)res;

 for (i = 0; i < numverts; i++) {
 rr->x = vv->x * mm->m[0][0] + vv->y * mm->m[0][1] +
 vv->z * mm->m[0][2] + vv->w * mm->m[0][3];
 rr->y = vv->x * mm->m[1][0] + vv->y * mm->m[1][1] +
 vv->z * mm->m[1][2] + vv->w * mm->m[1][3];
 rr->z = vv->x * mm->m[2][0] + vv->y * mm->m[2][1] +
 vv->z * mm->m[2][2] + vv->w * mm->m[2][3];
 rr->w = vv->x * mm->m[3][0] + vv->y * mm->m[3][1] +
 vv->z * mm->m[3][2] + vv->w * mm->m[3][3];
 ++rr; // Increment the results pointer.
 ++vv; // Increment the input vertex pointer.
 }
}

Additional Considerations

Source-code transformations interact with a compiler’s code generator, making it difficult to control
the generated machine code from the source level. It is even possible that source-code transformations
aimed at improving performance may conflict with compiler optimizations. Depending on the
compiler and the specific source code, it is possible for pointer-style code to compile into machine
code that is faster than that generated from equivalent array-style code. Compare the performance of
your code after implementing a source-code transformation with the performance of the original code
to be sure that there is an improvement.
12 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
2.3 Unrolling Small Loops

Optimization

Completely unroll loops that have a small fixed loop count and a small loop body.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Many compilers do not aggressively unroll loops. Manually unrolling loops can benefit performance,
especially if the loop body is small, which makes the loop overhead significant.

Example

Avoid a small loop like this:

// 3D-transform: Multiply vector V by 4x4 transform matrix M.
for (i = 0; i < 4; i++) {
 r[i] = 0;
 for (j = 0; j < 4; j++) {
 r[i] += m[j][i] * v[j];
 }
}

Instead, replace it with its completely unrolled equivalent, as shown here:

r[0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0] * v[2] + m[3][0] * v[3];
r[1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1] * v[2] + m[3][1] * v[3];
r[2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2] + m[3][2] * v[3];
r[3] = m[0][3] * v[0] + m[1][3] * v[1] + m[2][3] * v[2] + m[3][3] * v[3];

Related Information

For information on loop unrolling at the assembly-language level, see “Loop Unrolling” on page 145.
Chapter 2 C and C++ Source-Level Optimizations 13

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
2.4 Expression Order in Compound Branch
Conditions

Optimization

In the most active areas of a program, order the expressions in compound branch conditions to take
advantage of short circuiting of compound conditional expressions.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Branch conditions in C programs often consist of compound conditions consisting of multiple
boolean expressions joined by the logical AND (&&) and logical OR (||) operators. C compilers
guarantee short-circuit evaluation of these operators. In a compound logical OR expression, the first
operand to evaluate to true terminates the evaluation, and subsequent operands are not evaluated at all.
Similarly, in a logical AND expression, the first operand to evaluate to false terminates the evaluation.
Because of this short-circuit evaluation, it is not always possible to swap the operands of logical OR
and logical AND. This is especially true when the evaluation of one of the operands causes a side
effect. However, in most cases the order of operands in such expressions is irrelevant.

When used to control conditional branches, expressions involving logical OR and logical AND are
translated into a series of conditional branches. The ordering of the conditional branches is a function
of the ordering of the expressions in the compound condition and can have a significant impact on
performance. It is impossible to give an easy, closed-form formula on how to order the conditions.
Overall performance is a function of a variety of the following factors:

• Probability of a branch misprediction for each of the branches generated

• Additional latency incurred due to a branch misprediction

• Cost of evaluating the conditions controlling each of the branches generated

• Amount of parallelism that can be extracted in evaluating the branch conditions

• Data stream consumed by an application (mostly due to the dependence of misprediction
probabilities on the nature of the incoming data in data-dependent branches)

It is recommended to experiment with the ordering of expressions in compound branch conditions in
the most active areas of a program (so-called “hot spots,” where most of the execution time is spent).
14 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Such hot spots can be found through the use of profiling by feeding a typical data stream to the
program while doing the experiments.
Chapter 2 C and C++ Source-Level Optimizations 15

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
2.5 Long Logical Expressions in If Statements

Optimization

In if statements, avoid long logical expressions that can generate dense conditional branches that
violate the guideline described in “Density of Branches” on page 126.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Listing 1. Preferred for Data that Falls Mostly Within the Range
if (a <= max && a >= min && b <= max && b >= min)

If most of the data falls within the range, the branches will not be taken, so the above code is
preferred. Otherwise, the following code is preferred.

Listing 2. Preferred for Data that Does Not Fall Mostly Within the Range
if (a > max || a < min || b > max || b < min)
16 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
2.6 Arrange Boolean Operands for Quick Expression
Evaluation

Optimization

In expressions that use the logical AND (&&) or logical OR (||) operator, arrange the operands for
quick evaluation of the expression:

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

C and C++ compilers guarantee short-circuit evaluation of the boolean operators && and ||. In an
expression that uses &&, the first operand to evaluate to false terminates the evaluation; subsequent
operands are not evaluated. In an expression that uses ||, the first operand to evaluate to true terminates
the evaluation.

When used to control program flow, expressions involving && and || are translated into a series of
conditional branches. This optimization minimizes the total number of conditions evaluated and
branches executed.

Example 1

In the following code, the operands of && are not arranged for quick expression evaluation because the
first operand is not the condition case most likely to be false (it is far less likely for an animal name to
begin with a ‘y’ than for it to have fewer than four characters):

char animalname[30];
char *p;

p = animalname;

if ((strlen(p) > 4) && (*p == 'y')) { ... }

If the expression uses this
operator

Then arrange the operands from left to right in decreasing
probablity of being

&& (logical AND) False

|| (logical OR) True
Chapter 2 C and C++ Source-Level Optimizations 17

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Because the odds that the animal name begins with a ‘y’ are comparatively low, it is better to put that
operand first:

if ((*p == 'y') && (strlen(p) > 4)) { ... }

Example 2

In the following code (assuming a uniform random distribution of i), the operands of || are not
arranged for quick expression evaluation because the first operand is not the condition most likely to
be true:

unsigned int i;

if ((i < 4) || (i & 1)) { ... }

Because it is more likely for the least-significant bit of i to be 1, it is better to put that operand first:

if ((i & 1) || (i < 4)) { ... }
18 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
2.7 Dynamic Memory Allocation Consideration
Dynamic memory allocation—accomplished through the use of the malloc library function in C—
should always return a pointer that is suitably aligned for the largest base type (quadword alignment).
Where this aligned pointer cannot be guaranteed, use the technique shown in the following code to
make the pointer quadword aligned, if needed. This code assumes that it is possible to cast the pointer
to a long.

double *p;
double *np;

p = (double *)malloc(sizeof(double) * number_of_doubles + 7L);
np = (double *)((((long)(p)) + 7L) & (-8L));

Then use np instead of p to access the data. The pointer p is still needed in order to deallocate the
storage.

Application

This optimization applies to:

• 32-bit software

• 64-bit software
Chapter 2 C and C++ Source-Level Optimizations 19

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
2.8 Unnecessary Store-to-Load Dependencies
A store-to-load dependency exists when data is stored to memory, only to be read back shortly
thereafter. For details, see “Store-to-Load Forwarding Restrictions” on page 100. The
AMD Athlon™ 64 and AMD Opteron™ processors contain hardware to accelerate such store-to-load
dependencies, allowing the load to obtain the store data before it has been written to memory.
However, it is still faster to avoid such dependencies altogether and keep the data in an internal
register.

Avoiding store-to-load dependencies is especially important if they are part of a long dependency
chain, as may occur in a recurrence computation. If the dependency occurs while operating on arrays,
many compilers are unable to optimize the code in a way that avoids the store-to-load dependency. In
some instances the language definition may prohibit the compiler from using code transformations
that would remove the store-to-load dependency. Therefore, it is recommended that the programmer
remove the dependency manually, for example, by introducing a temporary variable that can be kept
in a register, as in the following example. This can result in a significant performance increase.

Listing 3. Avoid
double x[VECLEN], y[VECLEN], z[VECLEN];
unsigned int k;

for (k = 1; k < VECLEN; k++) {
 x[k] = x[k-1] + y[k];
}

for (k = 1; k < VECLEN; k++) {
 x[k] = z[k] * (y[k] - x[k-1]);
}

Listing 4. Preferred
double x[VECLEN], y[VECLEN], z[VECLEN];
unsigned int k;
double t;

t = x[0];
for (k = 1; k < VECLEN; k++) {
 t = t + y[k];
 x[k] = t;
}

t = x[0];
for (k = 1; k < VECLEN; k++) {
 t = z[k] * (y[k] - t);
 x[k] = t;
}

20 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Application

This optimization applies to:

• 32-bit software

• 64-bit software
Chapter 2 C and C++ Source-Level Optimizations 21

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
2.9 Matching Store and Load Size

Optimization

Align memory accesses and match addresses and sizes of stores and dependent loads.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The AMD Athlon 64 and AMD Opteron processors contain a load-store buffer to speed up the
forwarding of store data to dependent loads. However, this store-to-load forwarding (STLF) inside the
load-store buffer occurs, in general, only when the addresses and sizes of the store and the dependent
load match, and when both memory accesses are aligned. For details, see “Store-to-Load Forwarding
Restrictions” on page 100.

It is impossible to control load and store activity at the source level so as to avoid all cases that violate
restrictions placed on store-to-load-forwarding. In some instances it is possible to spot such cases in
the source code. Size mismatches can easily occur when different-size data items are joined in a
union. Address mismatches could be the result of pointer manipulation.

The following examples show a situation involving a union of different-size data items. The examples
show a user-defined unsigned 16.16 fixed-point type and two operations defined on this type.
Function fixed_add adds two fixed-point numbers, and function fixed_int extracts the integer
portion of a fixed-point number. Listing 5 shows an inappropriate implementation of fixed_int,
which, when used on the result of fixed_add, causes misalignment, address mismatch, or size
mismatch between memory operands, such that no store-to-load forwarding in the load-store buffer
takes place. Listing 6 shows how to properly implement fixed_int in order to allow store-to-load
forwarding in the load-store buffer.

Examples

Listing 5. Avoid
typedef union {
 unsigned int whole;
 struct {
 unsigned short frac; /* Lower 16 bits are fraction. */
 unsigned short intg; /* Upper 16 bits are integer. */
 } parts;
} FIXED_U_16_16;
22 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
__inline FIXED_U_16_16 fixed_add(FIXED_U_16_16 x, FIXED_U_16_16 y) {
 FIXED_U_16_16 z;
 z.whole = x.whole + y.whole;
 return (z);
}

__inline unsigned int fixed_int(FIXED_U_16_16 x) {
 return((unsigned int)(x.parts.intg));
}
...
FIXED_U_16_16 y, z;
unsigned int q;
...
label1:
y = fixed_add (y, z);
q = fixed_int (y);

label2:
...

The object code generated for the source code between label1 and label2 typically follows one of
these two variants:

; Variant 1
mov edx, DWORD PTR [z]
mov eax, DWORD PTR [y] ; -+
add eax, edx ; |
mov DWORD PTR [y], eax ; |
mov EAX, DWORD PTR [y+2] ; <+ Address mismatch--no forwarding in LSU
and EAX, 0FFFFh
mov DWORD PTR [q], eax

; Variant 2
mov edx, DWORD PTR [z]
mov eax, DWORD PTR [y] ; -+
add eax, edx ; |
mov DWORD PTR [y], eax ; |
movzx eax, WORD PTR [y+2] ; <+ Size and address mismatch--no forwarding in LSU
mov DWORD PTR [q], eax

Listing 6. Preferred
typedef union {
 unsigned int whole;
 struct {
 unsigned short frac; /* Lower 16 bits are fraction. */
 unsigned short intg; /* Upper 16 bits are integer. */
 } parts;
} FIXED_U_16_16;

__inline FIXED_U_16_16 fixed_add(FIXED_U_16_16 x, FIXED_U_16_16 y) {
Chapter 2 C and C++ Source-Level Optimizations 23

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
 FIXED_U_16_16 z;
 z.whole = x.whole + y.whole;
 return(z);
}

__inline unsigned int fixed_int(FIXED_U_16_16 x) {
 return (x.whole >> 16);
}
...
FIXED_U_16_16 y, z;
unsigned int q;
...
label1:
y = fixed_add (y, z);
q = fixed_int (y);

label2:
...

The object code generated for the source code between label1 and label2 typically looks like this:

mov edx, DWORD PTR [z]
mov eax, DWORD PTR [y]
add eax, edx
mov DWORD PTR [y], eax ; -+
mov eax, DWORD PTR [y] ; <+ Aligned (size/address match)--forwarding in LSU
shr eax, 16
mov DWORD PTR [q], eax
24 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
2.10 SWITCH and Noncontiguous Case Expressions

Optimization

Use if-else statements in place of switch statements that have noncontiguous case expressions.
(Case expressions are the individual expressions to which the single switch expression is compared.)

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

If the case expressions are contiguous or nearly contiguous integer values, most compilers translate
the switch statement as a jump table instead of a comparison chain. Jump tables generally improve
performance because:

• They reduce the number of branches to a single procedure call.

• The size of the control-flow code is the same no matter how many cases there are.

• The amount of control-flow code that the processor must execute is the same for all values of the
switch expression.

However, if the case expressions are noncontiguous values, most compilers translate the switch
statement as a comparison chain. Comparison chains are undesirable because:

• They use dense sequences of conditional branches, which interfere with the processor’s ability to
successfully perform branch prediction.

• The size of the control-flow code increases with the number of cases.

• The amount of control-flow code that the processor must execute varies with the value of the
switch expression.
Chapter 2 C and C++ Source-Level Optimizations 25

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Example 1

A switch statement like this one, whose case expressions are contiguous integer values, usually
provides good performance:

switch (grade)
{
 case ‘A’:
 ...
 break;
 case ‘B’:
 ...
 break;
 case ‘C’:
 ...
 break;
 case ‘D’:
 ...
 break;
 case ‘F’:
 ...
 break;
}

Example 2

Because the case expressions in the following switch statement are not contiguous values, the
compiler will likely translate the code into a comparison chain instead of a jump table:

switch (a)
{
 case 8:
 // Sequence for a==8
 break;
 case 16:
 // Sequence for a==16
 break;
 ...
 default:
 // Default sequence
 break;
}

26 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
To avoid a comparison chain and its undesirable effects on branch prediction, replace the switch
statement with a series of if-else statements, as follows:

if (a==8) {
 // Sequence for a==8
}
else if (a==16) {
 // Sequence for a==16
}
...
else {
 // Default sequence
}

Related Information

For information on preventing branch-prediction interference at the assembly-language level, see
“Density of Branches” on page 126.
Chapter 2 C and C++ Source-Level Optimizations 27

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
2.11 Arranging Cases by Probability of Occurrence

Optimization

Arrange switch statement cases by probability of occurrence, from most probable to least probable.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Arranging switch statement cases by probability of occurrence improves performance when the
switch statement is translated as a comparison chain; this arrangement has no negative impact when
the statement is translated as a jump table.

Example

Avoid switch statements such as the following, in which the cases are not arranged by probability of
occurrence:

int days_in_month, short_months, normal_months, long_months;

switch (days_in_month) {
 case 28:
 case 29: short_months++; break;
 case 30: normal_months++; break;
 case 31: long_months++; break;
 default: printf("Month has fewer than 28 or more than 31 days.\n");
}

Instead, arrange the cases to test for frequently occurring values first:

switch (days_in_month) {
 case 31: long_months++; break;
 case 30: normal_months++; break;
 case 28:
 case 29: short_months++; break;
 default: printf("Month has fewer than 28 or more than 31 days.\n");
}

28 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
2.12 Use of Function Prototypes

Optimization

In general, use prototypes for all functions.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Prototypes can convey additional information to the compiler that might enable more aggressive
optimizations.
Chapter 2 C and C++ Source-Level Optimizations 29

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
2.13 Use of const Type Qualifier

Optimization

For objects whose values will not be changed, use the const type qualifier.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Using the const type qualifier makes code more robust and may enable the compiler to generate
higher-performance code. For example, under the C standard, a compiler is not required to allocate
storage for an object that is declared const, if its address is never used.
30 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
2.14 Generic Loop Hoisting

Optimization

To improve the performance of inner loops, reduce redundant constant calculations (that is, loop-
invariant calculations). This idea can also be extended to invariant control structures.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale and Examples

The following example demonstrates the use of an invarient condition in an if statement in a for
loop. The second listing shows the preferred optimization.

Listing 7. (Avoid)
for (i...) {
 if (CONSTANT0) {
 DoWork0(i); // Does not affect CONSTANT0.
 }
 else {
 DoWork1(i); // Does not affect CONSTANT0.
 }
}

Listing 8. (Preferred Optimzation)
if (CONSTANT0) {
 for (i...) {
 DoWork0(i);
 }
}
else {
 for (i...) {
 DoWork1(i);
 }
}

The preferred optimization in Listing 8 tightens the inner loops by avoiding repetitious evaluation of a
known if control structure. Although the branch would be easily predicted, the extra instructions and
decode limitations imposed by branching (which are usually advantageous) are saved.
Chapter 2 C and C++ Source-Level Optimizations 31

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
To generalize the example in Listing 8 further for multiple-constant control code, more work may be
needed to create the proper outer loop. Enumeration of the constant cases reduces this to a simple
switch statement.

Listing 9.
for (i...) {
 if (CONSTANT0) {
 DoWork0(i); // Does not affect CONSTANT0 or CONSTANT1.
 }
 else {
 DoWork1(i); // Does not affect CONSTANT0 or CONSTANT1.
 }

 if (CONSTANT1) {
 DoWork2(i); // Does not affect CONSTANT0 or CONSTANT1.
 }
 else {
 DoWork3(i); // Does not affect CONSTANT0 or CONSTANT1.
 }
}

32 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Transform the loop in Listing 9 (by using the switch statement) into:

#define combine(c1, c2) (((c1) << 1) + (c2))
switch (combine(CONSTANT0 != 0, CONSTANT1 != 0)) {
 case combine(0, 0):
 for(i...) {
 DoWork0(i);
 DoWork2(i);
 }
 break;
 case combine(1, 0):
 for(i...) {
 DoWork1(i);
 DoWork2(i);
 }
 break;
 case combine(0, 1):
 for(i...) {
 DoWork0(i);
 DoWork3(i);
 }
 break;
 case combine(1, 1):
 for(i...) {
 DoWork1(i);
 DoWork3(i);
 }
 break;
 default:
 break;
}

Some introductory code is necessary to generate all the combinations for the switch constant and the
total amount of code has doubled. However, the inner loops are now free of if statements. In ideal
cases where the DoWorkn functions are inlined, the successive functions have greater overlap, leading
to greater parallelism than possible in the presence of intervening if statements.

The same idea can be applied to constant switch statements or to combinations of switch statements
and if statements inside of for loops. The method used to combine the input constants becomes
more complicated but benefits performance.

However, the number of inner loops can also substantially increase. If the number of inner loops is
prohibitively high, then only the most common cases must be dealt with directly, and the remaining
cases can fall back to the old code in the default clause of the switch statement. This situation is
typical of run-time generated code. While the performance of run-time generated code can be
improved by means similar to those presented here, it is much harder to maintain and developers must
do their own code-generation optimizations without the help of an available compiler.
Chapter 2 C and C++ Source-Level Optimizations 33

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
2.15 Local Static Functions

Optimization

Declare as static functions that are not used outside the file where they are defined.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Declaring a function as static forces internal linkage. Functions that are not declared as static
default to external linkage, which may inhibit certain optimizations—for example, aggressive
inlining—with some compilers.
34 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
2.16 Explicit Parallelism in Code

Optimization

Where possible, break long dependency chains into several independent dependency chains that can
then be executed in parallel, exploiting the execution units in each pipeline.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale and Examples

This is especially important to break long dependency chains into smaller executing units in floating-
point code, whether it is mapped to x87, SSE, or SSE2 instructions, because of the longer latency of
floating-point operations. Because most languages (including ANSI C) guarantee that floating-point
expressions are not reordered, compilers cannot usually perform such optimizations unless they offer
a switch to allow noncompliant reordering of floating-point expressions according to algebraic rules.

Reordered code that is algebraically identical to the original code does not necessarily produce
identical computational results due to the lack of associativity of floating-point operations. There are
well-known numerical considerations in applying these optimizations (consult a book on numerical
analysis). In some cases, these optimizations may lead to unexpected results. In the vast majority of
cases, the final result differs only in the least-significant bits.

Listing 10. Avoid
double a[100], sum;
int i;

sum = 0.0f;
for (i = 0; i < 100; i++) {
 sum += a[i];
}

Chapter 2 C and C++ Source-Level Optimizations 35

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Listing 11. Preferred
double a[100], sum1, sum2, sum3, sum4, sum;
int i;

sum1 = 0.0;
sum2 = 0.0;
sum3 = 0.0;
sum4 = 0.0;
for (i = 0; i < 100; i + 4) {
 sum1 += a[i];
 sum2 += a[i+1];
 sum3 += a[i+2];
 sum4 += a[i+3];
}
sum = (sum4 + sum3) + (sum1 + sum2);

Notice that the four-way unrolling is chosen to exploit the four-stage fully pipelined floating-point
adder. Each stage of the floating-point adder is occupied on every clock cycle, ensuring maximum
sustained utilization.
36 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
2.17 Extracting Common Subexpressions

Optimization

Manually extract common subexpressions where C compilers may be unable to extract them from
floating-point expressions due to the guarantee against reordering of such expressions in the ANSI
standard.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Specifically, the compiler cannot rearrange the computation according to algebraic equivalencies
before extracting common subexpressions. Rearranging the expression may give different
computational results due to the lack of associativity of floating-point operations, but the results
usually differ in only the least-significant bits.

Examples

Listing 12. Avoid
double a, b, c, d, e, f;

e = b * c / d;
f = b / d * a;

Listing 13. Preferred
double a, b, c, d, e, f, t;

t = b / d;
e = c * t;
f = a * t;

Listing 14. Avoid
double a, b, c, e, f;

e = a / c;
f = b / c;
Chapter 2 C and C++ Source-Level Optimizations 37

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Listing 15. Example 2 (Preferred)
double a, b, c, e, f, t;

t = 1 / c;
e = a * t
f = b * t;
38 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
2.18 Sorting and Padding C and C++ Structures

Optimization

Sort and pad C and C++ structures to achieve natural alignment.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

In order to achieve better alignment for structures, many compilers have options that allow padding of
structures to make their sizes multiples of words, doublewords, or quadwords. In addition, to improve
the alignment of structure members, some compilers might allocate structure elements in an order that
differs from the order in which they are declared. However, some compilers might not offer any of
these features, or their implementations might not work properly in all situations.

By sorting and padding structures at the source-code level, if the first member of a structure is
naturally aligned, then all other members are naturally aligned as well. This allows, for example,
arrays of structures to be perfectly aligned.

Sorting and Padding C and C++ Structures

To sort and pad a C or C++ structure, follow these steps:

1. Sort the structure members according to their type sizes, declaring members with larger type sizes
ahead of members with smaller type sizes.

2. Pad the structure so the size of the structure is a multiple of the largest member’s type size.

Examples

Avoid structure declarations in which the members are not declared in order of their type sizes and the
size of the structure is not a multiple of the size of the largest member’s type:

struct {
 char a[5]; \\ Smallest type size (1 byte * 5)
 long k; \\ 4 bytes in this example
 double x; \\ Largest type size (8 bytes)
} baz;
Chapter 2 C and C++ Source-Level Optimizations 39

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Instead, declare the members according to their type sizes (largest to smallest) and add padding to
ensure that the size of the structure is a multiple of the largest member’s type size:

struct {
 double x; \\ Largest type size (8 bytes)
 long k; \\ 4 bytes in this example
 char a[5]; \\ Smallest type size (1 byte * 5)
 char pad[7]; \\ Make structure size a multiple of 8.
} baz;
40 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
2.19 Sorting Local Variables

Optimization

Sort local variables according to their type sizes, declaring those with larger type sizes ahead of those
with smaller type sizes.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

It can be helpful to presort local variables, if your compiler allocates local variables in the same order
in which they are declared in the source code. If the first variable is allocated for natural alignment, all
other variables are allocated contiguously in the order they are declared and are naturally aligned
without padding.

Some compilers do not allocate variables in the order they are declared. In these cases, the compiler
should automatically allocate variables that are naturally aligned with the minimum amount of
padding. In addition, some compilers do not guarantee that the stack is aligned suitably for the largest
type (that is, they do not guarantee quadword alignment), so that quadword operands might be
misaligned, even if this technique is used and the compiler does allocate variables in the order they
are declared.

Example

Avoid local variable declarations, when the variables are not declared in order of their type sizes:

short ga, gu, gi;
long foo, bar;
double x, y, z[3];
char a, b;
float baz;

Instead, sort the declarations according to their type sizes (largest to smallest):

double z[3];
double x, y;
long foo, bar;
float baz;
short ga, gu, gi;
Chapter 2 C and C++ Source-Level Optimizations 41

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Related Information

For information on sorting local variables at the assembly-language level, see “Sorting Local
Variables” on page 119.
42 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
2.20 Replacing Integer Division with Multiplication

Optimization

Replace integer division with multiplication when there are multiple divisions in an expression. (This
is possible only if no overflow will occur during the computation of the product. The possibility of an
overflow can be determined by considering the possible ranges of the divisors.)

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Integer division is the slowest of all integer arithmetic operations.

Examples

Avoid code that uses two integer divisions:

int i, j, k, m;

m = i / j / k;

Instead, replace one of the integer divisions with the appropriate multiplication:

m = i / (j * k);
Chapter 2 C and C++ Source-Level Optimizations 43

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
2.21 Frequently Dereferenced Pointer Arguments

Optimization

Avoid dereferenced pointer arguments inside a function.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Because the compiler has no knowledge of whether aliasing exists between the pointers, such
dereferencing cannot be “optimized away” by the compiler. Since data may not be maintained in
registers, memory traffic can significantly increase.

Many compilers have an “assume no aliasing” optimization switch. This allows the compiler to
assume that two different pointers always have disjoint contents and does not require copying of
pointer arguments to local variables. If your compiler does not have this type of optimization, then
copy the data pointed to by the pointer arguments to local variables at the start of the function and if
necessary copy them back at the end of the function.

Examples

Listing 16. Avoid
// Assumes pointers are different and q != r.
void isqrt(unsigned long a, unsigned long *q, unsigned long *r) {

 *q = a;
 if (a > 0) {
 while (*q > (*r = a / *q)) {
 *q = (*q + *r) >> 1;
 }
 }
 *r = a - *q * *q;
}

44 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Listing 17. Preferred
// Assumes pointers are different and q != r.
void isqrt(unsigned long a, unsigned long *q, unsigned long *r) {

 unsigned long qq, rr;
 qq = a;
 if (a > 0) {
 while (qq > (rr = a / qq)) {
 qq = (qq + rr) >> 1;
 }
 }
 rr = a - qq * qq;
 *q = qq;
 *r = rr;
}

Chapter 2 C and C++ Source-Level Optimizations 45

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
2.22 Array Indices

Optimization

The preferred type for array indices is ptrdiff_t.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Array indices are often used with pointers while doing arithmetic. Using ptrdiff_t produces more
portable code and will generally provide good performance.
46 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
2.23 32-Bit Integral Data Types

Optimization

Use 32-bit integers instead of integers with smaller sizes (16-bit or 8-bit).

Application

This optimization applies to 32-bit software.

Rational

Be aware of the amount of storage associated with each integral data type.
Chapter 2 C and C++ Source-Level Optimizations 47

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
2.24 Sign of Integer Operands

Optimization

Where there is a choice of using either a signed or an unsigned type, take into consideration that some
operations are faster with unsigned types while others are faster for signed types.

Application

This optimization applies to:

• 32-bit software

Rationale

In many cases, the type of data to be stored in an integer variable determines whether a signed or an
unsigned integer type is appropriate. For example, to record the weight of a person in pounds, no
negative numbers are required, so an unsigned type is appropriate. However, recording temperatures
in degrees Celsius may require both positive and negative numbers, so a signed type is needed.

Integer-to-floating-point conversion using integers larger than 16 bits is faster with signed types, as
the AMD64 architecture provides instructions for converting signed integers to floating-point but has
no instructions for converting unsigned integers. In a typical case, a 32-bit integer is converted by a
compiler to assembly as follows:

Examples

Listing 18. (Avoid)
double x; ====> mov [temp+4], 0
unsigned int i; mov eax, i
 mov [temp], eax
x = i; fild QWORD PTR [temp]
 fstp QWORD PTR [x]

The preceding code is slow not only because of the number of instructions, but also because a size
mismatch prevents store-to-load forwarding to the FILD instruction. Instead, use the following code:

Listing 19. (Preferred)
double x; ====> fild DWORD PTR [i]
int i; fstp QWORD PTR [x]

x = i;

Computing quotients and remainders in integer division by constants is faster when performed on
unsigned types. The following typical case is the compiler output for a 32-bit integer divided by 4:
48 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Listing 20. Example 2 (Avoid)
int i; ====> mov eax, i
 cdq
i = i / 4; and edx, 3
 add eax, edx
 sar eax, 2
 mov i, eax

Listing 21. Example 2 (Preferred)
unsigned int i; ====> shr i, 2

i = i / 4;

In summary, use unsigned types for:

• Division and remainders

• Loop counters

• Array indexing

Use signed types for:

• Integer-to-floating-point conversion
Chapter 2 C and C++ Source-Level Optimizations 49

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
2.25 Accelerating Floating-Point Division and Square
Root

Optimization

In applications that involve the heavy use of single precision division and square root operations, it is
recommended that you port the code to SSE or 3DNow!™ inline assembly or use a compiler that can
generate SSE or 3DNow! technology code. If neither of these methods are possible, the x87 FPU
control word register precision control specification bits (PC) can be set to single precision to improve
performance. (The processor defaults to double-extended precision. See AMD64 Architecture
Programmer’s Manual Volume 1: Application Programming (order# 24592) for details on the FPU
control register.)

Application

This optimization applies to 32-bit software.

Rationale

Division and square root have a much longer latency than other floating-point operations, even though
the AMD Athlon 64 and AMD Opteron processors provide significant acceleration of these two
operations. In some application programs, these operations occur so often as to seriously impact
performance. If code has hot spots that use single precision arithmetic only (that is, all computation
involves data of type float) and for some reason cannot be ported to 3DNow! code, the following
technique may be used to improve performance.

The x87 FPU has a precision-control field as part of the FPU control word. The precision-control
setting determines rounding precision of instruction results and affects the basic arithmetic
operations, including division and the extraction of square root. Division and square root on the
AMD Athlon 64 and AMD Opteron processors are only computed to the number of bits necessary for
the currently selected precision. Setting precision control to single precision (versus the Win32
default of double precision) lowers the latency of those operations.

The Microsoft® Visual C environment provides functions to manipulate the FPU control word and
thus the precision control. Note that these functions are not very fast, so insert changes of precision
control where it creates little overhead, such as outside a computation-intensive loop. Otherwise, the
overhead created by the function calls outweighs the benefit from reducing the latencies of divide and
square-root operations. For more information on this topic, see AMD64 Architecture Programmer's
Manual Volume 1: Application Programming (order# 24592).

The following example shows how to set the precision control to single precision and later restore the
original settings in the Microsoft Visual C environment.
50 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Examples

Listing 22.
/* Prototype for _controlfp function */
#include <float.h>
unsigned int orig_cw;

/* Get current FPU control word and save it. */
orig_cw = _controlfp(0, 0);

/* Set precision control in FPU control word to single precision.
This reduces the latency of divide and square-root operations. */
_controlfp(_PC_24, MCW_PC);

/* Restore original FPU control word. */
_controlfp(orig_cw, 0xfffff);
Chapter 2 C and C++ Source-Level Optimizations 51

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
2.26 Fast Floating-Point-to-Integer Conversion

Optimization

Use 3DNow! PF2ID instruction to perform truncating conversion to accomplish rapid floating-point-
to-integer conversion, if the floating-point operand is a type float.

Application

This optimization applies to 32-bit software.

Rationale

Floating-point-to-integer conversion in C programs is typically a very slow operation. The semantics
of C and C++ demand that the conversion use truncation. If the floating-point operand is of type
float, and the compiler supports 3DNow! code generation, then the 3DNow! PF2ID instruction,
which performs truncating conversion, can be utilized by the compiler to accomplish rapid floating-
point-to-integer conversion.

Note: The PF2ID instruction does not provide conversion compliant with the IEEE-754 standard.
Some operands of type float (IEEE-754 single precision) such as NaNs, infinities, and
denormals, are either unsupported or not handled in compliance with the IEEE-754 standard
by 3DNow! technology.

For double precision operands, the usual way to accomplish truncating conversion involves the
following algorithm:

1. Save the current x87 rounding mode (this is usually round to nearest or even).

2. Set the x87 rounding mode to truncation.

3. Load the floating-point source operand and store the integer result.

4. Restore the original x87 rounding mode.

This algorithm is typically implemented through the C run-time library function ftol. While the
AMD Athlon 64 and AMD Opteron processors have special hardware optimizations to speed up the
changing of x87 rounding modes and therefore ftol, calls to ftol may still tend to be slow.

For situations where very fast floating-point-to-integer conversion is required, the conversion code in
Listing 24 on page 53 may be helpful. This code uses the current rounding mode instead of truncation
when performing the conversion. Therefore, the result may differ by 1 from the ftol result. The
replacement code adds the “magic number” 252+251 to the source operand, then stores the double
precision result to memory and retrieves the lower doubleword of the stored result. Adding the magic
number shifts the original argument to the right inside the double precision mantissa, placing the
binary point of the sum immediately to the right of the least-significant mantissa bit. Extracting the
lower doubleword of the sum then delivers the integral portion of the original argument.
52 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
The following conversion code causes a 64-bit store to feed into a 32-bit load. The load is from the
lower 32 bits of the 64-bit store, the one case of size mismatch between a store and a dependent load
that is specifically supported by the store-to-load-forwarding hardware of the AMD Athlon 64 and
AMD Opteron processors.

Examples

Listing 23. Slow
double x;
int i;

i = x;

Listing 24. Fast
#define DOUBLE2INT(i, d) \
 {double t = ((d) + 6755399441055744.0); i = *((int *)(&t));}

double x;
int i;

DOUBLE2INT(i, x);
Chapter 2 C and C++ Source-Level Optimizations 53

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
2.27 Speeding Up Branches Based on Comparisons
Between Floats

Optimization

Store operands of type float into a memory location and use integer comparison with the memory
location to perform fast branches in cases where compilers do not support fast floating-point
comparison instructions or 3DNow! code generation.

Application

This optimization applies to 32-bit software.

Rationale

Branches based on floating-point comparisons are often slow. The AMD Athlon 64 and
AMD Opteron processors support the FCOMI, FUCOMI, FCOMIP, and FUCOMIP instructions that
allow implementation of fast branches based on comparisons between operands of type double or
type float. However, many compilers do not support generating these instructions. Likewise,
floating-point comparisons between operands of type float can be accomplished quickly by using
the 3DNow! PFCMP instruction if the compiler supports 3DNow! code generation.

Many compilers only implement branches based on floating-point comparisons by using FCOM or
FCOMP to compare the floating-point operands, followed by FSTSW AX in order to transfer the x87
condition-code flags into EAX. The subsequent branch is then based on the contents of the EAX
register. Although the AMD Athlon 64 and AMD Opteron processors have acceleration hardware to
speed up the FSTSW instruction, this process is still fairly slow.

Branches Dependent on Integer Comparisons Are Fast

One alternative for branches dependent upon the outcome of the comparison of operands of type
float is to store the operand(s) into a memory location and then perform an integer comparison with
that memory location. Branches dependent on integer comparisons are very fast. It should be noted
that the replacement code uses a load dependent on an immediately prior store. If the store is not
doubleword-aligned, no store-to-load-forwarding takes place, and the branch is still slow. Also, if
there is a lot of activity in the load-store queue, forwarding of the store data may be somewhat
delayed, thus negating some of the advantages of using the replacement code. It is recommended that
you experiment with the replacement code to test whether it actually provides a performance increase
in the code at hand.

The replacement code works well for comparisons against zero, including correct behavior when
encountering a negative zero as allowed by the IEEE-754 standard. It also works well for comparing
54 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
to positive constants. In that case, the user must first determine the integer representation of that
floating-point constant. This can be accomplished with the following C code snippet:

float x;
scanf("%g", &x);
printf("%08X\n", (*((int *)(&x))));

The replacement code is IEEE-754 compliant for all classes of floating-point operands except NaNs.
However, NaNs do not occur in properly working software.

Examples

Intial definitions:
#define FLOAT2INTCAST(f) (*((int *)(&f)))
#define FLOAT2UINTCAST(f) (*((unsigned int *)(&f)))

Table 3: Comparisons against Zero

Use this … Instead of this.

if (FLOAT2UINTCAST(f) > 0x80000000U) if (f < 0.0f)

if (FLOAT2INCAST(f) <= 0) if (f <= 0.0f)

if (FLOAT2INTCAST(f) > 0) if (f > 0.0f)

if (FLOAT2UINTCAST(f) <= 0x80000000U) if (f >= 0.0f)

Table 4: Comparisons against Positive Constant

Use this … Instead of this.

if (FLOAT2INTCAST(f) < 0x40400000) if (f < 3.0f)

if (FLOAT2INTCAST(f) <= 0x40400000) if (f <= 3.0f)

if (FLOAT2INTCAST(f) > 0x40400000) if (f > 3.0f)

if (FLOAT2INTCAST(f) >= 0x40400000) if (f >= 3.0f)

Table 5: Comparisons among Two Floats

Use this … Instead of this.

float t = f1 - f2;
if (FLOAT2UINTCAST(t) > 0x80000000U)

if (f1 < f2)
Chapter 2 C and C++ Source-Level Optimizations 55

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
float t = f1 - f2;
if (FLOAT2INTCAST(t) <= 0)

if (f1 <= f2)

float t = f1 - f2;
if (FLOAT2INTCAST(t) > 0)

if (f1 > f2)

float t = f1 - f2;
f (FLOAT2UINTCAST(f) <= 0x80000000U)

if (f1 >= f2)

Table 5: Comparisons among Two Floats

Use this … Instead of this.
56 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
2.28 Improving Performance in Linux Libraries

Optimization

If interposition is not important to a particular application, then, if using ld in the binutils package,
you can make use of a linker option that results in references to public global routines inside the
library that cannot be overridden.

Application This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Dynamically loadable libraries are a versatile feature of the Linux operating system. They allow one
or more symbols in one library to override the same symbol in another library. Known as
interposition, this ability makes customizations and probing seamless. Interposition is implemented
by means of a procedure linkage table (PLT). The PLT is so flexible that even references to an
overridden symbol inside the library end up referencing the overriding symbol. However, the PLT
imposes a performance penalty by requiring all function calls to public global routines to go through
an extra step that increases the chances of cache misses and branch mispredictions. This is
particularly severe for C++ classes whose methods typically refer to other methods in the same class.

Examples

When using ld, include the following command line option:

-Bsymbolic

If using gcc to build a library, add this option to the command-line:

-Wl,-Bsymbolic
Chapter 2 C and C++ Source-Level Optimizations 57

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
58 C and C++ Source-Level Optimizations Chapter 2

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Chapter 3 General 64-Bit Optimizations

In long mode, the AMD64 architecture provides both a compatibility mode, which allows a 64-bit
operating system to run existing 16-bit and 32-bit applications, and a 64-bit mode, which provides
64-bit addressing and expanded register resources to support higher performance for recompiled
64-bit programs. This chapter presents general optimizations that improve the performance of
software designed to run in 64-bit mode. Therefore, all optimizations in this chapter apply only to
64-bit software.

This chapter covers the following topics:

Topic Page

64-Bit Registers and Integer Arithmetic 60

64-Bit Arithmetic and Large-Integer Multiplication 62

128-Bit Media Instructions and Floating-Point Operations 67

32-Bit Legacy GPRs and Small Unsigned Integers 68
Chapter 3 General 64-Bit Optimizations 59

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
3.1 64-Bit Registers and Integer Arithmetic

Optimization

Use 64-bit registers for 64-bit integer arithmetic.

Rationale

Using 64-bit registers instead of their 32-bit equivalents can dramatically reduce the amount of code
necessary to perform 64-bit integer arithmetic.

Example 1

This code performs 64-bit addition using 32-bit registers:

; Add ECX:EBX to EDX:EAX, and place sum in EDX:EAX.
00000000 03 C3 add eax, ebx
00000002 13 D1 adc edx, ecx

Using 64-bit registers, the previous code can be replaced by one simple instruction (assuming that
RAX and RBX contain the 64-bit integer values to add):

00000000 48 03 C3 add rax, rbx

Although the preceding instruction requires one additional byte for the REX prefix, it is still one byte
shorter than the original code. More importantly, this instruction still has a latency of only one cycle,
uses two fewer registers, and occupies only one decode slot.
60 General 64-Bit Optimizations Chapter 3

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Example 2

To perform the low-order half of the product of two 64-bit integers using 32-bit registers, a procedure
such as the following is necessary:

; In: [ESP+8]:[ESP+4] = multiplicand
; [ESP+16]:[ESP+12] = multiplier
; Out: EDX:EAX = (multiplicand * multiplier) % 2^64
; Destroys: EAX, ECX, EDX, EFlags

llmul PROC
 mov edx, [esp+8] ; multiplicand_hi
 mov ecx, [esp+16] ; multiplier_hi
 or edx, ecx ; One operand >= 2^32?
 mov edx, [esp+12] ; multiplier_lo
 mov eax, [esp+4] ; multiplicand_lo
 jnz twomul ; Yes, need two multiplies.
 mul edx ; multiplicand_lo * multiplier_lo
 ret ; Done, return to caller.

twomul:
 imul edx, [esp+8] ; p3_lo = multiplicand_hi * multiplier_lo
 imul ecx, eax ; p2_lo = multiplier_hi * multiplicand_lo
 add ecx, edx ; p2_lo + p3_lo
 mul dword ptr [esp+12] ; p1 = multiplicand_lo * multiplier_lo
 add edx, ecx ; p1 + p2_lo + p3_lo = result in EDX:EAX
 ret ; Done, return to caller.

llmul ENDP

Using 64-bit registers, the entire product can be produced with only one instruction:

; Multiply RAX by RBX. The 128-bit product is stored in RDX:RAX.
00000000 48 F7 EB imul rbx

Related Information

For more examples of 64-bit arithmetic using only 32-bit registers, see “Efficient 64-Bit Integer
Arithmetic in 32-Bit Mode” on page 170.
Chapter 3 General 64-Bit Optimizations 61

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
3.2 64-Bit Arithmetic and Large-Integer Multiplication

Optimization

Use 64-bit arithmetic for integer multiplication that produces 128-bit or larger products.

Background

Large-number multiplications (those involving 128-bit or larger products) are utilized in
cryptography algorithms, which figure importantly in e-commerce applications and secure
transactions on the Internet. Processors cannot perform large-number multiplication natively; they
must break the operation into chunks that are permitted by their architecture (32-bit or 64-bit
additions and multiplications).

Rationale

Using 64-bit rather than 32-bit integer operations dramatically reduces the number of additions and
multiplications required to compute large products. For example, computing a 1024-bit product using
64-bit arithmetic requires fewer than one quarter the number of instructions required when using
32-bit operations:

In addition, the processor performs 64-bit additions just as fast as it performs 32-bit additions, and the
latency of 64-bit multiplications is only slightly higher than for 32-bit multiplications. (The processor
is capable of performing a 64-bit addition each clock cycle and a 64-bit multiplication every other
clock cycle.)

Example

Consider the multiplication of two unsigned 64-bit numbers a and b, represented in terms of 32-bit
numbers a1:a0 and b1:b0.

a = a1 * 232 + a0

b = b1 * 232 + b0

The product of a and b, c, can be expressed in terms of products of the 32-bit components, as follows:

c = (a1 * b1) * 264 + (a1 * b0 + a0 * b1) * 232 + (a0 * b0)

Comparing... 32-bit arithmetic 64-bit arithmetic

Number of multiplications 256 64

Number of additions with carry 509 125

Number of additions 255 63
62 General 64-Bit Optimizations Chapter 3

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Each of the products of the components of a and b (for example, a1 * b1) is composed of 64 bits—an
upper 32 bits and a lower 32 bits. it is convenient to represent these individual products as d, e, f, and
g, as follows:

a0 * b0 = d1:d0 = d1 * 232 + d0

a1 * b0 = e1:e0 = e1 * 232 + e0

a0 * b1 = f1:f0 = f1 * 232 + f0

a1 * b1 = g1:g0 = g1 * 232 + g0

Substitution yields the following equation:

c = (g1 * 232 + g0) * 264 + (e1 * 232 + e0 + f1 * 232 + f0) * 232 + (d1 * 232 + d0)

Simplifying yields this equation:

c = g1 * 296 + (e1 + f1 + g0) * 264 + (d1 + e0 + f0) * 232 + d0

it is convenient to represent the terms that are multiplied by each power of 2 as c3, c2, c1, and c0, as
follows:

g1 = c3

e1 + f1 + g0 = c2

d1 + e0 + f0 = c1

d0 = c0

Substituting again yields:

c = c3 * 296 + c2 * 264 + c1 * 232 + c0
Chapter 3 General 64-Bit Optimizations 63

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
The following procedure performs 64-bit unsigned integer multiplication, as previously illustrated
using 32-bit integer operations:

; 32bitalu_64x64(int *a, int *b, int *c);
;
; TO ASSEMBLE INTO *.obj DO THE FOLLOWING:
; ml.exe -coff -c 32bitalu_64x64.asm
;
.586
.K3D
.XMM
_DATA SEGMENT
tempESP dd 0
_DATA ENDS
_TEXT SEGMENT
ASSUME DS:_DATA
PUBLIC _32bitalu_64x64
_32bitalu_64x64 PROC NEAR
;==
; Save the register state. Registers EAX, ECX, and EDX are considered volatile
; and assumed to be changed, while the registers below must be preserved.
push ebp
mov ebp, esp
;==
; Parameters passed into routine:
; [ebp+8] = ->a
; [ebp+12] = ->b
; [ebp+16] = ->c
;==
push ebx
push esi
push edi
;==
mov esi,[ebp+8] ; ESI = ->a
mov edi,[ebp+12] ; EDI = ->b
mov ecx,[ebp+16] ; ECX = ->c
push ebp
mov [tempESP], esp
;==
; Multiply 64-bit numbers a and b, each of which is composed of two 32-bit
; components:
; a = a1 * 2^32 + a0
; b = b1 * 2^32 + b0
mov eax,[esi] ; EAX = a0
mov edx,[edi] ; EDX = b0
mul edx ; EDX:EAX = a0*b0 = d1:d0
mov ebx,edx ; EDX = d1
mov [ecx],eax ; c0 = EAX

xor esp,esp ; ESP = 0
xor ebp,ebp ; EBP = 0
64 General 64-Bit Optimizations Chapter 3

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
mov eax,[esi+4] ; EAX = a1
mov edx,[edi] ; EDX = b0
mul edx ; EDX:EAX = a1*b0 = e1:e0
add ebx,eax ; EBX = d1 + e0
adc ebp,edx ; EBP = e1 + possible carry from d1+e0
adc esp,0 ; Collect possible carry into c3.

mov eax,[esi] ; EAX = a0
mov edx,[edx+4] ; EDX = b1
mul edx ; EDX:EAX = a0*b1 = f1:f0
add ebx,eax ; EBX = d1 + e0 + f0
adc ebp,edx ; EBP = e1 + f1 + carry
adc esp,0 ; Collect possible carry into c3.
mov [ecx+4],ebx ; c1 = d1 + e0 + f0

mov eax,[esi+4] ; EAX = a1
mov edx,[edi+4] ; EDX = b1
mul edx ; EDX:EAX = a1*b1 = g1:g0
add ebp,eax ; EBP = e1 + f1 + g0 + carry
adc esp,edx ; ESP = g1 + carry
mov [ecx+8],ebp ; c2 = e1 + f1 + g0 + carry
mov [ecx+12],esp ; c3 = g1 + carry
;==
; Restore the register state.
mov esp, [tempESP]
pop ebp
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp
;==
ret
_32bitalu_64x64 ENDP
_TEXT ENDS
END
Chapter 3 General 64-Bit Optimizations 65

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
To improve performance and substantially reduce code size, the following procedure performs the
same 64-bit integer multiplication using 64-bit instead of 32-bit operations:

; 64bitalu_64x64(int *a, int *b, int *c);
;
; TO ASSEMBLE INTO *.obj DO THE FOLLOWING:
; ml64.exe -c 64bitalu_64x64.asm
;
_TEXT SEGMENT
64bitalu_64x64 PROC NEAR
;==
; Parameters passed into routine:
; rcx = ->a
; rdx = ->b
; r8 = ->c
;==
mov rax, [rcx] ; RAX = [a0]
mul [rdx] ; Multiply [a0] by [b0] such that
 ; RDX:RAX = [c1]:[c0].
mov [r8], rax ; Store 128-bit product of a and b.
mov [r8+8], rdx
;==
ret
64bitalu_64x64 ENDP
END
66 General 64-Bit Optimizations Chapter 3

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
3.3 128-Bit Media Instructions and Floating-Point
Operations

Optimization

Use 128-bit media (SSE and SSE2) instructions instead of x87 or 64-bit media (MMX™ and
3DNow!™ technology) instructions for floating-point operations.

Rationale

In 64-bit mode, the processor provides eight additional XMM registers (XMM8–XMM15) for a total
of 16. These extra registers can substantially reduce register pressure in floating-point code written
using 128-bit media instructions.

Although the processor fully supports the x87 and 64-bit media instructions, there are only eight
registers available to these instructions (ST(0)–ST(7) or MMX0–MMX7, respectively).
Chapter 3 General 64-Bit Optimizations 67

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
3.4 32-Bit Legacy GPRs and Small Unsigned Integers

Optimization

Use the 32-bit legacy general-purpose registers (EAX through ESI) instead of their 64-bit extensions
to store unsigned integer values whose range never requires more than 32 bits, even if subsequent
statements use the 32-bit value in a 64-bit operation. (For example, use ECX instead of RCX until you
need to perform a 64-bit operation; then use RCX.)

Rationale

In 64-bit mode, the machine-language representation of many instructions that operate on 64-bit
register operands requires a REX prefix byte, which increases the size of the code. However,
instructions that operate on a 32-bit legacy register operand do not require the prefix and have the
desirable side-effect of clearing the upper 32 bits of the extended register to zero. For example, using
the AND instruction on ECX clears the upper half of RCX.

Caution

Because the assembler also uses a REX prefix byte to encode the 32-bit sizes of the eight new 64-bit
general-purpose registers (R8D–R15D), you should only use one of the original eight general-
purpose registers (EAX through ESI) to implement this technique.

Example

The following example illustrates the unnecessary use of 64-bit registers to calculate the number of
bytes remaining to be copied by an aligned block-copy routine after copying the first few bytes having
addresses not meeting the routine’s 8-byte-alignment requirements. The first two statements, after the
program comments, use the 64-bit R10 register—presumably, because this value is later used to
adjust a 64-bit value in R8—even though the range of values stored in R10 take no more than four bits
to represent. Using R10 instead of a smaller register requires a REX prefix byte (in this case, 49),
which increases the size of the machine-language code.

; Input:
; R10 = source address (src)
; R8 = number of bytes to copy (count)
49 F7 DA neg r10 ; Subtract the source address from 2^64.
49 83 E2 07 and r10, 7 ; Determine how many bytes were copied separately.
4D 2B C2 sub r8, r10 ; Subtract the number of bytes already copied from
 ; the number of bytes to copy.
68 General 64-Bit Optimizations Chapter 3

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
To improve code density, the following rewritten code uses ECX until it is absolutely necessary to use
RCX, eliminating two REX prefix bytes:

F7 D9 neg ecx ; Subtract the source address from 2^32 (the processor
 ; clears the high 32 bits of RCX).
83 E1 07 and ecx, 7 ; Determine how many bytes were copied separately.
4C 2B C1 sub r8, rcx ; Subtract the number of bytes already copied from
 ; the number of bytes to copy.
Chapter 3 General 64-Bit Optimizations 69

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
70 General 64-Bit Optimizations Chapter 3

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Chapter 4 Instruction-Decoding
Optimizations

The optimizations in this chapter are designed to help maximize the number of instructions that the
processor can decode at one time.

The instruction fetcher of both the AMD Athlon™ 64 and AMD Opteron™ processors reads 16-byte
packets from the L1 instruction cache. These packets are 16-byte aligned. The instruction bytes are
then merged into a 32-byte pick window. On each cycle, the in-order front-end engine selects up to
three AMD64 instructions for decode from the pick window.

This chapter covers the following topics:

Topic Page

DirectPath Instructions 72

Load-Execute Instructions 73

Load-Execute Integer Instructions 73

Load-Execute Floating-Point Instructions with Floating-Point Operands 74

Load-Execute Floating-Point Instructions with Integer Operands 74

Branch Targets in Program Hot Spots 76

32/64-Bit vs. 16-Bit Forms of the LEA Instruction 77

Short Instruction Encodings 80

Partial-Register Reads and Writes 81

Using LEAVE for Function Epilogues 83

Alternatives to SHLD Instruction 85

8-Bit Sign-Extended Immediate Values 87

8-Bit Sign-Extended Displacements 88

Code Padding with Operand-Size Override and NOP 89
Chapter 4 Instruction-Decoding Optimizations 71

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
4.1 DirectPath Instructions

Optimization

❖ Use DirectPath instructions rather than VectorPath instructions. (To determine the type of an
instruction—either DirectPath or VectorPath—see Appendix C, “Instruction Latencies.”)

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

DirectPath instructions minimize the number of operations per AMD64 instruction, thus providing
for optimally efficient decode and execution. Up to three DirectPath Single instructions, or one and a
half DirectPath Double instructions, can be decoded per cycle. VectorPath instructions block the
decoding of DirectPath instructions.

The AMD Athlon 64 and AMD Opteron processors implement the majority of instructions used by a
compiler as DirectPath Single and DirectPath Double instructions. However, assembly writers must
still take into consideration the use of DirectPath versus VectorPath instructions.
72 Instruction-Decoding Optimizations Chapter 4

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
4.2 Load-Execute Instructions
A load-execute instruction is an instruction that loads a value from memory into a register and then
performs an operation on that value. Many general purpose instructions, such as ADD, SUB, AND,
etc., have load-execute forms:

add rax, QWORD PTR [foo]

This instruction loads the value foo from memory and then adds it to the value in the RAX register.

The work performed by a load-execute instruction can also be accomplished by using two discrete
instructions—a load instruction followed by an execute instruction. The following example employs
discrete load and execute stages:

mov rbx, QWORD PTR [foo]
add rax, rbx

The first statement loads the value foo from memory into the RBX register. The second statement
adds the value in RBX to the value in RAX.

The following optimizations govern the use of load-execute instructions:

• Load-Execute Integer Instructions on page 73.

• Load-Execute Floating-Point Instructions with Floating-Point Operands on page 74.

• Load-Execute Floating-Point Instructions with Integer Operands on page 74.

4.2.1 Load-Execute Integer Instructions

Optimization

❖ When performing integer computations, use load-execute instructions instead of discrete load
and execute instructions. Use discrete load and execute instructions only to avoid scheduler stalls for
longer executing instructions and to explicitly schedule load and execute operations.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Most load-execute integer instructions are DirectPath decodable and can be decoded at the rate of
three per cycle. Splitting a load-execute integer instruction into two separate instructions reduces
decoding bandwidth and increases register pressure, which results in lower performance.
Chapter 4 Instruction-Decoding Optimizations 73

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
4.2.2 Load-Execute Floating-Point Instructions with Floating-Point
Operands

Optimization

❖ When performing floating-point computations using floating-point (not integer) source operands,
use load-execute instructions instead of discrete load and execute instructions.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Using load-execute floating-point instructions that take floating-point operands improves
performance for the following reasons:

• Denser code allows more work to be held in the instruction cache.

• Denser code generates fewer internal macro-ops, allowing the floating-point scheduler to hold
more work, which increases the chances of extracting parallelism from the code.

Example

Avoid code like this, which uses discrete load and execute instructions:

movss xmm0, [float_var1]
movss xmm12, [float_var2]
mulss xmm0, xmm12

Instead, use code like this, which uses a load-execute floating-point instruction:

movss xmm0, [float_var1]
mulss xmm0, [float_var2]

4.2.3 Load-Execute Floating-Point Instructions with Integer Operands

Optimization

❖ Avoid x87 load-execute floating-point instructions that take integer operands (FIADD, FICOM,
FICOMP, FIDIV, FIDIVR, FIMUL, FISUB, and FISUBR). When performing floating-point
computations using integer source operands, use discrete load (FILD) and execute instructions
instead.
74 Instruction-Decoding Optimizations Chapter 4

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The load-execute floating-point instructions that take integer operands are VectorPath instructions and
generate two micro-ops in a cycle, while discrete load and execute intructions enable a third
DirectPath instruction to be decoded in the same cycle. In some situations, these optimizations can
also reduce execution time if FILD can be scheduled several instructions ahead of the arithmetic
instruction in order to cover the FILD latency.

Example

Avoid code such as the following, which uses load-execute floating-point instructions that take
integer operands:

fld QWORD PTR [foo] ; Push foo onto FP stack [ST(0) = foo].
fimul DWORD PTR [bar] ; Multiply bar by ST(0) [ST(0) = bar * foo].
fiadd DWORD PTR [baz] ; Add baz to ST(0) [ST(0) = baz + (bar * foo)].

Instead, use code such as the following, which uses discrete load and execute instructions:

fild DWORD PTR [bar] ; Push bar onto FP stack.
fild DWORD PTR [baz] ; Push baz onto FP stack.
fld QWORD PTR [foo] ; Push foo onto FP stack.
fmulp st(2), st ; Multiply and pop [ST(1) = foo * bar, ST(0) = baz].
faddp st(1), st ; Add and pop [ST(0) = baz + (foo * bar)].
Chapter 4 Instruction-Decoding Optimizations 75

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
4.3 Branch Targets in Program Hot Spots

Optimization

In program “hot spots” (as determined by either profiling or loop-nesting analysis), branch targets
should be placed at or near the beginning of code windows that are 16-byte aligned. The smaller the
basic block, the more beneficial this optimization will be.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Aligning branch targets maximizes the number of instructions in the pick window and preserves
instruction-cache space in branch-intensive code outside such hot spots.
76 Instruction-Decoding Optimizations Chapter 4

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
4.4 32/64-Bit vs. 16-Bit Forms of the LEA Instruction

Optimization

Use the 32-bit or 64-bit forms of the Load Effective Address (LEA) instruction rather than the 16-bit
form.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The 32-bit and 64-bit LEA instructions are implemented as DirectPath operations with an execution
latency of only two cycles. The 16-bit LEA instruction, however, is a VectorPath instruction, which
lowers the decode bandwidth and has a longer execution latency.
Chapter 4 Instruction-Decoding Optimizations 77

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
4.5 Take Advantage of x86 and AMD64 Complex
Addressing Modes

Optimization

When porting from other architectures, or, perhaps, if you are just new to x86 assembly language,
remember that the x86 architecture provides many complex addressing modes. By building the
effective address in one instruction, the instruction count can sometimes be reduced, leading to better
code density and greater decode bandwidth. Refer to the the section on effective addresses in the
AMD64 Architecture Programmer's Manual Volume 1: Application Programming for more detailed
information on how effective addresses are formed.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

When building the effective address you sometimes seem to require numerous instructions when there
is a base address (such as the base of an array) an index and perhaps a displacement. But x86
architecture can often handle all of this in one instruction. This can lead to reduced code size and
fewer instructions to decode. As always, attention should be paid to total instruction length, latencies
and whether or not the instruction choices are DirectPath (fastest) or VectorPath (slower).

Example

This first instruction sequence of 5 instructions and a total latency count of 8 can be replaced by one
instruction.

The following instruction replaces the functionality of the above sequence.

Number of Bytes Latency Instruction

3 1 movl %r10d,%r11d

leaq 0x68E35,rcx

addq %rcx,%r11

movb (%r11,%r13),%cl

cmpb %al,%cl

8 2

3 1

5 3

2 1
78 Instruction-Decoding Optimizations Chapter 4

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Example

These two instructions can be replaced by one instruction.

movl 0x4c65a,%r11
movl (%r11,%r8,8),%r11

becomes:

movl 0x4c65a(,%r8,8),%r11

Number of Bytes Latency Instruction

8 4 cmpb %al,0x68e35(%r10,%r13)
Chapter 4 Instruction-Decoding Optimizations 79

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
4.6 Short Instruction Encodings

Optimization

Use instruction forms with shorter encodings rather than those with longer encodings. For example,
use 8-bit displacements instead of 32-bit displacements, and use the single-byte form of simple
integer instructions instead of the 2-byte opcode-ModRM form.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Using shorter instructions increases the number of instructions that can fit into the L1 instruction
cache and increases the average decode rate.

Example

Avoid the use of instructions with longer encodings, such as those shown here:

81 C0 78 56 34 12 add eax, 12345678h ; 2-byte opcode form (with ModRM)
81 C3 FB FF FF FF add ebx, -5 ; 32-bit immediate value
0F 84 05 00 00 00 jz label1 ; 2-byte opcode, 32-bit immediate value

Instead, choose instructions with shorter encodings, like these:

05 78 56 34 12 add eax, 12345678h ; 1-byte opcode form
83 C3 FB add ebx, -5 ; 8-bit sign-extended immediate value
74 05 jz label1 ; 1-byte opcode, 8-bit immediate value
80 Instruction-Decoding Optimizations Chapter 4

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
4.7 Partial-Register Reads and Writes

Optimization

Avoid partial register reads and writes.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

In order to handle partial register writes, the processor’s execution core implements a data merging
scheme.

In the execution unit, an instruction that writes part of a register merges the modified portion with the
current state of the other part of the register. Therefore, the dependency hardware can potentially
force a false dependency on the most recent instruction that writes to any part of the register.

In addition, an instruction that has a read dependency on any part of a given architectural register has
a read dependency on the most recent instruction that modifies any part of the same architectural
register.

Example 1

Avoid code such as the following, which writes to only part of a register:

mov al, 10 ; Instruction 1
mov ah, 12 ; Instruction 2 has a false dependency on instruction 1.
 ; Instruction 2 merges new AH with current EAX register
 ; value forwarded by instruction 1.

Example 2

Avoid code such as the following, which both reads and writes only parts of registers:

mov bx, 12h ; Instruction 1
mov bl, dl ; Instruction 2 has a false dependency on the completion
 ; of instruction 1.
mov bh, cl ; Instruction 3 has a false dependency on the completion
 ; of instruction 2.
mov al, bl ; Instruction 4 depends on the completion of instruction 2.
Chapter 4 Instruction-Decoding Optimizations 81

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Example 3

Avoid:
 mov al, bl

Preferred:
 movzx eax, bl

Example 4

Avoid:
 mov al, [ebx]

Preferred:
 movzx eax, byte ptr [ebx]

Example 5

Avoid:
 mov al, 01h

Preferred:
 mov eax, 00000001h

Example 6

Avoid:
 movss xmm1, xmm2

Preferred:
 movaps xmm1, xmm2
82 Instruction-Decoding Optimizations Chapter 4

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
4.8 Using LEAVE for Function Epilogues

Optimization

The recommended optimization for function epilogues depends on whether the function allocates
local variables.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Functions That Allocate Local Variables

The LEAVE instruction is a single-byte instruction and saves 2 bytes of code space over the
traditional epilogue. Replacing the traditional sequence with LEAVE also preserves decode
bandwidth.

Functions That Do not Allocate Local Variables

Accessing function arguments and local variables directly through ESP frees EBP for use as a
general-purpose register.

Background

The function arguments and local variables inside a function are referenced through a so-called frame
pointer. In AMD64 code, the base pointer register (rBP) is customarily used as a frame pointer. You
set up the frame pointer at the beginning of the function using a function prologue:

push ebp ; Save old frame pointer.
mov ebp, esp ; Initialize new frame pointer.
sub esp, n ; Allocate space for local variables (only if the
 ; function allocates local variables).

If the function Then

Allocates local variables Replace the traditional function epilogue with the LEAVE instruction.

Does not allocate local variables Do no use function prologues or epilogues. Access function
arguments and local variables through rSP.
Chapter 4 Instruction-Decoding Optimizations 83

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Function arguments on the stack can now be accessed at positive offsets relative to rBP, and local
variables are accessible at negative offsets relative to rBP.

Example

The traditional function epilogue looks like this:

mov esp, ebp ; Deallocate local variables (only if space was allocated).
pop ebp ; Restore old frame pointer.

Replace the traditional function epilogue with a single LEAVE instruction:

leave
84 Instruction-Decoding Optimizations Chapter 4

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
4.9 Alternatives to SHLD Instruction

Optimization

Where register pressure is low, replace the SHLD instruction with alternative code using ADD and
ADC, or SHR and LEA.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Using alternative code in place of SHLD achieves lower overall latency and requires fewer execution
resources. The 32-bit and 64-bit forms of ADD, ADC, SHR, and LEA are DirectPath instructions,
while SHLD is a VectorPath instruction. Use of the replacement code optimizes decode bandwidth
because it potentially enables the simultaneous decoding of a third DirectPath instruction. However,
the replacement code may increase register pressure because it destroys the contents of one register
(reg2 in the following examples) whereas the register is preserved by SHLD.

Example 1

Replace this instruction:

shld reg1, reg2, 1

with this code sequence:

add reg2, reg2
adc reg1, reg1

Example 2

Replace this instruction:

shld reg1, reg2, 2

with this code sequence:

shr reg2, 30
lea reg1, [reg1*4+reg2]
Chapter 4 Instruction-Decoding Optimizations 85

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Example 3

Replace this instruction:

shld reg1, reg2, 3

with this code sequence:

shr reg2, 29
lea reg1, [reg1*8+reg2]
86 Instruction-Decoding Optimizations Chapter 4

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
4.10 8-Bit Sign-Extended Immediate Values

Optimization

Use 8-bit sign-extended immediate values instead of larger-size values.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Using 8-bit sign-extended immediate values improves code density with no negative affects on the
processor.

Example

Consider this instruction:

add bx, -5

Avoid encoding it as:

81 C3 FF FB

Instead, encode it as:

83 C3 FB
Chapter 4 Instruction-Decoding Optimizations 87

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
4.11 8-Bit Sign-Extended Displacements

Optimization

Use 8-bit sign-extended displacements for conditional branches.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Using short, 8-bit sign-extended displacements for conditional branches improves code density with
no negative affects on the processor.
88 Instruction-Decoding Optimizations Chapter 4

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
4.12 Code Padding with Operand-Size Override and
NOP

Optimization

Use one or more operand-size overrides (66h) and the NOP instruction (90h) to align code and space
out branches.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Occasionally it is necessary to insert neutral code fillers into the code stream (for example, for code-
alignment purposes or to space out branches). Because this filler code is executable, it should take up
as few execution resources as possible, not diminish decode density, and not modify any processor
state other than advancing the instruction pointer (rIP). Although there are several possible multibyte
NOP-equivalent instructions that do not change the processor state (other than rIP), combinations of
the operand-size override and the NOP instruction work best.

Example

Assign code-padding sequences like these and use them to align code and space out branches. These
sequences are suitable for both 32-bit and 64-bit code, and you can use them on the AMD Athlon 64
and AMD Opteron processors, as well as seventh-generation AMD Athlon processors:

NOP1_OVERRIDE_NOP TEXTEQU <DB 090h>
NOP2_OVERRIDE_NOP TEXTEQU <DB 066h,090h>
NOP3_OVERRIDE_NOP TEXTEQU <DB 066h,066h,090h>
NOP4_OVERRIDE_NOP TEXTEQU <DB 066h,066h,066h,090h>
NOP5_OVERRIDE_NOP TEXTEQU <DB 066h,066h,090h,066h,090h>
NOP6_OVERRIDE_NOP TEXTEQU <DB 066h,066h,090h,066h,066h,090h>
NOP7_OVERRIDE_NOP TEXTEQU <DB 066h,066h,066h,090h,066h,066h,090h>
NOP8_OVERRIDE_NOP TEXTEQU <DB 066h,066h,066h,090h,066h,066h,066h,090h>
NOP9_OVERRIDE_NOP TEXTEQU <DB 066h,066h,090h,066h,066h,090h,066h,066h,090h>

For x87 floating-point instructions, a better single-byte padding exists. See “Align and Pack
DirectPath x87 Instructions” on page 242.
Chapter 4 Instruction-Decoding Optimizations 89

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
90 Instruction-Decoding Optimizations Chapter 4

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Chapter 5 Cache and Memory Optimizations

The optimizations in this chapter take advantage of the large L1 caches and high-bandwidth buses of
the AMD Athlon™ 64 and AMD Opteron™ processors.

This chapter covers the following topics:

Topic Page

Memory-Size Mismatches 92

Natural Alignment of Data Objects 95

Cache-Coherent Nonuniform Memory Access (ccNUMA) 96

Multiprocessor Considerations 99

Store-to-Load Forwarding Restrictions 100

Prefetch Instructions 104

Write-combining 113

L1 Data Cache Bank Conflicts 114

Placing Code and Data in the Same 64-Byte Cache Line 116

Sorting and Padding C and C++ Structures 117

Sorting Local Variables 119

Memory Copy 120

Stack Considerations 122
Chapter 5 Cache and Memory Optimizations 91

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
5.1 Memory-Size Mismatches

Optimization

❖ Avoid memory-size mismatches when different instructions operate on the same data. When one
instruction stores and another instruction subsequently loads the same data, keep their operands
aligned and keep the loads/stores of each operand the same size.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Examples—Store-to-Load-Forwarding Stalls

The following code examples result in a store-to-load-forwarding stall:

64-bit (Avoid)
foo DQ ? ; Assume foo is 8-byte aligned.
...
mov DWORD PTR foo, eax ; Store a DWORD to foo.
mov DWORD PTR foo+4, ebx ; Now store to foo+4.
mov rcx, QWORD PTR foo ; Load a QWORD from foo.

32-bit (Avoid)
foo DQ ? ; Assume foo is 4-byte aligned.
...
mov DWORD PTR foo, eax ; Store a DWORD in foo.
mov DWORD PTR foo+4, edx ; Store a DWORD in foo+4.
fld QWORD PTR foo ; Load a QWORD from foo.

Avoid
mov foo, eax
mov foo+4, edx
...
movq mm0, foo

Preferred
mov foo, eax
mov foo+4, edx
...
movd mm0, foo
punpckldq mm0, foo+4
92 Cache and Memory Optimizations Chapter 5

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Preferred If Stores Are Close to the Load
movd mm0, eax
mov foo+4, edx
punpckldq mm0, foo+4

Examples—Large-to-small Mismatches

Avoid large-to-small mismatches, as shown in the following code:

64-bit (Avoid)
foo DQ ? ; Assume foo is 8-byte aligned.
...
mov QWORD PTR foo, rax ; Store a QWORD to foo.
mov eax, DWORD PTR foo ; Load a DWORD from foo.
mov edx, DWORD PTR foo+4 ; Load a DWORD from foo+4.

32-bit (Avoid)
foo DQ ? ; Assume foo is 4-byte aligned.
...
fst QWORD PTR foo ; Store a QWORD in foo.
mov eax, DWORD PTR foo ; Load a DWORD from foo.
mov edx, DWORD PTR foo+4 ; Load a DWORD from foo+4.

Avoid
movq foo, mm0
...
mov eax, foo
mov edx, foo+4

Preferred
movd foo, mm0
pswapd mm0, mm0
movd foo+4, mm0
pswapd mm0, mm0
...
mov eax, foo
mov edx, foo+4

Preferred If the Contents of MM0 are No Longer Needed
movd foo, mm0
punpckhdq mm0, mm0
movd foo+4, mm0
...
mov eax, foo
mov edx, foo+4
Chapter 5 Cache and Memory Optimizations 93

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Preferred If the Stores and Loads are Close Together, Option 1
movd eax, mm0
pswapd mm0, mm0
movd edx, mm0
pswapd mm0, mm0

Preferred If the Stores and Loads are Close Together, Option 2
movd eax, mm0
punpckhdq mm0, mm0
movd edx, mm0
94 Cache and Memory Optimizations Chapter 5

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
5.2 Natural Alignment of Data Objects

Optimization

❖ Make sure data objects are naturally aligned. An object is naturally aligned if it is located at an
address that is a multiple of its size.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

A misaligned store or load operation suffers a minimum one-cycle penalty in the processor’s load-
store pipeline. Also, using misaligned loads and stores increases the likelihood of encountering a
store-to-load forwarding pitfall, especially when operating in long mode (64-bit software). (For a
more detailed discussion of store-to-load forwarding issues, see “Store-to-Load Forwarding
Restrictions” on page 100.)

In addition, if the Alignment Mask bit is set in Control Register 0 (CR0), an unaligned memory
reference may cause an alignment check exception. For more information on this topic, see Volume 2
of the AMD64 Architecture Programmer’s Manual (order# 24593).

Locate this type of object At an address evenly divisible by

Word 2

Doubleword 4

Quadword 8

Ten-byte (for example, TBYTE or REAL10) 8 (instead of 10)

Double quadword 16
Chapter 5 Cache and Memory Optimizations 95

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
5.3 Cache-Coherent Nonuniform Memory Access
(ccNUMA)

Optimization

For applications with multiple threads, use OS functions to run a thread on a particular node and let
that thread allocate the memory that it requires so that the memory used is local to that node. In the
Microsoft Windows environment, the function to run a thread on a particular node is
SetThreadAffinityMask().

Be sure operating systems are properly configured to support ccNUMA. All versions of Microsoft
Windows XP for AMD64 and Windows Server for AMD64 support ccNUMA without any changes.
The 32-bit versions of Windows Server 2003, Enterprise Edition and Windows Server 2003,
Datacenter Edition require the /PAE boot parameter to support ccNUMA.

For 64-bit Linux, there may be separate kernels supporting ccNUMA that should be selected.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Most multiple processor systems available today employ a symmetric multiprocessing (SMP)
architecture. Processors on an SMP platform generally share a common or centralized memory bus,
having identical memory access latencies regardless of the processor position. Because the processors
use the same bus and memory, system performance may be negatively affected when bottlenecks
occur due to increased demands on the single memory bus. Figure 1 shows a simplified block diagram
for a two processor SMP system.
96 Cache and Memory Optimizations Chapter 5

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Figure 1. Simple SMP Block Diagram

The AMD Opteron processor implements a Cache-coherent nonuniform memory access (ccNUMA)
architecture when two or more processors are connected together on the same motherboard. In a
ccNUMA design, each processor has its own memory system. When a processor accesses memory on
its own local memory system, the latency is relatively low, especially when compared to a similar
SMP system. If a processor accesses memory located on a different processor, then the latency will be
higher. The phrase ‘non-uniform memory access’ refers to this potential difference in latency.

In an AMD Opteron processor system, each processor contains its own memory controller. Figure 2
shows an example of a two processor AMD Opteron system in a ccNUMA configuration.

Figure 2. AMD Opteron

Dual-Core AMD Opteron processors and AMD Athlon X2 Dual-Core processors share the on-chip
integrated memory controller and memory. Two or more AMD dual-core processors still use the
ccNUMA configuration. Figure 3 illustrates a dual-core AMD Opteron configuration.

CPU0 CPU1

Memory

AMD Opteron™

Memory

CPU0
AMD Opteron™

CPU1
HyperTransport™

Memory
Chapter 5 Cache and Memory Optimizations 97

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Figure 3. Dual-Core AMD Opteron™ Processor Configuration

OS Implications

An operating system running on an AMD Opteron platform will coordinate and manage the memory
configuration so that an application does not have to be aware of this memory configuration. Thanks
to the OS, the platform will simply appear to have one contiguous block of memory regardless of how
many processors are in the platform.

Because of the difference in latencies in ccNUMA systems, the OS must make determinations that
enable the best performance. It would be undesirable, for example, to spawn a thread on a processor
while allocating the memory space for that thread on a different processor. For such reasons, it is
important to be aware of the capabilities of the OS being used. Microsoft's Windows Server 2003
products are ccNUMA aware. The SUSE distribution of 64-bit Linux also has a ccNUMA aware
kernel for AMD64 processors.

Windows applications that spawn several threads, where each thread operates on largely independent
data, might benefit from distributing those threads across several processors and allocating memory
locally for each thread. This can be accomplished by using the SetThreadAffinityMask() function
and by allocating memory blocks using VirtualAlloc() from within the thread that will be heavily
accessing that memory block. Memory is not actually committed until it is accessed and then it is
committed to the node that accesses it. For this reason, it is a good idea to initialize that memory
block using memset() or other code which causes all the pages in the block to be accessed if there is a
chance another node could access it first. See the Microsoft documentation on MSDN for more
details (search for SetThreadAffinityMask()).

AMD OpteronTM
Dual-Core Processor 1

AMD OpteronTM
Dual-Core Processor 0

HyperTransportTM

Core 0 Core 1 Core 2 Core 3

Memory Memory
98 Cache and Memory Optimizations Chapter 5

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
5.4 Multiprocessor Considerations
In a multiprocessor system, data within a single cache line that is shared between processors can
reduce performance. In certain cases (for example, semaphores), this kind of cache-line data sharing
cannot be avoided, but it should be minimized where possible.

Data can often be restructured so this does not occur. Cache lines on AMD Athlon 64 and
AMD Opteron processors are presently 64 bytes, but a scheme that avoids this problem regardless of
cache-line size makes for more performance-portable code.

For example, per-thread data can be allocated on the heap (for example, via calls to malloc()), and
this is preferred over statically defined shared arrays and variables that are potentially located in a
single cache line. Furthermore, some software environments even provide special versions of malloc
that guarantee data alignment to a specified value, and these can be useful in aligning data and
eliminating unwanted cache line overlap.

Application

This optimization applies to:

• 32-bit software

• 64-bit software
Chapter 5 Cache and Memory Optimizations 99

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
5.5 Store-to-Load Forwarding Restrictions
Store-to-load forwarding refers to the process of a load reading (forwarding) data from the store
buffer. When this can occur, it improves performance because the load does not have to wait for the
recently written (stored) data to be written to cache and then read back out again. There are instances
in the load-store architecture of the AMD Athlon 64 and AMD Opteron processors when a load
operation is not allowed to read needed data from a store in the store buffer.

In these cases, the load cannot complete (load the needed data into a register) until the store has
retired out of the store buffer and written to the data cache. A store-buffer entry cannot retire and
write to the data cache until every instruction before the store has completed and retired from the
reorder buffer.

The implication of this restriction is that all instructions in the reorder buffer, up to and including the
store, must complete and retire out of the reorder buffer before the load can complete. Effectively, the
load has a false dependency on every instruction up to the store.

Due to the significant depth of the LS buffer of the AMD Athlon 64 and AMD Opteron processors,
any load that is dependent on a store that cannot bypass data through the LS buffer may experience
significant delays of up to tens of clock cycles, where the exact delay is a function of pipeline
conditions.

The following sections describe store-to-load forwarding examples.

Store-to-Load Forwarding Pitfalls—True Dependencies

A load is allowed to read data from the store-buffer entry only if all of the following conditions are
satisfied:

• The start address of the load matches the start address of the store.

• The load operand size is equal to or smaller than the store operand size.

• Neither the load nor the store is misaligned.

• The store data is not from a high-byte register (AH, BH, CH, or DH).

The following sections describe common-case scenarios to avoid. In these scenarios, a load has a true
dependency on an LS2-buffered store, but cannot read (forward) data from a store-buffer entry.

Narrow-to-Wide Store-Buffer Data-Forwarding Restriction

If the following conditions are present, there is a narrow-to-wide store-buffer data-forwarding
restriction:

• The operand size of the store data is smaller than the operand size of the load data.

• The range of addresses spanned by the store data covers some subrange of the addresses spanned
by the load data.
100 Cache and Memory Optimizations Chapter 5

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Avoid
mov eax, 10h
mov WORD PTR [eax], bx ; Word store
...
mov ecx, DWORD PTR [eax] ; Doubleword load--cannot forward upper byte
 ; from store buffer

Avoid
mov eax, 10h
mov BYTE PTR [eax+3], bl ; Byte store
...
mov ecx, DWORD PTR [eax] ; Doubleword load--cannot forward upper byte
 ; from store buffer

Wide-to-Narrow Store-Buffer Data-Forwarding Restriction

If the following conditions are present, there is a wide-to-narrow store-buffer data-forwarding
restriction:

• The operand size of the store data is greater than the operand size of the load data.

• The start address of the store data does not match the start address of the load data.

Avoid
mov eax, 10h
add DWORD PTR [eax], ebx ; Doubleword store
mov cx, WORD PTR [eax+2] ; Word load--cannot forward high word
 ; from store buffer

Avoid
movq [foo], mm1 ; Store upper and lower half.
...
add eax, [foo] ; Fine
add edx, [foo+4] ; Not good!

Preferred
movd [foo], mm1 ; Store lower half.
punpckhdq mm1, mm1 ; Copy upper half into lower half.
movd [foo+4], mm1 ; Store lower half.
...
add eax, [foo] ; Fine
add edx, [foo+4] ; Fine

Misaligned Store-Buffer Data-Forwarding Restriction

If the following condition is present, there is a misaligned store-buffer data-forwarding restriction:

• The store or load address is misaligned. For example, a quadword store is not aligned to a
quadword boundary.
Chapter 5 Cache and Memory Optimizations 101

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
A common case of misaligned store-data forwarding involves the passing of misaligned quadword
floating-point data on the doubleword-aligned integer stack. Avoid the type of code shown in the
following example:

mov esp, 24h
fstp QWORD PTR [esp] ; ESP = 24
... ; Store occurs to quadword misaligned address.
fld QWORD PTR [esp] ; Quadword load cannot forward from quadword
 ; misaligned ‘FSTP[ESP]’ store operation.

High-Byte Store-Buffer Data-Forwarding Restriction

If the following condition is present, there is a high-byte store-data buffer-forwarding restriction—the
store data is from a high-byte register (AH, BH, CH, DH).

Avoid the type of code shown in the following example:

mov eax, 10h
mov [eax], bh ; High-byte store
...
mov dl, [eax] ; Load cannot forward from high-byte store.

One Supported Store-to-Load Forwarding Case

There is one case of a mismatched store-to-load forwarding that is supported by AMD Athlon 64 and
AMD Opteron processors. The lower 32 bits from an aligned quadword write feeding into a
doubleword read is allowed, as illustrated in the following example:

movq [alignedQword], mm0
...
mov eax, [alignedQword]

Store-to-Load Forwarding—False Dependencies

A load may detect a false dependency on a store-buffer entry if the load does not have a true
dependency on the most recent store that matches address bits 11–2 of the load. A false match could
occur on the most recent store that writes somewhere within the same doubleword of memory as the
load. In addition, a false match could occur if a store address is located at an exact multiple of
102 Cache and Memory Optimizations Chapter 5

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
4-Kbyte pages away from the load address (address bits 47–12 do not match). Avoid the type of code
shown in the following example:

mov eax, 10h
mov [eax], bx ; Word store to address 10
mov cx, [eax+2] ; Word load to address 12
 ; Load detects a false dependency
 ; on store because it is in the
 ; same doubleword of memory.
mov cx, [eax+4] ; Word load to address 14
 ; Load does not detect a false
 ; dependency because it is to a
 ; different doubleword of memory.

Here is another example of the type of code to avoid:

mov eax, 10h
mov [eax], bl ; First store to DWORD at address 10h
mov [eax+1], cl ; Second store to DWORD at address 10h
mov dl, [eax] ; Load detects a false
 ; dependency on the second store
 ; because it is the most recent
 ; store to the same doubleword of
 ; memory as the load.

Summary of Store-to-Load-Forwarding Pitfalls to Avoid

To avoid store-to-load-forwarding pitfalls, follow these guidelines:

• Maintain consistent use of operand size across all loads and stores. Preferably use doubleword or
quadword operand sizes.

• Avoid misaligned data references.

• Avoid narrow-to-wide and wide-to-narrow forwarding cases.

• When using word or byte stores, avoid loading data from anywhere in the same doubleword of
memory other than the identical start addresses of the stores.

Application

This optimization applies to:

• 32-bit software

• 64-bit software
Chapter 5 Cache and Memory Optimizations 103

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
5.6 Prefetch Instructions

Optimization

Where appropriate, use one of the prefetch instructions to increase the effective bandwidth of the
AMD Athlon 64 and AMD Opteron processors.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Prefetch instructions take advantage of the high bus bandwidth of the AMD Athlon 64 and
AMD Opteron processors to hide latencies when fetching data from system memory. A prefetch
instruction initiates a read request of a specified address and reads the entire cache line that contains
that address.

AMD Athlon 64 and AMD Opteron processors perform three types of prefetches:

The prefetch instructions can be used anywhere, in any type of code. The use of prefetch instructions
is not affected by the values of Control Register 0 (CR0) bits, such as CR0.EM and CR0.TS.

Prefetching versus Preloading

In code that makes irregular memory accesses rather than sequential accesses, an ordinary MOV
instruction is the best way to load data. But in situations where sequential addresses are read, prefetch

Prefetch type Description

Load Reads the data into the L1 data cache; the data is later evicted to the L2 cache. The
following instructions perform load prefetches: PREFETCH, PREFETCHT0,
PREFETCHT1, and PREFETCHT2.

Store Reads the data into the L1 data cache and marks the data as modified; the data is
later evicted to the L2 cache. The PREFETCHW instruction performs a store prefetch.

Nontemporal The PREFETCHNTA instruction performs a nontemporal prefetch. The data is read
into the L1 data cache; to avoid cache pollution, when a PREFETCHNTA misses in
the L2 cache and reads from memory, the data is never evicted to the L2 cache. When
a PREFETCHNTA hits in the L2 cache, the data is evicted back to the L2 cache. AMD
Athlon 64 and AMD Opteron processors prior to Revision E read data into one way of
the L1 cache when the PREFETCHNTA instruction was used. Revision E processors
read PREFETCHNTA data into both ways of the L1 cache.
104 Cache and Memory Optimizations Chapter 5

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
instructions can improve performance. Prefetch instructions only update the L1 data cache and do not
update an architectural register. This uses one less register compared to a load instruction.

Unit-Stride Access

Large data sets typically require unit-stride access to ensure that all data pulled in by a prefetch
instruction is actually used. Large data sets make use of all data that is read from memory, rather than
using only a sparse subset of the memory. If necessary, you should reorganize algorithms or data
structures to allow unit-stride access. For a definition of unit-stride access, see “Definitions” on
page 110.

Hardware Prefetching

The AMD Athlon 64 and AMD Opteron processors implement a hardware prefetching mechanism.
The prefetched data is loaded into the L2 cache. The hardware prefetcher works most efficiently when
data is accessed on a cache-line-by-cache-line basis (that is, without skipping cache lines). Cache
lines on current AMD Athlon 64 and AMD Opteron processors are 64 bytes, but cache-line size is
implementation dependent.

The hardware prefetcher prefetches data that is accessed in an ascending or descending order on a
cache-line-by-cache-line basis. For example, when the hardware prefetcher detects an access to cache
line l followed by an access to cache line l + 1, it initiates a prefetch of cache line l + 3. Accessing
data in increments larger than 64 bytes may fail to trigger the hardware prefetcher because cache lines
are skipped. In these cases, software-prefetch instructions should be employed. Note that in some
earlier revisions of the AMD Athlon 64 and AMD Opteron processors the hardware prefetcher would
only detect ascending accesses.

In some cases, using prefetch instructions on processors with hardware prefetching may slightly
reduce performance. In these cases, it may be necessary to remove the prefetch instructions. All
current AMD Athlon 64 and AMD Opteron processors have hardware prefetching mechanisms.

PREFETCH/W versus PREFETCHNTA/T0/T1/T2

PREFETCHNTA, PREFETCHT0, PREFETCHT1, and PREFETCHT2 are SSE instructions and are
processor-implementation dependent. For the AMD Athlon 64 and AMD Opteron processors, data
that is prefetched with the PREFETCHNTA instruction is not placed into the L2 cache when it is
evicted unless it was originally in L2 when prefetched.

PREFETCHNTA is intended for non-temporal data that will not be needed again soon.
PREFETCHNTA should also be used when reading arrays that are so large that they are larger than
the L2 cache. Because of their size, such large arrays will not be available in L2 even if they are
needed again, and by feeding them through the L2 cache, other possibly useful data will also be
evicted from L2.

Note: The L2 cache size of the processor can be determined by using the CPUID instruction.

Chapters 5 and 9 show examples of how to use the PREFETCHNTA instruction.
Chapter 5 Cache and Memory Optimizations 105

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Note: PREFETCHNTA should NOT be used for large arrays that are only being written, not read.
In such cases, write-combining stores should be used. (See “Write-combining” on page 113,
Appendix B “Implementation of Write-Combining” on page 263, and “Write-Combining” in
Volume 2 of the AMD64 Architecture Programmer’s Manual (order no. 24593).)

Current AMD Athlon 64 and AMD Opteron processors implement the PREFETCHT0,
PREFETCHT1 and PREFETCHT2 instructions in exactly the same way as the PREFETCH
instructions. That is, the data is brought into the L1 data cache. This functionality could be changed in
future implementations.

PREFETCHW versus PREFETCH

Code that intends to modify the cache line that is brought in through prefetching should use the
PREFETCHW instruction. PREFETCHW gives a hint to the AMD Athlon 64 and AMD Opteron
processors of an intent to modify the cache line. The AMD Athlon 64 and AMD Opteron processors
mark the cache line being read by PREFETCHW as modified. Using PREFETCHW can save
additional cycles compared to PREFETCH, and avoid the subsequent cache state change caused by a
write to the prefetched cache line. Only use PREFETCHW if there is a write to the same cache line
afterwards.

Write-Combining Usage

Use write-combining instructions instead of PREFETCHW in situations where all of the following
conditions are true:

• The code will overwrite one or more complete cache lines with new data.

• The new data will not be used again soon.

Write-combining instructions include the SSE and SSE2 instructions MOVNTDQ, MOVNTI,
MOVNTPS, and MOVNTPD. They also include the MMX instruction MOVNTQ.

Write-combining instructions can dramatically improve memory-write performance. They write data
directly to memory through write-combining buffers, bypassing the cache. This is faster than
PREFETCHW because data does not need to be initially read from memory to fill the cache lines,
only to be completely overwritten shortly thereafter. The new data is simply written to memory,
replacing the old data in memory, so no memory read is performed.

One application where write-combining is useful, often in conjunction with prefetch instructions, is in
copying large blocks of memory.

Note: The write-combining instructions are not recommended or necessary for write-combined
memory regions since the processor will automatically combine writes for those regions.
Write-combine memory types are indicated through the MTRRs and the page-attribute table
(PAT).

Note: For best performance, do not mix write-combining instructions on a cache line with non-
write-combining store instructions.
106 Cache and Memory Optimizations Chapter 5

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
For more information on write-combining, see Appendix B, “Implementation of Write-Combining.”

Multiple Prefetches

Programmers can initiate multiple outstanding prefetches on the AMD Athlon 64 and AMD Opteron
processors. The AMD Athlon 64 and AMD Opteron processors can have a theoretical maximum of
eight outstanding prefetches, but in practice the number is usually smaller. When all resources are
filled by various memory read requests, the processor waits until resources become free before
processing the next request. Multiple prefetch requests are essentially handled in order, prefetching
data in the order that it is needed.

The following example shows how to initiate multiple prefetches when traversing more than one
array.

Example—Multiple Prefetches
.CODE
.K3D
.686

; Original C code:
;
; #define LARGE_NUM 65536
; #define ARR_SIZE (LARGE_NUM*8)
;
; double array_a[LARGE_NUM];
; double array_b[LARGE_NUM];
; double array_c[LARGE_NUM];
; int i;
;
; for (i = 0; i < LARGE_NUM; i++) {
; a[i] = b[i] * c[i];
; }

 mov edx, (-LARGE_NUM) ; Use biased index.
 mov eax, OFFSET array_a ; Get address of array_a.
 mov ebx, OFFSET array_b ; Get address of array_b.
 mov ecx, OFFSET array_c ; Get address of array_c.

loop:
 prefetchw [eax+256] ; Four cache lines ahead
 prefetch [ebx+256] ; Four cache lines ahead
 prefetch [ecx+256] ; Four cache lines ahead
 fld QWORD PTR [ebx+edx*8+ARR_SIZE] ; b[i]
 fmul QWORD PTR [ecx+edx*8+ARR_SIZE] ; b[i] * c[i]
 fstp QWORD PTR [eax+edx*8+ARR_SIZE] ; a[i] = b[i] * c[i]
 fld QWORD PTR [ebx+edx*8+ARR_SIZE+8] ; b[i+1]
 fmul QWORD PTR [ecx+edx*8+ARR_SIZE+8] ; b[i+1] * c[i+1]
 fstp QWORD PTR [eax+edx*8+ARR_SIZE+8] ; a[i+1] = b[i+1] * c[i+1]
 fld QWORD PTR [ebx+edx*8+ARR_SIZE+16] ; b[i+2]
 fmul QWORD PTR [ecx+edx*8+ARR_SIZE+16] ; b[i+2]*c[i+2]
Chapter 5 Cache and Memory Optimizations 107

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
 fstp QWORD PTR [eax+edx*8+ARR_SIZE+16] ; a[i+2] = [i+2] * c[i+2]
 fld QWORD PTR [ebx+edx*8+ARR_SIZE+24] ; b[i+3]
 fmul QWORD PTR [ecx+edx*8+ARR_SIZE+24] ; b[i+3] * c[i+3]
 fstp QWORD PTR [eax+edx*8+ARR_SIZE+24] ; a[i+3] = b[i+3] * c[i+3]
 fld QWORD PTR [ebx+edx*8+ARR_SIZE+32] ; b[i+4]
 fmul QWORD PTR [ecx+edx*8+ARR_SIZE+32] ; b[i+4] * c[i+4]
 fstp QWORD PTR [eax+edx*8+ARR_SIZE+32] ; a[i+4] = b[i+4] * c[i+4]
 fld QWORD PTR [ebx+edx*8+ARR_SIZE+40] ; b[i+5]
 fmul QWORD PTR [ecx+edx*8+ARR_SIZE+40] ; b[i+5] * c[i+5]
 fstp QWORD PTR [eax+edx*8+ARR_SIZE+40] ; a[i+5] = b[i+5] * c[i+5]
 fld QWORD PTR [ebx+edx*8+ARR_SIZE+48] ; b[i+6]
 fmul QWORD PTR [ecx+edx*8+ARR_SIZE+48] ; b[i+6] * c[i+6]
 fstp QWORD PTR [eax+edx*8+ARR_SIZE+48] ; a[i+6] = b[i+6] * c[i+6]
 fld QWORD PTR [ebx+edx*8+ARR_SIZE+56] ; b[i+7]
 fmul QWORD PTR [ecx+edx*8+ARR_SIZE+56] ; b[i+7] * c[i+7]
 fstp QWORD PTR [eax+edx*8+ARR_SIZE+56] ; a[i+7] = b[i+7] * c[i+7]
 add edx, 8 ; Compute next 8 products
 jnz loop ; until none left.

END

The following optimization rules are applied to this example:

• Partially unroll loops to ensure that the data stride per loop iteration is equal to the length of a
cache line. This avoids overlapping PREFETCH instructions and thus makes optimal use of the
available number of outstanding prefetches.

• Because the array array_a is written rather than read, use PREFETCHW instead of PREFETCH
to avoid overhead for switching cache lines to the correct state. The prefetch distance is optimized
such that each loop iteration is working on three cache lines while active prefetches bring in the
next cache lines.

• Reduce index arithmetic to a minimum by use of complex addressing modes and biasing of the
array base addresses in order to cut down on loop overhead.

Determining Prefetch Distance

When determining how far ahead to prefetch, the basic guideline is to initiate the prefetch early
enough so that the data is in the cache by the time it is needed, under the constraint that there can not
be more than eight prefetches in flight at any given time.

To determine the optimal prefetch distance, use empirical benchmarking when possible. Prefetching
three or four cache lines ahead (192 or 256 bytes) is a good starting point and usually gives good
results. Trying to prefetch too far ahead impairs performance.

Memory-Limited versus Processor-Limited Code

Software prefetching can help to hide the memory latency, but it can not increase the total memory
bandwidth. Many loops are limited by memory bandwidth rather than processor speed, as shown in
Figure 4. In these cases, the best that software prefetching can do is to ensure that enough memory
108 Cache and Memory Optimizations Chapter 5

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
requests are “in flight” to keep the memory system busy all of the time. The AMD Athlon 64 and
AMD Opteron processors support a maximum of eight concurrent memory requests to different cache
lines. Multiple requests to the same cache line count as only one towards this limit of eight.

Figure 4. Memory-Limited Code

Code that performs many computations on each cache line is limited by processor speed rather than
memory bandwidth, as shown in Figure 5. In this case, the goal of software prefetching is just to
ensure that the memory data is available when the processor needs it. As the processor speed
increases, the optimal prefetch distance increases until the memory bandwidth becomes the limiting
factor.

For an example of how to use software prefetching in processor-limited code, see “Structuring Code
with Prefetch Instructions to Hide Memory Latency” on page 200.

Figure 5. Processor-Limited Code

M1 M5M2 M3 M4

C0 C1 C2 C3 C4

Total Memory Latency

Prefetchnta [esi + 64 * 4]

memory burst time
(one 64-byte cache line)

Memory
cycles

CPU
loops

Prefetch distance is
~4 cache lines ahead

time

…

…

M1 M5M2 M3 M4

C0 C1 C2 C3 C4

Total Memory Latency

Prefetchnta [esi + 64 * 4]

memory burst time
(one 64-byte cache line)

Memory
cycles

CPU
loops

Prefetch distance is
~4 cache lines ahead

time

…

…

C1 C5C2 C3 C4

M1 M2 M3 M4 M5

Total Memory Latency

Prefetchnta [esi + 64 * 2]

memory burst time
(one 64-byte cache line)

Memory
cycles

CPU
loops

Prefetch distance is
~2 cache lines ahead

(maybe use 3 for safety)

time

CPU time
(process one cache line)

…

…C1 C5C2 C3 C4

M1 M2 M3 M4 M5

Total Memory Latency

Prefetchnta [esi + 64 * 2]

memory burst time
(one 64-byte cache line)

Memory
cycles

CPU
loops

Prefetch distance is
~2 cache lines ahead

(maybe use 3 for safety)

time

CPU time
(process one cache line)

…

…

Chapter 5 Cache and Memory Optimizations 109

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Definitions

Unit-stride access refers to a memory access pattern where consecutive memory accesses are made to
consecutive array elements, in ascending or descending order. If the arrays are made of elemental
types, then they imply adjacent memory locations as well. For example:

char j, k[MAX];
for (i = 0; i < MAX; i++) {
...
j += k[i]; // Every byte is used.
...
}
double x, y[MAX];
for (i = 0; i < MAX; i++) {
...
x += y[i]; // Every byte is used.
...
}

Exception to Unit Stride

The unit-stride concept works well when stepping through arrays of elementary data types. In some
instances, unit stride alone may not be sufficient to determine how to use the PREFETCH instruction
properly. For example, assume that there is a vertex structure of 256 bytes and the code steps through
the vertices in unit stride, but using only the x, y, z, w components, each being of type float (for
example, the first 16 bytes of each vertex). In this case, the prefetch distance obviously should be
some function of the data size structure (for a properly chosen n):

prefetch [eax+n*structure_size]
...
add eax, structure_size

You should experiment to find the optimal prefetch distance; there is no formula that works for all
situations.

Data Stride per Loop Iteration

Assuming unit-stride access to a single array, the data stride of a loop (the loop stride) refers to the
number of bytes accessed in the array per loop iteration. For example:

 fldz
add_loop:
 fadd QWORD PTR [ebx*8+base_address]
 dec ebx
 jnz add_loop

The data stride of the above loop is eight bytes. In general, for optimal use of prefetching, the data
stride per iteration is the length of a cache line (64 bytes in the AMD Athlon 64 and AMD Opteron
processors). If the loop stride is smaller, unroll the loop enough to use a whole cache line of data per
110 Cache and Memory Optimizations Chapter 5

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
iteration. However, unrolling the loop may not be feasible if the original loop stride is very small (for
example, only two bytes).

Prefetch at Least 64 Bytes Away from Surrounding Stores

The prefetch instructions can be affected by false dependencies on stores. If there is a store to an
address that matches a request, that request (the prefetch instruction) may be blocked until the store is
written to the cache. Therefore, code should prefetch data that is located at least 64 bytes away from
any surrounding store’s data address.
Chapter 5 Cache and Memory Optimizations 111

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
5.7 Streaming-Store/Non-Temporal Instructions

Optimization

Use streaming store instructions such as MOVNTPS and MOVNTQ when writing arrays or buffers
which do not need to reside in cache. These instructions allow the processor to perform a write
without first reading the data from memory or other processor's caches. This saves the time needed to
read the cache line, and also prevents evicting data from the cache which may be needed. This can be
a significant performance advantage. These instructions are available in most compilers using inline
assembly or intrinsics. Routines 5 and 6 in Section 5.13, “Appropriate Memory Copying Routines”
illustrate using the combination of streaming store instructions with the PREFETCHNTA instruction
to optimize memory copy routines.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Streaming store instructions are also sometimes called write-combining instructions. In order to
improve system performance, the AMD Athlon 64 and AMD Opteron processors aggressively
combine multiple memory-write cycles of any data size that address locations within a 64-byte cache-
line-aligned write buffer if a streaming-store instruction is used. This combining is accomplished with
write-combine buffers. The number of write-combine buffers is processor-implementation dependent.
Be sure to refer to Appendix B for much more detailed information on write-combining.

Be sure to follow the last streaming-store instruction in a block of code with the MFENCE instruction
to assure that all of the write-combine buffers are written to memory.

Streaming Store instructions are also discussed in “Write-Combining Usage” on page 106. Also see
Appendix B, "Implementation of Write-Combining." For more information on write-combining, see
"Write-Combining" in the AMD64 Architecture Programmer's Manual Volume 2: System
Programming (order# 24593).
112 Cache and Memory Optimizations Chapter 5

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
5.8 Write-combining

Optimization

❖ Operating-system, device-driver, and BIOS programmers should take advantage of the write-
combining capabilities of the AMD Athlon 64 and AMD Opteron processors.

For details, see Appendix B, “Implementation of Write-Combining.” For more information on write-
combining, see “Write-Combining” in Volume 2 of the AMD64 Architecture Programmer’s Manual
(order no. 24593).

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

In order to improve system performance, the AMD Athlon 64 and AMD Opteron processors
aggressively combine multiple memory-write cycles (of any data size) that address locations within a
64-byte cache-line-aligned write buffer.
Chapter 5 Cache and Memory Optimizations 113

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
5.9 L1 Data Cache Bank Conflicts

Optimization

Utilize pair loads that do not have a bank conflict in the L1 data cache to improve load thoughput.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Fields Used to Address the Multibank L1 Data Cache

The L1 data cache is a multibank design consisting of 8 banks total, where each bank is 8 bytes wide.
To address the L1 data cache, the processor uses fields within the address as shown in the following
diagram:

How to Know If a Bank Conflict Exists

The existence of a bank conflict between two neighboring loads depends on their bank and index
values:

In other words, with common data types, consecutive array elements cannot have a bank conflict. If
the array elements are 4 bytes or less, the two loads are to the same index and the same bank, and no
conflict occurs. If the array elements are 8 bytes, the loads are to the same index but different banks,
so a bank conflict does not occur either.

When the bank is And the index is Then a bank conflict

Different Either the same or different Does not exist

The same The same Does not exist

The same Different Exists

Index

14 0

Byte

Bank

2356

...
114 Cache and Memory Optimizations Chapter 5

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Rationale

Loads are served by the L1 data cache in program order, but the number of loads that the processor
can perform in one cycle depends on whether a bank conflict exists between the loads:

Therefore, pairing loads that do not have a bank conflict helps maximize load throughput.

Example

Avoid code like this, where two loads without a bank conflict are separated by other instructions:

fld qword ptr [eax]
fmul qword ptr [ebx]
faddp st(3), st
fld qword ptr [eax+8]
fmul qword ptr [ebx+8]
faddp st(2), st

Instead, rearrange the two loads so they appear as a pair:

fld qword ptr [eax]
fld qword ptr [eax+8]
fmul qword ptr [ebx+8]
faddp st(2), st
fmul qword ptr [ebx]
faddp st(3), st

When a bank conflict Then the number of loads the processor can perform per cycle is

Exists 1

Does not exist 2
Chapter 5 Cache and Memory Optimizations 115

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
5.10 Placing Code and Data in the Same 64-Byte Cache
Line

Optimization

❖ Avoid placing code and data together within a cache line, especially if the data becomes
modified.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Sharing code and data in the same 64-byte cache line may cause the L1 caches to thrash
(unnecessarily cast out code or data) in order to maintain coherency between the separate instruction
and data caches. The AMD Athlon 64 and AMD Opteron processors have a cache-line size of 64
bytes.

For example, consider that a memory-indirect JMP instruction may have the data for the jump table
residing in the same 64-byte cache line as the JMP instruction. This mixing of code and data in the
same cache line results in lower performance.

Do not place critical code at the border between 32-byte-aligned code segments and data segments.
Code at the beginning or end of a data segment should be executed as infrequently as possible or
padded.

In summary, avoid self-modifying code and storing data in code segments.
116 Cache and Memory Optimizations Chapter 5

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
5.11 Sorting and Padding C and C++ Structures

Optimization

Sort and pad C and C++ structures to achieve natural alignment.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

By sorting and padding structures at the source-code level, if the first member of a structure is
naturally aligned, then all other members are naturally aligned as well. This allows, for example,
arrays of structures to be perfectly aligned.

Sorting and Padding C and C++ Structures

To sort and pad a C or C++ structure, follow these steps:

1. Sort the structure members according to their type sizes, declaring members with larger type sizes
ahead of members with smaller type sizes.

2. Pad the structure so the size of the structure is a multiple of the largest member’s type size.

Example

Consider the following structure declaration in a C function:

struct {
 char a[5];
 long k;
 double x;
} baz;

Instead of allocating the members in the order in which they are declared, allocate them from lower to
higher addresses in the following order and add padding:

x, k, a[4], a[3], a[2], a[1], a[0], pad_byte6,..., pad_byte0
Chapter 5 Cache and Memory Optimizations 117

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Related Information

For information on sorting and padding C and C++ structures at the C-source level, see “Sorting and
Padding C and C++ Structures” on page 39.
118 Cache and Memory Optimizations Chapter 5

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
5.12 Sorting Local Variables

Optimization

Sort local variables according to their type sizes, allocating those with larger type sizes ahead of those
with smaller type sizes.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

If the first variable is allocated for natural alignment, all other variables are allocated contiguously in
the order they are declared and are naturally aligned without any padding.

Example

Consider the following declarations in a C function:

short ga, gu, gi;
long foo, bar;
double x, y, z[3];
char a, b;
float baz;

Instead of allocating the variables in the order in which they are declared, allocate them from lower to
higher addresses in the following order:

x, y, z[2], z[1], z[0], foo, bar, baz, ga, gu, gi, a, b

Related Information

For information on sorting local variables at the C-source level, see “Sorting Local Variables” on
page 41.
Chapter 5 Cache and Memory Optimizations 119

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
5.13 Memory Copy

Optimization

❖ For a very fast general purpose memory copy routine, call the libc memcpy() function included
with the Microsoft or gcc tools. This function features optimizations for all block sizes and
alignments.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The memcpy() routines included with recent compilers from Microsoft and gcc feature optimizations
for all block sizes and alignments for AMD Athlon 64 and AMD Opteron processors.

Copying Small Data Structures

Use inline assembly code to copy a small data structure in cache. Use an unrolled series of MOV
instructions. Alternate loads and stores in sequences such as load/store/load/store routines, or use
load/load/store/store sequences for even better performance. Align the destination (and source) if
possible.

Example 1

The following 64-bit example copies 18 bytes of data:
; rsi = source
; rdi = destination

 mov r8, [rsi] ; 8 bytes of source
 mov r9, [rsi+8] ; next 8 bytes of source
 mov [rdi], r8 ; write 8 bytes
 mov [rdi+8], r9 ; write next 8
 mov r8w, [rsi+16] ; read two bytes "r8 word"
 mov [rdi+16], r8w ; write the last 2 bytes

Example 2

The following example illustrates how to copy blocks of 32 bytes and larger, in cache. This code
performs best when the source and destination addresses are 8-byte aligned. Align the destination
120 Cache and Memory Optimizations Chapter 5

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
before starting a copy, especially for large blocks. To write data directly to main memory, bypassing
the cache, use the MOVNTI instruction instead of MOV for the four store instructions.
; rsi = source
; rdi = destination
; ecx = byte count

 mov eax, ecx
 shr eax, 5
 jz done_32
align 16 ; align the loop to a 16-byte fetch boundary
copy_32_bytes:
 mov r8, [rsi] ; read 8 bytes
 mov r9, [rsi+8] ; it's a bit faster to pair two reads
 add rsi, 32 ; update source pointer
 mov [rdi], r8 ; store 8 bytes
 mov [rdi+8], r9 ; again, pair 2 stores for slight perf gain
 add rdi, 32 ; update destination pointer
 mov r8, [rsi-16] ; loop is unrolled 4 reads, 4 writes
 mov r9, [rsi-8] ; 4-way unroll hides latency of adds and dec
 dec eax ; decrement data counter (32 bytes)
 mov [rdi-16], r8 ; store more bytes
 mov [rdi-8], r9 ; store last 8 bytes
 jnz copy_32_bytes
done_32:
 (copy any remaining bytes)
Chapter 5 Cache and Memory Optimizations 121

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
5.14 Stack Considerations
Make sure the stack is suitably aligned for the local variable with the largest base type. Then, using
the technique described in “Sorting and Padding C and C++ Structures” on page 117, all variables can
be properly aligned with no padding.

Application

This optimization applies to:

• 32-bit software

Extend Arguments to 32 Bits Before Pushing onto Stack

Function arguments smaller than 32 bits should be extended to 32 bits before being pushed onto the
stack, which ensures that the stack is always doubleword aligned on entry to a function.

If a function has no local variables with a base type larger than a doubleword, no further work is
necessary. If the function does have local variables whose base type is larger than a doubleword,
insert additional code to ensure proper alignment of the stack. For example, the following code
achieves quadword alignment:

prologue:
 push ebp
 mov ebp, esp
 sub esp, SIZE_OF_LOCALS ; Size of local variables
 and esp, –8
 ... ; Push registers that need to be preserved.

epilogue: ; Pop register that needed to be preserved.
 leave
 ret

With this technique, function arguments can be accessed through EBP, and local variables can be
accessed through ESP. Save and restore EBP between the prologue and the epilogue to keep it free for
general use.

Optimized Stack Usage

It is sometimes possible to improve performance in frequently executed routines by altering the way
variables and parameters are passed and accessed on the stack. Replacing PUSH and POP instructions
with MOV instructions can reduce stack pointer dependencies and uses fewer execution resources.
This optimization is usually most effective in smaller routines. Excessive use of this optimization can
result in increased code size as MOV instructions are considerably larger than PUSH and POP
instructions.
122 Cache and Memory Optimizations Chapter 5

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
5.15 Cache Issues when Writing Instruction Bytes to
Memory

Optimization

When writing data consisting of instructions for future execution to memory use streaming store
(write-combining) instructions such as MOVNTDQ and MOVNTI.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

This optimization pertains to software that writes executable instructions to memory for subsequent
execution, such as might be done by a just-in-time compiler. If normal store instructions are used to
write the code to memory, then the cache lines will be in a modified state (either in L1 data cache or in
L2). When the processor eventually tries to execute the code, it will miss in the instruction cache.
Because the instruction cache cannot contain cache lines that are in a modified state, the data must be
flushed to memory before it can be fetched into the instruction cache. This unneccesarily evicts
possibly useful information from the caches. By using write-combining instructions, the contents of
the cache is preserved with no performance penalty, and this possibly provides a performance
improvement.
Chapter 5 Cache and Memory Optimizations 123

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
5.16 Interleave Loads and Stores
When loading and storing data as in a copy routine, the organization of the sequence of loads and
stores can affect performance.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

When using SSE and SSE2 instructions to perform loads and stores, it is best to interleave them in the
following pattern—Load, Store, Load, Store, Load, Store, etc. This enables the processor to maxi-
mize the load/store bandwidth.

If using MMX loads and stores in 32-bit mode, the loads and stores should be arranged in the
following pattern—Load, Load, Store, Store, Load, Load, Store, Store, etc.

Example

The following example illustrates a sequence of 128-bit loads and stores:
movdqa xmm0,[rdx+r8*8] ; Load

movntdq [rcx+r8*8],xmm0 ; Store

movdqa xmm1,[rdx+r8*8+16] ; Load

movntdq [rcx+r8*8+16],xmm1 ; Store
124 Cache and Memory Optimizations Chapter 5

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Chapter 6 Branch Optimizations

The optimizations in this chapter help improve branch prediction and minimize branch penalties.

In This Chapter

This chapter covers the following topics:

Topic Page

Density of Branches 126

Two-Byte Near-Return RET Instruction 128

Branches That Depend on Random Data 130

Pairing CALL and RETURN 132

Recursive Functions 133

Nonzero Code-Segment Base Values 135

Replacing Branches with Computation 136

The LOOP Instruction 141

Far Control-Transfer Instructions 142
Chapter 6 Branch Optimizations 125

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
6.1 Density of Branches

Optimization

When possible, align branches such that they do not cross a 16-byte boundary.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The AMD Athlon™ 64 and AMD Opteron™ processors have the capability to cache branch-
prediction history for a maximum of three near branches (CALL, JMP, conditional branches, or
returns) per 16-byte fetch window. A branch instruction that crosses a 16-byte boundary is counted in
the second 16-byte window. Due to architectural restrictions, a branch that is split across a 16-byte
boundary cannot dispatch with any other instructions when it is predicted taken. Perform this
alignment by rearranging code; it is not beneficial to align branches using padding sequences.

The following branches are limited to three per 16-byte window:

jcc rel8
jcc rel32
jmp rel8
jmp rel32
jmp reg
jmp WORD PTR
jmp DWORD PTR
call rel16
call r/m16
call rel32
call r/m32

Coding more than three branches in the same 16-byte code window may lead to conflicts in the
branch target buffer. To avoid conflicts in the branch target buffer, space out branches such that three
126 Branch Optimizations Chapter 6

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
or fewer exist in a given 16-byte code window. For absolute optimal performance, try to limit
branches to one per 16-byte code window. Avoid code sequences like the following:

ALIGN 16

label3:
 call label1 ; 1st branch in 16-byte code window
 jc label3 ; 2nd branch in 16-byte code window
 call label2 ; 3rd branch in 16-byte code window
 jnz label4 ; 4th branch in 16-byte code window
 ; Cannot be predicted.

If there is a jump table that contains many frequently executed branches, pad the table entries to
8 bytes each to assure that there are never more than three branches per 16-byte block of code.

Only branches that have been taken at least once are entered into the dynamic branch prediction, and
therefore only those branches count toward the three-branch limit.
Chapter 6 Branch Optimizations 127

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
6.2 Two-Byte Near-Return RET Instruction

Optimization

Use of a two-byte near-return can improve performance. The single-byte near-return (opcode C3h) of
the RET instruction should be used carefully. Specifically, avoid the following two situations:

• Any kind of branch (either conditional or unconditional) that has the single-byte near-return RET
instruction as its target. See “Examples.”

• A conditional branch that occurs in the code directly before the single-byte near-return RET
instruction. See “Examples.”

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The processor is unable to apply a branch prediction to the single-byte near-return form (opcode C3h)
of the RET instruction.

The easiest way to assure the utilization of the branch prediction mechanism is to use a two-byte RET
instruction. A two-byte RET has a REP instruction inserted before the RET, which produces the
functional equivalent of the single-byte near-return RET instruction, but is not affected by the
prediction limitations outlined above. To use a two-byte RET, define a text macro named REPRET and
use it instead of the RET instruction to force the intended object code.

REPRET TEXTEQU <DB 0F3h, 0C3h>

Examples

Avoid branches in which the target of the branch is a single-byte near-return:

 jmp label ; Jump to a single-byte near-return RET instruction.
 ...
label:
 ret ; RET is potentially mispredicted.

Avoid branches that immediately precede a single-byte near-return:

jz label ; Conditional branch is not taken.
ret ; RET is a fall-through instruction,
 ; potentially mispredicted.
128 Branch Optimizations Chapter 6

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
If possible, move an existing instruction, such as a POP instruction that is part of the function
epilogue, so that it is inserted between the branch and the RET instruction:

jz label
pop ebp ; Pad with at least one non-branch instruction.
ret

If no existing instruction is available for this purpose, then insert a NOP instruction to provide the
necessary padding or, better still, use the recommended two-byte version of RET.
Chapter 6 Branch Optimizations 129

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
6.3 Branches That Depend on Random Data

Optimization

Avoid conditional branches that depend on random data, as these branches are difficult to predict.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Suppose a piece of code receives a random stream of characters “A” through “Z” and branches if the
character is before “M” in the collating sequence. Data-dependent branches acting upon basically
random data cause the branch-prediction logic to mispredict the branch about 50% of the time.

If possible, design branch-free alternative code sequences that result in shorter average execution
time. This technique is especially important if the branch body is small.

Examples

The following examples illustrate this concept using the CMOVxx instruction.

Signed Integer ABS Function (x = labs(x))
mov ecx, [x] ; Load value.
mov ebx, ecx ; Save value.
neg ecx ; Negate value.
cmovs ecx, ebx ; If negated value is negative, select value.
mov [x], ecx ; Save labs result.

Unsigned Integer min Function (z = x < y ? x : y)
mov eax, [x] ; Load x value.
mov ebx, [y] ; Load y value.
cmp eax, ebx ; EBX <= EAX ? CF = 0 : CF = 1
cmovnc eax, ebx ; EAX = (EBX <= EAX) ? EBX : EAX
mov [z], eax ; Save min(X,Y).
130 Branch Optimizations Chapter 6

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Conditional Write
// C code:

int a, b, i, dummy, c[BUFSIZE];

if (a < b) {
 c[i++] = a;
}

;--------------
; Assembly code:

lea esi, [dummy] ; &dummy
xor ecx, ecx ; i = 0
...
lea edi, [c+ecx*4] ; &c[i]
lea edx, [ecx+1] ; i++
cmp eax, ebx ; a < b ?
cmovge edi, esi ; ptr = (a >= b) ? &dummy : &c[i]
cmovl ecx, edx ; a < b ? i : i + 1
mov [edi], eax ; *ptr = a
Chapter 6 Branch Optimizations 131

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
6.4 Pairing CALL and RETURN

Optimization

Always use care when pairing CALLs and RETURNs.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

When the 12-entry return-address stack gets out of synchronization, the latency of returns increases.
The return-address stack becomes unsynchronized when:

• Calls and returns do not match.

• The depth of the return-address stack is exceeded because of too many levels of nested function
calls.
132 Branch Optimizations Chapter 6

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
6.5 Recursive Functions

Optimization

Use care when writing recursive functions.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Returns are predicted as described in “Pairing CALL and RETURN,” so recursive functions should
be written carefully. If there are only recursive function calls within the function as shown in the
following example, the return address for each iteration of the recursive function is properly
predicted.

Preferred
long fac(long a)
{
 if (a == 0) {
 return (1);
 } else {
 return (a * fac(a – 1));
 }
}

If there are any other calls within the recursive function (except to itself) as shown in the next
example, some returns can be mispredicted. If the number of recursive function calls plus the number
of nonrecursive function calls within the recursive function is greater than 12, the return stack does
not predict the correct return address for some of the returns once the recursion begins to unwind.
Chapter 6 Branch Optimizations 133

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Avoid
long fac(long a)
{
 if (a == 0) {
 return (1);
 } else {
 myp(a); // Can cause returns to be mispredicted
 return (a * fac(a - 1));
 }
}

void myp(long a)
{
 printf("myp ");
 return;
}

Because the function fac, in the following example, is end-recursive, it can be converted to iterative
code. A recursive function is classified as end-recursive when the function call to itself is at the end of
the code. The following listing shows the rewritten code:

Preferred
long fac1(long a)
{
 long t = 1;
 while (a > 0) {
 myp(a);
 t *= a;
 a--;
 }
 return (t);
}

134 Branch Optimizations Chapter 6

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
6.6 Nonzero Code-Segment Base Values

Optimization

In 32-bit threads, avoid using a nonzero code-segment (CS) base value. (In 64-bit mode, segmentation
is disabled and the segment base value is ignored and treated as zero.)

Application

This optimization applies to:

• 32-bit software

Rationale

A nonzero CS base value causes an additional two cycles of branch-misprediction penalty when
compared with a CS base value of zero:

CS base value
Minimum branch penalty (cycles)

Prediction sequential Prediction taken Misprediction

 0 0 1 10

Not 0 0 1 12
Chapter 6 Branch Optimizations 135

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
6.7 Replacing Branches with Computation

Optimization

Use computation to simulate predicted execution or conditional moves.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Branches can negatively impact the performance of code. If the body of the branch is small, you can
achieve higher performance by replacing the branch with computation. The computation simulates
predicated execution or conditional moves. There are many SSE and SSE2 instructions that can be
useful for accomplishing this. The principal instructions are as follows: ANDPS, ANDPD, ANDNPS,
ANDNPD, CMPPS, CMPSS, CMPPD, CMPSD, MINPS, MINSS, MINPD, MINSD, MAXPS,
MAXSS, MAXPD, MAXSD, ORPS, ORPD, PAND, PANDN, PCMPEQB, PCMPEQD,
PCMPEQW, PCMPGTB, PCMPGTD, PCMPGTW, PMAXSW, PMAXUB, PMINSW, PMINUB,
POR, PXOR, XORPS, and XORPD.

For 32-bit code using 3DNow!™ instructions, try to avoid moving the MMX™ data to integer
registers to perform comparisons and branches. Moving MMX data to integer registers requires either
transport through memory or the use of MOVD reg, mmreg instructions, which are relatively
inefficient. When using 3DNow! technology and MMX registers, the following instructions may be
useful for eliminating branches: PCMPGTB, PCMPGTD, PCMPGTW, PFCMPGT, PFCMPGE,
PFMIN, PFMAX, PAND, PANDN, POR, and PXOR.

Muxing Constructs

The most important construct to use in avoiding branches in SIMD code is a two-way muxing
construct that is equivalent to the ternary operator (?:) in C and C++.
136 Branch Optimizations Chapter 6

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Examples

SSE Solution (Preferred)
; r = (x < y) ? a : b
;
; In: XMM0 = a
; XMM1 = b
; XMM2 = x
; XMM3 = y
; Out: XMM0 = r

cmpps xmm2, xmm3, 1 ; x < y ? 0xffffffff : 0
andps xmm0, xmm2 ; x < y ? a : 0
andnps xmm2, xmm1 ; x < y ? 0 : b
orps xmm0, xmm2 ; x < y ? a : b

MMX™ Solution (Avoid)
; r = (x < y) ? a : b
;
; In: MM0 = a
; MM1 = b
; MM2 = x
; MM3 = y
; Out: MM0 = r

pcmpgtd mm3, mm2 ; y > x ? 0xffffffff : 0
movq mm4, mm3 ; Duplicate mask
pandn mm3, mm1 ; y > x ? 0 : b
pand mm0, mm4 ; y > x ? a : 0
por mm0, mm3 ; r = y > x ? a : b

Because the use of PANDN destroys the mask created by PCMPGTD, the mask needs to be saved,
which requires an additional register. This adds an instruction, lengthens the dependency chain, and
increases register pressure. Therefore, write two-way muxing constructs as follows:

MMX™ Solution (Preferred)
; r = (x < y) ? a : b
;
; In: MM0 = a
; MM1 = b
; MM2 = x
; MM3 = y
; Out: MM0 = r

pcmpgtd mm3, mm2 ; y > x ? 0xffffffff : 0
pand mm0, mm3 ; y > x ? a: 0
pandn mm3, mm1 ; y > x > 0 : b
por mm0, mm3 ; r = y > x ? a : b
Chapter 6 Branch Optimizations 137

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Sample Code Translated into AMD64 Code

The following examples use scalar code translated into AMD64 code. Note that it is not
recommended that you use 3DNow! SIMD instructions for scalar code, because the advantage of
3DNow! instructions lies in their “SIMDness.” These examples are meant to demonstrate general
techniques for translating source code with branches into branchless 3DNow! code. Scalar source
code was chosen to keep the examples simple. These techniques work identically for vector code.

Each example shows the C code and the resulting 3DNow! code.

Example 1: C Code
float x, y, z;
if (x < y) {
 z += 1.0;
} else {
 z -= 1.0;
}

Example 1: 3DNow!™ Code
; In: MM0 = x
; MM1 = y
; MM2 = z
; Out: MM0 = z

movq mm3, mm0 ; Save x.
movq mm4, one ; 1.0
pfcmpge mm0, mm1 ; x < y ? 0 : 0xffffffff
pslld mm0, 31 ; x < y ? 0 : 0x80000000
pxor mm0, mm4 ; x < y ? 1.0 : -1.0
pfadd mm0, mm2 ; x < y ? z + 1.0 : z - 1.0

Example 2: C Code
float x, z;
z = abs(x);
if (z >= 1) {
 z = 1 / z;
}

Example 2: 3DNow!™ Code
; In: MM0 = x
; Out: MM0 = z

movq mm5, mabs ; 0x7fffffff
pand mm0, mm5 ; z = abs(x)
pfrcp mm2, mm0 ; 1 / z approximation
movq mm1, mm0 ; Save z.
pfrcpit1 mm0, mm2 ; 1 / z step
pfrcpit2 mm0, mm2 ; 1 / z final
pfmin mm0, mm1 ; z = z < 1 ? z : 1 / z
138 Branch Optimizations Chapter 6

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Example 3: C Code
float x, z, r, res;
z = fabs(x)
if (z < 0.575) {
 res = r;
} else {
 res = PI / 2 - 2 * r;
}

Example 3: 3DNow!™ Code
; In: MM0 = x
; MM1 = r
; Out: MM0 = res

movq mm7, mabs ; Mask for absolute value
pand mm0, mm7 ; z = abs(x)
movq mm2, bnd ; 0.575
pcmpgtd mm2, mm0 ; z < 0.575 ? 0xffffffff : 0
movq mm3, pio2 ; pi / 2
movq mm0, mm1 ; Save r.
pfadd mm1, mm1 ; 2 * r
pfsubr mm1, mm3 ; pi / 2 - 2 * r
pand mm0, mm2 ; z < 0.575 ? r : 0
pandn mm2, mm1 ; z < 0.575 ? 0 : pi / 2 - 2 * r
por mm0, mm2 ; z < 0.575 ? r : pi / 2 - 2 * r

Example 4: C Code
#define PI 3.14159265358979323
float x, z, r, res;
/* 0 <= r <= PI / 4 */
z = abs(x)
if (z < 1) {
 res = r;
} else {
 res = PI / 2 - r;
}

Example 4: 3DNow!™ Code
; In: MM0 = x
; MM1 = r
; Out: MM1 = res

movq mm5, mabs ; Mask to clear sign bit
movq mm6, one ; 1.0
pand mm0, mm5 ; z = abs(x)
pcmpgtd mm6, mm0 ; z < 1 ? 0xffffffff : 0
movq mm4, pio2 ; pi / 2
pfsub mm4, mm1 ; pi / 2 - r
pandn mm6, mm4 ; z < 1 ? 0 : pi / 2 - r
pfmax mm1, mm6 ; res = z < 1 ? r : pi / 2 - r
Chapter 6 Branch Optimizations 139

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Example 5: C Code
#define PI 3.14159265358979323
float x, y ,xa ,ya ,r ,res;
int xs, df;
xs = x < 0 ? 1 : 0;
xa = fabs(x);
ya = fabs(y);
df = (xa < ya);
if (xs && df) {
 res = PI / 2 + r;
} else if (xs) {
 res = PI - r;
} else if (df) {
 res = PI/2 - r;
} else {
 res = r;
}

Example 5: 3DNow!™ Code
; In: MM0 = r
; MM1 = y
; MM2 = x
; Out: MM0 = res

movq mm7, sgn ; Mask to extract sign bit
movq mm6, sgn ; Mask to extract sign bit
movq mm5, mabs ; Mask to clear sign bit
pand mm7, mm2 ; xs = sign(x)
pand mm1, mm5 ; ya = abs(y)
pand mm2, mm5 ; xa = abs(x)
movq mm6, mm1 ; y
pcmpgtd mm6, mm2 ; df = (xa < ya) ? 0xffffffff : 0
pslld mm6, 31 ; df = bit 31
movq mm5, mm7 ; xs
pxor mm7, mm6 ; xs ^ df ? 0x80000000 : 0
movq mm3, npio2 ; -pi / 2
pxor mm5, mm3 ; xs ? pi / 2 : -pi / 2
psrad mm6, 31 ; df ? 0xffffffff : 0
pandn mm6, mm5 ; xs ? (df ? 0 : pi / 2) : (df ? 0 : -pi / 2)
pfsub mm6, mm3 ; pr = pi / 2 + (xs ? (df ? 0 : pi / 2) :
 ; (df ? 0 : -pi / 2))
por mm0, mm7 ; ar = xs ^ df ? -r : r
pfadd mm0, mm6 ; res = ar + pr
140 Branch Optimizations Chapter 6

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
6.8 The LOOP Instruction

Optimization

Avoid using the LOOP instruction.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The LOOP instruction has a latency of at least 8 cycles.

Example

Avoid code like this, which uses the LOOP instruction:

label:
 ...
 loop label

Instead, replace the loop instruction with a DEC and a JNZ:

label:
 ...
 dec rcx
 jnz label
Chapter 6 Branch Optimizations 141

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
6.9 Far Control-Transfer Instructions

Optimization

Use far control-transfer instructions only when necessary. (Far control-transfer instructions include
the far forms of JMP, CALL, and RET, as well as the INT, INTO, and IRET instructions.)

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The processor’s branch-prediction unit, which is used for both conditional and unconditional
branches, does not predict far branches.
142 Branch Optimizations Chapter 6

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Chapter 7 Scheduling Optimizations

The optimizations discussed in this chapter help improve scheduling in the processor.

This chapter covers the following topics:

Topic Page

Instruction Scheduling by Latency 144

Loop Unrolling 145

Inline Functions 149

Address-Generation Interlocks 151

MOVZX and MOVSX 153

Pointer Arithmetic in Loops 154

Pushing Memory Data Directly onto the Stack 157
Chapter 7 Scheduling Optimizations 143

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
7.1 Instruction Scheduling by Latency

Optimization

In general, select instructions with shorter latencies that are DirectPath—not VectorPath—
instructions. For a list of instruction latencies and classifications, see Appendix C, “Instruction
Latencies.”

The AMD Athlon™ 64 and AMD Opteron™ processors can execute up to three AMD64 instructions
per cycle, with each instruction possibly having a different latency. The AMD Athlon 64 and
AMD Opteron processors have flexible scheduling, but for absolute maximum performance, schedule
instructions according to their latencies and data dependencies. The goal is to reduce the overall
length of dependency chains.

Application

This optimization applies to:

• 32-bit software

• 64-bit software
144 Scheduling Optimizations Chapter 7

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
7.2 Loop Unrolling

Optimization

Use loop unrolling where appropriate to increase instruction-level parallelism:

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Loop Unrolling

Loop unrolling is a technique that duplicates the body of a loop one or more times in order to increase
the number of instructions relative to the branch and allow operations from different loop iterations to
execute in parallel.

There are two types of loop unrolling:

• Complete loop unrolling

• Partial loop unrolling

If all of these conditions are true Then use

• The loop is in a frequently executed piece of code.

• The number of loop iterations is known at compile time.

• The loop body includes fewer than 10 instructions.

Complete loop unrolling

• Spare registers are available (for example, when operating in 64-bit mode,
where additional registers are available).

• The loop body is small, so that loop overhead is significant.

• The number of loop iterations is likely greater than 10.

Partial loop unrolling
Chapter 7 Scheduling Optimizations 145

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Complete Loop Unrolling

Complete loop unrolling eliminates the loop overhead completely by replacing the loop with copies of
the loop body.

Because complete loop unrolling removes the loop counter, it also reduces register pressure.
However, completely unrolling very large loops can result in the inefficient use of the L1 instruction
cache.

Example: Complete Loop Unrolling

In the following C code, the number of loop iterations is known at compile time and the loop body is
less than 100 instructions:

#define ARRAY_LENGTH 3

int sum, i, a[ARRAY_LENGTH];

...
sum = 0;
for (i = 0; i < ARRAY_LENGTH; i++) {
 sum = sum + a[i];
}

To completely unroll an n-iteration loop, remove the loop control and replicate the loop body n times:

sum = 0;
sum = sum + a[0];
sum = sum + a[1];
sum = sum + a[2];

Partial Loop Unrolling

Partial loop unrolling reduces the loop overhead by duplicating the loop body several times, changing
the increment in the loop, and adding cleanup code to execute any leftover iterations of the loop. The
number of times the loop body is duplicated is known as the unroll factor.

However, partial loop unrolling may increase register pressure.

Example: Partial Loop Unrolling

In the following C code, each element of one array is added to the corresponding element of another
array:

double a[MAX_LENGTH], b[MAX_LENGTH];

for (i = 0; i < MAX_LENGTH; i++) {
 a[i] = a[i] + b[i];
}

146 Scheduling Optimizations Chapter 7

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Without loop unrolling, this is the equivalent assembly-language code:

 mov ecx, MAX_LENGTH ; Initialize counter.
 mov eax, OFFSET a ; Load address of array a into EAX.
 mov ebx, OFFSET b ; Load address of array b into EBX.

add_loop:
 fld QWORD PTR [eax] ; Push object pointed to by EAX onto the FP stack.
 fadd QWORD PTR [ebx] ; Add object pointed to by EBX to ST(0).
 fstp QWORD PTR [eax] ; Copy ST(0) to object pointed to by EAX; pop ST(0).
 add eax, 8 ; Point to next element of array a.
 add ebx, 8 ; Point to next element of array b.
 dec ecx ; Decrement counter.
 jnz add_loop ; If elements remain, then jump.

The rolled loop consists of seven instructions. AMD Athlon 64 and AMD Opteron processors can
decode and retire as many as three instructions per cycle, so it cannot execute faster than three
iterations in seven cycles (3/7 of a floating-point add per cycle). However, the pipelined floating-point
adder allows one add every cycle.

After partial loop unrolling using an unroll factor of two, the new code creates a potential end case
that must be handled outside the loop:

 mov ecx, MAX_LENGTH ; Initialize counter.
 mov eax, OFFSET a ; Load address of array a into EAX.
 mov ebx, OFFSET b ; Load address of array b into EBX.

 shr ecx, 1 ; Divide counter by 2 (the unroll factor).
 jnc add_loop ; If original counter was even, then jump.
 ; Handle the end case.
 fld QWORD PTR [eax] ; Push object pointed to by EAX onto the FP stack.
 fadd QWORD PTR [ebx] ; Add object pointed to by EBX to ST(0).
 fstp QWORD PTR [eax] ; Copy ST(0) to object pointed to by EAX; pop ST(0).
 add eax, 8 ; Point to next element of array a.
 add ebx, 8 ; Point to next element of array b.

add_loop:
 fld QWORD PTR [eax] ; Push object pointed to by EAX onto the FP stack.
 fadd QWORD PTR [ebx] ; Add object pointed to by EBX to ST(0).
 fstp QWORD PTR [eax] ; Copy ST(0) to object pointed to by EAX; pop ST(0).
 fld QWORD PTR [eax+8] ; Repeat for next element.
 fadd QWORD PTR [ebx+8]
 fstp QWORD PTR [eax+8]
 add eax, 16 ; Point to next element of array a.
 add ebx, 16 ; Point to next element of array b.
 dec ecx ; Decrement counter.
 jnz add_loop ; If elements remain, then jump.

3 instructions
cycle

--------------------------------x iteration
7 instructions
--------------------------------x 1 FADD

iteration
---------------------- 3 FADDs

7 cycles
----------------------- 0.429 FADDs cycle⁄= =
Chapter 7 Scheduling Optimizations 147

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
The unrolled loop consists of 10 instructions. Based on the decode/retire bandwidth of three
instructions per cycle, this loop goes no faster than three iterations in 10 cycles (which is equivalent to
6/10 of a floating-point add per cycle because there are two additions per iteration), or 1.4 times as
fast as the original loop.

Deriving the Loop Control for Partially Unrolled Loops

A frequently used loop construct is a counting loop. In a typical case, the loop count starts at some
lower bound (low), increases by some fixed, positive increment (inc) for each iteration of the loop,
and may not exceed some upper bound (high):

for (k = low; k <= high; k += inc) {
 x[k] = ...
}

The following code shows how to partially unroll such a loop by an unroll factor (factor) and how to
derive the loop control for the partially unrolled version of the loop:

for (k = low; k <= (high - (factor - 1) * inc); k += factor * inc) {
 // Begin the series of unrolled statements.
 x[k + 0 * inc] = ...
 // Continue the series if the unrolling factor is greater than 2.
 x[k + 1 * inc] = ...
 x[k + 2 * inc] = ...
 ...
 // End the series.
 x[k + (factor - 1) * inc] = ...
}

// Handle the end cases.
for (k = k; k <= high; k += inc) {
 x[k] = ...
}

Related Information

For information on loop unrolling at the C-source level, see “Unrolling Small Loops” on page 13.

3 instructions
cycle

--------------------------------x iteration
10 instructions
-----------------------------------x2 FADDs

iteration
----------------------- 6 FADDs

10 cycles
----------------------- 0.600 FADDs cycle⁄= =
148 Scheduling Optimizations Chapter 7

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
7.3 Inline Functions

Optimization

Use function inlining when:

• A function is called from just one site in the code. (For the C language, determination of this
characteristic is made easier if functions are explicitly declared static unless they require
external linkage.)

• A function—once inlined—contains fewer than 25 machine instructions.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

There are advantages and disadvantages to function inlining. On the one hand, function inlining
eliminates function-call overhead and allows better register allocation and instruction scheduling at
the site of the function call. The disadvantage of function inlining is decreased code reference locality,
which can increase execution time due to instruction cache misses.

For functions that create fewer than 25 machine instructions once inlined, it is likely that the function-
call overhead is close to, or more than, the time spent executing the function body. In these cases,
function inlining is recommended.

Function-call overhead on the AMD Athlon 64 and AMD Opteron processors can be low because
calls and returns are executed very quickly due to the use of prediction mechanisms. However, there is
still overhead due to passing function arguments through memory, which creates store-to-load-
forwarding dependencies. (In 64-bit mode, this overhead is typically avoided by passing more
arguments in registers, as specified in the AMD64 Application Binary Interface [ABI] for the
operating system.)

For longer functions, the benefits of reduced function-call overhead give diminishing returns. A
function that results in the insertion of more than 500 machine instructions at the call site should
probably not be inlined. Some larger functions might consist of multiple, relatively short paths that
are negatively affected by function overhead. In such a case, it can be advantageous to inline larger
functions. Profiling information is the best guide in determining whether to inline such large
functions.
Chapter 7 Scheduling Optimizations 149

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Additional Recommendations

In general, function inlining works best if the compiler utilizes feedback from a profiler to identify the
function calls most frequently executed. If such data is not available, a reasonable approach is to
concentrate on function calls inside loops. Do not consider as candidates for inlining any functions
that are directly recursive. However, if they are end-recursive, the compiler should convert them to an
iterative equivalent to avoid potential overflow of the processor’s return-prediction mechanism (return
stack) during deep recursion. For best results, a compiler should support function inlining across
multiple source files. In addition, a compiler should provide intrinsic functions for commonly used
library routines, such as sin, strcmp, or memcpy.
150 Scheduling Optimizations Chapter 7

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
7.4 Address-Generation Interlocks

Optimization

Avoid address-generation interlocks by scheduling loads and stores whose addresses can be
calculated quickly ahead of loads and stores that require the resolution of a long dependency chain in
order to generate their addresses.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Address-Generation Interlocks

An address-generation interlock is a condition in which newer loads and stores whose addresses have
already been calculated by the processor are blocked by older loads and stores whose addresses have
not yet been calculated.

Rationale

The processor schedules instructions that access the data cache (loads and stores) in program order.
By carefully choosing the order of loads and stores, you can avoid address-generation interlocks.
Chapter 7 Scheduling Optimizations 151

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Example

Avoid code that places a load whose address takes longer to calculate before a load whose address can
be determined more quickly:

add ebx, ecx ; Instruction 1
mov eax, DWORD PTR [10h] ; Instruction 2 (fast address calc.)
mov ecx, DWORD PTR [eax+ebx] ; Instruction 3 (slow address calc.)
mov edx, DWORD PTR [24h] ; This load is stalled from accessing the
 ; data cache due to the long latency
 ; caused by generating the address for
 ; instruction 3.

Where possible, reorder instructions so that loads with simpler address calculations come before
those with more complex address calculations:

add ebx, ecx ; Instruction 1
mov eax, DWORD PTR [10h] ; Instruction 2
mov edx, DWORD PTR [24h] ; Place load above instruction 3 to avoid
 ; address-generation interlock stall.
mov ecx, DWORD PTR [eax+ebx] ; Instruction 3
152 Scheduling Optimizations Chapter 7

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
7.5 MOVZX and MOVSX

Optimization

Use the MOVZX and MOVSX instructions to zero-extend or sign-extend, respectively, an operand to
a larger size.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Typical code for zero extension that replaces MOVZX uses more decode and execution resources than
MOVZX. It also has higher latency due to the superset dependency between the XOR and the MOV,
which requires a merge operation.

Example

When zero-extending an operand (in this case, a byte), avoid code such as the following:

xor rax, rax
mov al, mem

Instead, use the MOVZX instruction:

movzx rax, BYTE PTR mem
Chapter 7 Scheduling Optimizations 153

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
7.6 Pointer Arithmetic in Loops

Optimization

Minimize pointer arithmetic in loops, especially if the loop bodies are small. Take advantage of
scaled-index addressing modes to utilize the loop counter as an index into memory arrays.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

In small loops, pointer arithmetic causes significant overhead. Using scaled-index addressing modes
has no negative impact on execution speed, but the reduced number of instructions preserves decode
bandwidth.

Example

Consider the following C code, which adds the elements of two arrays and stores them in a third
array:

int a[MAXSIZE], b[MAXSIZE], c[MAXSIZE], i;

for (i = 0; i < MAXSIZE; i++) {
 c[i] = a[i] + b[i];
}

154 Scheduling Optimizations Chapter 7

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Avoid an assembly-language equivalent like this, which uses base and displacement components (for
example, [esi+a]) to compute array-element addresses, requiring additional pointer arithmetic to
increment the offsets into the forward-traversed arrays:

 mov ecx, MAXSIZE ; Initialize loop counter.
 xor esi, esi ; Initialize offset into array a.
 xor edi, edi ; Initialize offset into array b.
 xor ebx, ebx ; Initialize offset into array c.

add_loop:
 mov eax, [esi+a] ; Get element from a.
 mov edx, [edi+b] ; Get element from b.
 add eax, edx ; a[i] + b[i]
 mov [ebx+c], eax ; Write result to c.
 add esi, 4 ; Increment offset into a.
 add edi, 4 ; Increment offset into b.
 add ebx, 4 ; Increment offset into c.
 dec ecx ; Decrement loop count
 jnz add_loop ; until loop count is 0.

Instead, traverse the arrays in a downward direction (from higher to lower addresses), in order to take
advantage of scaled-index addressing (for example, [ecx*4+a]), which minimizes pointer arithmetic
within the loop:

 mov ecx, MAXSIZE - 1 ; Initialize index.

add_loop:
 mov eax, [ecx*4+a] ; Get element from a.
 mov edx, [ecx*4+b] ; Get element from b.
 add eax, edx ; a[i] + b[i]
 mov [ecx*4+c], eax ; Write result to c.
 dec ecx ; Decrement index
 jns add_loop ; until index is negative.

A change in the direction of traversal is possible only if each loop iteration is completely independent
of the others. If you cannot change the direction of traversal for a given array, it is still possible to
minimize pointer arithmetic by using as a base address a displacement that points to the byte past the
end of the array, and using an index that starts with a negative value and reaches zero when the loop
expires:

 mov ecx, (-MAXSIZE) ; Initialize index.

add_loop:
 mov eax, [ecx*4+a+MAXSIZE*4] ; Get element from a.
 mov edx, [ecx*4+b+MAXSIZE*4] ; Get element from b.
 add eax, edx ; a[i] + b[i]
 mov [ecx*4+c+MAXSIZE*4], eax ; Write result to c.
 inc ecx ; Increment index
 jnz add_loop ; until index is 0.
Chapter 7 Scheduling Optimizations 155

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
If the base addresses of the arrays are held in registers (for example, when the base addresses are
passed as the arguments of a function), biasing the base addresses requires additional instructions to
perform the biasing at run time, and a small amount of additional overhead is incurred.
156 Scheduling Optimizations Chapter 7

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
7.7 Pushing Memory Data Directly onto the Stack

Optimization

Push memory data directly onto the stack instead of loading it into a register first.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Pushing memory data directly onto the stack reduces register pressure and eliminates data
dependencies.

Example

Avoid code that first loads the memory data into a register and then pushes it onto the stack:

mov rax, mem
push rax

Instead, push the memory data directly onto the stack:

push mem
Chapter 7 Scheduling Optimizations 157

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
158 Scheduling Optimizations Chapter 7

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Chapter 8 Integer Optimizations

The optimizations in this chapter help improve integer performance.

This chapter covers the following topics:

Topic Page

Replacing Division with Multiplication 160

Alternative Code for Multiplying by a Constant 164

Repeated String Instructions 167

Using XOR to Clear Integer Registers 169

Efficient 64-Bit Integer Arithmetic in 32-Bit Mode 170

Efficient Implementation of Population-Count Function in 32-Bit Mode 179

Efficient Binary-to-ASCII Decimal Conversion 181

Derivation of Algorithm, Multiplier, and Shift Factor for Integer Division by Constants 186

Optimizing Integer Division 192
Chapter 8 Integer Optimizations 159

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
8.1 Replacing Division with Multiplication

Optimization

Replace integer division by constants with multiplication by the reciprocal.

Rationale

Because the AMD Athlon™ 64 and AMD Opteron™ processors have very fast integer multiplication
(3–8 cycles signed, 3–8 cycles unsigned) and the integer division delivers only one bit of quotient per
cycle (22–47 cycles signed, 17–41 cycles unsigned), the equivalent code is much faster. Either follow
the examples in this chapter that illustrate the use of integer division by constants or create the
executables using the code in “Derivation of Algorithm, Multiplier, and Shift Factor for Integer
Division by Constants” on page 186.

Multiplication by Reciprocal (Division) Utility

The code for the utilities is shown in “Derivation of Algorithm, Multiplier, and Shift Factor for
Integer Division by Constants” on page 186. The utilities provided in this document are for reference
only and are not supported by AMD.

Signed Division Utility

The sdiv.exe utility finds the fastest code for signed division by a constant. The utility displays the
code after the user enters a signed constant divisor. To redirect the code to a file, type the following
command:

sdiv > example.out

Unsigned Division Utility

The udiv.exe utility finds the fastest code for unsigned division by a constant. The utility displays
the code after the user enters an unsigned constant divisor. To redirect the code to a file, type the
following command:

udiv > example.out
160 Integer Optimizations Chapter 8

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Unsigned Division by Multiplication of Constant

Algorithm: Divisors 1 <= d < 231, Odd d

The following code shows an unsigned division using a constant value multiplier.

; a = algorithm
; m = multiplier
; s = shift factor

; a == 0
mov eax, m
mul dividend
shr edx, s ; EDX = quotient

; a == 1
mov eax, m
mul dividend
add eax, m
adc edx, 0
shr edx, s ; EDX = quotient

Code for determining the algorithm (a), multiplier (m), and shift factor (s) from the divisor (d) is
found in the section “Derivation of Algorithm, Multiplier, and Shift Factor for Integer Division by
Constants” on page 186.

Algorithm: Divisors 231 <= d < 232

For divisors 231 <= d < 232, the possible quotient values are either 0 or 1. For this reason, it is easy to
establish the quotient by simple comparison of the dividend and divisor.When the dividend needs to
be preserved, consider using code like the following:

; In: EAX = dividend
; Out: EDX = quotient

xor edx, edx ; 0
cmp eax, d ; CF = (dividend < divisor) ? 1 : 0
sbb edx, -1 ; quotient = 0 + 1 - CF = (dividend < divisor) ? 0 : 1

When the dividend does not need to be preserved, the division can be accomplished without the use of
an additional register, thus reducing register pressure, as shown here:

; In: EAX = dividend
; Out: EDX = quotient

cmp edx, d ; CF = (dividend < divisor) ? 1 : 0
mov eax, 0 ; 0
sbb eax, -1 ; quotient = 0 + 1 - CF = (dividend < divisor) ? 0 : 1
Chapter 8 Integer Optimizations 161

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Simpler Code for Restricted Dividend

Integer division by a constant can be made faster if the range of the dividend is limited, which
removes a shift associated with most divisors. For example, for a divide by 10 operation, use the
following code if the dividend is less than 4000_0005h:

mov eax, dividend
mov edx, 01999999Ah
mul edx
mov quotient, edx

Signed Division by Multiplication of Constant

Algorithm: Divisors 2 <= d < 231

These algorithms work if the divisor is positive. If the divisor is negative, use abs(d) instead of d, and
append a neg edx instruction to the code. These changes make use of the fact that n/–d = –(n/d).

; a = algorithm
; m = multiplier
; s = shift count

; a == 0
mov eax, m
imul dividend
mov eax, dividend
shr eax, 31
sar edx, s
add edx, eax ; Quotient in EDX

; a == 1
mov eax, m
imul dividend
mov eax, dividend
add edx, eax
shr eax, 31
sar edx, s
add edx, eax ; Quotient in EDX

Code for determining the algorithm (a), multiplier (m), and shift factor (s) is shown in “Derivation of
Algorithm, Multiplier, and Shift Factor for Integer Division by Constants” on page 186.

Signed Division by 2
; In: EAX = dividend
; Out: EAX = quotient

cmp eax, 80000000h ; CF = 1 if dividend >= 0.
sbb eax, -1 ; Increment dividend if it is < 0.
sar eax, 1 ; Perform right shift.
162 Integer Optimizations Chapter 8

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Signed Division by 2n

; In: EAX = dividend
; Out: EAX = quotient

cdq ; Sign extend into EDX.
and edx, (2^n - 1) ; Mask correction (use divisor - 1)
add eax, edx ; Apply correction if necessary.
sar eax, (n) ; Perform right shift by log2(divisor).

Signed Division by –2
; In: EAX = dividend
; Out: EAX = quotient

cmp eax, 80000000h ; CF = 1 if dividend >= 0.
sbb eax, -1 ; Increment dividend if it is < 0.
sar eax, 1 ; Perform right shift.
neg eax ; Use (x / -2) == -(x / 2).

Signed Division by –(2n)
; In: EAX = dividend
; Out: EAX = quotient

cdq ; Sign extend into EDX.
and edx, (2^n - 1) ; Mask correction (-divisor - 1).
add eax, edx ; Apply correction if necessary.
sar eax, (n) ; Right shift by log2(-divisor).
neg eax ; Use (x / -(2^n)) == (-(x / 2^n)).

Remainder of Signed Division by 2 or –2
; In: EAX = dividend
; Out: EAX = remainder

cdq ; Sign extend into EDX.
and eax, 1 ; Compute remainder.
xor eax, edx ; Negate remainder if
sub eax, edx ; dividend was < 0.

Remainder of Signed Division by 2n or –(2n)
; In: EAX = dividend
; Out: EAX = remainder

cdq ; Sign extend into EDX.
and edx, (2^n - 1) ; Mask correction (abs(divisor) - 1)
add eax, edx ; Apply pre-correction.
and eax, (2^n - 1) ; Mask out remainder (abs(divisor) - 1)
sub eax, edx ; Apply pre-correction if necessary.
Chapter 8 Integer Optimizations 163

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
8.2 Alternative Code for Multiplying by a Constant

Optimization

Devise instruction sequences with lower latency to accomplish multiplication by certain constant
multipliers.

Rationale

A 32-bit integer multiplied by a constant has a latency of 3 cycles; a 64-bit integer multiplied by a
constant has a latency of 4 cycles. For certain constant multipliers, instruction sequences can be
devised that accomplish the multiplication with lower latency. Because the AMD Athlon 64 and
AMD Opteron processors contain only one integer multiplier but three integer execution units, the
replacement code can provide better throughput as well.

Most replacement sequences require the use of an additional temporary register, thus increasing
register pressure. If register pressure in a piece of code that performs integer multiplication with a
constant is already high, it could be better for the overall performance of that code to use the IMUL
instruction instead of the replacement code. Similarly, replacement sequences with low latency but
containing many instructions may negatively influence decode bandwidth as compared to the IMUL
instruction. In general, replacement sequences containing more than four instructions are not
recommended.

The following code samples are designed for the original source to receive the final result. Other
sequences are possible if the result is in a different register. Sequences that do not require a temporary
register are favored over ones requiring a temporary register, even if the latency is higher. Arithmetic-
logic-unit operations are preferred over shifts to keep code size small. Similarly, both arithmetic-
logic-unit operations and shifts are favored over the LEA instruction.

There are improvements in the AMD Athlon 64 and AMD Opteron processors’ multiplier over that of
previous x86 processors. For this reason, when doing 32-bit multiplication, only use the alternative
sequence if the alternative sequence has a latency that is less than or equal to 2 cycles. For 64-bit
multiplication, only use the alternative sequence if the alternative sequence has a latency that is less
than or equal to 3 cycles.

Examples

by 2: add reg1, reg1 ; 1 cycle

by 3: lea reg1, [reg1+reg1*2] ; 2 cycles

by 4: shl reg1, 2 ; 1 cycle

by 5: lea reg1, [reg1+reg1*4] ; 2 cycles
164 Integer Optimizations Chapter 8

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
by 6: lea reg1, [reg1+reg1*2] ; 3 cycles
 add reg1, reg1

by 7: mov reg2, reg1 ; 2 cycles
 shl reg1, 3
 sub reg1, reg2

by 8: shl reg1, 3 ; 1 cycle

by 9: lea reg1, [reg1+reg1*8] ; 2 cycles

by 10: lea reg1, [reg1+reg1*4] ; 3 cycles
 add reg1, reg1

by 11: lea reg2, [reg1+reg1*8] ; 3 cycles
 add reg1, reg1
 add reg1, reg2

by 12: lea reg1, [reg1+reg1*2] ; 3 cycles
 shl reg1, 2

by 13: lea reg2, [reg1+reg1*2] ; 3 cycles
 shl reg1, 4
 sub reg1, reg2

by 14: lea reg2, [reg1+reg1] ; 3 cycles
 shl reg1, 4
 sub reg1, reg2

by 15: mov reg2, reg1 ; 3 cycles
 shl reg1, 4
 sub reg1, reg2

by 16: shl reg1, 4 ; 1 cycle

by 17: mov reg2, reg1 ; 2 cycles
 shl reg1, 4
 add reg1, reg2

by 18: lea reg1, [reg1+reg1*8] ; 3 cycles
 add reg1, reg1

by 19: lea reg2, [reg1+reg1*2] ; 3 cycles
 shl reg1, 4
 add reg1, reg2

by 20: lea reg1, [reg1+reg1*4] ; 3 cycles
 shl reg1, 2

by 21: lea reg2, [reg1+reg1*4] ; 3 cycles
 shl reg1, 4
Chapter 8 Integer Optimizations 165

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
 add reg1, reg2

by 22: imul reg1, 22 ; Use the IMUL instruction.

by 23: lea reg2, [reg1+reg1*8] ; 3 cycles
 shl reg1, 5
 sub reg1, reg2

by 24: lea reg1, [reg1+reg1*2] ; 3 cycles
 shl reg1, 3

by 25: lea reg2, [reg1+reg1*8] ; 3 cycles
 shl reg1, 4
 add reg1, reg2

by 26: imul reg1, 26 ; Use the IMUL instruction.

by 27: lea reg2, [reg1+reg1*4] ; 3 cycles
 shl reg1, 5
 sub reg1, reg2

by 28: lea reg2, [REG1*4] ; 3 cycles
 shl reg1, 5
 sub reg1, reg2

by 29: lea reg2, [reg1+reg1*2] ; 3 cycles
 shl reg1, 5
 sub reg1, reg2

by 30: lea reg2, [reg1+reg1] ; 3 cycles
 shl reg1, 5
 sub reg1, reg2

by 31: mov reg2, reg1 ; 2 cycles
 shl reg1, 5
 sub reg1, reg2

by 32: shl reg1, 5 ; 1 cycle
166 Integer Optimizations Chapter 8

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
8.3 Repeated String Instructions

Optimization

Avoid using the REP prefix when performing string operations, especially when copying blocks of
memory.

Rational

In general, using the REP prefix to repeatedly perform string instructions is less optimal than other
methods, especially when copying blocks of memory. For a discussion of alternate memory-copy
methods, see “Memory Copy” on page 120.

Latency of Repeated String Instructions

Table 6 shows the latency of repeated string instructions on the AMD Athlon 64 and AMD Opteron
processors.

Table 6 lists the latencies with the direction flag (DF) = 0 (increment) and DF = 1 (decrement). In
addition, these latencies are assumed for aligned memory operands. Note that for MOVS and STOS,
when DF = 1, the overhead portion of the latency increases significantly. However, these types are
less commonly found. The user should use the formula and round up to the nearest integer value to
determine the latency.

Guidelines for Repeated String Instructions

To help achieve good performance, the following sections contain guidelines for the careful
scheduling of VectorPath repeated string instructions.

Table 6. Latency of Repeated String Instructions

Number of Cycles

Instruction When ECX = 0 When ECX = c1, DF = 0 When ECX = c1, DF = 1

rep movs 11 15 + (1 * c) 25 + (4/3 * c)

rep stos 11 14 + (1 * c) 24 + (1 * c)

rep lods 11 15 + (2 * c) 15 + (2 * c)

rep scas 11 15 + (5/2 * c) 15 + (5/2 * c)

rep cmps 11 16 + (10/3 * c) 16 + (10/3 * c)

Note:
1. c > 0
Chapter 8 Integer Optimizations 167

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Use the Largest Possible Operand Size

Always move data using the largest operand size possible. For example, use REP MOVSD rather than
REP MOVSW, and REP MOVSW rather than REP MOVSB. Use REP STOSD rather than REP STOSW, and
REP STOSW rather than REP STOSB.

In 64-bit mode, a quadword data size is available and offers better performance (for example,
REP MOVSQ and REP STOSQ).

Ensure DF = 0 (Increment)

Always make sure that DF is 0 (increment) after execution of CLD for rep movs and rep stos.
DF = 1 (decrement) is only needed for certain cases of overlapping rep movs (for example, source
and destination overlap).

While string instructions with DF = 1 (decrement) are slower, only the overhead part of the cycle
equation is larger and not the throughput part. See Table 6 on page 167 for additional latency
numbers.

Align Source and Destination with Operand Size

For rep movs, make sure that both the source and destination are aligned with regard to the operand
size. Handle the end case separately, if necessary. If either source or destination cannot be aligned,
make the destination aligned and the source misaligned. For rep stos, make the destination aligned.

Inline REP String with Low Counts

For repeat counts of less than 4k, expand REP string instructions into equivalent sequences of simple
AMD64 instructions. Use an inline sequence of loads and stores to accomplish the move. Use a
sequence of stores to emulate REP STOS. This technique eliminates the setup overhead of REP
instructions and increases instruction throughput.

Use Loop for REP String with Low Variable Counts

If the repeated count is variable, but is likely less than eight, use a simple loop to move/store the data.
This technique avoids the overhead of REP MOVS and REP STOS.
168 Integer Optimizations Chapter 8

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
8.4 Using XOR to Clear Integer Registers

Optimization

To clear an integer register to all zeros, use the XOR instruction to exclusive OR the register with
itself, as shown below.

Rationale

AMD Athlon 64 and AMD Opteron processors are able to avoid the false read dependency on the
XOR instruction.

Examples

Acceptable
mov reg, 0

Preferred
xor reg, reg
Chapter 8 Integer Optimizations 169

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
8.5 Efficient 64-Bit Integer Arithmetic in 32-Bit Mode

Optimization

The following section contains a collection of code snippets and subroutines showing the efficient
implementation of 64-bit arithmetic in 32-bit mode. Note that these are 32-bit recommendations, in
64-bit mode it is important to use 64-bit integer instructions for best performance.

Addition, subtraction, negation, and shifting are best handled by inline code. Multiplication, division,
and the computation of remainders are less common operations and are usually implemented as
subroutines. If these subroutines are used often, the programmer should consider inlining them.
Except for division and remainder calculations, the following code works for both signed and
unsigned integers. The division and remainder code shown works for unsigned integers, but can easily
be extended to handle signed integers.

64-Bit Addition
; Add ECX:EBX to EDX:EAX, and place sum in EDX:EAX.
add eax, ebx
adc edx, ecx

64-Bit Subtraction
; Subtract ECX:EBX from EDX:EAX and place difference in EDX:EAX.
sub eax, ebx
sbb edx, ecx

64-Bit Negation
; Negate EDX:EAX.
not edx
neg eax
sbb edx, -1 ; Fix: Increment high word if low word was 0.

64-Bit Left Shift
; Shift EDX:EAX left, shift count in ECX (count
; applied modulo 64).
 shld edx, eax, cl ; First apply shift count.
 shl eax, cl ; mod 32 to EDX:EAX
 test ecx, 32 ; Need to shift by another 32?
 jz lshift_done ; No, done.
 mov edx, eax ; Left shift EDX:EAX
 xor eax, eax ; by 32 bits

lshift_done:
170 Integer Optimizations Chapter 8

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
64-Bit Right Shift
 shrd eax, edx, cl ; First apply shift count.
 shr edx, cl ; mod 32 to EDX:EAX
 test ecx, 32 ; Need to shift by another 32?
 jz rshift_done ; No, done.
 mov eax, edx ; Left shift EDX:EAX
 xor edx, edx ; by 32 bits.

rshift_done:

64-Bit Multiplication
; _llmul computes the low-order half of the product of its
; arguments, two 64-bit integers.
;
; In: [ESP+8]:[ESP+4] = multiplicand
; [ESP+16]:[ESP+12] = multiplier
; Out: EDX:EAX = (multiplicand * multiplier) % 2^64
; Destroys: EAX, ECX, EDX, EFlags

_llmul PROC
 mov edx, [esp+8] ; multiplicand_hi
 mov ecx, [esp+16] ; multiplier_hi
 or edx, ecx ; One operand >= 2^32?
 mov edx, [esp+12] ; multiplier_lo
 mov eax, [esp+4] ; multiplicand_lo
 jnz twomul ; Yes, need two multiplies.
 mul edx ; multiplicand_lo * multiplier_lo
 ret ; Done, return to caller.

twomul:
 imul edx, [esp+8] ; p3_lo = multiplicand_hi * multiplier_lo
 imul ecx, eax ; p2_lo = multiplier_hi * multiplicand_lo
 add ecx, edx ; p2_lo + p3_lo
 mul dword ptr [esp+12] ; p1 = multiplicand_lo * multiplier_lo
 add edx, ecx ; p1 + p2_lo + p3_lo = result in EDX:EAX
 ret ; Done, return to caller.

_llmul ENDP

64-Bit Unsigned Division
; _ulldiv divides two unsigned 64-bit integers and returns the quotient.
;
; In: [ESP+8]:[ESP+4] = dividend
; [ESP+16]:[ESP+12] = divisor
; Out: EDX:EAX = quotient of division
; Destroys: EAX, ECX, EDX, EFlags

_ulldiv PROC
 push ebx ; Save EBX as per calling convention.
 mov ecx, [esp+20] ; divisor_hi
 mov ebx, [esp+16] ; divisor_lo
Chapter 8 Integer Optimizations 171

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
 mov edx, [esp+12] ; dividend_hi
 mov eax, [esp+8] ; dividend_lo
 test ecx, ecx ; divisor > (2^32 – 1)?
 jnz big_divisor ; Yes, divisor > 2^32 – 1.
 cmp edx, ebx ; Only one division needed (ECX = 0)?
 jae two_divs ; Need two divisions.
 div ebx ; EAX = quotient_lo
 mov edx, ecx ; EDX = quotient_hi = 0 (quotient in EDX:EAX)
 pop ebx ; Restore EBX as per calling convention.
 ret ; Done, return to caller.

two_divs:
 mov ecx, eax ; Save dividend_lo in ECX.
 mov eax, edx ; Get dividend_hi.
 xor edx, edx ; Zero-extend it into EDX:EAX.
 div ebx ; quotient_hi in EAX
 xchg eax, ecx ; ECX = quotient_hi, EAX = dividend_lo
 div ebx ; EAX = quotient_lo
 mov edx, ecx ; EDX = quotient_hi (quotient in EDX:EAX)
 pop ebx ; Restore EBX as per calling convention.
 ret ; Done, return to caller.

big_divisor:
 push edi ; Save EDI as per calling convention.
 mov edi, ecx ; Save divisor_hi.
 shr edx, 1 ; Shift both divisor and dividend right
 rcr eax, 1 ; by 1 bit.
 ror edi, 1
 rcr ebx, 1
 bsr ecx, ecx ; ECX = number of remaining shifts
 shrd ebx, edi, cl ; Scale down divisor and dividend
 shrd eax, edx, cl ; such that divisor is less than
 shr edx, cl ; 2^32 (that is, it fits in EBX).
 rol edi, 1 ; Restore original divisor_hi.
 div ebx ; Compute quotient.
 mov ebx, [esp+12] ; dividend_lo
 mov ecx, eax ; Save quotient.
 imul edi, eax ; quotient * divisor high word (low only)
 mul dword ptr [esp+20] ; quotient * divisor low word
 add edx, edi ; EDX:EAX = quotient * divisor
 sub ebx, eax ; dividend_lo – (quot.*divisor)_lo
 mov eax, ecx ; Get quotient.
 mov ecx, [esp+16] ; dividend_hi
 sbb ecx, edx ; Subtract (divisor * quot.) from dividend.
 sbb eax, 0 ; Adjust quotient if remainder negative.
 xor edx, edx ; Clear high word of quot. (EAX<=FFFFFFFFh).
 pop edi ; Restore EDI as per calling convention.
 pop ebx ; Restore EBX as per calling convention.
 ret ; Done, return to caller.

_ulldiv ENDP
172 Integer Optimizations Chapter 8

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
64-Bit Signed Division
; _lldiv divides two signed 64-bit numbers and delivers the quotient
;
; In: [ESP+8]:[ESP+4] = dividend
; [ESP+16]:[ESP+12] = divisor
; Out: EDX:EAX = quotient of division
; Destroys: EAX, ECX,E DX, EFlags

_lldiv PROC
 push ebx ; Save EBX as per calling convention.
 push esi ; Save ESI as per calling convention.
 push edi ; Save EDI as per calling convention.
 mov ecx, [esp+28] ; divisor_hi
 mov ebx, [esp+24] ; divisor_lo
 mov edx, [esp+20] ; dividend_hi
 mov eax, [esp+16] ; dividend_lo
 mov esi, ecx ; divisor_hi
 xor esi, edx ; divisor_hi ^ dividend_hi
 sar esi, 31 ; (quotient < 0) ? -1 : 0
 mov edi, edx ; dividend_hi
 sar edi, 31 ; (dividend < 0) ? -1 : 0
 xor eax, edi ; If (dividend < 0),
 xor edx, edi ; compute 1's complement of dividend.
 sub eax, edi ; If (dividend < 0),
 sbb edx, edi ; compute 2's complement of dividend.
 mov edi, ecx ; divisor_hi
 sar edi, 31 ; (divisor < 0) ? -1 : 0
 xor ebx, edi ; If (divisor < 0),
 xor ecx, edi ; compute 1's complement of divisor.
 sub ebx, edi ; If (divisor < 0),
 sbb ecx, edi ; compute 2's complement of divisor.
 jnz big_divisor ; divisor > 2^32 - 1
 cmp edx, ebx ; Only one division needed (ECX = 0)?
 jae two_divs ; Need two divisions.
 div ebx ; EAX = quotient_lo
 mov edx, ecx ; EDX = quotient_hi = 0 (quotient in EDX:EAX)
 xor eax, esi ; If (quotient < 0),
 xor edx, esi ; compute 1's complement of result.
 sub eax, esi ; If (quotient < 0),
 sbb edx, esi ; compute 2's complement of result.
 pop edi ; Restore EDI as per calling convention.
 pop esi ; Restore ESI as per calling convention.
 pop ebx ; Restore EBX as per calling convention.
 ret ; Done, return to caller.

two_divs:
 mov ecx, eax ; Save dividend_lo in ECX.
 mov eax, edx ; Get dividend_hi.
 xor edx, edx ; Zero-extend it into EDX:EAX.
 div ebx ; quotient_hi in EAX
 xchg eax, ecx ; ECX = quotient_hi, EAX = dividend_lo
Chapter 8 Integer Optimizations 173

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
 div ebx ; EAX = quotient_lo
 mov edx, ecx ; EDX = quotient_hi (quotient in EDX:EAX)
 jmp make_sign ; Make quotient signed.

big_divisor:
 sub esp, 12 ; Create three local variables.
 mov [esp], eax ; dividend_lo
 mov [esp+4], ebx ; divisor_lo
 mov [esp+8], edx ; dividend_hi
 mov edi, ecx ; Save divisor_hi.
 shr edx, 1 ; Shift both
 rcr eax, 1 ; divisor and
 ror edi, 1 ; and dividend
 rcr ebx, 1 ; right by 1 bit.
 bsr ecx, ecx ; ECX = number of remaining shifts
 shrd ebx, edi, cl ; Scale down divisor and
 shrd eax, edx, cl ; dividend such that divisor is
 shr edx, cl ; less than 2^32 (that is, fits in EBX).
 rol edi, 1 ; Restore original divisor_hi.
 div ebx ; Compute quotient.
 mov ebx, [esp] ; dividend_lo
 mov ecx, eax ; Save quotient.
 imul edi, eax ; quotient * divisor high word (low only)
 mul DWORD PTR [esp+4] ; quotient * divisor low word
 add edx, edi ; EDX:EAX = quotient * divisor
 sub ebx, eax ; dividend_lo - (quot.*divisor)_lo
 mov eax, ecx ; Get quotient.
 mov ecx, [esp+8] ; dividend_hi
 sbb ecx, edx ; Subtract (divisor * quot.) from dividend
 sbb eax, 0 ; Adjust quotient if remainder is negative.
 xor edx, edx ; Clear high word of quotient.
 add esp, 12 ; Remove local variables.

make_sign:
 xor eax, esi ; If (quotient < 0),
 xor edx, esi ; compute 1's complement of result.
 sub eax, esi ; If (quotient < 0),
 sbb edx, esi ; compute 2's complement of result.
 pop edi ; Restore EDI as per calling convention.
 pop esi ; Restore ESI as per calling convention.
 pop ebx ; Restore EBX as per calling convention.
 ret ; Done, return to caller.
_lldiv ENDP

64-Bit Unsigned Remainder Computation
; _ullrem divides two unsigned 64-bit integers and returns the remainder.
;
; In: [ESP+8]:[ESP+4] = dividend
; [ESP+16]:[ESP+12] = divisor
;
; Out: EDX:EAX = remainder of division
174 Integer Optimizations Chapter 8

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
;
; Destroys: EAX, ECX, EDX, EFlags

_ullrem PROC
 push ebx ; Save EBX as per calling convention.
 mov ecx, [esp+20] ; divisor_hi
 mov ebx, [esp+16] ; divisor_lo
 mov edx, [esp+12] ; dividend_hi
 mov eax, [esp+8] ; dividend_lo
 test ecx, ecx ; divisor > 2^32 - 1?
 jnz r_big_divisor ; Yes, divisor > 32^32 - 1.
 cmp edx, ebx ; Only one division needed (ECX = 0)?
 jae r_two_divs ; Need two divisions.
 div ebx ; EAX = quotient_lo
 mov eax, edx ; EAX = remainder_lo
 mov edx, ecx ; EDX = remainder_hi = 0
 pop ebx ; Restore EBX per calling convention.
 ret ; Done, return to caller.

r_two_divs:
 mov ecx, eax ; Save dividend_lo in ECX.
 mov eax, edx ; Get dividend_hi.
 xor edx, edx ; Zero-extend it into EDX:EAX.
 div ebx ; EAX = quotient_hi, EDX = intermediate remainder
 mov eax, ecx ; EAX = dividend_lo
 div ebx ; EAX = quotient_lo
 mov eax, edx ; EAX = remainder_lo
 xor edx, edx ; EDX = remainder_hi = 0
 pop ebx ; Restore EBX as per calling convention.
 ret ; Done, return to caller.

r_big_divisor:
 push edi ; Save EDI as per calling convention.
 mov edi, ecx ; Save divisor_hi.
 shr edx, 1 ; Shift both divisor and dividend right
 rcr eax, 1 ; by 1 bit.
 ror edi, 1
 rcr ebx, 1
 bsr ecx, ecx ; ECX = number of remaining shifts
 shrd ebx, edi, cl ; Scale down divisor and dividend such
 shrd eax, edx, cl ; that divisor is less than 2^32
 shr edx, cl ; (that is, it fits in EBX).
 rol edi, 1 ; Restore original divisor (EDI:ESI).
 div ebx ; Compute quotient.
 mov ebx, [esp+12] ; dividend low word
 mov ecx, eax ; Save quotient.
 imul edi, eax ; quotient * divisor high word (low only)
 mul DWORD PTR [esp+20] ; quotient * divisor low word
 add edx, edi ; EDX:EAX = quotient * divisor
 sub ebx, eax ; dividend_lo – (quot.*divisor)_lo
 mov ecx, [esp+16] ; dividend_hi
Chapter 8 Integer Optimizations 175

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
 mov eax, [esp+20] ; divisor_lo
 sbb ecx, edx ; Subtract divisor * quot. from dividend.
 sbb edx, edx ; (remainder < 0) ? 0xFFFFFFFF : 0
 and eax, edx ; (remainder < 0) ? divisor_lo : 0
 and edx, [esp+24] ; (remainder < 0) ? divisor_hi : 0
 add eax, ebx ; remainder += (remainder < 0) ? divisor : 0
 pop edi ; Restore EDI as per calling convention.
 pop ebx ; Restore EBX as per calling convention.
 ret ; Done, return to caller.

_ullrem ENDP

64-Bit Signed Remainder Computation
; _llrem divides two signed 64-bit numbers and returns the remainder.
;
; In: [ESP+8]:[ESP+4] = dividend
; [ESP+16]:[ESP+12] = divisor
;
; Out: EDX:EAX = remainder of division
;
; Destroys: EAX, ECX, EDX, EFlags

 push ebx ; Save EBX as per calling convention.
 push esi ; Save ESI as per calling convention.
 push edi ; Save EDI as per calling convention.
 mov ecx, [esp+28] ; divisor-hi
 mov ebx, [esp+24] ; divisor-lo
 mov edx, [esp+20] ; dividend-hi
 mov eax, [esp+16] ; dividend-lo
 mov esi, edx ; sign(remainder) == sign(dividend)
 sar esi, 31 ; (remainder < 0) ? -1 : 0
 mov edi, edx ; dividend-hi
 sar edi, 31 ; (dividend < 0) ? -1 : 0
 xor eax, edi ; If (dividend < 0),
 xor edx, edi ; compute 1's complement of dividend.
 sub eax, edi ; If (dividend < 0),
 sbb edx, edi ; compute 2's complement of dividend.
 mov edi, ecx ; divisor-hi
 sar edi, 31 ; (divisor < 0) ? -1 : 0
 xor ebx, edi ; If (divisor < 0),
 xor ecx, edi ; compute 1's complement of divisor.
 sub ebx, edi ; If (divisor < 0),
 sbb ecx, edi ; compute 2's complement of divisor.
 jnz sr_big_divisor ; divisor > 2^32 - 1
 cmp edx, ebx ; Only one division needed (ECX = 0)?
 jae sr_two_divs ; No, need two divisions.
 div ebx ; EAX = quotient_lo
 mov eax, edx ; EAX = remainder_lo
 mov edx, ecx ; EDX = remainder_lo = 0
 xor eax, esi ; If (remainder < 0),
 xor edx, esi ; compute 1's complement of result.
176 Integer Optimizations Chapter 8

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
 sub eax, esi ; If (remainder < 0),
 sbb edx, esi ; compute 2's complement of result.
 pop edi ; Restore EDI as per calling convention.
 pop esi ; Restore ESI as per calling convention.
 pop ebx ; Restore EBX as per calling convention.
 ret ; Done, return to caller.

sr_two_divs:
 mov ecx, eax ; Save dividend_lo in ECX.
 mov eax, edx ; Get dividend_hi.
 xor edx, edx ; Zero-extend it into EDX:EAX.
 div ebx ; EAX = quotient_hi, EDX = intermediate remainder
 mov eax, ecx ; EAX = dividend_lo
 div ebx ; EAX = quotient_lo
 mov eax, edx ; remainder_lo
 xor edx, edx ; remainder_hi = 0
 jmp sr_makesign ; Make remainder signed.

sr_big_divisor:
 sub esp, 16 ; Create three local variables.
 mov [esp], eax ; dividend_lo
 mov [esp+4], ebx ; divisor_lo
 mov [esp+8], edx ; dividend_hi
 mov [esp+12], ecx ; divisor_hi
 mov edi, ecx ; Save divisor_hi.
 shr edx, 1 ; Shift both
 rcr eax, 1 ; divisor and
 ror edi, 1 ; and dividend
 rcr ebx, 1 ; right by 1 bit.
 bsr ecx, ecx ; ECX = number of remaining shifts
 shrd ebx, edi, cl ; Scale down divisor and
 shrd eax, edx, cl ; dividend such that divisor is
 shr edx, cl ; less than 2^32 (that is, fits in EBX).
 rol edi, 1 ; Restore original divisor_hi.
 div ebx ; Compute quotient.
 mov ebx, [esp] ; dividend_lo
 mov ecx, eax ; Save quotient.
 imul edi, eax ; quotient * divisor high word (low only)
 mul DWORD PTR [esp+4] ; quotient * divisor low word
 add edx, edi ; EDX:EAX = quotient * divisor
 sub ebx, eax ; dividend_lo - (quot.*divisor)_lo
 mov ecx, [esp+8] ; dividend_hi
 sbb ecx, edx ; Subtract divisor * quot. from dividend.
 sbb eax, eax ; remainder < 0 ? 0xffffffff : 0
 mov edx, [esp+12] ; divisor_hi
 and edx, eax ; remainder < 0 ? divisor_hi : 0
 and eax, [esp+4] ; remainder < 0 ? divisor_lo : 0
 add eax, ebx ; remainder_lo
 add edx, ecx ; remainder_hi
 add esp, 16 ; Remove local variables.
Chapter 8 Integer Optimizations 177

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
sr_makesign:
 xor eax, esi ; If (remainder < 0),
 xor edx, esi ; compute 1's complement of result.
 sub eax, esi ; If (remainder < 0),
 sbb edx, esi ; compute 2's complement of result.
 pop edi ; Restore EDI as per calling convention.
 pop esi ; Restore ESI as per calling convention.
 pop ebx ; Restore EBX as per calling convention.
 ret ; Done, return to caller.
178 Integer Optimizations Chapter 8

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
8.6 Efficient Implementation of Population-Count
Function in 32-Bit Mode

Population count is an operation that determines the number of set bits in a bit string. For example,
this can be used to determine the cardinality of a set. The example code in this section shows how to
efficiently implement a population count operation for 32-bit operands. The example is written for the
inline assembler of Microsoft® Visual C.

Function popcount implements a branchless computation of the population count. It is based on a
O(log(n)) algorithm that successively groups the bits into groups of 2, 4, 8, 16, and 32, while
maintaining a count of the set bits in each group. The algorithm consists of the following steps:

1. Partition the integer into groups of two bits. Compute the population count for each 2-bit group
and store the result in the 2-bit group. This calls for the following transformation to be performed
for each 2-bit group:

00b -> 00b
01b -> 01b
10b -> 01b
11b -> 10b

If the original value of a 2-bit group is v, then the new value will be v – (v >> 1). In order to handle
all 2-bit groups simultaneously, it is necessary to mask appropriately to prevent spilling from one
bit group to the next lower bit group. Thus:

w = v - ((v >> 1) & 0x55555555)

2. Add the population count of adjacent 2-bit group and store the sum to the 4-bit group resulting
from merging these adjacent 2-bit groups. To do this simultaneously to all groups, mask out the
odd numbered groups, mask out the even numbered groups, and then add the odd numbered
groups to the even numbered groups:

x = (w & 0x33333333) + ((w >> 2) & 0x33333333)

Each 4-bit field now has one of the following values: 0000b, 0001b, 0010b, 0011b, or 0100b.

3. For the first time, the value in each k-bit field is small enough that adding two k-bit fields results
in a value that still fits in the k-bit field. Thus the following computation is performed:

y = (x + (x >> 4)) & 0x0F0F0F0F

The result is four 8-bit fields whose lower half has the desired sum and whose upper half contains
“junk” that has to be masked out. A symbolic form is as follows:

x = 0aaa0bbb0ccc0ddd0eee0fff0ggg0hhh
x >> 4 = 00000aaa0bbb0ccc0ddd0eee0fff0ggg
sum = 0aaaWWWWiiiiXXXXjjjjYYYYkkkkZZZZ

The WWWW, XXXX, YYYY, and ZZZZ values are the interesting sums with each at most
1000b, or 8 decimal.
Chapter 8 Integer Optimizations 179

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
4. The four 4-bit sums can now be rapidly accumulated by multiplying with a so-called magic
multiplier. This can be derived from looking at the following chart of partial products:

0p0q0r0s * 01010101 =

 :0p0q0r0s
 0p:0q0r0s
 0p0q:0r0s
 0p0q0r:0s
000pxxww:vvuutt0s

Here p, q, r, and s are the 4-bit sums from the previous step, and vv is the final interesting result.
The final result is as follows:

z = (y * 0x01010101) >> 24

Integer Version
unsigned int popcount(unsigned int v)

{
 unsigned int retVal;
 __asm {
 mov eax, [v] ; v
 mov edx, eax ; v
 shr eax, 1 ; v >> 1
 and eax, 055555555h ; (v >> 1) & 0x55555555
 sub edx, eax ; w = v - ((v >> 1) & 0x55555555)
 mov eax, edx ; w
 shr edx, 2 ; w >> 2
 and eax, 033333333h ; w & 0x33333333
 and edx, 033333333h ; (w >> 2) & 0x33333333
 add eax, edx ; x = (w & 0x33333333) + ((w >> 2) &
 ; 0x33333333)
 mov edx, eax ; x
 shr eax, 4 ; x >> 4
 add eax, edx ; x + (x >> 4)
 and eax, 00F0F0F0Fh ; y = (x + (x >> 4) & 0x0F0F0F0F)
 imul eax, 001010101h ; y * 0x01010101
 shr eax, 24 ; population count = (y *
 ; 0x01010101) >> 24
 mov retVal, eax ; Store result.
 }
 return(retVal);
}

180 Integer Optimizations Chapter 8

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
8.7 Efficient Binary-to-ASCII Decimal Conversion
Fast binary-to-ASCII decimal conversion can be important to the performance of software working
with text oriented protocols like HTML, such as web servers. The following examples show two
optimized functions for fast conversion of unsigned integers-to-ASCII decimal strings on
AMD Athlon 64 and AMD Opteron processors. The code is written for the Microsoft Visual C
compiler.

The function uint_to_ascii_lz converts like sprintf(sptr, "%010u", x). That is, leading zeros
are retained, whereas uint_to_ascii_nlz converts like sprintf(sptr, "%u", x); that is, leading
zeros are suppressed.

This code can easily be extended to convert signed integers by isolating the sign information and
computing the absolute value as shown in Listing on page 130 before starting the conversion process.
For restricted argument ranges, construct more efficient conversion routines using the same algorithm
as used for the general case presented here.

The algorithm first splits the input argument into suitably sized blocks by dividing the input by an
appropriate power of ten and working separately on the quotient and remainder of that division. The
DIV instruction is avoided as described in “Replacing Division with Multiplication” on page 160.
Each block is then converted into a fixed-point format that consists of one (decimal) integer digit and
a binary fraction. This allows the generation of additional decimal digits by repeated multiplication of
the fraction by 10. For efficiency reasons the algorithm implements this multiplication by multiplying
by five and moving the binary point to the right by one bit for each step of the algorithm. To avoid
loop overhead and branch mispredictions, the digit generation loop is completely unrolled. In order to
maximize parallelism, the code in uint_to_ascii_lz splits the input into two equally sized blocks
each of which yields five decimal digits for the result.

Binary-to-ASCII Decimal Conversion Retaining Leading Zeros
__declspec(naked) void __stdcall uint_to_ascii_lz(char *sptr, unsigned int x)
{
 __asm {
 push edi ; Save as per calling conventions.
 push esi ; Save as per calling conventions.
 push ebx ; Save as per calling conventions.
 mov eax, [esp+20] ; x
 mov edi, [esp+16] ; sptr
 mov esi, eax ; x
 mov edx, 0xA7C5AC47 ; Divide x by
 mul edx ; 10,000 using
 add eax, 0xA7C5AC47 ; multiplication
 adc edx, 0 ; with reciprocal.
 shr edx, 16 ; y1 = x / 1e5
 mov ecx, edx ; y1
 imul edx, 100000 ; (x / 1e5) * 1e5
 sub esi, edx ; y2 = x % 1e5
 mov eax, 0xD1B71759 ; 2^15 / 1e4 * 2^30
 mul ecx ; Divide y1 by 1e4,
Chapter 8 Integer Optimizations 181

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
 shr eax, 30 ; converting it into
 lea ebx, [eax+edx*4+1] ; 17.15 fixed-point format
 mov ecx, ebx ; such that 1.0 = 2^15.
 mov eax, 0xD1B71759 ; 2^15 / 1e4 * 2^30
 mul esi ; Divide y2 by 1e4,
 shr eax, 30 ; converting it into
 lea esi, [eax+edx*4+1] ; 17.15 fixed-point format
 mov edx, esi ; such that 1.0 = 2^15.
 shr ecx, 15 ; 1st digit
 and ebx, 0x00007fff ; Fraction part
 OR ecx, '0' ; Convert 1st digit to ASCII.
 mov [edi+0], cl ; Store 1st digit in memory.
 lea ecx, [ebx+ebx*4] ; 5 * fraction, new digit ECX[31-14]
 lea ebx, [ebx+ebx*4] ; 5 * fraction, new fraction EBX[13-0]
 shr edx, 15 ; 6th digit
 and esi, 0x00007fff ; Fraction part
 or edx, '0' ; Convert 6th digit to ASCII.
 mov [edi+5], dl ; Store 6th digit in memory.
 lea edx, [esi+esi*4] ; 5 * fraction, new digit EDX[31-14]
 lea esi, [esi+esi*4] ; 5 * fraction, new fraction ESI[13-0]
 shr ecx, 14 ; 2nd digit
 and ebx, 0x00003fff ; Fraction part
 or ecx, '0' ; Convert 2nd digit to ASCII.
 mov [edi+1], cl ; Store 2nd digit in memory.
 lea ecx, [ebx+ebx*4] ; 5 *f raction, new digit ECX[31-13]
 lea ebx, [ebx+ebx*4] ; 5 * fraction, new fraction EBX[12-0]
 shr edx, 14 ; 7th digit
 and esi, 0x00003fff ; Fraction part
 or edx, '0' ; Convert 7th digit to ASCII.
 mov [edi+6], dl ; Store 7th digit in memory.
 lea edx, [esi+esi*4] ; 5 * fraction, new digit EDX[31-13]
 lea esi, [esi+esi*4] ; 5 * fraction, new fraction ESI[12-0]
 shr ecx, 13 ; 3rd digit
 and ebx, 0x00001fff ; Fraction part
 or ecx, '0' ; Convert 3rd digit to ASCII.
 mov [edi+2], cl ; Store 3rd digit in memory.
 lea ecx, [ebx+ebx*4] ; 5 * fraction, new digit ECX[31-12]
 lea ebx, [ebx+ebx*4] ; 5 * fraction, new fraction EBX[11-0]
 shr edx, 13 ; 8th digit
 and esi, 0x00001fff ; Fraction part
 or edx, '0' ; Convert 8th digit to ASCII.
 mov [edi+7], dl ; Store 8th digit in memory.
 lea edx, [esi+esi*4] ; 5 * fraction, new digit EDX[31-12]
 lea esi, [esi+esi*4] ; 5 * fraction, new fraction ESI[11-0]
 shr ecx, 12 ; 4th digit
 and ebx, 0x00000fff ; Fraction part
 or ecx, '0' ; Convert 4th digit to ASCII.
 mov [edi+3], cl ; Store 4th digit in memory.
 lea ecx, [ebx+ebx*4] ; 5 * fraction, new digit ECX[31-11]
 shr edx, 12 ; 9th digit
 and esi, 0x00000fff ; Fraction part
182 Integer Optimizations Chapter 8

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
 or edx, '0' ; Convert 9th digit to ASCII.
 mov [edi+8], dl ; Store 9th digit in memory.
 lea edx, [esi+esi*4] ; 5 * fraction, new digit EDX[31-11]
 shr ecx, 11 ; 5th digit
 or ecx, '0' ; Convert 5th digit to ASCII.
 mov [edi+4], cl ; Store 5th digit in memory.
 shr edx, 11 ; 10th digit
 or edx, '0' ; Convert 10th digit to ASCII.
 mov [edi+9], dx ; Store 10th digit and end marker in memory.
 pop ebx ; Restore register as per calling convention.
 pop esi ; Restore register as per calling convention.
 pop edi ; Restore register as per calling convention.
 ret 8 ; Pop two DWORD arguments and return.
 }
}

Binary-to-ASCII Decimal Conversion Suppressing Leading Zeros
__declspec(naked) void __stdcall uint_to_ascii_nlz(char *sptr, unsigned int x)
{
 __asm {
 push edi ; Save as per calling conventions.
 push ebx ; Save as per calling conventions.
 mov edi, [esp+12] ; sptr
 mov eax, [esp+16] ; x
 mov ecx, eax ; Save original argument.
 mov edx, 89705F41h ; 1e-9 * 2^61 rounded
 mul edx ; Divide by 1e9 by multiplying with reciprocal.
 add eax, eax ; Round division result.
 adc edx, 0 ; EDX[31-29] = argument / 1e9
 shr edx, 29 ; Leading decimal digit, 0...4
 mov eax, edx ; Leading digit
 mov ebx, edx ; Initialize digit accumulator with
 ; leading digit.
 imul eax, 1000000000 ; Leading digit * 1e9
 sub ecx, eax ; Subtract (leading digit * 1e9) from argument.
 or dl, '0' ; Convert leading digit to ASCII.
 mov [edi], dl ; Store leading digit.
 cmp ebx, 1 ; Any nonzero digit yet?
 sbb edi, -1 ; Yes, increment ptr. No, keep old ptr.
 mov eax, ecx ; Get reduced argument < 1e9.
 mov edx, 0abcc7712h ; 2^28 / 1e8 * 2^30 rounded up
 mul edx ; Divide reduced
 shr eax, 30 ; argument < 1e9 by 1e8,
 lea edx, [eax+4*edx+1] ; converting it into 4.28 fixed-point
 mov eax, edx ; format such that 1.0 = 2^28.
 shr eax, 28 ; Next digit
 and edx, 0fffffffh ; Fraction part
 or ebx, eax ; Accumulate next digit.
 or eax, '0' ; Convert digit to ASCII.
 mov [edi], al ; Store digit in memory.
 lea eax, [edx*4+edx] ; 5 * fraction, new digit EAX[31-27]
Chapter 8 Integer Optimizations 183

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
 lea edx, [edx*4+edx] ; 5 * fraction, new fraction EDX[26-0]
 cmp ebx, 1 ; Any nonzero digit yet?
 sbb edi, -1 ; Yes, increment ptr. No, keep old ptr.
 shr eax, 27 ; Next digit
 and edx, 07ffffffh ; Fraction part
 or ebx, eax ; Accumulate next digit.
 or eax, '0' ; Convert digit to ASCII.
 mov [edi], al ; Store digit in memory.
 lea eax, [edx*4+edx] ; 5 * fraction, new digit EAX[31-26]
 lea edx, [edx*4+edx] ; 5 * fraction, new fraction EDX[25-0]
 cmp ebx, 1 ; Any nonzero digit yet?
 sbb edi, -1 ; Yes, increment ptr. No, keep old ptr.
 shr eax, 26 ; Next digit
 and edx, 03ffffffh ; Fraction part
 or ebx, eax ; Accumulate next digit.
 or eax, '0' ; Convert digit to ASCII.
 mov [edi], al ; Store digit in memory.
 lea eax, [edx*4+edx] ; 5 * fraction, new digit EAX[31-25]
 lea edx, [edx*4+edx] ; 5 * fraction, new fraction EDX[24-0]
 cmp ebx, 1 ; Any nonzero digit yet?
 sbb edi, -1 ; Yes, increment ptr. No, keep old ptr.
 shr eax, 25 ; Next digit
 and edx, 01ffffffh ; Fraction part
 or ebx, eax ; Accumulate next digit.
 or eax, '0' ; Convert digit to ASCII.
 mov [edi], al ; Store digit in memory.
 lea eax, [edx*4+edx] ; 5 * fraction, new digit EAX[31-24]
 lea edx, [edx*4+edx] ; 5 * fraction, new fraction EDX[23-0]
 cmp ebx, 1 ; Any nonzero digit yet?
 sbb edi, -1 ; Yes, increment ptr, No, keep old ptr.
 shr eax, 24 ; Next digit
 and edx, 00ffffffh ; Fraction part
 or ebx, eax ; Accumulate next digit.
 or eax, '0' ; Convert digit to ASCII.
 mov [edi], al ; Store digit in memory.
 lea eax, [edx*4+edx] ; 5 * fraction, new digit EAX[31-23]
 lea edx, [edx*4+edx] ; 5 * fraction, new fraction EDX[31-23]
 cmp ebx, 1 ; Any nonzero digit yet?
 sbb edi, -1 ; Yes, increment ptr. No, keep old ptr.
 shr eax, 23 ; Next digit
 and edx, 007fffffh ; Fraction part
 or ebx, eax ; Accumulate next digit.
 or eax, '0' ; Convert digit to ASCII.
 mov [edi], al ; Store digit out to memory.
 lea eax, [edx*4+edx] ; 5 * fraction, new digit EAX[31-22]
 lea edx, [edx*4+edx] ; 5 * fraction, new fraction EDX[22-0]
 cmp ebx, 1 ; Any nonzero digit yet?
 sbb edi, -1 ; Yes, increment ptr. No, keep old ptr.
 shr eax, 22 ; Next digit
 and edx, 003fffffh ; Fraction part
 OR ebx, eax ; Accumulate next digit.
184 Integer Optimizations Chapter 8

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
 or eax, '0' ; Convert digit to ASCII.
 mov [edi], al ; Store digit in memory.
 lea eax, [edx*4+edx] ; 5 * fraction, new digit EAX[31-21]
 lea edx, [edx*4+edx] ; 5 * fraction, new fraction EDX[21-0]
 cmp ebx, 1 ; Any nonzero digit yet?
 sbb edi, -1 ; Yes, increment ptr. No, keep old ptr.
 shr eax, 21 ; Next digit
 and edx, 001fffffh ; Fraction part
 or ebx, eax ; Accumulate next digit.
 or eax, '0' ; Convert digit to ASCII.
 mov [edi], al ; Store digit in memory.
 lea eax, [edx*4+edx] ; 5 * fraction, new digit EAX[31-20]
 cmp ebx, 1 ; Any nonzero digit yet?
 sbb edi, -1 ; Yes, increment ptr. No, keep old ptr.
 shr eax, 20 ; Next digit
 or eax, '0' ; Convert digit to ASCII.
 mov [edi], ax ; Store last digit and end marker in memory.
 pop ebx ; Restore register as per calling convention.
 pop edi ; Restore register as per calling convention.
 ret 8 ; Pop two DWORD arguments and return.
 }
}

Chapter 8 Integer Optimizations 185

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
8.8 Derivation of Algorithm, Multiplier, and Shift
Factor for Integer Division by Constants

The following examples illustrate the derivation of algorithm, multiplier and shift factor for signed
and unsigned integer division.

Unsigned Integer Division

The utility udiv.exe was compiled from the code shown in this section. The utilities provided in this
document are for reference only and are not supported by AMD.

The following code derives the multiplier value used when performing integer division by constants.
The code works for unsigned integer division and for odd divisors between 1 and 231 – 1, inclusive.
For divisors of the form d = d' * 2n, the multiplier is the same as for d' and the shift factor is s + n.

Example

/* This program determines the algorithm (a), multiplier (m), and
 shift factor (s) to be used to accomplish *unsigned* division by
 a constant divisor. Compile with MSVC.
*/

#include <stdio.h>

typedef unsigned __int64 U64;
typedef unsigned long U32;

U32 log2(U32 i)
{
 U32 t = 0;
 i = i >> 1;
 while (i) {
 i = i >> 1;
 t++;
 }
 return(t);
}

U32 res1, res2;

U32 d, l, s, m, a, r, n, t;
U64 m_low, m_high, j, k;

int main (void)
{
 fprintf(stderr, "\n");
 fprintf(stderr, "Unsigned division by constant\n");
 fprintf(stderr, "=============================\n\n");
186 Integer Optimizations Chapter 8

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
 fprintf(stderr, "enter divisor: ");
 scanf("%lu", &d);
 printf("\n");

 if (d == 0) goto printed_code;

 if (d >= 0x80000000UL) {
 printf("; dividend: register or memory location\n");
 printf("\n");
 printf("CMP dividend, 0%08lXh\n", d);
 printf("MOV EDX, 0\n");
 printf("SBB EDX, -1\n");
 printf("\n");
 printf("; quotient now in EDX\n");
 goto printed_code;
 }

 /* Reduce divisor until it becomes odd. */

 n = 0;
 t = d;
 while (!(t & 1)) {
 t >>= 1;
 n++;
 }

 if (t == 1) {
 if (n == 0) {
 printf("; dividend: register or memory location\n");
 printf("\n");
 printf("MOV EDX, dividend\n", n);
 printf("\n");
 printf("; quotient now in EDX\n");
 }
 else {
 printf("; dividend: register or memory location\n");
 printf("\n");
 printf("SHR dividend, %d\n", n);
 printf("\n");
 printf("; quotient replaced dividend\n");
 }
 goto printed_code;
 }

 /* Generate m, s for algorithm 0. Based on: Granlund, T.; Montgomery,
 P.L.: "Division by Invariant Integers using Multiplication."
 SIGPLAN Notices, Vol. 29, June 1994, page 61.
 */

 l = log2(t) + 1;
Chapter 8 Integer Optimizations 187

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
 j = (((U64)(0xffffffff)) % ((U64)(t)));
 k = (((U64)(1)) << (32 + l)) / ((U64)(0xffffffff - j));
 m_low = (((U64)(1)) << (32 + l)) / t;
 m_high = ((((U64)(1)) << (32 + l)) + k) / t;
 while (((m_low >> 1) < (m_high >> 1)) && (l > 0)) {
 m_low = m_low >> 1;
 m_high = m_high >> 1;
 l = l - 1;
 }
 if ((m_high >> 32) == 0) {
 m = ((U32)(m_high));
 s = l;
 a = 0;
 }

 /* Generate m and s for algorithm 1. Based on: Magenheimer, D.J.; et al:
 "Integer Multiplication and Division on the HP Precision Architecture."
 IEEE Transactions on Computers, Vol. 37, No. 8, August 1988, page 980.
 */

 else {
 s = log2(t);
 m_low = (((U64)(1)) << (32 + s)) / ((U64)(t));
 r = ((U32)((((U64)(1)) << (32 + s)) % ((U64)(t))));
 m = (r < ((t >> 1) + 1)) ? ((U32)(m_low)) : ((U32)(m_low)) + 1;
 a = 1;
 }

 /* Reduce multiplier for either algorithm to smallest possible. */

 while (!(m & 1)) {
 m = m >> 1;
 s--;
 }

 /* Adjust multiplier for reduction of even divisors. */

 s += n;

 if (a) {
 printf("; dividend: register other than EAX or memory location\n");
 printf("\n");
 printf("MOV EAX, 0%08lXh\n", m);
 printf("MUL dividend\n");
 printf("ADD EAX, 0%08lXh\n", m);
 printf("ADC EDX, 0\n");
 if (s) printf("SHR EDX, %d\n", s);
 printf("\n");
 printf("; quotient now in EDX\n");
 }
 else {
188 Integer Optimizations Chapter 8

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
 printf("; dividend: register other than EAX or memory location\n");
 printf("\n");
 printf("MOV EAX, 0%08lXh\n", m);
 printf("MUL dividend\n");
 if (s) printf("SHR EDX, %d\n", s);
 printf("\n");
 printf("; quotient now in EDX\n");
 }

printed_code:

 fprintf(stderr, "\n");
 exit(0);

 return(0);
}

Signed Integer Division
The utility sdiv.exe was compiled using the following code. The utilities provided in this document
are for reference only and are not supported by AMD.

Example Code

/* This program determines the algorithm (a), multiplier (m), and
 shift factor (s) to be used to accomplish *signed* division by
 a constant divisor. Compile with MSVC.
*/

#include <stdio.h>

typedef unsigned __int64 U64;
typedef unsigned long U32;

U32 log2(U32 i)
{
 U32 t = 0;
 i = i >> 1;
 while (i) {
 i = i >> 1;
 t++;
 }
 return(t);
}

long e;
U32 res1, res2;
U32 oa, os, om;
U32 d, l, s, m, a, r, t;
U64 m_low, m_high, j, k;
Chapter 8 Integer Optimizations 189

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
int main(void)

{

 fprintf(stderr, "\n");
 fprintf(stderr, "Signed division by constant\n");
 fprintf(stderr, "===========================\n\n");

 fprintf(stderr, "enter divisor: ");
 scanf("%ld", &d);
 fprintf(stderr, "\n");

 e = d;
 d = labs(d);

 if (d == 0) goto printed_code;

 if (e == (-1)) {
 printf("; dividend: register or memory location\n");
 printf("\n");
 printf("NEG dividend\n");
 printf("\n");
 printf("; quotient replaced dividend\n");
 goto printed_code;
 }
 if (d == 2) {
 printf("; dividend expected in EAX\n");
 printf("\n");
 printf("CMP EAX, 080000000h\n");
 printf("SBB EAX, -1\n");
 printf("SAR EAX, 1\n");
 if (e < 0) printf("NEG EAX\n");
 printf("\n");
 printf("; quotient now in EAX\n");
 goto printed_code;
 }

 if (!(d & (d - 1))) {
 printf("; dividend expected in EAX\n");
 printf("\n");
 printf("CDQ\n");
 printf("AND EDX, 0%08lXh\n", (d-1));
 printf("ADD EAX, EDX\n");
 if (log2(d)) printf("SAR EAX, %d\n", log2(d));
 if (e < 0) printf("NEG EAX\n");
 printf("\n");
 printf("; quotient now in EAX\n");
 goto printed_code;
 }

 /* Determine algorithm (a), multiplier (m), and shift factor (s) for 32-bit
 signed integer division. Based on: Granlund, T.; Montgomery, P.L.:
190 Integer Optimizations Chapter 8

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
 "Division by Invariant Integers using Multiplication". SIGPLAN Notices,
 Vol. 29, June 1994, page 61.
 */

 l = log2(d);
 j = (((U64)(0x80000000)) % ((U64)(d)));
 k = (((U64)(1)) << (32 + l)) / ((U64)(0x80000000 - j));
 m_low = (((U64)(1)) << (32 + l)) / d;
 m_high = ((((U64)(1)) << (32 + l)) + k) / d;

 while (((m_low >> 1) < (m_high >> 1)) && (l > 0)) {
 m_low = m_low >> 1;
 m_high = m_high >> 1;
 l = l - 1;
 }
 m = ((U32)(m_high));
 s = l;
 a = (m_high >> 31) ? 1 : 0;

 if (a) {
 printf("; dividend: memory location or register other than EAX or EDX\n");
 printf("\n");
 printf("MOV EAX, 0%08LXh\n", m);
 printf("IMUL dividend\n");
 printf("MOV EAX, dividend\n");
 printf("ADD EDX, EAX\n");
 if (s) printf("SAR EDX, %d\n", s);
 printf("SHR EAX, 31\n");
 printf("ADD EDX, EAX\n");
 if (e < 0) printf("NEG EDX\n");
 printf("\n");
 printf("; quotient now in EDX\n");
 }
 else {
 printf("; dividend: memory location of register other than EAX or EDX\n");
 printf("\n");
 printf("MOV EAX, 0%08LXh\n", m);
 printf("IMUL dividend\n");
 printf("MOV EAX, dividend\n");
 if (s) printf("SAR EDX, %d\n", s);
 printf("SHR EAX, 31\n");
 printf("ADD EDX, EAX\n");
 if (e < 0) printf("NEG EDX\n");
 printf("\n");
 printf("; quotient now in EDX\n");
 }

printed_code:

 fprintf(stderr, "\n");
 exit(0);
}

Chapter 8 Integer Optimizations 191

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
8.9 Optimizing Integer Division

Optimization

When possible, use smaller data types for integer division.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Division by a 16-bit value is significantly faster than division by a 32-bit value—about a 26 clock
latency versus 42. Likewise, division by a 32-bit value is faster than division by a 64-bit value—about
42 clocks versus 74. Refer to IDIV in table 15. In algorithms in which integer division contributes a
substantial component to performance, it may be beneficial to check whether using a smaller divide
type is possible. Study the assembly language output generated by high-level language compilers to
verify that the desired code is generated. Compilers often generate code that converts 16-bit types into
32-bit values that are then used to perform 32-bit division, thus eliminating the advantage of using 16-
bit integer types. If the compiler cannot be coerced into producing the desired code, then compiler
intrinsics or assembly language are required.
192 Integer Optimizations Chapter 8

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Chapter 9 Optimizing with SIMD Instructions

The 64-bit and 128-bit SIMD instructions—SSE and SSE2 instructions—should be used to encode
floating-point and integer operation.

• The SIMD instructions use a flat register file rather than the stack register file used by x87
floating-point instructions. This allows arbitrary sequences of operations to map more efficiently
to the instruction set.

• Future processors with more or wider multipliers and adders will achieve better throughput using
SSE and SSE2 instructions. (Today’s processors implement a 128-bit-wide SSE or SSE2
operation as two 64-bit operations that are internally pipelined.)

• SSE and SSE2 instructions work well in both 32-bit and 64-bit threads.

The SIMD instructions provide a theoretical single-precision peak throughput of two additions and
two multiplications per clock cycle, whereas x87 instructions can only sustain one addition and one
multiplication per clock cycle. The SSE2 and x87 double-precision peak throughput is the same, but
SSE2 instructions provide better code density.

This chapter covers the following topics:

Topic Page

Ensure All Packed Floating-Point Data are Aligned 195

Improving Scalar SSE and SSE2 Floating-Point Performance with MOVLPD and MOVLPS
When Loading Data from Memory

196

Structuring Code with Prefetch Instructions to Hide Memory Latency 200

Avoid Moving Data Directly Between General-Purpose and MMX™ Registers 206

Use MMX™ Instructions to Construct Fast Block-Copy Routines in 32-Bit Mode 207

Passing Data between MMX™ and 3DNow!™ Instructions 208

Storing Floating-Point Data in MMX™ Registers 209

EMMS and FEMMS Usage 210

Using SIMD Instructions for Fast Square Roots and Fast Reciprocal Square Roots 211

Use XOR Operations to Negate Operands of SSE, SSE2, and 3DNow!™ Instructions 215

Clearing MMX™ and XMM Registers with XOR Instructions 216

Finding the Floating-Point Absolute Value of Operands of SSE, SSE2, and 3DNow!™
Instructions

217

Accumulating Single-Precision Floating-Point Numbers Using SSE, SSE2, and 3DNow!™
Instructions

218

Accumulating Single-Precision Floating-Point Numbers Using SSE, SSE2, and 3DNow!™
Instructions

218
Chapter 9 Optimizing with SIMD Instructions 193

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Complex-Number Arithmetic Using SSE, SSE2, and 3DNow!™ Instructions 221

Optimized 4 × 4 Matrix Multiplication on 4 × 1 Column Vector Routines 230

Topic Page
194 Optimizing with SIMD Instructions Chapter 9

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
9.1 Ensure All Packed Floating-Point Data are Aligned

Optimization

Align all packed floating-point data on 16-byte boundaries.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Misaligned memory accesses reduce the available memory bandwidth and SSE and SSE2 instructions
have shorter latencies when operating on aligned memory operands.

Aligning data on 16-byte boundaries allows you to use the aligned load instructions (MOVAPS,
MOVAPD, and MOVDQA), which move through the floating-point unit with shorter latencies and
reduce the possibility of stalling addition or multiplication instructions that are dependent on the load
data.
Chapter 9 Optimizing with SIMD Instructions 195

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
9.2 Improving Scalar SSE and SSE2 Floating-Point
Performance with MOVLPD and MOVLPS When
Loading Data from Memory

Optimization

Use the MOVLPS and MOVLPD instructions to move scalar floating-point data into the XMM
registers prior to addition, multiplication, or other scalar instructions.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale—Single Precision

The MOVSS instruction is used to move scalar single-precision floating-point data into the XMM
registers prior to addition (ADDSS) and multiplication (MULSS) or other scalar instructions. In
addition to loading a 32-bit floating-point value into the XMM register, the MOVSS instruction clears
the upper 96 bits of the register. Clearing part of the XMM register is an inefficiency that you can
bypass by using the MOVLPS instruction. MOVLPS loads two floating-point values from memory
without clearing the upper 64 bits of the XMM register.

The latency of the MOVSS instruction is 3 cycles, whereas the latency of the MOVLPS instruction is
2 cycles. The AMD Athlon™ 64 and AMD Opteron™ processors can perform two 64-bit loads per
clock cycle. Two 64-bit MOVLPS loads can be issued in the same cycle, assuming the data is 8-byte
aligned. Likewise, two MOVSS loads can be performed per cycle, but—unlike MOVLPS—additional
operations that interfere with the MULSS and ADDSS instructions must be issued to clear the
register. Using MOVLPS rather than MOVSS to load single-precision scalar data from memory on
processor-limited floating-point-intensive code can result in significant performance increases.

Consider the following caveats when using the MOVLPS instruction:

• When accessing 4-byte-aligned addresses that are not 8-byte aligned, MOVLPS loads take an
additional cycle.

• Since MOVLPS loads two floating-point values instead of one, accessing the last floating-point
value in a single-precision array attempts to load 4 bytes of additional memory directly after the
end of the array, which may cause an access violation. To avoid an access violation, use MOVSS
to access the last value in a single-precision array or store a dummy floating-point value at the end
of the array.
196 Optimizing with SIMD Instructions Chapter 9

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
• The statement movlps xmm1, mem64 marks the lower half of XMM1 as FPS (floating-point
single-precision) but leaves the upper half of XMM1 unchanged. If XMM1 is later used in any
instruction that uses the full 128 bits of XMM1, there can be a performance penalty if the top half
is not also in FPS format. Examples of instructions that expect the full 128 bits of XMM1 to be in
FPS format are MOVAPS, ANDPS, ANDNPS, and ORPS. For more information on XMM-
register data types, see “Half-Register Operations” on page 356.

Rational—Double Precision

The MOVLPD instruction does not necessitate clearing the upper 64 bits of an XMM register, as the
MOVSD/MOVQ instructions do, upon loading 64 bits of floating-point data into the lower 64 bits of
the XMM register. Using the MOVLPD instruction can significantly increase performance on
processor-limited SSE2 scalar floating-point-intensive code.

Consider the following caveat when using the MOVLPD instruction:

• The statement movlpd xmm1, mem64 marks the lower half of XMM1 as FPD (floating-point
double-precision) but leaves the upper half of XMM1 unchanged. If XMM1 is later used in any
instruction that uses the full 128 bits of XMM1, there can be a performance penalty if the top half
is not also in FPD format. Examples of instructions that expect the full 128 bits of XMM1 to be in
FPD format are ANDPD, ANDNPD, and ORPD. For more information on XMM-register data
types, see “Half-Register Operations” on page 356.
Chapter 9 Optimizing with SIMD Instructions 197

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
9.3 Use MOVLPx/MOVHPx Instructions for Unaligned
Data Access

Optimization

When data alignment cannot be guaranteed, use MOVLPD/MOVHPD, MOVLPS/MOVHPS or
MOVLPD/MOVHPD pairs in lieu of MOVUPD, MOVUPS or MOVDQU, respectively.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The MOVUPS, MOVUPD and MOVDQU instructions are VectorPath when one of the operands is a
memory location. It is better to use one of the MOVLPx/MOVHPx or MOVQ/MOVHPD pairs. It is
prefereable to load or store the 64-bit halves of an XMM register separately when the memory
location cannot be guaranteed to be aligned.
198 Optimizing with SIMD Instructions Chapter 9

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
9.4 Use MOVAPD and MOVAPS Instead of MOVUPD
and MOVUPS

Optimization

For best performance use the aligned versions of these instructions when using a memory operand.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Both MOVUPS and MOVUPD are VectorPath instructions when one of the operands is a memory
location. It is better to use MOVAPS and MOVAPD since they are both DirectPath Double decode
types. Misaligned memory accesses also reduce the available memory bandwidth and SSE and SSE2
instructions have shorter latencies when operating on aligned memory operands. Aligning data on 16-
byte boundaries allows you to use the aligned load instructions (MOVAPS, MOVAPD, and
MOVDQA), which move through the floating-point unit with shorter latencies and reduce the
possibility of stalling addition or multiplication instructions that are dependent on the load data.
Chapter 9 Optimizing with SIMD Instructions 199

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
9.5 Structuring Code with Prefetch Instructions to
Hide Memory Latency

Optimization

When utilizing prefetch instructions, attend to:

• The time allotted (latency) for data to reach the processor between issuing a prefetch instruction
and using the data.

• Structuring the code to best take advantage of prefetching.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Prefetch instructions bring the cache line containing a specified memory location into the processor
cache. (For more information on prefetch instructions, see “Prefetch Instructions” on page 104.)
Prefetching hides the main memory load latency, which is typically many orders of magnitude larger
than a processor clock cycle.

There are two types of loops:

The example provided below illustrates the importance of the above considerations in an example that
multiplies a double-precision 32 × 32 matrix A with another 32 × 32 transposed double-precision
matrix, BT; the result is returned in another 32 × 32 transposed double-precision matrix, CT. (The
transposition of B and C is performed to efficiently access their elements because matrices in the C
programming language are stored in row-major format. Doing the transposition in advance reduces
the problem of matrix multiplication to one of computing several dot-products—one for each element
of the results matrix, CT. This “dotting” operation is implemented as the sum of pair-wise products of
the elements of two equal-length vectors.) For this example, assume the processor clock speed is
2 GHz, and the memory latency is 60 ns. In this example, the rows of matrix A are repeatedly

Loop type Description

Memory-limited Data can be processed and requested faster than it can be fetched from memory.

Processor-limited Data can be requested and brought into the processor before it is needed because
considerable processing occurs during each unrolled loop iteration.
200 Optimizing with SIMD Instructions Chapter 9

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
“dotted” with a column of BT. Once this is done, the rows of matrix A are “dotted” with the next
column of BT, and the process is repeated through all the columns of BT.

From a performance standpoint, there are several caveats to recognize, as follows:

• Once all the rows of A have been multiplied with the first column of B, all the rows of A are in the
cache, and subsequent accesses to them do not cause cache misses.

• The rows of BT are brought into the cache by “dotting” the first four rows of A with each row of

BT in the Ctr_row_num for-loop.

• The elements of CT are not initially in the cache, and every time a new set of four rows of A are

“dotted” with a new row of BT, the processor has to wait for CT to arrive in the cache before the
results can be written.

You can address the last two caveats by prefetching to improve performance. However, to efficiently
exploit prefetching, you must structure the code to issue the prefetch instructions such that:

• Enough time is provided for memory requests sent out through prefetch requests to bring data into
the processor’s cache before the data is needed.

• The loops containing the prefetch instructions are ordered to issue sufficient prefetch instructions
to fetch all the pertinent data.

The matrix order of 32 is not a coincidence. A double-precision number consists of 8 bytes. Prefetch
instructions bring memory into the processor in chunks called cache lines consisting of 64 bytes (or
eight double-precision numbers). We need to issue four prefetch instructions to prefetch a row of BT.
Consequently, when multiplying all 32 rows of A with a particular column of B, we want to arrange
the for-loop that cycles through the rows of A such that it is repeated four times. To achieve this, we
need to dot eight rows of A with a row of BT every time we pass through the Ctr_row_num for-loop.
Additionally, “dotting” eight rows of A upon a row of BT produces eight doubles of CT (that is, a full
cache line).

Assume it takes 60 ns to retrieve data from memory; then we must ensure that at least this much time
elapses between issuing the prefetch instruction and the processor loading that data into its registers.
The dot-product of eight rows of A with a row of BT consists of 512 floating-point operations (dotting
a single row of A with a row of BT consists of 32 additions and 32 multiplications). The
AMD Athlon, AMD Athlon 64, and AMD Opteron processors are capable of performing a maximum
of two floating point operations per clock cycle; therefore, it takes the processor no less than
256 clock cycles to process each Ctr_row_num for-loop.

Choosing a matrix order of 32 is convenient for these reasons:

• All three matrices A, BT, and CT can fit into the processor’s 64-Kbyte L1 data cache.

• On a 2-GHz processor running at full floating-point utilization, 128 ns elapse during the
256 clock cycles, considerably more than the 60 ns to retrieve the data from memory.
Chapter 9 Optimizing with SIMD Instructions 201

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
• The size of each row is an integer number of cache lines.

A set of eight rows of A is dotted in pairs of four with BT, and prefetches in each iteration of the
Ctr_row_num for-loop are issued to retrieve:

• The cache line (or set of eight double-precision values) of CT to be processed in the next iteration
of the Ctr_row_num for-loop.

• One quarter of the next row of BT.

Including the prefetch to the rows of BT increases performance by about 16%. Prefetching the
elements of CT increases performance by an additional 3% or so.

Follow these guidelines when working with processor-limited loops:

• Arrange your code with enough instructions between prefetches so that there is adequate time for
the data to be retrieved.

• Make sure the data that you are prefetching fits into the L1 data cache and does not displace other
data that is also being operated upon. For instance, choosing a larger matrix size might displace A
if all three matrices cannot fit into the 64-Kbyte L1 data cache.

• Operate on data in chunks that are integer multiples of cache lines.

Examples

Double-Precision 32 × 32 Matrix Multiplication
//***
// This routine multiplies a 32x32 matrix A (stored in row-major format) upon
// the transpose of a 32x32 matrix B (stored in row-major format) to get
// the transpose of the resultant 32x32 matrix C.
//***
void matrix_multiply_32x32(double *A,double *Btranspose,double *Ctranspose) {
 int Ctr_8col_blck, Ctr_row_num, n;
 // These 4 pointers are used to address 4 consecutive rows of matrix A.
 double *Aptr0, *Aptr1, *Aptr2, *Aptr3;
 // Pointers *Btr_ptr and *Ctr_ptr are used to address the column of B upon
 // which A is being multiplied and where the result C is placed.
 // Pointers *Bprefptr and *Cprefptr are used to address the next column
 // of B and the next elements of C to be calculated in advance
 // using prefetch instructions.
 double *Btr_ptr, *Ctr_ptr, *Btr_prefptr, *Ctr_prefptr;

 // Put the address of matrices B-tranpose and C-transpose into their
 // respective temporary pointers.
 Btr_ptr = Btranspose; Ctr_ptr = Ctranspose;
 // Shift the prefetch pointers to the next row of B-transpose and the
 // next set of 8 elements of C-transpose. (Each set of 8 doubles is
 // a 64-byte cache line if the addresses Btr_ptr and Ctr_ptr are aligned
 // in memory on 64-byte boundaries.)
202 Optimizing with SIMD Instructions Chapter 9

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
 Btr_prefptr = Btr_ptr + 32; Ctr_prefptr = Ctr_ptr + 8;
 // This loop cycles through the rows of the TRANSPOSED C matrix. A row
 // of C-transpose is calculated by the code in this loop and then the
 // next row is determined in the following loop iteration. There are
 // 32 rows in C-transpose.
 for (Ctr_row_num = 0; Ctr_row_num < 32; Ctr_row_num++) {
 // Assign pointers to 4 consecutive rows of A by using the
 // address of matrix A passed into the function:
 Aptr0 = A;
 Aptr1 = Aptr0 + 32;
 Aptr2 = Aptr0 + 64;
 Aptr3 = Aptr0 + 96;
 // This loop contains code that "dots" 8 rows of A upon the present row
 // of B-transpose. By looping 4 times, all 32 rows of A are multiplied
 // upon the present column of B-transpose.
 for (Ctr_8col_blck = 0; Ctr_8col_blck < 4; Ctr_8col_blck++) {
 // This instruction prefetches 1/4 of the next column of B-transpose
 // upon which matrix A needs to be multiplied. The loop within which
 // this code resides is executed 4 times, and by incrementing
 // Btr_prefptr (the ptr to the address of B transpose to be
 // prefetched) by 8 doubles (or 64 bytes, or 1 cache line) the entire
 // contents of the next row of B-transpose are brought to the
 // processor in advance when Ctr_row_num in the outer loop is
 // incremented
 _mm_prefetch(&Btr_prefptr[0], 2);
 // This loop below "dots" 4 consecutive rows of A upon a row of
 // B-transpose by looping 8 times through code that multiplies and
 // accumulates the products of 4 elements of A's rows with 4
 // elements of B-transpose's column.
 for (n = 0; n < 8; n++) {
 Ctr_ptr[0] += Aptr0[0]*Btr_ptr[0] + Aptr0[1]*Btr_ptr[1] +
 Aptr0[2]*Btr_ptr[2] + Aptr0[3]*Btr_ptr[3];
 Ctr_ptr[1] += Aptr1[0]*Btr_ptr[0] + Aptr1[1]*Btr_ptr[1] +
 Aptr1[2]*Btr_ptr[2] + Aptr1[3]*Btr_ptr[3];
 Ctr_ptr[2] += Aptr2[0]*Btr_ptr[0] + Aptr2[1]*Btr_ptr[1] +
 Aptr2[2]*Btr_ptr[2] + Aptr2[3]*Btr_ptr[3];
 Ctr_ptr[3] += Aptr3[0]*Btr_ptr[0] + Aptr3[1]*Btr_ptr[1] +
 Aptr3[2]*Btr_ptr[2] + Aptr3[3]*Btr_ptr[3];
 // Increment pointers to B transpose's column and A's rows to
 // the next 4 elements to be multiplied and accumulated.
 Btr_ptr += 4;
 Aptr0 += 4;
 Aptr1 += 4;
 Aptr2 += 4;
 Aptr3 += 4;
 }
 // The pointer to C-transpose is incremented by 4 doubles to
 // address the next 4 elements of C-transpose's row to be determined.
 Ctr_ptr += 4;
 // The pointer to B transpose points to the end of the present
 // row. We need to subtract 32 doubles so Btr_ptr points
Chapter 9 Optimizing with SIMD Instructions 203

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
 // again to the top of the column for the next dot-product of
 // 4 rows of A upon B-transpose's row vector.
 Btr_ptr -= 32;
 // The addresses Aptr0, Aptr1, Aptr2, and Aptr3 need to be
 // incremented to the next block of 4 rows of A to be multiplied
 // upon B's column. 4 rows of A are 128 doubles in size, and in
 // the n-loop above they were incremented by 32 already, so they
 // must be incremented an additional 96 to point to the next
 // 4 rows of A to be dotted.
 Aptr0 += 96;
 Aptr1 += 96;
 Aptr2 += 96;
 Aptr3 += 96;
 _mm_prefetch(&Ctr_prefptr[0], 2);
 // This loop below "dots" 4 consecutive rows of A upon a row
 // of B-transpose by looping 8 times through code that
 // multiplies and accumulates the products of 4 elements of A's
 // rows with 4 elements of B-transpose's column.
 for (n = 0; n < 8; n++) {
 Ctr_ptr[0] += Aptr0[0]*Btr_ptr[0] + Aptr0[1]*Btr_ptr[1] +
 Aptr0[2]*Btr_ptr[2] + Aptr0[3]*Btr_ptr[3];
 Ctr_ptr[1] += Aptr1[0]*Btr_ptr[0] + Aptr1[1]*Btr_ptr[1] +
 Aptr1[2]*Btr_ptr[2] + Aptr1[3]*Btr_ptr[3];
 Ctr_ptr[2] += Aptr2[0]*Btr_ptr[0] + Aptr2[1]*Btr_ptr[1] +
 Aptr2[2]*Btr_ptr[2] + Aptr2[3]*Btr_ptr[3];
 Ctr_ptr[3] += Aptr3[0]*Btr_ptr[0] + Aptr3[1]*Btr_ptr[1] +
 Aptr3[2]*Btr_ptr[2] + Aptr3[3]*Btr_ptr[3];
 // Increment pointers to B transpose's column and A's rows to
 // the next 4 elements to be multiplied and accumulated.
 Btr_ptr += 4;
 Aptr0 += 4;
 Aptr1 += 4;
 Aptr2 += 4;
 Aptr3 += 4;
 }
 // The addresses to prefetch in B-transpose and C-transpose
 // are incremented by 8 doubles, or 64 bytes, or 1 cache line.
 // Each loop of the 4 loops of Ctr_8col_blck above brings in a
 // new set of 8 doubles and after 4 loops the full column of the
 // next column of B and the next set of 8 elements of C to be
 // determined are also brought into the cache.
 Btr_prefptr += 8;
 Ctr_prefptr += 8;
 // The pointer to C-transpose is incremented by 4 doubles
 // to address the next 4 elements of C-transpose's row to be
 // determined.
 Ctr_ptr += 4;
 // The pointer to B-transpose points to the end of the present
 // row. We need to subtract 32 doubles so Btr_ptr points again
 // to the top of the column for the next dot-product of 4 rows of A
 // upon B-transpose's row vector
204 Optimizing with SIMD Instructions Chapter 9

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
 Btr_ptr -= 32;
 // The addresses Aptr0, Aptr1, Aptr2, and Aptr3 need to be
 // incremented to the next block of 4 rows of A to be dotted
 // upon B's column. 4 rows of A are 128 doubles in size, and
 // in the n-loop above they were incremented by 32 already, so they
 // must be incremented an additional 96 to point to the
 // next 4 rows of A to be dotted.
 Aptr0 += 96;
 Aptr1 += 96;
 Aptr2 += 96;
 Aptr3 += 96;
 }
 // Pointer to B-transpose is incremented by a row so as to point
 // to the next row of B upon which matrix A needs to be multiplied.
 Btr_ptr += 32;
 }
}

Chapter 9 Optimizing with SIMD Instructions 205

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
9.6 Avoid Moving Data Directly Between
General-Purpose and MMX™ Registers

Optimization

Avoid moving data directly between general-purpose registers and MMX™ registers; this operation
requires the use of the MOVD instruction. If it is absolutely necessary to move data between these
two types of registers, use separate store and load instructions to move the data from the source
register to a temporary location in memory and then from memory into the destination register,
separating the store and the load by at least 10 instructions.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The register-to-register forms of the MOVD instruction are either VectorPath or DirectPath Double
instructions. When compared with DirectPath Single instructions, VectorPath and DirectPath Double
instructions have comparatively longer execution latencies. In addition, VectorPath instructions
prevent the processor from simultaneously decoding other insructions.

Example

Avoid code like this, which copies a value directly from an MMX register to a general-purpose
register:

movd eax, mm2

If it is absolutely necessary to copy a value from an MMX register to a general-purpose register (or
vice versa), use separate store and load instructions, separating them by at least 10 instructions:

movd DWORD PTR temp, mm2 ; Store the value in memory.
...
; At least 10 other instructions appear here.
...
mov eax, DWORD PTR temp ; Load the value from memory.
206 Optimizing with SIMD Instructions Chapter 9

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
9.7 Use MMX™ Instructions to Construct Fast Block-
Copy Routines in 32-Bit Mode

Optimization

Use MMX instructions when moving integer data in a block-copy routine.

Application

This optimization applies to:

• 32-bit software

Rationale

MMX instructions relieve the high register pressure typical of x86 code because of the small register
file.

In addition, MMX instructions increase the available parallelism on AMD Athlon 64 and
AMD Opteron processors because they use both sides (integer and floating-point) of the execution
pipeline. For an example of how to move a large quadword-aligned block of data using the MMX
MOVQ instruction, see "Optimizing Main Memory Performance for Large Arrays" in the
AMD Athlon™ Processor x86 Code Optimization Guide (order # 22007).

If a block-copy routine is not used, do not move integer data through MMX registers.
Chapter 9 Optimizing with SIMD Instructions 207

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
9.8 Passing Data between MMX™ and 3DNow!™
Instructions

Optimization

Avoid passing data between MMX and 3DNow!™ instructions.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rational

The AMD Athlon 64 and AMD Opteron processors do not support bypassing register data between
MMX and 3DNow! instructions. One additional cycle of latency is added to a dependency chain
whenever data is passed between these instruction groups in either direction.
208 Optimizing with SIMD Instructions Chapter 9

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
9.9 Storing Floating-Point Data in MMX™ Registers

Optimization

Avoid storing floating-point data in MMX registers unless using 3DNow! instructions.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Using MOVDQ2Q or MOVQ2DQ to shuffle integer data between MMX and XMM registers is useful
to relieve register pressure; however, doing so with floating-point data can impact performance. The
impact is greater if the floating-point data is denormalized.
Chapter 9 Optimizing with SIMD Instructions 209

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
9.10 EMMS and FEMMS Usage

Optimization

Use FEMMS or EMMS to clean up the register file between an x87 instruction and a following
MMX, 3DNow!, or Enhanced 3DNow! instruction or vice versa.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Use either the FEMMS or the EMMS instruction when switching between the x87 floating-point unit
and MMX, 3DNow!, or Enhanced 3DNow! instructions. The FEMMS instruction is aliased to the
EMMS instruction on AMD Athlon 64 and AMD Opteron processors. Both instructions convert to an
internal NOP instruction in AMD Athlon 64 and AMD Opteron processors. The FEMMS instruction
is provided to help ensure that code written for previous generations of AMD processors runs
correctly.

There is no penalty for switching between the x87 floating-point instructions and 3DNow! (or MMX)
instructions in the processor. The MMX, 3DNow!, and Enhanced 3DNow! instructions are designed
to be used concurrently; therefore, no delimiting cleanup operations are required when switching
between them. However, x87 and 3DNow!/Enhanced 3DNow!/MMX instructions share the same
architectural registers, so there is no easy way to use them concurrently without cleaning up the
register file in between by using FEMMS or EMMS. For more information, see AMD64 Architecture
Programmer’s Manual Volume 1: Application Programming, order# 24592.
210 Optimizing with SIMD Instructions Chapter 9

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
9.11 Using SIMD Instructions for Fast Square Roots
and Fast Reciprocal Square Roots

Optimization

Use SIMD vectorized square root (SQRTPS) and reciprocation (RCCPS) instructions to calculate
square roots and reciprocal square roots of single-precision numbers.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

SIMD instructions exist for performing vectorized square root and reciprocation of single-precision
numbers. These operations are often used in multimedia applications and also can be utilized in
scientific arenas, such as molecular dynamics simulations.

Example

The following function highlights the use of both the vectorized reciprocal and square-root SSE
instructions:

; reciprocal_sqrt_sse(float *r, float *rcp_sqrt_r, int num_points);
;
; TO ASSEMBLE INTO *.obj DO THE FOLLOWING:
; ml.exe -coff -c reciprocal_sqrt_sse.asm
;
.586
.K3D
.XMM
_TEXT SEGMENT
PUBLIC _reciprocal_sqrt_sse
_reciprocal_sqrt_sse PROC NEAR
;==
; INSTRUCTIONS BELOW SAVE THE REGISTER STATE WITH WHICH THIS ROUTINE WAS
; ENTERED.
; REGISTERS EAX, ECX, EDX ARE CONSIDERED VOLATILE AND ASSUMED TO BE CHANGED
; WHILE THE REGISTERS BELOW MUST BE PRESERVED IF THE USER IS CHANGING THEM
 push ebp
 mov ebp, esp
;==
; Parameters passed into routine:
Chapter 9 Optimizing with SIMD Instructions 211

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
; [ebp+8] = ->r
; [ebp+12] = ->rcp_sqrt_r
; [ebp+16] = num_points
;==
 push ebx
 push esi
 push edi
;==
; THE FIRST 3 ASM LINES BELOW LOAD THE FUNCTION'S ARGUMENTS INTO GENERAL-PURPOSE
; REGISTERS (GPRS)
; esi = address of "r"'s to calculate the reciprocal square root of
; edi = address of "rcp_sqrt_r"'s to store reciprocal square root to
; ecx = num_points
;==
 mov esi,[ebp+8] ; ESI = ->r
 mov edi,[ebp+12] ; EDI = ->rcp_sqrt_r
 mov ecx,[ebp+16] ; ECX = num_points
 mov edx,ecx ; EDX = num_points
 mov eax,ecx ; EAX = num_points
 shl edx,2 ; EDX = 4*num_points
 shr eax,4 ; EAX = num_points/16
 add edi,edx ; EDI = -> end of "r"
 add esi,edx ; EAX = -> end of "rcp_sqrt_r"
 neg ecx ; ECX = -# quadwords of vertices to rotate
 or eax,eax ; If num_points/16 = 0, then skip
 ; reciprocal square root.
 jz skip_recprcl_sqrt_4xloop ; Unroll loop by 4 to work
 ; on 16 floats at a time.
;==
; THIS LOOP RECIPROCATES AND SQUARE ROOTS 16 FLOATING-POINT NUMBERS EACH
; LOOP ITERATION AND WORDS WITH THOSE ELEMENTS OF "r" THAT OCCUPY A
; FULL CACHELINE
;==
ALIGN 16 ; Align address of loop to a 16-byte boundary.
reciprocal_sqrt_4xloop:
 prefetchnta [esi+4*ecx+256] ; Prefetch the elements "r" 4 cache lines
 ; ahead to reciprocate and squareroot 4 loops
 ; from now.
 movaps xmm0, [esi+4*ecx] ; XMM0=[r3,r2,r1,r0]
 sqrtps xmm0, xmm0 ; XMM0=[sqrtr3,sqrtr2,sqrtr0,sqrtr0]
 rcpps xmm0, xmm0 ; XMM0=[1/sqrtr3,1/sqrtr2,1/sqrtr0,1/sqrtr0]
 movaps xmm1, [esi+4*ecx+16] ; XMM1=[r7,r6,r5,r4]
 sqrtps xmm1, xmm1 ; XMM1=[sqrtr7,sqrtr6,sqrtr5,sqrtr4]
 rcpps xmm1, xmm1 ; XMM1=[1/sqrtr7,1/sqrtr6,1/sqrtr5,1/sqrtr4]
 movaps xmm2, [esi+4*ecx+32] ; XMM2=[r11,r10,r9,r8]
 sqrtps xmm2, xmm2 ; XMM2=[sqrtr11,sqrtr10,sqrtr9,sqrtr8]
 rcpps xmm2, xmm2 ; XMM2=[1/sqrtr11,1/sqrtr10,1/sqrtr9,1/sqrtr8]
 movaps xmm3, [esi+4*ecx+48] ; XMM2=[r15,r14,r13,r12]
 sqrtps xmm3, xmm3 ; XMM2=[sqrtr15,sqrtr14,sqrtr13,sqrtr12]
 rcpps xmm3, xmm3 ; XMM2=[1/sqrtr15,1/sqrtr14,1/sqrtr13,1/sqrtr12]
 movntps [edi+4*ecx], xmm0 ; Store reciprocal square root to rcp_sqrt_r.
212 Optimizing with SIMD Instructions Chapter 9

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
 movntps [edi+4*ecx+16], xmm1 ; Store reciprocal square root to rcp_sqrt_r.
 movntps [edi+4*ecx+32], xmm2 ; Store reciprocal square root to rcp_sqrt_r.
 movntps [edi+4*ecx+48], xmm3 ; Store reciprocal square root to rcp_sqrt_r.
 add ecx, 16 ; Decrement the # of reciprocal square
 ; roots to calculate by 16.
 dec eax ; Decrement # of 16 float reciprocal square
 ; root loops to perform by 1.
 jnz reciprocal_sqrt_4xloop
 jmp skip_recprcl_sqrt_4xloop ; Jump into loop to calculate reciprocal
 ; square root of floats that don't
 ; occupy a full cache line.

;==
; THIS LOOP RECIPROCATES AND SQUARE ROOTS 1 FLOATING POINT NUMBER EACH
; LOOP ITERATION
;==
ALIGN 16 ; Align address of loop to a 16-byte boundary.
reciprocal_sqrt_1xloop:
 movss xmm0, [esi+4*ecx] ; XMM0=[,,,r0]
 sqrtss xmm0, xmm0 ; XMM0=[,,,sqrt(r0)]
 rcpss xmm0, xmm0 ; XMM0=[,,,1/sqrt(r0)]
 movss [edi+4*ecx], xmm0 ; Store reciprocal square root to rcp_sqrt_r.
 inc ecx ; Decrement the # of reciprocal square roots
 ; to calculate.
skip_recprcl_sqrt_4xloop:
 or ecx, ecx ; If ECX != 0, then calculate the reciprocal
 ; square root of another float.
 jnz reciprocal_sqrt_1xloop

 sfence ; Finish all memory writes.

;==
; INSTRUCTIONS BELOW RESTORE THE REGISTER STATE WITH WHICH THIS ROUTINE
; WAS ENTERED.
; REGISTERS EAX, ECX, AND EDX ARE CONSIDERED VOLATILE AND ASSUMED TO BE CHANGED,
; WHILE THE REGISTERS BELOW MUST BE PRESERVED IF THE USER IS CHANGING THEM
 pop edi
 pop esi
 pop ebx
 mov esp,ebp
 pop ebp

;===
 ret
_reciprocal_sqrt_sse ENDP
_TEXT ENDS
END

The preceding code illustrates the use of separate loops for optimal performance. The loop titled
reciprocal_sqrt_4xloop works with 16 floating-point numbers in each iteration and is unrolled to
keep the processor busy by masking the latencies of the reciprocal and square-root instructions. In
Chapter 9 Optimizing with SIMD Instructions 213

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
general, unrolling loops improves performance by providing opportunities for the processor to work
on data pertaining to the next loop iteration while waiting for the result of an operation from the
previous iteration. The reciprocal_sqrt_1xloop loop performs the reciprocation and square root
on the remaining elements that do not form a full segment of 16 floating-point values. In this chapter,
the previous function is the only example that handles any vector stream of num_points size. This is
done to preserve space, but all examples in this chapter can be modified in a similar manner and used
universally.

Additionally, the previous SSE function makes use of the PREFETCHNTA instruction to reduce
cache latency. The unrolled loop reciprocal_sqrt_4xloop was chosen to work with 64 bytes of
data per iteration, which happens to be the size of one cache line (the term used to signify the
quantum of data brought into the processor’s cache by a memory access, if the data does not reside
there already). The prefetch causes the processor to load the floating-point operands of the reciprocal
and square root operations for the next four loop iterations. While the processor works on the next
three iterations, the data for the fourth iteration is sent to the processor. The processor does not have to
wait while the aligned SSE instruction MOVAPS is fetched from memory before performing
operations on the fourth iteration. This type of memory optimization can be very useful in gaming and
high-performance computing, in which data sets are unlikely to reside in the processor’s cache. For
example, in a simulation involving a million vertices or atoms in which the storage for their
coordinates would require 12 bytes per vertex, the total space for the data would be more than 12
Mbytes.
214 Optimizing with SIMD Instructions Chapter 9

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
9.12 Use XOR Operations to Negate Operands of SSE,
SSE2, and 3DNow!™ Instructions

Optimization

For AMD Athlon, AMD Athlon 64, and AMD Opteron processors, use instructions that perform
XOR operations (PXOR, XORPS, and XORPD) instead of multiplication instructions to change the
sign bit of operands of SSE , SSE2, and 3DNow! instructions.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

On the AMD Athlon 64 and AMD Opteron processors, using XOR-type instructions allows for more
parallelism, as these instructions can execute in either the FADD or FMUL pipe of the floating-point
unit.

Single Precision

For single-precision, you can use either 3DNow! or SSE SIMD XOR operations. The latency of
multiplying by –1.0 in 3DNow! is 4 cycles, while the latency of using the PXOR instruction is only
2 cycles. Similarly, the latency of the MULPS instruction is 5 cycles, while the latency of the XORPS
instruction is 3 cycles. The following code example illustrates how to toggle the sign bit of a number
using 3DNow! instructions:

signmask DQ 8000000080000000h
pxor mm0, [signmask] ; Toggle sign bits of both floats.

This example does the same thing using SSE instructions:

signmask DQ 8000000080000000h,8000000080000000h
xorps xmm0, [signmask] ; Toggle sign bits of all four floats.

Double Precision

To perform double-precision arithmetic, you can use the XORPD instruction—similar to the single-
precision example—to flip the sign of packed double-precision floating-point operands. The XORPD
instruction takes 3 cycles to execute, whereas the MULPD instruction requires 5 cycles.

signmask DQ 8000000000000000h,8000000000000000h
xorpd xmm0, [signmask] ; Toggle sign bit of both doubles.
Chapter 9 Optimizing with SIMD Instructions 215

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
9.13 Clearing MMX™ and XMM Registers with XOR
Instructions

Optimization

Use instructions that perform XOR operations (PXOR, XORPS, and XORPD) to clear all the bits in
MMX and XMM registers.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The latency of the MMX XOR instruction (PXOR) is only 3 cycles and comparable to the 3 cycles
required to load data, assuming it is in the L1 data cache. The SSE and SSE2 XOR instructions
(XORPS and XORPD, respectively) also have latencies of 3 cycles.

Examples

The following examples illustrate how to clear the bits in a register using the different exclusive-OR
instructions:

; MMX
pxor mm0, mm0 ; Clear the MM0 register.

; SSE
xorps xmm0, xmm0 ; Clear the XMM0 register.

; SSE2
xorpd xmm0, xmm0 ; Clear the XMM0 register.
216 Optimizing with SIMD Instructions Chapter 9

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
9.14 Finding the Floating-Point Absolute Value of
Operands of SSE, SSE2, and 3DNow!™
Instructions

Optimization

Use instructions that perform AND operations (PAND, ANDPS, and ANDPD) to determine the
absolute value of floating-point operands of SSE, SSE2, and 3DNow!instructions.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The MMX PAND instruction has a latency of 2 cycles, whereas the SSE and SSE2 AND instructions
(ANDPS and ANDPD, respectively) have latencies of 3 cycles. The following examples illustrate
how to clear the sign bits:

; 3DNow!
absmask DQ 7FFFFFFF7FFFFFFFh
pand mm0, [absmask] ; Clear the sign bits of both floats in MM0.

; SSE
absmask DQ 7FFFFFFF7FFFFFFFh,7FFFFFFF7FFFFFFFh
andps xmm0, [absmask] ; Clear the sign bits of all four floats in XMM0.

; SSE2
absmask DQ 7FFFFFFFFFFFFFFFh,7FFFFFFFFFFFFFFFh
andpd xmm0, [absmask] ; Clear the sign bits of both doubles in XMM0.
Chapter 9 Optimizing with SIMD Instructions 217

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
9.15 Accumulating Single-Precision Floating-Point
Numbers Using SSE, SSE2, and 3DNow!™
Instructions

Optimization

In 32-bit software, use the 3DNow! PFACC instruction to perform complex-number multiplication,
4 × 4 matrix multiplication, and dot products. For 64-bit software, careful selection of SSE
instructions based on how the data is organized can also lead to more efficient code, as shown in the
second example.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Though SSE, SSE2, and 3DNow! instrucitons are similar in the sense that they all have vectorized
multiplication and addition, 3DNow! technology supports certain special instructions. One of these is
the PFACC instruction. There are many instances where PFACC is useful, such as complex-number
multiplication, 4 × 4 matrix multiplication, and dot products.

Examples

The following example accumulates two floats in two MMX registers:

;accumulate_3dnow(float *a_and_b, float *c_and_d, float *aplusb_cplusd);
;
; TO ASSEMBLE INTO *.obj DO THE FOLLOWING:
; ml.exe -coff -c accumulate_3dnow.asm
;
.586
.K3D
.XMM
_TEXT SEGMENT
PUBLIC _accumulate_3dnow
_accumulate_3dnow PROC NEAR

;==
; INSTRUCTIONS BELOW SAVE THE REGISTER STATE WITH WHICH THIS ROUTINE WAS ENTERED
; REGISTERS (EAX, ECX, EDX ARE CONSIDERED VOLATILE AND ASSUMED TO BE CHANGED)
; WHILE THE REGISTERS BELOW MUST BE PRESERVED IF THE USER IS CHANGING THEM
218 Optimizing with SIMD Instructions Chapter 9

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
push ebp
mov ebp, esp
;==
; Parameters passed into routine:
; [ebp+8] = ->a_and_b
; [ebp+12] = ->c_and_d
 ; [ebp+16] = ->aplusb_cplusd
;==
push ebx
push esi
push edi
;==
; THE 4 ASM LINES BELOW LOAD THE FUNCTION'S ARGUMENTS INTO GENERAL-PURPOSE
; REGISTERS (GPRS)
; esi = starting address of 2 floats "a_and_b"
; edi = starting address of 2 floats "c_and_d"
; eax = starting address of 2 floats "aplusb_cplusd"
;==
mov esi, [ebp+8] ; esi = ->a_and_b
mov edi, [ebp+12] ; edi = ->c_and_d
mov eax, [ebp+16] ; eax = ->aplusb_cplusd
;==
; ADD a AND b TOGETHER AND ALSO c AND d
;==
emms
movq mm0, [esi] ; mm0 = [b,a]
movq mm1, [edi] ; mm1 = [d,c]
pfacc mm0, mm1 ; mm0 = [c+d,b+a]
;==
; INSTRUCTIONS BELOW RESTORE THE REGISTER STATE WITH WHICH THIS ROUTINE
; WAS ENTERED
; REGISTERS (EAX, ECX, EDX ARE CONSIDERED VOLATILE AND ASSUMED TO BE CHANGED)
; WHILE THE REGISTERS BELOW MUST BE PRESERVED IF THE USER IS CHANGING THEM
pop edi
pop esi
pop ebx
mov esp,ebp
pop ebp
;==
ret
_accumulate_3dnow ENDP
_TEXT ENDS
END

The same operation can be performed using SSE instructions, but the data in the XMM registers must
be rearranged. The next example loads four floating-point values into four XMM registers, XMM4–
XMM7, and then rearranges and adds the values so as to accumulate the sum of each XMM register
into a float in XMM1.

;--
; The instructions below take the 4 floats in each XMM register below:
Chapter 9 Optimizing with SIMD Instructions 219

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
; xmm4 = [d,c,b,a]
; xmm5 = [D,C,B,A]
; xmm6 = [h,g,f,e]
; xmm7 = [H,G,F,E]
;
; and arranges them to look like:
; xmm4 = [E,e,A,a]
; xmm1 = [F,f,B,b]
; xmm2 = [G,g,C,c]
; xmm3 = [H,h,D,d]

movaps xmm3, xmm4 ; xmm3 | [d,c,b,a]
movaps xmm0, xmm5 ; xmm0 | [D,C,B,A]

unpcklps xmm4, xmm6 ; xmm4 | [f,b,e,a]
unpckhps xmm3, xmm6 ; xmm3 | [h,d,g,c]
movaps xmm1, xmm4 ; xmm1 | [f,b,e,a]
movaps xmm2, xmm3 ; xmm2 | [h,d,g,c]

unpcklps xmm5, xmm7 ; xmm5 | [F,B,E,A]
unpckhps xmm0, xmm7 ; xmm0 | [H,D,G,C]

unpcklps xmm4, xmm5 ; xmm4 | [E,e,A,a]
unpckhps xmm1, xmm5 ; xmm1 | [F,f,B,b]
unpcklps xmm3, xmm0 ; xmm3 | [G,g,C,c]
unpckhps xmm2, xmm0 ; xmm2 | [H,h,D,d]

; Now if we compute the sum of these registers, we get the dot-product
; of the first row of A with vector X:
;
; a+b+c+d
;
; in the lower DWORD of the resultant XMM register. The dot-product of the
; second row is stored in the second DWORD and so on, such that:
;
; xmm1 = [V+X+Y+Z,v+x+y+z,A+B+C+D,a+b+c+d]

addps xmm1, xmm4 ; xmm1 | [E+F,e+f,A+B,a+b]
addps xmm3, xmm2 ; xmm3 | [G+H,g+h,C+D,c+d]
addps xmm1, xmm3 ; xmm1 | [E+F+G+H,e+f+g+h,A+B+C+D,a+b+c+d]
220 Optimizing with SIMD Instructions Chapter 9

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
9.16 Complex-Number Arithmetic Using SSE, SSE2,
and 3DNow!™ Instructions

Optimization

Use vectorizing SSE, SSE2 and 3DNow! instructions to perform complex number calculations.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Complex numbers have a “real” part and an “imaginary” part (where the imaginary part is denoted by
the letter i). For example, the complex number z1 might have a real part equal to 4 and an imaginary
part equal to 3, written as 4 + 3i. Multiplying and adding complex numbers is an integral part of
digital signal processing. Complex number addition is illustrated here using two complex numbers, z1
(4 + 3i) and z2 (5 + 2i):

z1 + z2 = (4 + 3i) + (5 + 2i) = [4+5] + [3+2]i = 9 + 5i

or:

sum.real = z1.real + z2.real
sum.imag = z1.imag + z2.imag

Complex number addition is illustrated here using the same two complex numbers:

z1 + z2 = (4 + 3i)(5 + 2i) = [4 × 5 - 3 × 2] + [3 × 5 + 4 × 2]i = 14 + 23i

or:

product.real = z1.real * z2.real - z1.imag * z2.imag
product.imag = z1.real * z2.imag + z1.imag * z2.real

Complex numbers are stored as streams of two-element vectors, the two elements being the real and
imaginary parts of the complex numbers. Addition of complex numbers can be achieved using
vectorizing SSE or 3DNow!instructions, such as PFADD, ADDPS, and ADDPD. Multiplication of
complex numbers is more involved.

From the formulas for multiplication, the real and imaginary parts of one of the numbers needs to be
interchanged, and, additionally, the products must be positively or negatively accumulated depending
upon whether we are computing the imaginary or real portion of the product.
Chapter 9 Optimizing with SIMD Instructions 221

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
The following functions use SSE and 3DNow! instructions to illustrate complex multiplication of
streams of complex numbers x[] and y[] stored in a product stream prod[]. For these examples,
assume that the sizes of x[] and y[] are even multiples of four.

Examples

Listing 25. Complex Multiplication of Streams of Complex Numbers (SSE)
; cmplx_multiply_sse(float *x, float *y, int num_cmplx_elem, float *prod);
;
; TO ASSEMBLE INTO *.obj DO THE FOLLOWING:
; ml.exe -coff -c cmplx_multiply_sse.asm
;
.586
.K3D
.XMM
_TEXT SEGMENT
PUBLIC _cmplx_multiply_sse
_cmplx_multiply_sse PROC NEAR
;==
; INSTRUCTIONS BELOW SAVE THE REGISTER STATE WITH WHICH THIS ROUTINE WAS ENTERED
; REGISTERS (EAX, ECX, EDX ARE CONSIDERED VOLATILE AND ASSUMED TO BE CHANGED)
; WHILE THE REGISTERS BELOW MUST BE PRESERVED IF THE USER IS CHANGING THEM
 push ebp
 mov ebp, esp
;==
; parameters passed into routine:
; [ebp+8] = ->x
; [ebp+12] = ->y
; [ebp+16] = num_cmplx_elem
; [ebp+20] = ->prod
;==
 push ebx ; preserve contents in ebx,esi, and edi on stack
 push esi ;
 push edi ;
;===
; THE CODE BELOW PUTS THE FLOATING POINT SIGN MASK
; [800000000000000800000000000000h]
; TO FLIP THE SIGN OF PACKED SINGLE PRECISION NUMBERS BY USING XORPS
;==
 mov eax, esp ; Copy stack pointer into EAX.
 mov ebx, 16
 sub esp, 32 ; Subtract 32 bytes from stack pointer.
 and eax, 15 ; AND old stack pointer address with 15 to
 ; determine # of bytes the address is past a
 ; 16-byte-aligned address.
 sub ebx, eax ; EBX = # of bytes above ESP to next
 ; 16-byte-aligned address
 mov edi, 0h ; EDI = 00000000h
 mov esi, 80000000h ; EBX = 80000000h
 shr ebx, 2 ; EBX = # of DWORDs past 16-byte-aligned address
222 Optimizing with SIMD Instructions Chapter 9

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
 mov [esp+4*ebx+12], esi ; Move into address esp+4*ebx the single-precision
 mov [esp+4*ebx+8], edi ; floating-point sign mask.
 mov [esp+4*ebx+4], esi
 mov [esp+4*ebx], edi
;==
; THE 4 ASM LINES BELOW LOAD THE FUNCTION's ARGUMENTS INTO GENERAL-PURPOSE
; REGISTERS (GPRS)
; esi = address of array "x"
; edi = address of array "y"
; ecx = # of cmplx products to compute
; eax = address of product to which results are stored
;==
 mov esi, [ebp+8] ; esi = ->x
 mov edi, [ebp+12] ; edi = ->y
 mov ecx, [ebp+16] ; ecx = num_cmplx_elem
 mov eax, [ebp+20] ; eax = ->prod
;==
; THE 6 ASM LINES BELOW OFFSET THE ADDRESS TO THE ARRAYS x[] AND y[] SUCH
; THAT THEY CAN BE ACCESSED IN THE MOST EFFICIENT MANNER AS ILLUSTRATED
; BELOW IN THE LOOP mult4cmplxnum_loop WITH THE MINIMUM NUMBER OF
; ADDRESS INCREMENTS
;==
 mov edx, ecx ; edx = num_cmplx_elem
 neg ecx ; ecx = -num_cmplx_elem
 shl edx, 3 ; edx = 8 * num_cmplx_elem = # bytes in x[] and y[] to multiply
 add esi, edx ; esi = -> to last element of x[] to multiply
 add edi, edx ; edi = -> to last element of y[] to multiply
 add eax, edx ; eax = -> end of prod[] to calculate
;==
; THIS LOOP MULTIPLIES 4 COMPLEX #s FROM "x[]" UPON 4 COMPLEX #s FROM "y[]"
; AND RETURNS THE PRODUCT IN "prod[]".
;==
ALIGN 16 ; Align address of loop to a 16-byte boundary.
eight_cmplx_prod_loop:
 movaps xmm0, [esi+ecx*8] ; xmm0=[x1i,x1r,x0i,x0r]
 movaps xmm1, [esi+ecx*8+16] ; xmm1=[x3i,x3r,x2i,x2r]
 movaps xmm4, [edi+ecx*8] ; xmm4=[y1i,y1r,y0i,y0r]
 movaps xmm5, [edi+ecx*8+16] ; xmm5=[y3i,y3r,y2i,y2r]
 movaps xmm2, xmm0 ; xmm2=[x1i,x1r,x0i,x0r]
 movaps xmm3, xmm1 ; xmm3=[x3i,x3r,x2i,x2r]
 movaps xmm6, xmm4 ; xmm6=[y1i,y1r,y0i,y0r]
 movaps xmm7, xmm5 ; xmm7=[y3i,y3r,y2i,y2r]
 shufps xmm0, xmm0, 10100000b ; xmm0=[x1r,x1r,x0r,x0r]
 shufps xmm1, xmm1, 10100000b ; xmm1=[x3r,x3r,x2r,x2r]
 shufps xmm2, xmm2, 11110101b ; xmm2=[x1i,x1i,x0i,x0i]
 shufps xmm3, xmm3, 11110101b ; xmm3=[x3i,x3i,x2i,x2i]
 xorps xmm6, [esp+4*ebx] ; xmm6=[-y1i,y1r,-y0i,y0r]
 xorps xmm7, [esp+4*ebx] ; xmm7=[-y3i,y3r,-y2i,y2r]
 mulps xmm0, xmm4 ; xmm0=[x1r*y1i,x1r*y1r,x0r*y0i,x0r*y0r]
 mulps xmm1, xmm5 ; xmm1=[x3r*y3i,x3r*y3r,x2r*y2i,x2r*y2r]
 shufps xmm7, xmm7, 10110001b ; xmm7=[y3r,-y3i,y2r,-y2i]
Chapter 9 Optimizing with SIMD Instructions 223

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
 mulps xmm2, xmm6 ; xmm2=[x1i*y1r,-x1i*y1i,x0i*y0r,-x0i*y0i]
 mulps xmm3, xmm7 ; xmm3=[x3i*y3r,-x3i*y3i,x2i*y2r,-x2i*y2i]
 addps xmm0, xmm2 ; xmm0=[x1r*y1i+x1i*y1r,x1r*y1r-x1i*y1i,
 ; x0r*y0i+x0i*y0r,x0r*y0r-x0i*y0i]
 addps xmm1, xmm3 ; xmm1=[x3r*y3i+x3i*y3r,x3r*y3r-x3i*y3i,
 ; x2r*y2i+x2i*y2r,x2r*y2r-x2i*y2i]
 movntps [eax+ecx*8], xmm0 ; Stream XMM0 and XMM1 to representative
 movntps [eax+ecx*8+16], xmm1 ; memory address of prod[].
 add ecx, 4 ; ECX = ECX + 4
 jnz eight_cmplx_prod_loop

 sfence ; Finish all memory writes.

;==
; INSTRUCTIONS BELOW RESTORE THE REGISTER STATE WITH WHICH THIS ROUTINE WAS
; ENTERED
; REGISTERS EAX, ECX, AND EDX ARE CONSIDERED VOLATILE AND ASSUMED TO BE CHANGED
; WHILE THE REGISTERS BELOW MUST BE PRESERVED IF THE USER IS CHANGING THEM
 add esp, 32
 pop edi
 pop esi
 pop ebx
 mov esp, ebp
 pop ebp
;==
 ret
_cmplx_multiply_sse ENDP
_TEXT ENDS
END

Listing 26. Complex Multiplication of Streams of Complex Numbers (3DNow!™ Technology)
; cmplx_multiply_3dnow(float *x, float *y, int num_cmplx_elem, float *prod);
;
; TO ASSEMBLE INTO *.obj DO THE FOLLOWING:
; ml.exe -coff -c cmplx_multiply_3dnow.asm
;
.586
.K3D
.XMM
_TEXT SEGMENT
PUBLIC _cmplx_multiply_3dnow
;cmplx_multiply_3dnow(float *x, float *y, int num_cmplx_elem, float *prod);
;
; TO ASSEMBLE INTO *.obj DO THE FOLLOWING:
; ml.exe -coff -c cmplx_multiply_3dnow.asm
;
.586
.K3D
.XMM
_TEXT SEGMENT
PUBLIC _cmplx_multiply_3dnow
224 Optimizing with SIMD Instructions Chapter 9

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
_cmplx_multiply_3dnow PROC NEAR
;==
; INSTRUCTIONS BELOW SAVE THE REGISTER STATE WITH WHICH THIS ROUTINE WAS ENTERED
; REGISTERS EAX, ECX, EDX ARE CONSIDERED VOLATILE AND ASSUMED TO BE CHANGED
; WHILE THE REGISTERS BELOW MUST BE PRESERVED IF THE USER IS CHANGING THEM
 push ebp
 mov ebp, esp
;==
; Parameters passed into routine:
; [ebp+8] = ->x
; [ebp+12] = ->y
; [ebp+16] = num_cmplx_elem
; [ebp+20] = ->prod
;==
 push ebx
 push esi
 push edi
;==
; THE 4 ASM LINES BELOW LOAD THE FUNCTION's ARGUMENTS INTO GENERAL-PURPOSE
; REGISTERS (GPRS)
; esi = address of array "x"
; edi = address of array "y"
; ecx = # of cmplx products to compute
; eax = address of product to which results are stored
;==
 mov esi, [ebp+8] ; esi = ->x
 mov edi, [ebp+12] ; edi = ->y
 mov ecx, [ebp+16] ; ecx = num_cmplx_elem
 mov eax, [ebp+20] ; eax = ->prod
;==
; THE 6 ASM LINES BELOW OFFSET THE ADDRESS TO THE ARRAYS x[] AND y[] SUCH
; THAT THEY CAN BE ACCESSED IN THE MOST EFFICIENT MANNER AS ILLUSTRATED
; BELOW IN THE LOOP mult4cmplxnum_loop WITH THE MINIMUM NUMBER OF
; ADDRESS INCREMENTS
;==
 mov edx, ecx ; edx = num_cmplx_elem]
 neg ecx ; ecx = -num_cmplx_elem
 imul edx, 8 ; edx = 8 * num_cmplx_elem = # bytes in x[] and y[] to multiply
 add esi, edx ; esi = -> to last element of x[] to multiply
 add edi, edx ; edi = -> to last element of y[] to multiply
 add eax, edx ; eax = -> end of prod[] to calculate
;==
; THIS LOOP MULTIPLIES 4 COMPLEX #s FROM "x[]" UPON 4 COMPLEX #s FROM "y[]"
; AND RETURNS THE PRODUCT IN "prod[]".
;==
ALIGN 16 ; Align address of loop to a 16-byte boundary.
four_cmplx_prod_loop: ;
 movq mm0, QWORD PTR [esi+ecx*8] ; mm0=[x0i,x0r]
 movq mm1, QWORD PTR [esi+ecx*8+8] ; mm1=[x1i,x1r]
 movq mm2, QWORD PTR [esi+ecx*8+16] ; mm2=[x2i,x2r]
 movq mm3, QWORD PTR [esi+ecx*8+24] ; mm3=[x3i,x3r]
Chapter 9 Optimizing with SIMD Instructions 225

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
 pswapd mm4, QWORD PTR [esi+ecx*8] ; mm4=[x0r,x0i]
 pswapd mm5, QWORD PTR [esi+ecx*8+8] ; mm5=[x1r,x1i]
 pswapd mm6, QWORD PTR [esi+ecx*8+16] ; mm6=[x2r,x2i]
 pswapd mm7, QWORD PTR [esi+ecx*8+24] ; mm7=[x3r,x3i]
 pfmul mm0, QWORD PTR [edi+ecx*8] ; mm0=[x0i*y0i,x0r*y0r]
 pfmul mm1, QWORD PTR [edi+ecx*8+8] ; mm1=[x1i*y1i,x1r*y1r]
 pfmul mm2, QWORD PTR [edi+ecx*8+16] ; mm2=[x2i*y2i,x2r*y2r]
 pfmul mm3, QWORD PTR [edi+ecx*8+24] ; mm3=[x3i*y3i,x3r*y3r]
 pfmul mm4, QWORD PTR [edi+ecx*8] ; mm4=[x0r*y0i,x0i*y0r]
 pfmul mm5, QWORD PTR [edi+ecx*8+8] ; mm5=[x1r*y1i,x1i*y1r]
 pfmul mm6, QWORD PTR [edi+ecx*8+16] ; mm6=[x2r*y2i,x2i*y2r]
 pfmul mm7, QWORD PTR [edi+ecx*8+24] ; mm7=[x3r*y3i,x3i*y3r]
 pfpnacc mm0, mm4 ; mm0=[x0r*y0i+x0i*y0r,x0r*y0r-x0i*y0i]
 pfpnacc mm1, mm5 ; mm1=[x1r*y1i+x1i*y1r,x1r*y1r-x1i*y1i]
 pfpnacc mm2, mm6 ; mm2=[x2r*y2i+x2i*y2r,x2r*y2r-x2i*y2i]
 pfpnacc mm3, mm7 ; mm3=[x3r*y3i+x3i*y3r,x3r*y3r-x3i*y3i]
 movntq [eax+ecx*8], mm0 ; Stream MM0-MM3 to representative memory
 movntq [eax+ecx*8+8], mm1 ; addresses of prod[]
 movntq [eax+ecx*8+16], mm2
 movntq [eax+ecx*8+24], mm3
 add ecx, 4 ; ECX = ECX + 4
 jnz four_cmplx_prod_loop

 sfence ; Finish all memory writes.

;==
; INSTRUCTIONS BELOW RESTORE THE REGISTER STATE WITH WHICH THIS ROUTINE WAS
; ENTERED
; REGISTERS EAX, ECX, EDX ARE CONSIDERED VOLATILE AND ASSUMED TO BE CHANGED
; WHILE THE REGISTERS BELOW MUST BE PRESERVED IF THE USER IS CHANGING THEM
 femms
 pop edi
 pop esi
 pop ebx
 mov esp, ebp
 pop ebp
;===
 ret
_cmplx_multiply_3dnow ENDP
_TEXT ENDS
END

The illustrations above make use of many optimization techniques. First, the 3DNow! technology
code utilizes the PSWAPD and PFPNACC instructions, whose operations are outlined below:

; PSWAPD
; Suppose that MM0 contains two floats: r and i.
; INPUT:
; MM0 = [i,r]
; OUTPUT:
; MM1 = [r,i]
226 Optimizing with SIMD Instructions Chapter 9

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
pswapd mm1, mm0 ; MM1 = [r,i]

; Additionally, PSWAPD can be used with a 64-bit memory location. Suppose
; that EDI contains the address of two floats: r and i.
; INPUT:
; [EDI:EDI+8] = [b,a]
; OUTPUT:
; MM1 = [r,i]

pswapd mm1, [edi] ; MM1 = [r,i]

; PFPNACC
; Suppose that MM0 contains two floats: r1 * r2 (the product of the real parts
; of 2 complex numbers) and i1 * i2 (the product of the imaginary parts
; of 2 complex numbers).
; Also suppose that MM1 contains two floats: r1 * i2 (the product of the real
; part of the first complex number and the imaginary part of the second
; complex number) and i1 * r2 (the product of the imaginary part of the
; first complex number and the real part of the second complex number).
; INPUTS:
; MM0 = [i1*i2,r1*r2]
; MM1 = [i1*r2,r1*i2]
; OUTPUT:
; MM0 = [r1*i2+i1*r2,r1*r2-i1*i2]

pfpnacc mm0, mm1 ; MM0 = [r1*i2+i1*r2,r1*r2-i1*i2]

; Additionally, PSWAPD can be used with a 64-bit memory location. Suppose
; that EDI contains the address of two floats: r1 * i2 (the product of the
; real part of the first complex number and the imaginary part of the
; second complex number) and i1 * r2 (the product of the imaginary part of
; the first complex and the real part of the second complex number).
; INPUTS:
; MM0 = [i1*i2,r1*r2]
; [EDI:EDI+8] = [i1*r2,r1*i2]
; OUTPUT:
; MM0 = [r1*i2+i1*r2,r1*r2-i1*i2]

pfpnacc mm0, [edi] ; MM0 = [r1*i2+i1*r2,r1*r2-i1*i2]

The PFPNACC instruction is specifically designed for use in complex arithmetic operations.
Chapter 9 Optimizing with SIMD Instructions 227

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Additionally, four complex numbers are concurrently multiplied in the examples using SSE and
3DNow! instructions to break up register dependencies. Loads, multiplications, and additions do not
execute with zero delay, but have a latency associated with them. The following instructions:

movq mm0, QWORD PTR [esi+ecx*8] ; mm0 = [x0i,x0r]
pswapd mm4, QWORD PTR [esi+ecx*8] ; mm4 = [x0r,x0i]
pfmul mm0, QWORD PTR [edi+ecx*8] ; mm0 = [x0i*y0i,x0r*y0r]
pfmul mm4, QWORD PTR [edi+ecx*8] ; mm4 = [x0r*y0i,x0i*y0r]
pfpnacc mm0, mm4 ; mm0 = [x0r*y0i+x0i*y0r,x0r*y0r-x0i*y0i]

are dependent upon one another. The move from memory (MOVQ) requires 2 cycles, PSWAPD also
requires 2 cycles, the two PFMUL instructions require 6 cycles, and PFPNACC requires 6 cycles.
The instruction flow through the processor is illustrated on a clock-cycle basis, as follows:

Instruction 0 2 4 6 8 10 12 14

MOVQ xxxxxx
PSWAPD xxxxxx
PFMUL xxxxxxxxxxxxxxxxxx
PFMUL xxxxxxxxxxxxxxxxxx
PFPNACC xxxxxxxxxxxxxxxxxxx

and takes 15 cycles to finish. During this 15 cycles, the processor has the ability to perform 60 single-
precision floating-point operations, of which it only performs six. The majority of the time is spent
waiting for previous instructions to terminate so that arguments to future instructions are available. By
unrolling the multiplication, working with four complex numbers per clock, there are enough
228 Optimizing with SIMD Instructions Chapter 9

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
instructions that are not dependent on previous or presently executing operations so that the processor
can mask the execution latency by keeping itself busy, as illustrated below:

Instruction 0 2 4 6 8 10 12 14 16 18

MOVQ xxxxxx
MOVQ xxxxxx
MOVQ xxxxxx
MOVQ xxxxxx
PSWAPD xxxxxx
PSWAPD xxxxxx
PSWAPD xxxxxx
PSWAPD xxxxxx
PFMUL xxxxxxxxxxxxxxxxxx
PFMUL xxxxxxxxxxxxxxxxxx
PFMUL xxxxxxxxxxxxxxxxxx
PFMUL xxxxxxxxxxxxxxxxxx
PFMUL xxxxxxxxxxxxxxxxxx
PFMUL xxxxxxxxxxxxxxxxxx
PFMUL xxxxxxxxxxxxxxxxxx
PFMUL xxxxxxxxxxxxxxxxxx
PFPNACC xxxxxxxxxxxxxxxxxxx
PFPNACC xxxxxxxxxxxxxxxxxxx
PFPNACC xxxxxxxxxxxxxxxxxxx
PFPNACC xxxxxxxxxxxxxxxxxxx

Multiplying four complex single-precision numbers only takes 17 cycles as opposed to 14 cycles to
multiply one complex single-precision number. The floating-point pipes are kept busy by feeding new
instructions into the floating-point pipeline each cycle. In the arrangement above, 24 floating-point
operations are performed in 17 cycles, achieving more than a 3.5x increase in performance.

The last optimization in both implementations is the use of the MOVNTQ and MOVNTPS
instructions, nontemporal writes to memory that stream data to main memory. These instructions
increase throughput to memory and make more efficient use of the bandwidth provided by the
processor and memory controller. Nontemporal writes, such as MOVNTQ, MOVNTPS, and
MOVNTDQ, should only be used on data that is not going to be accessed again in the near future.
Chapter 9 Optimizing with SIMD Instructions 229

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
9.17 Optimized 4 × 4 Matrix Multiplication on 4 × 1
Column Vector Routines

Optimization

Transpose the rotation matrix to eliminate the need to accumulate floating-point values in an XMM
register.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The multiplication of a 4 × 4 matrix with a 4 × 1 vector is commonly used in 3-D graphics for
geometric transformation (translating, scaling, rotating, and applying perspective to 3-D points
represented in homogeneous coordinates). Efficiency in single-precision matrix multiplication can be
enhanced by use of SIMD instructions to increase throughput, but there are other general
optimizations that can be implemented to further increase performance. The first optimization is the
transposition of the rotation matrix such that the column n of the matrix becomes the row n and the
row m becomes the column m. This optimization does not benefit 3DNow! technology code (3DNow!
technology has extended instructions that preclude the need for this optimization), but does benefit
SSE code. There are no SSE or SSE2 instructions that accumulate the floats and doubles in a single
XMM register; for this reason, the matrix must be transposed. If the rotation matrix is not transposed,
then the dot-product of a row of the matrix with a column vector necessitates the accumulation of the
four floating-point values in an XMM register. The multiplication upon the column vector is
illustrated here:

 |r00 r01 r02 r03| |r00 r10 r20 r30| |v0| |v'0|
tr(R) x v = tr |r10 r11 r12 r13| x v = |r01 r11 r21 r31| x |v1| = |v'1|
 |r20 r21 r22 r23| |r02 r12 r22 r32| |v2| |v'2|
 |r30 r31 r32 r33| |r03 r13 r23 r33| |v3| |v'3|

 Step 0 Step 1 Step 2 Step 3
v'0		r00 x v0		r01 x v1	+	r02 x v2	+	r03 x v3
v'1	=	r10 x v0	+	r11 x v1	+	r12 x v2	+	r13 x v3
v'2		r20 x v0		r21 x v1	+	r22 x v2	+	r23 x v3
v'3		r30 x v0		r31 x v1	+	r32 x v2	+	r33 x v3

In each step above, the elements of the rotation matrix can be loaded into an XMM register with the
MOVAPS instruction, assuming the rotation matrix begins at a 16-byte-aligned memory location.
Transposition of the rotation matrix eliminates the need to accumulate the floating-point values in an
230 Optimizing with SIMD Instructions Chapter 9

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
XMM register, but it does require the duplication of the elements of the 4 × 1 column vector V in all
four floating-point values of the XMM register in each step above. Listing 27 is an SSE function that
performs 4 × 4 matrix multiplication upon a stream of num_vertices_to_rotate vertices.

Examples

Listing 27. 4 × 4 Matrix Multiplication (SSE)
; matrix_x_vector_sse(float *trR, float *v, int num_vertices_to_rotate,
 float *rotv);
;
; TO ASSEMBLE INTO *.obj DO THE FOLLOWING:
; ml.exe -coff -c matrix_x_vector_sse.asm
;
.586
.K3D
.XMM
_TEXT SEGMENT
PUBLIC _matrix_x_vector_sse
_matrix_x_vector_sse PROC NEAR
;==
; INSTRUCTIONS BELOW SAVE THE REGISTER STATE WITH WHICH THIS ROUTINE WAS
; ENTERED.
; REGISTERS EAX, ECX, AND EDX ARE CONSIDERED VOLATILE AND ASSUMED TO BE CHANGED,
; WHILE THE REGISTERS BELOW MUST BE PRESERVED IF THE USER IS CHANGING THEM
 push ebp
 mov ebp, esp
;==
; Parameters passed into routine:
; [ebp+8] = ->trR
; [ebp+12] = ->v
; [ebp+16] = num_vertices_to_rotate
; [ebp+20] = ->rotv
;==
 push ebx
 push esi
 push edi
;==
; THE 4 ASM LINES BELOW LOAD THE FUNCTION's ARGUMENTS INTO GENERAL-PURPOSE
; REGISTERS (GPRS)
; esi = address of Transposed Rotation Matrix
; edi = address of vertices to rotate
; ecx = # of vertices to rotate
; eax = address of rotated vertices
;==
 mov esi, [ebp+8] ; ESI = ->trR
 mov edi, [ebp+12] ; EDI = ->v
 mov ecx, [ebp+16] ; ECX = num_vertices_to_rotate
 mov edx, ecx ; EDX = num_vertices_to_rotate
 shl edx, 4 ; EDX = 16*num_vertices_to_rotate
 mov eax, [ebp+20] ; EAX = ->rotv
Chapter 9 Optimizing with SIMD Instructions 231

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
 imul ecx, 2 ; ECX = # quadwords of vertices to rotate
 add edi, edx ; EDI = -> end of "v"
 add eax, edx ; EAX = -> end of "rotv"
 neg ecx ; ECX = -# quadwords of vertices to rotate
;==
; THE 4 ASM LINES BELOW LOAD THE TRANSPOSED ROTATION MATRIX "R" INTO XMM0-XMM3
; IN THE FOLLOWING MANNER:
; xmm0 = column 0 of "R" or row 0 of "R" transpose
; xmm1 = column 1 of "R" or row 1 of "R" transpose
; xmm2 = column 2 of "R" or row 2 of "R" transpose
; xmm3 = column 3 of "R" or row 3 of "R" transpose
;==
 movaps xmm0, [esi] ; XMM0 = [R30,R20,R10,R00]
 movaps xmm1, [esi+16] ; XMM1 = [R31,R21,R11,R01]
 movaps xmm2, [esi+32] ; XMM2 = [R32,R22,R12,R02]
 movaps xmm3, [esi+48] ; XMM3 = [R33,R23,R13,R03]
;==
; THIS LOOP ROTATES "num_vertices_to_rotate" VERTICES BY THE TRANSPOSED
; ROTATION MATRIX "R" PASSED INTO THE ROUTINE AND STORES THE ROTATED
; VERTICES TO "rotv".
;==
ALIGN 16 ; Align address of loop to a 16-byte boundary.
rotate_vertices_loop:
 movlps xmm4, [edi+8*ecx] ; XMM4=[,,v1,v0]
 movlps xmm6, [edi+8*ecx+8] ; XMM6=[,,v3,v2]
 unpcklps xmm4, xmm4 ; XMM4=[v1,v1,v0,v0]
 unpcklps xmm6, xmm6 ; XMM6=[v3,v3,v2,v2]
 movhlps xmm5, xmm4 ; XMM5=[,,v1,v1]
 movhlps xmm7, xmm6 ; XMM7=[,,v3,v3]
 movlhps xmm4, xmm4 ; XMM4=[v0,v0,v0,v0]
 mulps xmm4, xmm0 ; XMM4=[R30*v0,R20*v0,R10*v0,R00*v0]
 movlhps xmm5, xmm5 ; XMM5=[v1,v1,v1,v1]
 mulps xmm5, xmm1 ; XMM5=[R31*v1,R21*v1,R11*v1,R01*v1]
 movlhps xmm6, xmm6 ; XMM6=[v2,v2,v2,v2]
 mulps xmm6, xmm2 ; XMM6=[R32*v2,R22*v2,R12*v2,R02*v2]
 addps xmm4, xmm5 ; XMM4=[R30*v0+R31*v1,R20*v0+R21*v1,
 ; R10*v0+R11*v1,R00*v0+R01*v1]
 movlhps xmm7, xmm7 ; XMM7=[v3,v3,v3,v3]
 mulps xmm7, xmm3 ; XMM6=[R33*v3,R23*v3,R13*v3,R03*v3]
 addps xmm6, xmm7 ; XMM6=[R32*v2+R33*v3,R22*v2+R23*v3,
 ; R12*v2+R13*v3,R02*v2+R03*v3]
 addps xmm4, xmm6 ; XMM4=New rotated vertex
 movntps [eax+8*ecx], xmm4 ; Store rotated vertex to rotv.
 add ecx, 2 ; Decrement the # of QWORDs to rotate by 2.
 jnz rotate_vertices_loop

 sfence ; Finish all memory writes.

;==
; INSTRUCTIONS BELOW RESTORE THE REGISTER STATE WITH WHICH THIS ROUTINE
; WAS ENTERED
232 Optimizing with SIMD Instructions Chapter 9

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
; REGISTERS EAX, ECX, EDX ARE CONSIDERED VOLATILE AND ASSUMED TO BE CHANGED
; WHILE THE REGISTERS BELOW MUST BE PRESERVED IF THE USER IS CHANGING THEM
 pop edi
 pop esi
 pop ebx
 mov esp, ebp
 pop ebp
;==
 ret
_matrix_x_vector_sse ENDP
_TEXT ENDS
END

To greatly enhance performance, the previous function can perform the matrix multiplication not only
upon one four-column vector, but upon many. Creating a separate function to transform a single
vertex and repeatedly calling the function is prohibitively expensive because of the overhead in
pushing and popping registers from the stack. This applies to routines that negate a single vector,
nullify a single vector, and add two vectors. Listing 28 is the 3DNow! technology counterpart to
Listing 27 on page 231.

Listing 28. 4 × 4 Matrix Multiplication (3DNow!™ Technology)
; matrix_x_vector_3dnow(float *trR, float *v, int num_vertices_to_rotate,
 float *rotv);
;
; TO ASSEMBLE INTO *.obj DO THE FOLLOWING:
; ml.exe -coff -c matrix_x_vector_3dnow.asm
;
.586
.K3D
.XMM
_TEXT SEGMENT
PUBLIC _matrix_x_vector_3dnow
_matrix_x_vector_3dnow PROC NEAR
;==
; INSTRUCTIONS BELOW SAVE THE REGISTER STATE WITH WHICH THIS ROUTINE WAS
; ENTERED.
; REGISTERS EAX, ECX, AND EDX ARE CONSIDERED VOLATILE AND ASSUMED TO BE CHANGED,
; WHILE THE REGISTERS BELOW MUST BE PRESERVED IF THE USER IS CHANGING THEM
 push ebp
 mov ebp, esp
;==
; Parameters passed into routine:
; [ebp+8] = ->trR
; [ebp+12] = ->v
; [ebp+16] = num_vertices_to_rotate
; [ebp+20] = ->rotv
;==
 push ebx
 push esi
 push edi
;===
Chapter 9 Optimizing with SIMD Instructions 233

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
; THE 4 ASM LINES BELOW LOAD THE FUNCTION’S ARGUMENTS INTO GENERAL-PURPOSE
; REGISTERS (GPRs)
; eax = address of Transposed Rotation Matrix
; edx = address of vertices to rotate
; ecx = # of vertices to rotate
; ebx = address of rotated vertices
;==
 mov eax, [ebp+8] ; ESI = ->R
 mov edx, [ebp+12] ; EDI = ->v
 mov ecx, [ebp+16] ; ECX = num_vertices_to_rotate
 mov ebx, [ebp+20] ; EAX = ->rotv

 femms ; Clear MMX state.
ALIGN 16 ; Ensure optimal branch alignment.
;==
; THIS LOOP ROTATES "num_vertices_to_rotate" VERTICES BY THE TRANSPOSED
; ROTATION MATRIX "R" PASSED INTO THE ROUTINE AND STORES THE ROTATED
; VERTICES TO "rotv".
;==
rotate_vertices_loop:
 add ebx,16 ; Increment ->v to next vertex.
 movq mm0,[edx] ; MM0 = [y,x]
 movq mm1,[edx+8] ; MM1 = [w,z]
 add edx,16 ; Increment ->rotv to next transformed vertex.
 movq mm2,mm0 ; MM2 = [y,x]
 movq mm3,[eax] ; MM3 = [R01,R00]
 punpckldq mm0,mm0 ; MM0 = [x,x]
 movq mm4,[eax+16] ; MM4 = [R11,R10]
 pfmul mm3,mm0 ; MM3 = [x*R01,x*R00]
 punpckhdq mm2,mm2 ; MM2 = [y,y]
 pfmul mm4,mm2 ; MM4 = [y*R11,y*R10]
 movq mm5,[eax+8] ; MM5 = [R03,R02]
 movq mm7,[eax+24] ; MM7 = [R13,R12]
 movq mm6,mm1 ; MM6 = [w,z]
 pfmul mm5,mm0 ; MM5 = [x*R03,x*R02]
 movq mm0,[eax+32] ; MM0 = [R21,R20]
 punpckldq mm1,mm1 ; MM1 = [z,z]
 pfmul mm7,mm2 ; MM7 = [y*R13,y*R12]
 movq mm2,[eax+40] ; MM2 = [R23,R22]
 pfmul mm0,mm1 ; MM0 = [z*R21,z*R20]
 pfadd mm3,mm4 ; MM3 = [x*R01+y*R11,x*R00+y*R10]
 movq mm4,[eax+48] ; MM4 = [R31,R30]
 pfmul mm2,mm1 ; MM2 = [z*R23,z*R22]
 pfadd mm5,mm7 ; MM5 = [x*R03+y*R13],x*R02+y*R12]
 movq mm1,[eax+56] ; MM1 = [R33,R32]
 punpckhdq mm6,mm6 ; MM6 = [w,w]
 pfadd mm3,mm0 ; MM3 = [x*R01+y*R11+z*R21,x*R00+y*R10+z*R20]
 pfmul mm4,mm6 ; MM4 = [w*R31,w*R30]
 pfmul mm1,mm6 ; MM1 = [w*R33,w*R32]
 pfadd mm5,mm2 ; MM5 = [x*R03+y*R13+z*R23,x*R02+y*R12+z*R22]
 pfadd mm3,mm4 ; MM3 = [x*R01+y*R11+z*R21+w*R31,
234 Optimizing with SIMD Instructions Chapter 9

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
 ; x*R00+y*R10+z*R20+w*R30]
 movntq [ebx-16],mm3 ; Store lower quadword of transformed vertex.
 pfadd mm5,mm1 ; MM3 = [x*R03+y*R13+z*R23+w*R33,
 ; x*R02+y*R12+z*R22+w*R32]
 movntq [ebx-8],mm5 ; Store upper QWORD of transformed vertex.
 dec ecx ; Decrement # of vertices to transform.
 jnz rotate_vertices_loop
 femms ; Clear MMX state.

 sfence ; Finish all memory writes.

;==
; INSTRUCTIONS BELOW RESTORE THE REGISTER STATE WITH WHICH THIS ROUTINE
; WAS ENTERED.
; REGISTERS EAX, ECX, EDX ARE CONSIDERED VOLATILE AND ASSUMED TO BE CHANGED
; WHILE THE REGISTERS BELOW MUST BE PRESERVED IF THE USER IS CHANGING THEM
 pop edi
 pop esi
 pop ebx
 mov esp, ebp
 pop ebp
;==
 ret
_matrix_x_vector_3dnow ENDP
_TEXT ENDS
END
Chapter 9 Optimizing with SIMD Instructions 235

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
236 Optimizing with SIMD Instructions Chapter 9

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Chapter 10 x87 Floating-Point Optimizations

AMD Athlon™ 64 and AMD Opteron™ processors support multiple methods of performing
floating-point operations. They support the older x87 assembly instructions in addition to the more
recent SIMD instructions (SSE, SSE2, and 3DNow!™ technologies). Many of the suggestions in this
chapter are also generally applicable to the AMD Athlon 64 and AMD Opteron processors, with the
exception of SSE2 optimizations and expanded register usage.

AMD Athlon 64 and AMD Opteron processors are 64-bit processors that are fully backwards
compatible with 32-bit code. In general, 64-bit operating systems support the x87 and 3DNow!
instructions in 32-bit threads; however, 64-bit operating systems may not support x87 and 3DNow!
instructions in 64-bit threads. To make it easier to later migrate from 32-bit to 64-bit code, you may
want to avoid x87 and 3DNow! instructions altogether and use only SSE and SSE2 instructions when
writing new 32-bit code.

This chapter details the methods used to optimize floating-point code to the pipelined x87 floating-
point registers.

This chapter covers the following topics:

Topic Page

Using Multiplication Rather Than Division 238

Achieving Two Floating-Point Operations per Clock Cycle 239

Floating-Point Compare Instructions 244

Using the FXCH Instruction Rather Than FST/FLD Pairs 245

Floating-Point Subexpression Elimination 246

Accumulating Precision-Sensitive Quantities in x87 Registers 247

Avoiding Extended-Precision Data 248
Chapter 10 x87 Floating-Point Optimizations 237

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
10.1 Using Multiplication Rather Than Division

Optimization

If accuracy requirements allow, convert floating-point division by a constant to multiplication by the
reciprocal.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Divisors that are powers of two—and their reciprocals—are exactly representable, and therefore do
not cause an accuracy issue, except for the rare case in which the reciprocal overflows or underflows.
Unless such an overflow or underflow occurs, always convert a division by a power of two for
multiplication. Although the AMD Athlon 64 and AMD Opteron processors have high-performance
division, multiplication is significantly faster than division.
238 x87 Floating-Point Optimizations Chapter 10

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
10.2 Achieving Two Floating-Point Operations per
Clock Cycle

Optimization

Pay special attention to the order and packing of the operations to sustain up to two floating-point
operations per clock cycle.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The floating-point unit in the AMD Athlon, AMD Athlon 64, and AMD Opteron processors can
sustain up to two floating-point operations per clock cycle. However, to achieve this, you must pay
special attention to the order and packing of the operations. For example, consider multiplying a
30 × 30 double-precision matrix A by a transposed 30 × 30 double-precision matrix B, the result of
which is called C.

Use Efficient Addressing of FPU Data When Loading and Storing

The rows of A are 240 bytes wide, as are the columns of B. There are eight x87 floating-point
registers [ST(0)–ST(7)], and in this example, six rows of A are concurrently multiplied by a single
column of B. The address of the first element of the first row of A (A[0]) is presumed to be stored in
the EDI register, while the address of the first element of the first column of B (B[0]) is stored in ESI.

This addressing scheme might seem like a good idea, but it is not. Only 128 bytes can be addressed
forward of A[0] with 8-bit offsets, meaning the size of the instructions are only 3 bytes (2 bytes for
the instruction and 1 byte for the offset to the address stored in the general-purpose register). Upon
offsetting more than 128 bytes from the address in the general-purpose register, the size of the
instruction increases from 3 bytes to 6 bytes (offsets larger than 128 bytes are represented by 32 bits
rather than 8 bits). Large instruction sizes reduce the number of decoded operations to be executed
within the pipes of the floating-point unit, and as such prevent us from achieving two floating-point
operations per clock cycle. To alleviate this, the general-purpose registers EDI and ESI are offset by
128 bytes such that they contain the addresses of A[15] and B[15]. This is beneficial because data
within 128 bytes (16 double-precision numbers) before or after these two locations can now be
accessed with instructions that are 2–3 bytes in size. The next five rows of A can be efficiently
addressed in terms of the first row. Storing the size of a single row of A (240 bytes) in the EAX
Chapter 10 x87 Floating-Point Optimizations 239

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
register, the size of three rows (720 bytes) in EBX, and the size of five rows (1200 bytes) in ECX, the
first element of rows 0–5 of A can be addressed as follows:

fld QWORD PTR [edi-128] ; Load A[i,0].
fld QWORD PTR [edi+eax-128] ; Load A[i+1,0].
fld QWORD PTR [edi+eax*2-128] ; Load A[i+2,0].
fld QWORD PTR [edi+ebx-128] ; Load A[i+3,0].
fld QWORD PTR [edi+eax*4-128] ; Load A[i+4,0].
fld QWORD PTR [edi+ecx-128] ; Load A[i+5,0].

This addressing scheme reduces the size of all loads from memory to 3 bytes; additionally, to address
rows 6–11 of A, you only need to add 240*6 to EDI.

Avoid Register Dependencies by Spacing Apart Instructions that Accumulate Results
in a Register

The second general optimization to consider is spacing out register dependencies. Operations
internally in the floating-point unit have an execution latency (normally 3–4 cycles for x87
operations). Consider this instruction sequence:

fldz ; Push 0.0 onto floating-point stack.
fld QWORD PTR [edi-128] ; Push A[i,0] onto stack.
fmul QWORD PTR [esi-128] ; Multiply A[i,0] by B[0,j].
faddp st(1), st(0) ; Accumulate contribution to dot product of
 ; A’s row i and B’s column j.
fld QWORD PTR [edi-120] ; Push A[i,1] onto stack.
fmul QWORD PTR [esi-120] ; Multiply A[i,1] by B[1,j].
faddp st(1), st(0) ; Accumulate contribution to dot product of
 ; A’s row i and B’s column j.
fld QWORD PTR [edi-112] ; Push A[i,2] onto stack.
fmul QWORD PTR [esi-112] ; Multiply A[i,2] by B[2,j].
faddp st(1), st(0) ; Accumulate contribution to dot product of
 ; A’s row i and B’s column j.

The second statement loads A[0] into ST(0), and the third statement multiplies it by B[0]. The
subsequent line adds this product to ST(1), where the dot product of row 0 of matrix A and column 0
of matrix B is accumulated. Each of the subsequent groups of three instructions adds the contribution
of the remaining 29 elements to the dot product. This code is poor because all the addition operations
depend upon the contents of a single register, ST(1). The AMD Athlon, AMD Athlon 64 and
AMD Opteron processors have out-of-order-execution floating-point units, but none of the addition
operations can be performed out of order because the result of each addition operation depends on the
outcome of the previous addition operation. Instruction scheduling based on this code greatly limits
the throughput of the floating-point unit. To alleviate this, space out operations that are dependent on
one another. In this case, work with six rows of A rather than one at a time, as follows:

; Multiply first element of each of six rows of A by first element of
; B’s column j.
fldz ; Push 0.0 six times onto floating-point stack.
fldz
240 x87 Floating-Point Optimizations Chapter 10

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
fldz
fldz
fldz
fldz
fld QWORD PTR [esi-128] ; Push B[0,j] onto stack.

fld QWORD PTR [edi-128] ; Push A[i,0] onto stack.
fmul st(0), st(1) ; Multiply A[i,0] by B[0,j].
faddp st(7), st(0) ; Accumulate contribution to dot product of
 ; A’s row i and B’s column j.

fld QWORD PTR [edi+eax-128] ; Push A[i+1,0] onto stack.
fmul st(0), st(1) ; Multiply A[i+1,0] by B[0,j].
faddp st(6), st(0) ; Accumulate contribution to dot product of
 ; A’s row i+1 and B’s column j.

fld QWORD PTR [edi+eax*2-128] ; Push A[i+2,0] onto stack.
fmul st(0), st(1) ; Multiply A[i+2,0] by B[0,j].
faddp st(5), st(0) ; Accumulate contribution to dot product of
 ; A’s row i+2 and B’s column j.

fld QWORD PTR [edi+ebx-128] ; Push A[i+3,0] onto stack.
fmul st(0), st(1) ; Multiply A[i+3,0] by B[0,j].
faddp st(4), st(0) ; Accumulate contribution to dot product of
 ; A’s row i+3 and B’s column j.

fld QWORD PTR [edi+eax*4-128] ; Push A[i+4,0] onto stack.
fmul st(0), st(1) ; Multiply A[i+4,0] by B[0,j].
faddp st(3), st(0) ; Accumulate contribution to dot product of
 ; A’s row i+4 and B’s column j.

fmul QWORD PTR [edi+ecx-128] ; Multiply A[i+5,0] by B[0,j].
faddp st(1), st(0) ; Accumulate contribution to dot product of
 ; A’s row i+5 and B’s column j.

The processor can execute the instructions in this code sequence out of order because the instructions
are independent. Even though the loads and multiplies are performed sequentially, the floating-point
scheduler can execute the FLD and FMUL instructions out of order in addition to the FADD
instruction so as to keep the multiplier and adder pipes of the floating-point unit busy. B[0] is initially
loaded into an x87 register and multiplied by the loaded elements of each row with the reg, reg
form of FMUL to minimize the number of load operations that need to be performed. Additionally,
the first element from the sixth row of A is not loaded but simply multiplied from memory by the
loaded element of B[0]. This eliminates an FLD instruction and decreases the number of instructions
in the instruction cache and the workload on the processor’s decoder. To achieve two floating-point
operations per clock cycle, the number of floating-point operations should be twice the number of
load-store operations. In the example above, there are 12 floating-point operations and seven
operations requiring loads from memory, so nearly two floating-point operations can be performed
per clock cycle.
Chapter 10 x87 Floating-Point Optimizations 241

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Align and Pack DirectPath x87 Instructions

The last optimization to be performed is code packing and alignment. Having an abundance of
operations in the decoder keeps the processor’s schedulers well fed in circumstances where
instructions cannot be immediately provided to the decoders. Floating-point x87 code can be aligned
to 8-byte boundaries as illustrated here, which is optimal on AMD Athlon, AMD Athlon 64, and
AMD Opteron processors:

;Instruction Address Opcode Instruction
;==
 00000360 66 DB 066h
 00000361 DD 06 fld QWORD PTR [esi]
 00000363 66 DB 066h
 00000364 DD 07 fld QWORD PTR [edi]
 00000366 D8 C9 fmul st(0), st(1)

 00000368 DE C7 faddp st(7), st(0)
 0000036A DD 04 38 fld QWORD PTR [edi+eax]
 0000036D 66 DB 066h
 0000036E D8 C9 fmul st(0), st(1)

 00000370 DE C6 faddp st(6), st(0)
 00000372 DD 04 47 fld QWORD PTR [edi+eax*2]
 00000375 66 DB 066h
 00000376 D8 C9 fmul st(0), st(1)

 00000378 DE C5 faddp st(5), st(0)
 0000037A DD 04 3B fld QWORD PTR [edi+ebx]
 0000037D 66 DB 066h
 0000037E D8 C9 fmul st(0), st(1)

 00000380 DE C4 faddp st(4), st(0)
 00000382 DD 04 87 fld QWORD PTR [edi+eax*4]
 00000385 66 DB 066h
 00000386 D8 C9 fmul st(0), st(1)

 00000388 DE C3 faddp st(3), st(0)
 0000038A DC 0C 39 fmul QWORD PTR [edi+ecx]
 0000038D 66 DB 066h
 0000038E DE C1 faddp st(1), st(0)

The instruction address specifies the address (in hexadecimal) of the instruction to the right.

Typically three DirectPath instructions occupy 7 bytes. Maintaining 8-byte alignment for the next
group of three instructions requires the addition of a single byte. A 1-byte padding can easily be
achieved using the single-byte NOP instruction (opcode 90h), as recommended in “Code Padding
with Operand-Size Override and NOP” on page 89. However, for the special case of x87 instructions,
242 x87 Floating-Point Optimizations Chapter 10

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
the operand-size override (66h) serves as a high-performance NOP instruction and is the
recommended choice for padding an x87 instruction without altering its behavior, as shown here:

DB 066h ; Operand-size override used as high-performance NOP instruction

This usage of the operand-size override alone as a filler byte (without an accompanying NOP
instruction) is permitted only for x87 instructions. This usage of the operand-size override can be
applied to all but four of the x87 instructions. The FLDENV, FRSTOR, FSTENV, and FSAVE
instructions and their no-wait forms behave differently when associated with an operand-size
override; therefore, these should not be padded with the operand-size override.
Chapter 10 x87 Floating-Point Optimizations 243

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
10.3 Floating-Point Compare Instructions

Optimization

For branches that are dependent on floating-point comparisons, use the FCOMI, FCOMIP, FUCOMI,
and FUCOMIP instructions:

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The FCOMI, FCOMIP, FUCOMI, and FUCOMIP instructions are much faster than the classical
approach using FSTSW. When FSTSW cannot be avoided (for example, backward compatibility of
code with older processors), no floating-point instruction should occur between an FCOM, FCOMP,
FCOMPP, FICOM, FICOMP, FUCOM, FUCOMP, FUCOMPP, or FTST instruction and a dependent
FSTSW instruction. This optimization allows the use of a fast-forwarding mechanism for the floating-
point condition codes internal to the processor’s floating-point unit and increases performance.
244 x87 Floating-Point Optimizations Chapter 10

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
10.4 Using the FXCH Instruction Rather Than FST/FLD
Pairs

Optimization

Increase parallelism by breaking up dependency chains or by evaluating multiple dependency chains
simultaneously by explicitly switching execution between them.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Although the AMD Athlon 64 and AMD Opteron processor’s floating-point unit has a deep
scheduler, which in most cases can extract sufficient parallelism from existing code, long dependency
chains can stall the scheduler while issue slots are still available. The maximum dependency chain
length that the scheduler can absorb is about six four-cycle instructions.

To switch execution between dependency chains, use of the FXCH instruction is recommended
because it has an apparent latency of zero cycles and generates only one micro-op. The floating-point
unit of the AMD Athlon 64 and AMD Opteron processors contains special hardware to handle up to
three FXCH instructions per cycle. Using FXCH is preferred over the use of FST/FLD pairs, even if
the FST/FLD pair works on a register. An FST/FLD pair adds two cycles of latency and consists of
two macro-ops.
Chapter 10 x87 Floating-Point Optimizations 245

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
10.5 Floating-Point Subexpression Elimination

Optimization

Reduce the number of superfluous FXCH instructions by putting the shared source operand at the top
of the stack to eliminate subexpressions.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

There are cases that do not require an FXCH instruction after every instruction to allow access to two
new stack entries. In the cases where two instructions share a source operand, an FXCH is not
required between the two instructions. When there is an opportunity for subexpression elimination,
reduce the number of superfluous FXCH instructions by putting the shared source operand at the top
of the stack—for example:

Examples

Listing 29. Avoid
;=====================
; func((x*y),(x+z))
;=====================
fld x ; x
fld y ; y x
fld x ; x y x
fld z ; z x y x
faddp st(1), st ; x+z y x
fxch st(2) ; x y x+z
fmulp st(1), st ; x*y x+z

Listing 30. Preferred
fld z ; z
fld y ; y z
fld x ; x y z
fmul st(1), st ; x x*y z
faddp st(2), st ; x*y x+z
246 x87 Floating-Point Optimizations Chapter 10

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
10.6 Accumulating Precision-Sensitive Quantities in
x87 Registers

Optimization

Accumulate results in the x87 registers rather than the SSE and SSE2 XMM registers, if more than
64 bits of accuracy are required.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

More than 64 bits of accuracy may be required, as when accumulating a result (for example, during
the calculation of dot product). The precision of floating-point operations in the x87 registers ST(0)–
ST(7) is 80 bits internally, whereas the precision of operations using SIMD instructions is only
64 bits.
Chapter 10 x87 Floating-Point Optimizations 247

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
10.7 Avoiding Extended-Precision Data

Optimization

Store floating-point data in single-precision or double-precision format.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Loading and storing extended-precision data is significantly slower than storing single- or double-
precision data.
248 x87 Floating-Point Optimizations Chapter 10

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Appendix A Microarchitecture for
AMD Athlon™ 64 and
AMD Opteron™ Processors

When discussing processor design, it is important to understand the terms architecture,
microarchitecture, and design implementation.

The architecture consists of the instruction set and those features of a processor that are visible to
software programs running on the processor. The architecture determines what software the processor
can run. The AMD64 architecture of the AMD Athlon™ 64 and AMD Opteron™ processors is
compatible with the industry-standard x86 instruction set.

The term microarchitecture refers to the design features used to reach the target cost, performance,
and functionality goals of the processor. The AMD64 architecture employs a decoupled
decode/execution design approach. In other words, decoders and execution units essentially operate
independently; the execution core uses a small number of instructions and simplified circuit design
for fast single-cycle execution and fast operating frequencies.

The design implementation refers to a particular combination of physical logic and circuit elements
that comprise a processor that meets the microarchitecture specifications.

This appendix covers the following topics:

Topic Page

Key Microarchitecture Features 250

Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors 251

Superscalar Processor 251

Processor Block Diagram 251

L1 Instruction Cache 252

Branch-Prediction Table 253

Fetch-Decode Unit 254

Instruction Control Unit 254

Translation-Lookaside Buffer 254

L1 Data Cache 255

Integer Scheduler 256

Integer Execution Unit 256

Floating-Point Scheduler 257

Floating-Point Execution Unit 258
Appendix A Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors 249

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
A.1 Key Microarchitecture Features
The AMD Athlon 64 and AMD Opteron processors include many features designed to improve
software performance. The internal design, or microarchitecture, of these processors provides the
following key features:

• Integrated DDR memory controller

• 64-Kbyte L1 instruction cache and 64-Kbyte L1 data cache

• On-chip L2 cache

• Instruction predecode and branch prediction during cache-line fills

• Decoupled decode/execution core

• Three-way AMD64 instruction decoding

• Dynamic scheduling and speculative execution

• Three-way integer execution

• Three-way address generation

• Three-way floating-point execution

• 3DNow!™ technology, MMX™, SSE, and SSE2 single-instruction multiple-data (SIMD)
instruction extensions

• Superforwarding

• Deep out-of-order integer and floating-point execution

• In 64-bit mode, eight additional XMM registers (for use with SSE and SSE2 instructions) and
eight additional general-purpose registers (GPRs)

• HyperTransport™ technology

Load-Store Unit 258

L2 Cache 259

Write-combining 260

Buses for AMD Athlon™ 64 and AMD Opteron™ Processor 260

Integrated Memory Controller 260

HyperTransport™ Technology Interface 260

Topic Page
250 Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors Appendix A

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
A.2 Microarchitecture for AMD Athlon™ 64 and
AMD Opteron™ Processors

The AMD Athlon 64 and AMD Opteron processors implement the AMD64 instruction set by means
of micro-ops—simple fixed-length operations designed to include direct support for AMD64
instructions and adhere to the high-performance principles of fixed-length encoding, regularized
instruction fields, and a large register set. The enhanced microarchitecture enables higher processor
core performance and promotes straightforward extensibility for future designs.

A.3 Superscalar Processor
The AMD Athlon 64 and AMD Opteron processors are aggressive, out-of-order, three-way
superscalar AMD64 processors. They can fetch, decode, and issue up to three AMD64 instructions
per cycle with a centralized instruction control unit (ICU) and two independent instruction
schedulers—an integer scheduler and a floating-point scheduler. These two schedulers can
simultaneously issue up to nine micro-ops to the three general-purpose integer execution units
(ALUs), three address-generation units (AGUs), and three floating-point execution units. The
processors move integer instructions down the integer execution pipeline, which consists of the
integer scheduler and the ALUs, as shown in Figure 6 on page 252. Floating-point instructions are
handled by the floating-point execution pipeline, which consists of the floating-point scheduler and
the floating-point execution units.

A.4 Processor Block Diagram
A block diagram of the AMD Athlon 64 and AMD Opteron processors is shown in Figure 6 on
page 252.
Appendix A Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors 251

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Figure 6. AMD Athlon™ 64 and AMD Opteron™ Processors Block Diagram

A.5 L1 Instruction Cache
The out-of-order execution engine of the AMD Athlon 64 and AMD Opteron processors contains a
very large L1 instruction cache. Each line in this cache is 64 bytes long. Functions associated with the
L1 instruction cache are instruction loads, instruction prefetching, instruction predecoding, and
branch prediction. Requests that miss in the L1 instruction cache are fetched from the L2 cache or,
subsequently, from the local memory using the integrated memory controller.

The L1 instruction cache generates fetches on the naturally aligned 64 bytes containing the
instructions and the next sequential line of 64 bytes (a prefetch). The principle of program-spatial
locality makes code prefetching very effective and avoids or reduces execution stalls caused by the
amount of time required to read the necessary code. Cache-line replacement is based on a least-
recently-used replacement algorithm.

Level 2
Cache

L2 ECC
L2 Tags

L2 Tag ECC

System Request
Queue (SRQ)

Cross Bar
(XBAR)

Memory Controler
and

HypertransportTM

Instruction
TLB

Level 1 Instruction Cache

Data
TLB Level 1 Data Cache

Fetch 2 Transit

Target Array

and
Return Address

Branch Selectors
(4K)

Global History
CountersPick

Decode 1
Decode 2

Decode 1
Decode 2

Decode 1
Decode 2

Pack Pack Pack

Decode Decode DecodeDecode

8-Entry
Scheduler

8-Entry
Scheduler

8-Entry
Scheduler

36-Entry
Scheduler

AGU AGU AGUALU ALUALU FADD FMUL FMISC

ECC

Technology

16K 2-bit

(2K Targets)

Stack
(12 Entries)
252 Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors Appendix A

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Table 7 provides specifications on the L1 instruction cache for various AMD processors.

Predecoding begins as the L1 instruction cache is filled. Predecode information is generated and
stored alongside the instruction cache. This information is used to help efficiently identify the
boundaries between variable length AMD64 instructions.

A.6 Branch-Prediction Table
The AMD Athlon 64 and AMD Opteron processors assume that a branch is not taken until it is taken
once. Then it is assumed that the branch is taken, until it is not taken. Thereafter, the branch
prediction table is used.

The fetch logic accesses the branch prediction table in parallel with the L1 instruction cache. The
information stored in the branch prediction table is used to predict the direction of branch
instructions. When instruction cache lines are evicted to the L2 cache, branch selectors and predecode
information are also stored in the L2 cache.

The AMD Athlon 64 and AMD Opteron processors employ combinations of a branch target address
buffer (BTB), a global history bimodal counter (GHBC) table, and a return address stack (RAS) to
predict and accelerate branches. Predicted-taken branches incur only a single-cycle delay to redirect
the instruction fetcher to the target instruction. In the event of a misprediction, the minimum penalty
is 10 cycles.

The BTB is a 2048-entry table that caches in each entry the predicted target address of a branch. The
16384-entry GHBC table contains 2-bit saturating counters used to predict whether a conditional
branch is taken. The GHBC table is indexed using the outcome (taken or not taken) of the last eight
conditional branches and 4 bits of the branch address. The GHBC table allows the processors to
predict branch patterns of up to eight branches.

In addition, the processors implement a 12-entry return address stack to predict return addresses from
a near or far call. As calls are fetched, the next rIP is pushed onto the return stack. Subsequent returns
pop a predicted return address off the top of the stack.

Table 7. L1 Instruction Cache Specifications by Processor

Processor name Family Model Associativity Size (Kbytes)

AMD Athlon™ XP
processor

6 6 2 ways 64

AMD Athlon™ 64
processor

15 All 2 ways 64

AMD Opteron™
processor

15 All 2 ways 64
Appendix A Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors 253

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
A.7 Fetch-Decode Unit
The fetch-decode unit performs early decoding of AMD64 instructions into macro-ops. The outputs
of the early decoders keep all (DirectPath or VectorPath) instructions in program order. Early
decoding produces three macro-ops per cycle from either path. The outputs of both decoders are
multiplexed together and passed to the next stage in the pipeline, the instruction control unit.
Decoding a VectorPath instruction may prevent simultaneously decoding of a DirectPath instruction.

When the target 16-byte instruction window is obtained from the L1 instruction cache, the instruction
bytes are examined to determine whether the type of basic decode to occur is DirectPath or
VectorPath.

A.8 Instruction Control Unit
The instruction control unit (ICU) is the control center for the AMD Athlon 64 and AMD Opteron
processors. It controls the centralized in-flight reorder buffer, the integer scheduler, and the floating-
point scheduler. In turn, the ICU is responsible for the following functions: macro-op dispatch,
macro-op retirement, register and flag dependency resolution and renaming, execution resource
management, interrupts, exceptions, and branch mispredictions.

The instruction control unit takes the three macro-ops per cycle from the early decoders and places
them in a centralized, fixed-issue reorder buffer. This buffer is organized into 24 lines of three macro-
ops each. The reorder buffer allows the instruction control unit to track and monitor up to 72 in-flight
macro-ops (whether integer or floating-point) for maximum instruction throughput. The instruction
control unit can simultaneously dispatch multiple macro-ops from the reorder buffer to both the
integer and floating-point schedulers for final decode, issue, and execution as micro-ops. In addition,
the instruction control unit handles exceptions and manages the retirement of macro-ops.

A.9 Translation-Lookaside Buffer
A translation-lookaside buffer (TLB) is a special on-chip cache that holds a table that matches the
most-recently-used virtual addresses to their physical addresses.

The AMD Athlon 64 and AMD Opteron processors utilize a two-level TLB structure. A flush filter—
new on the AMD Athlon 64 and AMD Opteron processors—eliminates unnecessary TLB flushes
when loading the CR3 register.

L1 Instruction TLB Specifications

Table provides the specifications of the L1 instruction TLB for various AMD processors.
254 Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors Appendix A

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
L1 Data TLB Specifications

Table 9 provides the specifications of the L1 data TLB for various AMD processors.

Table 9. L1 Data TLB Specifications

L2 TLB Specifications

Table 10 provides the specifications on the L2 TLB for various AMD processors.

A.10 L1 Data Cache
The L1 data cache contains two 64-bit ports. It is a write-allocate and writeback cache that uses a
least-recently-used replacement policy. It is divided into eight banks, each eight bytes wide. In
addition, the L1 cache supports the MOESI (Modified, Owner, Exclusive, Shared, and Invalid) cache-
coherency protocol and data parity.

Table 8. L1 Instruction TLB Specifications

Number of Entries

Processor Name Family Model Associativity 2-Mbyte Pages1 4-Kbyte Pages

AMD Athlon™ XP Processor 6 6 Full 8 16

AMD Athlon™ 64 Processor 15 All Full 8 32

AMD Opteron™ Processor 15 All Full 8 32

Note:
1. The number of entries available for 4-Mbyte pages is one-half this value (4-Mbyte pages require two 2-Mbyte

entries).

Number of Entries

Processor Name Family Model Associativity 2-Mbyte pages1 4-Kbyte pages

AMD Athlon™ XP Processor 6 6 Full 8 32

AMD Athlon™ 64 Processor 15 All Full 8 32

AMD Opteron™ Processor 15 All Full 8 32

Note:
1. The number of entries available for 4-Mbyte pages is one-half this value (4-Mbyte pages require two 2-Mbyte

entries).

Table 10. L2 TLB Specifications by Processor

Processor Name Family Model Associativity Number of Entries (4-Kbyte Pages)

AMD Athlon™ XP Processor 6 6 4 ways 256

AMD Athlon™ 64 Processor 15 All 4 ways 512

AMD Opteron™ Processor 15 All 4 ways 512
Appendix A Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors 255

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Table 11 provides specifications on the L1 data cache for various AMD processors.

A.11 Integer Scheduler
The integer scheduler is based on a three-wide queuing system (also known as a reservation station)
that feeds three integer execution positions or pipes. The reservation stations are eight entries deep,
for a total queuing system of 24 integer macro-ops. Each reservation station divides the macro-ops
into integer and address generation micro-ops, as required.

A.12 Integer Execution Unit
The integer execution pipeline consists of three identical pipes—0, 1, and 2. Each integer pipe
consists of an integer execution unit—or arithmetic-logic unit (ALU)—and an address generation unit
(AGU). The integer execution pipeline is organized to match the three macro-op dispatch pipes in the
ICU as shown in Figure 7.

Figure 7. Integer Execution Pipeline

Macro-ops are broken down into micro-ops in the schedulers. Micro-ops are executed when their
operands are available, either from the register file or result buses. Micro-ops from a single operation

Table 11. L1 Data Cache Specifications by Processor

Processor name Family Model Associativity Size (Kbytes)

AMD Athlon™ XP
Processor

6 6 2 ways 64

AMD Athlon™ 64
Processor

15 All 2 ways 64

AMD Opteron™
Processor

15 All 2 ways 64

ALU 0 AGU 0 ALU 1 AGU 1 ALU 2 AGU 2

Integer Multiplier

Instruction Control Unit

Scheduler 0

Macro-ops

(8 entries)
Scheduler 1
(8 entries)

Scheduler 2
(8 entries)

Micro-ops
256 Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors Appendix A

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
can execute out-of-order. In addition, a particular integer pipe can execute two micro-ops from
different macro-ops (one in the ALU and one in the AGU) at the same time. See Figure 7 on
page 256.

Each of the three ALUs performs general purpose logic functions, arithmetic functions, conditional
functions, divide step functions, status flag multiplexing, and branch resolutions. The AGUs calculate
the logical addresses for loads, stores, and LEAs. A load and store unit reads and writes data to and
from the L1 data cache. The integer scheduler sends a completion status to the ICU when the
outstanding micro-ops for a given macro-op are executed.

All integer operations can be handled within any of the three ALUs with the exception of multiplies.
Multiplies are handled by a pipelined multiplier that is attached to the pipeline at pipe 0, as shown in
Figure 7. Multiplies always issue to integer pipe 0, and the issue logic creates results bus bubbles for
the multiplier in integer pipes 0 and 1 by preventing non-multiply micro-ops from issuing at the
appropriate time.

A.13 Floating-Point Scheduler
The floating-point logic of the AMD Athlon 64 and AMD Opteron processors is a high-performance,
fully pipelined, superscalar, out-of-order execution unit. It is capable of accepting three macro-ops
per cycle from any mixture of the following types of instructions:

• x87 floating-point

• 3DNow! technology

• MMX technology

• SSE

• SSE2

The floating-point scheduler handles register renaming and has a dedicated 36-entry scheduler buffer
organized as 12 lines of three macro-ops each. It also performs data superforwarding, micro-op issue,
and out-of-order execution. The floating-point scheduler communicates with the ICU to retire a
macro-op, to manage comparison results from the FCOMI instruction, and to back out results from a
branch misprediction.

Superforwarding is a performance optimization. It allows a floating point operation having a
dependency on a register to be scheduled sooner when that register is waiting to be filled by a pure
load from memory. Instead of waiting for the first instruction to write its load-data to the register and
then waiting for the second instruction to read it, the load-data can be provided directly to the
dependent instruction, much like regular forwarding between FPU-only operations. The result from
the load is said to be "superforwarded" to the floating-point operation. In the following example, the
FADD can be scheduled to execute as soon as the load operation fetches its data rather than having to
wait and read it out of the register file.
Appendix A Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors 257

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
 fld [somefloat] ;Load a floating point
 ;value from memory into ST(0)
 fadd st(0),st(1) ;The data from the load will be
 ;forwarded directly to this instruction,
 ;no need to read the register file

A.14 Floating-Point Execution Unit
The floating-point execution unit (FPU) is implemented as a coprocessor having its own out-of-order
control in addition to the data path. The FPU handles all register operations for x87 instructions, all
3DNow! technology operations, all MMX operations, and all SSE and SSE2 operations. The FPU
consists of a stack renaming unit, a register renaming unit, a scheduler, a register file, and three
parallel execution units. Figure 8 shows a block diagram of the dataflow through the FPU.

Figure 8. Floating-Point Unit

As shown in Figure 8, the floating-point logic uses three separate execution positions or pipes. The
first of the three pipes is generally known as the adder pipe (FADD), and it contains an MMX
ALU/shifter and floating-point add execution units. The second pipe is known as the multiplier
(FMUL). It contains the floating-point multiplier/divider/square root unit and also an MMX ALU.
The third pipe is known as the floating-point load/store (FSTORE), which handles floating-point
stores and many micro-op primitives used in VectorPath sequences.

A.15 Load-Store Unit
The load-store unit (LSU) is shown in Figure 9. It manages data load and store accesses to the L1 data

Stack Map

FMUL

• SSE, SSE2, SSE3 ALU and multiplier
• 3DNow! technology ALU and multipler
• MMX ALU and multiplier

Instruction Control Unit

Register Rename

Scheduler (36-entry)

FPU Register File (120-entry)

FADD

• SSE, SSE2, SSE3 ALU
• 3DNow!TM technology ALU
• MMXTM ALU

FSTORE

• x87 adder • x87 multiplier
258 Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors Appendix A

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
cache and, if required, to the L2 cache or system memory. The 44-entry LSU provides a data interface
for both the integer scheduler and the floating-point scheduler. It consists of two queues—a 12-entry
queue for L1 cache load and store accesses and a 32-entry queue for L2 cache or system memory load
and store accesses. The 12-entry queue can request a maximum of two L1 cache operations (and mix
of loads and stores) per cycle. Up to two 64-bit stores can be performed per cycle. In other words,
16 bytes per clock is the maximum rate at which the processor can move data. The 32-entry queue
effectively holds requests that missed in the L1 cache probe by the 12-entry queue. Finally, the LSU
helps ensure that the architectural load and store ordering rules are preserved (a requirement for
AMD64 architecture compatibility).

Figure 9. Load-Store Unit

A.16 L2 Cache
The AMD Athlon 64 and AMD Opteron processors each contain an integrated L2 cache. This full-
speed on-die L2 cache features an exclusive cache architecture. The L2 cache contains only victim or
copy-back cache blocks that are to be written back to the memory subsystem as a result of a conflict
miss. These terms, victim or copy-back, refer to cache blocks that were previously held in the L1
cache but had to be overwritten (evicted) to make room for newer data. The victim buffer contains
data evicted from the L1 cache.

LSU
44-Entry

Data
Cache
2-Way

64 Kbytes

Operand
Buses

Result Buses
from
Core

Store Data
to BIU
Appendix A Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors 259

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
The L2 cache in the AMD Athlon XP, AMD Athlon™ 64, and AMD Opteron processors is 16-way
associative.

A.17 Write-combining
See Appendix B, “Implementation of Write-Combining,” on page 263 for detailed information about
write-combining.

A.18 Buses for AMD Athlon™ 64 and AMD Opteron™
Processor

AMD Athlon 64 and AMD Opteron processors feature an integrated memory controller and
HyperTransport technology for interfacing to I/O devices. These integrated features, along with other
logic, bring the Northbridge functionality onto the processor.

A.19 Integrated Memory Controller
AMD Athlon 64 and AMD Opteron processors provide an integrated low-latency, high-bandwidth
DDR memory controller.

The memory controller supports:

• DRAM devices that are 4, 8, and 16 bits wide.

• Interleaving memory within DIMMs.

• ECC checking with double-bit detection and single-bit correction.

For specifications on a certain processor’s memory controller, see the data sheet for that processor.
For information on how to program the memory controller, see the BIOS and Kernel Developer’s
Guide for AMD AthlonTM 64 and AMD OpteronTM Processors, order# 26094.

A.20 HyperTransport™ Technology Interface
HyperTransport technology is a scalable, high-speed, low-latency, point-to-point, packetized link
that:

• Enables data transfer rates of up to 8 Gbytes/s (4 Gbytes/s in each direction simultaneously with a
16-bit link).

• Simplifies connectivity by replacing legacy buses and bridges.

• Reduces latencies and bottlenecks within systems.
260 Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors Appendix A

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
When compared with traditional technologies, HyperTransport technology allows much faster data-
transfer rates. For more information on HyperTransport technology, see the HyperTransport I/O Link
Specification, available at www.hypertransport.org.

HyperTransport™ Technology

On AMD Athlon 64 and AMD Opteron processors, HyperTransport technology provides the link to
I/O devices. Some processor models—for example, those designed for use in multiprocessing
systems—also utilize HyperTransport technology to connect to other processors. See the BIOS and
Kernel Developer's Guide for your particular processor for details concerning HyperTransport
technology implementation details.
Appendix A Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors 261

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
262 Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors Appendix A

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Appendix B Implementation of
Write-Combining

This appendix describes the memory write-combining feature implemented in the AMD Athlon™ 64
and AMD Opteron™ processors. Write-combining is the merging of multiple memory write cycles
that target locations within the address range of a write buffer.

The AMD Athlon 64 and AMD Opteron processors support the memory type range register (MTRR)
and the page attribute table (PAT) extensions, which allow software to define ranges of memory as
either writeback (WB), write-protected (WP), writethrough (WT), uncacheable (UC), or write-
combining (WC).

Defining the memory type for a range of memory as WC or WT allows the processor to conditionally
combine data from multiple write cycles that are addressed within this range into a merge buffer.
Merging multiple write cycles into a single write cycle reduces processor bus utilization and
processor stalls. Write combining buffers are also used for streaming store instructions such as
MOVNTQ and MOVNTI. See “Streaming-Store/Non-Temporal Instructions” on page 112.

This appendix covers the following topics:

B.1 Write-Combining Definitions and Abbreviations
This appendix uses the following definitions and abbreviations:

• MTRR—Memory type range register

• PAT—Page attribute table

• UC—Uncacheable memory type

• WC—Write-combining memory type

• WT—Writethrough memory type

• WP—Write-protected memory type

Topic Page

Write-Combining Definitions and Abbreviations 263

Programming Details 264

Write-combining Operations 264

Sending Write-Buffer Data to the System 266

Write-Combining Optimization on Revision D and E AMD Athlon™ 64 and AMD Opteron™
Processors

266
Appendix B Implementation of Write-Combining 263

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
• WB—Writeback memory type

• One Byte—8 bits

• One Word—16 bits

• Doubleword—32 bits

• Quadword—64 bits or 2 doublewords

• Cache Block—64 bytes or 4 octawords or 8 quadwords

B.2 Programming Details
The following steps are required for programming write-combining on the AMD Athlon 64 and
AMD Opteron processors:

1. Verify the presence of an AMD Athlon™ 64 or AMD Opteron processor by using the CPUID
instruction to check for the instruction family code and vendor identification of the processor.
Standard function 0 on AMD processors returns a vendor identification string of
“AuthenticAMD” in registers EBX, EDX, and ECX. Standard function 1 returns the processor
signature in register EAX, where EAX[11:8] contains the instruction family code. For the
AMD Athlon 64 and AMD Opteron processors, the instruction family code is Fh.

2. Verify the presence of the MTRRs and the PAT extensions. The presence of the MTRRs is
indicated by bit 12 and the presence of the PAT extensions is indicated by bit 16 of the extended
features bits returned in the EDX register by CPUID function 8000_0001h. See the CPUID
Specification, order# 25481, for more details on the CPUID instruction.

3. Enable write-combining. Write-combining is controlled by the MTRRs and PAT extensions.
Write-combining should be enabled for the appropriate memory ranges. For more information on
the MTRRs and the PAT extensions, see volume 2 of the AMD64 Architecture Programmer’s
Manual, order# 24593.

B.3 Write-combining Operations
To improve system performance, the AMD Athlon 64 and AMD Opteron processors aggressively
combine multiple memory-write cycles of any data size that address locations within a 64-byte write
buffer that is aligned to a cache-line boundary. The processor continues to combine writes to this
buffer without writing the data to the system, as long as certain rules apply (see Table 12 on page 265
for more information). The data sizes can be bytes, words, doublewords, or quadwords.

• WC memory type writes can be combined in any order up to a full 64-byte write buffer.

• WT memory type writes can only be combined up to a fully aligned quadword in the 64-byte
buffer, and must be combined contiguously in ascending order. Combining may be opened at any
264 Implementation of Write-Combining Appendix B

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
byte boundary in a quadword, but is closed by a write that is either not “contiguous and
ascending” or fills byte 7.

• All other memory types for stores that go through the write buffer (UC and WP) cannot be
combined except when the WB memory type is over-ridden for streaming store instructions such
as the MOVNTQ and MOVNTI instructions, etc. These instructions use the write buffers and will
be write-combined in the same way as address spaces mapped by the MTTR registers and PAT
extensions. When WC is used for streaming store instructions, then the buffers are subject to the
same flushing events as write-combined address spaces.

Combining is able to continue until interrupted by one of the conditions listed in Table 12 on
page 265. When combining is interrupted, one or more bus commands are issued to the system for
that write buffer, as described in “Sending Write-Buffer Data to the System” on page 266.

Table 12. Write-Combining Completion Events

Event Comment

Non-WB write outside of current
buffer

(On revisions A–C processors only) The first non-WB write to a
different cache block address closes combining for previous writes.
WB writes do not affect write-combining. Only one line-sized buffer
can be open for write-combining at a time. Once a buffer is closed for
write-combining, it cannot be reopened for write-combining.

I/O Read or Write Any IN/INS or OUT/OUTS instruction closes combining. The implied
memory type for all IN/OUT instructions is UC, which cannot be
combined.

Serializing instructions Any serializing instruction closes combining. These instructions
include: MOVCRx, MOVDRx, WRMSR, INVD, INVLPG, WBINVD,
LGDT, LLDT, LIDT, LTR, CPUID, IRET, RSM, INIT, and HALT.

Flushing instructions Any flush instruction causes the WC to complete.

Locks Any instruction or processor operation that requires a cache or bus
lock closes write-combining before starting the lock. Writes within a
lock can be combined.

Uncacheable Read A UC read closes write-combining. A WC read closes combining
only if a cache block address match occurs between the WC read
and a write in the write buffer.

Different memory type Any WT write while write-combining for WC memory or any WC write
while write-combining for WT memory closes write-combining.

Buffer full Write-combining is closed if all 64 bytes of the write buffer are valid.

WT time-out If 16 processor clocks have passed since the most recent write for
WT write-combining, write-combining is closed. There is no time-out
for WC write-combining.

WT write fills byte 7 Write-combining is closed if a write fills the most significant byte of a
quadword, which includes writes that are misaligned across a
quadword boundary. In the misaligned case, combining is closed by
the LS part of the misaligned write and combining is opened by the
MS part of the misaligned store.
Appendix B Implementation of Write-Combining 265

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
B.4 Sending Write-Buffer Data to the System
The maximum write combined throughput is achieved when all quadwords or doublewords are valid
and the AMD Athlon 64 and AMD Opteron processors can use one efficient 64-byte memory write
instead of multiple 8-byte memory writes.

B.5 Write-Combining Optimization on
Revision D and E AMD Athlon™ 64 and
AMD Opteron™ Processors

The number of Write Combining buffers on revision D and revision E AMD Athlon 64 and AMD
Opteron processors has changed from earlier CPU revisions. Although the number of buffers
available for write combining depends on the specific CPU revision, current designs provide as many
as four write buffers for WC memory mapped I/O address spaces. These same buffers are used for
streaming store instructions. The number of write-buffers determines how many independent linear
64-byte streams of WC data the CPU can simultaneously buffer.

Having multiple write-combining buffers that can combine independent WC streams has implications
on data throughput rates (bandwidth), especially when data is written by the CPU to WC memory
mapped I/O devices, residing on the AGP, PCI, PCI-X and PCI-E busses including:

• Memory Mapped I/O registers—command FIFO, etc.

• Memory Mapped I/O apertures—windows to which the CPU use programmed I/O to send data to
a hardware device

• Sequential block of 2D/3D graphic engine registers written using programmed I/O

• Video memory residing on the graphics accelerator—frame buffer, render buffers, textures, etc.

HyperTransport tunnels are HyperTransport-to-bus bridges. There are tunnels for AGP, PCI Express,
PCI and PCI-X. Examples of tunnels are the AMD-8151™ graphics tunnel, the AMD-8131™ I/O
bus tunnel, and the AMD-8132™ PCI-X tunnel. Many HyperTransport tunnels use a hardware
optimization feature called write-chaining. In write-chaining, the tunnel device buffers and combines
separate HyperTransport packets of data sent by the CPU, creating one large burst on the underlying
bus when the data is received by the tunnel in sequential address order. Using larger bursts results in

WT Nonsequential If a subsequent WT write is not in ascending sequential order, the
write-combining completes. WC writes have no addressing
constraints within the 64-byte line being combined.

TLB AD bit set Write-combining is closed whenever a TLB reload sets the accessed
[A] or dirty [D] bits of a Pde or Pte.

Table 12. Write-Combining Completion Events (Continued)

Event Comment
266 Implementation of Write-Combining Appendix B

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
better throughput since bus efficiency is increased. This is because bus arbitration overhead is lower:
only one address/attribute phase is issued per burst in the PCI-X case, and one address/command
phase is issued for the AGP Fast Writes case. An illustration of address phase overhead on AGP Fast
Writes is provided in Figure 10 on page 346 in Appendix D, AGP Considerations.

For reasons cited in the precding paragraph, to utilize hardware write chaining efficiently, software
should flush the CPU write-combining buffer in sequential linear address order, any time a target
hardware device is capable of receiving large bursts of CPU write data.

Software should be aware that on AMD64 processors that have multiple write-combining buffers (i.e.
Rev. D, and E processors), events that flush the write-combining buffers (see Appendix B, Table 8.)
will send out the 64-byte WC buffers in the order that the streams were opened. This means that if the
CPU writes to the WC space in the highest 64-byte addressed buffer first (for example address 40h),
and then writes to a lower 64-byte buffer next, (for example address 00h), when those buffers are sent
by the CPU (by HyperTransport to the tunnel), the highest address 64-byte buffer will be sent first,
followed by the second (lower address) 64-byte buffer. Since the addressing is not sequential the
tunnel device will not "chain" both 64-byte WC buffers and must issue 2 separate transactions on the
target bus.

If the above example were targeted for AGP fast writes, issuing two fast write transactions (rather
than issuing one Fast Write transaction) will reduce the bandwidth (data throughput) by 1/3. See
Figure 10 on page 346 in Appendix D.

Optimizations

Adhere to the following guidelines to ensure that Revision D and E AMD Athlon 64 and AMD
Opteron processors issue WC buffers in sequential address order:

• When practical, shadow the data structure in memory (rather than writing the actual WC buffer in
MMI/O space), prior to copying the structure to WC MMI/O space. This will also ensure that the
write-combining buffers are not emptied prematurely by external events (such as a UC read—
perhaps issued by another device driver thread or a hardware interrupt, etc.). Shadowing also
ensures that writes that occur to different cache lines in the structure do not send out the WC
buffers, since the number of WC buffers that can be open at one time is CPU implementation
dependent.

• When ready to update the actual WC MMI/O address space, copy the shadowed structure from
memory to MMI/O, from the lowest address 64-byte block upward. To do the copy, use discrete
loads and stores for up to 64 bytes of data. Use a loop of discrete loads and stores for up to 4KB of
data. Up to 32KB use REP MOVS instructions. To do discrete loads use assembly language, or, if
available, compiler intrinsic functions available (__movsb(), __movsw(), __movsd()), etc.

• In general, using these methods to do the copy will exhibit less overhead in a data movement
function than calling a memcpy() LIBC function, which is usually optimized for copying larger
blocks of memory.
Appendix B Implementation of Write-Combining 267

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
268 Implementation of Write-Combining Appendix B

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Appendix C Instruction Latencies

This appendix provides a complete listing of all AMD64 instructions, along with their encodings,
decode types, and execution latencies. For more information on these instructions, see volumes 3, 4,
and 5 of the AMD64 Architecture Programmer’s Manual (order# 24594, 26568, and 26569).

Note: Some prior AMD documents referred to one group of instructions as MMX™ technology
extensions. Those instructions are still supported by the AMD Athlon™ 64 and
AMD Opteron™ processors, but are documented with the SSE instructions in this guide. (The
MMX™ technology instructions remain a separate group.)

The instruction entries in this appendix are grouped into categories as indicated in the following table
and are presented within each category in alphabetical order by mnemonic:

Topic Page

Understanding Instruction Entries 270

Integer Instructions 273

MMX™ Technology Instructions 303

x87 Floating-Point Instructions 307

3DNow!™ Technology Instructions 314

3DNow!™ Technology Extensions 316

SSE Instructions 317

SSE2 Instructions 326

SSE3 Instructions 342
Appendix C Instruction Latencies 269

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
C.1 Understanding Instruction Entries
To use the information in this appendix effectively, you need to understand how the entry for an
instruction is organized and how to interpret certain items.

Example: Instruction Entry

The entry for an instruction begins with its syntax. Subsequent columns provide additional
information about the instruction.

Parts of the Instruction Entry

This table describes the columns that are common to each instruction entry in this appendix.

The entries for floating-point, MMX, SSE, and SSE2, and 3DNow!™ instructions have an additional
column [FPU Pipe(s)] that lists the possible floating-point unit (FPU) pipelines available for use by
any particular DirectPath or Double decoded operation. For example, the floating point multiplier is
represented by FMUL.

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

ADD mreg8, reg8 00h 11-xxx-xxx DirectPath 1

Column Description

Syntax Shows the syntax for the instruction—the permitted arrangement of its parts. Items in
italics are placeholders for operands that you must provide. For information on how to
interpret the placeholders, see “Interpreting Placeholders” on page 271

Encoding Shows how the assembler translates the instruction into machine language.
Subcolumns show the individual bytes of the encoding.

Decode type Shows the method that the processor uses to decode the instruction—either DirectPath
Single (DirectPath), DirectPath Double (Double), or VectorPath.

Latency Shows the static execution latency for the instruction. For details on how to interpret the
latency information, see “Interpreting Latencies” on page 272.

Throughput This value indicates the maximum theoretical rate of execution of that instruction. For
example, a value of 1/2 means that one such instruction executes every two clocks, or
two such instructions in four clocks and so on. A value of 3/1 indicates that three such
instructions can be executed every clock, but fewer than three such instructions would
still take one clock.
270 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Interpreting Placeholders

The Syntax column for an instruction entry shows the mnemonic for the instruction followed by any
operands. Items in italics are placeholders for operands that you must provide. A placeholder
indicates the size and type of operand that is allowed.

This operand Is a placeholder for

disp8 A byte (8-bit) displacement value

disp16/32 A word (16-bit) or doubleword (32-bit) displacement value

disp32/48 A doubleword (32-bit) or 48-bit displacement value

imm8 A byte (8-bit) immediate value

imm16 A word (16-bit) immediate value

imm32 A doubleword (32-bit) immediate value

mem8 A byte (8-bit) memory location

mem16/32/64 A memory location that contains a word, doubleword, or quadword

mem16/32&mem16/32 A memory location that contains a pair of words or doublewords

mem32/48 A doubleword (32-bit) or 48-bit memory location

mem48 A 48-bit memory location

mem64 A quadword (64-bit) memory location

mem128 A double quadword (128-bit) memory location

mem32real A memory location that contains a single-precision (32-bit) floating-point value

mem64real A memory location that contains a double-precision (64-bit) floating-point value

mem80real A memory location that contains a double-extended-precision (80-bit) floating-point
value

mmreg An MMX™ register

mmreg1 An MMX register defined by bits 5, 4, and 3 of the ModRM byte

mmreg2 An MMX register defined by bits 2, 1, and 0 of the ModRM byte

mreg8 A byte general-purpose register defined by the r/m field (bits 2, 1, and 0) of the
ModRM byte

mreg16/32/64 A word, doubleword, or quadword general-purpose register defined by the r/m field
(bits 2, 1, and 0) of the ModRM byte

reg8 A byte general-purpose register defined by instruction byte(s) or the reg field (bits 5,
4, and 3) of the ModRM byte

reg16/32/64 A word, doubleword, or quadword general-purpose register defined by instruction
byte(s) or the reg field (bits 5, 4, and 3) of the ModRM byte

sreg A segment register (always 16 bits wide)

xmmreg An XMM register

xmmreg1 An XMM register defined by bits 5, 4, and 3 of the ModRM byte

xmmreg2 An XMM register defined by bits 2, 1, and 0 of the ModRM byte
Appendix C Instruction Latencies 271

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Interpreting Latencies

The Latency column for an instruction entry shows the static execution latency for the instruction.
The static execution latency is the number of clock cycles it takes to execute the serially dependent
sequence of micro-ops that comprise the instruction.

The latencies in this appendix are estimates and are subject to change. They assume that:

• The instruction is an L1-cache hit that has already been fetched and decoded, with the operations
loaded into the scheduler.

• Memory operands are assumed to be in the L1 data cache.

• There is no contention for execution resources or load-store unit resources.

The following formats are used to indicate the static execution latency:

Latency format Description Example

x The latency is the indicated value. 3

x–y The latency is a value greater than or equal to x and less than or
equal to y.

31–73

x/y/z The latency differs according to the size of the operands. The values
x, y, and z are the 16-, 32-, and 64-bit latencies, respectively.

26/42/74

x (y) The latency depends on whether an error condition exists. When
there is no error condition, x is the latency. When an error condition
exists, y is the latency.

68 (108)

~ The latency is unavailable.
272 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
C.2 Integer Instructions

Table 13. Integer Instructions

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

AAA 37h VectorPath 5

AAD (or directly coded D5 ib, where ib is a byte
value other than 0Ah)

D5h 0Ah VectorPath 5

AAM (or directly coded D4 ib, where ib is a
byte value other than 0Ah)

D4h 0Ah VectorPath 15

AAS 3Fh VectorPath 5

ADC mreg8, reg8 10h 11-xxx-xxx DirectPath 1

ADC mem8, reg8 10h mm-xxx-xxx DirectPath 4

ADC mreg16/32/64, reg16/32/64 11h 11-xxx-xxx DirectPath 1

ADC mem16/32/64, reg16/32/64 11h mm-xxx-xxx DirectPath 4

ADC reg8, mreg8 12h 11-xxx-xxx DirectPath 1

ADC reg8, mem8 12h mm-xxx-xxx DirectPath 4

ADC reg16/32/64, mreg16/32/64 13h 11-xxx-xxx DirectPath 1

ADC reg16/32/64, mem16/32/64 13h mm-xxx-xxx DirectPath 4

ADC AL, imm8 14h DirectPath 1

ADC AX, imm16 15h DirectPath 1

ADC EAX, imm32 15h DirectPath 1

ADC RAX, imm32 (sign extended) 15h DirectPath 1

ADC mreg8, imm8 80h 11-010-xxx DirectPath 1

ADC mem8, imm8 80h mm-010-xxx DirectPath 4

ADC mreg16/32/64, imm16/32 81h 11-010-xxx DirectPath 1

ADC mem16/32/64, imm16/32 81h mm-010-xxx DirectPath 4

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
Appendix C Instruction Latencies 273

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
ADC mreg16/32/64, imm8 (sign extended) 83h 11-010-xxx DirectPath 1

ADC mem16/32/64, imm8 (sign extended) 83h mm-010-xxx DirectPath 4

ADD mreg8, reg8 00h 11-xxx-xxx DirectPath 1

ADD mem8, reg8 00h mm-xxx-xxx DirectPath 4

ADD mreg16/32/64, reg16/32/64 01h 11-xxx-xxx DirectPath 1

ADD mem16/32/64, reg16/32/64 01h mm-xxx-xxx DirectPath 4

ADD reg8, mreg8 02h 11-xxx-xxx DirectPath 1

ADD reg8, mem8 02h mm-xxx-xxx DirectPath 4

ADD reg16/32/64, mreg16/32/64 03h 11-xxx-xxx DirectPath 1

ADD reg16/32/64, mem16/32/64 03h mm-xxx-xxx DirectPath 4

ADD AL, imm8 04h DirectPath 1

ADD AX, imm16 05h DirectPath 1

ADD EAX, imm32 05h DirectPath 1

ADD RAX, imm32 (sign extended) 05h DirectPath 1

ADD mreg8, imm8 80h 11-000-xxx DirectPath 1

ADD mem8, imm8 80h mm-000-xxx DirectPath 4

ADD mreg16/32/64, imm16/32 81h 11-000-xxx DirectPath 1

ADD mem16/32/64, imm16/32 81h mm-000-xxx DirectPath 4

ADD mreg16/32/64, imm8 (sign extended) 83h 11-000-xxx DirectPath 1

ADD mem16/32/64, imm8 (sign extended) 83h mm-000-xxx DirectPath 4

AND mreg8, reg8 20h 11-xxx-xxx DirectPath 1

AND mem8, reg8 20h mm-xxx-xxx DirectPath 4

AND mreg16/32/64, reg16/32/64 21h 11-xxx-xxx DirectPath 1

AND mem16/32/64, reg16/32/64 21h mm-xxx-xxx DirectPath 4

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
274 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
AND reg8, mreg8 22h 11-xxx-xxx DirectPath 1

AND reg8, mem8 22h mm-xxx-xxx DirectPath 4

AND reg16/32/64, mreg16/32/64 23h 11-xxx-xxx DirectPath 1

AND reg16/32/64, mem16/32/64 23h mm-xxx-xxx DirectPath 4

AND AL, imm8 24h DirectPath 1

AND AX, imm16 25h DirectPath 1

AND EAX, imm32 25h DirectPath 1

AND RAX, imm32 (sign extended) 25h DirectPath 1

AND mreg8, imm8 80h 11-100-xxx DirectPath 1

AND mem8, imm8 80h mm-100-xxx DirectPath 4

AND mreg16/32/64, imm16/32 81h 11-100-xxx DirectPath 1

AND mem16/32/64, imm16/32 81h mm-100-xxx DirectPath 4

AND mreg16/32/64, imm8 (sign extended) 83h 11-100-xxx DirectPath 1

AND mem16/32/64, imm8 (sign extended) 83h mm-100-xxx DirectPath 4

ARPL mreg16, reg16 63h 11-xxx-xxx VectorPath 13

ARPL mem16, reg16 63h mm-xxx-xxx VectorPath 18

BOUND reg16/32, mem16/32&mem16/32 62h mm-xxx-xxx VectorPath 6

BSF reg16/32/64, mreg16/32/64 0Fh BCh 11-xxx-xxx VectorPath 8/8/9

BSF reg16/32/64, mem16/32/64 0Fh BCh mm-xxx-xxx VectorPath 10/11/
12

BSR reg16/32/64, mreg16/32/64 0Fh BDh 11-xxx-xxx VectorPath 11

BSR reg16/32/64, mem16/32/64 0Fh BDh mm-xxx-xxx VectorPath 14/13/
13

BSWAP EAX/RAX/R8 0Fh C8h DirectPath 1

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
Appendix C Instruction Latencies 275

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
BSWAP EBP/RBP/R13 0Fh CDh DirectPath 1

BSWAP EBX/RBX/R11 0Fh CBh DirectPath 1

BSWAP ECX/RCX/R9 0Fh C9h DirectPath 1

BSWAP EDI/RDI/R15 0Fh CFh DirectPath 1

BSWAP EDX/RDX/R10 0Fh CAh DirectPath 1

BSWAP ESI/RSI/R14 0Fh CEh DirectPath 1

BSWAP ESP/RSP/R12 0Fh CCh DirectPath 1

BT mreg16/32/64, reg16/32/64 0Fh A3h 11-xxx-xxx DirectPath 1

BT mem16/32/64, reg16/32/64 0Fh A3h mm-xxx-xxx VectorPath 8

BT mreg16/32/64, imm8 0Fh BAh 11-100-xxx DirectPath 1

BT mem16/32/64, imm8 0Fh BAh mm-100-xxx DirectPath 4

BTC mreg16/32/64, reg16/32/64 0Fh BBh 11-xxx-xxx Double 2

BTC mem16/32/64, reg16/32/64 0Fh BBh mm-xxx-xxx VectorPath 9

BTC mreg16/32/64, imm8 0Fh BAh 11-111-xxx Double 2

BTC mem16/32/64, imm8 0Fh BAh mm-111-xxx VectorPath 5

BTR mreg16/32/64, reg16/32/64 0Fh B3h 11-xxx-xxx Double 2

BTR mem16/32/64, reg16/32/64 0Fh B3h mm-xxx-xxx VectorPath 9

BTR mreg16/32/64, imm8 0Fh BAh 11-110-xxx Double 2

BTR mem16/32/64, imm8 0Fh BAh mm-110-xxx VectorPath 5

BTS mreg16/32/64, reg16/32/64 0Fh ABh 11-xxx-xxx Double 2

BTS mem16/32/64, reg16/32/64 0Fh ABh mm-xxx-xxx VectorPath 9

BTS mreg16/32/64, imm8 0Fh BAh 11-101-xxx Double 2

BTS mem16/32/64, imm8 0Fh BAh mm-101-xxx VectorPath 5

CALL disp16/32 (near, displacement) E8h VectorPath 3 2

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
276 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
CALL mem16/32/64 (near, indirect) FFh mm-010-xxx VectorPath 4

CALL mreg16/32/64 (near, indirect) FFh 11-010-xxx VectorPath 4

CALL mem16:16/32 (far, indirect) FFh 11-011-xxx VectorPath ~

CALL pntr16:16/32 (far, direct, no CPL
change)

9Ah VectorPath 33

CALL pntr16:16/32 (far, direct, CPL change) 9Ah VectorPath 150

CBW/CWDE/CDQE 98h DirectPath 1

CLC F8h DirectPath 1

CLD FCh DirectPath 1

CLFLUSH 0Fh AEh mm-111-xx DirectPath ~

CLI FAh VectorPath 4

CLTS 0Fh 06h VectorPath 10

CMC F5h DirectPath 1

CMOVA/CMOVNBE reg16/32/64,
mem16/32/64

0Fh 47h mm-xxx-xxx DirectPath 4

CMOVA/CMOVNBE reg16/32/64, reg16/32/64 0Fh 47h 11-xxx-xxx DirectPath 1

CMOVAE/CMOVNB/CMOVNC reg16/32/64,
mem16/32/64

0Fh 43h mm-xxx-xxx DirectPath 4

CMOVAE/CMOVNB/CMOVNC reg16/32/64,
reg16/32/64

0Fh 43h 11-xxx-xxx DirectPath 1

CMOVB/CMOVC/CMOVNAE reg16/32/64,
mem16/32/64

0Fh 42h mm-xxx-xxx DirectPath 4

CMOVB/CMOVC/CMOVNAE reg16/32/64,
reg16/32/64

0Fh 42h 11-xxx-xxx DirectPath 1

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
Appendix C Instruction Latencies 277

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
CMOVBE/CMOVNA reg16/32/64,
mem16/32/64

0Fh 46h mm-xxx-xxx DirectPath 4

CMOVBE/CMOVNA reg16/32/64, reg16/32/64 0Fh 46h 11-xxx-xxx DirectPath 1

CMOVE/CMOVZ reg16/32/64, mem16/32/64 0Fh 44h mm-xxx-xxx DirectPath 4

CMOVE/CMOVZ reg16/32/64, reg16/32/64 0Fh 44h 11-xxx-xxx DirectPath 1

CMOVG/CMOVNLE reg16/32/64,
mem16/32/64

0Fh 4Fh mm-xxx-xxx DirectPath 4

CMOVG/CMOVNLE reg16/32/64, reg16/32/64 0Fh 4Fh 11-xxx-xxx DirectPath 1

CMOVGE/CMOVNL reg16/32/64,
mem16/32/64

0Fh 4Dh mm-xxx-xxx DirectPath 4

CMOVGE/CMOVNL reg16/32/64, reg16/32/64 0Fh 4Dh 11-xxx-xxx DirectPath 1

CMOVL/CMOVNGE reg16/32/64,
mem16/32/64

0Fh 4Ch mm-xxx-xxx DirectPath 4

CMOVL/CMOVNGE reg16/32/64, reg16/32/64 0Fh 4Ch 11-xxx-xxx DirectPath 1

CMOVLE/CMOVNG reg16/32/64,
mem16/32/64

0Fh 4Eh mm-xxx-xxx DirectPath 4

CMOVLE/CMOVNG reg16/32/64, reg16/32/64 0Fh 4Eh 11-xxx-xxx DirectPath 1

CMOVNE/CMOVNZ reg16/32/64,
mem16/32/64

0Fh 45h mm-xxx-xxx DirectPath 4

CMOVNE/CMOVNZ reg16/32/64, reg16/32/64 0Fh 45h 11-xxx-xxx DirectPath 1

CMOVNO reg16/32/64, mem16/32/64 0Fh 41h mm-xxx-xxx DirectPath 4

CMOVNO reg16/32/64, reg16/32/64 0Fh 41h 11-xxx-xxx DirectPath 1

CMOVNP/CMOVPO reg16/32/64,
mem16/32/64

0Fh 4Bh mm-xxx-xxx DirectPath 4

CMOVNP/CMOVPO reg16/32/64, reg16/32/64 0Fh 4Bh 11-xxx-xxx DirectPath 1

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
278 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
CMOVNS reg16/32/64, mem16/32/64 0Fh 49h mm-xxx-xxx DirectPath 4

CMOVNS reg16/32/64, reg16/32/64 0Fh 49h 11-xxx-xxx DirectPath 1

CMOVO reg16/32/64, mem16/32/64 0Fh 40h mm-xxx-xxx DirectPath 4

CMOVO reg16/32/64, reg16/32/64 0Fh 40h 11-xxx-xxx DirectPath 1

CMOVP/CMOVPE reg16/32/64, mem16/32/64 0Fh 4Ah mm-xxx-xxx DirectPath 4

CMOVP/CMOVPE reg16/32/64, reg16/32/64 0Fh 4Ah 11-xxx-xxx DirectPath 1

CMOVS reg16/32/64, mem16/32/64 0Fh 48h mm-xxx-xxx DirectPath 4

CMOVS reg16/32/64, reg16/32/64 0Fh 48h 11-xxx-xxx DirectPath 1

CMP mem8, reg8 38h mm-xxx-xxx DirectPath 4

CMP mreg8, reg8 38h 11-xxx-xxx DirectPath 1

CMP mem16/32/64, reg16/32/64 39h mm-xxx-xxx DirectPath 4

CMP mreg16/32/64, reg16/32/64 39h 11-xxx-xxx DirectPath 1

CMP reg8, mem8 3Ah mm-xxx-xxx DirectPath 4

CMP reg8, mreg8 3Ah 11-xxx-xxx DirectPath 1

CMP reg16/32/64, mem16/32/64 3Bh mm-xxx-xxx DirectPath 4

CMP reg16/32/64, mreg16/32/64 3Bh 11-xxx-xxx DirectPath 1

CMP AL, imm8 3Ch DirectPath 1

CMP AX/EAX, imm16/32 3Dh DirectPath 1

CMP RAX, imm32 (sign extended) 3Dh DirectPath 1

CMP mem8, imm8 80h mm-111-xxx DirectPath 4

CMP mreg8, imm8 80h 11-111-xxx DirectPath 1

CMP mem16/32/64, imm16/32 81h mm-111-xxx DirectPath 4

CMP mreg16/32/64, imm16/32 81h 11-111-xxx DirectPath 1

CMP mem16/32/64, imm8 (sign extended) 83h mm-111-xxx DirectPath 4

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
Appendix C Instruction Latencies 279

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
CMP mreg16/32/64, imm8 (sign extended) 83h 11-111-xxx DirectPath 1

CMPS mem8, mem8 A6h VectorPath 6 6

CMPS mem16/32/64, mem16/32/64 A7h VectorPath 6 6

CMPSB A6h VectorPath 6 6

CMPSD A7h VectorPath 6 6

CMPSQ A7 VectorPath 6 7

CMPSW A7h VectorPath 6 6

CMPXCHG mem8, reg8 0Fh B0h mm-xxx-xxx VectorPath 5

CMPXCHG mreg8, reg8 0Fh B0h 11-xxx-xxx VectorPath 3

CMPXCHG mem16/32/64, reg16/32/64 0Fh B1h mm-xxx-xxx VectorPath 5

CMPXCHG mreg16/32/64, reg16/32/64 0Fh B1h 11-xxx-xxx VectorPath 3

CMPXCHG8B mem64 0Fh C7h mm-xxx-xxx VectorPath 10

CMPXCHG16B mem128 0Fh C7h mm-xxx-xxx VectorPath

CPUID (function 0) 0Fh A2h VectorPath 36

CPUID (function 1) 0Fh A2h VectorPath 152

CPUID (function 2) 0Fh A2h VectorPath 38

CPUID (function 8000_0001h) 0Fh A2h VectorPath

CPUID (function 8000_0002h) 0Fh A2h VectorPath

CPUID (function 8000_0003h) 0Fh A2h VectorPath

CPUID (function 8000_0004h) 0Fh A2h VectorPath

CPUID (function 8000_0007h) 0Fh A2h VectorPath

CPUID (function 8000_0008h) 0Fh A2h VectorPath

CWD/CDQ/CQO 99h DirectPath 1

DAA 27h VectorPath 7

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
280 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
DAS 2Fh VectorPath 7

DEC AX/EAX 48h DirectPath 1 8

DEC BP/EBP 4Dh DirectPath 1 8

DEC BX/EBX 4Bh DirectPath 1 8

DEC CX/ECX 49h DirectPath 1 8

DEC DI/EDI 4Fh DirectPath 1 8

DEC DX/EDX 4Ah DirectPath 1 8

DEC SI/ESI 4Eh DirectPath 1 8

DEC SP/ESP 4Ch DirectPath 1 8

DEC mem8 FEh mm-001-xxx DirectPath 4

DEC mreg8 FEh 11-001-xxx DirectPath 1

DEC mem16/32/64 FFh mm-001-xxx DirectPath 4

DEC mreg16/32/64 FFh 11-001-xxx DirectPath 1

DIV mem8 F6h mm-110-xxx VectorPath 16

DIV mreg8 F6h 11-110-xxx VectorPath 16

DIV mem16/32/64 F7h mm-110-xxx VectorPath 23/39/
71

DIV mreg16/32/64 F7h 11-110-xxx VectorPath 23/39/
71

ENTER C8h VectorPath 14/17/
19/21

5

IDIV mreg8 F6h 11-111-xxx VectorPath 18

IDIV mem8 F6h mm-111-xxx VectorPath 19

IDIV mreg16/32/64 F7h 11-111-xxx VectorPath 26/42/
74

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
Appendix C Instruction Latencies 281

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
IDIV mem16/32/64 F7h mm-111-xxx VectorPath 27/43/
75

IMUL reg16, imm16 69h 11-xxx-xxx VectorPath 4

IMUL reg32/64, imm32/(32 sign extended) 69h 11-xxx-xxx DirectPath 3/4

IMUL reg16, mreg16, imm16 69h 11-xxx-xxx VectorPath 4

IMUL reg32/64, mreg32/64, imm32/(32 sign
extended)

69h 11-xxx-xxx DirectPath 3/4

IMUL reg16/32/64, mem16/32/64,
imm16/32/(32 sign extended)

69h mm-xxx-xxx VectorPath 7/7/8

IMUL reg16/32/64, imm8 (sign extended) 6Bh 11-xxx-xxx VectorPath 4/3/4

IMUL reg16/32/64, mreg16/32/64, imm8
(signed)

6Bh 11-xxx-xxx VectorPath 4/3/4

IMUL reg16/32/64, mem16/32/64, imm8
(signed)

6Bh mm-xxx-xxx VectorPath 7/7/8

IMUL mreg8 F6h 11-101-xxx DirectPath 3

IMUL mem8 F6h mm-101-xxx DirectPath 6

IMUL mreg16 F7h 11-101-xxx VectorPath 4

IMUL mreg32/64 F7h 11-101-xxx Double 3/5

IMUL mem16 F7h mm-101-xxx VectorPath 7

IMUL mem32/64 F7h mm-101-xxx Double 6/8

IMUL reg16/32/64, mreg16/32/64 0Fh AFh 11-xxx-xxx DirectPath 3/3/4

IMUL reg16/32/64, mem16/32/64 0Fh AFh mm-xxx-xxx DirectPath 6/6/7

IN AL, imm8 E4h VectorPath 184

IN AX, imm8 E5h VectorPath 184

IN EAX, imm8 E5h VectorPath 184

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
282 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
IN AL, DX ECh VectorPath 179

IN AX, DX EDh VectorPath 179

IN EAX, DX EDh VectorPath 181

INC AX, EAX 40h DirectPath 1 8

INC CX, ECX 41h DirectPath 1 8

INC DX, EDX 42h DirectPath 1 8

INC BX, EBX 43h DirectPath 1 8

INC SP, ESP 44h DirectPath 1 8

INC BP, EBP 45h DirectPath 1 8

INC SI, ESI 46h DirectPath 1 8

INC DI, EDI 47h DirectPath 1 8

INC mreg8 FEh 11-000-xxx DirectPath 1

INC mem8 FEh mm-000-xxx DirectPath 4

INC mreg16/32/64 FFh 11-000-xxx DirectPath 1

INC mem16/32/64 FFh mm-000-xxx DirectPath 4

INSB/INS mem8, DX 6Ch VectorPath 184

INSD/INS mem32, DX 6Dh VectorPath 185

INSW/INS mem16, DX 6Dh VectorPath 186

INT imm8 (no CPL change) CDh VectorPath 87–109

INT imm8 (CPL change) CDh VectorPath 91–112

INVD 0Fh 08h VectorPath 247

INVLPG 0Fh 01h mm-111-xxx VectorPath 101/80 7

IRET, IRETD, IRETQ (from 64-bit to 64-bit) CFh VectorPath 91

IRET, IRETD, IRETQ (from 64-bit to 32-bit) CFh VectorPath 111

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
Appendix C Instruction Latencies 283

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
JA/JNBE disp8 77h DirectPath 1 1

JA/JNBE disp16/32 0Fh 87h DirectPath 1 1

JAE/JNB/JNC disp8 73h DirectPath 1 1

JAE/JNB/JNC disp16/32 0Fh 83h DirectPath 1 1

JB/JC/JNAE disp8 72h DirectPath 1 1

JB/JC/JNAE disp16/32 0Fh 82h DirectPath 1 1

JBE/JNA disp8 76h DirectPath 1 1

JBE/JNA disp16/32 0Fh 86h DirectPath 1 1

JCXZ/JECXZ/JRCXZ disp8 E3h DirectPath 2 1

JE/JZ disp8 74h DirectPath 1 1

JE/JZ disp16/32 0Fh 84h DirectPath 1 1

JG/JNLE disp8 7Fh DirectPath 1 1

JG/JNLE disp16/32 0Fh 8Fh DirectPath 1 1

JGE/JNL disp8 7Dh DirectPath 1 1

JGE/JNL disp16/32 0Fh 8Dh DirectPath 1 1

JL/JNGE disp8 7Ch DirectPath 1 1

JL/JNGE disp16/32 0Fh 8Ch DirectPath 1 1

JLE/JNG disp8 7Eh DirectPath 1 1

JLE/JNG disp16/32 0Fh 8Eh DirectPath 1 1

JMP disp8 (short) EBh DirectPath 1

JMP disp16/32 (near, displacement) E9h DirectPath 1

JMP mem16/32/64 (near, indirect) FFh mm-100-xxx DirectPath 4

JMP mreg16/32/64 (near, indirect) FFh 11-100-xxx DirectPath 1

JMP mem16:16/32 (far, indirect, no call gate) FFh mm-101-xxx VectorPath 34

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
284 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
JMP mem16:16/32 (far, indirect, call gate) FFh mm-101-xxx VectorPath 123

JMP pntr16:16/32 (far, direct, no call gate) EAh VectorPath 31

JMP pntr16:16/32 (far, direct, call gate) EAh VectorPath 120

JNE/JNZ disp8 75h DirectPath 1 1

JNE/JNZ disp16/32 0Fh 85h DirectPath 1 1

JNO disp8 71h DirectPath 1 1

JNO disp16/32 0Fh 81h DirectPath 1 1

JNP/JPO disp8 7Bh DirectPath 1 1

JNP/JPO disp16/32 0Fh 8Bh DirectPath 1 1

JNS disp8 79h DirectPath 1 1

JNS disp16/32 0Fh 89h DirectPath 1 1

JO disp8 70h DirectPath 1 1

JO disp16/32 0Fh 80h DirectPath 1 1

JP/JPE disp8 7Ah DirectPath 1 1

JP/JPE disp16/32 0Fh 8Ah DirectPath 1 1

JS disp8 78h DirectPath 1 1

JS disp16/32 0Fh 88h DirectPath 1 1

LAHF 9Fh VectorPath 3

LAR reg16/32/64, mreg16/32/64 0Fh 02h 11-xxx-xxx VectorPath 22

LAR reg16/32/64, mem16/32/64 0Fh 02h mm-xxx-xxx VectorPath 24

LDS reg16/32, mem16:16/32 C5h mm-xxx-xxx VectorPath ~

LEA reg16, mem16/32/64 8Dh mm-xxx-xxx VectorPath 3

LEA reg32/64, mem16/32/64 8Dh mm-xxx-xxx DirectPath 1/2 4

LEAVE (16 bit stack size) C9h VectorPath 3

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
Appendix C Instruction Latencies 285

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
LEAVE (32 or 64 bit stack size) C9h Double 3

LES reg16/32, mem32/48 C4h mm-xxx-xxx VectorPath ~

LFS reg16/32, mem32/48 0Fh B4h VectorPath ~

LGDT mem16:32 0Fh 01h mm-010-xxx VectorPath 37

LGDT mem16:64 0Fh 01h mm-010-xxx VectorPath ~

LGS reg16/32, mem32/48 0Fh B5h VectorPath ~

LIDT mem16:32 0Fh 01h mm-011-xxx VectorPath 148

LIDT mem16:64 0Fh 01h mm-011-xxx VectorPath ~

LLDT mreg16 0Fh 00h 11-010-xxx VectorPath 34

LLDT mem16 0Fh 00h mm-010-xxx VectorPath 35

LMSW mreg16 0Fh 01h 11-100-xxx VectorPath 11

LMSW mem16 0Fh 01h mm-100-xxx VectorPath 12

LODS/LODSB mem8 ACh VectorPath 5 6

LODS/LODSW mem16 ADh VectorPath 5 6

LODS/LODSD mem32 ADh VectorPath 4 6

LODS/LODSQ mem64 ADh VectorPath ~ 6

LOOP disp8 E2h VectorPath 9/8 7

LOOPE/LOOPZ disp8 E1h VectorPath 9/8 7

LOOPNE/LOOPNZ disp8 E0h VectorPath 9/8 7

LSL reg16/32/64, mreg16/32 0Fh 03h 11-xxx-xxx VectorPath 21

LSL reg16/32/64, mem16/32 0Fh 03h mm-xxx-xxx VectorPath 23

LSS reg16/32/64, mem16:16/32 0Fh B2h mm-xxx-xxx VectorPath ~

LTR mreg16 0Fh 00h 11-011-xxx VectorPath ~

LTR mem16 0Fh 00h mm-011-xxx VectorPath ~

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
286 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
MFENCE 0Fh AEh 11-110-000 VectorPath ~

MOV mreg8, reg8 88h 11-xxx-xxx DirectPath 1

MOV mem8, reg8 88h mm-xxx-xxx DirectPath 3

MOV mreg16/32/64, reg16/32/64 89h 11-xxx-xxx DirectPath 1

MOV mem16/32/64, reg16/32/64 89h mm-xxx-xxx DirectPath 3

MOV reg8, mreg8 8Ah 11-xxx-xxx DirectPath 1

MOV reg8, mem8 8Ah mm-xxx-xxx DirectPath 4

MOV reg16/32/64, mreg16/32/64 8Bh 11-xxx-xxx DirectPath 1

MOV reg16, mem16 8Bh mm-xxx-xxx DirectPath 4

MOV reg32/64, mem32/64 8Bh mm-xxx-xxx DirectPath 3

MOV mreg16/32/64, sreg 8Ch 11-xxx-xxx DirectPath 4/3 7

MOV mem16, sreg 8Ch mm-xxx-xxx Double 4

MOV sreg, mreg16/32/64 8Eh 11-xxx-xxx VectorPath 8

MOV sreg, mem16 8Eh mm-xxx-xxx VectorPath 10

MOV AL, mem8 A0h DirectPath 4

MOV AX/EAX/RAX, mem16/32/64 A1h DirectPath 4/3/3

MOV mem8, AL A2h DirectPath 3

MOV mem16/32/64, AX/EAX/RAX A3h DirectPath 3

MOV AL, imm8 B0h DirectPath 1

MOV CL, imm8 B1h DirectPath 1

MOV DL, imm8 B2h DirectPath 1

MOV BL, imm8 B3h DirectPath 1

MOV AH, imm8 B4h DirectPath 1

MOV CH, imm8 B5h DirectPath 1

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
Appendix C Instruction Latencies 287

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
MOV DH, imm8 B6h DirectPath 1

MOV BH, imm8 B7h DirectPath 1

MOV AX/EAX/RAX/R8, imm16/32/64 B8h DirectPath 1

MOV CX/ECX/RCX/R9, imm16/32/64 B9h DirectPath 1

MOV DX/EDX/RDX/R10, imm16/32/64 BAh DirectPath 1

MOV BX/EBX/RBX/R11, imm16/32/64 BBh DirectPath 1

MOV SP/ESP/RSP/R12, imm16/32/64 BCh DirectPath 1

MOV BP/EBP/RBP/R13, imm16/32/64 BDh DirectPath 1

MOV SI/ESI/RSI/R14, imm16/32/64 BEh DirectPath 1

MOV DI/EDI/RDI/R15, imm16/32/64 BFh DirectPath 1

MOV mreg8, imm8 C6h 11-000-xxx DirectPath 1

MOV mem8, imm8 C6h mm-000-xxx DirectPath 3

MOV mreg16/32/64, imm16/32 C7h 11-000-xxx DirectPath 1

MOV mem16/32/64, imm16/32 C7h mm-000-xxx DirectPath 3

MOVSB/MOVS mem8, mem8 A4h VectorPath 5 6

MOVSD/MOVS mem16, mem16 A5h VectorPath 5 6

MOVSW/MOVS mem32, mem32 A5h VectorPath 5 6

MOVSQ/MOVS mem64, mem64 A5h VectorPath ~ 6

MOVSX reg16/32/64, mreg8 0Fh BEh 11-xxx-xxx DirectPath 1

MOVSX reg16/32/64, mem8 0Fh BEh mm-xxx-xxx DirectPath 4

MOVSX reg32/64, mreg16 0Fh BFh 11-xxx-xxx DirectPath 1

MOVSX reg32/64, mem16 0Fh BFh mm-xxx-xxx DirectPath 4

MOVSXD reg64, mreg32 63h DirectPath 1

MOVSXD reg64, mem32 63h DirectPath 4

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
288 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
MOVZX reg16/32/64, mreg8 0Fh B6h 11-xxx-xxx DirectPath 1

MOVZX reg16/32/64, mem8 0Fh B6h mm-xxx-xxx DirectPath 4

MOVZX reg32/64, mreg16 0Fh B7h 11-xxx-xxx DirectPath 1

MOVZX reg32/64, mem16 0Fh B7h mm-xxx-xxx DirectPath 4

MUL mreg8 F6h 11-100-xxx DirectPath 3

MUL AL, mem8 F6h mm-100-xx DirectPath 6

MUL mreg16 F7h 11-100-xxx VectorPath 4

MUL mem16 F7h mm-100-xxx VectorPath 7

MUL mreg32 F7h 11-100-xxx Double 3

MUL mem32 F7h mm-100-xx Double 6

MUL mreg64 F7h 11-100-xxx Double 5

MUL mem64 F7h mm-100-xx Double 8

NEG mreg8 F6h 11-011-xxx DirectPath 1

NEG mem8 F6h mm-011-xxx DirectPath 4

NEG mreg16/32/64 F7h 11-011-xxx DirectPath 1

NEG mem16/32/64 F7h mm-011-xx DirectPath 4

NOP (XCHG EAX, EAX) 90h DirectPath ~0 5

NOT mreg8 F6h 11-010-xxx DirectPath 1

NOT mem8 F6h mm-010-xx DirectPath 4

NOT mreg16/32/64 F7h 11-010-xxx DirectPath 1

NOT mem16/32/64 F7h mm-010-xx DirectPath 4

OR mreg8, reg8 08h 11-xxx-xxx DirectPath 1

OR mem8, reg8 08h mm-xxx-xxx DirectPath 4

OR mreg16/32/64, reg16/32/64 09h 11-xxx-xxx DirectPath 1

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
Appendix C Instruction Latencies 289

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
OR mem16/32/64, reg16/32/64 09h mm-xxx-xxx DirectPath 4

OR reg8, mreg8 0Ah 11-xxx-xxx DirectPath 1

OR reg8, mem8 0Ah mm-xxx-xxx DirectPath 4

OR reg16/32/64, mreg16/32/64 0Bh 11-xxx-xxx DirectPath 1

OR reg16/32/64, mem16/32/64 0Bh mm-xxx-xxx DirectPath 4

OR AL, imm8 0Ch DirectPath 1

OR AX, imm16 0Dh DirectPath 1

OR EAX, imm32 0Dh DirectPath 1

OR RAX, imm32 (sign extended) 0Dh DirectPath 1

OR mreg8, imm8 80h 11-001-xxx DirectPath 1

OR mem8, imm8 80h mm-001-xxx DirectPath 4

OR mreg16/32/64, imm16/32 81h 11-001-xxx DirectPath 1

OR mem16/32/64, imm16/32 81h mm-001-xxx DirectPath 4

OR mreg16/32/64, imm8 (sign extended) 83h 11-001-xxx DirectPath 1

OR mem16/32/64, imm8 (sign extended) 83h mm-001-xxx DirectPath 4

OUT imm8, AL E6h VectorPath ~

OUT imm8, AX E7h VectorPath ~

OUT imm8, EAX E7h VectorPath ~

OUT DX, AL EEh VectorPath 165

OUT DX, AX EFh VectorPath 165

OUT DX, EAX EFh VectorPath 165

POP ES 07h VectorPath 10

POP SS 17h VectorPath 31

POP DS 1Fh VectorPath 10

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
290 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
POP FS 0Fh A1h VectorPath 10

POP GS 0Fh A9h VectorPath 10

POP AX/EAX/RAX/(R8) 58h Double 3

POP CX/ECX/RCX/(R9) 59h Double 3

POP DX/EDX/RDX/(R10) 5Ah Double 3

POP BX/EBX/RBX/(R11) 5Bh Double 3

POP SP/ESP/RSP/(R12) 5Ch Double 3

POP BP/EBP/RBP/(R13) 5Dh Double 3

POP SI/ESI/RSI/(R14) 5Eh Double 3

POP DI/EDI/RDI/(R15) 5Fh Double 3

POP mreg 16/32/64 8Fh 11-000-xxx VectorPath 3

POP mem 16/32/64 8Fh mm-000-xxx VectorPath 3

POPA/POPAD 61h VectorPath 6

POPF/POPFD/POPFQ 9Dh VectorPath 15

PUSH ES 06h VectorPath 3 2

PUSH CS 0Eh VectorPath 3

PUSH FS 0Fh A0h VectorPath 3

PUSH GS 0Fh A8h VectorPath 3

PUSH SS 16h VectorPath 3

PUSH DS 1Eh VectorPath 3 2

PUSH AX/EAX/RAX/(R8) 50h DirectPath 3 2

PUSH CX/ECX/RCX/(R9) 51h DirectPath 3 2

PUSH DX/EDX/RDX/(R10) 52h DirectPath 3 2

PUSH BX/EBX/RBX/(R11) 53h DirectPath 3 2

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
Appendix C Instruction Latencies 291

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
PUSH SP/ESP/RSP/(R12) 54h DirectPath 3 2

PUSH BP/EBP/RBP/(R13) 55h DirectPath 3 2

PUSH SI/ESI/RSI/(R14) 56h DirectPath 3 2

PUSH DI/EDI/RDI/(R15) 57h DirectPath 3 2

PUSH imm8 6Ah DirectPath 3 2

PUSH imm16/32 68h DirectPath 3 2

PUSH mreg16/32/64 FFh 11-110-xxx DirectPath 3

PUSH mem16/32/64 FFh mm-110-xxx Double 3 2

PUSHA/PUSHAD 60h VectorPath 6

PUSHF/PUSHFD/PUSHFQ 9Ch VectorPath 4

RCL mreg8, imm8 C0h 11-010-xxx VectorPath 7

RCL mem8, imm8 C0h mm-010-xxx VectorPath 8

RCL mreg16/32/64, imm8 C1h 11-010-xxx VectorPath 7

RCL mem16/32/64, imm8 C1h mm-010-xxx VectorPath 8

RCL mreg8, 1 D0h 11-010-xxx DirectPath 1

RCL mem8, 1 D0h mm-010-xxx DirectPath 4

RCL mreg16/32/64, 1 D1h 11-010-xxx DirectPath 1

RCL mem16/32/64, 1 D1h mm-010-xxx DirectPath 4

RCL mreg8, CL D2h 11-010-xxx VectorPath 6

RCL mem8, CL D2h mm-010-xxx VectorPath 7

RCL mreg16/32/64, CL D3h 11-010-xxx VectorPath 6

RCL mem16/32/64, CL D3h mm-010-xxx VectorPath 7

RCR mreg8, imm8 C0h 11-011-xxx VectorPath 5

RCR mem8, imm8 C0h mm-011-xxx VectorPath 6

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
292 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
RCR mreg16/32/64, imm8 C1h 11-011-xxx VectorPath 5

RCR mem16/32/64, imm8 C1h mm-011-xxx VectorPath 6

RCR mreg8, 1 D0h 11-011-xxx DirectPath 1

RCR mem8, 1 D0h mm-011-xxx DirectPath 4

RCR mreg16/32/64, 1 D1h 11-011-xxx DirectPath 1

RCR mem16/32/64, 1 D1h mm-011-xxx DirectPath 4

RCR mreg8, CL D2h 11-011-xxx VectorPath 4

RCR mem8, CL D2h mm-011-xxx VectorPath 6

RCR mreg16/32/64, CL D3h 11-011-xxx VectorPath 4

RCR mem16/32/64, CL D3h mm-011-xxx VectorPath 6

RDMSR 0Fh 32h VectorPath 87

RDPMC 0Fh 33h VectorPath ~

RDTSC 0Fh 31h VectorPath 12

RET near imm16 C2h VectorPath 5

RET near C3h Double 5

RET far imm16 (no CPL change) CAh VectorPath 31–44

RET far imm16 (CPL change) CAh VectorPath 57-72

RET far (no CPL change) CBh VectorPath 31–44

RET far (CPL change) CBh VectorPath 57-72

ROL mreg8, imm8 C0h 11-000-xxx DirectPath 1 3

ROL mem8, imm8 C0h mm-000-xxx DirectPath 4 3

ROL mreg16/32/64, imm8 C1h 11-000-xxx DirectPath 1 3

ROL mem16/32/64, imm8 C1h mm-000-xxx DirectPath 4 3

ROL mreg8, 1 D0h 11-000-xxx DirectPath 1

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
Appendix C Instruction Latencies 293

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
ROL mem8, 1 D0h mm-000-xxx DirectPath 4

ROL mreg16/32/64, 1 D1h 11-000-xxx DirectPath 1

ROL mem16/32/64, 1 D1h mm-000-xxx DirectPath 4

ROL mreg8, CL D2h 11-000-xxx DirectPath 1 3

ROL mem8, CL D2h mm-000-xxx DirectPath 4 3

ROL mreg16/32/64, CL D3h 11-000-xxx DirectPath 1 3

ROL mem16/32/64, CL D3h mm-000-xxx DirectPath 4 3

ROR mreg8, imm8 C0h 11-001-xxx DirectPath 1 3

ROR mem8, imm8 C0h mm-001-xxx DirectPath 4 3

ROR mreg16/32/64, imm8 C1h 11-001-xxx DirectPath 1 3

ROR mem16/32/64, imm8 C1h mm-001-xxx DirectPath 4 3

ROR mreg8, 1 D0h 11-001-xxx DirectPath 1

ROR mem8, 1 D0h mm-001-xxx DirectPath 4

ROR mreg16/32/64, 1 D1h 11-001-xxx DirectPath 1

ROR mem16/32/64, 1 D1h mm-001-xxx DirectPath 4

ROR mreg8, CL D2h 11-001-xxx DirectPath 1 3

ROR mem8, CL D2h mm-001-xxx DirectPath 4 3

ROR mreg16/32/64, CL D3h 11-001-xxx DirectPath 1 3

ROR mem16/32/64, CL D3h mm-001-xxx DirectPath 4 3

SAHF 9Eh DirectPath 1

SAR mreg8, imm8 C0h 11-111-xxx DirectPath 1 3

SAR mem8, imm8 C0h mm-111-xxx DirectPath 4 3

SAR mreg16/32/64, imm8 C1h 11-111-xxx DirectPath 1 3

SAR mem16/32/64, imm8 C1h mm-111-xxx DirectPath 4 3

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
294 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
SAR mreg8, 1 D0h 11-111-xxx DirectPath 1

SAR mem8, 1 D0h mm-111-xxx DirectPath 4

SAR mreg16/32/64, 1 D1h 11-111-xxx DirectPath 1

SAR mem16/32/64, 1 D1h mm-111-xxx DirectPath 4

SAR mreg8, CL D2h 11-111-xxx DirectPath 1 3

SAR mem8, CL D2h mm-111-xxx DirectPath 4 3

SAR mreg16/32/64, CL D3h 11-111-xxx DirectPath 1 3

SAR mem16/32/64, CL D3h mm-111-xxx DirectPath 4 3

SBB mreg8, reg8 18h 11-xxx-xxx DirectPath 1

SBB mem8, reg8 18h mm-xxx-xxx DirectPath 4

SBB mreg16/32/64, reg16/32/64 19h 11-xxx-xxx DirectPath 1

SBB mem16/32/64, reg16/32/64 19h mm-xxx-xxx DirectPath 4

SBB reg8, mreg8 1Ah 11-xxx-xxx DirectPath 1

SBB reg8, mem8 1Ah mm-xxx-xxx DirectPath 4

SBB reg16/32/64, mreg16/32/64 1Bh 11-xxx-xxx DirectPath 1

SBB reg16/32/64, mem16/32/64 1Bh mm-xxx-xxx DirectPath 4

SBB AL, imm8 1Ch DirectPath 1

SBB AX, imm16 1Dh DirectPath 1

SBB EAX, imm32 1Dh DirectPath 1

SBB RAX, imm32 (sign extended) 1Dh DirectPath 1

SBB mreg8, imm8 80h 11-011-xxx DirectPath 1

SBB mem8, imm8 80h mm-011-xxx DirectPath 4

SBB mreg16/32/64, imm16/32 81h 11-011-xxx DirectPath 1

SBB mem16/32/64, imm16/32 81h mm-011-xxx DirectPath 4

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
Appendix C Instruction Latencies 295

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
SBB mreg16/32/64, imm8 (sign extended) 83h 11-011-xxx DirectPath 1

SBB mem16/32/64, imm8 (sign extended) 83h mm-011-xxx DirectPath 4

SCASB/SCAS mem8 AEh VectorPath 4 6

SCASD/SCAS mem32 AFh VectorPath 4 6

SCASQ/SCAS mem64 AFh VectorPath 4 6

SCASW/SCAS mem16 AFh VectorPath 4 6

SETA/SETNBE mem8 0Fh 97h mm-xxx-xxx DirectPath 3

SETA/SETNBE mreg8 0Fh 97h 11-xxx-xxx DirectPath 1

SETAE/SETNB/SETNC mem8 0Fh 93h mm-xxx-xxx DirectPath 3

SETAE/SETNB/SETNC mreg8 0Fh 93h 11-xxx-xxx DirectPath 1

SETB/SETC/SETNAE mem8 0Fh 92h mm-xxx-xxx DirectPath 3

SETB/SETC/SETNAE mreg8 0Fh 92h 11-xxx-xxx DirectPath 1

SETBE/SETNA mem8 0Fh 96h mm-xxx-xxx DirectPath 3

SETBE/SETNA mreg8 0Fh 96h 11-xxx-xxx DirectPath 1

SETE/SETZ mem8 0Fh 94h mm-xxx-xxx DirectPath 3

SETE/SETZ mreg8 0Fh 94h 11-xxx-xxx DirectPath 1

SETG/SETNLE mem8 0Fh 9Fh mm-xxx-xxx DirectPath 3

SETG/SETNLE mreg8 0Fh 9Fh 11-xxx-xxx DirectPath 1

SETGE/SETNL mem8 0Fh 9Dh mm-xxx-xxx DirectPath 3

SETGE/SETNL mreg8 0Fh 9Dh 11-xxx-xxx DirectPath 1

SETL/SETNGE mem8 0Fh 9Ch mm-xxx-xxx DirectPath 3

SETL/SETNGE mreg8 0Fh 9Ch 11-xxx-xxx DirectPath 1

SETLE/SETNG mem8 0Fh 9Eh mm-xxx-xxx DirectPath 3

SETLE/SETNG mreg8 0Fh 9Eh 11-xxx-xxx DirectPath 1

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
296 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
SETNE/SETNZ mem8 0Fh 95h mm-xxx-xxx DirectPath 3

SETNE/SETNZ mreg8 0Fh 95h 11-xxx-xxx DirectPath 1

SETNO mem8 0Fh 91h mm-xxx-xxx DirectPath 3

SETNO mreg8 0Fh 91h 11-xxx-xxx DirectPath 1

SETNP/SETPO mem8 0Fh 9Bh mm-xxx-xxx DirectPath 3

SETNP/SETPO mreg8 0Fh 9Bh 11-xxx-xxx DirectPath 1

SETNS mem8 0Fh 99h mm-xxx-xxx DirectPath 3

SETNS mreg8 0Fh 99h 11-xxx-xxx DirectPath 1

SETO mem8 0Fh 90h mm-xxx-xxx DirectPath 3

SETO mreg8 0Fh 90h 11-xxx-xxx DirectPath 1

SETP/SETPE mem8 0Fh 9Ah mm-xxx-xxx DirectPath 3

SETP/SETPE mreg8 0Fh 9Ah 11-xxx-xxx DirectPath 1

SETS mem8 0Fh 98h mm-xxx-xxx DirectPath 3

SETS mreg8 0Fh 98h 11-xxx-xxx DirectPath 1

SGDT mem48 0Fh 01h mm-000-xxx VectorPath 17/18 7

SIDT mem48 0Fh 01h mm-001-xxx VectorPath 17/18 7

SHL/SAL mreg8, imm8 C0h 11-100-xxx DirectPath 1 3

SHL/SAL mem8, imm8 C0h mm-100-xxx DirectPath 4 3

SHL/SAL mreg16/32/64, imm8 C1h 11-100-xxx DirectPath 1 3

SHL/SAL mem16/32/64, imm8 C1h mm-100-xxx DirectPath 4 3

SHL/SAL mreg8, 1 D0h 11-100-xxx DirectPath 1

SHL/SAL mem8, 1 D0h mm-100-xxx DirectPath 4

SHL/SAL mreg16/32/64, 1 D1h 11-100-xxx DirectPath 1

SHL/SAL mem16/32/64, 1 D1h mm-100-xxx DirectPath 4

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
Appendix C Instruction Latencies 297

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
SHL/SAL mreg8, CL D2h 11-100-xxx DirectPath 1 3

SHL/SAL mem8, CL D2h mm-100-xxx DirectPath 4 3

SHL/SAL mreg16/32/64, CL D3h 11-100-xxx DirectPath 1 3

SHL/SAL mem16/32/64, CL D3h mm-100-xxx DirectPath 4 3

SHLD mreg16/32/64, reg16/32/64, imm8 0Fh A4h 11-xxx-xxx VectorPath 4 3

SHLD mem16/32/64, reg16/32/64, imm8 0Fh A4h mm-xxx-xxx VectorPath 6 3

SHLD mreg16/32/64, reg16/32/64, CL 0Fh A5h 11-xxx-xxx VectorPath 4 3

SHLD mem16/32/64, reg16/32/64, CL 0Fh A5h mm-xxx-xxx VectorPath 6 3

SHR mreg8, imm8 C0h 11-101-xxx DirectPath 1 3

SHR mem8, imm8 C0h mm-101-xxx DirectPath 4 3

SHR mreg16/32/64, imm8 C1h 11-101-xxx DirectPath 1 3

SHR mem16/32/64, imm8 C1h mm-101-xxx DirectPath 4 3

SHR mreg8, 1 D0h 11-101-xxx DirectPath 1

SHR mem8, 1 D0h mm-101-xxx DirectPath 4

SHR mreg16/32/64, 1 D1h 11-101-xxx DirectPath 1

SHR mem16/32/64, 1 D1h mm-101-xxx DirectPath 4

SHR mreg8, CL D2h 11-101-xxx DirectPath 1 3

SHR mem8, CL D2h mm-101-xxx DirectPath 4 3

SHR mreg16/32/64, CL D3h 11-101-xxx DirectPath 1 3

SHR mem16/32/64, CL D3h mm-101-xxx DirectPath 4 3

SHRD mreg16/32/64, reg16/32/64, imm8 0Fh ACh 11-xxx-xxx VectorPath 4 3

SHRD mem16/32/64, reg16/32/64, imm8 0Fh ACh mm-xxx-xxx VectorPath 6 3

SHRD mreg16/32/64, reg16/32/64, CL 0Fh ADh 11-xxx-xxx VectorPath 4 3

SHRD mem16/32/64, reg16/32/64, CL 0Fh ADh mm-xxx-xxx VectorPath 6 3

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
298 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
SLDT mreg16/32/64 0Fh 00h 11-000-xxx VectorPath 5

SLDT mem16/32/64 0Fh 00h mm-000-xxx VectorPath 5

SMSW mreg16/32/64 0Fh 01h 11-100-xxx VectorPath 4

SMSW mem16 0Fh 01h mm-100-xxx VectorPath 3

STC F9h DirectPath 1

STD FDh Double 2

STI FBh VectorPath 4

STOSB/STOS mem8 AAh VectorPath 4 6

STOSW/STOS mem16 ABh VectorPath 4 6

STOSD/STOS mem32 ABh VectorPath 4 6

STOSQ/STOS mem64 ABh VectorPath 4 6

STR mreg16/32/64 0Fh 00h 11-001-xxx VectorPath 5

STR mem16 0Fh 00h mm-001-xxx VectorPath 5

SUB mreg8, reg8 28h 11-xxx-xxx DirectPath 1

SUB mem8, reg8 28h mm-xxx-xxx DirectPath 4

SUB mreg16/32/64, reg16/32/64 29h 11-xxx-xxx DirectPath 1

SUB mem16/32/64, reg16/32/64 29h mm-xxx-xxx DirectPath 4

SUB reg8, mreg8 2Ah 11-xxx-xxx DirectPath 1

SUB reg8, mem8 2Ah mm-xxx-xxx DirectPath 4

SUB reg16/32/64, mreg16/32/64 2Bh 11-xxx-xxx DirectPath 1

SUB reg16/32/64, mem16/32/64 2Bh mm-xxx-xxx DirectPath 4

SUB AL, imm8 2Ch DirectPath 1

SUB AX, imm16 2Dh DirectPath 1

SUB EAX, imm32 2Dh DirectPath 1

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
Appendix C Instruction Latencies 299

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
SUB RAX, imm32 (sign extended) 2Dh DirectPath 1

SUB mreg8, imm8 80h 11-101-xxx DirectPath 1

SUB mem8, imm8 80h mm-101-xxx DirectPath 4

SUB mreg16/32/64, imm16/32 81h 11-101-xxx DirectPath 1

SUB mem16/32/64, imm16/32 81h mm-101-xxx DirectPath 4

SUB mreg16/32/64, imm8 (sign extended) 83h 11-101-xxx DirectPath 1

SUB mem16/32/64, imm8 (sign extended) 83h mm-101-xxx DirectPath 4

SYSCALL 0Fh 05h VectorPath 27

SYSENTER 0Fh 34h VectorPath ~

SYSEXIT 0Fh 35h VectorPath ~

SYSRET 0Fh 07h VectorPath 35

TEST mreg8, reg8 84h 11-xxx-xxx DirectPath 1

TEST mem8, reg8 84h mm-xxx-xxx DirectPath 4

TEST mreg16/32/64, reg16/32/64 85h 11-xxx-xxx DirectPath 1

TEST mem16/32/64, reg16/32/64 85h mm-xxx-xxx DirectPath 4

TEST AL, imm8 A8h DirectPath 1

TEST AX/EAX/RAX, imm16/32 A9h DirectPath 1

TEST mreg8, imm8 F6h 11-000-xxx DirectPath 1

TEST mem8, imm8 F6h mm-000-xxx DirectPath 4

TEST mreg16/32/64, imm16/32 F7h 11-000-xxx DirectPath 1

TEST mem16/32/64, imm16/32 F7h mm-000-xxx DirectPath 4

VERR mreg16 0Fh 00h 11-100-xxx VectorPath 11

VERR mem16 0Fh 00h mm-100-xxx VectorPath 11

VERW mreg16 0Fh 00h 11-101-xxx VectorPath 11

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
300 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
VERW mem16 0Fh 00h mm-101-xxx VectorPath 11

WAIT 9Bh DirectPath ~0 5

WBINVD 0Fh 09h VectorPath 9796/
9474

7

WRMSR 0Fh 30h VectorPath 134

XADD mreg8, reg8 0Fh C0h 11-100-xxx VectorPath 2

XADD mem8, reg8 0Fh C0h mm-100-xxx VectorPath 5

XADD mreg16/32/64, reg16/32/64 0Fh C1h 11-101-xxx VectorPath 2

XADD mem16/32/64, reg16/32/64 0Fh C1h mm-101-xxx VectorPath 5

XCHG reg8, mreg8 86h 11-xxx-xxx VectorPath 2

XCHG mreg8, reg8 86h 11-xxx-xxx VectorPath 2

XCHG reg8, mem8 86h mm-xxx-xxx VectorPath 16

XCHG mem8, reg8 86h mm-xxx-xxx VectorPath 16

XCHG reg16/32/64, mreg16/32/64 87h 11-xxx-xxx VectorPath 2

XCHG mreg16/32/64, reg16/32/64 87h 11-xxx-xxx VectorPath 2

XCHG reg16/32/64, mem16/32/64 87h mm-xxx-xxx VectorPath 16

XCHG mem16/32/64, reg16/32/64 87h mm-xxx-xxx VectorPath 16

XCHG AX/EAX/RAX, AX/EAX/RAX/(R8)
(NOP)

90h DirectPath ~0 5

XCHG AX/EAX/RAX, CX/ECX/RCX/(R9) 91h VectorPath 2

XCHG AX/EAX/RAX, DX/EDX/RDX/(R10) 92h VectorPath 2

XCHG AX/EAX/RAX, BX/EBX/RBX/(R11) 93h VectorPath 2

XCHG AX/EAX/RAX, SP/ESP/RSP/(R12) 94h VectorPath 2

XCHG AX/EAX/RAX, BP/EBP/RBP/(R13) 95h VectorPath 2

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
Appendix C Instruction Latencies 301

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
XCHG AX/EAX/RAX, SI/ESI/RSI/(R14) 96h VectorPath 2

XCHG AX/EAX/RAX, DI/EDI/RDI/(R15) 97h VectorPath 2

XLATB/XLAT mem8 D7h VectorPath 5

XOR mreg8, reg8 30h 11-xxx-xxx DirectPath 1

XOR mem8, reg8 30h mm-xxx-xxx DirectPath 4

XOR mreg16/32/64, reg16/32/64 31h 11-xxx-xxx DirectPath 1

XOR mem16/32/64, reg16/32/64 31h mm-xxx-xxx DirectPath 4

XOR reg8, mreg8 32h 11-xxx-xxx DirectPath 1

XOR reg8, mem8 32h mm-xxx-xxx DirectPath 4

XOR reg16/32/64, mreg16/32/64 33h 11-xxx-xxx DirectPath 1

XOR reg16/32/64, mem16/32/64 33h mm-xxx-xxx DirectPath 4

XOR AL, imm8 34h DirectPath 1

XOR AX, imm16 35h DirectPath 1

XOR EAX, imm32 35h DirectPath 1

XOR RAX, imm32 (sign extended) 35h DirectPath 1

XOR mreg8, imm8 80h 11-110-xxx DirectPath 1

XOR mem8, v 80h mm-110-xxx DirectPath 4

XOR mreg16/32/64, imm16/32 81h 11-110-xxx DirectPath 1

XOR mem16/32/64, imm16/32 81h mm-110-xxx DirectPath 4

XOR mreg16/32/64, imm8 (sign extended) 83h 11-110-xxx DirectPath 1

XOR mem16/32/64, imm8 (sign extended) 83h mm-110-xxx DirectPath 4

Table 13. Integer Instructions (Continued)

Syntax

Encoding
Decode
type

Latency NoteFirst
byte

Second
byte

ModRM
byte

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified

latency.
3. The clock count, regardless of the number of shifts or rotates, as determined by CL or imm8.
4. LEA instructions have a latency of 1 when there are two source operands (as in the case of the base + index

form LEA EAX, [EDX+EDI]). Forms with a scale or more than two source operands will have a latency of 2 (LEA
EAX, [EBX+EBX*8]).

5. These instructions have an effective latency as shown. They map to internal NOPs that can be issued at a rate of
three per cycle but do not occupy execution resources.

6. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on
page 167.

7. The first latency value is for 32-bit mode. The second is for 64-bit mode.
8. This opcode is used as a REX prefix in 64-bit mode.
302 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
C.3 MMX™ Technology Instructions

Table 14. MMX™ Technology Instructions

Syntax

Encoding
Decode
type

FPU pipe(s) Latency NotePrefix
byte

First
byte

ModRM byte

EMMS 0Fh 77h DirectPath FADD/FMUL/
FSTORE

6 2

MOVD mmreg, reg32 0Fh 6Eh 11-xxx-xxx Double - 9 1

MOVD mmreg, reg64 0Fh 6Eh 11-xxx-xxx Double - 9 1

MOVD mmreg, mem32 0Fh 6Eh mm-xxx-xxx DirectPath FADD/FMUL/
FSTORE

4 2

MOVD mmreg, mem64 0Fh 6Eh mm-xxx-xxx DirectPath FADD/FMUL/
FSTORE

4 2

MOVD reg32, mmreg 0Fh 7Eh 11-xxx-xxx Double - 4 1

MOVD reg64, mmreg 0Fh 7Eh 11-xxx-xxx Double - 4 1

MOVD mem32, mmreg 0Fh 7Eh mm-xxx-xxx DirectPath FSTORE 2

MOVD mem64, mmreg 0Fh 7Eh mm-xxx-xxx DirectPath FSTORE 2

MOVQ mmreg1, mmreg2 0Fh 6Fh 11-xxx-xxx DirectPath FADD/FMUL 2

MOVQ mmreg, mem64 0Fh 6Fh mm-xxx-xxx DirectPath FADD/FMUL/
FSTORE

4 2

MOVQ mmreg2, mmreg1 0Fh 7Fh 11-xxx-xxx DirectPath FADD/FMUL 2

MOVQ mem64, mmreg 0Fh 7Fh mm-xxx-xxx DirectPath FSTORE 2

PACKSSDW mmreg1, mmreg2 0Fh 6Bh 11-xxx-xxx DirectPath FADD/FMUL 2

PACKSSDW mmreg, mem64 0Fh 6Bh mm-xxx-xxx DirectPath FADD/FMUL 4

PACKSSWB mmreg1, mmreg2 0Fh 63h 11-xxx-xxx DirectPath FADD/FMUL 2

PACKSSWB mmreg, mem64 0Fh 63h mm-xxx-xxx DirectPath FADD/FMUL 4

PACKUSWB mmreg1, mmreg2 0Fh 67h 11-xxx-xxx DirectPath FADD/FMUL 2

PACKUSWB mmreg, mem64 0Fh 67h mm-xxx-xxx DirectPath FADD/FMUL 4

PADDB mmreg1, mmreg2 0Fh FCh 11-xxx-xxx DirectPath FADD/FMUL 2

PADDB mmreg, mem64 0Fh FCh mm-xxx-xxx DirectPath FADD/FMUL 4

PADDD mmreg1, mmreg2 0Fh FEh 11-xxx-xxx DirectPath FADD/FMUL 2

PADDD mmreg, mem64 0Fh FEh mm-xxx-xxx DirectPath FADD/FMUL 4

PADDSB mmreg1, mmreg2 0Fh ECh 11-xxx-xxx DirectPath FADD/FMUL 2

PADDSB mmreg, mem64 0Fh ECh mm-xxx-xxx DirectPath FADD/FMUL 4

Notes:
1. Bits 2, 1, and 0 of the ModRM byte select the integer register.
2. These instructions have an effective latency as shown. However, these instructions generate an internal NOP

with a latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of
three per cycle and can use any of the three execution resources.
Appendix C Instruction Latencies 303

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
PADDSW mmreg1, mmreg2 0Fh EDh 11-xxx-xxx DirectPath FADD/FMUL 2

PADDSW mmreg, mem64 0Fh EDh mm-xxx-xxx DirectPath FADD/FMUL 4

PADDUSB mmreg1, mmreg2 0Fh DCh 11-xxx-xxx DirectPath FADD/FMUL 2

PADDUSB mmreg, mem64 0Fh DCh mm-xxx-xxx DirectPath FADD/FMUL 4

PADDUSW mmreg1, mmreg2 0Fh DDh 11-xxx-xxx DirectPath FADD/FMUL 2

PADDUSW mmreg, mem64 0Fh DDh mm-xxx-xxx DirectPath FADD/FMUL 4

PADDW mmreg1, mmreg2 0Fh FDh 11-xxx-xxx DirectPath FADD/FMUL 2

PADDW mmreg, mem64 0Fh FDh mm-xxx-xxx DirectPath FADD/FMUL 4

PAND mmreg1, mmreg2 0Fh DBh 11-xxx-xxx DirectPath FADD/FMUL 2

PAND mmreg, mem64 0Fh DBh mm-xxx-xxx DirectPath FADD/FMUL 4

PANDN mmreg1, mmreg2 0Fh DFh 11-xxx-xxx DirectPath FADD/FMUL 2

PANDN mmreg, mem64 0Fh DFh mm-xxx-xxx DirectPath FADD/FMUL 4

PCMPEQB mmreg1, mmreg2 0Fh 74h 11-xxx-xxx DirectPath FADD/FMUL 2

PCMPEQB mmreg, mem64 0Fh 74h mm-xxx-xxx DirectPath FADD/FMUL 4

PCMPEQD mmreg1, mmreg2 0Fh 76h 11-xxx-xxx DirectPath FADD/FMUL 2

PCMPEQD mmreg, mem64 0Fh 76h mm-xxx-xxx DirectPath FADD/FMUL 4

PCMPEQW mmreg1, mmreg2 0Fh 75h 11-xxx-xxx DirectPath FADD/FMUL 2

PCMPEQW mmreg, mem64 0Fh 75h mm-xxx-xxx DirectPath FADD/FMUL 4

PCMPGTB mmreg1, mmreg2 0Fh 64h 11-xxx-xxx DirectPath FADD/FMUL 2

PCMPGTB mmreg, mem64 0Fh 64h mm-xxx-xxx DirectPath FADD/FMUL 4

PCMPGTD mmreg1, mmreg2 0Fh 66h 11-xxx-xxx DirectPath FADD/FMUL 2

PCMPGTD mmreg, mem64 0Fh 66h mm-xxx-xxx DirectPath FADD/FMUL 4

PCMPGTW mmreg1, mmreg2 0Fh 65h 11-xxx-xxx DirectPath FADD/FMUL 2

PCMPGTW mmreg, mem64 0Fh 65h mm-xxx-xxx DirectPath FADD/FMUL 4

PMADDWD mmreg1, mmreg2 0Fh F5h 11-xxx-xxx DirectPath FMUL 3

PMADDWD mmreg, mem64 0Fh F5h mm-xxx-xxx DirectPath FMUL 5

PMULHW mmreg1, mmreg2 0Fh E5h 11-xxx-xxx DirectPath FMUL 3

PMULHW mmreg, mem64 0Fh E5h mm-xxx-xxx DirectPath FMUL 5

PMULLW mmreg1, mmreg2 0Fh D5h 11-xxx-xxx DirectPath FMUL 3

PMULLW mmreg, mem64 0Fh D5h mm-xxx-xxx DirectPath FMUL 5

Table 14. MMX™ Technology Instructions (Continued)

Syntax

Encoding
Decode
type

FPU pipe(s) Latency NotePrefix
byte

First
byte

ModRM byte

Notes:
1. Bits 2, 1, and 0 of the ModRM byte select the integer register.
2. These instructions have an effective latency as shown. However, these instructions generate an internal NOP

with a latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of
three per cycle and can use any of the three execution resources.
304 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
POR mmreg1, mmreg2 0Fh EBh 11-xxx-xxx DirectPath FADD/FMUL 2

POR mmreg, mem64 0Fh EBh mm-xxx-xxx DirectPath FADD/FMUL 4

PSLLD mmreg1, mmreg2 0Fh F2h 11-xxx-xxx DirectPath FADD/FMUL 2

PSLLD mmreg, mem64 0Fh F2h mm-xxx-xxx DirectPath FADD/FMUL 4

PSLLD mmreg, imm8 0Fh 72h 11-110-xxx DirectPath FADD/FMUL 2

PSLLQ mmreg1, mmreg2 0Fh F3h 11-xxx-xxx DirectPath FADD/FMUL 2

PSLLQ mmreg, mem64 0Fh F3h mm-xxx-xxx DirectPath FADD/FMUL 4

PSLLQ mmreg, imm8 0Fh 73h 11-110-xxx DirectPath FADD/FMUL 2

PSLLW mmreg1, mmreg2 0Fh F1h 11-xxx-xxx DirectPath FADD/FMUL 2

PSLLW mmreg, mem64 0Fh F1h mm-xxx-xxx DirectPath FADD/FMUL 4

PSLLW mmreg, imm8 0Fh 71h 11-110-xxx DirectPath FADD/FMUL 2

PSRAD mmreg1, mmreg2 0Fh E2h 11-xxx-xxx DirectPath FADD/FMUL 2

PSRAD mmreg, mem64 0Fh E2h mm-xxx-xxx DirectPath FADD/FMUL 4

PSRAD mmreg, imm8 0Fh 72h 11-100-xxx DirectPath FADD/FMUL 2

PSRAW mmreg1, mmreg2 0Fh E1h 11-xxx-xxx DirectPath FADD/FMUL 2

PSRAW mmreg, mem64 0Fh E1h mm-xxx-xxx DirectPath FADD/FMUL 4

PSRAW mmreg, imm8 0Fh 71h 11-100-xxx DirectPath FADD/FMUL 2

PSRLD mmreg1, mmreg2 0Fh D2h 11-xxx-xxx DirectPath FADD/FMUL 2

PSRLD mmreg, mem64 0Fh D2h mm-xxx-xxx DirectPath FADD/FMUL 4

PSRLD mmreg, imm8 0Fh 72h 11-010-xxx DirectPath FADD/FMUL 2

PSRLQ mmreg1, mmreg2 0Fh D3h 11-xxx-xxx DirectPath FADD/FMUL 2

PSRLQ mmreg, mem64 0Fh D3h mm-xxx-xxx DirectPath FADD/FMUL 4

PSRLQ mmreg, imm8 0Fh 73h 11-010-xxx DirectPath FADD/FMUL 2

PSRLW mmreg1, mmreg2 0Fh D1h 11-xxx-xxx DirectPath FADD/FMUL 2

PSRLW mmreg, mem64 0Fh D1h mm-xxx-xxx DirectPath FADD/FMUL 4

PSRLW mmreg, imm8 0Fh 71h 11-010-xxx DirectPath FADD/FMUL 2

PSUBB mmreg1, mmreg2 0Fh F8h 11-xxx-xxx DirectPath FADD/FMUL 2

PSUBB mmreg, mem64 0Fh F8h mm-xxx-xxx DirectPath FADD/FMUL 4

PSUBD mmreg1, mmreg2 0Fh FAh 11-xxx-xxx DirectPath FADD/FMUL 2

PSUBD mmreg, mem64 0Fh FAh mm-xxx-xxx DirectPath FADD/FMUL 4

Table 14. MMX™ Technology Instructions (Continued)

Syntax

Encoding
Decode
type

FPU pipe(s) Latency NotePrefix
byte

First
byte

ModRM byte

Notes:
1. Bits 2, 1, and 0 of the ModRM byte select the integer register.
2. These instructions have an effective latency as shown. However, these instructions generate an internal NOP

with a latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of
three per cycle and can use any of the three execution resources.
Appendix C Instruction Latencies 305

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
PSUBSB mmreg1, mmreg2 0Fh E8h 11-xxx-xxx DirectPath FADD/FMUL 2

PSUBSB mmreg, mem64 0Fh E8h mm-xxx-xxx DirectPath FADD/FMUL 4

PSUBSW mmreg1, mmreg2 0Fh E9h 11-xxx-xxx DirectPath FADD/FMUL 2

PSUBSW mmreg, mem64 0Fh E9h mm-xxx-xxx DirectPath FADD/FMUL 4

PSUBUSB mmreg1, mmreg2 0Fh D8h 11-xxx-xxx DirectPath FADD/FMUL 2

PSUBUSB mmreg, mem64 0Fh D8h mm-xxx-xxx DirectPath FADD/FMUL 4

PSUBUSW mmreg1, mmreg2 0Fh D9h 11-xxx-xxx DirectPath FADD/FMUL 2

PSUBUSW mmreg, mem64 0Fh D9h mm-xxx-xxx DirectPath FADD/FMUL 4

PSUBW mmreg1, mmreg2 0Fh F9h 11-xxx-xxx DirectPath FADD/FMUL 2

PSUBW mmreg, mem64 0Fh F9h mm-xxx-xxx DirectPath FADD/FMUL 4

PUNPCKHBW mmreg1,
mmreg2

0Fh 68h 11-xxx-xxx DirectPath FADD/FMUL 2

PUNPCKHBW mmreg, mem64 0Fh 68h mm-xxx-xxx DirectPath FADD/FMUL 4

PUNPCKHDQ mmreg1,
mmreg2

0Fh 6Ah 11-xxx-xxx DirectPath FADD/FMUL 2

PUNPCKHDQ mmreg, mem64 0Fh 6Ah mm-xxx-xxx DirectPath FADD/FMUL 4

PUNPCKHWD mmreg1,
mmreg2

0Fh 69h 11-xxx-xxx DirectPath FADD/FMUL 2

PUNPCKHWD mmreg, mem64 0Fh 69h mm-xxx-xxx DirectPath FADD/FMUL 4

PUNPCKLBW mmreg1,
mmreg2

0Fh 60h 11-xxx-xxx DirectPath FADD/FMUL 2

PUNPCKLBW mmreg, mem64 0Fh 60h mm-xxx-xxx DirectPath FADD/FMUL 4

PUNPCKLDQ mmreg1,
mmreg2

0Fh 62h 11-xxx-xxx DirectPath FADD/FMUL 2

PUNPCKLDQ mmreg, mem64 0Fh 62h mm-xxx-xxx DirectPath FADD/FMUL 4

PUNPCKLWD mmreg1,
mmreg2

0Fh 61h 11-xxx-xxx DirectPath FADD/FMUL 2

PUNPCKLWD mmreg, mem64 0Fh 61h mm-xxx-xxx DirectPath FADD/FMUL 4

PXOR mmreg1, mmreg2 0Fh EFh 11-xxx-xxx DirectPath FADD/FMUL 2

PXOR mmreg, mem64 0Fh EFh mm-xxx-xxx DirectPath FADD/FMUL 4

Table 14. MMX™ Technology Instructions (Continued)

Syntax

Encoding
Decode
type

FPU pipe(s) Latency NotePrefix
byte

First
byte

ModRM byte

Notes:
1. Bits 2, 1, and 0 of the ModRM byte select the integer register.
2. These instructions have an effective latency as shown. However, these instructions generate an internal NOP

with a latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of
three per cycle and can use any of the three execution resources.
306 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
C.4 x87 Floating-Point Instructions

Table 15. x87 Floating-Point Instructions

Syntax

Encoding
Decode
type

FPU
pipe(s)

Latency NoteFirst
byte

Second
byte

ModRM byte

F2XM1 D9h 11-110-000 VectorPath - 65

FABS D9h 11-100-001 DirectPath FMUL 2

FADD ST, ST(i) D8h 11-000-xxx DirectPath FADD 4 1

FADD [mem32real] D8h mm-000-xxx DirectPath FADD 6

FADD ST(i), ST DCh 11-000-xxx DirectPath FADD 4 1

FADD [mem64real] DCh mm-000-xxx DirectPath FADD 6

FADDP ST(i), ST DEh 11-000-xxx DirectPath FADD 4 1

FBLD [mem80] DFh mm-100-xxx VectorPath - 87

FBSTP [mem80] DFh mm-110-xxx VectorPath - 172

FCHS D9h 11-100-000 DirectPath FMUL 2

FCLEX DBh E2h 11-100-010 VectorPath - ~

FCMOVB ST(0), ST(i) DAh 11-000-xxx VectorPath - 15 5

FCMOVBE ST(0), ST(i) DAh 11-010-xxx VectorPath - 15 5

FCMOVE ST(0), ST(i) DAh 11-001-xxx VectorPath - 15 5

FCMOVNB ST(0), ST(i) DBh 11-000-xxx VectorPath - 15 5

FCMOVNBE ST(0), ST(i) DBh 11-010-xxx VectorPath - 15 5

FCMOVNE ST(0), ST(i) DBh 11-001-xxx VectorPath - 15 5

FCMOVNU ST(0), ST(i) DBh 11-011-xxx VectorPath - 15 5

FCMOVU ST(0), ST(i) DAh 11-011-xxx VectorPath - 15 5

FCOM ST(i) D8h 11-010-xxx DirectPath FADD 2 1

FCOM [mem32real] D8h mm-010-xxx DirectPath FADD 4

FCOM [mem64real] DCh mm-010-xxx DirectPath FADD 4

FCOMI ST, ST(i) DBh 11-110-xxx VectorPath FADD 3 3

Notes:
1. The last three bits of the ModRM byte select the stack entry ST(i).
2. These instructions have an effective latency as shown. However, these instructions generate an internal NOP

with a latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of
three per cycle and can use any of the three execution resources.

3. This is a VectorPath decoded operation that uses one execution pipe (one ROP).
4. There is additional latency associated with this instruction. “e” represents the difference between the exponents

of the divisor and the dividend. If “s” is the number of normalization shifts performed on the result, then
n = (s+1)/2 where (0 <= n <= 32).

5. The latency provided for this operation is the best-case latency.
6. The three latency numbers represent the latency values for precision control settings of single precision, double

precision, and extended precision, respectively.
Appendix C Instruction Latencies 307

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
FCOMIP ST, ST(i) DFh 11-110-xxx VectorPath FADD 3 3

FCOMP ST(i) D8h 11-011-xxx DirectPath FADD 2 1

FCOMP [mem32real] D8h mm-011-xxx DirectPath FADD 4

FCOMP [mem64real] DCh mm-011-xxx DirectPath FADD 4

FCOMPP DEh 11-011-001 DirectPath FADD 2

FCOS D9h 11-111-111 VectorPath - 92

FDECSTP D9h 11-110-110 DirectPath FADD/FMUL/
FSTORE

2

FDIV ST, ST(i) D8h 11-110-xxx DirectPath FMUL 16/20
/24

1, 6

FDIV ST(i), ST DCh 11-111-xxx DirectPath FMUL 16/20
/24

1, 6

FDIV [mem32real] D8h mm-110-xxx DirectPath FMUL 18/22
/26

6

FDIV [mem64real] DCh mm-110-xxx DirectPath FMUL 18/22
/26

6

FDIVP ST(i), ST DEh 11-111-xxx DirectPath FMUL 16/20
/24

1, 6

FDIVR ST, ST(i) D8h 11-110-xxx DirectPath FMUL 16/20
/24

1, 6

FDIVR ST(i), ST DCh 11-111-xxx DirectPath FMUL 16/20
/24

1, 6

FDIVR [mem32real] D8h mm-111-xxx DirectPath FMUL 18/22
/26

6

FDIVR [mem64real] DCh mm-111-xxx DirectPath FMUL 18/22
/26

6

FDIVRP DEh 11-110-001 DirectPath FMUL 16/20
/24

6

Table 15. x87 Floating-Point Instructions (Continued)

Syntax

Encoding
Decode
type

FPU
pipe(s)

Latency NoteFirst
byte

Second
byte

ModRM byte

Notes:
1. The last three bits of the ModRM byte select the stack entry ST(i).
2. These instructions have an effective latency as shown. However, these instructions generate an internal NOP

with a latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of
three per cycle and can use any of the three execution resources.

3. This is a VectorPath decoded operation that uses one execution pipe (one ROP).
4. There is additional latency associated with this instruction. “e” represents the difference between the exponents

of the divisor and the dividend. If “s” is the number of normalization shifts performed on the result, then
n = (s+1)/2 where (0 <= n <= 32).

5. The latency provided for this operation is the best-case latency.
6. The three latency numbers represent the latency values for precision control settings of single precision, double

precision, and extended precision, respectively.
308 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
FDIVRP ST(i), ST DEh 11-110-xxx DirectPath FMUL 16/20
/24

1, 6

FFREE ST(i) DDh 11-000-xxx DirectPath FADD/FMUL/
FSTORE

2 1, 2

FIADD [mem32int] DAh mm-000-xxx Double - 11

FIADD [mem16int] DEh mm-000-xxx Double - 11

FICOM [mem32int] DAh mm-010-xxx Double - 9

FICOM [mem16int] DEh mm-010-xxx Double - 9

FICOMP [mem32int] DAh mm-011-xxx Double - 9

FICOMP [mem16int] DEh mm-011-xxx Double - 9

FIDIV [mem32int] DAh mm-110-xxx Double - 18

FIDIV [mem16int] DEh mm-110-xxx Double - 18

FIDIVR [mem32int] DAh mm-111-xxx Double - 18

FIDIVR [mem16int] DEh mm-111-xxx Double - 18

FILD [mem16int] DFh mm-000-xxx DirectPath FSTORE 6

FILD [mem32int] DBh mm-000-xxx DirectPath FSTORE 6

FILD [mem64int] DFh mm-101-xxx DirectPath FSTORE 6

FIMUL [mem32int] DAh mm-001-xxx Double - 11

FIMUL [mem16int] DEh mm-001-xxx Double - 11

FINCSTP D9h 11-110-111 DirectPath FADD/FMUL/
FSTORE

2 2

FINIT DBh 11-100-011 VectorPath - ~

FIST [mem16int] DFh mm-010-xxx DirectPath FSTORE 4

FIST [mem32int] DBh mm-010-xxx DirectPath FSTORE 4

FISTP [mem16int] DFh mm-011-xxx DirectPath FSTORE 4

FISTP [mem32int] DBh mm-011-xxx DirectPath FSTORE 4

Table 15. x87 Floating-Point Instructions (Continued)

Syntax

Encoding
Decode
type

FPU
pipe(s)

Latency NoteFirst
byte

Second
byte

ModRM byte

Notes:
1. The last three bits of the ModRM byte select the stack entry ST(i).
2. These instructions have an effective latency as shown. However, these instructions generate an internal NOP

with a latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of
three per cycle and can use any of the three execution resources.

3. This is a VectorPath decoded operation that uses one execution pipe (one ROP).
4. There is additional latency associated with this instruction. “e” represents the difference between the exponents

of the divisor and the dividend. If “s” is the number of normalization shifts performed on the result, then
n = (s+1)/2 where (0 <= n <= 32).

5. The latency provided for this operation is the best-case latency.
6. The three latency numbers represent the latency values for precision control settings of single precision, double

precision, and extended precision, respectively.
Appendix C Instruction Latencies 309

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
FISTP [mem64int] DFh mm-111-xxx DirectPath FSTORE 4

FISTTP [mem16int] DFh mm-010-xxx DirectPath FSTORE 4

FISTTP [mem32int] DBh mm-010-xxx DirectPath FSTORE 4

FISTTP [mem64int] DDh mm-010-xxx DirectPath FSTORE 4

FISUB [mem32int] DAh mm-100-xxx Double - 11

FISUB [mem16int] DEh mm-100-xxx Double - 11

FISUBR [mem32int] DAh mm-101-xxx Double - 11

FISUBR [mem16int] DEh mm-101-xxx Double - 11

FLD ST(i) D9h 11-000-xxx DirectPath FADD/FMUL 2 1

FLD [mem32real] D9h mm-000-xxx DirectPath FADD/FMUL/
FSTORE

4

FLD [mem64real] DDh mm-000-xxx DirectPath FADD/FMUL/
FSTORE

4

FLD [mem80real] DBh mm-101-xxx VectorPath - 13

FLD1 D9h 11-101-000 DirectPath FSTORE 4

FLDCW [mem16] D9h mm-101-xxx VectorPath - 11

FLDENV [mem14byte] D9h mm-100-xxx VectorPath - 129

FLDENV [mem28byte] D9h mm-100-xxx VectorPath - 129

FLDL2E D9h 11-101-010 DirectPath FSTORE 4

FLDL2T D9h 11-101-001 DirectPath FSTORE 4

FLDLG2 D9h 11-101-100 DirectPath FSTORE 4

FLDLN2 D9h 11-101-101 DirectPath FSTORE 4

FLDPI D9h 11-101-011 DirectPath FSTORE 4

FLDZ D9h 11-101-110 DirectPath FSTORE 4

FMUL ST, ST(i) D8h 11-001-xxx DirectPath FMUL 4 1

FMUL ST(i), ST DCh 11-001-xxx DirectPath FMUL 4 1

Table 15. x87 Floating-Point Instructions (Continued)

Syntax

Encoding
Decode
type

FPU
pipe(s)

Latency NoteFirst
byte

Second
byte

ModRM byte

Notes:
1. The last three bits of the ModRM byte select the stack entry ST(i).
2. These instructions have an effective latency as shown. However, these instructions generate an internal NOP

with a latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of
three per cycle and can use any of the three execution resources.

3. This is a VectorPath decoded operation that uses one execution pipe (one ROP).
4. There is additional latency associated with this instruction. “e” represents the difference between the exponents

of the divisor and the dividend. If “s” is the number of normalization shifts performed on the result, then
n = (s+1)/2 where (0 <= n <= 32).

5. The latency provided for this operation is the best-case latency.
6. The three latency numbers represent the latency values for precision control settings of single precision, double

precision, and extended precision, respectively.
310 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
FMUL [mem32real] D8h mm-001-xxx DirectPath FMUL 6

FMUL [mem64real] DCh mm-001-xxx DirectPath FMUL 6

FMULP ST(i), ST DEh 11-001-xxx DirectPath FMUL 4 1

FNCLEX DBh E2h VectorPath 16

FNINIT DBh E3h VectorPath 89

FNOP D9h 11-010-000 DirectPath FADD/FMUL/
FSTORE

2 2

FPATAN D9h 11-110-011 VectorPath - 136

FPREM D9h 11-111-000 DirectPath FMUL 9+e+n 4

FPREM1 D9h 11-110-101 DirectPath FMUL 9+e+n 4

FPTAN D9h 11-110-010 VectorPath - 107

FRNDINT D9h 11-111-100 VectorPath - 10

FRSTOR [mem94byte] DDh mm-100-xxx VectorPath - 138

FRSTOR [mem108byte] DDh mm-100-xxx VectorPath - 138

FSAVE [mem94byte] DDh mm-110-xxx VectorPath - 159

FSAVE [mem108byte] DDh mm-110-xxx VectorPath - 159

FSCALE D9h 11-111-101 VectorPath - 9

FSIN D9h 11-111-110 VectorPath - 93

FSINCOS D9h 11-111-011 VectorPath - 104

FSQRT D9h 11-111-010 DirectPath FMUL 35

FST [mem32real] D9h mm-010-xxx DirectPath FSTORE 2

FST [mem64real] DDh mm-010-xxx DirectPath FSTORE 2

FST ST(i) DDh 11-010xxx DirectPath FADD/FMUL 2

FSTCW [mem16] D9h mm-111-xxx VectorPath - 4

FSTENV [mem14byte] D9h mm-110-xxx VectorPath - 89

Table 15. x87 Floating-Point Instructions (Continued)

Syntax

Encoding
Decode
type

FPU
pipe(s)

Latency NoteFirst
byte

Second
byte

ModRM byte

Notes:
1. The last three bits of the ModRM byte select the stack entry ST(i).
2. These instructions have an effective latency as shown. However, these instructions generate an internal NOP

with a latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of
three per cycle and can use any of the three execution resources.

3. This is a VectorPath decoded operation that uses one execution pipe (one ROP).
4. There is additional latency associated with this instruction. “e” represents the difference between the exponents

of the divisor and the dividend. If “s” is the number of normalization shifts performed on the result, then
n = (s+1)/2 where (0 <= n <= 32).

5. The latency provided for this operation is the best-case latency.
6. The three latency numbers represent the latency values for precision control settings of single precision, double

precision, and extended precision, respectively.
Appendix C Instruction Latencies 311

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
FSTENV [mem28byte] D9h mm-110-xxx VectorPath - 89

FSTP [mem32real] D9h mm-011-xxx DirectPath FADD/FMUL 2

FSTP [mem64real] DDh mm-011-xxx DirectPath FADD/FMUL 2

FSTP [mem80real] D9h mm-111-xxx VectorPath - 8

FSTP ST(i) DDh 11-011-xxx DirectPath FADD/FMUL 2

FSTSW AX DFh 11-100-000 VectorPath - 12

FSTSW [mem16] DDh mm-111-xxx VectorPath FSTORE 8 3

FSUB [mem32real] D8h mm-100-xxx DirectPath FADD 6

FSUB [mem64real] DCh mm-100-xxx DirectPath FADD 6

FSUB ST, ST(i) D8h 11-100-xxx DirectPath FADD 4 1

FSUB ST(i), ST DCh 11-101-xxx DirectPath FADD 4 1

FSUBP ST(i), ST DEh 11-101-xxx DirectPath FADD 4 1

FSUBR [mem32real] D8h mm-101-xxx DirectPath FADD 6

FSUBR [mem64real] DCh mm-101-xxx DirectPath FADD 6

FSUBR ST, ST(i) D8h 11-100-xxx DirectPath FADD 4 1

FSUBR ST(i), ST DCh 11-101-xxx DirectPath FADD 4 1

FSUBRP ST(i), ST DEh 11-100-xxx DirectPath FADD 4 1

FTST D9h 11-100-100 DirectPath FADD 2

FUCOM DDh 11-100-xxx DirectPath FADD 2

FUCOMI ST, ST(i) DBh 11-101-xxx VectorPath FADD 3 3

FUCOMIP ST, ST(i) DFh 11-101-xxx VectorPath FADD 3 3

FUCOMP DDh 11-101-xxx DirectPath FADD 2

FUCOMPP DAh 11-101-001 DirectPath FADD 2

FWAIT 9Bh DirectPath - 0

FXAM D9h 11-100-101 VectorPath - 2

Table 15. x87 Floating-Point Instructions (Continued)

Syntax

Encoding
Decode
type

FPU
pipe(s)

Latency NoteFirst
byte

Second
byte

ModRM byte

Notes:
1. The last three bits of the ModRM byte select the stack entry ST(i).
2. These instructions have an effective latency as shown. However, these instructions generate an internal NOP

with a latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of
three per cycle and can use any of the three execution resources.

3. This is a VectorPath decoded operation that uses one execution pipe (one ROP).
4. There is additional latency associated with this instruction. “e” represents the difference between the exponents

of the divisor and the dividend. If “s” is the number of normalization shifts performed on the result, then
n = (s+1)/2 where (0 <= n <= 32).

5. The latency provided for this operation is the best-case latency.
6. The three latency numbers represent the latency values for precision control settings of single precision, double

precision, and extended precision, respectively.
312 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
FXCH D9h 11-001-xxx DirectPath FADD/FMUL/
FSTORE

2 2

FXRSTOR [mem512byte] 0Fh AEh mm-001-xxx VectorPath - 68 (108)

FXSAVE [mem512byte] 0Fh AEh mm-000-xxx VectorPath - 31 (79)

FXTRACT D9h 11-110-100 VectorPath - 9

FYL2X D9h 11-110-001 VectorPath - ~

FYL2XP1 D9h 11-111-001 VectorPath - 113

Table 15. x87 Floating-Point Instructions (Continued)

Syntax

Encoding
Decode
type

FPU
pipe(s)

Latency NoteFirst
byte

Second
byte

ModRM byte

Notes:
1. The last three bits of the ModRM byte select the stack entry ST(i).
2. These instructions have an effective latency as shown. However, these instructions generate an internal NOP

with a latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of
three per cycle and can use any of the three execution resources.

3. This is a VectorPath decoded operation that uses one execution pipe (one ROP).
4. There is additional latency associated with this instruction. “e” represents the difference between the exponents

of the divisor and the dividend. If “s” is the number of normalization shifts performed on the result, then
n = (s+1)/2 where (0 <= n <= 32).

5. The latency provided for this operation is the best-case latency.
6. The three latency numbers represent the latency values for precision control settings of single precision, double

precision, and extended precision, respectively.
Appendix C Instruction Latencies 313

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
C.5 3DNow!™ Technology Instructions

Table 16. 3DNow!™ Technology Instructions

Syntax

Encoding
Decode
type

FPU
pipe(s)

Latency NotePrefix
byte(s)

imm8
ModRM
byte

FEMMS 0Fh 0Eh DirectPath FADD/FMUL/
FSTORE

2 2

PAVGUSB mmreg1, mmreg2 0Fh, 0Fh BFh 11-xxx-xxx DirectPath FADD/FMUL 2

PAVGUSB mmreg, mem64 0Fh, 0Fh BFh mm-xxx-xxx DirectPath FADD/FMUL 4

PF2ID mmreg1, mmreg2 0Fh, 0Fh 1Dh 11-xxx-xxx DirectPath FADD 4

PF2ID mmreg, mem64 0Fh, 0Fh 1Dh mm-xxx-xxx DirectPath FADD 6

PFACC mmreg1, mmreg2 0Fh, 0Fh AEh 11-xxx-xxx DirectPath FADD 4

PFACC mmreg, mem64 0Fh, 0Fh AEh mm-xxx-xxx DirectPath FADD 6

PFADD mmreg1, mmreg2 0Fh, 0Fh 9Eh 11-xxx-xxx DirectPath FADD 4

PFADD mmreg, mem64 0Fh, 0Fh 9Eh mm-xxx-xxx DirectPath FADD 6

PFCMPEQ mmreg1, mmreg2 0Fh, 0Fh B0h 11-xxx-xxx DirectPath FADD 2

PFCMPEQ mmreg, mem64 0Fh, 0Fh B0h mm-xxx-xxx DirectPath FADD 4

PFCMPGE mmreg1, mmreg2 0Fh, 0Fh 90h 11-xxx-xxx DirectPath FADD 2

PFCMPGE mmreg, mem64 0Fh, 0Fh 90h mm-xxx-xxx DirectPath FADD 4

PFCMPGT mmreg1, mmreg2 0Fh, 0Fh A0h 11-xxx-xxx DirectPath FADD 2

PFCMPGT mmreg, mem64 0Fh, 0Fh A0h mm-xxx-xxx DirectPath FADD 4

PFMAX mmreg1, mmreg2 0Fh, 0Fh A4h 11-xxx-xxx DirectPath FADD 2

PFMAX mmreg, mem64 0Fh, 0Fh A4h mm-xxx-xxx DirectPath FADD 4

PFMIN mmreg1, mmreg2 0Fh, 0Fh 94h 11-xxx-xxx DirectPath FADD 2

PFMIN mmreg, mem64 0Fh, 0Fh 94h mm-xxx-xxx DirectPath FADD 4

PFMUL mmreg1, mmreg2 0Fh, 0Fh B4h 11-xxx-xxx DirectPath FMUL 4

PFMUL mmreg, mem64 0Fh, 0Fh B4h mm-xxx-xxx DirectPath FMUL 6

PFRCP mmreg1, mmreg2 0Fh, 0Fh 96h 11-xxx-xxx DirectPath FMUL 3

PFRCP mmreg, mem64 0Fh, 0Fh 96h mm-xxx-xxx DirectPath FMUL 5

PFRCPIT1 mmreg1, mmreg2 0Fh, 0Fh A6h 11-xxx-xxx DirectPath FMUL 4

PFRCPIT1 mmreg, mem64 0Fh, 0Fh A6h mm-xxx-xxx DirectPath FMUL 6

PFRCPIT2 mmreg1, mmreg2 0Fh, 0Fh B6h 11-xxx-xxx DirectPath FMUL 4

PFRCPIT2 mmreg, mem64 0Fh, 0Fh B6h mm-xxx-xxx DirectPath FMUL 6

PFRSQIT1 mmreg1, mmreg2 0Fh, 0Fh A7h 11-xxx-xxx DirectPath FMUL 4

Notes:
1. For the PREFETCH and PREFETCHW instructions, the mem8 value refers to an address in the 64-byte line to

be prefetched.
2. The byte listed in the column titled ‘imm8’ is actually the opcode byte.
314 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
PFRSQIT1 mmreg, mem64 0Fh, 0Fh A7h mm-xxx-xxx DirectPath FMUL 6

PFRSQRT mmreg1, mmreg2 0Fh, 0Fh 97h 11-xxx-xxx DirectPath FMUL 3

PFRSQRT mmreg, mem64 0Fh, 0Fh 97h mm-xxx-xxx DirectPath FMUL 5

PFSUB mmreg1, mmreg2 0Fh, 0Fh 9Ah 11-xxx-xxx DirectPath FADD 4

PFSUB mmreg, mem64 0Fh, 0Fh 9Ah mm-xxx-xxx DirectPath FADD 6

PFSUBR mmreg1, mmreg2 0Fh, 0Fh AAh 11-xxx-xxx DirectPath FADD 4

PFSUBR mmreg, mem64 0Fh, 0Fh AAh mm-xxx-xxx DirectPath FADD 6

PI2FD mmreg1, mmreg2 0Fh, 0Fh 0Dh 11-xxx-xxx DirectPath FADD 4

PI2FD mmreg, mem64 0Fh, 0Fh 0Dh mm-xxx-xxx DirectPath FADD 6

PMULHRW mmreg1, mmreg2 0Fh, 0Fh B7h 11-xxx-xxx DirectPath FMUL 3

PMULHRW mmreg1, mem64 0Fh, 0Fh B7h mm-xxx-xxx DirectPath FMUL 5

PREFETCH mem8 0Fh 0Dh mm-000-xxx DirectPath - ~ 1, 2

PREFETCHW mem8 0Fh 0Dh mm-001-xxx DirectPath - ~ 1, 2

Table 16. 3DNow!™ Technology Instructions (Continued)

Syntax

Encoding
Decode
type

FPU
pipe(s)

Latency NotePrefix
byte(s)

imm8
ModRM
byte

Notes:
1. For the PREFETCH and PREFETCHW instructions, the mem8 value refers to an address in the 64-byte line to

be prefetched.
2. The byte listed in the column titled ‘imm8’ is actually the opcode byte.
Appendix C Instruction Latencies 315

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
C.6 3DNow!™ Technology Extensions

Table 17. 3DNow!™ Technology Extensions

Syntax

Encoding
Decode
type

FPU
pipe(s)

LatencyPrefix
byte(s)

imm8
ModRM
byte

PF2IW mmreg1, mmreg2 0Fh, 0Fh 1Ch 11-xxx-xxx DirectPath FADD 4

PF2IW mmreg, mem64 0Fh, 0Fh 1Ch mm-xxx-xxx DirectPath FADD 6

PFNACC mmreg1, mmreg2 0Fh, 0Fh 8Ah 11-xxx-xxx DirectPath FADD 4

PFNACC mmreg, mem64 0Fh, 0Fh 8Ah mm-xxx-xxx DirectPath FADD 6

PFPNACC mmreg1, mmreg2 0Fh, 0Fh 8Eh 11-xxx-xxx DirectPath FADD 4

PFPNACC mmreg, mem64 0Fh, 0Fh 8Eh mm-xxx-xxx DirectPath FADD 6

PI2FW mmreg1, mmreg2 0Fh, 0Fh 0Ch 11-xxx-xxx DirectPath FADD 4

PI2FW mmreg, mem64 0Fh, 0Fh 0Ch mm-xxx-xxx DirectPath FADD 6

PSWAPD mmreg1, mmreg2 0Fh, 0Fh BBh 11-xxx-xxx DirectPath FADD/FMUL 2

PSWAPD mmreg, mem64 0Fh, 0Fh BBh mm-xxx-xxx DirectPath FADD/FMUL 4
316 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
C.7 SSE Instructions

Table 18. SSE Instructions

Syntax

Encoding
Decode
type

FPU pipe(s) Latency NotePrefix
byte

First
byte

2nd
byte

ModRM byte

ADDPS xmmreg1,
xmmreg2

0Fh 58h 11-xxx-xxx Double FADD 5 1

ADDPS xmmreg,
mem128

0Fh 58h mm-xxx-xxx Double FADD 7 1

ADDSS xmmreg1,
xmmreg2

F3h 0Fh 58h 11-xxx-xxx DirectPath FADD 4

ADDSS xmmreg,
mem128

F3h 0Fh 58h mm-xxx-xxx DirectPath FADD 6

ANDNPS xmmreg1,
xmmreg2

0Fh 55h 11-xxx-xxx Double FMUL 3 1

ANDNPS xmmreg,
mem128

0Fh 55h mm-xxx-xxx Double FMUL 5 1

ANDPS xmmreg1,
xmmreg2

0Fh 54h 11-xxx-xxx Double FMUL 3 1

ANDPS xmmreg,
mem128

0Fh 54h mm-xxx-xxx Double FMUL 5 1

CMPPS xmmreg1,
xmmreg2, imm8

0Fh C2h 11-xxx-xxx Double FADD 3 1

CMPPS xmmreg,
mem128, imm8

0Fh C2h mm-xxx-xxx Double FADD 5 1

CMPSS xmmreg1,
xmmreg2, imm8

F3h 0Fh C2h 11-xxx-xxx DirectPath FADD 2

CMPSS xmmreg,
mem32, imm8

F3h 0Fh C2h mm-xxx-xxx DirectPath FADD 4

COMISS xmmreg1,
xmmreg2

0Fh 2Fh 11-xxx-xxx VectorPath 4

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. The second latency value indicates when the low half of the result becomes available.
3. The high half of the result is available one cycle earlier than listed.
4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal

pipeline conditions.
5. For the PREFETCHNTA/T0/T1/T2 instructions, the mem8 value refers to an address in the 64-byte line to be

prefetched.
6. The 8-clock latency is only visible to younger stores that need to do an external write. The 2-clock latency is

visible to the other stores and instructions.
7. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
Appendix C Instruction Latencies 317

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
COMISS xmmreg,
mem32

0Fh 2Fh mm-xxx-xxx VectorPath 6

CVTPI2PS xmmreg,
mmreg

0Fh 2Ah 11-xxx-xxx DirectPath 4

CVTPI2PS xmmreg,
mem64

0Fh 2Ah mm-xxx-xxx DirectPath 6

CVTPS2PI mmreg,
xmmreg

0Fh 2Dh 11-xxx-xxx DirectPath 4

CVTPS2PI mmreg,
mem128

0Fh 2Dh mm-xxx-xxx DirectPath 6

CVTSI2SS xmmreg,
reg32/64

F3h 0Fh 2Ah 11-xxx-xxx VectorPath 14

CVTSI2SS xmmreg,
mem32/64

F3h 0Fh 2Ah mm-xxx-xxx Double 9

CVTSS2SI reg32,
xmmreg

F3h 0Fh 2Dh 11-xxx-xxx Double 9

CVTSS2SI reg32,
mem32

F3h 0Fh 2Dh mm-xxx-xxx VectorPath 10

CVTTPS2PI mmreg,
xmmreg

0Fh 2Ch 11-xxx-xxx DirectPath 4

CVTTPS2PI mmreg,
mem128

0Fh 2Ch mm-xxx-xxx DirectPath 6

CVTTSS2SI reg32,
xmmreg

F3h 0Fh 2Ch 11-xxx-xxx Double 9

CVTTSS2SI reg32,
mem32

F3h 0Fh 2Ch mm-xxx-xxx VectorPath 10

DIVPS xmmreg1,
xmmreg2

0Fh 5Eh 11-xxx-xxx Double FMUL 33

Table 18. SSE Instructions (Continued)

Syntax

Encoding
Decode
type

FPU pipe(s) Latency NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. The second latency value indicates when the low half of the result becomes available.
3. The high half of the result is available one cycle earlier than listed.
4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal

pipeline conditions.
5. For the PREFETCHNTA/T0/T1/T2 instructions, the mem8 value refers to an address in the 64-byte line to be

prefetched.
6. The 8-clock latency is only visible to younger stores that need to do an external write. The 2-clock latency is

visible to the other stores and instructions.
7. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
318 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
DIVPS xmmreg,
mem128

0Fh 5Eh mm-xxx-xxx Double FMUL 35

DIVSS xmmreg1,
xmmreg2

F3h 0Fh 5Eh 11-xxx-xxx DirectPath FMUL 16

DIVSS xmmreg, mem32 F3h 0Fh 5Eh mm-xxx-xxx DirectPath FMUL 18

LDMXCSR mem32 0Fh AEh mm-010-xxx VectorPath 13 4

MASKMOVQ mmreg1,
mmreg2

0Fh F7h 11-xxx-xxx VectorPath FADD/FMUL/
FSTORE

29

MAXPS xmmreg1,
xmmreg2

0Fh 5Fh 11-xxx-xxx Double FADD 3 1

MAXPS xmmreg,
mem128

0Fh 5Fh mm-xxx-xxx Double FADD 5 1

MAXSS xmmreg1,
xmmreg2

F3h 0Fh 5Fh 11-xxx-xxx DirectPath FADD 2

MAXSS xmmreg,
mem32

F3h 0Fh 5Fh mm-xxx-xxx DirectPath FADD 4

MINPS xmmreg1,
xmmreg2

0Fh 5Dh 11-xxx-xxx Double FADD 3 1

MINPS xmmreg,
mem128

0Fh 5Dh mm-xxx-xxx Double FADD 5 1

MINSS xmmreg1,
xmmreg2

F3h 0Fh 5Dh 11-xxx-xxx DirectPath FADD 2

MINSS xmmreg,
mem32

F3h 0Fh 5Dh mm-xxx-xxx DirectPath FADD 4

MOVAPS xmmreg1,
xmmreg2

0Fh 28h 11-xxx-xxx Double 2

MOVAPS xmmreg,
mem128

0Fh 28h mm-xxx-xxx Double 2

Table 18. SSE Instructions (Continued)

Syntax

Encoding
Decode
type

FPU pipe(s) Latency NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. The second latency value indicates when the low half of the result becomes available.
3. The high half of the result is available one cycle earlier than listed.
4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal

pipeline conditions.
5. For the PREFETCHNTA/T0/T1/T2 instructions, the mem8 value refers to an address in the 64-byte line to be

prefetched.
6. The 8-clock latency is only visible to younger stores that need to do an external write. The 2-clock latency is

visible to the other stores and instructions.
7. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
Appendix C Instruction Latencies 319

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
MOVAPS xmmreg1,
xmmreg2

0Fh 29h 11-xxx-xxx Double 2

MOVAPS mem128,
xmmreg

0Fh 29h mm-xxx-xxx Double 3 1

MOVHLPS xmmreg1,
xmmreg2

0Fh 12h 11-xxx-xxx DirectPath 2

MOVHPS xmmreg,
mem64

0Fh 16h mm-xxx-xxx DirectPath 2

MOVHPS mem64,
xmmreg

0Fh 17h mm-xxx-xxx DirectPath 2

MOVLHPS xmmreg1,
xmmreg2

0Fh 16h 11-xxx-xxx DirectPath 2

MOVLPS xmmreg,
mem64

0Fh 12h mm-xxx-xxx DirectPath 2

MOVLPS mem64,
xmmreg

0Fh 13h mm-xxx-xxx DirectPath 2

MOVMSKPS reg32,
xmmreg

0Fh 50h 11-xxx-xxx VectorPath 3

MOVNTPS mem128,
xmmreg

0Fh 2Bh mm-xxx-xxx Double 3 7

MOVNTQ mem64,
mmreg

0Fh E7h mm-xxx-xxx DirectPath FSTORE 2 7

MOVSS xmmreg1,
xmmreg2

F3h 0Fh 10h 11-xxx-xxx DirectPath 2

MOVSS xmmreg,
mem32

F3h 0Fh 10h mm-xxx-xxx Double 3

MOVSS xmmreg1,
xmmreg2

F3h 0Fh 11h 11-xxx-xxx DirectPath 2

Table 18. SSE Instructions (Continued)

Syntax

Encoding
Decode
type

FPU pipe(s) Latency NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. The second latency value indicates when the low half of the result becomes available.
3. The high half of the result is available one cycle earlier than listed.
4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal

pipeline conditions.
5. For the PREFETCHNTA/T0/T1/T2 instructions, the mem8 value refers to an address in the 64-byte line to be

prefetched.
6. The 8-clock latency is only visible to younger stores that need to do an external write. The 2-clock latency is

visible to the other stores and instructions.
7. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
320 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
MOVSS mem32,
xmmreg

F3h 0Fh 11h mm-xxx-xxx DirectPath 2

MOVUPS xmmreg1,
xmmreg2

0Fh 10h 11-xxx-xxx Double 2

MOVUPS xmmreg,
mem128

0Fh 10h mm-xxx-xxx VectorPath 7

MOVUPS xmmreg1,
xmmreg2

0Fh 11h 11-xxx-xxx Double 2

MOVUPS mem128,
xmmreg

0Fh 11h mm-xxx-xxx VectorPath 4

MULPS xmmreg1,
xmmreg2

0Fh 59h 11-xxx-xxx Double FMUL 5 1

MULPS xmmreg,
mem128

0Fh 59h mm-xxx-xxx Double FMUL 7 1

MULSS xmmreg1,
xmmreg2

F3h 0Fh 59h 11-xxx-xxx DirectPath FMUL 4

MULSS xmmreg,
mem32

F3h 0Fh 59h mm-xxx-xxx DirectPath FMUL 6

ORPS xmmreg1,
xmmreg2

0Fh 56h 11-xxx-xxx Double FMUL 3 1

ORPS xmmreg,
mem128

0Fh 56h mm-xxx-xxx Double FMUL 5 1

PAVGB mmreg1,
mmreg2

0Fh E0h 11-xxx-xxx DirectPath FADD/FMUL 2

PAVGB mmreg, mem64 0Fh E0h mm-xxx-xxx DirectPath FADD/FMUL 4

PAVGW mmreg1,
mmreg2

0Fh E3h 11-xxx-xxx DirectPath FADD/FMUL 2

PAVGW mmreg, mem64 0Fh E3h mm-xxx-xxx DirectPath FADD/FMUL 4

Table 18. SSE Instructions (Continued)

Syntax

Encoding
Decode
type

FPU pipe(s) Latency NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. The second latency value indicates when the low half of the result becomes available.
3. The high half of the result is available one cycle earlier than listed.
4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal

pipeline conditions.
5. For the PREFETCHNTA/T0/T1/T2 instructions, the mem8 value refers to an address in the 64-byte line to be

prefetched.
6. The 8-clock latency is only visible to younger stores that need to do an external write. The 2-clock latency is

visible to the other stores and instructions.
7. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
Appendix C Instruction Latencies 321

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
PEXTRW reg32/64,
mmreg, imm8

0Fh C5h Double - 4 4

PINSRW mmreg,
reg32/64, imm8

0Fh C4h Double - 9 4

PINSRW mmreg,
mem16, imm8

0Fh C4h DirectPath - 4 4

PMAXSW mmreg1,
mmreg2

0Fh EEh 11-xxx-xxx DirectPath FADD/FMUL 2

PMAXSW mmreg,
mem64

0Fh EEh mm-xxx-xxx DirectPath FADD/FMUL 4

PMAXUB mmreg1,
mmreg2

0Fh DEh 11-xxx-xxx DirectPath FADD/FMUL 2

PMAXUB mmreg,
mem64

0Fh DEh mm-xxx-xxx DirectPath FADD/FMUL 4

PMINSW mmreg1,
mmreg2

0Fh EAh 11-xxx-xxx DirectPath FADD/FMUL 2

PMINSW mmreg,
mem64

0Fh EAh mm-xxx-xxx DirectPath FADD/FMUL 4

PMINUB mmreg1,
mmreg2

0Fh DAh 11-xxx-xxx DirectPath FADD/FMUL 2

PMINUB mmreg,
mem64

0Fh DAh mm-xxx-xxx DirectPath FADD/FMUL 4

PMOVMSKB reg32/64,
mmreg

0Fh D7h VectorPath - 3 4

PMULHUW mmreg1,
mmreg2

0Fh E4h 11-xxx-xxx DirectPath FMUL 3

PMULHUW mmreg,
mem64

0Fh E4h mm-xxx-xxx DirectPath FMUL 5

PREFETCHNTA mem8 0Fh 18h mm-000-xxx DirectPath ~ ~ 5

Table 18. SSE Instructions (Continued)

Syntax

Encoding
Decode
type

FPU pipe(s) Latency NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. The second latency value indicates when the low half of the result becomes available.
3. The high half of the result is available one cycle earlier than listed.
4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal

pipeline conditions.
5. For the PREFETCHNTA/T0/T1/T2 instructions, the mem8 value refers to an address in the 64-byte line to be

prefetched.
6. The 8-clock latency is only visible to younger stores that need to do an external write. The 2-clock latency is

visible to the other stores and instructions.
7. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
322 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
PREFETCHT0 mem8 0Fh 18h mm-001-xxx DirectPath ~ ~ 5

PREFETCHT1 mem8 0Fh 18h mm-010-xxx DirectPath ~ ~ 5

PREFETCHT2 mem8 0Fh 18h mm-011-xxx DirectPath ~ ~ 5

PSADBW mmreg1,
mmreg2

0Fh F6h 11-xxx-xxx DirectPath FADD 3

PSADBW mmreg,
mem64

0Fh F6h mm-xxx-xxx DirectPath FADD 5

PSHUFW mmreg1,
mmreg2, imm8

0Fh 70h DirectPath FADD/FMUL 2

PSHUFW mmreg,
mem64, imm8

0Fh 70h DirectPath FADD/FMUL 4

RCPPS xmmreg1,
xmmreg2

0Fh 53h 11-xxx-xxx Double FMUL 4 1

RCPPS xmmreg,
mem128

0Fh 53h mm-xxx-xxx Double FMUL 6 1

RCPSS xmmreg1,
xmmreg2

F3h 0Fh 53h 11-xxx-xxx DirectPath FMUL 3

RCPSS xmmreg,
mem32

F3h 0Fh 53h mm-xxx-xxx DirectPath FMUL 5

RSQRTPS xmmreg1,
xmmreg2

0Fh 52h 11-xxx-xxx Double FMUL 4 1

RSQRTPS xmmreg,
mem128

0Fh 52h mm-xxx-xxx Double FMUL 6 1

RSQRTSS xmmreg1,
xmmreg2

F3h 0Fh 52h 11-xxx-xxx DirectPath FMUL 3

RSQRTSS xmmreg,
mem32

F3h 0Fh 52h mm-xxx-xxx DirectPath FMUL 5

SFENCE 0Fh AEh 11-111-000 VectorPath 2/8 6

Table 18. SSE Instructions (Continued)

Syntax

Encoding
Decode
type

FPU pipe(s) Latency NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. The second latency value indicates when the low half of the result becomes available.
3. The high half of the result is available one cycle earlier than listed.
4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal

pipeline conditions.
5. For the PREFETCHNTA/T0/T1/T2 instructions, the mem8 value refers to an address in the 64-byte line to be

prefetched.
6. The 8-clock latency is only visible to younger stores that need to do an external write. The 2-clock latency is

visible to the other stores and instructions.
7. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
Appendix C Instruction Latencies 323

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
SHUFPS xmmreg1,
xmmreg2, imm8

0Fh C6h 11-xxx-xxx VectorPath FMUL 4 1

SHUFPS xmmreg,
mem128, imm8

0Fh C6h mm-xxx-xxx VectorPath FMUL 6 2

SQRTPS xmmreg1,
xmmreg2

0Fh 51h 11-xxx-xxx Double FMUL 39

SQRTPS xmmreg,
mem128

0Fh 51h mm-xxx-xxx Double FMUL 41

SQRTSS xmmreg1,
xmmreg2

F3h 0Fh 51h 11-xxx-xxx DirectPath FMUL 19

SQRTSS xmmreg,
mem32

F3h 0Fh 51h mm-xxx-xxx DirectPath FMUL 21

STMXCSR mem32 0Fh AEh mm-011-xxx VectorPath 11 4

SUBPS xmmreg1,
xmmreg2

0Fh 5Ch 11-xxx-xxx Double FADD 5 1

SUBPS xmmreg,
mem128

0Fh 5Ch mm-xxx-xxx Double FADD 7 1

SUBSS xmmreg1,
xmmreg2

F3h 0Fh 5Ch 11-xxx-xxx DirectPath FADD 4

SUBSS xmmreg,
mem32

F3h 0Fh 5Ch mm-xxx-xxx DirectPath FADD 6

UCOMISS xmmreg1,
xmmreg2

0Fh 2Eh 11-xxx-xxx VectorPath 4

UCOMISS xmmreg,
mem32

0Fh 2Eh mm-xxx-xxx VectorPath 6

UNPCKHPS xmmreg1,
xmmreg2

0Fh 15h 11-xxx-xxx Double FMUL 3 1

UNPCKHPS xmmreg,
mem128

0Fh 15h mm-xxx-xxx Double FMUL 5 1

Table 18. SSE Instructions (Continued)

Syntax

Encoding
Decode
type

FPU pipe(s) Latency NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. The second latency value indicates when the low half of the result becomes available.
3. The high half of the result is available one cycle earlier than listed.
4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal

pipeline conditions.
5. For the PREFETCHNTA/T0/T1/T2 instructions, the mem8 value refers to an address in the 64-byte line to be

prefetched.
6. The 8-clock latency is only visible to younger stores that need to do an external write. The 2-clock latency is

visible to the other stores and instructions.
7. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
324 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
UNPCKLPS xmmreg1,
xmmreg2

0Fh 14h 11-xxx-xxx Double FMUL 3 3

UNPCKLPS xmmreg,
mem128

0Fh 14h mm-xxx-xxx Double FMUL 5 3

XORPS xmmreg1,
xmmreg2

0Fh 57h 11-xxx-xxx Double FMUL 3 1

XORPS xmmreg,
mem128

0Fh 57h mm-xxx-xxx Double FMUL 5 1

Table 18. SSE Instructions (Continued)

Syntax

Encoding
Decode
type

FPU pipe(s) Latency NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. The second latency value indicates when the low half of the result becomes available.
3. The high half of the result is available one cycle earlier than listed.
4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal

pipeline conditions.
5. For the PREFETCHNTA/T0/T1/T2 instructions, the mem8 value refers to an address in the 64-byte line to be

prefetched.
6. The 8-clock latency is only visible to younger stores that need to do an external write. The 2-clock latency is

visible to the other stores and instructions.
7. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
Appendix C Instruction Latencies 325

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
C.8 SSE2 Instructions
Table 19. SSE2 Instructions

Syntax

Encoding

Decode
type

FPU
pipe(s)

L
at

en
cy

T
h

ro
u

g
h

p
u

t

NotePrefix
byte

First
byte

2nd
byte

ModRM byte

ADDPD xmmreg1,
xmmreg2

66h 0Fh 58h 11-xxx-xxx Double FADD 5 1/2

ADDPD xmmreg,
mem128

66h 0Fh 58h mm-xxx-xxx Double FADD 7 1/2

ADDSD xmmreg1,
xmmreg2

F2h 0Fh 58h 11-xxx-xxx DirectPath FADD 4 1/1

ADDSD xmmreg,
mem64

F2h 0Fh 58h mm-xxx-xxx DirectPath FADD 6 1/1

ANDNPD xmmreg1,
xmmreg2

66h 0Fh 55h 11-xxx-xxx Double FMUL 3 1/2

ANDNPD xmmreg,
mem128

66h 0Fh 55h mm-xxx-xxx Double FMUL 5 1/2

ANDPD xmmreg1,
xmmreg2

66h 0Fh 54h 11-xxx-xxx Double FMUL 3 1/2

ANDPD xmmreg,
mem128

66h 0Fh 54h mm-xxx-xxx Double FMUL 5 1/2

CMPPD xmmreg1,
xmmreg2, imm8

66h 0Fh C2h 11-xxx-xxx Double FADD 3 1/2

CMPPD xmmreg,
mem128, imm8

66h 0Fh C2h mm-xxx-xxx Double FADD 5 1/2

CMPSD xmmreg1,
xmmreg2, imm8

F2h 0Fh C2h 11-xxx-xxx DirectPath FADD 2 1/1

CMPSD xmmreg,
mem64, imm8

F2h 0Fh C2h mm-xxx-xxx DirectPath FADD 4 1/1

COMISD xmmreg1,
xmmreg2

66h 0Fh 2Fh 11-xxx-xxx VectorPath FADD 4 1

COMISD xmmreg,
mem64

66h 0Fh 2Fh mm-xxx-xxx VectorPath FADD 5 1

CVTDQ2PD xmmreg1,
xmmreg2

F3h 0Fh E6h 11-xxx-xxx Double FSTORE 5 1/2

CVTDQ2PD xmmreg,
mem64

F3h 0Fh E6h mm-xxx-xxx Double FSTORE 7 1/2

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
326 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
CVTDQ2PS xmmreg1,
xmmreg2

0Fh 5Bh 11-xxx-xxx Double FSTORE 5 1/2

CVTDQ2PS xmmreg,
mem128

0Fh 5Bh mm-xxx-xxx Double FSTORE 7 1/2

CVTPD2DQ xmmreg1,
xmmreg2

F2h 0Fh E6h 11-xxx-xxx VectorPath ~ 8

CVTPD2DQ xmmreg,
mem128

F2h 0Fh E6h mm-xxx-xxx VectorPath ~ 10

CVTPD2PI mmreg,
xmmreg

66h 0Fh 2Dh 11-xxx-xxx VectorPath ~ 8 1/2

CVTPD2PI mmreg,
mem128

66h 0Fh 2Dh mm-xxx-xxx VectorPath ~ 10 1/2

CVTPD2PS xmmreg1,
xmmreg2

66h 0Fh 5Ah 11-xxx-xxx VectorPath ~ 8

CVTPD2PS xmmreg,
mem128

66h 0Fh 5Ah mm-xxx-xxx VectorPath ~ 10

CVTPI2PD xmmreg,
mmreg

66H 0FH 2Ah 11-xxx-xxx Double FSTORE 5 1/2

CVTPI2PD xmmreg,
mem64

66H 0FH 2Ah mm-xxx-xxx Double FSTORE 7 1/2

CVTPS2DQ xmmreg1,
xmmreg2

66h 0Fh 5Bh 11-xxx-xxx Double FSTORE 5 1/2

CVTPS2DQ xmmreg,
mem128

66h 0Fh 5Bh mm-xxx-xxx Double FSTORE 7 1/2

CVTPS2PD xmmreg1,
xmmreg2

0Fh 5Ah 11-xxx-xxx Double ~ 3 1/2

CVTPS2PD xmmreg,
mem64

0Fh 5Ah mm-xxx-xxx Double ~ 5 1/2

CVTSD2SI reg32/64,
xmmreg

F2h 0Fh 2Dh 11-xxx-xxx Double FSTORE 9 1/1

CVTSD2SI reg32/64,
mem64

F2h 0Fh 2Dh mm-xxx-xxx VectorPath FADD/
FMUL/
FSTORE

10 1/1

CVTSD2SS xmmreg1,
xmmreg2

F2h 0Fh 5Ah 11-xxx-xxx VectorPath FSTORE 12

Table 19. SSE2 Instructions (Continued)

Syntax

Encoding

Decode
type

FPU
pipe(s)

L
at

en
cy

T
h

ro
u

g
h

p
u

t

NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
Appendix C Instruction Latencies 327

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
CVTSD2SS xmmreg,
mem64

F2h 0Fh 5Ah mm-xxx-xxx Double FSTORE 9

CVTSI2SD xmmreg,
reg32/64

F2h 0Fh 2Ah 11-xxx-xxx Double FSTORE 11 1/1

CVTSI2SD xmmreg,
mem32/64

F2h 0Fh 2Ah mm-xxx-xxx DirectPath FSTORE 6 1/1

CVTSS2SD xmmreg1,
xmmreg2

F3h 0Fh 5Ah 11-xxx-xxx DirectPath FSTORE 2 1/1

CVTSS2SD xmmreg,
mem32

F3h 0Fh 5Ah mm-xxx-xxx DirectPath FSTORE 4 1/1

CVTSS2SI reg32/64,
xmmreg

F3h 0Fh 2Dh 11-xxx-xxx Double FSTORE 9

CVTSS2SI reg32/64,
mem32

F3h 0Fh 2Dh mm-xxx-xxx VectorPath ~ 10

CVTTPD2DQ xmmreg1,
xmmreg2

66h 0Fh E6h 11-xxx-xxx VectorPath ~ 8

CVTTPD2DQ xmmreg,
mem128

66h 0Fh E6h mm-xxx-xxx VectorPath ~ 10

CVTTPD2PI mmreg,
xmmreg

66h 0Fh 2Ch 11-xxx-xxx VectorPath ~ 8 1/2

CVTTPD2PI mmreg,
mem128

66h 0Fh 2Ch mm-xxx-xxx VectorPath ~ 10 1/2

CVTTPS2DQ xmmreg1,
xmmreg2

F3h 0Fh 5Bh 11-xxx-xxx Double FSTORE 5 1/2

CVTTPS2DQ xmmreg,
mem128

F3h 0Fh 5Bh mm-xxx-xxx Double FSTORE 7 1/2

CVTTSD2SI reg32/64,
xmmreg

F2h 0Fh 2Ch 11-xxx-xxx Double FSTORE 9 1/1

CVTTSD2SI reg32/64,
mem64

F2h 0Fh 2Ch mm-xxx-xxx VectorPath FADD/
FMUL/
FSTORE

10 1/1

CVTTSS2SI reg32/64,
xmmreg

F3h 0Fh 2Ch 11-xxx-xxx Double FSTORE 9

CVTTSS2SI reg32/64,
mem32

F3h 0Fh 2Ch mm-xxx-xxx VectorPath ~ 10

Table 19. SSE2 Instructions (Continued)

Syntax

Encoding

Decode
type

FPU
pipe(s)

L
at

en
cy

T
h

ro
u

g
h

p
u

t

NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
328 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
DIVPD xmmreg1,
xmmreg2

66h 0Fh 5Eh 11-xxx-xxx Double FMUL 37 1/34

DIVPD xmmreg,
mem128

66h 0Fh 5Eh mm-xxx-xxx Double FMUL 39 1/34

DIVSD xmmreg1,
xmmreg2

F2h 0Fh 5Eh 11-xxx-xxx DirectPath FMUL 20 1/17

DIVSD xmmreg,
mem64

F2h 0Fh 5Eh mm-xxx-xxx DirectPath FMUL 22 1/17

MASKMOVDQU
xmmreg1, xmmreg2

66h 0Fh F7h 11-xxx-xxx VectorPath ~ 43

MAXPD xmmreg1,
xmmreg2

66h 0Fh 5Fh 11-xxx-xxx Double FADD 3 1/2

MAXPD xmmreg,
mem128

66h 0Fh 5Fh mm-xxx-xxx Double FADD 5 1/2

MAXSD xmmreg1,
xmmreg2

F2h 0Fh 5Fh 11-xxx-xxx DirectPath FADD 2 1/1

MAXSD xmmreg,
mem64

F2h 0Fh 5Fh mm-xxx-xxx DirectPath FADD 4 1/1

MINPD xmmreg1,
xmmreg2

66h 0Fh 5Dh 11-xxx-xxx Double FADD 3 1/2

MINPD xmmreg,
mem128

66h 0Fh 5Dh mm-xxx-xxx Double FADD 5 1/2

MINSD xmmreg1,
xmmreg2

F2h 0Fh 5Dh 11-xxx-xxx DirectPath FADD 2 1/1

MINSD xmmreg,
mem64

F2h 0Fh 5Dh mm-xxx-xxx DirectPath FADD 4 1/1

MOVAPD xmmreg1,
xmmreg2

66h 0Fh 28h 11-xxx-xxx Double FADD/
FMUL

2

MOVAPD xmmreg,
mem128

66h 0Fh 28h mm-xxx-xxx Double FADD/
FMUL/
FSTORE

2

MOVAPD xmmreg1,
xmmreg2

66h 0Fh 29h 11-xxx-xxx Double FADD/
FMUL

2

MOVAPD mem128,
xmmreg

66h 0Fh 29h mm-xxx-xxx Double FSTORE 3

Table 19. SSE2 Instructions (Continued)

Syntax

Encoding

Decode
type

FPU
pipe(s)

L
at

en
cy

T
h

ro
u

g
h

p
u

t

NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
Appendix C Instruction Latencies 329

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
MOVD xmmreg, reg32 66h 0Fh 6Eh 11-xxx-xxx VectorPath ~ 9

MOVD xmmreg, mem32 66h 0Fh 6Eh mm-xxx-xxx Double FADD/
FMUL/
FSTORE

4

MOVD reg32, xmmreg 66h 0Fh 7Eh 11-xxx-xxx Double FSTORE 4

MOVD mem32, xmmreg 66h 0Fh 7Eh mm-xxx-xxx DirectPath FSTORE 2

MOVD xmmreg, reg64 66h 0Fh 6Eh 11-xxx-xxx VectorPath ~ 9

MOVD xmmreg, mem64 66h 0Fh 6Eh mm-xxx-xxx Double FADD/
FMUL/
FSTORE

4

MOVD reg64, xmmreg 66h 0Fh 7Eh 11-xxx-xxx Double FSTORE 4

MOVD mem64, xmmreg 66h 0Fh 7Eh mm-xxx-xxx DirectPath FSTORE 2

MOVDQ2Q mmreg,
xmmreg

F2h 0Fh D6h 11-xxx-xxx DirectPath FADD/
FMUL

2

MOVDQA xmmreg1,
xmmreg2

66h 0Fh 6Fh 11-xxx-xxx Double FADD/
FMUL

2

MOVDQA xmmreg,
mem128

66h 0Fh 6Fh mm-xxx-xxx Double FADD/
FMUL/
FSTORE

2

MOVDQA xmmreg1,
xmmreg2

66h 0Fh 7Fh 11-xxx-xxx Double FADD/
FMUL

2

MOVDQA mem128,
xmmreg

66h 0Fh 7Fh mm-xxx-xxx Double FSTORE 3

MOVDQU xmmreg1,
xmmreg2

F3h 0Fh 6Fh 11-xxx-xxx Double FADD/
FMUL

2

MOVDQU xmmreg,
mem128

F3h 0Fh 6Fh mm-xxx-xxx VectorPath ~ 7

MOVDQU xmmreg1,
xmmreg2

F3h 0Fh 7Fh 11-xxx-xxx Double FADD/
FMUL

2

MOVDQU mem128,
xmmreg

F3h 0Fh 7Fh mm-xxx-xxx VectorPath FSTORE 4

MOVHPD xmmreg,
mem64

66h 0Fh 16h mm-xxx-xxx DirectPath FADD/
FMUL/
FSTORE

2

Table 19. SSE2 Instructions (Continued)

Syntax

Encoding

Decode
type

FPU
pipe(s)

L
at

en
cy

T
h

ro
u

g
h

p
u

t

NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
330 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
MOVHPD mem64,
xmmreg

66h 0Fh 17h mm-xxx-xxx DirectPath FSTORE 2

MOVLPD xmmreg,
mem64

66h 0Fh 12h mm-xxx-xxx DirectPath FADD/
FMUL/
FSTORE

2

MOVLPD mem64,
xmmreg

66h 0Fh 13h mm-xxx-xxx DirectPath FSTORE 2

MOVMSKPD reg32/64,
xmmreg

66h 0Fh 50h 11-xxx-xxx VectorPath FADD 3 1/1

MOVNTDQ mem128,
xmmreg

66h 0Fh E7h mm-xxx-xxx Double FSTORE 3 2

MOVNTI mem32/64,
reg32/64

0Fh C3h mm-xxx-xxx DirectPath FSTORE ~

MOVNTPD mem128,
xmmreg

66h 0Fh 2Bh mm-xxx-xxx Double FSTORE 3 2

MOVQ xmmreg1,
xmmreg2

F3h 0Fh 7Eh 11-xxx-xxx Double FADD/
FMUL

2

MOVQ xmmreg, mem64 F3h 0Fh 7Eh mm-xxx-xxx Double FADD/
FMUL/
FSTORE

4

MOVQ xmmreg1,
xmmreg2

66h 0Fh D6h 11-xxx-xxx Double FADD/
FMUL

2

MOVQ mem64, xmmreg 66h 0Fh D6h mm-xxx-xxx DirectPath FSTORE 4

MOVQ2DQ xmmreg,
mmreg

F3h 0Fh D6h 11-xxx-xxx Double FADD/
FMUL

2

MOVSD xmmreg1,
xmmreg2

F2h 0Fh 10h 11-xxx-xxx DirectPath FADD/
FMUL

2

MOVSD xmmreg,
mem64

F2h 0Fh 10h mm-xxx-xxx Double FADD/
FMUL/
FSTORE

2

MOVSD xmmreg1,
xmmreg2

F2h 0Fh 11h 11-xxx-xxx DirectPath FADD/
FMUL

2

MOVSD mem64,
xmmreg

F2h 0Fh 11h mm-xxx-xxx DirectPath FSTORE 2

Table 19. SSE2 Instructions (Continued)

Syntax

Encoding

Decode
type

FPU
pipe(s)

L
at

en
cy

T
h

ro
u

g
h

p
u

t

NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
Appendix C Instruction Latencies 331

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
MOVUPD xmmreg1,
xmmreg2

66h 0Fh 10h Double FADD/
FMUL

2

MOVUPD xmmreg,
mem128

66h 0Fh 10h VectorPath FADD/
FMUL/
FSTORE

7

MOVUPD xmmreg1,
xmmreg2

66h 0Fh 11h Double FADD/
FMUL

2

MOVUPD mem128,
xmmreg

66h 0Fh 11h VectorPath FSTORE 4

MULPD xmmreg1,
xmmreg2

66h 0Fh 59h Double FMUL 5 1/2

MULPD xmmreg,
mem128

66h 0Fh 59h Double FMUL 7 1/2

MULSD xmmreg1,
xmmreg2

F2h 0Fh 59h DirectPath FMUL 4 1/1

MULSD xmmreg,
mem64

F2h 0Fh 59h DirectPath FMUL 6 1/1

ORPD xmmreg1,
xmmreg2

66h 0Fh 56h Double FMUL 3 1/2

ORPD xmmreg,
mem128

66h 0Fh 56h Double FMUL 5 1/2

PACKSSDW xmmreg1,
xmmreg2

66h 0Fh 6Bh VectorPath ~ 4

PACKSSDW xmmreg,
mem128

66h 0Fh 6Bh VectorPath ~ 6

PACKSSWB xmmreg1,
xmmreg2

66h 0Fh 63h VectorPath ~ 4

PACKSSWB xmmreg,
mem128

66h 0Fh 63h VectorPath ~ 6

PACKUSWB xmmreg1,
xmmreg2

66h 0Fh 67h VectorPath ~ 4

PACKUSWB xmmreg,
mem128

66h 0Fh 67h VectorPath ~ 6

PADDB xmmreg1,
xmmreg2

66h 0Fh FCh Double FADD/
FMUL

2 1/1

Table 19. SSE2 Instructions (Continued)

Syntax

Encoding

Decode
type

FPU
pipe(s)

L
at

en
cy

T
h

ro
u

g
h

p
u

t

NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
332 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
PADDB xmmreg,
mem128

66h 0Fh FCh Double FADD/
FMUL

4 1/1

PADDD xmmreg1,
xmmreg2

66h 0Fh FEh Double FADD/
FMUL

2 1/1

PADDD xmmreg,
mem128

66h 0Fh FEh Double FADD/
FMUL

4 1/1

PADDQ mmreg1,
mmreg2

0Fh D4h DirectPath FADD/
FMUL

2 1/1

PADDQ mmreg, mem64 0Fh D4h DirectPath FADD/
FMUL

4 1/1

PADDQ xmmreg1,
xmmreg2

66h 0Fh D4h Double FADD/
FMUL

2 1/1

PADDQ xmmreg,
mem128

66h 0Fh D4h Double FADD/
FMUL

4 1/1

PADDSB xmmreg1,
xmmreg2

66h 0Fh ECh Double FADD/
FMUL

2 1/1

PADDSB xmmreg,
mem128

66h 0Fh ECh Double FADD/
FMUL

4 1/1

PADDSW xmmreg1,
xmmreg2

66h 0Fh EDh Double FADD/
FMUL

2 1/1

PADDSW xmmreg,
mem128

66h 0Fh EDh Double FADD/
FMUL

4 1/1

PADDUSB xmmreg1,
xmmreg2

66h 0Fh DCh Double FADD/
FMUL

2 1/1

PADDUSB xmmreg,
mem128

66h 0Fh DCh Double FADD/
FMUL

4 1/1

PADDUSW xmmreg1,
xmmreg2

66h 0Fh DDh Double FADD/
FMUL

2 1/1

PADDUSW xmmreg,
mem128

66h 0Fh DDh Double FADD/
FMUL

4 1/1

PADDW xmmreg1,
xmmreg2

66h 0Fh FDh Double FADD/
FMUL

2 1/1

PADDW xmmreg,
mem128

66h 0Fh FDh Double FADD/
FMUL

4 1/1

Table 19. SSE2 Instructions (Continued)

Syntax

Encoding

Decode
type

FPU
pipe(s)

L
at

en
cy

T
h

ro
u

g
h

p
u

t

NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
Appendix C Instruction Latencies 333

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
PAND xmmreg1,
xmmreg2

66h 0Fh DBh Double FADD/
FMUL

2 1/1

PAND xmmreg,
mem128

66h 0Fh DBh Double FADD/
FMUL

4 1/1

PANDN xmmreg1,
xmmreg2

66h 0Fh DFh Double FADD/
FMUL

2 1/1

PANDN xmmreg,
mem128

66h 0Fh DFh Double FADD/
FMUL

4 1/1

PAVGB xmmreg1,
xmmreg2

66h 0Fh E0h Double FADD/
FMUL

2 1/1

PAVGB xmmreg,
mem128

66h 0Fh E0h Double FADD/
FMUL

4 1/1

PAVGW xmmreg1,
xmmreg2

66h 0Fh E3h Double FADD/
FMUL

2 1/1

PAVGW xmmreg,
mem128

66h 0Fh E3h Double FADD/
FMUL

4 1/1

PCMPEQB xmmreg1,
xmmreg2

66h 0Fh 74h Double FADD/
FMUL

2 1/1

PCMPEQB xmmreg,
mem128

66h 0Fh 74h Double FADD/
FMUL

4 1/1

PCMPEQD xmmreg1,
xmmreg2

66h 0Fh 76h Double FADD/
FMUL

2 1/1

PCMPEQD xmmreg,
mem128

66h 0Fh 76h Double FADD/
FMUL

4 1/1

PCMPEQW xmmreg1,
xmmreg2

66h 0Fh 75h Double FADD/
FMUL

2 1/1

PCMPEQW xmmreg,
mem128

66h 0Fh 75h Double FADD/
FMUL

4 1/1

PCMPGTB xmmreg1,
xmmreg2

66h 0Fh 64h Double FADD/
FMUL

2 1/1

PCMPGTB xmmreg,
mem128

66h 0Fh 64h Double FADD/
FMUL

4 1/1

PCMPGTD xmmreg1,
xmmreg2

66h 0Fh 66h Double FADD/
FMUL

2 1/1

Table 19. SSE2 Instructions (Continued)

Syntax

Encoding

Decode
type

FPU
pipe(s)

L
at

en
cy

T
h

ro
u

g
h

p
u

t

NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
334 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
PCMPGTD xmmreg,
mem128

66h 0Fh 66h Double FADD/
FMUL

4 1/1

PCMPGTW xmmreg1,
xmmreg2

66h 0Fh 65h Double FADD/
FMUL

2 1/1

PCMPGTW xmmreg,
mem128

66h 0Fh 65h Double FADD/
FMUL

4 1/1

PEXTRW reg32/64,
xmmreg, imm8

66h 0Fh C5h Double FSTORE 4 1/1

PINSRW xmmreg,
reg32/64, imm8

66h 0Fh C4h VectorPath FADD/
FMUL

10 1/1

PINSRW xmmreg,
mem128, imm8

66h 0Fh C4h Double FADD/
FMUL

4 1/1

PMADDWD xmmreg1,
xmmreg2

66h 0Fh F5h Double FMUL 4 1/2

PMADDWD xmmreg,
mem128

66h 0Fh F5h Double FMUL 6 1/2

PMAXSW xmmreg1,
xmmreg2

66h 0Fh EEh Double FADD/
FMUL

2 1/1

PMAXSW xmmreg,
mem128

66h 0Fh EEh Double FADD/
FMUL

4 1/1

PMAXUB xmmreg1,
xmmreg2

66h 0Fh DEh Double FADD/
FMUL

2 1/1

PMAXUB xmmreg,
mem128

66h 0Fh DEh Double FADD/
FMUL

4 1/1

PMINSW xmmreg1,
xmmreg2

66h 0Fh EAh Double FADD/
FMUL

2 1/1

PMINSW xmmreg,
mem128

66h 0Fh EAh Double FADD/
FMUL

4 1/1

PMINUB xmmreg1,
xmmreg2

66h 0Fh DAh Double FADD/
FMUL

2 1/1

PMINUB xmmreg,
mem128

66h 0Fh DAh Double FADD/
FMUL

4 1/1

PMOVMSKB reg32/64,
xmmreg

66h 0Fh D7h VectorPath FADD/
FMUL

3 1/1

Table 19. SSE2 Instructions (Continued)

Syntax

Encoding

Decode
type

FPU
pipe(s)

L
at

en
cy

T
h

ro
u

g
h

p
u

t

NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
Appendix C Instruction Latencies 335

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
PMULHUW xmmreg1,
xmmreg2

66h 0Fh E4h Double FMUL 4 1/2

PMULHUW xmmreg,
mem128

66h 0Fh E4h Double FMUL 6 1/2

PMULHW xmmreg1,
xmmreg2

66h 0Fh E5h Double FMUL 4 1/2

PMULHW xmmreg,
mem128

66h 0Fh E5h Double FMUL 6 1/2

PMULLW xmmreg1,
xmmreg2

66h 0Fh D5h Double FMUL 4 1/2

PMULLW xmmreg,
mem128

66h 0Fh D5h Double FMUL 6 1/2

PMULUDQ mmreg1,
mmreg2

0Fh F4h DirectPath FMUL 3 1/2

PMULUDQ mmreg,
mem64

0Fh F4h DirectPath FMUL 5 1/2

PMULUDQ xmmreg1,
xmmreg2

66h 0Fh F4h Double FMUL 4 1/2

PMULUDQ xmmreg,
mem128

66h 0Fh F4h Double FMUL 6 1/2

POR xmmreg1,
xmmreg2

66h 0Fh EBh Double FADD/
FMUL

2 1/1

POR xmmreg, mem128 66h 0Fh EBh Double FADD/
FMUL

4 1/1

PSADBW xmmreg1,
xmmreg2

66h 0Fh F6h Double FADD 4 1/2

PSADBW xmmreg,
mem128

66h 0Fh F6h Double FADD 6 1/2

PSHUFD xmmreg1,
xmmreg2, imm8

66h 0Fh 70h VectorPath ~ 4

PSHUFD xmmreg,
mem128, imm8

66h 0Fh 70h VectorPath ~ 6

PSHUFHW xmmreg1,
xmmreg2, imm8

F3h 0Fh 70h Double FADD/
FMUL

2 1/1

Table 19. SSE2 Instructions (Continued)

Syntax

Encoding

Decode
type

FPU
pipe(s)

L
at

en
cy

T
h

ro
u

g
h

p
u

t

NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
336 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
PSHUFHW xmmreg,
mem128, imm8

F3h 0Fh 70h Double FADD/
FMUL

4 1/1

PSHUFLW xmmreg1,
xmmreg2, imm8

F2h 0Fh 70h Double FADD/
FMUL

2 1/1

PSHUFLW xmmreg,
mem128, imm8

F2h 0Fh 70h Double FADD/
FMUL

4 1/1

PSLLD xmmreg1,
xmmreg2

66h 0Fh F2h Double FADD/
FMUL

2 1/1

PSLLD xmmreg,
mem128

66h 0Fh F2h Double FADD/
FMUL

4 1/1

PSLLD xmmreg, imm8 66h 0Fh 72h Double FADD/
FMUL

2 1/1

PSLLDQ xmmreg, imm8 66h 0Fh 73h 11-111-xxx Double FADD/
FMUL

2 1/1

PSLLQ xmmreg1,
xmmreg2

66h 0Fh F3h Double FADD/
FMUL

2 1/1

PSLLQ xmmreg,
mem128

66h 0Fh F3h Double FADD/
FMUL

4 1/1

PSLLQ xmmreg, imm8 66h 0Fh 73h 11-110-xxx Double FADD/
FMUL

2 1/1

PSLLW xmmreg1,
xmmreg2

66h 0Fh F1h Double FADD/
FMUL

2 1/1

PSLLW xmmreg,
mem128

66h 0Fh F1h Double FADD/
FMUL

4 1/1

PSLLW xmmreg, imm8 66h 0Fh 71h 11-110-xxx Double FADD/
FMUL

2 1/1

PSRAD xmmreg1,
xmmreg2

66h 0Fh E2h Double FADD/
FMUL

2 1/1

PSRAD xmmreg,
mem128

66h 0Fh E2h Double FADD/
FMUL

4 1/1

PSRAD xmmreg, imm8 66h 0Fh 72h 11-100-xxx Double FADD/
FMUL

2 1/1

PSRAW xmmreg1,
xmmreg2

66h 0Fh E1h Double FADD/
FMUL

2 1/1

Table 19. SSE2 Instructions (Continued)

Syntax

Encoding

Decode
type

FPU
pipe(s)

L
at

en
cy

T
h

ro
u

g
h

p
u

t

NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
Appendix C Instruction Latencies 337

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
PSRAW xmmreg,
mem128

66h 0Fh E1h Double FADD/
FMUL

4 1/1

PSRAW xmmreg, imm8 66h 0Fh 71h 11-100-xxx Double FADD/
FMUL

2 1/1

PSRLD xmmreg1,
xmmreg2

66h 0Fh D2h Double FADD/
FMUL

2 1/1

PSRLD xmmreg,
mem128

66h 0Fh D2h Double FADD/
FMUL

4 1/1

PSRLD xmmreg, imm8 66h 0Fh 72h 11-010-xxx Double FADD/
FMUL

2 1/1

PSRLDQ xmmreg,
imm8

66h 0Fh 73h 11-011-xxx Double FADD/
FMUL

2 1/1

PSRLQ xmmreg1,
xmmreg2

66h 0Fh D3h Double FADD/
FMUL

2 1/1

PSRLQ xmmreg,
mem128

66h 0Fh D3h Double FADD/
FMUL

4 1/1

PSRLQ xmmreg, imm8 66h 0Fh 73h 11-010-xxx Double FADD/
FMUL

2 1/1

PSRLW xmmreg1,
xmmreg2

66h 0Fh D1h Double FADD/
FMUL

2 1/1

PSRLW xmmreg,
mem128

66h 0Fh D1h Double FADD/
FMUL

4 1/1

PSRLW xmmreg, imm8 66h 0Fh 71h 11-010-xxx Double FADD/
FMUL

2 1/1

PSUBB xmmreg1,
xmmreg2

66h 0Fh F8h Double FADD/
FMUL

2 1/1

PSUBB xmmreg,
mem128

66h 0Fh F8h Double FADD/
FMUL

4 1/1

PSUBD xmmreg1,
xmmreg2

66h 0Fh FAh Double FADD/
FMUL

2 1/1

PSUBD xmmreg,
mem128

66h 0Fh FAh Double FADD/
FMUL

4 1/1

PSUBQ mmreg1,
mmreg2

0Fh FBh DirectPath FADD/
FMUL

2 1/1

Table 19. SSE2 Instructions (Continued)

Syntax

Encoding

Decode
type

FPU
pipe(s)

L
at

en
cy

T
h

ro
u

g
h

p
u

t

NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
338 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
PSUBQ mmreg, mem64 0Fh FBh DirectPath FADD/
FMUL

5 1/1

PSUBQ xmmreg1,
xmmreg2

66h 0Fh FBh Double FADD/
FMUL

2 1/1

PSUBQ xmmreg,
mem128

66h 0Fh FBh Double FADD/
FMUL

4 1/1

PSUBSB xmmreg1,
xmmreg2

66h 0Fh E8h Double FADD/
FMUL

2 1/1

PSUBSB xmmreg,
mem128

66h 0Fh E8h Double FADD/
FMUL

4 1/1

PSUBSW xmmreg1,
xmmreg2

66h 0Fh E9h Double FADD/
FMUL

2 1/1

PSUBSW xmmreg,
mem128

66h 0Fh E9h Double FADD/
FMUL

4 1/1

PSUBUSB xmmreg1,
xmmreg2

66h 0Fh D8h Double FADD/
FMUL

2 1/1

PSUBUSB xmmreg,
mem128

66h 0Fh D8h Double FADD/
FMUL

4 1/1

PSUBUSW xmmreg1,
xmmreg2

66h 0Fh D9h Double FADD/
FMUL

2 1/1

PSUBUSW xmmreg,
mem128

66h 0Fh D9h Double FADD/
FMUL

4 1/1

PSUBW xmmreg1,
xmmreg2

66h 0Fh F9h Double FADD/
FMUL

2 1/1

PSUBW xmmreg,
mem128

66h 0Fh F9h Double FADD/
FMUL

4 1/1

PUNPCKHBW
xmmreg1, xmmreg2

66h 0Fh 68h Double FADD/
FMUL

2 1/1

PUNPCKHBW xmmreg,
mem128

66h 0Fh 68h Double FADD/
FMUL

4 1/1

PUNPCKHDQ
xmmreg1, xmmreg2

66h 0Fh 6Ah Double FADD/
FMUL

2 1/1

PUNPCKHDQ xmmreg,
mem128

66h 0Fh 6Ah Double FADD/
FMUL

4 1/1

Table 19. SSE2 Instructions (Continued)

Syntax

Encoding

Decode
type

FPU
pipe(s)

L
at

en
cy

T
h

ro
u

g
h

p
u

t

NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
Appendix C Instruction Latencies 339

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
PUNPCKHQDQ
xmmreg1, xmmreg2

66h 0Fh 6Dh Double FADD/
FMUL

2 1/1

PUNPCKHQDQ
xmmreg, mem128

66h 0Fh 6Dh Double FADD/
FMUL

4 1/1

PUNPCKHWD
xmmreg1, xmmreg2

66h 0Fh 69h Double FADD/
FMUL

2 1/1

PUNPCKHWD xmmreg,
mem128

66h 0Fh 69h Double FADD/
FMUL

4 1/1

PUNPCKLBW
xmmreg1, xmmreg2

66h 0Fh 60h Double FADD/
FMUL

2 1/1

PUNPCKLBW xmmreg,
mem128

66h 0Fh 60h Double FADD/
FMUL

4 1/1

PUNPCKLDQ
xmmreg1, xmmreg2

66h 0Fh 62h Double FADD/
FMUL

2 1/1

PUNPCKLDQ xmmreg,
mem128

66h 0Fh 62h Double FADD/
FMUL

4 1/1

PUNPCKLQDQ
xmmreg1, xmmreg2

66h 0Fh 6C DirectPath FADD/
FMUL

2 2/1

PUNPCKLQDQ
xmmreg, mem128

66h 0Fh 6C DirectPath FADD/
FMUL/
FSTORE

4 2/1

PUNPCKLWD
xmmreg1, xmmreg2

66h 0Fh 61h Double FADD/
FMUL

2 1/1

PUNPCKLWD xmmreg,
mem128

66h 0Fh 61h Double FADD/
FMUL

4 1/1

PXOR xmmreg1,
xmmreg2

66h 0Fh EFh Double FADD/
FMUL

2 1/1

PXOR xmmreg,
mem128

66h 0Fh EFh Double FADD/
FMUL

4 1/1

SHUFPD xmmreg1,
xmmreg2, imm8

66h 0Fh C6h VectorPath ~ 4

SHUFPD xmmreg,
mem128, imm8

66h 0Fh C6h VectorPath ~ 6

SQRTPD xmmreg1,
xmmreg2

66h 0Fh 51h Double FMUL 51 1/48

Table 19. SSE2 Instructions (Continued)

Syntax

Encoding

Decode
type

FPU
pipe(s)

L
at

en
cy

T
h

ro
u

g
h

p
u

t

NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
340 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
SQRTPD xmmreg,
mem128

66h 0Fh 51h Double FMUL 53 1/48

SQRTSD xmmreg1,
xmmreg2

F2h 0Fh 51h DirectPath FMUL 27 1/24

SQRTSD xmmreg,
mem64

F2h 0Fh 51h DirectPath FMUL 29 1/24

SUBPD xmmreg1,
xmmreg2

66h 0Fh 5Ch Double FADD 5 1/2

SUBPD xmmreg,
mem128

66h 0Fh 5Ch Double FADD 7 1/2

SUBSD xmmreg1,
xmmreg2

F2h 0Fh 5Ch DirectPath FADD 4 1/1

SUBSD xmmreg,
mem128

F2h 0Fh 5Ch DirectPath FADD 6 1/1

UCOMISD xmmreg1,
xmmreg2

66h 0Fh 2Eh VectorPath FADD 4 1/1

UCOMISD xmmreg,
mem64

66h 0Fh 2Eh VectorPath FADD 5 1/1

UNPCKHPD xmmreg1,
xmmreg2

66h 0Fh 15h Double FADD/
FMUL

2 1/1

UNPCKHPD xmmreg,
mem128

66h 0Fh 15h Double FADD/
FMUL/
FSTORE

4 1/1

UNPCKLPD xmmreg1,
xmmreg2

66h 0Fh 14h DirectPath FADD/
FMUL

2 2/1

UNPCKLPD xmmreg,
mem128

66h 0Fh 14h DirectPath FADD/
FMUL/
FSTORE

4 2/1

XORPD xmmreg1,
xmmreg2

66h 0Fh 57h Double FMUL 3 1/2

XORPD xmmreg,
mem128

66h 0Fh 57h Double FMUL 5 1/2

Table 19. SSE2 Instructions (Continued)

Syntax

Encoding

Decode
type

FPU
pipe(s)

L
at

en
cy

T
h

ro
u

g
h

p
u

t

NotePrefix
byte

First
byte

2nd
byte

ModRM byte

Notes:
1. The low half of the result is available one cycle earlier than listed.
2. This is the execution latency for the instruction. The time to complete the external write depends on the memory

speed and the hardware implementation.
Appendix C Instruction Latencies 341

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
C.9 SSE3 Instructions

Table 20. SSE3 Instructions

Syntax

Encoding

Decode
type

FPU
pipe(s)

L
at

en
cy

T
h

ro
u

g
h

p
u

t

Prefix
byte

First
byte

2nd
byte

ModRM byte

ADDSUBPD xmmreg1,
xmmreg2

66h 0Fh D0h 11-xxx-xxx Double FADD 5 1/2

ADDSUBPD xmmreg,
mem128

66h 0Fh D0h mm-xxx-xxx Double FADD 7 1/2

ADDSUBPS xmmreg1,
xmmreg2

F2h 0Fh D0h 11-xxx-xxx Double FADD 5 1/2

ADDSUBPS xmmreg,
mem128

F2h 0Fh D0h mm-xxx-xxx Double FADD 7 1/2

FISTTP [mem16int] DF mm-010-xxx DirectPath FSTORE 4

FISTTP [mem32int] DB mm-010-xxx DirectPath FSTORE 4

FISTTP [mem64int] DD mm-010-xxx DirectPath FSTORE 4

HADDPD xmmreg1,
xmmreg2

66h 0Fh 7Ch 11-xxx-xxx Double FADD 5 1/2

HADDPD xmmreg,
mem128

66h 0Fh 7Ch mm-xxx-xxx VectorPath FADD 6 1/2

HADDPS xmmreg1,
xmmreg2

F2h 0Fh 7Ch 11-xxx-xxx Double FADD 5 1/2

HADDPS xmmreg1,
mem128

F2h 0Fh 7Ch mm-xxx-xxx VectorPath FADD 6 1/2

HSUBPD xmmreg1,
xmmreg2

66h 0Fh 7Dh 11-xxx-xxx Double FADD 5 1/2

HSUBPD xmmreg1,
mem128

66h 0Fh 7Dh mm-xxx-xxx VectorPath FADD 6 1/2

HSUBPS xmmreg1,
xmmreg2

F2h 0Fh 7Dh 11-xxx-xxx Double FADD 5 1/2

HSUBPS xmmreg,
mem128

F2h 0Fh 7Dh mm-xxx-xxx VectorPath FADD 6 1/2

LDDQU xmmreg,
mem128

F2 0F F0 mm-xxx-xxx VectorPath 7 1/2

MOVDDUP xmmreg1,
xmmreg2

F2h 0Fh 12h 11-xxx-xxx Double FMUL 2 1/2

MOVDDUP xmmreg1,
mem64

F2h 0Fh 12h mm-xxx-xxx Double FMUL 4 1/2

MOVSHDUP xmmreg1,
xmmreg2

F3h 0Fh 16h 11-xxx-xxx Double FMUL 3 1/2
342 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
MOVSHDUP xmmreg,
mem128

F3h 0Fh 16h mm-xxx-xxx Double FMUL 5 1/2

MOVSLDUP xmmreg1,
xmmreg2

F3h 0Fh 12h 11-xxx-xxx Double FMUL 3 1/2

MOVSLDUP xmmreg1,
mem128

F3h 0Fh 12h mm-xxx-xxx Double FMUL 5 1/2

Table 20. SSE3 Instructions (Continued)

Syntax

Encoding

Decode
type

FPU
pipe(s)

L
at

en
cy

T
h

ro
u

g
h

p
u

t

Prefix
byte

First
byte

2nd
byte

ModRM byte
Appendix C Instruction Latencies 343

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
344 Instruction Latencies Appendix C

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Appendix D AGP Considerations

Fast write transactions are AGP data transfers that originate from processor-issued memory writes.
Frequently, the target of fast writes are graphics accelerators and involve:

• Memory-mapped I/O registers (for example, the command FIFO).

• Graphics (2D/3D) engines.

• DVD (motion compensation, sub-picture, etc.) engine registers.

• Frame buffer (render buffers, textures, etc.)

This appendix covers the following topics:

D.1 Fast-Write Optimizations
Fast-write transfers use the PCI addressing semantics but transfer data using the AGP transfer rates
(for example, 2x, 4x, or 8x) and AGP flow control between data blocks. The
AMD-8151™ HyperTransport™ AGP 3.0 graphics tunnel converts processor memory writes
(embedded in HyperTransport traffic) into fast-write transactions on the AGP bus. Fast writes offer an
alternative to having the processor place data in memory, and then having the AGP accelerator read
the data.

Fast-write transfers are generated to the accelerator with a transfer start address, and then transfer data
32 bits at a time (start_address + 0, start_address + 4, start_address + 8, and so on) until the entire
block has been transferred. In this sense, the data is sequential (as it is in DMA). Following are the
AGP bus characteristics:

• The AGP bus clock is 66 MHz.

• The AGP data width is 32 bits; at the 8x transfer rate, eight doublewords (32 bytes) can be
transferred per AGP clock.

Topic Page

Fast-Write Optimizations 345

Fast-Write Optimizations for Graphics-Engine Programming 346

Fast-Write Optimizations for Video-Memory Copies 349

Memory Optimizations 351

Memory Optimizations for Graphics-Engine Programming Using the DMA Model 352

Optimizations for Texture-Map Copies to AGP Memory 353

Optimizations for Vertex-Geometry Copies to AGP Memory 353
Appendix D AGP Considerations 345

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
The theoretical data bandwidths for fast writes at 2x, 4x, and 8x are approximately 528 Mbytes/s,
1.056 Gbytes/s, and 2.1 Gbytes/s, respectively. These numbers are theoretical in terms of sustained
bursts occurring on the AGP bus. In actuality, data bandwidth depends on the size of the data block
transferred from the processor—larger block transfers are better.

Real bandwidth will be lower than the theoretical bandwidth because the beginning of fast-write
transactions require sending a PCI-protocol start transaction cycle (for the address phase) at the 1x
transfer rate instead of the higher speeds (2x, 4x, or 8x).

Larger block transfers help hide the transaction-start overhead (smaller block transfers have lower
bandwidth). For example, at the 8x data-transfer rate, 128 bytes of data can be transferred in four
AGP clock cycles, but one initial clock cycle is required for the address phase. Five clock cycles are
required to transfer 128 bytes of data; therefore, the overhead of the address phase (clock cycle 1) for
128 bytes of data transferred is 20% (yielding a bandwidth of approximately 1.7 Gbytes/s). See
Figure 10.

Figure 10. AGP 8x Fast-Write Transaction

The overhead of the address phase for 64 bytes of data is 33% (yielding a bandwidth of approximately
1400 Mbytes/s). For 32 bytes of data (or less), the bandwidth drops to approximately 1000 Mbytes/s.
A key software optimization is to buffer as much processor write data as practical.

D.2 Fast-Write Optimizations for Graphics-Engine
Programming

Write-combining provides excellent AGP fast-write bandwidth when using the programmed I/O
(PIO) model—not the DMA model—for programming 2-D and 3-D graphics engines. To help ensure
that data is sent in optimal block sizes, you can “shadow” the engine’s render commands (that is, the
registers needed for a render command) in cache-block-aligned data structures in system memory.

Shadowing the structure in system memory (instead of writing the actual write-combining buffer in
memory-mapped I/O space) ensures that the write buffer is not emptied prematurely by external
events (such as an uncacheable read or hardware interrupt). Shadowing also ensures that writes to
different cache lines in the structure do not flush (close) the write-combining buffer since the number
of write-combining buffers that can be open at one time is processor-implementation dependent.

CLK

AD

C/BE

1 2 3 4 5 6 7 8 9

CMD

ADD

First block (128 bytes) Second block (64 bytes)

ADD

CMD
346 AGP Considerations Appendix D

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
On the AMD Athlon™ 64 and AMD Opteron™ processors, write-combining can be used, and
software can take advantage of the fact that writes are sent out of the processor's write buffers in
ascending order (and appear on HyperTransport that way), from low quadword to high quadword.

Use the Memory Type Range Register (MTRR) mechanism in conjunction with the PAT MSR
(model-specific register 277h) to enable write-combining as the memory type for the FIFO address
space.

To enable write-combining as the memory type for the FIFO address space, follow these steps:

1. Change the PAT MSR entries that contain a type value of 00h (UC-uncacheable) to a type value of
07h (UC-minus).

2. Program an MTRR with the physical addres and mask range of the command FIFO.

Note: MTRR registers mark addresses on page granularity boundaries of 4 Kbytes, so the FIFO
address should begin on a 4-Kbyte-aligned address boundary).

For more information, see Chapter 7, “Memory System,” in volume 2 of the AMD64 Architecture
Programmer’s Manual, order# 24593.

Many graphics engines have a front-end command FIFO that requires the render command to be
issued first, followed by a variable number of doublewords, depending on the render command.

Create a cache-aligned command structure in cacheable memory, map the rendering command into
the lowest doubleword of the structure (which will be issued first), map the next data required in the
command into the next structure element, and so on, until all the data “registers” for this command are
included in the structure. An example is given in Figure 11.

Figure 11. Cacheable-Memory Command Structure

When the command (or commands) are filled in the shadowed structure, use a high-speed copy
routine like the one shown in Listing 31 on page 348. Copy the structure to the actual graphic
accelerator’s write-combining FIFO address space. Locating the write-combining command FIFO at
a cache-aligned address is slightly better, since one HyperTransport link-size write occurs instead of
two).

Doubleword 0 (0h)

Doubleword 1 (4h)

.

.

.

Doubleword 2 (8h)

Doubleword 16 (3Fh)

Render command 1

Parameter 1

Parameter 2

Top of cache line
Appendix D AGP Considerations 347

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
If there are any “empty” doublewords between the last parameter and the top of the cache line, use the
SFENCE instruction to flush the write-combining buffer. The data is issued in ascending order.
SFENCE is needed to flush the processor’s write-combining buffer on any partially filled buffer. In
general, use SFENCE when all parameters needed for rendering have been copied to the memory-
mapped I/O (MMIO) FIFO. This ensures that write data is not kept in the processor’s write-
combining buffer (which prevents the graphics engine from receiving an incomplete command until
the buffer is eventually flushed).

The AGP 3.0 specification specifies that accelerators must be able to buffer at least 128 bytes for the
initial data block transferred. Try using 64–128 bytes as the optimal transfer size whenever possible
(one to two processor cache lines). Map as many commands as will fit into this 64–128-byte structure.

Listing 31. Sending Write-Combined Data to the Graphics-Engine Command FIFO
/* Send commands to a graphic accelerator 2D engine. */
/* The shadowed structure contains 32 DWORDs worth of */
/* rendering commands and data parameters. */
/* Send out 128 (80h) bytes to FIFO in WC MMIO space. */
/* First load 64-bit pointer to a cached command structure. */

mov rdi, OFFSET ShadowRegs_Structure

/* We now have a pointer to the shadowed engine structure. */
/* Grab 16 bytes at a time. */

movdqa xmm0, [rdi]
movdqa xmm1, [rdi + 16]
movdqa xmm2, [rdi + 32]
movdqa xmm3, [rdi + 48]
movdqa xmm4, [rdi + 64]
movdqa xmm5, [rdi + 80]
movdqa xmm6, [rdi + 96]
movdqa xmm7, [rdi + 112]

/* Now get linear pointer to graphic engine mapped in */
/* WC address space. */

mov rax, PTR [Linear2Dengine_Ptr]

/* Now copy register data to processor’s WC buffer. */
/* It is slightly more optimal if the command FIFO */
/* is at a cache-line-aligned address. */
/* Write 16 bytes at a time. */

movdqa [rax], xmm0
movdqa [rax + 16], xmm1
movdqa [rax + 32], xmm2

/* The first WC buffer will be sent after the next write */
/* (assuming FIFO is cache-line aligned) since we are crossing */
/* a cache-line boundary. */
348 AGP Considerations Appendix D

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
movdqa [rax + 48], xmm3

/* Allocate and fill another WC buffer. */

movdqa [rax + 64], xmm4
movdqa [rax + 80], xmm5
movdqa [rax + 96], xmm6

/* The second WC buffer is forced after the next write. */
/* The linear ascending order between cache lines */
/* is maintained since buffer is sent when filled. */

movdqa [rax + 112], xmm7
SFENCE

/* The SFENCE forces the write-combining buffer */
/* out of the processor and to the graphics chip. */
/* Set up the next drawing commands in cached */
/* memory structure ShadowRegs_Structure. */

D.3 Fast-Write Optimizations for Video-Memory
Copies

When performing block copies of an image to the graphics accelerator’s local memory, you can
preserve the contents of the L1 and L2 caches and reduce cache-line-replacement traffic to system
memory by using a nontemporal block prefetch on the image data using the PREFETCHNTA
instruction. This works well with images loaded into system memory through disk DMA because the
data can be kept out of the L2 cache and mostly out of the L1 data cache (when using
PREFETCHNTA). This is illustrated in Listing 32

Note: On the AMD Athlon™ 64 and AMD Opteron™ processors, PREFETCHNTA uses one way of
the two-way set-associative L1 data cache. One way of the L1 data cache is 32 Kbytes, so
limit the block prefetch size to less than or equal to 32 Kbytes.

Listing 32. Writing Nontemporal Data to Video RAM
/* Copy an image larger than 32 Kbytes into local memory, */
/* but limit the block prefetch so as not to exceed 32 Kbytes, */
/* which is the size of the nontemporal cache. */
/* First, block prefetch 16 Kbytes into the L1 data cache, then write */
/* it to the frame buffer. */
/* On AMD Athlon 64 and AMD Opteron processors, the PREFETCHNTA instruction must
execute prior */
/* to subsequent instructions. */
/* Cache lines that are prefetched via PREFETCHNTA and later replaced are */
/* not evicted to the L2 cache or system memory. */
Appendix D AGP Considerations 349

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
...

// Use half of the 32-Kbyte nontemporal cache for a block load.
#define HALFL1PREFETCHNTACACHESIZE 16384

mov rdi, QWORD PTR [image_source]
mov rcx, HALFL1PREFETCHNTACACHESIZE / 64

Block_PrefetchIntoL1:
prefetchnta QWORD PTR [rdi] ; Grab 64 bytes.
add rdi, 64 ; Bump up to next cache line.
dec rcx
jnz Block_PrefetchIntoL1

LoadPtr_ToFrameBuffer:
mov rdi, QWORD PTR [frameBuffDestPtr]
mov rcx, HALFL1PREFETCHNTACACHESIZE / 128

/* Get linear pointer to local memory mapped in WC address space. */

mov rax, DQWORD PTR [FBimage_Ptr]

/* Send out 128 bytes (yielding ~1.7 Gbytes/s of fast-write bandwidth) */
/* per block. RDI now has pointer back to image source. */
/* 16 Kbytes of image is in L1 nontemporal cache (way 0 of cache). */

Block_WriteToFrameBuffer:
movdqa xmm0, [rdi]
movdqa xmm1, [rdi+16]
movdqa xmm2, [rdi+32]
movdqa xmm3, [rdi+48]
movdqa xmm4, [rdi+64]
movdqa xmm5, [rdi+80]
movdqa xmm6, [rdi+96]
movdqa xmm7, [rdi+112]

/* Copy register data to WC buffer. */

movdqa [rax], xmm0
movdqa [rax+16], xmm1
movdqa [rax+32], xmm2

/* The first WC buffer is sent after next write since we are crossing */
/* a cache-line boundary. */

movdqa [rax+48], xmm3

/* Allocate and fill another WC buffer. */

movdqa [rax+64], xmm4
movdqa [rax+80], xmm5
350 AGP Considerations Appendix D

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
movdqa [rax+96], xmm6
movdqa [rax+112], xmm7
add rax, 128 ; Bump up by 2 cache lines
add rdi, 128 ; for source and destination.
dec rcx
jnz Block_WriteToFrameBuffer

ChunkOfImageCopied:

/* Set up for next block in image (if necessary) */
/* until image is transferred. */

D.4 Memory Optimizations
AGP memory is system memory that is partitioned from the same memory that the operating system
and applications use. The AGP card plugged into the AGP bus is always considered the master when
performing AGP memory accesses since it reads and writes the system memory. The AGP card uses
AGP memory for a variety of “surfaces,” including:

• Texture maps

• 3-D object geometry and vertex data streams

• Command buffers for 2-D and 3-D graphics engines

• Video-capture buffers

• Frame buffer (cost-reduced implementations)

The system memory used for AGP mastering is attached to the processor that has one of its
HyperTransport links connected to an AGP tunnel device, such as the AMD-8151 HyperTransport
AGP 3.0 graphics tunnel. AGP card requests (reads/writes) come into the processor through the
HyperTransport link input and are arbitrated with processor requests for system memory in the
system request queue (SRQ). From here, the AGP request address is passed into the processor’s
address map and GART (graphics aperture remapping table), where the AGP physical address is
translated into a physical DRAM page address, which can then be presented to the processor’s
memory controller. Therefore, host processor to system memory throughput directly affects AGP
memory bandwidth and throughput, as the two compete for SRQ entries and memory bandwidth.
Figure 10 shows the command flow from the HyperTransport links to the SRQ.
Appendix D AGP Considerations 351

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
Figure 12. Northbridge Command Flow

D.5 Memory Optimizations for Graphics-Engine
Programming Using the DMA Model

Historically (that is, with AGP 1.0 and AGP 2.0), AGP memory used for command DMA buffers was
accessed by the processor through the AGP aperture space (this feature is referred to as host
translation). This address space was mapped as write-combining due to the fact that the processor’s
caches were not snooped by an AGP master (that is, coherency was not enforced for AGP memory).
Write-combining offered the best bandwidth in this situation because write-combining buffers could
be sent to system memory as full write-combining buffers. However, system memory still needed to
be written, which used memory bandwidth.

On current systems however, coherency between an AGP master (making accesses through the AGP
aperture) and the processor caches is maintained due to the HyperTransport protocol and the MOESI
(modified, owner, exclusive, shared, invalid) caching policy. Coherency support between an AGP
master and the processor caches is enabled through a bit in the GART entry (Gart_entry.coh). The
AGP miniport driver sets this bit as it maps entries in the GART. The video graphics miniport driver
can verify this feature in the AGP 3.0-compliant register (AGPSTAT.ita_entry.coh), which is found in
the AGP bridge device.

Note: Coherency support is implemented by hardware in AMD Athlon 64 and AMD Opteron
processors, and is not specific to the AGP tunnel device, even though the support is indicated
in the tunnel’s AGP 3.0-compliant register (AGPSTAT.ita_entry.coh).

Therefore, a key optimization for the DMA model on AMD Athlon 64 and AMD Opteron processors
is that the AGP master may read the data from the processor caches faster than reading data from the
DDR memory, since the processor caches operate at higher clock frequencies. As processor clock

Address MAP
& GART

System Request
Queue

24-entry

CPU 0

All buffers are 64-bit
command/address

Router

10-entry Buffer

Router

16-entry Buffer

Router

16-entry Buffer

Router

16-entry Buffer

Router

12-entry Buffer

Memory
Command

Queue
20-entry

CPU 1

HyperTransport 0
Input

HyperTransport 1
Input

HyperTransport 2
Input

Victim Buffer (8-entry)
Write Buffer (4-entry)

Instruction MAB (2-entry)
Data MAB (8-entry)

to
DCT

Hypertransport 0
Output

HyperTransport 1
Output

HyperTransport 2
Output

to
CPU

XBAR

Address MAP
& GART

System Request
Queue

24-entry

CPU 0

All buffers are 64-bit
command/address

Router

10-entry Buffer

Router

10-entry Buffer

Router

16-entry Buffer

Router

16-entry Buffer

Router

16-entry Buffer

Router

16-entry Buffer

Router

16-entry Buffer

Router

16-entry Buffer

Router

12-entry Buffer

Router

12-entry Buffer

Memory
Command

Queue
20-entry

CPU 1

HyperTransport 0
Input

HyperTransport 1
Input

HyperTransport 2
Input

Victim Buffer (8-entry)
Write Buffer (4-entry)

Instruction MAB (2-entry)
Data MAB (8-entry)

to
DCT

Hypertransport 0
Output

HyperTransport 1
Output

HyperTransport 2
Output

to
CPU

XBAR
352 AGP Considerations Appendix D

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
frequencies increase, so will the ratio of operating frequencies between processor caches and DDR
memory. The processor-to-write-back cache bandwidth is also higher than processor-to-AGP-aperture
bandwidth (write-combining memory type), since the DDR writes are avoided (as well as GART
translation latencies).

It may be possible to prevent pollution of the L1-data and L2 caches from DMA data by using the
nontemporal PREFETCHNTA instruction on the DMA buffer and limiting prefetching of the DMA
buffer to less than 32 Kbytes (PREFETCHNTA uses only one way of the L1 data cache).

Use PREFETCHNTA on the linear address to the DMA buffer, and not the AGP aperture address,
before reading or writing the DMA buffer.

Another key optimization for the DMA model on AMD Athlon 64 and AMD Opteron systems is that
coherency is maintained between processor caches and an AGP master making accesses outside of
the AGP aperture.

This is a key AGP enhancement that is required of AGP 3.0 target (host platform) systems.

In effect, this means that an AGP master can create a DMA buffer in normal write-back memory and
then pass the physical DRAM page address to the AGP master; in other words, the AGP virtual
address and GART translation is not used.

Use PREFETCHNTA on the linear address to the DMA buffer, before reading or writing the DMA
buffer.

If the AGP card hardware is capable of buffering the physical DRAM page addresses sent to the AGP
card in a FIFO, then in effect the AGP card’s device driver is getting AGP scatter-gather capabilities,
with cache coherency provided by the processor.

D.6 Optimizations for Texture-Map Copies to AGP
Memory

To avoid cache pollution, use the same technique described in “Fast-Write Optimizations for Video-
Memory Copies” on page 349 to copy texture data into AGP memory, since this data tends to be
nontemporal.

D.7 Optimizations for Vertex-Geometry Copies to AGP
Memory

To avoid cache pollution, use the same technique described in “Fast-Write Optimizations for Video-
Memory Copies” on page 349 to copy vertex data into AGP memory, since this data tends to be
nontemporal.
Appendix D AGP Considerations 353

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
354 AGP Considerations Appendix D

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Appendix E SSE and SSE2 Optimizations

This appendix describes specific optimizations that can be utilized to improve performance when
using SSE and SSE2 instructions on AMD Athlon™ 64 and AMD Opteron™ processors.

Types of XMM-Register Data

The XMM registers (used by the SSE and SSE2 instructions) can hold the following three types of
data:

• Floating-point single-precision (FPS)

• Floating-point double-precision (FPD)

• Integer (INT)

Types of SSE and SSE2 Instructions

Most SSE and SSE2 instructions can be divided into five types according to the type of data they
produce and therefore expect to consume:

• Floating-point single-precision (FPS)

• Floating-point double-precision (FPD)

• Integer (INT)

• Load (produces data of type FPS, FPD, or INT)

• Store (can consume a register with data of any type)

This appendix covers the following topics:

Topic Page

Half-Register Operations 356

Zeroing Out an XMM Register 357

Reuse of Dead Registers 359

Moving Data Between XMM Registers and GPRs 360

Saving and Restoring Registers of Unknown Format 361

SSE and SSE2 Copy Loops 362

Data Conversion 364
Appendix E SSE and SSE2 Optimizations 355

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
E.1 Half-Register Operations

Optimization

❖ Take care when mixing data types of operands within the same register.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

Mixing data types in a single register is harmless if only scalar operations are used. However, this
practice can cause performance problems if the register is used as a sourcce for a vector operation.

Example 1

Avoid code like this:

addps xmm1, xmm2 ; Add four packed single-precision (FPD) values in XMM1
 ; to their corresponding values in XMM2.
cvtss2sd xmm1, xmm2 ; Convert the low-order single-precision value in XMM2
 ; to 64-bit double precision FP format and store in
 ; lower 64-bits of XMM1.

In this example, the second instruction leaves the upper half of XMM1 in FPS format and the lower
half in FPD format.

Example 2

Avoid code like this:

addps xmm1,xmm2 ; Add four packed single-precision (FPD) values in XMM1
 ; to their corresponding values in XMM2.
movlpd xmm1,mem64 ; Move the double-precision value in mem64 to the lower
 ; half of XMM1.

In this example, The MOVLPD instruction sets the low half of XMM1 to FPD format but leaves the
high half unchanged (in FPS format).
356 SSE and SSE2 Optimizations Appendix E

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
E.2 Zeroing Out an XMM Register

Optimization

When it is necessary to zero out an XMM register, use an instruction whose format matches the
format required by the consumers of the zeroed register.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

When an XMM register must be set to zero, using the appropriate instruction helps reduce the chance
of any performance penalty later.

Table 21 shows the different possible consumers of an XMM register and the corresponding
instruction that should be used to zero out the register.

Table 21. Clearing XMM Registers
Producer of Zero Example Consumers of Zero

xorpd xmm1, xmm1 cmppd xmm1, xmm2

cmpsd xmm1, xmm2

comisd xmm1, xmm2

maxpd xmm1, xmm2

maxsd xmm1, xmm2

ucomisd xmm1, xmm2

subsd xmm1, xmm2

xorps xmm1, xmm1 cmpps xmm1, xmm2

cmpss xmm1, xmm2

comiss xmm1, xmm2

maxps xmm1, xmm2

maxss xmm1, xmm2

ucomiss xmm1, xmm2

subss xmm1, xmm2
Appendix E SSE and SSE2 Optimizations 357

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
pxor xmm1, xmm1 pcmpxxx xmm1, xmm2

pmaxxx xmm1, xmm2

psubxxx xmm1, xmm2

Table 21. Clearing XMM Registers (Continued)
Producer of Zero Example Consumers of Zero
358 SSE and SSE2 Optimizations Appendix E

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
E.3 Reuse of Dead Registers

Optimization

When it is necessary to save the contents of a register that is in FPS format to another unused (or
dead) register, where the previous contents of the dead register are unknown and could be a denormal,
then use movaps xmm1, xmm2 instead of movss xmm1, xmm2.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The movss xmm1, xmm2 instruction takes additional time to execute if the previous contents of
XMM1 are a denormal.
Appendix E SSE and SSE2 Optimizations 359

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
E.4 Moving Data Between XMM Registers and GPRs

Optimization

Store a register that needs to be spilled in memory, rather than moved to a different register file.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

While register moves within a given register file are very efficient (XMM to XMM, GPR to GPR),
moves between register files (XMM to GPR, GPR to XMM) are not. .
360 SSE and SSE2 Optimizations Appendix E

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
E.5 Saving and Restoring Registers of Unknown
Format

Optimization

Use INT loads (MOVDQA for 128 bits and MOVQ for 64 bits) when restoring registers of unknown
format from the stack.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

All stores of 64-bits or more from an XMM register to memory may be performed without concern
for the type of the data in the XMM register. This allows called procedures to save registers on the
stack without knowing what their format was. Conversely, all INT loads (MOVDQA for 128 bits and
MOVQ for 64 bits) leave the register in a format that is acceptable to all SSE and SSE2 instructions
and is recommended when restoring registers of unknown format from the stack.
Appendix E SSE and SSE2 Optimizations 361

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
E.6 SSE and SSE2 Copy Loops

Optimization

When copying data of an unknown format using the XMM registers, it is best to use INT loads and
stores.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

When using SSE and SSE2 instructions to perform loads and stores, it is best to interleave them in the
following pattern—Load, Store, Load, Store, Load, Store, etc.

If in 32-bit mode and using MMX instructions to perform loads and stores, they should be arranged in
the following pattern—Load, Load, Store, Store, Load, Load, Store, Store, etc.

Example

The following example illustrates a sequence of 128-bit loads and stores:
 movdqa xmm0, [rdx+r8*8] ; Load
 movntdq [rcx+r8*8], xmm0 ; Store
 movdqa xmm1, [rdx+r8*8+16] ; Load
 movntdq [rcx+r8*8+16], xmm1 ; Store
362 SSE and SSE2 Optimizations Appendix E

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
E.7 Explicit Load Instructions

Optimization

Use movlpd xmm1, mem64 when loading a scalar FPD value from memory.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

The movlpd xmm1, mem64 instruction is more efficient than movsd xmm1, mem64. Use MOVSD only
if you need to ensure that the upper half of XMM1 is also set to FPD format, perhaps because a vector
operation is planned on the register.

When loading a scalar FPS value from memory, use MOVSS.
Appendix E SSE and SSE2 Optimizations 363

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
E.8 Data Conversion

Optimization

Use care when selecting instructions to convert values from one type to another.

Application

This optimization applies to:

• 32-bit software

• 64-bit software

Rationale

For example, the CVTDQ2PS instruction converts four packed 32-bit signed integer values in an
XMM register or a 128-bit memory location to four packed single-precision floating-point values and
writes the converted values to another XMM register. In some cases, an additional instruction is
recommended to ensure that both halves of register operands are of the same type (as recommended
in “Zeroing Out an XMM Register” on page 357).

Table 22 shows the recommendations for register-to-register conversion of scalar values. Table 23 on
page 365 shows the recommendations for register-to-register conversion of vector operands. When
converting values directly from memory, use the preferred instructions provided in Table 24 on
page 365.

Table 22. Converting Scalar Values
Source
format

Destination format Preferred instructions Notes

FPS INT XMM cvtps2dq xmm1, xmm2

FPS INT GPR cvtss2si reg32/64, xmm1

FPS FPD cvtss2sd xmm1, xmm2

FPD INT XMM unpcklpd xmm2, xmm2
cvtpd2dq xmm1, xmm2

UNPCKLPD ensures that the high
half of XMM2 is also in FPD
format.

FPD INT GPR cvtsd2si reg32/64, xmm1

FPD FPS xorps xmm1, xmm1
cvtsd2ss xmm1, xmm2

XORPS ensures that the high half
of XMM1 is in FPS format in case
a MOVAPS instruction is used
later.

INT XMM FPS cvtdq2ps xmm1, xmm2

INT XMM FPD cvtdq2pd xmm1, xmm2
364 SSE and SSE2 Optimizations Appendix E

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
INT GPR FPS xorps xmm1, xmm1
cvtsi2ss xmm1, reg32/64

XORPS is used to ensure that the
high half of XMM1 is in FPS
format. This is also better in case a
MOVAPS instruction is used later.

INT GPR FPD cvtsi2sd xmm1, reg32/64

Table 23. Converting Vector Values
Source
format

Destination format Preferred instructions Notes

FPS INT XMM cvtps2dq xmm1, xmm2

FPS FPD cvtps2pd xmm1, xmm2

FPD INT XMM cvtpd2dq xmm1, xmm2

FPD FPS cvtpd2ps xmm1, xmm2

INT XMM FPS cvtdq2ps xmm1, xmm2

INT XMM FPD cvtdq2pd xmm1, xmm2

Table 24. Converting Directly from Memory
Source
format

Destination format Preferred instructions Notes

FPD FPS xorps xmm1, xmm1
cvtsd2ss xmm1, mem64

XORPS ensures that the high half
of XMM1 is in FPS format in case
a MOVAPS instruction is used
later.

INT GPR FPS xorps xmm1, xmm1
cvtsi2ss xmm1, mem32/64

XORPS is used to ensure that the
high half of XMM1 is in FPS
format. This is also better in case a
MOVAPS instruction is used later.

Table 22. Converting Scalar Values (Continued)
Source
format

Destination format Preferred instructions Notes
Appendix E SSE and SSE2 Optimizations 365

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
366 SSE and SSE2 Optimizations Appendix E

Software Optimization Guide for AMD64 Processors25112 Rev. 3.06 September 2005
Index

Numerics
3DNow! 210, 215, 217–218, 221, 224, 230, 233

A
address-generation interlocks 151
AMD Athlon™ processor

microarchitecture 250–251
AMD Athlon™ system bus 260
arrays 10

B
binary-to-ASCII decimal conversion 181
boolean operators 17
branch target buffer (BTB) 126, 253
branches

align branch targets 76
based on comparisons between floats 54
compound branch conditions 14
dependent on random data 130
optimizing density of 126
prediction 253
replace with computation in 3DNow! code 136

C
C language 14

array notation versus pointers 10
C code to 3DNow! code examples 138–140
structures 39, 117

cache
64-byte cache line 116

CALL and RETURN instructions 132
ccNUMA 96
code padding using neutral code fillers 89
code segment (CS) base, nonzero 135
const type qualifier 30

D
data cache 255
decoding 254
DirectPath

DirectPath over VectorPath instructions 72
displacements, 8-bit sign-extended 88
division 160–162, 186

replace division with multiplication, integer 43, 160
dynamic memory allocation consideration 19

E
extended-precision data 248

F
far control-transfer instructions 142
floating-point

compare instructions 244
division and square roots 50
execution unit 258
scheduler 257
to integer conversions 52
variables and expressions are type float 9

FXCH instruction 245

I
if statement 16, 33
immediates, 8-bit sign-extended 87
IMUL instruction 164
inline functions 149, 170
inline REP string with low counts 168
instruction

cache 252
control unit 254
short encodings 80

integer
arithmetic, 64-bit 170
division 43
execution unit 256
operand, consider sign 48
scheduler 256
use 32-bit data types for integer code 47

L
L2 cache controller 259
LEA instruction 77, 85
LEAVE instruction 83
load/store 22, 258
load-execute instructions 73

floating-point instructions 74
integer instructions 73

local functions 34
local variables 41, 44
LOOP instruction 141
loops

generic loop hoisting 31
minimize pointer arithmetic 154
partial loop unrolling 146
Index 367

25112 Rev. 3.06 September 2005Software Optimization Guide for AMD64 Processors
REP string with low variable counts 168
unroll small loops 13
unrolling loops 145

M
memory

dynamic memory allocation 19
pushing memory data 157

MMX™ instructions
PANDN instruction 137
PREFETCHNTA/T0/T1/T2 instructions 105

MOVZX and MOVSX instructions 153
multiplication

by constant 164
multiplies over division, floating-point 238

muxing constructs 136

N
Nonuniform Memory Access 96

O
operands

largest possible operand size, repeated string 168

P
parallelism 35
PF2ID instructions 52
pointers

dereferenced arguments 44
use array-style code instead 10

population-count function 179
prefetch

determining distance 108
multiple 107

PREFETCH and PREFETCHW instructions 104, 106, 108
prototypes 29

R
recursive functions 132
register reads and writes, partial 81
REP prefix 168

S
scalar code translated into 3DNow! code 138
scheduling 144
SHLD instruction 85
SHR instruction 85
single-byte near-return RET instruction (opcode C3h) 128
SSE 193, 355
SSE2 193, 355

stack
alignment considerations 122

store-to-load forwarding 20, 22, 100–103
String Instructions 167
string instructions 167
structure (struct) 41, 117, 119
subexpressions, explicitly extract common 37
superscalar processor 251
switch statement 25, 28, 33

U
unit-stride access 105, 110

W
write combining 113, 260, 263–264, 266

X
XOR instruction 169
368 Index

	Contents
	Tables
	Figures
	Revision History
	Chapter 1 Introduction
	1.1 Intended Audience
	1.2 Getting Started Quickly
	1.3 Using This Guide
	1.4 Important New Terms
	1.5 Key Optimizations

	Chapter 2 C and C++ Source-Level Optimizations
	2.1 Declarations of Floating-Point Values
	2.2 Using Arrays and Pointers
	2.3 Unrolling Small Loops
	2.4 Expression Order in Compound Branch Conditions
	2.5 Long Logical Expressions in If Statements
	2.6 Arrange Boolean Operands for Quick Expression Evaluation
	2.7 Dynamic Memory Allocation Consideration
	2.8 Unnecessary Store-to-Load Dependencies
	2.9 Matching Store and Load Size
	2.10 SWITCH and Noncontiguous Case Expressions
	2.11 Arranging Cases by Probability of Occurrence
	2.12 Use of Function Prototypes
	2.13 Use of const Type Qualifier
	2.14 Generic Loop Hoisting
	2.15 Local Static Functions
	2.16 Explicit Parallelism in Code
	2.17 Extracting Common Subexpressions
	2.18 Sorting and Padding C and C++ Structures
	2.19 Sorting Local Variables
	2.20 Replacing Integer Division with Multiplication
	2.21 Frequently Dereferenced Pointer Arguments
	2.22 Array Indices
	2.23 32-Bit Integral Data Types
	2.24 Sign of Integer Operands
	2.25 Accelerating Floating-Point Division and Square Root
	2.26 Fast Floating-Point-to-Integer Conversion
	2.27 Speeding Up Branches Based on Comparisons Between Floats
	2.28 Improving Performance in Linux Libraries

	Chapter 3 General 64-Bit Optimizations
	3.1 64-Bit Registers and Integer Arithmetic
	3.2 64-Bit Arithmetic and Large-Integer Multiplication
	3.3 128-Bit Media Instructions and Floating-Point Operations
	3.4 32-Bit Legacy GPRs and Small Unsigned Integers

	Chapter 4 Instruction-Decoding Optimizations
	4.1 DirectPath Instructions
	4.2 Load-Execute Instructions
	4.3 Branch Targets in Program Hot Spots
	4.4 32/64-Bit vs. 16-Bit Forms of the LEA Instruction
	4.5 Take Advantage of x86 and AMD64 Complex Addressing Modes
	4.6 Short Instruction Encodings
	4.7 Partial-Register Reads and Writes
	4.8 Using LEAVE for Function Epilogues
	4.9 Alternatives to SHLD Instruction
	4.10 8-Bit Sign-Extended Immediate Values
	4.11 8-Bit Sign-Extended Displacements
	4.12 Code Padding with Operand-Size Override and NOP

	Chapter 5 Cache and Memory Optimizations
	5.1 Memory-Size Mismatches
	5.2 Natural Alignment of Data Objects
	5.3 Cache-Coherent Nonuniform Memory Access (ccNUMA)
	5.4 Multiprocessor Considerations
	5.5 Store-to-Load Forwarding Restrictions
	5.6 Prefetch Instructions
	5.7 Streaming-Store/Non-Temporal Instructions
	5.8 Write-combining
	5.9 L1 Data Cache Bank Conflicts
	5.10 Placing Code and Data in the Same 64-Byte Cache Line
	5.11 Sorting and Padding C and C++ Structures
	5.12 Sorting Local Variables
	5.13 Memory Copy
	5.14 Stack Considerations
	5.15 Cache Issues when Writing Instruction Bytes to Memory
	5.16 Interleave Loads and Stores

	Chapter 6 Branch Optimizations
	6.1 Density of Branches
	6.2 Two-Byte Near-Return RET Instruction
	6.3 Branches That Depend on Random Data
	6.4 Pairing CALL and RETURN
	6.5 Recursive Functions
	6.6 Nonzero Code-Segment Base Values
	6.7 Replacing Branches with Computation
	6.8 The LOOP Instruction
	6.9 Far Control-Transfer Instructions

	Chapter 7 Scheduling Optimizations
	7.1 Instruction Scheduling by Latency
	7.2 Loop Unrolling
	7.3 Inline Functions
	7.4 Address-Generation Interlocks
	7.5 MOVZX and MOVSX
	7.6 Pointer Arithmetic in Loops
	7.7 Pushing Memory Data Directly onto the Stack

	Chapter 8 Integer Optimizations
	8.1 Replacing Division with Multiplication
	8.2 Alternative Code for Multiplying by a Constant
	8.3 Repeated String Instructions
	8.4 Using XOR to Clear Integer Registers
	8.5 Efficient 64-Bit Integer Arithmetic in 32-Bit Mode
	8.6 Efficient Implementation of Population-Count Function in 32-Bit Mode
	8.7 Efficient Binary-to-ASCII Decimal Conversion
	8.8 Derivation of Algorithm, Multiplier, and Shift Factor for Integer Division by Constants
	8.9 Optimizing Integer Division

	Chapter 9 Optimizing with SIMD Instructions
	9.1 Ensure All Packed Floating-Point Data are Aligned
	9.2 Improving Scalar SSE and SSE2 Floating-Point Performance with MOVLPD and MOVLPS When Loading Data from Memory
	9.3 Use MOVLPx/MOVHPx Instructions for Unaligned Data Access
	9.4 Use MOVAPD and MOVAPS Instead of MOVUPD and MOVUPS
	9.5 Structuring Code with Prefetch Instructions to Hide Memory Latency
	9.6 Avoid Moving Data Directly Between General-Purpose and MMX™ Registers
	9.7 Use MMX™ Instructions to Construct Fast Block- Copy Routines in 32-Bit Mode
	9.8 Passing Data between MMX™ and 3DNow!™ Instructions
	9.9 Storing Floating-Point Data in MMX™ Registers
	9.10 EMMS and FEMMS Usage
	9.11 Using SIMD Instructions for Fast Square Roots and Fast Reciprocal Square Roots
	9.12 Use XOR Operations to Negate Operands of SSE, SSE2, and 3DNow!™ Instructions
	9.13 Clearing MMX™ and XMM Registers with XOR Instructions
	9.14 Finding the Floating-Point Absolute Value of Operands of SSE, SSE2, and 3DNow!™ Instructions
	9.15 Accumulating Single-Precision Floating-Point Numbers Using SSE, SSE2, and 3DNow!™ Instructions
	9.16 Complex-Number Arithmetic Using SSE, SSE2, and 3DNow!™ Instructions
	9.17 Optimized 4 X 4 Matrix Multiplication on 4 X 1 Column Vector Routines

	Chapter 10 x87 Floating-Point Optimizations
	10.1 Using Multiplication Rather Than Division
	10.2 Achieving Two Floating-Point Operations per Clock Cycle
	10.3 Floating-Point Compare Instructions
	10.4 Using the FXCH Instruction Rather Than FST/FLD Pairs
	10.5 Floating-Point Subexpression Elimination
	10.6 Accumulating Precision-Sensitive Quantities in x87 Registers
	10.7 Avoiding Extended-Precision Data

	Appendix A Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors
	A.1 Key Microarchitecture Features
	A.2 Microarchitecture for AMD Athlon™ 64 and AMD Opteron™ Processors
	A.3 Superscalar Processor
	A.4 Processor Block Diagram
	A.5 L1 Instruction Cache
	A.6 Branch-Prediction Table
	A.7 Fetch-Decode Unit
	A.8 Instruction Control Unit
	A.9 Translation-Lookaside Buffer
	A.10 L1 Data Cache
	A.11 Integer Scheduler
	A.12 Integer Execution Unit
	A.13 Floating-Point Scheduler
	A.14 Floating-Point Execution Unit
	A.15 Load-Store Unit
	A.16 L2 Cache
	A.17 Write-combining
	A.18 Buses for AMD Athlon™ 64 and AMD Opteron™ Processor
	A.19 Integrated Memory Controller
	A.20 HyperTransport™ Technology Interface

	Appendix B Implementation of Write-Combining
	B.1 Write-Combining Definitions and Abbreviations
	B.2 Programming Details
	B.3 Write-combining Operations
	B.4 Sending Write-Buffer Data to the System
	B.5 Write-Combining Optimization on Revision D and E AMD Athlon™ 64 and AMD Opteron™ Processors

	Appendix C Instruction Latencies
	C.1 Understanding Instruction Entries
	C.2 Integer Instructions
	C.3 MMX™ Technology Instructions
	C.4 x87 Floating-Point Instructions
	C.5 3DNow!™ Technology Instructions
	C.6 3DNow!™ Technology Extensions
	C.7 SSE Instructions
	C.8 SSE2 Instructions
	C.9 SSE3 Instructions

	Appendix D AGP Considerations
	D.1 Fast-Write Optimizations
	D.2 Fast-Write Optimizations for Graphics-Engine Programming
	D.3 Fast-Write Optimizations for Video-Memory Copies
	D.4 Memory Optimizations
	D.5 Memory Optimizations for Graphics-Engine Programming Using the DMA Model
	D.6 Optimizations for Texture-Map Copies to AGP Memory
	D.7 Optimizations for Vertex-Geometry Copies to AGP Memory

	Appendix E SSE and SSE2 Optimizations
	E.1 Half-Register Operations
	E.2 Zeroing Out an XMM Register
	E.3 Reuse of Dead Registers
	E.4 Moving Data Between XMM Registers and GPRs
	E.5 Saving and Restoring Registers of Unknown Format
	E.6 SSE and SSE2 Copy Loops
	E.7 Explicit Load Instructions
	E.8 Data Conversion

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

