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Media Acceleration Engine
Abstract
The Media Acceleration Engine (MAE) is an on-chip hardware device that 
shoulders the work of video decoding, scaling, color space conversion, and 
filtering in the AMD Alchemy™ Au1200™ processor. By performing the 
most demanding video decoding tasks in hardware, the MAE frees the 
MIPS32™ core to handle user interface functions, audio processing, and other 
tasks. Conversely, because software running in the core passes variable length 
decoding information to the MAE, the MAE is endowed with the flexibility 
needed to accommodate multiple video codecs. 

MAE processes are divided between front end and back end hardware. Each 
segment is designed to handle specific types of tasks.

■ The MAE front end autonomously performs the most complex and 
intense video decoding tasks, including inverse quantization, inverse 
discrete cosine transformations, motion compensation, and Windows® 
Media Video 9 overlay smoothing.

■ The  MAE back end performs one-pass horizontal and vertical scaling, 
programmable color space processing, and filtering functions. When 
video decoding is not taking place, these back end functions are available 
for use by other data sources such as processing CMOS/CCD or NTSC/
PAL data received from the on-chip Camera Interface Module.

© 2005 Advanced Micro Devices, Inc. All rights reserved. 
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Media Acceleration Engine
Introduction

The future of multimedia will be heavily influenced by its portability. The 
advent and subsequent popularity of portable media players initiated 
discussions among AMD Alchemy™ engineers about what seemed 
inevitable: the evolution of Personal Media Player (PMP) devices that 
reproduce high-quality full-size video. 

Their initial considerations about enabling high-performance video 
capabilities in a system-on-a-chip centered on the demands of the video 
decoding process – typically performed in software – that converts video 
content from MPEG1, MPEG2, MPEG4, DIVX 3,4,5 data to RGB display 
data. 

This intense decoding process taxes even powerful CPUs, often leaving little 
headroom available for other tasks. It became evident that low cost, low-
power/high-quality core processors of interest for video processing would be 
unable to handle the work of full-size full-frame-rate video decoding in 
software. The processing demands for high-quality MPEG/WMV video 
content outstripped CPU capabilities long before anything resembling 
acceptable results were achieved. 

Figure 1. Complexity of Software Video Decoding Demands on Processors 

It became clear that the shortfall between workload and processor capability 
would best be addressed by separating the work of video decoding from other 
processing loads. 
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Media Acceleration Engine
MAE Design Goals

Because the engineering team wished to avoid an expensive and power-
hungry multi-chip solution, they focused their design efforts on a hardware-
based media accelerator that would operate within the architecture of a low-
power/high-performance system-on-a-chip fine-tuned to the needs of PMP 
developers.

The MAE was forged under the influence of two essential and opposing 
factors: keep bandwidth high and keep physical area low. Careful adherence 
to these two factors resulted in a versatile hybrid software/hardware SOC 
design that consistently meets performance requirements, yet contains no 
“fat” that increases developers’ BOM costs. An additional and happy result of 
this hybrid design is that developers will not have to write or purchase video 
decoding software.

Because direct access to the vast library of existing content – particularly 
MPEG 2 – is essential to the appeal of the PMP use model, AMD Alchemy™ 
engineers decided that direct video decoding capability must be maintained 
for established formats. This goal has been fundamental to the project’s 
success, because the variety of existing video formats represents a set of 
standards by which the design team could measure the success of their design.

The Media Acceleration Engine fulfills its role as the hardware component in 
the Au1200 processor that handles the most complex portions of the video 
decoding process, including inverse quantization, inverse DCT, motion 
compensation, scaling, color space conversion, and filtering. The MAE was 
built specifically to decode MPEG (1,2,4), Div-X (3,4,5), WMV9, and H.263 
video data. The MAE enables the Au1200™ processor to deliver full D1 
video rendering at full frame-rates on portable devices without the need for 
transcoding.

For information about the
PMP use model, see the

System Architecture
white paper included in

this suite.
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Media Acceleration Engine
Overview of Video Compression & MAE Support

An understanding of the functions and features of the Media Acceleration 
Engine depends upon some familiarity with video compression. Although a 
comprehensive recounting of video compression technologies is beyond the 
scope of this paper, the standards these technologies support are integral to the 
design and performance goals of the MAE. This overview illustrates how the 
design of the MAE supports each phase of block-based video compression 
technologies.

Video encoding relies heavily on data compression techniques that enable 
convenient digital storage of the massive amounts of information that 
characterizes video data. Figure 2 represents the basic processing steps that 
video data undergoes when it is encoded in a block-based format, such as 
MPEG 2. 

Figure 2. Video Encoding Process Overview

Video decoding tasks on the Au1200™ processor are divided between 
software-based and hardware-based processing that fully supports all 
decoding tasks, as shown in Figure 3.

Figure 3. MAE Video Decoding Overview 

 For ease of
presentation this

material is based on the
video encoding process.

The MAE performs a
reversal - decoding - of

this process.
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Media Acceleration Engine
How Video Data is Packaged for Encoding

Figure 4 illustrates that two sizes of data “chunks” support different phases of 
block-based video encoding processes:

■ Macroblocks are the standard chunk size by which a full frame of video 
data is processed when it is converted into YCbCr color space, and by 
which variable length encoding is carried out.  Macroblocks comprise 16 
lines x 16 pixel blocks. 

■ Blocks comprise 8 pixel by 8 line sets of Y, Cb, or Cr values within a 
macroblock. Figure 4 illustrates that there are four Y blocks, one Cb 
block, and one Cr block per macroblock. Macroblocks can also be 
formatted to contain two Cb and two Cr blocks.  Block-sized data is used 
in motion estimation, the DCT, quantization, and zig-zag processing of 
run/amp pairs.

Figure 4. Macroblock & 8 x 8 Data Block Overview

MAE Decoding Support for Image Data

The MAE was built specifically to handle the decoding of video data for 
block-based formats. The Au1200™ processor maintains the ability to handle 
multiple block-based formats by performing variable length decoding in 
software, then passing macroblock data to the MAE along with motion vector 
(and other) data. From that point, the MAE autonomously processes image 
data in both macroblock and 8 x 8 block sizes in hardware that is specifically 
designed to handle each decoding step.
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Media Acceleration Engine
Color Space and Video Compression

The RGB (Red/Green/Blue) color space is the model upon which colors in 
computer displays are based, and is the model that is commonly used in the 
output of many CCD/CMOS sensors and video cameras. These three 
component RGB values combine interdependently to describe a color’s 
intensity, brightness, and hue. Even minor changes in RGB component values 
are easily discerned. Because of this, RGB color space does not lend itself 
well to video data compression techniques. 

However, RGB values can be converted to YCbCr color space values in 
which the Y value represents luminance (brightness), and the CbCr value 
represents chrominance (color). YCbCr color space is popular in image/video 
processing because its characteristics lend themselves to data compression. 
Because our visual perception is less sensitive to color (chrominance) 
information than it is to brightness, it is possible to delete some chrominance 
(CbCr) data and retain acceptable image quality. This deletion of chrominance 
data is called subsampling. When data is actually lost (discarded) to achieve 
compression, then the scheme is termed “lossy”. Figure 5 illustrates that 
YCbCr formats vary in the amount of  chrominance information that is 
deleted (lossiness) to achieve data compression. Various interpolation 
algorithms (filters) can help preserve the quality of images rendered from 
compressed YCbCr color space data.

Figure 5. YCbCr Color Space Subsampling Schemes
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Media Acceleration Engine
MAE Decoding Support for Color Space Conversion

Because the Au1200™ processor supports the most popular standard video 
formats, the MAE processes input formats of YCbCr 4:2:2 and YCbCr 4:2:0, 
and outputs aRGB8888, RGB888, RGB565, and RGB555 formats – although 
any color space conversion can be performed (for example, RGB>YCbCr). 
Refer to page 16 for more detailed information about color space conversion 
and the special features of the MAE “back end”.

Motion Estimation

After conversion to YCbCr color space, groups of video frames are evaluated 
to determine the rate of change in data between frames. Motion estimation 
processes video data in block size (8 pixels x 8 lines). More information about 
this follows on page 9 but generally: 

■ Groups of frames having little change between frames offer more 
opportunity for data compression. Most of these frames are further 
compressed by temporal compression techniques. 

■ Groups of frames having great amounts of change between frames offer 
fewer opportunities for data compression. Some of these frames become 
“reference” frames that receive no further compression.

Frames within each group are typically classified in this way:

■ I frames - these frames are not compressed, and are coded as stand-alone 
still images that become references for other frames. 

■ P&B frames - the data in these frames is further compressed by motion 
estimation algorithms applied to the similarities / differences between 
frames, as shown in Figure 6.

• P frames are compared to the previous I frame.

• B frames are compared to the previous I frame and the next P frame.
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Media Acceleration Engine
Figure 6. Example Sequences of Video Frame Encoding

In P and B frames, as shown in Figure 7, the apparent movement of a red ball 
across a static yellow background represents a small change from frame to 
frame. Motion estimation allows that instead of writing full data (up to 900 
kbytes) for each frame, only the data that describes the position of the ball 
needs to be written. This can be represented with two small vector values 
(x/y). 

Figure 7. P and B Frame Comparisons for Motion Estimation

No dependency on data from any other frame. This 
would produce a less-compressed file than if other 
types of frames were included.

Comparison data based on the differences between the 
P frame and the previous I frame would allow some file 
compression.

The addition of B frames allows for a comparison 
of the changes between the previous I frame and 
the next P frame, adding another opportunity to 
subsample the video information, thus increasing 
compression.

This sequence is typical, one that maximizes compression and preserves 
image quality. 
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Media Acceleration Engine
MAE Support for Motion Compensation

The Media Acceleration Engine provides a multiplicity of configurable filters 
that enable support for all MPEG and WMV9-based motion compensation 
processes having resolutions of 1, 1/2, or 1/4 pel. 

AMD Alchemy™ engineers designed special techniques that optimize data 
handling for motion compensation. These techniques can and do work 
independently, but they often work together, having a synergistic effect on 
system performance. For example, when reference fetches in I or P frames 
occur, the MAE skips over sections of the reference frame that are outside the 
boundaries of the fetched data block – as shown in Figure 8. Consequently, 
less data is handled, and the system architecture’s “open bank” policy ensures 
that fetched data is localized in memory in the most efficient form possible. 
After reference frame data is fetched, its significance to system operation 
immediately becomes critical. Therefore, an arbitration scheme developed 
over many hours of performance modeling assigns high priority to reference 
fetch data.

Figure 8. Data Skipping, Memory Localization, and Arbitration Policy
Motion Estimation 32786B 10



Media Acceleration Engine
DCT (Discrete Cosine Transform) and Quantization

The DCT is applied to the values in each 8 x 8 block of pixel data. It converts 
time-based data to frequency-based data. The DCT in itself is not a 
compression scheme, but the 8 x 8 block of frequency coefficients it yields 
can be used to further compress video data in later steps. 

Figure 9. The DCT Produces Frequency/Amplitude Data for Each Block

Quantization divides the values of the DCT output into discrete (non-
overlapping) subranges (coefficients) of frequency data. A video frame’s low-
frequency data is typically critical to perceived video image quality. The 
process of quantization filters out less-critical image data by driving as many 
high-frequency DCT coefficient values to 0 (zero) as is possible. Generally, as 
a pixel’s frequency value rises, the quantization process applies greater 
mathematical leverage to drive it to zero. Quantization is performed on all 
DCT data except the DC coefficient.

Figure 10. Quantization Divides DCT Output into Discrete Coefficients
DCT (Discrete Cosine Transform) and Quantization 32786B 11



Media Acceleration Engine
Many quantization schemes exist, each designed to achieve different results. 
The quantized block of frequency coefficients is used as the basis for the final 
step in compression: variable length encoding.

MAE Design Support for Inverse Quantization and Inverse 
DCT

Inverse quantization, inverse DCT, and motion compensation are off-loaded 
from the core and are instead performed in MAE hardware that is optimized 
to handle the required workloads. Because the processing of inverse 
quantization and inverse DCT are similar and interdependent, a shared MAE 
data path was designed specifically for these processes. This significantly 
reduced on-chip space requirements; thereby holding BOM cost down. Both 
iQ and iDCT are supported by a configurable set of registers and muxed math 
modules that process inverse DCT and inverse quantization for MPEG 1, 2, & 
4, and DivX 3, 4, & 5; and additionally inverse quantization (8x8, 8x4, 4x8, 
and 4x4) for WMV9.

Output from iQ and iDCT operations is in 8 x 8 blocks of planar YCbCr data 
processed column-wise, in preparation for MAE back end processing. For 
more information about the MAE back end, see page 14.
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Media Acceleration Engine
Variable Length Encoding

Variable length encoding begins by scanning the quantized DCT output in a 
zig-zag pattern, as Figure 11 illustrates. The zig zag scan produces a linear 
stream of quantized coefficients arranged in order of increasing frequency. 
Note, as an example, that in Figure 11 the zig zag stream contains “runs” of 
consecutive zero-value coefficients. These are converted into “run/amp pair” 
values that describe the length of each run and the amplitude of the frequency 
that ended each run.

Run/amp pairs that occur frequently are identified with short codes. Run/amp 
pairs that occur infrequently are identified with longer codes. Thus, this 
variable length encoding achieves further data compression, because shorter 
codes are more frequently used to identify the greater amount of data.

Figure 11. Zig Zag Scanning

Au1200™ Processor Support for Variable Length Decoding

AMD Alchemy engineers observed that the variable length decoding (VLD) 
process is different for each of the popular standard formats, and that the 
nature of VLD is different from and less complex than other parts of the video 
decoding process. 

Capitalizing on these characteristic similarities and dissimilarities, they 
divided video decoding processes into software-based and hardware-based 
tasks. In the Au1200 processor, software-based VLD ensures the versatility 
that is necessary to handle the variety of VLD implementations among 
different video formats. Also, because it is by nature less complex than other 
uncompression processes, VLD can be accomplished with little load on the 
core.
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Media Acceleration Engine
The MAE Back End 

MAE hardware is segmented into a front end and back end.  Each performs 
groups of functions that are separately accessible:

■ The front end hardware is specifically dedicated to video decoding: the  
quantization, inverse DCT, and motion compensation processes discussed 
in the preceding pages.

■ The back end hardware is a unique environment that performs 
autonomous hardware scaling, filtering, and color space conversion. 
When video decoding is not taking place, the MAE can provide these 
functions to other sources of image data such as still pictures, or to NTSC/
PAL image data received from the on-chip Camera Interface Module. 

Figure 12. Data Flow for Media Acceleration Engine 

For example, when it is not decoding video data, the MAE back end can 
operate on planar YCbCr data received from the Camera Interface Module 
and perform Bayer pattern demosaic. 
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Media Acceleration Engine
Scaling / Filtering

The MAE back end is a unique hardware component that is designed to 
process video data in a way that is distinctly different than the front end. The 
back end reads all frame data in columns. Figure 13 illustrates that at the end 
of the first column read, the vertical scale of the frame is known. Independent 
horizontal and vertical scaling are accomplished with a single pass. 

Because it eliminates the round-trips to memory that are a typical step in 
display scaling, this data-handling technique helps minimizes use of 
bandwidth, and reduces overall processor size and cost by eliminating the 
need for on-chip buffers to handle scaling functions.

Figure 13. MAE Back End Processes Data in Columns 

Scaling functions are in themselves scalable, supporting black & white 
operation with reduced memory requirements via pixel mirroring. 

A four-tap filter optimized for 4x interpolation and 1/4 decimation is used for 
both directions. Each tap is augmented with 32 user-programmable 
coefficients that add a high degree of versatility to any filtering process. 
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Media Acceleration Engine
Color Conversion

It is expected that the MAE back end will typically handle YCbCr > RGB 
conversion. However, color space conversion functions of the MAE are  
configurable through use of coefficient variables, and will support virtually 
any color space conversion.

New Thinking Solves Old Problems

In many technologies, new thinking about old problems results in 
breakthrough solutions. The MAE represents such a solution. 

■ Instead of transcoding video content down to meet the limitations of a 
power-hungry system, the MAE enables D1 native video decoding while 
using power frugally.

■ Where DSP designs offer complexity and cumbersome architecture, the 
MAE delivers developers from complexity by supporting a simple 
programming model in a robust MIPS32™ environment.

■ MAE design and function flows naturally, from well-established standard 
decoding requirements of the most popular block-based video formats.

■ Its segmented design lends the speed of hardware based processing to 
alternative media sources, enabling more versatility in product function 
and differentiation.

■ It maximizes processor functions by implementing unique data-handling 
techniques that maximize bandwidth.

■ It contributes significantly to lower BOM costs because it minimizes 
physical impact on materials.

Document Revision History
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January 1, 2005 A Initial version

January 5, 2005 B Corrected the text in Figure 6 beginning “Comparison data...”.
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