
AMD Alchemy™
Au1200™ Processor

Media Acceleration Engine

by: Erik Schlanger

Advanced Micro Devices
9500 Arboretum Blvd, Suite 400

Austin, TX 78759

© 2005 Advanced Micro Devices, Inc. All rights reserved.

Trademarks
AMD, the AMD Arrow logo, and combinations thereof, and Au1200 are trademarks of Advanced Micro Devices, Inc.
MIPS32 is a trademark of MIPS Technologies, Inc.
Windows is a registered trademark of Microsoft Corporation.
Other product names used in this publication are for identification purposes only and may be trademarks of their respective
32786B

companies.

Media Acceleration Engine
Abstract
The Media Acceleration Engine (MAE) is an on-chip hardware device that
shoulders the work of video decoding, scaling, color space conversion, and
filtering in the AMD Alchemy™ Au1200™ processor. By performing the
most demanding video decoding tasks in hardware, the MAE frees the
MIPS32™ core to handle user interface functions, audio processing, and other
tasks. Conversely, because software running in the core passes variable length
decoding information to the MAE, the MAE is endowed with the flexibility
needed to accommodate multiple video codecs.

MAE processes are divided between front end and back end hardware. Each
segment is designed to handle specific types of tasks.

■ The MAE front end autonomously performs the most complex and
intense video decoding tasks, including inverse quantization, inverse
discrete cosine transformations, motion compensation, and Windows®
Media Video 9 overlay smoothing.

■ The MAE back end performs one-pass horizontal and vertical scaling,
programmable color space processing, and filtering functions. When
video decoding is not taking place, these back end functions are available
for use by other data sources such as processing CMOS/CCD or NTSC/
PAL data received from the on-chip Camera Interface Module.

© 2005 Advanced Micro Devices, Inc. All rights reserved.
32786B 2

Media Acceleration Engine
Introduction

The future of multimedia will be heavily influenced by its portability. The
advent and subsequent popularity of portable media players initiated
discussions among AMD Alchemy™ engineers about what seemed
inevitable: the evolution of Personal Media Player (PMP) devices that
reproduce high-quality full-size video.

Their initial considerations about enabling high-performance video
capabilities in a system-on-a-chip centered on the demands of the video
decoding process – typically performed in software – that converts video
content from MPEG1, MPEG2, MPEG4, DIVX 3,4,5 data to RGB display
data.

This intense decoding process taxes even powerful CPUs, often leaving little
headroom available for other tasks. It became evident that low cost, low-
power/high-quality core processors of interest for video processing would be
unable to handle the work of full-size full-frame-rate video decoding in
software. The processing demands for high-quality MPEG/WMV video
content outstripped CPU capabilities long before anything resembling
acceptable results were achieved.

Figure 1. Complexity of Software Video Decoding Demands on Processors

It became clear that the shortfall between workload and processor capability
would best be addressed by separating the work of video decoding from other
processing loads.
Introduction 32786B 3

Media Acceleration Engine
MAE Design Goals

Because the engineering team wished to avoid an expensive and power-
hungry multi-chip solution, they focused their design efforts on a hardware-
based media accelerator that would operate within the architecture of a low-
power/high-performance system-on-a-chip fine-tuned to the needs of PMP
developers.

The MAE was forged under the influence of two essential and opposing
factors: keep bandwidth high and keep physical area low. Careful adherence
to these two factors resulted in a versatile hybrid software/hardware SOC
design that consistently meets performance requirements, yet contains no
“fat” that increases developers’ BOM costs. An additional and happy result of
this hybrid design is that developers will not have to write or purchase video
decoding software.

Because direct access to the vast library of existing content – particularly
MPEG 2 – is essential to the appeal of the PMP use model, AMD Alchemy™
engineers decided that direct video decoding capability must be maintained
for established formats. This goal has been fundamental to the project’s
success, because the variety of existing video formats represents a set of
standards by which the design team could measure the success of their design.

The Media Acceleration Engine fulfills its role as the hardware component in
the Au1200 processor that handles the most complex portions of the video
decoding process, including inverse quantization, inverse DCT, motion
compensation, scaling, color space conversion, and filtering. The MAE was
built specifically to decode MPEG (1,2,4), Div-X (3,4,5), WMV9, and H.263
video data. The MAE enables the Au1200™ processor to deliver full D1
video rendering at full frame-rates on portable devices without the need for
transcoding.

For information about the
PMP use model, see the

System Architecture
white paper included in

this suite.
MAE Design Goals 32786B 4

Media Acceleration Engine
Overview of Video Compression & MAE Support

An understanding of the functions and features of the Media Acceleration
Engine depends upon some familiarity with video compression. Although a
comprehensive recounting of video compression technologies is beyond the
scope of this paper, the standards these technologies support are integral to the
design and performance goals of the MAE. This overview illustrates how the
design of the MAE supports each phase of block-based video compression
technologies.

Video encoding relies heavily on data compression techniques that enable
convenient digital storage of the massive amounts of information that
characterizes video data. Figure 2 represents the basic processing steps that
video data undergoes when it is encoded in a block-based format, such as
MPEG 2.

Figure 2. Video Encoding Process Overview

Video decoding tasks on the Au1200™ processor are divided between
software-based and hardware-based processing that fully supports all
decoding tasks, as shown in Figure 3.

Figure 3. MAE Video Decoding Overview

 For ease of
presentation this

material is based on the
video encoding process.

The MAE performs a
reversal - decoding - of

this process.
Overview of Video Compression & MAE Support 32786B 5

Media Acceleration Engine
How Video Data is Packaged for Encoding

Figure 4 illustrates that two sizes of data “chunks” support different phases of
block-based video encoding processes:

■ Macroblocks are the standard chunk size by which a full frame of video
data is processed when it is converted into YCbCr color space, and by
which variable length encoding is carried out. Macroblocks comprise 16
lines x 16 pixel blocks.

■ Blocks comprise 8 pixel by 8 line sets of Y, Cb, or Cr values within a
macroblock. Figure 4 illustrates that there are four Y blocks, one Cb
block, and one Cr block per macroblock. Macroblocks can also be
formatted to contain two Cb and two Cr blocks. Block-sized data is used
in motion estimation, the DCT, quantization, and zig-zag processing of
run/amp pairs.

Figure 4. Macroblock & 8 x 8 Data Block Overview

MAE Decoding Support for Image Data

The MAE was built specifically to handle the decoding of video data for
block-based formats. The Au1200™ processor maintains the ability to handle
multiple block-based formats by performing variable length decoding in
software, then passing macroblock data to the MAE along with motion vector
(and other) data. From that point, the MAE autonomously processes image
data in both macroblock and 8 x 8 block sizes in hardware that is specifically
designed to handle each decoding step.
How Video Data is Packaged for Encoding 32786B 6

Media Acceleration Engine
Color Space and Video Compression

The RGB (Red/Green/Blue) color space is the model upon which colors in
computer displays are based, and is the model that is commonly used in the
output of many CCD/CMOS sensors and video cameras. These three
component RGB values combine interdependently to describe a color’s
intensity, brightness, and hue. Even minor changes in RGB component values
are easily discerned. Because of this, RGB color space does not lend itself
well to video data compression techniques.

However, RGB values can be converted to YCbCr color space values in
which the Y value represents luminance (brightness), and the CbCr value
represents chrominance (color). YCbCr color space is popular in image/video
processing because its characteristics lend themselves to data compression.
Because our visual perception is less sensitive to color (chrominance)
information than it is to brightness, it is possible to delete some chrominance
(CbCr) data and retain acceptable image quality. This deletion of chrominance
data is called subsampling. When data is actually lost (discarded) to achieve
compression, then the scheme is termed “lossy”. Figure 5 illustrates that
YCbCr formats vary in the amount of chrominance information that is
deleted (lossiness) to achieve data compression. Various interpolation
algorithms (filters) can help preserve the quality of images rendered from
compressed YCbCr color space data.

Figure 5. YCbCr Color Space Subsampling Schemes
Color Space and Video Compression 32786B 7

Media Acceleration Engine
MAE Decoding Support for Color Space Conversion

Because the Au1200™ processor supports the most popular standard video
formats, the MAE processes input formats of YCbCr 4:2:2 and YCbCr 4:2:0,
and outputs aRGB8888, RGB888, RGB565, and RGB555 formats – although
any color space conversion can be performed (for example, RGB>YCbCr).
Refer to page 16 for more detailed information about color space conversion
and the special features of the MAE “back end”.

Motion Estimation

After conversion to YCbCr color space, groups of video frames are evaluated
to determine the rate of change in data between frames. Motion estimation
processes video data in block size (8 pixels x 8 lines). More information about
this follows on page 9 but generally:

■ Groups of frames having little change between frames offer more
opportunity for data compression. Most of these frames are further
compressed by temporal compression techniques.

■ Groups of frames having great amounts of change between frames offer
fewer opportunities for data compression. Some of these frames become
“reference” frames that receive no further compression.

Frames within each group are typically classified in this way:

■ I frames - these frames are not compressed, and are coded as stand-alone
still images that become references for other frames.

■ P&B frames - the data in these frames is further compressed by motion
estimation algorithms applied to the similarities / differences between
frames, as shown in Figure 6.

• P frames are compared to the previous I frame.

• B frames are compared to the previous I frame and the next P frame.
Motion Estimation 32786B 8

Media Acceleration Engine
Figure 6. Example Sequences of Video Frame Encoding

In P and B frames, as shown in Figure 7, the apparent movement of a red ball
across a static yellow background represents a small change from frame to
frame. Motion estimation allows that instead of writing full data (up to 900
kbytes) for each frame, only the data that describes the position of the ball
needs to be written. This can be represented with two small vector values
(x/y).

Figure 7. P and B Frame Comparisons for Motion Estimation

No dependency on data from any other frame. This
would produce a less-compressed file than if other
types of frames were included.

Comparison data based on the differences between the
P frame and the previous I frame would allow some file
compression.

The addition of B frames allows for a comparison
of the changes between the previous I frame and
the next P frame, adding another opportunity to
subsample the video information, thus increasing
compression.

This sequence is typical, one that maximizes compression and preserves
image quality.
Motion Estimation 32786B 9

Media Acceleration Engine
MAE Support for Motion Compensation

The Media Acceleration Engine provides a multiplicity of configurable filters
that enable support for all MPEG and WMV9-based motion compensation
processes having resolutions of 1, 1/2, or 1/4 pel.

AMD Alchemy™ engineers designed special techniques that optimize data
handling for motion compensation. These techniques can and do work
independently, but they often work together, having a synergistic effect on
system performance. For example, when reference fetches in I or P frames
occur, the MAE skips over sections of the reference frame that are outside the
boundaries of the fetched data block – as shown in Figure 8. Consequently,
less data is handled, and the system architecture’s “open bank” policy ensures
that fetched data is localized in memory in the most efficient form possible.
After reference frame data is fetched, its significance to system operation
immediately becomes critical. Therefore, an arbitration scheme developed
over many hours of performance modeling assigns high priority to reference
fetch data.

Figure 8. Data Skipping, Memory Localization, and Arbitration Policy
Motion Estimation 32786B 10

Media Acceleration Engine
DCT (Discrete Cosine Transform) and Quantization

The DCT is applied to the values in each 8 x 8 block of pixel data. It converts
time-based data to frequency-based data. The DCT in itself is not a
compression scheme, but the 8 x 8 block of frequency coefficients it yields
can be used to further compress video data in later steps.

Figure 9. The DCT Produces Frequency/Amplitude Data for Each Block

Quantization divides the values of the DCT output into discrete (non-
overlapping) subranges (coefficients) of frequency data. A video frame’s low-
frequency data is typically critical to perceived video image quality. The
process of quantization filters out less-critical image data by driving as many
high-frequency DCT coefficient values to 0 (zero) as is possible. Generally, as
a pixel’s frequency value rises, the quantization process applies greater
mathematical leverage to drive it to zero. Quantization is performed on all
DCT data except the DC coefficient.

Figure 10. Quantization Divides DCT Output into Discrete Coefficients
DCT (Discrete Cosine Transform) and Quantization 32786B 11

Media Acceleration Engine
Many quantization schemes exist, each designed to achieve different results.
The quantized block of frequency coefficients is used as the basis for the final
step in compression: variable length encoding.

MAE Design Support for Inverse Quantization and Inverse
DCT

Inverse quantization, inverse DCT, and motion compensation are off-loaded
from the core and are instead performed in MAE hardware that is optimized
to handle the required workloads. Because the processing of inverse
quantization and inverse DCT are similar and interdependent, a shared MAE
data path was designed specifically for these processes. This significantly
reduced on-chip space requirements; thereby holding BOM cost down. Both
iQ and iDCT are supported by a configurable set of registers and muxed math
modules that process inverse DCT and inverse quantization for MPEG 1, 2, &
4, and DivX 3, 4, & 5; and additionally inverse quantization (8x8, 8x4, 4x8,
and 4x4) for WMV9.

Output from iQ and iDCT operations is in 8 x 8 blocks of planar YCbCr data
processed column-wise, in preparation for MAE back end processing. For
more information about the MAE back end, see page 14.
DCT (Discrete Cosine Transform) and Quantization 32786B 12

Media Acceleration Engine
Variable Length Encoding

Variable length encoding begins by scanning the quantized DCT output in a
zig-zag pattern, as Figure 11 illustrates. The zig zag scan produces a linear
stream of quantized coefficients arranged in order of increasing frequency.
Note, as an example, that in Figure 11 the zig zag stream contains “runs” of
consecutive zero-value coefficients. These are converted into “run/amp pair”
values that describe the length of each run and the amplitude of the frequency
that ended each run.

Run/amp pairs that occur frequently are identified with short codes. Run/amp
pairs that occur infrequently are identified with longer codes. Thus, this
variable length encoding achieves further data compression, because shorter
codes are more frequently used to identify the greater amount of data.

Figure 11. Zig Zag Scanning

Au1200™ Processor Support for Variable Length Decoding

AMD Alchemy engineers observed that the variable length decoding (VLD)
process is different for each of the popular standard formats, and that the
nature of VLD is different from and less complex than other parts of the video
decoding process.

Capitalizing on these characteristic similarities and dissimilarities, they
divided video decoding processes into software-based and hardware-based
tasks. In the Au1200 processor, software-based VLD ensures the versatility
that is necessary to handle the variety of VLD implementations among
different video formats. Also, because it is by nature less complex than other
uncompression processes, VLD can be accomplished with little load on the
core.
Variable Length Encoding 32786B 13

Media Acceleration Engine
The MAE Back End

MAE hardware is segmented into a front end and back end. Each performs
groups of functions that are separately accessible:

■ The front end hardware is specifically dedicated to video decoding: the
quantization, inverse DCT, and motion compensation processes discussed
in the preceding pages.

■ The back end hardware is a unique environment that performs
autonomous hardware scaling, filtering, and color space conversion.
When video decoding is not taking place, the MAE can provide these
functions to other sources of image data such as still pictures, or to NTSC/
PAL image data received from the on-chip Camera Interface Module.

Figure 12. Data Flow for Media Acceleration Engine

For example, when it is not decoding video data, the MAE back end can
operate on planar YCbCr data received from the Camera Interface Module
and perform Bayer pattern demosaic.

Inverse
Quantizer

&
Inverse DCT

Store
previous frame

Store
future frame

Store current frame

Motion
Compensator

RGB
Frame
Buffer

Scaler / Filter Color Space
Converter

Header, MV,
Macroblock

MAE Back EndMAE Front End

From Software
The MAE Back End 32786B 14

Media Acceleration Engine
Scaling / Filtering

The MAE back end is a unique hardware component that is designed to
process video data in a way that is distinctly different than the front end. The
back end reads all frame data in columns. Figure 13 illustrates that at the end
of the first column read, the vertical scale of the frame is known. Independent
horizontal and vertical scaling are accomplished with a single pass.

Because it eliminates the round-trips to memory that are a typical step in
display scaling, this data-handling technique helps minimizes use of
bandwidth, and reduces overall processor size and cost by eliminating the
need for on-chip buffers to handle scaling functions.

Figure 13. MAE Back End Processes Data in Columns

Scaling functions are in themselves scalable, supporting black & white
operation with reduced memory requirements via pixel mirroring.

A four-tap filter optimized for 4x interpolation and 1/4 decimation is used for
both directions. Each tap is augmented with 32 user-programmable
coefficients that add a high degree of versatility to any filtering process.
The MAE Back End 32786B 15

Media Acceleration Engine
Color Conversion

It is expected that the MAE back end will typically handle YCbCr > RGB
conversion. However, color space conversion functions of the MAE are
configurable through use of coefficient variables, and will support virtually
any color space conversion.

New Thinking Solves Old Problems

In many technologies, new thinking about old problems results in
breakthrough solutions. The MAE represents such a solution.

■ Instead of transcoding video content down to meet the limitations of a
power-hungry system, the MAE enables D1 native video decoding while
using power frugally.

■ Where DSP designs offer complexity and cumbersome architecture, the
MAE delivers developers from complexity by supporting a simple
programming model in a robust MIPS32™ environment.

■ MAE design and function flows naturally, from well-established standard
decoding requirements of the most popular block-based video formats.

■ Its segmented design lends the speed of hardware based processing to
alternative media sources, enabling more versatility in product function
and differentiation.

■ It maximizes processor functions by implementing unique data-handling
techniques that maximize bandwidth.

■ It contributes significantly to lower BOM costs because it minimizes
physical impact on materials.

Document Revision History

Date Revision Changes

January 1, 2005 A Initial version

January 5, 2005 B Corrected the text in Figure 6 beginning “Comparison data...”.
New Thinking Solves Old Problems 32786B 16

	AMD Alchemy™ Au1200™ Processor Media Acceleration Engine
	Abstract
	Introduction
	Figure 1. Complexity of Software Video Decoding Demands on Processors

	MAE Design Goals
	Overview of Video Compression & MAE Support
	Figure 2. Video Encoding Process Overview
	Figure 3. MAE Video Decoding Overview

	How Video Data is Packaged for Encoding
	Figure 4. Macroblock & 8 x 8 Data Block Overview
	MAE Decoding Support for Image Data

	Color Space and Video Compression
	Figure 5. YCbCr Color Space Subsampling Schemes
	MAE Decoding Support for Color Space Conversion

	Motion Estimation
	Figure 6. Example Sequences of Video Frame Encoding
	Figure 7. P and B Frame Comparisons for Motion Estimation
	MAE Support for Motion Compensation
	Figure 8. Data Skipping, Memory Localization, and Arbitration Policy

	DCT (Discrete Cosine Transform) and Quantization
	Figure 9. The DCT Produces Frequency/Amplitude Data for Each Block
	Figure 10. Quantization Divides DCT Output into Discrete Coefficients
	MAE Design Support for Inverse Quantization and Inverse DCT

	Variable Length Encoding
	Figure 11. Zig Zag Scanning
	Au1200™ Processor Support for Variable Length Decoding

	The MAE Back End
	Figure 12. Data Flow for Media Acceleration Engine
	Figure 13. MAE Back End Processes Data in Columns
	Color Conversion

	New Thinking Solves Old Problems
	Document Revision History

