# **ADVANTEST ADVANTEST CORPORATION**

# R3267/73

# Spectrum Analyzer

Maintenance Manual

MANUAL NUMBER FME-8339601A00



()



No. ESC01

# Safety Summary

To ensure thorough understanding of all functions and to ensure efficient use of this instrument, please read the manual carefully before using. Note that Advantest bears absolutely no responsibility for the result of operations caused due to incorrect or inappropriate use of this instrument.

If the equipment is used in a manner not specified by Advantest, the protection provided by the equipment may be impaired.

#### Warning Labels

Warning labels are applied to Advantest products in locations where specific dangers exist. Pay careful attention to these labels during handling. Do not remove or tear these labels. If you have any questions regarding warning labels, please ask your nearest Advantest dealer. Our address and phone number are listed at the end of this manual.

Symbols of those warning labels are shown below together with their meaning.

- **DANGER:** Indicates an imminently hazardous situation which will result in death or serious personal injury.
- **WARNING**: Indicates a potentially hazardous situation which will result in death or serious personal injury.
- **CAUTION:** Indicates a potentially hazardous situation which will result in personal injury or a damage to property including the product.

### Basic Precautions

Please observe the following precautions to prevent fire, burn, electric shock, and personal injury.

- Use a power cable rated for the voltage in question. Be sure however to use a power cable conforming to safety standards of your nation when using a product overseas.
- When inserting the plug into the electrical outlet, first turn the power switch OFF and then insert the plug as far as it will go.
- When removing the plug from the electrical outlet, first turn the power switch OFF and then pull it out by gripping the plug. Do not pull on the power cable itself. Make sure your hands are dry at this time.
- Before turning on the power, be sure to check that the supply voltage matches the voltage requirements of the instrument.
- Be sure to plug the power cable into an electrical outlet which has a safety ground terminal. Grounding will be defeated if you use an extension cord which does not include a safety ground terminal.

Be sure to use fuses rated for the voltage in question.

O not use this instrument with the case open.



### Safety Summary

## Precautions when Disposing of this Instrument

When disposing of harmful substances, be sure dispose of them properly with abiding by the state-provided law.

Harmful substances: (1) PCB (polycarbon biphenyl)

(2) Mercury

(3) Ni-Cd (nickel cadmium)

(4) Other

Items possessing cyan, organic phosphorous and hexadic chromium and items which may leak cadmium or arsenic (excluding lead in sol der).

Example :

fluorescent tubes, batteries



# TABLE OF CONTENTS

| 1 GENERAL INFORMATION                                           | 1-1  |
|-----------------------------------------------------------------|------|
| 1.1 Introduction                                                | 1-1  |
| 1.2 Outline of product                                          | 1-2  |
| 1.3 Specification                                               | 1-3  |
| 1.3.1 R3267 Specifications                                      | 1-3  |
| 1.3.2 R3273 Specifications                                      | 1-9  |
| 1.4 Service concept                                             | 1-16 |
| 1.5 Test equipment required for Performance verification        | 1-16 |
| 2 THEORY OF OPERATION                                           | 2-1  |
| 2.1 Introduction                                                | 2-1  |
| 2.2 RF Block                                                    | 2-2  |
| 2.2.1 RF Block of R3267                                         | 2-2  |
| 2.2.1.1 Overview                                                | 2-2  |
| 2.2.2 Signal analysis flow                                      | 2-2  |
| 2.2.3 RF Block of R3273                                         | 2-3  |
| 2.2.3.1 Overview                                                | 2-3  |
| 2.2.4 Signal analysis flow                                      | 2-3  |
| 2.3 IF Block                                                    | 2-4  |
| 2.4 LOG/AD Block                                                | 2-4  |
| 2.5 CPU Block                                                   | 2-4  |
| 2.0 SYNTHESIZER Block                                           | 2-4  |
| 2.7 MOD Block                                                   | 2-4  |
| 2.0 Display Block                                               | 2-5  |
| 2.9 Power Supply Block                                          | 2-3  |
| 3 PERFORMANCE VERIFICATION                                      | 3-1  |
| 3.1 General                                                     | 3-1  |
| 3.2 Procedures of Performance Verification                      | 3-4  |
| 3.2.1 10MHz Reference Output Accuracy                           | 3-4  |
| 3.2.2 Calibrator Amplitude Accuracy                             | 3-5  |
| 3.2.3 Displayed Average Noise Level                             | 3-6  |
| 3.2.4 Resolution Bandwidth Switching Uncertainty                | 3-9  |
| 3.2.5 Resolution Bandwidth Accuracy and Selectivity             | 3-11 |
| 3.2.6 IF Gain Uncertainty                                       | 3-14 |
| 3.2.7 Input Attenuator Switching Accuracy                       | 3-18 |
| 3.2.8 Scale Fidelity                                            | 3-21 |
| 3.2.9 Kesidual FM                                               | 3-27 |
| 3.2.10 Noise Sidebands                                          | 3-30 |
| 2.2.11 Image, Multiple, and Out-of-Band Kesponses               | 3-32 |
| 5.2.12 Accuracy of Frequency Readout and Frequency Count Marker | 5-30 |

 $\mathbf{C}$ 

()

Table of Contents

| 3 2.13 Second Harmonic Distortion                                               | 3-39  |
|---------------------------------------------------------------------------------|-------|
| 3 2.14 Frequency Response                                                       | 3-42  |
| 3 2.15 Frequency Span Accuracy                                                  | 3-48  |
| 3 2.16 Third Order Intermodulation Distortion                                   | 3-51  |
| 3 2.17 Gain Compression                                                         | 3-54  |
| 3 2.18 Sweep Time Accuracy                                                      | 3-57  |
| 3 2.19 Residual Response                                                        | 3-60  |
| 3.3 Performance Verification of Digital Modulation Analysis Function (Option62) | 3-62  |
| 3 3.1 Introduction                                                              | 3-62  |
| 3 3.2 Specification of Test Signal.                                             | 3-62  |
| 3.3.3 Performance Verification Procedures                                       | 3-65  |
| 3.3.3.1 BTS Measurement on RF Input                                             | 3-65  |
| 3.3.3.2 MS Measurement on RF Input                                              | 3-67  |
| 3.3.3 OPSK Measurement on RF Input                                              | 3-69  |
| 3.3.3.4 BTS Measurement on IQ Input                                             | 3-71  |
| 3.3.3.5 MS Measurement on IO Input                                              | 3-73  |
| 3.3.3.6 QPSK Measurement on IQ Input                                            | 3-75  |
| 3.3.4 Simplified Performance Check Procedure for W-CDMA Measurement             | 3-77  |
| 3.4 Performance Verification Record Sheet                                       | 3-79  |
| 3.4.1 Performance Verification Record Sheet for R3267                           | 3-80  |
| 3.4.2 Performance Verification Record Sheet for R3273                           | 3-98  |
| 3.4.3 Performance Verification Record Sheet for W-CDMA Measurement              | 3-121 |
| 3.4.4 Performance Check Record Sheet for W-CDMA                                 | 3-122 |
|                                                                                 |       |
| 4 ADJUSTMENT                                                                    | 4-1   |
| 4.1 Internal Frequency Adjustment Procedure                                     | 4-1   |
|                                                                                 |       |
| 5 TROUBLESHOOTING                                                               | 5-1   |
| 5.1 Preventive Maintenance                                                      | 5-1   |
| 5.2 Preparation                                                                 | 5-2   |
| 5.2.1 Introduction                                                              | 5-2   |
| 5.2.2 General Caution For Handling Replaceable Assemblies (Block)               | 5-2   |
| 5.3 Diagnostic Procedures                                                       | 5-3   |
| 5.3.1 Error Code                                                                | 5-3   |
| 5.3.2 Self test Function.                                                       | 5-4   |
| 5.4 Replacement Procedures                                                      | 5-6   |
| 5.4.1 Tools Required                                                            | 5-6   |
| 5.4.2 RF Block Removal/Installation Procedures                                  | 5-6   |
| 5.4.3 IF Block, LOG/AD Block, SYNTHESIZER Block and                             |       |
| Digital Modulation Analysis Block Removal/Installation Procedures               | 5-10  |
| 5.4.4 Power Supply Block Removal/Installation Procedures                        | 5-10  |
| 5.4.5 CPU Block Removal/Installation Procedures                                 | 5-12  |
| 5.4.6 Floppy Disk Drive Removal/Installation Procedures.                        | 5-14  |
|                                                                                 |       |

100

# Table of Contents

C\_3\*

| 5.  | 4.7 TFT Display unit Removal/Installation Procedures | 5-14 |
|-----|------------------------------------------------------|------|
| 6   | REPLACEABLE PARTS LIST                               | 6-1  |
| 6.1 | Introduction                                         | 6-1  |
| 6.2 | Ordering Information                                 | 6-1  |
| 6.3 | Replaceable Parts List                               | 6-1  |

 $\bigcirc$ 

()



#### Title Page No. Block Diagram of R3267 and R3273 2-1 2-13-1 Setup for Frequency Reference Accuracy Test 3-43-2 Setup of CAL OUT Level Accuracy Test 3-5 3-3 Setup of Displayed Average Noise Level Test ..... 3-6 3-4 Setup of RBW Switching Uncertainty 3 - 10Setup of RBW Accuracy and Selectivity Test 3-5 3-12 3-6 Setup of IF Gain Fidelity Test 3-15 3-7 Setup of Input Attenuator Switching Accuracy Test 3-19 3-8 Setup for Scale Fidelity Test 3-22 3-9 Setup of Residual FM Test 3-27 3 - 10Setup of Noise Sidebands Test 3-31 3-11 Setup of a Image, Multiple, Out of Band Spurious Test ..... 3-33 3-12 Setup of a Frequency Readout Accuracy and Frequency Counter Marker Test ..... 3-36 3-13 Setup of a Second Harmonics Distortion Test 3-40 3-14 Setup of Frequency Response Test 3-43 3-15 Setup of a Frequency Span Accuracy Test 3-49 Setup of Third Order Intermodulation Test 3-16 3-52 3-17 Setup of a Gain Compression Test 3-55 3-18 Setup of a Sweep Time Accuracy Test 3-58 Setup of Residual Response Test ..... 3-19 3-603-20 Timing Chart of BTS Test Signal 3-63 3-21 Timing Chart of SFN Test Signal ..... 3-64 3-22 Setup of BTS Measurement Test 3-65 3-23 Setting of Parameter for W-CDMA Measurement 3-66 3-24 Setup of MS Measurement Test 3-67 3-25 Setting of Parameter for W-CDMA Measurement Test 3-68 3 - 26Setup of QPSK Measurement Test 3-69 3-27 Setting of Parameter for W-CDMA Measurement Test 3-70 3-28 Setup of BTS Measurement Test 3-71 3-29 Setting of Parameter for W-CDMA Measurement Test 3-72 3-30 Setup of MS Measurement Test 3-73 3-31 Setting of Parameter for W-CDMA Measurement Test 3-74 3-32 Setup of MS Measurement 3-75 3-33 Setting of Parameter for W-CDMA Measurement Test 3-76 3-34 Setup of Simplified Performance Check 3-77 3-35 Setting of Parameter for Simplified Performance Check 3-78 4-1 Internal Frequency Reference Adjustment Setup 4-1 Location of Screws Display Bezel Fixed 5-1 5 - 15-2 Display of Self Test Function. 5-4 5-3 Result Display of Self Test Function. 5-5 5-4 Removal of Main Case 5-6 Location of Screws 5-5 5-7 Location of Screws ..... 5-6 5-7

# LIST OF ILLUSTRATIONS

List of Illustrations

| No.  | Title                             | Page |
|------|-----------------------------------|------|
| 5-7  | Location of Board Stopper         | 5-8  |
| 5-8  | Location of Screws                | 5-8  |
| 5-9  | Location of Screws                | 5-9  |
| 5-10 | Removal of RF Block.              | 5-9  |
| 5-11 | Location of the Blocks            | 5-10 |
| 5-12 | Location of Screws                | 5-11 |
| 5-13 | Location of Screws                | 5-11 |
| 5-14 | Location of Connectors            | 5-12 |
| 5-15 | Location of Screws                | 5-13 |
| 5-16 | Location of Connectors and Screws | 5-13 |
| 5-17 | Location of Screws                | 5-14 |
| 5-18 | Location of Screws                | 5-15 |
| 5-19 | Location of Screws                | 5-15 |
| 5-20 | Location of Connectors            | 5-16 |
| 5-21 | Location of Screws                | 5-16 |

F-2\*

#### Page No. Title Test Equipment for Performance Verification 1-1 1-16 Performance Verification Items 3-1 3 - 13 - 2Additional Performance Verification Items 3-23-3 Center Frequency Setting for Displayed Average Noise Level 3-8 3.4 Start and Stop Frequencies Setting for R3273 ..... 3-9 3-5 Setting of RBW Switching Uncertainty Test 3-11 Setting of RBW and Span for 3dB Down Width Measurement 3 - 133-6 3-7 Setting of RBW and Span for 60dB Down Width Measurement 3-14 3-8 Setting of 1dB Step IF Gain Error Measurement 3-17 3-9 Setting of 10dB Step IF Gain Uncertainty Measurement 3-18 3 - 10Setting of RBW and Y Axis for IF Gain Uncertainty Measurement ..... 3-18 3-11 Setting of Input Attenuator Switching Accuracy Test 3-20 3-12 Setting of Input Attenuator Switching Accuracy Test for Center Frequency at 15GHz and 18GHz 3-21 Setting for 1dB Scale Fidelity Test 3 - 133-23 3-14 Setting for 10dB Step Scale Fidelity Test 3-25 3-15 Setting of Linear Scale Fidelity Test 3-26 3-16 R3267/3273 Setting of Noise Sidebands Measurement 3-32 3-17 Setting of Image, Multiple, Out of Band Measurement 3-34 Setting of Image, Multiple, Out of Band Spurious Test 3 - 183 - 343 - 19Setting of Image, Multiple, Out of Band Spurious Test 3-35 Setting of Frequency Readout Accuracy Test 3 - 203-37 Setting for Frequency Counter Marker Accuracy 3-21 3-39 3 - 22Setting of Center and Span Frequencies 3-50 3-23 Setting of Center and Span Frequencies for Span Accuracy Test 3-51 3-24 Setting of Third Order Intermodulation Measurement 3-54 3-25 Setting of Third Order Intermodulation Measurement applied for R3273 ..... 3-54 Setting of Sweep Time and Signal Generator Frequency 3-26 3-59 Specification for BTS Test Signal 3-27 3-63 Specification for SFN Test Signal 3-28 3-63 5-1 Error Code List 5 - 35-2 Correspondence between Result of Self Test and Defective Block 5-5 6-1 Replaceable Parts List ..... 6-1

# LIST OF TABLES



Warming V

Start South

We get the set

à 

1

1.1 Introduction

### **1 GENERAL INFORMATION**

This chapter contains following information,

1.1 Introduction

1.2 Outline of product

1.3 Specification

1.4 Service concept

1.5 Test equipment required for Performance verification

### 1.1 Introduction

This manual provides information to perform assembly level troubleshooting including Digital Modulation Analysis Option 01 and W-CDMA Analysis Option 62 of R3267 and R3273 Spectrum Analyzer. Included removal/Installation procedure of instrument's printed circuit board or module assemblies and a parts list.

This manual intend to use by service trained personnel only.

Detailed operation and programming information is excluded from this manual.

Including only sufficient information for service purpose. For more detailed operation information, refer to the R3267 and R3273 Spectrum Analyzer operation manual.

WARNING The information in this manual is for use of Service Trained Personnel only. To avoid electrical shock, to do not perform any procedures in this manual or do any servicing to the R3267 and R3273, unless you are qualified to do so.

This manual has information the following six chapters.

#### **1 GENERAL INFORMATION**

It provides this manual description, a belief products information, Specification and Test equipment required for performance verification.

**2 THEORY OF OPERATION** 

It provides the theory of operation base on boards and modules basis, which are replaceable.

### **3 PERFORMANCE VERIFICATION**

It provides the procedures for performance verification and performance verification record sheet.

#### 4 ADJUSTMENT

It provides the adjustment procedures for instruments, in case of required adjustment.

#### 5 TROUBLESHOOTING

It provides the preventive maintenance procedures and the diagnostic procedures. Include the removal of defective board or module and installation procedures.

#### **6 REPLACEABLE PARTS LIST**

It provide the replaceable parts list.

1-1

1.2 Outline of product

# 1.2 Outline of product

R3267 and R3273 features are as follows;

| (1)                                 | High Frequency and Wide Bandwidth Measurements |                                                                                                      |  |  |  |
|-------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|
|                                     | Frequency Range:                               | R3267 100 Hz to 8 GHz                                                                                |  |  |  |
|                                     |                                                | R3273 100 Hz to 26.5 GHz                                                                             |  |  |  |
|                                     | Resolution Bandwidth:                          | 10 Hz to 10 MHz                                                                                      |  |  |  |
|                                     | Span Accuracy:                                 | $\pm 1$ % or better (for all spans)                                                                  |  |  |  |
| (2) High Dynamic Range Measurements |                                                |                                                                                                      |  |  |  |
|                                     | Dynamic Range:                                 | -154 dBc/Hz(2 GHz band, typical)<br>70 dB or better(5 MHz offset, typical) for WCDMA ACP measurement |  |  |  |
|                                     | Outstanding Signal Purity:                     | -113 dBc/Hz (10 kHz offset)                                                                          |  |  |  |
|                                     | Input Attenuator:                              | 75 dB in 5 dB steps (R3267)                                                                          |  |  |  |
|                                     | 1 dB Gain Compression:                         | 0 dB                                                                                                 |  |  |  |
|                                     | 3rd Intermodulation Distort                    | ion: -80 dBc or less                                                                                 |  |  |  |
| (3)                                 | High Speed Measurement                         |                                                                                                      |  |  |  |
|                                     | Trace Update Rate:                             | Up to 20 times/sec                                                                                   |  |  |  |
|                                     |                                                | 1 µsec fast zero span.                                                                               |  |  |  |
| (4)                                 | Simplified, Automated Me                       | surement for Mobile Communications.                                                                  |  |  |  |
|                                     | ACP (Adjacent Channel Lea                      | kage Power) measurement                                                                              |  |  |  |
|                                     | OBW (Occupied Bandwidth) measurement           |                                                                                                      |  |  |  |
|                                     | Channel and total power me                     | asurement                                                                                            |  |  |  |
|                                     | Harmonics measurement                          |                                                                                                      |  |  |  |
|                                     | Spurious emission measurement                  |                                                                                                      |  |  |  |
|                                     | 2-trace simultaneous measurement               |                                                                                                      |  |  |  |
|                                     | Delayed sweep/Gated sweep                      | function                                                                                             |  |  |  |
|                                     | Peak list function                             |                                                                                                      |  |  |  |
|                                     | Noise/Hz measurement                           |                                                                                                      |  |  |  |
|                                     | Aub down measurement                           |                                                                                                      |  |  |  |
|                                     | Hz resolution frequency con                    | ntar                                                                                                 |  |  |  |
|                                     | The resolution inequelicy cou                  | 11(-1                                                                                                |  |  |  |

(5) Simple Connectivity

6.5-inch TFT color LCD7.5-inch MS-DOS compatible floppy disk driveStandard I/O interface for integration: GPIB, RS232 and VGA.

1-2

1.3 Specification

# 1.3 Specification

13

# 1.3.1 R3267 Specifications

(1) Frequency

| Characteristics                                      | Description                                                      |                                           |                           |                                 |                    |  |
|------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------|---------------------------|---------------------------------|--------------------|--|
| Frequency range:                                     | 100 Hz to 8 GHz                                                  |                                           |                           |                                 |                    |  |
|                                                      | Frequency                                                        | Frequency Frequency band Harmonic order N |                           |                                 |                    |  |
|                                                      | 100 Hz to 3.5 GHz                                                | : 0                                       |                           | 1                               |                    |  |
|                                                      | 1.6 GHz to 3.5 GH                                                | lz 1                                      |                           | 1                               |                    |  |
|                                                      | 3.5 GHz to 7 GHz                                                 | 2                                         | 1                         | 1                               |                    |  |
|                                                      | 6.9 GHz to 8 GHz                                                 | 3                                         |                           | 1                               |                    |  |
|                                                      | Built-in YIG tunin                                               | g pre-selector                            | at 1.6 GHz                | to 8 GHz                        |                    |  |
| Frequency reading accuracy:                          | $\pm$ (Frequency reading $\times$ accuracy + 0.15 $\times$ Resol | Frequency refe<br>ution bandwid           | erence accu<br>th+ 10 Hz) | iracy + Span                    | × Span             |  |
| Marker frequency counter                             |                                                                  |                                           |                           |                                 |                    |  |
| (SPAN < 1 GHz)                                       | $\pm$ (Marker frequency $\times$ I                               | Frequency refe                            | rence accu                | racy + 5 Hz                     | $\times$ N + 1LSD) |  |
| Accuracy $(S/N > 25 \text{ dB})$ ;<br>Delta counter: | $\pm$ ( $\Delta$ Frequency × Freque                              | ency reference                            | accuracy +                | $10 \text{ Hz} \times \text{N}$ | + 2LSD)            |  |
| Resolution                                           | 1 112 10 1 1112                                                  |                                           |                           |                                 |                    |  |
| Reference frequency source                           |                                                                  | <u> </u>                                  |                           |                                 |                    |  |
| stability                                            |                                                                  | _                                         |                           |                                 |                    |  |
| Aging:                                               | $\pm 3 \times 10^{-8}$ /day $\pm 1 \times 10^{-7}$ /year         |                                           |                           |                                 |                    |  |
|                                                      | $\pm 5 \times 10^{-9}$ /day $\pm 8 \times 10^{-8}$ /year (OPT21) |                                           |                           |                                 |                    |  |
| Temperature stability:                               | $\pm 1 \times 10^{-7}$ Temperature range: 0 to 40°C in reference |                                           |                           |                                 |                    |  |
|                                                      | $\pm 5 \times 10^{-8}$ (OPT21)                                   | to the freque                             | mcy measu                 | red at 25°C                     | ±2°C               |  |
| A warm-up (Nominal):                                 | $\pm 5 \times 10^{-8}/3$ min (In refe                            | rence to the fr                           | equency m                 | easured 60 r                    | nin. after the     |  |
|                                                      | power                                                            | -on)                                      |                           |                                 |                    |  |
| Frequency stability                                  |                                                                  |                                           |                           |                                 |                    |  |
| Residual FM (ZERO span):                             | $< 3 \text{ Hz} \times \text{Np-p/0.1 sec}$                      |                                           |                           |                                 |                    |  |
| Drift:                                               | Same as the reference so                                         | ource (After a                            | warm-up o                 | f 60 min.)                      |                    |  |
| Signal purity:<br>(dBc/Hz)                           |                                                                  |                                           |                           |                                 |                    |  |
|                                                      | Offset                                                           |                                           | ]                         |                                 |                    |  |
|                                                      | Frequency                                                        | 1 kHz                                     | 10 kHz                    | 100 kHz                         | 1 MHz              |  |
| [                                                    | 100 Hz to 1 GHz                                                  | -100                                      | -113                      | -118                            | -135               |  |
| 1                                                    | 1 GHz to 2.6 GHz                                                 | -100                                      | -110                      | -118                            | -135               |  |
|                                                      | 2.6 GHz to 8 GHz                                                 | -98                                       | -108                      | -112                            | -135               |  |
| Frequency span                                       | · · · · · · · · · · · · · · · · · · ·                            |                                           |                           |                                 |                    |  |
| Range:                                               | 200 Hz to 8 GHz, ZERO SPAN                                       |                                           |                           |                                 |                    |  |
| Accuracy:                                            | ±1%                                                              |                                           |                           |                                 |                    |  |

1.3 Specification

| Characteristics             | Description                                                           |
|-----------------------------|-----------------------------------------------------------------------|
| Resolution bandwidth (3 dB) |                                                                       |
| Range:                      | 10 Hz to 10 MHz (1, 3, 10 sequences), 5 MHz                           |
| Accuracy:                   | ±25 %: RBW = 3 MHz, 5 MHz                                             |
|                             | $\pm 15$ %: RBW = 100 Hz to 1 MHz                                     |
|                             | $\pm 25 \% (25^{\circ}C \pm 10^{\circ}C)$ : RBW = 30 Hz               |
| Selectivity:                | <15:1 (RBW = 100 Hz to 5 MHz)                                         |
|                             | <20:1 (RBW = 30 Hz)                                                   |
| Video bandwidth             |                                                                       |
| Range:                      | 1 Hz, 10 MHz (1, 3, 10 sequences), 5 MHz                              |
| Frequency sweep             |                                                                       |
| Sweep time:                 |                                                                       |
| Zero span:                  | 1 µsec to 1000 sec                                                    |
| Span $> 0$ Hz:              | 20 msec to 1000 sec                                                   |
| Accuracy:                   | )±3 %                                                                 |
| Trigger:                    | Free Run, line, video, external, IF                                   |
| Gated sweep                 |                                                                       |
| Gate position:              | 100 nsec to 1 sec                                                     |
| Resolution:                 | 100 nsec                                                              |
| Gate width:                 | 1 µsec to 1 sec                                                       |
| Resolution:                 | 100 nsec                                                              |
| Trigger:                    | IF (Mixer input is -40 dBm or more) External trigger or External gate |
| Delayed sweep               |                                                                       |
| Delay time:                 | 100 nsec to 1 sec                                                     |
| Resolution:                 | 100 nsec                                                              |

Z

(2) Amplitude Range

| Characteristics                                                                     | Description                                                                                |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Measurement range:                                                                  | +30 dBm to Average noise level                                                             |
| Maximum safe input<br>Average continuous power<br>(Input ATT > 10 dB):<br>DC input: | +30 dBm (1W)<br>OV (DC signal must not be applied)                                         |
| Display range<br>Log:<br>Linear:                                                    | 10 × 10Div<br>10, 5, 2, 1, 0.5 dB/Div<br>10 % of reference level/Div                       |
| Reference level range<br>Log:<br>Linear:                                            | -140 dBm to +60 dBm (in 0.1 dB steps)<br>22.4nV to 223V (steps of about 1 % of full scale) |
| Input attenuation range                                                             | 0 to 75 dB (5 dB steps)                                                                    |

# 1.3 Specification

# (3) Dynamic Range

| Characteristics                                    |                    | Description                           |                      |                                       |   |   |   |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                    |   |
|----------------------------------------------------|--------------------|---------------------------------------|----------------------|---------------------------------------|---|---|---|--|--|--|--|--|---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--------------------|---|
| Average noise level<br>Resolution bandwidth 100 Hz |                    |                                       |                      |                                       |   |   |   |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                    |   |
| Input attenuation                                  | 0 dB               | Frequency                             | Frequency band       | Average noise level                   |   |   |   |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                    |   |
| video bandwidth                                    | IHZ                | 1 kHz                                 | 0                    | -90 dBm                               |   |   |   |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                    |   |
|                                                    |                    | 10 kHz                                | 0                    | -100 dBm                              |   |   |   |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                    |   |
|                                                    |                    | 100 kHz                               | 0                    | -101 dBm                              |   |   |   |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                    |   |
|                                                    | 1 MHz              | 0                                     | -125 dBm             |                                       |   |   |   |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                    |   |
|                                                    | 10 MHz to 3.5 GHz  | 0                                     | -(130 - f (GHz)) dBm |                                       |   |   |   |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                    |   |
|                                                    | 1.6 GHz to 3.5 GHz | 1                                     | -125 dBm             |                                       |   |   |   |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                    |   |
|                                                    |                    |                                       |                      |                                       | ļ | ļ | ļ |  |  |  |  |  | ] |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 3.5 GHz to 7.0 GHz | 2 |
|                                                    |                    | 6.9 GHz to 8.0 GHz                    | 3                    | -125 dBm                              |   |   |   |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                    |   |
| 1 dB gain compression:                             |                    | 10 MHz to 100 MHz                     | -3 dBm               | · · · · · · · · · · · · · · · · · · · |   |   |   |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                    |   |
| 1 dB gain compression:                             |                    | 10 MHz to 100 MHz<br>100 MHz to 8 GHz | -3 dBm<br>0 dBm      |                                       |   |   |   |  |  |  |  |  |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                    |   |

### (4) Spurious Response

( )

| Characteristics                        | Description |                   |                 |                                        |
|----------------------------------------|-------------|-------------------|-----------------|----------------------------------------|
| 2nd order harmonic distortion          |             |                   |                 |                                        |
|                                        |             |                   | <u></u>         | ······································ |
|                                        |             | Frequency range   | Frequency band  | Mixer level                            |
|                                        | < -70 dBc   | 10 MHz to 3.5 GHz | 0               | -30 dBm                                |
|                                        | < -90 dBc   | > 1.6 GHz         | 1, 2, 3         | -10 dBm                                |
| 2 signal 3rd order harmonic distortion |             | <u> </u>          |                 |                                        |
|                                        |             | Frequency range   | Frequency band  | Mixer level                            |
|                                        | < -70 dBc   | 10 MHz to 100 MHz | 0               | -30 dBm                                |
|                                        | < -80 dBc   | 100 Hz to 1 GHz   | 0               | -30 dBm                                |
|                                        | < -85 dBc   | 1 GHz to 3.5 GHz  | 0               | -30 dBm                                |
|                                        | < -90 dBc   | 1.6 GHz to 8 GHz  | 1, 2, 3         | -30 dBm                                |
| Image/multiple/out-band response       |             |                   |                 |                                        |
|                                        |             |                   | Frequency range | ] .                                    |
|                                        |             | < -70 dBc 1       | 0 MHz to 8 GHz  | 1                                      |
|                                        |             | ·                 |                 |                                        |

1.3 Specification

| Characteristics                                                    | Descr     | iption           |
|--------------------------------------------------------------------|-----------|------------------|
| Residual response (no input, input)<br>ATT 0 dB, 50 Ω termination) |           |                  |
|                                                                    |           | Frequency range  |
|                                                                    | <-100 dBm | 1 MHz to 3.5 GHz |
|                                                                    | < -90 dBm | 300 kHz to 8 GHz |

1

Ę

# (5) Amplitude Accuracy

| Characteristics                                                        | ]                                                            |                     | Description                  |   |
|------------------------------------------------------------------------|--------------------------------------------------------------|---------------------|------------------------------|---|
| Frequency response (with an input attenuation of 10 dB, band 1, 2 or 3 |                                                              |                     |                              |   |
| is automatically tuned on the pre-                                     |                                                              | Frequency band      | Frequency range              |   |
| selector):                                                             |                                                              | 0                   | 100 Hz to 3.5 GHz±1.5 dB     |   |
| (Relative values)                                                      | 1                                                            | 0                   | 50 MHz to 2.6 GHz±1.0 dB     |   |
|                                                                        |                                                              | 1                   | 1.6 GHz to 3.5 GHz±1.5 dB    |   |
|                                                                        | 1                                                            | 2                   | 3.5 GHz to 7.0 GHz±1.5 dB    |   |
|                                                                        |                                                              | 3                   | 6.9 GHz to 8.0 GHz±1.5 dB    |   |
| Complementary error due to band switching                              | ±0.5 dB                                                      |                     |                              |   |
| For a 30 MHz calibration signal                                        | 100 Hz to                                                    | 8.0 GHz±3.0 dB      |                              |   |
| Calibration signal accuracy (30 MHz):                                  | -10 dBm ±                                                    | = 0.3 dB            |                              |   |
| IF gain error                                                          | 0 dBm to -                                                   | $50  dBm \pm 0$     | .5 dB                        |   |
| (After automatic calibration):                                         | 0 dBm to -                                                   | $\pm 0$ dBm $\pm 0$ | .7 dB                        |   |
| Scale display accuracy                                                 |                                                              |                     |                              |   |
| (after automatic calibration)                                          |                                                              | ar u                |                              | i |
| Log:                                                                   | 10 0B to -90                                                 | Jab                 |                              |   |
|                                                                        | +0.2 dB/1                                                    | dB                  |                              |   |
| Linear:                                                                | ± 5 % of re                                                  | eference level      |                              |   |
| Input attenuation switching error                                      | 100 Hz to                                                    | 8 GHz ± 1           | .1 dB/5 dB steps, 2.0 dB max |   |
| (Inference to 10 dB, at 15 dB to<br>75 dB)                             |                                                              |                     |                              |   |
| Resolution bandwidth switching                                         | $<\pm 0.3 \text{ dB} (\text{RBW} = 100 \text{ Hz to 5 MHz})$ |                     |                              |   |
| error                                                                  | $<\pm 1.0 \text{ dB} (\text{RBW} = 30 \text{ Hz})$           |                     |                              |   |
| (Resolution bandwidth in reference                                     | }                                                            |                     |                              |   |
| to 300 kHz, after automatic cali-                                      | ļ                                                            |                     |                              |   |
|                                                                        |                                                              |                     |                              |   |

1.3 Specification

| Characteristics            | Description                                                 |  |  |  |
|----------------------------|-------------------------------------------------------------|--|--|--|
| RF input                   |                                                             |  |  |  |
| Connector:                 | N-type female                                               |  |  |  |
| Impedance:                 | 50 $\Omega$ (nominal)                                       |  |  |  |
| VSWR (Input ATT ≥ 10 dB    | < 1.5: 1 (< 3.5 GHz) (nominal)                              |  |  |  |
| setting frequency):        | < 2.1: 1 (> 3.5 GHz) (nominal)                              |  |  |  |
| Calibration signal output  |                                                             |  |  |  |
| Connector:                 | BNC female, front panel                                     |  |  |  |
| Frequency:                 | 30 MHz $\times$ (1 ± frequency reference accuracy)          |  |  |  |
| Impedance:                 | 50 $\Omega$ (nominal)                                       |  |  |  |
| Amplitude:                 | $-10 \text{ dBm} \pm 0.3 \text{ dB}$                        |  |  |  |
| 10 MHz frequency reference |                                                             |  |  |  |
| output                     |                                                             |  |  |  |
| Connector:                 | BNC female, rear panel                                      |  |  |  |
| Impedance:                 | 50 $\Omega$ (nominal)                                       |  |  |  |
| Frequency accuracy:        | $10 \text{ MHz} \times \text{frequency reference accuracy}$ |  |  |  |
| Amplitude range:           | $0  \mathrm{dBm} \pm 5  \mathrm{dB}$                        |  |  |  |
| 10 MHz frequency reference |                                                             |  |  |  |
| input                      |                                                             |  |  |  |
| Connector:                 | BNC female, rear panel                                      |  |  |  |
| Impedance:                 | 50 $\Omega$ (nominal)                                       |  |  |  |
| Amplitude range:           | -5  dBm to $+5  dBm$                                        |  |  |  |
| Probe power supply:        | ± 12.6V (100mA) (nominal)                                   |  |  |  |
| 21.4 MHz, IF output        |                                                             |  |  |  |
| Connector:                 | BNC female, rear panel                                      |  |  |  |
| Impedance:                 | 50 $\Omega$ (nominal)                                       |  |  |  |
| 421.4 MHz, IF output       |                                                             |  |  |  |
| Connector:                 | BNC female, rear panel                                      |  |  |  |
| Impedance:                 | 50 $\Omega$ (nominal)                                       |  |  |  |
| Video output               |                                                             |  |  |  |
| Connector:                 | VGA (15 pins, female), rear panel                           |  |  |  |
|                            | 640 × 480 dots (equivalent to VGA)                          |  |  |  |
| X axis output              |                                                             |  |  |  |
| Connector:                 | BNC female, rear panel                                      |  |  |  |
| Impedance:                 | 1 k $\Omega$ (nominal), DC coupled                          |  |  |  |
| Amplitude:                 | About -5V to +5V                                            |  |  |  |
| Y axis output              |                                                             |  |  |  |
| Connector:                 | BNC female, rear panel                                      |  |  |  |
| Impedance:                 | $220\Omega$ (nominal)                                       |  |  |  |
| Amplitude:                 | About 2V for full scale (with 10 dB/div)                    |  |  |  |
| External trigger input     |                                                             |  |  |  |
| Connector:                 | BNC female, rear panel                                      |  |  |  |
| Impedance:                 | $10 \text{ k}\Omega$ (nominal), DC coupled                  |  |  |  |
| Trigger level:             | TTL level                                                   |  |  |  |

(6) Input and Output

 $\mathcal{O}$ 

1-7

1

# 1.3 Specification

| <u>r</u> — |                          |                                               |
|------------|--------------------------|-----------------------------------------------|
|            | Characteristics          | Description                                   |
| Ex         | ternal gate input        |                                               |
| Ľ          | Connector:               | BNC female, rear panel                        |
| [          | Impedance:               | 10 k $\Omega$ (nominal), DC coupled           |
|            | Stops sweeping:          | While a TTL output is at LOW level.           |
| }          | Allowed to sweep:        | While a TTL output is at HIGH level.          |
| Tn         | gger output              |                                               |
|            | Connector:               | BNC female, rear panel                        |
|            | Amplitude:               | TTL level                                     |
| Au         | dio output (demodulation |                                               |
| auc        | io)*                     |                                               |
| 1          | Connector:               | Small-type monophonic jack, front panel       |
| l          | Power output:            | 0.2W max, $32\Omega$ (nominal)                |
| I/O        | interface                |                                               |
|            | GPIB:                    | IEEE-488 bus connector, rear panel            |
|            | RS232:                   | D-SUB 9pins, rear panel                       |
|            | Printer:                 | D-SUB 25pins, rear panel                      |
|            | Extended I/O port:       | D-SUB 25pins, rear panel                      |
| ł          | FDD:                     | 3.5 inch floppy disk drive                    |
| Dir        | ect print:               | Output with ESC/P, PCL, ESC/P raster commands |

1987

### \*: option

# (7) General Specifications

| Characteristics                                                                              | Description                                                                                                                                                     |  |  |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Temperature<br>Operating environment range<br>Storage environment range<br>Relative humidity | 0°C to +50°C<br>-20°C to +60°C<br>85 % or less (Without condensation)                                                                                           |  |  |
| AC input power source                                                                        | Automatic switching to 100 VAC or 200 VAC           For 100 VAC:         100 to 120 VAC, 50 or 60 Hz           For 200 VAC:         220 to 240 VAC, 50 or 60 Hz |  |  |
| Power consumption                                                                            | 300 VA or below                                                                                                                                                 |  |  |
| Mass                                                                                         | 18 kg or less (not including options, accessories, etc.)                                                                                                        |  |  |
| Dimensions                                                                                   | Approximately $178(H) \times 355(W) \times 423.5(D)mm$<br>(rear feet and connectors are not included in above dimensions)                                       |  |  |

1.3 Specification

# 1.3.2 R3273 Specifications

(1) Frequency

 $\bigcirc$ 

()

| Characteristics             | Description                                                                      |                         |                         |                                   |          |     |
|-----------------------------|----------------------------------------------------------------------------------|-------------------------|-------------------------|-----------------------------------|----------|-----|
| Frequency range:            |                                                                                  |                         |                         |                                   |          |     |
|                             | 100 Hz to 26.5 GHz                                                               |                         |                         |                                   |          |     |
|                             | 18 GHz to 60 GHz (external mixer used, synchonizable with up to 325 GH           |                         |                         |                                   |          | Hz) |
|                             | Frequency Frequency band Harmo                                                   |                         |                         | Harmonic o                        | rder N   |     |
| ]                           | 100 Hz to 3.5 GHz                                                                |                         | 0                       | 1                                 |          | :   |
|                             | 3.5 GHz to 7.5 GHz                                                               |                         | 1                       | 1                                 |          |     |
|                             | 7.4 GHz to 15.4 GHz                                                              |                         | 2                       | 2                                 |          |     |
|                             | 15.2 GHz to 26.5 GH                                                              | z                       | 3                       | 4                                 |          |     |
|                             | Built-in YIG tuning p                                                            | re-selector             | at 3.5 GH               | Iz to 26.5 GH                     | z        | !   |
| Frequency reading accuracy: | $\pm$ (Frequency reading $\times$ Freq<br>accuracy + 0.15 $\times$ Resolution    | uency refer<br>bandwidt | rence accu<br>h+ 10 Hz) | racy + Span                       | × Span   |     |
| Marker frequency counter    |                                                                                  | <u></u>                 | . <del>.</del>          |                                   |          |     |
| (SPAN < 1 GHz)              | $\pm$ (Marker frequency $\times$ Frequ                                           | iency refer             | ence accu               | racy + 5 Hz >                     | (N + 1L5 | SD) |
| Accuracy (S/N $> 25$ dB):   | $\pm (\Delta Frequency \times Frequency)$                                        | reference a             | ccuracy +               | $10 \text{ Hz} \times \text{N}$ + | 2LSD)    |     |
| Delta counter:              | 1 Hz to 1 kHz                                                                    |                         |                         |                                   |          |     |
| Resolution:                 |                                                                                  |                         |                         |                                   |          |     |
| Reference frequency source  |                                                                                  |                         |                         |                                   |          |     |
| Aging.                      | $+3 \times 10^{-8}$ /day $+1 \times 10^{-7}$ /year                               |                         |                         |                                   |          |     |
| · • 6                       | $\pm 5 \times 10^{-9}$ /day $\pm 8 \times 10^{-8}$ /year (OPT21)                 |                         |                         |                                   |          |     |
| Temperature stability:      | $\pm 1 \times 10^{-7}$ } Temperature range: 0 to 40°C in reference               |                         |                         |                                   |          |     |
|                             | $\pm 5 \times 10^{-8}$ (OPT21) to the frequency measured at 25°C +2°C            |                         |                         |                                   |          |     |
| A warm up (Nominal):        | $15 \times 10^{-8}$ min (in reference to the frequency measured 60 min often the |                         |                         |                                   |          |     |
| A warm-up (Nonthila).       | power-on)                                                                        |                         |                         |                                   |          |     |
| Frequency stability         |                                                                                  |                         |                         |                                   |          |     |
| Residual FM:                | $< 3 \text{ Hz} \times \text{Np-p/0.1 sec}$                                      |                         |                         |                                   |          |     |
| Drift:                      | Same as the reference source (After a warm-up of 60 min.)                        |                         |                         |                                   |          |     |
| Signal purity:              |                                                                                  |                         |                         |                                   |          |     |
| (dBc/Hz)                    |                                                                                  |                         |                         |                                   |          |     |
|                             | Offeet                                                                           |                         |                         |                                   |          | _   |
| 1                           | Frequency                                                                        | 1 447                   | 10 kHz                  | 100 kHz                           | 1 MHz    | 1   |
|                             | 100 Hz to 1 GHz                                                                  | -100                    | _113                    | -118                              |          | -   |
|                             | 1 GHz to 2 6 GHz                                                                 | _100                    |                         |                                   | -135     |     |
| 1                           | 2 6 GHz to 7 5 GHz                                                               | _08                     | _108                    |                                   | -135     |     |
|                             | 7 4 GHz to 15 4 GUz                                                              | -90                     | _100                    | -112                              | -135     | _   |
| 1                           | 15.2 GHz to 26.5 GHz                                                             | -07                     | -102                    | 100                               | -127     |     |
| {                           |                                                                                  | -03                     | -90                     | -100                              | -125     |     |
| Frequency span              | <u> </u>                                                                         |                         |                         |                                   |          |     |
| Range:                      | 200 Hz to 26.5 GHz, ZERO SPAN                                                    |                         |                         |                                   |          |     |
| Accuracy:                   | ±1%                                                                              |                         |                         |                                   |          |     |

1.3 Specification

| Characteristics             | Description                                                           |
|-----------------------------|-----------------------------------------------------------------------|
| Resolution bandwidth (3 dB) |                                                                       |
| Range:                      | 10 Hz to 10 MHz (1, 3, 10 sequences), 5 MHz                           |
| Accuracy:                   | $\pm 25$ %: RBW = 3 MHz, 5 MHz                                        |
|                             | $\pm 15$ %: RBW = 100 Hz to 1 MHz                                     |
|                             | $\pm 25 \%$ (25°C $\pm 10$ °C); RBW = 30 Hz                           |
| Selectivity:                | <15:1 (RBW = 100 Hz to 5 MHz)                                         |
|                             | <20:1 (RBW = 30 Hz)                                                   |
| Video bandwidth             |                                                                       |
| Range:                      | 1 Hz to 10 MHz (1, 3, 10 sequences), 5 MHz                            |
| Frequency sweep             |                                                                       |
| \$weep time:                |                                                                       |
| Zero span:                  | 1 µsec to 1000 sec                                                    |
| Span $> 0$ Hz:              | 20 msec to 1000 sec                                                   |
| Accuracy:                   | ±3 %                                                                  |
| Trigger:                    | Free-run, line, video, external, IF                                   |
| Gated sweep                 |                                                                       |
| Gate position:              | 100 nsec to 1 sec                                                     |
| Resolution:                 | 100 nsec                                                              |
| Gate width:                 | 1 µsec to 1 sec                                                       |
| Resolution:                 | 100 nsec                                                              |
| Trigger:                    | IF (Mixer input is -40 dBm or more) External trigger or External gate |
| Delayed sweep               |                                                                       |
| Þelay time:                 | 100 ns to 1 s                                                         |
| Resolution:                 | 100 ns                                                                |

(2) Amplitude Range

| Characteristics                                                                     | Description                                                                                |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Measurement range                                                                   | +30 dBm to Average noise level                                                             |
| Maximum safe input<br>Average continuous power<br>(Input ATT > 10 dB):<br>DC input: | +30 dBm (1W)<br>OV (DC signal must not be applied)                                         |
| Display range                                                                       | $10 \times 10$ Div                                                                         |
| Log:<br>Linear:                                                                     | 10, 5, 2, 1, 0.5 dB/Div<br>10 % of reference level/Div                                     |
| Reference level range                                                               |                                                                                            |
| Hog:<br>Linear:                                                                     | -140 dBm to +60 dBm (in 0.1 dB steps)<br>22.4nV to 223V (steps of about 1 % of full scale) |
| Input attenuation range                                                             | 0 to 70 dB (10 dB steps)                                                                   |

1-10

1.3 Specification

| Characteristics                             |              | Description                             |                 |                      |  |  |
|---------------------------------------------|--------------|-----------------------------------------|-----------------|----------------------|--|--|
| Average noise level<br>Resolution bandwidth | 100 Hz       |                                         |                 |                      |  |  |
| Input attenuation                           | 0 dB<br>1 Hz | Frequency                               | Frequency band  | Average noise level  |  |  |
| Video bandwidth                             |              | 1 kHz                                   | 0               | -90 dBm              |  |  |
|                                             |              | 10 kHz                                  | 0               | -100 dBm             |  |  |
|                                             | ·            | 100 kHz                                 | 0               | -101 dBm             |  |  |
|                                             |              | 1 MHz                                   | 0               | -125 dBm             |  |  |
|                                             |              | 10 MHz to 3.5 GHz                       | 0               | -(130 - f (GHz)) dBm |  |  |
|                                             |              | 3.5 GHz to 7.5 GHz                      | 1               | -125 dBm             |  |  |
|                                             |              | 7.4 GHz to 15.4 GHz                     | 2               | -122 dBm             |  |  |
|                                             |              | 15.2 GHz to 22.0 GHz                    | 3               | -120 dBm             |  |  |
|                                             |              | 22.0 GHz to 26.5 GHz                    | 3               | -117 dBm             |  |  |
|                                             |              |                                         |                 |                      |  |  |
| 1 dB gain compression:                      |              | 10 MHz to 100 MHz<br>100 MHz to 3.5 GHz | -3 dBm<br>0 dBm |                      |  |  |
|                                             |              | 3.5 GHz to 7.5 GHz                      | -10 dBm         |                      |  |  |
|                                             |              | 7.5 GHz to 26.5 GHz                     | -3 dBm          |                      |  |  |

# (3) Dynamic Range

 $\bigcirc$ 

 $\mathbf{C}$ 

### (4) Spurious Response

| Characteristics                           | Description                  |                                        |                                                                                                    |                                                                                                                                                                                                                                                                                      |                                                       |
|-------------------------------------------|------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 2nd order harmonic distortion             |                              |                                        |                                                                                                    |                                                                                                                                                                                                                                                                                      |                                                       |
|                                           |                              | Fr                                     | equency range                                                                                      | Frequency band                                                                                                                                                                                                                                                                       | Mixer level                                           |
|                                           | < -70 dBc                    | 101                                    | MHz to 3.5 GHz                                                                                     | 0                                                                                                                                                                                                                                                                                    | -30 dBm                                               |
|                                           | < -100 dBa                   | :                                      | > 3.5 GHz                                                                                          | 1, 2, 3                                                                                                                                                                                                                                                                              | -10 dBm                                               |
| 2 signal 3rd order harmonic<br>distortion | -70 <-70 <-80 <-70 <-70 <-75 | dBc<br>dBc<br>dBc<br>dBc<br>dBc<br>dBc | Frequency ra<br>10 MHz to 100<br>100 MHz to 1<br>1 GHz to 3.5<br>3.5 GHz to 7.5<br>7.5 GHz to 26.2 | inge         Mix           MHz         -30           GHz         -30 | er level<br>) dBm<br>) dBm<br>) dBm<br>) dBm<br>) dBm |

1.3 Specification

| Characteristics                                                  | Description |                     |  |
|------------------------------------------------------------------|-------------|---------------------|--|
| mage/multiple/out-band response                                  |             |                     |  |
|                                                                  |             | Frequency range     |  |
|                                                                  | < -70 dBc   | 10 MHz to 18 GHz    |  |
|                                                                  | < -60 dBc   | 10 MHz to 23 GHz    |  |
|                                                                  | < -50 dBc   | 10 MHz to 26.5 GHz  |  |
| tesidual response (no input, input<br>TT 0 dB, 50 Ω termination) |             |                     |  |
|                                                                  |             | Frequency range     |  |
|                                                                  | < -100 dBm  | 1 MHz to 3.5 GHz    |  |
|                                                                  | < -90 dBc   | 300 kHz to 26.5 GHz |  |

1

14

2%

1.3 Specification

l

| Characteristics                                                        |                                                              |                                        | Description                      |  |
|------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------|----------------------------------|--|
| Frequency response (with an input attenuation of 10 dB, band 1, 2 or 3 |                                                              |                                        |                                  |  |
| is automatically tuned on the pre-                                     | 1                                                            | Frequency bar                          | d Frequency range                |  |
| selector):                                                             |                                                              | 0                                      | 100 Hz to 3.5 GHz±1.5 dB         |  |
| Flatness within the bands                                              | 1                                                            | 0                                      | 50 MHz to 2.6 GHz±1.0 dB         |  |
| Relative values                                                        | 4                                                            | 1                                      | 3.5 GHz to 7.5 GHz±1.5 dB        |  |
|                                                                        |                                                              | 2                                      | 7.4 GHz to 15.4 GHz±3.5 dB       |  |
|                                                                        |                                                              | 3                                      | 15.4 GHz to 26.5 GHz±4.0 dB      |  |
| Complementary error due to band switching                              | ±0.5 dB                                                      |                                        |                                  |  |
| For a 30 MHz calibration signal                                        | 100 Hz to                                                    | 26.5 GHz±5.0                           | dB                               |  |
| Calibration signal accuracy (30 MHz):                                  | -10 dBm =                                                    | ± 0.3 dB                               |                                  |  |
| IF gain error                                                          | 0 dBm to                                                     | -50 dBm =                              | ± 0.5 dB                         |  |
| (After automatic calibration):                                         | $0 \text{ dBm to } -80 \text{ dBm} \pm 0.7 \text{ dB}$       |                                        |                                  |  |
| Scale display accuracy                                                 |                                                              | ······································ |                                  |  |
| (after automatic calibration)                                          |                                                              |                                        |                                  |  |
| Log:                                                                   | 0 dB to -9                                                   | 0 dB                                   |                                  |  |
|                                                                        | $\pm 0.85  \mathrm{dB}$                                      | max                                    |                                  |  |
|                                                                        | $\pm 0.2 \text{ dB}/1$                                       | dB                                     |                                  |  |
| Linear:                                                                | $\pm 5\%$ of r                                               | eference level                         |                                  |  |
| Input attenuation switching error                                      | 100 Hz to                                                    | 12.4 GHz                               | ± 1.1 dB/10 dB steps, 2.0 dB max |  |
| (in reference to 10 dB, at 20 dB to                                    | 12.4 Hz to 18 GHz $\pm$ 1.3 c                                |                                        | ± 1.3 dB/10 dB steps, 2.5 dB max |  |
| 70 dB)                                                                 | 18 GHz to 26.5 GHz $\pm$ 1.8 dB/10 dB steps, 3.5 dB max      |                                        |                                  |  |
| Resolution bandwidth switching                                         | $<\pm 0.3 \text{ dB} (\text{RBW} = 100 \text{ Hz to 5 MHz})$ |                                        |                                  |  |
| error                                                                  | $<\pm 1.0 \text{ dB} (\text{RBW} = 30 \text{ Hz})$           |                                        |                                  |  |
| (Resolution bandwidth in reference                                     |                                                              |                                        |                                  |  |
| to 300 kHz, after automatic cali-                                      | }                                                            |                                        |                                  |  |
| bration):                                                              | }                                                            |                                        |                                  |  |

(5) Amplitude Accuracy

 $\bigcirc$ 

1.3 \$pecification

# (6) Input and Output

| (6) Input and Output                 |                                                                     |
|--------------------------------------|---------------------------------------------------------------------|
| Characteristics                      | Description                                                         |
| RFinput                              |                                                                     |
| Connector:                           | N-type female (can be converted to SMA)                             |
| Impedance:                           | 50 $\Omega$ (nominal)                                               |
| <b>VSWR</b> (Input ATT $\ge$ 10 dB): | < 1.5: 1 (< 3.5 GHz) (nominal)                                      |
|                                      | < 2.1: 1 (> 3.5 GHz) (nominal)                                      |
| Calibration signal output            |                                                                     |
| Connector:                           | BNC female, front panel                                             |
| Frequency:                           | $30 \text{ MHz} \times (1 \pm \text{frequency reference accuracy})$ |
| Impedance:                           | $50 \Omega \text{ (nominal)}$                                       |
| Amplitude:                           | $-10 \text{ dBm} \pm 0.3 \text{ dB}$                                |
| 10 MHz frequency reference           |                                                                     |
| output                               |                                                                     |
| Connector:                           | BNC female, rear panel                                              |
| Impedance:                           | 50 $\Omega$ (nominal)                                               |
| Frequency accuracy:                  | $10 \text{ MHz} \times \text{frequency reference accuracy}$         |
| Amplitude range:                     | $0 \mathrm{dBm} \pm 5 \mathrm{dB}$                                  |
| 10 MHz frequency reference           |                                                                     |
| input                                |                                                                     |
| Connector:                           | BNC female, rear panel                                              |
| Impedance:                           | $50 \Omega \text{ (nominal)}$                                       |
| Amplitude range:                     | $0 \text{ dBm} \pm 5 \text{ dB}$                                    |
| Probe power supply:                  | ± 12.6V (100mA) (nominal)                                           |
| 21.4 MHz, IF output                  |                                                                     |
| Connector:                           | BNC female, rear panel                                              |
| Impedance:                           | $50 \Omega \text{ (nominal)}$                                       |
| 421.4 MHz, IF output                 |                                                                     |
| Connector:                           | BNC female, rear panel                                              |
| Impedance:                           | 50 $\Omega$ (nominal)                                               |
| 1st LO output                        |                                                                     |
| Connector:                           | SMA female, front panel                                             |
| Impedance:                           | 50 $\Omega$ (nominal)                                               |
| Frequency range:                     | 3.921 GHz to 7.921 GHz                                              |
| Amplitude:                           | > +10 dBm                                                           |
| Video output                         |                                                                     |
| Connector:                           | VGA (15 pins, female), rear panel                                   |
|                                      | $640 \times 480$ dots (equivalent to VGA)                           |
| X axis output                        |                                                                     |
| Connector:                           | BNC female, rear panel                                              |
| Impedance:                           | 1 k $\Omega$ (nominal), DC coupled                                  |
| Amplitude:                           | About -5V to +5V                                                    |
| Y axis output                        |                                                                     |
| Connector:                           | BNC female, rear panel                                              |
| Impedance:                           | $220\Omega$ (nominal)                                               |
| Amplitude:                           | About 2V for full scale (with 10 dB/div)                            |

1

# 1.3 Specification

| Characteristics            | Description                                   |
|----------------------------|-----------------------------------------------|
| External trigger input     |                                               |
| Connector:                 | BNC female, rear panel                        |
| Impedance:                 | 10 k $\Omega$ (nominal), DC coupled           |
| Trigger level:             | TTL level                                     |
| External gate input        |                                               |
| Connector:                 | BNC female, rear panel                        |
| Impedance:                 | 10 k $\Omega$ (nominal), DC coupled           |
| Stops sweeping:            | While a TTL output is at LOW level.           |
| Allowed to sweep:          | While a TTL output is at HIGH level.          |
| Trigger output             |                                               |
| Connector:                 | BNC female, rear panel                        |
| Amplitude:                 | TTL level                                     |
| Audio output (demodulation |                                               |
| audio)*                    |                                               |
| Connector:                 | Small-type monophonic jack, front panel       |
| Power output:              | $0.2W \max, 32\Omega$ (nominal)               |
| I/O interface              |                                               |
| GPIB:                      | IEEE-488 bus connector, rear panel            |
| RS232:                     | D-SUB 9pins, rear panel                       |
| Printer:                   | D-SUB 25pins, rear panel                      |
| Extended I/O port:         | D-SUB 25pins, rear panel                      |
| FDD:                       | 3.5 inch floppy disk drive                    |
| Direct print:              | Output with ESC/P, PCL, ESC/P raster commands |

# \*: option

 $\mathcal{O}$ 

C)

# (7) General Specifications

| Characteristics                                                                              | Description                                                                                                                                                     |  |  |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Temperature<br>Operating environment range<br>Storage environment range<br>Relative humidity | 0°C to +50°C<br>-20°C to +60°C<br>85 % or less (Without condensation)                                                                                           |  |  |
| AC input power source                                                                        | Automatic switching to 100 VAC or 200 VAC           For 100 VAC:         100 to 120 VAC, 50 or 60 Hz           For 200 VAC:         220 to 240 VAC, 50 or 60 Hz |  |  |
| Power consumption                                                                            | 300 VA or below                                                                                                                                                 |  |  |
| Mass                                                                                         | 18 kg or less (not including options, accessories, etc.)                                                                                                        |  |  |
| Dimensions                                                                                   | Approximately 178(H) × 355(W) × 423.5(D)mm<br>(rear feet and connectors are not included in above dimensions)                                                   |  |  |

1.4 \$ervice concept

### **1.4** Service concept

The troubleshooting concept of this manual is based on error message displayed and self test result approach.

### 1.5 Test equipment required for Performance verification

Table 1-1 lists the recommended equipment for performance verification including equipment for W-CDMA Digital Modulation Analysis function.

Any equipment that meets the critical specifications given in the table can be substituted for the recommended models.

The table also lists the recommended equipment for analyzer's adjustment procedures.

### Table 1-1 Test Equipment for Performance Verification

| No | Description                        | Critical Specification                                                                                                                  | Manufact<br>urer    | Recommended<br>model     | Usage     | Notes        |
|----|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------|-----------|--------------|
| 1  | Frequency<br>Standard              | Output Frequency: 10 MHz<br>Output Level: 1Vp-p or more<br>Stability:<br>5 x 10exp -10/day or more                                      | Advantest           | R3031                    | P.V, Adj. | Freq.ST<br>D |
| 2  | Frequency<br>Counter               | Frequency Range:<br>Over 10 MHz<br>Resolution: 0.1 Hz, 9digits<br>Input Sensivity:<br>70mVrms or better                                 | Advantest           | R5372                    | P.V, Adj. | Freq.CN<br>T |
| 3  | Frequency<br>Differential<br>Meter | Input Frequency:<br>100 kHz (±0.25 %),<br>1 MHz (±0.25 %),<br>2 MHz (±0.50 %),<br>5 MHz (±0.50 %)<br>Input Voltage:<br>0.5 to 10.0 Vrms | Tremetrics          | Model527E                | P.V,Adj.  | FDM          |
| 4  | Signal Gen-<br>erator              | Frequency Range:<br>10 MHz to 18 GHz<br>Output Level:<br>Frequency Stability:<br>1 x 10exp-6/year                                       | Rohde &<br>Schwartz | SMP02 with<br>OptionB11  | P.V       | SG1          |
| 5  | Signal Gen-<br>erator              | Frequency Range:<br>10 MHz to 27 GHz<br>Output Level:<br>+10 dBm to -5 dBm<br>Frequency Stability:<br>1 x 10 exp-6/year                 | Rohde &<br>Schwartz | SMP03 with<br>Option B11 | P.V       | SG2          |

Manufact Recommended Usage Notes No Description **Critical Specification** model urer ΗP HP8663A P.V SG3 6 Signal Gen-Frequency Range: erator 10 MHz to 2.7 GHz Output Level: 0 dBm to -30 dBm Residual SSB, Phase Noise @ 1kHz offset: < -115 dBc @ 10kHz offset: < -125 dBc @ 100kHz offset: < -130 dBc 7 P.V Function HP3325B SG4 Frequency Range: 11 MHz to 20 MHz Generator Output Level: +13 dBm to -10 dBm Frequency Stability: 1 x 10 exp-6/year Squrewave Generation required ΡV PM/PS 8 **RF** Power Frequency Range: Rohde & NRVS / Meter 10 MHz to 26.5 GHz Schwartz NRVS-Z52 /RF Power Measurement Power Range: +10 dBm to -30 dBm Sensor 9 HP8494H P.V Frequency Range: ATT1 Step Attenu-DC to 18 GHz ater Attenuation: 0 dB to 12 dB by 1 dB step Accuracy: 0.1 dB 10 Step Attenu-Frequency Range: HP8495H P.V ATT2 DC to 18 GHz ater Attenuation: 0 dB to 70 dB by 10 dB step Accuracy: 0.1 dB 11 Attenuater HP11713A P.V Driver 12 Terminator Impeadance:  $50\Omega$ Rohde & RNA P.V Type: N(m) Schwartz 13 Fixed Atten-Attenuation:3 dB Advantest DEE-000685-1 P.V ATT3 uator Impedance: 50  $\Omega$ Type:SMA(m)-SMA(f) 14 Fixed Atten-Attenuation:20 dB DEE-000480-1 P.V Advantest ATT4 uator Impedance: 50  $\Omega$ Type: SMA(m)-SMA(f)

1.5 Test equipment required for Performance verification

1.5 Test equipment required for Performance verification

| No   | Description                                 | Critical Specification                                                                    | Manufact<br>urer    | Recommended<br>model            | Usage | Notes    |
|------|---------------------------------------------|-------------------------------------------------------------------------------------------|---------------------|---------------------------------|-------|----------|
| 15   | Power Split-<br>ter                         | Frequency Range:<br>10 MHz to 26.5 GHz,<br>Impedance:50Ω<br>Type:<br>SMA(f)-SMA(f)-SMA(f) | Weinshel            | 1579                            | P.V   |          |
| 16   | Power<br>Divider                            | Frequency Range:<br>20 MHz to 1.5 GHz<br>Isolation: >18 dB                                | Merrimac            | DDUL-20A-100                    | P.V   | Divider1 |
| 17   | Power<br>Divider                            | Frequency Range:<br>2 GHz to 18 GHz<br>Isolation: >18 dB                                  | Merrimac            | DDUL-24M-10G                    | P.V   | Divider2 |
| 18   | Low Pass<br>Filter                          | Cut off: 2.2 GHz<br>Attenuation at 3 GHz: >40 dB<br>Attenuation at 3.8 GHz: >80<br>dB     | Advantest           | DEE-001172-1                    | P.V   | L.P.F    |
| 19   | BNC-BNC<br>Cable                            | Impedance: 50Ω<br>Type: BNC(m)-BNC(m)                                                     | Advantest           | MI-09                           | P.V   |          |
| 20   | SMA-SMA<br>Cable                            | Impedance:50Ω<br>Type: SMA(m)-SMA(m)                                                      | Advantest           | A01002                          | P.V   |          |
| 21   | Adapter                                     | Impedance: 50Ω<br>Type: N(m)-SMA(f)                                                       | Advantest           | HRM-554S                        | P.V   |          |
| 22   | Adapter                                     | Impedance:50Ω<br>Type: SMA(f)-SMA(f)                                                      | Advantest           | HRM-501                         | P.V   |          |
| 23   | Adapter                                     | Impedance:50Ω<br>Type: N(f)-BNC(m)                                                        | Advantest           | NJ-BNCP                         | P.V   |          |
| 24   | Adapter                                     | Impedance:50Ω<br>Type: N(m)-BNC(f)                                                        | Advantest           | JUG-201A-U                      | P.V   |          |
| Addi | itional equipmer                            | nt for W-CDMA Digital Modulatic                                                           | on Analysis.(C      | Option 62)                      |       | <b>1</b> |
| 25   | Arbitaray<br>Waveform<br>Generator          | Output Channel: 4ch                                                                       | Tektronix           | AWG2021                         | P.V   | SG5      |
| 26   | IQ Modula-<br>tion<br>Signal Gen-<br>erator | Frequency Range:<br>30 MHz to 3 GHz<br>IQ Modulation Bandwidth: >5<br>MHz<br>EVM: <2 %    | Rohde &<br>Schwartz | SMIQ03<br>with W-CDMA<br>option | P.V   | SG6      |

Output level of SG5 and input range, DC offset level of SG6 must be matched. IQ input level of SG5 and IQ output of SG6 must be matched.

1\_18\*

2.1 Introduction

# **2** THEORY OF OPERATION

### 2.1 Introduction

This chapter provides theory of operation of R3267 and R3273.

R3267 and R3273 are spectrum analyzer that consists of RF Block, IF Block, LOG/AD Block, SYNTESIZ-ER Block, CPU Block, Power Supply Block, Key board and Display Block, Modulation Analysis Block Option 01(hereafter MOD Block), which are replaceable.

Difference between R3267 and R3273 is RF Block. Rest of the blocks are hardware compatible.

Describe theory of operation for both of RF Block and other Blocks.

Detailed components-level circuit theory is not provided.

Simplified Block diagrams is shown in Figure 2-1.



Figure 2-1 Block Diagram of R3267 and R3273

2.1

2.2 RF Block

### 2.2 RF Block

### 2.2.1 RF Block of R3267

### 2.2.1.1 Overview

RF Block is a frequency converter.

The input signal frequency range is 100Hz to 8GHz. After signal becomes 21.4MHz IF signal.

RF Block has two ways of circuit depends on measurement frequency range.

- Frequency range: 100Hz to 3.5GHz.
- Frequency range: 1.6GHz to 8GHz.

RF Block consists of RF/IO circuit, RF input attenuator, Pre-selector, the two Local oscillators, mixer diodes and amplifiers.

Pre-selector is activated frequency above 1.6GHz.

RF/IO is controlled 1st local oscillator such as oscillation frequency, pre-selector and frequency sweep. Frequency reference oscillator is located in this Block.

### 2.2.2 Signal analysis flow

(1) Frequency range: 100Hz to 3.5GHz Band

The input signal goes through RF input programmable attenuator, which has attenuation 0dB to 75dB by 5dB step.

The signal of RF input attenuator is fed through 1st mixer diode to convert 1st IF signal (4231.4MHz) with 1st local oscillator signal (4GHz to 8GHz).

Then goes through low pass filter and band pass filter to eliminate unnecessary signal.

The 1st IF signal goes through 2nd mixer circuit to convert 2nd IF signal (421.4MHz) with 2nd local oscillator (3810MHz).

2nd IF signal goes through 3rd mixer to convert 3rd IF (21.4MHz) signal with 400MHz signal, which is generated by using 200MHz signal supplied from SYNTHESIZER Block.

1st local oscillator and 2nd local oscillator has phase locked loop circuit to stabilized its oscillation frequency.

(2) Frequency range:1.6GHz to 8GHz Band

The difference between 100Hz to 3.5GHz band and 1.6GHz to 8GHz band is frequency converter circuit.

It has Pre-selector to eliminate signal such as image and multiple response of input signal and mixer diode.

YTF is controlled by synchronously with the spectrum analyzer tuning frequency.

The input signal goes through RF input programmable attenuator, which has attenuation 0dB to 70dB by 10dB step.

After RF input attenuator, the signal goes through 1st mixer (High band mixer) to convert to 1st IF signal(421.4MHz) with 1st local oscillator(4GHz to 8GHz).

The 1st IF signal goes through low pass filter, then pass through band pass filter, which is used in 100Hz to 3.5GHz band commonly.

This 1st IF signal goes through to 3rd mixer to convert to 3rd IF signal(21.4MHz).

The 3rd IF signal goes into IF Block.

2.2 RF Block

### 2.2.3 RF Block of R3273

#### 2.2.3.1 Overview

RF Block is a frequency converter.

The input signal frequency range is 100Hz to 26.5GHz. After signal converted becomes 21.4MHz IF signal.

RF Block has two ways of circuit depends on measurement frequency range.

- Frequency range: 100Hz to 3.5GHz.
- Frequency range: 3.5GHz to 7.5GHz.
- Frequency range: 7.4GHz to 15.4GHz
- Frequency range: 15.2GHz to 26.5GHz

RF Block consists of RF/IO circuit, RF input attenuator, Pre-selector, the two Local oscillators, mixer diodes and amplifiers.

Pre-selector is activated frequency above 3.5GHz.

Frequency range: 7.4GHz to 15.4GHz and 15.2GHz to 26.5GHz is used method of harmonics signal mixing.

RF/IO is controlled 1st local oscillator such as oscillation frequency and frequency sweep. Frequency referenced oscillator is located in this Block.

### 2.2.4 Signal analysis flow

(1) Frequency range: 100Hz to 3.5GHz Band

The input signal goes through RF input programmable attenuator, which has attenuation 0dB to 70dB by 10dB step.

The signal of RF input attenuator is fed through 1st mixer diode to convert 1st IF signal (4231.4MHz) with 1st local oscillator signal (4GHz to 8GHz).

Then goes through low pass filter and band pass filter to eliminate unnecessary signal.

The 1st IF signal goes through 2nd mixer circuit to convert 2nd IF signal (421.4MHz) with 2nd local oscillator (3810MHz).

2nd IF signal goes through 3rd mixer to convert 3rd IF (21.4MHz) signal with 400MHz signal, which is generated by using 200MHz signal supplied from SYNTHESIZER Block.

1st local oscillator and 2nd local oscillator has phase locked loop circuit to stabilized its oscillation frequency.

(2) Frequency range: 3.5GHz above

The difference between 100Hz to 3.5GHz band and frequency above 3.5GHz band is frequency converter circuit.

It is used 2nd and 4th harmonics signal (8GHz to 16GHz and 16GHz to 32GHz) of YTO for 1st Local signal.

It has Pre-selector to eliminate signal such as image and multiple response of input signal and mixer diode.

YTF is controlled by synchronously with the spectrum analyzer tuning frequency.

The input signal goes through RF input programmable attenuator, which has attenuation 0dB to 70dB by 10dB step.

After RF input attenuator, the signal goes through 1st mixer (High band mixer) to convert to 1st IF signal(421.4MHz) with 1st local oscillator(8GHz to 16GHz and 16GHz to 32GHz).

### 2.3 IF Block

The 1st IF signal goes through low pass filter, then pass through band pass filter, which is used in 100Hz to 3.5GHz band commonly.

This 1st IF signal goes through to 3rd mixer to convert to 3rd IF signal(21.4MHz).

The 3rd IF 21.4MHz signal goes into IF Block.

### 2.3 IF Block

The 3rd IF signal from RF Block is fed into IF Block. IF Block consists of LC filters, piezoelectric resonator filters and crystal filters. They specify resolution bandwidth characteristics 10Hz to 10MHz(1,3, or 10 sequences),5MHz and step amplifiers with a 0.1dB step to specify the reference level.

For the RBW 300kHz to 10MHz use LC filter. For the RBW 3kHz to 100kHz use piezoelectric filter. For the RBW 10Hz to 1kHz use crystal filter.

After the 3rd IF signal filtered, the signal is fed into LOG/AD Block. When digital modulation analysis function(Option01) is installed, the 3rd IF signal is fed into the Modulation Analysis Block.

### 2.4 LOG/AD Block

After the 3rd IF signal characterized for RBW, the signal is fed into logarithm(LOG) amplifier, which provides a 100dB dynamic range in log display mode.

Under linear display mode, the signal is fed through the linear amplifier and detector circuit.

After the signal is detected, the signal is digitized by A/D converter.

The digitized signal is fed into CPU Block.

### 2.5 CPU Block

It consist of CPU main processor, Graphic processor and its peripheral circuit, such as GPIB interface, RS232 Interface, Floppy Disk Drive and display.

On the CPU Block compute the digitized signal for the display

### 2.6 SYNTHESIZER Block

This Block generates calibration signal on the front panel and reference signals for phase locked loop circuits in RF Block.

It is consists of YTO PLL, SAMP PLL, 200MHz PLL and DDS PLL circuits.

### 2.7 MOD Block

This block enable to analyze digital modulation signal such as W-CDMA, GSM/DECT(DCS1800/1900 included), cdmaone(IS-95) and PDC/PHS/IS-136.

Type of the digital modulation analyzed is depend on the software option installed.

This block consists of down converter block, IF Local PLL block, Sampling clock PLL block, IQ input block, Anti-aliasing filter block and DSP block.

The 3rd IF signal is fed into down converter block. The signal is down converted with a local signal, which generate on the IF local PLL block.
2.8 Display Block

After the signal converted, the signal fed into antialiasing filter and A/D converter to digitize the signal. The signal digitized is fed into DSP to compute the signal for modulation accuracy.

# 2.8 Display Block

 $\bigcirc$ 

()

Display Block has 6.5 inches color TFT display.

# 2.9 Power Supply Block

Power supply Block uses switching power supply unit. It allows to connect 90VAC to 250VAC directly. It generates +5V,  $\pm 12V$ , +12V and +24V.



3.1 General

# **3 PERFORMANCE VERIFICATION**

# 3.1 General

10

# (1) Introduction

This chapter provides performance verification procedures item by item as listed in Table 3-1. Additional performance verification items are listed in Table 3-2 for W-CDMA digital modulation analysis with Option62.

| No  | Items                                 | Applicable Model |       |
|-----|---------------------------------------|------------------|-------|
| NO. |                                       | R3267            | R3273 |
| 1   | Reference Oscillator Accuracy         | 0                | 0     |
| 2   | CAL OUT Amplitude Accuracy            | 0                | 0     |
| 3   | Displayed Average Noise               | 0                | 0     |
| 4   | RBW Switching Error                   | 0                | 0     |
| 5   | RBW Accuracy                          | 0                | 0     |
| 6   | Attenuator Switching Accuracy         | .0               | 0     |
| 7   | IF Gain uncertainty                   | 0                | 0     |
| 8   | Scale Fidelity                        | 0                | 0     |
| 9   | Residual FM                           | 0                | 0     |
| 10  | Noise sideband                        | 0                | 0     |
| 11  | Image, Multiple, Out of Band Spurious | 0                | 0     |
| 12  | Frequency Read Out Accuracy           | 0                | 0     |
| 13  | Second Harmonic Distortion            | 0                | 0     |
| 14  | Frequency Response                    | 0                | 0     |
| 15  | Span Accuracy                         | 0                | 0     |
| 16  | Third Intermodulation Distortion      | 0                | 0     |
| 17  | Gain Compression                      | 0                | 0     |
| 18  | Sweep Time Accuracy                   | 0                | 0     |
| 19  | Residual Response                     | 0                | 0     |

### **Table 3-1 Performance Verification Items**

3\_1

### 3.1 General

| No. | Meaurement<br>Mode | Input | Test Item                                                                                                    |
|-----|--------------------|-------|--------------------------------------------------------------------------------------------------------------|
| 1   | BTS                | RF    | Carrier Frequency Accuracy<br>Waveform Quality Accuracy<br>Modulation Accuracy<br>Code Domain Power Accuracy |
| 2   | MS                 | RF    | Carrier Frequency Accuracy<br>Waveform Quality Accuracy<br>Modulation Accuracy                               |
| 3   | QPSK               | RF    | Carrier Frequency Accuracy<br>Waveform Quality Accuracy<br>Modulation Accuracy                               |
| 4   | BTS                | IQ    | Waveform Quality Accuracy<br>Modulation Accuracy<br>Code Domain Power Accuracy                               |
| 5   | MS                 | IQ    | Waveform Quality Accuracy<br>Modulation Accuracy                                                             |
| 6   | QPSK               | IQ    | Waveform Quality Accuracy<br>Modulation Accuracy                                                             |

# Table 3-2 Additional Performance Verification Items

### (2) Test Equipment

The table of recommended test equipment in the General Information lists the equipment needed to perform all of the performance test.

Equipment lists for individual tests are provided in each performance verification.

#### (3) Calibration Cycle

The performance verifications should be used to check the spectrum analyzer against its specifications every one year recommended.

The reference oscillator must be adjusted and checked at the same time.

Refer to the "Internal Frequency Reference Adjustment" in the chapter 4.

(4) Performance Verification Record Sheets

The performance verification record sheets at the end of this chapter is provided the value measured in each performance verification.

The test record lists test specification and acceptable limits.

Recommend that make a copy of this table, record the complete test results on the copy, and keep the copy for calibration test record.

This record could prove invaluable in tracking gradual changes in test result over long periods of the time.

It is provided for R3267 and R3273 separately.

3.1 General

### (5) Performance Verification Procedures

Typeface conventions used in this manual.

• Panel keys and soft keys are printed in a contrasting typestyle to make them stand out form the text as follows:

Panel keys: Boldface typeExample: FREQ, FORMATSoft keys: Boldface and ItalicExample: Center, Trace Detector

- When a series of key operations are described using a comma between two keys.
- There are various soft menus used to switch between two states such as ON/OFF and AUTO/ MNL.

For example, when turning off the *Display ON/OFF* function, the annotation " *Display ON/OFF*(OFF)" is used.

When switching the *RBW AUTO/MNL* function to MNL, the annotation "*RBW AUTO/MNL* (MNL)" is used.

3.2 Procedures of Performance Verification

# 3.2 **Procedures of Performance Verification**

# 3.2.1 10MHz Reference Output Accuracy

### (1) Description

The 30MHz CAL OUT signal measured to verify the 10MHz reference signal accuracy. The CAL OUT signal uses the 10MHz signal as a reference. Verification will be done using frequency counter and frequency standard.

CAUTION: If the frequency reference of R3267/3273 is set to EXT, perform 15 minutes warm up operation after instrument preset.

| (2) | Specification      |                                       |
|-----|--------------------|---------------------------------------|
|     | Frequency:         | < 1 x 10 exp -7                       |
|     |                    | < 1 x 10 exp -8 (Option 21 Installed) |
| (3) | Equipment Used     |                                       |
|     | Frequency Counter  | Freq. CNT                             |
|     | Frequency Standard | Freq. STD                             |

(4) Setup



BNC(m)-BNC(m) Cable

BNC(m)-BNC(m)Cable

### Figure 3-1 Setup for Frequency Reference Accuracy Test

#### (5) Procedure

- 1. Connect equipment shown as Figure 1.
- 2. Set Freq.CNT controls as follows:

InputBGate Time0.1sec.Frequency STDEXT.

3. Preset R3267/3273

3.2.2 Calibrator Amplitude Accuracy

- 4. Wait for the Freq. CNT to settle.
- 5. Read and record the Freq.CNT display on the performance verification record sheet.

# 3.2.2 Calibrator Amplitude Accuracy

(1) Description

The amplitude accuracy of the analyzer's CAL OUT signal is checked for -10dm± 0.3dB.

(2) Specification

Calibration Signal Output Level Accuracy -10dBm ± 0.3dB

(3) Equipment Used

RF Power Meter PF Power Sensor Adapter

P.S N(f)-BNC(m) N(m)-SMA(f) 1pc

P.M

(4) Setup



### Figure 3-2 Setup of CAL OUT Level Accuracy Test

- (5) Procedure
- 1. Perform ZERO and calibration of P.M
- 2. Set correction data at 30MHz to P.M.
- Connect Sensor through an adapter directly to the R3267/3273's CAL. OUTPUT connector.
- 4. Read P.M display and record it on performance verification record sheet.

2\_5

3.2.3 Displayed Average Noise Level

# 3.2.3 Displayed Average Noise Level

#### (1) Description

This test measures the displayed average noise level in all frequency.

The spectrum analyzer's input is terminated in 50 ohms.

In Frequency Band 0, the test first measures the average noise at several discrete frequencies in a zero span. For the rest of Frequency Band 0, and all other bands, the test tunes the analyzer frequency across the band, uses the marker to locate the frequency with the highest response, then reads the average noise in a zero span.

(2) Specification

| Apply for R3267  | Frequency Band | Average Noise Level |
|------------------|----------------|---------------------|
| Периснеу         | Frequency band | Average Noise Lever |
| 1kHz             | 0              | -90dBm              |
| 10kHz            | 0              | -100dBm             |
| 100kHz           | 0              | -101dBm             |
| 1MHz             | 0              | -125dBm             |
| 10MHz to 3.5GHz  | 0              | -130 - f(GHz)dBm    |
| 1.6GHz to 3.5GHz | 1              | -125dBm             |
| 3.5GHz to 7.0GHz | 2              | -125dBm             |
| 6.9GHz to 8.0GHz | 3              | -125dBm             |
|                  |                |                     |

| Apply for R3273    |                |                     |
|--------------------|----------------|---------------------|
| Frequency          | Frequency Band | Average Noise Level |
| 1kHz               | 0              | -90dBm              |
| 10kHz              | 0              | -100dBm             |
| 100kHz             | 0              | -101dBm             |
| 1MHz               | 0              | -125dBm             |
| 10MHz to 3.5GHz    | 0              | -130 - f(GHz)dBm    |
| 3.5GHz to 7.5GHz   | 1              | -125dBm             |
| 7.4GHz to 15.4GHz  | 2              | -125dBm             |
| 15.2GHz to 26.5GHz | 3              | -125dBm             |
|                    |                |                     |

(3) Equipment Used

Terminator 50ohm

(4) Setup

R3267/3273



Figure 3-3 Setup of Displayed Average Noise Level Test

3.2.3 Displayed Average Noise Level

- (5) Procedure
- 1. Connect Terminator to INPUT of R3267/3273.

For frequency band 0

2. After preset R3267/3273, set R3267/3273 controls as follows:

Center Frequency1kHzSpanZeroRF Attenuator0dBReference Level-60dBmRBW30HzVBW1HzSweep Time1sec

3. Set R3267/3273 to AVG mode and AVG times to 10 times as follows:

Press A, AVERAGE A, 1, 0 and Hz.

- 4. After average has completed, set R3267/3273 to peak search mode to capture the highest noise signal by pressing **SRCH**.
- 5. Record the level of peak search marker on the performance check sheet.
- 6. Set R3267/3273 controls as follows:

Center Frequency 10kHz RBW 100Hz

7. Repeat steps 4. through 6. for each Center Frequency setting listed on Table 3-3.

3\_7

# 3.2.3 Displayed Average Noise Level

Table 3-3 Center Frequency Setting for Displayed Average Noise Level

| Center Frequency |
|------------------|
| 100 kHz          |
| 1 MHz            |
| 10.1 MHz         |
| 101 MHz          |
| 501 MHz          |
| 1001 MHz         |
| 1.5 GHz          |
| 2.0 GHz          |
| 2.5 GHz          |
| 3.0 GHz          |
| 3.5 GHz          |

For frequency band 1

8. After preset R3267/3273, set R3267/3273 controls as follows:

| Start Frequency  | 3.501GHz                                      |
|------------------|-----------------------------------------------|
| Stop Frequency   | 8GHz                                          |
|                  | For the R3273 Stop frequency is set to 7.5GHz |
| Input Attenuator | 0dB                                           |
| Reference Level  | -40dBm                                        |
| RBW              | 3MHz                                          |
| VBW              | 100kHz                                        |

9. Set R3267/3273 to AVG mode and AVG times to 10 times as follows:

Press A, AVERAGE A, 1, 0 and Hz.

10. After average has completed, set R3267/3273 to peak search marker mode to capture the highest noise signal by pressing **SRCH**.

Then set  $MKR \rightarrow$ ,  $MKR \rightarrow CF$ , A and WRITE A.

3.2.4 Resolution Bandwidth Switching Uncertainty

11. Set R3267/3273 controls as follows:

| Span            | Zero   |
|-----------------|--------|
| Reference Level | -60dBm |
| RBW             | 100Hz  |
| VBW             | 1Hz    |
| Sweep Time      | 1sec   |
| Sweep Mode      | SINGLE |

- 12. Press SINGLE for single sweep.
- 13. After single sweep has completed, set R3267/3273 to peak search marker mode SRCH to capture the highest noise signal.
- 14. Record the level of peak search marker reading on the performance verification record sheet.

Following procedures are applied for R3273 only

15. Repeat steps 8 through 14 for each frequency setting on Table 3-4.

Table 3-4 Start and Stop Frequencies Setting for R3273

| Start Frequency | Stop Frequency |
|-----------------|----------------|
| 7.501 GHz       | 15.4 GHz       |
| 15.201 GHz      | 22.0 GHz       |
| 22.0 GHz        | 26.5 GHz       |

# 3.2.4 Resolution Bandwidth Switching Uncertainty

(1) Description

This set utilizes the internal Cal. Signal for measuring the switching uncertainty between resolution bandwidth. At each resolution bandwidth setting, the displayed amplitude variation of the signal in measured using delta marker mode.

All measurements are reference to the 300kHz bandwidth.

(2) Specification

| Reference to 300kHz RBW | after auto c   | alibration |       |
|-------------------------|----------------|------------|-------|
|                         | $< \pm 0.3$ dB | 100Hz to   | 10MHz |
|                         | $< \pm 1.0B$   | 30Hz       |       |

(3) Equipment Used

| Adapter | N(m)-BNC (f)    |
|---------|-----------------|
| Cable   | BNC (m)-BNC (m) |



3-10

3.2.5 Resolution Bandwidth Accuracy and Selectivity

| RBW Setting | Frequency Span |
|-------------|----------------|
| 10 MHz      | 15 MHz         |
| 5 MHz       | 8 MHz          |
| 3 MHz       | 5 MHz          |
| 1 MHz       | 2 MHz          |
| 100 kHz     | 200 kHz        |
| 30 kHz      | 50 kHz         |
| 10 kHz      | 20 kHz         |
| 3 kHz       | 5 kHz          |
| 1 kHz       | 2 kHz          |
| 300 Hz      | 500 Hz         |
| 100 Hz      | 200 Hz         |
| 30 Hz       | 200 Hz         |

Table 3-5 Setting of RBW Switching Uncertainty Test

# 3.2.5 Resolution Bandwidth Accuracy and Selectivity

### (1) Description

This test measures the 3 dB down of RBW accuracy and selectivity. Selectivity is specified the 3dB and the 60dB down bandwidth of RBW. To measure bandwidth of RBW, use continuous XdB down marker function.

(2) Specification

|     | Range:<br>Accuracy: | 10Hz to 3MHz, 5MHz, 10MHz(1,3,10 sequence)<br>± 15% (RBW 100Hz to 1MHz)<br>± 25% (RBW 30Hz 3MHz 5MHz) |
|-----|---------------------|-------------------------------------------------------------------------------------------------------|
|     | Selectivity:        | <15:1 (RBW 100Hz to 5MHz)<br><20:1 (RBW 30Hz)                                                         |
| (3) | Equipment Used      |                                                                                                       |

| Adapter |  |
|---------|--|
| Cable   |  |

N (m)-BNC (f) BNC (m)-BNC (m)



3.2.5 Resolution Bandwidth Accuracy and Selectivity

| RBW Setting | Frequency Span |
|-------------|----------------|
| 5 MHz       | 10 MHz         |
| ì MHz       | 5 MHz          |
| 300 kHz     | 500 kHz        |
| 100 kHz     | 200 kHz        |
| 30 kHz      | 50 kHz         |
| 10 kHz      | 20 kHz         |
| 3 kHz       | 5 kHz          |
| 1 kHz       | 2 kHz          |
| 300 Hz      | 500 Hz         |
| 100 Hz      | 200 Hz         |
| 30 Hz       | 200 Hz         |

#### Table 3-6 Setting of RBW and Span for 3dB Down Width Measurement

#### Selectivity

8. After preset R3267/3273, set R3267/3273 controls as follows:

| Center Frequency | 30MHz                                 |
|------------------|---------------------------------------|
| Span             | 50MHz                                 |
| VBW              | 10kHz                                 |
| Trace Detector   | Sample                                |
|                  | (Press A, Trace Detector and Sample.) |
| Sweep Mode       | SINGLE                                |
|                  |                                       |

9. Set R3267/3273 to continuous XdB down marker mode as follows

MEAS, X dB Down, X dB down, 60dB and Continual Down ON/OFF(ON)

- 10. Set RBW of R3267/3273 to 3MHz, then press SINGLE for single sweep.
- 11. After single sweep has completed, set peak search marker mode to capture signal peak by SRCH.
- 12. Record the frequency of the X dB down marker reading on the performance check sheet.
- 13. Repeat steps 10. through 12. for each RBW and frequency span setting listed on Table 3-7.

# 3.2.6 IF Gain Uncertainty

| RBW Setting | Frequency Span<br>Setting |
|-------------|---------------------------|
| 5 MHz       | 100 MHz                   |
| l MHz       | 20 MHz                    |
| 300 kHz     | 5 MHz                     |
| 100 kHz     | 1 MHz                     |
| 30 kHz      | 500 kHz                   |
| 10 kHz      | 200 kHz                   |
| 3 kHz       | 50 kHz                    |
| l kHz       | 20 kHz                    |
| 300 Hz      | 5 kHz                     |
| 100 Hz      | 2 kHz                     |
| 30 Hz       | 1 kHz                     |

# Table 3-7 Setting of RBW and Span for 60dB Down Width Measurement

14. Calculate selectivity for each RBW using the following formula, then record its result on performance verification record sheet.

Selectivity = (60dB down width data) / (3dB down width data)

# 3.2.6 IF Gain Uncertainty

# (1) Description

This test measures IF gain error in resolution bandwidth 1MHz, 3kHz and 300kHz.

The input signal level is decreased by external attenuator as the R3267/3273's reference level is decreased (IF gain increased).

Since the signal level is decreased in precise steps, any error between the reference level and the signal level is caused by analyzer's IF gain.

To measure IF gain error, use Fixed marker mode in Delta marker function.

The frequency synthesizer is phase-locked to the analyzer's 10MHz reference.

#### (2) Specification

| ±0.5dB  | 0dBm to -50dBm |
|---------|----------------|
| ± 0.7dB | 0dBm to -80dBm |

3.2.6 IF Gain Uncertainty

# (3) Equipment Used

| Signal Generator         | SG4           |
|--------------------------|---------------|
| 1dB Step Attenuator      | ATT1          |
| 10dB Step Attenuator     | ATT2          |
| Attenuator/Switch Driver | HP11713A      |
| RF Cable                 | BNC(m)-BNC(m) |
| Adapter                  | N(m)-BNC(f)   |

(4) Setup



### Figure 3-6 Setup of IF Gain Fidelity Test

(5) Procedure

- 1. Connect CAL OUT signal to INPUT using N(m)-BNC(f) adapter and BNC(m)-BNC(m) cable.
- 2. Execute AUTO CAL function.
- 3. After AUTO CAL function has completed, connect equipment as shown in Figure 3-6.
- 4. Set the SG5 controls as follows:

| Frequency       | 11MHz    |
|-----------------|----------|
| Output Level    | -5dBm    |
| 10MHz Reference | External |

5. Set value of ATT1 and ATT2 to 0dB.

| 3.2.6 IF | Gain | Uncer | tainty |
|----------|------|-------|--------|
| 1        |      |       |        |
| -        |      |       |        |
|          |      |       |        |

6. After preset R3267/3273, set R3267/3273 controls as follows:

| Center Frequency | 11MHz   |
|------------------|---------|
| Span             | Zero    |
| Reference Level  | 0dBm    |
| dB/div           | 1dB/div |
| RBW              | 1MHz    |
| VBW              | 1Hz     |

- 7. Adjust the SG5 output level to place the signal 5dB below the R3267/3273's reference level.
- 8. Set R3267/3273 to SINGLE for single sweep mode.
- 9. Press SINGLE for single sweep.
- 10. After single sweep has completed, press **SRCH** to capture signal peak, and record the marker reading as reference value on the performance verification record sheet.
- 11. Set Fixed marker mode, as follows:

MKR, Delta Marker and Fixed Marker ON/OFF(ON)

- Increase attenuation of ATT1 to 1dB, and decrease R3267/3273's reference level to 1dBm.
- 13. Press SINGLE for single sweep.
- 14. After single sweep has completed, press SRCH to capture signal peak.
- 15. Record the level of delta marker reading on the performance verification record sheet.
- 16. Repeat steps 12 through 14 for each attenuation level setting listed in Table 3-8.

3.2.6 IF Gain Uncertainty

| Step Attenuator | Reference Level |
|-----------------|-----------------|
| 2 dB            | -2 dBm          |
| 3 dB            | -3 dBm          |
| 4 dB            | -4 dBm          |
| 5 dB            | -5 dBm          |
| 6 dB            | -6 dBm          |
| 7 dB            | -7 dBm          |
| 8 dB            | -8 dBm          |
| 9 dB            | -9 dBm          |
| 10 dB           | -10 dBm         |

### Table 3-8 Setting of 1dB Step IF Gain Error Measurement

17. After preset R3267/3273, set R3267/3273 controls as follows:

| Center Frequency | 11MHz    |
|------------------|----------|
| Span             | Zero     |
| Reference Level  | 0dBm     |
| dB/div           | 10dB/div |
| RBW              | 1MHz     |
| VBW              | 1Hz      |
|                  |          |

- 18. Adjust the SG4 output level to place the signal 5dB below the R3267/3273's reference level.
- 19. Set R3267/3273 to SINGLE for single sweep mode.
- 20. Press SINGLE for single sweep.
- 21. After single sweep has completed, press **SRCH** to capture signal peak, and record the marker reading as reference value on the performance verification record sheet.
- 22. Set Fixed marker mode, as follows:

MKR, Delta Marker and Fixed MarkerON/OFF(ON)

- 23. Increase attenuation of ATT2 to 10dB, and decrease R3267/3273's reference level to -10dBm.
- 24. Press SINGLE for single sweep.
- 25. After single sweep has completed, press SRCH to capture signal peak.

#### 3.2.7 Input Attenuator Switching Accuracy

- 26. Record the level of Delta Marker reading on the performance verification record sheet.
- 27. Repeat step 24. through 26. for each attenuation level setting listed in Table 3-9.

| Step Attenuator | Reference Level |
|-----------------|-----------------|
| 20 dB           | -20dBm          |
| 30 dB           | -30dBm          |
| 40 dB           | -40dBm          |
| 50 dB           | -50dBm          |
| 60 dB           | -60dBm          |
| 70 dB           | -70 <b>d</b> Bm |
| 80 dB           | -80dBm          |

Table 3-9 Setting of 10dB Step IF Gain Uncertainty Measurement

\* For RBW=3kHz setting, it is not required to measure at -80dBm of the reference level.

 Repeat steps 5. through 27. for each RBW and Y-AXIS setting listed in Table 3-10.

### Table 3-10 Setting of RBW and Y Axis for IF Gain Uncertainty Measurement

| RBW Setting | Y Axis     |
|-------------|------------|
| 3 kHz       | 1 dB/div   |
| 300 kHz     | 0.5 dB/div |

# 3.2.7 Input Attenuator Switching Accuracy

# (1) Description

This test measures the input attenuator's switching accuracy over the full 75dB range for R3267 and 70dB for R3273.

Also measure Step-to Step switching accuracy as incremental error.

The number of frequency measured point at 4GHz for R3267, and three points at 4GHz, 15GHz and 18GHz for the R3273.

The signal generator is phase-locked to the 10MHz reference of R3267/3273.

The input attenuator switching accuracy is referenced to 10dB attenuator setting. Pre-selector tuning is required.

IF Gain uncertainty is measured when the resolution bandwidth is set to 3kHz and the result is filled in the IF Gain uncertainty of the performance verification record sheet.

3.2.7 Input Attenuator Switching Accuracy

(2) Specification

With reference to 10dB input attenuation, in the range 20dB to 70dB.

Apply for R3267

<± 1.1dB/10 dB step, ±2.0dB Max., Frequency Range: 100Hz to 8GHz.

Apply for R3273

<± 1.1 dB/10dB step, ± 2.0dB Max Frequency Range: 100Hz to 12.4GHz <± 1.3 dB/10dB step, ± 2.5dB Max Frequency Range: 12.4GHz to 18GHz <± 1.8dB/10dB step, ± 3.5dB Max Frequency Range: 18GHz to 26.5GHz

(3) Equipment Used

Signal Generator RF Cable RF Cable Adapter SG1 SMA(m)-SMA(m) BNC(m)-BNC(m) N(m)-SMA(f)

(4) Setup



Cable SMA(m)-SMA(m)



- (5) Procedure
- 1. Connect equipment as shown in Figure 3-7.
- 2. Set SG1 controls as follows:

| Frequency    | 4GHz  |
|--------------|-------|
| Output Level | -5dBm |

3. After preset R3267/3273, set R3267/3273 controls as follows:

| Center Frequency | 4GHz    |
|------------------|---------|
| Span             | 10kHz   |
| Reference Level  | 0dBm    |
| dB/div           | 1dB/div |

| Input Attenuator Switching | g Accuracy                                             |                                                      |                                            |             |  |
|----------------------------|--------------------------------------------------------|------------------------------------------------------|--------------------------------------------|-------------|--|
|                            | RBW<br>VBW                                             | 3kHz<br>10Hz                                         | · .                                        |             |  |
|                            | Sweep Time                                             | lsec                                                 |                                            |             |  |
| 4.                         | To tune pre-selector, on                               | the R3267/3273 press c                               | ontrols as follows:                        |             |  |
|                            | FREQ, more1/2, Prese                                   | l Tune and Auto Tune                                 |                                            |             |  |
| 5.                         | After pre-selector tunin that the trace peak meet      | g has completed, adjust<br>s 5 divisions below the 1 | signal generator outpu<br>reference level. | it level so |  |
| 6.                         | Press SINGLE for sing                                  | le sweep.                                            |                                            |             |  |
| 7.                         | After single sweep has                                 | completed, press SRCH                                | to capture the signal p                    | eak.        |  |
| 8.                         | Record the level of peak<br>formance verification re   | search marker reading a cord sheet.                  | as the reference value o                   | n the per-  |  |
| 9.                         | Increment input attenua                                | tor by 10dB.                                         |                                            |             |  |
| 10                         | Press SINGLE for sing                                  | le sweep.                                            |                                            |             |  |
| 11                         | . After single sweep has a                             | completed, press SRCH                                | to capture the signal p                    | eak.        |  |
| 12                         | . Read the level of the pe                             | ak search marker reading                             | g.                                         |             |  |
| 13                         | . Calculate the actual swi<br>And record the result or | tching error reference va<br>the performance verific | alue by following formation record sheet.  | ula.        |  |
|                            | Actual Marker reading measured in the step 12.         | = (Reference Value mea<br>.) - (IF gain error)       | sured in step 8.) - (Ma                    | rker level  |  |
| 14                         | . Repeat steps 9. through                              | 13. for each attenuation                             | setting listed in Table 3                  | 3-11.       |  |
| Table 3-1                  | 11 Setting of Input Atten                              | uator Switching Accur                                | acy Test                                   |             |  |
|                            | R3267/3273<br>Attenuator (dB)                          | Referenc Level<br>(dBm)                              | IF Gain(dB)                                | ]           |  |
|                            | 10                                                     | 0                                                    | 0                                          |             |  |
|                            | 20                                                     | -10                                                  | 10                                         |             |  |
|                            | 30                                                     | -20                                                  | 20                                         |             |  |
|                            | 40                                                     | -30                                                  | 30                                         | 1           |  |
|                            | 50                                                     | -40                                                  | 40                                         | 1           |  |
|                            | 60                                                     | -50                                                  | 50                                         | 1           |  |
|                            | 70                                                     | -60                                                  | 60                                         | 1           |  |

(**A** 

3.2.8 Scale Fidelity

15. Calculate the step-to-step accuracy as described in the following steps and record the result in the performance verification record sheet.

Step to step Accuracy Calculation

- 16. For the 20dB ATT setting, switching accuracy becomes step-to-step accuracy.
- 17. For the 30, 40, 50, 60 and 70dB ATT settings, subtract the 10dB down ATT switching accuracy from the current ATT switching accuracy.

Following procedures are applied for R3273 only.

18. Repeat steps 2 through 13 for each attenuator setting listed in Table 3-12 at center frequency 15GHz and 18GHz.

### Table 3-12 Setting of Input Attenuator Switching Accuracy Test for Center Frequency at 15GHz and 18GHz

| Center Frequency at 15GHz and 18GHz |                          |              |  |
|-------------------------------------|--------------------------|--------------|--|
| R3267/3273<br>Attenuator (dB)       | Reference Level<br>(dBm) | IF Gain (dB) |  |
| 10                                  | 0                        | 0            |  |
| 20                                  | -10                      | 10           |  |
| 30                                  | -20                      | 20           |  |
| 40                                  | -30                      | 30           |  |
| 50                                  | -40                      | 40           |  |
| 60                                  | -50                      | 50           |  |
| 70                                  | -60                      | 60           |  |

# 3.2.8 Scale Fidelity

### (1) Description

The 10 dB/div, 1 dB/div, and linear scales are tested for fidelity. The 10 dB/div scale is tested in RBW setting of 3kHz.

The 1dB/div scale is tested in RES BW setting of 1MHz.

A signal is set to the reference level for each scale. As the signal amplitude is decreased using external step attenuator, the displayed signal amplitude is compared to the reference level.

Incremental log fidelity is calculated from the cumulative log fidelity data.

The spectrum analyzer provides the 10MHz reference to the signal generator.

(2) Specification

| Log Scale Fidelity    | ± 0.2dB/ 1dB<br>± 0.85dB over 0 to 90dB range |
|-----------------------|-----------------------------------------------|
| Linear Scale Fidelity | ± 5% of reference level                       |



# Figure 3-8 Setup for Scale Fidelity Test

# (5) Procedure

- 1. Connect equipment as shown in Figure 3-8.
- 2. On theSG4, set the controls as follows:

| Frequency    | 11MHz |
|--------------|-------|
| Output Level | 0dBm  |

3. On the R3267/3273, after preset, set the R3267/3273 controls as follows:

| Center Frequency | 11MHz   |
|------------------|---------|
| Span             | 0Hz     |
| Reference Level  | 0dBm    |
| RBW              | 1MHz    |
| VBW              | 1Hz     |
| dB/div           | 1dB/div |
|                  |         |

4. Set the value of ATT1 and ATT2 to 0dB.

5. On the R3267/3273, press MKR to put marker on the trace.

3.2.8 Scale Fidelity

- 6. On the SG4, adjust the output level so that the marker reading is 0.0dBm  $\pm 0.01$ dB.
- 7. On the R3267/3273, press SINGLE for single sweep.
- 8. On the R3267/3273, press MKR, *Delta Marker*, *Fixed Marker ON/OFF*(ON) to set fixed marker mode.
- 9. Lower external step attenuator by 1dB.
- 10. Press SINGLE for single sweep.
- 11. Record the level of fixed marker level in the Measured Data column in the performance verification data sheet.

Calculate the incremental error by following formula and record the result in the Incremental Error in the column in the performance verification record sheet.

Incremental Error = (Current delta marker level)-(previous delta marker level) +1dB

12. Repeat steps 9. through 11. each value of external step attenuator is listed in the Table 3-13.

| Setting  |                             | Test Data                        |
|----------|-----------------------------|----------------------------------|
| RBW (Hz) | External<br>Attenuator (dB) | dB from Reference<br>Level (dBm) |
| 1M       | 0                           | 0                                |
|          | · 1                         | -1.0                             |
|          | 2                           | -2.0                             |
|          | 3                           | -3.0                             |
|          | 4                           | -4.0                             |
|          | 5                           | -5.0                             |
|          | 6                           | -6.0                             |
|          | 7                           | -7.0                             |
|          | 8                           | -8.0                             |
|          | 9                           | -9.0                             |
|          | 10                          | -10.0                            |

| Table 2.12 | Satting | fam         | 1.40 | Secto | Fidality | Toot |
|------------|---------|-------------|------|-------|----------|------|
| 1able 5-15 | Setting | 10 <b>F</b> | 100  | Scale | ridenty  | lest |

# 3.2.8 Scale Fidelity

13. On the R3267/3273, after preset, set controls as follows:

| Center Frequency | 11MHz    |
|------------------|----------|
| Span             | 0Hz      |
| Reference Level  | 0dBm     |
| RBW              | 3kHz     |
| VBW              | 1Hz      |
| dB/div           | 10dB/div |
|                  |          |

- 14. Set the value of ATT1 and ATT2 to 0dB.
- 15. On the R3267/3273, press MKR to put marker on the trace.
- 16. On the SG4, adjust the output level so that the marker reading is 0.0 dBm  $\pm 0.01$  dB.
- 17. On the R3267/3273, press SINGLE for single sweep.
- 18. On the R3267/3273, press MKR, Delta Marker and Fixed Marker ON/ OFF(ON) to set fixed marker mode.
- 19. Lower external step attenuator by 10dB.
- 20. Press SINGLE for single sweep.
- 21. Record the level of fixed marker level in the Measured Data column in the performance verification record sheet.

Calculate the incremental error by following formula and record the result in the Incremental Error in the column in the performance verification record sheet.

Incremental Error = (Current delta marker level)-(previous delta marker level) +10dB

22. Repeat steps 9 through 11 for each value of external step attenuator is listed in the Table 3-14.

3-24

3.2.8 Scale Fidelity

| Setting  |                             | Test Data                        |
|----------|-----------------------------|----------------------------------|
| RBW (Hz) | External<br>Attenuator (dB) | dB from Reference<br>Level (dBm) |
| 3k       | 0                           | 0                                |
|          | 10                          | -10.0                            |
|          | 20                          | -2.0                             |
| 1        | 30                          | -3.0                             |
|          | 40                          | -4.0                             |
|          | 50                          | -5.0                             |
|          | 60                          | -6.0                             |
|          | 70                          | -7.0                             |
|          | 80                          | -8.0                             |
|          | 90                          | -9.0                             |

### Table 3-14 Setting for 10dB Step Scale Fidelity Test

Linear Scale Fidelity

23. On the signal generator, set controls as follows:

| Frequency    | 11MHz |
|--------------|-------|
| Output Level | 0dBm  |

- 24. Set the value of ATT1 and ATT2 to 0dB.
- 25. On the R3267/3273, after preset, set controls as follows:

| Center Frequency | 11MHz |
|------------------|-------|
| Span             | 10kHz |
| Reference Level  | 0dB   |
| RBW              | 1kHz  |
| VBW              | 1kHz  |
| Attenuator       | 20dB  |

26. On the R3267/3273, press as follows, to set vertical display mode to Linear x1.

LEVEL, Linear and x1

27. On the R3267/3273, press as follows to set continuous peak search mode.

MKR, Peak and Continuous Peak ON/OFF(ON)

3.2.8 Scale Fidelity

- 28. Precisely set signal generator output level to the R3267/3273 reference level while reading the marker level on the screen.
- 29. On the R3267/3273, press SINGLE for single sweep.
- 30. Read the level value displayed on the signal generator and set the value as the reference value(Ref.).
- 31. Then set the signal generator level to the 0.92dB lower than the reference value.
- 32. On the R3267/3273, press SINGLE for single sweep.
- 33. Read the marker level and record it in the performance verification record sheet.
- 34. Repeat steps 30. through 32, for each value listed in Table 3-15.

Table 3-15 Setting of Linear Scale Fidelity Test

| Input Siganl Level |                | Divede from     |
|--------------------|----------------|-----------------|
| (dB, Norminal)     | (mV, Norminal) | Reference Level |
| 0(Ref)             | 223.60         | 0               |
| -0.92              | 201.24         | 1               |
| -1.94              | 178.88         | 2               |
| -3.10              | 156.52         | 3               |
| -4.44              | 134.16         | 4               |
| -6.02              | 111.80         | 5               |
| -7.96              | 89.44          | 6               |
| -10.46             | 67.08          | 7               |
| -19.98             | 44.72          | 8               |
| -20.00             | 22.36          | 9               |

3.2.9 Residual FM

# 3.2.9 Residual FM

### (1) Description

This test measures the inherent short term instability of the spectrum analyzer. A stable signal is applied to the spectrum analyzer input. The analyzer is set to zero span and the signal is slope detected on the skirt of the RES BW. Any instability in the spectrum analyzer's Local Oscillator system is transferred to the IF in the mixing process.

The test determines the slope of IF filter in Hz/dB and measures the signal amplitude variation caused by the residual FM. Multiplying these two values residual FM in Hz.

(2) Specification

Residual FM: N: < 3Hz x N p-p/0.1 sec Harmonics Order

SMA(m)-SMA(m)

SG3

(3) Equipment UsedSignal GeneratorRF Cable

(4) Setup



Cable SMA(m)-SMA(m)

#### Figure 3-9 Setup of Residual FM Test

(5) Procedure

Determining the IF filter slope

- 1. Connect the equipment as shown in Figure 3-9
- 2. On the SG3, set controls as follows:

| Frequency    | 2.5GHz  |
|--------------|---------|
| Output Level | -10 dBm |

3.2.9 Residual FM

| <br> |                                                                                               |                                                                  |  |
|------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|
|      |                                                                                               | · · · · · · · · · · · · · · · · · · ·                            |  |
| 3.   | On the R3267/3273, after                                                                      | r preset, set controls as follows:                               |  |
|      | Center Frequency<br>Span                                                                      | 2.5GHz<br>100kHz                                                 |  |
| 4.   | Press SRCH to capture st to on.                                                               | ignal peak, then press as follow to set signal track mode        |  |
|      | MKR, more 1/2 and Sign                                                                        | nal Track ON/OFF(ON)                                             |  |
| 5.   | Set R3267/3273 controls                                                                       | as follows:                                                      |  |
|      | Span<br>RBW                                                                                   | 1kHz<br>30Hz                                                     |  |
| 6.   | Press as follows to set sig                                                                   | mal track mode to off.                                           |  |
|      | MKR, more 1/2 and Sign                                                                        | nal Track ON/OFF(OFF)                                            |  |
| 7.   | Set R3267/3273 controls                                                                       | as follows:                                                      |  |
|      | Reference Level<br>dB/div<br>Span                                                             | -5dBm<br>1dB/div<br>200Hz                                        |  |
| 8.   | Press SRCH to capture signal peak.<br>Press as follows to set signal peak to reference level. |                                                                  |  |
|      | $MKR \rightarrow and MKR \rightarrow REF$                                                     |                                                                  |  |
| 9.   | Press SINGLE for single sweep.                                                                |                                                                  |  |
| 10.  | Press as follows to set delta marker mode to ON.                                              |                                                                  |  |
|      | MKR, Delta Marker and Delta Marker ON/OFF(ON)                                                 |                                                                  |  |
| 11.  | On the R3267/3273, rotate data knob clockwise until the marker reads $-3dB \pm 0.1dB$ .       |                                                                  |  |
| 12.  | Press as follows to set delta marker mode to ON.                                              |                                                                  |  |
|      | MKR, Delta Marker and Delta Marker ON/OFF(ON)                                                 |                                                                  |  |
| 13.  | On the R3267/3273, rotate data knob clockwise until the marker reads -6dB $\pm$ 0.1dB.        |                                                                  |  |
| 14.  | Record the frequency and<br>mance verification record                                         | d the level of the delta marker reading on the perfor-<br>sheet. |  |

200

3.2.9 Residual FM

15. Calculate the slope using the following formula on the performance verification record sheet.

Slope = (the frequency of the delta marker reading)/ (the level of the delta marker reading)

Measuring Residual FM

- 16. On the R3267/3273, press REPEAT for continuous sweep.
- 17. Set R3267/3273 controls as follows:

SpanZeroSweep Time100msec

- 18. Press **FREQ** and rotate data knob clockwise to place trace displayed peak about six division below reference level.
- 19. Press SINGLE to set single sweep mode.
- 20. Press as follows to set peak search mode and delta marker mode.

SRCH, MKR and Delta Marker

21. Press as follows to capture minimum peak signal.

#### SRCH and Min Peak

22. Record the level of delta marker reading as Delta Level on the performance verification record sheet.

#### Calculation residual FM

 Calculate the Residual FM using the following formula, Residual FM [Hz] = Slope [Hz/dB] x Delta Level[dB] Record the result on the performance verification record sheet. 3.2.10 Noise Sidebands

# 3.2.10 Noise Sidebands

### (1) Description

The noise sidebands of a 1.0GHz, 0dBm signal is measured at offsets of 1kHz, 10kHz, 100kHz and 1MHz from the carrier.

Since the measurement is made for each of 1kHz, 10kHz, 100kHz and 1MHz offset frequency, set the span 2.5kHz, 25kHz, 250kHz and 2.5MHz.

The noise marker (dBc/Hz) and averaging functions are used to average the noise sidebands at each offset.

# (2) Specification

| R3267   |               |               |                       |
|---------|---------------|---------------|-----------------------|
| Offset  | f ≤ 2.6GHz    | f > 2.6GHz    | Span                  |
| 1 kHz   | < -100 dBc/Hz | < -95 dBc/Hz  | ≤ 150 kHz             |
| 10 kHz  | < -110 dBc/Hz | <108 dBc/Hz   | ≤ 150 kHz             |
| 100 kHz | < -118 dBc/Hz | < -112 dBc/Hz | 150 kHz < Span ≤ 2MHz |
| 1 MHz   | < -135 dBc/Hz | < -135 dBc/Hz | > 2MHz                |

| R3273   |               |                      |                       |
|---------|---------------|----------------------|-----------------------|
| Offset  | f ≤ 2.6GHz    | 2.6 GHz ≤ f < 7.5GHz | Span                  |
| 1 kHz   | < -89 dBc/Hz  | < -83 dBc/Hz         | ≤ 150 kHz             |
| 10 kHz  | < -102 dBc/Hz | < -96 dBc/Hz         | ≤ 150 kHz             |
| 100 kHz | < -106 dBc/Hz | < -100 dBc/Hz        | 150 kHz < Span ≤ 2MHz |
| 1 MHz   | < -129 dBc/Hz | < -123 dBc/Hz        | > 2MHz                |

| R3273   |                       |                         |                       |
|---------|-----------------------|-------------------------|-----------------------|
| Offset  | 7.4 GHz ≤ f< 15.4 GHz | 15.2 GHz ≤ f < 26.5 GHz | Span                  |
| 1 kHz   | < -89 dBc/Hz          | < -83 dBc/Hz            | ≤ 150 kHz             |
| 10 kHz  | < -102 dBc/Hz         | < -96 dBc/Hz            | ≤ 150 kHz             |
| 100 kHz | < -106 dBc/Hz         | < -100 dBc/Hz           | 150 kHz < Span ≤ 2MHz |
| 1 MHz   | < -129 dBc/Hz         | < -123 dBc/Hz           | > 2MHz                |

3.2.10 Noise Sidebands

(3) Equipment Used
Signal Generator
RF Cable
RF Cable
Adapter
SMA(m)-SMA(m)
BNC(m)-BNC(m)
N(m)-SMA(f)

(4) Setup



Cable SMA(m)-SMA(m)

#### Figure 3-10 Setup of Noise Sidebands Test

#### (5) Procedure

- 1. Connect equipment as shown in Figure 3-10.
- 2. Set SG3 controls as follows:

| Frequency    | 1 GHz  |
|--------------|--------|
| Output Level | -5 dBm |

3. After preset R3267/3273, set R3267/3273 controls as follows:

| Center Frequency | 1 GHz   |
|------------------|---------|
| Span             | 250 kHz |

4. On the R3267/3273, press as follows:

### SRCH, MKR->, MKR->REF, SRCH, MEAS, NOISE/Hz and dBc/Hz

- 5. Put the noise marker at 100kHz offset using data knob or press 1,0,0, kHz.
- 6. Set the reference level by 20dB and press as follows to perform averaging for 20 samples:

A, Average A, 2, 0 and Hz(ENTR)

### 3.2.11 Image, Multiple, and Out-of-Band Responses

- 7. Record the level of marker reading on the performance verification record sheet.
- 8. Repeat steps 3. through 6. for each frequency setting listed in Table 3-16.

#### Table 3-16 R3267/3273 Setting of Noise Sidebands Measurement

| Center Frequency<br>(Hz) | Span (Hz) | Offset Frequency<br>(Hz) |
|--------------------------|-----------|--------------------------|
| 1GHz                     | 2.5 k     | 1 k                      |
|                          | 25 k      | 10 k                     |
|                          | 250 k     | 100 k                    |
|                          | 2.5 M     | 1000 k                   |

# 3.2.11 Image, Multiple, and Out-of-Band Responses

# (1) Description

Image, multiple, and out-of-band responses are tested in all frequency bands. A signal is applied to the signal analyzer's INPUT 50 ohm, then a reference amplitude measurement is made. The signal source is then tuned to a frequency which causes either an image, multiple, or out-of-band response. The amplitude displayed on the spectrum analyzer is measured and recorded.

#### (2) Specification

Applied for R3267 <-70dBc: 10MHz to 8GHz

Applied for R3273 < -70 dBc: 10MHz to 18GHz Band < -60dBc: 10MHz to 23 GHz Band < -50 dBc: 10MHz to 26.5GHz Band

(3) Equipment Used

| Signal Generator | SG2           |
|------------------|---------------|
| RF POWER METER   | P.M           |
| RF Power Sensor  | P.S           |
| Power Splitter   | 1579          |
| RF Cable         | SMA(m)-SMA(m) |
| Adapter          | SMA(m)-SMA(f) |

3.32

3.2.11 Image, Multiple, and Out-of-Band Responses

(4) Setup



### Figure 3-11 Setup of a Image, Multiple, Out of Band Spurious Test

(5) Procedure

- Perform the zeroing and calibration of RF POWER METER with RF Power Sensor.
  Set into dBm mode, after calibration has completed.
- 2. Set a correction data of RF POWER METER to 2GHz.
- 3. Connect equiRF Power Meterent as shown in Figure 3-11.
- 4. Set SG3 controls as follows:

| Frequency    | 2GHz |
|--------------|------|
| Output Level | 0dBm |

5. After preset R3267/3273, set R3267/3273 controls as follows:

| Center Frequency | 2GHz   |
|------------------|--------|
| Span             | 5MHz   |
| RBW              | 100kHz |
| VBW              | 300Hz  |

- 6. Adjust the output level of the signal generator so that RF POWER METER reading is  $0dBm \pm 0.1dB$ .
- 7. On the R3267/3273 press SINGLE for setting single sweep mode.
- 8. After single sweep has completed, on the R3267/3273 press SRCH to capture signal peak.
- 9. Set R3267/3273 to Fixed Marker mode, press as follows:

#### 3.2.11 Image, Multiple, and Out-of-Band Responses

### MKR, Delta Marker and Fixed Marker ON/OFF(ON)

10. On the R3267/3273, press as follows:

REPEAT, SRCH, FREQ, 1/2 more, Presel Tune, and Auto Tune.

This procedure apply for center frequency above 1.6GHz of R3267 and center frequency above 3.5GHz of R3273.

11. Set signal generator control as follow:

Frequency

### 1957.159MHz

- 12. Set correction data of RF POWER METER for frequency 1.96GHz
- 13. On the R3267/3273, press SINGLE for single sweep.
- 14. After single sweep has completed, on the R3267/3273 press SRCH to capture signal peak.
- 15. Record the Delta marker reading on the performance verification record sheet.
- 16. Repeat steps 10. through 15. for each frequency listed Table 3-17.

### Table 3-17 Setting of Image, Multiple, Out of Band Measurement

| Center Frequency | Frequency of<br>Signal Generator | Correction Data for<br>RF Power Meter |
|------------------|----------------------------------|---------------------------------------|
| 2 GHz            | 1157.159 MHz                     | 1.16 GHz                              |
| 2 GHz            | 10.462.841 MHz                   | 10.46 GHz                             |
| 2 GHz            | 8231.4205 MHz                    | 8.23 GHz                              |

17. Repeat steps 4. through 16, for each frequency setting listed in Table 3-18.

| Table 3-18 Setting of Image, | Multiple, Out of | f Band S | purious Te | est |
|------------------------------|------------------|----------|------------|-----|
|------------------------------|------------------|----------|------------|-----|

| Center Frequency | Frequency of<br>Signal Generator | Correction data for<br>RF Power Meter |
|------------------|----------------------------------|---------------------------------------|
| 7.0GHz           | 7.842.841MHz                     | 7.84GHz                               |
| 8.0GHz           | 4632.131MHz                      | 4.63GHz                               |
| 8.0GHz           | 3789.29MHz                       | 3.79GHz                               |
3.2.11 Image, Multiple, and Out-of-Band Responses

Following procedure is applied for R3273 only.

()

18. Repeat steps 4. through 16. for each frequency setting in listed in Table 3-19.

Table 3-19 Setting of Image, Multiple, Out of Band Spurious Test

| Center Frequency<br>of R3273 | Frequency of Signal<br>Generator | Correction Data<br>for RF Power Meter |
|------------------------------|----------------------------------|---------------------------------------|
| 5.5GHz                       | 6342.841MHz                      | 6.34GHz                               |
| 5.5GHz                       | 11421.421MHz                     | 11.4GHz                               |
| 5.5GHz                       | 17342.841MHz                     | 17.3GHz                               |
| 5.5GHz                       | 23267.262MHz                     | 23.3GHz                               |
| 12.0GHz                      | 12842.841MHz                     | 12.8GHz                               |
| 12.0GHz                      | 5789.29MHz                       | 5.79GHz                               |
| 12.0GHz                      | 18210.71MHz                      | 18.2GHz                               |
| 12.0GHz                      | 24421.421MHz                     | 24.4GHz                               |
| 21.0GHz                      | 21842.841MHz                     | 21.8GHz                               |
| 21.0GHz                      | 6719.053MHz                      | 6.72GHz                               |
| 21.0GHz                      | 13859.527MHz                     | 13.9GHz                               |
| 24.4GHz                      | 25242.841MHz                     | 25.2GHz                               |
| 24.4GHz                      | 5783.935MHz                      | 5.78GHz                               |
| 24.4GHz                      | 11989.29MHz                      | 12.0GHz                               |
| 24.4GHz                      | 18194.645MHz                     | 18.2GHz                               |

3.2.12 Accuracy of Frequency Readout and Frequency Count Marker

# 3.2.12 Accuracy of Frequency Readout and Frequency Count Marker

(1) Description

The accuracy of the spectrum analyzer frequency readout and frequency count marker is tested with an input signal of known frequency.

Test at the points 2GHz, 5GHz, 11GHz and 18GHz. The points 11GHz and 18GHz are applied for R3273 only.

For the points of frequencies above 5GHz are required to tune pre-selector peak.

(2) Specification

Accuracy of Frequency Readout  $\pm$ (Center Frequency × Frequency Reference Accuracy + Frequency span × Frequency Span Accuracy + 0.15 × Resolution band width + 10Hz)

Span Accuracy <± 1%

Accuracy of Frequency Counter Marker ±(Marker Frequency × Frequency Reference Accuracy + 5 Hz × N + 1 LSD) Span < 1GHz S/N >25 dB N: Band

(3) Equipment used

| Frequency Standard | Freq.STD      |
|--------------------|---------------|
| Signal Generator   | SG2           |
| RF Cable           | BNC(m)-BNC(m) |
| RF Cable           | SMA(m)-SMA(m) |
| Adapter            | N(m)-SMA(f)   |

(4) Setup



Cable SMA(m)-SMA(m)



3.2.12 Accuracy of Frequency Readout and Frequency Count Marker

### (5) Procedure

- 1. Connect equipment as shown in Figure 3-12.
- 2. Set the signal generator controls as follows:

| Frequency       | 2GHz     |
|-----------------|----------|
| Output Level    | -10dBm   |
| 10MHz Reference | External |

3. After preset R3267/3273, set R3267/3273 controls as follows:

| Center Frequency | 2GHz |
|------------------|------|
| Span             | 1MHz |

4. On the R3267/3273, press as follows to tune pre-selector peak for the frequency above 5GHz.

REPEAT, SRCH, FREQ, more 1/2, Presel Tune and Auto Tune

- 5. After tuning has completed, on the R3267/3273, press SINGLE for single sweep
- 6. On the R3267/3273, press SRCH to capture signal peak.
- 7. Record the frequency of marker reading on the performance verification record sheet.
- 8. Repeat steps 2 through 6 for each frequency setting listed in Table 3-20.

 Table 3-20 Setting of Frequency Readout Accuracy Test

| Setting of<br>Signal<br>Generator | Setting of R3267/3273 |         | Setting of<br>Signal<br>Generator | Applied for         | R3273 only |
|-----------------------------------|-----------------------|---------|-----------------------------------|---------------------|------------|
| Frequency                         | Center<br>Frequency   | Span    | Frequency                         | Center<br>Frequency | Span       |
| 2 GHz                             | 2 GHz                 | 1 MHz   | 11 GHz                            | 11 GHz              | 1 MHz      |
|                                   | ļ                     | 10 MHz  |                                   |                     | 10 MHz     |
|                                   |                       | 20 MHz  |                                   |                     | 20 MHz     |
|                                   |                       | 50 MHz  |                                   |                     | 50 MHz     |
|                                   | , I                   | 100 MHz |                                   |                     | 100 MHz    |
|                                   |                       | 2 GHz   |                                   |                     | 2 GHz      |

# 3.2.12 Accuracy of Frequency Readout and Frequency Count Marker

| Setting of<br>Signal<br>Generator | Setting of I        | R3267/3273 | Setting of<br>Signal<br>Generator | Applied for         | R3273 only |
|-----------------------------------|---------------------|------------|-----------------------------------|---------------------|------------|
| Frequency                         | Center<br>Frequency | Span       | Frequency                         | Center<br>Frequency | Span       |
| 5 GHz                             | 5 GHz               | 1 MHz      | 18 GHz                            | 18 GHz              | 1 MHz      |
|                                   |                     | 10 MHz     |                                   |                     | 10 MHz     |
|                                   |                     | 20 MHz     |                                   |                     | 20 MHz     |
|                                   |                     | 50 MHz     |                                   | ;<br>;              | 50 MHz     |
|                                   |                     | 100 MHz    |                                   |                     | 100 MHz    |
|                                   |                     | 2 GHz      |                                   |                     | 2 GHz      |

Frequency Counter Marker Accuracy

9. On the signal generator, set controls as follows:

| Frequency       | 2 GHz    |
|-----------------|----------|
| Output Level    | -10dBm   |
| 10MHz Reference | External |

10. On the R3267/3273, set R3267/3273 controls as follows:

| Center Frequency | 2GHz |
|------------------|------|
| Span             | 1MHz |

11. On the R3267/3273, press as follows to tune pre-selector peak for the frequency above 5GHz

REPEAT, SRCH, FREQ, more1/2, Presel Tune and Auto Tune

12. Press as follows to set frequency counter mode.

MEAS, Counter, Resolution 1Hz and Counter ON/OFF (ON)

- 13. On the R3267/3273, press SINGLE for single sweep.
- 14. Press SRCH to capture signal peak.
- 15. Record the frequency of the counter reading on the performance verification data sheet.
- 16. Repeat steps 9 through 16 for each setting listed in Table 3-21.

3.2.13 Second Harmonic Distortion

| Setting of Signal<br>Generator | Setting of R3267/3273 |      |  |
|--------------------------------|-----------------------|------|--|
| Frequency                      | Center Frequency      | Span |  |
| 2GHz                           | 2GHz                  | 1MHz |  |
| 5GHz                           | 5GHz                  | 1MHz |  |
| 11GHz                          | 11GHz                 | 1MHz |  |
| 18GHz                          | 18GHz                 | 1MHz |  |

#### Table 3-21 Setting for Frequency Counter Marker Accuracy

# 3.2.13 Second Harmonic Distortion

### (1) Description

A synthesized signal generator and low-pass filter provide the signal for measuring second harmonic distortion. The low-pass filter eliminates any harmonic distortion originating at the signal source. The R3267/3273 frequency response is calibrated.

The signal generator is phase-locked to the spectrum analyzer's 10MHz reference.

Test will be done the points of 1.5GHz and 3.8GHz as fundamental signal.

To measure second harmonics distortion, use Fixed Marker in Delta Marker function.

### (2) Specification

Apply for R3267

<-70dBc:(Fundamental Frequency 10MHz to 1.75GHz, -30dBm mixer input level)

< -90dBc:(Fundamental Frequency > 1.75GHz, -10dBm mixer input level) at 3.5GHz Pre-selector Band

< -90dBc:(Fundamental Frequency > 800MHz,-10dBm mixer input level) at 1.6GHz Pre-selector Band

Apply for R3273

< -70dBc:(Fundamental Frequency 10MHz to 3.5GHz, -30dBm mixer input level) < -100dBc:(Fundamental Frequency > 1.7GHz, -10dBm mixer input level)

(3) Equipment Used

| Signal Generator     | SG1           |
|----------------------|---------------|
| RF Power Meter       | PM            |
| RF Power Sensor      | P.S           |
| Power Splitter       | 1579          |
| 2GHz Low-pass Filter | L.P.F         |
| RF Cable             | SMA(m)-SMA(m) |
| RF Cable             | BNC(m)-BNC(m) |
| Adapter              | N(m)-SMA(f)   |

#### 3.2.13 Second Harmonic Distortion

(4) Setup



## Figure 3-13 Setup of a Second Harmonics Distortion Test

# (5) Procedure

- 1. Perform the zeroing and calibration of RF Power Meter with RF Power Sensor. Set into dBm mode, after calibration has done.
- 2. Set a correction data of RF power meter to 1.5GHz.
- 3. Connect equipment as shown in Figure 3-13.
- 4. Set signal generator controls as follows:

| Frequency       | 1.5GHz   |
|-----------------|----------|
| Output Level    | 0dBm     |
| 10MHz Reference | External |

5. After preset R3267/3273, set R3267/3273 controls as follows:

| Center Frequency | 1.5GHz |
|------------------|--------|
| Span             | 10kHz  |
| Attenuator       | 20dB   |
| Reference Level  | -10dBm |
| VBW              | 30Hz   |
|                  |        |

- 6. Adjust output level of signal generator so that the power meter reading is -10dBm  $\pm 0.09$ dB.
- 7. Set R3267/3273 to single sweep mode, press SINGLE for single sweep.
- 8. After single sweep has completed, press SRCH to capture signal peak.

3.2.13 Second Harmonic Distortion

9. Press as follows to set R3267/3273 Fixed Marker to ON.

#### MKR, Delta Marker and Fixed Marker ON/OFF(ON)

- 10. Set R3267/3273's Center Frequency to 3GHz.
- 11. Press SINGLE for single sweep.
- 12. Press SRCH to capture signal peak.
- 13. Record the level of the delta marker reading on the performance verification record sheet.

### Measurement for 3.6GHz or higher band

- 14. Remove the low-pass filter and connect the RF cable between SG1 and the R3267/3273.
- 15. Set SG1controls as follows:

| Frequency    | 3.8GHz |
|--------------|--------|
| Output Level | -10dBm |

16. After preset R3267/3273, set R3267/3273 controls as follows:

| Center Frequency | 3.8GHz |
|------------------|--------|
| Span             | 500kHz |

17. Press as follows to tune pre-selector peak.

#### SRCH, FREQ, more1/2, Presel Tune and Auto Tune

18. After auto tuning has completed, set SG1 controls as follows:

Frequency 1.9GHz Output Level 0dBm

- 19. Reconnect signal generator as shown in Figure 13.
- 20. Set a correction data of RF power meter to 1.9GHz.
- 21. Adjust output level of signal generator so that power meter reading is -10dBm  $\pm 0.09$ dB.
- 22. Set R3267/3273 controls as follows:

Center Frequency 1.9GHz Span 1kHz

3.2.14 Frequency Response

#### 23. Press as follows to set R3267/3273 Fixed Marker to ON.

MKR, Delta Marker and Fixed Marker ON/OFF(ON)

24. Set R3267/3273 controls as follows

| Center Frequency | 3.8GHz |
|------------------|--------|
| Reference Level  | -40dBm |

25. Press as follows to set R3267/3273 to average mode for 20 samples.

A, Average A, 2, 0 and Hz(ENTER)

- 26. After average has completed, press SRCH to capture signal peak.
- 27. Record the level of the delta marker reading on the performance verification record sheet.

# 3.2.14 Frequency Response

(1) Description

The output of the signal generator is fed through a power splitter to a power sensor, then to the spectrum analyzer. The signal generator's power level is adjusted at 30MHz to place the displayed signal at the center horizontal graticule line of the spectrum analyzer. The power meter is placed in RATIO mode. At each new signal generator frequency and spectrum analyzer center frequency, the signal generator's power level is adjusted to place the signal at the center horizontal graticule line. The RF power meter displays the inverse of the frequency response relative to the signal of CAL OUT. The signal generator is phase locked to the R3267/3273's 10MHz reference.

(2) Specification

Apply for R3267

| ± 1.5dB | Frequency Range: 100Hz to 3.5GHz  |
|---------|-----------------------------------|
| ± 1.0dB | Frequency Range: 50MHz to 2.6GHz  |
| ± 1.5dB | Frequency Range: 1.6GHz to 3.5GHz |
| ± 1.5dB | Frequency Range: 3.5GHz to 7.0GHz |
| ± 1.5dB | Frequency Range: 6.9GHz to 8.0GHz |

Frequency response relative to the CAL OUT (30MHz): < ± 3.0dB Band Switching Error : < ± 0.3dB

| Apply for R3273 |                                     |
|-----------------|-------------------------------------|
| ± 1.5dB         | Frequency Range: 100Hz to 3.5GHz    |
| ± 1.0dB         | Frequency Range: 50MHz to 2.6GHz    |
| ± 1.5dB         | Frequency Range: 3.5GHz to 7.5GHz   |
| ± 3.5dB         | Frequency Range: 7.4GHz to 15.4GHz  |
| ± 4.0dB         | Frequency Range: 15.4GHz to 26.5GHz |
|                 |                                     |

Frequency response relative to the CAL OUT (30MHz): < ± 5.0dB Band Switching Error : < ± 0.3dB

3.2.14 Frequency Response

## (3) Equipment Used

(4) Setup

Cable BNC(m)-BNC(m)

SMA(m)-SMA(m) BNC(m)-BNC(m)

SG2 P.M NRVZ52 1579



## Figure 3-14 Setup of Frequency Response Test

(5) Procedure

- 1. Perform the zeroing and calibration of RF Power Meter with RF Power Sensor. Set into dBm mode, after calibration has done.
- 2. Connect equipment as shown in Figure 3-14.
- 3. On theSG2, set the SG2 controls as follows:

| Frequency      | 30MHz  |
|----------------|--------|
| Frequency Step | 100MHz |
| Output Level   | -4dBm  |

4. On the R3267/3273, after preset, set R3267/3273 controls as follows:

| Center Frequency      | 30MHz    |
|-----------------------|----------|
| Center Frequency Step | 100MHz   |
| Span                  | 40MHz    |
| Reference Level       | -5dBm    |
| dB/div                | 1 dB/div |
| RBW                   | 3MHz     |
| VBW                   | 1kHz     |

3.2.14 Frequency Response

- 5. Press SRCH and Continuous Peak to set continuos peak search mode.
- 6. Adjust signal generator output level so that reading of peak search marker is  $10dBm \pm 0.09dB$ .
- On the RF power meter, set correction data for 30MHz and relative measurement mode.

Measuring frequency response in the frequency range: 100Hz to 3.5GHz

- 8. Set frequency of SG2 to 100MHz
- 9. On the R3267/3273, set center frequency to 100MHz.
- 10. On the RF power meter, set correction data for 100MHz.
- 11. Adjust output level of SG2 so that reading of peak search marker is -10dBm ± 0.09dB.
- 12. Record the display of RF power meter reading with reverse sign in performance verification record sheet.
- 13. On the R3267/3273, press FREQ and  $\Delta$  to increase center frequency by 100MHz step.
- 14. On the SG2, increment the frequency of output by 100MHz.
- 15. On the RF power meter, set the correction data for the frequency by 100MHz step.
- 16. Repeat steps 11. through 15. for every center frequency by 100MHz step up the center frequency to 3.5GHz listed in performance verification record sheet.
- 17. Calculation of In-Band Flatness for frequency range 100Hz to 3.5GHz
- (1) Enter the most positive value from performance verification record sheet.

#### Measured Value dB

The absolute value of this number should be less than 3dB for R3267. The absolute value of this number should be less than 5dB for R3273

(2) Enter the most negative value from performance verification record sheet.

#### Measured Value dB

The absolute value of this number should be less than 3dB for R3267. The absolute value of this number should be less than 5dB for R3273

(3) Subtract (2) from (1) then record on the performance verification record sheet as peak to peak deviation.
 The result should be less than 3.0dB for R3267 and R3273.

Record the result on the performance verification record sheet as peak to peak deviation.

3.2.14 Frequency Response

- 18. Calculation of In-Band Flatness for frequency range 50MHz to 2.6GHz
- (1) Enter the most positive value from performance verification record sheet between 100MHz to 2.6GHz.

Measured Value dB

The absolute value of this number should be less than 3dB for R3267. The absolute value of this number should be less than 5dB for R3273

(2) Enter the most negative value from performance verification record sheet between 100MHz and 2.6GHz.

#### Measured Value dB

(3) Subtract (2) from (1) then record on the performance verification record sheet as peak to peak deviation. The result should be less than 3.0dB for R3267 and R3273.

Measuring frequency response in the frequency range 3.5GHz to 7.5GHz

For testing this frequency range, pre selector tune is required.

- 19. On the R3267/3273, set center frequency to 3.6GHz.
- 20. On the SG2, set the frequency to 3.6GHz.
- 21. On the RF power meter set the correction data for 3.6GHz.
- 22. On the R3267/3273, press as follows to tune the pre selector.

FREQ, more I/2, Presel Tune and Auto Tune.

- 23. After the auto tuning has completed, adjust SG2 output level so that the marker reading is -10.0 dBm  $\pm 0.09$  dB.
- 24. Record the display of RF power meter reading with reverse sign in performance verification data sheet.
- 25. On the R3267/3273, press FREQ and  $\Delta$  to set center frequency by 100MHz step.
- 26. On the SG2, increment the frequency of output by 100MHz.
- 27. On the RF power meter, set the correction data for the frequency by 100MHz step.
- 28. Repeat steps 22. through 27. for every center frequency by 100MHz step up the center frequency to 7.5GHz listed in performance verification record sheet.
- 29. Calculation of In-Band Flatness for frequency range 3.5GHz to 7.5GHz

3.2.14 Frequency Response

(1) Enter the most positive value from performance verification record sheet.

Measured Value dB The absolute value of this number should be less than 3dB for R3267. The absolute value of this number should be less than 5dB for R3273

(2) Enter the most negative value from performance verification record sheet.

Measured Value dB The absolute value of this number should be less than 3dB for R3267. The absolute value of this number should be less than 5dB for R3273

(3) Subtract (2) from (1) then record on the performance verification record sheet as peak to peak deviation.

The result should be less than 3.0dB for R3267 and R3273. Record the result on the performance verification record sheet as peak to peak deviation.

Measuring frequency response in the frequency range 7.5GHz to 8GHz apply for R3267 Measuring frequency response in the frequency range 7.5GHz to 15.4GHz apply for R3273

For the frequency range, verify frequency response by 200MHz step.

- 30. On the R3267/3273, set CF step size to 200MHz.
- 31. On the R3267/3273, set center frequency to 7.5GHz.
- 32. On the SG2, set the frequency of output to 7.5GHz.
- 33. On the RF power meter, set the correction data for 7.5GHz.
- 34. On the R3267/3273, press as follows to tune the pre selector.

FREQ, more1/2, Presel and Auto Tune

- 35. After the auto tuning has completed, adjust SG2 output level so that the marker reading is -10.0dBm ±0.09dB.
- 36. Record the display of RF power meter reading with reverse sign in performance verification data sheet.
- 37. On the R3267/3273, press FREQ and  $\Delta$  to set center frequency by 200MHz step.
- 38. On the SG2, On the SG2, increment the frequency of output by 200MHz.
- 39. On the RF power meter, set the correction data for the frequency by 200MHz step.
- 40. For R3267, repeat steps 34. through 39. for every center frequency by 200MHz step up the center frequency to 8GHz listed in performance verification record sheet.

3.2.14 Frequency Response

For R3273, repeat t steps 34. through 39. for every center frequency by 200MHz step up the center frequency to 15.4GHz listed in performance verification record sheet.

- 41. Calculation of In-Band Flatness for frequency range 7.5GHz to 8GHz for R3267
- Calculation of In-Band Flatness for frequency range 7.5GHz to 15.4GHz for R3273.
- (1) Enter the most positive value from performance verification record sheet.

Measured Value dB

The absolute value of this number should be less than 3dB for R3267. The absolute value of this number should be less than 5dB for R3273

(2) Enter the most negative value from performance verification record sheet.

Measured Value dB

The absolute value of this number should be less than 3dB for R3267. The absolute value of this number should be less than 5dB for R3273

(3) Subtract (2) from (1) then record on the performance verification record sheet as peak to peak deviation.

The result should be less than 3.0dB for R3267. The result should be less than 7.0dB for R3273. Record the result on the performance verification record sheet as peak to peak deviation.

Measuring frequency response in the frequency range 15.4GHz to 26.5Ghz is applied for R3273 only

- 43. On the R3273, set center frequency to 15.4GHz.
- 44. On the SG2, set the frequency of output to 15.4GHz.
- 45. On the RF power meter, set the correction data for 15.4GHz.
- 46. On the R3273, press as follows to tune pre selector.

FREQ, more1/2, Presel and Auto Tune

- 47. After the auto tuning has completed, adjust SG2 output level so that the marker reading is -10.0dBm ±0.09dB.
- 48. Record the display of RF power meter reading with reverse sign in performance verification data sheet.
- 49. On the R3273, press **FREQ** and  $\Delta$  to set center frequency by 200MHz step.
- 50. On the SG2, increment the frequency of output by 200MHz.
- 51. On the RF power meter, set the correction data for the frequency by 200MHz step.

# 3.2.15 Frequency Span Accuracy

- 52. Repeat step 47. through 51. for every center frequency by 200MHz step up the center frequency to 25.6GHz listed in performance verification record sheet.
- Calculation of In-Band Flatness for frequency range 15.4GHz to 26.5GHz for R3267
- (1) Enter the most positive value from performance verification record sheet.

Measured Value dB The absolute value of this number should be less than 5.0dB

(2) Enter the most negative value from performance verification record sheet.

#### Measured Value dB

The absolute value of this number should be less than 5dB.

- (3) Subtract (2) from (1) then record on the performance verification record sheet as peak to peak deviation. The result should be less than 8.0dB.
- 54. Record the result on the performance verification record sheet as peak to peak deviation.

# 3.2.15 Frequency Span Accuracy

(1) Description

Set the signal frequency twice with the signal generator and measure the difference between signal frequencies with the analyzer.

Check the span accuracy using the signal frequency difference measured with the Delta marker function.

The signal generator is phase-locked to the analyzer's 10MHz reference.

(2) Specification

 $< \pm 1\%$  of the frequency span setting.

(3) Equipment used

| Signal Generator | SG2           |
|------------------|---------------|
| RF Cable         | SMA(m)-SMA(m) |
| RF Cable         | BNC(m)-BNC(m) |
| Adapter          | N(m)-SMA(f)   |

3.2.15 Frequency Span Accuracy

(4) Setup



Cable BNC(m)-BNC(m)

#### Figure 3-15 Setup of a Frequency Span Accuracy Test

- (5) Procedures:
- 1. Connect equipment as shown in Figure 3-15.
- 2. On the SG2, set controls as follows:

Output Level-5dBm10MHz ReferenceExternal

- 3. Preset R3267/3273.
- 4. On the SG2, set controls as follow for 1st frequency.

Frequency

1.999992 GHz

5. On the R3267/3273, set R3267/3273 controls as follows:

Center Frequency2 GHzSpan20 kHz

- 6. Press SINGLE for single sweep.
- 7. After sweep has completed, press SRCH to capture signal peak.
- 8. Press as follows to set delta marker to ON.

# MKR, Delta Marker and Delta Marker ON/OFF (ON)

9. On the SG2, set the SG2 as follow for 2nd frequency.

Frequency

2.000008GHz

10. Press **SINGLE** for single sweep.

3.2.15 Frequency Span Accuracy

- 11. After sweep has completed, press SRCH to capture signal peak.
- 12. Record the frequency of delta marker on the performance verification record sheet.
- 13. Repeat steps 4. through 12. for each frequency setting listed in Table 3-22.

**Table 3-22 Setting of Center and Span Frequencies** 

| 1st Frequency<br>of Signal<br>Generator<br>(GHz) | 2nd Frequency<br>of Signal<br>Generator<br>(GHz) | Center Frequency<br>(GHz) | Span(Hz) |
|--------------------------------------------------|--------------------------------------------------|---------------------------|----------|
| 1.999980                                         | 2.000020                                         | 2                         | 50 k     |
| 1.999940                                         | 2.000160                                         | 2                         | 400 k    |
| 1.9992                                           | 2.0008                                           | 2                         | 2 M      |
| 1.9992                                           | 2.0008                                           | 2                         | 2.01 M   |
| 1.998                                            | 2.002                                            | 2                         | 5 M      |
| 1.996                                            | 2.004                                            | 2                         | 10 M     |
| 1.992                                            | 2.008                                            | 2                         | 20 M     |
| 1.98                                             | 2.02                                             | 2                         | 50 M     |
| 1.96                                             | 2.04                                             | 2                         | 100 M    |
| 1.92                                             | 2.08                                             | 2                         | 200 M    |
| 1.8                                              | 2.2                                              | 2                         | 500 M    |
| 1.6                                              | 2.4                                              | 2                         | 1 G      |
| 1.2                                              | 2.8                                              | 2                         | 2 G      |
| 2.9                                              | 6.1                                              | 4.5                       | 4 G      |
| 1.3                                              | 7.7                                              | 4.5                       | 8 G      |

14. Repeat steps 4. through 12. for each frequency setting listed in Table 3-23. It is applied for R3273 only.

3.2.16 Third Order Intermodulation Distortion

| 1st Frequency<br>of Signal<br>Generator<br>(GHz) | 2nd Frequency<br>of Signal<br>Generator<br>(GHz) | Center<br>Frequency<br>(GHz) | Span(Hz) |
|--------------------------------------------------|--------------------------------------------------|------------------------------|----------|
| 9.996                                            | 10.004                                           | 10                           | 10 M     |
| 9.96                                             | 10.04                                            | 10                           | 100 M    |
| 9.6                                              | 10.4                                             | 10                           | 1 G      |
| 9.2                                              | 10.8                                             | 10                           | 2 G      |
| 16.996                                           | 17.004                                           | 17                           | 10 M     |
| 16.96                                            | 17.04                                            | 17                           | 100 M    |
| 16.6                                             | 17.4                                             | 17                           | 1 G      |
| 16.2                                             | 17.8                                             | 17                           | 2 G      |
| 8                                                | 12                                               | 10                           | 5 G      |
| 6                                                | 14                                               | 10                           | 10 G     |
| 2                                                | 18                                               | 10                           | 19 G     |

Table 3-23 Setting of Center and Span Frequencies for Span Accuracy Test

# 3.2.16 Third Order Intermodulation Distortion

# (1) Description

Two Signal generators provide the signals required for measuring third order intermodulation. It is difficult when the input level is low because of being buried to the noise, to measure the spectrum generated by the distortion. Third ordered inter-modulation is raised by 20dB if the input level is raised by 10dB. Then, examine with mixer input level set in -20dBm after the specification is converted into a value, which is 20dB larger. Here provides procedure at -20dBm for a total mixer input level. The test points of center frequencies are 20.5MHz, 105MHz, 1500MHz, 2000MHz, 3600MHz and 8000MHz. The point of 8000MHz is applied for R3273 only.

#### (2) Specification

Total mixer input level: -30dBm

### Apply for R3267

< -70dBc Frequency Range: 10MHz to 100MHz Band < -80dBc Frequency Range: 100MHz to 1.0GHz Band < -85dBc Frequency Range: 1.0GHz to 3.5GHz Band

< -90dBc Frequency Range: 1.6GHz to 8.0GHz Band

#### Apply for R3273

< -70dBc Frequency Range: 10MHz to 100MHz Band

- < -80dBc Frequency Range: 100MHz to 1.0GHz Band
- < -85dBc Frequency Range: 3.5GHz to 7.5GHz Band
- < -75dBc Frequency Range: 7.5GHz to 26.5GHz Band

# 3.2.16 Third Order Intermodulation Distortion

(3) Equipment Used

| Signal Generator       | SG1           |
|------------------------|---------------|
| Signal Generator       | SG2           |
| RF Power Meter         | P.M           |
| <b>RF</b> Power Sensor | P.S           |
| Power Divider          | Divider1      |
| Power Divider          | Divider2      |
| RF Cable               | SMA(m)-SMA(m) |
| Adapter                | N(m)-SMA(f)   |
| •                      | SMA(f)-SMA(f) |

(4) Setup



Figure 3-16 Setup of Third Order Intermodulation Test

#### (5) Procedure

Third Order Intermodulation (<1GHz)

- 1. Perform the zeroing and calibration of RF Power Meter with RF Power Sensor. Set into dBm mode, after calibration has done.
- 2. Set a correction data of RF power meter to 20.5MHz
- 3. Connect RF power sensor to divider1 output.
- 4. On the both of signal generator, set controls as follows:

| SG2          |         |
|--------------|---------|
| Frequency    | 20.5MHz |
| Output Level | -10dBm  |
| RF Output    | Off     |

3.2.16 Third Order Intermodulation Distortion

- SG1 Frequency 20.6MHz Output Level -10dBm RF Output Off
- 5. Turn RF output on of SG2.
- 6. Adjust SG2 output level so that RF power meter reading is -10.0dBm ± 0.1dB.
- 7. Turn RF output off of SG2, and turn RF output on of SG1.
- 8. Adjust SG1 output level so that RF power meter reading is -10.0dBm  $\pm 0.1$ dB then turn RF output to off.
- 9. Remove RF power sensor from divider, then connect R3267/3273 input. After preset R3267/3273, set R3267/3273 controls as follows:

| Center Frequency | 20.5MHz |
|------------------|---------|
| Span             | 1MHz    |
| Attenuator       | 10dB    |
| Reference Level  | -10dBm  |
| RBW              | 3kHz    |
| VBW              | 300Hz   |

- 10. Turn RF output on for both of signal generator.
- 11. Press as follows to tune pre-selector.

FREQ, more1/2, Presel Tune and Auto Tune

- 12. On the R3267, this procedures are required for the frequency above 1.6GHz.
- 13. On the R3273, this procedures are required for the frequency above 3.5GHz.
- 14. After auto tuning has completed, to set reference level setting to be same as signal peak, operate as follows:

SRCH,  $MKR \rightarrow$  and  $Marker \rightarrow Ref$ 

15. Set R3267/3273 to 3rd order Measure mode as follows:

### MEAS and 3rd Order Measure

- 16. Record the level of delta marker reading in dBc on the performance verification data sheet.
- 17. Repeat steps 2. through 15. for each frequency setting listed in Table 3-24.

# 3.2.17 Gain Compression

| Frequency<br>of SG1<br>(MHz) | Frequency<br>of SG2<br>(MHz) | Center<br>Frequency<br>(MHz) | VBW<br>(Hz) | Correction<br>Data<br>for P.M. | Power<br>Divider<br>Used |
|------------------------------|------------------------------|------------------------------|-------------|--------------------------------|--------------------------|
| 105                          | 105.1                        | 105                          | 300         | 105MHz                         | Divider 1                |
| 1500                         | 1500.1                       | 1500                         | 300         | 1.5GHz                         | Divider 1                |
| 2000                         | 2000.1                       | 2000                         | 100         | 2.0GHz                         | Divider 2                |
| 3600                         | 3600.1                       | 3600                         | 100         | 3.6GHz                         | Divider 2                |

### Table 3-24 Setting of Third Order Intermodulation Measurement

18. Repeat steps 2. through 15. for a frequency setting listed in Table 3-25.

Table 3-25 Setting of Third Order Intermodulation Measurement applied for R3273

| Frequency | Frequency | Center    | VBW(Hz) | Correction | Power     |
|-----------|-----------|-----------|---------|------------|-----------|
| of SG1    | of SG2    | Frequency |         | Data       | Divider   |
| (MHz)     | (MHz)     | (MHz)     |         | for P.M.   | Used      |
| 8000      | 8000.1    | 8000      | 100     | 8GHz       | Divider 2 |

# 3.2.17 Gain Compression

(1) Description

This test measures the analyzer's gain compression using two signals that are 1 MHz apart. First the test places a -30dBm signal at the input of the R3267/3273(the R3267/3273's reference level is also set to -30dBm).

Then the specified signal level is input to the R3267/3273, overdriving its input. The decrease in the first signal's amplitude (gain compression) caused by the second signal is the measured gain compression.

This test measures gain compression at the point of 10.5MHz, 200.5MHz, 3600.5MHz and 7600.5MHz. Both of 3600.5MHz and 7600.5MHz are required pre-selector tuning.

#### (2) Specification:

Applied for R3267

< -3dBm (mixer input level): 10 MHz to 100 MHz

< 0dBm (mixer input level): > 100 MHz

Applied for R3273

< -3dBm(mixer input level): 10 MHz to 100 MHz

< 0dBm(mixer input level): 100 MHz to 3.5 GHz

< -10dBm(mixer input level): 3.5 GHz to 7.5 GHz

< -3dBm(mixer input level): 7.5 GHz to 26.5 GHz

3.2.18 Sweep Time Accuracy

15. To tune pre-selector peak, operate R3267/3273 as follows:

SRCH, FREQ, more1/2, Presel Tune and Auto Tune

16. After auto tune has completed, set R3267/3273 controls as follows:

dB/div 1dB/div Reference Level -30dBm

- 17. Turn output level off of the SG1
- Adjust the output level of SG2 for a displayed signal of -30dBm ± 0.1 dB on the R3267/3273 screen.
- 19. Turn output level on of the SG1.
- 20. Adjust output level of SG1 until the signal level at 2.5 division in the left hand part on the R3267/3273 screen is lowed by 1dB from -30dBm.
- 21. Remove the RF cable from the input terminal of R3267/3273, connect RF power sensor there.
- 22. Set correction data on the RF power meter to 3600.5MHz.
- 23. Record the level of the RF power meter reading on the performance test data sheet.
- 24. Repeat steps 14. through 23. for the center frequency 7600.5MHz, as the following setting.

SG1 Frequency 7600MHz SG2 Frequency 7601MHz R3267/3273 Center Frequency

7600.5MHz

# 3.2.18 Sweep Time Accuracy

(1) Description

A low frequency signal (Square Wave) is displayed on the R3267/3273 in ZERO Span mode, and measure the frequency of the displayed signal using Video trigger.

(2) Specification

 $\leq \pm 3\%$  of sweep time setting

3.2.18 Sweep Time Accuracy

(3) Equipment Used
 Signal Generator
 RF Cable
 Adapter
 SG4
 BNC(m)-BNC(m)
 N(m)-BNC(f)

(4) Setup



Cable BNC(m)-BNC(m)

## Figure 3-18 Setup of a Sweep Time Accuracy Test

#### (5) Procedure

- 1. Connect equipment as shown in Figure 3-18.
- 2. On the SG4, set SG4 controls as follows:

| Frequency    | 22kHz  |
|--------------|--------|
| Output Level | -10dBm |
| Wave form    | Square |

3. After preset R3267/3273, set R3267/3273 controls as follows:

| Center Frequency | 0MHz    |
|------------------|---------|
| Span             | Zero    |
| Reference Level  | -10dBm  |
| dB/div           | 1dB/div |
| Sweep Time       | 50&usec |
|                  |         |

4. On the R3267/3273, press as follows for the measurement.

# SWP, Trigger Setup and Trigger Select

- 5. Move the cursor to Source and select VIDEO, + for trigger slope.
- 6. Press Trigger Level and adjust the trigger level for sweep using data knob.
- 7. On the R3267/3273, press SINGLE for single sweep.
- 8. After sweep has completed, press MKR then move it to leading edge on the wave form.

3.2.18 Sweep Time Accuracy

- 9. Record the time of the marker reading on the performance verification record sheet.
- 10. Repeat steps 7. through 9. for each sweep time setting listed in Table 3-26.

Table 3-26 Setting of Sweep Time and Signal Generator Frequency

| Sweep Time | Frequency of Signal<br>Generator |
|------------|----------------------------------|
| 1 μs       | 1.1 MHz                          |
| 2 μs       | 550 kHz                          |
| 5 μs       | 220 kHz                          |
| 10 µs      | 110 kHz                          |
| 20 µs      | 55 kHz                           |
| 50 μs      | 22 kHz                           |
| 100 µs     | 11 kHz                           |
| 200 µs     | 5.5 kHz                          |
| 500 µs     | 2.2 kHz                          |
| 1 ms       | 1.1 kHz                          |
| 2 ms       | 550 Hz                           |
| 5 ms       | 220 Hz                           |
| 10 ms      | 110 Hz                           |
| 20 ms      | 55 Hz                            |
| 50 ms      | 22 Hz                            |
| 100 ms     | 11 Hz                            |
| 200 ms     | 5.5 Hz                           |
| 500 ms     | 2.2 Hz                           |
| 1 s        | 1.1 Hz                           |
| 2 s        | 0.55 Hz                          |
| 5 s        | 0.22 Hz                          |
| 10 s       | 0.11 Hz                          |
| 20 s       | 0.05 Hz                          |

3.2.19 Residual Response

# 3.2.19 Residual Response

(1) Description

This test checks for residual responses. Any response located above the display line is measured in a narrow frequency span and RBW. The RF INPUT is terminated in 50 ohm.

(2) Specification

With no signal at input and 0dB input attenuation

| Apply for R3267 |                                    |
|-----------------|------------------------------------|
| < -100dBm       | Frequency Range: 1MHz to 3.6GHz    |
| < -90dBm        | Frequency Range: 300kHz to 8GHz    |
| Apply for R3273 |                                    |
| < -100dBm       | Frequency Range: 1MHz to 3.5GHz    |
| < -90dBm        | Frequency Range: 300kHz to 26.5GHz |
|                 |                                    |

(3) Equipment Used

| Coaxial 50 ohm terr | nination      |
|---------------------|---------------|
| Adapters:           | Type N to SMA |
|                     | Type N to BNC |
| Cable:              | BNC(m)-BNC(m) |

(4) Setup

R3267/3273



## Figure 3-19 Setup of Residual Response Test

(5) Procedure

Frequency Range: 1MHz to 3.5GHz

- 1. Connect between the CAL OUT and RF INPUT by BNC(m)-BNC(m) cable.
- 2. After preset R3267/3273, set R3267/3273 controls as follows:

| Center Frequency | 30MHz  |
|------------------|--------|
| Span             | 10kHz  |
| Reference Level  | -10dBm |
| RBW              | 300Hz  |
| Input Attenuator | 0dB    |

3.2.19 Residual Response

- 3. Press SRCH to capture signal peak.
- 4. Check that the marker amplitude is within -10.0dBm ±0.3dB. If it is out of range, press as follows to perform CAL ALL:

SHIFT, 7(CAL) and Cal All

After Cal All has completed, check that the marker amplitude is within  $-10dBm \pm 0.3dB$ .

 Remove the BNC(m)-BNC(m) cable and adapter from the INPUT. Install the Type N to SMA adapter and 50 ohm termination on the INPUT. After preset R3267/3273, set R3267/3273 controls as follows:

| Center frequency | 1.3MHz |
|------------------|--------|
| Span             | 2MHz   |
| CF Step Size     | 1.9MHz |
| Reference Level  | -50dBm |
| ATT              | 0dB    |
| RBW              | 10kHz  |
| VBW              | 300Hz  |

- 6. Press FORMAT, DSP LINE ON/OFF(ON), 1, 0, 0 and MHz(-dBm).
- 7. Press SINGLE for single sweep.

The noise level should be at least 3dB below the display line. If it is not, it will be necessary to reduce the Span and RBW to reduce the noise level. If the span is reduced, reduce the CF Step to no more than 95% of the Span.

- 8. If a residual is suspected, press the **SINGLE** again. A residual response will persist, but a noise peak will not. Record the frequency and amplitude of any responses above the display line.
- 9. If a response is marginal, verify the response amplitude as follows:
- (1) Press SHIFT, RCL,1, and Hz(ENTR) to save the setting condition.
- (2) Press REPEAT.
- (3) Place the marker on the peak of the response in the question.
- (4) Press MKR $\rightarrow$  and MKR $\rightarrow$ CF.
- (5) Press COUPLE, RBW AUTO/MNL(MNL) and RBW AUTO/MNL(AUTO).
- (6) Continue to reduce the Span until a RBW of 300Hz is reached.

Press SRCH, MKR $\rightarrow$  and Marker $\rightarrow$ CF to set peak to center.

- (7) Record the frequency and amplitude of any residual response above the display line.
- (8) Press RCL to recall the setting condition.

3.3 Performance Verification of Digital Modulation Analysis Function (Option62)

10. Check for residuals up to center frequency 3.5GHz using the procedure of step 7. through 9. above. To change the center frequency, then press the FREQ and  $\Delta$  keys.

Residual response in the band 3.5GHz to 7.5GHz

11. Set the R3465/3272 as follows:

| 3.525GHz |
|----------|
| 50MHz    |
| 47.5MHz  |
| 300kHz   |
| 300Hz    |
|          |

- 12. Press the FORMAT, DSP LINE ON/OFF(ON), 9, 0 and MHz(-dBm) to set display line at -90dBm point.
- 13. Repeat steps 7. through 10. until the center frequency of 7.425GHz.

# 3.3 Performance Verification of Digital Modulation Analysis Function (Option62)

### 3.3.1 Introduction

This section provides the information for verification of digital modulation analysis function, include equipment list and performance verification record sheet at end of this section.

For the performance verification of digital modulation analysis function, it is used arbitrary wave form generator and signal generator which can generate IQ modulation signal.

In case of difficult to generate the signals required for performance verification described in section 3.3.2, section 3.3.4 provides an alternative method.

# 3.3.2 Specification of Test Signal.

Following the condition is required to generate test signal for verification. The each specification is based on the W-CDMA mobile communication system experimental specifications (first edition) published by NTT DoCoMo. Refer to

Volume 2: Mobile Station Equipment Specifications, Edition 1.1, February 22, 1998.

- Volume 3: Base Station Equipment Specifications, Edition 1.1, March 2, 1998.
- (1) Test Signal for Base Transmit Station(BTS)

The specification required for test signal is listed in Table 3-27. Figure 3-20 is shown timing chart of output signal and trigger signal.

3.3.2 Specification of Test Signal.

| No. | Name of<br>Signal | Critical Specification |                        |                   |         | Usage                                      |  |  |
|-----|-------------------|------------------------|------------------------|-------------------|---------|--------------------------------------------|--|--|
| 1   | BTS               | Long Code N            | lo. 128                |                   |         | BTS measureemnt on                         |  |  |
|     |                   | Channel<br>Name        | Transmis-<br>sion Rate | Short Code<br>No. | Level   | RF input<br>BTS measurement on<br>IQ input |  |  |
|     |                   | Perch                  | 16ksps                 | #0                | -8.44dB |                                            |  |  |
|     |                   | DTCH                   | 32ksps                 | #1                | -5.44dB |                                            |  |  |
|     |                   | DTCH                   | 32ksps                 | #14               | -5.44dB |                                            |  |  |
|     |                   | DTCH                   | 32ksps                 | #24               | -5.44dB |                                            |  |  |

Table 3-27 Specification for BTS Test Signal



Trigger Signal is TTL Level

# Figure 3-20 Timing Chart of BTS Test Signal

(2) Test Signal for MS and QPSK.

The specification required for the test signal is listed in Table 3-28. Figure 3-21 is shown timing chart of output signal, SFN and Long code.

| <b>Table 3-28</b> | Specification | for SFN | Test Signal |
|-------------------|---------------|---------|-------------|
|                   |               |         | <b></b>     |

| No. | Name of<br>Signal | Critical Specification |                        |                   |                   | Usage                                                              |  |
|-----|-------------------|------------------------|------------------------|-------------------|-------------------|--------------------------------------------------------------------|--|
| 2   | BTS,              | Long Code No. 1        |                        |                   | MS measurement on |                                                                    |  |
|     | QPSK              | Channel<br>Name        | Transmis-<br>sion Rate | Short Code<br>No. | Level             | MS measurement on<br>IQ input                                      |  |
|     |                   | DTCH                   | 32ksps                 | #0                | OdB               | QPSK measurement<br>on RF input<br>QPSK measurement<br>on IQ input |  |

3.3.2 Specification of Test Signal.



Trigger Signal is TTL Level



3.3.3 Performance Verification Procedures

# 3.3.3 Performance Verification Procedures

# 3.3.3.1 BTS Measurement on RF Input

(1) Description

Verify Carrier Frequency Accuracy, Waveform Quality Accuracy, Modulation Accuracy and Code Domain Power Accuracy at frequency 2GHz for BTS, RF input.

SG6

(2) Specification

| Carrier Frequency Accuracy<br>Wave form Quality Accuracy | < ± 90Hz<br>> 0. <del>9</del> 98 |
|----------------------------------------------------------|----------------------------------|
| Modulation Accuracy                                      | < 3%                             |
| Code Domain Power Accuracy                               | <± 0.1dB                         |
| Equipment Used                                           |                                  |
| Arbitrary Signal Generator                               | SG5                              |

- Arbitrary Signal Generator I/Q Modulation Signal Generator
- (4) Setup

(3)



# Figure 3-22 Setup of BTS Measurement Test

- (5) Procedure
- 1. Connect equipment is shown as Figure 3-22.
- 2. On the SG5, set the data to generate the signal complied the requirement, refer to Table 3-27 and Figure 3-20.
- 3. On the SG5, set output for CH1,CH2 and trigger output for CH3.
- 4. On the SG6, set controls as follows:

| I/Q Modulation   | External |
|------------------|----------|
| Center Frequency | 2GHz     |
| Output Level     | 0dBm     |

# 3.3.3 Performance Verification Procedures

5. On the R3267/3273, set controls as follows:

| Center Frequency | 2GHz |
|------------------|------|
| Input            | RF   |
| Measurement Mode | BTS  |

6. On the R3267/3273, set the parameter referring Figure 3-23.

| M-COMA Neasurement parameter set        | 3                      |
|-----------------------------------------|------------------------|
| Long Code Delingest Westbeline Indefine | V-CDMA                 |
| Lang Code No. : 00080 [NEX]             | Auto Level             |
| Trigger Hode : INT SENSE SENSE          | Set                    |
| EXT Trigger Slope:                      | 2                      |
| EXT Trigger Delay: 0.0 chip             | Dispray                |
| Search Node : Mask PK Contractor        | 1754                   |
| WultiRate :                             | ° View                 |
| Nulti Channel No.: 4                    | Peint                  |
| Class/Number/Rate Class/Number/Rate     | 4                      |
| Perch: 8 0 16 kaps Ch 6 :               | Page                   |
| 0h1: 7 1 32 ksps 0h7                    | 5                      |
| 0h 3 : 7 24 32 kaps Dh 9 :              | Graph Ics              |
| Ch 4 : Ch10 : Ch10 :                    |                        |
| 0h5: 0h11:                              | <sup>6</sup> Parcenter |
| Neve Unit : 10 (1280 chip)              | Setup                  |
| Threahold : -10 dB                      | 7 Aver tige            |
| Phase Inverse : Whith Is Inverse        | Tises                  |

Figure 3-23 Setting of Parameter for W-CDMA Measurement

- 7. OntheR3267/3273, perform DC CAL and AUTO LEVEL.
- 8. Press SINGLE for single sweep.
- 9. Record the result on the performance verification record sheet.

3.3.3 Performance Verification Procedures

# 3.3.3.2 MS Measurement on RF Input

(1) Description

Verify MS measurement Carrier Frequency Accuracy, Waveform Quality Accuracy and Modulation Accuracy for MS measurement, RF input.

| (2) | Specification              |          |  |  |  |  |
|-----|----------------------------|----------|--|--|--|--|
|     | Carrier Frequency Accuracy | < ± 90Hz |  |  |  |  |
|     | Waveform Quality Accuracy  | > 0.999  |  |  |  |  |
|     | Modulation Accuracy        | < 3%     |  |  |  |  |
| (3) | Equipment Used             |          |  |  |  |  |

| Arbitrary Waveform Generator   |  |
|--------------------------------|--|
| IQ Modulation Signal Generator |  |

(4) Setup



SG5 SG6

#### Figure 3-24 Setup of MS Measurement Test

### (5) Procedure

- 1. Connect equipment as shown in Figure 3-24.
- 2. On the SG5, set the data to generate the signal complied the requirement, refer to Table 3-27 and Figure 3-20.
- 3. On the SG5, set output for CH1,CH2, trigger output for CH3 and SFN signal for CH4.
- 4. On the SG6, set controls as follows:

| I/Q Modulation   | External |
|------------------|----------|
| Center Frequency | 2GHz     |
| Output Level     | 0dBm     |

# 3.3.3 Performance Verification Procedures

5. On the R3267/3273, set controls as follows:

| Center Frequency | 2GHz |
|------------------|------|
| Input            | RF   |
| Measurement Mode | MS   |

6. On the R3267/3273, set the parameter referring Figure 3-25.

| W-COMA Measurement parameter set            |                               |
|---------------------------------------------|-------------------------------|
| Dependences Transmitter (00000000001) (HEX) | ¥-CDNA                        |
| Long Code Phone : MIN to LONG CODE          | Auto Level                    |
| Trigger Hode : NT TILLER SFN=0              | Set                           |
| EXT Trigger Slope:                          | Z                             |
| EXT Trigger Delay: 0.0 chip                 | ∪ (бр)ну<br>Тити              |
| Symbol Rata : 50 Kaping 64 kapa 128 kapa    |                               |
| 256 kops 512 kaps 1024 kaps                 | View                          |
| Nees Unit : 10 (1290 chip)                  | Point                         |
| Threshold : dB                              | 4                             |
| Phase Inverse : Renail Inverse              | Page                          |
|                                             | 5                             |
|                                             | Graphics                      |
|                                             | Permeter                      |
|                                             | Satup                         |
|                                             | <sup>7</sup> Average<br>Times |

Figure 3-25 Setting of Parameter for W-CDMA Measurement Test

- 7. OntheR3267/3273, perform DC CAL and AUTO LEVEL.
- 8. Press SINGLE for single sweep.
- 9. Record the result on the performance verification record sheet.

# 3.3.3 Performance Verification Procedures

# 3.3.3.3 QPSK Measurement on RF Input

(1) Description

Verify Waveform Quality Accuracy, Modulation Accuracy and Code Domain power for QPSK measurement, RF input.

(2)SpecificationCarrier Frequency Accuracy<± 90Hz</td>Waveform Quality Accuracy> 0.999Modulation Accuracy< 3%</td>

### (3) Equipment Used

| Arbitrary Signal Generator      |  |
|---------------------------------|--|
| I/Q Modulation Signal Generator |  |

(4) Setup



SG5 SG6

# Figure 3-26 Setup of QPSK Measurement Test

- (5) Procedure
- 1. Connect equipment as shown Figure 3-26.
- 2. On the SG5, set the data to generate the signal complied the requirement, refer to Table 3-28 and Figure 3-21.
- 3. On the SG5, set output for CH1,CH2 and trigger output for CH3.
- 4. On the SG6, set controls as follows:

| IQ Modulation    | External |
|------------------|----------|
| Center Frequency | 2GHz     |
| Output level     | 0dBm     |

5. On the R3267/3273, set controls as follows:

| Center Frequency | 2GHz |
|------------------|------|
| Input            | RF   |
| Measurement Mode | QPSK |

# 3.3.3 Performance Verification Procedures

6. On the R3267/3273, set the parameter referring Figure 3-27.

|                                                                          | QPSK To                                              | tai Result                                                                                    |                    |                                                 |
|--------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------|
| Results<br>p (Maveform Que<br>Carrier Frequer<br>Carrier Feedthr<br>Maar | ility Facto<br>cy Error<br>ough<br><u>K Neasuren</u> | r) :                                                                                          | Hz<br>dec<br>Trons | QPSK<br>L<br>Avito Leve<br>Set<br>2<br>Graphics |
| Phas Erne User<br>Erro Hass Rang<br>Trigger I<br>EXT Trig<br>EXT Trig    | tode<br>tode<br>per Stope<br>per Detay               | : 20 (1280ch ip)<br>: 20 (1280ch ip)<br>: 20 (1280ch ip)<br>: 20 (1280ch ip)<br>: 512.0 ch ip | deg.rms            | Parameta<br>Setup<br>Awarage<br>Times<br>CH BDS |
|                                                                          |                                                      |                                                                                               |                    | Setup                                           |

# Figure 3-27 Setting of Parameter for W-CDMA Measurement Test

- 7. On the R3267/3273, perform DC CAL and AUTO LEVEL.
- 8. Press SINGLE for single sweep.
- 9. Record the result on the performance verification record sheet.

### 3.3.3 Performance Verification Procedures

# 3.3.3.4 BTS Measurement on IQ Input

(1) Description

Verify Waveform Quality Accuracy, Modulation Accuracy and Code Domain Power Accuracy for BTS measurement, IQ input.

- (2) Specification
   Modulation Accuracy
   Equipment Used
   Arbitrary Signal Generator
   SG5
- (3) Setup



Figure 3-28 Setup of BTS Measurement Test

- (4) Procedure
- 1. Connect equipment as shown Figure 3-28.
- 2. On the SG5, set the data to generate the signal complied the requirement, refer to Table 3-28 and Figure 3-21.
- 3. On the SG5, set output for CH1,CH2 and trigger output for CH3. Output level set 0.8Vp-p for CH1 and CH2, both signal must be balanced.
- 4. On the R3267/3273, set controls as follows:

| Center Frequency | 2GHz |
|------------------|------|
| Input            | IQ   |
| Measurement Mode | BTS  |

5. On the R3267/3273, set the parameter referring Figure 3-29.

54.5

3.3.3 Performance Verification Procedures



# Figure 3-29 Setting of Parameter for W-CDMA Measurement Test

- 6. On the R3267/3273, perform DC CAL and AUTO LEVEL.
- 7. Press SINGLE for single sweep.
- 8. Record the result on the performance verification record sheet.
3.3.3 Performance Verification Procedures

#### 3.3.3.5 MS Measurement on IQ Input

(1) Description

Verify Waveform Quality Accuracy, Modulation and for MS measurement, IQ input.

- (2) Specification Modulation Accuracy < 3%</li>
   (3) Equipment Used
  - Arbitrary Signal Generator SG5
- (4) Setup



Figure 3-30 Setup of MS Measurement Test

- (5) Procedure
- 1. Connect equipment as shown Figure 3-30.
- 2. On the SG5, set the data to generate the signal complied the requirement, refer to Table 3-28 and Figure 3-21.
- On the SG5, set output signal for CH1, CH2, trigger output for CH3 and SFN signal for CH4.
  Output level set 0.8Vp-p for CH1 and CH2, both signal must be balanced.
- 4. On the R3267/3273, set controls as follows:

| Input            | IQ |
|------------------|----|
| Measurement Mode | MS |

5. On the R3267/3273, set the parameter referring Figure 3-31.

3.3.3 Performance Verification Procedures



# Figure 3-31 Setting of Parameter for W-CDMA Measurement Test

- 6. On the R3267/3273, perform DC CAL.
- 7. Press SINGLE for single sweep.
- 8. Record the result on the performance verification record sheet.

3.3.3 Performance Verification Procedures

### 3.3.3.6 QPSK Measurement on IQ Input

(1) Description

Verify Waveform Quality Accuracy, Modulation and for QPSK measurement, IQ input.

| (2) | Specification             |         |  |  |  |
|-----|---------------------------|---------|--|--|--|
|     | Waveform Quality Accuracy | < 0.001 |  |  |  |
|     | Modulation Accuracy       | < 3%    |  |  |  |
| (3) | Equipment Used            |         |  |  |  |

Arbitrary Signal Generator

(4) Setup



SG5

Figure 3-32 Setup of MS Measurement

#### (5) Procedure

- 1. Connect equipment as shown Figure 3-32.
- 2. On the SG5, set the data to generate the signal complied the requirement, refer to Table 3-28 and Figure 3-21.
- 3. On the SG5, set output signal for CH1,CH2 and trigger output for CH3. Output level set 0.8Vp-p for CH1 and CH2, both signal must be balanced.
- 4. On the R3267/3273, set controls as follows:

| Input            | IQ   |
|------------------|------|
| Measurement Mode | QPSK |

5. On the R3267/3273, set the parameter referring Figure 3-33.

#### 3.3.3 Performance Verification Procedures



#### Figure 3-33 Setting of Parameter for W-CDMA Measurement Test

- 6. On the R3267/3273, perform DC CAL.
  - 7. Press SINGLE for single sweep.
  - 8. Record the result on the performance verification record sheet.

3.3.4 Simplified Performance Check Procedure for W-CDMA Measurement

### 3.3.4 Simplified Performance Check Procedure for W-CDMA Measurement

This section provides simplified performance check procedure.

(1) Description

It uses QPSK signal complied W-CDMA specification.

(2) Specification

| Carrier Frequency Accuracy | < ± 90 Hz |
|----------------------------|-----------|
| Waveform Quality Accuracy  | > 0.999   |
| Modulation Accuracy        | < 3 %     |
| Equipment used             |           |
| Signal Generator           | SG6       |

(4) Setup

(3)



#### Figure 3-34 Setup of Simplified Performance Check

- (5) Procedure
- 1. Connect equipment as shown Figure 3-34.
- 2. On the SG6, set controls as follows:

| Modulation   | QPSK              |
|--------------|-------------------|
| Symbol Rate  | 4.096 Msymbol/sec |
| Filter Type  | Nyquist           |
| Roll Off     | α=0.22            |
| Frequency    | 2 GHz             |
| Output Level | 0 dBm             |

On the R3267/3273, set controls as follows:

| Center Frequency | 2 GHz |
|------------------|-------|
| Input            | RF    |
| Measurement Mode | QPSK  |

#### 3.3.4 Simplified Performance Check Procedure for W-CDMA Measurement



3. On the R3267/3273, set measurement parameter as shown Figure 3-35.

#### Figure 3-35 Setting of Parameter for Simplified Performance Check

- 4. On the R3267/3273, perform DC CAL and AUTO LEVEL.
- 5. On the R3267/3273, press SINGLE for single sweep.
- 6. Record the result on the performance check record sheet.

3.4 Performance Verification Record Sheet

# 3.4 Performance Verification Record Sheet

| Report Number:       |             |            |          |            |                                        |
|----------------------|-------------|------------|----------|------------|----------------------------------------|
|                      |             |            |          |            |                                        |
| Customer Name:       |             |            |          |            |                                        |
|                      |             |            |          |            | ······································ |
| Address:             |             |            |          |            |                                        |
|                      |             |            |          |            |                                        |
|                      |             | <b></b> _, |          |            | · · · · · · · · · · · · · · · · · · ·  |
| Description:         | ·····       |            |          | <u> </u>   |                                        |
|                      | . <u> </u>  |            |          |            |                                        |
| Model Number:        |             |            |          |            |                                        |
|                      | ·           | <u></u>    |          |            |                                        |
| Serial Number:       |             |            |          |            | :                                      |
| Asset Number         |             |            |          | - <u></u>  |                                        |
|                      |             |            |          |            |                                        |
| Testing Environment: | ,           |            |          |            |                                        |
|                      | Temp.       | °C         |          | %          |                                        |
| Verification Date:   |             |            |          |            |                                        |
|                      |             |            |          | ···        | -                                      |
| Due Date:            |             |            |          |            |                                        |
| Equipment Used:      |             | <u></u>    | <u></u>  |            | <b> </b>                               |
| Model No.            | Description |            | Trace No | э.         | Cal Due Date                           |
|                      | ·           |            |          |            |                                        |
|                      |             |            |          |            |                                        |
|                      |             |            |          |            |                                        |
|                      |             |            |          |            |                                        |
|                      |             |            |          |            |                                        |
| Test Officer         |             | · <u></u>  | Head of  | Laboratory |                                        |
| 1531 011161          |             |            | ricau or | Laboratory |                                        |
| Date:                |             |            | Date:    |            |                                        |
|                      |             |            |          |            |                                        |

# Performance Verification Record Sheet

3.4.1 Performance Verification Record Sheet for R3267

# 3.4.1 Performance Verification Record Sheet for R3267

(1) Frequency Reference Output Accuracy

|                      | Specification |                   |            | Result    |
|----------------------|---------------|-------------------|------------|-----------|
| Test Data            | Min (Hz)      | Measured<br>Value | Max (Hz)   | Pass/Fail |
| 30MHz                | 29.999997     |                   | 30.000003  |           |
| 30MHz<br>(Option 21) | 29.9999997    |                   | 30.0000003 |           |

### (2) Calibration Signal Amplitude Accuracy

|           |           | Result                  |           |           |
|-----------|-----------|-------------------------|-----------|-----------|
| Test Data | Min (dBm) | Measured<br>Value (dBm) | Max (dBm) | Pass/Fail |
| -10dBm    | -10.3     |                         | -9.7      |           |

#### (3) Displayed Average Noise Level

| Center            |           | Result                  |           |           |
|-------------------|-----------|-------------------------|-----------|-----------|
| Frequency<br>(Hz) | Min (dBm) | Measured<br>Value (dBm) | Max (dBm) | Pass/Fail |
| 1k                | N/A       |                         | -95.23    |           |
| 10k               | N/A       |                         | -100      |           |
| 100k              | N/A       |                         | -101      |           |
| 1.0M              | N/A       |                         | -125      |           |
| 10.1M             | N/A       |                         | -130      |           |
| 101M              | N/A       |                         | -129.9    |           |
| 501M              | N/A       |                         | -129.5    |           |
| 1001M             | N/A       |                         | -129      |           |
| 1.5G              | N/A       |                         | -128.5    |           |
| 2.0G              | N/A       |                         | -128      |           |
| 2.5G              | N/A       |                         | -127.5    |           |
| 3.0G              | N/A       |                         | -127      |           |
| 3.5G              | N/A       |                         | -126.5    |           |

3.4.1 Performance Verification Record Sheet for R3267

| Center            |           | Result                  |           |           |
|-------------------|-----------|-------------------------|-----------|-----------|
| Frequency<br>(Hz) | Min (dBm) | Measured<br>Value (dBm) | Max (dBm) | Pass/Fail |
| 3.5G to 8G        | NA        |                         | -125      |           |

| Test     | Data                   | Specification |                        | Result   |           |
|----------|------------------------|---------------|------------------------|----------|-----------|
| RBW (Hz) | Span Set-<br>ting (Hz) | Min (dB)      | Measured<br>Value (dB) | Max (dB) | Pass/Fail |
| 300k     | 1M                     | Ref.          | 0(Ref.)                | Ref.     | ·         |
| 10M      | 15M                    | -0.3          |                        | +0.3     |           |
| 5M       | 8M                     | -0.3          |                        | +0.3     |           |
| 3M       | 5M                     | -0.3          |                        | +0.3     |           |
| 1M       | 2M                     | -0.3          |                        | +0.3     |           |
| 100k     | 200k                   | -0.3          |                        | +0.3     |           |
| 30k      | 50k                    | -0.3          |                        | +0.3     |           |
| 10k      | 20k                    | -0.3          |                        | +0.3     |           |
| 3k       | 5k                     | -0.3          |                        | +0.3     |           |
| 1k       | 2k                     | -0.3          |                        | +0.3     |           |
| 300      | 500                    | -0.3          |                        | +0.3     |           |
| 100      | 200                    | -0.3          |                        | +0.3     |           |
| 30       | 200                    | -1.0          |                        | +1.0     |           |

### (4) Resolution Bandwidth Switching Uncertainty

.0

#### 3.4.1 Performance Verification Record Sheet for R3267

#### (5) Resolution Bandwidth Accuracy and Selectivity

Resolution Bandwidth Accuracy

| Test       | Data                 |          | Specification          |          | Result    |
|------------|----------------------|----------|------------------------|----------|-----------|
| RBW (Hz)   | Span Setting<br>(Hz) | Min (Hz) | Measured<br>Value (Hz) | Max (Hz) | Pass/Fail |
| 5M         | 10M                  | 3.125M   | · ·                    | 6.25M    |           |
| 3M         | 5M                   | 2.25M    |                        | 3.75M    | 1         |
| 1 <b>M</b> | 2M                   | 0.850M   |                        | 1.150M   |           |
| 300k       | 500k                 | 255k     |                        | 345k     |           |
| 100k       | 200k                 | 85k      |                        | 115k     |           |
| 30k        | 50k                  | 25.5k    |                        | 34.5k    |           |
| 10k        | 20k                  | 8.5k     |                        | 11.5k    |           |
| 3k         | 5k                   | 2.55k    | <br>                   | 3.45k    | {         |
| 1k         | 2k                   | 0.85k    |                        | 1.15k    |           |
| 300        | 500                  | 255      |                        | 345      |           |
| 100        | 200                  | 85       |                        | 115      |           |
| (*1)30     | 200                  | 22.5     |                        | 37.5     |           |

\*1:The Min and Max. values for RBW 30Hz are those when the temperature is  $25^{\circ}C \pm 10^{\circ}C$ . Values for other temperature are not specified.

Resolution Bandwidth Selectivity

| Test<br>Data | Span<br>Setting<br>(Hz) | Measured Value (Hz) |     |     |         | Result |           |
|--------------|-------------------------|---------------------|-----|-----|---------|--------|-----------|
| RBW<br>(Hz)  | (112)                   | 60dB                | 3dB | Min | Acutual | Max    | Pass/Fail |
| 5M           | 30M                     |                     |     | -   |         | 15     |           |
| ЗМ           | 25M                     |                     |     | -   |         | 15     |           |
| lМ           | 20M                     |                     |     | -   |         | 15     |           |
| 300k         | 5М                      |                     |     | -   |         | 15     |           |
| 100k         | 1M                      |                     |     | -   |         | 15     |           |
| 30k          | 500k                    |                     |     |     |         | 15     |           |
| 10k          | 200k                    |                     |     | -   |         | 15     |           |

| Test<br>Data | Span<br>Setting<br>(Hz) | Measured Value (Hz) |     | i <u></u> | Specification |     |           |  |
|--------------|-------------------------|---------------------|-----|-----------|---------------|-----|-----------|--|
| RBW<br>(Hz)  |                         | 60dB                | 3dB | Min       | Acutual       | Max | Pass/Fail |  |
| 3k           | 50k                     |                     |     | -         |               | 15  |           |  |
| 1k           | 20k                     |                     |     |           |               | 15  |           |  |
| 300          | 5k                      |                     |     | -         |               | 15  |           |  |
| 100          | 2k                      |                     |     |           |               | 15  |           |  |
| (*1)30       | 1 <b>k</b>              |                     |     | -         |               | 20  |           |  |

3.4.1 Performance Verification Record Sheet for R3267

# (6) IF Gain Uncertainty

.()

| Sett     | ing                            | Test Data                | · ///    | Specification                         |          | Result    |
|----------|--------------------------------|--------------------------|----------|---------------------------------------|----------|-----------|
| RBW (Hz) | External<br>Attenuator<br>(dB) | Reference<br>Level (dBm) | Min (dB) | Measured<br>Value (dB)                | Max (dB) | Pass/Fail |
| 1M       | 1                              | -1.0                     | -0.5     |                                       | +0.5     |           |
| (        | 2                              | -2.0                     | -0.5     |                                       | +0.5     |           |
| (        | 3                              | -3.0                     | -0.5     |                                       | +0.5     |           |
|          | 4                              | -4.0                     | -0.5     |                                       | +0.5     |           |
|          | 5                              | -5.0                     | -0.5     |                                       | +0.5     |           |
|          | 6                              | -6.0                     | -0.5     |                                       | +0.5     |           |
|          | 7                              | -7.0                     | -0.5     |                                       | +0.5     |           |
|          | 8                              | -8.0                     | -0.5     |                                       | +0.5     |           |
|          | 9                              | -9.0                     | -0.5     |                                       | +0.5     |           |
|          | 10                             | -10.0                    | -0.5     |                                       | +0.5     |           |
|          | 20                             | -20.0                    | -0.5     |                                       | +0.5     |           |
|          | 30                             | -30.0                    | -0.5     |                                       | +0.5     |           |
|          | 40                             | -40.0                    | -0.5     | · · · · · · · · · · · · · · · · · · · | +0.5     |           |
|          | 50                             | -50.0                    | -0.5     |                                       | +0.5     |           |
|          | 60                             | -60.0                    | -0.5     |                                       | +0.5     |           |
|          | 70                             | -70.0                    | -0.7     |                                       | +0.7     |           |
|          | 80                             | -80.0                    | -0,7     |                                       | +0.7     |           |

2 02

| 3.4.1 Performance Verification Record Sheet: | for R3267 |
|----------------------------------------------|-----------|
|----------------------------------------------|-----------|

| Set      | tting                           | Test Data                |          | Specification          |          | Result    |
|----------|---------------------------------|--------------------------|----------|------------------------|----------|-----------|
| RBW (Hz) | External<br>Attenua-<br>tor(dB) | Reference<br>Level (dBm) | Min (dB) | Measured<br>Value (dB) | Max (dB) | Pass/Fail |
| 3k       | 1                               | -1.0                     | -0.5     |                        | +0.5     |           |
|          | 2                               | -2.0                     | -0.5     |                        | +0.5     |           |
|          | 3                               | -3.0                     | -0.5     |                        | +0.5     |           |
|          | 4                               | -4.0                     | -0.5     |                        | +0.5     |           |
|          | 5                               | -5.0                     | -0.5     |                        | +0.5     |           |
|          | 6                               | -6.0                     | -0.5     |                        | +0.5     |           |
|          | 7                               | -7.0                     | -0.5     |                        | +0.5     |           |
|          | 8                               | -8.0                     | -0.5     |                        | +0.5     |           |
|          | 9                               | -9.0                     | -0.5     |                        | +0.5     |           |
|          | 10                              | -10.0                    | -0.5     |                        | +0.5     |           |
|          | 20                              | -20.0                    | -0.5     |                        | +0.5     |           |
|          | 30                              | -30.0                    | -0.5     |                        | +0.5     |           |
|          | 40                              | -40.0                    | -0.5     |                        | +0.5     |           |
|          | 50                              | -50.0                    | -0.5     |                        | +0.5     |           |
|          | 60                              | -60.0                    | -0.5     |                        | +0.5     |           |
|          | 70                              | -70.0                    | -0.7     | · ·                    | +0.7     |           |
|          | 80                              | -80.0                    | -0.7     |                        | +0.7     |           |

1

| Sett     | ling                            | Test Data                |          | Specification          |          | Result    |
|----------|---------------------------------|--------------------------|----------|------------------------|----------|-----------|
| RBW (Hz) | External<br>Attenua-<br>tor(dB) | Reference<br>Level (dBm) | Min (dB) | Measured<br>Value (dB) | Max (dB) | Pass/Fail |
| 300k     | 1                               | -1.0                     | -0.5     |                        | +0.5     |           |
|          | 2                               | -2.0                     | -0.5     |                        | +0.5     |           |
|          | 3                               | -3.0                     | -0.5     |                        | +0.5     |           |
|          | 4                               | -4.0                     | -0.5     |                        | +0.5     |           |
|          | 5                               | -5.0                     | -0.5     |                        | +0.5     | _         |
|          | 6                               | -6.0                     | -0.5     |                        | +0.5     |           |
|          | 7                               | -7.0                     | -0.5     |                        | +0.5     |           |
|          | 8                               | -8.0                     | -0.5     |                        | +0.5     |           |
|          | 9                               | -9.0                     | -0.5     |                        | +0.5     |           |
|          | 10                              | -10.0                    | -0.5     |                        | +0.5     |           |
|          | 20                              | -20.0                    | -0.5     |                        | +0.5     |           |
|          | 30                              | -30.0                    | -0.5     |                        | +0.5     |           |
|          | 40                              | -40.0                    | -0.5     |                        | +0.5     |           |
| •.       | 50                              | -50.0                    | -0.5     |                        | +0.5     |           |
|          | 60                              | -60.0                    | -0.5     |                        | +0.5     |           |
|          | 70                              | -70.0                    | -0.7     |                        | +0.7     |           |
|          | 80                              | -80.0                    | -0.7     |                        | +0.7     |           |

3.4.1 Performance Verification Record Sheet for R3267

3.4.1 Performance Verification Record Sheet for R3267

# (7) Input Attenuatior Switching Accuracy

Center Frequency at 4GHz, Reference Value dBm

|                               | • • • • • •     |                          |          | Specification      |             |          |                                    |             |  |  |  |
|-------------------------------|-----------------|--------------------------|----------|--------------------|-------------|----------|------------------------------------|-------------|--|--|--|
| Setting                       |                 |                          | Swi      | Switching Accuracy |             |          | Step to step<br>Switching Accuracy |             |  |  |  |
| Input<br>Attenua-<br>tor (dB) | IF Gain<br>(dB) | IF Gain<br>Error<br>(dB) | Min (dB) | Actual<br>(dB)     | Max<br>(dB) | Min (dB) | Calculated<br>(dB)                 | Max<br>(dB) |  |  |  |
| 10                            | 0               | 0                        | 0(Ref.)  | 0(Ref.)            | 0(Ref.)     | 0(Ref.)  | 0(Ref.)                            | 0(Ref.)     |  |  |  |
| 20                            | 10              |                          | -2.0     |                    | +2.0        | -1.1     |                                    | +1.1        |  |  |  |
| 30                            | 20              |                          | -2.0     |                    | +2.0        | -1.1     |                                    | +1.1        |  |  |  |
| 40                            | 30              |                          | -2.0     |                    | +2.0        | -1.1     |                                    | +1.1        |  |  |  |
| 50                            | 40              |                          | -2.0     |                    | +2.0        | -1.1     |                                    | +1.1        |  |  |  |
| 60                            | 50              |                          | -2.0     |                    | +2.0        | -1.1     |                                    | +1.1        |  |  |  |
| 70                            | 60              |                          | -2.0     |                    | +2.0        | -1.1     |                                    | +1.1        |  |  |  |

3-86

3.4.1 Performance Verification Record Sheet for R3267

- (8) Scale Fidelity
- 1dB/div Log Scale Fidelity

| Tes  | it Data                             |                          |           | Specification          |           |                                | Result    |
|------|-------------------------------------|--------------------------|-----------|------------------------|-----------|--------------------------------|-----------|
| RBW  | dB from<br>Referenced<br>Level (dB) | Signal<br>Level<br>(dBm) | Min (dB)  | Measured<br>Value (dB) | Max (dB)  | Incremen-<br>tal<br>Error (dB) | Pass/Fail |
| 1MHz | 0                                   | 0                        | Reference | Reference              | Reference | Reference                      |           |
|      | -1                                  | -1                       | -1.2      |                        | -0.8      |                                |           |
|      | -2                                  | -2                       | -2.4      |                        | -1.6      |                                |           |
|      | -3                                  | -3                       | -3.6      |                        | -2.4      |                                |           |
|      | -4                                  | -4                       | -4.8      |                        | -3.2      |                                |           |
|      | -5                                  | -5                       | -6.0      |                        | -4.0      |                                |           |
|      | -6                                  | -6                       | -7.0      |                        | -5.0      |                                |           |
| -    | -7                                  | -7                       | -8.0      |                        | -6.0      |                                |           |
|      | -8                                  | -8                       | -9.0      |                        | -7.0      |                                |           |
|      | -9                                  | -9                       | -10.0     |                        | -8.0      |                                |           |
| i    | -10                                 | -10                      | -11.0     |                        | -9.0      |                                |           |

3.4.1 Performance Verification Record Sheet for R3267

|       | Test Data                           |                          |           | Specif                 | ication   |                                | Result    |
|-------|-------------------------------------|--------------------------|-----------|------------------------|-----------|--------------------------------|-----------|
| RBW   | dB from<br>Referenced<br>Level (dB) | Signal<br>Level<br>(dBm) | Min (dB)  | Measured<br>Value (dB) | Max (dB)  | Incremen-<br>tal<br>Error (dB) | Pass/Fail |
| 3kHz  | 0                                   | 0                        | Reference | Reference              | Reference | Reference                      |           |
|       | -10                                 | -10                      | -10.85    |                        | -9.15     |                                |           |
|       | -20                                 | -20                      | -20.85    |                        | -19.15    |                                |           |
|       | -30                                 | -30                      | -30.85    |                        | -29.15    |                                |           |
| !<br> | -40                                 | -40                      | -40.85    |                        | -39.15    |                                |           |
|       | -50                                 | -50                      | -50.85    |                        | -49.15    |                                |           |
|       | -60                                 | -60                      | -60.85    |                        | -59.15    |                                |           |
|       | -70                                 | -70                      | -70.85    |                        | -69.15    |                                |           |
|       | -80                                 | -80                      | -80.85    |                        | -79.15    |                                |           |
| -     | -90                                 | -90                      | -90.85    |                        | -89.15    |                                |           |

• 10dB/div Log Scale Fidelity

## Linear Scale Fidelity

|                     | Test Data         |                  |             |                        | Result      |           |
|---------------------|-------------------|------------------|-------------|------------------------|-------------|-----------|
| Div.<br>From Refer- | Input Sig         | nal Level        | Min.(mV)    | Measured<br>Value (dB) | Max (mV)    | Pass/Fail |
| ence Level          | (dBm,<br>Nominal) | (mV,<br>Nominal) | )           |                        |             |           |
| 0                   | Reference(0)      | Ref.(223.6)      | Ref.(223.6) |                        | Ref.(223.6) |           |
| 1                   | -0.92             | 201.24           | 190.06      |                        | 212.42      |           |
| 2                   | -1.94             | 178.88           | 167.7       |                        | 190.06      |           |
| 3                   | -3.10             | 156.52           | 145.34      |                        | 167.7       |           |
| 4                   | -4.44             | 134.16           | 122.98      |                        | 145.34      |           |
| 5                   | -6.02             | 111.8            | 100.62      | i                      | 122.98      |           |
| 6                   | -7.96             | 89.44            | 78.26       |                        | 100.62      |           |
| 7                   | -10.46            | 67.08            | 55.9        |                        | 78.26       |           |
| 8                   | -13.98            | 44.72            | 33.54       |                        | 55.9        |           |
| 9                   | -20.00            | 22.36            | 11.18       |                        | 33.54       |           |

3.4.1 Performance Verification Record Sheet for R3267

| Measured<br>Value |         |              |                   |                                            | Result |   |           |
|-------------------|---------|--------------|-------------------|--------------------------------------------|--------|---|-----------|
| Marker            | Reading | 3dB<br>Slope | FM Devi-<br>ation | Min (Hz) Calculated Max (Hz)<br>Value (Hz) |        |   | Pass/Fail |
| Δf                | Δ level |              |                   | N/A                                        |        | 3 |           |

## (9) Residual FM

#### (10) Noise Sidebands

| Contor            | Center Span(Hz) Offset<br>Frequency Frequenc Frequency<br>(Hz) y(Hz) (Hz) |        | Specification   |                               |                  |  |
|-------------------|---------------------------------------------------------------------------|--------|-----------------|-------------------------------|------------------|--|
| Frequency<br>(Hz) |                                                                           |        | Min<br>(dBc/Hz) | Measured<br>Value<br>(dBc/Hz) | Max.<br>(dBc/Hz) |  |
| 1GHz              | 2.5k                                                                      | 1 k    | N/A             |                               | -100             |  |
|                   | 25k                                                                       | 10 k   | N/A             |                               | -110             |  |
|                   | 250k                                                                      | 100 k  | N/A             |                               | -118             |  |
|                   | 2.5M                                                                      | 1000 k | N/A             |                               | -135             |  |

#### (11) Image, Multiple and Out of Band Spurious

| Test Data          |                              |                                             |           | Result                     |           |           |
|--------------------|------------------------------|---------------------------------------------|-----------|----------------------------|-----------|-----------|
| Frequency<br>Range | Center<br>Frequency<br>(GHz) | Frequency of<br>Signall Gen-<br>erator (Hz) | Min (dBc) | Measured<br>Value<br>(dBc) | Max (dBc) | Pass/Fail |
| 100Hz to<br>3.5GHz | 2                            | 1957.159M                                   | N/A       |                            |           |           |
|                    | 2                            | 1157.159M                                   | N/A       |                            |           |           |
|                    | 2                            | 10.462841G                                  | N/A       |                            |           |           |
|                    | 2                            | 8.2314205G                                  | N/A       |                            |           |           |
| 3.5GHz to          | 7                            | 7.842841                                    | N/A       |                            |           |           |
| 8GHz               | 8                            | 4.632131G                                   | N/A       |                            |           |           |
|                    | 9                            | 3.78929G                                    | N/A       |                            |           |           |

#### 3.4.1 Performance Verification Record Sheet for R3267

#### (12) Frequency Readout Accuracy and Frequency Counter Marker

• Frequency Readout Accuracy

| Contor            |        |           | Specification                 |                 |           |  |  |
|-------------------|--------|-----------|-------------------------------|-----------------|-----------|--|--|
| Frequency<br>(Hz) | Span   | Min (GHz) | Measured<br>Value<br>(dBc/Hz) | Max<br>(dBc/Hz) | Pass/Fail |  |  |
| 2GHz              | 1MHz   | 1.999989  |                               | 2.000011        |           |  |  |
|                   | 10MHz  | 1.99989   |                               | 2.00011         |           |  |  |
|                   | 20MHz  | 1.99976   |                               | 2.00024         |           |  |  |
|                   | 50MHz  | 1.99946   |                               | 2.00054         |           |  |  |
|                   | 100MHz | 1.9989    | ,                             | 2.0011          |           |  |  |
|                   | 2GHz   | 1.980     |                               | 2.020           |           |  |  |
| 5GHz              | 1MHz   | 4.999989  |                               | 5.000011        |           |  |  |
|                   | 10MHz  | 4.99989   |                               | 5.00011         |           |  |  |
|                   | 20MHz  | 4.99976   |                               | 5.00024         |           |  |  |
|                   | 50MHz  | 4.99946   |                               | 5.00054         |           |  |  |
|                   | 100MHz | 4.9989    |                               | 5.0011          |           |  |  |
|                   | 2GHz   | 4.980     |                               | 5.020           |           |  |  |

Frequency Counter Marker Accuracy

| Conter            |       |              | Specification                 |                 | Result    |
|-------------------|-------|--------------|-------------------------------|-----------------|-----------|
| Frequency<br>(Hz) | Span  | Min (GHz)    | Measured<br>Value<br>(dBc/Hz) | Max<br>(dBc/Hz) | Pass/Fail |
| 2GHz              | 1MHz  | 1.9999999794 |                               | 2.000000206     |           |
| 5GHz              | 1 MHz | 4.9999999494 |                               | 5.000000506     |           |

3.4.1 Performance Verification Record Sheet for R3267

| Erecuency          | Test Data   |                    |           | Result            |           |           |
|--------------------|-------------|--------------------|-----------|-------------------|-----------|-----------|
| Range              | Fundamental | Second<br>Harmonic | Min (dBc) | Measured<br>Value | Max (dBc) | Pass/Fail |
| 10MHz to<br>1.8GHz | 1.5GHz      | 3.0GHz             | N/A       |                   | -70       |           |
| > 1.6GHz           | 1.9GHz      | 3.8GHz             | N/A       |                   | -90       |           |

#### (13) Second Harmonic Distortion

(14) Frequency Response

(

#### • Frequency Range 100Hz to 3.5GHz

| Frequency<br>Range | Test Date |          | Result                 |          |           |
|--------------------|-----------|----------|------------------------|----------|-----------|
|                    | (MHz)     | Min (dB) | Measured<br>Value (dB) | Max (dB) | Pass/Fail |
| 100Hz to           | 100       | - 3.0    | 1                      | +3.0     |           |
| 3.5GHZ             | 200       | - 3.0    |                        | +3.0     |           |
|                    | 300       | - 3.0    |                        | +3.0     |           |
|                    | 400       | - 3.0    |                        | +3.0     |           |
|                    | 500       | - 3.0    |                        | +3.0     |           |
|                    | 600       | - 3.0    |                        | +3.0     |           |
|                    | 700       | - 3.0    |                        | +3.0     |           |
|                    | 800       | - 3.0    |                        | +3.0     |           |
| 1                  | 900       | - 3.0    |                        | +3.0     |           |
|                    | 1000      | - 3.0    |                        | +3.0     |           |
|                    | 1100      | - 3.0    |                        | +3.0     |           |
|                    | 1200      | - 3.0    |                        | +3.0     |           |
| :                  | 1300      | - 3.0    |                        | +3.0     |           |
|                    | 1400      | - 3.0    |                        | +3.0     |           |
|                    | 1500      | - 3,0    |                        | +3.0     |           |
|                    | 1600      | - 3.0    |                        | +3.0     |           |
|                    | 1700      | - 3.0    |                        | +3.0     |           |
|                    | 1800      | - 3.0    |                        | +3.0     |           |

| 3.4.1 Performance Ve | erification Record | Sheet for R3267 |
|----------------------|--------------------|-----------------|
|----------------------|--------------------|-----------------|

| Transa                  | Text Data             |          | Specification          |           | Result    |
|-------------------------|-----------------------|----------|------------------------|-----------|-----------|
| Range                   | (MHz)                 | Min (dB) | Measured<br>Value (dB) | Max (dB)  | Pass/Fail |
| 100Hz to                | 1900                  | - 3.0    |                        | +3.0      |           |
| 3.5GHz                  | 2000                  | - 3.0    |                        | +3.0      |           |
|                         | 2100                  | - 3.0    |                        | +3.0      |           |
|                         | 2200                  | - 3.0    |                        | +3.0      |           |
| -                       | 2300                  | - 3.0    |                        | +3.0      |           |
| 2<br>-                  | 2400                  | - 3.0    | · ·                    | +3.0      |           |
|                         | 2500                  | - 3.0    |                        | +3.0      |           |
|                         | 2600                  | - 3.0    |                        | +3.0      |           |
|                         | 2700                  | - 3.0    |                        | +3.0      |           |
|                         | 2800                  | - 3.0    |                        | +3.0      |           |
|                         | 2900                  | - 3.0    |                        | +3.0      |           |
|                         | 3000                  | - 3.0    | · ·                    | +3.0      |           |
|                         | 3100                  | - 3.0    |                        | +3.0      |           |
|                         | 3200                  | - 3.0    |                        | +3.0      |           |
|                         | 3300                  | - 3.0    |                        | +3.0      |           |
|                         | 3400                  | - 3.0    |                        | +3.0      |           |
|                         | 3500                  | - 3.0    |                        | +3.0      |           |
| In Band Flatr<br>3.50   | ness: 100Hz to<br>GHz | N/A      |                        | ±3.0dBp-p |           |
| In Band Flatn<br>to 3.5 | ess:2.6GHzHz<br>5GHz  | N/A      |                        | ±2.0dBp-p |           |

1997 1993

3.4.1 Performance Verification Record Sheet for R3267

|           | Toot Date |          | Result                 |          |           |
|-----------|-----------|----------|------------------------|----------|-----------|
| Range     | (MHz)     | Min (dB) | Measured<br>Value (dB) | Max (dB) | Pass/Fail |
| 3.5GHz to | 3.5       | - 3.0    |                        | +3.0     |           |
| 7.0GHz    | 3.7       | - 3.0    |                        | +3.0     |           |
|           | 3.8       | - 3.0    |                        | +3.0     |           |
|           | 3.9       | - 3.0    |                        | +3.0     |           |
|           | 4.0       | - 3.0    |                        | +3.0     |           |
|           | 4.1       | - 3.0    |                        | +3.0     |           |
|           | 4.2       | - 3.0    |                        | +3.0     |           |
|           | 4.3       | - 3.0    |                        | +3.0     |           |
|           | 4.4       | - 3.0    |                        | +3.0     |           |
|           | 4.5       | - 3.0    |                        | +3.0     |           |
|           | 4.6       | - 3.0    |                        | +3.0     |           |
|           | 4.7       | - 3.0    |                        | +3.0     |           |
|           | 4.8       | - 3.0    |                        | +3.0     |           |
|           | 4.9       | - 3.0    |                        | +3.0     |           |
|           | 5.0       | - 3.0    |                        | +3.0     |           |
|           | 5.1       | - 3.0    | }                      | +3.0     |           |
|           | 5.2       | - 3.0    |                        | +3.0     |           |
|           | 5.3       | - 3.0    |                        | +3.0     |           |
|           | 5.4       | - 3.0    |                        | +3.0     |           |
|           | 5.6       | - 3.0    |                        | +3.0     |           |
|           | 5.7       | - 3.0    |                        | +3.0     |           |
|           | 5.8       | - 3,0    |                        | +3.0     |           |
|           | 5.9       | - 3.0    |                        | +3.0     |           |
|           | 6.0       | - 3.0    |                        | +3.0     |           |
|           | 6.1       | - 3.0    |                        | +3.0     |           |
|           | 6.2       | - 3.0    |                        | +3.0     |           |

# • Frequency Range 3.5GHz to 7.0GHz

(

2.02

| Frequency<br>Range     | T4 D-44               |          | Result                 |          |           |
|------------------------|-----------------------|----------|------------------------|----------|-----------|
|                        | (MHz)                 | Min (dB) | Measured<br>Value (dB) | Max (dB) | Pass/Fail |
| 3.5GHz to              | 6.3                   | - 3.0    |                        | +3.0     |           |
| 7.0GHz                 | 6.4                   | - 3.0    |                        | +3.0     |           |
|                        | 6.5                   | - 3.0    |                        | +3.0     |           |
|                        | 6.6                   | - 3.0    |                        | +3.0     |           |
|                        | 6.7                   | - 3.0    |                        | +3.0     |           |
|                        | 6.8                   | - 3.0    |                        | +3.0     |           |
|                        | 6.9                   | - 3.0    |                        | +3.0     |           |
| In Band Flatne<br>7.00 | ess: 3.5GHz to<br>GHz | N/A      |                        | 3.0dBp-p |           |

1

3.4.1 Performance Verification Record Sheet for R3267

# • Frequency Range7.5GHz to8.0GHz

| Frequency<br>Range                    | Test Data |          | Result                 |          |                                       |
|---------------------------------------|-----------|----------|------------------------|----------|---------------------------------------|
|                                       | (MHz)     | Min (dB) | Measured<br>Value (dB) | Max (dB) | Pass/Fail                             |
| 7.5GHz to                             | 7.5       | - 3.0    |                        | +3.0     |                                       |
| 8.0GHz                                | 7.7       | - 3.0    |                        | +3.0     |                                       |
|                                       | 7.9       | - 3.0    |                        | +3.0     |                                       |
|                                       | 8.0       | - 3.0    |                        | +3.0     | · · · · · · · · · · · · · · · · · · · |
| In Band Flatness: 6.9GHz to<br>8.0GHz |           | N/A      |                        | 3.0dBp-p |                                       |

3.4.1 Performance Verification Record Sheet for R3267

| Set                          | ting      |                   | Specification |                           | Result   |                                       |
|------------------------------|-----------|-------------------|---------------|---------------------------|----------|---------------------------------------|
| Center<br>Frequency<br>(GHz) | Span (Hz) | Test Data<br>(Hz) | Min (Hz)      | Measured<br>Value<br>(Hz) | Max (Hz) | Pass/Fail                             |
| 2                            | 20k       | 16.00k            | 15.84k        |                           | 16.16k   |                                       |
| 2                            | 50k       | 40.00k            | 39.6k         |                           | 40.4k    |                                       |
| 2                            | 400k      | 320.0k            | 316.8k        |                           | 323.2k   |                                       |
| 2                            | 2M        | 1.600M            | 1.584M        |                           | 1.616M   |                                       |
| 2                            | 5M        | 4.00M             | 3.96M         |                           | 4.04M    |                                       |
| 2                            | 10M       | 8.00M             | 7.92M         |                           | 8.08M    |                                       |
| 2                            | 20M       | 16.00M            | 15.84M        |                           | 16.16M   | · · · · · · · · · · · · · · · · · · · |
| 2                            | 50M       | 40.0M             | 39.6M         |                           | 40.4M    |                                       |
| 2                            | 100M      | 80.0M             | 79.2M         |                           | 80.8M    |                                       |
| 2                            | 200M      | 160.0M            | 158.4M        |                           | 161.6M   |                                       |
| 2                            | 500M      | 400M              | 396M          |                           | 404M     |                                       |
| 2                            | 1G        | 800M              | 792M          |                           | 808M     |                                       |
| 2                            | 2G        | 1.6000G           | 1.584G        |                           | 1.616G   |                                       |
| 4.5                          | 4G        | 3.200G            | 3.168G        |                           | 3.232G   |                                       |
| 4.5                          | 8G        | 6.400G            | 6.336G        |                           | 6.464G   |                                       |

(15). Frequency Span Accuracy

( )

(16) Third Order Intermodulation Distortion

| Test Data                    |           | Result                  |           |           |
|------------------------------|-----------|-------------------------|-----------|-----------|
| Center<br>Frequency<br>(MHz) | Min (dBc) | Measured<br>Value (dBc) | Max (dBc) | Pass/Fail |
| 20.5                         | N/A       |                         | -50       |           |
| 105                          | N/A       |                         | -60       |           |
| 1500                         | N/A       |                         | -65       |           |
| · 2000                       | N/A       |                         | -70       |           |
| 3600                         | N/A       |                         | -70       |           |

3.4.1 Performance Verification Record Sheet for R3267

### (17) Gain Compression

| Test Data                  |                            |                              |           | Result                  |           |           |
|----------------------------|----------------------------|------------------------------|-----------|-------------------------|-----------|-----------|
| Setting<br>of SG1<br>(MHz) | Setting<br>of SG2<br>(MHz) | Center<br>Frequency<br>(MHz) | Min (dBm) | Measured<br>Value (dBm) | Max (dBm) | Pass/Fail |
| 10                         | 11                         | 10.5                         | -3        |                         | N/A       |           |
| 200                        | 201                        | 200.5                        | 0         |                         | N/A       |           |
| 3600                       | 2601                       | 3600.5                       | 0         |                         | N/A       |           |

(18) Sweep Time Accuracy

| C T.                      |               |         | Specification         |         |           |  |  |
|---------------------------|---------------|---------|-----------------------|---------|-----------|--|--|
| Sweep Time<br>Setting (s) | Test Data (s) | Min (s) | Measured<br>Value (s) | Max (s) | Pass/Fail |  |  |
| 1μ                        | 0.909µ        | 0.882µ  |                       | 0.936µ  |           |  |  |
| 2μ                        | 1.81µ         | 1.77µ   |                       | 1.87µ   |           |  |  |
| 5μ                        | 4.54µ         | 4.41µ   |                       | 4.68µ   |           |  |  |
| 10µ                       | 9.09µ         | 8.82µ   |                       | 9.36µ   | ļ         |  |  |
| 20µ                       | 18.1µ         | 17.7µ   |                       | 18.7µ   |           |  |  |
| 50µ                       | 45.4µ         | 44.1µ   |                       | 46.8µ   |           |  |  |
| . 100μ                    | 90.9µ         | 88.2µ   |                       | 93.6µ   |           |  |  |
| 200µ                      | 181µ          | 177µ    |                       | 187µ    |           |  |  |
| 500µ                      | 454μ          | 441µ    |                       | 468µ    |           |  |  |
| 1m                        | 909µ          | 882µ    |                       | 936µ    |           |  |  |
| 2m                        | 1.81m         | 1.77m   |                       | 1.87m   |           |  |  |
| 5m                        | 4.54m         | 4.41m   |                       | 4.68m   |           |  |  |
| 10m                       | 9.09m         | 8.82m   |                       | 9.36m   |           |  |  |
| 20m                       | 18.1m         | 17.7m   |                       | 18.7m   |           |  |  |
| 50m                       | 45.4m         | 44.1m   |                       | 46.8m   |           |  |  |
| 100m                      | 90.9m         | 88.2m   |                       | 93.6m   |           |  |  |
| 200m                      | 181m          | 177m    |                       | 187m    |           |  |  |
| 500m                      | 454m          | 44.1m   |                       | 468m    |           |  |  |

| Sweep Time<br>Setting (s) | Test Data (s) |         | Result                |         |           |
|---------------------------|---------------|---------|-----------------------|---------|-----------|
|                           |               | Min (s) | Measured<br>Value (s) | Max (s) | Pass/Fail |
| 1                         | 909m          | 882m    |                       | 936m    |           |
| 2                         | 1.81          | 1.77    |                       | 1.87    |           |
| 5                         | 4.54          | 4.41    |                       | 4.68    |           |
| 10                        | 9.09          | 8.82    |                       | 9.36    |           |
| 20                        | 18.1          | 17.7    |                       | 18.7    |           |
| 50                        | 45.4          | 44.1    |                       | 46.8    |           |
| 100                       | 90.9          | 88.2    |                       | 93.6    |           |

3.4.1 Performance Verification Record Sheet for R3267

(19) Residual response

| Test Data            | Specification |                                  |      | Result    |
|----------------------|---------------|----------------------------------|------|-----------|
| Frequency<br>Range   | Min (dBm)     | Measured<br>Data (dBm) Max (dBm) |      | Pass/Fail |
| 100Hz to 3.5<br>GHz  | N/A           |                                  | -100 |           |
| 3.5GHz to<br>7.5 GHz | N/A           |                                  | -90  |           |

3.4.2 Performance Verification Record Sheet for R3273

# 3.4.2 Performance Verification Record Sheet for R3273

(1) Frequency Reference Output Accuracy

|                      |            | Result            |            |           |
|----------------------|------------|-------------------|------------|-----------|
| Test Data            | Min (Hz)   | Measured<br>Value | Max (Hz)   | Pass/Fail |
| 30MHz                | 29.999997  |                   | 30.000003  |           |
| 30MHz<br>(Option 21) | 29.9999997 |                   | 30.0000003 |           |

#### (2) Calibration Signal Amplitude Accuracy

| Test Data |           | Result                  |           |           |
|-----------|-----------|-------------------------|-----------|-----------|
|           | Min (dBm) | Measured<br>Value (dBm) | Max (dBm) | Pass/Fail |
| -10dBm    | -10.3     |                         | -9.7      |           |

### (3) Displayed Average Noise Level

| Center            |           | Result                  |           |           |
|-------------------|-----------|-------------------------|-----------|-----------|
| Frequency<br>(Hz) | Min (dBm) | Measured<br>Value (dBm) | Max (dBm) | Pass/Fail |
| 1k                | N/A       |                         | -95.23    |           |
| 10k               | N/A       |                         | -100      |           |
| 100k              | N/A       |                         | -101      |           |
| 1.0M              | N/A       |                         | -125      |           |
| 10.1M             | N/A       |                         | -130      |           |
| 101M              | N/A       |                         | -129.9    |           |
| 501M              | N/A       |                         | -129.5    |           |
| 1001M             | N/A       |                         | -129      |           |
| 1.5G              | N/A       |                         | -128.5    |           |
| 2.0G              | N/A       |                         | -128      |           |
| 2.5G              | N/A       |                         | -127.5    |           |
| 3.0G              | N/A       |                         | -127      |           |
| 3.5G              | N/A       |                         | -126.5    |           |

3-98

| Center            |                                   | Result |           |           |
|-------------------|-----------------------------------|--------|-----------|-----------|
| Frequency<br>(Hz) | Min (dBm) Measured<br>Value (dBm) |        | Max (dBm) | Pass/Fail |
| 3.5G to 7.5G      | N/A                               | ~      | -125      |           |
| 7.5G to<br>15.4G  | N/A                               |        | -122      |           |
| 7.5G to<br>15.4G  | N/A                               |        | -120      |           |
| 22G to<br>26.5G   | NA                                |        | -117      |           |

3.4.2 Performance Verification Record Sheet for R3273

(4) Resolution Bandwidth Switching Uncertainty

| Test Data |                        |          | Result                 |          |           |
|-----------|------------------------|----------|------------------------|----------|-----------|
| RBW (Hz)  | Span Set-<br>ting (Hz) | Min (dB) | Measured<br>Value (dB) | Max (dB) | Pass/Fail |
| 300k      | 1M                     | Ref.     | 0(Ref.)                | Ref.     |           |
| 10M       | 15M                    | -0.3     |                        | +0.3     |           |
| 5M        | 8M                     | -0.3     |                        | +0.3     |           |
| 3M        | 5M                     | -0.3     |                        | +0.3     |           |
| 1M        | 2M                     | -0.3     |                        | +0.3     |           |
| 100k      | 200k                   | -0.3     |                        | +0.3     |           |
| 30k       | 50k                    | -0.3     |                        | +0.3     |           |
| 10k       | 20k                    | -0.3     |                        | +0.3     |           |
| 3k        | 5k                     | -0.3     |                        | +0.3     |           |
| 1k        | 2k                     | -0.3     |                        | +0.3     |           |
| 300       | 500                    | -0.3     |                        | +0.3     |           |
| 100       | 200                    | -0.3     |                        | +0.3     |           |
| 30        | 200                    | -1.0     |                        | +1.0     |           |

2

#### 3.4.2 Performance Verification Record Sheet for R3273

#### (5) Resolution Bandwidth Accuracy and Selectivity

Resolution Bandwidth Accuracy

| Test Data  |                      |          | Result                 |          |           |
|------------|----------------------|----------|------------------------|----------|-----------|
| RBW (Hz)   | Span Setting<br>(Hz) | Min (Hz) | Measured<br>Value (Hz) | Max (Hz) | Pass/Fail |
| 5M         | 10M                  | 3.125M   |                        | 6.25M    |           |
| 3M         | 5M                   | 2.25M    |                        | 3.75M    |           |
| 1 <b>M</b> | 2M                   | 0.850M   |                        | 1.150M   |           |
| 300k       | 500k                 | 255k     |                        | 345k     |           |
| 100k       | 200k                 | 85k      |                        | 115k     |           |
| 30k        | 50k                  | 25.5k    |                        | 34.5k    |           |
| 10k        | 20k                  | 8.5k     |                        | 11.5k    |           |
| 3k         | 5k                   | 2.55k    |                        | 3.45k    |           |
| 1k         | 2k                   | 0.85k    |                        | 1.15k    |           |
| 300        | 500                  | 255      |                        | 345      |           |
| 100        | 200                  | 85       |                        | 115      |           |
| (*1)30     | 200                  | 22.5     |                        | 37.5     |           |

\*1:The Min and Max. values for RBW 30Hz are those when the temperature is  $25^{\circ}C \pm 10^{\circ}C$ . Values for other temperature are not specified.

Resolution Bandwidth Selectivity

| Test Data   | Span<br>Setting | Span Measured Value (Hz) Specification |       |     | Result  |     |           |
|-------------|-----------------|----------------------------------------|-------|-----|---------|-----|-----------|
| RBW<br>(Hz) | (Hz)            | 60dB                                   | 3dB   | Min | Acutual | Max | Pass/Fail |
| 5M          | 30M             |                                        | ····· | -   | -       | 15  |           |
| 3M          | 25M             |                                        |       | +   |         | 15  |           |
| 1M          | 20M             |                                        |       | _   |         | 15  |           |
| 300k        | 5M              | 1                                      |       | -   |         | 15  |           |
| 100k        | 1M              |                                        |       | -   |         | 15  |           |
| 30k         | 500k            |                                        |       | -   |         | 15  |           |
| 10k         | 200k            |                                        |       | -   |         | 15  |           |
| 3k          | 50k             |                                        |       | -   |         | 15  |           |

3.4.2 Performance Verification Record Sheet for R3273

Span Test Data Measured Value (Hz) Specification Result Setting RBW Pass/Fail (Hz) 60dB 3dB Min Acutual Max (Hz) 15 1k 20k -300 15 5k -100 2k 15 -20 (\*1)30 1k -

\*1:The Min and Max. values for RBW 30Hz are those when the temperature is  $25^{\circ}C \pm 10^{\circ}C$ . Values for other temperature are not specified.

(6) IF Gain Uncertainty

| Sett     | ing                             | Test Data                |          | Specification          |          | Result    |
|----------|---------------------------------|--------------------------|----------|------------------------|----------|-----------|
| RBW (Hz) | External<br>Attenua-<br>tor(dB) | Reference<br>Level (dBm) | Min (dB) | Measured<br>Value (dB) | Max (dB) | Pass/Fail |
| 1M       | 1                               | -1.0                     | -0.5     |                        | +0.5     |           |
|          | 2                               | -2.0                     | -0.5     |                        | +0.5     |           |
|          | 3                               | -3.0                     | -0.5     |                        | +0.5     |           |
|          | 4                               | -4.0                     | -0.5     |                        | +0.5     |           |
|          | 5                               | -5.0                     | -0.5     |                        | +0.5     |           |
|          | 6                               | -6.0                     | -0.5     |                        | +0.5     |           |
|          | 7                               | -7.0                     | -0.5     |                        | +0.5     |           |
|          | 8                               | -8.0                     | -0.5     |                        | +0.5     |           |
|          | 9                               | -9.0                     | -0.5     |                        | +0.5     |           |
|          | 10                              | -10.0                    | -0.5     |                        | +0.5     | ;         |
|          | 20                              | -20.0                    | -0.5     |                        | +0.5     |           |
|          | 30                              | -30.0                    | -0.5     |                        | +0.5     |           |
|          | 40                              | -40.0                    | -0.5     |                        | +0.5     |           |
|          | 50                              | -50.0                    | -0.5     |                        | +0.5     |           |
|          | 60                              | -60.0                    | -0.5     |                        | +0.5     |           |
|          | 70                              | -70.0                    | -0.7     |                        | +0.7     |           |
|          | 80                              | -80.0                    | -0.7     |                        | +0.7     |           |

# 3.4.2 Performance Verification Record Sheet for R3273

| Set      | ting                            | Test Data                |          | Specification          |          | Result    |
|----------|---------------------------------|--------------------------|----------|------------------------|----------|-----------|
| RBW (Hz) | External<br>Attenua-<br>tor(dB) | Reference<br>Level (dBm) | Min (dB) | Measured<br>Value (dB) | Max (dB) | Pass/Fail |
| 3k       | 1                               | -1.0                     | -0.5     |                        | +0.5     |           |
|          | 2                               | -2.0                     | -0.5     |                        | +0.5     |           |
|          | 3                               | -3.0                     | -0.5     |                        | +0.5     |           |
|          | 4                               | -4.0                     | -0.5     |                        | +0.5     |           |
|          | 5                               | -5.0                     | -0.5     |                        | +0.5     |           |
|          | 6                               | -6.0                     | -0.5     |                        | +0.5     |           |
|          | 7                               | -7.0                     | -0.5     |                        | +0.5     |           |
|          | 8                               | -8.0                     | -0.5     |                        | +0.5     |           |
|          | 9                               | -9.0                     | -0.5     |                        | +0.5     |           |
|          | 10                              | -10.0                    | -0.5     |                        | +0.5     |           |
|          | 20                              | -20.0                    | -0.5     |                        | +0.5     |           |
|          | 30                              | -30.0                    | -0.5     |                        | +0.5     |           |
|          | 40                              | -40.0                    | -0.5     |                        | +0.5     |           |
|          | 50                              | -50.0                    | -0.5     |                        | +0.5     | ·         |
|          | 60                              | -60.0                    | -0.5     |                        | +0.5     |           |
|          | 70                              | -70.0                    | -0.7     |                        | +0.7     |           |
|          | 80                              | -80.0                    | -0.7     |                        | +0.7     |           |

3-102

| Set      | ting                           | Test Data                |          | Specification          | 1        | Result    |
|----------|--------------------------------|--------------------------|----------|------------------------|----------|-----------|
| RBW (Hz) | External<br>Attenuator<br>(dB) | Reference<br>Level (dBm) | Min (dB) | Measured<br>Value (dB) | Max (dB) | Pass/Fail |
| 300k     | 1                              | -1.0                     | -0.5     |                        | +0.5     |           |
|          | 2                              | -2.0                     | -0.5     |                        | +0.5     |           |
|          | 3                              | -3.0                     | -0.5     |                        | +0.5     |           |
| :        | 4                              | -4.0                     | -0.5     |                        | +0.5     | 1         |
|          | 5                              | -5.0                     | -0.5     |                        | +0.5     |           |
|          | 6                              | -6.0                     | -0.5     |                        | +0.5     |           |
| ()       | . 7                            | -7.0                     | -0.5     |                        | +0.5     |           |
|          | 8                              | -8.0                     | -0.5     |                        | +0.5     |           |
|          | 9                              | -9.0                     | -0.5     |                        | +0.5     |           |
|          | 10                             | -10.0                    | -0.5     |                        | +0.5     |           |
|          | 20                             | -20.0                    | -0.5     |                        | +0.5     |           |
|          | 30                             | -30.0                    | -0.5     |                        | +0.5     |           |
| :        | 40                             | -40.0                    | -0.5     |                        | +0.5     |           |
|          | 50                             | -50.0                    | -0.5     |                        | +0.5     |           |
|          | 60                             | -60.0                    | -0.5     |                        | +0.5     |           |
|          | 70                             | -70.0                    | -0.7     |                        | +0.7     |           |
| <i>v</i> | 80                             | -80.0                    | -0.7     |                        | +0.7     |           |

3.4.2 Performance Verification Record Sheet for R3273

# 3.4.2 Performance Verification Record Sheet for R3273

### (7) Input Attenuation Switching Accuracy

Center Frequency at 4GHz, Reference Value

|                               | <b>0</b>        |                          |                    | Specification  |             |          |                                    |             |  |  |  |
|-------------------------------|-----------------|--------------------------|--------------------|----------------|-------------|----------|------------------------------------|-------------|--|--|--|
| Setting                       |                 |                          | Switching Accuracy |                |             | Sw       | Step to step<br>Switching Accuracy |             |  |  |  |
| Input<br>Attenua-<br>tor (dB) | IF Gain<br>(dB) | IF Gain<br>Error<br>(dB) | Min (dB)           | Actual<br>(dB) | Max<br>(dB) | Min (dB) | Calculated<br>(dB)                 | Max<br>(dB) |  |  |  |
| 10                            | 0               | 0                        | 0(Ref.)            | 0(Ref.)        | 0(Ref.)     | 0(Ref.)  | 0(Ref.)                            | 0(Ref.)     |  |  |  |
| 20                            | 10              |                          | -2.0               |                | +2.0        | -1.1     |                                    | +1.1        |  |  |  |
| 30                            | 20              |                          | -2.0               |                | +2.0        | -1.1     |                                    | +1.1        |  |  |  |
| 40                            | 30              |                          | -2.0               |                | +2.0        | -1.1     |                                    | +1.1        |  |  |  |
| 50                            | 40              |                          | -2.0               |                | +2.0        | -1.1     |                                    | +1.1        |  |  |  |
| .60                           | 50              |                          | -2.0               |                | +2.0        | -1.1     |                                    | +1.1        |  |  |  |
| 70                            | 60              |                          | -2.0               |                | +2.0        | -1.1     |                                    | +1.1        |  |  |  |

dBm

Center Frequency at 15GHz, Reference Value dBm

| Setting                       |                 |                          |                    | Specification  |             |          |                                    |             |  |  |  |
|-------------------------------|-----------------|--------------------------|--------------------|----------------|-------------|----------|------------------------------------|-------------|--|--|--|
|                               |                 |                          | Switching Accuracy |                |             | Sw       | Step to step<br>Switching Accuracy |             |  |  |  |
| Input<br>Attenua-<br>tor (dB) | IF Gain<br>(dB) | IF Gain<br>Error<br>(dB) | Min (dB)           | Actual<br>(dB) | Max<br>(dB) | Min (dB) | Calculated<br>(dB)                 | Max<br>(dB) |  |  |  |
| 10 ·                          | 0               | 0                        | 0(Ref.)            | 0(Ref.)        | 0(Ref.)     | 0(Ref.)  | 0(Ref.)                            | 0(Ref.)     |  |  |  |
| 20                            | 10              |                          | -2,5               |                | +2.5        | -1.3     |                                    | +1.3        |  |  |  |
| 30                            | 20              |                          | -2.5               |                | +2.5        | -1.3     |                                    | +1.3        |  |  |  |
| 40                            | 30              |                          | -2.5               |                | +2.5        | -1.3     |                                    | +1.3        |  |  |  |
| 50                            | 40              |                          | -2.5               |                | +2.5        | -1.3     |                                    | +1.3        |  |  |  |
| 60                            | 50              |                          | -2.5               |                | +2.5        | -1.3     |                                    | +1.3        |  |  |  |
| 70                            | 60              |                          | -2.5               |                | +2.5        | -1.3     |                                    | +1.3        |  |  |  |

3.4.2 Performance Verification Record Sheet for R3273

|                               | un an |                          | Specification      |                |             |          |                                    |             |  |  |
|-------------------------------|-------------------------------------------|--------------------------|--------------------|----------------|-------------|----------|------------------------------------|-------------|--|--|
| Setting                       |                                           |                          | Switching Accuracy |                |             | Sw       | Step to step<br>Switching Accuracy |             |  |  |
| Input<br>Attenua-<br>tor (dB) | IF Gain<br>(dB)                           | IF Gain<br>Error<br>(dB) | Min (dB)           | Actual<br>(dB) | Max<br>(dB) | Min (dB) | Calculated<br>(dB)                 | Max<br>(dB) |  |  |
| 10                            | 0                                         | 0                        | 0(Ref.)            | 0(Ref.)        | 0(Ref.)     | 0(Ref.)  | 0(Ref.)                            | 0(Ref.)     |  |  |
| 20                            | 10                                        |                          | -3.5               | i              | +3.5        | -1.8     |                                    | +1.8        |  |  |
| 30                            | 20                                        |                          | -3.5               |                | +3.5        | -1.8     |                                    | +1.8        |  |  |
| 40                            | 30                                        |                          | -3.5               | 1              | +3.5        | -1.8     |                                    | +1.8        |  |  |
| 50                            | 40                                        |                          | -3.5               |                | +3.5        | -1.8     |                                    | +1.8        |  |  |
| 60                            | 50                                        |                          | -3.5               |                | +3.5        | -1.8     |                                    | +1.8        |  |  |
| 70                            | 60                                        |                          | -3.5               |                | +3.5        | -1.8     |                                    | +1.8        |  |  |

### Center Center Frequency at 18GHz, Reference Value dBm

(8) Scale Fidelity

1dB/div Log Scale Fidelity

| Tes  | t Data                              |                          |          | Specification          |          |                                | Result    |
|------|-------------------------------------|--------------------------|----------|------------------------|----------|--------------------------------|-----------|
| RBW  | dB from<br>Referenced<br>Level (dB) | Signal<br>Level<br>(dBm) | Min (dB) | Measured<br>Value (dB) | Max (dB) | Incremen-<br>tal<br>Error (dB) | Pass/Fail |
| 1MHz | 0                                   | 0                        | Ref.     | Ref.                   | Ref.     | Ref.                           |           |
|      | -1                                  | -1                       | -1.2     |                        | -0.8     |                                |           |
|      | -2                                  | -2                       | -2.4     |                        | -1.6     |                                |           |
|      | -3                                  | -3                       | -3.6     |                        | -2.4     |                                |           |
|      | -4                                  | -4                       | -4.8     |                        | -3.2     |                                |           |
|      | -5                                  | -5                       | -6.0     |                        | -4.0     |                                |           |
|      | -6                                  | -6                       | -7.0     |                        | -5.0     |                                |           |
|      | -7                                  | -7                       | -8.0     |                        | -6.0     |                                |           |
|      | -8                                  | -8                       | -9.0     |                        | -7.0     |                                |           |
|      | -9                                  | -9                       | -10.0    |                        | -8.0     |                                |           |
|      | -10                                 | -10                      | -11.0    |                        | -9.0     |                                |           |

3.4.2 Performance Verification Record Sheet for R3273

|      | Test Data                           |                          |          | Specif                 | ication  |                                | Result    |
|------|-------------------------------------|--------------------------|----------|------------------------|----------|--------------------------------|-----------|
| RBW  | dB from<br>Referenced<br>Level (dB) | Signal<br>Level<br>(dBm) | Min (dB) | Measured<br>Value (dB) | Max (dB) | Incremen-<br>tal<br>Error (dB) | Pass/Fail |
| 3kHz | 0                                   | 0                        | Ref.     | Ref.                   | Ref.     | Ref.                           |           |
| l    | -10                                 | -10                      | -10.85   |                        | -9.15    |                                |           |
| ļ    | -20                                 | -20                      | -20.85   |                        | -19.15   |                                |           |
|      | -30                                 | -30                      | -30.85   |                        | -29.15   |                                |           |
|      | -40                                 | -40                      | -40.85   |                        | -39.15   |                                |           |
|      | -50                                 | -50                      | -50.85   |                        | -49.15   |                                |           |
|      | -60                                 | -60                      | -60.85   |                        | -59.15   |                                |           |
|      | -70                                 | -70                      | -70.85   |                        | -69.15   |                                |           |
|      | -80                                 | -80                      | -80.85   |                        | -79.15   |                                |           |
|      | -90                                 | -90                      | -90.85   |                        | -89.15   |                                |           |

### • 10dB/div Log Scale Fidelity

# • Linear Scale Fidelity

|                     | Test Data                               |             |             | Specification          |             |           |  |  |
|---------------------|-----------------------------------------|-------------|-------------|------------------------|-------------|-----------|--|--|
| Div.<br>From Refer- | Input Sig                               | mal Level   | Min.(mV)    | Measured<br>Value (dB) | Max (mV)    | Pass/Fail |  |  |
| ence Level          | e Level (dBm, (mV,<br>Nominal) Nominal) |             |             |                        |             |           |  |  |
| 0                   | Ref.(0)                                 | Ref.(223.6) | Ref.(223.6) | Ref.(223.6)            | Ref.(223.6) |           |  |  |
| 1                   | -0.92                                   | 201.24      | 190.06      |                        | 212.42      |           |  |  |
| 2                   | -1.94                                   | 178.88      | 167.7       |                        | 190.06      |           |  |  |
| 3                   | -3.10                                   | 156.52      | 145.34      |                        | 167.7       |           |  |  |
| 4                   | -4.44                                   | 134.16      | 122.98      |                        | 145.34      |           |  |  |
| 5                   | -6.02                                   | 111.8       | 100.62      |                        | 122.98      |           |  |  |
| 6                   | -7.96                                   | 89.44       | 78.26       |                        | 100.62      |           |  |  |
| 7                   | -10.46                                  | 67.08       | 55.9        |                        | 78.26       |           |  |  |
| 8                   | -13.98                                  | 44.72       | 33.54       |                        | 55.9        |           |  |  |
| 9                   | -20.00                                  | 22.36       | 11.18       |                        | 33.54       |           |  |  |

3.4.2 Performance Verification Record Sheet for R3273

|        | Meas<br>Val    | ured<br>ue   |                   |          | Result                   |          |           |
|--------|----------------|--------------|-------------------|----------|--------------------------|----------|-----------|
| Marker | Reading        | 3dB<br>Slope | FM Devi-<br>ation | Min (Hz) | Calculated<br>Value (Hz) | Max (Hz) | Pass/Fail |
| Δf     | $\Delta$ level |              |                   | N/A      |                          | 3        |           |

(9) Residual FM

#### (10) Noise Sidebands

| Contan            | (J(J)                         | Off               | Specification   |                               |                  |  |  |
|-------------------|-------------------------------|-------------------|-----------------|-------------------------------|------------------|--|--|
| Frequency<br>(Hz) | Span(H2)<br>Frequency(H<br>z) | Frequency(H<br>z) | Min<br>(dBc/Hz) | Measured<br>Value<br>(dBc/Hz) | Max.<br>(dBc/Hz) |  |  |
| 1GHz              | 2.5k                          | 1 k               | N/A             |                               | -100             |  |  |
|                   | 25k                           | 10 k              | N/A             |                               | -110             |  |  |
|                   | 250k                          | 100 k             | N/A             |                               | -118             |  |  |
|                   | 2.5M                          | 1000 k            | N/A             |                               | -135             |  |  |

### (11) Image, Multiple and Out of Band Spurious

|                    | Test Data                    |                                             | - <u>10</u> AT - |                            | Result                                |           |
|--------------------|------------------------------|---------------------------------------------|------------------|----------------------------|---------------------------------------|-----------|
| Frequency<br>Range | Center<br>Frequency<br>(GHz) | Frequency of<br>Signall Gen-<br>erator (Hz) | Min (dBc)        | Measured<br>Value<br>(dBc) | Max (dBc)                             | Pass/Fail |
| 100Hz to           | 2                            | 1957.159M                                   | N/A              |                            |                                       |           |
| 3.5GHz             | 2                            | 1157.159M                                   | N/A              |                            |                                       |           |
|                    | 2                            | 10.462841G                                  | N/A              |                            |                                       |           |
|                    | 2                            | 8.2314205G                                  | N/A              |                            |                                       |           |
| 3.5GHz to          | 5.5                          | 6.342841G                                   | N/A              |                            |                                       |           |
| 7.5GHz             | 5.5                          | 11.421421G                                  | N/A              |                            |                                       |           |
|                    | 5.5                          | 17.342841G                                  | N/A              |                            | · · · · · · · · · · · · · · · · · · · |           |
|                    | 5.5                          | 23.264262G                                  | N/A              |                            |                                       |           |

3.4.2 Performance Verification Record Sheet for R3273

|                       | Test Data                    |                                             | - · · · · · · · · · · · · · · · · · · · | Result                     |           |                                       |
|-----------------------|------------------------------|---------------------------------------------|-----------------------------------------|----------------------------|-----------|---------------------------------------|
| Frequency<br>Range    | Center<br>Frequency<br>(GHz) | Frequency of<br>Signall Gen-<br>erator (Hz) | Min (dBc)                               | Measured<br>Value<br>(dBc) | Max (dBc) | Pass/Fail                             |
| 7.4GHz to<br>15.4GHz  | 12                           | 12.842841G                                  | N/A                                     |                            |           |                                       |
|                       | 12                           | 5.78929G                                    | N/A                                     |                            |           |                                       |
|                       | 12                           | 18.21071G                                   | N/A                                     |                            |           |                                       |
|                       | 12                           | 24.421421G                                  | N/A                                     |                            |           | · · · · · · · · · · · · · · · · · · · |
| 15.2GHz to<br>23.3GHz | 21                           | 21.842841G                                  | N/A                                     |                            |           |                                       |
|                       | 21                           | 6.719053G                                   | N/A                                     |                            |           |                                       |
|                       | 21                           | 13.859527G                                  | N/A                                     |                            |           |                                       |
| 23GHz to<br>26.5GHz   | 24.4                         | 25.242841G                                  | N/A                                     |                            |           |                                       |
|                       | 24.4                         | 5.783935G                                   | N/A                                     |                            |           |                                       |
|                       | 24.4                         | 11.98929G                                   | N/A                                     |                            |           |                                       |
|                       | 24.4                         | 18.194645G                                  | N/A                                     |                            | :         |                                       |

### (12) Frequency Counter Marker Accuracy

| Center<br>Frequency<br>(Hz) | Span |              | Result                        |                 |           |
|-----------------------------|------|--------------|-------------------------------|-----------------|-----------|
|                             |      | Min (GHz)    | Measured<br>Value<br>(dBc/Hz) | Max<br>(dBc/Hz) | Pass/Fail |
| 2GHz                        | 1MHz | 1.999999794  |                               | 2.00000206      | :         |
| 5GHz                        | 1MHz | 4.999999494  |                               | 5.000000506     |           |
| 11GHz                       | 1MHz | 10.999998889 |                               | 11.000001111    |           |
| 18GHz                       | 1MHz | 17.999998184 |                               | 18.000001816    |           |

(13) Second Harmonic Distortion

|                 | Test Data   |                    | Specification |                   |           | Result    |
|-----------------|-------------|--------------------|---------------|-------------------|-----------|-----------|
| Frequency Range | Fundamental | Second<br>Harmonic | Min (dBc)     | Measured<br>Value | Max (dBc) | Pass/Fail |
| 10MHz to 1.8GHz | 1.5GHz      | 3.0GHz             | N/A           |                   | -70       |           |
| > 1.6GHz        | 1.9GHz      | 3.8GHz             | N/A           |                   | -100      |           |

3..108
3.4.2 Performance Verification Record Sheet for R3273

## (14) Frequency Response

• Frequency Range 100Hz to 3.5GHz

| Transverse | Specification |          |                        |          | Result    |
|------------|---------------|----------|------------------------|----------|-----------|
| Range      | (MHz)         | Min (dB) | Measured<br>Value (dB) | Max (dB) | Pass/Fail |
| 100Hz to   | 100           | - 5.0    |                        | +5.0     |           |
| 3.5GHz     | 200           | - 5.0    |                        | +5.0     |           |
|            | 300           | - 5.0    |                        | +5.0     |           |
|            | 400           | - 5.0    |                        | +5.0     |           |
|            | 500           | - 5.0    |                        | +5.0     |           |
|            | 600           | - 5.0    |                        | +5.0     |           |
|            | 700           | - 5.0    |                        | +5.0     |           |
|            | 800           | - 5.0    |                        | +5.0     |           |
|            | 900           | - 5.0    |                        | +5.0     |           |
|            | 1000          | - 5.0    |                        | +5.0     |           |
|            | 1100          | - 5.0    |                        | +5.0     |           |
|            | 1200          | - 5.0    |                        | +5.0     |           |
|            | 1300          | - 5.0    |                        | +5.0     |           |
|            | 1400          | - 5.0    |                        | +5.0     |           |
|            | 1500          | - 5.0    |                        | +5.0     |           |
|            | 1600          | - 5.0    |                        | +5.0     |           |
|            | 1700          | - 5.0    |                        | +5.0     |           |
|            | 1800          | - 5.0    |                        | +5.0     |           |
|            | 1900          | - 5.0    |                        | +5.0     |           |
| !          | 2000          | - 5.0    |                        | +5.0     |           |
|            | 2100          | - 5.0    |                        | +5.0     |           |
|            | 2200          | - 5.0    |                        | +5.0     |           |
| 1          | 2300          | - 5.0    |                        | +5.0     |           |
|            | 2400          | - 5.0    |                        | +5.0     |           |
|            | 2500          | - 5.0    |                        | +5.0     |           |

| <b>F</b>                              | Track Data          |          | Specification          |          | Result    |
|---------------------------------------|---------------------|----------|------------------------|----------|-----------|
| Range                                 | (MHz)               | Min (dB) | Measured<br>Value (dB) | Max (dB) | Pass/Fail |
| 100Hz to                              | 2600                | - 5.0    |                        | +5.0     |           |
| 3.5GHz                                | 2700                | - 5.0    |                        | +5.0     |           |
|                                       | 2800                | - 5.0    |                        | +5.0     |           |
|                                       | 2900                | - 5.0    |                        | +5.0     |           |
|                                       | 3000                | - 5.0    |                        | +5.0     |           |
|                                       | 3100                | - 5.0    |                        | +5.0     |           |
|                                       | 3200                | - 5.0    |                        | +5.0     |           |
|                                       | 3300                | - 5.0    |                        | +5.0     | · ·       |
|                                       | 3400                | - 5.0    |                        | +5.0     |           |
|                                       | 3500                | - 5.0    |                        | +5.0     |           |
| In Band Falatness: 100Hz to<br>3.5GHz |                     | N/A      |                        | 3.0dBp-p |           |
| In Band Flatn<br>2.60                 | ess:50MHz to<br>GHz | N/A      |                        | 2.0dBp-p |           |

3.4.2 Performance Verification Record Sheet for R3273

3.4.2 Performance Verification Record Sheet for R3273

| <b>T</b>  | Test Dete |          | Specification          |          | Result    |
|-----------|-----------|----------|------------------------|----------|-----------|
| Range     | (MHz)     | Min (dB) | Measured<br>Value (dB) | Max (dB) | Pass/Fail |
| 3.5GHz to | 3.5       | - 5.0    |                        | +5.0     |           |
| 7.5GHz    | 3.6       | - 5.0    |                        | +5.0     |           |
|           | 3.7       | - 5.0    |                        | +5.0     |           |
|           | 3.8       | - 5.0    |                        | +5.0     | ·         |
|           | 3.9       | - 5.0    |                        | +5.0     |           |
|           | 4.0       | - 5.0    |                        | +5.0     |           |
| -         | 4.1       | - 5.0    |                        | +5.0     |           |
|           | 4.2       | - 5.0    |                        | +5.0     |           |
|           | 4.3       | - 5.0    |                        | +5.0     |           |
|           | 4.4       | - 5.0    |                        | +5.0     |           |
|           | 4.5       | - 5.0    |                        | +5.0     |           |
| ·<br>·    | 4.6       | - 5.0    |                        | +5.0     |           |
|           | 4.7       | - 5.0    |                        | +5.0     |           |
|           | 4.8       | - 5.0    |                        | +5.0     |           |
|           | 4.9       | - 5.0    |                        | +5.0     |           |
|           | 5.0       | - 5.0    |                        | +5.0     |           |
|           | 5.1       | - 5.0    |                        | +5.0     |           |
| -         | 5.2       | - 5.0    |                        | +5.0     |           |
|           | 5.3       | - 5.0    |                        | +5.0     |           |
|           | 5.4       | - 5.0    |                        | +5.0     |           |
|           | 5.6       | - 5.0    |                        | +5.0     |           |
|           | 5.7       | - 5.0    |                        | +5.0     |           |
|           | 5.8       | - 5.0    |                        | +5.0     |           |
|           | 5.9       | - 5.0    |                        | +5.0     |           |
|           | 6.0       | - 5.0    |                        | +5.0     |           |
|           | 6.1       | - 5.0    |                        | +5.0     |           |

## Frequency Range 3.5GHz to 7.5GHz

2 111

3.4.2 Performance Verification Record Sheet for R3273

| Eroquanau              | Tast Data             |          | Specification          |          | Result    |
|------------------------|-----------------------|----------|------------------------|----------|-----------|
| Range                  | (MHz)                 | Min (dB) | Measured<br>Value (dB) | Max (dB) | Pass/Fail |
| 3.5GHz to              | 6.2                   | - 5.0    |                        | +5.0     |           |
| 7.5GHZ                 | 6.3                   | - 5.0    |                        | +5.0     |           |
| 2                      | 6.4                   | - 5.0    |                        | +5.0     |           |
|                        | 6.5                   | - 5.0    |                        | +5.0     |           |
|                        | 6.6                   | - 5.0    |                        | +5.0     |           |
| · · ·                  | 6.7                   | - 5.0    |                        | +5.0     |           |
| !                      | 6.8                   | - 5.0    |                        | +5.0     |           |
|                        | 6.9                   | - 5.0    |                        | +5.0     |           |
|                        | 7.0                   | - 5.0    |                        | +5.0     |           |
|                        | 7.1                   | - 5.0    |                        | +5.0     |           |
|                        | 7.2                   | - 5.0    |                        | +5.0     |           |
|                        | 7.3                   | - 5.0    |                        | +5.0     |           |
|                        | 7.4                   | - 5.0    |                        | +5.0     |           |
|                        | 7.5                   | - 5.0    |                        | +5.0     |           |
| In Band Flatne<br>7.50 | ess: 3.5GHz to<br>GHz | N/A      |                        | 3.0dBp-p |           |

3.4.2 Performance Verification Record Sheet for R3273

| Freemanay | Test Data | -        |                                       | Result   |           |
|-----------|-----------|----------|---------------------------------------|----------|-----------|
| Range     | (MHz)     | Min (dB) | Measured<br>Value (dB)                | Max (dB) | Pass/Fail |
| 7.4GHz to | 7.5       | - 5.0    |                                       | +5.0     |           |
| 15.4GHz   | 7.7       | - 5.0    |                                       | +5.0     |           |
|           | 7.9       | - 5.0    |                                       | +5.0     |           |
| !         | 8.1       | - 5.0    |                                       | +5.0     |           |
|           | 8.3       | - 5.0    |                                       | +5.0     |           |
|           | 8.5       | - 5.0    |                                       | +5.0     |           |
| -         | 8.7       | - 5.0    |                                       | +5.0     |           |
| ;         | 8.9       | - 5.0    |                                       | +5.0     |           |
|           | 9.1       | - 5.0    |                                       | +5.0     |           |
|           | 9.3       | - 5.0    |                                       | +5.0     |           |
|           | 9.5       | - 5.0    |                                       | +5.0     |           |
|           | 9.7       | - 5.0    |                                       | +5.0     |           |
|           | 9.9       | - 5.0    |                                       | +5.0     |           |
| i         | 10.1      | - 5.0    |                                       | +5.0     |           |
|           | 10.3      | - 5.0    |                                       | +5.0     |           |
|           | 10.5      | - 5.0    |                                       | +5.0     |           |
|           | 10.7      | - 5.0    |                                       | +5.0     |           |
|           | 10.9      | - 5.0    |                                       | +5.0     |           |
|           | 11.1      | - 5.0    |                                       | +5.0     |           |
|           | 11.3      | - 5.0    |                                       | +5.0     |           |
|           | 11.5      | - 5.0    |                                       | +5.0     |           |
|           | 11.7      | - 5.0    |                                       | +5.0     |           |
|           | 11.9      | - 5.0    |                                       | +5.0     |           |
|           | 12.1      | - 5.0    |                                       | +5.0     |           |
|           | 12.3      | - 5.0    | · · · · · · · · · · · · · · · · · · · | +5.0     |           |
|           | 12.5      | - 5.0    |                                       | +5.0     |           |

# • Frequency Range 7.4GHz to 15.4GHz

 $\bigcirc$ 

2 1 1 2

| b. and a prioriting about the rest of the second ballow is | 3.4 | 4.2 | Perf | ormance | Ver | ification | Record | Sheet | for | R327. | 3 |
|------------------------------------------------------------|-----|-----|------|---------|-----|-----------|--------|-------|-----|-------|---|
|------------------------------------------------------------|-----|-----|------|---------|-----|-----------|--------|-------|-----|-------|---|

| E                      | Text Date             |          | Specification                         |          | Result    |
|------------------------|-----------------------|----------|---------------------------------------|----------|-----------|
| Range                  | (MHz)                 | Min (dB) | Measured<br>Value (dB)                | Max (dB) | Pass/Fail |
| 7.4GHz to              | 12.7                  | - 5.0    |                                       | +5.0     |           |
| 15.4GHZ                | 12.9                  | - 5.0    |                                       | +5.0     |           |
|                        | 13,1                  | - 5.0    |                                       | +5.0     |           |
|                        | 13.3                  | - 5.0    |                                       | +5.0     |           |
|                        | 13.5                  | - 5.0    |                                       | +5.0     |           |
|                        | 13.7                  | - 5.0    |                                       | +5.0     |           |
|                        | 13.9                  | - 5.0    |                                       | +5.0     |           |
|                        | 14.1                  | - 5.0    |                                       | +5.0     |           |
|                        | 14.3                  | - 5.0    |                                       | +5.0     |           |
|                        | 14.5                  | - 5.0    | · · · · · · · · · · · · · · · · · · · | +5.0     |           |
|                        | 14.7                  | - 5.0    | · · · · · · · · · · · · · · · · · · · | +5.0     |           |
|                        | 14.9                  | - 5.0    |                                       | +5.0     |           |
|                        | 15.1                  | - 5.0    |                                       | +5.0     |           |
|                        | 15.3                  | - 5.0    |                                       | +5.0     |           |
| In Band Flatne<br>15.4 | ess: 7.4GHz to<br>GHz | N/A      |                                       | 7.0dBp-p |           |

Ì

S.

è

ş

10

3-114

3.4.2 Performance Verification Record Sheet for R3273

| Emananan  | Test Data |          | Result                 |          |           |
|-----------|-----------|----------|------------------------|----------|-----------|
| Range     | (MHz)     | Min (dB) | Measured<br>Value (dB) | Max (dB) | Pass/Fail |
| 7.4GHz to | 15.4      | - 5.0    |                        | +5.0     |           |
| 15.4GHz   | 15.6      | - 5.0    |                        | +5.0     |           |
|           | 15.8      | - 5.0    |                        | +5.0     |           |
|           | 16.0      | - 5.0    |                        | +5.0     |           |
|           | 16.2      | - 5.0    |                        | +5.0     |           |
|           | 16.4      | - 5.0    |                        | +5.0     |           |
| 1         | 16.6      | - 5.0    |                        | +5.0     |           |
|           | 16.8      | - 5.0    |                        | +5.0     |           |
| -         | 17.0      | - 5.0    |                        | +5.0     |           |
|           | 17.2      | - 5.0    |                        | +5.0     |           |
|           | 17.4      | - 5.0    |                        | +5.0     |           |
|           | 17.6      | - 5.0    |                        | +5.0     |           |
|           | 17.8      | - 5.0    |                        | +5.0     |           |
| :<br>x    | 18.0      | - 5.0    |                        | +5.0     |           |
|           | 18.2      | - 5.0    |                        | +5.0     |           |
|           | 18.4      | - 5.0    |                        | +5.0     |           |
|           | 18.6      | - 5.0    |                        | +5.0     |           |
|           | 18.8      | - 5.0    |                        | +5.0     |           |
|           | 19.0      | - 5.0    |                        | +5.0     |           |
|           | 19.2      | - 5.0    |                        | +5.0     |           |
|           | 19.4      | - 5.0    |                        | +5.0     |           |
|           | 19.6      | - 5.0    |                        | +5.0     |           |
|           | 19.8      | - 5.0    |                        | +5.0     |           |
|           | 20.0      | - 5.0    |                        | +5.0     |           |
|           | 20.2      | - 5.0    |                        | +5.0     |           |
|           | 20.4      | - 5.0    |                        | +5.0     |           |

# • Frequency Range 7.4GHz to 15.4GHz

2 1 1 5

3.4.2 Performance Verification Record Sheet for R3273

|                    | T - + D - +- |          | Specification          |          |           |  |  |
|--------------------|--------------|----------|------------------------|----------|-----------|--|--|
| Frequency<br>Range | (MHz)        | Min (dB) | Measured<br>Value (dB) | Max (dB) | Pass/Fail |  |  |
| 7.4GHz to          | 20.6         | - 5.0    |                        | +5.0     |           |  |  |
| 15.4GHz            | 20.8         | - 5.0    |                        | +5.0     |           |  |  |
|                    | 21.0         | - 5.0    |                        | +5.0     |           |  |  |
|                    | 21.2         | - 5.0    |                        | +5.0     |           |  |  |
|                    | 21.4         | - 5.0    |                        | +5.0     |           |  |  |
|                    | 21.6         | - 5.0    |                        | +5.0     |           |  |  |
|                    | 21.8         | - 5.0    |                        | +5.0     |           |  |  |
|                    | 22.0         | - 5.0    |                        | +5.0     |           |  |  |
|                    | 22.2         | - 5.0    |                        | +5.0     |           |  |  |
|                    | 22.4         | - 5.0    |                        | +5.0     |           |  |  |
|                    | 22.6         | - 5.0    |                        | +5.0     |           |  |  |
|                    | 22.8         | - 5.0    |                        | +5.0     |           |  |  |
|                    | 23.0         | - 5.0    |                        | +5.0     |           |  |  |
| i                  | 23.2         | - 5.0    |                        | +5.0     |           |  |  |
|                    | 23.4         | - 5.0    |                        | +5.0     |           |  |  |
|                    | 23.6         | - 5.0    |                        | +5.0     |           |  |  |
| i                  | 23.8         | - 5.0    |                        | +5.0     |           |  |  |
|                    | 24.0         | - 5.0    |                        | +5.0     |           |  |  |
|                    | 24.2         | - 5.0    |                        | +5.0     |           |  |  |
| l                  | 24.4         | - 5.0    |                        | +5.0     |           |  |  |
|                    | 24.6         | - 5.0    |                        | +5.0     |           |  |  |
|                    | 24.8         | - 5.0    |                        | +5.0     |           |  |  |
|                    | 25.0         | - 5.0    |                        | +5.0     |           |  |  |
| ĺ                  | 25.2         | - 5.0    |                        | +5.0     |           |  |  |
|                    | 25.4         | - 5.0    |                        | +5.0     |           |  |  |
|                    | 25.6         | - 5.0    |                        | +5.0     |           |  |  |
|                    | 25.8         | - 5.0    |                        | +5.0     |           |  |  |

3.4.2 Performance Verification Record Sheet for R3273

Specification Result Test Data Frequency Pass/Fail Measured Range (MHz) Min (dB) Max (dB) Value (dB) 7.4GHz to 26.0 - 5.0 +5.0 15.4GHz +5.0 26.2 - 5.0 26.4 +5.0 - 5.0 In Band Flatness: 15.4GHz to N/A 8.0dBp-p 26.4GHz

(15) Frequency Span Accuracy

| Set                          | ting      |                   | Specification |                        |          | Result    |
|------------------------------|-----------|-------------------|---------------|------------------------|----------|-----------|
| Center<br>Frequency<br>(GHz) | Span (Hz) | Test Data<br>(Hz) | Min (Hz)      | Measured<br>Value (Hz) | Max (Hz) | Pass/Fail |
| 2                            | 20k       | 16.00k            | 15.84k        |                        | 16.16k   |           |
| 2                            | 50k       | 40.00k            | 39.6k         |                        | 40.4k    |           |
| 2                            | 400k      | 320.0k            | 316.8k        |                        | 323.2k   |           |
| 2                            | 2M        | 1.600M            | 1.584M        |                        | 1.616M   |           |
| 2                            | 5M        | 4.00M             | 3.96M         |                        | 4.04M    |           |
| 2                            | 10M       | 8.00M             | 7.92M         |                        | 8.08M    |           |
| . 2                          | 20M       | 16.00M            | 15.84M        |                        | 16.16M   |           |
| 2                            | 50M       | 40.0M             | 39.6M         |                        | 40.4M    |           |
| 2                            | 100M      | 80.0M             | 79.2M         |                        | 80.8M    |           |
| 2                            | 200M      | 160.0M            | 158.4M        |                        | 161.6M   |           |
| 2                            | 500M      | 400M              | 396M          |                        | 404M     |           |
| 2                            | 1G        | 800M              | 792M          |                        | 808M     |           |
| 2                            | 2G        | 1.6000G           | 1.584G        |                        | 1.616G   |           |
| 4.5                          | 4G        | 3.200G            | 3.168G        |                        | 3.232G   |           |
| 4.5                          | 8G        | 6.400G            | 6.336G        |                        | 6.464G   |           |
| 10                           | 10M       | 8.00M             | 7.92M         |                        | 8.08M    |           |
| 10                           | 100M      | 80.0M             | 79.2M         |                        | 80.8M    | 1         |
| 10                           | 1G        | 800G              | 792M          |                        | 808M     |           |

3.4.2 Performance Verification Record Sheet for R3273

| Set                          | ting      |                   | Specification |                        |          | Result    |
|------------------------------|-----------|-------------------|---------------|------------------------|----------|-----------|
| Center<br>Frequency<br>(GHz) | Span (Hz) | Test Data<br>(Hz) | Min (Hz)      | Measured<br>Value (Hz) | Max (Hz) | Pass/Fail |
| • 10                         | 2G        | 1.600G            | 1.584G        |                        | 1.616G   |           |
| 17                           | 10M       | 8.00M             | 7.92M         |                        | 8.08M    |           |
| 17                           | 100M      | 80.0M             | 79.2M         |                        | 80.8M    |           |
| 17                           | 1G        | 800M              | 792M          |                        | 808M     |           |
| 17                           | 2G        | 1.600G            | 1.584G        |                        | 1.616G   |           |
| 10                           | 5G        | 4.000G            | 3.96G         |                        | 4.04G    |           |
| 10                           | 10G       | 8.000G            | 7.92G         |                        | 8.08G    |           |
| 10                           | 19G       | 15.200G           | 15.048G       |                        | 15.352G  |           |

0.66%

## (16) Third Order Intermodulation Distortion

| Test Data                    |           | Result                 |           |           |
|------------------------------|-----------|------------------------|-----------|-----------|
| Center<br>Frequency<br>(MHz) | Min.(dBc) | Measured<br>Value(dBc) | Max.(dBc) | Pass/Fail |
| 20.5                         | N/A       |                        | -50       |           |
| 105                          | N/A       | [                      | -60       | ·         |
| 1500                         | N/A       |                        | -65       | · .       |
| 2000                         | N/A       |                        | -70       |           |
| 3600                         | N/A       |                        | -70       |           |

## (17) Gain Compression

|                            | Test Data                  |                              |           | Specification           |           |           |
|----------------------------|----------------------------|------------------------------|-----------|-------------------------|-----------|-----------|
| Setting<br>of SG1<br>(MHz) | Setting<br>of SG2<br>(MHz) | Center<br>Frequency<br>(MHz) | Min (dBm) | Measured<br>Value (dBm) | Max (dBm) | Pass/Fail |
| 10                         | 11                         | 10.5                         | -3        |                         | N/A       |           |
| 200                        | 201                        | 200.5                        | 0         |                         | N/A       |           |
| 3600                       | 2601                       | 3600.5                       | 0         |                         | N/A       |           |

3.4.2 Performance Verification Record Sheet for R3273

Test Data Specification Result Pass/Fail Setting Setting Center Measured of SG1 of SG2 Frequency Min (dBm) Max (dBm) Value (dBm) (MHz) (MHz) (MHz) N/A 7600 7601 7600.5 -3

(18) Sweep Time Accuracy

(

| S Ti                      |               |         | Specification         | · · · · · · | Result    |
|---------------------------|---------------|---------|-----------------------|-------------|-----------|
| Sweep Time<br>Setting (s) | Test Data (s) | Min (s) | Measured<br>Value (s) | Max (s)     | Pass/Fail |
| 1μ                        | 0.909µ        | 0.882µ  |                       | 0.936µ      |           |
| 2μ **                     | 1.81µ         | 1.77µ   |                       | 1.87µ       |           |
| 5µ 🕬                      | 4.54µ         | 4.41µ   |                       | 4.68µ       |           |
| 10µ.                      | 9.09µ         | 8.82µ   |                       | 9.36µ       |           |
| 20μ                       | 18.1µ         | 17.7µ   |                       | 18.7µ       |           |
| 50µ                       | 45.4µ         | 44.1µ   |                       | 46.8µ       |           |
| 100µ                      | 90.9µ         | 88.2µ   |                       | 93.6µ       |           |
| 200µ                      | 181µ          | 177μ    |                       | 187µ        |           |
| 500µ                      | 454µ          | 441μ    | · ·                   | 468µ.       |           |
| 1m                        | 909µ          | 882µ    |                       | 936µ        |           |
| 2m                        | 1.81m         | 1.77m   |                       | 1.87m       |           |
| 5m                        | 4.54m         | 4.41m   |                       | 4.68m       |           |
| 10m                       | 9.09m         | 8.82m   |                       | 9.36m       |           |
| 20m                       | 18.1m         | 17.7m   |                       | 18.7m       |           |
| 50m                       | 45.4m         | 44.1m   |                       | 46.8m       |           |
| 100m                      | 90.9m         | 88.2m   |                       | 93.6m       |           |
| 200m                      | 181m          | 177m    |                       | 187m        |           |
| 500m                      | 454m          | 441m    |                       | 468m        |           |
| 1                         | 909m          | 882m    |                       | 936m        |           |
| 2                         | 1.81          | 1.77    |                       | 1.87        |           |
| 5                         | 4.54          | 4.41    |                       | 4.68        |           |

3\_110

3.4.2 Performance Verification Record Sheet for R3273

| S                         |               |         | Result                |         |           |
|---------------------------|---------------|---------|-----------------------|---------|-----------|
| Sweep 11mc<br>Setting (s) | Test Data (s) | Min (s) | Measured<br>Value (s) | Max (s) | Pass/Fail |
| - 10                      | 9.09          | 8.82    |                       | 9.36    |           |
| 20                        | 18.1          | 17.7    |                       | 18.7    |           |
| 50                        | 45.4          | 44.1    |                       | 46.8    |           |
| 100                       | 90.9          | 88.2    |                       | 93.6    |           |

(19) Residual response

| Test Data            |           | Specification          |           | Result    |
|----------------------|-----------|------------------------|-----------|-----------|
| Frequency<br>Range   | Min (dBm) | Measured<br>Data (dBm) | Max (dBm) | Pass/Fail |
| 100Hz to 3.5<br>GHz  | N/A       |                        | -100      |           |
| 3.5GHz to<br>7.5 GHz | N/A       |                        | -90       |           |

3.4.3 Performance Verification Record Sheet for W-CDMA Measurement

# 3.4.3 Performance Verification Record Sheet for W-CDMA Measurement

| [   | Measure          |    |                                 |           | Specification     |           | Result    |
|-----|------------------|----|---------------------------------|-----------|-------------------|-----------|-----------|
| No. | No. ment<br>Mode |    | Input Test Item                 |           | Measured<br>Value | Max.      | Pass/Fail |
| 1   | 1 BTS RF C       |    | Carrier Frequency Accu-<br>racy | -90 Hz    |                   | +90 Hz    |           |
|     | 3                |    | Waveform Quality Accu-<br>racy  | 0.998     |                   | N/A       |           |
| ļ   |                  |    | Modulation Accuracy             | N/A       |                   | 3 %       |           |
|     |                  |    | Code Domain Power<br>Accuracy   |           |                   |           |           |
|     |                  |    | Short Code No.=0                | -11.54 dB |                   | -11.34 dB |           |
|     |                  | S  | Short Code No.=1                | -8.54 dB  |                   | -8.34 dB  |           |
| ·   |                  |    | Short Code No.=14               | -8.54 dB  |                   | -8.34 dB  |           |
|     |                  |    | Short Code No.=24               | -8.54 dB  |                   | -8.34 dB  |           |
| 2   | 2 MS RF          |    | Carrier Frequency Accu-<br>racy | -90 Hz    |                   | 90 Hz     |           |
|     |                  |    | Waveform Quality Accu-<br>racy  | 0.999     |                   | N/A       |           |
|     |                  | ;  | Modulation Accuracy             | N/A       |                   | 3%        |           |
| 3   | QPSK             | RF | Carrier Frequency Accu-<br>racy | -90 Hz    |                   | +90 Hz    |           |
|     |                  |    | Waveform Quality Accu-<br>racy  | 0.999     |                   | N/A       |           |
|     | )                |    | Modulation Accuracy             | N/A       |                   | 3%        |           |
| 4   | BTS              | IQ | Modulation Accuracy             | N/A       |                   | 3 %       |           |
| 5   | MS               | IQ | Modulation Accuracy             | N/A       |                   | 3 %       |           |
| 6   | QPSK             | IQ | Modulation Accuracy             | N/A       |                   | 3%        |           |

3.4.4 Performance Check Record Sheet for W-CDMA

# 3.4.4 Performance Check Record Sheet for W-CDMA

|     |                               |        | Result            |         |           |
|-----|-------------------------------|--------|-------------------|---------|-----------|
| No. | Items                         | Min.   | Measured<br>Value | Max.    | Pass/Fail |
| 1   | Carrier frequency<br>Accuracy | -90 Hz |                   | + 90 Hz |           |
| 2   | Waveform Quality<br>Accuracy  | 0.999  |                   | N/A     |           |
| 3   | Modulation Accuracy           | N/A    |                   | 3 %     |           |

#### 4.1 Internal Frequency Adjustment Procedure

# 4 ADJUSTMENT

This chapter provides following adjustment procedure.

#### 4.1 Internal Frequency Adjustment Procedure

This section provides adjustment procedure of internal frequency reference.

(1) Description

Adjust internal frequency reference oscillator to meet the specification. This parameter specifies frequency measurement accuracy.

(2) Specification  $\pm 3 \times 10 \exp{-8}$ 

± 5 x 10exp-9 (Option 21 installed)

(3) Equipment Used

Frequency Differential Meter: FDM

Frequency Standard: Freq.STD

(4) Setup



#### Figure 4-1 Internal Frequency Reference Adjustment Setup

- (5) Procedure
- 1. Connect the equipment as shown in Figure 4-1.
- Set the frequency differential meter in 10 exp. -8 range.
  (Option 21 installed, set frequency differential meter in 10 exp. -9 range)
- 3. On the R3267/3273, press as follows to enter internal frequency reference adjust mode.

#### SHIFT, 7(CAL), more 1/2 and Cal 10MHz Ref

4. Adjust data using Coarse and Fine keys to meet the specifications.

# 4.1 Internal Frequency Adjustment Procedure

5. After adjust data, press the store key for saving data.

1978-1

4-2\*

5.1 Preventive Maintenance

51

# **5 TROUBLESHOOTING**

This chapter provides following information,

5.1 Preventive Maintenance

5.2 Preparation

5.3 Diagnostic Procedures

5.4 Replacement Procedures

### 5.1 **Preventive Maintenance**

This section provides cleaning procedure of display(TFT) filter. Cleaning the outer surface of the filter is sufficient. If after cleaning the outer surface of the filter, the display appears dark or dirty or unfocused, clean the inner surface of display filter and the surface of TFT following procedures.

- 1. Remove the 2pcs of screws, referring Figure 5-1.
- 2. Remove the display bezel assembly by pulling out the end that is pivoting it around its left edge until released using thin, flat screwdriver or tweezers by inserting to the hole of screws.
- 3. Clean the inner surface of display filter and the surface of TFT with a soft cloth dampened water with mild soap.

Never use any chemical solvent such as benzene, toluene, xylene, aceton for cleaning.



4. Allow the surface to dry and then reassemble the display bezel.

Figure 5-1 Location of Screws Display Bezel Fixed

#### 5.2 Preparation

#### 5.2 Preparation

### 5.2.1 Introduction

This section provides general information for handling replaceable assemblies.

| WARNING | Only personnel with knowledge of electronic circuitry and awareness with hazards involved should remove and install any printed circuit board assemblies. |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAUTION | To prevent equipment circuit damage, always remove the ac line power cord before removing or replacing any assembly.                                      |
|         | To prevent static zap of ICs, always observe anti-static techniques when assemblies are handled or serviced.                                              |

### 5.2.2 General Caution For Handling Replaceable Assemblies (Block)

(1) Static Handling

Static electricity is familiar phenomenon which, except for an occasional Shock, does not seems very serious. However, it has been proven that in the electronics industry electrostatic discharge (ESD) is major cause of component failure. In many cases, the component damaged may not immediately fail, causing low instrument reliability and future repair. ESD damage can occur at static level below human perception. It has also been shown that ESD can affect both passive and active devices.

The following guidelines are the minimum requirements for a static safe service environment.

- The workbench should be equipped with a conductive tablemat. The mat should be grounded to the earth ground through a 1M-ohm resistor. The mat should be equipped with at least one swivel connector for connecting wrist strap.
- All service and handling personnel should wear a conductive wrist strap in contact with bare skin. This strap should be connected to the swivel connector on the conductive tablemat through a IM ohm resistor.
- All the metal equipment at workstation must be grounded. This includes soldering irons, soldering removers, and equipment stand.
- Only one common ground should be provided at the workstation.
- The workstation should be kept free of nonconductors. No common plastics, polybags, cardboard, cigarette or candy wrappers should be allowed. There should not be rugs or carpet on the floor, shelving, or bench top.
- Only proper containers should be used for shipping, storing or transporting assemblies. This is required on any assembly shipped to ADVANTEST for repair.
- (2) Clean Handling

Due to the high performance of the R3267/3273, use the following clean handling techniques when removing and installing assemblies.

Handle the assemblies only by their edges.
 Be sure to place them on clean workbench away from dirty or dusty conditions.

5.3 Diagnostic Procedures

## 5.3 Diagnostic Procedures

To isolate failure block for troubleshooting, it uses information of error message displayed and self test function.

Repair will be done as assembly after determines failure block or module by these informations. This section provides those information and summarized correspondence between the information and failure board or module for assembly level troubleshooting.

#### 5.3.1 Error Code

R3267 and R3273 check some functional circuit, when it power on and during operation. Once detect errors, display error message on the display. Table 5-1 lists error codes, message and action to be taken excluding

operation error.

Take a appropriate action to solve the error.

#### Table 5-1 Error Code List

| Error<br>Code | Message                                                        | Action to be taken                                                                                                                     |
|---------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 28            | No Cal signal detected                                         | Perform CAL OUT Level check refere<br>to P.V in Section3-2 CAL Out level<br>Accuracy.<br>If no signal observe replace the RF<br>block. |
| 400           | Input ATT Cal failed.                                          | Confirm failure by self test function                                                                                                  |
| 401           | If Step AMP Cal failed.                                        | Confirm failure by self test function                                                                                                  |
| 402           | Log Linearity Cal failed.                                      | Confirm failure by self test function                                                                                                  |
| 403           | Total Gain Cal failed.                                         | Confirm failure by self test function                                                                                                  |
| 404           | RBW Switching Cal failed.                                      | Confirm failure by self test function                                                                                                  |
| 405           | Amplitude MAG Cal failed.                                      | Confirm failure by self test function                                                                                                  |
| 409           | Normanl ADC Cal failed.                                        | Confirm failure by self test function                                                                                                  |
| 700           | System Error. Cannot allocate the required memory              | Replace MOD(Option01) Block                                                                                                            |
| 701           | System Error. Clock is not operational.                        | Replace MOD(Option 01) Block                                                                                                           |
| 750           | HandShake error. Contact qualified engineer.                   | Replace MOD(Option 01) Block                                                                                                           |
| 751           | Cannot Detect Mod. DSP board. Con-<br>tact qualified engineer. | Replace MOD(Option 01) Block                                                                                                           |

5.3 Diagnostic Procedures

### 5.3.2 Self test Function.

R3267 and 3273 has self test function to isolate failure as block level.

This section provides information of self test function including operation procedures and correspondence between the result and defective block.

The result displays Pass or Fail.

Once determine defective block, take a removal and installation procedures, which describes in section 5-4 to fix the failure.

#### (1) Operation Procedures.

1. Connect CAL OUT and INPUT using adapter N(m)-BNC(f) and BNC(m)-BNC(m) cable.

2. Press key as follows to enter self test function.

CONFIG, more1/2 and Self test

Then self test function displays as shown in Figure 5-2.





- 3. Press Execute Self Test to execute self test function.
- 4. The result display is shown in Figure 5-3

5.3 Diagnostic Procedures



#### Figure 5-3 Result Display of Self Test Function.

5. To exit self test function, press Test Mode Exit.

(2) Correspondence between the result and defective block.

5

Table 5-2 lists block tested correspondence between result of fail and defective block. Once determined defective block, take removal and installation procedures, which describes in 5.4 Replacement Procedures.

| Disply               | Block Tested | Defective Block | Action to be<br>taken     | Part Code               |
|----------------------|--------------|-----------------|---------------------------|-------------------------|
| PowerUp&CPU<br>Block | CPU Block    | CPU Block       | Replace CPU<br>Block      | BLM-024386              |
| Synthe Block         | SYNTE Block  | SYNTHE Block    | Replace SYN-<br>THE Block | BLM-023098              |
| RF Block             | RF Block     | RF Block        | Replace RF<br>Block       | WUN-3267RF<br>for R3267 |
| RF Block             | RF Block     | RF Block        | Replace RF<br>Block       | WUN-3273RF<br>for R3273 |
| IF Output Level      | IF Block     | IF Block        | Replace IF<br>Block       | BLM-023097              |
| Log/AD Block         | Log/AD Block | Log/AD Block    | Replace Log/<br>AD Block  | BLM-023096              |

5.4 Replacement Procedures

### 5.4 Replacement Procedures

Once determined defective block, take following procedures to replace defective block to new one.

### 5.4.1 Tools Required

Following tools are required for a block removal and installation.

- M4 mm Phillips screw driver x 1pc
- 2 mm hexagon key
- M4 mm Hexagonal box driver

### 5.4.2 RF Block Removal/Installation Procedures

- 1. Remove all the connection cables from R3267/3273
- 2. Stand R3267/3273 on the soft cushion face to down refers to Figure 5-4.
- 3. Remove 6pcs of screws, and then pull main case off to up side.



Figure 5-4 Removal of Main Case

4. Remove front frame to remove 4pcs hexagonal head screws on both of right and left sides, referring Figure 5-5.

5.4 Replacement Procedures



Figure 5-5 Location of Screws



5. Remove front panel to remove 12pcs screws referring Figure 5-6 of the location.

Figure 5-6 Location of Screws

6. Remove board stopper on the side of R3267/3273 to remove cables for RF block, referring Figure 5-7.

### 5.4 Replacement Procedures



Figure 5-7 Location of Board Stopper

 After remove cables for RF block, remove 10pcs hexagonal nuts and 8pcs screws, referring Figure 5-8 and Figure 5-9.



**Figure 5-8 Location of Screws** 

5.4 Replacement Procedures



Figure 5-9 Location of Screws

8. After remove screws fixed RF block, push RF block left side to remove from connector on the mother board. Then lift RF block up, referring Figure 5-10.



Figure 5-10 Removal of RF Block.

5.4 Replacement Procedures

9. Replace defective block to new one, then take reverse procedures to fix RF block back.

## 5.4.3 IF Block, LOG/AD Block, SYNTHESIZER Block and Digital Modulation Analysis Block Removal/Installation Procedures

- 1. Remove main case to take the procedures described in section 5.4.2 steps 1. through 3.
- 2. Remove boards stopper, referring Figure 5-11.
- 3. Each board location is shown Figure 5-11.
- 4. Replace defective block to new one.
- 5. Take reverse procedures to fix back.



Figure 5-11 Location of the Blocks

## 5.4.4 Power Supply Block Removal/Installation Procedures

- 1. Remove main case to take the procedures described in section 5.4.2 steps 1. through 3.
- 2. Remove 2pcs screws on the rear panel, referring Figure 5-12.

5.4 Replacement Procedures







3. Remove 6pcs screws on the top and bottom sides, referring Figure 5-13.

Figure 5-13 Location of Screws

### 5.4 Replacement Procedures



4. Remove connectors of output distribution cables, referring Figure 5-14.

#### **Figure 5-14 Location of Connectors**

- 5. After remove screws and connectors, push power supply block toward to front panel to remove.
- 6. Replace defective block to new one, then take reverse procedures to fix back.

# 5.4.5 CPU Block Removal/Installation Procedures

- Remove main case to take procedures described in section 5.4.2 steps 1. through 3.
- 2. Remove 4pcs screws to remove rear panel block., referring Figure 5-15.

5.4 Replacement Procedures



Figure 5-15 Location of Screws

3. Remove 4pcs of RF connectors,2pcs of flat cables and 13pcs screws, referring Figure 5-16.



Figure 5-16 Location of Connectors and Screws

4. Replace defective block to new one, then take reverse procedures to fix back.

5.4 Replacement Procedures

### 5.4.6 Floppy Disk Drive Removal/Installation Procedures.

- 1. Remove main case, front frame and front panel to take procedures described in section 5.4.2 steps 1. through 5.
- 2. Remove 4pcs screws, referring Figure 5-17.



Figure 5-17 Location of Screws

- 3. After remove screws and cable, push floppy disk drive toward to front for removal.
- 4. Replace defective unit to new one, then take reverse procedures to fix back.

## 5.4.7 TFT Display unit Removal/Installation Procedures

- 1. Remove main case, front frame and front panel to take procedures described in section 5.4.2 steps 1. through 5.
- 2. After remove front panel, remove 2pcs screws on the front and 2pcs screws on the side, referring Figure 5-18 and Figure 5-19.

5.4 Replacement Procedures



**Figure 5-18 Location of Screws** 



Figure 5-19 Location of Screws

3. After remove TFT display unit, remove connectors for back light of TFT, referring Figure 5-20.

## 5.4 Replacement Procedures



1 \*



4. Remove 4pcs screws, referring Figure 5-21.



Figure 5-21 Location of Screws

6.1 Introduction

# 6 REPLACEABLE PARTS LIST

## 6.1 Introduction

This chapter provides information for ordering replaceable parts.

### 6.2 Ordering Information

To order a part listed in the replaceable parts list, quote Advantest part number, indicate the description, quantity required, including your Model Number and serial number. Then address the order to the nearest Advantest office or representatives of Advantest in your region. The office are listed in back of this manual.

## 6.3 Replaceable Parts List

The replaceable parts is listed in Table 6-1. All the parts is for assemble replace without no adjustment.

| For R3267 |                      |                  | For R3273 |                      |                  |  |
|-----------|----------------------|------------------|-----------|----------------------|------------------|--|
| No.       | Description          | Part Code        | No.       | Description          | Part Code        |  |
| 1         | SYNTHESIZER<br>Block | BLM-023098       | 1         | SYNTHESIZER<br>Block | BLM-023098       |  |
| 2         | IF Block             | BLM-020397       | 2         | IF Block             | BLM-023097       |  |
| 3         | LOG/AD Block         | BLM-023096       | 3 -       | LOG/AD Block         | BLM-023096       |  |
| 4         | CPU Block            | BLM-024386       | 4         | CPU Block            | BLM-024386       |  |
| 5         | RF Unit              | WUN-3267RF       | 5         | RF Unit              | WUN-3273RF       |  |
| 6         | Power Supply unit    | WBL-3267PS       | 6         | Power Supply unit    | WBL-3267PS       |  |
| 7         | Modulation Block     | BLM-024476       | 7         | Modulation Block     | BLM-024476       |  |
| 8         | Floppy Disk Drive    | AAA-05HG5661-1   | 8         | Floppy Disk Drive    | AAA-05HG5661-1   |  |
| 9         | TFT Display          | NLC-000295-1     | 9         | TFT Display          | NLC-000295-1     |  |
| 10        | Front Frame          | MME-H5360A001A-1 | 10        | Front Frame          | MME-H5360A001A-1 |  |
| 11        | Bezel                | MME-6768A002A-2  | 11        | Bezel                | MME-F6768A003A-2 |  |

#### Table 6-1 Replaceable Parts List

6.1\*

in a second seco

# WARRANTY

ADVANTEST product is warranted against defects in material and workmanship for a period of one year from the date of delivery to original buyer.

# LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by buyer, unauthorized modification or misuse, accident or abnormal conditions of operations.

No other warranty is expressed or implied. ADVANTEST specifically disclaims the implied warranties of merchantability and fitness for a particular purpose.

ADVANTEST shall not be liable for any special incidental or consequential damages, whether in contract, tort or otherwise.

Any and all warranties are revoked if the product is removed from the country in which it was originally purchased.

# SERVICE

During the warranty period, ADVANTEST will, at its option, either repair or replace products which prove to be defective.

When trouble occurs, buyer should contact his local supplier or ADVANTEST giving full details of the problem and the model name and serial number.

For the products returned to ADVANTEST for warranty service, buyer shall prepay shipping and transportation charges to ADVANTEST and ADVANTEST shall pay shipping and transportation charges to return the product to buyer. However, buyer shall pay all charges, duties, and taxes incurred in his country for products returned from ADVANTEST.

# CLAIM FOR DAMAGE IN SHIPMENT TO ORIGINAL BUYER

The product should be thoroughly inspected immediately upon original delivery to buyer. All material in the container should be checked against the enclosed packing list or the instruction manual alternatively. ADVANTEST will not be responsible for shortage unless notified immediately.

If the product is damaged in any way, a claim should be filed by the buyer with carrier immediately. (To obtain a quotation to repair shipment damage, contact ADVANTEST or the local supplier.) Final claim and negotiations with the carrier must be completed by buyer.

# SALES & SUPPORT OFFICES

Advantest(Singapore)Pte.Ltd.

438A Alexandra Road

#08-03/06 Alexandra Technopark Singapore 119967

Phone: 65-274-3100 Facsimile: 65-274-4055

ROHDE & SCHWARZ Engineering and Sales GmbH Mühldorfstr. 15 (P.O.B. 80 1429, D-81614 Munich) D-81671 Munich, Germany

Phone: 49-89-4129-3711 Facsimile: 49-89-4129-3723

TEKTRONIX INC.

P.O. Box 500, M/S 39-520, Beaverton, Oregon 97077-0001

or

Howard Vollum Industrial Park, M/S 58-743, Beaverton, OR, 97077, U.S.A. Inside the U.S. 1-800-426-2200 Outside the U.S. 1-503-627-1933

