
Beagle USB Protocol Analyzer Features

� Non-intrusive Full-speed USB Monitoring (12 Mbps)
� Non-intrusive Low-speed USB Monitoring (1.5 Mbps)
� Monitor packets in real-time as they appear on the bus.
� Repetitive packet compression
� Bit-level timing with 21 ns resolution.
� High-Speed USB Device (480 Mbps transfer to host PC)
� Linux and Windows compatible
� Low cost

Beagle I2C/SPI Protocol Analyzer Features

� Non-intrusive I2C monitoring up to 4 MHz
� Non-intrusive SPI monitoring up to 24 MHz
� Monitor packets in real-time as they appear on the bus.
� User selectable bit-level timing (up to 20 ns resolution).
� High-Speed USB Device (480 Mbps transfer to host PC)
� Linux and Windows compatible
� Low cost

Summary
The BeagleTM Protocol Analyzers are non-intrusive debugging tools. Develop-
ers can watch data in real-time as they occur. The data is appropriately parsed
for the protocol of interest. Like all Total Phase products, the Beagle analyzer
is a cross-platform device for Windows and Linux.

Beagle
Protocol Analyzers

Data Sheet v1.11
August 31, 2006

www.totalphase.com © 2006 Total Phase, Inc.

http://www.totalphase.com/

Beagle USB Protocol Analyzer

1 General Overview

1.1 USB Background

USB History

Universal Serial Bus (USB) is a standard interface for connecting peripheral devices to a
host computer. The USB system was originally devised by a group of companies including:
Compaq, Digital Equipment, IBM, Intel, Microsoft, and Northern Telecom to replace the
existing mixed connector system with a simpler architecture.

USB was designed to replace the multitude of cables and connectors required to connect
peripheral devices to a host computer. The main goal of USB was to make the addition of
peripheral devices quick and easy. All USB devices share some key characteristics to make
this possible. All USB devices are self-identifying on the bus. All devices are hot-pluggable
to allow for true Plug'n'Play capability. Additionally, some devices can draw power from the
USB bus which eliminates the need for extra power adapters.

To ensure maximum interoperability the USB standard de�nes all aspects of the USB system
from the physical layer (mechanical and electrical) all the way up to the software layer. The
USB standard is maintained and enforced by the USB Implementer's Forum (USB-IF). USB
devices must pass a USB-IF compliance test in order to be considered in compliance and to
be able to use the USB logo.

The USB standard speci�es several di�erent �avors of USB: Low-Speed, Full-Speed and High-
Speed. USB-IF has also released additional specs that expand the breadth of USB. These are
On-The-Go (OTG) and Wireless USB. Although beyond the scope of this document, details
on these specs can be found on the USB-IF website.

The key di�erence between Low, Full, and High speed is bandwidth.
Low 1.5 Mbps
Full 12 Mbps
High 480 Mbps

The USB speci�cation can be viewed and downloaded on the USB-IF website.

Architectural Overview

USB is a host-scheduled, token-based serial bus protocol. USB allows for the connection of
up to 127 devices on a single USB port. A host PC can have multiple ports which increases
the maximum number of USB devices that can be connected to a single computer.

These devices can be connected and disconnected at will. The host PC is responsible for
installing and uninstalling drivers for the USB devices on an as-needed basis.

A single USB system comprises of a one USB host and one or more USB devices. There
can also be zero or more USB hubs in the system. A USB hub is special class of device.
The hub allows the connection of multiple downstream devices to an upstream host or hub.
In this way, the number of devices that can be physically connected to a computer can be
increased.

www.totalphase.com 2

http://www.totalphase.com/

Beagle USB Protocol Analyzer

A USB device is a peripheral device that connects to the host PC. The range of functionality
of USB devices is ever increasing. The device can support either one function or many
functions. For example a single digital camera may present several devices to the host when
it is connected via USB. It can present a Camera Device, a Mass Storage Device, etc.

All the devices on a single USB bus must share the bandwidth that is available on the bus.
It is possible for a host PC to have multiple busses which would all have their own separate
bandwidth. Most often, the ports on most motherboards are paired, such that each bus has
two downstream ports.

Figure 1: Sample USB Bus Topology.
A USB bus can only have a single USB host device. This host can support up to 127 di�erent devices
on a single port. There is an upper limit of 7 tiers of devices which means that a maximum of 5
hubs can be connected inline.

The USB bus has a tiered star topology. At the root tier is the USB host. All devices connect
to this device either directly or via a hub. According to the USB spec, a USB host can only
support a maximum of seven tiers between a the host and a USB device.

All USB devices are connected by a four wire USB cable. These four wires are VBUS, GND
and the twisted pair: D+ and D-. USB uses di�erential signaling on the D+ and D- to
encode binary information. The idle polarity of the signal indicates whether the device is a
low/full speed or high speed device.

Figure 2: USB Cable
A USB cable has two di�erent types of connectors: A and B. A connectors connect upstream towards
the Host and B connectors connect downstream to the Devices.

USB cables have two di�erent types of connectors: A and B. At the most basical level, A
type connectors connect a device to the host or in the host direction and the B connectors

www.totalphase.com 3

http://www.totalphase.com/

Beagle USB Protocol Analyzer

connect to downstream devices. This is part of the spec to prevent loopbacks in the USB
bus. The USB spec has been expanded to include a Mini-B connector to support small USB
devices and the OTG spec has introduced a mini AB connector to allow for device to device
connections.

Theory of Operations

This introduction is a general summary of the USB spec. Total Phase strongly recommends
that developers consult the USB speci�cation on the USB-IF website for detailed and up to
date information.

USB devices vary greatly in terms of function and communication requirements. Some
devices are single-purpose, such as a mouse or keyboard. Other devices may have multiple
functionalities that are accessible via USB such as a printer/scanner/fax device.

Device Class

The USB-IF Device Working Group de�nes a discreet number of device classes. The idea
was to simplifying software development by specifying a minimum set of functionality and
characteristics that is shared by a group of devices and interfaces. Devices of the same class
can all use the same USB driver. This greatly simpli�es the use of USB devices and saves
the end-user the time and hassle of installing a driver for every single USB device that is
connected to their host PC.

For example, input devices such as mice, keyboards and joysticks are all part of the HID
(Human Interface Device) class. Another example is the Mass Storage class which covers
removable hard drives and keychain �ash disks. All of these devices use the same Mass
Storage driver which simpli�es their use.

However, a device does not necessarily need to belong to a speci�c Device Class. In these
cases, the USB device will require its own USB driver that the host PC must load to make
the functionality available to the host.

Endpoints and Pipes

The endpoint is the fundamental unit of communication in USB. All data is transferred
through virtual pipes between the host and these endpoints. Each endpoint is a unidirectional
receiver or transmitter of data.

Endpoint 0 is a special endpoint that does not have a descriptor. All devices use this endpoint
for standard control transfers to con�gure and setup the device.

Endpoints are not all the same. Endpoints specify their bandwidth requirements and the way
that they prefer to transfer data. There are four basic types:

Control

Used for device con�guration

Interrupt

This is a transaction that is guaranteed to occur within a certain time interval. The device

www.totalphase.com 4

http://www.totalphase.com/

Beagle USB Protocol Analyzer

will specify the time interval at which the host should check the device to see if there is new
data. This is used by input devices such as mice and keyboards.

Isochronous

Periodic and continuous tranfer for time-sensitive data. There is no error checking of the
data sent in these packets. This is used for devices that need to reserve bandwidth and have
a high tolerance to errors. Examples include multimedia devices for audio and video.

Bulk

General transfer scheme for large chunks of data. This type of transfer has the lowest
priority. If the bus is busy with other transfers, this transaction may be delayed. The data
is guaranteed to arrive without error. If an error is detected in the CRCs, the data will be
retransmitted. Examples of this type of transfer are �les from a mass storage device or the
output from a scanner.

Enumeration and Descriptors

When a device is plugged into a host PC, the device undergoes Enumeration. Essentially
this means that the host recognizes the presence of the device and assigns it a unique 7-bit
address. The host PC then queries the device for its descriptors, which contains information
about the speci�c device. There are various types of descriptors as outlined below.

Figure 3: USB Descriptors
Hierarchy of descriptors of a USB device. A device has a single Device descriptor. The Device
descriptor can have multiple Con�guration descriptors, but only a single one can be active at a time.
The Con�guration descriptor can de�ne one or more Interface descriptors. Each of the Interface
descriptors can have one or more alternate settings, but only one setting can be active at a time.
The Inteface descriptor de�nes one or more Endpoints.

� Device Descriptor: Each USB device can only have a single Device Descriptor. This
descriptor contains information that applies globally to the device, such as serial num-
ber, vendor ID, product ID, etc. The device descriptor also has information about the

www.totalphase.com 5

http://www.totalphase.com/

Beagle USB Protocol Analyzer

device class. The host PC can use this information to help determine what driver to
load for the device.

� Con�guration Descriptor: A device descriptor can have one or more con�guration
descriptors. Each of these descriptors de�nes how the device is powered (e.g. bus
powered or self powered), the maximum power consumption, and what interfaces are
available in this particular setup. The host can choose whether to read just the con-
�guration descriptor or the entire heirarchy (con�guration, interfaces, and alternate
interfaces) at once.

� Interface Descriptor: A con�guration descriptor de�nes one or more interface descrip-
tors. Each interface number can be subdivided into multiple alternate interfaces that
help more �nely modify the characteristics of a device. The host PC selects particular
alternate interface depending on what functions it wishes to access. The interface also
has class information which the host PC can use to determine what driver to use.

� Endpoint Descriptor: An interface descriptor de�nes one or more endpoints. The
endpoing descriptor is the last leaf in the con�guration hierarchy and it de�nes the
bandwidth requirements, transfer type, and transfer direction of an endpoint. For
transfer direction, an endpoint is either a source (IN) or sink (OUT) of the USB
device.

� String Descriptor: Some of the con�guration descriptors mentioned baove can include
a string descriptor index number. The host PC can then request the unicode encoded
string for a speci�ed index. This provides the host with human readable information
about the device, including strings for manufacturer name, product name, and serial
number.

Tokens and Packets

All these transactions occur in three phases: Token, Data, and Handshake.

All communication on the USB bus is host-directed. In the Token phase, the host will generate
a Token packet which will address a speci�c device/endpoint combination. A Token packet
can be IN, OUT, or SETUP.
IN the host will receive data to be transmitted from the addressed dev/ep.
OUT the host will transmit data to the addressed dev/ep as receiver.
SETUP the host will transmit control information to the device.

In the data phase, the transmitter will send one or more Data Packets. It is also possible for
a device to send a NAK or STALL packet at this time indicating that it isn't able to service
the IN token that it received.

Finally, in the Handshake phase the receiver can send an ACK, NAK, or STALL indicating
the success or failure of the transaction.

All of the transfers described above follow this general scheme with the exception of the
Isochronous transfer. In this case, no Handshake phase occurs because it is more important
to stream data out in a timely fashion. It is acceptable to drop packets occasionally and
there is no need to waste time by attempting to retransmit those particular packets.

www.totalphase.com 6

http://www.totalphase.com/

Beagle USB Protocol Analyzer

Figure 4: The Three Phases of a USB Transfer
A USB transaction has three phases

Packets

All USB packets are sent LSB �rst and MSB last. All packets begin with a SYNC �eld. It
is the Start of Packet (SOP) marker and is also used to synchronize the incoming data from
the transmitter with the local clock of the receiver. This SYNC �eld is 8 bits for full/low
speed and 32 bits for high speed. The boundary between the SYNC �eld and the PID �eld
are delimited by a 2-bit marker at the end of the SYNC �eld.

The PID �eld encodes the packet type. It is an 8-bit �eld that consists of the 4-bit packet
type followed by a 4-bit one's complement of the PID packet type as a check �eld. If a
recieved PID fails its check, the remainder of the packet will be ignored by the USB device.

There are four types of PID which are described in table 1.

The format of the IN, OUT, and SETUP Token packets is shown in �gure 5. The format of
the SOF packet is shown in �gure 6. The format of the Data packets is shown in �gure 7.
Lastly, the format of the Handshake packets is shown in �gure 8.

Figure 5: Token Packet Format

References

� USB Implementers' Forum

www.totalphase.com 7

http://www.usb.org/
http://www.totalphase.com/

Beagle USB Protocol Analyzer

Table 1: USB Packet Types

Type PID Type Description
Token OUT Host to device transfer

IN Device to Host transfer
SOF Start of Frame marker

SETUP Host to device control transfer
Data DATA0 Data packet

DATA1 Data packet
DATA2 High-Speed Data packet
MDATA Split/High-Speed Data packet

Handshake ACK The data packet was received error free
NAK Receiver cannot accept data or the transmitter

could not send data
STALL Endpoint halted or control pipe request is not

supported
NYET No response yet

Special PRE
ERR
SPLIT
PING

Figure 6: Start-Of-Frame (SOF) Packet Format

Figure 7: Data Packet Format

Figure 8: Handshake Packet Format

www.totalphase.com 8

http://www.totalphase.com/

Beagle USB Protocol Analyzer

1.2 I2C Background

I2C History

When connecting multiple devices to a microcontroller, the address and data lines of each
devices were conventionally connected individually. This would take up precious pins on
the microcontroller, result in a lot of traces on the PCB, and require more components to
connect everything together. This made these systems expensive to produce and susceptible
to interference and noise.

To solve this problem, Philips developed Inter�IC bus, or I2C , in the 1980s. I2C is a low�
bandwidth, short distance protocol for on board communications. All devices are connected
through two wires: serial data (SDA) and serial clock (SCL).

Master

Slave Slave Slave

SDA

SCL

Figure 9: Sample I2C Implementation.
Regardless of how many slave units are attached to the I2C bus, there are only two signals connected
to all of them. Consequently, there is additional overhead because an addressing mechanism is
required for the master device to communicate with a speci�c slave device.

Because all commnication takes place on only two wires, all devices must have a unique
address to identify it on the bus. Slave devices have a prede�ned address, but the lower bits
of the address can be assigned to allow for multiples of the same devices on the bus.

I2C Theory of Operation

I2C has a master/slave protocol. The master initiates the communication. Here is a simpli�ed
description of the protocol. For precise details, please refer to the Philips I2C speci�cation.
The sequence of events are as follows:

1. The master device issues a start condition. This condition informs all the slave devices
to listen on the serial data line for their respective address.

2. The master device sends the address of the target slave device and a read/write �ag.

3. The slave device with the matching address responds with an acknowledgment signal.

4. Communication proceeds between the master and the slave on the data bus. Both the
master and slave can receive or transmit data depending on whether the communication
is a read or write. The transmitter sends 8 bits of data to the receiver, which replies
with a 1 bit acknowledgment.

5. When the communication is complete, the master issues a stop condition indicating
that everything is done.

Figure 10 shows a sample bitstream of the I2C protocol.

www.totalphase.com 9

http://www.totalphase.com/

Beagle USB Protocol Analyzer

Figure 10: I2C Protocol.
Since there are only two wires, this protocol includes the extra overhead of the addressing and
acknowledgement mechanisms.

I2C Features

I2C has many features other important features worth mentioning. It supports multiple data
speeds: standard (100 kbps), fast (400 kbps) and high speed (3.4 Mbps) communications.

Other features include:

� Built in collision detection,

� 10�bit Addressing,

� Multi�master support,

� Data broadcast (general call).

For more information about other features, see the references at the end of this section.

I2C Bene�ts and Drawbacks

Since only two wires are required, I2C is well suited for boards with many devices connected
on the bus. This helps reduce the cost and complexity of the circuit as additional devices are
added to the system.

Due to the presence of only two wires, there is additional complexity in handling the overhead
of addressing and acknowledgments. This can be ine�cient in simple con�gurations and a
direct�link interface such as SPI might be preferred.

I2C References

� I2C bus � NXP (Philips) Semiconductors O�cial I2C website

� I2C (Inter-Integrated Circuit) Bus Technical Overview and Frequently Asked Questions
� Embedded Systems Academy

� Introduction to I2C � Embedded.com
� I2C � Open Directory Project Listing

1.3 SPI Background

SPI History

SPI is a serial communication bus developed by Motorola. It is a full�duplex protocol which
functions on a master�slave paradigm that is ideally suited to data streaming applications.

www.totalphase.com 10

http://www.nxp.com/products/interface_control/i2c/index.html
http://www.esacademy.com/faq/i2c/
http://www.embedded.com/story/OEG20010718S0073
http://dmoz.org/Computers/Hardware/Buses/I2C/
http://www.totalphase.com/

Beagle USB Protocol Analyzer

SPI Theory of Operation

SPI requires four signals: clock (SCLK), master output/slave input (MOSI), master in-
put/slave output (MISO), slave select (SS).

Slave 1

SCLK

MOSI

MISO

SS

Master
SCLK

MOSI

MISO

SS1

SS2

SS3 Slave 2

SCLK

MOSI

MISO

SS

Slave 3

SCLK

MOSI

MISO

SS

Figure 11: Sample SPI Implementation.
Each slave device requires a separate slave select signal (SS). This means that as devices are added,
the circuit increases in complexity.

Three signals are shared by all devices on the SPI bus: SCLK, MOSI and MISO. SCLK is
generated by the master device and is used for synchronization. MOSI and MISO are the
data lines. The direction of transfer is indicated by their names. Data is always transferred
in both directions in SPI, but an SPI device interested in only transmitting data can choose
to ignore the receive bytes. Likewise, a device only interested in the incoming bytes can
transmit dummy bytes.

Each device has its own SS line. The master pulls low on a slave's SS line to select a device
for communication.

The exchange itself has no pre�de�ned protocol. This makes it ideal for data�streaming
applications. Data can be transferred at high speed, often into the range of the tens of
megahertz. The �ipside is that there is no acknowledgment, no �ow control, and the master
may not even be aware of the slave's presence.

SPI Modes

Although there is no protocol, the master and slave need to agree about the data frame
for the exchange. The data frame is described by two parameters: clock polarity (CPOL)
and clock phase (CPHA). Both parameters have two states which results in four possible
combinations. These combinations are shown in �gure 12.

www.totalphase.com 11

http://www.totalphase.com/

Beagle USB Protocol Analyzer

MODE 0

Clock Phase (CPHA)

C
lo

ck
 P

ol
a
ri

ty
 (
C

PO
L)

CPHA = 0

C
P
O

L
=
 0

C
P
O

L
=
 1

CPHA = 1

MODE 2

MODE 1

MODE 3

sample sample

sample sample

Figure 12: SPI Modes
The frame of the data exchange is described by two parameters, the clock polarity (CPOL) and
the clock phase (CPHA). This diagram shows the four possible states for these parameters and the
corresponding mode in SPI.

SPI Bene�ts and Drawbacks

SPI is a very simple communication protocol. It does not have a speci�c high�level protocol
which means that there is almost no overhead. Data can be shifted at very high rates in full
duplex. This makes it very simple and e�cient in a single master single slave scenario.

Because each slave needs its own SS, the number of traces required is n+3, where n is the
number of SPI devices. This means increased board complexity when the number of slaves
is increased.

SPI References

� Introduction to Serial Peripheral Interface � Embedded.com
� SPI � Serial Peripheral Interface

www.totalphase.com 12

http://www.embedded.com/story/OEG20020124S0116
http://www.mct.net/faq/spi.html
http://www.totalphase.com/

Beagle USB Protocol Analyzer

2 Hardware Speci�cations

2.1 Beagle USB Protocol Analyzer

Connector Speci�cation

On one side of the Beagle USB monitor is a single USB-B receptacle. This is the Host side
(Figure 13). This port connects to the analysis computer that is running the Beagle Data
Center GUI.

Figure 13: Beagle USB Protocol Analyzer - Host Side

On the opposite side is the Target side (Figure 14), are a USB-A and USB-B receptacle.
These are used to connect the target host computer to the target device. The target host
computer can be the same computer as the analysis computer.

Figure 14: Beagle USB Protocol Analyzer - Target Side

The Target side acts as a USB pass-through. In order to remain within the USB 2.0
speci�cations, no more than 15m of USB cable should be used in total between the target
host computer and the target device. The Beagle USB monitor is galvanically isolated from
the USB bus to ensure the signal integrity.

Please note, that on the Target side, there is a small gap between the two receptacles. In
this gap, two LEDs are visible, a green one and an amber one. When the Beagle USB monitor
has been correctly connected to the analysis computer, the green LED will illuminate. When
the Beagle USB monitor is correctly connected to the target host computer, the amber LED
will illuminate.

Please check all the connections if the one or both LEDs fail to illuminate after the Beagle
USB monitor has been connected to the analysis computer or the target host computer.

www.totalphase.com 13

http://www.totalphase.com/

Beagle USB Protocol Analyzer

Signal Speci�cations / Power Consumption

ESD protection

The Beagle analyzer has built�in electrostatic discharge protection to prevent damage to the
unit from high voltage static electricity.

Speed

The Beagle USB Protocol Analyzer supports full- and low-speed capture. It does not support
high-speed protocols for capture. The uplink to the analysis PC must be high-speed.

Power consumption

The Beagle analyzer consumes a maximum of approximately 15 mA from the capture host.
This is a minimal overhead in addition to the current draw of the target device. Note that if
a capture target reports itself as a 100 mA device and draws almost all of that current, the
Beagle analyzer's extra power consumption will cause the overall power consumption to be
out of spec.

Furthermore, the Beagle analyzer consumes a maximum of approximately 125 mA of power
from the analysis PC. However, it reports itself to the analysis PC as a low-power device.
This reporting allows the Beagle to be used when its analysis port is connected to a bus-
powered hub (which are only technically speci�ed to supply 100 mA per port). Normally this
extra amount of power consumption should not cause any serious problems since other ports
on the hub are most likely not using their full 100 mA budget. If there are any concerns
regarding the total amount of available current supply, it is advisable to plug the Beagle
analyzer's directly into the analysis PC's USB host port or to use a self-powered hub.

2.2 Beagle I2C/SPI Protocol Analyzer

Connector Speci�cation

The ribbon cable connector is a standard 0.100� (2.54mm) pitch IDC type connector. This
connector will mate with a standard keyed boxed header.

Alternatively, a split cable is available which connects to the ribbon cable and provides
individual leads for each pin.

Orientation

The ribbon cable pin order follows the standard convention. The red line indicates the �rst
position. When looking at your Beagle analyzer in the upright position (�gure 15), pin 1 is
in the top left corner and pin 10 is in the bottom right corner.

If you �ip your Beagle analyzer over (�gure 16) such that the text on the serial number label
is in the proper upright position, the pin order is as shown in the following diagram.

www.totalphase.com 14

http://www.totalphase.com/

Beagle USB Protocol Analyzer

TOTAL
www .totalphase.com

PHASE

1 2

9 10

Figure 15: The Beagle I2C/SPI Protocol Analyzer in the upright position.
Pin 1 is located in the upper left corner of the connector and Pin 10 is located in the lower right
corner of the connector.

Order of Leads

1. SCL
2. GND
3. SDA
4. NC/+5V
5. MISO
6. NC/+5V
7. SCLK
8. MOSI
9. SS
10. GND

Ground

GND (Pin 2):
GND (Pin 10):

It is imperative that the Beagle analyzer's ground lead is connected to the ground of the target
system. Without a common ground between the two, the signaling will be unpredictable and
communication will likely be corrupted. Two ground pins are provided to ensure a secure
ground path.

I2C Pins

SCL (Pin 1):

Serial Clock line � the signal used to synchronize communication between the master and
the slave.

Beagle S/N
TPXXXX-XXXXXX

9 10

1 2
3 4
5 6
7 8

Figure 16: The Beagle I2C/SPI Protocol Analyzer in the upside down position.
Pin 1 is located in the lower left corner of the connector and Pin 10 is located in the upper right
corner of the connector.

www.totalphase.com 15

http://www.totalphase.com/

Beagle USB Protocol Analyzer

SDA (Pin 3):

Serial Data line � the signal used to transfer data between the transmitter and the receiver.

SPI Pins

SCLK (Pin 7):

Serial Clock � control line that is driven by the master and regulates the �ow of the data
bits.

MOSI (Pin 8):

Master Out Slave In � this data line supplies output data from the master which is shifted
into the slave.

MISO (Pin 5):

Master In Slave Out � this data line supplies the output data from the slave to the input of
the master.

SS (Pin 9):

Slave Select � control line that allows slaves to be turned on and o� via hardware control.

Powering Downstream Devices

It is possible to power a downstream target, such as an I2C or SPI EEPROM with the
Beagle analyzer's power (which is provided by the analysis PC's USB port). It is ideal if
the downstream device does not consume more than 20�30 mA. The Beagle analyzer is
compatible with USB hubs as well as USB host controllers. Bus-powered USB hubs are
technically only rated to provide 100 mA per USB device. If the Beagle analyzer is directly
plugged into a USB host controller or a self-powered USB hub, it can theoretically draw up
to 500 mA total, leaving approximately 375 mA for any downstream target. However, the
Beagle analyzer always reports itself to the host as a low-power device. Therefore, drawing
large amounts of current from the host is not advisable.

Signal Speci�cations / Power Consumption

Logic High Levels

All signal levels should be nominally 3.3 volts (+/- 10%) logic high. This allows the Beagle
analyzer to be used with both TTL (5 volt) and CMOS logic level (3.3 volt) devices. A logic
high of 3.3 volts will be adequate for TTL�compliant devices since such devices are ordinarily
speci�ed to accept logic high inputs above approximately 3 volts.

ESD protection

The Beagle analyzer has built�in electrostatic discharge protection to prevent damage to the
unit from high voltage static electricity. This adds a small amount of parasitic capacitance
(approximately 15 pF) to the signal path under analysis.

www.totalphase.com 16

http://www.totalphase.com/

Beagle USB Protocol Analyzer

Power Consumption

The Beagle analyzer consumes approximately 125 mA of power from the analysis PC. How-
ever, it reports itself to the analysis PC as a low-power device. This reporting allows the
Beagle to be used when its analysis port is connected to a bus-powered hub (which are only
technically speci�ed to supply 100 mA per port). Normally this extra amount of power con-
sumption should not cause any serious problems since other ports on the hub are most likely
not using their full 100 mA budget. If there are any concerns regarding the total amount of
available current supply, it is advisable to plug the Beagle analyzer's directly into the analysis
PC's USB host port or to use a self-powered hub.

2.3 USB 2.0

The Beagle analyzer is a High-Speed USB 2.0 device. It requires a High-Speed USB 2.0 host
controller for the analysis data connection.

2.4 Temperature Speci�cations

The Beagle device is designed to be operated at room temperature (10�35 ◦C). The elec-
tronic components are rated for standard commercial speci�cations (0�70 ◦C). However, the
plastic housing, along with the ribbon and USB cables, may not withstand the higher end
of this range. Any use of the Beagle device outside the room temperature speci�cation will
void the hardware warranty.

www.totalphase.com 17

http://www.totalphase.com/

Beagle USB Protocol Analyzer

3 Software

3.1 Compatibility

Linux

The Beagle software is compatible with all standard distributions of Linux with integrated
USB support. Kernel 2.6 or greater is required.

Windows

The Beagle software is compatible with Windows 2000 SP4 and Windows XP SP2.

3.2 Linux USB Driver

The Beagle communications layer under Linux does not require a speci�c kernel driver to
operate. It does however require that /proc/bus/usb is mounted on the system which is
the case on most standard distributions.

There are two di�erent ways to access the Beagle analyzer, through USB hotplug or by
mounting the entire USB �lesystem as world writable. The hotplug method is the preferred
method because only the Beagle analyzer would be world writable and hence more secure.

USB Hotplug

USB hotplug requires two con�guration �les which are available for download from the Total
Phase web site. These �les are: beagle and beagle.usermap. Please follow the following
steps to enable hotplugging.

1. As superuser, unpack beagle and beagle.usermap to /etc/hotplug/usb.

2. chmod 755 /etc/hotplug/usb/beagle

3. chmod 644 /etc/hotplug/usb/beagle.usermap

4. Unplug and replug your Beagle analyzer(s).

You may now skip the following section.

World-Writable USB Filesystem

Often, the /proc/bus/usb directory is mounted with read�write permissions for root and
read�only permissions for all other users. If an non�privileged user wishes to use the Beagle
analyzer and software, one must ensure that /proc/bus/usb is mounted with read�write
permissions for all users. The following steps can help setup the correct permissions. Please
note that these steps will make the entire USB �lesystem world writable.

1. Check the current permissions by executing the following command:
�ls -al /proc/bus/usb/001�

www.totalphase.com 18

http://www.totalphase.com/

Beagle USB Protocol Analyzer

2. If the contents of that directory are only writable by root, proceed with the remaining
steps outlined below.

3. Add the following line to the /etc/fstab �le:

none /proc/bus/usb usbfs defaults,devmode=0666 0 0

4. Unmount the /proc/bus/usb directory using �umount�

5. Remount the /proc/bus/usb directory using �mount�

6. Repeat step 1. Now the contents of that directory should be writable by all users.

3.3 Windows USB Driver

Driver Installation

On the Windows platform, the Beagle software uses a version of the libusb-win32 open source
driver to access the Beagle device. For more information on this driver, please refer to the
README.txt that is included with the driver. To install the appropriate USB communication
driver under Windows, step through the following instructions. This is only necessary for the
very �rst Beagle analyzer that is plugged into the PC. Subsequent plugs and unplugs should
be automatically handled by the operating system.

Windows 2000:

1. When you plug in the Beagle analyzer into your PC for the �rst time, Windows will
present the �Found New Hardware Wizard.� Select �Next.�

2. On the next dialog window, select �Search for a suitable driver for my device (recom-
mended)� and click �Next.�

3. On the third screen, uncheck all settings and check �Specify a location� and click
�Next.�

4. Click �Browse. . . �, navigate to either the CD�ROM (�\usb-drivers\windows� directory),
or temporary directory where the driver �les have been unpacked (for downloaded
updates).

5. Select �beagle.inf� and click �Open�, then click �OK.�

6. Click �Next� on the subsequent screen, followed by �Finish� to complete the installation.
This completes the installation of the USB driver.

Windows XP:

1. When you plug in the Beagle analyzer into your PC for the �rst time, Windows will
present the �Found New Hardware Wizard.�

2. Select �Install from a list or speci�c location (Advanced)� and click �Next.�

www.totalphase.com 19

http://www.totalphase.com/

Beagle USB Protocol Analyzer

3. Select �Search for best driver in these locations:�, uncheck �Search removable media�,
check �Include this location in the search.�

4. Click �Browse. . . �, expand My Computer and navigate to either the CD�ROM (�\usb-
drivers\windows� directory), or temporary directory where the driver �les have been
unpacked (for downloaded updates).

5. Click �OK�, then click �Next.�

6. A dialog will inform the user that the USB driver has been installed. Click �Finish.�

Both Windows 2000 and Windows XP:

7. Once the installation is complete, con�rm that the installation was successful by check-
ing that the device appears in the �Device Manager.� To navigate to the �Device Man-
ager� screen select �Control Panel | System Properties | Hardware | Device Manager.�

8. The Beagle device should appear under the �LibUSB-Win32 Devices� section.

Driver Removal

Ordinarily, there is usually no harm in leaving the Beagle USB drivers installed in the operating
system. However, if it is necessary that the drivers be removed, please follow the steps
outlined below.

1. Plug in the Beagle device whose driver you wish to uninstall.

2. Navigate to the �Device Manager� screen by selecting �Control Panel | System Prop-
erties | Hardware | Device Manager.�

3. Right click on the Beagle device which should appear under the �LibUSB-Win32 De-
vices� section.

4. Open the properties dialog.

5. Select the �Driver� tab and choose �Uninstall.�

6. Repeat steps 1�5 for each di�erent type (USB, I2C/SPI) of Beagle device you wish to
uninstall.

7. Now use the �le searching feature of Windows to search in c:\WINNT\inf for all �les
containing the text �Beagle.�

8. Delete all �les with the extension �.inf�.

3.4 USB Port Assignment

The Beagle analyzer is assigned a port on a sequential basis. The �rst analyzer is assigned
to port 0, the second is assigned to port 1, and so on. If a Beagle analyzer is subsequently
removed from the system, the remaining analyzers shift their port numbers accordingly.
Hence with n Beagle analyzers attached, the allocated ports will be numbered from 0 to
n− 1.

www.totalphase.com 20

http://www.totalphase.com/

Beagle USB Protocol Analyzer

Detecting Ports

To determine the ports to which the Beagle analyzers have been assigned, use the
beagle_find_devices routine as described in following API documentation.

3.5 Beagle Dynamically Linked Library

DLL Philosophy

The Beagle DLL provides a robust approach to allow present�day Beagle�enabled applications
to interoperate with future versions of the device interface software without recompilation.
For example, take the case of a graphical application that is written to monitor I2C , SPI,
or USB through a Beagle device. At the time the program is built, the Beagle software is
released as version 1.2. The Beagle interface software may be improved many months later
resulting in increased performance and/or reliability; it is now released as version 1.3. The
original application need not be altered or recompiled. The user can simply replace the old
Beagle DLL with the newer one. How does this work? The application contains only a stub
which in turn dynamically loads the DLL on the �rst invocation of any Beagle API function.
If the DLL is replaced, the application simply loads the new one, thereby utilizing all of the
improvements present in the replaced DLL.

On Linux, the DLL is technically known as a shared object (SO).

DLL Location

Total Phase provides language bindings that can be integrated into any custom application.
The default behavior of locating the Beagle DLL is dependent on the operating system
platform and speci�c programming language environment. For example, for a C or C++
application, the following rules apply:

On a Linux system this is as follows:

1. First, search for the shared object in the application binary path. Note, that this step
requires /proc �lesystem support, which is standard in 2.4.x kernels. If the /proc

�lesystem is not present, this step is skipped.

2. Next, search in the application's current working directory.

3. Search the paths explicitly speci�ed in LD_LIBRARY_PATH.

4. Finally, check any system library paths as speci�ed in /etc/ld.so.conf and cached
in /etc/ld.so.cache.

On a Windows system, this is as follows:

1. The directory from which the application binary was loaded.

2. The application's current directory.

3. 32�bit system directory. (Ex: c:\winnt\System32) [Windows NT/2000/XP only]

www.totalphase.com 21

http://www.totalphase.com/

Beagle USB Protocol Analyzer

4. 16�bit system directory. (Ex: c:\winnt\System or c:\windows\system)

5. The windows directory. (Ex: c:\winnt or c:\windows)

6. The directories listed in the PATH environment variable.

If the DLL is still not found, an error will be returned by the binding function, BEAGLE_UNABLE_TO_LOAD_LIBRARY.

DLL Versioning

The Beagle DLL checks to ensure that the �rmware of a given Beagle device is compatible.
Each DLL revision is tagged as being compatible with �rmware revisions greater than or equal
to a certain version number. Likewise, each �rmware version is tagged as being compatible
with DLL revisions greater than or equal to a speci�c version number.

Here is an example.

DLL v1.20: compatible with Firmware >= v1.15

Firmware v1.30: compatible with DLL >= v1.20

Hence, the DLL is not compatible with any �rmware less than version 1.15 and the �rmware
is not compatible with any DLL less than version 1.20. In this example, the version number
constraints are satis�ed and the DLL can safely connect to the target �rmware without
error. If there is a version mismatch, the API calls to open the device will fail. See the API
documentation for further details.

3.6 Rosetta Language Bindings: API Integration into Custom Applications

Overview

The Beagle Rosetta language bindings make integration of the Beagle API into custom ap-
plications simple. Accessing Beagle functionality simply requires function calls to the Beagle
API. This API is easy to understand, much like the ANSI C library functions, (e.g., there is
no unnecessary entanglement with the Windows messaging subsystem like development kits
for some other embedded tools).

The Rosetta bindings are included with the software distribution on the distribution CD. They
can also be found in the software download package available on the Total Phase website.
Currently C and C++ are supported for the Beagle. The integration for the C language
bindings is described below.

1. Include the beagle.h �le included with the API software package in any C or C++
source module. The module may now use any Beagle API call listed in beagle.h.

2. Compile and link beagle.c with your application. Ensure that the include path for
compilation also lists the directory in which beagle.h is located if the two �les are
not placed in the same directory.

3. Place the Beagle DLL, included with the API software package, in the same directory
as the application executable or in another directory such that it will be found by the
previously described search rules.

www.totalphase.com 22

http://www.totalphase.com/

Beagle USB Protocol Analyzer

Versioning

Since a new Beagle DLL can be made available to an already compiled application, it is
essential to ensure the compatibility of the Rosetta binding used by the application (e.g.,
beagle.c) against the DLL loaded by the system. A system similar to the one employed for
the DLL�Firmware cross�validation is used for the binding and DLL compatibility check.

Here is an example.

DLL v1.20: compatible with Binding >= v1.10

Binding v1.15: compatible with DLL >= v1.15

The above situation will pass the appropriate version checks. The compatibility check is
performed within the binding. If there is a version mismatch, the API function will return an
error code, BEAGLE_INCOMPATIBLE_LIBRARY.

Customizations

While provided language bindings stubs are fully functional, it is possible to modify the code
found within this �le according to speci�c requirements imposed by the application designer.

For example, in the C bindings one can modify the DLL search and loading behavior to
conform to a speci�c paradigm. See the comments in beagle.c for more details.

3.7 Application Notes

Receive Saturation

Once enabled, the Beagle adapter is constantly monitoring data on the target bus. Between
calls to the Beagle API, these messages must be bu�ered somewhere in memory. This is
accomplished on the PC host, courtesy of the operating system. Naturally the bu�er is
limited in size and once this bu�er is full, data will be dropped. An over�ow can occur when
the Beagle device receives data faster than the rate that it is processed � the receive link is
`saturated.� The system is most susceptible to saturation when monitoring large amounts of
tra�c over USB or high-speed SPI bus.

Threading

The Cheetah DLL is designed for single�threaded environments so as to allow for maximum
cross�platform compatibility. If the application design requires multi�threaded use of the
Cheetah functionality, each Cheetah API call can be wrapped with a thread�safe locking
mechanism before and after invocation.

It is the responsibility of the application programmer to ensure that the Cheetah open and
close operations are thread-safe and cannot happen concurrently with any other Cheetah
operations. However, once a Cheetah device is opened, all operations to that device can be
dispatched to a separate thread as long as no other threads access that same Cheetah device.

www.totalphase.com 23

http://www.totalphase.com/

Beagle USB Protocol Analyzer

4 Firmware

4.1 Philosophy

The �rmware included with the Beagle analyzer provides for the analysis of the supported
protocols. It is installed at the factory during manufacturing. Updates to this �rmware
are provided through a device upgrade utility. The Beagle software automatically detects
�rmware compatibility and will inform the user if an upgrade is required.

4.2 Procedure

Firmware upgrades should be conducted using the procedure speci�ed in the README.txt
that accompanies the particular �rmware revision.

www.totalphase.com 24

http://www.totalphase.com/

Beagle USB Protocol Analyzer

5 API Documentation

5.1 Introduction

The API documentation describes the Beagle Rosetta C bindings.

5.2 General Data Types

The following de�nitions are provided for convenience. The Beagle API provides both signed
and unsigned data types.

typedef unsigned char u08;

typedef unsigned short u16;

typedef unsigned int u32;

typedef unsigned long long u64;

typedef signed char s08;

typedef signed short s16;

typedef signed int s32;

typedef signed long long s64;

5.3 Notes on Status Codes

Most of the Beagle API functions can return a status or error code back to the caller. The
complete list of status codes is provided at the end of this chapter. All of the error codes are
assigned values less than 0, separating these responses from any numerical values returned
by certain API functions.

Each API function can return one of two error codes with respect to the loading of the Beagle
DLL, BEAGLE_UNABLE_TO_LOAD_LIBRARY and BEAGLE_INCOMPATIBLE_LIBRARY. If these
status codes are received, refer to the previous sections in this datasheet that discuss the DLL
and API integration of the Beagle software. Furthermore, all API calls can potentially return
the errors BEAGLE_UNABLE_TO_LOAD_DRIVER or BEAGLE_INCOMPATIBLE_DRIVER. If either
of these errors are seen, please make sure the driver is installed and of the correct version.
Where appropriate, compare the language binding versions (BEAGLE_HEADER_VERSION found
in beagle.h and BEAGLE_CFILE_VERSION found in beagle.c) to verify that there are no
mismatches. Next, ensure that the Rosetta language binding (e.g., beagle.c and beagle.h)
are from the same release as the Beagle DLL. If all of these versions are synchronized and
there are still problems, please contact Total Phase support for assistance.

Any API function that accepts a Beagle handle can potentially return the error code
BEAGLE_INVALID_HANDLE if the handle does not correspond to a valid Beagle device that
has already been opened. If this error is received, check the application code to ensure that
the beagle_open command returned a valid handle and that this handle was not corrupted
before being passed to the o�ending API function.

Finally, any API call that communicates with a Beagle device can return the error
BEAGLE_COMMUNICATION_ERROR. This means that while the Beagle handle is valid and the
communication channel is open, there was an error communicating with the device. This is
possible if the device was unplugged while being used.

www.totalphase.com 25

http://www.totalphase.com/

Beagle USB Protocol Analyzer

If either the I2C , SPI, or USB subsystems have been disabled by beagle_disable, all other
API functions that interact with I2C , SPI, and USB will return BEAGLE_I2C_NOT_ENABLED,
BEAGLE_SPI_NOT_ENABLED, or BEAGLE_USB_NOT_ENABLED, respectively.

These common status responses are not reiterated for each function. Only the error codes
that are speci�c to each API function are described below.

All of the possible error codes, along with their values and status strings, are listed following
the API documentation.

www.totalphase.com 26

http://www.totalphase.com/

Beagle USB Protocol Analyzer

5.4 General

Interface

Find Devices (beagle_�nd_devices)

int beagle_find_devices (int nelem,

u16 * devices);

Get a list of ports to which Beagle devices are attached.

Arguments
nelem: Maximum size of the array
devices: array into which the port numbers are returned

Return Value
This function returns the number of devices found, regardless of the array size.

Speci�c Error Codes
None.

Details
Each element of the array is written with the port number.
Devices that are in use are OR'ed with BEAGLE_PORT_NOT_FREE (0x8000). Under Linux,
such devices correspond to Beagle analyzers that are currently in use. Under Windows, such
devices are currently in use, but it is not known if the device is a Beagle analyzer.
Example:

Devices are attached to port 0, 1, 2
ports 0 and 2 are available, and port 1 is in�use.
array => { 0x0000, 0x8001, 0x0002 }

If the input array is NULL, it is not �lled with any values.
If there are more devices than the array size (as speci�ed by nelem), only the �rst nelem
port numbers will be written into the array.

Find Devices (beagle_�nd_devices_ext)

int beagle_find_devices_ext (int nelem,

u16 * devices,

u32 * unique_ids);

Get a list of ports and unique IDs to which Beagle devices are attached.

Arguments
nelem: Maximum size of the array
devices: array into which the port numbers are returned
unique_ids: array into which the unique IDs are returned

Return Value

www.totalphase.com 27

http://www.totalphase.com/

Beagle USB Protocol Analyzer

This function returns the number of devices found, regardless of the array size.
Speci�c Error Codes

None.
Details

This function is the same as beagle_find_devices() except that is also returns the unique
IDs of each Beagle device. The IDs are guaranteed to be non�zero if valid.
The IDs are the unsigned integer representation of the 10�digit serial numbers.

Open a Beagle device (beagle_open)

Beagle beagle_open (int port_number);

Open the Beagle port.

Arguments
port_number: The Beagle device port number. This port number is the the same as the

one obtained from the beagle_find_devices function. It is a zero�based number.
Return Value

This function returns a Beagle handle, which is guaranteed to be greater than zero if valid.
Speci�c Error Codes

BEAGLE_UNABLE_TO_OPEN: The speci�ed port is not connected to a Beagle device or the
port is already in use.

BEAGLE_INCOMPATIBLE_DEVICE: There is a version mismatch between the DLL and the
hardware. The DLL is not of a su�cient version for interoperability with the hardware
version or vice versa. See beagle_open_ext() for more information.

Details
This function is recommended for use in simple applications where extended information is not
required. For more complex applications, the use of beagle_open_ext() is recommended.

Open a Beagle device (beagle_open_ext)

Beagle beagle_open_ext (int port_number, BeagleExt *beagle_ext);

Open the Beagle port, returning extended information in the supplied structure.

Arguments
port_number: same as beagle_open
beagle_ext: pointer to pre�allocated structure for extended version information available

on open
Return Value

This function returns a Beagle handle, which is guaranteed to be greater than zero if valid.
Speci�c Error Codes

BEAGLE_UNABLE_TO_OPEN: The speci�ed port is not connected to a Beagle device or the
port is already in use.

www.totalphase.com 28

http://www.totalphase.com/

Beagle USB Protocol Analyzer

BEAGLE_INCOMPATIBLE_DEVICE: There is a version mismatch between the DLL and the
hardware. The DLL is not of a su�cient version for interoperability with the hardware
version or vice versa. The version information will be available in the memory pointed to
by beagle_ext.

Details
If 0 is passed as the pointer to the structure, this function will behave exactly like
beagle_open().
The BeagleExt structure is described below:

struct BeagleExt {

BeagleVersion version;

/* Feature bitmap for this device. */

int features;

}

The features �eld denotes the capabilities of the Beagle device. See the API function
beagle_features for more information.
The BeagleVersion structure describes the various version dependencies of Beagle compo-
nents. It can be used to determine which component caused an incompatibility error.

struct BeagleVersion {
/* Software and hardware versions. */
u16 software;
u16 hardware;

/*
* Hardware revisions that are compatible with this software version.
* The top 16 bits gives the maximum accepted hw revision.
* The lower 16 bits gives the minimum accepted hw revision.
*/
u32 hw_revs_for_sw;

/*
* Driver revisions that are compatible with this software version.
* The top 16 bits gives the maximum accepted driver revision.
* The lower 16 bits gives the minimum accepted driver revision.
* This version checking is currently only pertinent for WIN32
* platforms.
*/
u32 drv_revs_for_sw;

/* Software requires that the API must be >= this version. */
u16 api_req_by_sw;

};

All version numbers are of the format:

(major � 8) | minor

example: v1.20 would be encoded as 0x0114.

www.totalphase.com 29

http://www.totalphase.com/

Beagle USB Protocol Analyzer

The structure is zeroed before the open is attempted. It is �lled with whatever information
is available. For example, if the hardware version is not �lled, then the device could not be
queried for its version number.
This function is recommended for use in complex applications where extended information is
required. For simpler applications, the use of beagle_open() is recommended.
This open function also terminates all slave functionality as described for the beagle_open()
call.

Close a Beagle connection (beagle_close)

int beagle_close (Beagle beagle);

Close the Beagle port.

Arguments
beagle: handle of a Beagle analyzer to be closed

Return Value
A Beagle status code of BEAGLE_OK is returned on success.

Speci�c Error Codes
None.

Details
None.

Get Features (beagle_features)

int beagle_features (Beagle beagle);

Return the device features as a bit�mask of values, or an error code if the handle is not valid.

Arguments
beagle: handle of a Beagle analyzer

Return Value
The features of the Beagle device are returned. These are a bit�mask of the following values.

#define BEAGLE_FEATURE_NONE (0)

#define BEAGLE_FEATURE_I2C (1<<0)

#define BEAGLE_FEATURE_SPI (1<<1)

#define BEAGLE_FEATURE_USB (1<<2)

Speci�c Error Codes
None.

Details
None.

www.totalphase.com 30

http://www.totalphase.com/

Beagle USB Protocol Analyzer

Get Features by Unique ID (beagle_unique_id_to_features)

int beagle_unique_id_to_features (u32 unique_id);

Return the bitmask of device features for the given Beagle device, identi�ed by unique_id.

Arguments
beagle: unique ID of a Beagle analyzer

Return Value
The features of the Beagle device are returned. See beagle_features for details on the bit
map.

Speci�c Error Codes
None.

Details
None.

Get Unique ID (beagle_unique_id)

u32 beagle_unique_id (Beagle beagle);

Return the unique ID of the given Beagle device.

Arguments
beagle: handle of a Beagle analyzer

Return Value
This function returns the unique ID for this Beagle analyzer. The IDs are guaranteed to be
non�zero if valid. The ID is the unsigned integer representation of the 10�digit serial number.

Speci�c Error Codes
None.

Details
None.

Status String (beagle_status_string)

const char *beagle_status_string (int status);

Return the status string for the given status code.

Arguments
status: status code returned by a Beagle API function

Return Value
This function returns a human readable string that corresponds to status. If the code is not
valid, it returns a NULL string.

Speci�c Error Codes
None.

Details
None.

www.totalphase.com 31

http://www.totalphase.com/

Beagle USB Protocol Analyzer

Version (beagle_version)

int beagle_version (Beagle beagle, BeagleVersion *version);

Return the version matrix for the device attached to the given handle.

Arguments
beagle: handle of a Beagle analyzer
version: pointer to pre�allocated structure

Return Value
A Beagle status code is returned with BEAGLE_OK on success.

Speci�c Error Codes
None.

Details
If the handle is 0 or invalid, only the software version is set.
See the details of beagle_open_ext for the de�nition of BeagleVersion.

Capture Latency (beagle_latency)

int beagle_latency (Beagle beagle, u32 milliseconds);

Set the capture latency to the speci�ed number of milliseconds.

Arguments
beagle: handle of a Beagle analyzer
milliseconds: new capture latency in milliseconds

Return Value
A Beagle status code is returned with BEAGLE_OK on success.

Speci�c Error Codes
None.

Details
Set the capture latency to the speci�ed number of milliseconds. The capture latency is the
minimum amount of time a read call will block until it can process data from the Beagle
analyzer.
Setting this parameter high will increase the size of the bu�ers used to capture data from
the Beagle analyzer. Larger bu�ers incur larger latencies. Setting this parameter to a smaller
value will decrease the bu�er size but may result in lost data.

Timeout Value (beagle_timeout)

int beagle_timeout (Beagle beagle, u32 milliseconds);

Set the read timeout to the speci�ed number of milliseconds.

Arguments
beagle: handle of a Beagle analyzer

www.totalphase.com 32

http://www.totalphase.com/

Beagle USB Protocol Analyzer

milliseconds: new timeout value in milliseconds
Return Value

A Beagle status code is returned with BEAGLE_OK on success.
Speci�c Error Codes

None.
Details

Set the idle timeout to the speci�ed number of milliseconds.
If a read call is made and there has not been any new data for the last speci�ed timeout
interval, that call will return with a status of BEAGLE_TIMEOUT and the number of bytes
returned will be fewer than requested.
This setting is distinctly di�erent than the latency setting.
If the timeout is set to 0, there is no timeout and the read call will block until a full packet
is received.

Sleep (beagle_sleep_ms)

u32 beagle_sleep_ms (u32 milliseconds);

Sleep for given amount of time.

Arguments
milliseconds: number of milliseconds to sleep

Return Value
This function returns the number of milliseconds slept.

Speci�c Error Codes
None.

Details
This function provides a convenient cross-platform function to sleep the current thread using
standard operating system functions.
The accuracy of this function depends on the operating system scheduler. This function will
return the number of milliseconds that were actually slept.

Target Power (beagle_target_power)

int beagle_target_power (Beagle beagle, u08 power_flag);

Activate/deactivate target power pins 4 and 6.

Arguments
beagle: handle of a Beagle analyzer
power_mask: enumerated values specifying power pin state. See Table 2.

Return Value
The current state of the target power pins on the Beagle analyzer will be returned. The
con�guration will be described by the same values as in the table above.

www.totalphase.com 33

http://www.totalphase.com/

Beagle USB Protocol Analyzer

Table 2: power_flag enumerated types

BEAGLE_TARGET_POWER_OFF Disable target power pin
BEAGLE_TARGET_POWER_ON Enable target power pin
BEAGLE_TARGET_POWER_QUERY Queries the target power pin state

Speci�c Error Codes
BEAGLE_FUNCTION_NOT_AVAILABLE: The hardware version is not compatible with this fea-

ture. Only the Beagle I2C /SPI monitor supports switchable target power pins.
Details

Both target power pins are controlled together. Independent control is not supported. This
function may be executed in any operation mode.
For the most part, target power should be left o�, as the Beagle is normally passively
monitoring the bus.

Host Interface Speed (beagle_host_ifce_speed)

int beagle_host_ifce_speed (Beagle beagle);

Query the host interface speed.

Arguments
beagle: handle of a Beagle analyzer

Return Value
This function returns enumerated values specifying the USB speed at which the host computer
is communicating with the given Beagle device. See Table 3.

Table 3: interface speed enumerated types

BEAGLE_HOST_IFCE_FULL_SPEED Full speed (12Mbps) interface
BEAGLE_HOST_IFCE_HIGH_SPEED High Speed (480Mbps) interface

Speci�c Error Codes
None.

Details
Used to determine the USB communication rate between the Beagle device and the host.
The Beagle analyzers require a High Speed USB connection with the host. Capturing from
a Beagle device that is connected at USB Full Speed or Low Speed can cause data to be lost
and corruption of capture data.

Benchmarking

Available Read Bu�ers (beagle_bu�ers_avail)

int beagle_buffers_avail (Beagle beagle);

Query the number of read bu�ers available.

Arguments

www.totalphase.com 34

http://www.totalphase.com/

Beagle USB Protocol Analyzer

beagle: handle of a Beagle analyzer
Return Value

The number of available USB read bu�ers.
Speci�c Error Codes

None.
Details

USB read bu�ers are used by the analysis computer to receive the incoming data from the
Beagle device. Calling this function will return the number of bu�ers currently available to
receive data. If the number of available USB read bu�ers drops to zero, capture data from
the device may be lost.

Bu�er Information (beagle_bu�ers_info)

int beagle_buffers_info (Beagle beagle, int *max_buffers, int *buffer_size);

Query the bu�er capacity of the driver.

Arguments
beagle: handle of a Beagle analyzer.
max_buffers: maximum number of bu�ers as de�ned by the driver.
buffer_size: the bu�er size calculated by the driver to ful�ll the latency requirements.

Return Value
A Beagle status code is returned with BEAGLE_OK on success.

Speci�c Error Codes
None.

Details
Used for checking the current performance tuning the Beagle interface.

Communication Speed Benchmark (beagle_commtest)

int beagle_commtest (Beagle beagle, int num_samples, int delay_count);

Test the Beagle communication link performance.

Arguments
beagle: handle of a Beagle analyzer
num_samples: number of samples to receive from the analyzer.
delay_count: count delay on the host before processing each sample

Return Value
The number of communication errors received during the test.

Speci�c Error Codes
None.

Details

www.totalphase.com 35

http://www.totalphase.com/

Beagle USB Protocol Analyzer

This function tests the host computer's ability to process data received from the Beagle
analyzer. The function commands the given Beagle device to send test packets at the given
frequency (see beagle_samplerate) to the host computer over the USB interface. The
delay_count variable provides a way for the application programmer to add an arti�cial
counter delay between each sample processed by the host. For large delay values, it will be
harder for the host to keep up with the data rate over the USB bus, thereby leading to more
communication errors.

Monitoring API

Enable Monitoring (beagle_enable)

int beagle_enable (Beagle beagle, BeagleProtocol protocol);

Start monitoring packets on the selected interface.

Arguments
beagle: handle of a Beagle analyzer
protocol: enumerated values specifying the protocol to monitor (see Table 4)

Table 4: protocol de�nitions

BEAGLE_PROTOCOL_NONE No Protocol
BEAGLE_PROTOCOL_COMMTEST Comm Tester
BEAGLE_PROTOCOL_USB USB Protocol
BEAGLE_PROTOCOL_I2C I2C Protocol
BEAGLE_PROTOCOL_SPI SPI Protocol

Return Value
A Beagle status code of BEAGLE_OK is returned on success.

Speci�c Error Codes
BEAGLE_FUNCTION_NOT_AVAILABLE: The connected Beagle device does not support cap-

turing for the requested protocol.

BEAGLE_UNKNOWN_PROTOCOL: A protocol was requested that does not appear in the enu-
meration detailed in Table 4.

Details
This function enables monitoring on the given Beagle analyzer. See the section on the port-
speci�c APIs. Functions for retrieving the capture data from the Beagle device are described
therein.

Stop Monitoring (beagle_disable)

int beagle_disable (Beagle beagle);

Stop monitoring of packets.

Arguments
beagle: handle of a Beagle analyzer

www.totalphase.com 36

http://www.totalphase.com/

Beagle USB Protocol Analyzer

Return Value
A Beagle status code of BEAGLE_OK is returned on success.

Speci�c Error Codes
None.

Details
Stops monitoring on the given Beagle device.

Sample Rate (beagle_samplerate)

int beagle_samplerate (Beagle beagle, int samplerate_khz);

Set the sample rate in kilohertz.

Arguments
beagle: handle of a Beagle analyzer
samplerate_khz: New sample rate in kilohertz

Return Value
This function returns the actual sample rate set.

Speci�c Error Codes
BEAGLE_FUNCTION_NOT_AVAILABLE: The Beagle device does not support changing the sam-

ple rate.

BEAGLE_STILL_ACTIVE: Monitoring is active and the sample rate cannot be changed.
Details

Changes the sample rate for a Beagle device. The device must not currently have monitoring
enabled.
If samplerate_khz is 0, the function will return the sample rate currently set on the Beagle
analyzer and the sample rate will be left unmodi�ed. The Beagle USB analyzer does not
support changing the sample rate, so it will always return the current sample rate.

www.totalphase.com 37

http://www.totalphase.com/

Beagle USB Protocol Analyzer

5.5 Port-speci�c APIs

Introduction

All read functions return a status value through the status parameter. Table 5 provides a
listing of all the possible values that may be returned.

Table 5: read status de�nitions

BEAGLE_READ_OK Read successful.
BEAGLE_READ_TIMEOUT No data was seen before the timeout in-

terval occurred.
BEAGLE_READ_ERR_MIDDLE_OF_PACKET Data collection was started in the middle

of a packet.
BEAGLE_READ_ERR_SHORT_BUFFER The packet was longer than the bu�er

size.
BEAGLE_READ_ERR_PARTIAL_LAST_BYTE The last byte in the bu�er is incomplete.

I2C API

I2C Pullups (beagle_i2c_pullup)

int beagle_i2c_pullup (Beagle beagle, u08 pullup_flag);

Enables, disables and queries the I2C pullup resistors.

Arguments
beagle: handle of a Beagle analyzer
pullup_flag: The function to perform. See 6.

Table 6: protocol de�nitions

BEAGLE_I2C_PULLUP_OFF Disable the pullup resistors.
BEAGLE_I2C_PULLUP_ON Enable the pullup resistors.
BEAGLE_I2C_PULLUP_QUERY Query the status of the pullup resistors.

Return Value
A Beagle status code of BEAGLE_OK is returned on success. If the function is BEA-
GLE_I2C_PULLUP_QUERY, the state of the pullups is returned.

Speci�c Error Codes
BEAGLE_FUNCTION_NOT_AVAILABLE: The hardware version is not compatible with this fea-

ture. Only I2C devices support switchable pullup pins.
Details

Sets and queries the state of the pullup resistors on the I2C lines. Normally the pullups will
be set by the host and target devices, so this function will not be used.

www.totalphase.com 38

http://www.totalphase.com/

Beagle USB Protocol Analyzer

Read I2C (beagle_i2c_read)

int beagle_i2c_read (Beagle beagle,

u32 * status,

u64 * time_sop,

u64 * time_duration,

u32 * time_dataoffset,

int max_bytes,

u16 * data_in);

Read packet from the I2C port.

Arguments
beagle: handle of a Beagle analyzer
status: �lled with the status bitmask as detailed in table 5
time_sop: �lled with the timestamp when the packet begins
time_duration: �lled with the number of ticks that it took to read the data
time_dataoffset: �lled with the timestamp when data appeared on the bus
max_bytes: maximum number of bytes to read
data_in: an allocated array of u16 which is �lled with the received data

Return Value
This function returns the number of bytes read or a negative value indicating an error.

Speci�c Error Codes
None.

Details
The data_in pointer should be allocated at least as large as max_bytes.
All of the timing data is measured in ticks of the sample rate clock.
Ordinarily the number of bytes read will equal the requested number of bytes.

Read I2C with byte-level timing (beagle_i2c_read_data_timing)

int beagle_i2c_read_data_timing (Beagle beagle,

u32 * status,

u64 * time_sop,

u64 * time_duration,

u32 * time_dataoffset,

int max_bytes,

u16 * data_in,

u32 * data_timing);

Read data from the I2C port.

Arguments
beagle: handle of a Beagle analyzer
status: �lled with the status bitmask as detailed in table 5
time_sop: �lled with the timestamp when the data read begins

www.totalphase.com 39

http://www.totalphase.com/

Beagle USB Protocol Analyzer

time_duration: �lled with the number of ticks that it took to read the data
time_dataoffset: �lled with the timestamp when data appeared on the bus
max_bytes: maximum number of bytes to read
data_in: an allocated array of u16 which is �lled with the received data
data_timing: an allocated array of u32 which is �lled with timing data for each byte read

Return Value
This function returns the number of bytes read or a negative value indicating an error.

Speci�c Error Codes
None.

Details
The data_in and data_timing arrays should be allocated to max_bytes.
All of the timing data is measured in ticks of the sample rate clock.
Ordinarily the number of bytes read will equal the requested number of bytes.

Read I2C with bit-level timing (beagle_i2c_read_bit_timing)

int beagle_i2c_read_bit_timing (Beagle beagle,

u32 * status,

u64 * time_sop,

u64 * time_duration,

u32 * time_dataoffset,

int max_bytes,

u16 * data_in,

u32 * bit_timing);

Read data from the I2C port.

Arguments
beagle: handle of a Beagle analyzer
status: �lled with the status bitmask as detailed in table 5
time_sop: �lled with the timestamp when the data read begins
time_duration: �lled with the number of ticks that it took to read the data
time_dataoffset: �lled with the timestamp when data appeared on the bus
max_bytes: maximum number of bytes to read
data_in: an allocated array of u16 which is �lled with the received data
bit_timing: an allocated array of u32 which is �lled with the timing data for each bit read

Return Value
This function returns the number of bytes read or a negative value indicating an error.

Speci�c Error Codes
None.

Details

www.totalphase.com 40

http://www.totalphase.com/

Beagle USB Protocol Analyzer

The data_in array should be allocated to max_bytes. The bit_timing array should be
allocated to max_bytes * 10, to allow for start and stop bits.
All of the timing data is measured in ticks of the sample rate clock.
Ordinarily the number of bytes read will equal the requested number of bytes.

SPI API

SPI Con�guration (beagle_spi_con�gure)

int beagle_spi_configure (Beagle beagle,

BeagleSpiSSPolarity ss_polarity,

BeagleSpiSckSamplingEdge sck_sampling_edge,

BeagleSpiBitorder bitorder);

Sets SPI bus parameters.

Arguments
beagle: handle of a Beagle analyzer
ss_polarity: sets the slave select detection to active-low or active-high bit polarity, see

table 7
sck_sampling_edge: sets data sampling on the leading or trailing edge of the clock signal,

see table 8
bitorder: sets big-endian or little-endian bit order, see table 9

Table 7: SPI Polarity de�nitions

BEAGLE_SS_ACTIVE_LOW Set active low polarity
BEAGLE_SS_ACTIVE_HIGH Set active high polarity

Table 8: SPI Sampling Edge de�nitions

BEAGLE_SPI_SAMPLING_EDGE_RISING Sample on the leading edge
BEAGLE_SPI_SAMPLING_EDGE_FALLING Sample on the trailing edge

Table 9: SPI Bit Order de�nitions

BEAGLE_SPI_BITORDER_MSB Big-endian bit ordering
BEAGLE_SPI_BITORDER_LSB Little-endian bit ordering

Return Value
A Beagle status code of BEAGLE_OK is returned on success.

Speci�c Error Codes
BEAGLE_STILL_ACTIVE: The receiver must be disabled to change the con�guration.

BEAGLE_FUNCTION_NOT_AVAILABLE: The hardware version is not compatible with this fea-
ture. Only the I2C /SPI device supports SPI con�guration.

Details

www.totalphase.com 41

http://www.totalphase.com/

Beagle USB Protocol Analyzer

The SPI standard is much more loosely de�ned than I2C or USB. As a consequence, the SPI
monitor must be con�gured to match the parameters of the device being monitored. If the
con�guration of the SPI monitor does not match the con�guration of the SPI devices being
monitored, the capture data from the monitor may be corrupted.

Read SPI (beagle_spi_read)

int beagle_spi_read (Beagle beagle,

u32 * status,

u64 * time_sop,

u64 * time_duration,

u32 * time_dataoffset,

int max_bytes,

u08 * data_mosi,

u08 * data_miso);

Read data from the SPI port.

Arguments
beagle: handle of a Beagle analyzer
status: �lled with the status bitmask as detailed in table 5
time_sop: �lled with the timestamp when the data read begins
time_duration: �lled with the number of ticks that it took to read the data
time_dataoffset: �lled with the timestamp when data appeared on the bus
max_bytes: maximum number of bytes to read
data_mosi: an allocated array of u08 which is �lled with the data sent from the master to

the slave
data_miso: an allocated array of u08 which is �lled with the data sent from the slave to

the master
Return Value

This function returns the number of bytes read or a negative value indicating an error.
Speci�c Error Codes

None.
Details

The data_mosi and data_miso pointers should be allocated at least as large as max_bytes.
All of the timing data is measured in ticks of the sample rate clock.
Ordinarily the number of bytes read will equal the requested number of bytes.

Read SPI with byte-level timing (beagle_spi_read_data_timing)

int beagle_spi_read_data_timing (Beagle beagle,

u32 * status,

u64 * time_sop,

u64 * time_duration,

u32 * time_dataoffset,

www.totalphase.com 42

http://www.totalphase.com/

Beagle USB Protocol Analyzer

int max_bytes,

u08 * data_mosi,

u08 * data_miso,

u32 * data_timing);

Read data from the SPI port.

Arguments
beagle: handle of a Beagle analyzer
status: �lled with the status bitmask as detailed in table 5
time_sop: �lled with the timestamp when the data read begins
time_duration: �lled with the number of ticks that it took to read the data
time_dataoffset: �lled with the timestamp when data appeared on the bus
max_bytes: maximum number of bytes to read
data_mosi: an allocated array of u08 which is �lled with the data sent from the master to

the slave
data_miso: an allocated array of u08 which is �lled with the data sent from the slave to

the master
data_timing: an allocated array of u32 which is �lled with timing data for each byte read

Return Value
This function returns the number of bytes read or a negative value indicating an error.

Speci�c Error Codes
None.

Details
The data_mosi, data_miso and data_timing pointers should be allocated at least as large
as max_bytes.
All of the timing data is measured in ticks of the sample rate clock.
Ordinarily the number of bytes read will equal the requested number of bytes.

Read SPI with bit-level timing (beagle_spi_read_bit_timing)

int beagle_spi_read_bit_timing (Beagle beagle,

u32 * status,

u64 * time_sop,

u64 * time_duration,

u32 * time_dataoffset,

int max_bytes,

u08 * data_mosi,

u08 * data_miso,

u32 * bit_timing);

Read data from the SPI port.

Arguments
beagle: handle of a Beagle analyzer

www.totalphase.com 43

http://www.totalphase.com/

Beagle USB Protocol Analyzer

status: �lled with the status bitmask as detailed in table 5
time_sop: �lled with the timestamp when the data read begins
time_duration: �lled with the number of ticks that it took to read the data
time_dataoffset: �lled with the timestamp when data appeared on the bus
max_bytes: maximum number of bytes to read
data_mosi: an allocated array of u08 which is �lled with the data sent from the master to

the slave
data_miso: an allocated array of u08 which is �lled with the data sent from the slave to

the master
bit_timing: an allocated array of u32 which is �lled with the timing data for each bit read

Return Value
This function returns the number of bytes read or a negative value indicating an error.

Speci�c Error Codes
None.

Details
The data_mosi, data_miso pointers should be allocated at least as large as max_bytes.
The bit_timing pointer should be allocated to max_bytes * 8.
All of the timing data is measured in ticks of the sample rate clock.
Ordinarily the number of bytes read will equal the requested number of bytes.

USB API

Read USB (beagle_usb_read)

int beagle_usb_read (Beagle beagle,

u32 * status,

u64 * time_sop,

u64 * time_duration,

u32 * time_dataoffset,

int max_bytes,

u08 * packet);

Read data from the USB port.

Arguments
beagle: handle of a Beagle analyzer
status: �lled with the status bitmask as detailed in table 5
time_sop: �lled with the timestamp when the data read begins
time_duration: �lled with the number of ticks that it took to read the data
time_dataoffset: �lled with the timestamp when data appeared on the bus
max_bytes: maximum number of bytes to read
packet: an allocated array of u08 which is �lled with the received data

Return Value

www.totalphase.com 44

http://www.totalphase.com/

Beagle USB Protocol Analyzer

This function returns the number of bytes read or a negative value indicating an error.
Speci�c Error Codes

None.
Details

The packet pointer should be allocated at least as large as num_bytes.
All of the timing data is measured in ticks of the sample rate clock.
Ordinarily the number of bytes read will equal the requested number of bytes.
The �rst byte of the USB packet is the packet ID. An enumeration is provided that de�nes
all the possible packet IDs in table 10.
In addition to the general read status values in table 5, there are some USB speci�c status
values enumerated. See table 11.

Table 10: USB Packet ID de�nitions

BEAGLE_USB_PID_OUT 0xe1
BEAGLE_USB_PID_IN 0x69
BEAGLE_USB_PID_SOF 0xa5
BEAGLE_USB_PID_SETUP 0x2d
BEAGLE_USB_PID_DATA0 0xc3
BEAGLE_USB_PID_DATA1 0x4b
BEAGLE_USB_PID_DATA2 0x87
BEAGLE_USB_PID_MDATA 0x0f
BEAGLE_USB_PID_ACK 0xd2
BEAGLE_USB_PID_NAK 0x5a
BEAGLE_USB_PID_STALL 0x1e
BEAGLE_USB_PID_NYET 0x96
BEAGLE_USB_PID_PRE 0x3c
BEAGLE_USB_PID_ERR 0x3c
BEAGLE_USB_PID_SPLIT 0x78
BEAGLE_USB_PID_PING 0xb4
BEAGLE_USB_PID_RESERVE 0xf0

Table 11: USB Read Status de�nitions

BEAGLE_READ_USB_ERR_BAD_SIGNALS 0x10000
BEAGLE_READ_USB_ERR_BAD_SYNC 0x20000
BEAGLE_READ_USB_ERR_BIT_STUFF 0x40000
BEAGLE_READ_USB_ERR_FALSE_EOP 0x80000
BEAGLE_READ_USB_ERR_LONG_EOP 0x100000
BEAGLE_READ_USB_ERR_BAD_PID 0x200000
BEAGLE_READ_USB_ERR_BAD_CRC 0x400000
BEAGLE_READ_USB_HOST_DISCONNECT 0x800000
BEAGLE_READ_USB_TARGET_DISCONNECT 0x1000000
BEAGLE_READ_USB_HOST_CONNECT 0x2000000
BEAGLE_READ_USB_TARGET_CONNECT 0x4000000

www.totalphase.com 45

http://www.totalphase.com/

Beagle USB Protocol Analyzer

Read USB with byte-level timing (beagle_usb_read_data_timing)

int beagle_usb_read_data_timing (Beagle beagle,

u32 * status,

u64 * time_sop,

u64 * time_duration,

u32 * time_dataoffset,

int max_bytes,

u08 * packet,

u32 * data_timing);

Read data from the USB port.

Arguments
beagle: handle of a Beagle analyzer
status: �lled with the status bitmask as detailed in table 5
time_sop: �lled with the timestamp when the data read begins
time_duration: �lled with the number of ticks that it took to read the data
time_dataoffset: �lled with the timestamp when data appeared on the bus
max_bytes: maximum number of bytes to read
packet: an allocated array of u08 which is �lled with the received data
data_timing: an allocated array of u32 which is �lled with timing data for each byte read

Return Value
This function returns the number of bytes read or a negative value indicating an error.

Speci�c Error Codes
None.

Details
The data_in and data_timing arrays should be allocated to max_bytes.
All of the timing data is measured in ticks of the sample rate clock.

Read USB with bit-level timing (beagle_usb_read_bit_timing)

int beagle_usb_read_bit_timing (Beagle beagle,

u32 * status,

u64 * time_sop,

u64 * time_duration,

u32 * time_dataoffset,

int max_bytes,

u08 * packet,

u32 * bit_timing);

Read data from the USB port.

Arguments
beagle: handle of a Beagle analyzer
status: �lled with the status bitmask as detailed in table 5

www.totalphase.com 46

http://www.totalphase.com/

Beagle USB Protocol Analyzer

time_sop: �lled with the timestamp when the data read begins
time_duration: �lled with the number of ticks that it took to read the data
time_dataoffset: �lled with the timestamp when data appeared on the bus
max_bytes: maximum number of bytes to read
packet: an allocated array of u08 which is �lled with the received data
bit_timing: an allocated array of u32 which is �lled with the timing data for each bit read

Return Value
This function returns the number of bytes read or a negative value indicating an error.

Speci�c Error Codes
None.

Details
The packet array should be allocated to max_bytes. The bit_timing array should be allocated
to max_bytes * 8.
All of the timing data is measured in ticks of the sample rate clock.

www.totalphase.com 47

http://www.totalphase.com/

Beagle USB Protocol Analyzer

5.6 Error Codes

Table 12: Beagle API Error Codes

Literal Name Value beagle_status_string() return value
BEAGLE_OK 0 ok
BEAGLE_UNABLE_TO_LOAD_LIBRARY -1 unable to load library
BEAGLE_UNABLE_TO_LOAD_DRIVER -2 unable to load usb driver
BEAGLE_UNABLE_TO_LOAD_FUNCTION -3 unable to load function
BEAGLE_INCOMPATIBLE_LIBRARY -4 incompatible library version
BEAGLE_INCOMPATIBLE_DEVICE -5 incompatible device version
BEAGLE_INCOMPATIBLE_DRIVER -6 incompatible driver version
BEAGLE_COMMUNICATION_ERROR -7 communication error
BEAGLE_UNABLE_TO_OPEN -8 unable to open device
BEAGLE_UNABLE_TO_CLOSE -9 unable to close device
BEAGLE_INVALID_HANDLE -10 invalid device handle
BEAGLE_CONFIG_ERROR -11 con�guration error
BEAGLE_UNKNOWN_PROTOCOL -12 unknown beagle protocol
BEAGLE_STILL_ACTIVE -13 beagle still active
BEAGLE_FUNCTION_NOT_AVAILABLE -14 beagle function not available
BEAGLE_COMMTEST_NOT_AVAILABLE -100 comm test feature not available
BEAGLE_COMMTEST_NOT_ENABLED -101 comm test not enabled
BEAGLE_I2C_NOT_AVAILABLE -200 i2c feature not available
BEAGLE_I2C_NOT_ENABLED -201 i2c not enabled
BEAGLE_SPI_NOT_AVAILABLE -300 spi feature not available
BEAGLE_SPI_NOT_ENABLED -301 spi not enabled
BEAGLE_USB_NOT_AVAILABLE -400 usb feature not available
BEAGLE_USB_NOT_ENABLED -401 usb not enabled

www.totalphase.com 48

http://www.totalphase.com/

Beagle USB Protocol Analyzer

6 Legal / Contact

6.1 Disclaimer

All of the software and documentation provided in this datasheet, is copyright Total Phase,
Inc. (�Total Phase�). License is granted to the user to freely use and distribute the software
and documentation in complete and unaltered form, provided that the purpose is to use or
evaluate Total Phase products. Distribution rights do not include public posting or mirroring
on Internet websites. Only a link to the Total Phase download area can be provided on such
public websites.

Total Phase shall in no event be liable to any party for direct, indirect, special, general,
incidental, or consequential damages arising from the use of its site, the software or docu-
mentation downloaded from its site, or any derivative works thereof, even if Total Phase or
distributors have been advised of the possibility of such damage. The software, its documenta-
tion, and any derivative works is provided on an �as�is� basis, and thus comes with absolutely
no warranty, either express or implied. This disclaimer includes, but is not limited to, implied
warranties of merchantability, �tness for any particular purpose, and non�infringement. Total
Phase and distributors have no obligation to provide maintenance, support, or updates.

Information in this document is subject to change without notice and should not be construed
as a commitment by Total Phase. While the information contained herein is believed to be
accurate, Total Phase assumes no responsibility for any errors and/or omissions that may
appear in this document.

6.2 Life Support Equipment Policy

Total Phase products are not authorized for use in life support devices or systems. Life support
devices or systems include, but are not limited to, surgical implants, medical systems, and
other safety�critical systems in which failure of a Total Phase product could cause personal
injury or loss of life. Should a Total Phase product be used in such an unauthorized manner,
Buyer agrees to indemnify and hold harmless Total Phase, its o�cers, employees, a�liates,
and distributors from any and all claims arising from such use, even if such claim alleges that
Total Phase was negligent in the design or manufacture of its product.

6.3 Contact Information

Total Phase can be found on the Internet at http://www.totalphase.com/. If you have
support-related questions, please email the product engineers at support@totalphase.com.
For sales inquiries, please contact sales@totalphase.com.

©2005 Total Phase, Inc. All rights reserved.

www.totalphase.com 49

http://www.totalphase.com/
mailto:support@totalphase.com
mailto:sales@totalphase.com
http://www.totalphase.com/

Beagle USB Protocol Analyzer

List of Figures

1 Sample USB Bus Topology . 3

2 USB Cable . 3

3 USB Descriptors . 5

4 The Three Phases of a USB Transfer . 7

5 Token Packet Format . 7

6 Start-Of-Frame (SOF) Packet Format . 8

7 Data Packet Format . 8

8 Handshake Packet Format . 8

9 Sample I2C Implementation . 9

10 I2C Protocol . 10

11 Sample SPI Implementation . 11

12 SPI Modes . 12

13 Beagle USB Protocol Analyzer - Host Side 13

14 Beagle USB Protocol Analyzer - Target Side 13

15 The Beagle I2C/SPI Protocol Analyzer in the upright position 15

16 The Beagle I2C/SPI Protocol Analyzer in the upside down position 15

List of Tables

1 USB Packet Types . 8

2 power_flag enumerated types . 34

3 interface speed enumerated types . 34

4 protocol de�nitions . 36

5 read status de�nitions . 38

6 protocol de�nitions . 38

7 SPI Polarity de�nitions . 41

8 SPI Sampling Edge de�nitions . 41

9 SPI Bit Order de�nitions . 41

10 USB Packet ID de�nitions . 45

11 USB Read Status de�nitions . 45

12 Beagle API Error Codes . 48

Contents

1 General Overview 2
1.1 USB Background . 2

USB History . 2

Architectural Overview . 2

Theory of Operations . 4

Device Class . 4

Endpoints and Pipes . 4

Enumeration and Descriptors . 5

Tokens and Packets . 6

www.totalphase.com 50

http://www.totalphase.com/

Beagle USB Protocol Analyzer

Packets . 7

References . 7

1.2 I2C Background . 9

I2C History . 9

I2C Theory of Operation . 9

I2C Features . 10

I2C Bene�ts and Drawbacks . 10

I2C References . 10

1.3 SPI Background . 10

SPI History . 10

SPI Theory of Operation . 11

SPI Modes . 11

SPI Bene�ts and Drawbacks . 12

SPI References . 12

2 Hardware Speci�cations 13
2.1 Beagle USB Protocol Analyzer . 13

Connector Speci�cation . 13

Signal Speci�cations / Power Consumption 14

ESD protection . 14

Speed . 14

Power consumption . 14

2.2 Beagle I2C/SPI Protocol Analyzer . 14

Connector Speci�cation . 14

Orientation . 14

Order of Leads . 15

Ground . 15

I2C Pins . 15

SPI Pins . 16

Powering Downstream Devices . 16

Signal Speci�cations / Power Consumption 16

Logic High Levels . 16

ESD protection . 16

Power Consumption . 17

2.3 USB 2.0 . 17

2.4 Temperature Speci�cations . 17

3 Software 18
3.1 Compatibility . 18

Linux . 18

Windows . 18

3.2 Linux USB Driver . 18

USB Hotplug . 18

World-Writable USB Filesystem . 18

www.totalphase.com 51

http://www.totalphase.com/

Beagle USB Protocol Analyzer

3.3 Windows USB Driver . 19

Driver Installation . 19

Driver Removal . 20

3.4 USB Port Assignment . 20

Detecting Ports . 21

3.5 Beagle Dynamically Linked Library . 21

DLL Philosophy . 21

DLL Location . 21

DLL Versioning . 22

3.6 Rosetta Language Bindings: API Integration into Custom Applications . . . 22

Overview . 22

Versioning . 23

Customizations . 23

3.7 Application Notes . 23

Receive Saturation . 23

Threading . 23

4 Firmware 24
4.1 Philosophy . 24

4.2 Procedure . 24

5 API Documentation 25
5.1 Introduction . 25

5.2 General Data Types . 25

5.3 Notes on Status Codes . 25

5.4 General . 27

Interface . 27

Find Devices (beagle_�nd_devices) 27

Find Devices (beagle_�nd_devices_ext) 27

Open a Beagle device (beagle_open) 28

Open a Beagle device (beagle_open_ext) 28

Close a Beagle connection (beagle_close) 30

Get Features (beagle_features) . 30

Get Features by Unique ID (beagle_unique_id_to_features) 31

Get Unique ID (beagle_unique_id) 31

Status String (beagle_status_string) 31

Version (beagle_version) . 32

Capture Latency (beagle_latency) 32

Timeout Value (beagle_timeout) 32

Sleep (beagle_sleep_ms) . 33

Target Power (beagle_target_power) 33

Host Interface Speed (beagle_host_ifce_speed) 34

Benchmarking . 34

Available Read Bu�ers (beagle_bu�ers_avail) 34

www.totalphase.com 52

http://www.totalphase.com/

Beagle USB Protocol Analyzer

Bu�er Information (beagle_bu�ers_info) 35

Communication Speed Benchmark (beagle_commtest) 35

Monitoring API . 36

Enable Monitoring (beagle_enable) 36

Stop Monitoring (beagle_disable) 36

Sample Rate (beagle_samplerate) 37

5.5 Port-speci�c APIs . 38

Introduction . 38

I2C API . 38

I2C Pullups (beagle_i2c_pullup) 38

Read I2C (beagle_i2c_read) . 39

Read I2C with byte-level timing (beagle_i2c_read_data_timing) . . 39

Read I2C with bit-level timing (beagle_i2c_read_bit_timing) . . . 40

SPI API . 41

SPI Con�guration (beagle_spi_con�gure) 41

Read SPI (beagle_spi_read) . 42

Read SPI with byte-level timing (beagle_spi_read_data_timing) . 42

Read SPI with bit-level timing (beagle_spi_read_bit_timing) . . . 43

USB API . 44

Read USB (beagle_usb_read) . 44

Read USB with byte-level timing (beagle_usb_read_data_timing) 46

Read USB with bit-level timing (beagle_usb_read_bit_timing) . . 46

5.6 Error Codes . 48

6 Legal / Contact 49
6.1 Disclaimer . 49

6.2 Life Support Equipment Policy . 49

6.3 Contact Information . 49

www.totalphase.com 53

http://www.totalphase.com/

	1 General Overview
	1.1 USB Background
	USB History
	Architectural Overview
	Theory of Operations
	Device Class
	Endpoints and Pipes
	Enumeration and Descriptors
	Tokens and Packets
	Packets

	References

	1.2 I2C Background
	I2C History
	I2C Theory of Operation
	I2C Features
	I2C Benefits and Drawbacks
	I2C References

	1.3 SPI Background
	SPI History
	SPI Theory of Operation
	SPI Modes
	SPI Benefits and Drawbacks
	SPI References

	2 Hardware Specifications
	2.1 Beagle USB Protocol Analyzer
	Connector Specification
	Signal Specifications / Power Consumption
	ESD protection
	Speed
	Power consumption

	2.2 Beagle I2C/SPI Protocol Analyzer
	Connector Specification
	Orientation
	Order of Leads
	Ground
	I2C Pins
	SPI Pins
	Powering Downstream Devices

	Signal Specifications / Power Consumption
	Logic High Levels
	ESD protection
	Power Consumption

	2.3 USB 2.0
	2.4 Temperature Specifications

	3 Software
	3.1 Compatibility
	Linux
	Windows

	3.2 Linux USB Driver
	USB Hotplug
	World-Writable USB Filesystem

	3.3 Windows USB Driver
	Driver Installation
	Driver Removal

	3.4 USB Port Assignment
	Detecting Ports

	3.5 Beagle Dynamically Linked Library
	DLL Philosophy
	DLL Location
	DLL Versioning

	3.6 Rosetta Language Bindings: API Integration into Custom Applications
	Overview
	Versioning
	Customizations

	3.7 Application Notes
	Receive Saturation
	Threading

	4 Firmware
	4.1 Philosophy
	4.2 Procedure

	5 API Documentation
	5.1 Introduction
	5.2 General Data Types
	5.3 Notes on Status Codes
	5.4 General
	Interface
	Find Devices (beagle_find_devices)
	Find Devices (beagle_find_devices_ext)
	Open a Beagle device (beagle_open)
	Open a Beagle device (beagle_open_ext)
	Close a Beagle connection (beagle_close)
	Get Features (beagle_features)
	Get Features by Unique ID (beagle_unique_id_to_features)
	Get Unique ID (beagle_unique_id)
	Status String (beagle_status_string)
	Version (beagle_version)
	Capture Latency (beagle_latency)
	Timeout Value (beagle_timeout)
	Sleep (beagle_sleep_ms)
	Target Power (beagle_target_power)
	Host Interface Speed (beagle_host_ifce_speed)

	Benchmarking
	Available Read Buffers (beagle_buffers_avail)
	Buffer Information (beagle_buffers_info)
	Communication Speed Benchmark (beagle_commtest)

	Monitoring API
	Enable Monitoring (beagle_enable)
	Stop Monitoring (beagle_disable)
	Sample Rate (beagle_samplerate)

	5.5 Port-specific APIs
	Introduction
	I2C API
	I2C Pullups (beagle_i2c_pullup)
	Read I2C (beagle_i2c_read)
	Read I2C with byte-level timing (beagle_i2c_read_data_timing)
	Read I2C with bit-level timing (beagle_i2c_read_bit_timing)

	SPI API
	SPI Configuration (beagle_spi_configure)
	Read SPI (beagle_spi_read)
	Read SPI with byte-level timing (beagle_spi_read_data_timing)
	Read SPI with bit-level timing (beagle_spi_read_bit_timing)

	USB API
	Read USB (beagle_usb_read)
	Read USB with byte-level timing (beagle_usb_read_data_timing)
	Read USB with bit-level timing (beagle_usb_read_bit_timing)

	5.6 Error Codes

	6 Legal / Contact
	6.1 Disclaimer
	6.2 Life Support Equipment Policy
	6.3 Contact Information

