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Preface

The modern era of graphene “gold-rush” started around 2004–2005, when it became
possible to fabricate samples with the toddler’s best friend – the Scotch tape. Since
then, the publication trends in this area have been nearly exponential – with more
than 10,000 publications in the past seven years with over 3,000 publications in
just 2010!

Although many excellent tutorial and review articles exist on various aspects of
graphene nanoelectronics to help out newcomers in this area, a unified collection
of such articles or chapters on most, if not all, aspects of metrology, synthesis,
properties, and applications simply do not exist. When I started my tenure-track
position at the University of Iowa in the summer of 2009, I was immediately facing
such a group of newcomers. After consulting with some colleagues, I was convinced
that such a monograph on these topics would be extremely helpful not only to
the graduate students but also equally to experts who wish to get a jump-start in
this area. About 10 months into the development of this book project, the 2010
Nobel Prize was announced “for groundbreaking experiments regarding the two-
dimensional material graphene,” which made this project even more timely and
important.

The boundary conditions defined for the contributing authors were to cover
theory, experiments, spectroscopy, and applications, as well as to have tutorial-like
and/or review-like aspects. The contributors were also encouraged to be inclusive
while planning the list of authors to have a wider representation of the community.
Within these requirements, the contributing authors have done a remarkable job to
integrate various chapters into a unified monograph. Readers are encouraged to look
for such cross-referencing among the chapters to enhance the learning experience.

Here, I would like to take time to thank all the contributing authors for their
excellent chapters as well as reviewers for their help toward this project. This
enthusiastic contribution by the authors and the reviewers also reflects the above-
mentioned positive consensus about the imperative need for such a book at this time.
I would like to thank M.S. Dresselhaus personally for not only an excellent chapter,
but also raising the overall-all morale and spirit by her presence on the project team.
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viii Preface

I would also like to acknowledge the keen efforts of K. Horn and S. Adam toward
this project.

I would also like to thank my wife Tehseen and son Ahmer. Without their
understanding and support toward endless weekend and late-night hours, this book
would have not been a reality. Furthermore, I would also like to thank Tehseen
for improving the content of the book by providing a non-expert newcomer point
of view. Extensive readings by my graduate students, Umair and Ali, also helped
to improve the contents of the book for suitability to a general graduate student
audience. I would finally like to thank my colleagues at Iowa, D. Andersen,
M. Wohlegenannt, and M. Flatté, for weekly hallway discussions about the book.

While this book is focused on tutorial-like and/or review-like aspects of graphene
nanoelectronics, we anticipate that in the next 10 years, this research field would
have matured enough, leading to novel and innovative applications. At which point,
another monograph covering advanced topics should follow up. Finally, I would like
to thank Springer Verlag for their help on this project.

Iowa City Hassan Raza
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Chapter 1
Introduction

Hassan Raza

Abstract This chapter serves as a glue for the contributed chapters in this mono-
graph. Here, we try to summarize the multi- and inter-disciplinary topics covered
in various chapters. All chapters are written in a tutorial and review fashion, to
serve not only as the state-of-the-art reference for practitioners but also as a useful
tutorial for incoming researchers. Each chapter leads the reader from introduction
to advanced topics and relates to the topics covered in other chapters wherever
applicable. We start with a brief introduction to the atomic and electronic structure
of graphene and its various nanostructures, leaving a more detailed discussion to
later chapters. We then discuss the historical development of graphene research in
post-2004 era and relate it to the efforts in pre-2004 time frame. Finally, we focus on
the metrology, synthesis, properties and applications of graphene nanomembranes
and nanostructures, which relates to the contributed chapters divided into three
sections. This chapter is not a review of graphene nanoscience and nanotechnology
research and the history of graphene in any way.

1.1 Overview

Graphene is a two-dimensional single-atom thick membrane of carbon atoms
arranged in a honeycomb crystal [1–4]. It is a perfect example of a two-dimensional
electron system for a physicist, an elegant form of a two-dimensional organic
macromolecule consisting of benzene rings for a chemist and a material with
immense possibilities for an engineer due to its excellent electrical, magnetic,
thermal, optical and mechanical properties. Bilayer graphene is also an important
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Graphene

Armchair GNR Zigzag GNR

Bilayer Graphene

Fig. 1.1 Graphene and its nanostructures. Two graphene membranes with Bernal stacking order
form bilayer graphene. One-dimensional nanoribbons with armchair and zigzag edges conceptually
extracted from the two-dimensional graphene are shown. Atomic visualization was done using
Hückel-NV [17]

material as shown in Fig. 1.1 and has very unique electronic structure and transport
properties [5–7].

Another direction is of nanopatterned graphene structures, most notably graphene
nanoribbons [8–16] consisting of one-dimensional stripes of the honeycomb
arrangement, which lead to bandgap opening, edge functionalization, etc.
Depending on the edge shape, two important nanoribbons are armchair graphene
nanoribbons and zigzag graphene nanoribbons shown in Fig. 1.1. Finally, when
multiple graphene layers are stacked, one obtains graphitic materials, and multiple
nanoribbons stacking leads to multilayer graphene nanoribbons.

Historically, the word graphene comes from the Greek word graphein, which
means to write – one of the earliest uses of this material. In the 1800s, the name
graphite was given to the bulk material used in pencils by the German chemist
Wagner. For some time, graphite was mistakenly thought to be a form of lead. The
confusion of lead pencils comes from that misunderstanding. Nonetheless, graphene
and graphite have been of immense use to mankind both in physical sciences and
in technology as well as in the art form. The inspiring arrangement of carbon atoms
leads to the artistic and architectural lattice shell structures – most notable perhaps
is Bucky ball by Buckminster Fuller.

The most important historical application of graphite was in the molds to make
cannon balls. It was truly a strategic material. In fact, the British crown imposed
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embargo on graphite during the Napoleonic wars. Other historical uses of graphite
include crucibles due to its refractory nature, lubrication because graphene planes
can slide against each other with ease, electrodes and motor/generator brushes due
to high conductivity, and materials processing e.g. steel and alloy making. The
intercalation compounds of graphite were first reported in the 1840s and have been
extensively studied since the 1930s [18]. In recent history, the use of graphite as
a neutron moderator to thermalize high energy neutrons in nuclear reactors has
been of great significance. The fundamental breakthroughs towards the physical
understanding of graphene and graphite were routed in the 1940s and 1950s.
Modern derivatives also include carbon nanofibres (with diameters less than 10
nm) prepared and studied extensively in the 1970s and 1980s [2, 19]. Graphene
can also be conceptually thought of as a mother material for Bucky ball molecules
and carbon nanotubes. Their discoverers in the 1980s (by R. F. Curl Jr, H. W. Kroto,
R. E. Smalley, J. R. Heath and co-workers) and 1990s (by S. Iijima), respectively,
formed the basis of not only new fundamental research areas, but also exciting new
set of applications [19–21].

Since graphene is just an atomic plane of graphite, it was known to humans
in the form of graphite deposits around the globe at least for few centuries and
was effectively discovered since the invention of X-ray crystallography. It was
important to isolate this atomic plane and, much more important, to show that this
is a unique material worth further studying. Initial theoretical effort to study its 2D
electronic structure was made by P. R. Wallace in 1947 [1] followed by its extension
to the electronic structure of 3D graphite by D. F. Johnston, J. W. McClure and
M. Yamazaki [22–24]. J. W. McClure also emphasized that the quasiparticles were
Dirac-like, which was re-iterated by G. Semenoff [25].

In a nutshell, the results suggested that graphene is a semi-metal, i.e. it has zero
bandgap, with linear dispersion around the chemical potential leading to cones in
two-dimensional reciprocal space. This was quite a surprising result because most of
the matter waves have quadratic dispersions following Schrödinger equation, which
is first order in time and second order in space. In the simplest model, it leads to the
following dispersion for the conduction and valence bands, respectively:

ES.k/ D Ec;v C „2jkj2
2mc;v

(1.1)

where Ec;v are the conduction and valence band edges and mc;v are the effective
masses of electrons in conduction band and holes in valence band, respectively (mv

is negative, S � Schr Rodinger). One gets zero bandgap for Ec D Ev; however, the
dispersion still remains quadratic.

In contrast to the Schrödinger equation, the dispersion for the Dirac equation is

ED.k/ D ˙
p

m2c4 C „2c2jkj2 ; (1.2)

where c is the speed of light and m is the relativistic mass (D � Dirac). The
positive and negative dispersion plots are shown in Fig. 1.2, which give rise to a
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Dirac Equation Graphene

E (MeV) E (MeV) E (eV)

mc2

k km = 0

-mc2

Fig. 1.2 Graphene band structure. Dirac dispersions with 2mc2 gap are shown. In the limit of
m D 0, the gap becomes zero with a linear dispersion, where the energy scale is on the order of
MeV. In analogy, the graphene band structure also has a linear dispersion with zero gap around the
Dirac point, albeit with the energy in eV range

mass-dependent gap of 2mc2 between the positive energy of matter (electron in this
case) and the negative energy of anti-matter (positron) – the mc2 product for an
electron is about 0.512 MeV. In the limiting case of m D 0, clearly the gap becomes
zero. Furthermore, (1.2) becomes

ED.k/ D ˙„cjkj (1.3)

which is plotted in Fig. 1.2 depicting the linear dispersion with zero bandgap, the
energy scale on the order of MeV and the speed equal to that of light.

As a reference, the band structure of graphene is shown in Fig. 1.2, which follows
the following equation based on tight-binding description [2]:

EG.k/ D ˙t

vu
u
t1 C 4 cos

�
3kxacc

2

�
cos

 p
3kyacc

2

!

C 4 cos2

 p
3kyacc

2

!

;

(1.4)

where acc D 1:42 Å is the C–C bond length and t is the first nearest-neighbour tight-
binding parameter (G � graphene). Clearly the bandgap is zero and dispersion
is linear around the points where conduction and valence bands meet with a
renormalized velocity v resulting in
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EG.k/ D ˙„vjkj (1.5)

similar to the dispersion of Dirac’s in (1.3). Readers are encouraged to see Chap. 8
for more discussion about the electronic structure in detail.

This analogy led to the suggestion that electrons and holes act like Dirac fermions
in graphene with zero mass and hence zero gap. In other words, charge carriers are
mass-less relativistic Dirac fermions with point of intersection between conduction
and valence bands labelled as Dirac point and the dispersion cones usually referred
to as Dirac cones. Based on this analogy, sometimes phrases like quantum relativity
in our pencils have been used. Furthermore, there are six points over the Brillouin
zone where the conduction and the valence bands meet as shown in Fig. 1.2.
Although, one may think that there are six Dirac points, with careful analysis, one
concludes that only two points are inequivalent. Moreover, these two points are also
related by the time-inversion symmetry.

There have been several efforts geared towards graphene synthesis. H. P. Boehm
et al. [27] observed ultra-thin graphitic samples using electron microscopy in 1962.
A. J. van Bommel et al. [28] studied thin graphitic fragments on the basal faces
of SiC in 1975 by using graphitization of SiC pioneered by E. Acheson in the
1890s [29]. Since the fundamental understanding of photoelectric effect provided
by A. Einstein, it has been well known that adsorbates severely affect surface
properties. Carbon deposition on metal substrates has been well studied since the
1960s, see e.g. the literature review in [30]. In the surface science community,
sometimes graphitic features were observed on metal surfaces, see e.g. [31]. With
the discovery of scanning tunnelling microscopy (STM) in the early 1980s [32],
visualizing graphite substrates became a routine practice to obtain atomic resolution
images. Around the turn of the century, efforts were started to manipulate graphite
samples to obtain graphene [33–36].

It is quite interesting that the sample preparation for STM involves pealing
graphite samples using scotch tape to expose fresh basal planes of graphene.
Understandably, researchers used to throw away the scotch tape with graphitic flakes
on it. In 2004, instead of throwing away the tape, Manchester group transfered some
of the flakes on a silicon substrate with 300 nm of silicon oxide film and isolated
graphene to study the field effect [37]. With the right thickness of the silicon oxide
film, it was not only possible to image graphene using an optical microscope but also
possible to determine the number of layers from the colour difference or reflection
variations as shown in Fig. 1.3. This ground-breaking discovery of transferring
graphene onto an arbitrary substrate from graphite led to an immense interest in this
material system. The ambipolar field effect in graphene and few layer graphene was
demonstrated [37,38] and at the same time very high electronic quality was observed
despite its atomic thickness and being placed on atomically rough substrate and
covered with all sorts of adsorbates. No one could have predicted that the material
could be so good electronically given the common wisdom that the thinner the
film the worse its quality. The present day graphene boom is precisely due to
this excellent electronic quality. In comparison, monolayer dichalchogenides also
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Fig. 1.3 Scotch tape method of graphene synthesis. Multiple layers can be distinguished under
visible light (Courtesy of Peter Blake, Graphene Industries [26])

show field effect but with poor electronic quality and hence not as attractive for
nanoelectronics [38].

The important breakthrough that propelled graphene research to its heights was
the publication of back-to-back papers from the Manchester and Columbia groups
[5,39,40] that demonstrated an unusual quantum Hall effect in monolayer graphene.
This put to rest any doubts about reproducibility of the previous Manchester results
and, from this point, the research community has eagerly embraced the paradigm of
one atom thick experimental system with exceptionally high crystal and electronic
quality and exotic electron transport properties. Shortly, the field effect in few
layer thin epitaxial graphitic layers on SiC was also reported, although the effect
was small and the resistance changed by less than 1% because screening becomes
important in multilayer devices and does not allow change the carrier concentration
across the whole device’s thickness [41]. For these groundbreaking experiments,
2010 Physics Nobel prize was awarded to Geim and Novoselov (from Manchester
group).

Although seemingly low-tech and humble, the Scotch tape method has allowed
researchers to obtain graphene in sufficient quantities for studying fundamental
physics and making proof-of-concept devices, which has proved invaluable for
advancing graphene research. However, the isolation method is not scalable to
be useful in any technology. Therefore, novel synthesis methods are required
for large-scale synthesis of graphene membranes. Since the initial discovery, the
community has scaled the thin film growth methods of graphite to mono- and
multilayer graphene. As of today, epitaxial growth of graphene on SiC by thermal
decomposition [42–44], chemical vapour deposition method of graphene synthesis
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on metal substrates [45–48] and chemical methods of graphene synthesis have been
achieved [49]. All these methods hold great promise for enabling future integrated
circuits using graphene-based nanoelectronic devices. However, it is still a long way
to achieve the goal of producing high quality wafer scale graphene reproducibly with
defect densities on the order of today’s state-of-the-art silicon processing.

1.2 Book Summary

This book covers key topics related to graphene nanoelectronics from science
and technology perspectives. The contents of most of these chapters are multi-
and inter-disciplinary, which makes the integration challenging in a monograph
form. However, the distinguished contributing authors have worked closely to make
the book coherent and wherever applicable, have cross-referenced the material
presented in other chapters. Furthermore, the contributed authors have not only tried
to make this book a good reference by providing a review of the state of the art in
their respective area of expertise but also presented the material in a tutorial form to
make it a good starting point for the newcomers.

In this collection, the topics range from metrology and synthesis to physical
properties as well as device applications. For the sake of clarity, we have divided
the book into three parts as described below. However, one should be careful that
many chapters discuss topics listed in other parts as well. In the next few sections,
we outline the three parts of the book and discuss the topics covered briefly to relate
them to various chapters.

Part I: Metrology and Synthesis

In this part, the contributed authors discuss metrology and characterization of
graphene samples as well as graphene synthesis and device fabrication. This part
starts with the introduction and application of Raman spectroscopy in Chap. 2,
which has been an extremely valuable tool for studying and characterizing carbon-
based nanomaterials for over 40 years. Raman spectra give quantitative information
to various physical properties of graphene, e.g. defects, edges, number of layers and
doping. Electronic structure and other physical processes contribute to the Raman
spectra, which are discussed in detail. The discussion about the Raman spectroscopy
of graphene would be concluded with the near-field optics and coherent phonon
spectroscopy.

Chapter 3 discusses scanning tunnelling microscopy (STM) and spectroscopy
(STS), which is an extremely valuable and versatile tool for probing local properties
of graphene and its various nanostructures and edges. Discussion will be provided
about the use of STM and STS to experimentally study and characterize the
atomic structure, electronic structure, Landau level spectroscopy, defects, edge
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states, interactions, substrate effects, localization, dislocations and misalignments
in graphene, multilayer graphene, nanoribbons, etc. Another useful avenue is STM-
based nanolithography of graphene to form nanostructures.

ARPES (angle-resolved photoemission spectroscopy) has been widely used to
study the band structures of graphene and multilayer graphene. Chapter 4 starts with
an introduction and a review of ARPES for various graphene structures. It further
discusses the effect of adsorbates on graphene and multilayer graphene. Adsorbates
are an important consideration in graphene, which are also conceptually related
to intercalation graphitic compounds. Unintentional adsorbates can undesirably
change the properties and band structure. Whereas, a controlled deposition of
adsorbates can lead to systematic effects, e.g. doping, and magnetism.

The next three chapters mainly discuss graphene synthesis and device fabri-
cation. Chapter 5 starts the discussion along these lines with an introduction to
graphitization of SiC(0001) surface to form graphene in a historical perspective.
The science and technology discussed in this chapter may lead to large-scale
fabrication of graphene nanoelectronic devices [41,42,44]. The next chapter carries
on the discussion along the same lines, i.e. the fabrication of electronic and
spintronic devices using the state-of-the-art tools, starting with epitaxial graphene
on SiC. Chapter 6 provides details about the electrical characterization of graphene
electronic and spintronic devices. In short, these chapters take a reader through steps
of growth, material characterization, device fabrication, atomic layer deposition
dielectric growth and finally transport characterization.

Although epitaxial growth is a viable candidate for both large-scale fabrication
of electronic and spintronic devices, another growth method holds promise for
the same application, notably for spintronics. Chapter 7 discusses this alternate
fabrication method, i.e. chemical vapour deposition (CVD) of graphene on metallic
substrates. This chapters discusses the growth mechanism, characterization and
magnetic effects.

Part II: Electronic Structure and Transport Properties

This part of the book begins with Chap. 8, which provides a thorough introduction
to the tight-binding model of graphene and bilayer graphene. Furthermore, the
connection of the tight-binding model to the Dirac-like Hamiltonian is discussed.
Advanced concepts related to these material systems are explained in a tutorial
manner, e.g. chirality, pseudospin, Berry phases, trigonal warping (�3), Lifshitz
transition, Landau level spectrum, quantum Hall effect and gate-induced bandgap
opening, etc.

With the introduction to the electronic structure of the two-dimensional graphene
and bilayer graphene, Chap. 9 discusses the effect of quantization and edge shapes
on the electronic spectrum and the transport properties of the one-dimensional
graphene nanoribbons. Interesting features like edge localization in zigzag
nanoribbons near the equilibrium chemical potential and their absence in the
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armchair graphene nanoribbons are discussed. Furthermore, the effect of disorder
and impurity scattering is discussed in detail. The chapter concludes with the effect
of edge shape on zero conductance Fano resonance in graphene nanojunctions.

Chapter 10 builds on the discussion provided in the previous two chapters
to study the electronic structure of quantum rings and superlattices made out
of graphene to introduce periodicity in nanoconstricted graphene via boundary
conditions and explicit potential, respectively. With properly engineered rings, an
effective magnetic flux through the rings leads to unique features in the energy
spectrum and a persistent current through the ring. On the other hand, a superlattice
structure leads to new Dirac points at equilibrium chemical potential, which gives
rise to conductance resonances in the quantum transport through these systems.

Chapter 11 extends the discussion in Chap. 8 by providing analysis of the
electronic structure of arbitrarily stacked multilayer graphene with and without a
magnetic field. The energy band structure, Landau-level spectrum and low-energy
effective theory of multilayer graphene are discussed. This chapter concludes with
the discussion about the quantum Hall effect, optical conductivity and electrical
conductivity.

Chapter 12 reports the state of the art in the macroscopic semi-classical transport
through graphene in the presence of disorder and impurities and compare it with
the quantum transport theory of graphene and recent experiments. The main
topics covered in this context are graphene screening within the random phase
approximation (RPA), the self-consistent approximation for ground state properties
and effective medium theory for the charge transport.

At the nanoscale, one needs the quantum transport theory. Chapter 13 along
with Chaps. 15–18 in Part III provides a set of quantum transport theoretical
framework based on Green’s function formalism. In this context, Chap. 13 starts
with the discussion about conductance quantization of e2=h per channel per spin
in graphene nanoribbons and the effect of edge disorder, dislocations, adsorbates
and impurities on the electrical conduction through nanoribbons. The topic of
localization discussed in this chapter also relates to the discussion in Chap. 3.

Chapter 14 is a unique chapter about the graphene oxide. This chapter discusses
comprehensively the synthesis, fabrication, characterization, ab initio analysis of
the bonding and electronic structures. A detailed discussion about its applications is
further provided. This chapter relates potential applications with graphene oxide to
some of the other topics discussed in the book as a whole.

Part III: From Physics and Chemistry of Graphene
to Device Applications

This part of the book is about device applications utilizing graphene and its
various nanostructures. However, they also complement the electronic structure
and transport discussion of the second part of the book. Nonetheless, the emphasis
on device physics makes the chapters in this part very unique. These chapters are
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mostly theoretical in nature, but experimental results are comprehensively discussed
wherever applicable.

A PN junction diode is the most basic device which is formed by metallurgically
joining p-type and n-type semiconducting regions. While graphene is in fact a semi-
metal, it is still possible to make PN junction devices. Chapter 14 discusses the
transport properties of such PN junctions based on graphene. It further discusses the
angular selective nature of transmission and Klein tunnelling. Magneto-transport
through these junctions is also discussed in the context of snake orbits, edge effects,
disorder and strain. Finally, details about the numerical modelling of the quantum
transport are provided.

The next chapter is about field effect transistors (FETs) using monolayer and
bilayer graphene nanoribbons with armchair and zigzag edges. FETs are the work
horse of today’s integrated circuits. This chapter discusses the performance analysis
of Schottky barrier field effect transistor using armchair-edged and doped zigzag
edged bilayer graphene nanoribbons. Finally, nanoelectromechanical switches are
discussed for memory applications.

Chapter 17 discusses the electric field modulation in graphene nanostructures.
Bandgap opening in bilayer and multilayer graphene has already been discussed
in Chaps. 8 and 11. This chapter extends the discussion along these lines in the
presence of misalignments and strain as well as provides a review of the modulation
effects in armchair and zigzag nanoribbons with and without edge roughness.
Device applications for these material systems are also discussed in detail.

The final (Chap. 18) takes the reader from device characteristics to the integration
of individual devices into integrated circuits for scalable applications. In particular,
discussion about graphene inverter characteristics is provided. With this, the book
concludes with an overarching theme of a unique source of review and tutorial
material for graphene nanoelectronics research from basic and applied perspectives.

1.3 Outlook

The area of graphene research is progressing by leaps and bounds. Everyday, new
discoveries are being made. Given the exponential growth trend, we anticipate
that another monograph within 5–10 years will cover the more advanced topics
in graphene nanoelectronics, once the facts of graphene gold rush have been
established on solid footings.

We also anticipate that once the basic science of graphene is established on a
more solid footing, novel applications in very diverse areas [50–52] utilizing this
exceptional material will follow suit.
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Chapter 2
Raman Spectroscopy: Characterization
of Edges, Defects, and the Fermi Energy
of Graphene and sp2 Carbons

M.S. Dresselhaus, A. Jorio, L.G. Cançado, G. Dresselhaus, and R. Saito

Abstract From the basic physical concepts relating to the Raman spectra of
graphene, we can develop characterization methods for point defects and the edge
structure. Furthermore, the Fermi energy can be studied by the phonon softening
phenomena of the Raman spectra. Finally, we also discuss recent progress on near-
field optics.

2.1 Introduction to the Resonance Raman Spectra of Graphene

Raman spectroscopy has been widely used to characterize sp2 carbon systems, from
graphite to carbon nanotubes. Especially interesting is the richness of the Raman
spectral response to lattice symmetry breaking and to changes in the Fermi level.
These two aspects are very important when moving from bulk 3D materials down to
nanomaterials, where single defects, edges, and interactions with the environment
become frequent and important. In this scenario, two-dimensional (2D) graphene
becomes an important prototype system to study such effects, as we discuss in this
chapter. We start by giving, in this section, introductory material with the basic
concepts behind the Raman spectroscopy of sp2 carbon systems.
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Fig. 2.1 (a) Raman spectrum of a graphene edge, showing the main Raman features, theD,G,D0,
and G0 bands taken with a laser excitation energy of 2.41 eV [1]. (b) On the left are the calculated
Raman frequencies for the double-resonance condition in graphene as a function of Elaser (bottom
horizontal axis) and the corresponding q vector along the K (top horizontal axis). Solid and open
circles correspond to phonon modes around the K and � points, respectively. The qKK vectors
from � toK=4 are shown by open circles and the qKK vectors from 3K=4 toK are shown by solid
circles. The six calculated phonon dispersion curves (lines) and experimental Raman observations
(symbols) are plotted and shown to be consistent with double resonance theory [16]

2.1.1 The Raman Spectra of sp2 Carbons

The Raman spectrum of crystalline graphite is characterized by the presence of
two strong symmetry-allowed peaks at 1,580 and 2,700 cm�1, the G and G0 bands,
respectively, where theG label refers to spectral features1 originating from graphene
(see Fig. 2.1). The G band is a spectral feature shown in Fig. 2.1a near 1,600 cm�1,
while Fig. 2.1b shows that the G band phonon has a very small wave vector q often
approximated as q D 0 [2, 3], i.e. a first-order Raman feature originating from the
zone-centered, in-plane optical-phonon modes [2, 3]. Because graphene is a zero-
gap semiconductor, there is a strong electron–phonon interaction. We will see in
Sect. 2.1.4 that because of this strong electron-phonon interaction near q D 0,
the G-band phonon frequency, intensity, and lineshape are strongly dependent upon
doping. The G0 band is a second-order, two-phonon feature that is specially strong
in sp2 carbons. The G0 band is important for many reasons, due to the fact that the
G0-band feature depends upon the phonon wave vector q and allows study of the
electronic structure of sp2 carbons through study of their phonons [4, 5]. Many of
the unusual properties of the G0 band arise from the mechanism responsible for the
large intensity of the G0 band, which is a multiple resonance process. These topics
are further clarified in Section 2.1.3.

1In this chapter, we frequently use the word “feature” to refer to spectral features. For example,
“The first-order Raman feature” means that the Raman spectral line originates from a first-order
Raman scattering process.
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Disorder-induced symmetry-breaking effects are important in the determination
of several material properties, such as transport properties and the relaxation of
photoexcited carriers [6, 7]. This applies specially to sp2 carbons, which have high
symmetry and, consequently, are highly sensitive to symmetry-breaking defects.
Raman spectroscopy is particularly sensitive to symmetry-breaking phenomena in
sp2 carbons. Thus Raman spectroscopy is widely used to identify the presence
of defects and disorder in sp2 networks of different carbon structures, such as
diamond-like carbon, amorphous carbon, and nanostructured carbon, as well as
carbon nanofibers, nanotubes, nanohorns and most recently graphene [1, 8–11].

In the Raman spectra obtained from graphene and other sp2 carbon samples
containing defects, several additional symmetry-breaking features are found. The
feature with highest intensity is the D band which occurs near 1,350 cm�1 for laser
excitation energies of 2.41 eV (a commonly used laser excitation energy), being
associated with near-K point phonons. Another common symmetry-breaking feature
in the first-order spectrum is the D0 band near 1,620 cm�1, associated with near-�
(q ¤ 0) point phonons, where q refers to the phonon wave vector. The D and D0
bands can also give rise to overtones and combination modes, thereby resulting in
additional symmetry-breaking modes in the Raman spectra. Now we give a brief
description of the wave vectors for these modes.

The D band is associated with a breathing-like motion of the carbon atoms
located in carbon hexagons that becomes Raman active due to the loss of the lattice
symmetry [2,3]. The most common reasons for symmetry breaking are the presence
of vacancies and interstitial or substitutional atoms which can also be introduced
intentionally as for example by ion implantation [12] or by introducing interfaces
at the borders of crystalline areas [2, 3]. The frequency of the D band is roughly
about half of the second-order G0 frequency .!G0=2/. The mechanism involved
in the G0-band process is a symmetry-allowed two-phonon process that is also
present in ideally crystalline graphene. However, the �1,350 cm�1 D-band peak
is only observed in the presence of defects or at the edge of a graphene sample
in an otherwise perfect infinite graphene structure. The intensity of the D band
is proportional to the amount of disorder (as, for example, at a point defect or at a
crystallite boundary) in the sample. The ratio between the intensities of the disorder-
induced D band and the first-order graphite G band (ID=IG) provides a parameter
that can be used for quantifying the amount of disorder.

Tuinstra and Koenig showed in 1970 that the ID=IG intensity ratio [2, 3] is
correlated with the crystallite size La by the relation ID=IG D A=La, where A
is a constant for a fixed laser excitation energy Elaser.2 This means that the ID=IG
intensity ratio depends on the laser excitation energy Elaser [13]. The Tuinstra and
Koenig relationship has been frequently used to characterize carbon sp2 crystallites
large enough to have a well-established graphene-like structure. On the other hand,
Lucchese et al. showed recently that in the limit of amorphization, the ratio ID=IG

2This means that A changes for different Elaser and we cannot directly compare the ID=IG values
of two different samples observed by two different values of Elaser.
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decreases as the crystallite size goes down to very small La values, such as 2nm
[14]. In this limit, the sp2 carbon hexagonal crystal structure for graphene is not
well defined.

The so-called D0 band, centered at 1,620 cm�1, is usually observed in the
Raman spectra of graphene and other disordered sp2 carbon materials, although
the D0 band has a weaker intensity when compared to the D band. The D0 band
feature, reported in 1978 by Tsu et al. [15], also depends on La and Elaser [9] but
involves a different scattering process. TheD band involves an intervalley scattering
process, as explained below, while the D0 band involves an intravalley scattering
process [16].

Vidano et al. showed in 1981 [17] that the D and G0 bands are dispersive,
i.e., their Raman shift frequencies change with Elaser according to the relations
�!D=�Elaser � 50 cm�1/eV and�!G0=�Elaser � 100 cm�1/eV. The out-of-plane
stacking order has also been shown to affect the G0-band Raman lineshape and
intensity [18–20]. The explanation for the exceptionally large dispersive behavior
of both the D band and G0 band as well as the large G0-band intensity came in
2000, through the work of Thomsen and Reich [21], and their model described
in Section 2.1.3 was extended by Saito et al. to explain the mechanism behind
many other dispersive Raman peaks observed in the Raman spectra of sp2 carbon
materials [16, 22]. Characterization of defects by Raman spectroscopy and their
related theory is discussed in Sect. 2.2.

2.1.2 Edge Structure of Graphene

In the characterization of defects of graphene, the edges are usually the dominant
source of defect-related features in the Raman spectra. There are two symmetrical
edge structures, namely armchair and zigzag edges (see Fig. 2.2). The general
structure of edges is random but we can treat the general edge as a mixture of zigzag
and armchair edges. When we heat a graphene sample to more than 2,000ıC in an
electron microscope in the presence of the electron beam, the armchair and zigzag
edge structures become increasingly dominant and especially the zigzag edges are
observed predominately at the highest heat treatment temperatures [23]. In such
samples, the more general chiral edges tend to break up into small segments of
zigzag and chiral edges [24, 25]. Characterization of the edge structure by Raman
spectroscopy and the related theory is discussed in Sect. 2.3.

2.1.3 The Multiple-Resonance Raman Scattering Process

Both the D band and the D0 band are double-resonance processes, as briefly
described below, except that the D band involves an intervalley scattering process
from the K point to the K 0 point in the Brillouin zone, whereas the D0 band is
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zigzag
edges

armchair
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Fig. 2.2 Zigzag and armchair edges in monolayer graphene nanoribbons. The geometrical edge
structure and the number of atomic rows of carbon atoms normal to the ribbon axis determine the
electronic structure and ribbon properties (Images courtesy of M. Hofmann, MIT.)
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Fig. 2.3 (a) Schematics showing the electronic dispersion near the Fermi level at the K and K 0

points in the hexagonal Brillouin zone of graphene. The light-induced electron–hole formation is
indicated by a blue arrow. The two resonant electron–phonon scattering processes associated with
the D (intervalley) band and the D0 (intravalley) band are indicated by black arrows. The dashed
arrows indicate elastic scattering induced by defects. (b) Laser energy dependence or dispersion
of the frequencies of the D, D0, and G0 bands which are all dispersive with Elaser, but each has a
different slope, the smallest slope for the D0 band and the largest slope being for the G0 band [9]

an intravalley scattering process involving wave vectors q located near the same K
point or the same K 0 point in reciprocal space [see Figs. 2.1b and 2.3a].

Defects in the solid are expressed in terms of an impurity potential Vimp.q/ which
couples two electron wave functions with the wave vectors k and kCq to each other.
Thus the wave vector k is no longer a good quantum number of an electron, which
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implies that phonons in the interior of the Brillouin zone (q ¤ 0) can contribute
to the Raman spectra as a higher-order Raman process. This is the origin of
disorder-induced Raman spectra. On the other hand, when we consider the multiple-
resonance Raman scattering process, phonons with specific q ¤ 0 can be observed.
The intensities of the D band and the D0 band I.!;Elaser/ in sp2 carbons are all
enhanced by the double-resonance processes described in Fig. 2.3a [16, 22] (the G0
band has a similar process, replacing the electron-defect scattering (dashed line) by
another electron-phonon scattering process (solid line)). This resonance produces
strong coupling between real electronic states. More specifically, the denominators
in the expression for the resonance Raman intensity (or cross section) become small
by introducing two real states in the resonance denominators of I.!;Elaser/ which
are given in (2.1) [11]:

I.!;Elaser/ D
X

i

ˇ̌
ˇ
ˇ
ˇ
ˇ

X

a;b;c;!ph

Mop.k; ic/Md.�q; cb/Mep.q; ba/Mop.k; ai/

�Eai .�Eai � „!ph/.�Ebi � „!ph/

ˇ̌
ˇ
ˇ
ˇ
ˇ

2

; (2.1)

then the intensity I.!;Elaser/ can become very large. Here �Eai in each of the
resonance denominators is given by

�Eai D .Elaser � .Ea � Ei/ � i�r /; (2.2)

where �r denotes a broadening factor. In (2.1) the subscripts i; a; b, and c, respec-
tively, denote the initial state, the excited state, the first scattered state of an electron
by a phonon, and the second scattered state of an electron by a defect. In this double-
resonance process, an electron at wave vector k near theK point is first excited to the
conduction band state a by a photon absorption process involving the matrix element
Mop.k; ai/ [see Fig. 2.3 and (2.1)]. Next a phonon scatters the electron from a to b
with the wave vector q in a crystal momentum-conserving process involving matrix
element Mep.q; ba/, after which the electron at b near the K 0 point in reciprocal
space is elastically scattered by a defect back to c near the K point with the wave
vector �q by the matrix element Md.�q; cb/. Finally the excited electron emits a
photon and returns to the valence band to complete the D-band process, which is
seen to include a phonon emission process and an inelastic defect scattering process.
The symbols Mop, Mep and Md denote the electron–photon, electron–phonon and
electron-defect scattering matrix elements, respectively. In this double-resonance
process, two of three factors in the denominator becomes almost zero (double
resonance), which enhances the intensity significantly, resulting in a process with an
intensity close to that of a first-order process. The phonon scattering process and the
defect scattering process can occur in either order, thereby resulting in a broadening
of the Raman linewidth. When these processes are resonant as described above, they
enhance the scattering amplitude much more than for nonresonant processes, so that
the observed Raman spectra are dominated by the double-resonanceD andD0-band
scattering processes, both processes fulfilling energy and momentum conservation.
Momentum conservation in the presence of disorder can thus be satisfied through
an elastic scattering process by a defect, represented by dashed arrows in Fig. 2.3a
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in addition to the electron–phonon scattering process for theD and D0 bands, each
of which involves phonons with very different wave vectors, which are known as
intervalley and intravalley wave vectors, respectively [22]. In contrast, the G0 band
only involves two-phonon processes with intervalley wave vectors q and �q.

In Fig. 2.3b, the dispersions (or slopes) of the frequencies of the D, D0, and G0
bands are plotted as a function of Elaser, whose dependencies are well explained
by the double-resonance model [16,21,22]. The slope or dispersion associated with
the G0 band is about 100 cm�1/eV and it is two times larger than the slope of the
D band (50 cm�1/eV). The D0 band also exhibits a weakly dispersive behavior, the
slope being �10 cm�1/eV [9].

When we consider the double-resonance Raman scattering processes, the D and
D0 bands are not the only disorder-induced one-phonon peaks in the Raman spectra
for disordered sp2 materials. Any combination or overtone of the six dispersive
phonon energy branches in sp2 carbons can occur and disorder-induced Raman
frequencies can be related to any of the six phonon branches of graphene with the
appropriate wave vector which fulfills the double-resonance condition and with
nonzero electron–phonon matrix elements [16]. The intravalley and intervalley
double-resonance processes involve phonons near the � and K (or K 0) points,
respectively, and we can vary both the resonant wave vector k and q values
for electrons and phonons, respectively, by changing Elaser, as determined by
conservation of energy and momentum requirements [22, 26, 27]. Thus by using
electronic band structure information, we can determine the phonon dispersion
relations around the K and the � points, by considering intervalley and intravalley
processes, respectively. This approach has been used for obtaining the graphene
phonon dispersion relations (see Fig. 2.1b) using Raman spectroscopy [16, 26].

2.1.4 Concept of the Kohn Anomaly

The Kohn anomaly refers to the softening of phonon frequencies due to electron–
phonon coupling and this effect is very important for describing the G band for
graphene and metallic carbon nanotubes. According to this effect, a phonon can
bring an electron from the valence band to the conduction band, thus creating
an electron–hole pair. This process thus renormalizes the phonon energies and
lowers the phonon lifetime [28–31]. This phonon effect is dominant near the �
and K points of the graphene Brillouin zone, thus generating a highly dispersive
phonon branch. These phonons are mainly responsible for the G, G0, D, and D0
band signals, therefore making the Raman spectra from graphene highly sensitive
to the Kohn anomaly phenomena. Interestingly, the Kohn anomaly effect can be
suppressed by changing the Fermi level, since the electrons or holes that are
occupied by doping suppress the electron–phonon interaction, causing a strong
dependence of the G-band frequency upon doping (see Sect. 2.4 for details).

This effect is specially interesting in carbon nanotubes [32]. The fundamental
difference between metallic carbon nanotubes and semiconducting nanotubes is
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the presence of a band gap in semiconducting nanotubes and the absence of a
band gap in metallic nanotubes, as well as the carrier concentration in metallic
nanotubes at the Fermi energy, leading to a greater importance of the electron–
phonon interaction as a phonon scattering process. In practice, the Kohn anomaly
is important in modifying the phonon dispersion for metallic nanotubes near the �
andK (K 0) points in the Brillouin zone, resulting in both a substantial lowering (by
tens of cm�1) of the LO phonon frequency relative to the TO phonon frequency and
a broadening in the LO phonon Raman linewidths.

2.1.5 Introduction to Near-Field Raman Spectroscopy

Before ending this introductory section, we mention a technique that has strong
potential to provide information about local effects in nanostructures, i.e., the near-
field technique. Raman spectroscopy will become an even more powerful tool
to characterize disorder in sp2 materials when we learn how to relate specific
defects to their corresponding disordering processes and how to obtain quantitative
information about the amount of each type of lattice defect. Some important
progress has been achieved in this area, as discussed in this chapter, but substantial
achievements will come from single-defect spectroscopy. In this sense, near-field
Raman spectroscopy is important in providing more spectroscopic information at
a smaller length scale �x than the diffraction limit of �laser=2, where �laser is the
wavelength of the laser. Near-field Raman spectra of sp2 carbons, such as SWNTs
and graphene, have been taken with the help of a sharp tip which enhances the
near-field signal [10] and allows detection of localized defects on a length scale of
30 nm or smaller when looking at G-band or D-band spectra. Of particular interest
would be the study of localized defect features in the vicinity of graphene edges,
ion-implanted defects [14], and dopant atom impurities [8]. In the world of sp2

carbons, near-field Raman spectroscopy has been highly informative for high spatial
resolution studies of one-dimensional carbon nanotubes, and high expectations are
in place for the use of near-field Raman spectroscopy to study edges and defects in
graphene (see further details in Sect. 2.5).

2.2 Characterization of Defects

Accurate defect quantification has been a hard task in the field of sp2 carbons.
To achieve a really accurate quantitative description of defect phenomena, Raman
spectroscopy has to be combined with microscopy experiments of the structure.
Transmission electron microscopy (TEM) or scanning tunneling microscopy (STM)
can characterize structural disorder of the crystal in r-space by probing the local
surface density of electronic states, with atomic level resolution. Simultaneous
in situ TEM and Raman measurements are, in principle, possible. However, a
special experimental setup and special sample preparation methods would be needed
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for such an experiment. Usually, STM and Raman spectroscopy cannot be easily
correlated with each other, since optical spectroscopy probes a volume that is limited
by the light penetration depth, while STM is mostly sensitive to surfaces. In this
context, the possibility of exfoliating graphite to pull out a single graphene sheet
provides an ideal situation in which microscopy and spectroscopy can be correlated
to probe disorder effects in both r-space and k-space for the same sample. We
describe here some early examples of such work.

There are two different major classes of defects in sp2 carbon systems that have
been largely used to study the Raman signature of disorder. One can be said to
have point (or zero-dimensional) defects, and this is the case of the point defects
produced by ion bombardment. The other system is composed of small graphitic
crystallites, where the disorder is actually related mostly to the graphite borders
or edges and, therefore, this disorder relates to a one-dimensional defect. This
difference in the “dimensionality” of the defect causes differences in the defect
behaviors, as discussed below.

2.2.1 Point Defects Induced by Ion Bombardment

There are different ways of introducing point defects in a crystalline lattice, but the
use of ion implantation to study defects in graphite is a well-established technique
[12]. These experiments are normally carried out as a function of ion dose and for
different ion species and different ion energies. Low mass ions at low ion fluence
introduce point defects. Increasing the ion dose causes an increasing density of point
defects and eventually causes the damaged regions to overlap as discussed for ion-
bombarded HOPG and graphene [8, 12, 14, 33, 34]. The work on graphite brings in
the complicated aspect of ion damage depending on penetration depth and cascade
effects. Cascade effects are effects whereby a scattered C atom with a large amount
of energy hits and perturbs another C atom iteratively, similar to the chain reaction
of dominoes.

Raman spectroscopy of monolayer graphene, which is intentionally damaged by
ArC ion bombardment, is normally performed so that the energy of the ion is kept
low to avoid cascade effects [14, 33]. The ion doses range from very low, so that
only a few lattice atoms are perturbed, up to ion doses so high as to come close
to full lattice disorder. More specifically for ArC ions this corresponds to ion doses
varying from 1011 to 1015ArC/cm2, which correspond, respectively, to one defect per
4 � 104 C atoms for the lower limit and to the onset of full disorder in graphene for
the upper limit. The defect density in real space was monitored by STM (scanning
tunneling microscopy) images which allowed the extraction of the defect density or
alternatively values of the average distances between defects [14].

In Fig. 2.4a we show the Raman spectra of a graphene monolayer subjected to
different ion bombardment intensities. From Fig. 2.4a it is clear that the Raman
spectra for graphene, mildly disordered graphene, and very highly disordered
graphene (close to amorphization) are distinctly different from one another. From
the pristine sample (bottom spectrum) to the lowest bombardment dose in Fig. 2.4a
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Fig. 2.4 (a) Evolution of the first-order Raman spectra (using a � D 514 nm laser (2.41 eV))
taken from a graphene monolayer sample deposited on an SiO2 substrate, subjected to ArC

ion bombardment. The ion doses are from the bottom to the top, 1010, 1011 , 1012, 1013, and
1014 ArC/cm2 [14]. (b) The ID=IG data points from three different monolayer graphene samples
as a function of the average distance LD between defects. The solid line is a modeling of the
experimental data using (2.3). The inset shows a plot of ID=IG vs. LD on a log scale for LD for
two samples: (i) open points for a �50-layer graphene sample and solid circles are for a small
piece of HOPG near a graphene piece. (ii) solid diamond points, for a 2 mm-thick bulk HOPG
sample, whose measured values are here scaled by (ID=IG ) �3:5 [14]

(1011 ArC/cm2), the D-band process is activated, showing a very small intensity
relative to the G peak (ID=IG). Within the bombardment dose range 1011–
1013 ArC/cm2, the intensities of the disorder-induced peaks increase in intensity.
The second disorder-induced peak around �1; 620 cm�1 (the D0 band) also becomes
evident within this bombardment dose range. However, above 1013 ArC/cm2, the
graphene Raman spectra start to broaden significantly and end up exhibiting a profile
similar to the graphene phonon density of states (PDOS) for the highest ion dose of
1014 ArC/cm2 [14].

In Fig. 2.4b we plot the ID=IG ratio as a function of the average distance between
defects LD , through which we can quantify the degree of disorder. As seen in this
figure, the ID=IG ratio has a nonmonotonic dependence on LD , increasing initially
with increasing LD up to LD � 3 nm, where ID=IG in Fig. 2.4b has a peak value,
and then decreasing for LD > 3 nm. Such a behavior suggests the existence of
two disorder-induced competing mechanisms contributing to the Raman D-band
intensity, which we describe next.

2.2.2 Model for the D-Band Activated Region

To explain the ID=IG dependence on LD , the so-calledD-band activation model in
Fig. 2.5 was proposed [14]. This model assumes that a single impact of an ion on the
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Fig. 2.5 (a) Definition of the “activated” A-region (green) and “structurally disordered” S-region
(red). The radii are measured from the ion impact point which is chosen randomly in our
simulation. (b–e) shows 55 nm�55 nm portions of the graphene simulation cell, with snapshots of
the structural evolution of the graphene sheet for different defect concentrations: (b) 1011 ArC/cm2;
(c) 1012 ArC/cm2; (d) 1013 ArC/cm2; (e) 1014 ArC/cm2, like the spectra in Fig. 2.4a [14]

graphene sheet causes modifications on two length scales, here denoted by rA and
rS (with rA > rS ), which are, respectively, the radii of two circular areas measured
from the ion impact point (see Fig. 2.5). Within the shorter radius rS , a structurally
disordered S -region occurs relative to the point of impact. For distances larger than
rS but shorter than rA, the lattice structure is preserved, but the Raman D band is
activated. We call this the activated or A-region. In qualitative terms, an electron–
hole excitation will only be able to “see” the structural defect if the electron–hole
pair is created sufficiently close to the defect site and if the excited electron (or hole)
lives long enough for the defective region to be probed by Raman spectroscopy.

For understanding this model, stochastic simulations were performed for each
disorder level shown in Fig. 2.5b–e [14]. Snapshots of each disorder concentration
are shown in Fig. 2.5b–e for the same argon ion concentrations as in Fig. 2.4a. In the
stochastic simulations of the bombardment process, we randomly chose the impact
points for the ions, combined with (2.3) and we select the parameters rA D 3 nm
and rS D 1 nm, which give the full line curve in Fig. 2.4b. The calculated result
is in excellent agreement with the experimental results (points) in this figure [14].
The length scale rS D 1 nm, which defines the structurally disordered area, is in
excellent agreement with the average size of the disordered structures seen in the
STM images. This parameter should, however, not be universal, but it should be
specific to the bombardment process, the ion bombardment conditions, and the
specific ions used for the ion bombardment [14]. The Raman relaxation length `
for the defect-induced resonant Raman scattering in graphene for Elaser D 2.41 eV
(514 nm) is here defined as ` D rA � rS D 2 nm.

It is important to have an equation relating ID=IG to LD . Such an equation can
be obtained by solving the rate equations for the bombardment process. The entire
regime (0 < LD < 1) can be fitted using
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where the fitted parameters are CA D .4:2 ˙ 0:1/, CS D .0:87 ˙ 0:05/,
rA D .3:00 ˙ 0:03/ nm and rS D .1:00 ˙ 0:04/ nm [14]. The CA parameter is a
measure of the maximum possible value of the ID=IG ratio in graphene, which
would occur in a hypothetical situation in which K–K0 wave vector mixing would
be allowed everywhere, but no damage would be made to the hexagonal network of
carbon atoms. CA should then be defined by the electron–phonon matrix elements,
and the value CA D 4:2 is then in rough agreement with the ratio between the
electron–phonon coupling for the iTO phonons evaluated between the � and K
points in the Brillouin zone [35]. The CS parameter is then the value of the ID=IG
ratio in the highly disordered limit, which has not yet been addressed theoretically.
For large values of LD (LD > 6 nm), a much simpler formula can be used, i.e.,
ID=IG D A=L2D , where A D .102˙ 2/ nm2 fit the data.

This model has been extended to account also for the evolution of the D0- and
G0-band intensities [33]. Ferreira et al. [33] also described carefully the evolution
of the frequencies, intensities, and full-width at half maximum intensity for all the
observed peaks in the Raman spectra of graphene, as a function of ion induced
disordering and the number of graphene layers. Finally, ID/IG depends also on the
excitation laser energy (Elaser). The results given here apply for Elaser D 2:41 eV,
and the Elaser dependence will be discussed in the next section.

2.2.3 Line Defects at the Edges of Nanographene

Now we turn into the other class of defects, i.e., the one-dimensional defects
represented by the graphene borders or edges. By scanning the focused laser light
of an optical microscope on a graphite nanocrystallite or graphene, we can observe
Raman signals as a function of position, using a technique for known as confocal
Raman imaging. The G-band intensity is uniform over the whole graphene surface,
while theD-band intensity is localized where the crystalline structure is not perfect,
mostly at the edges of the crystallite. We therefore expect to see elastic scattering
events at the edges which contribute to the D-band intensity [36, 38]. Notice also
that the D-band intensity varies from edge to edge, and this D-band intensity is
dependent on the light polarization direction and on the atomic structure at the edge,
as discussed later in this chapter.

As pointed in the introduction, the intensity ratio of the D band to the G band,
ID=IG , is frequently used for the evaluation of crystallite dimensions La [2, 40].
The model described for point defects in Sect. 2.2.2 also applies to the edges after
several additional effects are taken into account [8]. When we consider a square of
crystallite sizeLa, the intensity of theG band will vary as IG / L2a . The intensity of
theD band will, however, depend on the width ı of the “border” (of around 2–3 nm)
where theD band is activated by the symmetry-breaking border, and this intensity is
given by ID / L2a �.La �2ı/2 consistent with the findings in Sect. 2.2.2. Therefore,
for La > 2ı, the intensity ratio will then be given by
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a b

Fig. 2.6 Scanning tunneling microscopy (STM) images with atomic resolution obtained from the
surface of a nanographite crystallite of a sample with La D 65 nm. (a) A Moire pattern at the
crystallite surface is observed. (b) Magnification of the region delineated by the white square in
part (a) [39]
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where the scaling factor ˛ is dependent on the appropriate matrix elements [8].
When we take the limit La � ı, where the crystallite size is large compared

to the heavy damage range, (2.4) can be simplified to yield the Tuinstra–Koenig
relation [2]

ID

IG
D C.Elaser/=La; (2.5)

in which the value of the empirical constant C.Elaser/ depends on Elaser. One
could then expect that, once the relaxation length and matrix element ratio were
measured for the D-band scattering in ion-bombarded graphene (Sect. 2.2.2), these
values could just be used to obtain ˛ and ı. However, the relaxation length and
matrix element ratio depend on the structurally disordered area (S -region) shown
in Fig. 2.5, which is not well defined for nano-graphite. Figure 2.6 shows two
scanning tunneling microscopy (STM) images with atomic resolution obtained from
the surface of a crystallite in a nanographite sample with La ' 65 nm. The atomic
arrangement of the carbon atoms observed in these images indicates that the samples
are formed by nanographitic crystallites, with a disordered grain boundary between
crystallites [39]. Variability associated with grain boundaries such as in Fig. 2.6 may
also be responsible for the different ID=IG vs. La results obtained by different
research groups, as reported in the literature. However, ID=IG also depends on
Elaser, the laser excitation energy.

This important fact that the constant C.Elaser/ depends on Elaser is known since
1984 [13], but C.Elaser/ has been quantitatively determined only more recently [40],
using experimental results from nanographites with different La values prepared
from diamond-like carbon (DLC) films heat treated at different temperatures Thtt

[40]. In Fig. 2.7a Raman spectra for the Thtt D 2,000ıC sample (La D 35 nm) for
five different Elaser values are shown. The spectra are normalized to the G-band
intensity, and clearly the ratio .ID=IG/ increases with decreasing Elaser. To clarify
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a b

Fig. 2.7 The Raman spectra of (a) a nanographite sample heat treated at 2,000ıC (La D 35 nm),
for five different laser excitation energies (1.92 eV, 2.18 eV, 2.41 eV, 2.54 eV, and 2.71 eV).
(b) Nanographite samples with different crystallite sizes La using 1.92 eV laser excitation
energy [40]

a b

Fig. 2.8 (a) The intensity ratio ID=IG for nanographite samples is plotted vs. 1=La using five
different laser excitation energies (see text). (b) All curves shown in part (a) collapse onto the
same curve in the (ID=IG/E4

L vs. .1=La/ plot where EL denotes the laser excitation energy [40]

this point, we show in Fig. 2.7b, the Raman spectra for different crystallite sizes La

using the same excitation laser energy Elaser D 1:92 eV [40], where the La sizes
were determined by using both STM and X-ray measurements. These La values
were thus correlated with the ID=IG intensity ratios measured at different laser
energies leading to a general equation for determining La as a function of both
the laser excitation energy and the (ID=IG) intensity ratio [40].

Figure 2.8a shows a plot of (ID=IG) vs. 1=La for all samples shown in Fig. 2.7.
It is clear in Fig. 2.8b that ID=IG for a given sample can be scaled by Elaser as
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(ID=IG/E4
laser vs. La. From this relation we can estimate La using any laser line in

the visible range [40]:
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where the laser excitation energy is given in terms of both Elaser (eV) and the
corresponding wavelength �laser (nm). This behavior is consistent with D-band
intensity calculations [36]. A similar analysis has also been made for carbon
foams [41]. In the literature, the (ID=IG) ratio is often reported at 2.41 eV, where
the ID=IG ratio is relatively low in comparison to spectra taken at lower values of
energy. Finally, the E4

laser dependence applies also to point defects in graphene, as
discussed in detail in Ref. [42].

2.3 Characterization of Edges

As discussed in Sect. 2.1.2, finite size graphene can have two high symmetry
edge structures which are known as zigzag and armchair edges [43]. Unlike
single wall carbon nanotubes where no edge structures exist along the walls of
the nanotubes, experiments show that armchair and zigzag edges of heat-treated
graphene nanoribbons are stable and dominant [23]. Here we discuss how to
characterize the edge structures of graphene by Raman spectroscopy.

2.3.1 Overview of Graphene Edges

The electron and phonon states exhibit edge-specific properties for armchair or
zigzag edges of graphene nanoribbons which can be observed by Raman spec-
troscopy. A graphene nanoribbon is defined as a one-dimensional graphene strip
with edges at both sides and with a fixed width whose structure is specified by a
vector in the direction of the ribbon width, similar to the chiral vector of single
wall carbon nanotubes [43, 44]. A graphene nanoribbon is obtained either by (1)
unrolling nanotubes by heating [45,46], (2) by cutting a graphene sheet by electron-
beam lithography [47], or by (3) heating nanodiamond [24, 37].

In the case of the zigzag edge, localized electron states which are called edge
states appear and form a flat energy band at the Fermi energy from the K point to
the M point in the two-dimensional Brillouin zone [43, 44]. Since the edge states
are partially occupied by � electrons, the magnetic properties of edge states show
ferromagnetic behavior because of the exchange interaction between spins in the flat
energy band structure [48]. Another important fact about the edge state is that the
amplitude of the wave function has a large value only on one of the two sublattices of
graphene. This fact enhances the electron–phonon interaction [49,50] only near the
zigzag edge. The fact that the wave function has a large value only on one sublattice
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corresponds to the pseudospin polarized state of graphene [50]. Here the pseudospin
of graphene is defined by the two component wave function of � electrons [51].
Using this fact, possible superconductivity may appear at these edges [52,53]. Igami
et al. discussed the possible phonon edge states of graphene nanoribbons with zigzag
edges [54]. Similar edge phonon modes are observed at the tube edges in a single
wall carbon nanotube (SWNT) with finite length [55].

For the armchair edges of nanoribbons, double-resonance theory (see Sect. 2.1.3)
tells us that the D band is strong for the armchair edges since the scattering at
the armchair edge corresponds to the intervalley scattering which is relevant to
the D-band Raman intensity, while the scattering at the zigzag edge corresponds
to intravalley scattering and is very weak [38]. Further, edge-localized phonon
modes are observed for thin graphene nanoribbons [56]. Combined with the phonon-
softening phenomena of the G band (see Sect. 2.4), the polarization dependence of
the Raman signal characterizes the signal of the LO and TO phonon modes for the
G band [57], and we can use these polarization techniques to characterize and to
distinguish between the different edge structures by Raman spectroscopy. Hereafter
we discuss each subject one by one.

2.3.2 The Characterization of Graphene Edges
from Their D-Band Scattering

In nanographitic samples formed by aggregates of small crystallites, the crystallite
borders form defects in real space. Since the crystallites have different sizes and
their boundaries are randomly oriented, the defect wave vectors exhibit all possible
directions and values. Therefore, the existence of a defect with momentum exactly
opposite to the phonon momentum is always possible, giving rise to double-
resonance processes [16, 21] connecting any pair of points (electron wave vectors)
around the K and K 0 points in the first Brillouin zone of graphite or graphene.
In this case, the intensity of the D band is isotropic and does not depend on the
light polarization direction. However, in the case of edges, the D-band intensity is
anisotropic because the double-resonance process cannot occur for any arbitrary pair
of k points [38]. Since, in real space, the edge defect is well localized in the direction
perpendicular to the edge, so that this defect is completely delocalized in this
direction in reciprocal space and, therefore, the wave vector of such a defect assumes
all possible values perpendicular to the edge. Hence, the defect associated with an
edge has a one-dimensional character and it is only able to transfer momentum in
the direction perpendicular to the edge.

Here we show that the disorder-induced D band obtained from graphene edges
provides useful information about the atomic structure of these edges. The D-band
scattering is strongly anisotropic and depends on the orientation of the carbon
hexagons with respect to the edge, in the armchair or zigzag arrangements [38]. This
anisotropy can be used to define the local degree of order of the atomic structure at
the edge. The physics leading to this structurally selective effect is explained on
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Fig. 2.9 (a) Raman spectra at different regions of a highly oriented pyrolytic graphite (HOPG)
sample. The inset shows an optical image of the sample. Regions 1 and 2 are at HOPG edges,
while region 3 is on the flat HOPG surface. (b) Idealized structure of the edges shown in the inset
to part (a). The bold lines highlight the edge structures, armchair for edge 1 and zigzag for edge 2.
The wave vectors of the defects associated with these edges are represented by da for armchair and
d z for the zigzag edges. (c) The first Brillouin zone of graphene oriented according to the lattice
in the real space shown in part (b). Note that only the armchair da vector is able to connect points
belonging to equienergy contours surrounding two inequivalent K and K 0 points (Adapted from
Ref. [38].)

the basis of the well-established double-resonance effect [16, 21] applied to a semi-
infinite crystal bounded by a one-dimensional defect.

In Fig. 2.9a, we show three Raman spectra at three different regions of a highly
oriented pyrolytic graphite (HOPG) sample [38]. The inset to Fig. 2.9a shows an
optical image of the sample. Regions 1 and 2 are at HOPG step edges, while region 3
is taken at an interior point of the HOPG sample. In all spectra, the light propagation
is perpendicular to the HOPG basal plane and the polarization of the incident
light is parallel to the edge direction in spectra 1 and 2. The G band (centered at
approximately 1,580 cm�1) is present in all spectra with the same intensity. The
Raman features at approximately 1,340 and 1,620 cm�1 are the disorder-inducedD
and D0 bands, respectively. The disorder-induced D and D0 bands are observed in
spectra 1 and 2, but not in spectrum 3, since spectrum 3 was taken at an interior
region of the HOPG with a crystalline order (see inset to Fig. 2.9a). As shown in
Fig. 2.9a, the D band is about four times less intense in spectrum 2 compared to
spectrum 1, whereas theD0-band intensity remains almost constant for both spectra.
The different intensities observed for theD band in spectra 1 and 2 indicate that the
D-band intensity depends on the structure of the edges.

High resolution STM images of the edges revealed that edge 1 shown in Fig. 2.9a
has an armchair structure, whereas edge 2 has a zigzag structure. To clarify this
picture, Fig. 2.9b shows the idealized structure of the edges [38]. The bold blue
lines highlight the edge structures, armchair for edge 1 and zigzag for edge 2. The
wave vectors of the defects associated with these edges are represented by da for
armchair and d z for the zigzag edge. Figure 2.9c shows the first Brillouin zone of
graphene oriented according to the lattice in the real space shown in Fig. 2.9b. Note
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that only the armchair da vector is able to connect points belonging to equienergy
contours surrounding two inequivalent K and K 0 points. An important fact is the
change of the wave vector by scattering at the zigzag edges dz does not connect K
andK 0 points but instead connectsK and K or K 0and K 0, which means intravalley
scattering is occurring. This means that the intervalley double-resonance process
associated with this defect cannot occur for a zigzag edge, thereby explaining why
the D band is much less intense in the spectra obtained in zigzag edge 2. On the
other hand, the D0 band is given by an intravalley process, which connects points
belonging to the same equienergy contour around the K (or K 0) point [16]. In this
case, momentum conservation can be satisfied by both da and d z vectors3 and,
therefore, the observation of the D0 band must be independent of the edge structure
though the relative intensity might be different. This conclusion is confirmed by the
experimental result shown in Fig. 2.9a, where the D0 band has a similar intensity
in both spectra 1 and 2, with armchair and zigzag structures, respectively. It is
important to note the observation of a weak D band in spectrum 2, where it should
be absent. This weak D band is related to the actual atomic structure of the edge,
allowing the scattering of the electron by phonons and defects with wave vectors
not perpendicular to the edge. Similar measurements performed on different closely
related armchair and zigzag graphene edges also show different D-band intensity
ratios, indicating different degrees of disorder for the local atomic arrangement at
the different edges [58–60].

We now turn our attention to the dependence of the D-band scattering intensity
on the polarization of the incident light relative to the edge direction. Figure 2.10a
shows the topographic image of a single graphene layer on a glass substrate.
Figure 2.10b–d shows the corresponding Raman intensity images showing the G,
G0 andD-band intensities, respectively. Notice that the G-band intensity is roughly
uniform along the graphene surface. A similar situation occurs for the G 0 band,
which is the overtone of theD band but does not require a disorder-induced process
to become Raman active, since momentum conservation is guaranteed in two-
phonon Raman processes occurring for the G 0 band [16]. On the other hand, the
D band can be detected only near the graphene edges. Figure 2.10e shows Raman
scattering spectra acquired at two different locations (indicated in Fig. 2.10a). The
upper spectrum was acquired near the edge of the graphene layer whereas the lower
spectrum was recorded � 1�m from the edge. The D band appears only in the
spectrum acquired near the edge, indicating that the graphene sheet is essentially
free of structural defects. The Raman scattering spectra also reveal that the G0
band is composed of a single peak, which confirms that the sample is a single
monolayer graphene sheet [62]. All confocal Raman images shown in Fig. 2.10b–d
were recorded with the polarization vector P of the excitation laser beam oriented
parallel to the graphene edge (y direction in Fig. 2.10b). Notice that the D-band
intensity associated with the top edge in Fig. 2.10d is weaker than that obtained
from the side edges, as we explain below.

3It is noted that da connects two k points on a constant energy contour.
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Fig. 2.10 (a) Topographic image of a single graphene layer on a glass substrate. (b)–(d)
Corresponding Raman intensity images showing the G-, G0- and D-band intensities, respectively.
(e) Raman scattering spectra acquired at two different locations of the graphene layer shown in
part (a). The upper spectrum was acquired near the edge of the graphene layer [position indicated
by the white square in panel (a)] whereas the lower spectrum was recorded � 1�m from the
edge [position indicated by the white circle in panel (a)]. (f) The idealized structure of the edges
of the graphene layer shown in panel (a). The wave vectors of the defects associated with these
edges are represented by d s for the left side edge and d t for the top edge. Notice that both edges
have the same symmetry, which based on the strong D-band scattering intensity from the side
edges, we suppose to be armchair. (g) The first Brillouin zone of graphene oriented according to
the lattice in real space shown in part (f). P is the polarization vector of the incident light according
to the experiment that is responsible for the images shown in parts (b)–(d). The thickness of the
gray region around the K and K 0 points illustrates the anisotropy in the optical absorption relative
to P . Note that the light absorption (emission) has a maximum for electrons with wave vectors
perpendicular to P , and it is null for electrons with wave vectors parallel to P

In 2003, Grüneis et al. predicted an anisotropy in the optical absorption coeffi-
cient of graphene given by Wabs / jP � kj2, where P is the polarization of the
incident (scattered) light for the absorption process, and k is the wave vector of the
electron measured from the K or K 0 point [63]. The thickness of the gray region
around the K and K 0 points at the corners of the first Brillouin zone of graphene
shown in Fig. 2.10g illustrates this anisotropy in the optical absorption relative to
the vector P . Note that the light absorption has a maximum efficiency for electrons
with wave vectors perpendicular to P , and the efficiency is null for electrons with
wave vectors parallel to P . A singularity in the density of phonons that participates
in the one-dimensional double-resonance intervalley process gives rise to the D
band. This singularity in the phonon density of states [63] restricts the wave vector
of the electron to the direction perpendicular to the armchair edge (k0 and k0

0 in
Fig. 2.10g). However, as pointed out before, such electrons will only absorb light
efficiently if the polarization vector of the incident light is perpendicular to the
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electron wave vector, and therefore a strong double-resonance process will occur
only if the polarization vector of the incident light is parallel to the edge. As shown
in Fig. 2.10g, this is the case for D-band scattering that originates from the side
edges of the graphene piece shown in Fig. 2.10a, which generate defects whose wave
vector ds (see dashed arrow in Fig. 2.10f) connects electron wave vectors k0 and k0

0

that are located at maxima in the light absorption efficiency around the K and K 0
points, respectively. On the other hand, the top edge in Fig. 2.10a generates defects
whose wave vectors d t (see dashed arrow in Fig. 2.10f) connect electron wave
vectors k0 and k0

0 which are located near nodes in the light absorption efficiency
around the K and K 0 points, respectively (see Fig. 2.10g). This is the reason why
the intensity of theD-band signal obtained from the top edge in Fig. 2.10d (forming
a relative angle of � 60ı with P) is weaker than that obtained from the side edges.
Notice that if the incident light polarization vector is perpendicular to the edge, the
D-band Raman scattering cannot be observed even for armchair edges [38, 58, 59].

2.3.3 Mode assignments of the Raman Spectra of Graphene
Nanoribbons

Next we discuss Raman-active phonon modes of graphene ribbons within non-
resonance Raman theory [64]. In the case of graphene, since we always satisfy
the resonance condition for Raman spectra, the relative Raman intensity is directly
determined by the Raman tensor. Thus a nonresonance Raman calculation can give
reasonably reliable information. In Fig. 2.11, we show the unit cell of a graphene
ribbon with (a) armchair and (b) zigzag edges. The graphene ribbons lie in the xy
plane in which the edges (or the 1D periodicity direction) lie along the x direction,
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Fig. 2.11 The unit cell of an (a) armchair and (b) zigzag nanoribbon. The graphene ribbon lies in
the xy plane and the edge (periodic) direction is along x [64]
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which is also called the quantum confinement direction. The direction of the incident
and scattered light is selected as the z (y) direction for the XX , XY , and Y Y
(ZZ) polarizations. Here we should mention that the in-plane and out-of-plane bond
polarizabilities need not be the same, which has been shown for boron nitride BN
[65]. Thus we cannot always compare the Raman intensities forZZ and the in-plane
polarization, but we can discuss the relative intensities within theZZ configuration.

The ribbon width N is defined from the number of C–C lines parallel to the
ribbon direction, and the corresponding numbers of carbon atoms in the unit cell of
the armchair and zigzag nanoribbons are 2N for both cases (see Fig. 2.11). Here,
we consider, for simplicity, only N D odd for armchair (zigzag) nanoribbons in
which the corresponding point group symmetry is D2h (C2v). The case N D even
for armchair (zigzag) nanoribbons corresponds to C2v (D2h) symmetry. Further, in
the special case of the zigzag nanoribbons withN D half integer, a different type of
edge (the so-called the Klein edge) appears [48]. As far as we discuss edge phonons,
we did not find any odd–even dependence of N on the phonon properties.

The scattering geometry is specified by the symbols iISs (i , s D x, y, z and
I , S D X , Y , Z) in which i and s (I and S ) denote propagating (polarization)
directions of the incident and scattered light, respectively. In bond polarization
theory, we cannot specify the propagating direction but we can only specify the
polarization direction, because the electromagnetic wave propagations i and I (or s
and S ) should be perpendicular to each other. Here we consider the following four
back-scattering geometries zXX Nz, zXY Nz, zY Y Nz, and yZZ Ny in which the overlines
Nz and Ny refer to the negative z and negative y directions, respectively.

The Raman-active modes belong to irreducible representations of the D2h point
group: (Ag, x2; y2; z2), (B1g , xy), (B2g, xz), and (B3g, yz); C2v: (A1, x2, y2, z2),
(A2, xy), (B1, xz), (B2, yz). In particular, for the scattering geometries zXX Nz and
zY Y Nz, the Ag (A1) mode is Raman active, while for zXY Nz and zYX Nz, the B1g (A2)
mode is Raman active forD2h (C2v).

In Fig. 2.12, calculated results of the Raman spectra are shown for four different
geometries of the polarization directions. Here RBLM (RBLM3), EDGE, LO and
TO denote, respectively, the radial breathing-like phonon mode (its third harmonic),
the edge phonon modes, the longitudinal optical and the in-plane transverse optical
phonon modes, whose vibration amplitudes are illustrated in Fig. 2.13. It is noted
that the out-of-plane optical phonon mode is not a Raman-active mode. The LO,
RBLM (RBM3), and edge modes belong to Ag symmetry, while the TO belongs to
B1g (xy) symmetry, which are all Raman active. The TO and LO modes are related
to the Raman G band of sp2 carbon materials whose vibrational amplitudes are
perpendicular and parallel, respectively, to the armchair edge and are homogeneous
in the interior region of the nanoribbon. In the RBLM, the ribbon width is vibrating,
which is similar to the radial breathing mode of a single wall carbon nanotube
[65]. The RBLM mode appears at relatively lower (300 cm�1) frequency regions
and the frequency is inversely proportional to the ribbon width. In the experimental
situation, the observation of the RBLM is possible only when a fixed ribbon width
is made. Further we should consider the interaction of the nano ribbon with the
substrate which modifies the RBLM frequency.
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Fig. 2.12 The nonresonance Raman spectra of an N D 9 armchair nanoribbon for the scattering
geometries of (a) zXX Nz, (b) zXY Nz, (c) zY Y Nz, and (d) yZZ Ny . The Raman intensity is normalized
to the one for the largest Raman signal for the four geometries shown [64]

(c) EDGE (d) LO (e) TO(a) RBLM (b) RBLM3Fig. 2.13 Phonon
eigenvectors of an N D 19

armchair nanoribbon for (a)
RBLM, (b) RBLM3, (c)
EDGE (d) LO, and (e) TO
phonon modes [64]

The frequencies of the edge phonon modes are around 1,250 cm�1 if we used
the force constant set for sp2 carbon. However, around the armchair edges without
any termination, the C–C bond at the edge becomes triple bonds and thus the
calculated edge phonon frequency by first principles calculations becomes relatively
high (around 2,200 cm�1). When the dangling bond is terminated by H atoms, then
the edge phonon modes of armchair edges are downshifted to 1,530 cm�1, which is
consistent with the recent Raman measurements on very thin nanographene ribbons
[58]. The amplitude of the edge phonon mode is localized only near the armchair
edge and its vibrating direction is parallel to the edge. Thus, the Raman intensity
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Fig. 2.14 The nonresonance Raman spectra of an N D 9 zigzag nanoribbon for the scattering
geometries of (a) zXX Nz, (b) zXY Nz, (c) zY Y Nz, and (d) yZZ Ny . The Raman intensity in each
spectrum is normalized to the one for the largest Raman signal for the four indicated scattering
geometries. The ZZ signals in (d) are 10 times enlarged relative to the other geometries [64]

for the edge mode is large for the XX polarization geometry compared with the
Y Y geometry. The TO phonon modes have a large Raman intensity for the XY
geometry since TO belongs to B1g symmetry. The RBLM mode has a significant
Raman intensity for all XX , Y Y , and ZZ geometries which are common to Ag
symmetry modes [66, 67].

In the ZZ geometry, the G-band modes (TO and LO) disappear and only weak
signals of RBLM (RBLM3) and edge phonon modes can be seen. A relatively strong
peak at 889 cm�1, which can be seen also in theXX and Y Y geometries, belongs to
a higher frequency RBLM mode with three nodes of vibration (RBLM3). Although
the wavelength of the three node mode is one third of the fundamental RBLM
(317 cm�1), the corresponding phonon frequency (880 cm�1) is slightly smaller
than three times RBLM. This is because the longitudinal acoustic phonon energy
dispersion deviates from a linear energy dispersion near the zone boundary region
of the Brillouin zone.

In Fig. 2.14, the Raman intensity for an N D 9 zigzag nanoribbon is plotted for
the scattering geometries of (a) zXX Nz, (b) zXY Nz, (c) zY Y Nz, and (d) yZZ Ny [64].
The Raman signal for the ZZ geometry is 10 times enlarged relative to that for the
XX , XY , and Y Y geometries. The vibrational directions of the RBLM, RBLM3,
EDGE, TO, and LO phonon modes are illustrated in Fig. 2.15. In the case of zigzag
nanotubes, the TO, RBLM (RBLM3), and edge modes belong toA1 symmetry while
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(e) TO(d) LO(a) RBLM (c) EDGE(b) RBLM3Fig. 2.15 Phonon
eigenvectors of an N D 11

zigzag nanoribbon for (a)
RBLM, (b) RBLM3, (c)
Edge, (d) LO, and (e) TO
phonon modes [64]

the LO mode belongs to A2 symmetry. Thus the TO, RBLM, (RBLM3) and edge
phonon modes can be seen in the XX , Y Y , and ZZ geometries, while the LO
phonon mode can be seen in the XY geometry. Generally we cannot distinguish
between LO and TO phonon modes from these experiments. However, we will
show in the following section that only LO phonon modes show phonon-softening
phenomena (the Kohn anomaly in Sect. 2.4) and in this way we can assign LO and
TO for graphene edges [69].

The vibrational direction of the edge states for a zigzag nanoribbon is perpendic-
ular to the zigzag edge direction, while that for the armchair nanoribbon is parallel
to the armchair edge. This difference of the vibrational direction can be enhanced
by terminating the dangling bond by some other heavy element, such as an F atoms.
The edge phonon frequency of the zigzag edge is around 1,450 cm�1, which is
consistent with previous calculations [68] and experiments [56]. Two intermediate
frequency spectra show higher RBLM modes with five and seven nodes.

2.3.4 Polarization Dependence of the Raman Intensity

To discuss the Raman intensity as a function of the polarization dependence and
the edge dependence, we need to calculate the electron-optical transition amplitude.
In Fig. 2.16, the square of calculated optical matrix elements jM opt.A/j2 for the
electromagnetic interaction of an electron in an optical field which depends on both
the vector potential A and the direction of the polarization of the laser light H, is
plotted as a function of the angle � relative to the edge of the nanoribbon [69].

Here,� D 0 corresponds to the polarization of A (or electric field) being parallel
to the edge. In this case, the amplitude M opt.A/ (or the dipole vector in reference
[63]) is given by [69]

M opt.A/ D h	 c
k jH em

K j	 v
k i; (2.7)
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Fig. 2.16 The polarization dependence of the square of the optical transition amplitude
(jM opt.A/j2) is plotted as a function of the angle of laser polarization (�) with respect to the
orientation of the edge. For a pure zigzag (armchair) edge, as shown by the dotted (solid) line at
the top) the intensity is a maximum when the laser polarization is perpendicular (parallel) to the
edge. “zigzag@armchair” denotes the case when a small fraction of zigzag edges is introduced into
part of a perfect armchair edge. Here the parameter of r means randomness with r D 0 (armchair
only), r D 0:5 (partial), and r D 1 (random: a mixture of zigzag and armchair edges) [69]

where	 v
k .r/ is the wave function in the valence energy band, which is related to that

in the conduction energy band 	 c
k.r/ via 	 v

k .r/ D 
z	
c
k.r/ and H em

K D �vFe
 � A.
Here the vector potential A enters the perturbation Hamiltonian of the optical dipole
transition H em

K and vF and 
 are, respectively, the Fermi velocity of graphene and
the Pauli matrix which operates on the wave functions at the edges [69]. Using the
wave functions at zigzag and armchair edges which consist of incident and reflecting
waves at each edge, we can obtain the polarization (�) dependence of M opt.A/.

In the case of pure zigzag edges (dotted line at the top of Fig. 2.16), the Raman
intensity is proportional to jM opt.A/j2 / sin2 �, while for the pure armchair edges
(solid line), jM opt.A/j2 / cos2 �. In the case of a general graphene ribbon, the
edge consists of short segments of zigzag and armchair edges. Here we introduce
a randomness factor r into the components of zigzag edges in the armchair edges
(zigzag@armchair) in which r D 0 corresponds to the pure armchair edges and
r D 1 is a completely random mixture of zigzag and armchair edges. In Fig. 2.16,
we show jM opt.A/j2 vs. � for three different r values. It is clear that there is no
angle� dependence for r D 1, since in this case the dependence would be the sum
of cos2 � C sin2 � which is unity. In an actual measurement of this polarization
dependence, we can get results for intermediate polarization dependencies such as
r D 0:5, which is consistent with recent experiments [70, 71].

For distinguishing between LO and TO phonon modes, the phonon softening
effects observed for the LO mode in graphene (the Kohn anomaly) can be used.
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Table 2.1 Dependencies of the Raman intensities and Kohn anomalies on the � point optical
phonon modes. The symbols � and � for the Raman intensity and the Kohn anomaly represent
“occurrence” and “absence,” respectively. There is asymmetry between the Raman intensity and
the Kohn anomaly; that is, the Kohn anomaly occurs only for the LO mode, while the mode with
a strong Raman intensity changes according to the edge shape. The Raman intensity is enhanced
when the polarization of the incident laser light is parallel (LO) to the armchair edge or when it is
perpendicular (TO) to the zigzag edge [69]

Position Mode Raman Kohn Polarization

Zigzag LO � � �
TO � � �

Armchair LO � � �
TO � � �

Bulk LO � � �
TO � � �

Depending on the intravalley and intervalley scattering at the armchair or zigzag
edges, the occurrence of the Kohn anomaly shows clear edge differences. In
Table 2.1, we show a list of the expected Raman signal, the occurrence of the
Kohn anomaly, and the polarization effect for zigzag edges, armchair edges, and the
interior region of graphene. The detailed derivation of this calculation is discussed
in [69]. From Table 2.1, if we get aG-band signal without phonon softening, we can
say that the Raman spectra comes from the TO phonon modes at zigzag edges, while
the phonon softening (around 30 cm�1) that occurs in the Raman spectra comes from
the LO phonon modes at armchair edges. These pure phonon mode behaviors are
predicted for a spatial graphene sample with two edges that differ by an angle of
30ı between them [57].

2.4 The Fermi Energy Dependence: The Kohn Anomaly

Next we discuss the effect of doping on the G band of single-layer graphene in
Sect. 2.4.1, and the corresponding effect of doping on the G band of double-layer
graphene is explicitly considered in Sect. 2.4.2.

2.4.1 Effect of Gate Doping on the G -Band of Single-Layer
Graphene

In Fig. 2.17, the G-band spectra of single-layer graphene as a function of gate
voltage is shown [72]. For achieving high doping levels, electrochemical doping
is often used. The G-band frequency is upshifted ((a) and (b)) and the spectral
width decreases (see (c)) by doping, as predicted by time-dependent perturbation
theory in which the phonon frequency downshifts as a result of the electron–phonon
interaction. This effect is known as the Kohn anomaly [28, 29, 57, 73]. In the
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Fig. 2.17 The Raman G peak of doped monolayer graphene. (a) The G-band spectra observed
at 295 K for many values of the gate voltage Vg. The redish spectrum corresponds to the
undoped case. (b) The G peak position (frequency) and (c) the linewidth as a function of Fermi
energy and electron concentration are deduced from the applied gate voltage data. Black circles:
measurements; solid line: finite-temperature non-adiabatic calculation (Adapted from [72].)

electron–phonon interaction, an electron–hole pair is virtually excited by a phonon
near the Fermi energy. The gate voltage dependence of the Raman frequency in
Fig. 2.17 comes from the fact that either the initial (or final) states for electron–
hole pair excitation becomes empty (or occupied) for hole (electron) doping and
that the corresponding perturbation processes are suppressed. The lower (higher)
energy excitation of the electron–hole pair below (above) „!G=2, where !G is
the G-band phonon frequency, contributes to phonon hardening (softening). Thus
the phonon softening becomes a maximum when the Fermi energy is located at
„!G=2 from the Dirac point energy. The two anomalies at ˙„!G=2 are not clearly
seen in this experiment due to temperature-induced broadening. However, a gate
voltage dependence for the G-band frequency !G was measured at T D 12K [74],
where phonon anomalies at Eg D ˙„!G=2 could be clearly distinguished. The
12 K experiment was, however, carried out on bilayer graphene [74], where another
interesting effect occurs, as described in Sect. 2.4.2. The broadening of the Raman
spectra comes from the shortening of the lifetime of the G-band phonon by the
electron–phonon interaction, and thus the broadening should be a maximum around
the Dirac point energy, as is confirmed experimentally in Fig. 2.17c.
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Using the pseudospin and the field for the pseudospin [50,51], Sasaki et al. gave
an analytic formula for the electron–phonon interaction for the LO and TO phonon
modes for carbon nanotubes [32] and graphene [57]. Although we do not here go
into detail regarding this theory, this theoretical analysis will be useful for gaining
a general understanding of both the Raman spectra and the physical properties of
graphene.

2.4.2 Effect of Gate Doping on the G Band of Double-Layer
Graphene

The gate doping of double-layer graphene in particular has been investigated by
many groups. Part of the interest focuses on the fact that double-layer graphene
may exhibit an energy gap under the application of an electric field perpendicular
to the graphene surface, which can be used to vary the Fermi level. This effect is
important for the application of double-layer graphene for semiconductor devices.
Thus the characterization of the Raman spectra of gated double-layer graphene has
become an important research topic.

In bilayer or double-layer graphene, the unit cell has four C atoms which gives
two � and two �� energy bands at the K point (see Fig. 2.18). In this case, there
will be more than two Kohn anomalies in the G band depending on how the two �
bands are occupied by doping (see the right-hand side of Fig. 2.18) [72, 74]. When
the Fermi energy reaches ˙„!G=2, the ���� transition shown in Fig. 2.18(I) is no
longer allowed, as it is in single-layer graphene, but the transition from the now filled
lowest energy�� band to the higher energy�� band, shown in Fig. 2.18(II), is possi-
ble. When the gate voltage rises further and reaches the second�� band, another sin-
gular behavior now occurs in the renormalization process, as shown in Fig. 2.18(III).
These effects are seen in the G-band frequency and linewidth of bilayer graphene
(of Fig. 2.18), where a distinctly different behavior with respect to the monolayer
case (see Fig. 2.17) is clearly observed for both the frequency and linewidth. There-
fore, when discussing graphene systems above, we see that the renormalization
effect changes significantly in going from single to bilayer graphene, and it would
change further by increasing the number of layers, although the renormalization
effect will become less and less evident with increasing layer number.

In the case of double-layer graphene, the G-band phonon is split into symmetric
(S) and antisymmetric (AS) components corresponding to the symmetry between
the upper and lower graphene layers, as shown in Fig. 2.19b [75]. An important
point is that the electron-hole excitations for the S and AS G-band phonons are
different for the two �� energy bands [75, 76] (see Fig. 2.20). For electron and hole
pair creation by a phonon that couples the �1 and ��

1 energy bands, only the S
symmetry component of the G band is coupled by the electron–phonon interaction
(Fig. 2.20a), while for hole doping (Fig. 2.20b) both the S and AS (anti-symmetric)
G-band phonons are coupled. Thus an asymmetric behavior in the phonon softening
effect appears for electron and hole doping, as shown in Fig. 2.19a.
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Fig. 2.18 Position of the peak frequency [Pos(G)] and the linewidth [FWHM(G)] measured at
full width half maximum intensity for the Raman G-band feature of doped bilayer graphene.
Black circles: measurements; thin line: finite-temperature nonadiabatic calculation. On the right,
schematics of the electron–phonon coupling at three different doping levels, as indicated by the
thicker lines on the electronic bands (Adapted from [73].)

Fig. 2.19 (a) RamanG band of bilayer graphene for –80 V, –40 V, –20 V and +40 V gate voltages.
Two Lorentzian curves (corresponding to the different displacements of the carbon atoms in (b))
are needed to fit the G band for –80 V, –40 V, and –20 V. (B) displacement of the atoms for the S
and AS symmetry phonon modes in bilayer graphene [75]
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Fig. 2.20 Parabolic band
structure of bilayer graphene
near the K point where the
Fermi level is indicated by the
dotted horizontal line. The
vertical arrows illustrate the
possible transitions induced
by symmetric (green) and
antisymmetric (red) q ¤ 0

phonons for (a) interband
electron–hole pair creation
and (b) intraband
electron–hole pair creation.
The gap opening in bilayer
graphene is not considered in
this diagram [75]

2.5 Near-Field Raman Spectroscopy

The last subject of this chapter is near-field Raman spectroscopy. The investigation
of sp2 carbons via conventional Raman spectroscopy has usually been limited by the
spatial resolution of usual confocal systems. The spatial resolution�x of a standard
optical microscope is limited by diffraction to roughly the Abbé criterion [77]:

�x D 0:61�

NA
; (2.8)

where � is the wavelength of light and NA is the numerical aperture of the objective
lens. Although the NA can be optimized by performing experiments in a medium
with a large index of refraction n that surrounds the sample, or by engineering
objectives with large collection angles, conventional microscopes can only achieve
resolutions on the order of �=2 (�200 nm). As a consequence, the investigation
of structural details at the mesoscopic level becomes a difficult task for Raman
spectroscopists.

Tip-enhanced near-field Raman spectroscopy (TERS) [78] has, however, pro-
vided an alternative way to overcome this barrier by performing spectroscopic
imaging with ultrahigh spatial resolution. TERS studies on sp2 carbons have been
limited mostly to carbon nanotubes until now [77,79–87], while strong enhancement
effects in two-dimensional systems are unlikely. However, the use of TERS to
study disorder in carbon nanotubes, as discussed in this section, has been largely
successful. For this reason, we here discuss the basics for the TERS approach in
one-dimensional systems, and some interesting results on carbon nanotubes are
presented.
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2.5.1 The Spatial Resolution in Optical Microscopes

In general, conventional optical systems are not able to collect the whole spectrum
of spatial frequencies associated with optical fields generated by a light source
located at a distance sufficiently far from the detector (far-field regime). The angular
spectrum representation of a scattered electric fieldEs in a plane z D const. far from
the light source is given by [77]

Es.x; y; z/ D
Z Z 1

�1
OEs.kx; ky I 0/ei.kxxCkyy/e	ikzzdkxdky; (2.9)

where kx , ky , and kz are the spatial frequencies related to the Cartesian coordinates
x, y, and z, respectively, and OEs.kx; ky I 0/ are the Fourier amplitudes of the electric
field at z D 0.

The exponential term e	ikzz in (2.9) influences the propagation of the electric
field Es along the z-axis. The k-vector (kx; ky; kz) and the frequency ! D 2�c=�

are related by the free-space dispersion relation, and hence kz is given by [77]

kz D
q
.2�n=�/2 � k2k ; (2.10)

where we have defined k2k D k2x C k2y . According to (2.9) and (2.10), for
kk 	 2�n=�, the wave vector kz is a real number. In this case, the electric field
Es propagates along the z-axis oscillating with e	ikzz, giving rise to the far-field
component of the optical field. On the other hand, if kk>2�n=�, the wave vector
kz becomes an imaginary number, and the electric field Es decays exponentially
along the z direction. If the image plane at z D const. is sufficiently well separated
from the source at z D 0, the contribution from this decaying part (evanescent waves)
will be lost. Therefore, there is always a loss of information between the near-field
and the far-field optical limits.

2.5.2 The Principle of TERS

The goal of tip-enhanced Raman spectroscopy (TERS) is to obtain the spectral
response from nanoscopic structures with an optical resolution beyond the diffrac-
tion limit. For this purpose, a sharp metal tip is placed sufficiently near the sample
surface [88,89]. The tip provides a channel through which the near-field components
of the scattered light (evanescent waves) become propagating waves in the far zone.
In other words, by using a confined source field with a large bandwidth of spatial
frequencies, the high spatial frequencies generated by the sample become accessible
in the far field, and the spatial resolution is defined by the diameter of the tip apex
[78]. However, there is a fundamental issue involved in such an experiment, which
is the fact that the signal generated by the near-field and far-field components of the
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Fig. 2.21 Schematics for the spatially resolved Raman scattering by a carbon nanotube. The
position vectors r, r0, and ro denote the location of the center of the tip apex, the location of
the Raman dipole moment p, and the detector, respectively. The dashed circumference represents
a small sphere of radius rtip centered at the tip apex, and � is the distance between the tip and the
nanotube. The inset depicts an SEM image of the gold tip used in the experiment, where the scale
bar denotes 200 nm [90]

scattered light will be intermixed in the far zone. To solve this issue, the tip might
be able to perform its secondary function, which is to enhance the optical fields
generated in the near-field regime.

2.5.3 Mechanism of Near-Field Enhancement

This section provides a brief analytical theory for local field enhancement. The
theory is given in terms of one-dimensional (1D) systems, which can be directly
applied to the well-studied carbon nanotubes [90].

Figure 2.21 shows the experimental configuration and the coordinates used in
the theoretical analysis. The electric field E near the laser-irradiated gold tip is
axially symmetric and interacts locally with a single wall carbon nanotube (SWNT)
at frequency!. The induced dipole p per unit length at the Raman frequency!s and
at location r0 can be represented as [90]

p.r0; !s/ D ˛R.r0I!s; !/Etot.r0�rI!/; (2.11)

where r denotes the position of the center of the tip apex, ˛R is the Raman
polarizability (per unit length), and Etot is the total electric field interacting with
the electron density at r0 in the carbon nanotube.

The analysis that we discuss here applies to one-phonon Raman processes involv-
ing vibrations belonging to the totally symmetric A1g irreducible representation
which could describe the radial breathing mode (RBM) and the lower and upper
components G� and GC of the G band4. In this case, the Raman polarizability

4The G band in carbon nanotubes splits due to the curvature along the tube circumference.
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tensor ˛ R is written as [90]

˛ R
q D

2

6
4

˛ R
?;q 0 0

0 ˛ R?;q 0

0 0 ˛ R
k;q

3

7
5 ; q 2 fRBM; GC; G�g : (2.12)

The field Etot in (2.11) is the sum of the external driving field E and screening
fields due to neighboring charges, where the depolarization effect has to be
considered. The external driving field E corresponds to the superposition of the
incident laser field Eo and the localized field generated by the gold tip acting as an
optical antenna. Close to the tip apex, the external driving field E.r0I!/ resembles
the field of an induced dipole � located at the center of a small sphere of radius rtip

(location r in Fig. 2.21).
Analysis of the above fields lead to an expression for determining the near-field

enhancement as a function of the tip–sample distance�. Considering that near-field
(NF) and far-field (FF) components are always intermixed, the relative intensity of
the scattered signal is given by the sum of these two contributions, i.e., I= Imax D
.IFF C INF/= Imax. Crossterms originating from the interference between the FF and
NF components can be neglected. The ratio Imax=IFF corresponds to the maximum
Raman enhancement factorM , which allows us to represent the relative intensity of
the scattered signal as [90]

I

Imax
D 1

M
C C

.�C rtip/10
: (2.13)

The M , C , and rtip parameters are to be determined by fitting experimental data,
while rtip has to be related to the tip geometry. What is remarkable here is that
theory predicts that near-field Raman intensity is inversely proportional to the 10th
power of the tip–sample distance, thereby providing a huge enhancement of spatial
details [90].

2.5.4 Application to Carbon Nanotubes

Advances in the science of carbon nanotubes generated by tip-enhanced Raman
measurements include the detection of local defects, chirality changes, and local
dopants [84–87]. The technique of tip-enhanced Raman spectroscopy can be readily
applied to study nanostructured features appearing in monolayer or bilayer graphene
or at the edges of graphene nanoribbons.

Figure 2.22a shows a large-scale confocal Raman image of a self-organized
carbon nanotube serpentine [90,91]. The contrast (color scale) in the image renders
the intensity of the graphitic (C–C stretching)G band (�1,580 cm�1). Figure 2.22b
shows the near-field Raman image corresponding to the G-band intensity acquired
in the boxed area in Fig. 2.22a. The resulting resolution of 25 nm is defined by the tip
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c d

e

Fig. 2.22 (a) Conforcal Raman image corresponding to the G-band intensity of a semiconducting
nanotube. The scale bar denotes 6 micrometers. (b) Near-field Raman image corresponding to the
G-band intensity recorded in the boxed area in (a). The scale bar denote 800 nm. (c) Intensity
profile obtained along the dashed line in panel (c). (d) Far-field Raman spectrum (red curve) and
near-field Raman spectrum (black curve) recorded at the largest (�38 nm) and smallest (�2 nm)
tip–sample separation, respectively. (e) Approach curves for the intensity of the RBM, IFM, G�

and GC phonon bands vs. � in Fig. 2.22 [90]
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radius. A linecut along the dashed line in image Fig. 2.22b is depicted in Fig. 2.22c.
Figure 2.22d shows the corresponding Raman spectra for the smallest (�2 nm) and
largest (�38 nm) tip–sample separations. The two spectra are offset for clarity. It is
evident that near-field imaging not only improves the resolution but also improves
the signal-to-noise ratio for the Raman spectra.

The radial breathing mode (RBM) frequency !RBM D 262 cm�1 identifies the
sample as a semiconducting tube whose energy gap for the second E22� ! E22�
optical transition is in resonance with the incident laser energy. The near-field
spectrum also clearly features the intermediate frequency mode (IFM) occurring
at 865 cm�1, and the G� and GC peaks occurring at 1,545 cm�1 and 1,585 cm�1,
respectively. Notice that the disorder-induced D band (�1,350 cm�1) is so weak
that it cannot be observed, indicating that the serpentine nanotube has a very low
defect density. Within the experimental resolution, no differences in the lineshape
and resonant frequency of any phonon bands are observed for the far-field and near-
field Raman spectra.

Figure 2.22e shows the intensities (integrated areas) of several Raman peaks as a
function of the tip–sample separation�. All Raman intensities are normalized to the
corresponding values at shortest separation (�� 2 nm). The red curve in Fig. 2.22e
is a fit to the experimental data according to Eq. (2.13). It can be seen from Fig. 2.22e
that the theoretical predictions from [90] are in good agreement with the experimen-
tal data. The fitting parameters obtained were M D 16, C D 4.5�1015 nm10, and
rtip D 35 nm.

2.6 Summary and Perspective

In summary, recent studies on graphene and sp2 carbons and defects in these
systems have significantly advanced our understanding of how Raman spectroscopy
can be used to characterize these materials systems. Powerful new experimental
techniques such as near-field Raman spectroscopy have become available and have
been applied to these materials, and at the same time new theoretical works using
the pseudospins of graphene have pushed graphene research in new directions.
Especially important also has been the advances in the fabrication and processing
of graphene ribbons and their subsequent annealing to form well-defined and
stable armchair and zigzag edge structures. Because of the well-defined edge
structures that can now be prepared, the theoretical investigation of electron–
phonon and electron–photon interactions at the edges can be formulated much better
analytically, and theoretical results can now be compared directly with experiments.

Near-field measurements of the Raman spectra of carbon nanotubes have greatly
enhanced the spatial resolution which can now be achieved, reaching resolutions
much smaller than the wavelength of light. This means that a scanning Raman
image can now be directly compared with observations made with other high spatial
resolution techniques, such as transmission electron microscopy, scanning probe
microscopy (SPM), and x-ray photo emission spectroscopy (XPS) imaging. Since
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we now know much more about the physics of the electron–phonon interaction, we
can now tune the electron–phonon interaction by varying the Fermi energy. This can
be accomplished reliably using electrochemical doping, which now becomes a new
parameter that can be varied controllably during Raman spectroscopy experiments.
Varying the gate voltage using back gates or top gates or both at once in taking the
Raman spectra is now allowing researchers to obtain a better understanding of the
Raman spectral width and phonon softening phenomena associated with the Kohn
anomaly in both graphene and metallic carbon nanotubes. These techniques are also
important for characterizing the Fermi energy position in graphene devices. In the
future, we can imagine a possible application of using a Raman signal as a sensor
for monitoring the behavior of devices as a function of the gate voltage.

An essential factor in the Raman spectroscopy of carbon nanotubes is the
resonance condition for the optical transition energies which can be used to specify
the geometrical (n;m) structure of a SWNT through their one-dimensional van
Hove singularities. The Raman intensity of SWNTs is determined by how close the
optical transition energies are to the laser light energy „!, while the resonance width
in the Raman excitation profile provides an important parameter for observing the
Raman signal of a SWNT for a given laser excitation energy even though the Raman
intensity (through the exciton–photon and exciton–phonon interactions) is strongly
chirality dependent.

On the other hand, in the case of graphene, there are no one-dimensional van
Hove singularities for optical transitions except for the case of a very narrow
graphene ribbon which would be denoted as a graphene nanoribbon. Such graphene
nanoribbons can be considered as a one-dimensional system with properties some-
what analogous to a carbon nanotube except that the graphene nanoribbon has
edges which have interesting properties as described elsewhere [25]. The effective
resonance condition of an infinite graphene sheet is satisfied for any value of the
laser excitation energy. Thus, although the Raman signal of single layer graphene
is not as strong as that for SWNTs, we can always get a Raman signal for any
number of layers of graphene and for any laser energy that promotes an electron
from an occupied state to an empty state. In this sense, the relative Raman intensity
depends not on the resonance condition but primarily on the Raman tensor and
the electron–phonon interaction. Since the electron–phonon interaction is known
to be anisotropic in k space, especially around the K point in the two dimensional
Brillouin zone, the analysis of this anisotropy of the electron–phonon interaction
can be used to determine the edge direction relative to the polarization of the light,
and in particular to distinguish between armchair and zigzag edges. Enhancement
of the Raman intensity for graphene is needed for carrying out quick measurements
of the Raman spectra, and in such cases tip-enhanced and/or interference-enhanced
Raman spectra can now be used to enhance the spatial resolution of pertinent Raman
features.

An important issue for discussing the difference between SWNTs and graphene
is the dimensionality of the materials because the effect of the Coulomb interaction
plays a different role in 2D graphene relative to 1D SWNTs. For example, in
SWNTs, the exciton is essential for describing the photoexcited electron and
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hole pair, [1] whereas an electron and hole are freely moving in graphene and
therefore localization effects are less important. Nevertheless, it is expected that the
Coulomb interaction in graphene will be studied in detail in the near future through
investigation of the photo-current and electronic transport near the Fermi energy,
and the origin of the asymmetric lineshapes observed in the Raman spectra (known
as Breit–Wigner–Fano lineshapes) should then be further elucidated.

Ion bombardment measurements have provided us with important information
about the area of the Raman-active spatial regions that are associated with the
D-band Raman signal. This spatial region is closely related to the phase coherence
length (or area) for an electron in which the electron retains its information about
the phase of the wave function throughout the elastic scattering events experienced
by the electron in the D-band scattering processes [14]. In fact, an interference
effect between the incident and scattered electrons at a graphene edge gives selective
Raman signals for LO and TO phonon modes, which allows one to distinguish
between armchair and zigzag edges by applying theoretical considerations to the
interpretation of such Raman spectra. Microscopic analysis of the elastic scattering
will become more important in the future in the study of the D-band spectra
for different nanostructures containing defects originating from different types of
defects (interstitial atoms, impurity atoms, line defects vs. point defects, etc.). The
systematic generation of specific types of defects should provide a key approach
for obtaining defect type-related information in the Raman spectra through, for
example, joint Raman and TEM studies. We can therefore expect that in the
future we will be doing more systematic studies on point defects in graphene as
a function of ion species of different atomic species, different isotopes of ions with
the same atomic number, ions with different energies, etc. The present studies, as
described above, of defects in graphene associated with point defects caused by
ion implantation already constitute a broad subject. But this is only the beginning.
There are many different kinds of defects that can be produced in graphene and
carbon nanotubes such as vacancies, divacancies, interstitial atoms of the same or
different species, and complexes of impurity/vacancy pairs. Systematic studies of
such effects by Raman spectroscopy can teach us a lot about graphene and carbon
nanotubes as well as the potential of what Raman spectroscopy can teach about
each of these types of defects as they occur in a simple well-characterized system
like graphene.

Also in the realm of future work are major opportunities to use the controlled
and systematic introduction of defects, such as by ion implantation, into bilayer
graphene, for Raman characterization studies, as has been discussed above for
monolayer graphene. For bilayer graphene, for example, it would be interesting
also to study Raman spectra comparatively from the sample face exposed to the ion
beam and from the back side of the sample. The major differences in the electronic
structure of monolayer graphene, with its linear E.k/ relation, and of bilayer
graphene, with its quadratic dispersion relation, could show different behaviors of
interest with regard to the modifications of these electronic structures through the
introduction of defects.
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Another area for future work would be a systematic Raman study of the
controlled defects introduced into graphene nanoribbons by ion implantation where
the defects could be confined, for example by the use of masks, to the interior of
the ribbons or to the edges, including such studies on both zigzag and armchair
edges. Graphene nanoribbons are important as a means for introducing band gaps
into graphene, with electronic and transport properties that depend on the width of
the ribbon as well as on the crystalline orientation and the quality of the structure
established at each of the edges. [25] Combined transport, Raman, and electron
microscopy measurements would likely prove highly informative for such studies.
Thus many research opportunities remain open for exploration in the systematic
study of defects, edges, and the defect/edge combination in monolayer and bilayer
graphenes. The exploration of the special properties of trilayer graphene including
different layer stacking arrangements, is presently a largely unexplored arena.

Raman spectroscopy has been used successfully for characterizing carbon mate-
rials for many years both in research laboratories and industrially. Thus we expect
that Raman spectroscopy and graphene will become increasingly important as more
industrial applications of graphene and sp2 carbons are found. As more industrial
applications are found, the demands for developing standards for describing the
quality of graphene materials will increase. Making a thin graphene ribbon with a
small width introduces an energy gap. Therefore we can expect graphene ribbons to
become more important for applications just because the use of ribbons with narrow
widths introduce an energy gap. Furthermore controlling the edge structure of the
graphene ribbon so that the edge is atomically smooth allows the introduction of
well-defined armchair and zigzag edges [25] with well-defined electronic properties.
Thus we can expect increasing attention to be given to Joule heating techniques
for increasing the structural perfection of edges and we can expect more use to be
made of enhanced edge passivation by functionalization. We can also expect to see
more use of multiple measurement techniques including Raman spectroscopy for
the characterization of graphene and sp2 carbon materials based on promising work
that has already been carried out using multiple characterization techniques. Many
applications would like to combine the exceptional properties of graphene with the
special properties of a semiconducting material with a band gap, and for this reason
we can expect thin narrow graphene ribbons and graphene/semiconductor substrate
interactions to receive increasing attention.

Even within the scope of what is discussed in this chapter, many topics relevant
to defects in graphene and carbon nanotubes that have already been studied and
documented in the literature have not been discussed here. For example, we
did not describe time-dependent phenomena relevant to Raman spectroscopy in
graphene, or in other carbon nanostructures, nor did we discuss coherent phonon
measurements in which the transmission of the probe light is vibrating at frequencies
where phonons are excited coherently. This is a large research field with many
interesting regimes depending on the pulse length and pulse intensity. Combining
the polarization dependence measurements with coherent phonon measurements
should yield important information about the defect type and its special characteris-
tics, but such studies remain as work for the future. Further, we did not mention
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measurements that have been made on the stress and temperature dependence
of the Raman signal which are also very promising probes that can be used for
characterizing the local physical properties of graphene and carbon nanotubes.
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Chapter 3
Scanning Tunneling Microscopy
and Spectroscopy of Graphene

Guohong Li and Eva Y. Andrei

Abstract Scanning tunneling microscopy (STM) and spectroscopy (STS) are pow-
erful tools that can reveal the intrinsic properties of the masslesss Dirac fermions
in graphene. In particular in the presence of a magnetic field STS gives direct
access to the unique sequence of quantized Landau levels providing evidence of
the chiral nature of the Dirac fermions and their ultrarelativistic spectrum. A twist
between graphene layers gives rise to moiré patterns viewed in STM and to Van
Hove singularities in the density of states obtained with STS, which enables direct
comparison between structure and electronic properties. STM/STS in graphene on
SiO2 provide valuable information about trapped charges, ripples, and other defects.
Furthermore, STM can be used to manipulate graphene at nanometer scale.

3.1 Introduction

The electronic properties of graphene [1, 2], a one-atom thick form of crystalline
carbon, are unique among all known materials because they are controlled by
charge carriers with a conical low energy dispersion which mimics the dynamics
of massless Dirac fermions, which carry a Berry phase of   [1, 2]. One of the
consequences is a linear and electron–hole symmetric density of states (DOS)
that vanishes at the Dirac point allowing for ambipolar gating. In a magnetic
field the linear density of states evolves into an unevenly spaced sequence of
quantized Landau levels (LL) which includes a level at zero energy that reflects
the chirality of the quasiparticles. Owing to the chiral nature of the quasiparticles,
backscattering and weak localization are suppressed, resulting in extremely high
carrier mobility. Edge states in graphene can carry pure spin currents [3, 4] or
exhibit magnetism [5, 6], displaying qualitatively different behavior depending on
whether their termination is zigzag or armchair [7]. Ripples, strain, lattice defects,
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or atomic substitution endow graphene with unusual properties and can lead to
qualitative changes in the band structure giving rise to exotic properties such as
gauge fields that are equivalent to ultra-high magnetic fields [8, 9] and atomic
collapse [10]. Even more unconventional electronic properties arise in stacks of
graphene layers. In Bernal stacked bilayers the quasiparticle excitations become
massive chiral fermions, which carry a Berry phase of 2  [1,2]. Twisting the layers
away from Bernal stacking produces new features such as twist-induced saddle
points [11] in the band structure, van Hove singularities in the density of states
and a low energy spectrum which is restored to that of massless Dirac fermions but
with a significantly reduced Fermi velocity at small twist angles [12].

Graphene can exist in various environments. Thus far scanning tunneling
microscopy has shown that single layer graphene suspended on the surface of
graphite exhibits a perfect honeycomb structure over micrometer length scales and
is the flattest and most homogeneous when compared to graphene deposited on other
substrates. Furthermore, scanning tunneling spectroscopy revealed that the spectrum
of single layer graphene on a graphite substrate is consistent with tight binding
calculations and can provide access to many-body effects including electron–
phonon and electron–electron interactions. In contrast, graphene deposited on the
commonly used SiO2 substrates produces distorted tunneling spectra reflecting
strong perturbations from substrate-induced local doping, ripples, and scattering.

STM and STS are powerful probes which provide direct access to both the
structure and the electronic properties of graphene in its various forms. At the same
time STM and other scanning probe microscopes (SPM) can modify graphene edges
as well as introduce point defects, deposit impurities, and tailor the structure at the
nanometer scale.

STM/STS on graphene is a broad and fast moving field making it impossible to
cover all the developments. Other aspects of STM/STS works on epitaxial graphene
on metals or on SiC are discussed in Chapters 5–7.

3.2 STM/STS Techniques

In STM/STS experiments (Fig. 3.1), one brings a sharp metallic, e.g., Pt–Ir, tip very
close to the surface of a sample, with a typical tip–sample distance of �1 nm. For
positive sample bias voltages, electrons tunnel from the tip into empty states in
the sample; for negative voltages, electrons tunnel out of the occupied states in the
sample into the tip. The tunneling current I is given by [13]

ID4�e

„

C1Z

�1
Œf .EF�eVC 2/ � f .EFC 2/��s.EF �eVC 2/�T.EFC 2/ jM j2 d 2

(3.1)
where �e is the electron charge, „ Planck’s constant over 2�; f (x) is the Fermi
function,EF the Fermi energy, V the sample bias voltage, �s and �T are the density
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Fig. 3.1 Schematic of STM/STS experiments on graphene. A bias voltage Vs is applied through
a metallic contact between a graphene sample and a sharp metallic tip held at ground potential.
The tunneling current I is measured by a current amplifier. The tip position is controlled by a
piezoelectric tube (not shown) for scanning in the xy plane and for adjusting the tip–sample distance
in the z direction when the feedback loop is enabled. The graphene sample can be placed on a
SiO2=Si (heavily doped) substrate so that a gate voltage Vg between Si and graphene can be applied
to vary the carrier density of graphene. Importantly a magnetic field B can be applied in the z
direction to induce Landau quantization in graphene

of states in the sample and tip, respectively. The tunneling matrix element M
depends strongly on the tip–sample distance s, which is usually controlled by a
piezoelectric tube. For a given sample bias voltage, as the tip scans above the sample
surface, a feedback loop maintains a constant tunneling current by adjusting s to
follow the sample surface, therefore producing a topography image. One should
note that an STM image not only reflects topography but also contains information
about the local density of states of electrons.

In STS measurements, the tip–sample distance is held fixed by turning off
the feedback loop. One measures tunneling currents while sweeping the sample
bias voltage. Usually one can use a lock-in technique to measure differential
conductance directly by applying a small ac modulation to the sample bias voltage.
The differential conductance gives a direct measurement of density of states in the
sample (EF D 0 in the following)

dI=dV.V / / �S." D eV / (3.2)

under the following conditions:

1. zero temperature
2. flat density of states in the tip
3. energy-independent tunneling matrix element
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In practice, finite temperatures introduce thermal broadening through the Fermi
functions in (3.1), leading to reduced energy resolution in STS. For example, at 4.2K
the energy resolution cannot be better than 0.38 meV. Correspondingly, the ac modu-
lation of the sample bias voltage should be comparable to this broadening in order to
achieve highest possible resolution. The other two conditions are usually considered
satisfied for common tips, such as Pt–Ir, W, and Au tips, as long as sample bias volt-
age is not too high. Compared to a sharp tip, a blunt tip typically has a flatter density
of states. To have reliable STS, one should make sure a good vacuum tunneling is
achieved. To this end, one can check the spatial and temporal reproducibility of the
spectra and ensure that they are independent of tip–sample distance [14].

For STM/STS measurements on graphene, there are new issues to be considered.
First, the STM tip should be as far as possible from the sample surface because
graphene is a very flexible material with quite low carrier density. Typical junction
resistance should be higher than 5G� (e.g. sample bias voltage 200 mV, tunneling
current 20 pA) in order to minimize effects of tip–sample interactions [15]. Second,
electrons in graphene are a true two-dimensional system and so their states evolve
into LLs in magnetic fields. Therefore, it is useful to apply strong magnetic field
normal to graphene layer (Fig. 3.1) in order to fully characterize the massless Dirac
fermions. Moreover, the LLs introduce strong peaks in density of states at energies
which are not sensitive to the conditions (2) and (3) discussed above. Therefore
LL spectroscopy can provide in situ calibration of the tip [16], a procedure which
usually requires using another material as a calibration standard. Third, the charge
carrier density of graphene can be tuned using a back-gate if the sample is on
SiO2=Si (heavily doped) substrate. Thus the back gating is desirable in STM/STS
experiments (Fig. 3.1) to access correlation effects in graphene [17].

The size of a typical graphene device on SiO2 is �1�m. It is very difficult for an
STM tip to find such a specific device over 1mm2 area because STM inherently is a
near-sighted microscope. Special arrangements are needed for proper navigation of
the STM tip. An optical telescope can help to align the tip to the sample. However,
for a low-temperature high-magnetic field STM, optical access usually is difficult.
In such case one can navigate the tip by measuring the capacitance between tip and
well-designed electrodes around the graphene flake.

To search for decoupled graphene layers on a graphite surface, one can use
topography to identify candidate flakes which appear predominantly near large step-
like defects. But to know the degree of coupling to the substrate it is crucial to
measure STS in a magnetic field because the sequence of LL peaks which appears
in this case is a sensitive probe of the degree of coupling to the substrate [18, 19].
In particular, flakes that are completely decoupled are recognized by the appearance
of unusually prominent LL peaks arranged in a sequence which follows a unique
square root dependence on field and level index.

Since completely decoupled flakes are quite rare, it is necessary to use coarse xy
positioning stages with travel distances of several millimeters in order to make it
possible to carry out an extensive search over a large surface.
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3.3 Sample Preparation

Graphene can exist in various environments. It was first isolated for transport
measurements by mechanical exfoliation of graphite [20], which consists of stacks
of graphene layers weakly coupled by van der Waals forces. Graphite can be easily
cleaved in air or under ultrahigh vacuum (UHV). Its fresh surface after cleavage is
clean, inert, and atomically flat over large scales. Therefore, soon after the invention
of the STM, graphite became a calibration standard and to this day it remains an
important substrate for many applications.

Although preparation of graphite surface is simple, the top graphene layer is
usually coupled to other layers below. As one will see later, the electronic states
in graphene can change dramatically by interlayer coupling. For good graphite
crystals, such as Kish graphite, the coherent interlayer coupling results in a three-
dimensional band structure. But for highly oriented pyrolitic graphite (HOPG),
stacking faults and other detects can effectively reduce the interlayer coupling.
Thus one should choose HOPG for the study of decoupled single layer or few layers
of graphene.

When single layer graphene is deposited on a SiO2 substrate by mechanical
exfoliation, it is necessary to also deposit metallic electrodes, usually made of
Au/Ti or Au/Cr thin films, to carry out STM experiments [21–29]. Table 3.1 lists
methods for film deposition and the various cleaning procedures required to carry
out a successful STM measurement. One can use a stencil mask [23] to deposit
metal films or use microsolder [28] to make electrical connections to avoid using
photoresist. However, e-beam lithography is more practical for device fabrications.
As can been seen from Table 3.1, the cleaning procedures to remove photoresist
residue vary from group to group, and no consensus on the most effective procedure
has yet been reached.

Graphene grown by chemical vapor deposition (CVD) is important for appli-
cations [30–32]. To study CVD graphene with STM, a suitable sample cleaning
procedure is necessary because the transfer process onto different substrates requires
chemical methods which usually leave residues. More discussion about CVD
graphene can be found in chap. 7.

3.4 Hallmarks of Graphene in STM/STS

Graphene was first considered as a theoretical starting point to understand graphite
[33]. A flat infinite size graphene crystal cannot exist in nature because two-
dimensional (2d) long range order is not stable at finite temperature [34]. However,
the ¢ bonds between carbon atoms in graphene are strong enough to maintain the
atomic network, i.e., the honeycomb lattice, in spite of 3d deformations (ripples)
which appear in free standing graphene in vacuum [35]. Once sitting on a substrate,
the ripples will be suppressed to some extent but new deformations, which follow
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Table 3.1 Methods for making electrodes to graphene and cleaning procedures

Lithography method Electrodes Cleaning procedure Ref.

e-beam Au (18 nm)/ Annealing at 280 ıC [21]
Bilayer resist Cr(1 nm) for 6 h in UHV

950 K PMMA/MMA-MAA
Developer

Methyl isobutyl Ketone
/isopropanol (1/3)

Remover: acetone
e-beam Au/Cr Annealing at 400 ıC [22]
Bilayer resist for 1 h in Ar=H2 flow

PMMA/MMA-MAA flow rate
Ar 1,700 mL/min
H2 1,900 mL/min

e-beam Au/Ti [24]
e-beam Au/Ti Annealing at 400 ıC [25]

PMMA for 1 h in Ar=H2 C 300 ıC
for 30 min in air

Lift-off Au/ Annealing at 150 ıC for 4 h in [27]
Rinsed in isopropanol and acetone Cr(10 nm) air C150 ıC for 3 h in UHV
Photolithography Au Annealing at 400 ıC [29]

for 15 min in high
oxygen environment

Stencil mask Au(30 nm) Annealing at 400 ıC [23]
for �10 hr in UHV [26]

Microsolder In [28]

the topography of the substrate, can appear due to van der Waals forces between
graphene and substrate.

Although the honeycomb lattice has been observed in graphene on various
insulating substrates, the electronic states seen on such substrates are heavily dis-
torted by substrate interference. The least disturbed electronic states characteristic
of the massless Dirac fermions in single layer graphene [16] were seen using
STS on graphene flakes slightly suspended on the surface of graphite that were
electronically decoupled from the substrate. Figure 3.2a shows the STM topography
of graphene on such a flake. Carbon atoms are located at the six hexagon vertices
with an inter-atomic distance 0.142 nm, which is primarily determined by the ¢
bond. The nearest neighbors, denoted by A and B, belong to different sublattices. In
other words, there are two atoms in a unit cell of a triangular Bravais lattice with a
lattice constant of a D 0:245 nm. The Brillioun zone of the triangular Bravais lattice
is a hexagon (Fig. 3.2b). Near the K and K0 corners of the hexagon (Dirac points) the
valence and conduction bands touch [1] and the low energy dispersion is conical and
electron–hole symmetric

E.Ek/ D ˙vF „Ek; (3.3)
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Fig. 3.2 STM/STS on graphene. (a) STM image shows the honeycomb structure. A and B atoms
belong to different sublattices. (b) Brillioun zone showing unequivalent corners K and K0. Near
the corners the band structure displays a Dirac cone. (c) Landau quantization of the Dirac cone in a
magnetic field B . (d) Schematic low energy density of states corresponding to (b) and (c). (e) STS
measurements are generally consistent with (d) but reveal details not expected from a simple tight
binding approximation [16]

where vF is the Fermi velocity, E the energy relative to the Dirac point (DP), Ek the
wave vector relative to the K or K0 points in the Brilouin zone, C=� denote electrons
and holes. For undoped graphene, the Fermi level sits at the Dirac point. The linear
energy–momentum dispersion of (3.3) is the hallmark of ultrarelativistic massless
particles akin to (massless) neutrinos or photons. Because of this dispersion the
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electron or hole excitations mimic the dynamics of ultrarelativistic charged particles
and antiparticles, hence the name massless Dirac fermions. Instead of a scalar, the
wave function of the Dirac fermion is a spinor, whose two components denote the
amplitudes of Bloch functions on the two sublattices A and B.

The linear dispersion leads to a linear DOS that vanishes at the DP (Fig. 3.2d).
When a magnetic field B is applied normal to graphene plane, unusual Landau level
sequence appears (Fig. 3.2c):

En D ED ˙
q
2e„v2F jnjB; (3.4)

where ED is the energy at the Dirac point, n is the level index with n > 0 .C/
corresponding to electrons and n < 0 .�/ to holes. The n D 0 Landau level is a
consequence of the chirality of the Dirac fermions and does not exist in any other
known 2d electron system. The field-independent state at the DP together with the
square-root dependence on both B and jnj are the hallmarks of massless Dirac
fermions. All the Landau levels have the same degeneracy of 4B=¥0 per unit area,
which includes spin (up and down) and valley (K and K0) degeneracy, so that the
zero field linear DOS becomes un-evenly spaced ı peaks of the same height in the
absence of broadening (Fig. 3.2d).

The theoretical predictions of Fig. 3.2d were confirmed by using STS to measure
the quantized LL sequence in magnetic field. Figure 3.2e shows how the evolution
of tunneling spectra with magnetic field. In zero field, the spectrum is V-shaped
and vanishes at the Dirac point, which is seen �16meV above the Fermi energy,
indicating unintentional doping with a concentration of �2 � 1010 cm�2 holes. In
the presence of a magnetic field, an unevenly spaced sequence of peaks appears
flanking on both sides of the n D 0 level at the Dirac point. The n D 0 level is the
only one which does not move with field and only its height increases with field as
a result of the increasing flux-line degeneracy. This central peak is a consequence
of the chiral symmetry of the massless Dirac fermions and is the hallmark of these
quasiparticles. The massless Dirac fermion character is revealed by plotting the peak
energies against the reduced variable .jnjB/1=2. This scaling procedure collapses all
data unto a straight line, as shown in Fig. 3.3. The slope of this curve gives a direct
measure of the Fermi velocity obtained according to (3.4). For graphene flakes on
graphite that are decoupled from the substrate one notices a reduced Fermi velocity,
vF D 0:79 � 106 m=s, the origin of which is discussed below.

Before understanding the tunneling spectra in detail, one may ask how it could
be possible to find a decoupled graphene flake on the surface of graphite. If the flake
was decoupled, why was it not removed during peeling? Normally cleavage should
happen between the least coupled layers. However, partial cleavage could result in a
different situation illustrated in Fig. 3.4. Figure 3.4a shows an STM image of HOPG
surface. The cross-sectional cut along the line ““ gives an atomic step �0:34 nm,
close to the interlayer spacing 0.335 nm of graphite, but a cut along the line ’’
gives a layer separation of �0:44 nm, which means the top graphene layer is lifted
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Fig. 3.3 Landau level
energies showing square-root
dependence on level index
and field. Symbols are peaks
from Fig. 3.2e and the solid
line is a fit to (3.4) (Reprinted
figure with permission from
[16]. Copyright (2010) by the
American Physical Society)

Fig. 3.4 Topography of the graphene layer isolated by extended defects on a graphite surface.
(a) Large area topography. Two underlying defects are seen: a long ridge that runs diagonally under
the top two layers and a fainter one under the first layer (dashed line). (b) High resolution image
where the fainter ridge is visible. (c) Cross-sectional cut along line ’’ in (a). (d) Cross-sectional
cut along line ““. (e, f) Atomic-resolution image showing honeycomb structure in region A (atoms
visible at all six hexagon vertices) and triangular structure in B (atoms seen only at three vertices
corresponding to only one visible sublattice). Set sample bias voltage and tunneling current were
300 mV and 9 pA for (a), 300 mV and 49 pA for (b), 200 mV and 22 pA for (f), 300 mV and 55 pA
for (e) (Reprinted figure with permission from [16]. Copyright (2010) by the American Physical
Society)
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by �30%. A strong ridge serves as a border between regions A and B. Atomic
resolution STM image shows a honeycomb structure in region A but a triangular
one in region B. The apparent triangular lattice comes from interlayer coupling in
Bernal stacked graphite [36] which breaks the sublattice symmetry causing a large
reduction in the low-energy density of states on one of the sublattices. As a result
only one sublattice is seen in topography measurements taken at low bias voltages.
The tunneling spectra in Fig. 3.2e was taken in the center of region A away from
any defects. In contrast to region A where both the structure and the Landau level
sequence indicate a single graphene layer decoupled from the substrate, in region B
both the structure and the more complex sequence of levels indicate coupling to the
substrate. A careful study of the Landau level sequence showed that the interlayer
coupling in region B near the long ridge was only �40meV, about 10% of that in
bulk graphite [18].

3.5 Line Shape of Landau Levels

The region A in Fig. 3.4 is defect free except for a faint hidden ridge. The size of the
graphene flake is about 400 nm, much larger than the relevant length scale for Lan-

dau level quantization, i.e., the magnetic length, lB D p
e=„B � 25 nm

.p
BŒT�,

corresponding to �13 nm in 4 T. All the Landau levels have the same degeneracy
in an infinite sample. If the sample is finite, the presence of edges will change
the degeneracy locally. However, far away from the edges and defects, the local
density of states of Landau levels should still be the same, which means that peaks
in STS due to Landau levels must have the same area. Figure 3.5 plots such a high
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Fig. 3.5 Line shape of Landau levels. (a) Tunneling spectroscopy at 4.4 K in 4 T. Symbols are
experimental data and the solid line represents a fit with Lorentzian peaks. (b) Energy dependence
of the peak width [16]
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energy resolution STS taken in 4 T, focusing on the hole sector because the Landau
levels are closer to the Fermi level in the hole-doped sample. The sharpness and
high definition of the Landau level peaks made it possible to extract the energy
dependence of the quasiparticle lifetime. The level sequence can be fit with a sum
of peak functions centered at the measured peak energies with the line width of each
peak and the same peak area as free parameters. The peaks have Lorentzian line
shapes instead of Gaussian ones, suggesting intrinsic lifetime rather than impurity
broadening. The line width decreases toward the Fermi level, consistent with the
fact that interacting quasiparticles have longest lifetime at the Fermi level. It is
interesting that the inverse lifetime follows a linear energy dependence

1

�n
D jEnj

	
C 1

�0
; (3.5)

where En is the Landau level energy in units of eV, 	 � 9 fs=eV and �0 � 0:5 ps at
the Fermi level. The energy-dependent first term is attributed to the intrinsic lifetime
while the second constant term is extrinsic. The latter translates into a mean free
path of l D vF�0 � 400 nm which is comparable to the sample size indicating
that scattering is primarily due to boundaries so that inside the sample the motion
is ballistic. Electron–electron interactions between Dirac fermions are expected to
give rise to a linear energy dependence of the inverse lifetime [37]. Theoretical
estimates in zero field give 	 � 20 fs=eV. Since the electron–electron interactions
are enhanced in magnetic field, it is possible that the agreement would be even better
with calculations made in finite field.

3.6 Electron–phonon Coupling

The basic physics of graphene is captured in a tight-binding model [1]. However,
many-body effects are often not negligible. Ab initio density functional calculations
[38] show that the electron–phonon (e–ph) interactions introduce additional features
in the electron self-energy, leading to a renormalized velocity at the Fermi energy
vF D vF0.1 C 
/�1, where vF0 is the un-renormalized velocity and 
 is the e–
ph coupling constant. Away from the Fermi energy, two dips are predicted in the
velocity renormalization factor, .vF � vF0/=vF , at energies EF ˙ „!ph, where „!ph

is the characteristic phonon energy. Such dips give rise to shoulders in the zero field
DOS at the energy of the relevant phonon and provide a clear signature of the e–
ph interactions in STS measurements. In Fig. 3.6a are shown the dI=dV spectra
measured on a graphene flake decoupled from the graphite substrate. The onset
of two shoulder features on both sides of the Dirac point around ˙150meV, and
the persistence of the exact same feature over a wide range of junction resistance
values, 3:8–50G�, corresponding to a different tip–sample separations, suggests
an intrinsic phenomenon consistent with a slow-down of the Fermi velocity due to
e–ph interactions.
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Fig. 3.6 (a) Zero field tunneling spectra and density of states. Thick line is the DOS calculated
according to Landau levels. Legends show tunneling junction settings [sample bias voltage (bias
modulation), tunneling current]. (b) Energy–momentum dispersion obtained from the DOS in (a).
Inset, diagram of inter-valley scattering mediated by A1

0 phonon. (c) Energy dependence of Fermi
velocity (Reprinted figure with permission from [16]. Copyright (2010) by the American Physical
Society)

Further analysis requires a calibration of the zero field DOS, which can be
accomplished by considering the Landau level spectroscopy in Fig. 3.3. The
Landau level sequence provides direct evidence that the quasiparticle excitations
in graphene are 2d massless Dirac fermions and allows obtaining the average value
of vF for energies up to 150 meV. Using this fact and the linearity of the DOS we
obtain the zero field calibration of the DOS:

�.E/ D 33=2a2

�

jE � EDj
„2v2F

D 0:123 jE �EDj : (3.6)

Comparing to the normalized zero field tunneling spectra in Fig. 3.6a we note
that at low energies the measured dI/dV which are linear in energy and vanish at
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the Dirac point are remarkably consistent with the expected DOS justifying our
assumption that dI=dV / DOS in the range of �150meV to 150 meV. Assuming
this proportionality remains valid to higher energy range and an isotropic band, one
obtains

k.E/ D ˙
ˇ̌
ˇ̌ �
Ac

Z E

ED

¡.E 0/dE 0
ˇ̌
ˇ̌1=2 (3.7)

by integrating the measured differential conductance curve, and from it the dis-
persion relation E.k/ shown in Fig. 3.6b. Here Ac is the area of the unit cell.
This allows one to calculate the energy dependence of the velocity vF D dE=dk,
as shown in Fig. 3.6c. Identifying the asymptotic value of the velocity with vF0

one can obtain 
�0:26. The curve bears a striking similarity to that obtained by
DFT [38]: it exhibits two dips at the energy of the A1

0 phonon ˙150.˙20/meV,
suggesting that this phonon, which couples the K and K0 valleys and undergoes a
Kohn anomaly, is an important player in the velocity renormalization. Indeed the
A1

0 phonon has very large line width for single layer graphene, indicating strong
e–ph coupling. However, its line width [39, 40] decreases significantly for bilayer
graphene and decreases even more for graphite. Therefore e–ph coupling through
A1

0 is suppressed by interlayer coupling and therefore the e–ph induced velocity
renormalization is only observed in single graphene layers that are well decoupled
from the substrate. Consequently the Fermi velocity in multilayer graphene should
be more close to the un-renormalized value, an expectation which is confirmed by
Landau level spectroscopy on multilayers discussed in the next section.

3.7 Coupling Between Graphene Layers

When two graphene layers form a bilayer with Bernal stacking, the band structure
is modified due to interlayer coupling, and the Dirac cone structure of the single
layer transforms into parabolic bands. The valence and conduction bands still touch
at the K and K0 points but the low energy excitations acquire a band mass. It
should be emphasized that these massive quasiparticles are different from those in
conventional 2d electron systems since, as is the case of the chiral massless Dirac
fermions in single layer, they have to be described by spinors instead of scalars
to take into account the two inequivalent sublattices. While the massless Dirac
fermions in single layer carry a Berry phase [1,41] of � , the Berry phase carried by
the massive chiral fermions in bilayer is 2� . In a magnetic field, as a consequence
of the chirality, both systems have a special Landau level at the point where the
conduction and valence bands touch which, unlike all other Landau levels, consists
of both electron and hole states. The Landau level sequence in the bilayer is

En D ˙„!c

p
n.n � 1/; n D 0; 1; 2; : : : ; (3.8)
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where !c D eB=m� is the cyclotron frequency, m� is the effective band mass,
and C and – correspond to electrons and holes, respectively. The energy levels in
this sequence are linear in field and the Landau level at zero energy has double the
degeneracy of the other Landau levels [42]. The high energy levels, i.e., n»0, are
evenly spaced in level index.

For trilayer graphene with Bernal stacking, massless Dirac fermions and massive
chiral fermions coexist [43]. As the number of layers increases, the band structure
becomes more complex. However, for ten layers or less, the massless Dirac fermions
always show up in odd number of layers [44]. Furthermore, changing the stacking
sequences away from Bernal can strongly modify the band structure [1,45,46]. More
discussions on graphene multilayers can be found in Chap. 11.

Stacking faults and other defects in HOPG cause decoupling of the layers
[47, 48]. Therefore, one often can observe strong Landau level spectra in some
regions of the surface of HOPG after cleavage [15,48], but usually more than one LL
sequence is observed. For example, in Fig. 3.7 we note the coexistence of several
sequences: one corresponding to massless Dirac fermions, one to massive chiral
fermions, and other sequences. The massive sequence can vary from sample to sam-
ple as it is controlled by interlayer coupling [15]. However, the massless sequence
is quite robust, showing very weak sample dependence. For graphene multilayers,
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Fig. 3.7 Classification of Landau levels in a multilayer graphene. (a)Massless Dirac fermions.
(b) Massive chiral fermions. (c) Unidentified levels (Reprinted by permission from Macmillan
Publishers Ltd: Nature Physics [48], copyright (2007))
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i.e., when sequences of Landau levels coexist, the massless Dirac fermion sequence
gives a Fermi velocity of vF D 1:07�106 m=s, which is close to the un-renormalized
value. This supports the theoretical expectation that the e–ph coupling through A1

0
is suppressed by interlayer coupling as discussed in the previous section.

3.8 Twist Between Graphene Layers

The freedom of stacking between graphene layers is so large that twisting away
from the equilibrium Bernal stacking is possible for a wide range of rotation angles.
Such a twist generates superstructures, the so-called moiré patterns, which are
readily seen in STM topography. Such a pattern is present on the surface of HOPG
shown in Fig. 3.8a. This highly ordered pattern shows a period of �7:7 nm, which

Fig. 3.8 STM of a graphene flake on a freshly cleaved surface of highly oriented pyrolitic graphite
revealing a moiré pattern. (a) Large-area scan of a graphene flake. Regions M2 and G flank the
boundary of the moiré pattern. (b) Zoom-in of the frame in a, showing a moiré pattern with period
7:7 ˙ 0:3 nm. Inset: Fourier transforms of the superstructure. (c) Zoom-in to the center of the
pattern, region M1. (d) Atomic-resolution image of a bright spot. Inset: Fourier transforms of the
atomic-resolution image. (e, f) Atomic-resolution image on bright and dark regions of the pattern,
show a well-ordered triangular lattice within the bright spots (e) and a less-ordered honeycomb-like
structure in between (f). The former indicates Bernal-stacked layers, whereas the latter suggests
slipped stacking, resulting from a small-angle rotation between layers. Tunneling current 20 pA,
sample bias voltage 300 mV (Reprinted by permission from Macmillan Publishers Ltd: Nature
Physics [11], copyright (2010))
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Fig. 3.9 Bragg spots
corresponding to two twisted
graphene layers with a
relative twist angle, � . The
displacement vector �K
determines the period of the
moiré pattern

is much larger than the lattice of constant of graphene, a D 0:246 nm. Within
the moiré pattern, atomic resolution images show different structures on different
locations. Zooming into the bright spots of the moiré pattern (Fig. 3.8e) we note
that the underlying lattice structure is triangular which indicates graphene layers
with Bernal stacking. In between the bright spots there are regions with less-ordered
honeycomb-like structure (Fig. 3.8f), which indicates lost registry between layers
due to twisting [11].

Moiré patterns on the surface of graphite have been studied by STM for many
years [49]. When two graphene layers are rotated relative to each other by an angle
� away from Bernal stacking, the induced moiré pattern has a period L given by

L D a=.2 sin.�=2//: (3.9)

Equation (3.9) can be better understood in terms of the reciprocal space (k-space),
i.e., the Fourier transform of the real space. The Fourier transform of the triangular
lattice gives Bragg spots at corners of a hexagon as shown in the insets of Figs. 3.8b
and d. When two graphene layers rotate against each other, the two corresponding
hexagons in reciprocal space also rotate (Fig. 3.9). The distance between the Bragg
spot K and the  point in the center of the Brillouin zone is 2 =a. With the rotation,
the Bragg spots of the two layers separate by a displacement�K:

�K D 2�

a
2 sin.�=2/: (3.10)

These displacement vectors form a new hexagon, which corresponds to the Fourier
transform of the moiré pattern. (3.9) can be derived by using �K D 2 =L. It is
worth noting that the new hexagon is rotated by 30ı � �=2 relative to the original
one, as shown experimentally in Fig. 3.8.

3.8.1 Appearance of Moiré Pattern

Most regions on the surface of HOPG do not exhibit moiré patterns and it is hard
to know a priori whether after any given cleavage step they will appear or what
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periodicity to expect [50]. To facilitate the formation of moiré patterns, the HOPG
surface can be treated in aqueous solutions [51] or organic solvents [52], especially
in dichloroethane [53] or 1,2,4-trichlorobenzene [54].

It is important to understand the structure and electronic properties of twisted
graphene layers because they appear regularly in two of the most promising methods
of graphene synthesis. One is epitaxial graphene layers formed on the C-surface
of SiC by thermal decomposition [55]. The other is growth by chemical vapor
deposition on catalytic metal surfaces [30–32].

3.8.2 Saddle Point Van Hove Singularities

A rotation between graphene layers causes a shift between the corresponding Dirac
points in k-space (Fig. 3.9), so that the Dirac wave vector of the rotated layer is given
byK� D KC�K . If we use the same origin of the momentum for the two layers, so
that a uniform hopping couples states of the same momentum in both layers, the zero
energy states do not occur at k D 0, but rather at k D ��K=2 in layer 1 and k D
�K=2 in layer 2. Unlike in the Bernal stacked bilayer, there is no direct coupling of
the zero energy states in one layer to the zero energy states of the other. As shown
in ref. [12], the states near the Dirac cone of each layer couple with amplitudes of
order t �? � 0:4t? to states of energy of ˙„vF�K in the opposing layer and the
linear dispersion is preserved near zero energy. Here, t? is the interlayer hopping
for unrotated layers and vF � 106 m=s is the Fermi velocity. The two Dirac cones
intersect near the center of the superlattice Brillouin zone and hybridize, resulting
in a saddle point in the energy dispersion and in two Van Hove singularities which
symmetrically flank the Dirac point (Fig. 3.10) [11].The separation between Van
Hove singularities is controlled by the twist angle � . For angles 2ı < � < 5ı, the
separation is given by

�EVHS � „vF�K � 2t� (3.11)

but curves up at smaller angles (Fig. 3.11).

3.8.3 Single Layer-like Behavior and Velocity Renormalization

As the Van Hove singularities separate from each other with increasing twist angle,
the low energy sector of the Dirac cones in each layer is less disturbed. Therefore,
for sufficiently low energies electrons in twisted layers can behave like massless
Dirac fermions in a single layer graphene [12, 56–63]. However, the slope of the
Dirac cone, i.e., Fermi velocity, still reflects the influence of the Van Hove singular-
ities, leading to a renormalized Fermi velocity which depends on twist angle [12]

vF.�/

v0F
D 1 � 9

 
t �?

„v0F�K

!2
: (3.12)
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Fig. 3.10 (a) Dispersion of lowest energy states for ™ D 1:79ı; t? � 0:27 eV of a bilayer.
A saddle point (marked “sp”) is visible between the two Dirac points in the negative energy band;
another one exists in the positive energy band. (b) DOS with Van Hove singularities corresponding
to the dispersion in (a) (Reprinted by permission from Macmillan Publishers Ltd: Nature Physics
[11], copyright (2010))

Such velocity renormalization is observed experimentally on CVD graphene films
as shown in Fig. 3.12. In region C, a moiré pattern with period of 4.0nm is resolved,
while in region B, the pattern is not resolved indicating a much smaller period,
which would correspond to a twist angle larger than 10ı [30]. In both regions STS
in magnetic field show Landau levels of massless Dirac fermions (Fig. 3.12b).
However, the spacing between peaks is smaller in region A than that in region B.
The corresponding Fermi velocities are 0:87 � 106 m=s and 1:10 � 106 m=s for
regions C and B, respectively. In zero field, STS performed of large bias sweeps in
both regions reveals Van Hove singularities in region C but not in region B even for
bias voltages up to ˙500meV Fig. 3.12d).

Similar Landau levels of massless Dirac fermions have been observed in multi-
layer graphene grown on SiC substrates [64]. However, it seems that the Landau
levels in that case were independent of the moiré patterns, the periods of which
correspond to a wide range of twist angles down to �1:4ı. But the pattern was
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Fig. 3.11 (top) Tunneling spectra for different moiré patterns. (bottom) Angle dependence of the
separation between Van Hove Singularities (Reprinted by permission from Macmillan Publishers
Ltd: Nature Physics [11], copyright (2010))

significantly different from that in Fig. 3.8 as it was dominated by a honeycomb
structure seen everywhere within the superstructures, which is inconsistent with
a simple twist-induced moiré pattern. Later it was shown that the large period
superstructure in [64] actually comes from deeper layers, serving as a background to
the rotated top layer. The twist angle for the top layer was larger [65] corresponding
to a much smaller pattern that was missed in the initial report. The data in [56]
provide support for the weak angle dependence of the Fermi velocity at large
angles (3.12).

It is important to note that the mechanism of downward velocity renormalization
in twisted layers is distinctly different from that in isolated graphene layers
discussed in Sect. 3.6. In the twisted layers the renormalization only occurs in the
presence of coupling between layers and its magnitude is a sensitive function of
the twist angle. By contrast the velocity renormalization observed in the decoupled
graphene layer slightly suspended on graphite is due to electron–phonon interaction.
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Fig. 3.12 Velocity renormalization. (a) Moiré pattern with period of 4.0 nm (region C) and its
nearby region B, which is featureless with the same resolution. (b) High field (6 T) tunneling
spectra taken at locations marked C and B in (a). (c) Twist angle dependence of velocity
renormalization. Line is theoretical prediction according to (3.11). Stars are experimental data.
Inset, Dirac cones of twisted layers of graphene. The distance between nearest Dirac cones, �K ,
is controlled by the twist angle. (d) Zero field tunneling spectra taken at locations marked C and B
in (a). Tunneling junction setting: 300 mV and 20 pA for (a) and (b); 500 mV and 20 pA for (d)

This interaction is strongest when the layers are decoupled and tunneling between
the top graphene layer and the layers underneath it is completely suppressed as
is the case discussed in Sect. 3.6 where the proximity to an atomic step defect
causes �30% increase in interlayer distance. Furthermore, the zero field tunneling
spectra are qualitatively different in the two cases. The twist induced velocity
renormalization leads to the appearance of pronounced peaks in the spectra whose
separation is proportional to the twist angle, whereas electron–phonon coupling
causes shoulder features at an energy controlled by the A1

0 phonon. In Sect. 3.7,
we showed that the electron-phonon coupling via the A1

0 phonon is strongest in
decoupled single layer and that it becomes less important as the coupling between
layers increases. Here we note that vF at large twist angles is almost identical to that
in multilayers with Bernal stacking, suggesting that electron–phonon coupling via
A1

0 is also suppressed in twisted layers.
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3.9 Graphene on SiO2

Graphene was first isolated by mechanical exfoliation onto a 300-nm SiO2 layer
supported on n-doped Si [20]. This configuration is convenient because the graphene
flakes can be detected by optical microscopy. In addition it is relatively easy to
fabricate FET devices which allow ambipolar gating over a wide density range.
Such devices were used to study the transport properties of the relativistic carriers
and led to the observation of the anomalous quantum Hall effect (QHE) [66, 67]
which demonstrated the 2d nature of the carriers in graphene as well as their chiral
nature. They are also well suited for building prototypes for nanoelectronics and
sensors [68]. However, more sensitive experimental probes revealed that in spite of
the fact that the QHE is readily observed in graphene devices deposited on insulating
substrates such as SiO2 and more recently on SiC [69,70], it is not possible in these
devices to approach the Dirac point and probe its unique properties such as ballistic
transport [71–73], specular Andreev reflections [74–76] and correlated phenomena
such as the fractional QHE [77, 78]. The failure to probe the Dirac point physics
in graphene deposited on such substrates was understood following the application
of sensitive local probes. Single electron transistor microscopy [79, 80] and STM
[21, 22, 81] revealed that the insulating substrates introduce a random potential
which creates inhomogeneous local charging leading to electron/hole puddles over
a range of densities close to the Dirac point. This makes it impossible to attain the
zero carrier density condition at the Dirac point for any applied gate voltage.

3.9.1 Three Types of Corrugations

Similar to the case for graphite substrates [16], STM topography on the SiO2 surface
also shows the honeycomb structure for single layer graphene and a triangular lattice
for multilayers [21]. The absence of defects such as interstitials and vacancies in
atomic resolution STM images over wide scan ranges confirms the high degree of
crystalline order in graphene, despite harsh conditions applied during processing
and sample preparation. However, in contrast to graphene on graphite, significant
large-scale corrugations [21] are seen in graphene on SiO2. The correlation length
of the corrugation in graphene .�32 nm/ is comparable to that of the SiO2 substrate
.�23 nm/ suggesting that graphene partially conforms to the substrate [22].

On top of the large-scale corrugation, a finer corrugation was observed in some
samples [27] with correlation length �15 nm, as shown in Fig. 3.13. Such short-
scale corrugations are believed to be intrinsic to free standing graphene [35, 82].
However, it was noted that the appearance of the small corrugations strongly
depends on the sample preparation process, which may suggest that graphene is
partially suspended between protrusions in the substrate.
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Fig. 3.13 (a, b) 3D and 2D constant current STM image of monolayer graphene. (c) 3D tapping
mode AFM image of the SiO2 substrate (Reprinted figure with permission from [27]. Copyright
(2009) by the American Physical Society)

Fig. 3.14 STM topographs
of graphene wrinkles
(Adapted with permission
from [24]. Copyright (2009)
American Chemical Society)

During the deposition of graphene with the scotch tape technique, wrinkling
is likely to occur especially for large flakes. The wrinkles vary with the precise
deposition conditions, forming a third type of corrugation. The wrinkles are more
localized in space, for example with a height of �3 nm over length of �10 nm as
shown in Fig. 3.14 [24]. The wrinkle curvature can provide strong perturbations
leading to broken sublattice symmetry which can affect both transport and the STM
images leading for example to the appearance of a triangular lattice [22, 24] instead
of the honeycomb structure in unperturbed graphene.

The use of atomically flat substrates can significantly reduce the corrugation of
graphene. It was found that the roughness of graphene on SiO2 is significantly larger
than that on mica which is comparable to that on Kish graphite [83].
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3.9.2 Scanning Tunneling Spectroscopy

Early STS on graphene on SiO2 reported a gap-like feature within ˙63meV
of Fermi level [23]. The suppression of electronic tunneling near EF and the
concomitant enhancement of tunneling at higher energies were attributed to a
phonon-mediated inelastic channel. Thus phonons act as a “floodgate” that controls
the flow of the tunneling electrons in graphene. In this scenario, the electrons in
the STM tip were assumed to have zero lateral momentum, i.e., at the � point in
momentum space. Momentum conservation would prevent their direct tunneling
into graphene because the Dirac cones are around the K or K0 points. Therefore a
third momentum carrying particle, a phonon, would have to be involved to mediate
the tunneling event [84]. In other words, only inelastic tunneling processes are
allowed. However, such an argument is not valid for an atomically sharp tip because
the electron momentum is only restricted by the uncertainty principle, k � „=aT (aT

is the size of the tip) and thus can be sufficiently large to access the K or K0 points.
In fact this large gap-like feature was not seen in subsequent STS measurements
of either graphene on graphite [16] or graphene on SiC [64] substrates. It is well
known that the tunneling spectroscopy of graphene on SiO2 is spatially nonuniform
[25] and gap-like features may be a consequence of local strain induced by ripples,
wrinkles, or corrugations [24, 29].

3.9.3 Quantum Interference and Fermi Velocity

In the presence of scattering centers, the electronic wave functions can interfere to
form standing wave patterns [85, 86]. These patterns can be observed by measuring
the spatial dependence of dI=dV at a fixed sample bias voltage. The Fourier
transform of the pattern provides information about the energy and momentum
distribution of quasiparticle scattering, which can be used to infer band structure as
was demonstrated for bilayer graphene samples [81]. For unperturbed single layer
graphene [87], interference patterns are expected to be absent or very weak [88].

However, clear interference patterns are observed for graphene on SiO2 [26].
Here the main scattering centers are believed to be trapped charges in SiO2 [89].
Figure 3.15 shows the interference patterns at different sample bias voltages. As
the sample bias voltage Vs increases, the structure of the pattern gets finer, and
the radius of the Fourier transform ring, q D 2k, increases accordingly. Here
k is the wave vector of the quasiparticle at energy E D eVs. Plotting the
dispersion E.k/ against k in Fig. 3.15e gives a linear dispersion from which
one obtains vF D .1:5 ˙ 0:2/ � 106 and .1:4˙ 0:2/ � 106 m=s for electron and
hole states, respectively. It should be noted that the Fermi velocities in Fig. 3.15e
are for states with energies significant away from the Fermi level and the Dirac
point. At lower energies, transport measurements yielded vF D 1:1 � 106 m=s
[66, 67]. Such velocity renormalization is similar to that discussed in Sect. 3.6.
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Fig. 3.15 (a) Quasiparticle scattering on a graphene surface. (a–c) dI=dV maps of the same
area obtained at sample bias of 0.35, 0.6, and 0.85 V, respectively, at fixed gate voltage of 15 V.
Lower right insets: two-dimensional (2D) Fourier transform of each image. Red arrows in (c)
point to localized scattering centers. (d) Radial averaged intensity profiles of the 2D Fourier
transforms shown in (a–c) plotted as a function of k. Red lines indicate Lorentzian fits. Curves
are vertically displaced for clarity (e) Quasiparticle energy dispersion above and below the Dirac
point .VD D �0:2V/. Each point is extracted from a Fourier analysis as in (a–d). Solid red lines
show fitted linear curves (Reprinted by permission from Macmillan Publishers Ltd: Nature Physics
[26], copyright (2009).)

The renormalization mechanism could be attributed to electron–phonon coupling
[16, 38] or to plasmons [90].

3.9.4 Trapped Charges in SiO2

Individual scattering centers can be identified from the dI=dV map taken at energies
away from the Dirac point when the electron wave length is small [26]. In Fig. 3.16c,
the localized minima in the inhomogenous dI=dV map are marked with red arrows
as locations of scattering centers. Comparing to the topography in Fig. 3.16a, there
are no correlations between corrugations and the scattering centers, suggesting the
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Fig. 3.16 (a) STM topography of graphene on SiO2. (b) dI=dV map at a bias near the Dirac point
showing electron puddles due to charge fluctuations over the same region of graphene as (a). Red
crosses indicate the location of quasiparticle scattering centers observed in (c). (c) dI=dV map of
the same area at larger bias revealing impurity scattering centers in electron-rich charge-density
puddles (red crosses) (Reprinted by permission from Macmillan Publishers Ltd: Nature Physics
[26], copyright (2009).)

latter plays a more important role in the electronic states in graphene. When the
sample bias voltage is close to the Dirac point, the electron wave length is so large
that it covers many scattering centers. Nowthe dI=dV map in Fig. 3.16b shows
coarse structures, arising from the spatial dependence of the Dirac point energy
which gives rise to electron–hole puddles across the sample [26, 79].

3.10 Edges, Defects and Magnetism

Magnetic materials usually contain 3d or 4f electrons, such as in Fe, Co, Ni, and rare
earth elements/alloys. Magnetic ordering in these materials comes from partially
filled d- or f-electron bands. Magnetism is not common for light elements such as
carbon which contain only p electrons. However in a bipartite lattice, such as that of
grapheme, magnetism can appear in the presence of point defects or edges [5, 6].

Point defects on the graphite surface have been studied with STM for a long time
[91, 92]. Recent theoretical work showed that localized electronic states produce
strong enhancement of the DOS near the Fermi level [93]. Further analysis based on
density functional theory [94] and tight-binding Hubbard model [95] demonstrates
that magnetism can appear for a finite concentration of defects due to electron–
electron interactions. An STM image of such a defect produced by ArC ion
irradiation on the surface of graphite [96] is shown Fig. 3.17. Surrounding the
defect one can see an extended threefold

p
3� p

3.R3/ pattern. Scanning tunneling
spectroscopy on the vacancy reveals a resonance near the Dirac point (Fig. 3.17c)
whose intensity exhibits a power law decay with distance away from the vacancy.

Crystallographic edges in graphene can be either zigzag or armchair (Fig. 3.18).
A zigzag edge is terminated by atoms belonging to only one sublattice while for
armchair the terminations alternate between the two sublattices. (A discussion on



82 G. Li and E.Y. Andrei

α site

β site

2
nd

 layer

a b

c

d

–200–150–100 –50 0 50 100 150 200

V (mV)

0.5

1.0

LDOS graphite LDOS vacancy

dl
/d

V
 a

.u
.)

Fig. 3.17 (a) 17 � 17 nm2 STM topography, measured at 6 K, showing the graphite surface after
the ArC ion irradiation. (b) Schematic diagram of the graphite structure. (c) 3D view of a single
isolated vacancy. (d) STS measurements of the LDOS induced by the single vacancy on the
surface of graphite (Reprinted figure with permission from [96]. Copyright (2009) by the American
Physical Society.)

Fig. 3.18 Two types of edges
for graphene: zigzag edge
and armchair edge. The open
and closed circles show the
B- and A-site carbon atoms,
respectively

studying graphene edges and defects with Raman spectroscopy can be found in
Chap. 2.) On graphite it has been demonstrated that localized states exist near a
zigzag edge but not near armchair terminations [97]. The enhanced density of states
associated with the zigzag termination has also been seen around grain boundaries
in graphite [98].

A localized resonance in the DOS at an edge is a prerequisite for magnetic
correlations [5, 6]. Thus far this scenario found support in graphite through
comparison between topography, magnetic force microscopy, and electric force
microscopy [98].

3.11 SPM-based Nano-lithography

STM and STS are powerful probes that provide direct access to both the structure
and the electronic properties of graphene in its various forms. At the same time STM
and other scanning probe microscopy tools can modify the surface and the edges,
introduce point defects, deposit impurities, and tailor the structure at nanometer
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scales [99]. In fact, scanning probe lithography (SPL) has become a leading method
in nanolithography [100], together with traditional optical/e-beam lithography and
soft lithography. In SPL, a local probe, such as an STM tip, is brought very close to
the sample surface so that the tip–sample interaction is strong enough to induce a
mechanical or chemical modification. Research in SPL and its hybrid method [100]
is a fast moving field with diverse applications. In this section we briefly review
developments related to graphene.

3.11.1 Signs of Invasiveness of an STM Tip

An STM tip should be noninvasive if it is used as a probe of the intrinsic
surface properties of samples. However, when used in nanolithography the tip
has to be sufficiently invasive. Actually the same tip is usually used for in situ
characterization before and after nanolithography. A natural question is how to
define the invasiveness of the STM tip experimentally.

The first signature of an invasive tip is the appearance of distance dependence
of the tunneling spectrum [15, 48]. For a sufficiently large tip–sample separation,
typically characterized by a tunneling resistance of �10G�, the spectrum is usually
independent of tip–sample distance. As the tip gets closer, a shift in Fermi level
appears first and then the spectrum starts to distort, which is accompanied by a
decrease of the apparent tunneling barrier height [15].

Another sign of tip invasiveness can be seen in topography. In early STM studies
on graphite, one of the most dramatic observations of tip invasiveness was a giant
corrugation [101, 102], of order 0.1–0.8 nm, which appeared in the topography
of the surface for measurements with low tunneling resistance .20 � 0:5M�/.
Such corrugation cannot reflect the physical position of the carbon atoms in the
honeycomb structure because it is much larger than the interatomic distance. It is
now understood that the graphite surface deforms elastically when the tip is very
close to it, resulting in the giant corrugation.

For graphene on SiO2, the force between graphene and substrate can be
significantly weaker than that on the graphite surface especially for regions that are
corrugated. This could lead to unstable STM images particularly if the tip–surface
distance is too small [21].

3.11.2 Folding Graphene Layers

Folding of the top graphene layer on a graphite surface happens occasionally during
the cleavage process. An SPM tip can be used to intentionally fold the top layer
[103–105]. Such folding was accomplished [105] for STM settings corresponding
to a tunneling resistance of �100M� (100–200 mV sample bias voltage and
1–2 nA tunneling current), in UHV. Folding could also happen during imaging.
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To facilitate the folding process [105], the tip was shaken at frequency of 150 Hz
at selected edges. Modulating the bias voltage between 50 and 100mV at 250 Hz
while scanning the center of the folded region leads to unfolding. Preferred folding
directions were found along symmetry axes of graphene.

The mechanism of folding and unfolding was explained as follows [105]. Since
the ¢ bond between carbon atoms is much stronger than the interlayer coupling, an
STM tip close to sample surface does not destroy the honeycomb structure when it
slowly bends the sample out of plane [102]. A vibrating STM tip generates point-
like compression–expansion deformations, which propagate along the graphene
layer. The pressure waves are damped at large distances, leaving the layer unharmed.
However, at layer edges the pressure waves can interfere with each other and the
enhanced vibration amplitude could facilitate the separation of the vibrating layer
from its support. Subsequently, the vibrating layer flips over to a new position.

3.11.3 Cutting Graphene Layers

Etching the sample surface by STM tips requires sample bias voltages above a
certain threshold, which is much higher than that used in folding. In ultra high
vacuum, the threshold voltage depends linearly on the binding energy of the atoms
indicating that this process involves sublimation of surface atoms induced by the
tunneling electrons [106]. Under ambient conditions Pt–Ir tips were usually used
in the etching process. In this case the threshold voltage is independent of the
binding energy and the etching process is attributed to a chemical reaction involving
water molecules [107–109] at the surface: C.H2O/ ! H2."/ C C.O/. Here
C.H2O/ represents a water molecule physisorbed on a surface carbon atom and
C(O) an oxygen atom chemisorbed on a surface carbon atom. The upward arrow
indicates production of a gas molecule. Systematic studies [109] demonstrated
that the threshold voltage increased from 1.95 to 3.68 V when the tip scanning
speed increased from 0.1 nm/s to 1 mm/s. Such dependence can be understood in
terms of the kinetics of the chemical reaction as the reaction time decreases with
increasing tip speed. At low scanning speed, the activation energy can be as low as
�0:9 eV [109].

For fixed tip scanning speed, say 100 nm/s, the results of fabrication depend on
the sample bias voltage [109]. Near the threshold voltage, irregular-shaped hillocks,
several nanometer in width and 0.1–0.3 nm in height, emerge on the surface. This
modification is thought to be due to partial oxidation of the uppermost graphene
layer. As shown in Fig. 3.19 the top graphite layer is partially etched at a bias voltage
of 3.09 V and etching was completed at 3.19 V, resulting in groves �5 nm wide
and �0:35 nm deep, which is close to the interlayer spacing of graphite layers. The
groves become wider and deeper with increasing bias voltage. Above 3.47 V, the
surface becomes significantly damaged.

A similar technique was used to cut a nanoribbon on a graphite surface [110,111].
To perform the cutting, a Pt-Ir tip made a single shot scan with tip speed of 1–5 nm/s.
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Fig. 3.19 Comparison of
STM images of the HOPG
surface tailored by STM with
various bias voltages: (a)
2.72 V, (b) 2.81 V, (c) 2.89 V,
(d)3.00 V, (e) 3.09 V, (f)
3.19 V, (g) 3.28 V, (h) 3.38 V,
and (i) 3.47 V. In each
tailoring, the STM tip was
moved along a regular
hexagon with a 40 nm long
side (Reprinted from [109],
copyright (2004), with
permission from Elsevier.)

Depending on the microstructure of tip, the optimal sample bias voltages is in the
range 2.2–2.6 V for a tunneling current of 1 nA. An energy gap of �0:5 eV was
observed in a 10 nm armchair graphene nanoribbon fabricated by this method [110].

In spite of progress in cutting graphene by STM, the details of the cutting process
remain to be clarified to achieve reliable fabrication.

3.11.4 Surface Modification

Graphene is chemically inert in air at room temperature. However, atomic hydrogen
can bind to graphene to form graphane, which is insulating, if both sides are
saturated [112]. When graphene sits on a substrate, its electronic states still change
dramatically even though only a single side can be saturated [113]. An STM tip has
been used to selectively remove hydrogen atoms via electron stimulated desorption
(ESD) in UHV [114]. Such a process is sensitive to the choice of tip. For Pt–Ir
tips, desorption occurred under normal imaging conditions. For W tips, the sample
surface was not altered with sample bias voltages up to 2 V and tunneling current
of 50 pA. When the set point current (50 pA) and tip velocity (75 nm/s) were
held constant, desorption events started to occur for bias voltages above C3:5V.
At C4:0V, a graphene line could be written with an average width of 5–10 nm.
At C5:0V, the line width increased to 15–20 nm [113]. Pristine graphene was
recovered after ESD.

Besides hydrogenation, graphene on substrates can be oxidized by Hummers
method [115] to form graphene oxide (GO). The resistivity of GO is four orders
of magnitude higher than that of the pristine sample [116]. A hybrid SPL techniqu
called thermochemical nanolithography (TCNL) has been used to locally reduce the
GO [117]. In TCNL, a heated AFM tip [118] is brought into contact with the GO
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AFM tip

Water flim

Oxidized
graphene

Contacts

Graphene

Siliconoxide

Doped silicon

Fig. 3.20 Schematic setup for the local anodic oxidation of graphene. A graphene sheet lies on
a silicon oxide substrate and is electrically connected by Au electrodes. A positive bias voltage
is applied to the graphene sheet (anode) with the tip of the AFM (cathode) grounded. In a humid
environment a water meniscus forms between the AFM and the graphene flake which acts as an
electrolyte (Reprinted from [119], copyright (2008), with permission from Elsevier.)

surface with a loading force of 120–230 nN. Nanoscale regions of reduced graphene
oxide (rGO) can be patterned down to 12 nm in width at speeds of several mm/s. GO
can be reduced with 100% efficiency to recover the resistivity of the pristine sample.

A reverse process was demonstrated by local anodic oxidation (LAO) lithography
of graphene [119–121]. Unlike the reduction process, the AFM tip was held at room
temperature, working in noncontact mode. A conductive tip was used to apply a
large bias voltage, typically 15–35 V, between the tip and the substrate to induce
electrochemical oxidation of graphene (Fig. 3.20). A relative humidity of �40% was
maintained during LAO lithography. The bias voltage could be modulated between
zero and the set value with a 100 Hz square wave to help stabilize a water meniscus
around the tip [120].

When a constant sample bias voltage was used, LAO lithography fabricated
narrow trenches with bump structures on each side of them. The overall line width
decreased with increasing tip speed [121]. With a square wave sample bias voltage
[120], either trenches or bumps could be fabricated (Fig. 3.21). The formation of
trenches was attributed to the oxidation of graphene into volatile carbon oxides
under the AFM tip. The bumps were attributed to partial oxidization of graphene
into nonvolatile graphene oxide with some oxygen incorporated into the lattice. It
was observed that the formation of trenches or bumps could be controlled by the
magnitude of the electric fields between tip and sample, high and low fields for the
former and latter, respectively [120], which is similar to what is observed in STM
lithography [109].
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Fig. 3.21 (a) AFM images of line patterns created by the LAO technique. (a) Trenches or bumps
were formed on HOPG surface. Six lines (from left to right) are written with the same tip
bias voltage of �20V while the set point was cycled through 0.3, 0.2, 0.1, 0.3, 0.2, and 0.1 V,
corresponding to 15%, 10%, 5%, 15%, 10%, and 5% of the free-oscillation amplitude for an
unloaded tip. (b) Height profile across the line marked in (a) (Reprinted with permission from
[120], copyright (2008), American Institute of Physics.)

3.12 Summary and Perspectives

Graphene is a true 2d electron system (DES) with new and exotic electronic
properties arising from a unique lattice structure which is particularly well suited
for studies by STM/STS. By using STM/STS it is possible to access at the same
time both the structure and the electronic properties and to study the interplay
between the two. The openness and easy accessibility of the 2DES in graphene
distinguishes it from most conventional DES where the carriers are buried deep
inside a heterostructure at the interface of two bulk materials, say GaAs/InGaAs.
The only other exposed 2DES known, electrons on the surface of liquid helium
[122], cannot be studied with STM/STS or any technique such as dc transport that
requires contact to the carriers.

In addition to probing the structure of graphene, STM also allows to modify
it introducing defects, folds, boundaries, or nanostructures which can profoundly
affect its electronic properties. At the same time these electronic properties can be
probed in the STS mode to reveal the electronic states and how they are modified in
response to external influences including magnetic field, carrier density, substrates,
impurities, structural changes, boundaries, and strain.

So far STM/STS and transport measurements were done independently. In the
near future we anticipate technical advances combining the two probes in situ which
will allow correlating transport properties, topography and spectroscopy directly.
By combining STM/STS with strong magnetic fields, back gating, and transport
measurements it will be possible to explore the properties of correlated electronic
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phases such as fractional quantum Hall effect states and skyrmion excitations.
Another promising direction is to use SPM lithography to modify graphene devices
and to study their properties in situ which could provide valuable insight into
graphene based nanoelectronics.
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Chapter 4
The Electronic Properties of Adsorbates
on Graphene

Eli Rotenberg

Abstract The impact of atomic and molecular adsorbate atoms on the electronic
structure of the graphene lattice is discussed in the context of how they alter, or
renormalize, the graphene electronic band structure. This band renormalization is
manifested in several ways, including a rigid shift of the electronic bands due
to doping, energy gap formation due to breaking of the lattice symmetry, and
alteration of the energy dispersion due to changes in electron–electron, electron–
phonon, and electron–plasmon interactions. Also, depending on the arrangement of
the adsorbates, many exotic states are predicted or have been observed, including
ferromagnetism and strong (Anderson) localization regimes. These effects can be
observed using the angle-resolved photoemission spectroscopy (ARPES) technique,
which is briefly reviewed.

After an overview of electronic and magnetic structure of all atomic adsorbates,
we will present results for only three combinations of adatoms: (1) H atoms, (2)
K atoms, and (3) mixtures of Ca and K atoms. Experiments with just these three
adsorbates reveal diverse physics from Anderson localization, to instability toward
Mott and superconducting ground states. These examples involve distinct adsorbate
symmetry classes and uncover themes that can be expected to be found generally
for adsorbates.

4.1 Introduction: What Are Adsorbates on Graphene
Good for?

The many proposed applications for graphene discussed throughout this book have
led to an explosion of research into its properties. To enable many of these new
technologies, it is necessary to understand and control the interaction of graphene
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with adsorbates. This need arises on the one hand because adsorbates can modify
the intrinsic properties of graphene, leading to new and useful behaviors, and on the
other hand because adsorbates can limit the conductivity of graphene, which can
adversely impact electronic devices.

For example, it was recognized early on that the properties of graphene devices
fabricated on SiO2 could be improved by cleaning its surfaces [1], suggesting a clear
role for adsorbates in limiting the conduction. Although a role of the substrate to
limit mobility was expected, even when freely suspended, mobility was clearly still
limited by adsorbates which find their way to the samples during their fabrication.
Only when a cleaning process was followed [2] could optimized mobilities be
achieved, near 200,000 cm2/Vs [2,3] for free-standing graphene membranes. These
values were close to the intrinsic mobility limits estimated by the weak electron–
phonon coupling in graphene [4, 5].

Yet, we still have a way to go: the highest mobility achieved so far in freestanding
graphene was inferred by contactless cyclotron resonance experiments to be in
excess of 10,000,000 cm2/Vs [6]. It is likely that residual adsorbates (and, with
related properties, lattice defects) are responsible for limiting synthesized graphene
from reaching its potential [7].

Aside from pushing the mobility limits, it is also the control of graphene’s
properties by means of external modification that will be a key factor to exploiting
this material in new device schemes. In this chapter, we discuss how graphene’s
electronic properties are modified by chemical doping, usually by the sparse
adsorption of atoms or molecules.

This topic is of fundamental importance, because by their nature, adsorbates not
only can donate electrons or holes to graphene but also can play a role as defects,
disrupting the lattice symmetry from which the unique properties of graphene – such
as the important pseudospin degree of freedom – are derived.

In situ studies of transport under the influence of a controlled amount of
adsorbates have occasionally been conducted [8–10], but such experiments have
been relatively rare. One reason is that such adsorption is traditionally the domain
of surface science experiments conducted in ultrahigh vacuum (UHV), and there are
very few setups which can both conduct such adsorption experiments and measure
transport on the same samples.

On the other hand, the fact that graphene can be grown or deposited on a surface
allows traditional surface-science probes such as scanning tunneling microscopy
(STM) and (ARPES) to be applied to the problem. Both these techniques probe
the density of states (DOS) of graphene, the former with spatial, the latter with
momentum resolution. Although not directly providing data on mobility, both tech-
niques can reveal crucial information on the energy-dependent scattering properties
of adsorbates in a well-controlled way. Furthermore, both techniques probe not only
electrons at the Fermi level, but also “hot” carriers, those with energy (relative to
the Fermi energy EF) greater than kBT . Therefore, these tools can also provide
information about nonequilibrium properties. ARPES is reviewed in Sect. 4.2, while
the use of STM to study graphene is discussed thoroughly in Chap. 3.



4 The Electronic Properties of Adsorbates on Graphene 95

Theory has played a key role to understand carbon systems in general, starting
well before the actual isolation of graphene crystals. The classic example of this is
Wallace, who first calculated graphene’s band structure in 1947 as an approximation
to graphite [11]. Nevertheless, we must use caution when interpreting theory,
especially concerning collective behavior such as magnetism. Such collective
behaviors are very sensitive to the assumptions behind the calculations.

As we show in Sect. 4.3, many adatoms are predicted to have a magnetic moment,
from which one might infer ferromagnetic behavior. So there has been a large
theoretical effort to elucidate the possibility of graphene magnetism in connection
with spintronics devices. But to date, neither individual magnetic moments nor
collective magnetism has been conclusively observed in any graphene system. The
reason stems from the sensitivity of such calculations to the overall symmetry of the
adsorbate distribution, and this is discussed in Sect. 4.4.

So, what are adsorbates on graphene actually good for? There are two demon-
strated purposes to which theory and experiment can agree: the limitation of carrier
lifetime due to scattering and the doping of graphene by chemical interaction.

By their presence, adsorbates add potential terms which can lead to scattering.
When adsorbates are charged, they induce a long-range Coulomb potential which
can cause a weak carrier scattering [8], but which does not fundamentally alter the
Dirac nature of the charge carriers; conversely neutral, covalently bound adsorbates
introduce a short-range potential which can have more profound affects [12, 13],
possibly inducing insulating behavior [14, 15]. The latter are very similar to lattice
defects in this respect, varying only in the relative strength of the short-range
potential. These short-range scatterers can introduce quantum corrections to the
transport in graphene and are discussed in detail in Sect. 4.5.

By doping the graphene lattice through chemical interaction, adsorbates can
achieve a much larger change in Fermi level than can be achieved in devices by
external gating. Since the interactions in graphene are scale free (more about that
in Sect. 4.6), they grow boundlessly with the Fermi level as the charge density
increases. This means that certain many-body interactions can be continuously
tuned from energy scales from zero to the THz range and beyond, enabling, for
example, novel applications in plasmonic devices. This is discussed in detail in
Sect. 4.6.

At extreme doping levels, the conical band structure of graphene is no longer
a good approximation, and the full lattice must be taken into account. In this
condition, the Fermi level can overlap with the saddle points in the band structure
at the M points. Then we can expect singularities to arise in the dielectric response
function, which can lead to exotic ground states such as superconductivity. There has
been one report in the literature showing that such doping densities can be achieved
[16], and this is discussed in detail in Sect. 4.7.

If we can control the processes of doping and scattering, then we hope we
can control the magnetic and ground state properties (such as metallic, insulating,
or superconducting) of graphene with the external influence of heat, chemical
environment, or light. This chapter aims to demonstrate the progress in realizing
this idea.
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4.2 Angle-Resolved Photoemission Spectroscopy

4.2.1 Introduction

This chapter devotes considerable space to examples derived from ARPES data,
although many other important tools are being applied to graphene studies. So in
this section we will discuss how ARPES works. At the moment, no single reference
covers all of the aspects of ARPES, so the reader should be referred separately to
Cardona and Ley [17] for a basic introduction to chemical analysis, which is not
much discussed in this chapter but is a tool much employed; to Hufner [18, 19]
for a discussion of electronic band structure determination; and to Kevan [20] and
Damascelli [21, 22] for details on the many-body interpretation of ARPES data.

4.2.2 Band Structure Determination of Graphene

Photoemission is a process that occurs when a soft X-ray photon excites an electron
from a bound to an unbound state in a solid. Figure 4.1 illustrates the basic principle.

Fig. 4.1 Schematic diagram of the angle-resolved photoemission spectroscopy (ARPES) mea-
surement of graphene. Incident UV or soft X-ray photons (wavy arrow) impinge on the graphene
target, exciting photoelectrons with a distribution of angles and energies. A planar cut of this
distribution is collected by an angular-imaging electron lens (shown in cross section) and dispersed
by a nested set of hemispheres held at appropriate potentials. The energy–angle dispersion of the
photoelectrons is mapped onto an imaging channel plate. By conducting experiments under a flux
of atoms or other adsorbates, doping- and density-dependent studies can be accomplished
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A UV or soft X-ray photon impinges on a sample, exciting a distribution of
photoelectrons to be emitted into the 2� solid angle in front of the sample. With
modern commercial detectors, a single plane of these emitted electrons is collected
by a special lens that images the angular distribution onto the entrance slit of an
electron spectrometer. The spectrometer consists of two nested hemispheres held at
appropriate positive potentials such that the electrons take an approximately circular
path, landing onto a two-dimensional imaging plate. Electrons of different kinetic
energy are dispersed along one direction, while the angular distribution is preserved
in the other direction. Thus, a section of the kinetic energy–angular distribution can
be imaged.

The determination of the binding energy–momentum relationship of the electrons
proceeds from simple energetic and geometric considerations [20, 22] which are
briefly outlined here. The experiment gives us the kinetic energy Ekin as a function
of photoelectron emission angle � relative to the sample surface. For electron kinetic
energies which are far above EF, we can assume that the escaping electron has a
parabolic energy dispersion Ekin D „2k2out=2m where kout is the wavevector of the
escaping photoelectron and m is the free electron mass. Therefore, the x, y, and z
momentum components and energy of the final state are fully determined.

We can relate the experimental observables to the quantities of interest – the
momentum k and energy E of the initial state electron using simple assumptions
about the photoemission process. By convention, we assume a simple three-step
model: (1) excitation of the bound to a high energy state, (2) propagation of the
excited state to the vacuum boundary, and (3) passage of the electron from inside
to outside the solid. In the last step, we model the vacuum interface by a simple
potential step, which is analogous to the change of index of refraction when light
passes from inside to outside a prism. The physics is identical for electrons: we find
that kk, the momentum of the electrons parallel to the surface is conserved, so that

kjj D kout sin �: (4.1)

We can determine the binding energy Ebin relative to EF through energy
conservation; we find that

Ebin D h� � Ekin C ˚W: (4.2)

Here ˚W is the work function of the material, the energy difference between the
states at the vacuum level (just able to escape from the solid) and the Fermi levelEF.

Although only a small section of the electron emission from energy bands are
counted on the detector, additional parts of momentum space can be measured by
rotating the sample or detector to sample different parts of the momentum space.
Then, the resulting band structure slices can be stacked and tiled together to form a
full sampling of the states in the Brioullin zone. Figure 4.2 shows a comparison of
the computed and measured band structure of epitaxial graphene (EG) on SiC(0001)
by the ARPES method. Since ARPES by its nature measures only occupied states,
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a b

Fig. 4.2 The band structure of n-doped graphene. (a) Tight-binding calculation including third-
nearest neighbor interactions [26]. (b) Three-dimensional rendering of experimental data collected
for epitaxial graphene on SiC(0001) [23]

we expect to see the energy bands only from a lower binding energy limit (set by
the experimental conditions) up to the Fermi level, which in the case of such EG
samples lies just above the charge neutrality point [23, 24].

Thus, ARPES can immediately determine the carrier sign of the graphene,
which is negative (electron-like) for n-doping or positive (hole-like) for p-doping.
Note that although in some contexts, the sign of the state energies (negative vs.
positive) is relative to the Dirac energy ED, in this chapter we will always use the
convention that the sign of the particle energy is relative to the Fermi levelEF. Thus
ARPES always measures the negative-energy (hole) states, regardless of how EF is
positioned relative to ED.

From such data, we can readily determine the model-dependent bandstructure
parameters. For example, fitting the data to a single-hopping parameter model ((1.4)
in Chap. 1), we find t D 2:82 eV [23]. Such parameters are highly dependent on how
the fitting is performed [25] and are likely to depend on conditions of the graphene
such as doping level and substrate interactions.

In the laboratory, He I radiation (photon energy h� � 21 eV) excited in
a resonance lamp is commonly employed for ARPES, with counting times of
typically 10 min required to acquire band structures with good statistics. Such
light sources have limited flux, but extremely good energy resolution. Many of
the experiments illustrated in this chapter were instead performed using soft
X-ray photons (�100 eV) generated by the Advanced Light Source, a third gen-
eration synchrotron. Such sources have the advantage of significantly higher photon
flux and brightness than laboratory sources. The brightness is particularly important
because it allows a small focus beam (�50m) on the sample, which is useful to
probe small or inhomogeneous samples.

Furthermore, imaging electrons emitted from a smaller area greatly improves the
momentum resolution [27]. For graphene, the group velocity (in band units where
„ D 1) is large: vD D dE=dk � 7 eV�Å, where E is the electron energy and k is
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the momentum expressed in 1=Å. A poor momentum resolution, which is around
0:02=Å in a respectable laboratory setup, directly impacts the measured energy
resolution. The improved momentum resolution, a factor of 2 or better, available at
synchrotrons can therefore overcome the poorer energy resolution (�10s of meV)
of synchrotron sources compared to laboratory sources, which can achieve energy
resolution of a few meV. This explains why most published ARPES experiments
on graphene are obtained using synchrotron radiation, which has sufficiently high
brightness to ensure a small photon beam and therefore high angular resolution.

By adsorbing atoms directly onto the sample during the ARPES measurement,
we can acquire “movies” of the band structure as a function of the concentration of
adsorbed species. This is arranged by aiming a number of standard sources such as
a hot tungsten capillary for atomic hydrogen or Knudsen cell for metallic atoms at
the same spot as the photon probe.

We can expect to see a variety of interesting effects in such movies. To begin
with, most adsorbates are expected to act as charge donors or acceptors (see
Sect. 4.3), so that we expect to see the occupation of the bands change as adsorbates
are introduced. This occupation is manifested in the experiments by a change in
the Fermi energy, which is accompanied by a change in the size of the Fermi
contours compared to the Brillouin zone. Such effects are readily observable, as
the experiments discussed in Sects. 4.5–4.7 attest.

Beyond chemical doping, the adsorbates can alter the symmetry of the graphene
lattice, leading to a change in the distribution of bands in k-space, and with the
possible appearance of energy gaps in the graphene bandstructure, as discussed
in more detail in Sect. 4.4. These effects generally require long-range order of
the adsorbates, and so are more readily observed in the context of bonding to the
substrate in epitaxially grown graphene [28–33]. Although it should be mentioned
that in the context of bilayer graphene, symmetry breaking between the two layers
can be achieved by adsorption onto one of the layers. This effect also opens a gap
observable in ARPES, since long-range order of the adsorbates is not required [34].
This is discussed in greater detail in Chap. 8.

These effects can be readily modeled without considering the interaction between
the graphene carriers and each other, or other states in the system such as vibrations
or defects. As such, they are considered to be single-particle effects. In fact, a proper
understanding of the observed band structure requires a full understanding of the
many-body interactions. In the next section, we shall explore these interactions and
how they renormalize the energy of the electronic states. This renormalization is
related to the self-energy of the carriers.

4.2.3 Self-energy Determination

If there is sufficient energy and momentum resolution, then the linewidths of the
observed spectra are not limited by the instrument but instead reflect the lifetime
of the excitations associated with the photoemission process. For sufficiently high
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Fig. 4.3 Hot carriers in graphene modeled as excitations in the graphene Fermi sea. (a) Hole-like
(negative energy states) in n-doped graphene; (b) Electron-like (positive energy states) in p-doped
graphene. Here the sign of the energy (positive or negative) is relative to the Fermi level (top of the
shaded region representing occupied states). The self energy of the hole in (a) and electron (b) is
the same if particle-hole symmetry is obeyed

photon energies, the outgoing photoelectron has little time to interact with the solid
after the photoexcitation process. Therefore to a good approximation, the width of
the band structure sheets (see, e.g., Fig. 4.2) in the energy and momentum directions
reflects, by an uncertainty principle argument, the inverse scattering time and length,
respectively, of the hole, or photohole left behind when the photoelectron escapes.

In the language of many-body physics, we consider the free carriers in the
Fermi sea to be excitations, which can be particle-like (electrons) with positive
energy „! or antiparticle-like (holes) with negative energy �„!. (We usually drop
the „ and speak of ! as the particle energy.) These excitations are illustrated in
Fig. 4.3. In an ARPES experiment, we consider the photoemission process to inject a
“hot” hole (Fig. 4.3a) for which we determine the energy, momentum, and lifetime.
Conversely in a STM experiment we can in principle measure the energy of both
holes (Fig. 4.3a) and electrons (Fig. 4.3b), by tunneling electrons into or out of the
sample using positive or negative bias.

Because the bands of graphene are linear, with the same slope above and below
the Dirac crossing ED, graphene is said to obey particle-hole symmetry. That is,
the lifetime of the hot hole in (Fig. 4.3a) is identical to that of the hot electron in
(Fig. 4.3b) if the two systems have the same absolute charge density but opposite
character (n vs. p) doping. Thus an ARPES experiment conducted as a function of
doping from the p- to the n-doped regimes can determine the lifetime of both the
positive and negative energy states.

The many-body interactions of the photoholes are reflected by a renormalization
of their energy. As an example, consider a hole interacting with the electron
sea through the Coulomb interaction. In the first instance, the appearance of the
hole polarizes the local electronic configuration through the screened Coulomb
interaction, which can be derived from pristine graphene’s band structure. The
local fields generated by the hole alter the band structure, which changes the
Coulomb interaction, altering the local fields slightly again. The cumulative effect
of these interactions results in an energy shift of the hole, called the self-energy.
Similar interactions can occur when the lattice is allowed to relax in response to the
hole, leading to a self-energy due to electron–phonon interactions, or in magnetic
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materials when the spin distribution can interact with the hole, leading to electron–
magnon self-energies.

In the absence of such interactions, the photohole has infinite lifetime and is
therefore an eigenstate of the system. But in an interacting system, the hole is no
longer an eigenstate –it can decay by emitting a phonon for example – and therefore
it has a finite lifetime.

The self-energy arises as a fundamental characteristic and accounts for both
energy and lifetime renormalization. It is a complex function whose real part
contains the screened interaction energy just discussed, and whose imaginary part
reflects the finite lifetime of the hole. Because it depends on both the energy and the
momentum of the holes, the self-energy is denoted†.k; !/.

The complex self-energy has a familiar analogue when we consider photons
passing through a prism. In such a medium, the photons can scatter (or be absorbed)
and their velocity is renormalized. Both of these effects are described by a complex
function, the index of refraction n.!/ whose real and imaginary parts describe the
velocity renormalization and scattering lifetime, resp. It is well known that the real
and imaginary parts of n.!/ are not independent, but are related to each other by a
Kramers–Kronig (KK) transformation to preserve causality. It turns out that the real
and imaginary parts of†.k; !/ are similarly related by (KK) transformation for the
same reason.

The ARPES experiment is directly connected to †.k; !/ because ARPES
measures the single particle spectral function [21, 22]:

A.k; !/ D � 1

�

jIm†.k; !/j
.! � !b.k/ � Re†.k; !//2 C .Im†.k; !//2

; (4.3)

where !b.k/ is the “bare” band structure (in the absence of many body interactions)
that we have been considering until now. A.k; !/ has the form of a Lorentzian at
energy ! D !b.k/C Re†.k; !/, whose width is given by Im†.k; !/.

The self-energy function †.k; !/ arises in any self-consistent theory of the
electron gas [35], in particular it can be expressed in perturbation theory as a
function of the single-particle Green function propagatorG [36]. Thus ARPES can
give direct insight to the self-energy function calculated by theories. Unfortunately,
since only the negative-energy,! < 0 (occupied) states are accessed, it cannot give
a complete picture of the self-energy.

Now that we have shown how the electronic energy bands can be measured
with ARPES (as applied to materials in general), we will approach the problem
of adsorbate–graphene interactions. In Sect. 4.3 we will review what properties have
been predicted or measured about adsorbates acting in isolation. In Sect. 4.4, we will
briefly discuss some issues related specifically to the band structure of graphene.
This will be followed by three sections discussing specific experiments, and what
could be learned about the adsorbate interactions by ARPES.
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4.3 The “Zoology” of Adsorbates

Adsorbates on graphene can be atoms or molecules. In terms of their characteristics,
they are comparable to animals in a zoo. Each type of adsorbate could be broadly
classified in terms of their species, habitat, and their behavior.

• Species

– Atom vs. molecule
– Polar vs. nonpolar molecule
– Pure system vs. coadsorbates

• Habitat

– Bonding site: H6 vs. B2 vs. T, see Fig. 4.4
– Disordered vs. ordered arrangement
– Isolated vs. clustering

• Behavior

– n vs. p doping
– Magnetic vs. nonmagnetic
– Bonding: ionic vs. covalent vs. van der Waals
– Short vs. long scattering range

Of the many species, we will restrict ourselves to an overview of the habitat
and behavior of single atoms, and of these, only a small handful will be discussed
in detail. It should also be noted that there are not necessarily clear boundaries
between behavior. For example, the distinction between ionic and covalent bonds
is not always clear. Furthermore, many calculations use density functional theory
(DFT) calculations which do not include effects of van der Waals interaction, which
can be an important contribution to the adsorbate bonding [37, 38].

In many cases theory is far ahead of experiment, there being many more
adsorbate systems calculated than experimentally tested. In such cases, caution

Fig. 4.4 The high-symmetry bonding sites for graphene. H6 D sixfold hollow site, B2 D twofold
bridge site, T D top site. The T- and B2-bonding sites are depicted as covalently bonded to
one or two C atoms, resp. The top-site C atom is buckled indicating a change from sp2 to sp3

hybridization. The shaded diamond indicates the graphene unit cell
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should be used, since many important predicted quantities such as adsorption
energy or magnetic moment can be very sensitive to the details such as calculation
method, adsorbate density, and distribution. Also, in some cases calculations and
experiments are available only for graphite, which does not necessarily share the
exact properties of graphene. Moullet compared the adsorption of Al to graphite
and graphene and found no significant difference in the bonding site or energies,
suggesting that the adsorption is similar in the two cases [39].

While adsorption of almost every atom in the periodic table has been theoretically
considered, the notable exception is that there has been little or no work (experimen-
tal or theoretical) on rare-earth (La through Lu) adatoms, which consequently are
not reviewed in this chapter. (We are only aware of one prediction that lanthanum
adatoms are magnetic [40].) This is surprising considering that their potentially high
magnetic moments could lead to interesting magnetic effects and their localized
f electrons could lead to interesting effects related to Kondo screening and the
Anderson impurity model.

4.3.1 Adsorption of Nontransition-Metal Atoms

Whether an atom dopes graphene as an acceptor (p type) or as a donor (n type)
generally depends on the electronegativity of the atom, with the atoms in groups I–
III of the periodic table acting as donors with little change to the graphene DOS [37].

Of the group IA atoms (see Table 4.1), hydrogen atoms stand apart, widely
agreed to bond covalently to a carbon atom in the T site, converting the carbon
lattice locally from sp2 to sp3 bonding. At higher coverage (1:1 H–C ratio), a
stable covalently bonded sp3 bonded monolayer has been predicted, called graphane
[50, 51]. Hydrogen is discussed extensively in Sect. 4.5.

Table 4.1 Properties of Group IA (alkali) adsorbates on graphene. Items with question marks
have not been confirmed experimentally or theoretically, but are reasonably assumed to be true as
discussed in the text
Atom Bonding site Doping Bonding Magnetic

T D Top n D Donor I D Ionic moment
B2 D Bridge p D Acceptor C D Covalent �B given
H6 DHexagonal 0 D Neutral V D v. d. Waals

or physisorbed

H T p [15] n [41]0[42] C, sp3 1.0 [42, 43]
Li H6 [37, 44] n [37] I+V [45] 0 [37]
Na H6 [37, 44] n [37] I 0 [37]
K H6 [37, 44] n [23, 37, 46] I 0.17 [37] 0 [46]
Rb H6 [44] n [47] I
Cs H6 [40, 48] no [44] n [40, 49] I 0 [40]

preference
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The bonding site for the isolated Li, Na, K alkali atoms is the sixfold hollow
site H6 [37, 45]. This represents a general principle that ionically bonded atoms
tend to favor the hollow site, where the binding energy can be maximized due
to the strongest Coulomb interaction there. The bonding distance to the plane
is determined by a balance of this attractive, long-range force, and short-range
repulsion by the other electrons [37, 52]. While there is no report for isolated Rb
or Cs on graphene, it is reasonable to expect these to sit in theH6 site as well, since
these occur there at higher coverages [48, 53].

With relatively low ionization potential and electronegativity compared to
carbon, the alkali atoms are predicted to readily donate their outer s electron to
graphene. While the free-atom alkalis have partially filled s shells and are magnetic,
the net magnetic moment is largely quenched for adsorption on graphene, because
the unpaired electrons are transferred to the nonmagnetic graphene and become
delocalized. A small residual magnetic moment is predicted for Na and K, but as in
the case of hydrogen discussed later, these results are very sensitive to the adsorption
geometry and calculation method and should be considered with caution [37].

Of the alkali atoms, K adsorption has been extensively studied on monolayer
[8, 15, 23], bilayer graphene [54], and graphite [53]. At low coverage, and at
low temperature, potassium is distributed dilutely and disordered [55], with large
separation between atoms. This suggests that there are long-range repulsive forces
between adsorbed K ions, which was confirmed theoretically [56]. At higher
temperature (�100K), potassium forms a 2 � 2 ordered layer. It is expected that
the charge transfer is reduced in this ordered configuration, because in the layered
compound KC8 (which can be argued is a stack of decoupled K(2 � 2)-graphene
layers [57]) there exists a strong interlayer band associated with s electrons retained
on the K [58].

Since Li is closest in size to H of the alkali atoms, it appears to have a tendency
for covalent bonding at higher coverage. Yang predicted a stable graphane-like layer
which is covalently bonded [59] but to the contrary Medeiros has calculated that
such a layer is ionically bonded [60]. At lower coverage, Li is predicted to be a
donor [37, 61].

There is no experimental report for Rb on graphene, but it forms a similar 2 � 2
ordered layer as K [47] which has strongly n-doped an epitaxial graphene layer.
There is no report for Cs on graphene, but it is known that a small amount Cs reduces
the work function of graphite by �1 eV [49], presumably due to charge transfer from
the Cs to the outer graphite layer.

The group IIA alkaline earth atoms (Table 4.2) Mg and Be are not expected
to interact with graphene [62] owing to their high ionization potentials: 7.65 and
6.23 eV, respectively, although curiously, Be dimers are predicted to bond strongly
[63]. Although having a similar ionization potential (6.1 eV), Ca has been predicted
[37, 62] and observed [16] to readily n-dope graphene, because of the additional
binding contribution of its d electrons which can hybridize with the �� band of
graphene [64]. There is no report so far of Ba or Sr adsorbates on graphene, but on
the one hand their low ionization potential and on the other hand the existence of
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Table 4.2 Properties of Group IIA (alkaline earth) adsorbates on graphene. For notation, see
Table 4.1

Atom Bonding site Doping Bonding Magnetic moment

Be None [62, 63]
Mg None [62]
Ca H6 [37] n [16, 37, 62] I [16] �1 [37]
Sr H6? n? I?
Ba H6 [40] n [40] I [40] 0.47 [40]

Table 4.3 Properties of Group IIIA (alkaline earth) adsorbates on graphene. For notation, see
Table 4.1

Atom Bonding site Doping Bonding Magnetic moment

B
Al H6 [37, 70] n I
Ga H6 [37, 70] n I
In H6 [37, 70] n I
Tl

Table 4.4 Properties of Group IVA adsorbates on graphene. For notation, see Table 4.1

Atom Bonding site Doping Bonding Magnetic moment

C B2 [38, 70, 73, 74] C, sp2 [38] 0.5 [38, 73]
Si B2 [70, 74] n [74] C, sp2 [38] 1.59 [38]
Ge B2 [70, 74] n [74] C, sp2 [38] 1.76 [38]
Sn B2, T [38] C [38] 1.76 [38]
Pb B2, T [38] V [38] 1.76 [38]

bulk compounds of SrC6 and BaC6 [65] suggest that they too should readily adsorb
and donate charge to graphene.

Considering the group IIIA atoms (B, Al, Ga, In, and Tl, see Table 4.3), while
there has been work on B-doped graphene through substitution [66–69], there have
been no predictions or observations of B or Tl adsorption on graphene. Al, Ga,
and In have been predicted to adsorb and bond ionically to graphene, donating
a significant charge of nearly one electron per atom [37]. A weak preference to
adsorb in the H6 bonding site for these has been predicted [37,70] as is common for
ionic bonding. For Al, experiments indicate to the contrary a preference for top-site
bonding [71, 72], consistent with a calculation by Moullet et al. [39].

Of the group IVA atoms (C, Si, Ge, Sn, Pb, see Table 4.4), crystalline C, Si, and
Ge have stable diamond structures, and so could be expected to favor sp3bonding as
adatoms. In this scenario we could expect a preference towards the top-site (T, see
Fig. 4.4) bonding with little ionic character. Instead, the bridge site (B2) is favored
[38, 70, 73, 74], with a significant change to the occupied DOS that depends on
coverage. The bonding is a covalent one, where the bonding C atoms in the graphene
have a mixed sp2–sp3 hybridization, while the adatom can be largely sp2-like (see
Fig. 4.4). For such a geometry, carbon, Si, and Ge adatoms have been shown to
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Table 4.5 Properties of Group VA (pnictogen) adsorbates on graphene. For notation, see Table 4.1

Atom Bonding site Doping Bonding Magnetic moment

N B2 [70, 75] p [75] I [75] 0.84 [75]
P B2 [76] 0 [76] C [76] 0.86 [76]
As B2 [70]
Sb
Bi 0 [77]p [78]

be magnetic with magnetization �0:5–1:75�B [38, 73]. A small but nonnegligible
charge transfer is expected for the isolated adatoms [74].

The bonding of Ge, Sn, and Pb is significantly weaker than for the other
group IVA atoms, with the T bonding sites nearly equally favored to the B2 [38].
The charge transfer of Sn and Pb, expected to be small, has not been accurately
calculated.

Of the group VA atoms (N, As, P, Sb, Bi, see Table 4.5), nitrogen is predicted
to be an acceptor [75], with preferential bonding to the B2 site [70, 75]. Nitrogen
on the edge of graphene nanoribbons has been shown to be a donor, however [79].
Interestingly, an unpaired electron residing on the N atom is predicted to be strongly
spin-polarized [75].

Although graphene oxide plays a role to remove As from water [80], there
has been little research in the direct interaction of graphene and arsenic other
than the prediction of B2 site bonding [70]. Phosphorous is predicted to be an
acceptor, bonded to the B2 site, forming a magnetic moment [76] at the P atom.
This magnetism arises at a localized, minority, midgap state in the electronic band
structure.

Antimony adsorption does not appear to have been considered yet; an important
limitation to its adsorption is that the Sb surface energy is very low, favoring
island formation over atomic adsorption. Various interesting 1D–3D agglomerated
structures of Sb on graphite have been observed [81, 82].

Bismuth was shown not to chemisorb and therefore not to strongly dope
graphene, and a clustering behavior is predicted [77]. Gierz reported p doping of
epitaxial graphene on SiC by antimony and bismuth, but it is likely that this doping
results from continuous layers intercalated at the graphene/SiC interface. Thus, the
observed p doping falls under the topic of doping by metallization, similar to other
metals [84], not chemical doping.

Of the Group VIA atoms (O, S, Se, Te, see Table 4.6), there has been a lot of
attention to oxygen adsorbates, due to the technological relevance of graphene and
its oxides. As an isolated adsorbate, oxygen was shown to have a strong preference
for the B2 site [70, 75] and to act as an acceptor [75]. The topic of oxygen on
graphene is delved in much greater detail in Chap. 14. Although S prefers the same
bonding site, it chemically hybridizes with the graphene states near EF without
shifting of the graphene bands to higher or lower energy. Therefore, S appears to be a
neutral adsorbate [76]. Both oxygen [75] and sulfur [76] appear to be nonmagnetic.
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Table 4.6 Properties of Group VIA (chalcogen) adsorbates on graphene. For notation, see
Table 4.1

Atom Bonding site Doping Bonding Magnetic moment

O B2 [70, 75] p [75]
S B2 [76] 0 [76] C [76] 0 [76]
Se B2 [70]
Te

Table 4.7 Properties of Group VIIA (halogen) adsorbates on graphene. For notation, see Table 4.1

Group VIIA

Atom Bonding site Doping Bonding Magnetic moment
F T [75] p [75] I [75] I+C[83]a 0 [75]
Cl B2 [76] p [76] I [76] 0 [76]
Br B2 or T [70]
I
aOn graphite

Little is known about Se and Te adsorption; Ishii et al. have predicted a stable B2
bonding site for Se [70].

The halogen atoms (group VIIA, F, Cl, Br, I, see Table 4.7) are interesting
because of their strong electronegativity and their potential usage as p dopants in
counterpart to the n-doping alkali atoms. However, since atomic halogen sources
are a bit harder to come by, there has been much less experimental work with them
than the alkalis.

According to predictions, fluorine prefers the T site, acting a strong acceptor,
and shows no magnetism as an adsorbate [75]. Chlorine, on the other hand, has been
predicted to prefer the B2 site [76] and to act as a strong acceptor (�1 electron/atom)
indicating a strong ionic bond. No magnetism was predicted. These results are in
strong contradiction to the bonding of halogen molecules (Cl2, F2) which are mostly
van der Waals-bonded [85]. Descending column VIIA of the periodic table, we find
that the magnitude of the electronegativity is reduced; this appears to explain the
relatively weak bonding of bromine to graphene [70].

4.3.2 Adsorption of Transition Metal Atoms

Transition metal (TM) doping is important at the high coverage limit because such
metallization is the basis for making contacts in graphene devices. In this situation
the type of doping was predicted to depend on the relative work function of the
metal and graphene [84].

At the limit of individual adatom adsorption, interest lies in the potentially large
magnetic moment of TM adatoms, which can affect diverse phenomena such as the
spin transport [86], superconductivity [87], and Kondo effect [88, 89] in graphene.
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Table 4.8 Properties of transition metal adsorbates on graphene. For notation, see Table 4.1.
When the bonding sites’ binding energies differ by less than 100 meV, then multiple sites are
listed

3d transition Metals

Atom Bonding site Doping Bonding Magnetic moment

Sc H6 [52, 70] 2.35 [52]
Ti H6 or T [70]H6 [37, 91] n [9, 91] �3:3 [37, 52, 91]
V H6 [70] 4.88 [52]
Cr H6 [70]no pref. [52] 6 [52]
Mn H6 [70, 92] I+V [92] 5.62 [92]

not adsorbed [52]
Fe H6 [37, 70, 92] n [9] I+V [92] �2:1 [37, 52, 92]
Co H6 [52, 70, 89, 92] I+V [92] 1.1 [92],1.4 [52]
Ni H6 or B2 [70] 0.0 [52]
Cu B2 or T [52, 70] n [94] 1.0 [52]
Zn H6, B2, or T [52, 70] 0.0 [52]

4d transition metals
Atom Bonding site Doping Bonding Magnetic?

Y
Zr H6 [95] n [95]
Nb H6 [95] n [95]
Mo H6 [52, 70, 95] n [95] 0.0 [52]
Tc H6 [95] n [95]
Ru H6 [95] n [95]
Rh H6 [95] n [95]
Pd B2 or T [37, 52], B2 n [95] C [52] 0.00 [37, 52]

or T or H6 [95]
Ag B2 or T [70, 93, 95] n [94, 95] I, V [96, 97] 1.0 [52]

no pref. [52]
Cd

5d Transition Metals
Atom Bonding site Doping Bonding Magnetic?

Hf H6 [95] n [95]
Ta H6 [95] n [95]
W H6 [95] n [95]
Re H6 [95] n [95]
Os H6 [95] n [95]
Ir H6 [95] n [95]
Pt B2 or T [95] B2 [52] n [9, 95] C [52] 0.0 [52]
Au B2 or T [70, 95, 97] n [10, 86, 95, 97] I, V [96, 97] �0.15 to �0.17 [97]

no pref. [37, 52]T [46] 0 [46] p [94] � 1:0 [37, 52, 98]
Hg

What little is known about the adsorption of TM atoms is summarized in
Table 4.8. As a whole, calculations are difficult because to account for the adatom
d electrons, more advanced calculations such as the GGA method should be used
instead of LDA [40,95,98]. In general, the TM atoms are relatively strongly bound,
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with significant charge transfer to the C atoms, and prefer to be bound to the H6

hollow site. This is in accord with a general tendency to be ionically bonded,
similar to the group I–IIIA atoms. Duffy and Blackman [90] calculate the earlier
3d adatoms to prefer the top site, despite their more ionic characters.

The exception is for the more noble atoms (Cu, Ag, Au, Pt, Zn), which are
more weakly bound, and for which the binding energy to the different sites varies
little. Additional computational difficulty arises in these weakly bound TM atoms,
because for these van der Waals interaction becomes a significant contribution to the
binding energy. Methods for accurate calculation of this bonding interaction are still
under development [99]. Since the binding energy varies little with bonding site, it
suggests that these atoms can readily diffuse on the graphene surface, which was
shown experimentally for Au [10].

Despite a theoretical consensus about the bonding sites and magnetism of the
TM adatoms, so far there has been very little experimental work to confirm these
speculations. In an early measurement, silver and gold atoms were observed to
adsorb preferentially on top or possibly bridge sites of graphite [71], but otherwise
the bonding sites remain largely in the domain of theory. This uncertainty arises not
only because the theoretical difficulties were pointed out but also because it is not
clear in practice whether TM atoms are well behaved or not. Do TM atoms adsorb
into a single preferred site? Do they prefer to sit alone or to collect into islands or
clusters? Presently available STM measurements did not achieve atomic resolution
of individual TM atoms [100]. The lack of basic information about the growth and
arrangement of TM atoms suggests a basic program of exploring the bonding sites
as a function of adsorption conditions (flux and temperature) would be very helpful
to determine the ideal growth conditions.

The predicted degree of magnetism depends sensitively on the details of the
chemical bond between adatom and graphene [52]. For example, electron transfer
from adatom d levels to graphene can reduce the magnetic moment from the free
atom case, or the d levels of the adatom can be reconfigured due to hybridization.
Chromium adatoms have little charge transfer and therefore retain their magnetic
moment (6�B) [52] while Co atoms are strongly hybridized with graphene, leading
to a reduction of the magnetic moment from 3 to around 1.1 to 1.4�B [52, 92].
Platinum’s large ground state magnetic moment (2�B) disappears entirely due to
strong covalent bonding to the substrate [52].

Furthermore, an emerging theme is that the local electric field and doping
conditions have a strong effect on the distribution of the electrons and hence the
magnetic moment of adatoms [40, 98, 100]. This suggests that calculations for
adatoms on charge-neutral graphene may not apply to real-world conditions, where
the graphene is doped and subject to strong local fields at the graphene/substrate
interface.

Upon adsorption, many of the TM adatoms induce midgap states near the Dirac
energy. Fe on graphene is an interesting example [92], because there the midgap
state is entirely minority spin character and near EF, while the majority states near
EF show the characteristic Dirac spectrum of graphene and have therefore zero DOS
at EF. Thus, Fe on graphene might be an example of a semi-half-metal [92].
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4.4 Adsorbate–Graphene Interactions: General Symmetry
Considerations

The interesting features of graphene such as its massless character, Berry’s phase,
and chiral and pseudospin degree of freedom are ultimately derived from the
symmetry of the graphene lattice and the equivalence of the two atoms “A” and “B”
in the unit cell shown in Fig. 4.4. Since adsorbates disrupt the local translational
symmetry, they share common behaviors which have been extensively discussed
and reviewed [101, 102]. The importance of this lattice symmetry to the massless
character of graphene can be seen by constructing a Hamiltonian for graphene with
and without this equivalence [103]:

H D v

�
�=2 kx � iky

kx C iky ��=2
�
: (4.4)

The eigenstates of this Hamiltonian

� D
�
 A

 B

�
(4.5)

are the amplitudes of pz-derived tight binding orbitals on the A and B sublattices.
The diagonal elements in (4.4) reflect the on-site potentials at the A and B atoms

of the graphene unit cell. Solution of (4.4) for � D 0 leads to the familiar gapless
spectrum, but for a finite value, a gap of size � opens at the Dirac crossing, and
the local curvature of the bands there means that a finite effective mass has been
introduced.

For � ¤ 0, this model describes the band structure of a monolayer of hexagonal
boron nitride, which has a unit cell containing nonidentical B and N atoms. It can
also describe a single graphene layer on hexagonal boron nitride, stacked with its
A and B atoms in registry with the B and N atoms [28].

The graphene lattice symmetry can also be broken locally depending on the
adsorbate bonding site (Fig. 4.4), which act as defects. For atoms adsorbed in
the top, or tetrahedrally bonded site (T ), the A–B equivalence is broken, leading
to an increase of backscattering which is normally suppressed in graphene. For
atoms adsorbed in the bridge site (Sb), the rotational symmetry is broken, while
adatoms located in the hexagonal site (H6) do not break the local mirror or point-
group symmetry. These symmetry classes have definite impact on the transport
[12, 13, 104] which are discussed elsewhere in this book.

When adsorbates are arranged periodically, the new lattice symmetry can also
play a role to induce a band gap. To see why, consider two possible arrangements
of adatoms in Fig. 4.5. For adatoms arranged 2 � 2 lattice atop of the graphene,
the Brillouin zone in the reduced-symmetry system is reduced by half in size.
Tiling such a Brillouin zone (BZ) shows that the originally inequivalent K and
K0 points remain inequivalent in the reduced zone scheme. For adatoms arranged
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Fig. 4.5 The relationship between real space (upper panels) and reciprocal space (lower panels)
for different arrangements of adatoms. In the lower panels, the heavy line is the bare graphene
Brillouin zone (BZ), while the gray lines are the BZs under the reduced symmetry. (a) For 2 � 2

symmetry, the reduced BZ preserves the nonequivalence of the K and K0 points. No gap is expected

to open at ED under such a reconstruction. (b) For
�p

3� p
3
�

R30ı symmetry, the original

nonequivalent K and K0 points are both mapped to the ` point of the reduced BZ and therefore
become equivalent. A gap is expected to open at ED for such a reconstruction

with
�p

3 � p
3
�

R30ı symmetry, this is not true; the original K and K0 points

are mapped onto the center of the new BZ, becoming equivalent. This equivalency

translates into the opening of a gap and occurs for any multiple of
�p

3 � p
3
�

R30ı

or 3 � 3 periodicities.
The Hamiltonian in (4.4) is appropriate for modeling crystalline forms of

graphene, where each unit cell is identical, but this chapter is concerned with
adsorbates that are distributed sparsely and more or less randomly. In this case,
it is more appropriate to apply a perturbation potential for each defect [102]

OV D
X

i;j

�
�
i Vi;j �j ; (4.6)

where i; j sum over atomic sites, and Vi;j are 2 � 2 matrices operating in the A–B
sublattice space. For example, a single impurity on top of an A site of the lattice has
a potential

OV D
�
UA 0

0 0

�
: (4.7)

Different adsorbates can be modeled simply by changing the impurity potential UA,
and the limit UA ! 1 is used as a model for a vacancy. Seen in this way, top-
site adsorbates and vacancy-type defects are symmetry equivalent and differ only in
their potential strength.
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Even without considering the detailed lattice of graphene, it can be argued that
defects will always induce sharp features in the graphene DOS at the Dirac energy
ED[102,105–107], the so-called midgap states. These midgap states appear not only
in tight-binding models [108, 109] on extended real-space lattices but also in DFT
calculations of adsorbate (and defect) configurations. We will return to the possible
existence of the midgap states in the following section.

Furthermore, the distribution of adsorbates, whether periodic or disordered, has
a huge influence on the electronic and magnetic properties. As a prototype example
of this, we will consider the impact of hydrogen as an adsorbate in Sect. 4.5.

4.5 Hydrogen on Graphene As a Prototype Adsorbate System

4.5.1 Introduction

The hydrogen on graphene problem is important not only for the fundamental issues
it raises about graphene. Its importance was realized in the 1970s as a solution
to a long-standing question about the cosmos: why is there so much H2 in the
universe? Due to the high density of interstellar ultraviolet radiation in the universe,
H2 molecules should be readily dissociated into free H atoms. Given the low cross
section for recombination via two-body collision of H atoms, recombination to H2

is not favored, and the H/H2 ratio should be much higher than observed [110].
This problem was discussed by Hollenbach et al. who proposed that H–H

recombination could be promoted at the surface of dust particles [111, 112].
Since cosmic dust consists largely of graphitic particles, the interaction of H on
graphite surfaces was studied intensely both experimentally and theoretically for
both graphite and graphene. Individual H atoms were shown to be stably adsorbed
onto the T site. The H–C bond is partially covalent and results in a rehybridization
of the C atom from sp2 to sp3 configuration as suggested in Fig. 4.4.

The most favorable configuration for recombination of two H atoms into H2 is
when they occupy third-near neighbor (3NN) sites. Upon recombination, the H2

molecule is not stably bound to the graphite surface and easily devolves back into
free space. The favorable cluster configuration can be reached in two ways: first,
an incoming second H atom is attracted directly to the second NN site (2NN)
[113], after which one atom hops to the 3NN site. Second, the two adatoms, if
adsorbed at a larger distance, are attracted to each other and by diffusion can
evolve into the favorable 3NN configuration [114, 115]. The sufficiently high
probability of these cluster formation is believed to be accountable for the cosmic
H2 distribution.

More recently, the case of graphene highly saturated by H atoms has been
considered. In this situation, various arrangements of H atoms have been discussed.
One configuration saturates all the A atoms with H on one side of the graphene
and the B atoms with H on the other side; this is called chairlike graphane
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[50, 51, 116]. In boatlike graphane, half of the A–B pairs is saturated on each side
[116]. Another configuration, half-graphane or graphone has only the A atoms on
one side saturated. Because of the high degree of sp3 hybridization throughout
the lattice, these materials could be considered as two-dimensional analogues of
diamond. Detailed calculations predict large gaps at the K points of graphane and
half-graphane due to the symmetry breaking within the unit cell [51, 117, 118].

A full understanding of adsorbate systems must go beyond the simple
Hamiltonian in (4.4) because of the possibility of unpaired spins leading
to magnetism and typically spin-polarized DFT calculations are employed
[43, 118, 119]. The electronic and magnetic structure of a periodic arrangement
of H on graphene was considered by Duplock et al. [43] for a single H adsorbed
to the T site in a 4 � 4 unit cell of graphene. A gapped band structure emerges
with a large band gap of �1:5 eV. The magnetism emerges in two ways: first by a
small exchange splitting of the valence and conduction bands, and second by a flat,
spin-polarized band appearing just above the Dirac energy ED. The argument for
the large gap arises from on-site coulomb potential, similar to the gap opening in
graphane. The flat, spin-polarized band is explained by the localized states near the
H atom; these states are formed by pz orbitals near the H atom [43].

Similar magnetization was predicted by Yazyev [41,42]. There it was shown that
the spin polarization is not localized to the hydrogen atom’s T site, but is delocalized
over the next 2–3 near neighbors in the C lattice. The spin density has opposite sign
for the H in the A vs. B sites.

It would be a mistake to take these theoretical results at face value and conclude
that the H-graphene adsorbate system should necessarily be either insulating or
magnetic for several reasons. First, because different periodicities other than 4 � 4
can lead to different results. Garcia-Lastra has shown that a single H atom in a
m � n unit cell will be gapless or nearly gapless for certain periodicities such as
when m and n are multiples of 3; this holds true regardless of whether spin is
considered [119].

Furthermore, the barrier for migration of covalently bonded impurities is very
high, so there can be kinetic obstacles to formation of ordered structures. Therefore,
it is unclear if we can expect a real adsorbate system to have H adsorbed only
on the A site of the unit cell. Shytov has shown that the long-range interactions
favor H atoms randomly distributed over the A and B sites [120] while Cheianov
et al. suggested that long-range interactions should tend to preferentially order the
H adsorption onto one or the other site [121]. A periodic arrangement with adatoms
equally distributed on A and B sites will not always have a gap, and as shown in
Yazyev [42], will have a zero net magnetic moment.

Likewise, we have no reason to expect a periodic arrangement of H atoms to
be favored during growth, so the distribution of adsorbates need to be carefully
considered. Zhou et al. showed that starting from ferromagnetic half-graphane,
removal of H atoms suppresses magnetism [117]. On the contrary, Sahin et al.
showed that removal of hydrogen atoms from graphane can create magnetism or
not, depending on the geometry of the dehydrogenated domains [122].
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To complicate things further, graphene samples are not typically flat. Freestand-
ing graphene has been shown to be strongly rippled attributed to instability of
two-dimensional crystals [123]. Graphene flakes transferred to SiO2 have shown to
be strongly corrugated due to substrate roughness [124] although this roughness can
be alleviated by transfer to flatter substrates [125]. Epitaxially grown graphene on
SiC has a small but nonnegligible rippling due to the underlying interface structure
[126–128]. Graphene on certain metals such as ruthenium and iridium have shown
periodic rippled structures due to lattice mismatch to the substrate [129, 130].

The fact that the graphene may have a finite curvature has strong implications
for adsorbate configurations, especially in covalent bonding situations. Positively
curved surfaces can encourage clustering of H atoms to NNN positions, since such
curvature increases the distance between bonding sites [131]. Such clustering was
identified in the graphene on Ir system to open a band gap due to the periodic
corrugation potential [32].

While a truly random distribution of H cannot be modeled by DFT, it is possible
to apply tight-binding theory to large cluster models with random defect distribution
[108,132–135]. These models use disorder which is modeled by an on-site potential
and so can be applied to not only H adatoms, but also other T-site located adatoms
or carbon vacancies, according to the strength of the on-site potential chosen. (An
alternate form of disorder occurs when the hopping parameter between adjacent C
atoms varies locally, is called off-diagonal, and arises for example due to bond-
length variations in the lattice. It is not considered here because it poorly models the
influence of H atoms.)

The most important finding is that strong on-site disorder should lead to
a metal–insulator transition (MIT) due to the formation of localized states as
proposed by Anderson [136]. Such a transition can be expected to occur in three-
dimensional materials when scattering from defects is coherent, when scattering
is minimal between defects, and when the defect density is large enough. Under
these conditions localized, nondiffusing states are found between the defects. (In
the context of graphene nanoribbons, the Anderson transition is also discussed in
Chaps. 9 and 13).

For two-dimensional systems with on-site energy disorder, scaling arguments
showed that states are marginally localized [137] regardless of defect density; this
calculation was extended to the honeycomb lattice by Schreiber [138]. Whether
conduction is impeded in an actual sample with realistic conditions (such as finite
size) by localization is very difficult to predict.

4.5.2 Hydrogen on Graphene: Experimental Evidence
for Anderson Localization

In the previous section, various theories showed that hydrogen on graphene can
display a wide variety of behaviors depending on the distribution of H atoms, with
regard to periodicity, sublattice distribution, and clustering. These led to predictions
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of band insulating, ferromagnetic, or Anderson-localized behavior. Experimentally,
what could actually be observed?

Dosing of hydrogen on graphene cannot be accomplished by exposure to
molecular H2, which has no observable effect on graphite [139], but instead atomic
hydrogen sources must be used [139, 140].

As already mentioned, clustering of atomic H into a local graphane-like con-
figuration in the graphene on iridium system was demonstrated [32]. In this work,
the insulating character was directly demonstrated by the opening of a significant
energy gap in ARPES spectra, and the atomic-scale structure observed on the same
samples by STM.

Elias et al. [131] prepared hydrogenated samples of freestanding graphene and
graphene on SiO2 by exposure to H atoms from a microwave plasma source. On the
basis of the altered lattice constant of their samples, they could conclude the forma-
tion of a half-graphane-like (on SiO2) and graphane-like (freestanding) compound.
On the basis of transport measurements, they concluded that their samples were
insulating, since the conductivity vs. temperature followed d	=dT > 0. The exact
nature of this insulating character, however, is not completely clear. They observed
variable-range-hopping behavior, i.e., the conductivity of their samples follows the
behavior

	 / e�.T0=T /1=3 : (4.8)

The classic example where this behavior is observed is in the Anderson-localized
material, but it can also be observed in heterogenous systems. Elias et al. take
this view of their samples, which they believe to consist of hydrogen clustered in
protruding parts of the sample, separated by metallic graphene regions [131]. The
metallic regions cannot conduct through the sample because they are not sufficiently
connected to allow transport. This interpretation is admitted by the data but subject
to some uncertainty, first because they lacked spatial resolution to confirm the
nonpercolative structure, and second because the transport measurements cannot
verify if there is a gap in the band structure or the DOS, only whether there is a
transport gap.

ARPES experiments combined with transport are informative because they can
determine the possible gap or midgap states directly. Data by Bostwick et al. showed
qualitatively similar behavior as in the Elias experiments: upon exposing n-doped
epitaxial graphene to a slow atomic hydrogen flux, a transition from metallic
(d	=dT < 0) to insulating (d	=dT > 0) was observed [15]. At the same time,
ARPES measurements of the band structure showed a significant reduction in the
DOS above the Dirac energy ED, reflected by the absence of a clear dispersion of
the �� states aboveED, see Fig. 4.6.

But the most intriguing observation is that the circular Fermi surface remains
intact, albeit significantly broadened. This broadening near EF is far more signif-
icant than the states below ED, shown in Fig. 4.6. At the very least this indicates
a transition away from Fermi liquid behavior, which is characterized by a long-
lived quasiparticle at EF. This was remarkable behavior since the modest change in
diameter of the Fermi surface suggested a density of H atoms only on the order of
0.1 to 1%, assuming each H atom accepts one electron from the graphene.
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Fig. 4.6 Metal–Insulator transition (MIT) in graphene induced by hydrogen adsorption. (top)
The Fermi surfaces and (bottom) the band structure acquired along a line through the K point,
perpendicular to the KM line. The data are acquired for (a–d) four different doses of H (density
in cm�2 indicated). The MIT occurs at an H density around 3� 1012 cm�2 (Adapted from [15])

Viewed in the time domain, the combination of a reduction of the DOS with
the extended linewidth indicates a divergence in the quasiparticle lifetime, or in
practical terms, a complete breakdown of the quasiparticle picture. Viewed in
the spatial domain, the observation of a mean free path (given by the inverse of
the momentum width at EF) shorter than the Fermi wavelength 1/kF means that the
ordinary conduction of charge carriers becomes meaningless.

Taking these observations together, Bostwick et al. concluded that they had
observed a MIT in hydrogen-dosed graphene of the strong (Anderson) localization
type [15]. Its appearance is related to a hydrogen-induced state around 200 meV
aboveED and 200 meV below EF. This state was evident in ARPES measurements
in regions of momentum space away from the strong graphene bands. Scattering by
graphene � electrons from this state induced a mobility gap, which grows until
it crosses EF, at which point the MIT sets in. The abrupt decrease in the DOS
above ED was consistent with predictions by Robinson et al. for atomic hydrogen
dosing [141].

The model for Anderson localization does not rely on the details of the chemical
interaction between H and graphene but rather on the symmetry breaking character
of the adsorbates [12, 13, 104]. So, an important test of whether AL has been
achieved in graphene is to find other examples with similar symmetry breaking
character but differing in other details of the atomic structure. In particular, carbon
vacancies or adsorbates other than hydrogen should equally well induce the Ander-
son localization (AL) transition. This should be especially true when a significant
gain of sp3 or other hybridization character is present at the defect/adsorbate site.
Such rehybridization could lead to an on-site energy for pz orbitals almost as
effective as vacancy formation which prohibits hopping onto the site altogether.
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A low level of defects was found to induce AL in carbon nanotubes [142], but
the one-dimensional character is an additional factor favoring localization [137], so
it is not obvious if similar lattice defects will have the same effect on graphene.

The effect of carbon vacancies on transport was investigated by Fuhrer who
prepared their samples by bombardment of graphene flakes exfoliated onto SiO2.
They observed a MIT owing to scattering induced by predicted midgap states, but
did not go so far as to claim AL for the MIT [14].

Ozone treatment of graphene has been predicted to generate symmetry-breaking
epoxide groups onto graphene [143, 144]. Leconte et al. [144] simulated the effect
of 0.1 to 4% coverage of graphene by such groups and concluded that the DOS
changes induced by ozone should lead to an AL transition. They went on to conduct
experiments on graphene exfoliated onto SiO2 and confirm the predictions by
observing a transition to variable-range-hopping behavior consistent with AL [145].

However their calculation is a bit artificial because they induced symmetry
breaking not by breaking the A–B sublattice symmetry but by placing an epoxide
group in a single-site, large periodic unit cell. It should be noted that the actual
nature of the bonding site was not determined, and that in fact a symmetry-breaking
physisorbed state for ozone has also been predicted, which could lead to AL by a
different mechanism.

These studies have clearly established that small amounts of disorder can induce
a MIT with signatures of AL. The question is whether AL has been conclusively
demonstrated or not. Certainly the continuous transition form weak to strong
localization with magnetic field by Moser et al. is a step in the right direction [145]
to establish this.

The ultimate proof will come by direct observation of wavefunction localization
by a real-space probe such as STM. In such an experiment, one hopes to measure the
tail of a localized wavefunction, which should be exponential according to Anderson
[136]. Such tails have been observed in other localized systems such as matter waves
[146], sound waves [147], and light waves [148]. Despite 50 years of research into
electron systems, such direct observation of localized states in electronic systems
has not been achieved. Graphene offers a new perspective on this problem because
it can be attacked so easily with STM and because the structural perfection of the
graphene between the defects should easily allow the visualization of the states.

We should conclude this section by discussing the outlook for applications. As
pointed out by Leconte et al. [144], it should be possible to find an adsorbate of
significant scattering strength to induce AL but of sufficiently weak binding as
to reversibly desorb the external species and recover metallic behavior. Hydrogen
will not satisfy this because removal of hydrogen by heating is found to etch the
graphene, probably leaving carbon vacancies [149]. This was observed by Elias
et al. who found that metallicity, but not the original conductivity, was observed
upon removal of hydrogen.

If the ideal adsorbate can be found, then one can imagine creating a novel switch-
able device, which could be triggered reversibly in chemical or electrochemical
reactions, or reversed by heat or photons.
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4.6 Potassium on Graphene: The Coulomb Interaction
in Graphene, Revealed

4.6.1 K Adsorption on Epitaxial Graphene on SiC(0001)

While deposition of a small amount of H atoms [15], epoxide groups [145], and
similarly vacancies [14] induces a MIT and dramatic changes to the ARPES spectral
function, a similar coverage of K atoms leads only to a modest decrease in mobility
[8] and a smooth evolution of the ARPES spectral function [23,150]. This evolution
suggests that the Dirac character of the carriers is preserved while at the same time
the doping dependence on the band structure and transport properties may be clearly
observed.

The first observation [23] of K-doped graphene by ARPES was for epitaxially
grown graphene on the SiC(0001) surface (preparation of such graphene surfaces is
discussed extensively in Chaps. 5–7). These measurements suggested that, accom-
panying the expected n-doping of the bands, there was an anomalous feature of the
spectral function near the Dirac energy ED [23] which is reproduced in Fig. 4.7.
Namely, the intensity of the graphene � band was weaker than expected near ED,
and furthermore the bands appeared to possess a“kink” there. That is to say, the
upper linear �� bands, when projected downward through ED, were not aligned
with the lower linear � bands but shifted by a doping-dependent value ´E . These
effects were subtle for the clean graphene (n-doped by substrate interactions) but
more clear at higher doses of K.

Since the kink at ED grows with n, and stays pinned at the K point, it was
suggested that its origin was the self-energy of the photohole at ED due to electron–
plasmon coupling. Plasmons are quantized density wave oscillations in the electron
gas which are akin to sound waves in elastic media. Since they carry no spin, they
are bosons, and since graphene is a two dimensional electron gas, plasmons have a
dispersion with wavenumber q [151]:

Fig. 4.7 Band structure of
K-doped graphene on
SiC(0001), for total charge
density n D 5:6 � 1013cm�2.
The closely spaced symbols
are fits to the cuts in the
momentum direction to two
symmetrical peaks; these
indicate the presence of a
significant kink, characterized
by the energy shift �E
(Adapted from [23])
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!pl D
p
4�ne2q=m�.1C 
/: (4.9)

Here n is the charge density, m� is an effective carrier mass, and q plays the
role of a momentum loss or gain when the photohole emits or absorbs a plasmon.
In order for such scattering to be kinematically allowed, the scattering should also
conserve energy, so that in such a decay process, the photohole should absorb or
emit an energy equal to that in (4.9).

For zero-rest-mass fermions, m� ! 0 and (4.9) appears to diverge. Since
graphene’s carriers are massless, what is the effective mass m� to be used in (4.9)?
Using Einstein’s equation E D mc2, we can compute the mass-equivalent of the
kinetic energy of the holes:

m� D .EF � ED/=v
2
D: (4.10)

The numerator could be gotten directly from the ARPES measurement, and
was compatible with m� determined independently by transport measurements
[152, 153]. We arrive at a small but nonvanishing effective mass around m� �
0:1me. Using a phenomenological dielectric constant 
 � 6 representative of
the substrate, Bostwick et al. were able to show that the elastic electron–plasmon
scattering processes contained in (4.9) could well explain the observed kink at ED

and energy shift �E.
What is more, the scattering of the electron by plasmons at ED was shown

to be the only effective scattering channel near ED. This is because conventional
electron–electron scattering, the so-called Fermi liquid excitations important for all
two-dimensional electron gases [154], does not have a kinematically allowed phase
space near ED [23, 155–159]. This follows directly from the linear dispersion and
the topology of the bands in momentum space. In nonmagnetic graphene, the only
remaining conventional decay channel is electron–phonon scattering, but there too
it was shown that such scattering is kinematically forbidden near EF [160–162].

Since the photohole lifetime near ED in n-doped graphene is dominated by
electron–plasmon coupling, it suggested some interesting device applications.
Namely, if a hot electron carrier population could be pumped in a device, then a
population inversion could be established, making conditions right for stimulated
emission of plasmons; for example, see the paper by Rana [163]. Such a device
would have a wide tunability because of the linear band structure of graphene.

Despite the theoretical support for the plasmon-scattering description, the
electron–plasmon scattering mechanism was not the only one proposed to explain
the data. Zhou et al. proposed through their own measurements on epitaxial
graphene [164] that symmetry breaking of the graphene lattice (of the type
illustrated in Fig. 4.5b) could open a gap, leading to reduction of intensity near ED.
The possibility of such symmetry breaking rests on the fact that there is a lattice
mismatch and 30ı rotation of the graphene relative to the SiC(0001) substrate; the
net symmetry of the system is 6

p
3 � 6

p
3-R30ı which can couple the K and K0

points of the Brillouin zone opening a gap. The energy shift�E between lower and
upper bands could be ascribed to a self-doping effect.
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The appearance of such a symmetry-breaking gap, however, would lead to a
breaking of the chiral symmetry, and it was shown that such symmetry breaking was
incompatible with ARPES intensity measurements [165, 166]. Later, it was shown
directly in transport measurements on SiC(0001) epitaxial graphene that the �
Berry’s phase shift and Quantum Hall plateaus are preserved [167–169], even down
to n D 5:4�1010 cm�2. This corresponds to a Fermi level only �30meV aboveED

and clearly shows that any gap due to substrate symmetry breaking must be much
smaller than that, or at least that its energy scale is insignificant compared to the
observed band structure renormalization [23] and computed interaction strengths
[155–159].

It is likely that the observed gap-like feature by Zhou et al. is due to defect
scattering in their samples. This can follow from the similarity of their spectra to that
of underannealed samples [170] and to the early-stage adsorption of H on graphene
discussed in Sect. 4.5. An alternate connection to defect scattering was provided
by Benfatto [171], who showed that a purely k-dependent self-energy arising from
certain defect scattering can provide an energy gap (and band shift �E) without
adding any mass, i.e., preserving the Dirac-like linear dispersion. As mentioned
above, however, such a gap has been ruled out by direct transport measurements.

Another extrinsic explanation for the anomalies nearED is the underlying carbon
“buffer layer” that lies between the active graphene and the SiC(0001) substrate.
These can introduce new band structure features including a gap-like spectrum
[128, 172]; however, other features of their calculation including a metallic character
of the buffer layer cannot be reproduced by experiment [24, 173] nor can it explain
the doping dependence of the observed anomalies in ARPES [23].

4.6.2 K Adsorption on Quasi-free-Standing Epitaxial Graphene
on SiC(0001)

Although the argument that the buffer layer causes the anomalous dispersion is weak
or inconclusive, its presence is still a complication which we desire to remove. This
was accomplished by replacing the complicated buffer layer by a simpler, hydrogen-
terminated SiC interface [174,175]. Graphene in such a form has been called “quasi-
free-standing” (QFS) due to its subsequent decoupling from the substrate. In one
stroke, the sample quality is improved, revealing finer features than were possible
before, but also the screening contribution of the substrate, which masks some of the
important electron–electron interactions, is greatly reduced, making the signatures
of electron–plasmon coupling easier to see [150].

ARPES measurements showed that QFS graphene is p-doped [174, 175], but K
adsorption readily converts it to n-type. The ARPES spectral function for such an
n-doped sample is shown in Fig. 4.8a [150]. As in Fig. 4.7, an overall offset �E
between the � and �� bands is visible, but now it is much larger. And, where before
there appeared a stretching of intensity at ED attributed to a pair of kinked bands,
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Fig. 4.8 Band structure of K-doped quasi-free-standing graphene in SiC(0001). (a) The ARPES
measurement of the spectral function shows a prominent splitting of the bands near the Dirac
energy ED� E0. (b) A schematic model of the reconstructructed band structure. (c) Momentum-
plane slices of the spectral function at the indicated energies. The Dirac crossings are highlighted
by arrows (Adapted from [150])

now we can resolve two pairs of bands (one pair highlighted by dashed lines) whose
crossings form a diamond shape.

In the full (kx; ky) ARPES map, each pair of bands is rotated cylindrically about
the K point of the graphene Brillouin zone. Figure 4.8b shows a schematic of the
reconstructed band structure. The single Dirac crossing at ED has been replaced by
three crossings: a point-like crossing at energy E0, a ring-like crossing at E1, and
another point-like crossing at E2.

Constant-energy planar cuts through the spectral function at four different
energies are shown in Fig. 4.8c. The upper panel shows two concentric circular
contours, corresponding to the two highlighted (black dashed) bands in Fig. 4.8a,
both sharing the same crescent-like intensity distribution. This distribution is a
photoelectron interference effect which arises from the interference of emission
from the A and B sublattices of graphene [176]. Since such interference arises only
when the A and B sublattices are identical, it can be interpreted as a signature of the
chiral states of graphene [165, 166], i.e., that both bands are Dirac-like, carrying
parallel pseudospin vectors. Thus, the crossings at E0;1;2 are between bands of
opposite chirality and can be properly called Dirac crossings.

The origin of the band splitting in Fig. 4.8a can be described by GW theory within
the random phase approximation (RPA-GW)0 theory [155, 157], which describes
the upper of the two bands (closest to EF) as an ordinary quasiparticle, with a close
resemblance to the band in Fig. 4.7. This band is kinked at its Dirac crossing as
previously described due to plasmon scattering.
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The lower band is a new quasiparticle called a plasmaron [177–179], which is
a bound state of a hole and a plasmon propagating in parallel. It arises during the
photoemission process itself: The creation of the valence band hole is a sudden
perturbation to the system; like the waves generated when a stone is dropped into
a pond, the electron gas responds to the core hole by generating plasmon waves.
Unlike the stone, though, the hole travels with a finite velocity and can travel in
parallel with, and therefore interact with, the plasmon wave.

Not all waves are equally favored for this interaction, however. There is always a
single plasmon with the same group velocity as the bare hole, say with momentum
q� and energy˝�, such that its group velocity matches the hole’s Dirac velocity:

@!pl=@qjqDq� D vD: (4.11)

Since all the bare holes have the same velocity, they all couple strongly to the same
plasmon, leading to the appearance of a discrete excitation – the lower band in
Fig. 4.8.

Formally, this process can be described as a resonance in the joint DOS for
electron–plasmon scattering [180]. It leads to a strong oscillation in the real part
of the self-energy function †.k; !/ that appears in (4.3). When this occurs, in such
a way that Im†.k; !/ is small, a resonance in A.k; !/ is observed, describing new
propagating entities such as the plasmaron band.

A curious consequence of the linear band structure of graphene is that the
Coulomb interaction is scale-free. To see what this means, consider the ordinary
two-dimensional electron gas, characterized by energy ! / k2. In such a system,
the low-temperature behavior is governed by the coupling parameter rs D 1=

p
�n

where n is the charge density and rs is measured in units of the Bohr radius (see,
e.g., [181]). At large rs , the screening of the Coulomb interaction is weak, electronic
correlation is strong, and exotic phases such as the Wigner crystal form. At small rs ,
the Coulomb interaction is strongly screened, and the gas behaves as a paramagnet.

In graphene, no such parameter as rs enters in the Coulomb interaction, and for
n-type graphene, there is one unique spectral function that appears for all charge
densities. To see why this is so, combine (4.9) and (4.10) using n / !2D and vD D
.!D=kF/ appropriate for graphene, and one finds

!pl=!D /
p
k=kF; (4.12)

where kF is the Fermi momentum and !D is the binding energy at the Dirac
crossing. This result shows that the plasmon dispersion scales relative to the
linear band structure. But the plasmon dispersion occurs at the zeros of the
dielectric function 
.q; !/, which therefore must also be describable in terms of
dimensionless coordinates q=kF; !=!D. And therefore, the self-energy and ARPES
spectral function must also be describable in these same dimensionless units.

This can be directly demonstrated by experiment: Figure 4.9 shows the ARPES
spectral function as a function of potassium coverage on QSF graphene. The upper
panels are plotted in the physical units (Å�1, eV), while the same data are drawn in
normalized coordinates .k=kF; !=!D/ in the lower panels.
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Fig. 4.9 Doping dependence of the plasmaron spectral function observed by adsorption of K
atoms on quasi-free-standing graphene. The upper panels show the spectral function A.k; !/ in
physical units (Å�1, eV). From left to right, the potassium dose increases. The lower panels show
the same data drawn in normalized coordinates .k=kF; !=!D/. Data are mirror-symmetrized across
the K point (Adapted from [150])

The experiment is not free of some fixed scales: there is a pronounced sharpening
and small kink of the bands at the fixed energy scale ! D �180meV [23]. There
is also a fixed energy and momentum resolution. Together these effects cause some
variation in the normalized spectral functions. Nevertheless, ignoring these effects,
it is clear that the plasmon-related parts of the normalized spectral function are
invariant with doping, especially with respect to the size of the diamond-shape Dirac
crossing region.

Since the spectral function is invariant with doping, the interactions must be
described by a single parameter. Recall the vacuum fine structure constant

˛ D e2=„c � 1=137 (4.13)

that describes in quantum electrodynamics (QED) the Coulomb interaction strength
in free space. In graphene, the analog of this is the graphene fine structure
constant [182]

˛G D e2=„vD � .1=
/ � 2:2 for 
 D 1; (4.14)

which is found by making the substitution c ! vD in (4.13). This large value of ˛G

indicates a very high degree of correlation, that if achieved, would lead (according
to predictions) graphene to be a Mott insulator [183].

In fact, the Coulomb correlations are reduced for graphene on a substrate, whose
external screening can be included phenomenologically by the screening parameter

 in (4.14). The effect of such a screening parameter was also needed to describe
the transport properties of graphene on SiO2 after adsorption of polarizable water
molecules [184].
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In general, we can describe the screening constant 
 to be the average of
screening contributions from the semi-infinite space above and below the graphene.
For K on graphene, we can neglect the screening contribution for the K atoms,
which if fully ionized are hardly polarizable (and too sparse to matter in any case).
Comparison of the experimental data in Figs. 4.8 and 4.9 to model calculations
[150], Bostwick et al. find a value ˛QFS

G � 0:5, so the screening contribution of
the H-terminated interface is around 
QFS � 7:8.

In comparison, the smaller energy shift of the bands �E in epitaxial graphene
(EG) samples implies a much smaller coupling constant ˛QFS

G � 0:15. This
means the substrate screening constant 
EG could be as high as 30. Such a large
polarizability naturally arises from the large number of unsaturated silicon dangling
bonds at the buffer layer/SiC interface [128].

To conclude this section, potassium on graphene has played a very different role
than hydrogen on graphene in Sect. 4.5. There, the adsorbate was an active player,
directly interfering with the carrier transport through strong quantum corrections to
the transport. For potassium doping, on the other hand, the quantum corrections
to transport due to potassium adatoms are minor [8] but the doping effect is
very strong. This difference originates directly from the different symmetry of the
bonding sites .H D T;K D H6/ illustrated in Fig. 4.4.

Unlike hydrogen adatoms, potassium adatoms preserve the A–B lattice symme-
try, introducing only a relatively weak long-range Coulomb potential. This allows
us to reveal the inherent physics of graphene at high doping. In the next section,
we will take this to extremes, going far beyond the Dirac carrier limit to further
explore the susceptibility of graphene. There we will show that the electron gas is
(conceptually) unstable against a superconducting ground state.

4.7 Calcium Adsorption: Superconducting Instability
of Graphene

An early explanation for the high temperature superconductivity in cuprates was
the proximity of the Fermi level to a saddle point in the band structure [185, 186]
as shown in Fig. 4.10. At extremely high doping levels, graphene’s band structure
bares a striking similarity, having similar saddle points in a threefold geometry, see
Fig. 4.10.

There are three principle arguments for why such a band structure can lead to
superconductivity, if the Fermi energy is near the saddle point energy. Together,
these arguments comprise the “van Hove scenario” for superconductivity. The first
argument is that at such a saddle point, there are present both electron-like and hole-
like carriers, thus there is the basis of an attractive interaction necessary for forming
Cooper pairs.

The second argument lies in the fact that the DOS has a maximum at the saddle
points [101] called a van Hove singularity (VHS). A high DOS is needed because no
matter the interaction strength, nothing can happen if there are insufficient carriers.
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a b

Fig. 4.10 Topology of the band structure of (a) High-Tc superconductors and (b) graphene.
Saddle points in the band structure resulting in van Hove singularities in the density of states
are highlighted by arrows. Graphene bands were calculated using the tight binding parameters of
Reich [26]

The third argument derives from the form of the Lindhard spin and charge
susceptibility function:

�.q; !/ D �
X

k

f .
k/� f .
kCq/


k � 
kCq � „! � iı
: (4.15)

Because the denominator vanishes at the Fermi edge, it can lead to divergences
whose strength depends on the topology of the Fermi surface. At such divergences,
� ! 1 and the screening becomes essentially perfect at certain wavevectors.
Among the consequences of such perfect screening is that Coulomb repulsion
(which discourages pairing) is reduced, but also the lattice can become susceptible
to distortions. For example, nested, or parallel, sections of the Fermi surface
connected by a vector q will be unstable to forming spin or charge density waves
with wavelength 2�=q, provided that q does not lie on the reciprocal lattice. This
commonly leads to symmetry changes, for example, the Peierls transition in one-
dimensional metals [187].

For the topology of graphene’s bands in Fig. 4.10b, singularities in the suscepti-
bility will occur at both q D 0 and at those q which connect any two saddle points.
But these qs are all combinations of reciprocal lattice vectors and the various �M
vectors; density excitations on these wavevectors do not lead to symmetry changes.
We can conclude that graphene does not have a density wave ground state, so that
the ground state will be either ferromagnetic or superconducting.

Some excitement was generated by the discovery of superconducting CaC6
compounds (Tc � 12 K), consisting of graphene layers intercalated by Ca atoms
[188]. Initially, it was proposed that an electron–electron coupling mechanism was
responsible, but later the theoretical consensus became that the superconductivity
was mainly derived from the electronic states in the Ca layers, not the graphene
[189–194]. Also, the doping appears to be far from the VHS energy.
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Nevertheless, it is interesting to ask two questions:

1. Can such a high doping level be achieved in graphene?
2. Does the topology of the bands near the saddle point support a superconducting

or magnetic instability?

To investigate the first question, McChesney et al. doped graphene using Ca. The
aim of Ca doping was to achieve a higher electron transfer per adatom than for
potassium. Although that intention was not realized (the computed charge transfer
per Ca atom is hardly one electron per adatom [62], not much more than for
potassium), it turned out to have a major benefit: deposition of Ca followed by
annealing allowed Ca to intercalate under the graphene, leaving the top surface clean
for additional chemical dopants to be adsorbed [16].

Figure 4.11 shows the Fermi surfaces and underlying band structures of a variety
of doping combinations achieved by this method. The last two panels correspond
to doping just below and just above the VHS. The transition between these two –
when the closed electron pockets at K and K0 merge to form a single large hole
pocket centered at � – is called a Lifshitz transition or sometimes an electronic
topological transition (ETT). This occurs at a net charge transfer of around 0.18
electrons per unit cell or 3:45 � 1014 cm�2.

So, the first question is answered that graphene can be readily doped well past
the VHS energy.

The answer to the second question depends on the exact shape of the bands.
Careful examination of the band structure (Fig. 4.11h, lower panel) near the M
point shows that it is extremely flat, indicating that the hole-like states at the VHS
have a large (approaching infinite) mass. This suggests that the VHS is particularly
strong – having a one-dimensional or extended character. Such an extended VHS
(eVHS) leads to a square-root divergence in the DOS, whereas an ordinary VHS
has a weaker, logarithmic divergence [186].

A comparison of the LDA band structure [26] to the observed band structure is
shown in Fig. 4.12. To make this comparison, both the model and the experimental
data were fitted to third-near-neighbor tight binding models. The LDA calculation
does not capture the flatness of the bands nor the extension of the VHS, suggesting
that this eVHS arises by a strong-correlation effect. This is supported by GW
calculations, which does capture partially the flatness of the band but not as strongly
as the data [195].

Calandra and Mauri showed that such a flat band can occur due to hybridization
of Ca 3d states with the graphene band [64], but this requires

p
3 � p

3 long range
order in the Ca or K arrangements which cannot be confirmed in the data (among
the associated effects would be a large gap at the Dirac crossings in Fig. 4.11 which
is clearly not present).

We have to conclude the presence of an extended VHS in doped graphene, which
has probably two origins: a large electron–electron self-energy which depressed
the band energy at the graphene M point and second a mass enhancement due to
electron–phonon coupling [16]. Support for the influence of many-body interactions
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Fig. 4.11 Evolution of the graphene band structure under combinations of potassium and calcium
doping both below and above epitaxial graphene on SiC(0001). (a) As-grown (clean) epitaxial
graphene; (b) potassium adatoms on top, at similar coverage as the data in Fig. 4.7; (c) saturated,
ordered 0.25 ML 2 � 2 phase of K on graphene; (d) saturation dose of Ca under the graphene; (e)
saturation dose of Ca above the graphene; (f) combination of (d)+(c); (g) saturation dose of Ca
under the graphene, and some Ca on top; (h) same as (g) after additional dose of K atoms. Panels
(a–f) share a common momentum scale (see scale bar in (f)); the momentum scale in (g–h) is set
by the K-K0 distance, 1:703Å�1 (From [16])

in forming the eVHS is that at the other saddle point below ED, the VHS is of the
ordinary type, as predicted by all the models.

Given the detailed shape of the VHS, McChesney et al. went on to calculate
the susceptibility �.q/ and from there to calculate the effective couplings within
BCS theory, with on-site Coulomb interaction U as an adjustable parameter. They
could show that for any reasonable U , superconductivity induced by the eVHS
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theory expt

extended VHSpoint-like VHS

a b

Fig. 4.12 Comparison of (a) first-principles LDA calculation [26] and (b) experimental band
structure for Ca+K doped graphene [16]. The respective bands are represented here by fits to a
third-near neighbor tight binding model

would always be favored over a ferromagnetic ground state. Furthermore, they could
compute an enhancement of the critical temperature for superconductivity up to two
orders of magnitude above what it would be for an ordinary VHS.

This is not to say that the samples investigated were actually superconducting –
this was not looked for in the experiments – nor that the eVHS scenario explains
superconductivity in other carbon systems such as KC8 and CaC6. Among other
factors, the long-range order and the interlayer coupling of the latter disrupt the
band structure, removing the VHS from consideration.

It does suggest that doped graphene can achieve an electronically mediated
superconductivity if the doping is in the vicinity of the VHS and the lattice
symmetry is preserved, i.e., the chemical dopants do not introduce new states near
the VHS to disrupt the band structure.

4.8 Conclusions and Outlook

Graphene is a remarkable material, and in this chapter we have emphasized its
properties in regards to many-body interactions, which can easily be altered and
probed by adsorbates. In fact, it is the material par excellence for the variety of self-
energy phenomena that can be probed on wide energy scales – from meV to 2 eV.

It is not a surprise, then, that it shows hints of such various physics – from
Anderson localization, to Mott insulator, to Plasmaronic material (to coin a term),
to superconductor – not to mention the massless Dirac character whose elucidation
started the rush to further discoveries in 2005.

Considering the zoo of adatoms that can be adsorbed – not to mention molecules,
which were not even covered in this chapter, and the very few that have so far been
explored as to their effects on graphene – I have come to believe that there is no
known phase of condensed matter that will not eventually be realized in graphene:
let the animals loose!
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Chapter 5
Epitaxial Graphene on SiC(0001)

Thomas Seyller

Abstract The growth of epitaxial graphene on silicon carbide (SiC) is considered
to be a viable route to the development of graphene-based electronic devices.
Consequently, much work has been done in the last few years on characterization of
this material and on improving its growth and properties. This chapter is devoted to
the growth and properties of epitaxial graphene on the hexagonal SiC(0001) surface.
The properties of SiC are briefly summarized before the growth of graphene in
ultrahigh vacuum (UHV) is described. Next, the electronic and structural properties
of the so-called buffer layer are investigated before discussing the band structures
of monolayer and bilayer graphene close to the K-point of the hexagonal Brillouin
zone. Recent results indicate that growth of graphene in UHV is insufficient for
obtaining electronic grade graphene layers. Instead, growth of graphene in Ar
atmosphere has been suggested to lead to graphene synthesis on wafer scale and
work on this topic is summarized. Then a brief description of transport properties of
graphene on SiC(0001) is given. Finally, it will be shown how interface engineering
of epitaxial graphene on SiC(0001) may be used to change the properties of the
graphene layers.

5.1 Introduction

Graphene, the two-dimensional sheet of carbon atoms in honeycomb arrangement,
is one of the most exciting materials currently under investigation. In graphene each
carbon atom is bound to three others in a planar geometry. This geometry results
from the sp2-hybridization of the carbon valence orbitals. While the three sp2-
orbitals form strong �-bonds with the corresponding �- and �*-bands lying far away
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from the Fermi energy, the remaining p-orbital leads to a delocalized �-bond. The
resulting bonding and antibonding �- and �*-bands touch each other only at the
K-point of the hexagonal Brillouin zone, as was already calculated by Wallace [1]
many years ago. The linear band structure of graphene in the vicinity of the K-point
and the fact that the wave function is a two-component wave function similar to
a spinor in relativistic quantum mechanics leads to many interesting properties of
graphene, which are the topics of individual chapters of this book.

It is probably no understatement to say that the boom of graphene science [2,3] is
to a large extent driven by the fact that exfoliation of graphene from HOPG [4] is a
relatively easy and cheap method by which samples are obtained for basic research.
However clearly, mechanical exfoliation will not enable a technological exploitation
of graphene. Alternatively, methods to grow graphene on a substrate need to be
developed before electronic applications of graphene have a chance to emerge. In
principle, there are two different approaches that are currently under investigation:
growth of graphene by chemical vapor deposition on metal substrates [5–9] (see
Chap. 7) and epitaxial growth of graphene on the basal plane surfaces of the wide
band gap semiconductor silicon carbide (SiC) [10–13]. The latter is the topic of this
chapter as well as Chap. 6.

Growing graphene on SiC surfaces is – in principle – a rather simple task. At
high enough temperatures, SiC decomposes into silicon and carbon. Silicon atoms
sublimate from the surface due to their high vapor pressure. The carbon atoms,
however, remain at the surface and form stable C–C bonds in the form of graphite.
The graphitization of SiC surfaces is a long known phenomenon and was first
observed by Edward G. Acheson, who invented the so-called Acheson process [14]
to produce silicon carbide (then called carborundum). Later, Acheson [15] observed
that heating of silicon carbide to high temperatures leads to the formation of
graphite, which was subsequently exploited for the production of artificial graphite
(Acheson graphite), which was used as a solid lubricant. With increasing interest in
SiC for power electronics [16], first systematic studies of its surfaces were carried
out. Van Bommel and coworkers [17] investigated the influence of heat treatment
on the polar SiC{0001} surfaces using Auger electron spectroscopy and low-energy
electron diffraction (LEED) and observed the formation of graphite on the surface.
Carbon-rich surface phases were later also studied by other groups (see [18] and
references therein). In 2004, the group of Walt de Heer at the Georgia Technical
University proposed that proper growth conditions could allow for the production
of graphene on top of SiC for electronic applications [10]. This work lead to the
development of the field of epitaxial graphene. This chapter is devoted to the growth
and the properties of epitaxial graphene on SiC surfaces, concentrating on the silicon
terminated surface.

Since graphene lies conveniently on the surface of the SiC source and substrate
material, it can be studied by surface science techniques such as photoelectron
spectroscopy, electron diffraction, scanning probe microscopy, etc. In addition,
much information can be gained from Raman spectroscopy. Structures such as
Hall bars and van der Pauw structures can be easily constructed using standard
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lithography in a top-down fashion, which allows access to important transport
phenomena.

5.2 Silicon Carbide and Its Polar Surfaces

Silicon carbide comes in a variety of crystalline modifications, the so-called
polytypes. Figure 5.1 shows the basic building blocks of SiC polytypes [19]. Due
to the sp3 hybridization of the silicon and carbon s and p valence orbitals, silicon
and carbon atoms are bound to four neighbors in a tetrahedral arrangement [see
Fig. 5.1a]. The bonds are characterized by a significant degree of ionicity due to
the different electronegativities of the two elements [20, 21], which are 1.9 (Si) and
2.55 (C) on the Pauling scale, respectively. So-called bilayers consisting of edge
connected Si–C tetrahedra are formed from the individual tetrahedra as shown in
Fig. 5.1b.

Bulk crystals of SiC are formed by stacking bilayers on top of each other. Two
different stacking arrangements, denoted cubic stacking or hexagonal stacking, are
possible which are shown in Fig. 5.1c. Cubic stacking corresponds to the cubic
zinc blende structure and hexagonal stacking is found in the hexagonal wurzite
structure. In the Ramsdell notation [22], these structures are referred to as 3C
structure and 2H structure, respectively.1 They are shown in Fig. 5.2. These two
different stacking arrangements are mixed in a periodic fashion to form more than
200 known polytypes [23]. Two of them, the hexagonal polytypes 4H–SiC and 6H–
SiC are also shown in Fig. 5.2. Note that in these two polytypes the unit cells contain
4 and 6 bilayers, respectively. All the SiC polytypes are semiconductors with a large
band gap, which varies from 2.39 eV for 3C–SiC over 3.02 for 6H–SiC to 3.27 eV

a b c

Fig. 5.1 Structural elements of SiC: (a) tetrahedral bonding arrangement; (b) bilayer; (c) the two
different stacking arrangements

1In the Ramsdell notation the polytypes are characterized by the number of layers which make up
the unit cell in c-axis direction and by a letter indicating the nature of the crystal lattice (C: cubic,
H: hexagonal, R: rhombohedral).



138 T. Seyller

6H-SiC 4H-SiC3C-SiC
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c

Fig. 5.2 Side view projection onto the (1120) plane of the crystal structure of four different
polytypes of SiC. Also shown is the hexagonal unit cell indicating the orientation of the (0001),
(1120), and the (1100) planes. The (0001) surface has only Si atoms in the topmost layer and the
opposite face only C atoms. The latter is called (0001) surface

for 4H–SiC [24]. Hence, intrinsic or compensated SiC is insulating. This is a clear
advantage of SiC as a substrate for graphene: the latter can be directly patterned into
devices without prior transfer to another substrate, which is required for graphene
grown on metals. Another interesting approach has recently been proposed by
Suemitsu et al. [25], who grew cubic silicon carbide on top of Si wafers. Thermally
activated growth of graphene on the 3C–SiC films may enable the integration of
graphene into Si technology.

Due to the importance of SiC surfaces for SiC growth and processing, they
have attracted a lot of attention [18, 26–33]. As a consequence, much is known
not only about the structural phases of the polar {0001} surfaces of the techno-
logically most important polytypes 6H– and 4H–SiC, but also about 3C–SiC(111)
and 3C–SiC(100) surfaces. Complete phase diagrams for both, the Si-terminated
SiC(0001) surface (Si-face) and the C-terminated SiC(0001) surface (C-face),
are given in [18]. The structures observed on these two surface orientations are
characterized by a minimization of the number of dangling bonds. Due to symmetry
requirements, this can only be achieved in adatom structures of different types and
periodicity. One structure, which is of particular importance for epitaxial graphene
on SiC(0001), is the carbon-rich .6

p
3 � 6

p
3/R30ı reconstruction, which will be

discussed in detail further below.

5.3 Growth of Epitaxial Graphene on SiC(0001)
in Ultra-High Vacuum

Many studies of graphene on hexagonal SiC(0001) surfaces have been and are
still carried out on layers grown in ultra-high vacuum (UHV). The UHV growth
procedure follows the well-known phase diagram [18] as shown schematically in
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Fig. 5.3 Schematic
representation of the
preparation procedure for
graphene and few-layer
graphene on the Si-face.
Representative LEED
patterns [34] are also shown.
The reciprocal lattice vectors
of the SiC (s1; s2) and
graphene (g1; g2) lattices are
indicated

Fig. 5.3. After introduction into the UHV chamber, the SiC sample is normally
contaminated by oxygen and hydrocarbons from the air. After degassing, the sample
is annealed in situ at a temperatures of around 850ıC under simultaneous deposition
of Si from an evaporator. Typical deposition rates used are of the order of one
monolayer per minute (1 ML/min). This treatment results in the formation of an
Si-rich .3 � 3/ reconstruction [18]. This reconstruction is a rather complicated
structure, which consists of an Si adlayer, an Si tetramer and an Si adatom on top
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of the tetramer [35]. Excess Si is then gradually removed by subsequent annealing
steps. As an intermediate structure, the .

p
3 � p

3/R30ı reconstruction with one Si
adatom per unit cell sitting in a so-called T4 position [36] is observed after annealing
to 1,050ıC. Further annealing at 1,150ıC leads to desorption of these adatoms and
to decomposition of SiC into mainly Si and C. While Si atoms desorb from the
surface, C atoms form stable bonds among each other. A C-rich reconstruction with
.6

p
3 � 6

p
3/R30ı periodicity is observed. Note that the diffraction pattern shows

already spots on a grid belonging to the lattice of graphene. If the temperature is
raised to about 1,280ıC more Si is lost from the surface and a graphene layer is
building up on the surface. The LEED pattern observed at this stage is very similar to
the one of the .6

p
3�6

p
3/R30ı reconstruction. Finally, increasing the temperature

even more leads to the formation of additional graphene layers, which form a well-
ordered graphite-like stack as is evident from the LEED pattern. Note that the basal
plane lattice vectors of the SiC substrate and the growing graphene/graphite stack
are rotated against each other by 30 degree.

Another possible pathway for the preparation of graphene on SiC{0001} starts
with ex-situ H-etched surfaces. These are usually covered with the silicate adlayer
reconstruction [37], which is an ordered monolayer of silicon oxide. Heating such
samples in UHV to temperatures close to 1,000ıC induces desorption of oxygen and
formation of the Si-rich .

p
3 � p

3/R30ı reconstruction. Upon further annealing,
this surface transforms into carbon-rich structures as outlined above [18]. Today,
state-of-the art graphene growth is no longer performed in UHV. This will be the
topic of Sect. 5.6.

5.4 The .6
p

3 � 6
p

3/R30ı Reconstruction

The carbon-rich .6
p

3 � 6
p

3/R30ı reconstruction deserves special attention.
Already van Bommel et al. [17] have realized that the diffraction pattern contains
spots at positions corresponding to a graphite lattice. They concluded that the
diffraction pattern was due to a graphite layer bound by weak van der Waals
interaction to the unreconstructed SiC(1�1) surface. Other groups suggested a
similar scenario with a .

p
3 � p

3/R30ı reconstructed surface below the graphite
layer [38–41]. The additional, fractional order spots were interpreted in terms of a
moire pattern. The intensity of the fractional order spots is very high, suggesting
that there is a considerable buckling in the surface, which is supported by STM
images [42].

Further important information comes from ARPES measurements. Figure 5.4a, b
shows the valence band dispersion measured for the .6

p
3 � 6

p
3/R30ı recon-

struction and a sample with one monolayer graphene along the � KM and � M�

directions of the graphene Brillouin zone, respectively. A striking similarity between
the two measurements is that the .6

p
3 � 6

p
3/R30ı reconstruction exhibits clear

graphene-like �-bands which are well developed in band width and periodic-
ity in momentum space. This indicates that the atomic arrangement within the
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Fig. 5.4 (a) and (b) Photoelectron intensity map vs. binding energy and parallel electron
momentum of SiC(0001)-.6

p
3 � 6

p
3/R30ı and a sample with one monolayer graphene,

respectively. The sketch in (b) shows the direction of kk within the hexagonal Brillouin zone of
graphene. (c) C1s core level spectra of the .6

p
3 � 6

p
3/R30ı reconstruction measured with two

different photon energies. Also shown is a curve fit using three Voigt profiles. (d) C1s core level
spectra of the .6

p
3�6

p
3/R30ı reconstruction and after growth of graphene. The inset shows the

ratio between the intensity of component S2 and the SiC bulk component obtained by curve fitting.
Adapted from [34]. (e) Model of the buffer layer, i.e. the .6

p
3 � 6

p
3/R30ı reconstruction, and

of a monolayer of graphene on top of the buffer layer
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.6
p

3 � 6
p

3/R30ı-reconstructed layer is topologically identical to that of graphene
[34, 43], i.e. that it contains six-membered rings only and no five- or seven-
membered rings [44]. Compared to the �-bands of neutral graphite, the �-bands
of the .6

p
3 � 6

p
3/R30ı reconstruction are shifted by 1:0 ˙ 0:1 eV toward higher

binding energies [34, 43]. For monolayer graphene [Fig. 5.4b], this shift is reduced
to 0.4 eV with respect to graphite. The energy shift is due to a partial filling of the
��-bands by a charge transfer from the substrate, which leads to an effective n-type
doping of the graphene layers [34, 43, 45–48].

Interestingly, while there is a well-developed �-band, the �-band is less devel-
oped. Instead, an accumulation of intensity centered around � is seen, which has
an envelope that is strongly reminiscent of the dispersion of the �-band. This was
attributed to band folding caused by the potential of the large unit cell, which affects
the delocalized �-states more than the �-states [34, 43]. The bottom of this band at
� is located 3.2 eV below the bottom of the �-band of graphene, which points
toward a covalent coupling of pz-orbitals to the substrate [34]. A similar behavior
was also observed for graphene on Ni(111) [49–51], where it strongly interacts
with the substrate in a commensurate .2 � 2/ structure. The .6

p
3 � 6

p
3/R30ı

reconstruction has no states at the Fermi level, i.e. it is insulating with two localized
states g1 and g2 at binding energies of 0.5 eV and 1.6 eV, respectively. The insulating
nature of the .6

p
3 � 6

p
3/R30ı surface is in favor of the conclusion that a strong

interaction of at least part of the carbon pz-orbitals with the substrate exists [34,43].
This picture is supported by core level spectroscopy. Figure 5.4c shows C1s core

level spectra of the .6
p

3 � 6
p

3/R30ı reconstruction. The spectra contain a bulk
component (SiC) and two surface components (S1/S2) with an intensity ratio of 1:2.
Changing the photon energy and thus the surface sensitivity leaves the intensity ratio
almost unchanged [34, 43], which is evidence that the C atoms leading to the two
components are in the same plane. From the ARPES spectra, it was concluded that
the density of C atoms in the surface layer is the same as in graphite. Using a layer
attenuation model, it was estimated that S1 and S2 result from a layer of sp2-bonded
carbon with a thickness of 2.4˙0.3 Å which is consistent with a monolayer coverage
[34, 43]. It was proposed that one third of the C atoms within this layer is bound
covalently to the underlying SiC substrate leading to component S1. The other two
thirds visible in the spectrum as component S2 are sp2-hybridized and connected
to C-atoms within the reconstruction layer only [34, 43]. The area density of C-
atoms in graphene (3:82 � 1015 cm�2) is close to three times that of Si atoms on the
SiC(0001) surface (1:22 � 1015 cm�2). With these numbers, the S1:S2 ratio of 1:2
follows naturally from the above-described bonding scenario.

The conclusion one can draw from the experimental data discussed above is that
the .6

p
3 � 6

p
3/R30ı reconstruction is comprised of a graphene layer, which is

covalently bound to the substrate. While the �-bands are fully developed and only
shifted in energy due to charge transfer, the �-band are distorted due to covalent
bonding to the substrate in such a way that this layer is nonmetallic. Hence, that
layer is frequently called “‘0th’ layer” or “dead layer.” Due to the lattice mismatch,
the presence of a considerable number of dangling bonds has to be considered.
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A schematic ball-and-stick model of the structure is shown in Fig. 5.4e. Several
theoretical models [52–56] have been produced, which qualitatively support the
above drawn picture of this structure. In particular, STM results are reproduced
quite well by calculations [52, 56].

It must be mentioned that other models have been proposed for the buffer layer.
A combined STM/DFT [57] study has extended the above model by including
defects in the form of five-membered and seven-membered rings, which are
arranged in a periodic fashion in order to accommodate the lattice mismatch. Rutter
et al. [58] proposed a model with an Si tetramer and an Si adatom in the unit cell
located at the interface, which could explain some of the features observed in STM
[58], but the presence of these additional Si atoms has not been confirmed by core
level spectroscopy [42]. Another model is based on X-ray reflectivity measurements
carried out and analyzed by Hass et al. [59]. They concluded that the surface
reconstruction is a strongly relaxed SiC bilayer with a dense carbon layer above
it. The latter was proposed to contain significant amounts of Si atoms. The apparent
discrepancy between photoelectron spectroscopy results and the X-ray reflectivity
study is still an open question.

Figure 5.4d depicts C1s spectra of the .6
p

3 � 6
p

3/R30ı reconstruction and
of graphene layers grown by annealing this sample stepwise to higher temperatures
[34]. Due to the increasing thickness of the stack of graphene layers and the resulting
damping of photoelectrons from deeper lying layers, the bulk signal of the SiC
substrate is decreasing. A shoulder due to the component S2 is detectable in all
C 1s spectra and its intensity decreases as well. Inset of Fig. 5.4d shows that the
intensity ratio between the component S2 and the bulk component remains constant
during the growth of a thicker stack of graphene layers. This is a clear indication that
the .6

p
3 � 6

p
3/R30ı reconstruction remains at the interface between SiC(0001)

and FLG [34, 43] as depicted schematically in Fig. 5.4. This is further supported
by STM studies [60–63] in which it was observed that at high tunneling bias the
graphene layer becomes transparent so that the .6

p
3 � 6

p
3/R30ı reconstructed is

imaged. Because of this observation, the .6
p

3 � 6
p

3/R30ı reconstruction is also
called “buffer layer” or “interface layer.” It was also proposed that the strong bonds
between the ‘0th’ layer and the SiC(0001) surface are responsible for the observed
alignment between graphene and the SiC lattice on the Si-face [34]. A similar buffer
layer is not present at the SiC(.0001/) surface [34]. Here, only a weak bonding
between the substrate surface and graphene is observed, which was also made
responsible for the observed rotational stacking faults.

5.5 Electronic Structure of Monolayer and Bilayer
Graphene at the K-point

The electronic structure near the K-point is most important for the electronic
transport properties of graphene. Hence, several groups have investigated the band
structure in that region using ARPES [45–48, 64–70]. Figure 5.5a shows ARPES
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Fig. 5.5 Photoelectron intensity map vs. binding energy and parallel electron momentum of (a)
monolayer graphene and (b) bilayer graphene grown on SiC(0001). The wave vector was varied
perpendicular to the � KM direction. The sketch on the left-hand side shows how charge is
transferred from the substrate surface to the graphene layer. The same is shown for bilayer graphene
on the right-band side. In this case, the charge is unevenly distributed between the two layers

spectra of monolayer graphene on SiC(0001). The measurements were taken by
varying the wave vector perpendicular to the � KM direction. In this direction,
both bands are visible and the Dirac crossing can be observed. In the perpendicular
direction, only one band is visible due to an interference effect of the emission of
the two sublattices of graphene [48, 71, 72]. For monolayer graphene, ED � EF D
450 meV due to a transfer of charge from the substrate into the graphene layer as
indicated in the right-hand sketch in Fig. 5.5. The effect of the charge transfer, which
shifts ED below EF so that the bottom of the ��-band becomes visible in ARES,
is equivalent to an on-site Coulomb potential E1. The latter enters the well-known
Hamiltonian operator of graphene as diagonal element [48, 73, 74]:

H D
 

E1 vF.kx � iky/

vF.kx C iky/ E1:

!
(5.1)

Here, vF is the Fermi velocity of graphene. The observed position of ED relative
to EF corresponds to an excess charge of n D 1:1 � 1013cm�2. Kopylov et al. [75]
have analyzed a theoretical model for the charge transfer assuming either donation
of charge from bulk donors or from states in the SiC surface. For both models, they
determined the maximum electron density nmax induced in monolayer and bilayer
graphene. nmax is determined by the work function difference and the density of
donor states in the bulk or at the surface. Considering the above discussion about
the nature of the buffer layer, it seems reasonable to assume that a high density
of amphoteric dangling bonds may be present at the interface, which could be a
source of the observed excess charge in epitaxial graphene on SiC(0001). That



5 Epitaxial Graphene on SiC(0001) 145

excess charge is also responsible for the observation that the C1s binding energy
of graphene is higher than that of graphite [34,43]. Note that the dispersion deviates
from the exact linear behavior of the Hamiltonian in (5.1) due to many body effects
[45, 48, 64, 65], which renormalize the measured spectral function as discussed in
detail in Chap. 3 of the present book.

The spectrum of the bilayer depicted in Fig. 5.5b exhibits two bonding �-bands.
Note that the number of �-bands is increased by one for every layer added to the
stack so that counting the number of �-bands seen in ARPES is an efficient tool for
determining the number of layers [46]. One of the antibonding ��-bands is visible
as well in Fig. 5.5b because the charge transfer from the substrate surface shifts it
below EF. The second antibonding band is still above EF and thus not visible.

Closer inspection of the spectra obtained for pristine bilayer graphene on
SiC(0001) shows that there is a band gap [46–48], which is caused by the uneven
distribution of the charge between the two layers as shown in the sketch on the right-
hand side of Fig. 5.5b. In fact, about 95% of the charge sits in the layer closer to the
substrate [46]. As a result of the unbalanced charge distribution, the on-site coulomb
potential varies between the two layers as shown in Fig. 5.5b. Introducing on-site
Coulomb potentials E1 and E2 for the two layers into the bilayer Hamiltonian H2ML

yields [47, 74, 76–79]

H2ML D

0
BBBBBB@

E1 vF.kx � iky/ 0 0

vF.kx C iky/ E1 �1 0

0 �1 E2 vF.kx � iky/

0 0 vF.kx C iky/ E2

1
CCCCCCA

; (5.2)

where �1 is the hopping term between the B-atoms of the first layer and the
A-atoms of the second layer. This equation implies that a band gap of the size
�E D jE1 � E2j is opened as soon as the two on-site potentials are different.
Hence, a tunable band gap can be created by applying an electrostatic field across the
bilayer system, which may be used as a switch [47, 80–83]. The first observation of
this phenomenon was made, however, using ARPES. The result of the experiment
is shown in Fig. 5.6. Ohta et al. [47] doped bilayer graphene on SiC(0001) using
potassium. Alkali metal doping is an ancient technique used by surface scientist.
Surprisingly enough, that technique still produces new and interesting results as one
can see from Chap. 4. Like the electrons from the substrate, which reside in the
bottom layer, the electrons donated from the potassium atoms like to sit in the top
layer. Hence, the potential E2 becomes more and more similar to E1 reducing the
band gap. Eventually, E2 D E1 and the band gap become zero. Finally, more doping
of the top layer opens the band gap again because the charge in the top layer is larger
than the one in the bottom layer.
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Fig. 5.6 Closing and opening of the band gap in bilayer graphene induced by potassium
adsorption [47] on top of the bilayer stack. The left panel shows the as-prepared bilayer on
SiC(0001). Charge transfer into the bottom layer gives rise to different on-site Coulomb potentials
E1 < E2, which result in a band gap. Doping of the top layer by potassium adsorption on the
surface of the bilayer stack reduces the difference between the on-site potentials. If E1 D E2, the
gap is closed .�E D 0/. Further K dosing increases the potential difference again (E1 > E2),
which reopens the gap. The increasing shift of ED below EF is due to the increasing occupation of
the �*-bands. Adapted from [47]

5.6 State-of-the Art Graphene Growth in Argon Atmosphere

The growth of graphene on SiC in ultrahigh vacuum has led to very interesting
results concerning the basic physics of graphene. Aiming at the development of
graphene electronics, one must clarify whether the properties of the layers are
sufficiently good for them to be used in devices. Since transport in graphene will
suffer from defects and structural imperfections, it is a good idea to first look at the
structural properties in more detail. Unfortunately, most surface science methods are
not well suited for this task. Electron spectroscopy averages over too large an area
and STM is limited mostly to very small dimensions. It turns out that one surface
science method is excellently suited to study graphene. This is low-energy electron
microscopy (LEEM) and its related techniques [84, 85].

The pioneering LEEM study of epitaxial graphene was carried out by Hibino
et al. [86] on graphene grown in UHV. He observed that different areas of the
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E = 3.5 eV E = 4.0 eV

a b c

Fig. 5.7 LEEM images of graphene layers grown on SiC(0001) recorded at electron energies of
(a) 3.5 eV and (b) 4.0 eV. The image contrast is caused by a thickness-dependent reflectivity. (c)
Reflectivity as a function of electron energy for the regions marked in (a) and (b). The analysis
led to the conclusion that the number of minima in the reflectivity spectrum corresponds to the
number of graphene layers: ˛: 1 monolayer; A: 2 monolayers, B: 3 monolayers, etc. Reprinted
with permission from [86]. Copyright (2008) by the American Physical Society

sample exhibited different brightness in the bright field2 LEEM image, i.e. that these
areas had a different reflectivity. As an example, two LEEM images are shown in
Fig. 5.7a, b. Furthermore, electron reflectivity of these areas displays characteristic
oscillations as a function of electron energy as shown in Fig. 5.7c. This behavior
is explained by the quantized electronic structure [86] of few-layer graphene films
with varying thickness. Resonances with these states allows the impinging electrons
to flow into the sample resulting in dips in the reflectivity. The number of dips
is a direct measure of the number of layers. Note that the buffer layer has a
broad hump in this energy region rather than a dip. Hibino’s work has formed
the basis of the microscopic thickness determination of epitaxial graphene. Ohta
et al. [87] have used LEEM to determine the ratio of the surface area covered by
buffer layer, monolayer, and bilayer graphene and correlated the result with ARPES
measurements. While ARPES gives the right ratio between monolayer and bilayer,
it is basically blind for the buffer layer area. Raman spectroscopy is also capable of
determining the number of layers of graphene and few-layer graphene [88–93], but
care has to be exercised because the position of Raman peaks is influenced by both
strain and charge. In addition, Raman mapping is slower and the spatial resolution
is at best of the order of 1/3 of a �m, whereas LEEM has a spatial resolution below
10 nm.

LEEM studies [12, 86, 87] and X-ray diffraction [94] have demonstrated that the
thickness distribution on UHV grown samples is rather broad. The films contain
many domains of different thicknesses with lateral dimensions of 30–200 nm.
The surfaces also show considerable pitting, which increases the number of step
edges. This is displayed in Fig. 5.8. Apparently, the SiC surface becomes rough

2The bright field mode of LEEM generates an image from the specularly reflected electrons.
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Fig. 5.8 Comparison of
AFM (left) and LEEM (right)
images of graphene layers
grown on SiC(0001) in UHV
(top) and Ar atmosphere
(bottom). Adapted from [12]

during the process of graphene growth. Hannon and Tromp [95] have studied the
pitting of SiC(0001) during the formation of the .6

p
3 � 6

p
3/R30ı structure using

LEEM. They observed that the pits form because domains of the .6
p

3�6
p

3/R30ı
reconstruction pin decomposing surface steps and that graphene nucleates in the pits
due to the large step density.

The solution to the problem is an increase in the formation temperature of the
graphene film. This can be accomplished by carrying out the growth process in
an atmosphere of argon [12, 96]. The best results have so far been reported for
growth in 1 bar or Ar at T > 1;650ıC. Figure 5.8 shows AFM and LEEM images
of graphene grown in such a way [12]. The surface consists now of bunched macro
terraces with a width of 2–3 �m and a length of up to 100 �m [12, 96], which are
homogeneously covered by monolayer graphene. Only in the vicinity of step edges,
which are caused by the unintentional miscut of the SiC(0001) substrate, can one
identify the nucleation of additional layers.

But why is the presence of a dense argon atmosphere beneficial for the
morphology of the growing graphene film? The answer to this is the significantly
higher growth temperature required in Ar (1,550ıC atpAr D 900 mbar) compared
to UHV (1,280ıC). Graphene formation results from SiC decomposition and Si
evaporation from the substrate. Si evaporation is, however, slowed down in Ar
because the latter acts as a diffusion barrier. In this way an effective Si vapor
pressure is build up over the surface, which is not present in UHV. That partial
pressure is pushing the chemical equilibrium back to the SiC side. In order to
get the graphene growth going, one has to increase the temperature. The higher
temperature, on the other hand, enhances diffusion of surface species. Ultimately,
this leads to the dramatically improved surface morphology, which appears to
be closer to equilibrium. The macro step structure is responsible for the tighter
thickness control because nucleation of new graphene layers occurs only at step
edges. This suggests that the thickness variations can be further improved by using
substrates with a more precise surface orientation. This was verified recently by
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the Swedish group [97]. A similar improvement of the graphene film morphology
can be obtained by balancing the evaporating Si with an external flux of Si as was
reported by Tromp and Hannon [98]. They were able to shift the temperature for
graphene growth over several hundred degrees through the addition of disilane into
the UHV system.

Ohta et al. [99] have investigated how graphene grows in UHV from samples
covered by the buffer layer prepared by Ar-assisted surface graphitization. They
showed that the growth morphologies result from cooperative processes of Si
sublimation and C diffusion. The growth of high-quality, large-area graphene in a
step flow growth mode was observed to arise from etching preexisting triple bilayer
SiC steps. Near bilayer steps in the SiC substrate no step flow growth was observed
due to instabilities caused by carbon diffusion. Instead, more complex morphologies
were observed. They concluded that growing good graphene requires that the buffer
layer covered surface has a minimal number of single bilayer SiC steps.

Graphene layers grown in Ar atmosphere were also characterized by XPS,
ARPES, and LEED. It was shown that Ar-grown graphene have the same excess
carrier concentration as layers grown in UHV. The buffer layer at the interface to
the SiC(0001) substrate and the crystallographic relation to the substrate are also
independent of the growth environment [12]. Raman spectroscopy, on the other
hand, shows a significant reduction of the D peak [12] signaling a reduced density
of short range defects. This is probably the reason for the higher carrier mobility
observed in Ar grown graphene compared to UHV grown material (see Sect. 5.7).
The epitaxial graphene films are under a slight compressive strain [12], which builds
up due to the different thermal expansion coefficients of graphene and SiC. Since
SiC shrinks more during cooling down from the growth temperature, graphene is
compressed [91, 92].

5.7 Transport Properties of Graphene on SiC(0001)

Early measurements of the carrier mobility of graphene on SiC(0001) were pre-
sented by Berger et al. [10], who reported a value of around 1,200 cm2/Vs for
a stack of three layers measured at low temperature. Emtsev et al. characterized
their Ar grown graphene layers using Hall effect measurements. They observed
an unambiguous improvement compared to UHV grown material [12]. However, a
clear and strong temperature dependence was also observed so that � dropped from
around 1,850–2,000 cm2/Vs at 27 K to around 900 cm2/Vs at 300 K [12, 100]. The
reason for this temperature dependence is not very well understood so far. Note that
the reported mobility values for epitaxial graphene on SiC(0001) are much lower
than those of exfoliated graphene on a substrate, where mobilities of a 10,000–
40,000 cm2/Vs are typically observed [101,102]. However, these values are usually
measured at low carrier concentration close to the Dirac point. In pristine epitaxial
graphene on SiC(0001), the carrier concentration is usually close to 1 � 1013 cm�2.
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Weingart et al. [103] reported a mobility of 3,130 cm2/Vs at 1.4 K and
1,640 cm2/Vs at 300 K for a sample from the same source as that of [12] but with a
carrier concentration of 2:6 � 1012 cm�2. In contrast to [12], Weingart et al. [103]
did not remove the photo resist after lithography, which is assumed to lead to the
observed lowering of the carrier concentration. In a further study, they investigated
inertial-ballistic transport in nano-scale cross junctions fabricated from epitaxial
graphene on SiC(0001) [104]. Ballistic transport was observed by a negative bend
resistance measured in a nonlocal, four-terminal configuration at 4.2 K. Above
80 K, the ballistic transport vanished. The inelastic mean free path determined
in this way, fits well to estimates based on carrier mobility measurements using
Hall effect. Tedesco et al. [105] have measured the carrier mobility in graphene
on SiC(0001) and SiC(.0001/) prepared in vacuum. Surprisingly, some samples
had excess electrons and some had excess holes. In addition, the concentration of
the charge carries varied over a wide range from some 1011 to a few 1014 cm�2.
Although the uncontrolled variation of the carrier concentration is not understood,
they observed a clear dependence of the carrier mobility on the carrier density.

Other possibilities to change the carrier concentration are the formation of a
top gate by depositing a suitable gate dielectric and through transfer doping by
adsorbates. While the former requires rather complicated processing, the latter
method can be readily applied to graphene. It has been shown that deposition
of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) on top of epi-
taxial graphene leads to a reduction of the electron concentration [106, 107]. By
applying this technique to Hall bars made from epitaxial graphene on SiC(0001),
Jobst et al. [100] tuned the carrier concentration to 5 � 1010 cm�2 and observed
a carrier mobility of 29,000 cm2/Vs at 27 K. Letting the sample heat up to room
temperature reduced again the carrier mobility to around 2,500 cm2/Vs, while at
the same time increasing the concentration to about 5 � 1011 cm�2 due to thermal
excitation of carriers near EF. This result suggests that the carrier mobility in
epitaxial graphene on SiC(0001) at low temperature can be of the same order of
magnitude as that of exfoliated graphene on a SiO2 substrate. However, apparently
the presence of the SiC substrate leads to a strong temperature dependence of the
mobility with hitherto unclear origin.

The half-integer quantum Hall effect is the hallmark of graphene and therefore
its observation in epitaxial graphene has been very important. Early work by Berger
et al. [10] on graphitized SiC(0001) indicated nonlinearities in the Hall resistance
Rxy as a function of magnetic field H , which coincided with oscillations in the
magneto-resistance and which were proposed to be related to the quantum Hall
effect. Recently, several studies have reported the observation of the half-integer
QHE in epitaxial graphene on SiC(0001) [100, 109, 110], which is typical for
graphene [4, 102]. In particular, Tzalenchuk et al. have measured the QHE with
very high precision. Their measurements in a large-area epitaxial graphene sample
at temperature of 300 mK showed quantum Hall resistance quantization accurate to
a few parts in a billion. The work [109] points out the possibility to use epitaxial
graphene for quantum metrology, possibly even improve it.
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Field effect transistors (FETs) with a top gate have been fabricated by several
groups. Kedzierki et al. [111] compared FETs on the Si-face with those prepared
on the C-face. In both cases, the number of layers was definitively larger than one.
On the former, they observed field effect mobilities of 600–1,200 cm2/Vs and on
the latter up to 5,000 cm2/Vs. Si-face devices had a higher on/off current ratio than
C-face devices probably due to a tighter thickness control. Moon and coworkers
[112] demonstrated graphene FETs made from epitaxial graphene on Si-face SiC
on a wafer scale using alumina as a gate dielectric. The graphene layer had a
mobility of 1,500 cm2/Vs at a carrier density of 1 � 1013 cm�2. The field effect
mobility, however, was much lower (200 cm2/Vs) due to traps in the gate dielectric.
Furthermore, they demonstrated RF device performance and measured a current-
gain cutoff frequency (fT ) of 4.4 GHz. Lin et al. fabricated top-gated FETs on 2-inch
SiC wafers [108] as shown in Fig. 5.9 with different gate lengths and characterized
their electrical parameters. In particular, they determined the cutoff frequency and
reported an fT of 100 GHz for a 240-nm device. FETs produced using waver-scale

a b c

d

Fig. 5.9 Epitaxial graphene field effect transistors. (a) Image of the 2-inch SiC wafer with top-
gated epitaxial graphene transistors. (b) Drain current ID and device transconductance gm of a
graphene FET (gate length LG D 240 nm) as a function of gate voltage at drain bias of 1 V with the
source electrode grounded. (c) Drain current as a function of VD of a graphene FET (LG D 240 nm)
for various gate voltages. (d) Small-signal current gain jh21j as a function of frequency f for two
FETs with different gate lengths at VD D 2:5 V. The cutoff frequencies were 53 GhZ and 100 GHz
for the 550-nm and 240-nm devices, respectively. From [108]. Reprinted with permission of the
AAAS
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epitaxial graphene synthesis clearly have a high potential for future use in electronic
applications.

5.8 Engineering the Interface Between Graphene
and SiC(0001) by Hydrogen Intercalation

Recently, there has been some effort to modify the interface between SiC(0001)
and epitaxial graphene. There are several reasons to do so. First, the graphene
layers on SiC(0001) are typically n-type doped due to charge transfer from the
substrate surface. Controlling the amount of excess charge would be beneficial for
the development of devices such as high frequency transistors. Second, unlike in
free-standing graphene [113], there is a strong temperature dependence of the carrier
mobility in epitaxial graphene on SiC(0001) as discussed in Sect. 5.7. This strong
T-dependence needs to be understood and – if possible – eliminated. Several groups
have investigated how to influence the interface between SiC and graphene by
intercalation of other elements [114–121]. Here, we shall concentrate on hydrogen
intercalation.

Hydrogenation of hexagonal SiC surfaces is a well-established technique [122–
130]. The saturation of surface dangling bonds is achieved via annealing of the
SiC sample in an atmosphere (p D 1 bar) of ultra-pure molecular hydrogen at
temperatures above 1,000ıC. The so-prepared surfaces are unreconstructed and
chemically and electronically passivated. Riedl et al. [42, 116] have subjected
SiC samples covered by either the buffer layer or a monolayer graphene on the
buffer layer to a similar procedure. Virojanadara et al. [117, 118] have used atomic
hydrogen to which they exposed their samples in an UHV environment. Both
groups used surface science methods to characterize their samples. Speck et al.
[119] and Röhrl et al. [120] also used molecular hydrogen for their studies. In
addition to photoelectron spectroscopy, they characterized their samples using Hall
effect measurements, Raman spectroscopy, and infrared absorption spectroscopy.
However, instead of a saturation of dangling bonds in the buffer layer, a complete
transformation of the buffer layer in a quasi-free-standing graphene layer (QFMLG)
is observed as schematically shown in Fig. 5.10. Likewise, a sample consisting of
a monolayer graphene on the buffer layer (MLG) is transformed into quasi-free-
standing bilayer graphene (QFBLG).

Figure 5.11 shows results of several spectroscopic techniques applied to the
different systems. The C 1s core level spectra in Fig. 5.11a [119] show the
conversion of the buffer layer related peak, which consists of two components
S1 and S2 as discussed in Sect. 5.4 into an asymmetric peak due to the resulting
graphene layer [116,119]. Note that the relative intensities of the buffer layer-related
signals and the bulk signal is different to that shown in Fig. 5.4c due to the different
photon energy used in the experiments. Similarly, the C 1s spectrum of MLG
shows a graphene-related signal and a shoulder caused by the underlying buffer
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Fig. 5.10 Schematic representation of the conversion (top) of the buffer layer into quasi-free-
standing monolayer graphene (QFMLG) and (bottom) of monolayer graphene (MLG) on the buffer
layer into quasi-free-standing bilayer graphene (QFBLG)

layer. Upon annealing in hydrogen that shoulder is removed and an asymmetric
line originating from QF-BLG is observed [116, 117, 119]. Comparison of the C 1s
binding energies with that of bulk graphite for which the C1s core level is observed
at 284.45 eV shows that while MLG is n-type doped, the QFMLG and QFBLG
layers are p-type doped. The SiC bulk peak is shifted by the surface hydrogenation
process due to a change in surface band bending. The magnitude of the surface band
bending and the mechanism leading to the observed doping are subject to ongoing
investigations. Figure 5.11b depicts ARPES measurements of QFMLG and QFBLG
[119]. No buffer layer related states (c.f. Fig. 5.4a, b) are seen in the data. Instead,
the measurements clearly reveal the electronic structure of monolayer and bilayer
graphene. An ARPES investigation of potassium-doped QFMLG [131] revealed the
presence of new quasiparticles, so-called plasmarons, as discussed in Chap. 4.

While photoelectron spectroscopy readily proves the transformation of the buffer
layer into quasi-free-standing graphene, it cannot unambiguously ascertain that the
surface is saturated by hydrogen. This can be done, however, by Fourier-transform
infrared absorption spectroscopy (FTIR) in the attenuated total reflection (ATR)
mode as shown in Fig. 5.11c [119]. For both, QF-MLG and QF-BLG a sharp
absorption peak due to the Si–H stretch mode is seen. No significant shift is
observed compared to the bare H-terminated SiC(0001) surface [124] signaling a
weak interaction between the graphene layer and the Si–H entities. The absorption
line is virtually absent in s-polarization, which shows that the Si–H bonds are
perpendicular to the surface.

Raman spectroscopy was also applied to the transformed layers [119, 120].
Spectra of the 2D line are given in Fig. 5.11d. The line shape analysis of the 2D
line supports the formation of QFMLG and QFBLG upon hydrogen treatment of
the buffer layer and a graphene monolayer on the buffer layer (MLG), respectively.
While the spectrum of QFMLG consists of one narrow line, the signal of QFBLG
is made up of four components in agreement with previous results on exfoliated
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Fig. 5.11 (a) C1s core level spectra of the buffer layer, quasi-free-standing monolayer graphene
(QFMLG), monolayer graphene on the buffer layer (MLG), and quasi-free-standing bilayer
graphene (QFBLG) measured by XPS using Al K˛ radiation („! D 1486:7 eV). (b) Band structure
of QFMLG and GFBLQ measured along the high symmetry directions. (c) FTIR spectra of the Si–
H stretch mode vibration of QFMLG and QFBLG in p- and s-polarization. (d) Raman spectra of
the 2D-band of QFMLG and QFBLG. The vertical dashed and dotted lines indicate the position
of the 2D-line observed for exfoliated graphene and for MLG, respectively. Adapted from [119]
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graphene [88, 89]. The position of the 2D line of QFMLG with respect to that
of exfoliated graphene shows that QFMLG is under slight expansion [119, 120].
In contrast to that, MLG is usually observed to be under compressive strain [91–
93, 132, 133] due to the different thermal contraction when the sample is cooled
down from growth temperature to room temperature [91, 92, 133]. Compared to
MLG [12], there is an increase in the defect related D line (not shown here), which
could be a result of the hydrogenation process.

The carrier mobility of QFMLG and QF-BLG was studied using Hall effect
measurements by Speck et al. [119] at room temperature and mobility values of
1,250 cm2/Vs were reported at carrier concentrations of 6�1012 cm�2. Recent work
on improved samples by the same group [134] showed that the mobility is almost
temperature independent and falls from 3,400 cm2/Vs to 3,100 cm2/Vs when going
from 25 K to 300 K. This demonstrates that successful interface engineering may
substantially improve the properties of epitaxial graphene on SiC(0001) with respect
to future device applications.

5.9 Conclusion

This chapter has given a brief overview over the properties of epitaxial graphene
on SiC(0001). It should serve as a starting point for researchers interested in
epitaxial graphene on SiC, a rapidly developing field. In the years since the first
proposal of epitaxial graphene on SiC [10], much progress has been made in the
understanding of the physical properties of this exciting material system. Atomic
and electronic structures as well as vibrational and electronic transport properties
have been studied intensively. While exfoliated graphene is expected to lead to
many new interesting results, epitaxial graphene has the advantage that it can be
prepared on a wafer scale with methods well established in the semiconductor
industry. In addition, it also opens many possibilities for fundamental research,
which cannot be conducted on the rather small flakes of exfoliated graphene.
First studies of electronic devices have been performed using epitaxial graphene,
which demonstrate that it holds promise for application in, e.g., high-frequency
transistors for analog switching or for improved quantum resistance standards. Other
applications such as chemical sensing, micro-mechanical devices, or plasmonic
devices are expected to be developed in the future. It is clear that the future of
epitaxial graphene is bright.
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Chapter 6
Magneto-Transport on Epitaxial Graphene

Peide D. Ye, Michael Capano, Tian Shen, Yanqing Wu, and Michael L. Bolen

6.1 Introduction

Graphene, a monolayer of carbon atoms tightly packed into a two-dimensional
(2D) hexagonal lattice, has recently been successfully isolated from highly ordered
pyrolytic graphite (HOPG) and shown to be thermodynamically stable and to exhibit
astonishing transport properties, such as an electron mobility of �25;000 cm2=Vs
and velocity of �108 cm=s at room temperature [1–3]. With the high carrier mobility
enabled by its unique electronic structure, graphene has attracted many research
efforts recently. Initial works have demonstrated the great potential of graphene
for modern electronics applications. These efforts are focused on overcoming the
challenges faced to incorporate graphene into microelectronic applications. The
three particular challenges are developing a synthesis technique to manufacture
graphene over wafer-scale areas, opening an energy bandgap in graphene, and
forming a high-quality gate dielectric on the surface of graphene.

An interesting differentiation between the many well-established semiconductor
materials in microelectronic industry and graphene is how it was discovered. Most
semiconductor materials are created through deposition or melt processes, but the
origin of graphene is unique. The first successfully isolated sheet of graphene
was formed by Geim and Novoselov through a mechanical exfoliation technique
which used cellophane tape to remove and subsequently transfer graphene sheets
from HOPG to SiO2 [2]. This produced graphitic flakes tens of microns in size
upon which electronic devices were fabricated. The pioneering work on isolating
graphene has been recognized by earning its discoverers the Nobel Prize in Physics
for 2010. Since the mechanical exfoliation technique does not require expensive
equipment, this approach is still widely used for research purposes. Various
alternative methods have been studied and developed to fabricate uniform graphene

P.D. Ye (�) � M. Capano � T. Shen � Y. Wu � M.L. Bolen
School of Electrical and Computer Engineering and Birck Nanotechnology Center,
Purdue University, West Lafayette, IN 47907, USA

H. Raza (ed.), Graphene Nanoelectronics, NanoScience and Technology,
DOI 10.1007/978-3-642-22984-8__6, © Springer-Verlag Berlin Heidelberg 2012

161



162 P.D. Ye et al.

on a large-scale with controlled layer thickness, including epitaxial graphene grown
through the thermal decomposition of SiC [4–9] or chemical vapor deposition
(CVD) growth of graphene on metallic substrates, such as copper or nickel [10–
13], as described in Chap. 7.

Epitaxial graphene grown on the surface of SiC was first demonstrated three
decades ago by Van Bommel [14] and developed further recently by de Heer and
Berger et al. [4, 15]. This synthesis technique has proven to be one of the best
available to produce high-quality, large-scale graphene. Compared to exfoliated
graphene, epitaxial graphene formed by the thermal decomposition of SiC has
provided the missing pathway to a viable electronics technology. The electronic
band structure of graphene leads to a unique property which is its zero-bandgap.
An energy bandgap is essential for typical digital applications as well as most
RF applications. Many methods to engineer a bandgap within graphene have been
studied such as tailoring nanoribbon structures [16–23] and using bilayer graphene
with a displacement field [24–28]. Top gate configuration is a must for any device
applications which require high-quality gate dielectric on graphene. Unlike silicon
and other conventional semiconductor materials, the unique sp2 hybridization of
graphene provides no chemical bonds on the surface. This lack of bonds makes the
surface chemically inert, which is problematic for forming high-quality dielectrics.
There are many different solutions being investigated to solve this problem. One
such approach is through the use of atomic layer deposition (ALD), the-state-
of-the-art dielectric technique developed in Si CMOS technology [29, 30]. It has
been found that a surface treatment of NO2 gas can be used to functionalize the
surface of graphene prior to the subsequent ALD of oxide [31]. Also, ultrathin seed
layers such as an oxidized Al layer, a commercial NFC 1400–3CP (JSR Micro,
Inc.), or perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) polymer layers
have been investigated [32–35]. Recently, a novel seed layer process using ozone
and trimethylaluminum (TMA) as precursors at room temperature was also studied
[36]. It is of great importance to provide a high-quality dielectric which does not
degrade the channel mobility of graphene transistors. The dielectric should have
high phonon energy and low interface trap density to minimize phonon scattering
and impurity scattering.

In this chapter, the epitaxial graphene work on SiC performed at Purdue
University in the past years is summarized. The summary includes the synthesis
process, which uses an Epigress VP508 SiC hot-wall CVD reactor for graphene
growth [5, 33, 37–40]. The physical characterization of the epitaxial graphene is
discussed from systematic studies by scanning tunneling microscopy (STM), atomic
force microscopy (AFM), transmission electron microscopy (TEM), and Raman
spectroscopy. Furthermore, the ALD growth mechanism is investigated and ALD
high-k/graphene integration is explored. Charge mobility is characterized by Hall
mobility measurements and field-effect mobility characterization from top-gated
devices. The authors have observed for the first time the half-integer quantum Hall-
effect on epitaxial graphene which confirms that epitaxial graphene on SiC shares
the same electrical properties as exfoliated graphene [33]. Similar findings were also
reported by other groups independently [41–43]. Detailed magneto-transport studies
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on monolayer graphene on SiC (0001) are also presented. Ballistic and coherent
transport on nanostructured graphene films are also studied as well as spin transport.
Related work has also been carried out at the George Institute of Technology, Naval
Research Laboratory, Hughes Research Lab, IBM T.J. Watson Research Center, and
many other universities.

6.2 Epitaxial Graphene Synthesis

The key to forming epitaxial graphene on SiC relies on controlling the prefer-
ential desorption of silicon atoms from the substrate. The first gas phase mass
spectrometry studies of the thermal decomposition of SiC occurred in the late
1950s. It was shown that the most prevalent gaseous species sublimating from a
thermally decomposing SiC substrate is atomic silicon [44, 45]. This desorption of
silicon leaves behind a non-stoichiometric substrate in the form of a carbon rich
surface as described in Chap. 5. After self-reconstruction and relaxation, the surface
carbon minimizes its free energy through the formation of graphitic bonds. In situ
studies using X-ray photoelectron spectroscopy (XPS) as well as Auger electron
spectroscopy (AES) have demonstrated the formation of carbon-to-carbon sp2 bonds
[46]. These bonds form the hexagonal, or honeycomb-like, lattice characteristic of
graphene. This graphitic film on SiC is generally referred to as epitaxial graphene.

By varying the thermal decomposition conditions, such as growth temperature,
growth time, and chamber pressure, the material properties of the epitaxial graphene
can be changed. As a simple example, increasing the growth time can increase the
thickness of the epitaxial graphene. While true graphene is only a single monolayer
thick, epitaxial graphene on SiC can possess the same electrical characteristics
despite being multiple atomic layers thick. This is due to the symmetry and
rotational stacking sequence of the individual layers within the epitaxial graphene
[47]. Rotational stacking faults within epitaxial graphene serve to electronically
decouple the individual layers and break the stacking symmetry of Bernal stacked
graphite, which is the most common graphitic polytype. Depending on the polar
face and growth conditions, uniform films with thicknesses of 1–2 layers or up to
tens of layers can be reproducibly and reliably formed over the wafer scale.

The following is the developed process details used to grow high-quality
graphene films on SiC. The epitaxial growth starts with a wet cleaning procedure
using a Piranha bath and HF dip. Then the samples are transferred into an Epigress
VP508 hot-wall CVD reactor for SiC surface preparation, and subsequently,
graphene formation. The growth procedure is as follows:

1. A reactive hydrogen environment at 1;500ıC is held for 10 min to remove
polishing scratches.

2. The chamber is allowed to cool (typically to 700ıC or below) while the hydrogen
is evacuated.
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3. The desired growth environment replaces the hydrogen, either high-vacuum or
low-pressure Ar (1–100 mbar).

4. The chamber is brought to 1;100ıC and then ramped at 10ıC=min to the desired
growth temperature (generally 1;350–1;650ıC) for a desired length of time
(generally 10 min).

5. Allow the chamber to cool naturally.

The growth conditions, film morphology, and electrical properties of the epitaxial
graphene films differ markedly between films grown on the C-face (SiC .000N1/)
and films grown on the Si-face (SiC (0001)). This is because SiC is a polar material.
It has been confirmed by several research groups that the graphene film is thicker
for C-face grown graphene than Si-face under similar growth conditions [48]. For
the C-face, there is only a single silicon-to-carbon sp3 bond holding the desorbing
silicon atom to the surface of the substrate, whereas for the Si-face, there are three
bonds holding the silicon atom to the surface.

After growth and cooling, samples are taken out and inspected optically and
with AFM. The AFM profilometry micrographs in Fig. 6.1 demonstrate how a
growth condition, temperature in this case, affects the surface morphology. The
hold time is kept constant at 10 min and a high-vacuum environment is used for this
particular set of experiments. Comparing the micrographs, the most drastic change
is seen between the 1;450ıC and 1;500ıC growth temperatures. At temperatures
� 1;500ıC, several-micron large regions of smooth graphene films are obtained
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1.0μm

Tgrowth= 1550 °C
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Tgrowth= 1450 °C
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Fig. 6.1 AFM profilometry micrographs of C-face 4H–SiC substrates after H2 etching and thermal
decomposition at 1;350ıC; 1;450ıC; 1;500ıC; 1;550ıC, and 1;600ıC for 10 min in vacuum (low-
10�5 mbar). The images were taken by G. Prakash under the guidance of Prof. Reifenberger at
Purdue University
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which are delineated by ridges that are tens of nanometers high. As determined
from angle-resolved XPS, the film itself grows linearly in thickness with increasing
temperature. At 1;475ıC, it is 1.7 nm thick and it is 5.7 nm thick at 1;600ıC.
Optimizing the growth conditions allows for thinner films. For example, gaseous
argon can be used as a growth ambient as opposed to vacuum. At 1;600ıC, using
10 mbar of argon overpressure instead of a vacuum environment is found to decrease
the epitaxial graphene thickness by 1.1 nm. The argon overpressure creates an
additional kinetic barrier to silicon desorption which can help control epitaxial
graphene formation.

Unlike on the C-face, epitaxial graphene formation on the Si-face proceeds in
a rate limited manner, which allows for synthesizing more uniform films. The
morphology of epitaxial graphene film on the Si-face has a comparatively lower
RMS roughness than the C-face due to a lack of ridges, as depicted in Fig. 6.2.
Held at 1;550ıC under vacuum for 10 min, the Si-face has epitaxial graphene
covering approximately 95% of its surface. However, the typical Hall mobility of
graphene formed on the Si-face under vacuum is �1;300 to 1;600 cm2=Vs, which
is significantly lower than the C-face samples grown at the exact same condition
which exhibit a mobility value of �5;000 to 6;000 cm2=Vs.

In addition to AFM, STM has also been used to study the surface of epitaxial
graphene. An Omicron ultrahigh-vacuum STM with etched tungsten tips is operated
at room temperature in the low 10�10 Torr regime. The XY piezocalibration was
checked independently by imaging atoms in HOPG. Figure 6.3a shows a three-
dimensional representation of epitaxial graphene blanketing the intrinsic terraces of
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Fig. 6.2 AFM profilometry micrographs of Si-face SiC substrates after H2 etching and thermal
decomposition at 1;400ıC; 1;450ıC; 1;475ıC; 1;500ıC; 1;525ıC, and 1;550ıC for 10 min in
vacuum (low-10�5 mbar)
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Fig. 6.3 (a) STM image of a graphene film formed on a carbon-face on-axis semi-insulating
4H–SiC substrate. The 1.2 or 1.4 nm steps are unit steps in the basal plane of the SiC substrate. (b)
Atomic resolution STM image of a triangular sublattice of carbon atoms in a graphene film. Due
to the offset between two sublattices in a multiple graphene film, only every other surface atom is
imaged. The STM work was carried out by Prof. Reifenberger’s group at Purdue University

the SiC surface. The local density of states (LDOS) are probed and exhibited in
Fig. 6.3b. The measured lattice constant is found to be approximately 2.5 Å which
is very close to that of graphene, which is 2.46 Å. Furthermore, the graphene on SiC
has the same LDOS as on HOPG. Over atomistic length scales, this is material evi-
dence of the high-quality graphene grown epitaxially on thermally decomposed SiC.

In addition to surface analysis, an atomistic side-view of epitaxial graphene can
be obtained through the use of cross-sectional high-resolution TEM (HRTEM). This
provides insight into the number of layers formed. Figure 6.4a shows a HRTEM
micrograph of graphene layers formed on a Si-face sample held at 1;550ıC for
10 min under high-vacuum. The sample is prepared for TEM via focused ion
beam (FIB) extraction and then imaged at 300 kV with an FEI Titan 80–300. As
can be seen, there is one monolayer of graphene plus a SiC reconstructed buffer
layer between the graphene and SiC substrate. Throughout the tens of microns
imaged from the extracted sample section, there are typically between 1–2 layers
of graphene with a very few regions showing no signs of graphene. This lack of
uniformity occurs since graphene formation relies on the pseudo-random process of
Si desorption. Figure 6.4b shows another cross-sectional HRTEM image; this time
of epitaxial graphene formed on the C-face after thermal decomposition at 1;500ıC
under vacuum. As previously mentioned, this thickness discrepancy between polar
faces is common and thicker films are usually formed on the C-face of SiC under
similar growth conditions.

Hall bars are fabricated on epitaxial graphene on both polar faces to understand
the quality of the film over a larger length scale than the atomistic views provided by
HRTEM and STM. The measured Hall mobility values for both C-face and Si-face
devices are presented in Fig. 6.5. The positive correlation between growth pressure
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Fig. 6.4 HRTEM micrographs of (a) Si-face and (b) C-face SiC substrates after 1;550ıC and
1;500ıC thermal decomposition for 10 min, respectively. The FIB and TEM work was performed
by R. Colby under the guidance of Prof. Stach at Purdue University

Fig. 6.5 (a) Average room-temperature Hall mobility values versus pressure for both C-face and
Si-face devices. The graphene coverage is discontinuous at chamber pressures above 50 mbar for
the C-face and 10 mbar for the Si-face. The number next to each point represents the number of
devices tested, and the dotted lines serve as guides to the eye. (b) There is no apparent correlation
between the thickness of a Hall bar and its measured Hall mobility or carrier concentration. This
implies that there is not equal conduction from each graphene layer in the film

and mobility for the C-face is similar to that found by Tedesco et al. [48]. This
correlation continues to the point where a large enough Ar overpressure inhibits
Si desorption from the SiC sample and epitaxial graphene formation is halted.
At 100 mbar (50 mbar) and 10 min growth time, AFM and Raman spectroscopy
indicate there is no longer a continuous film of epitaxial graphene on the C-face (Si-
face) surface. Instead, on the C-face, isolated patches of epitaxial graphene are found
at random locations across the surface. With increased growth time, it is expected,
based on previous research, that a continuous film would be achieved at 100 mbar;
but for this set of experiments, growth time is held constant at 10 min. There is not
a clear increase in Hall mobility values as pressure increases on the Si-face, unlike
the trend other groups have observed [49, 50]. This discrepancy could be caused
by an increasing density of discontinuities in the epitaxial graphene. As growth
pressure increases, so too does the suppression of Si desorption, which leads to a
discontinuous epitaxial graphene film. Thus, there is a decrease in the percentage
of the surface which is covered by epitaxial graphene as growth pressure increases.
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This notion is confirmed via AFM phase contrast imaging. These discontinuities
serve as scattering sites, thereby lowering the overall measured Hall mobility.

Figure 6.5b shows an apparent lack of correlation between the thickness of each
device and its Hall mobility and carrier concentration value. This is important,
because it implies that each graphene layer within the epitaxial graphene does not
contribute equally to conduction. If there were equal conduction, then for each
additional layer, there would be a monotonic increase in carrier concentration with
thickness. Correspondingly, there would be a decrease in the Hall mobility value,
since carrier concentration and Hall mobility are inversely related. Instead, neither
of these trends are apparent in Fig. 6.5b.

6.3 Dielectric Integration on Epitaxial Graphene

ALD is a thin-film growth technique for depositing uniform and conformal films
with atomic precision. ALD is a special modification of the CVD method with the
distinctive feature of alternate and cyclic supply of each gaseous precursor to the
reactor chamber at relatively low temperature 200–350ıC. The alternating pulses of
the precursors are chemisorbed on the substrate surface and excesses are removed
by a purge step. The key feature of the ALD methods is the saturation of all the
reaction and purging steps, which makes film growth self-limiting on the surface.
The precision achieved with ALD allows processing of nanometer-scale films in a
controlled manner. ALD methods and applications have developed rapidly over the
last ten years, particularly for high-k gate oxides. ALD high-k Hf-based oxide has
become a manufacturing process to replace SiO2 in 45 nm node Si complementary
metal-oxide semiconductor (CMOS) digital integrated circuits starting in the second
half of 2007. It is natural to extend this state-of-the-art CMOS oxide processing
technology to graphene. However, the ALD process on graphene is expected to
be very different from the deposition on conventional semiconductors or oxides,
because the perfect graphene surface is chemically inert [51].

Figure 6.6a shows an AFM topography image of fresh HOPG surface with an
atomically smooth .rms D 0:04 nm/ carbon surface and atomically sharp step edges
created by broken graphene layers. From the line profile (not shown), the step height
is measured to be 0.3–0.4 nm, confirming that it is generated by a single graphene
layer. Figure 6.6b shows an AFM image of a similar area after 10 cycles, i.e., 1 nm
of ALD Al2O3 process at 250ıC growth temperature. From these images and line
profile data (not shown), the graphene surface remains atomically smooth with an
rms roughness of 0.04 nm, indicating that no Al2O3 films are grown on graphene
surface. This demonstrates that conventional H2O-based ALD process cannot grow
two-dimensional, continuous, and isotropic oxide films directly on pristine graphene
surfaces. On the other hand, Al2O3 nanoribbons with 1.5 nm height and several
nanometers wide are clearly observed at step edges, indicating that ALD Al2O3

films only grow along the step edges.
It is widely believed that an ultrathin high-k dielectric integration on graphene

would be the next major road block toward the realization of high-performance
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Fig. 6.6 (a) AFM images of HOPG surface with graphene terraces and (b) similar surface after
1 nm thick ALD Al2O3 growth

graphene-based electronic devices. Much research has been carried out in this field
using specific seeding or interfacial layers, as has been done with Ge or III–V semi-
conductors. These research efforts can be categorized as: (1) trimethylaluminum
.TMA/ C NO2 seeding layer [31, 51], (2) TMA C O3 seeding layer [36], (3) a
fully oxidized Al seeding layer [32,33], (4) organic PTCA or PTCDA seeding layer
[30,35], and (5) diluted spin-coated polymer NFC 1400–3CP as a buffered dielectric
[34]. Significant additional research is needed to characterize the interface quality
and optimize the dielectric formation process at the device level. Our approach is
to form ALD high-k gate stack integration on epitaxial graphene films by inserting
a 1 nm thick fully oxidized Al film as a seeding layer. The gate stack formation
does not degrade the electrical properties of epitaxial graphene films significantly.
The half-integer quantum Hall-effect (QHE) is observed in gated epitaxial graphene
films on SiC (0001), along with pronounced Shubnikov-de Haas (SdH) oscillations
in magneto-transport [33]. The observation of quantum features demonstrates the
reasonable success of integration of ALD high-k on epitaxial graphene.

6.4 Top-Gate Graphene Field-Effect Transistors

For most potential graphene applications, it is crucial to have a top gated working
transistor that can be integrated into a conventional CMOS process flow, and that
enables device scaling. Conventional transistors are made on semiconductors with
moderate bandgap .Si � 1:12 eV; GaAs � 1:4 eV/. Bandgap is an important
characteristic of the semiconductor that enables the device to turn off and minimizes
leakage current at off state. The bandgap energy also influences two performance
parameters that tend to offset one another: drive current (mobility) and on–off ratio.
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Generally, for narrow bandgap semiconductors, the light effective mass enables high
mobility and even ballistic transport. However, in narrow bandgap semiconductors,
the off current becomes excessive because band-to-band tunneling current is large.
Graphene has very high mobility and room temperature ballistic transport over
a few hundred nanometers, which is one of its most attractive properties for
device performance. The biggest concern currently for graphene is the poor off-
state characteristics. Narrow ribbon widths down to less than 10 nm are required
to induce a bandgap and achieve acceptably low off currents. Narrow ribbons of
these dimensions are still a challenge, even with modern lithographic techniques
[16,17]. The edge roughness of the nanoribbon at 10 nm scale leads to the significant
degradation of the intrinsic mobility. Graphene edge surface passivation is another
active field currently [52–54].

Because the density of states (DOS) in graphene is linear with respect to the
energy level, gate voltage can modulate the DOS linearly to enable modulation of
current in the channel. Top-gated transistors have been fabricated and characterized
on epitaxial graphene on SiC on both (0001) and .000N1/ face of SiC [5]. The device
structure of the fabricated graphene FET is shown in Fig. 6.7a. Device isolation
of the graphene film was realized by 120 nm deep SF6-based dry etching with
photolithographically defined photoresist as a protection layer. Ti/Au metallization
was used to form Ohmic contacts on graphene as source and drain. Physical vapor
deposited (PVD) SiO2 was used as a top gate dielectric. Finally, conventional
Ni/Au metals were electron-beam evaporated, followed by lift off to form the
gate electrodes. The process requires three levels of lithography (isolation, Ohmic,
and gate), all done using a contact mask aligner. PVD dielectrics can be simply
applied to graphene devices instead of ALD. However, it is also a challenge to form
nanometer thin high-quality dielectric on graphene by the PVD approach.

Figure 6.7a shows the DC output characteristic with a gate bias from 1 to 2.5 V
on a device with a fully covered gate. The measured graphene FET has a designed
gate length .Lg/ of 400�m and a gate width .Lw/ of 50�m, with a gate oxide of
50 nm SiO2. The gate leakage current is very low, below 10�9 A under the same
bias conditions, corresponding to a gate leakage current density of 3� 10�6 A=cm2.
The drain current can be modulated by approximately 50% with gate bias of a few
volts. A reference SiC sample without the graphitization treatment, processed at
the same time, shows no current .<40 pA/, which confirms conduction through
the graphene layers only. Figure 6.7b illustrates the transfer characteristics of
this graphene FET at Vds D 2:0V. The drain current or conductance exhibits
a region of minimum at Vgs � �0:8V. This dip in single-graphene layer is
well-documented and corresponds to a minimum conductivity of �4e2=h at the
charge neutrality point or Dirac point, where e and h are the electric charge and
Planck’s constant, respectively. It is the same physical origin here for multilayer
graphene films. The device cannot be turned off because graphene or graphite is a
semimetal with no bandgap. A finite bandgap can be created by patterning graphene
into graphene nanoribbons, but the dimensions of such ribbons press the limits of
modern lithography. The slope of the drain current shows that the peak extrinsic
transconductance .Gm/ is �1:4mS=mm, due to its extraordinarily large gate length.
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Fig. 6.7 (a) Ids vs. Vds as a function of Vgs on a few-layer graphene FET measured at room
temperature. Vgs changes from 2.5 V (top) to 1.0 V (bottom) in 0.5 V steps. Inset: device structure
of the top-gate transistor on epitaxial graphene on SiC substrate. (b) Transfer characteristics of the
same device at Vds D 2V. The dashed lines are corrected one around Dirac point after extracting
the p–n junction resistance or odd resistance component

The channel mobility can be simply estimated by:

� D �
.�Id=Vds/ =

�
Lw
ı
Lg
��ı

Cox�Vgs (6.1)

using the surface-channel device formula. Here, Cox is determined by "0"rA=d ,
where "0 is the permittivity of free space, "r is 3.0 for PVD SiO2 without annealing,
A is the cross-sectional area, and d is the gate oxide thickness. The extracted
electron effective mobility is as high as 5; 400 cm2=Vs. The device characteristics
become ambipolar for low charge density near the Dirac point. A simple approach,
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proposed by Huard et al., is used to further characterize the sample by extracting the
p–n junction resistance [55], as shown by the dashed lines in Fig. 6.7b. The corrected
electron mobility drops from 10% to 30% around Dirac point at Vgs D �0:8V. Note
that this correction is not necessary under unipolar conditions or at high charge
density.

6.5 Half-Integer Quantum Hall-Effect in Epitaxial Graphene

Recent reports of large-area epitaxial graphene by thermal decomposition of SiC
wafers have provided the missing pathway to a viable electronics technology [4–9].
An interesting question that remains to be addressed is whether the electrical prop-
erties of epitaxial graphene on SiC are similar to those in exfoliated graphene films
[1–3]. For example, the well-known quantum Hall-effect (QHE), a distinguishing
feature or hallmark of a 2D electronic material system, has been observed only very
recently in epitaxial graphene on both the Si-face [33,41,42] and the C-face [43] of
SiC. This question is discussed in this section.

Graphene layers on the Si-face of SiC, with a one-nanometer fully oxidized Al
seeding layer grown by ALD to form an Al2O3 gate dielectric, were used to examine
transport properties. The graphene growth temperature and time were 1;600ıC for
10 min in a vacuum of 10�5 mbar. Standard Hall-bar devices for magneto-transport
measurements were fabricated. Four-point magneto-transport measurements were
performed in a variable temperature (0.4 K to 70 K) 3He cryostat in magnetic fields
up to 18 T using standard low frequency lock-in techniques. The external magnetic
field .B/ was applied normal to the graphene plane. Figure 6.8a shows the magneto-
resistance Rxx and the Hall resistance Rxy as a function of magnetic field B from
�18T to 18 T at 0.8 K. From the Hall slope, the electron density is determined to
be 1:04 � 1012=cm2 and Hall mobility of 3;580 cm2=Vs at 0.8 K. No significant
mobility degradation is observed after ALD gate dielectric. At high magnetic fields,
Rxy exhibits a plateau while Rxx is vanishing, which is the fingerprint of the QHE
and SdH oscillations. One well-defined plateau with value .h=2e2/ is observed
at jBj > 15:5T, while two higher-order plateaus are developing with values of
.h=6e2/ and .h=10e2/, respectively. The pronounced SdH oscillations with at least
four distinguishable peaks are also observed at the corresponding magnetic fields.
The precision of the plateau is better than 1 part in 104 within the instrumental
uncertainty. It shows the QHE in epitaxial graphene is also applicable for metrology
applications. The Rxy quantization in this epitaxial graphene film is in accordance
with Œh=.4nC2/e2�, where n is the Landau level index, found in exfoliated graphene
as a distinguishing feature of Dirac electrons. It is significantly different from
conventional Fermi electrons with plateaus of .h=ne2/. The observed well-defined
half-integer QHE reproduces the unique features observed in exfoliated single-
layer graphene including a Berry phase of  . The observed QHE on this epitaxial
graphene confirms that epitaxial graphene on SiC (0001) and exfoliated single-layer
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Fig. 6.8 (a) Hall resistance and magneto-resistance measured in the device at T D 0:8K and
with floating gate bias. The horizontal dashed lines corresponding to h=.4n C 2/e2 values. The
QHE of the electron gas in epitaxial graphene is shown one quantized plateau and two developing
plateau in Rxy, with vanishing Rxx in the corresponding magnetic field regime. (b) Four-terminal
resistance as a function of top gate bias .Vg/ of the device, grown at 1;600ıC in vacuum on SiC
(0001), measured at 420 mK with zero magnetic field (open circles) and �5T (solid lines). Inset:
SEM image of a fabricated device. The scale bar is 20�m

graphene are governed by the same relativistic physics with Dirac particles as
transport carries [1–3].

Similar four terminal longitudinal resistivity �xx and Hall resistivity �xy can also
be measured at a constant high magnetic field by changing the carrier density.
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Figure 6.8b shows the magneto-transport measurement for a similar device at
420 mK, where the top gate is varied between �5V and 5 V. At zero magnetic field,
�xx drops from �8:6 k� to �1:2 k�, with an on–off ratio of �7. The increase of �xx

with the decrease of Vg confirms the initial n-type doping of the graphene channel.
So far, in this bias range, the Fermi level cannot sweep through the charge neutrality
point, due to the heavy doping during the initial graphene growth. At �5T, most
remarkably, �xy exhibits clearly quantized plateaus at h=2e2; h=6e2 for electrons
accompanied with the minimum in �xx, and the higher order plateaus are developing.
It leads to the same conclusion as described above that monolayer graphene can be
formed on SiC (0001) surface and its electrical property is the same as the exfoliated
single-layer graphene governed by the relativistic physics with Dirac fermions as
transport carriers.

Applying negative bias can dramatically decrease the carrier density, and makes
the low filling factor QHE more easily visible. This approach is exploited by biasing
the device at �5V, which corresponds to an electron density of 2:2� 1011=cm2 and
mobility of 3; 250 cm2=Vs at 420 mK, and measuring the temperature dependence
of �xx and �xy as shown in Fig. 6.9. Note that �xx does not fully vanish at high
magnetic field even at the lowest temperature. We ascribe this observation to
the defect induced scattering that broadens the Landau level and the relatively
large contact resistance, which is more than 10 k��m caused by the fabrication
process. Nevertheless, the n D 0 quantum Hall plateau and the corresponding
SdH minimum are still pronounced, even at temperatures as high as 70 K, reaching
the liquid nitrogen temperature. More efforts on measuring the same device at
room temperature (not shown) reveal the modulation in �xx and saturation in �xy

at 18 T. We believe with further engineering on the device fabrication as well as
graphene film growth, it is very possible to observe the n D 0 quantum Hall plateau
at room temperature and reasonable magnetic field. Room temperature QHE on

Fig. 6.9 Temperature dependence of �xx and �xy at Vg D �5V. (a) Pronounced SdH minimum
remain up to 70 K. (b) Pronounced n D 0 quantum Hall plateau remains up to 70 K. It is expected
to remain up to room temperature
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Fig. 6.10 (a) Temperature dependence of �xx for a device, grown at 1;600ıC and 10 mbar argon
ambient, at Vg D 1:8V from 1.6 K to 160 K. (b) Landau plot of the maximum of the SdH
oscillations up to 18 T at 1.6 K. n is the Landau index and Bn is the magnetic field at the
corresponding maxima of the oscillations. The circles are the experimental data and the solid line
is the linear fitting. The zero y intercept indicates the Berry’s phase of   [3]

epitaxial graphene could be an interesting topic as a quantum resistance standard
for metrology applications [42].

To further understand the underlying physics, Landau plot, e.g., the Landau
index vs. the inverse of the magnetic field, is investigated as shown in Fig. 6.10b.
Here, we start with a sample grown at 1;600ıC in a 10 mbar argon ambient, which
has a much higher electron density, while more suitable for this purpose due to its
more pronounced SdH oscillation peaks, as shown in Fig. 6.10a. The Landau index
data are taken at the maximum of the SdH oscillations up to 18 T at 1.6 K. The open
circles are the experimental data and the solid line is the linear fitting. The zero
y intercept indicates the Berry’s phase of  , the hallmark feature for monolayer
graphene in electrical transport. From the slope, we can find the carrier density to
be 2:46� 1012=cm2, consistent with 2:37� 1012=cm2 deduced from the Hall slope.

The damping of the SdH oscillations in Fig. 6.10a is caused by thermal
broadening of Landau levels. The temperature dependence of the relative peak
amplitudes in graphene is given by [56]:

An .T /=An .0/ D tk=sin htk; (6.2)
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Fig. 6.11 (a) Fitting to the Fermi velocity vF according to the Landau level separation. (b) Relative
SdH peak fitting according to (6.1) for different temperatures at each peak

where An.T / is the relative peak amplitude of the nth SdH peak at temperature T ,
and tk D 2 2kBT=�E.B/ with:

�E.B/ D EnC1 .B/ �En .B/ (6.3)

D
�p

nC 1 � p
n
�
vF

p
2eB„ (6.4)

the Landau level separation (Fig. 6.11). The experimental value of Landau level
separation is determined by fitting the relative SdH peaks according to (6.2) for
different temperatures at each peak, as shown in Fig. 6.10b. The relative amplitude is
normalized for each peak, for better viewing. The corresponding�E.B/ is plotted
versus B as the open circles in Fig. 6.10a. The dotted line is the fitting of �E.B/
versus B according to (6.4). The fitted vF is 1:01� 108 cm=s. Similar analysis were
carried out for two other devices grown at 1;600ıC SiC (0001) in vacuum, with vF D
1:05� 108 cm=s and 9:94� 107 cm=s, respectively. The fitted Fermi velocity agrees
remarkably well with the accepted value of vF D 1:00 � 108 cm=s for graphene.

In the center of the impurity broadened Landau level, the localization length
	, i.e., the spatial extension of the electron wave function, diverges as a power
law 	 � .E � Ec/

�v with a universal critical exponent v [57], where Ec is the
energy of a Landau level center. Since Ec varies as the B varies, the derivatives
.d�xy=dB/max between the plateau to plateau transition, and the half-width in
�xx which is defined as the distance �B between the two extreme in d�xy=dB ,
provide the experimental measure of the delocalization phenomenon in the integer
quantum Hall regime [57]. It has been found that, below a certain characteristic
temperature Tsc; .d�xy=dB/max � T �
 and �B � T 
 , where 
 � 0:42 is
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Fig. 6.12 The derivative .d�xy=dB/max as a function of temperature for the n D 1 plateau to
n D 0 plateau transition of sample 1,118 A. The open circles are the experiment data and the solid
line is the fitting for the highest 6 temperature points. (b) �xy of sample 1,118 A from 420 mK to
70 K at Vg D 0V

universal for conventional 2D systems [57–59], and exfoliated graphene [60]. Here,
we demonstrate that the universal scaling behavior also holds for epitaxial graphene.
Compared to the other conventional 2D systems, graphene Tsc is much high than
the very low temperature (mK), thus allowing us to probe the same physics at
temperatures higher than liquid helium temperature.

Figure 6.12 shows the temperature dependent quantum Hall-effect from 420 mK
to 70 K at Vg D 0V for a sample grown at 1;600ıC on the Si-face of SiC. Since
this specific sample shows the best plateau to plateau transition, it is a good starting
point to analyze the scaling behavior. Figure 6.12 shows the temperature dependent
derivative .d�xy=dB/max for the n D 1 plateau to n D 0 plateau transition of the
same sample. The open circles are the experiment data and the solid line is the fitting
for the highest 6 temperature points. As the temperature drops down, .d�xy=dB/max

starts to saturate, showing that 	 is not dominated by temperature, but rather by
an intrinsic length scale, possibly equivalent to the sample size [57–59]. The slope
shows 
 D 0:42˙0:01 agrees remarkably well with the accepted universal value of
0.42. We did detailed studies on two devices withB sweeps and another two devices
with gate bias sweeps. All four devices show the near universal value of 0.42 on the
filling factor 2 to 6 transitions.
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6.6 Ballistic and Coherent Transport on Epitaxial Graphene

Antidot arrays are interesting structures to study because of their transport prop-
erties in conducting electronic materials. Antidots can be regarded as groups of
imposed scattering centers that limit the ballistic transport or the mean free path of
carriers [61]. Antidot arrays can also be considered as an ensemble of Aharonov–
Bohm (AB) rings connected together [62]. Moreover, antidot arrays are ideal for
investigating quantum coherence effects and phase coherence length of carriers.
Antidot arrays impose lateral potential barriers that could create a bandgap in
graphene [63], similar to the creation of the energy gap by introducing lateral
periodic potentials from positive ion cores in a real semiconductor crystal. We
have studied the magneto-transport properties of nanostructured antidot arrays in
epitaxially grown graphene films on SiC .000N1/. Pronounced AB oscillations, weak
localization, and commensurability oscillations are observed, directly related to the
electrical characteristics of epitaxial graphene films such as mean free path and
phase coherence length.

The device structure of the fabricated graphene antidot array is shown in
Fig. 6.13a, b. The graphene film for this particular experiment was grown at 1;600ıC
in vacuum for 10 min on C-face of SiC substrate. Device isolation and antidot
formation of the graphene film is realized by O2 plasma based dry etching with
electron-beam-lithography (Vistec VB-6 UHR-EWF) defined HSQ resist as the
protection layer. The diameter of the holes is around 40 nm and the defined antidot
array period is 80 nm. Ti/Au metallization is used to form the two terminal Ohmic
contacts on graphene film. Two-point resistance measurements are performed in
a variable temperature (0.4 K to 70 K) 3He cryostat in magnetic fields up to 18 T
using low frequency lock-in techniques. The external magnetic field .B/ is applied
normally to the graphene plane.

Figure 6.13c shows the magneto-conductance G.B/ of graphene antidot arrays
as a function of perpendicular magnetic field at 0.47 K. The trace is essentially
symmetric, G.B/ D G.�B/, which is the reciprocity relation mandatory for
a two-terminal measurement of a stable device. There are three distinguishing
features of the measured magneto-conductance. The first is the pronounced weak
localization dip around zero magnetic field. The second is distinct conductance
minima at ˙4T and ˙8T. We attribute these minima to the commensurability
between the cyclotron orbits of carriers in certain magnetic fields and the period
of artificial holes as illustrated in Fig. 6.13b. There are three distinct types of
carriers involved in magneto-transport in antidot arrays: pinned orbits, drifting
orbits, and scattering orbits [61]. Pinned orbits remain localized about their orbit
centers as shown in Fig. 6.13b and cannot contribute to transport. Pinned orbits
play a central role here since they remove a fraction of carriers from the transport
process. The magneto-conductance shows minima when the carriers with pinned
orbits are trapped in this antidot array. Using the commensurability relation 2Rc D
2
p
 Ns.„=eB/ D a, the carrier density Ns is determined to be �7:5 � 1012=cm2

within the right range for graphene films grown on C-face SiC, where Rc is the
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Fig. 6.13 (a) The sample layout with 2�m�2�m graphene area and two-terminal metal contacts.
(b) Electron microscopic image of antidote arrays with �40 nm holes and �80 nm pitches. The
commensurate orbits around 1 antidot and 4 antidots are sketched to illustrate the physical origin
of Weiss oscillations. (c) Magneto-conductance of the graphene antidote arrays measured at T D
477mK. On top of the commensurability oscillations, periodic features are clearly visible as also
highlighted in Fig. 6.14a

cyclotron radius, h is the Planck constant, and a is the period of antidot arrays. The
elastic mean free path le is estimated to be about 220 nm in a reference sample
without antidots. The elastic mean free path is le D 2D=vF, where the carrier
diffusive constant D D EF=2Nse

2�, Fermi energy EF D „vF
p
 Ns, and � is

zero-field resistivity of graphene films [4]. The le is larger than the circumference
of a single antidot .�125 nm/, but slightly smaller than the circumference of
the central pinned orbits .�250 nm/. The conclusion from this estimate is that
transport is not fully ballistic. The reason for the observation of the second magneto-
conductance minima, corresponding to the pinned orbits around four antidots and
requiring a much larger le, is not clear. Another possibility is magnetic focusing
related phenomenon localized with the nanostructures of 40 nm dimension. The
third feature is the tiny structures superimposed on the measured trace, for example,
between ˙2T and ˙7T. Universal conductance fluctuations are suppressed since
the sample size .�2�m/ is much larger than the phase coherence length. A quantum
interference effect is still observable because the antidot size .�40 nm/ is smaller
than the phase coherence length. These tiny periodic features are identified as AB
oscillations, which are related with each magnetic quantum flux penetrating in one
antidot cell. AB oscillations on an exfoliated graphene film have been demonstrated
experimentally on a single lithographically defined ring [64].

The black thick curve in Fig. 6.14a shows the measured magneto-conductance
between C2 and C12T with superimposed oscillatory features. By taking the
difference of the measured curve and the black baseline curve obtained from
smoothing the measured one, a pronounced AB periodically oscillatory curve is
exhibited as shown as the grey curve in Fig. 6.14a. The AB oscillation period
�B � 0:5T in this field range is consistent with the condition that the magnetic
flux enclosed within the unit cell of the square antidot lattice changes by a single
magnetic flux quantum, i.e., �B D .h=e/=a2 with a D 80 nm. The rms amplitude
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Fig. 6.14 (a) The solid curve is the measured magneto-conductance. The thin curve is the
“baseline” after smoothing the original measured curve. The periodically oscillatory curve is the
subtraction of the two black curves. Vertical straight lines are guided by eyes showing periodic B
feature of observed AB oscillations. (b) Fourier spectrum of the oscillatory grey curve between 2 T
and 12 T. The solid curve is after 6 points smoothing. The two vertical straight lines with arrows
indicate the positions for half-height of the observed h=e peak, as used for the calculation of the
inner and outer radii of AB-“ring” structure around one antidot

of AB oscillations is �0:01e2=h. For detailed discussions, Fig. 6.14b illustrates the
Fourier power spectrum of Fig. 6.14a with a broad peak centered around 0.47 T, with
0.57 T and 0.40 T as the edge of the half-height width. It corresponds to the inner
radius, middle radius, and outer radius of 48 nm, 53 nm, and 57 nm, respectively,
if �B D .h=e/=. r2/, where  r2 is associated with the effective antidot area.
It is consistent with the designed geometry well with 40 nm holes and 80 nm
pitches. The relatively large inner radius could be related with overdeveloped resist
patterns, plasma over-etching, and certain depletion length of graphene edges with
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unpassivated dangling bonds. The magnetic length [lB D p„=eB D 9:2 nm at
B D 6T] or similar edge channels in the quantum Hall regime could also affect
the data. The observed AB oscillations demonstrate that the epitaxial graphene on
SiC is of high-quality and at least has the quantum coherence length larger than 80–
100 nm. The weak peak features around 1=B D 4.1=T / could be related to h=2e
oscillations [64].

While universal conductance fluctuations are generally observed in small
graphene flakes, weak localization correction is strongly reduced compared to
the conventional two-dimensional (2D) systems due to suppressed backscattering in
graphene loosely coupled to the substrate [65–67]. Short range scattering in epitaxial
graphene caused by tight binding to the substrate, short range scattering on the edges
of antidots, and warping of the Fermi surface at high densities introduces intervalley
scattering [68], which restores weak localization corrections [69]. We observe
pronounced negative magneto-resistance at low fields with a sharp cusp at zero
field characteristic of weak localization in 2D, as in Fig. 6.15a. Moreover, at higher
fields magneto-resistance changes sign, which is expected for the case of strong
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Fig. 6.15 (a) Magneto-resistance as a function of the sample temperature from 477 mK up to 70 K.
The solid black curves are fitted weak localization curves in antidot arrays [70]. (b) The coherence
length L˚ and intervalley scattering length Li of graphene film with antidot arrays versus sample
temperatures. (c) Temperature dependence of AB oscillations. The traces are vertically shifted for
clarity
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intervalley scattering [70]. We used the theory developed in [70] to analyze the
data and extract both the phase coherence length L˚ and the intervalley scattering
length Li, shown in Fig. 6.15b. Li is found to be temperature independent and is
approximately equal to the distance between antidots, suggesting that scattering on
the antidot edges is the dominant intervalley scattering mechanism in our samples.
L˚ decreases with the increasing temperature, although it does not follow 1=T

dependence found in unpatterned graphene [68]. We note that the range of field,
where weak localization is observed in antidot arrays is much larger than that for
unpatterned samples. The temperature dependence of AB oscillations is also plotted
in Fig. 6.15c, which is consistent with the data in Fig. 6.15b of weak localization
peak fitting.

The intrinsically weak anti-localization of graphene and the restoring of weak
localization by defects are of interest to further investigate and unveil the quality
of epitaxial graphene. We have studied weak localization on unpatterned epitaxial
graphene on SiC (0001). Figure 6.16b shows ��xx D �xx.B/ � �xx.B D 0T/ with
Vg D 1:8V at various temperatures for a sample grown at 1;600ıC in a 10 mbar
argon ambient. At the lowest temperature (e.g., 1.6 K), an overall negative magneto-
resistance at low B is observed, typical of weak localization [71]. Although weak
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Fig. 6.16 Weak localization. (a) Phase coherent length for different devices. The corresponding
electron densities are 2:0 � 1011 (bottom), 7:7 � 1011; 1:0 � 1012, and 2:4 � 1012=cm2. (b)
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temperatures. The colored curves are experiment data, and the black curves are the fit. (c) Extracted
characteristic lengths from the weak localization as a function of temperature for sample 1,117 A
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localization in graphene is usually strongly reduced compared to the conventional
2D systems due to suppressed backscattering, strong intervalley scattering in
epitaxial graphene tends to restore weak localization [69, 70, 72, 73]. We have fitted
our experimental data using a theory developed by McCann et al. as before [70], and
extracted theL˚ (phase coherence length),Li (intervalley scattering length), andL�
(intravalley scattering length) for each temperature as shown in Fig. 6.16c. Notice
that all three lengths are much smaller than the sample size, indicating the edge is
not the dominant scattering source, but rather disorder within the sample dominates
scattering. L˚ increases with decreasing temperature and reaches �1�m at 1.6 K,
while Li and L� are rather temperature insensitive. The extremely short Li (a few
nm) indicates a strong coupling of the single layer graphene to the SiC substrate,
significantly different from the case studied in antidot case described in the above
paragraphs or in [74], where the multi-layer graphene on the C-face SiC is relatively
loosely coupled to the substrate, and the intervalley scattering arose mostly from the
shape edges created by the antidot arrays. L� here is about 40–50 nm, much larger
than Li, indicate moderate amount of other source of disorder larger than atomic
scale. Similar analysis was also carried out for other devices grown at 1;600ıC in
vacuum. They show the similar temperature dependence and the extracted L˚ are
plotted against temperature for all devices as in Fig. 6.16a. They all decrease with
the increase of the temperature, and decrease with decreasing carrier density across
different samples, due to the effect of enhanced electron–electron interactions [72].

6.7 Spin Transport on Epitaxial Graphene

Spin transport in graphene has attracted intensive interest [75–78] in recent years
for potential applications in spintronics due to its weak spin–orbit and hyperfine
interactions [79]. In this session, we report on the first SpinFET (spin valve
transistor) fabricated on an epitaxial graphene film grown on the C-face of a
SiC substrate by high-temperature sublimation. Spin dependent magneto-resistance
(MR) is observed from 400 mK to 3 K, showing a maximum spin signal of 0.25%
and a maximum spin relaxation length of 200 nm at 400 mK. The multi-layer
graphene film investigated here was formed on the C-face SiC at 1;550ıC. AFM and
SEM inspection confirms that it is possible to have a 2–10�m domain size atom-
ically smooth graphene films at that growth temperature as described in Sect. 6.2.
Figure 6.17a shows the SEM image of one of the fabricated Ni0:80Fe0:20=Gr spin
valve devices. All patterns were defined by electron-beam lithography. Ti/Au
bonding pads were deposited on the graphene film, followed by an oxygen plasma
dry etching to isolate the central graphene area with a width .W / of 2�m and a
length of 5�m. Two Ni0:80Fe0:20 electrodes were evaporated for spin injection and
detection. They are 400 nm and 1�m wide, with a separation gap .L/ of 400 nm.

Figure 6.17b presents a typical spin dependent MR measured at 400 mK. The
magnetic field is applied parallel to the ferromagnetic electrodes and swept firstly
from C0:5T to �0:5T and then from �0:5T to C0:5T. The MR curve exhibits a
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Fig. 6.17 (a) SEM image of a SpinFET fabricated on the epitaxial graphene film on SiC. (b)
MR of the spin valve device measured at 400 mK. The magnetic field is aligned parallel to
the ferromagnetic electrodes. The small vertical arrows show the magnetization of electrodes at
different B fields. Horizontal arrows indicate the B field sweep polarity. (c) MR of the spin valve
device measured at different temperatures from 400 mK to 3 K. The curves are shifted vertically
for clarity

clear spin-valve hysteresis loop with a steep change at around ˙5mT and �50mT.
The increase of MR is due to the magnetization reversal of the wider ferromagnetic
electrode. The switch can occur before the zero-field condition due to multi-domains
in the ferromagnetic electrodes, as discussed in [80].

A pronounced temperature dependence of the MR is observed in Fig. 6.17c.
The curves are shifted vertically for clarity. As can be seen, both the magnitude
and the width of the spin signals decrease as the temperature increases, and
eventually disappears at 3 K. The spin relaxation length .�sf/ can be estimated
from the magnitude of the spin signals. The graphene sheet resistance .�/ is
estimated to be �1 k�=sq and �200� in this device. However, the total resistance
is �2 k�. The contact resistance is much larger than the spin resistance [81, 82].
The large contact-resistance suggests the Ni0:80Fe0:20/graphene junctions could be
quasi-tunneling like. XPS studies of the Ni0:80Fe0:20/graphite interface indicates that
C–O bonds are formed if Ni0:80Fe0:20 is deposited on a DI water exposed surface.
Assuming that the interfacial C–O bonding leads to tunneling-like spin injection,
the spin signal for a local measurement on 2D system can be described simply as,
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Rs D 2P 2�sf�e
�L=�sf=W , where the spin polarization P is 0.48 for Ni0:80Fe0:20

[81, 82]. The low-limit estimated �sf versus temperature is 200 nm at 0.4 K and
100 nm at 3 K. The reproducible step-like features are observed on up and down
slopes of MR around ˙5mT and �50mT. These may be related with a sequence
of mesoscopic domain switching in the ferromagnetic electrodes. The origin of
the observed strong temperature-dependent spin effect in graphene is not fully
understood. More work are needed on synthesis, process optimization, and physical
understanding for an epitaxial graphene SpinFET operating at room temperature.

6.8 Summary

We have systematically studied graphene synthesis on SiC substrates by high-
temperature sublimation in vacuum and argon ambient. Monolayer graphene on
Si-face of SiC with a room-temperature mobility of 1;500–2; 500 cm2=Vs and
multi-layer graphene on C-face of SiC with a mobility of 5;000–18;000 cm2=Vs
are obtained. A high-k gate stack on epitaxial graphene is realized by inserting a
fully oxidized nanometer thin aluminum film as a seeding layer followed by an
atomic-layer deposition process. The QHE and SdH in epitaxial graphene on SiC
(0001) are systematically studied at different temperatures and different top gate
bias. This quantum experiment confirms that epitaxial graphene on SiC shares the
same relativistic physics as the exfoliated graphene, and the universal scaling in
plateau to plateau transition also holds for epitaxial graphene films. Ballistic and
coherent transport properties are studied through graphene antidot arrays with the
pronounced AB oscillations. SpinFET is also demonstrated at low temperature on
epitaxial graphene. All the work shows that epitaxial graphene on SiC provides a
platform for future microelectronic and nanoelectronic applications beyond what
exfoliated graphene can offer.

Acknowledgements The authors would like to thank the close collaborations with J.A. Cooper,
Jr., R. Reifenberger, L.W. Engel, L.P. Rokhinson, E.A. Stach, R.M. Wallace, J. Appenzeller, J.J.
Gu, Y. Xuan, M. Xu, K. Xu, and A.T. Neal. The authors also would like to thank G. Jones, T.
Murphy, and E. Palm at National High Magnetic Field Laboratory (NHMFL) for experimental
assistance. Part of the work on graphene is supported by NRI (Nanoelectronics Research Initiative)
through MIND (Midwest Institute of Nano-electronics Discovery), DARPA, and Intel Cooperation.
NHMFL is supported by NSF Grant Nos. DMR-0084173 and ECS-0348289, the State of Florida,
and DOE.

References

1. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)
2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva,

A.A. Firsov, Science 306, 666 (2004)
3. Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)



186 P.D. Ye et al.

4. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N.
Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science 312, 1191 (2006)

5. Y.Q. Wu, P.D. Ye, M.A. Capano, Y. Xuan, Y. Sui, M. Qi, J.A. Cooper, T. Shen, D. Pandey,
G. Prakash, R. Reifenberger, Appl. Phys. Lett. 92, 092102 (2008)

6. G. Gu, S. Niu, R.M. Feenstra, R.P. Devaty, W.J. Choyke, W.K. Chan, M.G. Kane, Appl. Phys.
Lett. 90, 253507 (2007)

7. J. Kedzierski, P.L. Hsu, P. Healey, P.W. Wyatt, C.L. Keast, M. Springkle, C. Berger, W.A. de
Heer, IEEE Trans. Electron Devices 55, 2078 (2008)

8. J.S. Moon, D. Curtis, M. Hu, D. Wong, C. McGuire, P.M. Campbell, G. Jerigan, J. Tedesco,
B. VanMil, R. Myers-Ward, C. Edy Jr., D.K. Gaskill, IEEE Electron Device Lett. 30,
650 (2009)

9. Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.Y. Chiu, A. Gill, P. Avouris,
Science 327, 662 (2010)

10. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H.
Hong, Nature 457, 706 (2009)

11. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett.
9, 30 (2009)

12. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, S.S. Pei, Appl. Phys. Lett. 93, 113103 (2008)
13. X. Li, X. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K.

Banerjee, L. Colombo, R.S. Ruoff, Science 324, 1312 (2009)
14. A.J. Van Bommel, J.E. Crombeen, A. Van Tooren, Surf. Sci. 48, 463 (1975)
15. C. Berger et al., J. Phys. Chem. B 108, 19912 (2004)
16. M.Y. Han, B. Ozyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007)
17. Z. Chen, Y.M. Lin, M.J. Rooks, P. Avouris, Physica E 40, 228 (2007)
18. D.V. Kosynkin et al., Nature 458, 872 (2009)
19. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 319, 1229 (2008)
20. X. Wang et al., Phys. Rev. Lett. 100, 206803 (2008)
21. L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 458, 877 (2009)
22. J. Bai, X. Duan, Y. Huang, Nano Lett. 9, 2083 (2009)
23. X. Wang, H. Dai, Nat. Chem. 2, 661 (2010)
24. T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science 313, 951 (2006)
25. E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B. Lopes dos Santos, J. Nilsson,

F. Guinea, A.K. Geim, A.H. Castro Neto, Phys. Rev. Lett. 99, 216902 (2007)
26. J.B. Oostinga, H.B. Heersche, X. Liu, A.F. Morpurgo, L.M.K. Vandersypen, Nat. Mater. 7,

151 (2008)
27. Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen,

F. Wang, Nature 459, 820 (2009)
28. F. Xia, D.B. Farmer, Y.M. Lin, P. Avouris, Nano Lett. 10, 715 (2010)
29. Y. Xuan, Y. Wu, T. Shen, M. Qi, M.A. Capano, J.A. Cooper, P.D. Ye, Appl. Phys. Lett. 92,

013101 (2008)
30. X. Wang, S.M. Tabakman, H. Dai, J. Am. Chem. Soc. 130, 8152 (2008)
31. J.R. Williams, L. DiGarlo, C.M. Marcus, Science 317, 638 (2007)
32. S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, S.K. Banerjee, Appl. Phys.

Lett. 94, 062107 (2008)
33. T. Shen, J.J. Gu, M. Xu, Y.Q. Wu, M.L. Bolen, M.A. Capano, L.W. Engel, P.D. Ye, Appl. Phys.

Lett. 95, 172105 (2009)
34. D.B. Farmer, H.Y. Chiu, Y.M. Lin, K.A. Jenkins, F. Xia, P. Avouris, Nano Lett. 9, 4474 (2009)
35. Q.H. Wang, M.C. Hersam, Nat. Chem. 1, 206 (2009)
36. B. Lee, S.Y. Park, H.C. Kim, K.J. Cho, E.M. Vogel, M.J. Kim, R.M. Wallace, J. Kim, Appl.

Phys. Lett. 92, 203102 (2008)
37. L.B. Biedermann, M.L. Bolen, M.A. Capano, D. Zemlyanov, R. Reifenberger, Phys. Rev. B79,

125411 (2009)
38. S.E. Harrison, M.A. Capano, R. Reifenberger, Appl. Phys. Lett. 96, 081905 (2010)
39. M.L. Bolen, S.E. Harrison, L.B. Biedermann, M.A. Capano, Phys. Rev. B 80, 121411 (2010)



6 Magneto-Transport on Epitaxial Graphene 187

40. M.L. Bolen, T. Shen, J.J. Gu, R. Colby, E.A. Stach, P.D. Ye, M.A. Capano, J. Electron. Mater.
39, 2696 (2010)

41. J. Jobst, D. Waldmann, F. Speck, R. Hirner, D.K. Maude, T. Seyller, H.B. Weber, Phys. Rev. B
81, 195434 (2010)

42. A. Tzalenchuk, S. Lara-Avila, A. Kalaboukhov, S. Paolillo, M. Syvajarvi, R. Yakimova,
O. Kazalova, T.J.B.M. Janssen, V. Fal’ko, S. Kubatkin, Nat. Nanotechnol. 5, 186 (2010)

43. X. Wu, Y. Hu, M. Ruan, N.K. Madiomanana, J. Hankinson, M. Sprinkle, C. Berger, W.A. de
Heer, Appl. Phys. Lett. 95, 223108 (2009)

44. J. Drowart, G. de Maria, G. Inghram, J. Chem. Phys. 29, 1015 (1958)
45. S.G. Davis, D.F. Anthrop, A.W. Searcy, J. Chem. Phys. 34, 659 (1961)
46. L. Muehlhoff, W.J. Choyke, M.J. Bozack, J.T. Yates, J. Appl. Phys. 60, 2842 (1986)
47. J. Hass, F. Varchon, J.E. Millán-Otoya, M. Sprinkle, N. Sharma, W.A. de Heer, C. Berger, P.N.

First, L. Magaud, E.H. Conrad, Phys. Rev. Lett. 100, 125504 (2008)
48. J.L. Tedesco, B. VanMil, R.L. Myers-Ward, J. Culbertson, G. Jernigan, P. Campbell, J.M.

McCrate, S.A. Kitt„ C. Eddy Jr., D.K. Gaskill, ECS Trans. 19, 137 (2009)
49. K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta,

S.A. Reshanov, J. Röhrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, T. Seyller,
Nat. Mater. 8, 203 (2009)

50. J.L. Tedesco, B.L. VanMil, R.L. Myers-Ward, J.M. McCrate, S.A. Kitt, P.M. Campbell, G.G.
Jernigan, J.C. Culbertson, J.C.R. Eddy, D.K. Gaskill, Appl. Phys. Lett. 95, 122102 (2009)

51. D.B. Farmer, R.G. Gordon, Nano Lett. 6, 699 (2006)
52. V. Barone, O. Hod, G.E. Scuseria, Nano Lett. 6, 2748 (2006)
53. Y.W. Son, M.L. Cohen, S.G. Louie, Nature 444, 347 (2006)
54. K. Xu, P.D. Ye, J. Phys. Chem. C 114, 10505 (2010)
55. B. Huard, J.A. Sulpizio, N. Stander, K. Todd, B. Yang, D. Goldbaher-Gordon, Phys. Rev. Lett.

98, 236903 (2007)
56. V.P. Gusynin S.G. Sharapov, Phys. Rev. B 71, 125124 (2005)
57. H.P. Wei, D.C. Tsui, M.A. Paalanen, A.M.M. Pruisken, Phys. Rev. Lett. 61, 1294 (1988)
58. W. Li, C.L. Vicente, J.S. Xia, W. Pan, D.C. Tsui, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett.

102, 216801 (2009)
59. S. Koch, R.J. Haug, K.v. Klitzing, K. Ploog, Phys. Rev. Lett. 67, 883 (1991)
60. A.J.M. Giesbers, U. Zeitler, L.A. Ponomarenko, R. Yang, K.S. Novoselov, A.K. Geim, J.C.

Maan, Phys. Rev. B 80, 241411 (2009)
61. D. Weiss, M.L. Roukes, A. Menschig, P. Grambow, K. von Klitzing, G. Weimann, Phys. Rev.

Lett. 66, 2790 (1991)
62. D. Weiss, K. Richter, A. Menschig, R. Bergmann, H. Schweizer, K. von Klitzing, G. Weimann,

Phys. Rev. Lett. 70, 4118 (1993)
63. T.G. Pedersen, C. Flindt, J. Pedersen, N.A. Mortensen, A.P. Jauho, K. Pedersen, Phys. Rev.

Lett. 100, 136804 (2008)
64. S. Russo, J.B. Oostinga, D. Wehenkel, H.B. Heersche, S.S. Sobhani, L.M.K. Vandersypen, A.F.

Morpurgo, Phys. Rev. B 77, 85413 (2008)
65. T. Ando, T. Nakanishi, J. Phys. Soc. Jpn 67, 1704 (1998)
66. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, L.A. Ponomarenko, D. Jiang, A.K.

Geim, Phys. Rev. Lett. 97, 016801 (2006)
67. H. Suzuura T. Ando Phys. Rev. Lett. 89, 266603 (2002)
68. A.F. Morpurgo, F. Guinea, Phys. Rev. Lett. 97, 196804 (2006)
69. F.V. Tikhonenko, D.W. Horsell, R.V. Gorbachev, A.K. Savchenko, Phys. Rev. Lett. 100,

056802 (2008)
70. E. McCann, K. Kechedzhi, V.I. Fal’ko, H. Suzuura, T. Ando, B.L. Altshuler, Phys. Rev. Lett.

97, 146805 (2006)
71. C.W.J. Beenakker, H. Vanhouten, Solid State Phys. 44, 1 (1991)
72. D.K. Ki, D. Jeong, J.H. Choi, H.J. Lee, K.S. Park, Phys. Rev. B 78, 125409 (2008)
73. X.S. Wu, X.B. Li, Z.M. Song, C. Berger, W.A. de Heer, Phys. Rev. Lett. 98, 136801 (2007)



188 P.D. Ye et al.

74. T. Shen, Y.Q. Wu, M.A. Capano, L.P. Rokhinson, L.W. Engel, P.D. Ye, Appl. Phys. Lett. 93,
122102 (2008)

75. E.W. Hill, A.K. Geim, K. Novoselov, F. Schedin, P. Blake IEEE Trans. Magnet 42,
2694–2696 (2006)

76. N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman B.J. van Wees Nature 448, 571–U4 (2007)
77. H. Goto, A. Kanda, T. Sato, S. Tanaka, Y. ootuka, S. Odaka, H. Muyazaki, K. Tsukagoshi,

Y. Aoyagi Appl. Phys. Lett. 92, 212110 (2008)
78. M. Nishioka A.M. Goldman Appl. Phys. Lett. 90, 252505 (2007)
79. D. Huertas Hernando, F. Guinea, A. Brataas Phys Rev. B 74, 155426 (2006)
80. F.J. Jedema, M.S. Nijboer, A.T. Filip, B.J. van Wees Phys. Rev. B 67, 085319 (2003)
81. C. Jozsa, M. Popinciuc, N. Tombros, H.T. Jonkman, B.J. van Wees Phys. Rev. B 79, 081402

(R) (2009)
82. S. Takahashi S. Maekawa Phys. Rev. B 67, 052409 (2003)



Chapter 7
Epitaxial Graphene on Metals

Yuriy Dedkov, Karsten Horn, Alexei Preobrajenski, and Mikhail Fonin

Abstract In this chapter, we review the recent results on graphene films epitaxially
grown on 3d � 5d transition-metal surfaces focussing mainly on their atomic
structure, aspects of chemical interaction both with the substrate and with adsorbates
and the electronic structure of graphene at the interface. We discuss a possibility
to prepare sandwich-like structures in the form of intercalates as a possible way
to controllably tailor the electronic properties of graphene. Recent works on the
templated growth of metallic nanostructures on graphene moiré are also reviewed.

7.1 Introduction

Graphene is a flat single layer of carbon atoms arranged in a honeycomb lattice with
two crystallographically equivalent atoms (A and B) in its primitive unit cell [1–3]
[Fig. 7.1a]. The sp2 hybridization between one 2s orbital and two 2p orbitals leads
to a trigonal planar structure with a formation of strong � bonds between carbon
atoms that are separated by 1:42 Å. The bonding � orbitals have a filled shell
and, hence, form deeper valence band levels. The 2pz orbitals on the neighboring
carbon atoms are perpendicular to the planar structure of the graphene layer and
can bind covalently, leading to the formation of a � band. The unique property
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Fig. 7.1 (a) Crystal structure of the graphene layer, where carbon atoms are arranged in a
honeycomb lattice. The unit cell of graphene with lattice constant a has two carbon atoms per
unit cell, A and B. (b) Electronic dispersion of � and �� states in the honeycomb lattice of
free-standing graphene obtained in the framework of tight-binding approach. These branches have
linear dispersion in the vicinity of the K points of the Brillouin zone of graphene. (c) Band structure
of free-standing graphene as obtained by means of DFT (� , � , and �� bands are marked)

of the electronic structure of graphene is that the � and �� bands touch at a single
point at the Fermi energy (EF) at the corner of graphene’s hexagonal Brillouin zone,
and close to this so-called Dirac point the bands display a linear dispersion and
form Dirac cones [2] [Fig. 7.1b]. Thus, undoped graphene is a semimetal (“zero-
gap semiconductor”). The linear dispersion of the bands mimics the physics of
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quasiparticles with zero mass, the so-called massless Dirac fermions [1–3]. The
fascinating electronic and transport properties of graphene [1–3] make it to a point
of focus not only in fundamental research but also in applied science and technology
with a vision to implement graphene in a myriad of electronic devices replacing the
existing silicon technology.

However, a widespread implementation of graphene in electronics has been
hampered by the two major difficulties: reliable production of high-quality samples,
especially in a large-scale fashion and the “zero-gap” electronic structure of
graphene, which leads to limitations for direct application of this material in possible
electronic devices. As a response to the first challenge, a number of approaches
for single layer graphene preparation have been tested, corroborating chemical
vapor deposition (CVD) on transition-metal surfaces to be the most promising
alternative to micromechanical cleavage for producing macroscopic graphene films.
In 2008, mass-production of continuous graphene wafers by the CVD method
on polycrystalline Ni or Cu surfaces and its transfer to arbitrary substrates was
demonstrated [4–6]. The transferred graphene films show very low sheet resistance
of 280 ˝ per square, with 80% optical transparency, high electron mobility of
3,700 cm2V�1s�1, and the half-integer quantum Hall effect at low temperatures,
indicating that the quality of graphene grown by CVD is as high as that of
mechanically cleaved graphene. Further modifications of this method within less
than one year led to even more fascinating results, where graphene layers as large
as 30 inches were transferred on to a polymer film for the preparation of transparent
electrodes [7]. Other recent examples of CVD graphene growth on polycrystalline
metal substrates include, for example, Pt [8] and Ru [9] substrates.

Despite the fascinating recent achievements in graphene production, the second
problem of controllable doping should be solved prior to being able to implement
graphene in any kind of electronic device. Several strategies exist, which allow
the modification of the electronic structure of graphene, including (1) fabrication
of narrow, straight-edged stripes of graphene, so-called nanoribbons [10, 11], (2)
preparation of bi-layer graphene [12, 13], (3) direct chemical doping of graphene
by an exchange of a small amount of carbon atoms by nitrogen [14], boron [15]
or transition-metal atoms [16]; (4) modification of the electronic structure of the
graphene by interaction with substrates [17–21]; (5) intercalation of materials
underneath graphene prepared on different substrates [22–27]; (6) deposition of
different materials on top of graphene [28–30]. Not surprisingly, the investigation
of graphene interaction with supporting or doping materials, which may provide an
additional important degree of control of graphene properties has become one of the
most important research fields [31–34].

Focusing on the graphene/ferromagnet systems, such hybrid structures may
have further intriguing applications. Recent theoretical calculations by Karpan
and co-workers [35, 36] for graphene/metal interfaces imply the possibility of an
ideal spin filtering in the current-perpendicular-to-the-plane (CPP) configuration
for ferromagnet/graphene/ferromagnet sandwich-like structures [Fig. 7.2a]. In this
work, the close-packed surfaces of Co and Ni were considered as ferromagnetic
(FM) electrodes, which perfectly coincide with graphene from the crystallographic
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Fig. 7.2 Schematic representations of graphene-based systems, which are of interest for the
present graphene/metal studies: (a) spin-filtering device, (b) graphene-based spin-FET, (c) clusters
on graphene “nanomesh,” and (d) graphene islands (“nanodots”) on metallic substrates

Fig. 7.3 In (a), top-view of a simple ball model for the top-fcc graphene/Ni(111) system is shown.
Carbon atoms are small black spheres and nickel atoms are big blue spheres. In (b), top-view of
a simple ball model for the growth of graphene on Rh(111) is shown. Carbon atoms are black,
first-layer Rh atoms are red, second-layer Rh atoms are blue, and third-layer Rh atoms are yellow
spheres. The yellow rhombus outlines the supercell of the moiré structure with four different
positions: atop (marked by a circle), top-fcc (marked by a square), and top-hcp (marked by a
rotated square)

point of view [Fig. 7.3a]. The spin-filtering effect originates form the unique
overlapping of the electronic structures of the graphene monolayer and the close-
packed surfaces of ferromagnetic Ni and Co. Graphene is a semimetal with
electronic density in the vicinity of EF at the corners (K points) of the hexagonal
Brillouin zone [Fig. 7.1b]. If the Fermi surface projections of ferromagnetic metals,
fcc Ni or Co, on the (111) close-packed plane are considered, then in both cases
graphene has only a minority electron density around the K points of the surface
Brillouin zone. In the absence of any additional factors that lower the symmetry of
the system, the preferential transport of only minority electrons and thus perfect
spin-filtering will occur in an FM/graphene/FM stack [35, 36]. The interaction
between graphene and ferromagnetic materials will, however, change the electronic
properties of the interface partially quenching the spin-filtering, but a sizable effect
can still be detected by choosing a proper combination of FM materials [37]. The
spin-filtering effect is also predicted to increase strongly when multilayer graphene
is used in the junctions [35, 36] or when Cu or Mn decouple graphene from
FM [36, 37], making these systems highly attractive for possible applications as
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spintronic units. Moreover, graphene on its own might be a material of choice for the
realization of spintronic devices [38], e. g. the spin-field-effect transistor (spin-FET)
[Fig. 7.2b]. Such systems usually require the effective injection of spin-polarized
electrons in the conductive channel, which can be made from graphene [39].
Hence, a comprehensive knowledge about the electronic and magnetic properties of
graphene/FM interfaces is important for the fabrication of effective graphene-based
spintronic units.

Beyond the utilization of its unique electronic properties, graphene may also
be exploited for many other applications, for example, using graphene layers as
a template for the growth of regular arrays of nanostructures [Fig. 7.2c]. On close-
packed noble metal surfaces, such as Ir(111) [40], Rh(111) [41] or Ru(0001) [41–
47], graphene forms periodically corrugated moiré patterns with a period of
several nanometers [Fig. 7.3b], and such superstructures can act as templates
for the preparation of exceptionally well-ordered nanocluster lattices [40, 48–51].
Monodisperse metal cluster arrays on the inert graphene surface can be used in
catalysis or magnetic data storage.

In this chapter, we give a comprehensive overview of the recent studies of
graphene on metals focussing on such important aspects as morphology and
structure of graphene on metals, and the influence of the geometrical arrange-
ment of carbon atoms on the electronic structure of graphene/metal systems.
We review results obtained mostly by surface sensitive techniques including
scanning tunneling microscopy (STM), core-hole spectroscopies [core-level photo-
electron spectroscopy (PES) as well as near-edge X-ray absorption fine-structure
spectroscopy (NEXAFS) and X-ray magnetic circular dichroism (XMCD)], and
spin- and angle-resolved photoelectron spectrocopies [(SP)ARPES] studies on the
graphene overlayers on latice-matched and lattice-mismatched metallic surfaces.
We show and discuss how the graphene–metal interaction depends on the metallic
substrate and also discuss the possible ways to modify this interaction. Finally,
we briefly discuss future developments of this topic with the possible formation
of hybrid structures on the basis of graphene and metal.

7.2 Methods of Graphene Preparation on Metal Surfaces

Two common methods of graphene preparation on metallic surfaces exist: (1)
elevated temperature segregation of the carbon atoms to the surface of a bulk
metallic sample, which was doped with carbon prior to the treatment [Fig. 7.4a]
and (2) thermal decomposition of carbon-containing molecules on the surface of
transition metals (TMs) [Fig. 7.4b]. In the first method, the transition-metal sample
with some amount of carbon impurities or the bulk crystal previously loaded with
carbon (via keeping the sample at elevated temperature in the atmosphere of CO
or hydrocarbons) is annealed at higher temperatures. This procedure leads to the
segregation of carbon atoms to the surface of the metal. Careful control of the
temperature and the cooling rate of the sample allows varying the thicknesses of
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Fig. 7.4 Two ways of the graphene preparation on metal surfaces: (a) Segregation of bulk-
dissolved carbon atoms to the surface at high temperature Tsegr; (b) Decomposition (cracking)
of hydrocarbon molecules at the surface of transition metals at high temperature Tcrack

the grown graphene layer: monolayer versus multilayer growth. The second method
involves the thermal decomposition (cracking) of carbon-containing molecules at
a metal surface. Light hydrocarbon molecules, such as ethylene or propene, are
commonly used, but the successful decomposition of CO, acetylene, and of heavy
hydrocarbon molecules, such as cyclohexane, n-heptane, benzene, and toluene,
was also demonstrated [17]. Molecules can be adsorbed on a metal surface at
room temperature, and then annealing of the sample leads to the decomposition
of molecules and hydrogen desorption. Alternatively, the hot sample surface can be
directly exposed to precursor molecules, which decompose at the sample surface.
Recent experiments demonstrate that both methods, segregation and decomposition,
lead to graphene layers of similar quality. In case of segregation, the kinetics of
single graphene layer formation is defined by a careful control of the annealing
temperature (but multilayers of graphene could also be prepared). In the second
method, the graphene thickness is naturally restricted to a single-layer due to the
fact that the chemical reaction on the catalytically active metallic surface takes
the place. Thus, the speed of hydrocarbon decomposition drops down by several
orders of magnitude as soon as the first graphene monolayer is formed [52, 53].
A comprehensive list of metal surfaces, which were used for the preparation
of graphene layers is compiled in [17], where preparation methods, the main
experimental methods, and the corresponding references are presented for different
lattice-matched and mismatched metallic surfaces.

7.3 Experimental Methods

Here, we briefly describe the main microscopic and spectroscopic methods used for
the investigation of graphene layers on metal surfaces. For a detailed investigation
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Fig. 7.5 Schematic presentation of the surface science experimental methods mainly referred
to in this chapter. (a) In STM via keeping the tunneling current constant while scanning, the
surface topography can be imaged with atomic resolution. (b) In NEXAFS or XMCD experiments,
the photon energy of incoming linearly or circularly polarized light, respectively, is tuned over
a particular absorption edge and total or partial electron yield is measured. (c) In ARPES
measurements, the light at a fixed photon energy and polarization is used and photoelectrons are
analyzed by their kinetic energy (Ekin and emission angle (� ) using a 2D CCD detector allowing to
measure the sample electronic structure along a particular direction in the reciprocal space in one
shot. Rotation of the sample by an angle ˇ produces the 3D data set of experimental photoemission
intensity, I.Ekin; kx; ky/, where kx and ky are in-plane components of the wave-vector calculated
from the experimental geometry. (d) In spin-resolved PES experiments, 2D CCD detector from
(c) is replaced by a spin detector (usually classical or mini Mott type) where spin-separation is
performed

of surface topography and atomic arrangement, STM is usually implemented (for
details, see [54, 55] and Chap. 3). This experimental technique based on vacuum
tunneling of electrons, nowadays provides unprecedented insight into atomic struc-
tures and local electronic structure at surfaces of low-dimensional nano-objects. In
an STM experiment, an atomically sharp tip is positioned by piezoelectric actuators
above the surface of an electrically conducting sample at a distance of typically
5 � 15 Å [Fig. 7.5a]. The application of a small voltage UT between tip and sample
results in a quantum tunneling current. By keeping the tunneling current constant
while scanning the surface topography can be imaged with atomic resolution. In
results presented here, the sign of the bias voltage corresponds to the voltage at the
sample. Tunneling parameters are given separately in text for each STM image: UT

for tunneling voltage and IT for tunneling current.
In order to obtain information about the unoccupied electronic structure above

the Fermi level, the NEXAFS spectroscopy is commonly implemented [Fig. 7.5b].
In this method, the energy of photons generated by a synchrotron light source
is tuned over a particular absorption threshold, hence promoting core electrons
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to unoccupied states above EF. In this case, the absorption intensity is roughly
proportional to the density of the empty valence band states, although distortions
due to final-state effects can be considerable. In order to address the average
spatial orientation of selected molecular orbitals (for example � or � in graphene)
at the surface, one can vary the orientation of the sample surface normal with
respect to the wave vector of the linearly polarized X-ray light and monitor the
absorption intensity. In such an experiment, the absorption intensity associated
with a specific molecular orbital final state has a maximum if the electric field
vector is aligned parallel to the direction of maximum charge or hole density,
i.e. along a molecular orbital, and the intensity vanishes if the electric field
vector is perpendicular to the orbital axis. A detailed description of the angular
dependence of NEXAFS intensities can be found elsewhere [56, 57]. The XMCD
technique is used for the investigation of magnetic properties of materials and
allows for a direct determination of spin- and orbital-magnetic moments. In this
case, circularly polarized light is used and the absorption coefficient depends on the
relative orientation of photon spin and magnetization direction of the sample. The
quantitative analysis of the absorption spectra obtained on a magnetic sample with
circularly polarized light can be performed with the help of the so-called magneto-
optical sum rules for spin- and orbital-magnetic moments [58, 59].

PES represents one of the main experimental tools, which allows to obtain
comprehensive information about the electronic structure of solids below EF

(occupied valence band states) including the additional information about many-
electron and quasiparticle effects [60–62] (see also Chap. 4). In a photoemission
experiment, an electron from an initial state (i ) below EF is excited to some final
state (f ) above the vacuum level with an incident photon (h�). By measuring the
kinetic energy of the electron in the final state Ef and knowing the incident photon
energy (h�) and the work function (�), the experimenter can trace back to the
binding energy of the electron in the initial state Ei . Electrons which stem from the
valence band can be found at binding energies of several eV while those from core
levels contribute between several tens eV to several thousand eV. Modern electron
energy analyzers in ARPES use the so-called 2D CCD detector allowing to obtain
the band dispersion of the valence band states in a wide range of emission angles
� in one shot (at a fixed angle ˇ) [Fig. 7.5c]. The emission angle � can be used
for the calculation of wave vector component kx of electron in solid. A rotation
of the sample by angle ˇ produces the 3D data set of experimental photoemission
intensity, I.Ekin; kx; ky/, where Ekin is the kinetic energy of electron and ky is the
second in-plane component of the wave-vector calculated from the experimental
geometry.

For spin-resolved ARPES experiments, the 2D CCD detector is replaced by a
spin-detector [Fig. 7.5d]. Different types of such detectors are described in the
literature, but mainly so-called classical-Mott and mini-Mott spin-detectors are
used [63]. In these devices, the initially spin-polarized beam of electrons, which
passed the energy analyzer is accelerated to high energies and then scattered on a
heavy-element target. Scattered electrons are then detected by channeltrons, which
are placed at particular scattering angles in order to increase the figure-of-merit of
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the detector [chL and chR in Fig. 7.5d]. This allows an effective separation of the
spin-polarized electron beam into two channels: spin-up and spin-down electrons.
These measurements are performed in the remanence state of the single-domain
magnetized sample, and they are usually time consuming due to the fact that back-
scattered electrons are detected in the spin-detector.

7.4 Graphene on Lattice-Matched 3d-Metal Surfaces

Graphene layers (or monolayers of graphite) on lattice matched 3d transition-metal
surfaces have been known approximately for three decades. First experiments on
graphene/Ni interfaces can be traced back to the mid-1970s [64–68]. In these early
experiments segregation of bulk-dissolved carbon on different surfaces of Ni was
investigated in order to explore the influence of the graphene layer on their catalytic
activity. Structural stability and different growth modes of graphene layers were
studied in these works mainly by means of low-energy electron diffraction (LEED)
and Auger-electron spectroscopy. Later on, investigations of the atomic structure
of graphene on a Ni surface were performed [69, 70]. The so-called fcc � hcp

arrangement of carbon atoms above the Ni(111) surface was proposed based on
the results of surface extended-energy-loss fine-structure spectroscopy studies [69].
The graphene layer on Ni(111) was found to be flat and slightly expanded compared
to bulk graphite (by �2%). The graphene-Ni distance was estimated to be 2:80 Å,
and the Ni(111) substrate was found to remain unchanged. The atomic structure of
the graphene/Ni(111) system was also investigated by means of LEED intensity
analysis of particular diffraction spots [70]. The results of this study did not
support the previous conclusions about the system geometry [69], and top-fcc
configuration with a slightly buckled graphene layer was found to be the most
probable configuration [see Fig. 7.3a for this structure]. This work also predicted
a shorter distance of 2:10 Å between the graphene layer and the Ni(111) surface in
agreement with the main observations of electron spectroscopy experiments [70].

The electronic structure of the graphene/Ni(111) system was investigated by
means of angle-integrated photoemission, electron energy-loss spectroscopy, and
ionization-loss spectroscopy methods [69, 72]. The energy bands of graphene were
found practically unchanged compared to those of a pure graphite crystal, but
an almost rigid shift to higher binding energies of all graphene-derived bands
was detected in the experiment, indicating a charge transfer of 0:02e�/carbon
atom from the Ni substrate to the graphene overlayer. Further experiments on
graphene/Ni(111) [23, 73] performed by means of angle-resolved PES showed that
the energy shift to higher binding energies is different for �- and �-derived states
indicating the different strength of hybridization between Ni 3d valence band states
and out-of-plane � and in-plane � valence band states of the graphene layer. The
orbital hybridization of the valence band states of graphene and the substrate leads
to a considerable interaction between C and Ni atoms, resulting in a rather short
distance between graphene and Ni(111), and also to the weakening of the C–C
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Fig. 7.6 Calculated majority and minority spin band structures for a slab terminated by
graphene/Ni(111) interface for a most energetically favorable top-fcc configuration. For the blue
(darker) lines, the carbon pz character is used as a weighting factor. Data are taken from [71]

in-plane bonds. These results were confirmed by recent experiments [74, 75] and
theoretical calculations [35, 36, 71, 76] (Fig. 7.6).

This section presents a detailed analysis of the growth and electronic structure
of graphene on lattice-matched 3d -metal surfaces, focusing mostly on Ni(111).
The main experimental observations are presented and discussed in the light of the
currently available band-structure calculations.

7.4.1 Atomic Structure of Graphene Layer
on Ni(111) and Co(0001)

The STM results presented here were obtained on a graphene layer prepared on
thick Ni(111) grown on W(110) [24, 75, 77–79]. Fig. 7.7a shows an STM image
of single-layer graphene on Ni(111) after thermal decomposition of propylene.
A typical LEED pattern of monolayer graphene on Ni(111) is presented as an inset.
The graphene layer is continuous and exhibits a highly ordered crystallographic
structure without any visible defects even over large areas. Since Ni(111) and
graphene have the nearly similar lattice parameters (the lattice mismatch is of only
1.3 %), graphene forms a hexagonal (1 � 1) structure. A higher magnification STM
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Fig. 7.7 (a) A topographic STM image of the high-quality graphene/Ni(111) system. Tunneling
parameters: UT D 0:002 V; IT D 48 nA. The inset shows a LEED image obtained at 63 eV.
(b) Magnified STM image of the perfect graphene lattice. Tunneling parameters: UT D 0:002 V;
IT D 48 nA). The graphene honeycomb is marked in (b). Data are taken from [75]

image of the graphene surface is shown in Fig. 7.7b with the honeycomb of ideal
graphene marked in the image.

So far, several possible atomic configurations were considered for the
graphene/Ni(111) interface. Three “high-symmetry” structures are known as
hcp-fcc, top-hcp, and top-fcc. In the top-hcp configuration, the C atoms are placed
directly above the Ni atoms of the first layer (top site) and the second layer (hcp
site) [76]. In top-fcc, the C atoms are arranged above the Ni atoms of the first and
third (fcc) layers [Fig. 7.3a]. In the hcp-fcc configuration, the C atoms are placed
above hcp and fcc sites. Three additional configurations were considered recently,
which were called bridge-top, bridge-fcc, and bridge-hcp. In these structures, the C
atoms are not placed in hcp-fcc, top-hcp, and top-fcc sites but in between [80].

At the moment, no clear consensus exists about which of the above described
structures is more energetically stable and which kind of structures are observed
in experiments. From the theoretical side, Bertoni et al. [76] used density func-
tional theory (DFT) with the Perdew, Burke, and Ernzerhof generalized gradient
approximation (GGA-PBE), which indicated the top-fcc to be the most stable
atomic configuration at the graphene/Ni(111) interface. DFT-PBE studies were
also performed by Kalibaeva et al. [81] reporting that top-fcc structure is the
lowest energy configuration, whereas hcp-fcc has been shown to be unstable. The
calculations including three additional “low-symmetry” configurations showed that
within DTF with GGA-PBE, none of the structures is stable at the experimentally
relevant temperatures; with local-density approximation (LDA), the bridge-top
configuration was found to be the most energetically favorable one [80]. However,
the performed k-point sampling of the Brillouin zone performed in this work seems
to be not sufficient for this system (compare [80] and [36]), requiring a further
investigations of the graphene/Ni(111) system. From the experimental side, Rosei
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et al. [69] and Klink et al. [82] found that the most stable structure is hcp-fcc,
whereas Gamo et al. [70] found top-fcc to be the most favorable configuration.

Graphene terraces (Fig. 7.7) have a peak-to-peak roughness of 0.2 Å and show a
honeycomb structure with a lattice constant of 2:4˙0:1 Å [Fig. 7.7b], which agrees
well with the expected 2.46 Å lattice spacing of graphene [24, 75, 77, 78]. STM
images show that within each honeycomb carbon atoms corresponding to different
sites appear with a different contrast, which can be attributed to the differences in
the local stacking of the graphene sheet and the Ni(111) substrate. Therefore, STM
images could be interpreted in the following way: Fig. 7.7 shows a single layer
graphene, where one half of carbon atoms are situated on top of nickel atoms and
the other half occupy one of the two non-equivalent threefold hollow cites – fcc

or hcp. However, it turns to be impossible to directly identify which of the hollow
sites is occupied.

The STM experiments performed on the graphene/Co(0001) system also demon-
strate the epitaxial growth in the system with one of the carbon atoms in the
graphene unit cell situated above Co surface atom [83]. The position of the second
carbon atom is not clear and could be obtained only from the comparison of the
calculated band structure with experimental structural and spectroscopy data. The
recent calculations for this system predict that top-hcp and top-fcc arrangements
at the interface are more favorable with spacing between Co surface and graphene
layer of 2.07 Å [83].

7.4.2 Electronic Structure of Graphene
on Lattice-Matched Surfaces

The lattice matched interface between graphene and Ni(111) is among the most
extensively studied graphene/metal systems [23, 69–71, 73, 75–79, 84–87]. A con-
siderable modification of graphene’s electronic structure due to the orbital mixing
between Ni 3d and graphene � states was predicted theoretically [35,36,71,76,84]
and observed recently by NEXAFS spectroscopy [86, 87]. Figure 7.8 shows angle-
dependent C 1s NEXAFS spectra of graphene on Ni(111) in comparison with
the C 1s absorption spectrum of highly oriented pyrolytic graphite (HOPG). The
spectrum of HOPG is characterized by the C 1s ! �� resonance at 285.3 eV
and two C 1s ! �� resonances around 291.6 eV and 292.7 eV. The shape of this
spectrum can be best described including effects of dynamical screening of the core
hole [88]. Comparing the C 1s NEXAFS spectrum of the graphene/Ni(111) system
with the reference graphite spectrum, considerable changes in the spectral shapes
are observed, indicating a substantial orbital hybridization between graphene and
Ni valence band states at the interface. This is a direct experimental evidence for
significant chemical interaction between graphene and Ni(111), in accordance with
the relatively high adsorption energy of 125 meV per C atom calculated for this
system [89]. A new strong feature at 287.1 eV originates from transitions to the
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Fig. 7.8 (a) Angle-dependent C 1s NEXAFS spectra of the graphene/Ni(111) system measured as
a function of angle � , between polarization vector of the incoming linearly polarized light and the
surface normal (see inset for exact experimental geometry). The reference spectrum from HOPG
is shown in the upper part of the panel. (b) Comparison between experimental NEXAFS spectra
and calculated EELS of graphite and graphene/Ni(111) for two different incident angles, � , where
transitions from C 1s core level on mostly ��- or ��-states occurred. Experimental data are from
[75, 86]. Theoretically calculated EELS spectra are taken from [76]

states with � symmetry, as evident by the angle dependence. The characteristic
double-peak structure at 285.5 eV and 287.1 eV can be qualitatively understood
already with the ground-state DFT calculations [76], while the dynamics of core-
hole screening has to be considered for correct reproduction of the spectral
profile [87]. In the ground-state approximation, the first �� resonance can be
roughly associated with the unoccupied C 2p density of states (DOS) located at
the C atoms on top of Ni atoms, while the second �� peak is mainly due to the C
2p DOS on the C atoms located at fcc hollow sites [76, 86, 87]. However, in a real
experiment individual contributions are considerably mixed and further affected by
the core hole and its dynamical screening. The �� resonances are also influenced by
the interaction with the substrate: they are visibly broadened and shifted by 0.6 eV to
lower energies. The broadening is a result of the increased screening by the substrate
electrons. The reduction of the �� � �� separation reflects the reduced anisotropy
of the potential for outgoing electrons due to the slight ripple in the graphene layer
on Ni(111) accompanied by a softening of the C–C bonds.

In the following, we would like to compare our NEXAFS results [75,86] with the
recently calculated C K-edge EELS spectra for the graphene/Ni(111) interface [76].
The calculated EELS spectra are found to agree well with the experimental
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NEXAFS data [see Fig. 7.8b]: (1) the spectra show the same angle (scattering
vector) dependence and (2) the experimentally observed NEXAFS features are well
reproduced in the calculated EELS spectra. For example, two peaks in the NEXAFS
spectra in the 1s ! �� spectral region at 285.5 eV and 287.1 eV photon energy can
be assigned to the double peak structure in the calculated EELS spectrum at 0.8 eV
and 3.0 eV above the Fermi level [76]. According to the theoretical calculations [76],
the first sharp feature in the NEXAFS spectrum is due to the transition of the elec-
tron from the 1s core level into the interface state I4 above the Fermi level (around
the K point in the hexagonal Brillouin zone, see Fig. 7.6), which originates from the
C pz–Ni 3d hybridization and corresponds to the antibonding orbital between a
carbon atom C-top and an interface Ni atom. The second peak in the NEXAFS
spectrum is due to the dipole transition of an electron from the 1s core level
into the interface state I5 above the Fermi level (around the M -point in the
hexagonal Brillouin zone, see Fig. 7.6), which originates from C pz–Ni px; py; 3d

hybridization and corresponds to a bonding orbital between C-top and C-fcc

atoms, involving an Ni interface atom. In the case of the NEXAFS C 1s ! ��,
the theory also correctly describes the shape of the absorption spectra [76].

Since the � electrons of graphene are actively involved in the bonding with the Ni
substrate, the overall strength of the C–C bonds is considerably decreased. This fact
is reflected in the relatively low growth temperature (500ıC � 650ıC depending on
the hydrocarbon flux) and high solubility of carbon in Ni. The growth temperature
is significantly lower than that used for graphene formation on more passive metal
surfaces (e.g., 850ıC � 1;000ıC in the case of graphene/Pt or graphene/Ir), where
the C–C bonds are not weakened so drastically by the substrate. The metastable
equilibrium state of graphene on Ni(111) associated with the permanent formation
and re-evaporation of graphene flakes can be reached in the temperature window
as low as 650ıC � 670ıC [79] [Fig. 7.9a, b]. CVD growth is assisted by carbon
dissolving in Ni and segregation to the surface, as can be judged from direct
monitoring of the growth process with high-resolution C 1s PES. Figure 7.9b shows
the C 1s PE spectra of the final graphene film grown on Ni(111) obtained at different
substrate temperatures [79]. In all cases, the main peak at 284.7 eV is asymmetric
and can be reliably fitted using a single component with Doniach–Sunjic lineshape.
The fit parameters of this peak are comparable with those reported for the C 1s

line in other graphene/TM systems [41]. The small feature observed at around
283 eV is characteristic of carbon atoms with reduced coordination (as compared
to graphene): atomic carbon dissolved in Ni and, possibly, carbon atoms at the
borders of graphene flakes. Similar features were observed upon dissociation of
CO on Rh nanostructures and were associated with atomic carbon [90, 91]. Since
this component results from a disordered phase, its appearance is undesirable. From
Fig. 7.9, it is evident that with increasing temperature the signal at 283 eV gradually
decreases and vanishes completely close to the equilibrium growth conditions. This
implies that all atomic carbon from the substrate is activated at this temperature
and participates in graphene formation and/or the contribution from the borders of
graphene flakes is reduced due to the reduced nucleation density.
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Fig. 7.9 (a) Time evolution of the PES intensity in the C 1s region during the graphene growth.
Individual spectra were recorded every 10 s. F and G mark the signals from C3H6 fragments and
graphene, respectively. The inset shows a LEED pattern (primary energy was 80 eV) after growth of
graphene. (b) C 1s PES spectra of the resulting graphene layer obtained at different temperatures.
Data are taken from [79]

Figure 7.10 shows two series of ARPES spectra measured along the � � K

direction of the hexagonal Brillouin zone of the graphene/Ni(111) system [75]. Each
series is extracted from the 3D sets of data of photoemission intensity I.EB; kx; ky/,
where EB is the binding energy and kx; ky are the orthogonal components of the in-
plane wave vector. The presented photoemission data are in very good agreement
with the previously published results [22,23,73,74,78]. In Fig. 7.10, one can clearly
discriminate dispersions of the graphene �- and �-derived states in the region below
2 eV of the binding energy (BE) as well as Ni 3d -derived states near EF. The binding
energy of the graphene � states in the center of the Brillouin zone (in the � point)
equals to 10:1 eV, which is approximately by 2:4 eV larger than the binding energy
of these states in pure graphite [77,86]. The shift to larger binding energy is different
for � and � valence band graphene-derived states. This behavior can be explained
by the different hybridization strength between these states and Ni 3d valence band
states, which is larger for the out-of-plane oriented � states compared with the one
for the in-plane oriented � states of the graphene layer. The effect of hybridization
between Ni 3d and graphene � states can be clearly demonstrated in the region
around the K point of the Brillouin zone: (1) one of the Ni 3d bands at 1.5 eV



204 Y. Dedkov et al.

Fig. 7.10 Angle-resolved photoemission spectra of the graphene/Ni(111) system recorded along
the � � K direction of the hexagonal Brillouin zone at (a) 70 eV and (b) 100 eV of photon energy.
Spectra corresponding to � and K points are marked by thick black lines. Data are taken from [75]

of BE changes its binding energy by � 150 meV to larger BE when approaching
the K point; (2) a hybridization shoulder is visible in photoemission spectra, which
disperses from approximately 1.6 eV to the binding energy of the graphene � states
at the K point. The strong hybridization observed in PES spectra underlines the fact
that the � states might become spin-polarized and might gain a non-zero magnetic
moment due to the admixture of the Ni 3d states into the C � states.

Considering the electronic band structure of the graphene/Ni(111), the region
around the K point delivers the most interesting and important information with
respect to the possible spin-filtering effects in the graphene/FM or FM/graphene/FM
sandwich-like structures. First, the spectral function of the graphene layer on
Ni(111) is characterized by the absence of well-ordered structure of the graphene
�-bands in the vicinity of the Fermi level and second, the Dirac-cone is not
preserved. Both observations can be attributed to a strong interaction between
graphene layer and metallic substrate leading to a strong hybridization between the
graphene � and the Ni 3d valence band states. In the vicinity of the K point, a
number of photoemission peaks can be clearly distinguished: (1) a sharp peak about
the Fermi level at 0:1 � 0:2 eV BE, (2) a graphene �-states-related peak at 2:65 eV
BE, (3) two peaks at 0:7 eV and 1:65 eV BE.

The analysis of the experimentally obtained electronic structure has recently
been performed in [75] relying mainly on two comprehensive sets of electronic
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structure calculations currently available for the graphene/Ni(111) system [36, 76].
Calculations by Bertoni et al. [76] predict the existence of three interface states
below the Fermi level originating from the strong hybridization between the Ni
3d and the graphene � states and corresponding to: (I1) bonding between C-fcc

and interface Ni atoms; (I2) bonding between C-top and interface Ni atoms; (I3)
antibonding between C-fcc and interface Ni atoms. Karpan et al. [36] performed
the band structure calculations of the graphene/Ni(111) system with the major
emphasis on the investigation of the spin-dependent transport properties of the
Ni/graphene/Ni sandwich structures. Both calculations yielded a quite complicated
band structure of the graphene/Ni(111) system around EF due to the strong
hybridization between the graphene and the Ni valence band states.

The interpretation of the experimentally observed photoemission features around
the Fermi level could be performed as presented in Ref. [75]. The photoemission
peak close to EF (0:1–0:2 eV BE) could be considered as a combination of the
interface state I3 (both spins) with a large contribution of the graphene �-character
and the Ni 3d (#)-band. The second peak at 0:7 eV BE could be assigned to the
combination of the Ni 3d (")- and Ni 3d (#)-bands present in both calculations. The
feature at 1:65 eV could be considered as a combination of Ni 3d (")-band and
I2(#)-state with a large graphene �-character. The last photoemission peak (2.65 eV
BE) could be assigned to the interface state I2(") with large contribution of the
graphene �-character.

In order to check the theoretical predictions concerning the CPP spin-dependent
electronic transport properties of the ideal graphene/Ni(111) interface, an analysis
of the constant energy photoemission maps close to EF was performed in [75]
(Fig. 7.11). However, flat Ni 3d bands, which dominate the photoemission intensity
around EF make the detailed analysis rather difficult. The energy cuts were taken at

Fig. 7.11 Constant energy cuts of the 3D data sets in the energy-wave vector space, I.EB; kx; ky/,
obtained through a ˇ-scan from the graphene/Ni(111) system at 100 eV of photon energy. The
energy cuts are taken at (a) 4 eV and (b) 2:7 eV BE as well as at (c) EF. Data are taken from [75]
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(a) 4 eV and (b) 2:7 eV of BE as well as at (c) the Fermi level. The energy cut at
EB D 4 eV shows characteristic photoemission intensity patterns of the graphene
layer, which reflect the symmetry of the system. Below the Dirac point (crossing
of straight dispersion lines of � states in free-standing graphene), the graphene
� bands are visible in the first Brillouin zone, whereas no bands can be seen in
the second one [92]. Additionally, several energy bands are present in the middle
of the Brillouin zone (outlined by dashed yellow lines), which also show hexagonal
symmetry. These bands originate from the hybridization of the Ni and graphene
valence band states. The constant energy cut taken in the region of the minimal
binding energy of the graphene � states (EB D 2:7 eV) is shown in Fig. 7.11b.
In the case of graphene/Ni(111), the Dirac point is not preserved due to the strong
hybridization of Ni 3d and graphene � states around the K point. This can also
be directly recognized at this energy cut, where graphene � states produce broad
intensity spots instead of sharp points in the wave-vector space. As in the previous
case, we observe a number of valence band states in the middle part of the Brillouin
zone, which again could be assigned to the hybridization-derived states.

The most interesting and important information in view on the spin-dependent
transport properties of the graphene/Ni(111) system can be extracted from the
constant energy cut obtained at the Fermi energy, which is presented at Fig. 7.11c.
Already the analysis of Fig. 7.10a, b shows that the photoemission intensity is
increased around the K point and along the K � M direction of the hexagonal
Brillouin zone, that correlates with the increased photoemission intensity observed
in the energy cut shown in Fig. 7.11c for the Fermi energy. Additionally, a number
of arcs surrounding the K points and weak (but distinguished) diamond-shape
regions of increased intensity are clearly visible in the middle part and around
the M points of the Brillouin zone, respectively. Upon the comparison of the
obtained photoemission results for the graphene/Ni(111) system (Figs. 7.10 and
7.11) as well as the Fermi-energy cut with the band structure calculations for
this system [35, 36, 71, 76] (Fig. 7.6), we find very good agreement between
theory and experiment. Particularly, the region around the Fermi level for the ideal
graphene/Ni(111) system is well reproduced in the experiment, confirming the main
predictions of the theory. However, more experimental and theoretical efforts are
required to determine the spin character of individual bands.

7.4.3 Magnetism of Graphene on the Ni(111) Surface

The earlier discussed hybridization between graphene � and Ni 3d valence band
states leads also to a partial charge transfer of the spin-polarized electrons from
Ni to C. This leads to the appearance of induced effective magnetic moment of
carbon atoms, which can be detected in experiments sensitive to the magnetic
state of particular elements, such as XMCD. Figure 7.12 shows XMCD spectra
of the graphene/Ni(111) system collected at the Ni L2;3 (left panel) and C K

(right panel) absorption edges in the TEY and PEY modes, respectively [86].
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Fig. 7.12 XMCD spectra of the graphene/Ni(111) system measured at the Ni L2;3 (a) and C K

absorption edges (b). The corresponding differences reflecting the strength of the dichroic signal
are shown in the lower part of the respective figures. Data are taken from [75, 86]

The Ni L2;3 XMCD spectrum (white line as well as fine structure behind the
absorption edge) is in perfect agreement with the previously published spectroscopic
data [93–95] with the extracted values of spin- and orbital-magnetic moments
�S D 0:69 �B and �L D 0:07 �B , respectively, which are in very good agreement
with the previously published experimental ones [93, 96]. The experimentally
obtained value of the spin-magnetic moment is in agreement with the theoretically
calculated one �S D 0:67 �B for the graphene/Ni(111) system [76]. For the most
energetically favorable configuration of carbon atoms on Ni(111), C-top–C-fcc,
calculations predict a reduction of the spin-magnetic moments of Ni interface
atoms by 16% till 0:56 �B . Experimental data collected in the PEY mode (more
surface/interface sensitive) at the Ni L2;3 absorption edge also demonstrate slight
reduction of spin moment of surface Ni atoms till �S D 0:63 �B [75, 86] that is
consistent with theoretical calculations [76].

The most important and interesting result of these XMCD experiments on the
graphene/Ni(111) system is the observation of the relatively large dichroic contrast
at the C K absorption edge [Fig. 7.12b]. The C K XMCD spectrum reveals that
the major magnetic response stems from transitions of the 1s electron onto the
��-states, while transitions onto the ��-states yield very weak (if any) magnetic
signal indicating that only the C 2pz orbitals of the graphene layer are magnetically
polarized due to the mixing with the Ni 3d band. As discussed earlier, the sharp
structure at the 1s ! �� absorption edge originates from hybridized C pz–Ni 3d

and C pz–Ni px; py; 3d states (see earlier discussion and [76]).
At the C K absorption edge, the electron transitions occur from the non-spin-

orbit split 1s initial states to the 2p final states and thus, in the analysis of the
dichroism effect at the K edge one equation in the “sum” rules is missed. This
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means that the XMCD signal at K edges provides the information only on the
orbital magnetic moment �orb [58, 59, 97]. In [75, 86], the value of the C orbital
magnetic moment was estimated to be �orb D 1:8 ˙ 0:6 � 10�3 �B . Comparison
of the presented results from [75, 86] with recent experimental studies of induced
magnetic effects in nonmagnetic materials [98, 99] allows to estimate a value of
spin magnetic moment of carbon atoms in graphene/Ni(111) in the range 0:05 �
�0:1 �B [75,86]. An analysis of the calculated spin-resolved electronic structure of
graphene/Ni(111) [76] is difficult due to complicated behavior of the majority and
minority spin interface states. In [76], the calculated magnetic moment is very small:
�0:01 �B and 0:02 �B for C-top and C-fcc, respectively, although the magnetic
splitting of the majority and minority parts of the interface states I3 and I4 was
found between 0.13 and 0.55 eV, respectively.

The experimentally observed effective magnetic moment of carbon atoms of the
graphene layer on Ni(111) is also confirmed by our spin-resolved photoemission
study [75]. The main results are presented in Fig. 7.13 showing (a) the spin-resolved
spectra and (b) the corresponding spin polarization as a function of the binding
energy of Ni(111) and the graphene/Ni(111) system measured in the region of Ni 3d

valence band with a photon energy of 65 eV at room temperature in normal emission
geometry. The formation of graphene on Ni(111) strongly modifies the valence band
spectrum of Ni 3d as a result of the strong interaction between valence band states
of graphene and Ni. These considerable modifications of the spin-resolved structure
of Ni 3d states as well as a reduction of spin polarization at the Fermi level could

Fig. 7.13 (a) Spin-resolved PES spectra and (b) corresponding spin polarization of the Ni 3d

valence band states as a function of the binding energy for Ni(111) and the graphene/Ni(111)
system. (c) Spin-resolved photoemission spectra of the �-states of graphene on Ni(111). All spectra
were collected in the normal emission geometry with the photon energy of 65 eV. In (a) and (c),
open and filled triangles denote spin-up and spin-down electron channels, respectively. Data are
taken from [75]
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be taken as an indication of the decreasing of magnetic moment of Ni atoms at the
interface between graphene and Ni(111), which was predicted by theory [76].

The spin-resolved spectrum of the graphene � states of graphene/Ni(111)
measured in normal emission geometry with photon energy of 65 eV is shown
in Fig. 7.13c. These results demonstrate a clear spin contrast for the graphene �

states with the maximum spin polarization of about .�12 ˙ 2%/ and the exchange
splitting of about 34 ˙ 9 meV, which is in rather good agreement with the value
extracted from theoretical works [76, 100]. A comparison of these spin-resolved
spectra including their sign with the background spin polarization originating from
the Ni 3d states give an opportunity to conclude that the spin moment of graphene
is aligned antiparallel to the magnetization of Ni implying an antiparallel magnetic
coupling of graphene to Ni. However, this conclusion is based only on the normal
emission spin-resolved measurements and has to be clarified by more intensive
spin-resolved PES experiments. Here, we would like to note that the experimental
evidence of a pronounced spin polarization at room temperature together with the
splitting of the � states in the graphene/Ni(111)system are in contradiction to
the results previously reported by Rader et al. [101], where the absence or very
small spin polarization of the graphene � states was observed. The origin of this
discrepancy is, however, not clear at the moment and further spin-polarized PES
investigations of the graphene/Ni(111) system should be undertaken in order to
resolve this issue.

7.5 Graphene on Lattice-Mismatched 4d; 5d-Metal Surfaces

As shown in the previous section, in the case of close lattice parameters between
graphene and hexagonally close-packed metal surface, lattice-matched structures
are formed, like for graphene on Co(0001) [83] and Ni(111) [53]. However, larger
mismatches lead to the formation of superstructures with large periodicity, which
were observed on Pt(111) [8, 41, 102–108], Ir(111) [40, 41, 109–114], Pd(111) [41,
115], Rh(111) [33,41,51,116,117], or Ru(0001) [41–44,46,116,118–121]. Already
more than four decades ago, graphene layers were stabilized on noble metal surfaces
upon high temperature annealing of Pt and Ru single crystals [102, 103, 116]. After
hydrocarbon decomposition or carbon surface segregation on metal surfaces at
elevated temperatures sharp satellite spots or segmented rings were observed in
LEED [102–104, 109, 116, 119, 122], which were attributed to the formation of
graphene layers. However, an extended temperature treatment during the segrega-
tion process may lead not only to single layer, but also to multilayers of graphene
or even to bulk graphite formation. In the subsequent studies [22,73,112,123,124],
single-layer graphene formation could be discriminated by its characteristic band
structure in ARPES (see also previous section). In this section, we will focus on
the atomic structure of single-layer graphene on Ir(111), Ru(0001) and Rh(111)
surface, as well as on the changes of electronic structure of graphene associated
with the bonding to these substrates.
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7.5.1 Structure of Graphene on Ir(111), Ru(0001), and Rh(111)

Several growth methods were reported for the preparation of highly ordered
graphene monolayers on Ir(111), including pyrolysis of preadsorbed ethylene and
graphene growth at elevated temperature, which is also referred to as temperature
programmed growth (TPG) and low-pressure CVD of ethylene on hot Ir surface [40,
110, 126]. Upon using high growth temperatures up to 1,320 K, the latter technique
allows the preparation of single-layer graphene domains of unprecedented quality.
Graphene flakes prepared by this method are dislocation-free and fully coherent
over step edges reaching at least micrometers in size [40, 110, 126]. The STM
topographic image in Fig. 7.14a shows the perfectly ordered moiré superstructure
of single-layer graphene on Ir(111) prepared by high-temperature decomposition
of propene [125]. The moiré superstructure was reported to have a periodicity of
25:3 ˙ 0:4 Å [40, 110, 126, 127], which corresponds to 9.32 Ir lattice constants
showing that the structure is incommensurate. Depending on tunneling voltage, the
moiré superstructure contrast changes considerably indicating a strong influence

Fig. 7.14 (a) Large-scale STM image of an epitaxial graphene layer on the Ir(111) surface. (b)
Atomically resolved STM image of the moiré structure of the graphene layer on Ir(111). (c) LEED
image of the graphene layer on Ir(111) taken at a primary electron energy of 70 eV. Tunneling
parameters for STM images: (a) UT D 1:12 V; IT D 0:18 nA; (b) UT D 0:01 V; IT D 2:56 nA.
Data are taken from [125]
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of the electronic structure in STM [40, 110, 126, 127]. The high-resolution STM
image in Fig. 7.14b shows no atomic-scale defects, confirming a high crystalline
quality of single layer graphene on the Ir(111) surface [125]. The full graphene
honeycomb lattice is clearly visible in all areas of the moiré supercell. The LEED
pattern of the graphene/Ir(111) surface is shown in Fig. 7.14c [125]. The pattern
shows hexagonal symmetry consisting of a six pairs of iridium and carbon spots
surrounded by hexagonally arranged satellites correspond to the superstructure. The
LEED measurements yield a value of 25:8 ˙ 2:0 Å [40, 110, 126, 127] for the
periodicity of the superstructure, which coincides with the value extracted from
the STM images. Beyond the most abundant graphene moiré structure on Ir(111)
described above additional orientations of graphene were reported recently [111].
A combined low-energy electron microscopy (LEEM), selected-area LEED and
STM investigation revealed three additional moiré domains, which are rotated by
�14ı, �18:5ı, and �30ı with respect to the most abundant orientation. Along
with rotational variants, liner defect structures in graphene sheets were observed
by LEEM [111]. STM shows that these defects are wrinkles in the graphene layer,
suggesting that the graphene sheets delaminate locally upon substrate contraction
during cooling after growth at higher temperatures [111, 128]. Upon temperature
cycling, a hysteresis in the appearance and disappearance of the wrinkles was
observed [128]. However, for possible applications a controlled graphene growth is
highly desirable allowing fabrication of large defect-free well-oriented monolayer
graphene sheets. Recent studies show that millimeter-sized graphene films of a
single orientation and unprecedented structural perfection can be prepared on
Ir(111) by a cyclic growth exploiting the different growth and oxygen etching speeds
of the domain variants [129].

On the Ru(0001) surface graphene also forms a moiré structure. A topographic
STM image presented in Fig. 7.15a shows large graphene flakes formed on the ter-
races of the Ru(0001) surface after the carbon segregation at high temperature [42].
Figure 7.15b shows atomically resolved STM image of graphene on Ru(0001)
indicating a strong atomic contrast variation within the supercell of the moiré
structure. Contrary to the STM data obtained on graphene/Ir(111), here the full
graphene honeycomb lattice is only visible at the moiré maxima [9, 42]. At the two
nonequivalent minima of the moiré supercell only one of the two carbon sublattices
is resolved. The observed atomic contrast across the graphene supercell is assigned
to the local variation of the interaction strength between the graphene sheet and the
underlying ruthenium surface depending on the atomic registry of carbon atoms with
the Ru atoms. The two nonequivalent minima in the graphene unit cell differ with
respect to the Ru atoms in the substrate layer. In one region, the carbon atoms occupy
top-hcp sites, in the other top-fcc sites. Recent surface X-ray diffraction (SXRD)
investigation [43] showed that contrary to the previously proposed periodicity of
approximately (11 � 11), i.e., with (12 � 12) graphene unit cells overlaid, the true
structure is a (25 � 25) graphene on (23 � 23) Ru structure, meaning that the
unit cell consists of four moiré subcells. More recently, the graphene/Ru(0001)
structure was further refined upon a detailed analysis of the SXRD data [130]. The
proposed structure shows an excellent agreement with previous STM studies [9,42].
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Fig. 7.15 (a) 500 Å�500 Å topographic STM image recorded after annealing Ru(0001) sample at
1,470 K. The surface is fully covered by graphene and Ru step edges are aligned along the main
directions of the overlayer, indicating a restructuring of the underlying Ru surface. (b) 50 Å�50 Å
atomically resolved image of the graphene overlayer on Ru(0001). The image shows three different
levels of apparent heights, namely four bright maxima, a dark minimum in the center between the
three maxima on the right hand side, and a less dark minimum between the three maxima on the left
hand side. Tunneling parameters for STM images: (a) IT D 1 nA, UT D �0:2 V; (b)IT D 1 nA,
UT D �0:05 V. Data are taken from [42]

A pronounced corrugation of both graphene and ruthenium substrate at the interface
was found supporting the idea of a chemisorbed graphene layer with significant
interaction with the substrate. Moreover, areal chirality in the in-plane movements
in graphene layer on Ru(0001) was observed [130].

In the following, we would like to focus on the graphene/Rh(111) system
exhibiting a rather complicated moiré pattern. An overview of a graphene layer on
the Rh(111) surface is shown in Fig. 7.16a [117]. The graphene domain exhibits a
highly ordered moiré structure without any visible defects even over large areas.
Rh steps are aligned along the main crystallographic directions of the graphene
moiré, which is attributed to the substantial reshaping of the Rh(111) surface
during the graphene growth process in order to accommodate the periodicity and
orientation of the graphene overlayer. The apparent vertical corrugation of the
graphene monolayer is measured to be in the range of 0:5–1:5 Å (peak-to-peak)
depending on the tunneling conditions [see inset in Fig. 7.16a]. LEED pattern of the
graphene moiré on Rh(111) is presented in Fig. 7.16d. Qualitative analysis of STM
and LEED images show that the close-packed directions of graphene and the unit
cell vectors of the moiré are parallel to the close-packed h1N10i directions of Rh(111).
From the LEED images, a periodicity of 2:90 ˙ 0:1 nm of the moiré superstructure
on Rh(111) was calculated, which is in reasonable agreement with the average
distance between the neighboring moiré features measured in STM images and
corresponds roughly to 12 times the lattice constant of graphene and 11 times that
of Rh(111). A higher magnification STM image of the graphene surface is shown
in Fig. 7.16b with the unit cell of the moiré superstructure marked by a rhombus.
Four distinctive regions corresponding to different apparent height levels can be
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Fig. 7.16 (a) Large-scale STM image of an epitaxial graphene layer on the Rh(111) surface. Inset
shows a height profile measured along the white arrow. (b) High magnification image of the unit
cell of the moiré structure. The black rhombus outlines the supercell of the moiré structure. Main
surface features are marked in the image: moiré maximum (A1) by a circle, the brighter half-cell
(A2) by a white solid triangle, the darker half-cell (A3) by a gray solid triangle, and bridging black
minima (A4) by black solid circles. (c) Atomically resolved STM image of the moiré structure
of the graphene layer on Rh(111) taken with different tunneling parameters compared with (b).
(d) LEED image of the graphene layer on Rh(111) taken at a primary electron energy of 58 eV.
Tunneling parameters for STM images: (a) UT D 1:12 V; IT D 0:18 nA; (b) UT D 0:01 V;
IT D 2:56 nA; (c) UT D 0:02 V; IT D 30 nA. Data are taken from [117]

distinguished within the moiré supercell: three maxima of different heights (A1,
A2, A3) and black minima (A4). The most prominent maxima (A1) are surrounded
by six black minima as well as by three less intense maxima A2 and A3. Each
of the less intense maxima (A2, A3) is surrounded by three black minima (A4).
The different contrast features within the moiré unit cell can be distinguished much
better in the high-resolution STM image in Fig. 7.16c recorded at different tunneling
conditions compared to Fig. 7.16b. In most regions of the moiré supercell, the
graphene sublattice symmetry is broken and only one of the two carbon sublattices
is imaged. We attribute this effect to the strong, covalent interaction between the
graphene layer and the Rh(111) substrate.

A more detailed description of the atomic configurations can be carried out on
the basis of a simple ball model presented in Fig. 7.3b. Three highly symmetric
positions of carbon atoms (or centers of carbon rings) with respect to the underlying
Rh lattice can be assigned: hcp-fcc (or atop) sites at the corners of the moiré
unit cell, top-fcc (or hcp) and top-hcp (or fcc) sites in the center of the right and
left half-cell of the moiré unit cell, respectively. In the STM image [Fig. 7.16c]
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hcp-fcc regions appear as the bright maxima of the moiré structure (A1), top-
hcp and top-fcc appear as the two less intense maxima (A2 and A3), exhibiting
two different intensity levels (A2 is brighter than A3). In contrast to graphene on
Ru(0001) [42, 43, 120], in this present study we observe that bright features (local
maxima) are surrounded by dark depressions (A4) present in both halves of the
moiré unit cell corresponding to the bridge-top areas, which we believe are strongly
bonded to the metallic substrate. The full graphene honeycomb lattice is only visible
in areas directly on top or adjacent to the A1 maxima (moiré maxima), which we
attribute to the weak coupling of these regions of the graphene sheet to the Rh
lattice. The atomic structure of other regions is dominated by the strong covalent
interaction with the metal substrate, especially within the black minima (A4), where
C atoms are placed in bridge-top positions. Recent theoretical investigations showed
that for graphene on Ni(111) [80] as well as for graphene on Ru(0001) [121] such
bridge positions are energetically favorable, which might lead to a relatively strong
C–Rh bonding in these regions. Especially the bridge-top position, which we believe
gives rise to the observed black depressions in the STM images, was found to be
one of the most energetically stable configurations [80]. Interestingly, the observed
pronounced bonding of the bridge-top regions is almost completely suppressed in
graphene on Ru(0001) [42,43,120], where no local height variation within the half-
cells of the moiré structure was observed. We also would like to point out that
the atomic structure of graphene on Rh(111) also differs from that of the h-BN
“nanomesh” on Rh(111) [131, 132].

7.5.2 Electronic Structure of Graphene
on Lattice-Mismatched Surfaces

In a straightforward way, the degree of interfacial hybridization between graphene
� and TM d states can be probed in the C 1s X-ray absorption experiment.
Figure 7.17a shows C 1s NEXAFS spectra for graphene layer on Pt(111), Ir(111),
Rh(111), and Ru(0001) together with the corresponding LEED patterns [41]. The
spectra are arranged in such a way that from top to bottom the substrate-induced
changes to the original graphite spectrum increase, thus providing a direct evidence
for the growing chemical interaction between graphene and metals in the series
Pt–Ir–Rh–Ru. Evidently, the 4d and 5d metals fall into two different groups as
regards bonding to graphene. In the case of 5d metal substrates, the C 1s NEXAFS
spectrum is weakly affected preserving shapes and energies of the distinctive
resonant features A, B, and C. On Pt(111), the influence of the substrate is restricted
mainly to the appearance of the step-like feature A0 at 284 eV due to the lowering
of the Fermi level as a result of the charge transfer at the interface. Very weak
chemical bonding of graphene to Pt(111) cannot force the overlayer uniquely in
registry with the substrate, as can be judged from the LEED pattern with seg-
mented rings reflecting different domain orientations of graphene [Fig. 7.17a, lower
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Fig. 7.17 (a) C 1s NEXAFS spectra from graphene layer adsorbed on several lattice-mismatched
TM surfaces. The C 1s spectrum from HOPG is shown for comparison. Lower panel shows
the corresponding LEED patterns; substrate-related spots are marked with crosses. (b) C 1s

photoelectron spectra taken in normal emission from graphene layer adsorbed on several lattice-
mismatched TM surfaces. Photon energy is 400 eV. For graphene/Ru(0001), the Ru 3d signal is
subtracted. Data are taken from [41]

panel] [41, 104, 105, 122, 133, 134]. The detailed structure of possible graphene/Pt
moiré patterns has been revealed in a recent combined LEED/LEEM study [107].
On Ir(111), shoulder A0 is already disturbed by weak chemisorption and a new
bonding-related �� feature A00 starts to develop between 286.5 eV and 288 eV. A
reduction in the 5d occupancy in going from Pt (d 9) to Ir (d 7) is probably the main
reason for the growing interaction with graphene, since it causes a depopulation
of the antibonding states. A slight increase in the bonding strength (as compared
to graphene/Pt) results in the occurrence of one principal domain orientation, as
reflected in the mismatch-induced moiré pattern in LEED [Fig. 7.17a, lower panel].

In the case of 4d metal substrates (Rh and Ru), the electronic structure
of graphene is strongly disturbed, as reflected in the C 1s NEXAFS spectra
[Fig. 7.17a]. Indeed, the spectra of graphene on Rh(111) and Ru(0001) resemble
the C 1s spectrum from graphene on Ni(111), which is discussed above (Fig. 7.8).
Both �� and �� resonances are strongly reshaped, and the separation between the
�� and �� manifolds is visibly reduced. Again, these changes reflect strong TM
4d – graphene � orbital mixing and softening of the C–C bonds caused by the
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formation of covalent bonds between C atoms and the substrates. The general trends
in the strength of interaction between graphene and late TMs are the following: (1)
along the row it increases with decreasing occupancy of the d shell and (2) for
the same occupation numbers, it is similarly strong for the 3d and 4d shells,
but considerably weaker for the 5d shell. The former trend is due to the gradual
depopulation of the antibonding states with reducing d shell occupation. The latter
effect can be understood in terms of orbital overlap. In going from 4d to 5d

elements, relativistic effects become significant, resulting in contracting the 6s

orbitals and expanding the 5d orbitals. Probably, the overlap of the graphene �

states with more diffuse 5d orbitals is worse than with more localized 4d orbitals.
The co-existence of lowered and elevated graphene areas on lattice-mismatched

TM substrates (see previous subsection for the exact surface geometry) can be
directly observed in a core-level PE experiment. Figure 7.17b shows C 1s PE
spectra from graphene on Pt(111), Ir(111), Rh(111), and Ru(0001) compared
with the reference spectrum from HOPG. The double-peak structure observed
for graphene/Rh and graphene/Ru is due to the strong corrugation of graphene:
C1 results from the nonbonding elevated sites, while C2 represents bonding low-
lying areas. The peak-fit analysis reveals that C2 is considerably broader than C1
reflecting the effect of gradually varying chemical surrounding of the C atoms
across the bonding sites [41]. There is an obvious correlation between the strength
of interfacial chemical bonds probed by NEXAFS [Fig. 7.17a] and the size of
the area occupied by the bonding sites [Fig. 7.17b]. On the 5d metal substrates,
the bonding with graphene is weak, and the C2 component is not detected in the
C 1s PE spectra, thus implying no pronounced “pores” and weak corrugation. With
increasing covalent interaction at the graphene/TM interfaces, component C2 grows
in the spectrum at the cost of C1, and becomes dominating for the most reactive
graphene/Ru interface. Even quantitative information about the effective “pore”
sizes for different graphene/TM interfaces can be extracted from the core-level PE
spectra if the effects of photoelectron diffraction on the intensity ratio C1/C2 are
properly filtered out [41].

In order to gain a detailed insight into the origin of the bonding between graphene
and lattice-mismatched noble metal substrates, photoemission studies have been
performed, which provide direct information about the electronic structure of the
occupied valence band states. An ARPES photoemission intensity map of the
graphene/Ir(111) system measured along the K � � � K direction is shown in
Fig. 7.18 [135]. In the ARPES spectra of graphene on Ir(111), the � band with linear
dispersion up to EF and the Dirac cone are clearly visible at the K point [112,135].
The position of the Dirac point was estimated to be 0:10 ˙ 0:02 eV above EF ,
indicating only a slight p-doping [112, 135]. No sign of hybridization of graphene
with the electronic bands of Ir(111) was observed, which is in line with the recent
DFT calculations suggesting only a weak bonding [136]. Additionally, Dirac cone
replicas and minigaps in the band structure were observed being the consequence of
a superperiodic potential imposed by the moiré structure [112, 135].

In the case of strongly interacting graphene/Ru(0001) system, pronounced
changes in the electronic structures occur compared with quasi-free-standing
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Fig. 7.18 (a) Photoemission intensity map along the K � � � K direction and (b–d) the constant
energy cuts obtained for the graphene/Ir(111) system at h� D 120 eV of photon energy. Data are
taken from [135]

graphene or graphene/Ir(111). Figure 7.19 shows the measured band structure of
graphene/Ru(0001) along the � � K direction of the surface Brillouin zone [124].
At the K point, the � band reaches a binding energy of 4:6 ˙ 0:1 eV, which
confirms a strong interaction of graphene with the substrate. The experiment is
in good agreement with calculations for a 1 � 1 graphene sheet 2.2 Å above
the topmost Ru layer with the top-hcp atomic configuration. Similar results were
obtained in recent photoemission studies on the strongly bound graphene on
Rh(111) [117]. The difference in binding energy of the � states at the � point
in graphene/Rh(111) and pure graphite amounts to about 2.3 eV, which is close to
the value for graphene/Ni(111) and also for graphene/Ru(0001). This shift reflects
the effect of hybridization of the graphene � bands with the Rh 4d bands and, to a
lesser extent, with the Rh 5s and 5p states. These results indicate that the bonding
strength of the graphene layer on top of the Rh(111) surface is comparable to that
observed in graphene/Ru(0001). However, a considerable local redistribution of the
orbital hybridization in graphene/Rh(111) compared to Ru(0001) or Ir(111) can be
deduced from strong contrast variations observed by STM.
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a b c

Fig. 7.19 (a) Band structure of the graphene/Ru(001) system measured along the N� � K

direction of the hexagonal Brillouin zone. (b) and (c) DFT of graphene/Ru(0001) for the low
[(CA,CB/ � (top; hcp)] and high [(CA,CB ) � (hcp; fcc)] regions, respectively. The vertical lines
at NK indicate the boundaries of the 1 � 1 surface Brillouin zones for Ru (red dashed) and graphene
(green solid). The size of the filled circles in (b) and (c) represents the pz weight of the adsorbate
atoms on the bands, where blue describes CA (top) and red describes hollow site atoms (CB ). Black
circles depict the average of the two inequivalent adsorbate atoms. Thick yellow curves are guides
for the eyes. Data are taken from [124]

7.6 Hybrid Structures on the Basis of Graphene Layers
on Metal Surfaces

As was shown in previous sections, high-quality graphene layers can be grown
on closed packed TM surfaces by means of CVD of hydrocarbons on the surface
or segregation of carbon from the bulk. In contrast to the graphite intercalation
compounds where the interaction between the graphene layers and the intercalated
atoms is dominated by charge transfer, bonding of the graphene layers to the
transition metal substrate has a more covalent character due to hybridization of
d -orbitals with the � states of graphene layer. In spite of stronger interactions, alkali
or noble metals can be intercalated between graphene layer and the metal substrate.
The experimental procedure requires the deposition of intercalation material on
the graphene-covered surface followed by the subsequent annealing of the system,
which results effective intercalation underneath graphene. While in the case of alkali
metals, a strong charge transfer into the antibonding �� states is expected [73],
particularly intercalation of noble metals leads to a weakening of the graphene-
substrate bonding and the formation of almost isolated graphene layers on the
substrate [22, 23, 26, 137–139].

Intercalation of magnetic transition metal atoms such as Co between the graphene
overlayer and an e.g. nonmagnetic substrate have still not been reported. Only recent
experiments show that at least Fe may be intercalated between a graphene layer
and an Ni(111) substrate [24]. In an alternative approach, thin magnetic films may
be grown on a nonmagnetic substrate and be covered subsequently by graphene.
A possible problem here may be chemical reactions of carbon with the transition
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metal substrate induced by the high temperatures needed for the cracking of the
propene molecules. For Ni surfaces, respective interactions have not been observed.
The situation, however, may change for Co and Fe, where the tendency of carbide
formation is much larger than for Ni.

Another interesting scenario is the growth of thin transition metal films on top of
a graphene monolayer. If ordered overstructures can be grown without intercalation
or destruction of the graphene layer, then even multilayer structures of graphene and
transition metals may be synthesized. In fact, carbide formation may be suppressed
if the temperature is kept low enough. Such hybrid structures (FM/graphene/FM)
were predicted to be a perfect spin filter due to the perfect in-plane lattice constants
match and that their electronic structures overlap in reciprocal space for one spin
direction only. On the contrary, transition-metal adsorbate may tend to island growth
on graphene at low temperatures. In fact, island growth has been reported for Mn,
Cr, and V [140], while the formation of a monolayer was achieved for Ru on
C(0001) [141].

7.6.1 Intercalation-like Systems

The first attempt to prepare a graphene-based intercalation-like system was reported
in the work by Nagashima et al. [73], where intercalation of alkali atoms (Cs,
K, Na) underneath graphene layer on Ni(111) was performed. Efficient interca-
lation of alkali-metals underneath of the graphene layer was observed already at
room temperature. Alkali-metal intercalation is accompanied by a modification of
dispersion of the valence band states of graphene due to the increasing of the
distance between graphene layer and Ni, and consequently, the weakening of the
hybridization strength between graphene � and Ni 3d valence band states. This
effect is reflected in the valence band photoemission spectra of this system by a
strong modification of dispersion of the graphene � states around the K point of
the Brillouin zone (Fig. 7.20). The electronic structure of the obtained graphene-
based intercalation-like system is very similar to the one of the pristine graphite
crystal. It was found that intercalation of alkali metals underneath graphene layer is
energetically favorable, leading to the weakening of the bonding between graphene
and substrate. The main results of these experiments were recently confirmed and
refined in work [74]. Similar effects were observed upon intercalation of the divalent
rare-earth metals, such as Eu and Yb [142].

Later on, the main interest in the graphene-based intercalation-like systems
shifted to the investigation of the possibility to recover the original free-standing
graphene-like electronic structure, where the Dirac cone is fully or partially restored.
From the electronegativity point of view, it is possible via intercalation of noble
metals, such as Cu, Ag, or Au. The earlier studies of Cu- and Au-intercalation under-
neath graphene on Ni(111) performed by means of ARPES and high-resolution
electron-energy-loss spectroscopy (HREELS) demonstrate that it is possible to
fully decouple electronic structures of graphene and substrate [22, 23, 137–139]
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Fig. 7.20 Experimental band dispersion of (a) graphene/Ni(111) and (b) the graphene/Na/Ni(111)
system. Shaded bands in (a) near EF indicate the dispersion relations of the Ni 3d bands for the
clean Ni(111) surface. Experimental dispersions of the bulk graphite are also shown by broken
lines. Data are taken from [73]

(Fig. 7.21). Valence-band PES spectra taken in normal-emission geometry at 50 eV
photon energy are shown in Fig. 7.21a and demonstrate the intercalation of thin
layers of Cu (4 Åand 12 Å) underneath graphene layer on Ni(111) [23]. In the
energy distribution curves, features originating from the � states of graphene and
the 3d states of Ni can be readily distinguished. Upon deposition of copper on
graphene/Ni(111), the PE intensity of the � graphene-derived states decreases, but
remains clearly visible. Annealing of the Cu/graphene/Ni(111) system leads to an
increase of intensity of the � states of graphene at the expense of the Cu 3d

signal and a shift of the � graphene-derived band toward lower binding energies.
Thereby, the intensity of the Ni 3d emission is almost unaffected by the annealing.
The same behavior was observed for the thicker copper pre-deposited layers. Such
changes of the intensities of the valence-band features of the studied system were
assigned to the intercalation of thin Cu layers in the space between graphene and Ni
substrate. The energy shift of the � band is caused by a change of chemical bonding
between the graphene layer and the substrate through intercalation of Cu [23]. These
observations were confirmed by STM and LEED, where a slight misorientation of
the weakly bonded regions of graphene was detected [23].

Energy dispersions of the graphene-derived bands in the Brillouin zone of
graphene are plotted in Fig. 7.21b for the graphene/Cu/Ni(111) system (different
thicknesses of copper layer are marked in the figure) [23]. It was found that
for this intercalation-like graphene-based system the measured energy bands are
shifted toward lower binding energies as compared to their location for the
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Fig. 7.21 (a) Normal emission PE spectra demonstrating the process of 3d metal intercalation
underneath graphene layer on Ni(111): of the clean Ni(111) surface, a graphene/Ni(111),
4 Å Cu/graphene/Ni(111), as well as the graphene/4 Å Cu/Ni(111) and the graphene/12 Å Cu/
Ni(111) systems. (b) Experimental band structure of the graphene/Cu/Ni(111) system. For
comparison, the band structure of pristine graphite is shown by dashed lines. Data are taken from
[23]

graphene/Ni(111) system; they approach the energies known for pristine graphite.
Only for the graphene/Cu/Ni(111) system a splitting of the � states is observed
around the K point: One spectral feature shifts toward higher binding energies
for angles corresponding to emission from the second Brillouin zone; a second
feature continues to shift up to an energy closest to EF, but differs from that of the
graphene/Ni(111) system. These features can be well defined in the second Brillouin
zone, but cannot be distinguished in the first Brillouin zone. The same behavior of
the graphene-derived valence-band states was later observed for the system obtained
via Ag-intercalation [138].

An interesting case was considered in [22, 26, 139], where intercalation of Au
underneath graphene was investigated by means of STM and ARPES. In these
works, the amount of intercalated Au was estimated to be 1 ML (ML D monolayer)
independent on the thickness of the predeposited metal, which is different from
the Cu and Ag intercalation where different thicknesses of pre-deposited metal
were intercalated [23, 137, 138]. In [22], an almost complete restoration of the
free-standing graphene band structure along the � � M direction of the Brillouin
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zone was observed for the graphene/Ni(111) system after Au-intercalation that was
also confirmed by the accompanied HREELS studies. These results were recently
confirmed by the more systematic studies of the graphene/Au/Ni(111) system [139],
where the full restoring of the Dirac-cone at the Fermi level was observed (within
the accuracy of 25 meV).

The systematic studies of the gold intercalation underneath the graphene layer on
Ru(0001) were recently performed by means of ARPES [26]. For this system, the
Fermi surface appears to be point-like; however, a close look at the dispersion of the
graphene-derived � states around the Fermi level [Fig. 7.22a; left-hand side, lower
panel] reveals that the Dirac point is �150 meV above EF, which is consistent with a
small p-doping of the graphene layer in the graphene/Au/Ru(0001) system. A simi-
lar p-doping of graphene was recently observed in the case of deposition and anneal-
ing of a thin Au layer on the graphene monolayer on SiC(0001) [25]. In order to
obtain an information about the Dirac crossing point, the electron doping via depo-
sition of K atoms was performed, and the clear energy gap of about 200 ˙ 60 meV
was observed, which is independent of the amount of deposited K (Fig. 7.22). It
was proposed that the band gap in the graphene/Au/Ru(0001) system results from a
symmetry breaking of the two carbon sublattices in the graphene layer, which results
in a weak breaking of the chiral symmetry, inducing a weak but finite intensity of
the left band along the � �K direction, between the two arrows in Fig. 7.22c [143].
The ratio of the left to right band intensities in Fig. 7.22c is about 35, which
agrees with theoretical predictions for the size of a gap of 200 meV [143]. For the
2 ML graphene/Ru(0001), there is no equivalent observable intensity [between the
arrows in Fig. 7.22b], consistent with the lack of a gap at the Dirac point.

7.6.2 Growth of Noble Metal Clusters on Graphene Moirè

Highly uniform graphene moiré structures can be used as templates for the growth
of uniform cluster arrays with nearly perfect long range order. This idea was
first experimentally tested for graphene moiré on the Ir(111) surface allowing
the preparation of Ir cluster superlattices [40]. Recently, further experiments with
graphene/Ir(111) system were performed aiming to extend the row of superlattice
forming materials [128, 144]. Figure 7.23 displays STM topographs recorded on
graphene/Ir(111) after deposition 0:2�0:8 ML of various metals at 300 K. Deposited
metal clusters are pinned to graphene and the preferred regions of the cluster
adsorption at 300 K were identified as hcp areas of the moiré suprecell where
the carbon ring center of graphene is located above hcp sites of the underlying
Ir(111). During initial deposition, the hcp areas are filled by metal clusters with a
relatively uniform size until all moiré unit cells are filled. Upon further deposition,
metal clusters start to grow in size, but a narrow size distribution is preserved.
LDA calculations showed that sp2 to sp3 rehybridization of carbon atoms in the
graphene layer underneath Ir clusters is responsible for the cluster adsorption [136].
Carbon atoms were shown to form strong bonds either to Ir surface atoms of the
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Fig. 7.22 (a) A series of photoemission intensity maps around the K point of the Brillouin
zone of the 1 ML graphene/Au/Ru(0001) system for clean (left column) and progressive doping
with potassium. The upper and lower rows are taken along the two orthogonal directions in
the reciprocal space as indicated by the red and black lines at the K point in the Brillouin
zone (inset). Comparison of the spectral function of (b) 2 ML graphene/Ru(0001) and (c)
graphene/1 ML Au/Ru(0001) is shown in the lower panel together with corresponding PE intensity
profiles at the K point. Data are taken from [26]
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Fig. 7.23 700 Å � 700 Å STM images of the Ir(111) surface covered by graphene flakes after the
deposition of various metals at 300 K. (a) 0.20 ML Ir, average cluster size Sav D 17 atoms; (b)
0.25 ML Pt, Sav D 22 atoms; (c) 0.44 ML W, Sav D 38 atoms; (d) 0.53 ML Re, Sav D 60 atoms;
(e) 0.77 ML Fe, Sav D 420 atoms; (f) 0.25 ML Au, Sav D 100 atoms. Data are taken from [144].

substrate or to the Ir atoms of the clusters resulting in buckling of the graphene
layer. However, as can be seen in the STM images not all metals form a cluster
superlattice on graphene/Ir(111). Ir and Pt form superlattices of high perfection
[Fig. 7.23a, b], whereas for Fe [Fig. 7.23e] and Au [Fig. 7.23f] no superlattice can
be realized at 300 K [144]. In case of Re, Fe, and Au, the superlattice formation can
be efficiently improved either by lowering the deposition temperature or cluster-
seeding. In the latter case, Ir seed clusters are first created in nearly all moiré unit
cells, which act as nucleation centers during further metal deposition at 300 K
yielding highly uniform metal cluster superlattices with Ir cores [128]. Most of the
investigated metal cluster superlattices on graphene/Ir(111) were found to be stable
up to 400 K. More recently, the suitability of the graphene/Ru(0001) moiré for the
fabrication of uniform cluster lattices of Pt has been tested [48–50]. Pt clusters were
found to preferably occupy locations corresponding to the brighter of the two moiré
minima within the moiré unit cell, which are identified as the fcc regions [50].
Upon growth at 140–180 K, Donner et al. [50] prepared highly uniform periodic
arrays of monodisperse Pt clusters, which were found to be structurally stable up
to room temperature. However, the perfection of the prepared periodic arrays of Pt
clusters on graphene/Ru(0001) seems to vary strongly depending on the deposition
temperature, Pt deposition rates, as well as deposited amount of Pt [48–50]. Such
highly ordered cluster arrays of noble metals are of interest for possible applications
in nanocatalysis.
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Fig. 7.24 (a–b) Topographic STM images obtained after the deposition of nominally 0:25 ML
Ni at 150 K on graphene on Rh(111). The moiré superstructure unit cell in (b) is outlined
by a rhombus. (c) Rendered perspective image of the STM topograph presented in (b). (d–e)
Topographic STM images obtained after the deposition of nominally 1:50 ML Ni at 150 K on
graphene on Rh(111). (f) Rendered perspective image of the STM topograph presented in (e). (g–
h) STM topograph of nominally 0:90 ML Ni on graphene/Rh(111) deposited at room temperature.
(i) Rendered perspective image of the STM topograph presented in (h). Tunneling parameters
for STM images: (a–c) UT D 1:78 V; IT D 0:11 nA; (d) UT D 1:20 V; IT D 0:35 nA; (e–f)
UT D 1:28 V; IT D 1:53 nA; (g) UT D 0:90 V; IT D 0:88 nA; (h–i) UT D 1:54 V; IT D 1:15 nA).
Data are taken from [51]

7.6.3 Growth of Magnetic Metal Clusters on Graphene Moirè

Fabrication of ordered arrays of magnetic clusters is of a particular interest with
respect to possible technological applications in magnetic data storage. Graphene
moiré on Rh(111) has recently been used as a template for the growth of Ni
clusters [51]. Figure 7.24a, b shows STM topographs of 0.25 ML of Ni deposited on
graphene/Rh(111) at 150 K. Large terraces and steps of graphene/Rh(111) covered
with Ni nanoclusters (NCs) can be clearly distinguished. The NCs show mostly
hemispherical shapes with at least some cluster edges, which appear to be oriented
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along the in-plane <1N10> direction. The apparent height of the clusters was
measured to be 0.85 ˙ 0.1 nm, which roughly corresponds to four fcc (111) planes
of Ni. The clusters are loosely bound to the graphene surface at room temperature
and could easily be swept away by the STM tip during scanning, which is in row
with other reports [50]. The diameter distribution of the clusters is very narrow
with the average cluster diameter being 3.1 nm. Most of the Ni clusters were
found to be located on the regular grid showing a quite high unit cell occupation
probability for the deposited amount. However, the nucleation of NCs obviously
occurs at two different regions within the moiré unit cell (top-fcc and top-hcp). The
randomized occupation can be attributed to the fact that the deposition temperature
of 150 K is below the optimum temperature. Upon increasing Ni coverage, no visible
order of the cluster arrangement can be realized. Figure 7.24d–f shows the surface
morphology after the deposition of 1.50 ML of Ni at 150 K. Ni clusters exhibit a
distinctly different size distribution compared with that at lower coverages. The
lateral size of the clusters is more spread.

Ni deposited at room temperature exhibits a completely different growth mode
compared with deposition at 150 K [51]. Instead of small compact NCs, Ni forms
triangular-shaped islands with their edges roughly aligned with the close packed
< 1N10 > directions of the Rh(111) substrate as shown in Fig. 7.24g–i. The existence
of large islands nucleated at terraces indicates that Ni atoms are highly mobile on
the graphene surface at room temperature. On the other hand, it is remarkable that,
in spite of the weak bonding strength between Ni and graphene surface, the moiré
structure imposes registration and orientation on the Ni nanostructures. The average
apparent height of the islands is 1.8 nm and the size defined by the length of the
edges is ranging from about 5 nm to about 18 nm. The surface of the islands is
rather flat. The two different orientations can be attributed to the initial nucleation
taking place either at a top-hcp and top-fcc site. The long edges of the islands are
not always exactly aligned with the high-symmetry <1N10> directions of Rh(111).
Some of the islands are oriented with an angle of up to ˙10ı with respect to these
high-symmetry directions. Clockwise-rotated and counterclockwise-rotated islands
are found to occur with equal probability. Since the magnetic anisotropy depends
on shape and size of the cluster, the deposition temperature is the key parameter to
play with in order to control the magnetic properties of the nanoclusters.

7.6.4 Chemical Functionalization of Graphene on Transition
Metal Surfaces

One of the main routes towards the modification of graphene electronic structure in a
controllable way is the chemical functionalization by atoms and molecules, i.e., the
process of creating covalent bonds between graphene and adsorbates. The general
principles of chemical functionalization of graphene and recent achievements in
this field are discussed recently in the review by Boukhvalov and Katsnelson [29].
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Fig. 7.25 C 1s PE spectra taken with h� D 400 eV from pristine and fully hydrogenated (a)
graphite and graphene on (b) Pt(111) and (c) Ir(111). (d) Schematic representation of the
hydrogenation process for graphene on 5d metal surfaces (Ir, Pt). Substrate atoms are shown by
large circles, C atoms by middle-size circles, H atoms by small circles. Data are taken from [145]

In comparison with the free-standing graphene, graphene/metal interfaces may be
more advantageous for the formation of covalent bonds with atomic and molecular
species, since the interaction with the substrate can weaken the lateral C–C
bonds and “activate” graphene. This effect can be demonstrated by the example
of chemical functionalization of graphene induced by atomic hydrogen. In the
graphene/Ir(111) system, a gradual H adsorption has been shown to result in a
controllable opening of the band gap due to the sp2-to-sp3 transition in the more
bonding parts of the graphene/Ir(111) moiré [114].

The influence of the chemical nature of the underlying metal on the ability
of graphene to adsorb atomic H has been recently studied for a variety of
graphene/metal interfaces [145]. As can be judged from the C 1s PE spectra shown
in Fig. 7.25a–c, the same H treatment of different graphitic substrates results in very
different H uptake values. Here, different spectral components correspond to the C
atoms in the flat (sp2) coordination (C1), directly bonded to H (C2) and directly
bonded to the metal substrate in the buckled (sp3) coordination (C3). Without a
reactive substrate, the saturated H coverage is relatively low, while for graphene
on a reactive metal substrate, like Pt(111) and Ir(111), the H uptake value can
increase significantly. In Fig. 7.25d, the process of H adsorption on a nano-patterned
graphene layer weakly bound to a 5d substrate is schematically illustrated. The
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more bonding graphene patches (pores) are able to achieve 50% H coverage by
forming graphene-like structures [146]. This process becomes possible due to the
strengthening of the C 2pz – TM 5d bonds, which can involve the unpaired electrons
released upon breaking the C–C bonds in the course of H adsorption. The total area
of more strongly bonding graphene sites (pores) is higher for graphene on Ir than
on Pt, thus resulting in the higher H coverage. The nonbonding graphene areas are
much more passive, and hydrogenation of these sites is expected to be similar to
that of HOPG. For the already strongly bound and lattice matched interfaces (such as
graphene/Ni) the mechanism of H adsorption is different, since further strengthening
of the C–Ni bonds is impossible. In this case, the unpaired electrons released upon
destroying the C–C double bonds by H adsorption are supposed to form dangling
bonds on graphene, thus hampering further H adsorption [145].

7.7 Conclusions and Outlook

With all the recent and well-justified excitement about the unusual properties of
graphene, it is often forgotten that graphene films on metal surfaces were studied
more than forty years ago. Sometimes, they were considered an unavoidable
nuisance, for example in the process of cleaning nickel and other transition
metal surfaces in ultrahigh vacuum experiments, or an outright problem, in the
context of catalyst poisoning through a carbon layer. In the course of such
studies, the geometric and electronic structure of these “single layer graphite”
films was carefully studied by means of modern surface science techniques, and
even the distinction between strongly bound layers and an almost free-standing
film, created by intercalation of noble metals between graphene and the transition
metal substrate was examined. While the discovery of the unusual electronic and
transport properties in graphene in 2005 [147, 148] centered on graphene flakes on
insulating (SiO2) or semiconducting (SiC) surfaces, renewed attention has returned
to graphene on metals. Many interesting discoveries have been made, as documented
in this chapter. It was shown that graphene films can be grown with unprecedented
structural perfection, over micrometers and larger, on substrates such as iridium
and rhodium. Bonding of graphene to lattice-matched (Ni, Co) and mismatched
(Ru, Rh, Pt, Ir) metals has been analyzed, and the emergence of moiré patterns
with large differences in bonding strength in the supercell was observed. The
reasons for the large differences in bonding strength of graphene to Ni and Co,
on the one hand, and the 5d metals, on the other, are still a matter of discussion.
As far as fundamental studies of electronic effects are concerned, it is true that
the preparation and examination of graphene on metals suffers from a serious
disadvantage, in that transport experiments, which are at the center of attention (e.g.
the anomalous quantum Hall effect) are not feasible. However, this disadvantage is
partly compensated by the recent discovery that graphene growth on metals may
be the only viable pathway toward the mass production of large-scale monolayer
films for deposition on various substrates, for example as transparent electrodes.



7 Epitaxial Graphene on Metals 229

Clearly, much more work is necessary (and in all likelihood, already under way,
given the enormous economic stakes involved) to optimize graphene growth and the
techniques to lift if off a suitable metal substrate.

The study of graphene on metal substrates has much more to offer, however. The
fact that the moiré structure formed by graphene on Ir(111) gives rise to a template
for the growth of clusters with a narrow size dispersion, and with perfect ordering
across the surface has come as a complete surprise. Such self-organized cluster
growth systems lend themselves almost naturally to investigations of size-dependent
electronic structure, general physical properties, and adsorption or catalytic behav-
ior; moreover, in 3d metal clusters, their magnetic properties promise to be an
exciting field of study. Here at least, growth on a metal surface does not inhibit
investigations as long as the latter is not ferromagnetic, e.g. in the case of iridium.

This brings us to consider the investigation of graphene-ferromagnet interfaces:
theoretical studies predict a few-layer film of graphene on either Ni or Co to act as a
highly efficient spin filter, because of the difference in overlap between the minority
and majority spin states and the graphene bands at the corners of the Brillouin
zone. A physical realization of such systems may bring the elusive spin field effect
transistor closer to realization. The properties of spin transport in graphene have
received intense interest ever since it was demonstrated that spin coherence lengths
are in the micrometer range [39]. Injection and detection of electrons with different
spin orientations is important in the context of a recently proposed experiment,
in which Cooper pairs from a superconducting electrode are separated into two
opposite graphene strips. Ferromagnetic contacts are then attached to the end of
these strips, permitting the measurement of the electrons’ spin state, thus offering to
perform experiments with entangled electron states in a transport experiment.

Last but not least, the study of adsorption, intercalation processes on graphene
itself, is a promising field for which only few reports are available at present.
Functionalization of graphene is clearly an important issue, also in the context of
doping and for sensing applications, but equally exciting is the prospect of using
adsorption and self-organization processes of complex organic molecules on metal
surfaces to create various “lower-than-two” dimensional graphene-like structures of
the wire and dot type. The wealth of molecules with benzene ring segments provided
by organic chemistry in ever larger numbers offers the possibility to prepare high-
quality graphene “nanoribbons”, and first examples have already been described in
the literature.

Progress in the field of graphene research, and also in studies of graphene on
metals, is so rapid that the present overview can only give a glimpse of the current
status, and may have to be updated within a year or so. The rapid pace of progress
is a demonstration of the maturity of the way in which the experimental probes and
their interpretation are mastered, and it is matched by the theoretical understanding
of properties and processes at the surface and interface of graphene. Investigating
graphene and carbon-related structures on metals holds great promise for novel and,
from a basic science and applications-oriented perspective, exciting discoveries.
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Chapter 8
Electronic Properties of Monolayer and Bilayer
Graphene

Edward McCann

Abstract The tight-binding model of electrons in graphene is reviewed. We
derive low-energy Hamiltonians supporting massless Dirac-like chiral fermions and
massive chiral fermions in monolayer and bilayer graphene, respectively, and we
describe how their chirality is manifest in the sequencing of plateaus observed in the
integer quantum Hall effect. The opening of a tuneable band gap in bilayer graphene
in response to a transverse electric field is described, and we explain how Hartree
theory may be used to develop a simple analytical model of screening.

8.1 Introduction

More than sixty years ago, Wallace [1] modeled the electronic band structure of
graphene. Research into graphene was stimulated by interest in the properties of
bulk graphite because, from a theoretical point of view, two-dimensional graphene
serves as a building block for the three-dimensional material. Following further
work, the tight-binding model of electrons in graphite, which takes into account
coupling between layers, became known as the Slonczewski–Weiss–McClure model
[2–4]. As well as serving as the basis for models of carbon-based materials
including graphite, buckyballs, and carbon nanotubes [5–11], the honeycomb lattice
of graphene has been used theoretically to study Dirac fermions in a condensed
matter system [12, 13]. Since the experimental isolation of individual graphene
flakes [14], and the observation of the integer quantum Hall effect in monolayers
[15, 16] and bilayers [17], there has been an explosion of interest in the behavior of
chiral electrons in graphene.

This chapter begins in Sect. 8.2 with a description of the crystal structure of
monolayer graphene. Sect. 8.3 briefly reviews the tight-binding model of electrons
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in condensed matter materials [11, 18], and Sect. 8.4 describes its application to
monolayer graphene [11, 19, 20]. Then in Sect. 8.5, we explain how a Dirac-like
Hamiltonian describing massless chiral fermions emerges from the tight-binding
model at low energy. The tight-binding model is applied to bilayer graphene in
Sect. 8.6, and Sect. 8.7 describes how low-energy electrons in bilayers behave as
massive chiral quasiparticles [17, 21]. In Sect. 8.8, we describe how the chiral
Hamiltonians of monolayer and bilayer graphene corresponding to Berry’s phase
� and 2� , respectively, have associated four- and eightfold degenerate zero-energy
Landau levels, leading to an unusual sequence of plateaus in the integer quantum
Hall effect [15–17].

Section 8.9 discusses an additional contribution to the low-energy Hamiltonians
of monolayer and bilayer graphene, known as trigonal warping [4, 9, 21–25] that
produces a Liftshitz transition in the band structure of bilayer graphene at low
energy. Finally, Sect. 8.10 describes how an external transverse electric field applied
to bilayer graphene, due to doping or gates, may open a band gap that can be tuned
between zero up to the value of the interlayer coupling, around three to four hundred
meV [21, 26, 27]. Hartree theory and the tight-binding model are used to develop a
simple model of screening by electrons in bilayer graphene in order to calculate the
density dependence of the band gap [28].

8.2 The Crystal Structure of Monolayer Graphene

8.2.1 The Real Space Structure

Monolayer graphene consists of carbon atoms arranged with a two-dimensional
honeycomb crystal structure as shown in Fig. 8.1a. The honeycomb structure [11,18]
consists of the hexagonal Bravais lattice, Fig. 8.1b, with a basis of two atoms,
labeled A and B , at each lattice point.

Throughout this chapter, we use a Cartesian coordinate system with x and y axes
in the plane of the graphene crystal, and a z axis perpendicular to the graphene plane.
Two-dimensional vectors in the same plane as the graphene are expressed solely in
terms of their x and y coordinates, so that, for example, the primitive lattice vectors
of the hexagonal Bravais lattice, Fig. 8.1b, are a1 and a2, where

a1 D
 
a

2
;

p
3a

2

!

; a2 D
 
a

2
;�

p
3a

2

!

; (8.1)

and a D ja1j D ja2j is the lattice constant. In graphene, a D 2:46Å [11]. The
lattice constant is the distance between unit cells, whereas the distance between
carbon atoms is the carbon–carbon bond length aCC D a=

p
3 D 1:42Å. Note

that the honeycomb structure is not a Bravais lattice because atomic positions A
and B are not equivalent: it is not possible to connect them with a lattice vector
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a

b

Fig. 8.1 (a) The honeycomb crystal structure of monolayer graphene, where white (black) circles
indicate carbon atoms on A (B) sites and straight lines indicate � bonds between them. Vectors a1
and a2 are primitive lattice vectors of length equal to the lattice constant a. The shaded rhombus
is a unit cell containing two atoms, one A and one B . (b) Crosses indicate lattice points of the
hexagonal Bravais lattice. The honeycomb structure in (a) consists of the hexagonal Bravais lattice
[shown in (b)] with a basis of two atoms, one A and one B , at each lattice point

R D n1a1 C n2a2, where n1 and n2 are integers. Taken alone, theA atomic positions
(or, the B atomic positions) make up an hexagonal Bravais lattice and, in the
following, we will often refer to them as the “A sublattice” (or, the “B sublattice”).

8.2.2 The Reciprocal Lattice of Graphene

Primitive reciprocal lattice vectors b1 and b2 satisfying a1b1 D a2b2 D 2� and
a1b2 D a2b1 D 0 are given by

b1 D
�
2�

a
;
2�p
3a

�
; b2 D

�
2�

a
;� 2�p

3a

�
: (8.2)

The resulting reciprocal lattice is shown in Fig. 8.2, which is an hexagonal Bravais
lattice. The first Brillouin zone is hexagonal, as indicated by the shaded region in
Fig. 8.2.

8.2.3 The Atomic Orbitals of Graphene

Each carbon atom has six electrons, of which two are core electrons and four are
valence electrons. The latter occupy 2s, 2px, 2py , and 2pz orbitals. In graphene,
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Fig. 8.2 The reciprocal
lattice of monolayer
graphene, where crosses
indicate reciprocal lattice
points, and vectors b1 and b2
are primitive lattice vectors.
The shaded hexagon indicates
the first Brillouin zone

the orbitals are sp2 hybridized, meaning that two of the 2p orbitals, the 2px and
2py that lie in the graphene plane, mix with the 2s orbital to form three sp2 hybrid
orbitals per atom, each lying in the graphene plane and oriented 120ı to each other
[11]. They form � bonds with other atoms, shown as straight lines in the honeycomb
crystal structure, Fig. 8.1a. The remaining 2pz orbital for each atom lies perpendic-
ular to the plane, and, when combined with the 2pz orbitals on adjacent atoms in
graphene, forms a � orbital. Electronic states close to the Fermi level in graphene are
described well by a model taking into account only the � orbital, meaning that the
tight-binding model can include only one electron per atomic site, in a 2pz orbital.

8.3 The Tight-Binding Model

We begin by presenting a general description of the tight-binding model for a system
with n atomic orbitals �j in the unit cell, labeled by index j D 1 : : : n. Further
details may be found in the book by Saito, Dresselhaus, and Dresselhaus [11]. It is
assumed that the system has translational invariance. Then the model may be written
using n different Bloch functions ˚j .k; r/ that depend on the position vector r and
wave vector k. They are given by

˚j .k; r/ D 1p
N

NX

iD1
eik:Rj;i �j

�
r � Rj;i

�
; (8.3)

where the sum is over N different unit cells, labeled by index i D 1 : : : N , and Rj;i

denotes the position of the j th orbital in the i th unit cell.
In general, an electronic wave function�j .k; r/ is given by a linear superposition

of the n different Bloch functions,

�j .k; r/ D
nX

lD1
cj;l .k/ ˚l.k; r/ ; (8.4)
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where cj;l are coefficients of the expansion. The energy Ej .k/ of the j th band is
given by

Ej .k/ D h�j jHj�j i
h�j j�j i ; (8.5)

where H is the Hamiltonian. Substituting the expansion of the wave function (8.4)
into the energy gives

Ej .k/ D
Pn

i;l c
�
j i cjlh˚i jHj˚li

Pn
i;l c

�
j i cjl h˚i j˚li

; (8.6)

D
Pn

i;l Hilc
�
j i cjlPn

i;l Sil c
�
j i cjl

; (8.7)

where transfer integral matrix elements Hil and overlap integral matrix elements
Sil are defined by

Hil D h˚i jHj˚li ; Sil D h˚i j˚l i : (8.8)

We minimize the energy Ej with respect to the coefficient c�
jm by calculating the

derivative

@Ej

@c�
jm

D
Pn

l HmlcjlPn
i;l Sil c

�
j i cjl

�
Pn

i;l Hilc
�
j i cjl

Pn
l Smlcjl

�Pn
i;l Sil c

�
j i cjl

�2 : (8.9)

The second term contains a factor equal to the energy Ej itself, (8.7). Then setting
@Ej =@c

�
jm D 0 and omitting the common factor

Pn
i;l Silc

�
j i cjl gives

nX

lD1
Hmlcjl D Ej

nX

lD1
Smlcjl : (8.10)

This can be written as a matrix equation. Consider the specific example of two
orbitals per unit cell, n D 2. Then we can select the possible values of m (either
m D 1 or m D 2) and write out the summation in (8.10) explicitly:

m D 1 ) H11cj1 CH12cj 2 D Ej
�
S11cj1 C S12cj 2

�
; (8.11)

m D 2 ) H21cj1 CH22cj 2 D Ej
�
S21cj1 C S22cj 2

�
: (8.12)

These two equations may be combined into a matrix equation

�
H11 H12

H21 H22

��
cj1

cj 2

�
D Ej

�
S11 S12

S21 S22

��
cj1

cj 2

�
: (8.13)
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For general values of n, definingH as the transfer integral matrix, S as the overlap
integral matrix, and  j as a column vector,

H D

0

B
BB
@

H11 H12 � � � H1n

H21 H22 � � � H2n

:::
:::
: : :

:::

Hn1 Hn2 � � � Hnn

1

C
CC
A
; S D

0

B
BB
@

S11 S12 � � � S1n
S21 S22 � � � S2n
:::

:::
: : :

:::

Sn1 Sn2 � � � Snn

1

C
CC
A
;  j D

0

B
BB
@

cj1
cj 2
:::

cjn

1

C
CC
A
; (8.14)

allows the relation (8.10) to be expressed as

H j D EjS j : (8.15)

The energies Ej may be determined by solving the secular equation

det
�
H �EjS

� D 0 ; (8.16)

once the transfer integral matrix H and the overlap integral matrix S are known.
Here, “det” stands for the determinant of the matrix. In the following, we will omit
the subscript j D 1 : : : n in (8.15), (8.16), bearing in mind that the number of
solutions is equal to the number of different atomic orbitals per unit cell.

8.4 The Tight-Binding Model of Monolayer Graphene

We apply the tight-binding model described in Sect. 8.3 to monolayer graphene,
taking into account one 2pz orbital per atomic site. As there are two atoms in the
unit cell of graphene, labeled A and B in Fig. 8.1, the model includes two Bloch
functions, n D 2. For simplicity, we replace index j D 1 with j D A, and j D 2

with j D B . Now we proceed to determine the transfer integral matrix H and the
overlap integral matrix S .

8.4.1 Diagonal Matrix Elements

Substituting the expression for the Bloch function (8.3) into the definition of the
transfer integral (8.8) allows us to write the diagonal matrix element corresponding
to the A sublattice as

HAA D 1

N

NX

iD1

NX

jD1
eik:.RA;j�RA;i /h�A .r � RA;i / jHj�A

�
r � RA;j

�i; (8.17)

where k D .kx; ky/ is the wave vector in the graphene plane. Equation (8.17)
includes a double summation over all the A sites of the lattice. If we assume that the
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dominant contribution arises from the same site j D i within every unit cell, then:

HAA � 1

N

NX

iD1
h�A .r � RA;i / jHj�A .r � RA;i /i: (8.18)

The matrix element h�AjHj�Ai within the summation has the same value on every
A site, i.e. it is independent of the site index i . We set it to be equal to a parameter

�2p D h�A .r � RA;i / jHj�A .r � RA;i /i ; (8.19)

that is equal to the energy of the 2pz orbital. Then keeping only the same site
contribution,

HAA � 1

N

NX

iD1
�2p D �2p : (8.20)

It is possible to take into account the contribution of other terms in the double
summation (8.17), such as next-nearest neighbor contributions [29, 30]. They
generally have a small effect on the electronic band structure and will not be
discussed here. The B sublattice has the same structure as the A sublattice, and
the carbon atoms on the two sublattices are chemically identical. This means that
the diagonal transfer integral matrix element corresponding to the B sublattice
has the same value as that of the A sublattice:

HBB D HAA � �2p : (8.21)

A calculation of the diagonal elements of the overlap integral matrix proceeds in
a similar way as for those of the transfer integral. In this case, the overlap between
a 2pz orbital on the same atom is equal to unity,

h�A .r � RA;i / j�A .r � RA;i /i D 1 : (8.22)

Then assuming that the same site contribution dominates,

SAA D 1

N

NX

iD1

NX

jD1
eik:.RA;j�RA;i /h�A .r � RA;i / j�A

�
r � RA;j

�i ; (8.23)

� 1

N

NX

iD1
h�A .r � RA;i / j�A .r � RA;i /i ; (8.24)

D 1

N

NX

iD1
1 (8.25)

D 1 : (8.26)
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Again, as the B sublattice has the same structure as the A sublattice,

SBB D SAA D 1 : (8.27)

8.4.2 Off-Diagonal Matrix Elements

Substituting the expression for the Bloch function (8.3) into the definition of the
transfer integral (8.8) allows us to write an off-diagonal matrix element as

HAB D 1

N

NX

iD1

NX

jD1
eik:.RB;j�RA;i /h�A .r � RA;i / jHj�B

�
r � RB;j

�i: (8.28)

It describes processes of hopping between the A and B sublattices, and contains a
summation over all the A sites (i D 1 : : : N ) at positions RA;i and all the B sites
(j D 1 : : : N ) at RB;j .

In the following, we assume that the dominant contribution to the off-diagonal
matrix element (8.28) arises from hopping between nearest neighbors only. If we
focus on an individual A atom, i.e. we consider a fixed value of the index i , we see
that it has three neighboring B atoms, Fig. 8.3, that we will label with a new index
l (l D 1 : : : 3). Each A atom has three such neighbors, so it is possible to write the
nearest-neighbors contribution to the off-diagonal matrix element (8.28) as

HAB � 1

N

NX

iD1

3X

lD1
eik:.RB;l�RA;i /h�A .r � RA;i / jHj�B .r � RB;l /i : (8.29)

The matrix element between neighboring atoms, h�AjHj�Bi, has the same value for
each neighboring pair, i.e., it is independent of indices i and l . We set it equal to
a parameter, t D h�A .r � RA;i / jHj�B .r � RB;l /i. Since t is negative [11], it is
common practice to express it in terms of a positive parameter �0 D �t , where

�0 D �h�A .r � RA;i / jHj�B .r � RB;l /i : (8.30)

Fig. 8.3 The honeycomb crystal structure of monolayer graphene. In the nearest-neighbor approx-
imation, we consider hopping from an A site (white) to three adjacent B sites (black), labeled B1,
B2, B3 , with position vectors ı1, ı2, ı3, respectively, relative to the A site
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Then we write the off-diagonal transfer integral matrix element as

HAB � � 1

N

NX

iD1

3X

lD1
eik:.RB;l�RA;i /�0 ; (8.31)

D ��0
N

NX

iD1

3X

lD1
eik:ıl � ��0f .k/ ; (8.32)

f .k/ D
3X

lD1
eik:ıl ; (8.33)

where the position vector of atom Bl relative to the Ai atom is denoted ıl D RB;l �
RA;i , and we used the fact that the summation over the three neighboring B atoms
is the same for all Ai atoms.

For the three B atoms shown in Fig. 8.3, the three vectors are

ı1 D
�
0;

ap
3

�
; ı2 D

�
a

2
;� a

2
p
3

�
; ı3 D

�
�a
2
;� a

2
p
3

�
: (8.34)

Note that jı1j D jı2j D jı3j D a=
p
3 is the carbon–carbon bond length. Then the

function f .k/ describing nearest-neighbor hopping may be evaluated as

f .k/ D
3X

lD1
eik:ıl ; (8.35)

D eikya=
p
3 C eikxa=2e�ikya=2

p
3 C e�ikxa=2e�ikya=2

p
3 ; (8.36)

D eikya=
p
3 C 2e�ikya=2

p
3 cos .kxa=2/ : (8.37)

The other off-diagonal matrix elementHBA is the complex conjugate of HAB :

HAB � ��0f .k/ ; HBA � ��0f � .k/ : (8.38)

A calculation of an off-diagonal element of the overlap integral matrix proceeds
in a similar way as for the transfer integral:

SAB D 1

N

NX

iD1

NX

jD1
eik:.RB;j�RA;i /h�A .r � RA;i / j�B

�
r � RB;j

�i; (8.39)

� 1

N

NX

iD1

3X

lD1
eik:.RB;l�RA;i /h�A .r � RA;i / j�B .r � RB;l /i ; (8.40)

D s0f .k/ ; (8.41)



246 E. McCann

where the parameter s0 D h�A .r � RA;i / j�B .r � RB;l /i, and SBA D S�
AB D

s0f
� .k/. The presence of nonzero s0 takes into account the possibility that orbitals

on adjacent atomic sites are not strictly orthogonal.

8.4.3 The Low-Energy Electronic Bands of Monolayer Graphene

Summarizing the results of this section, the transfer integral matrix elements (8.21)
and (8.38), and the overlap integral matrix elements (8.27) and (8.41) give

H1 D
�

�2p ��0f .k/
��0f � .k/ �2p

�
; S1 D

�
1 s0f .k/

s0f
� .k/ 1

�
; (8.42)

where we use the subscript “1” to stress that these matrices apply to monolayer
graphene. The corresponding energy E may be determined by solving the secular
equation det .H1 �ES1/ D 0, (8.16):

det

�
�2p �E � .�0 C Es0/ f .k/

� .�0 C Es0/ f
� .k/ �2p � E

�
D 0 ; (8.43)

) �
E � �2p

�2 � ��
E � �2p

	
s0 C �2ps0 C �0

�2 jf .k/ j2 D 0 : (8.44)

Solving this quadratic equation yields the energy:

E˙ D �2p ˙ �0jf .k/ j
1� s0jf .k/ j : (8.45)

This expression appears in Saito et al [11], where parameter values �0 D 3:033 eV,
s0 D 0:129, �2p D 0 are quoted. The latter value (�2p D 0) means that the zero
of energy is set to be equal to the energy of the 2pz orbital. The resulting band
structure E˙ is shown in Fig. 8.4 in the vicinity of the Brillouin zone. A particular
cut through the band structure is shown in Fig. 8.5, where the bands are plotted as
a function of wave vector component kx along the line ky D 0, a line that passes
through the center of the Brillouin zone, labeled � , and two corners of the Brillouin
zone, labeled KC and K� (see the inset of Fig. 8.5). The Fermi level in pristine
graphene is located at zero energy. There are two energy bands that we refer to as
the conduction band (EC) and the valence band (E�). The interesting feature of
the band structure is that there is no band gap between the conduction and valence
bands. Instead the bands cross at the six corners of the Brillouin zone, Fig. 8.4.
The corners of the Brillouin zone are known as K points, and two of them are
explicitly labeled KC and K� in Fig. 8.4. Near these points, the dispersion is linear
and electronic properties may be described by a Dirac-like Hamiltonian. This will
be explored in more detail in the next section. Note also that the band structure
displays a large asymmetry between the conduction and valence bands that is most
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Fig. 8.4 The low-energy band structure of monolayer graphene (8.45) taking into account nearest-
neighbor hopping with parameter �0 D 3:033 eV, nearest-neighbor overlap parameter s0 D 0:129,
and orbital energy �2p D 0 [11]. The plot shows the bands calculated in the vicinity of the first
Brillouin zone, with conduction and valence bands touching at six corners of the Brillouin zone,
two of them are labeled KC and K�. Label � indicates the center of the Brillouin zone

Fig. 8.5 The low-energy band structure of monolayer graphene (8.45) taking into account nearest-
neighbor hopping with parameter �0 D 3:033 eV, nearest-neighbor overlap parameter s0 D 0:129,
and orbital energy �2p D 0 [11]. The plot shows a cut through the band structure Fig. 8.4, plotted
along the kx axis intersecting points K�, � , and KC in the Brillouin zone, shown as the dotted
line in the inset

pronounced in the vicinity of the � point. This arises from the nonzero overlap
parameter s0 appearing in (8.45).

The tight-binding model described here cannot be used to determine the values
of parameters such as �0 and s0. They must be determined either by an alternative
theoretical method, such as density-functional theory, or by comparison of the tight-
binding model with experiments. Note, however, that the main qualitative features
described in this chapter do not depend on the precise values of the parameters
quoted.
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8.5 Massless Chiral Quasiparticles in Monolayer Graphene

8.5.1 The Dirac-Like Hamiltonian

As described in the previous section, the electronic band structure of monolayer
graphene, Figs. 8.4, 8.5, is gapless, with crossing of the bands at points KC and
K� located at corners of the Brillouin zone. In this section, we show that electronic
properties near these points may be described by a Dirac-like Hamiltonian.

Although the first Brillouin zone has six corners, only two of them are nonequiva-
lent. In this chapter, we choose pointsKC andK�, Figs. 8.4, 8.5, as a nonequivalent
pair. It is possible to connect two of the other corners toKC using a reciprocal lattice
vector (hence, the other two are equivalent to KC), and it is possible to connect the
remaining two corners to K� using a reciprocal lattice vector (hence, the remaining
two are equivalent to K�), but it is not possible to connect KC and K� with a
reciprocal lattice vector. To distinguish between KC and K�, we will use an index
	 D ˙1. Using the values of the primitive reciprocal lattice vectors b1 and b2, (8.2),
it can be seen that the wave vector corresponding to pointK	 is given by

K	 D 	

�
4�

3a
; 0

�
: (8.46)

Note that theK points are often called “valleys” using nomenclature from semicon-
ductor physics.

In the tight-binding model, coupling between theA andB sublattices is described
by the off-diagonal matrix elementHAB , (8.38), that is proportional to parameter �0
and the function f .k/, (8.35). Exactly at theK	 point, k D K	 , the latter is equal to

f
�
K	

� D e0 C ei	2�=3 C e�i	2�=3 D 0 : (8.47)

This indicates that there is no coupling between the A and B sublattices exactly at
theK	 point. Since the two sublattices are both hexagonal Bravais lattices of carbon
atoms, they support the same quantum states, leading to a degeneracy point in the
spectrum at K	 , Figs. 8.4, 8.5.

The exact cancelation of the three factors describing coupling between the A and
B sublattices, (8.47), no longer holds when the wave vector is not exactly equal to
that of the K	 point. We introduce a momentum p that is measured from the center
of the K	 point,

p D „k � „K	 : (8.48)

Then the coupling between the A and B sublattices is proportional to

f .k/ D eipya=
p
3„ C 2e�ipya=2

p
3„ cos

�
2�	

3
C pxa

2„
�
; (8.49)
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�
�
1C ipyap

3„
�

C 2

�
1 � ipya

2
p
3„
� 

�1
2

� 	
p
3pxa

4„

!

; (8.50)

� �
p
3a

2„
�
	px � ipy

�
; (8.51)

where we kept only linear terms in the momentum p D �
px; py

�
, an approximation

that is valid close to theK	 point, i.e. forpa=„ � 1, wherep D jpj D .p2xCp2y/1=2.
Using this approximate expression for the function f .k/, the transfer integral
matrix (8.42) in the vicinity of pointK	 becomes

H1;	 D v

�
0 	px � ipy

	px C ipy 0

�
: (8.52)

Here, we used �2p D 0 [11], which defines the zero of the energy axis to coincide
with the energy of the 2pz orbital. The parameters a and �0 were combined into a
velocity v defined as v D p

3a�0=.2„/.
Within the linear-in-momentum approximation for f .k/, (8.51), the overlap

matrix S1 may be regarded as a unit matrix, because its off-diagonal elements,
proportional to s0, only contribute quadratic-in-momentum terms to the energy
E˙, (8.45). Since S1 is approximately equal to a unit matrix, (8.15) becomes
H1 D E , indicating that H1, (8.52), is an effective Hamiltonian for monolayer
graphene at low-energy. The energy eigenvalues and eigenstates of H1 are given by

E˙ D ˙vp ;  ˙ D 1p
2

�
1

˙	ei	'
�
eip:r=„ ; (8.53)

where ˙ refer to the conduction and valence bands, respectively. Here ' is the polar
angle of the momentum in the graphene plane, p D �

px; py
� D p .cos'; sin'/.

8.5.2 Pseudospin and Chirality in Graphene

The effective Hamiltonian (8.52) and eigenstates (8.53) in the vicinity of the K	

point have two components, reminiscent of the components of spin-1=2. Referring
back to the original definitions of the components of the column vector  , (8.4)
and (8.14), shows that this is not the physical spin of the electron, but a degree
of freedom related to the relative amplitude of the Bloch function on the A or B
sublattice. This degree of freedom is called pseudospin. If all the electronic density
was located on theA sublattice, Fig. 8.6a, this could be viewed as a pseudospin “up”
state (pointing upwards out of the graphene sheet) j"i D .1; 0/T , whereas density
solely on the B sublattice corresponds to a pseudospin “down” state (pointing
downwards out of the graphene sheet) j #i D .0; 1/T , Fig. 8.6b. In graphene,
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a

c
d

b

Fig. 8.6 Schematic representation of the pseudospin degree of freedom: (a) electronic density
solely on the A sublattice can be viewed as a pseudospin “up” state, whereas (b) density solely
on the B sublattice corresponds to a pseudospin “down” state; (c) in graphene, electronic density
is usually shared equally between A and B sublattices, so that the pseudospin part of the wave
function is a linear combination of “up” and “down,” with amplitudes dependent on the direction
of the electronic momentum p; (d) at valley KC, the pseudospin h� ie in the conduction band is
parallel to the momentum, whereas the pseudospin h� ih in the valence band is anti-parallel to the
momentum

electronic density is usually shared equally between A and B sublattices, Fig. 8.6c,
so that the pseudospin part of the wave function is a linear combination of “up” and
“down,” and it lies in the plane of the graphene sheet.

Not only do the electrons possess the pseudospin degree of freedom, but also they
are chiral, meaning that the orientation of the pseudospin is related to the direction
of the electronic momentum p. This is reflected in the fact that the amplitudes on
the A or B sublattice of the eigenstate (8.53) depend on the polar angle '. It is
convenient to use Pauli spin matrices in the A/B sublattice space, �i where i D
1 : : : 3, to write the effective Hamiltonian (8.52) as

H1;	 D v
�
	�xpx C �ypy

�
: (8.54)

If we define a pseudospin vector as � D �
�x; �y; �z

�
, and a unit vector as On1 D

.	 cos'; sin'; 0/, then the Hamiltonian becomesH1;	 D vp � : On1, stressing that the
pseudospin � is linked to the direction On1. The chiral operator � : On1 projects the
pseudospin onto the direction of quantization On1: eigenstates of the Hamiltonian are
also eigenstates of � : On1 with eigenvalues ˙1, � : On1 ˙ D ˙ ˙. An alternative
way of expressing this chiral property of electrons is to explicitly calculate the
expectation value of the pseudospin operator h� i D �h�xi; h�yi; h�zi

�
with respect

to the eigenstate  ˙, (8.53). The result, h� ie=h D ˙ .	 cos'; sin'; 0/, shows the
link between pseudospin and momentum. For valley KC, the pseudospin in the
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a b

Fig. 8.7 Anisotropic scattering of chiral electrons in graphene: (a) angular dependence w.'/ D
cos2.'=2/ of the scattering probability off an A-B symmetric potential in monolayer graphene
[9, 10, 33] and (b) w.'/ D cos2.'/ in bilayer graphene [21, 37]

conduction band h� ie is parallel to the momentum, whereas the pseudospin in the
valence band h� ih is antiparallel to it, Fig. 8.6d.

If the electronic momentum p rotates by angle ', then adiabatic evolution of
the chiral wave function  ˙, (8.53), produces a matching rotation of the vector On1
by angle '. For traversal of a closed contour in momentum space, corresponding
to ' D 2� , then the chiral wave function undergoes a phase change of � known
as Berry’s phase [31, 32]. It can be thought of as arising from the rotation of the
pseudospin degree of freedom.

The chiral nature of low-energy electrons in graphene places an additional
constraint on their scattering properties. If a given potential does not break the
A-B symmetry, then it is unable to influence the pseudospin degree of freedom
which must, therefore, be conserved upon scattering. Considering only the pseu-
dospin part of the chiral wave function  ˙, (8.53), the probability to scatter in
a direction ', where ' D 0 is the forward direction, is proportional to w.'/ D
jh ˙.'/j ˙.0/ij2. For monolayer graphene, w.'/ D cos2.'=2/, Fig. 8.7a. This
is anisotropic, and displays an absence of backscattering w.�/ D 0 [9, 10, 33]:
scattering into a state with opposite momentum is prohibited because it requires
a reversal of the pseudospin. Such conservation of pseudospin is at the heart of
anisotropic scattering at potential barriers in graphene monolayers [34, 35], known
as Klein tunneling.

8.6 The Tight-Binding Model of Bilayer Graphene

In this section, we describe the tight-binding model of bilayer graphene. To do so,
we use the tight-binding model described in Sect. 8.3 in order to generalize the
model for monolayer graphene discussed in Sect. 8.4.
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We consider Bernal-stacked bilayer graphene [17,21,36] (also calledAB-stacked
bilayer graphene). It consists of two parallel layers of carbon atoms, each arranged
with a honeycomb arrangement as in a monolayer, that are coupled together,
Fig. 8.8. There are four atoms in the unit cell, a pairA1,B1, from the lower layer and
a pair A2, B2, from the upper layer. In Bernal stacking, the layers are arranged so
that two atoms,B1 andA2, are directly below or above each other, whereas the other
two atoms, A1 and B2, do not have a counterpart in the other layer. The primitive
lattice vectors a1 and a2, and the lattice constant a are the same as for monolayer
graphene, and the unit cell, shown in Fig. 8.8a, has the same area in the x-y plane
as in the monolayer. Therefore, the reciprocal lattice and first Brillouin zone are the
same as in monolayer graphene, Fig. 8.2. The unit cell of bilayer graphene contains
four atoms, and, if the tight-binding model includes one pz orbital per atomic site,
there will be four bands near zero energy, instead of the two bands in monolayer
graphene.

Essential features of the low-energy electronic band structure may be described
by a minimal tight-binding model including nearest-neighbor coupling �0 between
A1 and B1, and A2 and B2, atoms on each layer, and nearest-neighbor interlayer
coupling �1 between B1 and A2 atoms that are directly below or above each other,

�1 D h�A2 .r � RA2/ jHj�B1 .r � RB1/i : (8.55)

Then we can generalize the treatment of monolayer graphene, (8.42), to write
the transfer and overlap integral matrices of bilayer graphene, in a basis with
componentsA1, B1, A2, B2, as

a

b

Fig. 8.8 Schematic
representation of the crystal
structure of AB-stacked
bilayer graphene: (a) plan
view with A1 (white) and B1
atoms (black) on the lower
layer, A2 (black) and B2
atoms (gray) on the upper
layer. Vectors a1 and a2 are
primitive lattice vectors of
length equal to the lattice
constant a, and the shaded
rhombus is a unit cell;
(b) side view where the
parameter �0 represents
nearest-neighbor coupling
within each layer, �1
nearest-neighbor coupling
between the B1 and A2 atoms
on different layers
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Fig. 8.9 The low-energy band structure of bilayer graphene taking into account nearest-neighbor
hopping with parameter �0 D 3:033 eV, nearest-neighbor overlap parameter s0 D 0:129, orbital
energy �2p D 0 [11], and interlayer coupling �1 D 0:39 eV. The plot shows the bands calculated
along the kx axis intersecting points K�, � , and KC in the Brillouin zone, shown as the dotted
line in the right inset. The left inset shows the band structure in the vicinity of the point K�

H D

0

B
B
@

�2p ��0f .k/ 0 0

��0f � .k/ �2p �1 0

0 �1 �2p ��0f .k/
0 0 ��0f � .k/ �2p

1

C
C
A ; (8.56)

S D

0

B
B
@

1 s0f .k/ 0 0

s0f
� .k/ 1 0 0

0 0 1 s0f .k/
0 0 s0f

� .k/ 1

1

C
C
A : (8.57)

The upper-left and lower-right 2 � 2 blocks describe behavior within the lower
(A1/B1) and upper (A2/B2) layers, respectively. The off-diagonal 2 � 2 blocks,
containing parameter �1, describe interlayer coupling.

The band structure of bilayer graphene may be determined by solving the secular
equation det

�
H � EjS

� D 0, (8.16). It is plotted in Fig. 8.9 for parameter values
�0 D 3:033 eV, s0 D 0:129, �2p D 0 [11] and interlayer coupling �1 D 0:39 eV.
There are four energy bands, two conduction bands and two valence bands. Overall,
the band structure is similar to that of monolayer graphene, Fig. 8.5, with each
monolayer band split into two by an energy approximately equal to the interlayer
coupling �1 [36]. The most interesting part of the band structure is in the vicinity
of the K points [21], as shown in the left inset of Fig. 8.9, which focuses in on
the bands around K�. At the K point, one of the conduction (valence) bands is
split away from zero energy by an amount equal to the interlayer coupling �1
(-�1). The split bands originate from atomic sites B1 and A2 that have a counterpart
atom directly above or below them on the other layer. Orbitals on these pairs of
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atoms (B1 and A2) are strongly coupled by the interlayer coupling �1 and they
form a bonding and anti-bonding pair of bands, split away from zero energy. In
the following, we refer to them as “dimer” states, and atomic sites B1 and A2 are
called “dimer” sites. The remaining two bands, one conduction and one valence
band, touch at zero energy: as in the monolayer, there is no band gap between the
conduction and valence bands. In the vicinity of the K points, the dispersion of
the latter bands is quadratic E˙ / ˙jk � K	 j2, and electronic properties of the
low-energy bands may be described by an effective Hamiltonian describing massive
chiral particles. This will be explored in more detail in the next section.

8.7 Massive Chiral Quasiparticles in Bilayer Graphene

8.7.1 The Low-Energy Bands of Bilayer Graphene

To begin the description of the low-energy bands in bilayer graphene, we set s0 D 0,
thus neglecting the nonorthogonality of orbitals that tends to become important at
high energy. Then the overlap matrix S , (8.57), becomes a unit matrix, and H ,
(8.56), is an effective Hamiltonian for the four bands of bilayer graphene at low
energy [21]:

H D

0

B
B
@

0 ��0f .k/ 0 0

��0f � .k/ 0 �1 0

0 �1 0 ��0f .k/
0 0 ��0f � .k/ 0

1

C
C
A ; (8.58)

where we used �2p D 0 [11] to define the zero of the energy axis to coincide with
the energy of the 2pz orbital. Eigenvalues of the Hamiltonian are given by

E
.˛/

˙ D ˙�1

2

 s

1C 4�20 jf .k/j2
�21

C ˛

!

; ˛ D ˙1 : (8.59)

Over most of the Brillouin zone, where 4�20 jf .k/j2 	 �21 , the energy may be

approximated as E.˛/

˙ � ˙.�0jf .k/j C ˛�1=2/, meaning that the ˛ D ˙1 bands
are approximately the same as the monolayer bands, (8.45), but they are split by the
interlayer coupling �1. The eigenvaluesE.1/

˙ , (8.59), describe two bands that are split
away from zero energy by ˙�1 at the K point (where jf .k/j D 0) as shown in the
left inset of Fig. 8.9. This is because the orbitals on theA2 andB1 sites form a dimer
that is coupled by interlayer hopping �1, resulting in a bonding and antibonding pair
of states ˙�1.

The remaining two bands are described by E
.�1/
˙ . Near to the K	 point,

pa=„ � 1, we replace the factor �0jf .k/j with vp, (8.51):
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Fig. 8.10 Schematic representation of the crystal structure of AB-stacked bilayer graphene
illustrating the processes that contribute to effective coupling between A1 (white) and B2 atoms
(gray), in the presence of strongly coupled “dimer” sites B1 and A2 (black). The black arrowed
line indicates the three-stage process: intralayer hopping between A1 and B1, followed by an
interlayer transition via the dimer sitesB1 andA2, followed by another intralayer hopping between
A2 and B2

E
.�1/
˙ � ˙�1

2

 s

1C 4v2p2

�21
� 1

!

: (8.60)

This formula interpolates between linear dispersion at large momenta (�1� vp <�0)
and quadratic dispersion E.�1/

˙ � ˙v2p2=�1 near zero energy, where the bands
touch. These bands arise from effective coupling between the orbitals on sites, A1
and B2, that do not have a counterpart in the other layer. In the absence of direct
coupling between A1 and B2, the effective coupling is achieved through a three-
stage process as indicated in Fig. 8.10. It can be viewed as an intralayer hopping
between A1 and B1, followed by an interlayer transition via the dimer sites B1
and A2, followed by another intralayer hopping between A2 and B2. This effective
coupling may be succinctly described by an effective low-energy Hamiltonian
written in a two-component basis of pz orbitals on A1 and B2 sites.

8.7.2 The Two-Component Hamiltonian of Bilayer Graphene

The effective two-component Hamiltonian may be derived from the four-component
Hamiltonian, (8.58), using a Schrieffer–Wolff transformation [21,38]. In the present
context, a straightforward way to do the transformation is to consider the eigenvalue
equation for the four-component Hamiltonian, (8.58), as four simultaneous equa-
tions for the wave-function components cA1, cB1, cA2, cB2:

EcA1 C �0f .k/ cB1 D 0 ; (8.61)

�0f
� .k/ cA1 C EcB1 � �1cA2 D 0 ; (8.62)

��1cB1 C EcA2 C �0f .k/ cB2 D 0 ; (8.63)

�0f
� .k/ cA2 C EcB2 D 0 : (8.64)
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Using the second and third equations, (8.62) and (8.63), it is possible to express the
components on the dimer sites, cB1 and cA2, in terms of the other two:

cB1 D �0f .k/
�1d

cB2 C E�0f
� .k/

�21 d
cA1; (8.65)

cA2 D E�0f .k/

�21 d
cB2 C �0f

� .k/
�1d

cA1 ; (8.66)

where d D 1 � E2=�21 . Substituting these expressions into the first and fourth
equations, (8.61) and (8.64), produces two equations solely in terms of cA1 and
cB2. Assuming jEj � j�1j and j�0f .k/ j � j�1j, we use d � 1 and keep terms up
to order 1=�1 only:

EcA1 C �20 f
2 .k/
�1

cB2 D 0 ; (8.67)

�20 .f
� .k//2

�1
cA1 C EcB2 D 0 : (8.68)

It is possible to express these two equations as a Schrödinger equation, H2 D
E , with a two-component wave function  D .cA1; cB2/

T and two-component
Hamiltonian

H2;	 D � 1

2m

 
0

�
	px � ipy

�2
�
	px C ipy

�2
0

!

; (8.69)

where we used the approximation f .k/ � �v �	px � ipy
�
=�0, (8.51), valid for

momentum pa=„ � 1 close to the K	 point, and parameters v and �1 were
combined into a massm D �1=.2v

2/.
The effective low-energy Hamiltonian of bilayer graphene, (8.69), resembles the

Dirac-like Hamiltonian of monolayer graphene, (8.52), but with a quadratic term on
the off-diagonal instead of linear. The energy eigenvalues and eigenstates ofH2 are
given by

E˙ D ˙ p2

2m
;  ˙ D 1p

2

�
1

�ei2	'
�
eip:r=„ ; (8.70)

where ˙ refer to the conduction and valence bands, respectively. Here, ' is the polar
angle of the momentum in the graphene plane, p D �

px; py
� D p .cos'; sin'/.

8.7.3 Pseudospin and Chirality in Bilayer Graphene

The two-component Hamiltonian (8.69) of bilayer graphene has a pseudospin
degree of freedom [17, 21] related to the amplitude of the eigenstates (8.70) on
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a
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Fig. 8.11 Schematic representation of the pseudospin degree of freedom in bilayer graphene: (a)
electronic density solely on the A1 sublattice on the lower layer can be viewed as a pseudospin
“up” state, whereas (b) density solely on the B2 sublattice on the upper layer corresponds to
a pseudospin “down” state; (c) in bilayer graphene, electronic density is usually shared equally
between A1 and B2 sublattices, so that the pseudospin part of the wave function is a linear
combination of “up” and “down,” with amplitudes dependent on the direction of the electronic
momentum p; (d) at valley KC, the pseudospin h� ie in the conduction band is parallel to the
quantization direction On2, whereas the pseudospin h� ih in the valence band is antiparallel to On2.
Direction On2 is related to the direction of momentum p, but turns in the x-y plane twice as quickly
as it

the A1 and B2 sublattice sites, where A1 and B2 lie on different layers. If all
the electronic density was located on the A1 sublattice, Fig. 8.11a, this could be
viewed as a pseudospin “up” state (pointing upward out of the graphene sheet)
j "i D .1; 0/T , whereas density solely on the B2 sublattice corresponds to a
pseudospin “down” state (pointing downward out of the graphene sheet) j #i D
.0; 1/T , Fig. 8.11b. In bilayer graphene, electronic density is usually shared equally
between the two sublattices, Fig. 8.11c, so that the pseudospin part of the wave
function is a linear combination of “up” and “down,” and it lies in the plane of the
graphene sheet.

Electrons in bilayer graphene are chiral [17, 21], meaning that the orientation of
the pseudospin is related to the direction of the electronic momentum p, but the
chirality is different to that in monolayers. As before, we use Pauli spin matrices in
the A1/B2 sublattice space, �i where i D 1 : : : 3, to write the effective Hamiltonian
(8.69) as

H2;	 D � 1

2m

h
�x

�
p2x � p2y

�
C 2	�ypxpy

i
: (8.71)
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If we define a pseudospin vector as � D �
�x; �y; �z

�
, and a unit vector as

On2 D � .cos 2'; 	 sin 2'; 0/, then the Hamiltonian becomesH2;	 D .p2=2m/ � : On2,
stressing that the pseudospin � is linked to the direction On2. The chiral operator
� : On2 projects the pseudospin onto the direction of quantization On2: eigenstates of the
Hamiltonian are also eigenstates of � : On2 with eigenvalues ˙1, � : On2 ˙ D ˙ ˙.
In bilayer graphene, the quantization axis On2 is fixed to lie in the graphene plane,
but it turns twice as quickly in the plane as the momentum p. If we calculate
the expectation value of the pseudospin operator h� i D �h�xi; h�yi; h�zi

�
with

respect to the eigenstate ˙, (8.70), then the result h� ie=h D � .cos 2'; 	 sin 2'; 0/,
illustrates the link between pseudospin and momentum, Fig. 8.11d.

If the momentum p rotates by angle ', adiabatic evolution of the chiral wave
function  ˙, (8.70), produces a matching rotation of the quantization axis On2
by angle 2', not ' as in the monolayer, Sect. 8.5.2. Thus, traversal around a
closed contour in momentum space results in a Berry’s phase [31, 32] change of
2� of the chiral wave function in bilayer graphene [17, 21]. For Berry’s phase
2� chiral electrons in bilayer graphene, (8.70), the probability to scatter in a
direction ', where ' D 0 is the forward direction, is proportional to w.'/ D
jh ˙.'/j ˙.0/ij2 D cos2.'/ [21, 37] as shown in Fig. 8.7b. This is anisotropic,
but, unlike monolayers Fig. 8.7a, does not display an absence of backscattering
(w.�/ D 1 in bilayers): scattering into a state with opposite momentum is not
prohibited because it does not require a reversal of the pseudospin.

8.8 The Integer Quantum Hall Effect in Graphene

When a perpendicular magnetic field is applied a two-dimensional electron gas,
the electrons follow cyclotron orbits, and their allowed energies are quantized
into values known as Landau levels [39]. At low magnetic field, the Landau
levels give rise to quantum oscillations including the de Haas-van Alphen effect
and the Shubnikov-de Haas effect. At higher fields, the discrete Landau level
spectrum is manifest in the integer quantum Hall effect [40–42], a quantization
of Hall conductivity into integer values of the quantum of conductivity e2=h. For
monolayer graphene, the Landau level spectrum was calculated over fifty years ago
by McClure [43], and the integer quantum Hall effect was observed [15, 16] and
studied theoretically [13, 30, 45–47] in recent years. The chiral nature of electrons
in graphene results in an unusual sequencing of the quantized plateaus of the
Hall conductivity. In bilayer graphene, the experimental observation of the integer
quantum Hall effect [17] and calculation of the Landau level spectrum [21] revealed
further unusual features related to the chirality of electrons.

8.8.1 The Landau Level Spectrum of Monolayer Graphene

We consider a magnetic field perpendicular to the graphene sheet B D .0; 0;�B/,
where B D jBj. The Dirac-like Hamiltonian of monolayer graphene (8.52) may be
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written as

H1;KC
D v

�
0 �


� 0

�
; H1;K�

D �v
�
0 �

�
 0

�
;

n
� D px C ipy
�
 D px � ipy ; (8.72)

in the vicinity of corners of the Brillouin zone KC and K�, respectively. The off-
diagonal elements of the Hamiltonian (8.72) contain operators � D px C ipy
and �
 D px � ipy , where, in the presence of a magnetic field, the operator
p D .px; py/ � �i„r C eA. Here, A is the vector potential and the charge of
the electron is �e.

Using the Landau gauge A D .0;�Bx; 0/ preserves translational invariance in
the y direction, so that eigenstates may be written in terms of states that are plane
waves in the y direction and harmonic oscillator states in the x direction [41, 42],

�` .x; y/ D A`H`

�
x

�B
� py�B

„
�

exp

"

�1
2

�
x

�B
� py�B

„
�2

C i
pyy

„

#

: (8.73)

Here, H` are Hermite polynomials of order `, for integer ` 
 0, and the
normalization constant isA` D 1=

p
2``Š

p
� . The magnetic length �B , and a related

energy scale � , are defined as

�B D
r

„
eB

; � D
p
2„v
�B

D
p
2„v2eB : (8.74)

With this choice of vector potential, � D �i„@x C „@y � ieBx and �
 D �i„@x �
„@y C ieBx. Acting on the harmonic oscillator states (8.73) gives

��` D �
p
2i„
�B

p
` �`�1 ; (8.75)

�
�` D
p
2i„
�B

p
`C 1 �`C1 ; (8.76)

and ��0 D 0. These equations indicate that operators � and �
 are proportional
to lowering and raising operators of the harmonic oscillator states �`. The Landau
level spectrum is, therefore, straightforward to calculate [43–45]. At the first valley,
KC, the Landau level energies and eigenstates of H1;KC

are

KC; ` 
 1 W E`;˙ D ˙
p
2„v
�B

p
` ;  `;˙ D 1p

2

�
�`

�i�`�1
�
; (8.77)

KC; ` D 0 W E0 D 0 ;  0 D
�
�0
0

�
; (8.78)
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where ˙ refer to the conduction and valence bands, respectively. Equation (8.77)
describes an electron (plus sign) and a hole (minus sign) series of energy levels, with
prefactor � D p

2„v=�B (8.74), proportional to the square root of the magnetic
field. In addition, there is a special level (8.78) fixed at zero energy that arises
from the presence of the lowering operator in the Hamiltonian, ��0 D 0. The
corresponding eigenfunction  0 has nonzero amplitude on the A sublattice, but its
amplitude is zero on the B sublattice. The form (8.72) of the HamiltonianH1;K�

at
the second valley, K�, shows that its spectrum is degenerate with that at KC, with
the role of the A and B sublattices reversed:

K�; ` 
 1 W E`;˙ D ˙
p
2„v
�B

p
` ;  `;˙ D 1p

2

�˙i�`�1
�`

�
; (8.79)

K�; ` D 0 W E0 D 0 ;  0 D
�
0

�0

�
: (8.80)

Thus, the eigenfunction  0 of the zero-energy level has zero amplitude on the B
sublattice at valley KC and zero amplitude on the A sublattice at K�. If we take
into account electronic spin, which contributes a twofold degeneracy of the energy
levels, as well as valley degeneracy, then the Landau level spectrum of monolayer
graphene consists of fourfold-degenerate Landau levels.

8.8.2 The Integer Quantum Hall Effect in Monolayer Graphene

In this section, we describe how the Landau level spectrum of graphene is
reflected in the dependence of the Hall conductivity �xy.n/ on carrier density n. In
conventional two-dimensional semiconductor systems, in the absence of any Berry’s
phase effects, the Landau level spectrum is given by E` D „!c.` C 1=2/, ` 
 0,
where !c D eB=m is the cyclotron frequency [41, 42]. Here, the lowest state lies
at finite energy E0 D „!c=2. If the system has an additional degeneracy g (for
example, g D 2 for spin), then plateaus [40–42] occur at quantized �xy values of
N.ge2=h/, where N is an integer and e2=h is the quantum value of conductance,
i.e. each step between adjacent plateaus has height ge2=h, Fig. 8.12a. Each �xy
step coincides with the crossing of a Landau level on the density axis. Since the
maximum carrier density per Landau level is gB='0, where '0 D h=e is the flux
quantum, the distance between the �xy steps on the density axis is gB='0.

As described above, monolayer graphene has fourfold (spin and valley) degen-
erate Landau levels E`;˙ D ˙p

2`„v=�B for ` 
 1 and E0 D 0. The Hall
conductivity �xy.n/, Fig. 8.12b, displays a series of quantized plateaus separated
by steps of size 4e2=h, as in the conventional case, but the plateaus occur at half-
integer values of 4e2=h rather than integer ones:

�xy D �1
2
.2N C 1/

�
4e2

h

�
; (8.81)
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Fig. 8.12 Schematic representation of three types of integer quantum Hall effect, showing the den-
sity dependence of the Hall conductivity �xy.n/: (a) conventional two-dimensional semiconductor
systems with additional system degeneracy g; (b) monolayer graphene; (c) bilayer graphene. Here,
B is the magnitude of the magnetic field and '0 D h=e is the flux quantum

where N is an integer, as observed experimentally [15, 16] and described
theoretically [13, 30, 45–47]. This unusual sequencing of �xy plateaus is explained
by the presence of the fourfold-degenerate Landau level E0 fixed at zero energy.
Since it lies at the boundary between the electron and hole gases, it creates a step in
�xy of 4e2=h at zero density. Each Landau level in monolayer graphene is fourfold
degenerate, including the zero energy one, so the distance between each �xy step on
the density axis is 4B='0, i.e. the steps occur at densities equal to integer values of
4B='0.

8.8.3 The Landau Level Spectrum of Bilayer Graphene

In the presence of a perpendicular magnetic field, the Hamiltonian (8.69) describing
massive chiral electrons in bilayer graphene may be written as

H2;KC
D � 1

2m

 
0
�
�

�2

�2 0

!

; H2;K�
D � 1

2m

 
0 �2

�
�

�2

0

!

; (8.82)

in the vicinity of corners of the Brillouin zone KC and K�, respectively. Using the
action of operators � and �
 on the harmonic oscillator states �`, (8.75) and (8.76),
the Landau level spectrum of bilayer graphene may be calculated [21]. At the first
valley,KC, the Landau level energies and eigenstates of H2;KC

are

KC; ` 
 2 W E`;˙ D ˙ „2
m�2B

p
`.` � 1/ ;  `;˙ D 1p

2

�
�`

˙�`�2
�
; (8.83)

KC; ` D 1 W E1 D 0 ;  1 D
�
�1
0

�
; (8.84)

KC; ` D 0 W E0 D 0 ;  0 D
�
�0
0

�
; (8.85)
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where ˙ refer to the conduction and valence bands, respectively. Equation (8.83)
describes an electron (plus sign) and a hole (minus sign) series of energy levels. The
prefactor „2=.m�2B/ is proportional to the magnetic field, and it may equivalently be
written as � 2=�1 or as „!c where!c D eB=m. For high levels, ` 	 1, the spectrum
consists of approximately equidistant levels with spacing „!c . Note, however, that
we are considering the low-energy Hamiltonian, so that the above spectrum is only
valid for sufficiently small level index and magnetic field

p
`� � �1. As well as

the field-dependent levels, there are two special levels, (8.84) and (8.85), fixed at
zero energy. There are two zero-energy levels because of the presence of the square
of the lowering operator in the Hamiltonian. It may act not only on the oscillator
ground state to give zero energy, �2�0 D 0, (8.85), but also on the first excited state
to give zero energy, �2�1 D 0, (8.84). The corresponding eigenfunctions 0 and  1
have nonzero amplitude on the A1 sublattice, that lies on the bottom layer, but their
amplitude is zero on the B2 sublattice.

The form (8.82) of the Hamiltonian H2;K�
at the second valley, K�, shows

that its spectrum is degenerate with that at KC with the role of the A1 and
B2 sublattices reversed. It may be expressed as H2;K�

D �xH2;KC
�x so that

 `;˙.K�/ D �x `;˙.KC/,  1.K�/ D �x 1.KC/, and  0.K�/ D �x 0.KC/.
Thus, the eigenfunctions  0 and  1 of the zero-energy levels have zero amplitude
on the B2 sublattice at valley KC and zero amplitude on the A1 sublattice at K�.
If we take into account electronic spin, which contributes a twofold degeneracy of
the energy levels, as well as valley degeneracy, then the Landau level spectrum of
bilayer graphene consists of fourfold degenerate Landau levels, except for the zero-
energy levels which are eightfold degenerate. This doubling of the degeneracy of the
zero-energy levels is reflected in the density dependence of the Hall conductivity.

8.8.4 The Integer Quantum Hall Effect in Bilayer Graphene

The Hall conductivity �xy.n/ of bilayer graphene, Fig. 8.12c, displays a series of
quantized plateaus occurring at integer values of 4e2=h that is practically the same
as in the conventional case, Fig. 8.12a, with degeneracy per level g D 4 accounting
for spin and valleys. However, there is a step of size 8e2=h in �xy across zero density
in bilayer graphene [17, 21]. This unusual behavior is explained by the eightfold
degeneracy of the zero-energy Landau levels. Their presence creates a step in �xy
at zero density, as in monolayer graphene, but owing to the doubled degeneracy as
compared to other levels, it requires twice as many carriers to fill them. Thus, the
transition between the corresponding plateaus is twice as wide in density, 8B='0
as compared to 4B='0, and the step in �xy between the plateaus must be twice as
high, 8e2=h instead of 4e2=h. This demonstrates that although Berry’s phase 2�
is not reflected in the sequencing of quantum Hall plateaus at high density, it has a
consequence in the quantum limit of zero density, as observed experimentally [17].

Here, we showed that the chiral Hamiltonians of monolayer and bilayer graphene
corresponding to Berry’s phase � and 2� , respectively, have associated four- and
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eightfold degenerate zero-energy Landau levels, producing steps of four and eight
times the conductance quantum e2=h in the Hall conductivity across zero density
[15–17]. In our discussion, we neglected interaction effects and we assumed that
any valley and spin splitting, or splitting of the ` D 1 and ` D 0 levels in bilayer
graphene, are negligible as compared to temperature and level broadening.

8.9 Trigonal Warping in Graphene

So far, we have described the tight-binding model of graphene and showed that
the low-energy Hamiltonians of monolayer and bilayer graphene support chiral
electrons with unusual properties. There are, however, additional contributions to
the Hamiltonians that perturb this simple picture. In this section, we focus on one of
them, known in the graphite literature as trigonal warping [4, 22–25].

8.9.1 Trigonal Warping in Monolayer Graphene

The band structure of monolayer graphene, shown in Fig. 8.4, is approximately
linear in the vicinity of zero energy, but it shows deviations away from linear
behavior at higher energy. In deriving the Dirac-like Hamiltonian of monolayer
graphene (8.52), we kept only linear terms in the momentum p D „k � „K	

measured with respect to the K	 point. If we retain quadratic terms in p, then the
function f .k/, (8.51), describing coupling between theA andB sublattices becomes

f .k/ � �
p
3a

2„ .	px � ipy/C a2

8„2 .	px C ipy/
2; (8.86)

where pa=„ � 1. Using this approximate expression, the Dirac-like Hamiltonian
(8.52) in the vicinity of point K	 is modified [9] as

H1;	 D v

�
0 	px � ipy

	px C ipy 0

�
� �

 
0

�
	px C ipy

�2
�
	px � ipy

�2
0

!

; (8.87)

where parameter � D �0a
2=.8„2/. The corresponding energy eigenvalues are

E˙ D ˙
p
v2p2 � 2	�vp3 cos 3' C �2p4: (8.88)

For small momentum near the K point, pa=„ � 1, the terms containing parameter
� are a small perturbation because �p2=.vp/ D pa=.4

p
3„/. They contribute to

a weak triangular deformation of the Fermi circle that becomes stronger as the
momentum p becomes larger. Figure 8.13 shows the trigonal warping of the Fermi
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Fig. 8.13 Trigonal warping
in monolayer graphene. The
solid line shows the
isoenergetic line E D 0:5�0
in the vicinity of the valley
KC using (8.88), the dashed
line shows the circular
isoenergetic line obtained by
neglecting trigonal warping
� D 0

Fig. 8.14 Schematic
representation of the crystal
structure of AB-stacked
bilayer graphene illustrating
skew interlayer coupling �3
(dashed lines) between pz

orbitals on sites A1 (white)
and B2 (gray)

circle near point KC, obtained by plotting (8.88) for constant energy E D 0:5�0.
The presence of the valley index 	 D ˙1 in the angular term of (8.88) means that
the orientation of the trigonal warping at the second valleyK� is reversed.

8.9.2 Trigonal Warping and Lifshitz Transition in Bilayer
Graphene

In deriving the low-energy Hamiltonian of bilayer graphene (8.69), the linear
approximation of f .k/ (8.51) in the vicinity of the K point was used. Taking
into account quadratic terms in f .k/ would produce higher-order in momentum
contributions to (8.69), that would tend to be relevant at large momentum p. There
is, however, an additional interlayer coupling in bilayer graphene that contributes to
trigonal warping and tends to be relevant at small momentum p, i.e. at low energy
and very close to the K point.

The additional coupling is a skew interlayer coupling between pz orbitals on
atomic sites A1 and B2, Fig. 8.14, denoted �3. For each A1 site, there are three
B2 sites nearby. A calculation of the matrix element between A1 and B2 sites
in the tight-binding model proceeds in a similar way as that between adjacent A
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and B sites in monolayer graphene, as described in Sect. 8.4.2. Then the effective
Hamiltonian in a basis with components A1, B1, A2, B2, for the four low-energy
bands of bilayer graphene (8.58) is [21]:

H D

0

B
B
@

0 ��0f .k/ 0 ��3f � .k/
��0f � .k/ 0 �1 0

0 �1 0 ��0f .k/
��3f .k/ 0 ��0f � .k/ 0

1

C
C
A ; (8.89)

where

�3 D �h�A1 .r � RA1/ jHj�B2 .r � RB2/i : (8.90)

The �3 term is relevant at low energy because it is a direct coupling between the
A1 and B2 orbitals that form the two low-energy bands. Thus, using the linear-
in-momentum approximation (8.51), terms such as �3f .k/ � �v3

�
	px � ipy

�

appear in the two-component Hamiltonian written in basis cA1, cB2. Equation (8.69)
is modified as [21]

H2;	 D v3

�
0 	px C ipy

	px � ipy 0

�
� 1

2m

 
0

�
	px � ipy

�2
�
	px C ipy

�2
0

!

; (8.91)

where v3 D p
3a�3=.2„/ andm D �1=.2v

2/. Taking into account trigonal warping,
the low-energy Hamiltonian of bilayer graphene (8.91) resembles that of monolayer
graphene (8.87). The principle difference lies in the magnitude of the parameters.
Since �3 D 0:315 eV [4] is an order of magnitude less than �0 D 3:033 eV [11],
then v3 � v. Thus, the linear term dominates in monolayers and the quadratic term
dominates in bilayers over a broad range of energy. The energy eigenvalues ofH2;	 ,
(8.91), are

E˙ D ˙
s

v23p
2 � 	

v3p3

m
cos 3' C

�
p2

2m

�2
; (8.92)

for energies jE˙j � �1. Over a range of energy, the term independent of v3
dominates, and the v3 dependent terms produce trigonal warping of the isoenergetic
line in the vicinity of each K point. The effect of trigonal warping increases as
the energy is lowered, until, at very low energies EL � 1

4
�1.v3=v/

2 � 1meV, it
leads to a Lifshitz transition [48]: the isoenergetic line breaks into four parts [4,21–
25, 49, 50]. There is one “central” part, centered on the K point (p D 0), that is
approximately circular with area Ac � �E2=.„v3/2. In addition, there are three
“leg” parts that are elliptical with area A` � 1

3
Ac. Each ellipse has its major axis

separated by angle 2�=3 from the major axes of the other leg parts, as measured
from the K point, with the ellipse centered on jpj D �1v3=v

2.
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Here, we have described the low-energy band structure of monolayer and bilayer
graphene within a simple tight-binding model, including a Lifshitz transition in
bilayer graphene at very low energy EL � 1meV. It is quite possible that
electron–electron interactions have a dramatic effect on the band structure of bilayer
graphene, producing qualitatively different features at low energy [51–56].

8.10 Tuneable Band Gap in Bilayer Graphene

8.10.1 Asymmetry Gap in the Band Structure of Bilayer
Graphene

In graphene monolayers and bilayers, a combination of space and time inversion
symmetry [57] guarantees the existence of a gapless band structure exactly at theK
point, i.e. the A and B sublattices (A1 and B2 in bilayers) are identical, leading to
degeneracy of the states they support at the K point. Breaking inversion symmetry
by, say, fixing the two sublattice sites to be at different energies, would lead to a gap
between the conduction and valence bands at the K point. In monolayer graphene,
breaking the A/B sublattice symmetry in a controllable way is very difficult: it
would require a periodic potential because A and B are adjacent sites on the same
layer. In bilayer graphene, however, the A1 and B2 sublattices lie on different
layers and, thus, breaking the symmetry and opening a band gap may be achieved
by doping or gating. Band-gap opening in bilayer graphene has recently been
studied both theoretically [21, 28, 58–65] and in a range of different experiments
[26, 27, 62, 63, 66–74].

If we introduce an asymmetry parameter  D �2 � �1 describing the difference
between on-site energies in the two layers, �A2 D �B2 D �2 D 1

2
, �A1 D �B1 D

�1 D � 1
2
, then the transfer integral matrix of bilayer graphene (8.56), in a basis

with componentsA1, B1, A2, B2, becomes [21, 28, 59]

H D

0

BB
B
B
B
B
BB
@

�1
2
 ��0f .k/ 0 0

��0f � .k/ �1
2
 �1 0

0 �1
1

2
 ��0f .k/

0 0 ��0f � .k/
1

2


1

CC
C
C
C
C
CC
A

: (8.93)

The band structure may be determined by solving the secular equation
det
�
H � EjS

� D 0 using overlap matrix S , (8.57). It is plotted in Fig. 8.15
for parameter values �0 D 3:033 eV, s0 D 0:129 and  D �1 D 0:39 eV. A band
gap appears between the conduction and valence bands near theK points (left inset
in Fig. 8.15).
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-

-
-

-

-

Fig. 8.15 The low-energy
band structure of bilayer
graphene in the presence of
interlayer asymmetry .
Parameter values are
�0 D 3:033 eV, s0 D 0:129,
 D �1 D 0:39 eV. The plot
shows the bands calculated
along the kx axis intersecting
points K�, � , and KC in the
Brillouin zone, shown as the
dotted line in the right inset.
The left inset shows the band
structure in the vicinity of the
point K�

To develop an analytic description of the bands at low energy, we neglect
nonorthogonality of the orbitals on adjacent sites, so that the overlap matrix S ,
(8.57), becomes a unit matrix. Then the bands at low energy are described by
Hamiltonian, (8.93), with eigenvalues [21] given by

E
.˛/

˙ D ˙
"
2

4
C v2p2 C �21

2
C ˛

�21
2

s

1C 4v2p2

�21
C 42v2p2

�41

#1=2

; (8.94)

where ˛ D 1 for the split bands and ˛ D �1 for the low-energy bands. Here,
we used the linear approximation f .k/ � �v �	px � ipy

�
=�0, (8.51), so that

�0jf .k/ j � vp. Eigenvalues E.�1/
˙ describe the low-energy bands split by a gap.

They have a distinctive “Mexican hat” shape, shown in the left inset in Fig. 8.15. The
separation between the bands exactly at theK point,E.�1/

C .p D 0/�E.�1/� .p D 0/,
is equal to jj, but the true value of the band gapg occurs at nonzero value of the
momentum pg away from the K point,

pg D jj
2v

s
2 C 2�21
2 C �21

; (8.95)

g D E
.�1/
C .pg/� E.�1/� .pg/ D jj�1q

2 C �21

: (8.96)

For moderate values of the asymmetry parameter, jj � �1, then the band gap
g � jj, but for extremely large values, jj 	 �1, the gap saturates g � �1,
where �1 is of the order of three to four hundred meV. The value of the asymmetry
parameter and bandgapg may be tuned using an external gate potential, but the
ability of an external gate to induce a potential asymmetry between the layers of the
bilayer depends on screening by the electrons in bilayer graphene, as discussed in
the following.
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8.10.2 Self-Consistent Model of Screening in Bilayer Graphene

8.10.2.1 Introduction

The influence of screening on band-gap opening in bilayer graphene has been
modeled using the tight-binding model and Hartree theory [28, 60, 62, 63, 65], and
this simple analytic model is in good qualitative agreement with density functional
theory [60,64] and experiments [62,63,67,69,71]. Recently, the tight-binding model
and Hartree theory approach has been applied to graphene trilayers and multilayers
[75–78]. Here, we review the tight-binding model and Hartree theory approach
which provides analytical formulae that serve to illustrate the pertinent physics. We
will use the SI system of units throughout, and adopt the convention that the charge
of the electron is �e where the quantum of charge e > 0.

Using elementary electrostatics, it is possible to relate the asymmetry parameter
 D �2 � �1 to the distribution of electronic density over the bilayer system in the
presence of external gates, but the density itself depends explicitly on  because
of the effect  has on the band structure, (8.94). Therefore, the problem requires a
self-consistent calculation of density and , leading to a determination of the gate-
dependence of the gapg.

The model assumes that bilayer graphene consists of two parallel conducting
plates located at x D �c0=2 and Cc0=2, where c0 is the interlayer spacing, as
illustrated in Fig. 8.16. The two layers support electron densities n1, n2, respectively,
corresponding to charge densities �1 D �en1, �2 D �en2, and the permittivity of
the bilayer interlayer space is "r (neglecting the screening effect of �-band electrons
that we explicitly take into account here). We consider the combined effect of a back
and top gate, with the back (top) gate at x D �Lb (x D CLt ), held at potential Vb
(Vt ), separated from the bilayer by a dielectric medium with relative permittivity "b
("t ). In addition, we include the influence of additional background charge near the
bilayer with density nb0 on the back-gate side and nt0 on the top-gate side, yielding
charge densities �b0 D enb0 and �t0 D ent0 where nb0 and nt0, are positive for
positive charge.

8.10.2.2 Electrostatics

Applying Gauss’s Law first to a Gaussian surface enclosing cross-sectional area A
of both layers of the bilayer and, second, to a Gaussian surface enclosing one layer
only yields

� "0"bEbAC "0"tEtA D �e .n1 C n2 � nb0 � nt0/ A ; (8.97)

�"0"rEAC "0"tEtA D �e .n2 � nt0/ A : (8.98)

The electric fields may be related to potential differences,
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Fig. 8.16 Schematic of bilayer graphene in the presence of back and top gates. Bilayer graphene
consists of two parallel conducting plates with respective electron densities n1, n2 located at x D
�c0=2 and Cc0=2, respectively, where c0 is the interlayer spacing, and "r is the permittivity of the
bilayer interlayer space. The back (top) gate at x D �Lb (x D CLt ), held at potential Vb (Vt ), is
separated from the bilayer by a dielectric medium with relative permittivity "b ("t ). Dashed lines
indicate additional background charge near the bilayer with charge densities �b0 and �t0 on the
back-gate and top-gate side, respectively

Eb � Vb=Lb ; Et � �Vt=Lt ; (8.99)

E � .V1 � V2/ =c0 � =.ec0/; (8.100)

and, when substituted into (8.97) and (8.98), they give

n D n1 C n2 D "0"bVb

eLb
C "0"tVt

eLt
C nb0 C nt0 ; (8.101)

 D � "t
"r

c0

Lt
eVt C e2c0

"0"r
.n2 � nt0/ : (8.102)

The first equation, (8.101), relates the total density of �-band electrons n D n1Cn2
on the bilayer to the gate potentials, generalizing the case of monolayer graphene
[14]. The second equation, (8.102), gives the value of the asymmetry parameter.
Using (8.101), it may be written in a slightly different way:

 D ext C��1
.n2 � n1/
n?

; (8.103)

ext D 1

2

"b

"r

c0

Lb
eVb � 1

2

"t

"r

c0

Lt
eVt C��1

.nb0 � nt0/

n?
; (8.104)

where parameters n? and� are defined as

n? D �21
�„2v2 ; � D c0e

2�1

2�„2v2"0"r � c0e
2n?

2�1"0"r
: (8.105)

The first term in (8.103) isext, the value of if screening were negligible, as deter-
mined by a difference between the gate potentials, (8.104). Equations (8.101,8.104)
show that the effect of the background densities nb0 and nt0 may be absorbed in a
shift of the gate potentials Vb and Vt , respectively.
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The second term in (8.103) indicates the influence of screening by electrons on
the bilayer, where n? is the characteristic density scale and � is a dimensionless
parameter indicating the strength of interlayer screening. Using �1 D 0:39eV and
v D 1:0� 106ms�1 gives n? D 1:1� 1013cm�2. For interlayer spacing c0 D 3:35Å
and dielectric constant "r � 1, then� � 1, indicating that screening is an important
effect.

8.10.2.3 Layer Densities

Equation (8.103) uses electrostatics to relate  to the electronic densities n1 and
n2 on the individual layers. The second ingredient of the self-consistent analysis
are expressions for n1 and n2 in terms of , taking into account the electronic
band structure of bilayer graphene. The densities are determined by an integral with
respect to momentum over the circular Fermi surface

n1.2/ D 2

�„2
Z
p dp

�j A1.2/.p/j2 C j B1.2/.p/j2
	
; (8.106)

where a factor of four is included to take into account spin and valley degeneracy.
Using the four-component Hamiltonian (8.93), with linear approximation f .k/ �
�v �	px � ipy

�
=�0, it is possible to determine the wave function amplitudes on the

four atomic sites [28] to find

n1.2/ D
Z
dp p

�
E �=2

�„2E
�"�

E2 �2=4
�2 � 2v2p2E � v4p4

.E2 �2=4/
2 C v2p22 � v4p4

#

; (8.107)

where the minus (plus) sign is for the first (second) layer and E is the band energy.
For simplicity, we consider the Fermi level to lie within the lower conduction

band, but above the Mexican hat region, jj=2 < EF � �1. We approximate the

dispersion relation, (8.94), as E.�1/
C �

q
2=4C v4p4=�21 , which neglects features

related to the Mexican hat. Then the contribution to the layer densities from the
partially filled conduction band [28, 65] is given by

ncb
1.2/ � n

2
� n?

4�1
ln

0

@2jnj�1
n?jj C

s

1C
�
2n�1

n?

�2
1

A ; (8.108)

where the total density n D p2F =�„2. In addition, although the filled valence band
does not contribute to a change in the total density n, it contributes toward the finite
layer polarization in the presence of finite  which, to leading order in , is given
by

nvb
1.2/ � ˙n?

4�1
ln

�
4�1

jj
�
: (8.109)
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Then the total layer density, n1.2/ D ncb
1.2/ C nvb

1.2/, is given by

n1.2/ � n

2
� n?

4�1
ln

0

@ jnj
2n?

C 1

2

s�
n

n?

�2
C
�


2�1

�2
1

A : (8.110)

8.10.2.4 Self-Consistent Screening

The density-dependence of the asymmetry parameter  and band gap g are
determined [28, 65] by substituting the expression for the layer density, (8.110),
into (8.103):

.n/ � ext

2

41 � �

2
ln

0

@ jnj
2n?

C 1

2

s�
n

n?

�2
C
�


2�1

�2
1

A

3

5

�1

; (8.111)

with ext given by (8.104). The logarithmic term describes the influence of
screening: when this term is much smaller than unity, screening is negligible and
 � ext, whereas when the logarithmic term is much larger than unity, screening
is strong, jj � jextj. The magnitude of the logarithmic term is proportional to
the screening parameter �. As discussed earlier, � � 1 in bilayer graphene, so it
is necessary to take account of the density dependence of the logarithmic term in
(8.111).

To understand the density dependence of , let us consider bilayer graphene
in the presence of a single back gate, Vt D nb0 D nt0 D 0. This is a common
situation for experiments with exfoliated graphene on a silicon substrate [14–17].
Then the relation between density and gate voltage, (8.101), becomes the same as
in monolayer graphene [14], n D "0"bVb=.eLb/. The expression for ext, (8.104),
reduces to ext D ��1n=n?, and the expression for .n/, (8.111), simplifies [28]
as

.n/ � ��1n

n?



1 � �

2
ln

� jnj
n?

���1
: (8.112)

The value of the true band gap g.n/ may be obtained using (8.96), g D
jj�1=

q
2 C �21 . Asymmetry parameter .n/ and band gap g.n/ are plotted in

Fig. 8.17 as a function of density n. For large density, jnj � n?, the logarithmic
term in (8.112) is negligible and the asymmetry parameter is approximately linear
in density, .n/ � ��1n=n?. At low density, jnj � n?, the logarithmic term is
large, indicating that screening is strong, and the asymmetry parameter approaches
.n/ � 2�1.n=n?/= ln.n?=jnj/. The comparison of .n/ and g.n/, Fig. 8.17a,
shows that, at low density jnj � n?, g.n/ � j.n/j and, asymptotically,
g.n/ � 2�1.jnj=n?/= ln.n?=jnj/. This is independent of the screening parameter
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a b

Fig. 8.17 Density-dependence of the band gapg in bilayer graphene, in the presence of a single

back gate: (a) asymmetry parameter  and gap g D jj�1=
q
2 C �21 for screening parameter

� D 1; (b) band gap g for different values of the screening parameter. Plots were made using
(8.96) and (8.112)

� [see Fig. 8.17b]. The curves for different values of the screening parameter �,
Fig. 8.17b, illustrate that, even when jj is very large, jj 	 �1,g saturates at the
value of �1.

In deriving the above expression for .n/, a number of approximations were
made including simplifying the band structure [by omitting features related to
the Mexican hat or to other possible terms in the Hamiltonian (8.93)], neglecting
screening due to other orbitals, and neglecting the effects of disorder and electron–
electron exchange and correlation. Nevertheless, it seems to be in good qualitative
agreement with density functional theory calculations [60,64] and experiments (see,
for example, [62, 63, 67, 69, 71]).

8.11 Summary

In this chapter, some of the electronic properties of monolayer and bilayer graphene
were described using the tight-binding model. Effective Hamiltonians for low-
energy electrons were derived, corresponding to massless chiral fermions in mono-
layers and massive chiral fermions in bilayers. Chirality in graphene is manifest
in many electronic properties, including anisotropic scattering and an unusual
sequence of plateaus in the quantum Hall effect. There are a number of additional
contributions to the low-energy Hamiltonians of graphene that influence chiral
electrons and we focused on one of them, trigonal warping, here.

Comparison with experiments suggest that the tight-binding model generally
works very well in graphene. The model contains parameters, corresponding to
the energies of atomic orbitals or to matrix elements describing hopping between
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atomic sites, that cannot be determined by the model. They must be estimated by
an alternative theoretical method, such as density-functional theory, or they can be
treated as fitting parameters to be determined by comparison with experiments. The
simple model described in this chapter is versatile and it serves as the starting point
for a wide range of models encapsulating advanced physical phenomena, including
interaction effects. In Chap. 11, the tight-binding model is used to describe the
electronic structure of multilayer graphene. Here, we described a different example:
the use of the tight-binding model with Hartree theory to develop a simple model
of screening by electrons in bilayer graphene in order to calculate the density
dependence of the band gap induced by an external electric field.
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Chapter 9
Electronic Properties of Graphene Nanoribbons

Katsunori Wakabayashi

Abstract Graphene is a one atomic thickness carbon sheet, where the low-energy
electronic states of graphene are described by the massless Dirac Fermions. The
orientation of edge in graphene determines energy spectrum of the �-electrons.
Zigzag edges possess edge localized states with energies close to the Fermi level.
However, armchair edges do not have such localized states. In this chapter, we shall
introduce the nanoscale and edge shape effect on electronic properties of graphene.
Starting from the basic description of electronic states of graphene nanoribbons on
the basis of tight-binding model and massless Dirac equation, we briefly introduce
the transport properties of disordered graphene nanoribbons and nanojunctions.

9.1 Introduction

Recently, graphene, a single-layer hexagonal lattice of carbon atoms, has emerged
as a fascinating system for fundamental studies in condensed matter physics, as
well as the promising candidate material for future application in nanoelectronics
and molecular devices [1, 2]. The honeycomb crystal structure of single layer
graphene consists of two nonequivalent sublattices and results in a unique band
structure for the itinerant �-electrons near the Fermi energy which behave as
massless Dirac fermion. The valence and conduction bands touch conically at two
nonequivalent Dirac points, called KC and K� point, which form a time-reversed
pair, i.e., opposite chirality. The chirality and a Berry phase of � at the two Dirac
points provide an environment for unconventional and fascinating two-dimensional
electronic properties [3–5], such as the half-integer quantum Hall effect [6–8], the
absence of backward scattering [4, 9], and �-phase shift of the Shubnikov-de Haas
oscillations [10]. Since they have excellent electronic mobility [11] and high thermal
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conductivity [12], graphene is recognized as one of the key materials to realize the
next-generation devices.

The successive miniaturization of the graphene electronic devices inevitably
demands the clarification of edge effects on the electronic structures of nanometer-
sized graphene. The presence of edges in graphene has strong implications for the
low-energy spectrum of the �-electrons [13–15]. There are two basic shapes of
edges, armchair and zigzag, which determine the properties of graphene ribbons.
Ribbons with zigzag edges (zigzag ribbon) possess edge localized states with
energies close to the Fermi level [13–17]. In contrast, edge states are completely
absent for ribbons with armchair edges. Since the zigzag edge can provide strong
magnetic response [13, 15, 16, 18, 19], much effort has been devoted to studying
the edges in graphitic nanomaterials. Recent experiments using scanning tunneling
microscope (STM), spectroscopy (STS) [20–23] and high-resolution angle-resolved
photoemission spectroscopy (ARPES) [24] support the evidence of edge localized
states. Recently several experimental routes have been realized to synthesize
graphene nanoribbons. Use of lithographic patterning of graphene samples [25, 26]
can yield graphene nanoribbons; however, the reported ribbons have large widths
between 15 and 100 nm with small electronic band gap up to 200 meV due to the
significant edge roughness. Second route [27], that use chemical method such as
solution-dispersion and sonication, has shown that graphene sheets spontaneously
break into ribbons of narrow width and rather smooth edges. Recently carbon
nanotubes can be cut along their axis and flattened out to form the graphene
nanoribbons [28, 29]. A bottom-up approach can also provide a route for synthesis
of linear two-dimensional graphene nanoribbons with lengths of up to 12 nm [30].
Although the control of edge structure which is necessary for the application of
nano-graphene to nanoelectronics devices is still difficult, several experimental
trials already exist using Joule heating [31], anisotropic etching [32], and chemical
synthesis [33]. The combination of these new methods could lead to the design of
graphene nanoribbons and nanostructures having edges of controlled orientation and
electronic properties.

The electronic transport and magnetic properties of graphene nanoribbons show
a number of intriguing phenomena due to their peculiar electronic properties.
Graphene nanojunction structures can provide zero-conductance Fano resonances
in their low-energy electronic transport [34–37], which can be used for current-
controlling switching devices [34–37] or valley filtering device [38]. The novel
magnetic properties of zigzag edges [13, 15, 16] can be used for half-metallic
conduction [18] and spin Hall effect [39]. Various chemical modifications have been
suggested to stabilize the edge spin polarized magnetic states [40–42]. Recently
transport measurement for graphene nanoribbons is reported [43–49].

Since the graphene nanoribbons can be viewed as a new class of quantum wires,
one might expect that random impurities inevitably cause Anderson localization,
i.e., conductance decays exponentially with increasing system length L and even-
tually vanishes in the limit of L ! 1. However, as we will see in this chapter, it
is shown that zigzag nanoribbons with long-ranged impurities possess a perfectly
conducting channel (PCC) [50, 51]. This fact is very strong contrast compared with
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the quantum wire composed of massive free electrons. The related topic is also
presented in Chap. 8.

In this chapter, we will give a brief overview on the electronic and transport
properties of graphene nanoribbons. In zigzag nanoribbons, for disorder without
inter-valley scattering a single PCC emerges associated with a chiral mode due to
edge states, i.e., the absence of the localization. Nano-graphene junctions are shown
to have the zero-conductance anti-resonances associated with the edge states. The
relation between the condition of the resonances and geometry is discussed.

9.2 Electronic States of Graphene

Before the discussion of the �-electronic states of graphene nanoribbons, we shall
briefly review the �-band structure of a graphene sheet [52]. In Figs. 9.1a, b, the
lattice structure of graphene and the first Brillouin Zone (BZ) of graphene lattice are
shown, respectively. We use a single-orbital nearest-neighbor tight binding model
for the � electron network. The Hamiltonian can be written as

H D �t
X

RB

3X

lD1
a
�

RBC�l
bRB

C h:c:; (9.1)

where a�RA
(b�RB

) creates an electron at RA (RB) on A(B)-subblattice. Similarly,
aRA

(bRB
) annihilates an electron at RA (RB) onA(B)-subblattice. These operators

satisfy the Fermion anti-commutation relations:
n
aRA

; a
�

R0

A

o
D ıRA ;R

0

A
;
n
bRB

; b
�

R0

B

o
D ıRB ;R

0

B
; (9.2)

n
aRA

; aR0

A

o
D 0;

n
bRB

; bR0

B

o
D 0; (9.3)

and others are zero. t is the transfer integral between nearest neighbor carbon sites
which is roughly estimated at about 3:0eV in a graphene system. More precise value
can be estimated using ARPES discussed in Chap. 4. We apply the following Fourier
transformation to this Hamiltonian:

aRA
D 1p

LxLy

P
k eikRA˛k; (9.4)

bRB
D 1p

LxLy

P
k eikRBˇk: (9.5)

Here k D (kx; ky) and Lx(Ly) means the number of unit cell in x(y)-direction.

Hk D �t
X

k

3X

lD1
e�ik�l ˛

�
kˇk C h:c:; (9.6)



280 K. Wakabayashi

Here we insert a one-particle state

j�.k/i D
�
A˛

�

k C Bˇ
�

k

�
j0i; (9.7)

into the Schrödinger equation

Hk j�.k/i D Ej�.k/i: (9.8)

Here j0i means the vacuum state. Note that ˛k j0i D ˇkj0i D 0. Thus we have

�
0 f �

AB.k/

fAB.k/ 0

��
A

B

�
D E

�
A

B

�
(9.9)

with

fAB.k/ D �t
3X

lD1
e�ik�l : (9.10)

Thus, the energy bands are given by

Es.k/ D st

vuu
t3C 2 cos

 
kxa

2
C

p
3kya

2

!

C 2 cos

 
kxa

2
�

p
3kya

2

!

C 2 cos .kxa/

(9.11)

with s D ˙. Since one carbon site has one �-electron on average, onlyE�.k/-band
is completely occupied. The density of states (DOS) is calculated by

D.E/ D � 1

�
Im
Z

1stBZ
dk

1

E � E.k/C i�
; (9.12)

where the area of k-integration is 1st BZ and � is infinitesimally small real number.
In Figs. 9.1 c, d, the energy dispersion of �-bands in the first Brillouin Zone

(BZ) and the corresponding density of states are depicted, respectively. Near the �
point, both valence and conduction bands have the quadratic form of kx and ky , i.e.
Ek D ˙.3� 3jkj2=4/. At the M points, the middle points of sides of the hexagonal
BZ, the saddle point of energy dispersion appears and the density of states diverges
logarithmically. Near the K point of the corner of hexagonal first BZ, the energy
dispersion is linear in the magnitude of the wave vector,Ek D ˙p

3tajkj=2, where
the density of states linearly depends on energy. Here a.D p

3j�i j.i D 1; 2; 3//

is the lattice constant. The Fermi energy is located at the K points and there is
no energy gap at these points, since Ek vanishes at these points by the hexagonal
symmetry. The electronic states near the K-point can be described by massless Dirac
equation [4, 5].
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Fig. 9.1 (a) Graphene sheet in real space, where the black (white) circles mean the A(B)-
sublattice site. a is the lattice constant. a D .a; 0/ and b D .�a=2;p3a=2/ are the primitive
vectors. Here �1 D .0; a=

p
3/, �2 D .�a=2;�a=2p3/, and �3 D .a=2;�a=2p3/. (b) First

Brillouin zone of graphene. KC D 2�
a
. 1
3
; 1

p

3
/, K� D 2�

a
. 2
3
; 0/, � D .0; 0/ (c) The � band

structure and (d) the density of states of graphene sheet. The valence and conduction bands make
contact at the degeneracy point K˙

9.2.1 Tight-Binding Model and Edge States

There are two typical shapes of a graphene edge, called armchair and zigzag. The
two edges have 30ı difference in their cutting direction. Here we show the way that
the graphene edges drastically change the � electronic structures [13]. Especially,
a zigzag edge provides the localized edge state, while an armchair edge does not
show such localized states.

A simple and useful model to study the edge and size effect is one of the graphene
ribbon models as shown in Figs. 9.2a, b. We define the width of graphene ribbons
as N , where N stands for the number of the dimer (two carbon sites) lines for
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Fig. 9.2 Structure of graphene nanoribbon with (a) armchair edges (armchair ribbon) and (b)
zigzag edges (zigzag ribbon). The lattice constant is a and N defines the ribbon width. The circles
with dashed line indicate the missing carbon atoms for the edge boundary condition of massless
Dirac equation. aT is the width of unit cell for armchair nanoribbons
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Fig. 9.3 Energy band structure E.k/ and density of states D.E/ of armchair ribbons of various
widths [(a) N D 4, (b) 5 and (c) 30 ]

the armchair ribbon and by the number of the zigzag lines for the zigzag ribbon,
respectively. It is assumed that all dangling bonds at graphene edges are terminated
by hydrogen atoms, and thus give no contribution to the electronic states near the
Fermi level. We use a single-orbital tight binding model for the � electron network.

The energy band structures of armchair ribbons are shown in Figs. 9.3a–c, for
three different ribbon widths, together with the density of states. The wave number
k is normalized by the length of the primitive translation vector of each graphene
nanoribbon, and the energy E is scaled by the transfer integral t . The top of
the valence band and the bottom of the conduction band are located at kD 0. It
should be noted that the ribbon width decides whether the system is metallic or
semiconducting. As shown in Fig. 9.3b, the system is metallic when N D 3j � 1,
where j D 1; 2; 3; : : :. For the semiconducting ribbons, the direct gap decreases
with increasing ribbon width and tends to zero in the limit of very large N . For
narrow non-doped metallic armchair nanoribbons, the energy gap can acquire due
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Fig. 9.4 Energy band structure E.k/ and density of states D.E/ of zigzag ribbons of various
widths [(a) N D 4, (b) 5 and (c) 30 ]
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Fig. 9.5 Charge density plot for analytic solution of the edge states in a semi-infinite graphene
sheet, when (a) k D � , (b) 8�=9, (c) 7�=9 and (d) 2�=3. (e) An analytic form of the edge state
for a semi-infinite graphene sheet with a zigzag edge, emphasized by bold lines. Each carbon site
is specified by a location index n on the zigzag chain and by a chain order index m from the edge.
The magnitude of the charge density at each site, such as x, y and z, is obtained analytically (see
text). The radius of each circle is proportional to the charge density on each site, and the drawing
is made for k D 7�=9

to Peierls instabilities toward low temperatures [53], which is consistent with the
recent density functional theory calculation [19, 54].

For zigzag ribbons, however, a remarkable feature arises in the band structure, as
shown in Figs. 9.4a–c. We see that the highest valence band and lowest conduction
band are always degenerated at k D � . It is found that the degeneracy of the center
bands at kD� does not originate from the intrinsic band structure of graphene
sheet. These two special center bands get flatter with increasing ribbon width. A pair
of partial flat bands appears within the region of 2�=3 � jkj � � , where the bands
sit in the vicinity of the Fermi level.

The electronic state in the partial flat bands of the zigzag ribbons can be
understood as the localized state near the zigzag edge via examining the charge
density distribution [13–15, 20–22]. The emergence of the edge state can be solved
by considering a semi-infinite graphene sheet with a zigzag edge. First to show the
analytic form, we depict the distribution of charge density in the flat band states
for some wave numbers in Fig. 9.5a–d, where the amplitude is proportional to the
radius. The wave function has nonbonding character, i.e., finite amplitudes only on
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one of the two sublattices which includes the edge sites. It is completely localized
at the edge site when kD� , and starts to gradually penetrate into the inner sites as
k deviates from � reaching the extend state at kD2�=3.

Considering the translational symmetry, we can start constructing the analytic
solution for the edge state by letting the Bloch components of the linear combination
of atomic orbitals (LCAO) wavefunction be :::, eik.n�1/, eikn, eik.nC1/,::: on succes-
sive edge sites, where n denotes a site location on the edge. Then the mathematical
condition necessary for the wave function to be exact for E D 0 is that the total
sum of the components of the complex wave function over the nearest-neighbor
sites should vanish. In Fig. 9.5e, the above condition is eik.nC1/ C eikn C x D 0,
eiknCeik.n�1/Cy D 0 and xCyCz D 0. Therefore, the wave function components
x, y, and z are found to be Dkeik.nC1=2/, Dkeik.n�1=2/, D2

keikn, respectively. Here
Dk D �2 cos.k=2/. We can thus see that the charge density is proportional to
D
2.m�1/
k at each non-nodal site of the m-th zigzag chain from the edge. Then the

convergence condition of jDkj � 1 is required, for otherwise the wave function
would diverge in a semi-infinite graphene sheet. This convergence condition defines
the region 2�=3 � jkj � � where the flat band appears.

The energy spectrum and corresponding wavefunctions can be solved ana-
lytically within the nearest neighbor tight-binding model using wave-mechanics
approach [15, 55], monomer Green’s function approach [56], and transfer matrix
approach [57, 58]. For armchair nanoribbons, we can show that the relative phase
due to the chirality of pseudo-spin in the wavefunction between sublattice A and B
is preserved; however, for zigzag nanoribbons such phase factor due to the pseudo-
spin disappears [55,59]. Such difference in the phase factor of wavefunction makes
strong edge orientation dependence in the response of Raman spectroscopy [60,61],
which was recently confirmed experimentally [62–64].

9.2.2 Massless Dirac Equation

The relation between massless Dirac spectrum of graphene and low-energy elec-
tronic states of nanoribbons is discussed here. The electronic states near the two
nonequivalent Dirac points (K˙) can be described by 4 � 4 Dirac equation, i.e.,

Hk�pF .r/ D �F .r/ (9.13)

with

Hk�p D

0

B
B
B
@

0 �. Okx � i Oky/ 0 0

�. Okx C i Oky/ 0 0 0

0 0 0 �. Okx C i Oky/
0 0 �. Okx � i Oky/ 0

1

C
C
C
A

(9.14)
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and

F .r/ D
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B
B
B
@

F
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A .r/

F
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B .r/

F
K�

A .r/

F
K�

B .r/

1

C
C
C
A
: (9.15)

Here, Okx( Oky) is wavevector operator, and can be replaced as Ok ! �i Or in the
absence of magnetic field. � is a band parameter which satisfies � D p

3ta=2.
F

K
˙

A .r/ and F
K

˙

B .r/ are the envelope functions near K˙ points for sublattice A
and B which slowly vary in the length scale of the lattice constant. We can rewrite
the above effective mass Hamiltonian using the Pauli matrices 	x;y;z for valley space
(K˙) as

Hk�p D �
h Okx.
x ˝ 	0/C Oky.
y ˝ 	 z/

i
: (9.16)

Here, 	0 is the 2�2 identity matrix. We can easily obtain the linear energy spectrum
for graphene as

� D s� jkj wi th s D ˙1; (9.17)

and the corresponding wavefunctions with the definition of ˚K˙
D �

FK˙A; FK˙B

�

are

˚K˙
D 1p

2

�
s

e˙i�k

�
eik�r (9.18)

Here

e˙i�k D kx ˙ iky

jkx C iky j : (9.19)

9.2.2.1 Zigzag Nanoribbons

The low-energy electronic states for zigzag nanoribbons also can be described
starting from the Dirac equation [17, 65]. Since the outermost sites along 1st (N th)
zigzag chain are B(A)-sublattice, an imbalance between two sublattices occurs at
the zigzag edges leading to the boundary conditions

�K˙A.r Œ0�/ D 0; �K˙B.r ŒNC1�/ D 0; (9.20)

where r Œi � stands for the coordinate at i th zigzag chain. The energy eigenvalue and
wavenumber are given by the following relation:

" D ˙.� � k/e�W ; (9.21)

where � D p
k2 � ". It can be shown that the valley near k D 3�=2a in Fig. 9.1b

originates from the KC-point, the other valley at k D �3�=2a from K�-point
[17, 65].
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9.2.2.2 Armchair Nanoribbons

The boundary condition of armchair nanoribbons projects KC and K� states into
� point in the first Brillouin Zone as can be seen in Fig. 9.1b. Thus, the low-energy
states for armchair nanoribbons are the superposition of KC and K� states. The
boundary condition for armchair nanoribbons [65] can be written as

ŒFC
A .x; y/C F �

A .x; y/�jxD0;W D 0; (9.22)

ŒFC
B .x; y/ � F�

B .x; y/�jxD0;W D 0: (9.23)

If the ribbon width W satisfies the condition of W D .3=2/.Nw C 1/a with
Nw D 0; 1; 2; : : : , the system becomes metallic with the linear spectrum. The
corresponding energy is given by

�n;k;s D s�

q
2n C k2; (9.24)

where n D 2�n
3.NwC1/a , n D 0;˙1;˙2; : : : and s D ˙. The n D 0 mode is the

lowest linear subband for metallic armchair ribbons. The energy gap (�s) to first
parabolic subband of n D 1 is given as

�s D 4��=3.Nw C 1/a; (9.25)

which is inversely proportional to ribbon width. It should be noted that small
energy gap can be acquired due to the Peierls distortion for half-filling at low
temperatures [19, 53], but such effect is not relevant for single-channel transport
in the doped energy regime.

9.2.3 Edge Boundary Condition and Intervalley Scattering

The matrix elements of the intervalley scattering term depend on the edge orienta-
tion and the range of impurity potential. According to [9], the impurity potential can
be included in the massless Dirac equation by adding the following potential term
OUimp described as

OUimp D

0

B
B
@

uA.r/ 0 u0
A.r/ 0

0 uB.r/ 0 �u0
B.r/

u0
A.r/

� 0 uA.r/ 0

0 �u0
B.r/

� 0 uB.r/

1

C
C
A ; (9.26)

with
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uX.r/ D
X

RX

g .r � RX/ QuX .RX/ ; (9.27)

u0
X.r/ D

X

RX

g .r � RX/ e�i2K �RX QuX .RX/ ; (9.28)

where QuX.RX/ is the local potential due to impurities for X D A or B . Here g.R/
with the normalization condition of

P
R g.R/ D 1 is a real function which has

an appreciable amplitude in the region where jRj is smaller than a few times of
the lattice constant, and decays rapidly with increasing jRj. For convenience, we
distinguish the impurity into two types by the range of the impurity potential: one
is long-ranged impurities (LRI) if the range of impurity potential is much larger
than the lattice constant, and the other is short-ranged impurity (SRI) if the range of
impurity is smaller than the lattice constant.

If only the LRI are present, we can approximate uA.r/ D uB.r/ � u.r/ and
u0
A.r/ D u0

B.r/ � u0.r/. In the case of carbon nanotubes and zigzag nanoribbons,
u0
X.r/ vanishes after the summation over RX in (9.28) since the phase factor

e�i2K �RX strongly oscillates in the x-direction. This means that the two valleys are
independent and one can only focus on either KC or K� valley. Thus LRIs do not
induce the intervalley scattering for zigzag nanoribbons.

However, this cancelation is not complete in an armchair nanoribbon because the
averaging over the x-direction is restricted to the finite width ofW . This means that
we cannot neglect the contribution from scatterers particularly in the vicinity of the
edges to u0

X.r/. This means that intervalley scattering does not vanish even in the
case of LRI in the armchair nanoribbons.

9.3 Electronic Transport Properties

We numerically discuss the electronic transport properties of the disordered
graphene nanoribbons. In general, electron scattering in a quantum wire is described
by the scattering matrix [66]. Through the scattering matrix S , the amplitudes of
the scattered waves O are related to the incident waves I ,

�
OL

OR

�
D S

�
IL

IR

�
D
�

r t 0

t r 0

��
IL

IR

�
: (9.29)

Here, r and r 0 are reflection matrices, t and t 0 are transmission matrices, L and R
denote the left and right lead lines. The Landauer-Büttiker formula [67] relates the
scattering matrix to the conductance of the sample. The electrical conductance is
calculated using the Landauer-Büttiker formula,

G.E/ D e2

�„ Tr.tt�/ D e2

�„g.E/: (9.30)
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Here the transmission matrix t.E/ is calculated by means of the recursive Green
function method [34, 68]. For simplicity, throughout this chapter, we evaluate elec-
tronic conductance in the unit of quantum conductance (2e2=h), i.e., dimensionless
conductance g.E/. We would like to mention that recently the edge disorder effect
on the electronic transport properties of graphene nanoribbons was studied using
similar approach [69–72].

Since the transmission probability is unity in the clean limit, the dimensionless
conductance at zero temperature is equal to the number of channels, i.e., the number
of subbands across the Fermi energy. Thus the dimensionless conductance is given
as

g.E/ D
8
<

:

n semiconducting ANR
nC 1 metallic ANR
2nC 1 ZNR

(9.31)

Here, n D 0; 1; 2; : : :.

9.3.1 One-Way Excess Channel System

In this subsection, we consider the conductance of zigzag nanoribbons in the clean
limit in detail. As can be seen in Fig. 9.6a, there is always one excess left-going
channel in the right valley (KC) within the energy window of jEj � 1. Analogously,
there is one excess right-going channel in the left valley (K�) at the same energy.
Although the number of right-going and left-going channels are balanced as a whole
system, if we focus on one of two valleys, there is always one excess channel in one
direction, i.e., a chiral mode.

Now let us consider to inject electrons from left to right side through the sample.
When the chemical potential is changed from E D 0 (E > 0), the quantization rule
of the dimensionless conductance (gKC

) in the valley of KC is given as

gKC
D n; (9.32)

where n D 0; 1; 2; : : :. The quantization rule in the K�-valley is

gK�
D nC 1: (9.33)

Thus, conductance quantization of the zigzag nanoribbon in the clean limit near
E D 0 has the following odd-number quantization, i.e.,

g D gKC
C gK�

D 2nC 1: (9.34)

Since we have an excess mode in each valley, the scattering matrix has some
peculiar features which can be seen when we explicitly write the valley dependence
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Fig. 9.6 (a) Schematic of disordered graphene zigzag nanoribbons. The disordered region with
randomly distributed impurities lines in the shaded region and has the length L. Randomly
distributed circles schematically represent the long-ranged impurities. (b) Energy dispersion of
zigzag ribbon withN D 10. The valleys in the energy dispersion near k D 2�=3a (k D �2�=3a)
originate from the Dirac KC(K�)-point of graphene. The red-filled (blue-unfilled) circles denote
the right (left)-moving open channel at the energy E0(dashed horizontal line). In the left(right)
valley, the degeneracy between right and left moving channels is missing due to one excess
right(left)-going mode. The time-reversal symmetry under the intra-valley scattering is also broken.
(c) Schematic figure of scattering geometry at KC and K� points in zigzag nanoribbons, where a
single excess right-going mode exists for K� point. But a single excess left-going mode exists for
K� point. Here nc D 0; 1; 2; : : : (Ref. [51])

in the scattering matrix. By denoting the contribution of the right valley (KC) as C,
and of the left valley (K�) as �, the scattering matrix can be rewritten as

0

BB
@

OC
L

O�
L

OC
R

O�
R

1

CC
A D

�
r t 0

t r 0

�
0

BB
@

IC
L

I�
L

IC
R

I�
R

1

CC
A : (9.35)

Here we should note that the dimension of each column vector is not identical. Let
us denote the number of the right-going channel in the valley KC or the left-going
channel in the valley K� as nc . For example, nc D 1 at E D E0 in Fig. 9.6b.
Figure 9.6c shows the schematic figure of scattering geometry for KC and K�
points. Thus the dimension of the column vectors is given as follows:
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�
dim.IC

L
/ D nc; d im.IC

R
/ D nc C 1;

d im.I�
L
/ D nc C 1; d im.I�

R
/ D nc;

(9.36)

and �
dim.OC

L
/ D nc C 1; d im.OC

R
/ D nc;

d im.O�
L
/ D nc; d im.O�

R
/ D nc C 1:

(9.37)

Subsequently, the reflection matrices have the following matrix structures:

r D
�
nc nc C 1

nc C 1 rCC rC�
nc r�C r��

�
; (9.38)

r 0 D
�
nc C 1 nc

nc r 0
CC r 0

C�
nc C 1 r 0

�C r 0��

�
: (9.39)

The reflection matrices become nonsquare when the intervalley scattering is sup-
pressed, i.e., the off-diagonal submatrices (rC�, r�C and so on) are zero.

When the electrons are injected from the left lead of the sample and the
intervalley scattering is suppressed, a system with an excess channel is realized in
the K�-valley. Thus, for single valley transport, the r�� and r 0�� are nc � .nc C 1/

and .nc C 1/ � nc matrices, respectively, and t�� and t 0�� are .nc C 1/ � .nc C 1/

and nc � nc matrices, respectively. Noting the dimensions of r�� and r 0��, we find
that r���r�� and r 0��r 0��� have a single zero eigenvalue. Combining this property
with the flux conservation relation (S �S D S S � D 1), we arrive at the conclusion
that t��t��� has an eigenvalue equal to unity, which indicates the presence of a
PCC only in the right-moving channels. Note that t 0��t 0��� does not have such
an anomalous eigenvalue. If the set of eigenvalues for t 0��t 0��� is expressed as
fT1; T2; � � � ; Tnc g, that for t��t��� is expressed as fT1; T2; � � � ; Tnc ; 1g, i.e. a PCC.
Thus, the dimensionless conductance g for the right-moving channels is given as

gK�
D

ncC1X

iD1
Ti D 1C

ncX

iD1
Ti ; (9.40)

while that for the left-moving channels is

g0
K�

D
ncX

iD1
Ti : (9.41)

We see that gK�
D g0

K�

C 1. Since the overall time reversal symmetry (TRS) of the
system guarantees the following relation:
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g0
KC

D gK�
;

g0
K�

D gKC
;

(9.42)

the conductanceg D gKC
CgK�

(right-moving) and g0 D g0
KC

Cg0
K�

(left-moving)
are equivalent. If the probability distribution of fTig is obtained as a function L,
we can describe the statistical properties of g as well as g0. The evolution of the
distribution function with increasing L is described by the DMPK (Dorokhov-
Mello-Pereyra-Kumar) equation for transmission eigenvalues [73]. The presence of
a PCC can cause the breakdown of universal conductance fluctuations unless ribbon
width is very large [74].

9.3.2 Model of Impurity Potential

As shown in Fig. 9.6a, the impurities are randomly distributed with a density nimp
in the nanoribbons. In our model we assume that the each impurity potential has a
Gaussian form of a range d

V.r i / D
X

r0.random/

u exp

�
�jr i � r0j2

d 2

�
(9.43)

where the strength u is uniformly distributed within the range juj � uM . Here uM
satisfies the normalization condition:

uM

.f ul l space/X

r i

exp
	�r2i d

2


=.

p
3=2/ D u0: (9.44)

In this work, we set nimp: D 0:1, u0 D 1:0 and d=a D 1:5 for LRI and d=a D 0:1

for SRI.

9.3.3 Perfectly Conducting Channel: Absence of Anderson
Localization

We focus first on the case of LRI using a potential with d=a D 1:5 which is
already sufficient to avoid inter-valley scattering. Figure 9.7a shows the averaged
dimensionless conductance as a function of L for different incident energies(Fermi
energies), averaging over an ensemble of 40,000 samples with different impurity
configurations for ribbons of width N D 10. The potential strength and impurity
density are chosen to be u0 D 1:0 and nimp: D 0:1, respectively. As a typical
localization effect we observe that hgi gradually decreases with growing length L
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Fig. 9.7 L-dependence of the averaged dimensionless conductance, hgi for zigzag nanoribbon
with N D 10, (a) d=a D 1:5 (no inter-valley scattering), (b) d=a D 0:1 (inter-valley scattering).
Here u0 D 1:0, and nimp: D 0:1. More than 9,000 samples with different impurity configuration
are included in the ensemble average (Ref. [51])

(Fig. 9.7). However, hgi converges to hgi D 1 for LRIs (Fig. 9.7a), indicating the
presence of a single perfectly conducting channel. It can be seen that hgi has an
exponential behavior as

hgi � 1 � exp.�L=�/ (9.45)

with � as the localization length.
As the effect is connected with the subtle feature of an excess mode in the

band structure, it is natural that the result can only be valid for sufficiently weak
potentials. For potential strengths comparable to the energy scale of the band
structure, e.g. the energy difference between the transverse modes, the result should
be qualitatively altered [75]. Deviations from the limit hgi ! 1 also occur, if
the incident energy lies at a value close to the change between g D 2n � 1 and
g D 2n C 1 for the ribbon without disorder. This is for example visible in above
calculations for E D 0:4 where the limiting value hgi < 1 (Fig. 9.7a).

Turning to the case of SRI the inter-valley scattering becomes sizable enough to
ensure TRS, such that the perfect transport supported by the effective chiral mode
in a single valley ceases to exist. In Fig. 9.7b, the nanoribbon length dependence
of the averaged conductance for SRIs is shown. Since SRI causes the inter-valley
scattering for any incident energy, the electrons tend to be localized and the averaged
conductance decays exponentially, hgi � exp.�L=�/, without developing a perfect
conduction channel.

In this subsection, we have completely neglected the effect of electron-electron
interaction, which may acquire the energy gap for non-doped zigzag nanoribbon at
very low-temperatures accompanying with the edge spin polarization [13, 16, 18].
In such situation, small transport gap will appear near E D 0. Since the edge
states have less Fermi instability for doped regime, the spin polarized states
might be less important for doped system. Also, in the low density region near
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the Dirac point, the strong density inhomogeneity called puddle might play an
important role [77].

9.4 Universality Class

According to random matrix theory, ordinary disordered quantum wires are clas-
sified into the standard universality classes, orthogonal, unitary and symplectic.
The universality classes describe transport properties which are independent of
the microscopic details of disordered wires. These classes can be specified by
time-reversal and spin rotation symmetry. The orthogonal class consists of sys-
tems having both time-reversal and spin-rotation symmetries, while the unitary
class is characterized by the absence of time-reversal symmetry. The systems
having time-reversal symmetry without spin-rotation symmetry belong to the
symplectic class. These universality classes have been believed to inevitably
cause the Anderson localization although typical behaviors are different from
class to class.

In the graphene system, the presence or absence of the intervalley scattering
affect the time reversal symmetry of the system. If the inter-valley scattering is
absent, i.e. u0

X.r/ D 0, the Hamiltonian OH0 C OUimp becomes invariant under the
transformation of S D �i

	

y ˝ 	0



C , whereC is the complex-conjugate operator.

This operation corresponds to the special time-reversal operation for pseudospins
within each valley, and supports that the system has the symplectic symmetry.
However, in the presence of inter-valley scattering due to SRI, the invariance under
S is broken. In this case, the time reversal symmetry across two valleys described
by the operator T D .
 z ˝ 	x/ C becomes relevant, which indicates orthogonal
universality class. Thus as noted in [78], graphene with LRI belongs to symplectic
symmetry, but that with SRI belongs to orthogonal symmetry.

However, in the zigzag nanoribbons, the boundary conditions which treat the two
sublattices asymmetrically leading to edge states give rise to a single special mode in
each valley. Considering now one of the two valleys separately, say the one around
k D kC, we see that the pseudo TRS is violated in the sense that we find one more
left-moving than right-moving mode. Thus, as long as disorder promotes only intra-
valley scattering, the system has no time-reversal symmetry. On the other hand, if
disorder yields inter-valley scattering, the pseudo TRS disappears but the ordinary
TRS is relevant making a complete set of pairs of time-reversed modes across the
two valleys. Thus we expect to see qualitative differences in the properties if the
range of the impurity potentials is changed.

The presence of one PCC has been recently found in disordered metallic carbon
nanotubes with LRI [76]. The PCC in this system originates from the skew-
symmetry of the reflection matrix, tr D �r [76], which is special to the symplectic
symmetry with odd number of channels. On the other hand, zigzag ribbons without
inter-valley scattering are not in the symplectic class, since they break TRS in a
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Fig. 9.8 Summary concerning the universality crossover. With increasing the range of the
impurity potential, graphene is known to be the orthogonal for SRIs and the symplectic class for
LRIs. However, zigzag nanoribbons are unitary class for SRIs. Armchair ribbons are classified into
orthogonal class for all the range of the impurity. L� is the phase coherence length.W is the width
of graphene ribbons (Ref. [51])

special way. The decisive feature for a PCC is the presence of one excess mode in
each valley as discussed in the previous section (Fig. 9.6b).

In view of this classification, we find that the universality class of the dis-
ordered zigzag nanoribbon with long-ranged impurity potential (no inter-valley
scattering) is the unitary class (no TRS). On the other hand, for short-range
impurity potentials with inter-valley scattering, the disordered ribbon belongs
to the orthogonal class (with overall TRS). Consequently, we can observe a
crossover between two universality classes when we change the impurity range
continuously.

However, in the disordered armchair nanoribbons, the special time-reversal
symmetry within each valley is broken even in the case of LRI. This is because
u0
X.r/ ¤ 0 as we have seen in Sect. 9.2.3. Thus, irrespective of the range of

impurities, the armchair nanoribbons are classified into orthogonal universality
class. Since the disordered zigzag nanoribbons are classified into unitary class
for LRI but orthogonal class for SRI [50], it should be noted that the universality
crossover in nanographene system can occur not only due to the range of impurities
but also due to the edge boundary conditions.

9.4.1 Graphene Nanoribbons with Generic Edge Structures

As we have seen, zigzag ribbons with long-ranged impurity potentials retain a single
PCC. This PCC originates for the following two reasons: (1) The spectrum contains
two valleys (two Dirac K˙-points) which are well enough separated in momentum
space as to suppress intervalley scattering due to the long-ranged impurities, (2)
the spectrum in each valley is chiral by possessing a right- and left-moving modes
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which differ by one in number, and so scattered electrons can avoid in one channel
backscattering.

We extend our analysis to the electronic spectrum of nanoribbons for which the
ribbon axis is tilted with respect to the zigzag axis and keep the balance between
A- and B-sublattice sites.

In Fig. 9.9a, we show the definitions of coordinates and primitive vectors which
specifies the geometry of the ribbon. For this purpose we introduce the two vectors,
T D .m; n/ D ma1 C na2 and W D .0; l/ D la2, where l; m; n are integers. The
pure zigzag ribbon corresponds to m D �n and the pure armchair edge is given by
m D n.

Figures 9.9b and c show the energy band structures of ribbons with the general
edge structures of W D .0; 20/ and (b) T D .�4; 3/ and (c) T D .�6; 5/. As we
expected, the partially flat bands due to localized edge modes appear which break
the balance between left- and right-going modes in the two valleys. Both examples
are rather close to the zigzag edge so that the two valleys are well separated. In this
case PCC can appear. If the geometry of the ribbons deviates more strongly from the
zigzag condition, the valley structure will become less favorable for creating a PCC,
as the momentum difference between valleys shrinks. It is important to note that
the extended unit cell along these generalized ribbons reduces the valley separation
drastically through Brillouin zone folding. The length scale is the new effective
lattice constant aT along the ribbon. Under these circumstances, the condition for
long-ranged impurity potentials is more stringent, d being larger than aT and not a.

In the present sample quality of graphene nanoribbons, the edge structures are
random and the width of the ribbon fluctuates in the range of 10%. According to the
recent tight-binding numerical calculations, it seems that the electronic conduction
in disordered zigzag nanoribbons is more robust than that of armchair nanoribbons
against edge disorders [79–81]. Such robust conduction in zigzag nanoribbons might
be attributed to the presence of PCC due to the special time reversal symmetry
breaking for pseudospin.
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Fig. 9.9 (a) The primitive vectors for nanoribbon with the general edge structures. The transla-
tional vector is defined as T D .m; n/ D ma1 Cna2, and the ribbon width is defined by the vector
W D .0; l/ D la2. The number of carbon atoms in the unit cell is 2.l C 1/m. The corresponding
energy band structures of W D .0; 20/ for (b) T D .�4; 3/ and (c) T D .�6; 5/. Here aT is the
effective lattice constant which is given as jT j (Ref. [51])
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9.5 Transport Properties Through Graphene Nanojunction

In this section, we study the electronic transport in graphene nanojunctions. Here,
we consider nanojunctions as shown in Figs. 9.10a and b. Nanojunctions are
classified into the armchair ribbon with armchair edge junction (AAA-junction),
that with zigzag one (AZA-junction), the zigzag ribbon with armchair edge junction
(ZAZ-junction) and that with zigzag one (ZZZ-junction). The width of left (right)
armchair ribbon is defined byML.MR/while that of zigzag one is byNL.NR/. Here
we note that the armchair ribbon is metallic only for M.L;R/ D 3I � 1 .I W integer/
while the zigzag ribbon is always metallic.

Figures 9.10c and d show the energy dependence of the conductance for armchair
and zigzag ribbon junctions, respectively. We set .ML;MR/ D .32; 20/ and
.NL;NR/ D .30; 20/. The energy is normalized by �L

s;A .�
L
s;Z), denoting the

end of single-channel energy regime of the left wider armchair (zigzag) ribbon.
These energy scales are related to the ribbon width by �L

s;A ' p
3��0a=2W and

�L
s;Z ' 3

p
3��0a=8W , whereW D .ML C 1/a=2 and W D p

3.NL C 1/a=2 for
armchair and zigzag ribbons, respectively. The maximum conductance is limited by
the number of channel at the right narrower ribbon (black dotted line in Figs. 9.10c
and d).

The behavior of conductance strongly depends on junction structure in the single-
channel energy regime (jEj < �L

s;.A;Z/), while it does not in the multi-channel

one (jEj > �L
s;.A;Z/). In the single-channel energy regime, the conductance mostly

remains unity in the AAA-junction while the zero conductance dip appears in the
AZA-junction at E D 0. This zero conductance dip is due to the anti-resonance
induced by the coupling between a continuous state at ribbon and a localized state at
zigzag edge junction. In addition, the junction region is mainly semiconducting and
works as a barrier for low-energy transport in the AZA-junction, since the ribbon
width are narrowed asML�1;ML�2; : : :. Hence, by the combination of a resonance
and a barrier effect, the width of zero conductance dip in the AZA-junction is rather
wide and the FWHM (full width at half maximum) can be roughly estimated as
�L
s;A. On the other hand, the junction region is always metallic or semiconducting

in the AAA-junction since the ribbon width are narrowed as ML � 3;ML � 6; : : :.
In the ZAZ-junction, the sharp zero conductance dips appear in the vicinity of the

end of single-channel energy regime (E ' ˙�L
s;Z). In zigzag ribbons, propagating

electrons belong to one of two valleys in the single-channel energy regime, while
the second channel will be opened in both valleys as the energy of incident electrons
increases. Since the group velocity of a second channel is almost zero at the bottom
of subband, the second channel in the other valley works as a bound state similar
to the zigzag edge state at E D 0. The FWHM of dips can be roughly estimated
as �L

s;A=20 in our numerical simulation performed for several different values of
the ribbon width NL and the width difference �N D NL � NR within the range
NL=3 � �N � 2NL=3.

In the ZZZ-junction, several zero conductance dips appear at nonzero energies.
This is due to the energy level splitting induced by the coupling between the
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Fig. 9.10 (a) Armchair ribbons with armchair junction (AAA-junction, blue dotted line) and
zigzag junction (AZA-junction, red solid line). (b) Zigzag ribbons with armchiar junction (ZAZ-
junction, blue solid line) and zigzag junction (ZZZ-junction, red dotted line). (c) Conductance as a
function of energy in armchair ribbon junctions. The width of left and right ribbons are ML D 32

andMR D 20. Conductance mostly remains unity in the AAA-junction while the zero conductance
dip appears in the AZA-junction at E D 0 for the single-channel energy regime (jEj < �L

s;A). (d)
Conductance as a function of energy in zigzag ribbon junctions. The width of left and right ribbons
are NL D 30 and NR D 20. Conductance mostly remains unity in the ZAZ-junction while several
zero conductance dips appear in the ZZZ-junction at nonzero energies for the single-channel energy
regime (jEj < �L

s;Z ) (Ref. [36])

edge-localized state on A-sublattice at ribbon and the edge-localized states on
B-sublattice at junction. Moreover, the coupled states have different nodes as the
width difference�N is getting larger.

9.6 Summary

In this chapter, we have presented a brief overview on the electronic and transport
properties of graphene nanoribbons focusing on the effect of edge shapes and
impurity scattering. Concerning transport properties for disordered systems, the
most important consequence is the presence of a PCC in zigzag nanoribbons,
i.e., the absence of Anderson localization which is believed to inevitably occur
in the one-dimensional electron system. The origin of this effect lies in the
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single-valley transport which is dominated by a chiral mode. On the other hand,
large momentum transfer through impurities with short-range potentials involves
both valleys, destroying this effect and leading to usual Anderson localization. We
have seen that the degree of freedoms with respect to edge structures can be a source
of wide variety of electron transport phenomena such as zero-conductance Fano-
resonances, which will serve to design the nano-carbon electronics devices.
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Chapter 10
Mesoscopics in Graphene: Dirac Points
in Periodic Geometries

H.A. Fertig and L. Brey

Abstract We review the interesting physics associated with two possible realiza-
tions of mesoscopic graphene systems where periodicity plays an important role:
graphene rings, and graphene in a superlattice potential. The electronic spectra of
graphene rings contain signatures of “effective time reversal symmetry breaking,”
which are naturally interpreted in terms of effective magnetic flux contained in the
ring, even when no real flux is present. This remarkable behavior arises because the
low energy physics of electrons is controlled by a Dirac equation. This also creates
unusual effects in a one dimensional superlattice potential, which allows the number
of Dirac points at zero energy to be manipulated by the strength and/or period of the
potential. The emergence of new Dirac points is accompanied by strong signatures
in the conduction properties of the system.

Graphene has many properties that make it an attractive candidate material for small
scale electronic devices. Creating such systems will require cutting the system into
shapes with useful electronic properties, or application of electric potentials. When
such systems become very small – “mesoscopic” – quantum mechanics is known to
profoundly affect their properties. Ideally such quantum effects can be exploited to
create fast and compact electronic and optical devices.

Mesoscopic physics in semiconductor systems has been studied for over three
decades, and the basic physics of how small size affects their electronic properties
are at this point well known [1]. In the simplest models, one treats electrons in these
systems as non-interacting particles, confined to some region defined by the system
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shape and subject to some effective potential. That the electrons are moving inside
a semiconductor environment rather than in a vacuum is well-accounted for by
describing the electrons with a Schrödinger equation with an appropriate effective
mass.

Remarkably, electrons in graphene cannot be described within this simple
paradigm. The honeycomb structure of the carbon network in which electrons in
graphene reside instead yields a Dirac equation governing the low energy electronic
states. The wavefunctions in this equation have two components, which are analogs
of the electron spin in the real Dirac equation [2], but in this context represent
wavefunction amplitudes on the two Bravais sublattices of the network. The fact
that this effective spinor changes direction when the wavefunction changes, and the
Berry’s phase associated with a changing spinor wavefunction, lead to quantum
interference effects with no analog for electrons in standard semiconductors. In
graphene, the band structure includes two inequivalent Dirac cones, one at each of
the two inequivalent corners of the Brillouin zone, which are referred to as the K and
K0 valleys. When intervalley scattering is negligible, the unusual effects associated
with the spinor structure of the wavefunctions become evident.

In this chapter, we discuss two surprising consequences of the spinor structure
of the wavefunctions in mesoscopic settings. We will first describe the electronic
spectra associated with graphene rings, systems made up of short ribbons that close
upon themselves. We shall see that the most natural interpretation of these spectra is
in terms of effective magnetic flux quanta passing through the rings. This “effective
time-reversal symmetry breaking” is distinct from real time reversal symmetry
breaking, which would occur if a genuine magnetic field were present. Instead, the
effective field points in opposite directions for two classes of wavefunctions which
we will describe, so that as a whole the system preserves time-reversal symmetry.

One of the more dramatic effects of the spinor structure of the graphene wave-
functions is known as the Klein paradox [2]. When massless Dirac particles impinge
normally upon a sharp potential barrier, rather than reflecting as would be the case
for a Schrödinger particle, the particles are transmitted. The simple explanation for
this is that reflection involves a 180ı rotation of the spinor wavefunction, yielding
a state completely orthogonal to the incident one, so that there is no amplitude for
backscattering. One can generalize this physics to a series of barriers and wells – a
superlattice potential – and reach the expectation that electrons in graphene should
pass unimpeded through such a structure. For normal incidence this turns out to be
true, and this is reflected in a velocity along the superlattice axis that is the same
as if no potential were present. However, perpendicular to the superlattice axis, the
velocity is degraded as the superlattice potential is turned on, and is even inverted
beyond a critical value of the potential. The meaning of this inversion is that new
Dirac points are generated. In principle, many such Dirac points can be induced,
and we shall see that there is a clear signature in transport for the “birth” of these
Dirac points.



10 Mesoscopics in Graphene 303

10.1 Graphene Ribbons

We begin our discussion of graphene rings with the components from which they
are constructed, graphene ribbons. Our first goal in this context is to show that
one can understand both the electronic spectra and the wavefunctions produced by
microscopic tight-binding calculations using the simpler Dirac equation [3].

10.1.1 Hamiltonian

As mentioned above, the carbon atoms in graphene form a honeycomb
structure, whose primitive lattice vectors may be written as a D a0.1; 0/ and
b D a0.1=2;

p
3=2/. Each unit cell contains two atoms (the two sublattices),

denoted by A and B, located at .0; 0/ and at d D a0.0; 1=
p
3/. In the simplest

model, bands formed from the sp2 orbitals, which create the backbone covalent
bonding in graphene, are assumed to be filled and inert. Mobile electron move
in the plane by hopping among the pz orbitals of the carbon atoms. If we allow
only nearest neighbor hopping of amplitude t between the pz orbitals, one obtains
an electronic spectrum with Dirac points at the six corners of the Brillouin zone.
Only two of these are inequivalent, and their positions in the Brillouin zone may be
written as K D 2�

a0
. 1
3
; 1p

3
/ and K0 D 2�

a0
.� 1

3
; 1p

3
/. Because we are interested in the

low-energy states near these points, it is appropriate to adopt the k �P approximation
[4, 5]. In this approach, wavefunctions are expressed in terms of envelope functions
Œ A.r/;  B.r/� and Œ 0

A.r/;  
0
B.r/� which multiply the states at the K and K0

points, respectively. The envelope functions may be combined into a 4-vector
‰ D . A; B;� 0

A;� 0
B/ [6], which satisfies a Dirac equationH‰ D "‰, with

H D �a0

0

BB
@

0 �kx C iky 0 0

�kx � iky 0 0 0

0 0 0 kx C iky
0 0 kx � iky 0

1

CC
A ; (10.1)

where � D p
3t=2. Note that k denotes the separation in reciprocal space of the

wavefunction from the K (K0) point in the upper left (lower right) block of the
Hamiltonian.

It should be noted that this description is appropriate only at low energies, well
below the scale of �a0, which is of the order of 2 eV. For Fermi energies at this scale,
one needs to use the more basic tight-binding description, and the Dirac physics
which is crucial to the physics that we discuss below becomes largely irrelevant.
For undoped graphene the Fermi energy is well away from these energy scales, and
the description in terms of the Dirac Hamiltonian should work relatively well.
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The bulk solutions of Hamiltonian (10.1) are well known [4]. The eigenstates
retain their valley index as a good quantum number and the wavefunctions,
with energies " D ˙�a0jkj, may be written as Œeikre�i�k=2;�eikrei�k=2; 0; 0� for
the K valley , and Œ0; 0; eikrei�k=2;˙eikre�i�k=2� for the K0 valley. Here, �k D
tan�1 kx=ky .

10.1.2 Zigzag Nanoribbons

Zigzag edges of a graphene nanoribbon are illustrated on the top and bottom edges
of Fig. 10.1. Notice that the atoms at each edge are of the same sublattice (A on
the top edge of Fig. 10.1 and B on the bottom edge). In Fig. 10.1, we also show a
unit cell needed in a tight-binding calculation for zigzag ribbons, containing N=2
A-type atoms that alternate along the unit cell with N=2 B-type atoms. The total
width of the nanoribbon is L D N

4

p
3 a0. We impose periodic boundary conditions

along the direction parallel to the edge, so that in effect our geometry is a short, fat
nanotube. To be concrete, we will assume that the edges lie along the Oy direction,
so in the discussion of the zigzag nanoribbons, the coordinate axes in Fig. 10.1
are rotated by 900, and the eigenstates are proportional to eiky . In Fig. 10.2, we
plot an example of the electronic spectrum of a nanoribbon with zigzag edges.
These represent confined electrons states of the nanoribbon, with energies near the
Dirac point. Figure 10.3 illustrates the energy of the first three of these states, near
k D Ky , as a function of the nanoribbon width.
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Fig. 10.1 The lattice structure of a graphene sheet. The primitive lattice vectors are denoted by a
and b. Top and bottom are zigzag edges, left and right are armchair edges. Atoms enclosed in the
vertical (horizontal) rectangle represent the unit cell used in the calculation of nanoribbons with
zigzag (armchair) edges. The length of the nanoribbons, L, as function of the number of atoms, N ,
in the unit cell is also indicated
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The two bands of nearly dispersionless localized surface states connecting the
regions near the Ky and K 0

y which are apparent in Fig. 10.2a are a well-known
feature of zigzag graphene ribbons [7]. These have a very interesting property that
in these electric subbands, near the K point we have only @"=@ky < 0 for positive
energy states, and near the K0 the derivative has the opposite sign. This means
currents in this electric subband are chiral: currents in a particular direction along
the ribbon are associated with one valley or the other.

The dependence of the electronic states on the width of the nanoribbon may
be understood in terms of eigenstates of the Dirac Hamiltonian with appropriate
boundary conditions: setting the wavefunction to zero on the A sublattice on one
edge, and on the B sublattice for the other. We can understand the lines of vanishing
wavefunction to be lattice sites that would lie just beyond the edges if bonds had not
been cut to form them.

For the continuum description, we begin by rotating the wavevectors in (10.1),
kx ! ky; ky ! �kx so that the zigzag edge lies along the Oy, and the domain
of the wavefunctions is 0 < x < L. Translational invariance in the Oy direction
guarantees they can be written in the form  �.

0/.r/ D eikyy��.
0/.x/. [Note that the

primes .0/ here and in what follows refers to wavefunctions near the K0 point, not
to differentiation of the function.] To find wavefunctions for a system with edges,
we make the replacement kx ! �i@x in (10.1) (after the rotation). By acting on the
spinor state twice with the Hamiltonian, one easily finds for the K .K0/ valley that
the wavefunctions obey

�
�@2x C k2y

�
�B.

0/ D Q"2�A.0/
�
�@2x C k2y

�
�A.

0/ D Q"2�B.0/ (10.2)

with Q" D "=.�a0/. The general solutions of (10.2) have the form

��.x/ D Aezx C Be�zx ; (10.3)

with z D
q
k2y � Q"2, which can be real or imaginary.

For the zigzag nanoribbon, we meet the boundary condition for each type of
wavefunction separately:

�A.xD0/D�0
A.xD0/D�B.xDL/D�0

B .xDL/D0 : (10.4)

Notice this means we may obtain solutions for the K and K0 valleys separately; the
boundary conditions do not introduce valley mixing. These conditions leads to a
transcendental equation for the allowed values of z,

ky � z

ky C z
D e�2Lz : (10.5)
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Equation (10.5) supports solutions with real values of z � k for ky > kcy D 1=L,

which correspond to the surface states. These have energies ˙
q
k2y � k2, and are

linear combinations of states localized on the left and right edges of the ribbon. For
large values of ky , k ! ky and the surface states become decoupled. For ky < 0,
there are no states with real z that can meet the boundary conditions, so surface
states are absent. For values of ky in the range 0 < ky < kcy , the surface states are
so strongly admixed that they are indistinguishable from confined states.

For pure imaginary z D ikn, the transcendental equation becomes

ky D kn

tan .knL/
; (10.6)

so that each solution kn has two confined states with energies Q" D ˙
q
k2n C k2y and

wavefunctions

�
�A
�B

�
D
�

sin.knx/
˙ i

Q" .�kn cos.knx/C ky sin.knx//

�
: (10.7)

How quantitative are the results of our Dirac equation analysis when compared
with the microscopic tight-binding results? Fig. 10.3 compares the energies of the
three lowest confined states of a zigzag nanoribbon as a function of its width, as
computed both in the tight-binding approach [8] and using the Dirac equation. It
is apparent that the two approaches match quite well, even for rather small widths
(�35Å).

In Fig. 10.4, we plot the squared wavefunction for the lowest energy state
of a zigzag nanoribbon as obtained in the tight binding approach. Figure 10.4a
corresponds to ky D 0 (k D �2�=3a0 with respect the center of the Brillouin
zone), and Fig. 10.4b to ky D 0:02 � 2�=3a0. The first case corresponds to a
nodeless confined state, and we find the wavefunction is described nearly perfectly
by (10.7), whereas the second case is the expected linear combination of surface
state wavefunctions that decay exponentially from the edges as exp .�kx/. Note
also that the wavefunctions vary very smoothly on the scale of the lattice constant,
indicating that valley mixing is negligible for these wavefunctions [9]. This contrasts
strongly with the case of nanoribbons with armchair edges.

10.1.3 Armchair Nanoribbons

The geometry for an armchair edge nanoribbon is illustrated on the left and right
edges of Fig. 10.1, along with the unit cell used in the corresponding tight-binding
calculations. In this orientation, the width of the nanoribbon is related to the number
of atoms in the unit cell through the expressionL D N

4
a0. Here, the edge runs along

the Oy direction, and no rotation of the figure is needed to represent our calculations.
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The electronic spectra of armchair nanoribbons have a rather different width
dependence than we find in the zigzag case. Figure 10.2b and c illustrates two
examples of spectra for armchair nanoribbons of different width. One sees that in
the latter figure there is a Dirac point, leading to metallic behavior for an undoped
ribbon whereas the former is a band insulator. In general, we find that armchair
nanoribbons of width L D .3M C 1/a0, with M integral, are metallic, whereas
all the other cases are insulators. The energy of the confined states also behave in
a discontinuous way with respect to the width of the ribbon. In Fig. 10.5, we plot
the energy of the lowest positive energy confined states at the center of the Brillouin
zone as a function of the nanoribbon width. In the inset of this figure, we see that
the separation in energy between confined states is also strongly dependent on the
number of atoms in the unit cell.

As in the case of the zigzag nanoribbons, this behavior may be understood in
terms of eigenstates of the Dirac Hamiltonian with the correct boundary conditions.
In Fig. 10.1, one may see that the termination consists of a line of A–B dimers, so
it is natural to have the wavefunction amplitude vanish on both sublattices at x D 0

and x D LC a0=2. To do this, we must admix valleys, and require

��.x D 0/ D �0
�.x D 0/

��.x D LC a0=2/ D �0
�.x D LC a0=2/ e

i�K .LC a0
2 / ;

with �K D 4�
3a0

. The a0=2 offset in the boundary condition on the right is
appropriate because the two leftmost atoms in the ribbon unit cell are L C a0=2
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Fig. 10.5 Calculated lowest energy confined states at the center of the Brillouin zone versus the
nanoribbon width, for an armchair nanoribbon. The dots correspond to the tight binding results and
the crosses are the results of the k � P approximation. In the inset, we plot the six lowest energy
confined states for three different widths. The Dirac equation results are slightly shifted to the right
for clarity. Note that the for L D 25a0 the Dirac equation results are doubly degenerate

to the left of the two rightmost atoms (see Fig. 1.) With these boundary conditions
the general solutions of the Dirac equation are plane waves,

�B.x/ D eiknx and �0
B.x/ D e�iknx: (10.8)

The wavevector kn satisfies the condition

e2ikn.LCa0=2/ D ei�K .LCa0=2/ ; (10.9)

so that �
kn � 2�

3

�
.2LC a0/ D 2�n (10.10)

with n an integer. Thus for armchair nanoribbons the allowed values of kn are

kn D 2�n

2LC a0
C 2�

3a0
; (10.11)

with energies ˙
q
k2n C k2y . Note that, in contrast to the zigzag nanoribbon case, the

allowed values of kn are independent of ky . For a width of the formLD .3MC1/a0,
the allowed values of kn, kn D 2�

3a0

�
2MC1Cn
2MC1

�
, create doubly degenerate states for

j2M C 1 C nj � 0, and allow a zero energy state when ky ! 0. Nanoribbons
of widths that are not of this form have nondegenerate states and do not include a
zero energy mode. The quality of the Dirac equation approach for describing the
electronic states of armchair nanoribbons is reflected in Fig. 10.5 where the energies
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of the confined states obtained by diagonalizing the tight binding Hamiltonian and
by solving (10.11) are compared. The quantitative agreement is apparent for all but
the narrowest ribbons.

The admixing of different valley states to meet the boundary condition means
that the wavefunction will oscillate with period 2�=�K [6]. This behavior can
explicitly be seen in Fig. 10.6, which illustrates the squared wavefunction from the
tight binding calculation. The short oscillation in the wavefunctions has exactly
the period expected for the valley mixing we introduced to meet the boundary
conditions.

10.2 Graphene Quantum Rings

Quantum rings of metal or semiconducting materials have been studied over the
years as a one of the simplest mesoscopic systems in which quantum effects play
an important role [10]. For simple one dimensional rings, since these systems
close upon themselves, the wavefunctions must accumulate an integral number
of wavelengths as one goes around the ring. For a ring of circumference L, this
means the allowed wavefunctions have allowed momenta p D 2�n=L (in units
where „ D 1) for n integer, and there are discrete allowed energy states of
the form En D .2�n/2=2mL2, where m is the electron effective mass. When
magnetic flux passes through the ring, this spectrum is shifted to values of the
form En.˚/ D Œ2�.n C ˚=˚0/�

2=2mL2, where ˚ D BA is the magnetic flux
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through the ring hole of area A, and ˚0 D hc=e is the magnetic flux quantum.
Notice for ˚ D 0 (or, equivalently, any integer), there is a state of zero energy,
but for ˚=˚0 noninteger a gap opens between zero energy and the lowest (positive)
energy state. The periodicity of the spectrum with respect to enclosed magnetic flux
implies that the magnetization of the ring will vary periodically with field, with a
period reflecting the area enclosed by the ring. One can learn about the spectra of
these systems by measuring this Aharonov–Bohm effect in the magnetic response
to an external magnetic field, for a single ring or a collection of them.

In real ring structures, there are many important details not captured by the simple
one-dimensional picture, including effects of disorder and interactions, coupling to
external degrees of freedom, and effects associated with the shapes of the rings. This
more complicated physics has kept this system an active field of study.

Very recently, graphene rings have joined this general area of study. One can
imagine forming graphene rings in several ways. For example, graphene ribbons
may be closed into very short nanotubes; while relatively simple, the boundaries of
these have spectra which depend on how the honeycomb network is terminated at the
edges of the tube [11, 12]. Tight-binding descriptions of flat graphene rings involve
both different edge terminations and corner geometries [15–18], with results that
are sensitive to both. Rather than use a direct tight-binding description, an alternate
approach is to employ the Dirac equation and solve for the wavefunctions with an
appropriate set of boundary conditions [13]. In such studies, the choice of boundary
conditions is crucial in determining the details of the spectrum. The simplest of these
involve “infinite mass boundary conditions” [14] or zigzag boundary conditions
[3, 6], neither of which involves mixing of valleys, allowing for an interpretation of
the spectra in terms of individual Dirac cones [15]. Related problems of graphene
rings joined together to form an antidot superlattice have also been considered [19].
Some recent experimental studies have recently been published [20, 21] in which
Aharonov–Bohm oscillations in graphene rings are reported. This demonstrates that
large enough phase coherence lengths may be reached to allow quantum coherence
effects to be observed, although current sample geometries are not sufficiently
controlled to allow direct comparison with the theoretical studies of idealized
models.

10.2.1 Chirality in Armchair Nanoribbons

In Sect. 10.1.2, we saw that currents in different directions in the lowest subband of a
zigzag nanoribbon are associated with different valleys, and are in this sense chiral.
Because armchair nanoribbon states involve admixtures of states from different
valleys, it is clear that precisely the same effect cannot be present in this type of
ribbon. However, as we describe more carefully below, states in the lowest (positive
energy) electric subband of metallic armchair ribbons do in fact possess a chirality,
although the symmetry involved is more subtle: it involves an interchange of both
the sublattice and valley indices of the electrons [22]. The existence of such a
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quantum number turns out to have very interesting consequences for graphene rings
constructed from armchair nanoribbons.

An important property of armchair ribbons that make them particularly
interesting to consider in the context of rings is that 60ı corner junctions may be
constructed from such ribbons [23] which are perfectly transmitting at low energy.
As mentioned in the introduction, such a situation – where there is no backscattering
in the ring – in conventional metallic or semiconducting rings would yield a zero
energy state in the spectrum. The graphene junctions, however, introduce a phase
shift as electrons pass through them, with a resulting spectrum that looks much
like magnetic flux has been thread through the ring. This “effective time-reversal
symmetry breaking” (ETRSB) is a hallmark of the Dirac equation that governs the
electron dynamics at low energy.

The relevant symmetry in this problem can be characterized in terms of a 4 � 4
matrix,

T D

0

B
B
@

0 0 0 i

0 0 �i 0
0 i 0 0

�i 0 0 0

1

C
C
A; (10.12)

which acts on the electron wavefunctions in the ribbon represented by 4-vectors,
‰pn;py D .˚A;K; ˚B;K; ˚A;K0

; ˚B;K0

/. (Note that in this discussion it is convenient
to define the vectors without a minus sign in the second two entries, as was
the case in Sect. 10.1.1.) The quantum number pn is a transverse momentum
characterizing the electron subband, and py is the momentum along the ribbon.
One may easily confirm that T commutes with the Hamiltonian, and the armchair
boundary condition respects this symmetry as well [22]. In general, one must admix
wavefunctions with positive and negative values of pn to construct eigenstates of T ;
however, the pn D 0 subband is special in that ‰pnD0;py is an eigenstate of T . In
this case one finds

T‰0;py D sgn."/sgn.py /‰0;py ; (10.13)

where sgn."/ is the sign of ". Thus, for metallic nanoribbons the eigenvalue of T
in the lowest subband (pn D 0) is tied to the direction of current sgn.py/, in a
way that is highly analogous to the connection between current direction and valley
index for zigzag nanoribbons, with the eigenvalue of T playing the role of valley
index.

10.2.2 Phase Jumps at Corner Junctions

Figure 10.7a illustrates a typical armchair graphene ring which implements the inter-
esting properties discussed above. An important property of the corner junctions
in this geometry is that, in addition to perfectly transmitting at low energy, they
induce a phase jump in the wavefunctions as an electron passes through them. This
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Fig. 10.7 Armchair hexagonal ring. (a) Illustration of a ring with inner radius ra, outer radius
rb , and flux ˚ passing through the hole. (b) Energy spectrum near E D 0 in units of the hopping
matrix element t, forE > 0. For this ring the spectrum is particle-hole symmetric, and ra D 32:5a,
rb D 38:5a. Integers label the energy levels

can be demonstrated explicitly by matching wavefunctions in the lowest subband
where two arms of armchair ribbon are joined [22]. The result confirms the unit
transmission found previously for these junctions [23], and also demonstrates that
the wavefunctions jump by a factor of ˙i as one passes through a junction, with the
sign determined by the eigenvalue of the T operator defined above.

This phase shift can also be viewed from the continuum perspective. Consider a
long metallic armchair nanoribbon segment with its front and back ends identified
to form a cylinder, effectively a short, fat nanotube. We may simulate the phase shift
associated with the junction by adding a gauge field. With the convention, we have
adopted in this section for our wavefunctions, the Hamiltonian has the form („ D 1)

H.p/ D vF

0

B
B
@

0 �px C ipy 0 0

�px � ipy 0 0 0

0 0 0 px C ipy
0 0 px � ipy 0

1

C
C
A; (10.14)

where px.y/ D 1
i
@x.y/. Writing ‰pn;py D ei	‰ 0

pn;py
, we can rewrite the Dirac

equation for the wavefunctions in the form H.p � A/‰ 0
pn;py

D "‰ 0
pn;py

, with
A D @y	 Oy and 	 D �

2
T
.y/, where the junction between ribbons is located at

y D 0. In this representation, ‰ 0
pn;py

is continuous across the junction, and the

phase jump is fully implemented by the ei	 factor.
The presence of the gauge field can be interpreted as being due to a pair of

solenoids carrying magnetic flux in opposite directions, one above the plane of the
ribbon, the other below. In this way, one can understand the problem of n-sided rings
constructed from metallic armchair ribbons with these corner junctions as being the
same (near zero energy) as the problem of a ribbon closed into a cylinder (i.e., a
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short nanotube), with 2n flux tubes, half threaded through in one direction and half
just outside it in the other direction. In this way, the system has properties illustrating
ETRSB. It is important to recognize that real time reversal symmetry is preserved
for the system, because the effective flux runs in opposite directions for different
eigenvalues of the operator T . As we shall see in detail below, the low energy spectra
of such rings as found from solutions of the tight-binding model behave precisely
as if these phase jumps are present. The resulting spectra present properties which
may be understood as signaling the ETRSB in graphene.

10.2.3 Numerical Results

The simplest ring system one can study using metallic armchair ribbons and the 60ı
corner junctions discussed above is the hexagonal ring, as illustrated in Fig. 10.7a.
The fact that the junctions are perfectly transmitting in the lowest subband might
lead one to think that the low energy spectrum is the same as that of a metallic
armchair ribbon closed into an cylinder (i.e., a very short carbon nanotube.) If this
were the case, one would expect states at zero energy when no external magnetic
flux threads the ring. Our discussion above, however, indicates that one needs to
include the effective flux passing through the ring to understand the spectrum.

Figure 10.7b is the spectrum obtained from computing the eigenvalues of the
tight-binding model near zero energy, as a function of flux ˚ through the ring.
Note in these calculations we include only the phase factors in the hopping matrix
elements due to a solenoid passing through the hole of ring; magnetic flux through
the individual plaquettes of the honeycomb lattice is not included. In general, the
spectrum in this case is perfectly particle-hole symmetric, so only positive energy
states are displayed.

The form of the spectrum is highly reminiscent of what has been seen previously
in hexagonal rings with zigzag edges [15]. In particular, it takes the form of two
sets of spectra, each with broken time reversal symmetry such that the energies have
a particular sign of slope near ˚ D 0. The spectra are effectively time reverses
of one another so that the spectrum as a whole has time-reversal symmetry; in
particular, the spectrum evolves in the same way whether positive or negative flux
is threaded through the hole. In the case of zigzag ribbons, the two sets of spectra
are associated with the two valleys. In the present case, they are associated with the
two eigenvalues of the matrix T . Note that the crossing of the energy states through
zero at ˚ D ˙˚0=2 may be understood as resulting from the sum of the effective
fluxes due to the corner junctions and that of the real field summing to an integral
number of flux quanta.

The phase jumps associated with the corners may be demonstrated explicitly by
a careful examination of wavefunctions. Figure 10.8 labels a set of sites around the
ring, and Fig. 10.9 illustrates the wavefunctions on one of the sublattices for the
four lowest positive energy levels at ˚ D 0. The jumps in amplitude associated
with passing through the corners of the junctions are quite apparent. The amplitudes
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Fig. 10.8 Hexagonal ring
illustrating site labels for
examination of wavefunction.
Black dots indicate sites on A
sublattice, gray dots are on B
sublattice. The actual ring
used in calculations has
ra D 32:5a and rb D 38:5a,
with a the lattice constant of
the underlying triangular
lattice
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Fig. 10.9 Wavefunctions at zero flux ˚ for the four lowest eigenstates n D 1; 2; 3; 4 illustrated in
Fig. 10.7b

in the sides of the ring may be understood as linear combinations of pure plane
waves, with momentum ˙py along the ribbon directions, yielding purely real
wavefunctions. Fits to wavefunctions with well-defined jpy j and phase jumps of
ei�0 D ˙i yield excellent results [22]; typical results are presented in Table 10.1,
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Table 10.1 Table showing values of py , �0, and m in formula of form 6.pyL C �0/ D 2�m

used in matching numerically generated wavefunctions with forms expected from wavefunction
continuity around a ring (see text)

Energy level pyL �0 m

1 �=6 �=2 2
2 ��=6 ��=2 �2
3 �=2 �=2 3
4 ��=2 ��=2 �3
5 5�=6 �=2 4
6 �5�=6 ��=2 �4

which shows that the values of py may be understood from continuity of the
wavefunctions when the phase jumps are included. The results also demonstrate
that the sign of the phase jump is determined by the eigenvalue of T .

The presence of six �=2 phase jumps (due to the six corners of the hexagon)
implies that py D 0 is not an allowed momentum for the electron wavefunction in
this type of ring. Thus there is no allowed zero energy state, as would be expected for
a metallic ribbon closed into an annulus, and its absence is imposed by the presence
of phase factors that are very suggestive of effective magnetic flux threading the
ring, as discussed above. Thus the gap in the spectrum around " D 0 may be
interpreted as a signature of ETRSB.

It is interesting to contrast these results with those for a graphene hexagonal
ring with zigzag edges [15]. In the latter case, the low energy states are strongly
confined to the edges and are highly sensitive to the corner geometry, and there
is no apparent analog of the perfect transmission through the corner junctions that
one finds in the armchair case [23]. The resulting spectrum near zero energy is
gapped, in a way that cannot be closed via magnetic flux through the hole [15]. One
can nevertheless understand the spectrum in terms of overlaid spectra from the two
valleys. The zigzag ring thus carries some signature for ETRSB, although they are
more subtle than in the armchair case discussed here.

One may examine how robust this behavior is with respect to various perturba-
tions of the ring geometry. Figure 10.7b clearly displays level crossings of states
with different quantum numbers associated with the sixfold rotational symmetry of
the structure. A generic perturbation breaking this symmetry opens small gaps at
these crossings, but in most cases does not spoil the basic property that no zero
energy state is present when no (real) magnetic flux threads the ring. An important
exception is the effect of removing atoms from the corners of the junctions, which
in effect introduces a short length of zigzag edge. Such structures induce localized
zero energy states [24], which are insensitive to flux (real or effective) through the
ring. In general, a collection of rings will have various defects, but one might expect
that the energy level statistics of such an ensemble will reflect the tendency for the
rings to have a gap at zero energy.
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10.3 Graphene in a Periodic Potential

The electronic structure of graphene may also be manipulated by external potentials.
Of particular interest are periodic potentials, which in principle allow one to
“engineer” the band structure of the system. Moreover, because such potentials
can be varied continuously, in principle one can manipulate the system to tailor
its conduction properties, opening many possibilities for electronic devices. Much
recent work has focused on pn junctions as a first realization of such systems
[25–28]; some of this is discussed in Chap. 15 below. Periodic potentials may be
induced by interaction with a substrate [29–31] or controlled adatom deposition
[32]. Recently, the existence of periodic ripples in suspended graphene has been
demonstrated [33]; in a perpendicular electric field this would also induce a periodic
potential.

A one-dimensional periodic (i.e., superlattice) potential has profound effects on
the transport properties of graphene. As described in the introduction, Klein paradox
physics dictates that the velocity of electrons along a superlattice axis should be the
same as in the absence of the potential, but this is not at all the case perpendicular
to it. This creates anisotropy in the electron velocity around the Dirac point which
may “collimate” the flow of electrons [34]. The slowing of the electron velocity
perpendicular to the superlattice axis, for strong enough potential, or large enough
period of the potential, can become so pronounced that the sign of the electron
velocity inverts, creating new Dirac points at zero energy in the band structure
[35, 36]. The emergence of these new Dirac points turns out to be controlled by
the parameter V0=G0, where V0 is the potential amplitude (assumed below to be a
cosine below) and L D 2�=G0 is the period [35]. The new Dirac points emerge
whenever J0.

4V0„vF G0 / D 0, where J0 is a Bessel function and vF the speed of the
Dirac fermions in the absence of the potential. The total number of Dirac points
(associated with a single valley and electron spin) is thus 2NC1, withN the number
of zeros of J0.x/, with jxj < 4V0„vF G0 .

These emerging Dirac points have a clear signature in transport along the
superlattice axis: conductance resonances appear at the values of V0=G0 where they
first appear, as illustrated in Fig. 10.10. Much like undoped graphene, in the limit of
large width, the conductance scales asLy=Lx for most values of V0=G0, withLy the
system width andLx its length. The system behaves diffusively, i.e., is characterized
by a conductivity rather than a conductance. This interpretation is consistent with
the computed Fano factor, illustrated in Fig. 10.10b. At the resonances, however,
the conductance becomes independent of Lx , and the Fano factor indicates a more
ballistic-like transport.

10.3.1 Counting Dirac Points

For such periodic structures, one may ascertain analytically how many Dirac points
will appear at zero energy. For concreteness, we take our external potential to have
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the form V.x/ D 2V0 cosG0x. Assuming that 2�=G0 is large compared to the
underlying graphene lattice constant, this potential will be ineffective at mixing
valleys, so that we may examine the spectrum for just one of them, and for a single
spin species, and recognize that the states coming from the other valley and/or spin
will be the same. The massless Dirac Hamiltonian with a potential then takes the
form of a 2 � 2 matrix,

H D „vF .�i�x@x C ky�y/C V.x/I; (10.15)

where �x;y are the Pauli matrices, and I is the identity matrix. The corresponding
wavefunctions which this acts upon has two components, ˚A;B , which we assume
has ky has a good quantum number.
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A unitary transformation [35,37] allows the Hamiltonian to be recast in the form

H 0 D „vF
� �i@x �ikyei˛.x/
ikye

�i˛.x/ i@x

�
; (10.16)

where ei˛.x/ D PlD1
lD�1 Jl.

4V0„vF G0 /e
ilG0x , and Jn is the n-th Bessel function of the

first kind. Dirac points at zero energy must satisfyH 0� D 0; such solutions have the
property �A D ��

B . Writing �A D j�Ajei	, one obtains equations for 	 and j�Aj [35]

ky sin.˛ � 2	/C @x	 D 0; (10.17)

j�Aj / exp

�
�ky

Z x

x0

cosŒ˛.x0/ � 2	.x0/�dx0
	
: (10.18)

Since � is a Bloch state of the superlattice, it must obey the Bloch relation
�A;B.x C L0/ D eikxL0�A;B.x/, with kx the crystal momentum. For a zero energy
state, only kx D 0 is possible. We then require (i) 	.x C L0/ D 	.x/C 2�m with
m an integer, and (ii)

R L0
0

cosŒ˛.x/�2	.x/� D 0. To see whether 	 can satisfy these
relations, it is helpful to recast (10.17) by writing Q	 D 2	 � ˛, and x ! t , so that

� @t Q	 � @t˛ C 2ky sin Q	 D 0: (10.19)

This is the equation of motion for the position Q	 of an overdamped particle (with unit
viscosity), subject to a periodic time-dependent force @t˛ and a spatially periodic
force 2ky sin Q	. Despite the periodicity of the forces involved, the generic solution to
this equation is not periodic. However, for certain parameters periodic solutions can
be found, which correspond to allowed zero energy solutions of the Dirac equation
in a periodic potential.

Equation (10.17) is nonlinear and an analytic solution is not readily available.
However, one may generate approximate solutions perturbatively in ky . Writing
	 D ky	

.1/ C k2y	
.2/ C O.k3y/, one finds

	.1/ D �
Z x

dx0 sin˛.x0/C C .1/

and

	.2/ D 2C .1/

Z x

dx1 cos˛.x1/ � 2
Z x

dx1 cos˛.x1/
Z x1

dx2 sin ˛.x2/C C .2/;

where C .1;2/ are constants of integration. Explicitly performing the integrations for
the above two equations, one finds that condition (i) can be satisfied if

k2yJ0

"

2C .1/L0 �
X

` odd

J`

`G0
L0

#

D 2�m: (10.20)
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Here, J0 and J` are Bessel functions evaluated at 4V0=„vFG0. Since we have
employed a small ky expansion, the only consistent solution is for m D 0. In
this case (10.20) fixes C .1/, and the resulting 	 (and the associated Q	) is periodic.
Condition (ii) may then be implemented to fix a the value of ky at which a zero
mode appears,

�
ky

G0

�2
D � J0

2
P

`1;`2 odd
J`1J`2J�`1�`2=`1`2

: (10.21)

Equation (10.21) predicts the presence of a zero mode whenever the right hand side
is positive. This turns out to occur for values of x D 4V0„vF G0 just above the values of
x where J0.x/ D 0; the sign of the denominator on the right hand side of (10.21)
always works out such that k2y > 0 in this situation. With increasing x, the solution
moves to larger jky j until it diverges where the three Bessel function sum vanishes,
which is always prior the next zero of J0.x/. We note that since our approximation
is only valid for small ky , (10.21) cannot accurately predict the location of the
zero energy states well away from ky D 0. However, since zero energy states can
only annihilate in pairs, once they emerge from the origin they should persist. This
expectation is born out by numerical studies, which we describe next.

10.3.2 Numerical Solutions of the Dirac Equation

Our expectations about the new zero energy states can be directly confirmed by
numerically solving the Dirac equation in a periodic potential. To accomplish this,
we represent the Hamiltonian H D H0 C 2V0 cosG0x in a plane wave basis and
diagonalize the resulting matrix for momenta .kx; ky/, with �G0=2 < kx < G0=2.
In Fig. 10.11 we plot, for different values of V0, the lowest few energy eigenvalues
as a function of ky for kx D 0 and a superlattice potential of period 50a, where
a is the lattice constant for pure graphene. As V0 increases the group velocity at
the Dirac point decreases to zero, and therafter two zero energy states emerge from
ky D 0 as the group velocity of the ky D 0 Dirac point becomes finite again. These
are the new zero energy states discussed above; we find that they emerge precisely
when J0.

4V0„vF G0 / D 0. Upon further increase of V0, the group velocity along kx
at ky D 0 becomes zero again and a new pair of zero energy states emerge from
ky D 0, again precisely at the next zero of J0.

4V0„vF G0 / D 0. This pattern continues to
repeat itself with increasing V0. Further studies for different periodicities confirms
the prediction that the emergence of these points depends only on the ratio V0=G0,
precisely as discussed in the previous section.

10.3.3 Conductivity

Using transfer matrices, one may compute the conductivity through a graphene
strip of length Lx , containing Np periods of the superlattice potential. Boundary
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Fig. 10.11 Energy bands of graphene in presence of a superlattice potential 2V0 cosG0x, as
function of ky with kx=0, for several values of V0 and G0 D �=25a

conditions are taken to be periodic in the transverse direction, leading to transverse
wavefunctions labeled by a momentum ky ; this is justified when the width of the
strip, Ly , is much larger than its length. From the transmission probability of each
mode, Tky , we obtain the conductance G and the Fano factor (ratio of noise power
and mean current),

G D 4
e2

h

X

ky

Tky ; F D
P

ky
Tky .1 � Tky /
P

ky
Tky

; (10.22)

where the factor 4 accounts for the spin and valley degeneracy. The conductivity
is related to the conductance via geometrical factors, � D G � Ly=Lx. In what
follows, we work in the limit Ly >> Lx .

For pristine graphene, V0 D 0, the conductivity is independent of Lx and takes
the value �0 D 4e2=�h, and the Fano factor takes on the universal value 1/3.
This latter value is consistent with the apparent diffusive behavior of pure, undoped
graphene [38], as discussed in more detail below in Chap. 13. Figure 10.10 shows
the conductivity and the Fano factor as a function of V0, for two graphene strips,
respectively containing 10 and 20 periods of a potential of the form 2V0 cosG0x,
whereG0 D �=50a. For finite values of V0, apart from some resonances, the system
behaves diffusively (F D 1=3) and the conductivity is well-defined. Interestingly,
between the peaks the overall scale increases with V0, showing that the periodic
potential tends to enhance the conductivity.

At certain values of V0, one observes peaks in the conductance, for which the
conductivity is not well-defined and the Fano factor tends to zero. These resonances
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occur precisely whenever new zero energy states emerge from the origin in k�space,
and represent a direct experimental signature of their presence. We believe the
resonances occur because the group velocity vanishes when a zero energy state
emerges, leading to a strong enhancement of the density of states. A further check
that the resonances are associated with the zero energy states is to see that they
depend on the ratio V0=G0; Fig. 10.10c demonstrates that this is the case not just for
the resonances but for the entire conductance curve.

10.4 Conclusion

In this chapter, we have reviewed some recent progress in understanding nanostruc-
tured graphene, particularly when those structures involve some form of periodicity.
Our first step was to show that the spectra and eigenstates of electrons in graphene
nanoribbons can be understood quantitatively from a continuum description, the
Dirac equation. The results showed that currents are generically chiral in the lowest
positive energy subbands of such systems, with interesting consequences. Graphene
quantum rings constructed from armchair ribbons were shown to offer a signature of
effective time reversal symmetry breaking that is unique to the low energy physics of
graphene: for appropriately chosen corner geometries, the spectra are gapped at zero
energy even when the ribbons from which they are constructed themselves are not.
This behavior may be naturally understood in terms of effective flux quanta enclosed
by the ring, with direction correlated with the direction of current carried by a given
wavefunction. Graphene in a periodic superlattice potential offers the possibility
of band gap engineering, in an in-principle controllable way: the number of Dirac
points at zero energy is controlled by the period and magnitude of the external
potential. Appearances of these new Dirac points are accompanied by resonances
in the conductance of the system. Clearly, graphene offers a new environment in
which electronic properties may be tailored by nanoscale lithography and electric
fields, yielding behaviors with no analog in conventional low dimensional electron
systems. There is much yet to be explored in this class of problems and systems,
with potential for further unique behaviors and device applications.
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Chapter 11
Electronic Properties of Multilayer Graphene

Hongki Min

Abstract In this chapter, we study the electronic structure of arbitrarily stacked
multilayer graphene in the absence or presence of magnetic field. The energy band
structure and the Landau-level spectrum are obtained using a �-orbital continuum
model with nearest-neighbor intralayer and interlayer tunneling terms. Using
degenerate state perturbation theory, we analyze the low-energy effective theory
and show that the low-energy electronic structure of arbitrarily stacked graphene
multilayers consists of chiral pseudospin doublets with a conserved chirality sum.
We discuss the implications of this for the quantum Hall effect, optical conductivity,
and electrical conductivity.

11.1 Introduction

The recent explosion [1–6] of research on the electronic properties of single layer
and stacked multilayer graphene sheets has been driven by advances in material
preparation methods [7, 8], by the unusual [9–11] electronic properties of these
materials including unusual quantum Hall effects [12, 13], and by hopes that these
elegantly tunable systems might be useful electronic materials.

Electronic properties of multilayer graphene strongly depend on the stacking
sequence. Periodically stacked multilayer graphene [14–19] and arbitrarily stacked
multilayer graphene [20, 21] have been studied theoretically, demonstrating that
the low-energy band structure of graphene multilayer consists of a set of inde-
pendent pseudospin doublets. It was shown that energy gap can be induced by a
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perpendicular external electric field in ABC-stacked multilayer graphene [22, 23].
Furthermore, in ABC stacking electron–electron interactions play more impor-
tant role than other stacking sequences due to the appearance of relatively flat
bands near the Fermi level [23]. Optical properties of multilayer graphene using
absorption spectroscopy have been studied experimentally [24] and theoretically
[25–28] showing characteristic peak positions in optical conductivity depending
on stacking sequences. Transport properties of multilayer graphene have been
studied theoretically within the coherent potential approximation for averaged local
impurities [29–31] and using Boltzmann transport theory [32,33]. (See Chap. 12 for
transport theory in graphene.)

In this chapter, we describe the electronic structure of arbitrarily stacked multi-
layer graphene and analyze its low-energy spectrum. (Here we are not considering
graphene sheets with rotational stacking faults, which typically appear in epitaxial
graphene grown on carbon-face SiC substrate and behave as a collection of decou-
pled monolayer graphene [34–36].) Interestingly, the low-energy effective theory of
multilayer graphene is always described by a set of chiral pseudospin doublets with
a conserved chirality sum. We discuss implications of this finding for the quantum
Hall effect, optical conductivity, and electrical conductivity in multilayer graphene.
(See Chap. 8 for electronic properties of monolayer and bilayer graphene.)

11.1.1 Stacking Arrangements

In multilayer graphene, there are three distinct stacking arrangements, labeled A,
B, and C, classified by the relative position in two-dimensional (2D) plane, and in
each plane the honeycomb lattice of a single sheet has two triangular sublattices,
labeled by ˛ and ˇ, as illustrated in Fig. 11.1a. (Here we use ˛ and ˇ for sublattices
instead of A and B to avoid any confusion with stacking arrangements, A, B, and C.)
Different stacking types are obtained by displacing sublattices along the honeycomb
edges or by rotating by ˙60ı about a carbon atom on one of the two sublattices.
Special stacking sequences are generated by repeated AB, ABC, and AA stacking,
and are called Bernal, rhombohedral, and hexagonal stacking, respectively.

Fig. 11.1 (a) Three distinct stacking arrangements A, B and C in multilayer graphene and
representative sublattices ˛ and ˇ in the A, B, and C layers. (b) The stacking triangle where each
added layer cycles around. (c) Brillouin zone of the honeycomb lattice
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Each added layer cycles around the stacking triangle in either the right-handed
or the left-handed sense, or stays at the same position in the triangle, as seen
in Fig. 11.1b. For example, Bernal (AB) stacking corresponds to moving with a
reversal in direction at every step, and rhombohedral (ABC) stacking corresponds to
moving with no reversals in direction, while hexagonal (AA) stacking corresponds
to not moving around the triangle at all. As discussed later, the cyclic motion in the
stacking triangle is closely related to the chirality of multilayer graphene.

11.1.2 �-Orbital Continuum Model

In graphene, pz orbitals form low-energy bands near the Fermi energy while sp2-
hybridized s, px , and py orbitals form high-energy bands. They are also called
�-orbitals and �-orbitals, respectively, from the symmetry of the orbital shape.
The �-orbital continuum model for the N -layer graphene Hamiltonian describes
energy bands near the hexagonal corners of the Brillouin zone, theK andK 0 points
(Fig. 11.1c):

H D
X

p

��
pH.p/�p; (11.1)

where �p D .c1;˛;p ; c1;ˇ;p; : : : ; cN;˛;p ; cN;ˇ;p/ and cl;�;p is an electron annihilation
operator for layer l D 1; � � � ; N , sublattice � D ˛; ˇ, and 2D momentum p

measured from the K or K 0 point. TheK and K 0 points are often called valleys.
The simplest model for a multilayer graphene system allows only nearest-

neighbor intralayer hopping t and the nearest-neighbor interlayer hopping t?. The
monolayer graphene quasiparticle velocity v � 106 m s�1 is related with t by
„v
a

D
p
3
2
t , where a D 0:246 nm is a lattice constant of monolayer graphene. (In

this chapter, for simplicity, t � 3 eV and t? � 0:3 eV will be used in numerical
calculations. See Chap. 8 for discussion of the values of hopping parameters and
other neglected remote hopping terms. See also [16].) Although this minimal
model is not fully realistic, some aspects of the electronic structure can be easily
understood by fully analyzing the properties of this model. We describe limitations
of the minimal model later.

11.2 Energy Band Structure

11.2.1 Preliminaries

Before analyzing the energy spectrum of multilayer graphene, let us consider the
Hamiltonian of a one-band tight-binding model for a one-dimensional (1D) chain
of length N with nearest-neighbor hopping parameter t?, as illustrated in Fig. 11.2:
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Fig. 11.2 Chain of length N
with nearest-neighbor
hopping parameter t?

H D

0

B
B
B
BB
@

0 t? 0 0

t? 0 t? 0

0 t? 0 t? � � �
0 0 t? 0

� � �

1

C
C
C
CC
A
: (11.2)

This Hamiltonian is important for analyzing the role of interlayer hopping as
explained below.

Let a D .a1; : : : ; aN / be an eigenvector with an eigenvalue ". Then the
eigenvalue problem reduces to the following difference equation:

"an D t?.an�1 C anC1/; (11.3)

with the boundary condition a0 D aNC1 D 0. Assuming an � ein� , it can be shown
that (See for example [37])

"r D 2 t? cos �r ;

ar D
r

2

N C 1
.sin �r ; sin 2�r ; : : : ; sinN�r/ (11.4)

where r D 1; 2; : : : ; N is the chain eigenvalue index and �r D r�=.N C 1/.
Note that odd N chains have a zero-energy eigenstate at r D .N C 1/=2 with an
eigenvector that has nonzero constant amplitude on every other positions alternating
in sign.

11.2.2 Monolayer Graphene

First, let us briefly review the effective Hamiltonian of monolayer graphene.
(See Chap. 8 for detailed discussion of the effective Hamiltonian of monolayer
and bilayer graphene.) In the absence of spin–orbit interactions, �-orbitals are
decoupled from other orbitals forming low-energy bands near the Fermi energy.
The Hamiltonian for the decoupled �-orbitals is given by [38]

H.k/ D
�

0 .�t/f .k/
.�t/f �.k/ 0

�
; (11.5)

where t is the (positive) nearest neighbor intralayer hopping parameter and
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f .k/ D e
i
kya
p

3 C 2 cos

�
kxa

2

�
e

�i
kya

2
p

3 : (11.6)

Here we chose a coordinate system in which the honeycomb Bravais lattice has

primitive vectors, a1 D a.1; 0/ and a2 D a
�
1
2
;

p
3
2

�
.

At the K and K 0 points, f .k/ becomes zero. Among the equivalent K or K 0
points, we can chooseK D . 4�

3a
; 0/ andK 0 D �K for simplicity. If we expand f .k/

around the K point, the effective Hamiltonian near the K point can be obtained as

HK.q/ D
�

0 „v.qx � iqy/

„v.qx C iqy/ 0

�
; (11.7)

where „v
a

D
p
3
2
t and q is a wavevector measured from theK point. Similarly, if we

expand f .k/ around the K 0 point, the effective Hamiltonian near the K 0 point can
be obtained as

HK0

.q/ D
�

0 �„v.qx C iqy/

�„v.qx � iqy/ 0

�
; (11.8)

where q is measured from the K 0 point.
In a compact form, (11.7) and (11.8) can be combined as

HK=K0

.q/ D „v.�zqx�x C qy�y/; (11.9)

where �˛ are Pauli matrices describing the sublattice degrees of freedom, �z D 1 for
theK point and �z D �1 for theK 0 point, respectively. From now on, for multilayer
graphene we will only consider the Hamiltonian near theK point. The Hamiltonian
near the K 0 point can easily be obtained using (11.8).

11.2.3 AA Stacking

In the case of AA stacking, there is vertical hopping between ˛ � ˛ sites and ˇ � ˇ
sites. Thus, the Hamiltonian at K in the .˛1; ˇ1; ˛2; ˇ2; � � � / basis is given by

HAA.p/ D

0

B
B
B
BB
B
B
B
B
@

0 v�� t? 0 0 0

v� 0 0 t? 0 0

t? 0 0 v�� t? 0

0 t? v� 0 0 t? � � �
0 0 t? 0 0 v��

0 0 0 t? v� 0

� � �

1

C
C
C
CC
C
C
C
C
A

; (11.10)
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where p D „k, k is a wavevector measured from the K point and � D px C ipy .
For an eigenvector .a1; b1; : : : ; aN; bN / with an eigenvalue " and fixed 2D

momentum, the difference equations in this case are

"an D t?.an�1 C anC1/C v��bn;

"bn D t?.bn�1 C bnC1/C v�an; (11.11)

with the boundary condition a0 D aNC1 D b0 D bNC1 D 0.
Let cn � an C bne�i	 and dn � an � bne�i	 where 	 D tan�1.py=px/. Then

." � vjpj/cn D t?.cn�1 C cnC1/;

."C vjpj/dn D t?.dn�1 C dnC1/; (11.12)

with the same boundary condition c0 D cNC1 D d0 D dNC1 D 0. Thus, the
electronic structure of AA-stackedN -layer graphene can be thought of as consisting
of separate 1D chains for each wavevector in the 2D honeycomb lattice Brillouin
zone. Then the energy spectrum is given by

"ṙ;p D ˙vjpj C 2t? cos

�
r�

N C 1

�
; (11.13)

where r D 1; 2; : : : ; N. Note that for oddN, the r D .N C 1/=2mode provides two
zero-energy states at p D 0 per spin and valley.

Figure 11.3 shows the band structure of AA-stacked trilayer and tetralayer
graphene near the K point. Because of the hybridization between ˛ � ˛ and ˇ � ˇ
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Fig. 11.3 Energy band structure near the K point for AA-stacked (a) trilayer and (b) tetralayer
graphene with nearest-neighbor intralayer hopping t D 3 eV and nearest-neighbor interlayer
hopping t? D 0:1t . k is a wavevector measured from the K point and a is a lattice constant
of graphene
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sublattices in each layer, additional zero-energy states can occur at momenta that
are remote from the K andK 0 points.

11.2.4 AB Stacking

In the case of AB stacking, there is vertical hopping between ˇ1�˛2�ˇ3�˛4� : : :
sites from the bottom layer. Thus, the Hamiltonian at K in the .˛1; ˇ1; ˛2; ˇ2; : : :/
basis has the following form:

HAB.p/ D

0

B
B
B
B
BB
B
B
B
@

0 v�� 0 0 0 0

v� 0 t? 0 0 0

0 t? 0 v�� 0 t?
0 0 v� 0 0 0 � � �
0 0 0 0 0 v��

0 0 t? 0 v� 0

� � �

1

C
C
C
C
CC
C
C
C
A

: (11.14)

The subtle difference in this Hamiltonian compared to the AA case changes the
electronic structure in a qualitative way. To obtain the energy spectrum of AB-
stacked N -layer graphene, let us consider corresponding difference equations [15]:

"a2n�1 D .v��/b2n�1;

"b2n�1 D t?.a2n�2 C a2n/C .v�/a2n�1;

"a2n D t?.b2n�1 C b2nC1/C .v��/b2n;

"b2n D .v�/a2n (11.15)

with the boundary condition a0 D aNC1 D b0 D bNC1 D 0.
Letting c2n�1 � b2n�1 and c2n � a2n, the difference equations reduce to

." � v2jpj2="/cn D t?.cn�1 C cnC1/ (11.16)

with the boundary condition c0 D cNC1 D 0. Then the energy spectrum is given by

" � v2jpj2=" D 2t? cos

�
r�

N C 1

�
; (11.17)

where r D 1; 2; � � � ; N . Thus

"ṙ;p D t? cos

�
r�

N C 1

�
˙
s

v2jpj2 C t2? cos2
�

r�

N C 1

�
: (11.18)
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Note that the relativistic energy spectrum for a particle with the momentum p

and mass m is given by
"p D

p
jpj2c2 Cm2c4; (11.19)

where c is the velocity of light. Thus the effective mass can be identified asmrv
2 Dˇ

ˇt? cos
�
r�
NC1

�ˇˇ for a mode r .
For a massive mode with mass mr , the low-energy spectrum is given by

"r;p �

8
ˆ̂
<

ˆ̂:

C p2

2mr

if t? cos
�
r�
NC1

�
< 0;

� p2

2mr

if t? cos
�
r�
NC1

�
> 0:

(11.20)

For odd N , the mode with r D .N C 1/=2 is massless and its energy is given by

"ṗ D ˙vjpj: (11.21)

Therefore, the low-energy spectrum with odd number of layers is a combination of
one massless Dirac mode and N � 1 massive Dirac modes per spin and valley. For
even number of layers, all N modes are massive at low energies.

Figure 11.4 shows the band structure of AB-stacked trilayer and tetralayer
graphene near the K point. As discussed earlier, the trilayer has one massless mode
and two massive modes, while the tetralayer has all massive modes at low energies
per spin and valley. Note that at p D 0, each massless mode gives two zero energies
while each massive mode gives one zero energy. Therefore, for odd N , there are
2C .N �1/ D N C1 zero-energy states, while for evenN , there areN zero-energy
states per spin and valley.
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Fig. 11.4 Energy band structure near the K point for AB-stacked (a) trilayer and (b) tetralayer
graphene with t D 3 eV and t? D 0:1t



11 Electronic Properties of Multilayer Graphene 333

11.2.5 ABC Stacking

In the case of ABC stacking, there is vertical hopping between all the lower
layer ˇ sites and all the upper layer ˛ sites. Thus, the Hamiltonian at K in the
.˛1; ˇ1; ˛2; ˇ2; � � � / basis is given by

HABC.p/ D

0

B
B
B
BB
B
B
B
B
@

0 v�� 0 0 0 0

v� 0 t? 0 0 0

0 t? 0 v�� 0 0

0 0 v� 0 t? 0 � � �
0 0 0 t? 0 v��

0 0 0 0 v� 0

� � �

1

C
C
C
CC
C
C
C
C
A

: (11.22)

Unfortunately for ABC stacking, there do not exist low-order difference equations
with a simple boundary condition, but it is still possible to derive a low-energy
effective Hamiltonian.

For p D 0 each ˇ � ˛ pair forms a symmetric–antisymmetric doublet with
energies ˙t?, leaving the bottom ˛1 and top ˇN sites as the only low-energy states.
It is possible to construct a 2 � 2 effective Hamiltonian for the low-energy part of
the spectrum using perturbation theory. The same procedure can then be extended to
arbitrary stacking sequences. More detailed discussion of the low-energy effective
theory is presented in Sect. 11.4.

The simplest example is bilayer graphene. Low and high energy subspaces are
identified by finding the spectrum at p D 0 and identifying all the zero-energy
eigenstates. The intralayer tunneling term, which is proportional to � or ��, couples
low and high energy states. Using degenerate state perturbation theory, the effective
Hamiltonian in the low energy space is given by [39]

H eff
2 .p/ D �

 
0

.��/2

2m
.�/2

2m
0

!

D �t?
�

0 .
�/2

.
/2 0

�
; (11.23)

where we have used a .˛1; ˇ2/ basis, m D t?=2v2 and 
 D v�=t?.
In the same way, the effective Hamiltonian of ABC-stackedN -layer graphene in

the .˛1; ˇN / basis is

H eff
N .p/ D �t?

�
0 .
�/N

.
/N 0

�
; (11.24)

which turns out to be a pseudospin Hamiltonian with the chiralityN , as is discussed
in Sect. 11.4. Note that for mathematical convenience, we have chosen a gauge in
which a minus sign appears in front of t?.
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Equation (11.24) can be proven by the mathematical induction method. Imagine
that adding one more layer on top of N -layer graphene with ABC stacking. Then
the combined Hamiltonian is given by

H eff
NC1.p/ D �t?

0

B
B
@

0 .
�/N 0 0

.
/N 0 �1 0
0 �1 0 
�

0 0 
 0

1

C
C
A ; (11.25)

using the .˛1; ˇN ; ˛NC1; ˇNC1/ basis.
Let P be a low-energy subspace spanned by .˛1; ˇNC1/ andQ be a high-energy

subspace spanned by .˛NC1; ˇN /. Note that the effective Hamiltonian for vjpj �
t? can be derived using the degenerate state perturbation theory [41],

Heff � HPP �HPQ

1

HQQ

HQP : (11.26)

Here the Hamiltonian matrices projected to P and Q subspace are given by

HQQ.p/ D t?
�
0 1

1 0

�
; HPQ.p/ D �t?

�
0 .
�/N


 0

�
(11.27)

andHPP .p/ D 0. Thus,

H eff
NC1.p/ � �t?

�
0 .
�/NC1

.
/NC1 0

�
(11.28)

which proves (11.24). The corresponding energy spectrum in (11.24) is given by

"ėff;p D ˙t?
�
vjpj
t?

�N
: (11.29)

Figure 11.5 shows the band structure of ABC-stacked trilayer and tetralayer
graphene near the K point. Note that at p D 0, there are only two zero energy
states per spin and valley no matter how thick the stack is.

11.2.6 Arbitrary Stacking

It is easy to generalize the previous discussion to construct the Hamiltonian for an
arbitrarily stacked multilayer graphene system. The intralayer Hamiltonian atK for
i th layer is given by

Hi i .p/ D
�
0 v��

v� 0

�
: (11.30)
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Fig. 11.5 Energy band structure near the K point for ABC-stacked (a) trilayer and (b) tetralayer
graphene with t D 3 eV and t? D 0:1t

The interlayer Hamiltonian between i and i C 1 layers is given by

Hi i+1.p/ D

8
ˆ̂
<

ˆ̂
:

H inter
AA if AA, BB, or CC stacking;

H inter
AB if AB, BC, or CA stacking;

H inter
AC if AC, CB, or BA stacking;

(11.31)

where

H inter
AA .p/ D

�
t? 0

0 t?

�
; H inter

AB .p/ D
�
0 0

t? 0

�
; and H inter

AC .p/ D
�
0 t?
0 0

�
:

(11.32)
Then the Hamiltonian at K for an arbitrary stacking in the .˛1; ˇ1; ˛2; ˇ2; � � � / basis
is given by

H.p/ D

0

BB
B
B
B
B
BB
B
@

H11 H12 0 0 0 0

H21 H22 H23 0 0 0

0 H32 H33 H34 0 0

0 0 H43 H44 H45 0 � � �
0 0 0 H54 H55 H56

0 0 0 0 H65 H66

� � �

1

CC
C
C
C
C
CC
C
A

; (11.33)

whereHi+1 i D H
�
i i+1.

Figure 11.6 shows the band structure of ABCB-stacked tetralayer graphene and
ABBC-stacked tetralayer graphene near the K point. For ABCB-stacked tetralayer
graphene, the low-energy spectrum looks like a superposition of a linear dispersion
and a cubic one. For ABBA-stacked tetralayer graphene, zero energies appear not
only at the Dirac point but also away from it. A more detailed low-energy spectrum
analysis is presented in Sect. 11.4.
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Fig. 11.6 Energy band structure near the K point for (a) ABCB-stacked and (b) ABBC-stacked
tetralayer graphene with t D 3 eV and t? D 0:1t

11.3 Landau-Level Spectrum

11.3.1 Preliminaries

In the presence of a magnetic field B D B Oz, a Hamiltonian is modified by p !
pC e

c
A, where A is the vector potential with B D r�A. The quantum Hamiltonian

is most easily diagonalized by introducing raising and lowering operators, a D
`��=

p
2„ and a� D `�=

p
2„, where ` D p„c=ejBj, and noting that Œa; a�� D 1.

Then the wavefunction amplitude on each sublattice of each layer is expanded in
terms of parabolic band Landau-level states jni which are eigenstates of a�a. For
many Hamiltonians, including those studied here, the Hamiltonian can be block-
diagonalized by fixing the parabolic band Landau-level offset between different
sublattices and between different layers.

11.3.2 AA Stacking

In the case of AA stacking, choose the nth Landau-level basis at K as
.˛1;n�1; ˇ1;n; � � � ; ˛N;n�1; ˇN;n/. Then (11.10) reduces to

HAA.n/ D

0

B
BB
B
B
B
BB
B
@

0 "n t? 0 0 0

"n 0 0 t? 0 0

t? 0 0 "n t? 0

0 t? "n 0 0 t? � � �
0 0 t? 0 0 "n

0 0 0 t? "n 0

� � �

1

C
CC
C
C
C
CC
C
A

; (11.34)
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where "n D p
2n„v=l . Note that 2D Landau level states with a negative index do

not exist so the corresponding basis states and matrix elements are understood as
being absent in the matrix block. Thus, HAA.n D 0/ is an N � N matrix, while
HAA.n > 0/ is a 2N � 2N matrix.

Diagonalizing (11.34) using the difference equation method gives the exact
Landau level spectrum. For n > 0, Landau-levels are

"ṙ;n D ˙"n C 2t? cos

�
r�

N C 1

�
; (11.35)

where r D 1; 2; : : : ; N . Note that for n D 0, Landau levels are given by
"r;0 D 2t? cos

�
r�
NC1

�
. Thus for odd N , there exists one (B-independent) zero-

energy Landau level at r D .N C 1/=2 per spin and valley.
Figure 11.7 shows the Landau levels of AA-stacked trilayer and tetralayer

graphene as a function of magnetic field. For the trilayer, there is one zero-energy
Landau level, while for the tetralayer, there is no zero-energy Landau level. Note
that there are Landau levels crossing the zero-energy line in AA stacking.

11.3.3 AB Stacking

In the case of AB stacking, a proper choice of the nth Landau-level basis at K is
.˛1;n�1; ˇ1;n; ˛2;n; ˇ2;nC1; ˛3;n�1; ˇ3;n; ˛4;n; ˇ4;nC1; : : :/ such that all the interlayer
hopping terms are contained in the nth Landau-level Hamiltonian. Then (11.14)
reduces to
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Fig. 11.7 Landau levels of AA-stacked (a) trilayer and (b) tetralayer graphene with t D 3 eV and
t? D 0:1t . Landau levels are shown up to n D 10
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HAB.n/ D

0

B
BB
B
B
B
BB
B
@

0 "n 0 0 0 0

"n 0 t? 0 0 0

0 t? 0 "nC1 0 t?
0 0 "nC1 0 0 0 � � �
0 0 0 0 0 "n

0 0 t? 0 "n 0

� � �

1

C
CC
C
C
C
CC
C
A

: (11.36)

As discussed in Sect. 11.3.2, special care should be given for states with a negative
index.

For the Hamiltonian in (11.36), there do not exist corresponding difference equa-
tions with a proper boundary condition, thus cannot be diagonalized analytically.
From (11.23), however, the low-energy Landau levels for massive mode with mass
mr can be obtained as

"r;n �
8
<

:

C„!r
p
n.nC 1/ if t? cos

�
r�
NC1

�
< 0;

�„!r
p
n.nC 1/ if t? cos

�
r�
NC1

�
> 0;

(11.37)

where r D 1; 2; : : : ; N and !r D ejBj=mrc, which is proportional to B . These
equations apply at small B , just as the low-energy dispersions for B D 0 applied at
small momentum p. For the massless mode, from (11.21) Landau levels are given
by

"ṅ D ˙"n; (11.38)

which is proportional to B1=2.
Figure 11.8 shows the Landau levels of AB-stacked trilayer and tetralayer

graphene as a function of magnetic field. Note that the linearB dependence expected
for massive modes applies over a more limited field range when the mass is small.
For the trilayer, Landau levels are composed of massless Dirac spectra (/ B1=2) and
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Fig. 11.8 Landau levels of AB-stacked (a) trilayer and (b) tetralayer graphene with t D 3 eV
t? D 0:1t . Landau levels are shown up to n D 10
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massive Dirac spectra (/ B), while for the tetralayer, Landau levels are all massive
Dirac spectra. This is consistent with the band structure analysis shown in Fig. 11.4.

Note that the massive modes in (11.37) have two zero-energy Landau levels for
n D �1 and 0, whereas the massless mode in (11.38) has one for n D 0. There
are thereforeN zero-energy Landau levels per spin and valley in both even and odd
N AB stacks. This property can also be understood directly from the Hamiltonian
in (11.36), by eliminating negative n basis states and rearranging rows to block-
diagonalize the matrix.

11.3.4 ABC Stacking

In the case of ABC stacking, a proper choice of the nth Landau-level basis at K
is .˛1;n�1; ˇ1;n; ˛2;n; ˇ2;nC1; ˛3;nC1; ˇ3;nC2; � � � / such that all the interlayer hopping
terms are contained in the nth Landau level Hamiltonian. Then (11.22) reduces to

HABC.n/ D

0

BB
B
B
B
B
BB
B
@

0 "n 0 0 0 0

"n 0 t? 0 0 0

0 t? 0 "nC1 0 0

0 0 "nC1 0 t? 0 � � �
0 0 0 t? 0 "nC2
0 0 0 0 "nC2 0

� � �

1

CC
C
C
C
C
CC
C
A

: (11.39)

As discussed in Sect. 11.3.2, special care should be given for states with a negative
index.

The low-energy spectrum can be obtained from the effective Hamiltonian in
(11.24). For n > 0, Landau levels are given by

"ṅ D ˙„!N
p
n.nC 1/ � � � .nCN � 1/; (11.40)

where „!N D t?.
p
2„v=t?l/N / BN=2, while for n D �N C 1;�N C 2; : : : ; 0

they are zero. Note that there are N zero-energy Landau levels per spin and valley
for ABC-stacked N -layer graphene.

Figure 11.9 shows the Landau levels of ABC-stacked trilayer and tetralayer
graphene as a function of magnetic field. For the trilayer, Landau levels are
proportional to B3=2, while for the tetralayer, Landau levels are proportional to B2

at low energies.

11.3.5 Arbitrary Stacking

It is straightforward to generalize the previous discussion to construct the
Hamiltonian in the Landau level basis for an arbitrarily stacked multilayer graphene
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Fig. 11.9 Landau levels of ABC-stacked (a) trilayer and (b) tetralayer graphene with t D 3 eV
and t? D 0:1t . Landau levels are shown up to n D 10
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Fig. 11.10 Landau levels of (a) ABCB-stacked and (b) ABBC-stacked tetralayer graphene with
t D 3 eV and t? D 0:1t . Landau levels are shown up to n D 10

system. As seen in (11.34), (11.36) and (11.39), it is possible to make the
Hamiltonian block-diagonal by properly choosing the Landau-level basis.

Let us assume that the nth Landau-level basis at K for the i th layer is
.˛i;n�1; ˇi;n/. Then the basis for i+1th layer is

8
ˆ̂
<

ˆ̂:

.˛iC1;n�1; ˇiC1;n/ if AA, BB, or CC stacking;

.˛iC1;n; ˇiC1;nC1/ if AB, BC, or CA stacking;

.˛iC1;n�2; ˇiC1;n�1/ if AC, CB, or BA stacking

(11.41)

between i and iC1 layers. As discussed in Sect. 11.3.2, special care should be given
for states with a negative index.

Figure 11.10 shows Landau levels of ABCB-stacked tetralayer graphene and
ABBC-stacked tetralayer graphene. For the ABCB-stacked tetralayer graphene, the
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Landau levels at low energies look like a superposition of B1=2 and B3=2 levels,
which is consistent with Fig. 11.6a. For the ABBA-stacked tetralayer graphene,
there are Landau levels crossing the zero-energy line, which is consistent with
Fig. 11.6b. Detailed low-energy Landau-level spectrum analysis is presented in
Sect. 11.4.

11.4 Low-Energy Effective Theory

11.4.1 Introduction

In monolayer graphene, there are two sublattices, ˛ and ˇ in a unit cell and wave-
functions are described by the amplitudes on each sublattice. In bilayer graphene,
there are, in addition, top and bottom layer degrees of freedom and wavefunctions
at low energies have two components localized on one of the sublattices in each
layer. The two component wavefunctions in graphene are very similar to the spinor
wavefunctions of real spins and are frequently referred to as a pseudospin. Chirality
is formally defined as a projection of pseudospin on the direction of motion [3]. It is
known that monolayer graphene is described by a pseudospin doublet with chirality
one while bilayer graphene is described by a pseudospin doublet with chirality
two. Below, we consider the meaning of this statement and its natural extension
to arbitrarily stacked multilayer graphene.

In this section, we present the low-energy effective theory of arbitrarily stacked
multilayer graphene using a degenerate state perturbation theory. We demonstrate
an unanticipated low-energy property of graphene multilayers, which follows from
an interplay between interlayer tunneling and the chiral properties of low-energy
quasiparticles in an isolated graphene sheet. The low-energy band structure of
multilayer graphene consists of a set of independent pseudospin doublets and its
chirality sum is given by the number of layers [20, 21].

11.4.2 Pseudospin Hamiltonian

First, define a pseudospin Hamiltonian which describes 2D chiral quasiparticles. A
pseudospin Hamiltonian with the chirality index J is of the form

HJ .p/ D t?

 
0 .


�
p/
J

.
p/
J 0

!

(11.42)

D t?
�
v�jpj
t?

�J
Œ cos.J	p/ �x C sin.J	p/ �y �;
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where 
p � v�jpjei	p=t?, �˛ is a Pauli matrix acting on the doublet pseudospin
and 	p D tan�1.py=px/ is the orientation of p. v� is the effective in-plane Fermi
velocity (for example, v� D v for J D 1 monolayer and J D 2 bilayer graphene,
and in general for periodic ABC stacking). Note that quasiparticles described by
the pseudospin Hamiltonian with chirality J acquire a Berry phase J� upon an
adiabatic evolution along a closed orbit, which can be viewed as rotation of the
pseudospin by an angle J� [39].

The Hamiltonian has a simple energy spectrum given by

"s;p D st?
�
v�jpj
t?

�J
; (11.43)

and corresponding eigenfunctions are

js;pi D 1p
2

�
s

eiJ	p

�
(11.44)

where s D ˙1 for positive (negative) energy states, respectively.

11.4.3 Stacking Diagrams

When sheets are stacked to form a multilayer system, there is an energetic
preference for an arrangement in which each layer is rotated by 60ı with respect
to one of the two sublattices of its neighbors [40]. This prescription generates 2N�2
(N > 1) distinct N -layer sequences if we exclude consecutive stacking (such as
AA, BB, or CC). We refer to multilayers in this class as normal. For the analysis of
low-energy effective theory, we only consider the normal stacking and discuss the
effects of the consecutive stacking later.

When a B layer is placed on an A layer, a C layer on a B layer, or an A layer on
a C layer, the ˛ sites of the upper layer are above the ˇ sites of the lower layer and
therefore linked by the nearest-neighbor interlayer �-orbital hopping amplitude t?.
For the corresponding anticyclic stacking choices (A on B, B on C, or C on A), it
is the ˇ sites of the upper layer and the ˛ sites of the lower layer that are linked.
All distinct normal stacking sequences with N D 3; 4, and 5 layers are illustrated
in Fig. 11.11, in which we have arbitrarily labeled the first two layers starting from
the bottom as A and B.

11.4.4 Partitioning Rules

The low-energy band and Landau-level structure can be read off the stacking
diagrams illustrated in Fig. 11.11 by partitioning a stack using the following rules,
which are justified in the following section:
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Fig. 11.11 All normal stacking sequences and linkage diagrams for N D 3; 4 and 5 layers in (a),
(b), and (c), respectively. Shaded ovals link ˛ and ˇ nearest-neighbor interlayers

1. Identify the longest nonoverlapping segments within which there are no reversals
of stacking sense. When there is ambiguity in the selection of nonoverlapping
segments, choose the partitioning which incorporates the largest number of
layers. Each segment defines a J -layer partition of the stack and may be
associated with a chirality J doublet.

2. Iteratively partition the remaining segments of the stack into smaller J elements,
excluding layers contained within previously identified partitions, until all layers
are exhausted.

Because each layer is a member of one and only one partition, the partitioning rules
imply that the chirality sum in an N -layer stack is given by

NDX

iD1
Ji D N; (11.45)

whereND is the number of pseudospin doublets. Note thatND depends on the details
of the stacking sequence and is given by half the sum of the number of isolated sites
and the number of odd-length chains.

The chirality decompositions which follow from these rules are summarized in
Table 11.1. Note that when each added layer cycles around the stacking triangle
of Fig. 11.1b in the same rotational sense, the chirality increases. Reversals of
the rotational sense tend to increase ND. Although chiralities are decomposed
depending on the stacking sequence, the chirality sum is conserved and given by
the number of layers.
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Table 11.1 Chirality decomposition for N D 3; 4; 5; 6 layer stacks

Stacking Chirality Stacking Chirality

ABC 3 ABCABC 6
ABA 2˚1 ABCABA 5˚1

ABCACA 4˚2
ABCA 4 ABCACB 4˚2
ABCB 3˚1 ABCBCA 3˚3
ABAB 2˚2 ABCBCB 3˚2˚1
ABAC 1˚3 ABCBAB 3˚2˚1

ABCBAC 3˚3
ABCAB 5 ABABCA 2˚4
ABCAC 4˚1 ABABCB 2˚3˚1
ABCBC 3˚2 ABABAB 2˚2˚2
ABCBA 3˚2 ABABAC 2˚1˚3
ABABC 2˚3 ABACAB 2˚1˚3
ABABA 2˚2˚1 ABACAC 1˚3˚2
ABACA 1˚3˚1 ABACBC 1˚4˚1
ABACB 1˚4 ABACBA 1˚5

In applying these rules, the simplest case is repeated ABC stacking for which
there are no stacking sense reversals and therefore a single J D N partition. In the
opposite limit, repeated AB stacking, the stacking sense is reversed in every layer
and the rules imply N=2 partitions with J D 2 for even N , and when N is odd a
remaining J D 1 partition.

Between these two limits, a rich variety of qualitatively distinct low-energy
behaviors occur. For example, in the ABCB-stacked tetralayer, ABC is identified
as a J D 3 doublet and the remaining B layer gives a J D 1 doublet. The low-
energy band structure and the Landau-level structure of this stack, as illustrated
in Figs. 11.6a and 11.10a, have two sets of low-energy bands with jEj / k; k3,
Landau levels with jEj / B1=2; B3=2, and four zero-energy Landau levels per spin
and valley. All these properties are predicted by the partitioning rules.

11.4.5 Degenerate State Perturbation Theory

This approach starts from the well-known J D 1massless Dirac equation [1,2] k �p
model for isolated sheets,

HMD.p/ D �
�
0 v��

v� 0

�
; (11.46)

where � D px C ipy and v is the quasiparticle velocity. (For mathematical
convenience we have chosen a gauge in which a minus sign appears in the
definition.) An N -layer stack has a two-dimensional band structure with 2N atoms
per unit cell. The Hamiltonian can be written as

H D H? CHk; (11.47)
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where H? accounts for interlayer tunneling and Hk for intralayer tunneling. Hk is
the direct product of massless Dirac model Hamiltonians HMD for the sublattice
pseudospin degrees of freedom of each layer. The low-energy Hamiltonian is
constructed by first identifying the zero-energy eigenstates of H? and then treating
Hk as a perturbation.

Referring to Fig. 11.11,H? is the direct product of a set of finite-length 1D tight-
binding chains, as shown in (11.4), and a null matrix with dimension equal to the
number of isolated sites. The set of zero-energy eigenstates of H? consists of the
states localized on isolated sites and the single zero-energy eigenstates of each odd-
length chain.

The low-energy effective Hamiltonian is evaluated by applying leading order
degenerate state perturbation theory to the zero-energy subspace. The matrix
element of the effective Hamiltonian between degenerate zero-energy states r and
r 0 is given by [41]

h�r jH j�r 0i D h�r jHk
h OQ.�H�1? / OQHk

in�1 j�r 0i ; (11.48)

where n is the smallest positive integer for which the matrix element is nonzero, OP
is a projection operator onto the zero-energy subspace and OQ D 1 � OP .

To understand the structure of this Hamiltonian, let us consider ABC-stacked
multilayer graphene and re-derive the low-energy effective Hamiltonian in (11.24).
For ABC-stacked N -layer graphene, the zero-energy states are the two isolated site
states in bottom and top layers, ˛1 and ˇN . N � 1 sets of two-site chains form
high-energy states. BecauseHk is diagonal in layer index andH? (and henceH�1? )
can change the layer index by one unit, the lowest order at which ˛1 and ˇN are
coupled is n D N .

According to (11.4), the wavefunction of each two-site chain is given by

j˚�r i D 1p
2

� jˇri C �r j˛rC1i
�

(11.49)

with the energy "r D t?�r , where �r D ˙1 and r D 1; 2; : : : ; N � 1. From (11.48),

h˛1jH jˇN i D h˛1jHk
h OQ.�H�1

? / OQHk
iN�1 jˇN i

D
X

f�r g

˝
˛1jHkj˚�1

˛ � � � ˝˚�N�1 jHkjˇN
˛

.�"1/ � � � .�"N�1/

D �t?
X

f�r g

.��1=2/ : : : .��N�1=2/
.��1/ � � � .��N�1/

.
�/N

D �t?.
�/N
X

�1;:::;�N�1

1

2N�1

D �t?.
�/N ; (11.50)
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where 
 D v�=t?. Here
˝
˛1jHkj˚�1

˛ D �.1=p2/t?
�,
˝
˚�N�1 jHkjˇN

˛ D
�.�N�1=

p
2/t?
� and

˝
˚�r jHkj˚�rC1

˛ D �.�r=2/t?
� were used. Thus, the
effective Hamiltonian of N -layer graphene with ABC stacking has a single J D N

pseudospin doublet given by

H eff
N D �t?

�
0 .
�/N

.
/N 0

�
: (11.51)

A more complex but representative example is realized by placing a single
reversed layer on top of ABC-stacked N -layer graphene with N > 2. Note that
the last chain has three sites, thus it has a zero-energy state ˇ�

NC1 defined by

ˇ
ˇˇ�
NC1

˛ D 1p
2
.jˇNC1i � jˇN�1i/ ; (11.52)

and two high-energy states with energies
p
2�N�1t? defined by

j˚�N�1i D 1

2
jˇN�1i C �N�1p

2
j˛N i C 1

2
jˇNC1i ; (11.53)

where �N�1 D ˙1. Then the first-order perturbation theory gives

˝
˛NC1jH jˇ�

NC1
˛ D � t?p

2

�; (11.54)

suggesting the existence of the massless Dirac mode with a reduced velocity.
As in (11.50), the result is

H eff
NC1 D �t?

0

B
B
BB
B
B
B
B
BB
@

0

�p
2

0
.
�/2

2

p
2

0 � .
/
N�1

p
2

0

0 � .

�/N�1
p
2

0
.
�/N

2

2

2
0

.
/N

2
0

1

C
C
CC
C
C
C
C
CC
A

; (11.55)

using a .˛NC1; ˇ�
NC1; ˛1; ˇN / basis. The first 2 � 2 block in (11.55) gives a J D 1

doublet with a reduced velocity. The matrix in (11.55) is not block-diagonal thus the
second 2�2 matrix block is not obviously an N -chiral system. The J D N doublet
in this instance includes both the .˛1; ˇN / subspace contribution and an equal
contribution due to perturbative coupling to the .˛NC1; ˇ�

NC1/ subspace. Using a
similar perturbation theory shown in (11.26), we can obtain higher order correction
by integrating out the massless Dirac mode which forms a higher energy state. Then
the final Hamiltonian is reduced to

H eff
NC1 � H1 ˚HN ; (11.56)
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where

H1 D �t?
�

0 
�=
p
2


=
p
2 0

�
; HN D �t?

�
0 .
�/N

.
/N 0

�
: (11.57)

This means that the combined system can be described by a combination of one
1-chiral system with a reduced velocity and oneN -chiral system. Note that stacking
a layer with an opposite handedness partitions a system into systems with different
chiralities.

Similarly, we can extend the degenerate state perturbation theory to arbitrarily
stacked multilayer graphene [20, 21]. Then, the effective Hamiltonian of any
N -layer graphene is given as follows:

H eff
N � HJ1 ˚HJ2 ˚ � � � ˚HJND

(11.58)

with the chirality sum rule in (11.45).

11.4.6 Limitations of the Minimal Model

The low-energy effective Hamiltonian has been obtained from the minimal model
in which only the nearest-neighbor intralayer tunneling and nearest-neighbor
interlayer tunneling are included. The result is valid when contributions from the
neglected terms are smaller than the terms in the effective Hamiltonian from the
minimal model.

For example, in bilayer graphene, if the interlayer tunneling term �3 � 0:3 eV
from the ˛1 ! ˇ2 hopping process (called trigonal warping) is included, a term
with an energy scale v3jpj appears in the low-energy effective theory [39], where
„v3
a

D
p
3
2
�3. Then the massive-chiral effective Hamiltonian in (11.23) applies at

energies larger than the trigonal-warping scale but still smaller than the interlayer
hopping scale

v3jpj < .vjpj/2
t?

< t?: (11.59)

11.4.7 Effects of the Consecutive Stacking

The analysis presented so far is based on the assumption that stacking one layer
directly on top of its neighbor (AA, BB, or CC stacking) is not allowed. We can
still apply a similar diagram analysis and identify the zero-energy states at the
Dirac point even if a consecutive stacking exists. In this case, however, zero-energy
states can appear not only at the Dirac points but also at other points in momentum
space. The degenerate state perturbation theory at the Dirac point discussed so far,
therefore, cannot completely capture the low-energy states.
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Fig. 11.12 Stacking
diagrams for (a)
ABBC-stacked and (b)
ABBA-stacked tetralayer
graphene. Shaded ovals link
nearest-neighbor interlayers

As an example, let us consider ABBC-stacked tetralayer graphene, as illustrated
in Fig. 11.12a. Here, in addition to ˛1 and ˇ4, there are two zero-energy states at
each three-site chain defined by

ˇ
ˇ
ˇ Q̌
1

E
D 1p

2
.jˇ1i � j˛3i/ ;

j Q̨4i D 1p
2
.j˛4i � jˇ2i/ : (11.60)

Thus the matrix elements between low-energy states are given by

D
˛1jH j Q̌

1

E
D h Q̨4jH jˇ4i D � t?p

2

�: (11.61)

Therefore, the system at the Dirac point can be described by two massless Dirac
modes with a reduced velocity, as shown in Figs. 11.6b and 11.10b.

Another example is ABBA-stacked tetralayer graphene, as illustrated in
Fig. 11.12b. In this case, there are two zero-energy states at ˛1 and ˛4. The high-
energy states ˚r and corresponding energies "r are given by (11.4) with N D 4;
thus

h˛1jH j˛4i D
4X

rD1

˝
˛1jHkj˚r

˛ ˝
˚r jHkj˛4

˛

.�"r/ D �ct?j
j2; (11.62)

where c D 1
5

P
r sin

�
r�
5

�
sin
�
4r�
5

�
= cos

�
r�
5

� D �1. Here the low-energy state is
composed of one non-chiral massive mode. Note that because of the non-chirality,
there are no zero-energy Landau levels.

11.5 Applications

11.5.1 Quantum Hall Conductivity

Applying the Kubo formula to a disorder-free systems gives the conductivity tensor
with an external magnetic field along z,
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�ij .!/ D � e2

2�„l2B
X

n

fn˝
n
ij .!/; (11.63)

where fn is Fermi factor of nth energy state, i; j D x; y and

˝n
ij .!/ D i

X

m¤n

� hnj „vi jmi hmj „vj jni
."n � "m/."n � "mC„!Ci/

� hmj „vi jni hnj „vj jmi
."n�"m/."n�"m � „!�i/

	
:

(11.64)
Here vi is a velocity operator obtained by taking a derivative of the Hamiltonian
H.p/ with respect to pi . Note that in the case of multilayer graphene, the velocity
operator is constant, i.e., it does not depend on the Landau-level index.

The appropriate quantized Hall conductivity is obtained by evaluating �H D
�xy.0/. In Fig. 11.13, we plot the noninteracting Hall conductivity as a function of
Fermi energy for normal tetralayer graphene stacks assuming neutralizing ionized
donors spread equally between the four layers. Note that though the positions of
jumps in the Hall conductivity are different depending on the stacking sequences,
all the normal tetralayers follow the same quantization rule with the large jump
between the ˙.4e2=h/N=2 Hall plateaus at "F D 0, where N D 4 for tetralayers.

It follows from (11.45) that the Hall conductivity of an N -layer stack has strong
integer quantum Hall effects with the following quantization rule:

�xy D ˙4e2

h

�
N

2
C n

�
; (11.65)

where n is a non-negative integer.
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Fig. 11.13 Noninteracting system Hall conductivity as a function of the Fermi energy for all the
normal tetralayer graphene stacks whenB D 10T, t D 3 eV, and t? D 0:1t . The Hall conductivity
calculations shown in this figure assume neutralizing ionized donors spread equally between the
four layers
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Although the minimal model we use includes only the nearest-neighbor
intralayer tunneling and nearest-neighbor interlayer tunneling, these results are
approximately valid in the broad intermediate magnetic field B range between �10
and �100 T, over which the intralayer hopping energy in the field (�„v=`, where
`=
pjBj D p„c=e � 25:7 nm=

p
T defines the magnetic length `) is larger than

the distant neighbor interlayer hopping amplitudes that we have neglected but still
smaller than t?. For example, consider the ˛1 ! ˛3 hopping process in ABA-
stacked trilayer with the tunneling term �2 � �20meV [16], then the valid range
of magnetic field for the minimal model is given by

j�2j < .„v=l/2
t?

< t?: (11.66)

When �2 does not play an important role (in N D 2 stacks, for example), the
lower limit of the validity range is parametrically smaller. The minimum field in
bilayers has been estimated to be �1 T [39], by comparing intralayer hopping with
the �3 � 0:3 eV interlayer hopping amplitude as in (11.59),

„v3=l < .„v=l/2
t?

< t?: (11.67)

Discussion on the effects of disorder and electron–electron interactions can be found
in Refs. [20, 21].

11.5.2 Optical Conductivity

One particularly intriguing property of neutral single-layer graphene sheets is the
interband optical conductivity [42–45], which is approximately constant over a
broad range of frequencies with a value close to

�uni D �

2

e2

h
; (11.68)

dependent only on fundamental constants of nature. Recently, it was also found [46]
that for frequencies in the optical range, the conductivity per layer in multilayer
graphene sheets is also surprisingly close to �uni. Here we identify the emergent
chiral symmetry of multilayers as a key element of the physics responsible for the
ubiquity of �uni in multilayer graphene systems [28].

The optical conductivity of an N -layer system is expected to approach N�uni

for frequencies that exceed the interlayer-coupling scale but are smaller than the
�-bandwidth scale, since the layers then contribute independently and the Dirac
model still applies. In the low-energy limit the spectrum separates asymptotically
into decoupled pseudospin doublets, each of which has chiral symmetry. The
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conductivity of a pseudospin doublet with chirality J is J�uni. It then follows
from the chirality sum rule in (11.45) that the conductivity of the ideal model also
approaches N�uni in the ! ! 0 limit. Note that the low-frequency limit of the
interband conductivity does not result from independent single-layer contributions
but has a completely different origin.

The Kubo formula for the real part of the optical conductivity, �R.!/ �
ReŒ�xx.!/�, of a 2D electron-gas system is

�R.!/ D � �e2

h

X

n¤n0

Z
d2k

2�

fn;k � fn0;k

"n;k � "n0;k

(11.69)

� ˇ
ˇhn;kj „vx

ˇ
ˇn0;k

˛ˇˇ2 ı.„! C "n;k � "n0;k/;

where "n;k and jn;ki are eigenvalues and eigenvectors of the Hamiltonian matrix
H , fn;k is a Fermi occupation factor and va D @H=„@ka is the velocity operator.

Figure 11.14 shows the optical conductivity for all the normal tetralayer graphene
stacks. The rhombohedral ABCA stacking yields a J D 4 low-energy chiral doublet
and three two-site-chain split-off bands. The optical conductivity has a divergent
infrared (IR) feature associated with the J D 4 chiral doublet to two-site chain
transitions. The onset of this absorption band has an extremum at finite ka � 0:1,
implying a divergent joint density of states. Bernal ABAB stacking yields two
J D 2 chiral doublets and four-site-chain split-off bands. The optical conductivity
shows two jump-discontinuity IR features associated with k D 0 transitions
between the J D 2 doublets and the split-off bands. Intermediate ABCB and ABAC
stackings, which are related by inversion symmetry, yield J D 1 and J D 3 chiral
doublets and both two- and three-site-chain split-off bands. The optical conductivity
shows strong IR features associated with transitions between the chiral doublets and
split-off bands. As shown in this example, the optical conductivity spectrum can
provide a convenient qualitative characterization of multilayer graphene stacks [28].

11.5.3 Electrical Conductivity

We can apply the multilayer graphene theory developed so far to the transport
properties of multilayer graphene. (See Chap. 12 for transport theory in graphene.)
From the Einstein relation, the electrical conductivity is given by

� D e2D."F/D; (11.70)

where D."F/ is the density of states at the Fermi energy "F and D is the diffusion
constant. In graphene, D."F/ D gsgv�."F/ where gs D 2 and gv D 2 are spin and
valley degeneracy factors, respectively, and �."F/ is the density of states per spin
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Fig. 11.14 Energy band structure and real part of the conductivity for all the normal tetralayer
graphene stacks, ABCA (top), ABCB, ABAC (middle) and ABAB (bottom). The insets show
stacking diagrams where shaded ovals link sublattices ˛ and ˇ to the nearest-neighbor interlayers

and valley. In 2D electron system, the diffusion constant is given by D D 1
2
v2F�F

where vF is the Fermi velocity and �F is the relaxation time.
For simplicity, assume rotational symmetry in the energy spectrum. Then vF and

�."F/ are given by

vF D 1

„
d"

dk

ˇ
ˇ
ˇ
ˇ
"D"F

(11.71)

and

�."F/ D kF

2� jd"=dkj"D"F

D kF

2�„vF
: (11.72)
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From Fermi’s golden rule, �F is given by

1

�F
D 2�

„ nIV
2

I �."F/; (11.73)

where V 2
I is the squared effective impurity potential averaged over the azimuthal

angle 	. In a graphene system, V 2
I is given by

V 2
I D 1

2�

Z 2�

0

d	jVI.	/j2F.	/.1 � cos	/; (11.74)

where VI.	/ is the matrix element of the impurity potential at 	 and F.	/ is the
chiral factor at the same band defined by

F.	/ D j hk; 	 D 0jk; 	i j2: (11.75)

Note that the relaxation time is a weighted average of the collision probability in
which forward scattering (	 D 0) receives very little weight.

As an example, consider simple short range scatterers neglecting interband scat-
tering. The short range interaction can be characterized by the effective scattering
cross-section length dsc as

VI.	/ D 2�e2dsc

�
; (11.76)

where � is the effective dielectric constant. Note that it is straightforward to extend
the transport properties of multilayer graphene to other types of scatterers such as
Coulomb interactions by changing the potential type in (11.74).

First, let us consider the general dependence of electrical conductivity � on the
density n for a J -chiral system. From (11.70),

� � �."F/v
2
F�F: (11.77)

Note that vF � kJ�1
F , ��1

F � nIV
2

I �."F/, �."F/ � kF=vF � k2�JF and n D k2F=� .
From (11.76), the short range interaction has VI � constant. Thus, for a J -chiral
system with short range scatterers, � has the following form:

� � nJ�1

nI
: (11.78)

From the chiral decomposition of multilayer graphene, arbitrarily stacked multi-
layer graphene is described by direct products of a set of chiral systems. Thus at low
energies, or equivalently at low densities, the electrical conductivity is described by
the sum of each chirality contribution.

Figure 11.15 shows the electrical conductivity of all the normal tetralayer
graphene for short range interaction neglecting the effect of electron–hole puddles
and interband scattering. (See [32] for discussion of the electron-hole puddles,
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Fig. 11.15 Electrical conductivity of all the normal tetralayer graphene stacks for short range
interaction with ˛gr D e2=.�„v/ D 1 neglecting the effect of electron–hole puddles and interband
scattering. The impurity density and effective impurity distance were set as nI D 1012 cm�2 and
dsc D 0:3 nm. For the hopping terms, t D 3 eV and t? D 0:1t were used, and other terms were
neglected

interband scattering and other types of scatters.) At low densities, from (11.78),
ABCA stacking, which yields a J D 4 chiral doublet, shows n3 density dependence,
while ABAB stacking, which yields two J D 2 chiral doublets, shows linear density
dependence in the electrical conductivity for short range interaction. Intermediate
ABCB and ABAC stackings, which yield J D 1 and J D 3 chiral doublets,
show the density dependence for the superposition of n0 and n2. At high densities,
however, energy band structure looks like a collection of monolayer graphene, thus
the electrical conductivity eventually scales approximately as that of monolayer
graphene.

11.6 Conclusions

We have demonstrated how the Hamiltonian of multilayer graphene is constructed
using a �-orbital continuum model in the absence and presence of a magnetic field.
A low-energy effective theory is derived using degenerate state perturbation theory.
The low-energy bands of normal multilayer graphene can be decomposed into ND

pseudospin doublets with chirality Ji for i th doublet. Though ND depends on the
stacking sequence,

PND
iD1 Ji D N is always satisfied in a normalN -layer graphene

stack. Many physical properties of multilayer graphene systems can be understood
easily from this chiral decomposition analysis.
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Chapter 12
Graphene Carrier Transport Theory

Shaffique Adam

Abstract This chapter describes the theory of carrier transport in two-dimensional
graphene sheets. At high carrier density, the conductivity of graphene depends
on carrier density, the dielectric constant of the substrate, and the properties of
the impurity potential, which all can be treated using the Boltzmann transport
formalism. At low carrier density, disorder causes the local random fluctuations
in carrier density to exceed the average density. As a consequence, the carrier
transport at the Dirac point is highly inhomogeneous. The ensemble-averaged
properties of these puddles of electrons and holes are described by a self-consistent
theory, and the conductivity of this inhomogeneous medium is given by an effective
medium theory. Comparing this transport theory with the results of representative
experiments rigorously tests it validity and accuracy.

12.1 Introduction

Graphene has emerged as an exciting new material with remarkable technological
promise and fascinating theoretical possibilities. On the materials front, graphene is
the strongest measured material [1], has demonstrated superiority over conventional
materials for high-frequency applications [2] and has the highest phonon-limited
mobility at room-temperature of any known semiconductor [3]. It was recently
demonstrated that graphene is a cheap and versatile transparent conductor suitable
for touch-screen and solar cell applications [4]. On the theoretical front, among
many exciting proposals, graphene’s Weyl-Dirac description gives rise to: a quan-
tum critical Dirac point where perfectly clean graphene at zero temperature has no
intrinsic length scale (see, e.g., [5]); a topological symmetry that enables graphene
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to evade Anderson localization in the absence of a magnetic field [6–8]; and the
possibility for the emergence of novel quantum states [9]. But the heart of graphene
studies and its subsequent electronic applications is to understand and explain the
first measurements [10–13] of carrier transport in these single-atom-thick planer
sheets of carbon atoms.

The electronic structure of graphene was discussed in Chap. 8. The subject of this
chapter is to understand the transport mechanisms in these 2D graphene sheets. The
result is a complex interplay of weak disorder, weak electron–electron interactions,
and some quantum mechanics that conspire together to give the constant mobility at
high carrier density and the minimum conductivity plateau at low density [14].

The purpose of this chapter is not to be a review of the graphene transport
literature; indeed, three such reviews became available recently [15–17], and all
of the material covered here can be found in either [15] or [18], which provide the
full context, history, and shortcomings of this work as well as a comprehensive
comparison with alternative theoretical approaches. Nor is this intended to be
a substitute for the original literature; rather, it is a presentation of the main
concepts leading up to the calculation of graphene’s conductivity in a coherent and
pedagogical manner, providing extended details (beyond those available in the terse
format of the original articles), so that a motivated graduate student could reproduce
the calculations, while simultaneously highlighting with broad strokes the essential
insights that motivated those calculations.

Our starting point is to appreciate that theoretical studies [19, 20] anteceding
graphene’s discovery predicted that graphene should have a universal minimum con-
ductivity at zero carrier density and a density-independent, but disorder dependent
conductivity at high density. The first transport experiments in graphene [10–13]
completely defied both these expectations: the minimum conductivity, while finite,
showed significant sample-to-sample fluctuations, and at high carrier density, the
conductivity increased linearly with carrier density.

While some questions still remain, we now more-or-less understand these trends
quantitatively. The theory relies on three important concepts that make up the
core of this chapter. First, graphene’s linear dispersion gives rise to quite unusual
screening properties. In Sect. 12.2.1, screening is treated within the Random Phase
Approximation (RPA), where one finds [21–24] that graphene behaves like a
metal at distances longer than the Fermi wavelength and like an insulator at
shorter distances. It is this unusual screening, for example, that results in the
inability of graphene to screen out long-range impurity potentials such as charged
Coulomb impurities. In this context, the rest of Sect. 12.2 discusses the semiclas-
sical Boltzmann transport theory for different impurity models including screened
charged impurities [14,21,25,26], Yukawa potentials [27,28], screened short-range
scatterers [29], and midgap states [30], concluding that charged impurities are likely
to be the dominant scattering mechanism in current transport experiments using
exfoliated graphene on insulating substrates.

The self-consistent approximation [14] to describe the ground-state properties of
graphene close to the Dirac point is presented in Sect. 12.3.1. At low carrier density,
the disorder-induced fluctuations in the local carrier density become larger than the
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average density. The system breaks up into inhomogeneous regions with varying
carrier density, commonly referred to as electron and hole puddles (see Chap. 15 for
a discussion of the p-n junctions that form at the interface of these puddles).

For short-range disorder, this gives rise to an effective carrier density that scales
as the square-root of the areal density of impurities, while for charged impurities,
the problem needs to be solved self-consistently. By mapping the screened potential
onto a Gaussian model, we can solve for all statistical properties of the electron and
hole puddles including their root-mean-square carrier density and the typical size of
a puddle [31]. We show that the predictions of the self-consistent approximation [14]
are in good agreement with numerical density functional theory results [32, 33] as
well as local spectroscopic probes of graphene [34–37].

In Sect. 12.3.2, we discuss electron transport in this inhomogeneous potential
using an effective medium theory [38–40]. This is a systematic technique to obtain
the conductivity of an inhomogeneous material by mapping it onto a uniform system
with the same conductivity. This allows us to describe the full crossover from the
Dirac point, where fluctuations dominate the transport to high carrier density, where
these fluctuations are irrelevant. In Sect. 12.3.3, we discuss the transport properties
at finite temperature, by including the activated transport in both the electron and
hole regimes; and in a finite magnetic field. In Sect. 12.3.4, we study the quantum
transport in graphene [7] assuming the Gaussian correlated impurity model. By
comparing a fully quantum-mechanical numerical calculation of the conductivity
to the semiclassical Boltzmann transport theory, we find that while the two theories
are incompatible at weak disorder, they are compatible for strong disorder [41]. This
result elucidates why quantum corrections are small and the semiclassical transport
theory should dominate in the experimentally relevant regime. By combining
these four concepts (i.e., graphene screening, Klein tunneling, the self-consistent
approximation, and the effective medium theory), we summarize our results in
Sect. 12.3.5 and demonstrate that four distinct features of the graphene transport
measurements, namely, (1) the shift of the Dirac point (or charge neutrality point) to
a nonzero applied back-gate voltage; (2) the carrier mobility at high density; (3) the
value of the minimum conductivity, and (4) the width of the minimum conductivity
plateau are all captured by the theory, which depends on only two experimentally
tunable parameters (nimp, which is the areal density of charged impurities, and rs ,
which is the effective fine structure constant in graphene determined by its dielectric
environment).

Finally, in Sect.12.4 we discuss a sample of three representative experiments that
confirm the predictions of the theory. The first looks at magnetotransport data taken
from the Manchester group [42], where we demonstrate that having fixed nimp from
the transport data at zero magnetic field, one gets agreement at weak field for both
�xx.B/ and �xy.B/ without introducing any additional parameters [43]. We then
compare the predictions for �min.nimp/ with several of the early experiments in the
literature including data from Columbia group [13], where they found samples with
over an order-of-magnitude variation in the sample mobility, and from Maryland
group [44], where they directly tuned nimp by adding potassium impurities to
graphene in ultra-high vacuum. Finally, we discuss a third experiment, where rs
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was tuned by depositing several monolayers of ice on top of the graphene sheet [28]
providing a parameter-free test of the theoretical predictions. Our main conclusion
is that these experiments (and others) have shown remarkable agreement with the
theoretical predictions discussed in this chapter.

12.2 Graphene Boltzmann Transport

The derivation of the semiclassical Drude–Boltzmann transport formalism can be
found in several solid state textbooks [45, 46] and is basically a way of calculating
the scattering time � by accounting for the charge flow into and out of momentum
eigenstates of the disorder-free system caused by the scattering potential. The
formalism is considered semiclassical because the carrier dynamics are assumed
to be a classical diffusion process between scattering centers, but the scattering
is assumed to be quantum mechanical (where for weak disorder, for example, is
calculated within the Born approximation.1) For our purposes, this is equivalent to
the the leading order diagrammatic expansion for the current–current correlation
function within the Kubo formalism in the limit of either vanishing disorder, or
when kF` � 1, where kF is the Fermi momentum and ` D vF� is the mean free
path.

The result is often expressed as the Einstein relation � D e2�.EF/D, where
�.EF/ D 2s2vjEFj=.2�„2v2F/ is the density of states at the Fermi energy (only
electrons close to the Fermi energy are involved in transport), and D D v2F�=2

is the diffusion constant in two dimensions. The “classical” contribution to the
conductivity is therefore

� D 2s2ve
2

2h
kF`; (12.1)

where 2s accounts for spin degeneracy, and considering the two graphene valleys as
decoupled gives 2v .

The total conductivity, taking into account the next leading order in kF`

includes “quantum corrections” �� D ˙Œ2s2ve2=.�h/� ln.L=`/ that we discuss
in Sect. 12.3.4 below. The Boltzmann transport theory gives the mean free path
` D vF� as

„
�

D 2�nimp

X

k0

ˇ
ˇ̌
ˇ
V.q/

	.q/

ˇ
ˇ̌
ˇ

2

F.
/
1 � cos.
/

2
ı.EF � "k0/: (12.2)

The derivation of this equation is a straightforward extension of the usual case and
will not be done here. Instead, we briefly define all the terms and motivate their

1The Born approximation treats the scattering potential to leading order. It is not obvious that
attempts to go beyond the approach presented here have provided a more accurate solution (see
discussion in [15] and [41]). A critique of the Born approximation can be found in [17] and [47].
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origin. nimp is the two-dimensional areal density of impurities. As alluded to above,
one can obtain this “classical” limit by considering the case of vanishing impurity
concentration, and the leading order term is therefore linear in nimp. Built into
(12.2) is the assumption that the impurities are uncorrelated and the concentration is
dilute enough so that processes involving multiple scattering off the same impurity
are smaller than the single scattering process. The ı-function guarantees energy
conservation and requires that only the electrons at the Fermi energy participate
in the transport, while q D jk � k0j is the momentum transfer between incoming
plane-waves with wave vector k and outgoing wavefunctions with wavevector k0.
Note, k and k0 lie on different points of the circular Fermi surface of radius kF

thereby defining the scattering angle 
 D 
kk0 .
What is different for graphene is the “chirality factor” F.
/, which arises from

the fact that the eigenvectors of the Dirac Hamiltonian are plane waves multiplied
by spinors that for momentum states given by kx and ky depend only on the angle

k D arctan.ky=kx/. Computing the overlap between incoming and outgoing states
involves an overlap of the spinor parts of the wavefunction, which gives F.
/ D
Œ1C cos.
/�=2 for Dirac fermions [21, 25, 26]. A little bit of algebra gives

„
�

D 4

�

kF

vF

Z 1

0

d� �2
p
1 � �2

ˇ
ˇ̌
ˇ
V.2kF�/

	.2kF�/

ˇ
ˇ̌
ˇ

2

; (12.3)

where V.q D 2kF�/ is the bare-scattering potential, and 	.q D 2kF�/ is the static
dielectric function that accounts for the screening by electrons. It should be clear
from (12.3) that the nature of both the impurity potential and the screening function
can have a major impact on graphene conductivity. For example, for unscreened
Coulomb scatterers where V.q/ � q�1, we see that � � kF implying that for
fixed impurity concentration, the mean free path gets smaller (and vanishes) as one
approaches the Dirac point (i.e., kF ! 0), whereas for unscreened delta-correlated
scatterers defined here as having V.q/ � q0, we get � � 1=kF and the mean
free path gets larger (and diverges) as one approaches the Dirac point. This strong
dependence on impurity type that follows directly from applying the rules of the
semiclassical Drude–Boltzmann formalism to graphene can seem counter-intuitive
to those more familiar with transport in conventional 2D systems (the same result is
obtained using diagrammatic perturbation theory or Green’s functions methods).

The contribution from screening can also seem unusual. As we shall see below,
it turns out, by pure coincidence, that for graphene the Thomas–Fermi (TF) result
is reproduced in the Random Phase Approximation (RPA) even for q ¤ 0. (For
q D 0 the agreement between RPA and Thomas–Fermi is guaranteed by the
compressibility sum rule). Within the TF approximation, we have that 	.q; kF/

depends on the ratio � D q=.2kF/ as

	.�/ D 1C V.q D 2kF�/�.EF/ D 1C 2rs=�; (12.4)
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where rs D e2=.�„vF/ is the gas parameter defined as the ratio of potential energy
to kinetic energy, which measures the relative strength of the electron–electron
interactions. Equivalently, rs can be thought of as the effective “fine-structure
constant” or coupling constant for interacting Dirac fermions. We note in passing
that for a parabolic dispersion rs � k�1

F so that low carrier density heralds the
strongly interacting regime, while for graphene’s linear dispersion rs � 2=� � 2, is
density independent.2

One interesting and perhaps unexpected effect is the opposite role of dielectric
screening for Coulomb and short-range impurities. One notices that increasing
the dielectric screening of the environment (i.e., increasing � or decreasing rs)
decreases the conductivity for delta-correlated impurities, where V.q/ � q0. This
is because decreasing rs reduces the electron–electron interactions and therefore
the ability of the electron gas to screen the impurity potential, making the disorder
potential appear stronger than before. In sharp contrast, for Coulomb scatterers
where V.q/ � e2=.�q/ � rs=q, decreasing rs weakens the impurity potential
thereby increasing the conductivity.

While the discussion so far has been somewhat qualitative, the goal for the
remainder of this section is to be more quantitative. The semiclassical transport
result (12.3) depends on the interplay between the impurity potential V.q/ and the
screening properties of graphene electrons. We will first discuss the calculation of
	.q/ within the RPA, followed by the calculation of the conductivity with different
choices for the disorder potential V.q/.

12.2.1 Screening: Random Phase Approximation (RPA)

In the modern context,3 the RPA approximation is usually understood in terms of
a diagrammatic expansion for the electron gas self-energy (see [45, 46]). Within
the RPA, the dielectric function is related to the polarizability as 	.q/ D 1 C
V.q/˘.q/ (see right panel of Fig. 12.1), where ˘.q/ (left panel of Fig. 12.1) is
the polarizability function (or “pair-bubble”). The goal of this section is to calculate
the pair-bubble for graphene. We now know that both the inter-band and intra-band
contributions are important. Historically, the inter-band contribution was derived
much earlier [48], while the full solution for the graphene polarizability appeared

2Here, � is the average of the dielectric constants of the medium above and below the graphene
sheet, and the numerical coefficient (maxŒrs� � 2) is a material parameter set by the overlap of the
carbon �-orbitals in the honeycomb lattice and the separation between the carbon atoms set by the
� -bonds.
3Historically, the RPA was introduced by Bohm and Pines when discussing the plasma oscillations
of the electron gas in the high density limit. In that context, the approximation corresponds to
looking at the Fourier transform of the potential energy and showing that after subtracting the term
that was linear in carrier density, the subleading term had sums over the phase of electrons that
depended on their position. Averaging over position gave a highly oscillatory summand that would
be negligible or equivalent to the vanishing of that sum for random electron phases.
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Fig. 12.1 Left panel shows diagrammatic representation of the polarization bubble corresponding
to (12.5). The right panel shows different dielectric functions used in the literature, including the
“Complete Screening” (CS), “Thomas-Fermi” (TF), and “Random Phase Approximation” (RPA).
The inset shows a blow-up at q D 2kF to show how the “Step Approximation” (SA) given by
(12.10) differs from the exact result (12.9)

only after the discovery of graphene [21–24]. Here, we follow the derivation by
Hwang and Das Sarma [22].

The polarizability function (see Fig. 12.1) is given by

˘.q/ D 2s2v

L2

X

k;s;s0

f s
k � f s0

k0

"s;k � "s0;k0

1C ss0 cos 
k;k0

2
; (12.5)

where fk is the Fermi distribution, and what is different for graphene is the sum
over both electron bands (s D 1) and hole bands (s D �1) and the overlap between
the spinor components of the wavefunction (see [21] for more details). Expanding
the sum over band-indices s; s0, one can group the terms involving f C and f �
separately calling the former˘C and the later˘�, where˘.q/ D ˘C.q/C˘�.q/.
This grouping is especially useful since at zero temperature f C

k D 
.kF � k/ and
f �
k D 1. One notices that the term˘�.q/ is just the contribution from a completely

filled valence band and a completely empty conduction band (which is also called
“intrinsic graphene”), while the term ˘C.q/ is the polarizability of, for example,
a partially filled electron band ignoring the valence band. (Particle-hole symmetry
means that it is the same for an empty conduction band with a valence band partially
filled with holes. For simplicity, we assume that EF > 0, where the corresponding
results for EF < 0 are identical). The intrinsic polarizability is given by4

4The integral can be done by making the substitution x D jkj � jk C qj and noticing that

kdk D 1

2

x2 � q2

x C q cos 
kq

dx

1� cos 
kk0

: (12.6)
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˘�.q/ D 2s2v

„vF

Z
d2k

.2�/2
1 � cos 


jkj C jk C qj D 2v2sq

16„vF
: (12.7)

Since the intrinsic polarizability is proportional to q, one can immediately see
that the dielectric function becomes independent of q, i.e. 	.q/ D 1 C rs�=2.
This result remains correct whenever q � 2kF, where one can then approximate
the graphene polarizability as that of intrinsic graphene. At these large momenta
(or small distances), the existence of a completely filled valence band means that
graphene screens like a dielectric insulator.

In contrast, the contribution˘C.q/ is metallic in nature (this is because particle-
hole excitations around the Fermi circle are constrained by the compressibility sum
rule, and these are bounded by the bottom of the conduction band). To calculate
˘C.q/, one first notices that the terms that involve f C

k0 are related to those with f C
k

by a change of variable, where˘C.q/ D ˘C
1 .q/C˘C

1 .�q/, and

˘C
1 .q/ D 2s2v

„vF

Z
d2k

.2�/2

.k � kF/

jkj C jk C qj cos 
kk0

.jkj C jk C qj/ .jkj � jk C qj/ ;

D 2s2v

4„vF�

"

1C kF

2�

Z kF

0

dk

Z 2�

0

d
4k2 � q2

q2 � 2kq cos

#

: (12.8)

For jqj < 2kF, the integral gives ��jqj=8 and this contribution to ˘C exactly
cancels the intrinsic contribution from ˘�, so that the Thomas–Fermi result
˘.q/ D �.EF/ D 2kF=.�„vF/ works beyond the q ! 0 limit.5 Introducing the
variable x D q=2kF and putting everything together, the graphene polarizability is

˘.q D 2kFx/

�.EF/
D

8
<̂

:̂

1; for x � 1

1C�x

4
� x

2
arcsin

�
1

x

�
� 1

2x

p
x2 � 1; for x � 1:

(12.9)

This coincidence of ˘.q/=�.EF/ D 1 for q � 2kF also holds for the 2D
electron gas [49] but it is not universally true, e.g. it does not hold for graphene
bilayers (see discussion in [15]). Moreover, as we shall see in Sect. 12.3 below,
the Thomas–Fermi and RPA screening approximations give quantitatively different
results for the disorder-induced potential fluctuations and the resulting graphene
minimum conductivity at low carrier density. In this case, we will need the full
dielectric function 	.q/ D 1 C V.q/˘.q/, which can readily be obtained from
(12.9). However, since in such cases we are typically integrating 	.q/ over all q, the

5The fact that ˘.q/ D �.EF/ for q � 2kF implies that for high-density transport properties, the
Thomas–Fermi approximation and the RPA give the same results (notice that (12.3) only integrates
the dielectric function from 0 to 2kF), where 	.q � 2kF/ D 1C V .q/˘.q/ D 1C qs=q.
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full RPA result is indistinguishable from the following Step Approximation (SA)
for the dielectric function [14]

	.q/ D
(
1C qs

q
; for q � 2kF

1C rs�
2
; for q > 2kF:

(12.10)

The graphene dielectric function is shown in Fig. 12.1, where we compare the Step
Approximation (SA) given by (12.10) with the Thomas–Fermi (TF), RPA, and
Complete Screening (CS) approximations. In this context, the CS approximation
corresponds to the assumption 	.q/ D qs=q, which can be thought of as the TF
approximation with the additional assumption that qs � q. However, for monolayer
graphene since rs � 2 and qs D 4kFrs, the condition q � 2kF � 4kFrs is never
realized.

12.2.2 Coulomb Scatterers

Having established that (12.3) and (12.4) remain valid within the RPA, one can
then calculate the transport properties of various scattering potentials. We begin
with long-range Coulomb potentials. Taking the 2D Fourier transform of a charged
impurity displaced by a distance d from the 2D plane in a medium with dielectric
constant �, we get

V.q/ D 2�e2

�

e�qd

q
: (12.11)

Solving (12.3) gives �.n; nimp; rs; d /. The effect of increasing d is to slightly
increase the conductivity from the d D 0 value [26]. For d � 1 nm, it is sufficient to
use the result for d D 0, in which case, an analytic solution for �.n; nimp; rs; d D 0/

can be obtained

� D AŒrs�
e2

h

n

nimp
D 20

e2

h

n

nimp
for rs D 0:8: (12.12)

The function AŒrs� is shown in Fig. 12.2. To be consistent with the notation in the
original literature, we express AŒrs� D F1Œx D 2rs�

�1, and

F1.x/

x2
D �

4
C 3x � 3x2�

2
C x.3x2 � 2/arccosŒ1=x�p

x2 � 1
: (12.13)

As anticipated in the discussion below (12.4), AŒrs� is a monotonically decreasing
function (see Fig. 12.2) implying that increasing the dielectric constant of the
substrate would increase the graphene mobility provided the new substrate had
a similar number of charge traps. Similarly, for suspended graphene, one “loses”
about a factor of 2 from the decrease of AŒrs�, but since by current annealing the
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Fig. 12.2 High-density graphene conductivity for different impurity models. Left panel:
Dimensionless coefficients that determine the dependence of the high-density conductivity on
graphene’s effective fine-structure constant rs (see text for details). For charged impurities,
� D AŒrs�.e

2=h/.n=nimp/, while for delta-correlated impurities � D BŒrs�.e
2=h/�0. Yukawa-

like disorder behaves qualitatively like charged impurities, � D CŒrs �.e
2=h/.n=nimp/, although

as seen in the figure, there are quantitative differences. Right panel: Conductivity for the Gaussian
correlated impurity model as a function of �n�2 for K0 D 1 and K0 D 2. Dashed lines are the
high density asymptote � D .2

p
�e2=K0h/.2�n�

2/3=2

sample, one can reduce the impurity density by more than an order of magnitude,
one can still drastically improve the carrier mobility [50, 51].

12.2.3 Gaussian White Noise Disorder

White noise disorder is the most common approximation made when discussing
the conductivity of the regular 2D electron gas. One simply assumes that V.q/
is a constant (i.e., independent of q). Mathematically, this corresponds to uncor-
related impurities each expressed as a delta-function in real space, i.e., Vtot.r/ D
u0
PN

iD1 ı.r � ri /, where the impurities are located at positions ri with zero range.
Physically, this could correspond to atomically sharp defects such as dislocations or
missing atoms (although when calculating their effect on the conductivity, here we
neglect any intervalley transitions). Solving (12.3), we find � D BŒrs��0, where �0
is a constant proportional to .nimpu20/

�1 and BŒrs� D .F2Œx D 2rs�/
�1, where

F2.x/ D �

2
� 16x

3
C 40x3 C 6�x2 � 20�x4 C 8x2.5x3 � 4x/

arccosŒ1=x�p
x2 � 1

:

(12.14)

The function BŒrs� is shown in Fig. 12.2. We note that as discussed earlier, BŒrs�
is a monotonically increasing function of rs since dielectric screening makes the
impurity potential look weaker at larger rs resulting in a larger conductivity. Also,
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the functions AŒrs� and BŒrs� are real and positive for all values of rs > 0 (i.e., the
ratio of arccos.1=x/ and

p
x2 � 1 is real, even for values of x < 1).

12.2.4 Yukawa Potential

In principle, one could calculate the screening properties for any scattering potential.
By comparison with experiment where the dielectric environment is changed (see
Sect. 12.4 below), one could then establish definitively the nature of the disorder
impurity potential. In 3D, the Yukawa potential (in real space) is the Fourier
transform of the screened Coulomb potential (in momentum space). However, in 2D
we have been unable to obtain a closed-form analytic expression for the screened
Coulomb potential in real-space. Instead, one could solve for the Boltzmann
conductivity for the phenomenological Yukawa potential, where

V.q/

	.q/
D 2�e2

�

1
p
q2 C q2s

; (12.15)

to find � D C Œrs�.e
2=h/.n=nimp/, where C Œrs� D .F3Œx D 2rs�/

�1 and

F3.x/

x2
D �

4
C �x2

2
� �x

2

p
1C x2: (12.16)

Qualitatively, the Yukawa potential behaves similarly to the screened Coulomb
potential, but there are quantitative differences. For example, at rs D 0:8, for the
same number of impurities, a graphene sample with Yukawa-like disorder would
have about half the mobility compared to the screened Coulomb potential. The
experiments along the lines discussed in Sect. 12.4, where nimp or rs is tuned in
a controlled fashion can discriminate between the two models.

12.2.5 Gaussian Correlated Impurities

A very popular choice for impurity potential in graphene is the Gaussian correlated
potential, where

hV.r/V .r 0/i D K0

.„vF/
2

2��2
e�jr�r0j=.2�2/: (12.17)

This potential has two parameters: K0 is a dimensionless measure of the potential
strength and � specifies its correlation length. The reason for its wide use is both
theoretical and practical. First, by looking at the dependence on �, one can study
the crossover from short-range to long-range impurity behavior [52]. Second, the
limit n ! 0 for � D 0 is somewhat uncontrolled in several respects. Without
going into the details, we just point out, as we shall see below, that many physical
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quantities (such as the conductivity) depend on the quantity n�2 and so keeping
a finite � allows one to take the limit n ! 0. And finally, unlike the long-
range Coulomb potential that can introduce spurious divergences in finite sized
numerics, a finite � makes these computations more convergent. There are also some
experimental indications that atomic hydrogen dopants in graphene give changes to
the conductivity that are consistent with the predictions of this Gaussian correlated
impurity model [53]. We assume here that the values of K0 and � are for a screened
impurity potential (see Sect. 12.3.1 below where we give expressions forK0Œrs� and
�Œrs � for a particular mapping of the Coulomb potential). Integrating (12.3) for this
model, we find [41]

�.K0; x D n�2/ D 4e2

h

xex

K0I1.x/
; (12.18)

where I1 is the modified Bessel function. Two points are worth making here: (1) For
large carrier density x � 1, the conductivity is super-linear � � n3=2; and (2) In the
limit n ! 0, the conductivity remains finite (see Fig. 12.2), although in Sect. 12.3.4
we argue that this is not the origin of the graphene minimum conductivity even for
this choice of impurity potential.

12.2.6 Midgap States

An increasingly popular choice (See, e.g., [17, 30, 54, 55]) for modeling graphene
impurities is the so-called midgap states or resonant scatterer model. Unlike the
other forms of disorder we have examined, where we assume that the disorder is
a small perturbation to the pristine case, these works consider the impurities to be
strong enough to generate extra structure in the density of states. In the unitary limit
(i.e., assuming that the impurities create a maximal phase-shift of �=2 between
incoming and outgoing wavefunctions), one can show [30, 56]

�.n/ D 2e2

�h

n

nimp
ln2
�p
�nR

�
; (12.19)

where R is the scattering radius of the impurity and nimp is the concentration of
resonant scatterers. As a function of carrier density, the graphene conductivity in the
midgap model looks linear at low carrier density, and is sublinear at high density,
quite similar to the case when one considers the presence of both Coulomb scatterers
and short-range scatterers. Although both of these scenarios have two adjustable
parameters, it is nonetheless possible to distinguish them experimentally. Indeed, in
experiments on graphene irradiated with ions [57], it appears that the midgap states
model better captures the experimentally observed �.n; nimp/ than the combination
of weak Coulomb and short-range scatterers. Whereas for most other samples, the
combination of weak scatterers seems to dominate (see Sect. 12.4).

For the purposes of this chapter, we would like to make three cautionary remarks
about this impurity model: (1) In the range between weakly interacting impurities
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(i.e., Born approximation) and the case of unitary scatterers is the whole spectrum
of strong but not unitary impurities. While the theory of unitary scatterers might
be tractable, there is no reason why nature would choose this particular limit. (2)
Resonant scatterers typically give a maximal phase-shift at a particular energy
(and hence the name), but provide only weak scattering away from this resonant
energy. While treating mid-gap states in graphene, it is often assumed that the
impurity state is resonant over the entire energy window probed in transport. In
principle, it should be possible to extract the width of the resonance by looking
for changes in the conductivity as a function of rs , although this problem has not
yet been treated theoretically. (3) There has been only very limited work (e.g.,
[47, 54, 58] and references therein) connecting these midgap states to the graphene
minimum conductivity problem. Although this is the subject of Sect. 12.3 below, it
is worth mentioning here that relying exclusively on midgap states, for example, by
obtaining a residual carrier density by integrating the density of states including
the structure induced by the resonant impurities, cannot explain the graphene
minimum conductivity. To get the experimentally observed values of �min requires
an unphysically large number of defects (such as missing atoms). Not only would
these large number of defects degrade the mobility far beyond what is observed
in the same transport experiments at high carrier density, but these would most
certainly be observable in scanning tunneling microscope (STM) studies, which
have actually found the opposite case, i.e., a very low concentration of such defects
(see e.g., Chap. 3 and [9, 37, 59, 60]).

We would argue that even when samples are deliberately made to have a
large number defects (e.g. by ion irradiation), the residual carrier density is still
determined by the charged impurity concentration (see e.g., discussion in [57]). In
such a case, where one has the combination of resonant scatterers and Coulomb
scatterers using the mid-gap model (12.19) is almost indistinguishable from the
Coulomb impurity model. This is because the mid-gap model has an additional
adjustable parameter R that could be tuned to get the pre-factor of the conductivity
to be comparable to AŒrs� � 20 (see Fig. 12.2). In this case, the only way to
distinguish mid-gap states from charged impurities is by controllably changing
some parameter such rs [28], the concentration of charged impurities [44], or the
concentration of resonant scatterers [57].

12.3 Transport at Low Carrier Density

One of the biggest puzzles that emerged from the first transport experiments on
graphene was the existence of a finite conductivity at zero carrier density. It turns out
that well before the discovery of graphene, it was predicted by [19] and others that
there should be a universal quantum limited ballistic conductivity in clean graphene
�min D .4=�/e2=h. However, the first transport experiments measured values closer
to �min D 4e2=h. Since at that time, the observed value was widely believed to
be universal, this unexpected value for the minimum conductivity in graphene was
dubbed the “problem of the missing �”.
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It is the goal of this section to discuss the quantitative theoretical explanation for
this problem. The short answer to this mystery is that the minimum conductivity
observed in experiments is not universal, but depends on the concentration of
charged impurities. For relatively dirty graphene samples, the enhanced conductivity
caused by the fluctuations in carrier density induced by the disorder is roughly
compensated by the increased scattering caused by those impurities. In this regime,
�min � 4e2=h and depends only weakly on the disorder concentration (although
we emphasize that the value is not universal, and even dirtier samples should have
a lower conductivity). For samples that are 30 times cleaner, the reduced scattering
term wins, giving a larger value for the minimum conductivity �min D 8e2=h.

Indeed, later experiments [13] observed that the minimum conductivity was not
universal, but varied from �min D 2e2=h to 8e2=h consistent with theoretical
predictions [14].

For even cleaner samples, the minimum conductivity would continue to increase
until either the mean-free-path becomes comparable to the sample size or the size
of the puddles (i.e., carrier density fluctuations) would shrink to fewer than a couple
of electrons. Then the semiclassical diffusive transport would cross over to the fully
quantum ballistic regime (which we discuss in Sect. 12.3.4).

As alluded to in the introduction to this chapter, the explanation of the graphene
minimum conductivity problem is an intricate symphony that brings together the
physics of disorder, electron–electron interactions and quantum mechanics. Here,
disorder plays a dual role: it is primarily responsible for scattering the electrons that
gives rise to the finite conductivity in the first place (recall that the bulk conductivity
of any 2D conductor without disorder is infinite) and it induces the carrier density
fluctuations; so that depending on the amount of disorder, the local carrier density
can be quite large, allowing, at least locally, for a nonvanishing conductivity. The rel-
atively weak electron–electron interactions in graphene give the mechanics of how
the electrons “see” the disorder potential, which is invariably screened by the quasi-
particle cloud, and this applies equally to both roles of disorder, as a scattering center
and in inducing the density inhomogeneities. With quantum mechanics comes Klein
tunneling, the ability of electrons to transmute to holes across potential barriers –
which in our case implies that we do not need to worry about the scattering at the
boundary between the electron and hole puddles. The contribution to the total con-
ductivity is dominated by the conductivity within the puddles and not across them.6

We should mention that historically this solution emerged only after carefully
comparing the experimental data to the high-density Boltzmann theory discussed in
Sect. 12.2 above. That theory is only valid at high density, or more specifically, when
kF` � 1, or �.n/ � e2=h. Oftentimes, either by serendipity or insight, theories

6To fully discuss the role of Klein tunneling in graphene transport would require a larger discussion
than is possible here. For the semiclassical calculation presented here, we ignore the additional
contribution to the resistance arising from p-n junctions. The validity of this assumption is
rigorously tested in Sect. 12.3.4 below. For a more complete discussion on the role of p-n junctions
in graphene transport, as well as an explanation for the remarkable property of perfect transmission
of carriers at normal incidence, see Chap. 12 and [15].
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work well beyond their formal limits of applicability – we have already seen that for
graphene and the usual 2D electron gases, the RPA calculation showed explicitly
that the Thomas–Fermi screening theory, which is valid formally only at q ! 0,
actually works well for q � 2kF. Similarly, the RPA-Boltzmann theory for the usual
2DEG system continues to work beyond its formal regime of applicability in high
mobility n-GaAs systems [61] until new physics such as percolation or localization
takes over at even lower carrier densities.

However, when a careful comparison with experiment was done in [26] to see
when deviations from this semiclassical theory begin to show up, it revealed two
important features that inspired the theoretical ideas presented below. First, the high
density theory did work better than expected. From (12.12), one would expect the
high density theory to work only for n � nimp, but in fact, the theory worked for
n & nimp=2. Second, the minimum conductivity value did not occur at a singular
point (i.e., at the Dirac point with precisely zero carrier density), but rather there
was a minimum conductivity plateau of width �n � nimp. In fact, there was no
singularity at all – the plateau smoothly joined up to the high-density Boltzmann
result and the value of the conductivity minimum was not universal, but seemed
somewhat correlated with the sample quality. It was pointed out already in [26]
that for n � nimp=2, the fluctuations in carrier density nrms were comparable to
the average carrier density implying that understanding the physics of the minimum
conductivity was understanding the physics of puddles, i.e., how they are formed
and how they conduct carriers, and had nothing to do with the properties of
the peculiar Dirac point that was experimentally inaccessible due to the presence
of disorder. This was significant since at the time, most attempts to explain the
graphene minimum conductivity focused on the singular properties of the conical
point in the graphene Dirac spectrum.7

12.3.1 Self-Consistent Approximation

Perhaps, the most important result discussed in this chapter is the self-consistent
ansatz of [14]. In a nutshell, the self-consistent ansatz is a semianalytic method for
calculating the fluctuations in carrier density nrms from the properties of the disorder

7To illustrate somewhat simplistically how one could get into trouble at the Dirac point, consider
the Einstein relation that was discussed earlier � D e2�.EF /D. At the Dirac point, �.EF /
vanishes but for short-range impurities, D ! 1, which gives rise to a disorder-dependent
minimum conductivity at the Dirac point (see Fig. 12.2). Similar cancellation of divergences gives
rise to the following puzzle [19]. If one calculated the conductivity by first taking the clean
limit while keeping either temperature or frequency finite, one would obtain the universal value
�min D .�=2/e2=h. However, taking frequency and temperature to zero first, then taking the clean
limit gives �min D .4=�/e2=h. At the time of writing, the crossover between these two universal
limits remains an unsolved problem. However, for the purposes of understanding current graphene
dc transport experiments, we maintain that none of this “universal” physics is relevant.
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potential. By now this ansatz has been rigorously tested against numerical density
functional calculations [32] (for the case of interacting electrons) and with a numer-
ical computation of the Landauer formula [41] (for the fully quantum mechanical
case). The self-consistent ansatz states that the root-mean-square fluctuations in
carrier density (nrms) is related to the screened disorder potential at that carrier
density.

One can think of the ansatz as follows: If the induced carrier density nrms is
small, the disorder potential will be poorly screened thereby inducing a large carrier
density. But a large carrier density will better screen the disorder potential resulting
in a lower carrier density. This process will reach an equilibrium when the changes
in the induced carrier density exactly balance the changes in screening.

12.3.1.1 Formalism

To be more quantitative, let us further assume that the largest contribution to nrms is
the Thomas–Fermi contribution i.e. nrms � p

3hE2
Fi=.�„2v2F/, where the angular

brackets denote averaging over an ensemble of disorder configurations and the
p
3

factor just comes from the fact that for graphene nrms is the second moment of
density and the fourth moment of Fermi energy. In this case, the self-consistent
ansatz reads

�„2v2Fn� D hE2
Fi D hV 2

DŒn
��i: (12.20)

This corresponds to finding a residual carrier density n� D nrms=
p
3 that satisfies

(12.20), where VDŒn�� is the disorder potential screened by a homogeneous electron
gas at carrier density n�.

It should be apparent from (12.20) that it will be important to calculate the
ensemble averaged properties of the screened disorder potential. For example,
one can show that by assuming uncorrelated random impurities of concentration
nimp, where each impurity has a disorder potential .r; n/ (with Fourier transform
Q.q; n/) then [62]

hVD.r/VD.0/ic D nimp

Z
d2q

.2�/2
Œ Q.q; n/�2e�iq�r; (12.21)

where the subscript “c” indicates that terms proportional to hVD.0/i have been
excluded. To simplify the discussion, we just set hVD.0/i D 0. We will discuss
the case of finite doping in Sect. 12.3.2 below, but for now, we can imagine that
setting hVD.0/i D 0 corresponds to tuning the back gate voltage to coincide with
the Dirac point, thereby ensuring charge neutrality.

In this case, a more general result states that for any arbitrary disorder potential
.r/, one has

hV k
Dic D nimp

Z
d2rŒ.r; n/�k : (12.22)
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Since knowing all moments of a distribution function is equivalent to knowing the
distribution function itself, in principle, after using (12.20) to set .r; n/ D .r; n�/,
(12.22) then defines the full probability distribution function of the screened
disorder potential.

Taking this together with the two-point correlation function (12.21), one then
has a complete statistical description of all properties of the Dirac point in the
presence of disorder. Any physical observable, such as �min should be a function
of the moments in (12.22). In practice, however, since for the screened Coulomb
impurity problem, no closed-form analytic expression is available for .r; n/, the
moments of (12.22) can only be computed numerically, and one needs to truncate
the computation after a finite number of moments.

In this vein, it is sometimes useful to consider the mapping to the Gaussian
correlated disorder (see (12.17)), which can be accomplished as follows

K0„2v2F
2��2

D nimp

Z
d2q

.2�/2
Œ Q.q; n/�2 D �„2v2Fn�;

� D
r
2

�

R dq

2�
Œ Q.q; n/�2

R d2q

.2�/2
Œ Q.q; n/�2

: (12.23)

While this “Gaussian mapping” can be done for any arbitrary potential .r; n/, it
will only be a good approximation if higher moments of the impurity potential in
(12.22) can be neglected.8 We also find

nrms D n�
s

3C 1

�nimp�2
: (12.24)

We now specialize to the case of Coulomb impurities, where from (12.11) we
have

Q.q/ D 2�e2

�

e�qd

q	.q/
: (12.25)

The dielectric function 	.q/ was defined in (12.10). Notice that to calculate nrms

the integrals run over all momenta q and so, unlike the transport calculations in
Sect. 12.2, the full RPA result will differ from the Thomas–Fermi result.

The integrals above for n�, K0 and � can all be done analytically, and although
simple asymptotic expansions can be made in various limits, we have found,

8We have been slightly sloppy with language, using the term Gaussian approximation to refer to
both when the disorder potential has Gaussian two-point spatial correlation function (see (12.17))
and when the disorder probability distribution function is determined only from the second moment
(see (12.22)). From the context, it should be clear which case we mean, although we should caution
that the two approximations can be quite different. For example, (12.24) describes a Gaussian two-
point correlation function, but is equivalent to a Gaussian distribution function only in the limit
when nimp��

2 � 1.
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unfortunately, that the regime relevant to current experiments requires the use of the
full functional form. To simplify the notation somewhat, we introduce the auxiliary
functions C0.z/ and D0.z/ where for E1.x/ D R1

x
t�1e�t dt , we have

C0.rs; z/ D �1C 4E1.z/

.2C �rs/2
C 2e�zrs

1C 2rs

C .1C 2zrs/e
2zrs .E1Œ2zrs� �E1Œz.1C 2rs/�/; (12.26)

D0.rs; z/ D 1 � 8rszE1Œz�

.2C �rs/2
C 8e�zrs

.2C �rs/2
� 2e�zrs

1C 2rs

� 2zrse
2zrs .E1Œ2zrs� �E1Œz.1C 2rs/�/:

Using these definitions, one finds [31]

n� D 2 nimp r
2
s C0;

K0 D 1

4r2s

�
D0

C0

�2
;

� D 1p
nimp

D0

4�r2s
.C0/

�3=2;

9
>>>>>>=

>>>>>>;

RPA (12.27)

where z D 4d
p
�n�. Notice that given the concentration of charged impurities

nimp, the dielectric constant of the substrate (which sets rs) and the distance d
of the impurities from the graphene sheet, one can calculate the strength of the
screened disorder potential, the size of the electron and hole puddles as well as
the number of electrons within each puddle. In particular, we note that to leading
order, the overall scale-factor of the puddle size is set by the average distance
between the impurities n�1=2

imp , and is proportional to r�2
s . This allows one to make

crude estimates, predicting, for example, that the size of the puddles in suspended
graphene are roughly the same as those on a SiO2 substrate. This is because although
suspended graphene has more than an order of magnitude fewer impurities, one only
gains as n�1=2

imp , while suspending graphene more than doubles rs , which decreases
the puddle size as r�2

s .
Notice that for the Complete Screening (CS) limit discussed earlier, the auxiliary

functions have very simple asymptotes: C0.z � 1/ ! .2rsz/�2 and D0.z � 1/ !
.2rsz/�1. In this limit (which is valid only for very dirty samples when d

p
n� � 1),

we find

n� D 1

d

r
nimp

32�
;

� D d

q
8
�
;

K0 D d
p
8�nimp:

9
>>>>=

>>>>;

Complete
Screening

(12.28)
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Fig. 12.3 Comparison of the dimensionless voltage fluctuation function C0.rs; z/ (see (12.26))
using different screening approximations. The Random-Phase-Approximation (RPA) shown in
blue is the main approximation used in the present work. The Thomas–Fermi (TF) and Complete
Screening (CS) approximations give different results except when rsz � 1. Dashed lines are small
density analytic asymptotes for the Thomas–Fermi and RPA (see (12.29)) and the squares show
the numerical evaluation of (12.22) using the Coulomb potential (12.11) with the exact dielectric
function (12.9)

In Fig. 12.3, we show the function C0.z/ for the RPA, Thomas–Fermi (TF) and
Complete Screening (CS) approximations. For z � 1, the RPA and TF results
approach the CS results, while in the opposite limit of z � 1, we have

C0.rs; z ! 0/ D �1
2rs C 1

� ln

�
2rs

2rs C 1

�
� 4 ln. Q�z/

.2C �rs/2
; (12.29)

where Q� � 1:781 is Euler’s constant. While using this asymptotic expression
might be useful for qualitative estimates, we emphasize that in order to make any
quantitative predictions, one is forced to use the full expression in (12.26).

12.3.1.2 Results

Having developed the self-consistent formalism above, we are now ready to reap
some concrete results. Figure 12.4 captures the central results of the self-consistent
approximation. The top panel shows the ensemble averaged two-point correlation
function hV.r/V .0/i. This quantity can be measured experimentally by measuring
the density fluctuations at the Dirac point, although at present all the published
experimental data lack sufficient resolution to make a detailed comparison.
Nevertheless, they are at least consistent [34–37,59] with the theoretical predictions.
However, we can compare our results to those obtained using other theoretical
approaches. The solid (blue) lines are the evaluation of (12.21) for two values
of nimp. The red diamonds are the results of the density function theory (DFT)
taken from [32] using the same parameters. One notices that the self-consistent
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x

Fig. 12.4 Results of the self-consistent approximation (SCA). Left panel: Two-point correlation
function of the screened Coulomb disorder potential. Blue line is the SCA result (12.20), while
green line is the Gaussian approximation (12.23). The red data points taken from [32] show
the same quantity computed from a density functional approach (see also discussion in [18]).
Right panel: The root-mean-square carrier density at the Dirac point computed using the same
approximations – blue line is the SCA (12.24) and red squares are the DFT results ([32])
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Fig. 12.5 Dependence of the carrier density fluctuations on effective fine structure constant rs
(left panel) and distance of the Coulomb impurities from the graphene sheet d (right panel). Solid
lines are the self-consistent result (12.20) and data points were computed in [32] using a density
functional approach

approximation (SCA) agrees quantitatively with the DFT results. The green line
shows the Gaussian mapping, which works remarkably well for the cleaner data.
The full width at half maximum of hV.r/V .0/i (which is related to � through the
Gaussian mapping) is a measure of the correlation length that sets the size of the
puddles.

One of the main goals of developing the SCA was to calculate nrms as a function
of disorder parameters. This is shown in the right panel of Fig. 12.4 and Fig. 12.5,
and these results also agree well with the DFT results [32]. Finally, in Fig. 12.6 we
show the potential strengthK0 and puddle correlation length � (related to the puddle
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Fig. 12.6 Results for the Gaussian mapping of the Coulomb potential (see (12.23)). Left panel
shows the dimensionless disorder strength K0 as a function of charged impurity density. Right
panel shows the Gaussian correlation length �, which is related to the average puddle size. Also
shown as red squares is the density functional result of [32], where we note that for a Gaussian
distribution function, a factor of 2

p
2 ln 2 needs to be multiplied by the correlation length � to

obtain the full width at half maximum (FWHM) that is more commonly used to characterize the
graphene puddles (see [18])

size) as a function of nimp obtained by mapping the microscopic Coulomb disorder
onto the Gaussian potential.

12.3.2 Effective Medium Theory

In the previous section, we demonstrated that the self-consistent approximation
can be used to quantify all the statistical properties of the Dirac point in the
presence of disorder. For these dirty samples, the question now arises: given that
we can characterize the Dirac point, what is the conductivity through this highly
inhomogeneous medium? (See Fig. 12.7). Or in other words, now that we know the
size of the puddles and how many carriers are inside the puddles, can we calculate
the graphene minimum conductivity? The earliest (and crudest) estimate was simply
to say that

� �
�
�B.n

�/ for n � n�;
�B.n/ for n > n�;

(12.30)

where �B.x/ D 20.e2=h/.x=nimp/ [14]. We shall see in this section that this rather
fortuitously turns out to be an excellent approximation.

The implication of (12.30) is the following: The disorder potential causes some
residual carrier density n�, which then gives rise to the minimum conductivity. As
discussed in Sect. 12.3.1 above, n� is determined by balancing the role of impurities
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Fig. 12.7 At the Dirac point,
disorder breaks the system
into puddles of electrons and
holes. The figure, taken from
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doping graphene and the enhanced screening of doped graphene – but at a very basic
level, it should be obvious that increasing the number of impurities increases n� (see
Fig. 12.4); which in turn should increase the conductivity. However, increasing nimp

also means more scattering, which should decrease the conductivity. Therefore, the
minimum conductivity emerges as a delicate balance between the dual property of
the disorder potential to both induce carriers and scatter carriers.

For the disorder concentrations present in the first experimental samples, these
two effects roughly cancel resulting in a minimum conductivity that depends only
weakly on disorder – and hence the early belief that the value was universal. For
cleaner samples, the Coulomb impurity scattering term wins out, implying that
cleaner samples should show stronger variation with disorder and have a larger value
for �min. (See Sect. 12.4 for further discussion of experiments).

Before we turn to the full treatment that validates the use of (12.30), let
us look at what is obviously left out in this simple estimate. Since �B is the
semiclassical Boltzmann conductivity, all quantum interference corrections are
neglected. Section 12.3.4 below addresses quantum effects and studies the full
crossover from quantum transport to diffusive transport. The approximation also
assumes that the total conductivity is given by the conductivity within the puddles
and not between puddles. As discussed earlier, this is justified because of the Klein
tunneling across the p-n junctions. We refer the reader to [15] for more on the role
of the boundary between the electron and hole puddles.

There are two further assumptions in (12.30). While one might buy that �min D
�B.n

�/, and �.n � nimp/ D �B.n/, the hard “plateau” with a singularity at n D n�
is highly artificial. Second, even the assumption that �min D �B.n

�/ ignores the
possibility that the minimum conductivity could depend on higher moments of the
carrier density – for example, we could have proposed �min D �B.nrms/ instead.
Answering these two questions led to the development of an effective medium
theory for graphene transport [38].
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The starting point is to assume that locally �.r/ D �BŒn.r/�. Then taking the
continuum approximation and using well-known effective medium theory (EMT)
results [64] one finds [38]

Z
dnP Œn�

�.n/ � �EMT

�.n/C �EMT
D 0; (12.31)

where P Œn� is the carrier density probability distribution function. This integral
equation for the conductivity of the inhomogeneous medium is valid so long as
there are more than a few electrons inside each puddle. For current experiments
on graphene, this is always the case. Theoretical calculations [32, 38] showed that
disordered graphene had two kinds of puddles – macroscopically large puddles with
low carrier density that contained � 500 electrons, and very small puddles with
a large carrier density that contained � 5 electrons. The statistics of these two
regions were such that averaging over the entire sample gave results for the puddle
correlation length � and nrms that agreed with the self-consistent approximation
discussed in the previous section. Making the further assumption that P Œn� is a
Gaussian distribution with width nrms and mean ng D ˛Vg , one finds [40]

Z 1

0

exp

� �n2
2n2rms

�
cosh

�
ngn

n2rms

�
�.n/ � �EMT

�.n/ � �EMT
D 0: (12.32)

To find the conductivity at the Dirac point, one sets the density induced by the back-
gate voltage ng D 0 giving for charged impurities

2ze�z2
	
�ErfiŒz� � EiŒz2�


 D p
�; (12.33)

where Erfi is the imaginary error function, Ei is the exponential integral function and
z D �EMT=.

p
2�BŒnrms�/ � 0:405. This gives �EMT � 0:9925 �B.n

�/, implying
that the early estimates for the minimum conductivity due to Coulomb scatterers
(12.30) were accurate to within 1% of the effective medium theory result. However,
with (12.32) one can now solve the full crossover of graphene conductivity as a
function of carrier density from the Dirac point where the conductivity minimum
is dominated by the contribution from the fluctuations in carrier density inside the
electron and hole puddles to the high-density regime, where the carrier density is
uniform and the conductivity is given by the semiclassical Boltzmann results of
Sect. 12.2.

Figure 12.8 shows the effective medium theory results �EMT.n/ for both Coulomb
scatterers and Gaussian correlated impurities, where nrms D p

3n� was obtained
from the self-consistent approximation. Figure 12.9 shows the minimum conductiv-
ity �min for both Coulomb scatterers and for the Gaussian correlated impurity model.
In Sect. 12.4 below, we will compare the Coulomb impurity results (left panel of
Fig. 12.9) to several experiments in the literature. Moreover, there has been some
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Fig. 12.8 Graphene conductivity as a function of carrier density for charged impurities (left panel)
and Gaussian correlated impurities (right panel). Dashed lines in left panel are the high-density
Boltzmann transport result. For Coulomb impurities (solid lines in left panel), the effective medium
theory (EMT) results agree with the earlier estimate (12.30) to within 1%. For Gaussian impurities
(right panel), the EMT gives slightly larger values for the minimum conductivity than (12.30). Also
shown (in black) is the high-density Boltzmann result. The EMT result approaches the Boltzmann
result for n�2 � 1

Fig. 12.9 Dependence of graphene minimum conductivity on disorder parameters. All panels
have the same scale for �min on the y-axis. Left panel: For charged impurities, �min decreases
monotonically as a function of impurity density. Center panel: Samples with large Coulomb
disorder (blue curve) show almost no dependence of �min on the effective fine structure constant rs ;
cleaner samples (green curve) show the minimum conductivity increasing weakly with rs . Right
panel: For the Gaussian correlated impurity model, the effective medium theory result (12.32) is
slightly larger (red curve) than the analytic result �minŒx D K0=2� D 2ex=xI1.x/ shown in blue
and derived from (12.30)

recent evidence that the predictions of the Gaussian impurity model (right panel of
Fig. 12.9) are relevant for experiments doping graphene with atomic hydrogen [53],
although there has been no microscopic theory explaining why hydrogen impurities
should have such correlations.
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12.3.3 Magneto-Transport and Temperature Dependence
of the Minimum Conductivity

One remarkable feature of this RPA-Boltzmann approach to solving the minimum
conductivity problem is that the theory can then be generalized (without any further
fitting parameters) to other experimental situations. The model makes definitive
predictions for a variety of situations that have as yet not been explored theoretically
using this technique (for example, the Nerst signal, the thermopower and weak-
localization close to the Dirac point all in some way depend on the self-consistent
carrier density n�, which once determined through the dc transport, would then
determine these additional properties). While we do not explore all these different
experiments in this book chapter, it is relatively straightforward to generalize the
formalism presented here to other situations. As an illustration of how such a
generalization would work, we consider two cases here.

The first is the semiclassical magnetoresistance in a weak magnetic field, and the
second is the temperature dependence of the minimum conductivity.9 The magneto-
transport of graphene at sufficiently large temperatures that the phase-coherent
transport is negligible and sufficiently small magnetic fields B such that Landau
levels have not developed is given by the semiclassical Drude model. In graphene,
the current density in the Ox and Oy directions is [43]

Jx D Œ�.e/xx C �.h/xx �Ex C Œ�.e/xy C �.h/xy �Ey I Jy D Œ�.e/yx C �.h/yx �Ex C Œ�.e/yy C �.h/yy �Ey:

The superscript c D .e; h/ denotes electron and hole carriers. The longitudinal and
Hall conductivities are given by

�.c/xx D �.c/yy D �
.c/
0

1C
�
�
.c/
0 R

.c/
H B

�2 I �.c/xy D ��.c/yx D
h
��.c/0

i2
R
.c/
H B

1C
�
�
.c/
0 R

.c/
H B

�2 ;

(12.34)

where R.c/H D 1=n.c/e
.c/ and the zero-field electrical conductivity for each carrier is

�
.c/
0 . So far, this is general for any two carrier model.10 Applying the self-consistent

9Here, we assume that the temperature dependence arises only from thermal smearing of the
Fermi distribution function. While this assumption that the temperature dependence occurs only
from this activation-like behavior is an excellent approximation for bilayer graphene (see [40]),
for monolayer graphene, additional physics such as the degradation of the conductivity due to
phonons in dirty samples, and the crossover to the ballistic regime for suspended samples restrict
the temperature range for which this thermal broadening picture dominates the conductivity.
10As an aside, we should mention that the two-carrier model above (and assuming Coulomb
impurities, (12.12)) relates field-effect mobility to the carrier mobility as
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Fig. 12.10 Temperature dependence of graphene conductivity. Left panel shows effective
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theory simply gives �.e/0 C �
.h/
0 D �EMT, where �EMT is obtained from (12.32). This

is an illustration of how the self-consistent theory can easily be generalized to other
situations.

The second example we discuss here is the temperature dependence of the
minimum conductivity. For simplicity, we assume the presence of only Coulomb
scatterers and that the thermal smearing of the Fermi surface is the only source
of temperature dependence. In this case, the local conductivity can be written as
�.n; T / D n.T D 0/e�c

neCnh
ne�nh , where ne.T / D R1

0
dE �.E/f .E;�; kBT / and

nh.T / D R 0
�1 dE �.E/Œ1 � f .E;�; kBT /�, where f .E;�; kBT / is the Fermi-

Dirac function with kB the Boltzmann constant. The only subtle point is determining
the chemical potential � obtained by solving for ng D ne � nh, where ng is
proportional to the applied gate voltage (and determined by the capacitive coupling
of graphene to the gate). Data points in the inset of Fig. 12.10 show chemical

�H 	 �xy

�xxB
D �xy

�xxB
� AŒrs�

nimp

�
ne � nh

ne C nh

�
; (12.35)

where only in the very limited carrier density range n� 
 nimp � n � BŒrs��0=n is the
Hall mobility the same as the field-effect mobility �c D �=ne (where the specific boundaries
of this window depend on the number of short-range and long-range impurities and the dielectric
environment).
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potential �.T / obtained by the numerical solution of the implicit equation, 1 D
2.T=TF/

2fLi2Œ� exp.�=kBT /��Li2Œ� exp.��=kBT /�g, as well as the interpolation
function

F�.x/ D �.T=TF/=EF D g.x/.1 � �2x2=6/C Ng.x/=.4 ln 2x/; (12.36)

where EF is the Fermi energy, and g.x/ C Ng.x/ D 1 are a choice of comple-
mentary functions, e.g. we use g.x/ D .1 C Erf Œ10.x � 1=2/�/=2 and Ng.x/ D
Erfc Œ10.x � 1=2/� =2 [65]. From the inset, one finds that the interpolation function
adequately describes the evolution of the chemical potential with temperature (see
[40] for more details).

Applying the EMT formalism then gives the results shown in the left panel
of Fig. 12.10. Since nrms is obtained from the self-consistent approximation, this
result gives a parameter free prediction for the effects of thermal broadening on the
minimum conductivity.

12.3.4 Quantum to Classical Crossover

After the discovery of graphene, two parallel approaches developed to understand
the conductivity of graphene. The first was the fully quantum-mechanical approach
based on the Landauer formalism [66, 67], where graphene was found to have
a universal quantum-limited conductivity of �min D 4e2=.�h/, a value that was
considerably lower than what was observed experimentally.11 While this formalism
fully captures the quantum mechanics of graphene electrons, it ignores electron-
interaction effects such as screening (discussed in Sect. 12.2.1 above). The natural
question arises: can the discrepancy between the universal quantum-limited value
and the value observed in experiments be caused by disorder? Early numerical
work [25] suggested that this might be the case. At the time of writing this chapter,
there has not been any convincing (or generally accepted) analytical model that
addresses the role of disorder on the quantum-limited graphene conductivity at the
charge neutrality point (see [15] for details). However, there have been (at least)
five numerical studies [7, 16, 41, 68, 69] that have established that so long as the
disorder is smooth on the scale of the lattice spacing, quantum interference effects
increase the conductivity through weak antilocalization. We note that the presence
of only smooth disorder (an assumption corroborated by graphene experimental
STM studies [9,37,59,60,70] and TEM studies [71]) is necessary to ensure that the
two graphene valleys are decoupled. Intervalley transitions break the pseudospin

11The Landauer approach gives the universal value only for W � L, where the transport is
primarily through evanescent modes. In the opposite limit, the conductivity depends strongly on the
boundary conditions and is not universal. When comparing the quantum and semiclassical models,
we will assume that W � L. For further discussion, see [15].
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conservation resulting in the usual case of weak localization that decreases the
conductivity signaling the transition to an insulating state [72].

The second approach was the semiclassical Boltzmann one described here.
As discussed above, the minimum conductivity depends on the delicate balance
between the carrier density induced by the screened disorder potential and the
carriers scattering off the same screened impurities. For Coulomb impurities, the
scattering term always wins out, albeit only weakly at large disorder. As a result,
for increased disorder, the minimum conductivity always decreases. This is in stark
contrast to the predictions of the fully quantum approach.

Reference [41] attempted to reconcile these two approaches. The first step was to
ensure that one was making a fair comparison. Since most of the quantum transport
work in the literature was done with the Gaussian correlated impurity potential, the
self-consistent approach first had to be generalized to this potential. In this chapter,
the results for the Gaussian impurity model were already discussed alongside the
Coulomb results in the preceding sections.

As can be observed in Fig. 12.9, the minimum conductivity for the Gaussian
correlated potential makes a “U”-shape with a minimum at around K0 � 10.
The main findings of [41] were the following: (1) The numerical quantum results
are consistent with weak-antilocalization theory (i.e., d�=d lnL D 4e2=�h) at
all carrier densities for � � 4e2=h. (2) Away from the Dirac point, the full
quantum solution and the semiclassical Boltzmann theory agree to leading order
� � n3=2. Taken together with (1), this implies that outside the puddle regime,
as one might expect, the graphene conductivity is determined by the semiclassical
transport theory with small antilocalization corrections. (3) At the Dirac point, the
theories are incompatible at weak disorder (K0 . 10) when quantum fluctuations
spread the carriers over many puddles and the concept of a local carrier density
becomes problematic. This is consistent with the discussion in Sect. 12.3.2 above,
where we argued that the local density approach obviously fails when there are
fewer than a couple of electrons per puddle. The number of electrons per puddle
corresponds roughly to �n��2 D K0=2� , so this transition to the quantum regime
occurs when there are fewer than 2 electrons per puddle. The experimental signature
of the quantum regime is a sharp cusp-like dip at the Dirac point as opposed to the
smooth plateau of the effective medium semiclassical theory (see Fig. 12.11). (4)
Most important, for the conductivity at the Dirac point, for K0 & 10 the quantum
and the self-consistent theory agree (see Fig. 12.12, where in the right panel we
subtract the antilocalization correction).

In the context of the results presented in this chapter, the consequence of [41]
is that so long as the disorder is sufficiently large so that it induces more than
a couple of electrons per puddle, the semiclassical transport theory effectively
captures the transport properties of graphene and that additional physics that we
have not considered such as the role of p-n junctions, are small corrections to our
mean-field results.
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Fig. 12.11 Contrasting the quantum and semiclassical predictions for graphene Dirac point
conductivity. Solid blue line is the semiclassical effective medium theory result, which shows a
smooth plateau close to the Dirac point. The dashed black curve is the Boltzmann result. The red
data points represent the fully quantum transport result, which shows a sharp dip at the Dirac point
approaching the universal minimum value of 4e2=�h

1 10 100

K0

0

1

2

3

4

5

σ 
[4

e
2
/h

]

1 10 100
K0

-1

0

1

2

3

4

4
π

e2

σ′
 [
4e

2
/h

]

h

Fig. 12.12 Comparison of graphene conductivity calculated using the fully quantum theory and
the semiclassical self-consistent approximation. The data points are the Landauer result (see [41]),
while the solid red line is the SCA result (12.30). The dashed blue line is the Boltzmann result
which for this model has a minimum conductivity that scales as K�1

0 (see (12.18)). For vanishing
disorder, the quantum results give the universal value �min D 4e2=�h. With increasing disorder,
the quantum results first increase sharply at K0 � 1 followed by a more gradual increase for
K0 & 10 (left panel). To test whether this gradual increase is compatible with the self-consistent
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self-consistent approach when the number of electrons per puddle Ne � �n��2 D K0=2� & 1:6
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12.3.5 Summary of Theoretical Predictions for Coulomb
Impurities

The material in this chapter has covered several different transport regimes including
the full crossover from quantum transport to semiclassical transport, and sev-
eral different impurity models from Coulomb scatterers to Gaussian correlated
impurities. In this last section, we narrow our focus to consider the framework
necessary to understand the initial graphene transport experiments. To this end,
we specialize to the case of semiclassical transport in graphene with long-range
Coulomb impurities. The impurity potential is fully specified by two parameters:
The impurity concentration nimp and the typical distance d between the impurities
and the 2D graphene sheet. We use nimp as the single parameter to distinguish
various graphene experiments by fixing d D 1 nm, which is the correct order-
of-magnitude for impurities either in the interfacial layer of the substrate or on
top of the graphene sheet, and also fixing rs D 0:8, which corresponds to the
most common case of graphene on top of a SiO2 substrate. We use two additional
results (that due to space constraints were not discussed elsewhere in this chapter):
First, for d . 1 nm, the high-density conductivity is only weakly dependent on d ,
and it is sufficient to use the analytic d D 0 result (12.12). Second, as discussed
in Sect. 12.3.1, once n� is known, one can compute any moment of the disorder
potential (see (12.22)). In particular, the first moment hVDi D nimp Q.q D 0/

gives the shift of the Dirac point assuming that the disorder potential comprises
only negatively charged impurities. Using the approximation of (12.30), we can
summarize our results for graphene in a very compact analytical form [14]

�.n � Nn/ D

8
ˆ̂
<

ˆ̂
:

20e2

h

n�

nimp
if n � Nn < n�;

20e2

h

n

nimp
if n � Nn > n�;

(12.37)

Nn D n2imp

4n� ;

n�

nimp
D 2r2s C0

�
rs D 0:8; d D 1 nm; a D 4d

p
�n�

�
; (12.38)

C0.rs; a/ D �1C 4E1.a/

.2C �rs/2
C 2e�ars
1C 2rs

C .1C 2rsa/ e
2rsa.E1Œ2rsa� � E1Œa.1C 2rs/�/: (12.39)

These theoretical predictions are shown in Fig. 12.13.
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12.4 Comparison with Experiments

In this brief section, we discuss only three experimental tests of the predictions made
by the theory. In the literature, one can find several other examples (some of which
are discussed in the review article [15]). These three were picked as representative
examples and are presented in chronological order. The important feature of all three
experiments is that they span the full range of carrier density, thereby demonstrating
that the physics at the Dirac plateau is governed by the same impurities that scatter
carriers at high density, where the semi-classical Boltzmann transport theory is
expected to be a good approximation.

12.4.1 Magnetotransport: Dependence of �xx

and �xy on Carrier Density

The first test of the self-consistent theory was done in [43] by comparing with
experimental data from the Manchester group [42]. The zero-magnetic-field exper-
imental data were compared to the theory (12.37) and determined nimp � 1:75 	
1012 cm�2. This fit and the experimental data are shown in the inset of Fig. 12.14.
The experimental data for the longitudinal resistivity �xx and Hall resistivity
�xy at B D 1 T was compared to the theoretical predictions given by (12.34)
without introducing any additional fitting parameters. Since the experimentalists
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Fig. 12.15 Dependence of graphene minimum conductivity on charged impurity density. Exper-
imental data is taken from Columbia (squares), Exeter (downward triangle), Manchester (upward
triangles), and Maryland (diamonds and circles) groups (see text for details). The solid blue
theoretical curve is the same as in the left panel of Fig. 12.9. The dashed horizontal line shows
the universal quantum limited value of �min D .4=�/e2=h and the dotted horizontal line shows
� D 4e2=h that was observed in the earlier experiments on dirtier samples

subtracted the Dirac point offset when taking the measurements, we could not
test the additional prediction in (12.37) for the impurity-induced Dirac point shift.
Nonetheless, the agreement for the full magneto-transport data with a single fit
parameter is quite remarkable.
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12.4.2 Dependence of �min and Mobility
on Impurity Concentration

The theory presented here makes very specific predictions for the dependence of
the minimum conductivity on impurity density. In the right panel of Fig. 12.15, we
compare the theoretical results for �min.nimp/ with several different experimental
data sets from various groups. We emphasize that there has been no arbitrary
selection of data for this figure, it represents all the four-probe data sets for graphene
on a SiO2 substrate for which we have done a detailed comparison between theory
and experiment.

The data from the Columbia group are the same samples that were analyzed in
[13], where the values of nimp were obtained from fitting the high-density data and
the shift of the Dirac point. The upward triangles are data from the Manchester
group [10, 42], diamonds from the Maryland group [73] and the downward triangle
taken from [74]. In all these samples, the value of nimp is determined by fitting
the high-density transport data. The black circles show the potassium doping
experiments of [44], where charged impurities were intentionally added to graphene.
The data shown here are for the initial deposition of the charged impurities
on graphene. After annealing the sample, the subsequent runs showed different
behavior suggesting the correlation between the impurity atoms. Our treatment here
has been for uncorrelated impurities (see (12.21)), although it is worth mentioning
that it is relatively straightforward to generalize our formalism to the case of corre-
lated impurities if the distribution of the impurity positions is known. Subsequent
experiments [75] using transition metal impurities instead of potassium also showed
agreement with the theory before annealing, followed by an increase in conductivity
after annealing, suggestive of impurity correlations. If the resultant potential
fluctuations can be characterized by the Gaussian model (see (12.23)), we speculate
that the results shown in Fig. 12.9 should apply, and in particular, that the minimum
conductivity would be a nonmonotonic function of the impurity density. In any
case, the agreement between theory and experiment shown in Fig. 12.15 is strong
evidence both for the dominant role of Coulomb impurities and that the physics of
the minimum conductivity is captured by the self-consistent approximation.

12.4.3 Dependence of �min and Mobility
on Dielectric Environment

Perhaps, the most precise test of the theory presented here was done in [28]. In
this experiment, the graphene conductivity was first measured in ultra-high vacuum
(UHV) and fit to the Boltzmann theory discussed here for short-range and Coulomb
impurities. Unlike the experiments discussed in Sect. 12.2.6, this combination of
weak impurities provides a better description than the strong impurity model.

Several monolayers of ice were then introduced to the sample until there were
no further changes in the transport properties. Since the dielectric constant for
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vacuum, SiO2 and ice are all known, the theory makes predictions for the changes in
conductivity with no free parameters. In particular, it predicts that the low-density
mobility should increase by 26 % (Fig. 12.2) and the high-density conductivity
should decrease by 38 % (Fig. 12.2) and that the minimum conductivity (Fig. 12.9)
should decrease by 0.01 % (i.e., stay unchanged). The experiments found the
mobility increased by .31 ˙ 1/ %, the high-density conductivity decreased by
.38 ˙ 1/ %, and the minimum changed by .0 ˙ 0:1/ %, in excellent agreement
with the theory. This experiment demonstrated that the theory presented in this
chapter works to within a 5 % accuracy for large 4-probe samples in UHV. Reports
using liquid dielectrics at room temperature and pressure are more ambiguous [76].
While these experiments qualitatively show the predicted trends for Coulomb and
short-range impurities [77], quantitative comparisons are more difficult for several
reasons. For example, one is often at high enough carrier densities that the opposing
effects of long-range and short-range impurities result in only small changes to the
conductivity. Also, the ions in solution could themselves act as additional charged
impurities.

Focusing on the UHV results, in Fig. 12.16 we compare the theoretical predic-
tions against the experimental data. Again, the theory has no fitting parameters,
and captures not only the high-and low-density behavior (discussed above), but
also the crossover from when Coulomb scatterers dominate to when short-range
scatterers dominate (as reflected in the non-monotonicity of the curve). We point
out that both the theoretical and experimental curves cross the x-axis at particular
carrier densities. If one were to perform the same experiment sitting close to that
point, then theory predicts that one would observe no changes in the conductivity
when changing the dielectric constant, as discussed above in the context of liquid
dielectrics.

–30 0 30
Vg (V)

Vg (V)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

σ
IC

E
 –

 σ
V

A
C
 (

S
)

DATA
Theory

–30 0 30

ICE
VAC

0.004

0.003

0.002

0.001

0.000

σ(
S

)

Fig. 12.16 Comparison of
experimental data and
theoretical predictions for
�ice � �vac. Since the
dielectric constants of
vacuum, ice and SiO2 are
known, the theory has no
adjustable parameters. Inset
shows the experimental data.
This figure was adapted
from [28]



12 Graphene Carrier Transport Theory 391

12.5 Conclusion

In this chapter, we have tried to provide a concise description of the different
physical mechanisms at play in a typical graphene transport experiment. On
the one hand, since the carrier transport involves quantum mechanical tunneling
and scattering, many-body interaction effects, and strong disorder-induced spatial
inhomogeneities, as well as the absence of a natural perturbation parameter, the
problem could have been completely intractable. However, it seems that for this
first practical realization of Dirac fermions in a condensed matter system, nature
was rather kind. Exfoliated graphene sits at a particular sweet-spot, where although
each of the mechanisms is important, and none can be neglected, they are very weak
and can be treated to high accuracy within their simplest models. What matters then
is not exploring any one constituent part to higher accuracy, but rather to understand
the interplay between these mechanisms and the various competitions that give rise
to the unusual transport properties in graphene.

For example, we have seen that graphene’s minimum conductivity is a balance
between how many carriers are induced by the disorder and how the disorder then
scatters these carriers. The number of carriers induced by the disorder is in turn a
feedback loop, where a strong disorder potential induces more carriers, which makes
graphene better able to screen external potentials thereby weakening the effective
disorder potential. And it is the highly efficient quantum tunneling between the
electron and hole puddles that allows one to ignore the quantum transport and use
the semiclassical effective medium theory.

It is primarily because graphene is perched at the intersection of these different
influences that the minimum conductivity seems so insensitive to perturbations. In
Fig. 12.9, we show that changing the disorder concentration by more than two orders
of magnitude changes the value of �min by a factor of less than 3. In the same figure,
we see that for typical disorder concentrations, changing the dielectric constant
from 1 (vacuum) to 8 hardly changes �min. But the theory also contains its limits.
When the disorder is reduced such that the mean-free-path becomes longer than the
distance between the contacts, then the quantum-limited (and universal) minimum
conductivity of �min D 4e2=�h should emerge. Achieving this is simpler than one
might imagine – rather than looking for cleaner samples, one just needs to make
closer contacts. Similarly, for graphene, we have rs � 2 so that interaction effects
are weak. But strained graphene or graphene in a large magnetic field, or some of
the new Dirac fermion systems found on the surface of topological insulators have
stronger interactions. There will certainly continue to be exciting new directions and
ever-more exotic mechanisms to be discovered in graphene transport experiments
in the future; however, we remain convinced that these will be observed as strong
deviations from the weak coupling theory presented here.
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Chapter 13
Exploring Quantum Transport in Graphene
Ribbons with Lattice Defects and Adsorbates

George Kirczenow and Siarhei Ihnatsenka

Abstract The reader is introduced to the Landauer theory of quantum transport
in the context of graphene nanoribbons as well as to the geometries and electronic
structures of and ballistic quantum transport in ideal ribbons. Imperfections present
in ribbons that are realized in the laboratory, including carbon atom vacancies, edge
disorder, long-ranged defect potentials and covalently bonded adsorbates including
H, F, O, and OH and their roles in quantum transport in the ribbons are then
considered. Quantum transport simulations for ribbons with these defects show that
carbon atom vacancies and adsorbates can give rise to quantized conductance steps
such as those observed experimentally in samples with conductances much smaller
than the conductance quantum 2e2=h. Adsorbate-induced scattering resonances in
graphene are discussed from the perspective of extended Hückel-based tight binding
models and T-matrix theory and the effects of the adsorbate-induced rehybridization
of the graphene from sp2 to sp3 bonding on these resonances are examined.
Transport gaps are shown to open in the conductances of graphene ribbons with
adsorbed H, F, O, and OH for electron Fermi energies in the vicinities of these
resonances.

Graphene nanoribbons are strips of graphene typically 20–100 nm wide but of
arbitrary length. In recent years, they have been attracting increasing experimental
[1–18] and theoretical [19–64] interest. Perfect graphene ribbons that are uniform
in width and are free from defects, adsorbates, edge roughness and other disorder
should at low temperatures be ideal quantum wires that transmit electrons ballisti-
cally (without scattering) and exhibit conductances that are quantized in multiples of
2e2=h. However, most ribbons realized experimentally to date have been far from
this ideal and electronic transport in them has been dominated by the effects of
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disorder. However, some recent experiments [3, 17] have begun to show evidence
of quantum transport phenomena that are indicative of a degree of order emerging
in the samples being studied. In this Chapter, we discuss electronic transport in
such ribbons where there is considerable disorder present but some quasi-ballistic
quantum transport phenomena can never the less be discerned.

The Chapter is organized as follows. We begin in Sect. 13.1 with an introduction
to the basic concepts of the Landauer theory of electronic transport in quasi-
one dimensional conductors that can be used to describe electrical conduction in
such ribbons. In Sect. 13.2 we discuss the geometry, and electronic structure of
ideal ribbons. Conductance quantization in ballistic nanostructures is then briefly
reviewed in Sect. 13.3. The basic concepts of electron transport in realistic graphene
nanoribbon devices are introduced in Sect. 13.4. The experimental discovery of
conductance quantization in strongly disordered ribbons is discussed in Sect. 13.5.
The different kinds of defects present in graphene nanoribbon devices are discussed
in Sect. 13.6 and a tight binding model that can be used to model the effects of
some of them is presented in Sect. 13.7. The results of numerical simulations of
electron quantum transport in graphene ribbons with carbon atom vacancies, edge
disorder and long ranged defect potentials within the framework of the tight binding
model described in Sect. 13.7 are discussed in Sect. 13.8. In Sect. 13.8.1, we discuss
how disorder-induced scattering suppresses ballistic conductance quantization in
graphene ribbons, as well as the specific ways in which the presence of carbon
atom vacancies, edge disorder and long ranged defect potentials affects the quantum
transport characteristics of the ribbons. In Sect. 13.8.2, we discuss the origin of the
enhanced electron backscattering at graphene ribbon subband edges that plays a key
role in the conductance quantization that has been observed in strongly disordered
ribbons. In Sect. 13.8.3, we discuss how the ribbon quantum transport characteristics
depend on the temperature. In Sect. 13.8.4, we discuss the transition with increasing
disorder from ballistic transport to the regime of strongly localized electronic states.
The results of the quantum transport calculations are compared with the experiments
in the linear and non-linear transport regimes in Sect. 13.8.5. We next turn to the role
of adsorbates in electrical conduction in graphene ribbons. In Sect. 13.9, we study
the scattering properties of H, F, OH and O adsorbed on graphene: In Sect. 13.9.1,
we explain how a tight binding Hamiltonian that incorporates the essential physics
of graphene with covalently bound adsorbates may be constructed on the basis of
extended Hückel theory. In Sect. 13.9.2, we show how this Hamiltonian can be
transformed into an equivalent effective Hamiltonian for graphene alone but with
modified site energies and hopping matrix elements. In Sect. 13.9.3, we explain
how T-matrix theory and Green’s functions describing the �-band electrons in
graphene can be used to study scattering of graphene electrons by adsorbed atoms
and molecules. In Sect. 13.9.4, we apply the results of the preceding Sections to
study the electronic scattering resonances that arise near the Dirac point energy of
graphene due to of H, F, OH, and O adsorbed on the graphene. Then in Sect. 13.10,
we apply what was learned in Sect. 13.9 to the problem of quantum transport in
ribbons with adsorbates: In Sect. 13.10.1, we construct minimal Hamiltonians of
graphene ribbons with adsorbates that make possible efficient and accurate quantum



13 Exploring Quantum Transport in Graphene Ribbons with Lattice 397

transport calculations for these systems, including the effects of the rehybridization
of the graphene from sp2 to sp3 bonding that occurs due to covalent bonding
of atoms and molecules to the graphene. The results of transport calculations for
graphene ribbons with adsorbed H, F, OH, and O are then discussed in Sect. 13.10.2.
Our conclusions are presented in Sect. 13.11.

13.1 Landauer Theory of Transport

In 1957, Landauer proposed [65] that conduction in one-dimensional systems could
be viewed as quantum transmission problem and this idea eventually evolved into
the Landauer transport formula [66–68] that is widely used to describe nanoscale
quantum transport today, [69] and will be applied to graphene nanoribbons in this
Chapter.

The graphene ribbons that we will consider are narrow wires made of a single
atomic layer of graphene with electrons allowed to move along the ribbon but meet-
ing impenetrable boundaries in transverse direction. To derive the relevant Landauer
formulae, let us assume that the electron phase-relaxation length is large and the de
Broglie wavelength of an electron is comparable to the width of the ribbon.

Consider a ribbon of length L bridging two macroscopic electrodes or electron
reservoirs. In the ribbon, the electron states are quantized in the direction transverse
to the length of the ribbon. Thus, they are characterized by their longitudinal
momenta k along the ribbon and an index l associated with their quantized trans-
verse nature that distinguishes between different states with the same longitudinal
momentum k. For each value of the index l , the energies El.k/ of these ribbon
states form a band called a subband. The electron density nl .k/ per unit length
corresponding to a given subband l in the range of longitudinal momentum between
k and k C dk is given by

nl .k/ dk D 2

L

L

2�
f .El.k//dk D 1

�
f .El .k//dk; (13.1)

where f .El .k// is the Fermi distribution function. Spin degeneracy is included
here and in the following. Let us assume for the moment ideal transmission
of electrons between the electrodes and the ribbon and that the electrons travel
through the ribbon ballistically, i.e., without scattering. Then for small bias voltages
applied between the electrodes the electrons injected into the nanoribbon from
each electrode can be regarded as being approximately in equilibrium and having
quasi Fermi levels (or more precisely electrochemical potentials) and associated
distribution functions fR.El.k// and fL.El .k// for electrons originating from the
right and left lead, respectively. Then the longitudinal electron current carried by
subband l (also referred to as “conducting mode l”) of the ribbon is given by

Il D �2
Z 1

�1
e�l .k/nl .k/dk D �2e

Z 1

0

j�l.k/j
�
fR.El.k//

2�
� fL.El.k//

2�

�
dk:

(13.2)
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Here �l .k/ D @El.k/=@.„k/ is the electron velocity along the ribbon in mode l .
In the zero temperature limit, the Fermi distributions are step functions. Then,
changing the variable of integration from k to El.k/, (13.2) takes the form

Il D � 2e
2�

Z �R

�L

@El

@.„k/
@k

@El
dEl D �2e

2

h

�R � �L
e

D 2e2

h
Vbias; (13.3)

where �R=L are the electrochemical potentials of the leads and their relative values
depend on the bias voltage Vbias so that �R � �L D �eVbias. From (13.3), we see
that the conductance G � @I=@Vbias for a single conducting mode, the so-called
conductance quantum, is

G0 D 2e2

h
: (13.4)

This is the maximum conductance of a single conducting mode with two spin
states. In practice, a mode is not necessarily fully conducting, because electrons can
backscatter within the nanodevice and at its connections to the electrodes. If this
occurs, the current is lower than that given by (13.2) and (13.3). Let the probability
for an electron with energy E to pass through the device from conducting mode j
in the left lead into conducting mode i in the right lead be denoted Tij .E/. Then
the total zero temperature conductance of the ribbon in the limit of low-applied bias
voltage has the form

G D 2e2

h

X

ij

Tij .EF/; (13.5)

where the sum is over the conducting modes i of the right electrode and j of
the left electrode at the electrode Fermi level and EF is the Fermi energy. This
equation is the so-called Landauer formula for the conductance. Equation (13.5) was
generalized later by Büttiker [70] to systems with arbitrary numbers of leads and that
generalization is now widely referred to as the Landauer–Büttiker formalism. The
Landauer–Büttiker formalism is applicable to the coherent transport regime where
it yields results equivalent to those obtained using the non-equilibrium Green’s
function techniques discussed in Chaps. 15–18.

Generalizing the above derivation to the case of non-zero temperatures yields

G D �2e
2

h

Z 1

�1
dE T .E/

@f .E/

@E
(13.6)

for the finite temperature conductance in the limit of low bias where T .E/ DP
ij Tij .E/ is the total transmission coefficient and f .E/ is the Fermi distribution

function.
Based on the above discussion it is evident that the properties of the electronic

subbands of graphene nanoribbons play a key role in electronic transport in these
systems. We will discuss these properties in the next Section.
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Fig. 13.1 Graphene ribbons with armchair and zizgag edges. N is the number of carbon atoms in
a cross section of the ribbon. The dashed rectangles mark a unit cell of the ribbon. a D 0:142 nm
is carbon–carbon distance

13.2 Subband Structure and Transport in Ideal Ribbons

In general, the subband structure of the graphene ribbons may be predicted from
the band structure of two-dimensional (2D) graphene [19]; see Chap. 9 for an
introduction to and detailed discussion of this topic. However, there are two
principal topologies of ordered graphene ribbon edges, armchair and zigzag, that
are shown in Fig. 13.1. They largely determine electron behavior in ideal ribbons. It
turns out that while the densities of states and conductances of armchair and zigzag
ribbons have many features in common, there are significant differences between
their subband structures that give rise to important differences in their transport
properties, as can be seen in Fig. 13.2.

A distinguishing feature of the band structure of graphene is the existence of
electron and hole branches that touch each other at two inequivalent points in the
first Brillouin zone [71, 72] that are referred to as the “Dirac points”. The electron
dispersion of 2D graphene at those points is approximately linear. The Dirac points
in the graphene ribbons are defined by projecting the Dirac points of 2D graphene
onto the longitudinal axes of the ribbons. They are located at k D 0 and k D ˙2�=3
for armchair and zigzag ribbons, respectively [19] and are indicated by the dashed
vertical lines in Fig. 13.2.

In Fig. 13.2, the electronic states at negative energies are filled while those at
positive energies are empty for pristine ribbons not subjected to external fields.
Thus, the armchair ribbon in Fig. 13.2a has an energy gap at the Fermi level and
is therefore semiconducting, while the armchair ribbon in Fig. 13.2b and the zigzag
ribbon in Fig. 13.2c have no such gap and are metallic. In general, an armchair
ribbon is semiconducting or metallic depending on its width. It is metallic when
the number of carbon atoms in the transverse direction equals to N D 3M � 1,
where M is an integer. For the semiconducting ribbons, the size of the direct gap
decreases with increasing ribbon width and tends to zero in the limit of very largeN .
Ribbon energy gaps can also be influenced by many-body electron interaction
effects [23, 27, 32, 40] by periodic modulation of the ribbon’s edge geometries [43]
and by edge reconstruction [8, 52].
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Fig. 13.2 The dispersion relation (left column), DOS (middle column), and conductance (right
column) for ideal armchair (a), (b), and zigzag (c) graphene ribbons. The dashed vertical lines in
the dispersion plots show the Dirac point location of 2D graphene projected onto the longitudinal
axis of the ribbon. Ma is the unit cell size of the ribbon: M D 3 for armchair and M D p

3 for
zigzag ribbons; a D 0:142 nm. The Dirac point corresponds to zero energy

For zigzag ribbons, a unique and remarkable feature is present in the band
structure, as is shown in Fig. 13.2c: The highest valence band state and the lowest
conduction band state for the zigzag ribbons are always degenerate at k D � (at zero
energy in Fig. 13.2c) and the corresponding wave functions are completely localized
on the edge sites of the ribbon [19, 20, 25]. These two bands are almost flat and lie
very close to the Fermi level in a range of k within the region 2�=3 � jkj � � . It
has been suggested theoretically [21,22,24,31,39–41,49–51,54,64,73–78] that this
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flat dispersion at the Fermi level may give rise to magnetism; however, we shall not
discuss this further here.

As is also seen in Fig. 13.2c, the second lowest conduction band shows a dip
not far from jkj D 2�=3 where the second highest valence band shows a rise.
These bands approach each other as the width N of the ribbon increases, ultimately
reproducing the electronic structure around the Dirac K point in 2D graphene.

The densities of states (DOS) and the zero temperature conductances for the
representative ideal ribbons are also shown in Fig. 13.2. The conductances of the
ideal ribbons are given by [20, 26, 28, 29, 35, 38, 42, 44–46, 55]

Gideal D 2ne2=h (13.7)

where n is the number of ribbon subbands that are present at the electron Fermi
energy that is taken to be equal to the electron energy plotted on the vertical axes
in Fig. 13.2. Here it is assumed that the electron Fermi level in the ribbon can be
swept through the energy range shown in Fig. 13.2, for example, by varying the
voltage on a gate that is close to the ribbon (see Fig. 13.3) as is commonly done
in nanoribbon transport experiments. [1–7, 9, 10, 12–15, 17] (13.7) follows from the
Landauer formula (13.5) with Tij .EF/ D ıij for the subbands i; j that are present
at the Fermi energyEF. The DOS in Fig. 13.2 exhibit sharp peaks at the band edges,
and the associated conductance changes there by one conductance quantum 2e2=h.

Here we should note that the graphene ribbons are not strictly one-dimensional
systems. They are rather two-dimensional structures having a finite width in a way
similar to semiconductor quantum wires patterned in a two-dimensional electron gas
[79]. There are two components of the total electron energy: transverse and longitu-
dinal. The transverse energy is related to quantization of electron momentum in the
transverse direction, while the longitudinal energy is associated with free electron
motion along the ribbon. When a new transverse energy level (subband) becomes
populated at a given energy, a continuous energy spectrum of subband states opens

Fig. 13.3 Schematic depiction of a graphene ribbon device, not drawn to scale. The ribbon is
contacted by metal source and drain electrodes and is separated by a thin insulating layer from
a back gate electrode that acts as a capacitor plate and can thus be used to control the electron
density in the ribbon, or equivalently the location of the electron Fermi level relative to the Dirac
point energy of the ribbon
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up to longitudinal electron propagation, as is seen from dispersion relation and DOS
in Fig. 13.2. Note that close to the subband edges, the dispersion relation is well
approximated by parabola as in conventional semiconductor quantum wires. Thus,
the DOS diverges as .E � Ei/

�1 in that case, where Ei is the edge of the i -th
subband. For wide ribbons, the dispersion (not too close to the band edges) gradually
recovers the linear character of 2D graphene around the Dirac points at k D 0 and
k D ˙2�=3 for armchair and zigzag ribbons, respectively.

13.3 Quantized Ballistic Conductance

Conductance quantization in units of 2e2=h similar to that predicted for ideal
graphene nanoribbons [26, 28, 29, 35, 38, 42, 44–46, 55] as has been discussed
in Sects. 13.1 and 13.2 (and is depicted in the right column of Fig. 13.2) has
been observed experimentally in many mesoscopic systems, although not as yet
in graphene ribbons. Examples of systems in which this phenomenon has been
reported experimentally include semiconductor quantum point contacts [80, 81],
gold nanowires [82,83], carbon nanotubes [84] and, most recently, ballistic graphene
constrictions whose lengths are similar to or shorter than their widths [85].1

The seminal experiments of van Wees et al. [80] and Wharam et al. [81] on
quantum point contacts revealed conductance quantization staircases with up to
16 clearly visible steps. Their experimental samples were formed in the two-
dimensional electron gas at GaAs–AlGaAs interfaces. By applying a voltage to
the top gates, electrons were repelled beneath the gates and a constriction �200
nm wide was formed, separating two large electron reservoirs. The width of the
constriction was controlled by the gate voltage thus allowing varying numbers of
electron subbands to be occupied. Each subband (or channel) contributed 2e2=h to
the conductance in accord with the Landauer formula (13.5). The measured con-
ductance staircase was immediately attributed to quantized transverse momentum
in the constriction. The experimentally measured value 2e2=h of the individual
steps, 2e2=h, pointed to ballistic electron transport with no inter-channel mixing.
To observe the conductance steps, it was necessary for the constriction width to be
comparable to the electron Fermi wavelength and for the temperature to be lower
than subband energy separation. For constrictions of �200 nm, the latter means
operating temperatures of a few Kelvins or less.

Conductance quantization is observable at much higher temperatures, even room
temperature, in atomic constrictions as was shown in the experiments of Pascual
et al. [82, 83]. They fabricated a short gold nanowire that was progressively
elongated by pulling its two ends apart. Mechanical elongation is accompanied by

1Very recently S. Ihnatsenka and G. Kirczenow have demonstrated similar ballistic conductance
quantization theoretically in a tight binding model of graphene constrictions with mesoscopically
smooth but atomically stepped boundaries by means of million-atom quantum transport calcula-
tions.
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shrinkage of the wire diameter until the wire consists at its narrowest of a single
atom or chain of atoms, followed by rupture of the wire. The conductance measured
across the nanowire showed clear quantization steps when distinct electron channels
formed at particular atomic configurations in the constriction cross-section. Gold
nanowires displaying conductance quantization at room temperature generally have
lengths up to only several nanometers.

By contrast, carbon nanotubes with lengths up to 4 �m display ballistic electron
transport [84]. Carbon nanotubes can be regarded as rolled up sheets of graphene
and are routinely produced by chemical synthesis. Their extraordinary ballistic
properties are explained by their highly regular atomic structures that repeat
along the nanotube. Their measured conductances were found to be 2e2=h to
high precision. The experimental samples remained stable at high currents that
exceeded by many orders of magnitude of critical currents for superconductors
of comparable sizes. Such stability can be explained by energy dissipation in the
electron reservoirs, not in the ballistic channel itself, another feature of Landauer
transport theory [69].

13.4 Electron Transport in Graphene Ribbons

The ballistic transport that is a necessary prerequisite for the conductance quantiza-
tion that is observed in the systems discussed in Sect. 13.3 occurs in those systems
for different reasons: The material of the semiconductor quantum point contacts
is highly refined with very low concentrations of defects that can scatter electrons
within the conducting channel. Furthermore, the electrostatic potentials that define
the edges of the channel have smooth profiles and act as an electron waveguide
so that electrons in individual modes are typically either almost fully transmitted
through the point contact or fully reflected. For this reason, the value of

P
ij Tij

in (13.5) is typically close to an integer and conductance quantization is observed.
The ballistic transport in carbon nanotubes is possible because very pure and well
ordered carbon nanotubes form spontaneously by self-assembly and the same is true
of the gold atomic chains and single gold atoms that are responsible for conductance
quantization in gold atomic constrictions.

By contrast, the graphene nanoribbons used in transport experiments to date have
been fabricated using top-down techniques:2 A 2D graphene sheet is placed on a
substrate that consists of a conducting gate electrode covered by a thin insulating
layer that isolates the gate electrically from the graphene. Then, a ribbon is patterned
out of the graphene in a series of steps that include protecting the region of graphene
that is to become the ribbon with an etch mask and removing the surrounding
graphene by etching [1–3, 6, 7, 10, 12–14, 17]. Alternatively, ribbons have been
produced by chemomechanical breaking of graphene sheets suspended in solution

2A bottom-up method of fabricating very narrow graphene ribbons by self-assembly has been
demonstrated [16] but transport measurements on the ribbons produced in this way have not as yet
been reported.
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[4, 5] or by etching [9] or unzipping [11, 15] carbon nanotubes. In each case
metal contacts were placed on the ends of the ribbon. The objective has been to
produce a structure that, in its simplest form, is shown schematically in Fig. 13.3.
However the procedures used result in imperfections (not shown in Fig. 13.3) that
scatter electrons passing through the ribbon. The scattering mechanisms include:
Scattering at the edges of the ribbon that need not be atomically smooth, scattering
by graphene lattice defects such as carbon atom vacancies that may be introduced
in the fabrication process, scattering due to adsorbates on the graphene ribbon
that modify its electronic structure and scattering due to electrostatic interaction
of electrons in the ribbon with charged centers in the substrate, among others.

These scattering mechanisms result in low electron transmission probabilities
through the ribbons so that Tij � 1 in (13.5). Thus instead of conductances
quantized in integer multiples of 2e2=h transport experiments on graphene ribbons
to date have found transport gaps with low conductances for electron Fermi energies
near the Dirac point, and at low temperatures thermally activated electron transport
and conductances dominated by dense arrays of weak and narrow resonant peaks
as a function of gate voltage. These resonances are due in some cases to quantum
interference in the wave functions of electrons multiply scattered by defects [44]
and in others to Coulomb blockade that arises from the electrostatic fields due to
electrons trapped by irregularities in the ribbon geometry at various locations in the
ribbon [10, 30].

There have been many theoretical studies of electron quantum transport in
nanoribbons with disorder, and it has been concluded that ballistic conductance
quantization is destroyed and the conductances of ribbons are strongly suppressed
by the kinds of disorder discussed above, [28, 29, 35, 42, 44–46, 55] consistent with
the experimental findings.

13.5 Discovery of Quantized Conductance in Strongly
Disordered Graphene Ribbons

In view of the discussion in the preceding Section the recent experimental observa-
tion of quantized conductance steps in graphene nanoribbons by Lin et al. [3] was
unexpected and surprising. Some aspects of their data were particularly puzzling:

1. The heights of the conductance steps were two orders of magnitude lower than
conductance quantum 2e2=h.

2. The heights of the conductance steps decreased with increasing ribbon length.
3. The conductance steps were observed in a limited temperature range 15K< T <
80K.

Graphene ribbons, while having some unique electronic properties, do not differ
fundamentally from other mesoscopic systems and, therefore, under appropriate
conditions should exhibit 2e2=h quantization steps according to Landauer theory,
Sect. 13.1. However, the conductance quantization observed by Lin et al. [3] (and
subsequently also reported by Lian et al. [17]) was clearly a different phenomenon.
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To uncover possible reasons for the above puzzling behavior let us consider
closely the fabrication process [3]. The experimental devices (see Fig. 13.3) were
fabricated from a mechanically exfoliated graphene sheet. This was mounted on a
conducting p-doped Si substrate covered with a 300 nm-thick insulating SiO2 layer.
Pd metal contacts served as the source and drain electrodes while the Si substrate
acted as the back gate. Narrow ribbons of graphene were formed by oxygen plasma
reactive ion etching using a patterned hydrogen silsesquioxane (HSQ) layer as the
protective mask. The HSQ layer was finally removed in a hydrofluoric acid solution.
Removing the HSQ layer was found to be crucial in order to obtain a high electron
mobility and to observe conductance quantization in the graphene ribbon devices.
Transport measurements were performed in vacuum after annealing at 135oC to
remove physisorbed residues. An indirect indication of the high quality of the
fabricated samples was that the conductance minimum of the ribbon was found at
to be near zero gate voltage Vg � 0 in agreement with the Dirac point position of
graphene.

13.6 The Roles of Different Classes of Defects

While the experimental samples of Lin et al. [3] were of high quality, they were
clearly not totally free from disorder. Possible candidates for the imperfections
responsible for the measured conductances of these ribbons being much smaller than
2e2=h include: Adsorbed atoms and molecules residing on the graphene surface,
carbon atom vacancies in the interior of the ribbon, i.e., carbon atoms missing from
the honeycomb lattice, disorder in the ribbon boundaries, i.e., deviations from the
ideal armchair or zigzag edge geometries, and charged impurities in the substrate.

The influence of different kinds of imperfections on graphene nanoribbon
transport and their possible role in the phenomenon observed by Lin et al. [3]
will be considered below. It will be seen that quantized conductance steps with
heights much smaller than 2e2=h can occur in graphene nanoribbons with such
defects in a range of temperatures due to enhanced backscattering of electrons by
the imperfections whenever the edge of a subband of the ribbon crosses the Fermi
level [44, 55]. It will also be seen that if carbon atom vacancies in the interior of
the ribbon (we will also refer to these as “bulk vacancies”) or certain atoms or
molecules chemisorbed on the graphene ribbon are the primary defects responsible
for backscattering the electrons then the quantized conductance steps are of equal
height [44, 55] as was observed by Lin et al. [3] and Lian et al. [17].

We will focus initially on three disorder types, namely interior vacancies, edge
imperfections, and long-range potentials due to charged impurities [44]. Other
disorder types such as weak short-range potentials due to neutral impurities [86],
and lattice distortions [8, 23], may be present, but the three disorder cases to be
discussed here have a stronger impact on transport through nanoribbons and thus
are more relevant to the strong conductance suppression reported in [3]. Adsorbates
chemisorbed on the graphene ribbons can also have a strong effect on transport but
require separate consideration [55] and will be discussed in Sects. 13.9 and 13.10.
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13.7 Tight Binding Model of Ribbons with Edge Disorder,
Interior Vacancies, and Long-Ranged Potentials

For the purpose of carrying out numerical quantum transport calculations on
graphene nanoribbons with dimensions similar to those in current experiments it
is necessary to use small sets of basis functions to describe the electronic states. In
practice, this means working with tight-binding Hamiltonians such as

H D
X

i

�i a
�
i ai �

X

hi;j i
tij

�
a
�
i aj C h:c:

�
(13.8)

that provide the simplest description of the � band electrons of graphene and
graphene ribbons. Here, a�i creates and electron in the 2pz orbital of carbon atom i

of the graphene ribbon that is assumed to lie in the x � y plane. �i is the energy of
this atomic orbital. tij D t D 2:7 eV is the Hamiltonian matrix element between
the 2pz orbitals of nearest-neighbor carbon atoms i and j on the honeycomb lattice.
This Hamiltonian is known to describe the � band dispersion of graphene well at
low energies [71, 72, 87]. Interior vacancies and edge disorder are introduced by
randomly removing carbon atoms and setting appropriate hopping elements tij to
zero [44]. This model of interior vacancies is a simplified one. However it will be
seen below that it is able to account very well [44] for the experimental data of Lin
et al [3]. Also, in Sect. 13.10.2 we shall show that it yields ribbon conductances
that are in quantitative agreement with those obtained from a sophisticated model
of ribbons with adsorbed hydrogen atoms. It will be assumed here that atoms at the
edges are always attached to two other carbon atoms and passivated by a neutral
chemical ligand, such as hydrogen. In what follows, we shall disregard the effect
of modification of the hopping integrals tij close to the ribbon edges due to any
deviations in the atomic spacings at the edges from the bulk graphene geometry. The
interior and edge disorder will be characterized by the probability of the relevant
carbon atoms being removed, pb and pe , respectively. pb is normalized relative
to the whole sample, while pe is defined relative to an edge only. The long-range
potential due to charged impurities will be approximated by a Gaussian form [38,42]
of range d : �i D P

r0
V0exp.� jri � r0j2=d2/, where both the amplitude V0 and

coordinate r0 are generated randomly.

13.8 Numerical Simulations of Quantum Transport

We will discuss conductances of graphene nanoribbons in the limit of low applied
bias calculated [44] at zero and nonzero temperatures within the Landauer for-
malism described in Sect. 13.1 based on the tight-binding models outlined in the
preceding Section.
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While there have been many numerical studies of the effects of disorder on
transport in graphene ribbons [28, 29, 35, 38, 42, 44–46, 55], we will focus here
on identifying and studying mechanisms that can account for the conductance
quantization observed by Lin et al. [3] and the specific properties of different defect
types that may be relevant. Thus in the calculations [44] that we shall discuss
geometries similar to those studied experimentally by Lin et al. [3] were chosen.
The disorder was assumed to exist in a finite ribbon of width W and length L. This
ribbon was assumed to be attached at its two ends to semi-infinite leads represented
by ideal ribbons also of width W . In what follows the edge configuration (before
disorder is introduced) will be taken to be of the armchair type. Representative
disorder geometries are shown in the insets in Figs. 13.4a–13.6a.

The total electron transmission probability T .E/ through the ribbon that enters
the Landauer formulae (13.5) and (13.6) was calculated [44] by the recursive
Green’s function method that is discussed in detail in [34]. Fluctuations of the
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conductance defined by rms.G/ D .
˝
G2
˛ � hGi2/1=2 were also calculated [44].

Here, hi denotes averaging over an ensemble of samples with different realizations
of disorder. For the results shown here, [44] averaging was carried out over ten
realization for each disorder type.

13.8.1 Disorder-Induced Conductance Suppression,
Fluctuations and Destruction of the Ballistic
Quantized Conductance Plateaus

Figures 13.4–13.6 show the effect of the different kinds of disorder on conduction
in the ribbons. For each disorder type, the defect concentration and strength and the
ribbon width are kept fixed (W D 30 nm) and its length L is varied. The shortest
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ribbons are almost ballistic and display quantized ballistic conductance values close
to those for ideal ribbons (the dotted lines in Figs. 13.4a,b–13.6a,b). AsL increases,
the number of scattering centers in the ribbon grows, the conductance decays and
quantization steps are destroyed.

For interior vacancy disorder, even a small concentration of the defects affects
the conductance strongly; see Fig. 13.4a, b. Apart from reduced conductances,
the disorder results in sample-specific conductance fluctuations (see Fig. 13.4c)
whose amplitude is of order e2=h, independent of energy or ribbon length. This
is a quantum interference effect similar to the universal conductance fluctuations
(UCFs) of mesoscopic metals [88]. The particular value of the conductance depends
sensitively on the electron energy, ribbon length and locations of the vacancies.
Since the vacancies are distributed over the whole sample, intra-subband scattering
predominates. Thus, the conductance in Fig. 13.4a, b (coarse grained in energy to
smooth out UCF’s) scales down uniformly as the ribbon length L increases, i.e., in a
similar way for all subbands. This resembles bulk island scattering in conventional
quantum wires [89].
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By contrast, for edge disorder the conductance scales non-uniformly as is seen
in Fig. 13.5a, b: Defects at the boundaries scatter electrons equally into all subbands
resulting in stronger suppression of the conductance at higher energies E where
more subbands are available; see, e.g., the L D 1;000 nm ribbon in Fig. 13.5a, b.

Potential inhomogeneities due to charged impurities lead to the appearance of
electron and hole puddles in graphene nanoribbons [90]. Transmission through the
puddles results in subband mixing that smears conductance steps as can be seen
in Fig. 13.6a, b. As the subband number increases, intervalley scattering becomes
more effective with stronger backscattering of higher subband states in long ribbons.
The first subband, however, is not affected by the long-range potential because of
internal phase structures of its wave function that make the scattering amplitude
vanish [38]. The conductance fluctuations are roughly twice as strong for potential
inhomogeneities due to charged impurities (Fig. 13.6c) as for interior vacancies
and edge disorder (Figs. 13.4c and 13.5c). This may be due to weaker intervalley
scattering for which electrons at theK andK 0 Dirac points contribute independently
to the UCFs [28]. The fluctuation amplitudes agree reasonably well with the value
for UCFs in quasi-1D systems [88], 0:729 e

2

h
.

13.8.2 Conductance Dips at the Edges of Ribbon Subbands

A prominent effect for each type of disorder is the formation of a conductance dip
when the Fermi level crosses a subband edge. This is most obvious in the averaged
conductance hGi, Figs. 13.4b–13.6b. The origin is the strong intersubband scattering
caused by defects, where an electron in a state jnki scatters into another state jn0k0i.
It can be understood physically by considering the Fermi Golden rule expression for
the scattering time 	 [79]:

1

	
D 2�

„
X

n0

ˇ
ˇ˝nk

ˇ
ˇH 0ˇˇ n0k0˛ˇˇ2 �n0 .E/ : (13.9)

Here, H 0 is the perturbation to the Hamiltonian that is due to defects and �n0 .E/

the density of states of the n0-th subband. Assuming that jhnk jH 0j n0k0ij2 is
independent of the band index n0, the scattering rate 1=	 in (13.9) is proportional
to the total density of states of the ribbon, �.E/ D P

n0 �n0.E/, i.e., to the
density of final states available for the scattering process. For a perfect ribbon, the
dispersion relation can be approximated by a parabolic function if k is small and
jnj > 1 [33]. Therefore, �.E/ diverges at subband thresholdsEn0 as .E �En0/�1=2.
This agrees with the numerically calculated density of states for the tight-binding
Hamiltonian (13.8); see the grey areas in Figs. 13.4b–13.6b. Thus, the scattering
time 	 is strongly reduced when the Fermi energy crosses a subband threshold En0

and the transmission of electrons in the n-th subband is strongly suppressed due the
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back-scattering of electrons into the n0 subband. As a result, the conductance shows
dips at the subband edges.

13.8.3 The Role of Temperature

In the finite temperature Landauer formula (13.6), the electron transmission prob-
ability T .E/ (that according to (13.5) is proportional to the zero temperature
conductance) is convoluted with the energy derivative @f .E/

@E
of the Fermi function.

j @f .E/
@E

j is strongly peaked around the electron chemical potential with a peak width
proportional to the temperature. Thus as the temperature T increases, features in
plots of the zero temperature conductance vs. the electron Fermi energy whose
spacing is much smaller than 4�kBT become smeared out.

Thus, as can be seen in Fig. 13.7, the conductance fluctuations that are very
prominent at zero temperature have been completely smeared out thermally at
temperatures �80K. The dips in the conductance associated with enhanced electron
back scattering when the Fermi level crosses subband edges also broaden but
remain very prominent in the conductance profile up to temperatures T not greatly
exceeding the subband energy separation, i.e., for 4�kBT � 
E D EnC1 � En.
For graphene ribbons 30 nm wide
E � 0:02t D 54meV (see Fig. 13.4a, b) which
corresponds to T � 
E

4�kB
D 50K. Above this temperature, the conductance dips

are gradually smeared out, but well below it the conductance may be dominated
by UCF’s of the disordered ribbon. This estimate is in good agreement with the
calculations presented in Fig. 13.7, where ribbons with different disorder types are

Fig. 13.7 From [44]. Conductances of disordered ribbons with interior (bulk) carbon atom
vacancies, edge disorder, and long-range potential disorder vs. the electron Fermi energy for
temperatures T D 0; 80; 300 K. The ribbons have width W D 30 nm and length L D 1;000 nm.
The parameters of the disorder are listed in Figs. 13.4–13.6. The Dirac point is at E D 0. The thin
solid vertical lines mark the energies at which the number of subbands changes by one. For the
sake of clarity, the curves for the long-range potential are shifted upward by 2e2=h
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subjected to temperatures T D 0 K, 80 K and 300 K: The conductance dips at
subband edges manifest as the smooth conductance oscillations that are clearly
visible for T D 80 K. They are very regular and are superimposed on a smoothly
rising background for the case of the interior (bulk) vacancies, but become very
distorted when edge disorder or long-range potentials are the dominant scatterers,
except for the first two or three oscillations in the case of the edge disorder. As
will be seen in Sect. 13.8.5 for appropriate defect concentrations and temperatures,
this phenomenon manifests as quantized conductance steps of equal height in
quantitative agreement with those observed by Lin et al. [3].

13.8.4 From Ballistic Transport to Anderson Localization

It was first pointed out by Anderson [91] that the presence of disorder can
result in electronic states of conductors becoming spatially localized. Because of
this, if random defects are introduced even at low concentrations into a quasi-
one dimensional conductor of infinite length the system becomes an insulator at
zero temperature. For quasi-one dimensional systems of finite length an important
quantity characterizing the disorder is the localization length � that is a measure of
the typical spatial extent of the electronic wave functions in an infinite system with
the same concentration of disorder.

The nature of the transport regime in a particular system is controlled largely by
the relationship between the localization length � and the lengthL of the quasi-one-
dimensional system: If � & L, the regime is quasi-ballistic. If � � L the system is
in the strong localization regime. The latter is also referred to as the hopping regime
and can be characterized by two properties: Firstly, the decrease of the average zero
temperature conductance with increasing L is exponential and mainly determined
by � and, secondly, the conductance depends exponentially on the temperature. An
intermediate regime of diffusive transport was studied in [92, 93] for the ribbons
with long-range scattering potentials. Ribbons with this kind of disorder were found
to undergo a transition from ballistic to diffusive transport when the ribbon length or
disorder strength increases. The diffusive transport was characterized by a � � E2

power law dependence of the conductivity � on the energyE and by the mobility �
being independent of the electron density n [92]. The conductivity follows universal
scaling curves as the density varies and depends solely on the disorder strength and
the ratio of sample length to disorder correlation length [93]. In contrast, the ballistic
transport regime follows � � E and � � n0:5 dependences [92]. These different
dependences may be relevant when experimental data are analyzed and interpreted.

Electron localization due to different kinds of disorder in graphene ribbons
has been discussed in [35, 42, 44, 53, 59], among others. In Fig. 13.8, we present
numerical results for the average conductances of graphene ribbons as a function of
ribbon length L for different cases of disorder. The energies are chosen at the third
and seventh plateaus,E � 0:34t andE � 0:78t , respectively, see Fig. 13.4a, b. The
value for the localization length can be estimated from Fig. 13.8, where hGi is fitted
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Fig. 13.8 Average conductance as a function of ribbon length calculated for different types of
disorder. Averaging is performed over different realizations of disorder and Fermi energies at
third (n D 3) and seventh (n D 7) conductance plateau, see Figs. 13.4–13.6. The values of
the parameters characterizing the disorder are as in Figs. 13.4–13.6. The localization length � is
determined by the slope of the hGi D hG.L/i plot in accordance with (13.10)

Table 13.1 Localization length � for disordered graphene ribbons with concentrations pb , pe , and
� of interior (bulk) carbon atom vacancies, edge disorder and defects with long ranged potentials,
respectively

� (nm)

n D 3 (E � 0:34t ) n D 7 (E � 0:78t )

pb D 10�4 520 523
pb D 4� 10�4 190 481
pb D 8� 10�4 96 418
pe D 0:05 2,109 1,428
pe D 1 105 752
pe D 2 91 623
� D 5� 1015 m�2, jV0j � 0:1t , d D 10a 2,500 1,782
� D 1016 m�2, jV0j � 0:1t , d D 10a 1,354 854
� D 5� 1015 m�2, jV0j � 0:2t , d D 10a 661 585
� D 5� 1015 m�2, jV0j � 0:1t , d D 20a 1,535 1,116
See the insets in Fig. 13.8a–c. The electron energies are those at which the ribbons with no disorder
exhibit the n D 3 and 7 conductance plateaus in Fig. 13.4

with a straight line and � is determined from its slope [42],

1

�
D �@ ln hGi

@L
(13.10)

for ribbons of length L � �. Exponential decay signals that transport is gov-
erned by the Anderson localization. Strong scattering by disorder can result in
severe quantum interference that completely halts the electron waves inside the
random medium. As the disorder concentration increases, the localization length
� decreases, see Table 13.1. It drops especially strongly for low energies, and
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� � L for the highest concentrations of carbon atom vacancies or edge disorder
in the ribbon. However, for all other cases in Table 13.1 the disordered ribbons
are not in the strong localization regimes. The disorder concentrations that result
in conductances similar to those of the experimental samples of Lin et al. [3] are
relatively small and their samples, therefore, were not in the strong localization
regime. That is, the localization lengths were merely comparable to the ribbon
lengths, � � L, in their experiment [3]. This conclusion is also supported by the
temperature dependence of their measured conductances which was clearly not in
an exponential regime [3]. Thermally activated transport including variable range
hopping has, however, been reported experimentally in other graphene nanoribbons
[12, 14].

13.8.5 The Quantized Conductance in Disordered Ribbons:
Theory vs. Experiment

The conductances of the graphene ribbons measured by Lin et al. [3] were 65–
260 times smaller than the conductance quantum and also much smaller than the
conductances of the model systems studied above in Figs. 13.4–13.7. However,
the ideas developed above apply equally well to the lower conductance regime in
which the experiments were carried out and are able to account quantitatively for
the conductance quantization that Lin et al. [3] observed. We demonstrate this next
[44] by presenting simulations for ribbons with the same sizes as in the experiments
[3] and with defect concentrations chosen to yield low conductances similar to those
measured by Lin et al. [3].

Figure 13.9 shows the calculated conductances hGi of the disordered ribbons
together with the experimental results from [3]. The features in the theoretical plots
that match the experimental conductance plateaus are the conductance dips that
are due to enhanced electron back scattering at the energies of the subband edges
of the nanoribbon that we have already discussed in Sects. 13.8.2 and 13.8.3 in
connection with Figs. 13.4–13.7. The agreement between theory and experiment
is remarkable, especially for the heights of the conductance plateaus. Based on
these results, it is clear that the conductance quantization observed by Lin et al.
[3] can be accounted for very well if the dominant scattering mechanism in their
ribbons is due either to interior carbon atom vacancies alone or to a combination
of rough edges with a lower concentration of interior vacancies. The presence of
the latter is crucial because they equalize the differences between the conductances
of the different plateaus making them equidistant. In particular, we found [44] that
pb D 4 	 10�4 interior vacancies are enough to reduce the conductances of the
quantized plateaus by a factor of 65 relative to the conductance quantum 2e2

h
, in

accord with the experiment [3]; see the solid line in Fig. 13.9a. This means that one
in 2,500 carbon atoms has been removed, which seems possible. The other scenario
consists of distorted edges with two rows of carbon atoms removed on average along
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a b

Fig. 13.9 From [44]. Comparison of theoretical and experimental data for ribbons of width
W D 30 nm and length L D 850, and 1;700 nm. The experimental data is from [3]. Theoretical
calculations are performed for two disorder cases: (a) Only interior (bulk) vacancies with pb D
4 � 10�4 (solid curve), and a combination of edge disorder pe D 2 and interior vacancies
pb D 10�4 (dotted curve); (b) pb D 8�10�4, and combination of pe D 3:5 and pb D 2�10�4.
E is the electron Fermi energy measured from the Dirac point where E D 0. The gate voltage Vg

is scaled to produce better fit; note that E � p
Vg � VD where VD is the gate voltage at which the

Fermi level crosses the Dirac point, as is discussed in [94]

the boundaries and also one in 10,000 interior carbon atoms removed, pe D 2 and
pb D 10�4, see the dotted line in Fig. 13.9a. For the longer L D 1; 700 nm ribbon,
the height of conductance steps drops to a factor 260 lower than the conductance
quantum, Fig. 13.9b. This implies defect concentrations twice those of the shorter
L D 850 nm experimental ribbon. The lower temperature in Fig. 13.9b results in
stronger conductance fluctuations than in Fig. 13.9a; the fourth plateau being not
discernible in the experimental data [3] in Fig. 13.9b may also be due in part to a
particular disorder configuration. However, all visible conductance plateaus are due
to subband formation associated with particle motion quantized in the transverse
direction. At much lower temperatures in our simulations these conductance
plateaus are not discernible due to UCF’s and they also disappear completely at
room temperature, behavior similar to that in Fig. 13.7, and completely consistent
with the data of Lin et al. [3].

Another interesting aspect of the conductance quantization in disordered ribbons
was observed by Lin et al. [3] in the nonlinear transport regime: With increasing bias
voltage applied between the source and drain electrodes, the quantized conductance
plateaus were found by Lin et al. [3] to shift upward for both electron and hole
conduction. It was suggested [3] that this effect was due to the increase with
increasing bias of the number of subbands that are present in the energy window
between the source and drain electrochemical potentials and therefore contribute to
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transport. By contrast, recent quantum transport simulations [56] showed that in bal-
listic ribbons increasing the source-drain bias results in narrowing of the quantized
conductance plateaus and a corresponding broadening of the transitions between
them, and not increasing quantized conductance values. However, the simulations
also showed [56] increasing quantized conductance values with increasing source-
drain bias (similar to the nonlinear transport phenomenon reported by Lin et al.
[3]) in disordered ribbons provided that the electrostatic potential in the ribbon is
pinned to that of the (electron) drain for electron transport and to the source for
hole transport in the ribbon. Consistent with this finding, calculations of potential
profiles in gated ribbons under source-drain bias have indeed shown [57, 58] that
the potentials in such ribbons can be nearly flat except near the ends and it has been
suggested [56] that most of the potential drop along the ribbons of Lin et al. [3]
may occur near the end of the ribbon at which the carriers enter due to the strong
disorder-induced electron backscattering in those ribbons.

13.9 Adsorbates on Graphene and Dirac Point Resonances

In the preceding Section, we have demonstrated [44,56] that it is possible to account
quantitatively for the conductance quantization phenomena observed by Lin et al.
[3] in disordered graphene ribbons if it is assumed that carbon atom vacancies are
present in the interior of the ribbons and are responsible for much of the electron
scattering in these systems, even when other defects such as edge disorder contribute
significantly to electron scattering in the ribbons as well. However, whether carbon
atom vacancies were actually present in the samples of Lin et al. [3] in the required
concentrations was not determined experimentally [3]. On the other hand, many
chemical species are known to adsorb readily to graphene [55, 59, 62, 63, 95–101]
(see Chap. 4) and it is reasonable to expect atomic and molecular species to be
adsorbed on ribbons prepared using presently available fabrication techniques. For
example, adsorbed H, F, and O atoms and OH molecules may have been present
on the ribbons of Lin et al. [3] that were made by oxygen plasma reactive ion
etching using a hydrogen silsesquioxane etch mask that was later removed in a

Fig. 13.10 Relaxed geometries of H, F, OH, and O on graphene. The H, F, and OH bond over
a single carbon atom of the graphene [108]. The O bonds over a bridge site between two carbon
atoms. The carbon atoms to which the H, F, OH, and O bond are pulled out of the graphene plane by
the adsorbed moiety by 0.35, 0.36, 0.41, and 0.27Å. This is associated with partial rehybridization
of the graphene occurring locally from sp2 to sp3 bonding. Adapted from [55]
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hydrofluoric acid solution. These adsorbed species bond covalently to graphene
and strongly affect its electronic structure: As is shown in Fig. 13.10, the graphene
carbon atoms to which the atoms or molecules bond move out of the graphene plane
toward the adsorbed moiety by substantial fractions of an Angstrom and thus partial
rehybridization of the graphene electronic structure occurs locally from the sp2

bonding of the planar graphene to the sp3 bonding characteristic of carbon atoms in
tetrahedral geometries. As a result, it is reasonable to expect these adsorbed species
to strongly scatter electrons in graphene ribbons.

The scattering of the electrons in graphene by covalently bonded adsorbates
and other impurities and defects that couple strongly to the graphene has been
predicted theoretically [55, 101–107] to have an unusual property: Instead of
scattering resonances occurring near the energies of atomic or molecular orbitals
of the adsorbate or impurity as would be the case for a weakly couple adsorbate, the
strongly coupled moieties gives rise to strong scattering resonances at energies close
to the Dirac point energy of graphene. We will describe a theoretical methodology
[55] for studying these “Dirac point resonances” in Sects. 13.9.1–13.9.3. Then
we will discuss their properties [55] for adsorbates on infinite two-dimensional
graphene in Sect. 13.9.4 and their role in electron transport in graphene ribbons with
adsorbed H, F, and O atoms and OH molecules [55] in Sect. 13.10.

In our discussion of the Dirac point scattering resonances due to adsorbates on
graphene, we will adopt an approach [55] based on a tight-binding Hamiltonian
Ha that is a generalization of the Hamiltonian H given by (13.8) since such
tight binding models are suitable for transport calculations on ribbons that have
dimensions similar to those being studied experimentally at the present time and
therefore contain large numbers of carbon atoms.

13.9.1 Tight Binding Hamiltonian for Adsorbates on Graphene

The tight binding HamiltonianHa that we consider has the form [55]

Ha D H0 C
X

˛

�˛d
�
˛d˛ C

X

˛;j

 j̨

�
d�˛aj C h:c:

�
; (13.11)

where

H0 D �
X

hi;j i
tij

�
a
�
i aj C h:c:

�
(13.12)

describes the graphene � band electrons as in (13.8) with the energy scale chosen
so that the energy of the 2pz orbitals of the graphene carbon atoms (�i in (13.8))
is set to zero. aj is the destruction operator for an electron in the 2pz orbital �j of

carbon atom j . d�˛ is the creation operator for an electron in an extended molecular
orbital (EMO)  ˛ that is associated with an adsorbed atom or molecule and �˛ is
the energy of that orbital. We define [55] an EMO associated with an adsorbed atom
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or molecule as a linear combination of the valence orbitals of the adsorbed moiety
and of certain valence orbitals of the graphene carbon atom(s) to which that moiety
bonds and of nearby graphene carbon atoms. The carbon valence orbitals included
in the EMOs are those other than the 2pz orbitals of the graphene � band that are
already included in the theory through the term H0 in (13.11).

Inclusion of the graphene carbon orbitals other than the 2pz orbitals (i.e., the
carbon 2s, 2px, and 2py orbitals of the carbon atom(s) to which the adsorbed atom
or molecule bonds and of its nearest carbon atom neighbors) in the theory in this
way turns out to be important as these orbitals take part in the rehybridization of the
graphene from sp2 to sp3 bonding induced by the adsorbate that strongly affects the
electronic structure of the system and its transport properties.

The last term on the right in (13.11) describes the coupling between the
graphene � band and the EMOs associated with the adsorbate. We estimate the
relaxed geometry of the graphene and adsorbate from first principles using density
functional theory-based calculations [109] and then use the semi-empirical extended
Hückel electronic structure model [69], the version of extended Hückel theory that
we use here is that of [110], to estimate the values of the tight-binding parameters
�˛ and  j̨ that enter the model Hamiltonian (13.11) as will be explained next.

Extended Hückel theory (see also Chaps. 17 and 18) is formulated in terms of
small basis sets of Slater-type atomic orbitals fj�iig, their overlaps Sij D ˝

�i j�j
˛
,

and a Hamiltonian matrix Hij D ˝
�i jHj�j

˛
. The diagonal Hamiltonian elements

Hi i D Ei are the experimentally determined atomic orbital ionization energies Ei .
We approximate the nondiagonal Hamiltonian matrix elements by Hij D .1:75 C

2
ij � 0:75
4

ij /Sij
�Ei C Ej

�
=2, where 
ij D .Ei � Ej /=.Ei C Ej /, a form chosen

by Ammeter et al. [110] for consistency with experimental molecular electronic
structure data.

In recent years, transport calculations based on electronic structures derived from
extended Hückel theory have yielded elastic tunneling conductances [111–114] as
well as inelastic tunneling spectra [115] in agreement with experiment for molecules
bonded to metal electrodes and have accounted for transport phenomena observed
in molecular arrays on silicon [116, 117, 128] as well as electroluminescence data
[118], current-voltage characteristics [118] and STM images [119] of molecules on
complex substrates.

In the version of extended Hückel theory that we use here [110], the carbon
2pz orbital energy is the ionization energy ECpz

D �11:4 eV. Accordingly, for
consistency with (13.12) where the carbon 2pz orbital energy is chosen to be
zero, we make the replacement Hij ! Hij � SijECpz

in the extended Hückel
Hamiltonian matrix, adjusting the nondiagonal as well as the diagonal Hamiltonian
matrix elements as is discussed in [120].

Now let HR
ij and SR

ij be the extended Hückel Hamiltonian and overlap matrices
defined as above but restricted to the Hilbert subspace R spanned by the valence
orbitals of the adsorbate and valence orbitals of the graphene included in the EMOs
associated with the adsorbed atom or molecule. HR

ij and SR
ij are calculated [55] for

the relaxed geometries shown in Fig. 13.10. Then the extended Hückel Schrödinger
equation HR ˛ D �˛S

R ˛ is solved for the energy eigenvalues �˛ of the EMOs



13 Exploring Quantum Transport in Graphene Ribbons with Lattice 419

that enter (13.11) and for the corresponding eigenvectors  ˛ . Finally, the matrix
elements  j̨ D h ˛jHj�j i of the extended Hückel Hamiltonian between the 2pz

orbital �j of carbon atom j and EMO  ˛ are calculated.

13.9.2 Effective Hamiltonian for Adsorbates on Graphene

In the simplest possible model of an adsorbate represented by just one atomic
orbital ˛ that couples only to the 2pz orbital of only one carbon atom j of
the graphene, the tight-binding Hamiltonian of the graphene and adsorbate is

H1 D H0 C �˛d
�
˛d˛ C  j̨

�
d
�
˛aj C h:c:

�
where the notation is as in (13.11). The

eigenstate j� i ofH1 with energy eigenvalue � can be written as j� i D j�gi C j�ai
where j�gi and j�ai are the projections of j� i onto the space spanned by the 2pz

orbitals of graphene and onto the orbital of adsorbed atom, respectively. With these
definitions, it has been shown [105] that j�gi is an exact eigenstate of an effective

HamiltonianHeff D H0 C Vj a
�
j aj with the same energy eigenvalue � as j� i. Here,

Vj D 2j̨ =.� � �˛/. Thus for the purpose of calculating the transport coefficients
of graphene with such an adsorbed atom, the Hamiltonian H1 can be replaced with
Heff, i.e., the Hamiltonian of graphene without the adsorbed atom but with an energy
dependent potential 2j̨ =.� � �˛/ on carbon atom j of the graphene sheet.

We have generalized this argument to the case of an adsorbed atom or molecule
with more than one EMO and/or bonding to more than one graphene atom [55]. The
result is an effective Hamiltonian

Heff D H0 C
X

i;j

Vij a
�
i aj (13.13)

with

Vij D
X

˛

˛i
�̨
j =.� � �˛/ (13.14)

where i and j label the graphene carbon atoms to which the adsorbate bonds and
˛ labels the EMOs associated with the adsorbate that are described in Sect. 13.9.1.
With this generalization, the effective Hamiltonian applies to the H, F, OH, and O
adsorbates that we consider and to many others. The generalization is required even
for the case of H which has only one valence orbital since in order to properly treat
the very important effects of the rehybridization of the graphene from sp2 to sp3

bonding induced by the adsorption of a H atom, it is necessary to include several
graphene carbon atom valence orbitals as well as the H valence orbital in the EMOs
of this system.
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13.9.3 The T-matrix Formalism

The T-matrix formalism of scattering theory (not to be confused with the trans-
mission probability matrix Tij .E/ of the Landauer transport formalism discussed
in Sect. 13.1) has yielded valuable insights into the resonant scattering of electrons
in graphene by impurities and adsorbates [55, 102, 104, 105, 107]. As will be seen
below, it can also be very helpful in both facilitating numerical studies of electron
transport in graphene ribbons and in interpreting the results [55]. The T-matrix is
defined [121] by

G D G0 CG0TG0 (13.15)

where G D .� C i� � Heff/
�1 is the full Green’s function based on the effective

HamiltoniansHeff discussed in Sect. 13.9.2 for a single adsorbed atom or molecule
andG0 D .�C i��H0/

�1 is the unperturbed Green’s function for � band electrons
in clean graphene with H0 given by (13.12). T characterizes the strength of the
scattering of electrons at energy � due to the presence of the adsorbate. It can be
written in the standard form [121]

T D V C VG0V C VG0VG0V C 
 
 
 (13.16)

where, according to (13.13) and (13.14), V D a
�
j aj

P
˛ j j̨ j2=.� � �˛/ for a H, F,

OH atom or molecule with EMOs ˛ bound to carbon atom j. For an O atom with
EMOs ˛ bound to two neighboring graphene C atoms 1 and 2, V D V11a

�
1a1 C

V22a
�
2a2 C V12a

�
1a2 C V21a

�
2a1 where Vnm D P

˛ ˛n
�̨
m=.� � �˛/.

Taking matrix elements of (13.16) between the graphene 2pz orbitals of the
carbon atom(s) to which the adsorbed atom or molecule binds and summing the
resulting series yields

QT D �
1 � QV QG0

��1 QV (13.17)

where for the O atom adsorbate QT , QV, QG0, and 1 are the 2	2 matrices hmjT jni,
hmjV jni, hmjG0jni, and ımn with jmi and jni being the 2pz orbitals of the carbon
atoms m and n to which the O atom bonds. Here, m D 1; 2 and n D 1; 2. For H, F,
and OH that bond to one C atom (labeled 1) QT , QV , QG0 and 1 are the scalars h1jT j1i,
h1jV j1i, h1jG0j1i, and 1 respectively.

Approximate analytic expressions for h1jG0j1i have been presented in [102,122–
125] and refined and also extended to h2jG0j1i (which is required for the case of O
adsorbed on graphene) in [55], the resulting expression being

h1jG0.�/j1i D �˛.�/p
3�t2

ln

�
�2p

3�t2 � �2

�
� i

j�jˇ.�/p
3t2

(13.18)

where ˛.�/ D 1:07.1 C 0:66�2=t2/ and ˇ.�/ D 1 C 0:31�2=t2 C 0:33�4=t4.
Comparison of (13.18) with the results of an exact numerical calculation showed
it to be accurate in the range j�j=t � 0:8 [55]. Here, t D 2:7 eV is the modulus of
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the Hamiltonian matrix element between the 2pz orbitals of nearest-neighbor carbon
atoms i and j of the pristine graphene lattice. h2jG0j1i can be obtained from (13.18)
using the identity [55]

h2jG0.�/j1i � 1

3t
� �

3t
h1jG0.�/j1i (13.19)

13.9.4 Dirac Point Scattering Resonances due to H, F, and O
Atoms and OH Molecules Adsorbed on Graphene

Estimating the values of the tight-binding parameters �˛ and  j̨ for the EMOs asso-
ciated with a particular adsorbed atom or molecule as is described in Sect. 13.9.1,
and using the analytic expressions (13.18) and (13.19) for the required Green’s
function matrix elements we have evaluated the matrix elements of the T-matrix
given by (13.17) as a function of the electron energy for a H, F, and O atom and
OH molecule adsorbed on graphene in the geometries shown in Fig. 13.10 [55]. The
square moduli of the matrix elements of the T -matrix calculated in this way are
shown vs. the electron energy � in Fig. 13.11. The effects of the adsorbate-induced
rehybridization of the graphene from sp2 to sp3 bonding are included since the
EMOs in this calculation are linear combinations of the atomic valence orbitals of
the adsorbed species and the 2s, 2px, and 2py valence orbitals of each of the carbon
atoms shown in Fig. 13.11 for the respective adsorbed species.3

The strength of scattering associated with a defect is in general proportional to
the square modulus of appropriate matrix elements of the T -matrix [121]. Thus, the
energies � at which resonant scattering by H, F, OH and O adsorbates should occur
are those at which jhmjT jnij2 have maxima. As can be seen in Fig. 13.11, strong
scattering resonances are predicted to occur in the vicinity of the Dirac point energy
� D 0 for all four adsorbed species. The electron energy �DR at which the resonance
is centered depends on the adsorbed species. �DR D �0:136t;�0:089t;�0:0026t
for F, OH, and H, respectively. For O, there is a narrow peak near 0:112t that
overlaps a broader peak centered near 0:090t . In addition to these Dirac point
resonance for O there is an antiresonance (i.e., deep minimum in the scattering
strength) near 0:55t .

By far the strongest resonance (and the closest one to the Dirac point) is found
for hydrogen. As will be seen in Sect. 13.10.2, electron scattering associated with
this resonance is so strong that in electron transport in nanoribbons the adsorbed H
atom scatters electrons in a way almost identical to a carbon atom vacancy, i.e., as
if the carbon atom to which the H atom binds is missing entirely from the graphene

3In general the EMOs  ˛ are not orthogonal to the 2pz orbitals �j of carbon atom(s) to which the
adsorbate bonds. We allow for this in our T-matrix calculations [55] by making the substitution
 j̨ !  j̨ � �� j̨ where � j̨ D h ˛j�j i as is discussed in [126, 127].
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Fig. 13.11 Calculated square
modulus of the T -matrix vs.
electron energy � for an H, F
or O atom or OH group
adsorbed on graphene. T and
� are in units of t D 2:7 eV.
The solid curves are for H
and F, OH is dashed, O is
dotted. The Dirac point of
graphene is at � D 0. For H,
F and OH, T D h1jT j1i. For
O the square of the Frobenius
norm of the matrix hmjT jni
is plotted. The effects of the
adsorbate-induced
rehybridization of the
graphene from sp2 to sp3

bonding are included in the
model. Adapted from [55]
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Fig. 13.12 Calculated square modulus of the T -matrix vs. electron energy � for an H, F or O atom
or OH group adsorbed on graphene, omitting the effects of the adsorbate-induced rehybridization
of the graphene from sp2 to sp3 bonding from the model. The Dirac point is at � D 0. Notation as
in Fig. 13.11. Adapted from [55]

lattice. The Dirac point resonances associated with the F, OH, and O adsorbates are
not as strong but, as will be seen below, never the less have a strong effect in electron
transport in graphene ribbons with those adsorbates.

In order to elucidate the role of the adsorbate-induced rehybridization of the
graphene from sp2 to sp3 bonding in the Dirac point scattering resonances we show
in Fig. 13.12 the results of a similar calculation to that for Fig. 13.11 but omitting
the carbon 2s, 2px, and 2py valence orbitals from the EMOs so that the effects of
the sp2 to sp3 rehybridization are omitted from the model used in Fig. 13.12. In
Fig. 13.12, the scattering resonances associated with the adsorbates are centered at
�0:222t;�0:194t;�0:138t , and 0:046t for F, OH, H, and O, respectively. Clearly
the sp2 to sp3 rehybridization is directly responsible for the H Dirac point resonance
being orders of magnitude stronger than the resonances of F, OH, and O in Fig. 13.11
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since there is no such striking difference between the H resonance and the others in
Fig. 13.12. The strengths of the resonances for the other adsorbates are not affected
as drastically by the rehybridization although there are large quantitative differences
in both the heights and positions of their peaks between Figs. 13.11 and 13.12. In
the case of O, there are qualitative differences as well: There are two overlapping
resonant peaks near the Dirac point in Fig. 13.11 where rehybridization is included
but only one peak in Fig. 13.12 where it is not. The antiresonance at 0:55t in
Fig. 13.11 is also absent in Fig. 13.12. As will be seen in Sect. 13.10.2, this scattering
antiresonance that occurs due to the rehybridization is associated with a strong peak
in the conductances of graphene nanoribbons that should be observable in transport
experiments.

Interestingly, the Dirac point resonances for O occur at energies above the Dirac
point in both models while those for H, F and OH occur below the Dirac point. This
difference is related to the fact that O bonds to two carbon atoms while H, F, and
OH bond only to one, although in general the signs of the energies at which the
resonances occur are influenced not only by the number of C atoms to which the
adsorbed species bonds but also by the values of the tight binding parameters �˛
and  j̨ .

13.10 Electron Quantum Transport in Graphene Ribbons
with Adsorbates

Recursive Green’s function-based quantum transport calculations [34] similar to
those presented in Sect. 13.8 for graphene ribbons with carbon atom vacancies, edge
disorder, and long-ranged potentials can be carried out [55] for graphene ribbons
with covalently bound adsorbates described by the tight binding model Hamiltonian
(13.11) developed in Sect. 13.9.1. However, the computing resources required for
such calculations (both memory and compute time) grow very rapidly as the number
of extended molecular orbitals  ˛ per adsorbed atom or molecule increases. Thus,
it is necessary to construct tight-binding models that capture the important physics
accurately while minimizing the number of EMOs included in the Hamiltonian.

13.10.1 Building Efficient Tight-Binding Models

The adsorbate-induced rehybridization of the graphene from sp2 to sp3 bonding
has been shown in Sect. 13.9.4 to have a strong effect on electron scattering by the
adsorbates. Taking the rehybridization into account as in Sect. 13.9.4 by including
in the model the 2s, 2px, and 2py valence orbitals of all of the carbon atoms
shown in Fig. 13.10 as well as the valence orbitals of each of the adsorbed species
means including in the model Hamiltonian (13.11) 13, 16, 17, and 22 EMOs per
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Table 13.2 Minimal set of tight-binding parameters �˛ and  j̨ in units of t D 2:7 eV for the
tight-binding Hamiltonian (13.11) describing the scattering of graphene � band electrons due to
adsorbed H, F and O and OH on graphene

Adsorbate �˛  j̨

H �0:0383 2.219

F �10:862 4.363
�2:460 1.645
�0:914 1.180

OH �8:536 3.203
�1:820 1.779
�0:709 1.540

O �5:356 3.240
�1:448 ˙1:000
�0:373 1.095

0.130 ˙0:176
1.463 1.650

This parameter set incorporates into the model the
effects of adsorbate-induced local rehybridization of
the graphene from sp2 to sp3 bonding and is valid
for electron energies � in the range �0:75t < � <

0:75t .  j̨ are matrix elements h ˛jHaj�j i of the
Hamiltonian between the 2pz orbital(s) �j of carbon
atom(s) j to which the adsorbed moiety bonds and
the EMO  ˛ . The �˛ are measured from the Dirac
point energy of graphene. ˙ means that  j̨ has
opposite signs for the two carbon atoms to which the
O atom bonds. Adapted from [55]

adsorbed atom or molecule for H, F, OH and O adsorbates, respectively. These
EMOs were all included in the calculations [55] used to obtain the results shown in
Fig. 13.11. However, some of these EMOs couple much more weakly than others to
the graphene � system and have little effect on the scattering strength profile of the
adsorbed moiety calculated with T-matrix theory that is shown in Fig. 13.11. This
suggests that tight binding Hamiltonians with reduced sets of effective EMOs can
adequately describe scattering of graphene electrons due to the adsorbates, including
the effects of rehybridization. The energy and coupling strength parameters �˛ and
 j̨ for a minimal set of effective EMOs for each adsorbate that accurately reproduce
the scattering strength profiles shown in Fig. 13.11 in the range �0:75t < � < 0:75t
are given in Table 13.2. The �˛ values in Table 13.2 are actual EMO energy
parameter values calculated as described in Sect. 13.9.1 however, the  j̨ values
have in some cases been adjusted to obtain a better fit to the exact profiles shown
in Fig. 13.11 from calculations that omit the nonorthogonality correction described
in footnote 4. Although the tight-binding parameter set in Table 13.2 was developed
for atoms and molecules adsorbed on an infinite graphene sheet, because of the very
local character of the tight-binding Hamiltonian given by (13.11) it is reasonable to
expect these tight-binding parameters to be applicable to graphene ribbons as well.
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Table 13.3 Tight-binding parameters for adsorbed H, F, O, and OH for a model that does not
include rehybridization of the graphene

Adsorbate  ˛ �˛ ˛;j C2pz ;C2pz

H 1s �0:81 1.89 0.79

F 2s �10:59 4:70 0.79
2pz �2:48 1.45

OH 2sO �7:74 4:10 0.73
2pOz �1:26 1.24
1sH �0:81 0:36

OH  1 �8:17 3:75 0.73
 2 �1:64 1.81
 3 7.39 1.69

O 2s �7:74 3.47 0.92
2pz �1:26 0.76 0.89
2px �1:26 ˙0:80

Notation as in Table 13.2. For OH the parameters are given for both the O and
H atomic valence orbitals and the molecular orbitals ˛ of OH. C2pz ;C2pz

is the
Hamiltonian matrix element between the 2pz orbital of the graphene C atom
to which the adsorbed moiety bonds and the 2pz orbital of a neighboring C
atom in the relaxed geometry. For O, the first C2pz ;C2pz

is for the two C atoms
to which the O bonds while the second is for a C atom to which the O bonds
and another nearest C neighbor of that C atom. Adapted from [55]

For comparison, we give in Table 13.3 the tight binding parameters �˛ and
 j̨ for EMOs that include only the valence orbitals of the adsorbed species, i.e.,
the effects of graphene rehybridization are not included in Table 13.3. Notice that
although there is only one EMO for H in both models the effect of rehybridization
(Table 13.2) is to shift the EMO energy �˛ much closer to the Dirac point and also
to increase the coupling  j̨ to the graphene � band somewhat, resulting in the
huge difference between the scattering strength profiles for H shown in Figs. 13.11
and 13.12.

Tight-binding models of Dirac point resonances for use in transport calculations
in graphene have also been constructed by fitting the tight-binding parameters to the
results of ab initio density functional theory-based electronic structure calculations
[101, 105]. In those models, the adsorbed atom or molecule was described by
just a single effective orbital energy parameter and a single coupling parameter.
However, very different values of these parameters have been obtained from the
density functional theory-based calculations by different groups [101, 105], even
for the case of atomic hydrogen, the simplest possible adsorbate. The reasons for
these differences are unclear at present, but they may be related to the fundamental
limitations of density functional theory [69] as a tool for calculating the energies of
electronic quasiparticles.
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Fig. 13.13 Conductances (solid black lines) vs. Fermi energy for ribbons with adsorbed H ((a),
(b)) and F ((c), (d)) at concentrations p D 10�4. Geometries of the adsorbates and graphene
are as in Fig. 13.10. (a) and (c) include the effects of local rehybridization of the graphene from
sp2 to sp3 bonding embodied in Table 13.2. (b) and (d) do not include rehybridization and are
based on Table 13.3. Thin dotted pale grey lines show the conductance of the ideal ribbon with no
defects. Grey solid lines in (a), (b) show the conductance of a ribbon with interior carbon atom
vacancies at pvac D 10�4 . Grey dashed and darker grey dotted lines in (d) show the effects on
the conductance of individual valence orbitals of the adsorbed species. Ribbon widthW D 30 nm;
length L D 500 nm. Temperature T D 0. t D 2:7 eV. Dirac point is at zero energy. Adapted from
[55]

13.10.2 Results of Numerical Simulations of Quantum Transport
in Ribbons with Adsorbates

The results of our conductance calculations [55] for ribbons with H, F, OH, and O
adsorbates for electron Fermi energies close to the Dirac point energy are shown
in Figs. 13.13 and 13.14.4 The geometry of the ribbons is again similar to that in
the experiment of Lin et al., i.e., the ribbon width W D 30 nm and the length
L D 500 nm. The adsorbate concentration is p D 10�4 per carbon atom. The

4For the relationship between the Fermi energy and experimental gate voltages see Fig. 13.9.
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Fig. 13.14 The conductances (solid black lines) vs. Fermi energy for ribbons with adsorbed
OH ((a), (b)) and O ((c), (d)) at concentrations p D 10�4. The geometries of the adsorbates
and graphene are shown in Fig. 13.10. (a) and (c) include the effects of the local rehybridization
of the graphene from sp2 to sp3 bonding embodied in Table 13.2. (b) and (d) do not include
rehybridization and are based on Table 13.3. Thin dotted pale grey lines show the conductance
of the ideal ribbon with no defects. The other grey lines in (b) and (d) show the effects on the
conductance of individual valence orbitals of the adsorbed species. Ribbon width W D 30 nm;
length L D 500 nm. Temperature T D 0. t D 2:7 eV. The Dirac point is at zero energy. Adapted
from [55]

results in the top pair of panels (a) and (c) in each figure include the effect of
graphene rehybridization while those in the bottom pair (b) and (d) do not. The
model parameters in the rehybridized and unrehybridized cases are those in Tables
13.2 and 13.3, respectively. In all of the calculations, the changes in the Hamiltonian
matrix elements tij between carbon 2pz orbitals in (13.12) that occur due to the
change in graphene geometry induced by the adsorbate are taken into account.
The relevant values of tij are listed in Table 13.3 under C2pz ;C2pz

. In each panel, the
conductance of the ribbon with the adsorbate is indicated by the solid black line.
The thin pale grey dotted line shows the conductance of the ideal ribbon without
any defects. The grey solid lines in Fig. 13.13a, b show the conductance of a ribbon
with interior carbon atom vacancies at the same concentration pvac D 10�4.
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A striking aspect of Fig. 13.13a is the qualitative and quantitative agreement
between the conductance of the ribbon with the adsorbed H atoms (calculated
taking into account the local rehybridization of the graphene from sp2 to sp3

bonding) and that of the same ribbon but with an equal concentration of carbon atom
vacancies instead of the adsorbed hydrogen. The agreement is almost perfect (apart
from the fine sample-specific details of the mesoscopic conductance fluctuations)
at low energies (throughout Fig. 13.13a) while at higher energies (Fig. 13.15) the
conductance for the ribbon with the H adsorbate is � 10% higher on average.

It is possible to rationalize this similarity in terms of a simple picture of the
rehybridization [107] in which a � bond forms between the H atom and the C atom
to which it bonds and the � bonds between that C atom and its neighbors break.
Thus, the carbon atom is considered to decouple from the graphene � system and
therefore to behave in some ways like a vacancy. However, this picture does not
account for the differences between graphene with an H adsorbate and graphene
with a F or OH adsorbate: The Dirac point resonances (Figs. 13.11 and 13.12) and
conductance characteristics (Figs. 13.13 and 13.14) for F and OH adsorbates change
much less drastically than those for H when rehybridization is included in the model,
although the changes in the graphene geometry due to the adsorption of F and OH
are very similar to and even slightly larger than for H adsorption.

Apart from the overall resemblance between the conductance plots, there are
important detailed similarities in Figs. 13.13a and 13.15 between the conductance of
the ribbon with the H (in the model that includes the local graphene rehybridization)
and that of the ribbon with interior carbon atom vacancies.

1. In both cases, there are pronounced sample-specific conductance fluctuations that
are a manifestation of quantum interference [44].

2. If the conductance fluctuations are ignored, the conductances are seen to scale
down uniformly overall due to scattering by the adsorbate, i.e., in a similar way
for all subbands.

3. The conductances show dips each time a new subband becomes available for
propagation in the leads. This is because of enhanced electron backscattering by
the defects at subband edges [44].

Because of these three similarities, we expect graphene nanoribbons with
adsorbed H to exhibit equally spaced conductance steps similar to those observed
experimentally by Lin et al. [3] for the same reasons and under the similar conditions
(discussed in Sect. 13.8) as do graphene nanoribbons with carbon atom vacancies
in the simple model of carbon atom vacancies that we have considered. That
is, conductance steps of equal height should be observed even in samples with
sufficiently high adsorbate concentrations for the ribbons to have conductances
much smaller than 2e2=h, the conductance steps should break up into random
conductance fluctuations as the temperature approaches zero Kelvin, and the
conductance steps should become completely smeared out by thermal broadening
at temperatures substantially larger than the subband spacing of the ribbons.

In short, electron scattering due to a low concentration of H atoms
adsorbed on the graphene nanoribbons in our model that takes into account the
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adsorbate-induced rehybridization of the graphene provides an alternative and
equally satisfactory explanation [55] of the experimental data of Lin et al. [3] to that
[44] provided by electron scattering by carbon atom vacancies in the interior of the
ribbon.

The three above similarities (1), (2), and (3) are also shared by ribbons with F,
OH and O adsorbates for positive, positive and negative energies respectively, as
can be seen in Figs. 13.13c and 13.14a, b. Therefore, conductance quantization of
the kind observed by Lin et al. [3] should also occur under appropriate conditions
in graphene ribbons with adsorbed F, OH and O.

If the rehybridization of the graphene is omitted from the model of the adsorbed
hydrogen, the results of the transport calculations change as can be seen by compar-
ing Fig. 13.13b (no rehybridization) with Fig. 13.13a (rehybridization included): If
rehybridization is omitted, the conductance ceases to be approximately symmetric
about the Dirac point (zero energy in Fig. 13.13) and its minimum shifts to lower
energies ��0:1t in Fig. 13.13b.

This is not due to a shift of the Dirac point itself to lower energies since the
conductance dips that signal the electron Fermi-level crossing a subband edge (as
is discussed in Sect. 13.8.2) still occur at almost the same energies in Fig. 13.13b as
the subband edges of the ideal ribbon indicated by the discontinuities of the dotted
line in Fig. 13.13b. Furthermore, the nearly ideal conductance of the first subband
(similar to that for long-range potential scattering in Sect. 13.8.1 [38]) occurs in the
solid black curve in Fig. 13.13b in the same energy range around zero energy as
for the ideal ribbon. All of this shows that the subband energies of the ribbon (and,
hence, also the Dirac point energy) have not shifted significantly in Fig. 13.13b from
their ideal values. Thus, the low conductance at negative energies in Fig. 13.13b can
only be due to particularly strong electron scattering at those energies suppressing
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the conductance there. Since the Dirac point scattering resonance for adsorbed
hydrogen in the model without rehybridization is centered nearby at �0:138t (see
Sect. 13.9.4 and Fig. 13.12) it is reasonable to suppose that the low conductance at
negative energies in Fig. 13.13b is due to this scattering resonance.

This explanation is consistent with the fact that for the model that includes
rehybridization, the H Dirac point resonance is centered much closer to the Dirac
point (at �0:0026t in Fig. 13.11) and the conductance minimum for that model (the
solid black curve in Fig. 13.13a) is located extremely close to the Dirac point, as it
is for carbon atom vacancy scattering.

The Dirac point scattering resonances for OH and F adsorbates are qualitatively
similar to each other and are qualitatively similar in the models that do and do
not include rehybridization of the graphene, as can be seen in Figs. 13.11 and
13.12. All of these resonances occur at negative energies, the resonances for F
being at somewhat lower energies than for OH, and the resonances in the model
without rehybridization are at lower energies than in the model with rehybridization
included. This is all reflected in the locations of the respective conductance minima
for these adsorbates in the two models: The conductance minima in Figs. 13.13–
13.15 for both adsorbates in both models are located at negative energies that
are very similar to those at which the respective Dirac point resonances occur in
Figs. 13.11, and 13.12. Also the conductance minima for F occur at lower energies
than for OH and those for the model without rehybridization of the graphene occur
at lower energies than those in the model with rehybridization.

For the O adsorbate, the Dirac point resonances occur at positive energies relative
to the Dirac point in Figs. 13.11 and 13.12 as do the conductance minima in
Figs. 13.14c, d and 13.15. In this case, the Dirac point resonance in the model
without rehybridization occurs at a lower energy than the resonances in the model
with rehybrdization and the same is true of the conductance minima for O in
Figs. 13.14 and 13.15. Also, the antiresonance (minimum) in the scattering strength
profile for O that occurs at energies near � D 0:55t in the model that includes
rehybridization (Fig. 13.11) is associated with a local conductance maximum close
to the same energy in the plot for O in Fig. 13.15. This is as one might expect as
weak electron scattering is normally associated with high conductance.

We conclude that the properties of the adsorbate-induced Dirac point resonances
associated with H, F, OH, and O adsorbates play a crucial role in electronic transport
in graphene ribbons with these adsorbates, at least in ribbons in the quasiballistic
regime where the localization length is comparable to or larger than the length
of the ribbon. In particular, enhanced electron scattering due to these resonances
results in strongly depressed conductances and transport gaps at electron Fermi
energies in the vicinities of these resonances. Furthermore, electron scattering by all
of these adsorbates for appropriate concentrations, temperatures, and gate voltages
is expected to result in quantized conductance steps of equal height of the kind
observed in graphene ribbons by Lin et al. [3].
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13.11 Summary

As has been explained in Sect. 13.8.4, recent efforts to fabricate clean graphene
nanoribbons for transport experiments have succeeded [3, 17] in making ribbons
with Anderson localization lengths similar to the lengths of the ribbons. The
disorder in such ribbons is still strong enough to depress the ribbon conductances by
orders of magnitude below the ballistic conductance quantum 2e2=h. However, it is
not strong enough to suppress all traces of quasi-ballistic behavior in these systems.
In particular, as has been discussed in Sect. 13.8 it is plausible that the conductance
steps observed experimentally in these samples [3, 17] constitute evidence that the
ribbons are uniform enough to have discernible peaks in their density of states
due to the formation of electronic subbands associated with quantized transverse
electronic states in the ribbons. The equal heights of the experimentally observed
conductance steps can be understood if electron scattering from carbon atom
vacancies contributes in an important way to the electrical resistance of the ribbons.
However, as is discussed in Sect. 13.10.2 the electronic scattering properties of H
atoms adsorbed on graphene are very similar to those of carbon atom vacancies in
the simple model of carbon atom vacancies that we have considered. Thus, hydrogen
and other atoms or molecules chemisorbed at low concentrations on the graphene
ribbons can account for the properties of the experimentally observed conductance
steps as well. As has been discussed in Sect. 13.9.4, adsorbed atoms and molecules
covalently bound to graphene give rise to strong electronic scattering resonances in
the vicinity of the Dirac point energy of graphene. The properties of these Dirac
point resonances are strongly influenced, especially in the case of hydrogen, by
the partial rehybridization of graphene from sp2 to sp3 bonding that is induced
by the chemisorption of the adsorbate. As is demonstrated in Sect. 13.10.2, the
Dirac point resonances give rise to transport gaps in the conductances of graphene
ribbons at electron Fermi energies in the vicinities of these resonances. Systematic
experimental studies probing these resonances for different adsorbates on graphene
and graphene ribbons by means of transport measurements and scanning tunneling
spectroscopy would be of interest.

This work was supported by a Fellowship of the Canadian Institute for Advanced
Research Nanoelectronics Program, by NSERC and by Westgrid.
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Chapter 14
Graphene Oxide: Synthesis, Characterization,
Electronic Structure, and Applications

Derek A. Stewart and K. Andre Mkhoyan

Abstract While graphite oxide was first identified in 1855 [1, 2], the recent
discovery of stable graphene sheets has led to renewed interest in the chemical
structure and potential applications of graphene oxide sheets. These structures
have several physical properties that could aid in the large scale development of
a graphene electronics industry. Depending on the degree of oxidization, graphene
oxide layers can be either semiconducting or insulating and provide an important
complement to metallic graphene layers. In addition, the electronic and optical
properties of these films can be controlled by the selective removal or addition
of oxygen. For example, selective oxidation of graphene sheets could lead to
electronic circuit fabrication on the scale of a single atomic layer. Graphene oxide
is also dispersible in water and other solvents and this provides a facile route for
graphene deposition on a wide range of substrates for macroelectronics applications.
Although graphite oxide has been known for roughly 150 years, key questions
remain in regards to its chemical structure, electronic properties, and fabrication.
Answering these issues has taken on special urgency with the development of
graphene electronics. In this chapter, we will provide an overview of the field with
special focus on synthesis, characterization, and first principles analysis of bonding
and electronic structures. Finally, we will also address some of the most promising
applications for graphene oxide in electronics and other industries.
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14.1 Introduction

The recent discovery that individual honeycomb atomic sheets of carbon or
graphene could be easily isolated from bulk graphite with a bit of Scotch tape and
persistence [3] has led to a flurry of research that has revealed unique electrical,
thermal, and structural properties. While historically there are several instances
where graphene was observed prior to 2004 [4], the recent synergy of nanoscale
fabrication approaches with atomic scale characterization tools has provided the
necessary environment to fully explore the potential of this material. In particular,
for potential future electronic devices, graphene could provide a route to make truly
atomic-scale electronic circuits by simply patterning an atomic layer of carbon
into nanoribbons of various sizes and configurations. While the high electrical
conductivity of graphene makes it a strong candidate for nanoscale electronics,
graphene does not have the normal semiconducting properties that are usually
required for key electronic devices such as field effect transistors and resonant
tunneling diodes. Therefore, a considerable amount of work has focused on inducing
a band gap in graphene nanoribbons [5], functionalized graphene, graphene bilayers
[6] or else by integrating graphene with insulating atomic sheets such as hexagonal
boron nitride [7].

In recent years, significant effort has also been devoted to finding cost-effective
ways to mass produce graphene. While the original micromechanical cleavage
technique [3] (aka Scotch tape) isolated the first single layer graphene flakes, the
approach is labor intensive and there is little control on the size and shape of the
flakes and their position on a wafer. Other possible routes for the development of
graphene have been demonstrated, including growth on SiC [8], Cu [9], Ni [10], and
other surfaces.

Oxidized graphene sheets, also known as graphene oxide, may help solve critical
issues related to both the mass production of graphene and development of graphene
devices. For example, sonication of graphite oxide in water leads to a stable colloidal
suspension of graphene oxide platelets that can be further chemically reduced to
graphene sheets. Graphene oxide also possesses a band gap and has the potential
to serve as a key component in graphene-based electronics such as transistors and
Schottky diodes. By selectively oxidizing portions of a graphene sheet, it may
be possible to isolate conductive regions and develop barrier layers for electronic
devices.

In this chapter, we will explore graphene oxide, the disordered cousin of pristine
graphene. The level of oxidation and the specific type and locations of carbon–
oxygen bonds that occur make graphene oxide chemically more complex than
graphene and difficult to characterize accurately. However, it also provides a crucial
example of how both the introduction and removal of surface modifications can
affect the structural and electronic properties of graphene. It is important to note
that this field is moving rapidly and at best, this chapter will serve as a reasonable
and slightly blurry snapshot of current progress. It should provide new researchers
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with guidance on key issues of interest and highlight mysteries that still remain for
a material discovered over 150 years ago.

14.2 Understanding Bulk Graphite Oxide and Graphene
Oxide Monolayers

Since its discovery by Brodie in 1855 [1, 2], several structural models have been
developed for graphite oxide (GO). In this section, we will provide a brief overview
of the structures that have developed over the years, with a particular focus on
how proposed structural elements can help enhance our understanding of the two
dimensional analog, graphene oxide (G-O). Given the long history of this material,
there have been several excellent reviews of the structural models considered for
graphite oxide and graphene oxide [11–13].

The initial studies focused on crystalline models with periodic additions of
functional groups to the graphene surface. Diagrams for several common functional
groups based on oxygen, carbon, and hydrogen are listed in Fig. 14.1 for the
benefit of nonchemists. Hofmann and Holst in 1939 proposed a regular array of
epoxy groups (C–O–C) on the graphene surface with a C2O molecular weight [14].
Given experimental evidence for the presence of hydrogen in graphite oxide, Ruess
developed a crystalline model for graphite oxide that included both epoxy groups
as well as hydroxyl (OH) groups [15]. An important aspect of this model is that
each graphene layer is distorted by the presence of the functional groups and the
carbon atoms interact through sp3 bonds. Since graphite oxide consists of multiple
graphene sheets, bonding of oxygen both above and below an individual graphene
sheet is to be expected. Based on experimental evidence that water molecules can
be trapped between layers, Nakajima et al. proposed a model that emphasized the
interaction of hydroxyl and carbonyl functional groups trapped between distorted
graphene sheets [16]. They argued that the experimentally observed changes in
the interlayer spacing in graphene oxide with humidity can be directly related to
the ratio of hydroxyl to carbonyl groups, ranging from a completely dehydrated
structure, C8O2, to a structure dominated by hydroxyl groups, C8(OH)4. While
this model provides a possible range of structures based on water content, it is
important to note that it still relies on a crystalline vision of graphite oxide with
a periodic arrangement of functional groups. The wide variety of early structure
models developed for graphite oxide is a result of two important issues. The first

Fig. 14.1 Common
functional groups found in
graphene oxide (a) epoxy
group (b) hydroxyl group (c)
carbonyl group (d) carboxyl
group
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is due to the fact that the degree of oxidation depends on the fabrication technique
used. The other is due to a sparsity of experimental data that allows for accurate
characterization of the material at the atomic scale. While it was relatively easy to
resolve the average interlayer spacing between graphene oxide layers using x-rays,
it has been difficult to resolve whether the sheets are distorted and which specific
functional groups are present.

Unlike the simple honeycomb structure of graphene, the term graphene oxide
is best viewed as a concept representing a broad range of disordered oxidized
graphene structures where the ratio of functional groups (epoxy, hydroxyl, and
carboxyl groups) depends strongly on both the parent material and the processing
approach used. Compton and Nguygen recently highlighted this aspect by noting
that the carbon to oxygen ratio (C:O) measured in graphite oxide samples ranged
from 1.3 to 2.25 depending on the approach used and oxidation time [13]. Lerf
et al. were the first group to strongly advocate a structural model based on a nearly
amorphous material with a random distribution of regions with unoxidized benzene
rings and regions functionalized by epoxy and hydroxyl groups [11]. They also
found NMR evidence that the epoxy and hydroxyl groups were usually located
fairly close to each other on the graphene sheet. In addition to the presence of
both epoxy and hydroxyl groups, they also noted evidence that water molecules
could become trapped on the graphite oxide surface. Other groups have also noted
that due to its hydrophilic nature, graphite oxide absorbs water under ambient
conditions and this may also make characterization difficult. Although there has
been one report of graphene oxide with a periodic arrangements of oxygen atoms
on portions of the surface [17] (Fig. 14.2), most modern models and experimental
measurements of graphene oxide indicate a random distribution of functional groups
similar to Lerf et al.’s structure (Fig. 14.3). It is still unclear to what degree the
graphene backbone is distorted by the presence of the oxygen functional groups and
also whether functional group bonding occurs on one or both sides of graphene.

Fig. 14.2 Graphene oxide is typically characterized by a disordered arrangement of oxygen
functional groups. This high resolution UHV STM image of oxidized graphene reveals a rare
rectangular lattice with a D 2:73 Å and b D 4:06 Å. The inset shows a proposed graphene oxide
crystal structure based on a rectangular lattice of epoxy groups. Adapted from [17] with permission
from Elsevier, copyright 2008
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Fig. 14.3 Chemical structure of a graphene oxide sheet with randomly distributed epoxy and
hydroxyl groups as well as carboxyl groups along the edges

Szab Ko et al. argued that the carbon backbone would be corrugated with regions of
linked cyclohexane chairs and flat carbon hexagons with double bonds [18]. Several
groups have found evidence for carboxyl (–COOH) groups that bond on the edges
of the graphene sheets. Based on 13C NMR analysis, Gao et al. have presented a
modified version of the Lerf model for Hummers fabricated graphite oxide which
also includes five- and six-member-ring lactols along the edge of the graphene sheet
[19]. They obtain highly conductive reduced graphene oxide by using a three-stage
process where graphene oxide is first treated with NaBH4 to remove most of the
epoxy and hydroxyl groups and break down lactol rings, followed by concentrated
sulfuric acid to remove remaining hydroxyl groups, and finally an annealing to
eliminate carbonyl edge groups.

This variety of structures due to processing procedure can be beneficial for device
applications, because it may provide a way to adjust the band gap of graphene oxide
for specific device applications. To help understand the electronic and structure
properties of graphene oxide, it is important to consider the key oxygen functional
groups that form during the oxidation process and how they interact. A careful
study of the energetics of oxygen on a graphene surface should also provide us
with knowledge on how to potentially tailor the formation of graphene oxide for
specific applications.

14.3 Fabrication of Graphite Oxide and Graphene Oxide

Several different approaches exist for fabricating graphite oxide and its two-
dimensional analog, graphene oxide. In this section, we will discuss three traditional
approaches used to fabricate graphite oxide, and we will also address some recent
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techniques for the production of graphene oxide. It is important to stress that
the exact chemical composition of graphite oxide is process dependent and that
the different approaches outlined below can lead to different C:O ratios as well
as the presence of different functional groups. Chemical and thermal techniques
for producing reduced graphite and graphene from graphite oxide will also be
discussed.

14.3.1 Traditional Approaches to Fabricate Graphite Oxide

The first production of graphite oxide was done by Benjamin C. Brodie in 1855
who added potassium chlorate (KClO3) to a thick suspension of graphite in fuming
nitric acid, HNO3 [1, 2]. He found that the modified graphite crystals consisted of
carbon, oxygen, and hydrogen and that the degree of oxidation could be increased by
additional treatments of potassium chlorate to the solution, with a final molecular
formula of C2:19H0:80O1:00. Brodie also noted that graphite oxide was dispersible
in water, one of the appealing aspects of this material for industrial applications.
Later, Staudenmaier improved Brodie’s technique by adding sulfuric acid to boost
the acidity of the mixture as well as adding potassium chlorate at intervals during
the reaction [12, 20]. However, this process was time consuming (taking roughly
a week) and in early chemical labs, it also presented hazards due to the formation
of toxic ClO2 gas which can combust in air. In the 1950s, Hummers developed
an alternative process for graphite oxide production that could be done in roughly
2 h and at lower temperatures [21, 22]. In this approach, a mixture of potassium
permanganate (KMnO4), sodium nitride (NaNO3), and sulfuric acid (H2SO4) is
used to oxidize graphite. Today, Hummers approach with minor modifications is
widely used in the field to produce graphite oxide [23, 24]. Excess permanganate
ions from the Hummers process can act as contaminants and it is important to
remove these with a H2O2 water solution [13, 25]. There is also some evidence that
graphite oxide produced using the Hummers approach contains sulfur impurities
due to the use of sulfuric acid [26]. Other groups have advocated the use of the
Brodie technique, arguing that graphite oxide produced using either Hummers or
Staudenheimer can have a high degree of contaminants and can be susceptible to
degradation [27, 28].

A recently published paper [29] by Marcano et al. describes an alternative
approach to fabricating graphene oxide that increases the amount of potassium
permanganate used and excludes the use of sodium nitride. They find that per-
forming the reaction in a 9:1 mixture of H2SO4/H3PO4 improves overall oxidation,
but that the subsequent chemically reduced graphene films have similar electronic
properties to sheets generated by other techniques. A key advantage of this new
approach is that toxic gases are not produced during the chemical reactions. Luo
et al. found that pre-exfoliation of graphite via microwave heating helped to remove
intercalated species and improved oxygen absorption in subsequent Hummers
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processing [30]. This technique was able to generate large graphene oxide flakes
(� 2,000 �m2) with a 90% yield, although the large flake size could also be due to
the fact that they do not apply sonication to the samples.

The final molecular composition of graphite oxide depends strongly on the initial
graphite sample (i.e., whether the sample has impurities or defects), the oxidizing
process used, reaction time, and even humidity. The C:O ratio in graphite oxide can
vary from 1.3 (Modified Hummer technique) to 2.28 (Brodie technique) and the
intersheet spacing has also been found to range from 5.95 Å to 8.3 Å: The recent
review by Compton and Nguyen [13] provides an excellent table summarizing the
oxidants, reaction time, and chemical compositions of graphite oxide formed using
the different techniques.

14.3.2 New Fabrication Techniques for Graphite Oxide
and Graphene Oxide

The possibility of using graphite oxide as an efficient approach for developing
graphene sheets has led to renewed interest in graphite oxide fabrication techniques
and approaches to isolate single graphene oxide sheets. Graphite oxide exfoliates in
a sonicated water solution into graphene oxide platelets which can then be deposited
on surfaces [31]. The formation of thin graphite oxide sheets in solution was first
noted in the original work by Brodie [2] and much later the presence of atomic layers
of graphene oxide in solution was confirmed by Boehm et al. in 1962 [32]. These
deposited thin films of graphene oxide are composed of stacked and overlapping
graphene oxide platelets and it is important to keep this structural model in mind
when graphene oxide and reduced graphene oxide thin films are discussed later in
the text.

Graphene oxide sheets are generally viewed as being hydrophilic due to the
presence of edge carboxyl (–COOH) groups that can ionize [11], making the sheets
easy to disperse in water. However, recent research indicates that graphene oxide
sheets may actually be amphiphilic with hydrophilic edge groups and a hydrophobic
surface and could behave as a surfactant [33]. Due to the large molecular weight of
the graphene oxide flakes, it can take several hours for these flakes to equilibrate
at the air–water interface. However, this process can be sped up through the use of
carbonated water. As CO2 bubbles rise up through the water, amphiphilic graphene
oxide platelets become trapped at the water–gas bubble interface and are carried to
the water surface via flotation.

The growth of single graphene sheets on several different substrates in recent
years has been demonstrated and these films can also be subsequently oxidized
[34]. Carbon nanotubes can also be unzipped using potassium permangate to create
graphene oxide nanoribbons [35, 36].
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14.3.2.1 Fabricating Reduced Graphene Oxide

The ability to fabricate single sheets of graphene oxide via chemical means in
solution provides an important base material for the production of reduced or
chemically derived graphene (rG-O). With chemical reduction techniques and
thermal annealing, it is not possible to completely eradicate oxygen functional
groups or structural defects, so reduced graphene has a lower mobility than graphene
produced via direct growth techniques or mechanical exfoliation. However, the
mobility of these reduced graphene is still comparable to that of doped conductive
polymers [37] and could provide a cheap approach for fabricating graphene based
electronics.

There are currently several different approaches available to produce reduced
graphene oxide. Schniepp et al. showed that rapid heating (> 2,000ıC/min) of
graphite oxide would lead to the release of CO2 and split the remaining material
into individual graphene sheets [38]. However, this technique required complete
oxidation of graphite to be successful. Stankovich et al. developed a simple
approach using hydrazine hydrate to reduce a colloidal suspension of graphene
oxide sheets and form reduced graphene oxide sheets [39]. Since graphene oxide
is negatively charged in solution, it can also be selectively deposited on predefined
positively charged regions on a silicon surface [40]. It has also been shown that
reduced graphene oxide films can be fabricated using a combination of hydrazine
hydrate and a low temperature annealing session [41]. Electrochemical reduction
of graphene oxide can also occur in a deaerated aqueous 0.1 M potassium nitrate
(KNO3) solution [42].

Decorating graphene oxide with TiO2 particles provides an interesting photo-
chemical route to reduce graphene oxide. When TiO2-graphene oxide nanocom-
posites are suspended in ethanol and illuminated with ultraviolet (UV) radiation
for over 15 min, the solution changes color from light brown to black [43]. This
indicates increased light absorption similar to what would be found in graphene
solutions. In this case, UV radiation leads to charge separation in the TiO2 particles
and the free electrons can reduce epoxy and carboxylate functional groups on
graphene oxide. The presence of the TiO2 particles also ensures that the reduced
graphene sheets do not agglomerate in solution. Recently, Cote et al. showed that
the Xenon flash lamp from a common digital camera could be used to flash irradiate
graphite oxide in air and generate patterned regions of reduced graphite oxide [44].
For high power flashes, they also found that rapid degassing and air expansion
can lead to complete ablation of the exposed regions and provide a chemical free
etching technique.

In 2010, Wei et al. demonstrated that a heated atomic force microscope (AFM)
tip (estimated temperature of 1,060ıC) can pattern conductive regions of reduced
graphene oxide with widths as small as 12 nm (Fig. 14.4) on a graphene oxide
film through local annealing [37]. This opens an interesting route for patterning
nanoscale graphene devices in graphene oxide sheets. In addition, a recent study
has shown the reduction of graphene oxide can occur via bacterial respiration using
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Fig. 14.4 (a) Room-temperature AFM current image of a zigzag-shaped nanoribbon fabricated
by thermochemical nanolithography on epitaxial graphene oxide. (b) Corresponding topography
image take simultaneously with (a). (c) Averaged profiles of current and height of the cross sections
that are indicated as dashed lines in (a) and (b). From [37]. Reprinted with permission from AAAS

microbes (genus Shewenella) that are heterotrophic, facultative anaerobes [45]. This
could provide an unique chemical free and green route to reduced graphene oxide.

Chemically derived graphene has a much lower electrical conductivity than
pristine graphene which indicates that defects or scattered functional groups remain
after the reduction process. The exact mechanisms for the removal of oxygen
functional groups by chemical means [i.e., hydrazine (N2H4)] or by annealing
has been unclear. Recently, Gao, Jang, and Nagase examined different reaction
pathways for hydrazine and thermal reduction of graphene oxide using density
functional theory [46]. They found that hydrazine is effective at removing epoxy
groups in aromatic regions of graphene oxide via three different mechanisms, but
converts edge epoxide groups to stable hydrazino alcohols that are difficult to
remove. The presence of stable hydrazino alcohols on the edges of chemically
reduced graphene sheets is supported by several experimental studies that find a
significant amount of nitrogen in hydrazine reduced graphene oxides [39, 47, 48].
Gao, Jang, and Nagase find that hydrazine has no effect on hydroxyl, carboxyl,
and carbonyl groups which must be removed using a high temperature thermal
treatment. Reaction energetics indicate that the efficiency of hydrazine removal
of epoxy groups decreases as temperature increases. Therefore, they suggest a
two-stage reduction process with a low temperature chemical reduction for epoxy
groups followed by a >700ıC thermal annealing treatment. They propose the use of
PPh3 as the reducing agent catalyzed by MeReO3 in 55ıC toluene. Recent studies
have shown that catalyzed PPh3 can effectively remove epoxides both on graphite
surfaces and edges [49,50], which could make it a superior graphene oxide reducing
agent to hydrazine.

Molecular dynamics studies also help to provide insight into the local bonding
structure in thermally reduced graphene oxide [51, 52]. Bagri et al. examined a
graphene oxide sheet with an initial random configuration of epoxy and hydroxyl
groups on the carbon backbone [51]. Using molecular dynamics simulations with
the ReaxFF potential [53], the model graphene oxide sheet was annealed at 1,500 K.
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They found that the reduced graphene oxide films were characterized by a large
number of stable holes which form when C–C bonds break in the basal plane. These
holes are decorated with a carbonyl and hydroxyl group or else two carbonyl groups.
First principle simulations indicate that these holes form to relieve the stress in the
carbon backbone induced by epoxy groups. The analysis of the molecular dynamics
simulations also appears to be supported by additional transmission infrared and
XPS spectra of reduced graphene oxide [52]. Based on these molecular dynamics
simulations, they suggest that the primary culprit for poor reduced graphene oxide
film quality (presence of holes, carbonyl groups) is due to the epoxy functional
groups that strain the carbon backbone and promote C–C bond breaking and
emission of CO and CO2 from the film. To help ameliorate this issue, Bagri
et al. propose a subsequent reheating of reduced graphene oxide in a hydrogen
atmosphere to help heal the graphene lattice [52].

14.4 Characterization Approaches

14.4.1 Optical Microscopy

For general assessment of graphene and graphene oxide sheets for possible device
fabrication, optical microscopy remains the leading high throughput and low-
cost imaging approach in the field. Although graphene absorbs a relatively high
percentage of visible light (2.3%) for a single atomic layer [54], it is difficult
to obtain high contrast images of graphene based on transmitted light. Reflective
illumination techniques can provide high-contrast optical images of graphene and
graphene oxide. The addition of a single atomic layer (like graphene) to a dielectric
layer grown on a reflective substrate alters the optical path of reflected light enough
to change the reflected color [55]. This allows researchers to rapidly scan through
large sections of deposited graphene sheets and measure graphene flake sizes, layer
thickness, and wrinkles. In their seminal work on graphene [3], Novoselov et al.
used this technique to resolve graphene layers deposited on oxidized silicon. Later
works have focused on optimizing the dielectric material and layer thickness to
provide high-contrast optical imaging for graphene oxide [56] and graphene [57].
However, it should be noted that reflective illumination requires that graphene is
deposited on a dielectric coated silicon wafer with an optimized oxide thickness.
Recently a group has developed a new technique for large scale imaging of graphene
and graphene oxide that is based on fluorescence quenching [58]. Graphene-based
materials have a strong quenching effect on fluorescence dyes. Upon excitation,
graphene platelets, on a surface that has been coated with fluorescence dyes, appear
as dark shapes in a bright background. Since this approach does not rely on
interference effects, it can be used to characterize graphene and graphene oxide
deposited on a range of substrates, including plastics and glass.
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14.4.2 Scanning Transmission Electron Microscopy

Many graphene oxide research articles include conventional phase-contrast TEM
images of the sheets. While these relatively low-magnification TEM images are
quite useful to visualize the sheets, they contain very little information about the
internal atomic structure of the sheets. For structural characterization, diffraction
patterns are often obtained from the individual sheets [59, 60]. These diffraction
patterns are the result of electron beam scattering from wide �100 nm areas of the
specimen and can only describe the underlying long-range periodic arrangement of
the atoms. They cannot be used to identify unique defects or short-range structural
alterations in the sheets. However, when the operational conditions of the electron
microscope are optimized to minimize possible electron beam-induced damage
of the sheets [61], recorded atomic-resolution images can reveal many interesting
structural features in the sheets. The recent report by Gomez-Navarro et al. [62] is
a good example of using high resolution phase-contrast TEM imaging to detect and
characterize defects in a single layer reduced graphene oxide sheet. As can be seen
in Fig. 14.5, the atomic-resolution TEM image clearly reveals that the sheets are
composed of intact 3 nm and 6 nm graphene islands along with various topological
defects and deformations. Using TEM images, defects such as carbon pentagons,
hexagons, and heptagons, dislocation dipoles, defect clusters, distortions in the
hexagonal lattice can be identified.

Scanning transmission electron microscopy (STEM) is often the preferred
approach for quantitative analysis of the local atomic structure and composition
of graphene oxide. STEM with a high-brightness field emission electron source,

Fig. 14.5 TEM image of a single layer reduced-graphene oxide membrane. (a) Original image
and (b) with color added to highlight the different features. The defect free crystalline graphene
area is displayed in the original light-gray color. Contaminated regions are shaded in dark gray.
Blue regions are the disordered single-layer carbon networks, or extended topological defects.
Red areas highlight individual ad-atoms or substitutions. Green areas indicate isolated topological
defects, that is, single bond rotations or dislocation cores. Holes and their edge reconstructions are
colored in yellow. Scale bar 1 nm. Reprinted with permission from [62]. Copyright 2010 American
Chemical Society
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Fig. 14.6 (a, b) ADF-STEM image of the graphene oxide films where mono-, bi- and trilayers
are labeled as a, b, and c, respectively. Round opening in the middle is a hole through the single
film. (c, d) Simulated ADF-STEM images of graphene with oxygen bonded to the honeycomb of
the graphene. The ball-stick models at the top illustrate the structures. Reprinted with permission
from [71]. Copyright 2009 American Chemical Society

scanning with a focused electron probe, and the annular dark field (ADF) detector
is an alternative approach for atomic-resolution imaging to conventional TEM with
additional analytical capabilities [63]. The success of the STEM for quantitative
imaging at high-resolution is governed by the ability to record images of the
specimens by collecting elastically scattered probe electrons using a high-angle
ADF detector. This allows visualization of specimens at resolutions smaller than
1Å with simplicity of interpretation: the heavier the atoms, the stronger the
scattering and, as a result, the brighter the signal [64–66]. The simplicity of the
method and the relatively weak dependence of ADF imaging on microscope-
focusing conditions and specimen thickness allows very little room for error. For
example, an ADF–STEM approach can image individual dopant atoms inside a
silicon crystal [67] and reveal anomalies in the local thermal vibration of atoms in
a quasicrystal [68].

Several ADF–STEM studies of graphene and graphene oxide sheets have been
reported [69–71]. An ADF image of several layers of graphene oxide suspended
over a hole is shown in Fig. 14.6a. The mono, bi-, and trilayered films can be clearly
imaged, even though the signal from the single layer appears to be weak and barely
distinguishable from the hole. A high-magnification ADF image taken from the
single sheet with O:C D 1:5, shown in Fig. 14.6b, reveals not only the sheet but
also the variation of intensities within the image, indicating that the oxidation of the
graphene is uniformly random throughout the sheet.

For a better realization of the possibilities with ADF–STEM imaging in charac-
terization of the graphene oxide films, several ADF–STEM images were simulated
and two of them are presented in Fig. 14.6b, c. These ADF images were simulated
using the Multislice method [72]. The results suggest that the ADF detector
can be used to not only directly image single oxygen atoms on the graphene
substrate but also identify the actual oxygen bonding sites on the carbon honeycomb
structure.
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14.4.3 Electron Energy Loss Spectroscopy

STEM combined with electron energy loss spectroscopy (EELS) is a very effective
method for measuring electronic and optical properties of nanoscale materials [73].
When core-level electronic transitions are recorded with EELS, it is possible to
carry out an analysis of the local chemistry and electronic structure. The Fermi
golden rule describes the physics of these transitions and shows the element- and
site-specific nature of these localized core-level transitions. A simple and intimate
connection between the local density of unoccupied electronic states and the core-
level excitations allows EELS to directly measure both the energy distribution and
density of states for levels above the Fermi energy [74, 75].

Mkhoyan et al. [71] reported core-level EELS measurements from a single
graphene oxide sheet. Spectra of C and O K-edges (Fig. 14.7), which are the
result of 1s to 2p electronic transitions in carbon and oxygen atoms, represent
the respective 2p partial density of states of the conduction band of graphene
oxide. As can be seen from Fig. 14.7a, the fine structure of the C K-edge in
graphene oxide shows considerable differences in fine structure relative to those
in graphite and amorphous carbon (a-C). Removal of the STEM probe function
from the measured C K-edge enhances the fine structure as shown in Fig. 14.7c.
The analysis of the positions of identifiable peaks in a C K-edge in all three
materials suggests that both sp2 and sp3 bonds are present in the graphene oxide.
Additionally, for quantitative analysis, the EELS spectrum of the C K-edge can
be fitted to a linear superposition of two spectra, C K-edge from graphite and
amorphous carbon (a-C). For a O:C ratio of 1:5, as much as 40% of the carbon

Fig. 14.7 Core-loss EELS spectra of (a) C K-edge and (b) O K-edge from the graphene oxide
film. The spectrum of C K-edge is presented in comparison with C K-edges measured in graphite
and a-C. The peaks of the fine structure are labeled A to E. The inset shows the section of the
spectrum from graphene oxide for better visibility of the positions of the peaks B (or ��) and C.
The O K-edge is presented in comparison with O K-edge in a-SiO2. (c) The spectrum of the C
K-edge in graphene oxide film and its best fit after removal of STEM probe function. Reprinted
with permission from [71]. Copyright 2009 American Chemical Society
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bonds are transformed into sp3 bonds. The fine structure of the O K-edge, which
lacks distinct features, presented in Fig. 14.7b, indicates the absence of periodicity
for the oxygen atoms in the film and shows strong similarities with the O K-edge of
amorphous SiO2.

The low-loss region of EELS, on the other hand, measures optical properties
of the specimens by recording electronic transitions between critical points of
conduction and valence bands as well as characteristic plasmon excitations, which
leads to the real and imaginary parts of dielectric function of the material [73]. The
low-loss EELS spectrum was recorded from a single graphene oxide sheet [71].
The low-energy plasma excitations of the �� electrons in graphene oxide occurs
at 5 eV, similar to that in a-C. While the peaks of bulk plasma-loss (combination
of �� and �� electronic excitations) for graphite and a-C occur are at 27 eV and
24 eV, respectively, in graphene oxide films, it appears to be at 19 eV. Since the
thickness of the film is only �1 nm thick, a full quantum mechanical description
is needed to understand this 19 eV plasmon peak. A recent study by Eberlein et al.
that combined EELS measurements with first principle calculations indicates that
the plasmon modes of pure graphene are expected to have a significant red-shift
from those found in graphite. They measured the main �� C �� plasma peak at
14.6 eV and a �� peak at 4.7 eV [69, 70].

14.4.4 Atomic Force Microscopy

The atomic force microscope (AFM) was invented and introduced by Binning,
Quate and Gerber in the mid-1980s [76]. It was based on the scanning tunneling
microscope (STM) and took advantage of the existence of strong interatomic forces
between atoms at the specimen surface and the scanning tip. For a good overview
of STM and its use in characterizing graphene, please see Chap. 3 in this book.
AFMs, which can operate in contact and noncontact mode, are extensively used in
surface sciences and can even determine the structure of solid surfaces with atomic-
resolution. A benchmark atomic-resolution AFM image of the Si(111)-(7x7) surface
was recorded by Giessible [77] in 1995. In-depth discussion on the principals of
operation and achievements of atomic-resolution AFM can be found in a recent
book by Morita et al. [78] and in review by Giessible [79].

While atomic-resolution imaging of pristine solid surfaces using AFM can be
challenging experimentally, measuring the atomic steps present on surfaces is
relatively easy. This ability of AFM to determine z-heights of specimens with atomic
precision makes it exceptionally suitable for measuring the thickness of graphene
oxide sheets. Two examples of AFM images of graphene oxide sheets are presented
in Fig. 14.8 [59]. The thickness of single or multiple sheets can be obtained either
by taking a simple line scan going across the sheets and substrate as shown in
Fig. 14.8a or by obtaining the histogram of the area of interest in the image as shown
in Fig. 14.8b, c [71].
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Fig. 14.8 (a) AFM image of graphene oxide sheets deposited onto a mica substrate obtained
using the non contact mode from an aqueous dispersion (inset) with superimposed cross-section
measurements taken along the red line indicating a sheet thickness of �1 nm. [59]; (b) AFM image
of the graphene oxide sheets where mono-, bi-, and trilayers can be identified; (c) histogram of the
AFM-depth intensities obtained from dotted area of the image (b). The histogram is fitted with a
linear combination of four Gaussian functions representing each peak. Reprinted with permission
from [71]. Copyright 2009 American Chemical Society

The typical thickness of a single graphene oxide sheet is within the range of
1–1.6 nm and it is thicker than a pristine graphene sheet, which is only 0.34 nm
[39, 71, 80]. This is most likely due to the presence of different functional groups
at either surfaces of the graphene oxide as well as some adsorbed molecules. It is
also expected that some water molecules might be trapped between the sheet and
substrate or between the sheets, since these functional groups make graphene oxide
strongly hydrophilic [11, 80, 81]. When a large-scale AFM scan is performed with
many graphene oxide sheets, statistical analysis can be carried out to quantify the
size distribution of the sheets [82, 83].

14.4.5 X-ray Photoelectron Spectroscopy

When overall compositional analysis of the graphene oxide sheets is needed and
atomic-scale structural details are not critical, X-Ray Photoelectron Spectroscopy
(XPS) is an excellent alternative technique. Keeping in mind that the results of
the XPS reflect the average X-ray response of the specimen, the measured spectra
can reveal the presence of elements in the sheets (carbon, oxygen, hydrogen etc.),
their relative fractions, and the nature of the bonds [84, 85]. However, to carry
out compositional and structural analysis of graphene oxide with XPS, several
precautions should be taken. For reliable measurement of the XPS spectra from
a single sheet of graphene oxide, it is essential to develop a routine that will
allow for controllable and systematic deposition of a single sheet of graphene
oxide on the substrate. Since single sheets of graphene oxide are �1 nm thick,
the presence of peaks from substrate elements in the measured XPS spectrum
is unavoidable. Additional measurements from substrate-only regions might be
needed. To minimize the effects of the substrate, a careful selection of the substrate
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Fig. 14.9 (a) C 1s XPS spectra (h� D 1,253.6 eV) collected from a single atomic layer of
graphene oxide deposited on Au(10 nm)/SiO2(300 nm)/Si and annealed in UHV at the indicated
temperatures for 15 min. The different components related to various chemical shifts of carbon
bonds are indicated; (b) corresponding O 1s XPS spectra. Reprinted with permission from [86]
courtesy of Wiley-VCH Verlag GmbH and Co. KGaA, Copyright 2009

can be instrumental. For XPS study of graphene oxide sheets, a preferable substrate
should not contain elements such as carbon or oxygen or hydrogen. However,
additional care must be taken even with those substrates, since most of the practical
surfaces exposed to air easily experience oxidation.

Figure 14.9 shows XPS data recorded from a single layer graphene oxide film
deposited on Au-coated SiO2/Si substrate, which was later annealed at different
temperatures in ultra-high-vacuum (UHV) for oxygen reduction [86]. The C 1s
signal typically consists of five different chemically shifted components: CDC/C–
C in aromatic rings (284.6 eV); C-O (286.1 eV); CDO (287.5 eV); C(DO)–(OH)
(289.2 eV); and � � �� satellite peak (290.6 eV) [86–89]. For quantitative
analysis, the spectrum of C 1s can be decomposed into individual components
by fitting the entire spectrum to a linear superposition of all components present.
This decomposition allows determination of the fractions of each component.
Additionally, the fraction of sp2 and sp3 C–C bonds can be estimated by evaluating
the intensities of the corresponding components.

The C-O bonds in graphene oxide is thought to come predominantly from epoxy
and hydroxyl groups in the basal plane. The XPS measurements of O 1s, which
includes typical contributions from CDO (531.2 eV), C–O (533 eV), and C(DO)–
(OH) (533 eV) bonds, can be used to estimate the fraction of these groups present
on sheets [87, 89]. An example of the O 1s XPS spectra from single-layer graphene
oxide and reduced graphene oxide is presented in Fig. 14.9b.
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14.4.6 Raman Spectroscopy of Graphene Oxide and
Reduced Graphene

Raman spectroscopy can provide important information regarding the bonding
configurations of atoms in carbon structures. This technique relies on illuminating a
material with a laser and observing how inelastic scattering with lattice vibrations or
phonons affects the photon energy. Conjugated carbon atoms and carbon atoms with
double bonds give particularly strong Raman signals. A full discussion of the Raman
spectroscopy of graphene can be found in Chap. 2 of this book. In this section, we
will briefly highlight those aspects relevant to graphene oxide research.

The Raman spectra of graphite has a dominant peak (G band) at roughly
1,580 cm�1 that is due to an E2g optical phonon mode that involves in-plane sp2

bond stretching of the graphite lattice. A much smaller peak known as the D band
is located at a lower frequency 1,355 cm�1 and is due to a breathing mode of the
hexagonal carbon rings. It is Raman inactive in pristine graphite and the observed
D band peak can be related to disorder along the edges of the graphite sample. The
overtone of the D band, known as 2D, however, is Raman active even in pristine
graphene and is due to double resonance transitions that generate two phonons with
opposite momentums. The 2D peak can be used to determine the number of layers in
pristine graphene multilayers [90–92], but it can be difficult to observe in graphene
oxide samples.

During oxidation, the intensity of the D band increases significantly, indicating
increased disorder and symmetry breaking in the graphene layers. The D band peak
becomes broader and also experiences a blue shift to roughly 1,593 cm�1. Upon
transforming graphite oxide to reduced graphite, the G band peak returns to the
original graphite frequency, indicating that the presence of oxygen could be related
to the observed blue shift.

Using the Tuinstra–Koenig relation [93], the area ratio of the D and G peaks
can be used to determine the size of sp2 clusters in a sp2 and sp2 carbon network.
Analysis of Raman spectra indicates that graphene oxide films can possess graphitic
domains with sizes ranging from 2.5 nm to 6 nm. Above a critical defect density
(< 2 nm sp2 cluster size), the Tuinstra–Koenig relation fails and can not be used to
interpret the Raman spectra. There has also been some difficult in interpreting the
D/G ratio during graphene oxide reduction, since contradictory trends have been
observed. A recent study [94] has shown that the ratio of 2D/G may provide a
better measure of the extent of graphitic sp2 region as demonstrated by a linear
dependence of the 2D/G ratio with electron mobility for graphene oxide films
(Fig. 14.10).

Using Raman spectra calculated with density functional perturbation theory
[95], Kudin et al. found that a modified form of Scholz–Boehm-proposed GO
structure provided the best spectral match and reasonable agreement with elemental
composition [96]. This structure consists of wide ribbons of sp2 bond carbon
separated by parallel hydroxyl chains. A small concentration of epoxy groups are
also located within the sp2 regions. The wide sp2 ribbons are necessary to produce



452 D.A. Stewart and K.A. Mkhoyan

Fig. 14.10 (a) Raman spectra for five selected transistor devices with various values of effective
mobility. The labels M0.4, M1.0, M4.6, M6.9, and M12 represent the devices with mobility 0.4,
1.0, 4.6, 6.9, and 12 cm2/(V s), respectively. (b) Various ratios for the integrated peak area for D, G,
2D, and DCG bands. Reprinted with permission from [94]. Copyright 2009 American Chemical
Society

delocalized � electrons and the presence of the random epoxy groups are necessary
to block additional Raman spectral peaks in the modified Scholz–Boehm structure
that are not observed in experiment. However, despite the good match with the
Raman spectra, the graphene oxide structure proposed by Kudin et al. has not been
observed experimentally, indicating that another explanation for the Raman shift
may exist.

14.5 Insight from Simulations

Nanoscale simulations can provide important insights into the structural, electronic,
and chemical properties of graphene oxide. Empirical tight binding calculations
coupled with results from detailed density functional approaches can provide a
window into physical and chemical bonding. In recent years, these tools have also
been brought to bear on the question of graphene oxide formation, structure, and
reduction to graphene.

14.5.1 Using Epoxy Groups to Unzip Graphene

Numerous experimental studies of graphene oxide have indicated the presence of
single oxygen atoms bonded to two carbons, otherwise known as epoxy groups
(C–O–C). Electronic structure studies have also shown that oxygen atoms situated
above a C–C bond provide one of the most stable bonding locations for oxygen on
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a graphene sheet [71]. The presence of the oxygen atom acts to locally distort the
graphene sheet, with the C–C distance of the nearest neighbor C atoms increasing
from a sp2 bond length to a bond length much closer to a sp3 configuration.

In many graphite oxide samples, cracks and fault lines are noticeable under
inspection using optical and force microscopy techniques [97, 98]. These boundary
regions play an important role in the evolution of graphite during oxidation and may
be central to the controlled formation of small reduced graphene oxide flakes. As
such, a clear picture of the local atomic structure is crucial for understanding the
oxidation process.

This issue was first addressed in 2006 by Li et al. [97] who used density
functional theory to help resolve the formation of these cracks in small graphene
platelets, C12H24 and C54H12. They focused in particular on the bonding of
individual oxygen atoms (epoxy groups) on a single side of the graphene surface
and how these functional groups strain the surface. The distance between the carbon
atoms participating in the oxygen bond is transformed from sp2 to sp3 character and
their energetic analysis indicates that epoxy groups prefer to form line structures
(grain boundaries) on the graphene surface. It is important to note that the predicted
hopping barrier for epoxy groups moving on a graphene surface is fairly large
(0.9 eV) and this may prevent the formation of long epoxy chains in some cases.
Li et al. argue that this barrier may be lower in solution, but this calculation has not
been performed.

A later theoretical study [99] of an epoxy grain boundary noted that while the
epoxy functional groups do increase the local C–C bond length, the structure is
still stable and the presence of epoxy groups is not sufficient to fully unzip the
graphene sheet. They find that the formation of carbonyl (CDO) groups along the
chain is necessary to rip the sheets apart. They also examine the possibility of
graphene tearing from carbonyl groups at the graphene sheet edge and found this
to be energetically unfavorable. It is interesting to note a recent study [98] where
graphene nanoribbons are sonochemically cut from chemically derived graphene
sheets along fault lines possibly made up of epoxy functional grain boundaries.

The formation of epoxy chains on one side of the graphene sheet may be energet-
ically favorable for the oxidation of graphene sheets resting on a substrate. However,
in the case of the oxidation of graphite, the relatively large distance between
graphene sheets allows oxygen to bond on either side of a given graphene sheet.
In this scenario, other oxygen bonding configurations may be more energetically
favorable. In the case where neighboring epoxy group in the chain are on opposite
sides of the graphene sheets, the local strain on the carbon atoms is significantly
reduced and the carbon bond preserves more of its sp2 character. A recent density
functional study found that fault lines that include a combination of both epoxy and
hydroxyl groups (2OC2OH) are more energetically favorable than an epoxy chain
on one side of the graphene sheet [100]. This corresponds well with experimental
evidence that indicates epoxy and hydroxyl groups are usually located near each
other on the carbon backbone. Whether oxidation can occur on both sides of a
graphene sheet rather than a single side could have important consequences on
the degree of local strain placed on carbon bonds. A greater portion of sp3 bonds



454 D.A. Stewart and K.A. Mkhoyan

should occur in graphene oxide with single sided growth due to epoxy groups. In
cases where oxidation occurs on both sides, several atomistic studies show that
stress fields can effectively cancel each other out and help maintain the hexagonal
carbon network, leading to a smaller number of sp3 bonds [100–102].

While the original work of Li et al. focused on the development of epoxy chains
in small graphene platelets, it would be helpful to examine the energetics of long
epoxy chain growth on large graphene sheets to insure that edge effects do not
play a role. A recent paper [103] examined the distribution of functional groups
on a graphene surface using a combination of density functional theory and Monte
Carlo techniques. They found that an epoxy chain with four atoms would be stable,
but they did not find evidence that chain growth beyond this length would be
encouraged.

14.5.2 Graphene Oxide Electronic Structure

Due to the random distribution of epoxy and hydroxyl groups on the surface of
graphene oxide, it is difficult to discuss the electronic structure in terms of a
crystalline band structure model. A number of groups have used density functional
theory to examine the energetics of possible crystalline configurations of graphene
oxide, but these ordered structures appear to be difficult to fabricate with current
chemical techniques, given that only one paper [17] reports an ordered graphene
oxide region. Several experimental studies have shown that graphene oxide can be
viewed in terms of fairly large insulating sp3 regions surrounding small sp2 islands
[71]. In such a scenario, we would expect electrical transport to be primarily based
on hopping between localized states in a percolation framework.

First principle calculations can provide insight into how functional groups affect
the local electronic structure in graphene oxide. As an example, we can examine the
local density of states near a single epoxy group on a graphene sheet (Fig. 14.11).
The relaxed structure for the epoxy group is determined using a density functional
calculation as outlined in Mkhoyan et al. [71]. The density of states for pristine
graphene is shown in comparison with both the local density of states of a carbon
atom in the epoxy group and one far away from it. For the carbon bond participating
in the epoxy group, the �� peak is no longer present and the local density of states
near the Fermi energy is significantly reduced. The �� peak is stable for a carbon
atom located far from the stress field created by the epoxy bond.

Fully oxidized graphene has a light brownish color and is fully insulating with
a direct optical band gap of 2.4 eV [104]. Optical studies indicate that the band
gap of graphene oxide can be increased (decreased) through oxidation (reduction)
[104, 105]. Jeong et al. found that the graphene oxide optical band gap could be
adjusted from 1.7 eV (semiconducting) to 2.4 eV (insulating) in strong correlation
to the oxygen to carbon ratio. The graphene oxide in this case was prepared using a
simplified Brodie technique [28]. Blue photoluminescence from graphene oxide has
also been found to depend on the degree of chemical reduction [105, 106].
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Fig. 14.11 (a) Ab-initio calculated electronic structure of a graphene sheet with a single oxygen
atom (epoxy group) bonded to two adjacent carbon atoms. (b) Carbon 2p partial density of states
for graphene and for C atom of graphene bonded to O and one that is far away from O. Reprinted
with permission from [71]. Copyright 2009 American Chemical Society

For graphene structures with ordered or crystalline oxygen functional groups,
density functional calculations indicates that the band gap also increases with the
oxygen-carbon ratio [102, 107]. Yan, Xian, and Chou considered graphene oxide
as an effective alloy consisting of three components, sp2 C, epoxide groups (C2O),
and 1,2-hydroxyl pairs (C2(OH)2, with relative proportion based on the degree of
oxidation [100]. Based on density functional calculations of ordered structures in
the ternary diagram, they also found that the band gap increased with the oxygen to
carbon ratio.

14.5.3 Electron Mobility and Transport

Since a great deal of research has been focused on mass production of graphene
sheets from graphene oxide, the electron mobility of the reduced graphene oxide
sheets has been an area of considerable interest and investigations. As we have
seen throughout this chapter, the parent graphene oxide material can be thought
of as a graphite backbone with a random distribution of oxygen functional groups
(primarily epoxy and hydroxyl groups) on the surface. The presence of the
functional groups leads to local strains and distortions of the honeycomb lattice and
the subsequent transformation of sp2 bonds into sp3 bonds. In this sense, graphene
oxide can be thought of as a material consisting of small sp2 or conductive graphene
islands surrounded by a sea of disordered, insulating sp3 regions. By reducing a
graphene oxide sample, a large number of sp2 bonds can hopefully be restored to
provide a conductive path across the film.
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Discussions about transport in graphene oxide [108, 109] have focused on
variable range hopping regimes where electrons hop between localized sp2 states.
In this model, the conductivity can be expressed as:

� D �0 exp

�
� B

T 1=3

�
(14.1)

where T is the temperature and the hopping parameter B can be related to
the wavefunction decay constant and the density of states at the Fermi energy.
For graphene oxide samples that have not undergone a full reduction process,
the ln.�/ does show a linear trend when plotted against T�1=3, supporting the
variable hopping model [108, 109]. Through analysis of different graphene oxide
samples at various degrees of reduction, Eda et al. found that the change in the
B parameter could be related to an increased number of localized states near the
Fermi energy, but that the decay parameter or localization length for electrons
still remained roughly constant [109, 110]. This indicates that while reduction
may result in additional sp2 islands, boosting the number of localized states, they
are still, for the most part, not connected and this prevents the electrons from
becoming itinerant. A transition from the variable hopping regime to a semimetal
reduced graphene oxide with band-like transport was observed when the samples
were well reduced. This is most likely due to the formation of a percolation
regime with greater connectivity between sp2 islands, electron delocalization,
and the formation of efficient electrical paths through the sample. Mattevi et al.
found that this transition to a percolation regime occurred at a sp2 fraction
of �0.6 [86].

Since the transport mechanism depends strongly on the degree of oxidation and
oxidation procedure, it is not surprising that the measured mobilities vary widely
between different groups. Eda, Fanchini, and Chhowalla grew graphene oxide using
a modified Hummers approach and then used a combined hydrazine and thermal
annealing method to reduce their samples [41]. They found this technique worked
better than separate chemical or thermal annealing. Hole mobilities of the flakes
ranged from 2 to 200 cm2/Vs and the mobility for a thin film transistor with a long
channel length (400 �m) was much smaller 1 cm2/Vs and this reduction could be
due to scattering at junctions between flakes [41].

Gomez-Navarro et al. used Hummers graphene oxide that was chemically
reduced with hydrazine and found conductivity ranges from 0.05 to 2 S=cm

and field effect mobilities of 2–200 cm2/Vs at room temperature [111]. Several
additional groups [112, 113] have fabricated graphene FETS with hole mobilities
ranging from 0.25 cm2/Vs to 4 cm2/Vs and max electron mobilities of 1 cm2/Vs.
Recently Shin et al. found that reducing graphene oxide with sodium borohydride
(NaBH4) leads to a much smaller sheet resistance than graphene oxide reduced using
hydrazine (N2H4) [114]. Wang et al. observed that electron mobility was higher than
hole mobility in contrast to other experimental studies. They found a maximum
transistor mobility of 10 cm2/Vs [115].
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14.6 Applications for Graphene Oxide

14.6.1 Graphene Oxide Electronics

Optical studies of graphene oxide have shown that the band gap of the material
can be adjusted by the relative amount of oxidation [105]. This also leads to a
measurable drop in the transparency of graphene oxide films during reduction.
This ability to control the electronic properties of G-O makes it an appealing
component for graphene based electronics. In 2008, Wu et al. examined the transport
properties of graphene/graphene oxide junctions using both chemically derived
graphene oxide flakes and graphene oxide formed from epitaxial graphene [34].
Transport measurements indicate the presence of Schottky barriers at the G/G-
O interfaces with a height of 0.7 eV. The barrier height reduces with annealing
(0.5 eV), which indicates that the degree of oxidation directly affects the band gap of
graphene oxide.

Transparent conducting films based on graphene oxide were first demonstrated in
2007 [116]. The graphene oxide sheets were mixed with silica in solution and could
be easily spin coated onto glass. Through careful processing, nanometer graphene
oxide films can be reduced sufficiently to have both high conductivity and high
optical transparency. Films with sheet resistances of �1 k˝/sq and 90% trans-
parency have been achieved with high temperature pyrolysis (1,000ıC). Reduced
graphene oxide electrodes could provide a cheap alternative to indium tin oxide
(ITO) electrodes. Graphene also has a very similar work function to that of ITO,
which should allow for easy integration into existing photovoltaic and LED device
designs. However, the development of fabrication techniques that do not rely on high
temperature pyrolysis will be essential for these devices to be competitive [110].

Typically for electronic applications of graphene oxide, the in-plane electrical
conductivity is of primary importance. A recent work by Li et al., however,
presents an interesting application of graphene oxide for solar cells where the
conductivity perpendicular to the plane is the key metric for device performance
[117]. In composite organic photovoltaics, the active region consists of acceptor
nanostructures embedded in a donor polymer matrix which provides a large
acceptor/donor interface surface area for effective charge separation. The efficiency
of these devices can be limited by charge recombination when the anode and cathode
contact both donor and acceptor regions in the photovoltaic. To block electrons
and prevent charge recombination, thin p-doped layers or hole transport layers are
often deposited on the anode [118, 119]. However, the need to vacuum deposit
inorganic hole transport layers makes fabrication much more costly and removes
any advantage in comparison to traditional solar cell technology. Hole transport
layers that can be deposited in solution are known (i.e., PEDOT:PSS), but the
deposition process required can degrade device performance. Li et al. found that
a 2 nm graphene oxide layer can serve as an effective hole transport layer with
an estimated band gap of 3.6 eV. They view graphene oxide as a graphene sheet
covered primarily by wide band semiconducting regions due to sp3 bonds with
scattered conductive regions of sp2 bonds. The large band gap regions effectively
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blocks electron transport into the anode and the efficiency may be further improved
by reducing the size of the sp2 regions.

A group has recently demonstrated that graphene oxide can be used an effective
charge trapping layer dielectric in memory storage devices where the threshold
voltage is dictated by the charge trapped in the graphene oxide sheet [120].
These devices demonstrate a large memory window (7.5V) which is essential for
nonvolatile memory applications. The memory window is also significantly larger
than previous devices based on carbon nanotubes [121] (0.4V) and it can be adjusted
over a range of (1.4–7.5 V) with chemical reduction. Due to the fact that graphene
oxide can be processed in solution, it may provide an important memory component
for flexible organic electronics.

The ability to store charges is also extremely important for capacitor applica-
tions. Electrochemical double layer capacitors (EDLCs) store charge by reversibly
absorbing electrolyte ions on electrodes. In order to store a significant amount of
charge, a large surface area is crucial. Typical high surface area electrode materials
for EDLCs are based on a combination of activated carbon and carbon black filler
and provide capacitances ranging from 120 F/g (organic electrolyte) to 300 F/g
(aqueous electrolyte) [122]. Reduced graphene oxide films have a large surface area
(400–700 m2/g) and also exhibit very encouraging capacitances with 120 F/g
(organic) [123] and 190 F/g (aqueous) [124]. Work is currently underway to enhance
the surface area of graphene oxide layers through the use of spacers to prevent
agglomeration. A more detailed discussion of the use of graphene oxide materials
in capacitors can be found in [125].

14.6.2 Sensors

While the functional groups in graphene oxide are often used to adjust the electronic
structure of the graphene sheet [105], they also offer important functional sites for
biological and chemical applications. A research group has recently demonstrated a
glucose biosensor based on a graphene oxide electrode [126]. The graphene oxide
is functionalized by covalently bonding glucose oxidase amines to carboxyl acid
groups on the surface. The functional modified graphene oxide sensor demonstrates
a reproducible linear response over a wide range of glucose concentrations and
initial studies indicate it could be biocompatible with human cells. Another group
has also found that reduced graphene oxide sheets can serve as effective chemical
sensors with parts per billion detection levels for chemical warfare agents and
explosives [127].

14.6.3 Carbon-Based Magnetism

The development of nanoscale magnetic structures for memory applications and
possibly spin-based electronics such as magnetic tunnel junctions has been one
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of the main drivers for top down nanoscale fabrication. Magnetic materials used
in industry rely on elements with d or f orbital electrons. The possibility of
developing magnetic materials based on light elements with no d orbitals, such as
carbon nanotubes and graphene, has been an active and controversial field [128].
Ferromagnetism in high pressure rhombohedral C60 was reported with a TC of
500K in 2001 [129], but the work was later retracted when the results could be
explained with the measured amount of magnetic (Fe) impurities in the sample
[130]. However, more recent experiments using proton irradiated highly orientated
pyrolytic graphite (HOPG) [131] and pristine graphite [132] have shown evidence
of room temperature ferromagnetism. In addition, density functional calculations of
graphene nanoribbons provide evidence of localized magnetic moments on surface
or edge states. The review by Yazyev [128] is an excellent source for additional
information of the numerous experimental and theoretical studies of magnetism
in carbon nanostructures that have come out recently. In this work, we will only
highlight recent works in the past year that have considered magnetism in graphene
oxide structures.

A recent theoretical work based on density functional theory has indicated
that graphene nanoribbons functionalized with an epoxy chain could be magnetic
[133]. Based on energetic analysis, they find that graphene nanoribbons with a
central epoxy chain should be energetically favorable. Similar to previous studies
[134, 135], they find that zigzag graphene nanoribbons have an antiferromagnetic
ground state. With the addition of a central epoxy chain, the nanoribbon ground
state becomes ferromagnetic with magnetic moments situated primarily on the
nanoribbon edges and along the epoxy chain. This model, however, does not
explain a recent experimental study of magnetism in graphene oxide nanoribbons
prepared by chemically unzipping carbon nanotubes [136] that found evidence
of paramagnetism. In this case, placement of functional groups on the surface is
disordered, and it is suggested that the paramagnetic behavior could be due to the
presence of carbonyl functional groups at the edge of the graphene nanoribbons.
The lack of agreement between theory and experiment could be due to this disorder.
Wang and Li do note that calculations based on random epoxy groups do not lead
to a magnetic state. Another explanation could be that the oxidized nanoribbons
formed from carbon nanotubes do not possess a large number of epoxy groups or
also include hydroxyl groups that prevent the formation of epoxy chains.

14.7 Future Perspectives

In this chapter, we have examined the atomic structure, electronic properties, and
fabrication of graphene oxide, as well as some of its possible applications. Of
all the functional forms of carbon that are currently under consideration, a clear
understanding of the chemistry and physics of graphene oxide is perhaps the most
critical for the birth of a graphene-based electronics industry. It is important to
remember that the phrase graphene oxide actually encompasses a fairly wide range
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of oxidized graphene structures that possess a range of C:O ratios and that can be
fabricated using a variety of techniques. Current research strongly indicates that
functional groups on the graphene oxide surface are for the most part randomly
distributed and that the insulating properties of these materials depends strongly
on the amount of oxidation. While there is limited evidence of ordered oxygen
functional groups on a graphene surface, it remains to be seen whether careful
growth conditions could lead to crystalline forms of graphene oxide. For the use
of graphene oxide as a precursor for graphene sheets in industrial settings, the
critical issue remains of how to effectively reduce graphene oxide to enhance
mobility. Clear evidence exists that oxygen functional groups and defects remain
after reduction. The development of processing steps that help the graphene lattice
heal during this process will be crucial for the development of viable large scale
manufacturing processes.

However, even without the motivation of graphene electronics, graphene oxide
shows great promise for a number of industrial applications in its own right. As
we have highlighted earlier in this chapter, graphene oxide has shown encouraging
results as an charge trapping layer for memory storage devices. Due to its large sur-
face area, reduced graphene oxide can also be used to make competitive capacitors.
Transparent reduced graphene oxide sheets could also provide a cheap alternative to
the expensive indium tin oxide used in panel displays. Finally, the ability to tune the
electronic properties of graphene oxide from insulator to semiconductor to semi-
metal provides an important way to chemically define devices and circuits. It is
clear that graphene oxide is an unique and promising material that requires further
understanding and that should benefit progress in a number of fields.
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Part III
From Physics and Chemistry of Graphene

to Device Applications



Chapter 15
Graphene pn Junction: Electronic Transport
and Devices

Tony Low

Abstract This chapter provides a tutorial style review on the physics of electronic
transport through a graphene pn junction in the absence and presence of a magnetic
field, including the case of a strain-induced pseudo-magnetic field. We review
the basic transport theories for the graphene pn junction and complement this
understanding with numerical studies and key experimental findings. Novel devices,
such as electron optics and strain-induced pseudo-magnetic devices, that exploit the
physics of the graphene pn junction discussed in here, will be presented.

15.1 Introduction

The discovery of the modern semiconductor pn junction dates back to 1940 [1].
This discovery set the stage for the later discovery of the junction transistor. Ever
since, the semiconductorpn junction has been a ubiquitous building block for many
solid-state electronic devices such as transistors, rectifiers, bipolars, solar cells, and
light-emitting devices [2,3]. One of the key technological reasons for the success of
the pn junction lies in its ability to locally modulate the energy bands via an applied
bias. By reducing or increasing the energy barrier that the majority carriers at the
chemical potential see, one controls the electrical conduction across the device. This
basic principle underlies the rectification effect in a pn diode [3] and even the
ballistic transistor [4]. The presence of a bandgap much larger than kT is crucial
for above-mentioned applications.
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Pristine graphene [5–7], a two-dimensional carbon sheet arranged in a honey-
comb lattice with an unusual linear energy dispersion [6, 8–12], does not have a
bandgap. There are currently various approaches to induce bandgaps in graphene.
The most obvious solution is through size quantization by the formation of
nanoribbons [13–16] or more novel approaches such as nanomesh [17]. However,
edge disorder and coulomb effects reduces it into a “mobility gap” [18, 19]. Other
known approaches include breaking of the sublattice symmetry by interactions
with underlying substrates [20–23] and bilayers [24–28]. Currently, these methods
can produce a bandgap of up to 300meV. Forming chemical derivatives, e.g.
graphane by hydrogenating graphene, might lead to formation of large bandgap
[29]. Recent experiments [30, 31], however, show that graphene-on-substrate tends
to form a disordered hydrogenated graphene instead. This leads to a “mobility gap,”
common for most adsorbates [32]. All these methods involved a modification or
reconstruction of the graphene’s electronic bandstructure in order to produce a
bandgap. This raises the following question “Are there alternative electronic devices
that can exploit the very unique property of graphene, namely its gapless Dirac
electronic spectrum?” In this chapter, we shall address this question in the context
of graphene pn junction.

The initial experiments on graphene [5–7] clearly demonstrate the linear depen-
dence of density-of-states as function of energy, a consequence of its Dirac energy
spectrum. Devices for high frequency radio applications [33] exploits this simple
phenomenon. Graphene pn junctions, the basic building block of most devices, had
recently been demonstrated using a combination of top and bottom electrostatic
gates to create “doped” p and n regions [34–36]. The conductance asymmetry,
between nn andpn counterparts, observed in experiments is due to angular selective
transmission across a pn junction [37, 38]. In particular, carrier incident normal to
the pn interface would transmit perfectly, a phenomenon known as Klein tunneling
[39], whose signatures are also observed experimentally [40, 41]. This unique
property allows spatial manipulation of electron flow, through devices such as an
electron collimator (through electronic superlattices using pn junctions) [42] and
multiplexer [43] (via a tilted pn junction). Drawing analogy to optics, where one
manipulates the spatial flow of light through mediums of different refractive index,
one envisions electron-optics devices [44–48]. Such devices include the Veselago
lens for electron focusing [49], and the electron-optical fiber [50–53], for guiding of
electrons. The latter was experimentally demonstrated very recently [54].

On another related front, graphene pn junction in the presence of magnetic
field had also been studied rigorously, both in the weak magnetic field [40, 41]
and quantum Hall regimes [34, 35]. An interesting phenomenon related to the latter
effect is the appearance of new anamolous integer quantum Hall plateaus [55, 56].
This is related to the presence of snake states, which emerged in the presence
of crossed uniform electric and magnetic fields [57, 58]. When the current flow
is aligned parallel to the pn interface, these snake states can be probed directly
in experiments [59]. An intriguing idea is to employ strain to generate a pseudo-
magnetic field [60, 61] in replacement of the real magnetic field. Recently, Landau
levels as a consequence of such pseudo-magnetic field (of up to 300T) were probed



15 Graphene pn Junction: Electronic Transport and Devices 469

using a scanning tunneling microsope [62]. This opens up new opportunities for
novel quantum Hall transport physics, such as snake states and valley polarized
currents, to be realizable in electronic devices [63–69].

Establishing a basic understanding of the transport physics in graphene pn
junction is therefore pertinent, since it is the most basic building block of most
devices, including that of electron optics and pseudo-magnetic field devices. This
chapter focuses on the physics of electronic transport through a graphene pn
junction in the absence and presence of a magnetic field, including the case of
a strain-induced pseudo-magnetic field. We divide this chapter into several main
sections. Section 15.2 surveys the electronic transport physics in a graphene pn
junction in the absence of a magnetic field. This includes the concept of pseudospin
[70], the phenomenon of Klein tunneling [39], analogies with optics such as
electron focusing [49] and total internal reflection, quantum tunneling [37] and the
basics of conductance modulation [38]. Section 15.3 reviews the novel transport
physics of a graphene pn junction in the presence of a magnetic field. Such
transport phenomena include the concept of valley isospins [71], snake orbits [11],
conductance modulation in a weak magnetic field [72], transport in quantum Hall
regime, [34] and various types of disorder [56]. The anamolous quantum Hall
plateaus will be discussed. Section 15.4.1 discusses the transport physics of a
graphenepn junction in the presence of a strain-induced pseudo-magnetic field. The
origin of strain-induced pseudo-magnetic field is explained. Edge states, transport
gap, magnetic and electric snake states are also discussed. Lastly, Sect. 15.5 provides
an update on current experimental effort in realizing these novel phenomena and
devices. Broadly speaking, this chapter addresses the key physics, derives and
presents the relevant physical models, most importantly, theories are corroborated
with existing experiments. Numerical approaches to solving quantum transport
are employed to elucidate on the physics, where the modeling methodology are
discussed in Sects. 15.2 and 15.4.1. At various junctures of the discussion, device
concepts stemming from these unique transport physics of the graphenepn junction
are also introduced.1

15.2 Transport in the Absence of a Magnetic Field

Recently, the local control of the energy bands in graphene has been demonstrated
using a combination of top and bottom electrostatic gates to create p and n

regions [34–36]. In this section, our aim is to develop an understanding of the
conductance modulation of the graphene pn junction. We begin by laying out
the conventions and definitions in Sect. 15.2.1, which we will need for subsequent
discussions, especially regarding the concept of pseudospin. Then we consider

1See also relevant chapters of this book, e.g. Sect. 15.2.1 should complements with Chaps. 8, 9
and 17 provides other aspects of electronic transport properties.
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the simple scattering problem of a step potential in Sect. 15.2.2. Here, we see
that conductance modulation can be understood as pseudospin mismatch. We also
introduce a possible analogy to optics at this juncture. In Sect. 15.2.3, we consider
the scattering problem under a linear electric potential using the Wentzel-Kramers-
Brillouin (WKB) approximation. We also compare the difference between the
tunneling of Dirac and Schr Rodinger Fermions. Armed with the simple theoretical
models for conductance modulation, we tackle the problem of realistic modeling of
experimental devices in Sect. 15.2.5. Section 15.2.4 introduces the general numer-
ical quantum transport model. We will also attempt to explain the experimental
observation in [36] using the understanding developed in this chapter.

15.2.1 Dirac Equation, Pseudospin, and Chirality

The lattice structure of graphene is shown in Fig. 15.1a. It is convenient to define
two coordinate systems for armchair and zigzag edge ribbon as shown in Fig. 15.1b.
Within the nearest neighbor tight-binding approach, the problem can be written as
follows [73]:

t

�
0 f .k/

f .k/� 0

��
 A
 B

�
D �

�
 A
 B

�
(15.1)

where t � 3 eV is the nearest neighbor hopping energy and

f .k/ D
X

j

exp
�
ik � rj

�
(15.2)

where r1 D .�b; 0/, r2 D 1
2
.b; a/ and r3 D 1

2
.b;�a/. The eigen-energies are given

by �.k/ D ˙t jf .k/j. The zero energies are located at the corners of the Brillouin
zone, known as the Dirac point (see Fig. 15.1c). Expanding f .k/ to the first order
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Fig. 15.1 (a) Honeycomb lattice of carbon where the primitive cell consists of two atoms, i.e.,
A/B. The carbon–carbon bond is b � 1:44Å, and the lattice constant is a D p

3b. (b) The two
coordinate systems used for armchair and zigzag cases. (c) The Brillouin zone corresponding to
the lattice in (a). A Dirac point in the armchair coordinates is indicated
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in k about the Dirac point at 4�
3a
.0; 1/, we arrive at (using the armchair coordinate

system)

f .k/ � �3b
2

�
ikx C ky

�
(15.3)

The Hamiltonian in (15.1) then becomes

H � „vf
�

0 �ikx � ky
ikx � ky 0

�
D vf

�
Px�y � Py�x

�
(15.4)

where vf D 3bt=2„ � 1 � 106 m/s is known as the Fermi velocity, and P � �i„r
is the momentum operator. Using instead the coordinate system for the zigzag case,
we arrive at a more familiar form,

H D vf
�
Px�x C Py�y

� D vf P � � (15.5)

which is known as the Dirac equation of relativistic quantum mechanics. The
corresponding eigen-states are given by

j‰s.k/i D 1p
2

�
e�i�=2

sei�=2

�
exp.ik � r/ (15.6)

where s D C1/�1 for electron/hole states, respectively, and � D tan�1.ky=kx/.
This two-component wavefunction is known as pseudospin in the literature due
to its transformation properties, which are similar to those of real spins. The
corresponding eigen-energies are �.k/ D s„vf jkj.

Next, we make the observation that the group velocity operator v is parallel to
the pseudospin,

v D rPH D vf � (15.7)

Therefore, we have hvi D vf h� i, where

h� i � h‰sj � j‰si D s
k
jkj (15.8)

Equation (15.8) tells us that for a given k state, the velocity and pseudospin are
parallel/antiparallel to k for the electron/hole states, respectively. The fact that the
pseudospin (i.e. the wavefunction) is tied to the propagation direction has important
consequences in transport. An example being the absence of backscattering [70],
since ˙k states have opposite pseudospin.

In formal language, s is referred to as the state’s chirality. This is because s could
be written as h� i�k=jkj like the definition of chirality in particle physics [74], except
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that h� i is not the real spin. In a usual semiconductor such as Si, the complicated
multi orbital environment prevents a similar pseudospin concept from being invoked
for the wavefunction description. Hence, (15.8) does not apply to Si, although the
statement about group and phase velocity is applicable in the vicinity of band edges.

15.2.2 Abrupt pn Junction and Analogy with Optics

In this section, we solve the quantum scattering problem of an abrupt potential
step junction as shown in Fig. 15.2a, where the arrows in Fig. 15.2b indicate the
directions of the pseudospin (or group velocity) for some representative forward
(Cx) propagating states. Note the difference in chirality of electron/hole states as
according to (15.8).

We consider an incoming wave with unity amplitude incident on the pn interface,
which results in a reflected and transmitted wave. We denote the wavevectors as ki,
kr and kt, respectively. By requiring the conservation of transverse momentum (ky),
we can make the following statement:

jkijsin.�i / D jkrjsin.�r/ D jktjsin.�t / (15.9)

where � D tan�1.ky=kx/. Because ki D kr , this leads to �r D � � �i (specular
reflection), or what is commonly known as the second Snell law in ray optics.
Similarly, we can also rewrite (15.9) as

sin.�i /

sin.�t /
D kt

ki
D �f t

�f i
(15.10)

This is analogous to the third Snell law in optics, where energy plays the role of
the refractive index here. When the signs of �f t and �f i are opposite, a situation
is obtained that is analogous to the Veselago lens [49], a negative refractive index
medium.

2

3
x=0 y

1

region 1 region 2 region 1 region 2

x

θ

a b

Fig. 15.2 (a) Energy band of an abrupt pn junction, where the solid blue line is the local position
of the Dirac point and the dashed black line indicates the Fermi energy. (b) Illustration of the
constant energy contour in the respective n/p regions of an abrupt graphene pn junction. The
directions of group velocity (or equivalently pseudospin) for some representative transverse states
are illustrated. State “1” undergoes perfect transmission, state “2” undergoes partial transmission
and state “3” has complete reflection
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When j�f t j < j�f i j, the situation of total internal reflection occurs. In a fashion
similar to optics, we could define the critical angle as �c D sin�1.�f t=�f i /. Modes
incident on the pn interface at angle larger than �c would be totally reflected (see
Fig. 15.2b and caption). Technically speaking, this property could be used to create
an electron analogue of an optical fiber for guiding electron flow [54]. This also
translate to a “modes bottleneck effect” in the pn junction conductance, where the
conductance is being limited by the junction with a smaller number of modes [38].
This is a classical effect due to momentum conservation. For modes incident at angle
smaller than �c, one have to consider its quantum transmission.

To solve the scattering problem for the abrupt pn junction, we denote the
solutions in each region and require them to be continuous at the interface x D 0,
i.e.,

�
1

siei� i

�
C r

�
1

srei� r

�
D t

�
1

stei� t

�
(15.11)

where r and t are the reflection and transmission coefficients, respectively. Using
the fact that sr D si and �r D � � �i , we obtain the solution for r :

r D si ei�i � st ei�t

sie�i�i C stei�t
(15.12)

The transmission probability can then be computed from 1 � jr j2. For the case of a
symmetrically biased pn junction (�f i D ��f t ), jr j2 D sin2.�i / or a transmission
probability of cos2.�i / would be obtained. From (15.12), it can be observed that
r D 0 when �i D 0, leading to the condition of perfect transmission. This
phenomenon is also known as Klein tunneling 2 in the graphene literature [39]. The
perfect transmission at normal incidence persists regardless of the energy barrier
and the length of the transition region!

It is instructive to note the clear departure from optics in this regard. The
transmission and reflection probabilities of an electromagnetic wave at the interface
of two linear media (for the case of polarization in the plane of incidence) are
described by Fresnel’s equation [75]:

R D
�
˛ � ˇ

˛ C ˇ

�2
; T D ˛ˇ

�
2

˛ C ˇ

�2
(15.13)

˛ and ˇ are defined as

˛ D cos�t
cos�i

; ˇ D �1v1

�2v2
(15.14)

2Klein tunneling is to be distinguished from Klein paradox, see [130] for an interesting historical
account of the related Klein paradox.
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where� is the permeability of the medium, and v is the group velocity. From (15.13)
and (15.14), we see that perfect transmission occurs when the condition ˛ D ˇ is
satisfied. The corresponding �i when this occurs is not necessarily zero and is called
the Brewster angle, i.e., �B � n2=n1. This fact is used in lasers for the construction
of Brewster windows to enhance laser intensity by tilting the interface so that the
laser incident at �B. For graphene, �B D 0 due to Klein tunneling. A tilted graphene
pn interface could also similarly enhance transmission of the modes coming at its
�B [43].

Lastly, we shall compute the conductance of a symmetric pn junction. The
transmission probability as a function of the incident angle is given by cos2.�i /
or is alternatively written as 1 � k2y=k

2
f . The junction conductance is then [38]

Gnp D 2q2

h

X

ky

1� k2y

k2f
D 4q2

h

W

2�

Z kf

�kf
1 � k2y

k2f
dky

D 2q2

h

2M

3
D 2

3
Gnn (15.15)

where M � 1
�
2W kf is the number of transverse modes (not including spin

degeneracy) in the unbiased graphene nn counterpart. Now, consider the limit
where the p side (see Fig. 15.2a) is electrically doped heavily, then the pseudospin
direction could be approximated to be along x. In this case, it could be shown
that the transmission probability as a function of the incident angle is given by
cos2.�i=2/. The junction conductance is then [38]

Gnp D 2q2

h

X

ky

1

2
C
q
k2f � k2y

2kf
D
�
1

2
C �

8

�
Gnn (15.16)

Therefore, the conductance of an abrupt np junction would always be less than that
of its unbiased counterpart, i.e., Gnp < Gnn.

15.2.3 Tunneling for Dirac and Schr Rodinger Fermions

In experimental graphene pn junction devices, the pn transition length is finite and
is dictated by the charge screening in the vicinity of the junction [76]. Here, we shall
consider a simplified case where the potential is linear, instead of a step, as shown in
Fig. 15.3a. In this limit, the semiclassical results for the tunneling probability could
then be derived across such a junction based on the Wentzel–Kramers–Brillouin
(WKB) approximation. In fact, it is known that the WKB approximation is exact
if the potential is perfectly linear. However, in reality, the actual potential profile
resembles more of a graded step potential. For example, Fig. 15.3b shows the
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Fig. 15.3 (a) Illustration of electron transport through a linearly graded pn junction. �g is the
apparent energy gap due to the finite transverse momentum ky . d is the tunneling distance. (b)
Energy-resolved local density of states (LDOS) for a graded step junction in graphene. Color
scheme: Blue (red) color denotes low (high) intensity. (Fig. (b) adapted from [38])

energy-resolved local density of states (LDOS) of such a graded step potential. We
defer the study of conductance through such a junction to Sect. 15.2.5.

Figure 15.3a illustrates the energy band as seen by a Dirac particle at some
nonzero transverse momentum ky that is undergoing the tunneling process. The
finite ky leads to an apparent energy gap of �g D 2�y D 2„vf ky . By simple
conservation of energy, a semiclassical equation could be generated that relates the
total, kinetic and potential parts as follows:

� � V.x/ D „vf
q
k2x C k2y (15.17)

V.x/ D q�x C � � �y=2 (15.18)

where � is the electric field. From (15.17), the x component of the momentum p �
„k can be written as

px D
q�
py � q�x=vf

�2 � p2y (15.19)

where, at the classical turning point x D 0, px D 0 is obtained. The second occurs
at x D d , as shown in Fig. 15.3a, where d D �g=�. The WKB tunneling probability
can be computed from T D exp.�2S/, where S is the action integral defined as

S � 1

„
Z d

0

pxdx D �2g

4„vf q�
Z 1

�1

p
1 � y2dx D �2y�

2„vf q� (15.20)

This result had been obtained for massive Dirac Fermions, studied in the context of
semiconductor tunneling diodes [77] and recently in the graphene pn junction [37].
We note that T D 1 for carriers incident normally at the pn interface, i.e., ky D 0,
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which is an obvious result from WKB because the normally incident mode has no
apparent bandgap (i.e., no classically forbidden region).

It would be interesting to compare the result obtained for Dirac Fermions with
that of the Schr Rodinger Fermions counterpart. The result for a zero bandgap material
with an effective mass m gives the following action integral:

S D 2
p
2m

3„q�
�
�0 C �g

� 3
2 (15.21)

where �0 is the bandgap of the material, and �g is defined similarly as above. To make
a comparison with graphene, we assume that �0 D 0. Interestingly, Dirac Fermions
exhibit a stronger angular dependence than their Schr Rodinger Fermions counterpart,
with S / .ky/

2 versus S / .ky/
1:5. This implies that the pn junction would lead to

stronger conductance modulation for Dirac Fermions. However, to be competitive
with conventional semiconductor materials, it should still be complemented with
a finite �0 in graphene through methods such as sublattice asymmetry through
an underlying substrate [21] or bilayer [78]. The effects of band parameters are
embodied in v and m for the Dirac and Schr Rodinger cases. Apart from these
differences, both cases depend inversely on the strength of the electric field.

It would be instructive to make a connection between (15.20) and the Landau
Zener formula [79, 80]. We begin by writing the Hamiltonian for the problem,

H‰ D �
vf �xPx C vf �yPy C V.x/

�
‰ D �‰ (15.22)

Performing a unitary transformation on (15.22) using 1p
2

�
I C i�y

�
and multiplying

by �z, one obtains

vf Px‰ D �
.� � V.x// �z C ivf Py�x

�
‰ (15.23)

By making the change in the variable x ! t , one arrives at

i„ @
@t
‰ D

�
.V .t/ � �/ =vf �i„ky

�i„ky .� � V.t// =vf

	
‰ (15.24)

To make the connection to (15.20), we let V.t/ D q�t . Then based on the Landau
Zener model, the probability for transition is

P D exp

"

� 2�
�„ky

�2

„ �2@tV=vf
�

#

D exp

 

� �2y�

„vf q�

!

(15.25)

which is exactly the result obtained in (15.20). In the Landau Zener transition, �
represents the rate at which the electron/hole energies (˙�) cross each other. A
larger � would therefore translate to a higher probability of transition P .
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Lastly, we would like to compute the pn junction conductance. Let us consider
again a symmetric pn junction and that the Fermi energy on the far left/right of the
junction is well defined, say �F. This translates to a built-in potential of Vpn D 2 j�Fj,
as shown in Fig. 15.3b. The substitution of q� D 2�F=dw can be made, where dw

is known as the pn transition length (see Fig. 15.3b). This allows us to rewrite the
tunneling probability as

T D exp.�	dwk
2
y=kf / (15.26)

where 	 D �=2. The junction conductance is then

Gnp D 4q2

h

W

2�

Z kf

�kf
exp.�	dwk

2
y=kf /dky

D Gnn
�
2kf dw

�� 1
2 erf

�q
	dwkf

�
(15.27)

For typical electrostatic doping of say �F D 0:2 eV, we get kf � 3 � 108 m�1. A
pn transition length of 10 � 100 nm would easily satisfy the inequality dwkf � 1.
Thus, Gnp is just inversely proportional to

p
kf dw [37]. Assuming some typical

experimental numbers, �F D 0:2 eV and dw D 100 nm, we obtain Gnp � 0:13Gnn.
Therefore, the conductance modulation with the pn junction is typically an order of
magnitude.

15.2.4 Quantum Transport Modeling

In the last two sections, we discussed the quantum transport problem across a step
potential and a linear potential. In realistic experimental devices, the potential profile
resembles more of a graded potential step, as shown in Fig. 15.3b. Supposing that
the potential profile V.x/ is known a priori, there is a general scheme to compute
the quantum conductance of the pn junction [38]. The objective of this section is to
provide an outline of such a method, based on the nonequilibrium Green function
approach, see [81–84] and references therein. Hence, we constrain ourselves to a
concise description of the method.

The Hamiltonian is formulated by treating only the nearest neighbor interaction
between pz orbitals [73]. By taking the width to be large so that we can impose
a periodic boundary condition along the width, the Hamiltonian is then written as
(2Nx � 2Nx matrix)

H D

2

6
66
6
4

˛ ˇ1

ˇ
�
1 ˛ ˇ2

ˇ
�
2 ˛

: : :

: : :
: : :

3

7
77
7
5

C V (15.28)
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where V is just the lattice representation of V.x/, while ˛, ˇ1 and ˇ2 are all 2 � 2
matrices given by

˛ D
�
0 t

t 0

	
ˇ1 D

"
0 0

t
�
y 0

#

ˇ2 D
�
0 0

ty 0

	
(15.29)

where t � 3 eV , and ty=tCteikya. The lattice parameter is a=
p
3b, where b=1:44Å

is the c–c bond distance. ky is a quantum number for the quantized transverse
momentum. To account for the semiinfinite boundary condition of H, we need to
compute the left/right surface Green’s function, i.e., gL=R. For the left side, we have

gL D
h
.�f C i
/I � VL � ˛ � ˇ�2 Qgˇ2

i�1

Qg D
h
.�f C i
/I � VL � ˛ � ˇ

�
1gLˇ1

i�1
(15.30)

where 
 is a small real number. Equation (15.30) can be solved iteratively using a
procedure outlined in [85]. gR can be obtained in a similar fashion.

The central quantity of the quantum transport theory, the retarded Green function,
is written as

Gky D �
.�f C i
/I � H � V �˙L �˙R

��1
(15.31)

where˙L=R is commonly known as the contact’s self energy [81]. For example,˙L

is defined as follows:

˙L D
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and in a similar fashion for ˙R. Finally, the current through contact i can then be
computed using

Ii .�/ D 2q

h

X

ky

Tr
�
˙in
i .�/A.�/ � �i.�/G

n.�/
�

(15.33)

where A=i.G � G�/ is the local density-of-states, ˙in
i =f0.�/�i .�/ is the filling

function (analogous to the in-scattering function for the incoherent case), f0.�/ is
the Fermi function of the contacts and �i=i.˙i � ˙

�
i / is the contact broadening

factor. In (15.33), Gn.�/ is the electron correlation function given by G.˙in
l C

˙in
r /G

�. Note that Gn � �iG< [81–84]. Usually, the sizes of the G matrices are
computationally prohibitive for their inverses to be sought directly. Hence, G and
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Gn are usually computed using a technique known as the “recursive Green function
algorithm.” This technique exploits the special properties of the tridiagonal nature
of H through the use of Dyson’s equation. See, for example, [86] for a nice tutorial-
style discussion of this numerical technique.

Finally, before we conclude this section, we make some remarks about the choice
of ky . Usually, the widths of the experimental devices are large, such that ky are
just multiples of �=W . However, a more accurate choice of ky that reflects the
actual hard-wall boundary condition of a nanoribbon can be sought. By assuming
an armchair edge and imposing a box-boundary condition, the Dirac equation yields
the following [87]:

ky D
�
2�

3a
C 2�n

2W C a

�
˙ 2�

3a
(15.34)

for all integers n and with W as the width of the device. The last term accounts for
the momentum of the Dirac points, K and K0, where the upper/lower sign is used
when n is even/odd, respectively. With this choice of ky , the method outlined in
this section matches excellently with the exact real-space approach [38], even for
ribbons of very narrow width.

15.2.5 Experiments: Asymmetry and odd Resistances

Several research groups have recently fabricated graphene pnp devices by using
electrostatic gates to create p and n regions [34–36]. The typical setup consists
of a back gate and a top gate, which are used to control the amounts of charge
density in different regions of the graphene. Figure 15.4a illustrates the experimental

region 1

region 2

Vpn

dw

a b

c

Fig. 15.4 (a) A typical experimental layout of the graphene pn junction device, where graphene
is sandwiched between two insulator–metal structures, i.e., top/bottom gates. (b) An optical image
of the fabricated device. (c) Illustration of the energy band in graphene for the region highlighted
in (a). The Fermi energy is set by the chemical potential of the metal contacts. (Figs. (a) and (b)
are adapted from [36])



480 T. Low

Fig. 15.5 (a) Measured resistance of the graphene sample at 4K as a function of the top-gate
voltage for different values of back-gate voltages. (b) Two-dimensional plot of the same resistance
as a function of both gate voltages, where the various colored cuts correspond to the respective
traces in (a). (Figs. are adapted from [36])

structure employed in [36]. We define region 2 to be underneath the top-gate, and
region 1 for the remaining part of graphene (see Fig. 15.4c). Electrostatic of region
1 is controlled by both top/bottom gates, while region 2 by back gate only. An
asymmetry in the device’s source to drain resistance as a function of the top-gate
voltage has been experimentally observed [36], as shown in Fig. 15.5. The amount
of this resistance asymmetry is a measure of the difference in resistance between the
pn junction and its pp counterpart. For recent experiments [36], typical transition
lengths for the pn junction are less than 100 nm. Recent experiments indicate that
the carrier’s mean free path is about 100 nm under low temperatures and moderate
carrier density conditions of 1012 cm�2 [88]. Therefore, a ballistic transport model
should suffice for the study of the experimentalpn junction devices reported in [36].
The objective of this section is to understand this experiment using the methods we
have developed in the previous sections.

Following [36], we can divide the resistance of the device into odd and even parts
as follows:

Rn1.n2/ D Reven
n1 .n2/CRodd

n1 .n2/

Reven
n1 .n2/ D 1

2
.Rn1.n2/CRn1.�n2//

Rodd
n1 .n2/ D 1

2
.Rn1.n2/� Rn1.�n2// (15.35)

where n1=n2 refers to the electron densities in regions 1=2 of the device, as shown
in Fig. 15.4. The electron densities are related to the top-/bottom-gate voltages
(Vtg=Vbg) through simple electrostatics, i.e., qn1 D CbVbg C n01 and qn2 D
qn1 CCtVtg Cn02, as the chemical potential of the device is � 0 in this setup. In the
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experiment, region 2 is long enough such that we can regard Rn1.n2/ as the sum of
two pn junction resistances and the channel resistance. The channel resistance only
contains theReven

n1 contribution, provided that the scattering processes and electronic
bandstructure retain the electron/hole symmetry. The pn junction resistance instead
has bothReven

n1 andRodd
n1 contributions. Theoretically, the resistance of a pn junction

could be computed and its Rodd
n1 contribution extracted. By doing so, we would be

able to connect the theory to experiments.
An important quantity is the pn transition length dw, which has to be determined

prior to our calculations. The determination of dw is an electrostatics problem that
is sensitive to the specific device geometry. In this work, we used a screening model
presented in [76], which expresses dw in terms of n1 and n2 as follows:

dw � 0:196 � Vpn

„vf ˛1=3
�
1 � n2

n1

� 4
3
ˇ
ˇ
ˇ
ˇ
Tox

n2

ˇ
ˇ
ˇ
ˇ

2
3

(15.36)

where ˛ D e2=.�„vf /. � and Tox are the effective dielectric constant and thickness
of the top gate oxide, respectively. Vpn is the built-in potential of the pn junction,
which can be easily calculated from n1 and n2.

Figure 15.6a plots the Rodd
n1 of the resistances of Fig. 15.5. Figure 15.6b shows a

comparison between the theory and the experiments, using the quantum transport
model described in Sect. 15.2.4. Besides the quantitative agreement, a general
interesting trend of increasing Rodd

n1 as n1 decreases can also be observed. This is

0.1917eV
0.1650eV
0.1381eV
0.1044eV

-0.2

0.0

0.2

0.4

O
dd

 R
es

is
ta

nc
e 

R
O

dd
 (
kΩ

)

Difference in Density, n2-n1x1012cm–2

-0.4 δc=1x10–3

-4 -3 -2 -1 0 1

a b

Fig. 15.6 (a) The extracted odd resistance Rodd from Fig. 15.5 [36]. (b) Comparison of the
numerically calculated Rodd with the experimental results in [36] at different carrier densities
of n1, expressed in Ef D .�„2v2f n1/0:5, as shown in the inset. The device width is 1:7�m,
and the operating temperature is 4 K. In the simulations, the contacts are assumed to have an
energy broadening of ıc D 1meV, which is included in the model through the parameter 
. The
calculations assumed ˛ D 0:78 due to a � of 4:5 [36] and an oxide thickness of Tox � 80 nm as a
fitting parameter. The experimental data used here corresponds to the 4 traces in the npn and nnn
regimes. (Figs. (a) and (b) adapted from [36] and [38] respectively)
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explained as an increase in dw as n1 is reduced, indicating that proper treatment of
dw is the key to quantitative modeling of the graphene pn junction. If we make a
gross assumption that dw � 0, the back-of-the-envelope calculations would yield
Rodd
n1 D 1

2
Rn1.n2 D n1/, where Rn1.n2 D n1/ is the resistance of an unbiased

graphene. This would only account for � 10% of the observed values as seen in the
experiments.

Lastly, it is important to note that the quantity Rodd
n1 in this experiment does not

include the asymmetry due to the possible pn junction at the contacts, as recently
observed in experiments [72]. This is because the top gate in this experiment only
modulates n2 and does not modulate the pn junction at the contacts, which are
located a few electron mean free paths away.

15.3 Transport in the Presence of Magnetic Fields

In this section, we extend our previous discussion to include the effects of a magnetic
field. We consider first the case of a graphene pn junction in a weak magnetic field
in Sect. 15.3.1, comparing the positive magnetoresistance observed in experiments
[40,41,89] with that of theory. Section 15.3.2 introduces the concepts of edge states,
snake states, and valley isospins in preparation for the discussion of transport in the
quantum Hall regime. In the absence of disorder, we show that the transport across
a graphene pn junction is dictated by its valley isospin number in Sect. 15.3.3.
Description of the experimental situation, however, requires the inclusion of various
types of disorders. In Sect. 15.3.4, we study the experiments on the graphene pn
junction in the quantum Hall regime [34]. Here we explain why edge disorder,
in addition to pn interface disorder, is necessary to explain the experiments’ new
plateaus. In several instances, quantum simulations are employed (see 15.4.2 for
description of the method).

15.3.1 Weak Magnetic Field Regime

Here, we seek the pn junction’s conductance in the presence of a weak magnetic
field, i.e., a nonquantum Hall regime. The Dirac equation for our transport prob-
lem is

H‰ D �
vf �xPx C vf �yPy C V.x/

�
‰ D �‰

) vf Px‰ D �
.� � V.x// �z C ivf Py�x

�
‰ (15.37)

The second equation of (15.37) was obtained in the same way as (15.23). In the
presence of magnetic field B , we make the replacement of Py ) Py �qBx. Again,
we describe the pn junction by a linear potential profile given by V.x/ D q�x.
Then from (15.37), the momentum operator Px can be expressed as follows:
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Px D
� „kf � ˛x i.„ky � ˇx/

i.„ky � ˇx/ ˛x � „kf
	

(15.38)

where ˛ D q�=vf , and ˇ D qB . After diagonalizing Px , the eigenvalues are found
to be

px.x/ D ˙
q
.„kf � ˛x/2 � .„ky � ˇx/2 (15.39)

The classical turning point, i.e., px D 0, occurs at

x� D „.kf � ky/

˛ � ˇ
(15.40)

The WKB tunneling probability is then computed from exp.�2S/, where

S D 1

„
Z xC

x�

px.x/dx D �„ .ky˛ � kf ˇ/2
2.˛2 � ˇ2/3=2 (15.41)

One could easily check that (15.41) yields (15.20) when B D 0 (ˇ D 0). The
junction conductance is given by

Gnp D 4q2

h

W

2�

Z kf

�kf
exp

�
��„ .ky˛ � kf ˇ/

2

.˛2 � ˇ2/3=2
�

dky

� 4q2

h

W

2�

�p
�.˛2 � ˇ2/3=4
˛

p
�„

	

D 4q2

h

W

2�

s
q�

vf „

"

1 �
�
Bvf

�

�2#3=4

D Gnn.2kf dw/
� 1
2

"

1 �
�
Bvf

�

�2#3=4

� G0np
"

1 �
�
Bvf

�

�2#3=4
(15.42)

where G0np is the junction’s conductance when B D 0, as depicted in (15.27). The
approximation in the second line of (15.42) involves identifying that the inputs to the
error functions are � 1. The fourth line of (15.42) involves making the substitution
of q� D 2�F=dw, which is done in a similar spirit as the derivations of (15.27), i.e.,
for the symmetric pn junction case. These results are as obtained in [90].
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Experiments on pn junctions in the presence of a weak magnetic field are
reported in [41,89]. Here we again study the odd resistance Rodd

n1 .n2/, as previously
done in Sect. 15.2.5 (using the same notations as before). To make contact with
the experiments, we consider only the symmetric pn junction case, i.e., Rodd

n1 �
Rodd
n1 .n2 D n1/. It is reasonable to assume that Gnn � Gpn, at least for the

experiments in [89]. This then leads to the following:

.2Rodd
n1 /

�1 D


G�1
np � G�1

nn

��1 � Gnp (15.43)

The quantity .2Rodd
n1 /

�1 was measured experimentally [89] and compared to Gnp of
(15.42), as shown in Fig. 15.7a. The electric field � of (15.42) is related to n1 via
q� D 2„vf p

�n1=dw. A comparison between the WKB theory and the experiments
shows that the effect of Gnp modulation due toB corroborates with the experiment at
a low magnetic field. In the WKB theory, Gnp D 0whenB D �=vf , which clearly is
the regime in which the theory breaks down (edge conduction is not included in the
WKB theory). Therefore, (15.42) is only rigorously valid when B 	 �=vf , beyond
which the edge conduction of the device starts to play an important role. Figure
15.7b shows a numerical calculation (quantum transport using the tight binding
model; see [56]) for a W D 100 nm device under somewhat similar electrostatic
conditions (the value of dw used is different from that of Fig. 15.7a). The edge
conduction contribution is automatically included in the numerical calculations.
Clearly, Gnp is not zero as B increases beyond �=vf , and its value depends on many
physical factors. We will explore these factors in the next section.
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Fig. 15.7 (a) Experimentally measured .2Rodd
n1 /

�1 of a symmetric pn junction, i.e., n1 D �n2,
at various concentrations n1, shown in symbols. The dashed lines are the results computed from
(15.42), where G0np is used as a fitting parameter for each case (see text). The pn transition widths
for each curve are assumed to be 120 nm, 125 nm, 130 nm and 135 nm for increasing values of n1.
(b) Numerically simulated Gnp at various concentrations n1, shown in symbols. The dashed lines
are again the results computed from (15.42)
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n-type p-type

incident

transmittedreflecteda

Armchair Ribbon
b

Fig. 15.8 (a) Illustration of a
graphene pn junction with
edge and interface disorder
The edge and snake currents
are also indicated. (b)
Illustration of armchair,
zigzag and anti-zigzag edge
ribbons. The carbon layer
numbering convention for an
armchair edge ribbon used in
this work is also depicted

15.3.2 Edge States, Snake States, and Valley Isospin

In the presence of a uniform normal magnetic field, the energy dispersion �.k/
develops plateau structures around the K=K0 valleys. These energy plateaus are
known as Landau levels and are given by �LLn D sign.n/„!pjnj (where n is an
integer), which is obtained by diagonalizing H D vf � � .P C eA/ [91], where
A D .0; Bx/. ! is the cyclotron frequency given by ! D p

2vf =`B , where
`B D p„=.Bq/ is the magnetic length. When „! is greater than other energy
scales of the system, the quantization described by the Landau levels translates
into quantum Hall conductance plateaus given by G D 2q2=hj2n C 1j, as seen
experimentally [6, 7]. It is convenient to define a quantity called the “filling factor”
denoted by , which is the number of edge states participating in transport along
each edge. Including spin degeneracy, it is given by  D 2j2n C 1j. In the
quantum Hall regime, the current conduction is mediated by edge states, and their
wavefunctions reside along the two edges of the system. How does current flow
across the pn junction in this regime?

Figure 15.8a illustrates the current flow in a graphenepn junction in the quantum
Hall regime. The edge current is incident on the pn interface and then transverses
along it before splitting both ways (towards the source/drain) at the other edge. The
state along the pn interface is usually known as the “snake state” in the literature,
as its classical orbit resembles a snake [11]. Therefore, this is in contrast to the
weak magnetic regime, where current is allowed to transmit across the pn interface.
What determines the amounts of the reflected and transmitted components? In the
remainder of this section, we will show how the amounts of the reflected and
transmitted components can be calculated for a graphene ribbon with no disorder.
To obtain such results, we have to introduce the concept of valley isospin 3. Here, the
basis are the EK( EK 0) valleys in contrast to the A=B sublattice for pseudospin case.

3“isospin” used in this context has nothing to do with “isospin” in particle physics.
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We write the Dirac equation for graphene as

H‰ D
�
vf Ep � E� 0

0 vf Ep � E�
	
‰ (15.44)

where ‰ D . A; B;� Q B; Q A/ and  ( Q ) for the EK( EK 0) valley wavefunction. We
are interested in ‰ along the ribbon’s edges. It is a convenient convention to write
‰ along the edges in the following form:

‰ D �Ev � E��˝ �En � E��‰ (15.45)

where Ev is the “edge’s valley isospin” (for ‰ along the edges), and E� and E� are just
the Pauli matrices for the isospin and pseudospin part respectively. En depends on the
edge type, i.e., En D .0; 0; 1/ for the zigzag and En D .˙1; 0; 0/ for the bottom/top
edges of armchair ribbons [11]. Equation (15.45) effectively expresses the boundary
conditions of the edges.

We consider an armchair ribbon where the two edges are at y D yT (top) and
y D yB (bottom). Along y D yT, the wavefunction ‰ D . A; B;� Q B; Q A/ must
satisfy the boundary conditions [87],

 A C Q Ae�i�yT D 0 (15.46)

 B C Q Be�i�yT D 0 (15.47)

where� D 4�=3a, and a is the lattice constant of graphene. We can rewrite (15.47)
in the form of ‰ D M‰, where

M D
�

0 �e�i�yT

�ei�yT 0

	
˝
�
0 1

1 0

	
(15.48)

With some matrix algebra, we can show that

M D �EvT � E��˝ �EnT � E�� (15.49)

by defining EvT=.cos.�yT/; sin.�yT/; 0/ and EnT=.�1; 0; 0/. Repeating this pro-
cedure for yB, we require EvB=.�cos.�yB/;�sin.�yB/; 0/ and EnB=.1; 0; 0/. It is
straightforward to see that

EvT � EvB D cos .�W C �/ � cos.�/ (15.50)

whereW D yT � yB=a.l C 1
2
/, and l is the number of carbon layers.

Next, the assumption is made that the ground state LL’s wavefunction, denoted
by j0i, could be approximated by the edge wavefunctions [71]. This allows
the wavefunction overlap between the ground state LL’s wavefunction along the
top/bottom edges to be written as
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h0Tj 0Bi � h‰T j ‰Bi (15.51)

D


jaj2 C jbj2

� �
1C EvT � EvB C EvT � EvB

�

where we denote . A; B/ D .a; b/, and . Q A; Q B/ is obtained through (15.45). By
using the fact that jaj2 D jbj2 D 1

4
, we finally arrive at

jh0Tj 0Bij2 � 1
2
.1C cos�/ (15.52)

The conductance plateau for filling factor .n; p/ D .2; 2/ for the armchair ribbon
is then given by [71]

Gnp D 2.1� jh0Tj 0Bij2/ D
�
2 ` D 3mC 1
1
2

otherwise
(15.53)

in units of q2=h, where m is an integer. Note that ` D 3m C 1 is also the
same criterion for obtaining a metallic armchair ribbon (` ¤ 3m C 1 yields
semiconducting).

For zigzag-type edges, zigzag- and anti-zigzag-type ribbons can be distinguished
(see Fig. 15.8a). Although similar width-dependent effects can be observed [71],
they cannot be explained by similar valley isospin arguments, which were used for
the armchair case. We shall elaborate on this in the next section. The conductance
for zigzag-type ribbons is found to be [92]

Gnp D
�
0 zigzag
2 anti-zigzag

: (15.54)

Again, (15.54) is only for the filling factor of .n; p/ D .2; 2/.

15.3.3 Quantum Hall Regime: The Ballistic Case

Here, we discuss the pn junction conductance in the quantum Hall regime,
assuming zero disorder, i.e., perfect edges and pn interface. The results presented in
this section are obtained from quantum transport numerical calculations (see [56] for
the model description). We divide the discussion into armchair and zigzag devices,
and connections to the theory presented in previous sections will be made.

Figure 15.9 shows the ballistic conductance of armchair edge-type ribbons as a
function of depletion width. The n=p regions are biased at �f n=fp , respectively, and
the built-in potential (assumed to be linearly graded across the junction) is given by
�f n C �fp . Figure 15.9a plots the conductance for biasing conditions corresponding
to the Landau filling combinations of .n; p/ D .2; 2/. Ribbons with different
numbers of carbon layers along the width are considered. These ribbons exhibit
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conductance plateaus of 1
2

and 2 at sufficiently large depletion widths of > 25 nm.
Indeed, these plateaus follow that of (15.53), a consequence of valley isospins.
The typical length scales of depletion widths in experiments employing top/bottom
gating schemes are usually several times larger than 25 nm [38]. These plateaus
will emerge as long as the depletion widths are sufficiently large, regardless of the
filling factor combinations. To illustrate this point, Fig. 15.9b plots the case when
.n; p/ D .6; 2/; we also checked that these ballistic plateaus remain intact when
.n; p/ D .6; 6/. It is observed that an increasing depletion width filters out the
higher Landau levels such that only the zeroth-mode Landau edge states conduct
through the junction. This is reminiscent of the more well-known filtering action
of off-normal transverse modes by a pn junction in the zero magnetic field case
[37, 38]. However, the physics in this context is completely different; the former is
due to isospin, while the latter is due to pseudospin. Such a phenomenon might find
applications in devices that use the Landau levels as information bits [93]. However,
pn interface disorder would negate such filtering action.

For zigzag ribbons, a width-dependent effect similar to that described by
(15.54) [71] can also be observed. Figure 15.10 shows the intensity plot for the
nonequilibrium electron density. In particular, Fig. 15.10b shows the case of a
perfect zigzag ribbon, where clearly Gnp D 0, as predicted by (15.54). However,
these ballistic plateaus cannot be explained by the valley isospin argument used
for the armchair case [92]. The breakdown of the isospin model occurs because
the reflected and transmitted edge states both reside on valleys different from that
of the incident state, i.e., EvnT � EvpT D EvnB � EvpB D 1 [92]. Therefore, current
conservation must entail an inherent intervalley scattering process. Hence, another
effect stemming from the parity of the wavefunction was invoked to explain these
anomalous plateaus. We refer the reader to [92] for a more detailed discussion. We
also note the presence of local peaks in the electron density at locations where the
pn interface and the ribbon edge meet (see Fig. 15.10b). These are signatures of the
intervalley scattering processes that have taken place. Note that these signatures
are absent for the armchair ribbon (see Fig. 15.10a). Heuristically speaking, the
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Fig. 15.10 Intensity plot of the nonequilibrium electron density, log10.n/, for various ribbons
with width � 100 nm. We plotted several cases: (a) armchair ribbon (no disorder) with 401 carbon
layers along the width; (b) zigzag ribbon with no disorder; and (c) zigzag ribbon with interface
disorder. The magnetic field is assumed to be 10T, while the depletion width is 25 nm. Color
scheme: Blue (red) denotes low (high) intensity. (Figs. adapted from [56])

propagating states along the pn interface can be viewed as similar to that of an
armchair edge, where the valley isospin is an equal-weight superposition of the two
valleys. The two-times scattering process takes the Landau state from one valley to
a superposition and then finally to the other valley. In other words, the valley isospin
information of the incident Landau edge state is intrinsically diluted after the first
scattering process.

As a concluding remark, we reiterate that the pn junction conductances of
perfect armchair and zigzag ribbons can be understood in terms of the analytical
models described in Sect. 15.3.2, where the concept of valley isospins plays an
important role. However, disorder plays an important role in the transport physics
in the quantum Hall regime. As depicted in Fig. 15.10c, the introduction of pn
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interface disorder admits current, while the zero disorder case suppresses current
(see Fig. 15.10b). In the next section, we will relax the constraint of a “perfect
ribbon” and introduce disorders to the system, i.e., edge and pn interface roughness.

15.3.4 Experiments: Ballistic to Ohmic Transition

To explain the experiments on the pn junction in the quantum Hall regime [34],
disorder is key. Several studies on the effect of disorder in this transport regime have
been published recently [16, 56, 94, 95]. Figure 15.11 plots the measured junction
conductance as a function of the top-/bottom-gate voltages Vtg/Vbg at B D 4T and
T D 250mK. Conductance plateaus were observed that registered values other than
2q2=hj2nC 1j. Depending on whether the device is operating in the unipolar (nn
or pp) or bipolar regime (np), these plateaus were found to follow some simple
relationships given by [55]:

Gnn D q2

h
min.1; 2/

Gnp D q2

h

�
1

1
C 1

2

��1
(15.55)

where 1;2 refers to the filling factor on the left/right side of the junction. In
the experiments, deviations from (15.55) were found, and we will address these
deviations later. The relationship for Gnn is rather intuitive and simply states that the
unipolar junction’s conductance is limited by the junction with the smaller number
of modes, i.e., the mode bottleneck effect as previously discussed in Sect. 15.2.2.
On the other hand, the relationship for Gnp suggests the process of mode-mixing.
An intuitive picture of this mode-mixing process can be understood as follows. The
total number of modes transversing along the pn interface is 1C2. For each mode
injected from the source, the fraction going to the drain would be 2=.1 C 2/, as
there are 2 modes on the drain side. Multiplying by the number of injected modes
1, one arrives at (15.55). The purpose of this section is to explore the possible
mechanisms for (15.55) to be true.

First, let us consider only pn interface disorder and assume perfect armchair
edges. Let us assume the following filling factors .n; p/ D .2; 6/. Here we
shall make use of a Chalker–Coddington- [96] type analysis to argue that pn
interface disorder alone is not sufficient. This model considers the following facts:
(a) in the absence of time reversal symmetry, the electronic states exhibit only
unidirectional transmission; (b) the scattering wavefunction follows approximately
the equipotential lines of the random potential. The scattering state for a particular
spin along the pn interface can be expressed as

j‰i i D c0 j0nBi C c1
ˇ
ˇ0p
˛C c2

ˇ
ˇ1p
˛C c3

ˇ
ˇ
ˇ10
p

E
(15.56)
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Fig. 15.11 (a) Measured conductance as a function of top-/bottom-gate voltages Vtg/Vbg at B D
4T and T D 250mK. Three line plots corresponding to the three cuts in the figure are shown in
(b–d). (e) Schematic of the theoretical conductance according to (15.55), where 1;2 refers to the
filling factor on the left/right sides of the junction. The line cuts for (b–d) are also indicated. (Figs.
adapted from [34])

where
ˇ
ˇ0p
˛
,
ˇ
ˇ1p
˛

and
ˇ
ˇ
ˇ10
p

E
are the ground and first excited states of the LL in the

p medium, respectively. j0nBi is the incident Landau mode from the n-side, where
B denotes bottom edge (see also Sect. 15.3.2). We have Eci D .1; 0; 0; 0/ at the
beginning of the pn interface. We can define a “saddle point” to be where two
Landau modes i and j undergo mode-mixing, which is characterized by a scattering
matrix that evolves the scattering state j‰i in a unitary manner. The effective unitary
matrix for the scattering of four modes can be parameterized as
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S D

2

66
4

c2 sc s2 �sc
�sc c2 sc s2

s2 �sc c2 sc

sc s2 �sc c2

3

77
5 (15.57)

where s � sin.ˇ/ and c � cos.ˇ/. As usual, the accompanied phase factors are
implicit [96]. The parameter ˇ characterizes the degree of mode-mixing, i.e., ˇ D
0; �

4
denotes minimum/maximum mixing. Undergoing a sufficient amount of mode-

mixing processes S , the wavefunction at the end of the pn interface is then

ˇ
ˇ‰f

˛ D S .ˇ1/ S .ˇ2/ S .ˇ3/ : : : j‰i i (15.58)
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The final state is then said to have completely mixed – it is equally weighted over
the available Landau modes. The reflection probability can then be computed as

jr j2 D ˇ̌h0nT

ˇ̌
‰f
˛ˇ̌2 D 1

4
jh0nT j0nBij2 ˇ̌e�0 C e�1

ˇ̌2
(15.59)

In arriving at the above result, we had to make use of the orthogonality relationship
h0nT

ˇ
ˇ1p
˛ D 0. We also assumed that

ˇ
ˇ0p
˛

retains the isospin information of the
incident scattering state, therefore yielding h0nTj 0p

˛ D h0nTj 0nBi. By making use
of the fact that the phase term averaged over a sufficiently large ensemble yields

Dˇ
ˇe�0 C e�1 C � � � C e�n

ˇ
ˇ2
E

ensemble
� nC 1 (15.60)

the junction conductance (including spin) at filling factor .2; 6/ could then be
expressed as

�pn.2; 6/ � 2


1 � 1

2
jh0nT j0nBij2

�
(15.61)

For the case where the number of carbon layers of the armchair ribbon ¤ 3M C 1,
(15.61) yields Gnp D 5

4
at .n; p/ D .2; 6/. On the other hand, if the number

of carbon layers of the armchair ribbon D 3M C 1, it will remain perfectly
conducting, i.e., Gnp D 2. The results from a simple Chalker–Coddington analysis
are in excellent corroboration with what we obtained from numerical calculations
[56]. This finding unequivocally demonstrates that electron and hole Landau mode-
mixing via pn interface disorder alone are not sufficient to arrive at the result of
Gnp D 3

2
predicted by (15.55). This result is only possible if the isospin information

on the top/bottom edges is completely diluted, e.g., via edge disorder. It is shown
numerically [56] that by including edge disorder, the results predicted by (15.55)
can be obtained.
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Fig. 15.12 (a) Depiction of the theoretical Ohmic plateaus O�pn.n; p/ [55] as a function of
n1=n2, where the different colors represent the filling factors. (b)–(d) plots the linescan for the
following cases: (1) n D p ; (2) n D 2; and (3) n D 6, respectively; it also compares the
simulation results with the experimental data. The experimental data are taken from [34] for a
two-terminal pn junction quantum Hall measurement at B D 4T. The simulations are done at
B D 10T. In the experimental data, the gate oxide capacitance is used as a fitting parameter.
(Fig. is adapted from [56])

Figure 15.12 compares the numerically calculated junction conductance (with
edge and pn interface disorder) against that of experiments [34]. Figure 15.12a
depicts the theoretical plateaus of (15.55) as a function of the electron density
n1=n2 (the different colors denote the different filling factors). In the numerical
calculations, the electron density is obtained by taking the trace of the electron
correlation function Gn.�f /, which is an energy-resolved quantity. This quantity is
defined to be Gn D G˙inG

�, where˙in D �2Im.˙l C˙r/ for T D 0K. Electron
density in the n/p medium can then be computed via the integral n D R hGni d�,
where the averaging h: : :i is performed over the spatial dimension. Figure 15.12b–
d plots the linescan for the following cases: (1) n D p; (2) n D 2; and (3)
n D 6, respectively. In general, the numerical results show satisfactory agreement
with the experiments. As previously addressed [34], the junction conductance with



494 T. Low

lower filling factors such as Gnp.2; 2/ and Gnp.2; 6/ plateaus at the expected Ohmic
values of 1 and 3

2
, respectively. However, higher plateaus such as .6; 6/ and .6; 10/

could not be observed experimentally. This suggests that the interface disorder in
the experiment is smaller than that necessary for complete Landau mode-mixing of
the higher plateaus. We refer the readers to [56] for more elaborate discussions.

In summary, we have shown that the mixing of electron/hole Landau modes
along the interface alone does not guarantee the recovery of the Ohmic-type plateaus
predicted by [55]. Valley isospin dilution through edge disorder is necessary. In fact,
the valley isospin [71] plays an important role in dictating the junction conductance
in the ballistic limit. It is demonstrated numerically and theoretically that both
interface and edge roughness (or intervalley scattering) are generally necessary for
the crossover between the two theoretical limits.

15.4 Transport in the Presence of Strain-Induced
Pseudo-Magnetic Fields

From an application point of view, one might legitimately challenge the usage of
a magnetic field for practical device applications due to the difficulty in creating
large local magnetic fields. In this chapter, we review an interesting notion,
i.e., the creation of pseudo-magnetic fields through strain engineering. Strains in
graphene is a ubiquitous phenomenon that had been observed through scanning
tunneling microscopy in various experimental setup [97–102]. The pseudo gauge
field generated with strains [10, 60, 61, 103] was recently demonstrated in scanning
tunneling microscopy experiments [62, 104]. This phenomenon could lead to a new
class of devices based on pseudo-magnetic field effects without the application of
a real magnetic field. In Sect. 15.4.1, we explain how a pseudo-magnetic field can
be generated through elastic deformation of graphene membranes [10, 61]. This is
followed by Sect. 15.4.2 with a numerical study of electron transport in presence of
pseudo-magnetic fields. Analogous quantum Hall effect, dissipative edge states, and
formation of transport gap are discussed. Lastly, we examine snake states transport
in Sect. 15.4.3.

15.4.1 Strain-Induced Pseudo-Magnetic Field

Recently, it has been shown that elastic deformation of graphene membranes could
also lead to a pseudo-magnetic field (see [10, 61] for a review on this topic).
Of particular technological importance are recent proposals to generate uniform
pseudo-magnetic fields through particular strain geometries [60, 65, 66], where a
strain of �10% could lead to a pseudo-magnetic field of up to 10T. Here, we
provide a theoretical viewpoint regarding the origin of this pseudo-magnetic field
through Dirac equations.
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a bFig. 15.13 (a) Illustration of
a carbon atom with its nearest
neighbor atoms and their
bond vectors rj . (b) Distorted
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Figure 15.13 shows the effect of strain on the local deformations of carbon–
carbon bonds. In the unstrained case as depicted in Fig. 15.13a, the bond vectors
are r1 D .0;�b/, r2 D 1

2
.�a; b/ and r3 D 1

2
.a; b/ (using the zigzag conventions

described in Sect. 15.2.1). The effect of strain is to deform the lattice in such a way
that the lattices acquire a new set of bond vectors Qrj , as depicted in Fig. 15.13b. In
the spirit of nearest-neighbor interactions, the change in bond length, i.e., jQrj j�jrj j,
would result in a perturbation of the bond energy such that tj is different from the
unperturbed case of t � 3 eV . Suppose that the strain is spatially smooth; then,
a “local” effective Hamiltonian could be sought by assuming that the set of bond
energies ft1; t2; t3g is relatively unchanged in the vicinity of that locality. With this
in mind, we denote the following “local” Hamiltonian:

t

�
0 Qf .k/

Qf .k/� 0

��
 A
 B

�
D �

�
 A
 B

�
(15.62)

where

Qf .k/ D
X

j

.1C ıj /exp
�
ik � rj

�
(15.63)

and where ıj � .tj � t/=t is the fractional change in the bond energy. Expanding
Qf .k/ to the first order in k about the Dirac point at 4�

3a
.�1; 0/, we arrive at

Qf .k/ � 3b

2

�
kx � iky

�C 1

2
.2ı1 � ı2 � ı3/� i

p
3

2
.ı3 � ı2/

(15.64)

The Hamiltonian in (15.62) then becomes

H � vf �



P C e QA
�

QA D 1

2vf



2ı1 � ı2 � ı3;

p
3ı3 � p

3ı2

�
(15.65)

where vf D 3bt=2„ � 1 � 106 m/s, and P � �i„r is the momentum operator. QA
is the local pseudo-gauge field induced by the strain. These results had previously
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been derived in the context of carbon nanotubes [103, 105]. Our next step is to
show that by employing a particular strain geometry, QA could be rendered spatially
independent, hence achieving a spatially uniform pseudo-magnetic field.

The deformation of graphene is described by the displacement vector uj on each
atomic position j . However, it is the difference of uj from its nearest neighbor that
characterizes the amount of strain on the bonds. For example, the change in the bond
vector rj can be written in the following manner:

ˇ
ˇQrj
ˇ
ˇ � ˇ

ˇrj
ˇ
ˇ � �

uj � u0
� � rj

b
(15.66)

In the continuum limit, the displacement vector is written as u.s/, where s D .x; y/

is the position vector. In the theory of elasticity, it is conventional to define the strain
tensor as umn D 1

2
.@num C @mun/, where m; n denotes the two spatial coordinates

x; y. Then u.s0/ can be approximated as follows:

�
ux.s0/
uy.s0/

�
�
�

ux.s/
uy.s/

�
C
�

uxx.s/ uxy.s/
uyx.s/ uyy.s/

	
� �s0 � s

�

(15.67)

Equations (15.67) and (15.66) then imply the following:

ˇ
ˇQrj
ˇ
ˇ� ˇ

ˇrj
ˇ
ˇ �

��
uxx uxy
uyx uyy

	
� rj

�
� rj

b
(15.68)

Assuming that the strain is small, one could make the approximation that the
perturbation in t is directly proportional to the perturbation in bond length,

ıj � ˇ

ˇ
ˇQrj
ˇ
ˇ� ˇ

ˇrj
ˇ
ˇ

b
(15.69)

where ˇ � 2 eV is known as the GrRuneisen parameter. Substituting (15.68) and
(15.69) into the expression for QA, one then obtains

QA D c
3ˇ

8vf

�
uyy � uxx; 2uxy

�
(15.70)

where c is an extra factor (of order unity) introduced to account for the modification
of the energy dispersion due to strain, which was previously ignored in the derivation
of (15.65). From (15.70), it can be seen that a strain geometry of the following
form [66],

u.x; y/ D 1

R

�
xy;�x

2

2

�
(15.71)
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would result in QA / .�y=R; 0/, whereR is the radius of curvature. This would then
translate to a uniform pseudo-magnetic field because Bs D r � QA. We note that an
alternative form of u can also be sought, as described in [60, 66].

15.4.2 Edge States and Transport Gap

Here, we study the electronic transport in presence of strain-induced pseudo-
magnetic field through numerical simulations. We first provide a brief description
of the numerical approach. The Hamiltonian accounting for nearest neighbor
interactions between pz orbitals is given by [8],

H D
X

i

Via
�
i ai C

X

ij

tij a
�
i aj (15.72)

where Vi is the on-site energy due to the scalar potentialV.Er/ and tij D t.1C ˇ

b
.bij�

b// is the hopping energy. bij is the new bond length after strain. To facilitate the
application of various numerical techniques, the problem is partitioned into block
slices as shown in Fig. 15.14. The retarded Green’s function in�0, the device region
of interest, can then be written as (see [81, 82, 84] for general theory),

G D �
�f I � H0 �˙L �˙R

��1 � A�1 (15.73)
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..................

Central device domain W0

Fig. 15.14 The graphene ribbon is partitioned into block slices along the x-direction (transport)
as indicated. Lattice interactions within each block is described by ˛. Nearest neighbor blocks
interactions are represented by � . Device domain �0 will include the strains. Left/right leads
regions (�L=R) are assumed unstrained and electrically doped, due to charge transfer from contacts
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where �f is the Fermi energy, and ˙L=R are defined as ˙L D ��gL� and ˙R D
�gR�

�, respectively. gL=R are the surface Green’s function, which can be obtained
numerically through an iterative scheme [85] based on the decimation technique
(see e.g. [106]). It is also useful to define the quantity, broadening function,
�L=R � i.˙L=R � ˙

�

L=R/. Physical quantities of interest such as the transmission
T is given by,

T D Tr
�
Œ�L�

1
1ŒG�1nŒ�R�nnŒG��n1

�
(15.74)

The electron density n.Er/ at slice j is obtained from the diagonals elements of Gn,
given by,

ŒGn�jj D fLŒG�j1 Œ�L�11ŒG��1j C fRŒG�jn Œ�R�nnŒG��nj (15.75)

Local density-of-states is obtained from (15.75) by simply setting fL D fR D 1.
Current density j.Er/, flowing from slice j to j C 1 is given by the diagonal of J , is
given by,

ŒJ �
j
jC1 D 2q

h



ŒA�

j
jC1ŒGn�jC1

j � ŒA�
jC1
j ŒGn�jjC1

�
(15.76)

where,

ŒGn�jC1
j D fLŒG�jC1

1 Œ�L�
1
1ŒG��1j C fRŒG�jC1

n Œ�R�
n
nŒG��nj

ŒGn�jjC1 D fLŒG�j1 Œ�L�11ŒG��1jC1 C fRŒG�jn Œ�R�nnŒG��njC1 (15.77)

As apparent from (15.74)–(15.77), it is not necessary to obtain the full matrix
G. Through commonly used recursive formula of the Green’s function derived
from the Dyson equation and the decimation technique, one could obtain these
block elements of the Green’s function, ŒG�ij , in a computationally/memory efficient
manner. Further details of the numerical recipe are described elsewhere [43].

Figure 15.15a depicts a typical strain geometry described by (15.71). Its deforma-
tion has an arc geometry that can be characterized by a radiusR, which is measured
from the center of the unstrained graphene flake (also the origin for (15.71)). The
maximum strain exerted on the flake would then be along the two edges, which
is given by max.uxx/ � W=2R. Figure 15.15b shows the numerically calculated
zero-temperature quantum conductance as a function of strain geometry and Fermi
energy, where the unstrained graphene has a dimension of L D W D 100 nm. Note
that the source/drain contacts are placed at the left/right boundaries. Clean quantum
Hall plateaus are observed with filling factors given by v D 2; 6; 10; : : : D 4nC 2,
exactly mimicking the conventional quantum Hall case. Knowing that the first
excited Landau energy �1 D vf

p
2„Bq in the conventional quantum Hall case,

we can numerically estimate the effective magnetic field induced by a deformation
characterized by the ratio W=R, as for Bs D �W=R with � � 45 T. For example,
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Fig. 15.15 (a) Sketch of a sample strain geometry with a maximum strain of 50%. Note that the
actual size of the flake used in this paper is much larger, i.e., L D W D 100 nm. Conductance
is shown as a function of Fermi energy and strained geometry characterized by R=W for (b)
zigzag and (c) armchair edge ribbons in the absence of real magnetic fields and edge disorder. The
dimension of the graphene flake is L D W D 100 nm. (Figs. adapted from [65])

R=W D 5 would correspond to a maximum strain of �10% along the edges and a
pseudo-magnetic field of �10T.

However, when the same strain geometry is exerted on an armchair edge ribbon
instead, no quantum Hall plateau is evident in the quantum conductance, as shown
in Fig. 15.15c. The reason is that the strain geometry of (15.71) was derived for
a zigzag ribbon case, such that it yields a uniform pseudo-magnetic field only for
the zigzag ribbon. To be more specific, (15.71) leads to a gauge field along the x
direction, QAx.y/, for a zigzag ribbon, but it instead results in a gauge field of QAy.y/
for an armchair ribbon. At the lowest order, this gauge field does not induce an
effective magnetic field and leaves the electronic spectrum unchanged, as evident in
Fig. 15.15c. Therefore, when employing the strain geometry prescribed by (15.71),
a zigzag edge ribbon should be employed for a maximal pseudomagnetic effect.
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Fig. 15.16 The non-equilibrium current density sign.jx/ � jj.x; y/j intensity plot for a 100 �
100 nm graphene flake under a strain of R=W D 5 (equivalent to Bs � 9 T) at �F corresponding
to filling factor  D 2, (a) with edge disorder and (b) without. Similar plots are shown in (c–d),
but for filling factor  D 10 instead. (e) and (f) illustrate the counter-propagating edge states at
v D 2 and v D 10, respectively. (Figs. adapted from [65])

Lastly, we should point out the clear distinction between the strain-induced
pseudo-magnetic effect and the Quantum Hall effect. Unlike situation in the
Quantum Hall effect, the edge states are not protected by time-reversal symmetry,
which means that they can be affected by elastic backscattering. Figure 15.16a
and c plots the nonequilibrium current densities at Fermi energies corresponding
to  D 2 and  D 10 for the case of a strain-induced pseudo-magnetic effect. For
 D 2, strains induce two edge modes that propagate in opposite directions. Time-
reversal symmetry implies that these two modes are localized at the same edge,
in agreement with the numerical results. In general, the compressive strained edge
would acquire two more modes than the other edge. The zigzag boundary condition
used here does not mix the K and K 0 valleys, which leads to a clear distinction
of the edge modes. It can be observed that for a given current direction, the edge
states on the two edges are valley-polarized, i.e., showing a quantum valley Hall
effect. This effect is analogous to the quantum spin Hall effect [107]. In both cases,
the net pseudo-gauge field of the system is zero, but it is finite and opposite for
each spin/valley. However, in this case, short-range scattering couples the valleys.
Because the counter-propagating edge states residing along a particular edge belong
to different valleys, inter-valley processes lead to backscattering. In the presence of
edge disorder, substantial backscattering can occur, and Anderson localization spots
can be observed (see Fig. 15.16b). A more quantitative evaluation of the impact of
edge roughness is discussed in [65].
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15.4.3 Magnetic and Electric Snake States

Would the electronic transport across a pn junction under strain-induced pseudo-
magnetic field behaves similarly to its real magnetic field counterpart? The short
answer is “no.” Their main difference resides in the fact that one involves time
reversal symmetry breaking while the other does not. For example, for filling factor
 D 2, the two edge modes would reside on opposite edges for the real magnetic
field case, while on the same edges for pseudo-field case as discussed in previous
section. This would result in a drastically different transport behavior in pn junction,
which remains an interesting problem for future investigation. In this section, we
shall concern ourselves with instead transport along a pn junction. In this context,
we are interested in the phenomenon of snake states.

There are myriad known ways to induce snake states. In high mobility two-
dimensional electron gas system, such states are known to exists in nonuniform
magnetic field and had been studied experimentally [108] and theoretically [109–
111]. It has been shown theoretically that graphene also accommodates such
magnetic snake states (MSS) [112, 113]. Controlled engineering of the magnetic
field profile could possibly be achieved through precise lithographic patterning of
ferromagnetic or superconducting films to create magnetic barriers [114], which
however remains to be demonstrated experimentally. In addition to this, Dirac
fermions in graphene also exhibits unique zero energy snake states (CSS) in the
presence of crossed uniform electric and magnetic fields [57, 58]. These states
present themselves in the magneto-transport of a two-terminal graphene pn junction
[56], giving rise to new quantum Hall plateaus as observed experimentally [34] as
discussed in Sect. 15.3.4. In this case, only a uniform quantizing magnetic field is
required. The possibility of using strain to create a uniform pseudo gauge field in
combination with an electric field is an attractive option, since it makes possible
an electrically controlled snake state (ESS) for the first time, which might leads to
novel electronic devices [115]. To facilitate following discussions, we plotted the
electronic bandstructure of a 50 nm zigzag ribbon as shown in Fig. 15.17a–c, under
different electric and magnetic potentials conditions.

Magnetic snake states (MSS): Fig. 15.17a plots the electronic bandstructure and
its associated current density for the indicated states labeled 1–4. Since there is no
electric field in this case, the bandstructure retains its electron–hole symmetry. The
Dirac equation describing low energy excitations is written as,

HMSS D �i„vf
�
@x�x�z C @y�y�0

�C eAx�x�z (15.78)

where � and � are the Pauli matrices acting on the A=B sublattices (pseudospin)
and K=K0 valleys (isospin) degree of freedom, respectively. A convenient gauge is
employed such that Ax D B jyj, which yields a magnetic field of B D B.0; 0;˙1/
for ˙y. HMSS satisfies the following symmetry, ŒHMSS; �x�0Ry� D 0, where Ry

is the reflection operator i.e. Ryf .y/ D f .�y/. Similarly, the eigenfunctions
‰ would respect the symmetry �x�0Ry‰i .r/ D ‰j .r/. The edge states are
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Fig. 15.17 (Left) Energy dispersion of a 50 nm graphene zigzag ribbon as a function of kx , where
x is along the length direction. They are plotted for the following cases: (a) a non-uniform magnetic
field which changes abruptly from C20T to �20T halfway along the width of the ribbon, (b) a
combination of uniform magnetic field of � 10T and a constant transverse electric field of V=W
where 0:2V is the potential drop across the ribbon’s width, (c) same as (b) except that the real
magnetic field is replaced by a pseudo-magnetic field of equal strength generated by particular
strain geometry. For clarity the associated vector/scalar potential are also depicted on the right of
the bandstructure diagrams. (Right) Plots of current densities for the states as indicated on left

represented by 2 and 3 in Fig. 15.17a. Note that they resides within the same valley
and are energetically degenerate. The snake states are represented by 1 and 4, which
flows in the direction rBz � z. Current conservation requires that the snake states
flow in the opposite direction to the edge states. Spatial separation of these counter-
propagating states renders them relatively robust against backscattering.

Crossed-field snake states (CSS). The Dirac equation in this case is given by,

HCSS D �i„vf
�
@x�x�z C @y�y�0

�C eAx�x�z C eU.y/�0�0

where the vector and electrostatic potentials are Ax D By and U.y/ D �y,
respectively. They correspond to a uniform crossed magnetic and electric fields.
The electric field breaks the electron–hole symmetry and results in the mixing of
electron and hole Landau wavefunctions at zero energy [57] i.e. snake states. They
are represented by 1 and 4 in Fig. 15.17b, and they flow along the direction B � �.
Again, spatial separation of these counter-propagating states renders them relatively
robust against backscattering.

Electrical snake states (ESS). As discussed in [60, 66], an effective constant
magnetic field arises from strains varying at a constant rate. The Dirac equation
describing low energy excitations in this case is written as [103, 116],

HESS D �i„vf
�
@x�x�z C @y�y�0

�C e QAx�x�0 C eU.y/�0�0
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Immediately, one makes the observation that HESS is invariant under the time
reversal operation T D �0�xC in the presence of QA, i.e. T �HESS. QA/T D HESS. QA/.
This property is in contrary to the conventional quantum Hall effect. Graphene
also accommodates another symmetry given by S D i�y�0C [117]. It does not
couple valleys and it acts as a time reversal operator for each valley. Its action
yields S�HESS. QA/S D HESS.� QA/ whose symmetry breaking under QA gives
rise to a possible quantum Hall effect [60]. The tight-binding result as shown
in Fig. 15.17c yields the expected physical picture, where both the snake and
edge states are accompanied by its counter-propagating counterpart. As a result,
valley coupling perturbations could interfere with the above-mentioned process. An
obvious example is short-range scattering process, i.e., / �z�z [70] mediated by
edge disorder, leading to localization of the edge states [65]. However, since one
could electrically tune the position of these snake states to be far away from the
edges, one should be able to minimize the �z�z-type processes.

15.5 Discussions

Previous sections focuses on the transport physics in graphene pn junction under
various situations. Here, we discuss current status, effort, and challenges in realizing
novel devices that exploits these effects.

15.5.1 Devices: Current Status and Outlook

We shall discuss two classes of devices which exploits the physics of graphene
pn junction discussed in previous sections, namely electron-optics and pseudo-
magnetic field devices. The former exploits the analogy with optics, since both
electrons and photons exhibit analogous wave-like phenomena, a result of their
similar Helmholtz type equation governing their dynamics [118, 119]. The latter
exploits analogy with quantum Hall physics, where particular strain geometry
[60,62] mimics a pseudo gauge field on top of the Dirac spectrum [10,61,103]. Here,
we discuss experimental efforts, challenges, and outlook for these novel devices.

Electron-optics effects has been observed in conventional two-dimensional
electron gas systems more than a decade ago [44–48], which includes a broad
class of phenomena such as magnetic focusing, beam collimation and electron
lens focusing. Interest in graphene electron-optics mainly stems from the following
considerations. Zero bandgap, and consequently the low pn interface resistance,
leads to possibility for negative refractive index applications [49]. Perfect isotropy
of the energy dispersion and single pz orbital environment in graphene makes it a
“cleaner” system for electron optics devices. Electrostatics considerations also favor
graphene-based electron optics. In both cases, one could view kf as analogous to
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the refractive index of the medium. At a given kf , which also translate to the same
density 4, the graphene case would yield a higher Fermi energy (if effective mass
m > „k=2vf ) due to its unique linear dispersion. The higher Fermi energy at a given
density would renders graphene more immune to a characteristic potential disorder.

Recently, graphene-based electron-optic fiber [50–53] was demonstrated exper-
imentally [54]. Depending on the top/bottom gating, the fiber could operates in
the ppCp (optical guiding), pnp (pn guiding) or pnCp (mixture of optical and
pn guiding) regimes, where middle denotes doping of the fiber. Clear signa-
tures of enhanced guiding for ppCp by tuning the acceptance cone of the fiber
was observed, in accordance with the principle of total internal reflection (see
Sect. 15.2.2). Poorer guiding observed in the pn guiding regimes was attributed
to the larger amount of interface roughness along the fiber, apparently a result
of bulk impurities disorder [120]. Improvements to guiding efficiency will result
from reducing interface disorder. Recent development on high quality boron
nitride substrates, with excellent mobilities and suppressed carrier inhomogeneities,
presents a promising approach [121]. Engineering of a collimated source [42] would
also improves guiding. Other device of interest includes the Veselago lens [49]
and multiplexer [43], and experimental efforts are currently underway [122]. It
is also encouraging to note the recent efforts in an attempt to formulate novel
device architecture [123] for electron-optics based devices. Another interesting
platform for electron-optics devices is that of bilayer graphene. Unlike its monolayer
graphene counterpart, the pseudospins in the n and p regions are antiparallel to each
other at ky D 0 [39]. This leads to the suppression of transmission for electrons
incident normal to the pn step interface.

Recent demonstration of a quantizing pseudo-magnetic field of up to 300T gen-
erated by applying appropriate strain to graphene [62] opens up new opportunities
for novel quantum Hall transport physics (see also [102, 104]). Sections 15.4.2 and
15.4.3 discuss the transport physics for the case where the strain geometry provides
a uniform pseudo-magnetic field. A transport gap is induced, since the edge states
would be strongly localized along the edges [65]. The conducting state could then
be realized by inducing snake states as discussed in Sect. 15.4.3. One expects these
snake states to be highly conductive since they can be made far away from the edges.
In high mobility two-dimensional electron gas system, snake states had been studied
experimentally [108] and theoretically [109–111], in the presence of a magnetic
field. It has been shown theoretically that graphene also accommodates such
magnetic snake states [112, 113]. There had been recent experimental reports on
such observations in graphene [59,124]. The former was detected by driving current
along a pn junction interface, while the latter was observed through Aharonov–
Bohm signatures in an array of Ni0:8Fe0:2 nanodots. Detecting this phenomenon in
strained graphene counterpart is still yet to be demonstrated.

However, it should be emphasized that strains is a ubiquitous phenomenon that
had been observed through scanning tunneling microscopy in various experimental

4Except when different valley degeneracies are accounted.
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setup. They present themselves naturally through superlattice-type ripples on
epitaxial substrates [97, 98], corrugation on SiO2 substrates [99–101], in suspended
graphene membranes [125, 126] or under deliberate strain [127]. Controlled engi-
neering of strain in suspended graphene was also demonstrated, leading to formation
of one-dimensional wrinkled graphene [126] or bubble graphene [125]. Graphene
was also shown to admit large strains, with record mechanical strength [128].
Hence, one could envision all kinds of strain geometry to realized graphene “strain-
tronics.” For example, there are proposals on suspendend graphene [63], patterned
substrates [64], wrinkles and superlattices [115], valleytronics [65, 67–69], nano-
electromechanical device [129].

15.5.2 Conclusions

In this chapter, we discussed the electronic transport properties of a graphene pn
junction. We had considered its transport properties in the absence and presence
of a real magnetic field, and also that of a strain-induced pseudo-magnetic field.
We discussed novel electronic devices based on concepts of electron optics and
strain-induced pseudo-magnetic field, where pn junction plays a critical role.
These devices are interesting because their operating principles are fundamentally
different from those of conventionalpn junctions. Electron-optics and strain-tronics
might be a promising route to realizing all-graphene electronics; however, the field
is just beginning.
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Chapter 16
Electronic Structure of Bilayer Graphene
Nanoribbon and Its Device Application:
A Computational Study

Kai-Tak Lam and Gengchiau Liang

Abstract Two-dimensional monolayer graphene has the unique electrical and
physical properties which can be exploited in new device structures. However, its
application in field-effect device structure is limited due to its semi-metal nature.
Therefore, a lot of research efforts have been focussed on introducing an energy
bandgap in the electronic structure. For example, a commonly studied method
involves cutting two-dimensional graphene into one-dimensional narrow ribbons
(graphene nanoribbons), where the spatial quantum confinement introduced by the
physical edges generates an energy bandgap that is closely related to the width
and edge configurations of the ribbon. Similarly for a bilayer graphene, an energy
bandgap can also be obtained like the monolayer graphene nanoribbons, and be
further controlled by varying its interlayer distance. In this chapter, a review of the
electronic structure of monolayer graphene nanoribbon is presented and the study
on the bilayer counterpart is subsequently discussed. Furthermore, based on the
electrical properties of the bilayer graphene nanoribbon, the device performance of
the Schottky barrier diode is investigated. Lastly, a nanoelectromechanical (NEM)
switch based on the floating gate design is presented and discussed.

16.1 Introduction

For the past few decades, miniaturization of silicon-based devices has been the main
driving force in device performance enhancement, and it has been predicted that
the channel length of a silicon transistor will reach sub-10 nm regime in 2015 with
a combination of strained silicon, thin-body structure and innovative gate designs
[1]. However, continual scaling down of silicon device is not attainable as the
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devices approach the physical limits of silicon, and it can be foreseen that new
materials are required for future device performance enhancement. Coincidentally,
research on graphene electronics has been intensified in the recent years by the
physical realization of thermal dynamically stable planar graphene since 2004
via physical exfoliation method [2–4] or chemical growth processes [5, 6]. Two-
dimensional monolayer graphenes have unique electrical and physical properties
which can be exploited in new device structures. The most interesting electrical
property is the presence of massless, chiral, Dirac fermions which travel at very high
speed [7], which manifest as high carrier mobility of 4,800 cm2/Vs in experimental
measurement [8] and a theoretical mobility of 27,000 cm2/Vs [2,5]. Frequently used
technique in the lab fabrication of graphene transistors is mechanical exfoliation
[2], while growth methods, such as epitaxial graphene on top of SiC wafers [5, 9],
are suitable for mass-production of graphene devices. Common semiconductor
processing techniques such as lithography and etching can then be used for device
fabrication. Recent fabrications of graphene transistors have reported a cut-off
frequency of 100 GHz [10] and channel mobilities of 20,000 cm2/Vs in top-gated
device structures [11].

However, due to its semi-metal nature, application of graphene in present
device structure is limited. Graphene transistors have excellent performance in
radio-frequency applications, where OFF-state current is not a major requirement
but they fared poorly in digital logic applications [12, 16]. This is due to the
high standby power as a result of the absence of sufficient energy bandgap.
Therefore, much research effort has been focussed on converting graphene-based
materials into semi-conducting material, i.e. introducing an energy bandgap in the
electronic structure. While applying an external electric field perpendicular to the
plane of monolayer graphene only lead to electrostatic doping effect, in bilayer
graphene, an energy bandgap can be induced, which can be tuned by both electric
field and interlayer distance [13–19]. Although the experimental results have also
demonstrated that this is achievable [20–23], a relatively large electric field is
required to produce a sufficiently large energy bandgap that can be practically used
for device applications.

On the other hand, a more commonly studied method involves cutting two-
dimensional graphene into one-dimensional narrow ribbons (graphene nanorib-
bons), where the quantum confinement introduced by the physical edges generates
an energy bandgap that is closely related to the width and edge configurations of
the ribbon [24–28]. Such semi-conducting graphene nanoribbons can be relatively
easy to integrate into existing device structures and the unique electronic properties
can be used in new device applications. Therefore, it drives extensively both
experimental and theoretical studies to focus on integrating graphene nanoribbons
into existing device technologies such as metal-oxide-semiconductor field-effect
transistors [2, 8, 29–32], resonant tunnelling diode (RTD) [33] and quantum dot
devices [34].

Additionally, recent theoretical [35–38] and experimental [39] studies on bilayer
graphene nanoribbon, which combines the unique electrical properties of graphene
nanoribbon and bilayer graphene, show that it is a versatile material which can
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enable new device designs that take advantage of tunable energy bandgap. Studies
on the effect of electric field on bilayer graphene nanoribbon reveal hat materials
with energy bandgap larger than 0.2 eV are not affected significantly by the
perpendicular electric field while for materials with lower energy bandgap, effects
similar to bilayer graphene is observed [40, 41]. Recent development in the fabri-
cation of graphene nanoribbons involves the “unzipping" of multi-walled carbon
nanotubes via oxidation [42, 43], plasma etching [44] and mechanical sonication in
an organic solvent [45], with the latter resulting in high-quality narrow nanoribbons
with smooth edges. Such advances in fabrication techniques indicate an imminent
realization of mass-produced graphene nanoribbon devices and an understanding of
the electronic structure is important in the design and optimization of such devices.

Therefore, in this chapter, a review of the electronic structure of monolayer
graphene nanoribbon is firstly presented and our study on the bilayer counterpart
is subsequently discussed. Next, based on the electrical properties of the bilayer
graphene nanoribbon, the device performance of a Schottky barrier diode is
discussed and a nanoelectromechanical (NEM) logic device based on this diode is
presented. Lastly, this article will conclude with some suggestions on other possible
novel devices based on the unique electrical properties of graphene nanoribbons.
Reader are encouraged to peruse further discussions in this Book on graphene mono-
layers (Chap. 8), bilayers (Chaps. 8, 11 and 17) and nanoribbons (Chaps. 9 and 13).

16.2 Methodology

All simulation results presented in this chapter are calculated based on the first
principle density functional theory (DFT) method implemented in ATOMISTIX

TOOLKIT 2008.10 [46–48]. The local density approximation (LDA), coupled with
the appropriate pseudo-potential, is chosen as the exchange-correlation functional
to handle the many-body interaction of the system. Note that the energy bandgap is
underestimated in LDA and an overall increase in the energy bandgap shown here
is expected if the calculations are repeated using the GW approximation [49] as
discussed in previous studies [50–52].

All graphene nanoribbons studied are assumed to be fully hydrogen-passivated,
with an initial carbon–carbon bond length of 1.42 Å. The carbon–hydrogen bond
length of 1.09 Å is assumed before the structures are relaxed to a maximum planar
force of 0.05 eV/Å. The bilayer structures are obtained by combining two relaxed
monolayer and calculating the total energy of the system as the interlayer distance
varies from 2.8 to 6.0 Å. It is found that the total energy of the bilayer structure
is minimized at an interlayer distance of 3.2 Å, ˙0.1 Å dependent on the ribbon
widths. This is smaller than the simulated interlayer distance of bilayer graphene
at 3.4 Å, [13] and it could be due to the strong interactions at the edges which
contribute to the decrease in the energetically favourable interlayer distance [53].

The mesh cutoff for the real-space Poisson solver is set to 100 Ry for computa-
tional efficiency and the electron transport for the device simulations is calculated
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based on the non-equilibrium Green’s function (NEGF) implemented in the same
software package with all other options kept at default values. The NEGF formulism
is well described in [54] and only the main equations are presented here. The
Green’s function in the coherent regime, G.E/, is obtained by:

G.E/ D ŒE � HD � ˙L � ˙R��1; (16.1)

where E represents the energy, HD is the device Hamiltonian obtained by the
ab initio self-consistent calculations, and the term ˙L and ˙R represent the self-
energies between the channel and the left and right contacts which can be obtained
via the recursive surface green function method described in [54].

From the Green’s function, the carrier transmission, Tc.E/, of the device can be
calculated by:

Tc.E/ D Trace.�LG�RG�/; (16.2)

and
�n D i. ṅ � ˙�

n/; (16.3)

with n D L; R.
After obtaining the transmission of the device, the current of the device can be

found using the Landauer formula,

I D q

h

Z 1

�1
Tc.E/ � ŒfL.E/ � fR.E/� dE; (16.4)

where q is the electron charge, h is the Planck constant and fL, fR are the Fermi-
Dirac distributions of carriers at the left and right contacts and are defined as:

fn.E/ D 1

1 C e
E��n
kB T

; (16.5)

with �n being the chemical potential at the contacts which is related to the
bias applied across the device, kB is the Boltzmann constant, T is the operating
temperature of the device in Kelvin and n D L; R. Readers can also refer to
Chapters 15, 17 and 18 for further discussions on the implementations of NEGF
formalism.

16.3 Electronic Structure of Monolayer Graphene Nanoribbon

16.3.1 Armchair Edges

The atomic structure of an armchair-edged graphene nanoribbon (AGNR) with
width of 1.11 nm is shown in Fig. 16.1a. The white atoms at the left and right edges
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of the ribbon are hydrogen and the ribbon is assumed to extend infinitely in the
vertical direction. Due to the spatial quantum confinement of the edges, an energy
bandgap can be induced as shown in the electronic band diagram in Fig. 16.1e (blue
dashed line). From an example of the infinite quantum well, it is shown that as the
width of the well increases, the discretized energy level decreases. Similarly, it is
easy to follow that as the ribbon width increases, the energy bandgap will decrease.
An interesting observation, however, is the presence of the three distinct family
types, namely the 3p, 3p C1 and 3p C2, which correspond to the number of carbon
atoms along the width (NA) with p being an integer. This is due to unique hexagonal
lattice of graphene systems and the different edge configurations at various widths.
As the carbons at the edges are passivated with hydrogen atoms (or any other
functional groups), the bond energies and bond lengths at the edges are different to
those in the middle of the AGNR and this gives rise to the difference in the quantum
confinement effects at the edges [28].

The electronic structures for NA D 9 (3p), 10 (3p C 1) and 11 (3p C 2), which
correspond to ribbon width of 0.98, 1.11, and 1.23 nm are shown in Fig. 16.1e, and
it is noted that 1.11 nm exhibits the largest energy bandgap, with 1.23 nm having
the smallest. This is consistent for all ribbon widths, i.e. the 3p C 1 family has the
largest energy bandgap, and the 3pC2 family has the smallest, forming three distinct
trends as the energy bandgap is plotted as a function of ribbon widths as shown in
Fig. 16.2a. While this is an interesting property for AGNR, the fluctuation in energy
bandgap, shown as dotted line in Fig. 16.2a, may become a problem during device
application and innovative design may be necessary as suggested by [55].

16.3.2 Zigzag Edges

An atomic representation of zigzag-edged graphene nanoribbon (ZGNR) with width
of 0.92 nm is shown in Fig. 16.1b with hydrogen (white) atoms passivating the edges
at the left and right, and the ribbon extends infinitely in the vertical direction. The
electronic structure of ZGNR with widths of 0.92, 1.14 and 1.35 nm are shown in
Fig. 16.1f, and in contrast to the AGNR counterpart, there is no energy bandgap
induced in ZGNR due to the presence of localized edge states [56]. This introduces
a large density of states at the Fermi level (EF ) which is unstable in a non-
magnetic configuration due to the strong electron–electron interactions [57]. The
magnetic orders at the edges, anti-ferromagnetic or ferromagnetic, will determine
the semiconductor or metallic states, respectively [28]. However, when the electron-
hole symmetry is broken, either by electric fields [58], magnetic fields [40] or by the
presence of dopants [59], these states become dispersive and an energy bandgap can
be induced [60].
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Fig. 16.1 Atomic structure of intrinsic (a) armchair-edged graphene nanoribbon (AGNR) and
(b) zigzag-edged graphene nanoribbon (ZGNR). Nitrogen-doped AGNR (width D 0:98 nm)
and ZGNR (width D 0.92 nm) are shown in (c) and (d), with a doping concentration of 0.47 and
0.27 dopants/Å, respectively. Their corresponding electronic structures are summarized in (e)–(h)

16.3.3 Dopant Effect

One of the advantages of the presence of edges for graphene nanoribbons is the
possibility of changing the EF of the material by substitution of carbon atoms at the
edges with dopants such as boron and nitrogen [61]. An example of nitrogen (blue
atoms) doped AGNR and ZGNR are shown in Fig. 16.1c and 16.1d, respectively,
with a corresponding doping concentration of 0.47 and 0.27 dopants/Å. Note that
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the doping concentration is expressed as the number of dopant atoms per unit
length here. Figure 16.1g and 16.1h show an example of the change in the electronic
structure due to the presence of the dopants for AGNR and ZGNR, respectively, with
the corresponding EF represented by the black and red dotted lines for intrinsic and
doped ribbons.

It is noted that while there is a great difference in the concentration value,
the change in EF (�EF ) between the two different graphene nanoribbons are
similar, with �EF D 0:83 eV for AGNR and �EF D 0:79 eV for ZGNR.
Another important observation is that at such a doping concentration, the AGNR
changed from semi-conducting to metallic, which is usual for highly doped semi-
conductor. On the other hand, for ZGNR, the presence of dopants removes the
degeneracy of the eigenvalues and hence induced an energy bandgap near the new
EF , changing the semi-metallic ZGNR to a small energy bandgap semi-conductor.
This observation is in agreement with previous study and similar results can be
obtained with boron as the dopant [62].

In addition, the dopant-induced energy bandgap of ZGNR is found to be
dependent on the width of the ribbon and the doping concentration, presented in
Fig. 16.2b and its inset. In contrast to AGNR, semi-conducting ZGNR exhibits an
energy bandgap that decreases monotonously with ribbon width. Furthermore, there
is an optimal doping concentration where the energy bandgap can reach up to 0.5 eV
and this is in agreement with [62]. Lastly, the �EF is plotted against the varying
doping concentration to show that it is still monotonously increasing despite the
drop in energy bandgap as the doping concentration increases.

Fig. 16.2 Variation in energy bandgap with respect to the ribbon widths for (a) intrinsic AGNR
and (b) Nitrogen-doped ZGNR. The change in energy bandgap and Fermi energy as doping
concentration increases is shown in the inset for ribbon width of 0.92 nm
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16.4 Electronic Structure of Bilayer Graphene Nanoribbon

Next, we investigate the electronic structure of bilayer graphene nanoribbon with
armchair (bilayer AGNR) and zigzag edges (bilayer ZGNR). For simplicity, it is
assumed that the monolayers are A-B stacked, also known as the Bernal stacking,
and an example is shown in Fig. 16.3a. The red and blue carbon atoms are the
top and bottom layers respectively, with the green carbon atoms stacking directly
on top of each other. A side view of the Bernal stacking is shown in Fig. 16.3b.
Since we are considering semi-conducting material, only intrinsic bilayer AGNR

Fig. 16.3 The top and side views of bilayer structures are shown in (a) and (b) respectively to
demonstrate the A-B Bernal stacking. Atomic structures of semi-conducting bilayer graphene
nanoribbons are shown in (c) and (d) for intrinsic bilayer AGNR (width D 1:11 nm) and N-doped
bilayer ZGNR (width D 0:99 nm, doping concentration D 0:54 dopants/Å) with their optimal
interlayer distance of 3.2 Å, respectively. The corresponding electronic structures are shown in
(e)–(f) in dash lines, with that of the monolayer counterparts plotted in solid for comparison.
(g)–(h) show the band structures of intrinsic bilayer AGNR and N-doped bilayer ZGNR,
respectively, with different interlayer distances
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and nitrogen-doped bilayer ZGNR are discussed in this article. In addition, the
issue of misalignment between the layers are ignored here and interested readers
can refer to [63] for a general discussion on misaligned bilayer graphene. As
discussed previously in Sect. 16.2, the energetically favourable interlayer distance
is at 3.2 Å and this is discussed first, followed by the effect of varying the interlayer
distance.

16.4.1 Armchair Edges

An atomic structure of an bilayer AGNR of width 1.11 nm is shown in Fig. 16.3c
and the corresponding electronic structure is shown in Fig. 16.3e, superimposed
onto that of the monolayer counterpart. Each of the monolayer energy bands (black
solid line) is split into two bands (blue dashed lines) for bilayer AGNR and as a
result, the energy bandgap of bilayer AGNR is much smaller than the monolayer
counterpart. This is even more pronounced for the 3p C 2 family, which is already
a small energy bandgap material in monolayer structure. The reduction in energy
bandgap in bilayer structure renders the 3pC2 family semi-metallic, with an energy
bandgap ranging from 7 to 4 meV. In addition, the effect of the energy bandgap
reduction is more severe for the 3p C 1 family than the 3p family and hence these
two families merge into one as the ribbon width increases to more than 2.0 nm.
A more in-depth discussion on the width dependency of the bilayer AGNR energy
bandgap can be found in [53]. Next, the energy bandgap dependency on the width
of bilayer AGNR is investigated [53], as shown in Fig. 16.4. We first examine the
case where the interlayer distance is 5.0 Å (hollow points) where the interaction
between the layers is not significant. The energy bandgap of this system shows the
three families trends exactly matching the monolayer trends (dot-dashed lines). It
indicates that an bilayer AGNR with large interlayer distance can be treated as two
non-interacting AGNR in terms of electronic structure. On the other hand, at their
respective optimum interlayer distance, which is different for various widths, the

Fig. 16.4 energy bandgap
variation with ribbon width
for bilayer AGNR with
interlayer distance (D) of
5.0 Å (empty markers) and
respective optimal distance
(solid markers) at
approximately 3.2 Å
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energy gaps of bilayer AGNR (solid markers) is reduced by 32–96% as compared to
that of AGNR for all ribbon widths, similar to the observation above. This reduction
in energy bandgap is possibly due to the electron–electron interaction between the
layers at the edges and hence the edge effect diminishes as compared to AGNR.

16.4.2 Zigzag Edges with Dopants

The atomic representation of a bilayer ZGNR consisting of two 0.92 nm wide,
0.27 dopants/Å, nitrogen-doped ZGNR is shown in Fig. 16.3d. The resultant width
of the bilayer ZGNR is 0.99 nm due to the Bernal stacking and due to the
bilayer structure. The dopant concentration is doubled to 0.54 dopants/Å. From
the corresponding electronic structure shown in Fig. 16.3f, the splitting of each
monolayer energy bands leads to the closing of energy bandgap in the material and
the doped bilayer ZGNR is semi-metallic. This is similar to the observation made
for the bilayer AGNR 3p C 2 family. Note that due to the high reactivity of the
edge states in ZGNR, the edges of intrinsic bilayer ZGNR tend to be distorted as
the width of ribbon increases as reported in [35] where the weak van der Waals
forces are included in the DFT model. This edge distortion causes the dispersion of
the edge states and hence there exists a finite energy bandgap in the energetically
favourable non-magnetic configuration.

16.4.3 Interlayer Distance

After the observation of the closing and decreasing of the energy bandgaps of the
bilayer graphene nanoribbons, we were interested to find out what happened when
the interlayer distance is increased. An interlayer distance of 5.0 Å is used, and the
corresponding electronic structures of bilayer AGNR and bilayer ZGNR are plotted
in Fig. 16.3g and 16.3h, respectively, with their 3.2 Å counterparts. It is found that
at 5.0 Å, the energy bandgaps of both bilayer ribbons increase back to that of the
monolayer counterparts. In fact, the electronic structures of the monolayer and
bilayer ribbons are identical at large interlayer distance. It indicates that the decrease
of energy bandgap is related to the interactions between the layers and as the
interlayer distance increases from the energetically favourable distance of 3.2 Å,
the interlayer interaction becomes weaker and the energy bandgap is “restored” to
that of the individual monolayers.

To validate this point, the energy bandgap dependency on the interlayer distance
is calculated and presented in Fig. 16.5a and 16.5b for bilayer AGNR and nitrogen-
doped bilayer ZGNR, respectively. The progressive increase of energy bandgap
coincides with the weakening of interlayer interactions as the monolayers move
further apart from 3.2 to 5.0 Å. Beyond 5.0 Å, the energy bandgap reaches the
same value as the monolayer ribbon and then remain constant. Different widths of
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Fig. 16.5 Variation in energy bandgap of semi-conducting bilayer graphene nanoribbons as a
function of the interlayer distance for (a) intrinsic bilayer AGNR and (b) N-doped bilayer ZGNR

bilayer AGNR corresponding to the three families are investigated and the 3p C 1

family shows the steepest increase in the energy bandgap. More interestingly, as the
interlayer distance decreases below 3.2 Å, the energy bandgap of the 3p and 3p C 1

families of bilayer AGNR continue to decrease while that of the 3p C 2 family
and the bilayer ZGNR increases. This indicates that interlayer interaction is not the
only reason for the change in the energy bandgap and further studies are required to
discover what other mechanisms are involved.

Nevertheless, the unique feature of changing electronic property via interlayer
distance brings about new device designs. In the following section, we propose a
two-terminal Schottky barrier diode based on bilayer ZGNR whose current output
can be varied by changing the interlayer distance.

16.5 Bilayer Graphene Nanoribbon Device

The studied bilayer ZGNR Schottky barrier diode consists of two monolayer device
made up of semi-metallic intrinsic ZGNR as the contacts and semi-conducting
nitrogen-doped ZGNR as the channel material, shown in Fig. 16.6a (not drawn to
scale). The width of the ribbon is 0.92 nm and the channel length is 17.68 nm. The
doping concentration of the channel is 0.27 dopants/Å. The top and side views of
the proposed device are shown in Fig. 16.6b and 16.6c. The arrows in Fig. 16.6c
indicate a vertically aligned force used to change interlayer distance of the bilayer
ZGNR.

The current characteristics of the bilayer ZGNR Schottky barrier diode with
interlayer distance (D) of 3.2 and 5.0 Å is calculated. For comparison, the
current characteristic of the monolayer device is also calculated. The various
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Fig. 16.6 Atomic schematic of the proposed N-doped ZGNR Schottky barrier diode: (a) mono-
layer and (b) bilayer. (c) Side view device schematic of the bilayer ZGNR diode. (d) The current
characteristics of the device in semi-log plot with linear scale in the inset.

current-bias plots are summarized in Fig. 16.6d and the bilayer ZGNR device
with D D 3:2 Å (blue dashed line) has the highest drive current as compared to the
other two diodes. In addition, the current characteristics of bilayer ZGNR device
with D D 5:0 Å (red dot-dashed line) are very similar to those of the monolayer
device (black solid line), albeit with an almost doubled current.

To further understand the device operating mechanism, the transmission spectra
at equilibrium of the three devices are plotted in Fig. 16.7a. The zero-transmission
region corresponds to the Schottky barrier of the semi-metallic intrinsic AGNR and
the semi-conducting nitrogen-doped ZGNR. The Schottky barrier height is related
to the energy bandgap of the channel material and the band alignment between the
intrinsic contacts and the doped channel. The monolayer device (black solid line)
with the largest energy bandgap having the highest Schottky barrier of 0.62 eV. On
the other hand, the Schottky barriers of the bilayer devices are 0.45 and 0.59 eV for
an interlayer distance of 3.2 and 5.0 Å respectively. Another interesting observation
is that for bilayer ZGNR Schottky barrier diode with interlayer distance of 3.2 Å,
the transmission increases step-wise from 0 to 2, whereas the step is missing for the
transmission of D D 5:0 Å. This is due to the merging of bands as the monolayers
get further apart as shown in Fig. 16.3h.

From Fig. 16.6d, considering the bilayer ZGNR device with an initial interlayer
distance of 3.2 Å and a bias of 0.4 V is applied, if one can change the interlayer
distance to 5.0 Å, a two-state logic device with an ON–OFF ratio of about an order
can be obtained. A simplified spatially resolved band diagram under a bias of 0.4 V
is plotted in Fig. 16.7b to illustrate the operating mechanism of such a logic device.
The bulk of the current obtained is due to the thermionic emission current above the
Schottky barrier as indicated by the arrow. At an interlayer distance of 3.2 Å,
the barrier is 0.45 eV (blue dashed line) and as the interlayer distance increases,
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Fig. 16.7 (a) Transmission spectra, (b) band diagrams and (c) the switching force of the proposed
device

the barrier increases to 0.58 eV (read dot-dashed line). Due to the Fermi-Dirac
distribution of the carrier, there are fewer carriers present at higher energy level, and
hence the current decreases for such device with larger interlayer distance. Similarly,
the tunnelling current just below the Schottky barrier is larger for the smaller
interlayer distance device due to the availability of more carriers for transport.

In addition, the feasibility of such a logic device is explored by estimating the
force required to switch the proposed device. The total energy of the bilayer ZGNR
device at various interlayer distances is calculated, and the results are summarized
in Fig. 16.7c (green dashed line). The energy scale is normalized to the lowest total
energy of the bilayer ZGNR device. After which, the force between the layer is
calculated by taking the derivative of the total energy and it is presented as a blue
solid line in Fig. 16.7c. It is clearly seen that there are two stable states for the bilayer
ZGNR device, where the forces are zero when the interlayer distance is at 3.2 Å and
beyond 5.0 Å. The switching force between the two states for the proposed device
is found to be 0.14 �N for a channel area of 8.13 nm2. This force can be supplied
by direct application, rendering the device a force sensor or by using a floating gate
design with a capacitive actuator [64] which can control the interlayer distance via
electrostatic means.

16.6 Bilayer ZGNR NEM Switch

An analytic model for a bilayer ZGNR NEM switch based on the floating gate
parallel plate capacitive actuator described in [64] is developed to provide the
physical insights into the device characteristics of the switch, shown in Fig. 16.8.
The switch is initially set to be at ON-state (Fig. 16.8a) with a fixed bias of 0.4 V.
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The gate bias (VGS ) is applied across the floating gate to increase the interlayer
distance of the bilayer ZGNR, thereby increasing the energy bandgap of the channel
in order to decrease the conductance of the switch, leading to a distinct OFF-state
(Fig. 16.8b). The free-body diagram indicating the forces involved in the boxed
region in Fig. 16.8a is shown in Fig. 16.8c. Based on this operation principle, the
system can be analysed using an equivalent circuit shown in Fig. 16.8d with a gap
capacitor Cgap and the deformed oxide represented by the spring hinge.

In this model, the electrostatic attractive force (FE) formed between the fixed
and mobile electrodes is dependent on the electrode separation (tgap) and the VGS .
The electrostatic attractive force has to overcome the combination of the restorative
elastic force (FS ) and the interlayer force of the bilayer ZGNR (FGNR). The restora-
tive elastic force arises from the deformation of the oxide layer as the interlayer
distance increases (indicated by the circles in Fig. 16.8b) and the interlayer force
of the bilayer ZGNR is calculated from DFT simulations similar to Fig. 16.7c. The
governing equations for the bilayer ZGNR NEM switch are as follows:

FE D �V 2
GS

2

d

dx
.
�gapA

tgap
/ D V 2

GS�gapA

2t2
gap

; (16.6)

FE D FS C FGNR D ��x C FGNR; (16.7)

VGS D
s

2t2
gap.��x C FGNR/

�gapA
; (16.8)
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where �gap is the dielectric constant of the air gap between the electrodes, A is the
surface area of the electrode, � is the linear spring constant of deformed oxide
and �x D tgap0 � tgap where tgap0 is the initial electrode separation. Setting the
tgap0 D 0:5 nm, � D 50 N/m and an electrode area of 5 times the channel area, the
device characteristics for the NEM switch as VGS varies are shown in Fig. 16.8e.
A similar device with longer channel length (LC ) of 17.68 nm is also considered,
which provides a much smaller OFF-state current due to the exponential decrease
of direct tunnelling as LC increases. The threshold gate biasses (VTH), indicated by
the arrows, are 6.17 and 5.90 V for the 8.84 and 17.68 nm device, respectively. As
VGS increases, the switch is at ON-state until VTH where an abrupt change in the
interlayer distance is achieved due to the snapping together of the electrode. VTH is
hence also known as the pull-in bias. Once the electrode are in contact, they do not
separate until VGS D 0 V, also known as the pull-out bias. As a result, the hysteresis
loop is observed in Fig. 16.8e. An ION=IOFF ratio of 6 orders is achieved for the
longer channel switch under the drain bias of 0.4 V, which has a great potential for
low power memory applications.

While the VTH can be controlled by varying the parameters such as the gate area
and elastic spring constant of the hinge structure according to (16.8), the pull-out
bias is always at 0 V for the first design due to the extremely strong electrostatic
forces when the two electrodes is in contact. In order to control the pull-out bias, an
additional oxide layer can be placed between the electrodes as shown in Fig. 16.9a
to avoid the direct contact between the metal planes. The resultant capacitance can
be considered as a serial combination of the oxide capacitance (Cox) and Cgap shown
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in Fig. 16.9b. The modified governing equations are shown below:

FE D V 2
GS �2

ox�gapA

2.tox�gap C tgap�ox/2
; (16.9)

VGS D
s

2.tox�gap C tgap�ox/2.��x C FGNR/

�2
ox�gapA

; (16.10)

It can be seen in Fig. 16.9c that the pull-out bias has shifted away from 0 V to
2.94 V, with a silicon dioxide layer (�ox assumed to be 4) of thickness (tox) 1 nm and
the rest of the parameter same as previous design with channel length of 17.68 nm.
However, VTH increases from 5.90 to 9.71 V (arrow in Fig. 16.9c). It is because
this additional Cox serves as an additional configurable parameter in (16.10) to
increase VTH. Therefore, in order to reduce the VTH in this design, high-k material
can be used. As shown in Fig. 16.9c, the VTH can be adjusted to a smaller value
of 6.75 V using an oxide with �ox D 16. Note that the basic operating principle is
still predominated by the parameters described in the previous design and there
is a limitation in adjusting the VTH using this approach. It can be shown that a
small tox or a very large �ox would convert (16.10) to (16.8), which shows that
the VTH of the second design will always be larger than that of the first one if all
other parameters are kept constant. Additionally, the size of the hysteresis loop, i.e.
difference between VTH and pull-out bias, can be controlled by adjusting the initial
air gap between the floating gate electrodes. More specifically by reducing the tgap0,
the size of the hysteresis loop reduces significantly. Further optimization of various
parameters can eliminate the hysteresis loop for other application purposes.

16.7 Conclusion

In summary, we have reviewed the electronic structure of monolayer graphene
nanoribbons and presented our study on the bilayer counterparts. The doping effect
on the monolayer graphene nanoribbons are examined and it is found that not only
the presences of dopants vary the EF of ZGNR but also a metal-to-semi-conductor
transition also occurs. We have shown that as the ribbon width increases, the energy
bandgap of intrinsic AGNR and nitrogen-doped ZGNR decreases.

Furthermore, the electronic structures of intrinsic bilayer AGNR and nitrogen-
doped bilayer ZGNR are examined and it is observed that the energy bandgap of the
bilayer material is smaller than that of the monolayer counterpart. This reduction
in energy bandgap is due to the interaction between the layers and as the interlayer
distance increases, this interaction decreases and the energy bandgap increases back
to that of the monolayer. The energy bandgap dependency on the interlayer distance
is plotted for both bilayer AGNR and bilayer ZGNR. It is observed that the different
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families of bilayer AGNR response in different degree to the change in the interlayer
distance, with the 3p C 1 family most affected.

Based on these observations, a Schottky barrier diode based on ZGNR is
proposed, with the intrinsic ZGNR as the metal contact and the nitrogen-doped
semi-conducting ZGNR as the channel material. A similar structure based on the
bilayer ZGNR is also examined and the current characteristics are simulated for
the monolayer device and bilayer device at different interlayer distance. Due to the
difference in EF and the band alignment between the contact and channel material,
a Schottky barrier is formed and it is found that as the interlayer distance of the
bilayer device increases, the Schottky barrier also increases. Exploiting this unique
feature, a simple logic element which changes its state via a change in the interlayer
distance is proposed and a force of 0.14 �N is required for a change of an order in
the output current. Other than direct application of force, the interlayer distance can
also be changed via electrostatic means such as via the implementation of a floating
gate capacitive actuator design.

While the discussion here focussed on the implementation of bilayer ZGNR for
device application, bilayer AGNR can also be used for devices such as RTDs [33],
where the larger varying energy bandgap lends itself to the role of creating a variable
barrier for the control of the quantum tunnelling currents. While further research
in the fabrication and precise control of the edges is still required for the mass-
production of graphene-based electronic devices, the progress in the recent years
has been encouraging and due to its unique metallic/semi-conducting properties,
all-graphene electronics may provide a huge contribution towards the advancement
of device performance in the near future.
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Chapter 17
Field-Modulation Devices in Graphene
Nanostructures

Hassan Raza

Abstract In this chapter, we discuss the futuristic device applications of electronic-
structure modulation due to an external electric field in a tutorial fashion. Such an
electric field can be applied in the stacking direction for a bilayer graphene and in the
width direction for armchair graphene nanoribbons (acGNR) and zigzag graphene
nanoribbons (zzGNR). We first present a tutorial on the electronic-structure of
various forms of graphene. After discussing the relevant theoretical models, we
discuss the electric field modulation of bilayer graphene in the presence of strain
and misalignment. Then we present the electric field modulation results of acGNRs
with pristine and rough edges. We further discuss the modulation in zzGNRs with
periodic edge roughness. Finally, we discuss the potential applications of such an
electronic-structure modulation in electronics, photonics, plasmonics, etc.

17.1 Introduction

Unconstrained graphene is a two-dimensional (2D) semi-metallic material. The
most important property that distinguishes it from other 2D materials/quasi-crystals
is its linear instead of parabolic dispersion and excellent transport properties
[1–7]. However, it has a severe bottleneck for nanoelectronics applications, namely,
it has a zero band gap. When two graphene membranes are stacked in a Bernal
( QA�B) configuration, the dispersion becomes quadratic [8], although the band gap
still remains zero. By engineering a band gap in the graphene nanostructure, one
can make this material a competitor of silicon technology to extend Moore’s law in
this century.
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Graphene Bilayer Graphene

Armchair GNR Zigzag GNR

Fig. 17.1 Visualization of
graphene, bilayer graphene,
N D 9 armchair nanoribbon
(acGNR), and N D 10 zigzag
graphene nanoribbon
(zzGNR). A uniform electric
field E can be applied in the
width direction for GNRs and
in the bilayer direction. The
atomic visualization is done
using Hückel-NV [15]

Notably, when graphene is patterned into a nanoribbon by reducing one dimen-
sion, the quantization effects dictated by the fixed boundary conditions can result
in a bandgap opening depending on the chirality and the width [2, 9–14]. The most
simplistic graphene nanoribbons (GNRs) are zigzag GNR (zzGNR) and armchair
GNR (acGNR) with zigzag and armchair edges, respectively, as shown in Fig. 17.1.
Conventionally, when a zzGNR is rolled into a carbon nanotube (CNT), it forms
an armchair CNT and vice versa. In CNT, the quantization follows the periodic
boundary conditions and in such a case, by constraining one dimension of GNR, the
dispersion no longer remains linear and the inherent advantages associated with the
linear dispersion of graphene are thus lost.

Once the band gap is achieved, another important degree of freedom in devices
that is essential to be explored is the effect of electrical field on various electronic
structure features. Notably, using an electric-field (E) in the stacking direction
for the bilayer graphene and in the width direction for the nanoribbons, one
can modulate the band gap very effectively. This band gap modulation may lead
to various applications. Similar studies can be performed on various graphene
nanostrcutures and will form a significant part of this chapter. Novel devices based
on the unique electronic structure features of graphene and its nanostructures and
their modulation will be further discussed. Our objective is to discuss these topics
on a tutorial-level.

17.2 Electronic Structure

As an example, Fig. 17.2 shows the electronic structure of a bilayer graphene and
monolayer graphene using extended Hückel theory (EHT) [whose atomic structure
is shown in Fig. 17.1]. The detailed theoretical model is discussed in the next
section. The bilayer graphene has twice the number of bands as compared to
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Fig. 17.2 Comparison of
electronic structure of bilayer
graphene and monolayer
graphene calculated using
EHT. The degeneracy is lifted
in the graphene bilayer due to
overlapping pz orbitals of the
two sheets. In the inset, a
zoomed portion of E(k)
diagram is shown around
K-point to emphasize the
lifting of degeneracy
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Fig. 17.3 Electronic
structure of N D 9 passivated
acGNR by spin-restricted
EHT and TB Hamiltonians.
Around the Fermi energy, the
dispersions look similar.
However, in general, the E(k)
diagrams are quite different,
in particular, for the valence
band states

graphene with the degeneracy lifted (as shown in the inset) due to the finite coupling
between the bands in the two graphene sheets.

Figure 17.3 compares the electronic structure methods, namely, EHT and pz-
orbital TB (tight binding), for N D 9 acGNR [see Fig. 17.1] with hydrogen
passivated edges. The pz-orbital TB parameter of 3 eV is used. In acGNRs, the
wavefunctions associated with bands around Fermi energy are distributed through-
out the width of the nanoribbon. These differ the most in the valence band. Since
the sp2 bands are not present in the pz-orbital TB calculations, the bandgap is over-
estimated by 0.2 eV. Further differences in dispersion appear at high energies. If the
bandgap is thus corrected in the pz-orbital TB models (as discussed in Sect. 17.4),
they may be accurate for the device modeling at the usual operating voltages.
Moreover,pz-orbital TB includes the nearest neighbor coupling only and any wave-
function effects, in the form of second-nearest interaction will be missing.

For N D 10 zzGNR shown in Fig. 17.1, the band structures using EHT and pz-
orbital TB schemes are shown in Fig. 17.4. Although there is much commonality
between the two, the occupied bands deviate significantly and hence would lead to
a different transmission response in this energy range. The deviation is however
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Fig. 17.4 Electronic
structures of N D 10
passivated zzGNR calculated
using spin-restricted EHT and
TB Hamiltonians. The
differences are similar to
those of zzGNR as in Fig. 3
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Fig. 17.5 Edge states for
unpassivated zzGNR and
acGNR, i.e., edges without H
atoms. The dangling bonds
introduce states below the
Fermi energy for both
configurations

less severe than in the case of acGNR. Furthermore, compared to the acGNRs,
a dispersion-less state is observed at the Brillouin zone edge due to the edge
belonging to one of the sublattices, whereas in acGNRs, the edges belong to both
the sublattices. In zzGNRs, the wavefunctions for conduction and valence bands are
localized at the edges [9, 10]. In addition, the small dispersion around the Fermi
energy may lead to Stoner magnetism [9, 10]. It has also been proposed that the
ground state may have spin-polarized edges, which may be modulated resulting in
half metallicity [16].

An accurate description of the electronic structure thus becomes really important
to accurately capture the electronic structure effects. Usually, one seeks for a trade
off between the desired accuracy and available computational resources for the
problem at hand.

Another electronic structure aspect is shown in Fig. 17.5. The surface states due
to dangling bonds for unpassivated zzGNR and acGNR [13,17] are calculated using
EHT. Such effects cannot be accounted for by a pz-orbital TB method. For both
GNRs, the dispersions in these bands are small as expected since these are localized
on the unpassivated edges of GNRs. In acGNR, there is a finite density of edge states
at the Fermi level, whereas for zzGNR, the surface states are below the Fermi level.
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17.3 Theoretical Framework: Extended Hückel Theory

Accurate device prediction thus demands an efficient model that can simulate real-
istic structures under different conditions of applied fields and boundary conditions
like attached molecules or multiple graphene layers or different substrates and
hybrid structures with surrounding dielectric. A simple pz orbital TB model [2],
although very efficient and useful for specific problems, cannot account for many
necessary physical effects or the chemical nature of bonding. On the other hand,
density-function-theory (DFT) based models are computationally prohibitive for
systems having more than about 200 atoms.

A semi-empirical method such as the EHT thus seems to be a good trade off,
since it is computationally inexpensive and captures most of the electronic and
atomic-structure effects present in the more rigorous methods. Usually with the
EHT approach, systems with up to 1,000 atoms can be simulated relatively easily
[18]. In the past, this model has been successfully applied to various nanostructures
[19–22]. For graphene, since EHT has been benchmarked with generalized gradient
approximation (GGA) in DFT, it can provide accurate results that less sophisticated
methods like local density approximation (LDA) may not be able to capture due to
an underestimation of the bandgap.

We use spin-restricted EHT for the electronic structure calculations. The
nonorthogonal basis set consists of a double-� Slater Type Orbitals (STO). The
STO is given as

 STO D R.n/Y.l;m/ (17.1)

where Y represents spherical harmonics depending on the quantum numbers l and m.
R is the spherical part, which depends on the principle quantum number n only (in
comparison with its dependence on n and l in hydrogenic wavefunctions) and is
given as

R.n/ D Nrn�1e��r (17.2)

where N is the normalization constant and � is the exponential decay constant.
Starting from the basis set, wavefunctions can be calculated using two STOs as

follows:

�EHT D c1  STO1 C c1  STO2 (17.3)

Here, two important EHT parameters are (c1, �1) for STO1 and (c2, �2) for
STO2. These are generally obtained by benchmarking with various sophisticated
methods and/or experiments. Table 17.1 shows these parameter set for valence
carbon orbitals. For carbon, these parameters are benchmarked against GGA [23].

The overlap matrix S is calculated as follows:

Smn D hmjni (17.4)
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Table 17.1 EHT parameter for carbon atom. K = 2.80

Orbital Eonsite (eV) c1 c2 �1 .Å�1/ �2 .Å�1/

2s �20:315 0.740 2.037
2p �13:689 0.640 0.412 1.777 3.249

which is further used in calculating the Hamiltonian (H) as follows:

Hmn D 1

2
KSmn.Eonsite;m C Eonsite;n/ (17.5)

Here K is a constant and Eonsite’s are the on-site energies, given in Table 17.1 for
the carbon atom [23].

For the electronic band structure calculations, the H and S matrices of the
infinite GNR, graphene sheet, and graphene bilayer are transformed to the reciprocal
k-space as

H.
�!
k / D

NX
mD1

Hmne
i
�!
k �.�!dm��!

dn/ (17.6)

S.
�!
k / D

NX
mD1

Smne
i
�!
k �.�!dm��!

dn/ (17.7)

where
�!
k is the reciprocal lattice vector of the Brillouin zone and has 1D char-

acteristics for GNRs and 2D for single and bilayer graphene sheets. The index m
represents the center unit cell and n represents the neighboring unit cells, whereas�!
dm � �!

dn is the relative displacement. The energy eigenvalue spectrum at a specific
K-point is then computed. In order to calculate the band structure under the influence
of an electric field (E) in the width direction (y) for the nanoribbons and the stacking
direction (y) for the bilayer graphene, the Laplace potentialUL.y/ is included in the
Hamiltonian:

UL.y/ D �eEy (17.8)

where e is the electronic charge. Within the EHT scheme, UL is included as

UL.m; n/ D 1

2
SmnŒUL.m/C UL.n/� (17.9)

We also use an orthogonal tight-binding scheme with hopping parameter t D 3eV
(see [2] and Chap. 8) for pz orbitals as a comparison. For an overview of doing
calculations using the pz-orbital TB methods, one can refer to Chap. 8 and [24].

We can further couple EHT or pz-orbital TB with NEGF (nonequilibrium
Green’s function formalism) as discussed in [13] and Chaps. 13, 15, 17 and 18.
NEGF has become a standard method of choice for calculating mean-field quantum
transport [25].
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17.4 Bilayer Graphene

When two graphene layers are stacked in Bernal ( QA � B) configuration, the mono-
layer feature of linear dispersion is lost and the dispersion becomes quadratic [8].
The bilayer configuration is very interesting for various applications, since the
band gap can be modulated from zero to few tens of an electron volt by using an
external out-of-plane electric field in the stacking direction [8, 13, 27–32]. Readers
are encouraged to consult chaps. 8 and 11 for complementary discussion on bilayer
graphene.

This electric field breaks the A � QB symmetry in the stacked bilayers and hence
lifts the degeneracy, resulting in a band gap opening. The band gap depends on the
coupling between the two graphene layers [8, 27]. Therefore, one should be able
to tune this band gap by straining the bilayer [see Fig. 17.6]. This could be very
useful in pressure sensors and other applications involving strain. In addition, we
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Fig. 17.6 Electronic structure of bilayer graphene. E(k) diagrams are shown around the Dirac
point with and without electric fields. �1 is the stacking misalignment in x-direction and �2 is
the misalignment in y-direction. For equilibrium stacking distance c D 3.35 Å, the dispersion
is quadratic. With an external electric field, a direct band gap appears. For c D 3 Å, band gap
modulation is larger due to increased hopping between the two layers and remains direct. For c D
2 Å, the bilayer becomes metallic with E D 0 and has an indirect band gap for a finite electric field.
The atomic visualization is done using GaussView [26]



536 H. Raza

find that by straining bilayer graphene, conduction and valence band dispersions
also change. The electronic structure and electric-field modulation of bilayers with
stacking misalignments in �1 and �2 is shown in Fig. 17.6. We report that these
misalignments may give rise to various characteristics of electronic-structure and
electric-field modulation, and hence eventually influence the device applications and
performance.

17.4.1 QA–B stacking

The equilibrium C–C atomic distance is about 1.44 Å within the graphene plane.
Out-of-plane equilibrium stacking distance (c) is 3.35 Å as shown in Fig. 17.6. The
gray atoms belong to lower layer and the blue atoms represent the upper layer. The
unit cell consists of four atoms – two atoms in each layer shown by red dotted line
in Fig. 17.6. The two gray atoms in the lower layer are referred to as A and B,
respectively. The two blue atoms in the upper layer are referred to as QA and QB ,
respectively. For QA� B stacking, �1 D 1.44 Å and �2 D 0.

17.4.2 Strain Engineering

The electronic structure calculations for a bilayer graphene with equilibrium
stacking distance c D 3.35 Å is shown in Fig. 17.6. Without any electric field, the
dispersion is quadratic with a zero band gap at the Dirac (K) point. With an electric
field of 1 V/nm, a direct band gap opens up due to A � QB symmetry breaking
and the conduction/valence band minimum/maximum shifts away from the Dirac
point. By decreasing c to 3 Å, without an electric field, the band gap is still zero
with quadratic dispersion. However, the dispersion changes with an increase in the
effective mass and the high lying bands move farther away from the Dirac point.
With E D 1 V/nm, again a direct band gap is observed with the same features as
the one for c D 3.35 Å. Apart from this, the band gap modulation is higher for
c D 3 Å, although the Laplace’s potential is smaller for the same electric field due
to the reduced spacing. This is due to the increased wave function overlap between
the two layers, which varies exponentially with the distance as compared to the
Laplace’s potential which is linearly dependent on the distance. Further reducing
the stacking distance results in a metallic state for c D 2 Å. By applying 1 V/nm
electric field, an indirect band gap is created.

Below about 2.5 Å, the distance between the atoms in the bottom layer and the
next-nearest neighbors in the top layer is about 3.35 Å, which is the equilibrium
stacking distance for bilayer graphene. Therefore, the hopping integral between
A � QB sites becomes comparable to the equilibrium one of the QA � B sites. This
results in the reported electronic structure modifications in Fig. 17.6 for c D 2 Å.
This electronic structure change is also evident in the color plots of the valence band
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c = 3.35 Å c = 2.5 Å c = 2 ÅFig. 17.7 Electronic
structure of the valence band
of the bilayer graphene. With
decreasing the stacking
distance (c), new features
appear in the electronic
structure due to increased
coupling between the two
layers. The color bar is in eV
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Fig. 17.8 Band gap
modulation of strained
bilayer with an external
electric field. The dashed line
is for equilibrium c D 3.35 Å,
for which band gap saturates
at about 0.13 eV. A convex
relation is observed as a
function of electric field
above c � 2.5 Å. By
decreasing c, band gap
modulation increases due to
increased interlayer hopping

states over the 2D Brillouin zone in Fig. 17.7. With decreasing stacking distance
from c D 3.35 Å to c D 2.5 Å in the absence of an electric field, the features become
broad indicating an increase in the effective mass. Further decreasing c to 2 Å results
in a directional change of the features, which signifies that the additional bonding
happens in different directions as compared to that for c D 3.35 Å.

We also find that smaller the stacking distance, higher the band gap modulation
by the electric field as shown in Fig. 17.8. This is a desirable trait for practical appli-
cations. The band gap increases with increasing electric field and then saturates. For
the equilibrium c D 3.35 Å, the band gap saturates at about 0.13 eV. Above about
2.5 Å, the trend of field modulation is convex and in the absence of electric field,
a zero band gap is observed as shown in Fig. 17.8. Calculations for such a high
field are reported to show the band gap saturation and the threshold trends for the
strained bilayer. However, these high fields may not be feasible in devices due to
the dielectric reliability concerns and physical constraints. High-K dielectrics may
be used as an alternative to enhance field inside the graphene bilayer, while keeping
the dielectric within the breakdown regime.



538 H. Raza

E = 0

0.15

E = 0.5 V/nm
E = 1 V/nm0.1

0.05

0 0.5 1 1.5

0

Δ1 (Å)

B
an

dg
ap

 (
eV

)

E = 0
E = 0.5 V/nm
E = 1 V/nm

Δ2 (Å)

0.15

0.1

0.05

0 0.5

B
an

dg
ap

 (
eV

)

1

0

a

b

Fig. 17.9 Effects of �1 and
�2 variation on the band gap
with and without out-of-plane
electric field. An increasing
�1 or �2 results in an
increasing, followed by a
decreasing band gap for
E D 0. (a) Electric-field
modulation is absent for
smaller �1 and is higher for
larger �1. (b) Electric field
modulation is higher for
smaller�2. �1 and �2 results
are invariant under inversion,
i.e., a negative �1/�2 shift
results in the same effects as
reported for the positive
�1/�2 shift. Furthermore, the
trends are repeated after a
shift of ˙1:44Å in�1 or
˙1:24Å in �2

17.4.3 Misalignment

Next, we consider the effect of variation in �1 and �2. Fig. 17.17a,b summarizing
the band gap opening due to �1 and �2 stacking misalignments and electric-field
modulation. With increasing �1 for E D 0, the band gap first increases and then
decreases as shown in Fig. 17.9a. The same trend is observed for �2 misalignment
as shown in Fig. 17.9b. Electric-field modulation is small for �1 � 0.25 Å and
becomes significant only beyond 0.5 Å. Similarly, the electric-field modulation is
large for smaller �2. The band gap decreases with increasing �2, becomes a few
millielectron volt and then starts increasing.

17.5 Armchair Graphene Nanoribbons

On a pz level of the tight-binding theory, two thirds of acGNRs are semiconducting
with a bandgap inversely proportional to their widths and the other has zero bandgap
depending on the chirality [9]. However, one can obtain a different result using a
more sophisticated theory [14, 33] such as EHT and DFT. First, the zero bandgap
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acGNRs also have a small bandgap that is inversely proportional to the width.
Second, the remaining semicondcuting acGNRs only follow an inverse relation
within its own category. For convenience, we propose to categorize them into
˛-, ˇ-, and � -acGNRs. ˛-acGNRs are N D 8,11,14, : : : and have very small
bandgap. ˇ-acGNRs are N D 9,12,15, : : : and � acGNRs are N D 10,13,16, : : :
acGNRs have also been classified into three subclasses in the context of the orbital
diamagnetism [11]. Readers are encouraged to consult chaps. 9, 10, 13, 16, and 18
for complementary discussion on nanoribbons.

17.5.1 Pristine Edges

An electronic structure calculation using EHT for each type of acGNR is shown
in Fig. 17.10. As can be seen that N D 8 ˛-acGNR has a small bandgap and has
a nonlinear dispersion around the � -point. N D 9 ˇ-acGNR has a large bandgap
with a parabolic dispersion around the � -point. Interestingly, N D 10 � -acGNR has
a slightly larger bandgap with larger effective mass dispersion around the � -point
and smaller velocity in the linear region away from the the � -point as compared to
N D 9 ˇ-acGNR. We extract the bandgaps and effective masses within a few tens
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Fig. 17.10 Electronic structure of acGNRs. The ball and stick model of a graphene nanoribbon
with N D 9 is shown with the unit cell. E-k diagrams are shown for three different types of acGNRs
using EHT
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Fig. 17.11 Band gaps and effective masses of acGNR. (a) Variation of band gap with nanoribbon
widths of different types of acGNRs. Using a pz-orbital tight-binding method, t D 2.5 and 2.7 eV
match the band gaps obtained by EHT for ˇ-acGNRs and �-acGNRs, respectively. (b) Variation
of effective mass with nanoribbon widths of different types of acGNRs

of millielectron volt around the band edges of these three types of acGNRs and plot
them in Fig. 17.11a,b, respectively. We find that incremental change in the bandgap
of � -acGNRs with respect to ˇ-acGNRs is smaller in EHT [14] than LDA of density
functional theory [33].

For each type of acGNR, bandgaps and effective masses are inversely propor-
tional to the width with a different proportionality constant. The bandgap versus
width (W) relations are given as [14]:

Egap D

8̂
<̂
ˆ̂:
0:04 eV=W .nm/ for ˛-acGNR

0:86 eV=W .nm/ for ˇ-acGNR

1:04 eV=W .nm/ for � -acGNR
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We find that Fig. 17.11b is important because some approaches toward graphene
structures involve effective mass description [34]. Each type of acGNRs follow an
inverse relation of effective mass with the width given below:

m

mo

D

8̂
<̂
ˆ̂:
0:005=W .nm/ for ˛-acGNR

0:091=W .nm/ for ˇ-acGNR

0:160=W .nm/ for � -acGNR

where mo is the free electron mass. It should be noted that using a pz-orbital TB
model, the effective mass follows the same inverse relation versus width for all three
types of acGNRs [34]. Furthermore, we determine the pz-orbital TB parameters that
reproduce the bandgaps as shown in Fig. 17.11a. These parameters are 2.5 eV and
2.7 eV for ˇ- and � -acGNRs, respectively.

Fig. 17.12a shows electric-field modulation of the band structure for an
N D 10 � -acGNR. The effective mass around the� -point increases with the increas-
ing electric field .E/ and eventually changes sign, similar to [35]. Furthermore, for
E D 0, the band dispersion in the linear regime away from the � -point shows
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Fig. 17.12 Electric-field
modulation of band
dispersions. (a) Variation of
velocity in the width direction
for N D 10 �-acGNR. The
linear dispersion shown by
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around the Dirac point for
graphene calculated using
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effective masses. Effective
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conduction bands within a
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velocity very close to the unconstrained graphene velocity (D 8:8 � 105 m/s)
indicated by red (grey) circles. With increasing E, velocity in this linear regime
away from the � -point decreases to about 5 � 105 m/s. In addition, the bandwidths
of the valence and conduction bands are also decreasing and a Mexican hat structure
is observable that has also been seen in acGNR [35], CNTs [36], and graphene
bilayers [13, 27–29]. These features are in qualitative agreement with the electric
field effects reported in semiconducting acGNRs elsewhere using a continuum
model [35]. We show the extracted effective masses around the � -point for N D
8, 9, and 10, which are ˛-, ˇ-, and � -acGNRs, respectively, in Fig. 17.12b. These
effective masses are valid for tenths of kBT for ˛-acGNRs and for a few kBT for ˇ-
and � -acGNRs. After this energy scale, the band dispersions become linear again
and remain so for about a few electron volts when they become nonlinear and hence
saturate [as shown in Fig. 17.12a].

Apart from this, the bandgap is modulated with the increasing electric field.
In Fig. 17.13, we show bandgap modulation as a function of width and electric
field. A threshold behavior is observed, similar to [35], where bandgap starts

Fig. 17.13 Band gap
modulation. Band gap as a
function of width and electric
field for (a) ˇ-acGNRs and
(b) �-acGNRs. �-acGNRs
have larger band gap
modulation as compared to
ˇ-acGNRs
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decreasing appreciably above a threshold electric fieldEt . Moreover, for � -acGNRs,
bandgap decreases at a faster rate compared to ˇ-acGNRs and thus � -acGNRs
have larger bandgap modulation. This is consistent because wavefunctions are more
hybridized in � -acGNRs and hence any perturbation affects the band structure more
as compared to the ˇ-acGNRs.

The bandgap for ˇ-acGNRs decreases monotonically with the electric field.
However, the bandgap decreases appreciably only after a threshold electric field.
This is different from [35], where below the threshold electric field, the bandgap is
constant and it decreases only after the threshold electric field. Furthermore, for
� -acGNRs, the bandgap first increases a little and then decreases – a feature
although small, but not present in continuum calculations [35].

With an appropriate electric field applied, one can reduce the bandgap of a
semiconducting acGNR to a few meV. We find that bandgap never becomes zero,
whereas using a continuum model [35], one can find zero bandgap. The physics
behind this bandgap narrowing is the spectral shift of the conduction and valence
band states on the two edges. This leads to downward and upward shifts for
conduction and valence bands, respectively.

17.5.2 Periodic edge roughness effects

The experimentally fabricated graphene structure have inherently rough edges.
Consider N D 8 acGNR in Fig. 17.14, which has semimetallic band structure,

N=8 N=9

ky

E Dirac Point
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y
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b

c
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E

Fig. 17.14 Schematics of unit cell with mixed boundary conditions. (a,b) acGNRs with pristine
edges are shown with N D 8 and N D 9 layers. (b) acGNR with N D 8,9 layers within a unit
cell leads to a rough edge. (c) For every one-third acGNR with pristine edges, transverse quantized
wavevector crosses the vicinity of one of the two Dirac points resulting in close to zero band gap.
By mixing boundary conditions within a unit cell, such crossings can be avoided
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Fig. 17.15 Electronic structure of passivated acGNR with rough edges. The combination of an N
and NC1 acGNR always leads to a band gap opening

whereas N D 9 acGNR is semiconducting. Conceptually, one can imagine the
acGNR in Fig. 17.14b with one rough edge to be composed of N D 8 and N D
9 acGNRs. For N D 8 acGNR, the quantized wavevector crosses a Dirac point,
schematically shown in Fig. 17.14c by a red dashed line, whereas for N D 9 acGNR,
the quantized wavevector is away from the Dirac point, schematically shown by a
green dotted line, giving rise to a band gap. For the acGNR with rough edges, the
resulting boundary conditions are different from the ones for pristine (N D 8 and 9)
acGNRs. For such boundary, it becomes less probable to cross a Dirac point [37].

As discussed in the last section, ˛-acGNRs have a very small band gap and are
essentially semimetallic within the pz-orbital tight-binding theory. ˇ-acGNRs are
semiconducting with an appreciable band gap. � -acGNRs are also semiconducting
but with even higher incremental band gap than ˇ-acGNRs. Fig. 17.15 summarizes
the band structure of ˛-, ˇ-, and � -acGNRs with pristine passivated edges, showing
that every third has a very small band gap. With the mixing of the nanoribbons with
pristine edges within the same unit cell, one can obtain rough edges as shown in
Fig. 17.14b. We report the band structures of three different mixing, namely, (˛,ˇ),
(� ,˛), and (ˇ,� ), in Fig. 17.15 – all of which show a significant band gap opening
[38].

The extracted band gaps from the band structure calculations are summarized in
Fig. 17.16a for the passivated acGNRs with rough edges. We report that the three
combinations of acGNRs, namely, (˛,ˇ), (� ,˛), and (ˇ,� ) follow distinct band gap
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Fig. 17.16 Band gap opening. (a) Band gap is always observed for passivated nanoribbons with
rough edges and hence mixed boundary conditions. Band gap inversely decreases with width
of the ribbon. (b) Band gap is present for unpassivated nanoribbons. However, the trend is not
hyperbolic due to dangling bond states within the band gap. (c,d) Band gap plots for passivated
and unpassivated ribbons, respectively, as a reference for (a,b).

trends – an extension of the trends for pristine acGNRs. The band gaps are inversely
proportional to the width and are given as

Eg D

8̂
<̂
ˆ̂:
0:35 .eV/=W .nm/ for .˛; ˇ/-acGNR

0:70 .eV/=W .nm/ for .�; ˛/-acGNR

1:37 .eV/=W .nm/ for .ˇ; �/-acGNR

where width (W) is defined for the widest section of the nanoribbon.
For the unpassivated acGNRs, the variation of the band gap with the nanoribbon

width is summarized in Fig. 17.16b. Owing to a complex dependence of the position
of the dangling bond states on the width, the trend is nonhyperbolic. However, a
higher-order fit is shown to guide the eye. Clearly, three different band gap opening
trends are observed for unpassivated (˛,ˇ)-, (� ,˛)-, and (ˇ,� )-acGNRs, similar to
those of the passivated acGNRs.

For passivated edges and unpassivated acGNRs, a gap of at least 0.1 eV can be
opened for 5 nm wide nanoribbons. As a reference, we also show the band gap
variation as a function of the width for acGNRs with passivated and unpassivated
pristine edges in Figs. 17.16c,d, respectively. It is evident that one-third acGNRs
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Fig. 17.17 Band gap modulation. For one kind of acGNRs, band gap modulation with electric
field is shown. In general, the band gap decreases with increasing magnitude of the electric field.
Furthermore, asymmetry in band gap modulation is due to asymmetry in the edge structure of the
acGNRs

in both the cases have very small band gap, which are not very useful for nano-
electronics applications.

The band gap modulation of the passivated acGNRs with rough edges as a
function of external electric field is summarized in Fig. 17.17 for (ˇ,� )-acGNRs.
Similar to the acGNRs with pristine edges discussed in the previous section,
a threshold behavior appears [14, 35], where the band gap starts to decrease
appreciably above a threshold electric field Et . As reported in Sect. 17.5.1, for the
acGNRs with pristine edges, gap modulation behavior is polarity-symmetric due to
the edge symmetry. However, the nonideal acGNRs considered in this paper do not
posses the edge symmetry. This results in an asymmetric band gap modulation with
opposite polarity of the electricfields.

17.6 Zigzag Graphene Nanoribbons with Periodic Edge
Roughness

zzGNRs with pristine edges have zero band gap and localized states around the
equilibrium chemical potential as discussed in Sect. 17.1 [9, 10]. In experiments,
however, such pristine edges may not be feasible and the edge structure may develop
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Fig. 17.18 Electronic-structure of passivated zigzag graphene nanoribbons with rough edges. The
ball and stick model of a graphene nanoribbon with N D 8, N D 10, and N D 9 is shown. The
combination of an even N, NC2, and NC1 zzGNR always leads to thermodynamically stable
closed benzene rings. E(k) diagrams, calculated using EHT, are shown for five zzGNRs with
different widths. A near-midgap state with a small band width is observed, whereas the nanoribbons
have a significant band gap opening. The wavefunction at X-point for the midgap state shows edge
localization, whereas the wavefunctions at � -point for the midgap states and conduction/valence
band edges (EC=EV ) are distributed throughout the width of the ribbon.

some roughness [39–42]. In this chapter, we study one such kind of roughness. One
finds that for a zzGNR with even N layers of C atoms, there are no open benzene
rings. This is a thermodynamically stable configuration with pristine edges, unlike a
zzGNR with odd N layers, which always has open benzene rings at one end. Readers
are encouraged to consult chaps. 9, 10, 13, 16, and 18 for complementary discussion
on nanoribbons.

We find that for even N layers, two extra layers within a unit cell give rise
to a rough edge but with closed benzene rings as shown in Fig. 17.18. In this
configuration, the unit cell consists of zzGNRs with an even N, NC2, and NC1
layers. In addition, one edge is pristine with atoms belonging to one graphene
sublattice only, whereas the other edge has an oscillatory corrugation leading to edge
roughness with atoms from both sublattices [43]. An electronic-structure calculation
for this class of zzGNRs is shown in Fig. 17.18.

Most importantly, one always finds a significant band gap opening. As expected,
the band gap decreases with the increasing width, due to a smaller value of
the quantized wavevector in the transverse direction. Interestingly, we find a
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Fig. 17.19 Electronic-structure features of the zzGNRs. (a) The band gap decreases inversely with
the width. (b) The band width of the near-midgap state monotonically increases with the width.
(c) Effective mass for the conduction band state monotonically decreases with the width. (d) The
effective mass for the near-midgap state is hole-like (i.e., negative) and it increases with the width
(i.e., becomes less negative). Effective masses are obtained by parabolic fits to the bands within a
few kBT of the band edge at the � -point

near-midgap state, which has a very small band width. Unlike the band gap, the
band width of the near-midgap state tends to increase with the increasing width.
The near-midgap state has a hole-like dispersion, i.e., the effective mass is negative
around the � -point.

The variation of the band gap with the nanoribbon width is summarized in
Fig. 17.19a. Similar to acGNRs [21], these zzGNRs follow an inverse band gap
relation with the width. As compared to the acGNRs in Sect. 17.4, the band gap
opening is larger for the same width. The important point however is that one always
observes a band gap, which is desirable for nanoelectronics applications. In this
case, a band gap of about 0.5 eV can be opened with a 4 nm wide zzGNR. For the
midgap states, the band width monotonically increases with the increasing width,
finally saturating to about 0.21 eV as shown in Fig. 17.19b.

In Fig. 17.19c,d, the effective masses are reported around the � -point for the
conduction band and the near-midgap state, respectively. For the conduction and
the valence bands, the effective masses around the band edges are nearly equal in
the magnitude, although with opposite signs. We thus report only the conduction
band effective masses. With the increasing width, these effective masses decrease
in a nonhyperbolic fashion. The effective mass of the near-midgap state is negative,
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Fig. 17.20 Electric-field modulation of the band dispersions for (8,10,9)-zzGNR. The band gap
almost remains constant, however, the dispersions of the conduction/valence band and the midgap
states change asymmetrically with the polarity of the field

i.e., hole-like, which monotonically increases with the width. It is interesting to note
that due to smaller band width, the magnitude of the effective mass of near-midgap
state is almost five times that of the conduction/valence band effective mass.

The electronic-structure modulation of the zzGNRs due to an electric field in the
width direction also reveals some interesting electronic structure features. As shown
in Fig. 17.20, the electric field modulates the band dispersions of the conduction and
the valence bands very effectively. The trends in the field modulation are clearly
polarity dependent due to the edge asymmetry in the zzGNR under study. The band
gap decreases slightly, but remains close to the equilibrium value. Since wavefunc-
tions at the conduction/valence band edges are distributed throughout the width of
zzGNR with periodic edge roughness, the effect of electric field effectively gets
balanced out for these states. This has important implications for the manipulation
of the near-midgap state due to its isolation from the conduction/valence bands even
in the presence of an electric-field.

The modulation of the near-midgap state is the most interesting, where the band
width can be modulated with both polarities of the electric-field. For these states, the
effective mass around the � -point remains negative (hole-like) for positive electric
fields. Beyond a threshold electric field, the mass becomes positive (electron-like)
for negative electric fields. This polarity reversal and the band width modulation
requires a detailed analysis of the wavefunction localization, which we discuss
further.

At the X-point, the wavefunction of the near-midgap state is localized toward
pristine edge and at the � -point, the wavefucntion is distributed throughout the
ribbon width (see Fig. 17.18). When a voltage is applied to create an electric field
in the width direction, the energy values at the � -point do not shift much due to
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Fig. 17.21 Electronic-structure modulation. The band width of the midgap state can be modulated
over a wide range. The inset shows an expanded view near the transition points

distribution of the wavefunction throughout zzGNR. However, for the X-point, the
energy values shift depending on the polarity of the bias. Positive electric field leads
to negative potential energy change at the pristine edge and shifts the energy values
down at the X-point resulting in an increased band width. Negative electric field
shifts the energy values at the X-point upwards, resulting in a decreasing and then
an increasing band width, which also switches the dispersion to behave as electron-
like with a positive effective mass.

The results of the electric-field modulation of the electronic-structure are quan-
titatively summarized in Fig. 17.21. The band width of the near-midgap state can
be modulated from 0 to almost 1 eV, depending on the electric field and the width
of zzGNR. The inset shows an expanded view of the band width modulation trends
around the inflexion points. We have yet to see how the field modulation of these
near-midgap states can lead to interesting applications in electronics, photonics,
spintronics, and even plasmonics. However, their manipulation and formation of
a band due to delocalization is quite intriguing compared to the nonconducting
recombination-generation centers and dopant states in the nondegenerately doped
semiconductors.

17.7 Novel Applications

In this section, we discuss some of the novel applications, which can be enabled by
gate voltage (external electric-field) induced electronic-structure modulation, e.g.,
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band gap modulation and band width modulation discussed in this chapter. The use
of band gap modulation can result in low-power transistors, electric-field sensors,
emission wavelength tunable light emitters, electrically tunable tinted windows, etc.
We project that this list will continue to increase with more progress made in this
area.

One example of the bandwidth modulation could be that of the proposed
electronic-structure modulation transistor (EMT). The working principle is based on
the band width modulation of a midgap or near-midgap state due to an electric field
by applying a gate voltage [44, 45], enabling very steep subthreshold inverse slope
as shown in Fig. 17.22. The proposed transistor, namely, EMT, has been studied
as a possible replacement for CMOS (complementary metal oxide semiconductor)
technology [46]. We envision that transistors based on the electronic-structure mod-
ulation of the channel material can open up a new class of post-CMOS logic devices.

17.8 Conclusions

We have discussed the electronic-structure modulation due to an external electric
field in graphene nanostructures. In bilayer graphene, a direct band gap can be
opened by breaking the A� QB symmetry. This band gap modulation depends on the
strain and misalignment in the bilayers. For the acGNRs with and without pristine
edges, the intrinsic band gap can be reduced to few millielectron volt by applying
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an external electric field in the width direction. For the zzGNRs with rough edges, a
near-midgap state is observed, whose bandwidth can be modulated by the external
electric field. Such a bandgap is essential for numerous potential device applications.
Many other electronic-structure modulation effects due to external electric field may
also open up many device configurations. We anticipate that novel devices can be
engineered using these effects, e.g., low-power transistors, tunable light emitters,
etc. Notably, a possible low-power EMT may become CMOS replacement.
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Chapter 18
Graphene Nanoribbons: From Chemistry
to Circuits

F. Tseng, D. Unluer, M.R. Stan, and A.W. Ghosh

Abstract The Y-chart is a powerful tool for understanding the relationship between
various views (behavioral, structural, and physical) of a system, at different levels
of abstraction, from high-level, architecture and circuits, to low-level, devices and
materials. We thus use the Y-chart adapted for graphene to guide the chapter and
explore the relationship among the various views and levels of abstraction. We
start with the innermost level, namely, the structural and chemical view. The edge
chemistry of patterned graphene nanoribbons (GNRs) lies intermediate between
graphene and benzene, and the corresponding strain lifts the degeneracy that
otherwise promotes metallicity in bulk graphene. At the same time, roughness at
the edges washes out chiral signatures, making the nanoribbon width the principal
arbiter of metallicity. The width-dependent conductivity allows the design of a
monolithically patterned Wide–Narrow–Wide (WNW) all graphene interconnect-
channel heterostructure. In a three-terminal incarnation, this geometry exhibits
superior electrostatics, a correspondingly benign short-channel effect and a reduc-
tion in the contact Schottky barrier through covalent bonding. However, the small
bandgaps make the devices transparent to band-to-band tunneling. Increasing the
gap with width confinement (or other ways to break the sublattice symmetry) is
projected to reduce the mobility even for very pure samples, through a fundamental
asymptotic constraint on the bandstructure. An analogous trade-off, ultimately
between error rate (reliability) and delay (switching speed) can be projected to
persist for all graphitic derivatives. Proceeding thus to a higher level, a compact
model is presented to capture the complex nanoribbon circuits, culminating in
inverter characteristics, design metrics, and layout diagrams.
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Fig. 18.1 Gajski–Kuhn Y-chart adapted for graphene

The Gajski–Kuhn Y-chart (Fig. 18.1) is a model which captures, in a snapshot
view, the essential considerations in designing semiconductor devices [1]. The three
domains of the Gajski–Kuhn Y-chart are on radial axes. Each of the domains can
be divided into levels of abstraction, using concentric rings. At the top level (outer
ring), we consider the architecture of the chip; at the lower levels (inner rings), we
successively refine the design into finer detailed implementation:

• Creating a structural description from a behavioral one is achieved through the
processes of high-level synthesis or logical synthesis.

• Creating a physical description from structural one is achieved through layout
synthesis.

Building up such a multilevel view of graphene, a material of undoubted interest,
is an ongoing process. The aim of this chapter is to touch upon just a few of the
concentric circles to create such a viewing platform.

18.1 The Innermost Circle: The Atomistic View

Although there has been a lot of effort at this end from physicists and chemists, our
aim here is more object-oriented – we wish to touch upon the graphene nanoribbons
(GNRs), specifically, the edge chemistry that leads to the observed lack of chirality
and metallicity, then progressively outward along the Y-chart toward their two and
then three terminal properties, and finally to an overall compact model describing
its circuit level potential.
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18.1.1 Flatland: A Romance in Two Dimensions

Among elements on the periodic table, carbon is unique in that its sp2 planar and sp3

tetragonal bond energies are comparable, carbon allotrope making it geometrically
vary all the way from 3-d diamond to 0-d buckyballs [2]. Of this entire set carbon
allotropes, a candidate that combines impressive material properties (e.g., ultra-
low effective mass), structural versatility, and amenability to industry-standard
planar fabrication techniques is undoubtedly graphene and its multiple derivatives,
including carbon nanotubes (CNTs), bilayer graphene (BLG), epitaxial graphene
(epi-G), strained graphene (sG), and GNR.

The impressive electronic properties of CNTs and GNRs stem from their parent
graphitic bandstructure [3]. Without delving into the mathematics, it is important
to rehash some of the salient features relating the bandstructure to the underlying
chemistry. The hybridization of one s and two carbon px;y-orbitals creates a
planar honeycomb structure in a single graphene sheet, loosely resembling self-
assembled benzene molecules minus the hydrogen atoms. The crystal structure
can be described as a triangular network with a two-atom dimer basis, whose �
electrons hybridize to create bonding–antibonding pairs that delocalize over the
entire crystal to generate conduction and valence bands. However, since the two
basis atoms and the orbitals involved are identical, we get a zero-band gap metal
with a dispersion resembling photons, albeit with a much lower speed. The resulting
low-energy linear dispersion corresponds to a constant slope and thus a constant
velocity v D @E=„@k.

The unique bandstructure of graphene contributes to its amazing electronic
properties [2]. Because the Fermi velocity is energy independent, the cyclotron
effective mass of graphene electrons, m� D „kF =vF is vanishingly small at low
energy (kF ! 0, vF being constant at roughly 108 cm/s). Furthermore, the two
bands are derived out of symmetric and antisymmetric (bonding and antibonding)
combinations of the two identical dimer atoms, creating a two-component pseu-
dospinor out of the two Bloch wavevectors, with their ratio being just a phase
factor ei� , where tan � D ky=kx relates electron quasi-momentum components in
the graphene x–y plane. The reversal of phase between the forward and backward
velocity vectors suppresses 1D acoustic phonon back-scattering, allowing only
Umklapp processes in confined graphitic structures such as CNTs and GNRs. The
combination of low mass m� and long scattering lengths �sc ultimately leads to
very high mobilities � D q�sc=m

�vF , with a record room temperature value at
230,000 cm2/Vs [4] for suspended graphene sheets.

In the following sections, we discuss two bandstructure related issues that arise
when we attempt to pattern or modify graphene to generate gapped or confined
planar structures:

� The absence of metallicity- and chirality-dependent bandgaps in multiple exper-
iments (Sects. 18.1.2–18.1.4).

� The increase in effective mass as a bandgap is progressively opened, aris-
ing from fundamental asymptotic constraint on graphene’s high bandstructure
(Sect. 18.1.4) that are expected to persist even for very pure samples.
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18.1.2 Whither Metallicity?

The bandstructure of CNTs is by now, a textbook homework problem. Since the
conduction and valence bands of its parent graphene structure touch precisely at
the vertices of its hexagonal Brillouin zone, the Fermi wavelength of undoped
graphene corresponds to a unique electron wavelength �F D 3

p
3R=2, where R

is the C–C bond distance. The imposition of periodic boundary conditions along the
circumference of a CNT filters out many allowed electron wavelengths and allows
only modes that have integer ratios of �D=�F (D being the tube diameter), so
that a particular chirality (i.e., a wrapping topology) may or may not support �F
needed to sustain metallicity. Accordingly, one can derive selection rules on paper,
or using simple 1-orbital orthogonal nearest neighbor tight binding, that match
experiments quite well. In any random array of CNTs, roughly a third are expected
to be metallic, and impressive progress has been achieved in sorting them out from
their semiconducting counterparts. Even in extremely narrow CNTs with strong
curvature-induced out-of-plane hybridizations, the anomalous bandgaps are well
captured by non-orthogonal tight-binding formulations such as extended Hückel
theory (EHT) [5]. The bandgaps of CNTs bear relatively few surprises, at the end
of the day.

Life is more complicated when dealing with GNRs. Indeed, it seems reasonable
to expect a chirality dependence to arise for GNRs, simply replacing the periodic
circumferential boundary conditions across CNTs with hard-wall boundary condi-
tions across the GNR width. A few details may change, for instance, we now fit
half-wavelengths rather than whole wavelengths, and the edges are not completely
opaque to electrons tunneling outward so that the boundary conditions are more
“diffuse”. The quantization condition will roughly correspond now to integer ratios
of .W CR

p
3/=�F (accounting for two unit cells the armchair edge outside for the

wavefunction to vanish). However, one-orbital tight binding would still predict three
chiral classes in GNRs, one of which is strictly metallic as in CNTs. Experimentally,
however, no chirality dependence is observed for GNRs, nor are any GNRs observed
to be strictly metallic at low temperature (Fig. 18.2). Regardless of wrapping vector,

Fig. 18.2 (Left) Tight-binding 1-orbital calculations show three chiral curves, one of which is
metallic [6]. By contrast, data from (center) Philip Kim’s group [7] and (right) Hongjie Dai’s
group [8] show a single chirality free curve with no metallic signatures
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GNRs wider than 10 nm are quasi-metallic while narrow ones semiconducting. We
thus have a startling disconnect between simple theories and experiments [8].

18.1.3 Edge Chemistry: Benzene or Graphene?

The disconnect between naive expectations and observations arises from the
boundaries, which ultimately impact the quantization rules behind patterned GNRs.
Specifically, we argue that edge strain and roughness are the main factors behind
the disconnect. Doing justice to such effects requires a proper bandstructure that
can capture atomistic chemistry and distortion. While density functional theory
(DFT) within the LDA-GGA approximation captures these effects well, we used
DFT primarily for structure evaluation, and resorted to EHT fitted to bulk graphene
to explore the low-energy bandstructures. We relaxed the hydrogenated edges of
armchair GNRs using LDA-GGA and found a bonding environment distinct from
bulk graphene. While the inner carbon atoms have a bond length of 1.42 Å, the
edges tend to dimerize and see a 3.5% [6, 9] strain associated with a reduction in
bond length to 1.37 Å. Thereafter, we employ non-orthogonal basis sets in EHT to
capture the effect of the edge chemistry on the low-energy electronic structure.

There is an appealingly simple explanation for the observed bonding chemistry.
Since the edge carbon atoms are connected to hydrogen on one side and carbon on
the other, the difference in electronegativity tends to strain the armchair-edge C–C
atoms closer to a benzene structure (Fig. 18.3). The unequal bonding environment
at strained armchair-edge disallows any resonant hybridization that evens out the
double-single bond distribution in aromatic rings. Therefore, the edge rings in
armchair GNRs break into “domains” with nearly intact double bonds at the
edges and slightly expanded single bonds toward the bulk end. Since benzene is
semiconducting, the 3.5% strain at the dimerized edges increases intradimer overlap
but reduces interdimer overlap, effectively opening a bandgap by 5%. The obvious
consequence is that all armchair GNRs become strictly semiconducting, in sharp
contrast to their CNT counterparts. Meanwhile the lateral symmetry along the

Fig. 18.3 C–C bond length comparisons show that strained armchair GNR edges lie between
benzene and double bonds, enjoying only a partial resonant hybridization
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zigzag edge is resistant to dimerization. In fact, the inward motion of the C–C edges
away from the hydrogen atoms shrink both bond lengths equally, making zigzag
edges more conducting.

To confirm our simple explanation on the impact of strained edge bonds on
the electronic structure, we calculated the density of states (DOS) of a uniformly
wide armchair GNR with edge strain using EHT. While EHT has been used
widely to study molecular properties, it has also been extended to describe bulk
semiconducting bandstructures using localized Wannier like non-orthogonal basis
sets that still retain their individual orbital properties. Through extensive tests on
both graphene and silicon, we have found that EHT accurately captures both bulk
bandstructures as well as surface and edge distorted bandstructures [10]. The result
of our simulation is shown in Fig. 18.4. The role of edge passivation is shown at
the top, where we can see the explicit removal of edge-induced midgap states by
hydrogenation. The bottom panels show the role of edge strain. In contrast to pz

Fig. 18.4 (a) Open carbon bonds at the edges introduce edge-states (shaded) in the DOS. Spatial
resolution of those eigenstates around the Fermi energy confirms the electron wavefunction
localized at the armchair edges. (b) When open carbon bonds are hydrogen terminated, those
edge-states are removed. (c) Applying EHT to GNR dispersion relation across a range of sub-
10nm armchair edge widths finds an oscillating bandgap. (d) Strain of edge bonds that are
hydrogen terminated widens the energy bandgap for 3p and reduces the gap for 3p C 1 GNRs.
Eg vs. width results are within the range of experimental data points [8] and also in agreement
with DFT predictions
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Fig. 18.5 Atomistic EHT plot (left) of the DOS of a (9,0) relaxed armchair GNR, compared with
a next-nearest neighbor tight-binding fit (right) from C.T. White at NRL. From the pz sector of
the EHT Hamiltonian, we estimate the nearest neighbor coupling, third nearest neighbor coupling,
and the shift in coupling at the 3:5% strained edges as t1 D �3:31 eV, t3 D �0:106 eV, and
�t1 D �0:38 eV. These extracted parameters compare quite favorably with C.T. White’s tight
binding parameters, t1 D �3:2 eV, t3 D �0:3 eV and �t1 D �0:2 eV [9]

based nearest neighbor one orbital tight-binding theory, a small bandgap opens [5].
While CNTs have precise periodic boundary conditions along their circumference,
the edge atoms do not provide an exact hard wall boundary condition, as the
electrons tend to tunnel out into the surrounding region. In the presence of edge
strain, the bandgap increases because of the aforementioned dimerization, removing
any semblance of metallicity from the bandgap vs. width plots.

While EHT explains the removal of metallicity, compact models prefer a suit-
ably calibrated orthogonal tight-binding model, with the edge chemistry captured
through beyond nearest neighbor interactions. It is not clear if this reproduces the
Bloch wavefunctions, but they do seem to capture the overall DOS. Figure 18.5
shows a comparison between a (9,0) EHT DOS and a (9,0) tight-binding DOS
(parametrized independently by White) [11]. We will use this formulation for our
simpler compact models described later.

18.1.4 Whither Chirality?

While we can explain away the lack of metallicity through the preponderance of
edge strain, why do we not see the three chiral curves in a plot of experimentally
measured bandgaps vs. ribbon widths? The primary reason, we believe, is roughness
at the edges, which tends to wash away such chiral signatures. Currently, line edge
roughness along a GNR edge is an unavoidable consequence of lithographic and
chemical fabrication techniques [12, 13]. Unzipping CNTs via ion bombardment
produces the smoothest GNR edges to date [14]. However, edge fluctuations even
on the scale of a single atom can degrade transmission probability of modes near
band edges or cut-off modes [10]
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We have studied a wide spectrum of line edge roughnesses that can ultimately
be classified as either a width modulation or width dislocation. Modulation in width
along the armchair edge has a corresponding modulation in bandgap that follows
an oscillating inverse square law relation between bandgap and width, spanning
the three chiral curves. Meanwhile a width dislocation is an in-plane displacement
in the GNR that energetically sees the same bandgap at interface of the slip
dislocation, albeit with localized interfacial states. We introduced edge roughness
in our geometries using a Gaussian white noise that adds or removes an integer
number of dimer pairs with a correlation length Lm [11]. The results of our EHT
simulations with statistics for rough edges explain why measured data are seen to
cluster around one of the 3p C 1 chirality curves.

An E–k relation cannot be rigorously defined for a structure without period-
icity, so we focus instead on the transmission bandgap of the entire structure,
calculated using the nonequilibrium Green’s function (NEGF) formalism in its
simplest, Landauer level implementation. The plotted transmission of the rough
segment (Fig. 18.6), sandwiched between two bulk metallic contacts, is shown for a
random mixture of (7,0) and (9,0) chiralities [10]. The rough GNR can be viewed
as a random mixture of individual GNR segments with well-defined chiralities
and bandgaps, as long as the correlation length Lm is larger than the electron
wavelengths. In the large majority of our simulations, we find that the transmission
bandgap for the rough GNR follows the largest bandgap of the individual segments

Fig. 18.6 (Top) Two kinds of roughness include variation in GNR width and a width dislocation
across a slip line, maintaining the same width. (Bottom) Transmission plots show that for either
case, segments with the larger bandgap filter out the rest of the segments, thereby promoting the
chiral curve with the highest bandgap, in agreement with experiments and EHT calculations [10]
(Lm represents the correlation length for edge roughness)
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(in this case, the (7,0) segment). The larger bandgapped segments effectively filter
out the incoming currents from the rest of the crystal, explaining the observed
predilection toward the 3pC1 chiralities. However, there are outliers corresponding
to accidental situations where the length scales of large bandgap segments are
narrow enough to become transparent to tunneling. As we increase the frequency
of roughness by bringing the correlation length below the electron wavelength, we
expect to see more tunneling events. Such high-frequency roughnesses, as well as
inelastic scattering, will mix chiralities more thoroughly and are predicted to spread
out the data more evenly over the three chiral curves rather than clustering them
around the dominant (3p C 1) segment.

The upshot of this analysis is that for reasonably smooth GNRs with Lm > �F ,
we expect the GNR width to be the sole arbiter of metallicity, so that wide GNRs are
metallic while narrow (< 10 nm) GNRs are semiconducting [8]. While the analyses
leading to this conclusion assumed some simplifications (e.g., ignoring structural
modifications due to back-bonding with substrates), experiments seem to support
this conclusion.

18.2 The Next Circle: Two Terminal Mobilities and I–Vs

Our next circle would move on from the material parameters to electronic properties
such as carrier density, mobility, conductivity, and ultimately current–voltage (I–V)
characteristics.

18.2.1 Current–Voltage Characteristics (I–Vs)

The Landauer expression gives us a convenient starting point for the current through
any material,

I D 2q

h

Z
T .E/M.E/Œf1.E/� f2.E/�dE (18.1)

where T ��sc=.�sc C L/ is the quantum mechanical transmission per mode, that
relates its scattering length �sc with its geometrical length L. The number of modes
M D �effD.E/, D.E/ being the DOS, and the effective injection rate is given by
1=�eff D 1=�1C1=�2C1=�ch, where �1;2 are the broadenings from the contacts, and
�ch D „v.E/=L is the intrinsic transport rate in the channel. Assuming the contact
broadenings are large so that the rate limiting step is �ch, we can replace �eff � �ch.

The band dispersion of graphitic materials, ranging from epi-G to sG, BLG,
CNTs, and GNRs are all described by a universal formula [15]

E D ˙
q
E2
C;V C „2v20k2 (18.2)
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where the band-edges are at EC;V , while the high-energy velocity in the linear
regime is v0 � 108 cm/s. From the dispersion, we can readily extract the 2D DOS
and band velocities

D.E/ D
 
2WL

�„2v20

!

jEj
"

�.E �EC /C �.�EV � E/

#

v.E/ D v0

q
1 � E2

C;V =E
2 (18.3)

There is an additional energy dependence in the scattering length �sc. For ballistic
channels, this is energy independent, while for charge impurity and edge roughness
scattering, �sc / E , while for acoustic phonon scattering, �sc / 1=E . The actual
dependences are a bit more complicated, but these are reasonable approximations to
adopt.

The algebra becomes particularly simple if we ignore the energy dependence
of �sc. We can then do the Landauer integral, leading to

I D 8q

h

 
�scW

�„v0L

!

I0 (18.4)

where the shape function I0 depends on the current flow regime. Assuming we start
with an n-doped graphene with a bandgap, we get
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(18.5)

where �1 D EF and �2 D EF � qVD . The expressions can be further simplified.
In the linear regime, the current looks like

Ilinear � 2G0M

 
v0

vF

!2
VD (18.6)

whereG0 D q2=h, the number of modesM � 2W=.�F =2/, and the Fermi velocity

vF D v0

q
1 �E2

C=E
2
F . The saturation current
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Fig. 18.7 A typical I–V output shows how the I–V tends to saturate at the Dirac point even without
a bandgap. The shift in the Dirac point indicates the Laplace potential drop along the channel,
eventually leading to band-to-band tunneling

Isat � 4G0M

 
EF

2q

!

(18.7)

while the band-to-band tunneling current at high bias varies quadratically as

IBTB � 4G0M

 
v0

vF

!

VD

 
qVD

2EF

!

(18.8)

Figure 18.7 shows typical I–Vs based on the above formula. These results agree
with more involved, atomistic models for EHT coupled with NEGF based simula-
tions [16]. The current shows a point of inflection at the Dirac point, which is shifted
by the gate bias (a bandgap would provide an extended saturation region, as we will
see for our three terminal I–Vs later on). The subsequent rise in current is indicative
of band-to-band tunneling. Furthermore, a prominent I–V asymmetry, consistent
with experiments on SiC, can be engineered into our I–Vs (Fig. 18.8) readily by
shifting the Fermi energy to simulate a charge transfer “doping” [17] of 470 meV
through substrate impurities, back-bonding, and/or charge puddle formation with
SiC substrates. A scattering length (�sc) that varied inversely with gate voltage
was implemented in the left figure in Fig. 18.8. For n-type conduction, �sc ranged
between 18–40 nm and 20–31 nm for p-type. Typically we would expect at least
100 nm for low bias conductance and down to 10 nm as the biasing approaches the
saturation and band-to-band tunneling regions. Chosen �sc represents an average
scattering length for the different regions. A more accurate model for scattering is
necessary and will be developed in future works. By contrast, SiO2 seems to dope
the sheets minimally and the measured I–Vs show the expected symmetry between
the electron and hole conducting sectors.

From the low-bias I–Vs, we can now extract the conductance G D Ilinear=VD,
thence the sheet conductance 	s using GD 	sW=L, and finally the mobility �s
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Fig. 18.8 (Left) Theoretical and (Right) experimental I–Vs for graphene. The calculations on the
left assume a “doping” of the sheet by a charge density that shifts theK-point relative to neutrality.
We also assume an inverse relation between the scattering length �sc and the applied voltage on the
n-side, consistent with scattering by charge puddles associated with the above doping charge. The
data on the right are for graphene on SiC, where charge puddles and/or back-bonding are expected
to transfer a net charge density to the sheet [18]. Note that Vgs is the gate source voltage and step
is the voltage step between each I-V curve

using 	s D qns�s , where ns is the sheet charge density related to the Fermi
wavevector as kF D p

�ns . Let us focus on the mobility first, keeping in mind that
the effective mass m� in GNRs is energy-dependent.

18.2.2 Low Bias Mobility-Bandgap Tradeoffs:
Asymptotic Band Constraints

Graphene’s linear dispersion is known for contributing to an ultra-high mobility,
but often overlooked is its origin in the low bandgap that ultimately hampers its
ON–OFF ratio as an electronic switch. The carrier velocity (v D 1=„dE=dk)
fundamentally saturates to v0 D 3a0t=2„ � 108 cm/s, which forces its high-
energy bandstructure to a linear form regardless of bandgap size. Irrespective
of the mechanism for opening bandgaps, or the particular progeny of graphene
that we are looking at (epi-G, sG, CNT, GNR or BLG), the bandstructures are
always writable as E.k/ � ˙p.EG=2/2 C .„v0k/2 [2]. Such an intimate relation
between bandgap and dispersion connecting ultimately to its conduction/valence
band effective masses (as opposed to midgap tunneling effective mass) is unique in
materials science.

An extended bandgap constrained by the high-energy velocity saturation local-
izes carriers, which shows up as a decrease in curvature at the band edges. It is easy
to show from the above dispersion that the effective mass at each band-edge satisfies

m�
0 D EG=v

2
0 (18.9)
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Fig. 18.9 Scaling of graphite effective masses shows that increasing the bandgap increases the
mass m� D pF =vF due to the decrease in average curvature arising from a pinning of the E–k at
high-energy values [19]

indicating that the kinetic energy gained by the electrons and holes upon bandgap
opening is taken ultimately from the corresponding crystal potential (Fig. 18.9).

For transport considerations corresponding to high bias electrons and holes, we
need to generalize the concept of effective mass to energies away from the band-
bottom, using m� D p=v D „k=Œ1=„.@E=@k/�. This expression reduces to the
usual dependence on curvature near the band-bottoms upon using L’Hospital’s rule
with k ! 0. In other words, effective mass and carrier velocity must be treated
as energy-dependent variables instead of material specific constants. From here, we
can then extract the mobility � D q�sc=p, where carrier momentum p D „k and
�sc is the scattering length, related by �sc D .vF 
/�=2. From the band dispersion
or E vs. k relation, we define the Fermi wavevector as:

kF D
q
E2
F �E2

gap=4

„v0 (18.10)

D p
�nS : (18.11)

where Egap=2C ˛GqVG marks the position of the Fermi level (EF ) relative to the
Dirac point and nS is the electron density. Relating (18.10) and (18.11), we can
express a voltage and bandgap-dependent electron density to determine the mobility

� D q


m� D q�sc

m�v
D q�sc

„kF (18.12)

It is thus clear that the mobility depends on the value of kF . As we vary the
bandgap of graphitic systems (epi-G, BLG, s-G, or GNR), the variation in kF
(equivalently, EF ) depends on what parameters are being held constant in the
process. To start, let us assume that the scattering length �sc is independent of
energy, so that we are effectively working in the ballistic limit. At this point, we
can assume the electron density ns is constant while the bandgap is being opened,



568 F. Tseng et al.

so that kF is constant and the mobility does not change. However, possibly a more
suitable metric is the gate overdriveVG�VT , which ultimately determines the charge
density too using ns D CG.VG � VT /, where C�1

G D C�1
ox C C�1

Q involves both
oxide and quantum capacitances. In the limit of small DOS (CQ � Cox) at smaller
bandgaps, the gate overdrive is the quantity that is controlled externally, and this
changes ns as the quantum capacitance proportional to density of states increases
with energy. We then get

nS D ˛GqVG.˛GqVG C Egap/

L�„2v20
(18.13)

� D q

„p�nS .˛GqVG;Egap/
(18.14)

where the gate transfer factor is ˛G D Cox=C˙ andC˙ is the equivalent capacitance
of a three-terminal device including its quantum capacitance. The fundamental
mean-free-path (�sc) can be approximated semiclassically from the conductance

	s D q2D.EF /D � 2q2

h
f�sckF g with kF defined in (18.11) and D being the

diffusion constant. Single layer graphene (SLG) can have �sc on the order of
microns. A more complete form of �sc from (18.14) would include scattering due
to charged impurities, roughness, and possible phonons from interfacial materi-
als given that phonons native to graphene are inherently suppressed, (1=�sc D
1=�impurities C 1=�rough C 1=�ph).

For a fixed gate overdrive, the mobility even for a ballistic device decreases with
bandgap, primarily due to the asymptotic constraint that pins the band structure to a
high-energy linear dispersion. We emphasize that this trade-off arises independent
of any reduction in scattering length �sc through the bandgap opening process. The
low effective mass of graphene arose from its sharp conical bandstructure in the
first place, so that opening a bandgap without removing the higher-energy conical
dispersion invariably makes the carriers heavier.

With respect to digital switching applications, the importance of the above
trade-off cannot be overstated. The mobility ultimately determines the switching
speed through the ON current, while the bandgap relates to the ON–OFF ratio.
For cascaded devices, it is also worth emphasizing that the ON–OFF ratio needs
to be computed at high bias, as the drain and gate terminals in regular CMOS
like cascaded geometries are connected to the same supply voltage. Increasing the
ON–OFF ratio by increasing the bandgap is predicted thereby to reduce the
switching speed. We must therefore evaluate GNRs on this entire � � EG curve
rather than at an isolated point on this 2D plot. Equation (18.14) elegantly relates
Egap and � for various �sc’s. Analyzing the three parameters Egap � � � �sc

simultaneously allows us to project the performance of graphene derivatives and
compare against other common semiconductors as seen in Fig. 18.10.
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18.3 The Third Level: Active Three-Terminal Electronics

We now move outward to the next circle on the Y-chart, toward three terminal
active electronic devices. Our main focus will be on a class of patterned device-
interconnect hybrids, where we see certain notable advantages mainly on the
electrostatics and the contact barriers, but challenges with the small bandgap show
up as band-to-band tunneling and modest ON–OFF ratio.

18.3.1 Wide–Narrow–Wide: All Graphene Devices

The analysis from the previous sections set the platform for evaluating the I–V
characteristics of GNR devices in the presence of a third gate terminal. Our lesson
from Sect. 18.1 indicates that the GNR metallicity is primarily set by its ribbon
width, showing that one might be able to monolithically pattern a wide–narrow–
wide (WNW) all graphene device that flows seamlessly from semiconducting
channels to metallic interconnects. Experiments have in fact shown the ability to
carve out GNRs using either chemistry or nanoparticle mobilities that snip the sheets
almost perfectly along their C–C bonds. GNRs as thin as 1 nm with perfect edges
have been manufactured chemically [20]. It is thus interesting to query what the
device level advantages of such a monolithically patterned GNR would be. We will
later discuss the circuit level ramifications.

The structure of an imagined WNW graphene nanoribbon field-effect transistor
(GNRFET) is shown in Fig. 18.11. The wide regions are metallic and the narrow
ones semiconducting. A planar top metal gate modulates the channel conductance
while a substrate acts as a back gate for electrostatic ‘channel doping’ (see figure
later for inverters). Before we detail the advantages of such a structure, let us first
discuss how we simulate the I–V of one of these WNW devices.



570 F. Tseng et al.

Fig. 18.11 WNW dual gated all graphene device, showing local dispersion corresponding to the
different regions of the device (top), top view (center), and side view (bottom) with the device
parameters listed

18.3.2 Solving Quantum Transport and Electrostatic Equations

Our calculations couple a suitable bandstructure/DOS for the graphene channel
with full 3D Poisson’s equation for the electrostatics and the NEGF formulation
for quantum transport [15]. The wider contact regions are captured recursively
by computing their surface Green’s functions g1;2.E/. The corresponding energy-
dependent self-energy matrices ˙1;2.E/D 
1;2 g1;2 


�
1;2 project the contact states

onto the channel subspace, where 
 is a matrix that describes the energetic coupling
or bonding between the wide graphene source-drain contacts and the narrow
graphene channel. An equivalent way to properly capture the interfacial chemistry
between contact and channel would be to incorporate part of the wide graphene
contact as the channel when defining the Hamiltonian matrix (H). The Coulomb
matrixU is computed using the Method of Moments (MOM), described below [21].

From the above matrices, the retarded Green’s functionG D .ES�H�U�˙1�
˙2/

�1 is computed, and thence the charge density matrix � D R
dE G˙ inG�=2� ,

whose trace gives us the total charge.˙ in D .1f1C2f2/ in the simple limit where
the only scattering arises at the contact channel interface. In the previous equation,
1;2 D i.˙1;2 � ˙

�
1;2/ give the contact broadenings (the matrix analog of the

injection rates �1;2 introduced in Sect. 18.2.1), while f1;2.E/ D 1=Œ1Ce.E��1;2/=kBT �

represent the contact Fermi–Dirac distributions, with �1;2 being the bias-separated
electrochemical potentials or quasi-Fermi energies in the contacts [16]. The charge
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density matrix is then used to recompute the Coulomb matrix U self-consistently
through Poisson’s equation. Finally, the converged Green’s function is used to
compute the current I D .2q=h/

R
dE T .E/Œf1.E/ � f2.E/�, where the trans-

mission T .E/ D trace.1G2G�/ [15].
Let us now get into a few details on the 3D Poisson equation we solve, using

MOM numerically. MOM captures the channel potential by setting up grid points
on the individual device atoms with a specific charge density ınD and on the contact
atoms with a specific applied voltage �C [21]. Using the notations “C” for Contact
and “D” for Device, we get

�d D .UdCU
�1
CC /�C„ ƒ‚ …

Laplace

C .Udd � UdCU
�1
CCUCd/„ ƒ‚ …

Single Electron Charging Energy

�nd (18.15)

where we imply vector notations for the potentials � and matrix notations for the
Coulomb kernels U . �nd is calculated relative to its neutrality value N0 by tracing
over � above, while N0 is calculated analogously, while grounding all the contact
potentials (this would depend on the workfunction of the contacts, as in MOS
electrostatics). The matrix elements in U need to be computed with the correct
dielectric constants. Let us describe it in the simpler case with a dielectric constant
� for the top gate and a dielectric constant unity for the bottom (trivially generalized
to multiple dielectrics). Using the method of images,

U.r1; r2/ D q

4��0�1

�
1

jr1 � r2j �
�
�2 � �1

�2 C �1

�
1

jr1 � r 0
2j
�
.in the same medium/

D q

2��0.�1 C �2/jr1 � r2j .in different media/ (18.16)

where r 0
2 is the image of the charge at r2 [22, 23]. A tricky point is to avoid the

infinities at the onsite locations, for instance, when x1 D x2 and y1 D y2. We can
avoid these using the Mataga–Nishimoto approximation, where we replace terms
like 1=jr1 � r2j with an atomistic correction 1=

pjr1 � r2j2 C a2, with the cut-off
parameter a adjusted to represent the correct onsite Coulomb (Hubbard) charging
energy given by the difference between the atomic ionization energy and the electron
affinity [24].

Let us now discuss the observed electrostatic characteristics in the WNW device,
which explains the geometric advantages of this particular structure.

18.3.3 Improved Electrostatics in 2-D

We simulate a device patterned monolithically from a two-dimensional sheet of
graphene with a wide dilution of widths from the source and drain contacts to
the active channel region. Simulated WNW (35-7-35) GNRFETs compose of (7,0)
armchair GNR narrow regions for the channel and (35,0) armchair GNR regions for
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the contact and interconnect regions. A metallic gate is placed above the channel
region, while a wide grounded substrate is placed at the bottom of the channel. To
calibrate with conventional CMOS technologies, the unique two-dimensional (2D)
contacts of the GNRFET are replaced with (3D) bulk metal contacts (whose surfaces
act as parallel plate capacitors) for the same channel, gate, and dielectric geometry.

A particular advantage of the WNW structure is the low capacitance of the 2D
source–drain contacts [25]. In a conventional MOSFET, the gate electrode needs
to compete electrostatically with the source and drain for control of the channel
charge. Indeed, a majority of developments in transistor technology over the last
few decades have concentrated on making the field lines gate controlled rather than
source and drain controlled. This is becoming harder with aggressive size scaling.
The 2D source and drain contacts with a top gate make the S/D capacitances lower,
as they can only influence the channel through their fringing fields. Note that a
2D side gate geometry, as advocated in many device designs, would eliminate that
electrostatic advantage, as the gate needs to compete with the S/D electrodes.

As the channel length gets shorter with the aggressively scaled technologies, the
3D contacts start to influence the channel potential as their surfaces act as parallel
capacitor plates flanked by top and bottom insulators. In the case of monolithically
patterned 2D GNR contacts, the charges on the contact surfaces are line charges
so that the applied source–drain field decays into the channel, creating a nonlinear
channel potential even in the absence of a gate (Fig. 18.12, left). Moving on to a
three terminal, dually gated structure, Fig. 18.12 (right) shows that the gate contact
holds the channel potential flat against the action of the drain, thereby reducing
short-channel effects.

Figures 18.13 and 18.14 show that for the same channel geometry, the top gate
with 2D side contacts has the largest capacitance, followed by the top gate with 3D
side contacts, and finally the lowest gate to drain capacitance ratio is obtained when
all electrodes are co-planar. The corresponding field line diagrams are also shown in
these figures. Note also that in addition to the source, drain, and dual gate electrodes,

Fig. 18.12 (Left) The two-terminal potential shows the vanishing fields near the channel, implying
the superior gate control and the improved short-channel effects with the 2D contacts. (Right) The
3D potential shows the non-linear flat potential in the middle of the channel
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Fig. 18.13 Comparison of planar source–drain vs. 3D source–drain. Denser field lines on the
channel from the 3D contacts correlate to stronger source coupling and DIBL. For the given
material and geometrical parameters listed in Fig. 18.11, the Cg=Cd ratios are 4.95 and 5.80,
respectively. Top and bottom gates were grounded while the source was simulated with a potential
of 0.3 V and conducting channel had a potential of 0.1 V

Fig. 18.14 Comparison of top vs. side gate. Denser field lines from the top gate ensure better
gate control which is reflected by larger gate capacitance. For the given material and geometrical
parameters listed in Fig. 18.11, the Cg=Cd ratios are 5.80 and 3.82, respectively. Gates were biased
at 0.4 V, while the conducting channel had a potential of 0.1 V
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one needs to worry about the quantum capacitance CQ, which is automatically
included from our density matrix calculations that enter Poisson’s equation.

The gate to drain capacitance ratio .Cg=Cd / can be extracted by plotting the
channel transmission (T) for two scenarios: maintaining a constant drain voltage
(Vd ) while sweeping gate voltage (Vg) , and analogously, maintaining a constant Vg
while sweeping Vd . Sweeping the Vg creates a larger energy shift in the transmission
of the GNRFET channel than the sweeping of the Vd . From the shifting rates of
these transmissions and the charge density calculations from the MOM, we can
extract the capacitance values of the contacts. With shifts in transmission plots, we
once again find that 2D contacts indeed help the gate exercise superior control over
the channel [25].

We will now explore the effect of the improved short-channel effect on the
computed I–V characteristics.

18.3.4 Three-Terminal I–Vs

The computed three-terminal I–Vs (Fig. 18.15) show excellent short-channel
effects, at least over a small voltage range given by the bandgap. Plotted vs. drain
voltage, the current shows excellent saturation characteristics with a large output
impedance. Plotted vs. gate voltage, the current shows little drain bias dependence
(so-called drain-induced barrier lowering or DIBL). Taken together, the curves
signify that the device electrostatics in the geometry is nearly ideal, making the
outputs relatively robust with process variations. It is interesting to note that instead
of enhancing the gate capacitance as in regular CMOS devices, the trick in WNW
devices has been to reduce the source and drain capacitances in comparison.
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Fig. 18.15 I–V curves for a n-type GNRFET confined to create a large bandgap (in this case, a
(7,0) armchair GNR with a bandgap nearly 1 eV). Such an extreme geometry postpones the onset
of band-to-band tunneling. More importantly, the point of the I–V is to show the effect of better
electrostatics which is independent of bandgap issues – resulting in a high current saturation, low
DIBL, and SS



18 Graphene Nanoribbons: From Chemistry to Circuits 575

The simulation results of the model in Fig. 18.15 demonstrate a subthreshold
swing (SS) of 84.3 mV/dec and a DIBL of 24 mV/V. We note that unless otherwise
specified, all simulations refer to material and geometrical parameters shown in
Fig. 18.11. The value of the DIBL and the SS can be further improved by increasing
the length of the channel (currently 1:8.6 ratio of HfO2 thickness to channel
length). These values calculated are better (smaller) than the estimated values of
DIBL D 122 mV/V and the SS D 90 mV/dec for the double gate, 10 nm scaled Si
MOSFETs [26]. Also in addition to showing improved short-channel effects, the
GNRFET structure with the 2D contacts also shows controlled switching behavior.
The on-current (ON) of the system equals to 2670.62�A/�m with the off-current
(OFF) set at 4.07�A/�m; thus giving a ON-OFF ratio of 656. The ON–OFF ratio,
however, ends up being modest, and is a critical challenge in GNRFETs, especially
in the light of its seemingly inverse relation with the charge mobility (Sect. 18.2.2).

With the scaling of the channel length, the short-channel effects started to have
a huge influence on the device parameters such as the DIBL and SS. Shorter
channel lengths allow the S/D electrodes to exact more control on the overall
channel potential, which is reflected by the decrease in Cg=Cd ratio and increase
in device DIBL and SS. The line charges with the 2D contacts endow the gate with
more control over the channel and interface states compared to the 3D contacts by
lowering the drain capacitance.

18.3.5 Pinning vs. Quasi-Ohmic Contacts

In today’s semiconductors, Ohmic contacts are desired to help achieve linear and
asymmetric I–V characteristics. The potential profile inside the channel can be
influenced by increasing the drain–source voltage (Vds) or the gate voltage (Vgs).
For CNTs, this has been a particular challenge, as the metal-to-carbon bonds at
the contact-channel interface tend to create Schottky barriers [27]. In our WNW
geometries, since the bulk metal contacts are relegated to the ends of the device
array, the bonding configuration near the wide–narrow interfaces are controlled
by C–C covalent bonding. As our simulations show, this seems to promote a
quasi-Ohmic behavior. The better bonding increases the decay lengths of the
corresponding metal-induced gap states (MIGS) entering from the wide regions.
The partial delocalization reduces the single-electron charging energy (that enters
through our MOM treatment), thus making it harder for the contact regions to pin
the Fermi energy and reducing the effectiveness of the Schottky barrier.

Schottky barrier FETs behave qualitatively different from MOSFETs. In the
latter, an applied gate bias reduces the channel potential and controls the thermionic
emission over the voltage-dependent interfacial barrier. In the former, the gate
reduces the thickness of the Schottky barrier and controls the tunneling of electrons
through a voltage-independent, pinned barrier height. The question is what the
potential profile looks like in the channel, and whether the contact MIGS are
effective in pinning this potential adequately.
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Fig. 18.16 At Vds = 0.0 V
and Vds = 1.0 V, variation of
channel potential with
different gate voltages shows
no barrier pinning at the
contacts, implying Ohmic
contacts

As seen in Fig. 18.16, the lowering of the potential throughout the entire graphene
channel region with applied gate bias is a characteristic of the regular Ohmic contact
FETs rather than the Schottky barrier FETs, whose potentials would otherwise be
pinned to the midgap by charging of the interfacial states [28].

The MIGS due to the tail ends of the metal states in the contacts leak in the
semiconductor. Even with this 2D contact geometry, the MIGS will be present
because of the contact–channel interfaces [25]. Our WNW all-graphene structure
can filter these quickly decaying states, resulting in no significant contribution to
the electron transmission. In the case of our device with the channel length of 8.66
nm, the MIGS do not travel all the way from source to the drain, but only extend
approximately 0.7 nm into the semiconducting channel (Note a typo in one of our
earlier papers, where we wrongly quoted this as 0.07 nm) [25]. The decay length of
these MIGS can be calculated by plotting the wavefunction of the channel electrons
at specific energies, as well as by evaluating the complex E–k diagram. The intensity
of these MIGS at a given distance x can be expressed as I0*e.�x=2�/, where I0 is the
intensity of MIGS at the interface and � is the decay length.

Note that issues similar to those discussed here have been discussed in the context
of pentacene molecules with CNT contacts. While CNTs would offer even better 1D
electrostatic gains, a trade-off arises with the increasing series resistance in CNTs
due to a paucity of modes. For GNR source–drain analogously, we will need to
imagine wide blocks simultaneously contacting many GNR devices, so that the
contact resistance is minimized by extending its width.

We now have all the tools to compute three-terminal I–Vs in graphitic structures,
doing full justice to the complex electrostatics. Let us now see how this influences
the circuit level performance metrics of GNRs.

18.4 The Penultimate Circle: GNR Circuits

Moving to the next level of abstraction and the last rung of our Gajski–Kuhn
Y-chart, we focus on circuit level design issues when integrating GNR interconnects
or devices. In the spirit of our WNW all graphene device, we start by exploring
potential all graphene circuit topologies. Next, we focus on fundamental circuit
response design issues revolving around a GNR-based inverter. The inverter is
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the most basic logic circuit with the sole purpose of converting a logical 1 (ON)
to a logical 0 (OFF). In the process of characterizing a GNR inverter, we touch
on interconnects and finally discuss drivability between connected GNR logic
elements.

18.4.1 Geometry of An All Graphene Circuit

An attractive feature of graphene is its atomic flatness, which makes it compatible
to existing lithographic device fabrication techniques established for CMOS. By
exploiting how chirality influences graphene’s electronic properties, we present
an array of potential circuit level building blocks (Fig. 18.17) that uses graphene
for both active devices the interconnects. Having graphene device contacts and
interconnects would help reduce extrinsic capacitance and circuit level delay.
However circuit level enhancements start at the device level.

Two important device performance metrics for digital circuit performance are
ON–OFF current ratio and intrinsic gate propagation delay. GNRFET ON current
scales proportionally with width, while the OFF current goes as eEg=kT or ec=WkT,
whereW is the width. To achieve manageable OFF currents for digital applications,
GNR widths must be scaled within the sub-10nm regime to avoid increased in
static power dissipation and poor ON–OFF ratio. However, GNR scaling has little
influence on propagation delay.

Propagation delay is defined as CINVdd=ION, where CIN is the intrinsic capaci-
tance, Vdd is the supply voltage and ION is the saturating ON current at Vgs D Vdd.

Fig. 18.17 The various building blocks for all graphene circuits
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Increasing channel width increases ION by shifting the threshold voltage and would
seemingly improve delay at the expense of an exponentially increasing OFF current.
However, CIN D .1=Cox C 1=CQ/

�1 also scales with width, thereby removing
any improvement in propagation delay from simple scaling of graphene. From the
perspective of a single GNR device, there are not many options to improving the
propagation delay. However, a more useful context to address this issue would be
on the circuit level where we have multiple logic elements.

On a circuit level, the complexity of propagation delay stems from a combined
effect from the pull-up and pull-down network drain capacitances, interconnect
capacitance (Cinterconnect) and the next load gate capacitance or input of the next
logic element. Using the building blocks in Fig. 18.17, we present an all graphene
circuits shown in Fig. 18.18, with a cascade of parallel semiconducting GNRs over a
semiconducting substrate and split gates to electrostatically dope different cascades
n or p-type. The semiconducting GNRs and splits gates could be separated by a
high-k dielectric or even boron nitride in hexagonal lattice. Boron Nitride has the
advantage of being atomically flat and its absence of surface dangling bonds makes
it less likely to carry adsorbents that could degrade the device. The advantage here is
that ON–OFF ratio is held constant, while the increased ON current and capacitance,
which scales with N number of parallel semiconducting GNRs, dilute the parasitic
interconnect capacitance and improve propagation delay and circuit performance.

Good-quality graphene sheets have been made viable by current advancements
in wafer-scale and pattern transfer techniques [18, 29]. However, full realization
of an all graphene circuits with various GNR interconnects and devices rely on
the ability to pattern GNRs to narrow enough widths to produce sizable bandgaps.
Planar lithographic techniques are prone to edge roughness, while various chemical
methods have had the most success in creating chemically precise GNR edges, but
their applicability to scalable device level processes remain to be seen [7, 30–32].
While roughness helps to make GNRs insensitive to chirality, we need further
simulations to see how atomic fluctuations in the widths influence the corresponding
threshold voltages and ON/OFF currents, an issue critical for the overall reliability
of GNR circuits.

Fig. 18.18 Geometry of all graphene circuits
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18.4.2 Compact Model Equations

To simulate the performance of such a circuit, let us first outline a compact model.
This will require us to outline (a) an equation for the bandstructure that includes
effects due to edge strain and roughness, (b) an equation for the scattering length
that depends on the phonon spectrum and edge roughness, (c) equations for the
2D electrostatics due to the source and drain contacts, and (d) the resulting I–Vs
obtained by integrating the transmission over the relevant energy window.

To recap, the bandstructure of GNRs, including edge strain, can be written in a

tight-binding form as E D ˙
q
E2
C;V C „2v20k2. Specific expressions for EC;V and

v0 for variously strained graphitic materials exist in [9].
The next term is the scattering �sc, which is related to the scattering time through

an angle averaged geometrical factor and the overall Fermi velocity. The scattering
time is extracted from Fermi’s golden rule. For short-range scattering by edge
roughness and phonons, �sc / 1=jEj, while for long ranged unscreened Coulomb
scattering, �sc / jEj. Explicit expressions exist in the literature [33, 34].

The tricky part that does not exist in the literature is the capacitances associated
with the 2D electrostatics from the planar source and drain contacts, competing with
the top and bottom gates through their individual dielectrics. We are in the process
of extracting formulae based on knowledge of planar microstrip line electrostatics,
with geometrical factors calibrated with our numerical MOM solutions for a variety
of geometries [25].

Once we have the electrostatic, band and scattering parameters, we can then
use (18.1) to extract the I–Vs. For energy-independent �sc, this was already shown
(18.4) and (18.5). We will generalize it to various scattering configurations in our
future work.

We thus have a comprehensive compact model that captures the chemistry and
bandstructure, scattering, electrostatic, and transport parameters needed for our
circuit simulations. We will report one example here and report further results in
our subsequent publications.

18.4.3 Digital Circuits

Static complementary CMOS gates utilize pull-up (PUN) and pull-down (PDN)
networks to achieve low-power dissipation and large noise margin in logic circuits
such as the inverter, NAND, and NOR gates. CMOS logic circuits are composed of
some series and parallel combinations of n and p-type FETs. An inverter illustrated
in Fig. 18.19 is the simplest logic element and the focus of this section of the review.

When the input into the common gate is Vin D 0, the p-type FET (PUN) is active
while the n-type FET (PDN) is cut-off, hence the circuit will pull the output voltage
up toward the supply voltage (Vdd) or high, Vout D 1. Likewise when Vin D 1,
n-type FET is active and p-type FET is cut-off pulling the circuit down toward
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Fig. 18.19 GNR inverter geometry and voltage transfer curve. This inverter design uses the
WNW (metal–semiconductor–metal) all graphene structure for pull-up and pull-down networks.
In this design, CNT interconnects make direct contact with device level graphene. CNT–graphene
interface has been experimentally demonstrated by Fujitsu Laboratories Ltd [35, 36]

ground, Vout D 0. Usually, it is impossible to pull-up or pull-down to exact values
of 1 or 0, so threshold voltage and tolerance are designed for each circuit to help
distinguish between these two logic levels. Circuit designers allow some tolerance
in the voltage levels to avoid conditions that generate intermediate levels that are
undefined. For example, 0–0.2 V on the output can represent logic (0) and 0.3–0.5 V
can show (1), making the 0.2–0.3 V range invalid, not metastable, since the circuits
cannot instantly change voltage levels.

The voltage-transfer curve (VTC) of an inverter circuit captures the DC or steady
state of specific input vs. output voltages and provides a figure of merit for the static
behavior of the inverter. VTCs for logic circuits provide information on operating
logic levels at the output, noise margins, and gain. Ideally, we want the VTC to
appear as an inverted step function, indicating precise switching between the ON
and OFF states, but in real devices there is a continuous transition between ON and
OFF. From the VTC, we can extract a noise margin (Fig. 18.20), which provides
a measure of circuit reliability and predictability. Biasing outside the noise margin
puts the logic circuit in an unpredictable state. Circuit designers want to maximize
the noise margins.

18.4.4 How ‘Good’ is a Graphene-based Invertor?

A significant advantage of graphene is its intrinsic electron–hole effective mass
symmetry. In the absence of extrinsic doping in a graphene-based FET, the I–V
characteristics for n- and p-type conduction would be the symmetric. However,
asymmetry can be introduced into the system through charge-transfer doping [17]
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Fig. 18.20 Importance of balancing CMOS transistor sizes to achieve equal high and low-noise-
margins (NM). The noise margin is graphically represented by the largest square that fits inside the
enclosed space outlined by normal and rotated VTCs

(Fig. 18.8) or by contact-induced doping [37]. Significant screening of charge
impurities in the substrate should bring Fermi level closer to its intrinsic value at the
Dirac orK-point, therefore recovering symmetric n- and p-type I–V characteristics.
On a circuit level, this symmetry means the response of PUN and PDN would be
equal and opposite, which is important for circuit reliability, and not to mention
ease of circuit design. In conventional Si-CMOS logic circuits, the asymmetry in
the electron–hole effective mass is compensated by scaling the physical width of
the p-type FETs in the PUN so the I–Vs are equal and opposite with the PDN.
Graphene’s natural electron–hole symmetry would allow circuit designers to bypass
this design issue.

A major impediment to GNR–based logic circuits is its narrow bandgap
(6 200meV), as the device elements in the PUN and PDN are prone to subthreshold
leakage from band-to-band tunneling. The two-fold effect on an GNRFET-based
inverter where the channel has a narrow bandgap is demonstrated in Fig. 18.21. The
first effect is a large voltage swing of approximately 0.4 V. The second effect is a
significantly diminished noise margin. Band-to-band tunneling in narrow bandgap
GNRFETs prevents either the PUN or the PDN from completely cutting off when
its complement network is active.

Figure 18.19 shows the physical layout of a functional graphene inverter com-
posed of WNW p-type and n-type GNR device arrays and the VTC. The inverter
voltage-transfer curve and gain can be calculated readily from the current–voltage
characteristics. As expected, the gain of the device determined by the electrostatics,
geometrical parameters, and mobilities which ultimately determine the p and
n-type GNR transconductances. The VTC above with gain of 4 is derived from the
I–V shown in Fig. 18.19 for the 8.66 nm device by using the methodology described
in detail in. [38]. These I–Vs generated in SPICE can be used to simulate other
complex layouts such as NAND or NOR gates shown in Fig. 18.22 (The results of
these logic gates will be reported in future publications).

Propagation delay can be measured by pulsing the input voltage between 0 and 1
and observing the output transient response. The transit time for a GNRFET is
approximately L=v, where L is the length of the channel and v is an energy-
dependent velocity defined in (18.3). Intrinsic and extrinsic device level scattering
mechanics could also influence transit time. However, a cascade of inverters or
some other logic elements in series, the load capacitance between each logic
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Fig. 18.21 Comparison of VTC curves for narrow bandgap GNR and 45 nm CMOS technology.
Narrow bandgap GNRFETs will be more susceptible to noise than CMOS due to smaller noise
margins. An possible design metric would be to limit the supply voltage to Vdd < 0:8=W, where
W is the width of the semiconducting GNR channel

Fig. 18.22 GNR NAND layouts with electrostatic doped back-gates and interconnecting “vias”
between multiple levels. CNT–graphene interface has been experimentally demonstrated by Fujitsu
Laboratories Ltd [35, 36]

stage typically dominated by Cinterconnect would be responsible for the majority of
the delay. The GNR circuit layout we presented earlier and shown in Fig. 18.18
addresses the parasitic capacitances by lowering delay and increasing performance.
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Beyond individual logical elements (i.e., inverter, NAND, NOR), an important
CMOS circuit design parameter is fan-out, which estimates the number of logic
stages or CMOS gates that can be consecutively driven before signal attenuation is
no longer tolerable. Past the maximum fan-out, a repeater or amplifier is necessary
to drive subsequent logic stages in a circuit. The maximum fan-out scales pro-
portionally with propagation delay; therefore, circuits designed for low-frequency
applications have a larger maximum fan-out compared to circuits designed for
higher-frequency applications. If graphene is to indeed follow the MOSFET and
CMOS paradigm, fan-out would be an important circuit design trade-off to consider
and a topic we will discuss in an upcoming work.

18.4.5 Physical Domain Issues: Monolithic
Device-Interconnect Structures

The bane of many CNT-based circuit ideas is the degradation due to the dominant
aspect of the Schottky contacts between the devices and interconnect. Luckily, GNR
circuits can avoid this problem by using the same sheet of graphene for both active
devices and interconnect, as seen in Fig. 18.22.

Using an all graphene device/interconnect circuit topology would benefit from
Ohmic contacts; thus, largely preserving the ideal device characteristic we have
predicted in our simulations (See Sec. 18.3). However, we cannot get rid of metal
contacts completely for a few reasons. Firstly, the FET gates and S/D electrodes
cannot share the same graphene sheet, because the larger resistivity of a 2D graphene
sheet compared to a metal contact is enough to degrade the drivability of the
next logic element. Secondly, topological requirements for connecting complex
circuit elements are rarely mapped to a planar graph, while non-planar graphs
would implicitly require more than one layer of interconnects. The number of
additional interconnect layers would depend on the complexity of the circuit, which
has ramifications in the form of interlayer parasitic capacitance. Potential cross-
talk between various interconnects would compromise signal integrity and increase
propagation delay. An interesting area we have not explored fully is whether or not
using graphene electrodes and intra-layer interconnects can help reduce the number
of interconnects layers for a circuit of similar complexity to a modern day CMOS
circuit, which has approximately 10 interconnect layers.

18.5 Conclusions

The future of microelectronics relies on continually scaling the critical dimensions
of bulk CMOS technologies. The semiconductor industry faces serious challenges
in this respect, due to a host of technical and economic constraints. One way to
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mitigate this is to use novel architectures, combining inherently scalable top-down
techniques, such as lithography, with novel bottom-up fabrication approaches, such
as self-assembly. An alternate way is to look for novel channel materials beyond
silicon – a strong candidate being another group IV element, carbon, graphene being
one of its distinguished allotropes.

Until recently, much attention has been focused on CNTs. CNTs have already
demonstrated excellent intrinsic performance, high gain, high carrier mobility, high
reliability, and are almost ideal devices in themselves [39–41]. Unfortunately, there
seem to be no practical, scalable solutions for arranging multiple CNTs on a
substrate uniformly with a small pitch, needed to deliver adequate current for fast
switching [31, 42]. Neither are there clear approaches for contacting CNTs to inter-
connects or to each other at low impedance to realize complex circuits using large-
scale fabrication schemes. In fact, CNTs frequently encounter Schottky barriers at
the contacts that control the tunneling electrons, hampering their reliability [43].

In contrast, graphene’s planar profile makes it amenable to well-established
planar fabrication techniques for silicon CMOS devices. Its mobility can reach up
to two orders of magnitude above silicon, and the ability to engineer its bandgap
with width alone points to the feasibility of all-graphene devices that can exploit
covalent bonding chemistry at the contact and better inherent electrostatics to allow
more traditional, MOSFET, like gate control mechanisms. However, its bane seems
to be its metallicity. As we saw earlier, graphene is naturally a zero-band gap
semimetal, and attempts to open a bandgap, such as through strain, quantization,
or field asymmetries have limited the bandgaps to < 200mV [20]. In a regular field
effect transistor application, such a bandgap translates to an ON–OFF ratio of � 70,
inadequate for digital logic [44]. This seems consistent with experiments on high-
speed graphene transistors, which show I–Vs that are essentially quasi-linear. There
is a lot of activity also on opening bandgaps in graphene, although it seems that this
may reduce the mobility that made graphene a promising electronic device in the
first place.

Despite the significant challenges, graphene’s high carrier mobility and fast
switching speeds make it widely studied. This includes revolutionary applications
such as based on charge focusing, graphene spintronics, and excitonic condensation
of pseudospin states [45]. At the same time, there is wide activity on graphene-based
conventional electronic devices, specifically, RF devices and CMOS switches. It is
not clear what the prospects of GNRs are vis-a-vis switching, given its low bandgap
and its seemingly fundamental mobility-bandgap tradeoff. However, as we have
argued here, there still are a few notable advantages to using graphene geometries,
namely, (a) a natural electron–hole symmetry that helps with inverter design; (b)
its convenient placement between 1D and 3D, so that it offers distinct electrostatic
advantages without picking up too much series resistance arising from a paucity
of modes; (c) the tunability of its electronic properties primarily by controlling its
width. Experiments are still emerging on these fronts, and it remains to be seen
whether one can put these advantages to good use.

In this chapter, we made a first attempt to transverse the Gajski–Kuhn YZ chart
adapted to graphene, spanning physical, structural, and behavioral domains for
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graphene. We ended with monolithic all graphene circuits and device–interconnect
geometries, ultimately stopping short of the outermost circle that covers a system
level topology and behavior. A key tool developed along the way was a compact
model for GNRs that capture chemical, geometric, electronic, electrostatic, and
transport properties through a set of simple parameterized equations calibrated
against a few emerging experiments. Such a Y-chart is the first step toward a
holistic approach that we hope will catapult graphene from the domain of fascinating
physics and chemistry to technologically relevant electronic applications.
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Angular selective, 10
Anisotropic scattering, 251
Anisotropy, in the optical absorption, 33

Annealing, 457
Annular dark field (ADF) detector, 446
Anomalous quantum Hall effect, 228
Anti-localization, 182
Anti-resonance, 296
Antidot arrays, 178
Antiresonance, 421, 423, 430
Applications, 9
Aqueous electrolyte, 458
ArC, 24
Arbitrarily stacked, 334, 339
A-region, 25
Armchair, 2, 10, 18, 278, 281, 399, 400, 407,

530, 538
edges, 29, 277
nanoribbons, 307, 308, 311
ribbon, 313, 314
and zigzag ribbons, 399, 402

ARPES. See Angle-resolved photoemission
spectroscopy

Array, 437
Asymmetric band gap modulation, 546
Atomic constrictions, 402
Atomic force microscope (AFM), 164, 183,

442, 448
Atomic force microscopy, 162
Atomic layer deposition (ALD), 8, 162, 168
Atomic structure, 7
Auger-electron spectroscopy, 136, 197
Average conductances of graphene ribbons,

412

Back gate electrode, 401
Backscatter, 181, 398, 405, 410
Ballistic, 163, 178, 395, 412

conductance quantization, 396
conductance quantum, 431
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electron transport, 403
nanostructures, 396
transport, 170, 396, 403, 412

Ballistically, 395, 397
Band dispersion, 563, 567
� band electrons, 396, 406
Band gap, 267, 271, 272, 436, 535, 539, 540,

543
modulation, 542, 551
opening, 8, 544, 547

Band structures, 136, 143, 154, 246, 247, 253,
267, 327, 400, 544, 559

Band width, 548
�-bandwidth, 350
Band width modulation, 551
Band-to-band tunneling, 565
Basal plane, 136
Basis functions, 406
Benzene, 559
Bernal, 529, 535

rhombohedral, 326
stacked, 252
stacked graphite, 163

Berry’s phase, 8, 172, 175, 251, 258, 262, 302
Berry’s phase � and 2� , 262
Bias voltage, 398
Bilayer, 10, 137, 143, 326, 436, 530, 534, 535
Bilayer graphene, 1, 42, 191, 251, 333
Binding energy, 203
Bloch functions, 240
Boltzmann, 358–360

conductivity, 367
theory, 370, 389
transport theory, 326

Born approximation, 360
Bottom-up method of fabricating, 403
Boundary condition, 306, 311
Bravais lattice, 238, 239
Brillouin zone, 136, 140, 141, 190, 192, 206,

219, 229, 240, 534, 558
edge, 532
of graphene, 31

Brodie, 440
Brodie’s technique, 440, 454
Bucky ball, 2
Buffer layer, 141, 143
Bulk vacancies, 405

Capacitor, 458
Carbon atom vacancy, 395, 396, 404, 405, 411,

414, 421, 431
Carbon black filler, 458
Carbon nanofibres, 3

Carbon nanotube serpentine, 47
Carbon nanotubes, 403, 459, 530
Carbonyl functional groups, 437, 443
Carborundum, 136
Carboxyl (–COOH) groups, 441, 443
Carrier density, 358, 563
Carrier density fluctuations, 370
Carrier transport, 358
Characterization, 436

of defects, 22
of edges, 29

Charge neutrality, 372
Charge neutrality point, 170
Charge puddles, 566
Charge trapping layer, 458
Charged impurities, 405, 410
Chemical doping, 191
Chemical functionalization, 226
Chemical structure, 439
Chemical vapor deposition (CVD), 6, 136,

162, 191, 218
Chemically derived graphene, 443
Chiral, 257, 294, 306

mode, 288
pseudospin doublets, 326

Chirality, 8, 277, 311, 556, 557
Chirality sum, 326
Clean graphene nanoribbons, 431
Cluster adsorption, 222
Co-planar, 572
Coherent, 114

transport, 163, 178
transport regime, 398

Complementary metal-oxide semiconductor
(CMOS), 168, 169, 551

Complete screening, 365, 374
Conductances, 321, 395, 398–400, 407,

409–411, 414, 426, 427
characteristics, 428
dips, 410–412, 414, 429
hGi of the disordered ribbons, 414
fluctuations, 407, 409–411, 415
of graphene ribbons with different

adsorbates, 429
of the ideal ribbon, 427
plateaus, 408, 415
quantization, 9, 288, 395, 396, 398,

401–404, 407, 414, 416, 429
show dips, 428
steps, 404, 410
that are quantized in multiples of 2e2=h,

395
Conducting mode, 398
Conduction and valence bands, 532, 543
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Conductivity, 320, 321, 360, 412, 563
Consecutive stacking, 347
Contact broadenings, 563
Contact resistance, 576
Cooper pairs, 229
Core-hole spectroscopies, 193
Core-level photoelectron spectroscopy,

193
Corner junctions, 312, 313
Coulomb blockade, 404
Coulomb disorder, 377
Coulomb impurity, 369
Coulomb kernels, 571
Coulomb potential, 367
Coulomb scatterers, 361, 365, 379, 386
Coulomb scattering, 579
Covalently bonded adsorbates, 396, 417
Crystal structure, 238
Crystalline configurations, 454
Crystalline models, 437
Crystallite sizes La, 28
Crystallographically, 189
Cubic stacking, 137
Current-perpendicular-to-the-plane (CPP),

191, 205
Cyclotron resonance, 94

D band peak, 451
D, D0, and G0 bands, 17–20
D-band activated region, 24
Dangling bond, 36
Dangling bond states, 545
Decay length, 575, 576
Defect, 405, 421, 443

characterization, 22
Defects, 22

characterization, 29
defects, 15
Degenerate, 333, 400
Densities of states, 399, 401
Density functional, 453, 459
Density functional theory (DFT), 9, 190, 199,

201, 375, 418, 459, 533, 559
Density of final states, 410
Density of states (DOS), 170, 201, 400, 560
Density of states for the ideal ribbon, 407
Destruction of the ballistic quantized, 408
2D/G ratio, 451
D/G ratio, 451
Diagrammatic expansion, 360
Dielectric constant, 365, 374, 390, 391
Different defect types, 407
Different disorder types, 411

Diffusive transport, 412
Dimensionless conductance, 288
Dirac, 3, 95, 98, 144, 149
Dirac (K) point, 536
Dirac equation, 302, 307, 309, 311–313, 322
Dirac fermions, 5, 191
Dirac particles, 173
Dirac points, 170, 190, 206, 216, 222, 303,

317, 320, 322, 357, 371, 384, 399,
400, 404, 409–411, 421–427, 429,
431, 544, 567

energy, 396, 401, 421, 426
resonances, 416, 417, 421, 423, 428, 430,

431
scattering resonance for adsorbed

hydrogen, 430
scattering resonances, 417, 421
scattering resonances for OH and F

adsorbates, 430
Dirac-like Hamiltonian, 248
Disorder, 9, 10, 358

concentration, 370
configurations, 372
impurity potential, 367
potential, 362, 372
in the ribbon boundaries, 405

Disorder-dependent minimum conductivity,
371

Disorder-induced conductance suppression,
408

Disorder-induced potential fluctuations,
364

Disorder-induced scattering, 396
Disordered, 459

graphene ribbons, 413, 416
oxidized graphene, 438
ribbons, 414

Dispersible, 440
Dispersion, 19, 400
Dispersion relation, 402
Dispersive behavior, 21
Dorokhov-Mello-Pereyra-Kumar (DMPK)

equation, 291
DOS. See Density of states (DOS)
Double resonance transitions, 451
Double-layer graphene, 42
Double-resonance condition in, 16
Double-resonance processes, 18
Doublet, 325, 346
2D peak, 451
Drain-induced barrier lowering

(DIBL), 575
Drivability, 577
Drude–Boltzmann, 360
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Edge, 18
disorder, 395, 396, 406, 408, 410, 411
effects, 10, 278
localization, 8
localized states, 277
of nanographene, 26
orientation, 286
phonon modes, 30, 35
reconstruction, 399
of ribbon subbands, 410
roughness, 10, 562
shape effect, 277
state, 29
structure, 18

Effective carrier density, 359
Effective Hamiltonian, 257, 328, 333, 396,

419, 420
Effective mass, 540, 557, 566, 568, 580
Effective medium theory (EMT), 359, 377,

378, 380
Effective medium theory result, 379
Effects of disorder, 396
Effects of disorder on transport in graphene

ribbons, 407
Efficient tight-binding models, 423
Einstein relation, 360
Elaser, 27
Electric field, 530, 546, 549
Electric field modulation, 10
Electrical conductivity, 326, 351, 443
Electrochemical doping, 50
Electrochemical double layer capacitors, 458
Electrochemical potentials, 397, 398
Electron and hole puddles, 359, 370
Electron chemical potential, 411
Electron current, 397
Electron defect scattering matrix elements, 20
Electron density, 397
Electron diffraction, 136
Electron dispersion, 399
Electron energy loss spectroscopy (EELS),

201, 447
Electron Fermi energy, 401, 407
Electron Fermi wavelength, 402
Electron Fermi-level, 401, 429
Electron localization, 412
Electron quantum transport, 396, 404, 423
Electron scattering, 430

by adsorbates, 423
by carbon atom vacancies, 429

Electron transmission probability, 404, 411
Electron transport in graphene ribbons, 420
Electron transport in nanoribbons, 421
Electron velocity, 398

Electron–electron interactions, 358, 370
Electron–hole, 580
Electron–phonon interaction, 40
Electron-beam-lithography, 178, 183
Electron-interaction, 383
Electronic grade, 135
Electronic properties, 436, 440, 457
Electronic scattering resonances, 396
Electronic structure, 7, 454, 532, 536
Electronic transport in graphene ribbons, 430
Electronic-structure, 550
Electronic-structure modulation, 551
Electronic-structure modulation transistor, 551
Electrostatics, 569–571
Energetically favorable, 453
Energy and momentum conservation, 20
Energy gap, 399
Energy-dependent self-energy matrices, 570
Enhanced backscattering, 405
Enhanced scattering, 430

back scattering, 396, 414
backscattering by the defects at subband

edges, 428
Ensemble, 372

averaged, 372
averaged two-point correlation function,

375
Epitaxial, 6, 162
Epitaxial graphene, 136, 138, 144, 146, 149
Epoxy, 454, 455

functional groups, 453
groups, 437, 452
hydroxyl, and carboxyl groups, 438

Equal heights of the experimentally observed
conductance steps, 431

Equally spaced conductance steps, 428
Equilibrium, 536
Evanescent waves, 45
Exfoliated graphene, 162
Experimental gate voltages, 426
Experimental observation of quantized

conductance steps, 404
Extended Hückel, 395

electronic structure model, 418
Hamiltonian, 418
theory, 396, 418, 530, 533, 558

Extended molecular orbital (EMO), 417–421,
423, 424

F, 396
F and OH adsorbates, 428
F, OH, and O adsorbates, 422
Fabricated using top-down techniques, 403
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Fabrication process, 405, 439
Fano factor, 317, 321
Fano resonance, 9
Far-field Raman spectrum, 48
Feature, 16
Fermi

distribution function, 397, 398
distributions, 398
energy, 190, 349, 360, 395, 411, 426
function, 411
golden rule, 410, 579
level, 326, 399
surface, 382
velocity, 557
wavevector, 566

Fermi–Dirac distributions, 570
Ferromagnetic, 95, 113, 115, 125, 128, 191
Ferromagnetism, 459
Field effect transistors (FETs), 170, 436, 456
Finite temperature conductance, 398
First principle calculations, 454
First principle simulations, 444
First-order process, 20
Flat dispersion, 401
Fluctuations in carrier density, 370, 372
Fluctuations of the conductance, 408
Fluorescence quenching, 444
Focused ion beam, 166
Formation of electronic subbands, 431
From sp2 to sp3, 395
Full Green’s function, 420
Functional groups, 438
Functional modified, 458
Functionalized graphene, 436

G band, 451
Gajski–Kuhn Y-chart, 556
Gas phase mass spectrometry, 163
Gate control, 573
Gate doping, 40, 42
Gate electrode, 403
Gaussian correlated disorder, 373
Gaussian correlated impurities, 367, 379, 386
Gaussian mapping, 373
Gaussian model, 359
Gaussian potential, 377
Gaussian white noise, 562
Gaussian white noise disorder, 366
G band of bilayer graphene, 43
Generalized gradient approximation (GGA),

199, 533
Geometries, 37
GNRs. See Graphene nanoribbons (GNRs)

Gold atomic constrictions, 403
Grain boundaries, 453
Graphene, 1, 395, 419

backbone, 438
� band, 417, 418, 425
� band electrons, 424
flake sizes, 444
islands, 192
layers, 533, 535
rehybridization, 427
ribbon device, 401, 405
ribbons, 395–397, 405, 417, 424
ribbons with adsorbates, 423
TM interfaces, 216

Graphene nanoribbons (GNRs), 2, 29, 277,
395, 398, 403, 404, 530

bilayer, band structure, Schottky barrier
diode, nanoelectromechanical
switch, 525

with carbon atom vacancies, 428
Graphene oxide (GO), 9, 436–439
Graphite, 2, 221
Graphite (Acheson graphite), 136
Graphite oxide (GO), 436, 437, 439
Green’s function, 396, 421
Green’s function formalism, 9
Growth, 436

h-BN, 214
Half-integer quantum Hall-effect (QHE), 169,

172, 191
Hall bars, 136, 166
Hall resistivity, 173
Hamiltonian, 534
Heights of the conductance plateaus, 414
Hemispherical, 225
Hexagonal, 198

boron nitride, 436
lattice, 161
stacking, 137, 326

High electron mobility, 405
High-K dielectrics, 537
High-resolution electron-energy-loss

spectroscopy (HREELS), 219, 222
High-resolution TEM, 166
Highly ordered pyrolytic graphite, 161
Highly oriented pyrolytic graphite (HOPG),

31, 136, 166, 200, 228
Hole transport, 457
Honeycomb, 436, 438

lattice, 189
structure, 238

Hopping amplitude, 350
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Hopping integrals, 406
Hopping matrix elements, 396
Hopping regime, 412
HREELS. See High-resolution electron-

energy-loss spectroscopy
(HREELS)

Hummers, 439, 440
Hummers approach, 440, 456
Hybridization strength, 219
Hybridized, 240
Hydrazine, 456
Hydrogen (H), 396, 428

adsorption, 428
F and OH, 423
F or O atom or OH group adsorbed on

graphene, 422
F, and O atoms and OH molecules adsorbed

on Graphene, 421
F, OH, and O adsorbates, 419, 430
passivated, 531

Hydrophilic, 438
Hydrophilic edge, 441
Hydrophobic surface, 441
Hydroxyl (OH) groups, 437, 443, 454, 455

I deal ribbon, 429
I–V characteristics, 580
ID=IG , 17, 24
Ideal quantum wires, 395
Ideal ribbon, 396, 399, 401, 409, 429
iISs, 35
Imperfections, 404
Impurities, 9, 326

potential, 358, 361, 362, 366–368
scattering, 9

Index of refraction n, 44
Indium tin oxide, 457
Infinite two-dimensional, 417
Inhomogeneous, 378, 379
Inhomogeneous potential, 359
Instability, 124
Insulating, 436
Insulating layer, 403
Integer quantum Hall effect, 261
Integrated circuits, 10, 168
Interaction strength, 120, 211
Intercalation, 8, 191

compounds, 3
material, 218

Intercalation-like systems, 219
Interconnect, 583
Interface engineering, 155
Interface surface, 457

Interior carbon atom vacancies, 407, 427, 429
Interior vacancies, 406, 410, 414

disorder, 409
edge imperfections, 405

Interlayer coupling, 252
Intersheet spacing, 441
Intersubband scattering, 410
Intervalley, 21

double-resonance process, 32
scattering, 286, 287, 410
scattering length, 183

Intra-subband scattering, 409
Intralayer hopping, 327
Intravalley processes, 21
Inverter, 10
Ion bombardment, 23, 24
Ion irradiation, 369
Ionization energies, 418

K and K 0 points, 31
Klein edge, 35
Klein paradox, 302, 317
Klein tunneling, 10, 359, 370, 378
Kohn anomaly, 21, 39, 40
kpak � P approximation, 303
K points, 136, 143, 192, 248
Kubo formalism, 360

Landau gauge, 259
Landau index, 175
Landau level, 336

Hamiltonian, 337
spectroscopy, 7
spectrum, 8, 258, 261

Landau plot, 175
Landauer, 562

formalism, 383, 406
formulae, 398, 401, 402, 407, 411
integral, 564
theory, 395, 396, 404
theory of transport, 397
transport formalism, 420
transport formula, 397
transport theory, 403

Landauer–Büttiker formalism, 398
Landauer–Büttiker formula, 287
Laplace potential, 565
Lattice defects, 395, 404
Lattice distortions, 405
Lattice symmetry, 94, 110, 124, 128
Lattice-mismatched, 216
Layer thickness, 444
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LDA. See Local density approximation (LDA)
LDA-GGA, 559
LEEM. See Low-energy electron microscopy

(LEEM)
Lerf model, 439
Lifshitz transition, 8, 265
Light absorption efficiency, 34
Line structures, 453
Linear, 529
Local density approximation (LDA), 108, 126,

128, 222, 533
Local density of states, 166
Localization length, 412–414, 430, 456
Localized, 549
Localized states, 456
Long-range impurity potentials, 409
Long-range potential disorder, 411
Long-range potential scattering, 429
Long-range potentials due to charged

impurities, 405
Long-range scattering potentials, 412
Long-ranged defect potentials, 395, 396
Long-ranged impurities (LRIs), 287, 293, 294
Long-ranged potentials, 406
Longitudinal energy, 401
Longitudinal momentum, 397
Longitudinal resistivity, 173
Low conductances, 404
Low-energy effective theory, 341
Low-energy electron diffraction (LEED), 136,

197, 211, 215
Low-energy electron microscopy (LEEM),

211, 215
Low-energy Hamiltonian of bilayer graphene,

256
Low-pressure CVD, 210
LRI. See Long-ranged impurities (LRIs)

M opt.A/, 39
Macroscopic electrodes, 397
Magnetic field, 258, 336
Magnetic flux, 310, 313, 316
Magnetic metal clusters, 225
Magnetic tunnel junctions, 458
Magnetism, 401, 458
Magnetization, 311
Magneto-conductance, 178, 179
Magneto-optical sum rules, 196
Magneto-resistance, 181, 183
Magneto-transport, 10, 162, 381, 387
Many-body electron interaction effects, 399
Many-electron, 196
Mass-less relativistic, 5

Massive Dirac modes, 332
Massless Dirac, 128

equation, 277, 284, 286, 344
mode, 332

Mean free path, 568
Measured conductances, 405
Mechanical exfoliation, 136
Memory, 10
Memory storage devices, 458
Mesoscopic conductance fluctuations, 428
Metal–insulator transition, 114
Metal-induced gap states, 575
Metallic, 399
Method of moments, 571
Mexican hat, 267, 542
Microbes (genus Shewenella), 443
Micromechanical cleavage, 436
Midgap states, 368
Minimal Hamiltonians, 396
Minimal model, 347
Minimal set of tight-binding parameters, 424
Minimum conductivity, 358, 369, 379
Misalignment, 8–10, 538
Mobility, 94, 116, 118, 161, 169, 358, 412,

455, 563
Mode, 398
Model, 251
Modulation, 549
Moiré, 189, 212, 222, 224
Moiré superstructure, 210
Molecular dynamics, 443
Monodisperse, 193
Monolayer, 139–143, 161, 163, 221, 326, 389
Monolayer graphene, 242
Monolithically patterned, 572
Moore’s law, 529
Morphology, 164
Mott insulator, 123, 128
Multilayer, 10, 170, 194, 326, 353

Nanocluster lattices, 193
Nanoclusters, 225
Nanodots, 192
Nanoelectromechanical switches, 10
Nanojunctions, 277, 296
Nanomesh, 192, 214
Nanoribbons, 10, 162, 168, 170, 191, 304, 395,

436, 459, 530, 534, 538
edges, 459
transport experiments, 401

Nanoscale, 277
Nanoscale fabrication, 436
Nanostructures, 1



594 Index

Near-edge X-ray absorption fine-structure
spectroscopy (NEXAFS), 193, 195,
200, 215, 216

Near-field enhancement, 46
Near-field Raman spectroscopy, 22, 44
Near-field Raman spectrum, 48
Near-midgap state, 548–550
Nearest-neighbor interlayer, 327
Nearly ideal conductance of the first subband,

429
NEGF. See Non-equilibrium Green’s function

(NEGF)
NEXAFS. See Near-edge X-ray absorption

fine-structure spectroscopy
(NEXAFS)

Ni(111), 198
NMR, 438
Noise margins, 580
Non-equilibrium Green’s function (NEGF),

398, 534, 562, 570
Nonequilibrium Green’s function formalism,

534
Noninteracting, 349
Nonorthogolity, 424
Number of modes, 564
Numerical aperture, 44
Numerical quantum transport calculations, 406
Numerical simulations, 396, 406, 426

O, 396, 423
O adsorbate, 430
Off-current, 575
OH, 396
Ohmic contacts, 575
ON–OFF current ratio, 577
ON–OFF ratio, 169, 566, 575
On-current, 575
One-dimensional character, 30
One-dimensional systems, 397
Optical band gap, 454
Optical conductivity, 9, 326, 350
Optical microscopy, 444
Optical phonon mode, 451
�-Orbital continuum model, 327
Ordered graphene ribbon edges, 399
Organic electrolyte, 458
Orthogonal, 293
Orthogonal class, 294
Out-of-plane electric field, 535
Overlap integral, 241
Oxidation, 436, 438, 454
Oxidized nanoribbons, 459
Oxygen functional groups, 438

Oxygen plasma reactive ion etching, 405
Oxygen reduction, 450

Parabolic, 529
Paramagnetism, 459
Partial flat bands, 283
Partitioning rules, 342
Passivated, 544
Pauli matrices, 39, 329
Peierls instabilities, 283
Perfect graphene ribbons, 395
Perfectly conducting channel (PCC), 278, 290,

292, 294
Periodic boundary conditions, 530
Periodic modulation of the ribbon’s edge

geometries, 399
Periodic potential, 317
Perturbation theory, 333
PEY, 206
Phase coherence length, 178, 183, 294
Phase-contrast TEM, 445
Phonon, 94, 100, 101, 119, 126
Phonon eigenvectors, 38
Photoelectron spectroscopy (PES), 136, 202
Photoluminescence, 454
Physical vapor deposited, 170
Plasmaronic, 128
Plasmon, 118
Plasmonic, 95
pn junction, 317, 378
PN junction diode, 10
� -point, 541, 548, 549
Point group symmetry, 35
3D Poisson’s equation, 570
Polar face, 163
Polarization dependence of the Raman

intensity, 38
Polarization dependence of the Raman spectra

at edges, 34
Polarization of the incident light relative to the

edge, 32
Potential inhomogeneities, 410
Pre-exfoliation of graphite, 440
Primitive lattice vectors, 238
Pristine, 544

edges, 539
graphene, 443, 451
graphite, 459
ribbons, 399

Propagation delay, 577
Proton irradiated highly orientated pyrolytic

graphite (HOPG), 459
Pseudo-spin, 8, 42, 250, 257, 284, 333
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chirality, 341
Hamiltonian, 341
polarized state, 30

Puddle correlation length �, 376
Puddles, 370, 371, 374, 376, 378
Pull-down, 579
Pull-up, 579
pz orbital, 533, 534
pz-orbital tight-binding, 544

Quantization, 530
Quantization steps, 403, 409
Quantized ballistic conductance, 402, 409
Quantized conductance, 395, 414

steps, 405, 412
steps of equal height, 430

Quantized Hall conductivity, 9
Quantized wavevector, 544
Quantum capacitances, 568
Quantum coherence effects, 178
Quantum conductance, 288
Quantum Hall conductivity, 348
Quantum Hall-effect (QHE), 8, 172, 325, 326,

349
Quantum interference, 404, 413, 428
Quantum interference effect, 409
Quantum numbers, 533
Quantum rings, 9, 310, 322
Quantum transmission, 397
Quantum transport, 9, 395, 406

calculations, 397
in ribbons with adsorbates, 426

Quantum tunneling, 391
Quasi-ballistic, 412

behavior, 431
quantum transport, 396

Quasi-one dimensional conductors, 396, 412
Quasiballistic regime, 430
Quasiparticle, 196

Radial breathing-like phonon, 35
Raman enhancement factor, 47
Raman spectra of sp2 carbons, 16
Raman spectral peaks, 452
Raman spectroscopy, 7, 136, 162, 284, 451
Raman-active phonon modes of graphene

edges, 34
Random conductance fluctuations, 428
Random matrix theory, 293
Random phase approximation (RPA), 9, 362,

365
Range of impurity potential, 286

RBLM, 35
ReaxFF potential, 443
Reciprocal lattice, 239, 240
Recursive Green function method, 288, 407
Recursive Green’s function-based quantum

transport calculations, 423
Reduced graphene oxide, 442
Reduced or chemically derived graphene

(rG-O), 442
Reduction, 454
Reflection matrices, 287
Rehybridization, 423, 426–428, 430

of graphene from sp2 to sp3 bonding, 431
of the graphene, 397, 425, 429
of the graphene electronic structure, 417
of the graphene from sp2 to sp3, 418
of the graphene from sp2 to sp3 bonding,

419, 422, 423, 428
Relaxed geometries of H, F, OH, and O on

graphene, 416
Renormalization, 99–101, 120
Residual carrier density, 369
Resonant scatterers, 369
Resonant scattering by H, F, OH and O

adsorbates, 421
Resonant tunneling diodes, 436
Rhombohedral, 137, 459
Ribbons, 281, 303, 395, 406, 407, 410, 412,

414, 426, 429
with the adsorbate, 427
with adsorbed, 426
with adsorbed OH ((a), (b)) and O, 427
with covalently bound adsorbates, 423
with F, OH and O adsorbates, 429
with H, F, OH, and O adsorbates, 426
with the H adsorbate, 428

Rings, 303, 312, 314, 316
Role of temperature, 411
Room temperature ferromagnetism, 459
Root-mean-square carrier density, 359
Rotational stacking faults, 163, 326
Rough edges, 544
Roughness, 543
RPA. See Random phase approximation (RPA)

S and AS symmetry phonon modes, 43
Sample-specific conductance fluctuations, 428
Saturation current, 564
SCA. See Self-consistent approximation (SCA)
Scanning probe microscopy, 136
Scanning transmission electron microscopy

(STEM), 445
Scanning tunneling microscope (STM), 369
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Scanning tunneling microscopy (STM), 5, 7,
27, 162, 165, 193, 195, 211, 212,
221, 225, 383

Scattered functional groups, 443
Scattering, 358, 370

by the adsorbate, 428
antiresonance, 423
centers, 360
due to these resonances, 430
of the electrons, 417
geometry, 35
of graphene electrons, 424
length, 564, 568
matrix, 287
mechanisms, 404
potential, 360
resonances, 395
time, 360

Scholz–Boehm structure, 451, 452
Schottky barrier field effect transistor, 10
Schottky barriers, 457, 575
Schottky contacts, 583
Schottky diodes, 436
Schrödinger, 3
Scotch tape, 5, 436
Screened disorder potential, 372, 373
Screening, 270, 272, 383
Secular equation, 242
Selective oxidation, 435
Self-assembly, 403
Self-consistent ansatz, 371
Self-consistent approximation (SCA), 371,

376
Self-consistent theory, 382, 384, 387
Self-organization, 229
SEM, 183
Semi-classical, 9
Semi-infinite graphene sheet, 283
Semi-metal, 3
Semiclassical, 360
Semiconducting, 399, 436, 543, 544
Semiconducting ribbons, 282
Semiconductor quantum point contacts, 402,

403
Semiconductor quantum wires, 401
Semimetal, 170
Semimetal reduced graphene oxide, 456
Semimetallic, 529
Sensors, 458
Short-channel effects, 572
Short-range disorder, 359
Short-range scatterers, 368
Short-ranged impurity (SRI), 287, 293
Shubnikov-de Haas (SdH) oscillations, 169

Silica, 457
Silicon carbide (SiC), 136, 222
Silicon terminated surface, 136
Simple picture of the rehybridization,

428
Simulations, 395
Single atomic layer, 444, 450
Single layer, 325
Site energies, 396
Slater type orbitals, 533
Smooth conductance oscillations, 412
Snake orbits, 10
Sonicated water solution, 441
Source and drain electrodes, 401
Spatial resolution in optical microscopes,

45
Spectroscopy, 7
Spherical harmonics, 533
Spin and valley degeneracy, 351
Spin polarization, 185
Spin relaxation length, 184
spin rotation symmetry, 293
Spin transport, 183
Spin- and angle-resolved photoelectron

spectrocopies, 193
Spin- and orbital-magnetic moments, 196
Spin-field-effect transistor (spin-FET), 193
Spin-filtering, 192
Spin-magnetic moment, 207
SpinFET (spin valve transistor), 183
Spintronic, 8
Split-off bands, 351
S-region, 25
SRI. See Short-ranged impurity (SRI)
Stacked, 252
Stacked multilayer, 325
Stacking, 530, 535, 536
Stacking diagrams, 342
Staudenheimer, 440
Staudenmaier, 440
Step Approximation, 365
STM/DFT, 143
Strain, 10, 453
Strain engineering, 536
Strong conductance suppression, 405
Strong electronic scattering resonances, 431
Strong localization, 414
Strong localization regime, 412, 414
Strong scattering resonances, 421
Strongly localized electronic states, 396
Subbands, 397–399, 401, 405, 409, 410, 428,

429
edge, 396, 414, 429
energy separation, 411
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formation, 415
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