

"When you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind: it may be the beginning of knowledge, but you have scarcely, in your thoughts, advanced to the stage of science."

William Thomson, Lord Kelvin, 1824-1907



# High Precision Measurements

- Precision
- Precision power converters
- Voltage transducers
- Current transducers
- Calibration infrastructure
- Integration



### Precision

- Precision is a qualitative term
- Accuracy and Uncertainty are quantitative terms
- Device imperfections, measurement errors and measurement uncertainty
- ISO GUM defines terms and methods to express uncertainty in a standardised way





## Precision Power Converters

- User specifications
  - Voltage output or current output?
  - Pulsed or DC?
  - Type of load
  - Performance
  - Reliability
  - etc
- System (=converter) design specifications
  - Configuration
  - Power topology
- Component specifications



#### Analogue converter control





#### LHC converter control





## Accuracy budget

|                                     | Devic     | e spec       | LHC machine impact |                 |          |  |  |
|-------------------------------------|-----------|--------------|--------------------|-----------------|----------|--|--|
|                                     | ppm of FS | ppm of value | Stability          | Reproducibility | Accuracy |  |  |
| Device                              |           |              | 1/2 hr             | 1-day           | 1 year   |  |  |
|                                     |           |              |                    |                 |          |  |  |
| DCCT 120 A                          |           |              |                    |                 |          |  |  |
| Zero uncertainty (hyst etc.)        | 20        | 0            | 0                  | 0               | 20       |  |  |
| Repeatability                       | 3         | 0            | 0                  | 3               | 3        |  |  |
| Uncomp non-linearity                | 50        | 0            | 0                  | 0               | 50       |  |  |
| LF noise, 0.1-10 Hz                 | 10        | 0            | 10                 | 10              | 10       |  |  |
| Stability 1/2 hr, 1-100 mHz         | 0         | 10           | 10                 | 0               | 0        |  |  |
| Gain drift 24 hr                    | 0         | 10           | 0                  | 10              | 0        |  |  |
| Gain drift 1 year                   | 0         | 100          | 0                  | 0               | 100      |  |  |
| Gain Temp Coeff                     | 0         | 5            | 0                  | 25              | 50       |  |  |
| Offset drift 24 hr                  | 10        | 0            | 0                  | 10              | 0        |  |  |
| Offset drift 1 year                 | 40        | 0            | 0                  | 0               | 40       |  |  |
| Offset Temp Coeff                   | 3         | 0            | 0                  | 15              | 30       |  |  |
|                                     |           |              |                    |                 |          |  |  |
| DCCT total                          |           |              | 20                 | 73              | 303      |  |  |
|                                     |           |              |                    |                 |          |  |  |
| A/D converter, 16 bit succ. approx. |           |              |                    |                 |          |  |  |
| Uncomp non-linearity                | 45        | 0            | 0                  | 0               | 45       |  |  |
| LF noise, 0.1-10 Hz                 | 10        | 0            | 10                 | 10              | 10       |  |  |
| Stability 1/2 hr, 1-100 mHz         | 0         | 0.4          | 0.4                | 0               | 0        |  |  |
| Gain drift 24 hr                    | 0         | 0.5          | 0                  | 0.5             | 0        |  |  |
| Gain drift 1 year                   | 0         | 100          | 0                  | 0               | 100      |  |  |
| Gain Temp Coeff                     | 0         | 2            | 0                  | 10              | 20       |  |  |
| Offset drift 24 hr                  | 0.2       | 0            | 0                  | 0.2             | 0        |  |  |
| Offset drift 1 year                 | 50        | 0            | 0 0                |                 | 50       |  |  |
| Offset Temp Coeff                   | 0.6       | 0            | 0                  | 3               | 6        |  |  |
|                                     |           |              |                    |                 |          |  |  |
| A/D total                           |           |              | 10.4               | 23.7            | 231      |  |  |
|                                     |           |              |                    |                 |          |  |  |
| Miscellaneous                       |           |              | 5                  | 10              | 100      |  |  |
|                                     |           |              |                    |                 |          |  |  |
| Total                               |           |              | 35.4               | 106.7           | 634      |  |  |
| LHC committment                     |           |              | 50                 | 100             | 1000     |  |  |
|                                     |           |              |                    |                 |          |  |  |
| Conditions                          |           |              |                    |                 |          |  |  |
| Temp change (K)                     |           |              | 0                  | 5               | 10       |  |  |
| No special temp ctrl                |           |              |                    |                 |          |  |  |



# vs. actual performance ...

|                                  | Device performance |       |        |         | LHC machine impact |           |           |              |         |          |
|----------------------------------|--------------------|-------|--------|---------|--------------------|-----------|-----------|--------------|---------|----------|
|                                  | ppm                | of FS | ppm of | f value | 1/2 hr             | Stability | Reproduci | bility 1 day | Accurac | y 1 year |
| Device                           | Spec               | Real  | Spec   | Real    | Spec               | Real      | Spec      | Real         | Spec    | Real     |
|                                  |                    |       |        |         |                    |           |           |              |         |          |
| DCCT 120 A                       |                    |       |        |         |                    |           |           |              |         |          |
| Zero uncertainty (hyst etc.)     | 50                 | 3     |        |         | 0                  | 0         | 0         | 0            | 50      | 3        |
| Settling after change            |                    |       | 0      | 30      |                    |           |           |              |         |          |
| Repeatability                    | 3                  | 3     |        |         | 0                  | 0         | 3         | 3            | 3       | 3        |
| Uncomp non-linearity             | 50                 | 50    |        |         | 0                  | 0         | 0         | 0            | 50      | 50       |
| LF noise, 0.1-10 Hz              | 0                  | 3     |        |         | 0                  | 3         | 0         | 3            | 0       | 3        |
| Stability 1/2 hr, 1-100 mHz      | 10                 | 15    |        |         | 10                 | 15        | 10        | 15           | 10      | 15       |
| Gain drift 24 hr                 |                    |       | 10     | 10      | 0                  | 0         | 10        | 10           | 0       | 0        |
| Gain drift 1 year                |                    |       | 100    | 100     | 0                  | 0         | 0         | 0            | 100     | 100      |
| Gain Temp Coeff                  |                    |       | 5      | 10      | 0                  | 0         | 25        | 50           | 50      | 100      |
| Offset drift 24 hr               | 10                 | 10    |        |         | 0                  | 0         | 10        | 10           | 0       | 0        |
| Offset drift 1 year              | 40                 | 40    |        |         | 0                  | 0         | 0         | 0            | 40      | 40       |
| Offset Temp Coeff                | 3                  | 2     |        |         | 0                  | 0         | 15        | 10           | 30      | 20       |
|                                  |                    |       |        |         |                    |           |           |              |         |          |
| DCCT total                       |                    |       |        |         | 10                 | 18        | 73        | 101          | 333     | 334      |
| A/D converter 16 hit succ approx |                    |       |        |         |                    |           |           |              |         |          |
| Uncomp non-linearity             | 60                 | 240   |        |         | 0                  | 0         | 0         | 0            | 60      | 240      |
| LE noise 0.1-10 Hz               | 60                 | 60    |        |         | 60                 | 60        | 60        | 60           | 60      | 60       |
| Stability 1/2 hr. 1-100 mHz      |                    |       |        |         | 0                  | 0         | 0         | 0            | 0       | 0        |
| Gain drift 24 hr                 |                    |       | 30     | 30      | 0                  | 0         | 30        | 30           | 0       | 0        |
| Gain drift 1 year                |                    |       | 100    | 100     | 0                  | 0         | 0         | 0            | 100     | 100      |
| Gain Temp Coeff                  |                    |       | 3      | 3       | 0                  | 0         | 15        | 15           | 30      | 30       |
| Offset drift 24 hr               | 10                 | 10    |        |         | 0                  | 0         | 10        | 10           | 0       | 0        |
| Offset drift 1 year              | 50                 | 50    |        |         | 0                  | 0         | 0         | 0            | 50      | 50       |
| Offset Temp Coeff                | 0.6                | 1     |        |         | 0                  | 0         | 3         | 5            | 6       | 10       |
|                                  |                    |       |        |         |                    |           |           |              |         |          |
| A/D total                        |                    |       |        |         | 60                 | 60        | 118       | 120          | 306     | 490      |
|                                  |                    |       |        |         |                    |           |           |              |         |          |
| Miscellaneous                    |                    |       |        |         | 5                  | 5         | 10        | 10           | 100     | 100      |
|                                  |                    |       |        |         |                    |           |           |              |         |          |
| Total                            |                    |       |        |         | 75                 | 83        | 201       | 231          | 739     | 924      |
| LHC committment                  |                    |       |        |         | 50                 | 50        | 100       | 100          | 1000    | 1000     |
| Conditions                       |                    |       |        |         |                    |           |           |              |         |          |
| Temp change (K)                  |                    |       |        |         | 0                  | 0         | 5         | 5            | 10      | 10       |
| No special temp ctrl             |                    |       |        |         | 0                  | U         | 5         | 5            | 10      | 10       |
| no special temp cui              |                    |       |        |         |                    |           |           |              |         |          |



# Specifications 1

- Stability Noise
  - Ground noise Common mode rejection
  - Power supply noise rejection
  - Interference, conducted or radiated (Charroy)
  - 50 Hz pickup
  - Modulation residues
  - Amplifier noise
  - Reference noise
  - Humidity influence Leakage paths
  - Contact resistance and emf's
- Resolution





- Temperature behaviour
  - Offset and gain change
  - Amplifiers
  - Resistors
  - Capacitors
  - Instability/Oscillations



## Specifications 3

- Settling behaviour
  - Bandwidth related
  - Thermally related
- Repeatability and reproducibility
- Long term drift
  - Material ageing or stress modification
  - Resistors, amplifiers
  - Humidity



## Voltage transducers

- Problems you may face:
  - Isolation
  - High voltage
  - High frequency performance
- Solutions:
  - Isolation amplifiers
  - High voltage dividers
  - Precision resistors easily available
  - Compensation for stray capacitance
- Relatively easy to verify performance



#### LEM Voltage Transducer



Accuracy range:

0.2 - 1 %



# Current Transducers, Principles

- Current measuring resistors
  - Current range: 0 20 kA
  - Accuracy range: 10<sup>-2</sup> 10<sup>-6</sup>
  - No isolation
  - DC up to MHz with low inductance design
- AC passive current transformers
  - Accuracy: 10<sup>-2</sup> to 10<sup>-3</sup> for 1-50 kA
  - Needs magnetising energy
  - Limited bandwidth, no DC
  - Good isolation, kV easy
- Optical fibres
  - Accuracy: 10<sup>-2</sup> to 10<sup>-3</sup>
  - Excellent isolation



# Magnetic Flux Principle

- Measure field around conductor Hall probe – open loop system
- Flux compensation around conductor, sense zero flux
  - Hall effect sensor
    - 10<sup>-3</sup> accuracy
  - magnetic modulation
    - Second harmonic detector
    - Peak current sensing
    - Separate DC and AC loops
    - 10<sup>-6</sup> accuracy achievable in current ratio
  - Burden resistor/output amplifier







#### LEM Current Transducer 1



Accuracy range:

1 - 2 %





#### LEM Current Transducer 2



Accuracy range: 0.2 - 1 %

Linearity error: < 0.1 %







#### DCCTs on the Market





CAS2004



### Zero-flux transducer performance

- Current ratio accuracy
  - 0.1 10 ppm
- Current/voltage conversion accuracy
  - 1 1000 ppm
- Accuracy vs. frequency
  - Loop gain important
  - Difficult to measure
- Noise and sources of noise
- Hysteresis



### Current measuring resistors 1

- Resistance is defined as R=U/I
- It is a material property, not a constant
- It changes with temperature, humidity, pressure, mechanical stress
- Cu, Al, Ag, Au etc. ~ 4000 ppm/K
- Good materials are NiCr, Manganin, Zeranin, Evanohm – 1-100 ppm/K
- Packaging is crucial to performance



### Current measuring resistors 2

- Four terminals are compulsory for low value resistors
- Cooling can be by air, oil, grease etc.









- The output voltage is a trade-off between noise/thermal emf's and power dissipation
- Temperature coefficient measured at low power
- Power coefficient measured at one temperature
- Hysteresis



## Calibration infrastructure 1 Standards

- Standards
  - Voltage, 10 V zener based
  - Resistance, 1  $\Omega$  10 k $\Omega$
  - Current, 10 mA
  - Accuracy 10<sup>-6</sup>
- Reference DCCTs







- Current calibrator
  - Principle: inverted DCCT, multiplies current up to max 10 A
  - Calibrates DCCTs with special winding
  - Calibrates burden/output amp directly
  - Fully computer controlled
- DCCT testbeds
  - Calibrates DCCTs by providing the full primary current with a known value



## The current calibrator principle



High Precision Measurements - Gunnar Fernqvist/CERN



### The Current Calibrator





#### DCCT testbeds

6 kA







![](_page_29_Picture_0.jpeg)

## Integration and other problems

- Grounding Distance DCCT to electronics
- Common mode voltages
- Power supply noise rejection
- "Negligible" resistance
- 4 wire configuration not always a solution
- Avoid resistive loading use buffer amps
- Insufficient amplifier gain
- Instrumentation amplifiers
- Amplifier stability
  - Decoupling
  - Power amplifiers
  - Cascade amplifiers
- Load problem dR/dt => dI/dt @ V= const
- External field sensitivity

![](_page_30_Picture_0.jpeg)

![](_page_30_Figure_1.jpeg)

![](_page_31_Picture_0.jpeg)

# EMC problems in high precision

- Symptoms
  - Non-linearity
  - Unusual and unstable offset
- Tests
  - Use oscilloscope frequently your best friend
  - RF exposure
  - Burst generator
  - Diagnose coupling mechanism
- Remedies
  - Grounding and Shielding
  - Filters
  - Consultants

![](_page_32_Picture_0.jpeg)

## Offset drift after power-up

![](_page_32_Figure_2.jpeg)

### Stability test of a DCCT

![](_page_33_Figure_1.jpeg)

![](_page_34_Picture_0.jpeg)

### Conclusions

- Discourage exaggerated accuracy requests - direct and hidden costs
- Build conservative, with good margins
- Watch out for specmanship and quality control in industrial products
- Test in the lab, not in the machine
- Switch mode converters increase EMC problems at least an order of magnitude
- Presumption is the mother of all screwups

![](_page_35_Picture_0.jpeg)

#### References

- ISO, Guide to the expression of uncertainty in measurements (GUM), 1995
- Ott, Noise reduction techniques in electronic systems, 2<sup>nd</sup> ed. 1988
- Horowitz, Hill, The art of electronics, 2<sup>nd</sup> ed., 1989
- Bendat, Piersol, Random data analysis and measurement procedures, 3<sup>rd</sup> ed. 2000
- Ramirez, The FFT-fundamentals and concepts, 1985
- Fernqvist et al, A novel current calibration system up to 20 kA, IEEE Trans. Instrum. Meas., vol. 52, Apr. 2003
- Moore, Miljanic, The current comparator, 1988
- Appelo et al., The zero flux DC current transformer A high-precision bipolar wide-band measuring device, IEEE Trans. Nucl. Sci., Vol NS-24, No 3, June 1977

![](_page_36_Picture_0.jpeg)

# Future challenges

- Create a better burden resistor
- Create a better current-to-voltage converter
- Create a truly digital DCCT