
STR73x
Microcontroller

Reference Manual

Rev. 1

September 2005

1

REFERENCE MANUAL

STR73x MICROCONTROLLER FAMILY
1 INTRODUCTION

This Reference Manual provides complete information for application developers on how to
use the STR73x Microcontroller memory and peripherals.

For Ordering Information, Mechanical and Electrical Device Characteristics please refer to
the STR73x Preliminary Data.

For information on programming, erasing and protection of the internal Flash memory
please refer to the STR7 Flash Programming Reference Manual

For information on the ARM7TDMI core please refer to the ARM7TDMI Technical Reference
Manual.

Related documents:
Available from www.arm.com:

ARM7TDMI Technical Reference Manual

Available from www.st.com:

STR73xF Preliminary Data

STR7 Flash Programming Reference Manual
September 2005 2/349
This is preliminary information on a new product now in development. Details are subject to change without notice.

Rev. 1

1

Table of Contents
1 INTRODUCTION .2
2 MEMORY .15

2.1 Memory Organization .15
2.1.1 Memory Map .16
2.1.2 Boot Memory .21
2.1.3 RAM .21
2.1.4 Flash .22

2.2 Boot Configuration .23
2.2.1 SystemMemory Boot Mode .23

3 POWER, RESET AND CLOCKS .24
3.1 Power Supply .24
3.2 Reset .25

3.2.1 Reset Pin Timing .27
3.2.2 LVD Reset .27

3.3 Clocks .31
3.3.1 RC Oscillator .32

3.4 Low Power Modes .33
3.4.1 Slow Mode .33
3.4.2 WFI Mode .33
3.4.3 LPWFI Mode .33
3.4.4 Halt Mode .33
3.4.5 Stop Mode .35

3.5 Clock Monitor Unit (CMU) .36
3.5.1 Register Write Protection .37
3.5.2 Clock Source Selection .37
3.5.3 Oscillator Frequency Monitoring .37
3.5.4 MCLK Frequency Monitoring .37
3.5.5 Clock Frequency Measurement .37
3.5.6 RC Oscillator Control .38
3.5.7 Limitations .38
3.5.8 Register Description .39
3.5.9 CMU Register Map .47

3.6 Power, Reset and Clock Control Unit (PRCCU) .48
3.6.1 Overview .48
3.6.2 PLL Clock Multiplier Programming .49
3.6.3 Peripheral Clocks .50
3.6.4 RT Clock (fEXT) .50
3.6.5 Clock Configuration Reset State .51
3.6.6 Interrupt Generation .51
3.6.7 Register Description .52
3/349

1

Table of Contents
3.6.8 PRCCU Register Map .60
4 CONFIGURATION REGISTERS (CFG) .61

4.1 System Configuration Registers .61
4.1.1 Configuration Register 0 (CFG_R0) .61
4.1.2 Configuration Register 1 (CFG_R1) .62
4.1.3 Device Identification Register (CFG_DIDR) .63

4.2 External Interrupt Request Configuration Registers64
4.2.1 External Interrupt Trigger Event Register 0 (CFG_EITE0)64
4.2.2 External Interrupt Trigger Event Register 1 (CFG_EITE1)64
4.2.3 External Interrupt Trigger Event Register (CFG_EITE2) 65

4.3 Peripheral Clock Management Registers .66
4.3.1 Clock management in User Mode .66

4.4 BSPI and UART Management in Emulation Mode .73
4.4.1 Emulation Serial Protection Register (CFG_ESPR)73

4.5 CFG Register Map .74
5 Clock Tree Map .75
6 I/O PORTS .77

6.1 Functional Description .77
6.1.1 Input Configuration .79
6.1.2 Input Pull Up/Pull Down Configuration .80
6.1.3 Output Configuration .81
6.1.4 Alternate Function Configuration .82
6.1.5 High impedance-Analog Input Configuration .83

6.2 Register Description .84
6.2.1 I/O Port Register Map .85

7 INTERRUPTS .86
7.1 Enhanced Interrupt Controller (EIC) .87

7.1.1 IRQ Interrupt Vector Table .88
7.1.2 FIQ Interrupt Vector Table .90
7.1.3 IRQ Interrupt Structure .90
7.1.4 Priority Decoder .92
7.1.5 Finite State Machine .93
7.1.6 Stack .93
7.1.7 EIC Interrupt Vectoring .94
7.1.8 EIC IRQ notes .95

7.2 FIQ mechanism .98
7.3 Register Programming .99
7.4 Application note .100

7.4.1 Avoiding LR_sys and r5 registers content loss100
7.4.2 Hints about subroutines used inside ISRs .101
4/349

1

Table of Contents
7.5 Interrupt latency .102
7.6 Register Description .103

7.6.1 Interrupt Control Register (EIC_ICR) .103
7.6.2 Current Interrupt Channel Register (EIC_CICR) 104
7.6.3 Current Interrupt Priority Register (EIC_CIPR)105
7.6.4 Fast Interrupt Enable Register (EIC_FIER) .106
7.6.5 Fast Interrupt Pending Register (EIC_FIPR) .108
7.6.6 Interrupt Vector Register (EIC_IVR) .108
7.6.7 Fast Interrupt Register (EIC_FIR) .110
7.6.8 Interrupt Enable Register 0 (EIC_IER0) .111
7.6.9 Interrupt Enable Register 1 (EIC_IER1) .112
7.6.10 Interrupt Pending Register 0 (EIC_IPR0) .113
7.6.11 Interrupt Pending Register 1 (EIC_IPR1) .115
7.6.12 Source Interrupt Registers - Channel n (EIC_SIRn)116

7.7 EIC Register Map .117
7.8 External Interrupt Pins INT[15:0] .119

7.8.1 Edge-Triggered External Interrupts .119
7.8.2 Level-Triggered External Interrupts .119

7.9 Wake-Up Interrupt Unit (WIU) .120
7.9.1 Features .120
7.9.2 Functional Description .122
7.9.3 Programming Considerations .124
7.9.4 Register Description .125

8 DMA CONTROLLER (DMA) .130
8.1 Introduction .130
8.2 DMA Controller Priority .130
8.3 DMA Request Mapping .131
8.4 Functional description .132
8.5 Register Description .136
8.6 DMA Register Map .149

9 NATIVE BUS ARBITER (ARB) .151
9.1 Register description .151

9.1.1 Time-Out Register (ARB_TOR) .151
9.1.2 Priority Register (ARB_PRIOR) .151
9.1.3 Control Register (ARB_CTLR) .152

10 WAKE-UP TIMER (WUT) .154
10.1 Introduction .154
10.2 Main Features .154
10.3 Functional Description .155

10.3.1 Free-running Timer mode .155
5/349

Table of Contents
10.4 Programming Considerations .156
10.5 Register Description .157

10.5.1 Wake-up Timer Control Register (WUT_CR) .157
10.5.2 Wake-up Timer Prescaler Register (WUT_PR) 157
10.5.3 Wake-up Timer Pre-load Value Register (WUT_VR)158
10.5.4 Wake-up Timer Counter Register (WUT_CNT) 158
10.5.5 Wake-up Timer Status Register (WUT_SR) .158
10.5.6 Wake-up Timer Mask Register (WUT_MR) .159

10.6 WUT Register Map .160
11 REAL TIME CLOCK (RTC) .161

11.1 Introduction .161
11.2 Main Features .161
11.3 Functional Description .162

11.3.1 Overview .162
11.3.2 Free-running mode .162
11.3.3 Configuration mode .162

11.4 Register description .164
11.4.1 RTC Control Register High (RTC_CRH) .164
11.4.2 RTC Control Register Low (RTC_CRL) .165
11.4.3 RTC Prescaler Load Register High (RTC_PRLH) 167
11.4.4 RTC Prescaler Load Register Low (RTC_PRLL)168
11.4.5 RTC Prescaler Divider Register High (RTC_DIVH) 168
11.4.6 RTC Prescaler Divider Register Low (RTC_DIVL)169
11.4.7 RTC Counter Register High (RTC_CNTH) .169
11.4.8 RTC Counter Register Low (RTC_CNTL) .169
11.4.9 RTC Alarm Register High (RTC_ALRH) .170
11.4.10 RTC Alarm Register Low (RTC_ALRL) .170

11.5 RTC Register map .171
12 WATCHDOG TIMER (WDG) .172

12.1 Introduction .172
12.2 Main Features .172
12.3 Functional Description .172

12.3.1 Free-running Timer mode .172
12.3.2 Watchdog mode .173

12.4 Register description .174
12.4.1 WDG Control Register (WDG_CR) .174
12.4.2 WDG Prescaler Register (WDG_PR) .174
12.4.3 WDG Preload Value Register (WDG_VR) .175
12.4.4 WDG Counter Register (WDG_CNT) .175
12.4.5 WDG Status Register (WDG_SR) .176
6/349

Table of Contents
12.4.6 WDG Mask Register (WDG_MR) .176
12.4.7 WDG Key Register (WDG_KR) .177

12.5 WDG Register Map .177
13 TIMEBASE TIMER (TB) .178

13.1 Main Features .178
13.2 Functional Description .178

13.2.1 Free-running Timer mode .179
13.3 Register Description .180
13.4 TB Register Map .183

14 TIMER (TIM) .184
14.1 Introduction .184
14.2 Main Features .184
14.3 Functional Description .185

14.3.1 Counter .185
14.3.2 External Clock .187
14.3.3 Input Capture .188
14.3.4 Procedure .188
14.3.5 Output Compare .190
14.3.6 Forced Compare Mode .192
14.3.7 One Pulse Mode .193
14.3.8 Pulse Width Modulation Mode .195
14.3.9 Pulse Width Modulation Input .198

14.4 Interrupt Management .201
14.4.1 Use of interrupt channels .201

14.5 DMA function .201
14.6 Register Description .202

14.6.1 Input Capture A Register (TIMn_ICAR) .202
14.6.2 Input Capture B Register (TIMn_ICBR) .202
14.6.3 Output Compare A Register (TIMn_OCAR) .202
14.6.4 Output Compare B Register (TIMn_OCBR) .203
14.6.5 Counter Register (TIMn_CNTR) .203
14.6.6 Control Register 1 (TIMn_CR1) .203
14.6.7 Control Register 2 (TIMn_CR2) .205
14.6.8 Status Register (TIMn_SR) .206

14.7 TIM Register Map .207
15 PULSE WIDTH MODULATOR (PWM) .208

15.1 Introduction .208
15.2 Main Features .208
15.3 Functional Description .209

15.3.1 PWM operating mode .209
7/349

Table of Contents
15.3.2 Formulas .210
15.4 Register Description .212

15.4.1 Prescaler 0 Register (PWMn_PRS0) .212
15.4.2 Prescaler 1 Register (PWMn_PRS1) .212
15.4.3 PWM Enable Register (PWMn_PEN) .212
15.4.4 PWM Output Polarity Level Selection (PWMn_PLS) 213
15.4.5 PWM Compare Period Interrupt (PWMn_CPI)213
15.4.6 PWM Interrupt Mask Register (PWMn_IM) .213
15.4.7 PWM Output Duty Register (PWMn_DUT) .214
15.4.8 PWM Output Period Register (PWMn_PER) .214

15.5 PWM Register Map .215
16 CAN CONTROLLER (CAN) .216

16.1 Introduction .216
16.2 Main Features .217
16.3 Block Diagram .218
16.4 Functional Description .219

16.4.1 Software Initialization .219
16.4.2 CAN Message Transfer .219
16.4.3 Disabled Automatic Retransmission Mode .220
16.4.4 Test Mode .220
16.4.5 Silent Mode .221
16.4.6 Loop Back Mode .221
16.4.7 Loop Back combined with Silent Mode .222
16.4.8 Basic Mode .223
16.4.9 Software Control of CAN_TX Pin .223

16.5 Register Description .224
16.6 CAN Register Map .225

16.6.1 CAN Interface Reset State .227
16.6.2 CAN Protocol Related Registers .227
16.6.3 Message Interface Register Sets .233
16.6.4 Message Handler Registers .243

16.7 CAN Communications .247
16.7.1 Managing Message Objects .247
16.7.2 Message Handler State Machine .247
16.7.3 Configuring a Transmit Object .251
16.7.4 Updating a Transmit Object .251
16.7.5 Configuring a Receive Object .252
16.7.6 Handling Received Messages .252
16.7.7 Configuring a FIFO Buffer .253
16.7.8 Receiving Messages with FIFO Buffers .253
8/349

Table of Contents
16.7.9 Handling Interrupts .256
16.7.10 Configuring the Bit Timing .257

17 I2C INTERFACE MODULE (I2C) .268
17.1 Main Features .268
17.2 General Description .269

17.2.1 Mode Selection .269
17.2.2 Communication Flow .269
17.2.3 SDA/SCL Line Control .270

17.3 Functional Description .272
17.3.1 Slave Mode .272
17.3.2 Master Mode .274

17.4 Interrupts .278
17.5 Register Description .279

17.5.1 I2C Control Register (I2Cn_CR) .279
17.5.2 I2C Status Register 1 (I2Cn_SR1) .280
17.5.3 I2C Status Register 2 (I2Cn_SR2) .282
17.5.4 I2C Clock Control Register (I2Cn_CCR) .284
17.5.5 I2C Extended Clock Control Register (I2Cn_ECCR) 285
17.5.6 I2C Own Address Register 1 (I2Cn_OAR1) .285
17.5.7 I2C Own Address Register 2 (I2Cn_OAR2) .286
17.5.8 I2C Data Register (I2Cn_DR) .287

17.6 I2C Register Map .288
18 BUFFERED SPI (BSPI) .289

18.1 Main Features .289
18.2 Functional Description .289

18.2.1 BSPI Pin Description .290
18.2.2 BSPI Operation .291
18.2.3 Transmit FIFO .294
18.2.4 Receive FIFO .294
18.2.5 Start-up Status .294
18.2.6 Clocking problems and clearing of the shift-register295
18.2.7 Interrupt control .295
18.2.8 DMA Interface .295

18.3 Register description .297
18.3.1 BSPI Control/Status Register 1 (BSPIn_CSR1)297
18.3.2 BSPI Control/Status Register 2 (BSPIn_CSR2)299
18.3.3 BSPI Control/Status Register 3 (BSPIn_CSR3)301
18.3.4 BSPI Master Clock Divider Register (BSPIn_CLK) 303
18.3.5 BSPI Transmit Register (BSPIn_TXR) .303
18.3.6 BSPI Receive Register (BSPIn_RXR) .304
9/349

Table of Contents
18.4 BSPI Register map .305
19 UART .306

19.1 Introduction .306
19.2 Main Features .306
19.3 Functional Description .307

19.3.1 Transmission .308
19.3.2 Reception .309
19.3.3 Timeout Mechanism .310
19.3.4 Baud Rate Generation .311
19.3.5 Interrupt Control .312
19.3.6 Using the UART Interrupts when FIFOs are Disabled 313
19.3.7 Using the UART Interrupts when FIFOs are Enabled314

19.4 Register Description .315
19.4.1 UART BaudRate Register (UARTn_BR) .315
19.4.2 UART TxBuffer Register (UARTn_TxBUFR) .315
19.4.3 UART RxBuffer Register (UARTn_RxBUFR) .316
19.4.4 UART Control Register (UARTn_CR) .317
19.4.5 UART IntEnable Register (UARTn_IER) .318
19.4.6 UART Status Register (UARTn_SR) .319
19.4.7 UART Timeout Register (UARTn_TOR) .321
19.4.8 UART TxReset Register (UARTn_TxRSTR) .321
19.4.9 UART RxReset Register (UARTn_RxRSTR) .321

19.5 UART Register Map .322
20 A/D CONVERTER (ADC) .323

20.1 Main Characteristics .323
20.2 Introduction .323
20.3 Functional Description .325

20.3.1 Start of Calibration .325
20.3.2 Start of Conversion .325
20.3.3 Operating Modes .325
20.3.4 Input Channel selection .326
20.3.5 Analog Clock Prescaler .326
20.3.6 Injected conversion chain .328
20.3.7 Analog watchdogs .328
20.3.8 DMA functionality .329
20.3.9 Interrupts .329
20.3.10 Power down mode .330
20.3.11 Auto-clock-off mode .330

20.4 Register Description .331
20.4.1 ADC Data Register (ADC_Dx) .331
10/349

Table of Contents
20.4.2 Control Logic Register 0 (ADC_CLR0) .331
20.4.3 Control Logic Register 1 (ADC_CLR1) .332
20.4.4 Control Logic Register 2 (ADC_CLR2) .333
20.4.5 Control Logic Register 3 (ADC_CLR3) .334
20.4.6 Control Logic Register 4 (ADC_CLR4) .334
20.4.7 Threshold Registers A (ADC_TRA0 ..3) .335
20.4.8 Threshold Registers B (ADC_TRB0 ..3) .335
20.4.9 DMA Channel Enable Register (ADC_DMAR)336
20.4.10 DMA Global Enable Register (ADC_DMAE) .336
20.4.11 Pending Bit Register (ADC_PBR) .336
20.4.12 Interrupt Mask Register (ADC_IMR) .338

20.5 ADC Register Map .341
21 APB BRIDGE .342

21.1 Register Description .342
21.2 APB Register map .346

22 JTAG INTERFACE .347
22.1 Pins and Reset status .347

23 REVISION HISTORY .348
11/349

Index
Index of Registers

A

ADC_CLR0... 331
ADC_CLR1... 332
ADC_Dx .. 331
APBn_BSR... 342
APBn_OMR.. 344
APBn_TOER.. 345
APBn_TOR... 343
ARB_CTLR... 152
ARB_PRIOR .. 151
ARB_TOR... 151

B

BSPIn_CLK .. 303
BSPIn_CSR1 ... 297
BSPIn_CSR2 ... 299
BSPIn_CSR3 ... 301
BSPIn_RXR.. 304

C

CANn_BRPR ... 232
CANn_BTR... 231
CANn_CR... 227
CANn_ERR .. 230
CANn_IDR.. 243
CANn_IFn_A1R....................................... 237
CANn_IFn_A2R....................................... 238
CANn_IFn_CMR 235
CANn_IFn_CRR...................................... 234
CANn_IFn_DAnR.................................... 238
CANn_IFn_DBnR.................................... 238
CANn_IFn_M1R 237
CANn_IFn_M2R 237
CANn_IFn_MCR 238
CANn_IPnR.. 245
CANn_MVnR ... 246
CANn_NDnR.. 244
CANn_SR ... 228

CANn_TESTR ... 231
CANn_TxRnR .. 244
CFG_DIDR ... 63
CFG_EITE0.. 64
CFG_EITE1.. 64
CFG_EITE2.. 65
CFG_ESPR.. 73
CFG_PCGR0... 66
CFG_PCGR1... 68
CFG_PCGRB0 .. 69
CFG_PCGRB1 .. 70
CFG_PECGR0 .. 71
CFG_PECGR1 .. 72
CFG_R0.. 61
CFG_R1.. 62
CFG_TIMSR .. 70
CMU_CTRL.. 41
CMU_EOCV... 46
CMU_FDISP .. 39
CMU_FRH.. 40
CMU_FRL... 40
CMU_IM.. 45
CMU_IS .. 44
CMU_RCCTL... 39
CMU_STAT.. 43
CMU_WE.. 46

D

DMAn_CLR .. 145
DMAn_CTRL3 ... 139
DMAn_CTRLx.. 137
DMAn_DECURRHx 142
DMAn_DECURRLx................................. 142
DMAn_DESTHx....................................... 137
DMAn_DESTLx 136
DMAn_MASK... 144
DMAn_MAXx ... 137
DMAn_SOCURRHx................................ 141
DMAn_SOCURRLx 141
DMAn_SOURCEHx 136
DMAn_SOURCELx................................. 136
DMAn_STATUS 146
DMAn_TCNTx ... 143
12/349

1

Index
E

EIC_CICR... 104
EIC_CIPR ... 105
EIC_FIER.. 106
EIC_FIPR.. 108
EIC_FIR .. 110
EIC_ICR.. 103
EIC_IER0.. 111
EIC_IER1.. 112
EIC_IPR0.. 113
EIC_IPR1.. 115
EIC_IVR.. 108
EIC_SIRn.. 116

I

I/O Port Register
PC0.. 84
PC1.. 84
PC2.. 84
PD .. 85

I2C_CCR .. 284
I2C_CR ... 279
I2C_DR ... 287
I2C_ECCR.. 285
I2C_OAR1 .. 285
I2C_OAR2 .. 286
I2C_SR1 ... 280
I2C_SR2 ... 282

P

PRCCU_ CCR ... 52
PRCCU_CFR... 55
PRCCU_PLLCR .. 57
PRCCU_RTCPR 59
PRCCU_SMR .. 58
PRCCU_VRCTR 53
PWMn_CPI... 213
PWMn_DUT ... 214
PWMn_IM... 213
PWMn_PEN ... 212

PWMn_PER ... 214
PWMn_PLS.. 213
PWMn_PRS0... 212
PWMn_PRS1... 212

R

RTC_ALRH .. 170
RTC_ALRL ... 170
RTC_CNTH.. 169
RTC_CNTL... 169
RTC_CRH .. 164
RTC_CRL ... 165
RTC_DIVH.. 168
RTC_DIVL .. 169
RTC_PRLH .. 167
RTC_PRLL ... 168

T

TBn_CNT.. 181
TBn_CR .. 180
TBn_MR.. 182
TBn_PR .. 180
TBn_SR .. 182
TBn_VR .. 181
TIMn_CNTR ... 203
TIMn_CR1 .. 203
TIMn_CR2 .. 205
TIMn_ICAR... 202
TIMn_ICBR... 202
TIMn_OCAR... 202
TIMn_OCBR... 203
TIMn_SR... 206

U

UART_BR... 315
UART_CR... 317
UART_IER.. 318
UART_RxBUFR....................................... 316
UART_SR... 319
UART_TOR.. 321
UART_TxBUFR....................................... 315
13/349

1

Index
UART_TxRSTR 321

W

WDG_CNT.. 175
WDG_CR .. 174
WDG_KR .. 177
WDG_MR.. 176
WDG_PR .. 174
WDG_SR .. 176
WDG_VR .. 175
WIU_CTRL ... 125

WIU_INTR .. 128
WIU_MR.. 127
WIU_PR .. 129
WIU_TR .. 128
WUT_CNT .. 158
WUT_CR... 157
WUT_MR .. 159
WUT_PR... 157
WUT_SR... 158
WUT_VR... 158
14/349

1

STR73xF MICROCONTROLLER - MEMORY
2 MEMORY

2.1 Memory Organization

Program memory, data memory, registers and I/O ports are organized within the same linear
address space of 4 GBytes.

The bytes are treated in memory as being in Little Endian format. The lowest numbered byte
in a word is considered the word’s least significant byte and the highest numbered byte the
most significant.

Figure 1 on page 16 shows the STR73x Memory Map in Boot mode 1 after reset. For the
detailed mapping of peripheral registers, please refer to the related chapters.

The addressable memory space is divided into 8 main blocks, selected by the three most
significant bits of the memory address bus A[31:0]:

■ 000 = Boot Memory

■ 001 = Reserved

■ 010 = System Configuration Registers (CFG)

■ 011 = Reset and Clock Control Unit (PRCCU)

■ 100 = Flash Memory

■ 101 = RAM Memory

■ 110 = Reserved

■ 111 = APB Bridges including Enhanced Interrupt Controller

STR73x devices have no external memory interface. All memory spaces that are not
allocated to on-chip memories and peripherals are considered “reserved”.

Most reserved memory spaces (gray shaded areas in the Figure 1 on page 16) are
protected from access by user code. When an access this memory space is attempted, an
ABORT signal is generated. Depending on the type of access, the ARM processor will enter
“prefetch abort” state (Exception vector 0x0000_000C) or “data abort” state (Exception
vector 0x0000_0010). It is up to the application software to manage these abort exceptions.
15/349

1

STR73xF MICROCONTROLLER - MEMORY
2.1.1 Memory Map

Figure 1. Memory Map

FLASH Memory Space
64K/128/256 Kbytes

APB BRIDGE 1 REGS

Addressable Memory Space

0

1

2

3

4

1K

5

6

7

0x1FFF FFFF
0x2000 0000

0x3FFF FFFF
0x4000 0000

0x5FFF FFFF
0x6000 0000

0x7FFF FFFF
0x8000 0000

0x9FFF FFFF
0xA000 0000

0xBFFF FFFF
0xC000 0000

0xDFFF FFFF
0xE000 0000

0xFFFF FFFF

0xFFFF 8000

0xFFFF 83FF
0xFFFF 8400

0xFFFF 87FF
0xFFFF 8800

0xFFFF 8BFF
0xFFFF 8C00

0xFFFF 8FFF
0xFFFF 9000

0xFFFF 93FF
0xFFFF 9400

0xFFFF 97FF
0xFFFF 9800

0xFFFF 9BFF
0xFFFF 9C00

0xFFFF 9FFF
0xFFFF A000

0xFFFF A3FF

0xFFFF A800

0xFFFF ABFF
0xFFFF AC00

0xFFFF AFFF
0xFFFF B000

0xFFFF C3FF
0xFFFF C400

0xFFFF C7FF
0xFFFF C800

0xFFFF CBFF
0xFFFF CC00

0xFFFF D000

0xFFFF FFFF

1K

1K

1K

1K

1K

1K

1K

1K

1K

1K

1K

1K

0x0010 0017

0x6000 03FF

0x0000 0000

APB Memory Space
4 Gbytes 32 Kbytes

FLASH (1) 64K/128K/256K

PRCCU 1K

APB TO ARM7
BRIDGE0xFFFF 8000

32K EIC
0xFFFF FC00

1K

APB BRIDGE 0 REGS

0xFFFF FBFF

0xFFFF CFFF

CONFIG. REGS 64B

Drawing not to scale

0x4000 003F

FLASH
0x8010 0017

64K/128K/256K 0xFFFF C000

0xFFFF D400
0xFFFF D3FF

0xFFFF D800
0xFFFF D7FF

0xFFFF DC00
0xFFFF DBFF

0xFFFF E000
0xFFFF DFFF

0xFFFF E400
0xFFFF E3FF

0xFFFF E800
0xFFFF E7FF

0xFFFF EC00
0xFFFF EBFF

1K

1K

1K

1K

1K

1K

1K

1K

1K

1K

1K

1K

I2C 0

reserved

reserved

reserved

TB 0-2

UART 0

UART 1

TIM 0

TIM 1

CAN 0

CAN 1

CAN 2

PWM 0-5

GP I/O 0-6

BSPI 0

BSPI 1

BSPI 2

DMA 0-3

RTC

ADC
0xFFFF F800
0xFFFF F7FF

0xFFFF F400
0xFFFF F3FF

0xFFFF F000
0xFFFF EFFF

0xFFFF B3FF
0xFFFF B400

0xFFFF B7FF
0xFFFF B800

RAM 16K

1K
0xFFFF BBFF

TIM 2

TIM 3

TIM 4

TIM 5-9

reserved

WAKEUP

reserved 1K
0xFFFF BFFF

0xFFFF BC00

I2C 1

access to gray shaded area will return an ABORT

B0F5(3)

0x8000 1FFF
0x8000 0000

0x8000 2000
0x8000 3FFF
0x8000 4000
0x8000 5FFF
0x8000 6000
0x8000 7FFF
0x8000 8000

0x8000 FFFF
0x8001 0000

0x8001 FFFF

0x8010 0000
0x8010 0017
0x8010 C000

0x8010 DFFF

8K

8K
8K
8K

32K

8K

20B

64K

B0F4

Flash registers

NATIVE ARBITER 16B

B0F6(2)

0x8002 0000

0x8002 FFFF

64K

B0F7(2)

0x8003 0000

0x8003 FFFF

64K

UART 2

UART 3

0xFFFF 9E00

0xFFFF A200

CMU0xFFFF F600

0x2000 000F

System Memory

B0F3

B0F2

B0F1

B0TF

1K

1K

1K

(1) FLASH aliased at 0x0000 0000h by system decoder for booting with valid instruction upon RESET from Block B0 (8 Kbytes)

0xFFFF A400

0xFFFF A7FF
1KWDG

WAKEUPTIM0xFFFF A600

0xA000 3FFF

(2) Only available in STR73xZ2/V2
(3) Only available in STR73xZ2/V2 and STR73xZ1/V1
16/349

1

STR73xF MICROCONTROLLER - MEMORY
2.1.1.1 Register Base Addresses

2.1.1.2 APB Memory Map

Table 1. Main Block Register base addresses
STR73x Main Blocks Base Address Block Register Map

Configuration Registers (CFG) 0x4000 0000 Section 4.5

Power, Reset and Clock Control Unit
(PRCCU)

0x6000 0000
Section 3.6.8

Flash 0x8000 0000 See STR7xx Family Flash
Programming Reference Manual

Table 2. APB Memory Map

Sub
Page

SubPage
Boundary
Addresses

Peripheral
Peripheral
Boundary
Addresses

Bus
Access
Width

Register Map

0
0xFFFF 8000 APB Bridge 0

Registers
0xFFFF 8000

32-bit Section 21.2
0xFFFF 83FF 0xFFFF 800F

1
0x FFFF 8400

I2C 0
0x FFFF 8400

8 bit
Section 17.6

0x FFFF 87FF 0xFFFF 841F

2
0x FFFF 8800

I2C 1
0x FFFF 8800

8 bit
0x FFFF 8BFF 0xFFFF 881F

3
0x FFFF 8C00

reserved
0x FFFF 8FFF

4
0x FFFF 9000

reserved
0x FFFF 93FF

5
0x FFFF 9400

reserved
0x FFFF 97FF

6
0x FFFF 9800
0x FFFF 9BFF

Timebase (TB)
Timer 0

0x FFFF 9800
16 bit

Section 13.4

0x FFFF 9817

Timebase (TB)
Timer 1

0x FFFF 9900
16 bit

0x FFFF 9917
Timebase (TB)

Timer 2
0x FFFF 9A00

16 bit
0x FFFF 9A17

7
0x FFFF 9C00
0x FFFF 9FFF

UART 0
0x FFFF 9C00

16 bit

Section 19.5

0x FFFF 9C27

UART 2
0x FFFF 9E00

16 bit
0x FFFF 9FFF

8
0x FFFF A000
0x FFFF A3FF

UART 1
0x FFFF A000

16 bit
0x FFFF A027

UART 3
0x FFFF A200

16 bit
0x FFFF A3FF
17/349

1

STR73xF MICROCONTROLLER - MEMORY
9
0x FFFF A400
0x FFFF A7FF

Watchdog (WDG)
0x FFFF A400

16 bit Section 12.5
0x FFFF A41B

Wake-up Timer
(WUT)

0x FFFF A600
16 bit Section 10.6

0x FFFF A617

10
0x FFFF A800

TIM 0
0x FFFF A800

16 bit

Section 14.7

0x FFFF ABFF 0x FFFF A81F

11
0x FFFF AC00

TIM 1
0x FFFF AC00

16 bit
0x FFFF AFFF 0x FFFF AC1F

12
0x FFFF B000
0x FFFF B3FF

TIM 5
0x FFFF B000

16 bit
0x FFFF B01F

TIM 6
0x FFFF B080

16 bit
0x FFFF B09F

TIM 7
0x FFFF B100

16 bit
0x FFFF B11F

TIM 8
0x FFFF B180

16 bit
0x FFFF B19F

TIM 9
0x FFFF B200

16 bit
0x FFFF B21F

13
0x FFFF B400

reserved
0x FFFF B7FF

14
0x FFFF B800 Wake-up/Inter-

rupt Unit (WIU)
0x FFFF B800

32 bit Section 7.9.4.6
0x FFFF BBFF 0x FFFF B813

15
0x FFFF BC00

reserved
0x FFFF BFFF

16
0x FFFF C000 APB Bridge 1

Registers
0xFFFF C000

32-bit Section 21.2
0x FFFF C3FF 0xFFFF C00F

17
0x FFFF C400

CAN 0
0x FFFF C400

16 bit

Section 16.6

0x FFFF C7FF 0x FFFF C57F

18
0x FFFF C800

CAN 1
0x FFFF C800

16 bit
0x FFFF CBFF 0x FFFF C97F

19
0x FFFF CC00

CAN 2
0x FFFF CC00

16 bit
0x FFFF CFFF 0x FFFF CFFF

Table 2. APB Memory Map

Sub
Page

SubPage
Boundary
Addresses

Peripheral
Peripheral
Boundary
Addresses

Bus
Access
Width

Register Map
18/349

1

STR73xF MICROCONTROLLER - MEMORY
20
0x FFFF D000
0x FFFF D3FF

PWM 0
0x FFFF D000

16 bit

Section 15.5

0x FFFF D023

PWM 1
0x FFFF D040

16 bit
0x FFFF D063

PWM 2
0x FFFF D080

16 bit
0x FFFF D0A3

PWM 3
0x FFFF D0C0

16 bit
0x FFFF D0E3

PWM 4
0x FFFF D100

16 bit
0x FFFF D123

PWM 5
0x FFFF D140

16 bit
0x FFFF D163

21
0x FFFF D400
0x FFFF D7FF

GP I/O - Port 0
0x FFFF D400

16 bit

Section 6.2.1

0x FFFF D40F

GP I/O - Port 1
0x FFFF D410

16 bit
0x FFFF D41F

GP I/O - Port 2
0x FFFF D420

16 bit
0x FFFF D42F

GP I/O - Port 3
0x FFFF D430

16 bit
0x FFFF D43F

GP I/O - Port 4
0x FFFF D440

16 bit
0x FFFF D44F

GP I/O - Port 5
0x FFFF D450

16 bit
0x FFFF D45F

GP I/O - Port 6
0x FFFF D460

16 bit
0x FFFF D46F

22
0x FFFF D800

BSPI 0
0x FFFF D800

16 bit

Section 18.4

0x FFFF DBFF 0x FFFF D817

23
0x FFFF DC00

BSPI 1
0x FFFF DC00

16 bit
0x FFFF DFFF 0x FFFF DC17

24
0x FFFF E000

BSPI 2
0x FFFF E000

16 bit
0x FFFF E3FF 0x FFFF E017

25
0x FFFF E400

TIM 2
0x FFFF E400

16 bit

Section 14.7

0x FFFF E7FF 0x FFFF E41F

26
0x FFFF E800

TIM 3
0x FFFF E800

16 bit
0x FFFF EBFF 0x FFFF E81F

27
0x FFFF EC00

TIM 4
0x FFFF EC00

16 bit
0x FFFF EFFF 0x FFFF EC1F

Table 2. APB Memory Map

Sub
Page

SubPage
Boundary
Addresses

Peripheral
Peripheral
Boundary
Addresses

Bus
Access
Width

Register Map
19/349

1

STR73xF MICROCONTROLLER - MEMORY
28
0x FFFF F000
0x FFFF F3FF

DMA 0
0x FFFF F000

16 bit

Section 8.6

0x FFFF F0FB

DMA 1
0x FFFF F100

16 bit
0x FFFF F1FB

DMA 2
0x FFFF F200

16 bit
0x FFFF F2FB

DMA 3
0x FFFF F300

16 bit
0x FFFF F3FB

29
0x FFFF F400
0x FFFF F7FF

Realtime Clock
(RTC)

0x FFFF F400
16 bit Section 11.5

0x FFFF F427

Clock Monitor Unit
(CMU)

0x FFFF F600
16 bit Section 3.5.9

0x FFFF F61F

30
0x FFFF F800 Analog/Digital

Converter (ADC)
0x FFFF F800

16 bit Section 20.5
0x FFFF FBFF 0x FFFF F94F

31
0x FFFF FC00 Enhanced Inter-

rupt Controller
(EIC)

0x FFFF FC00
32 bit Section 7.7

0x FFFF_FFFF 0x FFFF FD5F

Table 2. APB Memory Map

Sub
Page

SubPage
Boundary
Addresses

Peripheral
Peripheral
Boundary
Addresses

Bus
Access
Width

Register Map
20/349

1

STR73xF MICROCONTROLLER - MEMORY
2.1.2 Boot Memory

The boot mode is selected by the M0 and M1 pins on exit from Reset

■ User Boot Mode 1: In this mode, Flash sector B0F0 is mapped in both Block 010 and
Block 000 of the memory map. The system boots from block 0, segment 0 of Flash (normal
operation)

■ User Boot Mode 2: This mode has the same mapping as User Boot mode 1 except Flash
sector B0F1 is reserved, any attempt to access address range 0x8000 2000 to 0x8000
3FFF will generate an ABORT.

■ SystemMemory Boot mode: This mode has the same mapping as User Flash boot mode
1, except that the SystemMemory flash sector is accessible in address range 0x8010 C000
to 0x8010 DFFF and is aliased in Block 0 This allows the system to boot from
SystemMemory (for initial Flash Programming).

2.1.3 RAM

The STR73x features 16 KBytes of static RAM. It can be accessed as bytes, half-words (16
bits) or full words (32 bits). The RAM start address is 0xA000 0000.

You can remap the RAM on-the-fly to Block 000, using the REMAP bit in the CFG_R0
register.

In REMAP mode the RAM start address is mapped both at 0x0000 0000h and at 0xA000
0000h.

This is particularly useful for managing interrupt vectors and routines, you can copy them to
RAM, modify and access them even when Flash is not available (i.e. during Flash
programming or erasing).
21/349

1

STR73xF MICROCONTROLLER - MEMORY
2.1.4 Flash

The Flash Module consists of a single bank (Bank 0) and is organized in sectors as shown in
Table 3.

Sectors B0F0-B0F7 can be used as Boot sectors; they can be write protected against
unwanted write operations.

Flash memory can be protected against different types of unwanted access (read/write/
erase).

You can program Flash memory using In-Circuit Programming and In-Application
programming. Refer to the STR7xx Flash Programming Reference Manual .

2.1.4.1 Flash Power Down mode

Depending on your application requirements, you can optionally power down the Flash in
LPWFI mode (See Section 3.4.3). Otherwise, in LPWFI mode, the Flash automatically
reduces its power consumption and can be read immediately after wake-up.

If you need even lower power consumption, you can put the Flash in Power-Down Mode. You
do this by configuring the PWD bit in the FLASH_CR0 register. The consumption is
drastically reduced, but after wake-up from LPWFI mode, a delay (tPD) is inserted
automatically to ensure the Flash is operational before the CPU restarts.

Table 3. Flash Module Organisation

Bank Sector Addresses Size (bytes)

Bank 0

256 Kbytes

Program Memory

+ 8K
SystemMemory

Bank 0 Flash Sector 0 (B0F0) 0x00 0000 - 0x00 1FFF 8K

Bank 0 Flash Sector 1 (B0F1) 0x00 2000 - 0x00 3FFF 8K

Bank 0 Flash Sector 2 (B0F2) 0x00 4000 - 0x00 5FFF 8K

Bank 0 Flash Sector 3 (B0F3) 0x00 6000 - 0x00 7FFF 8K

Bank 0 Flash Sector 4 (B0F4) 0x00 8000 - 0x00 FFFF 32K

Bank 0 Flash Sector 5 (B0F5) 0x01 0000 - 0x01 FFFF 64K2)

Bank 0 Flash Sector 6 (B0F6) 0x02 0000 - 0x02 FFFF 64K1)

Bank 0 Flash Sector7 (B0F7) 0x03 0000 - 0x03 FFFF 64K1)

Bank 0 Flash SystemMemory 0x10 C000 - 0x10 DFFF 8K

Flash Control
Registers

Flash Control/Data Registers 0x10 0000 - 0x0010 0017 24

Flash Protection Registers 0x10 DFB0 - 0x0010 DFBC 12

1)Not available in 64K and 128K versions.
2)Not available in 64K versions.
22/349

1

STR73xF MICROCONTROLLER - MEMORY
2.2 Boot Configuration

The following sections describe the possible device Boot modes. In the STR73x, up to three
different modes are available and can be enabled by means of two dedicated Input pins M1
and M0, as shown in Table 4.

2.2.1 SystemMemory Boot Mode

SystemMemory Boot Mode is normally used when the FLASH is to be programmed for the
first time. In this case the system boot is performed from SystemMemory sector. This mode
allows to initialize the FLASH programming via a serial interface.

The SystemMemory code then loads a FLASH programming code (called “loader”) into
internal RAM via one of the serial interfaces (JTAG, UART0, CAN0, depending on the user
environment).

Table 4. Boot modes
M1 M0 Boot Mode Memory Mapping Note

0 0 User Boot mode 1 FLASH sector B0F0 mapped at 0h
All FLASH sectors acessible except

SystemMemory sector

0 1 User Boot mode 2 FLASH sector B0F0 mapped at 0h FLASH B0F1 sector and SystemMem-
ory sector not accessible

1 0 SystemMemory SystemMemory mapped at 0h -

1 1 Reserved - -
23/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3 POWER, RESET AND CLOCKS

3.1 Power Supply

The chip is powered by an external 5V supply: VDD. All I/Os are 5V-capable. An internal
Voltage Regulator generates the supply voltage for core logic (V18 =1.8 V). The V18 pin must
be connected to an external stabilization capacitor (min. 10 uF max. 100nF).

In LPWFI mode the main voltage regulator can be powered off. In this mode, the low power
regulator takes over and supplies power to the on-chip peripherals selected by the
configuration registers.

The VDDA and VSSA pins supply the reference voltages for the A/D Converter.

Figure 2. Power Supply Overview

Note 1: Disconnected in LPWFI mode.

A/D converter

Low Power Voltage Regulator

VDDA

V18

VSSA

VDD

Main Voltage Regulator

Memory and I/Os

Core and Peripherals
V18

Peripherals active V18

in LPWFI mode

Note 1
24/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.2 Reset

The Reset Manager resets the MCU when one of the following events occurs:

– An external reset, initiated by a low level on the RSTIN pin
– A software reset, forced by setting the HALT bit in the PRCCU_SMR register (when ena-

bled by the SRESEN bit in the PRCCU_CCR register)
– A Watchdog end of count condition

– A voltage drop below the LVD threshold on V18.

The event causing the last reset is flagged in the PRCCU_CFR register: the corresponding
bit is set. An external reset will leave all these bits reset.

A reset overrides all other conditions and forces the system into reset state. During the reset
phase, the internal registers are set to their reset values, and the I/O pin are configured in
their reset state.

During the reset phase, the CMU automatically selects the RC oscillator clock (running at 2
MHz) as input clock to the PRCCU. Figure 3 on page 26 shows a timing diagram of the reset
phase. When the RSTIN pin goes high again, 404 RC-Oscillator clock cycles (CKOSC) plus
7 CLOCK2 cycles are counted before exiting reset state (plus eventually one CKOSC period,
depending on the delay between the rising edge of the RSTIN pin and the first rising edge of
CKOSC). It corresponds to about 209 us at 2 MHz RC-Oscillator frequency.

At the end of the Reset phase, the Program Counter is loaded with the value 0000 0000h
and executes the instruction located at address 0000 0000h.

As shown in Figure 3 on page 26, after the RSTIN pin is released, 131 RC-Oscillator clock
pulses are counted before the internal H_RESET signal is deasserted HIGH. The H_RESET
signal is used to keep the Flash memory controller in reset state. When it goes high, the
Flash memory controller starts to initialize the Flash. Then 418 RC-Oscillator clock pulses
(404+14) after the RSTIN rising edge, the RESET1 signal is deasserted high, the clock
signal to CPU is produced (CPU is in run mode) while clock signals to peripherals are still
stretched low.

The peripherals are kept in reset state until their clocks are enabled by software. Figure 4 on
page 26 shows the timing of this part of the reset phase.

The peripheral are enabled individually by writing in the CFG_PCGR0 and CFG_PCGR1
registers (see section 4.3.1 on page 66).
25/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
Figure 3. Reset General Timing

Figure 4. Peripheral reset timings

RSTIN

H_RESET

RESET1

CPU CK

RC OSC ...

131 cycles

404 RC OSC cycles 14 RC OSC cycles

FLASH Memory
RESET

FLASH Memory
INIT PHASE

CPU + PERIPH
RESET CPU RUN

PERIPH. CK

Note: H_RESET and RESET1 are internal signals

7 CLOCK2 cycles

IN

CPU CK

PERIPH. CK

PH_RESET_xx

Write
CK_periph_en.x

to ‘0’

Write
CK_periph_en.x

to ‘1’

Peripheral Reset period

8 clock cycles
26/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.2.1 Reset Pin Timing

To improve the noise immunity of the device, the RESET input pin (RSTIN) has a Schmitt
trigger input circuit with hysteresis. Spurious RESET events are masked by an analog filter
which guarantees that any glitches (single pulse and burst) on the RSTIN pin shorter than
100 ns are not recognized by the system as valid RESET pulses.

A valid pulse on RSTIN should have a duration of at least 1 us to be sure that it is properly
latched by system. This means that all the pulses longer than 100 ns and shorter than 1 us
can have an unpredictable effect on the device: they can either be recognized as valid or
filtered.

Figure 5. Recommended Signal to be applied on RSTIN pin

3.2.2 LVD Reset

The internal LVDs (Low Voltage Detectors) guarantee the safe behavior of the device in the
event of a drop in the internal voltage. They hold the device in reset while the voltage is
below a specified threshold.

There are two separate LVD circuits in STR73x device: the first is embedded in the Voltage
Regulator logic, the second one in the Flash module. They work at different thresholds: in
particular, the Voltage Regulator LVD has a higher threshold than the Flash LVD. Both work
on internal V18; no internal LVD circuit is provided on VDD.

The following sections describe the behavior of the LVD circuits in two different situations: at
Power-on and during a voltage drop on V18. In both cases the LVD_INT bit in the PRCCU
CLK_FLAG register status will flag the occurrence of an LVD Reset.

VRSTIN

0.3 VDD

0.7 VDD

VDD

 1 µs Minimum
27/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.2.2.1 Power-on

At power-on, the RSTIN pin must be held low until VDD is stable, to guarantee proper system
initialization.

When VDD is still too low to allow the internal Voltage Regulator to provide a proper V18 to
the system, the LVD of the Voltage Regulator (monitoring V18 level) keeps the STR73x under
Reset, injecting an internal reset through the input section of the RSTIN pin. The input
Schmitt Trigger structure of the RSTIN pin is designed in such a way that, during this
transition period, even though RSTIN pin is not properly driven (for example when VDD is so
low that the external regulator is not able to provide a well defined reset signal to the STR73x
device), it internally forces a level ‘0’ to the core logic, independent from the logic level
externally present on the RSTIN pin (see next Figure 6 for pin schematic, and Figure 7 for
wave diagrams).

In this way the system sees a power-on reset and the flag register (PRCCU_CFR) is
configured accordingly (all Reset flags cleared).

Figure 6. Input structure of RSTIN pin

RSTIN
CORE
LOGIC

VDDVREG

LVD 1

V18

LVD 2

FLASH

VR_RST

RST

FL_RST
28/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
As soon as the internal Voltage Regulator is able to provide a sufficiently high voltage level to
the core logic (with VDD still ramping up, V18 reaches a value able to guarantee a proper
power supply to all the internal logic circuitry), the LVD stops keeping the system under
reset. The embedded Flash module is ready to start working properly, since its embedded
LVD has a lower threshold than the VREG one.

In next Figure 7 a timing diagram of a typical power-on sequence is shown.

Figure 7. Power-on event sequence

VDD

V18

VR_RST

RSTIN

FL_RST

RSTIN pin still floating (not driven)

RSTIN pin driven low
29/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.2.2.2 Voltage Drop

When a temporary power drop on V18 occurs (below the Voltage Regulator LVD threshold),
a system reset is generated. This Reset event is flagged in the PRCCU_CFR register. When
the voltage comes back above the threshold, the system restarts with the usual reset exit
sequence, and the software initialization routine can recognize the occurrence of a voltage
drop by checking the status of the PRCCU_CFR register.

Next Figure 8 shows how the system works during a typical voltage drop on V18.

Note Both LVD circuits has a typical hysteresis of about 100mV around the threshold
value to guarantee the proper noise margin.

Figure 8. Voltage Drop event sequence

Hysteresis is not shown in the drawing

LVD Reset

Flash LVD threshold

Voltage Regulator LVD thresholdV18

LVD Reset End of LVD ResetEnd of HVD Reset
30/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.3 Clocks

The STR73x internal clocks are derived from two sources:

■ External crystal (4 - 8MHz), connected to the XTAL1 and XTAL2 pins, or an external pulse
generator connected to XTAL2 (XTAL1 pin tied to VSS)

■ On-chip RC Oscillator or Backup oscillator (2 MHz or 32 kHz)

The two clock sources are managed by the CMU (Clock Monitor Unit).

Figure 9. CMU and PRCCU connections

At power-on, the CMU automatically selects the RC Backup Oscillator (fRC running at 2
MHz) as the input clock to the Reset and Clock Control Unit (PRCCU). Driven by the RC
oscillator, the STR73x can start executing code while the main oscillator clock (fOSC) is
stabilizing.

For the same reason, the CMU also selects fRC when the STR73x wakes-up from Stop and
Halt modes. The CMU can generate an interrupt after a programmable delay, allowing
software to switch over to the main oscillator when fOSC is stable. By default, the delay is
approximately 5 ms at 8 MHz fOSC.

The CMU switches automatically to the backup oscillator when a failure is detected on fOSC.

The internal RC-Oscillator drives the Wake-up Timer directly. All the other parts of the device
work with fMCLK, optionally prescaled by frequency dividers specific to each peripheral and
gated by the CFG_PCGR0/PCGRB0 and CFG_PCGR1/PCGRB1 registers.

Main
oscillator

fMCLK
RC

oscillator

CMU

PRCCU
XTAL1

XTAL2

fRC

fOSC

Wake-Up Timer

fEXT PRESCALER

PLL

Backup

fCLOCK1

31/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
fEXT can be selected by most timers as an input clock. It supplies an alternate time base from
the PLL clock frequency (fMCLK). It has the advantage of providing regular time frames
unaffected by any scaling effect if fMCLK is slowed-down to reduce power consumption.

3.3.1 RC Oscillator

The on-chip RC Oscillator provides two different operating modes:

■ Low frequency, low current mode.
In this mode the Oscillator has to be biased through the VBIAS pin by a 1.3 MΩ external
resistor connected to ground. The oscillator works at 32 kHz.

■ High frequency, high current mode.
In this mode the Oscillator is biased through an internal bias branch. The oscillator works
at 2 MHz. This is the operating mode after Reset and wake-up from STOP and Halt mode.

RC Oscillator mode can be associated with RUN and STOP modes of the STR73x using the
RCFR and RCFS bits in the CMU_CTRL register.
32/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.4 Low Power Modes

3.4.1 Slow Mode

In Slow mode, you reduce power consumption by slowing down the main clock. You can
continue to use all the device functions of the chip, but at reduced speed. The MCLK
frequency is changed to fCLOCK2 or fCLOCK2/16.

To enter and exit Slow mode, toggle the CSU_CKSEL and CK2_16 bits in the PRCCU_CFR
register. Selecting Slow mode turns off the PLL automatically. A maskable interrupt is
available, which is generated whenever the CK2_16 bit is switched.

3.4.2 WFI Mode

In WFI mode, you reduce power consumption by stopping the core. The program stops
executing, but peripherals are kept running and the register contents are preserved. The
device resumes, and execution restarts when an interrupt request is sent to the EIC.

To enter WFI mode, clear the WFI bit in the PRCCU_SMR register.

To wake-up from WFI mode an interrupt request must be acknowledged by the EIC.

3.4.3 LPWFI Mode

LPWFI (Low power wait for interrupt) is a combination of WFI and Slow modes. Refer to
Figure 10 for an example.

To enter LPWFI mode, first configure the WFI_CKSEL and LOPWFI bits in the
PRCCU_CCR to select the clock speed to be used in LPWFI mode.

Then clear the WFI bit in the PRCCU_SMR register.

To wake-up from LPWFI mode, an interrupt request must be acknowledged by the EIC.
MCLK then switches back automatically to CLOCK2.

3.4.4 Halt Mode

In Halt mode, all the oscillators present on the device are stopped, the power consumption is
almost nil (only leakage current).

To enter Halt mode first set the EN_HALT bit in the PRCCU_SMR register and clear the
SRESEN bit in the PRCCU_CCR register. Then set the HALT bit in the PRCCU_CCR
register.

Wake-up from Halt mode is only possible by means if an external or LVD reset.
33/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
Figure 10. Example of LPWFI mode using CLK2/16

User Program

Clear WFI bit

PROGRAM FLOW MCLK FREQUENCY

Interrupt

PLL multiply factor

Divider factor set

Wait for the PLL to lock

Wait For Interrupt

No code is executed until

Interrupt serviced

set to 12

 to 1, and PLL turned ON

 an interrupt is requested

Low Power Mode enabled

2 MHz

24 MHz

2 MHz

24 MHz

* T1 = PLL lock-in time

T1*

T1*

fOSC = 4 MHz, VDD = 4.5 V min.

WAIT

CSU_CKSEL ← 1 PLL is system clock source

 PLL switched on

125 KHz

in WFI state

User Program

activated

PLL is system clock source

Wait for the PLL to lockWAIT

LPOWFI ← 1

WFI status

Interrupt Routine

CSU_CKSEL ← 1

DX[2:0] ← 000

MX[1:0] ← 01

Reset State

CLK2/16 selected and PLL
automatically

Begin

 CLOCK2 selected

 stopped

Execution of user program
resumes at full speed
34/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.4.5 Stop Mode

Stop mode stops all the oscillators without resetting the device, preserving the device status
(except the CSU_CKSEL and the STOP_I bits in PRCCU_CFR register).

To enter Stop mode, perform the Stop Sequence via the Wake-Up Unit WIU (refer to Section
7.9). The device will remain in Stop mode until a wake-up line is asserted to restart program
execution.

On wake-up from Stop mode, the CMU automatically selects the 2 MHz RC-Oscillator clock
as input clock to the PRCCU.

When the wake-up event is acknowledged, user code execution restarts 400 RC-Oscillator
cycles after the wake-up event (equivalent to 200 µs with a 2 MHz RC-Oscillator clock
frequency).

On wake-up from Stop mode, the STOP_I bit in the PRCCU_CFG register is set, to indicate
that a wake-up from Stop mode has occurred. An interrupt is generated, if enabled

Reset has priority over Stop; so, if the system is in Stop mode and a reset occurs, the
oscillator restarts and goes through the reset sequence. A new Stop condition can occur
only after MCLK restarts.
35/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.5 Clock Monitor Unit (CMU)

3.5.0.1 Introduction

The CMU has three input clocks:

– fOSC from the main oscillator

– fRC from the backup oscillator

– MCLK from the PRCCU

CKOUT is the CMU output clock to the PRCCU.

When the CMU is powered on, fRC clock is sent out as CKOUT by default.

Figure 11 shows the block diagram of the Clock Monitor Unit.

Figure 11. CMU block diagram

MCLK

FREQUENCY
METERfPLLOUT

fOSC

CKOUT

OCNT Counter
EOC interrupt

RESET

FLL interrupt

Fcksys > hfref or

Fcksys < lfref

0

1

0

1
fRC

fOSC

CMU_FRH

CMU_FRL

Fcksys = 0

CMU_FDISP

Register

Register

Register

f O
S

C
>

f R
C

OLR interrupt
CKSEL1 bit

CMU_RCCTL Reg

0

1

fCMU

CKSEL2 bit

C
K

S
E

L0
 b

it

RC
Oscillator

Pulses > N

MUX0

MUX1

MUX2

R
E

N
 b

it

ROI interrupt

STOP bit
FREQ bit

to
PRCCU

from
PRCCU

from
PRCCU
36/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.5.1 Register Write Protection

All CMU registers are write protected. To modify their register content, you have to enable
write access by writing a sequence of two consecutive keywords in the CMU_WE register.

3.5.2 Clock Source Selection

After external reset has elapsed, OCNT counter counts the fOSC pulses and when it reaches
N (where N is a constant defined as 512*EOCV (End Of Count Value is defined in the EOCV
register) it sets the EOC bit and verifies the status of System Reset.
If System Reset is still active, the CKOUT is automatically switched to the main clock (fOSC)
and the CKSEL0 bit in the CMU_CTRL register is set by hardware.
You can modify the CKSEL0 bit to switch by software from fOSC to fRC and vice versa.

3.5.3 Oscillator Frequency Monitoring

If fOSC is selected as CKOUT, the CMU automatically checks if it is greater than fRC (usually
this is always true) if not, fRC is automatically selected as CKOUT, the CKSEL0 bit in
CMU_CTRL register is forced to 0, the OLR bit is set and an interrupt is generated if
enabled.

3.5.4 MCLK Frequency Monitoring

The CMU also checks the System clock frequency MCLK. If it is greater than a reference
value defined in the CMU_FRH (Frequency Reference High) register or if it is off, a reset
signal is generated (if enabled by setting the REN bit in the CMU_CTRL register). The ROI
bit is set and an interrupt (ROI) is generated if enabled.

If it is less than a reference value defined in the CMU_FRL (Frequency Reference Low)
register, the FLL bit is set and an interrupt is generated if enabled.

Caution: It is strongly recommended to disable reset generation before switching the
CLKSEL2 bit (fCMU clock). To avoid an unwanted System Reset, you should wait for at least
16 fCMU pulses and verify the status of the RON bit in the CMU_STAT register and the value
of the CMU_FRH and FRL registers before re-enabling reset generation.

3.5.5 Clock Frequency Measurement

A simple Frequency Meter allows software to read a rough value of fOSC or fPLLOUT
depending on the value of the CKSEL1 bit. To start measurement, set the SFM (Start
Frequency Measurement) bit in the CMU_CTRL register. When the measurement is done
hardware clears the SFM bit. You can then read the frequency value is ready in the
CMU_FDISP (Frequency Display) register.The meaning of the read value is explained in the
register description.
37/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
Both the Frequency Meter and the System Clock checking logic are driven by default by fRC
but the software can swap to fOSC by programming the CKSEL2 bit in the CMU_CTRL
register.
The CKON2,CKON1 and CKON0 bits indicate which is the actual clock at the output of the
corresponding multiplexer.

3.5.6 RC Oscillator Control

You can adjust the frequency of the RC oscillator by programming the CMU_RCCTL
register.
To choose the frequency of the RC oscillator between high an low in both Run mode and
Stop mode, program the RCFR and RCFS bits in the CMU_CTRL register. The RCFR bit is
reset in Stop mode.
The RC oscillator can be switched off in Stop mode by setting the RCHSE bit in the
CMU_CTRL register or it can be switched off in Run mode by setting the RCSS bit in the
CMU_CTRL register.
Figure 12 shows an overview of the RC Oscillator control bits.

The CMU is asynchronously reset by the OR of all reset sources which input the system
reset control unit and by the STOP signal and it is synchronously reset by the reset
generated by itself.

Figure 12. RC Oscillator control bits

3.5.7 Limitations

The RC oscillator frequency must be less than the crystal or resonator oscillator frequency
(fRC < fOSC).

Frequency checking works properly only if fCMU < fMCLK else the checking must be disabled
loading the CMU FRH register with FFFh and the CMU_FRL register with 000h.

0

1

RCHSE RCFSRCSS RCFR

RC

OSCILLATOR

CMU_RCCTL Reg

CMU_CTRL Reg

Freq.Adjustment

RCCTL[3:0]

STOP_MODE
38/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.5.8 Register Description

Reserved bits cannot be written and are always read as 0.
The registers can not be accessed by byte.
All registers are reset by System Reset and Stop signal except the CMU_RCCTL register
and the OSCS, RCFS, and RCHSE bits in the CMU_CTRL register, which are reset only by
System Reset or on wake-up from Stop mode.

3.5.8.1 RC Oscillator Control Register (CMU_RCCTL)

Address Offset: 00h

Reset value: 0008h

Bits 15:4 = Reserved, must be kept at reset value (0).

Bits 3:0 = RCCTL[3:0]: RC oscillator Control bits.
This value adjusts the frequency of RC oscillator.

3.5.8.2 Frequency Display Register (CMU_FDISP)

Address Offset: 04h

Reset value: 0000h

Bits 15:12 = Reserved, must be kept at reset value (0).

Bits 11:0 = FD[11:0]: Measured Frequency bits.
This register displays the measured frequency (fIN) of fOSC or fPLL using fCK as a base. The
measured value is given by the following formula: fIN = (FD[11:0]/16) * fCK. where FCK is the
clock for the digital logic.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved RCCTL[3:0]

- rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved FD[11:0]

- rw rw rw rw rw rw rw rw rw rw rw rw
39/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.5.8.3 Frequency Reference High Register (CMU_FRH)

Address Offset: 08h

Reset value: 0FFFh

Bits 15:12 = Reserved, must be kept at reset value (0).

Bits 11:0 = FH[11:0]: Frequency reference High bits.
When the frequency of CKSYS is higher than FH[11:0] value, a System Reset or an interrupt
can be generated depending on the REN bit in the CMU_CTRL register.
The reference value is given by: (FH[11:0]/16) * FCK, where Fck is the frequency of clock for
digital logic.

3.5.8.4 Frequency Reference Low register (CMU_FRL)

Address Offset: 0Ch

Reset value 0000h

Bits 15:12 = Reserved, must be kept at reset value (0).

Bits 11:0 = FL[11:0]: Frequency reference Low bits.
When the frequency of MCLK is lower than FL[11:0] value, an interrupt is generated.
The reference value is given by: (FL[11:0]/16) * Fck, where Fck is the frequency of clock for
digital logic.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved FH[11:0]

- rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved FL[11:0]

- rw rw rw rw rw rw rw rw rw rw rw rw
40/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.5.8.5 Control Register (CMU_CTRL)

Address Offset: 10h

Reset value 0000h

Bits 15:11 = Reserved, must be kept at reset value (0).

Bits 10 = OSCS: Oscillator Stop bit
This bit is set by software to stop the Main oscillator. It is cleared by hardware on wake-up
from Stop mode.
0: No effect
1: Stop Main Oscillator (fOSC) if is not selected as CKOUT.

Bit 9 = CRFR: CMU Reset Flag Reset bit
This bit is set by software to clear the CRF bit in the CMU_STAT register.
0: No effect
1: Clear CRF flag

Bit 8 = RCFR: RC oscillator Frequency in Run mode
See Figure 12. This bit is set and cleared by software to select the RC oscillator frequency in
Run mode.
0: RC oscillator frequency in Run mode is high.
1: RC oscillator frequency in Run mode is low.

Bit 7 = RCFS: RC oscillator Frequency in Stop mode
See Figure 12. This bit is set by software to select the RC oscillator frequency when the
device next enters Stop mode. It is cleared by hardware on wake-up from Stop mode.
0: RC oscillator frequency in Stop mode is high.
1: RC oscillator frequency in Stop mode is low.

Bit 6 = RCHSE: RC oscillator Hardware Stop Enable bit
See Figure 12. This bit is set by software to stop the RC oscillator when the device next
enters Stop mode. It is cleared by hardware on wake-up from Stop mode.
0: No effect
1: Stop Backup Oscillator when next entering Stop mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved OSCS CRFR RCFR RCFS RCHS
E

RCSS SFM REN CKSE
L2

CKSE
L1

CKSE
L0

- rw rw rw rw rw rw rw rw rw rw rw
41/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
Bit 5 = RCSS: RC oscillator Software Stop
See Figure 12. This bit is set by software in Run mode to stop the Backup Oscillator. It is
cleared by hardware in Stop mode.
0: No effect
1: Stop Backup Oscillator if is not selected as CKOUT.

Bit 4 = SFM: Start Frequency Measurement
This bit is set by software to start a clock frequency measurement. It is cleared by hardware
when the measurement is ready in the CMU_FDISP register.
0: Measurement ready (read only, write has no effect)
1: Start measurement

Bit 3 = REN: CMU Reset Enable
This bit is set and cleared by software. It can be used to enable reset generation when the
RON bit gets set.
0: CMU Reset generation disabled
1: CMU Reset generation enabled

Bit 2 = CKSEL2: CMU clock selection
This bit is set and cleared by software to select the clock source for driving the CMU logic
(fCMU).
0: Select Backup Oscillator (fRC)
1: Select Main Oscillator (fOSC)

Bit 1 = CKSEL1: Oscillator-PLL selection
This bit is set and cleared by software to select the clock source for the Frequency Meter.
0: Select Main Oscillator (fOSC)
1: Select PLL output from PRCCU (fPLLOUT)

Bit 0 = CKSEL0: RC-Oscillator selection
This bit is set and cleared by software to select the clock source for CKOUT. It is also cleared
by hardware when the Main Oscillator is detected to be off and set by hardware if the System
Reset is still active when the EOC event occurs.
0: Select Backup Oscillator (fRC)
1: Select Main Oscillator (fOSC)

Note: The CKON bits in the CMU_STAT Register are updated only a clock switch has
become effective and after a few CKOUT pulses.
A clock switch becomes effective only if the selected clock is on.
42/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.5.8.6 Status Register (CMU_STAT)

Address Offset: 14h

Reset value 0000h

Bit 15:5 = Reserved, must be kept at reset value (0).

Bit 4 = CRF: CMU Reset Flag bit
This bit is set by hardware. It can be cleared by software setting the CRFR bit in the CMU_
CTRL register.
0: No reset caused by CMU
1: Reset was caused by CMU

Bit 3 = RON: CMU Reset condition ON status bit
This bit is set and cleared by hardware.
0: No RON condition
1: RON condition detected. fMCLK > (FH[11:0]/16) * fCMU or MCLK off. A reset is generated if
the REN bit is set. An interrupt is generated if the ROIM bit is set.

Bit 2 = CKON2: MUX2 status bit
This bit is set and cleared by hardware. It indicates which clock drives fCMU.
0: fRC
1: fOSC

Bit 1 = CKON1: MUX1 status bit.
This bit is set and cleared by hardware. It indicates which clock drives the Frequency Meter
0: fPLLOUT
1: fOSC

Bit 0 = CKON0: MUX0 status bit.
This bit is set and cleared by hardware. It indicates which clock drives CKOUT.
0: fRC
1: fOSC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved CRF RON CKON
2

CKON
1

CKON
0

- r r r r r
43/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.5.8.7 Interrupt Status Register (CMU_IS)

Address Offset: 18h

Reset value 0000h

Bit 15:4 = Reserved, must be kept at reset value (0).

Bit 3 = ROI: Reset ON Interrupt pending bit
This bit is set by hardware and cleared by software
0: No ROI interrupt pending
1: ROI interrupt pending. It is set when the RON bit is set.

Bit 2 = FLL: Clock Frequency Less than Low reference pending bit.
This bit is set by hardware and cleared by software
0: No FLL interrupt pending
1: FLL interrupt pending. fMCLK less than LFREF value.

Bit 1 = EOC: End of Counter pending bit.
This bit is set by hardware and cleared by software
0: No EOC interrupt pending
1: EOC interrupt pending. The number of fOSC pulses has reached EOCV[7:0]*512.

Bit 0 = OLR: Oscillator frequency Less than RC frequency pending bit
This bit is set by hardware and cleared by software
0: No OLR interrupt pending
1: OLR interrupt pending. The Main oscillator frequency (fOSC) is less than the frequency of
the Backup oscillator (fRC).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved ROI FLL EOC OLR

- rw rw rw rw
44/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.5.8.8 Interrupt Mask Register (CMU_IM)

Address Offset: 1Ch

Reset value 0000h

Bits 15:4 = Reserved, must be kept at reset value (0).

Bit 3 = ROIM: Reset ON Interrupt Mask bit
This bit is set and cleared by software.
0: ROI interrupt disabled
1: ROI interrupt enabled

Bit 2 = FLLM: Clock Frequency Less than Low reference interrupt Mask bit
This bit is set and cleared by software.
0: FLL interrupt disabled
1: FLL interrupt enabled

Bit 1 = EOCM: End of Counter interrupt Mask bit
This bit is set and cleared by software.
0: EOC interrupt disabled
1: EOC interrupt enabled

Bit 0 = OLRM: Oscillator frequency Less than RC frequency interrupt Mask bit
This bit is set and cleared by software.
0: OLR interrupt disabled
1: OLR interrupt enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved ROIM FLLM EOC
M

OLRM

- rw rw rw rw
45/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.5.8.9 End Of Count Value Register (CMU_EOCV)

Address Offset: 20h

Reset value -> M

Bits 15:8 = Reserved, must be kept at reset value (0).

Bits 7:0 = EOCV[7:0]: End Of Count Value
This byte is written by software. When the Oscillator Counter (OCNT) reaches the value
EOCV[7:0]*512, an EOC interrupt is generated if EOCM is set.

3.5.8.10 Write Enable Register (CMU_WE)

Address Offset: 24h

Reset value 0000h

Bits 15:0 = WEK: Write Enable Key value
To enable write access to all CMU registers:

• Write, the hex. key value “50FA” and then the hex key value “AF05”.

To disable write access:

• Write any other value in this register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved EOCV[7:0]

- rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WEK[15:0]

w

46/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.5.9 CMU Register Map

Table 5. CMU Peripheral Register Map

See Table 2 for base address

Addr
ess

Offset

Register
Name 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00h CMU_RCCTL Reserved RCCTL[3:0]
04h CMU_FDISP Reserved FD[11:0]
08h CMU_FRH Reserved FH[11:0]
0Ch CMU_FRL Reserved FL[11:0]

10h CMU_CTRL Reserved OSC
S

CRF RCF
R

RCF
S

RCH
SE

RCS
S

SFM REN CKS
EL2

CKS
EL1

CKS
EL0

14h CMU_STAT Reserved CRF
R

RON CKO
N2

CKO
N1

CKO
N0

18h CMU_IS Reserved ROI FLL EOC OLR

1Ch CMU_IM Reserved
ROI
M

FLL
M

EOC
M

OLR
M

20h CMU_EOCV Reserved EOCV[7:0]
24h CMU_WE WEK[15:0]
47/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.6 Power, Reset and Clock Control Unit (PRCCU)

The PRCCU generates the internal clocks for the CPU and for the on-chip peripherals. The
Clock Control Unit input clock is generated by the CMU module please refer to section 3.5 on
page 36)

3.6.1 Overview

As shown in Figure 13, you can divide the CLOCK1 input clock signal by two by selecting a
1/2 divider. The resulting signal, CLOCK2, is the reference input clock to the programmable
PLL which is capable of multiplying the clock frequency by a factor of 12, 16, 20 or 28. The
multiplied clock is then divided by a programmable divider, by a factor of 1 to 7. The range of
available multiplication and division factors allows a wide range of operating clock
frequencies to be derived from a single crystal or resonator frequency.

The PLL can be turned off. In this case, the MCLK signal may be programmed as CLOCK2
divided by 16.

The internal system clock, MCLK, is routed to all on-chip peripherals. Under software
control, the peripheral clock to each peripheral can be gated through the PCGR0/B0 and
PCGR1/B1 Registers (see section 4 on page 61).

Each time a clock change occurs, it takes several cycles to complete.

Figure 13. PRCCU Programming

Main

1/2

oscillator

CLOCK2

CLOCK1

PLL
Clock Multiplier

 Unit/Divider

Peripheral

To CPU /
Memories

CLOCK

PERIPHERAL

CONTROL

BLOCK

64MCLK

64

CFG_PCGR0/B0(31:0)
 to TIM, RTC, 1/2... 1/1024

1/16

CFG_PCGR1/B1(31:0)

clocks

Backup
oscillator

CMU

fOSC fEXT

fRC
(1)

DIV2 CLK2

0 CLOCK1

1 CLOCK1/2

(2)

CSU_CKSEL CK2_16 MCLK

x 0 CLOCK2/16

0 1 CLOCK2

1 1 PLL output

(1)
(2)

(3)

RTCP[3:0]

(3)

TB and WDG Timers
48/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.6.2 PLL Clock Multiplier Programming

The CLOCK1 signal generated by the CMU drives a programmable divide-by-two circuit. If
the DIV2 control bit in the PRCCU_CFR register is set (reset condition), CLOCK2, is equal
to CLOCK1 divided by two; if DIV2 is reset, CLOCK2 is identical to CLOCK1. In practice, the
divide-by-two is used in order to ensure a 50% duty cycle signal.

When the PLL is active, it multiplies CLOCK2 by 12, 16, 20 or 28, depending on the status of
the MX[1:0] bits in the PRCCU_PLLCR register. The multiplied clock is then divided by a
factor in the range 1 to 7, determined by the status of the DX[2:0] bits. When these bits are
programmed to 111, the PLL is switched off (default condition after reset).

The frequency multiplier contains a frequency comparator between CLOCK2 and the PLL
clock output that verifies if the PLL clock has stabilized (locked status). The LOCK bit in
PRCCU_CFR register becomes 1 when this condition occurs and maintains this value as
long as the PLL is locked, going back to 0 if for some reasons (change of MX bits value, stop
and restart of PLL or CLOCK2 and so on) the PLL loses the programmed frequency in which
it was locked. It is possible to select the PLL clock as system clock only when the LOCK bit
is ‘1’. If the LOCK bit returns to ‘0’ the system clock switches back to CLOCK2 even if the
CSU_CKSEL bit is ‘1’. The PLL selection is further conditioned by the status of the main
voltage regulator: the PLL can be selected only when VROK bit in VR_CTR register is ‘1’,
that is when the Voltage Regulator is providing a stable supply voltage). Setting the
CSU_CKSEL bit in the PRCCU_CFR register allows to select the multiplier clock as system
clock, but the two conditions mentioned above must be matched (PLL locked and Voltage
Supply stable).

The PLL is able to provide a low precision free running frequency from 125kHz to 625kHz,
usable to slow down the program execution. The FREEN and DX[2:0] bits in the
PRCCU_PLLCR register enable this mode: when PLL is off and FREEN bit is ‘1’, that is, all
these four bits are set, the PLL provides this clock. The selection of this clock is still
managed by the CSU_CKSEL bit, but is not conditioned by the LOCK bit in the
PRCCU_CFR register and the VROK bit in the VR_CTR register. To avoid unpredictable
behavior of the PLL clock, the user must set and reset the Free Running mode only when the
PLL clock is not the system clock, i.e when the CSU_CKSEL bit is ‘0’.

Care is required, when programming the PLL multiplier and divider factors, not to exceed the
maximum allowed operating frequency for MCLK.

When selected, the PLL can go into Free Running mode even when the reference clock
signal disappears, and continue to provide a valid clock signal to the system (even though
not precise and with a possible wide spread, due to temperature, process and supply voltage
variations). The free running frequency is not predetermined or fixed, but depends on the
current PLL setting, since the Voltage Controlled Oscillator (VCO) determines the signal
frequency (in the range 1-5MHz), that is prescaled by the following set of digital dividers.
49/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
Example 1:

■ fOSC = 4 MHz

■ MCLK = 20 MHz (MX[1:0] = ‘00’ - DX[2:0] = ‘001’ - DIV2 = ‘1’ - FREF_RANGE = ‘0’)

With this configuration, the expected free running frequency in case the 4MHz reference
disappears, could be in the range of 0.5-2.5 MHz (divider by 2 enabled in DX[2:0]).

Example 2:

■ fOSC = 4 MHz

■ MCLK = 14 MHz (MX[1:0] = ‘10’ - DX[2:0] = ‘011’ - DIV2 = ‘1’ - FREF_RANGE = ‘0’)

With this configuration, the expected free running frequency in case the 4 MHz fOSC
disappears, could be in the range of 0.25-1.25 MHz (divider by 4 enabled in DX[2:0]).

3.6.3 Peripheral Clocks

The system clock, MCLK, which may be the output of the PLL clock multiplier, CLOCK2, or
CLOCK2/16, is also routed to all on-chip peripherals and acts as the central time base for all
timing functions. At the exit of reset sequence only the CPU, the memory and a small subset
of the peripherals present on the chip start working. The remaining part of the system
(depending on the device) is however stopped because the related PCGR bits are reset. To
start them, the user has to write ‘1’ into the related register bit of Peripheral Clock Gating
Registers (CFG_PCGR0/B0, CFG_PCGR1/B1).

The clock provided to such peripheral or group of peripherals can be stretched again, writing
at ‘0’ the related bit of the CFG_PCGR0/B0, CFG_PCGR1/B1. This allows to have at one
time only the desired peripherals operating and to start an additional one only when
necessary. Depending on the desired configuration (please refer to section 4 on page 61), a
peripheral can be kept under reset, as long as the clock is stretched. It is up to the user to
reconfigure this one after the recovering of the related clock.

Note After enabling a peripheral previously forced in reset mode (by setting the
corresponding bit in the CFG_PCGR0/B0, CFG_PCGR1/B1 registers), the clock of
the peripheral is running but, during the first 8 clock cycles, the peripheral itself is
kept under reset. The user must wait at least this period of time before starting to
program the peripheral.

3.6.4 RT Clock (fEXT)

A programmable divider is available to provide a realtime clock frequency based on the main
oscillator. The fOSC signal is divided by a factor in the range 2-2^10, depending on the
PRCCU_RTCPR register value.
50/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.6.5 Clock Configuration Reset State

In power-on reset state, the PRCCU_CFR value is 8008h. Consequently, in reset state the
clock configuration is DIV2 = 1, CK2_16=1 and therefore MCLK operates at the external
main clock frequency (fOSC) divided by 2.

3.6.6 Interrupt Generation

The PRCCU generates an interrupt request on the following events:

When any of these events occur, the corresponding pending bit in the PRCCU_CFR register
becomes ‘1’ and the interrupt request is forwarded to the interrupt controller. It is up to the
user to reset the pending bit as the first instruction of the interrupt routine. The pending bits
are clear-only (cleared only by writing ‘1’). Each interrupt can be masked by resetting the
corresponding mask bit in the PRCCU_CCR register.

Table 6. PRCCU Interrupts
Event Description Event trigger Interrupt Mask Event Flag

CLK2/16
Switching

CLK2/16 selected or dese-
lected as RCLK source

CK2_16 bit in
PRCCU_CFR reg-
ister toggles

EN_CK2_16 bit in
PRCCU_CCR reg-
ister

CK2_16_I bit in
PRCCU_CFR
register

Lock
PLL becomes locked or un-
locked

LOCK bit in
PRCCU_CFR reg-
ister toggles

EN_LOCK bit in
PRCCU_CCR reg-
ister

LOCK_I bit in
PRCCU_CFR
register

Stop
CLK restarts after waking up
from Stop mode

EN_STOP bit in
PRCCU_CCR reg-
ister

STOP_I bit in
PRCCU_CFR
register

Table 7. Operating Modes using main Crystal Controlled Oscillator
MODE MCLK DIV2 CSU_CKSEL MX[1:0] DX[2-0] CK2_DIV16

PLL x 14 CLOCK1 / 2 x (14 / D) 1 1 1 0 D-1 1

PLL x 10 CLOCK1 / 2 x (10 / D) 1 1 0 0 D-1 1

PLL x 8 CLOCK1 / 2 x (8 / D) 1 1 1 1 D-1 1

PLL x 6 CLOCK1 / 2 x (6 / D) 1 1 0 1 D-1 1

SLOW 1 CLOCK1 / 2 1 0 X XXX 1

SLOW 2 CLOCK1 / 32 1 X X X 0

WFI If LPOWFI=0, no changes occur on MCLK, but CPU is stopped.

LOW-
POWER

WFI
CLOCK2/16 1 X X X X

RESET CLOCK1 / 2 1 0 00 111 1
51/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.6.7 Register Description

3.6.7.1 Clock Control Register (PRCCU_ CCR)

Address Offset: 00h
Reset value: 0000 0000h

Bit 31:12 = Reserved, always return ‘0’ when read.

Bit 11 = EN_HALT: Halt enable.
0: Setting HALT bit in PRCCU_SMR register will have no effect
1: Setting HALT bit in PRCCU_SMR will enter Halt mode or generate a Software reset

Bit 10 = EN_STOP: STOP Interrupt Mask.
0: STOP interrupts disabled
1: STOP interrupts enabled

Bit 9 = EN_CK2_16: CK2_16 Interrupt Mask.
0: CK2_16 interrupts disabled
1: CK2_16 interrupts enabled

Bit 8 = Reserved, must be kept at reset value (0).

Bit 7 = EN_LOCK: LOCK Interrupt Mask.
0: LOCK interrupts disabled
1: LOCK interrupts enabled

Bit 6:4 = Reserved, always return ‘0’ when read.

Bit 3 = SRESEN: Software Reset Enable.
0: Halt mode is entered when the HALT bit is set
1: A Reset is generated when the HALT bit is set.

Bit 2 = Reserved, must be kept at reset value (0).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved
EN_

HALT
EN_

STOP
EN_

CK2_16
res.

EN_
LOCK

reserved
SRES

EN
res.

WFI_
CKSEL

LPO
WFI

rw rw rw rw rw rw rw rw rw
52/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
Bit 1= WFI_CKSEL: WFI Clock Select.
This bit selects the clock used in LPWFI mode if LPOWFI = 1.
0: MCLK during LPWFI mode is CLOCK2/16
1: Reserved

Bit 0 = LPOWFI: Low Power Wait For Interrupt mode.
0: LPWFI mode disabled. When WFI is executed, the CPU is stopped and MCLK is
unchanged
1: LPWFI mode enabled. The device enters LPWFI mode when the WFI instruction is
executed.

3.6.7.2 Voltage Regulator Control Register (PRCCU_VRCTR)

Address Offset: 04h
Reset value: 0000 0014h

Bit 31:5 = Reserved, always return ‘0’ when read.

Bit 4 = VRLPW: Voltage Regulator for Low Power WFI.
This bit is set and cleared by software.
0: Main VR is switched off when the system enters low power mode.
1: Main VR stays on when the system enters low power mode. Low power mode is defined
as any of the following states:

– Low power WFI
– CK2_16 bit = 0 (CLOCK2/16 is system clock set by user).

Note: If the Main Voltage Regulator is switched-off during LPWFI it is recommended to:
1. Disable DMA transfers to/from RAM memory (to avoid voltage drop during LPWFI mode).
2. Enter LPWFI mode fetching from FLASH memory (to avoid voltage drop when the system
resumes from LPWFI).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved VR
LPW

VR
OFF_
REG

VROK reserved

- rw rw r rw
53/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
Bit 3 = VROFF_REG: Voltage Regulator OFF state.
This bit is set and cleared by software.
0: Main VR on
1: Main VR off. In this state the Main Regulator has zero power consumption, and the PLL is
automatically deselected.
Note: The Main VR is also switched off in the following conditions:

– Stop mode

– Halt mode

– If the VRLPW bit = 0 and the system is in one of the following states:

– LPWFI mode

– CK2_16 bit = 0 in the PRCCU_CFR register (CLOCK2/16 is system clock set by user).

Bit 2 = VROK: Voltage Regulator OK.
This bit is set and cleared by hardware.
0: VR not ready
1: VR stabilized

Bit 1:0 = Reserved
To be kept at reset value (“00”).
54/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.6.7.3 Clock Flag Register (PRCCU_CFR)

Address Offset: 08h
Reset Value: 0000 8048 after a Watchdog Reset
Reset Value: 0000 8028 after a Software Reset
Reset Value: 0000 8108 after an Internal LVD Reset (Flash)
Reset Value: 0000 8008 after a Power-On Reset and HW Reset

Bit 31:16 = Reserved, must be kept at reset value (0).

Bit 15 = DIV2: CLOCK1 Divided by 2.
This bit controls the divide-by-2 circuit which operates on the CLOCK1 signal.
0: No division of CLOCK1 frequency.
1: CLOCK1 is divided by 2.

Bit 14 = STOP_I: STOP Interrupt pending bit.
This bit is clear only.
0: No STOP interrupt request pending.
1: STOP Interrupt request pending.

Bit 13 = CK2_16_I: CK2_16 switching Interrupt pending bit.
This bit is clear only.
0: No CK2_16 Interrupt request pending.
1: CK2_16 Interrupt request pending.

Bit 12 = Reserved, must be kept at reset value (0).

Bit 11 = LOCK_I: LOCK Interrupt pending bit.
This bit is clear only.
0: No LOCK Interrupt request pending.
1: LOCK Interrupt request pending.

Bit 10:9 = Reserved, must be kept at reset value (0).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DIV2 STOP_I
CK2_
16_I

res. LOCK_I reserved
LVD_
INT

reserve
d

WDG
RES0

SOFT
RES

res.
CK2_

16
res. LOCK

CSU_
CKSEL

rw rc rc - rc - r - r r rw rw r r rw
55/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
Bit 8 = LVD_INT: Internal LVD reset flag.
This bit is read only.
0: No Internal LVD reset occurred.
1: Internal LVD reset occurred.

Bit 7 = Reserved, must be kept at reset value (0).

Bit 6 = WDGRES: Watchdog reset flag.
This bit is read only.
0: No Watchdog reset occurred.
1: Watchdog reset occurred.

Bit 5 = SOFTRES: Software Reset Flag.
This bit is read only.
0: No software reset occurred.
1: Software reset occurred.

Bit 4 = Reserved, must be kept at reset value (0).

Bit 3 = CK2_16: CLOCK2/16 Selection.
0: CLOCK2/16 is selected and the PLL is off.
1: The input is CLOCK2 (or the PLL output depending on the value of CSU_CKSEL).
This bit is reset by hardware when the system enters LPWFI mode.
An interrupt is generated when this clock is selected and when the application switches from
this clock to another available one.

Bit 2 = Reserved, must be kept at reset value (0).

Bit 1= LOCK: PLL locked-in
This bit is read only.
0: The PLL is turned off or not locked and cannot be selected as system clock source.
1: The PLL is locked.

Bit 0 = CSU_CKSEL: CSU Clock Select
This bit is set and cleared by software. It is kept reset by hardware when:
- the PLL is off (bits DX[2:0] (PLLCONF) are set to 111);
- the CK2_16 bit (CLK_FLAG) is forced to ‘0’.
0: CLOCK2 provides the system clock
1: The PLL Multiplier provides the system clock if LOCK and VROK bits are ‘1’
If the FREEN bit is set, this bit selects this clock independently by LOCK and VROK bits.
56/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.6.7.4 PLL Configuration Register (PRCCU_PLLCR)

Address Offset: 18h
Reset value: 0000 0007h

Bit 31:8 = Reserved, always return ‘0’ when read.

Bit 7 = FREEN: PLL free running mode enable.
0: Free Running mode disabled. In this case, the PLL operation depends only on the MX[1:0]
and DX[2:0] bits.
1: Free Running mode enabled. In this mode, when all three DX[2:0] bits are set, the PLL is
not stopped but provides a slow frequency back-up clock, selected by the CSU_CKSEL bit;
Operation in this mode not require the LOCK and VROK bits to be set.

Bit 6 = FREF_RANGE: Reference Frequency Range selector bit
0: Configure PLL for input frequency (CLOCK2) of 1.5-3 MHz
1: Configure PLL for input frequency (CLOCK2) of 3-5 MHz

Note When an oscillator with a frequency greater than 5 MHz is used, the clock input to
the PLL has to be divided by 2 (bit DIV2 set in PRCCU_CFR register) in order to
comply with PLL specification.

Bit 5:4 = MX[1:0]: PLL Multiplication Factor.
Refer to Table 8 for the MX bit settings.

Bit 3 = Reserved, always return ‘0’ when read.

Bit 2:0 = DX[2:0]: PLL output clock division factor. Refer to Table 10 for the DX bit settings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- - - - - - - - - - - - - - - -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - FREEN
FREF_
RANGE

MX1 MX0 - DX2 DX1 DX0

rw rw rw rw rw rw rw

Table 8. PLL Multiplication Factors
MX1 MX0 CLK2 x

1 0 28

0 0 20

1 1 16

0 1 12
57/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.6.7.5 System Mode Register (PRCCU_SMR)

Address Offset: 20h
Reset value: 0000 0001h

Bit 31:2 = Reserved, always return ‘0’ when read.

Bit 1 = HALT: Halt.
0: No effect
1: Enter Halt mode, or generate a Software reset if the SRESEN bit in the PRCCU_CCR
register is set.

Bit 0 = WFI: Wait For Interrupt mode.
0: Enter WFI (Wait For Interrupt) mode. In this mode the CPU remains in idle state until an
interrupt request is acknowledged by the EIC. When this occurs, the bit is set to ‘1’ again.
This means that this bit, once reset, can only be set to ‘1’ by hardware.
1: No effect

Table 9. PLL Division Factors
DX2 DX1 DX0 MCLK

0 0 0 PLLCK / 1

0 0 1 PLLCK / 2

0 1 0 PLLCK / 3

0 1 1 PLLCK / 4

1 0 0 PLLCK / 5

1 0 1 PLLCK / 6

1 1 0 PLLCK / 7

1 1 1 CLOCK2 (PLL OFF, Reset State)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- HALT WFI

- rw rw
58/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
Caution: If all EIC interrupt channels are masked, clearing this bit will stop program
execution indefinitely unless the device is reset. Hence you must ensure that at least one
interrupt channel is enabled before clearing the WFI bit.

3.6.7.6 Real Time Clock Programming Register (PRCCU_RTCPR)

Address Offset: 28h

Reset value: 0000 000Fh

Bit 31:4 = Reserved, always return ‘0’ when read.

Bit 3:0 = RTCP[3:0]: Real Time Clock Programming.
Provides the division factor for the fEXT, according to Table 10. When the RTCP[3:0] bits are
changed, the prescaler is restarted with the new prescaling factor.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved RTCP(3:0)

- rw

Table 10. Real time clock prescaling factors

RTCP[3:0] RT Clock Frequency (fEXT)

0000 fOSC/2

0001 fOSC/4

0010 fOSC/8

0011 fOSC/16

0100 fOSC/32

0101 fOSC/64

0110 fOSC/128

0111 fOSC/256

1000 fOSC/512

1001 fOSC/1024

1010-1111 stopped
59/349

1

STR73xF MICROCONTROLLER - POWER, RESET AND CLOCKS
3.6.8 PRCCU Register Map

See Table 1, “Main Block Register base addresses,” on page 17 for the base address

Table 11. PRCCU register map
Addr

Offset
Register

Name
31:16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00h
PRCCU_

CCR
reserved

E
N

_H
A

LT

E
N

_S
T

P

E
N

_C
K

2_
16

re
s

E
N

_L
O

C
K

re
se

rv
ed

S
R

E
S

E
N

re
s.

W
F

I_
C

K
S

E
L

LP
O

W
F

I

04h
PRCCU_
VRCTR

reserved

V
R

LP
W

V
R

O
F

F
_R

E
G

V
R

O
K

re
s

re
s

08h
PRCCU_

CFR
re-

served D
IV

2

S
T

O
P

_I

C
K

2_
16

_I

re
s

LO
C

K
_I

re
s.

LV
D

_I
N

T

re
s

W
D

G
R

E
S

S
O

F
T

R
E

S

re
s

X
T

_D
IV

16

re
s

LO
C

K

C
S

U
_C

K
S

E
L

18h
PRCCU_
PLLCR

reserved
F

R
E

E
N

F
R

E
F

_R
A

N
G

E

M
X

1

M
X

0

re
s

D
X

2

D
X

1

D
X

0

20h
PRCCU_

SMR
reserved

H
A

LT

W
F

I

28h
PRCCU_
RTCPR

reserved RTCP[3:0]
60/349

1

STR73xF MICROCONTROLLER - CONFIGURATION REGISTERS (CFG)
4 CONFIGURATION REGISTERS (CFG)

4.1 System Configuration Registers

4.1.1 Configuration Register 0 (CFG_R0)

Address Offset: 00h

Reset value: 0000 0000 0000 0000 0000 0xxx x000 0000b

Bits 31:11 = Reserved, always return ‘0’ when read.

Bit 10 = SYS: SystemMemory Boot Mode Flag
This bit is set by hardware after reset.
0: Not in SystemMemory Boot mode
1: Device booted in SystemMemory Boot mode (See “Boot Memory” on page 21.)

Bit 9 = USER1: User1 Boot Mode flag
This bit is set by hardware after reset.
0: Not in User1 Boot mode
1: Device booted in User1 Boot mode (See “Boot Memory” on page 21.)

Bit 8 = USER2: User2 Boot Mode flag
This bit is set by hardware after reset.
0: Not in User2 Boot mode
1: Device booted in User2 Boot mode (See “Boot Memory” on page 21.)

Bit 7= JTBT JTAG Boot Mode Flag
This bit is set by hardware if SystemMemory boot mode is selected and the loader has been
stored in RAM via JTAG.
0: Not in SystemMemory Boot mode or Loader not stored in RAM via JTAG
1: Device booted in SystemMemory Boot mode and loader stored in RAM via JTAG

Bit 6 = Reserved, always returns ‘0’ when read.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved SYS USER1 USER2 JTBT res.
DMA

BSPI1
DMA

BSPI0
reserved REMAP

- r r r r r rw rw rw rw
61/349

1

STR73xF MICROCONTROLLER - CONFIGURATION REGISTERS (CFG)
Bit 5 = DMABSPI1: DMA/BSPI1 Select.
This bit is set and cleared by software.
0: DMA is selected to transfer data to/from TIM8/TIM9
1: DMA is selected to transfer data to/from BSPI1 (see Table 24 on page 131)

Bit 4 = DMABSPI0: DMA/BSPI0 Select.
This bit is set and cleared by software.
0: Not used
1: DMA is selected to transfer data to/from BSPI0 (see Table 24 on page 131).

Bits 3:1 = Reserved, must be kept at reset value (0).

Bit 0 = REMAP: Memory Remapping.
This bit is set and cleared by software.
0: Internal RAM accessible only at address 0xA000 0000h.
1: Internal RAM remapped to address 0h. It replaces the FLASH memory normally
accessible in this location. Even when remapped, the RAM is also accessible at its physical
address 0xA000 0000h.

4.1.2 Configuration Register 1 (CFG_R1)

Address Offset: 30h

Reset value: 0000 0040h

Bits 31:8 = Reserved, always return ‘0’ when read.

Bits 7:4 = FLPOD: FLASH Power-On Delay
These bits allow to define a delay before FLASH Power-On, after the system exits from Low
Power WFI. This delay is needed if the the Main Voltage Regulator is switched off in LPWFI
mode (depending on the VRLPW bit in the PRCCU_VRCTR register). The delay should be
long enough to ensure that the Main Voltage Regulator is stable before the FLASH comes
out of power-down mode. The delay is defined as follows:

On exit from Low Power WFI mode, the RC Oscillator may be running at 2 MHz (TCK2 =
500ns) or at 32 kHz (TCK32 = 31.25us), depending on CMU settings. In the two cases, the

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved FLPOD[3:0] WUP0S EIFILT LPVRCC(1:0)

- rw rw rw rw
62/349

1

STR73xF MICROCONTROLLER - CONFIGURATION REGISTERS (CFG)
delay is equal either to FLPOD[3:0] * 64 * TCK2 or to FLPOD[3:0] * TCK32 (due to internal
clock synchronization, up to one TCK2/TCK32 clock cycle is added to the above delay).

Bit 3 = WUP0S: Wake Up Input Line 0 Source Select
This bit is set and cleared by software to select the wake-up trigger event on Wake-up Input
Line 0.
0: WUP0 external pin is connected to Wake-up Unit Input Line 0
1: Internal Wake-up Timer End of Count event is connected to Wake-up Unit Input Line 0

Bit 2 = EIFILT: External Interrupt Filter on Channels INT(15:0)
This bit is set and cleared by software to enable a digital filter on external interrupt channels
INT[15:0]. If enabled, external interrupt channels pulses less than or equal than one system
clock cycle are filtered and will not trigger interrupt requests to EIC module.
0: Filter disabled.
1: Filter enabled.

Bits 1:0 = LPVRCC[1:0]: Low Power Voltage Regulator Current Capability
These bits allow to select the Low-Power Voltage Regulator Current Capability according to
the table below.

4.1.3 Device Identification Register (CFG_DIDR)

Address Offset: 34h

Reset value STR73x (144pin) device: EE73 80B5h
Reset value STR73x (100pin) device: EA73 80B4h

This register (read only) returns the device configuration status.

Table 12. Low Power Voltage Regulator Output Current
LPVRCC[1:0] LPVR Output Current (mA)

00 6

01 4

10 4

11 2
63/349

1

STR73xF MICROCONTROLLER - CONFIGURATION REGISTERS (CFG)
4.2 External Interrupt Request Configuration Registers

For an introductionto External interrupts, refer to Section 7.8: External Interrupt Pins
INT[15:0] on page 119

4.2.1 External Interrupt Trigger Event Register 0 (CFG_EITE0)

Address Offset: 04h

Reset value: 0000 FFFFh

This register determines (together with CFG_EITE1 and CFG_EITE2 registers) which type
of event on INTn (n=0,15) input pin will trigger an interrupt request to the EIC module,
according to Table 22 on page 119.

Bits 31:16 = Reserved, always return ‘0’ when read.

Bits 15:0 = EITE0[15:0]: External Interrupt Channels INT[15:0] Trigger Event Register 0.
Please refer to Table 22 on page 119 to configure the external interrupt channel INTn
(n=0,15).

4.2.2 External Interrupt Trigger Event Register 1 (CFG_EITE1)

Address Offset: 24h

Reset value: 0000 0000h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EITE0(15:0)

rw

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EITE1(15:0)

rw
64/349

1

STR73xF MICROCONTROLLER - CONFIGURATION REGISTERS (CFG)
This register determines (together with CFG_EITE0 and CFG_EITE2 registers) which type
of event on INTn (n=0,15) input pin will trigger the interrupt request to EIC module, according
to Table 22 on page 119.

Bits 31:16 = Reserved, always return ‘0’ when read.

Bits 15:0 = EITE1(15:0): External Interrupt Channels INT[15:0] Trigger Event Register 1.
Please refer to Table 22 on page 119 to configure the external interrupt channel INTn
(n=0,15).

4.2.3 External Interrupt Trigger Event Register (CFG_EITE2)

Address Offset: 28h

Reset value: 0000 0000h

This register determines (together with the CFG_EITE0 and CFG_EITE1 registers) which
type of event on INTn (n=0,15) input pin will trigger the interrupt request to the EIC module,
according to Table 22 on page 119.

Bits 31:16 = Reserved, always return ‘0’ when read.

Bits 15:0 = EITE2[15:0]: External Interrupt Channels INT[15:0] Trigger Event Register 2.
Please refer to Table 22 on page 119 to configure the external interrupt channel INTn
(n=0,15).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EITE2(15:0)

rw
65/349

1

STR73xF MICROCONTROLLER - CONFIGURATION REGISTERS (CFG)
4.3 Peripheral Clock Management Registers

4.3.1 Clock management in User Mode

Four registers that allow you to switch the clock on or off for each peripheral individually, to
reduce overall power consumption and electromagnetic emission.

You have two main options:

• Switch off the clock and reset the peripheral. You do this using the CFG_PCGR0 and
CFG_PCGR0 registers.

• Switch off the clock without resetting the peripheral. In this case, when you switch the
clock back on, the peripheral resumes operation in the state prior to the clock switch-off.
You control this using the CFG_PCGRB0 and CFG_PCGRB0 registers

Use the following procedure to switch the clock of any peripheral or module on or off:

■ After the Reset phase, the peripheral clock is switched-off and the peripheral is kept under
reset (RAM is a exception to this, see Table 13.)

■ To switch on a peripheral clock, set the corresponding bit in the CFG_PCGR[1:0] registers.

■ To switch off the clock and reset the peripheral, clear the corresponding bit in the
CFG_PCGR[1:0] registers.

■ To switch off the clock without resetting the peripheral, set the corresponding bit in the
CFG_PCGRB[1:0] registers. To switch the peripheral clock on again, clear the
corresponding bit in the CFG_PCGRB[1:0] registers.

Bits marked as reserved must be left at their reset value.

Note After enabling a peripheral/port by setting the corresponding bit in the
CFG_PCGR[1:0] registers, the clock to the peripheral starts running but, during the
first 8 clock cycles, the peripheral itself is kept under reset. You must wait at least
this period of time before accessing the peripheral. Any peripheral access during
this 8 clock cycle delay will have an unpredictable effect.

4.3.1.1 Peripheral Clock Gating Register 0 (CFG_PCGR0)

Address Offset: 08h

Reset value: 0000 0001h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PCG0(31:16)

rw
66/349

1

STR73xF MICROCONTROLLER - CONFIGURATION REGISTERS (CFG)
Bits 31:0 = PCG0[31:0]: Peripheral Clock Gating Register 0.
0: The module is turned off (no clock provided) and kept under reset.
1: The module receives the system clock.
The following table shows which module is mapped to each PCG0 bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PCG0(15:0)

rw

Table 13. PCG0[31:0], PCGB0[31:0] and PECG0[31:0] Bit Mapping and Reset Values

Bit Module

PCG0 and
PCGB0
Reset
Values

PECG0
Reset Value

0 RAM 1 1

1 I2C 0 0 1

2 WIU 0 1

3 Reserved, must be kept at reset value 0 1

4 UART 0 0 1

5 UART 1 0 1

6 TIM 0 0 1

7 TIM 1 0 1

8 TB 0 0 1

9 Reserved, must be kept at reset value 0 1

10 CAN 0 0 1

11 CAN 1 0 1

12 PWM 0 0 1

13 PWM 1 0 1

14 PWM 2 0 1

15 PWM 3 0 1

16 PWM 4 0 1

17 PWM 5 0 1

18 Port 0 0 1

19 Port 1 0 1

20 Port 2 0 1

21 Port 3 0 1

22 Port 4 0 1

23 Port 5 0 1

24 Port 6 0 1

25 BSPI 0 0 1
67/349

1

STR73xF MICROCONTROLLER - CONFIGURATION REGISTERS (CFG)
4.3.1.2 Peripheral Clock Gating Register 1 (CFG_PCGR1)

Address Offset: 0Ch

Reset value: 0000 0000h

Bits 31:0 = PCG1[31:0]: Peripheral Clock Gating Register 1.
0: The module is turned off (no clock provided) and kept under reset.
1: The module receives the system clock.
The following table shows which module is mapped to each PCG1 bit.

26 BSPI 1 0 1

27 BSPI 2 0 1

28 ADC 0 1

29 EIC 0 1

30 Wake-up Timer 0 1

31 Reserved, must be kept at reset value 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PCG1(31:16)

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PCG1(15:0)

rw

Table 14. PCG1[31:0], PCGB1[31:0] and PECG1[31:0] Bit Mapping and Reset Values

Bit Module

PCG1 and
PCGB1
Reset
Values

PECG1
Reset Value

0 I2C 1 0 1

1 Reserved, must be kept at reset value 0 1

2 Reserved, must be kept at reset value 0 1

3 TIM 5 0 1

4 TIM 6 0 1

5 TIM 7 0 1

Table 13. PCG0[31:0], PCGB0[31:0] and PECG0[31:0] Bit Mapping and Reset Values

Bit Module

PCG0 and
PCGB0
Reset
Values

PECG0
Reset Value
68/349

1

STR73xF MICROCONTROLLER - CONFIGURATION REGISTERS (CFG)
4.3.1.3 Peripheral Clock Gating Register B0 (CFG_PCGRB0)

Address Offset: 18h

Reset value: 0000 0000h

6 TIM 8 0 1

7 TIM 9 0 1

8 UART2 0 1

9 UART3 0 1

10 Reserved, must be kept at reset value 0 1

11 Reserved, must be kept at reset value 0 1

12 Reserved 0 1

13 TB 1 0 1

14 TB 2 0 1

15 Reserved, must be kept at reset value 0 1

16 TIM 2 0 1

17 TIM 3 0 1

18 TIM 4 0 1

19 RTC 0 1

20 DMA 0 0 1

21 DMA 1 0 1

22 DMA 2 0 1

23 DMA 3 0 1

24 Reserved 0 1

25 Reserved 0 1

26 Reserved 0 1

27 Reserved 0 1

28 Reserved 0 1

29 Native Bus Arbiter 0 1

30 AHB Arbiter 0 1

31 Reserved 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PCGB0(31:16)

rw

Table 14. PCG1[31:0], PCGB1[31:0] and PECG1[31:0] Bit Mapping and Reset Values

Bit Module

PCG1 and
PCGB1
Reset
Values

PECG1
Reset Value
69/349

1

STR73xF MICROCONTROLLER - CONFIGURATION REGISTERS (CFG)
Bits 31:0 = PCGB0[31:0]: Peripheral Clock Gating Register B0.
0: The module behaviour is defined by the corresponding PCGR0 bit configuration.
1: If the corresponding bit of PCGR0 is set it switches off the clock of the module.
The system modules are mapped in the same bits as register CFG_PCGR0. Please refer to
Table 13 on page 67.

4.3.1.4 Peripheral Clock Gating Register B1 (CFG_PCGRB1)

Address Offset: 1Ch

Reset value: 0000 0000h

Bits 31:0 = PCGB1[31:0]: Peripheral Clock Gating Register B1.
0: The module behaviour is defined by the corresponding PCGR1 bit configuration.
1: If the corresponding bit of PCGR1 is set it switches off the clock of the module.
The system modules are mapped in the same bits as register CFG_PCGR1. Please refer to
Table 14 on page 68.

4.3.1.5 TIM External Clock Select Register (CFG_TIMSR)

Address Offset: 20h

Reset value: 0000 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PCGB0(15:0)

rw

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PCGB1(31:16)

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PCGB1(15:0)

rw

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RESERVED

rw
70/349

1

STR73xF MICROCONTROLLER - CONFIGURATION REGISTERS (CFG)
This register allows to select the external input clock of each TIMn (n=9:0) module between
the following two different sources:

■ Reference clock fEXT (see Figure 13 on page 48). All TIMn (n=0:9) modules receive the
same fEXT clock signal on their EXTCLK input (see Figure 31 on page 186);

■ Timer ICAPAn (n=0:9) input pin. TIMn module receives ICAPAn signal on its EXTCLK
input.

Bits 31:10 = Reserved, must be kept at reset value.

Bits 9:0 = TIMECKS[9:0]: TIM[9:0] External Clock Select.
0: EXTCLK input pin of TIMn module is connected to fEXT.
1: EXTCLK input pin of TIMn module is connected to the corresponding ICAPAn input pin.

4.3.1.6 Clock Management in Emulation Mode

You can stop the clock of a specified peripheral when the ARM7TDMI enters emulation
mode, using the control bits in the PECGR[1:0] registers.

4.3.1.7 Peripheral Emulation Clock Gating Register 0 (CFG_PECGR0)

Address Offset: 10h

Reset value: FFFF FFFFh

The bits marked as Reserved must be kept at 1 (reset value).

Bits 31:0 = PECG0[31:0]: Peripheral Emulation Clock Gating Register 0.
0: The peripheral clock is stretched when ARM7TDMI enters emulation mode, stopping the
peripheral.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED TIMECKS(9:0)

rw rw

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PECG0(31:16)

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PECG0(15:0)

rw
71/349

1

STR73xF MICROCONTROLLER - CONFIGURATION REGISTERS (CFG)
1: The peripheral clock is enabled when ARM7TDMI enters emulation mode, allowing
peripheral operation.

The system modules are mapped in the same bits as register PCGR0. Please refer to
Table 13 on page 67.

4.3.1.8 Peripheral Emulation Clock Gating Register 1 (CFG_PECGR1)

Address Offset: 14h

Reset value: FFFF FFFFh

The bits marked as Reserved must be kept at 1 (reset value).

Bits 31:0 = PECG1(31:0): Peripheral Emulation Clock Gating Register 1.
0: the peripheral clock is stretched when ARM7TDMI enters in emulation mode, stopping the
macrocell running.
1: the peripheral clock is enabled when ARM7TDMI enters in emulation mode, allowing
macrocell operating.

The system modules are mapped in the same bits as register PCGR1. Please refer to
Table 14 on page 68.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PECG1(31:16)

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PECG1(15:0)

rw
72/349

1

STR73xF MICROCONTROLLER - CONFIGURATION REGISTERS (CFG)
4.4 BSPI and UART Management in Emulation Mode

The BSPI and UART peripherals have to be managed with particular care when the system
enters emulation mode.

In emulation mode, a read operation of the RX FIFO of the above modules pops a received
frame from the FIFO. As a result, when emulation mode is exited, the popped frames are no
longer available to the application and the control flags related to the RX FIFO may be
changed.

A special register (CFG_ESPR) allows you to protect the FIFO structure when a UART or
BSPI read operation is performed in emulation mode.

4.4.1 Emulation Serial Protection Register (CFG_ESPR)

Address Offset: 2Ch

Reset value: 0000 0000h

Bits 31:7 = Reserved, must be written to ‘0’.

Bits 6:4 = BSPI[2:0]: BSPI[2:0] configuration in emulation mode.
These bits can be set to protect the BSPI[2:0] modules when a read operation is performed
in emulation mode. The read operation is considered protected if it does not modify the BSPI
internal FIFO structure.
For each bit n (n=0,2):
0: BSPIn is not protected when ARM7TDMI enters in emulation mode.
1: BSPIn is protected when ARM7TDMI enters in emulation mode.

Bits 3:2 = Reserved, always return ‘0’ when read.

Bits 1:0 = UART[3:0]: UART[3:0] configuration in emulation mode.
These bits can be set to protect the UART[3:0] modules when a read operation is performed
in emulation mode. The read operation is considered protected if it does not modify the
UART internal FIFO structure.
For each bit n (n=0,1):
0: UARTn is not protected when ARM7TDMI enters emulation mode.
1: UARTn is protected when ARM7TDMI enters emulation mode.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- - - - - - - - - - - - - - - -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - - BSPI2 BSPI1 BSPI0 UART3 UART2 UART1 UART0

rw rw rw rw rw rw rw
73/349

1

STR73xF MICROCONTROLLER - CONFIGURATION REGISTERS (CFG)
4.5 CFG Register Map

See Table 1, “Main Block Register base addresses,” on page 17 for the base address

Table 15. CFG Register map
Addr.
offset

Register
Name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00h CFG_R0 reserved

T
_M

O
D

E

B
O

O
T

U
S

E
R

1

U
S

E
R

2

JT
B

T

res.

D
M

A
B

S
P

I1

D
M

A
B

S
P

I0

reserved

R
E

M
A

P

04h CFG_EITE0 reserved EITE0(15:0)

08h CFG_PCGR0 PCG0[31:0]

0Ch CFG_PCGR1 PCG1[31:0]

10h CFG_PECGR0 PECG0[31:0]

14h CFG_PECGR1 PECG1[31:0]

18h CFG_PCGRB0 PCGB0[31:0]

1Ch CFG_PCGRB1 PCGB1[31:0]

20h CFG_TIMSR reserved TIMECKS[9:0]

24h CFG_EITE1 reserved EITE1[15:0]

28h CFG_EITE2 reserved EITE2(15:0]

2Ch CFG_ESPR reserved

B
S

P
I2

B
S

P
I1

B
S

P
I0

U
A

R
T

3

U
A

R
T

2

U
A

R
T

1

U
A

R
T

0

30h CFG_R1 reserved FLPOD

W
U

P
0S

E
IF

IL
T LP

VRCC
[1:0]

34h CFG_DIDR DIDR[31:0]
74/349

1

STR73xF MICROCONTROLLER - Clock Tree Map
5 CLOCK TREE MAP

This section summarizes the clock paths and the possible configurations for the various
STR73x modules.

Figure 14 show different modules (Wake-up Timer, Watchdog, TIM,TB , Real Time Clock)
and how different clock signals are used to feed the counters. The PRCCU is also shown in
the diagram since it generates and distributes the clock signals to the various modules.

The advantage of choosing the reference clock for the counters is that it can be used to
provide a time basis independent from the PLL clock frequency (system clock) to guarantee
regular time frames, without any scaling effects when the system is put into low power mode
or configures with a slower system clock signal.

The internal RC-Oscillator feeds the Wake-up Timer directly and the circuit is used to
manage the FLASH Power-on delay for both LPWFI and STOP mode exit events (please
refer to Section 4.1).

All the other modules, not explicitly mentioned in this section, work with the system clock
(MCLK) optionally prescaled through the internal frequency dividers and gated by the
PCGR0/PCGRB0 and PCGR1/PCGRB1 registers.
75/349

1

STR73xF MICROCONTROLLER - Clock Tree Map
Figure 14. Clock distribution: RTC, TIM, TB, WDG and WUT modules.

RC
DIV2

Oscillator

MX(1:0)
CSU_CKSEL

CK2_16

DX(2:0)

0 1

0

1
0

1

PRCCU

M
C

L
K

CLOCK2

Register Interface

RTC

1/16

1/2,1/4,1/8...+ 1/1024

RTP(3:0)

1/1, 1/2... 1/7
PLL

x

6/8/10/14

20-bit Prescaler1/64

1/2

PCGR...

F
E

X
T

32-bit Up-Counter

PCGR...
0

1

8-bit Prescaler

16-bit Counter

Register Interface

TIM0

...

ECKEN

PCGR... 0

1

8-bit Prescaler

16-bit Up-Counter

Register Interface

TIM9 ECKEN

PCGR...

0

1
8-bit Prescaler

16-bit Down-Counter

Register Interface

TB0 EE

PCGR...0

1
8-bit Prescaler

16-bit Down-Counter

Register Interface

TB2 EE

...

0

1
8-bit Prescaler

16-bit Down-Counter

Register Interface

WDG EE

0

1

0

1

TIMSR(0)

ICAPA0

TIMSR(9)

ICAPA9

0

1
8-bit Prescaler

16-bit Down-Counter

Register Interface

WUTEE

Quartz
Oscillator

CMU

FLASH POWER-ON DELAY

4-bit Down-Counter
76/349

1

STR73xF MICROCONTROLLER - I/O PORTS
6 I/O PORTS

6.1 Functional Description

Each of the General Purpose I/O Ports has three 16-bit configuration registers (PC0, PC1,
PC2) and one 16-bit Data register (PD).

Subject to the specific hardware characteristics of each I/O port listed in the datasheet, you
can configure each port bit individually as input, output, alternate function etc.

Each I/O port bit is freely programmable, however the I/O port registers have to be accessed
as 16-bit words. Byte or bit-wise access is not allowed.

Figure 15 shows the basic structure of an I/O Port bit.l

Figure 15. Basic Structure of an I/O Port Bit

I/O PIN

I/O
 D

A
T

A
 R

E
G

IS
T

E
R

Analog Input

Alternate Function (OUT)

Alternate Function (IN)

Push-Pull
Tristate
Open Drain
Weak Push-Pull

TTL

IN
P

U
T

 L
A

T
C

H
O

U
T

P
U

T
 L

A
T

C
H

READ/WRITE

FROM ON-CHIP
PERIPHERAL

TO ON-CHIP
PERIPHERAL
77/349

1

STR73xF MICROCONTROLLER - I/O PORTS
Table 16. Port Bit Configuration Table

General Purpose I/O (GPIO)

At reset the I/O ports are configured as general purpose (memory mapped I/O).

When you write to the I/O Data register the data is always loaded in the Output Latch. The
Output Latch holds the data to be output while the Input Latch captures the data present on
the I/O pin.

A read access to the I/O Data register reads the Input Latch or the Output Latch depending
on whether the Port bit is configured as input or output.

Alternate Function I/O (AF)

The alternate functions for each pin are listed in the datasheet. If you configure a port bit as
Alternate Function, this disconnects the output latch and connects the pin to the output
signal of an on-chip peripheral.

To use the alternate function, you also have to enable it in the peripheral control registers.
Only one alternate function can be used on each pin

• For AF input, the port bit can be either in Input or AF configuration

• For AF output or input-output, the port bit must be in AF configuration

Port Configuration
Registers (bit)

Values

PC0(n) 0 1 0 1 0 1 0 1

PC1(n) 0 0 1 1 0 0 1 1

PC2(n) 0 0 0 0 1 1 1 1

Configuration HiZ/AIN IN

reserved

IPUPD OUT OUT AF AF

Output TRI TRI WP OD PP OD PP

Input - TTL TTL TTL TTL TTL TTL

Notes:
AF: Alternate Function OD: Open Drain
AIN: Analog Input OUT: Output
HiZ: High impedance PP: Push-Pull
IN: Input TRI: Tristate
IPUPD: Input Pull Up /Pull Down TTL: TTL Input levels

WP *: Weak Push-Pull
*) Depending on PD(n) value it behaves as Weak Pull-up (PD=1) or Weak Pull-down (PD=0)
78/349

1

STR73xF MICROCONTROLLER - I/O PORTS
External Interrupts/wake-up lines

Some ports have external interrupt capability (see datasheet). To use external interrupts, the
port must be configured in input mode. For more information on interrupts and wake-up
lines, refer to Section 7.

6.1.1 Input Configuration

When the I/O Port is programmed as Input:

■ The Output Buffer is forced tristate

■ The data present on the I/O pin is sampled into the Input Latch every clock cycle

■ A read access to the Data register gets the value in the Input Latch.

The Figure 16 on page 79 shows the Input Configuration of the I/O Port bit.

Figure 16. Input Configuration

I/O PIN

I/O
 P

O
R

T
 D

A
T

A
 R

E
G

IS
T

E
R

Alternate Function (OUT)

Alternate Function (IN)

Tristate

TTL

IN
P

U
T

 L
A

T
C

H
O

U
T

P
U

T
 L

A
T

C
H

79/349

1

STR73xF MICROCONTROLLER - I/O PORTS
6.1.2 Input Pull Up/Pull Down Configuration

When the I/O Port is programmed as Input Pull Up/Pull Down:

■ The Output Buffer is turned on in Weak Push-Pull configuration and software can write the
appropriate level in the output latch to activate the weak pull-up or pull-down as required.

■ The data in the Output Latch drives the I/O pin (a logic zero activates a weak pull-down, a
logic one activates a weak pull-up)

■ A read access to the I/O Data register gets the Input Latch value.

The Figure 17 shows the Input PUPD Configuration of the I/O Port.

Figure 17. Input Pull Up/Pull Down Configuration

I/O PIN

I/O
 P

O
R

T
 D

A
T

A
 R

E
G

IS
T

E
R

Alternate Function (OUT)

Alternate Function (IN)

IN
P

U
T

 L
A

T
C

H
O

U
T

P
U

T
 L

A
T

C
H

Weak Push-Pull

Analog input

When AIEN = 1

PU

PD
80/349

1

STR73xF MICROCONTROLLER - I/O PORTS
6.1.3 Output Configuration

When the I/O Port is programmed as Output:

■ The Output Buffer is turned on in Open Drain or Push-Pull configuration

■ The data in the Output Latch drives the I/O pin

■ A read access to the I/O Data register gets the Output Latch value.

The Figure 18 on page 81 shows the Output Configuration of the I/O Port bit.

Figure 18. Output Configuration

I/O PIN

I/O
 P

O
R

T
 D

A
T

A
 R

E
G

IS
T

E
R

Alternate Function (OUT)

Alternate Function (IN)

IN
P

U
T

 L
A

T
C

H
O

U
T

P
U

T
 L

A
T

C
H

Open Drain
Push-Pull
81/349

1

STR73xF MICROCONTROLLER - I/O PORTS
6.1.4 Alternate Function Configuration

When the I/O Port is programmed as Alternate Function:

■ The Output Buffer is turned on in Open Drain or Push-Pull configuration

■ The Output Buffer is driven by the signal coming from the peripheral (alternate function out)

■ The data present on the I/O pin is sampled into the Input Latch every clock cycle

■ A read access to the Data register gets the value in the Input Latch.

The Figure 19 on page 82 shows the Alternate Function Configuration of the I/O Port bit.

Figure 19. Alternate Function Configuration

I/O PIN

I/O
 P

O
R

T
 D

A
T

A
 R

E
G

IS
T

E
R

Alternate Function (OUT)

Alternate Function (IN)

IN
P

U
T

 L
A

T
C

H
O

U
T

P
U

T
 L

A
T

C
H

Open Drain
Push-Pull
82/349

1

STR73xF MICROCONTROLLER - I/O PORTS
6.1.5 High impedance-Analog Input Configuration

When the I/O Port is programmed as High impedance-Analog Input Configuration:

■ The Output Buffer is forced tristate

■ The Input Buffer is disabled (the Alternate Function Input is forced to a constant value)

■ The Analog Input can be input to an Analog peripheral

■ A read access to the I/O Data register gets the Output Latch value

The Figure 20 on page 83 shows the High impedance-Analog Input Configuration of the I/O
Port bit.

Figure 20. High impedance-Analog Input Configuration

I/O PIN

I/O
 P

O
R

T
 D

A
T

A
 R

E
G

IS
T

E
R

Alternate Function (OUT)

IN
P

U
T

 L
A

T
C

H
O

U
T

P
U

T
 L

A
T

C
H

Tristate

Analog Input
83/349

1

STR73xF MICROCONTROLLER - I/O PORTS
6.2 Register Description

The I/O port registers cannot be accessed by byte.

Port Configuration Register 0 (PC0)

Address Offset: 00h

Reset value: 0xFFFF

Bit 15:0 = C0[15:0]: Port Configuration bits
See Table 16 on page 78 to configure the I/O Port.

Port Configuration Register 1 (PC1)

Address Offset: 04h

Reset value: 0x0000

Bit 15:0 = C1[15:0]: Port Configuration bits
See Table 16 on page 78 to configure the I/O Port.

Port Configuration Register 2 (PC2)

Address Offset: 08h

Reset value: 0x0000

Bit 15:0 = C2[15:0]: Port Configuration bits
See Table 16 on page 78 to configure the I/O Port.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C015 C014 C013 C012 C011 C010 C09 C08 C07 C06 C05 C04 C03 C02 C01 C00

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C115 C114 C113 C112 C111 C110 C19 C18 C17 C16 C15 C14 C13 C12 C11 C10

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C215 C214 C213 C212 C211 C210 C29 C28 C27 C26 C25 C24 C23 C22 C21 C20

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
84/349

1

STR73xF MICROCONTROLLER - I/O PORTS
I/O Data Register (PD)

Address Offset: 0Ch

Reset value: 0x0000

Bit 15:0 = D[15:0]: I/O Data bits
A writing access to this register always writes the data in the Output Latch.
A reading access reads the data from the Input Latch in Input and Alternate function
configurations or from the Output Latch in Output and High impedance configurations.

(*) Refer to the datasheet for the device pin description.

6.2.1 I/O Port Register Map

The following table summarizes the registers implemented in each I/O port.

See Table 2, “APB Memory Map,” on page 17 for base address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Table 17. I/O-port Register Map

Addr.
Offset

Register
Name 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PC0 C0[15:0]

4 PC1 C1[15:0]

8 PC2 C2[15:0]

C PD D[15:0]
85/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
7 INTERRUPTS

The ARM7 CPU provides two levels of interrupt, FIQ (Fast Interrupt Request) for fast, low
latency interrupt handling and IRQ (Interrupt Request) for more general interrupts.

The Enhanced Interrupt Controller manages interrupt requests from three sources:

– On-chip peripherals and modules

– External interrupts
– WIU Wake-up lines

Refer to Figure 21.

Figure 21. Interrupt Management Overview

ARM7TDMI
CORE

32 External
Wake-Up Lines

64 IRQ
Channels

2 FIQ
Channels

On-Chip
Interrupt
Sources

IRQ40

FIQ

IRQ

IRQn

INT0
Timer 0

EICWIU

16 External

Lines

INT[15:0]

Interrupt
IRQn
86/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
7.1 Enhanced Interrupt Controller (EIC)

The ARM7TDMI CPU provides two levels of interrupt, FIQ (Fast Interrupt Request) for fast,
low latency interrupt handling and IRQ (Interrupt Request) for more general interrupts.

Hardware handling of multiple interrupt channels, interrupt priority and automatic
vectorization require therefore a separate Enhanced Interrupt Controller (EIC).

The Enhanced Interrupt Controller (EIC) performs hardware handling of multiple interrupt
channels, interrupt priority arbitration and vectorization. It provides:

■ 64 maskable interrupt channels, mapped on the IRQ interrupt request line of the ARM CPU

■ 16 programmable priority levels for each interrupt channel mapped on IRQ (15 = highest
priority, 1= lowest priority, 0 = never served)

■ Hardware support for interrupt nesting (up to 15 interrupt requests can be nested), with
internal hardware nesting stack

■ 2 maskable interrupt channels, mapped on FIQ interrupt request line of the ARM CPU, with
neither priority nor vectorization

■ 16 external interrupts INT [15:0]

Figure 22. EIC block diagram

IRQ0

IRQ1

IRQ63

IER0 and IER1

FIQ0

FIQ1

FIR Register

FIQ
control logic

IRQ
control logic

FIQ request

IRQ request

STACK CTL (PUSH/POP) PRIORITY
STACK

(15 ENTRY)

CIPR

FIQ to
ARM7TDMI

Highest Priority Interrupt

SIRn Registers

(64 ENTRY)
IRQx

VECTOR

IE0

IE1

IE63

IP0

IP1

IP63

IPR0 and IPR1

FIE[0]

FIE[1]

FIP[0]

FIP[1]

IRQ_ENICR FIQ_EN

SIRn(31:16)IVR(31:16)

Interrupt from line IRQx

IVR

IRQ to
ARM7TDMI

Interrupt

Interrupt
Enable Pending

bits

Interrupt
bits

 Vector Table

Current
Interrupt
Priority

RegistersRegisters
87/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
■ 32 external wake-up lines from the WIU block are mapped on IRQ40.

The EIC performs the following operations without software intervention:

■ Rejects/accepts an interrupt request according to the related channel mask bit

■ Compares all pending IRQ requests with the current priority level. The IRQ is asserted to
the ARM7 if the priority of the current interrupt request is higher than the stored current
priority

■ Loads the address vector of the highest priority IRQ to the Interrupt Vector Register

■ Saves the previous interrupt priority in the HW priority stack whenever a new IRQ is
accepted

■ Updates the Current Interrupt Priority Register with the new priority whenever a new
interrupt is accepted

7.1.1 IRQ Interrupt Vector Table

Up to 64 interrupt channels are mapped on low priority ARM7TDMI interrupt request pin
(IRQ). If multiple interrupt sources are mapped on the same interrupt vector, software has
read the peripheral interrupt flag register to determine the exact source of interrupt (see
Interrupt Flags column in Table 18 on page 88)

Table 18. IRQ Interrupt vector table

Vector Acronym Peripheral Interrupt Peripheral Inter-
rupt Flags

IRQ0 IRQ.CMU_PRCCU Clock Monitor Unit (CMU) / Power Reset
and Clock Control unit (PRCCU)

4 (CMU_STAT), 2
(PRCCU_CFR)

IRQ1 IRQ.INT1 External Interrupt INT1

IRQ2 IRQ.INT2 External Interrupt INT2

IRQ3 IRQ.INT3 External Interrupt INT3

IRQ4 IRQ.INT4 External Interrupt INT4

IRQ5 IRQ.INT5 External Interrupt INT5

IRQ6 IRQ.INT6 External Interrupt INT6

IRQ7 IRQ.INT7 External Interrupt INT7

IRQ8 IRQ.INT8 External Interrupt INT8

IRQ9 IRQ.INT9 External Interrupt INT9

IRQ10 IRQ.INT10 External Interrupt INT10

IRQ11 IRQ.INT11 External Interrupt INT11

IRQ12 IRQ.INT12 External Interrupt INT12

IRQ13 IRQ.INT13 External Interrupt INT13

IRQ14 IRQ.INT14 External Interrupt INT14

IRQ15 IRQ.INT15 External Interrupt INT15

IRQ16 IRQ.DMA DMA Transfer Error 1 (ARB_CTLR)

IRQ17 IRQ.TIM1 Timer 1 global interrupt 5 (TIM1_SR)

IRQ18 IRQ.TIM2 Timer 2 global interrupt 5 (TIM2_SR)
88/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
IRQ19 IRQ.TIM3 Timer 3 global interrupt 5 (TIM3_SR)

IRQ20 IRQ.TIM4 Timer 4 global interrupt 5 (TIM4_SR)

IRQ21 IRQ.TBU0 Timebase Unit 0 End of Count lnterrupt 1 (TBU0_SR)

IRQ22 IRQ.TBU1 Timebase Unit 1 End of Count lnterrupt 1 (TBU1_SR)

IRQ23 IRQ.TBU2 Timebase Unit 2 End of Count lnterrupt 1 (TBU2_SR)

IRQ24 IRQ.TIM5 Timer 5 global interrupt 5 (TIM5_SR)

IRQ25 IRQ.TIM6 Timer 6 global interrupt 5 (TIM6_SR)

IRQ26 IRQ.TIM7 Timer 7 global interrupt 5 (TIM7_SR)

IRQ27 IRQ.TIM8 Timer 8 global interrupt 5 (TIM8_SR)

IRQ28 IRQ.TIM9 Timer 9 global interrupt 5 (TIM9_SR)

IRQ29 Reserved

IRQ30 Reserved

IRQ31 IRQ.UART2 UART 2 global interrupt 9 (UART2_SR)

IRQ32 IRQ.UART3 UART 3 global interrupt 9 (UART3_SR)

IRQ33 IRQ.FLASH Flash End of Write 1 (FLASH_CR0)

IRQ34 IRQ.PWM0 PWM 0 Compare Period Interrupt 1 (PWM0_CPI)

IRQ35 IRQ.PWM1 PWM 1 Compare Period Interrupt 1 (PWM1_CPI)

IRQ36 IRQ.PWM2 PWM 2 Compare Period Interrupt 1 (PWM2_CPI)

IRQ37 IRQ.PWM3 PWM 3 Compare Period Interrupt 1 (PWM3_CPI)

IRQ38 IRQ.PWM4 PWM 4 Compare Period Interrupt 1 (PWM4_CPI)

IRQ39 IRQ.PWM5 PWM 5 Compare Period Interrupt 1 (PWM5_CPI)

IRQ40 IRQ.WIU Wake-Up Unit Global Interrupt 32 (WIU_PR)

IRQ41 IRQ.WDG_WUT Watchdog Timer (WDG)/Wake-Up Timer
(WUT) End of Count

1 (WDG_SR),
1 (WUT_SR)

IRQ42 IRQ.BSPI0 BSPI 0 global interrupt 5 (BSPI0_CSR2)

IRQ43 IRQ.BSPI1 BSPI 1 global interrupt 5 (BSPI1_CSR2)

IRQ44 IRQ.BSPI2 BSPI 2 global interrupt 5 (BSPI2_CSR2)

IRQ45 IRQ.UART0 UART 0 global interrupt 9 (UART0_SR)

IRQ46 IRQ.UART1 UART 1 global interrupt 9 (UART0_SR)

IRQ47 IRQ.I2C0_ITERR I2C 0 general interrupt 10 (I2C0_SR1, SR2)

IRQ48 IRQ.I2C1_ITERR I2C 1 general interrupt 10 (I2C0_SR1, SR2)

IRQ49 Reserved

IRQ50 Reserved

IRQ51 IRQ.I2C0_ITDDC I2C 0 general/DMA interrupt 10 (I2C0_SR1, SR2)

IRQ52 IRQ.I2C1_ITDDC I2C 1 general/DMA interrupt 10 (I2C0_SR1, SR2)

IRQ53 Reserved

IRQ54 Reserved

IRQ55 IRQ.CAN0 CAN 0 global interrupt 32 (CAN0_IP1R,
CAN0_IP2R)

IRQ56 IRQ.CAN1 CAN 1 global interrupt 32 (CAN1_IP1R,
CAN1_IP2R)

Table 18. IRQ Interrupt vector table

Vector Acronym Peripheral Interrupt Peripheral Inter-
rupt Flags
89/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
7.1.2 FIQ Interrupt Vector Table

Two maskable interrupt sources are mapped on FIQ vectors, as shown in Table 19:

These sources are also available as normal IRQs. In most cases, you should only enable
one FIQ source in your application. If you enable both FIQ sources, then you can determine
the source of the interrupt by reading the FIQ pending bits in the EIC register. Bear in mind
that FIQ has no priority mechanism, so if simultaneous FIQ events occur, software has to
manage the priority by polling the pending bits and managing the concurrency.

7.1.3 IRQ Interrupt Structure

The EIC (Enhanced Interrupt Controller) implements an interrupt structure pointing the
processor to the first instruction location of the channel-specific Interrupt (IRQ) Service
Routine.

IVR (Interrupt Vector Register) is the EIC’s 32-bit register at address 0xFFFF FC18h acting
as pointer. It is composed of two main fields: the upper half word (16 bit) is directly
programmable, while the lower half word is the mirrored entry of a register table (named SIR)
indexed by the interrupt channel.

The absolute address 0x0000 0018h is where the ARM7TDMI CPU jumps as consequence
of an interrupt request on its IRQ line.

The STR73x considers the ARM’s 0x0000 0018h location and the EIC’s IVR location
(0xFFFF FC18h) as distinct addresses. The EIC IVR register must contain the absolute
address of the interrupt service routine. The absolute 0x0000 0018h location must contain
an instruction which jumps to the location pointed to by the IVR register.

For instance, the absolute location 0x0000 0018h should contain the following instruction:

IRQ57 IRQ.CAN2 CAN 2 global interrupt 32 (CAN2_IP1R,
CAN2_IP2R)

IRQ58 IRQ.DMA0 DMA 0 global interrupt 8 (DMA0_SR)

IRQ59 IRQ.DMA1 DMA 1 global interrupt 8 (DMA1_SR)

IRQ60 IRQ.DMA2 DMA 2 global interrupt 8 (DMA2_SR)

IRQ61 IRQ.DMA3 DMA 3 global interrupt 8 (DMA3_SR)

IRQ62 IRQ.ADC A/D Converter global interrupt 12 (ADC_PBR)

IRQ63 IRQ.RTC RTC global interrupt 4 (RTC_CRL

Table 19. FIQ Vector table
Vector Interrupt Source

FIQ0 INT0 - External Interrupt 0

FIQ1 TIM0 - Timer 0 Global Interrupt

Table 18. IRQ Interrupt vector table

Vector Acronym Peripheral Interrupt Peripheral Inter-
rupt Flags
90/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
LDR PC, [PC, offset]

where “offset” is what to add to the PC to obtain the EIC IVR address. The instruction above
allows the CPU to load the Program Counter register with the address kept in the EIC IVR
and so to jump to the location pointed to by the EIC_IVR register.

The user has to consider that when the absolute address 0x0000 0018h is being fetched, the
PC is equal to 0x0000 0020h (18h + 8h). So, the offset is equal to:

offset = IVR address – 0x0000 0020h = 0xFFFF FC18h – 0x0000 0020h = 0xFFFF FBF8h

Figure 23. IRQ Interrupt Structure

0x0001 8000

IVR = 0x0001 8000

The EIC IVR stores the absolute address of the Interrupt Service Routine

0xFFFF FC18

INTERRUPT
SERVICE
ROUTINE

LDR PC, [PC,offset]0x0000 0018

offset = 0xFFFF FC18 - 0x20
= 0xFFFF FBF8

The first instruction of the Interrupt Service Routine is located at address 0x0001 8000

IRQ

USER
CODE

2

1

3

4

PC <= [PC,offset]

PC = 0x0000 0020

PC = 0x0001 8000

PC = 0xFFFF FC18

1

2

3

4

Interrupt request

Jump to address 0x0000 0018h:

IVR used by previous instruction as base address

execution of the instruction which loads PC with
EIC IVR address 0xFFFF FC18h

for the interrupt service routine

Starting of execution of interrupt service routine
91/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
This mechanism allows a jump to virtually any location in the 4GB memory space. However,
since the channel dependent portion of the IVR is the lower 16 bits, once the base address
(in the upper part) has been fixed, the interrupt handler routines can only be within a
64Kbyte range from that base address.

In case interrupt service routines need to be available during FLASH content updating, RAM
must be used to store the related code. In this case, the RAM remapping feature can be
used: in this way, the address 0x0000 0018h becomes available in RAM memory space, and
the above mechanism works similarly.

7.1.4 Priority Decoder

The priority decoder is a combinational block continuously calculating the pending channel
with the highest IRQ priority. If there is a winner, it updates the IVR (Interrupt Vector
Register) with the address of the IRQ interrupt routine that has won the arbitration, and
asserts the nIRQ internal signal low. The nIRQ internal signal ORed with the inverted EIC
IRQ enable bit (IRQ_EN) corresponds to the ARM7TDMI nIRQ signal.

Each channel has a 4-bit field, the SIPL (Source Interrupt Priority Level) in SIRn (Source
Interrupt Register 0-63) defining the channel priority level in the range of 0 (lowest priority) to
15 (highest).

If several channels are assigned with the same priority level, an internal hardware daisy
chain fixes the priority between them. The higher the channel address, the higher the
priority. If channel 2 and channel 6 are assigned to the same software priority level, and if
they are both pending at the same time, channel 6 will be served first.

In order to declare a channel as a winner, the channel must:

■ Be pending (EIC_IPR0-1 - Interrupt Pending Register, 64 pending bits, one per channel).
In order to be pending, a channel has to be enabled (EIC_IER0-1 - Interrupt Enable
Register, 64 enable bits, one per channel). A pending bit will not be set if the corresponding
enable bit is not set. If the enable bit is reset while the pending bit is still set, the channel
will still be part of the priority decoder until the pending bit is cleared.

■ Have the highest priority level, higher than the current one (EIC_CIPR - Current Interrupt
Priority Register) and higher than any other pending interrupt channel.

■ Have the highest position in the interrupt channel chain if there are multiple pending
interrupt channels with the same priority level.

The EIC_CIPR provides the priority of the main program or the priority of the interrupt
routine currently being served. At reset, the EIC_CIPR is at 0, it can be modified by software
from 0 (lowest) to 15 (highest) for the main program. For an interrupt routine, it can be
modified by software from the initialized priority value stored in the EIC_SIRn (Source
Interrupt Register 0-63) up to 15. Attempting to write a lower value than the one in EIC_SIRn
will have no effect.
92/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
For safe operation, it is recommended to disable the global IRQ before modifying the
EIC_CIPR, SIR, or IPR registers pending IRQ clearing, to avoid dangerous race conditions.
Moreover, if IRQ_EN is cleared in an Interrupt Subroutine, the pending bit related to the IRQ
currently being served must not be cleared, otherwise it will no longer be possible to recover
the EIC status before popping the stack.

7.1.5 Finite State Machine

The Finite State Machine (FSM) has two states, READY and WAIT. The two states
correspond to the ARM7TDMI nIRQ line state masked by the EIC global enable bit
(IRQ_EN). After reset, the FSM is in READY state (EIC nIRQ line is high). When the priority
decoder elects a new winner, the FSM moves from READY to WAIT state and the EIC nIRQ
line is asserted low.

To move the FSM back to the ready state, it is mandatory to read the IVR register or to reset
the EIC cell. The EIC can be reset by a global reset resetting the entire device or by clearing
the EIC bit in the CFG_PCGR0 (Peripheral Clock Gating Register 0).

Reading the IVR always moves the FSM from WAIT to READY state, assuming that the FSM
was in WAIT state, and automatically releases the EIC nIRQ line.

There is no flag indicating the FSM state.

7.1.6 Stack

The stack is up to 15 events deep corresponding to the maximum number of nested
interrupts. It is used to push and pop the previous EIC state. The data pushed onto the stack
are EIC_CICR (Current Interrupt Channel Register) and EIC_CIPR (Current Interrupt
Priority Register).

When the FSM is in WAIT state, reading the IVR raises an internal flag. This pushes the
previous CICR and CIPR onto the EIC stack. This happens on the next internal clock cycle
after reading the IVR. In the meantime the internal flag is cleared. The EIC_CICR and
EIC_CIPR are updated with the value corresponding to the interrupt channel read in IVR.

If IVR is read while the FSM is in READY state, the internal flag is not raised and no
operation is performed on the EIC internal stack.

A routine can only be interrupted by a event having a higher priority. Consequently, the
maximum number of nested interrupts is 15, corresponding to the 15 priority levels, from 1 to
15. An interrupt with priority level 0 can never be executed. In order for the stack to be full, up
to 15 interrupts must be nested and each interrupt event must appear sequentially from
priority level 1 up to 15. The main program must have priority level 0.

Having all interrupt sources with a priority level 0 could be useful in applications that only use
polling.
93/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
To pop the stack, the EIC pending bit corresponding to the interrupt in the EIC_CICR register
has to be cleared. Clearing any other pending bits will not pop the stack. Take care not to
clear a pending bit corresponding to an event still in the stack, otherwise it will not be
possible to pop the stack when reaching this stack stage. When the stack is popped, the
EIC_CICR and EIC_CIPR are restored with the values corresponding to the previous
interrupt event.

Figure 24. Nested interrupt request sequence example

7.1.7 EIC Interrupt Vectoring

When the ARM7TDMI decodes an IRQ interrupt request, the instruction at the address 0x18
is executed. By this time the IVR register is updated with the address of the highest pending
interrupt routine. In order to get the maximum advantage from the EIC mechanism, the
instruction at address 0x18 can load the program counter with the address located in the
IVR. In this way, the CPU vector points directly to the right interrupt routine without any
software overhead.

As the priority decoder is always active, the arbitration is never stopped. It may happen that
an interrupt event asserts low the ARM7TDMI nIRQ line and if between the nIRQ line
asserted low and the IVR read operation a new highest priority event appears, the IVR will
have the value corresponding to the highest priority pending interrupt when the IVR is read.

It is not mandatory to read the IVR and to branch directly to the right interrupt routine with
the instruction at address 0x18. An alternative solution could be to branch to a single
interrupt entry point and to read the IVR register later on. The only mandatory operations are
to first read the IVR once only, then to clear the corresponding pending bit. From an EIC

INTERRUPT 0 HAS PRIORITY LEVEL 0
INTERRUPT 1 HAS PRIORITY LEVEL 1
INTERRUPT 2 HAS PRIORITY LEVEL 2
INTERRUPT 3 HAS PRIORITY LEVEL 3
INTERRUPT 4 HAS PRIORITY LEVEL 4
INTERRUPT 5 HAS PRIORITY LEVEL 5
INTERRUPT 6 HAS PRIORITY LEVEL 6
INTERRUPT 7 HAS PRIORITY LEVEL 7

INT. 1

INT. 5

INT. 2

7

6

5

4

3

1

2

0

PRIORITY LEVEL

MAIN PROGRAM MAIN PROGRAM

CPL set to 0

CPL = 1

INT. 5

CPL = 2

INT. 3

CPL = 3

CPL = 5

INT. 3

CPL = 3

INT. 4

CPL = 4

INT. 5

CPL = 5

INT. 7

CPL = 5

INT. 2

CPL = 2

CPL = 0

INT. 2

INT. 5
INT. 3
INT. 4

INT. 7 INT. 1

INT. 5

re-enable interrupt

re-enable interrupt

re-enable interrupt re-enable interrupt

re-enable interrupt

re-enable interrupt
94/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
standpoint, the interrupt is acknowledged when the IVR is read and is completed when the
corresponding pending bit is cleared. From an ARM7TDMI core stand point the interrupt is
acknowledged when the ARM7TDMI nIRQ line is asserted low and is completed when the
exception return sequence is executed.

The EIC nIRQ line is equivalent to the ARM7TMDI nIRQ line but in addition it is masked by
the EIC global enable bit (IRQ_EN). The EIC nIRQ line can be asserted low but if the global
EIC enable bit is not set the ARM7TDMI nIRQ line will not be asserted low.

The IPR is a read/clear register, so writing a ‘0’ has no effect, while writing a ‘1’ resets the
related bit. Therefore, refrain from using read-modify instructions to avoid corruption of the
IPR status. Most of the EIC pending bits are related to a peripheral pending bit. The
peripheral pending bit must be cleared prior to clearing the EIC pending bit. Otherwise the
EIC pending bit will be set again and the interrupt routine will be executed twice.

7.1.8 EIC IRQ notes

Reading the IVR while the FSM is in READY state will have no effect. The value read will be
unpredictable. Actually, the EIC assigns the IVR value to one of the IRQ routine addresses
by default.

The IVR can also be unpredictable while the FSM is in WAIT state. This has to be avoided as
the CPU would execute one interrupt routine while the value in the IVR register is not
relevant. It would result in an EIC stack corruption as the corresponding pending bit could be
reset.

There are several cases where it may happen:

- When the main program raises the main program priority level to a value equal to or higher
than the current highest priority pending channel. Interrupts have to be disabled globally
during this operation.

- When lowering the priority of a pending channel priority by modifying the SIRn register to a
value equal or lower than the main program priority.

- When the software clears some pending bits without taking care to execute the standard
interrupt routine sequence.

In such cases the priority decoder loses the winner while the EIC nIRQ line is still being
asserted. Only reading the IVR will release the EIC nIRQ line.

The CPU will execute the interrupt routine without having a relevant value in the IVR register,
possibly corrupting the stack. If the corresponding pending bit is reset, it will not be possible
to execute the EIC stack pop operation.

The normal way to process an interrupt event is to read the IVR register only one time from
the interrupt routine, otherwise it may corrupt the EIC stack. Before exiting the interrupt
routine the corresponding peripheral and the EIC pending bits must be cleared. As soon as
95/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
the IVR is read the application software can read the CICR register to know which interrupt
routine is currently executing, as long as the IVR register is not used as a routine pointer.

If the IVR is not read in the interrupt routine the nIRQ line will not be released and the
interrupt will be executed twice. If the pending bit is already cleared the EIC stack will be
corrupted as it will not be able to perform the pop operation.

Inside a routine it is not an issue to clear pending bits having a lower priority level than the
current one, as the nIRQ line is not asserted low in that case. It can be an issue to clear a
pending bit having a higher priority level as the EIC nIRQ line is already asserted low, and
when interrupts are re-enabled, the EIC stack will be corrupted.

Clearing a pending bit of an interrupt already in the stack will corrupt the stack.

In the main program, if the global interrupts are disabled, all interrupt sources are disabled
and all pending bits are cleared, if the nIRQ was already asserted low as soon as the global
interrupts are enabled the CPU executes an interrupt routine. In this situation the IVR read
will have an unpredictable value, corrupting the EIC stack.

There are two safe ways to clear pending bits without executing the interrupt routine. The
first one is to clear them from an IRQ routine having the higher priority level. By this way, the
EIC nIRQ line is guaranteed to be released. The second one applies only from the main
routine when there is no nested interrupt (EIC stack empty). It consists in following these
steps:

• 1) the global interrupts are disabled

• 2) disable all the interrupt channel bits (IER0 = IER1 = 0)

• 3) IVR is read

• 4) read CICR

• 5) clear all IPR0 or IPR1 pending bits (IPR0=0 or IPR1=0), it depends on CICR read.
The software has to clear first the register not related to CICR read. If the channel read
is below 32, IPR1 must be cleared first.

• 6) clear the second EIC pending bit register.

• 7) enable IER0 and IER1 according to the user application.

• 8) enable global interrupts.

If the FSM is in READY state, reading IVR in operation 3) will not do anything. Clearing
pending bits will not pop anything as this code is executed from the main routine with no
nested interrupts (this is the reason why this method is not recommended from an interrupt
routine as clearing all the pending bits will abort the current EIC interrupt routine).

If the FSM is in WAIT state the IVR read will correspond to the highest priority level channel,
the main CIPR register will be pushed into the stack, and the main program will have the
96/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
priority of the highest pending interrupt. The EIC nIRQ is released and will not be asserted
again if the right IPR register is cleared first. For example if the IVR read correspond to the
channel 10 the IPR1 must be cleared first, otherwise, as soon as IPR0 is cleared, the EIC
will pop the previous context and any pending interrupts in IPR1 may assert the nIRQ line.

All EIC pending bits can be cleared including the ones that the user application wants to
address later on. The user code needs to make sure that, for those interrupts, the peripheral
pending bit is not cleared. By this way, the corresponding EIC pending bits will be set again.
As all EIC pending bits are cleared, the EIC stack is guaranteed to pop properly. An
alternative solution is to make sure that the EIC pending bit corresponding to the IVR read is
cleared.

The operation 3), reading the IVR, is done from the main program and not from an interrupt.
It is the only exception where IVR should be read outside an interrupt routine.
97/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
7.2 FIQ mechanism

Compare to the EIC IRQ mechanism the EIC FIQ mechanism does not provide any
automatic vectoring and software priority level to each FIQ interrupt source. It provides a
global FIQ enable bit, an enable and a pending bit per FIQ channel.

There are few differences between the global F bit from the CPSR ARM core register and
the global FIQ enable bit from the EIC. The F bit can not be modified in user mode while the
EIC global FIQ enable bit is always accessible in any modes. In addition the F bit does not
modify the nFIQ internal signal level, it just masks the signal to the core while the EIC global
FIQ enable bit act on the nFIQ signal level. The nFIQ signal is always inactive as soon as the
global EIC FIQ enable bit is reset, and is active as soon as the global EIC FIQ enable bit is
set along with at least one FIQ pending bit.

In order for an FIQ channel source to be pending, the corresponding FIQ enable bit must be
set. Clearing the FIQ channel enable bit while the corresponding pending bit is set will not
clear the pending bit and the channel will stay active until the pending bit is cleared.

In order for the CPU to vector at the address 0x1C (FIQ exception vector address) the F bit
and the global EIC FIQ enable bit must be enabled and at least one FIQ pending bit must be
active. Otherwise the CPU will not enter the FIQ exception routine.
98/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
7.3 Register Programming

Here are a few guideline steps on how to program the EIC’s registers in order to get the
controller up and running quickly. In the following, it is assumed to deal with standard
interrupts and that the user wants, for example, to detect an interrupt on channel #52, in
which the priority has been assigned to be 5.

First of all, it is necessary to assign the priority and the jump address data related to the
interrupt channel #52. Therefore:

• set in field SIPL of SIR52 the binary “0101”, i.e. priority of 5 (it must be not 0 to have an IRQ
to be generated).

Two registers are involved to supply the channel interrupt vector data to the EIC controller
(IVR[31:16] and SIR52[31:16]:

• write in SIR52[31:16], i.e. in the upper part of the SIR register related to channel #52, the
memory address offset (or the jump offset) where the Interrupt Service Routine, related to
interrupt channel #7, starts.

• insert the base jump address (or the jump opcode) in the most significant half of the IVR
register, i.e. IVR[31:16].

Finally, response to the interrupt must be enabled both at the global level and at the single
interrupt channel level. To do so these steps shall be followed:

• set the IRQ_EN bit of ICR to 1

• set bit # 20 of IER1 to 1

As far as the FIQ interrupts are concerned, since those interrupts do not have any
vectorization nor priority, only the first two steps above are involved. Supposing the user
wants to enable FIQ channel #2:

• set the FIQ_EN bit of ICR to 1.

• set bit #6 of FIE in FIR register to 1.

Note It is recommended to disable IRQ/FIQ interrupts ('I' and 'F' bits of the CPSR
ARM7TDMI processor register) before updating the EIC configuration registers.
This is to avoid the processor starting to serve new interrupts while you are
updating the EIC registers (most operations take two clock cycles). When the EIC
has been successfully updated, you can safely reset the ARM CPSR 'I'/'F' bits and
re-enable IRQ/FIQ interrupt processing.
99/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
7.4 Application note

Every Interrupt Service Routine (ISR) allowing nested interrupts should be composed by the
following blocks of code.

• A Header routine to enter ISR. It must be:

1) STMFD sp!,{r5,lr} The workspace r5 plus the current return address lr_irq is pushed into the system
stack.
2) MRS r5,spsr Save the spsr into r5
3) STMFD sp!,{r5} Save r5
4) MSR cpsr_c,#0x1FRe-enable IRQ, go into system mode
5) STMFD sp!,{lr} Save lr_sys for the system mode

Note r5 is a generic register among those available, namely r0 up to r12. Since there is
no way to save SPSR directly into the ARM’s stack, the operation is executed in two
steps using r5 as transition help register.

• The ISR Body routines.

• A Footer routine to exit ISR. It must be:

1) LDMFD sp!,{lr} Restore lr_sys for the system mode
2) MSR cpsr_c,#0xD2 Disable IRQ, move to IRQ mode
3) Clear pending bit in EIC (using the proper IPRx)
4) LDMFD sp!,{r5} Restore r5
5) MSR spsr,r5 Restore Status register spsr
6) LDMFD sp!,{r5,lr} Restore status lr_irq and workspace
7) SUBS pc,lr,#4 Return from IRQ and interrupt re-enabled

In the following two paragraphs some comments on the code lines introduced above and
some hints useful when realizing subroutines to be invoked by an ISR are reported.

7.4.1 Avoiding LR_sys and r5 registers content loss

A first example refers to a LR_sys content loss problem: it is assumed that an ISR without
instruction 5) in the header routine (and consequently without instruction 1) in the footer
routine) has just started; the following happens:

• Instruction 4) is executed (so system mode is entered)

• If before the interrupt event the main program was in a leaf routine (no function call in the
routine) meaning that the system link register is not pushed into the stack, as soon as
the system mode is entered in the ISR the link register could be corrupted if there a
100/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
function call happens. It will not be possible to return from the leaf routine in the main
program.

The work-around to avoid such a dangerous situation is to insert line 5) at the end of header
routine and consequently line 1) at the beginning of footer routine.

Similar reasons could lead register r5 to be corrupted. To fix this problem, lines 3) in header
and 4) in footer should be added.

7.4.2 Hints about subroutines used inside ISRs

A case in which a subroutine is called by an ISR is hereafter considered.

Supposing that such a kind of procedure starts with an instruction like:

STMFDSP!, {..., LR}

probably it will end with:

LDMFDSP!, {..., LR}
MOV PC, LR

If a higher priority IRQ occurs between the last two instructions, and the new ISR calls in turn
another subroutine, LR content will be lost: so, when the last IRQ ends, the previously
interrupted subroutine will not return to the correct address.

To avoid this, the previous two instructions shall be replaced with the unique instruction:

LDMFDSP!, {..., PC}

which automatically moves stored link register directly into the program counter, making the
subroutine correctly return.
101/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
7.5 Interrupt latency

As soon as an interrupt request is generated (either from external interrupt source or from an
on-chip peripheral), the request itself must go through three different stages before the
interrupt handler routine can start. The interrupt latency can be seen as the sum of three
different contributions:

• Latency due to the synchronisation of the input stage. This logic can be present (e.g.
synchronization stage on external interrupts input lines) or not (e.g. on-chip interrupt
request), depending on the interrupt source. Either zero or two clock cycles delay are
related to this stage.

• Latency due to the EIC itself. Two clock cycles are related to this stage.

• Latency due to the ARM7TDMI interrupt handling logic (refer to the documentation
available on www.arm.com).

Table 20. EIC Interrupt latency (in clock cycles)
SYNCH. STAGE

EIC STAGE
min max

FIQ
0 2 2

IRQ
102/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
7.6 Register Description

Reading from the “Reserved” field in any register will return ‘0’ as result. Attempt to write in
the same field has no effect.

7.6.1 Interrupt Control Register (EIC_ICR)

Address Offset: 00h
Reset value: 0000 0000h

Bit 31:2 = Reserved, must be kept at reset value (0).

Bit 1= FIQ_EN: Global FIQ output ENable bit
This bit enables FIQ output request to the CPU.
1: Enhanced Interrupt Controller FIQ output request to CPU is enabled
0: Enhanced Interrupt Controller FIQ output request to CPU is disabled, even if the EIC logic
has detected valid and enabled fast interrupt requests at its inputs

Note It is recommended to set the ARM7TDMI CPSR 'F' bit to disable FIQ interrupts
before updating the FIQ_EN bit. This is to avoid the processor starting to serve a
new interrupt while the EIC is being disabled (this operation takes two clock cycles).
When the EIC has been successfully updated, it is possible to safely reset the ARM
CPSR 'F' and re-enable FIQ interrupt processing.

Bit 0 = IRQ_EN: Global IRQ output ENable bit
This bit enables IRQ output request to the CPU.
1: Enhanced Interrupt Controller IRQ output request to CPU is enabled
0: Enhanced Interrupt Controller IRQ output request to CPU is disabled, even if the EIC logic
has detected valid and enabled interrupt requests at its inputs

Note It is recommended to set the ARM7TDMI CPSR 'I' bit to disable IRQ interrupts
before updating the IRQ_EN bit. This is to avoid the processor starting to serve a
new interrupt while the EIC is being disabled (this operation takes two clock cycles).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved FIQ_EN IRQ_EN

- rw rw
103/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
When the EIC has been successfully updated, it is possible to safely reset the ARM
CPSR 'I' and re-enable IRQ interrupt processing.

The ICR register is a global enable register.

Note While resetting to ‘0’ FIQ_EN bit simply masks out FIQ output request to CPU,
resetting to ‘0’ IRQ_EN bit keeps under reset the FSM which controls IRQ output
request to CPU and freezes the FSM that manages the EIC Stack Pointer (Push/
Pop control). This is done to make it safe to perform operations such as clearing of
unwanted pending IRQs, raising of the priority value in CIPR register, modification
of the priority for any IRQ channel by re-writing its related SIR register SIPL field.

7.6.2 Current Interrupt Channel Register (EIC_CICR)

Address Offset: 04h
Reset value: 0000 0000h

The CICR Register reports the channel ID of the interrupt channel currently serviced. There
are 64 possible channel IDs (0 to 63), so the significant register bits are only six (5 down to
0).

After reset, the CICR value is set to ‘0’ and is updated by the EIC logic only after the
processor has started servicing a valid IRQ interrupt request e.g. one clock cycle after
having read IVR.

To make this happen, some EIC registers must be set as in the following:

•ICR IRQ_EN =1 (to have the nIRQ signal to ARM7TDMI active)

•IER0/IER1 not all 0 (at least one interrupt channel must be enabled)

•among the interrupt channels enabled by the IERx registers, at least one must have the
SIPL field, of the related SIR register, not set to 0, because the EIC generates a proces-
sor interrupt request (asserting the nIRQ line) ONLY IF it detects an enabled interrupt re-
quest whose priority value is bigger than the CIPR (Current Interrupt Priority Reg-
ister) value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved CIC[5:0]

- r
104/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
When the nIRQ signal to ARM7TDMI is activated, the CPU will read the EIC IVR (Interrupt
Vector Register), and this read operation will advise the EIC logic that the ISR (Interrupt
Service Routine) has been initiated and the CICR register can be properly updated.

The CICR value can’t be modified by the CPU (read only register).

Bit 31:6 = Reserved, must be kept at reset value (0).

Bit 5:0 = CIC[5:0]: Current Interrupt Channel.
Number of the interrupt whose service routine is currently in execution phase.

7.6.3 Current Interrupt Priority Register (EIC_CIPR)

Address Offset: 08h
Reset value: 0000 0000h

The CIPR Register provides the priority value of the main program or the priority value of the
interrupt routine currently serviced. There are 16 possible priority values (0 to 15), so the
significant register bits are only four (3 down to 0).

After reset, the CIPR value is set to ‘0’ and is updated by the EIC logic only after the
processor has started servicing a valid IRQ interrupt request e.g. one clock cycle after
having read IVR.

To make this happen, some EIC registers must be set as in the following:

•ICR IRQ_EN =1 (to have the nIRQ signal to ARM7TDMI active)

•IER0/IER1 not all 0 (at least one interrupt channel must be enabled)

•among the interrupt channels enabled by the IERx registers, at least one must have the
SIPL field, of the related SIR register, not set to 0, because the EIC generates a proces-
sor interrupt request (asserting the nIRQ line) ONLY IF it detects an enabled interrupt re-
quest whose priority value is bigger than the CIPR (Current Interrupt Priority Reg-
ister) value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved CIP[3:0]

- rw
105/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
When the nIRQ signal to ARM7TDMI is activated, the CPU will read the EIC IVR (Interrupt
Vector Register), and this read operation will advise the EIC logic that the ISR (Interrupt
Service Routine) has been initiated and the CIPR register can be properly updated.

The CIPR value can be modified by the user code, to either rise the priority of the main code
(in order to avoid to serve incoming interrupt requests with a priority value lower than a
desired one) or to promote a running ISR to a higher level: in this last case, the EIC logic will
allow a write to the CIP field of any value higher, or equal, than the priority value associated
to the interrupt channel currently serviced.

E.g.: suppose the nIRQ signal to ARM7TDMI is activated because of an enabled interrupt
request on channel #4, whose priority value is 7 (i.e. SIPL of SIR7 is 7); after the processor
read of IVR register, the EIC will load the CIP field with 7. Until the interrupt service
procedure will be completed, writes of values 7 up to 15 will be allowed, while attempts to
modify the CIP content with priority lower than 7 will have no effect.

The user software has to pay attention to avoid a situation where the FSM is in WAIT state
and the IVR having an unpredictable value.

Bit 31:4 = Reserved, must be kept at reset value (0).

Bit 3:0 = CIP[3:0]: Current Interrupt Priority.
Priority value of the interrupt whose service routine is currently in execution phase.

Note In order to safely rise current CIPR (both from main code and from an ISR), bit
IRQ_EN of ICR register should be cleared first, otherwise the EIC FSM could be
led into an unrecoverable state.

7.6.4 Fast Interrupt Enable Register (EIC_FIER)

Address Offset: 10h
Reset value: 0000 0000h

The FIER Register is just an alias of field FIE in FIR register.

Bit 31:2 = Reserved, must be kept at reset value (0).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved FIE[1:0]

r rw
106/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
Bit 1 = FIE[1]: FIQ Channel 1 Interrupt Enable bit

Bit 0 = FIE[0]: FIQ Channel 0 Interrupt Enable bit

In order to have the controller responding to a request on a specific channel, the
corresponding bit in the FIER register must be set to 1.

A ‘0’ value prevents the corresponding pending bit to be set.

1: Fast Interrupt request issued on the specific channel is enabled
0: Fast Interrupt request issued on the specific channel is disabled
107/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
7.6.5 Fast Interrupt Pending Register (EIC_FIPR)

Address Offset: 14h
Reset value: 0000 0000h

The FIPR Register is just an alias of field FIP in FIR register.

Bit 31:2 = Reserved, must be kept at reset value (0).

Bit 1 = FIP[1]: Channel 1 Fast Interrupt Pending Bit

Bit 0 = FIP[0]: Channel 0 Fast Interrupt Pending Bit

These bits are set by hardware by a Fast interrupt request on the corresponding channel.
These bits are cleared only by software, i.e. writing a ‘0’ has no effect, whereas writing a ‘1’
clears the bit (forces it to ‘0’).
1: Fast Interrupt pending
0: No Fast interrupt pending

7.6.6 Interrupt Vector Register (EIC_IVR)

Address Offset: 18h
Reset value: 0000 0000h

The IVR is the EIC register the CPU has to read after detecting the nIRQ signal assertion.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved FIP[1:0]

r rc

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IVR[31:16]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IVR[15:0]

r

108/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
The IVR read operation tells the EIC logic that the interrupt service routine (ISR), related to
the pending request, has been initiated.

This means that:

• the nIRQ signal can be de-asserted

• the CIPR and CICR can be updated

• no interrupt requests, whose priority is lower, or equal, than the current one can be
processed

Bit 31:16 = IVR(31:16): Interrupt Vector (High portion).
Its content does not depend on the interrupt to be serviced, but has to be programmed by
the user (see Note) at initialization time and it’s common to all the interrupt channels. It is
Read/Write.

Bit 15:0 = IVR(15:0): Interrupt Vector (Low portion).
Its content depends on the interrupt to be serviced (i.e. the one, in the enabled bunch, with
the highest priority), and it’s a copy of the SIV (Source Interrupt Vector) value of the SIR
(Source Interrupt Register) related to the channel to be serviced. It is Read only.

Note The EIC logic does not care about the IVR content: from the controller point of view
it’s a simple concatenation of two 16-bit fields

IVR = IVR(31:16) & SIRn(31:16)

What has to be written in the IVR(31:16) is the higher part of the address pointing to
the memory location where the interrupt service routines begin; the single
SIRn(31:16) will have to contain the lower 16 bits (offset) of the memory address
related to the channel specific ISR.

Reading IVR has acknowledged only when the CPU is not in debug mode and the user code
is executing in ARM IRQ mode.
109/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
7.6.7 Fast Interrupt Register (EIC_FIR)

Address Offset: 1Ch
Reset value: 0000 0000h

In order for the controller to react to the 2 fast-interrupt (FIQ) channels the enable bits 1 and
0 must be set to 1. The field 4 and 3 keeps the information on the interrupt request of the
specific channel.

Bit 31:5 = Reserved, must be kept at reset value (0).

Bit 4 = FIP[1]: Channel 1 Fast Interrupt Pending Bit

Bit 3 = FIP[0]: Channel 0 Fast Interrupt Pending Bit

These bits are set by hardware by a Fast interrupt request on the corresponding channel.
These bits are cleared only by software, i.e. writing a ‘0’ has no effect, whereas writing a ‘1’
clears the bit (forces it to ‘0’).
1: Fast Interrupt pending
0: No Fast interrupt pending

Bit 1 = FIE[1]: FIQ Channel 1 Interrupt Enable bit

Bit 0 = FIE[0]: FIQ Channel 0 Interrupt Enable bit

In order to have the controller responding to a request on a specific channel, the
corresponding bit in the FIR register must be set to 1.

A ‘0’ value prevents the corresponding pending bit to be set.

1: Fast Interrupt request issued on the specific channel is enabled
0: Fast Interrupt request issued on the specific channel is disabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved FIP[1:0]
reserve

d
FIE[1:0]

- rc - rw
110/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
7.6.8 Interrupt Enable Register 0 (EIC_IER0)

Address Offset: 20h
Reset value: 0000 0000h

Bit 31 = IER[31]: Channel 31 Interrupt Enable bit

Bit 30 = IER[30]: Channel 30 Interrupt Enable bit

...

Bit 1 = IER[1]: Channel 1 Interrupt Enable bit

Bit 0 = IER[0]: Channel 0 Interrupt Enable bit

The IER0 is a 32 bit register: it provides an enable bit for each of the lower 32 EIC interrupt
input channels.

In order to enable the interrupt response to a specific interrupt input channel the
corresponding bit in the IER0 register must be set to ‘1’.

A ‘0’ value prevents the corresponding pending bit to be set.

1: Input channel enabled
0: Input channel disabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IER[31:16]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IER[15:0]

rw
111/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
7.6.9 Interrupt Enable Register 1 (EIC_IER1)

Address Offset: 24h
Reset value: 0000 0000h

Bit 31= IER[63]: Channel 63 Interrupt Enable bit

Bit 30 = IER[62]: Channel 62 Interrupt Enable bit

...

Bit 1 = IER[33]: Channel 33 Interrupt Enable bit

Bit 0 = IER[32]: Channel 32 Interrupt Enable bit

The IER1 is a 32 bit register: it provides an enable bit for each of the upper 32 EIC interrupt
input channels.

In order to enable the interrupt response to a specific interrupt input channel the
corresponding bit in the IER1 register must be set to ‘1’.

A ‘0’ value prevents the corresponding pending bit to be set.

1: Input channel enabled
0: Input channel disabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IER[63:48]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IER[47:32]

rw
112/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
7.6.10 Interrupt Pending Register 0 (EIC_IPR0)

Address Offset: 40h
Reset value: 0000 0000h

Bit 31= IPR[31]: Channel 31 Interrupt Pending bit

Bit 30 = IPR[30]: Channel 30 Interrupt Pending bit

...

Bit 1 = IPR[1]: Channel 1 Interrupt Pending bit

Bit 0 = IPR[0]: Channel 0 Interrupt Pending bit

The IPR0 is a 32 bit register: it provides a pending bit for each of the lower 32 EIC interrupt
input channels.

This is where the information about the channel interrupt status is kept: if the corresponding
bit in the enable register IER0 has been set, the IPR0 bit set high (active) means that the
related channel has asserted an interrupt request, that has not been serviced yet.

The bits are Read/Clear, i.e. writing a ‘0’ has no effect, whereas writing a ‘1’ clears the bit
(forces it to ‘0’).

1: Interrupt pending
0: No interrupt pending

Note1

Before exiting the ISR (Interrupt Service Routine), the software must be sure to have cleared
the EIC IPR0 bit related to the executed routine: this bit clear will be read by the EIC logic as
End of Interrupt (EOI) sequence, and will allow the interrupt stack pop and new interrupts
processing .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IPR[31:16]

rc

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IPR[15:0]

rc
113/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
Note2

The Interrupt Pending bits must be handled with care because the EIC State Machine, and
its internal priority hardware stack, could be forced to a not recoverable condition if
unexpected pending bit clear operations are performed.

Example1

Suppose that one or more interrupt channels are enabled, with a priority higher than zero; as
soon as an interrupt request arises, the EIC FSM processes the new input and asserts the
nIRQ signal. If, before reading the IVR (0x18) register, for any reason, the CPU clears the
pending bits, the nIRQ signal will remain asserted the same, even if no more interrupts are
pending.
The only way to reset the nIRQ line logic is to read the IVR (0x18) register, to send a Soft
Reset to the EIC or to reset bit IRQ_EN of ICR register.

Example2

Suppose that one or more interrupt channels are enabled, with a priority higher than zero; as
soon as an interrupt request arises, the EIC FSM processes the new input and asserts the
nIRQ signal. If, after reading the IVR (0x18) register, for any reason, the CPU clears the
pending bit related to the serviced channel, before completing the Interrupt Service Routine,
the EIC logic will detect an End Of Interrupt command, will send a pop request to the priority
stack and a new interrupt, even of lower priority, will be processed.
To close an interrupt handling section (EOI), the interrupt pending clear operation must be
performed, at the end of the related Interrupt Service Routine, on the pending bit related to
the serviced channel; on the other hand, as soon as the pending bit of the serviced channel
is cleared (even by mistake) by the SW, the EOI sequence is entered by the EIC logic.

Note3

In order to safely clear a pending bit of an IRQ not currently serviced, bit IRQ_EN of ICR reg-
ister should be cleared first. If this is not done, the EIC FSMs could be led into an unrecov-
erable state.
Anyway, while in main program this operation has no drawbacks, when performed inside an
IRQ routine it is very important not to clear by mistake the IPRn bit related to the currently
served IRQ: since IRQ_EN bit freezes the Stack, the pop operation for the current IRQ won’t
be done and won’t be even possible in future when IRQs will be re-enabled.
114/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
7.6.11 Interrupt Pending Register 1 (EIC_IPR1)

Address Offset: 44h
Reset value: 0000 0000h

Bit 31= IPR[63]: Channel 63 Interrupt Pending bit

Bit 30 = IPR[62]: Channel 62 Interrupt Pending bit

...

Bit 1 = IPR[33]: Channel 33 Interrupt Pending bit

Bit 0 = IPR[32]: Channel 32 Interrupt Pending bit

The IPR1 is a 32 bit register: it provides a pending bit for each of the upper 32 EIC interrupt
input channels.

This is where the information about the channel interrupt status is kept: if the corresponding
bit in the enable register IER1 has been set, the IPR1 bit set high (active) means that the
related channel has asserted an interrupt request, that has not been serviced yet.

The bits are Read/Clear, i.e. writing a ‘0’ has no effect, whereas writing a ‘1’ clears the bit
(forces it to ‘0’).

1: Interrupt pending
0: No interrupt pending

Note1

Before exiting the ISR (Interrupt Service Routine), the software must be sure to have cleared
the EIC IPR1 bit related to the executed routine: this bit clear will be read by the EIC logic as
End of Interrupt (EOI) sequence, and will allow the interrupt stack pop and new interrupts
processing .

Note2 and Note3: please refer to IPR0 section.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IPR[63:48]

rc

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IPR[47:32]

rc
115/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
7.6.12 Source Interrupt Registers - Channel n (EIC_SIRn)

Address Offset: 60h to 15Ch
Reset value: 0000 0000h

There are 64 different SIRn registers, as many as the input interrupt channels are.

Bit 31:16 = SIV[31:16]: Source Interrupt Vector for interrupt channel n (n = 0... 63).
This field contains the interrupt channel depending part of the interrupt vector, that will be
provided to the processor when the Interrupt Vector Register (Address 0x18h) is read.

The SIV will have to be loaded with the lower 16 bits (offset) of the memory address related
to the first ISR instruction.

Bit 15:4: Reserved, must be kept at reset value (0).

Bit 3:0 = SIPL[3:0]: Source Interrupt Priority Level for interrupt channel n (n = 0... 63).
These 4 bits allow to associate the interrupt channel to a priority value between 0 and 15.
The reset value is 0.

Note To be processed by the EIC priority logic, an interrupt channel must have a priority
level higher than the current interrupt priority (CIP); the lowest value CIP can have
is 0, so all the interrupt sources that have a priority level equal to 0 will never
generate an IRQ request, even if properly enabled.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SIV[31:16]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved SIPL[3:0]

- rw
116/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
7.7 EIC Register Map
Table 21. EIC register map
Addr.

Off
set

Register
Name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ICR reserved

FI
Q
_E
N

IR
Q
_E
N

4 CICR reserved CIC[3:0]

8 CIPR reserved CIP[3:0]

C reserved

10 FIER reserved FIE[2:0]

14 FIPR reserved FIP[2:0]

18 IVR
Jump Instruction Opcode or

Jump Base Address
Jump Offset

1C FIR reserved FIP[2:0] FIE[2:0]

20 IER0 IER[31:0]

24 IER1 IER[63:32]

40 IPR0 IPR[31:0]

44 IPR1 IPR[63:32]

60 SIR0 SIV0[31:16] reserved SIPL0[3:0]

64 SIR1 SIV1[31:16] reserved SIPL1[3:0]

68 SIR2 SIV2[31:16] reserved SIPL2[3:0]

6C SIR3 SIV3[31:16] reserved SIPL3[3:0]

70 SIR4 SIV4[31:16] reserved SIPL4[3:0]

74 SIR5 SIV5[31:16] reserved SIPL5[3:0]

78 SIR6 SIV6[31:16] reserved SIPL6[3:0]

7C SIR7 SIV7[31:16] reserved SIPL7[3:0]

80 SIR8 SIV8[31:16] reserved SIPL8[3:0]

84 SIR9 SIV9[31:16] reserved SIPL9[3:0]

88 SIR10 SIV10[31:16] reserved SIPL10[3:0]

8C SIR11 SIV11[31:16] reserved SIPL11[3:0]

90 SIR12 SIV12[31:16] reserved SIPL12[3:0]

94 SIR13 SIV13[31:16] reserved SIPL13[3:0]

98 SIR14 SIV14[31:16] reserved SIPL14[3:0]

9C SIR15 SIV15[31:16] reserved SIPL15[3:0]

A0 SIR16 SIV16[31:16] reserved SIPL16[3:0]

A4 SIR17 SIV17[31:16] reserved SIPL17[3:0]

A8 SIR18 SIV18[31:16] reserved SIPL18[3:0]

AC SIR19 SIV19[31:16] reserved SIPL19[3:0]

B0 SIR20 SIV20[31:16] reserved SIPL20[3:0]

B4 SIR21 SIV21[31:16] reserved SIPL21[3:0]

B8 SIR22 SIV22[31:16] reserved SIPL22[3:0]

BC SIR23 SIV23[31:16] reserved SIPL23[3:0]

C0 SIR24 SIV24[31:16] reserved SIPL24[3:0]

C4 SIR25 SIV25[31:16] reserved SIPL25[3:0]

C8 SIR26 SIV26[31:16] reserved SIPL26[3:0]

CC SIR27 SIV27[31:16] reserved SIPL27[3:0]
117/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
See Table 2, “APB Memory Map,” on page 17 for base address

D0 SIR28 SIV28[31:16] reserved SIPL28[3:0]

D4 SIR29 SIV29[31:16] reserved SIPL29[3:0]

D8 SIR30 SIV30[31:16] reserved SIPL30[3:0]

DC SIR31 SIV31[31:16] reserved SIPL31[3:0]

E0 SIR32 SIV32[31:16] reserved SIPL32[3:0]

E4 SIR33 SIV33[31:16] reserved SIPL33[3:0]

E8 SIR34 SIV34[31:16] reserved SIPL34[3:0]

EC SIR35 SIV35[31:16] reserved SIPL35[3:0]

F0 SIR36 SIV36[31:16] reserved SIPL36[3:0]

F4 SIR37 SIV37[31:16] reserved SIPL37[3:0]

F8 SIR38 SIV38[31:16] reserved SIPL38[3:0]

FC SIR39 SIV39[31:16] reserved SIPL39[3:0]

400 SIR40 SIV40[31:16] reserved SIPL40[3:0]

104 SIR41 SIV41[31:16] reserved SIPL41[3:0]

108 SIR42 SIV42[31:16] reserved SIPL42[3:0]

10C SIR43 SIV43[31:16] reserved SIPL43[3:0]

110 SIR44 SIV44[31:16] reserved SIPL44[3:0]

114 SIR45 SIV45[31:16] reserved SIPL45[3:0]

118 SIR46 SIV46[31:16] reserved SIPL46[3:0]

11C SIR47 SIV47[31:16] reserved SIPL47[3:0]

120 SIR48 SIV48[31:16] reserved SIPL48[3:0]

124 SIR49 SIV49[31:16] reserved SIPL49[3:0]

128 SIR50 SIV50[31:16] reserved SIPL50[3:0]

12C SIR51 SIV51[31:16] reserved SIPL51[3:0]

130 SIR52 SIV52[31:16] reserved SIPL52[3:0]

134 SIR53 SIV53[31:16] reserved SIPL53[3:0]

138 SIR54 SIV54[31:16] reserved SIPL54[3:0]

13C SIR55 SIV55[31:16] reserved SIPL55[3:0]

140 SIR56 SIV56[31:16] reserved SIPL56[3:0]

144 SIR57 SIV57[31:16] reserved SIPL57[3:0]

148 SIR58 SIV58[31:16] reserved SIPL58[3:0]

14C SIR59 SIV59[31:16] reserved SIPL59[3:0]

150 SIR60 SIV60[31:16] reserved SIPL60[3:0]

154 SIR61 SIV61[31:16] reserved SIPL61[3:0]

158 SIR62 SIV62[31:16] reserved SIPL62[3:0]

15C SIR63 SIV63[31:16] reserved SIPL63[3:0]

Table 21. EIC register map
Addr.

Off
set

Register
Name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
118/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
7.8 External Interrupt Pins INT[15:0]

The STR73x device provides sixteen external interrupt pins [INT15:0]. You can configure
them individually as edge-triggered or level-triggered.

7.8.1 Edge-Triggered External Interrupts

In case of interrupt “edge“ triggered, you can select the interrupt trigger event to be rising
edge, falling edge or both. This event will generate a pulse (one system clock cycle long) that
will set the corresponding EIC interrupt pending bit (if the related mask bit is enabled). After
the reset of the interrupt pending bit (performed by the user interrupt sub routine), a new
interrupt will be issued to EIC only if a new edge event occurs on the external interrupt line.

7.8.2 Level-Triggered External Interrupts

In case of interrupt “level“ triggered, the user may select to issue an interrupt request to EIC
module when either a “high” level or a “low” level is applied on external interrupt line. The
selected active level will set the correspondent EIC interrupt pending bit (if the related mask
bit is enabled). After the reset of the interrupt pending bit (performed by user ISR), a new
interrupt will be issued to EIC if the external interrupt line is kept at the selected active level.

Each external interrupt source has three configuration registers: CFG_EITE2, CFG_EITE1
and CFG_EITE0 mapped in the Configuration register block. Refer to Section 4.2: External
Interrupt Request Configuration Registers on page 64.

The selection of the desired event on INTn (n=0,15) triggering interrupt request on EIC
module is achieved programming the generic bit n of three configuration registers, as
summarized in Table 22 on page 119.

Table 22. External Interrupt Configuration Table

EITE2(n) 1 1 1 1 0 0 0 0

EITE1(n) 1 1 0 0 1 1 0 0

EITE0(n) 1 0 1 0 1 0 1 0

Event on INTn
input channel
triggering Interrupt
Request on EIC

INTn
channel
disabled

INTn
rising
and

falling
edges

INTn
rising
edge

INTn
falling
edge

INTn
HIGH
level

INTn
LOW
level

INTn
HIGH

level (*)

INTn
LOW
level

Notes:
(*): Reset Configuration
119/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
7.9 Wake-Up Interrupt Unit (WIU)

The main function of the Wake-Up Interrupt Unit (WIU) is to manage the external wake-up
lines. The WIU is connected to the IRQ40 channel of the EIC module.

Using the WIU registers, 32 I/O ports can be programmed as external interrupt lines or as
wake-up lines, able to wake-up the MCU from WFI or Stop mode.

Some external interrupt lines are mapped to I/O ports that can be enabled as inputs to the
CAN, I2C, BSPI or UART peripherals. This means you can program it so that any activity on
these serial buses will wake-up the MCU from WFI or Stop mode.

7.9.1 Features

■ External Wake-up lines can be used to wake-up the system from Stop mode

■ Programmable selection of Wake-up or Interrupt

■ Programmable Wake-up trigger edge polarity

■ All Wake-up Lines individually maskable

■ Wake-up interrupt generated by software
120/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
Figure 25. WIU Block Diagram

WIU_TR TRIGGERING LEVEL

PENDING REQUEST

MASK REGISTER

WKUP[31:0]

S
E

T

WIU_CTRL

SW SETTING

W
K

U
P

-I
N

T

IIN
T

_E
N

S
TO

P

To EIC Interrupt vector IRQ40

NOTE: RESET SIGNAL ON STOP BIT
IS STRONGER THAN THE SET SIGNAL.R
E

S
E

T

REGISTER

REGISTER

TO PRCCU -

WIU_INTR

WIU_PR

WIU_MR

SOFTWARE INTERRUPT
REGISTER

Stop Mode Control

WIU_INT
121/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
7.9.2 Functional Description

7.9.2.1 Interrupt Mode

To configure the 32 lines as interrupt sources, use the following procedure:

1. Configure the mask bits of the 32 wake-up lines (WIU_MR).

2. Configure the triggering edge of the wake-up lines (WIU_TR).

3. In the EIC registers, enable the IRQ40 interrupt channel so an interrupt coming from one
of the 32 wake-up lines can be correctly acknowledged.

4. Clear the WKUP-INT bit in the WIU_CTRL register to disable Wake-up Mode.

5. Set the INT_EN bit in the WIU_CTRL register to enable the 16 wake-up lines as external
interrupt source lines.

7.9.2.2 Wake-up Mode Selection

To configure the 32 lines as wake-up sources, use the following procedure:

1. Configure the mask bits of the 32 wake-up lines (WIU_MR).

2. Configure the triggering edge registers of the wake-up lines (WIU_TR).

3. If an interrupt routine is to be executed after a wake-up event, then enable the IRQ40
interrupt channel using the EIC registers. Otherwise, if the wake-up event only restarts
executing of the code from where it was stopped, the IRQ40 interrupt channel must be
masked.

4. Since the PRCCU can generate an interrupt request when exiting from Stop mode, take
care to mask it if the wake-up event is only to restart code execution.

5. Set the WKUP-INT bit in the WIU_CTRL register to select Wake-up Mode.

6. Set the INT_EN bit in the WIU_CTRL register to enable the 32 wake-up lines as external
interrupt source lines.

7. Write the sequence 1,0,1 to the STOP bit of the WIU_CTRL register. This is the STOP
bit setting sequence. Pay attention that the three write operations are effective even
though not executed in a strict sequence (intermediate instructions are allowed): to reset
the sequence it is sufficient to write twice a logic ‘0’ to the STOP bit of WIU_CTRL regis-
ter (corresponding anyway to a bad sequence).

To detect if Stop Mode was entered or not, immediately after the end of the STOP bit setting
sequence, poll the PRCCU STOP_I flag bit and the STOP bit itself (WIU_CTRL register).
122/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
7.9.2.3 Stop Mode Entry Conditions

Assuming the device is in Run mode: during the STOP bit setting sequence the following
cases may occur:

Case 1: Wrong STOP bit setting sequence

This can happen if an Interrupt request is acknowledged during the STOP bit setting
sequence. In this case polling the STOP and STOP_I bits will give:

STOP = 0, STOP_I = 0

This means that the device did not enter Stop mode due to a bad STOP bit setting
sequence: the user must retry the sequence.

Case 2: Correct STOP bit setting sequence

In this case the device enters Stop mode.

To exit Stop mode, a wake-up interrupt must be acknowledged. This implies:

STOP = 0, STOP_I = 1

This means that the device entered and exited Stop mode due to an external wake-up line
event.

Case 3: A wake-up event on the external wake-up lines occurs during the STOP bit
setting sequence

There are two possible cases:

1. Interrupt requests to the CPU are disabled: in this case the device will not enter Stop
mode, no interrupt service routine will be executed and the program execution continues
from the instruction following the STOP bit setting sequence. The status of STOP and
STOP_I bits will be again:

STOP = 0, STOP_I = 0

The application can determine why the device did not enter Stop mode by polling the
pending bits of the external lines (at least one must be at 1).

2. Interrupt requests to CPU are enabled: in this case the device will not enter Stop mode
and the interrupt service routine will be executed. The status of STOP and STOP_I bits
will be again:

STOP = 0, STOP_I = 0

The interrupt service routine can determine why the device did not enter Stop mode by
polling the pending bits of the external lines (at least one must be at 1).
123/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
If the device really exits from Stop Mode, the PRCCU STOP_I bit is still set and must be
reset by software. Otherwise, if an Interrupt request was acknowledged during the STOP bit
setting sequence, the PRCCU STOP_I bit is reset. This means that the system has filtered
the Stop Mode entry request.

The WKUP-INT bit can be used by an interrupt routine to detect and to distinguish events
coming from Interrupt Mode or from Wake-up Mode, allowing the code to execute different
procedures.

To exit Stop mode, it is sufficient that one of the 32 wake-up lines (not masked) generates an
event: the clock restarts after the delay needed for the oscillator to restart.

Note After waking-up from Stop Mode, software can successfully reset the pending bits
(edge sensitive), even though the corresponding wake-up line is still active (high or
low, depending on the Trigger Event register programming); the user must poll the
external pin status to detect and distinguish a short event from a long one (for
example keyboard input with keystrokes of varying length).

7.9.3 Programming Considerations

The following paragraphs give some guidelines for designing an application program.

7.9.3.1 Procedure for Entering/Exiting Stop mode

1. Program the polarity of the trigger event of external wake-up lines by writing register
WIU_TR.

2. Check that at least one mask bit (register WIU_MR) is equal to 1 (so at least one exter-
nal wake-up line is not masked).

3. Reset at least the unmasked pending bits: if unmasked pending bits are not cleared
STOP Mode cannot be entered.

4. Set the INT_EN and the WKUP-INT bits in the WIU_CTRL register.

5. To generate an interrupt on the associated channel (IRQ40), set the related enable,
mask and priority bits in the EIC registers.

6. Reset the STOP bit in register WIU_CTRL and STOP_I bit in the PRCCU_CFR register.

7. To enter Stop mode, write the sequence 1, 0, 1 to the Stop bit in the WIU_CTRL register.
As already said, the three write operations are effective even though not executed in a
strict sequence (intermediate instructions are allowed): to reset the sequence it is suffi-
cient to write twice a logic ‘0’ to the STOP bit of WIU_CTRL register (corresponding any-
way to a bad sequence).

8. The code to be executed just after the STOP sequence must check the status of the
STOP and PRCCU STOP_I bits to determine if the device entered Stop mode or not. If
124/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
the device did not enter in Stop mode it is necessary to re-loop the procedure from the
beginning, otherwise the procedure continues from next point.

9. Poll the wake-up pending bits to determine which wake-up line caused the exit from Stop
mode.

10. Clear the wake-up pending bit that was set.

7.9.3.2 Simultaneous Setting of Pending Bits

It is possible that several simultaneous wake-up events set different pending bits. In order to
accept subsequent events on external wake-up/interrupt lines, once the first interrupt routine
has been executed, it is necessary to clear at least one pending bit (the corresponding
pending bit in the WIU_PR register): this operation allows a rising edge to be generated on
the internal line (if there is at least one more pending bit set and not masked) and so to set
the interrupt controller pending bit again. A further interrupt on the same channel of the
interrupt controller will be serviced depending on the status of the mask bit. Two possible
situations may arise:

1. The user chooses to reset all pending bits: no further interrupt requests will be gener-
ated on the channel. In this case the user has to:

– Reset the interrupt controller mask bit (to avoid generating a spurious interrupt re-
quest during the next reset operation)

– Reset the WIU_PR register

2. The user chooses to keep at least one pending bit active: at least one additional inter-
rupt request will be generated on the interrupt controller channel. In this case the user
has to reset the desired pending bits. This operation will generate a rising edge on the
interrupt controller channel and the corresponding pending bit will be set again. An inter-
rupt on this channel will be serviced depending on the status of corresponding mask bit.

7.9.4 Register Description

7.9.4.1 Wake-up Control Register (WIU_CTRL)

Address Offset: 00h

Reset value: 0000 0000h

31 30 29 28 27 26 25 24 23 22 21 20 19 28 27 26

reserved
125/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
Bits 31:3 = Reserved, must be kept at reset value.

Bit 2 = STOP: Stop bit.
To enter Stop Mode, write the sequence 1,0,1 to this bit with three write operations. When a
correct sequence is recognized, the STOP bit is set and the PRCCU puts the device in Stop
Mode. If the setting sequence is not recognized within 64 clock periods, a timeout counter
expires and resets the sequence state machine. In this case the device does not enter Stop
Mode and the STOP bit is reset by hardware. The software sequence succeeds only if the
following conditions are true:

• The WKUP-INT bit is 1

• All unmasked pending bits are reset

• At least one mask bit is equal to 1 (at least one external wake-up line is not masked).

Otherwise the device cannot enter Stop mode, the program continues executing and the
STOP bit remains cleared.
The bit is reset by hardware if, during Stop mode, a wake-up interrupt comes from any of the
unmasked wake-up lines. Otherwise the STOP bit is at 1 in the following cases (See
“Wake-up Mode Selection” on page 122. for details):

• After the first write instruction of the sequence (a 1 is written to the STOP bit)

• At the end of a successful sequence (i.e. after the third write instruction of the
sequence)

CAUTION: If Interrupt requests are acknowledged during the sequence, the system will not
enter Stop mode (since the sequence is not completed): at the end of the interrupt service
routine, it is recommended to reset the sequence state machine by twice writing a logic ‘0’ to
the STOP bit in the WUCTRL register (corresponding anyway to a bad sequence).
Otherwise the incomplete sequence will wait for the completion and only the TIMEOUT
counter will reset the state machine. You must re-enter the sequence to set the STOP bit.

CAUTION: Whenever a STOP request is issued to the system, several clock cycles are
needed to enter Stop mode (see PRCCU chapter for further details). Hence the execution of
the instruction following the STOP bit setting sequence might start before entering Stop
mode (consider the ARM7 three-stage pipeline as well). In order to avoid executing any valid
instructions after a correct STOP bit setting sequence and before entering the Stop mode, it
is mandatory to execute a dummy set of several instructions after the STOP bit setting
sequence.

Bit 1 = INT_EN: Global WIU Interrupt Enable.
This bit is set and cleared by software.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved STOP INT_EN
WKUP
-INT

rw rw rw
126/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
0: WIU interrupts disabled
1: The 32 external wake-up lines enabled as interrupt sources
CAUTION: To avoid spurious interrupt requests on the IRQ40 channel of the EIC, due to
change of interrupt source, it is recommended to clear the corresponding enable bit in the
EIC IER register before modifying the INT_EN bit.

Bit 0 = WKUP-INT: Global Wake-up Event Enable.
This bit is set and cleared by software.
0: Wake-up Event disabled
1: Wake-up from Stop mode enabled

7.9.4.2 Wake-up Mask Register (WIU_MR)

Address Offset: 04h

Reset value: 0000 0000h

Bit 31:0 = WUM[31:0]: Wake-Up Mask bits
If WUMx is set, an interrupt and/or a wake-up event (depending on INT_EN and WKUP-INT
bits) are generated if the corresponding WUPx pending bit is set. More precisely, if WUMx=1
and WUPx=1 then:

• If INT_EN=1 and WKUP-INT=1 then an interrupt and a wake-up event are
generated.

• If INT_EN=1 and WKUP-INT=0 only an interrupt is generated.

• If INT_EN=0 and WKUP-INT=1 only a wake-up event is generated.

• If INT_EN=0 and WKUP-INT=0 neither interrupts nor wake-up events are generated.

If WUMx is reset, no wake-up events can be generated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WUM31 WUM30 WUM29 WUM28 WUM27 WUM26 WUM25 WUM24 WUM23 WUM22 WUM21 WUM20 WUM19 WUM18 WUM17 WUM16

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WUM15 WUM14 WUM13 WUM12 WUM11 WUM10 WUM9 WUM8 WUM7 WUM6 WUM5 WUM4 WUM3 WUM2 WUM1 WUM0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
127/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
7.9.4.3 Wake-up Trigger Register (WIU_TR)

Address Offset: 08h

Reset value: 0000 0000h

Bits 31:0 = WUT[31:0]: Wake-Up Trigger Polarity bits
The WUTx bits can be set and cleared by software
0: The corresponding WUPx pending bit will be set upon the falling edge of the input
wake-up line.
1: The corresponding WUPx pending bit will be set upon the rising edge of the input wake-up
line.

CAUTION

■ As the external wake-up lines are edge triggered, no glitches must be generated on these
lines.

■ If either a rising or a falling edge on an external wake-up line occurs when writing to the
WIU_TR register, the pending bit will not be set.

7.9.4.4 Wake-up Software Interrupt Register (WIU_INTR)

Address Offset: 10h

Reset value: 0000 0000h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WUT31 WUT30 WUT29 WUT28 WUT27 WUT26 WUT25 WUT24 WUT23 WUT22 WUT21 WUT20 WUT19 WUT18 WUT17 WUT16

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WUT15 WUT14 WUT13 WUT12 WUT11 WUT10 WUT9 WUT8 WUT7 WUT6 WUT5 WUT4 WUT3 WUT2 WUT1 WUT0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WUINT
31

WUINT
30

WUINT
29

WUINT
28

WUINT
27

WUINT
26

WUINT
25

WUINT
24

WUINT
23

WUINT
22

WUINT
21

WUINT
20

WUINT
19

WUINT
18

WUINT
17

WUINT
16

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WUINT
15

WUINT
14

WUINT
13

WUINT
12

WUINT
11

WUINT
10

WUINT
9

WUINT
8

WUINT
7

WUINT
6

WUINT
5

WUINT
4

WUINT
3

WUINT
2

WUINT
1

WUINT
0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
128/349

1

STR73xF MICROCONTROLLER - INTERRUPTS
Bit 31:0 = WUINT[31:0]: WIU Software Interrupt bits
WUINTx bits are set by software to implement a software interrupt. Setting one of these bits
corresponds settting the same bit in the Pending register (WIU_PR).
WUINTx bits are reset clearing the pending bits, writing a ‘1’ to the WUPx bit.

7.9.4.5 Wake-up Pending Register (WIU_PR)

Address Offset: 0Ch

Reset value: 0000 0000h

Bit 31:0 = WUP[31:0]: Wake-Up Pending bits
The WUPx bits are Read/Clear, they are set by hardware on occurrence of the trigger event.
They can be reset by software writing a ‘1’; writing a ‘0’ is ignored.
0: No Wake-Up trigger event occurred
1: Wake-Up Trigger event occurred
WUPx bits may be set also by software, setting the corresponding bits in the Software
Interrupt register (WIU_INTR) and choosing the trigger level high (WUTx set to ‘1’).

7.9.4.6 WIU Register map

Table 23. WIU Register Map

See Table 2, “APB Memory Map,” on page 17 for base address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WUP31 WUP30 WUP29 WUP28 WUP27 WUP26 WUP25 WUP24 WUP23 WUP22 WUP21 WUP20 WUP19 WUP18 WUP17 WUP16

rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WUP15 WUP14 WUP13 WUP12 WUP11 WUP10 WUP9 WUP8 WUP7 WUP6 WUP5 WUP4 WUP3 WUP2 WUP1 WUP0

rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc

Addr.
Offset

Register
Name

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 WIU_CTRL RESERVED STOP INT_EN
WKUP
-INT

4 WIU_MR WUM[31:0]

8 WIU_TR WUT[31:0]

C WIU_PR WUP[31:0]

10 WIU_INTR WUINT[31:0]
129/349

1

STR73xF MICROCONTROLLER - DMA CONTROLLER (DMA)
8 DMA CONTROLLER (DMA)

8.1 Introduction

Four DMA controllers are available in the STR73x. Each DMA controller provides access to
4 data streams. Since peripherals are memory mapped, data transfers from/to peripherals
are managed like memory/memory data transfers.

Note To enable DMA arbitration and transfers, bits 1 and 0 of the Native Arbiter Priority
Register have to be set to 1. Refer to section 9.1 on page 151

Each data stream is associated with a particular peripheral (see Table 24). The peripheral,
triggers a DMA request, starting the data transfer between the corresponding buffers defined
in the stream descriptor. Data stream 3 can alternatively be used as a memory/memory data
transfer triggered by a software DMA request, independently from any peripheral activity.

8.2 DMA Controller Priority

The priority between the different DMA controllers is done through a round-robin strategy
where all the DMA requesting the bus have the same priority: if DMA n is the last which have
accessed the bus, the arbiter will check first if DMA (n+1) mod 4 requests the bus and if
requested grant it. If not requested, it will check DMA (n+2) mod 4, then DMA (n+3) mod 4
and eventually DMA (n+4) mod 4 = n.

The priority between the different DMA triggering sources is defined by hardware, source 0
being the highest priority request and source 3 being the lowest one.

Note A typical “single data” DMA transfer will include the following phases:
- Peripherals to DMA interrupt triggering (~2 cycles)
- DMA bus request, arbitration and memory/peripheral to DMA transfer (~5 cycles).
- Internal DMA latency (1 cycle)
- DMA bus request, arbitration and DMA to memory/peripheral transfer (~5 cycles)
Note that in the case of burst DMA transfer, arbitration and internal DMA latency
are seen only once, each supplementary data transfer needing 1 cycle.
Example: burst transfer of 16 bytes organized in 4 words in memory and directed to
a 16-bit peripheral (8 half-words).
Transfer_cycles = 2+(5+3)+1+(5+7) = 23 cycles (16 bytes)
130/349

1

STR73xF MICROCONTROLLER - DMA CONTROLLER (DMA)
8.3 DMA Request Mapping

Bit 4 (DMABSPI0) in the CFG_R0 register has to be set to select the BSPI0 as triggering
source for both DMA0 Stream2 and DMA0 Stream3.

When the bit 5 (DMABSPI1) in the CFG_R0 register is set, the BSPI1 is the triggering
source for both DMA2 Stream3 and DMA3 Stream2, otherwise TIM8 is the triggering source
for DMA2 Stream3 and TIM9 is the triggering source for DMA3 Stream2.

The DMA controller treats bytes in memory as being in Little Endian format: the lowest
numbered byte in a word is considered as the least significant byte and the highest
numbered byte is the most significant.

Table 24. DMA request mapping
DMA Stream DMA triggering source

DMA 0

0 BSPI2RX

1 BSPI2TX

2 - / BSPI0RX

3 - / BSPI0TX

DMA 1

0 TIM0

1 TIM1

2 TIM2

3 TIM3

DMA 2

0 TIM5

1 TIM6

2 TIM7

3 TIM8 / BPI1RX

DMA 3

0 ADC

1 TIM4

2 TIM9 / BSPI1TX

3 memory - to - memory
131/349

1

STR73xF MICROCONTROLLER - DMA CONTROLLER (DMA)
8.4 Functional description

Each DMA Controller is a single channel DMA Controller capable of servicing up to 4 data
streams. It has a a single FIFO which is shared by the 4 data streams via the use of priority
selection logic as shown in Table 25.

DMA Request3 is multiplexed with 2 internal request lines which are selected when a
memory to memory transfer is required. The DMA block diagram is shown in Figure 26

The DMA Controller can be used for a memory to memory transfer, a peripheral to memory
transfer or a memory to peripheral transfer.

A DMA data transfer consists of a sequence of DMA data burst transfers. There are two
types of burst transfers, the first one is from the source address to the DMA Controller and
the second one is from the DMA Controller to the destination address. Each data burst
transfer is characterized by the burst length (1, 4, 8, or 16 words) and by the word width (1
byte, 2 bytes or 4 bytes). The DMA data transfer is complete when the programmed total
number of bytes has been transferred from the source address to the destination address
(Terminal Count register going to zero).

The Control Logic is used to arbitrate between the data streams. It selects the request from
the highest priority active data stream, passing the data from the chosen stream to and from
the FIFO as required. Each stream has a set of data stream registers which are used by the
Control Logic to determine source and destination addresses and the amount and format of
data to be transferred. They also provide various other control and status information.

The DMA data stream registers are all 16-bit wide and are accessed via the APB Bus. The
control logic can read all of these registers and can write some of them.

There is a single dedicated interrupt line from each DMA Controller to the EIC. It is driven by
4 internal interrupt flags (one per data stream) which are ORed together. They work as
follows:

Once a transfer for a specific stream is complete (this condition being detected by its
Terminal Count register going to zero) the interrupt flag for the data stream is set. The
interrupt logic then generates an interrupt to the EIC telling it that a request for one of the
data streams has been completed. At the same time this data stream is disabled (i.e. the
DMA Controller clears the enable bit of its control register). The status register must be read
to determine which data stream caused the interrupt to be raised. The DMA Controller can

Table 25. DMA Request Priority

DMA Request Priority

External0 1 (Highest)

External1 2

External2 3

External3 - Internal0/1 4 (Lowest)
132/349

1

STR73xF MICROCONTROLLER - DMA CONTROLLER (DMA)
now safely reconfigure this data stream (if required) for future transfers. A data stream can
be re-enabled via a write to the enable bit of the corresponding Control Register.

The DMA FIFO block consists of a 16 32-bit words deep FIFO plus Data Pack and Data
Unpack units. The purpose of the FIFO block is to accommodate bus latency and burst

Figure 26. DMA Controller block diagram

Interrupt
Logic

AHB bus

FIFO

APB Slave Interface

Control
Logic

AHB Master Interface

Data Stream 0
Registers

DMA Requests

0

1

2

3

Interrupt
Request
to EIC

Data Stream 1
Registers

Data Stream 2
Registers

Data Stream 3
Registers

APB bus
133/349

1

STR73xF MICROCONTROLLER - DMA CONTROLLER (DMA)
length, and to perform any packing or unpacking operations on the data that may be
necessary to accommodate different data-out/data-in width ratios.

DMA Request 3 is multiplexed with 2 internal request signals which can be used for a
memory to memory data transfer. To allow their use, the ‘Mem2Mem’ bit in the control
register must be set. This tells the DMA Controller that data stream 3 is now configured for
an internal, rather than an external, transfer request. An internal data transfer consists of two
phases: phase 0 (where internal request 0 is asserted) is used for the memory to FIFO data
transfer and phase 1 (where internal request 1 is asserted) is used for the FIFO to memory
data transfer. An internal transfer will begin once the ‘Mem2Mem’ bit in the control register is
set and data stream 3 is enabled, provided there are no pending requests for any of the
other data streams, which all have higher priority. If there are pending requests, then these
will be serviced first. When no other requests are pending, phase 0 will start as soon as the
channel FIFO can accept the next data burst from the source address. The data packet size
is defined in the data stream configuration registers. Phase 1 is asserted if the channel FIFO
contains enough data for a next data burst to be sent to the destination address.

Phase 1 will be also started in order to flush the FIFO contents if any of the following
conditions occur:

• If the terminal count reaches zero this indicates that the FIFO has received the total
number of bytes to be transferred to the destination address. Since this number may
be not a integer multiple of the selected burst size, bytes remaining in the FIFO after
terminal count reaches zero must be flushed to the destination address.

If stream 3 is disabled (via a write to the enable bit of the control register for this data
stream).

In circular buffer mode, the DMA controller reloads the start address when the word counter
(Terminal Count register) reaches the end of count and continues the transfer until
application software sets the LAST bit, writing in the DMAn_LUBuff register the buffer
location where the last data to be transferred is located. The stream configured in circular
mode is controlled by a CIRCULAR flag in the DMAn_Ctrl register (‘0’=normal mode,
‘1’=circular mode), a LAST flag in the DMAn_Last register (‘0’=infinite mode, ‘1’=last buffer
sweep), and a DMAn_LUBuff register (read and write).

When a circular buffer is the source of the transfer, the application software do the following:

1. Set the DMA stream configuration registers writing CIRCULAR bit to’1’ and LAST bit to
‘0’.

2. Start feeding the circular buffer using an index to keep a trace of the last buffer location
used.

3. When the end of transfer condition occurs, write DMAn_LUBuff with the value of the
index and set the LAST bit to ‘1’.
134/349

1

STR73xF MICROCONTROLLER - DMA CONTROLLER (DMA)
4. The DMA interrupt line will be activated as soon as the DMAn_LUBuff location has been
correctly transferred.

When a circular buffer is the destination of the transfer, the application sofware should
proceed in a similar way:

1. Set the DMA stream configuration registers writing CIRCULAR bit to’1’ and LAST bit to
‘0’.

2. Start fetching the circular buffer using an index to keep a trace of the last buffer location
used.

3. When the end of transfer condition occurs, stop DMA operation writing DMA_EN to ‘0’.

4. The last buffer location to be used will be indicated by DMAn_DeCurr register pair.

Due to the fact that FIFO is always flushed when the end of buffer is reached, it is not
possible to use circular buffer mode when the buffer size is not a multiple of the configured
burst size. Circular buffer mode cannot be used in the following situations:

• When buffer size is not a multiple of the configured burst size. This is due to the fact
that FIFO is always flushed when the end of buffer is reached, and the resulting burst
would not be followed by a transfer moving the remaining locations, located at the
beginning of circular buffer, to complete the programmed burst size.

• When memory to memory data transfer is configured on stream 3.
135/349

1

STR73xF MICROCONTROLLER - DMA CONTROLLER (DMA)
8.5 Register Description

The DMA registers are accessed via the APB bus and the register data path is 16 bits wide.

Source Base Address Low (DMAn_SOURCELx) (x=0,...,3)

Address Offset: 00h - 40h - 80h - C0h

Reset value: 0000h

DMAn_SOURCELx contains the low base address for stream x source DMA buffer.

Bit 15:0 = DMASOURCELx[15:0]

Source Base Address High (DMAn_SOURCEHx) (x=0,...,3)

Address Offset: 04h - 44h - 84h - C4h

Reset value: 0000h

DMASOURCEHx contains the high base address for stream x source DMA transfer.

Bit 15:0 = DMASOURCEHx[15:0]

Destination Base Address Low (DMAn_DESTLx) (x=0,...,3)

Address Offset: 08h - 48h - 58h - 88h

Reset value: 0000h

DMADESTLx contains the low base address for stream x destination DMA buffer.

Bit 15:0 = DMADESTLx[15:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMASOURCELx[15:0]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMASOURCEHx[15:0]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMADESTLx[15:0]

rw
136/349

1

STR73xF MICROCONTROLLER - DMA CONTROLLER (DMA)
Destination Base Address High (DMAn_DESTHx) (x=0,...,3)

Address Offset: 0Ch - 4Ch - 8Ch - CCh

Reset value: 0000h

DMADESTHx contains the high base address for stream x destination DMA buffer.

Bit 15:0 = DMASOURCEHx[15:0]

Maximum Count Register (DMAn_MAXx) (x=0,...,3)

Address Offset: 10h - 50h - 8Ch - D0h

Reset value: 0000h

This register is programmed with stream x maximum data unit count, defining the buffer size.
The data unit is equal to the configured source DMA data with (byte, half-word or word).
Upon enabling DMA Controller, the content of the Maximum Count Register is loaded in the
Terminal Count Register.

Bit 15:0 = DMAMAXx[15:0]

Control Register (DMAn_CTRLx) (x=0, 1, 2)

Address Offset: 14h - 54h - 94h

Reset value: 0000h

The DMAn_CTRLx register is used to configure Stream x operations.

Bit 15:14 = Reserved, must be kept at reset value (0).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMADESTHx[15:0]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMAMAXx[15:0]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved Dir reserved Circular DeSize SoBurst SoSize DeInc SoInc Enable

- rw - rw rw rw rw rw rw rw
137/349

1

STR73xF MICROCONTROLLER - DMA CONTROLLER (DMA)
Bit 13 = DIR: Direction transfer
This bit is used to indicate if the peripheral is the source or the destination.
0: Peripheral is the source
1: Peripheral is the destination

Bit 12:10 = Reserved, must be kept at reset value (0).

Bit 9 = CIRCULAR: Circular mode
This bit is used to enable the DMA to operate in the circular buffer mode.
0: Normal buffer mode
1: Circular buffer mode

Bit 8:7 = DESIZE: DMA to destination data width
These bits are used to select the data width for DMA to destination data transfer.
00: 1 byte
01: 1 half-word
10: 1 word
11: reserved

Bit 6:5 = SOBURST: DMA peripheral burst size
These bits are used to define the number of words in the peripheral burst. When the
peripheral is the source, the number of (SoWidth) words read in to the FIFO before writing
FIFO contents to destination. When the peripheral is the destination, the DMA interface will
automatically read the correct number of source words to compile an SoBurst of the DeWith
data.
00: Single
01: 4 incrementing
10: 8 incrementing
11: 16 incrementing

Bit 4:3 = SOSIZE: Source to DMA data width
These bits are used to select the data width for source to DMA data transfer.
00: 1 byte
01: 1 half-word
10: 1 word
11: reserved

Bit 2 = DEINC: Increment Current Destination Register
This bit is used to enable the Current Destination Register after each DMA to destination
data transfer.
0: Current Destination Register unchanged
1: Current Destination Register incremented

Bit 1 = SOINC: Increment Current Source Register
This bit is used to enable the Current Source Register after each source to DMA data
transfer.
138/349

1

STR73xF MICROCONTROLLER - DMA CONTROLLER (DMA)
0: Current Source Register unchanged
1: Current Source Register incremented

Bit 0 = ENABLE: DMA enable
0: DMA disabled
1: DMA enabled

Control Register 3 (DMAn_CTRL3)

Address Offset: D4h

Reset value: 0000h

The DMAn_CTRL3 register is used to configure Stream 3 operations.

Bit 15:14 = Reserved, must be kept at reset value (0).

Bit 13 = DIR: Direction transfer
This bit is used to indicate if the peripheral is the source or the destination.
0: Peripheral is the source
1: Peripheral is the destination

Bit 12 = Reserved, must be kept at reset value (0).

Bit 11 = MEM2MEM: Selects memory to memory transfer
This configures Stream 3 to operate a memory to memory transfer. When MEM2MEM is set,
the DMA will disregard the DMA request connected to Stream 3, and transfer data from
source to destination as fast possible until DMAn_MAX3 expires.
0: Stream3 not configured for mem to mem transfer
1: Stream3 configured for mem to mem transfer
When Stream 3 is configured as a memory-memory transfer, SOBURST relates to the
source side burst length.

Bit 10 = Reserved, must be kept at reset value (0).

Bit 9 = CIRCULAR: Circular mode
This bit is used to enable the DMA to operate in circular buffer mode.
0: Normal buffer mode
1: Circular buffer mode

Bit 8:7 = DESIZE: DMA to destination data width
These bits are used to select the data width for DMA to destination data transfer.
00: 1 byte

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved Dir reserved Mem2Mem Res. Circular DeSize SoBurst SoSize DeInc SoInc Enable

- rw - rw - rw rw rw rw rw rw rw
139/349

1

STR73xF MICROCONTROLLER - DMA CONTROLLER (DMA)
01: 1 half-word
10: 1 word
11: reserved

Bit 6:5 = SOBURST: DMA peripheral burst size
These bits are used to define the number of words in the peripheral burst. When the
peripheral is the source, the number of (SOWIDTH) words read in to the FIFO before writing
FIFO contents to destination. When the peripheral is the destination, the DMA interface will
automatically read the correct number of source words to compile an SOBURST of the
DEWIDTH data.
00: Single
01: 4 incrementing
10: 8 incrementing
11: 16 incrementing

Bit 4:3 = SOSIZE: Source to DMA data width
These bits are used to select the data width for source to DMA data transfer.
00: 1 byte
01: 1 half-word
10: 1 word
11: reserved

Bit 2 = DEINC: Increment Current Destination Register
This bit is used to enable the Current Destination Register after each DMA to destination
data transfer.
0: Current Destination Register unchanged
1: Current Destination Register incremented

Bit 1 = SOINC: Increment Current Source Register
This bit is used to enable the Current Source Register after each source to DMA data
transfer.
0: Current Source Register unchanged
1: Current Source Register incremented

Bit 0 = ENABLE: DMA enable
0: DMA disabled
1: DMA enabled
140/349

1

STR73xF MICROCONTROLLER - DMA CONTROLLER (DMA)
Current Source Address High (DMAn_SOCURRHx) (x=0,...,3)

Address Offset: 18h - 58h - 98h - D8h

Reset value: 0000h

The DMAn_SOCURRHx register holds the current value of the high source address pointer
related to Stream x. This register is read only.

Bit 15:0 = DMASOCURRHx[15:0]

Current Source Address Low (DMAn_SOCURRLx) (x=0,...,3)

Address Offset: 1Ch - 5Ch - 9Ch - DCh

Reset value: 0000h

Then DMAn_SOCURRLx register holds the current value of the low source address pointer
related to Stream x. This register is read only.

Bit 15:0 = DMASOCURRLx[15:0]

The value in the registers (DMAn_SOCURRLx and DMAn_SOCURRHx) is used as an AHB
address in a source to DMA data transfer over the AHB bus. If the SOINC bit in the Control
Register is set to ‘1’, the value in the Current Source Registers will be incremented as data
are transferred from a source to the DMA. The value will be incremented at the end of the
address phase of the AHB bus transfer by the transferred size value. If the SOINC bit is ‘0’,
the Current Source Register will hold a same value during the whole DMA data transfer.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMASOCURRHx[15:0]

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMASOCURRLx[15:0]

r

141/349

1

STR73xF MICROCONTROLLER - DMA CONTROLLER (DMA)
Current Destination Address High (DMAn_DECURRHx) (x=0,...,3)

Address Offset: 20h - 60h - A0h - E0h

Reset value: 0000h

DMADeCurrHiX holds the current value of the high destination address pointer related to
stream X. This register is read only.

Bit 15:0 = DMADeCurrHiX[15:0]

Current Destination Address Low (DMAn_DECURRLx) (x=0,...,3)

Address Offset: 24h - 64h - A4h - E4h

Reset value: 0000h

The DMAn_DECURRLx register holds the current value of the low destination address
pointer related to Stream x. This register is read only.

Bit 15:0 = DMADECURRLx[15:0]

The value in the registers (DMAn_DECURRLx and DMAn_DECURRHx) is used as an AHB
address in a DMA to destination data transfer over the AHB bus. If the DEINC bit in the
Control Register is set to ‘1’, the value in the Current Destination Registers will be
incremented as data are transferred from DMA to destination. The value will be incremented
at the end of the address phase of the AHB bus transfer by the transferred size value. If
DEINC bit is ‘0’, the Current Destination Register will hold a same value during the whole
DMA data transfer.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMADeCurrHiX

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMADECURRLx[15:0]

r

142/349

1

STR73xF MICROCONTROLLER - DMA CONTROLLER (DMA)
Terminal Counter Register (DMAn_TCNTx) (x=0,...,3)

Address Offset: 28h - 68h - A8h - E8h

Reset value: 0000h

The DMAn_TCNTx register contains the number of data units remaining in the current DMA
transfer. The data unit is equal to the source to DMA data width (byte, half-word or word).
The register value is decremented every time data is transferred to the DMA FIFO. When the
Terminal Count reaches zero, the FIFO content is transferred to the Destination and the
DMA transfer is finished. This is a read only register.

Bit 15:0 = DMATCNTx[15:0]

Note DMATCntX register can be used also in Circular buffer mode, with the exception of
the last buffer sweep. Once LAST flag is set, the value of DMATCntX register
becomes not meaningful and should be ignored.

Last Used Buffer location X (DMAn_LUBuffX) (X=0,...,3)

Address Offset: 2Ch - 6Ch - ACh - ECh

Reset value: 0000h

DMALUBuffX is used in circular buffer mode during last buffer sweep, and it contains the
circular buffer position where the last data to be used by stream X is located. The first buffer
location is indicated writing 0x0000 into this register, the second with 0x0001 and so on, up
to the last location which is indicated setting this register with (DMAMaxX - 1).

Bit 15:0 = DMALUBuffX[15:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMATCNTx[15:0]

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMALUBuff

rw
143/349

1

STR73xF MICROCONTROLLER - DMA CONTROLLER (DMA)
Interrupt Mask Register (DMAn_MASK)

Address Offset: F0h

Reset value: 0000h

The DMA Mask Register is user to select the status flag that can generate an interrupt.

Bit 15:8 = Reserved, must be kept at reset value (0).

Bit 7 = SEM3: Stream 3 Error Mask
This bit controls the generation of DMA interrupts triggered by stream 3 transfer errors
events.
0: Stream 3 transfer error interrupt is masked
1: Stream 3 transfer error interrupt is enabled

Bit 6 = SEM2: Stream 2 Error Mask
This bit controls the generation of DMA interrupts triggered by stream 2 transfer errors
events.
0: Stream 2 transfer error interrupt is masked
1: Stream 2 transfer error interrupt is enabled

Bit 5 = SEM1: Stream 1 Error Mask
This bit controls the generation of DMA interrupts triggered by stream 1transfer errors
events.
0: Stream 1 transfer error interrupt is masked
1: Stream 1 transfer error interrupt is enabled

Bit 4 = SEM0: Stream 0 Error Mask
This bit controls the generation of DMA interrupts triggered by stream 0 transfer errors
events.
0: Stream 0 transfer error interrupt is masked
1: Stream 0 transfer error interrupt is enabled

Bit 3 = SIM3: Stream 3 Interrupt Mask
This bit controls the generation of DMA interrupts triggered by stream 3 transfer end events.
0: Stream 3 transfer end interrupt is masked
1: Stream 3 transfer end interrupt is enabled

Bit 2 = SIM2: Stream 2 Interrupt Mask
This bit controls the generation of DMA interrupts triggered by stream 2 transfer end events.
0: Stream 2 transfer end interrupt is masked
1: Stream 2 transfer end interrupt is enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved SEM3 SEM2 SEM1 SEM0 SIM3 SIM2 SIM1 SIM0

- rw rw rw rw rw rw rw rw
144/349

1

STR73xF MICROCONTROLLER - DMA CONTROLLER (DMA)
Bit 1 = SIM1: Stream 1 Interrupt Mask
This bit controls the generation of DMA interrupts triggered by stream 1 transfer end events.
0: Stream 1 transfer end interrupt is masked
1: Stream 1 transfer end interrupt is enabled

Bit 0 = SIM0: Stream 0 Interrupt Mask
This bit controls the generation of DMA interrupts triggered by stream 0 transfer end events.
0: Stream 0 transfer end interrupt is masked
1: Stream 0 transfer end interrupt is enabled

Interrupt Clear Register (DMAn_CLR)

Address Offset: F4h

Reset value: 0000h

The DMA Clear Register is used to clear the status flags. This is a write-only register.

Bit 15:8 = Reserved, must be kept at reset value (0).

Bit 7 = SEC3: Stream 3 Error Clear
This bit allows clearing the pending interrupt flag corresponding to stream 3 transfer error
event.
0: No effect
1: Clear ERR3 flag in DMAn_Status register

Bit 6 = SEC2: Stream 2 Error Clear
This bit allows clearing the pending interrupt flag corresponding to stream 2 transfer error
event.
0: No effect
1: Clear ERR2 flag in DMAn_Status register

Bit 5 = SEC1: Stream 1 Error Clear
This bit allows clearing the pending interrupt flag corresponding to stream 1 transfer error
event.
0: No effect
1: Clear ERR1 flag in DMAn_Status register

Bit 4 = SEC0: Stream 0 Error Clear
This bit allows clearing the pending interrupt flag corresponding to stream 0 transfer error
event.
0: No effect
1: Clear ERR0 flag in DMAn_Status register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved SEC3 SEC2 SEC1 SEC0 SIC3 SIC2 SIC1 SIC0

- w w w w w w w w
145/349

1

STR73xF MICROCONTROLLER - DMA CONTROLLER (DMA)
Bit 3 = SIC3: Stream 3 Interrupt Clear
This bit allows clearing the pending interrupt flag corresponding to stream 3 transfer end
event.
0: No effect
1: Clear INT3 flag in DMAn_Status register

Bit 2 = SIC2: Stream 2 Interrupt Clear
This bit allows clearing the pending interrupt flag corresponding to stream 2 transfer end
event.
0: No effect
1: Clear INT2 flag in DMAn_Status register

Bit 1 = SIC1: Stream 1 Interrupt Clear
This bit allows clearing the pending interrupt flag corresponding to stream 1 transfer end
event.
0: No effect
1: Clear INT1 flag in DMAn_Status register

Bit 0 = SIC0: Stream 0 Interrupt Clear
This bit allows clearing the pending interrupt flag corresponding to stream 0 transfer end
event.
0: No effect
1: Clear INT0 flag in DMAn_Status register

Interrupt Status Register (DMAn_STATUS)

Address Offset: F8h

Reset value: 0000h

The DMAn_Status provides status information regarding the DMA Controller. This is a
read-only register.

Bits 15:12 = Reserved, must be kept cleared

Bit 11 = ACT3: Data stream 3 status
0: Data Stream 3 is not active
1: Data Stream 3 is active

Bit 10 = ACT2: Data stream 2 status
0: Data Stream 2 is not active
1: Data Stream 2 is active

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ACT3 ACT2 ACT1 ACT0 ERR3 ERR2 ERR1 ERR0 INT3 INT2 INT1 INT0

- r r r r r r r r r r r r
146/349

1

STR73xF MICROCONTROLLER - DMA CONTROLLER (DMA)
Bit 9 = ACT1: Data stream 1 status
0: Data Stream 1 is not active
1: Data Stream 1 is active

Bit 8 = ACT0: Data stream 0 status
0: Data Stream 0 is not active
1: Data Stream 0 is active

Bit 7 = ERR3: Data stream 3 error flag
When a transfer error event occurs on Stream 3, this bit will be set to ‘1’ and if the SEM3 bit
the DMAn_MASK register has also set to ‘1’ by software then a DMA interrupt request will be
generated. This flag is cleared by writing ‘1’ in the SEC3 bit in the DMAn_CLEAR register.

Bit 6 = ERR2: Data stream 2 error flag
When a transfer error event occurs on Stream 2, this bit will be set to ‘1’ and if the SEM2 bit
the DMAn_MASK register has also set to ‘1’ by software then a DMA interrupt request will be
generated. This flag is cleared by writing ‘1’ in the SEC2 bit in the DMAn_CLEAR register.

Bit 5 = ERR1: Data stream 1 error flag
When a transfer error event occurs on Stream 1, this bit will be set to ‘1’ and if the SEM1 bit
the DMAn_MASK register has also set to ‘1’ by software then a DMA interrupt request will be
generated. This flag is cleared by writing ‘1’ in the SEC1 bit in the DMAn_CLEAR register.

Bit 4 = ERR0: Data stream 0 error flag
When a transfer error event occurs on Stream 0, this bit will be set to ‘1’ and if the SEM0 bit
the DMAn_MASK register has also set to ‘1’ by software then a DMA interrupt request will be
generated. This flag is cleared by writing ‘1’ in the SEC0 bit in the DMAn_CLEAR register.

Bit 3 = INT3: Data stream 3 interrupt flag
When a transfer end event occurs on Stream 3, this bit will be set to ‘1’ and if the SIM3 bit in
the DMAn_MASK register has also set to ‘1’ by software then a DMA interrupt request will be
generated. This flag is cleared by writing ‘1’ in the SIC3 bit in the DMAn_CLEAR register.

Bit 2 = INT2: Data stream 2 interrupt flag
When a transfer end event occurs on Stream 2, this bit will be set to ‘1’ and if the SIM2 bit in
the DMAn_MASK register has also set to ‘1’ by software then a DMA interrupt request will be
generated. This flag is cleared by writing ‘1’ in the SIC2 bit in the DMAn_CLEAR register.

Bit 1 = INT1: Data stream 1 interrupt flag
When a transfer end event occurs on Stream 1, this bit will be set to ‘1’ and if the SIM1 bit in
the DMAn_MASK register has also set to ‘1’ by software then a DMA interrupt request will be
generated. This flag is cleared by writing ‘1’ in the SIC1 bit in the DMAn_CLEAR register.

Bit 0 = INT0: Data stream 0 interrupt flag
When a transfer end event occurs on Stream 0, this bit will be set to ‘1’ and if the SIM0 bit in
147/349

1

STR73xF MICROCONTROLLER - DMA CONTROLLER (DMA)
the DMAn_MASK register has also set to ‘1’ by software then a DMA interrupt request will be
generated. This flag is cleared by writing ‘1’ in the SIC0 bit in the DMAn_CLEAR register.

Last Flag Register (DMAn_LAST)

Address Offset: FCh

Reset value: 0000h

DMAn_Last controls the activation of last buffer sweep mode for the streams configured in
circular buffer mode.

Bits 15:4 = Reserved, must be kept cleared.

Bit 3 = LAST3: LAST buffer sweep stream 3
This bit is used to notify DMA that last circular buffer sweep started. If this bit is set while
stream 3 is configured in circular mode, the corresponding data stream interrupt flag will get
set when DMA uses the circular buffer location contained in DMAn_LUBuff3 register.
0: Continuous circular buffer mode
1: Last circular buffer sweep started.

Bit 2 = LAST2: LAST buffer sweep stream 2
This bit is used to notify DMA that last circular buffer sweep started. If this bit is set while
stream 2 is configured in circular mode, the corresponding data stream interrupt flag will get
set when DMA uses the circular buffer location contained in DMAn_LUBuff2 register.
0: Continuous circular buffer mode
1: Last circular buffer sweep started.

Bit 1 = LAST1: LAST buffer sweep stream 1
This bit is used to notify DMA that last circular buffer sweep started. If this bit is set while
stream 1 is configured in circular mode, the corresponding data stream interrupt flag will get
set when DMA uses the circular buffer location contained in DMAn_LUBuff1 register.
0: Continuous circular buffer mode
1: Last circular buffer sweep started.

Bit 0 = LAST0: LAST buffer sweep stream 0
This bit is used to notify DMA that last circular buffer sweep started. If this bit is set while
stream 0 is configured in circular mode, the corresponding data stream interrupt flag will get
set when DMA uses the circular buffer location contained in DMAn_LUBuff0 register.
0: Continuous circular buffer mode
1: Last circular buffer sweep started.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved LAST3 LAST2 LAST1 LAST0

- rw rw rw rw
148/349

1

STR73xF MICROCONTROLLER - DMA CONTROLLER (DMA)
8.6 DMA Register Map

The following table summarizes the DMA registers:

Addr.
Off
set

Reg. Name 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 DMAn_SOURCEL0 DMASOL0

04 DMAn_SOURCEH0 DMASOH0

08 DMAn_DESTL0 DMADEL0

0C DMAn_DESTH0 DMADEH0

10 DMAn_MAX0 DMAMAX0

14 DMAn_CTRL0 reserved Dir reserved
Circu-

lar
DeSize SoBurst SoSize DeInc SoInc Enable

18 DMAn_SOCURRH0 DMASOCURRH0

1C DMAn_SOCURRL0 DMASOCURRL0

20 DMAn_DECURRH0 DMADECURRH0

24 DMAn_DECURRL0 DMADECURRL0

28 DMAn_TCNT0 DMATCNT0

2C DMAn_LUBUFF0 DMALUBuff0

30 - Reserved

40 DMAn_SOURCEL1 DMASoLo1

44 DMAn_SOURCEH1 DMASoHi1

48 DMAn_DESTL1 DMADeLo1

4C DMAn_DESTH1 DMADeHi1

50 DMAn_MAX11 DMAMax1

54 DMAn_Ctrl1 reserved Dir reserved
Circu-

lar
DeSize SoBurst SoSize DeInc SoInc Enable

58 DMAn_SOCURRH1 DMASoCurrHi1

5C DMAn_SOCURRL1 DMASoCurrLo1

60 DMAn_DECURRH1 DMADeCurrHi1

64 DMAn_DECURRL1 DMADeCurrLo1

68 DMAn_TCNT1 DMATCnt1

6C DMAn_LUBUff1 DMALUBuff1

70 - Reserved

80 DMAn_SOURCEL2 DMASOL2

84 DMAn_SOURCEH2 DMASOH2

88 DMAn_DESTL2 DMADEL2

8C DMAn_DESTH2 DMADEH2

90 DMAn_MAX2 DMAMax2

94 DMAn_CTRL2 reserved Dir reserved
Circu-

lar
DeSize SoBurst SoSize DeInc SoInc Enable

98 DMAn_SOCURRH2 DMASOCURRH2

9C DMAn_SOCURRL2 DMASOCURRL2

A0 DMAn_DECURRH2 DMADECURRH2

A4 DMAn_DECURRL2 DMADECURRL2
149/349

1

STR73xF MICROCONTROLLER - DMA CONTROLLER (DMA)
Refer to Table 2 on page 17 for the base addresses.

A8 DMAn_TCNT2 DMATCNT2

AC DMAn_LUBUFF2 DMALUBuff2

B0 - Reserved

C0 DMAn_SOURCEL3 DMASOL3

C4 DMAn_SOURCEH3 DMASOH3

C8 DMAn_DESTL3 DMADEL3

CC DMAn_DESTH3 DMADEH3

D0 DMAn_MAX3 DMAMAX3

D4 DMAn_CTRL3 reserved Dir res.
Mem2
Mem

res
Circu-

lar
DeSize SoBurst SoSize DeInc SoInc Enable

D8 DMAn_SOCURRH3 DMASOCURRH3

DC DMAn_SOCURRL3 DMASOCURRL3

E0 DMAn_DECURRH3 DMADECURRH3

E4 DMAn_DECURRL3 DMADECURRL3

E8 DMAn_TCNT3 DMATCNT3

EC
DMA

LUBuff3
DMALUBuff3

F0 DMAn_MASK Reserved SEM3 SEM2 SEM1 SEM0 SIM3 SIM2 SIM1 SIM0

F4 DMAn_CLR Reserved SEC3 SEC2 SEC1 SEC0 SIC3 SIC2 SIC1 SIC0

F8 DMAn_STATUS Reserved ACT3 ACT2 ACT1 ACT0 ERR3 ERR2 ERR1 ERR0 INT3 INT2 INT1 INT0

FC
DMA
Last

reserved LAST3 LAST2 LAST1 LAST0

Addr.
Off
set

Reg. Name 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
150/349

1

STR73xF MICROCONTROLLER - NATIVE BUS ARBITER (ARB)
9 NATIVE BUS ARBITER (ARB)

The Native Bus Arbiter handles the arbitration between the CPU and DMA requests on the
ARM native bus.

9.1 Register description

The Native Bus Arbiter registers can only be accessed when bit 29 of the CFG_PCGR1
register is set to ‘1’ and bit 29 of the CFG_PCGRB1 register is cleared to ‘0’ (please refer to
section 4.3.1 on page 66).

9.1.1 Time-Out Register (ARB_TOR)

Address: 2000 0000h
Reset value: 0000 FFFFh

Bits 31:16 = Reserved, always return ‘0’ when read.

Bits 15:0 = TIMEOUT[15:0]: DMA TimeOut Value.
This register is a 16-bit programmable downcounter. When a DMA request wins the bus
arbitration, if the DMA transaction is not completed before the counter reaches the time-out
value, the DMA transaction will be stopped. When time-out elapses, the counter will reload
the start value and the CPU will win the native bus arbitration until time-out elapses again. At
this point, a new arbitration between CPU and DMA requests will start.
The reset value (0xFFFF) freezes the counter. To enable the counter, write any value n
(0xFFFF > n > 0x0000) in the register.

9.1.2 Priority Register (ARB_PRIOR)

Address: 2000 0004h
Reset value: 0000 0000h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TIMEOUT

rw
151/349

1

STR73xF MICROCONTROLLER - NATIVE BUS ARBITER (ARB)
Bits 31:2 = Reserved, always return ‘0’ when read.

Bit 1:0 = PRIORITY[1:0]: DMA Priority.
The Arbiter can handle two priority levels:
00: Only CPU can access the bus. In this case DMA requests will never be served.
01: Reserved
10: Reserved
11: DMA has the highest priority. DMA bus access will never be stopped.

9.1.3 Control Register (ARB_CTLR)

Address: 2000 000Ch
Reset value: 0000 0003h

Bits 31:2 = Reserved, always return ‘0’ when read.

Bit 1 = ABORT: Native Bus Arbiter Abort Interrupt Pending Bit.
This bit is cleared by hardware when the DMA generates a wrong address. In this case the
Native Bus Arbiter internal FSM will enter “Lock” state and an Abort Interrupt Request will be
issued to the CPU. In order to unlock the Native Bus Arbiter FSM, the interrupt service
routine must write to ’1’ this bit.
0: DMA generated an Abort event. A corresponding Abort Interrupt Request will be issued to
the CPU.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved PRIORITY

- rw

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ABORT res.

- rs -
152/349

1

STR73xF MICROCONTROLLER - NATIVE BUS ARBITER (ARB)
1: No DMA Abort events.
The bit is read-set. Software can only set the bit to ‘1’ , writing ‘0’ will have no effect.

Bit 0 = Reserved, must be left at reset value (1).

Table 26. Native Bus Arbiter Register map

Addr. Register
Name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

20000000h ARB_TOR reserved TIMEOUT

20000004h ARB_PRIOR reserved

P
R

 IO
R

IT
Y

20000008h - reserved

2000000Ch ARB_CTLR reserved

A
B

O
R

T

re
se

rv
ed
153/349

1

STR73xF MICROCONTROLLER - WAKE-UP TIMER (WUT)
10 WAKE-UP TIMER (WUT)

10.1 Introduction

This programmable free-running 16-bit timer may be used to wake-up the system from Stop
mode. Two clock domains are available, the system clock and the kernel clock, one domain
is completely independent from the other. The system clock is always MCLK, the kernel
clock may be connected either to MCLK or to the internal RC-Oscillator. This allows the core
of the wake-up timer to operate even when the STR73x is in low power mode.

When the STR73x enters Stop mode, if you keep the internal RC-Oscillator running and
select the internal RC-Oscillator as Wake-up Timer kernel clock, the Wake-up Timer will
continue to work. When the counter reaches the End of Count condition, it generates an
internal wake-up event to the Wake-Up Unit input line 0. You can select the wake-up trigger
event on Wake-up Input Line 0 between external Wake Up 0 Line and internal Wake-up
Timer End Of Count event (see section 4.1.2 on page 62).

The End of Count event depends on the RC-Oscillator frequency selected prior entering
Stop mode. The internal prescaler allows you to program an End of Count event in a period
between 500 ns and 8388 ms (with a 2 MHz RC-Oscillator frequency) and between 31 us
and 524 s (with a 32 kHz RC-Oscillator frequency).

10.2 Main Features
■ 16-bit down Counter

■ 8-bit clock Prescaler

■ Free-running Timer mode

■ End of Counting interrupt generation

■ Second clock source

■ Operates in powerdown mode
154/349

1

STR73xF MICROCONTROLLER - WAKE-UP TIMER (WUT)
10.3 Functional Description

Figure 27 shows the functional blocks of the Wake-up Timer module. The 16-bit Counter
value can be accessed through a reading of the WUT_CNT register.

10.3.1 Free-running Timer mode

When enabled, the module enters in Free-running Timer mode. When in this operating mode
as the SC bit in the WUT_CR register is written to ‘1’ the WUT_VR value is loaded in the
Counter and the Counter starts counting down.

When it reaches the end of count value (0000h) an End of Count interrupt is generated (EC)
and the WUT_VR value is automatically re-loaded. The Counter runs until the SC bit is
cleared. When the SC bit is set again, both the Counter and the Prescaler are re-loaded with
the values contained in registers WUT_VR and WUT_PR respectively, so it does not restart
from where it last stopped, but from a defined state without having to reset and re-program
the module. On the other hand, it is not possible to change the prescaling factor on the fly
since it will only effect the counter after a restart command (setting the SC bit, which
generates a re-load operation).

Figure 27. Wake-up Timer Functional Block Diagram

fMCLK

fRC

WUT_MR

APB INTERFACE

WUT_CNT

WUT_SREE

WAKEUP

EC

IRQ41

0

1

WUT_VRWUT_PR

16-bit CNT8-bit Presc

WUT_CR

SC

Line 0

To WIU

To EIC
155/349

1

STR73xF MICROCONTROLLER - WAKE-UP TIMER (WUT)
10.4 Programming Considerations
■ When a write is being attempted the following method has to be used to prevent errors:

• Read the WUT_SR to see if any of the registers are currently being written to and avoid
writing to that specific register.

■ When attempting to change the kernel clock by changing the EE bit in the WUT_CR the
following method has to be used when the counters are running:

• Clear the SC bit to ‘0’, this stops the counters

• Write to the EE bit

• Set the SC bit to ‘1’, this starts the counters with the new clock value

■ When writing data to the Wake-up Timer it should be noted that the data is written to the
registers in the “APB Interface” module immediately but it will be available in the “Kernel”
module a few cycles afterwards.

For example, if a data is written to the WUT_PR with fRC < fMCLK, then 6 fRC cycles are
needed to transfer the data to the counter. Similarly, if a data is written to the WUT_PR
with fRC = fMCLK, then the counter will use the new data after 3 fRC (= fMCLK) cycles from
the time the data is written to the “APB Interface”.

■ When writing to WUT_VR and WUT_PR the following sequence has to be used:

• Clear the SC bit to ‘0’, this stops the counter

• Write to the WUT_VR or WUT_PR

• Set the SC bit to ‘1’, this starts the counter

This will ensure that the counters will operate correctly.
156/349

1

STR73xF MICROCONTROLLER - WAKE-UP TIMER (WUT)
10.5 Register Description

The Wake-up Timer registers can not be accessed by byte.
The reserved bits can not be written and they are always read at ‘0’ (unless otherwise
specified).

10.5.1 Wake-up Timer Control Register (WUT_CR)

Address Offset: 00h

Reset value: 0000h

Bit 15:3 = Reserved, always return ‘0’ when read.

Bit 2 = EE: EXT_CK Enable bit.
0: fMCLK is used as counting clock.
1: fRC signal is used as counting clock.

Bit 1 = SC: Start Counting bit.
0: the Counter is stopped. To restart it, SC setting will generate a re-loading of the Prescaler
pre-load value and Timer pre-load value.
1: the Prescaler loads the Prescaler pre-load value (WUT_PR), the Counter loads the Timer
pre-load value (WUT_VR) and starts counting

Bit 0 = Reserved, must be kept at its reset value (‘0’).

10.5.2 Wake-up Timer Prescaler Register (WUT_PR)

Address Offset: 04h

Reset value: 00FFh

Bit 15:8 = Reserved, always return ‘0’ when read.

Bit 7:0 = PR[7:0]: Prescaler value.
The clock to Timer Counter is divided by PR[7:0]+1.
This value takes effect when the Counter starts (SC) bit is set to ‘1’.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved EE SC res

r rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved PR[7:0]

- rw
157/349

1

STR73xF MICROCONTROLLER - WAKE-UP TIMER (WUT)
10.5.3 Wake-up Timer Pre-load Value Register (WUT_VR)

Address Offset: 08h

Reset value: FFFFh

Bit 15:0 = TV[15:0]: Timer Pre-load Value
This value is loaded in the Timer Counter when it starts counting or an End of Count is
reached. The time (us) need to reach the end of count is given by:

(PR[7:0]+1)*(TV[15:0]+1)*Tck/1000 (us)

where Tck is the Clock period measured in ns.
i.e. if CK = 20MHz the default timeout set after the system reset is 256*65536*50/1000 =
838861us.

10.5.4 Wake-up Timer Counter Register (WUT_CNT)

Address Offset: 0Ch

Reset value: FFFFh

Bit 15:0 = CNT[15:0]: Timer Counter Value.
The current counting value of the 16-bit Counter is available reading this register.

10.5.5 Wake-up Timer Status Register (WUT_SR)

Address Offset: 10h

Reset value: 0000h

Bit 15:4 = Reserved, always return ‘0’ when read.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TV[15:0]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved BSY
VR

BSY
PR

BSYCR EC

- r r r rc
158/349

1

STR73xF MICROCONTROLLER - WAKE-UP TIMER (WUT)
Bit 3= BSYVR: Reload Value Register Busy
This bit is read only. It can be read (if it is not masked in WUT_CR) by software to see
whether the WUT_VR is currently being written to.
0: WUT_VR is not currently being written to.
1: WUT_VR is currently being written to.

Bit 2= BSYPR: Prescaler Register Busy
This bit is read only. It can be read (if it is not masked in WUT_CR) by software to see
whether the WUT_PR is currently being written to.
0: WUT_PR is not currently being written to.
1: WUT_PR is currently being written to.

Bit 1= BSYCR: Control Register Busy
This bit is read only. It can be read (if it is not masked in WUT_CR) by software to see
whether the WUT_CR is currently being written to.
0: WUT_CR is not currently being written to.
1: WUT_CR is currently being written to.

Bit 0 = EC: End of Count pending bit.
This bit can be set only by hardware and must be reset in software by writing ‘0’ to this
address.
0: No End of Count has occurred
1: The End of Count has occurred

10.5.6 Wake-up Timer Mask Register (WUT_MR)

Address Offset: 14h

Reset value: 0000h

Bit 15:2 = Reserved, always return ‘0’ when read.

Bit 1= BSYMSK: Busy Bit Mask
This bit determines whether the software can read the busy bits in the WUT_SR. After reset
the software can not read the busy bits until this bit is set to ‘1’.
0: Busy bits are masked.
1: Busy bits are not masked.

Bit 0 = ECM: End of Count Mask bit.
0: End of Count interrupt request is disabled
1: End of Count interrupt request is enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved BSY
MSK

ECM

- rw rw
159/349

1

STR73xF MICROCONTROLLER - WAKE-UP TIMER (WUT)
10.6 WUT Register Map

Refer to Table 2 on page 17 for the base address.

Table 27. Wake-up Timer Peripheral Register Map
Addr.
Offset

Register
Name

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 WUT_CR reserved EE SC WE

4 WUT_PR reserved PR(7:0)

8 WUT_VR TV(15:0)

C WUT_CNT CNT(15:0)

10 WUT_SR reserved BSYVR BSYPR BSYCR EC

14 WUT_MR reserved
BSYM

SK
ECM
160/349

1

STR73xF MICROCONTROLLER - REAL TIME CLOCK (RTC)
11 REAL TIME CLOCK (RTC)

11.1 Introduction

The RTC provides a set of continuously running counters which can be used, with suitable
software, to provide a clock-calendar function. The counter values can be written to set the
current time/date of the system.

The RTC includes an APB slave interface, to provide access by word to internal 32-bit
registers; this interface is disconnected from the APB bus when the main power supply is
removed.

11.2 Main Features

■ Fixed divider prescaler: 1/64

■ Programmable prescaler: division factor up to 220

■ 32-bit programmable counter for long term measurement

■ External clock input (must be at least 4 times slower than MCLK clock)

■ 4 dedicated maskable interrupt lines:

– Alarm interrupt, for generating a software programmable alarm interrupt

– Seconds interrupt, for generating a periodic interrupt signal with a programmable period
length (up to 1 sec.)

– Overflow interrupt, to detect when the internal programmable counter rolls over to zero

– Global interrupt: a logical OR function of all the above, to allow a single interrupt channel
to manage all the interrupt sources
161/349

1

STR73xF MICROCONTROLLER - REAL TIME CLOCK (RTC)
11.3 Functional Description

11.3.1 Overview

The RTC consists of two main units (see Figure 28 on page 163), the first one (APB
Interface) is used to interface the APB bus. This unit also contains a set of 16-bit registers,
synchronous to MCLK and accessible from the APB bus in read or write mode (for more
details refer to Register description Section 11.4). The APB interface is clocked by MCLK in
order to interface with the APB bus.

The other unit (RTC Core) consists of a chain of programmable counters made of 2 main
blocks. The first block is the RTC prescaler block which generates the RTC time base
TR_CLK which can be programmed to have a period of up 1 second. It includes a fixed
divider prescaler (1/64), connected to fEXT and a 20-bit programmable divider (RTC
Prescaler). Every TR_CLK period, the RTC generates an interrupt (SecInt) if it is enabled in
the RTC_CRH control register. The second block is a 32-bit programmable counter that can
be initialized to the current system time. The system time is incremented at the TR_CLK rate
and compared with a programmable date (stored in the RTC_ALR register) in order to
generate an alarm interrupt, if enabled in RTC_CRH control register.

Note: The RTC does not have a separate clock, reset or supply input, consequently the time
information is reset when the STR73x is reset.

11.3.2 Free-running mode

After Power-on reset, the peripheral enters free-running mode if the corresponding bit in the
CFG_PCGR0 register is set. In this operating mode, the RTC Prescaler and the
Programmable counter start counting. Interrupt flags are activated too but, since interrupt
signals are masked, there is no interrupt generation. Interrupt signals must be enabled by
setting the appropriate bits in the RTC_CRH register. In order to avoid spurious interrupt
generation it is recommended to clear old interrupt requests before enabling them.

11.3.3 Configuration mode

To write in RTC_PRL, RTC_CNT, RTC_ALR registers, the peripheral must enter
Configuration mode. This is done setting the CNF bit in the RTC_CRL register.

In addition, writing to any RTC register is only enabled if the previous write operation is
finished. To enable the software to detect this situation, the RTOFF status bit is provided in
the RTC_CRL register to indicate that an update of the registers is in progress. A new value
can be written to the RTC counters only when the RTOFF status bit value is ’1’.
162/349

1

STR73xF MICROCONTROLLER - REAL TIME CLOCK (RTC)
Configuration Procedure:

1. Poll RTOFF, wait until its value goes to ‘1’

2. Set CNF bit to enter configuration mode

2. Write to one or more RTC registers

3 Clear CNF bit to exit configuration mode

The write operation only executes when the CNF bit is cleared and it takes at least three fEXT
cycles to complete.

Figure 28. RTC simplified block diagram

RTC_Ow Interrupt

32-bit Progammable Counter

RTC_DIV

RTC_ALR

RTC_CNT

=
fEXT

reload

TR_CLK

RTC Prescaler

APB interface

APB bus

OwIntAlarm SecInt

RTC_CR

GloInt

RTC_Alarm
RTC_PRL

/64

interrupt

fMCLK
163/349

1

STR73xF MICROCONTROLLER - REAL TIME CLOCK (RTC)
11.4 Register description

The RTC registers cannot be accessed by byte. The reserved bits can not be written and
they are always read as ‘0’.

11.4.1 RTC Control Register High (RTC_CRH)

Address Offset: 00h
Reset value: 0000h

These bits are used to mask interrupt requests. Note that at reset all interrupts are disabled,
so it is possible to write to the RTC registers to ensure that no interrupt requests are pending
after initialization. It is not possible to write RTC_CRH register when the peripheral is
completing a previous write operation (flagged by RTOFF=0, see “Configuration mode” on
page 162).

The functions of the RTC are controlled by this control register. Some bits must be written
using a specific configuration procedure (see “Configuration mode” on page 162).

Bit 15:4 = Reserved

Bit 3 = GEN: Global interrupt ENable
0: Global interrupt is masked.
1: Global interrupt is enabled.

Bit 2 = OWEN: Overflow interrupt ENable
0: Overflow interrupt is masked.
1: Overflow interrupt is enabled.

Bit 1 = AEN: Alarm interrupt ENable
0: Alarm interrupt is masked.
1: Alarm interrupt is enabled.

Bit 0 = SEN: Second interrupt ENable
0: Second interrupt is masked.
1: Second interrupt is enabled.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved GEN OWEN AEN SEN

- rw rw rw rw
164/349

1

STR73xF MICROCONTROLLER - REAL TIME CLOCK (RTC)
11.4.2 RTC Control Register Low (RTC_CRL)

Address Offset: 04h
Reset value: 0020h

The functions of the RTC are controlled by this control register. It is not possible to write
RTC_CR register when the peripheral is completing a previous write operation (flagged by
RTOFF=0, see “Configuration mode” on page 162).

Bit 15:6 = Reserved

Bit 5 = RTOFF: RTC operation OFF
With this bit the RTC reports the status of the last write operation performed on its registers,
indicating if it has been completed or not. If its value is ‘0’ then it is not possible to write to
any of the RTC registers. This bit is read only.
0: Last write operation on RTC registers is still ongoing.
1: Last write operation on RTC registers terminated.

Bit 4 = CNF: Configuration Flag
This bit must be set by software to enter configuration mode so as to allow new values to be
written in the RTC_CNT, RTC_ALR or RTC_PRL registers. The write operation is only
executed when, the CNF bit is reset by software after has been set.
0: Exit configuration mode (start update of RTC registers).
1: Enter configuration mode.

Bit 3 = GIR: Global Interrupt Request
This bit contains the status of global interrupt request signal, which is goes high when at
least one of the other interrupt lines is active. When this bit is set, the corresponding interrupt
will be generated only if GEN bit is set. The GIR bit can be set only by hardware and can be
cleared only by software, while writing ‘1’ will left it unchanged.
0: GloInt interrupt condition not met.
1: GloInt interrupt request pending.

Bit 2 = OWIR: Overflow Interrupt Request
This bit stores the status of periodic interrupt request signal (RTC_OwIT) generated by the
overflow of the 32-bit programmable counter. When this bit is at ‘1’, the corresponding
interrupt will be generated only if OWEN bit is set to ‘1’. OWEN bit can be set at ‘1’ only by
hardware and can be cleared only by software, while writing ‘1’ will left it unchanged.
0: Overflow interrupt condition not met.
1: Overflow interrupt request pending.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved RTOFF CNF GIR OWIR AIR SIR

- r rw rc rc rc rc
165/349

1

STR73xF MICROCONTROLLER - REAL TIME CLOCK (RTC)
Bit 1 = AIR: Alarm Interrupt Request
This bit contains the status of periodic interrupt request signal (RTC_AlarmIt) generated by
the 32 bit programmable counter when the threshold set in RTC_ALR register is reached.
When this bit is at ‘1’, the corresponding interrupt will be generated only if the AEN bit is set
to ‘1’. The AIR bit can be set at ‘1’ only by hardware and can be cleared only by software,
while writing ‘1’ will left it unchanged.
0: Alarm interrupt condition not met.
1: Alarm interrupt request pending.

Bit 0 = SIR: Second Interrupt Request
This bit contains the status of second interrupt request signal (RTC_SecIt) generated by the
overflow of the 20-bit programmable prescaler which increments the RTC counter. Hence
this Interrupt provides a periodic signal with a period corresponding to the resolution
programmed for the RTC counter (usually one second). When this bit is at ‘1’, the
corresponding interrupt will be generated only if the SEN bit is set to ‘1’. The SIR bit can be
set at ‘1’ only by hardware and can be cleared only by software, while writing ‘1’ will left it
unchanged.
0: ‘Second’ interrupt condition not met.
1: ‘Second’ interrupt request pending.

Notes:

1. Any interrupt request remains pending until the appropriate RTC_CRL request bit is
reset by software, indicating that the interrupt request has been granted.

2. At reset the interrupts are disabled, no interrupt requests are pending and it is possible
to write the RTC registers.

3. The OWIR, AIR and SIR bits are not updated when the system clock MCLK is not run-
ning (for example when the STR73x is in Stop Mode.

4. The SIR, AIR, OWIR and GIR bits can only be set by hardware and cleared only by soft-
ware.
166/349

1

STR73xF MICROCONTROLLER - REAL TIME CLOCK (RTC)
11.4.3 RTC Prescaler Load Register High (RTC_PRLH)

Address Offset: 08h
Read/Write (see “Configuration mode” on page 162)
Reset value: 0000h

The Prescaler Load registers keep the period counting value of the RTC prescaler. They are
write protected by the RTOFF bit in the RTC_CRL register, write operation is allowed if
RTOFF value is ‘1’.

Bit 15:4 = Reserved

Bit 3:0 = PRSL[19:16]: RTC Prescaler Reload value high

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved PRSL(19:16)

- rw
167/349

1

STR73xF MICROCONTROLLER - REAL TIME CLOCK (RTC)
11.4.4 RTC Prescaler Load Register Low (RTC_PRLL)

Address Offset: 0Ch
Read/Write (see “Configuration mode” on page 162)
Reset value: 8000h

Bit 15:0 = PRSL[15:0]: RTC Prescaler Reload value low

Note: The reset value sets the TR_CLK signal period to 1 sec for an input clock of 32 kHz.

11.4.5 RTC Prescaler Divider Register High (RTC_DIVH)

Address Offset: 10h
Reset value: 0000h

Bit 15:4 = Reserved

Every period of TR_CLK the counter inside RTC prescaler divider is reloaded with the value
stored in the RTC_PRL register. To get an accurate time measurement it is possible to read
the current value of the prescaler counter, stored in the RTC_DIV register, without stopping
it. This register is read only and it is reloaded by hardware after any change in RTC_PRL or
RTC_CNT registers.

Bits 3:0 = DIV[19:16]: RTC Clock Divider High

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PRSL(15:0)

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved DIV[19:16]

- r
168/349

1

STR73xF MICROCONTROLLER - REAL TIME CLOCK (RTC)
11.4.6 RTC Prescaler Divider Register Low (RTC_DIVL)

Address Offset: 14h
Reset value: 8000h

Bits 3:0 = DIV[15:0]: RTC Clock Divider Low

11.4.7 RTC Counter Register High (RTC_CNTH)

Address Offset: 18h
Reset value: 0000h

The RTC core has one 32-bit programmable counter, accessed through 2 16-bit registers;
the count rate is based on the TR_Clock time reference, generated by the prescaler.
RTC_CNT registers keep the counting value of this counter. They are write protected by bit
RTOFF in the RTC_CRL register, write operation is allowed if RTOFF value is ‘1’. A write
operation on the upper (RTC_CNTH) or lower (RTC_CNTL) registers directly loads the
corresponding programmable counter and reloads the RTC Prescaler. When reading, the
current value in the counter (system date) is returned.

Bit 15:0 = CNT[31:16]: RTC Counter High
Reading RTC_CNTH register, the current value of the high part of RTC Counter register is
returned. To write this register it is required to enter configuration mode using the RTOFF bit
in the RTC_CRL register.

11.4.8 RTC Counter Register Low (RTC_CNTL)

Address Offset: 1Ch
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DIV[15:0]

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[31:16]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw
169/349

1

STR73xF MICROCONTROLLER - REAL TIME CLOCK (RTC)
Bit 15:0 = CNT[15:0]: RTC Counter Low
Reading RTC_CNTL register, the current value of the lower part of RTC Counter register is
returned. To write this register it is required to enter configuration mode using the RTOFF bit
in the RTC_CR register.

11.4.9 RTC Alarm Register High (RTC_ALRH)

Address Offset: 20h
Write only (see “Configuration mode” on page 162)
Reset value: FFFFh

When the programmable counter reaches the 32-bit value stored in the RTC_ALR registers,
an alarm is triggered and the RTC_alarmIT interrupt request is generated. This register is
write protected by the RTOFF bit in the RTC_CRL register, write operation is allowed if the
RTOFF value is ‘1’.

Bits 15:0 = ALARM[31:16]: RTC Alarm High
The high part of alarm time is written by software in this register. To write this register it is
required to enter configuration mode using the RTOFF bit in the RTC_CRL register.

11.4.10 RTC Alarm Register Low (RTC_ALRL)

Address Offset: 24h
Write only (see “Configuration mode” on page 162)
Reset value: FFFFh

Bits 15:0 = ALARM[15:0]: RTC Alarm Low
The low part of alarm time is written by software in this register. To write this register it is
required to enter configuration mode using the RTOFF bit in the RTC_CRL register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ALARM[31:16]

w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ALARM[15:0]

w

170/349

1

STR73xF MICROCONTROLLER - REAL TIME CLOCK (RTC)
11.5 RTC Register map

RTC registers are mapped as 16-bit addressable registers as described in the table below:

Table 28. RTC Register Map

See Table 2, “APB Memory Map,” on page 17 for the base address

Table 29.
Address

Offset
Register

Name
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RTC_CRH --- GEN
OW
EN AEN SEN

4 RTC_CRL ---
RT

OFF CNF GIR OWIR AIR SIR

8 RTC_PRLH --- PRSL[19:16]
Ch RTC_PRLL PRSL[15:0]
10h RTC_DIVH --- DIV[19:16]
14h RTC_DIVL DIV[15:0]

18h RTC_CNT
H CNT[31:16]

1Ch RTC_CNTL CNT[15:0]
20h RTC_ALRH ALARM[31:16]
24h RTC_ALRL ALARM[15:0]
171/349

1

STR73xF MICROCONTROLLER - WATCHDOG TIMER (WDG)
12 WATCHDOG TIMER (WDG)

12.1 Introduction

The Watchdog Timer peripheral can be used as free-running timer or as Watchdog to
resolve processor malfunctions due to hardware or software failures.

12.2 Main Features
■ 16-bit down Counter

■ 8-bit clock Prescaler

■ Safe Reload Sequence

■ Free-running Timer mode

■ End of Counting interrupt generation

12.3 Functional Description

Figure 29 shows the functional blocks of the Watchdog Timer module. The module can work
as a Watchdog or as a Free-running Timer. In both modes the 16-bit Counter value can be
accessed by reading the WDG_CNT register.

12.3.1 Free-running Timer mode

If the WE bit of WDG_CR register is not written to ‘1’ by software, the peripheral enters
Free-running Timer mode.
When in this operating mode as the SC bit of WDG_CR register is written to ‘1’ the
WDG_VR value is loaded in the Counter and the Counter starts counting down.

Figure 29. Watchdog Timer Functional Block

SC WE

End of Count Interrupt

WDG RESET

Prescaler
16-bit Counter

WDG_PR
Register

WDG_VR
Register

WDG_CR Register bits

8-bit
fMCLK

fEXT
(IRQ41 to EIC)

EE
172/349

1

STR73xF MICROCONTROLLER - WATCHDOG TIMER (WDG)
When it reaches the end of count value (0000h) an End of Count interrupt is generated
(EC_int) and the WDG_VR value is re-loaded. The Counter runs until the SC bit is cleared.
If the SC bit is set again, both the Counter and the Prescaler are re-loaded with the values
contained in registers WDTVR and WDTPR respectively, so it does not restart from where it
last stopped, but from a defined state without having to reset and re-program the module. On
the other hand, it is not possible to change the prescaling factor on-the-fly since it will only
effect the counter after a restart command (setting the SC bit, which generates a re-load
operation).

The clock input signal can be either the system clock (fMCLK) or fEXT which must have a
period at least four times longer than the system clock period. This allows the watchdog time
base to be independent of the system clock which could change dynamically depending on
the operating mode (run mode, low power mode, etc.).

12.3.2 Watchdog mode

If the WE bit of WDG_CR register is written to ‘1’ by software, the peripheral enters
Watchdog mode. This operating mode can not be changed by software (the SC bit has no
effect and WE bit cannot be cleared).
As the peripheral enters in this operating mode, the WDG_VR value is loaded in the Counter
and the Counter starts counting down. When it reaches the end of count value (0000h) a
system reset signal is generated (WDG RESET).

If a sequence of two consecutive values (0xA55A and 0x5AA5) is written in the WDG_KR
register see Section 12.4, the WDG_VR value is re-loaded in the Counter, the End of count
can be prevented.
173/349

1

STR73xF MICROCONTROLLER - WATCHDOG TIMER (WDG)
12.4 Register description

The Watchdog Timer registers can not be accessed by byte.
The reserved bits can not be written and they are always read at ‘0’.

12.4.1 WDG Control Register (WDG_CR)

Address Offset: 00h

Reset value: 0000h

Bit 15:3 = Reserved, must be kept at reset value (0).

Bit 2 = EE: EXT_CK Enable bit
0: fMCLK is used as counter clock.
This bit can not be written when Watchdog mode is enabled (WE bit = 1)
1: fEXT is used as counter clock. fEXT period must be at least 4 times CK period.

Bit 1 = SC: Start Counting bit
0: The counter is stopped.
1: The counter loads the Timer pre-load value and starts counting
These functions are permitted only in Timer Mode (WE bit = 0).

Bit 0 = WE: Watchdog Enable bit
0: Timer Mode is enabled
1: Watchdog Mode is enabled
This bit can’t be reset by software.

When WE bit is high, SC bit has no effect.

12.4.2 WDG Prescaler Register (WDG_PR)

Address Offset: 04h

Reset value: 00FFh

Bit 15:8 = Reserved, must be kept at reset value (0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved EE SC WE

- rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved PR7 PR6 PR5 PR4 PR3 PR2 PR1 PR0

- rw rw rw rw rw rw rw rw
174/349

1

STR73xF MICROCONTROLLER - WATCHDOG TIMER (WDG)
Bit 7:0 = PR[7:0]: Prescaler value
The clock to Timer Counter is divided by PR[7:0]+1.
This value takes effect when Watchdog mode is enabled (WE bit is set) or the re-load
sequence occurs or the Counter starts (SC) bit is set in Timer mode.

12.4.3 WDG Preload Value Register (WDG_VR)

Address Offset: 08h

Reset value: FFFFh

Bit 15:0 = TV[15:0]: Timer Pre-load Value
This value is loaded in the Timer Counter when it starts counting or a re-load sequence
occurs or an End of Count is reached. The time (µs) need to reach the end of count is given
by:

(PR[7:0]+1)*(TV[15:0]+1)*tCLK/1000 (µs)

where tCLK is the Clock period measured in ns.
I.e. if CLK = 20MHz the default timeout set after the system reset is 256*65535*50/1000 =
838800µs.

12.4.4 WDG Counter Register (WDG_CNT)

Address Offset: 0Ch

Reset value: FFFFh

Bit 15:0 = CNT[15:0]: Timer Counter Value
The current counting value of the 16-bit Counter is available reading this register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TV15 TV14 TV13 TV12 TV11 TV10 TV9 TV8 TV7 TV6 TV5 TV4 TV3 TV2 TV1 TV0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT15 CNT14 CNT13 CNT12 CNT11 CNT10 CNT9 CNT8 CNT7 CNT6 CNT5 CNT4 CNT3 CNT2 CNT1 CNT0

r r r r r r r r r r r r r r r r
175/349

1

STR73xF MICROCONTROLLER - WATCHDOG TIMER (WDG)
12.4.5 WDG Status Register (WDG_SR)

Address Offset: 10h

Reset value: 0000h

Bit 15:1 = Reserved, must be kept at reset value (0).

Bit 0 = EC: End of Count pending bit
0: no End of Count has occurred
1: the End of Count has occurred
In Watchdog Mode (WE = 1) this bit has no effect.
This bit can be set only by hardware and must be reset by software.

12.4.6 WDG Mask Register (WDG_MR)

Address Offset: 14h

Reset value: 0000h

Bit15:1 = Reserved, must be kept at reset value (0).

Bit 0 = ECM: End of Count Mask bit
0: End of Count interrupt request is disabled
1: End of Count interrupt request is enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved EC

- r-c

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ECM

- rw
176/349

1

STR73xF MICROCONTROLLER - WATCHDOG TIMER (WDG)
12.4.7 WDG Key Register (WDG_KR)

Address Offset: 18h

Reset value: 0000h

Bit 15:0 = K[15:0]: Key Value
When Watchdog Mode is enabled, writing in this register two consecutive values (A55A,
5AA5) the Counter is initialized to TV[15:0] value and the Prescaler value in WTDPR register
take effect. Any number of instructions can be executed between the two writes.
If Watchdog Mode is disabled (WE = 0) a write to this register has no effect.
This register returns the value 0000h when read.

12.5 WDG Register Map

See Table 2, “APB Memory Map,” on page 17 for the base address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

K15 K14 K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 K0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Table 30. Watchdog-Timer Register Map
Addr.
Offset

Register
Name

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 WDG_CR reserved SC WE

4 WDG_PR reserved PR(7:0)

8 WDG_VR TV(15:0)

C WDG_CNT TV(15:0)

10 WDG_SR reserved EC

14 WDG_MR reserved MEC

18 WDG_KR K[15:0]
177/349

1

STR73xF MICROCONTROLLER - TIMEBASE TIMER (TB)
13 TIMEBASE TIMER (TB)

Three TB Timers are implemented in the STR73x device. Each of them consists of a 16-bit
down counter with an 8-bit clock prescaler which can be used as free-running timer for
internal time bases generation.

The fEXT clock source can be selected by software (in place of fMCLK) to obtain a time base
independent of the system clock frequency (usually dependent on the selected system
configuration mode).

13.1 Main Features
■ 16-bit down Counter

■ 8-bit clock Prescaler

■ Free-running Timer mode

■ End of Count interrupt generation

■ Dual clock source

13.2 Functional Description

Figure 30 shows the functional blocks of the TB Timer module. The 16-bit Counter value can
be accessed by reading the TBn_CNT register.

Figure 30. TB Timer Functional Block Diagram

EOC

fMCLK

IRQ to EIC

EE

ECMEC16-bit Counter

TBn_VR Register

fEXT
8-bit Prescaler

SC

TBn_PR Register
178/349

1

STR73xF MICROCONTROLLER - TIMEBASE TIMER (TB)
13.2.1 Free-running Timer mode

When enabled, the module enters Free-running Timer mode. In this mode, when the SC bit
in the TBn_CR register is set by software, the TBn_VR value is loaded in the Counter and
the Counter starts counting down.

When it reaches the end of count value (0000h) an End of Count interrupt is generated (EC)
and the TBn_VR value is automatically re-loaded. The Counter runs until the SC bit is
cleared. When the SC bit is set again, both the Counter and the Prescaler are re-loaded with
the values contained in registers TBn_VR and TBn_PR respectively, so it does not restart
from where it last stopped, but from a defined state without requiring the application to reset
and re-program the module. On the other hand, it is not possible to change the prescaling
factor on-the-fly since it will only effect the counter after a restart command (SC bit setting
which generates a re-load operation).

The clock input signal can be either the system clock (fMCLK) or fEXT, which must have a
period at least four times longer than the system clock period. This allows the time base to
be independent of the system clock which could change dynamically depending on the
operating mode (run mode, low power mode, etc.).
179/349

1

STR73xF MICROCONTROLLER - TIMEBASE TIMER (TB)
13.3 Register Description

The TB Timer registers can not be accessed by byte.
The reserved bits can not be written and they are always read at ‘0’ (unless otherwise
specified).

TB Timer Control Register (TBn_CR)

Address Offset: 00h
Reset value: 0000h

Bit 15:3 = Reserved, must be kept at reset value (0).

Bit 2 = EE: External Clock Source Enable bit.
0: CK is used as counting clock.
1: The EXT_CK signal is used as counting clock. EXT_CK period must be at least 4 times
CK period.

Bit 1 = SC: Start Counting bit.
0: the Counter is stopped. To restart it, SC setting will generate a re-loading of the Prescaler
pre-load value and Timer pre-load value.
1: the Prescaler loads the Prescaler pre-load value (TBn_PR), the Counter loads the Timer
pre-load value (TBn_VR) and starts counting

Bit 0 = Reserved, must be kept at reset value (0).

TB Timer Prescaler Register (TBn_PR)

Address Offset: 04h
Reset value: 00FFh

Bit 15:8 = Reserved, must be kept at reset value (0).

Bit 7:0 = PR[7:0]: Prescaler value.
The clock to the Timer Counter is divided by PR[7:0]+1.
This value takes effect when the Counter Starts (SC) bit is put to ‘1’.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved EE SC res.

- rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved PR7 PR6 PR5 PR4 PR3 PR2 PR1 PR0

- rw rw rw rw rw rw rw rw
180/349

1

STR73xF MICROCONTROLLER - TIMEBASE TIMER (TB)
TB Timer Pre-load Value Register (TBn_VR)

Address Offset: 08h
Reset value: FFFFh

Bit 15:0 = TV[15:0]: Timer Pre-load Value.
This value is loaded in the Timer Counter when it starts counting or an End of Count is
reached. The time (µs) needed to reach the end of count is given by:

(PR[7:0]+1)*(TV[15:0]+1)*Tck/1000 (µs)

where Tck is the Clock period measured in ns.
I.e. if CK = 20MHz the default timeout set after the system reset is 256*65536*50/1000 =
838861µs.

TB Timer Counter Register (TBn_CNT)

Address Offset: 0Ch
Reset value: FFFFh

Bit 15:0 = CNT[15:0]: Timer Counter Value.
The current counting value of the 16-bit Counter is available reading this register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TV15 TV14 TV13 TV12 TV11 TV10 TV9 TV8 TV7 TV6 TV5 TV4 TV3 TV2 TV1 TV0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT15 CNT14 CNT13 CNT12 CNT11 CNT10 CNT9 CNT8 CNT7 CNT6 CNT5 CNT4 CNT3 CNT2 CNT1 CNT0

r r r r r r r r r r r r r r r r
181/349

1

STR73xF MICROCONTROLLER - TIMEBASE TIMER (TB)
TB Timer Status Register (TBn_SR)

Address Offset: 10h
Reset value: 0000h

Bit 15:1 = Reserved, must be kept at reset value (0).

Bit 0 = EC: End of Count pending bit.
0: No End of Count has occurred
1: End of Count has occurred
This bit can be set only by hardware and must be reset by software.

TB Timer Mask Register (TBn_MR)

Address Offset: 14h
Reset value: 0000h

Bit15:1 = Reserved, must be kept at reset value (0).

Bit 0 = ECM: End of Count Mask bit.
0: End of Count interrupt request is disabled.
1: End of Count interrupt request is enabled.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved EC

- rc

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ECM

- rw
182/349

1

STR73xF MICROCONTROLLER - TIMEBASE TIMER (TB)
13.4 TB Register Map

See Table 2, “APB Memory Map,” on page 17 for the base address

Table 31. TB Timer Peripheral Register Map

Addr.

Offset
Register

Name
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 TBn_CR reserved EE SC res.

4 TBn_PR reserved PR(7:0)

8 TBn_VR TV(15:0)

C TBn_CNT CNT(15:0)

10 TBn_SR reserved EC

14 TBn_MR reserved ECM
183/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
14 TIMER (TIM)

14.1 Introduction

Each TIM timer consists of a 16-bit counter driven by a programmable prescaler.

It may be used for a variety of purposes, including pulse length measurement of up to two
input signals (input capture) or generation of up to two output waveforms (output compare
and PWM).

Pulse lengths and waveform periods can be modulated from a very wide range using the
timer prescaler.

The STR73x DMA controllers can be used transfer data to/from the TIM timers and memory.

14.2 Main Features
■ Programmable prescaler: fMCLK divided from 1 to 256, Prescaler register (0 to 255) value

+1.

■ Overflow status flag and maskable interrupts

■ External clock input (must be at least 4 times slower than the MCLK clock speed) with the
choice of active edge.

■ Selectable External clock source fEXT or ICAPA pin. Configured by CFG_TIMSR register

■ Output compare functions with

■ 2 dedicated 16-bit registers

■ 2 dedicated programmable signals

■ 2 dedicated status flags

■ 2 dedicated interrupt flags.

■ Input capture functions with

■ 2 dedicated 16-bit registers

■ 2 dedicated active edge selection signals

■ 2 dedicated status flags

■ 2 dedicated interrupt flags.

■ Pulse width modulation mode (PWM)

■ One pulse mode (OPM)

■ PWM input mode

■ Timer global interrupt (5 internally ORed sources)

■ ICIA: Timer Input capture A interrupt

■ ICIB: Timer Input capture B interrupt

■ OCIA: Timer Output compare A interrupt
184/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
■ OCIB: Timer Output compare B interrupt

■ TOI: Timer Overflow interrupt.

■ 1 channel DMA support

The Block Diagram is shown in Figure 31.

14.3 Functional Description

14.3.1 Counter

The principal block of the Programmable Timer is a 16-bit counter and its associated 16-bit
registers.

Writing in the Counter Register (CNTR) resets the counter to the FFFCh value.

The timer clock source can be either internal or external selecting ECKEN bit of CR1
register. When ECKEN = 0, the frequency depends on the prescaler division bits (CC7-CC0)
of the CR2 register.

An overflow occurs when the counter rolls over from FFFFh to 0000h then the TOF bit of the
SR register is set. An interrupt is generated if TOIE bit of the CR2 register is set; if this
condition is false, the interrupt remains pending to be issued as soon as it becomes true.

Clearing the overflow interrupt request is done by a write access to the SR register while the
TOF bit is set with the data bus 13-bit at ‘0’, while all the other bits shall be written to ‘1’ (the
SR register is clear only, so writing a ‘1’ in a bit has no effect: this makes possible to clear a
pending bit without risking to clear a new coming interrupt request from another source).
185/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
Figure 31. Timer Block Diagram

PERIPHERAL INTERFACE

COUNTER
ALTERNATE
 REGISTER

OUTPUT
COMPARE
REGISTER

OUTPUT COMPARE EDGE DETECT
OVERFLOW

DETECT
CIRCUIT

AMBA APB BUS

LATCH A OCMPA

ICAPAEXTCLK

MCLK

PWMOCAE ECKENEXEDGIEDGAOCBE OPMFOLVB OLVLAOLVLBFOLVA

ICAPB

LATCH B OCMPB

16 16

16 16

CR1

6

16

16 161616

EXEDG

TIMER INTERNAL BUS

CIRCUIT A

EDGE DETECT
CIRCUIT B

CIRCUIT

A

OUTPUT
COMPARE
REGISTER

B

INPUT
CAPTURE
REGISTER

A

INPUT
CAPTURE
REGISTER

B

CC0³÷6

16 BIT

COUNTER

16

EN

ECKEN

1/CC

.

TOF
TOIE

TOI

ICFA
ICAIE

ICFB
ICBIE

OCFA
OCAIE OCFB

OCBIE

ICAI ICBI OCAI OCBI

ICBIEOCAIEICAIE CC4CC7 CC0CC1CC2CC3CC6 CC5

CR2

TIMERI

IEDGB

OCFBOCFA TOF ICFBICFA

SR

TOIE OCBIE

fEXT or ICAPA
configured

by CFG_TIMSR
register
186/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
14.3.2 External Clock

The external clock is selected if ECKEN = 1 in CR1 register.

The source of the external clock is either fEXT or the ICAPAn pin. This is configured by the
CFG_TIMSR register (see Section 4.3.1.5). For a description of fEXT refer to Section 3.6.

The status of the EXEDG bit determines the type of level transition on the external clock pin
EXTCLK that triggers the counter.

The counter is synchronized with the rising edge of MCLK.

At least four rising edges of MCLK must occur between two consecutive active edges of the
external clock; thus the external clock frequency must be less than a quarter of the MCLK
frequency.

Figure 32. Counter Timing Diagram, internal clock divided by 2

Figure 33. Counter Timing Diagram, internal clock divided by 4

MCLK

FFFD FFFE FFFF 0000 0001 0002 0003

INTERNAL RESET

 TIMER STROBE:

COUNTER REGISTER

OVERFLOW FLAG TOF

FFFC FFFD 0000 0001

MCLK

INTERNAL RESET

 TIMER STROBE

COUNTER REGISTER

OVERFLOW FLAG TOF
187/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
According to particular device implementation, the external clock can be available on a
general purpose I/O pin as alternate function, or internally connected to a reference clock
independent from the PLL: this allows the Timer to count events independently by the
system clock (which could be prescaled or multiplied according to the different run and
low-power modes), generating regular time basis.

14.3.3 Input Capture

In this section, the index “i”, may be A or B.

The two input capture 16-bit registers (ICAR and ICBR) are used to latch the value of the
counter after a transition detected by the ICAPi pin (see Figure 35).

ICiR register are read-only registers.

The active transition is software programmable through the IEDGi bit of the Control Register
(CR1).

Timing resolution is one/two count of the counter: (fMCLK/([CC1..CC0]+1)).

14.3.4 Procedure

To use the input capture function select the following in the CR1 and CR2 registers:

– Select the timer clock source (ECKEN).

– Select the timer clock division factor (CC7÷CC0) if internal clock is used.

– Select the edge of the active transition on the ICAPA pin with the IEDGA bit, if ICAPA is
active.

– Select the edge of the active transition on the ICAPB pin with the IEDGB bit, if ICAPB is
active.

– Set ICAIE (or ICBIE) when ICAPA (or ICAPB) is active, to generate an interrupt after an
input capture.

Figure 34. Counter Timing Diagram, internal clock divided by n

MCLK

INTERNAL RESET

 TIMER STROBE

COUNTER REGISTER

OVERFLOW FLAG TOF

FFFC FFFD 0000
188/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
When an input capture occurs:

– ICFi bit is set.

– The ICiR register contains the value of the counter on the active transition on the ICAPi pin
(see Figure 36).

– A timer interrupt is generated if ICAIE is set (if only ICAPA is active) or ICBIE is set (if only
ICAPB is active); otherwise, the interrupt remains pending until concerned enable bits are
set.

Clearing the Input Capture interrupt request is done by:

1. A write access to the SR register while the ICFi bit is cleared, 15-bit at ‘0’ for ICAPA and
12-bit at ‘0’ for ICAPB.

2. When an active level is detected in the DMA acknowledge signal, the DMA is enabled
and the appropriate DMA source is selected.

Figure 35. Input Capture Block Diagram

ECKEN
16-BIT COUNTER

(Control Register 1) CR1 low byte

ICFBICFA

(Status Register) SR high byte

IEDG2

ICAPA

ICAPB
EDGE DETECT

CIRCUIT B

16-BIT

ICARICBR

EDGE DETECT
CIRCUIT A

CC7-CC0
from CR2

IEDG1
189/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
14.3.5 Output Compare

In this section, the index “i”, may be A or B.

This function can be used to control an output waveform or indicating when a period of time
has elapsed.

When a match is found between the Output Compare register and the counter, the output
compare function:

– Assigns pins with a programmable value if the OCiE bit is set
– Sets a flag in the status register

– Generates an interrupt if enabled

Two 16-bit registers Output Compare Register A (OCAR) and Output Compare Register B
(OCBR) contain the value to be compared to the counter each timer clock cycle.

These registers are readable and writable and are not affected by the timer hardware. A
reset event changes the OCiR value to 8000h.

Timing resolution is one count of the counter: (fMCLK/([CC7..CC0]+1)).

Figure 36. Input Capture Timing Diagram

FF01 FF02 FF03

FF03

MCLK

COUNTER REGISTER

ICAPi PIN

ICAPi FLAG

ICAPi REGISTER

Note: Active edge is rising edge.

Capture
Window

FF04

EXTCLK / IPA PIN
190/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
14.3.5.1 Procedure

To use the output compare function, select the following in the CR1/CR2 registers:

– Set the OCiE bit if an output is needed then the OCMPi pin is dedicated to the output com-
pare i function.

– Select the timer clock (ECKGEN) and the prescaler division factor (CC7-CC0).

Select the following in the CR1/CR2 registers:

– Select the OLVLi bit to applied to the OCMPi pins after the match occurs.

– Set OCAIE (OCBIE) if only compare A (compare B) needs to generate an interrupt.

When match is found:

– OCFi bit is set.

– The OCMPi pin takes OLVLi bit value (OCMPi pin latch is forced low during reset and stays
low until valid compares change it to OLVLi level).

– A timer interrupt is generated if the OCAIE (or OCBIE) bit in CR2 register is set, the OCAR
(or OCBR) matches the timer counter (i.e. OCFA or OCFB is set).

Clearing the output compare interrupt request is done by a write access to the SR register
while the OCFi bit is cleared, 14-bit at ‘0’ for OCAR and 12-bit at ‘0’ for OCBR.

If the OCiE bit is not set, the OCMPi pin is at ‘0’ and the OLVLi bit will not appear when match
is found.

The value in the 16-bit OCiR register and the OLVLi bit should be changed after each
successful comparison in order to control an output waveform or establish a new elapsed
timeout.

The OCiR register value required for a specific timing application can be calculated using the
following formula:

Where:

∆t = Desired output compare period (in seconds)
fMCLK = Internal clock frequency
CC7-CC0 = Timer clock prescaler

∆ OCiR =
∆t * fMCLK
([CC7..CC0]+1)
191/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
14.3.6 Forced Compare Mode

In this section the index “i” may represent A or B.

Bits 11:8 of CR1 register and bits 7:0 of CR2 are used (Refer to Section 14.6 for detailed
Register Description).

When the FOLVA bit is set, the OLVLA bit is copied to the OCMPA pin if PWM and OPM are
both cleared. When FOLVB bit is set, the OLVLB bit is copied to the OCMPB pin.

The OLVLi bit has to be toggled in order to toggle the OCMPi pin when it is enabled (OCiE
bit=1).

Note

Figure 37. Output Compare Block Diagram

Figure 38. Output Compare Timing Diagram, Internal Clock Divided by 2

OUTPUT COMPARE

16-bit

CIRCUIT

OCAR

16 BIT COUNTER OCBE ECKENOCAE

OLVLA

 (Control Register 1) CR1 high byte

(Control Register 1) CR1 low byte

OCFBOCFA

(Control Register 2) CR2 high byte

16-bit

16-bit

OCMPA

OCMPB

Latch
 A

Latch
 B

OCBR

CC7-CC0
from CR2

OLVLB

MCLK

 TIMER STROBE

COUNTER

OUTPUT COMPARE REGISTER

COMPARE REGISTER SIGNAL

 OCFi AND OCMPi PIN (OLVLi=1)

CPU writes FFFF FFFF

FFFD FFFD FFFE FFFF 0000FFFC
192/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
– When FOLVi is set, no interrupt request is generated.

– Nevertheless the OCFi bit can be set if OCiR = Counter, an interrupt can be generated if
enabled.

– Input capture function works in Forced Compare mode.

14.3.7 One Pulse Mode

One Pulse mode enables the generation of a pulse when an external event occurs. This
mode is selected via the OPM bit in the CR1 register.

The one pulse mode uses the Input Capture A function (trigger event) and the Output
Compare A function.

14.3.7.1 Procedure

To use one pulse mode, select the following in the CR1 register:

– Using the OLVLA bit, select the level to be applied to the OCMPA pin after the pulse.

– Using the OLVLB bit, select the level to be applied to the OCMPA pin during the pulse.

– Select the edge of the active transition on the ICAPA pin with the IEDGA bit.

– Set the OCAE bit, the OCMPA pin is then dedicated to the Output Compare A function.

– Set the OPM bit.

– Select the timer clock (ECKGEN) and the prescaler division factor (CC7-CC0).

Load the OCAR register with the value corresponding to the length of the pulse (see the
formula in next Section 14.3.8.1).

Then, on a valid event on the ICAPA pin, the counter is initialized to FFFCh and OLVLB bit is
loaded on the OCMPA pin after four clock period. When the value of the counter is equal to

Figure 39. One Pulse Mode Cycle

event occurs

Counter is
initialized
to FFFCh

OCMPA = OLVLB

Counter
= OCAR OCMPA = OLVLA

When

When

on ICAPA
193/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
the value of the contents of the OCAR register, the OLVLA bit is output on the OCMPA pin
(See Figure 40).

Note

– The OCFA bit cannot be set by hardware in one pulse mode but the OCFB bit can generate
an Output Compare interrupt.

– The ICFA bit is set when an active edge occurs and can generate an interrupt if the ICAIE
bit is set. The ICAR register will have the value FFFCh.

– When the Pulse Width Modulation (PWM) and One Pulse Mode (OPM) bits are both set
with FOLVA= 1, the OPM mode is the only active one, otherwise the PWM mode is the only
active one.

– Forced Compare B mode works in OPM

– Input Capture B function works in OPM

– When OCAR = FFFBh in OPM, then a pulse of width FFFFh is generated
– If event occurs on ICAPA again before the Counter reaches the value of OCAR, then the

Counter will be reset again and the pulse generated might be longer than expected as in
Figure 40.

– If a write operation is performed on the counter register before the Counter reaches the val-
ue of OCAR, then the Counter will be reset again and the pulse generated might be longer
than expected.

– If a write operation is performed on the counter register after the Counter reaches the value
of OCAR, then there will have no effect on the waveform.
194/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
14.3.8 Pulse Width Modulation Mode

Pulse Width Modulation mode enables the generation of a signal with a frequency and pulse
length determined by the value of the OCAR and OCBR registers.

The pulse width modulation mode uses the complete Output Compare A function plus the
OCBR register.

14.3.8.1 Procedure

To use pulse width modulation mode select the following in the CR1 register:

– Using the OLVLA bit, select the level to be applied to the OCMPA pin after a successful
comparison with OCAR register.

– Using the OLVLB bit, select the level to be applied to the OCMPA pin after a successful
comparison with OCBR register.

– Set OCAE bit: the OCMPA pin is then dedicated to the output compare A function.

– Set the PWM bit.

Figure 40. One Pulse Mode Timing

COUNTER FFFC FFFD FFFE 2ED0 2ED1 2ED2

2ED3

FFFC FFFD

OLVLB OLVLBOLVLA

ICAPA

OCMPA

compare A

Note: IEDGA=1, OCAR=2ED0h, OLVLA=0, OLVLB=1

COUNTER FFFC FFFD FFFE 2ED0 2ED1 2ED2

2ED3

FFFC FFFD

OLVLB OLVLB OLVLA

ICAPA

OCMPA

compare A

Note: IEDGA=1, OCAR=2ED0h, OLVLA=0, OLVLB=1

0010 FFFC

4 clock period
195/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
– Select the timer clock (ECKGEN) and the prescaler division factor (CC7-CC0).

Load the OCBR register with the value corresponding to the period of the signal.

Load the OCAR register with the value corresponding to the length of the pulse if (OLVLA=0
and OLVLB=1).

If OLVLA=1 and OLVLB=0 the length of the pulse is the difference between the OCBR and
OCAR registers.

The OCiR register value required for a specific timing application can be calculated using the
following formula:

Where:

t = Desired output compare period (seconds)
fMCLK = Internal clock frequency (Hertz)
tPRESC = Timer clock prescaler (1, 2 ... , 256)

The Output Compare B event causes the counter to be initialized to FFFCh (See Figure 42).

Note

– The OCFA bit cannot be set by hardware in PWM mode, but OCFB is set every time coun-
ter matches OCBR.

– The Input Capture function is available in PWM mode.

– When Counter = OCBR, then OCFB bit will be set. This can generate an interrupt if OCBIE
is set. This interrupt will help any application where pulse-width or period needs to be
changed interactively.

Figure 41. Pulse Width Modulation Mode Cycle

OCiR Value =
t * fMCLK

tPRESC
- 5

Counter

Counter is reset
to FFFCh

OCMPA = OLVLB
Counter
= OCBR

OCMPA = OLVLA

When

When

= OCAR
196/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
– When the Pulse Width Modulation (PWM) and One Pulse Mode (OPM) bits are both set
with FOLVA = 0, the PWM mode is the only active one, otherwise the OPM mode is the
only active one.

– The value loaded in OCBR must always be greater than that in OCAR to produce mean-
ingful waveforms. Note that 0000h is considered to be greater than FFFCh or FFFDh or
FFFEh or FFFFh.

– When OCAR > OCBR, no waveform will be generated.

– When OCBR = OCAR, a square waveform with 50% duty cycle will be generated as in Fig-
ure 42.

– When OCBR and OCAR are loaded with FFFCh (the counter reset value) then a square
waveform will be generated & the counter will remain stuck at FFFCh. The period will be
calculated using the following formula:

– When OCAR is loaded with FFFCh (the counter reset value) then the waveform will be gen-
erated as in Figure 42.

– When FOLVA bit is set and PWM bit is set, then PWM mode is the active one. But if FOLVB
bit is set then the OLVLB bit will appear on OCMPB (when OCBE bit = 1).

– When a write is performed on CNTR register in PWM mode, then the Counter will be reset
and the pulse-width/period of the waveform generated may not be as desired.

Period tAPB PRESC 1+() OCBR 1+()⋅ ⋅=
197/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
14.3.9 Pulse Width Modulation Input

The PWM Input functionality enables the measurement of the period and the pulse width of
an external waveform. The initial edge is programmable.

It uses the two Input Capture registers and the Input signal of the Input Capture A module.

14.3.9.1 Procedure

The CR2 register must be programmed as needed for Interrupt and DMA generation. To use
pulse width modulation mode select the following in the CR1 register:

Figure 42. Pulse Width Modulation Mode Timing

COUNTER 34E2 FFFC FFFD FFFE 2ED0 2ED1 2ED2 34E2 FFFC

OLVLB OLVLBOLVLAOCMPA

compare B compare A compare B

 Note: OCAR = 2ED0h, OCBR = 34E2, OLVLA = 0, OLVLB = 1

COUNTER 000F 0010 FFFC 0010 FFFC

OLVLA OLVLAOLVLBOCMPA

 Note: OCAR = OCBR = 0010h, OLVLA = 1, OLVLB = 0

0010 FFFC

COUNTER 0003 0004 FFFC

OLVLA

OLVLB
OCMPA

 Note: OCAR = FFFCh, OCBR = 0004h, OLVLA = 1, OLVLB = 0

0003 0004 FFFC

OLVLA
OLVLB
198/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
– set the PWMI bit

– Select the first edge in IEDGA

– Select the second edge IEDGB as the negated of IEDGA

– Program the clock source and prescaler as needed

– Enable the counter setting the EN bit.

To have a coherent measurement the interrupt/DMA should be linked to the Input Capture A
Interrupt, reading in ICAR the period value and in ICBR the pulse width.

To obtain the time values:

Where:

fMCLK = Internal clock frequency
tPRESC = Timer clock prescaler

The Input Capture A event causes the counter to be initialized to 0000h, allowing a new
measure to start. The first Input Capture on ICAPA do not generate the corresponding
interrupt/DMA request.

Period =
ICAR * fMCLK
tPRESC

Pulse =
ICBR * fMCLK

tPRESC
199/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
Figure 43. Pulse Width Modulation Input Mode Timing

COUNTER 34E2 0000 0001 2ED0 2ED1 2ED2 34E2 0000

ICAPA

capture Acapture Bcapture A

0002

PERIOD = ICAPA

PULSE LENGHT = ICAPB

Capture A,
period measurement,
reset counter
Interrupt/DMA

Capture B,
pulse width measurement
200/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
14.4 Interrupt Management

The three interrupt sources are available both mapped on five different interrupt channels
and also being mapped on the same channel.

14.4.1 Use of interrupt channels

To use the interrupt features, for each interrupt channel used, perform the following
sequence:

– Set the OCiIE and/or ICiIE and/or TOIE bits of CR2 register to enable the peripheral to per-
form interrupt requests on the desired events

The selection of the five or single interrupt channels is performed by connecting the desired
interrupt wire(s) to the interrupt controller when the timer peripheral is instantiated inside a
system.

14.5 DMA function

On DMA interface is available on the whole timer module; the source can be selected to be
one of ICAPA, OCMPA, ICAPB, OCMPB.

To use the DMA feature:

– Select the DMA source programming the DMAS0/DMAS1 bits in CR1
– Set the DMAIE bit in CR2 register.
201/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
14.6 Register Description

Each Timer is associated with two control and one status registers, and with six pairs of data
registers (16-bit values) relating to the two input captures, the two output compares, the
counter. Every register can have only an access by 16 bits, that means is not possible to
read or write only a byte.

14.6.1 Input Capture A Register (TIMn_ICAR)

Address Offset: 00h
Reset value: xxxxh

This is a 16-bit read only register that contains the counter value transferred by the Input
Capture A event.

14.6.2 Input Capture B Register (TIMn_ICBR)

Address Offset: 04h
Reset value: xxxxh

This is a 16-bit read only register that contains the counter value transferred by the Input
Capture B event.

14.6.3 Output Compare A Register (TIMn_OCAR)

Address Offset: 08h
Reset value: 8000h

This is a 16-bit register that contains the value to be compared to the CNTR register and
signalled on OCMPA output.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
202/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
14.6.4 Output Compare B Register (TIMn_OCBR)

Address Offset: 0Ch
Reset value: 8000h

This is a 16-bit register that contains the value to be compared to the CNTR register and
signalled on OCMPB output.

14.6.5 Counter Register (TIMn_CNTR)

Address Offset: 10h
Reset value: FFFCh

This is a 16-bit register that contains the counter value. By writing in this register the counter
is reset to the FFFCh value.

14.6.6 Control Register 1 (TIMn_CR1)

Address Offset: 14h
Reset value: 0000h

Bit 15 = EN: Timer Count Enable
0: Timer counter is stopped.
1: Timer counter is enabled.

Bit 14 = PWMI: Pulse Width Modulation Input
0: PWM Input is not active.
1: PWM Input is active.

Bit 13:12 = DMAS0-DMAS1: DMA source select
00: ICAPA used as DMA source.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EN PWMI DMAS1 DMAS0 FOLVB FOLVA OLVLB OLVLA OCBE OCAE OPM PWM IEDGB IEDGA EXEDG ECKEN

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
203/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
01: OCMPA used as DMA source.
10: ICAPB used as DMA source.
11: OCMPB used as DMA source.

Bit 11 = FOLVB: Forced Output Compare B
0: No effect.
1: Forces OLVLB to be copied to the OCMPB pin.

Bit 10 = FOLVA: Forced Output Compare A
0: No effect.
1: Forces OLVLA to be copied to the OCMPA pin.

Bit 9 = OLVLB: Output Level B
This bit is copied to the OCMPB pin whenever a successful comparison occurs with the
OCBR register and OCBE is set in the CR2 register. This value is copied to the OCMPA pin
in One Pulse Mode and Pulse Width Modulation mode.

Bit 8= OLVLA: Output Level A
The OLVLA bit is copied to the OCMPA pin whenever a successful comparison occurs with
the OCAR register and the OCAE bit is set in the CR2 register.

Bit 7= OCBE: Output Compare B Enable
0: Output Compare B function is enabled, but the OCMPB pin is a general I/O.
1: Output Compare B function is enabled, the OCMPB pin is dedicated to the Output
Compare B capability of the timer.

Bit 6= OCAE: Output Compare A Enable
0: Output Compare A function is enabled, but the OCMPA pin is a general I/O.
1: Output Compare A function is enabled, the OCMPA pin is dedicated to the Output
Compare A capability of the timer.

Bit 5 = OPM: One Pulse Mode
0: One Pulse Mode is not active.
1: One Pulse Mode is active, the ICAPA pin can be used to trigger one pulse on the OCMPA
pin; the active transition is given by the IEDGA bit. The length of the generated pulse
depends on the contents of the OCAR register.

Bit 4 = PWM: Pulse Width Modulation
0: PWM mode is not active.
1: PWM mode is active, the OCMPA pin outputs a programmable cyclic signal; the length of
the pulse depends on the value of OCAR register; the period depends on the value of OCBR
register.

Bit 3 = IEDGB: Input Edge B
This bit determines which type of level transition on the ICAPB pin will trigger the capture.
0: A falling edge triggers the capture.
1: A rising edge triggers the capture.
204/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
Bit 2 = IEDGA: Input Edge A
This bit determines which type of level transition on the ICAPA pin will trigger the capture.
0: A falling edge triggers the capture.
1: A rising edge triggers the capture.

Bit 1 = EXEDG: External Clock Edge
This bit determines which type of level transition on the external clock pin (or internal signal)
EXTCLK will trigger the counter.
0: A falling edge triggers the counter.
1: A rising edge triggers the counter.

Bit 0 = ECKEN: External Clock Enable
0: Internal clock, divided by prescaler division factor, is used to feed timer clock.
1: External source is used for timer clock.

14.6.7 Control Register 2 (TIMn_CR2)

Address Offset: 18h
Reset value: 0000h

Bit 15 = ICAIE: Input Capture A Interrupt Enable
0: No interrupt on input capture A.
1: Generate interrupt if ICFA flag is set.

Bit 14 = OCAIE: Output Compare A Interrupt Enable
0: No interrupt on OCFA set.
1: Generate interrupt if OCFA flag is set.

Bit 13 = TOIE: Timer Overflow Interrupt Enable
0: Interrupt is inhibited.
1: A timer interrupt is enabled whenever the TOF bit of the SR register is set.

Bit 12= ICBIE: Input Capture B Interrupt Enable
0: No interrupt on input capture B.
1: Generate interrupt if ICFB flag is set.

Bit 11 = OCBIE: Output Compare B Interrupt Enable
0: No interrupt on OCFB set.
1: Generate interrupt if OCFB flag is set.

Bit 10 = DMAIE: DMA Enable
0: No DMA enabled.
1: DMA enabled on the selected source.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ICAIE OCAIE TOE ICBIE OCBIE DMAIE Reserved CC7 CC6 CC5 CC4 CC3 CC2 CC1 CC0

rw rw rw rw rw rw - rw rw rw rw rw rw rw rw
205/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
Bit 9:8 = Reserved, must be kept at reset value (0).

Bit 7:0 = CC7-CC0: Prescaler division factor
This 8-bit string is the factor used by the prescaler to divide the internal clock. Timer clock
will be equal to fPLCK2 / (CC7÷CC0 +1).

14.6.8 Status Register (TIMn_SR)

Address Offset: 1Ch
Reset value: 0000h

Bit 15= ICFA: Input Capture Flag A
0: No input capture (reset value).
1: An input capture has occurred. To clear this bit, write the SR register, with a ‘0’ on the bit
15 (and ‘1’ in all the other bit, just to avoid an unwanted clearing of another pending bit).

Bit 14= OCFA: Output Compare Flag A
0: No match (reset value).
1: The content of the counter has matched the content of the OCAR register. This bit is not
set in the PWM mode even if counter matches OCAR. To clear this bit, write the SR register,
with a ‘0’ on the bit 14 (and ‘1’ in all the other bit, just to avoid an unwanted clearing of
another pending bit).

Bit 13= TOF: Timer Overflow
0: No timer overflow (reset value).
1:The counter rolled over from FFFFh to 0000h. To clear this bit, write the SR register, with a
‘0’ on the bit 13 (and ‘1’ in all the other bit, just to avoid an unwanted clearing of another
pending bit).

Bit 12= ICFB: Input Capture Flag B
0: No input capture (reset value).
1: An input capture has occurred.To clear this bit, write the SR register, with a ‘0’ on the bit
12 (and ‘1’ in all the other bit, just to avoid an unwanted clearing of another pending bit).

Bit 11= OCFB: Output Compare Flag B
0: No match (reset value).
1: The content of the counter has matched the content of the OCBR register. It is set in PWM
mode too. To clear this bit, write the SR register, with a ‘0’ on the bit 11 (and ‘1’ in all the other
bit, just to avoid an unwanted clearing of another pending bit).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ICFA OCFA TOF ICFB OCFB reserved

rc rc rc rc rc -
206/349

1

STR73xF MICROCONTROLLER - TIMER (TIM)
14.7 TIM Register Map

See Table 2, “APB Memory Map,” on page 17 for base address

Table 32. TIM Register Map
Addr.

Off
set

Register
Name

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 TIMn_ICAR Input Capture A

4 TIMn_ICBR Input Capture B

8 TIMn_OCAR Output Compare A

C TIMn_OCBR Output Compare B

10 TIMn_CNTR Counter Value

14 TIMn_CR1 EN PWMI
DMAS

1
DMAS

0
FOLVB FOLVA OLVLB OLVLA OCBE OCAE OPM PWM IEDGB IEDGA EXEDG

ECKE
N

18 TIMn_CR2 ICAIE OCAIE TOE ICBIE OCBIE DMAIE reserved CC7 CC6 CC5 CC4 CC3 CC2 CC1 CC0

1C TIMn_SR ICFA OCFA TOF ICFB OCFB reserved
207/349

1

STR73xF MICROCONTROLLER - PULSE WIDTH MODULATOR (PWM)
15 PULSE WIDTH MODULATOR (PWM)

15.1 Introduction

The PWM module can generate PWM signals with programmable period and duty cycle.

15.2 Main Features
■ Full-scale PWM generation

■ Period and duty preload registers

■ Programmable PWM output polarities

■ PWM output enable

■ Compare Period interrupt generation

■ PWM input clock prescaled

■ Interrupt request

The number of PWM modules depends on the device, each PWM offers a completely
independent time basis providing a high level of flexibility.
208/349

1

STR73xF MICROCONTROLLER - PULSE WIDTH MODULATOR (PWM)
15.3 Functional Description

Two prescalers, PRS0 and PRS1, supply the clock to the PWMs. The first prescaler PRS0
divides the fMCLK by (1, 2, 4, 8,..., 128), the second prescaler PRS1 divides the output of the
first one by (1, 2, 3,..., 32).

Figure 44. PWM Block Diagram

Figure 44 shows the PWM block diagram.

Each PWM channel has two preload registers used as buffers, two effective registers for the
period and the duty cycle of PWM output signal and a PWM Counter.

15.3.1 PWM operating mode

After system reset, the PWM Counter is initialized to count ‘0000’ and the Duty Register to
‘0000’, therefore the PWM output OUT is continuously low (see Figure 45, wave 4).

When the PWM Enable bit in the PWMn_PEN register is set to ‘1’, the Preload Period and
the preload Duty registers are loaded in the effective Period and Duty registers and the PWM
counter starts counting. A Compare Period interrupt request is generated.

16-bit Duty Register

16-bit Counter

16-bit Period Register

CLR

OUT

CK_PWM

PE

16-bit Preload Duty Reg

16-bit Preload Period Reg

IRQ to EIC

PRS0 PRS1fMCLK
CK_PWM

P
O

LA
R

IT
Y

R
E

G
IS

T
E

R

PWM_OUT
209/349

1

STR73xF MICROCONTROLLER - PULSE WIDTH MODULATOR (PWM)
As long as the PWM counter value is less than the Duty register value, the PWM output OUT
is high. When the counter reaches the Duty value, the output goes low.

When PWM counter reaches the Period Register value, the Period and the Duty registers
are updated, a Compare Period (CP) interrupt is generated and the PWM Counter restarts
counting from ‘0000’ value.

As the PWM Enable bit is cleared, the PWM counter is stopped and reset, the Duty register
is cleared and the output OUT becomes low.

The Polarity Level Selection register permits the level inversion of the PWM output.

Note: When both Duty and Period values are loaded one after the other in the preload
registers by software may happen that only the first value is updated by hardware because
the second value has not been written yet by software. In this case no error condition is
generated.

If the value written in the duty register exceed the period register value, the output is
continuously high.

15.3.2 Formulas

The clock frequency used to define the resolution of the PWM is computed starting from
system clock frequency applying the prescaling factors set into PWMn_PRS0 and
PWMn_PRS1 registers.

Once the PWM resolution clock is defined, it is possible to program the period of the PWM
output wave (TPWM) setting the PWMn_PER register.

fCKPWM

fMCLK

2PR0 2 0÷[]
PR1 4 0÷[] 1+()⋅

---=

TPWM
P 15 0÷[] 1+

fCKPWM
--------------------------------- P 15 0÷[] 1+() 2PR0 2 0÷[]

PR1 4 0÷[] 1+()⋅⋅
fMCLK

---==
210/349

1

STR73xF MICROCONTROLLER - PULSE WIDTH MODULATOR (PWM)
Finally, it is possible to program the duty-cycle value (DCPWM) in percentage of the PWM
output wave, setting the PWMn_DUT register.

The minimum value of PWMn_PER register is 0h: this corresponds to a period of 1 clock
cycle of CKPWM. Consequently, the Duty-cycle can be either 0% (PWMn_DUT value equal
to 0h) or 100% only (PWMn_DUT value greater than PWMn_PER value). Vice versa if the
opposite polarity is selected (PWMn_PLS register). When the maximum period setting is
programmed (FFFFh), it is not possible to obtain a 100% Duty-cycle (it is not possible to
program the PWMn_DUT value greater than the PWMn_PER value): the only way is to set
the 0% Duty-cycle and use the polarity to obtain the desired output wave.

Note The interrupt request is issued at each counter end of count: this means that even
though a 100% Duty-cycle output wave is generated by setting PWMn_DUT
register value greater than PWMn_PER register value, the PWMn_PER value
defines the interrupt request rate.

Figure 45. PWM output waveform (Example with Period Register = 8h)

DCPWM
D 15 0÷[]

P 15 0÷[] 1+
--------------------------------- 100⋅=

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 08

PWM OUT

PWM OUT

PWM OUT

PWM OUT

Case 1

Case 2

Case 3

Case 4

‘1’

‘0’

Case 1: PER = 8h, DUT = 4h, PLS = 0h

Case 2: PER = 8h, DUT = 8h, PLS = 0h

Case 3: PER = 8h, DUT > 8h, PLS = 0h

Case 4: PER = 8h, DUT = 0h, PLS = 0h
211/349

1

STR73xF MICROCONTROLLER - PULSE WIDTH MODULATOR (PWM)
15.4 Register Description

The reserved bits can not be written and they are always read as ‘0’. The registers can not
be accessed by byte.

15.4.1 Prescaler 0 Register (PWMn_PRS0)

Address Offset: 00h
Reset value: 0000h

Bit 15:3 = Reserved, must be kept at reset value (0).

Bit 2:0 = PR0[2:0]: Prescaler 0 value.
The input clock is divided by 2PR0[2:0]. Possible values of divider factor: 1, 2, 4, 8,..., 128. The
valid values of PR0[2:0] are in the range from 0 to 7.

15.4.2 Prescaler 1 Register (PWMn_PRS1)

Address Offset: 04h
Reset value: 0000h

Bit 15:5 = Reserved, must be kept at reset value (0).

Bit 4:0 = PR1[4:0]: Prescaler 1 value.
The input clock is divided by PR1[4:0] + 1. Possible values of divider factor: 1, 2, 3,..., 32.
The valid values of PR1[4:0] are in the range from 0 to 31.

15.4.3 PWM Enable Register (PWMn_PEN)

Address Offset: 08h
Reset value: 0000h

Bit 15:1 = Reserved, must be kept at reset value (0).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved PR02 PR01 PR00

- rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved PR14 PR13 PR12 PR11 PR10

- rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved PE

- rw
212/349

1

STR73xF MICROCONTROLLER - PULSE WIDTH MODULATOR (PWM)
Bit 0 = PE: PWM enable bit.
0: PWM output is tied to the reset value.
1: PWM output is ongoing.

15.4.4 PWM Output Polarity Level Selection (PWMn_PLS)

Address Offset: 0Ch
Reset value: 0000h

Bit 15:1 = Reserved, must be kept at reset value (0).

Bit 0 = PL: PWM output level polarity bit.
0: PWM output is not inverted.
1: PWM output is inverted.

15.4.5 PWM Compare Period Interrupt (PWMn_CPI)

Address Offset: 10h
Reset value: 0000h

Bit 15:1 = Reserved, must be kept at reset value (0).

Bit 0 = CP: PWM Compare Period Interrupt bit.
Every time the PWM counter reaches the PWMn_PER register value, the CP bit is set and
an interrupt request is generated if enabled. This bit is set only by hardware and must be
cleared by software.

15.4.6 PWM Interrupt Mask Register (PWMn_IM)

Address Offset: 14h
Reset value: 0000h

Bit 15:1 = Reserved, must be kept at reset value (0).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved PL

- rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved CP

- rc

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved IM

- rw
213/349

1

STR73xF MICROCONTROLLER - PULSE WIDTH MODULATOR (PWM)
Bit 0 = IM: PWM interrupt mask bit.
0: Compare Period PWM interrupt to EIC is disabled.
1: Compare Period PWM interrupt to EIC is enabled.

15.4.7 PWM Output Duty Register (PWMn_DUT)

Address Offset: 1Ch
Reset value: 0000h

Bit 15:0 = D[15:0]: Duty of PWM output.
PWM output duty cycle value. It is defined as the number of periods of the PWM clock
(CK_PWM) during which the output signal is high (or low if polarity is inverted).
The valid values are in the range from 0 to FFFFh.

15.4.8 PWM Output Period Register (PWMn_PER)

Address Offset: 20h
Reset value: 0000h

Bit 15:0 = P[15:0]: Period of the PWM counter.
PWM output period value. It is defined as the number of PWM clock periods (CKPWM) + 1
(example: when P[15:0]=3, the output PWM period is equal to 4 CKPWM periods).
The valid values are in the range from 0h to FFFFh. Of course, if 0h is programmed, the
output is always low if the PWMn_DUT value is 0h as well, on the contrary it is always high
if the PWMn_DUT value is strictly greater than the PWMn_PER value. If inverted polarity is
selected (through the PWMn_PLS register) the high and low levels are exchanged

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
214/349

1

STR73xF MICROCONTROLLER - PULSE WIDTH MODULATOR (PWM)
15.5 PWM Register Map

See Table 2, “APB Memory Map,” on page 17 for base address

Table 33. PWM Register Map

Addr.
Offset

Register
Name

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00
PWMn_
PRS0

reserved
PR0

2
PR0

1
PR0

0

04
PWMn_
PRS1

reserved
PR1

4
PR1

3
PR1

2
PR1

1
PR1

0

08
PWMn_

PEN
reserved PE

0C
PWMn_

PLS
reserved PL

10
PWMn_

CPI
reserved CP

14
PWMn_

IM
reserved IM

18 - reserved

1C
PWMn_

DUT
DUT[15:0]

20
PWMn_

PER
PER[15:0]
215/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
16 CAN CONTROLLER (CAN)

16.1 Introduction

The C_CAN consists of the components (see Figure 46 on page 218) CAN Core, Message
RAM, Message Handler, Control Registers, and Module Interface.

The CAN Core performs communication according to the CAN protocol version 2.0 part A
and B. The bit rate can be programmed to values up to 1MBit/s. For the connection to the
physical layer additional transceiver hardware is required.

For communication on a CAN network, individual Message Objects are configured. The
Message Objects and Identifier Masks for acceptance filtering of received messages are
stored in the Message RAM.

All functions concerning the handling of messages are implemented in the Message
Handler. Those functions are the acceptance filtering, the transfer of messages between the
CAN Core and the Message RAM, and the handling of transmission requests as well as the
generation of the module interrupt.

The register set of the C_CAN can be accessed directly by the CPU via the module
interface. These registers are used to control/configure the CAN Core and the Message
Handler and to access the Message RAM.

The C_CAN implements the following features:

• Supports CAN protocol version 2.0 part A and B

• Bit rates up to 1 MBit/s

• 32 Message Objects

• Each Message Object has its own identifier mask

• Programmable FIFO mode (concatenation of Message Objects)

• Maskable interrupt

• Disabled Automatic Re-transmission mode for Time Triggered CAN applications

• Programmable loop-back mode for self-test operation

• 8-bit non-multiplex Motorola HC08 compatible module interface

• two 16-bit module interfaces to the AMBA APB bus from ARM
216/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
16.2 Main Features

The design consists of the following functional blocks (see Figure 46 on page 218):

• CAN Core

• CAN Protocol Controller and Rx/Tx Shift Register for serial/parallel conversion of
messages.

• Message RAM

• Stores Message Objects and Identifier Masks.

• Registers

• All registers used to control and to configure the C_CAN module.

• Message Handler

• State Machine that controls the data transfer between the Rx/Tx Shift Register of the
CAN Core and the Message RAM as well as the generation of interrupts as programmed
in the Control and Configuration Registers.

• Module Interface
217/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
16.3 Block Diagram

The design consists of the following functional blocks (see Figure 46 on page 218):

CAN Core

CAN Protocol Controller and Rx/Tx Shift Register for serial/parallel conversion of messages.

Message RAM

Stores Message Objects and Identifier Masks.

Registers

All registers used to control and to configure the C_CAN module.

Message Handler

State Machine that controls the data transfer between the Rx/Tx Shift Register of the CAN
Core and the Message RAM as well as the generation of interrupts as programmed in the
Control and Configuration Registers.

Module Interface

the C_CAN module interfaces to the 16-bit AMBA APB bus from ARM.

Figure 46. Block Diagram of the C-CAN

C-CAN

CAN CORE

REGISTERS

MODULE INTERFACE

M
E

S
S

AG
E

 H
A

N
D

LE
R

CAN_TX CAN_RX

Message RAM

D
at

aI
N

In
te

rr
up

t

C
lo

ck

R
es

et

A
dd

re
ss

(7
:0

)

C
on

tro
l

C
A

N
_W

A
IT

_B

D
at

aO
U

T

218/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
16.4 Functional Description

16.4.1 Software Initialization

The software initialization is started by setting the Init bit in the CAN Control Register, either
by software or by a hardware reset, or by going Bus_Off.

While Init is set, all message transfer to and from the CAN bus is stopped, the status of the
CAN_TX output pin is recessive (HIGH). The EML counters are unchanged. Setting Init
does not change any configuration register.

To initialize the CAN Controller, software has to set up the Bit Timing Register and each
Message Object. If a Message Object is not needed, it is sufficient to set the corresponding
MsgVal bit to not valid. Otherwise, the whole Message Object has to be initialized.

Access to the Bit Timing Register and to the BRP Extension Register for configuring bit
timing is enabled when the Init and CCE bits in the CAN Control Register are both set.

Resetting Init (by CPU only) finishes the software initialization. Afterwards the Bit Stream
Processor BSP (see section 16.7.10 on page 257) synchronizes itself to the data transfer on
the CAN bus by waiting for the occurrence of a sequence of 11 consecutive recessive bits (≡
Bus Idle) before it can take part in bus activities and starts the message transfer.

The initialization of the Message Objects is independent of Init and can be done on the fly,
but the Message Objects should all be configured to particular identifiers or set to not valid
before the BSP starts the message transfer.

To change the configuration of a Message Object during normal operation, software has to
start by setting MsgVal to not valid. When the configuration is completed, MsgVal is set to
valid again.

16.4.2 CAN Message Transfer

Once the C_CAN is initialized and Init is reset to zero, the C_CAN Core synchronizes itself
to the CAN bus and starts the message transfer.

Received messages are stored in their appropriate Message Objects if they pass the
Message Handler’s acceptance filtering. The whole message including all arbitration bits,
DLC and eight data bytes is stored in the Message Object. If the Identifier Mask is used, the
arbitration bits which are masked to “don’t care” may be overwritten in the Message Object.

Software can read or write each message any time via the Interface Registers, the Message
Handler guarantees data consistency in case of concurrent accesses.

Messages to be transmitted are updated by the application software. If a permanent
Message Object (arbitration and control bits set up during configuration) exists for the
message, only the data bytes are updated and then TxRqst bit with NewDat bit are set to
219/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
start the transmission. If several transmit messages are assigned to the same Message
Object (when the number of Message Objects is not sufficient), the whole Message Object
has to be configured before the transmission of this message is requested.

The transmission of any number of Message Objects may be requested at the same time,
they are transmitted subsequently according to their internal priority. Messages may be
updated or set to not valid any time, even when their requested transmission is still pending.
The old data will be discarded when a message is updated before its pending transmission
has started.

Depending on the configuration of the Message Object, the transmission of a message may
be requested autonomously by the reception of a remote frame with a matching identifier.

16.4.3 Disabled Automatic Retransmission Mode

According to the CAN Specification (see ISO11898, 6.3.3 Recovery Management), the
C_CAN provides means for automatic retransmission of frames that have lost arbitration or
that have been disturbed by errors during transmission. The frame transmission service will
not be confirmed to the user before the transmission is successfully completed. By default,
this means for automatic retransmission is enabled. It can be disabled to enable the C_CAN
to work within a Time Triggered CAN (TTCAN, see ISO11898-1) environment.

Disabled Automatic Retransmission mode is enabled by programming the DAR bit in the
CAN Control Register to one. In this operation mode the programmer has to consider the
different behaviour of bits TxRqst and NewDat in the Control Registers of the Message
Buffers:

• When a transmission starts bit TxRqst of the respective Message Buffer is reset, while
bit NewDat remains set.

• When the transmission completed successfully bit NewDat is reset.

When a transmission failed (lost arbitration or error) bit NewDat remains set. To restart the
transmission the CPU has to set TxRqst back to one.

16.4.4 Test Mode

Test Mode is entered by setting the Test bit in the CAN Control Register to one. In Test Mode
the bits Tx1, Tx0, LBack, Silent and Basic in the Test Register are writable. Bit Rx monitors
the state of the CAN_RX pin and therefore is only readable. All Test Register functions are
disabled when the Test bit is reset to zero.
220/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
16.4.5 Silent Mode

The CAN Core can be set in Silent Mode by programming the Silent bit in the Test Register
to one.

In Silent Mode, the C_CAN is able to receive valid data frames and valid remote frames, but
it sends only recessive bits on the CAN bus and it cannot start a transmission. If the CAN
Core is required to send a dominant bit (ACK bit, overload flag, active error flag), the bit is
rerouted internally so that the CAN Core monitors this dominant bit, although the CAN bus
may remain in recessive state. The Silent Mode can be used to analyze the traffic on a CAN
bus without affecting it by the transmission of dominant bits (Acknowledge Bits, Error
Frames). Figure 47 shows the connection of signals CAN_TX and CAN_RX to the CAN
Core in Silent Mode.

In ISO 11898-1, Silent Mode is called Bus Monitoring Mode.

16.4.6 Loop Back Mode

The CAN Core can be set in Loop Back Mode by programming the Test Register bit LBack
to one. In Loop Back Mode, the CAN Core treats its own transmitted messages as received
messages and stores them (if they pass acceptance filtering) in a Receive Buffer. Figure 48
shows the connection of signals CAN_TX and CAN_RX to the CAN Core in Loop Back
Mode

Figure 47. CAN Core in Silent Mode

CAN_TX CAN_RX

Tx Rx

CAN Core

C-CAN

••

=1
221/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
.

This mode is provided for self-test functions. To be independent from external stimulation, the
CAN Core ignores acknowledge errors (recessive bit sampled in the acknowledge slot of a data/
remote frame) in Loop Back Mode. In this mode the CAN Core performs an internal feedback
from its Tx output to its Rx input. The actual value of the CAN_RX input pin is disregarded by
the CAN Core. The transmitted messages can be monitored on the CAN_TX pin.

16.4.7 Loop Back combined with Silent Mode

It is also possible to combine Loop Back Mode and Silent Mode by programming bits LBack
and Silent to one at the same time. This mode can be used for a “Hot Selftest”, meaning the
C_CAN can be tested without affecting a running CAN system connected to the CAN_TX
and CAN_RX pins. In this mode the CAN_RX pin is disconnected from the CAN Core and
the CAN_TX pin is held recessive. Figure 49 shows the connection of signals CAN_TX and
CAN_RX to the CAN Core in case of the combination of Loop Back Mode with Silent Mode.

Figure 48. CAN Core in Loop Back Mode

Figure 49. CAN Core in Loop Back Mode combined with Silent Mode

CAN_TX CAN_RX

Tx Rx

CAN Core

C-CAN

••

CAN_TX CAN_RX

Tx Rx

CAN Core

C-CAN

••

=1
222/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
16.4.8 Basic Mode

The CAN Core can be set in Basic Mode by programming the Test Register bit Basic to one.
In this mode the C_CAN module runs without the Message RAM.

The IF1 Registers are used as Transmit Buffer. The transmission of the contents of the IF1
Registers is requested by writing the Busy bit of the IF1 Command Request Register to ‘1’.
The IF1 Registers are locked while the Busy bit is set. The Busy bit indicates that the
transmission is pending.

As soon the CAN bus is idle, the IF1 Registers are loaded into the shift register of the CAN
Core and the transmission is started. When the transmission has completed, the Busy bit is
reset and the locked IF1 Registers are released.

A pending transmission can be aborted at any time by resetting the Busy bit in the IF1
Command Request Register while the IF1 Registers are locked. If the CPU has reset the
Busy bit, a possible retransmission in case of lost arbitration or in case of an error is
disabled.

The IF2 Registers are used as Receive Buffer. After the reception of a message the contents
of the shift register is stored into the IF2 Registers, without any acceptance filtering.

Additionally, the actual contents of the shift register can be monitored during the message
transfer. Each time a read Message Object is initiated by writing the Busy bit of the IF2
Command Request Register to ‘1’, the contents of the shift register is stored in the IF2
Registers.

In Basic Mode the evaluation of all Message Object related control and status bits and of the
control bits of the IFn Command Mask Registers is turned off. The message number of the
Command request registers is not evaluated. The NewDat and MsgLst bits in the IF2
Message Control Register retain their function, DLC3-0 indicates the received DLC, the
other control bits are read as ‘0’.

In Basic Mode the ready output CAN_WAIT_B is disabled (always ‘1’).

16.4.9 Software Control of CAN_TX Pin

Four output functions are available for the CAN transmit pin CAN_TX. In addition to its
default function – serial data output – it can drive the CAN Sample Point signal to monitor the
CAN_Core’s bit timing and it can drive constant dominant or recessive values. The latter two
functions, combined with the readable CAN receive pin CAN_RX, can be used to check the
physical layer of the CAN bus.

The output mode the CAN_TX pin is selected by programming the Test Register bits Tx1
and Tx0.

The three test functions of the CAN_TX pin interfere with all CAN protocol functions.
CAN_TX must be left in its default function when CAN message transfer or any of the test
modes (Loop Back Mode, Silent Mode, or Basic Mode) are selected.
223/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
16.5 Register Description

The C_CAN module allocates an address space of 256 bytes. The registers are organized
as 16-bit registers, with the high byte at the odd address and the low byte at the even
address.

The two sets of interface registers (IF1 and IF2) control the CPU access to the Message
RAM. They buffer the data to be transferred to and from the RAM, avoiding conflicts between
CPU accesses and message reception/transmission
224/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
16.6 CAN Register Map

Table 34. CAN Register map

Address
offset

Name Name Reset Value Note

00h CANn_CR CAN Control Register 0001h

04h CANn_SR Status Register 0000h

 08h CANn_ERR Error Counter 0000h read only

0Ch CANn_BTR Bit Timing Register 2301h write enabled
by CCE

10h CANn_IDR Interrupt Identifier Register 0000h read only

14h CANn_TESTR Test Register 00h &

0br0000000 1)
write enabled
by Test

18h CANn_BRPR BRP Extension Register 0000h write enabled
by CCE

1Ch — reserved — 3)

 20h CANn_IF1_CR IF1 Command Request 0001h

 24h CANn_IF1_CMR IF1 Command Mask 0000h

 28h CANn_IF1_M1R IF1 Message Mask 1 FFFFh

2Ch CANn_IF1_M2R IF1 Message Mask 2 FFFFh

30h CANn_IF1_A1R IF1 Message Arbitration 1 0000h

 34h CANn_IF1_A2R IF1 Message Arbitration2 0000h

 38h CANn_IF1_MCR IF1 Message Control 0000h

3Ch CANn_IF1_DA1R IF1 Data A 1 0000h

40h CANn_IF1_DA2R IF1 Data A 2 0000h

44h CANn_IF1_DB1R IF1 Data B 1 0000h

 48h CANn_IF1_DB2R IF1 Data B 2 0000h

4Ch - 7Ch — reserved — 3)
225/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
See Table 2, “APB Memory Map,” on page 17 for base addresses.

 80h - A8h IF2 Registers see note 2) same as IF1
Registers

ACh -
FCh

— reserved — 3)

100h CANn_TxR1R Transmission Request 1 0000h read only

104h CANn_TxR2R Transmission Request 2 0000h read only

 108h
-11Ch

— reserved — 3)

120h CANn_ND1R New Data 1 0000h read only

124h CANn_ND2R New Data 2 0000h read only

128h -
13Ch

— reserved — 3)

140h CANn_IP1R Interrupt Pending 1 0000h read only

 144h CANn_IP2R Interrupt Pending 2 0000h read only

148h -
15Ch

— reserved — 3)

160h CANn_MV1R Message Valid 1 0000h read only

164h CANn_MV2R Message Valid 2 0000h read only

168 h-
1FCh

— reserved — 3)

1) r signifies the actual value of the CAN_RX pin.
2) The two sets of Message Interface Registers - IF1 and IF2 - have identical functions.
3) Reserved bits are read as ’0’ except for IFn Mask 2 Register where they are read as ’1’

Table 34. CAN Register map

Address
offset

Name Name Reset Value Note
226/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
16.6.1 CAN Interface Reset State

After hardware reset, the registers of the C_CAN hold the reset values given in the register
descriptions below.

Additionally the busoff state is reset and the output CAN_TX is set to recessive (HIGH). The
value 0x0001 (Init = ‘1’) in the CAN Control Register enables the software initialization. The
C_CAN does not influence the CAN bus until the CPU resets Init to ‘0’.

The data stored in the Message RAM is not affected by a hardware reset. After power-on,
the contents of the Message RAM is undefined.

16.6.2 CAN Protocol Related Registers

These registers are related to the CAN protocol controller in the CAN Core. They control the
operating modes and the configuration of the CAN bit timing and provide status information.

16.6.2.1 CAN Control Register (CANn_CR)

Address Offset: 00h
Reset value: 0001h

Bits 15:8= Reserved

Bit 7 = Test Test Mode Enable
0: Normal Operation
1: Test Mode

Bit 6 = CCE Configuration Change Enable
0: No write access to Bit Timing Register
1: Write access toe Bit Timing Register allowed (while Init = 1)

Bit 5 = DAR Disable Automatic Retransmission
0: Automatic Retransmission of disturbed messages enabled
1: Automatic Retransmission disabled

Bit 4 = Reserved

Bit 3 = EIE Error Interrupt Enable
0: Disabled - No Error Status Interrupt will be generated

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved

Te
st

C
C

E

D
A

R res

E
IE

S
IE IE Init

r r r r r r r r rw rw rw r rw rw rw rw
227/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
1: Enabled - A change in the bits BOff or EWarn in the Status Register will generate an
interrupt

Bit 2 = SIE Status Change Interrupt Enable
0: Disabled - No Status Change Interrupt will be generated
1: Enabled - An interrupt will be generated when a message transfer is successfully
completed or a CAN bus error is detected

Bit 1 = IE Module Interrupt Enable
0: Disabled - Module Interrupt IRQ_B is always HIGH
1: Enabled - Interrupts will set IRQ_B to LOW. IRQ_B remains LOW until all pending
interrupts are processed

Bit 0 = Init Initialization
0: Normal Operation
1: Initialization is started

Note: The busoff recovery sequence (see CAN Specification Rev. 2.0) cannot be shortened
by setting or resetting Init. If the device goes busoff, it will set Init of its own accord, stopping
all bus activities. Once Init has been cleared by the CPU, the device will then wait for 129
occurrences of Bus Idle (129 * 11 consecutive recessive bits) before resuming normal
operations. At the end of the busoff recovery sequence, the Error Management Counters will
be reset.

During the waiting time after the resetting of Init, each time a sequence of 11 recessive bits
has been monitored, a Bit0Error code is written to the Status Register, enabling the CPU to
readily check up whether the CAN bus is stuck at dominant or continuously disturbed and to
monitor the proceeding of the busoff recovery sequence.

16.6.2.2 Status Register (CANn_SR)

Address Offset: 04h
Reset value: 0000h

Bit 7 = BOff Busoff Status
0: The CAN module is not busoff
1: The CAN module is in busoff state

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved

B
O

ff

E
W

ar
n

E
P

as
s

R
xO

k

T
xO

k

LEC

r r r r r r r r r r r rw rw rw
228/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
Bit 6 = EWarn Warning Status
0: Both error counters are below the error warning limit of 96
1: At least one of the error counters in the EML has reached the error warning limit of 96.

Bit 5 = EPass Error Passive
0: The CAN Core is error active.
1: The CAN Core is in the error passive state as defined in the CAN Specification.

Bit 4 = RxOk Received a Message Successfully
0: Since this bit was last reset by the CPU, no message has been successfully received. This
bit is never reset by the CAN Core.
1: Since this bit was last reset (to zero) by the CPU, a message has been successfully
received (independent of the result of acceptance filtering).

Bit 3 = TxOk Transmitted a Message Successfully
0: Since this bit was reset by the CPU, no message has been successfully transmitted. This
bit is never reset by the CAN Core.
1: Since this bit was last reset by the CPU, a message has been successfully (error free and
acknowledged by at least one other node) transmitted.

Bits 2:0 = LEC[2:0] Last Error Code (Type of the last error to occur on the CAN bus)
The LEC field holds a code which indicates the type of the last error to occur on the CAN
bus. This field will be cleared to ‘0’ when a message has been transferred (reception or
transmission) without error. The unused code ‘7’ may be written by the CPU to check for
updates.

Error
Code

Meaning

0 No Error

1
Stuff Error: More than 5 equal bits in a sequence have occurred in a part of a received
message where this is not allowed

2 Form Error: A fixed format part of a received frame has the wrong format.

3
AckError: The message this CAN Core transmitted was not acknowledged by another
node.

4
Bit1Error: During the transmission of a message (with the exception of the arbitration
field), the device wanted to send a recessive level (bit of logical value ‘1’), but the moni-
tored bus value was dominant.
229/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
Status Interrupts

A Status Interrupt is generated by bits BOff and EWarn (Error Interrupt) or by RxOk, TxOk,
and LEC (Status Change Interrupt) assumed that the corresponding enable bits in the CAN
Control Register are set. A change of bit EPass or a write to RxOk, TxOk, or LEC will never
generate a Status Interrupt.

Reading the Status Register will clear the Status Interrupt value (8000h) in the Interrupt
Register, if it is pending.

16.6.2.3 Error Counter (CANn_ERR)

Address Offset: 08h
Reset value: 0000h

Bit 15 = RP Receive Error Passive
0: The Receive Error Counter is below the error passive level
1: The Receive Error Counter has reached the error passive level as defined in the CAN
Specification

Bits 14:8 = REC[6:0] Receive Error Counter
Actual state of the Receive Error Counter. Values between 0 and 127.

5

Bit0Error: During the transmission of a message (or acknowledge bit, or active error flag,
or overload flag), the device wanted to send a dominant level (data or identifier bit logical
value ‘0’), but the monitored Bus value was recessive. During busoff recovery this status
is set each time a sequence of 11 recessive bits has been monitored. This enables the
CPU to monitor the proceeding of the busoff recovery sequence (indicating the bus is not
stuck at dominant or continuously disturbed).

6
CRCError: The CRC check sum was incorrect in the message received, the CRC re-
ceived for an incoming message does not match with the calculated CRC for the received
data.

7
Unused: When the LEC shows the value ‘7’, no CAN bus event was detected since the
CPU wrote this value to the LEC.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RP REC6-0 TEC7-0

r r r

Error
Code

Meaning
230/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
Bits 7:0 = TEC[7:0] Transmit Error Counter
Actual state of the Transmit Error Counter. Values between 0 and 255.

16.6.2.4 Bit Timing Register (CANn_BTR)

Address Offset: 0Ch

Reset value: 2301h

Bit 15 = Reserved, must be kept at reset value (0).

Bits 14:12 = TSeg2 Time segment after sample point
0x0-0x7: valid values for TSeg2 are [0 … 7]. The actual interpretation by the hardware of
this value is such that one more than the value programmed here is used.

Bits 11:8 =TSeg1 Time segment before the sample point point minus Sync_Seg
0x01-0x0F: valid values for TSeg1 are [1 … 15]. The actual interpretation by the hardware
of this value is such that one more than the value programmed here is used.

Bits 7:6 = SJW (Re)Synchronisation Jump Width
0x0-0x3: Valid programmed values are [0 … 3]. The actual interpretation by the hardware
of this value is such that one more than the value programmed here is used.

Bits 5:0 = BRP Baud Rate Prescaler
0x00-0x3F: The value by which the oscillator frequency is divided for generating the bit time
quanta. The bit time is built up from a multiple of this quanta. Valid values for the Baud Rate
Prescaler are [0 … 63]. The actual interpretation by the hardware of this value is such that
one more than the value programmed here is used.

Note: With a module clock CAN_CLK of 8 MHz, the reset value of 0x2301 configures the
C_CAN for a bit rate of 500 kBit/s. The registers are only writable if bits CCE and Init in the
CAN Control Register are set.

16.6.2.5 Test Register (CANn_TESTR)

Address Offset: 14h
Reset value: 0000 0000 R000 0000 b (R=current value of RX pin)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

res TSeg2 TSeg1 SJW BRP

r rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
231/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
Bits 15:8 = Reserved, must be kept at reset value (0).

Bit 7 = Rx Current value of CAN_RX Pin
0: The CAN bus is dominant (CAN_RX = ‘0’).
1: The CAN bus is recessive (CAN_RX = ‘1’).

Bit 6:5 = Tx[1:0] CAN_TX pin control
00: Reset value, CAN_TX is controlled by the CAN Core
01: Sample Point can be monitored at CAN_TX pin
10: CAN_TX pin drives a dominant (‘0’) value
11: CAN_TX pin drives a recessive (‘1’) value.

Bit 4 = LBack Loop Back Mode
0: Loop Back Mode is disabled.
1: Loop Back Mode is enabled.

Bit 3 = Silent Silent Mode
0: Normal operation.
1: The module is in Silent Mode

Bit 2 = Basic Basic Mode
0: Basic Mode disabled.
1: IF1 Registers used as Tx Buffer, IF2 Registers used as Rx Buffer.

Bits 1:0 = Reserved, must be kept at reset value (0).

Write access to the Test Register is enabled by setting bit Test in the CAN Control Register.
The different test functions may be combined, but Tx1-0 ≠ “00” disturbs message transfer.

16.6.2.6 BRP Extension Register (CANn_BRPR)

Address Offset: 18h
Reset value: 0000h

(addresses 0x0D & 0x0C)

reserved R
x

T
x1

T
x0

LB
ac

k

S
ile

nt

B
as

ic

res res

r r r r r r r r r rw rw rw rw rw r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved BRPE

r r r r r r r r r r r r rw
232/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
Bits 15:4 = Reserved, must be kept at reset value (0).

Bits 3:0 = BRPE Baud Rate Prescaler Extension
0x00-0x0F: By programming BRPE the Baud Rate Prescaler can be extended to values up
to 1023. The actual interpretation by the hardware is that one more than the value
programmed by BRPE (MSBs) and BRP (LSBs) is used.

16.6.3 Message Interface Register Sets

There are two sets of Interface Registers which are used to control the CPU access to the
Message RAM. The Interface Registers avoid conflicts between CPU access to the
Message RAM and CAN message reception and transmission by buffering the data to be
transferred. A complete Message Object (see chapter 16.6.3.10) or parts of the Message
Object may be transferred between the Message RAM and the IFn Message Buffer registers
(see chapter 16.6.3.3) in one single transfer.

The function of the two interface register sets is identical (except for test mode Basic). They
can be used the way that one set of registers is used for data transfer to the Message RAM
while the other set of registers is used for the data transfer from the Message RAM, allowing
both processes to be interrupted by each other. Figure on page 233 gives an overview of
the two Interface Register sets.

Each set of Interface Registers consists of Message Buffer Registers controlled by their own
Command Registers. The Command Mask Register specifies the direction of the data
transfer and which parts of a Message Object will be transferred. The Command Request
Register is used to select a Message Object in the Message RAM as target or source for the
transfer and to start the action specified in the Command Mask Register.

Table 35. Interface Register Mapping

Base

Address
IF1 Register Set

Base

Address
IF2 Register Set

20h IF1 Command Request 80h IF2 Command Request

24h IF1 Command Mask 84h IF2 Command Mask

28h IF1 Message Mask 1 88h IF2 Message Mask 1

2Ch IF1 Message Mask 2 8Ch IF2 Message Mask 2

30h IF1 Arbitration 1 90h IF2 Arbitration 1

34h IF1 Arbitration 2 94h IF2 Arbitration 2

38h IF1 Message Control 98h IF2 Message Control
233/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
16.6.3.1 IFn Command Request Registers (CANn_IFn_CRR)

A message transfer is started as soon as the CPU has written the message number to the
Command Request Register. With this write operation the Busy bit is automatically set to ‘1’
and signal CAN_WAIT_B is pulled LOW to notify the CPU that a transfer is in progress. After
a wait time of 3 to 6 CAN_CLK periods, the transfer between the Interface Register and the
Message RAM has completed. The Busy bit is set back to zero and CAN_WAIT_B is set
back to HIGH.

Address offset: 20h (CANn_IF1_CRR), 80h (CANn_IF2_CRR)
Reset Value: 0001h

Bit 15 = Busy Busy Flag
0: Read/write action has finished.
1: Writing to the IFn Command Request Register in progress
Note: The Busy bit is r/w in basic mode and read only (r) in other operating modes. In basic
mode, software has to set this bit to request transmission.

Bits 14:6 = Reserved, must be kept at reset value (0).

Bits 5:0 = Message Number
0x01-0x20: Valid Message Number, the Message Object in the Message RAM is selected
for data transfer.
0x00: Not a valid Message Number, interpreted as 0x20.
0x21-0x3F: Not a valid Message Number, interpreted as 0x01-0x1F.

3Ch IF1 Data A 1 9Ch IF2 Data A 1

40h IF1 Data A 2 A0h IF2 Data A 2

44h IF1 Data B 1 A4h IF2 Data B 1

48h IF1 Data B 2 A8h IF2 Data B 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Busy reserved Message Number

See
note

r r r r r r r r r rw

Table 35. Interface Register Mapping

Base

Address
IF1 Register Set

Base

Address
IF2 Register Set
234/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
Note: When a Message Number that is not valid is written into the Command Request
Register, the Message Number will be transformed into a valid value and that Message
Object will be transferred.

16.6.3.2 IFn Command Mask Registers (CANn_IFn_CMR)

The control bits of the IFn Command Mask Register specify the transfer direction and select
which of the IFn Message Buffer Registers are source or target of the data transfer.

Address offset: 24h (CANn_IF1_CMR), 84h (CANn_IF2_CMR)
Reset Value: 0000h

Bits 15:8 = Reserved, must be kept at reset value (0).

Bit 7 = WR/RD Write / Read
0: Read: Transfer data from the Message Object addressed by the Command Request
Register into the selected Message Buffer Registers.
1: Write: Transfer data from the selected Message Buffer Registers to the Message Object
addressed by the Command Request Register.

Bits 6:0 The other bits of IFn Command Mask Register have different functions depending
on the transfer direction:

Direction = Write

Mask Access Mask Bits
0: Mask bits unchanged.
1: transfer Identifier Mask + MDir + MXtd to Message Object.

Arb Access Arbitration Bits
0: Arbitration bits unchanged.
1: Transfer Identifier + Dir + Xtd + MsgVal to Message Object.

Control Access Control Bits
0: Control Bits unchanged.
1: Transfer Control Bits to Message Object.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved

W
R

/R
D

M
as

k

A
rb

C
on

tr
ol

C
lrI

nt
P

nd

T
xR

qs
t/

D
at

a
A

D
at

a
B

r r r r r r r r rw rw rw rw rw rw rw rw
235/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
ClrIntPnd Clear Interrupt Pending Bit
When writing to a Message Object, this bit is ignored.

TxRqst/NewDat Access Transmission Request Bit
0: TxRqst bit unchanged
1: Set TxRqst bit

Note: If a transmission is requested by programming bit TxRqst/NewDat in the IFn
Command Mask Register, bit TxRqst in the IFn Message Control Register will be ignored.

Data A Access Data Bytes 3:0
0: Data Bytes 3:0 unchanged.
1: Transfer Data Bytes 3:0 to Message Object.

Data B Access Data Bytes 7:4
0: Data Bytes 7:4 unchanged.
1: Transfer Data Bytes 7:4 to Message Object.

Direction = Read

Mask Access Mask Bits
0: Mask bits unchanged.
1: Transfer Identifier Mask + MDir + MXtd to IFn Message Buffer Register.

Arb Access Arbitration Bits
0: Arbitration bits unchanged.
1: Transfer Identifier + Dir + Xtd + MsgVal to IFn Message Buffer Register.

Control Access Control Bits
0: Control Bits unchanged.
1: Transfer Control Bits to IFn Message Buffer Register.

ClrIntPnd Clear Interrupt Pending Bit
0: IntPnd bit remains unchanged.
1: Clear IntPnd bit in the Message Object.

TxRqst/NewDat Access Transmission Request Bit
0: NewDat bit remains unchanged.
1: Clear NewDat bit in the Message Object.

Note: A read access to a Message Object can be combined with the reset of the control bits
IntPnd and NewDat. The values of these bits transferred to the IFn Message Control
Register always reflect the status before resetting these bits.

Data A Access Data Bytes 3:0
0: Data Bytes 3:0 unchanged.
1: Transfer Data Bytes 3:0 to IFn Message Buffer Register.
236/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
Data B Access Data Bytes 7:4
0: Data Bytes 7:4 unchanged.
1: Transfer Data Bytes 7:4 to IFn Message Buffer Register.

16.6.3.3 IFn Message Buffer Registers

The bits of the Message Buffer registers mirror the Message Objects in the Message RAM.
The function of the Message Objects bits is described in chapter 16.6.3.10.

16.6.3.4 IFn Mask 1 Register (CANn_IFn_M1R)

Address offset: 28h (CANn_IF1_M1R), 88h (CANn_IF2_M1R)
Reset Value: FFFFh

16.6.3.5 IFn Mask 2 Register (CANn_IFn_M2R)

Address offset: 2Ch (CANn_IF1_M2R), 8Ch (CANn_IF2_M2R)
Reset Value: FFFFh

16.6.3.6 IFn Message Arbitration 1 Register (CANn_IFn_A1R)

Address offset: 30h (CANn_IF1_A1R), 90h (CANn_IF2_A1R)
Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Msk15-0

rw rw r rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MXtd MDir res Msk28-16

rw rw r rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID15-0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
237/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
16.6.3.7 IFn Message Arbitration 2 Register (CANn_IFn_A2R)

Address offset: 34h (CANn_IF1_A2R), 94h (CANn_IF2_A2R)
Reset Value: 0000h

16.6.3.8 IFn Message Control Registers (CANn_IFn_MCR)

Address offset: 38h (CANn_IF1_MCR), 98h (CANn_IF2_MCR)
Reset Value: 0000h

16.6.3.9 IFn Data A/B Registers (CANn_IFn_DAnR and CANn_IFn_DBnR)

The data bytes of CAN messages are stored in the IFn Message Buffer Registers in the
following order:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Msg
Val

Xtd Dir ID28-16

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N
ew

D
at

M
sg

Ls
t

In
tP

nd

U
M

as
k

T
xI

E

R
xI

E

R
m

tE
n

T
xR

qs
t

E
oB reserved DLC3-0

rw rw rw rw rw rw rw rw rw r r r rw

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

IF1 Message Data A1
(address 0x3C)

Data(1) Data(0)

IF1 Message Data A2
(address 0x40)

Data(3) Data(2)

IF1 Message Data B1
(address 0x44)

Data(5) Data(4)

IF1 Message Data B2
(address 0x48)

Data(7) Data(6)
238/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
In a CAN Data Frame, Data(0) is the first, Data(7) is the last byte to be transmitted or
received. In CAN’s serial bit stream, the MSB of each byte will be transmitted first.

16.6.3.10 Message Object in the Message Memory

There are 32 Message Objects in the Message RAM. To avoid conflicts between CPU
access to the Message RAM and CAN message reception and transmission, the CPU
cannot directly access the Message Objects, these accesses are handled via the IFn
Interface Registers.

Figure on page 239 gives an overview of the two structure of a Message Object

MsgVal Message Valid

one The Message Object is configured and should be considered by the
Message Handler.

zero The Message Object is ignored by the Message Handler.

Note: The CPU must reset the MsgVal bit of all unused Messages Objects during the
initialization before it resets bit Init in the CAN Control Register. This bit must also be reset

IF2 Message Data A1
(address 0x9C)

Data(1) Data(0)

IF2 Message Data A2
(address 0xA0)

Data(3) Data(2)

IF2 Message Data B1
(address 0xA4)

Data(5) Data(4)

IF2 Message Data B2
(address 0xA8)

Data(7) Data(6)

rw rw

Table 36. Structure of a Message Object in the Message Memory

Message Object

UMask
Msk
28-0

MXt
d

MDi
r

EoB NewDat
MsgL

st
RxIE TxIE

Int
Pnd

RmtEn TxRqst

MsgVal ID28-0 Xtd Dir DLC
3-0

Data
0

Data
1

Data
2

Data
3

Data
4

Data
5

Data 6 Data 7

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0
239/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
before the identifier Id28-0, the control bits Xtd, Dir, or the Data Length Code DLC3-0 are
modified, or if the Messages Object is no longer required.

UMask Use Acceptance Mask

one Use Mask (Msk28-0, MXtd, and MDir) for acceptance filtering

zero Mask ignored.

Note: If the UMask bit is set to one, the Message Object’s mask bits have to be programmed
during initialization of the Message Object before MsgVal is set to one.

ID28-0 Message Identifier

ID28 - ID0 29-bit Identifier (“Extended Frame”).

ID28 - ID1811-bit Identifier (“Standard Frame”).

Msk28-0 Identifier Mask

one The corresponding identifier bit is used for acceptance filtering.

zero The corresponding bit in the identifier of the message object cannot
inhibit the match in the acceptance filtering.

Xtd Extended Identifier

one The 29-bit (“extended”) Identifier will be used for this Message
Object.

zero The 11-bit (“standard”) Identifier will be used for this Message Object.

MXtd Mask Extended Identifier

one The extended identifier bit (IDE) is used for acceptance filtering.

zero The extended identifier bit (IDE) has no effect on the acceptance
filtering

Note: When 11-bit (“standard”) Identifiers are used for a Message Object, the identifiers of
received Data Frames are written into bits ID28 to ID18. For acceptance filtering, only these
bits together with mask bits Msk28 to Msk18 are considered.

Dir Message Direction

one Direction = transmit: On TxRqst, the respective Message Object is
transmitted as a Data Frame. On reception of a Remote Frame with
matching identifier, the TxRqst bit of this Message Object is set (if
RmtEn = one).
240/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
zero Direction = receive: On TxRqst, a Remote Frame with the identifier of
this Message Object is transmitted. On reception of a Data Frame
with matching identifier, that message is stored in this Message
Object.

MDir Mask Message Direction

one The message direction bit (Dir) is used for acceptance filtering.

zero The message direction bit (Dir) has no effect on the acceptance
filtering.

The Arbitration Registers ID28-0, Xtd, and Dir are used to define the identifier and type of
outgoing messages and are used (together with the mask registers Msk28-0, MXtd, and
MDir) for acceptance filtering of incoming messages. A received message is stored into the
valid Message Object with matching identifier and Direction=receive (Data Frame) or
Direction=transmit (Remote Frame). Extended frames can be stored only in Message
Objects with Xtd = one, standard frames in Message Objects with Xtd = zero. If a received
message (Data Frame or Remote Frame) matches with more than one valid Message
Object, it is stored into that with the lowest message number. For details see section
16.7.2.3 on page 249.

EoB End of Buffer

one Single Message Object or last Message Object of a FIFO Buffer.

zero Message Object belongs to a FIFO Buffer and is not the last
Message Object of that FIFO Buffer.

Note: This bit is used to concatenate two ore more Message Objects (up to 32) to build a
FIFO Buffer. For single Message Objects (not belonging to a FIFO Buffer) this bit must
always be set to one. For details on the concatenation of Message Objects see section
16.7.7 on page 253.

NewDat New Data

one The Message Handler or the CPU has written new data into the data
portion of this Message Object.

zero No new data has been written into the data portion of this Message
Object by the Message Handler since last time this flag was cleared
by the CPU.

MsgLst Message Lost (only valid for Message Objects with direction = receive)

one The Message Handler stored a new message into this object when
NewDat was still set, the CPU has lost a message.

zero No message lost since last time this bit was reset by the CPU.
241/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
RxIE Receive Interrupt Enable

one IntPnd will be set after a successful reception of a frame.

zero IntPnd will be left unchanged after a successful reception of a
frame.

TxIE Transmit Interrupt Enable

one IntPnd will be set after a successful transmission of a frame.

zero IntPnd will be left unchanged after the successful transmission of a
frame.

IntPnd Interrupt Pending

one This message object is the source of an interrupt. The Interrupt
Identifier in the Interrupt Register will point to this message object if
there is no other interrupt source with higher priority.

zero This message object is not the source of an interrupt.

RmtEn Remote Enable

one At the reception of a Remote Frame, TxRqst is set.

zero At the reception of a Remote Frame, TxRqst is left unchanged.

TxRqst Transmit Request

one The transmission of this Message Object is requested and is not yet
done.

zero This Message Object is not waiting for transmission.

DLC3-0 Data Length Code

0-8 Data Frame has 0-8 data bytes.

9-15 Data Frame has 8 data bytes

Note: The Data Length Code of a Message Object must be defined the same as in all the
corresponding objects with the same identifier at other nodes. When the Message Handler
stores a data frame, it will write the DLC to the value given by the received message.

Data 0 1st data byte of a CAN Data Frame

Data 1 2nd data byte of a CAN Data Frame

Data 2 3rd data byte of a CAN Data Frame
242/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
Data 3 4th data byte of a CAN Data Frame

Data 4 5th data byte of a CAN Data Frame

Data 5 6th data byte of a CAN Data Frame

Data 6 7th data byte of a CAN Data Frame

Data 78th data byte of a CAN Data Frame

Note: Byte Data 0 is the first data byte shifted into the shift register of the CAN Core during
a reception, byte Data 7 is the last. When the Message Handler stores a Data Frame, it will
write all the eight data bytes into a Message Object. If the Data Length Code is less than 8,
the remaining bytes of the Message Object will be overwritten by non specified values.

16.6.4 Message Handler Registers

All Message Handler registers are read-only. Their contents (TxRqst, NewDat, IntPnd, and
MsgVal bits of each Message Object and the Interrupt Identifier) is status information
provided by the Message Handler FSM.

Interrupt Identifier Register (CANn_IDR)

Address Offset: 10h
Reset value: 0000h

Bits 15:0 = IntId15:0 Interrupt Identifier (the number here indicates the source of the
interrupt)

0x0000: No interrupt is pending.

0x0001-0x0020: Number of Message Object which caused the interrupt.

0x0021-0x7FFF: unused.

0x8000: Status Interrupt.

0x8001-0xFFFF: unused

If several interrupts are pending, the CAN Interrupt Register will point to the pending
interrupt with the highest priority, disregarding their chronological order. An interrupt remains
pending until the CPU has cleared it. If IntId is different from 0x0000 and IE is set, the

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IntId15-8 IntId7-0

r r
243/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
interrupt line to the CPU, IRQ_B, is active. The interrupt line remains active until IntId is back
to value 0x0000 (the cause of the interrupt is reset) or until IE is reset.

The Status Interrupt has the highest priority. Among the message interrupts, the Message
Object’ s interrupt priority decreases with increasing message number.

A message interrupt is cleared by clearing the Message Object’s IntPnd bit. The Status
Interrupt is cleared by reading the Status Register.

16.6.4.1 Transmission Request Registers 1 & 2 (CANn_TxRnR)

Address Offset: 100h (CANn_TxR1R), 104h (CANn_TxR2R)
Reset Value: 0000 0000h

Bits 31:0 = TxRqst32-1 Transmission Request Bits (of all Message Objects)
0: This Message Object is not waiting for transmission.
1: The transmission of this Message Object is requested and is not yet done.

These registers hold the TxRqst bits of the 32 Message Objects. By reading out the TxRqst
bits, the CPU can check for which Message Object a Transmission Request is pending. The
TxRqst bit of a specific Message Object can be set/reset by the CPU via the IFn Message
Interface Registers or by the Message Handler after reception of a Remote Frame or after a
successful transmission.

16.6.4.2 New Data Registers 1 & 2 (CANn_NDnR)

Address Offset: 120h (CANn_ND1R), 124h (CANn_ND2R)
Reset Value: 0000 0000h

1
5

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TxRqst16-9 TxRqst8-1

TxRqst32-25 TxRqst24-17

r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NewDat16-9 NewDat8-1

NewDat32-25 NewDat24-17

r r
244/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
Bits 31:0 = NewDat32-1 New Data Bits (of all Message Objects)
0: No new data has been written into the data portion of this Message Object by the
Message Handler since last time this flag was cleared by the CPU.
1: The Message Handler or the CPU has written new data into the data portion of this
Message Object.

MsgLst These registers hold the NewDat bits of the 32 Message Objects. By reading out
the NewDat bits, the CPU can check for which Message Object the data portion was
updated. The NewDat bit of a specific Message Object can be set/reset by the CPU via the
IFn Message Interface Registers or by the Message Handler after reception of a Data Frame
or after a successful transmission.

16.6.4.3 Interrupt Pending Registers 1 & 2 (CANn_IPnR)

Address Offset: 140h (CANn_IP1R), 144h (CANn_IP2R)
Reset Value: 0000 0000h

Bits 31:0 = IntPnd32-1 Interrupt Pending Bits (of all Message Objects)
0: This message object is not the source of an interrupt.
1: This message object is the source of an interrupt.

These registers hold the IntPnd bits of the 32 Message Objects. By reading out the IntPnd
bits, the CPU can check for which Message Object an interrupt is pending. The IntPnd bit of
a specific Message Object can be set/reset by the CPU via the IFn Message Interface
Registers or by the Message Handler after reception or after a successful transmission of a
frame. This will also affect the value of IntId in the Interrupt Register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IntPnd16-9 IntPnd8-1

IntPnd32-25 IntPnd24-17

r r
245/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
16.6.4.4 Message Valid Registers 1 & 2 (CANn_MVnR)

Address Offset: 160h (CANn_MV1R), 164h (CANn_MV2R)
Reset Value: 0000 0000h

Bits 31:0= MsgVal32-1 Message Valid Bits (of all Message Objects)
0: This Message Object is ignored by the Message Handler.
1: This Message Object is configured and should be considered by the Message Handler.

These registers hold the MsgVal bits of the 32 Message Objects. By reading out the MsgVal
bits, the CPU can check which Message Object is valid. The MsgVal bit of a specific
Message Object can be set/reset by the CPU via the IFn Message Interface Registers.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MsgVal16-9 MsgVal8-1

MsgVal32-25 MsgVal24-17

r r
246/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
16.7 CAN Communications

16.7.1 Managing Message Objects

The configuration of the Message Objects in the Message RAM will (with the exception of
the bits MsgVal, NewDat, IntPnd, and TxRqst) not be affected by resetting the chip. All the
Message Objects must be initialized by the CPU or they must be not valid (MsgVal = ‘0’) and
the bit timing must be configured before the CPU clears the Init bit in the CAN Control
Register.

The configuration of a Message Object is done by programming Mask, Arbitration, Control
and Data field of one of the two interface register sets to the desired values. By writing to the
corresponding IFn Command Request Register, the IFn Message Buffer Registers are
loaded into the addressed Message Object in the Message RAM.

When the Init bit in the CAN Control Register is cleared, the CAN Protocol Controller state
machine of the CAN_Core and the Message Handler State Machine control the C_CAN’s
internal data flow. Received messages that pass the acceptance filtering are stored into the
Message RAM, messages with pending transmission request are loaded into the
CAN_Core’s Shift Register and are transmitted via the CAN bus.

The CPU reads received messages and updates messages to be transmitted via the IFn
Interface Registers. Depending on the configuration, the CPU is interrupted on certain CAN
message and CAN error events.

16.7.2 Message Handler State Machine

The Message Handler controls the data transfer between the Rx/Tx Shift Register of the
CAN Core, the Message RAM and the IFn Registers.

The Message Handler FSM controls the following functions:

• Data Transfer from IFn Registers to the Message RAM

• Data Transfer from Message RAM to the IFn Registers

• Data Transfer from Shift Register to the Message RAM

• Data Transfer from Message RAM to Shift Register

• Data Transfer from Shift Register to the Acceptance Filtering unit

• Scanning of Message RAM for a matching Message Object

• Handling of TxRqst flags.

• Handling of interrupts.
247/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
16.7.2.1 Data Transfer from / to Message RAM

When the CPU initiates a data transfer between the IFn Registers and Message RAM, the
Message Handler sets the Busy bit in the respective Command Register to ‘1’. After the
transfer has completed, the Busy bit is set back to ‘0’ (see Figure 50 on page 248).

The respective Command Mask Register specifies whether a complete Message Object or
only parts of it will be transferred. Due to the structure of the Message RAM it is not possible
to write single bits/bytes of one Message Object, it is always necessary to write a complete
Message Object into the Message RAM. Therefore the data transfer from the IFn Registers
to the Message RAM requires of a read-modify-write cycle. First that parts of the Message
Object that are not to be changes are read from the Message RAM and then the complete
contents of the Message Buffer Registers are into the Message Object.

.
Figure 50. Data transfer between IFn Registers and Message RAM

START

WR/RD = 1

Busy = 0

Busy = 1

Read Message Object to IFn

Write IFn to Message RAM

Read Message Object to IFn

No Yes

CAN_WAIT_B = 0

CAN_WAIT_B = 1

Write Command Request Register
No

Yes
248/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
After the partial write of a Message Object, that Message Buffer Registers that are not
selected in the Command Mask Register will set to the actual contents of the selected
Message Object.

After the partial read of a Message Object, that Message Buffer Registers that are not
selected in the Command Mask Register will be left unchanged.

16.7.2.2 Message Transmission

If the shift register of the CAN Core cell is ready for loading and if there is no data transfer
between the IFn Registers and Message RAM, the MsgVal bits in the Message Valid
Register TxRqst bits in the Transmission Request Register are evaluated. The valid
Message Object with the highest priority pending transmission request is loaded into the
shift register by the Message Handler and the transmission is started. The Message Object’s
NewDat bit is reset.

After a successful transmission and if no new data was written to the Message Object
(NewDat = ‘0’) since the start of the transmission, the TxRqst bit will be reset. If TxIE is set,
IntPnd will be set after a successful transmission. If the C_CAN has lost the arbitration or if
an error occurred during the transmission, the message will be retransmitted as soon as the
CAN bus is free again. If meanwhile the transmission of a message with higher priority has
been requested, the messages will be transmitted in the order of their priority.

16.7.2.3 Acceptance Filtering of Received Messages

When the arbitration and control field (Identifier + IDE + RTR + DLC) of an incoming
message is completely shifted into the Rx/Tx Shift Register of the CAN Core, the Message
Handler FSM starts the scanning of the Message RAM for a matching valid Message Object.

To scan the Message RAM for a matching Message Object, the Acceptance Filtering unit is
loaded with the arbitration bits from the CAN Core shift register. Then the arbitration and
mask fields (including MsgVal, UMask, NewDat, and EoB) of Message Object 1 are loaded
into the Acceptance Filtering unit and compared with the arbitration field from the shift
register. This is repeated with each following Message Object until a matching Message
Object is found or until the end of the Message RAM is reached.

If a match occurs, the scanning is stopped and the Message Handler FSM proceeds
depending on the type of frame (Data Frame or Remote Frame) received.
249/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
Reception of Data Frame

The Message Handler FSM stores the message from the CAN Core shift register into the
respective Message Object in the Message RAM. Not only the data bytes, but all arbitration
bits and the Data Length Code are stored into the corresponding Message Object. This is
implemented to keep the data bytes connected with the identifier even if arbitration mask
registers are used.

The NewDat bit is set to indicate that new data (not yet seen by the CPU) has been
received. The CPU should reset NewDat when it reads the Message Object. If at the time of
the reception the NewDat bit was already set, MsgLst is set to indicate that the previous
data (supposedly not seen by the CPU) is lost. If the RxIE bit is set, the IntPnd bit is set,
causing the Interrupt Register to point to this Message Object.

The TxRqst bit of this Message Object is reset to prevent the transmission of a Remote
Frame, while the requested Data Frame has just been received.

Reception of Remote Frame

When a Remote Frame is received, three different configurations of the matching Message
Object have to be considered:

1) Dir = ‘1’ (direction = transmit), RmtEn = ‘1’, UMask = ‘1’ or ’0’
At the reception of a matching Remote Frame, the TxRqst bit of this Message Object is set.
The rest of the Message Object remains unchanged.

2) Dir = ‘1’ (direction = transmit), RmtEn = ‘0’, UMask = ’0’
At the reception of a matching Remote Frame, the TxRqst bit of this Message Object
remains unchanged; the Remote Frame is ignored.

3) Dir = ‘1’ (direction = transmit), RmtEn = ‘0’, UMask = ’1’
At the reception of a matching Remote Frame, the TxRqst bit of this Message Object is
reset. The arbitration and control field (Identifier + IDE + RTR + DLC) from the shift register
is stored into the Message Object in the Message RAM and the NewDat bit of this Message
Object is set. The data field of the Message Object remains unchanged; the Remote Frame
is treated similar to a received Data Frame.

16.7.2.4 Receive / Transmit Priority

The receive/transmit priority for the Message Objects is attached to the message number.
Message Object 1 has the highest priority, while Message Object 32 has the lowest priority.
If more than one transmission request is pending, they are serviced due to the priority of the
corresponding Message Object.
250/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
16.7.3 Configuring a Transmit Object

Table 37 shows how a Transmit Object should be initialized.

The Arbitration Registers (ID28-0 and Xtd bit) are given by the application. They define the
identifier and type of the outgoing message. If an 11-bit Identifier (“Standard Frame”) is
used, it is programmed to ID28 - ID18, ID17 - ID0 can then be disregarded.

If the TxIE bit is set, the IntPnd bit will be set after a successful transmission of the Message
Object.

If the RmtEn bit is set, a matching received Remote Frame will cause the TxRqst bit to be
set; the Remote Frame will autonomously be answered by a Data Frame.

The Data Registers (DLC3-0, Data0-7) are given by the application, TxRqst and RmtEn
may not be set before the data is valid.

The Mask Registers (Msk28-0, UMask, MXtd, and MDir bits) may be used (UMask=’1’) to
allow groups of Remote Frames with similar identifiers to set the TxRqst bit. For details see
Section , handle with care. The Dir bit should not be masked.

16.7.4 Updating a Transmit Object

The CPU may update the data bytes of a Transmit Object any time via the IFn Interface
registers, neither MsgVal nor TxRqst have to be reset before the update.

Even if only a part of the data bytes are to be updated, all four bytes of the corresponding IFn
Data A Register or IFn Data B Register have to be valid before the content of that register is
transferred to the Message Object. Either the CPU has to write all four bytes into the IFn
Data Register or the Message Object is transferred to the IFn Data Register before the CPU
writes the new data bytes.

When only the (eight) data bytes are updated, first 0x0087 is written to the Command Mask
Register and then the number of the Message Object is written to the Command Request
Register, concurrently updating the data bytes and setting TxRqst.

To prevent the reset of TxRqst at the end of a transmission that may already be in progress
while the data is updated, NewDat has to be set together with TxRqst. For details see
section Section 16.7.2.2.

Table 37. Initialisation of a Transmit Object

M
sg

V
al

A
rb

D
at

a

M
as

k

E
o

B

D
ir

N
ew

D
at

M
sg

L
st

R
xI

E

T
xI

E

In
tP

n
d

R
m

tE
n

T
xR

q
st

1 appl. appl. appl. 1 1 0 0 0 appl. 0 appl. 0
251/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
When NewDat is set together with TxRqst, NewDat will be reset as soon as the new
transmission has started.

16.7.5 Configuring a Receive Object

Table 38 shows how a Receive Object should be initialized.

The Arbitration Registers (ID28-0 and Xtd bit) are given by the application. They define the
identifier and type of accepted received messages. If an 11-bit Identifier (“Standard Frame”)
is used, it is programmed to ID28 - ID18, ID17 - ID0 can then be disregarded. When a Data
Frame with an 11-bit Identifier is received, ID17 - ID0 will be set to ‘0’.

If the RxIE bit is set, the IntPnd bit will be set when a received Data Frame is accepted and
stored in the Message Object.

The Data Length Code (DLC3-0) is given by the application. When the Message Handler
stores a Data Frame in the Message Object, it will store the received Data Length Code and
eight data bytes. If the Data Length Code is less than 8, the remaining bytes of the Message
Object will be overwritten by non specified values.

The Mask Registers (Msk28-0, UMask, MXtd, and MDir bits) may be used (UMask=’1’) to
allow groups of Data Frames with similar identifiers to be accepted. For details see Section .
The Dir bit should not be masked in typical applications.

16.7.6 Handling Received Messages

The CPU may read a received message any time via the IFn Interface registers, the data
consistency is guaranteed by the Message Handler state machine.

Typically the CPU will write first 0x007F to the Command Mask Register and then the
number of the Message Object to the Command Request Register. That combination will
transfer the whole received message from the Message RAM into the Message Buffer
Register. Additionally, the bits NewDat and IntPnd are cleared in the Message RAM (not in
the Message Buffer).

If the Message Object uses masks for acceptance filtering, the arbitration bits show which of
the matching messages has been received.

Table 38. Initialization of a Receive Object

M
sg

V
al

A
rb

D
at

a

M
as

k

E
o

B

D
ir

N
ew

D
at

M
sg

L
st

R
xI

E

T
xI

E

In
tP

n
d

R
m

tE
n

T
xR

q
st

1 appl. appl. appl. 1 0 0 0 appl. 0 0 0 0
252/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
The actual value of NewDat shows whether a new message has been received since last
time this Message Object was read. The actual value of MsgLst shows whether more than
one message has been received since last time this Message Object was read. MsgLst will
not be automatically reset.

By means of a Remote Frame, the CPU may request another CAN node to provide new data
for a receive object. Setting the TxRqst bit of a receive object will cause the transmission of
a Remote Frame with the receive object’s identifier. This Remote Frame triggers the other
CAN node to start the transmission of the matching Data Frame. If the matching Data Frame
is received before the Remote Frame could be transmitted, the TxRqst bit is automatically
reset.

16.7.7 Configuring a FIFO Buffer

With the exception of the EoB bit, the configuration of Receive Objects belonging to a FIFO
Buffer is the same as the configuration of a (single) Receive Object, see Section 16.7.5.

To concatenate two or more Message Objects into a FIFO Buffer, the identifiers and masks
(if used) of these Message Objects have to be programmed to matching values. Due to the
implicit priority of the Message Objects, the Message Object with the lowest number will be
the first Message Object of the FIFO Buffer. The EoB bit of all Message Objects of a FIFO
Buffer except the last have to be programmed to zero. The EoB bits of the last Message
Object of a FIFO Buffer is set to one, configuring it as the End of the Block.

16.7.8 Receiving Messages with FIFO Buffers

Received messages with identifiers matching to a FIFO Buffer are stored into a Message
Object of this FIFO Buffer starting with the Message Object with the lowest message
number.

When a message is stored into a Message Object of a FIFO Buffer the NewDat bit of this
Message Object is set. By setting NewDat while EoB is zero the Message Object is locked
for further write accesses by the Message Handler until the CPU has written the NewDat bit
back to zero.

Messages are stored into a FIFO Buffer until the last Message Object of this FIFO Buffer is
reached. If none of the preceding Message Objects is released by writing NewDat to zero,
all further messages for this FIFO Buffer will be written into the last Message Object of the
FIFO Buffer and therefore overwrite previous messages.
253/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
16.7.8.1 Reading from a FIFO Buffer

When the CPU transfers the contents of Message Object to the IFn Message Bugger
registers by writing its number to the IFn Command Request Register, the corresponding
Command Mask Register should be programmed the way that bits NewDat and IntPnd are
reset to zero (TxRqst/NewDat = ‘1’ and ClrIntPnd = ‘1’). The values of these bits in the
Message Control Register always reflect the status before resetting the bits.

To assure the correct function of a FIFO Buffer, the CPU should read out the Message
Objects starting at the FIFO Object with the lowest message number.

Figure 51 on page 255 shows how a set of Message Objects which are concatenated to a
FIFO Buffer can be handled by the CPU.
254/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
Figure 51. CPU Handling of a FIFO Buffer

Read Interrupt Pointer

START

case Interrupt Pointer
0x8000h else 0x0000h

Status Change END

MessageNum = Interrupt Pointer

Write MessageNum to IFn Command Request

(Read Message to IFn Registers,
Reset NewDat = 0,
Reset IntPnd = 0)

Read IFn Message Control

NewDat = 1

Read Data from IFn Data A,B

EoB = 1

MessageNum = MessageNum + 1

Yes

No

Yes

No

Message Interrupt

Interrupt Handling
255/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
16.7.9 Handling Interrupts

If several interrupts are pending, the CAN Interrupt Register will point to the pending
interrupt with the highest priority, disregarding their chronological order. An interrupt remains
pending until the CPU has cleared it.

The Status Interrupt has the highest priority. Among the message interrupts, the Message
Object’ s interrupt priority decreases with increasing message number.

A message interrupt is cleared by clearing the Message Object’s IntPnd bit. The Status
Interrupt is cleared by reading the Status Register.

The interrupt identifier IntId in the Interrupt Register indicates the cause of the interrupt.
When no interrupt is pending, the register will hold the value zero. If the value of the Interrupt
Register is different from zero, then there is an interrupt pending and, if IE is set, the interrupt
line to the CPU, IRQ_B, is active. The interrupt line remains active until the Interrupt Register
is back to value zero (the cause of the interrupt is reset) or until IE is reset.

The value 0x8000 indicates that an interrupt is pending because the CAN Core has updated
(not necessarily changed) the Status Register (Error Interrupt or Status Interrupt). This
interrupt has the highest priority. The CPU can update (reset) the status bits RxOk, TxOk
and LEC, but a write access of the CPU to the Status Register can never generate or reset
an interrupt.

All other values indicate that the source of the interrupt is one of the Message Objects, IntId
points to the pending message interrupt with the highest interrupt priority.

The CPU controls whether a change of the Status Register may cause an interrupt (bits EIE
and SIE in the CAN Control Register) and whether the interrupt line becomes active when
the Interrupt Register is different from zero (bit IE in the CAN Control Register). The Interrupt
Register will be updated even when IE is reset.

The CPU has two possibilities to follow the source of a message interrupt. First it can follow
the IntId in the Interrupt Register and second it can poll the Interrupt Pending Register (see
section 16.6.4.3 on page 245).

An interrupt service routine reading the message that is the source of the interrupt may read
the message and reset the Message Object’s IntPnd at the same time (bit ClrIntPnd in the
Command Mask Register). When IntPnd is cleared, the Interrupt Register will point to the
next Message Object with a pending interrupt.
256/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
16.7.10 Configuring the Bit Timing

Even if minor errors in the configuration of the CAN bit timing do not result in immediate
failure, the performance of a CAN network can be reduced significantly.

In many cases, the CAN bit synchronization will amend a faulty configuration of the CAN bit
timing to such a degree that only occasionally an error frame is generated. In the case of
arbitration however, when two or more CAN nodes simultaneously try to transmit a frame, a
misplaced sample point may cause one of the transmitters to become error passive.

The analysis of such sporadic errors requires a detailed knowledge of the CAN bit
synchronization inside a CAN node and of the CAN nodes’ interaction on the CAN bus.

16.7.10.1 Bit Time and Bit Rate

CAN supports bit rates in the range of lower than 1 kBit/s up to 1000 kBit/s. Each member of
the CAN network has its own clock generator, usually a quartz oscillator. The timing
parameter of the bit time (i.e. the reciprocal of the bit rate) can be configured individually for
each CAN node, creating a common bit rate even though the CAN nodes’ oscillator periods
(fosc) may be different.

The frequencies of these oscillators are not absolutely stable, small variations are caused by
changes in temperature or voltage and by deteriorating components. As long as the
variations remain inside a specific oscillator tolerance range (df), the CAN nodes are able to
compensate for the different bit rates by resynchronising to the bit stream.

According to the CAN specification, the bit time is divided into four segments (see Figure 52
on page 258). The Synchronization Segment, the Propagation Time Segment, the Phase
Buffer Segment 1, and the Phase Buffer Segment 2. Each segment consists of a specific,
programmable number of time quanta (see Table on page 258). The length of the time
quantum (tq), which is the basic time unit of the bit time, is defined by the CAN controller’s
system clock fsys and the Baud Rate Prescaler (BRP): tq = BRP / fsys. The C_CAN’s system
clock fsys is the frequency of its CAN_CLK input.

The Synchronization Segment Sync_Seg is that part of the bit time where edges of the CAN
bus level are expected to occur; the distance between an edge that occurs outside of
Sync_Seg and the Sync_Seg is called the phase error of that edge. The Propagation Time
Segment Prop_Seg is intended to compensate for the physical delay times within the CAN
network. The Phase Buffer Segments Phase_Seg1 and Phase_Seg2 surround the Sample
Point. The (Re-)Synchronization Jump Width (SJW) defines how far a re-synchronization
may move the Sample Point inside the limits defined by the Phase Buffer Segments to
compensate for edge phase errors.
257/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
A given bit rate may be met by different bit time configurations, but for the proper function of
the CAN network the physical delay times and the oscillator’s tolerance range have to be
considered.

16.7.10.2 Propagation Time Segment

This part of the bit time is used to compensate physical delay times within the network.
These delay times consist of the signal propagation time on the bus and the internal delay
time of the CAN nodes.

Any CAN node synchronized to the bit stream on the CAN bus will be out of phase with the
transmitter of that bit stream, caused by the signal propagation time between the two nodes.
The CAN protocol’s non-destructive bitwise arbitration and the dominant acknowledge bit
provided by receivers of CAN messages require that a CAN node transmitting a bit stream
must also be able to receive dominant bits transmitted by other CAN nodes that are
synchronized to that bit stream. The example in Figure 53 on page 259 shows the phase
shift and propagation times between two CAN nodes.

Figure 52. Bit Timing

Table 39. CAN Bit Time Parameters

Parameter Range Remark

BRP [1 .. 32] defines the length of the time quantum tq

Sync_Seg 1 tq fixed length, synchronization of bus input to system clock

Prop_Seg [1 .. 8] tq compensates for the physical delay times

Phase_Seg1 [1 .. 8] tq may be lengthened temporarily by synchronization

Phase_Seg2 [1 .. 8] tq may be shortened temporarily by synchronization

SJW [1 .. 4] tq may not be longer than either Phase Buffer Segment

This table describes the minimum programmable ranges required by the CAN protocol

1 Time Quantum
(tq)

Sync_ Prop_Seg Phase_Seg1 Phase_Seg2

Sample Point

Nominal CAN Bit Time

Seg
258/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
In this example, both nodes A and B are transmitters performing an arbitration for the CAN
bus. The node A has sent its Start of Frame bit less than one bit time earlier than node B,
therefore node B has synchronized itself to the received edge from recessive to dominant.
Since node B has received this edge delay(A_to_B) after it has been transmitted, B’s bit
timing segments are shifted with regard to A. Node B sends an identifier with higher priority
and so it will win the arbitration at a specific identifier bit when it transmits a dominant bit
while node A transmits a recessive bit. The dominant bit transmitted by node B will arrive at
node A after the delay(B_to_A).

Due to oscillator tolerances, the actual position of node A’s Sample Point can be anywhere
inside the nominal range of node A’s Phase Buffer Segments, so the bit transmitted by node
B must arrive at node A before the start of Phase_Seg1. This condition defines the length of
Prop_Seg.

If the edge from recessive to dominant transmitted by node B would arrive at node A after
the start of Phase_Seg1, it could happen that node A samples a recessive bit instead of a
dominant bit, resulting in a bit error and the destruction of the current frame by an error flag.

The error occurs only when two nodes arbitrate for the CAN bus that have oscillators of
opposite ends of the tolerance range and that are separated by a long bus line; this is an
example of a minor error in the bit timing configuration (Prop_Seg to short) that causes
sporadic bus errors.

Some CAN implementations provide an optional 3 Sample Mode The C_CAN does not. In
this mode, the CAN bus input signal passes a digital low-pass filter, using three samples and

Figure 53. Propagation Time Segment

Sync_Seg Prop_Seg Phase_Seg1 Phase_Seg2

Node B

Node A

Delay A_to_B Delay B_to_A

Prop_Seg >= Delay A_to_B + Delay B_to_A

Prop_Seg >= 2 • [max(node output delay+ bus line delay + node input delay)]

Delay A_to_B >= node output delay(A) + bus line delay(A→B) + node input delay(B)
259/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
a majority logic to determine the valid bit value. This results in an additional input delay of 1
tq, requiring a longer Prop_Seg.

16.7.10.3 Phase Buffer Segments and Synchronization

The Phase Buffer Segments (Phase_Seg1 and Phase_Seg2) and the Synchronization
Jump Width (SJW) are used to compensate for the oscillator tolerance. The Phase Buffer
Segments may be lengthened or shortened by synchronization.

Synchronizations occur on edges from recessive to dominant, their purpose is to control the
distance between edges and Sample Points.

Edges are detected by sampling the actual bus level in each time quantum and comparing it
with the bus level at the previous Sample Point. A synchronization may be done only if a
recessive bit was sampled at the previous Sample Point and if the actual time quantum’s bus
level is dominant.

An edge is synchronous if it occurs inside of Sync_Seg, otherwise the distance between
edge and the end of Sync_Seg is the edge phase error, measured in time quanta. If the
edge occurs before Sync_Seg, the phase error is negative, else it is positive.

Two types of synchronization exist: Hard Synchronization and Re-synchronization. A Hard
Synchronization is done once at the start of a frame; inside a frame only
Re-synchronizations occur.

• Hard Synchronization
After a hard synchronization, the bit time is restarted with the end of Sync_Seg,
regardless of the edge phase error. Thus hard synchronization forces the edge which
has caused the hard synchronization to lie within the synchronization segment of the
restarted bit time.

• Bit Re-synchronization
Re-synchronization leads to a shortening or lengthening of the bit time such that the
position of the sample point is shifted with regard to the edge.
When the phase error of the edge which causes Re-synchronization is positive,
Phase_Seg1 is lengthened. If the magnitude of the phase error is less than SJW,
Phase_Seg1 is lengthened by the magnitude of the phase error, else it is lengthened by
SJW.
When the phase error of the edge which causes Re-synchronization is negative,
Phase_Seg2 is shortened. If the magnitude of the phase error is less than SJW,
Phase_Seg2 is shortened by the magnitude of the phase error, else it is shortened by
SJW.

When the magnitude of the phase error of the edge is less than or equal to the programmed
value of SJW, the results of Hard Synchronization and Re-synchronization are the same. If
the magnitude of the phase error is larger than SJW, the Re-synchronization cannot
compensate the phase error completely, an error of (phase error - SJW) remains.
260/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
Only one synchronization may be done between two Sample Points. The Synchronizations
maintain a minimum distance between edges and Sample Points, giving the bus level time to
stabilize and filtering out spikes that are shorter than (Prop_Seg + Phase_Seg1).

Apart from noise spikes, most synchronizations are caused by arbitration. All nodes
synchronize “hard” on the edge transmitted by the “leading” transceiver that started
transmitting first, but due to propagation delay times, they cannot become ideally
synchronized. The “leading” transmitter does not necessarily win the arbitration, therefore
the receivers have to synchronize themselves to different transmitters that subsequently
“take the lead” and that are differently synchronized to the previously “leading” transmitter.
The same happens at the acknowledge field, where the transmitter and some of the
receivers will have to synchronize to that receiver that “takes the lead” in the transmission of
the dominant acknowledge bit.

Synchronizations after the end of the arbitration will be caused by oscillator tolerance, when
the differences in the oscillator’s clock periods of transmitter and receivers sum up during the
time between synchronizations (at most ten bits). These summarized differences may not be
longer than the SJW, limiting the oscillator’s tolerance range.

The examples in Figure 54 on page 261 show how the Phase Buffer Segments are used to
compensate for phase errors. There are three drawings of each two consecutive bit timings.
The upper drawing shows the synchronization on a “late” edge, the lower drawing shows the
synchronization on an “early” edge, and the middle drawing is the reference without
synchronization.

Figure 54. Synchronization on “late” and “early” Edges

recessive
dominant

recessive
dominant

Sync_Seg Prop_Seg Phase_Seg1 Phase_Seg2

“late” Edge

“early” Edge

Rx-Input

Rx-Input

Sample-Point Sample-Point

Sample-PointSample-Point

Sample-Point Sample-Point
261/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
In the first example an edge from recessive to dominant occurs at the end of Prop_Seg. The
edge is “late” since it occurs after the Sync_Seg. Reacting to the “late” edge, Phase_Seg1 is
lengthened so that the distance from the edge to the Sample Point is the same as it would
have been from the Sync_Seg to the Sample Point if no edge had occurred. The phase error
of this “late” edge is less than SJW, so it is fully compensated and the edge from dominant to
recessive at the end of the bit, which is one nominal bit time long, occurs in the Sync_Seg.

In the second example an edge from recessive to dominant occurs during Phase_Seg2. The
edge is “early” since it occurs before a Sync_Seg. Reacting to the “early” edge,
Phase_Seg2 is shortened and Sync_Seg is omitted, so that the distance from the edge to
the Sample Point is the same as it would have been from an Sync_Seg to the Sample Point
if no edge had occurred. As in the previous example, the magnitude of this “early” edge’s
phase error is less than SJW, so it is fully compensated.

The Phase Buffer Segments are lengthened or shortened temporarily only; at the next bit
time, the segments return to their nominal programmed values.

In these examples, the bit timing is seen from the point of view of the CAN implementation’s
state machine, where the bit time starts and ends at the Sample Points. The state machine
omits Sync_Seg when synchronizing on an “early” edge because it cannot subsequently
redefine that time quantum of Phase_Seg2 where the edge occurs to be the Sync_Seg.

The examples in Figure 55 show how short dominant noise spikes are filtered by
synchronizations. In both examples the spike starts at the end of Prop_Seg and has the
length of (Prop_Seg + Phase_Seg1).

Figure 55. Filtering of Short Dominant Spikes

recessive
dominant

Sync_Seg Prop_Seg Phase_Seg1 Phase_Seg2

SpikeRx-Input

Sample-Point Sample-Point

Sample-PointSample-Point

recessive
dominantSpikeRx-Input

SJW ≥ Phase Error

SJW < Phase Error
262/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
In the first example, the Synchronization Jump Width is greater than or equal to the phase
error of the spike’s edge from recessive to dominant. Therefore the Sample Point is shifted
after the end of the spike; a recessive bus level is sampled.

In the second example, SJW is shorter than the phase error, so the Sample Point cannot be
shifted far enough; the dominant spike is sampled as actual bus level.

16.7.10.4 Oscillator Tolerance Range

The oscillator tolerance range was increased when the CAN protocol was developed from
version 1.1 to version 1.2 (version 1.0 was never implemented in silicon). The option to
synchronize on edges from dominant to recessive became obsolete, only edges from
recessive to dominant are considered for synchronization. The only CAN controllers to
implement protocol version 1.1 have been Intel 82526 and Philips 82C200, both are
superseded by successor products. The protocol update to version 2.0 (A and B) had no
influence on the oscillator tolerance.

The tolerance range df for an oscillator’s frequency fosc around the nominal frequency fnom
with depends on the proportions of Phase_Seg1,
Phase_Seg2, SJW, and the bit time. The maximum tolerance df is the defined by two
conditions (both shall be met):

It has to be considered that SJW may not be larger than the smaller of the Phase Buffer
Segments and that the Propagation Time Segment limits that part of the bit time that may be
used for the Phase Buffer Segments.

The combination Prop_Seg = 1 and Phase_Seg1 = Phase_Seg2 = SJW = 4 allows the
largest possible oscillator tolerance of 1.58%. This combination with a Propagation Time
Segment of only 10% of the bit time is not suitable for short bit times; it can be used for bit
rates of up to 125 kBit/s (bit time = 8 µs) with a bus length of 40 m.

16.7.10.5 Configuring the CAN Protocol Controller

In most CAN implementations and also in the C_CAN, the bit timing configuration is
programmed in two register bytes. The sum of Prop_Seg and Phase_Seg1 (as TSEG1) is
combined with Phase_Seg2 (as TSEG2) in one byte, SJW and BRP are combined in the
other byte (see Figure 56 on page 264).

In these bit timing registers, the four components TSEG1, TSEG2, SJW, and BRP have to
be programmed to a numerical value that is one less than its functional value; so instead of

1 df–() fnom• fosc 1 df+() fnom•≤ ≤

 I: df min Phase_Seg1 Phase_Seg2,()
2 13 bit_time Phase_Seg2–⋅()⋅
---≤

II: df SJW
20 bit_time⋅
--------------------------------≤
263/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
values in the range of [1..n], values in the range of [0..n-1] are programmed. That way, e.g.
SJW (functional range of [1..4]) is represented by only two bits.

Therefore the length of the bit time is (programmed values) [TSEG1 + TSEG2 + 3] tq or
(functional values) [Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg2] tq.

The data in the bit timing registers are the configuration input of the CAN protocol controller.
The Baud Rate Prescaler (configured by BRP) defines the length of the time quantum, the
basic time unit of the bit time; the Bit Timing Logic (configured by TSEG1, TSEG2, and SJW)
defines the number of time quanta in the bit time.

The processing of the bit time, the calculation of the position of the Sample Point, and
occasional synchronizations are controlled by the BTL state machine, which is evaluated
once each time quantum. The rest of the CAN protocol controller, the Bit Stream Processor
(BSP) state machine is evaluated once each bit time, at the Sample Point.

The Shift Register serializes the messages to be sent and parallelizes received messages.
Its loading and shifting is controlled by the BSP.

The BSP translates messages into frames and vice versa. It generates and discards the
enclosing fixed format bits, inserts and extracts stuff bits, calculates and checks the CRC
code, performs the error management, and decides which type of synchronization is to be

Figure 56. Structure of the CAN Core’s CAN Protocol Controller

Sample_Point

Bit_to_send

Sync_Mode

Bus_Off

Scaled_Clock (tq)System Clock

Receive_Data

Transmit_Data

Control

Received_Message

Send_Message

Status

Bit

Timing

Logic

Baudrate_
Prescaler

Sampled_Bit

Configuration (TSEG1, TSEG2, SJW)

Configuration (BRP)

Shift-Register

Received_Data_Bit

Next_Data_Bit

Control

B
it

S
tr

ea
m

 P
ro

ce
ss

or

IP
T

264/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
used. It is evaluated at the Sample Point and processes the sampled bus input bit. The time
after the Sample point that is needed to calculate the next bit to be sent (e.g. data bit, CRC
bit, stuff bit, error flag, or idle) is called the Information Processing Time (IPT).

The IPT is application specific but may not be longer than 2 tq; the C_CAN’s IPT is 0 tq. Its
length is the lower limit of the programmed length of Phase_Seg2. In case of a
synchronization, Phase_Seg2 may be shortened to a value less than IPT, which does not
affect bus timing.

16.7.10.6 Calculating Bit Timing Parameters

Usually, the calculation of the bit timing configuration starts with a desired bit rate or bit time.
The resulting bit time (1/bit rate) must be an integer multiple of the system clock period.

The bit time may consist of 4 to 25 time quanta, the length of the time quantum tq is defined
by the Baud Rate Prescaler with tq = (Baud Rate Prescaler)/fsys. Several combinations may
lead to the desired bit time, allowing iterations of the following steps.

First part of the bit time to be defined is the Prop_Seg. Its length depends on the delay times
measured in the system. A maximum bus length as well as a maximum node delay has to be
defined for expandible CAN bus systems. The resulting time for Prop_Seg is converted into
time quanta (rounded up to the nearest integer multiple of tq).

The Sync_Seg is 1 tq long (fixed), leaving (bit time – Prop_Seg – 1) tq for the two Phase
Buffer Segments. If the number of remaining tq is even, the Phase Buffer Segments have the
same length, Phase_Seg2 = Phase_Seg1, else Phase_Seg2 = Phase_Seg1 + 1.

The minimum nominal length of Phase_Seg2 has to be regarded as well. Phase_Seg2 may
not be shorter than the CAN controller’s Information Processing Time, which is, depending
on the actual implementation, in the range of [0..2] tq.

The length of the Synchronization Jump Width is set to its maximum value, which is the
minimum of 4 and Phase_Seg1.

The oscillator tolerance range necessary for the resulting configuration is calculated by the
formulas given in section 16.7.10.4 on page 263

If more than one configuration is possible, that configuration allowing the highest oscillator
tolerance range should be chosen.

CAN nodes with different system clocks require different configurations to come to the same
bit rate. The calculation of the propagation time in the CAN network, based on the nodes
with the longest delay times, is done once for the whole network.

The CAN system’s oscillator tolerance range is limited by that node with the lowest tolerance
range.
265/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
The calculation may show that bus length or bit rate have to be decreased or that the
oscillator frequencies’ stability has to be increased in order to find a protocol compliant
configuration of the CAN bit timing.

The resulting configuration is written into the Bit Timing Register:

(Phase_Seg2-1)&(Phase_Seg1+Prop_Seg-1)&(SynchronisationJumpWidth-1)&(Prescaler-
1)

Example for Bit Timing at high Baudrate

In this example, the frequency of CAN_CLK is 10 MHz, BRP is 0, the bit rate is 1 MBit/s.

tq 100 ns = tCAN_CLK

delay of bus driver50ns

delay of receiver circuit30ns

delay of bus line (40m)220ns

tProp 600 ns = 6 • tq

tSJW 100 ns = 1 • tq

tTSeg1 700 ns = tProp + tSJW

tTSeg2 200 ns = Information Processing Time + 1 • tq

tSync-Seg 100 ns = 1 • tq

bit time 1000 ns = tSync-Seg + tTSeg1 + tTSeg2

tolerance for CAN_CLK0.39%=

=

In this example, the concatenated bit time parameters are (2-1)3&(7-1)4&(1-1)2&(1-1)6, the
Bit Timing Register is programmed to= 0x1600.

min PB1 PB2,()
2x 13x bit time PB2–()()

0.1µs
2x 13x 1µs 0.2µs–()()

266/349

1

STR73xF MICROCONTROLLER - CAN CONTROLLER (CAN)
Example for Bit Timing at low Baudrate

In this example, the frequency of CAN_CLK is 2 MHz, BRP is 1, the bit rate is 100 KBit/s.

tq 1 µs = 2 • tCAN_CLK

delay of bus driver200ns

delay of receiver circuit80ns

delay of bus line (40m)220ns

tProp 1 µs = 1 • tq

tSJW 4 µs = 4 • tq

tTSeg1 5 µs = tProp + tSJW

tTSeg2 4 µs = Information Processing Time + 3 • tq

tSync-Seg 1 µs = 1 • tq

bit time 10 µs = tSync-Seg + tTSeg1 + tTSeg2

tolerance for CAN_CLK1.58%=

=

In this example, the concatenated bit time parameters are (4-1)3&(5-1)4&(4-1)2&(2-1)6, the
Bit Timing Register is programmed to= 0x34C1.

min PB1 PB2,()
2x 13x bit time PB2–()()
--

4µs
2x 13x 10µs 4µs–()()

267/349

1

STR73xF MICROCONTROLLER - I2C INTERFACE MODULE (I2C)
17 I2C INTERFACE MODULE (I2C)

A I2C Bus Interface serves as an interface between the microcontroller and the serial I2C
bus. It provides both multimaster and slave functions, and controls all I2C bus-specific
sequencing, protocol, arbitration and timing. It supports fast I2C mode (400kHz).

17.1 Main Features

• Parallel-bus/I2C protocol converter

• Multi-master capability

• 7-bit/10-bit Addressing

• Transmitter/Receiver flag

• End-of-byte transmission flag

• Transfer problem detection

• Standard/Fast I2C mode

I2C Master Features:

• Clock generation

• I2C bus busy flag

• Arbitration Lost Flag

• End of byte transmission flag

• Transmitter/Receiver Flag

• Start bit detection flag

• Start and Stop generation

I2C Slave Features:

• Start bit detection flag

• Stop bit detection

• I2C bus busy flag

• Detection of misplaced start or stop condition

• Programmable I2C Address detection

• Transfer problem detection

• End-of-byte transmission flag

• Transmitter/Receiver flag
268/349

1

STR73xF MICROCONTROLLER - I2C INTERFACE MODULE (I2C)
17.2 General Description

In addition to receiving and transmitting data, this interface converts them from serial to
parallel format and vice versa, using either an interrupt or polled handshake. The interrupts
are enabled or disabled by software. The interface is connected to the I2C bus by a data pin
(SDA) and by a clock pin (SCL). It can be connected both with a standard I2C bus and a Fast
I2C bus. This selection is made by software.

17.2.1 Mode Selection

The interface can operate in the four following modes:

• Slave transmitter/receiver

• Master transmitter/receiver

By default, it operates in slave mode.

The interface automatically switches from slave to master after it generates a START
condition and from master to slave in case of arbitration loss or a STOP generation, allowing
then Multi-Master capability.

17.2.2 Communication Flow

In Master mode, it initiates a data transfer and generates the clock signal. A serial data
transfer always begins with a start condition and ends with a stop condition. Both start and
stop conditions are generated in master mode by hardware as soon as the Master mode is
selected.

In Slave mode, the interface is capable of recognizing its own address (7 or 10-bit), and the
General Call address. The General Call address detection may be enabled or disabled by
software.

Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the
start condition contain the address (one in 7-bit mode, two in 10-bit mode). The address is
always transmitted in Master mode.

A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must
send an acknowledge bit to the transmitter. Refer to Figure 57.
269/349

1

STR73xF MICROCONTROLLER - I2C INTERFACE MODULE (I2C)
Acknowledge may be enabled and disabled by software.

The I2C interface address and/or general call address can be selected by software.

The speed of the I2C interface may be selected between Standard (0-100KHz) and Fast I2C
(100-400KHz).

17.2.3 SDA/SCL Line Control

Transmitter mode: the interface holds the clock line low before transmission to wait for the
microcontroller to write the byte in the Data Register.

Receiver mode: the interface holds the clock line low after reception to wait for the
microcontroller to read the byte in the Data Register.

The SCL frequency (fSCL) is controlled by a programmable clock divider which depends on
the I2C bus mode.

Figure 57. I2C BUS Protocol

SCL

SDA

1 2 8 9

MSB ACK

STOP START
CONDITIONCONDITION
270/349

1

STR73xF MICROCONTROLLER - I2C INTERFACE MODULE (I2C)
Figure 58. I2C Interface Block Diagram

DATA REGISTER (DR)

DATA SHIFT REGISTER

COMPARATOR

OWN ADDRESS REGISTER 1 (OAR1)

CLOCK CONTROL REGISTER (CCR)

STATUS REGISTER 1 (SR1)

CONTROL REGISTER (CR)

CONTROL LOGIC

STATUS REGISTER 2 (SR2)

INTERRUPT

CLOCK CONTROL

DATA CONTROL

SCL

SDA

OWN ADDRESS REGISTER 2 (OAR2)

E. CLOCK CONTROL REGISTER (ECCR)
271/349

1

STR73xF MICROCONTROLLER - I2C INTERFACE MODULE (I2C)
17.3 Functional Description

Refer to the I2Cn_CR, I2Cn_SR1 and I2Cn_SR2 registers in Section 17.5 for the bit
definitions.

By default the I2C interface operates in Slave mode (M/SL bit is cleared) except when it
initiates a transmit or receive sequence.

First the interface frequency must be configured using the FRi bits in the I2Cn_OAR2
register.

17.3.1 Slave Mode

As soon as a start condition is detected, the address is received from the SDA line and sent
to the shift register; then it is compared with the address of the interface or the General Call
address (if selected by software).

Note In 10-bit addressing mode, the comparison includes the header sequence
(11110xx0) and the two most significant bits of the address.

Header matched (10-bit mode only): the interface generates an acknowledge pulse if the
ACK bit is set.

Address not matched: the interface ignores it and waits for another Start condition.

Address matched: the interface generates in sequence:

• Acknowledge pulse if the ACK bit is set.

• EVF and ADSL bits are set with an interrupt if the ITE bit is set.

Then the interface waits for a read of the I2Cn_SR1 register, holding the SCL line low (see
Figure 59 Transfer sequencing EV1).
Next, in 7-bit mode read the I2Cn_DR register to determine from the least significant bit
(Data Direction Bit) if the slave must enter Receiver or Transmitter mode.

In 10-bit mode, after receiving the address sequence the slave is always in receive mode. It
will enter transmit mode on receiving a repeated Start condition followed by the header
sequence with matching address bits and the least significant bit set (11110xx1).

17.3.1.1 Slave Receiver

Following the address reception and after I2Cn_SR1 register has been read, the slave
receives bytes from the SDA line into the I2Cn_DR register via the internal shift register.
After each byte the interface generates in sequence:

• Acknowledge pulse if the ACK bit is set

• EVF and BTF bits are set with an interrupt if the ITE bit is set.
272/349

1

STR73xF MICROCONTROLLER - I2C INTERFACE MODULE (I2C)
Then the interface waits for a read of the I2Cn_SR1 register followed by a read of the
I2Cn_DR register, holding the SCL line low (see Figure 59 Transfer sequencing EV2).

17.3.1.2 Slave Transmitter

Following the address reception and after I2Cn_SR1 register has been read, the slave
sends bytes from the I2Cn_DR register to the SDA line via the internal shift register.

The slave waits for a read of the I2Cn_SR1 register followed by a write in the I2Cn_DR
register, holding the SCL line low (see Figure 59 Transfer sequencing EV3).

When the acknowledge pulse is received:

• The EVF and BTF bits are set by hardware with an interrupt if the ITE bit is set.

17.3.1.3 Closing slave communication

After the last data byte is transferred a Stop Condition is generated by the master. The
interface detects this condition and sets:

• EVF and STOPF bits with an interrupt if the ITE bit is set.

Then the interface waits for a read of the I2Cn_SR2 register (see Figure 59 Transfer
sequencing EV4).

17.3.1.4 Error Cases

• BERR: Detection of a Stop or a Start condition during a byte transfer. In this case, the
EVF and the BERR bits are set with an interrupt if the ITE bit is set.
If it is a Stop then the interface discards the data, released the lines and waits for
another Start condition.
If it is a Start then the interface discards the data and waits for the next slave address on
the bus.

• AF: Detection of a non-acknowledge bit. In this case, the EVF and AF bits are set with
an interrupt if the ITE bit is set.

Note In both cases, SCL line is not held low; however, SDA line can remain low due to
possible «0» bits transmitted last. It is then necessary to release both lines by
software.

17.3.1.5 How to release the SDA / SCL lines

Set and subsequently clear the STOP bit while BTF is set. The SDA/SCL lines are released
after the transfer of the current byte.
273/349

1

STR73xF MICROCONTROLLER - I2C INTERFACE MODULE (I2C)
17.3.2 Master Mode

To switch from default Slave mode to Master mode a Start condition generation is needed.

17.3.2.1 Start condition

Setting the START bit while the BUSY bit is cleared causes the interface to switch to Master
mode (M/SL bit set) and generates a Start condition.

Once the Start condition is sent:

• The EVF and SB bits are set by hardware with an interrupt if the ITE bit is set.

Then the master waits for a read of the I2Cn_SR1 register followed by a write in the
I2Cn_DR register with the Slave address, holding the SCL line low (see Figure 59 Transfer
sequencing EV5).

17.3.2.2 Slave address transmission

Then the slave address is sent to the SDA line via the internal shift register.

In 7-bit addressing mode, one address byte is sent.

In 10-bit addressing mode, sending the first byte including the header sequence causes the
following event:

• The EVF bit is set by hardware with interrupt generation if the ITE bit is set.

Then the master waits for a read of the I2Cn_SR1 register followed by a write in the
I2Cn_DR register, holding the SCL line low (see Figure 59 Transfer sequencing EV9).

Then the second address byte is sent by the interface.

After completion of this transfer (and acknowledge from the slave if the ACK bit is set):

• The EVF bit is set by hardware with interrupt generation if the ITE bit is set.

Then the master waits for a read of the I2Cn_SR1 register followed by a write in the
I2Cn_CR register (for example set PE bit), holding the SCL line low (see Figure 59
Transfer sequencing EV6).

Next the master must enter Receiver or Transmitter mode.

Note In 10-bit addressing mode, to switch the master to Receiver mode, software must
generate a repeated Start condition and re-send the header sequence with the
least significant bit set (11110xx1).
274/349

1

STR73xF MICROCONTROLLER - I2C INTERFACE MODULE (I2C)
17.3.2.3 Master Receiver

Following the address transmission and after I2Cn_SR1 and I2Cn_CR registers have been
accessed, the master receives bytes from the SDA line into the I2Cn_DR register via the
internal shift register. After each byte the interface generates in sequence:

• Acknowledge pulse if the ACK bit is set

• EVF and BTF bits are set by hardware with an interrupt if the ITE bit is set.

Then the interface waits for a read of the SR1 register followed by a read of the I2Cn_DR
register, holding the SCL line low (see Figure 59 Transfer sequencing EV7).

To close the communication: before reading the last byte from the I2Cn_DR register, set the
STOP bit to generate the Stop condition. The interface goes automatically back to slave
mode (M/SL bit cleared).

Note In order to generate the non-acknowledge pulse after the last received data byte,
the ACK bit must be cleared just before reading the second last data byte.

17.3.2.4 Master Transmitter

Following the address transmission and after I2Cn_SR1 register has been read, the master
sends bytes from the I2Cn_DR register to the SDA line via the internal shift register.

The master waits for a read of the I2Cn_SR1 register followed by a write in the I2Cn_DR
register, holding the SCL line low (see Figure 59 Transfer sequencing EV8).

When the acknowledge bit is received, the interface sets:

• EVF and BTF bits with an interrupt if the ITE bit is set.

To close the communication: after writing the last byte to the I2Cn_DR register, set the STOP
bit to generate the Stop condition. The interface goes automatically back to slave mode (M/
SL bit cleared).

17.3.2.5 Error Cases

• BERR: Detection of a Stop or a Start condition during a byte transfer. In this case, the
EVF and BERR bits are set by hardware with an interrupt if ITE is set.

• AF: Detection of a non-acknowledge bit. In this case, the EVF and AF bits are set by
hardware with an interrupt if the ITE bit is set. To resume, set the START or STOP bit.

• ARLO: Detection of an arbitration lost condition.
In this case the ARLO bit is set by hardware (with an interrupt if the ITE bit is set and the
interface goes automatically back to slave mode (the M/SL bit is cleared).
275/349

1

STR73xF MICROCONTROLLER - I2C INTERFACE MODULE (I2C)
Note In all these cases, the SCL line is not held low; however, the SDA line can remain
low due to possible «0» bits transmitted last. It is then necessary to release both
lines by software.

Figure 59. Transfer Sequencing

7-bit Slave receiver:

7-bit Slave transmitter:

7-bit Master receiver:

7-bit Master transmitter:

10-bit Slave receiver:

10-bit Slave transmitter:

10-bit Master transmitter:

10-bit Master receiver:

S Address A Data1 A Data2 A
.....

DataN A P

EV1 EV2 EV2 EV2 EV4

S Address A Data1 A Data2 A
.....

DataN NA P

EV1 EV3 EV3 EV3 EV3-1 EV4

S Address A Data1 A Data2 A
.....

DataN NA P

EV5 EV6 EV7 EV7 EV7

S Address A Data1 A Data2 A
.....

DataN A P

EV5 EV6 EV8 EV8 EV8 EV8

S Header A Address A Data1 A
.....

DataN A P

EV1 EV2 EV2 EV4

Sr Header A Data1 A
.....

DataN A P

EV1 EV3 EV3 EV3-1 EV4

S Header A Address A Data1 A
.....

DataN A P

EV5 EV9 EV6 EV8 EV8 EV8

Sr Header A Data1 A
.....

DataN A P

EV5 EV6 EV7 EV7
276/349

1

STR73xF MICROCONTROLLER - I2C INTERFACE MODULE (I2C)
Legend:

S=Start, Sr = Repeated Start, P=Stop, A=Acknowledge, NA=Non-acknowledge,
EVx=Event (with interrupt if ITE=1)

EV1: EVF=1, ADSL=1, cleared by reading I2Cn_SR1 register.

EV2: EVF=1, BTF=1, cleared by reading I2Cn_DR register.

EV3: EVF=1, BTF=1, cleared by reading I2Cn_SR1 register followed by writing to the DR
register.

EV3-1: EVF=1, AF=1, BTF=1; AF is cleared by reading SR2 register. BTF is cleared by
releasing the lines (STOP=1, STOP=0) or by writing I2Cn_DR register (DR=FFh).

Note: If lines are released bySTOP=1, STOP=0, the subsequent EV4 is not seen.

EV4: EVF=1, STOPF=1, cleared by reading SR2 register.

EV5: EVF=1, SB=1, cleared by reading I2Cn_SR1 register followed by writing I2Cn_DR
register.

EV6: EVF=1, ENDAD=1 cleared by reading I2Cn_SR2 register followed by writing I2Cn_CR
register (for example PE=1).

EV7: EVF=1, BTF=1, cleared by reading the I2Cn_DR register.

EV8: EVF=1, BTF=1, cleared by writing to the I2Cn_DR register.

EV9: EVF=1, ADD10=1, cleared by reading the I2Cn_SR1 register followed by writing to the
I2Cn_DR register.
277/349

1

STR73xF MICROCONTROLLER - I2C INTERFACE MODULE (I2C)
17.4 Interrupts

Several interrupt events can be flagged by the module:

• requests related to bus events, like start or stop events, arbitration lost, etc.;

• requests related to data transmission and/or reception;

These requests are issued to the interrupt controller by two different lines as described in
Figure 60. The different flags identify the events and can be polled by the software (interrupt
service routine).

Figure 60. Event Flags and Interrupt Generation

ITERR

SB

ADD10

ENDAD

ADSL

STOPF

AF

BERR

ARLO

BTF

ITE

EVF

TRA

RX

TX
TX_RX_INT

Event Flag (SR1)

SCLFAL
278/349

1

STR73xF MICROCONTROLLER - I2C INTERFACE MODULE (I2C)
17.5 Register Description

17.5.1 I2C Control Register (I2Cn_CR)

Address Offset: 00h
Reset value: 00h

Bit 7:6 = Reserved, always return ‘0’ when read.

Bit 5 = PE: Peripheral Enable.
This bit is set and cleared by software.
0: Peripheral disabled
1: Master/Slave capability
Notes:

• 0: all the bits of the I2Cn_CR register and the I2Cn_SR register except the STOP bit are
reset. All outputs are released while PE=0.

• 1: the corresponding I/O pins are selected by hardware as alternate functions.

To enable the I2C interface, write the I2Cn_CR register TWICE with PE=1 as the first write
only activates the interface (only PE is set).

Bit 4 = ENGC: Enable General Call.
This bit is set and cleared by software. It is also cleared by hardware when the interface is
disabled (PE=0). The 00h General Call address is acknowledged (01h ignored).
0: General Call disabled.
1: General Call enabled.

Bit 3 = START: Generation of a Start condition.
This bit is set and cleared by software. It is also cleared by hardware when the interface is
disabled (PE=0) or when the Start condition is sent (with interrupt generation if ITE=1).

• In master mode:
0: No start generation.
1: Repeated start generation.

• In slave mode:
0: No start generation.
1: Start generation when the bus is free.

7 6 5 4 3 2 1 0

reserved PE ENGC START ACK STOP ITE

- rw rw rw rw rw rw
279/349

1

STR73xF MICROCONTROLLER - I2C INTERFACE MODULE (I2C)
Bit 2 = ACK: Acknowledge enable.
This bit is set and cleared by software. It is also cleared by hardware when the interface is
disabled (PE=0).
0: No acknowledge returned
1: Acknowledge returned after an address byte or a data byte is received

Bit 1 = STOP: Generation of a Stop condition.
This bit is set and cleared by software. It is also cleared by hardware in master mode. Note:
This bit is not cleared when the interface is disabled (PE=0).

• In master mode:
0: No stop generation.
1: Stop generation after the current byte transfer or after the current Start condition is
sent. The STOP bit is cleared by hardware when the Stop condition is sent.

• In slave mode:
0: No stop generation.
1: Release the SCL and SDA lines after the current byte transfer (BTF=1). In this mode
the STOP bit has to be cleared by software.

Bit 0 = ITE: Interrupt enable.
This bit is set and cleared by software and cleared by hardware when the interface is
disabled (PE=0).
0: Interrupts disabled.
1: Interrupts enabled.
Refer to Figure 60 for the relationship between the events and the interrupts.
SCL is held low when the ADD10, SB, BTF or ADSL flags or an EV6 event (See Figure 59)
is detected.

17.5.2 I2C Status Register 1 (I2Cn_SR1)

Address Offset: 04h
Reset value: 00h

Bit 7 = EVF: Event flag.
This bit is set by hardware as soon as an event occurs. It is cleared by software reading
I2Cn_SR2 register in case of error event or as described in Figure 59. It is also cleared by
hardware when the interface is disabled (PE=0).

7 6 5 4 3 2 1 0

EVF ADD10 TRA BUSY BTF ADSL M/SL SB

r r r r r r r r
280/349

1

STR73xF MICROCONTROLLER - I2C INTERFACE MODULE (I2C)
0: No event
1: One of the following events has occurred:

• BTF=1 (Byte received or transmitted)

• ADSL=1 (Address matched in Slave mode while ACK=1)

• SB=1 (Start condition generated in Master mode)

• AF=1 (No acknowledge received after byte transmission)

• STOPF=1 (Stop condition detected in Slave mode)

• ARLO=1 (Arbitration lost in Master mode)

• BERR=1 (Bus error, misplaced Start or Stop condition detected)

• ADD10=1 (Master has sent header byte)

• ENDAD=1 (Address byte successfully transmitted in Master mode).

Bit 6 = ADD10: 10-bit addressing in Master mode.
This bit is set by hardware when the master has sent the first byte in 10-bit address mode. It
is cleared by software reading I2Cn_SR2 register followed by a write in the I2Cn_DR register
of the second address byte. It is also cleared by hardware when the peripheral is disabled
(PE=0).
0: No ADD10 event occurred.
1: Master has sent first address byte (header).

Bit 5 = TRA: Transmitter/Receiver.
When BTF is set, TRA=1 if a data byte has been transmitted. It is cleared automatically
when BTF is cleared. It is also cleared by hardware after detection of Stop condition
(STOPF=1), loss of bus arbitration (ARLO=1) or when the interface is disabled (PE=0).
0: Data byte received (if BTF=1).
1: Data byte transmitted.

Bit 4 = BUSY: Bus busy.
This bit is set by hardware on detection of a Start condition and cleared by hardware on
detection of a Stop condition. It indicates a communication in progress on the bus. This
information is still updated when the interface is disabled (PE=0).
0: No communication on the bus
1: Communication ongoing on the bus

Bit 3 = BTF: Byte transfer finished.
This bit is set by hardware as soon as a byte is correctly received or transmitted with
interrupt generation if ITE=1. It is cleared by software reading I2Cn_SR1 register followed by
a read or write of I2Cn_DR register. It is also cleared by hardware when the interface is
disabled (PE=0).
281/349

1

STR73xF MICROCONTROLLER - I2C INTERFACE MODULE (I2C)
• Following a byte transmission, this bit is set after reception of the acknowledge clock
pulse. In case an address byte is sent, this bit is set only after the EV6 event (See Figure
59). BTF is cleared by writing the next byte in I2Cn_DR register.

• Following a byte reception, this bit is set after transmission of the acknowledge clock
pulse if ACK=1. BTF is cleared by reading I2Cn_SR1 register followed by reading the
byte from I2Cn_DR register.

The SCL line is held low while BTF=1.
0: Byte transfer not done
1: Byte transfer succeeded

Bit 2 = ADSL: Address matched (Slave mode). This bit is set by hardware as soon as the
received slave address matched with the I2Cn_OAR register content or a general call is
recognized. An interrupt is generated if ITE=1. It is cleared by software reading I2Cn_SR1
register or by hardware when the interface is disabled (PE=0).
The SCL line is held low while ADSL=1.
0: Address mismatched or not received.
1: Received address matched.

Bit 1 = M/SL: Master/Slave.
This bit is set by hardware as soon as the interface is in Master mode (writing START=1). It
is cleared by hardware after detecting a Stop condition on the bus or a loss of arbitration
(ARLO=1). It is also cleared when the interface is disabled (PE=0).
0: Slave mode.
1: Master mode.

Bit 0 = SB: Start bit (Master mode).
This bit is set by hardware as soon as the Start condition is generated (following a write
START=1). An interrupt is generated if ITE=1. It is cleared by software reading I2Cn_SR1
register followed by writing the address byte in I2Cn_DR register. It is also cleared by
hardware when the interface is disabled (PE=0).
0: No Start condition.
1: Start condition generated.

17.5.3 I2C Status Register 2 (I2Cn_SR2)

Address Offset: 08h
Reset value: 00h

7 6 5 4 3 2 1 0

reserved ENDAD AF STOPF ARLO BERR GCAL

- r r r r r r
282/349

1

STR73xF MICROCONTROLLER - I2C INTERFACE MODULE (I2C)
Bit 7:6 = Reserved, always return ‘0’ when read.

Bit 5 = ENDAD: End of address transmission.

This bit is set by hardware when:

• 7-bit addressing mode: the address byte has been transmitted;

• 10-bit addressing mode: the MSB and the LSB have been transmitted during the
addressing phase.

When the master needs to receive data from the slave, it has to send just the MSB of the
slave address once again; hence the ENDAD flag is set, without waiting for the LSB of the
address.It is cleared by software by reading SR2 and a following write to the CR or by
hardware when the interface is disabled (PE=0).

0: No end of address transmission

1: End of address transmission

Bit 4 = AF: Acknowledge failure.
This bit is set by hardware when no acknowledge is returned. An interrupt is generated if
ITE=1. It is cleared by software by reading I2Cn_SR2 register or by hardware when the
interface is disabled (PE=0).
The SCL line is not held low while AF=1.
0: No acknowledge failure
1: Acknowledge failure

Bit 3 = STOPF: Stop detection (Slave mode).
This bit is set by hardware when a Stop condition is detected on the bus after an
acknowledge (if ACK=1). An interrupt is generated if ITE=1. It is cleared by software reading
I2Cn_SR2 register or by hardware when the interface is disabled (PE=0).
The SCL line is not held low while STOPF=1.
0: No Stop condition detected
1: Stop condition detected

Bit 2 = ARLO: Arbitration lost.
This bit is set by hardware when the interface loses the arbitration of the bus to another
master. An interrupt is generated if ITE=1. It is cleared by software reading I2Cn_SR2
register or by hardware when the interface is disabled (PE=0).
After an ARLO event the interface switches back automatically to Slave mode (M/SL=0).
The SCL line is not held low while ARLO=1.
0: No arbitration lost detected
1: Arbitration lost detected

Bit 1 = BERR: Bus error.
This bit is set by hardware when the interface detects a misplaced Start or Stop condition.
283/349

1

STR73xF MICROCONTROLLER - I2C INTERFACE MODULE (I2C)
An interrupt is generated if ITE=1. It is cleared by software reading I2Cn_SR2 register or by
hardware when the interface is disabled (PE=0).
The SCL line is not held low while BERR=1.
0: No misplaced Start or Stop condition
1: Misplaced Start or Stop condition

Bit 0 = GCAL General Call (Slave mode).
This bit is set by hardware when a general call address is detected on the bus while
ENGC=1. It is cleared by hardware detecting a Stop condition (STOPF=1) or when the
interface is disabled (PE=0).
0: No general call address detected on bus
1: general call address detected on bus

17.5.4 I2C Clock Control Register (I2Cn_CCR)

Address Offset: 0Ch
Reset value: 00h

Bit 7 = FM/SM: Fast/Standard I2C mode.
This bit is set and cleared by software. It is not cleared when the interface is disabled
(PE=0).
0: Standard I2C mode
1: Fast I2C mode

Bit 6:0 = CC6-CC0: 12-bit clock divider.
These bits along with CC11-CC7 of the Extended Clock Control Register select the speed of
the bus (fSCL) depending on the I2C mode. They are not cleared when the interface is
disabled (PE=0).

• Standard mode (FM/SM=0): fSCL ≤ 100kHz

fSCL = fMCLK/ (2 x ([CC11...CC0]+7))

Given a certain fMCLK is easy to obtain the right divider factor:

[CC11...CC0] = (fMCLK / (2*fSCL)) - 7 = (tSCL / (2*tMCLK)) - 7

• Fast mode (FM/SM=1): 100kHz < fSCL< 400kHz

7 6 5 4 3 2 1 0

FM/SM CC6 CC5 CC4 CC3 CC2 CC1 CC0

rw rw rw rw rw rw rw rw
284/349

1

STR73xF MICROCONTROLLER - I2C INTERFACE MODULE (I2C)
fSCL = fMCLK/ (3 x ([CC11...CC0]+9))

Given a certain fMCLK is easy to obtain the right divider factor:

[CC11...CC0] = (fMCLK/ (3*fSCL)) - 9= (tSCL / 3*tMCLK)) - 9

Note The programmed fSCL assumes no load on SCL and SDA lines.

Note For a correct usage of the divider, [CC11...CC0] must be equal or greater than
0x002 (000000000010b). [CC11...CC0] equal to 0x001 (000000000001b) is not
admitted.

17.5.5 I2C Extended Clock Control Register (I2Cn_ECCR)

Address Offset: 1Ch
Reset value: 00h

Bit 7-5 = Reserved, always return ‘0’ when read.

Bit 6:0 = CC11-CC7: 12-bit clock divider.
These bits along with those of the Clock Control Register select the speed of the bus (fSCL)
depending on the I2C mode. They are not cleared when the interface is disabled (PE=0)

17.5.6 I2C Own Address Register 1 (I2Cn_OAR1)

Address Offset: 10h
Reset value: 00h

7 6 5 4 3 2 1 0

reserved CC11 CC10 CC9 CC8 CC7

rw rw rw rw rw

7 6 5 4 3 2 1 0

ADD7 ADD6 ADD5 ADD4 ADD3 ADD2 ADD1 ADD0

rw rw rw rw rw rw rw rw
285/349

1

STR73xF MICROCONTROLLER - I2C INTERFACE MODULE (I2C)
7-bit Addressing Mode

Bits 7:1 = ADD7-ADD1: Interface address.
These bits define the I2C bus address of the interface. They are not cleared when the
interface is disabled (PE=0).

Bit 0 = ADD0: Address direction bit.
This bit is don’t care, the interface acknowledges either 0 or 1. It is not cleared when the
interface is disabled (PE=0).
Note: Address 01h is always ignored.

10-bit Addressing Mode

Bits 7:0 = ADD7-ADD0: Interface address.
These are the least significant bits of the I2C bus address of the interface. They are not
cleared when the interface is disabled (PE=0).

17.5.7 I2C Own Address Register 2 (I2Cn_OAR2)

Address Offset: 14h
Reset value: 20h

Bit 7:5 = FR2-FR0: Frequency bits.
These bits are set by software only when the interface is disabled (PE=0). To configure the
interface to I2C specified delays select the value corresponding to the system frequency
fMCLK.

7 6 5 4 3 2 1 0

FR2 FR1 FR0 reserved ADD9 ADD8 res.

rw rw rw - rw rw -

fMCLK Range (MHz) FR2 FR1 FR0

5 - 10 0 0 0

10 - 16.67 0 0 1

16.67 - 26.67 0 1 0

26.67 - 40 0 1 1

40 - 53.33 1 0 0

53.33 -66 1 0 1
286/349

1

STR73xF MICROCONTROLLER - I2C INTERFACE MODULE (I2C)
Bit 4:3 = Reserved, always return ‘0’ when read.

Bit 2:1 = ADD[9:8]: Interface address.
These are the most significant bits of the I2C bus address of the interface (10-bit mode only).
They are not cleared when the interface is disabled (PE=0).

Bit 0 = Reserved, always returns ‘0’ when read.

17.5.8 I2C Data Register (I2Cn_DR)

Address Offset: 18h
Reset value: 00h

Bit 7:0 = D7-D0: 8-bit Data Register.
These bits contain the byte to be received or transmitted on the bus.

• Transmitter mode: Byte transmission start automatically when the software writes in the
I2Cn_DR register.

• Receiver mode: the first data byte is received automatically in the I2Cn_DR register
using the least significant bit of the address. Then, the following data bytes are received
one by one after reading the I2Cn_DR register.

66 - 80 1 1 0

80 - 100 1 1 1

7 6 5 4 3 2 1 0

D7 D6 D5 D4 D3 D2 D1 D0

rw rw rw rw rw rw rw rw
287/349

1

STR73xF MICROCONTROLLER - I2C INTERFACE MODULE (I2C)
17.6 I2C Register Map

See Table 2, “APB Memory Map,” on page 17 for base addresses.

Table 40. I2C Interface register map

Address

Offset

Register
Name

7 6 5 4 3 2 1 0

00 I2Cn_CR reserved PE ENG
C

STAR
T

ACK STOP ITE

04 I2Cn_SR
1

EVF ADD
10

TRA BUS
Y

BTF ADSL M/SL SB

08 I2Cn_SR
2

reserved END
AD

AF STO
PF

ARL
O

BERR GCAL

0C I2Cn_CC
R

FM/
SM

CC6 CC5 CC4 CC3 CC2 CC1 CC0

10 I2Cn_OA
R1

ADD
7

ADD
6

ADD
5

ADD
4

ADD
3

ADD
2

ADD1 ADD0

14 I2Cn_OA
R2

FR2 FR1 FR0 reserved ADD
9

ADD8 res.

18 I2Cn_DR D7 D6 D5 D4 D3 D2 D1 D0

1C I2Cn_EC
CR

reserved CC11 CC10 CC9 CC8 CC7
288/349

1

STR73xF MICROCONTROLLER - BUFFERED SPI (BSPI)
18 BUFFERED SPI (BSPI)

The BSPI block is a standard 4-pin Serial Peripheral Interface for inter-IC control
communication. It interfaces on one side to the SPI bus and on the other has a standard
register data and interrupt interface.

The BSPI contains two 16-word x 16-bit FIFO’s one for receive and the other for transmit.
The BSPI can directly operate with words 8 and 16 bit long and can generates interrupts or
DMA requests separately for receive and transmit events.

18.1 Main Features
■ Programmable depth receive FIFO.

■ Maximum 16 word Receive FIFO.

■ Programmable depth transmit FIFO.

■ Maximum 16 word Transmit FIFO.

■ Master and Slave modes supported.

■ Internal clock prescaler.

■ Programmable DMA interface.

■ bandwidth of up to 6Mb/s at 36 MHz

18.2 Functional Description

The processor views the BSPI as a memory mapped peripheral, which may be used by
standard polling, interrupt programming techniques or DMA controlled access.
Memory-mapping means processor communication can be achieved using standard
instructions and addressing modes.

When an SPI transfer occurs data is transmitted and received simultaneously. A serial clock
line synchronizes shifting and sampling of the information on the two serial data lines. A
slave select line allows individual selection of a slave device. The central elements in the
BSPI system are the 16-bit shift register and the read data buffer which is 16 words x
16-bit.A BSPI-DMA interface is also present to allow for data to be transferred to/from
memory using the DMA.A block diagram of the BSPI is shown in Figure 61 on page 290.
289/349

1

STR73xF MICROCONTROLLER - BUFFERED SPI (BSPI)
Figure 61. BSPI Block Diagram

18.2.1 BSPI Pin Description

The BSPI is a four wire, bi-directional bus. The data path is determined by the mode of
operation selected. A master and a slave mode are provided together with the associated
pad control signals to control pad direction. These pins are described in Table 41 on
page 290.

Table 41. BSPI pins
Pin Name Description

SCLK The bit clock for all data transfers. When the BSPI is a master the SCLK is output from the
chip. When configured as a slave the SCLK is input from the external source.

MISO Master Input/Slave Output serial data line.

MOSI Master Output/Slave Input serial data line.

SS Slave Select. The SS input pin is used to select a slave device. Must be pulled low after
the SCLK is stable and held low for the duration of the data transfer. The SS on the mas-
ter must be deasserted high.This signal can be masked when in master mode-see regis-
ter description of CSR Reg3 bit 0

16 WORD RECEIVE

(16 bits)

MOSI

SCK

MISO

SS

SHIFT REGISTER

FIFO

S

M

M

S

PIN CONTROL

LOGIC

S

M
BSPI CONTROL LOGIC

BSPIn_CLK

BSPIn_CSR1

CLK

DATA BUS

16

16

16

16

16

16

BSPIn_CSR2
16

16 WORD TRANSMIT

(16 bits)

FIFO

BSPIn_CSR3
16 DMA INTERFACE
290/349

1

STR73xF MICROCONTROLLER - BUFFERED SPI (BSPI)
18.2.2 BSPI Operation

During a BSPI transfer (see Figure 62 on page 291), data is shifted out and shifted in
(transmitted and received) simultaneously. The SCLK line synchronizes the shifting and
sampling of the information. It is an output when the BSPI is configured as a master and an
input when the BSPI is configured as a slave. Selection of an individual slave BSPI device is
performed on the slave select line and slave devices that are not selected do not interfere
with the BSPI buses.

Figure 62. BSPI Bus Transfer

The CPOL (clock polarity) and CPHA (clock phase) bits of the BSPIn_CSR1 are used to
select any of the four combinations of serial clock (see Figure 63 on page 292, Figure 64 on
page 292, Figure 65 on page 293 and Figure 66 on page 293). These bits must be the same
for both the master and slave BSPI devices. The clock polarity bit selects either an active
high or active low clock but does not affect transfer format. The clock phase bit selects the
transfer format.

There is a 16-bit shift register which interfaces directly to the BSPI bus lines. As transmit
data goes out from the register, received data fills the register.

MOSI/MISO

SCLK

 DATA1

8 bits 8 bits

SS

DATA0

SPDR DATA0 DATA1
291/349

1

STR73xF MICROCONTROLLER - BUFFERED SPI (BSPI)
Figure 63. BSPI Clocking Scheme (CPOL=0, CPHA=0)

Figure 64. BSPI Clocking Scheme (CPOL=0, CPHA=1)

CPOL=0, CPHA=0

SS

Internal Strobe for Data Capture on positive edge of SCK

MSB 6 5 4 3 2 1 LSB

MSB 6 5 4 3 2 1 LSB

Internal Strobe for Data Capture on positive edge of SCK

Data captured on MOSI (in)

MISO (out)

Data captured on MISO (in)

MOSI (out)

SCK (out)

SCK (in)

MASTER SIGNALS

SLAVE SIGNALS

CPOL=0, CPHA=1

SS

Internal Strobe for Data Capture on negative edge of SCK

MSB 6 5 4 3 2 1 LSB

MSB 6 5 4 3 2 1 LSB

Internal Strobe for Data Capture on negative edge of SCK

MISO (out)

MOSI (out)

SCK (out)

SCK (in)

Data captured on MISO (in)

Data captured on MOSI (in)

MASTER SIGNALS

SLAVE SIGNALS
292/349

1

STR73xF MICROCONTROLLER - BUFFERED SPI (BSPI)
Figure 65. BSPI Clocking Scheme (CPOL=1, CPHA=0)

Figure 66. BSPI Clocking Scheme (CPOL=1, CPHA=1)

SS

Internal Strobe for Data Capture on negative edge of SCK

MSB 6 5 4 3 2 1 LSB

MSB 6 5 4 3 2 1 LSB

Internal Strobe for Data Capture on negative edge of SCK

Data captured on MOSI (in)

MISO (out)

Data captured on MISO (in)

MOSI (out)

SCK (out)

SCK (in)

MASTER SIGNALS

SLAVE SIGNALS

CPOL=1, CPHA=0

SS

Internal Strobe for Data Capture on positive edge of SCK

MSB 6 5 4 3 2 1 LSB

MSB 6 5 4 3 2 1 LSB

Internal Strobe for Data Capture on positive edge of SCK

Data captured on MOSI (in)

MISO (out)

Data captured on MISO (in)

MOSI (out)

SCK (out)

SCK (in)

MASTER SIGNALS

SLAVE SIGNALS

CPOL=1, CPHA=1
293/349

1

STR73xF MICROCONTROLLER - BUFFERED SPI (BSPI)
18.2.3 Transmit FIFO

The transmit FIFO consists of a 16 by 16 bit register bank which can operate in 8/16 bit
modes as configured by the word length (WL[1:0]) control bits of BSPIn_CSR1. Data is left
justified indicating that only the most significant portion of the word is transmitted if using 8
bit mode. After a transmission is completed the next data word is loaded from the transmit
FIFO.

The user can set the depth of the FIFO from the default one location up to a maximum of
sixteen locations. This can be set dynamically but will only take effect after the completion of
the current transmission. Status flags report if the FIFO is full (TFF), the FIFO is not empty
(TFNE), the FIFO is empty (TFE) and the transmit buffer has under flown (TUFL). The
transmit interrupt enable (TIE[1:0]) control bits of BSPIn_CSR2 determine the source of the
transmit interrupt. If the interrupt source is enabled then an active high interrupt will be
asserted to the processor.

If the TUFL flag is asserted then a subsequent write to the transmit FIFO will clear the flag.
If interrupts are enabled the interrupt will be de-asserted. The TFF and TFNE flags are
updated at the end of the processor write cycle and at the end of each transmission.

18.2.4 Receive FIFO

The BSPI Receive FIFO is a 16 word by 16-bit FIFO used to buffer the data words received
from the BSPI bus.

The FIFO can operate in 8-bit and 16-bit modes as configured by the WL[1:0] bits of the
BSPIn_CSR1 register. Irrelevant of the word depth in the FIFO, if operating in 8-bit mode,
the data will occupy both the Most Significant and the Least Significant Bytes of each
location of the FIFO (data can be used either as left or right justified).

The receive FIFO enable bits RFE[3:0] declare how many words deep the FIFO is for all
transfers. The FIFO defaults to one word deep. Whenever there is at least one block of data
in the FIFO the RFNE bit is set in the BSPIn_CSR2 register, i.e there is data in at least one
location. The RFF flag does not get set until all locations of the FIFO contain data, i.e. RFF
is set when the depth of FIFO is filled and nothing has been read out.

If the FIFO is one word deep then the RFNE and RFF flags are set once data is written to it.
When the data is read then both flags are cleared. A write to and a read from the FIFO can
happen independent of each once RFF is not set, if RFF is set a read must occur before the
next write or an overflow (ROFL) will occur.

18.2.5 Start-up Status

If the BSPI is to operate in Master mode, it must first be enabled, then the MSTR bit must be
set high. The TFE flag will be set, signalling that the Transmit FIFO is empty, if the TIE is set,
a TFE interrupt will be generated. The data to be transferred must be written to the Transmit
Data Register, the TFE interrupt will be cleared and then the BSPI clock will be generated
294/349

1

STR73xF MICROCONTROLLER - BUFFERED SPI (BSPI)
according to the value of the BSPIn_CLK register. The Transfer of data then begins. A
second TFE interrupt occurs so that the peripheral has a full data transfer time to request the
data before the next transfer is to begin.

If the BSPI is to operate in slave mode, once again the device must be enabled. The SS line
must only be asserted low after the SCK from the master is stable. The TFE flag will be set,
depending on the BSPI being enabled, signalling that the Transmit Data register is empty
and will be cleared by a write to the Transmit Data register. The second TFE interrupt occurs
to request data for the following transfer.

18.2.6 Clocking problems and clearing of the shift-register

Should a problem arise on the clock which results in a misalignment of data in the shift
register of the BSPI, it may be cleared by disabling the BSPI enable. This has the effect of
setting the TFE which requests data to be written to the Transmit Register for the next
transfer. Clearing the BSPI enable will also reset the counter of bits received. The next block
of data received will be written to the next location in the FIFO continuing on from the last
good transfer, if the FIFO was just one word deep it will be written to the only location
available.

18.2.7 Interrupt control

The BSPI generates one interrupt based upon the status bits monitoring the transmit and
receive logic. The interrupt is acknowledged or cleared by subsequent read or write
operations which remove the error or status update condition. It is the responsibility of the
programmer to ascertain the source of the interrupt and then remove the error condition or
alter the state of the BSPI. In the case of multiple errors the interrupt will remain active until
all interrupt sources have been cleared.

For example, in the case of TFE, whenever the last word has been transferred to the transmit
buffer, the TFE flag is asserted. If interrupts are enabled then an interrupt will be asserted to
the processor. To clear the interrupt the user must write at least one data word into the FIFO,
or disable the interrupts if this condition is valid.

18.2.8 DMA Interface

The DMA interface is a feature of the BSPI that allows data to be transferred to or from
system memory using a DMA controller instead of main CPU. Data can be transferred in
single data accesses or in burst mode, the amount of words being selectable by the
programmer, thus making efficient more use of system bus. The BSPI DMA interface has the
following features:

1) The DMA interface can be totally disabled using a bit in BSPIn_CSR3 register.

2) User programmable burst size: 1, 4, 8 or 16 words can be transferred at a time.
295/349

1

STR73xF MICROCONTROLLER - BUFFERED SPI (BSPI)
3) Two request lines to the DMA are generated: one dedicated to the BSPI operating in
transmit mode and another dedicated to the BSPI operating in receive mode. These signals
are generated in independently from each other inside the BSPI.

4) Received 8-bit data, being sent from the BSPI to the memory, is arranged in a format
which is compatible both with little and big endian convention, replicating the received data
on both high and low byte in BSPIn_RXR register.

The DMA interface makes use of pointers inside both the transmit and receive fifo (these
being independent of one another) in order for it to decide when a DMA request to transmit
or receive data can be made.

Note There is a restriction on the burst capability of DMA interface during reception. The
total number of words to be transferred to system memory via DMA must be an
integer multiple of the programmed Burst Length size, since DMA interface is not
capable of handling incomplete received burst transfers. For example if Burst
Length size is set to 4 and at the end of received data transfer BSPI FIFO has only
3 spaces, no request would be issued. On the contrary, with an even divide, the last
chunk of received data will always be equal to the programmed size of the burst
length.
296/349

1

STR73xF MICROCONTROLLER - BUFFERED SPI (BSPI)
18.3 Register description

18.3.1 BSPI Control/Status Register 1 (BSPIn_CSR1)

Address Offset: 08h

Reset value: 0000h

Bits 15:12 = RFE[3:0]: Receive FIFO Enable.
The receive FIFO can be programmed to operate with a word depth up to 16. The receive
FIFO enable bits declare how many words deep the FIFO is for all transfers. The FIFO
defaults to one word deep, i.e. similar to a single data register. Table below shows how the
FIFO is controlled.

Bit 11:10 = WL[1:0]: Word Length.
These two bits configure the word length operation of the Receive FIFO and transmit data
registers as shown below:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RFE[3:0] WL[1:0] CPHA CPOL BEIE Reserved REIE RIE[1:0] MSTR BSPE

rw rw rw rw rw - rw rw rw rw

RFE[3:0] Depth of FIFO

0000 1st word enabled
0001 1st & 2nd words enabled
0010 1-3 words enabled
0011 1-4 words enabled
0100 1-5 words enabled
0101 1-6 words enabled
0110 1-7 words enabled
0111 1-8 words enabled
1000 1-9 words enabled
1001 1-10 words enabled
1010 1-11 words enabled
1011 1-12 words enabled
1100 1-13 words enabled
1101 1-14 words enabled
1110 1-15 words enabled
1111 1-16 words enabled

WL[1:0] Word Length

 00 8-bit
 01 16-bit
 10 Reserved
 11 Reserved
297/349

1

STR73xF MICROCONTROLLER - BUFFERED SPI (BSPI)
Bit 9 = CPHA: Clock Phase Select.
Used with the CPOL bit to define the master-slave clock relationship. When CPHA=0, as
soon as the SS goes low the first data sample is captured on the first edge of SCK. When
CPHA=1, the data is captured on the second edge.

Bit 8 = CPOL: Clock Polarity Select.
When this bit is cleared and data is not being transferred, a stable low value is present on the
SCK pin. If the bit is set the SCK pin will idle high. This bit is used with the CPHA bit to define
the master-slave clock relationship.
0 = Active high clocks selected; SCLK idles low.
1 = Active low clocks selected; SCLK idles high.

Bit 7 = BEIE: Bus Error Interrupt Enable.
When this bit is set to a ‘1’, an interrupt will be asserted to the processor whenever a Bus
Error condition occurs.

Bits 6:5 = Reserved, must be kept at reset value (0).

Bit 4 = REIE: Receive Error Interrupt Enable.
When this bit is set to a ‘1’ and the Receiver Overflow error condition occurs, a Receive Error
Interrupt will be asserted to the processor.

Bits 3:2 = RIE[1:0]: BSPI Receive Interrupt Enables.
The RIE1:0 bits are interrupt enables which configure when the processor will be interrupted
on received data. The following configurations are possible.

Bit 1 = MSTR: Master/Slave Select.
1: BSPI is configured as a master
0: BSPI is configured as a slave

Bit 0 = BSPE: BSPI System Enable.
1: BSPI system is enabled
0: BSPI system is disabled

RIE1 RIE0 Interrupted on

0 0 Disabled
0 1 Receive FIFO Not Empty
1 0 Reserved
1 1 Receive FIFO Full
298/349

1

STR73xF MICROCONTROLLER - BUFFERED SPI (BSPI)
18.3.2 BSPI Control/Status Register 2 (BSPIn_CSR2)

Address Offset: 0Ch

Reset value: 0040h

Bits 15:14 = TIE[1:0]: BSPI Transmit Interrupt Enable.
These bits control the source of the transmit interrupt.

Bits 13:10 = TFE[3:0]: Transmit FIFO Enable.
These bits control the depth of the transmit FIFO. The table below indicates all valid settings.

Bit 9 = TFNE: Transmit FIFO Not Empty.
This bit is set whenever the FIFO contains at least one data word.

Bit 8 = TFF: Transmit FIFO Full.
TFF is set whenever the number of words written to the transmit FIFO is equal to the number

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TIE[1:0] TFE[3:0] TFNE TFF TUFL TFE ROFL RFF RFNE BERR Res. DFIFO

rw rw r r r r r r r r - w

TIE1 TIE0 Interrupted on

0 0 Disabled
0 1 Transmit FIFO Empty
1 0 Transmit underflow
1 1 Transmit FIFO Full

TFE[3:0] Depth of FIFO

0000 1st word enabled
0001 1st & 2nd words enabled
0010 1-3 words enabled
0011 1-4 words enabled
0100 1-5 words enabled
0101 1-6 words enabled
0110 1-7 words enabled
0111 1-8 words enabled
1000 1-9 words enabled
1001 1-10 words enabled
1010 1-11words enabled
1011 1-12words enabled
1100 1-13words enabled
1101 1-14words enabled
1110 1-15words enabled
1111 1-16words enabled
299/349

1

STR73xF MICROCONTROLLER - BUFFERED SPI (BSPI)
of FIFO locations enabled by TFE[3:0]. The flag is set immediately after the data write is
complete.

Bit 7 = TUFL: Transmit Underflow.
This status bit gets set if the TFE bit is set and, by the time the Transmit Data Register
contents are to be transferred to the shift register for the next transmission, the processor
has not yet put the data for transmission into the Transmit Data Register.
TUFL is set on the first edge of the clock when CPHA = 1 and when CPHA = 0 on the
assertion of SS. If TIE[1:0] bits are set to “10” then, when TUFL gets set, an interrupt will be
asserted to the processor.

Note From an application point of view, it is important to be aware that the first word
available after an underflow event has occurred should be ignored, as this data was
loaded into the shift register before the underflow condition was flagged.

Bit 6 = TFE: Transmit FIFO Empty.
This bit gets set whenever the Transmit FIFO has transferred its last data word to the
transmit buffer. If interrupts are enabled then an interrupt will be asserted whenever the last
word has been transferred to the transmit buffer.

Bit 5 = ROFL: Receiver Overflow.
This bit gets set if the Receive FIFO is full and has not been read by the processor by the
time another received word arrives. If the REIE bit is set then, when this bit gets set an
interrupt will be asserted to the processor. This bit is cleared when a read takes place of the
CSR register and the FIFO.

Bit 4 = RFF: Receive FIFO Full.
This status bit indicates that the number of FIFO locations, as defined by the RFE[3:0] bits,
are all full, i.e. if the FIFO is 4 deep then all data has been received to all four locations.
If the RIE[1:0] bits are configured as ‘11’ then, when this status bit gets set, an interrupt will
be asserted to the processor. This bit is cleared when at least one data word has been read.

Bit 3 = RFNE: Receive FIFO Not Empty.
This status bit indicates that there is data in the Receive FIFO. It is set whenever there is at
least one block of data in the FIFO i.e. for 8-bit mode 8 bits and for 16-bit mode 16 bits. If the
RIE[1:0] bits are configured to ‘01’ then whenever this bit gets set an interrupt will be
asserted to the processor. This bit is cleared when all valid data has been read out of the
FIFO.

Bit 2 = BERR: Bus Error.
This status bit indicates that a Bus Error condition has occurred, i.e. that more than one
device has acted as a Master simultaneously on the BSPI bus. A Bus Error condition is
defined as a condition where the Slave Select line goes active low when the module is
configured as a Master, provided that MASK_SS bit in BSPIn_CSR3 register is not set. This
indicates contention in that more than one node on the BSPI bus is attempting to function as
300/349

1

STR73xF MICROCONTROLLER - BUFFERED SPI (BSPI)
a Master. This bit is cleared when the Slave Select line is deasserted, MASK_SS bit is set or
Slave mode is selected.

Bit 1 = Reserved, must be kept at reset value (0).

Bit 0 = DFIFO: Disable for the FIFO.
When this bit is enabled, the FIFO pointers are all reset to 0, the RFE bits are set to 0 and
therefore the BSPI is set to one location. The data within the FIFO is lost. This bit is reset to
0 after a clock cycle.

18.3.3 BSPI Control/Status Register 3 (BSPIn_CSR3)

Address Offset: 14h

Reset value: 0000h

This register is used to control the BSPI DMA interface. When the BSPI is receiving data, it
will be the source of DMA transfer and system memory will act as destination. Conversely,
when the BSPI is in transmit mode, it is sending data to an external source and it will act as
DMA destination while system memory will be the source.

Bits 15:8 = Reserved, must be kept at reset value (0).

Bit 7 = RREQ_EN: Receive REQuest ENable
This is the enable bit for the reception DMA request and it flags the DMA controller that an
amount of data corresponding at least to the configured reception burst length is available in
the BSPI receive FIFO to be transferred.
0 = Receive DMA requests are disabled.
1 = Receive DMA requests are enabled.

Bit 6 = TREQ_EN: Transmit REQuest ENable
This is the enable bit for the transmission DMA request and it flags the DMA controller that in
the BSPI transmit FIFO there is an amount of free locations corresponding at least to the
configured transmission burst length.
0 = Transmit DMA requests are disabled.
1 = Transmit DMA requests are enabled.

Bits 5:4 = RBURST_LEN[1:0]: Receive BURST LENgth
These bits configure the burst length when the BSPI receives data. This programmable
length is used to set the number of data words the DMA controller is expected to retrieve
upon a receive request; this value is used in the DMA interface to determine when the BSPI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RREQ
_EN

TREQ
_EN

RBURST_LEN
[1:0]

TBURST_LEN
[1:0]

DMA
_EN

MASK
_SS

- rw rw rw rw rw rw
301/349

1

STR73xF MICROCONTROLLER - BUFFERED SPI (BSPI)
is ready to send a data burst to the DMA. A word can be 16 bit or 8 bit wide according to the
configuration set in WL bits inside BSPIn_CSR1 register.

Bits 3:2 = TBURST_LEN [1:0]: Transmit BURST LENgth
These bits configure the burst length when the BSPI transmits data. This programmable
length is used to set the number of data words the DMA controller is expected to send upon
a transmit request; this value is used in the DMA interface to determine when the BSPI is
ready to receive a data burst from the DMA. A word can be 16 bit or 8 bit wide according to
the configuration set in WL bits inside BSPIn_CSR1 register.

Bit 1 = DMA_EN: DMA interface ENable
This bit is a general enable switch for the DMA interface. When BSPI DMA interface is
disabled no request line will be activated and data transfer can occur through interrupt
notification only.
0 = DMA interface is disabled.
1 = DMA interface is enabled.

Bit 0 = MASK_SS: MASK Slave Select
This bit can be used to mask the status of Slave Select pin when BSPI is in master mode
and the pad corresponding to SS pin is not available. When this bit is set to ‘1’, the Bus Error
interrupt condition cannot be detected since internally the related signal is always
considered high regardless from the actual pad status.
0 = Slave Select pin is used.
1 = Slave Select pin is masked.

RBURST_
LEN[1:0] BURST LENGTH

00 1 word transferred
01 4 words transferred
10 8 words transferred
11 16 words transferred

TBURST_
LEN[1:0] BURST LENGTH

00 1 word transferred
01 4 words transferred
10 8 words transferred
11 16 words transferred
302/349

1

STR73xF MICROCONTROLLER - BUFFERED SPI (BSPI)
18.3.4 BSPI Master Clock Divider Register (BSPIn_CLK)

Address Offset: 10h

Reset value: 0006h

Bits 15:8 = Reserved, must be kept at reset value (0).

Bits 7:0 = DIV[7:0]: Divide factor bits.
These bits are used to control the frequency of the BSPI serial clock with relation to the
device clock. The number must be an even number greater than 5, i.e. 6 is the lowest divide
factor.
These bits must be set before the BSPE or MSTR bits, i.e. before the BSPI is configured into
master mode.

18.3.5 BSPI Transmit Register (BSPIn_TXR)

Address Offset: 04h

Reset value: n/a

Bits 15:0 = TX[15:0]: Transmit data.
This register is used to write data for transmission into the BSPI. If the FIFO is enabled then
data written to this register will be transferred to the FIFO before transmission. If the FIFO is
disabled then the register contents are transferred directly to the shift register for
transmission. In sixteen bit mode all of the register bits are used. In eight bit mode only the
upper eight bits of the register are used while lower eight bits are ignored. In both case the
data is left justified, i.e. Bit[15] = MSB, Bit[0] / Bit[8] = LSB depending on the operating mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved DIV[7:0]

- rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16 bit Transmission TX[15:0]

8 bit Transmission TX[7:0] Not Used

w

303/349

1

STR73xF MICROCONTROLLER - BUFFERED SPI (BSPI)
18.3.6 BSPI Receive Register (BSPIn_RXR)

Address Offset: 00h

Reset value: 0000h

Bits 15:0 = RX[15:0]: Received data.
This register contains the data received from the BSPI bus. If the FIFO is disabled then the
data from the shift register is placed into the receive register directly. If the FIFO is enabled
then the received data is transferred into the FIFO. In sixteen bit mode all the register bits
are utilized. In eight bit reception mode the received data is replicated on the upper and
lower eight bits of the register so to support both little and big endian memory systems.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16 bit Reception RX[15:0]

8 bit Reception RX[7:0] RX[7:0]

r

304/349

1

STR73xF MICROCONTROLLER - BUFFERED SPI (BSPI)
18.4 BSPI Register map

An overview of the BSPI registers is given in the following table.

(*)Data is justified depending on transmission mode, Bit 15 = MSB.

See Table 2, “APB Memory Map,” on page 17 for base addresses.

Table 42. BSPI Register Map
Addr.
Offset

Register
Name

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 BSPIn_RXR RX[15:0] (*)

04 BSPIn_TXR TX[15:0] (*)

08 BSPIn_CSR1 RFE[3:0] WL[1:0] CPHA CPOL BEIE Reserved REIE RIE[1:0] MSTR BSPE

0C BSPIn_CSR2
BSPIn_CSR2TI

E[1:0]
TFE[3:0] TFNE TFF TUFL TFE ROFL RFF RFNE BERR Res. DFIFO

10 BSPIn_CLK Reserved DIV[7:0]

14 BSPIn_CSR3 Reserved RREQ
_EN

TREQ_
EN

RBURST_
LEN[1:0]

TBURST_
LEN [1:0]

DMA
_EN

MASK
_SS
305/349

1

STR73xF MICROCONTROLLER - UART
19 UART

19.1 Introduction

A UART interface, provides serial communication between the STR73x and other
microcontrollers, microprocessors or external peripherals.

A UART supports full-duplex asynchronous communication. Eight or nine bit data transfer,
parity generation, and the number of stop bits are programmable. Parity, framing, and
overrun error detection are provided to increase the reliability of data transfers. Transmission
and reception of data can simply be double-buffered, or 16-deep fifos may be used. For
multiprocessor communications, a mechanism to distinguish the address from the data
bytes is included. Testing is supported by a loop-back option. A 16-bit baud rate generator
provides the UART with a separate serial clock signal.

19.2 Main Features

• Full-duplex asynchronous communication

• Two internal FIFOs (16 words deep) for transmit and receive data

• 16-bit baud rate generator

• Data frames both 8 and 9 bit long

• Parity bit (even or odd) and stop bit
306/349

1

STR73xF MICROCONTROLLER - UART
19.3 Functional Description

The UART supports full-duplex asynchronous communication, where both the transmitter
and the receiver use the same data frame format and the same baud rate. Data is
transmitted on the TXD pin and received on the RXD pin. Data frames

Eight bit data frames (see Figure 67) either consist of:

• eight data bits D0-7 (by setting the Mode bit field to 001);

• seven data bits D0-6 plus an automatically generated parity bit (by setting the Mode bit
field to 011).

Parity may be odd or even, depending on the ParityOdd bit in the UARTn_CR register. An
even parity bit will be set, if the modulo-2-sum of the seven data bits is 1. An odd parity bit
will be cleared in this case.}

Nine bit data frames (see Figure 68) either consist of:

• nine data bits D0-8 (by setting the Mode bit field to 100);

• eight data bits D0-7 plus an automatically generated parity bit (by setting the Mode bit
field to 111);

• eight data bits D0-7 plus a wake-up bit (by setting the Mode bit field to 101).

Figure 67. 8-bit data frames

Figure 68. 9-bit data frames

D0
LSB

D1 D2 D3 D4 D5 D6start
bit

8th
bit

1st
stop
bit

2nd
stop
bit

- Data bit (D7)
- Parity bit

D0
LSB

D1 D2 D3 D4 D5 D6start
bit

9th
bit

1st
stop
bit

2nd
stop
bit

- Data bit (D8)
- Parity bit

D7

- Wake-up bit
307/349

1

STR73xF MICROCONTROLLER - UART
Parity may be odd or even, depending on the ParityOdd bit in the UARTn_CR register. An
even parity bit will be set, if the modulo-2-sum of the eight data bits is 1. An odd parity bit will
be cleared in this case.

In wake-up mode, received frames are only transferred to the receive buffer register if the
ninth bit (the wake-up bit) is 1. If this bit is 0, no receive interrupt request will be activated and
no data will be transferred.

This feature may be used to control communication in multi-processor systems. When the
master processor wants to transmit a block of data to one of several slaves, it first sends out
an address byte which identifies the target slave. An address byte differs from a data byte in
that the additional ninth bit is a 1 for an address byte and a 0 for a data byte, so no slave will
be interrupted by a data byte. An address byte will interrupt all slaves (operating in 8-bit data
+ wake-up bit mode), so each slave can examine the 8 least significant bits (LSBs) of the
received character (the address). The addressed slave will switch to 9-bit data mode, which
enables it to receive the data bytes that will be coming (with the wake-up bit cleared). The
slaves that are not being addressed remain in 8-bit data + wake-up bit mode, ignoring the
following data bytes.

19.3.1 Transmission

Values to be transmitted are written to the transmit fifo, TxFIFO, by writing to
UARTn_TxBUFR. The TxFIFO is implemented as a 16 deep array of 9 bit vectors.

If the fifos are enabled (the UARTn_CR(FifoEnable) is set), the TxFIFO is considered full
(UARTn_SR(TxFull) is set) when it contains 16 characters. Further writes to
UARTn_TxBUFR in this situation will fail to overwrite the most recent entry in the TxFIFO. If
the fifos are disabled, the TxFIFO is considered full (UARTn_SR(TxFull) is set) when it
contains 1 character, and a write to UART_TxBuffer in this situation will overwrite the
contents.

If the fifos are enabled, UARTn_SR(TxHalfEmpty) is set when the TxFIFO contains 8 or
fewer characters. If the fifos are disabled, it’s set when the TxFIFO is empty.

Writing anything to UARTn_TxRSTR empties the TxFIFO.

Values are shifted out of the bottom of the TxFIFO into a 9-bit txshift register in order to be
transmitted. If the transmitter is idle (the txshift register is empty) and something is written to
the UARTn_TxBUFR so that the TxFIFO becomes non-empty, the txshift register is
immediately loaded from the TxFIFO and transmission of the data in the txshift register
begins at the next baud rate tick.

At the time the transmitter is just about to transmit the stop bits, then if the TxFIFO is
non-empty, the txshift register will be immediately loaded from the TxFIFO, and transmission
of this new data will begin as soon as the current stop bit period is over (i.e. the next start bit
will be transmitted immediately following the current stop bit period). Thus back-to-back
308/349

1

STR73xF MICROCONTROLLER - UART
transmission of data can take place. If instead the TxFIFO is empty at this point, then the
txshift register will become empty. UARTn_SR(TxEmpty) indicates whether the txshift
register is empty.

After changing the fifoenable bit, it is important to reset the fifo to empty (by writing to the
UARTn_TxRSTR register), since the state of the fifo pointer may be garbage.

The loop-back option (selected by the UARTn_CR(LoopBack) bit) internally connects the
output of the transmitter shift register to the input of the receiver shift register. This may be
used to test serial communication routines at an early stage without having to provide an
external network.

19.3.2 Reception

Reception is initiated by a falling edge on the data input pin (RXD), provided that the
UARTn_CR(Run) and UARTn_CR(RxEnable) bits are set. The RXD pin is sampled at 16
times the rate of the selected baud rate. A majority decision of the first, second and third
samples of the start bit determines the effective bit value. This avoids erroneous results that
may be caused by noise.

If the detected value is not a 0 when the start bit is sampled, the receive circuit is reset and
waits for the next falling edge transition at the RXD pin. If the start bit is valid, the receive
circuit continues sampling and shifts the incoming data frame into the receive shift register.
For subsequent data and parity bits, the majority decision of the seventh, eighth and ninth
samples in each bit time is used to determine the effective bit value.

Note: If reception is initiated when the data input pin (RXD) is being stretched at ‘0’, a frame
error is reported since the reception stage samples the initial value as a falling edge.

For 0.5 stop bits, the majority decision of the third, fourth, and fifth samples during the stop
bit is used to determine the effective stop bit value.

For 1 and 2 stop bits, the majority decision of the seventh, eighth, and ninth samples during
the stop bits is used to determine the effective stop bit values.

For 1.5 stop bits, the majority decision of the fifteenth, sixteenth, and seventeenth samples
during the stop bits is used to determine the effective stop bit value.

The effective values received on the RXD pin are shifted into a 10-bit rxshift register.

The receive fifo, RxFIFO, is implemented as a 16 deep array of 10-bit vectors (each 9 down
to 0). If the RxFIFO is empty, UARTn_SR(RxBufNotEmpty) is set to ‘0’. If the RxFIFO is not
empty, a read from UART_RxBFR will get the oldest entry in the RxFIFO. If fifos are
disabled, the RxFIFO is considered full when it contains one character.
UARTn_SR(RxHalfFull) is set when the RxFIFO contains more than 8 characters. Writing
anything to UARTn_RxRSTR empties the RxFIFO.
309/349

1

STR73xF MICROCONTROLLER - UART
As soon as the effective value of the last stop bit has been determined, the content of the
rxshift register is transferred to the RxFIFO (except in wake-up mode, in which case this
happens only if the wake-up bit, bit8, is a ‘1’). The receive circuit then waits for the next start
bit (falling edge transition) at the RXD pin.

UARTn_SR(OverrunError) is set when the RxFIFO is full and a character is loaded from
the rxshift register into the RxFIFO. It is cleared when the UARTn_RxBUFR register is read.

The most significant bit of each RxFIFO entry (RxFIFO[x][9]) records whether or not there
was a frame error when that entry was received (i.e. one of the effective stop bit values was
’0’). UARTn_SR(FrameError) is set when at least one of the valid entries in the RxFIFO has
its MSB set.

If the mode is one where a parity bit is expected, then the bit RxFIFO[x][8] (if 8 bit data +
parity mode is selected) or the bit RxFIFO[x][7] (if 7 bit data + parity mode is selected)
records whether there was a parity error when that entry was received. Note, it does not
contain the parity bit that was received. UARTn_SR(ParityError) is set when at least one of
the valid entries in the RxFIFO has bit 8 set (if 8 bit data + parity mode is selected) or bit 7
set (if 7 bit data + parity mode is selected).

After changing the fifoenable bit, it is important to reset the fifo to empty (by writing to the
UARTn_RxRSTR register), since the state of the fifo pointers may be garbage.

Reception is stopped by clearing the UARTn_CR(RxEnable) bit. A currently received frame
is completed including the generation of the receive status flags. Start bits that follow this
frame will not be recognized.

19.3.3 Timeout Mechanism

The UART contains an 8-bit timeout counter. This reloads from UARTn_TOR whenever one
or more of the following is true

• UARTn_RxBUFR is read

• The UART starts to receive a character

• UARTn_TOR is written to

If none of these conditions hold, the counter decrements towards 0 at every baud rate tick.

UARTn_SR(TimeoutNotEmpty) is ’1’ exactly whenever the RxFIFO is not empty and the
timeout counter is zero.

UARTn_SR(TimeoutIdle) is ‘1’ exactly whenever the RxFIFO is empty and the timeout
counter is zero.
310/349

1

STR73xF MICROCONTROLLER - UART
The effect of this is that whenever the RxFIFO has got something in it, the timeout counter
will decrement until something happens to the RxFIFO. If nothing happens, and the timeout
counter reaches zero, the UARTn_SR(TimeoutNotEmpty) flag will be set.

When the software has emptied the RxFIFO, the timeout counter will reset and start
decrementing. If no more characters arrive, when the counter reaches zero the
UARTn_SR(TimeoutIdle) flag will be set.

19.3.4 Baud Rate Generation

The baud rate generator provides a clock at 16 times the baud rate, called the oversampling
clock. This clock only ticks if UARTn_CR(Run) is set to’1’. Setting this bit to 0 will
immediately freeze the state of the UART’s transmitter and receiver. This should only be
done when the UART is idle.

The baud rate and the required reload value for a given baud rate can be determined by the
following formulae:

Baudrate = MCLK / (16 * <UART_BaudRate>)

<UART_BaudRate> = MCLK / (16 x Baudrate)

where: <UART_BaudRate> represents the content of the UARTn_BR register, taken as
unsigned 16-bit integer, and MCLK is the system clock frequency.

Table 43 and Table 44 list various commonly used baud rates together with the required
reload values and the deviation errors for two different MCLK clock frequencies (16 and
20MHz respectively).

Table 43. Baud rates with MCLK = 16 MHz

Baud rate
Reload value

(exact)

Reload value

(integer)

Reload value

(hex)
Deviation error

625K 1.6 2 0002 20%

38.4K 26.042 26 001A 0.160%

19.2K 52.083 52 0034 0.160%

9600 104.167 104 0068 0.160%

4800 208.333 208 00D0 0.160%

2400 416.667 417 01A1 0.080%

1200 833.333 833 0341 0.040%

600 1666.667 1667 0683 0.020%
311/349

1

STR73xF MICROCONTROLLER - UART
19.3.5 Interrupt Control

The UART has a single interrupt request line, called UARTn_interrupt. The status bits in the
UARTn_SR register determine the cause of the interrupt. UARTn_interrupt will go high
when a status bit is 1 (high) and the corresponding bit in the UARTn_IER register is 1 (see
Figure 69).

300 3333.333 3333 0D05 0.010%

75 13333.333 13333 3415 0.003%

Table 44. Baud rates with MCLK = 20 MHz

Baud rate
Reload value

(exact)

Reload value

(integer)

Reload value

(hex)
Deviation error

625K 2 2 0002 0%

38.4K 32.552 33 0021 1.358%

19.2K 65.104 65 0041 0.160%

9600 130.208 130 0082 0.160%

4800 260.417 260 0104 0.160%

2400 520.833 521 0209 0.032%

1200 1041.667 1042 0412 0.032%

600 2083.333 2083 0823 0.016%

300 4166.667 4167 1047 0.008%

75 16666.667 16667 411B 0.002%

Table 43. Baud rates with MCLK = 16 MHz

Baud rate
Reload value

(exact)

Reload value

(integer)

Reload value

(hex)
Deviation error
312/349

1

STR73xF MICROCONTROLLER - UART
Note: The UARTn_SR register is read only. The Status bits can only be cleared by operating
on the FIFOs. The RxFIFO and TxFIFO can > be reset by writing to the UARTn_RxReset
and UARTn_TxReset registers.

19.3.6 Using the UART Interrupts when FIFOs are Disabled

When fifos are disabled, the UART provides three interrupt requests to control data
exchange via the serial channel:

• TxHalfEmpty is activated when data is moved from UART_TxBUFR to the txshift register.

• TxEmpty is activated before the stop bit is transmitted.

• RxBufNotEmpty is activated when the received frame is moved to UART_RxBUFR.

For single transfers it is sufficient to use the transmitter interrupt (TxEmpty), which indicates
that the previously loaded data has been transmitted, except for the stop bit.

For multiple back-to-back transfers using TxEmpty would leave just one stop bit time for the
handler to respond to the interrupt and initiate another transmission. Using the transmit

Figure 69. UART interrupt request

TimeoutIdle

TimeoutIdle IE

TimeoutNotEmpty

TimeoutNotEmpty IE

OverrunError

OverrunError IE

FrameError

FrameError IE

ParityError

ParityError IE

TxHalfEmpty

TxHalfEmpty IE

TxEmpty

TxEmpty IE

RxBufNotEmpty

RxBufFull IE

UART_interrupt

RxHalfFull

RxHalfFull IE
313/349

1

STR73xF MICROCONTROLLER - UART
buffer interrupt (TxHalfEmpty) to reload transmit data allows the time to transmit a complete
frame for the service routine, as UART_TxBUFR may be reloaded while the previous data is
still being transmitted.

TxHalfEmpty is an early trigger for the reload routine, while TxEmpty indicates the
completed transmission of the data field of the frame. Therefore, software using handshake
should rely on TxEmpty at the end of a data block to make sure that all data has really been
transmitted.

19.3.7 Using the UART Interrupts when FIFOs are Enabled

To transmit a large number of characters back to back, the driver routine would write 16
characters to UART_TxBUFR, then every time a TxHalfEmpty interrupt fired, it would write
8 more. When it had nothing more to send, a TxEmpty interrupt would tell it when everything
has been transmitted.

When receiving, the driver could use RxBufNotEmpty to interrupt every time a character
came in. Alternatively, if data is coming in back-to-back, it could use RxHalfFull to interrupt
it when there was at least 8 characters in the RxFIFO to read. It would have as long as it
takes to receive 8 characters to respond to this interrupt before data would overrun. If less
than eight character streamed in, and no more were received for at least a timeout period,
the driver could be woken up by one of the two timeout interrupts, TimeoutNotEmpty or
TimeoutIdle.
314/349

1

STR73xF MICROCONTROLLER - UART
19.4 Register Description

19.4.1 UART BaudRate Register (UARTn_BR)

Address Offset: 00h
Reset value: 0001h

The UARTn_BR register is the dual-function baud rate generator/reload register.

A read from this register returns the content of the timer, writing to it updates the reload
register.

An auto-reload of the timer with the content of the reload register is performed each time the
UARTn_BR register is written to. However, if the Run bit of the UARTn_CR register is 0 at
the time the write operation to the UARTn_BR register is performed, the timer will not be
reloaded until the first MCLK clock cycle after the Run bit is 1.

Bit 15:0 = BaudRate[15:0] UART Baudrate
Write function: 16-bit reload value
Read function: 16-bit count value

19.4.2 UART TxBuffer Register (UARTn_TxBUFR)

Address Offset: 04h
Reset value: 0000h

Writing to the transmit buffer register starts data transmission.

Bit 15:9 = Reserved, must be kept at reset value (0).

Bit 8 = TX[8]: Transmit buffer data D8.
Transmit buffer data D8, or parity bit, or wake-up bit or undefined - dependent on the
operating mode (the setting of the Mode field in UARTn_CR register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BaudRate[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TX
[8]

TX
[7]

TX
[6]

TX
[5]

TX
[4]

TX
[3]

TX
[2]

TX
[1]

TX
[0]

w w w w w w w w w w w w w w w w
315/349

1

STR73xF MICROCONTROLLER - UART
Note: If the Mode field selects an 8 bit frame then this bit should be written as 0.

Note:If the Mode field selects a frame with parity bit, then the TX[8] bit will contain the parity
bit (automatically generated by the UART). Writing ‘0’ or ‘1’ in this bit will have no effect on
the transmitted frame.

Bit 7 = TX[7]: Transmit buffer data D7.
Transmit buffer data D7 or parity bit - dependent on the operating mode (the setting of the
Mode field in UARTn_CR register).

Note: If the Mode field selects a frame with parity bit, then the TX[7] bit will contain the parity
bit (automatically generated by the UART). Writing ‘0’ or ‘1’ in this bit will have no effect on
the transmitted frame.

Bit 6:0 = TX[6:0]: Transmit buffer data D(6:0)

19.4.3 UART RxBuffer Register (UARTn_RxBUFR)

Address Offset: 08h
Reset value: 0000h

The received data and, if provided by the selected operating mode, the received parity bit
can be read from the receive buffer register.

Bit 15:10 = Reserved, always return ‘0’ when read.

Bit 9 = RX[9]: Frame error.
If set, it indicates a frame error occurred on data stored in RX[8:0] (i.e. one of the effective
stop bit values was ‘0’ when the data was received).

Bit 8 = RX[8]: Receive buffer data D8.
Receive buffer data D8, or parity error, or wake-up bit - dependent on the operating mode
(the setting of the Mode field in the UARTn_CR register).

Note If the Mode field selects a 7- or 8-bit frame then this bit is undefined. Software
should ignore this bit when reading 7- or 8-bit frames.

Bit 7 = RX[7]: Receive buffer data D7.
Receive buffer data D7, or parity error - dependent on the operating mode (the setting of the
Mode field in the UARTn_CR register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RX
[9]

RX
[8]

RX
[7]

RX
[6]

RX
[5]

RX
[4]

RX
[3]

RX
[2]

RX
[1]

RX
[0]

r r r r r r r r r r r r r r r r
316/349

1

STR73xF MICROCONTROLLER - UART
Bit 6:0 = RX[6:0]: Receive buffer data D(6:0).

19.4.4 UART Control Register (UARTn_CR)

Address Offset: 0Ch
Reset value: 0000h

This register controls the operating mode of the UART and contains control bits for mode
and error check selection, and status flags for error identification.

Note: Programming the mode control field (Mode) to one of the reserved combinations may
result in unpredictable behavior.

Note: Serial data transmission or reception is only possible when the baud rate generator
run bit (Run) is set to 1. When the Run bit is set to 0, TXD will be 1. Setting the Run bit to 0
will immediately freeze the state of the transmitter and receiver. This should only be done
when the UART is idle.

Bit 15:11= Reserved, always return ‘0’ when read.

Bit 10 = FifoEnable: FIFO Enable
0: FIFO mode disabled
1: FIFO mode enabled

Bit 9 = SCEnable - Reserved to Smart Card: Mode Enable
0: SmartCard mode disabled
1: SmartCard mode enabled
If SmartCard mode is not used: Must be kept at 0.

Bit 8 = RxEnable: Receiver Enable
0: Receiver disabled
1: Receiver enabled

Bit 7 = Run: Baudrate generator Run bit
0: Baud rate generator disabled (UART inactive)
1: Baud rate generator enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
F

ifo
 E

na
bl

e

S
C

-
E

na
bl

e

R
x

E
na

bl
e

R
un

Lo
op

 B
ac

k

P
ar

ity
O

dd

S
to

p
B

its

Mode

rw rw rw rw rw rw rw rw rw rw rw r
w

r
w

r
w

r
w

r
w

317/349

1

STR73xF MICROCONTROLLER - UART
Bit 6 = LoopBack: LoopBack mode enable
0: Standard transmit/receive mode
1: Loopback mode enabled

Note: This bit may be modified only when the UART is inactive.

Bit 5 = ParityOdd: Parity selection
0: Even parity (parity bit set on odd number of ‘1’s in data)
1: Odd parity (parity bit set on even number of ‘1’s in data)

Bit 4:3 = Stop Bits: Number of stop bits selection
These bits select the number of stop bits
00: 0.5 stop bits
01: 1 stop bit
10: 1.5 stop bits
11: 2 stop bits

Bit 2:0 = Mode: UART Mode control
000: reserved
001: 8 bit data
010: reserved
011: 7 bit data + parity
100: 9 bit data
101: 8 bit data + wake up bit
110: reserved
111: 8 bit data + parity

19.4.5 UART IntEnable Register (UARTn_IER)

Address Offset: 10h
Reset value 0000h

The UARTn_IE register enables the interrupt sources.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED

R
x

H
al

f
F

ul
lIE

T
im

e
ou

t I
dl

eI
E

T
im

eo
ut

 N
ot

 E
m

pt
y

IE

O
ve

rr
un

 E
rr

or
 IE

Fr
am

e
E

rr
or

 IE

P
ar

ity
E

rr
or

 IE

T
xH

al
f

E
m

pt
y

IE

T
x

E
m

pt
y

IE

R
xB

uf
N

ot
E

m
pt

yI
E

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
318/349

1

STR73xF MICROCONTROLLER - UART
Interrupts will occur when a status bit in the UARTn_SR register is 1, and the corresponding
bit in the UARTn_IER register is 1.

Bit 15:9 = Reserved, always return ‘0’ when read.

Bit 8 = RxHalfFullIE: Receiver buffer Half Full Interrupt Enable
0: interrupt disabled.
1: interrupt enabled.

Bit 7 = TimeoutIdleIE: Timeout Idle Interrupt Enable
0: Interrupt disabled.
1: Interrupt enabled.

Bit 6 = TimeoutNotEmptyIE: Timeout Not Empty Interrupt Enable
0: Interrupt disabled.
1: Interrupt enabled.

Bit 5 = OverrunErrorIE: Overrun Error Interrupt Enable
0: Interrupt disabled.
1: Interrupt enabled.

Bit 4 = FrameErrorIE: Framing Error Interrupt Enable
0: Interrupt disabled.
1: Interrupt enabled.

Bit 3 = ParityErrorIE: Parity Error Interrupt Enable
0: Interrupt disabled.
1: Interrupt enabled.

Bit 2 = TxHalfEmptyIE: Transmitter buffer Half Empty Interrupt Enable
0: Interrupt disabled.
1: Interrupt enabled.

Bit 1 = TxEmptyIE: Transmitter Empty Interrupt Enable
0: Interrupt disabled.
1: Interrupt enabled.

Bit 0 = RxBufNotEmptyIE: Receiver Buffer Not Empty Interrupt Enable
0: Interrupt disabled.
1: Interrupt enabled.

19.4.6 UART Status Register (UARTn_SR)

Address Offset: 14h
Reset value: 0006h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
319/349

1

STR73xF MICROCONTROLLER - UART
The UARTn_SR register determines the cause of an interrupt.

Bit 15:10 = Reserved, always return ‘0’ when read.

Bit 9 = TxFull: TxFIFO Full.
Set when the TxFIFO contains 16 characters.

Bit 8 = RxHalfFull: RxFIFO Half Full.
Set when the RxFIFO contains at least 8 characters.

Bit 7 = TimeoutIdle: Timeout Idle
Set when there is a timeout and the RxFIFO is empty

Bit 6 = TimeoutNotEmpty: TimeoutNotEmpty
Set when there is a timeout and the RxFIFO is not empty

Bit 5 = OverrunError: Overrun Error
Set when data is received and the RxFIFO is full.

Bit 4 = FrameError: Frame Error
Set when the RxFIFO contains something received with a frame error

Bit 3 = ParityError: Parity Error.
Set when the RxFIFO contains something received with a parity error

Bit 2 = TxHalfEmpty: TxFIFO Half Empty.
Set when TxFIFO at least half empty

Bit 1 = TxEmpty: TxFIFO Empty.
Set when transmit shift register is empty

Bit 0 = RxBufNotEmpty: Rx Buffer Not Empty
Set when RxFIFO not empty (RxFIFO contains at least one entry)

Reserved

T
x

F
ul

l

R
x

H
al

f F
ul

l

T
im

eo
ut

 Id
le

T
im

eo
ut

 N
ot

 E
m

pt
y

O
ve

rr
un

 E
rr

or

Fr
am

e
E

rr
or

P
ar

ity
 E

rr
or

T
x

H
al

f E
m

pt
y

T
x

E
m

pt
y

R
x

B
uf

 F
ul

l

r r r r r r r r r r r r r r r r
320/349

1

STR73xF MICROCONTROLLER - UART
19.4.7 UART Timeout Register (UARTn_TOR)

Address Offset: 1Ch
Reset value: 0000h

This register is to have a timeout system to be sure that not too much time pass between two
successive received characters.

Bit 15:8 = Reserved, always return ‘0’ when read.

Bit 7:0 = UARTn_Timeout: Timeout.
Timeout period in baud rate ticks.

19.4.8 UART TxReset Register (UARTn_TxRSTR)

Address Offset: 20h
Reset value: Reserved

A write to this register empties the TxFIFO.

19.4.9 UART RxReset Register (UARTn_RxRSTR)

Address Offset: 24h
Reset Value: Reserved

A write to this register empties the RxFIFO.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved UARTn_Timeout

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

w w w w w w w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

w w w w w w w w w w w w w w w w
321/349

1

STR73xF MICROCONTROLLER - UART
19.5 UART Register Map

The following table summarizes the registers implemented in the UART.

See Table 2, “APB Memory Map,” on page 17 for the base address

Figure 70. UART Peripheral Register Map

Addr.

Offset

Register
Name

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 UARTn_B
R

UART_BaudRate

4 UARTn_

TxBUFR

Reserved UART_TxBuffer

8 UARTn_

RxBUFR

Reserved UART_RxBuffer

C UARTn_

CR

Reserved
F

ifo
E

na
bl

e

R
es

er
ve

d

R
xE

na
bl

e Run

Lo
op

B
ac

k

P
ar

ity
O

dd Stop

Bits

Mode

10 UARTn_

IER

Reserved UART_IntEnable

14 UARTn_

SR

Reserved UART_Status

1C UARTn_

TOR

Reserved UART_Timeout

20 UARTn_

TxRSTR

UART_TxReset

24 UARTn_

RxRSTR

UART_RxReset
322/349

1

STR73xF MICROCONTROLLER - A/D CONVERTER (ADC)
20 A/D CONVERTER (ADC)

20.1 Main Characteristics
■ Max Internal frequency: 10 MHz (ADC clock)

■ Resolution: 10 bits

■ Monotonicity: Guaranteed

■ No missing codes: Guaranteed

■ Zero Input reading: 0000h

■ Full Scale reading: 03FFh

■ Power Supply (VDD): 5 V +/- 10%

■ 4-bit MCLK Frequency Prescaler

■ One-Shot/Scan Modes

■ Chain Injection Mode

■ Power Down Mode

■ 16 10-bit data registers (one register for each channel)

■ Four selectable analog watchdog channels

■ Sampling Time: 10 ADC clock cycles

■ Conversion Time: 30 ADC clock cycles (including Sampling)

20.2 Introduction

The Analog to Digital Converter (ADC) comprises an input multiplex channel selector
feeding a successive approximation converter. The conversion resolution is 10 bits.

The conversion time depends on the ADC clock frequency and the prescaler factors stored
in the ADC_CLR1 register. Two prescalers can be used to provide a slow clock during
sampling and a fast clock during conversion.

You can increase the conversion time by modifying the prescaling factor, for example in case
you need to add an external resistor larger than 10 kΩ to the ADC input pin. The minimum
conversion time specified in the STR73x datasheet includes the time required by the built-in
Sample and Hold circuitry, which minimizes the need for external components and allows
quick sampling of the signal to minimize warping and conversion error.
323/349

1

STR73xF MICROCONTROLLER - A/D CONVERTER (ADC)
Figure 71. A/D Conversion Characteristics

The converter uses a fully differential analog input configuration for the best noise immunity
and precision performance. Two separate supply references are provided to ensure the best
possible supply noise rejection. In fact, the converted digital value, is referred to the analog
reference voltage which determines the full scale converted value. Of course, Analog and
Digital VSS MUST be common (to be tied together externally). If analog supplies are not
available, input reference voltages are referred to the digital ground and supply.

Up to 16 multiplexer Analog Inputs are available. A group of signals can be converted
sequentially by simply programming the starting address of the first analog channel to be
converted and the number of channels to convert.

An analog watchdog is provided, allowing continuous hardware monitoring of four input
channels. The comparison result is stored in a dedicated register.

Single and continuous conversion modes are available and a Power-Down programmable bit
allows the ADC to be set in low-power idle mode.

(2)

(1)

(3)

(4)

(5)

Offset Error OSE

Offset Error OSE

Gain Error GE

1 LSB (ideal)

Vin(A) (LSBideal)

(1) Example of an actual transfer curve

(2) The ideal transfer curve

(3) Differential non-linearity error (DNL)

(4) Integral non-linearity error (INL)

(5) Center of a step of the actual transfer curve

code out

1023

1022

1021

1020

1019

1018

5

4

3

2

1

0

7

6

1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023

1 LSB ideal = VDDA / 1024 = 5V / 1024 =
5mV

Total Unadjusted Error

TUE = +/- 2 LSB = +/- 10mV
324/349

1

STR73xF MICROCONTROLLER - A/D CONVERTER (ADC)
20.3 Functional Description

20.3.1 Start of Calibration

The internal calibration process can be started by setting the CAL bit in the ADC_CLR0
register, this bit remains at level 1 until the calibration is over. It is not possible to stop the
calibration. If a conversion is started before the calibration is finished, the effective
conversion waits the end of calibration.

The start of calibration is performed only if the PWDN bit in the ADC_CLR4 register is
cleared.

20.3.2 Start of Conversion

You start the programmed conversion by setting the START bit in the ADC_CLR0 register.

The start of conversion is performed only if the PWDN bit in the ADC_CLR4 register is
cleared.

If you clear the START bit, the ADC will finish the current chain conversion and to clear the
START bit when the operation is completed.

20.3.3 Operating Modes

Two operating modes are available: One-Shot Mode and Scan Mode. You select these
modes using the MODE bit in Control Logic Register 2 (ADC_CLR2).

In One-Shot Mode (MODE=0) a sequential conversion of the number of channels specified
in the ADC_CLR2 register is performed once only. At the end of each conversion the digital
result of the conversion is stored in the corresponding data register.

Clearing the START bit in the ADC_CLR0 register has no effect in One-Shot Mode.

In Scan Mode (MODE=1) a sequential conversion of the number of channels specified in
the ADC_CLR2 register is performed continuously. At the end of each conversion the digital
result of the conversion is stored in the corresponding data register. To stop Scan Mode,
clear the START bit in the ADC_CLR0 register. The ADC will clear the START bit after the
last conversion in the current scan is completed.

You can convert a single channel by setting the number of input channels to zero.

In both modes, at the end of each conversion an End Of Conversion interrupt request is
generated (if enabled by the corresponding mask bit). At the end of the sequence, an End Of
Chain interrupt request is generated (if enabled by the corresponding mask bit).
325/349

1

STR73xF MICROCONTROLLER - A/D CONVERTER (ADC)
20.3.4 Input Channel selection

You select the number of analog inputs to be converted by writing the number of the first
channel to be converted (FCH[3:0] bits) and the total number of channels minus one
(NCH[3:0] bits) in the ADC_CLR2 register. At the end of each conversion, the channel value
is incremented and the number of channels to convert is decremented until the channel
number is zero.

If FCH[3:0] or NCH[3:0] are programmed with a value greater than the maximum number of
available channels the stored value is reset to zero.

If the sum of FCH[3:0] and NCH[3:0] is greater than the number of available channels then
the conversion chain continues from channel zero after the last available channel is
converted, in a circular conversion chain.

20.3.5 Analog Clock Prescaler

Two prescalers can be used, one defining the main ADC clock frequency (CNVP), the other
(SMPP) can be optionally enabled to provide the ADC clock only during the sampling phase.
This allows you to sample at low speed while converting at full speed.

The frequency of the sampling (or conversion) clock are configured independently using the
SMPP[2:0] bits and CNVP[2:0] bits in the ADC_CLR1 register. The prescalers allow you to
configure the ADC clock frequency based on the system clock (MCLK) with the following
division factors: 1, 2, 4, 6, 8, 10, 12 or 14. Do not exceed the max ADC clock frequency of 10
MHz when programming the prescaler.

During calibration the CNVP clock is used.

You can change the prescalers only when no conversion or calibration is ongoing. To ensure
this, a write to these registers becomes effective only when the conversion/calibration start
bits are inactive.

Setting the SPEN bit in the ADC_CLR1 register allows you to use different clock division
factors for sampling and conversion as described above. When SPEN = 0, the same clock
division factor, defined by the CNVP[2:0] bits in the ADC_CLR1 register, is used for both
sampling and conversion.
326/349

1

STR73xF MICROCONTROLLER - A/D CONVERTER (ADC)
A state machine memorizes the state of the ADC in order to select the right clock during the
sampling and the conversion phase (see Figure 72).

Note If SPEN = 0, the sampling phase duration (tS) and the conversion phase duration
(TC) are defined as stated below:

tS = 10 * t(MCLK) * CNVP
tC = 20 * t(MCLK) * CNVP

If SPEN = 1, the sampling phase duration (tS) and the conversion phase duration
(TC) are defined as stated below:

tS = (10 * t(MCLK) +1)* SMPP
tC = 20 * t(MCLK) * CNVP

In both cases, the global ADC conversion time (t) is equal to:

t = tS + tC

Figure 72. ADC Prescaler Block Diagram

ADC ANALOG BLOCK

EndOfConversion

CNVP
prescaler

SMPP
prescaler

fMCLK

Clock Gating

CNVP=”000”

SMPP=”000”

fADC0

1

0

1

1

0

Finite State
Machine

SPEN

ADC DIGITAL BLOCK

CFG_PCGR0
register
327/349

1

STR73xF MICROCONTROLLER - A/D CONVERTER (ADC)
Table 45. Prescaler Programming

20.3.6 Injected conversion chain

A conversion chain can be injected by setting the JSTART bit in the ADC_CLR3 register.
This conversion can only be in one-shot mode and can interrupt the normal scan conversion;
when the injected conversion is finished the normal conversion restarts (if pending) from the
first not converted channel in the programmed chain.

At the end of each conversion an End Of Injected Conversion interrupt is issued (if enabled
by the corresponding mask bit) and at the end of the sequence an End Of Injected Chain
interrupt is issued (if enabled by the corresponding mask bit).

The first channel of the injected chain is programmed by the JFCH field in the ADC_CLR3
register. the number of converted channels is programmed by the JNCH field in ADC_CLR3
register.

When you set the JSTART bit in the ADC_CLR3 register the current conversion is
terminated and the injected chain is converted. At the end of the chain the JSTART bit is
reset and the normal chain conversion is resumed.

20.3.7 Analog watchdogs

Four programmable watchdogs are available for analog threshold detection.

For each analog watchdog, the analog input channel to be guarded is selected by the
THRCHn bits in the ADC_TRAx (x=0, 1, 2, 3) registers.

The low and high thresholds of the guarded area are selected by the THRL and THRH bits
in the ADC_TRBx and ADC_TRAx (x=0, 1, 2, 3) registers.

The analog watchdogs are enabled by setting the THREN bits in the ADC_TRBx (x=0, 1, 2,
3) registers.

After the conversion of the selected channel is done, a comparison is performed between
the current channel and the threshold values in THRL and THRH. The result is stored in the
THRx bits in the ADC_PBR register as shown in Table 47, and, depending on the MSKxL

CNVP[2:0] /SMMP[2:0] bits CNVP/SMPP Value fADC

000
001
010
011
100
101
110
111

1
2
4
6
8

10
12
14

fMCLK
fMCLK/2
fMCLK/4
fMCLK/6
fMCLK/8
fMCLK/10
fMCLK/12
fMCLK/14
328/349

1

STR73xF MICROCONTROLLER - A/D CONVERTER (ADC)
and MSKxH mask bits in the ADC_IMR register, an interrupt request is generated if the
converted value is outside the guarded area shown in Figure 73.

20.3.8 DMA functionality

A DMA request can be programmed after the conversion of each channel, by setting the
respective masking bit DMAx (x=[0..15]) in the DMAR register. It is strongly recommended to
set/reset the DMA masking bits only when the channel conversion is stopped.

The DMA transfers can only be executed if the DMAEN bit in the ADC_DMAE register is set.

When the DMAEN bit is set, the number of the first DMA-enabled conversion channel is
stored in the DENCH[3:0] bits in the ADC_DMAE register.

20.3.9 Interrupts

The ADC is able to generate five interrupt requests:

■ EOC (End of Conversion) interrupt request;

■ ECH (End of Chain) interrupt request;

■ JEOC (End of injected Conversion) interrupt request;

■ JECH (End of injected Chain) interrupt request;

■ Analog Watchdog interrupt requests (two pending bits for each channel)

The logical OR of all previous requests is provided to the EIC.

Two registers named ADC_PBR (Pending Bit Register) and ADC_IMR (Interrupt Mask
Register) are provided in order to check and enable the interrupt request to the EIC.

The ADC_PBR register contains the interrupt pending request. The Watchdog interrupt
source sets 2 pending bits (as indicated in Table 47) for each of the 4 guarded channels.

Figure 73. Analog Watchdog Guarded Area

Analog Voltage

Upper threshold

Lower threshold

Guarded area

THRH

THRL
329/349

1

STR73xF MICROCONTROLLER - A/D CONVERTER (ADC)
To reset a PBR pending bit, a register write with all bits to zero except the one to be cleared
should be done by software.

This is the only write operation on the PBR register. Any other write operation is forbidden,
so the register is accessible in Read/Clear mode only.

The ADC_IMR register stores the 12 bits used to enable the interrupt request sources. The
register is read/write accessible.

20.3.10 Power down mode

The analog part of the ADC can be put in low power mode by setting the PWDN bit in
ADC_CLR4 register.

After reset, the analog module is in power-down by default, so this state must be exited
before starting any operation, by resetting the appropriate bit in ADC_CLR4.

When in power-down mode, no calibration or conversion can be started, and if a calibration
or conversion is ongoing, the operation is immediately killed, and must be restarted
manually (by setting the appropriate start bit) after resuming from power-down.

20.3.11 Auto-clock-off mode

To reduce the power consumption also during operation (without going into power-down
mode) an “auto-clock-off” feature can be enabled by setting the ACKO bit in the ADC_CLR4
register. When enabled the analog clock is automatically switched off when no operation is
ongoing.
330/349

1

STR73xF MICROCONTROLLER - A/D CONVERTER (ADC)
20.4 Register Description

20.4.1 ADC Data Register (ADC_Dx)

Address Offset: 50h...8Ch
Reset value: 0000h

The conversion results for the 16 available channels are loaded into the 16 different Data
registers following conversion of the corresponding analog input.

Bits 15:10 = Reserved, always return ‘0’ when read.

Bits 9:0 = CDATA: Channel converted data.

20.4.2 Control Logic Register 0 (ADC_CLR0)

Address Offset: 00h
Reset value: 0000h

Bit 15:2 = Reserved, always return ‘0’ when read.

Bit 1 = CAL: Calibrate.
0: No effect (write) or no calibration ongoing (read)
1: Start calibration (write) or Calibration ongoing (read). No other operation (except
powerdown operation) is possible until the calibration is terminated, i.e. when this bit is
cleared by hardware.

Bit 0 = START: Start conversion.
0: Stop conversion. Clearing this bit in Scan conversion mode causes the current chain
conversion to finish and stops the operation.
1: Start chain or scan conversion. This bit stays high value while conversion is ongoing (or
pending in injection mode).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved CDATA

- r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved CAL START

- rw rw
331/349

1

STR73xF MICROCONTROLLER - A/D CONVERTER (ADC)
20.4.3 Control Logic Register 1 (ADC_CLR1)

Address Offset: 04h
Reset value: 0000h

Bit 15 = SPEN: Sample prescaler enable.
0: Use clock from Conversion Prescaler during sampling phase.
1: Use clock from Sampling Prescaler during sampling phase.

Bit 14:8 = Reserved, always return ‘0’ when read.

Bit 7:5 = CNVP[2:0]: Conversion prescaler.
These bits are written by software to define the prescaling factor used during calibration and
conversion. Refer to Table 46. This clock is also used for sampling if the SPEN bit is cleared.

Bit 4:3 = Reserved, always return ‘0’ when read.

Bit 2:0 = SMPP: Sampling prescaler.
These bits are written by software to define the prescaling factor used the sampling phase of
the conversion. Refer to Table 46. This clock is applied only during channel sampling and if
the SPEN bit is set.
If a conversion or a calibration is ongoing, a write to this field becomes effective only at the
end of the pending operation.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPEN reserved CNVP reserved SMPP

rw - rw - rw

Table 46. Conversion/Sampling Prescaler configuration

CNVP[2:0] / SMPP[2:0] fADC

000 MCLK

001 MCLK/2

010 MCLK/4

011 MCLK/6

100 MCLK/8

101 MCLK/10

110 MCLK/12

111 MCLK/14
332/349

1

STR73xF MICROCONTROLLER - A/D CONVERTER (ADC)
20.4.4 Control Logic Register 2 (ADC_CLR2)

Address Offset: 08h
Reset value: 0000h

Bit 15 = MODE: One-Shot/Scan.
0: One-Shot Mode: configure the conversion of one chain (from channel FCH for NCH
channels).
1: Scan Mode: configure continuous chain conversion mode (from channel FCH for NCH
channels); when the programmed chain conversion is finished it restarts immediately.

Bit 14:12 = Reserved, always return ‘0’ when read.

Bit 11:10 = Reserved, must be kept at reset value (0).

Bit 9:6 = NCH[3:0]: Number of channels to be converted.
These bits define the number of channels to be converted minus one.
When a channel is converted, then the number is decremented for the successive
conversion, until number is zero. When conversion is ongoing a read of this register will
return the number of channel to be converted before the end of chain (even in injected
mode).
At the end of chain operation the value written by software is restored.

Bit 5:4 = Reserved, must be kept at reset value (0).

Bit 3:0 = FCH[3:0]: First channel to be converted.
These bits define the starting analog input channel.
The first channel addressed by FCH is converted, then the channel number is incremented
for the successive conversion, until last channel is converted. When conversion is ongoing a
read of this register will return the number of the currently converted channel (or the pending
channel during injected mode).
When the maximum available channel is reached and NCH is not zero, the next converted
channel is set to zero.
At the end of chain operation the value written by software is restored.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MODE reserved NCH reserved FCH

rw - rw - rw
333/349

1

STR73xF MICROCONTROLLER - A/D CONVERTER (ADC)
20.4.5 Control Logic Register 3 (ADC_CLR3)

Address Offset: 0Ch
Reset value: 0000h

Bit 15 = JSTART: Injection start.
0: No effect (injected conversion cannot be interrupted)
1: Start conversion of injected analog channels

Bits 14:10 = Reserved, must be kept at reset value (0).

Bit 9:6 = JNCH[2:0]: Number of Injected channels to convert.
These bits define the number of analog input channels minus one to be used for channel
injection.

Bit 5:4 = Reserved, must be kept at reset value (0).

Bit 3:0 = JFCH[3:0]: First Injected channel to convert.
These bits define the starting analog input channel for the injected conversion.

20.4.6 Control Logic Register 4 (ADC_CLR4)

Address Offset: 10h
Reset value: 8000h

Bit 15 = PWDN: Power down enable.
0: Powerdown mode disabled (no effect if a conversion or calibration is ongoing)
1: Powerdown mode enabled

Bit 14 = ACKO: Auto clock off enable.
0: Auto clock off feature disabled
1: Auto clock off feature enabled (switch off analog clock while not converting or calibrating).

Bit 13:6 = Reserved, always return ‘0’ when read.

Bit 5 = NOAVRG: No calibration average enable.
This bit is set and cleared by software.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JSTAR
T

reserved JNCH reserved JFCH

rw - rw - rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PWDN ACKO reserved
NOAVR

G
reserved

rw rw - rw -
334/349

1

STR73xF MICROCONTROLLER - A/D CONVERTER (ADC)
0: Noise filtering enabled during calibration
1: Noise filtering disabled during calibration (cuts calibration time by 16).

Bit 4:0 = Reserved, must be kept at reset value (0).

20.4.7 Threshold Registers A (ADC_TRA0 ..3)

Address Offset: 14h, 18h, 1Ch, 20h
Reset value: 0000h

The four TRAx (x = 0,1, 2, 3) registers are used to store the 10-bit user-programmable upper
threshold values and the channels linked to the threshold detection.

Bit 15:14 = Reserved, must be kept at reset value (0).

Bit 13:10 = THRCH: Channel linked to threshold detection.
These bits define the analog input channel to be used for threshold detection channel x
(x = 0,1, 2, 3).

Bit 9:0 = THRH: High threshold value for channel x.

20.4.8 Threshold Registers B (ADC_TRB0 ..3)

Address Offset: 24h, 28h, 2Ch, 30h
Reset value: 0000h

The four TRBx (x = 0,1, 2, 3) registers are used to store the 10-bit user-programmable lower
threshold values and to enable/disable the threshold detection.

Bit 15 = THREN: Threshold enable.
When set enables the threshold detection feature for the selected channel.

Bits 14:10 = Reserved, must be kept at reset value (0).

Bits 9:0 = THRL: Low threshold value for channel x.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved THRCH THRH

- rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

THREN reserved THRL

rw - rw
335/349

1

STR73xF MICROCONTROLLER - A/D CONVERTER (ADC)
20.4.9 DMA Channel Enable Register (ADC_DMAR)

Address Offset: 34h
Reset value: 0000h

Bits 15:0 = DMA[15:0]: DMA enable for channel n.
0: DMA capability is disabled for channel n.
1: Channel n is enabled to transfer data in DMA mode

20.4.10 DMA Global Enable Register (ADC_DMAE)

Address Offset: 44h
Reset value: 0000h

Bit 15 = DMAEN: DMA global enable.

This bit must be set by software to globally enable the DMA feature.
0: DMA disabled
1: DMA enabled

Bits 14:4 = Reserved, must be kept at reset value (0).

Bits 3:0 = DENCH: DMA first enabled channel.
The number of the first DMA-enabled channel valid when DMAEN bit was last set (read
only).

20.4.11 Pending Bit Register (ADC_PBR)

Address Offset: 48h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMA15 DMA14 DMA13 DMA12 DMA11 DMA10 DMA9 DMA8 DMA7 DMA6 DMA5 DMA4 DMA3 DMA2 DMA1 DMA0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMAEN reserved DENCH

rw - r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved THR3 THR2 THR1 THR0 JEOC JECH EOC ECH

- rc rc rc rc rc rc rc rc
336/349

1

STR73xF MICROCONTROLLER - A/D CONVERTER (ADC)
Bit 15:12 = Reserved, always return ‘0’ when read.

Bit 11:10 = THR3[1:0]: Threshold Detection channel 3.
These bits contain the result of the comparison on Analog Watchdog Threshold Channel 3.
Refer to Table 47. Comparison takes place only if the THREN bit in the ADC_TRA3 register
is set. Threshold channel 3 is associated with an analog input channel using the THRCH bits
in the ADC_TRA3 register. An interrupt request is generated if enabled by the corresponding
MSK bit in the ADC_IMR register

Bits 9:8 = THR2[1:0]: Threshold Detection channel 2.
These bits contain the result of the comparison on Analog Watchdog Threshold Channel 2.
Refer to Table 47. Comparison takes place only if the THREN bit in the ADC_TRA2 register
is set. Threshold channel 2 is associated with an analog input channel using the THRCH bits
in the ADC_TRA2 register. An interrupt request is generated if enabled by the corresponding
MSK bit in the ADC_IMR register

Bits 7:6 = THR1[1:0]: Threshold Detection channel 1.
These bits contain the result of the comparison on Analog Watchdog Threshold Channel 1.
Refer to Table 47. Comparison takes place only if the THREN bit in the ADC_TRA1 register
is set. Threshold channel 1 is associated with an analog input channel using the THRCH bits
in the ADC_TRA1 register. An interrupt request is generated if enabled by the corresponding
MSK bit in the ADC_IMR register

Bits 5:4 = THR0[1:0]: Threshold Detection channel 0.
These bits contain the result of the comparison on Analog Watchdog Threshold Channel 0.
Refer to Table 47. Comparison takes place only if the THREN bit in the ADC_TRA0 register
is set. Threshold channel 0 is associated with an analog input channel using the THRCH bits
in the ADC_TRA0 register. An interrupt request is generated if enabled by the corresponding
MSK bit in the ADC_IMR register

Bit 3 = JEOC: End of injected channel conversion.
This bit is set by hardware at the End Of Injected Conversion started by the JSTART bit. An
interrupt request is generated if enabled by the MSKJEOC bit in the ADC_IMR register.
0: No JEOC event
1: End of conversion of injected channel

Bit 2 = JECH: End of injected chain conversion.
This bit is set by hardware at the End of Injected Chain conversion started by the JSTART
bit. An interrupt request is generated if enabled by the MSKJECH bit in the ADC_IMR

Table 47. Meaning of Analog Watchdog THRx[1:0] bits
THRx[1:0] bits Meaning

10 converted data >= THRH

01 converted data < THRL

00 THRL <= converted data < THRH
337/349

1

STR73xF MICROCONTROLLER - A/D CONVERTER (ADC)
register.
0: No JECH event
1: End of injected Chain Conversion

Bit 1 = EOC: End of conversion.
This bit is set by hardware at the End of Conversion started by the START bit. An interrupt
request is generated if enabled by the MSKEOCH bit in the ADC_IMR register.
0: No EOC event
1: End Conversion

Bit 0 = ECH: End of chain conversion.
This bit is set by hardware at the End of Chain conversion started by the START bit. An
interrupt request is generated if enabled by the MSKECH bit in the ADC_IMR register.
0: No ECH event
1: End of Chain Conversion

20.4.12 Interrupt Mask Register (ADC_IMR)

Address Offset: 4Ch
Reset value: 0000h

Bit 15:12 = Reserved, always return ‘0’ when read.

Bit 11 = MSK3H: Analog Watchdog 3 High Threshold Interrupt Enable.
This bit is set and cleared by software.
0: THR3H interrupt request disabled
1: THR3H interrupt request enabled. An interrupt request is generated if the voltage on the
channel guarded by Analog Watchdog 3 is greater than or equal to the high threshold
(THR3[1:0]=10).

Bit 10 = MSK3L: Analog Watchdog 3 Low Threshold Interrupt Enable.
This bit is set and cleared by software.
0: THR3L interrupt request disabled
1: THR3L interrupt request enabled. An interrupt request is generated if the voltage on the
channel guarded by Analog Watchdog 3 is less than the low threshold (THR3[1:0]=01).

Bit 9 = MSK2H: Analog Watchdog 2 High Threshold Interrupt Enable.
This bit is set and cleared by software.
0: THR2H interrupt request disabled
1: THR2H interrupt request enabled. An interrupt request is generated if the voltage on the

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved MSK3H MSK3L MSK2H MSK2L MSK1H MSK1L MSK0H MSK0L
MSK
JEOC

MSK
JECH

MSK
EOC

MSK
ECH

- rw rw rw rw rw rw rw rw rw rw rw rw
338/349

1

STR73xF MICROCONTROLLER - A/D CONVERTER (ADC)
channel guarded by Analog Watchdog 2 is greater than or equal to the high threshold
(THR2[1:0]=10).

Bit 8 = MSK2L: Analog Watchdog 2 Low Threshold Interrupt Enable.
This bit is set and cleared by software.
0: THR2L interrupt request disabled
1: THR2L interrupt request enabled. An interrupt request is generated if the voltage on the
channel guarded by Analog Watchdog 2 is less than the low threshold (THR1[1:0]=01).

Bit 7 = MSK1H:Analog Watchdog 1 High Threshold Interrupt Enable.
This bit is set and cleared by software.
0: THR1H interrupt request disabled
1: THR1H interrupt request enabled. An interrupt request is generated if the voltage on the
channel guarded by Analog Watchdog 1 is greater than or equal to the high threshold
(THR1[1:0]=10).

Bit 6 = MSK1L: Analog Watchdog 1 Low Threshold Interrupt Enable.
This bit is set and cleared by software.
0: THR1L interrupt request disabled
1: THR1L interrupt request enabled. An interrupt request is generated if the voltage on the
channel guarded by Analog Watchdog 1 is less than the low threshold (THR1[1:0]=01).

Bit 5 = MSK0H: Analog Watchdog 0 High Threshold Interrupt Enable.
This bit is set and cleared by software.
0: THR0H interrupt request disabled
1: THR0H interrupt request enabled. An interrupt request is generated if the voltage on the
channel guarded by Analog Watchdog 0 is greater than or equal to the high threshold
(THR0[1:0]=10).

Bit 4 = MSK0L: Analog Watchdog 0 Low Threshold Interrupt Enable.
This bit is set and cleared by software.
0: THR0L interrupt request disabled
1: THR0L interrupt request enabled. An interrupt request is generated if the voltage on the
channel guarded by Analog Watchdog 0 is less than the low threshold (THR0[1:0]=01)

Bit 3 = MSKJEOC: Injected End of Conversion Interrupt Enable.
This bit is set and cleared by software.
0: JEOC interrupt request disabled
1: JEOC interrupt request enabled. The JEOC bit in the ADC_PBR register is set when an
interrupt request is generated.

Bit 2 = MSKJECH: Injected End of Chain Conversion Interrupt Enable.
This bit is set and cleared by software.
0: JECH interrupt request disabled
1: JECH interrupt request enabled. The JECH bit in the ADC_PBR register is set when an
interrupt request is generated.
339/349

1

STR73xF MICROCONTROLLER - A/D CONVERTER (ADC)
Bit 1 = MSKEOC: End of Conversion Interrupt Enable.
This bit is set and cleared by software.
0: EOC interrupt request disabled
1: EOC interrupt request enabled. The EOC bit in the ADC_PBR register is set when an
interrupt request is generated.

Bit 0 = MSKECH: End of Chain Conversion Interrupt Enable.
This bit is set and cleared by software.
0: ECH interrupt request disabled
1: ECH interrupt request enabled. The ECH bit in the ADC_PBR register is set when an
interrupt request is generated.
340/349

1

STR73xF MICROCONTROLLER - A/D CONVERTER (ADC)
20.5 ADC Register Map
Table 48. ADC Register Map

Addr.
Offse

t

Register
Name

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ADC_CLR0 reserved CAL START

4 ADC_CLR1 SPEN reserved CNVP reserved SMPP

8 ADC_CLR2 MODE reserved NCH reserved FCH

C ADC_CLR3
J

START reserved JNCH reserved JFCH

10 ADC_CLR4 PWDN ACKO reserved
NO

AVRG
reserved

14 ADC_TRA0 THRCH THRH

18 ADC_TRA1 THRCH THRH

1C ADC_TRA2 THRCH THRH

20 ADC_TRA3 THRCH THRH

24 ADC_TRB0
THR
EN

reserved THRL

28 ADC_TRB1 THR
EN

reserved THRL

2C ADC_TRB2
THR
EN

reserved THRL

30 ADC_TRB3
THR
EN

reserved THRL

34 ADC_DMAR
DMA
15

DMA
14

DMA
13

DMA
12

DMA
11

DMA
10

DMA9 DMA8 DMA7 DMA6 DMA5 DMA4 DMA3 DMA2 DMA1 DMA0

44 ADC_DMAE
DMAE

N
reserved DENCH

48 ADC_PBR reserved THR3 THR2 THR1 THR0 JEOC JECH EOC ECH

4c ADC_IMR reserved
MSK3

H
MSK3

L
MSK2

H
MSK2

L
MSK1

H
MSK1

L
MSK0

H
MSK
0L

MSK
JEOC

MSK
JECH

MSKE
OC

MSKEC
H

50 ADC_D0 reserved CDATA

...

8C ADC_D15 reserved CDATA
341/349

1

STR73xF MICROCONTROLLER - APB BRIDGE
21 APB BRIDGE

The APB Bridge allows the connection between the ARM7TDMI native bus and the devices
available on the Advanced Peripheral Bus (APB) rev. E bus. Two separate bridges are
implemented on STR73x, each one requiring an ARM memory window of 16KB.

The APB memory space decoding is provided by the APB Bridge. Peripherals mapped on
APB bus are aligned to word boundaries. The two APB bridges subdivide the APB space in
32 sub-pages of 1KBytes each, dedicated to the different STR73x APB mapped peripherals,
and to APB Bridge Registers.

21.1 Register Description

Each Bridge module implements four internal registers, 32 bits wide, mapped in the APB
BRIDGE REGISTER window. These registers are used for error detection and status report.

Note The APB Bridge registers MUST be accessed with 32 bit aligned operations (i.e. no
byte/half word cycles are allowed).

Bridge Status Register (APBn_BSR)

Address Offset: 00h
Reset value: 0000 0000h

This is a READ/CLEAR register, that means that it can be read and a write with ‘0’ has not
effect, while a write with ‘1’ clears the bit (reset to ‘0’).

Bit 31:6 = Reserved.

Bit 5 = APBT: APB Time-out Flag.
It is set when an APB Time-out condition occurs.

Bit 4 = OUTM: Out of Memory.
It is set when an Out of Memory condition occurs: this error generates an abort termination
(if enabled) on the ARM7TDMI bus.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved APBT OUTM reserved ABORT

- rc rc - rc
342/349

1

STR73xF MICROCONTROLLER - APB BRIDGE
When the APB Bridge is selected, but the address value points to the reserved memory
window dedicated to the Bridge registers but outside the first 16 locations (that is with
address in the range of x010h to x3FFh), an out of memory condition is detected. This
condition can be generated by a prohibited access to the address space of the APB Bridge
internal register only. On STR73x implementation no exceptions are generated when
sofware accesses reserved address windows dedicated to the peripherals.

Bits 3:1 = Reserved, must be kept at reset value.

Bit 0 = ABORT: Abort Flag.
It is set when an ARM7TDMI memory cycle has been terminated with the abort condition by
the Bridge (the source of the abort termination can be read in bit 4 and 5 of the same
register). In case of Time-out, the ABORT is generated ONLY for read accesses to the
peripherals. The write access, due to the fact that it is posted, cannot report the APB
Time-out condition with an ABORT termination (the operation is no more present on the
ARM7TDMI bus).

Time-out Register (APBn_TOR)

Address Offset: 04h
Reset value: 0000 0000h

Bits 31:9 = Reserved, must be kept at reset value.

Bit 8 = ABTEN: Abort Enable.
When set to ‘1’ it enables the abort generation, on the ARM7TDMI bus, when an APB
Time-out or an out-of-memory condition occur. If not enabled, in case of error, the Bridge will
set the APBT bit in the Status Register, but will normally terminate the operation on the ARM
bus.

Bit 7:5 = Reserved, must be kept at reset value.

Bit 4:0 = TOUT_CNT: Time-out Counter.
When “00000” the time-out counter is disabled; when different from zero, it represents the
delay, in term of APB clock periods, the Bridge can wait for a target completion, before
asserting the time-out error flag.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ABTEN reserved TOUT_CNT

- rw - rw
343/349

1

STR73xF MICROCONTROLLER - APB BRIDGE
Out of Memory Register (APBn_OMR)

Address Offset: 08h
Reset value: 0000 0000h

Bits 31:24 = Reserved, must be kept at reset value.

Bits 23:8 = Peripheral Address (15:0).
The Bridge is able to detect an out of memory condition on the APB bus, when the ARM
addresses the reserved memory window (address in the range of x010h to x3FFh in APB
register window only). If this condition occurs, the Bridge ends the APB transaction and
reports on the ARM7TDMI bus an ABORT condition (if enabled). The address of slave
generating the error condition is reported in the Peripheral Address field.

Bit 7 = nRW: Read/Write Operation Flag.
It indicates the type of operation (Read=’0’ or Write=’1’) that generated the out of memory
error condition.

Bit 6:0 = Reserved, must be kept at reset value.

Note This register is updated only at the first Out of Memory condition occurrence: it will
contain information about a new one only if OUTM flag (bit 4 of Status Register) will
have been cleared by the CPU.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved Peripheral Address (15:8)

- r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Peripheral Address (7:0) nRW reserved

r r -
344/349

1

STR73xF MICROCONTROLLER - APB BRIDGE
Time-out Error Register (APBn_TOER)

Address Offset: 0Ch
Reset value: 0000 0000h

Bit 31:24 = Reserved, must be kept at reset value.

Bit 23:8 = Peripheral Address (15:0).
The Bridge is able to detect a time-out condition on the APB bus, when a target device takes
too much time in responding to the ARM, in particular longer than the defined TOUT_CNT. If
this condition occurs, the Bridge ends the APB transaction and reports on the ARM7TDMI
bus an ABORT condition (if enabled). The address of slave generating the error condition is
reported in the Peripheral Address field.

For further information on abort mode, please refer to ARM7TDMI datasheet.

Bit 7 = nRW: Read/Write Operation Flag.
It indicates the type of operation (Read=’0’ or Write=’1’) that generated the time-out
condition.

Bits 6:0 = Reserved.

Note This register is updated only at the first time-out condition: it will contain information
about a new one only after the APBT flag (bit 5 of Status Register) will have been
cleared by the CPU.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved Peripheral Address (15:8)

- r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Peripheral Address (7:0) nRW reserved

r r -
345/349

1

STR73xF MICROCONTROLLER - APB BRIDGE
21.2 APB Register map

See Table 2 for base addresses

Table 49. APBn Register Map

Addr.
Offset

Register Name
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 APBn_BSR reserved

A
B

P
T

O
U

T
M

reserved

A
B

O
R

T

04 APBn_TOR reserved

A
B

T
E

N

reserved TOUT_CNT

08 APBn_OMR reserved Peripheral Address

nR
W reserved

0C APBn_TOER reserved Peripheral Address

nR
W reserved
346/349

1

STR73xF MICROCONTROLLER - JTAG INTERFACE
22 JTAG INTERFACE

The ARM7TDMI implements the so called Debug Interface, based on IEEE Std. 1149.1-1993,
“Standard Test Access Port-Scan Boundary Architecture”. For concept and terms used in this
section refer first of all to this standard; secondly, since ARM7TDMI contains hardware
extensions of the standard for advanced debugging features, refer also to the document
“ARM7TDMI Data Sheet” Ref. ARM DDI 0029E.

22.1 Pins and Reset status

The IEEE standard gives a set of indications about how to implement internal resistors on
JTAG pins; they are briefly summarized hereinafter.

JTRST: To be held low at Power-on in such a way to produce an initialization (reset) of the
module. When out of reset the pin shall be Pulled up. When JTAG is not in use, it may be
anyway held under reset status, grounding permanently JTRST pin.

JTDI: To be Pulled up by external resistor.

JTMS: To be Pulled up by external resistor. In particular it shall be high during ‘0’ to ‘1’
transition of JTRST.

JTCK: The JTAG finite state machine shall maintain the state indefinitely when JTCK is held
low; optionally, a similar behaviour is obtained holding high the pin JTCK as well. The
standard does not impose any pull-up or pull-down device. Anyway, a floating input is not
recommended to avoid static power consumption.

JTDO: High impedance when not in use.

According to the standard, in STR73x system device the following internal resistor are
required, hence they need to be implemented on the host board.

■ JTRST Pull-up

■ JTDI Pull-up

■ JTMS Pull-up

■ JTCK Pull-down

■ JTDO Floating or Pull-up/down (no static consumption anyway)

If the JTAG interface is never used, all the pins can be grounded indefinitely.
347/349

STR73xF MICROCONTROLLER - REVISION HISTORY
23 REVISION HISTORY

Table 50. Revision history

Date Revision Description of Changes

20-Sept-2005 1.0 First release
348/349

STR73xF MICROCONTROLLER - REVISION HISTORY
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use.
No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written
approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.

All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com
349/349

	1 INTRODUCTION
	2 MEMORY
	2.1 Memory Organization
	2.1.1 Memory Map
	2.1.1.1 Register Base Addresses
	2.1.1.2 APB Memory Map

	2.1.2 Boot Memory
	2.1.3 RAM
	2.1.4 Flash
	2.1.4.1 Flash Power Down mode

	2.2 Boot Configuration
	2.2.1 SystemMemory Boot Mode

	3 POWER, RESET AND CLOCKS
	3.1 Power Supply
	3.2 Reset
	3.2.1 Reset Pin Timing
	3.2.2 LVD Reset
	3.2.2.1 Power-on
	3.2.2.2 Voltage Drop

	3.3 Clocks
	3.3.1 RC Oscillator

	3.4 Low Power Modes
	3.4.1 Slow Mode
	3.4.2 WFI Mode
	3.4.3 LPWFI Mode
	3.4.4 Halt Mode
	3.4.5 Stop Mode

	3.5 Clock Monitor Unit (CMU)
	3.5.0.1 Introduction
	3.5.1 Register Write Protection
	3.5.2 Clock Source Selection
	3.5.3 Oscillator Frequency Monitoring
	3.5.4 MCLK Frequency Monitoring
	3.5.5 Clock Frequency Measurement
	3.5.6 RC Oscillator Control
	3.5.7 Limitations
	3.5.8 Register Description
	3.5.8.1 RC Oscillator Control Register (CMU_RCCTL)
	3.5.8.2 Frequency Display Register (CMU_FDISP)
	3.5.8.3 Frequency Reference High Register (CMU_FRH)
	3.5.8.4 Frequency Reference Low register (CMU_FRL)
	3.5.8.5 Control Register (CMU_CTRL)
	3.5.8.6 Status Register (CMU_STAT)
	3.5.8.7 Interrupt Status Register (CMU_IS)
	3.5.8.8 Interrupt Mask Register (CMU_IM)
	3.5.8.9 End Of Count Value Register (CMU_EOCV)
	3.5.8.10 Write Enable Register (CMU_WE)

	3.5.9 CMU Register Map

	3.6 Power, Reset and Clock Control Unit (PRCCU)
	3.6.1 Overview
	3.6.2 PLL Clock Multiplier Programming
	3.6.3 Peripheral Clocks
	3.6.4 RT Clock (fEXT)
	3.6.5 Clock Configuration Reset State
	3.6.6 Interrupt Generation
	3.6.7 Register Description
	3.6.7.1 Clock Control Register (PRCCU_ CCR)
	3.6.7.2 Voltage Regulator Control Register (PRCCU_VRCTR)
	3.6.7.3 Clock Flag Register (PRCCU_CFR)
	3.6.7.4 PLL Configuration Register (PRCCU_PLLCR)
	3.6.7.5 System Mode Register (PRCCU_SMR)
	3.6.7.6 Real Time Clock Programming Register (PRCCU_RTCPR)

	3.6.8 PRCCU Register Map

	4 CONFIGURATION REGISTERS (CFG)
	4.1 System Configuration Registers
	4.1.1 Configuration Register 0 (CFG_R0)
	4.1.2 Configuration Register 1 (CFG_R1)
	4.1.3 Device Identification Register (CFG_DIDR)

	4.2 External Interrupt Request Configuration Registers
	4.2.1 External Interrupt Trigger Event Register 0 (CFG_EITE0)
	4.2.2 External Interrupt Trigger Event Register 1 (CFG_EITE1)
	4.2.3 External Interrupt Trigger Event Register (CFG_EITE2)

	4.3 Peripheral Clock Management Registers
	4.3.1 Clock management in User Mode
	4.3.1.1 Peripheral Clock Gating Register 0 (CFG_PCGR0)
	4.3.1.2 Peripheral Clock Gating Register 1 (CFG_PCGR1)
	4.3.1.3 Peripheral Clock Gating Register B0 (CFG_PCGRB0)
	4.3.1.4 Peripheral Clock Gating Register B1 (CFG_PCGRB1)
	4.3.1.5 TIM External Clock Select Register (CFG_TIMSR)
	4.3.1.6 Clock Management in Emulation Mode
	4.3.1.7 Peripheral Emulation Clock Gating Register 0 (CFG_PECGR0)
	4.3.1.8 Peripheral Emulation Clock Gating Register 1 (CFG_PECGR1)

	4.4 BSPI and UART Management in Emulation Mode
	4.4.1 Emulation Serial Protection Register (CFG_ESPR)

	4.5 CFG Register Map

	5 Clock Tree Map
	6 I/O PORTS
	6.1 Functional Description
	6.1.1 Input Configuration
	6.1.2 Input Pull Up/Pull Down Configuration
	6.1.3 Output Configuration
	6.1.4 Alternate Function Configuration
	6.1.5 High impedance-Analog Input Configuration

	6.2 Register Description
	6.2.1 I/O Port Register Map

	7 INTERRUPTS
	7.1 Enhanced Interrupt Controller (EIC)
	7.1.1 IRQ Interrupt Vector Table
	7.1.2 FIQ Interrupt Vector Table
	7.1.3 IRQ Interrupt Structure
	7.1.4 Priority Decoder
	7.1.5 Finite State Machine
	7.1.6 Stack
	7.1.7 EIC Interrupt Vectoring
	7.1.8 EIC IRQ notes

	7.2 FIQ mechanism
	7.3 Register Programming
	7.4 Application note
	7.4.1 Avoiding LR_sys and r5 registers content loss
	7.4.2 Hints about subroutines used inside ISRs

	7.5 Interrupt latency
	7.6 Register Description
	7.6.1 Interrupt Control Register (EIC_ICR)
	7.6.2 Current Interrupt Channel Register (EIC_CICR)
	7.6.3 Current Interrupt Priority Register (EIC_CIPR)
	7.6.4 Fast Interrupt Enable Register (EIC_FIER)
	7.6.5 Fast Interrupt Pending Register (EIC_FIPR)
	7.6.6 Interrupt Vector Register (EIC_IVR)
	7.6.7 Fast Interrupt Register (EIC_FIR)
	7.6.8 Interrupt Enable Register 0 (EIC_IER0)
	7.6.9 Interrupt Enable Register 1 (EIC_IER1)
	7.6.10 Interrupt Pending Register 0 (EIC_IPR0)
	7.6.11 Interrupt Pending Register 1 (EIC_IPR1)
	7.6.12 Source Interrupt Registers - Channel n (EIC_SIRn)

	7.7 EIC Register Map
	7.8 External Interrupt Pins INT[15:0]
	7.8.1 Edge-Triggered External Interrupts
	7.8.2 Level-Triggered External Interrupts

	7.9 Wake-Up Interrupt Unit (WIU)
	7.9.1 Features
	7.9.2 Functional Description
	7.9.2.1 Interrupt Mode
	7.9.2.2 Wake-up Mode Selection
	7.9.2.3 Stop Mode Entry Conditions

	7.9.3 Programming Considerations
	7.9.3.1 Procedure for Entering/Exiting Stop mode
	7.9.3.2 Simultaneous Setting of Pending Bits

	7.9.4 Register Description
	7.9.4.1 Wake-up Control Register (WIU_CTRL)
	7.9.4.2 Wake-up Mask Register (WIU_MR)
	7.9.4.3 Wake-up Trigger Register (WIU_TR)
	7.9.4.4 Wake-up Software Interrupt Register (WIU_INTR)
	7.9.4.5 Wake-up Pending Register (WIU_PR)
	7.9.4.6 WIU Register map

	8 DMA CONTROLLER (DMA)
	8.1 Introduction
	8.2 DMA Controller Priority
	8.3 DMA Request Mapping
	8.4 Functional description
	8.5 Register Description
	8.6 DMA Register Map

	9 NATIVE BUS ARBITER (ARB)
	9.1 Register description
	9.1.1 Time-Out Register (ARB_TOR)
	9.1.2 Priority Register (ARB_PRIOR)
	9.1.3 Control Register (ARB_CTLR)

	10 WAKE-UP TIMER (WUT)
	10.1 Introduction
	10.2 Main Features
	10.3 Functional Description
	10.3.1 Free-running Timer mode

	10.4 Programming Considerations
	10.5 Register Description
	10.5.1 Wake-up Timer Control Register (WUT_CR)
	10.5.2 Wake-up Timer Prescaler Register (WUT_PR)
	10.5.3 Wake-up Timer Pre-load Value Register (WUT_VR)
	10.5.4 Wake-up Timer Counter Register (WUT_CNT)
	10.5.5 Wake-up Timer Status Register (WUT_SR)
	10.5.6 Wake-up Timer Mask Register (WUT_MR)

	10.6 WUT Register Map

	11 REAL TIME CLOCK (RTC)
	11.1 Introduction
	11.2 Main Features
	11.3 Functional Description
	11.3.1 Overview
	11.3.2 Free-running mode
	11.3.3 Configuration mode

	11.4 Register description
	11.4.1 RTC Control Register High (RTC_CRH)
	11.4.2 RTC Control Register Low (RTC_CRL)
	11.4.3 RTC Prescaler Load Register High (RTC_PRLH)
	11.4.4 RTC Prescaler Load Register Low (RTC_PRLL)
	11.4.5 RTC Prescaler Divider Register High (RTC_DIVH)
	11.4.6 RTC Prescaler Divider Register Low (RTC_DIVL)
	11.4.7 RTC Counter Register High (RTC_CNTH)
	11.4.8 RTC Counter Register Low (RTC_CNTL)
	11.4.9 RTC Alarm Register High (RTC_ALRH)
	11.4.10 RTC Alarm Register Low (RTC_ALRL)

	11.5 RTC Register map

	12 WATCHDOG TIMER (WDG)
	12.1 Introduction
	12.2 Main Features
	12.3 Functional Description
	12.3.1 Free-running Timer mode
	12.3.2 Watchdog mode

	12.4 Register description
	12.4.1 WDG Control Register (WDG_CR)
	12.4.2 WDG Prescaler Register (WDG_PR)
	12.4.3 WDG Preload Value Register (WDG_VR)
	12.4.4 WDG Counter Register (WDG_CNT)
	12.4.5 WDG Status Register (WDG_SR)
	12.4.6 WDG Mask Register (WDG_MR)
	12.4.7 WDG Key Register (WDG_KR)

	12.5 WDG Register Map

	13 TIMEBASE TIMER (TB)
	13.1 Main Features
	13.2 Functional Description
	13.2.1 Free-running Timer mode

	13.3 Register Description
	13.4 TB Register Map

	14 TIMER (TIM)
	14.1 Introduction
	14.2 Main Features
	14.3 Functional Description
	14.3.1 Counter
	14.3.2 External Clock
	14.3.3 Input Capture
	14.3.4 Procedure
	14.3.5 Output Compare
	14.3.5.1 Procedure

	14.3.6 Forced Compare Mode
	14.3.7 One Pulse Mode
	14.3.7.1 Procedure

	14.3.8 Pulse Width Modulation Mode
	14.3.8.1 Procedure

	14.3.9 Pulse Width Modulation Input
	14.3.9.1 Procedure

	14.4 Interrupt Management
	14.4.1 Use of interrupt channels

	14.5 DMA function
	14.6 Register Description
	14.6.1 Input Capture A Register (TIMn_ICAR)
	14.6.2 Input Capture B Register (TIMn_ICBR)
	14.6.3 Output Compare A Register (TIMn_OCAR)
	14.6.4 Output Compare B Register (TIMn_OCBR)
	14.6.5 Counter Register (TIMn_CNTR)
	14.6.6 Control Register 1 (TIMn_CR1)
	14.6.7 Control Register 2 (TIMn_CR2)
	14.6.8 Status Register (TIMn_SR)

	14.7 TIM Register Map

	15 PULSE WIDTH MODULATOR (PWM)
	15.1 Introduction
	15.2 Main Features
	15.3 Functional Description
	15.3.1 PWM operating mode
	15.3.2 Formulas

	15.4 Register Description
	15.4.1 Prescaler 0 Register (PWMn_PRS0)
	15.4.2 Prescaler 1 Register (PWMn_PRS1)
	15.4.3 PWM Enable Register (PWMn_PEN)
	15.4.4 PWM Output Polarity Level Selection (PWMn_PLS)
	15.4.5 PWM Compare Period Interrupt (PWMn_CPI)
	15.4.6 PWM Interrupt Mask Register (PWMn_IM)
	15.4.7 PWM Output Duty Register (PWMn_DUT)
	15.4.8 PWM Output Period Register (PWMn_PER)

	15.5 PWM Register Map

	16 CAN CONTROLLER (CAN)
	16.1 Introduction
	16.2 Main Features
	16.3 Block Diagram
	16.4 Functional Description
	16.4.1 Software Initialization
	16.4.2 CAN Message Transfer
	16.4.3 Disabled Automatic Retransmission Mode
	16.4.4 Test Mode
	16.4.5 Silent Mode
	16.4.6 Loop Back Mode
	16.4.7 Loop Back combined with Silent Mode
	16.4.8 Basic Mode
	16.4.9 Software Control of CAN_TX Pin

	16.5 Register Description
	16.6 CAN Register Map
	16.6.1 CAN Interface Reset State
	16.6.2 CAN Protocol Related Registers
	16.6.2.1 CAN Control Register (CANn_CR)
	16.6.2.2 Status Register (CANn_SR)
	16.6.2.3 Error Counter (CANn_ERR)
	16.6.2.4 Bit Timing Register (CANn_BTR)
	16.6.2.5 Test Register (CANn_TESTR)
	16.6.2.6 BRP Extension Register (CANn_BRPR)

	16.6.3 Message Interface Register Sets
	16.6.3.1 IFn Command Request Registers (CANn_IFn_CRR)
	16.6.3.2 IFn Command Mask Registers (CANn_IFn_CMR)
	16.6.3.3 IFn Message Buffer Registers
	16.6.3.4 IFn Mask 1 Register (CANn_IFn_M1R)
	16.6.3.5 IFn Mask 2 Register (CANn_IFn_M2R)
	16.6.3.6 IFn Message Arbitration 1 Register (CANn_IFn_A1R)
	16.6.3.7 IFn Message Arbitration 2 Register (CANn_IFn_A2R)
	16.6.3.8 IFn Message Control Registers (CANn_IFn_MCR)
	16.6.3.9 IFn Data A/B Registers (CANn_IFn_DAnR and CANn_IFn_DBnR)
	16.6.3.10 Message Object in the Message Memory

	16.6.4 Message Handler Registers
	16.6.4.1 Transmission Request Registers 1 & 2 (CANn_TxRnR)
	16.6.4.2 New Data Registers 1 & 2 (CANn_NDnR)
	16.6.4.3 Interrupt Pending Registers 1 & 2 (CANn_IPnR)
	16.6.4.4 Message Valid Registers 1 & 2 (CANn_MVnR)

	16.7 CAN Communications
	16.7.1 Managing Message Objects
	16.7.2 Message Handler State Machine
	16.7.2.1 Data Transfer from / to Message RAM
	16.7.2.2 Message Transmission
	16.7.2.3 Acceptance Filtering of Received Messages
	16.7.2.4 Receive / Transmit Priority

	16.7.3 Configuring a Transmit Object
	16.7.4 Updating a Transmit Object
	16.7.5 Configuring a Receive Object
	16.7.6 Handling Received Messages
	16.7.7 Configuring a FIFO Buffer
	16.7.8 Receiving Messages with FIFO Buffers
	16.7.8.1 Reading from a FIFO Buffer

	16.7.9 Handling Interrupts
	16.7.10 Configuring the Bit Timing
	16.7.10.1 Bit Time and Bit Rate
	16.7.10.2 Propagation Time Segment
	16.7.10.3 Phase Buffer Segments and Synchronization
	16.7.10.4 Oscillator Tolerance Range
	16.7.10.5 Configuring the CAN Protocol Controller
	16.7.10.6 Calculating Bit Timing Parameters

	17 I2C INTERFACE MODULE (I2C)
	17.1 Main Features
	17.2 General Description
	17.2.1 Mode Selection
	17.2.2 Communication Flow
	17.2.3 SDA/SCL Line Control

	17.3 Functional Description
	17.3.1 Slave Mode
	17.3.1.1 Slave Receiver
	17.3.1.2 Slave Transmitter
	17.3.1.3 Closing slave communication
	17.3.1.4 Error Cases
	17.3.1.5 How to release the SDA / SCL lines

	17.3.2 Master Mode
	17.3.2.1 Start condition
	17.3.2.2 Slave address transmission
	17.3.2.3 Master Receiver
	17.3.2.4 Master Transmitter
	17.3.2.5 Error Cases

	17.4 Interrupts
	17.5 Register Description
	17.5.1 I2C Control Register (I2Cn_CR)
	17.5.2 I2C Status Register 1 (I2Cn_SR1)
	17.5.3 I2C Status Register 2 (I2Cn_SR2)
	17.5.4 I2C Clock Control Register (I2Cn_CCR)
	17.5.5 I2C Extended Clock Control Register (I2Cn_ECCR)
	17.5.6 I2C Own Address Register 1 (I2Cn_OAR1)
	17.5.7 I2C Own Address Register 2 (I2Cn_OAR2)
	17.5.8 I2C Data Register (I2Cn_DR)

	17.6 I2C Register Map

	18 BUFFERED SPI (BSPI)
	18.1 Main Features
	18.2 Functional Description
	18.2.1 BSPI Pin Description
	18.2.2 BSPI Operation
	18.2.3 Transmit FIFO
	18.2.4 Receive FIFO
	18.2.5 Start-up Status
	18.2.6 Clocking problems and clearing of the shift-register
	18.2.7 Interrupt control
	18.2.8 DMA Interface

	18.3 Register description
	18.3.1 BSPI Control/Status Register 1 (BSPIn_CSR1)
	18.3.2 BSPI Control/Status Register 2 (BSPIn_CSR2)
	18.3.3 BSPI Control/Status Register 3 (BSPIn_CSR3)
	18.3.4 BSPI Master Clock Divider Register (BSPIn_CLK)
	18.3.5 BSPI Transmit Register (BSPIn_TXR)
	18.3.6 BSPI Receive Register (BSPIn_RXR)

	18.4 BSPI Register map

	19 UART
	19.1 Introduction
	19.2 Main Features
	19.3 Functional Description
	19.3.1 Transmission
	19.3.2 Reception
	19.3.3 Timeout Mechanism
	19.3.4 Baud Rate Generation
	19.3.5 Interrupt Control
	19.3.6 Using the UART Interrupts when FIFOs are Disabled
	19.3.7 Using the UART Interrupts when FIFOs are Enabled

	19.4 Register Description
	19.4.1 UART BaudRate Register (UARTn_BR)
	19.4.2 UART TxBuffer Register (UARTn_TxBUFR)
	19.4.3 UART RxBuffer Register (UARTn_RxBUFR)
	19.4.4 UART Control Register (UARTn_CR)
	19.4.5 UART IntEnable Register (UARTn_IER)
	19.4.6 UART Status Register (UARTn_SR)
	19.4.7 UART Timeout Register (UARTn_TOR)
	19.4.8 UART TxReset Register (UARTn_TxRSTR)
	19.4.9 UART RxReset Register (UARTn_RxRSTR)

	19.5 UART Register Map

	20 A/D CONVERTER (ADC)
	20.1 Main Characteristics
	20.2 Introduction
	20.3 Functional Description
	20.3.1 Start of Calibration
	20.3.2 Start of Conversion
	20.3.3 Operating Modes
	20.3.4 Input Channel selection
	20.3.5 Analog Clock Prescaler
	20.3.6 Injected conversion chain
	20.3.7 Analog watchdogs
	20.3.8 DMA functionality
	20.3.9 Interrupts
	20.3.10 Power down mode
	20.3.11 Auto-clock-off mode

	20.4 Register Description
	20.4.1 ADC Data Register (ADC_Dx)
	20.4.2 Control Logic Register 0 (ADC_CLR0)
	20.4.3 Control Logic Register 1 (ADC_CLR1)
	20.4.4 Control Logic Register 2 (ADC_CLR2)
	20.4.5 Control Logic Register 3 (ADC_CLR3)
	20.4.6 Control Logic Register 4 (ADC_CLR4)
	20.4.7 Threshold Registers A (ADC_TRA0 ..3)
	20.4.8 Threshold Registers B (ADC_TRB0 ..3)
	20.4.9 DMA Channel Enable Register (ADC_DMAR)
	20.4.10 DMA Global Enable Register (ADC_DMAE)
	20.4.11 Pending Bit Register (ADC_PBR)
	20.4.12 Interrupt Mask Register (ADC_IMR)

	20.5 ADC Register Map

	21 APB BRIDGE
	21.1 Register Description
	21.2 APB Register map

	22 JTAG INTERFACE
	22.1 Pins and Reset status

	23 REVISION HISTORY

