Embest IDE Pro for ARM 2004
User Guide

C mbes)

Shenzhen Embest Info&Tech Co.,LTD. All rights reserved.
Tel: +86-755-25635626/25635656/25638952/25638953 Fax: +86-755-25616057
Room 210, Luohu Science&Technology Building, #85 Taining Road,
Shenzhen, Guangdong, China

Preface

This preface introduces the Embest Integrated Development Environment
(EmbestIDE) and its documentation. It contains the following sections:

e About this book

e Related Publications

e Typographical convention

e Feedback

About this book

This book is user manual for EmbestIDE for ARM. It describes the major
features of EmbestIDE, installing EmbestIDE for ARM, graphical user interface
components of EmbestIDE, and provides information on debugging applications
with EmbestIDE.

This book is organized into the following chapters:
Chapter 1 Overview

Read this chapter for an introduction to EmbestIDE.
Chapter 2 Installing EmbestIDE for ARM

Details for installing EmbestIDE, registering, files and folder

structures of EmbestIDE.

Chapter 3 Project examples

Give some examples to lead users to start with EmbestIDE

quickly

Chapter 4 Editor

Read this chapter for details about how to use EmbestIDE
built-in text editor. It describes the basic functionality of the

editor.

Chapter 5 Project management

Read this chapter for details about how to use project files to

organize your project source files.

Chapter 6 Project build

Details about specify the output from compiling and linking your
source. This chapter gives details about how to configure

compile options and link options of a project.

Chapter 7

Chapter 8

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Software debug

Introduce the debugger of EmbestIDE, details about how to
debug arm-based application with EmbestIDE.

Customization and Options

Read this chapter for details about customizes EmbestIDE.

JTAG Emulator Hardware Reference

Debug Output Reference

Debug Command List

Memory Map File

Command Script Reference

Additional Software Tools of Embest IDE

Common questions

Further Reading

This book describes all the details about Embest IDE. Refer to the following
books for information on other components of developing embedded application

base on ARM processors:
e ARM Architectural Reference Manual (ARM DUI 0100)
e ARM Reference Peripheral Specification (ARM DDI 0062)
e ARM Target Development System User Guide (ARM DUI 0061)

---you can get these papers from: www.arm.com

e Program reference of Embest IDE

http://www.arm.com/

Typographical Convention

The following typographical convention are used in this book:
Menu quote Use > to separate the main menu and submenu
Commands Highlights important notes
Notes Italic denotative arguments with lines above and below

Notes: this is an important note, and please pay attention to
it.

Feed Back on This Book

If you have any problems with this book, please send email to

press@embedinfo.com giving:
¢ the document title
¢ the page number(s) to which your comments apply
¢ a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.

1. Overview

This chapter introduces the Embest IDE. It contains the following sections:

¢ About the Embest IDE
¢ main characteristic of Embest IDE

¢ User Interface Basics

1.1 About Embest IDE

Embest IDE is an Integrated Development Environment for software
cross-development. The EmbestIDE is an application that provides a simple and
versatile graphical user interface and tools for developing embedded software.
It is an Integrated Development Environment (IDE) that facilitates managing
and building projects, establishing and managing host-target communication,
running and debugging applications. It provides an efficient way for developing
embedded applications. EmbestIDE comprises the following elements (Figure
1-1):

® An integrated source-code editor.

® A project management facility.

® Integrated C and ASM compilers and linker.
® a source-level debugger.

® an integrated development environment.

® an ARM simulator

h m r
Embest IDE Project Manager ost compute

=

[> editor -I- compiler = linker -l* debugger]

Build System

BDM/ JTAG Emulatur

Target Board
Figure 1-1: EmbestIDE Tools

EmbestIDE uses host-target cross model for developing embedded
applications. EmbestIDE runs on a host computer. Your target board is
connected to the host computer through debug device (BDM/JTAG Emulator).
You can edit and build your projects on the host, and create a target executable
file with EmbestIDE. Download the target file to the target, and then use

EmbestIDE debugger to debug it through the communication of debug device

connected between the host computer and the target board. Figurel-2

illustrates the host-target cross model with EmbestIDE.

When you use EmbestIDE for ARM, a debug device--Embest JTAG Emulator
is provided. See appendix A "JTAG Emulator Connection” for detail describe
about Embest JTAG Emulator.

| ' parallel port

microproccessor

Embest IDE

target system

BEDM / JTAG Emulator

Figure 1-2 the Host-target Cross Model with Embest IDE

1.2 Major Features of Embest IDE

EmbestIDE runs under Windows 95 above and Windows NT 4.0 above.
EmbestIDE supports target microprocessors debugging on the ARM-core
microprocessor families, 68K, PowerPC, and Coldfire microprocessor families.
EmbestIDE provides a simple, versatile and graphical user interface for
managing your software development projects. You can use EmbestIDE for ARM
to develop C and ARM assembly language code targeted at ARM and Thumb

processors. It speeds up your development cycle by providing:
® Comprehensive project management capabilities
® Code navigation routines to help you locate routines quickly.

EmbestIDE enables you to organize source code files, library files, other files,
and configuration settings into a project. Each project enables you to create and

manage multiple configurations of build target settings.
Major features of EmbestIDE:
¢ Support development language: ANSI C, ARM assembly language.

¢ User interface: consists of an integrated set of windows, tools, menus,
toolbars, directories, and other elements that allow you to create, test, and

refine your application. It is just like Microsoft Visual Studio’s user interface.

¢ Source code Editor: Standard text manipulation capabilities; C and ASM
syntax-element color highlight; Debugger integration, the editor window tracks
code execution; Compiler integration, the project management utility links
compiler warnings and errors directly to the affected source in the editor window.
Support file print; Capable of search and replace, and performs batch searches

in multiple files.

¢ Project Management: The EmbestIDE project facility simplifies
organizing, configuring, and building embedded applications. It includes

graphical configuration of the build environment (including compiler flags).

¢ Compiler: includes the GNU compiler, as well as a collection of
supporting tools that provide a complete development tool chain: cpp, C
preprocessor; gcc, C compiler; make, program building automation tool; Id,
programmable static linker; as, portable assembler; binary utilities. EmbestIDE

supports commercial versions of the leading-edge GNU tools originally

developed by the Free Software Foundation (FSF). Users of the GNU tools
benefit from the innovative FSF development environment as well as from
testing and support by Embest Info&Tech Co., LTD. Among other features, the
EmbestIDE project facility provides a GUI for the GNU tools that is powerful and

easy to use.

¢ EmbestIDE debugger: a powerful graphical debugger that enables
program loading, executing, running control, and monitoring; a source-level
debugger, view your application code as C, as assembly-level code, or in a
mixed mode that shows both; full-featured debugging, provides an exhaustive
set of debugging features, designed to make it easy to find and fix bugs; set a
breakpoint or clear a breakpoint by single click, supports conditional and
command breakpoints; single stepping, "step into" traces execution of every
individual instruction even when functions are called, "step over" does not trace
into the called function, "step out " brings execution back to the calling function;
supports register and variables value display and modify, supports function
stack display and memory display, several specialized windows display these
debugging information. Figure 7-1 shows these debugging information display
windows, when you are debugging, you can access these windows using the
"View" menu; EmbestIDE supports graphical debug and command-line debug.
For complex or unpredictable debugging needs, the command-line interface

gives you full access to a wealth of specialized debugging commands.

1.3 User Interface of EmbestIDE

The user interface is the portion of the environment where display
information and specify action. These topics describe user interface’s basic

structure of EmbestIDE.

To step into EmbestIDE, just run EmbestiDE.exe. EmbestIDE user interface
consists of an integrated set of windows, tools, menus, toolbars, directories,
and other elements that allow you to create, test, and refine your application.
Figure 1-3 shows the main GUI of EmbestIDE. The user interface uses standard
Windows interface functionality along with a few additional features to make
your development environment easy to use. The basic features that you use
most often are windows and document views, toolbars, menus, directories, and

keyboard shortcuts.

title column

[pis piae Yoo Brajse Bule febsg esls Lisdes Jalp al8ix

DEHo & aosinm ‘iFrzllu_ll ';k'ﬁﬂ AN
menus’(SBC i iiUeSEFEETHS tool bar
column T2 °* » column

$Ea o

| u_knk Ledipeed | =

= o Warkapace "led_swin . i 3
5 ted_swing files 0= Funétien Hine ehange_speed
=i C Sowite Jde Bhiject + Adjust led speed depeading on TU1 and 16

2l hed wwing.c A= Inpat Parameters i nanE

S0 Saurce SE Dutput Paranelers T Pl

2] eatsmup,s i

] walt e wild change speed { vold)

#¢= Begin
workspace A "
£l Mscrip u_lat status = a9 _pie_resd (RFIOB_DESC) source code
4] ebjdemp IF (f statuws B [1CCFIO_TAH)) == &)

ll—' LI ! F { LedSpeed ¥ 10000) Ledipeed --1080 - WI“dow
T I P I o
el =
status |
column \} output
| i T Command) Find in Files 1) Fit | |
feady Ln 40, Cal 8 008 | fead
— - 1=l ERERE

Figure 1-3 Embest IDE Main GUI

Title column displays current opening file name. Menus column and tool bar
column are below title column. The menu bar is a special toolbar at the top of
the screen that contains menus such as File, Edit, and Build. The standard tool
bar appears just below the menu bar. You can move the toolbars to different
locations to suit your needs. Workspace window shows file information about
current opening projects. Source code window is the usual used window witch
you edit and browse your code in. You can open several source code file

windows at one time. Output window displays build information, debug

information, file search output information and command-line debug input and
output. Status column displays detail information about menus and tool bars, it
also displays the current line number and column number of the cursor in source

code window.

2. Installation

2.1 System Requirement

Host A PC with a Pentium or higher processor

Memory More than 64M

Disk Space 150M

Monitor VGA or Super VGA color monitor

(0] Microsoft Windows 98, Windows NT with Service Pack 3

or later, Windows 2000, Windows Me, Windows XP

Others Mouse, Parallel Port, CD-ROM

2.2 Installation

Step 1: Invoke Microsoft Windows operating system on your PC;

Step 2: Place the EmbestIDE disk in the proper drive, and run Setup.exe;

Embest Integrated Dewelopment Enviromment for ABM Frocessor |

Welcome to the EmbestiDE for ARM program. This
program will install EmbestiDE on your computer.

[t iz gtrongly recammended that you exit all windaws program before
running this setup progranm.

Click Cancel to guit zetup and then cloze any programs pou have
unning. Click Mest bo continue with the setup program.

IInauthaorized reproduction or diztribution of thiz pragram, or any portion of
it, may result in severe civil and criminal penaltiez, and will be prozecuted
to the maximum extent pozsible under law.

Copyeright [C] 2001 Shendhen Embest Info & Tech Co. Lid.

< Hlach |_~ Cancel |

Figure 2-1 Welcome Dialog

Step 3: Click on "Next" button in welcom dialog to go on;

Software Licensze Agreement

Pleaze read the following Licenze Agreement. Prezs the PAGE DOMWM key to see
the rest of the agreement.

EMD-USER LICEMSE AGREEMEMT FOR EMBEST SOFTwWARE -

IMPORTAMT-READ CAREFULLY: Thiz End-Uszer License Agreement ["ELILA" iz a legal
agreement between vou [either an individual or a zingle entity] and Shenghen Embest
InfokTech co., LTD.[Embest] for the Embest software product identified abowve, which
includes computer zoftware and azsociated media and printed matenials, and may include
"onling" or electronic documentation ["SOFTWARE PRODUCT" ar "SOFT'WARE"]. By
inztaling, copring, or athenwize uzing the SOFTWARE PRODUCT ., you agree to be bound
b the terms of thiz ELILA, [f pow do not agree to the termz of thiz ELILA, do not install,
copy, or uze the SOFTWARE PRODUCT.

SOFTwARE PRODUCT LICEMSE LI

Do you accept all the terms of the preceding Licenze Agreement? If you choose Mo, the
zetup will cloze. To install EmbestiDE ., you must accept thiz agreement.

< Back

Figure 2-2 License Dialog

Step 4: Click on "Yes" button in License dialog to go on, if you accept the
license agreement list in the dialog;

Input Regizter User

Please enter your name and the name of the comparny
for waharm you wark.

Uszer Hame:

LUSER

Caompany Mame:

|EMBESTI

< Back Mest » I Cancel

Figure 2-3 User Information Dialog

Step 5: Click on "Next" button in User Information Dialog to keep going;

after the information is inputted;

Choose Destination Location

g Setup will install EmbestlDE in the following folder.

To ingtall to thiz folder, click Mest. To install the application a different
folder, click Browse and select another falder.

Y'ou zan chooze not install the application by clicking Cancel to exit
Setup

|' Destination Faolder

C:A\EmbeztDE Browsze. .. |
Cancel |

¢ Back

Figure 2-4 Destination Location Dialog

Step 6: After setup program is loaded, you will need to indicate the
directory where you want to install EmbestIDE. By default, it will be installed in

the following directory:
C:\EmbestIDE (where, C:\ is the system driver)

Click on the "OK" button if the above default directory is the location where
you want to install EmbestIDE. We recommend that you use the default
C:\EmbestIDE directory so that the changes you will need to make are minimal.
Otherwise, you can edit the path as necessary. Then click on the "Next" button

to go on.

Choose Folder

Fleaze choose the installation folder.
FPath:

. “EmbestIDE

Directories:

B Ata1 Al
D Bewond Compare

0 0 dilla [
D Tlos

17 deshalk

=43 EmbestIDE

(23] Found. 000 hd|

Figure 2-5 Choose Destination Folder Dialog

Note: The full path name of the destination location must not contain the

blank character, because of the GNU Cross-Compiler.

Select Frogram Folder

Setup will add program icons ta the Program Folder listed below. “ou may type a new folder
name, of zelect ane fram the exizting folders list, Click Mext to continue.

Program Folders:

cygwin
Cygranlnztallation
Lotz HHER
Microsoft Office TH,
HETE

< Back | Mest = I Cancel |

Figure 2-6 Program Folder Dialog

Step 7: click on the "Next" button to go on, in the Program Folder dialog;

Il'l.fl:lI'ITI :iti T |

Setup haz enough infarmation to start copeing the program files. 1F pow want ba resiew ar

change any zettingz, click Back. [f you are satizfied with the zettings, click Mext to beain
copying files.

Current S ettings:

[IUzer Infarmation]
Ilzer Mame : USER
Company : EMBEST

[&pplization [nfarmation]
05 Directary : C:AYWAMMTS
Inztall Directary : C:AEmbestiDE

[Syztem Infarmation]

4

Figure 2-7 Information Dialog

Step 8: Click on the "Next" button in the Information dialog, the setup

program will copy and decompress the files to the installation directory.

Embest Integrated Dewelopment Enwiromment for ABM Frocessor

EmbeztlDE Setup iz Transfenng the files ta the destination location.

Copying GCC pragram files. .

EAEBTTOOLABuldssgoc-arm-elfarm-elf\bintg++ exe

—

Figure 2-8 File Copying Status Dialog

Step 9: After the files copying and decompression is completed, setup

program will ask if you want to restart you computer right now or not.

Before running EmbestIDE, You must reboot the host computer and get a

runtime permit file.

Embest Integrated Dewelopment Enwiromment for ABM Frocessor

g InstallShield Wizard Complete

The InstallShield Wizard has successfully installed EmbestiDE. Click
Finizh to exit the wizard.

& Ses, | want bo restart my compuber o

Mo, | will restart my computer later.

Femove any digks from their dives, and then click Finizh to
complete setup.

¢ Back | Finizh I [Earizel

Figure 2-9 Installation Finish Dialog

2.3 Directories & Files

2.3.1 Directories & Files

The files of Embest IDE release are copied to a directory and its subfolders,
when the installation steps finished. For example, if the destination location is

C:\EmbestIDE, several sub-directories will be created on it, and the files will

be copied according their functions (show as Table 2-3-1-1) .

Table 2-3-1-1
Folder/File Description

Bin Folder with main application, DLL files and DLL folders

Build Folder with GNU Cross-Compiler for ARM

Doc Folder with documents

Examples Folder with samples

ide.ini Configuration files of Embest IDE, it shows the folder
of the modules and other settings in running.

Licenses Folder with license files

Peripheral The information library of the peripheral registers of
the processors set by the system

Target Folder with BSP files

License.txt License file

Readme.Txt Readme file

Tools Folder with the tools in system application include

Flash Programmer, elf2bin etc.

Description of directory C:\EmbestIDE\Bin show at Table 2-3-1-2.

Table 2-3-1-2
Folder/File Description
Build Folder with cross-compiler interface files
CPU Folder with CPU interface files
Device Folder with device interface files

Driver

Folder with driver interface files

Description of directory C:\EmbestIDE\Examples Table 2-3-1-3

Table 2-3-1-3
Folder/File Description

ARM Command examples for ARM include particular
assemble examples

AT91 Examples for each evaluation board of the Atmel 91
processors . Include AT91EB40, AT91EB40A,
AT91EBS55, AT91EBG63.

AT91/ucos Example of ucos II operating system for AT91EB40
evaluation board.

Cirrus Examples for Cirrus Logic ARM processor EP7312.

Oki Examples for OKI ARM processor ML674000.

Samsung Examples for Samsung evaluation board. Include
NET-Start , 44bdvk,Nbc4510b,SNDS100 evaluation
board.

Samsung/ucos Example of ucos II operating system for 44bdvk

evaluation board.

2.3.2 File Types

Table 2-3-2-1

Name Description
*.ews Workspace file of EmbestIDE
*.pijf Project file of EmbestIDE
*.opt Workspace status file
*.ini Config file of EmbestIDE
*.c C source file
*.C C++ source file
*.cc C++ source file
*.cp C++ source file
*.cxx C++ source file
*.c++ C++ source file
*.cpp C++ source file
*.s Assemble source file
*.asm Assemble source file
* h C/C++ header file
*.inc Assemble include file
*.mac Macro file
*.map Memory map file
*.cs Command script file
*.1d Link script file
*.0 Object file
*.a Library file

2.4 User Register

Registration needs two steps: 1.generate register information file; 2.submit

register information file and acquire runtime permit file.

2.4.1 Generate Register Information File

Run "key.exe” program which locate at “$Embest IDE/licenses” directory or
“EmbestIDE.exe” program, fill correlative information and push "Generate
Key.dat” button, "key.dat” file will be created in "$Embest IDE/licenses”
directory (Note: please do not modify the file). Program interface show as

following figure 2-10:

ey E |

| Please input your information listed below: ‘

User name : I“’ﬂ"!] jun

Company Name : IShang Hai Windig Info& Tech Co.Ltd

Phone Number : |[+351021‘123455?3

Fax Number : I[+BE]I]21—B?554321

Contact Email : Iwangiun@snhu.cum

Emulator Number; II]EI]1 056

Note : This software will generate key file named "key.dat" in the subdirectory
"licenses". Don't modify the key file! Please send the key file to

licenses@embedinfo.com, we will send licenses file to you soon.

Generate Key.dat | Cancel |

Figure 2-10 Key.dat Generation Dialog

Action: Don’t modify the key.dat file.

2.4.2 Acquire Runtime Permit File

Please send email of the “key.dat" file to licenses@embedinfo.com, or print
and fax it to (+86)0755-25716057 ext 805, or copy to a floppy disk and send
the disk to Embest Inc, user will get "licenses.dat” file soon by email or floppy
disk. This file is the runtime permit file. Please copy it to “$Embest IDE/licenses”

directory, then the registration is finished.

2.5 Connecting the Emulator Hardware

Embest Emulator is a JTAG-based debugging channel for ARM
microprocessors. It provides an interface between Embest IDE and an ARM
microprocessor deeply embedded.

DB25 to PC IDC14/20 to JTAG

Embest Emulator]<::>

A standard male-to-female 25-way parallel cable connects the Embest

Emulator to the PC’s parallel port.

The connection to the target board is made by a 20-way (or 14 - way)
female IDC header cable (BT224 type) with all pins connected straight through
(1-1, 2-2, ... 20-20).

Note: Connecting cable dose not provide hot swap

For further pin-out details, refer to Embest IDE JTAG interface connections

on page A-2.

3. Quick Start

3.1 Simple Example

This section shows users step by step how to create, compile and debug a

simple project. The project described below is to create a random number.

The project demo locates at \Examples\arm\explasm under EmbestIDE

installing directory. The files to be used are:
Random.s Assemble file of random number function

Randtest.c Main program file

Note: Only source files above are used. The project can only be run and
debugged in target RAM under EmbestIDE. Parameters are established
according ATMEL EB40 evaluation circuit board. The parameters for
linking need to be change when the project is used with the other circuit
board. The project doesn’t link to any function library and doesn’t use
Linker scripts. The program created by the project doesn’t have a
function to initiate any circuit board. Therefore, it can’t run itself when
it is downloaded to FALSH.

3.1.1 Create a Project

1) Creating Project

Select File > New Workspace menu, Give a project name and specify

project directory as shown in Figure 3-1:

Create a New Project

Project name: rantes|

Location: \EmbestiIDEA\Examplesiarmiexplasm) J

0K Cancel |

Figure 3-1 Create a New Project Dialog box

Rantest has been used as a project name, and project directory has been
specified as D:\EmbestIDE\Example\arm250\explasm\, D:\EmbestIDE is

default installing directory of EmbestIDE unless noted.

After clicking OK, two files will be created in the project directory:

Rantest.ews Workspace file

Randtest.pjf Project file

Note: Workspace and project files are maintained by EmbestIDE

system itself. Users cannot edit these files manually.

After the project has been created, files pane will appear in EmbestIDE

workspace window as shown in Figure 3-2.

E@ VWorkspace 'rantest': 1 project|s]
=8 rantest files
D Project Source Files
..{] Project Header Files

. Files |

Figure 3-2 Workspace Window

The Figure 3-2 shows current workspace is rantest which contains a project

named rantest. Boldface indicates that rantest is an active project.
2) Add Source Files

Choose Project Source Files folder in rantest workspace window. Click
Project > Add To Project > Files to add source files. You can also right click

Project Source Files folder to add source files, See Figure 3-3:

EI-- VWorkspace 'rantest”. 1 project{s]
=-E rantest files
e 1Project Source Filep

----- {1 Project Header File

Add Files to Folder. ..

Docking View
Hide

Froperties

. Files |

Figure 3-3 Add Source Files In Workspace Window

You can add the source files in the pop up dialog box. To select source files,
press CTRL key and hold, click source files of random.s and randtest.c in Project

directory, See Figure 3-4.

open g

Folder: Iaexplazm j gl
debug utoal. s

@ b}-tedem-:- o @ ntaatest o

Filename: I'ra.ndtest. e "random. 5" | Open I
File type: IS-:-urce File (% c;%_cpp;*. co¥. cxx:j Cancel |

Figure 3-4 File Open Window

After the source files added, workspace window is shown as Figure 3-5.

= @ Wurkspace 'rantest: 1 project[s]
=- rantnsl files
ERS1Project Source Files|
- -4 random.s
P . randtest.c
----- {:l Project Header Files

. Files |

Figure 3-5 Workspace Window

3.1.2 Project Settings

After creating a project, you need to configure the project. The project
settings include CPU settings, emulator settings, debug settings, directory
settings, compiler settings, assembler settings and linker settings. The project
settings is a critical step to entire software development.

Click Project > Settings, Project Settings dialog box pops up, then Choose
randtest files in the dialog.

1) CPU Settings

Select Processor pane from Project Settings dialog box. Define CPU
module as ARM7, CPU family and CPU member as ARM7 too. Switch Endian
to little endian. Build tools are GNU tools for ARM. Figure 3-5 is a Project
Settings dialog.

Project Settings

Settings For : Processor |Flt:mutt:| Debug | Directory Cumpilt:rl Asseml 4 | ’I
= i3 Workspace 'explasm': 1 pn
= ; CPU Module: [arm7 -
=1 C Source
. =[# randtest.c Support for ARM7 family
=1 ASM Source Ver: 1187865

‘..[#] random.s

~CPU ~ Endian
Family : {anm7 = & Little Endian
Member : |AHM? Ll " Big Endian
Build Tools :
[GNU Tools for ARM]

4] | H©

0K Cancel |

Figure 3-5 Processor pane of Project Settings Dialog

After build tool has been set, Project Settings dialog will show the pane of
this build tool.

2) Emulator Settings

Select Remote pane from Project Settings dialog. Define Remote Device as
jtagarm7. Because of Embest Emulator for ARM does not support to change the

working speed, don’t worry about the setting of Speed item. When using Embest

PowerICE for ARM, select the valid work speed: Full Speed(120Kbyte/s). High

Speed. Medium Speed. Low Speed. Communication port with remote device is

PARALLEL. Communication channel is LPT1 as shown on Figure 3-6.

x
Settings For: Processor Remote |Dehug| Directory' Compilerl Assemh_‘m
E"@ YWorkspace 'interrupt_eb42 Bemotesdevice:
(1 ARM-C Source Files =
- =[] ASM Source Files Embest JTAG emulator for ARM7
. @[] Link Script er: 1122361
=& interrupt_flash files ‘
=1 ARM-C Source Files
{1 ASM Source Files Speed:
#-1 Link Script | j
Communication type:
|PARALLEL =
Parallel Port
(&~ LPT1 " LPT2
1]
0K Cancel

figure 3-6 Remote Pane of Project Settings Dialog

3) Debug Settings

Select Debug pane from Project Settings dialog. Select General from

Category, Set symbol file as ./debug/rantest.elf and Action after connected

as None. See Figure 3-7.

Project Settings

Settings For : Prncessur] Remote Debug lDirectnry] Cnmpiler] Asseml 4 [}

{5 Workspace 'explasm’; 1 pn

= ;i Category: General o

=-23 C Source

- [randtest.c Symbol file :

S fﬂ.‘.SM Source JAdebug\rantest.elf J
|# random.s

-Action after connected -

& None
= Auto download

" Command script

1 B

OK Cancel

figure3-7 Debug General Options of Project Settings Dialog

Select Download from Category. Set Download file as ./debug/rantest.elf.
set Download Verify option on. Set Download file to address 0x2000000.

Execute program starting from download address. See Figure 3-8.

Project Settings

Settings For : Prncessur] Remote Debug lDirectnry] Cnmpiler] Asseml 4 [}
[YWorkspace "explasm': 1 pn
. Category: z
—-_7] C Source
- .[F randtest.c Download file:
=3 fﬂ.‘.SM Source JAdebug\rantest.elf J
#] random.s

¥ Download verify

Download address: -Execute program from

Iszuuuuuu Don't care

i+
ECE bt Gt Download address

] " Program entry point

OK | Cancel

figure 3-8 Debug Download Options of Project Settings Dialog

Note: Flat Binary format can be used for download files. The tool
ELF2BIN provided by IDE can transfer ELF files to the files with flat
binary format. If you use different circuit board, please change

download file address to RAM address of the circuit board.

Set Memory Map to use map file, and set target memory map file as
$(EMBEST_IDE)\targets\at91\targets\eb40\eb40.map. See Figure 3-9.

Project Settings

Settings For : Pmct:ssurl Remote Debug |Dirt:[:tury| Cumpilt:rl Asseml d | ’I
= i3 Workspace 'explasm': 1 pn
? St Cocory: [T T -

=1 C Source

&) randtest.c

:'L.j ASM Source
...[#] random.s

-Memory Map -
i~ Mo map file

& Use map file

S[EMBEST _IDE\Targets\at91\targets\eb40teb40.m _|

0K I Cancel

Figure 3-9 Debug Memory Maps Options of Project Settings

4) Compiler Settings

Select Compiler pane from Project Settings dialog. Set Object Files

Location as ./debug and others as default. See Figure 3-10.

Settings

Settings For : Processor | Remote | Debug | Directory Compiler }Asseml 1L

-5 Workspace 'rantest': 1 proj
Cat : G | -
] @ rantest files ategory. | ..
+-|_] Project Source Files Include Direc ;

YWarning Options
Debug/Optimisation
Target Specific Options
Code Generation Options

1 Project Header Files

Object files location: |-fdebug J

Preprocessor Definitions:

Compile Options:
-g -c $[SOURCE_FILE] -o.fdebug\$[OBJ_FILE] =l

OK | Cancel |

Figure 3-10 Compiler Pane of Project Settings Dialog

5) Assembler Settings

Select Assembler pane from Project Settings Dialog. Set Object Files

Location as ./debug and other as default. See Figure 3-11.

Project Settings

Settings For : Remote | Debug | Directory | Compiler Assembler lLinker 1
-5 Workspace 'rantest': 1 proj
Category: :
£ @ ateqory JENEra
#-_1 Project Source Files Include Directories: % ® o+ §

1 Project Header Files

Object files location: |-fdebug J

Predefines:

Assemble Options:
S[SOURCE_FILE] -o0./debug\5[0BJ_FILE] J

OK | Cancel |

Figure 3-11 Assembler Pane of Project Settings Dialog

6) Linker Settings

Select Linker pane from Project Settings Dialog. Select General from
Category. Set Object Files Location as ./debug and others as default. See
Figure 3-12.

Project Settings

Settings For : Debug | Dirt:[:turyl Cumpilt:rl Assembler Linker | 1 | ’l
=-E5 Workspace 'rantest': 1 proj .
= Category: .
E ateqory aEnera
=1 Project Source Files Output file type
.{Z1 Project Header Fil
£ Project Header Files |7 & Executable file " Library

Linker script file:

| -

Output file name:

I..l'dt:hug.l'rantt:st.elf

Link Options:
-EL -0.fdebugfrantest.elf S{OBJ_FILES] =

1| | H E

0K I Cancel |

Figuer 3-12 Linker General Options of Project Settings

Select Image Entry Options from Category. Set Select Entry File as
rantest.o. Select entry point as Main. Add “-Ttext 0x2000000” in link options.
See Figure 3-13.

Project Settings

Settings For : Debug | Dirt:[:turyl Cumpilt:rl Assembler Linker | 1 | ’l
=-E5 Workspace 'rantest': 1 proj . ;
- Cat : | Entry Opt -
E|-- rantest files S bl L ns

--{:| Project Source Files Select entry file: Irandtest.ﬂ

random.o
randtest.o

Image entry point: Imain
Link Options:

-emain -EL -Ttext 0x2000000 -o.fdebugfrantest.elf ;l
S[<randtest.o>0BJ_FILES]

1| | H E

0K Cancel |

Figure 3-13 Linker Image Entry Optios of Project Settings Dialog

Entry File ‘Rantest.0’ means that executive code compiled and linked
‘rantest.c’ will locate at starting point of entire executive program. Entry Point
‘main’ means that executive code will run starting from ‘main’. “-Ttext
0x2000000"” means that address of entire executive program code will start
from 0x2000000.

Note: The step described above can be skipped if users open workspace

file explasm.ews created under the directory.

3.1.3 Compile and Link

Click Build > Build rantest to complete entire project building. You can

view the output in the output window, the following messages show as Figure
3-14.

Building project: rantest
arm-elf-as D:\EmbestIDE\Examplesiarmiexplasmirandom.s -o./debugirandom.o

arm-elf-gcc -gdwarf -c D:I\EmbestIDEMExampleshiarmiexplasmirandtest.c -o./debugirandtest.o

arm-elf-1d -emain -EL -Ttext 9x200800808 -o0./debug/rantest.elf ./debugirandtest.o ./debug\random.o

Command{s) successfully executed.

[
"I’ Buita {Debug), Command % Find in Files 1% Fi|

Figure 3-14 Build Output Window

The message shown in the window indicates that this project building has
been success.

3.1.4 Debug

1) Create Executive File

Click Tools > EIf to Bin to automatically transfer the project output file
called “project name +.elf” under ‘debug’ sub-directory to executive file. The
executive file has flat binary file format. The final file will be named as “project

name +.bin” and saved in ‘debug’ sub-directory under project directory.

You can also complete file transfer by running elf2bin.exe located in Bin

sub-directory under install directory.

Note: This step can be skipped if you have maken a choice of

downloading ELF format file.

2) Active connection

Click Debug > Remote Connect to active the connection with the target
board through Embest JTAG emulator. The target board will be one of the two

kinds of status:

B Running status: When the target board is in this status, debug output
window shows messages as “Info: target running, all breakpoints disabled.” as
shown in Figure 3-15.

] 1_1_tp 1t E

Info: target running, all breakpoints disabled.

Figure 3-15 Debug Output Window

In this case, Embest IDE Disassemble window shows nothing.

m Stop status (This happens when you stopped the activing connection with
the target board previously, you stopped running target board prior). When the
target board is in this status, debug output window shows message as “Info:
CPU was in debug state before connect! Current values may be incorrect!” as
shown in Figure 3-16.

Output | x|

Info: CPU was in debug state before connect, register values may be-

[~
“[* ' Buila®, pebug / Coumand %, Find in Files 1% Fid| | H

Figure 3-16 Debug Output Window

In this case, Embest IDE Disassemble window shows assemble instruction,

with the instruction currently PC is pointing to beginning. See Figure 3-17.

Gl Disaszembly

=0 0202bfcA bl Bx2831224
BxB8202bfcy str ra, [ra, #12]
8x8282bfcl ldrb ra, [spl
8z 8282bfcc 1dr 1, [r4, #3]
8x8202bfdB add r2, r1, i1
Bx8202bfdy 1dr r1, [r4, #8]
BxB8202bfd8 str r2, [r4, #8]
8x8282bfdc 1dr r2, [r5, #16]
0z 6282bfeB strb ra, [r2, ri]
8x0202bfel 1dr 1, [r4, #8]
8x8202bfes 1dr ra, [r5, #8] |
8x8202bfec cmp r1, r@
BxB8202bffBa bne 8z282bffc
0x8202bffh mou ra, H4
8x0202bF 8 strb ra, [r4]
BxB8202bffc mou ra, i
BxB8202cO08 b 8z2082beas
BxB8202c 00y 1drb ra, [ri4]
0= 82 82c 0063 cmp ra, #% i
‘I;Il'lvﬂ‘)ﬂ‘)r‘ﬂﬂr- addl o ne ne ol L] 1cl H2 ;
2

Figure 3-17 Disassemble Window

Note: In general, disassemble window which you see is not as same

as above.

3) Download File

Click Debug > Stop to stop running target board if current target board is
on running status. Click Debug > Download to download file if current target
board is on stopping status. Downloading parameters were set through Debug

pane in Project Settings dialog. When downloading files, status bar will show

“Download File” with progress bar to indicate download progress. Status bar will

show “Download Completed” when the downloading finished.

When download is completed, program pointer will automatically return to

program starting point. Disassemble window will appear as shown in Figure

3-18.

Gl Dizass

=002 000600
002 000604
002000608
B 02000080c
002000610
Ox 02000614
002000618
Bx0200061c
Bx 02000828
Bx 02000824
Bx 020000828
Bx0280082c
Bx 02800838
Bx 02000034
B 02000038
B 0200003 C
Bx 020000840
B 02 B00B4Y
B 02 000648
B 62 808B4C

- enzoon

mov
stmdb
sub
zub
bl
mouy
str
1ldr
cnp
ble

1]

bl
nov
str
ldr
add
str

b

mou
ldmdhb

ip, sp

spt, {fp, ip, 1lr, pc}

fp, ip, 4

sp, sp, H8

Bx20000878

+3, Ha

r3, [Fp. —#16]

r3, [Fp., —#16]

r3, H9

Bx200808082c

Bx20000848 _

Bx200080850

r3, rg

r3, [Fp. —-#28]

r3, [Fp. —-#16]

r3, r3, #1

r3, [Fp. -#16]

BxZ288881c

e, #e

fP- ifp, sp, pc} -
Al 7

Figure3-18 Disassemble Window

At the same time, rantest.c source file window will appear as well as shown

in Figure 3-19.

BiD:%. .. \EmbestIDE‘Examples'frmhexplasmirandtest. o
®f

Fittinclude <{stdio.h>

/% this function prototype is needed because ‘randomnumber' is extey
extern unsigned int randomnumber{ void };

int main()

o |
int loop;
unsigned int random;

for{ loop k 8; loop < 18; loop++ }

{
random = randomnumber{);
¥
return{ 8 }; (.
’ -
14] | vz
Figure 3-19 Source File Window
4) Debug

Click Debug > StepOver to run program to this line:
random = randomnumber();

Click View > Debug Windows > Variables menu to show the Variable
window. Continuous to click Debug > StepOver to view the changes of

function variables as shown in Figure 3-20.

Variables
Hame | Ualue |
I
random Bxaaaaad

' T8 vocal {Global /

Figure 3-20 Variables Window

3.2 A Complete Example

This section shows you step by step to create, compile and debug a
complete project. The project demonstrates communication between PC and
AT91EB40 evaluation board through parallel port. This is a complete embedded

application.

The example project locates at \Examples\At91\example_terminal40 under

Embest IDE installed directory. The files to be used are:
term.c Terminal Test Main Program File
Terminal_irq.s Assemble Interrupt Handle Program File

Cstartup.s Startup Program File for evaluation board.
The file locates at the following
sub-directory under installed directory
\targets\At91\targets\Eb40\.

The differences between the project described in this section and the project

described in the previous section are:

® The project of this section contains complete target board startup codes.
After the program is debugged successfully, you can change
AT91_DEBUG_ICE=1 defined by project settings to AT91_DEBUG_NONE=1,
and then rebuild it, and this can be downloaded to FLASH to run itself.

® The project of this section uses individual linker scripts. The file is

Idscript Linked Scripts, The file is located at the following
directory \Targets\At91\Targets\.

® The project of this section links to standard C function library. The file of

function library

Libc.a Standard C function library, support arm interwork,
The file is located at

\build\xgcc-arm-elf\arm-elf\lib\arm-inter.

® The project of this section connects to peripheral driver function library

and device function library of AT91 series CPU provided by ATMEL. They include:

Lib_drv_32.lib

R40807_lib32.lib

Peripheral Driver Function Library, The file is
located at
\targets\at91\drivers\lib_drv\arm-inter
under installed directory. The project file
creating the library is located at the directory
one level up. It can create THUMB instruction
library or ARM Interwork library by changing
project settings. The example shown here

uses ARM Interwork function library.

Device Function Library. The file is located at
\targets\at91\parts\r40807\arm-inter
under installed directory. The project file
creating the library is located at the directory
one level up. It can create THUMB instruction
library or ARM Interwork library by changing
project settings. The example shown here

uses ARM Interwork function library.

Note 1: Before using the project, you must create peripheral driver

function library named lib_drv_32.lib by using workspace file
lib_drv_32.ews, which located at \targest\at91\drivers\lib_drv\

directory and create device function library named r40807_lib32.libby

using workspace file r40807_lib32.ews, which located at

\targets\at91\parts\.

Note 2: If you don’t want to use ARM Interwork, you can create function

library, which support ARM only. And don’t choose to support ARM

interwork in project compiler and assembler settings.

3.2.1 Create Project

The project called Term can be created and related source files can be added
by following the same procedure described in the previous section at
\examples\at91\example_terminal under installed directory. Final workspace

window will be appeared as shown in the Figure 3-21.

El@ Workspace 'term': 1 project(s]
=-Elterm files.

=1 C Source

b term.c

=1 ASM Source

P cstartup.s
terminal_irg.s
=1 Link Script

fons ldscript

. Files |

Figure 3-21 Workspace Window

3.2.2 Project Settings

The processor settings and remote settings can be done by following the

same procedure described in Section 3.1.2 previously. Please refer to it.

1) Debug Settings

Select Debug pane from Project Settings dialog. Set Symbol file settings

as .\debug\term.elf. Set Action after connected option to None. See

Figure 3-22.

Project Settings

Settings For :

E
=l
=

=B Wor

'term': 1 projec!

E| cstartup.s

[# terminal_irq.s
Link Script

...[3] Idseript

Pmct:ssur' Remote Debug |Dirt:[:tury| Cumpilt:rl Asseml d | ’I

Category: :

Symbol file :

Adebugiterm.elf

-Action after connected

& None
© Auto download

 Command script

.

T

Figure 3-22 Debug General Options of Project Settings Dialog

Select Download from Category. Set download file
to .\debug\term.elf. Set Download Verify option on. Set download

address for download file as 0x2000000. Execute program starting from

download address as shown in Figure 3-23.

Project Settings

Settings For : Pmct:ssurl Remote Debug |Dirt:[:tury| Cumpilt:rl Asseml d | ’I
['term': 1 projec!
_ Category: z
urce
L [# term.c Download file:
=1 ASM Source \debugiterm.elf _|
~ ~[#] cstartup.s A
12 terminal_irg.s M Download verify
=1 Link Script
+[5] ldseript Download address: Execute program from——
||szuuuuuu Don't care
'
Execute antil: Download address
| " Program entry point
4] | H

0K I Cancel

Figure 3-23 Debug Download Options of Project Settings Dialog

Memory Maps Settings is the same as the first section. Please refer to it.
2) Directory Settings

Select Directory pane from Project Settings Dialog. Set additional source
file directory as $(EMBEST_IDE)\Target\at91\drivers\terminal.
$(EMBEST_IDE) means Embest IDE installed directory. If you want to track the
program in driver function library or device function library, you can add more

source file directories here as shown in Figure 3-24.

Project Settings I

Settings For : Pmct:ssurl Flt:mutt:l Debug Directory | Cumpilt:rl Asseml 4 | ’l
E@ Workspace term”: 1 projec Show directories for :
E|--

"{:l C Source IAdditinnaI source file directory j
-1 ASM Source
& Link Seript Directories : CREE e S 2
o objdump DAWork\EmbestlIDE\Targets\at91\driversiterminal

4] | o

0K I Cancel

Figure 3-24 Directory Pane of Project Settings Dialog

3) Compiler Settings

Select Compiler pane from Project Settings Dialog. Select General from
Category. Set Object files location as .\debug and add two include
directories: ..\..\..\targets\at91 and ..\..\...\build\xgcc-arm-elf\arm-elf\include.
Select Target Specific Options from category. Set Instruction Sets as ARM

interworking and others as default. See Figure 3-25.

Project Settings

Settings For :

=-iF Workspace "term": 1 projec!
-8
#-_1 C Source
-1 ASM Source
=1 Link Script

Flemntel Debug | Directory Compiler iAssemhlerl Linker 4 | ’l

Category: ¥
!Includt: Directories: ~ in 1+ +

AL Margetsiatdl

LA Abuildixgec-arm-elfiarm-elfiinclude
Object files location: |Adebug _J
Preprocessor Definitions:
Compile Options:
-mthumb-interwork -gdwarf -c -1..\..\..\targets\at91 ;I
..\ \. Abuildy<gcc-arm-elflarm-elflinclude S[SOURCE_FILE)
-0.\debugh$(0BJ_FILE]

]

0K l Cancel |

Figure 3-25 Compiler General Options of Project Settings Dialog

4) Assembler Settings

Select Assembler pane from Project Settings dialog. Select general from

category. Set Object file location as .\debug. Add three include
directories: ..\..\..\targets\at91, ..\..\..\targets\at91\parts\r40807, ..\..\..\tar
gets\at91\targets\eb40. Add three predefines: AT91R40807=1, AT91EB40=1,

AT91_DEBUG_ICE=1. Select Target Specific Options from category. Make

the assembled code as supporting interworking and others as default. See

Figure below.

FProject Settings

Settings For:

1 C Source
+-_] ASM Source
-1 Link Script

% Workspace 'term': 1 projec

Remute] Debug] Dire-::iury] Compiler Assembler] Linker 4| *
E
i O i

Category:

|Include Directories:

. AhMargetsiatdd
A Margets\at31\partsir40807
AhMargets\at31targetsiebd0

Object files location: |\debug

.

Predefines:

ATI1R40807=1,AT91EB40=1,AT91_DEBUG_ICE=1

Assemble Options:
S[SOURCE_FILE]) -mthumb-interwork -gdwarf2 —defsym j

AT91RA0807=1 —defsym ATI1EBA0=1 —defsym
AT91 DEBUG_ICE=1 -I.\..\. Atargetsiat9l
-..\..\..\targets\at91\parts\r40807

o]

Cancel]

Figure 3-26 Assembler Pane of Project Settings Dialog

5) Linker Settings

Select Linker pane from Project Settings dialog. Select general from

category. Set Output file name as .\debug\term.elf and linker script file

as ..\..\..\targets\at91\targets\idscript as shown in Figure 3-27.

Settings

Settings For:

1 C Source
&-_1] ASM Source
-1 Link Script

=55 Workspace 'term': 1 projeci

Debug] Dire-::iury] Cumpiler] Assembler Linker \ 1
Category: General -
 Output file type -

&+ Executable file " Library
Linker script file:
J..'-...'l,..'-,targets'-,at91'-,targets'-,lds-::ript _J
Output file name:
J.'-,dehug'-.term.eli
Link Options:
-T..\..\..\targets\at91\targets\ldscript -EL .
-L..\..\..\Build\xgcc-arm-elfiarm-elfilib\arm-inter
-0.\debugiterm.elf $[<cstartup.o>0BJ_FILES]
AL \Targets\at91\driversilib_drAarm-interllib_drvy_32.1ib __]

o]

Cancel]

Figure 3-27 Linker General Options of Project Settings Dialog

Select Image Entry Options from category. Make entry file as cstartup.o

as shown in Figure 3-28.

Project Settings

Settings For :

#-1 C Source
+' {71 ASM Source
#-{1 Link Script

4]

=-E5 Workspace 'term”: 1 projec

Debug |Dirt:[:tury| Cumpilt:rl Assembler Linker |
Category: Image Entry Options ¥,
Select entry file: |cstar1up.u
cstartup.o
term.o

terminal_irg.o

Image entry point: |
Link Options:

-T..4.\. \targets\at91\targets\ldscript -EL
L.\ \Buildixgcc-arm-elfiarm-efiliblarm-inter
-0.\debughterm.elf S5[<cstartup.o>0BJ_FILES]

SAhATargets\at31vdriversilib_drAarm-intertlib_drvy_32.1ib

i

||

T

Figure 3-28 Linker Image Entry Options of Project Settings Dialog

Select Include Object and Library Modules from category. Add three

library files:

A\ \.\Targets\at91\drivers\lib_drv\arminter\lib_drv_32.lib,

.\..\..\Targets\at91\parts\r40807\arm\r40807_lib32.lib,

-\ \build\xgcc-arm-elf\arm-elf\lib\arm-inter\libc.a.

See Figure below.

FProject Settings

Settings For: Debug | Dire-::iuryl Compiler | Assembler Linker | 1 | P!
E@ \."ufurkspace Jeamzhaieg Category: !Include Object and Library Modules ;'
o=
: L:“ L oauree !Lihrary or Object Modules: i G &
#-1] ASM Source -
@7 Link Script AL ATargetstat31\drivers\lib_drAarm-interlib_dre_32.1ib

Link Options:
-T..\..\..\targets\at91\targets\ldscript -EL iI

-L..\..\..\Build\xgcc-arm-elfiarm-elfilib\arm-inter
-0.\debugiterm.elf $[<cstartup.o>0BJ_FILES]
« | _’! AL \Targets\at91\driversilib_drAarm-interllib_drvy_32.1ib

0K l Cancel I

|

Figure 3-29 Linker Include Object Options of Project Settings Dialog

Note: The step above can be skipped if you directly open workspace file

term.ews created in the directory.

3.2.3 Compile and Link

Click Build > Build term to complete compiling, assembling and linking the
entire project. When “"Command(s) successfully executed” appears at build

window of output window, it means the project has been successfully built.

3.2.4 Debug

1) Terminal Program Settings

Connect Serial A on EB40 circuit board to COM port of PC by using a
standard series port wire. Run Terminal program of windows. Click Setting >

Communication and set communication parameters as shown in Figure 3-30.

Communication Setting =1

- Baud 0k

110 300 1] 1200
R ! Cancel
2400 4800 <9600 =9200 —_—

Data Bit - Stop Bit
oy OfF COF &8 =1 1.5 2

— Parity Check— ~Flow Control Port :

= None T HonfHoff NONE =
¢ 0dd " Hardware COM?: 11
~ Even & None COM3: hl
" Flag

 Space I Parity Check ™ Carrier Detect

Figure 3-30 Terminal Program Communication Settings Dialog

Select port according to COM port of PC connected. Figure 3-30 above is set
to COM1 Port.

2) Debug

Create executive file, active the connection with target board through
Embest JTAG emulator, and then download the executive file. Disassemble
window will pop out after downloading file. Disassemble window will show
assemble code starting from address 0x2000000. Source file window relating
with instruction address 0x2000000 will pop out then. You can open file of
Term.c and set breakpoint at the beginning of main () function. Click Debug >

Go and execute program up to this line as shown in Figure below.

] ple_terminaldOiterm. ¢
str_test[25] "AT91 TERHINAL TEST : ";
char str_send[18] = "AT91 @ *;

char str_error[58] = "TERMINAL ODUERFLOW : 256 character max *';
char str[TERMINAL_SIZE_BUFFER];

char CR[1] = {8x8D};

f/* Function Name : main
//* Dbject : AT91 - USART Controller - transfert by polling
Ff%* Input Parameters : Mone
Ff%* Dutput Parameters : Mone
/7% Functions called : Hone

int main { void)
//% Begin

int i;
char =pt_str = str;

J#= Terminal initialisation
terminal_1.usart_desc = &USARTO_DESC;
terminal_1.term_data = &terminal_data_1;
terminal_1.baud_rate = {u_int) BAUDS19288;
terminal_1.format = (u_int) US_ASYNC_MODE;

terminal 4 terminal _acm handler = at01 ien handlae-

Figure 3-27 Source File Window

Click Debug > Go again. The program starts running. Terminal program
shows message of "AT91 TERMINAL TEST:” as shown in Figure below.

4l Terminal =1 &

File Edit Setting Phone Transmit Help

RT91 TERHMINAL TEST :] i’
w

K i

Figure 3-27 Terminal Program Window

Input “Hello, Embest”. Terminal program will show “AT91: Hello, Embest”.

3.3 Example Project of S3C4510B

The example program introduced in this part is a complete program based
on S3C4510, which may be debugged in RAM, and solidification may be
normally conducted in ROM. Led will be lit at interval during normal operation

period, and press the button to light another led.

For the convenience of users to rapidly understand S3C4510 programming

and application, the whole software includes only two program source files:
® starting assembling file: init.s
® C source program file: ledint.c

All macro definitions are included in the source files, and no other header

files are used.

The example program has integrally demonstrated the starting process of
S3C4510 processor, including configuration of memory area, stack setting and
interrupt vector setting, and has demonstrated the control to IO port after
completion of starting and function processing of interrupt. The example
program is the minimum program framework of S3C4510, and users can extend

their own application on this base.

The example program is based on EV4510 EVM board of Embest
Corporation, and the basic configuration includes 2M of Flash area, 16M of
DRAM area, IO port P16 connected to LED1, IO port P17 connected to LED2, and
IO port P9 connected to the button. If developing personnel want to apply the
program to the PCB designed by themselves, they only need to modify the value
of the system configuration register and the setting value of the memory area
register in the starting file, meanwhile, modify the value of the relevant register

of I0 port in C-file according to actual IO port connection.

3.3.1 Interpretation of Source Program

starting assembling file

Starting assembling file “init.s”; starting assembling file will complete in

turn: setting of interrupt vector, setting of system configuration register,

configuration of memory area, copy of data segment used in program to RAM

area, initialization of stack space, and entering into C language program entry.

What shall be paid attention to includes:

1)

2)

3)

if software is debugged in RAM, the configuration of memory area will be
completed by integration environment through command script file,
therefore, it is unnecessary to use memory area configuration code in
program, which can be completed through switching to ROM symbol
definition;

when debugging is made in RAM, it is unnecessary to copy the content
of data segment, which will be automatically selected in program
through judgment whether the addresses of read only area and
read-write area are overlapped;

no handing to primary exception vector such as failure of prefetch has
been made in the code, perfect program shall handle any of primary
vectors, including saving the implementing state before entering into
primary exception vector for reference and returning to implement the
program after removing possible mistake.

The source code and the detailed interpretation of “Init.s” are as follows:

/%%

*

file name: init.s

* description: S3C4510 starting program

%%/

#
programming register bit definition
#
. EQU LOCKOUT, 0xCO @ forbid all interrupts
. EQU MODE MASK, 0x1F @ processor mode bit
. EQU UDF_MODE, 0x1B @ undefined mode UDF
. EQU ABT MODE, 0x17 @ abnormal mode ABT
. EQU SUP_MODE, 0x13 @ superuser mode SVC
. EQU IRQ MODE, 0x12 @ interrupt mode IRQ
. EQU FIQ MODE, 0x11 @ fast interrupt mode FIQ
. EQU USR_MODE, 0x10 @ user mode USR

set interrupt and primary exception vector

H H =

ENTRY :

B Reset Handler @ implement from here after S3C4510
reset

B SystemUndefinedHandler

B SystemSwiHandler

B SystemPrefetchHandler

B SystemAbortHandler

B SystemReserv

B SystemIrgHandler

B SystemFigHandler

#

reset entry point

#

.global Reset Handler

Reset Handler: @ reset entry point

#

set system configuration register

#

LDR r0, =0x3FF0000 @ address of system configuration
register: 0x3FF00000

LDR r1, =0x83FFFF90 @ value of register is set as 0x83FFFF90

STR r1, [r0] @ significance of register: to use

synchronical DRAM, peripheral register base value 0x3FF0000, which can

cache

+

+#

configuration of memory area, not define ROM when debugging the program
in RAM, and define when solidified

+

#
. ifdef ROM

LDR r0, =SystemlInitDataSDRAM @ load the setting value of memory
area register to save address

LDMIA 10, {rl-rl12} @ load 12 setting values

LDR r0, =0x3FF0000 + 0x3010 @ load the address of memory area
register

STMIA 10, {rl-r12} @ set memory area register

.endif

=4

introduce external symbol, symbol definition is in link script file

+

#
.extern Image RO Limit @ size of read only area
.extern Image RW Base @ initial address of read-write memory
area
.extern Image ZI Base @ initial address of clear area, the

area of the uninitialized variable .bss segment in code

.extern Image_ZI_Limit @ size of clear area

+

H

memory area needed to use to initialize C code

+

#
LDR 10, =Image RO Limit @ obtain the size of read only area
LDR rl, =Image RW Base @ obtain the initial address of
read-write memory area
LDR 13, =Image ZI Base @ obtain the initial address of clear
area
CMP r0, rl @ compare whether the read only area and

the read-write area are overlapped

BEQ LOOP1
LOOPO:
CMP rl, r3 @ copy the content of “.data” data

segment in program to the read-write area
LDRCC 12, [r0], #4
STRCC 2, [rl], #4

BCC LOOPO
LOOP1:
LDR rl, =Image ZI Limit @ commence from the top of the clear
area
MOV r2, #0
LOOP2:
CMP r3, rl @ clear
STRCC 2, [r3], #4
BCC LOOP2
#
initialize stack space
#

INITTALIZE STACK:
MRS r0, cpsr
BIC r0, r0, #LOCKOUT | MODE MASK

ORR r2,r0, #USR_MODE

ORR rl, r0, #LOCKOUT | FIQ MODE

MSR cpsr cf, rl

MSR spsr cf, r2

LDR sp, =FIQ STACK @ set fast interrupt stack space

ORR rl, r0, #LOCKOUT | TRQ MODE

MSR cpsr cf, rl

MSR spsr cf, r2

LDR sp, =IRQ STACK @ set interrupt stack space
ORR r1, r0, #LOCKOUT | ABT MODE

MSR cpsr cf, rl

MSR spsr cf, r2

LDR sp, =ABT STACK @ set abnormal stack space

ORR r1, r0, #LOCKOUT | UDF_MODE

MSR cpsr cf, rl

MSR spsr cf, r2

LDR sp, =UDF STACK @ set undefined abnormal stack space

ORR r1, r0, #LOCKOUT | SUP_MODE

MSR cpsr cf, rl

MSR spsr cf, r2

LDR sp, =SUP_STACK @ set superuser stack space

switch to user mode and set user stack space

H =

MRS r0, cpsr

BIC r0, r0, #LOCKOUT | MODE MASK
ORR rl, r0, #USR MODE

MSR cpsr_cf, r0

LDR sp, =USR STACK

enter into C language program entry

H =

.extern main

BL ~_main

+

H

#definition of vector function, definition of internal function in C
program

+
s

SystemUndefinedHandler:

SystemSwiHandler:
MakeSVC:
SystemPrefetchHandler:
SystemAbortHandler:

SystemReserv:

SystemlrqHandler:

B SystemUndefinedHandler
B SystemSwiHandler

B MakeSVC

B SystemPrefetchHandler
B SystemAbortHandler

B SystemReserv

S

.extern ISR IrgHandler

SIMED ~ sp!, {r0-r12, 1r}

BL ISR IrgHandler

LDMFD sp!, {r0-rl12, 1r}

SUBS pc, lr, #4

interrupt

SystemFigHandler:

® & & ®

S

.extern ISR FigHandler

SIMFD ~ sp!, {r0-r7, 1r}

BL ISR FigHandler

LDMFD sp!, {r0-r7, lr}

SUBS pc, lr, #4

interrupt

+

® & & ®

interrupt vector
interrupt stack saving
recover interrupt stack

return to the program

fast interrupt vector

H

memory area register setting value

+

H
SystemInitDataSDRAM:
. long 0x00003E02
. long 0x02000060
. long 0x00000060
. long 0x00000060
. long 0x00000060
. long 0x00000060
. long 0x00000060
. long 0x14010301
0x400000"0x1400000
. long 0x00000000
. long 0x00000000
. long 0x00000000
. long 0x9C298360

@ EXTDBWTH setting value

interrupt C manipulation function

index before

fast interrupt stack saving
fast interrupt C manipulation function
fast recover interrupt stack

return to the program index before fast

@ ROMCOONO setting value, 0~ 0x200000

@ DRAMCONO

@ REFEXTCOM setting value

HE &

stack space definition interval

setting value,

. data

. SPACE 1024
USR_STACK: . SPACE 512
UDF _STACK: . SPACE 512
ABT STACK: .SPACE 512
TRQ_STACK: . SPACE 512
FIQ_STACK: . SPACE 512
SUP_STACK:

® C master program file

C master program file “led_int.c” completes the initialization of 10 port and
interrupt, realization of interrupt function, and handling to the uncompleted fast
interrupt in the program, and remain an empty function of fast interrupt

handling for the need of link.
The source code and detailed interpretation of “Led_int.c” are as follows:

/***

* file name: led_int.c

* description S3C4510 control IO and interrupt demonstration program
*/

& P16/TOUTO connected to LED1

& P17/TOUT1 connected to LED2

% P9/XIRQ1 connected to button

**/

#define VPint *(volatile unsigned int *)
#define Base_Addr 0x3ff0000 // register base address

#define IOPMOD (VPint(Base_Addr+0x5000)) // I0 mode register
#define IOPCON (VPint(Base_Addr+0x5004)) // 10 control register
#define IOPDATA (VPint(Base_Addr+0x5008)) // IO data register

#define INTMOD (VPint(Base_Addr+0x4000)) // interrupt mode register
#define INTPEND (VPint(Base_Addr+0x4004)) // interrupt pending
register

#define INTMASK (VPint(Base_Addr+0x4008)) // interrupt mask register
#dafine TNTOFFQFT (\/Pint(Raca Addr+Nv4N24)\ // interriint chift reaictar

void ISR_IrgHandler(void);
void ISR_FigHandler(void);

/**

* name: ___main

* function: C language entry master function
**/

void __main(void)

{

int i, j;

IOPMOD = 0x00030000; // set P16 and P17 as output, other IO port as
input

IOPCON = 0x320; // set P9 as external interrupt, high level
advancing edge triggering
INTMOD = 0x0; // interrupt is IRQ mode

INTMASK = Ox3FFFFD; // mask interrupts except XIRQ

for(;;)
{
IOPDATA = 0x00010000; // light LED1
for(i=0; i < 65000; i++) ; // simple delay
IOPDATA = 0; // put out LED1
for(i=0; i < 65000; i++) ;

/**

* name: ISR_IrgHandler
* function: interrupt handling function

**/

void ISR_IrgHandler(void)

{
unsigned int IntOffSet;

IntOffSet = (unsigned int)INTOFFSET;// obtain interrupt source

INTPEND = 1<<(IntOffSet>>2); // remove interrupt pending
symbol

IOPDATA = 0x00020000; // light LED2

3.3.2 Creation of Project

Select menu File > New Workspace, the system will pop up project creation

dialog, as shown in Fig 3-35:

Create a Hew Froject

Project name: lediny

Location: CAEmbestiIDEAExamples\Samsungile J

OK Cancel |

Fig 3-35 project creation dialog

Input the project name of the newly-created project “led_int” in the edit box
of project name, and input the directory path
“C:\EmbestIDE\Examples\Samsung\ledint in the edit box” for storing the
project in the edit box of project location.

Select button OK to create new project ledint, and the integration
environment will create the workspace and project with the same name as the

project.

Select the right key menu to create source file folder in the window of
workspace and add relevant source file, at last, the workspace is shown as Fig
3-36:

| =
=- 55 Workspace 'ledint': 1 project(s]
=-E8 ledint files
=1 C Files
e Ledint.c
=1 ASM Files
- init.s
=24 MISC Files
~[5] netstart.cs
----- netstart.map
- ram_ice.ld

K1 E— 2]
3 Fune Files |

Fig 3-36 window of workspace

3.3.3 Configuration of Project

The processor configuration and emulator configuration in the project is the
same as in the example described in Part 1 of this chapter, what needs to pay
attention to is that, during the course of processor configuration, for Maker in
Peripheral Register, select S3C4510B, for Chip, select S3C4510B, because the
example is based on S3C4510B chip of Samsung Corporation, as shown in Fig
3-37, and the please set other configurations according to the following steps.

Settings For : Processor |Flemote| Debug I Direcmryl Compilerl Asseml 4 | 'l
E@ Workspace 'ledint': 1 proje: .
=R e dint files CPU Module : |a,m? =] Endian
©-0 C Files @ Little Endian
-1 ASM Files Support for ARM7 family
-1 MISC Files er: 1167865 ¢ Big Endian

CPU Peripheral

Family : [ARM7 -] | Maker ;[SuMsUNG =l
Member : [Anp7 -] | chip: [s3casi10b =

Build Tools :
|GNU Tools for ARM |

4 | ©

Fig 3-37 project configuration processor page layout

® Debugging equipment configuration

Select project configuration dialog box to debug equipment debug page

layout, as shown in Fig 3-38:
» Select General option in Category

< set debugging symbol file as./debug/ledint.elf;

< if debugged in RAM, set “Action after connected” of emulator as
command script, then select the command script file to implement as
“net-start.cs”;

< if debugged in ROM, set “Action after connected” of emulator as
“none”;

command script file is a serial commands for integration environment to
implement, which will usually complete the initialization work needed by
processor, including reset, memory area configuration, and disable interrupt,
etc, users shall use command script file to map RAM area to O address when
debugging in RAM in this example, which is the same with the address of Flash

to be solidified to finally, so that the users download program to O address to
debug whether the phenomenon is consistent to the actual operation; the

command script “net-start.cs” used in this example and the interpretation is as
follows:

reset

stop

memwrite 0x3ff4008 Oxffffffff
memwrite 0x3ff4004 Oxffffffff
memwrite 0x3ff0000 0x83FFFF90
memwrite 0x3ff3010 0x00003e02
memwrite 0x3ff3014 0x1a060040
memwrite 0x3ff302C 0x10000301
memwrite 0x3ff303C 0x9c298360

Ns N= N= N= Ns= Ns= N= N»

reset processor

stop processor operation

remove all interrupts

mask all interrupts

config. System register

config. Access width register
config.ROMO (0x1800000-0x1a00000)
config.RAMO M 0x0%]0x1000000

config. DRAM brush parameter register

Froject Settings

Settings For: Pmcessnrl Remote Debug |Directury| Cumpilerl Assemld | ’|
E--@ Workspace 'ledint': 1 proje:
=1\ dint files) Category: v
{1 C Files
{1 ASM Files Symbol file :
i@ MISC Files AdebugiLedint.elf J

T None

—Action after connected

¢ Auto download

& Command script

Inetstart.cs J

« | ©

oK I Cancel

Fig 3-38 general option of project configuration debugging page layout

» select Download option in Category, as shown in Fig 3-39:

< set download file as ./debug/ledint.elf;

< set download address as 0x0;

< other default settings used;

Project Settings

Settings For : Processor | Remote Debug |Diret:ll]r'g,|r Compiler | Asseml 4 | g
E@ Workspace 'ledint’: 1 proje:
|—;|.. ledint files Category: IDuwnIuad j
@1 C Files
..{:' ASM Files Download file:
-] MISC Files [\debugiLedint.clf J

[Download verify

Download address: Execute program from

Il]xl]| ¢ Don't care

Execute until: & Download address

I ¢ Program entry point

‘ I B

0K I Cancel

Fig 3-39 download option of project configuration debugging configuration
page layout

» select debugging option Memory Maps in Category, as shown in Fig

3-40:
< Set Memory Map as No map file;
Project Settings
Settings For : Pmcessurl Remote Debug |Directury| Cumpilerl Asseml 4 I 'l
EI@ Workspace 'ledint’: 1 proje:
=21 e din files I LU Memory Maps]
=1 C Files
=1 ASM Files
-1 MISC Files phicmenkiag
& No map file

 Use map file

< | Dbl

0K I Cancel |

Fig 3-40 memory mapping option of project configuration debugging page
layout

A\

Memory mapping file “.map” file is used for debugging in integration
environment. During the process of software debugging, it will produce
abnormities in some processors to access illegal memory area, if the
abnormities fail to be handled, they will cause the software debugging process

not able to continue; to use memory area mapping file (*.map) may prevent the
above problems and adjust emulator access speed to reach the moderate level.

® compiling configuration

select project configuration dialog box compiling configuration (Compiler)
page layout, as shown in Fig 3-41:

» select General option in Category

< set object files location as .\debug;
> other default settings used;

Froject Settings

Settings For: Prucessurl Flemutel Debug | Directory Compiler |Assem| 1 | 'l
=5 Workspace 'ledint': 1 proje: .
Category: -
B =1 dint filcs o il
-0 C Files |Include Directories: F e S 4
=-[1 ASM Files
w-{] MISC Files
Object files location: |Adebug J

Preprocessor Definitions:

Compile Options:

gdwart -c S(SOURCE_FILE) -0.idebug\$(0BJ_FILE) =

q | =
oK I Cancel |

Fig 3-41 general option of project configuration compiling page layout

® assembly configuration

select project configuration dialog box assembly configuration (Assembler)
page layout, as shown in Fig 3-42:

» select General option in Category

< Set object files location as .\debug:

< Set predefine as ROM=1 if it needed t build final solidification
program and debug in ROM; do not set any predefine for debugging in
RAM.

» other default settings used;

Project Setting=

Settings For : Remote | Debug | Directory | Compiler Assembler | Linker <]
=-E5 Workspace 'ledint': 1 proje

Colrose 5
S8=5E edint files ategory SEnera
e ||“'3|“dE Directories: H O S 2

-1 ASM Files
&3 MISC Files

Object files location: |[-\debug J

Predefines:

ROM=1
Assemble Options:

gdwarf2 —defsym ROM=1 §[SOURCE_FILE) =
-0.\debugi$(0BJ_FILE)

4| | © =

OK I Cancel |

Fig 3-42 general option of project configuration assembly configuration
page layout

® link configuration

select project configuration dialog box link configuration (Linker) page
layout, as shown in Fig 3-43:

» select General option in Category

< set linker script file as flash.ld when solidifying program or
debugging in ROM;

< set linker script file as ram_ice.ld when debugging program in RAM;

< set output file name as .\debug\ledint.elf;

» other default settings used;

Settings For: Debug | Directuryl Compiler | Assembler Linker | »

=55 Workspace 'ledint'; 1 proje: .
- Cat B G 1 i
B =:kic dint files ategory: [Genera -
@1 C Files Output file type
-1 ASM Files _ _
&] MISC Files ’7 & Ewecutable file " Library

Linker script file:

Iram_ice.ld| J

Output file name:

[Adebuglledint.clf

Link Options:
-Tram_ice.ld -o.Adebugjledint.elf $[<init.o>0BJ_FILES) 1=

1] 4 | Cancel |

Fig 3-43 general option of project configuration link page layout

link location file shall be used in embed development of system level,
and the file describes the relevant information of code link location, including
code segment, data segment address, etc, the linker shall use the file to
make correct location to the codes of the whole system. The link location
files used for RAM debugging and solidification are different, and the
following are the link location files used for solidification:

SECTIONS
. = 0x000000; set the current address as 0
text @ { *(.text) }; code segment, symbol lay program code here from 0

.rodata : { *(.rodata) }; read only data segment, the fixed values such as
static global variable in program is laid in this segment

Image_RO_Limit = .; read only area length, the symbol used in starting
program

. = 0x0400000; set the current address as 0x400000

Image_RW_Base = .; read and write area base address, the symbol used in
starting program

.data : { *(.data) }; data segment, the initialized global variable in
program is laid in this segment

Image_ZI_Base = .; clear area base address, the symbol used in starting
program

.bss : { *(.bss) }; contain uninitialized globally useable data, such as

uninitialized global variable
Image_ZI_Limit = .; clear area length, the symbol used in starting program

end = .; end address

.debug_.info 0 : { *(.debug_info) }; debugging information output
segment

.debug_line : { *(.debug_line) 7}

.debug_abbrev
.debug_frame

by

: { *(.debug_abbrev)}
: { *(.debug_frame) }

o oo

the link location file used for debugging in RAM:

SECTIONS

{

. = 0x000000; set the current address as 0

text @ { *(.text) }; code segment, symbol lay program code here from 0

Image_RO_Limit = .; read only area length, the symbol used in starting
program

Image_RW_Base = .; read and write area base address, the symbol used in
starting program

.rodata : { *(.rodata) }; read only data segment, the fixed values such as
static global variable in program is laid in this segment

.data : { *(.data) }; data segment, the initialized global variable in program
is laid in this segment

Image_ZI_Base = .; clear area base address, the symbol used in starting
program

.bss : { *(.bss) }; contain uninitialized globally useable data, such as

uninitialized global variable
Image_ZI_Limit = .; clear area length, the symbol used in starting program

end = .; end address

.debug_info 0 : { *(.debug_info) }; debugging information output
segment

.debug_line 0 : { *(.debug_line) }

.debug_abbrev 0 : { *(.debug_abbrev)}

.debug_frame 0 : { *(.debug_frame) }

b

3.3.4 Debugging of Program in RAM

Debugging of software may be completed in ROM area or RAM area,
because it is convenient to read and write in RAM area and the access speed is
high, all the debugging during the process of software development shall be

completed in RAM area if only the hardware condition allows.

The following steps shall be completed before debugging of software:
compile link project, to connect emulator and target board, and download

program.
® compile link project

Users select Build menu, compile corresponding file or project, and output
relevant compiling and link information at the Build subwindow of the Output
window. According to link configuration, led_int.elf file will be built
under .\led_int\debug\ directory after passing of program compiling, and the

file contains the execution file of debugging information.
® connect emulator and target board

Select Remote Connect submenu on Debug menu, and the debugger in
integration environment will be connected to the target system through

emulator.
® download program

After connection of target system, if automatic download option is set in the
debugging configuration option, the debugger will automatically download
software; or it will select Download submenu download program of the menu
Debug. Now, the debugger will download binary system instruction file to the
location designated by the target board memory area after removing the
debugging information in led_int.elf, meanwhile, will display the download
progress on the status bar. In this example, the download address set is 0x0,
and the address is the initial address of RAM memory area through command
script mapping. After download successfully, the status bar will display
“Download Completed” in blue, or the information of "Download Failed” will be

displayed in red status bar.

The debugging interface of Embest IDE after download of program is shown

in Fig 3-44, and now the debugging of program may be started.

Embest IDE - [Dizassembly]

File Edit V¥iew Froject Euild Debug Toolz Hindow Help =
[Dema@ & /=l (o ClEhE 4R
| :
N 0:0000083c beq axszl 2]z
—— - LOOPA :
El@ Works!Jace_ ledint': 1 project(s] A: 00800840 cnp 1, Reg |
EI-- Iedmt_ files 000000044 ldrce r2, E-§ -—- Current -— -
C Files 0x 00000048 strcc rz, i L i@ RO: Bx608000d3
Ledint.c 8x 000080 04c bec ext @ R1: 8x008818cH
{11 ASM Files LOOP1 :)

init.s 0x00000650 1dr - s % R2: 0200000000
={1 MISC Files 0x80800054 nou el - % R3: 0x000610C0

netstart.cs LeoPz : o @ R4: Bxe55308fa
netstart. map 6:x00000058 cnp r3, i R5: Bxcch5eaps
= ice 0x0080605C strce r2, I @ R6: Bxccl10078
" ram_ice.ld 8000080060 bece oxt (] .. % R7: Oxac39ea0d

INITIALIZE STACK = || @ R8: 0x00815038
l I 080060064 n-s re, i fa R9: 0x00163660 7|
—_— S/40:: 00000068 bic ro = _
.I: Fune . Filas I I r nnnnnnnnnn _I.-.. s B8 Register I&Sa, Perlpherall
E—— 1K »
. Hame I Value Iﬂ Address : [PTLEELLGLLE j Al memwrite success. =]
| >memwrite Ox3FF3014 Bx1a060
| +8 +1 +2 +3 -] memwrite success.
60006088 06 68 60 EA ... >menuwrite Bx3FF302C 6x10860
00ODABs 33 88 80 EA 3... nenuFite success.
gERA0ABS 33 @0 @0 EA 3. N [>memurite 8x3FF383C 0x9c298
000000BC 34 60 00 EA 4. nemuFite cuccess.
000ODA18 34 B0 0O EA 4., 3
o00ABA14 34 6 BB EA 4... | =
T[]\ vatcn 1 {Tareh 2 7 T vemory 1 {Menory 2 / [T Buila) pebugh <] | ¥]
Ready tn1,Cot1 | [pos |Read [NUM | A
I) 1% 2z [fuE: ZEEX S I A Rl R N i A E A= EF

Fig 3-44 Embest IDE debugging interface

Embest IDE will display the corresponding assembly instruction at the
current download address after download of program, and to select “"Go to
source” submenu on the right key menu may switch to the window of the source
file.

Now it may, through setting breakpoint at the window of anti-assembly file
or source file, implement the operation such as single step run to debug

program and analyze the problems in program, as shown in Fig 3-45.

void ISR_FigHandler{void)};

f
*= Func Hame: __main
* Function: master function & Entry of program

void _ main{void)

{

int i, j;
IOFPHMOD = Ox00030000; /# set P16,P17: output; other ID: input
IOPCON = Bx328; /4 set P9: extral Int, interrupt at high lewe
INTHOD = Bx8; f£f IR} mode
INTHASK = Bx3FFFFD; ff Mask Int except XIRQO1
for{;;
{

=} I0PDATA = Bx000106080; 7 1it LED1

for{i=8; i < 658808; i++) ; // delay

Fig 3-45 set breakpoint in source program

3.3.5 Download onto the Flash ROM

The program passed through debugging in RAM is different from the

program finally downloaded onto Flash ROM, and users shall:

® Set ROM=1 in the predefine option of assembly, or directly add “.equ
ROM 1”ininit.s file, and the starting file rather than command script will

complete the re-mapping of memory area.

® Select the link file flash.ld in Linker, and the link file and starting file will
combine to complete the handling job of data segment downloaded onto

Flash originally.

After completion of the above modification, compile program again. Then

use EIf to Bin tool to change ledint.elf file into binary format file ledint.bin.

At last, use Embest Flash Programmer to download ledint.bin to the Flash
ROM, as show in Fig 3-46.

» Embest Online Flash Programmer e o] |
File Setting Tools Help
Program | cpu | Flash |
—E:%EmbestIDENToolsYFlashProgrammerts 3c4510-netstart_boot.cfg————————— @ Blank Check

CPU Type: |53C451D Flash Device: M
CPU Endian: Il_ittle— Flash Start: IW
RAM Start: W Flash Width: |1s— X |1—
Program With ¥ auto Erase Sector From Il— T |4— o Merify

V¥ auto Verify

Z# Erase

ey Program

FREREE

File > Checksum
Program: IE:\EmbestIDE\Tnols\FlashProgrammer\Matl g IFIat Bin j

JE Protect
Upload: IE:\EmbestIDE\ToDls\FlashProgrammer\Matu g

&> Upload

Fig 3-46 Flash programmer interface program page layout

3.3.6 Debugging of Program in Flash

When target board limited by software resources, such as the space of RAM
area is less than the space of program code, which causes that debugging can
not be made in RAM area, or it is needed to observe the actual operation
situation of program in Flash, it may select to debug program after completing

the solidification works described in the previous part.

The project configuration for debugging of program in Flash is different from
that of the debugging in RAM:

® it is unnecessary to implement script file in debugging option, the work
is completed during the course of starting file, and it is needed to

change the option “Action after connected” into “None”;
And the debugging processes are different too;

® after connecting to emulator, it unnecessary to implement Download

program operation

® ifitis to commence debugging program at the entry of starting program,
reset command shall be implemented, and now the program will stop at

the zero address;

® two hardware breakpoints may be set at most when program is
debugged in Flash.

3.3.7 Startup Program Design of S3C44B0X

S3C44B0 starting program design is different from the starting program of
S3C4510 as we describe in the above example, the major reason lies in that
S3C44B0 has no memory mapping function, all the addresses of memory area
are fixed, in addition, S3C44B0 provides vector interrupt function and reduces
interrupt delay. Therefore, in the starting program of S3C44B0, the appearance
of vector interrupt function leads to extension of vector table, meanwhile, for
the convenience of design of program and the debugging in RAM, interrupt entry
is shifted to the tip end of RAM through address definition mode.

The starting program of S3C4510 represents the starting flow of processor
chips of most integrate ARM, and S3C44B0 represents the rest, to understand
the starting program of these two processors is helpful to the starting design of

other processors.

The following codes are the source codes and the interpretation of the
starting program of S3C44B0, in order to effectively apply the space, some
similar interrupt entry definitions and function macro definitions are omitted,
and the omitted parts is replaced by “......" and notes are given, if users want to
use the following source codes as starting programs, they shall add the omitted

parts by themselves.

£ KRR AR K A K Fok K K >k Aok K 2k 5k Aok K K K Aok K ok K Aok K K ok ok K K Sk ok K K Sk ok K K Sk ok ok K >k

file name: INIT.S

description: S3c44b0x starting file
3K 3K 3K 3K 3k 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K K 3K 3K 3K 3K 5K 3K 3K 3K K 3K 3K 3K 3K 3K 3K 3K K K K K 3K 3K 3K 3K K kK kK kK K K XKk

#==
register definition and bit definition
#==
.equ INTMSK, 0x01e0000c

.equ WTCON, 0x01d30000

.equ CLKCON, 0x01d80004

.equ LOCKTIME, 0x01d8000c

.equ FIQMODE, Ox11
.equ IRQMODE, 0x12
.equ SVCMODE, 0x13
.equ ABORTMODE, 0x17

.equ UNDEFMODE, O0x1b
.equ MODEMASK, Ox1f

.equ NOINT, 0xcO
f=====—======================================
interrupt handling macro
f=====—======================================

.macro HANDLER HandleLabel

sub sp, sp, #4 @ stack space degression save jump
address

stmfd sp!, {r0} @ save work register r0 to stack

Idr r0, =\HandleLabel @ load interrupt entry address location
to r0

Idr ro, [rO] @ load interrupt entry address to r0

str ro, [sp,#4] @ save interrupt entry address to stack

Idmfd sp!, {rO,pc} @ recover work register and jump to
interrupt function

.endm
f===-=
set ARM7 interrupt and primary exception vector
f===-=
ENTRY

b ResetHandler @ implement from here after S3C4510
reset

b HandlerUndef @ undefined primary exception vector

b HandlerSWI @ soft interrupt vector

b HandlerPabort @ obtain fetch primary exception vector

b HandlerDabort @ obtain data primary exception vector

b . @ keep

b HandlerIRQ @ interrupt vector

b HandlerFIQ @ fast interrupt vector
f===-=
set 44B0 interrupt vector table
f===-=
VECTOR_BRANCH:

Idr pc,=HandlerEINTO @ mGA H/W interrupt vector table

Idr pc,=HandlerEINT1 @

...... @ omit

Idr pc,=HandlerADC @ mGKB

...... @ omit

#f===========—==============================-=
interrupt vector handling macro
#f===========—==============================-=
HandlerFIQ: HANDLER HandleFIQ

HandlerIRQ: HANDLER HandleIRQ

HandlerUndef: HANDLER HandleUndef

HandlerSWI: HANDLER HandleSWI

HandlerDabort: HANDLER HandleDabort
HandlerPabort: HANDLER HandlePabort

HandlerADC: HANDLER HandleADC
...... @ omit
HandlerEINT1: HANDLER HandleEINT1

HandlerEINTO: HANDLER HandleEINTO

ResetHandler:
Idr r0,=WTCON @ watchdog forbidden
Idr r1,=0x0
str rl,[r0]

Idr r0,=INTMSK

Idr r1,=0x07ffffff @ all interrupts forbidden

str rl,[r0]
#===
set clock control controller
#===

Idr r0, =LOCKTIME
Idr ri, =0xfff
str ri, [rO]

Idr r0, =CLKCON
Idr rl, =0x7ff8 @ clock of all modules unlocked

Idr r0, =SMRDATA
Idmia rO, {r1-ri3}

Idr r0, =0x01c80000
stmia r0, {r1-ri3}

#===
initialize stack space
#===
Idr sp, =SVCStack @ switch to superuser stack space

bl InitStacks
#===

.extern Image_RO_Limit @ size of read only area
.extern Image_RW_Base @ initial address of readable-writeable
memory area

.extern Image_ZI Base @ initial address of clear area

.extern Image_ZI_Limit @ size of clear area
#===
initialize the memory area needed to use by C code
#===

LDR r0, =Image_RO_Limit @ obtain the size of read only area

LDR rl1, =Image_RW_Base @ obtain the initial address of readable-
writable memory area

LDR r3, =Image_ZI_Base @ obtain the initial address of clear area

CMP ro, rl@ compare whether the read only area and the
readable-writable area are overlapped

BEQ LOOP1
LOOPO:

CMP rl, r3 @ copy the content of “.data” data segment in program to
the readable-writable area

LDRCC r2, [r0], #4

STRCC r2, [r1], #4

BCC LOOPO

LOOP1:

LDR rl, =Image_ZI_Limit @ commence from the top of the clear
area

MOV r2, #0
LOOP2:

CMP r3, rl @ clear

STRCC r2, [r3], #4

#f=======—==—==================
enter into C language program entry
#f=====—==—====================

.extern __main

BL ___main

#=====—==—=—=—=—=—====—===========================

initialize the function of stack space

#=====—==—=—=—=—=—====—===========================

InitStacks:

mrs r0, cpsr

bic r0, r0, #MODEMASK

orr rl, rO, #UNDEFMODE | NOINT

msr cpsr_cxsf, rl

Idr sp, =UndefStack @ set undefined abnormal stack space

orr rl, rO, #ABORTMODE|NOINT
msr cpsr_cxsf, rl
Idr sp, =AbortStack @ set abnormal stack space

orr rl, rO, #IRQMODE|NOINT
msr cpsr_cxsf, rl
Idr sp, =IRQStack @ set interrupt stack space

orr r1, r0, #FIQMODE|NOINT
msr cpsr_cxsf, rl
Idr sp, =FIQStack @ set fast interrupt stack space

bic r0, r0, #MODEMASK|NOINT
orr rl, rO, #SVCMODE
msr cpsr_cxsf, rl

Idr sp, =SVCStack @ set superuser stack space

mov pc,Ir @ function return
#::
setting value of relevant register of memory area
#::
SMRDATA:

.long 0x11110101 @ memory area access width control

register

.long 0x00000600 @ BANKO control register

.long 0x00007FFC @ BANK1 control register

.long 0x00007FFC @ BANK2 control register

.long 0x00007FFC @ BANK3 control register

.long 0x00007FFC @ BANK4 control register

.long 0x00007FFC @ BANKS5 control register

.long 0x00018000 @ BANK®6 control register

.long 0x00018000 @ BANKY7 control register

.long 0x00860459 @ SDRAM brush control register
.long 0x10 @ SDRAM memory area size
.long 0x20 @ BANK6 SDRAM mode register
.long 0x20 @ BANK7 SDRAM mode register

.equ

.equ
.equ
.equ

STARTADDRESS, 0xc7fff00

UserStack, STARTADDRESS-0x500 @ c1(c7)ffa00
SVCStack, STARTADDRESS-0x500+256 @ c1(c7)ffbo0
UndefStack, STARTADDRESS-0x500+256*2 @ c1(c7)ffc00
AbortStack, = STARTADDRESS-0x500+256*3 @ c1(c7)ffdoo
IRQStack, STARTADDRESS-0x500+256*4 @ c1(c7)ffe00
FIQStack, STARTADDRESS-0x500+256*5 @ c1(c7)fffoo

HandleReset, STARTADDRESS
HandleUndef, STARTADDRESS+4
HandleSWI, STARTADDRESS+4*2
HandlePabort, STARTADDRESS+4%*3
HandleDabort, STARTADDRESS+4*4

HandleReserved, @STARTADDRESS+4*5

HandleIRQ,
HandleFIQ,

HandleADC,

STARTADDRESS+4*6
STARTADDRESS+4*7

STARTADDRESS+4*8
@ omit

HandleEINT4567, STARTADDRESS+4*29

HandleEINT3,

STARTADDRESS+4*30

.equ HandleEINT2, STARTADDRESS+4*31
.equ HandleEINT1, STARTADDRESS+4*32

.equ HandleEINTO, STARTADDRESS+4*33 @ Oxc1(c7)fff84

4. Editor

Embest development environment includes an integrated Text editor to

manage, edit, and print source files.

4.1 Editor Overview

The EmbestIDE source code editor includes standard text manipulation

capabilities, as well as the following specialized features:
¢ C and assembly syntax color highlighting.
¢ Debugger integration: the editor window tracks code execution.
¢ Compiler integration: compiler messages links to the editor window.

The EmbestIDE editor also provides features tailored to the program
environment. Editor display program syntactic elements such as C keywords,
preprocessor directives, and comments in color. Because the editor is
integrated with the debugger, the editor also keeps pace automatically with

program execution during debugging session.

You can work on as many files simultaneously as your computer's memory
allows. This is convenient for you are working with more than one module, or

want to edit both a source and header file at the same time.

Typically, developers use the EmbestIDE editor to work with source files and
header files. However, because it is a text editor, it can also be used on any text

file. For example, you can view a bug report, or save a note in a text file.

The EmbestIDE editor uses standard Windows editing commands and
conventions. Most of the procedures for using the editor should seem familiar if

you have used other Windows-based text editors. With the Text editor, you can:

¢ Perform advanced find and replace operations in a single file or multiple

files, including using regular expressions and incremental searching.
¢ Use Bookmarks to mark frequently accessed lines in your source file.

¢ Customize the Text editor with the selection margin, indent, and drag and

drop.
¢ Select lines, multiple lines, or columns.

¢ Use drag-and-drop editing within one editor window, between editor

windows, and between the Text editor and the debugger.

¢ Manage the source window.

While using the Text editor, in many instances you can right-click mouse
to display a shortcut menu of frequently used commands. The commands

available depend on what the mouse pointer is pointing to.

4.2 The Standard Toolbar

The Standard toolbar has buttons for frequently used editing commands that
are also available in the File and Edit menus. Figure 4-1 shows the Standard

toolbar.

When you first start EmbestIDE in its default configuration, the Standard
toolbar appears just below. You can click View>Toolbars>Standard to show and

hide the standard tool bar.

Standard H

heldd@ & © E|QQ|’E’E|%|CaptureﬂxFrame vlﬁ' P

Figure4-1 Standard Tool Bar

The following are summary descriptions of each buttons and the equivalent

menu option.

Table 4-1 Standard Tool Bar Buttons Description

button menu description
E File>New Create a new file
g File>Open Open an existing file
E File>Save Save current file
E File>Save All Save all opening files
@ File>Print Print current file
Delete the selection and place it into
#| Edit>Cut . g
the clipboard
Edit>Copy Copy the selection to the clipboard
Insert the clipboard text at the
B Edit>Paste : : P
insertion point
g Edit>Undo Undo the previous operation
g Edit>Redo Redo the previous operation
@ View>Workspace View or hide the workspace window

W

View>output View or hide the output window

=

Edit>Find in Files Search strings in multiple files

®

Search for another instance of the

Edit>Find Next same string in the same search
direction
Repeat the search, but in the opposite

Edit>Find Previous . .
direction

Specify both a string to find and a

Edit>Replace .
replacement for it

Edit>More Bookmarks>Toggle Toggles an unnamed bookmark for the

Bookmark current line

Edit>More Bookmarks>Next Moves to the line containing the next
Bookmark bookmark

Edit>More Bookmarks Moves to the line containing the
>Previous Bookmark previous bookmark

® @ e s

it> >
Edit>More = Bookmarks CIearCIears all bookmarks in the window
All Bookmarks

4.3 File Management

The following sections describe file management commands.

4.3.1 Create a file

Table 4-2 Operation of Create a New File

Button Shortcut File menu

0| Ctrl+N File > New

To create a new file, click File> New, an empty window appears, ready for

input text.

4.3.2 Open a File

Table 4-3 Operation of Open a File

Button Shortcut File menu

= Ctrl+0 File > Open

To open an existing file, click File>Open. A standard Windows file browser

allows you to select which file to be open.

Recent files of the File menu (File > Recent Files) lists the most recently
opened files. You can choose one of these without navigating through the open

dialog box.

4.3.3 Save and Close a File

Table 4-4 Save and Close File Button

Button Shortcut File menu
=1 Ctrl+S File > Save
N/a File > Save As
E File > Save All
N/a Ctrl+F4 File > Close

To save current file, click File>Save. If need specify a new name (or path)
for current file, click Save As instead. (Save is disabled until you modify current
file.)

If you open multiple files, you can also click File>save all to save the

modification of all opening files.

Click Close to dismiss the editor window for current file. If the file has
changed since you last saved, a confirmation dialog box offers you the
opportunity to save the file before closing it.

4.3.4 Print

Table 4-5 Print Buttons

Button Shortcut File menu
=] Ctrl+P File > Print
N/a File > Print Preview
N/a File > Page Setup
N/a File > Print Setup

To print current edit window, click File>Print. A standard print dialog box
(Figure 4-2) appears.
Print EHE

Frirter

Mame: x Eropeties

Statuiz: Drefault printer; Ready
Type: HF Lazerlet 45i

Where: WWWINDRIVERSeng
Camment: [PFrinit ba file

Frint range Copies

Al Murnber of copies: 1 El:
" Pages from: |1 to: |_
1 2 3
~ 1 2]
ar. | Cancel

Figure 4-2 Print Dialog Box

Click File > Print Preview, to preview the page will be printed. Click File >

Page Setup to change the margin size of each page in printout.

4.4 Typing and Editing

Only one edit window in EmbestIDE is active at any time. The active window
contains a text cursor, a blinking vertical line also called an insertion point.

Whatever you type appears at the text location indicated by the text cursor.

The editor is designed for edit source files. As such, it does not provide the
"word wrap" feature found in many word edit software. You must press ENTER
to start a new line. If a line is too long for the current width of the edit window,

the text scrolls horizontally as necessary to display the text you are editing.

There are two edit modes in EmbestIDE: overtype mode, which replaces the
existing text under the cursor as you type, and insert mode (the default), which
displaces text to the right while adding the characters you type. Use the INSERT
key on your keyboard to toggle between these two modes. The edit mode does
not change when you switch edit windows; the last mode you selected continues
to apply, even if you switch to a window that you last edited with the other edit

mode.

NOTE: If you cannot type inside an editor window, check for a READ indicator
on the status bar at the bottom of EmbestIDE window. If that indicator
appears, the editor is displaying as a read-only file. To enable type in that
window, click Edit>Read Only menu to turn off the read-only file attribute.

4.4.1 Edit Text

Table 4-6 Edit Button

Button Shortcut Edit menu
g Ctri+z Edit > Undo Typing
= Ctrl+Z Edit > Redo
& Ctrl+X Edit > Cut
Ctrl+C Edit > Copy
B Ctrl+V Edit > Paste

Del Edit > Delete
Ctrl+A Edit > Select All

The edit menu supports the Windows standard edit functions: Undo, Cut,
Copy, Paste, Delete, and Select All, with standard shortcuts. With the text editor,
you can cut, copy, and paste selected text using menu commands or

drag-and-drop operation. You can also undo and redo selected edit actions.

The editor uses the standard Windows keys and mouse actions for moving
throughout the file. For example, the following specialized keys have the

standard effects:

Table 4-7 The Standard Windows Edit Keys

Page Up Display the previous portion of text.

Page Down Display the next portion of text.

End Move the cursor to the end of the line.

Ctrl+End Display the end of the document.

Home Move the cursor to the beginning of the line.
Ctrl+Home Display the start of the document.

«Tl> Move the cursor into the direction of the arrow,

one character or line at a time.

Ctrl + « Move the cursor one word at a time, in the

Ctrl + > direction of the arrow.
Ctrl + T Scroll the window by one line, in the direction of
Ctrl + | the arrow, without changing cursor position.

You can set bookmarks to mark source lines that need frequently access in
your source file. Once a bookmark is set, you can use menu or keyboard
commands to move to it. You can remove a bookmark when you no longer need

it.

4.4.2 Find and Replace Text

Table 4-8 Find and Replace Button

Button Shortcut Menu
N/a Ctrl+F Edit > Find
| F3 Edit > Find Next
‘R Shift+F3 Edit > Find Previous
| Edit > Find in Files
g Ctrl+H Edit > Replace

The text editor supports string searching. You can search text in a single

source file or in multiple files.

Click Edit>Find to search for a string in the current active file window. Figure
4-4 shows the Find dialog box. Enter the string you are looking for, set the
options, and click find next. The option buttons under Direction determine
whether the editor searches back (Up) from the cursor position, or forwards
(Down). The option of match whole word only means Matches all occurrences of
a text string not preceded or followed by an alphanumeric character or the
underscore (_). The option of match case means Searches for text that matches
the capitalization of the text string. If the text is not found, the editor displays an
error message; the Find dialog box remains open, in case you need to correct
the search string. To continue your search, use the Find Next or Find Previous
shortcut keys, or the equivalent toolbar buttons on the standard toolbar. The
default shortcut key for Find Next is F3; the default key combination for Find
Previous is SHIFT+F3.

Find |

Find what: ICapturt:Fchramt: Find Next

[Match whole word only |’Difﬂ'3ﬁ““— Cancel

[~ Match case

Figure 4-4 Find Dialog Box

Click Edit > Replace to specify both a string to find and a replacement for it.
Figure 4-5 shows the Replace dialog box. The buttons in the Replace dialog box
allow you to replace all occurrences of a string, or examine each individual

occurrence before decide whether or not to replace it.

Replace
Find what: [DRAM_LIMIT Find Next
Replace with: |[SDRAM_LIMIT Replace
; Heplace All
™ Match whole word only Replace in
...................................... . Selection Cancel
I™ Match case & Whole file

Figure 4-5 Replace Dialog Box

You can also find text in multiple files. Just click Edit > Find in Files to do this
search. The Find in Files command supports two output panes. This allows you
to conduct a second search through multiple files without losing the results from
your first search. Figure 4-6 shows the Find in Files dialog box. In the Find what
box, type the search text. In the In files/file types box, select the file types you
want to search. You can use the drop-down list to select from common file types
or to type text specifying other file types. In the In folder box, select the primary
folder that you want to search. Click the Browse button to display the Choose
Directory dialog box if you want to change drivers and directories. If necessary,
select one or more of the Find options. If you want to direct the search output to
a second Find in Files pane, select the Output to pane 2 check box. Click the Find

button to begin the search.

The Output window displays the list of file locations where the text string
appears. Each occurrence lists the fully qualified filename, followed by the line
number of the occurrence and the line containing the match. To open a file that

contains a match, double-click the entry in the Output window.

An editor window contains the file opens with the line contain the match
selected. You can jump to other occurrences of the text string by double-clicking

the specific entries in the Output window.

When you jump to a found string location specified in the Output window,

the corresponding source file is loaded if it is not already open in the editor.

Find In Files |
Find what: [CaptureRxFrame =] Find
File types: I*.c;*.c:pp;*.cc;*.moc*.s;*.asm;*.h;*.in j Cancel

In folder: IE:\EmhedIDE\Examples'-,Samsung jJ

[~ Match whole word only ¥ Look in subfolders:

[T Match case [T Output to pane 2

Figure 4-6 Find in Files Dialog Box

4.4.3 Hex file Editor

Embest IDE Hex file editor can open the HEX or Bin format files, and read,

modify and save.

Open file: when you open file with the menu File Open, drop down file

type select box and select Hex Files (*.hex,*.bin) to open the file.

FIF HE

Ei@j Iadebug j ﬁl
term_ebB3. bin

ItrEw: | T3 @ |

SCEFZER (T): |Hex Files (k. hex;*. bin) ;I 20

C Files Ok ook cppik cok, cpik ot .

C Source Files (% ;% cpp;*. cc;*. cp;¥

C Include Files Ok hy% ipd)

Bezm Files (% = % asm;*. mac;*. inc)

Command Seript Files (% es)

Linker Script Files (% 1d)
v Map Files I:*_ma:l

Hex File= [k hex ok hinl

811 Files (% %]

Fig. 4-7 Open Hex file dialog box

Edit file: after open Hex file, the display in Source Program Window is
shown in fig. 4-8. The user can directly modify the content of file in left Hex area.
The editor will automatically identify ASCII characters and display in the right.

As the same, the user can also directly input ASCII code in right ASCII area.

60066128 D1 FO 21 E3 66 DD A E1 BC 88 48 E2 D2 FO 21 E3 ..'!‘...'ZI
00006130 ©0 DO AG E1 60 80 40 E2 D7 FO 21 E2 88 DB AR E1 ____".
00066148 64 60 40 E2 DB FO 21 E3 68 DO AO E1 64 68 48 E2 ..@..._'
gggee1s8 D3 FO 21 E3 686 DB AB E1 18 F8 21 E3 81 D7 AB E3 ..*...
gg0gee1668 54 80 9F E5 54 18 9F ES 54 38 9F ES 91 88 S8 E1 T...T.
fgpgee17A 63 860 68 BA B3 88 51 E1 64 28 98 34 B84 28 81 34 I
80000188 FB FF FF 3a 3C 18 2F ES 88 280 A8 E3 81 688 53 E1 ...:-<.
LR NN LFF FF FF FF FF FF FF FF FF FRSO oa o] R S | .H
8008801A@ 19 FF 2F E1 FE FF FF EA BE FO AB E1 88 88 E@B E3 ../...
gooep1BE8 18 10 9F ES 14 60 81 ES OE FO A9 E1 9C 12 68 B2
a@geaeIcaA 9C 12 684 82 CC 13 88 82 18 17 88 82 D4 61 688 B2
600661DB 60 40 FF FF 6D CB A8 E1 68 D8 2D E? 6% BA 4C EZ2 .@....

@MBBA1ED B8 DB 4D E2 EF FF FF EB 108 32 9F E5 14 38 8B E5 ..H...
@0BOO1F® OC 22 9F E5 6C 32 OF E5S 00 20 83 E5 08 22 9F E5 ."...2
@NABA288 B4 28 83 E5 28 28 AB E3 08 208 83 ES 23 2D AB E3 . ..(
90800210 ©OC 20 83 E5 F4 21 9F E5 10 20 83 E5 E4 01 9F E5t
@pA8N228 1A 01 08 EB 88 38 AB E3 10 30 BB ES EA 01 9F E5 8.
10 - _>|_I

Fig. 4-8 Hex file Editor in Source Program Window

4.4.4 Find in Hex file

Hex file editor supports the forward and back finding of ASCII character
string and Hex code. The user highlights Find in menu option to activate Find
Dialog Box with right key of mouse in Source Program Window, or activates it

through Find option in Edit menu:

gg@ee1268 D1 FB 21 E3 66 DO A E1 BC 60 48 EZ2 D2 F8 21 E3 'Ij
00006138 08 DO AG E1 60 00 40 E2 D7 FO 21 E3 00 DO AG E1 _._.".
gggee14a 84 Ao -'lh E2 DB FB 21 E3 P8 DB A8 E1 6% B8 48 E2 ..@... |
gggee156 D3 FO 21 E3 60 DO AG E1 180 FOB 21 E3 81 D7 AB E3 ..t...
gg@ee166 5% 60 9F E5 54 18 9F E5 54 30 9F E5 61 88 58 E1 T...T.
H0868817A8 B3 B0 60 BA 63 68 51 E1 B4 20 90 34 684 28 81 34 I

00000188 FB FF FF| 4 [Gl) E3 81 88 53 E1 ...:<.
00008198 6% FF FF Sous e | E5 BF EB RBE1T
000eE1A8 18 FF 2F E1 08 88 ED E3 ../...
9008681E8 18 10 oF (B Easte Felt Y froc 12 00 02
0A@ee1CA 9C 12 @A Delete Del 82 D4 81 08 B2
aageeiDe 66 48 FF Select All Ctrlth E9 84 BA 4L E2 [P
000BE1ED 68 DO 4D E5 14 308 OB ES . _M...
saoneire o 22 of EL G 5 68 22 9F E52
00000200 04 20 83 g4 Find Hext F5 | E5 23 2D A6 E3 . ..
80000218 OC 20 83) Find Previous Shife!F3 [E5 E4 01 OF E5t
00006228 1A 81 0O ES EO 81 9F E5 0.
1a]77" 7" T 77 7 Resd Dnly e _,|—|

Fig. 4-9 Hex file finding interface

The user can input Hex code while finding:

Find

™ Find ASCI Direction——— Cancel |
[Match case C'Up & Down

Fig. 4-10 Hex file finding input dialog box

The user can also input ASCII code while finding, and highlight Find ASCII
option:

Find
¥ Find ASCII ’rDirecﬁnni Cancel |

' Up & Down

[Match case

Fig. 4-11 Hex binary file finding input dialog box

Hex file editor also supports copy, stick, cancel, print and print interview so

that the user is easy to view Hex file.

4.5 Function List Window of Source Program

When users open C language or C ++ source file in editing window, source
file function listing window will dynamically display the function contained in the
current source file, and user can select the display format of function through

menu.
Users can self-define the display mode of function in list:
® display detailed information of function
® only display function name

® do not display function return style

® do not display function call parameter

4.5.1 Introduction

Click the menu Tools > Options, select Extra Function Prototype in the
ejected dialog box; the window Func can be found in workspace window; the
function list currently opening C/C++ program is shown in the window; double
click the position of function name fast positioning function in source program.

As shown in fig. 4-12.

Workspace K|

char Uart_Getch [void] =

char Uart_GetKey [void]

int Timer_Stop [void]

int Uart_GetintNum [void]

void * malloc [unsigned nbyte]

void Beep [int BeepStatus]

void Cache_Flush [void]

void ChangePllValue [int mdiv, int

void Delay [int time]

void free [void *pf]

void Led Display [int LedStatus]

void Port_Init [void]

void Timer_Start [int divider] _|LI
| b

1]

Bra pyp I . Files I

Fig 4-12 Dynamic list window of source program function

Click right key in list window to select the display style of function. The ejected

right key menu is shown in fig. 4-13.

[v whole Protobype
Func Mame Cnky
Mo Return Type
Mo Parameters

Crocking Wigw
Hide

Fig 4-13 Right key menu in dynamic list window of functions

Introduction to main options of right key menu in dynamic list window of

functions

Whole Prototype: display all information concerning definition of function,

including return type, function name, and parameter

Func Name Only: Only display function name
No Return Type: display function name, parameter of function definition

No Parameters: display return type, function name of function definition

5. Project Management

5.1 Introduction

The project facility is a key element of EmbestIDE. It provides graphical and
automated mechanisms for create applications that can be downloaded to
target. A project consists of the source code files, build settings, and binary
codes that are used to create a downloadable application. The project facility
provides a simple means for define, modify, and maintain a variety of build

options for each project. Each project requires its own directory.

In EmbestIDE, the Project Workspace is a container for your development
projects. When you create a new project, a workspace is created at the same
time. You can use the Project Workspace window to view and access the various
elements of your projects. After you have created a project workspace, you can

add new projects, including independent projects.

The workspace directory is the root directory for the project workspace. The
projects you add to the project workspace can be located on other paths, even

on a different drive.
The project facility provides mechanisms for:

¢ Organize the files that make up of a project. A project is a collection of
source files, library files, and other input files. You can organize the files in a

project in various ways to provide a logical structure to your source files.
¢ Group related projects into a workspace.

¢ Define varied sets of build options. The project facility provides a simpler
mean for configuration and building, a project settings dialog box enable you
define target processor, debug device, debug information, output file, compiling

option, assemble option, linker option, and so an.

¢ Build applications. A build toolbar is provided, which provides access to all

the major build commands.
¢ Download application objects to the target.
This chapter describes many of the basic tasks involving projects, such as:

¢ create projects

¢ open projects

¢ add files to projects

¢ save projects

¢ move files in the project window

¢ configure projects

5.2 GUI

Figure 5-1 and figure 5-2 shows the operation menu about project

management in file menu and project menu of EmbestIDE.

AW Edit VYiew FProject Build]

=i
[
L

D Hew Cirl+H
= Open. .. Ctrlto
Clase

Hew Workspace. ..
Open Workspacea. ..
Sawve Workspace

Close Workspace

E Sawve Ctrl+s
Save Az ..

ﬁ Sawve All

% Print. .. Ctrl+P

Frint Frewiew
Page Setup. ..
Frint Setup. ..

Build Debuz Tool=s Hindm

Eecent Files k Set Actiwe Froject 3
Becent Worl=paces 3 Add To Froject 3
Exit Sattings. .. A1++FT
Figure 5-1 File Menu Figure 5-2 Project Menu

Operation about project management in file menu describes below:

Table 5-1 Project Management in File Menu

File menu Describe

New Workspace... Create a new project, a workspace

Open Workspace... Open a workspace and the projects in the

workspace

Save Workspace Save workspace and the projects in the workspace

Close Workspace Close a workspace and the projects in the

workspace

Recent Workspace Open a recently used project workspace

Table 5-2 describes the project menu :

Table 5-2 Project Menus

Project menu Describe

Set Active Project Active a project
Add To Project Insert file or folder into a project

Settings... Configure the active project

Workspace window is the project management window, click
View>Workspace (shortcut: Alt+0) to hide or show workspace window. The
workspace window shows information about the projects and the files in that
project. The workspace window provides an outline view of project categories.
The workspace Window is modeled after the Microsoft Windows Explorer, it
shows the relationships among the files included in the project workspace. The
relationships in the project workspace are logical ones, not physical ones. It

does not reflect the organization of files on your hard disk.

You can highlight every level folder in the Workspace window then

right-click to invoke its pop-up menu. We will describe these menus following.

To navigate the workspace window, use the vertical scroll bar on the right
side of the window, or the Up and Down Arrow keys on your keyboard. If the
workspace window contains many files, use the Home key to scroll to the top of
the list, or use the End key to scroll to the end of the list. Use the Page Up and

Page Down keys to scroll one page up or one page down the workspace window.

Workspace directory is the root directory of project workspace. Every
project consists of several relative folders such as C Source Files, Assembly
Source files, Link Files, Include Files. You can create new folder in the project.
To do this, highlight the project file then choose Create New Folder from the
shortcut menu, in the pop up new folder dialog box fill in the folder name you
want to create. To delete the folder you created or the files you added just press

Delete key.

5.3 Operations

5.3.1 Create a New Project

When you first create a new project, a workspace is created at the same

time.

1) Click File>New Workspace, a dialog box pops up.

Create a New Projeck El

Project name: |MewProjectMame

Location: EAEmbestiDEA\Examples\SamsungiN J

Ok Cancel |

Figure 5-3 Create a New Project

2) Enter the new Project name and its path, and click to browse the

path.

3) Click Ok button, a new project will be created, and a same name

workspace will be created too.
You can insert a new project into an existing project workspace too:
1) Open the project workspace that you want to add a new project to.

2) Highlight the root directory of the project workspace, right-click to

invoke its pop-up menu, then Click "Add New Project to Workspace...”.
3) Enter a new project name and its path on the dialog box.
4) Click ok button.

The new project that you just created becomes the default active project in

the workspace.

Notes: when a new workspace and project is created, two files with the
same main file name and .ews and .pjf extend file name is created in the
project saved path. The file with .ews extend file name is the workspace
file. This file saved the workspace information. The file with .pjf extend file
name is the project file, which saved the information about this project.

You can’t edit these two files with manual method.

5.3.2 Open a Project

To open an existing project workspace:
1) On the File menu, click Open Workspace.

2) Select the driver and directory that contain the project workspace that

you want to open.

3) Select the .ews or .prj file for the project workspace from the File Name
list and click OK.

i 2/
EHH IR 1) Ia example_terminal j e EF "’

] debug

I 1) Iterm.ews | FTH) I
IHEER (T I'l'l'u:urll:spar_'e [#. ews) ll

A

Figure 5-4 Opening a Project

To reopen a recently used project workspace:

On the File menu, click recent workspaces, and then click the name of the
recently used workspace.

5.3.3 Workspace Operation

Workspace window displays and manages the files and projects in
workspace window. All source files in projects and all projects in workspace can
be browsed intuitively in workspace window. The top level catalogue of
workspace displays current workspace name and project numbers in this
workspace, the second level catalogue displays each project name, the third
level catalogue displays source file name or source file group name, the fourth
level catalogue displays source file name. Source files can be divided into many
groups according to file type. Default groups have ‘Project Source Files’ and
‘Project Header Files’. Group is a logic concept, not according to actual file

directory, create group just for explicit manage source files.
Each catalogue in workspace corresponds to different right mouse menu.

The top level catalogue’s right mouse menu is workspace right mouse menu,

show as follows figure:

ER=\Workspace 'hello’ hdd How Pro: ok
H . A ew Froject to Workspace. ..
=-E3 hello files
ED Project Soui Inzert Project into Worlkspace. ..

: root.c |, Docking Vie
drv_conf. Hi de
--{:| Project Hea

'D ppp Froperties
=-EH test files

. Files |

Figure5-5 Workspace Right Mouse Menu
The operation of workspace right mouse menu is:

Table5-3 Operation of The Top Level Catalogue’s Right Mouse Menu

Menu Item Operation

Add New Project to workspace... Create a new project into current workspace

Insert Project into Workspace... Insert a existent project into current workspace
Docking View Switch display mode of workspace window
Hide Hide workspace window

Properties Popup workspace’s property dialog box

The second level catalogue’s right mouse menu is project right mouse menu,

show as follows figure:

B- @ Workspace 'hello": 2 project(s] | |

EREhello fil pa

Euild
=-_1 Proje ui
. D Prl]]t d Hew Folder. .
. D PPP #dd Files to Froject..

E| test fil Set asz Actiwe Project
. D Prl]jt Setting. ..

...... . m,l_ Docking View
Hide

e
1

Figure5-6 Project Right Mouse Menu

The operation of project right mouse menu is:

Table5-4 Operation of The Second Level Catalogue’s Right Mouse Menu

Menu Item Operation
Build Compile current active project
New Folder... Create a new group into current project
Add Files to Project... Add a file into current project
Set as Active Project Set current project as active project
Setting... Project setting management, detail see sect 3.3
Docking View Switch display mode of workspace window
Hide Hide workspace window
Properties Popup workspace’s property dialog box

The third level catalogue’s right mouse menu is file group right mouse menu,

show as follows figure:

= @ Wurkspace 'hello®: 2 project|s]
=- hello fI|E5

EEI

Add FllEE to Folder. .
ruut c

: d“" con I_ Dacking View
l {:| Project He: p;4.

=1 ppp = -
=-EH test files Properties

. Files |

Figure5-7 File Group Right Mouse Menu

The operation of file group right mouse menu is:

Table5-5 Operation of The Third Level Catalogue’s Right Mouse Menu

Menu Item Operation

Add Files to Folder... Add a file into current file group

Docking View Switch display mode of workspace window
Hide Hide workspace window
Properties Popup workspace’s property dialog box

The fourth level catalogue’s right mouse menu is file right mouse menu,
show as follows figure:

El@ Wurkspa[:t: 'hello': 2 project(s]
=-EA hello files
EI {_1 Project Source Files

Rl oo

5 - [lﬁl" Open
w0 Pru]ec Compile
-1 ppp

|7 Dacking View
Hide

#-EH test files

Properties

. Files |

Figure5-8 File Right Mouse Menu

The operation of file right mouse menu is:

Table5-6 Operation Of The Fourth Level Catalogue’s Right Mouse Menu

Menu Item Operation
Open Open current file
Compile Compile current file
Docking View Switch display mode of workspace window
Hide Hide workspace window
Properties Popup workspace’s property dialog box

User can convenient manage projects in workspace and files in projects
through all level catalogue’s right mouse menu. If need delete something, just

select that object (such as workspace, file group, file etc), push 'Del' key.

5.3.4 Save and Close Workspace

If user want to save the change of workspace, just click menu 'File > Save
Workspace'. Save a workspace or project is not save concrete files in project or

workspace, it saves correlative file management information.

Click menu 'File > Close Workspace' can close current workspace,
EmbestIDE will auto check whether or not exist change after last workspace
saves when closing workspace, if exist change, EmbestIDE will popup a hint

dialog box to hint user whether save change or not.

Notes: When close workspace, just hide workspace window, not
actual close workspace window.

5.3.5 Set Active Project

One workspace can contain several projects, but only one project can be
active project, only active project can be build and debug. The active project’s

icon will be in colorful. Show as in figure 5-9.

=

=53 Workspace 'term": 5 project(s)
-- term_ebAd0 files

=2 erm_cbA0g files)

#-E8 term_eb42 Buid

#-E% term_ebB5 (5 MNew Folder...

-- Esl term_ebb63 &dd Files ka Praject. ..

et as Ackive Project

colaful Setting...
icon of
active

project

| B8 Func . Files |

Figure 5-9 right key set as current active project and it’s colorful icon

[w Docking Yiew
Hide

Propetties

If want to set a project as active project, select that project, right click
mouse and click 'Save as Active Project' in popup menu, show as in figure 5-9;
or click menu 'Project > Set Active Project’, then select the project want to set

active, show as in figure 5-10.

File Edit Yiew | Projeck Build Debug Tools ‘Window Help

” | | = & ol Sek Active Project kerm_eb40
— add To Project term_eb40a

[& % @ t €
. erm_eb4z

Settings. .. alk+F7 m al %
El--@ Wurkspacﬂ "term": b project(s] kerm_ebas

term_ebd0 files

l term eb40a §
. tErmmﬂhdzfl zet az current active project from memu

-- term_ebbb files
B0 term_ebb63 files

Figure 5-10 set as current active project from menu bar

5.4 Project Basic Configuration

5.4.1 Processor Configuration

Select menu 'Project > Settings..." will popup project setting dialog box. In
project setting dialog box, select ‘Processor’ property page, and user can

configure CPU on target board. The dialog box show as following figure:

Project Settings i x|

Settings For : Processor |Flemnte| Debug | Directory | Compiler | Assemb_¢ [»]
=-E term_eb40 files] .
=1 C Source CPU Module : [arm7 =] [Endian

-0 ASM Source + Little Endian

-] Link Script Support for ARM7 family

[—]—- term_eb40a files er: 1187865 " Big Endian
=3 C Source

d-_7 ASM Source

7-[_1 Link Script CPU Peripheral

¥

=-E8 term_eb4?2 files

#-23 C Source Family : IARM? 'I Maker :IATMEL j

H-20 ASM Source . .

% 1 Link Script Member : IAHM? v| Chip: [aT91ME3200 -
=-E8 term_ebbb files

-1 C Source

- ASM Source - Build Tools :

&1 Link Script |GNU Tools for ARM -

EREZHterm ebb3 files

5.7 Snuree b
1| | 3

#

Cancel |

Figure5-11 Processor Configuration Dialog Box

CPU Module: select current CPU module, different CPU module will sustain
different CPU series. Embest IDE has supported the core of ARM7 and ARM9

series processor.
CPU Family: select CPU series which user’s CPU belong to.
CPU Member: select detail CPU type.

Endian: set memory area byte order of user’s CPU is big endian or little

endian.
Peripheral Maker: select the Maker of processor on the target board.
Peripheral Chip: select the processor name on the target board.

Build Tools: set compiler and linker which according to user’s CPU.

5.4.2 Configure Emulator

Select menu 'Project>Settings..." will popup project setting dialog box. In
project setting dialog box, by select 'Remote’ property page, user can figure

emulator connect setting. The dialog box show as following figure:

CETTE— x
Settings For : Processor Remote |Dt:hug| Dirt:cturyl CumpilerI Assemb 4 | ’l
r:@ YWorkspace 'interrupt_eb42 Bemotesdevice:
(3 ARM-C Source Files *
- ={1 ASM Source Files Embest JTAG emulator for ARM7
- B Link Script er: 1122361
E-E interrupt_flash files ‘
-] ARM-C Source Files
-] ASM Source Files Speed:
#-1 Link Script | j
Communication type:
|PARALLEL -
Parallel Port
’7 & LPT1 LPT2
1| i
OK Cancel

Figure5-12 Emulator Configuration Dialog Box

Remote device: select debug device, Embest Emulator for ARM is
according to 'jtagarm7', and Embest PowerICE for ARM is according to
'PowerICEARM7'. Series of ARM9 CPU, Embest Emulator for ARM is according to
'jtagarm9', and Embest PowerICE for ARM is according to 'PowerICEARM9'.
Embest Simulator for ARM7 is according to 'simarm7'. The information of

current device will display on the pane.

Speed: setting the Emulator work speed. Embest Emulator for ARM was
worked at constant speed 25Kbyte per second, and Embest PowerICE for ARM
was support to change the working speed valid: Full Speed(120Kbyte/s). High
Speed. Medium Speed. Low Speed. The valid work speed of Embest PowerICE
for ARM show as following figure 5-13:

Project Settings

Settings For :

E!@ Workspace 'led_swing":
! @1 C Source
{ -1 ASM Source
#-_1 Link Script
[i|-- led_swing_flash files
®-(1 C Source
#-] ASM Source
-1 Link Script

4 |

2f

18 x|
Processor Hemote |Dehug| Directuryl Cumpilerl Assemb 4 | ’l

Remote device :

|PowerlCEARM7 -l
Emhest PowerlCE for ARM7

‘ er: 1142841

Speed:

|Full Speed |

L —
High Speed
Medium Speed

Low Speed
—Harallel Fort

 LPT1 " LPT2

0K | Cancel

Figure 5-13 Embest PowerICE for ARM work speed

Communication type: select connect communication type which emulator

connect to host machine, such as Embest Emulator for ARM use parallel port
connect, so select 'PARALLEL".

Parallel Port: set according to actual connect.

Note: Usually, Embest Emulator for ARM use parallel port mode,
would be set EPP(0x278/0x378).

5.5 ARM SDT and ADS project operation

5.5.1 SDT software project opening

Click menu item File > Open Workspace, and a dialog box will pop up for
opening workspace. Select file type ARM SDT Project, with the suffix for the

software project file of SDT as apj, as shown in the following figure.

BHFEE@: [sa - & & B

ICHE (M) Ira.ntest. apj FTF I

JSERI (T): [ARM SDT Project (% apj) | i

Fig. 5-13 Open SDT project

Select the SDT project file to be opened, press the open button to open the
project. At the same time opening the SDT project, the integrated environment
will automatically generate the Embest IDE workspace and project file
corresponding to the project, in which the name and number of the project files

correspond to the variant in the SDT project, as shown in the following figure.

BHEE D | sa x| = @B eF B

|£] rankesk, apj

rantest.ews.
B rantest_Debug. pjf
@ rantest_DebugRel, pif

B rantest_Release,pjf

Ef"#-ﬁ [ﬂ:li Ira.ntest. ELES | H:FF@:I I
JCHFZERL (1) [M11 Files (k%) -] i

Fig. 5-14 Automatic generation of Embest IDE workspace and project file

When the user opens the SDT project for the second time, the integrated

environment will present a dialog box as shown in the following figure:

EmbestE x|

{ "? & corresponding workspace "E:\EmbestIDE\Examples|Sdténds)Sdtirantest . ews" has been found and will be opened
by click ¥ES. Click Mo to open "E:\EmbestIDEExamples) SdtéAds) Sdthrantest, apj"

e |

Fig. 5-15 Prompt dialog box for the second time of opening the SDT
project

The user can select “Yes” to directly open the Embest IDE workspace that
was automatically generated during the first time of opening the SDT project. Or,
he can select "No” to regenerate and open the Embest IDE workspace and

project.

. Note: In opening the SDT project of Embest IDE, the user is in fact
finally opening the automatically generated Embest IDE workspace
after conversion. The follow-up configurations of the user will be
directly saved in the Embest IDE workspace and project. Therefore,
if the user has performed new configuration and modification after
opening the SDT project, Embest IDE workspace will be directly

opened during the follow-up development process.

The project interface opened by the ARM SDT software is illustrated in the

following figure:

s ’.’ DebugRel

H EI % Sources
random.s
@ randtest.c

S B ARM Executable Image a

5 Objects
vy SubProjects

5 Libraries
% Image
% Miscellanea

% Sources

% Includedries
% Objects
ceree % SubProjects
% Libraries
. % Image
% Miscellanea
e L Release

I o

Fig. 5-16 Project interface opened by the ARM SDT

After conversion, the workspace interface of the project opened by the

Embest IDE is illustrated in the following figure:

|

E@ Workspace 'rantest': 3 project(s]
- rantest_Debug files

-1 Sources

=1 Objects

-1 Image

=-Ed rantest_DebugRel files

Ef_‘l Sources

-~ [#] random.s

 -[#] randtest.c
=1 Objects
= random.o
~ .[F] randtest.o
=-1 Image
[rantest.axf
=-E¥ rantest_Release files
=1 Sources
-1 Objects
-1 Image

=8 Func . Files |

Fig. 5-17 Project interface opened by the ARM SDT

During opening, the Embest IDE automatically deletes file folders that do

not contain any files in the SDT project.

5.5.2 ADS software project opening
Click menu item File > Open Workspace, and a dialog box will pop up for
opening workspace. Select file opening type ARM ADS Project, with the suffix for

the software project file of ADS as mcp, as shown in the following figure.

EHIEE) |3 Ads > « @& ef BB

= ELLHylny

P e (H): Iutu:-a. mep FIFH [}

SCZER T [ARM ADS Froject (omep) =l Hpi
- 4

Fig. 5-18 Open ADS project

Select the ADS project file to be opened, press the open button to open the
project. At the same time opening the ADS project, the integrated environment
will automatically generate the Embest IDE workspace and project file
corresponding to the project, in which the name and number of the project files

correspond to the Target in the SDT project, as shown in the following figure.

BHFEE D [Ads - & ®Bcf B

[#Jutoa, ewsi

@ utaa, meop

B utoa_Debug.pjf
E utoa_DebugRel pif

B utoa_Release.pjf

I) I 5 @
JHZERII): M1 Files (k. %) =l B

4

Fig. 5-19 Automatic generation of Embest IDE workspace and project file

When the user opens the ADS project for the second time, the integrated

environment will present a dialog box as shown in the following figure:

EmbestE £

[? & corresponding workspace "E\EmbestIDE\Examples!Sdtaadsiadsiutoa, ews” has been Found and will be opened by
click YES.Click Mo to open "E:\EmbestIDENE xampleshSdtéads) Ads\utoa.mep”

()

Fig. 5-20 Prompt dialog box for the second time of opening the ADS
project

The user can select “Yes” to directly open the Embest IDE workspace that
was automatically generated during the first time of opening the ADS project.
Or, he can select "No” to regenerate and open the Embest IDE workspace and

project.

Note: In opening the ADS project of Embest IDE, the user is in fact finally
opening the automatically generated Embest IDE workspace after
conversion. The follow-up configurations of the user will be directly saved
in the Embest IDE workspace and project. Therefore, if the user has
performed new configuration and modification after opening the ADS
project, Embest IDE workspace will be directly opened during the

follow-up development process.

The project interface opened under the ARM ADS software is illustrated in

the following figure:

i1
|-ﬂnebugﬁe1 ji@@'@@h

Files |Lir|l': Order I Targets I

@ | File | Code | Data 4OL/4€ |-
w [l utoatest. o] 0 J.l_ﬂ
w [utoal. s] 0 e =
w [udivl0 = 0 0« =l

n e

3 files] 1]

Fig. 5-21 Project interface opened by ARM ADS

The workspace interface opened by the Embest IDE after conversion is

illustrated in the following figure:

=

E@ Workspace "utoa": 3 project(s]
El-- utoa_Debuq files

=1 Arm C Source Files

i..[#] utoatest.c

=1 ASM Source Files

IZ—]-- utoa_DebugRel files
-1 Arm C Source Files
#-_1 ASM Source Files
I':'I-- utoa_Release files
-1 Arm C Source Files
-1 ASM Source Files

B8 Func Files |

Fig. 5-22 ADS project interface opened by Embest IDE

5.5.3 Configuration after opening SDT or ADS project

Default setting is applied to the processor and debugging equipment after
the ARM SDT or ADS project is opened by the Embest IDE, and users have to
perform adjustment according to the specific conditions.

Adjusting processor configuration

Select menu item Project > Settings... or use shortcut key Alt+F7, and a
dialog box for project setting will pop up. Select processor setting dialog box in
the project setting dialog box as shown in the following figure, and perform

adjustment on the options in the blue elliptical box according to specific

conditions.
x4
Settings For Processor | Fh:mutel Dehugl Diremuryl Cumpilerl Assemb 4 I 4

=53 Workspace 'rantest': 3 proj

L—]lE'TJ rantest_Debug files CPU Module : M ~Endian
. @={1 Sources

P y + Little Endia
- &-{] Objects |Suppurt for ARM7 family |
- {1 Image ’Vcr: 1187865 Big Endian
L—]LE'TJ rantest_DebugRel files |

- ={1 Sources
- =1 Objects CPU

; Peripheral ————————
- @] Image .
SR =ikrantest Helease files Family : Makeg-
&H__I Sources Member Chip
-1 Objects
-1 Image
Build Tools :
|{ARM Build Tools |
4] | =

Cancel |

Fig. 5-23 Adjusting processor configuration in project setting dialog box

Adjusting emulator configuration

Select menu item Project > Settings..., and a dialog box for project setting
will pop up. Select Remote setting dialog box in the project setting dialog box as
shown in the following figure, and perform adjustment on the options in the blue
elliptical box according to specific conditions.

Project Settings W x|

Settings For:

=55 Workspace 'rantest': 3 proj
=3 rantest_Debug files
-Z1 Sources
.1 Objects
-1 Image
rantest_DebugRel files
-_1 Sources
.1 Objects
¢ @1 Image
E--I
-1 Sources
-1 Objects
&3 Image

< I =

Processor Remote |Dehug| Direduryl Compiler | Assemb 4 I 'I

fPowerlCEARMT "

Embest PowerlCE for ARM7
‘ er: 1142842

Speed—

Full Speed |
Commumn n type:

~ Parallel Po

& LPT1 LPT2

OK | Cancel |

Fig. 5-24 Adjusting emulator configuration in project setting dialog box

Library file path setting

After the Embest IDE opens the SDT or ADS project, the default complier

will be ARM complier. If the user links library files in the software project, he has

to manually set the library file path.

Select menu item Project>Settings...,
will pop up. In the dialog box for project setting, select Linker setting dialog box,

select the Information Options, and search the path for setting library files

according to specific conditions, as shown in the following figure.

Project Settings il

Settings For :

=55 Workspace 'rantest': 3 proj
B @ rantest_Debug files
{1 Sources
{11 Objects
{1 Image
rantest_DebugRel files
{1 Sources
{1 Objects
{1 Image
- tl
- e | Sources
=] Objects
&3 Image

x|
Flemotel Dehug' Diremoryl Compilerl Assembler Linker |‘ | >|

Category: IInfurmatiu Options j

- General
¥ Include debugging information
" Give progress information while
¥ Search standard library

- Give Information on
¥ Totals [~ Sizes [~ Interwork [Unused

-Sea

R
@rmzm\lih 1)

Link Options:

-info totals -libpath CAArm2514lib -0 ;I
AReleasefrantest Release.elf S{OBJ_FILES]

oK I Cancel |

Fig. 5-25 Setting searching path for object file

and a dialog box for project setting

6. Project Configuring & Building

6.1 Build Tools Introduction(by Embest IDE)

The build module is a visual interface to conFigure a project and build the
target program. The following Project Settings dialog box handles settings

that affect how the EmbestIDE builds a specific target file within a project.

Because several cross-compilers can integrate with the plug-in technique,
you must select a compiler for each project before build the target. Show as
Figure 6-1, in the Processor page of Project Settings dialog box, the Build

Tools should be selected before the further conFigure .

Build Tools that Embest IDE project sets up selects and includes GNU Tools
for ARM or ARM Build Tools, namely can compatible GNU compiling Tools

and ARM compiling Tools.

Project Settings i x|
Settings For : Processor |Flemute| Dehugl Directuryl Cumpilerl Assemb 4 | ’l
E@ Workspace 'Kevboard'. 1 p .
E|-- Keyboard Debug files CPU Module : Iarm? j Endian
=1 Sources # Little Endian
=1 IncludedFiles Support for ARM7Z family
D Objects er: 1187865 " Big Endian
-1 Image
~CPU Peripheral
Family: [aRM7 || | Maker:[sUMSUNG =]
Member : [aRm7 || | Chip: [s3caab0x |
Build Tools :
ARM Build Tools |
T S gt
‘ I > GNU Tools for ABM
oK I Cancel |

Figure 6-1-1 Project Settings Dialog

Figure 6-1-1 shows an example of project settings. The selected Build

Tools for project led_swing is GNU Tools for ARM.

Note:If the Build Tools is not conFigure d for a project, its property pages
of compiler, assembler and linker will not be displayed. And the prompt
information—"No build configuration for project: xxxx” —will be
displayed in the build pane, as you build it at this moment.

6.2 GNU Tools for ARM

It is one that GNU Tools for ARM compiles and selects the compiling device is set up GCC
cross-compiler of ARM processor specially; GNU Tools for ARM is the free software; GNU
Tools for ARM is a dedicative cross-compiler for ARM processor, created from GNU source code.
It mainly includes C/C++ compiler, assembler, linker, standard libraries for embedded system

and other tools.

6.2.1 Files Type and Compiler

Which application of the cross-compiler will be invoked by EmbestIDE to
handle a source file lies on its postfix. Figure 6-2-1 shows each postfix and its

relevant application.

Figure 6-2-1
Postfix Application of Cross-Compiler
*.C C Compiler
*.C C++ Compiler
*.cpp C++ Compiler
*.cc C++ Compiler
*.cp C++ Compiler
*.c++ C++ Compiler
*,CXX C++ Compiler
*.s Assembler
*.asm Assembler

Files type of GNU tools chain shows as Figure 6-2-2.

Figure 6-2-2
Files Files Type
file.stuf source files of GNU
file.h/.inc/.a head file
file.o ELF formation target file
file.elf ELF formation debugging file

stuf stand for *.c/C, *.cpp/C++, *.s/asm, are the source files which can compiling or
assembling by GNU tools chain(Note: it is permitted that there is the blank within

the filename or directory.)

6.2.2 Options for Compiler

The Compiler property page, as in the Figure 6-3, is used to conFigure

the compile options for C/C++ compiler of GNU Tools for ARM cross-compiler,

All the options user selected are displayed in the Compile Options edit box with

the following format:

[Opt-1] [Opt-2] ... $(SOURCE_FILE) ... [Opt-n] ... —o[Path]$(OBJ_FILE)

Note: You can input or modify the options manually in the edit box, but
the blank character between each option must be reserved, and the
macros $(SOURCE_FILE), $(OBJ_FILE) should not be deleted or
modified. $(SOURCE_FILE) means the source file to be compiled,
$(OBJ_FILE) means the output of the compiling. There will be
replaced with the actual file name by the EmbestIDE at the time of

building.

Note: When you conFigure a project setting, you should consider
that the location of the project file (*.pjf) is the current directory.

Froject Settings

Settings For :

EI led swing files

@3 C Source

-1 ASM Source

#-27 Link Script

H Dhidump

=55 Workspace 'led_swing': 1|

Prncessurl Flemntel Debug | Directory Compiler |Assem| 1 | ’l

T General]
‘Include Directories: i ﬂ + +

AL Margetsiatdl

Object files location: |Adebug J

Preprocessor Definitions:

SEMIHOSTING,ATMEL

Compile Options:

-gdwarf -c -DSEMIHOSTING -DATMEL -1.\.\. \targetsiatd1 -]
$[SOURCE_FILE] -0.\debugi$[0OBJ_FILE]

||

0K I Cancel |

Figure 6-2-1 Compiler General Settings

Show in Figure 6-3, compiler options are divided into five Categories:

® General

® Warning Options

® Debug/Optimization

® Target Specific Options

@® Code Generation Options

Note: All this compiler options are also compiled in the document

<<Program Reference>>

, and explained more detailed.

General Cluster

Description

Include Directories

Object file location

Preprocessor Definitions

Add <dir> to the end of the main include
paths

The location of the compile outcome will be
placed, and no blank character can be
included.

If not exist, EmbestIDE create it
automatically.

Define macros, each macro separated by

comma and with blank character.

Warning Options

Froject Settings

Settings For : Debug | Directory Compiler |Assemh|er| Linker |]
E@_‘m"sfm "f"—sf“'“g:“ ALY Warning Options _____________ }d
ED C Source [~ Suppress Warnings
led_swing.c . . .
=23 ASM Source ¥ Aariable is unused [~ Trigraphs encountered
o cstartup.s " Ungualified pointer cast " Missing Declarations
: wait_irgq.s [" Incompatible func cast [~ ANSI C extension
E{:I Link Script [T Confusing type conversions
L Idscript [Inlined function cannot be inlined
- objdump [” One local variable shadows another
[" Automatic variables are uninitialized
[~ Alignment increased when pointer cast
Compile Options:
-gdwarf -“Wunused -c -1.\..\..\targetsiat91 S[SOURCE_FILE] ;I
-0.\debug\$[0BJ_FILE)
|| | 2 =
0K I Cancel |
Figure 6-2-2 Compiler Warning Options
Warning Options Cluster Description
Suppress Warnings -w, Inhibit warning messages
A variable is unused -Wunused, Warn when a variable is
unused
Unqualified pointer cast -Wcast-qual, Warn about cast which
discard qualifiers
Incompatible func cast -Wbad-function-cast, Warn about
casting functions to incompatible types
Confusing type conversions -Wconversion, Warn about possibly
confusing type conversions
Inlined function cannot be inlined -Winline, Warn when an inlined function

cannot be inlined
One local variable shadows another -Wshadow, Warn when one local
variable shadows another

Automatic variables are uninitialized -Wuninitialized, Warn about uninitialized

Alignment increased when pointer
cast

Trigraphs encountered

Missing Declarations

ANSI C extension

automatic variables

-Wcast-align, Warn about pointer casts
which increase alignment

-Wtrigraphs, Warn when trigraphs are
encountered

-Wmissing-declarations, Warn about
global functions without previous
declarations

-pedantic, Issue warnings needed by

strict compliance to ANSI C

Debug/Optimization

Froject Settings

Settings For: Debug | Directory Compiler | Assembler | Linker |]
E@ Workspace 'led_swing" 1 [. . . -
Em Category: IDehungptlmlsatmn J
=3 C Source ~Debug Options
N led_swing.c I”| Generate default debug| format output
=1 ASM Source
cstartup.s ¥ Generate D¥WARF-1 format debug output
wait_irg.s
=7 Link Script I”| Generate DMWARE-2 debug| output
(- ldscript
. objdump I”| Generate extended| DYWARE-T format debug output
Optimization Options: -
Compile Options:
-02 -gdwarf Yunused -c -1.\..\..\targets\at91 ;I
S[SOURCE_FILE] -o\debug\$[OBJ_FILE]
1] | i =
0K I Cancel |
Figure 6-2-3 Compiler Debug/Optimization
Debug/Optimization Cluster Description
Generate default debug format output -g

Generate DWARF-1 format debug output -gdwarf

Generate DWARF-2 debug output -gdwarf-2

Generate extended DWARF-1 format -gdwarf+

debug output

Optimization Options -O[number]/-0s, Set
Optimization level to
[number]/Optimize for space

rather than speed

Target Specific Options

Froject Settings

Settings For : Debug | Directory Compiler Assemhlerl Linker | 1 | ’|
=-iF Workspace 'led swing': 1 [. e .
- = Category: Target Specific Options -
ER=zicd swing fild gon: [Target 5p P =
=3 C Source Instructions sets

o led swing.c " ARM only [Defauli]
2] ASM Source

¢ Thumb only ¢ Thumb interworking
cstartup.s
: wait_irg.s [Little endian mode(defaulf] [Big endian mode
ED Link Script [T Hardware FP instructions [Lib calls for FP operations
: -- ldscript

- objdump " Use the 26bit version of the APCS

[T Generate APCS conformant stack frames

Specify the name of the target CPU: INu Specified j
Compile Options:
-mthumb-interwork -02 -gdwarf -‘Wunused -c ;I

1.\ Mtargetsiat91 S[SOURCE_FILE]
-0.\debug{S(0BJ_FILE)

4| | i =
0K I Cancel |

Figure 6-2-4 Compiler Target Specific Options

Target Specific Options Cluster Description
ARM only (Default) Generate ARM instructions
ARM interworking -mthumb-interwork, Generate

ARM instructions supporting calls
between THUMB and ARM
instructions sets

Thumb only -mthumb, Generate THUMB
Instructions

Thumb interwork -mthumb -mthumb-interwork,
Generate THUMB instructions
supporting calls between THUMB
and ARM instructions

Little endian mode (Default) -mlittle-endian, Assume target
CPU is conFigure d as little endian

Big endian mode -mbig-endian, Assume target CPU

Hardware FP instructions

Lib call for FP operations

Use the 26bit version of APCS

Generate APCS conformant stack frames

Specify the name of the target CPU

is conFigure d as big endian
-mhard-float, Use hardware
floating point instructions
-msoft-float, Use library calls to
perform FP operations
-mapcs-26, Use the 26bit version
of APCS

-mapcs-frame, Generate APCS
conformant stack frames

Specify the name of the target
CPU

Code Generation Options

Froject Settings

Settings For: Debug | Directory Compiler | Assembler | Linker |]
=-iF Workspace 'led swing': 1 [. . .
: = Category: Code Generation Options -
oo cuing e : -
=3 C Source o
o= v C 1 t for ANSI C
P led swing.c R
.13 ASM Source [" Use the same size for double as for float
cstartup.s [Use the smallist fitting integer to hold enums
_ wait_irg.s
=3 Link Script " Pretend that host and target use the same FP format
gy 2 tdscript ~ Do not i builtin functions
o objdump Do not recognise any builtin functions;
[T Do not search the system include directories
[" Do not put uninitialised globals in the common section
Compile Options:
~fno-builtin -ansi -mthumb-interwork -02 -gdwarf -‘Wunused ;I
-c .4 Atargets\at91 S[SOURCE_FILE]
-0.\debugh5(0B._FILE]
1] | i =

o |

Cancel |

Figure 6-2-5 Compiler Code Generation Options

Code Generation Options Cluster

Description

Compile just for ANSI C

Use the same size for double as for float

Use the smallist fitting integer to hold enums

Pretend that host and target use the same

FP format

Do not recognize any built-in functions

Do not search the system include directories

Do not put uninitialized globals in the

common section

-ansi, Compile just for ANSI C
-fshort-double, Use the same
size for double as for float
-fshort-enums, Use the smallest
fitting integer to hold enums
-fpretend-float, Pretend that
host and target use the same FP
format

-fno-builtin, Do not recognize
any built in functions

-nostdinc, Do not search the
system include directories
-fcommon, Do

not put

uninitialised globals in the

common section

6.2.3 Options for Assembler

The Assembler property page, as in the Figure 6-8, is used to conFigure
the assembling options for assembler of GNU Tools for ARM cross-compiler, All
the options user select are displayed in the Assemble Options edit box with the

following format:

[Opt-1] [Opt-2] ... $(SOURCE_FILE) ... [Opt-n] ... —o[Path]$(OBJ_FILE)

Note: You can input or modify the options manually in the edit box, but
the blank character between each option must be reserved, and the
macros $(SOURCE_FILE), $(OBJ_FILE) should not be deleted or
modified. $(SOURCE_FILE) means the source file to be compiled,
$(OBJ_FILE) means the output of the assembling. There will be
replaced with the actual file name by the Embest IDE at the time of
building.

Froject Settings

Settings For: Flemntel Debug I Direciuryl Compiler Assembler | Linker 4 | 'l
=5 Workspace 'led_swing': 1 .
- i Cat : G 1 -
EF=Eled swing files el b
"D C Source |Inc|ude Directories: FRi G S 4
-] ASM Source
-3 Link Seript LA targetsiatal
o objdump A A Margetstat91\partsim63200
-1\ Mtargetsiat91itargetsiebb3
Object files location: |-\debug J
Predefines:

IAT91 M63200=1,AT91EB63=1,AT91_DEBUG_ICE=1

Assemble Options:

S$[SOURCE_FILE) —defsym AT91M63200=1 —defsym =
ATI1EB63=1 —defsym AT91_DEBUG_ICE=1

..\ Atargetsiat91 -1\ A Atargetstat91\parts\m6 3200
H..\.\.\targets\at91\targetsieb63 -0.\debug\5S[0OB.J_FILE]

/|

OK Cancel |

Figure 6-2-6 Assembler General Settings

Show in Figure 6-2-6, assembler options are divided into four Categories:
® General
® Code Generation

® Target Specific Options

® Warning Options

Note: All this assembler options are also compiled in the document
<<Program Reference>>, and explained more detailed.

General Cluster Description
Include Directories -I<dir>, Add dir to search list for include
directories
Object file location The location of the assembling outcome will be

placed, and no blank character can be included.
If not exist, Embest IDE create it automatically.
Preprocessor Definitions Define macros, each macro separated by comma

and with blank character.

Code Generation Options

Froject Settings

Settings For : Flemntel Debug | Directnryl Compiler Assembler |Linker 1 | ’l
= Workspace fed_swing: 1 ¢ : -
Iél-- A s Category: Code Generation
-3 C Source .. .
"{:I ASM Source ¥ Generate DWARF2 debugging information
=3 Link Script
Pl nhidumpp " Generate listing file

[Keep local symbols
[~ Assemble in MRI compatibility mode
[Strip local absolute symbols

Assemble Options:

-gdwarf2 —defsym AT91M63200=1 —defsym ATI1EBG6I=1 =~
—defsym AT91_DEBUG_ICE=1 -l..\..\..\targets\at91
H..\.\. Atargetsiat91\parts\m63200

(| _’I -4 A Atargetsiat91itargets\eb63 S(SOURCE_FILE]

0K I Cancel |

L« |

Figure 6-2-7 Assembler Code Generation Options

Code Generation Cluster Description

Generate DWARF-2 debugging -gdwarf2

information

Generate listing file -a
Keep local symbols -L
Assemble in MRI compatibility -M

Strip local absolute symbols --strip-local-absolute

Target Specific Options

Froject Settings

Settings For: Flemntel Debug | Directnryl Compiler Assembler |Linker 1 | ’l
E@ Workspace 'led_swing" 1 [. e . -
Iél-- A s Category: ITarget Specific Options J
--{:l C Source [Allow any instruction [Only allow Thumb instructions

=1 ASM Source

: [~ Make the assembled code as supporting interworking;
-1 Link Script

. objdump [Little endian mode[defauli] " Big endian mode
[T Use the 32bit APCS [T Use the 26bit APCS
[~ Epal0 FP architecture [~ Fpall FP architecture

[T No FP multiple Instructions [T Mo FP Instructions

[T The code is position independent or reentrant

Assemble Options:

—defsym AT91M63200=1 —defsym ATI91EB63=1 —defsym =
AT91_DEBUG_ICE=1 .\.\. .Margetshatdl
H..\.\. Atargetsiat91\parts\m63200

N | sf| [-ivMargetsiatdlitargetsieb63 S(SOURCE _FILE) ZI
0K Cancel |
Figure 6-2-8 Assembler Target Specific Options

Target Specific Options Cluster Description

Allow any instruction (Default) -mall

Only allow thumb instructions -mthumb

Make the assembled code as support -mthumb-interwork

interworking

Little endian mode (Default) -EL, Assemble code for a little
endian cpu

Big endian mode -EB, Assemble code for a big
endian CPU

Use the 32bit APCS -mapcs-32

Use the 26bit APCS -mapcs-26

Fpal0 FP architecture -mfpal0

Fpall FP architecture -mfpall

No FP multiple instructions -mfpe-old

No FP instructions -mno-fpu

The code is position independent or reentrant -mapcs-reentrant

Warning Options

Froject Settings

Settings For :

Flemntel Debug | Directnryl Compiler Assembler |Linker 1 | ’l
= 13 Workspace ded_owing': 1§ : =

Iél-- A s Category: arning Options
=3 C Source

=0 ASM Source

[T Suppress warnings

#-27 Link Script

i objdump [T Do not warn about signed overflow

[~ Warn when differences altered for long displacements

Assemble Options:

—defsym AT91M63200=1 —defsym ATI91EB63=1 —defsym =~
AT91 DEBUG_ICE=1 -I.\.\.Atargetsiat91

H..\.\. Atargetsiat91\parts\m63200

(| _’I -4 A Atargetsiat91itargets\eb63 S(SOURCE_FILE]

0K I Cancel |

| |

Figure 6-2-9 Assembler Warning Options

Warning Options Cluster Description

Suppress Warnings -W
Do not warn about signed overflow -]
Warn when differences altered for long -K

displacements

6.2.4 Options for Linker

The linker property page, as in the Figure 6-12, is used to conFigure the
link options for linker of GNU Tools for ARM cross-compiler, All the options user
select are displayed in the Link Options edit box with the following format as the

output file is executable:
[Opt-1] ... —o[Path]$(TARGET_NAME) $(OBJ_FILES) [Lib-1] ...

The $(TARGET_NAME) is a macro for executable file name, $(OBJ_FILES) is

also a macro for the collection of all object files to be linked.
As the target file is a library, the format of the options is:
[Opt-1] ... $(TARGET_NAME) $(OBJ_FILES) [Lib-1] ...

The $(TARGET_NAME) is a macro for library name.

Note: You can input or modify the options manually in the edit box, but the
blank character between each option must be reserved, and the macros
$(TARGET_NAME), $(OBJ_FILES) should not be deleted or modified. There
will be replaced with the actual file name by the Embest IDE at the time of
building.

Note: $(TARGET_NAME) will be replaced with the default that consists of
project name and postfix, elf or lib.

Note:Macro $(<entry.o>0BJ_FILES), for example, means that the file
entry.o is the first object file in the collection of all object files to be linked.

Show in Figure 6-2-10, linker options are divided into five Categories:
® General

Image Entry Options

Code Generation Options

Include Object and Library Modules

Add Library Searching Path

Linker General Settings

Project Settings

Settings For: Debug | Directuryl Cumpilerl Assembler Linker | 1 | 4

=10 Workspace ed_swing” TE| category: [-
(=B q
’70utput file type

43 C Source
=-{1 ASM Source
&3 Link Script

/2] objdump

& Executable file ¢ Library

Linker script file:

I..'-,..\..\targets'-,atm\targets\ldscript J

Qutput file name:

I.\dehug\led_swing.elf

Link Options:
-T..\.\..\targetshatd1\targetsiidscript j

-L..\.\.\buildixgce-arm-elfilib\gcc-libdarm-elfi3.0. 2\arm-inter
-L..\..\..\buildixgce-arm-elfiarm-elfiliblarm-inter
« | _'I -0.\debuglled_swing.elf 5[<{cstartup.o>0BJ_FILES)

0K I Cancel |

||

Figure 6-2-10 Linker General Settings

General Cluster Description
Executable file The output file is an executable file
Library The output file is a library

Linker script file The link script file

Output file name The file name of output file

Image Entry Options

Froject Settings

Settings For : Debug | Directnryl Cnmpilerl Assembler Linker | 1 | ’l
E@ Workspace 'led_swing" 1 [. g " -
Iél-- A s Category: Imane Entry Options
-3 C Source _
: Select entry file: cstartup.o
-1 ASM Source S I P
-3 Link Script
- objdump led_swing.o
wait_irg.o
Image entry point: I_entry'
Link Options:
-e__entry -T.\.\. \Margets\at91\targets\idscript -
-L..\. \. Abuildy<gcc-arm-elfilib\gcc-liblarm-elf\3.0.2\arm-inter
-L..\..\. \buildixgcc-arm-elflarm-elf\lib\arm-inter
(| D -oAdebugiled_swing.elf $[<cstartup.o>0B.J_FILES] <
0K I Cancel |
Figure 6-2-11 Linker Image Entry Options
Image Entry Options Cluster Description
Select entry file The collection of all object files to be

linked is displayed in a list box, and
you can select one as the first
object file to be linked.

Image entry point -e<address/symbol>, The entry

point of the executable target.

Note: Image Entry Options Cluster can be set while the output file is
executable.

Code Generation Options

Project Settings

Settings For :

E@ Workspace 'led_swing" 1 [
SRzt ed swing files
=3 C Source
=1 ASM Source
-3 Link Script
(- objdump

| |

Debug | Directnryl Cnmpilerl Assembler Linker | 1 | ’l
Category: Code Generation Options -

[T Generate relocateable output [~ Optimize output file
[T Do not link against shared libraries

[~ Output lots of information during link

[~ “Warn about common symbols
[~ Warn only once per undefined symbol

[Link little-endian object [Link big-endian object

[Strip all symbols [~ Strip debugging symbols
[T Discard all local symbols

Link Options:

-e__entry -T.\.\. \Margets\at91\targets\idscript |-
-L..\. \. Abuildy<gcc-arm-elfilib\gcc-liblarm-elf\3.0.2\arm-inter
-L..\..\. \buildixgcc-arm-elflarm-elf\lib\arm-inter
-oAdebugiled_swing.elf $[<cstartup.o>0B.J_FILES]

| |

o |

Cancel |

Figure 6-2-12 Linker Code Generation Options

Code Generation Options

Cluster
Generate relocateable output

Optimize output file

Do not link against shared libraries

Output lots of information during link

Warn about common symbols

Warn only once per undefined symbol

Link little-endian object
Link big-endian object

Strip all symbols

Description

-r, Generate relocateable output
-01, Optimize output file

-static, Do not link against shared
libraries

-verbose, Output lots of information
during link
--warn-common, Warn about
duplicate common symbols
--warn-once, Warn only once per
undefined symbol

-EL, Link little-endian objects

-EB, Link big-endian objects

-S

Strip debugging symbols -S

Discard all local symbols -X

Note: Code Generation Options Cluster can be set while the output file is
executable.

Include Object and Library Modules

Froject Settings

Settings For :

Debug | Dirt:[:turyl Cumpilt:rl Assembler Linker | 1 | ’l
E?kp !IW|ng N Categony: Include Object and Library Modules -
"D C Source ‘Lihrary or Object Modules: Cil I A 4
-] ASM Source
--{:I Link Script ..\..\..\largets\atg}\drivers\ggiglr]\d,arm:inteﬂligiglg\a_ﬁﬁ;g:I_h
L objdump :i':;.'-,..'-. argets\at91\partsim Larm-interym i di
-gcec
Link Options:
-e__entry -T..\..\..\targets\at91\targetstdscript o
-L..\.\.Abuildixgcc-arm-elflibd\gcc-liblarm-ef{3.0. 2\arm-inter
L.\ Abuildixgcc-arm-elfarm-elfilibh\arm-inter
J | D -o.Adebughled_swing.elf $[<cstartup.o>0BJ_FILES] -
0K I Cancel |

Figure 6-2-13 Linker Include Object and Library Modules

Include Object and Library Description

Modules

Library or Object Modules The libraries that should be linked

against

Add Library Searching Path

Froject Settings

Settings For :

Debug | Directnryl Cnmpilerl Assembler Linker | 1 | ’l
=1 Workspace led_swing': 1§ : <
Iél-- A s Category: dd Library Searching Path
"D C Source ‘Lihrary Searching Directories: O+
H-20 ASM Source
"{:I Link Script AL Abuildixgec-arm-elfilibigec-libarm-elf3.0. 2Yarm-inter
P objdump AL Abuildixgec-arm-elfiarm-elfilibarm-inter
Link Options:
-e__entry -T.\.\. \Margets\at91\targets\idscript -
-L..\. \. Abuildy<gcc-arm-elfilib\gcc-liblarm-elf\3.0.2\arm-inter
-L..\..\. \buildixgcc-arm-elflarm-elf\lib\arm-inter
(| D -oAdebugiled_swing.elf $[<cstartup.o>0B.J_FILES] <
0K I Cancel |

Figure 6-2-14 Linker Add Library Searching Path

Add Library Searching Path Description

Library Searching Directories -L<Directory>, Add directory to

library search path

Note: Add Library Searching Path can be set while the output file is
executable.

Note: The detailed descriptions of all the options of GNU Tools for ARM
cross-compiler can be found in <<Embest IDE Program Reference>>

6.3 ARM Build Tools

ARM Build Tools is a dedicative cross-compiler for ARM processor, created
from ARM source code. It mainly includes C/C++ compiler, assembler, linker,
standard libraries for embedded system and other tools.

Compiling device supported in Embest IDE compatible SDT 2.51 edition at present, this
edition compiles and chains tools including ARM C/C ++ compiling device Abbreviated as
ARMCC , ARM collecting device (abbreviated as ARMASM) and ARM chaining

device(abbreviate as ARMLINK).

6.3.1 ARM Build Tools and Files

Which application of the cross-compiler will be invoked by EmbestIDE to
handle a source file lies on its postfix. Figure 6-3-1 shows each postfix and its

relevant application.

Figure 6-3-1
Postfix Application of Cross-Compiler
*.C C Compiler
*.C C++ Compiler
*.cpp C++ Compiler
*.cc C++ Compiler
*.cp C++ Compiler
*.c++ C++ Compiler
*.CXX C++ Compiler
*.s Assembler
*.asm Assembler

Files type of ARM tools chain shows as Figure 6-3-2.

Figure 6-3-2
Files Files Type
file.stuf source files of ARM
file.h/.inc/.alf head file
file.o ELF formation target file
file.elf ELF formation debugging file

stuf stand for *.c/C, *.cpp/C++, *.s/asm, are the source files which can compiling or
assembling by ARM tools chain(Note: it is permitted that there is the blank within

the filename or directory.)

6.3.2 ARM Complier options setting

The complier attribute tab of the ARM Build Tools complier is illustrated in

Fig. 6-3. There are altogether 7 categories of list (namely, setting option),

namely, General, Target Specific, Warning Options, Error Handling, Debug &

Optimization, Code Generation and Include Paths. The various configuration

options are used for ARMCC complier. All the settings of the user will be

displayed in the Compile Option edit box in the form of command line switch

options. When it is the first time for a new project to select ARM Build Tools, the

system will provide the complier’s default setting.

Project Settings

Settings For :

= readme.txt
=1 Sources
@3 IncludedFiles
w0 Objects

-1 Image

| |

=-liF Workspace 'Keyboard": 1 p

EI Keyhoard Debug files

x|
Flemntel Dehugl Directory Compiler Assemhlerl Linker | 1 | ’l

Category: IGeneraI j
_C | R
;mﬁpé:: Target Specific

YWarning Options

" Thumb |Error Handling
Debug & Optimization
—Object files |Code Generation
\Debug} Include Paths

~Preprocessor definitons

Compile Options:

-00 -dwarfl -g+ -l.\common\ -0 .\Debug\S[0BJ_FILE] -c ;I
S[SOURCE_FILE]

|

0K Cancel |

Fig. 6-3-1 Project complier setting and category options list

General

Project Settings

Settings For:

Pmct:ssurl Flt:mutt:l Dt:hugl Directory Compiler |Asst:mh 1 | »

b readme.bxt
--{:l Sources
-3 IncludedFiles
&1 Objects

=1 Image

E@ Workspace 'Keyboard': 1 p

E-- Kevboard Debug files

Category: IGt:nt:raI j
~ Compiler Source
~ ARM
. ;h b ANSIISO Standard C |
—num Portable C compiler C

x|

—Object files locatis

strict Portable C compiler C [B5DA.2]
ANSIfIS0 Standard C

I.\Dehug\ Strict ANSI/ISO Standard C [ANSI X3.1 59]

~Preprocessor definitons

Compile Options:

-00 -dwarfl -g+ -l.A\common} -0 .\Debug\$[0OBJ_FILE] -c =]
S[SOURCE_FILE]

|

0K I Cancel |

Figure 6-3-2 settings of General

shows as Figure 6-3-1, in the Compiler dialog window, click the Category

drawing menu, select the option in the Source dialog window, the definition as

following:

General Cluster

Description

Compiler

Source

Portable C compiler C

instruction format of the Target file

ARM supports ARM code

Thumb supports Thumb code

source fiiles type

-pcc, Compiles (BSD 4.2) Portable C compiler
C. This dialect is based on the

original Kernighan and Ritchie definition of C,
and is the one used to build UNIX systems.
The -pcc option alters the language accepted
by the compiler, however the built-in ANSI C
headers are still used. See also, the -zc option

in Controlling code generation.The -pcc

Strict Portable C compiler

C[BSD4.2]

ANSI/ISO standard C

Strict ANSI/ISO standard
C[ANSI X3.159]
Object file locations

Preprocessor Definitions

option alters the language accepted by the
compilers in the following ways:

* char is signed

* sizeof is signed

* an approximation of early UNIX-style C
preprocessing is used.

-pcc —strict, is extra strict about enforcing
conformance to the ANSI C standard, Draft
C++ standard, or PCC conventions. For
example, in C++ mode the following code
gives an error when compiled with -strict and
a warning without:

static struct T {inti; };

Because no object is declared, the static is
spurious. In a strict reading of the C++ Draft
Standard, it is illegal.

-ansi, Compiles ANSI standard C. This is the
default for armcc

-ansi —strict

settings the directory to store object file(s)
Defines symbol as a preprocessor macro, as if
the following line were at

the head of the source file: #define symbol

[value] This option can be repeated.

Target Specific

Project Settings

Settings For :

E@ Workspace 'Keyboard': 1 p
B
-2 readme.t«t
w10 Sources
-1 IncludedFiles
w0 Objects
-1 Image

| | ©N

x|

Flemntel Dehugl Directory Compiler |Assemh|er| Linker | 1 | ’l

Category: -

—Byte 5ex————————— ~Floating Point Processor
t+ Little Endian

i Big Endian

Inunt: [sofeware Library] j

~Choose—————— ~APCS53 Options
* Processor

" Architecture

[Software stack check
" Frame pointer

ARMZTDMI

= F P argun_n:nts passed
j in FP register

" Arm{Thumb interworking

Compile Options:

-00 -dwarfl -g+ -l.\common\ -0 .\Debug\S[0BJ_FILE] -c ;I
S[SOURCE_FILE]

|

0K I Cancel |

Figure 6-3-3 settings of Target Specific

shows as Figure 6-3-1, in the Compiler dialog window, click the Category

drawing menu, select Target Specific, the definition of compile as following:

Target Specific Cluster

Description

Little Endian
Big Endian
Processor

Architecture

Float point processor

-li, instructs suitable for Little Endian ARM
-bi, instructs suitable for Big Endian ARM
instruction code support by processor
-arch, sets the target architecture. Some
processor-specific instructions produce
either errors or warnings if assembled for
the wrong target architecture. See also the
-unsafe assembler option. Valid values for
architecture

are 3, 3m, 4, 4T, 4TxM.

-fpu, select the target FPU, where name is

one of:

Software stack check

Frame pointer

FP arguments passed

register

ARM/Thumb interworking

in FP

none No FPU. Use software floating point
library. This option implies /softfp.

fpa Floating Point Accelerator. This option
implies /hardfp.

-apcs /swst, specifies that the code in
inputfile carries out software

stack checking.

-apcs /fp, specifies that the code in inputfile
uses a frame pointer.

This option is obsolete and is provided for
backwards

compatibility only.

(selected) specifies that the code in
inputfile does not use a frame pointer. This
is the default.

-apcs /inter, specifies that the code is
suitable for ARM/Thumb interworking. This
option has the same effect as specifying the
INTERWORK attribute for all code areas in
the source files to be assembled. Refer to
the ARM Software Development Toolkit User
Guide for more information on ARM/Thumb

interworking.

Warning Options

Project Settings 2 x|
Settings For : Flemntel Dehugl Directory Compiler |Assemh|er| Linker | 1 | ’l
=-liF Workspace 'Keyboard": 1 p . F T "
Category: -
EI-- Keyhoard Debug files e b W
= readme.txt :
=1 Sources ‘ " No warnings ‘
@3 IncludedFiles “smarn For |
"D Objects [Implicit narrowing cast [Lower precision in wider conte
-] Image
[” Header file not guarded [Padding inserted in struct
[~ Mon-ANSI header ¥ '="in condition
[T C++ incompatibility ¥ Multiple character read as int
[Charfshort bitfields ¥ Unused declaration
Compile Options:
-00 -dwarfl -g+ -l.\common\ -0 .\Debug\S[0BJ_FILE] -c ;I
S[SOURCE_FILE]
1| | i =

0K I Cancel |

Figure 6-3-4 settings of Warning Options
shows as Figure 6-3-1, in the Compiler dialog windows, click the Category
drawing menu to set the warning information of the compile.

The compiler issues warnings to indicate potential portability problems or
other hazards. The compiler options described below allow you to turn specific

warnings off.

For example, you may wish to turn warnings off if you are in the early stages
of porting a program written in old-style C. The options are on by default, unless
specified otherwise. See also Specifying additional checks on page 2-32 for

descriptions of additional warning messages.
The general form of the -W compiler option is:
-W|[options][+][options]
where options are one or more characters.

If the + character is included in the characters following the -W, the
warnings corresponding to any following letters are enabled rather than

suppressed.

You can specify multiple options. For example:

-Wad+fg

turns off the warning messages specified by a, d, and turns on the warning

message specified by f and g.

Following description for the Warning Options shows in Figure 6-3-4:

Warning Options Cluster

Description

No Warnings

Implicit narrowing cast

Header file not guarded

-W, suppresses all warnings. If one or more
letters follow the option, only the warnings
controlled by those letters are suppressed.
-W+n Suppresses the warning message:
implicit narrow cast

This warning is issued when the compiler
detects the implicit narrowing of a long
expression in an int or char context, or the
implicit narrowing of a floating-point
expression in an integer or narrower
floating-point context.

Such implicit narrowing casts are almost
always a source of problems when moving code
that has been developed on a fully 32-bit
system (such as ARM C++) to a system in
which integers occupy 16 bits and longs occupy
32 bits. This is suppressed by default.

-W+g, Suppresses the warning given if an
unguarded header file is #included.

This warning is off by default. It can be enabled
with -W+g. An unguarded header file is a
header file not wrapped in a declaration such
as:

#ifdef foo_h

Non-ANSI header

C++ incompatibility

Char/short bitfields

Lower precision in wider

content

Padding inserted in struct

#define foo_h

/* body of include file */

#endif

-W+p, Suppresses the warning message:
non-ANSI #include <...>

The ANSI C standard requires that you use
#include <...> for ANSI C

headers only. However, it is useful to disable
this warning when compiling code not
conforming to this aspect of the standard. This
option is suppressed by default, unless the
-fussy option is specified.

-W+u, For C code, suppresses warnings about
future compatibility with C++ for both armcpp
and tcpp. This option is off by default. It can be
enabled with -W+u.

-Wb, Suppresses the warning message:

ANSI C forbids bit field type ‘type’
where ‘type’ is char or short.

-W+|, Lower precision in wider context.
This warning arises in cases like:

long x; inty, z; X = y*z

where the multiplication yields an int result
that is then widened to long. This warns in
cases where the destination is long long, or
where the target system defines 16-bit
integers or 64-bit longs. This option is off by
default. It can be enabled with -W+I.

-Ws, Warns when the compiler inserts

‘*="in condition

Multiple character read as int

Unused declaration

padding in a struct. This warning is off by
default. It can be enabled with -W+s.

-Wa, Suppresses the warning message:

Use of the assignment operator in a
condition context

This warning is given when the compiler
encounters a statement such as:

if (@ =Db) {...

where it is possible that:

if ((@a=Db)!=0){...

was intended, or that:

if (@ ==0>b) {...

was intended. This warning is suppressed by
default in PCC mode.

-Wm

-Wx, Disables not used warnings such as:
Warning: function ‘foo’ declared but not

used

Note: User can input the warning switch(s) directly in Compiler options

Error Handling

Project Settings - x|
Settings For : Flemntel Dehugl Directory Compiler |Assemh|er| Linker | 1 | ’l
=-liF Workspace 'Keyboard": 1 p . T
B Cat . E Handl -
EI-- Keyhoard Debug files e bbbt
""" readme.txt —Enable errors for
#-1 Sources
@3 IncludedFiles ¥ Junk at end of #endiffifelseffundef
&0 Objects
=1 Image ¥ Implicit pointer cast V¥ Zero-length array
¥ Other dobious cast [” Access control violatior
¥ Linkage conflict ™ Implicit "int' type
Compile Options:
-00 -dwarfl -g+ -l.\common\ -0 .\Debug\S[0BJ_FILE] -c ;I
${SOURCE_FILE]
1| | i =
0K I Cancel |

Figure 6-3-5 settings of Error Handling

shows as Figure 6-3-1, in the Compiler dialog window, click the Category
drawing menu, select Error Handling, the definition of close and down lever in

the compile error information compiler as following:

The compiler issues errors to indicate that serious problems exist in the

code it is attempting to compile.
The compiler options described below allow you to:
* turn specific recoverable errors off
* downgrade specific errors to warnings.
The general form of the -e compiler option is:
-e[options][+][options]
where options are one or more of the letters described below.

If the + character is included in the characters following the -e, the errors

corresponding to any following letters are enabled rather than suppressed.
You can specify multiple options. For example:

-eac

turns off the error messages specified by a and ¢

Following description for the Warning Options shows in Figure 6-3-5:

Error Handling Cluster

Description

Junk at end of #end/#else/#undef

Implicit pointer cast

Other doblous cast

Linkage conflict

Zero-length array

Access control violation

Implicit “int” type

-Ep, Suppresses the error that occurs if
there are extraneous characters at the
end of a preprocessor line. This error is
suppressed by default in PCC mode.
-Ec, Suppresses all implicit cast errors,
such as implicit casts of a non-zero

int to pointer.

-Ef, Suppresses errors for unclean casts,
such as short to pointer.

-El, Suppresses errors about linkage
disagreements where functions are
implicitly declared extern and later
defined as static. This option

applies to C++ only.

-Ez, Suppresses the error that occurs if
a zero-length array is used.

-E+a, This option applies to C++ only.
Downgrades access control errors to
warnings. For example:

class A { void f() {}; }; // private
member A a;

void g() { a.f(); } // erroneous access
-E+I, Downgrades constructs of the
following kind from errors to warnings.
For example:

const i;

Error: declaration lacks

type/storage-class (assuming 'int’): i’

This option applies to C++ only.

Debug & Optimization

Project Settings x|
Settings For : Remote | Debug | Directory Compiler | Assembler | Linker | 4 [»]
=-55 Workspace 'Keyboard: 1 p .
- Cat .
S8=itKeyboard Debug files e
""" readme.txt —Debug Table Format— - Debug Control
"D Sources . & dwarf 1 ¥ Enable debugq table generation
-1 IncludedFiles - =
.1 Objects dwarf 2 Include preprocessor symbol
.1 Image) asd [obsolete]
—Optimization Criterion - Optimization Level
' Default balance % Mone [best debug view]
" For space " Most [good debug view, good cor
" For time " All [poor debug view, best code]
Compile Options:
-00 -dwarfl -g+ -l..\common\ -0 \Debug\S[OBJ_FILE] -c¢ =
${SOURCE_FILE]
4] | i =

Figure 6-3-6 settings of Debug & Optimization

shows as Figure 6-3-1, in the Compiler dialog window, click the Category

drawing menu, select Debug * Optimization, the definition as following:

Debug & Optimization Cluster

Description

dwarf 1

-dwarfl, Use DWARF1 debug table
format. This option is not
recommended for C++.

If DWARF1 debug tables are
generated and a procedure call
standard that does not use a

frame-pointer register is used (always

dwarf 2

asd (obsolete)

Enable debug table generation

Include preprocessor symbol

the case with Thumb, and the default
with ARM), local variables that have
been allocated to the stack cannot be
displayed by the debugger. In
addition, stack backtrace is not
possible.

-dwarf2, to select DWARF2 debug
tables. This is the default and is
selected if -g with no dwarf option is
specified. This is the default.

-asd, Use ASD debug table format.
This option is obsolete and is provided
for

backwards compatibility only.

-g, instructs the assembler to
generate debug tables. Use the
following command-line options to
control the behavior of -g:

-dwarf to select DWARF1 debug
tables. This option is obsolete. Use
-dwarf2 or -dwarfl.

-dwarfl to select DWARF1 debug
tables. This option is not
recommended for C++.

-dwarf2 to select DWARF2 debug
tables. This is the default and is
selected if -g with no dwarf option is
specified.

Not use

Default balance

For space

For time None

None (best debug view)

If neither -Otime or -Ospace is
specified, the compiler uses a balance
between the two. You can compile
time-critical parts of your code with
-Otime, and the rest with -Ospace.
You should not specify both -Otime
and -Ospace at the same time.
-Ospace, Optimize to reduce image
size at the expense of increased
execution time.

For example, large structure copies
are done by out-of-line function calls
instead of inline code.

-Otime, Optimize to reduce execution
time at the expense of a larger image.
For

example, compile:

while (expression) body...;

as:

if (expression) {

do body...;

while (expression);

b

-00, Turn off all optimization, except
some simple source transformations.
This is the default optimization level if
debug tables are generated with -g+.
It gives the best debug view and the

lowest level of optimization.

Most (good debug view good

code)

All (poor debug view best code)

-01, Turn off the following
optimizations:

 structure splitting

* range splitting

* Cross-jumping

* conditional execution.

If this option is specified and debug
tables are generated with -g+ it gives
a satisfactory debug view with good
code density.

-02, Generate fully optimized code. If
used with -g+, this option

produces fully optimized code that is
acceptable to the

debugger, though the mapping of
object code to source code is

not always clear.

This is the default optimization level if
debug tables are not

generated.

Code Generation

Project Settings - x|
Settings For : Flemntel Dehugl Directory Compiler |Assemh|er| Linker | 1 | ’l
=-liF Workspace 'Keyboard": 1 p . T
Category: -
EI-- Keyhoard Debug files e A
[2] readme.bxt ~Generation Options
"{:I Sources ¥ Read-only literal string [Enum container always int
g IncludedFiles [” Plain char always signed [Inline SWls may overwrite tl
-] Objects .
. Image [” One AOF area per functior [Access words only from wor
—Latency——— ~Alignment
Max integer load Top-level static object
|2 3: 4 3
. Pointer to structs
Max LDM regs Min. struct [aligned to minimum
|1E 3: Id 3: struct alignment

Compile Options:

-00 -dwarfl -g+ -l.\common\ -0 .\Debug\S[0BJ_FILE] -c ;I
S[SOURCE_FILE]

q| | 2 =

0K I Cancel |

Figure 6-3-7 settings of Code Generation

shows as Figure 6-3-1, in the Compiler dialog window, click the Category
drawing menu, select Code Generation, the definition of the compiler output

target files as following:

Code Generation Cluster Description

Read-only literal string -fw, Allows string literals to be writable,
as expected by some UNIX code, by
allocating them in the program data
area rather than the notionally
read-only code area. This also stops the
compiler reusing a multiply occurring
string literal.

Play char always signed -zc, Make char signed. It is normally
unsigned in C++ and ANSI C modes,
and signed in PCC mode. The sign of

char is set by the last option

One AOF area per function

Enum container always int

Inline SWIs may overwrite the Link

Access word only from word aligned

specified that would normally affect it.
For example, if you specify both

the -ansic and -zc options and you want
to make char signhed in ANSI

C mode, you must specify the -zc option
after the -ansic option.

-zo, Generates one AOF area for each
function. This can result in increased
code size. Normally the compiler
generates one AOF function for each C
compilation unit, and at least one AOF
function for each C++ compilation unit.
This option enables the linker to remove
unused functions when the

-remove linker option is specified.

-fy, Treats enumerations as signed
integers. This option is off by default (no
forced integers).

-fz, Instructs the compiler that an inline
SWI may overwrite the contents of the
link register. This option is usually used
for modules that run in

Supervisor mode, and that contain inline
SWIs. You must use this option

when compiling code that contains inline
SWIs.

-za0/1, Specifies whether LDR may only
access word-aligned addresses. Valid

values are:

Max integer load

Max LDM regs

-za0 LDR is not restricted to accessing
word-aligned addresses. This

is the default.

-zal LDR may only access word-aligned
addresses.

-zi2, The compiler selects a value for the
maximum number of instructions
allowed to generate an integer literal
inline before using LDR rx,= value on
the basis of the -Otime, -Ospace, and
-processor options.

You can alter this behavior by setting
Number to an integer between 1 and

4. Lower numbers generate less code at
the possible expense of speed,
depending on your memory system. The
effect of altering this value is small, and
is usually not significant.

-zr16, Limits the number of register
values transferred by load multiple and
store multiple instructions generated by
the compiler to Number. Valid values for
Number are 3 to 16 inclusively. The
default value is 16.

You can use this option to reduce
interrupt latency. Note that the inline
assembler is not subject to the limit
imposed by the -zr option.

The Thumb compiler does not support

Top-level static object

Min. struct

Pointer to structs aligned

minimum struct alignment

to

this option.

-zat4, Specifies the minimum byte
alignment for top-level static objects,
suchas global variables. Valid values for
Number are:1, 2, 4, 8

The default is 4 for the ARM compilers
and 1 for the Thumb compilers.

-zas4, Specifies the minimum byte
alignment for structures. Valid values
for Number are: 1, 2, 4, 8

The default is 4 for both ARM and Thumb
compilers. This allows structure copying
to be implemented more efficiently by
copying in units of words, rather than
bytes. Setting a lower value reduces the
amount of padding required, at the
expense of the speed of structure
copying.

Specifies whether pointers to structures
are assumed to be aligned on at least
the minimum byte alignment
boundaries, as set by the -zas option.
Valid values are:

-zapl Pointers to structures are
assumed to be aligned on at least the
minimum byte alignment boundaries set
by -zas. This is the default.

-zap0 Pointers to structures are not

assumed to be aligned on at least the

minimum byte alignment boundaries set
by -zas. Casting short[] to struct
{short, short,...} does not cause a

problem.

Include Paths

Project Settings il
Settings For : Prncessurl Flemntel Dehugl Directory Compiler |Assemh 1 | ’l
=-liF Workspace 'Keyboard": 1 p .
B Cat : Include Path -
EI-- Keyhoard Debug files e i b
&l readme.bdt Include Directories: IR Y4
#-1 Sources
=1 IncludedFiles ~\common}
w0 Objects
-1 Image
ANSI| Header T+

Compile Options:

-00 -dwarfl -g+ -l.\common\ -0 .\Debug\S[0BJ_FILE] -c ;I
S[SOURCE_FILE]

q| | 2 =

0K Cancel |

Figure 6-3-8 settings of Include Paths

shows as Figure 6-3-1, in the Compiler dialog window, click the Category
drawing menu, set the search folder of the user define head files and the ANSI

lib head files compiler, definition as following:

Include Paths Cluster Description

Include Directories -i<dir> , adds directories to the source file
search path so that arguments to
GET/INCLUDE directives do not need to be fully
qualified.

ANSI Header -j, Adds the specified comma-separated list of

directories to the end of the search path, after

all directories specified by -I options. Use -j- to

search the in-memory file system.

Compile Options Window

The Compiler property page, as in the figure 6-3-1, is used to configure the

compile options for C/C++ compiler of ARM Build Tools cross-compiler, All the

options user selected are displayed in the Compile Options edit box with the

following format:

[Opt-1] [Opt-2] ...—o[Path]$(OBJ_FILE) ... [Opt-n] ...$(SOURCE_FILE)

Note: You can input or modify the options manually in the edit box, but
the blank character between each option must be reserved, and the
macros $(SOURCE_FILE), $(OBJ_FILE) should not be deleted or
modified. $(SOURCE_FILE) means the source file to be compiled,
$(OBJ_FILE) means the output of the compiling. There will be
replaced with the actual file name by the EmbestIDE at the time of

building.

Note: When you configure a project setting, you should consider that
the location of the project file (*.pjf) is the current directory.

shows as Figure 6-3-1, the Switch and meaning of the command in the

Compile Options Window:

Switch Description
-00 Turn off all optimization, except some simple
source transformations.
-dwarfl Compile output file by dwarfl format
-g+ The target file include debug information figure
(Function as -g)
-l..\common\ Use the common file folder which in the project

-0 .\Debug\$(OBJ_FILE)
-C

$(SOURCE_FILE)

base forward folder as the search catalog of head
files

Compile output target file to the Debug folder
Only compile C language program without link

Compile all source files of the active project

6.3.3 ARM Assembler options setting

The Assembler attribute tab of the ARM Build Tools complier is illustrated in

Fig. 6-3-9. There are altogether 6 categories of list (namely, setting option),

namely, General, Target Specific, Call Standard Options, Debug Options,

Predefines and Listing Options. The various configuration options are used for

ARMASM complier. All the settings of the user will be displayed in the Assemble

Options edit box in the form of command line switch options. When it is the first

time for a new project to select ARM Build Tools, the system will provide the

complier’s default settin

Project Settings

g.

Settings For :

= readme.txt
=1 Sources
@3 IncludedFiles
w0 Objects

-1 Image

| |

=-liF Workspace 'Keyboard": 1 p

EI Keyhoard Debug files

Flemntel Dehugl Directory | Compiler Assembler |Linker | 1 | ’l

j

Category:

IGeneraI

Include Direc Target Specific

~Object files location:

Call Standard Options
Debug Options
Predefines

Listing Options

|ADebugh

Assemble Options:

-dwarfl -q -l..\common} -0 \Debug\S[0OBJ_FILE]

S[SOURCE_FILE]

o |

Cancel

Fig. 6-3-9 Project complier setting and category options list

General

Project Settings il
Settings For : Flemntel Dehugl Directnryl Compiler Assembler |Linker |L|_’|
=-liF Workspace 'Keyboard": 1 p .
Category: <
EI-- Keyhoard Debug files e A
&l readme.bdt Include Directories: IR Y4
#-1 Sources :
@3 IncludedFiles
w0 Objects
-1 Image
~Object files location:
[ADebugh _|
Assemble Options:
-dwarfl -q -l..\common} -0 \Debug\S[0OBJ_FILE] ;I
S[SOURCE_FILE]
q| | 2 =

0K I Cancel |

Figure 6-3-10 settings of General

shows as Figure 6-3-9, In the Assembler dialog window, click the Category
drawing menu, choose General, the search and assembler output file folder of

the head source files, definition as following:

General Cluster Description

Include Directories -i<dir> , adds directories to the source file
search path so that arguments to
GET/INCLUDE directives do not need to be
fully qualified.

Object files location settings the directory to store object file(s)

Target Specific

Project Settings 2 x|
Settings For : Flemntel Dehugl Directnryl Compiler Assembler |Linker | 1 | ’l
=-liF Workspace 'Keyboard": 1 p . T
Category: :
EI-- Keyhoard Debug files e ok]
- readme.txt —Byte 5ex————————— ~Floating Point Processor
-1 Sources & Litile Endian
@3 IncludedFiles Big Endian IFPA J
&0 Objects
=7 Image —Choose ———— Initial State
* Processor & Arm
" Architecture " Thumhb
ARM7TDMI |
Assemble Options:
-dwarfl -q -l..\common} -0 \Debug\S[0OBJ_FILE] ;I
$[SOURCE_FILE]
1] | i =
0K Cancel |

Figure 6-3-11 settings of Target Specific

shows as Figure 6-3-9, In the Assembler dialog window, click the Category
drawing menu, choose Target Specific, the definition of the assembler target

file, definition as following:

Target Specific Cluster Description

Little Endian =li, instructs suitable for Little Endian ARM

Big Endian -bi, instructs suitable for Big Endian ARM
Processor instruction code support by processor
Architecture -arch, sets the target architecture. Some

processor-specific instructions produce either
errors or warnings if assembled for the wrong
target architecture. See also the -unsafe
assembler option. Valid values for architecture
are 3, 3m, 4, 4T, 4TxM.

Float point processor -fpu, select the target FPU, where name is one

of:

Initial State

none No FPU. Use software floating point
library. This option implies /softfp.

fpa Floating Point Accelerator. This option
implies /hardfp.

instruction format of the Target file

ARM supports ARM code

Thumb supports Thumb code

Call standard Options

Project Settings il
Settings For : Flemntel Dehugl Directnryl Compiler Assembler |Linker | 1 | ’l
=-liF Workspace 'Keyboard": 1 p . "
- Cat : Call Standard Opt -
EI-- Keyhoard Debug files e bbb S
[Sead“‘e-t’“ ~Calling Standard—— - APCS3 Options
H- ources
: « APCS3
= (1 IncludedFiles A " Software stack check
-1 Objects " None " Frame pointer
-1 Image
= g ~Predeclared Register Names F I:I':;[gumt;nts passed
& pCS in FP register
© None " Arm{Thumb interworking
Assemble Options:
-dwarfl -q -l..\common} -0 \Debug\S[0OBJ_FILE] ;I
$[SOURCE_FILE]
1] | i =

0K I Cancel |

Figure 6-3-12 settings of Call standard Options

shows as Figure 6-3-9, In the Assembler dialog window, click the Category

drawing menu, choose Call Standard Options, the attributes of the procedure

calling in cross compile ,definition as following:

Call Standard Options Cluster

Description

Call Standard

-apcs none/ 3, specifies whether you are
using the ARM Procedure Call Standard or
not, and may specify some attributes of
code areas. User Guide for more
information.

none specifies that inputfile does not use
APCS. APCS registers

are not set up. Qualifiers are not allowed.
3 specifies that inputfile uses APCS
version 3. APCS registers are set up. This

is the default.

Predeclared Register Names

Software stack check

Frame pointer

FP arguments passed in FP register

ARM/Thumb interworking

APCS register name in the rule:

PCS -- PCSrule

None -- norule

-apcs /swst, specifies that the code in
inputfile carries out software

stack checking.

-apcs /fp, specifies that the code in
inputfile uses a frame pointer.

This option is obsolete and is provided for
backwards

compatibility only.

(selected) specifies that the code in
inputfile does not use a frame pointer. This
is the default.

-apcs /inter, specifies that the code is
suitable for ARM/Thumb interworking.
This option has the same effect as
specifying the INTERWORK attribute for
all code areas in the source files to be
assembled. Refer to the ARM Software
Development Toolkit User Guide for more

information on ARM/Thumb interworking.

Debug Options

Project Settings i il
Settings For : Flemntel Dehugl Directnryl Compiler Assembler |Linker |L|_’|
=-liF Workspace 'Keyboard": 1 p . T
- Cat 5 Debug Opt -
EI-- Keyboard Debug files ategony et e A
'rseadme.txt Debug Table Format Options
- ources . .
= (1 IncludedFiles = dwarf 1 [Check rt:.glstt:r lists
#(Objects £ dwarf 2 B L5 g
¥ Source line debu
& Image) asd [obsolete] - 9
[Keep symbaols

Assemble Options:

-dwarfl -q -l..\common} -0 \Debug\S[0OBJ_FILE] ;I
S[SOURCE_FILE]

q| | 2 =

0K I Cancel |

Figure 6-3-13 settings of Debug Options

shows as Figure 6-3-9, In the Assembler dialog window, click the Category
drawing menu, choose Debug Options, the attributes of assemble output

target files ,definition as following:

Debug Options Cluster Description

dwarf 1 -dwarfl, Use DWARF1 debug table format.
This option is not recommended for C++.
If DWARF1 debug tables are generated and a
procedure call standard that does not use a
frame-pointer register is used (always the case
with Thumb, and the default with ARM), local
variables that have been allocated to the stack
cannot be displayed by the debugger. In
addition, stack backtrace is not possible.

dwarf 2 -dwarf2, to select DWARF2 debug tables. This

is the default and is selected if -g with no dwarf

asd (obsolete)

Check register lists

No warnings

Source line debug

Keep symbols

option is specified. This is the default.

-asd, Use ASD debug table format. This option is
obsolete and is provided for

backwards compatibility only.

-checkreglist, instructs the assembler to
check RLIST, LDM, and STM register lists to
ensure that all registers are provided in
increasing register number order.

If this is not the case, a warning is given.
-nowarn, turns off warning messages.

-g, instructs the assembler to generate debug
tables. Use the following command-line options
to control the behavior of -g:

-dwarf to select DWARF1 debug tables. This
option is obsolete. Use -dwarf2 or -dwarf1.
-dwarfl to select DWARF1 debug tables. This
option is not recommended for C++.

-dwarf2 to select DWARF2 debug tables. This is
the default and is selected if -g with no dwarf
option is specified.

-keep, instructs the assembler to keep local
labels in the symbol table of the object file, for

use by the debugger.

Predefines

Project Settings

Settings For :

Flemntel Dehugl Directory | Compiler Assembler |Linker | 1 | ’l

E@ Workspace 'Keyboard': 1 p
B
-2 readme.t«t
w10 Sources
-1 IncludedFiles
w0 Objects
-1 Image

| | ©N

Category: IPredefines j

—List of predefines

5 ICA4B0x SETA 1
~A¢SICEVA0 SETA 201

S3C44B0x SETA 1 j

Wariable I Add
Directive I SETA vI Beplace |
Yalue I Delete |

 {TRUE} {FALSE}

Assemble Options:

-dwarfl -g -PD "S3C44B0X SETA 1" -PD "S3CEVA0 SETA -]
201" - \common} -0 ADebug\${OBJ_FILE] ${SOURCE_FILE)

|

0K I Cancel |

Figure 6-3-14 settings of Predefines

shows as Figure 6-3-9, In the Assembler dialog window, click the Category

drawing menu, choose Predefines, the attributes of predefined macro,

definition as following:

Predefines Cluster

Description

Listing of predefines

Variable, Directive, Value

The list of the active predefined

-PD, instructs the assembler to pre-execute
one of the SET directives. You must

enclose directive in double quotes. See:

* SETA directive on page 5-82.

* SETL directive on page 5-83.

* SETS directive on page 5-84.

The assembler executes a corresponding
GBLL, GBLS, or GBLA directive

to define the variable before setting its value.

Arguments to SETS must be

enclosed in escaped double quotation marks,
for example:

-pd "Version SETS \"beta-4\""

-pd "VersionNum SETA 4"

Listing Options

Project Settings 2 x|
Settings For : Flemntel Dehugl Directnryl Compiler Assembler |Linker | 1 | ’l
=-liF Workspace 'Keyboard": 1 p . T T
Category:
EI-- Keyhoard Debug files e A B bbb
""" readme.txt Misecllaneouse —~Dimensions
#-1 Sources
(1 IncludedFiles [" Listing on Page width
D Objects 79 -
] Image I Terse I 3
[%Ref Page length
66 -
[” Continuous page
Assemble Options:
-dwarfl -q -l..\common} -0 \Debug\S[0OBJ_FILE] ;I
S[SOURCE_FILE)
1| | i =
0K I Cancel |

Figure 6-3-15 settings of 1 &1 3t

shows as Figure 6-3-9, In the Assembler dialog window, click the Category
drawing menu, choose Listing Options, the attributes of the assemble output

files, definition as following:

Listing Options Cluster Description
Listing on -liston, list generation is on.
Terse -noterse, turns the terse flag off. When this

option is on, lines skipped due to conditional
assembly do not appear in the listing. If the
terse option is off, these lines do appear in the
listing. The default is on.

XRef -xref, instructs the assembler to Ilist
cross-referencing information on symbols,
including where they were defined and where
they were used, both inside and outside

macros. The default is off.

Page width

Page length

Continuous page

-width, sets the listing page width. The default
is 79 characters.

-length n(>0), sets the listing page length.
Length zero means an unpaged listing. The
default is 66 lines.

This a synonym for -length 0.

Assemble Options Window

The Assembler property page, as in the figure 6-8, is used to configure the

assembling options for assembler of ARM Build Tools cross-compiler, All the

options user select are displayed in the Assemble Options edit box with the

following format:

[Opt-1] [Opt-2] ...—o[Path]$(OBJ_FILE) ... [Opt-n] ...$(SOURCE_FILE)

Note: You can input or modify the options manually in the edit box, but
the blank character between each option must be reserved, and the
macros $(SOURCE_FILE), $(OBJ_FILE) should not be deleted or
modified. $(SOURCE_FILE) means the source file to be compiled,
$(OBJ_FILE) means the output of the assembling. There will be
replaced with the actual file name by the Embest IDE at the time of

building.

shows as Figure 6-3-9, Assemble Options Window indicates:

Switch Description

-dwarf 1 -dwarfl, Use DWARF1 debug table format.

-g Include debug information.

-I..\common\ Use the common folder which in the project last

-0 .\Debug\$(OBJ_FILE)

$(SOURCE_FILE)

layer catalog as the head files search folder.
Set the assemble target files output to Debug
folder.

Assemble all the source files in the project.

6.3.4 ARM Linker options setting

The linker attribute tab of the ARM Build Tools linker is illustrated in Fig.
6-3-16-16. If the various option configurations in the figure are used for the
linker, all the settings of the user will be displayed in the Link Options edit box
in the form of command line. When a new project selects the corresponding

Build Tools, the target file output by the linker will be an execution file.

In the Linker attribute tab, change the pull-down window of the Category,

and respectively set the various category options for the ARM Build Tools linker.

Project Settings

X
Settings For : Flt:mutt:l Dt:hugl Dirt:[:turyl Compiler | Assembler Linker | 1 | ’l
=-55 Workspace 'Keyboard: 1 p .
- Cat : G | -
[B¥=:keyhoard Debug files e Geree
B _ _Ouput type-
rSt:admt:txl uputtype Informatio Options
b ources Listings Options
#-(1 IncludedFiles Entry Point & Image Base
-1 Objects ~ Output Form||mage Layout
&1 Image ARM EAreas eptinns —
~ Output File
I.'-,Dt:hug'-,Kt:yhuard_Dt:hug.t:lf
Link Options:
-ro-base 0xc00D00D -rw-base DxcAd00000 first ;l
A4binit.o[inif] -symb -list \ADebug\Keyboard_Debug.lst -info
totals -libpath C:A4rm2514lib -0
‘ | D ADebug\Keyboard_Debug.elf S[OBJ_FILES] I
0K I Cancel |

Figure 6-3-16 settings of General

General

Project Settings

Settings For :

= readme.txt
=1 Sources
@3 IncludedFiles
w0 Objects

&7 Image

| |

E--@ YWorkspace 'Keyboard" 1 p

EI Keyhoard Debug files

Flemntel Dehugl Directnryl Cnmpilerl Assembler Linker | 1 | ’|

Category: -

— Ouput type

& Executable " Library

~ Output Formats
IAF[M ELF image format j

~ Dutput File

|.'|,Dehug\Keyhnard_Dehug.eli

Link Options:

-ro-base 0xc000000 -nw-base 0xcA00000 first ;I
44binit.o[44bi] -info totals -libpath C:AArm251%lib -0
ADebugikeyboard Debug.elf S{OBJ_FILES]

0K I Cancel |

Figure 6-3-17 settings of General

shows as Figure 6-3-16, In the Linker dialog window, click the Category

drawing menu, choose General, the attributes of ARM linker definition as

following:

General Cluster

Description

Executable file
Library

Output formats

The output file is an executable file

The output file is a library

select linker output file formation

-elf generates the image in ELF format. This is
the default. Future versions of the ARM linker
will output images in ELF file format only. You
can use the fromELF utility to convert an ELF
file to another format.

-aof generates the consolidated object in AOF.
Because AOF can only be used to represent an

object, this option is interpreted by the

Output file

linker as a request for partial linking of the input
objects into a consolidated object.

-aif generates the image in executable AIF
format. Because -aif will not be supported in
future releases, you are recommended to use
-elf to produce the output file, then run the
fromELF utility to convert to AIF format.

-aif -bin generates the image in
non-executable AIF format. Because -aif -bin
will not be supported in future releases, you are
recommended to use -elf to produce the output
file, then run the fromELF utility to convert to
AIF BIN.

-bin generates the image in plain binary format.
Because -bin will not be supported in future
releases, you are recommended to use -elf to
produce the output file, then run the fromELF
utility to convert to BIN.

-0, The file name of output file (with the project

file name and the stuff .elf or .lib/.alf)

Information Options

Project Settings il
Settings For : Flemntel Dehugl Directnryl Cnmpilerl Assembler Linker | 1 | ’|
=-liF Workspace 'Keyboard": 1 p . " "
Category: :
EI-- Keyhoard Debug files e e B
= readme.txt ~General
(1 Sources ¥ Include debugging information
"D IncludedFiles " Give progress information while
-1 Objects ¥ Search standard library
-] Image

— Give Information on
¥ Totals [” Sizes [Interwork [Unused

—Search path for libraries

[C:AArm2514ib _|

Link Options:

-ro-base 0xc000000 -nw-base 0xcA00000 first ;I
44binit.o[44bi] -info totals -libpath C:AArm251%lib -0
ADebugikeyboard Debug.elf S{OBJ_FILES]

|

0K I Cancel |

Figure 6-3-18 settings of Information Options

shows as Figure 6-3-16, In the Linker dialog window, click the Category

drawing menu, choose Information Options, the definition of the ARM linker

debug target files as following:

Information Options Cluster

Description

Include debugging infomation

Give progress information while

Search standard library

Give information on

-nodebug, turns off the inclusion of
debug information in the output file. The
image is then smaller, but you cannot
debug it at source level.

-verbose, prints messages indicating
progress of the link operation.
-noscanlib, prevents the scanning of
default libraries in a link step. This is the
opposite of -scanlib. (See also -libpath
above).

-info < topic >, prints information about

Search path for libraries

specified topics, where topic-list is a
comma-separated list of topic keywords.
A topic keyword may be one of the
following:

Totals reports the total code and data
sizes in the

image. The totals are broken down into
separate totals for object and library
files.

Sizes gives a detailed breakdown of the
code and data sizes for each input object
and interworking veneers. Interwork is
ignored in this release of the linker.
Unused lists all unused areas, when
used with the -remove option.

Note that spaces are not allowed
between keywords in a list. For example,
you can enter:

-info sizes,totals but not:

-info sizes, totals

-libpath, specifies a path that is used to
search for libraries. This path overrides
the path specified by the ARMLIB
environment variable.

If you do not specify a path using
-libpath, the linker searches in the path
specified by ARMLIB, else searches the
libraries defined in the file

Lib$$Request$$library$$ variant.

Listings Options

Project Settings - x|
Settings For : Flemntel Dehugl Directory | Compiler | Assembler Linker | 1 | ’l
=-liF Workspace 'Keyboard": 1 p . _— .
: Cat T List Opt -
EI-- Keyhoard Debug files e I fefings Cptians J
----- readme.txt ~Listings
#-1 Sources i .
"{:I IncludedFiles ¥ Produce a list of symbol definition
--{:l Objects [Produce an area map
= Image [~ Produce an area xref
List file
|.'|,Dehug\Keyhnard_Dehug.lst |
Link Options:
-ro-base 0xc000000 -nw-base 0xcA00000 first ;I

44binit.o[44bi] -symb -list \Debug\keyboard Debug.Ist
-info totals -libpath C:AArm251%lib -o
(| D ADebugikeyboard Debug.elf S{OBJ_FILES]

0K I Cancel |

|

Figure 6-3-19 settings of Listings Options

shows as Figure 6-3-16, In the Linker dialog window, click the Category
drawing menu, choose Listings Options, the setting of the listing file attributes ,

definition as following:

Listings Options Cluster Description

Produce a list of symbol definition =symb, lists each symbol used in the
link step (including linker-generated
symbols) and its value, in the named
file. A filename of minus (-) names the
standard output stream instead of a
file.

Produce an area map -map, creates an image map listing
the base and size of each constituent
area.

Produce an area xref -xref, lists cross-references between

List file

input areas.

-list, redirects the standard output
stream to file. This is useful in
conjunction with -map, -xref, and

-symbols.

Entry Point & Image Base

Project Settings

Settings For :

= readme.txt
=1 Sources
@3 IncludedFiles
w0 Objects

&7 Image

| |

E--@ YWorkspace 'Keyboard" 1 p

EI Keyhoard Debug files

Flemntel Dehugl Directory | Compiler | Assembler Linker | 1 | ’l

Category: IEntry' Point & Image Base j
’—Entry Point
f
Base Of Image
Read-Only
[0xco00000
Read-Write
[0xc400000
Link Options:
-ro-base 0xc000000 -nw-base 0xcA00000 first ;I

44binit.o[44bi] -symb -list \Debug\keyboard Debug.Ist
-info totals -libpath C:AArm251%lib -o
ADebugikeyboard Debug.elf S{OBJ_FILES]

|

0K I Cancel |

Figure 6-3-20 settings of Entry Point & Image Base

shows as Figure 6-3-16, In the Linker dialog window, click the Category

drawing menu, choose Entry Point & Image Base, definition as following:

Entry Point & Image Base Cluster Description

Entry Point

Base of image

-entry, specifies the entry point of the
image. The entrypoint may be given as
either.

-ro-base, instructs the linker to place
the Read-Only section at exec_address
(for example, the address of the first
location in ROM), set in Read-Only
-rw-base, instructs the linker to place
the Read-Write section at exec_address,

set in Read-Write

Image Layout

Project Settings - il
Settings For : Flemntel Dehugl Directory | Compiler | Assembler Linker | 1 | ’|
=-liF Workspace 'Keyboard": 1 p :
: Cat : | L t =
ER=E Keyboard Debug files e I mage -ayot J
- readme.txt

: —Place at beginning of image
#-1 Sources 4 4 4

= (1 IncludedFiles Dbject File EEalHE e
-] Objects A4binit.o finid
-1 Image
—Place at end of image
Object File Area Name
Link Options:
-ro-base 0xc000000 -nw-base 0xcA00000 first ;I

44binit.o[init] -symb -list \Debug\kKeyboard Debug.lst -info
totals -libpath CAArm251%lib -o
(| D ADebugikeyboard Debug.elf S{OBJ_FILES]

0K I Cancel |

|

Figure 6-3-21 settings of Image Layout

shows as Figure 6-3-16, In the Linker dialog window, click the Category
drawing menu, choose Image Layout, definition of the start image and end

image in the ARM linker target files as following:

Image Layout Cluster Description

Place at beginning of image -first, places area from object first in the
RO section of the image if it is a non ZI
area. If it is a ZI area, it is placed first in
the ZI section. This can be used to force
an area that maps low addresses to be
placed first (typically the reset and
interrupt vector addresses). There must
be no space between object and the
following open parenthesis.

When using scatter loading, use +FIRST

instead.

Object file assemble object files
Area Name a certain Area name

Place at end of image -last, places area from object last in the
RW or RO section of the
image if it is a non-ZI area. If it is a ZI
area, it is placed last in the ZI section. For
example, this can be used to force an area
that contains a checksum to be placed last
in the RW section. There must be no space
between object and the following open
parenthesis.
When using scatter loading, use +LAST
instead.
Object file assemble object files

Area Name a certain Area name

Note: Object file must include Area Name in it.

Areas Options

Project Settings | il
Settings For : Remote | Debug | Directory | Compiler | Assembler Linker |]
=-liF Workspace 'Keyboard": 1 p . .
: Cat : A Opt b
ER=E Keyboard Debug files ategony I reas Spons J
..... readme.txt —Unrearch Areas
=1 Sources & Don't remove

-1 IncludedFiles
w0 Objects
#-J Image ~ Symbol

" Remowve all

[lgnore case for symbol matching
" Allow duplicate symbols
Refer unresolved

Link Options:

-ro-base 0xc000000 -nw-base 0xcA00000 first ;I
44binit.o[init] -symb -list \Debug\kKeyboard Debug.lst -info
totals -libpath CAArm251%lib -o

(| D ADebugikeyboard Debug.elf S{OBJ_FILES]

0K I Cancel |

|

Figure 6-3-22 settings of Areas Options

shows as Figure 6-3-16, In the Linker dialog window, click the Category
drawing menu, choose Areas Options, definition of the label segment in the

ARM linker target files as following:

Areas Options Cluster Description

Unrearch Areas -remove, removes unused areas from
the image. An area is considered to be
used if it contains the image entry
point, or if it is referred to from a used
area. You must take care not to
remove interrupt handlers when using
-remove.

Don’t remove do not remove
Remove all remove unused areas
Ignore case for symbol matching -case, uses case-sensitive symbol

name matching. This is the default.

Allow duplicate symbols

Refer unresolved

-dupok, allows duplicate symbols so
that an area can be included more
than once in the image. However, if
-noremove is also specified, the image
must not contain multiple copies of the
area.

-unresolved, matches each reference
to an undefined symbol to the global
definition of symbol. Note that symbol
must be both defined and global,
otherwise it will appear in the list of
undefined symbols, and the link step
will fail. This option is particularly
useful during top-down development,
when it may be possible to test a
partially-implemented system (where
the lower levels of code are missing)
by connecting each reference to a
missing function to a dummy function
that does nothing. This option does

not display warnings.

Linker Options Window

The linker property page, as in the Figure 6-3-16, is used to conFigure
the link options for linker of ARM Build Tools cross-compiler, All the options
user select are displayed in the Link Options edit box with the following format

as the output file is executable:
[Opt-1] ... —o[Path]$(TARGET_NAME) $(OBJ_FILES) [Lib-1] ...

The $(TARGET_NAME) is a macro for executable file name, $(OBJ_FILES) is

also a macro for the collection of all object files to be linked.
As the target file is a library, the format of the options is:
[Opt-1] ... $(TARGET_NAME) $(OBJ_FILES) [Lib-1] ...

The $(TARGET_NAME) is a macro for library name.

Note: You can input or modify the options manually in the edit box, but the
blank character between each option must be reserved, and the macros
$(TARGET_NAME), $(OBJ_FILES) should not be deleted or modified. There
will be replaced with the actual file name by the Embest IDE at the time of
building.

Note: $(TARGET_NAME) will be replaced with the default that consists of
project name and postfix, elf or lib.

Note: Macro $(<entry.o>0OBJ_FILES), for example, means that the file
entry.o is the first object file in the collection of all object files to be linked.

shows as Figure 6-3-16, in the Assemble Options Window, the definition of

the command as following:

Switch Description
-ro-base 0xc000000 set the address of the first location in ROM:
0xc000000
-rw-base 0xc400000 place the Read-Write section at

exec_address: 0xc40000
-first 44binit.o(init) set init.o image file as the entrance of

target files

-symb
-list .\Debug\Keyboard_Debug.lst

-info totals

-libpath C:\Arm251\lib

-0 .\Debug\Keyboard_Debug.elf
$(OBJ_FILES)

output list symbol files to the Debug folder
of the project, include label and across
reference information.

debug information in the debug symbol
files

use Lib which in the folder C:\Arm251\lib
Linker output the debug file which name as

the project name to the debug folder

6.4 Project Settings & Folder Settings

More than one source file is included in a single project at the most time,

and each file maybe has its own compile options different from the others. Thus,

we used to add the files that have the same compile options into a folder of the

project, and set options for the folder instead of each source file.

Show as Figure 6-2-1, GNU Tools for ARM, project led_swing has three

folders --- C Source. ASM Source and Link Script. The files in folder C Source

have their own compile options different from the project settings.

There is the same settings while selecting the ARM Build Tools which SDT or

ADS project folds.

Note:For example, a project for ARM based application includes a list
source files, part of them should be compiled to generate thumb
object files, and the others should result with arm object files.
Here, the source files can be divided into two parts, and added to
two folders separately with relevant option settings.

Froject Settings

Settings For :

EI led swing fils
BRI C Source;
led_swing.c

=3 ASM Source

- [4] cstartup.s

wait_irg.s

=3 Link Script

Lo ldscript

(- objdump

=55 Workspace 'led_swing': 1 |

General !Ccmpiier

¥ Always use custom compile options! Reset I
I Always use custom assemble options Heset I

Individual compiiing and assemkbling options can be set for
each folder, the files in the folder will compiled or assembled

ith it's options instead of the project's, the two reset buttons
can be used to set the folder's compile or assemble options
as same as the project's.

0K I Cancel

Show as Figure 6-4-1, select Always Use Custom Compile Options check

box, the relevant Compiler property page will displayed, in this property page,

Figure 6-4-1 Folder Settings Dialog

you can set the compile options for the folder. Otherwise, the folder has the

same compile settings with the project settings.

If select Always Use Custom assemble Options check box, the relevant
assembler property page will displayed, in this property page, you can set the
assemble options for the folder. Otherwise, the folder has the same assemble
settings with the project.

Click Reset buttons, valid when the matched check box is selected, to

reshuffle the relevant settings to be as same as the project.

6.5 Project Building

Do one of the following to build project:

1. Click on Build button on Build toolbar.

2. Click on Build item on Project menu.

3. Click on Rebuild All item on Project menu to rebuild the project.

If build succeeds, a target file will be generated in the output directory

specified in the Project Settings dialog.

The output information is displayed in the following build pane. If any error
occurs, the building operation will be terminated, and the error(s) will be

displayed in the build pane.

Embest IDE - [E:,...\Exampla Otled_swing_eb63'led_swing.c] i]
File Edit WView Project Irguild Debug Tools Window Help =]
“ 0O | = & g |§| 5882 Compile led_swing.c Chrl+F7 :! & s H | A% % n|
“ [] ! o @ | » 4 Build led_swing F7 ﬁ ‘ ” @ |] | & | J

Rebuild Al ameters 1 Irue zl
E@ Workspace 'lvd_ Batch Buid. . 1_; __
=B led_swing ¥ile ¢} clean
. =1 C Source
[#) led swi 2% Stop Build Chrl+Break op_count = 8 ;
_swi X X :
-2 ASM Source il u_int i;
cstartup.s Ledipeed = S@08080 ; -
wait_irq.s . .
523 Link Seript _ILI at91_clock_open(PIDB_DESC.periph_id);
ll | d 7% - Set up PIO _
l-[=|:un,: . Fi|BS| I(I ~3NA nfn snaide FONTOAND RCCD Lrn aAcK Iurn nrev . _le
ﬂ -I..7v. A targetshat?1vtargetsieb63 -o.\debugiwait_irg.o |
arm-elf-1d -T..\..\..\targetshiat91\targetsisram ice.ld -EL -L..%\..\..\build\xgcc-arm-el
-L..%\..A.Abuildyxgecc-arm-elfylibhygec-1ibharm-elfy3.08.2\arm-inter -o._\debugy
Adebugiled _swing.o _Adebughwait_irg.o ..%_.%.._\Targetsiat91\drivers\lib_dru
LA hv oA Targetshyat91ypartsymé32esnarm-interym63200 1ib32 1ib -1c -1gcc J
Command{s) successfully executed. -
v | Buila {Debug b, Command b Find in Files 1% Fid| | |
Ln1,Coll | pos | | INUM | y

Figure 6-5-1 Build Menu and Toolbar

6.5.1 Project File Compiling and Assembling

Do one of the following to compile or assemble file:
1. Click on Compile button on Build toolbar.
2. Click on Compile item on Project menu.

3. Click on Compile item on Workspace popup menu (show as Figure
6-18).

The compiler can handle what kind of file or assembler that is described in

File type chapter.

Menu Item Description
@ Before compile or assemble the active document,

. EmbestIDE will check several dependence relationship, if
Compile

the following assumptions are true, the active document

will not be handled:

1. the object file are more up-to-the-minute than the

source file;

2. the object file are more up-to-the-minute than the all

dependence files of the source file;

3. No compiling or assembling options are modified,

since the last building or rebuilding all operation.

IIIII 0 I'l-':zp ACE

=-E Workspace 'led_swing': 1 project{s]
E| led swing files
=1 C Source
L led swir~ -
w1 ASM Sour _ Jee®
(] Link Serip £ Compile
- objdump

Docking View
Hide

Froperties

. Files |

Figure 6-5-2 Compiling Menu Item

6.5.2 Project Build

The menu items----Build, Rebuild All, Batch build, Clean and Stop

Build----are all used to handle the active project:

Menu Item

Description

Build

Rebuild All

Batch Build

ﬁ Clean

Stop Build

Compile all the source files that need to be compiled
(as the description in Files type chapter), and link the
object files to generate the target file.

Before build the active project, EmbestIDE will check
several dependence relationship, if the following
assumptions are true, the active project will not be
handled:

1. No source file need to be compiled;

2. The target file are more up-to-the-minute
than the dependence files of linking operation;
3. No linking options are modified, since the last

building or rebuilding all operation.

EmbestIDE deletes the existing object files and target
file first and then generates them again, suggest use
this operation if there more than one project in current
workspace.

Batch Build the Projects and order the building
sequence in current workspace.

Delete all the intermediate files include the object files
and target files

Stop the building or rebuilding all operation

al=

El@ Workspace ‘term': b project(s]
-- term_ehbdl files
o & term_ch: [T

-8 term_eb4 o New Folder...
" term_ebt Add Eiles to Project. ..
-8 term_eb Set as Active Project

Setting...

[w Docking Yisw
Hide:

Properties

B3 Func . Files I

Figure 6-5-3 Build Pop Menu in Workspace Pane

6.5.3 Projects batch build

The user can simultaneously carry out batch build upon several projects in
current workspace. Click the menu Build > Batch Build to pop out the dialogue

box as shown in fig. 6-5-4.

x|
Select Batch Projects:
Project Name Build
Cterm_ebd4D
Cterm_eb40a Behbuild All
Cterm_eb42
[Jterm_eb&5
[Flterm_eb63 Clean
Select All
Cancel
Mowve Up Move Down

Fig 6-5-4 Batch Build operating window

Introduction to options of Batch Build operating window:
Project Name: select the project to be built by the user; the project not be
selected will not be built.
Move Up: move the highlighted project up a step.
Move Down: move the highlighted project down a step.
Select All: select all projects in workspace.

Build: Build the selected projects in the workspace. The regulated rule of

building is same as the definition of Build menu of the system.

Rebuild All: Re-build the selected projects in the workspace. The regulated

rule of building is same as the definition of Build menu of the system.

Clean: completely delete the files produced in building.

Note: for several projects, if it is set that the file folder with same name

store building output result, it is suggested using the operation of
Rebuild All so that it may not occur any error while building and

connecting files with same name.

6.6 Building Information in Output window

At the beginning of compiling or building operation, the build pane will be
set active to display the output information. In the Figure 6-21, the firstlinein

this window prompt you which project or file is handled now.

If all the command execute successfully, EmbestIDE will print line

---Command(s) successfully executed, otherwise, line---Error executing above
command.

If fail to complete the compiling operation, error will displayed in build pane.
To locate to the corresponding source quickly for those syntax errors, simply
double click on the line or press key F4 (shift + F4).

Building output information shows as Figure 6-5-5 to Figure 6-5-8:

Building project: led_swing
arm-elf-as E:\EmbedIDEATargetsiat91itargetsieb63vcstartup.s —-defsym ATF1HM63288=1

--defsym AT91_DEBUG_ICE=1 -I..%\..\..Atargetsiat?1 -I..%.. % Atargetshat
-o0.\debughcstartup.o

arm-elf-gcc -gdwarf -c -I..\..\..\targets\at91 E:\EmbedIDE\Examples\At?1\led swing
E:/EmbedIDE/Examples/At?1/1led swing_eb63/led swing.c:148: warning: conflicting typ

arm-elf-as E:\EmbedIDE\Examples‘\At91\led_swing_eb63\wait_irg.s --defsym AT?1HG3208
--defsym AT91_DEBUG_ICE=1 -I..%\..\..Atargetsiat?1 -I..%.. % Atargetshat

-o.\debugiwait_irq.o
arm-elf-1d -T..\..\..\targets\at?1hvtargetsildscript -EL -o.\debugiled_swing.elf .%
SAdebughwait_irgao LN Lh L ATargetshat?1hvdriversilib_drvharminterylib_d
fcygdrivefe/EmbestIDE/build/%gecc-arm-elf-interwork/bin/arm-elf-1d: Warning: irq_sp

Command{s) successfully executed.

a

<J* | Buila /Debug’ Command) Find in Files 1% Fid| | |

Figure 6-5-5 Build Pane

———————————————————— Building project: Keyboard_Debug --
armasm -dwarf1 -g -o .\Debugi\h4hbinit.o D:\EmbestIDEBAA\myExamplesy\myExpySDTprj\S3CEULAY

armcc -08 -dwarf1 -g+ -0 .\Debug“44BLIB.o -c D:\EmbestIDE@B@\myExamples\myExpy\SDTprj\s3
armcc -08 -dwarf1 -g+ -o .ADebug\Eint.o -c D:\EmbestIDE@@G\myExamples\myExp\SDTprj\S3CE
armcc -08 -dwarf1 -g+ -o .\DebugiEtc.o -c D:\EmbestIDEBBB\myExamples\myExXp\SDTprjyS3CEV
armcc -08 -dwarf1 -g+ -0 .\Debugimain.o -c D:\EmbestIDE@B@\myExamples\myExpySDTprjA\S3CE

armlink -ro-base Bxc@86808 -rw-base BxchB80888 -first 44binit.o{init} -info totals -libp
-0 .A\Debug\Keyboard_Debug.elf .\Debugilhbinit.o .\Debugi44BLIB.o .\Debug\Eint.o

code inline inline ‘'const’ RW B-Init debug
size data strings data data data data
Object totals tu32 12 788 a 36 a 14776
Library totals 202240 2 4y0 148 il g8 1216
Grand totals 25652 72y 1148 148 iTH)] 88 15992

Debug Area Optimization Statistics

Input debug total{excluding low level debug areas) 16384 (15.92Kb)

Output debug total 15992 (15.62Kb)

% reduction 1.91%

command{s) successfully executed. |
[* % Buila {Debug Coumand ' Find in Files 1% Fid| | o

(a) not use list file output

i]
———————————————————— Building project: Keyboard Debug -------------—-----——- -
armasm -dwarf1 -g -I..\commony -0 .\Debugi44hinit.o D:\EmbestIDEBBB\myExamplesy

armcc -08 -dwarf1 -g+ -I..%Zvcommony -o .\Debug\44BLIB.o -c D:‘\EmbestIDEBAB\MYExa
armcc -08 -dwarf1 -g+ -I..\common% -o .\DebugiEint.o -c D:\EmbestIDEBBB\myExamp
armcc -08 -dwarf1 -g+ -I..%commony -0 .\DebugiEtc.o -c D:\EmbestIDE@BB\myExampl
armcc -08 -dwarfi1 -g+ -I..%Zcommony -o .\Debugimain.o -c¢ D:\EmbestIDEBBB8\myExamp
armlink -ro-base BxcB88888 -rw-base Bxc48ABAd -first 44bipit.of{init) -symb -1lisi

totals -libpath C:%Arm2513\1ib -o .\Debugi\Keyboard_Debug.elf .\Debugi4ib
.\DebugiEtc.o .\Debugimain.o pr

Command{s)} successfully executed. :j

“T* I Build { Debug % Command % Find in Files 1% Fi4] | O

(b) use list file output

Figure 6-5-6 GNU Tools for ARM (success)

———————————— Compiling file: D:\EmbestIDEBB8\myExamplesimyExpitestimaintest
arm-elf-gcc —gdwarf -c D:\EmbestIDE@@A\myExamples\myExpitestimaintest.c -c
D:/Embest IDE@BO/myExamples/myExp/test/maintest .c: In function “Hain':
D:/EmbestIDEABB/myExamples/myExp/test/maintest.c:59: parse error before *»

Error executing above command. j

“J* | Build { Debug % Command s Find in Files 1% Fid| | |

Figure 6-5-7 GNU Tools for ARM (failure)

———————————— Compiling file: D:\EmbestIDE@OO\myExamples\myExp\SDTprj\S3CEV4O N commON\S4UBLIB.C —————————a
armcc -08 -dwarf1 -g+ -I..%\commony -o .\Debug\%4BLIB.o -c D:\EmbestIDEABA\myExamples\myExpi\SDTprjisac
"D:\EmbestIDEBBB\MYExamples\myExp\SDTpr jAS3CEV4O \commony44BLIB.C"", 1line 33: Error: expected ';' or *,
D:vEmbestIDEBBBvMYExamplesymyExpySOTprj\S3CEV4B \commony44BLIB.C: @ warnings, 1 error, B serious error

Error executing above command.

=

“[* | Buila { Debug }, Command % Find in Files 1% Fid| | |

Figure 6-5-8 ARM Build Tools (failure)

7. Program Debugging

7.1 Overview

The Embest IDE debugger combines the best features of graphical debug

and command-line debug, provides multifarious debug ways.

The most common debugging activities, such as setting breakpoints and

controlling program execution, are available through convenient point-and-click

interfaces. Similarly, program listings and data-inspection windows provide an

immediate visual context for the crucial portions of your application. For

complex or unpredictable debugging needs, the command-line interface gives

you full access to a wealth of specialized debugging commands.

Embest IDE provides much advanced features as follows:

Supports assemble language debugging and source code debugging;
supports many program windows (include source program window,

disassemble program window and mix-mode window).

Many emulational debug methods: Go, Reset, Stop, Step, Step into,

Step over, Step out, Goto Cursor, Goto Source and Goto Address etc.

Supports Unconditional Breakpoint, Conditional Breakpoint and

Watchpoint.
Register value display and modification.

Memory content according can be desplayed with byte, half-word or

word length and Hexdecimal or Ascii mode.

Supports global and local variables display and modification, and also

supports expression value compute.

When value-change occurs in memory, variables, registers ,

corresponding interface content will be displayed with red color.
Supports function stack display.

Saves debugging environment information with each project.

7.2 Debugger GUI

Figure 7-1 illustrates the GUI elements you can use to interact with Embest

IDE debugger.

Fmhest IDF - [F4__\Fxamples',ak41 example_berminalybermr,

File Edii ‘iew Praject Buld Dsbug Tools Window Hep ©

IDEH@ S e8| DR W

<88 8| A%% K|

21zl

147

LA x|
18|

Register

i i i Source
" int pdin { vuiu)
Tool Bar | epsna files B 24+ Beqin Program
Source { Rindow
= ASM Source int i;

- Link Script
=g term_eb 42 files
El{’_“l C Source

Project
Tanage
Rindow

nk Script
_ebG files
Source

char =t_str = str:

/7« Terminal initialisation
terminal_1.usart_desc = &USARTE_DESC;
terminal_1.term_data = kterminal_data_1;
terminal_d1.baud_rate - {u_int) BAUDS284648;
terminal_1.format = (u_int) US_ASYNC_HODE;
dL91_iry_liamiler;

Lermingl_1.Lermingl_dsm_hdndler =

//# Open terminal
at91_terminal_open{kterminal_1};

&

Rindow

Per

EY |
-8
o @
=@
=@
-6
né
=@

—
a

sE

S8 Register & perpheral I

Azl

1
Ready \\

LA term.c /7% Transmit str_test int main{)
LR AYM Ynairsa - for{i=0; id{strlen{str_test); i+s+)
4 [B at?1_terminal_write({&terminal_1.&str_test[i]}:
3 e (2 Fies | - | _Ij o Call Stack
—— A 13
2 nasress : ([IZATIRIT = [Aprere =] %[nane
Data Watch ax28. .. e om oE o = seript executes D e
Window J refresh refresh a
%20, .. @OBA0EEE 18 FO 9F £5 18 help display i pt_str 8x2001618 "
- B=ff. .. #0B00ER5 FO 9F E5 18 FO disasm disassenb!
Do onl || oo oo e’ et tar
. - - S e on PRACUTA T,
Fpin_rxa sx10 "N @0BBOE1L B0 98 AD E1 28 step step stat
| pin_txd oxf 'm’ 60000610 FF 1F ES 20 FF - il stop stop targ
|—|Jin_sck ixe ‘"W gggggg;; :]; gg 3; gg gg XT - reglist list all |
ner. .. @2 N’ . reqread display v
QA?A 5L AR AR A2 AR\ Fpguirite set regis
=== o0 10 02 54 0O d nread display m
Status Bar 9520. - 5 - write write to Ij
et Nemory Output s Variables
h 1 4 Watch - £ 141 2 g b Commend § 4 4 1I:I‘Lal Gl q
= Rindow — —— Rindow — 2 o Rindow

n117,Cal 5 |

pos | [[

Figure 7-1 Embest IDE debugger interface

The Debug menu provides a complete list of Embest IDE GUI debugger

commands, as well as their keyboard shortcuts.

The Debug toolbar provides buttons for the most common debugger

commands, as well as for opening and closing all kind of windows and program

compile and link etc.

The Debug status bar displays system status and detail explanations of

menu’s and toolbar’s role.

7.2.1 Debugger Toolbar, Buttons, Menu and Shortcut

The debug toolbar has many buttons for the most common debugging
commands, as well as display auxiliary debugger windows. The toolbar shown

as a floating palette interface as figure 7-2.

@EID >0 0 E(REEERE
Figure7-2 debugger toolbar

The commands in the debug menu include alternatives to the buttons in the
debug toolbar, as well as additional debugger functions. Keyboard shortcuts are

also available for all graphical debugger commands.

The debugger buttons and menu commands are described in following table
7-1.

Table 7-1 debug button and menu command

Button Menu Command Description
Connect/ Connect or Disconnect target system
Disconnect
Download Download debug file to target system

e Restart Restart the program from entry point

Run debug file on the target under debugger

E, Go
control
Stop Stop target system
L= Reset Reset target system

Step to the next line of code, in order of execution
Step into (not necessarily the next line displayed in the
editor)

™ Step over Step to the next line displayed on the screen. If

there is a subroutine call on the current ling, the

¥

1}

Step out

Run to Cursor

Show Next
Statement
Toggle
Breakpoint
Enable All

Breakpoints

Disable All

Breakpoints

Delete All
Breakpoints

Breakpoints...

Watch

Variables

Registers

Memory

Call Stack

button executes that subroutine in its entirety,

then stops at the line after the subroutine call

Finish the current subroutine. Execution continues

until the current subroutine returns to its caller.

Run to the line where cursor staying

Show next code line which will be execute

Set or remove a task-level breakpoint on the

current line of the editor window

Enable all breakpoints

Disable all breakpoints

Delete all breakpoints

Show the breakpoints management dialog

Open or close the Watch window, which displays
the values of specified variables throughout the

execution of the program

Open or close the Variables window, which

displays the values of local and global variables

Open or close the Registers window, which

displays values of the target registers

Open or close the Memory window, which displays

target memory information

Open or close the Call Trace window, which

displays stack information

) Open or close the Disassembly window, which
Disassembly
displays disassemble code

7.3 Debug Setting

Debug setting window, which is used to configure debug software, locates at

the setting dialog window of project. The configurations is divided to three

categories:
® General

® Download

® Memory Maps

General debug setting page interface show as following figure7-3:

Project Settings

Settings For :

=-E8 term_eb 40 files
--{:l C Source
--{:l ASM Source
-3 Link Script
=-EH term_eb40a files
--{:l C Source
--{:l ASM Source
-3 Link Script
=-E8 term_eb42 files
--{:l C Source
--{:l ASM Source
-3 Link Script
=8 term_eh55 files
--{:l C Source
--{:l ASM Source
-7 Link Script

E¥=EHerm ebb3 files

.77 Sanree

4]

5

Pmct:ssurl Remote Debug |Dirt:[:tury| Cumpilt:rl Assemb 4 | ’l

Category: -

Symbol file :

I.'-,dt:hug\tt:rm_t:hﬁlelf

.

—Action after connected

& None
 Auto download

" Command script

0K

Cancel

Figure7-3 General Debug Setting Page

Symbol file column specifies the debug symbol file name and directory,

debug symbol file contains debug information for debugger, usually symbol file

has Elf-format or Coff-format.

Auto Download option item is used for whether or not auto download file

after the target system is resetted or debugger connects target. If be selected,

debugger will finish the download operation automaticly.

Command Script option item specifies the command script file, if selected,
the debugger will auto execute the commands listed in this file after system

connects target board.

Download debug setting page interface show as following figure7-4:

Project Settings i ﬂ
Settings For : Pmct:ssurl Remote Debug |Dirt:[:tury| Cumpilt:rl Assemb 4 | ’l
=-E8 term_eb 40 files B
6 0 Soures Category -
--{:l ASM Source
=1 Link Script Download file:
IZ—II.. term_eb40a files I.'\dt:huq'\tt:rm_t:hﬁlt:lf J
-1 C Source
&3 ASM Source ¥ Download verify

-1 Link Script
=-EH term_eh42 files

! Download address:
% £ C Source Execute program from
=1 ASM Source Il]le]l]l]l]l]l] ¢ Don't care
&1 Link Script

[_]__ term_eb55 files Execute until: & Download address
#-{1 C Source I Program entry point

--{:l ASM Source —
&1 Link Script

E¥=EHerm ebb3 files

.77 Sanree bl
1| | 3

0K I Cancel

Figure7-4 Download Setting Page

Download file column specifies the executable file to be downloaded, this

file is the program which will run on a target system.

Download Verift option item is used for whether or not auto checksum
download file. If selected, debugger will auto compare the target memory file

with the download file.

Download address column specifies the start memory address of

download file, the download file will ordinally be stored from this address.

Execute until column specifies a symbol to which program will run, after it

is downloaded.

Download address option item means debugger will auto set PC’s value

with the download start address after file downloaded.

Program entry point option item means debugger will auto set PC’s value

with the entry-point address of the excutable file after it is downloaded

Memory maps setting page interface show as following figure7-5:

Project Settings

; x|
Settings For : Prncessurl Remote Debug |Directnry| Cnmpilerl Assemb 4 | ’l
=-E term_eb40 files -]
= (1 C Source L Memory Maps
=0 ASM Source
-7 Link Script
=-EH term_eb40a files ~Memory Map
=3 C Source
d-_7 ASM Source
7-[_1 Link Script

3 term_eb42 files
- C Source S[EMBEST _IDE)\Targets\at91\targets\ebb63ebb63.m J
-] ASM Source

21 Link Script

5 term_ebbb files

7-_7 C Source

d-_7 ASM Source —
7-[_ Link Script

EREditerm ebb3 files

A7 Sanree b
1| | 3

 No map file

¥

= Use map file

m
&

i
[l iyl

+
i}

i
-6

+

+

i

#

0K I Cancel

Figure7-5 Memory Maps Setting Page

Use map file option item means the range of memory access should be
specified when users debug program, and the range is descripted in the
memory map file assigned in the following editbox.

7.4 Start to Debug the program

When a project is compiled and linked successfully, and you have correctly
filled debug setting dialog, you can debug the project now with the following

steps --- 1, connect debug emulator device; 2, download program.

7.4.1 Connect Emulator

Before connect emulator device, please read Appendix A JTAG Emulator

Connect.

Connect computer’s parallel port and the Embest Emulator’s DB25 interface
through standard DB25 male-to-female parallel cable. Embest Emulator
connect target board through a header which mates which IDC sockets mounted
on a straight through ribbon cable. And then, with the target board powered,

hardware connection is established.

Click Debug menu, select ‘Remote Connect’ menu item(show as figure7-6),

or push F8 key, debugger will connects target system through emulator device.

Cebug Tools Window Help
Rernoke Connect Fa

Davrlaad

Figure7-6 Debug Menu before Connection

If connection is failed to set up, debugger will show possible reason in debug
pane of the Output Window. Please refer to Appendix A, and check whether
power and cable connection are correct or not. If the connection established

successfully, Debug menu will show as following figure7-7:

Debug Tools ‘Window Help
Disconneck Fa

Download

Figure7-7 Debug Menu after Remote Connect

7.4.2 Program download

After connection between host and target system set up, we can download
executable file to target system now. If Auto Download option is set in Debug
Setting Dialog, debugger will auto progress this step. If not, please click Debug
menu, and select Download item. Target file will be downloaded to the
predeterminate address on target system. The rate of download process will

displayed on the status bar, show as following figure 7-8:

Download HENNNENNENNEEENNENNNNNENE

Figure 7-8 Status Bar as Program Downloading

If download succeed, status bar displays “"Download Completed” in blue,
otherwise, “"Download Failed” in red. Show as following Figure 7-9 and Figure
7-10.

Info: download completed

Figure 7-9 Status Bar as Program Download completed

Error: verify error. download failed

Figure 7-10 Status Bar as Program Download failed

7.5 Control Program Executing

Debuger can control target program as it execute, and disassemble binary
code in the target system, and also can control target program by set

breakpoint to help user faster debugging program.

7.5.1 Program Running

Executing program state includes run-state. stop-state. reset-state mainly.
Run-state expresses program is executing according to code order; Stop-state
expresses it is stopped at certain code and waiting for debugger to read needed
information; Reset-state expresses target system is staying at system entry

point, all system information keeps at the initially state.

Click ‘Debug’ menu and select ‘Go’ menu item, or push ‘F5’ key, or click ‘Go’
button on debug toolbar, program will run from the stopped position, and
mouse shape will change to funnelform shape, program running interface is

shown as following figure7-11:

Embest IDE - [E:...,Examples’at91'example_terminaliterm.c]
File Edit WYiew Project Buld Debug Tools Window Help

[DsE@ & + 2@l - |(nE & HH| A% SN
[e20E >0 7 oo s EoEPRTE EED 5Ch EerE R
alm [e e =
prEyrer— | EGREC
#-] Link Script <
|:—:|-- term_eb42 files int i;
#-{1 C Source char *pt_str = str; 2
&1 ASM Source
..D Link Script f/= Terminal initialisation
[_]__ term_eb55 files :erm::mai_:ll .Esartadisc =&$USRI_1T Bibgsg; ;
: erminal_1.term_data = &terminal_data_1;
g Esshzlgce terminal 1.baud rate = (u_int) BAUDS38400;
-1 AsM =source terminal_1.format = (u_int) US_ASYNC_HODE;
-3 Link Script terminal_1.terminal_asm_handler = at91_irq handler;
|'_—‘|-- term_eb63 files J
=3 C Source //* Open terminal
© [termuc at91_terminal_open{&terminal_1);
&1 ASM Source
"{:I Link Script I | Fi= '!'ran5|]|it str_test .
- for(i=0; i<strlen(str_test); i++)
< | @ at91_terminal_write{&terminal_1,&str_test[i])};
S5 Func . Files I (4 (: r"

Figure 7-11 Program Running Interface

Click ‘Debug’ menu and select ‘Stop’ menu item, or push Shift+F5 key, or
click ‘Stop’ button on debug toolbar, can make program stop, and mouse shape
will change to primary shape, program stop interface is shown as following
Figure7-12:

Embest IDE - [e:,...\ targets’ atal drivers' terminal'terminal.c]
File Edit Wiew Project Build Debug Tools Window Help

D@ & @ =. - |TE % C]&E R B A% %%
legcg »mpeu/inEEEEEE |c -« 2 oE EEEEES
2lxl { -
E" term_eb40a files | TerminalDataDesc =data = term_desc->term_data ;
#-_] C Source
-1 ASM Source if (data->rx_cnt > 0)
& Link Script {
|:—:|-- term_eb42 files data->rx_cnt—- ;
"{:l C Source *character = ={data->rx_out_pt)++ ;
i{:]ASM Source if ((u_int)data->rx_out_pt »>= {u_int)data->rx_buf + TERH
i4[]ljnk5cﬁpt :3:3;zr?;?uf_pt = data—>rx_buf;
-9 term_eb55 files i
f - H
11 C Source 2
-1 ASM Source ¥
#-1 Link Script 74% End
E-- term_eb63 files
=3 C Source = el
¢ LA term.c //* Function Hame : at91_terminal_write
5.7 ACM Sanrea & //* Object :
4| | 4 Ff= Input Parameters : terminal_descritor, string to writ
By . Filesl | iff* Output Parameters : Hone | -
e HIE » |

Figure 7-12 Program Stop Interface

When program stoped, if stop at certain source code, corresponding source
code line will be highlight, and set a current-line flag in front of the line
(current-line flag is yellow rightward arrow), source code interface is shown as

following figure7-13:

int main(void)

{
char Id4 = '4°;

/% Hardware and softuware module related initializations =/
SystemInitialization();

/% needed by uC/0S x/
0SInit();

o 0STimeSet(0);

/% create the start task =/
0STaskCreate(TaskStart, &Id4, &Stacki4[STACKSIZE - 1], 6);

/% start the operating system x/
0sStart();

return(0);

Fgure 7-13 Program Stop Interface with Source Code

Click ‘Debug’ menu and select ‘Reset’ menu item, or push Ctrl+R key, or
click ‘Reset’ button on debug toolbar, program will stop and system will transfer
to initial state, and mouse shape will change to primary shape, program reset

interface is shown as following figure 7-14:

Embest IDE - [Disassembly]

Eile Edit ‘iew Projeck Build Debug Tools Window Help

D cRE & & =il |nE G & RE|A%%%|
oL cmpdodd REEERSE S @ 02 DR BEEEEDRES
TN B2 6 anARRAAN i i =
- - — LCEEEL b axh
E|-- term_eb40a files _I B 0BABE0ES b Bx8
-1 C Source Bx 0800B08C b Bxc
-] ASM Source Az 00600618 b Bx10
{1 Link Script Ax00000014 b fx14
=-E8 term_eb42 files BxBooo0oe18 1ldr pc, [pc, #FFFFFBeRd] ; BxFFFFF188
M-23 C Source BxBO080801C 1dr pc, [pc, BFFfFfoBed] ; BxfFFFF184
2 1 ASM Source 000080028 andeq 12, 1@, $1073741832
. . . % andeq r2, ri,
H__%rrt'":hi[;';'i’:es 0% DOBADO2S andcs re, ro, ro
_ Bx BABABBZC andce r8, r8, rB [
-3 € Source 8x 00000030 andmi re, ro, ¥
-] ASM Source fx 00080034 andpl ra, v, ro
®-_] Link Script 8z 00000028 andus ra, v, ra
EI-- term_eb63 files 8x0008003c anduc rd, ra, ra
-3 C Source — 0x 006000040 andeq re, re, ri
term.c Bx 08008044 andeq rd, ra, ro
P ACM Comree - 000600048 swinu 0x08e 00080
4 | | 2 Bx0800884c swinu Bx@0fFfo80
3 Fne [g) F“esl | Iaxaaaaaa5a tsteq re, r3, 1sl #14 | ~|
e HIE »

Figure 7-14 Program Reset Interface

Source program also can be executed step by step. Step execute include
Step Into. Step Over and Step Out mode.

1. Step Into mode: If there is a subroutine call in the current line, Step Into
takes program to the first line of that subroutine, not to the next line currently

displayed on your screen.

2. Step Over mode: Step Over steps program to the next line display on the

screen.

3. Step Out mode: program execution continues until the current subroutine

completes, then the debugger regains control in the calling statement.

A example for step execute is shown as follows figure 7-15:(suppose
system run into the position as the following figure, current subroutine is
OSTaskCreate)

B 0ot \EmbestIDE:Exa

0S_ENTER_CRITICAL(): =
if (OSTCBPrioTbl[pric] == (0S_TCB x%)8) { /= Make sure task doesn't a
0STCBPrioTbl[prio] = (0S_TCB =)1; /% Reserve the priority to
/% ... the same thing until

0S_EXIT_CRITICAL();
psp = (void x)0STaskStkInit(task, pdata, ptos, 0); /x Initialize
err = OSTCBInit(prio, psp. (void x)0, 0, 0, (void =)0, 0);
if (err == 0S_NO_ERR) {
0S_ENTER_CRITICAL();

0STaskCtr++; /% Increment
2% 0STaskCreateHook(OSTCBPrioThl[prio]); /* Call user
0S_EXIT_CRITICAL();
if (0SRunning) { /» Find highest priority ta
0SSched();
}
} else {

0S_ENTER_CRITICAL();
OSTCBPrioThl[prio] = (0$_TCB x)0;/x Make this priority avails
[<] | v 4

Figure 7-15 Step Execute Start Position

If execute Step into, because the source line have a subroutine call, so
system will run into the first line of OSTaskCreateHook subroutine, source

window interface will changed as the following figure 7-16:

: Description: This function is called when a task is created. -

: Arguments : pteb is a pointer to the task control block of the task

: Note(s) : 1) Interrupts are disabled during this call.

=/

void 0STaskCreateHook (0S_TCE xptch)
+ ptch = ptch; /* Prevent compiler warning _J

}

/%

* TASK DELETION HOOK
| % Description: This function is called when a trsk is deleted. -
4 Y 4

Figure 7-16 Source Code Window Interface after Step Into

If execute Step over, system will stop at next line displayed on the screen,

source code window will changed as the figure 7-17:

0S_ENTER_CRITICAL(); ‘l

1F_(OSTCBPrioTb1[prio] =z (OS_TCB =)0) { /> Make sure task doesn't &
OSTCBPrioTbl[prio] = (O0S_TCB x=)1; /* Reserve the priority to
/% ... the same thing until

0S_EXIT_CRITICAL();
psp = (void %)08TaskStkInit(task, pdata, ptos, 0); /x Initialize
err = 0STCBInit(prio, psp, (void =)0, 0, 8, (void =)0, 8);
if (err == 0S_NO_ERR) {
0S_ENTER_CRITICAL();
0STaskCtr++; /% Increment

0STaskCreateHook (0STCBPrioThl[prio]); /x Call user
E>
if (0SRunning) { /* Find highest priority ta

0SSched();

}
} else {
0$_ENTER_CRITICAL();
0STCBPrioTbl[prio] = (0S_TCB x)0;/x Make this priority avail
[«] | r 4

Figure7-17 Source Code Window Interface after Step Over

If execute Step out, system will continues until the current subroutine
completes, and stop at calling statement, source code window will changed as

the following figure 7-18:

/#* Hardware and software module related initializations =/
SystemInitialization();

/% needed by uC/0S x/
0SInit();

0STimeSet(0);

/» create the start task =/
0STaskCreate(TaskStart, &Id4, &Stack4[STACKSIZE - 1], 6);

/% start the operating system x/
B O Star £) RS

return(0);
;/* End [|
[| o4

Figure 7-18 Source Code Window Interface after Step Out

7.5.2 Disassemble Window

Disassemble window provides display of assemble code disassembled from
binary machine code, and provides blend display between assemble code,
source code, and binary code. Disassemble window can set and clear assemble
breakpoint, and also can disassemble binary code in accoding with ARM or

THUMB binary machine mode.

The buttons. shortcuts. and menu commands, correlative with disassemble

window, are described in following table.

Table 7-2 Buttons. Shortcuts. and Menu Commands

Button Shortcut Key Menu command

il ALT+8 View > Debug Windows > Call Stack

Disassemble window is shown as following figure 7-19:

File Edit ‘iew Projeck Build Debug Tools Window Help
D cR@ & @ =@ - - |nE C|ERB| A% %%
legc +aren deEREEREE S & d s BEFEEEEE
YT B3] 6 62 a80 600 i fx2 00009 "
T - - undefvec :
5“ term_eb40a files 2 8x 02 0000864 b 8x2000084
&3 € Source swivec :
-1 ASM Source 8x 82 000068 b 9x2000008
m-{_] Link Script pabtvec :
|:—:|-- term_eb42 files 8x02080008c b 8x2008806c
-7 C Source dabtvec :
-3 ASM Source fx02000818 b fx2060618
- Link Script revdvec :
- Ax 02000814 b Bx2080614
IZ—II-- term_eb55 files irquec : I
- C Source 8x 02000018 b 62000018
-1 ASM Source fiquec :
{1 Link Script 9x0208081c b 8x200861c
=-E8 term_eb63 files VectorTable :
EI{:I C Source - 0x 82000020 1dr pc, [pc, #18] ; Bz2000048
L [H term.c 0x0200002Y 1dv pc, [pc, #18] ; 0x200084%4
L - 0x 02000828 1dv pc, [pc, #18] ; Bx2000848
| | B 0x02080002c 1dv pc, [pc, #18] ; 6x200084c
. fx 02000030 1dv pc, [pc, #18] ; Bx2@00658 =
S8 Func . Files I | Jll n

Figure 7-19 Disassemble Window Interface

Disassemble window blend source code and assemble code as the following
figure 7-20:

Embest IDE - [Disassembly]

File Edit ‘iew Projeck Build Debug Tools Window Help

D cR@ & @ =@ - - |nE C|ERB| A% %%

23 R N EE A = EEE
| 96: #- (use for that the option -ru- base=8x34 =
=& term_eb40a files 2 3; :l‘ecturTahle:
-3 C Source 09: 1dr pe, [pc, #+0x18]
&3 ASM Source 6x 02000820 1dv pc, [pc, #18] ; 0x2000848
E-] Link Script 1@8: 1dr pc, [pc, H+8x18]
=B term_eb42 files 0x 820000824 1dr pc, [pc, H18] ; Bx200004Y
=03 C Source 101: ldr pc, [pc, #+0x18]
-3 ASM Source 0x 02 6008028 1dr pc, [pc, #18] ; 0x20080848
. . 102: ldr pc, [pc, #+0x18]
- Link Script 6x 02 BABOZC 1dr pc, [pc, #18] ; Bx28808uc
=R term_eb55 files 103: 1dvr pc, [pc, H+0x18] I
-3 C Source 0082000038 1dv pc, [pc, #18] ; 8x2080850
#-1] ASM Source 10y nop
#-{] Link Seript 0x 82000034 nop (mov rB,ra)
I'_—‘l-- term_eb63 files 105: ldr pc, [pc,#-82F20]
53 C Source =l 6x02000038 1dr pc, [pc, HFFFFFBeB] ; Bx1FFF120
L [H term.c 106 : ldr pc, [pc,ii-0xF20]
P ACM Conren - 8z 82 88803c 1dr pc, [pc, HFFFFFBeB] ; Bx1FFF124
| | _>|_I 0x 02 600040 andeq re, ra, #8L
W : Iﬂxljzﬂl]l]ahh andeq ra, ra, #SBI _lll
E—— HIE »

Figure 7-20 Disassemble Window Interface

Disassemble window blend binary code and assemble code as the following
figure 7-21:

Embest IDE - [Disassembly]

File Edit WYiew Project Build Debug Tools Window Help

D 2E@ & @ =. - |(nE S & BB 4% %%

X - E R R R I RE =l ==l = e o mE AeEDE
alx | oxz02080028 18 f8 Of eb 1dr pc, [pc,zl
I " " 168a: 1dr pc, [pc, H+@x18]
E" term_eh40a files 2 0:02008002% 18 £8 9f e5 1dr pc, [pc,
-1 C Source 101: 1dr pc, [pc, #+0x18]
#-(] ASM Source 0z 0200086828 18 FA 9f o5 ldv pc, [pc,
=] Link Script 182: 1dr pc, [pc, H+0x18]
|:—:|-- term_eb42 files 8:0200002c 18 f8 9F e5 1dr pc, [pc,
&1 C Source 183: 1dr pc, [pc, H+0x18]
2] ASM Source 0x02086038 18 F8 9f e5 1dr pc, [pc,
. : . 184: nop
{t:I Lmkh?;,;"fl?lt 802000034 068 BA a@ e nop (mov r@,
=-EA term_eb3b files 185 1dr pc. [pc,i-oxFze] —
-1 C Source 6x02000638 20 Ff 1f e5 1dr pc, [pc,
-1 ASM Source 1062 1dr pc, [pc,H#-BxF28]
=] Link Script 9x0200003c 20 ff 1f eS 1ldr pc, [pc,
=& term_ebb3 files 0x020006048 54 08 B0 B2 andeq va, o,
5.3 C Source = 0x02000044 58 00 00 62 andeq re, ro,
term.c 0020000848 5c 00 A6 82 andeq rd, ri,
L o ATM Cnaren - 0x0200004c GO 06 00 62 andeq re, ro,
1] | 082000058 64 B0 00 B2 andeq re, ra,
53 Fune [g] Fies | | I116: b | SoftReset =
e HIE |

Figure 7-21 Disassemble Window Interface

The right mouse menu of disassemble window is shown as following figure
7-22.

o To Source
Go To Address
Shiow Mexk Stakement

Insert Breakpaink
Enable Breakpoint
Run bo Cursaor

SBE | ¢

% Set Mext Stakerment

Disassembly Mode r

Source Annokakion

v
|7 Code Bytes

Close

Figure 7-22 Disassemble Window Right Menu

Go To Source: show the source code line which in according with current
assemble line, if the source line exists, debugger will show the source code

window.

Go To Address: set start address of assemble code, and start

disassembling binary code from that address.
Show Next Statement: show assemble code which will execute next step.
Insert Breakpoint: set a breakpoint at current assemble code line.
Enable Breakpoint: enable the breakpoint at current assemble code line.
Disable Breakpoint: disable the breakpoint at current assemble code line.
Delete Breakpoint: delete the breakpoint at current assemble code line.
Run to Cursor: run program to the line where the cursor is staying.

Set Next Statement: set the assemble code line, where the cursor is

staying, as the line which will execute by system next.
Disassembly Mode: set disassemble mode ---- ARM or THUMB mode.
Source Annotation: display assemble code blend with source code.
Code Byte: display assemble code blend with binary code.

Close: close the disassembe window.

7.5.3 Breakpoint

The buttons. shortcut keys and menu items which relate with breakpoint is

shown as following table 7-3:

Table7-3 Buttons. Shortcut keys and Menu items

Shortcut
Button Key Debug menu command Right mouse menu
Toggle Breakpoints Insert Breakpoint/
M F9 .
Delete Breakpoint
n/a n/a Enable All Breakpoints
n/a n/a Enable Breakpoint
n/a n/a Disable All Breakpoints
n/a n/a Disable Breakpoint
Delete All Breakpoints
L n/a P
n/a n/a Breakpoints...

Before setting a breakpoint, symbol file must has been fiiled in debug
setting dialog. Embest IDE debugger can set and clear breakpoints in source
code window. assemble window. disassemble window and code blend display

window.
Several way, hereinafter, to set breakpoint:

1. Moving mouse to left grey margin of the source code window, mouse will
change to hand shape, then click the left mouse button, a red-circle breakpoint
flag will displays in the left grey margin and a yellow backgrounf bar will be

shown at corresponding line.
2. Set cursor to the line which need a breakpoint, and then press ‘F9’ .

3. Set cursor to the line which need a breakpoint, then click ‘Debug’” menu

and select ‘Toggle Breakpoint’ menu item.

The breakpoint, which is set first time, is a enable breakpoint, shown as
following figure 7-23. The flag which is around by cyan circle is a enable
breakpoint flag:

/7= B FE N8
at91_tc_write(&TCO_DESC, timer_value);

//* -- Software Trigger on Timer
//% == generates a software trigger simultaneously for each of the chan
() at91_tc_trig_cmd(&TCO_DESC, TC_TRIG_CHANNEL) ;

//x [BENTE R £
at91_irq_open(TCO_DESC.periph_id, 7, AIC_SRCTYPE_INT_EDGE_TRIGGERED, &0

Figure 7-23 a Disable Breakpoint Flag

In a source code window, if a breakpoint is set at a invalid source line,

Embest IDE will have none response.

Breakpoint state includes enable state and disable state, program will not
auto stop at the disable breakpoints. Shown as the following figure 7-24, the

flag around by cyan circle is a disable breakpoint flag:

//x define led at PIO output
at91_pio_open (&PIO_DESC, LED_MASK, PIO_OUTPUT);

//% define switch at PIO input
@ at91_pio_open (&PIO_DESC, SW_MASK, PIO_INPUT);

/% Timer initialization
at91_tc_open(&TCO_DESC, TC_WAUE|TC_CPCTRGITC_CLKS_MCK8,0,0);

Figure 7-24 Disable Breakpoint Flag

When running into a enable breakpoint line, program will stop at the

breakpoint, shown as the following figure 7-25:

/7 B E IR |E
at91_tc_write(&TCO_DESC, timer_value);

//* -- Software Trigger on Timer
//% -- generates a software trigger simultaneously for each of the channels.
Gg at91_tc_trig_cmd(&TCO_DESC, TC_TRIG_CHANNEL);

//= JSENFENT &

at91_irq_open(TCO_DESC.periph_id, 7, AIC_SRCTYPE_INT_EDGE_TRIGGERED, &0STickI

Figure 7-25 Program Stop at Breakpoint

User can query all breakpoint information and state through breakpoint list.
Click '‘Debug’ menu, and select ‘Breakpoint...” menu item, the breakpoints list

dialog will pop-up, shown as the following figure 7-26:

Breakpoints list x|

| 1D | Address | Location | Count | When Commant

1 0x0200012c el\embestideltargets\at91it... 0 stk == 0x1% memwrite

2 0x02000138 elembestideltargets\at91it... 0

3 0x02000120 e:Aembestideltargets\at91it... 0

4 0x02000164 elembestideltargets\at91it... 0

5 0x02000188 elembestideltargets\at91it... 0

6 0x02000178 eAembestideltargets\at91it... 0

7 Ox02000194 elembestideltargets\at91it... 0

8 O0x0200019c e:lembestideltargets\at91it... 0

a | o
Modify Delete Delete All View Code 0K Cancel |

Figure 7-26 Breakpoints List Dialog

Double click left mouse button at a line of the breakpoint list or click Modify

button, user can modify the breakpoint information in a dialog, shown as the

following figure 7-27:

Breakpoint Modify x|

Location: |uxuzuuu1 2c

Function: I

Source File: Ie:'-.emhestide'-.targets\at!ﬂ\targ

¥ Enable Count: II] Advanced >> |

Figure 7-27 Breakpoint Modify Dialog

If want to set a conditional breakpoint, click *‘Advanced’ button which on

breakpoint modify dialog, dialog will append a subdialog below the dialog,

shown as the following figure 7-28, the ‘When’ editbox displays conditional

express, the ‘Command’ editbox displays the command which will be auto

executed as system reach the breakpoint.

Breakpoint Modify _- L EI

Location: |0x0200012c oK

Function: I Cancel

Source File: [e:\embestidetargetsiat9litarg

¥ Enable Count: II] << Advanced

—Advance Option
When:
Istk == 0x15

Command:

Imemwrite 0xffe00000 001002529

Figure 7-28 Conditional Breakpoint Modify Dialog

7.6 Debug Information

When users want to debug a program, they need much debug information
to make sure the correctness of program and data, so can faster find the origin
of errors. Embest IDE has visual debug information windows to display and
modify debug information when user debug a target program, these windows
include register window. memory window. watch window. variables window and

call stack window.

7.6.1 Register Window

Register window can display and modify values of processor core registers
and peripheral chip registers on the target system. Registers name and num
depend on the type of target system processor, when debug different target
system, the content of the register window also differ. Registers values can
display on hexadecimal or decimal or binary format, and can auto refresh values
or refresh by hand. Registers divide into register group, each group can set

different display mode.

The buttons. shortcut. and menu commands which is correlative with

register window are described in following table7-4.

table7-4 register window’s buttons. shortcut. and menu commands

Button Shortcut Key Menu command

ALT+5 View > Debug Windows > Register

Register window show as following figure 7-29:

Registers i A

Reg [
&) current — [

=8 - User ——-
@ --- FIQ ——
w8 --- SuC -—-
w-@P --- Abort —--
m-@@ --- IRQ -—-
=@ --- Undef ---

518 Register @ F‘eripherall

Figure7-29 register window interface

Click one register, the name and value of the register will display in input
column which is on top of register window. User can modify the value in input

column, the input column show as following figure7-30:

Req R2 |0xes0b3014

Figure 7-30 register value modify column

When register value modified, register window will show the value in red

color, the interface of register window show as following figure7-31:

Registers H |
Req R4 |1x0202b465
=g --- Current —-—- -

..... @ RO: 0x08000001

..... @ R1: 8202021224

..... @ R2: 9x080080080

..... @ R3: 0x02020400

..... URRu: 0x0202b468

..... @ R5: 0208080081

..... @ R6: 0x08080080

..... @ R7: 0x08080080

..... @ R8: 0x080080000

..... @ R9: 0x08080808 —
..... @ R10: 8x62028000

..... @ R11: 8x80808080

..... @ R12: 8x00808000

..... @ R13: 8x828283F0

..... @ R14: 6x082833e28

..... @ R15: 8x8262b470

..... @ Sp: 8x828283F8 |

B2 Regisker @ F‘eripherall

Figure 7-31 Register Window interface

Right click mouse on register window will show the register window menu,
the register window menu show as following figure7-32, the meanings of menu
item is:

Refresh
[w futo Refresh

Hex Formak
Eimary Forrmat

Decimal Format

Expand All
Collapse all

|7 Diocking Wig
Hide:

Figure 7-32 Register Window Popup Menu

Refresh: handly refresh registers value to keep consistent with target

system.

Auto Refresh: auto refresh option, if be set, register group name will in
deep green, and register window will auto refresh registers value base on every

operation of user to keep consistent with target system.
Hex Format: display registers value base on hexadecimal format.
Binary Format: display registers value base on binary mode.
Decimal Format: display registers value base on decimal format.

Expand ...: expand all register groups(...=All) or appointed register

group(...=register group name).

Collapse ...: collpase all register groups(...=All) or appointed register

group(...=register group nhame).

Docking View: window auto arrange option, if set, window will auto keep

to the side and ordinal arrange.

Hide: hide register window.

Note: Setting the data display format, please attention by following:

1) right key on the register name, settings will effect on the appointed

register.

2) right key on the register group name, settings will effect on the

appointed register group.

3) right key on the blank of the register window, settings will effect on

the all register group and registers.

7.6.2 Peripheral register window

Peripheral register window provides status display and operation of
peripheral register of target processor. It can view and amend the content of
peripheral register in this window. The relevant buttons, shortcut keys and

menu commands of peripheral register window are shown in form 7-5.

Form 7-5 Buttons, shortcut keys and menu commands in storage area
window

Button Shortcut key Menu command

ALT+5 View > Debug Windows > Registers

Registers i X

Per EBI_CSRY |

=@ --- EBI -—- -
..... @ EBI_CSRO: 0x080000610
..... ® EBI_CSR1: 0x00000010
..... @ EBI_CSR2: Px80000610
..... @ EBI_CSR3: px080000610
..... CMEBI_CSR4: 0x080000610
..... ® EBI_CSR5: 0x000080010
..... @ EBI_CSR6: Dx080000610
..... @ EBI_CSR7: Px80000610
----- @ EBI RCR: WriteOnly
..... @ EBI_MCR: 8x0080080818

o O e O OO s OO o O |
- ETE

315 Register B Peripheral |

Fig. 7-33 Peripheral register window

As shown in the above figure, peripheral register window shows the
peripheral register groups of current target processor with a list. The register
group can be separately carried out refresh setting, data display format setting.
Click ® to view the list of peripheral registers of peripheral register group, and

the user can amend the content of appointed register.

7.6.2.1 View peripheral register

Click B to view the list of peripheral registers of register group in peripheral

register window. The display format of peripheral register is:

Name of register: current content or property of register

The readable register will directly display the current content; for write-only

register, it will display the character string WriteOnly in the back of register.

When the mouse stops above register, the screen will prompt the

description of register that the mouse currently points out, and the meanings of

each part are:

Name of register (register mapping address): register description (accessing

property)

As shown in Fig. 7-34:

==
Per ARTO_IMR [0x000000e1
..... ® SP_CSRB: 0x88800088 =
..... @ SP_CSR1: PxB00A68008
..... § SP _CSR2: 0x00000080 |
----- @ SP_CSR3: ox00000000
-

..... @ USARTO_CR: WriteOnly

----- z USARTA MR: OxP008088cH
..... IFR- Writelinln

SARTO_MR (OxfFfc0004) : USARTO Chip select Reqgister MR(R.ead"Write
ooy

----- CBUSARTO _IMR: 6x000000e1

----- @ USARTO CSR: 6x0000021a

----- ® USARTO_RHR: 0x 00000000

----- @ USARTO_THR: WriteOnly

----- @ USARTO _BRGR: 0x000008a2

----- @ USARTO RTOR: 0z00000000

----- ® USARTO_TTGR: 0x00000000 ;I

23 Register B Peripheral

Fig. 7-34 Value display of peripheral register

7.6.2.2 Operation of peripheral register

In name of register group, click # or click right key of mouse to select
Expand ... to expand register group. Click a register, the name and value of this
register will display in the input column in the upper part of register’s window. In
input column, it can change the value of this register. The input column is shown
in fig. 7-35:

Per EBI_CSRO |0x01002529

Fig. 7-35 Amendment and input column of register’s value

The value of register will be shown in red after being amended, as shown in
fig. 7-36:

Registers |

Per EBI_CSR2 |0x20000000

=@ --- EBI ——- =
----- @ EBI_CSRO: 0x01002529

..... @ EBI_CSR1: 0x62002121

..... o

----- @ EBI_CSR3: 0x30000000

----- @ EBI_CSR4: Ox40000000

----- @ EBI_CSRS5: 9x5-0000000

----- @ EBI_CSR6: Ox60008008
..... @ EBI_CSR7: 070008000

..... @ EBI_RCR: WriteOnly

----- @ EBI_MCR: 0x00000006

E
=
- hs
| | r

S8 Register B Peripheral I

Fig. 7-36 Show corresponding register in red after the value of register is
amended

While clicking right key in the window of peripheral register, it will pop out

the menu as shown in fig. 7-37.

Refresh Al
Auto Refresh

Properties

Hez Formnak
Einary Faormat
Decimal Format

Expand All
Collapse All

[v Docking Wi
Hide

Fig. 7-37 Right key menu in window of peripheral register

Menu

Function

Refresh ...

Auto Refresh

Properties

Hex Format
Binary Format
Decimal Format

Expand ...

Collapse ...

Manually refresh all value of registered groups
(..=All) or value of appointed register groups
(...=group name) so as to keep consistent with
target system

Set automatic refresh. While setting, the window of
register will automatically keep consistent with
target system according to the operation of user in
each step. While wusing this setting, the
corresponding all names of register groups (All) or
appointed register groups (name of group) will be
shown in deep green.

Display detailed window of peripheral register
Display register’s value according to hex format
Display register’s value according to binary format
Display register’s value according to decimal format
Expand all register groups (...=All) or appointed
register groups (...=group name)

Collapse all register groups (...=All) or appointed

register groups (...=group name)

Docking View Whether the window is automatically arranged to the
side. When selection, the window will be
automatically arranged to the side.

Hide Hide register window

When the user uses the setting Auto Refresh to all register groups, the
system will automatically pop out dialog box as shown in fig. 7-38. When the
user executes a debugging operation, the integrated environment must read all
values of peripheral registers, therefore the debugging speed may be affected in
some content. It is suggested that the user should selectively use the function of
Auto Refresh, and only set automatic refresh of some groups, use manual

refresh to other register groups if necessary.

Embest IDE

Fig. 7-38 Prompt when peripheral registers use the setting Auto Refresh

Notes:

® While using refresh and automatic refresh of right key menu, it shall

pay attention to the position where the mouse points:

1) The setting that is carried out with right key above name of special

register group is effective against this register group;

2) The setting that is carried out with right key in other blank of register

is effective against all register groups.

® While using data display format of right key menu, it shall pay

attention to the position where the mouse points:

1) The setting that is carried out with right key above name of special

register group is effective against this register group;

2) The setting that is carried out with right key in special register group

is effective against this register group;

3) The setting that is carried out with right key in other blank of register

is effective against all register groups.

The user shall be careful when he uses right key to operate.

7.6.2.3 Detailed dialog box of peripheral register

The dialog box of peripheral register provides for user the visual viewing
measures of peripheral register of detailed register and flexible and convenient

amendment methods to the value of peripheral register.

The detailed dialog box provides for user the detailed information about
peripheral register, including the actual meaning of content, address and bit;
the user can amend the value of peripheral register through directly inputting

hex value or binary value, and can also amend the selected register area.

After selecting register, select sub-menu Properties in right key menu of
mouse, or double click left key of mouse in register to pop out detailed dialog

box of register as shown in fig. 7-39:

esrcsRo x|

EBI Chip Select Register 0[Read\Write]

Hex Value: [oooo0010

Binary Value: II]I]I]I] 0000 0000 DOOOD 0000 0OOO0 DODT ODDOO

~Register Field

Select Option: |00 - Page Size:1M, Active Bits in Base Addrese v

Bit | Name I Bin | Desc |
31:20 | BA | 00.., These bits contain the highest bits of t..,
13 CSEN | 0 Chip select is disabled
12 BAT i o Byte-write access type
11:9 TDF ! ooa Murmber of Cycles Added after the Tra..
ig: 7 | Page Size:1M, Achive Bits in Base Addr...
4 2 M PAGES : Page Size
1:i0 DBﬂ 00 -- Page Size: 1M, Active Bits in Base Address: 126its(31-20)

01 -- Page Size:4M, Active Bits in Base Address: 10Bits{31-22)
10 == Page Size:16M, Active Bits in Base Address:8Bits(31-24)
11 -- Pange Size:64M, Active Bits in Base Address:66its(31-26)

Fig. 7-39 Detailed dialog box of peripheral register

The detailed dialog box of register includes the following:

Heading of dialog box: display the name of register.

Blue letterform above dialog box: display the full description of current

register.

Hex edit box(HEX Value): Display hex value of register, can also be used

for amending the value of register.

Binary edit box(Binary Value): Display binary value of register, can also

be used for amending the value of register.
Register Field:

Select drop-down box (Select Option) : Selectable value and the

meaning that the register field currently selected is corresponding.
Bit: The bit group of register.
Name of field (Name) : Short name of bit group of register.
Binary value of field (Bin) : Binary value of bit group of register.

Description of field (Desc) : Description character string of current

set of bit group of register.

Screen prompt: display short name of bit group of register, full name of bit
group of register,all selectable values that the bit group of register is
corresponding to, and the meaning when the value is set. The value of the bit

group of register currently set and its meaning are shown in red.

If the user wants to amend the content of peripheral register, he can directly
amend in hex and binary edit box, or amend the value in this field in Select
Option or Edit Box after selection of register field. The drop-down select box of

detailed window of peripheral register is shown in fig. 7-40.

EBI Chip Select Register O[Readf\rite]

Hex Value: II]1I]I]2529

Binary Yalue: II]I]I]I] 00071 0000 DDOD OOTO 0707 OO0 100

—Register Field

Select Option: | 010 — Number of Cycles Added after the Transfﬂj

001 — Number of Cycles Added after the Transfe «

Bit Name{ijli her o es Added afte ; i P

s1:20 | ga (011 — Number of Cycles Added after the Transt

13 c=ey | 100 — Number of Cycles Added after the Transfe
= = 101 — Number of Cycles Added after the Transfe

: 110 — Number of Cycles Added after the Transfe |

R R TEF 1111 — Number of Cycles Added after the Transfe ~

8.7 PAGE 10 Fage Zize!16M, Active Bits in Base Add...
5 WSE 1 Wl ait state generation is enabled,
4.2 Tl iy 5 oio Murmber of Standard Wait States:3
1:0 =N o1 Data Bus width:16-bit data bus width
1] 4 Cancel

Fig. 7-40 Drop-down select box of detailed window of peripheral register

7.6.3 Memory Window

Memory window can display and modify memory content of target system.
Memory window show memory content from the address which can be input by
user, content length auto match the size of memory window. Memory content
can display on byte. half-word or word length mode, and have hexadecimal digit
format part and ASCII char format part which can respective display in
accordance with memory content. When some memory content change,
memory window will show these content on red color. Embest IDE provides two

of the memory window named Memory Windowl and Memory Window?2.

The buttons. shortcut. and menu commands which is correlative with

memory window are described in following table7-5.

Table 7-5 memory window’s buttons. shortcut. and menu commands

Button Shortcut key Menu command

ALT+6 View > Debug Windows > Memory

Memory window display base on byte length mode show as following figure
7-41:

o

~ address : [ETTELELELE |

+B +1 +2 +3 +4 +5 +6 +7 +8 N
@0008008 18 FO 9F E5 18 FO 9F ES 18
@0008009 FO 9F ES 18 FO 9F E5 18 FO
800088012 9F ES5 60 80 AG E1 28 FF 1F .._... .-
@000801E ES5 20 FF 1F E5 54 08 68 82 . _..T...

(NES

HBB88e2L4 58 00 68 82 5C 449 88 82 68 T W
g0geeeZd 00 68 62 64 68 48 82 5C 37 S | P Y A
d0BBBA36 03 82 68 BZ 82 82 64 37 83 oo od?.
000BBe3IF 062 E4 18 68 81 A8 61 BB BB a..
d00BBB4E 50 C3 00 00 O3 00 68 @8 58 Poo-- b

AAAAAAS1 18 @8 @1 @8 CA FE FF A8 da I
AABAAASA FF FF EC AC @82 @82 A8 3B 83 — :-
AAAAARAARR A? AR AR AA AR AR AA AR AR _ _ _ _ _ _ _ _ . LI
‘I"I\'\HE:ITIJI'I 1,{Hemnry 2,.!"

Figure 7-41 Memory Window Base on Byte Length Mode

User can modify original address of memory content in the input column
which is on top of memory window. Ten of the user’s input will remain in the list
of the input column. If modified original address, memory window will
immediately auto show new memory content. The input column show as

following figure 7-42:

ﬂ Address : [[FEELTIRLT |
0% 02000200 -

A2 0001080 982000300
A2 ABAR1 99 |9x8200040940 L=
A20@6112 |9x82080050808
A2 08611E | 9820008600 -

Figure 7-42 Original Memory Address Input Column

If need modify memory content, user can directly modify the content on
hexadecimal digit part or ASCII char part, and new content will immediately
write into corresponding memory, and show new content on red color. The

interface which memory content modified show as following figure7-43:

ﬂﬂddress: 02820080600 -
+8 +1 +2 +3 +4 +5 +§ +7 +8 ﬂ

6200686688 00 OO 68 62 FF 60 68 FB BB

828068889 31 82 EY 61 66 58 E2 FB FF 1....P...

820688812 FF 8A 2F BA BB E1 66 88 A0 S
82068081B 13 B3 86 AG B3 20 00 66 B2 —_—
820680824 FF 080 66 FO 80 31 82 EF 1 1...
82066820 66 58 E2 FB FF FF 8A 2F BA) f.

82060836 BO E1 66 B0 AB 13 B3 86 A
82000683F 63 40 60 80 62 FF OO 68 FO P
02000848 66 31 82 EY 61 00 50 E2 FB 1....P..

820688851 FF FF 8A 2F ©BA BB E1 B0 88 Y
820680685A A6 13 683 86 AD B3 60 B B T
R?AAARGR A? FF_ AR AR FA AR 341 A> F7 . __ 1. ll

T semory 1 4 Memory 2 /

Figure 7-43 Memory Window with content change

Right click mouse on memory window will show the memory window menu,
the memory window menu show as following figure7-44, the meanings of menu
item is:

Refresh
[w &uto Refresh

|7 Bwte Format
Short Hex Faormak
Long Hex Formak

Memory Access Size k Biyte

Half ‘ward

Docking Yigw
Hide v ord

Figure 7-44 Memory Window Popup Menu

S

Lhie

Refresh

Auto Refresh

Byte Format

Short Hex Format

Long Hex Format

Memory Access

Size

Docking View

Hide

handly refresh memory content to keep consistent
with target system.

auto refresh option, if be set, memory window will
auto memory content base on every operation of
user to keep consistent with target system.
display memory content base on byte length mode.
display memory content base on half-word length
mode.

display memory content base on word length

mode.

Set the access size of memory

Byte ---- by byte

Half Word ---- by half word

Word ---- by word
window auto arrange option, if set, window will
auto keep to the side and ordinal arrange.

hide memory window.

Note: with Memory Windowl1for illustration above, so as Memory

Window2 can be able to operate. But their options are independency.

7.6.4 Watch Window

Watch window can display variables value or compute expression result
which user input for watch, user can add a new watch data or delete a watch
data. Watch data value can display base on hexadecimal or decimal format.
With every operation of user, watch window will auto compute and update
watch data value. Watch window have two page: "Watch 1” and "Watch 2”, each
page can separate input different data. Watch data name will auto save follow
project save or close, when open same project next time, watch window will

auto load last watch data.

The buttons. shortcut. and menu commands which is correlative with

watch window are described in following table7-6.

Table7-6 watch windows’s buttons. shortcut. and menu commands

Button Shortcut key Menu command

Je ALT+3 View > Debug Windows > Watch

Watch window default display base on hexadecimal format, window

interface show as following figure7-45:

Name |Ua1ue I
:
el Oxe@ "7
~ucl Oxe "N’
=1 Ox4234
~usl Ox1ciy
-1i1 Ox4a059024
Fuil Oxeleclel3’
-11 Oxfdfbdffb
Full OxTFefd53T
+un_test Ox203ffd8
L pst_test 0x9c6550F6
at+s Ox11
sin(b) -0.865728T7040
[F] watch 1 {Waten 2z /

Figure 7-45 Watch Window Base on Hex Format

Watch window interface base on decimal format show as following figure
7-46:

Name |Ua1ue l
=
~cl Oxed "7
-ucl Oxe 'K’
sl 16948
~usl T236
~1i1 1241878564
-uil 3790347833
- 11 -33824773
-ull 2146424119
+un_test 0x203ffd8
L pst_test 0x9c6550F6
ats 17
sin(b) -0.8657287040
I wateh 1 {Wazch z f

Figure 7-46 Watch Window Base on Decimal Format

User can use two kinds of ways to add new watch data:

1. Double click the name column of the blank line in watch window,then will
put a input box into the line, user can input new data in that box, carriage return
or click other line, watch window will auto compute data value and show it on

corresponding value column. The interface show as following figure 7-47:

Name |Ualue l
- test_struct Ox203ffch

-el Oxed "7

~ucl Oxe ‘N’

sl 16948

-usl 7236

~1i1 1241878564

~uil 3790347833

- 11 -33824773

~ull 2146424119

+Uun_test 0x203ffd8

L pst_test 0x9c6550F6

at+s 17

sin(b) -0.8657287040

[aa+10]]
[“]\ watch 1 {Watch 2 /

Figure 7-47 Watch Data Input Column

2. Right click on watch window, select ‘Add’ menu item, then will show a
data input dialog, enter data, push ‘OK’ button, watch window will compute data
value and add it at the end of watch window. The input dialog show as following
figure 7-48:

#dd Watch Express

Express:

OK o |

Figure 7-48 Watch Data Input Dialog

User can look over detail data property, select corresponding column, right
click mouse, select ' Properties’ menu item, will show data property dialog,

interface show as following figure 7-49:

Frogram Variable Froperties

Type: struct stTest
Expression: test struct

Value: 0x203ffcO

Figure 7-49 Watch Data Properties Dialog

Right click mouse on watch window will show the watch window menu, the
watch window menu show as following figure7-50, the meanings of menu item
is:

Add

Delete

|7 Hexadecimal Display

Docking YView

Hide

Froperties

Figure 7-50 Watch Window Popup Menu

Add: add a new watch data.
Delete: delete current selected watch data.

Hexadecimal Display: data value format option, if set will show data value

on hexadecimal format, if not set will show data value on decimal format.

Docking View: window auto arrange option, if set, window will auto keep

to the side and ordinal arrange.
Hide: hide watch window.

Properties: current selected watch data property.

7.6.5 Variables Window

Variables window can display global and local variables information, and can
modify variables’s value. Variables window have two page: ‘Global’ and ‘Local’,
respective display global variables and local variables. Variables value can
display base on hexadecimal or decimal format. With every operation of user,
watch window will auto create variables list and compute variables value. If one

variable’s value changed, variables window will display the value on red color.

The buttons. shortcut. and menu commands which is correlative with

variables window are described in following table 7-7.

Table 7-7 variables windows’s buttons. shortcut. and menu commands

Button Shortcut key Menu command

ALT+4 View > Debug Windows > Variables

Variables window default display base on hexadecimal format, window

interface show as following figure 7-51:

Name Ualue =
b OxfffFfffb
+ test_struct Ox203ffcO
+ pStruct Bx203ffcO
+ test_struct2z 0Ox203ff98
+ test_union Ax203ff90
- test_string Bx203ff8c
Ftest_str... Oxel ‘a’
| test_str... 0x62 'b’
Ftest_str... Ox63 ‘¢’
Ltest_str... Ox64 'd’
pString Ox203ff8c "abcd...”
pShort Ox840e1009
- test_class Ox203FfTc
Fa Oxc
Lb OxFFFFFFFY =
I vocar {G1obal /

Figure 7-51 Variables Window Base on Hex Format

Variables window interface base on decimal format show as following figure
7-52:

Name Ualue =

b 4294967291

+ test_struct Ox203Ffch

+ pStruct Ox203ffch

+ test_struct2z 0Ox203ff938

+ test_union Ox203fF90

- test_string 0x203ff8c
Ftest_str... Ox61 'a’
-test_str... 0x62 ‘b’
Ftest_str... 0x63 ‘¢’
L test_str... Ox64 'd’
pString Ox203ff8c "abed...”
pShort Dx840e1009

- test_class Ox203FfTc
-a 12
b -12 =

ST I\ voca1 {Giosal /

Figure 7-52 Variables Window Base on Adecimal Format

User can look over detail variables property include variable name. variable
value and variable type, right click on variables window, select ' Properties’
menu item, will show variables property dialog, interface show as following
figure 7-53:

Program Variable Froperties

Type: int
Expression: a

Value: 3973

Figure 7-53 Variables Property Dialog

User can modify variable value. The way is double click the value column of
the variable which need to be modified, and input new value in input box,

interface show as following figure 7-54:

Variables

Name Ualue
b OxffFffffb
+ test_struct Ox203ffcO
+ pStruct 0x203ffco
+ test_struct2 0Ox203Fff98
+ test_union 0x203ff90
||- test_string Ox203ff8c
Ftest_str... 0x61 "a’
- test_str... 0x62 ‘b’
Ftest_str... 0x63 ‘¢’
_test_str... Ox64 'd’
pString 0x203ff8c "abecd...”
pShort Ox840e1009
- test_class Ox203ffTrc

0x5)|

ti_

OxFFFFFFFY

[T vocal (Global /

Figure 7-54 Variables modify

When new variable value is legal, watch window will immediately change
variable’s value on target system, and display new value on red color, interface

show as following figure 7-55:

Name Ualue o
b OxfFFFfffb

+ test_struct 0x203ffco

+ pStruct 0x203ffcO

+ test_struct2 0Ox203ff98

+ test_union Ox203Ff90

Bltest_string [0S f8c
Ftest_str... Ox6l1 "a’
-test_str... 0x62 ‘b’
Ftest_str... Ox63 ‘¢’
Ltest_str... Ox64 'd’
pString 0x203ff8c "abed...”
pShort 0x840e1009

- test_class 0x203FfTc
Fa 0x5
Lb OxFFFFFFFY

[* I vocal fGlobal /

Figure 7-55 Variabl

es Window after a variable value change

Right click mouse on variables window will show the variables window menu,
the variables window menu show as following figure 7-56, the meanings of

menu item is:

|:;- Hexadecimal Display

Docking ¥View

Hide

Froperties

Figure 7-56 Variables Window Popup Menu

Hexadecimal Display: variable value format option, if set will show
variable value on hexadecimal format, if not set will show variable value on

decimal format.

Docking View: window auto arrange option, if set, window will auto keep

to the side and ordinal arrange.
Hide: hide variables window.

Properties: current selected variable property.

7.6.6 Call Stack Window

Call stack window can display runtime relation of functions which be calling
and called. Function parameter value can display base on hexadecimal or
decimal format. The last called function(current running function) display on top

line of the window, and arrange down base on function call relation, start
function display on end line of the window.

The buttons. shortcut. and menu commands which is correlative with call
stack window are described in following table7-8.

Table7-8 call stack window’s buttons. shortcut. and menu commands

Button Shortcut key Menu command

e ALT+7 View > Debug Windows > Call Stack

Call stack window interface show as following figure 7-57 (have been set all
function parameter display property):

struct = test3(int f:=0xa) ~|
void test2(int zerr-0x0)

int loop_test(int loop_num=0x5)

int testi(int a=0x5,int b=0xfffffffb,int d=0xa,int e=0xa,inl
int main()

-
< | »

Figure7-57 Call Stack Window

Function Parameter’s name or type or value can be set to display whether or

not individual. Call stack window interface show as following figure7-58 (Close
function parameter value display property)

struct x test3(int f) =
void test2(int zerr)

int loop_test(int loop_num)

int testi(int a.,int b,int d,int e,int f.int g)
int main()

Figure 7-58 Call Stack Window with Function Parameter value

If close all function parameter display property will only show function name
and its return type. Call stack window interface show as following figure 7-59

(Close all function parameter display property)

struct = test3() LI
void test2()

int loop_test()

int testi1()

int main()

o off
Figure7-59 Call Stack Window without Function Parameter

Double click one function line of call stack window, source window will show
next code to be execute after the code which the function call above function,
and put a blue rightward arrow on front of the source line, call stack window will

also show the function line highlight. The interface show as following figure
7-60:

Embest IDE - [e:tenp\demo'sourceinain cpp

File Edit VYiew Froject Build Debug Tools Window Help ;lﬁlil
[D==@ &+ &2 = |mE #osTickISR & RH| 4R
mr ReEEEE| s | 7L eBT +»m e/ BHEE D EE
—al else j
=53 Workspace 'Lec a=za+2;

C & LedSwingsd |

dscript

1 Project So struct stTest xtest3(int)

(

struct stTest ttt;
[#1 led_blinl

A main.cp|
test.cpp
1 Project He return (struct stTest x)0;

}

] tEL il = f:

int leoop_test(int loop_num)
{

int 1i;

int b;

b = 0;
@ For(i = 0 ; i < loop_num ; i++)

b=b+ix6;
test2(b); struct = test3()
} uoid test2()
bzb+i; int loop testg |
int test1()
return b; int main()

K i | _]LI

[Z2 B LR ||

F
Ready Ln 144, Col 1 Dos NUM
A

Figure 7-60 Debugger Interface as Double-Click Function Line

Right click mouse on call stack window will show the call stack window menu,
the call stack window menu show as following figure, the meanings of menu

item is:

Farameter Walues
Farameter Types

Farameter Hames

<] %] <] «]

Hexadecimal Display

Docking View

Hide

Figure 7-61 Call Stack Window Popup Menu

Parameter Values: parameter values display option, if set will show

parameter values.

Parameter Types: parameter types display option, if set will show

parameter types.

Parameter Names: parameter names display option, if set will show

parameter names.

Hexadecimal Display: parameter values format option, if set will show
parameter values on hexadecimal format, if not set will show parameter values

on decimal format.

Docking View: window auto arrange option, if set, window will auto keep

to the side and ordinal arrange.

Hide: hide call stack window.

8. Customization and Options

8.1 Introduction

Embest IDE not only allows you to customize the appearance of the display
to match your preferences, but it also allows you to add menu entries for other
tools you may wish to use. The Options entry in the Tools menu displays
commands that change the editor settings, and plugin directory for Embest IDE.
The Customize entry in the Tools menu opens a dialog box for adding menu

items.

Table 8-1 Customization and Options Menu

Button Menu Description

Customize... Open the Customize dialog box

Options... Open the Option dialog box

8.2 Tools Menu Customization

Select Tools > Customize... menu, open the Customize dialog box:

Customize

Command: |nutepad.exe _I

Arguments: |led_blink.c

Working directory: |D:'||,EmhestlDE\Examples\atm\Ied_hlink_t:hdl] _I

[Prompt for arguments

0K I Cancel |

Figure 8-1 Tools Menu Customize Dialog Box

Menu Contents List Box lists commands you have added to the Tools
menu. To add a command, click the New button above the Menu Contents list,
type the text for the menu item in the box at the end of the Menu Contents list,
and provide the necessary information in the boxes below. To modify a
command, select it in the Menu Contents list and change the information
specified in the boxes below. To delete a command, select it and click the delete
button above the Menu COntents list. To move a command up or down on the
Tools menu, select the command in the Menu Contents list and click one of the

arrows above list.

Command Edit Box displays the path and filename of the tool currently
selected in the Menu Contents list. Click the button at the right of the edit box

opens a dialog box where you can browse and select a file.

Arguments Edit Box Specifies additional arguments for the tool each time
you start it. You can use several macros in custom menu commands, see 8.4

Use Macros for explanations of these macros.

Workiing directory Edit Box specifies where (in what directory) to run
the custom command. You can edit the directory name in place, or click the
button at the right of this field to bring up a directory browser where you can

search for the right directory.

Prompt for arguments Checked Box, When selected, displays a dialog
box which prompts for command-line arguments each time you run the tool.

You can specify additional arguments for each particular instance of the tool.
OK Button, Applies your changes to the Tools menu.

CANCEL Button, Discards your changes without modifying the Tools menu.

8.3 IDE Options

8.3.1 Editor Preferences
Select Tools > Options... menu, then click the Editor tab to adapt the editor
to your preferences. The Editor page is shown in Figure 8-2:
Option

Editor]Dire-:turies]
— Editor Settings

[~ Disable backspace at start of line:

[Disable drag-and-drop text editing
[~ Disable show selection margin

[~ Disable automatic indent

v Reload last workspace at startup Tab size: 4

—Window Settings | To be valid at next startup]
[~ Reset the positions of all docking bars & remowve all recent info

[~ Setthe main menu and edit popup menus without icons

oK Cancel

Figure 8-2 Editor Page

The following choices are available on the Editor Settings:

Disable backspace at start of line, prevents joining of lines by using the

BACKSPACE key.

Disable drag-and-drop text editing, select this checkbox to disable
drag-and-drop text editing so you can not move or copy selected text with the

mouse..

Disable show selection margin, select this checkbox to disable display a
margin to the left of each line of text. This margin display information about

source lines, including breakpoints, instruction points, and tag pointers.

Disable automatic indent, select this checkbox to disable indent source

code automatically.

Reload last workspace at startup, when selected, automatically loads
the workspace you last worked on.

Tab Size, provides a place for you to specify the number of space
characters that equal one tab character. The defaults is four space characters..

The following choices are available on the Window Settings:

Reset the positions of all docking bars & remove all recent info, all
docking windows display at same position and size as you lase worked on.
When select, all docking windows display with the deault position provided by

the IDE and all history information reserved by IDE will be cleared.

Set the main menu and edit popup menus without icons, when
selected, disable display icons corresponding with menu items. This function

suits some operation system which limited GUI resources, such as WINDOWS
98.

8.3.2 Directory Options

Select Tools > Options... menu, then click the Directories tab. The

Directories page is shown in Figure 8-3:

Dptiﬂn

Editor Directories |

~Plug_In Module Directory

Show directories for : ICF‘U plug_in directory j

[s(EMBEST IDEpBin\cpu]

-Cross Compiler Executable Files Directory

Show directories for : !GNU Tools for ARM :_l

IE[EMEEST_IDE]\,Euild\xgcc—arm—elﬁhin _I

OK Cancel

Figure 8-3 Directories Page

Plug_in Module Directory:

Table 8-2 is a description of the Embest IDE Plug_in Module Directories.

Table 8-2 Directory Description

Function Default Directory
CPU Support $(EMBEST_IDE)\bin\cpu
Debug Device Support $(EMBEST_IDE)\bin\device
File Support $(EMBEST_IDE)\bin\file
Build Tools Support $(EMBEST_IDE)\bin\build
Driver $(EMBEST_IDE)\bin\driver

In the Show Directories For list box, user select the type of module for the
directory, then the edit box below the list box display directory for modules. You
can edit the directory or click the button at the right of the edit box opens a

dialog box where you can browse and select a directory.

Note: Plug_in Module Directories Use Default, general user do not

change it.

Build Executable Files Directory:

IDE support some different compiler at the same time. You can setting
Build Executable Files Directory corresponding with compiler. In the Show
Directories For list box, user select compiler, then directory corresponding with
compiler is displayed in the edit box. User can edit the directory or click the
button at the right of the edit box opens a dialog box where you can browse and

select a directory.

Note: The default directory specilized by IDE, general user do not

change it.

8.4 Use Macro

You can use argument macros to specify arguments for a Tools menu

command. Embest IDE provides the argument macros shown in the following

table:
Table 8-3 Macro Description
Expands to a string
No Macro Name o Examples
containing
The directory and
1 $(DOWNLOAD_PATHFILE) Name of symbol D:\test\debug\test.elf

file(.elf)

Installation directory

2 $(EMBEST_IDE) D:\EmbestIDE
of The Embest IDE.
Name of the output
3 $(LINK_FILE) test.elf
file(.elf)
The directory of the
4 $(LINK_DIR) D:\test\debug\
output file(.elf)
The directory and
5 $(LINK_PATHFILE) Name of output D:\test\debug\test.elf
file(.elf)
The directory of the
6 $(PROJECT_PATH)) D:\test\
current project.
The name of the
7 $(PROJECT_NAME) test
current project.
The directory and
8 $(SYMBOL_PATHFILE) Name of Symbol D:\test\debug\test.elf

file(.elf)

To click menu Tools>Options, there is the template to use Macro.

Customer Service

Get support on demand. Connect Customer Service for more information on

how to use the Embest’s products.
® Web Site

Get the latest information and docs about Embest’s products from the web

site: http://www.embedinfo.com

You may have noticed some trouble issues at the support forums. In the

meantime, you can get help by subscribing to the following forum:

http://www.embedinfo.com/cforum/login.asp

® E-Mail

If you have any question, comments, feedback or suggestions as to how our

products could be improved, let us know at support@embedinfo.com

® Telephone Number

You can also call 86-755-25635626 with the extension to the Customer

Service Center.
® Fax Number

Our fax number is 86-755-25616057.

http://www.embedinfo.com/
http://www.embedinfo.com/cforum/login.asp
mailto:support@embedinfo.com

Appendix A Hardware Reference of Embest
JTAG Emulator

Embest JTAG Emulator contents two types of product: Standard JTAG
Emulator (Embest Emulator for ARM), and Enhanced JTAG Emulator (Embest
PowerICE for ARM).

Standard Emulator (Embest Emulator for ARM) was the standard JTAG
emulator for development series of ARM core CPU, early product of Embest
Info&Tech Co., LTD. It works at 25Kbyte per second by transmission, and capability

stabilization.

Enhanced Emulator (Embest PowerICE for ARM) was the New-generation of
JTAG emulator. It's feature power supply can be provided by internal or external

input, and works at highest speed 120Kbyte per second by transmission.

Embest JTAG Emulator has a Parallel port connecting to the Computer’s

parallel port, and a JTAG interface connecting to the target system.

There are 3 LEDs on the panel, indicating the Emulator’s working state.

Note: Cable connection must not hot swap!

Embest PowerICE for ARM

JTAG Interface Connections

A standard male-to-female 25-way parallel cable connects the Embest
PowerICE for ARM to the PC's parallel port. The connection to the target board is
made by a 20-way (or 14 - way) female IDC header cable with all pins
connected straight through (1-1, 2-2, ... 20-20). There are two types of IDC
interface cable: 14pin and 20 pins. JTAG pin connections is described as figure
A-1andA - 2.

2 | RES
4 | GND
6 | GND
8 | GND
10 | GND
12 | GND
14 | GND
16 | GND
18 | GND
20 | GND

Figure A-1 20 Pin JTAG Connections

Vsupply 1 2 | RES
nSRST 3 4 | GND
TDI 5 6 | GND
™S |: 7 8 | GND
TCK 9 10 | GND

TDO 11 12 | GND
RES 13 14 | GND

Figure A-2 14 Pin JTAG Connections

Note: All GND pins should be connected to 0V on the target board.

The following table shows the JTAG pinouts.

Signal I/0 Description
Vsupply | Input | This is the supply voltage to Embest PowerICE for

ARM. It draws its supply current from this pin via a
step-up voltage convertor. This is normally fed by the
target Vdd. Valid power supply voltage is form 2.7V
to 5.5V.

GND

Ground.

TDI

Output

Test Data In signal from Embest PowerICE for ARM to
the target JTAG port. It is recommended that this pin
be pulled to a defined state.

TMS

Output

Test Mode signal from Embest PowerICE for ARM to
the target JTAG port. This pin should be pulled up on
the target so that the effect of any spurious TCKs
when there is no connection is benign.

TCK

Output

Test Clock signal from Embest PowerICE for ARM to
the target JTAG port. It is recommended that this pin
be pulled to a defined state.

TDO

Input

Test Data Out from the target JTAG port to Embest
PowerICE for ARM.

nSRST

Output

Open collector output from Embest PowerICE for
ARM to the target system reset. This pin should be
pulled up on the target to avoid unintentional resets
when there is nho connection.

RES

Reserved.

Power Supply

Power is supplied to the Embest PowerICE for ARM via pin 1 of the 20-way
(or 14-way) IDC connector. This is normally fed by the target Vdd. Valid power
supply voltage is form 2.7V to 5.5V. Power of Embest PowerICE for ARM also can
be supply by external input voltage valid 3V/5V. Connection jack of the external

voltage input show as figure A-3 following:
positive (+)

I |
2.1 mm connector
Figure A-3 connection jack of the external voltage input

Note:
o According to the way of voltage input, power supply switch
of Embest PowerICE for ARM must place in the right position.
L Embest PowerICE for ARM cannot work if power voltage out

of range, even be badly damaged.

Target Interface Voltage Levels

The target interface voltage levels of Embest PowerICE for ARM depends on
the input voltage levels. Itis 3V/5V compatible. Normally, power supply by the

external input voltage will give the output single voltage provided 3.3V.

LED Indicator

There are three LED in the panel of Embest PowerICE for ARM, labeled

Power. Run. and Con.
LED Power: power indicator

LED Run: data indicator, indicate the data transmission between host pc
and target CPU.

LED Con, connection indicator

Embest Emulator for ARM

JTAG Interface Connections

A standard male-to-female 25-way parallel cable connects the Embest
Emulator for ARM to the PC's parallel port. The connection to the target board is
made by a 20-way (or 14 - way) female IDC header cable with all pins
connected straight through (1-1, 2-2, ... 20-20). There are two types of IDC
interface cable: 14pin and 20 pins. JTAG pin connections is described as figure
A-1andA - 2.

2 | RES
4 | GND
6 | GND
8 | GND
10 | GND
12 | GND
14 | GND
16 | GND
18 | GND
20 | GND

Figure A-1 20 Pin JTAG Connections

Vsupply 1 2 | RES
nSRST 3 4 | GND
TDI 5 6 | GND
™S |: 7 8 | GND
TCK 9 10 | GND

TDO 11 12 | GND
RES 13 14 | GND

Figure A-2 14 Pin JTAG Connections

Note: All GND pins should be connected to 0V on the target board.

The following table shows the JTAG pinouts.

Signal I/0 Description

Vsupply | Input | This is the supply voltage to Embest Emulator for
ARM. It draws its supply current from this pin via a
step-up voltage convertor. This is normally fed by the
target Vdd. Valid power supply voltage is form 2.7V

to 5.5V.
GND - Ground.
TDI Output | Test Data In signal from Embest Emulator for ARM to

the target JTAG port. It is recommended that this pin
be pulled to a defined state.

TMS Output | Test Mode signal from Embest Emulator for ARM to
the target JTAG port. This pin should be pulled up on
the target so that the effect of any spurious TCKs
when there is ho connection is benign.

TCK Output | Test Clock signal from Embest Emulator for ARM to
the target JTAG port. It is recommended that this pin
be pulled to a defined state.

TDO Input | Test Data Out from the target JTAG port to Embest
Emulator for ARM.

nSRST Output | Open collector output from Embest Emulator for ARM
to the target system reset. This pin should be pulled
up on the target to avoid unintentional resets when
there is no connection.

RES - Reserved.

Power Supply

Power is supplied to the Embest Emulator for ARM via pin 1 of the 20-way
(or 14-way) IDC connector. This is normally fed by the target Vdd. Valid power
supply voltage is form 2.7V to 5.5V.

Note: Emulator cannot work if power voltage out of range, even be
badly damaged.

Target Interface Voltage Levels

The target interface voltage levels of Embest Emulator for ARM depends on
the input voltage levels. It is 3V/5V compatible.

LED Indicator

There are three LED in the panel of Embest Emulator for ARM, labeled

Power. Run. and Con.
LED Power: power indicator

LED Run: data indicator, indicate the data transmission between host pc
and target CPU.

LED Con, connection indicator

Appendix B Debug Output Reference

Info Reference

3001 CPU was in debug state before connected, register
values may be incorrect.

description CPU was in debug state before connecting
to the host, you may get incorrect
register values.

cause and Causation:

resolution m [DE Disconnected with target CPU when

it is in the debug state.
Resolution:

If you want to run the program in the
target system, you should rectify the
value of PC and related registers.

If you are going to download new
program to the target system, notice
the values in the stack-related

registers.
3002 target running, cannot auto download.
description Target is in running state, auto download

command cannot be executed.

cause and Causation:

resolution m If auto_download check box been

checked in the project setting dialog,
when connect to the target, IDE will
check the target status. If the target is
in debug state, IDE will execute the
download command, else prompt this
info massage.

Resolution:

No Resolution.

Warning Reference

2001 Breakpoint xx are not on valid lines, disabled.
description The breakpoint is invalid, and then it is
forbidden.
cause and Reason of warning:
resolution B Breakpoint is set at invalid line. User
must reset the breakpoint at a valid
line.
2002 invalid line, set breakpoint failed.
description Failed to set breakpoint because current
line is not execute statement.
cause and Reason of warning:
resolution B Current line is not execute statement.
user must set a breakpoint at execute
line.
2003 load symbol file failed.
description Failed loading the symbol file.
cause and Reason of warning:
resolution ® Symbol file dos not exist.

® Symbol file format dose not supported
by IDE.

Select correct symbol file format and
recompile and then set the symbol file
config at Project setting > Debug
>general dialog.

2004 open memory map file failed.

description Failed to open memory map file.
cause and Reason of warning:
resolution

® Memory map file does not exist.

® Memory map file damaged, cannot be

opened.

2005 read program counter failed.
description Failed to read program counter.
cause and Reason of warning:
resolution ® Communication failed between
Emulator and target system.
B Target program exception.
Reset the target CPU and/or reconnect to
it.
2006 register doesn't exist.
description Register doesn't exist.
cause and Reason of warning:
resolution B CPU module is incompatible with debug
device module, please contact the
provider.
2007 target running, all breakpoints disabled.
description Target is in running state, hence all of the
breakpoint is forbidden.
cause and Reason of warning:
resolution B Target is in running state, user must
stop the target before enable all the
breakpoint.
2008 target running, cannot toggle breakpoint.
description Target CPU is in running state, cannot
toggle breakpoint.
cause and Reason of warning:
resolution ® Target CPU is in running state, you
need stop the CPU before toggle
breakpoint.
2009 too many breakpoints.

description Breakpoints’ amount out of range.
cause and Reason of warning: (Embest JTAG
resolution emulator for arm7 V2001):
® More than two hardware breakpoints.

® More then one hardware breakpoint
and 255 software breakpoint.

Delete at least one breakpoint before
setting a new one.

2010 unable to compute express or variable value.
description Failed to compute express or variable
value.
cause and Reason of warning:
resolution

® Variable does not exist.

B Express invalid.

2011 unable to locate address.

description Unable to locate the instruction address
corresponding with current line.

cause and Reason of warning:

resolution m Symbol file is not matching with

execute file.

® Symbol file format dose not supported
by IDE.

User need rebuild the project and
download again.

2012 unable to locate source file.

description Unable to locate the source file
corresponding with current instruction.

cause and Reason of warning:

resolution m Symbol file is not matching with

execute file.

® Symbol file format is not supported by
IDE.

User need rebuild the project and
download again.

2013 workspace does not exist.
description Workspace does not exist.
cause and Reason of warning:
resolution ® Current command need a workspace be
opened. User must create a workspace
and project.
2014 write program counter failed.

description Failed to write program counter.
cause and Reason of warning:
resolution

® Communication failed between
Emulator and target system.

B Target program exception.
Reset the target CPU and/or reconnect to

it.

Error Reference

1001 Can not find environment variable 'embest_.ide'.
description Failed to find environment variable.
cause and Reason of error:

resolution

B environment variable 'embest_ide' does
not set in operation system. User must
set environment variable
EMBESE_IDE=[Embest IDE’s setup dir].

1002 Can not find register group, maybe device and cpu
module your selected are not compatible.

description Failed to find register group.
cause and Reason of error:
resolution

® CPU module is not compatible with
device module. Please connect to the

provider.
1003 can not find download file ...
description Failed to find the specified download file.
cause and Reason of error:
resolution ®m download file do not exist. User need
rebuild the project.
®m download file path is not correct.
1004 can not read register.
description Read register error.
cause and Reason of error:
resolution

®m Communication failed between Emulator
and target system.

B Target program exception.

Reset the target CPU and/or reconnect to it.

1005 can not initialize CPU module.

description CPU module initialize failed.

cause and Another error statement tell you the reason
resolution of error if there are two error statement
at same time, otherwise:

® CPU module is not compatible with
current IDE version.

1006 can not initialize emulator module.
description Failed to initialize emulator module.
cause and Another error statement tell you the reason
resolution of error if there are two error statement
at same time, otherwise:
® Emulator module is not compatible with
current IDE version.
®m IDE do not support current emulator.
1007 can not initialize file module.
description Failed to initialize file module.
cause and Another error statement tell you the reason
resolution of error if there are two error statement
at same time, otherwise:
m file module is not compatible with current
IDE version.
1008 can not open ide.ini file or specified item does not exist.
description De.ini cannot be opened or some error
occur when open the file.
cause and Reason of error:
resolution m ide.ini do not exist. This file should in the
embest_ide dir.
m jde.ini file contain errors. User needs
resetup EmbestIDE.
1009 cursor are not positioned on valid lines.

description The line that contains cursor is invalid to

the current command.

cause and Reason of error:
r lution A
esolutio B move the cursor to a valid line.
1010 disassemble non-existent memory.
description Disassemble non-existent memory space.
cause and Reason of error:
resolution

B memory config file does not set up all of
the memory space.

® CPU was in debug state before
connecting to the host, so, IDE may get
incorrect register values. PC point to a

non-existent memory. This error can be
ignored.

® User program error.

1011 download address illegal, please modify download
address.
Description Download address illegal.
cause and Reason of error:
resolution B project setting dialog specifies a
download file name, but not specifies
the download address. User need
specifies a download address.
® download address is not a valid value.
User must modify the address to a valid
value.
1012

emulator not found, please check power and hardware
connection.

description Failed to find the emulator.
cause and Reason of error:
resolution

B Emulator does not connect to the host
computer.

B Emulator do not powered on.

® Communication port config error or

damaged.

1013 failed to convert file from ELF format to BIN format.
description Failed convert file format from ELF to BIN.
cause and Reason of error:

resolution m file format is incorrect.
m Current file format is not supported by
IDE.
User must rebuild the project.

1014 find symbol failed.
description Failed to find specified symbol.
cause and Reason of error:

resolution ® No symbol file is specified.
m Specified symbol is not found in source
file.

1015 get target status failed.
description Failed to get target status.
cause and Reason of error:

resolution ® Communication failed between Emulator
and target system.
B Target program exception.
Reset the target CPU and/or reconnect to it.

1016 internal error, please contact supplier.
description IDE internal error.
cause and Reason of error:

resolution m IDE internal error. Please contact the
provider.

1017 invalid command.

description Invalid command.

cause and Reason of error:

r lution i
esolutio m execute a user customized command,

but this command is invalid. User need
modify the custom command.

1018 load script file error.
description Failed to load script file.
cause and Reason of error:
resolution m Specified script file do not exist. User
need check the filename and path of the
specified script file.
m script file error, check and modify it.
1019 out of memory.
description Failed to allocate memory space.
cause and Reason of error:
resolution B Failed to allocate system memory space.
User need close other application
program or restart host computer.
m IDE internal error. Please contact the
provider.
1020 project doesn't exist.
description Project does not exist.
cause and Reason of error:
resolution ® No workspace has been opened. User
need open a workspace.
®m No active project. User need create a
project and activate it.
1021 read register group failed.

description Failed to read register group.
cause and Reason of error:
resolution

B Communication failed between Emulator
and target system.

B Target program exception.

Reset the target CPU and/or reconnect to it.

1022 reset target failed.
description Failed to reset target CPU.
cause and Reason of error:
resolution ® hardware error or target CPU is not
supported by current version of IDE.
Check hardware interface.
1023 run target failed.
description Failed to run target program.
cause and Reason of error:
resolution m IDE get wrong Target state.
B Communication failed between Emulator
and target system.
B Target program exception.
Reset the target CPU and/or reconnect to it.
1024 step failed, maybe symbol file incorrect.
description Source file step failed, possibly because
symbol file incorrect.
cause and Reason of error:
resolution ® Symbol file is not matching with execute
file. User need rebuild the project and
download again.
1025 step failed.
description Step failed.
cause and Reason of error:
resolution

B Communication failed between Emulator
and target system.

B Target program exception.

Reset the target CPU and/or reconnect to it.

1026 stop target failed.

description IDE cannot stop target CPU.
cause and Reason of error:
resolution

B Communication failed between Emulator
and target system.

B Target program exception.

Reset the target CPU and/or reconnect to it.

1027 target CPU not found.
description IDE cannot find target CPU.
cause and Reason of error:
resolution

®m Target board JTAG interface do not
match with emulator.

® Target CPU do not work.

® Target CPU do not support JTAG debug
mode.

B Emulator power level does not match

with CPU.
1028 unable to load CPU module.
description Failed to load CPU module.
cause and Reason of error:
resolution m Specified emulator module does not
exist. Reset the project and select
corresponding emulator module.
® CPU module path error in the IDE
tools-option dialog. Select Tools >
Option menu, set CPU module path to
$(EMBEST_IDE)\bin\CPU.
1029 unable to load emulator module.
description Failed to load emulator module.
cause and Reason of error:
resolution

m Specified emulator module does not

exist. Reset the project and select
corresponding emulator module.

B emulator module path error in the IDE
tools-option dialog. Select Tools >
Option menu, set emulator module path
to $(EMBEST_IDE)\bin\device.

1030 unable to load file module.
description Failed to load file module.
cause and Reason of error:
resolution

m Specified file module does not exist.
Check the sub dir \bin\file in the IDE
setup dir.

® File module path error in the IDE
tools-option dialog. Select Tools >
Option menu, set file module path to
$(EMBEST_IDE)\bin\file.

1031 unable to load portcall.dil.
description Failed to load portcall.dll.
cause and m portcall.dll does not exist. Check the sub
resolution dir \bin\driver in the IDE setup dir.

® Driver module path error in the IDE
tools-option dialog. Select Tools >
Option menu, set Driver module path to
$(EMBEST_IDE)\bin\driver.

Appendix C Debug Command List

General Option of Debug Command

[...] Optional items. Items out of [] must be present.
Option can be used by all command.

-? Display the help information of the command.

Debug Command List

BKPTCLEAR - clear breakpoint

syntax:

descriptio
n:

Parameter:

option:

example:

bkptclear [breakpiont ID]

Clear one or all the point

breakpoint ID An integer number which identify a certai
n breakpoint

none
bkptclear 1 Clear the breakpoint which ID is 1
bkptclear Clear all the breakpoint

BKPTDATA - set an data breakpoint

syntax:

descriptio
n:

Parameter:

option:

example:

bkptdata option address

Set an data breakpoint at the specified memory locations

address Memory address
w breakpoint is vaild when write memory
R breakpoint is vaild when read memory

bkptdata -wr 0x7f4df Set a data breakpoint at address
C 0x7f4dfc, it is vaild when read or
write this address.

BKPTINST — Sets an instruction breakpoint

syntax:

descriptio
n:

parameter:
option:

example:

bkptinst address

Sets an instruction breakpoint at the specified memory loc
ations

address The instruction address.
none

bkptinst 0x1024 Set a instruction breakpoint at add

ress 0x1024

BKPTLIST —List all breakpoints
syntax: bkptlist

descriptio List all installed breakpoints.
n:

parameter: none
option: none

example: bkptlist List all installed breakpoints.

DISASM -Disassemble the target code
syntax: disassemble addr [line_num]

descriptio The Disasm command disassembles the target code begin

n: ning at a specified address. The Disasm command disass
embles ten lines as a default, or you can include an opti
onal [line_num] parameter

parameter: addr address in target memory to begin disassembl
ing.

line_num the number of instructions you wish to disass
emble. The default is 10 lines.

option: None

example: Disassemble 100 8 disassemble 100 lines of code locate
d at address 8.

DOWNLOAD -Download file
syntax: download [Option] filename address

descriptio Download file to the specified address.

n:
parameter: filename the specified download file.
address the specified address
option: v download verify
example: download d:\demo\ Download d:\demo\ram.bin to the m

ram.bin 0x2000000 emory address at 0x2000000

download -v d:\de Download d:\demo\ram.bin to the m
mo\ram.bin 0x200 emory address at 0x2000000, verify
0000 when downloading.

GO — Execute target program

syntax:

descriptio
n:

Parameter:
option:

example:

go

Execute target program from current program counter

none
none

Go

HELP - display help information

syntax:

descriptio
n:

parameter:

option:

example:

help [command name]

Display the help information of the specified command or
brief information of all the command.

Command nam Debug command name

e

none

help Display the brief information of all t
he command.

help stop Display the help information of the ¢

ommand stop.

MEMREAD -Display the content of memory

syntax:

descriptio
n:

parameter:

memread address length

Displays the contents of the memory location requested.
It accesses the memory in word format default.

address memory location

length the length of memory to be read

option: h specifies access the memory in half word for
mat.

b specifies access the memory in byte format.

example: memread O0x1000 Ox Read 0x0200 words from 0x1000
200

MEMWRITE —Write to memory
syntax: memwrite [option] address value

descriptio Write value to the memory location requested. It accesse
n: s the memory in word format default.

parameter: addres memory location
s

value Specifies value to write.

option: -h Specifies access the memory in half word forma
t.
-b Specifies access the memory in byte format.
-e Write memory by Big endian mode

example: Memwrite 0x1000 Ox5 Write Ox5a to 0x1000
A

memwrite -e 0x20000 Equal to memwrite 0x2000000 0O
00 0x22334455 x55443322

REFRESH - refresh all windows
syntax: refresh

descriptio refresh all windows include register, memory, stack, watc
n: h, global/local

parameter: none
option: none

example: refresh

REGLIST —Display all registers

syntax:

descriptio
n:

parameter:
option:

example:

reglist

displays the properties of all of the processor's registers

none
none

reglist

REGREAD —display registers

Syntax:

descriptio
n:

Parameter:

option:

example:

regread [option] register group name or register name

displays the contents of a particular register or registers.

register Specifies register group name or register nam
group na e

me or re
gister na

me

g read register group

regread pc display PC register

regread —-g user display all registers belong to 'User’

group

REGWRITE - set register

syntax:

descriptio
n:

parameter:

option:

example:

Regwrite register name value

Set register

register Specifies register name
name

value The value to write
none

regwrite pc 0x3840 Set PC with the value 0x3840

RESET —Reset the target
syntax: reset

descriptio Reset the target device
n:

parameter: none
option: none

example: reset

SCRIPT -Executes command script file
syntax: script filename

descriptio Executes command script file
n:

parameter: filenam Specifies script filename

e

option: none

example: script d:\demo\cm Executes command script file d:\de
d.cs mo\cmd.cs

STEP —Executes one statement or instruction
syntax: step

descriptio single-stepping begins at the address contained in the pr
n: ogram counter.

parameter: none
option: none

example: step step one instruction

STOP —Stop the target
syntax: stop

descriptio Stop the target
n:

parameter: none
option: none

example: stop

SYMBOL -Load symbol file
syntax: symbol [symbol filename]

descriptio Load symbol file
n:

parameter: symbol filename Specifies symbol file
option: none

example: symbol d:\demo\ram. Load ram.elf symbol file in d:\de
elf mo

Appendix D Memory Map File

Description

By default, Embest IDE assumes that the entire address space is mapped to
standard RAM, so IDE can read or write any memory address. In some cases it
will cause exceptions, in which case you can manually create a memory map file.

You should create your own memory map in the following situations:

® Your target has read-only memory areas or non-existent memory areas

that should cause a bus fault when accessed.
® Your applications access non-standard memory locations.

A memory map is created in a *.MAP file which Embest IDE automatically

executes when connect emulator.

Format

In memory map file, each line describe one memory block except for the line

begin with ‘#’ which is comment line. One line is consisting of nine parts and

each part separate with blank space. The format of each line is:

name start size read-write bus-width access-size read-times write-times

burst-times

ITEM TYPE DESCRIPTION

Name string A single word that you can use to identify
the memory region. You can use any
name. To ease readability of the memory
access statistics, give a descriptive name
such as SRAM, DRAM, or EPROM.

Start hexadecimal The start address of the memory region.

Size hexadecimal The size of the memory region.

Read-Write string The property of read-write, R for read, W
for write.

Bus-Width decimal The width of the data bus in bytes (that is,
1 for an 8-bit bus, 2 for a 16-bit bus, or 4
for a 32-bit bus).

Access-Size decimal The width when access memory (thatis, 1
for 8-bit, 2 for 16-bit, or 4 for 32-bit).

Read-Times nanoseconds The nonsequential and sequential read
times.

Write-Times nanoseconds The nonsequential and sequential write
times.

Burst-Times nanoseconds The nonsequential and sequential burst

times.

Note: The beginning four items is necessary, and the others which

not concerned can be substituted by symbol '-’.

Example

A typical memory map looks like this:

#Name
INTERNRAM
COREINTERNALIO
STANDARDAPBIO
COREAPBIO
EXTERNDRAM
EXTERNSRAM
FLASH
EXTERNSRAM
EXTERNIO

Start

10000000
78000000
B0000000
B8000000
C0000000
C8000000
C8100000
D0000000
FO0000000

Size
2000
8000000
8000000
8000000
800000
100000
200000
80000
8000000

Attribute
RW
RW
RW
RW
RW
RW

R
RW
RW

notWarry

NotWarry contents of: BusWidth AccessSize ReadWait WriteWait

BurstWait.

Appendix E Command Script Reference

Description

Command Script File is a text formatting file, is used to auto execute several
commands continuously, the contents of the file consist of command one by

one.

When debug software or between connect target system, often need
execute several fixed command lists, for instance: after connect target system,
need execute thereinafter steps: stop target CPU—mask interrupt register—set
external memory—remap memory or download executable file etc. If need input
these command after connect target system every time, do you feel boring?

Just write a command script file, EmbestIDE will auto execute these commands.

The commands that used in debug command window also can be used in
script file. Debug command and its detail reference please refer to the sect

‘Debug Command Lists’.

Executive

Command Script File has two executive ways:
1. In Command Input Window, input:
script <command script filename>

2. Designate in project setting dialog. When input appointed script filename,
the script file will be auto executed after EmbestIDE successful connect target

system.

Project Settings 4

Settings For : Pmct:ssurl Remote Debug |Dirt:[:tury| Cumpilt:rl Assemb 4 | ’l
=-55 Workspace 'LedInt": 2 proje
EE=3E edint files] Category: General -

- =1 CFiles
=1 ASM Files Symbol file :

. B0 MiscFiles AdebugiLedint.elf J
=8 LedInt_flash files
=1 C Files
=] ASM Files —Action after connected

=1 Misc Files None

 Auto download

" Command script

Inetstart.cs J

4] | H

0K I Cancel

Example

Example one: Atmel Eb40, command script file that will be auto executed

after Embest IDE successful connect target system.

; stop target CPU

stop

; config memory

memwrite 0xffe00000 0x01002535
memwrite 0xffe00004 0x02002121
memwrite 0xffe00024 0x06

; remap memory

memwrite 0xffe00020 0x01
refresh

download -v D:\Demo\armdemo\debug\led.elf 0x2000000
; end

Example two: Samsung SNDS100, command script file that will be auto

executed after Embest IDE successful connect target system.

; stop target CPU

stop

; mask interrupt

memwrite 0x3ff4008 Oxffffffff

; config system

memwrite 0x3ff0000 0x90FFFF83
; set data-bus width

memwrite 0x3ff3010 OxfaffffOf

; config external FLASH

memwrite 0x3ff3014 0x60000412
memwrite 0x3ff3018 0x40800414
memwrite 0x3ff301C 0x40000516
memwrite 0x3ff3020 0x20800518
memwrite 0x3ff3024 0x4000061a
memwrite 0x3ff3028 0x4080061c
; config external DRAM

memwrite 0x3ff302C 0x80030004
memwrite 0x3ff3030 0x80010108
memwrite 0x3ff3034 0x8001020c
memwrite 0x3ff3038 0x80010310
memwrite 0x3ff303C 0x608327ce
; end

Example Three: Samsung S3C44B0X, command script file that will be auto

executed after Embest IDE successful connect target system.

Stop ;stop target CPU

Reset ;reset CPU

Stop

;set the system Registers

memwrite 0x01D30000 0x00000000 ;sWTCON
memwrite 0x01E0000C 0xO07ffffff ;INTMSK
memwrite 0x01D8000C 0x00000fff ;LOCKTIME
memwrite 0x01C80000 0x11110101 ;BWSCON
memwrite 0x01C80004 0x00000600 ; BANKCONO
memwrite 0x01C80008 0x00007FFC ; BANKCON1
memwrite 0x01C8000C 0x00007FFC ; BANKCON2
memwrite 0x01C80010 0x00007FFC ; BANKCON3
memwrite 0x01C80014 0x00007FFC ; BANKCON4
memwrite 0x01C80018 0x00007FFC ; BANKCONS
memwrite 0x01C8001C 0x00018000 ; BANKCONG6
memwrite 0x01C80020 0x00018000 ; BANKCON?
memwrite 0x01C80024 0x00860459 ;REFRESH
memwrite 0x01c80028 0x00000010 sBANKSIZE
memwrite 0x01C8002C 0x00000020 ;MRSRB6
memwrite 0x01C80030 0x00000020 ;MRSRB?7
;end

Appendix F Additional Software Tools of
Embest IDE

As shown in fig. F-1, click Tools in main menu to open the tool menu of
Embest IDE. The attached tools include: EIf to Bin, Disassemble all, Symbol

table, Flash Programmer and SplitBin.

E Window Help
EIf to Bin
Disassemble all
Symbol table
Flash Programmer
SplitEin

Fig. 1 Interface of tool menu

Description

EIf to Bin

The tool Elf to Bin is the generation tool of binary file format. This tool can be
used to change the debug information EIf file, built and generated by IDE, into

the binary file necessary for solidification of program.

The user selects the sub-menu EIf to Bin under Tools menu to generate the
sub-directory Debug under program directory into a Bin file with same name as
EIf file.

The user can also directly use command line style to complete the above
procedure. The execution program elf2bin.exe corresponding by the command
line is located at sub-directory Tools under installation directory Embest IDE.
The detailed usage of command line can be obtained through execution of

elf2bin in control table.

Disassemble all

Disassemble all is a disassembly tool. The user can use this tool to change
the debug information file elf into the disassembly file including source file and

debug symbol.

The user selects the sub-menu Disassemble all under Tools menu to
generate the sub-directory Debug under project directory into a disassembly file

with the file name as objdump.

The user can also directly use command line style to complete the above
procedure. The execution program arm-elf-objdump.exe corresponding by the
command line is located at sub-directory Builds/xgcc-arm-elf/bin under
installation directory Embest IDE. The detailed usage of command line can be

obtained through execution of arm-elf-objdump in control table.

Symbol table

Symbol table is the generation tool of debug symbol file. The user can use
this tool to generate the symbol table of corresponding project debug
information. This symbol table mainly records the entrance addresses of various

functional symbols.

The user selects the sub-menu Symbol table under Tools menu to generate
the sub-directory Debug under project directory into a debug symbol file with

file name as objdump.

The user can also directly use command line style to complete the above
procedure. The execution program arm-elf-objdump.exe corresponding by the
command line is located at sub-directory Builds/xgcc-arm-elf/bin under
installation directory Embest IDE. The detailed usage of command line can be

obtained through execution of arm-elf-objdump in control table.

Flash Programmer

The tool Flash Programmer solidifies the binary file that the user finally
generates onto the FLASH chip of circuit board of the user, support to use the
programming of FLASH chip in the system developed with ARM series
processors, especially suitable to the user selecting component displacement
FLASH. After open, the software interface is shown in fig. F-2. For the detailed

introduction, refer to Embest Online Flash Programmer User’s Manual.

#» Embest Online Flash Programmer o] 1

File Setting Tools Help

I
=

Program | cpu | Flash |

—CinEmbestIDENToolsYFlashProgrammeris3cd510-netstart_boot.cfg——— @ Blank Check

CPLU Type: |53C451D Flash Device: Im
CPU Endian: Il_ittle— Flash Start: IW
RAM Start: [0x00000000 Flash width: [16 = [t
e TR v #uto Erase Sector From Il— Ta |4— Merify

¥ auto Verify

Z# Erase

ey Program

FRERER

File > Checksum
Program: IE:\EmbestIDE\TooIs\FIashF‘mgrammer\Matu g”,l IFIat Bin j

ﬁ Protect
Upload: IE:\EmbestIDE\TooIs\FIashF‘mgrammer\Matu g”,l

<+> Upload

1

Fig. F-2 Software interface of Flash Programmer

SplitBin
Click SplitBin under Tools menu to open the SplitBin tool as shown in

following fig. F-3. It can split or unite Bin file according to data width and coding

manner.
Splitbin Copyright : ShenZh x|
—File —Farameter

EIN filename: —Bus width

Split file 1:

Split file 2:

f= 1Bbit {7 32bit

—Ewte order

f* little—endian

" bigendian

—Operate
v 5plit lnite

Split file 5@

Split file 4:

—Split length

f* 5bit { 1Bbit

R FI F R

0K | Caneal

F-3 Split tool interface of Bin file

Parameter>>Bus width: Select the data width of file to be split, 16bit or
32bit;

Parameter>>Byte order: Select coding manner of data, little Endian or big
Endian;

Parameter>>Operate: Select whether the function of tool is split or unite;
Parameter>>Split length: Select data width of file after split;

File>>BIN filename: Select the routine and name of Bin file to be split or

united;

Split file 1-4: If in split manner, it will automatically generate 2 or 4 split files
according to data width selected in the right before and after split,
for example, Bus width selects 16bit, Split length selects 8bit, and
it will generate two files Split file 1 and Split file 2 after split; if in

unite manner, select the route and name of Bin file to be united.

Appendix G Common questions

Question 1 About gccmain

Question:

It appears the following error prompt while connection, why?
.\debug\main.o: In function “main":
.\debug\main.o(.text+0xc): undefined reference to *__gccmain"
Answer:

While gcc builder is building and connecting source file, it will automatically
connect main function to gccmain function internally provided in gcc, that is, if

the programmer defines main function, the execution order of program is:

main()

{

gccmain() ;
Code compiled by customer

This function is provided in the base libgcc.a, and it must connect libg.a

while connecting this base.
There are three measures for solving connection errors:
1) Settings in Embest IDE

Select the menu Project> Settings, open project configuration box, select
the linker page and select the option add library searching path in drop-down

box, increase the path:
«.\.:\..\build\xgcc-arm-elf\arm-elf\lib\arm-inter
«\-:\..\build\xgcc-arm-elf\lib\gcc-lib\arm-elf\3.0.2\arm-inter

The above path is the path relative to Embest IDE routine, and the user can

set absolute routine:

Select the linker page, select the drop-down option Include Object And

Library Modules and add the base:

-lc

-lgcc
When this measure is linked, the program of user will be larger.
2) Write a gccmain assembly function or C language function by yourself

Prepare assembly function

.global __gccmain
__gccmain:
mov pc, Ir

Prepare C language function

void ___gccmain()
{
)

Re-link the program building:

3) Use__main or directly use__gccmain () as own function entrance;

Question 2 Connection errors of emulator

Question:

In general, what reasons will cause the connection emulator to appear the

following error messages?

“target cpu not found”, “stop target failed” or “run target failed”

Answer:

The connection errors of emulator are generally caused due to following

reasons:

1

2)

3)

4)

5

6)

The connection of JTAG interface circuit is not in accordance with the
regulations of IEEE1149.1-1990, for example TDI, TCK, TMS and other
signals are not connected pull-up resistance; nSRST shall be connected
system reset instead of reset of JTAG. In addition, the JTAG interfaces
have been correspondingly treated in the chips of some processors. The
user should read the manual carefully.

Some chips of processors have appointed pins to control the operation of
processor, they should be connected according to appointed style or
otherwise it may cause CPU not to stop properly, for example nwait
signal of ARM processors. The user should pay attention to checking
whether nTRI or nWAIT is pulled up, whether the reset signal connection
is correct, whether clock signal is proper, and referring to datasheet;

The emulator cannot obtain power from target board, for example the
power of target board can only meet the requirements of target board, or
JTAG interface has not leading power;

JTAG interface switch in the side of emulator has incorrect setting. The
user shall correctly set the switch according to that the JTAG port in
target board has 14 pins or 20 pins;

Project setting in IDE environment is not correct, the drop-down box of
Project>Settings>Remote>Remote device shall select jtagarm7 or
jtagarm9 according to CPU of target board;

Some computers need to amend parallel interface setting mode.

For user, generally check according to the following steps:

1

2)

Power. Include voltage and current of power source. Embest Emulator is
compatible to 3.3V and 5V. Emulator itself needs the current about
several decades of mA.

Reset signal. Observe whether reset signal is proper or not, whether it is
pulled down.

3) Clock check. Check whether crystal oscillator work normally, whether the
clock input and output of processor is normal.

4) NWAIT Signal. Pull up.
5) nTRI Signal. Pull up.

6) For some processors, there are some modes or control pin (for example
JTAGSEL signal) that are required to connect appointed level (pull-up or

pull-down) in order to support JTAG debugging interface. Please read the
datasheet carefully.

Question 3 To link the useful libraries

Question:

How to link the useful libraries provided by GNU, and what modes do they

support?
Answer:

-Im means that linker will connect standard mathematic function base

libm.a
-lc means that linker will connect standard C function base libc.a

-Ig means that linker will connect the support base of standard function

base libg.a
-Igcc means that linker will connect the support base of GCC libgcc.a

While connection, the arrangement order of these bases is generally as the

following: -Im -lc -lgcc -Ig
The C base files supplied by Embest IDE for ARM mainly support the
following modes:
ARM Little-Endian
ARM Little-Endian Interwork
ARM Big-Endian
ARM Big-Endian Interwork
Thumb Little-Endian
Thumb Little-Endian Interwork
Thumb Big-Endian
Thumb Big-Endian Interwork
The lists in which Newlib C exists is corresponding to the above modes, and
they are as follows respectively:
$(EMBEST_IDE)\build\xgcc-arm-elf\arm-elf\lib
\lib\arm-inter
\lib\arm-big

\lib\arm-inter-big

\lib\thumb
\lib\thumb-inter
\lib\thumb-big
\lib\thumb-inter-big

The lists in which libgcc exists:

$(EMBEST_IDE)\Build\xgcc-arm-elf\arm-elf\lib
\lib\arm-big
\lib\arm-inter
\lib\arm-inter-big
\lib\thumb
\lib\thumb-big
\lib\thumb-inter
\lib\thumb-inter-big

The lists in which libg.a base exists:

$(EMBEST_IDE)\build\xgcc-arm-elf\lib\gcc-lib\arm-elf\3.0.2\
\3.0.2\arm-inter
\3.0.2\arm-big
\3.0.2\arm-inter-big
\3.0.2\thumb
\3.0.2\thumb-inter
\3.0.2\thumb-big
\3.0.2\thumb-inter-big

Question 4 How to download the program onto Flash ROM

Question:

How to download the program completed debugging in RAM onto Flash
ROM?

Answer:

The user shall pay attention to or change the following two positions when

downloading the program completed debugging in RAM on target board:

1) Startup program: in RAM, through startup program of debugging, it
is not necessary to copy the data section from read-only area to
readable and writable area. The initialization of hardware can be
completed through IDE command script or the program download
onto Flash ROM. Therefore, the program completed debugging in
RAM is generally download onto Flash ROM after amending startup
program, for example in AT91 routine, the startup file for debugging
in RAM is cstartup_.ice.s, the startup file used in Flash ROM is
cstartup_flash.s, according to the routine organization style of AT91,
the displacement of startup file can be completed through a

assembler pre-definition.

2) Linker script: the program passing through debugging in RAM use
such linker script that takes RAM area as program code section
address, and data section generally directly follow the code section,
while the linker script used in Flash ROM uses ROM area as code
section address, data section is in RAM area, therefore it shall
distribute and amend linker script according to the address of final

target board.

There are two examples on how to amend the program completed

debugging in RAM then it can be downloaded onto target board.
Example 1: the program Led_blink_EB40, which lights LED in AT91EB40
evaluation board

1) Click Project menu>Settings, open project configuration box, change
“"AT91_DEBUG_ICE=1" as "AT91_DEBUG_NONE=1" in Assemble
page>Predefines options.

Foara =

(]

2) Amend linker script file, and the linker script files before and after
amendment are shown in following figure:

%ECTIDNS 1 EECTIDNS
2
& . = Ox02000000; 3 . = 0x1000000;
Jhext o [(L text) 4 Jhext ¢ [oF(Ltext)]
I . 5 rodata ¢ { *(rodata)]
Image RO_Limit = .3 & Image_REl_L'lmt = .3
l= 7 = Ox02000000;
Irnage_R'ﬁ'jase = .} g Image_Fllﬁ'jase = .}
data : dataj 1 2 .data dataj 1
<! rodata : [*E rodatal]
Image_£I_Baze = .; 10 Image_£I_Baze = .;
bz 1 f Fbss) i- 11 bz 1 { #Fbss) 1
Image_£I_Liwmit = .; 1z Image £I_Limt =
_bss_star't_ = .} 13 _bss_star't_ =
_ bz end__ 14 _bss_end__
FH FRJ’!MEJEEGIN 15 __FH FFLJ’!MEJBEGIN_
__EH_FEAME_EWD__ = 1& __EH_FRAME_END__ =
PROVIOE f_stav:k = :I, 17 PROVIDE f_stack = :],
end:.; 13 end:.;
end =, 19 —end =
“debug_ '|r'|Fn: 0 ¢ { *(.debug_info) 1 20 “debug_ 1r1fo o {*l: debug_infa) 1
Jdebug_Tine o: {*[.aehug_'l'inej 1A debug_Tine {*E.gehug_'lme:l 1
Eug abbrey 0 ¢ [*(debug_zbbrev)] 22 Eug abbey D : { * [debug_abbrev)]
dehug frame 0 : { *(.debug_frame) 1 23 . dehug frame : { *(.debug_frame) I
24
In RAM In Flash

Fig. G-1 The linker scripts that the program uses in RAM and Flash and
their difference

Comparing with original script file, the code section and read-only data
section are put in the position starting from 0x1000000 address, that is,
ROM storage area of the system; and present the starting address (RAM
address) of readable and writable data section.

When the above operation is completed, re-build the project, then click
IDE menu Tools>ElIf to Bin, and change elf file into binary format file (*.bin).
Finally use Embest Flash Programmer to download bin file onto Flash ROM of

target board.

Example 2: LedInt that NET-START evaluation board lights LED

1) Set ROM = 1 in pre-definition options of assembler, or directly add “.equ
ROM 1” in init.s file.

2) Inlink file of linker, select flash.ld. This link file and startup file mutually
complete the transport of data section initially downloaded onto Flash.
It has the following difference with the script file debugged in RAM: the
address of current 0XO0 is flash storage area, while it is RAM storage area
formerly; the current RAM area is in the position 0X0400000. The linker
script files before and after amendment are shown in following figure:

= dra =

(Ea]

%ECTIUNS 1
Z
« = 000000000 3
et o [Ftext)] 4
Ie)
Image RO_LImit = .; 3
I= 7
Image_RW _Base = .4 g
<! podata ¢ [*.rodatal]
Jata ¢ [*(data)] 9
Image_2I Base = . 10
bss o1 ¥ Cbss) j 11
Image 21 Limit = .3 12
<! _hss_start_ = .3
<! _hss end__ = .
<! PROVIDE (__stack = .3
end = . 13
< end = 4
Jdebug_nfa 0 { *(debug_info) 1 14
Jdebug_line 0 f *E.gehug_'line] 11
.degug_ahhrev 0 ¢ f *(.debug_abbrey)} 18
Jebug_frame 0 & { *(C.debug_frame) T 17
13

In RAM

%ECTIDNS

» = 000000000

Jet o { f(text)]
rodata ¢ { Flrodata)]
Image RO_Limt = .4

« = 0x0400000;
Image_RW_Base = .

Jata ¢ { *(data)]
Image_ZI _Base = .
Bbss o { FCbss) _’}
Image 21 Limit = .3

end = .3

«debug_info 0 { #(debug_tnfol]
Jdebug_Tine 0 {*E.gehug_'l'ine] }
.degug_abbr*ev 0 { *(.debug_abbrey)]

} Jebug_frame 03 [*(.debug_frame) }

In Flash

Fig. G-2 The linker scripts that the program uses in RAM and Flash and
their difference

When the above operation is completed, re-build the project, then click

IDE menu Tools>EIf to Bin, change elf file into binary format file (*.bin).

Finally use Embest Flash Programmer to download bin file onto Flash ROM of

target board.

Question 5 Command script, linker script and memory map
file

Question:

What is command script, linker script and memory map script?
Answer:

Command script:

While integrating environment and target connection, in the course of
debugging software and after resetting target board, sometimes the user needs
to integrate environment to automatically finish some special functions such as
resetting target board, clearing off watchdog, screening and interrupting
register, memory map, etc., these special functions can be completed through
executing a group of commands. The text file saving a group of command

sequence is called as command scripts file.

The following are the examples of command script:

; stop target CPU

stop

; configurations of the special register
memwrite Oxffe00000 0x01002535
memwrite 0xffe00004 0x02002121
memwrite 0xffe00024 0x06

; configuration for Mapping Address
memwrite 0xffe00020 0x01
refresh

download -v D:\Demo\armdemo\debug\led.elf 0x2000000
;end

Linker script:

In the Embed system development, it needs to use linker position file.
This file describes the relevant information of code linker position, including
code section, data section, address section, and the linker shall use the code
of this file to the whole system as correct position. This file is called as linker
scripts file.

The following is an example of Linker script:

SECTIONS
{
. = 0x02000000;
text @ { *(.text) }
Image_RO_Limit = .;
Image_RW_Base = .;
.data : { *(.data) }
.rodata : { *(.rodata) }
Image_ZI_Base = .;
.bss : { *(.bss) }
Image_ZI_Limit = .;
__bss_start_ = .;
__bss_end__ = .;
end = .;
.debug_info 0 : { *(.debug_info) 7}
.debug_line 0 : { *(.debug_line) 7}
.debug_abbrev 0 : { *(.debug_abbrev)}
.debug_frame 0 : { *(.debug_frame) }

Memory linker map file:

In the course of debugging software, accessing illegal memory will occur
abnormal in some processors and target boards. If the abnormality is not
handled, it may cause the debugging course of software incapable to continue.
In order to prevent the above issues and adjust the accessing speed of emulator
to reach to proper level, a file for describing property of each memory area is

provided. Such file is called as memory map file.

The following is an example of map file:

ONCHIPRAM 0 8000 RW-----
EXTERNDRAM 100000 128000 RW - ----
FLASH 1000000 128000 R -----
SRAM 2000000 512000 RW=-----

PERIREG FFCO0O000 4000000 R -----

Question 6 Definition of linker script

Question:
Please explain the meaning of linker scripts file?
Answer:

The linker script file is used in flash solidification:

SECTIONS

{

. = 0x000000; Assign current address as 0

text @ { *(.text) }; Code section, put program code at this place
from O identification code

.rodata : { *(.rodata) }; Read-only data section, static global variable
and other immovable values in program are put in this section

Image_RO_Limit = .; Length of read-only area, the symbol used in
the startup program

. = 0x0400000; Assign current address as 0x400000

Image_RW_Base = .; Read-write the frame of the area, start the
symbols used in program

.data : { *(.data) }; Data section, the global variables initialized in
the program are put in this section

Image_ZI Base = .; Frame of resetting area, the symbol used in
startup program

.bss : { *(.bss) }; Include global accessible data not initialized,
for example not initialized global variables

Image_ZI_Limit = .; Length of resetting area, the symbol used in
startup program

end = .; Ending address

.debug_info 0 : { *(.debug_info) }; Output section of
debugging information

.debug_line 0: { *(.debug_line) }

.debug_abbrev 0 : { *(.debug_abbrev)}
.debug_frame 0 : { *(.debug_frame) }
s

Linker scripts file used in debugging RAM:

SECTIONS

{

. = 0x000000; Assign current address as 0

text @ { *(.text) }; Code section, put program code at this place
from O identification code

Image_RO_Limit = .; Length of read-only area, the symbol used in
startup program

Image_RW_Base = .; Read-write the frame of the area, the symbol
used in startup program

.rodata : { *(.rodata) }; Read-only data section, the static global
variables and other immovable values in the program are put in this section

.data : { *(.data) }; Data section, the global variables initialized in
the program are put in this section

Image_ZI Base = .; Frame of resetting area, the symbol used in
startup program

.bss : { *(.bss) }; Include global accessible data not initialized,
for example not initialized global variables

Image_ZI_Limit = .; Length of resetting area, start the symbols
used in program

end = .; ending address

.debug_info 0 : { *(.debug_info) }; Output section of
debugging information

.debug_line 0: { *(.debug_line) }

.debug_abbrev 0 : { *(.debug_abbrev)}
.debug_frame 0 : { *(.debug_frame) }
s

For the section code as follows:

int Al;
int A2 =5;
const int A3 = 10;

void main()

{
int A4;
register int A5;
A4 = A3;

b

The variable Al, as not initialized variable, will be stored in the section .bss;
The variable A2, as initialized variable, will be stored in the section .data;
The constant A3 is stored in read-only data section .rodata;

The code that main function is corresponding is stored in the section .text;

The local variable A4 is stored in the corresponding function stack of main

function when the program executes main function;

The register variable A5 is directly stored in a register of ARM;

Question 7 How to migrate SDT assemble program

Question:

How to migrate the assembly code in the environment of ARM SDT as
assembly code supported by free software gnu assembler integrated by Embest
IDE?

Answer:
Migration description on SDT assembly program:
1) The note line replaces ;" with “#”

2) Substitution of pseudo instruction characters

pseudo instructions pseudo instructions
characters in SDT characters in Embest IDE
INCLUDE .include
TCLK2 EQU PB25 .equ ECLK2 , PB25
EXPORT .global
IMPORT .extern
DCD .long
IF:DEF: .ifdef
ELSE .else
ENDIF .endif
:OR: |
:SHL <<
RN .req
GBLA .global
BUSWIDTH SETA 16 .equ BUSWIDTH, 16
MACRO .macro
MEND .endm
END .end
AREA Word,CODE,READONLY .text

AREA Block, DATA, READWRITE .data

CODE32 .arm

CODE16 .thumb
LTORG .Itorg
% ill
Entry Entry:

3) Substitution of operand and operator

Idr pc, [pc, #&18] Idr pc, [pc, #+0x18]

Idr pc, [pc, #-&18] Idr pc, [pc, #-0x18]

“&” refers to hex

Question 8 Register and stack of ARM processors

Question:

Please explain the register and stack of ARM processors?

Answer:

The corresponding form of registers in ARM7:

RO ---> RO

R9 ---> R9

R10 ---> SL

R11 ---> FP Frame pointer points stack bottom

R12 ---> IP

R13 ---> SP The register of stack pointer points to stack top
R14 ---> LR

R15 ---> PC

Legend of stack:

ARM7 under gcc 2.95/2.97 building uses r11 register as function stack

bottom pointer, r13 as current function stack top pointer.

A typical function stack information structure is as follows:

Memory high address

Parameters of current function

Last function
stack top (r12)

PC value (of no use) after
entering function

Function Return address of current

Stack function

Last function r13 register value

Last function rl11 register value

Stack bottom
(r11)

Local variable of current
function

Parameters transferred to next | Stack top (r13)
function

Memory low address

Note: directly take r11 value to take PC value, other than function return

address

Question 9 Building error caused by GCC bug

Question:

Free software gcc builder integrated by Embest IDE includes a software bug.
This bug causes the target code produced from building to bring collapse of
stack in some situations while using __attribute__ ((interrupt ("IRQ"))) style

statement C language common interruption function

How to program to ensure the normal operation of common interruption?

Answer:

User can ensure normal operation of common interruption through the

method of assembly programming.

.EXTERN irg_func
.GLOBAL irg_entry
irg_entry:
stmdb sp!, {r0-r11, ip, Ir}/* Save r0-r11, ip, Ir */
Idr r0, = irg_func
mov Ir, pc

bx ro /* Use C interruption program*/
Idmia sp!, {rO-rl11, ip, Ir}/* Resume rO, ip, Ir */
subs pc, rl4, #4 /* Interruption and return */

irg_entry is the entry of common interruption function. It completes the
pushing in stack with relevant register in the common interruption mode, calls

irg_func function, pops out register, interrupts return function.

irg_func is to use C language or assembly language to prepare interruption
treatment function. This function is not necessary to use __attribute_
((interrupt ("IRQ"))) style statement.

In addition, this bug of gcc software will not affect other interruption vector
mode, and the treatment function of other vector modes can still use

__attribute___ ((interrupt ("FIQ"))), __ attribute__ ((interrupt ("SWI"))) style
statement.

Question 10 To debug the project of ARM SDT

Question:
How to use Embest IDE to debug the project in ARM SDT environment?
Answer:

Embest IDE can debug the file to be produced with ARM SDT project building

linker.

The user needs to make the following settings in the building environment
of SDT:

In ARM SDT main menu click Tools>Configure,

1) Take <cc>=armcc menu, select the page Language and Debug, set
Debug Table Format as dwarf 1 option, and set Optimization Level as

None option;

2) Take <asm>=armasm menu, select the page Options, and set Debug

Table Format as dwarf 1 option;

3) Select armlink menu, select the page Output and set Output Formats as

Arm EIf Image format option;

The above setting can aim at single project and be realized through
selecting Project > Tool Configuration menu. The settings are same as the

above.

The user can use the above settings, under ARM SDT environment, to build

and produce the corresponding output file of this project prj.elf.

In Embest IDE environment, the user selects Project > Settings menu, sets
this output file as symbol file and download file for debugging in the Debug page
of dialog box, and sets the local directory of source file in directory page
simultaneously, then it can perform debugging upon this file at source file level

or assembly level.

Question 11 FAQ for ARM compiler
Question A

Which versions of ARM compiler does Embest IDE support?

Answer

Embest IDE supports the compilers of ARM SDT V2.50 and ARM SDT V2.51,
but does not support the compilers over ARM ADS V1.2 version.

ARM ADS V1.2 uses the same compiler version as ARM SDT V2.51, but it

screens some output formats of debugging information.

Question B

Although sometimes there shows “Command(s) successfully executed.”

when compiling, it actually generates no target files, why?
Answer
Because the user’'s ARM compiler hasn’t acquired authorization.

If armcc command is executed in DOS command line, it would show the

prompt similar to the following:

This licence has not yet been installed.

Question C

Compiling whilst there shows “...Fail to executing above command. "C:

\Bin\armasm" maybe not found or executed!” ?

Answer

1, It hasn’t yet been installed or the installation is wrong in ARM compiler
directories. User should choose item” Tools>Options” and then install the

ARM compiler path on the directories page of Options dialog box.
2, ARM compiler or relevant files are damaged, so execution fails.

Question

When linking, it shows the prompt like: “Warning: File C:\LIB\armlib_cn.
32l not found.” ?

Answer
The prompt indicates failure to link to library file C.

User should refer to 5.4.3, open the configurations behind SDT or ADS
projects and then install the search path of library file; provided user has
installed ARMLIB in the environment variable, they will have a same result as

installing the search path of library file in projects.

