
COVER

Embest IDE Pro for ARM 2004

User Guide

Shenzhen Embest Info&Tech Co.,LTD. All rights reserved.

Tel: +86-755-25635626/25635656/25638952/25638953 Fax: +86-755-25616057

Room 210, Luohu Science&Technology Building, #85 Taining Road,

 Shenzhen, Guangdong, China

Preface

This preface introduces the Embest Integrated Development Environment

(EmbestIDE) and its documentation. It contains the following sections:

• About this book

• Related Publications

• Typographical convention

• Feedback

About this book

This book is user manual for EmbestIDE for ARM. It describes the major

features of EmbestIDE, installing EmbestIDE for ARM, graphical user interface

components of EmbestIDE, and provides information on debugging applications

with EmbestIDE.

This book is organized into the following chapters:

Chapter 1 Overview

 Read this chapter for an introduction to EmbestIDE.

Chapter 2 Installing EmbestIDE for ARM

 Details for installing EmbestIDE, registering, files and folder

structures of EmbestIDE.

Chapter 3 Project examples

 Give some examples to lead users to start with EmbestIDE

quickly

Chapter 4 Editor

 Read this chapter for details about how to use EmbestIDE

built-in text editor. It describes the basic functionality of the

editor.

Chapter 5 Project management

 Read this chapter for details about how to use project files to

organize your project source files.

Chapter 6 Project build

 Details about specify the output from compiling and linking your

source. This chapter gives details about how to configure

compile options and link options of a project.

Chapter 7 Software debug

 Introduce the debugger of EmbestIDE, details about how to

debug arm-based application with EmbestIDE.

Chapter 8 Customization and Options

 Read this chapter for details about customizes EmbestIDE.

Appendix A JTAG Emulator Hardware Reference

Appendix B Debug Output Reference

Appendix C Debug Command List

Appendix D Memory Map File

Appendix E Command Script Reference

Appendix F Additional Software Tools of Embest IDE

Appendix G Common questions

Further Reading

This book describes all the details about Embest IDE. Refer to the following

books for information on other components of developing embedded application

base on ARM processors:

• ARM Architectural Reference Manual (ARM DUI 0100)

• ARM Reference Peripheral Specification (ARM DDI 0062)

• ARM Target Development System User Guide (ARM DUI 0061)

---you can get these papers from: www.arm.com

• Program reference of Embest IDE

http://www.arm.com/

Typographical Convention

The following typographical convention are used in this book:

Menu quote Use > to separate the main menu and submenu

Commands Highlights important notes

Notes Italic denotative arguments with lines above and below

Notes: this is an important note, and please pay attention to

it.

Feed Back on This Book

If you have any problems with this book, please send email to

press@embedinfo.com giving:

◊ the document title

◊ the page number(s) to which your comments apply

◊ a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.

1. Overview

This chapter introduces the Embest IDE. It contains the following sections:

◊ About the Embest IDE

◊ main characteristic of Embest IDE

◊ User Interface Basics

1.1 About Embest IDE

Embest IDE is an Integrated Development Environment for software

cross-development. The EmbestIDE is an application that provides a simple and

versatile graphical user interface and tools for developing embedded software.

It is an Integrated Development Environment (IDE) that facilitates managing

and building projects, establishing and managing host-target communication,

running and debugging applications. It provides an efficient way for developing

embedded applications. EmbestIDE comprises the following elements (Figure

1-1):

z An integrated source-code editor.

z A project management facility.

z Integrated C and ASM compilers and linker.

z a source-level debugger.

z an integrated development environment.

z an ARM simulator

Figure 1-1: EmbestIDE Tools

EmbestIDE uses host-target cross model for developing embedded

applications. EmbestIDE runs on a host computer. Your target board is

connected to the host computer through debug device (BDM/JTAG Emulator).

You can edit and build your projects on the host, and create a target executable

file with EmbestIDE. Download the target file to the target, and then use

EmbestIDE debugger to debug it through the communication of debug device

connected between the host computer and the target board. Figure1-2

illustrates the host-target cross model with EmbestIDE.

When you use EmbestIDE for ARM, a debug device--Embest JTAG Emulator

is provided. See appendix A “JTAG Emulator Connection” for detail describe

about Embest JTAG Emulator.

Figure 1-2 the Host-target Cross Model with Embest IDE

1.2 Major Features of Embest IDE

EmbestIDE runs under Windows 95 above and Windows NT 4.0 above.

EmbestIDE supports target microprocessors debugging on the ARM-core

microprocessor families, 68K, PowerPC, and Coldfire microprocessor families.

EmbestIDE provides a simple, versatile and graphical user interface for

managing your software development projects. You can use EmbestIDE for ARM

to develop C and ARM assembly language code targeted at ARM and Thumb

processors. It speeds up your development cycle by providing:

z Comprehensive project management capabilities

z Code navigation routines to help you locate routines quickly.

EmbestIDE enables you to organize source code files, library files, other files,

and configuration settings into a project. Each project enables you to create and

manage multiple configurations of build target settings.

Major features of EmbestIDE:

◊ Support development language: ANSI C, ARM assembly language.

◊ User interface: consists of an integrated set of windows, tools, menus,

toolbars, directories, and other elements that allow you to create, test, and

refine your application. It is just like Microsoft Visual Studio’s user interface.

◊ Source code Editor: Standard text manipulation capabilities; C and ASM

syntax-element color highlight; Debugger integration, the editor window tracks

code execution; Compiler integration, the project management utility links

compiler warnings and errors directly to the affected source in the editor window.

Support file print; Capable of search and replace, and performs batch searches

in multiple files.

◊ Project Management: The EmbestIDE project facility simplifies

organizing, configuring, and building embedded applications. It includes

graphical configuration of the build environment (including compiler flags).

◊ Compiler: includes the GNU compiler, as well as a collection of

supporting tools that provide a complete development tool chain: cpp, C

preprocessor; gcc, C compiler; make, program building automation tool; ld,

programmable static linker; as, portable assembler; binary utilities. EmbestIDE

supports commercial versions of the leading-edge GNU tools originally

developed by the Free Software Foundation (FSF). Users of the GNU tools

benefit from the innovative FSF development environment as well as from

testing and support by Embest Info&Tech Co., LTD. Among other features, the

EmbestIDE project facility provides a GUI for the GNU tools that is powerful and

easy to use.

◊ EmbestIDE debugger: a powerful graphical debugger that enables

program loading, executing, running control, and monitoring; a source-level

debugger, view your application code as C, as assembly-level code, or in a

mixed mode that shows both; full-featured debugging, provides an exhaustive

set of debugging features, designed to make it easy to find and fix bugs; set a

breakpoint or clear a breakpoint by single click, supports conditional and

command breakpoints; single stepping, "step into" traces execution of every

individual instruction even when functions are called, "step over" does not trace

into the called function, "step out " brings execution back to the calling function;

supports register and variables value display and modify, supports function

stack display and memory display, several specialized windows display these

debugging information. Figure 7-1 shows these debugging information display

windows, when you are debugging, you can access these windows using the

"View" menu; EmbestIDE supports graphical debug and command-line debug.

For complex or unpredictable debugging needs, the command-line interface

gives you full access to a wealth of specialized debugging commands.

1.3 User Interface of EmbestIDE

The user interface is the portion of the environment where display

information and specify action. These topics describe user interface’s basic

structure of EmbestIDE.

To step into EmbestIDE, just run EmbestiDE.exe. EmbestIDE user interface

consists of an integrated set of windows, tools, menus, toolbars, directories,

and other elements that allow you to create, test, and refine your application.

Figure 1-3 shows the main GUI of EmbestIDE. The user interface uses standard

Windows interface functionality along with a few additional features to make

your development environment easy to use. The basic features that you use

most often are windows and document views, toolbars, menus, directories, and

keyboard shortcuts.

Figure 1-3 Embest IDE Main GUI

Title column displays current opening file name. Menus column and tool bar

column are below title column. The menu bar is a special toolbar at the top of

the screen that contains menus such as File, Edit, and Build. The standard tool

bar appears just below the menu bar. You can move the toolbars to different

locations to suit your needs. Workspace window shows file information about

current opening projects. Source code window is the usual used window witch

you edit and browse your code in. You can open several source code file

windows at one time. Output window displays build information, debug

information, file search output information and command-line debug input and

output. Status column displays detail information about menus and tool bars, it

also displays the current line number and column number of the cursor in source

code window.

2. Installation

2.1 System Requirement

Host A PC with a Pentium or higher processor

Memory More than 64M

Disk Space 150M

Monitor VGA or Super VGA color monitor

OS Microsoft Windows 98, Windows NT with Service Pack 3

or later, Windows 2000, Windows Me, Windows XP

Others Mouse, Parallel Port, CD-ROM

2.2 Installation

Step 1: Invoke Microsoft Windows operating system on your PC;

Step 2: Place the EmbestIDE disk in the proper drive, and run Setup.exe;

Figure 2-1 Welcome Dialog

Step 3: Click on "Next" button in welcom dialog to go on;

Figure 2-2 License Dialog

Step 4: Click on "Yes" button in License dialog to go on, if you accept the

license agreement list in the dialog;

Figure 2-3 User Information Dialog

Step 5：Click on "Next" button in User Information Dialog to keep going;

after the information is inputted;

Figure 2-4 Destination Location Dialog

Step 6: After setup program is loaded, you will need to indicate the

directory where you want to install EmbestIDE. By default, it will be installed in

the following directory:

C:\EmbestIDE (where, C:\ is the system driver)

Click on the "OK" button if the above default directory is the location where

you want to install EmbestIDE. We recommend that you use the default

C:\EmbestIDE directory so that the changes you will need to make are minimal.

Otherwise, you can edit the path as necessary. Then click on the "Next" button

to go on.

Figure 2-5 Choose Destination Folder Dialog

Note：The full path name of the destination location must not contain the

blank character，because of the GNU Cross-Compiler.

Figure 2-6 Program Folder Dialog

Step 7: click on the "Next" button to go on, in the Program Folder dialog;

Figure 2-7 Information Dialog

Step 8：Click on the "Next" button in the Information dialog, the setup

program will copy and decompress the files to the installation directory.

Figure 2-8 File Copying Status Dialog

Step 9：After the files copying and decompression is completed, setup

program will ask if you want to restart you computer right now or not.

Before running EmbestIDE, You must reboot the host computer and get a

runtime permit file.

Figure 2-9 Installation Finish Dialog

2.3 Directories & Files

2.3.1 Directories & Files

The files of Embest IDE release are copied to a directory and its subfolders,

when the installation steps finished. For example, if the destination location is

C:\EmbestIDE，several sub-directories will be created on it, and the files will

be copied according their functions（show as Table 2-3-1-1）.

Table 2-3-1-1

Folder/File Description

Bin Folder with main application, DLL files and DLL folders

Build Folder with GNU Cross-Compiler for ARM

Doc Folder with documents

Examples Folder with samples

ide.ini Configuration files of Embest IDE, it shows the folder

of the modules and other settings in running.

Licenses Folder with license files

Peripheral The information library of the peripheral registers of

the processors set by the system

Target Folder with BSP files

License.txt License file

Readme.Txt Readme file

Tools Folder with the tools in system application include

Flash Programmer, elf2bin etc.

Description of directory C:\EmbestIDE\Bin show at Table 2-3-1-2.

Table 2-3-1-2

Folder/File Description

Build Folder with cross-compiler interface files

CPU Folder with CPU interface files

Device Folder with device interface files

Driver Folder with driver interface files

Description of directory C:\EmbestIDE\Examples Table 2-3-1-3

Table 2-3-1-3

Folder/File Description

ARM Command examples for ARM include particular

assemble examples

AT91 Examples for each evaluation board of the Atmel 91

processors . Include AT91EB40, AT91EB40A,

AT91EB55, AT91EB63.

AT91/ucos Example of ucos II operating system for AT91EB40

evaluation board.

Cirrus Examples for Cirrus Logic ARM processor EP7312.

Oki Examples for OKI ARM processor ML674000.

Samsung Examples for Samsung evaluation board. Include

NET-Start , 44bdvk,Nbc4510b,SNDS100 evaluation

board.

Samsung/ucos Example of ucos II operating system for 44bdvk

evaluation board.

2.3.2 File Types

Table 2-3-2-1

Name Description

*.ews Workspace file of EmbestIDE

*.pjf Project file of EmbestIDE

*.opt Workspace status file

*.ini Config file of EmbestIDE

*.c C source file

*.C C++ source file

*.cc C++ source file

*.cp C++ source file

*.cxx C++ source file

*.c++ C++ source file

*.cpp C++ source file

*.s Assemble source file

*.asm Assemble source file

*.h C/C++ header file

*.inc Assemble include file

*.mac Macro file

*.map Memory map file

*.cs Command script file

*.ld Link script file

*.o Object file

*.a Library file

2.4 User Register

Registration needs two steps: 1.generate register information file; 2.submit

register information file and acquire runtime permit file.

2.4.1 Generate Register Information File

Run ”key.exe” program which locate at ”$Embest IDE/licenses” directory or

“EmbestIDE.exe” program, fill correlative information and push ”Generate

Key.dat” button, ”key.dat” file will be created in ”$Embest IDE/licenses”

directory (Note: please do not modify the file). Program interface show as

following figure 2-10:

Figure 2-10 Key.dat Generation Dialog

Action: Don’t modify the key.dat file.

2.4.2 Acquire Runtime Permit File

Please send email of the “key.dat“ file to licenses@embedinfo.com, or print

and fax it to (+86)0755-25716057 ext 805, or copy to a floppy disk and send

the disk to Embest Inc, user will get ”licenses.dat” file soon by email or floppy

disk. This file is the runtime permit file. Please copy it to ”$Embest IDE/licenses”

directory, then the registration is finished.

2.5 Connecting the Emulator Hardware

Embest Emulator is a JTAG-based debugging channel for ARM
microprocessors. It provides an interface between Embest IDE and an ARM
microprocessor deeply embedded.

Embest Emulator
DB25 to PC IDC14/20 to JTAG

A standard male-to-female 25-way parallel cable connects the Embest

Emulator to the PC’s parallel port.

The connection to the target board is made by a 20-way (or 14 - way)

female IDC header cable (BT224 type) with all pins connected straight through

(1-1, 2-2, ... 20-20).

Note：Connecting cable dose not provide hot swap

For further pin-out details, refer to Embest IDE JTAG interface connections

on page A-2.

3. Quick Start

3.1 Simple Example

This section shows users step by step how to create, compile and debug a

simple project. The project described below is to create a random number.

The project demo locates at \Examples\arm\explasm under EmbestIDE

installing directory. The files to be used are：

Random.s Assemble file of random number function

Randtest.c Main program file

Note: Only source files above are used. The project can only be run and

debugged in target RAM under EmbestIDE. Parameters are established

according ATMEL EB40 evaluation circuit board. The parameters for

linking need to be change when the project is used with the other circuit

board. The project doesn’t link to any function library and doesn’t use

Linker scripts. The program created by the project doesn’t have a

function to initiate any circuit board. Therefore, it can’t run itself when

it is downloaded to FALSH.

3.1.1 Create a Project

1) Creating Project

Select File > New Workspace menu, Give a project name and specify

project directory as shown in Figure 3-1：

Figure 3-1 Create a New Project Dialog box

Rantest has been used as a project name, and project directory has been

specified as D:\EmbestIDE\Example\arm250\explasm\, D:\EmbestIDE is

default installing directory of EmbestIDE unless noted.

After clicking OK, two files will be created in the project directory:

Rantest.ews Workspace file

Randtest.pjf Project file

Note: Workspace and project files are maintained by EmbestIDE

system itself. Users cannot edit these files manually.

After the project has been created, files pane will appear in EmbestIDE

workspace window as shown in Figure 3-2.

Figure 3-2 Workspace Window

The Figure 3-2 shows current workspace is rantest which contains a project

named rantest. Boldface indicates that rantest is an active project.

 2) Add Source Files

Choose Project Source Files folder in rantest workspace window. Click

Project > Add To Project > Files to add source files. You can also right click

Project Source Files folder to add source files, See Figure 3-3:

Figure 3-3 Add Source Files In Workspace Window

You can add the source files in the pop up dialog box. To select source files,

press CTRL key and hold, click source files of random.s and randtest.c in Project

directory, See Figure 3-4.

Figure 3-4 File Open Window

After the source files added, workspace window is shown as Figure 3-5.

Figure 3-5 Workspace Window

3.1.2 Project Settings

After creating a project, you need to configure the project. The project

settings include CPU settings, emulator settings, debug settings, directory

settings, compiler settings, assembler settings and linker settings. The project

settings is a critical step to entire software development.

Click Project > Settings, Project Settings dialog box pops up, then Choose

randtest files in the dialog.

1) CPU Settings

Select Processor pane from Project Settings dialog box. Define CPU

module as ARM7, CPU family and CPU member as ARM7 too. Switch Endian

to little endian. Build tools are GNU tools for ARM. Figure 3-5 is a Project

Settings dialog.

Figure 3-5 Processor pane of Project Settings Dialog

After build tool has been set, Project Settings dialog will show the pane of

this build tool.

2) Emulator Settings

Select Remote pane from Project Settings dialog. Define Remote Device as

jtagarm7. Because of Embest Emulator for ARM does not support to change the

working speed, don’t worry about the setting of Speed item. When using Embest

PowerICE for ARM, select the valid work speed: Full Speed(120Kbyte/s)、High

Speed、Medium Speed、Low Speed. Communication port with remote device is

PARALLEL. Communication channel is LPT1 as shown on Figure 3-6.

figure 3-6 Remote Pane of Project Settings Dialog

3) Debug Settings

Select Debug pane from Project Settings dialog. Select General from

Category, Set symbol file as ./debug/rantest.elf and Action after connected

as None. See Figure 3-7.

figure3-7 Debug General Options of Project Settings Dialog

Select Download from Category. Set Download file as ./debug/rantest.elf.

set Download Verify option on. Set Download file to address 0x2000000.

Execute program starting from download address. See Figure 3-8.

figure 3-8 Debug Download Options of Project Settings Dialog

Note：Flat Binary format can be used for download files. The tool

ELF2BIN provided by IDE can transfer ELF files to the files with flat

binary format. If you use different circuit board, please change

download file address to RAM address of the circuit board.

Set Memory Map to use map file, and set target memory map file as

$(EMBEST_IDE)\targets\at91\targets\eb40\eb40.map. See Figure 3-9.

Figure 3-9 Debug Memory Maps Options of Project Settings

4) Compiler Settings

Select Compiler pane from Project Settings dialog. Set Object Files

Location as ./debug and others as default. See Figure 3-10.

Figure 3-10 Compiler Pane of Project Settings Dialog

5) Assembler Settings

Select Assembler pane from Project Settings Dialog. Set Object Files

Location as ./debug and other as default. See Figure 3-11.

Figure 3-11 Assembler Pane of Project Settings Dialog

6) Linker Settings

Select Linker pane from Project Settings Dialog. Select General from

Category. Set Object Files Location as ./debug and others as default. See

Figure 3-12.

Figuer 3-12 Linker General Options of Project Settings

Select Image Entry Options from Category. Set Select Entry File as

rantest.o. Select entry point as Main. Add “–Ttext 0x2000000” in link options.

See Figure 3-13.

Figure 3-13 Linker Image Entry Optios of Project Settings Dialog

Entry File ‘Rantest.o’ means that executive code compiled and linked

‘rantest.c’ will locate at starting point of entire executive program. Entry Point

‘main’ means that executive code will run starting from ‘main’. “–Ttext

0x2000000” means that address of entire executive program code will start

from 0x2000000.

Note：The step described above can be skipped if users open workspace

file explasm.ews created under the directory.

3.1.3 Compile and Link

Click Build > Build rantest to complete entire project building. You can

view the output in the output window, the following messages show as Figure

3-14.

Figure 3-14 Build Output Window

The message shown in the window indicates that this project building has

been success.

3.1.4 Debug

1) Create Executive File

Click Tools > Elf to Bin to automatically transfer the project output file

called “project name +.elf” under ‘debug’ sub-directory to executive file. The

executive file has flat binary file format. The final file will be named as “project

name +.bin” and saved in ‘debug’ sub-directory under project directory.

You can also complete file transfer by running elf2bin.exe located in Bin

sub-directory under install directory.

Note：This step can be skipped if you have maken a choice of

downloading ELF format file.

2) Active connection

Click Debug > Remote Connect to active the connection with the target

board through Embest JTAG emulator. The target board will be one of the two

kinds of status:

 Running status: When the target board is in this status, debug output

window shows messages as “Info: target running, all breakpoints disabled.” as

shown in Figure 3-15.

Figure 3-15 Debug Output Window

In this case, Embest IDE Disassemble window shows nothing.

 Stop status (This happens when you stopped the activing connection with

the target board previously, you stopped running target board prior). When the

target board is in this status, debug output window shows message as “Info:

CPU was in debug state before connect! Current values may be incorrect!” as

shown in Figure 3-16.

Figure 3-16 Debug Output Window

In this case, Embest IDE Disassemble window shows assemble instruction,

with the instruction currently PC is pointing to beginning. See Figure 3-17.

Figure 3-17 Disassemble Window

Note：In general, disassemble window which you see is not as same

as above.

3) Download File

Click Debug > Stop to stop running target board if current target board is

on running status. Click Debug > Download to download file if current target

board is on stopping status. Downloading parameters were set through Debug

pane in Project Settings dialog. When downloading files, status bar will show

“Download File” with progress bar to indicate download progress. Status bar will

show “Download Completed” when the downloading finished.

When download is completed, program pointer will automatically return to

program starting point. Disassemble window will appear as shown in Figure

3-18.

Figure3-18 Disassemble Window

At the same time, rantest.c source file window will appear as well as shown

in Figure 3-19.

Figure 3-19 Source File Window

4) Debug

Click Debug > StepOver to run program to this line:

random = randomnumber();

Click View > Debug Windows > Variables menu to show the Variable

window. Continuous to click Debug > StepOver to view the changes of

function variables as shown in Figure 3-20.

Figure 3-20 Variables Window

3.2 A Complete Example

This section shows you step by step to create, compile and debug a

complete project. The project demonstrates communication between PC and

AT91EB40 evaluation board through parallel port. This is a complete embedded

application.

The example project locates at \Examples\At91\example_terminal40 under

Embest IDE installed directory. The files to be used are:

term.c Terminal Test Main Program File

Terminal_irq.s Assemble Interrupt Handle Program File

Cstartup.s Startup Program File for evaluation board.

The file locates at the following

sub-directory under installed directory

\targets\At91\targets\Eb40\.

The differences between the project described in this section and the project

described in the previous section are:

 The project of this section contains complete target board startup codes.

After the program is debugged successfully, you can change

AT91_DEBUG_ICE=1 defined by project settings to AT91_DEBUG_NONE=1,

and then rebuild it, and this can be downloaded to FLASH to run itself.

 The project of this section uses individual linker scripts. The file is

ldscript Linked Scripts，The file is located at the following

directory \Targets\At91\Targets\.

 The project of this section links to standard C function library. The file of

function library

Libc.a Standard C function library, support arm interwork，

The file is located at

\build\xgcc-arm-elf\arm-elf\lib\arm-inter。

 The project of this section connects to peripheral driver function library

and device function library of AT91 series CPU provided by ATMEL. They include:

Lib_drv_32.lib Peripheral Driver Function Library，The file is

located at

\targets\at91\drivers\lib_drv\arm-inter

under installed directory. The project file

creating the library is located at the directory

one level up. It can create THUMB instruction

library or ARM Interwork library by changing

project settings. The example shown here

uses ARM Interwork function library.

R40807_lib32.lib Device Function Library. The file is located at

\targets\at91\parts\r40807\arm-inter

under installed directory. The project file

creating the library is located at the directory

one level up. It can create THUMB instruction

library or ARM Interwork library by changing

project settings. The example shown here

uses ARM Interwork function library.

Note 1：Before using the project, you must create peripheral driver

function library named lib_drv_32.lib by using workspace file

lib_drv_32.ews, which located at \targest\at91\drivers\lib_drv\

directory and create device function library named r40807_lib32.libby

using workspace file r40807_lib32.ews, which located at

\targets\at91\parts\.

Note 2：If you don’t want to use ARM Interwork, you can create function

library, which support ARM only. And don’t choose to support ARM

interwork in project compiler and assembler settings.

3.2.1 Create Project

The project called Term can be created and related source files can be added

by following the same procedure described in the previous section at

\examples\at91\example_terminal under installed directory. Final workspace

window will be appeared as shown in the Figure 3-21.

Figure 3-21 Workspace Window

3.2.2 Project Settings

The processor settings and remote settings can be done by following the

same procedure described in Section 3.1.2 previously. Please refer to it.

1) Debug Settings

Select Debug pane from Project Settings dialog. Set Symbol file settings

as .\debug\term.elf. Set Action after connected option to None. See

Figure 3-22.

Figure 3-22 Debug General Options of Project Settings Dialog

Select Download from Category. Set download file

to .\debug\term.elf. Set Download Verify option on. Set download

address for download file as 0x2000000. Execute program starting from

download address as shown in Figure 3-23.

Figure 3-23 Debug Download Options of Project Settings Dialog

Memory Maps Settings is the same as the first section. Please refer to it.

2) Directory Settings

Select Directory pane from Project Settings Dialog. Set additional source

file directory as $(EMBEST_IDE)\Target\at91\drivers\terminal.

$(EMBEST_IDE) means Embest IDE installed directory. If you want to track the

program in driver function library or device function library, you can add more

source file directories here as shown in Figure 3-24.

Figure 3-24 Directory Pane of Project Settings Dialog

3) Compiler Settings

Select Compiler pane from Project Settings Dialog. Select General from

Category. Set Object files location as .\debug and add two include

directories: ..\..\..\targets\at91 and ..\..\...\build\xgcc-arm-elf\arm-elf\include.

Select Target Specific Options from category. Set Instruction Sets as ARM

interworking and others as default. See Figure 3-25.

Figure 3-25 Compiler General Options of Project Settings Dialog

4) Assembler Settings

Select Assembler pane from Project Settings dialog. Select general from

category. Set Object file location as .\debug. Add three include

directories: ..\..\..\targets\at91, ..\..\..\targets\at91\parts\r40807, ..\..\..\tar

gets\at91\targets\eb40. Add three predefines: AT91R40807=1, AT91EB40=1,

AT91_DEBUG_ICE=1. Select Target Specific Options from category. Make

the assembled code as supporting interworking and others as default. See

Figure below.

Figure 3-26 Assembler Pane of Project Settings Dialog

5) Linker Settings

Select Linker pane from Project Settings dialog. Select general from

category. Set Output file name as .\debug\term.elf and linker script file

as ..\..\..\targets\at91\targets\idscript as shown in Figure 3-27.

Figure 3-27 Linker General Options of Project Settings Dialog

Select Image Entry Options from category. Make entry file as cstartup.o

as shown in Figure 3-28.

Figure 3-28 Linker Image Entry Options of Project Settings Dialog

Select Include Object and Library Modules from category. Add three

library files:

..\..\..\Targets\at91\drivers\lib_drv\arminter\lib_drv_32.lib,

..\..\..\Targets\at91\parts\r40807\arm\r40807_lib32.lib,

..\..\..\build\xgcc-arm-elf\arm-elf\lib\arm-inter\libc.a.

See Figure below.

Figure 3-29 Linker Include Object Options of Project Settings Dialog

Note：The step above can be skipped if you directly open workspace file

term.ews created in the directory.

3.2.3 Compile and Link

Click Build > Build term to complete compiling, assembling and linking the

entire project. When “Command(s) successfully executed” appears at build

window of output window, it means the project has been successfully built.

3.2.4 Debug

1) Terminal Program Settings

Connect Serial A on EB40 circuit board to COM port of PC by using a

standard series port wire. Run Terminal program of windows. Click Setting >

Communication and set communication parameters as shown in Figure 3-30.

Figure 3-30 Terminal Program Communication Settings Dialog

Select port according to COM port of PC connected. Figure 3-30 above is set

to COM1 Port.

2) Debug

Create executive file, active the connection with target board through

Embest JTAG emulator, and then download the executive file. Disassemble

window will pop out after downloading file. Disassemble window will show

assemble code starting from address 0x2000000. Source file window relating

with instruction address 0x2000000 will pop out then. You can open file of

Term.c and set breakpoint at the beginning of main () function. Click Debug >

Go and execute program up to this line as shown in Figure below.

Figure 3-27 Source File Window

Click Debug > Go again. The program starts running. Terminal program

shows message of “AT91 TERMINAL TEST:” as shown in Figure below.

Figure 3-27 Terminal Program Window

Input “Hello, Embest”. Terminal program will show “AT91: Hello, Embest”.

3.3 Example Project of S3C4510B

The example program introduced in this part is a complete program based

on S3C4510, which may be debugged in RAM, and solidification may be

normally conducted in ROM. Led will be lit at interval during normal operation

period, and press the button to light another led.

For the convenience of users to rapidly understand S3C4510 programming

and application, the whole software includes only two program source files:

z starting assembling file: init.s

z C source program file: ledint.c

All macro definitions are included in the source files, and no other header

files are used.

The example program has integrally demonstrated the starting process of

S3C4510 processor, including configuration of memory area, stack setting and

interrupt vector setting, and has demonstrated the control to IO port after

completion of starting and function processing of interrupt. The example

program is the minimum program framework of S3C4510, and users can extend

their own application on this base.

The example program is based on EV4510 EVM board of Embest

Corporation, and the basic configuration includes 2M of Flash area, 16M of

DRAM area, IO port P16 connected to LED1, IO port P17 connected to LED2, and

IO port P9 connected to the button. If developing personnel want to apply the

program to the PCB designed by themselves, they only need to modify the value

of the system configuration register and the setting value of the memory area

register in the starting file, meanwhile, modify the value of the relevant register

of IO port in C-file according to actual IO port connection.

3.3.1 Interpretation of Source Program

z starting assembling file

Starting assembling file “init.s”; starting assembling file will complete in

turn: setting of interrupt vector, setting of system configuration register,

configuration of memory area, copy of data segment used in program to RAM

area, initialization of stack space, and entering into C language program entry.

What shall be paid attention to includes:

1) if software is debugged in RAM, the configuration of memory area will be
completed by integration environment through command script file,
therefore, it is unnecessary to use memory area configuration code in
program, which can be completed through switching to ROM symbol
definition;

2) when debugging is made in RAM, it is unnecessary to copy the content
of data segment, which will be automatically selected in program
through judgment whether the addresses of read only area and
read-write area are overlapped;

3) no handing to primary exception vector such as failure of prefetch has
been made in the code, perfect program shall handle any of primary
vectors, including saving the implementing state before entering into
primary exception vector for reference and returning to implement the
program after removing possible mistake.

The source code and the detailed interpretation of “Init.s” are as follows:

/**

* file name: init.s

* description: S3C4510 starting program

**/

#===

programming register bit definition

#===

.EQU LOCKOUT, 0xC0 @ forbid all interrupts

.EQU MODE_MASK, 0x1F @ processor mode bit

.EQU UDF_MODE, 0x1B @ undefined mode UDF

.EQU ABT_MODE, 0x17 @ abnormal mode ABT

.EQU SUP_MODE, 0x13 @ superuser mode SVC

.EQU IRQ_MODE, 0x12 @ interrupt mode IRQ

.EQU FIQ_MODE, 0x11 @ fast interrupt mode FIQ

.EQU USR_MODE, 0x10 @ user mode USR

#==

set interrupt and primary exception vector

#==

ENTRY:

B Reset_Handler @ implement from here after S3C4510

reset

B SystemUndefinedHandler

 B SystemSwiHandler

 B SystemPrefetchHandler

 B SystemAbortHandler

 B SystemReserv

 B SystemIrqHandler

 B SystemFiqHandler

#===

reset entry point

#===

 .global Reset_Handler

Reset_Handler: @ reset entry point

 #==

 # set system configuration register

 #==

 LDR r0, =0x3FF0000 @ address of system configuration

register: 0x3FF00000

 LDR r1, =0x83FFFF90 @ value of register is set as 0x83FFFF90

 STR r1, [r0] @ significance of register: to use

synchronical DRAM, peripheral register base value 0x3FF0000, which can

cache

#==

 # configuration of memory area, not define ROM when debugging the program

in RAM, and define when solidified

 #==

.ifdef ROM

 LDR r0, =SystemInitDataSDRAM @ load the setting value of memory

area register to save address

 LDMIA r0, {r1-r12} @ load 12 setting values

 LDR r0, =0x3FF0000 + 0x3010 @ load the address of memory area

register

 STMIA r0, {r1-r12} @ set memory area register

.endif

#==

 # introduce external symbol, symbol definition is in link script file

 #==

 .extern Image_RO_Limit @ size of read only area

 .extern Image_RW_Base @ initial address of read-write memory

area

 .extern Image_ZI_Base @ initial address of clear area, the

area of the uninitialized variable .bss segment in code

 .extern Image_ZI_Limit @ size of clear area

 #==

 # memory area needed to use to initialize C code

 #==

 LDR r0, =Image_RO_Limit @ obtain the size of read only area

 LDR r1, =Image_RW_Base @ obtain the initial address of

read-write memory area

 LDR r3, =Image_ZI_Base @ obtain the initial address of clear

area

 CMP r0, r1 @ compare whether the read only area and

the read-write area are overlapped

 BEQ LOOP1

LOOP0:

 CMP r1, r3 @ copy the content of “.data” data
segment in program to the read-write area

 LDRCC r2, [r0], #4

 STRCC r2, [r1], #4

 BCC LOOP0

LOOP1:

 LDR r1, =Image_ZI_Limit @ commence from the top of the clear

area

 MOV r2, #0

LOOP2:

 CMP r3, r1 @ clear

 STRCC r2, [r3], #4

 BCC LOOP2

 #===

 # initialize stack space

 #===

INITIALIZE_STACK:

 MRS r0, cpsr

 BIC r0, r0, #LOCKOUT | MODE_MASK

 ORR r2, r0, #USR_MODE

 ORR r1, r0, #LOCKOUT | FIQ_MODE

 MSR cpsr_cf, r1

 MSR spsr_cf, r2

 LDR sp, =FIQ_STACK @ set fast interrupt stack space

 ORR r1, r0, #LOCKOUT | IRQ_MODE

 MSR cpsr_cf, r1

 MSR spsr_cf, r2

 LDR sp, =IRQ_STACK @ set interrupt stack space

ORR r1, r0, #LOCKOUT | ABT_MODE

 MSR cpsr_cf, r1

 MSR spsr_cf, r2

 LDR sp, =ABT_STACK @ set abnormal stack space

 ORR r1, r0, #LOCKOUT | UDF_MODE

 MSR cpsr_cf, r1

 MSR spsr_cf, r2

 LDR sp, =UDF_STACK @ set undefined abnormal stack space

 ORR r1, r0, #LOCKOUT | SUP_MODE

 MSR cpsr_cf, r1

 MSR spsr_cf, r2

 LDR sp, =SUP_STACK @ set superuser stack space

 #===

 # switch to user mode and set user stack space

 #===

 MRS r0, cpsr

 BIC r0, r0, #LOCKOUT | MODE_MASK

 ORR r1, r0, #USR_MODE

 MSR cpsr_cf, r0

 LDR sp, =USR_STACK

 #===

 # enter into C language program entry

 #===

 .extern __main

 BL __main

#===

 #definition of vector function, definition of internal function in C

program

#===

SystemUndefinedHandler: B SystemUndefinedHandler

SystemSwiHandler: B SystemSwiHandler

MakeSVC: B MakeSVC

SystemPrefetchHandler: B SystemPrefetchHandler

SystemAbortHandler: B SystemAbortHandler

SystemReserv: B SystemReserv

SystemIrqHandler: @ interrupt vector

 .extern ISR_IrqHandler

 STMFD sp!, {r0-r12, lr} @ interrupt stack saving

 BL ISR_IrqHandler @ interrupt C manipulation function

 LDMFD sp!, {r0-r12, lr} @ recover interrupt stack

 SUBS pc, lr, #4 @ return to the program index before

interrupt

SystemFiqHandler: @ fast interrupt vector

 .extern ISR_FiqHandler

 STMFD sp!, {r0-r7, lr} @ fast interrupt stack saving

 BL ISR_FiqHandler @ fast interrupt C manipulation function

 LDMFD sp!, {r0-r7, lr} @ fast recover interrupt stack

 SUBS pc, lr, #4 @ return to the program index before fast

interrupt

#===

memory area register setting value

#===

SystemInitDataSDRAM:

 .long 0x00003E02 @ EXTDBWTH setting value

 .long 0x02000060 @ ROMCOON0 setting value, 0~0x200000

 .long 0x00000060

 .long 0x00000060

 .long 0x00000060

 .long 0x00000060

 .long 0x00000060

 .long 0x14010301 @ DRAMCON0 setting value,

0x400000~0x1400000

 .long 0x00000000

 .long 0x00000000

 .long 0x00000000

 .long 0x9C298360 @ REFEXTCOM setting value

#===

stack space definition interval

#===

.data

 .SPACE 1024

USR_STACK: .SPACE 512

UDF_STACK: .SPACE 512

ABT_STACK: .SPACE 512

IRQ_STACK: .SPACE 512

FIQ_STACK: .SPACE 512

SUP_STACK:

z C master program file

C master program file “led_int.c” completes the initialization of IO port and

interrupt, realization of interrupt function, and handling to the uncompleted fast

interrupt in the program, and remain an empty function of fast interrupt

handling for the need of link.

The source code and detailed interpretation of “Led_int.c” are as follows:

/***

* file name: led_int.c

* description S3C4510 control IO and interrupt demonstration program

 */

* P16/TOUT0 connected to LED1

* P17/TOUT1 connected to LED2

* P9/XIRQ1 connected to button

**/

#define VPint *(volatile unsigned int *)

#define Base_Addr 0x3ff0000 // register base address

#define IOPMOD (VPint(Base_Addr+0x5000)) // IO mode register

#define IOPCON (VPint(Base_Addr+0x5004)) // IO control register

#define IOPDATA (VPint(Base_Addr+0x5008)) // IO data register

#define INTMOD (VPint(Base_Addr+0x4000)) // interrupt mode register

#define INTPEND (VPint(Base_Addr+0x4004)) // interrupt pending

register

#define INTMASK (VPint(Base_Addr+0x4008)) // interrupt mask register

#define INTOFFSET (VPint(Base Addr+0x4024)) // interrupt shift register

void ISR_IrqHandler(void);

void ISR_FiqHandler(void);

/**

* name: __main

* function: C language entry master function

**/

void __main(void)

{

 int i, j;

 IOPMOD = 0x00030000; // set P16 and P17 as output, other IO port as

input

 IOPCON = 0x320; // set P9 as external interrupt, high level

advancing edge triggering

 INTMOD = 0x0; // interrupt is IRQ mode

 INTMASK = 0x3FFFFD; // mask interrupts except XIRQ

 for(;;)

 {

 IOPDATA = 0x00010000; // light LED1

 for(i=0; i < 65000; i++) ; // simple delay

 IOPDATA = 0; // put out LED1

 for(i=0; i < 65000; i++) ;

 }

}

/**

* name: ISR_IrqHandler

* function: interrupt handling function

**/

void ISR_IrqHandler(void)

{

 unsigned int IntOffSet;

 IntOffSet = (unsigned int)INTOFFSET;// obtain interrupt source

 INTPEND = 1<<(IntOffSet>>2); // remove interrupt pending

symbol

 IOPDATA = 0x00020000; // light LED2

}

/**

* name: ISR_FiqHandler

* function: fast interrupt handling function

**/

void ISR_FiqHandler(void)

{

}

3.3.2 Creation of Project

Select menu File > New Workspace, the system will pop up project creation

dialog, as shown in Fig 3-35:

Fig 3-35 project creation dialog

Input the project name of the newly-created project “led_int” in the edit box

of project name, and input the directory path

“C:\EmbestIDE\Examples\Samsung\ledint in the edit box” for storing the

project in the edit box of project location.

Select button OK to create new project ledint, and the integration

environment will create the workspace and project with the same name as the

project.

Select the right key menu to create source file folder in the window of

workspace and add relevant source file, at last, the workspace is shown as Fig

3-36:

Fig 3-36 window of workspace

3.3.3 Configuration of Project

The processor configuration and emulator configuration in the project is the
same as in the example described in Part 1 of this chapter, what needs to pay
attention to is that, during the course of processor configuration, for Maker in
Peripheral Register, select S3C4510B, for Chip, select S3C4510B, because the
example is based on S3C4510B chip of Samsung Corporation, as shown in Fig
3-37, and the please set other configurations according to the following steps.

Fig 3-37 project configuration processor page layout

z Debugging equipment configuration

Select project configuration dialog box to debug equipment debug page

layout, as shown in Fig 3-38:

¾ Select General option in Category

� set debugging symbol file as./debug/ledint.elf;

� if debugged in RAM, set “Action after connected” of emulator as
command script, then select the command script file to implement as
“net-start.cs”;

� if debugged in ROM, set “Action after connected” of emulator as
“none”;

command script file is a serial commands for integration environment to
implement, which will usually complete the initialization work needed by
processor, including reset, memory area configuration, and disable interrupt,
etc, users shall use command script file to map RAM area to O address when
debugging in RAM in this example, which is the same with the address of Flash

to be solidified to finally, so that the users download program to O address to
debug whether the phenomenon is consistent to the actual operation; the
command script “net-start.cs” used in this example and the interpretation is as
follows:

reset ; reset processor
stop ; stop processor operation
memwrite 0x3ff4008 0xffffffff ; remove all interrupts
memwrite 0x3ff4004 0xffffffff ; mask all interrupts
memwrite 0x3ff0000 0x83FFFF90 ; config. System register
memwrite 0x3ff3010 0x00003e02 ; config. Access width register
memwrite 0x3ff3014 0x1a060040 ; config.ROM0 (0x1800000-0x1a00000)
memwrite 0x3ff302C 0x10000301 ; config.RAM0从0x0到0x1000000
memwrite 0x3ff303C 0x9c298360 ; config. DRAM brush parameter register

Fig 3-38 general option of project configuration debugging page layout

¾ select Download option in Category, as shown in Fig 3-39:

� set download file as ./debug/ledint.elf;

� set download address as 0x0;

� other default settings used;

Fig 3-39 download option of project configuration debugging configuration
page layout

¾ select debugging option Memory Maps in Category, as shown in Fig

3-40:

� Set Memory Map as No map file;

Fig 3-40 memory mapping option of project configuration debugging page
layout

Memory mapping file “.map” file is used for debugging in integration
environment. During the process of software debugging, it will produce
abnormities in some processors to access illegal memory area, if the
abnormities fail to be handled, they will cause the software debugging process

not able to continue; to use memory area mapping file (*.map) may prevent the
above problems and adjust emulator access speed to reach the moderate level.

z compiling configuration

select project configuration dialog box compiling configuration (Compiler)

page layout, as shown in Fig 3-41:

¾ select General option in Category

� set object files location as .\debug;

¾ other default settings used;

Fig 3-41 general option of project configuration compiling page layout

z assembly configuration

select project configuration dialog box assembly configuration (Assembler)

page layout, as shown in Fig 3-42:

¾ select General option in Category

� Set object files location as .\debug:

� Set predefine as ROM=1 if it needed t build final solidification
program and debug in ROM; do not set any predefine for debugging in
RAM.

¾ other default settings used;

Fig 3-42 general option of project configuration assembly configuration
page layout

z link configuration

select project configuration dialog box link configuration (Linker) page

layout, as shown in Fig 3-43:

¾ select General option in Category

� set linker script file as flash.ld when solidifying program or
debugging in ROM;

� set linker script file as ram_ice.ld when debugging program in RAM;

� set output file name as .\debug\ledint.elf;

¾ other default settings used;

Fig 3-43 general option of project configuration link page layout

link location file shall be used in embed development of system level,

and the file describes the relevant information of code link location, including

code segment, data segment address, etc, the linker shall use the file to

make correct location to the codes of the whole system. The link location

files used for RAM debugging and solidification are different, and the

following are the link location files used for solidification:

SECTIONS
{
. = 0x000000; set the current address as 0
.text : { *(.text) }; code segment, symbol lay program code here from 0
.rodata : { *(.rodata) }; read only data segment, the fixed values such as

static global variable in program is laid in this segment
Image_RO_Limit = .; read only area length, the symbol used in starting

program
. = 0x0400000; set the current address as 0x400000
Image_RW_Base = .; read and write area base address, the symbol used in

starting program
.data : { *(.data) }; data segment, the initialized global variable in

program is laid in this segment
Image_ZI_Base = .; clear area base address, the symbol used in starting

program
.bss : { *(.bss) }; contain uninitialized globally useable data, such as

uninitialized global variable
Image_ZI_Limit = .; clear area length, the symbol used in starting program
end = .; end address
.debug_info 0 : { *(.debug_info) }; debugging information output

segment
.debug_line 0 : { *(.debug_line) }
.debug_abbrev 0 : { *(.debug_abbrev)}
.debug_frame 0 : { *(.debug_frame) }
}

the link location file used for debugging in RAM:

SECTIONS

{

. = 0x000000; set the current address as 0

.text : { *(.text) }; code segment, symbol lay program code here from 0

Image_RO_Limit = .; read only area length, the symbol used in starting

program

Image_RW_Base = .; read and write area base address, the symbol used in

starting program

.rodata : { *(.rodata) }; read only data segment, the fixed values such as

static global variable in program is laid in this segment

.data : { *(.data) }; data segment, the initialized global variable in program

is laid in this segment

Image_ZI_Base = .; clear area base address, the symbol used in starting

program

.bss : { *(.bss) }; contain uninitialized globally useable data, such as

uninitialized global variable

Image_ZI_Limit = .; clear area length, the symbol used in starting program

end = .; end address

.debug_info 0 : { *(.debug_info) }; debugging information output

segment

.debug_line 0 : { *(.debug_line) }

.debug_abbrev 0 : { *(.debug_abbrev)}

.debug_frame 0 : { *(.debug_frame) }

}

3.3.4 Debugging of Program in RAM

Debugging of software may be completed in ROM area or RAM area,

because it is convenient to read and write in RAM area and the access speed is

high, all the debugging during the process of software development shall be

completed in RAM area if only the hardware condition allows.

The following steps shall be completed before debugging of software:

compile link project, to connect emulator and target board, and download

program.

z compile link project

Users select Build menu, compile corresponding file or project, and output

relevant compiling and link information at the Build subwindow of the Output

window. According to link configuration, led_int.elf file will be built

under .\led_int\debug\ directory after passing of program compiling, and the

file contains the execution file of debugging information.

z connect emulator and target board

 Select Remote Connect submenu on Debug menu, and the debugger in

integration environment will be connected to the target system through

emulator.

z download program

After connection of target system, if automatic download option is set in the

debugging configuration option, the debugger will automatically download

software; or it will select Download submenu download program of the menu

Debug. Now, the debugger will download binary system instruction file to the

location designated by the target board memory area after removing the

debugging information in led_int.elf, meanwhile, will display the download

progress on the status bar. In this example, the download address set is 0x0,

and the address is the initial address of RAM memory area through command

script mapping. After download successfully, the status bar will display

“Download Completed” in blue, or the information of “Download Failed” will be

displayed in red status bar.

The debugging interface of Embest IDE after download of program is shown

in Fig 3-44, and now the debugging of program may be started.

Fig 3-44 Embest IDE debugging interface

Embest IDE will display the corresponding assembly instruction at the

current download address after download of program, and to select “Go to

source” submenu on the right key menu may switch to the window of the source

file.

Now it may, through setting breakpoint at the window of anti-assembly file

or source file, implement the operation such as single step run to debug

program and analyze the problems in program, as shown in Fig 3-45.

Fig 3-45 set breakpoint in source program

3.3.5 Download onto the Flash ROM

The program passed through debugging in RAM is different from the

program finally downloaded onto Flash ROM, and users shall:

z Set ROM=1 in the predefine option of assembly, or directly add “.equ

ROM 1” in init.s file, and the starting file rather than command script will

complete the re-mapping of memory area.

z Select the link file flash.ld in Linker, and the link file and starting file will

combine to complete the handling job of data segment downloaded onto

Flash originally.

After completion of the above modification, compile program again. Then

use Elf to Bin tool to change ledint.elf file into binary format file ledint.bin.

At last, use Embest Flash Programmer to download ledint.bin to the Flash

ROM, as show in Fig 3-46.

Fig 3-46 Flash programmer interface program page layout

3.3.6 Debugging of Program in Flash

When target board limited by software resources, such as the space of RAM

area is less than the space of program code, which causes that debugging can

not be made in RAM area, or it is needed to observe the actual operation

situation of program in Flash, it may select to debug program after completing

the solidification works described in the previous part.

The project configuration for debugging of program in Flash is different from

that of the debugging in RAM:

z it is unnecessary to implement script file in debugging option, the work

is completed during the course of starting file, and it is needed to

change the option “Action after connected” into “None”;

And the debugging processes are different too;

z after connecting to emulator, it unnecessary to implement Download

program operation

z if it is to commence debugging program at the entry of starting program,

reset command shall be implemented, and now the program will stop at

the zero address;

z two hardware breakpoints may be set at most when program is

debugged in Flash.

3.3.7 Startup Program Design of S3C44B0X

S3C44B0 starting program design is different from the starting program of

S3C4510 as we describe in the above example, the major reason lies in that

S3C44B0 has no memory mapping function, all the addresses of memory area

are fixed, in addition, S3C44B0 provides vector interrupt function and reduces

interrupt delay. Therefore, in the starting program of S3C44B0, the appearance

of vector interrupt function leads to extension of vector table, meanwhile, for

the convenience of design of program and the debugging in RAM, interrupt entry

is shifted to the tip end of RAM through address definition mode.

The starting program of S3C4510 represents the starting flow of processor

chips of most integrate ARM, and S3C44B0 represents the rest, to understand

the starting program of these two processors is helpful to the starting design of

other processors.

The following codes are the source codes and the interpretation of the

starting program of S3C44B0, in order to effectively apply the space, some

similar interrupt entry definitions and function macro definitions are omitted,

and the omitted parts is replaced by “……” and notes are given, if users want to

use the following source codes as starting programs, they shall add the omitted

parts by themselves.

file name: INIT.S
description: S3c44b0x starting file

#==
register definition and bit definition
#==
.equ INTMSK, 0x01e0000c
.equ WTCON, 0x01d30000

.equ CLKCON, 0x01d80004
.equ LOCKTIME, 0x01d8000c

.equ FIQMODE, 0x11
.equ IRQMODE, 0x12
.equ SVCMODE, 0x13
.equ ABORTMODE, 0x17

.equ UNDEFMODE, 0x1b

.equ MODEMASK, 0x1f

.equ NOINT, 0xc0

#===
interrupt handling macro
#===
 .macro HANDLER HandleLabel
 sub sp, sp, #4 @ stack space degression save jump
address

stmfd sp!, {r0} @ save work register r0 to stack
 ldr r0, =\HandleLabel @ load interrupt entry address location
to r0
 ldr r0, [r0] @ load interrupt entry address to r0
 str r0, [sp,#4] @ save interrupt entry address to stack
 ldmfd sp!, {r0,pc} @ recover work register and jump to
interrupt function
 .endm

#==
set ARM7 interrupt and primary exception vector
#==
ENTRY:
 b ResetHandler @ implement from here after S3C4510
reset
 b HandlerUndef @ undefined primary exception vector
 b HandlerSWI @ soft interrupt vector
 b HandlerPabort @ obtain fetch primary exception vector
 b HandlerDabort @ obtain data primary exception vector
 b . @ keep
 b HandlerIRQ @ interrupt vector
 b HandlerFIQ @ fast interrupt vector

#==
set 44B0 interrupt vector table
#==
VECTOR_BRANCH:
 ldr pc,=HandlerEINT0 @ mGA H/W interrupt vector table
 ldr pc,=HandlerEINT1 @
 …… @ omit
 ldr pc,=HandlerADC @ mGKB
 …… @ omit

 b .

#==
interrupt vector handling macro
#==
HandlerFIQ: HANDLER HandleFIQ
HandlerIRQ: HANDLER HandleIRQ
HandlerUndef: HANDLER HandleUndef
HandlerSWI: HANDLER HandleSWI
HandlerDabort: HANDLER HandleDabort
HandlerPabort: HANDLER HandlePabort

HandlerADC: HANDLER HandleADC
 …… @ omit
HandlerEINT1: HANDLER HandleEINT1

HandlerEINT0: HANDLER HandleEINT0

#==
interrupt vector handling macro
#==
ResetHandler:
 ldr r0,=WTCON @ watchdog forbidden
 ldr r1,=0x0
 str r1,[r0]

 ldr r0,=INTMSK
 ldr r1,=0x07ffffff @ all interrupts forbidden
 str r1,[r0]

 #===
 # set clock control controller
 #===
 ldr r0, =LOCKTIME
 ldr r1, =0xfff
 str r1, [r0]

 ldr r0, =CLKCON
 ldr r1, =0x7ff8 @ clock of all modules unlocked
 str r1, [r0]

 #===
 # set memory area controller
 #===

 ldr r0, =SMRDATA
 ldmia r0, {r1-r13}
 ldr r0, =0x01c80000
 stmia r0, {r1-r13}
 #===
 # initialize stack space
 #===
 ldr sp, =SVCStack @ switch to superuser stack space
 bl InitStacks

 #===
 # introduce external symbol, symbol definition is in link script file
 #===
 .extern Image_RO_Limit @ size of read only area
 .extern Image_RW_Base @ initial address of readable-writeable
memory area

.extern Image_ZI_Base @ initial address of clear area

.extern Image_ZI_Limit @ size of clear area

 #===
 # initialize the memory area needed to use by C code
 #===
 LDR r0, =Image_RO_Limit @ obtain the size of read only area
 LDR r1, =Image_RW_Base @ obtain the initial address of readable-
writable memory area
 LDR r3, =Image_ZI_Base @ obtain the initial address of clear area
 CMP r0, r1@ compare whether the read only area and the
readable-writable area are overlapped
 BEQ LOOP1
LOOP0:
 CMP r1, r3 @ copy the content of “.data” data segment in program to
the readable-writable area
 LDRCC r2, [r0], #4
 STRCC r2, [r1], #4
 BCC LOOP0
LOOP1:
 LDR r1, =Image_ZI_Limit @ commence from the top of the clear
area
 MOV r2, #0
LOOP2:
 CMP r3, r1 @ clear
 STRCC r2, [r3], #4

 BCC LOOP2

 #===========================
 # enter into C language program entry
 #===========================
.extern __main
BL __main

#==
initialize the function of stack space
#==
InitStacks:
 mrs r0, cpsr
 bic r0, r0, #MODEMASK
 orr r1, r0, #UNDEFMODE | NOINT
 msr cpsr_cxsf, r1
 ldr sp, =UndefStack @ set undefined abnormal stack space

 orr r1, r0, #ABORTMODE|NOINT
 msr cpsr_cxsf, r1
 ldr sp, =AbortStack @ set abnormal stack space

 orr r1, r0, #IRQMODE|NOINT
msr cpsr_cxsf, r1
 ldr sp, =IRQStack @ set interrupt stack space

 orr r1, r0, #FIQMODE|NOINT
 msr cpsr_cxsf, r1
 ldr sp, =FIQStack @ set fast interrupt stack space

 bic r0, r0, #MODEMASK|NOINT
 orr r1, r0, #SVCMODE
 msr cpsr_cxsf, r1
 ldr sp, =SVCStack @ set superuser stack space

 mov pc,lr @ function return

#==
setting value of relevant register of memory area
#==
SMRDATA:
 .long 0x11110101 @ memory area access width control
register

 .long 0x00000600 @ BANK0 control register
 .long 0x00007FFC @ BANK1 control register
 .long 0x00007FFC @ BANK2 control register
 .long 0x00007FFC @ BANK3 control register
 .long 0x00007FFC @ BANK4 control register
 .long 0x00007FFC @ BANK5 control register
 .long 0x00018000 @ BANK6 control register
 .long 0x00018000 @ BANK7 control register
 .long 0x00860459 @ SDRAM brush control register
 .long 0x10 @ SDRAM memory area size
 .long 0x20 @ BANK6 SDRAM mode register
 .long 0x20 @ BANK7 SDRAM mode register

.equ STARTADDRESS, 0xc7fff00
#==
stack space definition
#==
.equ UserStack, STARTADDRESS-0x500 @ c1(c7)ffa00
.equ SVCStack, STARTADDRESS-0x500+256 @ c1(c7)ffb00
.equ UndefStack, STARTADDRESS-0x500+256*2 @ c1(c7)ffc00
.equ AbortStack, STARTADDRESS-0x500+256*3 @ c1(c7)ffd00
.equ IRQStack, STARTADDRESS-0x500+256*4 @ c1(c7)ffe00
.equ FIQStack, STARTADDRESS-0x500+256*5 @ c1(c7)fff00
#==
ARM interrupt vector entry definition
#==
.equ HandleReset, STARTADDRESS
.equ HandleUndef, STARTADDRESS+4
.equ HandleSWI, STARTADDRESS+4*2
.equ HandlePabort, STARTADDRESS+4*3
.equ HandleDabort, STARTADDRESS+4*4
.equ HandleReserved, STARTADDRESS+4*5
.equ HandleIRQ, STARTADDRESS+4*6
.equ HandleFIQ, STARTADDRESS+4*7

#==
S3C44B0 interrupt vector entry definition
#==
.equ HandleADC, STARTADDRESS+4*8
…… @ omit
.equ HandleEINT4567, STARTADDRESS+4*29
.equ HandleEINT3, STARTADDRESS+4*30

.equ HandleEINT2, STARTADDRESS+4*31

.equ HandleEINT1, STARTADDRESS+4*32

.equ HandleEINT0, STARTADDRESS+4*33 @ 0xc1(c7)fff84

4. Editor

 Embest development environment includes an integrated Text editor to

manage, edit, and print source files.

4.1 Editor Overview

The EmbestIDE source code editor includes standard text manipulation

capabilities, as well as the following specialized features:

◊ C and assembly syntax color highlighting.

◊ Debugger integration: the editor window tracks code execution.

◊ Compiler integration: compiler messages links to the editor window.

The EmbestIDE editor also provides features tailored to the program

environment. Editor display program syntactic elements such as C keywords,

preprocessor directives, and comments in color. Because the editor is

integrated with the debugger, the editor also keeps pace automatically with

program execution during debugging session.

You can work on as many files simultaneously as your computer's memory

allows. This is convenient for you are working with more than one module, or

want to edit both a source and header file at the same time.

Typically, developers use the EmbestIDE editor to work with source files and

header files. However, because it is a text editor, it can also be used on any text

file. For example, you can view a bug report, or save a note in a text file.

The EmbestIDE editor uses standard Windows editing commands and

conventions. Most of the procedures for using the editor should seem familiar if

you have used other Windows-based text editors. With the Text editor, you can:

◊ Perform advanced find and replace operations in a single file or multiple

files, including using regular expressions and incremental searching.

◊ Use Bookmarks to mark frequently accessed lines in your source file.

◊ Customize the Text editor with the selection margin, indent, and drag and

drop.

◊ Select lines, multiple lines, or columns.

◊ Use drag-and-drop editing within one editor window, between editor

windows, and between the Text editor and the debugger.

◊ Manage the source window.

While using the Text editor, in many instances you can right-click mouse

to display a shortcut menu of frequently used commands. The commands

available depend on what the mouse pointer is pointing to.

4.2 The Standard Toolbar

The Standard toolbar has buttons for frequently used editing commands that

are also available in the File and Edit menus. Figure 4-1 shows the Standard

toolbar.

When you first start EmbestIDE in its default configuration, the Standard

toolbar appears just below. You can click View>Toolbars>Standard to show and

hide the standard tool bar.

Figure4-1 Standard Tool Bar

The following are summary descriptions of each buttons and the equivalent

menu option.

Table 4-1 Standard Tool Bar Buttons Description

button menu description

 File>New Create a new file

 File>Open Open an existing file

 File>Save Save current file

 File>Save All Save all opening files

 File>Print Print current file

 Edit>Cut
Delete the selection and place it into
the clipboard

 Edit>Copy Copy the selection to the clipboard

 Edit>Paste
Insert the clipboard text at the
insertion point

 Edit>Undo Undo the previous operation

 Edit>Redo Redo the previous operation

 View>Workspace View or hide the workspace window

 View>output View or hide the output window

 Edit>Find in Files Search strings in multiple files

 Edit>Find Next
Search for another instance of the
same string in the same search
direction

 Edit>Find Previous
Repeat the search, but in the opposite
direction

 Edit>Replace
Specify both a string to find and a
replacement for it

Edit>More Bookmarks>Toggle
Bookmark

Toggles an unnamed bookmark for the
current line

Edit>More Bookmarks>Next
Bookmark

Moves to the line containing the next
bookmark

Edit>More Bookmarks
>Previous Bookmark

Moves to the line containing the
previous bookmark

Edit>More Bookmarks>Clear
All Bookmarks

Clears all bookmarks in the window

4.3 File Management

The following sections describe file management commands.

4.3.1 Create a file

Table 4-2 Operation of Create a New File

Button Shortcut File menu

 Ctrl+N File > New

To create a new file, click File> New, an empty window appears, ready for

input text.

4.3.2 Open a File

Table 4-3 Operation of Open a File

Button Shortcut File menu

 Ctrl+O File > Open

To open an existing file, click File>Open. A standard Windows file browser

allows you to select which file to be open.

Recent files of the File menu (File > Recent Files) lists the most recently

opened files. You can choose one of these without navigating through the open

dialog box.

4.3.3 Save and Close a File

Table 4-4 Save and Close File Button

Button Shortcut File menu

 Ctrl+S File > Save

N/a File > Save As

 File > Save All

N/a Ctrl+F4 File > Close

To save current file, click File>Save. If need specify a new name (or path)

for current file, click Save As instead. (Save is disabled until you modify current

file.)

If you open multiple files, you can also click File>save all to save the

modification of all opening files.

Click Close to dismiss the editor window for current file. If the file has

changed since you last saved, a confirmation dialog box offers you the

opportunity to save the file before closing it.

4.3.4 Print

Table 4-5 Print Buttons

Button Shortcut File menu

 Ctrl+P File > Print

N/a File > Print Preview

N/a File > Page Setup

N/a File > Print Setup

To print current edit window, click File>Print. A standard print dialog box

(Figure 4-2) appears.

Figure 4-2 Print Dialog Box

Click File > Print Preview, to preview the page will be printed. Click File >

Page Setup to change the margin size of each page in printout.

4.4 Typing and Editing

Only one edit window in EmbestIDE is active at any time. The active window

contains a text cursor, a blinking vertical line also called an insertion point.

Whatever you type appears at the text location indicated by the text cursor.

The editor is designed for edit source files. As such, it does not provide the

"word wrap" feature found in many word edit software. You must press ENTER

to start a new line. If a line is too long for the current width of the edit window,

the text scrolls horizontally as necessary to display the text you are editing.

There are two edit modes in EmbestIDE: overtype mode, which replaces the

existing text under the cursor as you type, and insert mode (the default), which

displaces text to the right while adding the characters you type. Use the INSERT

key on your keyboard to toggle between these two modes. The edit mode does

not change when you switch edit windows; the last mode you selected continues

to apply, even if you switch to a window that you last edited with the other edit

mode.

NOTE: If you cannot type inside an editor window, check for a READ indicator
on the status bar at the bottom of EmbestIDE window. If that indicator
appears, the editor is displaying as a read-only file. To enable type in that
window, click Edit>Read Only menu to turn off the read-only file attribute.

4.4.1 Edit Text

Table 4-6 Edit Button

Button Shortcut Edit menu

 Ctrl+Z Edit > Undo Typing

 Ctrl+Z Edit > Redo

 Ctrl+X Edit > Cut

 Ctrl+C Edit > Copy

 Ctrl+V Edit > Paste

 Del Edit > Delete

 Ctrl+A Edit > Select All

The edit menu supports the Windows standard edit functions: Undo, Cut,

Copy, Paste, Delete, and Select All, with standard shortcuts. With the text editor,

you can cut, copy, and paste selected text using menu commands or

drag-and-drop operation. You can also undo and redo selected edit actions.

The editor uses the standard Windows keys and mouse actions for moving

throughout the file. For example, the following specialized keys have the

standard effects:

Table 4-7 The Standard Windows Edit Keys

Page Up Display the previous portion of text.

Page Down Display the next portion of text.

End Move the cursor to the end of the line.

Ctrl+End Display the end of the document.

Home Move the cursor to the beginning of the line.

Ctrl+Home Display the start of the document.

← ↑ ↓ → Move the cursor into the direction of the arrow,

one character or line at a time.

Ctrl + ←

Ctrl + →

Move the cursor one word at a time, in the

direction of the arrow.

Ctrl + ↑

Ctrl + ↓

Scroll the window by one line, in the direction of

the arrow, without changing cursor position.

You can set bookmarks to mark source lines that need frequently access in

your source file. Once a bookmark is set, you can use menu or keyboard

commands to move to it. You can remove a bookmark when you no longer need

it.

4.4.2 Find and Replace Text

Table 4-8 Find and Replace Button

Button Shortcut Menu

N/a Ctrl+F Edit > Find

 F3 Edit > Find Next

 Shift+F3 Edit > Find Previous

 Edit > Find in Files

 Ctrl+H Edit > Replace

The text editor supports string searching. You can search text in a single

source file or in multiple files.

Click Edit>Find to search for a string in the current active file window. Figure

4-4 shows the Find dialog box. Enter the string you are looking for, set the

options, and click find next. The option buttons under Direction determine

whether the editor searches back (Up) from the cursor position, or forwards

(Down). The option of match whole word only means Matches all occurrences of

a text string not preceded or followed by an alphanumeric character or the

underscore (_). The option of match case means Searches for text that matches

the capitalization of the text string. If the text is not found, the editor displays an

error message; the Find dialog box remains open, in case you need to correct

the search string. To continue your search, use the Find Next or Find Previous

shortcut keys, or the equivalent toolbar buttons on the standard toolbar. The

default shortcut key for Find Next is F3; the default key combination for Find

Previous is SHIFT+F3.

Figure 4-4 Find Dialog Box

Click Edit > Replace to specify both a string to find and a replacement for it.

Figure 4-5 shows the Replace dialog box. The buttons in the Replace dialog box

allow you to replace all occurrences of a string, or examine each individual

occurrence before decide whether or not to replace it.

Figure 4-5 Replace Dialog Box

You can also find text in multiple files. Just click Edit > Find in Files to do this

search. The Find in Files command supports two output panes. This allows you

to conduct a second search through multiple files without losing the results from

your first search. Figure 4-6 shows the Find in Files dialog box. In the Find what

box, type the search text. In the In files/file types box, select the file types you

want to search. You can use the drop-down list to select from common file types

or to type text specifying other file types. In the In folder box, select the primary

folder that you want to search. Click the Browse button to display the Choose

Directory dialog box if you want to change drivers and directories. If necessary,

select one or more of the Find options. If you want to direct the search output to

a second Find in Files pane, select the Output to pane 2 check box. Click the Find

button to begin the search.

The Output window displays the list of file locations where the text string

appears. Each occurrence lists the fully qualified filename, followed by the line

number of the occurrence and the line containing the match. To open a file that

contains a match, double-click the entry in the Output window.

An editor window contains the file opens with the line contain the match

selected. You can jump to other occurrences of the text string by double-clicking

the specific entries in the Output window.

When you jump to a found string location specified in the Output window,

the corresponding source file is loaded if it is not already open in the editor.

Figure 4-6 Find in Files Dialog Box

4.4.3 Hex file Editor

Embest IDE Hex file editor can open the HEX or Bin format files, and read,

modify and save.

Open file: when you open file with the menu File Open, drop down file

type select box and select Hex Files（*.hex,*.bin） to open the file.

Fig. 4-7 Open Hex file dialog box

Edit file: after open Hex file, the display in Source Program Window is

shown in fig. 4-8. The user can directly modify the content of file in left Hex area.

The editor will automatically identify ASCII characters and display in the right.

As the same, the user can also directly input ASCII code in right ASCII area.

Fig. 4-8 Hex file Editor in Source Program Window

4.4.4 Find in Hex file

Hex file editor supports the forward and back finding of ASCII character

string and Hex code. The user highlights Find in menu option to activate Find

Dialog Box with right key of mouse in Source Program Window, or activates it

through Find option in Edit menu:

Fig. 4-9 Hex file finding interface

The user can input Hex code while finding:

Fig. 4-10 Hex file finding input dialog box

The user can also input ASCII code while finding, and highlight Find ASCII

option:

Fig. 4-11 Hex binary file finding input dialog box

Hex file editor also supports copy, stick, cancel, print and print interview so

that the user is easy to view Hex file.

4.5 Function List Window of Source Program

When users open C language or C ++ source file in editing window, source

file function listing window will dynamically display the function contained in the

current source file, and user can select the display format of function through

menu.

Users can self-define the display mode of function in list:

z display detailed information of function

z only display function name

z do not display function return style

z do not display function call parameter

4.5.1 Introduction

Click the menu Tools > Options, select Extra Function Prototype in the

ejected dialog box; the window Func can be found in workspace window; the

function list currently opening C/C++ program is shown in the window; double

click the position of function name fast positioning function in source program.

As shown in fig. 4-12.

Fig 4-12 Dynamic list window of source program function

Click right key in list window to select the display style of function. The ejected

right key menu is shown in fig. 4-13.

Fig 4-13 Right key menu in dynamic list window of functions

Introduction to main options of right key menu in dynamic list window of

functions

Whole Prototype: display all information concerning definition of function,

including return type, function name, and parameter

Func Name Only: Only display function name

No Return Type: display function name, parameter of function definition

No Parameters: display return type, function name of function definition

5. Project Management

5.1 Introduction

The project facility is a key element of EmbestIDE. It provides graphical and

automated mechanisms for create applications that can be downloaded to

target. A project consists of the source code files, build settings, and binary

codes that are used to create a downloadable application. The project facility

provides a simple means for define, modify, and maintain a variety of build

options for each project. Each project requires its own directory.

In EmbestIDE, the Project Workspace is a container for your development

projects. When you create a new project, a workspace is created at the same

time. You can use the Project Workspace window to view and access the various

elements of your projects. After you have created a project workspace, you can

add new projects, including independent projects.

The workspace directory is the root directory for the project workspace. The

projects you add to the project workspace can be located on other paths, even

on a different drive.

The project facility provides mechanisms for:

◊ Organize the files that make up of a project. A project is a collection of

source files, library files, and other input files. You can organize the files in a

project in various ways to provide a logical structure to your source files.

◊ Group related projects into a workspace.

◊ Define varied sets of build options. The project facility provides a simpler

mean for configuration and building, a project settings dialog box enable you

define target processor, debug device, debug information, output file, compiling

option, assemble option, linker option, and so an.

◊ Build applications. A build toolbar is provided, which provides access to all

the major build commands.

◊ Download application objects to the target.

This chapter describes many of the basic tasks involving projects, such as:

◊ create projects

◊ open projects

◊ add files to projects

◊ save projects

◊ move files in the project window

◊ configure projects

5.2 GUI

Figure 5-1 and figure 5-2 shows the operation menu about project

management in file menu and project menu of EmbestIDE.

Figure 5-1 File Menu Figure 5-2 Project Menu

Operation about project management in file menu describes below:

Table 5-1 Project Management in File Menu

File menu Describe

New Workspace… Create a new project, a workspace

Open Workspace… Open a workspace and the projects in the

workspace

Save Workspace Save workspace and the projects in the workspace

Close Workspace Close a workspace and the projects in the

workspace

Recent Workspace Open a recently used project workspace

Table 5-2 describes the project menu ：

Table 5-2 Project Menus

Project menu Describe

Set Active Project Active a project

Add To Project Insert file or folder into a project

Settings… Configure the active project

Workspace window is the project management window, click

View>Workspace (shortcut: Alt+0) to hide or show workspace window. The

workspace window shows information about the projects and the files in that

project. The workspace window provides an outline view of project categories.

The workspace Window is modeled after the Microsoft Windows Explorer, it

shows the relationships among the files included in the project workspace. The

relationships in the project workspace are logical ones, not physical ones. It

does not reflect the organization of files on your hard disk.

You can highlight every level folder in the Workspace window then

right-click to invoke its pop-up menu. We will describe these menus following.

To navigate the workspace window, use the vertical scroll bar on the right

side of the window, or the Up and Down Arrow keys on your keyboard. If the

workspace window contains many files, use the Home key to scroll to the top of

the list, or use the End key to scroll to the end of the list. Use the Page Up and

Page Down keys to scroll one page up or one page down the workspace window.

Workspace directory is the root directory of project workspace. Every

project consists of several relative folders such as C Source Files, Assembly

Source files, Link Files, Include Files. You can create new folder in the project.

To do this, highlight the project file then choose Create New Folder from the

shortcut menu, in the pop up new folder dialog box fill in the folder name you

want to create. To delete the folder you created or the files you added just press

Delete key.

5.3 Operations

5.3.1 Create a New Project

When you first create a new project, a workspace is created at the same

time.

1) Click File>New Workspace, a dialog box pops up.

Figure 5-3 Create a New Project

2) Enter the new Project name and its path, and click to browse the

path.

3) Click Ok button, a new project will be created, and a same name

workspace will be created too.

You can insert a new project into an existing project workspace too:

1) Open the project workspace that you want to add a new project to.

2) Highlight the root directory of the project workspace, right-click to

invoke its pop-up menu, then Click “Add New Project to Workspace…”.

3) Enter a new project name and its path on the dialog box.

4) Click ok button.

The new project that you just created becomes the default active project in

the workspace.

Notes: when a new workspace and project is created, two files with the
same main file name and .ews and .pjf extend file name is created in the
project saved path. The file with .ews extend file name is the workspace
file. This file saved the workspace information. The file with .pjf extend file
name is the project file, which saved the information about this project.

You can’t edit these two files with manual method.

5.3.2 Open a Project

To open an existing project workspace:

1) On the File menu, click Open Workspace.

2) Select the driver and directory that contain the project workspace that

you want to open.

3) Select the .ews or .prj file for the project workspace from the File Name

list and click OK.

Figure 5-4 Opening a Project

To reopen a recently used project workspace:

On the File menu, click recent workspaces, and then click the name of the

recently used workspace.

5.3.3 Workspace Operation

Workspace window displays and manages the files and projects in

workspace window. All source files in projects and all projects in workspace can

be browsed intuitively in workspace window. The top level catalogue of

workspace displays current workspace name and project numbers in this

workspace, the second level catalogue displays each project name, the third

level catalogue displays source file name or source file group name, the fourth

level catalogue displays source file name. Source files can be divided into many

groups according to file type. Default groups have ‘Project Source Files’ and

‘Project Header Files’. Group is a logic concept, not according to actual file

directory, create group just for explicit manage source files.

Each catalogue in workspace corresponds to different right mouse menu.

The top level catalogue’s right mouse menu is workspace right mouse menu,

show as follows figure:

Figure5-5 Workspace Right Mouse Menu

The operation of workspace right mouse menu is:

Table5-3 Operation of The Top Level Catalogue’s Right Mouse Menu

Menu Item Operation

Add New Project to workspace… Create a new project into current workspace

Insert Project into Workspace… Insert a existent project into current workspace

Docking View Switch display mode of workspace window

Hide Hide workspace window

Properties Popup workspace’s property dialog box

The second level catalogue’s right mouse menu is project right mouse menu,

show as follows figure:

Figure5-6 Project Right Mouse Menu

The operation of project right mouse menu is:

Table5-4 Operation of The Second Level Catalogue’s Right Mouse Menu

Menu Item Operation

Build Compile current active project

New Folder… Create a new group into current project

Add Files to Project… Add a file into current project

Set as Active Project Set current project as active project

Setting… Project setting management, detail see sect 3.3

Docking View Switch display mode of workspace window

Hide Hide workspace window

Properties Popup workspace’s property dialog box

The third level catalogue’s right mouse menu is file group right mouse menu,

show as follows figure:

Figure5-7 File Group Right Mouse Menu

The operation of file group right mouse menu is:

Table5-5 Operation of The Third Level Catalogue’s Right Mouse Menu

Menu Item Operation

Add Files to Folder… Add a file into current file group

Docking View Switch display mode of workspace window

Hide Hide workspace window

Properties Popup workspace’s property dialog box

The fourth level catalogue’s right mouse menu is file right mouse menu,

show as follows figure:

Figure5-8 File Right Mouse Menu

The operation of file right mouse menu is:

Table5-6 Operation Of The Fourth Level Catalogue’s Right Mouse Menu

Menu Item Operation

Open Open current file

Compile Compile current file

Docking View Switch display mode of workspace window

Hide Hide workspace window

Properties Popup workspace’s property dialog box

User can convenient manage projects in workspace and files in projects

through all level catalogue’s right mouse menu. If need delete something, just

select that object (such as workspace, file group, file etc), push 'Del' key.

5.3.4 Save and Close Workspace

If user want to save the change of workspace, just click menu 'File > Save

Workspace'. Save a workspace or project is not save concrete files in project or

workspace, it saves correlative file management information.

Click menu 'File > Close Workspace' can close current workspace,

EmbestIDE will auto check whether or not exist change after last workspace

saves when closing workspace, if exist change, EmbestIDE will popup a hint

dialog box to hint user whether save change or not.

Notes：When close workspace, just hide workspace window, not

actual close workspace window.

5.3.5 Set Active Project

One workspace can contain several projects, but only one project can be

active project, only active project can be build and debug. The active project’s

icon will be in colorful. Show as in figure 5-9.

Figure 5-9 right key set as current active project and it’s colorful icon

If want to set a project as active project, select that project, right click

mouse and click 'Save as Active Project' in popup menu, show as in figure 5-9;

or click menu 'Project > Set Active Project', then select the project want to set

active, show as in figure 5-10.

Figure 5-10 set as current active project from menu bar

5.4 Project Basic Configuration

5.4.1 Processor Configuration

Select menu 'Project > Settings…' will popup project setting dialog box. In

project setting dialog box, select ‘Processor’ property page, and user can

configure CPU on target board. The dialog box show as following figure:

Figure5-11 Processor Configuration Dialog Box

CPU Module: select current CPU module, different CPU module will sustain

different CPU series. Embest IDE has supported the core of ARM7 and ARM9

series processor.

CPU Family: select CPU series which user’s CPU belong to.

CPU Member: select detail CPU type.

Endian: set memory area byte order of user’s CPU is big endian or little

endian.

Peripheral Maker: select the Maker of processor on the target board.

Peripheral Chip: select the processor name on the target board.

Build Tools: set compiler and linker which according to user’s CPU.

5.4.2 Configure Emulator

Select menu 'Project>Settings…' will popup project setting dialog box. In

project setting dialog box, by select 'Remote' property page, user can figure

emulator connect setting. The dialog box show as following figure:

Figure5-12 Emulator Configuration Dialog Box

Remote device: select debug device, Embest Emulator for ARM is

according to 'jtagarm7', and Embest PowerICE for ARM is according to

'PowerICEARM7'. Series of ARM9 CPU, Embest Emulator for ARM is according to

'jtagarm9', and Embest PowerICE for ARM is according to 'PowerICEARM9'.

Embest Simulator for ARM7 is according to 'simarm7'. The information of

current device will display on the pane.

Speed: setting the Emulator work speed. Embest Emulator for ARM was

worked at constant speed 25Kbyte per second, and Embest PowerICE for ARM

was support to change the working speed valid: Full Speed(120Kbyte/s)、High

Speed、Medium Speed、Low Speed. The valid work speed of Embest PowerICE

for ARM show as following figure 5-13:

Figure 5-13 Embest PowerICE for ARM work speed

Communication type: select connect communication type which emulator

connect to host machine, such as Embest Emulator for ARM use parallel port

connect, so select 'PARALLEL'.

Parallel Port: set according to actual connect.

Note：Usually, Embest Emulator for ARM use parallel port mode,

would be set EPP(0x278/0x378).

5.5 ARM SDT and ADS project operation

5.5.1 SDT software project opening

Click menu item File > Open Workspace, and a dialog box will pop up for

opening workspace. Select file type ARM SDT Project, with the suffix for the

software project file of SDT as apj, as shown in the following figure.

Fig. 5-13 Open SDT project

Select the SDT project file to be opened, press the open button to open the

project. At the same time opening the SDT project, the integrated environment

will automatically generate the Embest IDE workspace and project file

corresponding to the project, in which the name and number of the project files

correspond to the variant in the SDT project, as shown in the following figure.

Fig. 5-14 Automatic generation of Embest IDE workspace and project file

When the user opens the SDT project for the second time, the integrated

environment will present a dialog box as shown in the following figure:

Fig. 5-15 Prompt dialog box for the second time of opening the SDT
project

The user can select “Yes” to directly open the Embest IDE workspace that

was automatically generated during the first time of opening the SDT project. Or,

he can select “No” to regenerate and open the Embest IDE workspace and

project.

。Note: In opening the SDT project of Embest IDE, the user is in fact

finally opening the automatically generated Embest IDE workspace

after conversion. The follow-up configurations of the user will be

directly saved in the Embest IDE workspace and project. Therefore,

if the user has performed new configuration and modification after

opening the SDT project, Embest IDE workspace will be directly

opened during the follow-up development process.

The project interface opened by the ARM SDT software is illustrated in the

following figure:

Fig. 5-16 Project interface opened by the ARM SDT

After conversion, the workspace interface of the project opened by the

Embest IDE is illustrated in the following figure:

Fig. 5-17 Project interface opened by the ARM SDT

During opening, the Embest IDE automatically deletes file folders that do

not contain any files in the SDT project.

5.5.2 ADS software project opening

Click menu item File > Open Workspace, and a dialog box will pop up for

opening workspace. Select file opening type ARM ADS Project, with the suffix for

the software project file of ADS as mcp, as shown in the following figure.

Fig. 5-18 Open ADS project

Select the ADS project file to be opened, press the open button to open the

project. At the same time opening the ADS project, the integrated environment

will automatically generate the Embest IDE workspace and project file

corresponding to the project, in which the name and number of the project files

correspond to the Target in the SDT project, as shown in the following figure.

Fig. 5-19 Automatic generation of Embest IDE workspace and project file

When the user opens the ADS project for the second time, the integrated

environment will present a dialog box as shown in the following figure:

Fig. 5-20 Prompt dialog box for the second time of opening the ADS
project

The user can select “Yes” to directly open the Embest IDE workspace that

was automatically generated during the first time of opening the ADS project.

Or, he can select “No” to regenerate and open the Embest IDE workspace and

project.

Note: In opening the ADS project of Embest IDE, the user is in fact finally

opening the automatically generated Embest IDE workspace after

conversion. The follow-up configurations of the user will be directly saved

in the Embest IDE workspace and project. Therefore, if the user has

performed new configuration and modification after opening the ADS

project, Embest IDE workspace will be directly opened during the

follow-up development process.

The project interface opened under the ARM ADS software is illustrated in

the following figure:

Fig. 5-21 Project interface opened by ARM ADS

The workspace interface opened by the Embest IDE after conversion is

illustrated in the following figure:

Fig. 5-22 ADS project interface opened by Embest IDE

5.5.3 Configuration after opening SDT or ADS project

Default setting is applied to the processor and debugging equipment after

the ARM SDT or ADS project is opened by the Embest IDE, and users have to

perform adjustment according to the specific conditions.

Adjusting processor configuration

Select menu item Project > Settings… or use shortcut key Alt+F7, and a

dialog box for project setting will pop up. Select processor setting dialog box in

the project setting dialog box as shown in the following figure, and perform

adjustment on the options in the blue elliptical box according to specific

conditions.

Fig. 5-23 Adjusting processor configuration in project setting dialog box

Adjusting emulator configuration

Select menu item Project > Settings…, and a dialog box for project setting

will pop up. Select Remote setting dialog box in the project setting dialog box as
shown in the following figure, and perform adjustment on the options in the blue

elliptical box according to specific conditions.

Fig. 5-24 Adjusting emulator configuration in project setting dialog box

Library file path setting

After the Embest IDE opens the SDT or ADS project, the default complier

will be ARM complier. If the user links library files in the software project, he has

to manually set the library file path.

Select menu item Project>Settings…, and a dialog box for project setting

will pop up. In the dialog box for project setting, select Linker setting dialog box,

select the Information Options, and search the path for setting library files

according to specific conditions, as shown in the following figure.

Fig. 5-25 Setting searching path for object file

6. Project Configuring & Building

6.1 Build Tools Introduction(by Embest IDE)

The build module is a visual interface to conFigure a project and build the

target program. The following Project Settings dialog box handles settings

that affect how the EmbestIDE builds a specific target file within a project.

Because several cross-compilers can integrate with the plug-in technique,

you must select a compiler for each project before build the target. Show as

Figure 6-1, in the Processor page of Project Settings dialog box, the Build

Tools should be selected before the further conFigure .

Build Tools that Embest IDE project sets up selects and includes GNU Tools

for ARM or ARM Build Tools, namely can compatible GNU compiling Tools

and ARM compiling Tools.

Figure 6-1-1 Project Settings Dialog

Figure 6-1-1 shows an example of project settings. The selected Build

Tools for project led_swing is GNU Tools for ARM.

Note:If the Build Tools is not conFigure d for a project, its property pages
of compiler, assembler and linker will not be displayed. And the prompt
information—“No build configuration for project: xxxx” —will be
displayed in the build pane, as you build it at this moment.

6.2 GNU Tools for ARM

It is one that GNU Tools for ARM compiles and selects the compiling device is set up GCC

cross-compiler of ARM processor specially; GNU Tools for ARM is the free software; GNU

Tools for ARM is a dedicative cross-compiler for ARM processor, created from GNU source code.

It mainly includes C/C++ compiler, assembler, linker, standard libraries for embedded system

and other tools.

6.2.1 Files Type and Compiler

Which application of the cross-compiler will be invoked by EmbestIDE to

handle a source file lies on its postfix. Figure 6-2-1 shows each postfix and its

relevant application.

Figure 6-2-1

Postfix Application of Cross-Compiler

*.c C Compiler

*.C C++ Compiler

*.cpp C++ Compiler

*.cc C++ Compiler

*.cp C++ Compiler

*.c++ C++ Compiler

*.cxx C++ Compiler

*.s Assembler

*.asm Assembler

Files type of GNU tools chain shows as Figure 6-2-2.

Figure 6-2-2

Files Files Type

file.stuf source files of GNU

file.h/.inc/.a head file

file.o ELF formation target file

file.elf ELF formation debugging file

 stuf stand for *.c/C, *.cpp/C++, *.s/asm, are the source files which can compiling or

assembling by GNU tools chain(Note: it is permitted that there is the blank within

the filename or directory.)

6.2.2 Options for Compiler

The Compiler property page, as in the Figure 6-3, is used to conFigure

the compile options for C/C++ compiler of GNU Tools for ARM cross-compiler,

All the options user selected are displayed in the Compile Options edit box with

the following format:

[Opt-1] [Opt-2] … $(SOURCE_FILE) … [Opt-n] … –o[Path]$(OBJ_FILE)

Note: You can input or modify the options manually in the edit box, but
the blank character between each option must be reserved, and the
macros $(SOURCE_FILE), $(OBJ_FILE) should not be deleted or
modified. $(SOURCE_FILE) means the source file to be compiled,
$(OBJ_FILE) means the output of the compiling. There will be
replaced with the actual file name by the EmbestIDE at the time of
building.

Note: When you conFigure a project setting, you should consider
that the location of the project file (*.pjf) is the current directory.

Figure 6-2-1 Compiler General Settings

Show in Figure 6-3, compiler options are divided into five Categories:

● General

● Warning Options

● Debug/Optimization

● Target Specific Options

● Code Generation Options

Note: All this compiler options are also compiled in the document
<<Program Reference>>, and explained more detailed.

General Cluster Description

Include Directories Add <dir> to the end of the main include

paths

Object file location The location of the compile outcome will be

placed, and no blank character can be

included.

If not exist, EmbestIDE create it

automatically.

Preprocessor Definitions Define macros, each macro separated by

comma and with blank character.

Warning Options

Figure 6-2-2 Compiler Warning Options

Warning Options Cluster Description

Suppress Warnings -w, Inhibit warning messages

A variable is unused -Wunused, Warn when a variable is

unused

Unqualified pointer cast -Wcast-qual, Warn about cast which

discard qualifiers

Incompatible func cast -Wbad-function-cast, Warn about

casting functions to incompatible types

Confusing type conversions -Wconversion, Warn about possibly

confusing type conversions

Inlined function cannot be inlined -Winline, Warn when an inlined function

cannot be inlined

One local variable shadows another -Wshadow, Warn when one local

variable shadows another

Automatic variables are uninitialized -Wuninitialized, Warn about uninitialized

automatic variables

Alignment increased when pointer

cast

-Wcast-align, Warn about pointer casts

which increase alignment

Trigraphs encountered -Wtrigraphs, Warn when trigraphs are

encountered

Missing Declarations -Wmissing-declarations, Warn about

global functions without previous

declarations

ANSI C extension -pedantic, Issue warnings needed by

strict compliance to ANSI C

Debug/Optimization

Figure 6-2-3 Compiler Debug/Optimization

Debug/Optimization Cluster Description

Generate default debug format output -g

Generate DWARF-1 format debug output -gdwarf

Generate DWARF-2 debug output -gdwarf-2

Generate extended DWARF-1 format

debug output

-gdwarf+

Optimization Options -O[number]/-Os, Set

Optimization level to

[number]/Optimize for space

rather than speed

Target Specific Options

Figure 6-2-4 Compiler Target Specific Options

Target Specific Options Cluster Description

ARM only（Default） Generate ARM instructions

ARM interworking -mthumb-interwork, Generate

ARM instructions supporting calls

between THUMB and ARM

instructions sets

Thumb only -mthumb, Generate THUMB

Instructions

Thumb interwork -mthumb –mthumb-interwork,

Generate THUMB instructions

supporting calls between THUMB

and ARM instructions

Little endian mode（Default） -mlittle-endian, Assume target

CPU is conFigure d as little endian

Big endian mode -mbig-endian, Assume target CPU

is conFigure d as big endian

Hardware FP instructions -mhard-float, Use hardware

floating point instructions

Lib call for FP operations -msoft-float, Use library calls to

perform FP operations

Use the 26bit version of APCS -mapcs-26, Use the 26bit version

of APCS

Generate APCS conformant stack frames -mapcs-frame, Generate APCS

conformant stack frames

Specify the name of the target CPU Specify the name of the target

CPU

Code Generation Options

Figure 6-2-5 Compiler Code Generation Options

Code Generation Options Cluster Description

Compile just for ANSI C -ansi, Compile just for ANSI C

Use the same size for double as for float -fshort-double, Use the same

size for double as for float

Use the smallist fitting integer to hold enums -fshort-enums, Use the smallest

fitting integer to hold enums

Pretend that host and target use the same

FP format

-fpretend-float, Pretend that

host and target use the same FP

format

Do not recognize any built-in functions -fno-builtin, Do not recognize

any built in functions

Do not search the system include directories -nostdinc, Do not search the

system include directories

Do not put uninitialized globals in the

common section

-fcommon, Do not put

uninitialised globals in the

common section

6.2.3 Options for Assembler

The Assembler property page, as in the Figure 6-8, is used to conFigure

the assembling options for assembler of GNU Tools for ARM cross-compiler, All

the options user select are displayed in the Assemble Options edit box with the

following format:

 [Opt-1] [Opt-2] … $(SOURCE_FILE) … [Opt-n] … –o[Path]$(OBJ_FILE)

Note: You can input or modify the options manually in the edit box, but
the blank character between each option must be reserved, and the
macros $(SOURCE_FILE), $(OBJ_FILE) should not be deleted or
modified. $(SOURCE_FILE) means the source file to be compiled,
$(OBJ_FILE) means the output of the assembling. There will be
replaced with the actual file name by the Embest IDE at the time of
building.

Figure 6-2-6 Assembler General Settings

Show in Figure 6-2-6, assembler options are divided into four Categories:

● General

● Code Generation

● Target Specific Options

● Warning Options

Note: All this assembler options are also compiled in the document
<<Program Reference>>, and explained more detailed.

General Cluster Description

Include Directories -I<dir>, Add dir to search list for include

directories

Object file location The location of the assembling outcome will be

placed, and no blank character can be included.

If not exist, Embest IDE create it automatically.

Preprocessor Definitions Define macros, each macro separated by comma

and with blank character.

Code Generation Options

Figure 6-2-7 Assembler Code Generation Options

Code Generation Cluster Description

Generate DWARF-2 debugging

information

-gdwarf2

Generate listing file -a

Keep local symbols -L

Assemble in MRI compatibility -M

Strip local absolute symbols --strip-local-absolute

Target Specific Options

Figure 6-2-8 Assembler Target Specific Options

Target Specific Options Cluster Description

Allow any instruction（Default） -mall

Only allow thumb instructions -mthumb

Make the assembled code as support

interworking

-mthumb-interwork

Little endian mode（Default） -EL, Assemble code for a little

endian cpu

Big endian mode -EB, Assemble code for a big

endian CPU

Use the 32bit APCS -mapcs-32

Use the 26bit APCS -mapcs-26

Fpa10 FP architecture -mfpa10

Fpa11 FP architecture -mfpa11

No FP multiple instructions -mfpe-old

No FP instructions -mno-fpu

The code is position independent or reentrant -mapcs-reentrant

Warning Options

Figure 6-2-9 Assembler Warning Options

Warning Options Cluster Description

Suppress Warnings -W

Do not warn about signed overflow -J

Warn when differences altered for long

displacements

-K

6.2.4 Options for Linker

The linker property page, as in the Figure 6-12, is used to conFigure the

link options for linker of GNU Tools for ARM cross-compiler, All the options user

select are displayed in the Link Options edit box with the following format as the

output file is executable:

 [Opt-1] … –o[Path]$(TARGET_NAME) $(OBJ_FILES) [Lib-1] …

The $(TARGET_NAME) is a macro for executable file name, $(OBJ_FILES) is

also a macro for the collection of all object files to be linked.

As the target file is a library, the format of the options is:

[Opt-1] … $(TARGET_NAME) $(OBJ_FILES) [Lib-1] …

The $(TARGET_NAME) is a macro for library name.

Note: You can input or modify the options manually in the edit box, but the
blank character between each option must be reserved, and the macros
$(TARGET_NAME), $(OBJ_FILES) should not be deleted or modified. There
will be replaced with the actual file name by the Embest IDE at the time of
building.

Note: $(TARGET_NAME) will be replaced with the default that consists of
project name and postfix, elf or lib.

Note:Macro $(<entry.o>OBJ_FILES), for example, means that the file
entry.o is the first object file in the collection of all object files to be linked.

Show in Figure 6-2-10, linker options are divided into five Categories:

● General

● Image Entry Options

● Code Generation Options

● Include Object and Library Modules

● Add Library Searching Path

Linker General Settings

Figure 6-2-10 Linker General Settings

General Cluster Description

Executable file The output file is an executable file

Library The output file is a library

Linker script file The link script file

Output file name The file name of output file

Image Entry Options

Figure 6-2-11 Linker Image Entry Options

Image Entry Options Cluster Description

Select entry file The collection of all object files to be

linked is displayed in a list box, and

you can select one as the first

object file to be linked.

Image entry point -e<address/symbol>, The entry

point of the executable target.

Note: Image Entry Options Cluster can be set while the output file is
executable.

Code Generation Options

Figure 6-2-12 Linker Code Generation Options

Code Generation Options

Cluster

Description

Generate relocateable output -r, Generate relocateable output

Optimize output file -O1, Optimize output file

Do not link against shared libraries -static, Do not link against shared

libraries

Output lots of information during link -verbose, Output lots of information

during link

Warn about common symbols --warn-common, Warn about

duplicate common symbols

Warn only once per undefined symbol --warn-once, Warn only once per

undefined symbol

Link little-endian object -EL, Link little-endian objects

Link big-endian object -EB, Link big-endian objects

Strip all symbols -s

Strip debugging symbols -S

Discard all local symbols -x

Note: Code Generation Options Cluster can be set while the output file is
executable.

Include Object and Library Modules

Figure 6-2-13 Linker Include Object and Library Modules

Include Object and Library

Modules

Description

Library or Object Modules The libraries that should be linked

against

Add Library Searching Path

Figure 6-2-14 Linker Add Library Searching Path

Add Library Searching Path Description

Library Searching Directories -L<Directory>, Add directory to

library search path

Note: Add Library Searching Path can be set while the output file is
executable.

Note: The detailed descriptions of all the options of GNU Tools for ARM
cross-compiler can be found in <<Embest IDE Program Reference>>

6.3 ARM Build Tools

ARM Build Tools is a dedicative cross-compiler for ARM processor, created

from ARM source code. It mainly includes C/C++ compiler, assembler, linker,

standard libraries for embedded system and other tools.

Compiling device supported in Embest IDE compatible SDT 2.51 edition at present, this

edition compiles and chains tools including ARM C/C ++ compiling device Abbreviated as

ARMCC , ARM collecting device (abbreviated as ARMASM) and ARM chaining

device(abbreviate as ARMLINK).

6.3.1 ARM Build Tools and Files

Which application of the cross-compiler will be invoked by EmbestIDE to

handle a source file lies on its postfix. Figure 6-3-1 shows each postfix and its

relevant application.

Figure 6-3-1

Postfix Application of Cross-Compiler

*.c C Compiler

*.C C++ Compiler

*.cpp C++ Compiler

*.cc C++ Compiler

*.cp C++ Compiler

*.c++ C++ Compiler

*.cxx C++ Compiler

*.s Assembler

*.asm Assembler

Files type of ARM tools chain shows as Figure 6-3-2.

Figure 6-3-2

Files Files Type

file.stuf source files of ARM

file.h/.inc/.alf head file

file.o ELF formation target file

file.elf ELF formation debugging file

 stuf stand for *.c/C, *.cpp/C++, *.s/asm, are the source files which can compiling or

assembling by ARM tools chain(Note: it is permitted that there is the blank within

the filename or directory.)

6.3.2 ARM Complier options setting

The complier attribute tab of the ARM Build Tools complier is illustrated in

Fig. 6-3. There are altogether 7 categories of list (namely, setting option),

namely, General, Target Specific, Warning Options, Error Handling, Debug &

Optimization, Code Generation and Include Paths. The various configuration

options are used for ARMCC complier. All the settings of the user will be

displayed in the Compile Option edit box in the form of command line switch

options. When it is the first time for a new project to select ARM Build Tools, the

system will provide the complier’s default setting.

Fig. 6-3-1 Project complier setting and category options list

General

Figure 6-3-2 settings of General

shows as Figure 6-3-1, in the Compiler dialog window, click the Category

drawing menu, select the option in the Source dialog window, the definition as

following:

General Cluster Description

Compiler instruction format of the Target file

ARM supports ARM code

Thumb supports Thumb code

Source source fiiles type

Portable C compiler C -pcc, Compiles (BSD 4.2) Portable C compiler

C. This dialect is based on the

original Kernighan and Ritchie definition of C,

and is the one used to build UNIX systems.

The -pcc option alters the language accepted

by the compiler, however the built-in ANSI C

headers are still used. See also, the -zc option

in Controlling code generation.The -pcc

option alters the language accepted by the

compilers in the following ways:

• char is signed

• sizeof is signed

• an approximation of early UNIX-style C

preprocessing is used.

Strict Portable C compiler

C[BSD4.2]

-pcc –strict, is extra strict about enforcing

conformance to the ANSI C standard, Draft

C++ standard, or PCC conventions. For

example, in C++ mode the following code

gives an error when compiled with -strict and

a warning without:

static struct T {int i; };

Because no object is declared, the static is

spurious. In a strict reading of the C++ Draft

Standard, it is illegal.

ANSI/ISO standard C -ansi, Compiles ANSI standard C. This is the

default for armcc

Strict ANSI/ISO standard

C[ANSI X3.159]

-ansi –strict

Object file locations settings the directory to store object file(s)

Preprocessor Definitions Defines symbol as a preprocessor macro, as if

the following line were at

the head of the source file: #define symbol

[value] This option can be repeated.

Target Specific

Figure 6-3-3 settings of Target Specific

shows as Figure 6-3-1, in the Compiler dialog window, click the Category

drawing menu, select Target Specific, the definition of compile as following:

Target Specific Cluster Description

Little Endian -li, instructs suitable for Little Endian ARM

Big Endian -bi, instructs suitable for Big Endian ARM

Processor instruction code support by processor

Architecture -arch, sets the target architecture. Some

processor-specific instructions produce

either errors or warnings if assembled for

the wrong target architecture. See also the

-unsafe assembler option. Valid values for

architecture

are 3, 3m, 4, 4T, 4TxM.

Float point processor -fpu, select the target FPU, where name is

one of:

none No FPU. Use software floating point

library. This option implies /softfp.

fpa Floating Point Accelerator. This option

implies /hardfp.

Software stack check -apcs /swst, specifies that the code in

inputfile carries out software

stack checking.

Frame pointer -apcs /fp, specifies that the code in inputfile

uses a frame pointer.

This option is obsolete and is provided for

backwards

compatibility only.

FP arguments passed in FP

register

(selected) specifies that the code in

inputfile does not use a frame pointer. This

is the default.

ARM/Thumb interworking -apcs /inter, specifies that the code is

suitable for ARM/Thumb interworking. This

option has the same effect as specifying the

INTERWORK attribute for all code areas in

the source files to be assembled. Refer to

the ARM Software Development Toolkit User

Guide for more information on ARM/Thumb

interworking.

Warning Options

Figure 6-3-4 settings of Warning Options

shows as Figure 6-3-1, in the Compiler dialog windows, click the Category

drawing menu to set the warning information of the compile.

The compiler issues warnings to indicate potential portability problems or

other hazards. The compiler options described below allow you to turn specific

warnings off.

For example, you may wish to turn warnings off if you are in the early stages

of porting a program written in old-style C. The options are on by default, unless

specified otherwise. See also Specifying additional checks on page 2-32 for

descriptions of additional warning messages.

The general form of the -W compiler option is:

-W[options][+][options]

where options are one or more characters.

If the + character is included in the characters following the -W, the

warnings corresponding to any following letters are enabled rather than

suppressed.

You can specify multiple options. For example:

-Wad+fg

turns off the warning messages specified by a, d, and turns on the warning

message specified by f and g.

Following description for the Warning Options shows in Figure 6-3-4:

Warning Options Cluster Description

No Warnings -W, suppresses all warnings. If one or more

letters follow the option, only the warnings

controlled by those letters are suppressed.

Implicit narrowing cast -W+n Suppresses the warning message:

implicit narrow cast

This warning is issued when the compiler

detects the implicit narrowing of a long

expression in an int or char context, or the

implicit narrowing of a floating-point

expression in an integer or narrower

floating-point context.

Such implicit narrowing casts are almost

always a source of problems when moving code

that has been developed on a fully 32-bit

system (such as ARM C++) to a system in

which integers occupy 16 bits and longs occupy

32 bits. This is suppressed by default.

Header file not guarded -W+g, Suppresses the warning given if an

unguarded header file is #included.

This warning is off by default. It can be enabled

with -W+g. An unguarded header file is a

header file not wrapped in a declaration such

as:

#ifdef foo_h

#define foo_h

/* body of include file */

#endif

Non-ANSI header -W+p, Suppresses the warning message:

non-ANSI #include <…>

The ANSI C standard requires that you use

#include <…> for ANSI C

headers only. However, it is useful to disable

this warning when compiling code not

conforming to this aspect of the standard. This

option is suppressed by default, unless the

-fussy option is specified.

C++ incompatibility -W+u, For C code, suppresses warnings about

future compatibility with C++ for both armcpp

and tcpp. This option is off by default. It can be

enabled with -W+u.

Char/short bitfields -Wb, Suppresses the warning message:

ANSI C forbids bit field type ’type’

where ’type’ is char or short.

Lower precision in wider

content

-W+l, Lower precision in wider context.

This warning arises in cases like:

long x; int y, z; x = y*z

where the multiplication yields an int result

that is then widened to long. This warns in

cases where the destination is long long, or

where the target system defines 16-bit

integers or 64-bit longs. This option is off by

default. It can be enabled with -W+l.

Padding inserted in struct -Ws, Warns when the compiler inserts

padding in a struct. This warning is off by

default. It can be enabled with -W+s.

‘=’ in condition -Wa, Suppresses the warning message:

Use of the assignment operator in a

condition context

This warning is given when the compiler

encounters a statement such as:

if (a = b) {...

where it is possible that:

if ((a = b) != 0) {...

was intended, or that:

if (a == b) {...

was intended. This warning is suppressed by

default in PCC mode.

Multiple character read as int -Wm

Unused declaration -Wx, Disables not used warnings such as:

Warning: function ’foo’ declared but not

used

Note: User can input the warning switch(s) directly in Compiler options

Error Handling

Figure 6-3-5 settings of Error Handling

shows as Figure 6-3-1, in the Compiler dialog window, click the Category

drawing menu, select Error Handling, the definition of close and down lever in

the compile error information compiler as following:

The compiler issues errors to indicate that serious problems exist in the

code it is attempting to compile.

The compiler options described below allow you to:

• turn specific recoverable errors off

• downgrade specific errors to warnings.

The general form of the -e compiler option is:

-e[options][+][options]

where options are one or more of the letters described below.

If the + character is included in the characters following the -e, the errors

corresponding to any following letters are enabled rather than suppressed.

You can specify multiple options. For example:

-eac

turns off the error messages specified by a and c

Following description for the Warning Options shows in Figure 6-3-5:

Error Handling Cluster Description

Junk at end of #end/#else/#undef -Ep, Suppresses the error that occurs if

there are extraneous characters at the

end of a preprocessor line. This error is

suppressed by default in PCC mode.

Implicit pointer cast -Ec, Suppresses all implicit cast errors,

such as implicit casts of a non-zero

int to pointer.

Other doblous cast -Ef, Suppresses errors for unclean casts,

such as short to pointer.

Linkage conflict -El, Suppresses errors about linkage

disagreements where functions are

implicitly declared extern and later

defined as static. This option

applies to C++ only.

Zero-length array -Ez, Suppresses the error that occurs if

a zero-length array is used.

Access control violation -E+a, This option applies to C++ only.

Downgrades access control errors to

warnings. For example:

class A { void f() {}; }; // private

member A a;

void g() { a.f(); } // erroneous access

Implicit “int” type -E+I, Downgrades constructs of the

following kind from errors to warnings.

For example:

const i;

Error: declaration lacks

type/storage-class (assuming ‘int’): ’i’

This option applies to C++ only.

Debug & Optimization

Figure 6-3-6 settings of Debug & Optimization

shows as Figure 6-3-1, in the Compiler dialog window, click the Category

drawing menu, select Debug * Optimization, the definition as following:

Debug & Optimization Cluster Description

dwarf 1 -dwarf1, Use DWARF1 debug table

format. This option is not

recommended for C++.

If DWARF1 debug tables are

generated and a procedure call

standard that does not use a

frame-pointer register is used (always

the case with Thumb, and the default

with ARM), local variables that have

been allocated to the stack cannot be

displayed by the debugger. In

addition, stack backtrace is not

possible.

dwarf 2 -dwarf2, to select DWARF2 debug

tables. This is the default and is

selected if -g with no dwarf option is

specified. This is the default.

asd (obsolete) -asd, Use ASD debug table format.

This option is obsolete and is provided

for

backwards compatibility only.

Enable debug table generation -g, instructs the assembler to

generate debug tables. Use the

following command-line options to

control the behavior of -g:

-dwarf to select DWARF1 debug

tables. This option is obsolete. Use

-dwarf2 or -dwarf1.

-dwarf1 to select DWARF1 debug

tables. This option is not

recommended for C++.

-dwarf2 to select DWARF2 debug

tables. This is the default and is

selected if -g with no dwarf option is

specified.

Include preprocessor symbol Not use

Default balance If neither -Otime or -Ospace is

specified, the compiler uses a balance

between the two. You can compile

time-critical parts of your code with

-Otime, and the rest with -Ospace.

You should not specify both –Otime

and -Ospace at the same time.

For space -Ospace, Optimize to reduce image

size at the expense of increased

execution time.

For example, large structure copies

are done by out-of-line function calls

instead of inline code.

For time None -Otime, Optimize to reduce execution

time at the expense of a larger image.

For

example, compile:

while (expression) body…;

as:

if (expression) {

do body…;

while (expression);

}

None（best debug view） -O0, Turn off all optimization, except

some simple source transformations.

This is the default optimization level if

debug tables are generated with -g+.

It gives the best debug view and the

lowest level of optimization.

Most (good debug view good

code)

-O1, Turn off the following

optimizations:

• structure splitting

• range splitting

• cross-jumping

• conditional execution.

If this option is specified and debug

tables are generated with -g+ it gives

a satisfactory debug view with good

code density.

All (poor debug view best code) -O2, Generate fully optimized code. If

used with -g+, this option

produces fully optimized code that is

acceptable to the

debugger, though the mapping of

object code to source code is

not always clear.

This is the default optimization level if

debug tables are not

generated.

Code Generation

Figure 6-3-7 settings of Code Generation

shows as Figure 6-3-1, in the Compiler dialog window, click the Category

drawing menu, select Code Generation, the definition of the compiler output

target files as following:

Code Generation Cluster Description

Read-only literal string -fw, Allows string literals to be writable,

as expected by some UNIX code, by

allocating them in the program data

area rather than the notionally

read-only code area. This also stops the

compiler reusing a multiply occurring

string literal.

Play char always signed -zc, Make char signed. It is normally

unsigned in C++ and ANSI C modes,

and signed in PCC mode. The sign of

char is set by the last option

specified that would normally affect it.

For example, if you specify both

the -ansic and -zc options and you want

to make char signed in ANSI

C mode, you must specify the -zc option

after the -ansic option.

One AOF area per function -zo, Generates one AOF area for each

function. This can result in increased

code size. Normally the compiler

generates one AOF function for each C

compilation unit, and at least one AOF

function for each C++ compilation unit.

This option enables the linker to remove

unused functions when the

-remove linker option is specified.

Enum container always int -fy, Treats enumerations as signed

integers. This option is off by default (no

forced integers).

Inline SWIs may overwrite the Link -fz, Instructs the compiler that an inline

SWI may overwrite the contents of the

link register. This option is usually used

for modules that run in

Supervisor mode, and that contain inline

SWIs. You must use this option

when compiling code that contains inline

SWIs.

Access word only from word aligned -za0/1, Specifies whether LDR may only

access word-aligned addresses. Valid

values are:

-za0 LDR is not restricted to accessing

word-aligned addresses. This

is the default.

-za1 LDR may only access word-aligned

addresses.

Max integer load -zi2, The compiler selects a value for the

maximum number of instructions

allowed to generate an integer literal

inline before using LDR rx,= value on

the basis of the -Otime, -Ospace, and

-processor options.

You can alter this behavior by setting

Number to an integer between 1 and

4. Lower numbers generate less code at

the possible expense of speed,

depending on your memory system. The

effect of altering this value is small, and

is usually not significant.

Max LDM regs -zr16, Limits the number of register

values transferred by load multiple and

store multiple instructions generated by

the compiler to Number. Valid values for

Number are 3 to 16 inclusively. The

default value is 16.

You can use this option to reduce

interrupt latency. Note that the inline

assembler is not subject to the limit

imposed by the -zr option.

The Thumb compiler does not support

this option.

Top-level static object -zat4, Specifies the minimum byte

alignment for top-level static objects,

suchas global variables. Valid values for

Number are:1, 2, 4, 8

The default is 4 for the ARM compilers

and 1 for the Thumb compilers.

Min. struct -zas4, Specifies the minimum byte

alignment for structures. Valid values

for Number are: 1, 2, 4, 8

The default is 4 for both ARM and Thumb

compilers. This allows structure copying

to be implemented more efficiently by

copying in units of words, rather than

bytes. Setting a lower value reduces the

amount of padding required, at the

expense of the speed of structure

copying.

Pointer to structs aligned to

minimum struct alignment

Specifies whether pointers to structures

are assumed to be aligned on at least

the minimum byte alignment

boundaries, as set by the -zas option.

Valid values are:

-zap1 Pointers to structures are

assumed to be aligned on at least the

minimum byte alignment boundaries set

by -zas. This is the default.

-zap0 Pointers to structures are not

assumed to be aligned on at least the

minimum byte alignment boundaries set

by -zas. Casting short[] to struct

{short, short,...} does not cause a

problem.

Include Paths

Figure 6-3-8 settings of Include Paths

shows as Figure 6-3-1, in the Compiler dialog window, click the Category

drawing menu, set the search folder of the user define head files and the ANSI

lib head files compiler, definition as following:

Include Paths Cluster Description

Include Directories -i<dir> , adds directories to the source file

search path so that arguments to

GET/INCLUDE directives do not need to be fully

qualified.

ANSI Header -j, Adds the specified comma-separated list of

directories to the end of the search path, after

all directories specified by -I options. Use -j- to

search the in-memory file system.

Compile Options Window

The Compiler property page, as in the figure 6-3-1, is used to configure the

compile options for C/C++ compiler of ARM Build Tools cross-compiler, All the

options user selected are displayed in the Compile Options edit box with the

following format:

[Opt-1] [Opt-2] …–o[Path]$(OBJ_FILE) … [Opt-n] …$(SOURCE_FILE)

Note: You can input or modify the options manually in the edit box, but
the blank character between each option must be reserved, and the
macros $(SOURCE_FILE), $(OBJ_FILE) should not be deleted or
modified. $(SOURCE_FILE) means the source file to be compiled,
$(OBJ_FILE) means the output of the compiling. There will be
replaced with the actual file name by the EmbestIDE at the time of
building.

Note: When you configure a project setting, you should consider that
the location of the project file (*.pjf) is the current directory.

shows as Figure 6-3-1, the Switch and meaning of the command in the

Compile Options Window:

Switch Description

-O0 Turn off all optimization, except some simple

source transformations.

-dwarf1 Compile output file by dwarf1 format

-g+ The target file include debug information figure

（Function as -g）

-l..\common\ Use the common file folder which in the project

base forward folder as the search catalog of head

files

-o .\Debug\$(OBJ_FILE) Compile output target file to the Debug folder

-c Only compile C language program without link

$(SOURCE_FILE) Compile all source files of the active project

6.3.3 ARM Assembler options setting

The Assembler attribute tab of the ARM Build Tools complier is illustrated in

Fig. 6-3-9. There are altogether 6 categories of list (namely, setting option),

namely, General, Target Specific, Call Standard Options, Debug Options,

Predefines and Listing Options. The various configuration options are used for

ARMASM complier. All the settings of the user will be displayed in the Assemble

Options edit box in the form of command line switch options. When it is the first

time for a new project to select ARM Build Tools, the system will provide the

complier’s default setting.

Fig. 6-3-9 Project complier setting and category options list

General

Figure 6-3-10 settings of General

shows as Figure 6-3-9, In the Assembler dialog window, click the Category

drawing menu, choose General, the search and assembler output file folder of

the head source files, definition as following:

General Cluster Description

Include Directories -i<dir> , adds directories to the source file

search path so that arguments to

GET/INCLUDE directives do not need to be

fully qualified.

Object files location settings the directory to store object file(s)

Target Specific

Figure 6-3-11 settings of Target Specific

shows as Figure 6-3-9, In the Assembler dialog window, click the Category

drawing menu, choose Target Specific, the definition of the assembler target

file, definition as following:

Target Specific Cluster Description

Little Endian -li, instructs suitable for Little Endian ARM

Big Endian -bi, instructs suitable for Big Endian ARM

Processor instruction code support by processor

Architecture -arch, sets the target architecture. Some

processor-specific instructions produce either

errors or warnings if assembled for the wrong

target architecture. See also the -unsafe

assembler option. Valid values for architecture

are 3, 3m, 4, 4T, 4TxM.

Float point processor -fpu, select the target FPU, where name is one

of:

none No FPU. Use software floating point

library. This option implies /softfp.

fpa Floating Point Accelerator. This option

implies /hardfp.

Initial State instruction format of the Target file

ARM supports ARM code

Thumb supports Thumb code

Call standard Options

Figure 6-3-12 settings of Call standard Options

shows as Figure 6-3-9, In the Assembler dialog window, click the Category

drawing menu, choose Call Standard Options, the attributes of the procedure

calling in cross compile ,definition as following:

Call Standard Options Cluster Description

Call Standard -apcs none/3, specifies whether you are

using the ARM Procedure Call Standard or

not, and may specify some attributes of

code areas. User Guide for more

information.

none specifies that inputfile does not use

APCS. APCS registers

are not set up. Qualifiers are not allowed.

3 specifies that inputfile uses APCS

version 3. APCS registers are set up. This

is the default.

Predeclared Register Names APCS register name in the rule:

PCS -- PCS rule

None -- no rule

Software stack check -apcs /swst, specifies that the code in

inputfile carries out software

stack checking.

Frame pointer -apcs /fp, specifies that the code in

inputfile uses a frame pointer.

This option is obsolete and is provided for

backwards

compatibility only.

FP arguments passed in FP register (selected) specifies that the code in

inputfile does not use a frame pointer. This

is the default.

ARM/Thumb interworking -apcs /inter, specifies that the code is

suitable for ARM/Thumb interworking.

This option has the same effect as

specifying the INTERWORK attribute for

all code areas in the source files to be

assembled. Refer to the ARM Software

Development Toolkit User Guide for more

information on ARM/Thumb interworking.

Debug Options

Figure 6-3-13 settings of Debug Options

shows as Figure 6-3-9, In the Assembler dialog window, click the Category

drawing menu, choose Debug Options, the attributes of assemble output

target files ,definition as following:

Debug Options Cluster Description

dwarf 1 -dwarf1, Use DWARF1 debug table format.

This option is not recommended for C++.

If DWARF1 debug tables are generated and a

procedure call standard that does not use a

frame-pointer register is used (always the case

with Thumb, and the default with ARM), local

variables that have been allocated to the stack

cannot be displayed by the debugger. In

addition, stack backtrace is not possible.

dwarf 2 -dwarf2, to select DWARF2 debug tables. This

is the default and is selected if -g with no dwarf

option is specified. This is the default.

asd (obsolete) -asd, Use ASD debug table format. This option is

obsolete and is provided for

backwards compatibility only.

Check register lists -checkreglist, instructs the assembler to

check RLIST, LDM, and STM register lists to

ensure that all registers are provided in

increasing register number order.

If this is not the case, a warning is given.

No warnings -nowarn, turns off warning messages.

Source line debug -g, instructs the assembler to generate debug

tables. Use the following command-line options

to control the behavior of -g:

-dwarf to select DWARF1 debug tables. This

option is obsolete. Use -dwarf2 or -dwarf1.

-dwarf1 to select DWARF1 debug tables. This

option is not recommended for C++.

-dwarf2 to select DWARF2 debug tables. This is

the default and is selected if -g with no dwarf

option is specified.

Keep symbols -keep, instructs the assembler to keep local

labels in the symbol table of the object file, for

use by the debugger.

Predefines

Figure 6-3-14 settings of Predefines

shows as Figure 6-3-9, In the Assembler dialog window, click the Category

drawing menu, choose Predefines, the attributes of predefined macro,

definition as following:

Predefines Cluster Description

Listing of predefines The list of the active predefined

Variable, Directive, Value -PD, instructs the assembler to pre-execute

one of the SET directives. You must

enclose directive in double quotes. See:

• SETA directive on page 5-82.

• SETL directive on page 5-83.

• SETS directive on page 5-84.

The assembler executes a corresponding

GBLL, GBLS, or GBLA directive

to define the variable before setting its value.

Arguments to SETS must be

enclosed in escaped double quotation marks,

for example:

-pd "Version SETS \"beta-4\""

-pd "VersionNum SETA 4"

Listing Options

Figure 6-3-15 settings of 信息列表文件

shows as Figure 6-3-9, In the Assembler dialog window, click the Category

drawing menu, choose Listing Options, the attributes of the assemble output

files, definition as following:

Listing Options Cluster Description

Listing on -liston, list generation is on.

Terse -noterse, turns the terse flag off. When this

option is on, lines skipped due to conditional

assembly do not appear in the listing. If the

terse option is off, these lines do appear in the

listing. The default is on.

XRef -xref, instructs the assembler to list

cross-referencing information on symbols,

including where they were defined and where

they were used, both inside and outside

macros. The default is off.

Page width -width, sets the listing page width. The default

is 79 characters.

Page length -length n(>0), sets the listing page length.

Length zero means an unpaged listing. The

default is 66 lines.

Continuous page This a synonym for -length 0.

Assemble Options Window

The Assembler property page, as in the figure 6-8, is used to configure the

assembling options for assembler of ARM Build Tools cross-compiler, All the

options user select are displayed in the Assemble Options edit box with the

following format:

[Opt-1] [Opt-2] …–o[Path]$(OBJ_FILE) … [Opt-n] …$(SOURCE_FILE)

Note: You can input or modify the options manually in the edit box, but
the blank character between each option must be reserved, and the
macros $(SOURCE_FILE), $(OBJ_FILE) should not be deleted or
modified. $(SOURCE_FILE) means the source file to be compiled,
$(OBJ_FILE) means the output of the assembling. There will be
replaced with the actual file name by the Embest IDE at the time of
building.

shows as Figure 6-3-9, Assemble Options Window indicates:

Switch Description

-dwarf 1 -dwarf1, Use DWARF1 debug table format.

-g Include debug information.

-l..\common\ Use the common folder which in the project last

layer catalog as the head files search folder.

-o .\Debug\$(OBJ_FILE) Set the assemble target files output to Debug

folder.

$(SOURCE_FILE) Assemble all the source files in the project.

6.3.4 ARM Linker options setting

The linker attribute tab of the ARM Build Tools linker is illustrated in Fig.

6-3-16-16. If the various option configurations in the figure are used for the

linker, all the settings of the user will be displayed in the Link Options edit box

in the form of command line. When a new project selects the corresponding

Build Tools, the target file output by the linker will be an execution file.

In the Linker attribute tab, change the pull-down window of the Category,

and respectively set the various category options for the ARM Build Tools linker.

Figure 6-3-16 settings of General

General

Figure 6-3-17 settings of General

shows as Figure 6-3-16, In the Linker dialog window, click the Category

drawing menu, choose General, the attributes of ARM linker definition as

following:

General Cluster Description

Executable file The output file is an executable file

Library The output file is a library

Output formats select linker output file formation

-elf generates the image in ELF format. This is

the default. Future versions of the ARM linker

will output images in ELF file format only. You

can use the fromELF utility to convert an ELF

file to another format.

-aof generates the consolidated object in AOF.

Because AOF can only be used to represent an

object, this option is interpreted by the

linker as a request for partial linking of the input

objects into a consolidated object.

-aif generates the image in executable AIF

format. Because -aif will not be supported in

future releases, you are recommended to use

-elf to produce the output file, then run the

fromELF utility to convert to AIF format.

-aif –bin generates the image in

non-executable AIF format. Because –aif -bin

will not be supported in future releases, you are

recommended to use -elf to produce the output

file, then run the fromELF utility to convert to

AIF BIN.

-bin generates the image in plain binary format.

Because -bin will not be supported in future

releases, you are recommended to use –elf to

produce the output file, then run the fromELF

utility to convert to BIN.

Output file -o, The file name of output file (with the project

file name and the stuff .elf or .lib/.alf)

Information Options

Figure 6-3-18 settings of Information Options

shows as Figure 6-3-16, In the Linker dialog window, click the Category

drawing menu, choose Information Options, the definition of the ARM linker

debug target files as following:

Information Options Cluster Description

Include debugging infomation -nodebug, turns off the inclusion of

debug information in the output file. The

image is then smaller, but you cannot

debug it at source level.

Give progress information while -verbose, prints messages indicating

progress of the link operation.

Search standard library -noscanlib, prevents the scanning of

default libraries in a link step. This is the

opposite of -scanlib. (See also -libpath

above).

Give information on -info < topic >, prints information about

specified topics, where topic-list is a

comma-separated list of topic keywords.

A topic keyword may be one of the

following:

Totals reports the total code and data

sizes in the

image. The totals are broken down into

separate totals for object and library

files.

Sizes gives a detailed breakdown of the

code and data sizes for each input object

and interworking veneers. Interwork is

ignored in this release of the linker.

Unused lists all unused areas, when

used with the -remove option.

Note that spaces are not allowed

between keywords in a list. For example,

you can enter:

-info sizes,totals but not:

-info sizes, totals

Search path for libraries -libpath, specifies a path that is used to

search for libraries. This path overrides

the path specified by the ARMLIB

environment variable.

If you do not specify a path using

-libpath, the linker searches in the path

specified by ARMLIB, else searches the

libraries defined in the file

Lib$$Request$$library$$ variant.

Listings Options

Figure 6-3-19 settings of Listings Options

shows as Figure 6-3-16, In the Linker dialog window, click the Category

drawing menu, choose Listings Options, the setting of the listing file attributes ,

definition as following:

Listings Options Cluster Description

Produce a list of symbol definition -symb, lists each symbol used in the

link step (including linker-generated

symbols) and its value, in the named

file. A filename of minus (-) names the

standard output stream instead of a

file.

Produce an area map -map, creates an image map listing

the base and size of each constituent

area.

Produce an area xref -xref, lists cross-references between

input areas.

List file -list, redirects the standard output

stream to file. This is useful in

conjunction with -map, -xref, and

-symbols.

Entry Point & Image Base

Figure 6-3-20 settings of Entry Point & Image Base

shows as Figure 6-3-16, In the Linker dialog window, click the Category

drawing menu, choose Entry Point & Image Base, definition as following:

Entry Point & Image Base Cluster Description

Entry Point -entry, specifies the entry point of the

image. The entrypoint may be given as

either.

Base of image -ro-base, instructs the linker to place

the Read-Only section at exec_address

(for example, the address of the first

location in ROM), set in Read-Only

-rw-base, instructs the linker to place

the Read-Write section at exec_address,

set in Read-Write

Image Layout

Figure 6-3-21 settings of Image Layout

shows as Figure 6-3-16, In the Linker dialog window, click the Category

drawing menu, choose Image Layout, definition of the start image and end

image in the ARM linker target files as following:

Image Layout Cluster Description

Place at beginning of image -first, places area from object first in the

RO section of the image if it is a non ZI

area. If it is a ZI area, it is placed first in

the ZI section. This can be used to force

an area that maps low addresses to be

placed first (typically the reset and

interrupt vector addresses). There must

be no space between object and the

following open parenthesis.

When using scatter loading, use +FIRST

instead.

Object file assemble object files

Area Name a certain Area name

Place at end of image -last, places area from object last in the

RW or RO section of the

image if it is a non-ZI area. If it is a ZI

area, it is placed last in the ZI section. For

example, this can be used to force an area

that contains a checksum to be placed last

in the RW section. There must be no space

between object and the following open

parenthesis.

When using scatter loading, use +LAST

instead.

Object file assemble object files

Area Name a certain Area name

Note: Object file must include Area Name in it.

Areas Options

Figure 6-3-22 settings of Areas Options

shows as Figure 6-3-16, In the Linker dialog window, click the Category

drawing menu, choose Areas Options, definition of the label segment in the

ARM linker target files as following:

Areas Options Cluster Description

Unrearch Areas -remove, removes unused areas from

the image. An area is considered to be

used if it contains the image entry

point, or if it is referred to from a used

area. You must take care not to

remove interrupt handlers when using

-remove.

Don’t remove do not remove

Remove all remove unused areas

Ignore case for symbol matching -case, uses case-sensitive symbol

name matching. This is the default.

Allow duplicate symbols -dupok, allows duplicate symbols so

that an area can be included more

than once in the image. However, if

-noremove is also specified, the image

must not contain multiple copies of the

area.

Refer unresolved -unresolved, matches each reference

to an undefined symbol to the global

definition of symbol. Note that symbol

must be both defined and global,

otherwise it will appear in the list of

undefined symbols, and the link step

will fail. This option is particularly

useful during top-down development,

when it may be possible to test a

partially-implemented system (where

the lower levels of code are missing)

by connecting each reference to a

missing function to a dummy function

that does nothing. This option does

not display warnings.

Linker Options Window

The linker property page, as in the Figure 6-3-16, is used to conFigure

the link options for linker of ARM Build Tools cross-compiler, All the options

user select are displayed in the Link Options edit box with the following format

as the output file is executable:

 [Opt-1] … –o[Path]$(TARGET_NAME) $(OBJ_FILES) [Lib-1] …

The $(TARGET_NAME) is a macro for executable file name, $(OBJ_FILES) is

also a macro for the collection of all object files to be linked.

As the target file is a library, the format of the options is:

[Opt-1] … $(TARGET_NAME) $(OBJ_FILES) [Lib-1] …

The $(TARGET_NAME) is a macro for library name.

Note: You can input or modify the options manually in the edit box, but the
blank character between each option must be reserved, and the macros
$(TARGET_NAME), $(OBJ_FILES) should not be deleted or modified. There
will be replaced with the actual file name by the Embest IDE at the time of
building.

Note: $(TARGET_NAME) will be replaced with the default that consists of
project name and postfix, elf or lib.

Note：Macro $(<entry.o>OBJ_FILES), for example, means that the file

entry.o is the first object file in the collection of all object files to be linked.

shows as Figure 6-3-16, in the Assemble Options Window, the definition of

the command as following:

Switch Description

-ro-base 0xc000000 set the address of the first location in ROM:

0xc000000

-rw-base 0xc400000 place the Read-Write section at

exec_address: 0xc40000

-first 44binit.o(init) set init.o image file as the entrance of

target files

-symb

-list .\Debug\Keyboard_Debug.lst

output list symbol files to the Debug folder

of the project, include label and across

reference information.

-info totals debug information in the debug symbol

files

-libpath C:\Arm251\lib use Lib which in the folder C:\Arm251\lib

-o .\Debug\Keyboard_Debug.elf

$(OBJ_FILES)

Linker output the debug file which name as

the project name to the debug folder

6.4 Project Settings & Folder Settings

More than one source file is included in a single project at the most time,

and each file maybe has its own compile options different from the others. Thus,

we used to add the files that have the same compile options into a folder of the

project, and set options for the folder instead of each source file.

Show as Figure 6-2-1, GNU Tools for ARM, project led_swing has three

folders --- C Source、ASM Source and Link Script. The files in folder C Source

have their own compile options different from the project settings.

There is the same settings while selecting the ARM Build Tools which SDT or

ADS project folds.

Note:For example, a project for ARM based application includes a list
source files, part of them should be compiled to generate thumb
object files, and the others should result with arm object files.
Here, the source files can be divided into two parts, and added to
two folders separately with relevant option settings.

Figure 6-4-1 Folder Settings Dialog

Show as Figure 6-4-1, select Always Use Custom Compile Options check

box, the relevant Compiler property page will displayed, in this property page,

you can set the compile options for the folder. Otherwise, the folder has the

same compile settings with the project settings.

If select Always Use Custom assemble Options check box, the relevant

assembler property page will displayed, in this property page, you can set the

assemble options for the folder. Otherwise, the folder has the same assemble

settings with the project.

Click Reset buttons, valid when the matched check box is selected, to

reshuffle the relevant settings to be as same as the project.

6.5 Project Building

Do one of the following to build project:

1. Click on Build button on Build toolbar.

2. Click on Build item on Project menu.

3. Click on Rebuild All item on Project menu to rebuild the project.

If build succeeds, a target file will be generated in the output directory

specified in the Project Settings dialog.

The output information is displayed in the following build pane. If any error

occurs, the building operation will be terminated, and the error(s) will be

displayed in the build pane.

Figure 6-5-1 Build Menu and Toolbar

6.5.1 Project File Compiling and Assembling

Do one of the following to compile or assemble file:

1. Click on Compile button on Build toolbar.

2. Click on Compile item on Project menu.

3. Click on Compile item on Workspace popup menu (show as Figure

6-18).

The compiler can handle what kind of file or assembler that is described in

File type chapter.

Menu Item Description

Compile

Before compile or assemble the active document,

EmbestIDE will check several dependence relationship, if

the following assumptions are true, the active document

will not be handled:

1、the object file are more up-to-the-minute than the

source file;

2、the object file are more up-to-the-minute than the all

dependence files of the source file;

3、No compiling or assembling options are modified,

since the last building or rebuilding all operation.

Figure 6-5-2 Compiling Menu Item

6.5.2 Project Build

The menu items----Build, Rebuild All, Batch build, Clean and Stop

Build----are all used to handle the active project:

Menu Item Description

 Build
Compile all the source files that need to be compiled

(as the description in Files type chapter), and link the

object files to generate the target file.

Before build the active project, EmbestIDE will check

several dependence relationship, if the following

assumptions are true, the active project will not be

handled:

1、No source file need to be compiled;

2、The target file are more up-to-the-minute

than the dependence files of linking operation;

3、No linking options are modified, since the last

building or rebuilding all operation.

 Rebuild All
EmbestIDE deletes the existing object files and target

file first and then generates them again, suggest use

this operation if there more than one project in current

workspace.

Batch Build
Batch Build the Projects and order the building

sequence in current workspace.

 Clean
Delete all the intermediate files include the object files

and target files

 Stop Build
Stop the building or rebuilding all operation

Figure 6-5-3 Build Pop Menu in Workspace Pane

6.5.3 Projects batch build

The user can simultaneously carry out batch build upon several projects in

current workspace. Click the menu Build > Batch Build to pop out the dialogue

box as shown in fig. 6-5-4.

Fig 6-5-4 Batch Build operating window

Introduction to options of Batch Build operating window:

Project Name: select the project to be built by the user; the project not be

selected will not be built.

Move Up: move the highlighted project up a step.

Move Down: move the highlighted project down a step.

Select All: select all projects in workspace.

Build: Build the selected projects in the workspace. The regulated rule of

building is same as the definition of Build menu of the system.

Rebuild All: Re-build the selected projects in the workspace. The regulated

rule of building is same as the definition of Build menu of the system.

Clean: completely delete the files produced in building.

Note: for several projects, if it is set that the file folder with same name

store building output result, it is suggested using the operation of

Rebuild All so that it may not occur any error while building and

connecting files with same name.

6.6 Building Information in Output window

At the beginning of compiling or building operation, the build pane will be

set active to display the output information. In the Figure 6-21, the first line in

this window prompt you which project or file is handled now.

If all the command execute successfully, EmbestIDE will print line

---Command(s) successfully executed, otherwise, line---Error executing above

command.

If fail to complete the compiling operation, error will displayed in build pane.

To locate to the corresponding source quickly for those syntax errors, simply

double click on the line or press key F4 (shift + F4).

Building output information shows as Figure 6-5-5 to Figure 6-5-8:

Figure 6-5-5 Build Pane

（a）not use list file output

（b）use list file output

Figure 6-5-6 GNU Tools for ARM (success)

Figure 6-5-7 GNU Tools for ARM (failure)

Figure 6-5-8 ARM Build Tools (failure)

7. Program Debugging

7.1 Overview

The Embest IDE debugger combines the best features of graphical debug

and command-line debug, provides multifarious debug ways.

The most common debugging activities, such as setting breakpoints and

controlling program execution, are available through convenient point-and-click

interfaces. Similarly, program listings and data-inspection windows provide an

immediate visual context for the crucial portions of your application. For

complex or unpredictable debugging needs, the command-line interface gives

you full access to a wealth of specialized debugging commands.

Embest IDE provides much advanced features as follows:

z Supports assemble language debugging and source code debugging;

supports many program windows (include source program window,

disassemble program window and mix-mode window).

z Many emulational debug methods: Go, Reset, Stop, Step, Step into,

Step over, Step out, Goto Cursor, Goto Source and Goto Address etc.

z Supports Unconditional Breakpoint, Conditional Breakpoint and

Watchpoint.

z Register value display and modification.

z Memory content according can be desplayed with byte, half-word or

word length and Hexdecimal or Ascii mode.

z Supports global and local variables display and modification, and also

supports expression value compute.

z When value-change occurs in memory, variables, registers ,

corresponding interface content will be displayed with red color.

z Supports function stack display.

z Saves debugging environment information with each project.

7.2 Debugger GUI

Figure 7-1 illustrates the GUI elements you can use to interact with Embest

IDE debugger.

Figure 7-1 Embest IDE debugger interface

The Debug menu provides a complete list of Embest IDE GUI debugger

commands, as well as their keyboard shortcuts.

The Debug toolbar provides buttons for the most common debugger

commands, as well as for opening and closing all kind of windows and program

compile and link etc.

The Debug status bar displays system status and detail explanations of

menu’s and toolbar’s role.

7.2.1 Debugger Toolbar, Buttons, Menu and Shortcut

The debug toolbar has many buttons for the most common debugging

commands, as well as display auxiliary debugger windows. The toolbar shown

as a floating palette interface as figure 7-2.

Figure7-2 debugger toolbar

The commands in the debug menu include alternatives to the buttons in the

debug toolbar, as well as additional debugger functions. Keyboard shortcuts are

also available for all graphical debugger commands.

The debugger buttons and menu commands are described in following table

7-1.

Table 7-1 debug button and menu command

Button Menu Command Description

Connect/

Disconnect

Connect or Disconnect target system

 Download Download debug file to target system

 Restart Restart the program from entry point

 Go
Run debug file on the target under debugger

control

 Stop Stop target system

 Reset Reset target system

 Step into

Step to the next line of code, in order of execution

(not necessarily the next line displayed in the

editor)

 Step over
Step to the next line displayed on the screen. If

there is a subroutine call on the current line, the

button executes that subroutine in its entirety,

then stops at the line after the subroutine call

 Step out
Finish the current subroutine. Execution continues

until the current subroutine returns to its caller.

 Run to Cursor Run to the line where cursor staying

Show Next

Statement

Show next code line which will be execute

Toggle

Breakpoint

Set or remove a task-level breakpoint on the

current line of the editor window

Enable All

Breakpoints

Enable all breakpoints

Disable All

Breakpoints

Disable all breakpoints

Delete All

Breakpoints

Delete all breakpoints

 Breakpoints… Show the breakpoints management dialog

 Watch

Open or close the Watch window, which displays

the values of specified variables throughout the

execution of the program

 Variables
Open or close the Variables window, which

displays the values of local and global variables

 Registers
Open or close the Registers window, which

displays values of the target registers

 Memory
Open or close the Memory window, which displays

target memory information

 Call Stack
Open or close the Call Trace window, which

displays stack information

 Disassembly
Open or close the Disassembly window, which

displays disassemble code

7.3 Debug Setting

Debug setting window, which is used to configure debug software, locates at

the setting dialog window of project. The configurations is divided to three

categories:

● General

● Download

● Memory Maps

General debug setting page interface show as following figure7-3:

Figure7-3 General Debug Setting Page

Symbol file column specifies the debug symbol file name and directory,

debug symbol file contains debug information for debugger, usually symbol file

has Elf-format or Coff-format.

Auto Download option item is used for whether or not auto download file

after the target system is resetted or debugger connects target. If be selected,

debugger will finish the download operation automaticly.

Command Script option item specifies the command script file, if selected,

the debugger will auto execute the commands listed in this file after system

connects target board.

Download debug setting page interface show as following figure7-4:

Figure7-4 Download Setting Page

Download file column specifies the executable file to be downloaded, this

file is the program which will run on a target system.

Download Verift option item is used for whether or not auto checksum

download file. If selected, debugger will auto compare the target memory file

with the download file.

Download address column specifies the start memory address of

download file, the download file will ordinally be stored from this address.

Execute until column specifies a symbol to which program will run, after it

is downloaded.

Download address option item means debugger will auto set PC’s value

with the download start address after file downloaded.

Program entry point option item means debugger will auto set PC’s value

with the entry-point address of the excutable file after it is downloaded

Memory maps setting page interface show as following figure7-5:

Figure7-5 Memory Maps Setting Page

Use map file option item means the range of memory access should be

specified when users debug program, and the range is descripted in the

memory map file assigned in the following editbox.

7.4 Start to Debug the program

When a project is compiled and linked successfully, and you have correctly

filled debug setting dialog, you can debug the project now with the following

steps --- 1, connect debug emulator device; 2, download program.

7.4.1 Connect Emulator

Before connect emulator device, please read Appendix A JTAG Emulator

Connect.

Connect computer’s parallel port and the Embest Emulator’s DB25 interface

through standard DB25 male-to-female parallel cable. Embest Emulator

connect target board through a header which mates which IDC sockets mounted

on a straight through ribbon cable. And then, with the target board powered,

hardware connection is established.

Click Debug menu, select ‘Remote Connect’ menu item(show as figure7-6),

or push F8 key, debugger will connects target system through emulator device.

Figure7-6 Debug Menu before Connection

If connection is failed to set up, debugger will show possible reason in debug

pane of the Output Window. Please refer to Appendix A, and check whether

power and cable connection are correct or not. If the connection established

successfully, Debug menu will show as following figure7-7:

Figure7-7 Debug Menu after Remote Connect

7.4.2 Program download

After connection between host and target system set up, we can download

executable file to target system now. If Auto Download option is set in Debug

Setting Dialog, debugger will auto progress this step. If not, please click Debug

menu, and select Download item. Target file will be downloaded to the

predeterminate address on target system. The rate of download process will

displayed on the status bar, show as following figure 7-8:

Figure 7-8 Status Bar as Program Downloading

If download succeed, status bar displays “Download Completed” in blue,

otherwise, “Download Failed” in red. Show as following Figure 7-9 and Figure

7-10.

Figure 7-9 Status Bar as Program Download completed

Figure 7-10 Status Bar as Program Download failed

7.5 Control Program Executing

Debuger can control target program as it execute, and disassemble binary

code in the target system, and also can control target program by set

breakpoint to help user faster debugging program.

7.5.1 Program Running

Executing program state includes run-state、stop-state、reset-state mainly.

Run-state expresses program is executing according to code order; Stop-state

expresses it is stopped at certain code and waiting for debugger to read needed

information; Reset-state expresses target system is staying at system entry

point, all system information keeps at the initially state.

Click ‘Debug’ menu and select ‘Go’ menu item, or push ‘F5’ key, or click ‘Go’

button on debug toolbar, program will run from the stopped position, and

mouse shape will change to funnelform shape, program running interface is

shown as following figure7-11:

Figure 7-11 Program Running Interface

Click ‘Debug’ menu and select ‘Stop’ menu item, or push Shift+F5 key, or

click ‘Stop’ button on debug toolbar, can make program stop, and mouse shape

will change to primary shape, program stop interface is shown as following

Figure7-12:

Figure 7-12 Program Stop Interface

When program stoped, if stop at certain source code, corresponding source

code line will be highlight, and set a current-line flag in front of the line

(current-line flag is yellow rightward arrow), source code interface is shown as

following figure7-13:

Fgure 7-13 Program Stop Interface with Source Code

Click ‘Debug’ menu and select ‘Reset’ menu item, or push Ctrl+R key, or

click ‘Reset’ button on debug toolbar, program will stop and system will transfer

to initial state, and mouse shape will change to primary shape, program reset

interface is shown as following figure 7-14:

Figure 7-14 Program Reset Interface

Source program also can be executed step by step. Step execute include

Step Into、Step Over and Step Out mode.

1、Step Into mode：If there is a subroutine call in the current line, Step Into

takes program to the first line of that subroutine, not to the next line currently

displayed on your screen.

2、Step Over mode：Step Over steps program to the next line display on the

screen.

3、Step Out mode：program execution continues until the current subroutine

completes, then the debugger regains control in the calling statement.

A example for step execute is shown as follows figure 7-15:(suppose

system run into the position as the following figure, current subroutine is

OSTaskCreate)

Figure 7-15 Step Execute Start Position

If execute Step into, because the source line have a subroutine call, so

system will run into the first line of OSTaskCreateHook subroutine, source

window interface will changed as the following figure 7-16:

Figure 7-16 Source Code Window Interface after Step Into

If execute Step over, system will stop at next line displayed on the screen,

source code window will changed as the figure 7-17:

Figure7-17 Source Code Window Interface after Step Over

If execute Step out, system will continues until the current subroutine

completes, and stop at calling statement, source code window will changed as

the following figure 7-18:

Figure 7-18 Source Code Window Interface after Step Out

7.5.2 Disassemble Window

Disassemble window provides display of assemble code disassembled from

binary machine code, and provides blend display between assemble code,

source code, and binary code. Disassemble window can set and clear assemble

breakpoint, and also can disassemble binary code in accoding with ARM or

THUMB binary machine mode.

The buttons、shortcuts、and menu commands, correlative with disassemble

window, are described in following table.

Table 7-2 Buttons、Shortcuts、and Menu Commands

Button Shortcut Key Menu command

 ALT+8 View > Debug Windows > Call Stack

Disassemble window is shown as following figure 7-19:

Figure 7-19 Disassemble Window Interface

Disassemble window blend source code and assemble code as the following

figure 7-20:

Figure 7-20 Disassemble Window Interface

Disassemble window blend binary code and assemble code as the following

figure 7-21:

Figure 7-21 Disassemble Window Interface

The right mouse menu of disassemble window is shown as following figure

7-22.

Figure 7-22 Disassemble Window Right Menu

Go To Source: show the source code line which in according with current

assemble line, if the source line exists, debugger will show the source code

window.

Go To Address: set start address of assemble code, and start

disassembling binary code from that address.

Show Next Statement: show assemble code which will execute next step.

Insert Breakpoint: set a breakpoint at current assemble code line.

Enable Breakpoint: enable the breakpoint at current assemble code line.

Disable Breakpoint: disable the breakpoint at current assemble code line.

Delete Breakpoint: delete the breakpoint at current assemble code line.

Run to Cursor: run program to the line where the cursor is staying.

Set Next Statement: set the assemble code line, where the cursor is

staying, as the line which will execute by system next.

Disassembly Mode: set disassemble mode ---- ARM or THUMB mode.

Source Annotation: display assemble code blend with source code.

Code Byte: display assemble code blend with binary code.

Close: close the disassembe window.

7.5.3 Breakpoint

The buttons、shortcut keys and menu items which relate with breakpoint is

shown as following table 7-3:

Table7-3 Buttons、Shortcut keys and Menu items

Button
Shortcut

Key
Debug menu command Right mouse menu

 F9
Toggle Breakpoints Insert Breakpoint/

Delete Breakpoint
n/a n/a Enable All Breakpoints
n/a n/a Enable Breakpoint
n/a n/a Disable All Breakpoints
n/a n/a Disable Breakpoint

 n/a
Delete All Breakpoints

n/a n/a Breakpoints…

Before setting a breakpoint, symbol file must has been fiiled in debug

setting dialog. Embest IDE debugger can set and clear breakpoints in source

code window、assemble window、disassemble window and code blend display

window.

Several way, hereinafter, to set breakpoint:

1、Moving mouse to left grey margin of the source code window, mouse will

change to hand shape, then click the left mouse button, a red-circle breakpoint

flag will displays in the left grey margin and a yellow backgrounf bar will be

shown at corresponding line.

2、Set cursor to the line which need a breakpoint, and then press ‘F9’ .

3、Set cursor to the line which need a breakpoint, then click ‘Debug’ menu

and select ‘Toggle Breakpoint’ menu item.

The breakpoint, which is set first time, is a enable breakpoint, shown as

following figure 7-23. The flag which is around by cyan circle is a enable

breakpoint flag:

Figure 7-23 a Disable Breakpoint Flag

In a source code window, if a breakpoint is set at a invalid source line,

Embest IDE will have none response.

Breakpoint state includes enable state and disable state, program will not

auto stop at the disable breakpoints. Shown as the following figure 7-24, the

flag around by cyan circle is a disable breakpoint flag:

Figure 7-24 Disable Breakpoint Flag

When running into a enable breakpoint line, program will stop at the

breakpoint, shown as the following figure 7-25:

Figure 7-25 Program Stop at Breakpoint

User can query all breakpoint information and state through breakpoint list.

Click ‘Debug’ menu, and select ‘Breakpoint…’ menu item, the breakpoints list

dialog will pop-up, shown as the following figure 7-26:

Figure 7-26 Breakpoints List Dialog

Double click left mouse button at a line of the breakpoint list or click Modify

button, user can modify the breakpoint information in a dialog, shown as the

following figure 7-27:

Figure 7-27 Breakpoint Modify Dialog

If want to set a conditional breakpoint, click ‘Advanced’ button which on

breakpoint modify dialog, dialog will append a subdialog below the dialog,

shown as the following figure 7-28, the ‘When’ editbox displays conditional

express, the ’Command’ editbox displays the command which will be auto

executed as system reach the breakpoint.

Figure 7-28 Conditional Breakpoint Modify Dialog

7.6 Debug Information

When users want to debug a program, they need much debug information

to make sure the correctness of program and data, so can faster find the origin

of errors. Embest IDE has visual debug information windows to display and

modify debug information when user debug a target program, these windows

include register window、memory window、watch window、variables window and

call stack window.

7.6.1 Register Window

Register window can display and modify values of processor core registers

and peripheral chip registers on the target system. Registers name and num

depend on the type of target system processor, when debug different target

system, the content of the register window also differ. Registers values can

display on hexadecimal or decimal or binary format, and can auto refresh values

or refresh by hand. Registers divide into register group, each group can set

different display mode.

The buttons、shortcut、and menu commands which is correlative with

register window are described in following table7-4.

table7-4 register window’s buttons、shortcut、and menu commands

Button Shortcut Key Menu command

 ALT+5 View > Debug Windows > Register

Register window show as following figure 7-29:

Figure7-29 register window interface

Click one register, the name and value of the register will display in input

column which is on top of register window. User can modify the value in input

column, the input column show as following figure7-30:

Figure 7-30 register value modify column

When register value modified, register window will show the value in red

color, the interface of register window show as following figure7-31:

Figure 7-31 Register Window interface

Right click mouse on register window will show the register window menu,

the register window menu show as following figure7-32, the meanings of menu

item is:

Figure 7-32 Register Window Popup Menu

Refresh: handly refresh registers value to keep consistent with target

system.

Auto Refresh: auto refresh option, if be set, register group name will in

deep green, and register window will auto refresh registers value base on every

operation of user to keep consistent with target system.

Hex Format: display registers value base on hexadecimal format.

Binary Format: display registers value base on binary mode.

Decimal Format: display registers value base on decimal format.

Expand …: expand all register groups(…=All) or appointed register

group(…=register group name).

Collapse …: collpase all register groups(…=All) or appointed register

group(…=register group name).

Docking View: window auto arrange option, if set, window will auto keep

to the side and ordinal arrange.

Hide: hide register window.

Note：Setting the data display format, please attention by following:

1）right key on the register name, settings will effect on the appointed

register.

2）right key on the register group name, settings will effect on the

appointed register group.

3）right key on the blank of the register window, settings will effect on

the all register group and registers.

7.6.2 Peripheral register window

Peripheral register window provides status display and operation of

peripheral register of target processor. It can view and amend the content of

peripheral register in this window. The relevant buttons, shortcut keys and

menu commands of peripheral register window are shown in form 7-5.

Form 7-5 Buttons, shortcut keys and menu commands in storage area
window

Button Shortcut key Menu command

ALT+5 View > Debug Windows > Registers

Fig. 7-33 Peripheral register window

As shown in the above figure, peripheral register window shows the

peripheral register groups of current target processor with a list. The register

group can be separately carried out refresh setting, data display format setting.

Click to view the list of peripheral registers of peripheral register group, and

the user can amend the content of appointed register.

7.6.2.1 View peripheral register

Click to view the list of peripheral registers of register group in peripheral

register window. The display format of peripheral register is:

Name of register: current content or property of register

The readable register will directly display the current content; for write-only

register, it will display the character string WriteOnly in the back of register.

When the mouse stops above register, the screen will prompt the

description of register that the mouse currently points out, and the meanings of

each part are:

Name of register (register mapping address): register description (accessing

property)

As shown in Fig. 7-34:

Fig. 7-34 Value display of peripheral register

7.6.2.2 Operation of peripheral register

In name of register group, click or click right key of mouse to select

Expand … to expand register group. Click a register, the name and value of this

register will display in the input column in the upper part of register’s window. In

input column, it can change the value of this register. The input column is shown

in fig. 7-35:

Fig. 7-35 Amendment and input column of register’s value

The value of register will be shown in red after being amended, as shown in

fig. 7-36:

Fig. 7-36 Show corresponding register in red after the value of register is
amended

While clicking right key in the window of peripheral register, it will pop out

the menu as shown in fig. 7-37.

Fig. 7-37 Right key menu in window of peripheral register

Menu Function

Refresh … Manually refresh all value of registered groups

（ …=All ） or value of appointed register groups

（…=group name）so as to keep consistent with

target system

Auto Refresh Set automatic refresh. While setting, the window of

register will automatically keep consistent with

target system according to the operation of user in

each step. While using this setting, the

corresponding all names of register groups (All) or

appointed register groups (name of group) will be

shown in deep green.

Properties Display detailed window of peripheral register

Hex Format Display register’s value according to hex format

Binary Format Display register’s value according to binary format

Decimal Format Display register’s value according to decimal format

Expand … Expand all register groups（…=All）or appointed

register groups (…=group name)

Collapse … Collapse all register groups（…=All）or appointed

register groups (…=group name)

Docking View Whether the window is automatically arranged to the

side. When selection, the window will be

automatically arranged to the side.

Hide Hide register window

When the user uses the setting Auto Refresh to all register groups, the

system will automatically pop out dialog box as shown in fig. 7-38. When the

user executes a debugging operation, the integrated environment must read all

values of peripheral registers, therefore the debugging speed may be affected in

some content. It is suggested that the user should selectively use the function of

Auto Refresh, and only set automatic refresh of some groups, use manual

refresh to other register groups if necessary.

Fig. 7-38 Prompt when peripheral registers use the setting Auto Refresh

Notes:

z While using refresh and automatic refresh of right key menu, it shall

pay attention to the position where the mouse points:

1）The setting that is carried out with right key above name of special

register group is effective against this register group;

2）The setting that is carried out with right key in other blank of register

is effective against all register groups.

z While using data display format of right key menu, it shall pay

attention to the position where the mouse points:

1）The setting that is carried out with right key above name of special

register group is effective against this register group;

2）The setting that is carried out with right key in special register group

is effective against this register group;

3）The setting that is carried out with right key in other blank of register

is effective against all register groups.

The user shall be careful when he uses right key to operate.

7.6.2.3 Detailed dialog box of peripheral register

The dialog box of peripheral register provides for user the visual viewing

measures of peripheral register of detailed register and flexible and convenient

amendment methods to the value of peripheral register.

The detailed dialog box provides for user the detailed information about

peripheral register, including the actual meaning of content, address and bit;

the user can amend the value of peripheral register through directly inputting

hex value or binary value, and can also amend the selected register area.

After selecting register, select sub-menu Properties in right key menu of

mouse, or double click left key of mouse in register to pop out detailed dialog

box of register as shown in fig. 7-39:

Fig. 7-39 Detailed dialog box of peripheral register

The detailed dialog box of register includes the following:

Heading of dialog box: display the name of register.

Blue letterform above dialog box: display the full description of current

register.

Hex edit box（HEX Value）： Display hex value of register, can also be used

for amending the value of register.

Binary edit box（Binary Value）： Display binary value of register, can also

be used for amending the value of register.

Register Field：

Select drop-down box（Select Option）：Selectable value and the

meaning that the register field currently selected is corresponding.

Bit： The bit group of register.

Name of field（Name）： Short name of bit group of register.

Binary value of field（Bin）：Binary value of bit group of register.

Description of field（Desc）： Description character string of current

set of bit group of register.

Screen prompt: display short name of bit group of register, full name of bit

group of register,all selectable values that the bit group of register is

corresponding to, and the meaning when the value is set. The value of the bit

group of register currently set and its meaning are shown in red.

If the user wants to amend the content of peripheral register, he can directly

amend in hex and binary edit box, or amend the value in this field in Select

Option or Edit Box after selection of register field. The drop-down select box of

detailed window of peripheral register is shown in fig. 7-40.

Fig. 7-40 Drop-down select box of detailed window of peripheral register

7.6.3 Memory Window

Memory window can display and modify memory content of target system.

Memory window show memory content from the address which can be input by

user, content length auto match the size of memory window. Memory content

can display on byte、half-word or word length mode, and have hexadecimal digit

format part and ASCII char format part which can respective display in

accordance with memory content. When some memory content change,

memory window will show these content on red color. Embest IDE provides two

of the memory window named Memory Window1 and Memory Window2.

The buttons、shortcut、and menu commands which is correlative with

memory window are described in following table7-5.

Table 7-5 memory window’s buttons、shortcut、and menu commands

Button Shortcut key Menu command

 ALT+6 View > Debug Windows > Memory

Memory window display base on byte length mode show as following figure

7-41:

Figure 7-41 Memory Window Base on Byte Length Mode

User can modify original address of memory content in the input column

which is on top of memory window. Ten of the user’s input will remain in the list

of the input column. If modified original address, memory window will

immediately auto show new memory content. The input column show as

following figure 7-42:

Figure 7-42 Original Memory Address Input Column

If need modify memory content, user can directly modify the content on

hexadecimal digit part or ASCII char part, and new content will immediately

write into corresponding memory, and show new content on red color. The

interface which memory content modified show as following figure7-43:

Figure 7-43 Memory Window with content change

Right click mouse on memory window will show the memory window menu,

the memory window menu show as following figure7-44, the meanings of menu

item is:

Figure 7-44 Memory Window Popup Menu

菜单 功能

Refresh
handly refresh memory content to keep consistent

with target system.

Auto Refresh

auto refresh option, if be set, memory window will

auto memory content base on every operation of

user to keep consistent with target system.

Byte Format display memory content base on byte length mode.

Short Hex Format
display memory content base on half-word length

mode.

Long Hex Format
display memory content base on word length

mode.

Memory Access

Size
Set the access size of memory

Byte ---- by byte

Half Word ---- by half word

Word ---- by word

Docking View
window auto arrange option, if set, window will

auto keep to the side and ordinal arrange.

Hide hide memory window.

Note： with Memory Window1for illustration above, so as Memory

Window2 can be able to operate. But their options are independency.

7.6.4 Watch Window

Watch window can display variables value or compute expression result

which user input for watch, user can add a new watch data or delete a watch

data. Watch data value can display base on hexadecimal or decimal format.

With every operation of user, watch window will auto compute and update

watch data value. Watch window have two page: “Watch 1” and “Watch 2”, each

page can separate input different data. Watch data name will auto save follow

project save or close, when open same project next time, watch window will

auto load last watch data.

The buttons、shortcut、and menu commands which is correlative with

watch window are described in following table7-6.

Table7-6 watch windows’s buttons、shortcut、and menu commands

Button Shortcut key Menu command

 ALT+3 View > Debug Windows > Watch

Watch window default display base on hexadecimal format, window

interface show as following figure7-45:

Figure 7-45 Watch Window Base on Hex Format

Watch window interface base on decimal format show as following figure

7-46:

Figure 7-46 Watch Window Base on Decimal Format

User can use two kinds of ways to add new watch data:

1、Double click the name column of the blank line in watch window,then will

put a input box into the line, user can input new data in that box, carriage return

or click other line, watch window will auto compute data value and show it on

corresponding value column. The interface show as following figure 7-47：

Figure 7-47 Watch Data Input Column

2、Right click on watch window, select ‘Add’ menu item, then will show a

data input dialog, enter data, push ‘OK’ button, watch window will compute data

value and add it at the end of watch window. The input dialog show as following

figure 7-48:

Figure 7-48 Watch Data Input Dialog

User can look over detail data property, select corresponding column, right

click mouse, select ’ Properties’ menu item, will show data property dialog,

interface show as following figure 7-49:

Figure 7-49 Watch Data Properties Dialog

Right click mouse on watch window will show the watch window menu, the

watch window menu show as following figure7-50, the meanings of menu item

is:

Figure 7-50 Watch Window Popup Menu

Add: add a new watch data.

Delete: delete current selected watch data.

Hexadecimal Display: data value format option, if set will show data value

on hexadecimal format, if not set will show data value on decimal format.

Docking View: window auto arrange option, if set, window will auto keep

to the side and ordinal arrange.

Hide: hide watch window.

Properties: current selected watch data property.

7.6.5 Variables Window

Variables window can display global and local variables information, and can

modify variables’s value. Variables window have two page: ’Global’ and ‘Local’,

respective display global variables and local variables. Variables value can

display base on hexadecimal or decimal format. With every operation of user,

watch window will auto create variables list and compute variables value. If one

variable’s value changed, variables window will display the value on red color.

The buttons、shortcut、and menu commands which is correlative with

variables window are described in following table 7-7.

Table 7-7 variables windows’s buttons、shortcut、and menu commands

Button Shortcut key Menu command

 ALT+4 View > Debug Windows > Variables

Variables window default display base on hexadecimal format, window

interface show as following figure 7-51:

Figure 7-51 Variables Window Base on Hex Format

Variables window interface base on decimal format show as following figure

7-52:

Figure 7-52 Variables Window Base on Adecimal Format

User can look over detail variables property include variable name、variable

value and variable type, right click on variables window, select ’ Properties’

menu item, will show variables property dialog, interface show as following

figure 7-53:

Figure 7-53 Variables Property Dialog

User can modify variable value. The way is double click the value column of

the variable which need to be modified, and input new value in input box,

interface show as following figure 7-54:

Figure 7-54 Variables modify

When new variable value is legal, watch window will immediately change

variable’s value on target system, and display new value on red color, interface

show as following figure 7-55:

Figure 7-55 Variables Window after a variable value change

Right click mouse on variables window will show the variables window menu,

the variables window menu show as following figure 7-56, the meanings of

menu item is:

Figure 7-56 Variables Window Popup Menu

Hexadecimal Display: variable value format option, if set will show

variable value on hexadecimal format, if not set will show variable value on

decimal format.

Docking View: window auto arrange option, if set, window will auto keep

to the side and ordinal arrange.

Hide: hide variables window.

Properties: current selected variable property.

7.6.6 Call Stack Window

Call stack window can display runtime relation of functions which be calling

and called. Function parameter value can display base on hexadecimal or

decimal format. The last called function(current running function) display on top

line of the window, and arrange down base on function call relation, start

function display on end line of the window.

The buttons、shortcut、and menu commands which is correlative with call

stack window are described in following table7-8.

Table7-8 call stack window’s buttons、shortcut、and menu commands

Button Shortcut key Menu command

 ALT+7 View > Debug Windows > Call Stack

Call stack window interface show as following figure 7-57 (have been set all

function parameter display property):

Figure7-57 Call Stack Window

Function Parameter’s name or type or value can be set to display whether or

not individual. Call stack window interface show as following figure7-58 (Close

function parameter value display property)

Figure 7-58 Call Stack Window with Function Parameter value

If close all function parameter display property will only show function name

and its return type. Call stack window interface show as following figure 7-59

(Close all function parameter display property)

Figure7-59 Call Stack Window without Function Parameter

Double click one function line of call stack window, source window will show

next code to be execute after the code which the function call above function,

and put a blue rightward arrow on front of the source line, call stack window will

also show the function line highlight. The interface show as following figure

7-60:

Figure 7-60 Debugger Interface as Double-Click Function Line

Right click mouse on call stack window will show the call stack window menu,

the call stack window menu show as following figure, the meanings of menu

item is:

Figure 7-61 Call Stack Window Popup Menu

Parameter Values: parameter values display option, if set will show

parameter values.

Parameter Types: parameter types display option, if set will show

parameter types.

Parameter Names: parameter names display option, if set will show

parameter names.

Hexadecimal Display: parameter values format option, if set will show

parameter values on hexadecimal format, if not set will show parameter values

on decimal format.

Docking View: window auto arrange option, if set, window will auto keep

to the side and ordinal arrange.

Hide: hide call stack window.

8. Customization and Options

8.1 Introduction

Embest IDE not only allows you to customize the appearance of the display

to match your preferences, but it also allows you to add menu entries for other

tools you may wish to use. The Options entry in the Tools menu displays

commands that change the editor settings, and plugin directory for Embest IDE.

The Customize entry in the Tools menu opens a dialog box for adding menu

items.

Table 8-1 Customization and Options Menu

Button Menu Description

 Customize… Open the Customize dialog box

 Options… Open the Option dialog box

8.2 Tools Menu Customization

Select Tools > Customize… menu，open the Customize dialog box：

Figure 8-1 Tools Menu Customize Dialog Box

Menu Contents List Box lists commands you have added to the Tools

menu. To add a command, click the New button above the Menu Contents list,

type the text for the menu item in the box at the end of the Menu Contents list,

and provide the necessary information in the boxes below. To modify a

command, select it in the Menu Contents list and change the information

specified in the boxes below. To delete a command, select it and click the delete

button above the Menu COntents list. To move a command up or down on the

Tools menu, select the command in the Menu Contents list and click one of the

arrows above list.

Command Edit Box displays the path and filename of the tool currently

selected in the Menu Contents list. Click the button at the right of the edit box

opens a dialog box where you can browse and select a file.

Arguments Edit Box Specifies additional arguments for the tool each time

you start it. You can use several macros in custom menu commands, see 8.4

Use Macros for explanations of these macros.

Workiing directory Edit Box specifies where (in what directory) to run

the custom command. You can edit the directory name in place, or click the

button at the right of this field to bring up a directory browser where you can

search for the right directory.

Prompt for arguments Checked Box, When selected, displays a dialog

box which prompts for command-line arguments each time you run the tool.

You can specify additional arguments for each particular instance of the tool.

OK Button，Applies your changes to the Tools menu.

CANCEL Button，Discards your changes without modifying the Tools menu.

8.3 IDE Options

8.3.1 Editor Preferences

Select Tools > Options… menu, then click the Editor tab to adapt the editor

to your preferences. The Editor page is shown in Figure 8-2：

Figure 8-2 Editor Page

The following choices are available on the Editor Settings:

Disable backspace at start of line，prevents joining of lines by using the

BACKSPACE key.

Disable drag-and-drop text editing，select this checkbox to disable

drag-and-drop text editing so you can not move or copy selected text with the

mouse.。

Disable show selection margin，select this checkbox to disable display a

margin to the left of each line of text. This margin display information about

source lines, including breakpoints, instruction points, and tag pointers.

Disable automatic indent，select this checkbox to disable indent source

code automatically.

Reload last workspace at startup，when selected, automatically loads

the workspace you last worked on.

Tab Size，provides a place for you to specify the number of space

characters that equal one tab character. The defaults is four space characters.。

The following choices are available on the Window Settings:

Reset the positions of all docking bars & remove all recent info，all

docking windows display at same position and size as you lase worked on.

When select, all docking windows display with the deault position provided by

the IDE and all history information reserved by IDE will be cleared.

Set the main menu and edit popup menus without icons，when

selected, disable display icons corresponding with menu items. This function

suits some operation system which limited GUI resources, such as WINDOWS

98.

8.3.2 Directory Options

Select Tools > Options… menu, then click the Directories tab. The

Directories page is shown in Figure 8-3：

Figure 8-3 Directories Page

Plug_in Module Directory:

Table 8-2 is a description of the Embest IDE Plug_in Module Directories.

Table 8-2 Directory Description

Function Default Directory

CPU Support $(EMBEST_IDE)\bin\cpu

Debug Device Support $(EMBEST_IDE)\bin\device

File Support $(EMBEST_IDE)\bin\file

Build Tools Support $(EMBEST_IDE)\bin\build

Driver $(EMBEST_IDE)\bin\driver

In the Show Directories For list box, user select the type of module for the

directory, then the edit box below the list box display directory for modules. You

can edit the directory or click the button at the right of the edit box opens a

dialog box where you can browse and select a directory.

Note：Plug_in Module Directories Use Default, general user do not

change it.

Build Executable Files Directory:

IDE support some different compiler at the same time. You can setting

Build Executable Files Directory corresponding with compiler. In the Show

Directories For list box, user select compiler, then directory corresponding with

compiler is displayed in the edit box. User can edit the directory or click the

button at the right of the edit box opens a dialog box where you can browse and

select a directory.

Note：The default directory specilized by IDE, general user do not

change it.

8.4 Use Macro

You can use argument macros to specify arguments for a Tools menu

command. Embest IDE provides the argument macros shown in the following

table:

Table 8-3 Macro Description

No Macro Name
Expands to a string

containing
Examples

1 $(DOWNLOAD_PATHFILE)

The directory and

Name of symbol

file(.elf)

D:\test\debug\test.elf

2 $(EMBEST_IDE)
Installation directory

of The Embest IDE.
D:\EmbestIDE

3 $(LINK_FILE)
Name of the output

file(.elf)
test.elf

4 $(LINK_DIR)
The directory of the

output file(.elf)
D:\test\debug\

5 $(LINK_PATHFILE)

The directory and

Name of output

file(.elf)

D:\test\debug\test.elf

6 $(PROJECT_PATH)
The directory of the

current project.
D:\test\

7 $(PROJECT_NAME)
The name of the

current project.
test

8 $(SYMBOL_PATHFILE)

The directory and

Name of Symbol

file(.elf)

D:\test\debug\test.elf

To click menu Tools>Options, there is the template to use Macro.

Customer Service

Get support on demand. Connect Customer Service for more information on

how to use the Embest’s products.

z Web Site

Get the latest information and docs about Embest’s products from the web

site: http://www.embedinfo.com

You may have noticed some trouble issues at the support forums. In the

meantime, you can get help by subscribing to the following forum:

http://www.embedinfo.com/cforum/login.asp

z E-Mail

If you have any question, comments, feedback or suggestions as to how our

products could be improved, let us know at support@embedinfo.com

z Telephone Number

You can also call 86-755-25635626 with the extension to the Customer

Service Center.

z Fax Number

Our fax number is 86-755-25616057.

http://www.embedinfo.com/
http://www.embedinfo.com/cforum/login.asp
mailto:support@embedinfo.com

Appendix A Hardware Reference of Embest

JTAG Emulator

Embest JTAG Emulator contents two types of product: Standard JTAG

Emulator (Embest Emulator for ARM), and Enhanced JTAG Emulator (Embest

PowerICE for ARM).

Standard Emulator (Embest Emulator for ARM) was the standard JTAG

emulator for development series of ARM core CPU, early product of Embest

Info&Tech Co., LTD. It works at 25Kbyte per second by transmission, and capability

stabilization.

Enhanced Emulator (Embest PowerICE for ARM) was the New-generation of

JTAG emulator. It’s feature power supply can be provided by internal or external

input, and works at highest speed 120Kbyte per second by transmission.

Embest JTAG Emulator has a Parallel port connecting to the Computer’s

parallel port, and a JTAG interface connecting to the target system.

There are 3 LEDs on the panel, indicating the Emulator’s working state.

Note：Cable connection must not hot swap!

Embest PowerICE for ARM

JTAG Interface Connections

A standard male-to-female 25-way parallel cable connects the Embest

PowerICE for ARM to the PC's parallel port. The connection to the target board is

made by a 20-way (or 14 - way) female IDC header cable with all pins

connected straight through (1-1, 2-2, ... 20-20). There are two types of IDC

interface cable: 14pin and 20 pins. JTAG pin connections is described as figure

A – 1 and A – 2.

Vsupply

RES
TDI

TMS
TCK
RES
TDO

nSRST
RES
RES

1
3
5
7
9
11
13
15
17
19

2
4
6
8

10
12
14
16
18
20

RES
GND
GND
GND
GND
GND
GND
GND
GND
GND

Figure A-1 20 Pin JTAG Connections

Vsupply
nSRST

TDI
TMS
TCK
TDO
RES

1
3
5
7
9
11
13

2
4
6
8

10
12
14

RES
GND
GND
GND
GND
GND
GND

Figure A-2 14 Pin JTAG Connections

Note: All GND pins should be connected to 0V on the target board.

The following table shows the JTAG pinouts.

Signal I/O Description

Vsupply Input This is the supply voltage to Embest PowerICE for

ARM. It draws its supply current from this pin via a
step-up voltage convertor. This is normally fed by the
target Vdd. Valid power supply voltage is form 2.7V
to 5.5V.

GND - Ground.

TDI Output Test Data In signal from Embest PowerICE for ARM to
the target JTAG port. It is recommended that this pin
be pulled to a defined state.

TMS Output Test Mode signal from Embest PowerICE for ARM to
the target JTAG port. This pin should be pulled up on
the target so that the effect of any spurious TCKs
when there is no connection is benign.

TCK Output Test Clock signal from Embest PowerICE for ARM to
the target JTAG port. It is recommended that this pin
be pulled to a defined state.

TDO Input Test Data Out from the target JTAG port to Embest
PowerICE for ARM.

nSRST Output Open collector output from Embest PowerICE for
ARM to the target system reset. This pin should be
pulled up on the target to avoid unintentional resets
when there is no connection.

RES - Reserved.

Power Supply
Power is supplied to the Embest PowerICE for ARM via pin 1 of the 20-way

(or 14-way) IDC connector. This is normally fed by the target Vdd. Valid power
supply voltage is form 2.7V to 5.5V. Power of Embest PowerICE for ARM also can
be supply by external input voltage valid 3V/5V. Connection jack of the external
voltage input show as figure A-3 following:

Figure A-3 connection jack of the external voltage input

Note：

z According to the way of voltage input, power supply switch
of Embest PowerICE for ARM must place in the right position.

z Embest PowerICE for ARM cannot work if power voltage out
of range, even be badly damaged.

Target Interface Voltage Levels

The target interface voltage levels of Embest PowerICE for ARM depends on

the input voltage levels。It is 3V/5V compatible. Normally, power supply by the

external input voltage will give the output single voltage provided 3.3V.

LED Indicator

There are three LED in the panel of Embest PowerICE for ARM, labeled

Power、Run、and Con。

LED Power: power indicator

LED Run: data indicator, indicate the data transmission between host pc

and target CPU.

LED Con, connection indicator

Embest Emulator for ARM

JTAG Interface Connections

A standard male-to-female 25-way parallel cable connects the Embest

Emulator for ARM to the PC's parallel port. The connection to the target board is

made by a 20-way (or 14 - way) female IDC header cable with all pins

connected straight through (1-1, 2-2, ... 20-20). There are two types of IDC

interface cable: 14pin and 20 pins. JTAG pin connections is described as figure

A – 1 and A – 2.

Vsupply

RES
TDI

TMS
TCK
RES
TDO

nSRST
RES
RES

1
3
5
7
9
11
13
15
17
19

2
4
6
8

10
12
14
16
18
20

RES
GND
GND
GND
GND
GND
GND
GND
GND
GND

Figure A-1 20 Pin JTAG Connections

Vsupply
nSRST

TDI
TMS
TCK
TDO
RES

1
3
5
7
9
11
13

2
4
6
8

10
12
14

RES
GND
GND
GND
GND
GND
GND

Figure A-2 14 Pin JTAG Connections

Note: All GND pins should be connected to 0V on the target board.

The following table shows the JTAG pinouts.

Signal I/O Description

Vsupply Input This is the supply voltage to Embest Emulator for
ARM. It draws its supply current from this pin via a
step-up voltage convertor. This is normally fed by the
target Vdd. Valid power supply voltage is form 2.7V
to 5.5V.

GND - Ground.

TDI Output Test Data In signal from Embest Emulator for ARM to
the target JTAG port. It is recommended that this pin
be pulled to a defined state.

TMS Output Test Mode signal from Embest Emulator for ARM to
the target JTAG port. This pin should be pulled up on
the target so that the effect of any spurious TCKs
when there is no connection is benign.

TCK Output Test Clock signal from Embest Emulator for ARM to
the target JTAG port. It is recommended that this pin
be pulled to a defined state.

TDO Input Test Data Out from the target JTAG port to Embest
Emulator for ARM.

nSRST Output Open collector output from Embest Emulator for ARM
to the target system reset. This pin should be pulled
up on the target to avoid unintentional resets when
there is no connection.

RES - Reserved.

Power Supply
Power is supplied to the Embest Emulator for ARM via pin 1 of the 20-way

(or 14-way) IDC connector. This is normally fed by the target Vdd. Valid power
supply voltage is form 2.7V to 5.5V.

Note：Emulator cannot work if power voltage out of range, even be

badly damaged.

Target Interface Voltage Levels

The target interface voltage levels of Embest Emulator for ARM depends on

the input voltage levels。It is 3V/5V compatible.

LED Indicator

There are three LED in the panel of Embest Emulator for ARM, labeled

Power、Run、and Con。

LED Power: power indicator

LED Run: data indicator, indicate the data transmission between host pc

and target CPU.

LED Con, connection indicator

Appendix B Debug Output Reference

Info Reference

3001 CPU was in debug state before connected, register
values may be incorrect.

 description CPU was in debug state before connecting
to the host, you may get incorrect
register values.

 cause and
resolution

Causation:

 IDE Disconnected with target CPU when
it is in the debug state.

Resolution:

If you want to run the program in the
target system, you should rectify the
value of PC and related registers.

If you are going to download new
program to the target system, notice
the values in the stack-related
registers.

3002 target running, cannot auto download.

 description Target is in running state, auto download
command cannot be executed.

 cause and
resolution

Causation：

 If auto_download check box been
checked in the project setting dialog,
when connect to the target, IDE will
check the target status. If the target is
in debug state, IDE will execute the
download command, else prompt this
info massage.

Resolution:

No Resolution.

Warning Reference

2001 Breakpoint xx are not on valid lines, disabled.

 description The breakpoint is invalid, and then it is
forbidden.

 cause and
resolution

Reason of warning:

 Breakpoint is set at invalid line. User
must reset the breakpoint at a valid
line.

2002 invalid line, set breakpoint failed.

 description Failed to set breakpoint because current
line is not execute statement.

 cause and
resolution

Reason of warning:

 Current line is not execute statement.
user must set a breakpoint at execute
line.

2003 load symbol file failed.

 description Failed loading the symbol file.

 cause and
resolution

Reason of warning:

 Symbol file dos not exist.

 Symbol file format dose not supported
by IDE.

Select correct symbol file format and
recompile and then set the symbol file
config at Project setting > Debug
>general dialog.

2004 open memory map file failed.

 description Failed to open memory map file.

 cause and
resolution

Reason of warning:

 Memory map file does not exist.

 Memory map file damaged, cannot be

opened.

2005 read program counter failed.

 description Failed to read program counter.

 cause and
resolution

Reason of warning:

 Communication failed between
Emulator and target system.

 Target program exception.

Reset the target CPU and/or reconnect to
it.

2006 register doesn't exist.

 description Register doesn't exist.

 cause and
resolution

Reason of warning:

 CPU module is incompatible with debug
device module, please contact the
provider.

2007 target running, all breakpoints disabled.

 description Target is in running state, hence all of the
breakpoint is forbidden.

 cause and
resolution

Reason of warning:

 Target is in running state, user must
stop the target before enable all the
breakpoint.

2008 target running, cannot toggle breakpoint.

 description Target CPU is in running state, cannot
toggle breakpoint.

 cause and
resolution

Reason of warning:

 Target CPU is in running state, you
need stop the CPU before toggle
breakpoint.

2009 too many breakpoints.

 description Breakpoints’ amount out of range.

 cause and
resolution

Reason of warning: (Embest JTAG
emulator for arm7 V2001)：

 More than two hardware breakpoints.

 More then one hardware breakpoint
and 255 software breakpoint.

Delete at least one breakpoint before
setting a new one.

2010 unable to compute express or variable value.

 description Failed to compute express or variable
value.

 cause and
resolution

Reason of warning:

 Variable does not exist.

 Express invalid.

2011 unable to locate address.

 description Unable to locate the instruction address
corresponding with current line.

 cause and
resolution

Reason of warning:

 Symbol file is not matching with
execute file.

 Symbol file format dose not supported
by IDE.

User need rebuild the project and
download again.

2012 unable to locate source file.

 description Unable to locate the source file
corresponding with current instruction.

 cause and
resolution

Reason of warning:

 Symbol file is not matching with
execute file.

 Symbol file format is not supported by
IDE.

User need rebuild the project and
download again.

2013 workspace does not exist.

 description Workspace does not exist.

 cause and
resolution

Reason of warning:

 Current command need a workspace be
opened. User must create a workspace
and project.

2014 write program counter failed.

 description Failed to write program counter.

 cause and
resolution

Reason of warning:

 Communication failed between
Emulator and target system.

 Target program exception.

Reset the target CPU and/or reconnect to

it.

Error Reference

1001 Can not find environment variable 'embest_ide'.

 description Failed to find environment variable.

 cause and
resolution

Reason of error:

 environment variable 'embest_ide' does
not set in operation system. User must
set environment variable
EMBESE_IDE=[Embest IDE’s setup dir].

1002 Can not find register group, maybe device and cpu
module your selected are not compatible.

 description Failed to find register group.

 cause and
resolution

Reason of error:

 CPU module is not compatible with
device module. Please connect to the
provider.

1003 can not find download file …

 description Failed to find the specified download file.

 cause and
resolution

Reason of error:

 download file do not exist. User need
rebuild the project.

 download file path is not correct.

1004 can not read register.

 description Read register error.

 cause and
resolution

Reason of error:

 Communication failed between Emulator
and target system.

 Target program exception.

Reset the target CPU and/or reconnect to it.

1005 can not initialize CPU module.

 description CPU module initialize failed.

 cause and
resolution

Another error statement tell you the reason
of error if there are two error statement
at same time, otherwise:

 CPU module is not compatible with
current IDE version.

1006 can not initialize emulator module.

 description Failed to initialize emulator module.

 cause and
resolution

Another error statement tell you the reason
of error if there are two error statement
at same time, otherwise:

 Emulator module is not compatible with
current IDE version.

 IDE do not support current emulator.

1007 can not initialize file module.

 description Failed to initialize file module.

 cause and
resolution

Another error statement tell you the reason
of error if there are two error statement
at same time, otherwise:

 file module is not compatible with current
IDE version.

1008 can not open ide.ini file or specified item does not exist.

 description De.ini cannot be opened or some error
occur when open the file.

 cause and
resolution

Reason of error:

 ide.ini do not exist. This file should in the
embest_ide dir.

 ide.ini file contain errors. User needs
resetup EmbestIDE.

1009 cursor are not positioned on valid lines.

 description The line that contains cursor is invalid to
th t d

the current command.

 cause and
resolution

Reason of error:

 move the cursor to a valid line.

1010 disassemble non-existent memory.

 description Disassemble non-existent memory space.

 cause and
resolution

Reason of error:

 memory config file does not set up all of
the memory space.

 CPU was in debug state before
connecting to the host, so, IDE may get
incorrect register values. PC point to a
non-existent memory. This error can be
ignored.

 User program error.

1011 download address illegal, please modify download
address.

 Description Download address illegal.

 cause and
resolution

Reason of error:

 project setting dialog specifies a
download file name, but not specifies
the download address. User need
specifies a download address.

 download address is not a valid value.
User must modify the address to a valid
value.

1012 emulator not found, please check power and hardware
connection.

 description Failed to find the emulator.

 cause and
resolution

Reason of error:

 Emulator does not connect to the host
computer.

 Emulator do not powered on.

 Communication port config error or

damaged.

1013 failed to convert file from ELF format to BIN format.

 description Failed convert file format from ELF to BIN.

 cause and
resolution

Reason of error:

 file format is incorrect.

 Current file format is not supported by
IDE.

User must rebuild the project.

1014 find symbol failed.

 description Failed to find specified symbol.

 cause and
resolution

Reason of error:

 No symbol file is specified.

 Specified symbol is not found in source
file.

1015 get target status failed.

 description Failed to get target status.

 cause and
resolution

Reason of error:

 Communication failed between Emulator
and target system.

 Target program exception.

Reset the target CPU and/or reconnect to it.

1016 internal error, please contact supplier.

 description IDE internal error.

 cause and
resolution

Reason of error:

 IDE internal error. Please contact the
provider.

1017 invalid command.

 description Invalid command.

 cause and
resolution

Reason of error:

 execute a user customized command,
but this command is invalid. User need
modify the custom command.

1018 load script file error.

 description Failed to load script file.

 cause and
resolution

Reason of error:

 Specified script file do not exist. User
need check the filename and path of the
specified script file.

 script file error, check and modify it.

1019 out of memory.

 description Failed to allocate memory space.

 cause and
resolution

Reason of error:

 Failed to allocate system memory space.
User need close other application
program or restart host computer.

 IDE internal error. Please contact the
provider.

1020 project doesn't exist.

 description Project does not exist.

 cause and
resolution

Reason of error:

 No workspace has been opened. User
need open a workspace.

 No active project. User need create a
project and activate it.

1021 read register group failed.

 description Failed to read register group.

 cause and
resolution

Reason of error:

 Communication failed between Emulator
and target system.

 Target program exception.

Reset the target CPU and/or reconnect to it.

1022 reset target failed.

 description Failed to reset target CPU.

 cause and
resolution

Reason of error:

 hardware error or target CPU is not
supported by current version of IDE.
Check hardware interface.

1023 run target failed.

 description Failed to run target program.

 cause and
resolution

Reason of error:

 IDE get wrong Target state.

 Communication failed between Emulator
and target system.

 Target program exception.

Reset the target CPU and/or reconnect to it.

1024 step failed, maybe symbol file incorrect.

 description Source file step failed, possibly because
symbol file incorrect.

 cause and
resolution

Reason of error:

 Symbol file is not matching with execute
file. User need rebuild the project and
download again.

1025 step failed.

 description Step failed.

 cause and
resolution

Reason of error:

 Communication failed between Emulator
and target system.

 Target program exception.

Reset the target CPU and/or reconnect to it.

1026 stop target failed.

 description IDE cannot stop target CPU.

 cause and
resolution

Reason of error:

 Communication failed between Emulator
and target system.

 Target program exception.

Reset the target CPU and/or reconnect to it.

1027 target CPU not found.

 description IDE cannot find target CPU.

 cause and
resolution

Reason of error:

 Target board JTAG interface do not
match with emulator.

 Target CPU do not work.

 Target CPU do not support JTAG debug
mode.

 Emulator power level does not match
with CPU.

1028 unable to load CPU module.

 description Failed to load CPU module.

 cause and
resolution

Reason of error:

 Specified emulator module does not
exist. Reset the project and select
corresponding emulator module.

 CPU module path error in the IDE
tools-option dialog. Select Tools >
Option menu, set CPU module path to
$(EMBEST_IDE)\bin\CPU.

1029 unable to load emulator module.

 description Failed to load emulator module.

 cause and
resolution

Reason of error:

 Specified emulator module does not

exist. Reset the project and select
corresponding emulator module.

 emulator module path error in the IDE
tools-option dialog. Select Tools >
Option menu, set emulator module path
to $(EMBEST_IDE)\bin\device.

1030 unable to load file module.

 description Failed to load file module.

 cause and
resolution

Reason of error:

 Specified file module does not exist.
Check the sub dir \bin\file in the IDE
setup dir.

 File module path error in the IDE
tools-option dialog. Select Tools >
Option menu, set file module path to
$(EMBEST_IDE)\bin\file.

1031 unable to load portcall.dll.

 description Failed to load portcall.dll。

 cause and
resolution

 portcall.dll does not exist. Check the sub
dir \bin\driver in the IDE setup dir.

 Driver module path error in the IDE
tools-option dialog. Select Tools >
Option menu, set Driver module path to
$(EMBEST_IDE)\bin\driver.

Appendix C Debug Command List

General Option of Debug Command

 […] Optional items. Items out of [] must be present.

Option can be used by all command.

 -? Display the help information of the command.

Debug Command List

BKPTCLEAR – clear breakpoint

syntax: bkptclear [breakpiont ID]

descriptio
n:

Clear one or all the point

Parameter: breakpoint ID An integer number which identify a certai
n breakpoint

option: none

example: bkptclear 1 Clear the breakpoint which ID is 1

 bkptclear Clear all the breakpoint

BKPTDATA – set an data breakpoint

syntax: bkptdata option address

descriptio
n:

Set an data breakpoint at the specified memory locations

Parameter: address Memory address

option: W breakpoint is vaild when write memory

 R breakpoint is vaild when read memory

example: bkptdata -wr 0x7f4df
c

Set a data breakpoint at address
0x7f4dfc, it is vaild when read or
write this address.

BKPTINST – Sets an instruction breakpoint

syntax: bkptinst address

descriptio
n:

Sets an instruction breakpoint at the specified memory loc
ations

parameter: address The instruction address.

option: none

example: bkptinst 0x1024 Set a instruction breakpoint at add
ress 0x1024

BKPTLIST –List all breakpoints

syntax: bkptlist

descriptio
n:

List all installed breakpoints.

parameter: none

option: none

example: bkptlist List all installed breakpoints.

DISASM –Disassemble the target code

syntax: disassemble addr [line_num]

descriptio
n:

The Disasm command disassembles the target code begin
ning at a specified address. The Disasm command disass
embles ten lines as a default, or you can include an opti
onal [line_num] parameter

parameter: addr address in target memory to begin disassembl
ing.

 line_num the number of instructions you wish to disass
emble. The default is 10 lines.

option: None

example: Disassemble 100 8 disassemble 100 lines of code locate
d at address 8.

DOWNLOAD –Download file

syntax: download [Option] filename address

descriptio
n:

Download file to the specified address.

parameter: filename the specified download file.

 address the specified address

option: v download verify

example: download d:\demo\
ram.bin 0x2000000

Download d:\demo\ram.bin to the m
emory address at 0x2000000

 download -v d:\de
mo\ram.bin 0x200
0000

Download d:\demo\ram.bin to the m
emory address at 0x2000000, verify
 when downloading.

GO – Execute target program

syntax: go

descriptio
n:

Execute target program from current program counter

Parameter: none

option: none

example: Go

HELP – display help information

syntax: help [command name]

descriptio
n:

Display the help information of the specified command or
 brief information of all the command.

parameter: Command nam
e

Debug command name

option: none

example: help Display the brief information of all t
he command.

 help stop Display the help information of the c
ommand stop.

MEMREAD –Display the content of memory

syntax: memread address length

descriptio
n:

Displays the contents of the memory location requested.
It accesses the memory in word format default.

parameter: address memory location

 length the length of memory to be read

option: h specifies access the memory in half word for
mat.

 b specifies access the memory in byte format.

example: memread 0x1000 0x
200

Read 0x0200 words from 0x1000

MEMWRITE –Write to memory

syntax: memwrite [option] address value

descriptio
n:

Write value to the memory location requested. It accesse
s the memory in word format default.

parameter: addres
s

memory location

 value Specifies value to write.

option: -h Specifies access the memory in half word forma
t.

 -b Specifies access the memory in byte format.

 -e Write memory by Big endian mode

example: Memwrite 0x1000 0x5
A

Write 0x5a to 0x1000

 memwrite -e 0x20000
00 0x22334455

Equal to memwrite 0x2000000 0
x55443322

REFRESH – refresh all windows

syntax: refresh

descriptio
n:

refresh all windows include register, memory, stack, watc
h, global/local

parameter: none

option: none

example: refresh

REGLIST –Display all registers

syntax: reglist

descriptio
n:

displays the properties of all of the processor's registers

parameter: none

option: none

example: reglist

REGREAD –display registers

Syntax: regread [option] register group name or register name

descriptio
n:

displays the contents of a particular register or registers.

Parameter: register
group na
me or re
gister na
me

Specifies register group name or register nam
e

option: g read register group

example: regread pc display PC register

 regread –g user display all registers belong to 'User'
group

REGWRITE – set register

syntax: Regwrite register name value

descriptio
n:

Set register

parameter: register
 name

Specifies register name

 value The value to write

option: none

example: regwrite pc 0x3840 Set PC with the value 0x3840

RESET –Reset the target

syntax: reset

descriptio
n:

Reset the target device

parameter: none

option: none

example: reset

SCRIPT –Executes command script file

syntax: script filename

descriptio
n:

Executes command script file

parameter: filenam
e

Specifies script filename

option: none

example: script d:\demo\cm
d.cs

Executes command script file d:\de
mo\cmd.cs

STEP –Executes one statement or instruction

syntax: step

descriptio
n:

single-stepping begins at the address contained in the pr
ogram counter.

parameter: none

option: none

example: step step one instruction

STOP –Stop the target

syntax: stop

descriptio
n:

Stop the target

parameter: none

option: none

example: stop

SYMBOL –Load symbol file

syntax: symbol [symbol filename]

descriptio
n:

Load symbol file

parameter: symbol filename Specifies symbol file

option: none

example: symbol d:\demo\ram.
elf

Load ram.elf symbol file in d:\de
mo

Appendix D Memory Map File

Description

By default, Embest IDE assumes that the entire address space is mapped to

standard RAM, so IDE can read or write any memory address. In some cases it

will cause exceptions, in which case you can manually create a memory map file.

You should create your own memory map in the following situations:

z Your target has read-only memory areas or non-existent memory areas

that should cause a bus fault when accessed.

z Your applications access non-standard memory locations.

A memory map is created in a *.MAP file which Embest IDE automatically

executes when connect emulator.

Format

In memory map file, each line describe one memory block except for the line

begin with ‘#’ which is comment line. One line is consisting of nine parts and

each part separate with blank space. The format of each line is:

name start size read-write bus-width access-size read-times write-times

burst-times

ITEM TYPE DESCRIPTION

Name string A single word that you can use to identify

the memory region. You can use any

name. To ease readability of the memory

access statistics, give a descriptive name

such as SRAM, DRAM, or EPROM.

Start hexadecimal The start address of the memory region.

Size hexadecimal The size of the memory region.

Read-Write string The property of read-write, R for read, W

for write.

Bus-Width decimal The width of the data bus in bytes (that is,

1 for an 8-bit bus, 2 for a 16-bit bus, or 4

for a 32-bit bus).

Access-Size decimal The width when access memory (that is, 1

for 8-bit, 2 for 16-bit, or 4 for 32-bit).

Read-Times nanoseconds The nonsequential and sequential read

times.

Write-Times nanoseconds The nonsequential and sequential write

times.

Burst-Times nanoseconds The nonsequential and sequential burst

times.

Note：The beginning four items is necessary, and the others which

not concerned can be substituted by symbol ‘-’.

Example

A typical memory map looks like this:

#Name Start Size Attribute notWarry

INTERNRAM 10000000 2000 RW - - - - -

COREINTERNALIO 78000000 8000000 RW - - - - -

STANDARDAPBIO B0000000 8000000 RW - - - - -

COREAPBIO B8000000 8000000 RW - - - - -

EXTERNDRAM C0000000 800000 RW - - - - -

EXTERNSRAM C8000000 100000 RW - - - - -

FLASH C8100000 200000 R - - - - -

EXTERNSRAM D0000000 80000 RW - - - - -

EXTERNIO F0000000 8000000 RW - - - - -

NotWarry contents of: BusWidth AccessSize ReadWait WriteWait

BurstWait.

Appendix E Command Script Reference

Description

Command Script File is a text formatting file, is used to auto execute several

commands continuously, the contents of the file consist of command one by

one.

When debug software or between connect target system, often need

execute several fixed command lists, for instance: after connect target system,

need execute thereinafter steps: stop target CPU—mask interrupt register—set

external memory—remap memory or download executable file etc. If need input

these command after connect target system every time, do you feel boring?

Just write a command script file, EmbestIDE will auto execute these commands.

The commands that used in debug command window also can be used in

script file. Debug command and its detail reference please refer to the sect

‘Debug Command Lists’.

Executive

Command Script File has two executive ways:

1．In Command Input Window, input：

script <command script filename>

2．Designate in project setting dialog. When input appointed script filename,

the script file will be auto executed after EmbestIDE successful connect target

system.

Example

Example one: Atmel Eb40, command script file that will be auto executed

after Embest IDE successful connect target system.

; stop target CPU
stop
; config memory
memwrite 0xffe00000 0x01002535
memwrite 0xffe00004 0x02002121
memwrite 0xffe00024 0x06
; remap memory
memwrite 0xffe00020 0x01
refresh
download -v D:\Demo\armdemo\debug\led.elf 0x2000000
; end

Example two: Samsung SNDS100, command script file that will be auto

executed after Embest IDE successful connect target system.

; stop target CPU
stop
; mask interrupt
memwrite 0x3ff4008 0xffffffff
; config system
memwrite 0x3ff0000 0x90FFFF83
; set data-bus width
memwrite 0x3ff3010 0xfaffff0f
; config external FLASH
memwrite 0x3ff3014 0x60000412
memwrite 0x3ff3018 0x40800414
memwrite 0x3ff301C 0x40000516
memwrite 0x3ff3020 0x20800518
memwrite 0x3ff3024 0x4000061a
memwrite 0x3ff3028 0x4080061c
; config external DRAM
memwrite 0x3ff302C 0x80030004
memwrite 0x3ff3030 0x80010108
memwrite 0x3ff3034 0x8001020c
memwrite 0x3ff3038 0x80010310
memwrite 0x3ff303C 0x608327ce
; end

Example Three：Samsung S3C44B0X, command script file that will be auto

executed after Embest IDE successful connect target system.

Stop ;stop target CPU
Reset ;reset CPU
Stop
;set the system Registers
memwrite 0x01D30000 0x00000000 ;WTCON
memwrite 0x01E0000C 0x07ffffff ;INTMSK
memwrite 0x01D8000C 0x00000fff ;LOCKTIME
memwrite 0x01C80000 0x11110101 ;BWSCON
memwrite 0x01C80004 0x00000600 ; BANKCON0
memwrite 0x01C80008 0x00007FFC ; BANKCON1
memwrite 0x01C8000C 0x00007FFC ; BANKCON2
memwrite 0x01C80010 0x00007FFC ; BANKCON3
memwrite 0x01C80014 0x00007FFC ; BANKCON4
memwrite 0x01C80018 0x00007FFC ; BANKCON5
memwrite 0x01C8001C 0x00018000 ; BANKCON6
memwrite 0x01C80020 0x00018000 ; BANKCON7
memwrite 0x01C80024 0x00860459 ;REFRESH
memwrite 0x01c80028 0x00000010 ;BANKSIZE
memwrite 0x01C8002C 0x00000020 ;MRSRB6
memwrite 0x01C80030 0x00000020 ;MRSRB7
;end

Appendix F Additional Software Tools of

Embest IDE

As shown in fig. F-1, click Tools in main menu to open the tool menu of

Embest IDE. The attached tools include: Elf to Bin, Disassemble all, Symbol

table, Flash Programmer and SplitBin.

Fig. 1 Interface of tool menu

Description

Elf to Bin

The tool Elf to Bin is the generation tool of binary file format. This tool can be

used to change the debug information Elf file, built and generated by IDE, into

the binary file necessary for solidification of program.

The user selects the sub-menu Elf to Bin under Tools menu to generate the

sub-directory Debug under program directory into a Bin file with same name as

Elf file.

The user can also directly use command line style to complete the above

procedure. The execution program elf2bin.exe corresponding by the command

line is located at sub-directory Tools under installation directory Embest IDE.

The detailed usage of command line can be obtained through execution of

elf2bin in control table.

Disassemble all

Disassemble all is a disassembly tool. The user can use this tool to change

the debug information file elf into the disassembly file including source file and

debug symbol.

The user selects the sub-menu Disassemble all under Tools menu to

generate the sub-directory Debug under project directory into a disassembly file

with the file name as objdump.

The user can also directly use command line style to complete the above

procedure. The execution program arm-elf-objdump.exe corresponding by the

command line is located at sub-directory Builds/xgcc-arm-elf/bin under

installation directory Embest IDE. The detailed usage of command line can be

obtained through execution of arm-elf-objdump in control table.

Symbol table

Symbol table is the generation tool of debug symbol file. The user can use

this tool to generate the symbol table of corresponding project debug

information. This symbol table mainly records the entrance addresses of various

functional symbols.

The user selects the sub-menu Symbol table under Tools menu to generate

the sub-directory Debug under project directory into a debug symbol file with

file name as objdump.

The user can also directly use command line style to complete the above

procedure. The execution program arm-elf-objdump.exe corresponding by the

command line is located at sub-directory Builds/xgcc-arm-elf/bin under

installation directory Embest IDE. The detailed usage of command line can be

obtained through execution of arm-elf-objdump in control table.

Flash Programmer

The tool Flash Programmer solidifies the binary file that the user finally

generates onto the FLASH chip of circuit board of the user, support to use the

programming of FLASH chip in the system developed with ARM series

processors, especially suitable to the user selecting component displacement

FLASH. After open, the software interface is shown in fig. F-2. For the detailed

introduction, refer to Embest Online Flash Programmer User’s Manual.

Fig. F-2 Software interface of Flash Programmer

SplitBin

Click SplitBin under Tools menu to open the SplitBin tool as shown in

following fig. F-3. It can split or unite Bin file according to data width and coding

manner.

F-3 Split tool interface of Bin file

Parameter>>Bus width：Select the data width of file to be split, 16bit or

32bit;

Parameter>>Byte order：Select coding manner of data, little Endian or big

Endian;

Parameter>>Operate：Select whether the function of tool is split or unite;

Parameter>>Split length：Select data width of file after split;

File>>BIN filename：Select the routine and name of Bin file to be split or

united;

Split file 1-4： If in split manner, it will automatically generate 2 or 4 split files

according to data width selected in the right before and after split,

for example, Bus width selects 16bit, Split length selects 8bit, and

it will generate two files Split file 1 and Split file 2 after split; if in

unite manner, select the route and name of Bin file to be united.

Appendix G Common questions

Question 1 About gccmain

Question:

It appears the following error prompt while connection, why?

.\debug\main.o: In function `main":

.\debug\main.o(.text+0xc): undefined reference to `__gccmain"

Answer:

While gcc builder is building and connecting source file, it will automatically

connect main function to gccmain function internally provided in gcc, that is, if

the programmer defines main function, the execution order of program is:

main()
 {
 gccmain() ;
 Code compiled by customer
 }

This function is provided in the base libgcc.a, and it must connect libg.a

while connecting this base.

There are three measures for solving connection errors:

1) Settings in Embest IDE

Select the menu Project> Settings, open project configuration box, select

the linker page and select the option add library searching path in drop-down

box, increase the path:

..\..\..\build\xgcc-arm-elf\arm-elf\lib\arm-inter

..\..\..\build\xgcc-arm-elf\lib\gcc-lib\arm-elf\3.0.2\arm-inter

The above path is the path relative to Embest IDE routine, and the user can

set absolute routine:

Select the linker page, select the drop-down option Include Object And

Library Modules and add the base:

-lc

-lgcc

When this measure is linked, the program of user will be larger.

2) Write a gccmain assembly function or C language function by yourself

Prepare assembly function

 .global __gccmain
__gccmain:
 mov pc, lr

Prepare C language function

void __gccmain()
{
}

 Re-link the program building:

3) Use__main or directly use__gccmain（）as own function entrance；

Question 2 Connection errors of emulator

Question:

In general, what reasons will cause the connection emulator to appear the

following error messages?

“target cpu not found”, “stop target failed” or “run target failed”

Answer:

The connection errors of emulator are generally caused due to following

reasons:

1）The connection of JTAG interface circuit is not in accordance with the

regulations of IEEE1149.1-1990, for example TDI, TCK, TMS and other
signals are not connected pull-up resistance; nSRST shall be connected
system reset instead of reset of JTAG. In addition, the JTAG interfaces
have been correspondingly treated in the chips of some processors. The
user should read the manual carefully.

2）Some chips of processors have appointed pins to control the operation of

processor, they should be connected according to appointed style or
otherwise it may cause CPU not to stop properly, for example nwait
signal of ARM processors. The user should pay attention to checking
whether nTRI or nWAIT is pulled up, whether the reset signal connection
is correct, whether clock signal is proper, and referring to datasheet;

3）The emulator cannot obtain power from target board, for example the

power of target board can only meet the requirements of target board, or
JTAG interface has not leading power;

4）JTAG interface switch in the side of emulator has incorrect setting. The

user shall correctly set the switch according to that the JTAG port in
target board has 14 pins or 20 pins;

5）Project setting in IDE environment is not correct, the drop-down box of

Project>Settings>Remote>Remote device shall select jtagarm7 or
jtagarm9 according to CPU of target board;

6）Some computers need to amend parallel interface setting mode.

For user, generally check according to the following steps:

1）Power. Include voltage and current of power source. Embest Emulator is

compatible to 3.3V and 5V. Emulator itself needs the current about
several decades of mA.

2）Reset signal. Observe whether reset signal is proper or not, whether it is

pulled down.

3）Clock check. Check whether crystal oscillator work normally, whether the

clock input and output of processor is normal.

4）NWAIT Signal. Pull up.

5）nTRI Signal. Pull up.

6）For some processors, there are some modes or control pin (for example

JTAGSEL signal) that are required to connect appointed level (pull-up or
pull-down) in order to support JTAG debugging interface. Please read the
datasheet carefully.

Question 3 To link the useful libraries

Question:

How to link the useful libraries provided by GNU, and what modes do they

support?

Answer:

-lm means that linker will connect standard mathematic function base

libm.a

-lc means that linker will connect standard C function base libc.a

-lg means that linker will connect the support base of standard function

base libg.a

-lgcc means that linker will connect the support base of GCC libgcc.a

While connection, the arrangement order of these bases is generally as the

following: -lm -lc -lgcc -lg

The C base files supplied by Embest IDE for ARM mainly support the

following modes:

ARM Little-Endian

ARM Little-Endian Interwork

ARM Big-Endian

ARM Big-Endian Interwork

Thumb Little-Endian

Thumb Little-Endian Interwork

Thumb Big-Endian

Thumb Big-Endian Interwork

The lists in which Newlib C exists is corresponding to the above modes，and

they are as follows respectively:

$(EMBEST_IDE)\build\xgcc-arm-elf\arm-elf\lib

 \lib\arm-inter

 \lib\arm-big

 \lib\arm-inter-big

 \lib\thumb

 \lib\thumb-inter

 \lib\thumb-big

 \lib\thumb-inter-big

The lists in which libgcc exists:

$(EMBEST_IDE)\Build\xgcc-arm-elf\arm-elf\lib

 \lib\arm-big

 \lib\arm-inter

 \lib\arm-inter-big

 \lib\thumb

 \lib\thumb-big

 \lib\thumb-inter

 \lib\thumb-inter-big

The lists in which libg.a base exists:

$(EMBEST_IDE)\build\xgcc-arm-elf\lib\gcc-lib\arm-elf\3.0.2\

 \3.0.2\arm-inter

 \3.0.2\arm-big

 \3.0.2\arm-inter-big

 \3.0.2\thumb

 \3.0.2\thumb-inter

 \3.0.2\thumb-big

 \3.0.2\thumb-inter-big

Question 4 How to download the program onto Flash ROM

Question:

How to download the program completed debugging in RAM onto Flash

ROM?

Answer:

The user shall pay attention to or change the following two positions when

downloading the program completed debugging in RAM on target board:

1） Startup program: in RAM, through startup program of debugging, it

is not necessary to copy the data section from read-only area to

readable and writable area. The initialization of hardware can be

completed through IDE command script or the program download

onto Flash ROM. Therefore, the program completed debugging in

RAM is generally download onto Flash ROM after amending startup

program, for example in AT91 routine, the startup file for debugging

in RAM is cstartup_ice.s, the startup file used in Flash ROM is

cstartup_flash.s, according to the routine organization style of AT91,

the displacement of startup file can be completed through a

assembler pre-definition.

2） Linker script: the program passing through debugging in RAM use

such linker script that takes RAM area as program code section

address, and data section generally directly follow the code section,

while the linker script used in Flash ROM uses ROM area as code

section address, data section is in RAM area, therefore it shall

distribute and amend linker script according to the address of final

target board.

There are two examples on how to amend the program completed

debugging in RAM then it can be downloaded onto target board.

Example 1: the program Led_blink_EB40, which lights LED in AT91EB40

evaluation board

1) Click Project menu>Settings, open project configuration box, change
“AT91_DEBUG_ICE=1” as “AT91_DEBUG_NONE=1” in Assemble
page>Predefines options.

2) Amend linker script file, and the linker script files before and after
amendment are shown in following figure:

In RAM In Flash

Fig. G-1 The linker scripts that the program uses in RAM and Flash and
their difference

Comparing with original script file, the code section and read-only data

section are put in the position starting from 0x1000000 address, that is,

ROM storage area of the system; and present the starting address (RAM

address) of readable and writable data section.

When the above operation is completed, re-build the project, then click

IDE menu Tools>Elf to Bin, and change elf file into binary format file (*.bin).

Finally use Embest Flash Programmer to download bin file onto Flash ROM of

target board.

Example 2: LedInt that NET-START evaluation board lights LED

1) Set ROM = 1 in pre-definition options of assembler, or directly add “.equ
ROM 1” in init.s file.

2) In link file of linker, select flash.ld. This link file and startup file mutually
complete the transport of data section initially downloaded onto Flash.
It has the following difference with the script file debugged in RAM: the
address of current 0X0 is flash storage area, while it is RAM storage area
formerly; the current RAM area is in the position 0X0400000. The linker
script files before and after amendment are shown in following figure:

In RAM In Flash

Fig. G-2 The linker scripts that the program uses in RAM and Flash and
their difference

When the above operation is completed, re-build the project, then click

IDE menu Tools>Elf to Bin, change elf file into binary format file (*.bin).

Finally use Embest Flash Programmer to download bin file onto Flash ROM of

target board.

Question 5 Command script, linker script and memory map
file

Question:

What is command script, linker script and memory map script?

Answer:

Command script:

While integrating environment and target connection, in the course of

debugging software and after resetting target board, sometimes the user needs

to integrate environment to automatically finish some special functions such as

resetting target board, clearing off watchdog, screening and interrupting

register, memory map, etc., these special functions can be completed through

executing a group of commands. The text file saving a group of command

sequence is called as command scripts file.

The following are the examples of command script:

; stop target CPU
stop
; configurations of the special register
memwrite 0xffe00000 0x01002535
memwrite 0xffe00004 0x02002121
memwrite 0xffe00024 0x06
; configuration for Mapping Address
memwrite 0xffe00020 0x01
refresh
download -v D:\Demo\armdemo\debug\led.elf 0x2000000
;end

Linker script:

In the Embed system development, it needs to use linker position file.

This file describes the relevant information of code linker position, including

code section, data section, address section, and the linker shall use the code

of this file to the whole system as correct position. This file is called as linker

scripts file.

The following is an example of Linker script:

SECTIONS
{
 . = 0x02000000;
 .text : { *(.text) }
 Image_RO_Limit = .;
 Image_RW_Base = .;
 .data : { *(.data) }
 .rodata : { *(.rodata) }
 Image_ZI_Base = .;
 .bss : { *(.bss) }
 Image_ZI_Limit = .;
 __bss_start__ = .;
 __bss_end__ = .;
 end = .;
 .debug_info 0 : { *(.debug_info) }
 .debug_line 0 : { *(.debug_line) }
 .debug_abbrev 0 : { *(.debug_abbrev)}
 .debug_frame 0 : { *(.debug_frame) }
}

Memory linker map file:

In the course of debugging software, accessing illegal memory will occur

abnormal in some processors and target boards. If the abnormality is not

handled, it may cause the debugging course of software incapable to continue.

In order to prevent the above issues and adjust the accessing speed of emulator

to reach to proper level, a file for describing property of each memory area is

provided. Such file is called as memory map file.

The following is an example of map file:

ONCHIPRAM 0 8000 RW - - - - -
EXTERNDRAM 100000 128000 RW - - - - -
FLASH 1000000 128000 R - - - - -
SRAM 2000000 512000 RW - - - - -
PERIREG FFC00000 4000000 R - - - - -

Question 6 Definition of linker script

Question:

Please explain the meaning of linker scripts file?

Answer:

The linker script file is used in flash solidification:

SECTIONS
{
. = 0x000000; Assign current address as 0
.text : { *(.text) }; Code section, put program code at this place

from 0 identification code
.rodata : { *(.rodata) }; Read-only data section, static global variable

and other immovable values in program are put in this section
Image_RO_Limit = .; Length of read-only area, the symbol used in

the startup program
. = 0x0400000; Assign current address as 0x400000
Image_RW_Base = .; Read-write the frame of the area, start the

symbols used in program
.data : { *(.data) }; Data section, the global variables initialized in

the program are put in this section
Image_ZI_Base = .; Frame of resetting area, the symbol used in

startup program
.bss : { *(.bss) }; Include global accessible data not initialized,

for example not initialized global variables
Image_ZI_Limit = .; Length of resetting area, the symbol used in

startup program
end = .; Ending address
.debug_info 0 : { *(.debug_info) }; Output section of

debugging information
.debug_line 0 : { *(.debug_line) }
.debug_abbrev 0 : { *(.debug_abbrev)}
.debug_frame 0 : { *(.debug_frame) }
}

Linker scripts file used in debugging RAM:

SECTIONS
{
. = 0x000000; Assign current address as 0
.text : { *(.text) }; Code section, put program code at this place

from 0 identification code

Image_RO_Limit = .; Length of read-only area, the symbol used in
startup program

Image_RW_Base = .; Read-write the frame of the area, the symbol
used in startup program

.rodata : { *(.rodata) }; Read-only data section, the static global
variables and other immovable values in the program are put in this section

.data : { *(.data) }; Data section, the global variables initialized in
the program are put in this section

Image_ZI_Base = .; Frame of resetting area, the symbol used in
startup program

.bss : { *(.bss) }; Include global accessible data not initialized,
for example not initialized global variables

Image_ZI_Limit = .; Length of resetting area, start the symbols
used in program

end = .; ending address
.debug_info 0 : { *(.debug_info) }; Output section of

debugging information
.debug_line 0 : { *(.debug_line) }
.debug_abbrev 0 : { *(.debug_abbrev)}
.debug_frame 0 : { *(.debug_frame) }
}

For the section code as follows:

int A1;
int A2 =5;
const int A3 = 10;

void main()
{
 int A4;
 register int A5;
 A4 = A3;
}

The variable A1, as not initialized variable, will be stored in the section .bss;

The variable A2, as initialized variable, will be stored in the section .data;

The constant A3 is stored in read-only data section .rodata;

The code that main function is corresponding is stored in the section .text;

The local variable A4 is stored in the corresponding function stack of main

function when the program executes main function;

The register variable A5 is directly stored in a register of ARM;

Question 7 How to migrate SDT assemble program

Question:

How to migrate the assembly code in the environment of ARM SDT as

assembly code supported by free software gnu assembler integrated by Embest

IDE?

Answer:

Migration description on SDT assembly program:

1) The note line replaces “;” with “#”

2) Substitution of pseudo instruction characters

pseudo instructions

characters in SDT

pseudo instructions

characters in Embest IDE

INCLUDE .include

TCLK2 EQU PB25 .equ ECLK2 , PB25

EXPORT .global

IMPORT .extern

DCD .long

IF:DEF: .ifdef

ELSE .else

ENDIF .endif

:OR: |

:SHL <<

RN .req

GBLA .global

BUSWIDTH SETA 16 .equ BUSWIDTH, 16

MACRO .macro

MEND .endm

END .end

AREA Word,CODE,READONLY .text

AREA Block, DATA, READWRITE .data

CODE32 .arm

CODE16 .thumb

LTORG .ltorg

% .fill

Entry Entry:

3) Substitution of operand and operator

ldr pc, [pc, #&18] ldr pc, [pc, #+0x18]

ldr pc, [pc, #-&18] ldr pc, [pc, #-0x18]

 “&” refers to hex

Question 8 Register and stack of ARM processors

Question:

Please explain the register and stack of ARM processors?

Answer:

The corresponding form of registers in ARM7:

R0 ---> R0

.. ..

R9 ---> R9

R10 ---> SL

R11 ---> FP Frame pointer points stack bottom

R12 ---> IP

R13 ---> SP The register of stack pointer points to stack top

R14 ---> LR

R15 ---> PC

Legend of stack:

ARM7 under gcc 2.95/2.97 building uses r11 register as function stack

bottom pointer, r13 as current function stack top pointer.

A typical function stack information structure is as follows:

 Memory high address

Parameters of current function

Last function
stack top (r12)

PC value (of no use) after
entering function

Return address of current
function

Stack bottom
(r11)

Last function r13 register value

Function

Stack

Last function r11 register value

Local variable of current
function

Parameters transferred to next
function

Stack top (r13)

 Memory low address

Note: directly take r11 value to take PC value, other than function return

address

Question 9 Building error caused by GCC bug

Question:

Free software gcc builder integrated by Embest IDE includes a software bug.

This bug causes the target code produced from building to bring collapse of

stack in some situations while using __attribute__ ((interrupt ("IRQ"))) style

statement C language common interruption function

How to program to ensure the normal operation of common interruption?

Answer:

User can ensure normal operation of common interruption through the

method of assembly programming.

 .EXTERN irq_func
 .GLOBAL irq_entry
irq_entry:
 stmdb sp!, {r0-r11, ip, lr} /* Save r0-r11, ip, lr */
 ldr r0, = irq_func
 mov lr, pc
 bx r0 /* Use C interruption program*/
 ldmia sp!, {r0-r11, ip, lr} /* Resume r0, ip, lr */
 subs pc, r14, #4 /* Interruption and return */

irq_entry is the entry of common interruption function. It completes the

pushing in stack with relevant register in the common interruption mode, calls

irq_func function, pops out register, interrupts return function.

irq_func is to use C language or assembly language to prepare interruption

treatment function. This function is not necessary to use __attribute__

((interrupt ("IRQ"))) style statement.

In addition, this bug of gcc software will not affect other interruption vector

mode, and the treatment function of other vector modes can still use

__attribute__ ((interrupt ("FIQ"))), __attribute__ ((interrupt ("SWI"))) style

statement.

Question 10 To debug the project of ARM SDT

Question:

How to use Embest IDE to debug the project in ARM SDT environment?

Answer:

Embest IDE can debug the file to be produced with ARM SDT project building

linker.

The user needs to make the following settings in the building environment

of SDT:

In ARM SDT main menu click Tools>Configure,

1） Take <cc>=armcc menu, select the page Language and Debug, set

Debug Table Format as dwarf 1 option, and set Optimization Level as

None option;

2） Take <asm>=armasm menu, select the page Options, and set Debug

Table Format as dwarf 1 option;

3） Select armlink menu, select the page Output and set Output Formats as

Arm Elf Image format option;

The above setting can aim at single project and be realized through

selecting Project > Tool Configuration menu. The settings are same as the

above.

The user can use the above settings, under ARM SDT environment, to build

and produce the corresponding output file of this project prj.elf.

In Embest IDE environment, the user selects Project > Settings menu, sets

this output file as symbol file and download file for debugging in the Debug page

of dialog box, and sets the local directory of source file in directory page

simultaneously, then it can perform debugging upon this file at source file level

or assembly level.

Question 11 FAQ for ARM compiler

Question A

Which versions of ARM compiler does Embest IDE support?

Answer

Embest IDE supports the compilers of ARM SDT V2.50 and ARM SDT V2.51,

but does not support the compilers over ARM ADS V1.2 version.

ARM ADS V1.2 uses the same compiler version as ARM SDT V2.51, but it

screens some output formats of debugging information.

Question B

Although sometimes there shows“Command(s) successfully executed.”

when compiling, it actually generates no target files, why?

Answer

Because the user’s ARM compiler hasn’t acquired authorization.

If armcc command is executed in DOS command line, it would show the

prompt similar to the following:

This licence has not yet been installed.

Question C

Compiling whilst there shows “...Fail to executing above command. "C:

\Bin\armasm" maybe not found or executed!”？

Answer

1, It hasn’t yet been installed or the installation is wrong in ARM compiler

directories. User should choose item” Tools>Options” and then install the

ARM compiler path on the directories page of Options dialog box.

2, ARM compiler or relevant files are damaged, so execution fails.

Question

When linking, it shows the prompt like:“Warning: File C:\LIB\armlib_cn.

32l not found.”？

Answer

The prompt indicates failure to link to library file C.

User should refer to 5.4.3, open the configurations behind SDT or ADS

projects and then install the search path of library file; provided user has

installed ARMLIB in the environment variable, they will have a same result as

installing the search path of library file in projects.

