

Instruction Manual

MODEL A55

THERMAL CONVERTERS and

MODEL 550A

THERMAL TRANSFER STANDARD

WARRANTY

Notwithstanding any provision of any agreement the following warranty is exclusive:
The JOHN FLUKE MFG. CO., INC., warrants each instrument it manufactures to be free from defects in material and workmanship under normal use and service for the period of 1 -year from date of purchase. This warranty extends only to the original purchaser. This warranty shall not apply to fuses, disposable batteries (rechargeable type batteries are warranted for 90-days), or any product or parts which have been subject to misuse, neglect, accident or abnormal conditions of operations.

In the event of failure of a product covered by this warranty, John Fluke Mig. Co., Inc., will repair and calibrate an instrument returned to an authorized Service Facility within 1 year of the original purchase; provided the warrantor's examination discloses to its satisfaction that the product was defective. The warrantor may, at its option, replace the product in lieu of repair. With regard to any instrument returned within one year of the original purchase, said repairs or replacement will be made without charge. If the failure has been caused by misuse, neglect, accident or abnormal conditions of operations, repairs will be billed at a nominal cost. In such case, an estimate will be submitted before work is started, if requested.

> THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS OR ADEQUACY FOR ANY PARTICULAR PURPOSE OR USE. JOHN FLUKE MFG. CO., INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, WHETHER IN CONTRACT, TORT OR OTHERWISE.

If any failure occurs, the following steps should be taken:

1. Notify the JOHN FLUKE MFG. CO., INC., or the nearest Service facility, giving full details of the difficulty, and include the Mode| number, type number, and serial number. On receipt of this information, service data or shipping instructions will be forwarded to you.
2. On receipt of the shipping instructions, forward the instrument, transportation prepaid. Repairs will be made at the Service Facility and the instrument returned, transportation prepaid.

SHIPPING TO MANUFACTURER FOR REPAIR OR ADJUSTMENT

All shipments of JOHN FLUKE MFG. CO., INC., instruments should be made via United Parcel Service or "Best Way" prepaid. The instrument should be shipped in the original packing carton; or if it is not available, use any suitable container that is rigid and of adequate size. If a substitute container is used, the instrument should be wrapped in paper and surrounded with at least four inches of excelsior or similar shock-absorbing material.

CLAIM FOR DAMAGE IN SHIPMENT TO ORIGINAL PURCHASER

The instrument should be thoroughly inspected immediately upon original delivery to purchaser. All material in the container should be checked against the enclosed packing list. The manufacturer will not be responsible for shortages against the packing sheet unless notified immediately. If the instrument is damaged in any way, a claim should be filed with the carrier immediately. (To obtain a quotation to repair shipment damage, contact the nearest Fluke Technical Center.) Final claim and negotiations with the carrier must be completed by the customer.

The JOHN FLUKE MFG. CO., INC. will be happy to answer all application or use questions, which will enhance your use of this instrument. Please address your requests or correspondence to: JOHN FLUKE MFG. CO., INC., P.O. BOX 43210, MOUNTLAKE TERRACE, WASHINGTON 98043, ATTEN: Sales Dept. For European Customers: Fluke (Nederland) B.V., Zevenheuvelenweg 53, Tilburg, The Netherlands.

* For European customers, Air Freight prepaid.

John Fluke Mig. Co., linc., P.O. Box 43210 Mountlake Terrace, Washington 98043

table of contents

Section Title PageINTRODUCTION AND SPECIFICATIONS1-1
1-1. Introduction 1-1
1-4. Receiving Inspection 1-1
1-6. Specifications 1-1
II OPERATING INSTRUCTIONS 2-1
2-1. Introduction 2-1
2-3. Function of External Controls and Terminals 2-1
2-5. Auxiliary Equipment 2-2
2-7. Calibrating an AC Instrument 2-2
2-8. Measuring an Unknown AC Voltage 2-3
2-9. Measuring Frequency Response 2-4
III THEORY OF OPERATION 3-1
3-1. Introduction 3-1
3-3. Model 550A 3-1
3-5. Model A55 3-1
3-7. Transmission Line Corrections for the A55 3-1MAINTENANCE4-1
4-1. Introduction 4-1
4-3. Preventive Maintenance 4-1
4-5. Troubleshooting 4-1
4-7. Calibration Checking of A55 4-1
LIST OF REPLACEABLE PARTS 5-1
5-1. Introduction 5-1
5-4. How To Obtain Parts. 5-1
5-7. Abbreviations and Symbols 5-2
5-8. Use Code Effectivity 5-7
APPENDIX A
WARRANTY
CIRCUIT DIAGRAM

LIST OF ILLUSTRATIONS

Figure Title Page
Frontispiece Model A55 Thermal Converter iv
Model 550A Thermal Transfer Standard iv
2-1. Function of External Controls and Terminals 2-1
2-2. Auxiliary Equipment 2-2
2-3. Voltage Calibration Setup Diagram 2-3
2-4. Voltage Measuring Setup Diagram 2-4
2-5. Typical Values of "A" 2-5
2-6. Typical Values of Converter Admittance 2-5
2-7. Frequency Response Connection Diagram 2-6
2-8. Frequency Response Setup Diagram for AC Amplifiers 2-6
3-1. Model A55 Schematic Diagram 3-1
4-1. Troubleshooting Chart 4-1
4-2. Connection Diagram for Calibration Checking 4-2
5-1. Final Assembly 5-4
5-2. Panel Assembly 5-5

SECTION

INTRODUCTION AND SPECIFICATIONS

1-1. INTRODUCTION

1-2. Nine Fluke Model A55 Thermal Converters are available, having ratings of $0.5,1,2,3,5,10,20,30$, and 50 volts. When used with the 550 A , useage of each Thermal Converter should be restricted to the range between $1 / 2$ and 1 times the rated voltage. A specially constructed bead thermocouple, selected for frequency characteristics and low de reversal error, provides a nominal output of seven millivolts dc at rated input voltage for each converter. The thermocouple, range resistors, and compensation capacitors are mounted on a printed circuit board, with thermal isolation provided by foam or glass wool insulation.

1-3. The Model 550A Transfer Standard is designed to complement the Fluke Model A55 Thermal Converters. The 550A is mounted in a cabinet for bench-top operation, and has provision for connecting the dc source and thermal converters, as well as other required measuring equipment, to the front panel. The A55 with the 550A may be used as a laboratory standard: the thermal stability of the instruments also permit production use for calibration and measurement of ac instruments, and measurement of unknown ac voltages.

1-4. RECEIVING INSPECTION

1-5. This instrument has been thoroughly checked and tested prior to being shipped from the factory. Immediately after receiving the instrument, carefully inspect for any damage that may have occured in transit. If any damage is noted, follow the instructions outlined in the Warranty section in the back of this manual.

1-6. SPECIFICATIONS

1-7. MODEL A55

RANGE: Converters available having voltage ratings of $0.5,1,2,3,5,10,20,30$, and 50 volts. Each converter may be used from $1 / 2$ to 1 times the rated voltage.

AC TO DC DIFFERENCE:

CONVERTER	FREQUENCY			
	1 MHz	10 MHz	30 MHz	50 MHz
0.5 V	$\pm 0.01 \%$	$+0.10 \%$	$+0.60 \%$	$+1.50 \%$
1 V to 10 V	$\pm 0.01 \%$	$\pm 0.03 \%$	$\pm 0.10 \%$	$\pm 0.10 \%$
20 V to 50 V	$\pm 0.01 \%$	$\pm 0.05 \%$	$\pm 0.10 \%$	-----

(A positive sign indicates that more alternating voltage than direct voltage is required.)

CALIBRATION: Certified to be within the above deviations from zero error as defined by the National Bureau of Standards, without calibration curves or correction tables. The 0.5 V model is supplied with a test report indicating deviations to the nearest 0.01% at the above frequencies. For any converter, John Fluke or NBS certified test reports are available at extra cost. (NOTE: Calibration referenced to center of GR874-TL coaxial tee attached to converter input connector.)

INPUT IMPEDANCE: Approximately 200 ohms/volt.
OUTPUT VOLTAGE: 7 millivolts nominal at rated input.

OUTPUT RESISTANCE: 8 ohms nominal.
REVERSAL ERROR: Less than 0.025\%. (Less than 0.1% for ser no. 123 to 827.)

INPUT CONNECTOR: GR type 874-L.
OUTPUT CONNECTOR: Amphenol 80-PC2M 2-pin, microphone type.

SIZE AND WEIGHT:

Converter	Diameter	Length	Weight
0.5 V			
$1 \mathrm{~V}, 2 \mathrm{~V}$	$1-3 / 8^{\prime \prime}$	$3-5 / 16^{\prime \prime}$	10 oz.
$3 \mathrm{~V}, 5 \mathrm{~V}$	$1-3 / 8^{\prime \prime}$	$5-3 / 16^{\prime \prime}$	13 oz.
$10 \mathrm{~V}, 20 \mathrm{~V}$	$1-3 / 8^{\prime \prime}$	$7-1 / 2^{\prime \prime}$	15 oz.
$30 \mathrm{~V}, 50 \mathrm{~V}$			1 lb.

A55-110 OPTIONAL ACCESSORY KIT: The Model A55110 Accessory Kit is recommended for use with the Model A55 Thermal Converters in virtually any calibration setup. The kit consists of the following items, manufactured by General Radio:

ITEM	DESCRIPTION
874-QBPL Adapter	Consists of an 874-BL connector and a BNC plug, and is used for connecting an 874 connector to a BNC jack.
874-QNPL Adapter	This adapter consists of an 874- BL connector and an N plug, and is used for connecting an 874 connector to an N jack.
874-QUPL Adapter	This adapter consists of an 874- BL connector and a UHF plug, and is used for connecting an 874 connector to a UHF jack.
874-TL Tee	Consists of a rigid coaxial tee ter- minated with three 874-BL con- nectors, and is used to connect an instrument or a stub in parallel with other instruments on a coaxial line.
874-R22LA Coaxial Cable	Consists of three feet of coaxial cable with a 874-CL58 locking con- nector on each end, and is used to connect an ac source to the coax- ial tee.

1-8. MODEL 550A

REFERENCE VOLTAGE RANGE: 1.35 to 8.2 millivolts. (NOTE: Output voltage range of Fluke Model A55 Thermal Converters is approximately 1.8 to 7 millivolts from $1 / 2$ to 1 times rated voltage).

GALVANOMETER RESOLUTION: (When used with Model A55 Thermal Converters and commercially available high-resolution galvanometers of the lightbeam reflecting type).

SENSITIVITY RANGE	MAXIMUM CONVERTER INPUT		MINIMUM CONVERTER INPUT
			$1.3 \% / \mathrm{mm}$ Search
			$4.9 \% / \mathrm{mm}$
Low	$0.13 \% / \mathrm{mm}$		$0.63 \% / \mathrm{mm}$
Medium	$0.013 \% / \mathrm{mm}$		$0.063 \% / \mathrm{mm}$
High	$0.001 \% / \mathrm{mm}$		$0.006 \% / \mathrm{mm}$

BATTERY: Two mercury cells are used for the internal reference supply, eliminating the need for a line connection, and thus eliminating all problems due to internal ac fields. The normal operating life of the batteries is greater than 2000 hours.

GALVANOMETER AND THERMAL CONVERTER INPUT CONNECTOR: Amphenol 80-PC2M two-pin microphone type.

DC INPUT CONNECTOR: Two banana jacks with $3 / 4^{\prime \prime}$ spacing.

DC OUTPUT CONNECTOR: General Radio type 874 and two banana jacks with $3 / 4^{\prime \prime}$ spacing for measuring dc voltage at the output connector.

INPUT CONNECTORS FOR GALVANOMETER AND THERMAL CONVERTER: Amphenol 80-PC2M two-pin microphone type.

SIZE: $15^{\prime \prime}$ long x $10-3 / 4^{\prime \prime}$ wide $\times 9-3 / 8^{\prime \prime}$ high (including cover).

WEIGHT: 14-1/2 lbs. (including accessories and cover).
ACCESSORIES INCLUDED:

ITEM	DESCRIPTION
Shielded Galvanometer Cable	Consists of approximately four feet of shielded two-wire cable with an Amphenol 80-PC2M two-pin connector at one end. A connector which will fit the galvanometer to be used may be connected to the other end of the shielded cable, or the cable may be permanently connected to the galvanometer.
A55-550A Interconnect- ing Cable for Thermal Converter	Consists of approximately four feet of shielded two-wire cable with an Amphenol 80-PC2M two-pin connector at each end. Used to connect the A55 Thermal Converter to THERMAL CON- VERTER OUTPUT connector on 550A Transfer Standard.

SECTION II

OPERATING INSTRUCTIONS

2-1. INTRODUCTION

CAUTION:

Do not operate any A55 Thermal Converter at a voltage higher than the rated value. The reversal error may change if the converters are operated at more than their rated voltage, and the thermocouple will burn out at approximately 100% overload. Do not perform any switching of either voltage level or frequency range with the converter in the circuit unless the switching transient voltage is known to be less than the rating of the converter.

2-2. A John Fluke certified test report for each A55 Thermal Converter may be used to obtain the precise ac to de difference at various frequencies. These reports state the percent difference between the rms value of an ac voltage (at a certain frequency) required to produce a given output voltage, and the mean value of dc voltage (for both directions of current flow) required to produce the same output.

2-3. FUNCTION OF EXTERNAL CONTROLS AND TERMINALS

2-4. The function of external controls and terminals of the 550A is given in Figure 2-1.

$\begin{aligned} & \hline \text { CONTROL } \\ & \text { or } \\ & \text { TERMINAL } \end{aligned}$	LOCATION	REFERENCE DESIGNATION	FUNCTION
DC input terminals	Front panel	J1 \& J2	The dc input voltage is applied to these terminals. The terminals are general purpose binding posts mounted on $3 / 4^{\prime \prime}$ centers. The de supply must be floating.
THERMAL CONVERTER INPUT connector	Front panel	J3, J4, \& J5	The thermal converter input is connected to the coaxial connector (J5). A dc voltmeter is connected to the binding posts ($J 3 \& J 4$) to measure the dc voltage available at the coaxial connector. The input connector of the A55 mates with J5.
THERMAL CONVERTER OUTPUT connector	Front panel	J7	The thermal converter output is connected to this terminal with the shielded cable provided.
POLARITY switch	Front panel	S1	This switch reverses the polarity of the dc voltage applied to the THERMAL CONVERTER INPUT terminals. Due to the fast action of the switch, the galvanometer can remain connected while switching the voltage polarity.
TO GALVANOMETER connector	Front panel	J6	Connecting the galvanometer to this terminal with the shielded cable provided places the galvanometer in the circuit between the thermal converter output and the variable reference potential. The galvanometer is used to establish a reference point for comparison of the ac and dc inputs to the thermal converter.
BATTERY switch	Front panel	S2	Closes the circuit of the voltage divider across the series connection of batteries B1 and B2.
SENSITIVITY switches	Front panel	$\begin{aligned} & \text { SEARCH-S3 } \\ & \text { LOW-S4 } \\ & \text { MEDIUM-S5 } \\ & \text { HIGH-S6 } \end{aligned}$	These pushbutton switches vary the galvanometer sensitivity for nulling the galvanometer with the SENSITIVITY controls.
SENSITIVITY controls	Front panel	$\begin{aligned} & \text { SEARCH-R1A, } \\ & \text { R1B } \\ & \text { LOW-R2A, R2B } \\ & \text { MEDIUM-R3 } \\ & \text { HIGH-R5 } \end{aligned}$	These variable resistors permit adjustment of the reference potential so as to balance the thermocouple output, as indicated by the galvanometer.

Figure 2-1. FUNCTION OF EXTERNAL CONTROLS AND TERMINALS

2-5. AUXILIARY EQUIPMENT

2-6. The 550A with the auxiliary equipment listed in Figure 2-2 forms a system capable of calibrating an ac instrument, measuring an unknown ac voltage, or measuring the frequency response of ac devices.

2-7. CALIBRATING AN AC INSTRUMENT

Note!

To obtain specified accuracy, elapsed time for a transfer measurement should not exceed thirty seconds. Beyond this time, the temperature coefficient of the transfer circuit may affect accuracy as much as 0.005% per minute.
a. Connect the equipment as shown in Figure 2-3. The dc source must be floating. The thermal converter used must have a voltage rating that is equal to or greater than the rms value of voltage being measured.
b. Set the BATTERY switch to on.
c. Mechanically zero the galvanometer.
d. Set the POLARITY switch to NORMAL.
e. Adjust the dc source voltage until the dc voltmeter indicates the approximate rms value of ac voltage desired.
f. Connect the thermal converter to THERMAL CONVERTER INPUT coaxial connector.
g. Adjust the dc source voltage until the dc voltmeter indicates the exact rms value of ac voltage desired. If the ac to dc differences from the certified test report
are to be used, adjust the dc source voltage until the voltmeter indicates 100 \qquad times the rms value of

$$
\overline{100+a_{0}}
$$

the ac voltage desired.

$$
\mathrm{a}_{\mathrm{o}}=\frac{\mathrm{V}_{\mathrm{ac}}-\mathrm{V}_{\mathrm{dc}}}{\mathrm{~V}_{\mathrm{dc}}} 100=
$$

the ac to dc percent difference at the center of the tee for the frequency used.
h. If the input impedance of the instrument being calibrated is not 50 ohms, it may be necessary to correct for the standing wave between the center of the tee and the instrument being calibrated at frequencies above 5 MHz . In this case, adjust the dc source voltage until the dc voltmeter indicates 100 times the rms value $100+a_{1}$
of the ac voltage desired. Calculate a_{1} from the following equation:

$$
a_{1}=\left\{\left(\frac{a_{0}}{100}+1\right)\left(\frac{1}{\cos B X-Z_{c} E \sin B X+j Z_{c} G \sin \beta X}\right)-1\right\} 100
$$

$$
\text { where: } \quad a_{1}=a c \text { to dc per cent difference at input }
$$

$$
1 \text { of instrument being calibrated at the }
$$ frequency used

$a_{0}=a c$ to $d c$ per cent difference at the center of the tee at the frequency used
$Z_{C}=\sqrt{\frac{L}{C}}=$ characteristic impedance of
$B=\frac{2 \pi}{\lambda}=\omega \sqrt{L C}=$ phase constant of line in radians/meter
$\mathrm{X}=$ line length in meters from center of tee to instrument
$Y=G+j B=$ input admittance of instrument in mhos

EQUIPMENT RECOMMENDED	SPECIFICATIONS FOR MAXIMUM ACCURACY
Galvanometer, Leeds \& Northrup Model 2430A	Coil resistance of 17 ohms . Critical damping resistance of 30 to 90 ohms. Sensitivity of $0.5 \mathrm{uv} / \mathrm{mm}$.
DC Differential Voltmeter, Fluke Model 881A	Range of 0.25 V to 50 V dc. Accuracy of 0.01%.
DC Source, Fluke Model 301C, 301E, or 313A	Stability of 0.002%, short term. Resolution of 0.002% at any calibrating voltage. Output Voltage of 0.25 V to 50 V dc, floating. Output Current of 10 ma NOTE: The 301C and 301E require the following voltage divider for use with the 0.5 V and 1 V A55 converters: Use wirewound resistors having a low temperature coefficient.
AC Source. Various Models made by Boonton Radio Corp, Hewlett Packard, Holt Inst. Lab., Krohn-Hite, Rhode \& Schwarz, and Tektronix, Inc., are suitable. The instrument used will depend on the frequency range desired.	Amplitude Stability of 0.01%, short term. Amplitude Resolution of 0.002%, at any calibrating voltage. Output Voltage of 0.25 V to 50 V ac. Output Current of 10 ma .

Figure 2-2. AUXILIARY EQUIPMENT
i. Null the galvanometer as follows:
(1) Depress the SEARCH SENSITIVITY pushbutton, and adjust the SEARCH SENSITIVITY control for a null.
(2) Depress the LOW SENSITIVITY pushbutton, and adjust the LOW SENSITIVITY control for a null.
(3) Depress the MEDIUM SENSITIVITY pushbutton, and adjust the MEDIUM SENSITIVITY control for a null.
(4) Depress and lock (turn CW) HIGH SENSITIVITY pushbutton, and adjust HIGH SENSITIVITY control for a null.

Note!

To obtain specified accuracy from a "cold" start, repeat step i. (4) after three to four minutes. (Not necessary for successive measurements).
j. Check for dc reversal error as follows:
(1) Set the POLARITY switch to REVERSE.
(2) If the galvanometer moves off null, thermal converter reversal error is present. To compensate for error, reduce off-null error by exactly one-half with the HIGH SENSITIVITY control.
(3) Set the POLARITY switch to NORMAL, and observe if an equal and opposite deflection occurs. If necessary, repeat adjustment and polarity reversal until equal and opposite deflections occur.
k. Unlock (turn CCW) the HIGH SENSITIVITY pushbutton

1. Make sure the ac source voltage does not exceed the rated voltage of the converter being used.
m. Remove the thermal converter from THERMAL CONVERTER INPUT.
n. Connect thermal converter to General Radio 874-TL tee.
o. Null the galvanometer by adjusting the ac source voltage while depressing the SENSITIVITY pushbuttons in SEARCH, LOW, MEDIUM, and HIGH sequence. Do not adjust the reference voltage. The rms value of the ac voltage now equals the desired value.
p. Set the BATTERY switch to OFF.

2-8. MEASURING AN UNKNOWN AC VOLTAGE

a. Connect the equipment as shown in Figure 2-4. The dc source must be floating. If the approximate value of the ac voltage is unknown, measure the ac with a high frequency voltmeter. Always use a thermal converter having a voltage rating equal to or greater than the rms value of the ac voltage to be measured.
b. Set the BATTERY switch to on.
c. Adjust the de source voltage to less than the rated voltage of the converter.
d. Adjust mechanical zero of galvanometer, if necessary.
e. Set the POLARITY switch to NORMAL.
f. Connect the thermal converter to the General Radio 874 adapter.
g. Null the galvanometer as in step i. of paragraph 2-7.
h. Unlock (turn CCW) the HIGH SENSITIVITY pushbutton.
i. Remove thermal converter from the adapter.
j. Connect the thermal converter to THERMAL CONVERTER INPUT coaxial connector.
k. Null the galvanometer by adjusting the dc source voltage with the SENSITIVITY pushbuttons depressed in SEARCH, LOW, MEDIUM, and HIGH sequence. Do not adjust the reference voltage.

1. Depress HIGH SENSITIVITY pushbutton and check for reversal error as in step j. of paragraph 2-7, except adjust the galvanometer by varying the dc source voltage. Do not adjust the reference voltage. The adjusted dc source voltage measured at the THERMAL CONVERTER INPUT terminals is now equal to the rms value of the ac source voltage.
m . Since the thermal converters are calibrated at the center of the General Radio 874-TL tee, and the tee is not used in this measurement, a correction must be made for the standing wave that would have occurred between the center of the tee and the plane of the insulating bead at the input to the converter. Another standing wave correction must be made if anything, such as an 874 adaptor, is connected between the ac source and the thermal converter input. The equation given

Figure 2-3. VOLTAGE CALIBRATION SETUP DIAGRAM
here corrects for these standing waves and for any calibration error. Below five megahertz, the voltage standing wave error is usually insignificant. Calculate E_{ac} (the rms value of ac at output connector of ac source) from the following equation:

n. Set battery switch to OFF.

2-9. MEASURING FREQUENCY RESPONSE

a. Connect the equipment as shown in Figure 2-7. The thermal converter used must have a rated voltage that is equal to or greater than the rms value of ac voltage being measured.
b. Set the BATTERY switch to on.
c. Adjust the ac source to the approximate desired level.
d. Adjust mechanical zero of galvanometer, if necessary.
e. Connect the thermal converter to the 874 -TL tee.
f. Null the galvanometer as follows:
(1) Depress SEARCH SENSITIVITY pushbutton and adjust the SEARCH SENSITIVITY control for a null. If only $1 \% / \mathrm{mm}$ to $6 \% / \mathrm{mm}$ resolution is sufficient, proceed to step g .
(2) Depress LOW SENSITIVITY pushbutton and adjust LOW SENSITIVITY control for a null. If only $0.1 \% / \mathrm{mm}$ to $0.6 \% / \mathrm{mm}$ resolution is sufficient, proceed to step g .
(3) Depress MEDIUM SENSITIVITY pushbutton and adjust MEDIUM SENSITIVITY control for a null. If only $0.01 \% / \mathrm{mm}$ to $0.06 \% / \mathrm{mm}$ resolution is sufficient, proceed to step g.
(4) Depress the HIGH SENSITIVITY pushbutton and adjust the HIGH SENSITIVITY control for a null. Resolution is approximately $0.001 \% / \mathrm{mm}$ to $0.006 \% / \mathrm{mm}$.

CAUTION!

Do not perform any switching of either voltage level or frequency range with the thermal converter in the circuit unless the switching transient is known to be less than the voltage rating of the converter.
g. While depressing the desired SENSITIVITY pushbutton, change the frequency of the ac source and hold galvanometer null by adjusting the amplitude of the ac source.
h. Record changes in voltage level at frequencies desired.
i. If greater accuracy is necessary follow the procedure for calibrating an ac instrument at each frequency desired (see paragraph 2-7).
j. Set the BATTERY switch to OFF.

年

Figure 2-4. VOLTAGE MEASURING SETUP DIAGRAM

	CONVERTER RANGE									
FREQ.	0.5 V	1 V	2 V	3 V	5 V	10 V	20 V	30 V	50 V	
1 MC	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
3 MC	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
5 MC	1.0000	1.0000	1.0000	1.0000	1.0000	1.0001	1.0001	1.0001	1.0001	
10 MC	1.0000	1.0001	1.0001	1.0001	1.0001	1.0002	1.0002	1.0002	1.0002	
20 MC	0.9999	1.0003	1.0004	1.0005	1.0005	1.0009	1.0009	1.0009	1.0009	
30 MC	0.9997	1.0007	1.0009	1.0011	1.0011	1.0019	1.0020	1.0020	1.0020	
50 MC	0.9991	1.0020	1.0024	1.0030	1.0030	1.0054	1.0057	1.0056	1.0055	

NOTE: The above typical values of A are believed to be accurate to ± 0.0001 at 10 megacycles, ± 0.0002 at 20 megacycles, ± 0.0005 at 30 megacycles, and ± 0.0010 at 50 megacycles for the various converters.

Figure 2-5. TYPICAL VALUES OF "A"

2-10. MEASURING FREQUENCY RESPONSE OF AN AC AMPLIFIER

a. Connect the equipment as shown in Figure 2-8. The dc source must be floating. The thermal converters used must have a voltage rating equal to or greater than the rms value of ac voltage to be measured.
b. Adjust the ac source voltage to the approximate desired level.
c. Adjust the dc source voltage to less than the rating of converter no. 2 .
d. Adjust mechanical zero of each galvanometer, if necessary.
e. Connect converter no. 1 to the $874-\mathrm{TL}$ tee, and connect converter no. 2 to the ac amplifier output.
f. Null both galvanometers as follows:
(1) Depress the SEARCH SENSITIVITY pushbutton and adjust the SEARCH SENSITIVITY control for a null. If $1 \% / \mathrm{mm}$ to $6 \% / \mathrm{mm}$ resolution is sufficient, proceed to step g.
(2) Depress the LOW SENSITIVITY pushbutton and adjust the LOW SENSITIVITY control for a null. If $0.1 \% / \mathrm{mm}$ to $0.6 \% / \mathrm{mm}$ resolution is sufficient, proceed to step g.
(3) Depress the MEDIUM SENSITIVITY pushbutton and adjust the MEDIUM SENSITIVITY control for a null. If $0.01 \% / \mathrm{mm}$ to $0.06 \% / \mathrm{mm}$ resolution is sufficient, proceed to step g.
(4) Depress the HIGH SENSITIVITY pushbutton and adjust the HIGH SENSITIVITY control for a null. Resolution is approximately $0.001 \% / \mathrm{mm}$ to $0.006 \% / \mathrm{mm}$.

CAUTION!

Do not perform any switching of either voltage level or frequency range with the thermal converter in the circuit unless the switching transient is known to be less than the rated value of the converters.
g. While depressing the desired SENSITIVITY pushbutton on transfer device no. 1, change the frequency of the ac source, holding galvanometer no. 1 on null by adjusting the amplitude of the ac source voltage.
h. Note the variation of output of converter no. 2 as the frequency is changed.

	FREQUENCY						
CONVERTER RANGE	1 MC	3 MC	5 MC	10 MC	20 MC	30 MC	50 MC
0.5 V	10.9-j0. 0124	10.9-j0. 0429	10.9-j0. 0732	10.9-j0.148	10.9-j0.295	10.9-j0. 444	10.9-j0.729
1 V	$4.98+j 0.0131$	4.98+j0.0297	$4.98+\mathrm{j} 0.0472$	4.98+j0. 0926	4.98+j0.185	4.98+j0. 275	4.98+j0. 449
2 V	$2.52+j 0.0162$	$2.52+\mathrm{j} 0.0395$	$2.52+\mathrm{j} 0.0634$	2. $52+\mathrm{j} 0.125$	2. $52+\mathrm{j} 0.249$	$2.52+\mathrm{j} 0.372$	2. $52+\mathrm{j} 0.627$
3V	1. $67+\mathrm{j} 0.0210$	1.67+j0. 0545	1. $67+\mathrm{j} 0.0883$	1. $67+\mathrm{j} 0.175$	1. $67+\mathrm{j} 0.349$	1. $67+\mathrm{j} 0.520$	1. $68+\mathrm{j} 0.860$
5 V	1. $02+\mathrm{j} 0.0206$	1. $02+\mathrm{j} 0.0540$	1. $02+\mathrm{j} 0.0875$	1.02+j0. 173	1. $02+\mathrm{j} 0.346$	1. $03+\mathrm{j} 0.515$	1. $03+\mathrm{j} 0.863$
10 V	$0.500+j 0.0415$	$0.500+\mathrm{j} 0.117$	0. $500+\mathrm{j} 0.192$	$0.500+\mathrm{j} 0.383$	$0.503+\mathrm{j} 0.763$	$0.505+\mathrm{j} 1.14$	$0.511+j 1.91$
20 V	$0.236+j 0.0446$	0. $236+\mathrm{j} 0.126$	$0.237+\mathrm{j} 0.207$	$0.238+\mathrm{j} 0.413$	$0.238+j 0.823$	$0.240+\mathrm{j} 1.23$	$0.244+\mathrm{j} 2.07$
30 V	$0.153+\mathrm{j} 0.0433$	$0.153+j 0.123$	0.154+j0. 202	$0.154+\mathrm{j} 0.401$	0.154+j0.801	$0.157+\mathrm{j} 1.19$	$0.160+\mathrm{j} 2.01$
50 V	$0.0926+\mathrm{j} 0.0433$	$0.0926+\mathrm{j} 0.120$	$0.0926+\mathrm{j} 0.198$	$0.0934+\mathrm{j} 0.394$	$0.0939+\mathrm{j} 0.786$	$0.0961+\mathrm{j} 1.17$	$0.1000+\mathrm{j} 1.97$
NOTE: The above typical values of converter admittance ($\mathrm{Y}_{2}=\mathrm{G}_{2}+\mathrm{j} \mathrm{B}_{2}$) are in millimhos as measured at the plane of the input connector insulating bead.							

Figure 2-6. TYPICAL VALUES OF CONVERTER ADMITTANCE

Figure 2-7. FREQUENCY RESPONSE CONNECTION DIAGRAM
i. The deflection of the galvanometer may be calibrated in per cent as follows:
(1) Remove thermal converter no. 2 from the amplifier output.
(2) Connect thermal converter no. 2 to the THERMAL CONVERTER INPUT coaxial connector.
(3) Null the galvanometer as in step i. of paragraph 2-7.
(4) Change the dc source voltage by an appropriate amount and note the galvanometer deflection.
j. For greater accuracy at each frequency desired, follow the procedure described in paragraph 2-7 for adjusting the ac amplifier input voltage and the procedure described in paragraph 2-8 for measuring the ac amplifier output voltage.
k. Set the BATTERY switch to OFF.

Figure 2-8. FREQUENCY RESPONSE SETUP DIAGRAM FOR AC AMPLIFIERS

SECTION III

THEORY OF OPERATION

3-1. INTRODUCTION

$3-2$. This section of the manual describes the theory of operation of the Model A55 and the Model 550A. Reference is made to the functional schematic following Section V. This schematic is intended to aid in understanding the theory of operation of the 550A. A diagram of the A55 is given in Figure 3-1.

3-3. MODEL 550A

3-4. The purpose of the 550A is to provide a stable dc reference voltage equal to the A55 converter output voltage. Equalization of the two voltages is indicated by a null on an external galvanometer. If the ac voltage into the converter is adjusted so that the galvanometer indicates a null with the same 550A reference voltage, then the ac voltage into the converter is equal to the previous (known) de voltage. Consequently, the 550A consists of a variable resistance (R 1 through $R 5$) connected across an emf (B1 and B2). Since B1 and B2 are mercury batteries, this provides a stable source of variable voltage, which is connected in series with the A55 output.

3-5. MODEL A55

3-6. The Model A55 Thermal Converter utilizes a bead thermocouple to provide a dc output proportional to the temperature of the thermocouple junction. The temperature of the junction depends on the ambient temperature, and on the heating effect of the current (ac or dc) through the thermocouple heater. If the ac impedance of the thermocouple heater is the same as the dc resistance, the heating effect of $d c$ and an equivalent rms ac are equal. As shown in Figure 3-1, frequency compensation is used to minimize the ac impedance difference at higher frequencies, except on the 0.5 V converter. Consequently, the 0.5 V converter doesn't provide the best accuracy for measurement of higher frequencies.

3-7. TRANSMISSION LINE CORRECTIONS FOR THE A55

3-8. INTRODUCTION

3-9. The input admittance of the A55 converters does not match the characteristic admittance of the coaxial transmission line, nor the characteristic admittance of the coaxial tee. Consequently, a standing wave exists

INPUT		LE OF TYP	L COMPONENTS		
CONVERTER	R1	R2	R3	C1	C2
$\begin{array}{r} 0.5 \mathrm{~V} \\ 1 \mathrm{~V} \\ 2 \mathrm{~V} \\ 3 \mathrm{~V} \\ 5 \mathrm{~V} \\ 10 \mathrm{~V} \\ 20 \mathrm{~V} \\ 30 \mathrm{~V} \\ 50 \mathrm{~V} \end{array}$	NOT USED 110Ω 310Ω 510Ω 910Ω 1.9 K 3.9 K 6 K 10 K	NOT USED NOT USED 560Ω 560Ω 680 1. 2 K NOT USED NOT USED NOT USED	NOT USED NOT USED 560Ω 560Ω 680Ω 1. 2 K NOT USED NOT USED NOT USED	NOT USED SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL	NOT USED SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL

Figure 3-1. MODEL A55 SCHEMATIC DIAGRAM
on the coaxial line and between the converter and the tee. However, since the center of the tee has been chosen as the calibration point, the standing wave between the converter and the tee is of no consequence. In many applications in which a lower accuracy is required, the converter can be used without the tee, and no corrections are necessary. The maximum error that can occur at any frequency is listed below.

FREQUENCY	MAXIMUM ERROR
5 MHz	0.02%
10 MHz	0.05%
20 MHz	0.13%
30 MHz	0.25%
50 MHz	0.60%

$3-10$. The behavior of voltage, current, and impedance on lines at very high frequencies is closely approximated by the theory of lossless transmission lines. Consequently, the following corrections are based on lossless transmission line theory.

3-11. On a lossless line it can be shown that:

$$
\begin{equation*}
E_{X}=E_{R} \cos \beta X+j Z_{C} I_{R} \sin \beta X \tag{1}
\end{equation*}
$$

where:

$$
\begin{aligned}
& E_{X}=\begin{array}{l}
\text { voltage at a point } x \text { meters from } \\
\text { the receiving end }
\end{array} \\
& E_{R}=\text { voltage at receiving end }
\end{aligned}
$$

$$
\begin{aligned}
B= & \frac{2 \pi}{\lambda}=\frac{2 \pi}{\text { wavelength }}=\omega \sqrt{L C}= \\
& \text { phase constant of line, in radians/ } \\
& \text { meter }
\end{aligned}
$$

$\mathrm{x}=$ distance in meters from receiving end to point of interest
$I_{R}=$ current at receiving end
$Z_{C}=\sqrt{\frac{L}{C}}=$ characteristic impedance of transmission line, in ohms

Since $I_{R}=E_{R} Y_{R}$ and $Y_{R}=G_{R}+j B_{R}$, equation (1) can be rewritten ast

$$
\begin{equation*}
\frac{E_{X}}{E_{R}}=\cos \beta X-Z_{C} B_{R} \sin \beta X+j z_{C} G_{R} \sin \beta X \tag{2}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{R}}=\text { susceptance of termination, in mhos } \\
& \mathrm{G}_{\mathrm{R}}=\text { conductance of termination, in mhos }
\end{aligned}
$$

Equation (2) can be used to transfer the calibration point from the center of the tee (used with the A55) to any place along the coaxial line.

3-12. COMPENSATION FACTOR

3-13. The compensation factor (a) is the ac to dc difference from zero, as defined by the National Bureau of Standards, at the center of the tee.

That is,

$$
a=\left(\frac{v_{a c}-v_{d c}}{v_{d c}}\right) 100
$$

Thus, the compensation factor for any point x is:

$$
\begin{equation*}
a_{x}=\left(\frac{E_{X}-E_{d c}}{E_{d c}}\right) 100=\left(\frac{E_{X}}{E_{d c}}-1\right) 100 \tag{3}
\end{equation*}
$$

or

$$
\frac{E_{x}}{E_{d c}}=\frac{a_{x}}{100}+1
$$

If an accuracy better than the published specifications of the A55 is required, the compensation factor should be used. Also, to transfer calibration to any point x, first determine a_{x}.

3-14. COMPENSATION FACTOR AT INPUT OF A55

3-15. The material in paragraph 3-12 can be applied to determine the compensation factor necessary in transferring calibration from the center of the tee to the plane of the input connector of the A55. This is determined as follows:

$$
\begin{aligned}
& \text { Calibration point } \underbrace{X_{1}, B_{1}}_{8} \begin{array}{c}
\beta_{1}, G_{1}
\end{array} \text { A55 } \\
& a_{1}=\left(\frac{E_{1}}{E_{d c}}-1\right) 100 \\
& \left.=\frac{E_{1}}{E_{o}} \cdot \frac{E_{0}}{E_{\mathrm{dc}}}-1\right) 100 \\
& \left.=\frac{E_{0}}{\left(E_{d c}\right.} \cdot \frac{E_{1}}{E_{o}}-1\right) 100 \\
& \text { but: } \quad \frac{E_{o}}{E_{d c}}=\left(\frac{a}{100}+1\right) \\
& \text { thus, } a_{1}=\left\{\left(\frac{a_{0}}{100}+1\right) \frac{E_{1}}{E_{0}}-1\right\} 100 \\
& \text { let } A=\frac{E_{1}}{E_{0}}=\frac{1}{\cos \beta_{1} X_{1}-Z_{C} B_{1} \sin \beta_{1} X_{1}+j Z_{C} G_{1} \sin \beta_{1} X_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { then: } \\
& \qquad \begin{aligned}
\mathrm{a}_{1} & =\left\{\left(\frac{a_{0}}{100}+1\right) \mathrm{A}-1\right\} 100 \\
& =\mathrm{Aa}+100(\mathrm{~A}-1)
\end{aligned}
\end{aligned}
$$

Typical values of "A" are tabulated in Figure 2-5 for the General Radio 874-TL tee. The values of a_{0} for different frequencies are listed on the certified test report. When the tee is not used, the use of a_{1} will
insure an accuracy within the normal uncertainty of $\underline{3+\mathrm{fMHz}}$ \%

3-16. COMPENSATION FACTOR AT INPUT OF INSTRUMENT BEING CALIBRATED

$3-17$. If the input admittance of the instrument being calibrated does not match the admittance of the line, error can be caused by the standing wave between the center of the $874-\mathrm{TL}$ tee and the input of the instrument being calibrated. If the input admittance of the instrument being calibrated is known or can be measured, a compensation factor can be computed as follows:
$a_{2}=\left(\frac{E_{2}-E_{d c}}{E_{d c}}\right) 100$
$=\left(\frac{E_{2}}{E_{\text {dc }}}-1\right) 100$
$\left.=\frac{E_{2}}{E_{0}} \cdot \frac{E_{0}}{E_{d c}}-1\right) 100$
$=\left(\frac{E_{0}}{E_{d c}} \cdot \frac{E_{2}}{E_{0}}-1\right) 100$
$a_{0}=\frac{E}{E_{0}}\left(\frac{0}{E_{d c}}-1\right) 100$
or $\frac{\mathrm{E}_{\mathrm{o}}}{\mathrm{E}_{\mathrm{dc}}}=\left(\frac{\mathrm{a}_{0}}{100}+1\right)$
then:
$a_{2}=\left\{\left(\frac{a_{0}}{100}+1\right) \frac{E_{2}}{E_{0}}-1\right\} 100$
$=\left(\left(\frac{a_{0}}{100}+1\right)\left(\frac{1}{\cos \beta_{2} X_{2}-Z_{C_{~}}{ }_{2} \sin \beta_{2} X_{2}+j Z_{C} G_{2} \sin \beta_{2} X_{2}}\right)-1\right\} \quad 100$
where
$\beta_{2}=$ phase constant of line in radians/meter
$G_{2}=$ input conductance of instrument under test
$B_{2}=$ input susceptance of instrument under test
$a_{2}=$ compensation factor at instrument input in per cent
$a_{0}=$ compensation factor at center of the tee in per cent
$X_{2}=$ line length in meters

If the line length x_{2} consists of the General Radio 874-TL tee and 874 adapter, then $\beta_{2} X_{2} \cong 1.467 \times 10^{-3} \mathrm{f} \mathrm{MHz}$ radians.

3-18. COMPENSATION FACTOR FOR ANY POINT

$a_{3}=\frac{E_{3}}{\left(\overline{E_{d c}}-2\right) 100000}$

$$
=\left(\frac{E_{3}}{E_{1}} \cdot \frac{E_{1}}{E_{d c}}-1\right) 100
$$

but:

$$
\frac{\mathbb{E}_{1}}{\mathbb{E}_{d c}}=\frac{{ }_{1}^{a_{1}}}{100}+1
$$

then: $\begin{aligned} a_{3} & =\left\{\left(\frac{a_{1}}{100}+1\right) \frac{E_{3}}{E_{1}}-1\right\} 100 \\ & =\left\{\left(\frac{a_{1}}{100}+1\right)\left(\cos B_{3} X_{3}-Z_{C} B_{1} \sin B_{3} X_{3}+j Z_{C} G_{1} \sin B_{3} X_{3}\right)-1\right\} 100\end{aligned}$ however:

$a_{1}=$	$A a_{0}+100(A-1)$
or \quad	$\frac{A_{1}}{100}+1=A\left(\frac{a_{0}}{100}+1\right)$

therefore: a_{0}
$a_{a}=\left\{A(\overline{I U O}+2)\left(\cos \beta_{3} X_{3}-Z_{C} B_{1} \sin B_{3} X_{3}+j z_{C} G \sin \beta_{3} x\right)-1\right\} 100$
where?
$B_{3}=$ phase constant of ine in radians/meter
$\mathrm{X}_{3}=$ Iine iength in meters from A55 to poiat of interest
G. input conductance of A55
B_{8} input susceptance of A5S
$\mathbb{Z}_{c}=$ eharacteristic impedance of transmission line.
$a_{3}=$ compensation factor at specified point.

Typical values of $Y_{1}=G_{1}+j B_{1}$ have been computed for the A55, and are given in Figure 2-6.

SECTION IV

MAINTENANCE

4-1. INTRODUCTION

4-2. The A55 and 550A utilize simple circuitry, and should require little maintenance. Preventive maintenance is discussed in paragraph 4-3. A discussion of troubleshooting and a troubleshooting chart are presented in paragraph 4-5. Calibration checking of the A55 is discussed in paragraph 4-7.

4-3. PREVENTIVE MAINTENANCE

4-4. Preventive maintenance of the 550A consists primarily of battery replacement. End of battery life if characterized by drift in one direction as indicated by the galvanometer. Batteries should be replaced at least once a year. Proceed as follows:
a. Remove the eight screws in the front panel, and lift the front panel from the cabinet.
b. Remove the old batteries, and install the new batteries, observing the polarity marked on the battery clips. The case of the mercury battery is positive.
c. Replace the front panel, and install the eight panel screws.

4-5. TROUBLESHOOTING

4-6. A troubleshooting chart for the A55 and 550A is given in Figure 4-1. To prevent burning out the thermocouple when measuring the A55 with a multimeter, connect a 1 K resistor in series with the test leads of the multimeter.

4-7. CALIBRATION CHECKING OF A55

4-8. The accuracy of each A55 converter should be periodically checked against the accuracy of the converter having the nearest rated voltage. If a converter is out of tolerance, it must be returned to the factory for repair. The equipment required for calibration checking is listed in Figure 2-2. Calibration is checked as follows:
a. Connect the test equipment according to Figure 4-2. The converters used must have adjacent voltage ratings, for example, 3 v and 5 v or 3 v and 2 v .

SYMPTOM	PROBABLE CAUSE	REMEDY
No output from thermocouple.	Open heater or open thermocouple.	Return to factory for replace- ment of thermocouple.
Radio Frequency pickup in thermocouple circuit.	Shorted insulating bead in thermocouple.	
Low output from thermocouple.	Change in thermocouple characteristics due to overload.	Return to factory for repair or recalibration.
Change in frequency response.	Broken solder joint.	Return to factory for repair.
Erratic output.	Varying contact resistance in S1.	Replace switch.
Erratic results in reversal error measurement of 550A		

Figure 4-1, TROUBLESHOOTING CHART

Figure 4-2. CONNECTION DIAGRAM FOR CALIBRATION CHECKING
b. Set the ac source voltage to the lowest rated voltage of the two thermal converters being used.
c. Adjust the galvanometer for mechanical zero.
d. Set the BATTERY switch to on.
e. Set the POLARITY switch to NORMAL.
f. Null the galvanometer as in paragraph 2-7 i.
g. Unlock (turn CCW) the HIGH SENSITIVITY pushbutton.
h. Disconnect Thermal Converter \#1 from the 874-TL tee, and connect to the THERMAL CONVERTER INPUT connector.
i. Null the galvanometer by adjusting the voltage of the dc source with each SENSITIVITY pushbutton
depressed in SEARCH, LOW, MEDIUM, and HIGH sequence. Do not move the SENSITIVITY (reference voltage) adjustments.
j. Push HIGH SENSITIVITY poshbutton and check for reversal error as in paragraph $2-7 j$ except change galvanometer indicated by varying the dc source voltage instead of varying the HIGH SENSITIVITY control. Do not adjust the reference voltage.
k. Record the dc source voltage.

1. Disconnect converter \#1, and connect converter \#2 to the THERMAL CONVERTER INPUT connector.
m . Repeat steps f. through k . The measured value of dc voltage should agree with the specification limits.

SECTION V

LIST OF REPLACEABLE PARTS

5-1. INTRODUCTION

5-2. This section contains information necessary to describe all normally replaceable parts. Separate assembly lists are used to describe the parts on the final assembly and various assemblies and subassemblies. Each list has a corresponding illustration on which the parts for that list are identified. Parts are called out on both lists and illustrations by reference designations from the schematic diagram. Those parts (mechanical) which have no reference designation are shown on the illustrations by Fluke stock number.

5-3. Each list provides the following information on each part:
a. The REF DESIG. column indicates the reference designation used on the schematic diagram.
b. The DESCRIPTION column describes the part in words, along with any applicable values, tolerances, etc. Indentation is used to show assembly, subassembly, and parts relationship. See abbreviations and symbols on next page.
c. Entries in the FLUKE STOCK NO. column indicate the number by which Fluke stocks the part. This number should be used when ordering parts from the Fluke factory or your Fluke representative.
d. Entries in the MFR. column indicate a typical manufacture of the part by the manufacturer's code number. Appendix A lists the manufacturers and their code numbers.
e. Entries in the MFR. PART NO. column are part numbers assigned by the manufacturer indicated in the Mfg. column.
f. The number in the TOT. QTY. column indicates the total quantity of the part used in the instrument. "REF" indicates that the total quantity of the part has been previously given. The total quantity of each part is listed the first time the part appears. All other listings of the same part refer back to the reference designation of the first appearance of the part for the total quantity.
g. The number in the REC. QTY. column indicates the recommended spares quantity necessary to support
approximately one to five instruments for a period of two years. The basis used to select the recommended spares quantity is that a small group of parts will be required to correct a majority of the problems that occur. Since there is a chance that any part may fail, a stock of at least one of every part used in addition to the recommended parts will be needed for complete maintenance during one year of isolated service.
h. The USE CODE column identifies certain parts which have been added, deleted, or modified during production of the instrument. Each part for which a use code has been assigned may be identified with a particular instrument serial number by consulting the Use Code Effectivity List at the end of this section. These changes are normally made when improved components become available or when the latest circuit improvements are developed by our engineering department. The serial number listed indicates the instruments in which that particular part was used. The symbol "~" is used to indicate an approximate use code. If a different part should be used for replacement, it is listed by Fluke stock number in the description column.

5-4. HOW TO OBTAIN PARTS

5-5. Standard components have been used whenever possible. Thus, most parts can be obtained locally. However, parts may be ordered directly from the manufacturer using the manufacturer's part number or from Fluke using the Fluke stock number. In addition, the most commonly replaced parts that can not be obtained locally may be obtained from your Fluke representative. If a part you have ordered has been replaced by a new or improved part, Fluke will normally send you this part along with an explanation.

5-6. When ordering parts from Fluke always include: a. Reference designation, description, and Fluke stock number.
b. Instrument model and serial number.
c. Most structural parts are not listed. In this case, give complete description, function, and location of part.

5-7. ABBREVIATIONS AND SYMBOLS

$\begin{gathered} \text { REF } \\ \text { DESIG. } \end{gathered}$	DESCRIPTION	FLUKE STOCK NO.	MFR.	MFR. PART NO.	$\begin{aligned} & \text { TOT. } \\ & \text { QTY. } \end{aligned}$	$\begin{aligned} & \text { REC. } \\ & \text { QTY. } \end{aligned}$	$\begin{array}{\|l\|} \text { USE } \\ \text { CODE } \end{array}$
	Finai Assembly (See Figure 5-1)	550A	89536				
	Case Assembly	1402-122515	89536		1		
	Lid Assembly (not illustrated)	1402-122184	89536		1		
	Panel Assembly (See Figure 5-2)	$\begin{aligned} & 3158-138990 \\ & (550 \mathrm{~A}-402) \end{aligned}$	89536		1		
B1, B2	Battery, mercury $1.34 \mathrm{~V}, 14,000 \mathrm{ma}-\mathrm{hr}$	4001-103226	37942	RM-42R	2	2	
J1	Binding post, red	2811-103325	81073	29-3 Red	2		
J2	Binding post, black	2811-103333	81073	29-3 Black	2		
J3	Binding post, red	2811-103325	81073	Same as J1	REF		
J4	Binding post, black	2811-103333	81073	Same as J2	REF		
J 5	Connector Assembly				1		
	Inner transition	2106-103721	24655	874-64	1		
	Insulating bead	2106-103739	24655	874-70	1		
	Inner conductor	2106-103747	24655	874-61-4	1		
	Sleeve	2106-103754	24655	874-642-5	1		
	Retaining ring	2106-103762	24655	874-81	2		
	Outer conductor	2106-103770	24655	874-60-3	1		
	Coupling nut	2106-103788	24655	874-6187	1		
J6, J7	Connector, receptacle (not illustrated)	2103-103713	02660	$80-\mathrm{PC} 2 \mathrm{M}$	2		
$\begin{aligned} & \text { R1A, }, \end{aligned}$	Res, var, WW, dual $250 \Omega \pm 10 \%$, 2 W	4702-112979	12697	CM29333	1		
$\begin{aligned} & \mathrm{R} 2 \mathrm{~A}, \\ & \mathrm{R} 2 \mathrm{~B} \end{aligned}$	Res, var, WW, dual $100 \Omega \pm 10 \%, 2 \mathrm{~W}$	4702-112987	12697	CM29332	1		
R3	Res, var, WW, $10 \Omega \pm 10 \%, 2 \mathrm{~W}$	4702-112995	12697	C M29335	1		
R4	Res, comp, $22 \Omega \pm 5 \%$, 1 W	4704-109900	01121	GB2205	1		
R5	Res, var, WW, $1 \Omega \pm 10 \%, 2 \mathrm{~W}$	4702-113001	12697	CM29343	1		
R6	Res, comp, 1.2K $\pm 5 \%$, 1 W	4704-109892	01121	GB1225	1		
R7	Res, WW, $7.5 \Omega \pm 5 \%, 1 / 2 \mathrm{~W}$	4707-131797	89536		1		
R8	Res, comp, $22 \mathrm{~K} \pm 10 \%, 1 / 2 \mathrm{~W}$	4704-108209	01121	EB2231	1		
R9	Res, comp, $2.2 \mathrm{~K} \pm 10 \%, 1 / 2 \mathrm{~W}$	4704-108605	01121	EB2221	1		
R10	Res, comp, $220 \Omega \pm 10 \%, 1 / 2 \mathrm{~W}$	4704-108191	01121	EB2211	1		

Figure 5-1. FINAL ASSEMBLY

Figure 5-2. PANEL ASSEMBLY

5-8. USE CODE EFFECTIVITY

5-9. A Use Code column is provided to identify certain parts that have been added, deleted, or modified during production of the A55 \& 550A. Each part for which a use code has been assigned may be identified with a particular instrument serial number by consulting the Use Code Effectivity List below. All parts with no code are used on all instruments with serial numbers above 123. New codes will be added as required by instrument changes.

USE
CODE
No
Code
Model 550A serial number 123 and on

Section 7

General Information

7-1. This section of the manual contains generalized user information as well as supplemental information to the List of Replaceable Parts contained in Section 5. The following information is presented in this section:

List of Abbreviations
Federal Supply Codes for Manufacturers
Fluke Technical Service Centers - U.S. and Canada
Sales and Service Locations - International
Sales Representatives - U.S. and Canada

A or amp	ampere	H	henry	pF	picofarad
ac	alternating current	hd	heavy duty	pn	part number
af	audio frequency	hf	high frequency	(+) or pos	positive
a/d	analog-to-digital	Hz	hertz	pot	potentiometer
assy	assembly	IC	integrated circuit	p-p	peak-to-peak
AWG	american wire gauge	if	intermediate frequency	ppm	parts per million
B	bel	in	inch(es)	PROM	programmable read-only
bcd	binary coded decimal	intl	internal		memory
${ }^{\circ} \mathrm{C}$	Celsius	1/0	input/output	psi	pound-force per square inch
cap	capacitor	k	kilo (10^{3})	RAM	random-access memory
ccw	counterclockwise	kHz	kilohertz	rf	radio frequency
cer	ceramic	$k \Omega$	kilohm(s)	rms	root mean square
cermet	ceramic to metal(seal)	kV	kilovolt(s)	ROM	read-only memory
ckt	circuit	If	low frequency	s or sec	second (time)
cm	centimeter	LED	light-emitting diode	scope	oscilloscope
cmrr	common mode rejection	LSB	least significant bit	SH	shield
	ratio	LSD	least significant digit	Si	silicon
comp	composition	M	mega (10^{6})	serno	serial number
cont	continue	m	milli $\left(10^{-3}\right)$	sr	shift register
cr t	cathode-ray tube	$m A$	milliampere(s)	Ta	tantalum
cw	clockwise	max	maximum	tb	terminal board
d/a	digital-to-analog	mf	metal film	tc	temperature coefficient or
dac	digital-to-analog	MHz	megahertz		temperature compensating
	converter	min	minimum	texo	temperature compensated
dB	decibel	mm	millimeter		crystal oscillator
	direct current	ms	millisecond	tp	test point
dmm	digital multimeter	MSB	most significant bit	u or μ	micro (10^{-6})
dvm	digital voltmeter	MSD	most significant digit	uhf	ultra high frequency
elect	electrolytic	MTBF	mean time between	us or μ s	microsecond(s) (10^{-6})
ext	external		failures	uut	unit under test
F	farad	MTTR	mean time to repair	V	volt
${ }^{\circ} \mathrm{F}$	Fahrenheit	mV	millivalt (s)	v	voltage
FET	Field-effect transistor	mv	multivibrator	var	variable
$f f$	flip-flop	$\mathrm{M} \Omega$	megohm(s)	vco	voltage controlled oscillator
freq	frequency	n	nano (10^{-9})	vhf	very high frequency
FSN	federal stock number	na	not applicable	vlf	very low frequency
g	gram	NC	normally closed	W	watt (s)
G	giga $\left(10^{9}\right)$	(-) or neg	negative	ww	wire wound
gd	guard	NO	normally open	xfmr	transformer
Ge	germanium	ns	nanosecond	xstr	transistor
GHz	gigahertz*	opnl ampl	operational amplifier	x xal	crystal
gmv	guaranteed minimum	p	pico (10^{-12})	xtlo	crystal oscillator
	value	para	paragraph	Ω	ohm(s)
gnd	ground	pcb	printed circuit board	μ	micro (10^{-6})

Federal Supply Codes for Manufacturers (Continued)

Nytronics Comp. Group In
Subsidiary of Nytronics Inc.
Formerly Sage Electronics
Rochester, New York
00327
Welwyn International, Inc.
Westlake, Ohio
00656
Aerovox Corp
New Bedford, Massachusetts
00686
Film Capacitors, Inc.
Passaic, New Jersey
00779
AMP Inc.
Harrisberg, Pennsylvania
01121
Allen-Bradley Co.
Milwaukee, Wisconsin
01281
TRW Electronic Comp.
Semiconductor Operations
Lawndale, California
01295
Texas Instruments, Inc.
Semiconductor Group
Dallas, Texas
01537
Motorola Communications \&
Electronics Inc.
Franklin Park, Illinois
01686
RCL Electronics Inc.
Manchester, New Hampshire
01730
Replaced by 73586
01884 - use 56289
Sprague Electric Co.
Dearborn Electronic Div.
Lockwood, Florida

02114

Ferroxcube Corp.
Saugerties, New York
02131
General Instrument Corp.
Harris ASW Div.
Westwood, Maine
02395
Rason Mifg. Co.
Brooklyn, New York

02533

Snelgrove, C. R. Co., Ltd.
Don Mills, Ontario, Canada
M3B 1M2
02606
Fenwal Labs
Div. of Travenal Labs.

Morton Grove, Illinois
02660
Bunker Ramo Corp., Conn Div.
Formerly Amphenol-Bors
Electric Corp.
Broadview, lllinois
02799
Areo Capacitors, Inc.
Chatsworth, California
03508
General Electric Co.
Semiconductor Products
Syracuse, New York
03614
Replaced by 71400
03651
Replaced by 44655
03797
Eldema Div.
Genisco Technology Corp.
Compton, California
03877
Transistron Electronic Corp.

Viking Industries
Chatsworth, California
05704
Replaced by 16258
05820
Wakefield Engineering Inc.
Wakefield, Massachusetts
06001
General Electric Co.
Electronic Capacitor \&
Battery Products Dept.
Columbia, South Carolina
06136
Replaced by 63743
06383
Panduit Corp.
Tinley Park, lllino is

06473

Bunker Ramo Corp.
Amphenol SAMS Div.
Chatsworth, California
06555
Beede Electrical Instrument Co.
Penacook, New Hampshire
06739
Electron Corp.
Littleton, Colorado
06743
Clevite Corp.
Cleveland, Ohio
06751
Components, Inc. Semcor Div.
Phoenix, Arizona
06860
Gould Automotive Div.
City of Industry, California
06961
Vernitron Corp., Piezo
Electric Div.
Formerly Clevite Corp., Piezo
Electric Div.
Bed ford, Ohio
06980
Eimac Div.
Varian Associates
San Carlos, California
07047
Ross Milton, Co., The
South Hampton, Pennsylvania
07115
Replaced by 14674
07138
Westinghouse Electric Corp.,
Electronic Tube Division
Horsehead, New York
07233
TRW Electronic Components
Cinch Graphic
City of Industry, California
07256
Silicon Transistor Corp.
Div. of BBF Group Inc.

Chelmsford, MA
07261
Aumet Corp.
Culver City, California
07263
Fairchild Semiconductor
Div. of Fairchild Camera
\& Instrument Corp.
Mountain View, California
07344
Bircher Co., Inc.
Rochester, New York

07597
Burndy Corp.
Tape/Cable Div.
Rochester, New York
07792
Lerma Engineering Corp.
Northampton, Massachusetts
07910
Teledyne Semiconductor
Formerly Continental Device
Hawthorne, California
07933 - use 49956
Raytheon Co.
Semiconductor Div. HO
Mountain View, California
08225
Industro Transistor Corp.
Long I sland City, New York
08261
Spectra Strip Corp.
Garden Grove, California
08530
Reliance Mica Corp.
Brooklyn, New York
08806
General Electric Co.
Miniature Lamp Products Dept.
Cleveland, Ohio
08863
Nylomatic Corp.
Norrisville, Pennsylvania
08988 - use 53085
Skottie Electronics Inc.
Archbald, Pennsylvania
09214
G.E. Co. Semi-Conductor

Products Dept.
Power Semi-Conductor
Products OPN Sec.
Auburn, New York
09353
C and K Components
Watertown, Massachusetts
09423
Scientific Components, Inc.
Santa Barbara, California
09922
Burndy Corp.
Norwalk, Connecticut
09969
Dale Electronics Inc.
Yankton, S. Dakota
10059
Barker Engineering Corp.
Formerly Amerace, Amerace
ESNA Corp.
Kenilworth, New Jersey
11236
CTS of Berne
Berne, Indiana
11237
CTS Keene Inc.
Paso Robles, California
11358
CBS Electronic Div.
Columbia Broadcasting System
Newburyport, MN
11403
Best Products Co.
Chicago, lllinois
11503
Keystone Columbialnc.
Warren, Michigan
11532
Teledyne Relays
Hawthorne, California

11711 General Instrument Corp Rectifier Division Hickville, New York	14099	17069	24655
	Semtech Corp.	Circuit Structures Lab.	General Radio
	Newbury Park, California	Burbank, California	Concord, Massachuset
	14140	17338	2475
11726	Edison Electronic Div. Mc Gray-Edison Co. Mianchester, New Hampshire	High Pressure Eng. Co., Inc.	Lenox-Fugle Electronics Inc
Qualidyne Corp.		Oklahoma City, Oklahoma	South Plainfield, New Jersey
Santa Clara, California		17545	2508
12014 Chicago Rivet \& Machine Co. Bellwood, Illinois	14193 Cal-R-Inc, formerly California Resistor, Corp. Santa Monica, California	Atlantic Semiconductors, Inc.	Siernen C
		Asbury Park, New Jersey	Isilen, New Jersey
		17856	25403
12040 National Semiconductor Corp. Danburry, Connecticut		Siliconix, Inc.	Amperex Electronic Corp.
	14298 American Components, Inc. an Insilco Co. Conshohocken, Pennsylvania	Santa Clara, California	
		17870	Micro-Circuits Div. Slatersville Rhode
12060		Replaced by 14140	Slatersville, Rhode 27014
Chatsworth, California	14655	18178 Vactec Inc.	National Semiconductor Corp. Santa Clara, California
12136 Philadelphia Handle Co. Camden, New Jersey	Cornell-Dublier Electronics Division of Federal Pacific Electric Co. Govt. Control Dept. Newark, New Jersey	Maryland Heights, Missouri 18324 Signetics Corp.	27264 Molex Products Downers Grove, Illinois
12300 Potter-Brumfield Division AMF Canada LTD. Guelph, Onatrio, Canada	14752 Electro Cube Inc. San Gabriel, California	Sunnyvale, California 18612 Vishay Resistor Products Div. Vishay Intertechnology Inc.	28213 Minnesota Mining \& Mfg. Co. Consumer Products Div.
12323 Presin Co., Inc. Shelton, Connecticut	$\begin{aligned} & 14869 \\ & \text { Replaced by } 96853 \end{aligned}$	Malvern, Pennsylvania	St. Paul, Minnesota 28425
	14936	18736 Voltronics	Serv-/-Link formerly
12327 Freeway Corp. formerly Freeway W asher \& Stamping Co. Cleveland, Ohio	General Instrument Corp. Semi Conductor Products Group Hicksville, New York	Hanover, New Jersey	Fort Worth, Texas
		18927	28478
12443 Budd Co. The, Polychem Products Plastic Products Div. Bridgeport, PA	15636 Elec-Trol inc. Saugus, California	Precision Material Group Parts Division Titusville, Pennsylvania	Deltrol Controls Div. Deltrol Corporation Milwaukee, Wisconsin
	15801 Fenwal Electronics Inc. Div. of Kidde Walter and Co., Inc. Framingham, Massachusetts	19451 Perine Machinery \& Supply Co.	28480 Hewlett Packard Co. Corporate H.Q. Palo Alto California
12615 U.S. Terminals Inc. Cincinnati, Ohio		Seattle, Washington	Palo Alto, Calitornia
	15818 Teledyne Semiconductors, formerly Amelco Semiconductor Mountain View, California	Electro-Midland Corp.	Heyman Mfg. Co.
12617 Hamlin Inc. Lake Mills, Wisconsin		Mepco-Electra Inc. Mineral Wells, Texas	29083
		20584	Santa Clara, California
Clarostat Mfg. Co.	Litton Systems Inc. Useco Div. formerly Useco Inc. Van Nuys, California	Indianapolis, Indiana	29604 Compents
Dover, New Hampshire		20891 l	Stackpole Components Co. Raleigh, North Carolina
James Electronics	15898 International Business	Dallas, Texas	30148
Chicago, lllinois	Machines Corp.	21604 Stamping	AB Enterprise Inc. Ahoskie, North Carolina
12856 Micrometals	Essex Junction, Vermont 15909	Buckeye Stamping Co. Columbus, Ohio	30323 (
Sierra Madre, California	Replaced by 14140	21845	Illinois Tool Works, Inc. Chicago, lllinois
Dickson Electronics Corp. Scottsdale, Arizona	16258 Space-Lok Inc. Burbank, California	Solitron Devices Inc. Transistor Division Riveria Beach, Florida	31091 Optimax Inc.
12969 Unitrode Corp. Watertown, Massachusetts	16299 Corning Glass Electronic Components Div.	22767 ITT Semiconductors Palo Alto, California 23050	Colmar, Pennsylvania 32539 Mura Corp. Great Neck, New York
Thermalloy Co., Inc. Dallas, Texas	16332 Replaced by 28478	Product Comp. Corp. Mount Vernon, New York	32767 Griffith Plastic Corp. Burlingame, California
13327 Solitron Devices Inc. Tappan, New York 13511	16473 Cambridge Scientific Ind. Div. of Chemed Corporation	23732 Tracor Inc. Rockville, Maryland 23880	32879 Advanced Mechanical Components Northridge, California
Amphenol Cadre Div. Bunker-Ramo Corp. Los Gatos, California	16742 Paramount Plastics Fabricators, Inc. Downey, California	Stanford Applied Engrng. Santa Clara, California 23936	32897 Erie Technological Products, Inc. Frequency Control Div. Carlisle, Pennsylvania
$13606 \text { - use } 56289$ Sprague Electric Co. Transistor Div. Concord, New Hampshire	16758 Delco Electronics Div. of General Motors Corp. Kokomo, Indiana	Pamotor Div., Wm. J. Purdy Co. Burlingame, California 24248 Replaced by 94222	32997 Bourns Inc. Trimpot Products Division Riverside, California
Replaced by 23732	17001 Replaced by 71468	24355 Analog Devices Inc. Norwood, Massachusetts	33173 General Electric Co. Products Dept. Owensboro, Kentucky

34333	70563	73293 Hughes Aircraft Co. Electron Dynamics Div. Torrence, California	77969
Silicon General	Amperite Company		Rubbercraft Corp. of CA. LTD. Torrance, California
Westminister, California	Union City, New Jersey		
34335	70903		78189
Advanced Micro Devices	Belden Corp.	73445 Amperex Electronic Corp. Hicksville, LI, New York	Shakeproof Div. of Illinois Tool Works Inc. Elgin, Illinois
Sunnyvale, California	Geneva, Illinois		
34802	71002		
Electromotive Inc.	Birnbach Radio Co., Inc.	73559 Carling Electric Inc. West Hartford, Connecticut	78277 Sigma Instruments, Inc. South Braintree, Massachusetts
Kenilworth, New Jersey	Freeport, LI New York		
37942 (71400		
Mallory, P.R. \& Co., Inc.	Bussmann Mfg. Div. of McGraw-Edison Co. Saint Louis, Missouri	73586 Circle F Industries Trenton, New Jersey	78488 Stackpole Carbon Co. Saint Marys, Pennsylvania
Indianapolis, Indiana			
42498			
National Radio	$\begin{aligned} & 71450 \\ & \text { CTS Corp. } \\ & \text { Elkhart, Indiana } \end{aligned}$	73734	78553 Eaton Corp. Engineered Fastener Div.
Melrose, Massachuset ts		Federal Screw Products, Inc. Chicago, Illinois	
43543 (
Nytronics Inc.	71468 ITT Cannon Electric Inc. Santa Ana, California	73743 Fischer Special Mfg. Co. Cincinnati, Ohio	Tinnerman Plant Cleveland, Ohio
Transformer Co. Div.			
Geneva, New York			79136 Waldes Kohinoor Inc. Long Island City, New York 79497
44655	71482 Clare, C.P. \& Co. Chicago, Illinois	73899 JFD Electronics Co. Components Corp Brooklyn, New York	
Ohmite Mfg. Co.			
Skokie, llinois			
49671			Western Rubber Company Goshen, Indiana
RCA Corp.	71590 Centrelab Electronics	73949 Guardian Electric Mfg. Co. Chicago, Illinois	
New York, New York	Div. of Globe Union Inc. Milwaukee, Wisconsin		
49956			
Raytheon Company	71707	74199 Quan Nichols Co. Chicago, lllinois	80031 Electro-Midland Corp., Mepco Div. A North American Phillips Co. Morristown, New Jersey
Lexington, Massachusetts	Coto Coil Co., Inc.		
50088	Providence, Rhode Island		
Mostek Corp.	71744	74217 Radio Switch Corp. Marlboro, New Jersey	
Carrollton, Texas	Chicago Miniature Lamp Works		
50579	Chicago, lllinois		80145 LFE Corp., Process Control Div. formerly API Instrument Co. Chesterland, Ohio
Litronix Inc.	71785	74276 Signalite Div. General Instrument Corp. Neptune, New Jersey	
Cupertino, California	TRW Electronics Components		
51605 ,	Cinch Connector Operations Div. Elk Grove Village, Chicago, Illinois		80183 - use 56289 Sprague Products North Adams, Massachusetts
Scientific Components Inc. Linden, New Jersey	72005		
53021	Driver, Wilber B., Co.	$\begin{aligned} & 74306 \\ & \text { Piezo Crystal Co. } \end{aligned}$	
Sangamo Electric Co.	Newark, New Jersey	Carlisle, Pennsylvania	80294 Bourns Inc., Instrument Div.
Springfield, lllinois	72092 Replaced by 06980	74542 Hoyt Elect. Instr. Works Penacook, New Hampshire	Bourns Inc., Instrument Div. Riverside, California
54294			80583 Hammarlund Mfg. Co., Inc. Red Bank, New Jersey
Cutler-Hammer Inc. formerly	72136 Electro Motive Mfg. Co. Williamantic, Connecticut	74970 Johnson E.F., Co. Waseca, Minnesota	
Shallcross, A Cutter-Hammer Co. Selma, North Carolina			
55026			80640 0
Simpson Electric Co.	Nytronics Inc. Pelham Manor, New Jersey	75042 TRW Electronics Components IRC Fixed Resistors Philadelphia, Pennsylvania	Stevens, Arnold Inc.
Div. of Am. Gage and Mach. Co. Elgin, Illinois			South Boston, Massachusetts 81073
Eigin, 1 Alin	72619 Dialight Div.		Grayhill, Inc.
56289 Electric			La Grange, llilinois
Sprague Electric Co.	Amperex Electronic Corp.	75376	81312 Winchester Electronics
North Adams, Massachusetts	Brooklyn, New York	Kurz-Kasch Inc.	
58474	72653 G.C. Electronics Div. of Hydrometals, Inc. Brooklyn, New York	Dayton, Ohio	
Superior Electric Co.		75378 CTS Knights Inc. Sandwich, Illinois	Div. of Litton Industries Inc. Oakville, Connecticut
Bristol, Conn			81439
Torin Corp, formerly	72665 Replaced by 90303	75382 Kulka Electric Corp. Mount Vernon, New York	Therm-O-Disc Inc.
Torrington Mfg. Co.			
Torrington, Connecticut	72794		81483 (
63743 (75915 Littlefuse Inc.	International Rectifier Corp. Los Angeles, California
Ward Leonard Electric Co., Inc. Mount Vernon, New York	West Islip, New York		81590 Korry Mfg. Co.
Mount Vernon, New	72928 Gulton Ind. Inc. Gudeman Div. Chicago, Illinois	76854 Oak Industries Inc. Switch Div. Crystal Lake, Illinois	
64834			
West Mfg. Co. San Francisco, Californai			81741
65092			Chicago Lock Co.
Weston Instruments Inc.	72982 Erie Tech. Products Inc. Erie, Pennsylvania	77342 AMF Inc. Potter \& Brumfield Div. Princeton, Indiana	Chicago, Illinois
Newark, New Jersey			82305 Palmer Electronics Corp. South Gate, California
66150	73138 Beckman Instruments Inc. Helipot Division Fullerton, California		
Winslow Tele-Tronics Inc.			
Eaton Town, New Jersey		77638 General Instrument Corp. Rectifier Division Brooklyn, New York	82389 Switchcraft Inc. Chicago, Illinois
70485 Atlantic India Rubber Works			
Atlantic India Rubber Works Chicago, Illinois			

Fluke Technical Service Centers - U.S. and Canada

United States			Canada
CALIFORNIA Burbank Fluke Technical Center 2020 N. Lincoln St. Zip: 91504 Tel. (213) 849-4641	illinois Rolling Meadows Fluke Technical Center 1400 Hicks Road Zip: 60008 Tel. (312) 398-5800	NEW JERSEY Clifton Fluke Technical Center 460 Colfax Ave. Zip: 07013 Tel. (201) 778-1339	ALBERTA Calgary Allan Crawford Assoc. Ltd. Fluke Technical Center 14-2280 39th N.E. Zip: T2E 6P7
Santa Clara Fluke Technical Center 2300 Walsh Avenue Zip: 95050 Tel. (408) 985-1200	MARYLAND Kensington Fluke Technical Center 11501 Huff Court Zip: 20795 Tel. (301) 881-6155	NORTH CAROLINA Greensboro Fluke Technical Center 1310 Beaman Place Zip: 27408 Tel. (919) 273-1918	Tel. (403) 276-9658 ONTARIO Mississauga Allan Crawford Assoc. Ltd. Fluke Technical Center
Denver Fluke Technical Center 1980 S. Quebec St. Unit 4 Zip: 80231 Tel. (303) 750-1228	MASSACHUSETTS Waltham Fluke Technical Center 244 Second Ave. Zip: 02154 Tel. (617) 890-1604	TEXAS Dallas Fluke Technical Center 14400 Midway Road Zip: 75240 Tel. (214) 233-9945	6503 Northam Drive Zip: L4V 1J5 Tel. (416) 678-1500 QUEbEC Longueuil Allan Crawford Assoc. Ltd.
FLORIDA Orlando Fluke Technical Center 940 N. Fern Creek Ave. Zip: 32803 Tel. (305) 896-2296	MINNESOTA Minneapolis Fluke Technical Center 10800 Lyndale Ave. So. Zip: 55420 Tel. (612) 884-4541	WASHINGTON Mountlake Terrace John Fluke Mfg. Co., Inc. 21707 66th Ave. W. Suite 1 Zip: 98043 Tel. (206) 774-2206	Fluke Technical Center 1330 Marie Victorin Bivd. E. Zip: J4G 1A2 Tel. (514) 670-1212

Sales and Service Locations - International

Supplied and supported by Fluke (Nederland) B.V., P.O. Box 5053, Zevenheuvelenweg 53, Tilburg, Netherlands.

EUROPE	*Fluke (Deutschland) GmbH	SPAIN	ISRAEL
	8000 Munich 80	*Hispano Electronica S.A.	*R.D.T. Electronics
AUSTRIA	Vertriesburo Bayern	Poligono Industrial Urtinsa	Engineering Ltd.
*Walter Rekirsch Elektronische	Rosenheimer Strasse 139	Apartado de Correos 48	46, Sokolov Street
Gerate GmbH \& Co. Vertrieb KG.	West Germany	Alcorcon (Madrid), Spain	Ramat Hasharon 47235, Israel
Liechtensteinstrasse 97/6	Tel. 089-404061	Tel. 09-341-6194108	Tel. 482311
A-1090 Vienna, Austria			
Tel. (222) 347646-0	GREECE	SWEDEN	JORDAN
	* Hellenic Scientific	* Teleinstrument $A B$	Trading \& Agricultural
BELGIUM	Representations Ltd.	P.O. Box 490	Development Co.
${ }^{*}$ C. N. Rood S/A	11 Vrassida Street	S-162 Vallingby-4	P.O. Box 567
	Athens 612, Greece	Sweden	Amman, Jordan
B-1040 Brussels, Belgium	Tel. (021) 7792320	Tel. (08) 380370	Tel. 23052
Tel. (02) 27352135			
	ITALY	SWITZERLAND	KUWAIT
cyprus	*Sistrel S.p.A.	* Traco Electronic AG	Tareq Company
Chris Radiovision Ltd.PO. Box 1989	Via Giuseppe Armellini No. 39	Jenatschstrasse 1	P.O. Box Safat 20506
	00143 Rome, Italy	8002 Zurich, Switzerland	Kuwait, Arabian Gulf
Nicosia, Cyprus	Tel. (06) 5915551	Tel. (01) 2010711	Tel. 436100
Tel. 66121			
	*Sistrel S.p.A.	TURKEY	LEBANON
DENMARK	Via Timavo 66	*Erkman Electronik Aletler	Mabek
*Tage OIsen A/S Ballerup Byveg 222	20099 Sesto S. Giovanni (Milan)	Necatibey Cad 92/2	P.O. Box 11-3823
	Italy	Karakoy/Istanbul	Beirut, Lebanon
DK-2750 Ballerup	Tel. (02) 2476693	Turkey	Tel. 252631
Tel. (01) 2-65581 11		Tel. 441546	
	NETHERLANDS		MOROCCO
FINLAND	* C.N. Rood, B.V.	UNITED KINGDOM	Mainvest
*Oy Findip AB	Cort van der Lindenstraat 11-13	* Fluke International Corp.	Residence Moulay Ismail
Teollisuustie 7	Rijswijk ZH2280AA	Colonial Way	Bat.C Boulevard
02700 Kauniainen	Netherlands	Watford Herts WD2 4TT, England	Moulay Slimane, Rabat, Morocco
Helsinki, Finland	Tel. (070) 996360	Tel. (0923) 40511	Tel. 276-64
Tel. (080) 502255			
	NORWAY	MIDDLE EAST	SAUDI ARABIA
FRANCE	*Morgenstierne \& Co. A/A		Electronic Equipment
*M. B. Electronique S.A.	Konghellegate 3	EGYPT	Marketing Est.
Rue Fourney	P.O. Box 6688, Rodelokka	Lotus Engineering Organisation	P.O. Box 3750
ZAC de BUC	Oslo 5, Norway	$\text { P.O. Box } 1252$	Rivadh, Saudi Arabia
B. P. No. 31	Tel. (02) 356110	Cairo, Egypt	Tel. 32700
78530 BUC, France Tel. (01) 9563130		Tel. 71617	
	PORTUGAL		SYRIA
	* Equipamentos	IRAN	Mabek Electronics
GERMAN FEDERAL	De Laboratorio Ltda.	*Irantronics Company Ltd.	C/O Messers G. Ghazzi
REPUBLIC	P.O. Box 1100	20 Salm Road, Roosevelt Ave.	P.O. Box 4238
* Fluke (Deutschland) GmbH	Lisbon 1, Portugal	Tehran, Iran	Damascus, Syria
4.Dusseldorf	Tel. (019) 976551	Tel. 828294	
Meineckestrasse 53			
West Germany			
Tel. 211-450831		Customers in the following countries: Bulgaria, Czechoslovakia, Hungary, Poland, Romania, U.S.S.R. and Yugoslavia. Contact: Amtest Associates Ltd., P.O. Box 55, Addlestone, Surrey, KT 15 1DU, England, Tel. (0932) 52121	
*Technical Service Available			

Sales and Service Locations - International (Concluded)

ARGENTINA	ECUADOR	KENYA	PERU
* Coasin S.A.	*Proteco Coasin CIA, Ltda.	Adcom Limited Inc.	* Importaciones
Virrey del Pino 4071	Edifica "Jerico"	P.O. Box 30070	y Representaciones
Buenos Aires, Argentina	Ave. 12 de Octubre	Nairobi, Kenya	Avda, Franklin
Tel. 523185	No. 2285 y Ave. Orellana (Planta Baja)	East Africa	Avda, Franklin D. Roosevelt 105 Lima 1, Peru
AUSTRALIA	Quito, Ecuador	I. 331955	Tel. 288650
* Elmeasco Instruments Pty. Ltd. $\text { P.O. Box } 30$	Tel. 529-684	KOREA	SINGAPORE
Concord, N.S.W.	HONG KONG	* Electro-Science Korea Co.	* O'Connor's (Pte) Ltd.
Australia 2137	* Gilman \& Co., Ltd.	C.P.O. Box 8446	98 Pasir Panjang Road
Tel. (02) 736-2888	P.O. Box 56 Hong Kong	Rm. 1201 Bowon Bldg. 490 Chongro- 5 Ka	Singapore 5, Singapore Tel. 637944
Elmeasco Instruments Pty. Ltd.	Tel. 794266	Chongro-ku	
P.O. Box 107	ICELAND	Seoul, Korea	SOUTH AFRICA
Mt. Waverly, VIC 3149	Kristjan O. Skagfjord Ltd.	Tel. 261-7702	*Fluke S.A. (Pty) Ltd.
Australia	P.O. Box 906		P.O. Box 39797
Tel. 233-4044	Reykjavik, Iceland Tel. 24120	MALAYSIA O'Connor's (Pte) Ltd.	Bramley 2018 Republic of South Africa
BANGLADESH	Tel. 24120	P.O. Box 1197	Tel. (011) 786-3170
Kabir Brothers Lidd.	INDIA	Kota Kinabalu, Sabah	
97 - Gulshan Ave., Gulshan GPO Box 693	* Hinditron Services Pvt. Ltd.	East Malaysia	TAIWAN
Dacca-12, Bangladesh	69/A.L. Jagmohandas Marg	Tel. 54082	CCT Associates, Inc. P.O. Box 24209
Tel. 303104	Bombay 400 006, India Tel. 365344	$\begin{aligned} & \text { O'Connor's (Pte) Ltd. } \\ & \text { P.O. Box } 91 \end{aligned}$	Taipei, Taiwan Republic of China
BOLIVIA Coasin Bolivia S.R.L	* Hinditron Services Pvt. Ltd.	Petaling Jaya, Selangor	Tel. (02) 391-6894
Casilla 7295	412 Raj Mahal Vilas Extn.	West Malaysia	
La Paz, Bolivia	Bangalore 560006 , India	Tel. 51563	THAILAND
Tel. 40962	Tel. 33139	MEXICO	Dynamic Supply Engineering R.O.P
BRAZIL	INDONESIA	*C.J. Christensen S.A. de C.V. Instrumentos Electronicos	No. 56 Ekamai, Sukhumvit 63 Bankok 11, Thailand
*Arotec S.A.	*P.T. DWI Tunggal Jaya Sakti	de Medicion	Tel. 914434
Industrial e Comercio	Sangga Buana Bldg., 1st Floor	Melchor Ocampo 150-8	
Av. Pacaembu 811	J1 Senen Raya 44, P.O. Box 4435	Mexico 4, D.F., Mexico	URUGUAY
Sao Paulo S.P., Brazil	Jakarta, Indonesia	Tel. (905) 535-2258	Coasin Uruguaya S.R.L.
Tel. (67) 23	Tel. 367390	NEW ZEALAND	Cerrito 617-4 Piso Montevideo, Uruguay
*Arotec S.A. Av. Rio Branco, 277	P.T. DWI Tunggal Jaya Sakti	*W \& K McLean Ltd.	Tel. 917978
Grupo 1309	Jalan Sasakgantung 45	P.O. Box 3097	
Rio de Janeiro-R. J., Brazil	Bandung, Indonesia	Auckland, New Zealand Tel. 587-037	VENEZUELA * Coasin C.A.
CHile	JAPAN		APDO Postal 50939
* Intronica Chile Ltda.	Panetron Division	Mofat Engineering Co., Ltd.	Caracas 105, Venezuela
Casilla 16228	Tokyo Electron Ltd.	P.O. Box 6369	Tel. 782-9109
Manuel Montt 024-Of. D	1 Higashikata-machi	Lagos, Nigeria	
Santiago 9, Chile	Midori-ku		
Tel. 44	Yokohama 226, Japan	PAKISTAN	
COLOMBIA	Tel. (045) 471-8811	Pak International Operations 505 Muhammadi House	
Coasin L.tda.	*John Fluke Mfg. Co., Inc.	McLeod Road	
Ap. Aereo 29583	1 Higashikata-machi	P.O. Box 5323	
Bogota DE, Colombia	Midori-ku	Karachi, Pakistan Tel 221127	
Tel. 285-0230	Yokohama 226, Japan		
	Tel. (045) 473-5425		
	Tlx: 3823-666 FLUKJP J		

* Technical Service Available

United States

AK, Anchorage

Harry Lang \& Associates
1406 W. 47th Ave.
Anchorage, AK 99503
(907) 279-5741

AL, Huntsville
John Fluke Mfg. Co., Inc. 3322 S.Memorial Parkway Huntsville, AL 35807 (205) 881-6220

AZ, Phoenix

John Fluke Mfg. Co., Inc. 7319 E. Stetson Drive Scottsdale, AZ 85251 (602) 994-3883

CA, Burbank

John Fluke Mfg. Co., Inc. 2020 N. Lincoln Blvd. Burbank, CA 91504 (213) 849-7181

CA, Santa Clara

John Fluke Mifg. Co., Inc. 2300 Walsh Ave.
Santa Clara, CA 95050
(408) 244-1505

CA, Tustin

John Fluke Mfg. Co., Inc. 15441 Red Hill Ave, Unit B
Tustin, CA 92680
(714) 752-6200

CO, Denver
Barnhill Three, Inc.
1980 S. Quebec St., Unit 4
Denver, CO 80231
(303) 750-1222

CT, Hartford

John Fluke Mfg. Co., Inc.
124 Hebron Ave.
Glastonbury, CT 06033
(203) 633-0777

FL, Orlando
John Fluke Mig. Co., Inc.
$94^{\prime 0}$ N. Fern Creek Ave.
Orlando, FL 32803
(305) 896-4881

HI, Honolulu
EMC Corporation
2979 Ualena St.
Honolulu, HI 96819
(808) 847-1138

IL, Chicago
John Fluke Mifg. Co., Inc.
1400 Hicks Road
Rolling Meadows, IL 60008
(312) 398-0850

IN, Indianapolis
John Fluke Mfg. Co., Inc. 5610 Crawfordsville Rd. Suite 802
Indianapolis, IN 46224
(317) 244-2456

MA, Waltham
John Fluke Mfg. Co., Inc.
244 Second Avenue
Waltham, MA 02154
(617) 890-1600

MD, Baltimore
John Fluke Mfg. Co., Inc.
11501 Huff Court
Kensington, MD 20795
(301) 881-3370
(301) 792-7060 (Baltimore)

MI, Detroit
John Fluke Mfg. Co., Inc.,
13955 Farmington Rd.
Livonia, MI 48154
(313) 522-9140

MN, Minneapolis

John Fluke Mfg. Co., Inc
10800 Lyndale Ave. S.
Minneapolis, MN 55420
(612) 884-4336

MO, Kansas City
John Fluke Mfg. Co., Inc. 4406 Chouteau Traffic Way Kansas City, MO 64117 (816) 454-5836

MO, St. Louis
John Fluke Mfg. Co., Inc.
300 Brooks Dr., Suite 100
Hazelwood, MO 63042
(314) 731-3388

NC,, Greensboro
John Fluke Mfg. Co., Inc.
1310 Beaman Place
Greensboro, NC 27408 (919) 273-1918

NJ, Clifton
John Fluke Mifg. Co., Inc.
460 Colfax Avenue
Clifton, NJ 07013
(201) 778-4040
(516) 935-6672 (Long Island)

NM, Albuquerque
Barnhill Three, Inc.
1410 D Wyoming N.E.
Albuquerque, NM 87112
(505) 299-7658

Canada

NY, Rochester

John Fluke Mfg. Co., Inc.
4515 Culver Road
Rochester, NY 14622
(716) 266-1400

OH , Cleveland
John Fluke Mfg. Co., Inc.
7830 Freeway Circle
Middleburg Heights, OH 44130
(216) 234-4540

OH , Dayton
John Fluke Mfg. Co., Inc.
4756 Fishburg Rd.
Dayton. OH 45424
(513) 233-2238

PA, Philadelphia

John Fluke Mfg. Co., Inc. 1010 West 8th Ave., Suite H King of Prussia, PA 19406 (215) 265-4040

TX, Austin

John Fluke Mifg. Co., Inc. 111 W. Anderson Lane
Suite 213
Austin ,TX 78752
(512) 458-6279

TX, Dallas

John Fluke Mfg. Co., Inc.
14400 Midway Road
Dallas, TX 75240
(214) 233-9990

TX, Houston
John Fluke Mfg. Co., Inc.
1014 Wirt Road, Suite 270
Houston, TX 77055
(713) 683-7913
(512) 222-2726 (San Antonio)

UT, Salt Lake City
Barnhill Three, Inc.
54 West 2100 South
Suite 3
Salt Lake City, UT 84115
(801) 484-4496

WA, Seattle

John Fluke Mfg. Co., Inc.
691 Strander Blvd
Seattle, WA 98168
(206) 575-3765

ALB, Calgary

NS, Halifax

ONT, Ottawa

ONT, Toronto

QUE, Montreal Ontario.

Allan Crawford Assoc., Ltd.
2280-39th N.E
Calgary, ALB T2E 6P7
(403) 276-9658

BC, North Vancouver
Allan Crawford Assoc., Ltd. 3795 William Street
Burnaby, BC Y5C 3H3 (604) 294-1326

Allan Crawford Assoc., Ltd.
Suite 201, Townsend PI.
800 Windmill Road
Burnside Industrial Park
Dartmouth, NS B3B 1L1
(902) 469-7865

Allan Crawford Assoc., Ltd.
1299 Richmond Road
Ottawa, ONT K2B 7Y4
(613) 829-9651

Allan Crawford Assoc., Ltd.
6503 Northam Drive
Mississauga, ONT L4V 1J5
(416) 678-1500

Allan Crawford Assoc., Ltd.
1330 Marie Victorin Blvd. E.
Longueuil, QUE J4G 1A2
(514) 670-1212

For Canadian areas not listed, contact the office nearest you or Allan Crawford Assoc. Ltd., Mississauga (Toronto),

For more information on Fluke products or Sales Offices you may dial (800) 426-0361 toll free in most of U.S. From Alaska, Hawaii, Washington, or Canada phone (206) 774-2481. From other countries phone (206) 774-2398.

