8508A

Service Manual

Warranty

Each Fluke product is warranted to be free from defects in material and workmanship under normal use and service. The warranty period is one year and begins on the date of shipment. Parts, product repairs, and services are warranted for 90 days. This warranty extends only to the original buyer or end-user customer of a Fluke authorized reseller, and does not apply to fuses, disposable batteries, or to any product which, in Fluke's opinion, has been misused, altered, neglected, contaminated, or damaged by accident or abnormal conditions of operation or handling. Fluke warrants that software will operate substantially in accordance with its functional specifications for 90 days and that it has been properly recorded on non-defective media. Fluke does not warrant that software will be error free or operate without interruption.

Fluke authorized resellers shall extend this warranty on new and unused products to end-user customers only but have no authority to extend a greater or different warranty on behalf of Fluke. Warranty support is available only if product is purchased through a Fluke authorized sales outlet or Buyer has paid the applicable international price. Fluke reserves the right to invoice Buyer for importation costs of repair/replacement parts when product purchased in one country is submitted for repair in another country.

Fluke's warranty obligation is limited, at Fluke's option, to refund of the purchase price, free of charge repair, or replacement of a defective product which is returned to a Fluke authorized service center within the warranty period.

To obtain warranty service, contact your nearest Fluke authorized service center to obtain return authorization information, then send the product to that service center, with a description of the difficulty, postage and insurance prepaid (FOB Destination). Fluke assumes no risk for damage in transit. Following warranty repair, the product will be returned to Buyer, transportation prepaid (FOB Destination). If Fluke determines that failure was caused by neglect, misuse, contamination, alteration, accident, or abnormal condition of operation or handling, including overvoltage failures caused by use outside the product's specified rating, or normal wear and tear of mechanical components, Fluke will provide an estimate of repair costs and obtain authorization before commencing the work. Following repair, the product will be returned to the Buyer transportation prepaid and the Buyer will be billed for the repair and return transportation charges (FOB Shipping Point).
THIS WARRANTY IS BUYER'S SOLE AND EXCLUSIVE REMEDY AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FLUKE SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OR LOSSES, INCLUDING LOSS OF DATA, ARISING FROM ANY CAUSE OR THEORY.

Since some countries or states do not allow limitation of the term of an implied warranty, or exclusion or limitation of incidental or consequential damages, the limitations and exclusions of this warranty may not apply to every buyer. If any provision of this Warranty is held invalid or unenforceable by a court or other decision-maker of competent jurisdiction, such holding will not affect the validity or enforceability of any other provision.

Fluke Corporation	Fluke Europe B.V.
P.O. Box 9090	P.O. Box 1186
Everett, WA 98206-9090	5602 BD Eindhoven
U.S.A.	The Netherlands

To register your product online, visit register.fluke.com.

Table of Contents

Chapter Title Page
1 Introduction and Specifications 1-1
Introduction 1-3
Safety Considerations 1-3
Safety Information 1-4
Symbols 1-6
Service Information 1-6
Contact Fluke Calibration 1-7
Specifications 1-7
General Specifications 1-8
Maximum Voltage and Current Inputs 1-9
DC and AC Voltage 1-9
DC and AC Current 1-9
Resistance and Temperature 1-9
Electrical Measurement Specifications 1-10
DC Current 1-11
AC Voltage 1-12
AC Current 1-14
Resistance 1-16
Temperature 1-18
Read Rate and Additional Uncertainty 1-19
Applying the Specifications 1-20
Introduction 1-20
Absolute and Relative Specifications 1-20
Applying User's Calibration Uncertainties 1-21
Operating and Calibration Temperature Ranges 1-21
Applying Temperature Coefficient Specifications 1-21
Ratio Measurements 1-22
Additional Errors 1-22
2 Theory of Operation 2-1
Introduction 2-3
Overall Functional Description 2-3
Main Assemblies 2-3
Power Supplies 2-6
3 Calibration and Verification 3-1
Introduction 3-3
Calibration Overview 3-3
Calibration Interval and Performance 3-3
Calibration Points 3-3
Non-Nominal Values 3-4
Enabling Access to Calibration Mode 3-4
Calibration Menus 3-4
Accessing the Calibration Menus and Calibration Mode 3-4
Calibration Menu 3-4
SET VALUE Menu 3-5
SPOT CAL Menu 3-6
SPOT (1 to 6) RMS Menus 3-6
SPOT FREQUENCY (1 to 6) Menu 3-6
Special Calibration 3-7
SPCL Menu 3-7
SER \# = Menu 3-7
Hvlin Menu 3-8
Non-volatile input offset compensation 3-8
Routine Calibration 3-9
Equipment Required for Calibration 3-10
Preparing for Calibration 3-10
Interconnections 3-11
ADC Calibration 3-14
DC Voltage Calibration 3-14
AC Voltage Calibration 3-16
Resistance Calibration 3-18
DC Current Calibration 3-25
AC Current Calibration 3-27
Frequency Calibration 3-28
Exit From Calibration Mode and Non-Volatile Input Offset Adjustment 3-29
Cal Due Date Entry and Calibration Mode Disable 3-30
ACV Spot Frequency Calibration 3-30
Performance Verification 3-31
Equipment Requirements 3-32
Interconnections 3-32
Applicable Verification Tolerance and Conditions 3-32
Preparation 3-33
DC Voltage Checks 3-33
AC Voltage Checks 3-35
Resistance Checks 3-37
DC Current Checks 3-40
AC Current Checks 3-41
Frequency Checks 3-43
4 Maintenance 4-1
Introduction 4-3
Access Procedures 4-3
Before You Start 4-3
Cabling and Wiring Connections 4-4
Removing the A1 DC PCA 4-5
Removing the A2 AC PCA 4-6
Removing the A3 Ohms PCA 4-7
Removing the A4 Digital PCA 4-9
Removing the A5 Bezel Assembly. 4-10
Removing the A5A1 Display PCA. 4-11
Removing the A6 Rear Input Assembly 4-12
Fuse Replacement and Line-Voltage Selection 4-14
Line-Power Fuse F1 and Voltage Selection 4-14
Rear-Input Current Fuse F2 (Rear Inputs Option) 4-15
Self Test 4-15
Self-Test Errors 4-15
Fatal Errors 4-18
Execution Errors 4-20
Device Dependant Errors 4-21
5 List of Replaceable Parts 5-1
Introduction 5-3
How to Obtain Parts 5-3
How to Contact Fluke 5-3
Parts Lists. 5-4

List of Tables

Table Title Page
3-1. Required Equipment for Calibration and Performance Verification 3-10
3-2. Calibration Sequence 3-11
3-3. DC Voltage Calibration Points and Sequence 3-15
3-4. AC Voltage Calibration Points and Sequence 3-17
3-5. Resistance Calibration Points and Sequence 3-18
3-6. DC Current Calibration Points and Sequence 3-26
3-7. AC Current Calibration Points and Sequence 3-28
3-8. DC Voltage Verification Points and Sequence 3-34
3-9. AC Voltage Verification Points and Sequence 3-36
3-10. Resistance Verification Points and Sequence 3-39
3-11. DC Current Verification Points and Sequence 3-41
3-12. AC Current Verification Points and Sequence 3-42
4-1. Power Input Fuse 1 - T 1.25AH 250V 4-14
4-2. Current Function Rear Input Fuse 2 - F 1.6AH 250V 4-15
4-3. Self-Test Errors 4-15
4-4. 9000 System Kernel Fault Errors 4-18
4-5. Unexpected Exception Errors 4-18
4-6. Serial Interface Errors 4-19
4-7. Serial Loop Mismatch Errors 4-20
4-8. Execution Errors 4-21
4-9. Device Dependent Errors 4-22
5-1. 8508A Final Assembly 5-4
5-2. 8508A Chassis Assembly 5-6
5-2. Bezel (front panel) Assembly 5-7
5-4. A6 Rear Input Assembly (optional) 5-12

List of Figures

Figure Title Page
1-1. 8508A Dimentional Outline Drawing 1-7
2-1. 8508A Functional Block Diagram 2-4
2-2. Power Supplies - Simplified Block Diagram 2-7
3-1. Equipment Connections Required for Calibration 3-13
4-1. Internal Wiring and Cabling Diagram 4-4
4-2. Removing the A1 DC PCA 4-5
4-3. Removing the A2 AC PCA 4-6
4-4. Removing the A3 Ohms PCA 4-8
4-5. Removing the A4 Digital PCA. 4-9
4-6. Removing the A5 Bezel Assembly 4-10
4-7. Removing the A5A1 Display PCA 4-11
4-8. Removing the A6 Rear Input Assembly 4-13
4-9. Rear Panel - Power Input Fuse and line Power Locations 4-14
5-1. 8508A Final Assembly 5-5
5-2. 8508A Chassis Assembly 5-7
5-3. A5 Bezel (front panel) Assembly 5-11
5-4. Rear Input Assembly (optional) 5-13

Chapter 1 Introduction and Specifications

TitleIntroduction1-3
Safety Considerations 1-3
Safety Information 1-4
Symbols 1-6
Service Information 1-6
Contact Fluke Calibration 1-7
Specifications 1-7
General Specifications 1-8
Maximum Voltage and Current Inputs 1-9
DC and AC Voltage 1-9
DC and AC Current 1-9
Resistance and Temperature 1-9
Electrical Measurement Specifications 1-10
DC Current 1-11
AC Voltage 1-12
AC Current 1-14
Resistance 1-16
Temperature 1-18
Read Rate and Additional Uncertainty 1-19
Applying the Specifications 1-20
Introduction 1-20
Absolute and Relative Specifications 1-20
Applying User's Calibration Uncertainties 1-21
Operating and Calibration Temperature Ranges 1-21
Applying Temperature Coefficient Specifications 1-21
Ratio Measurements 1-22
Additional Errors 1-22

Service Manual

Introduction

The Fluke 8508A Reference Multimeter (hereafter "the Multimeter") is designed for the most demanding measurement applications and provides extremely high measurement precision in both stand-alone and systems applications.
This Service Manual provides the information necessary to maintain the Multimeter at a module (or board) level. A brief description of the information contained in the various chapters follows:
Chapter 1 Introduction and Specification provides a brief description of the product, safety information regarding the product and its use, and a complete set of detailed specifications.
Chapter 2 Theory of Operation provides an overall functional description of the internal workings of the Multimeter. The intent of the theory is to aid in locating and isolating a faulty PCA.

Chapter 3 Calibration and Verification provides a thorough and complete description of both the Verification and the Calibration procedures for the Multimeter.
Chapter 4 Maintenance provides detailed descriptions of how to disassemble the Multimeter to the PCA level. The purpose of the descriptions is to assist with equipment repairs at the PCA level.
Chapter 5 List of Replaceable Parts provides all of the information required to identify and order replacement parts for repairing the Multimenter at the PCA level.

\triangle © Warning

To avoid electric shock, personal injury, or death, carefully read the information under Safety Considerations before attempting to install, use, or service the Multimeter.

Safety Considerations

This instrument has been designed and tested in accordance with the European standard publication EN61010-1 : 2001 and U.S. / Canadian standard publications UL 61010-1:2004 and CAN/CSA-C22.2 No.61010.1-04. The instrument has been supplied in a safe condition.
This manual contains information and warnings that must be observed to keep the instrument in a safe condition and ensure safe operation.
Using or servicing this Multimeter in conditions other than as specified in the Service Manual could compromise your safety.
To use the Multimeter correctly and safely, read and adhere to the precautions on the Safety Page and follow all the safety instructions or warnings given throughout this manual and the Users Manual that relate to specific measurement functions. In addition, follow all generally accepted safety practices and procedures required when working with and around electricity.

Safety Information

A Warning identifies conditions and procedures that are dangerous to the user.
$\triangle \triangle$ Warning
To prevent possible electrical shock, fire, or personal injury:

- Read all safety information before you use the Product.
- Carefully read all instructions.
- Use the Product only as specified, or the protection supplied by the Product can be compromised.
- Use extreme caution when the Product is in use. The Product can supply a lethal electric shock.
- Do not use the Product if it operates incorrectly.
- Examine the Product before use. Do not use the Product if it shows signs of damage. Carefully examine the insulation around the connectors.
- Do not use the Product around explosive gas, vapor, or in damp or wet environments.
- Do not use and disable the Product if it is damaged.
- Do not apply more than the rated voltage, between the terminals or between each terminal and earth ground.
- Do not touch voltages >30 V ac rms, 42 V ac peak, or 60 V dc.
- Measure a known voltage first to make sure that the Product operates correctly.
- Do not use test leads if they are damaged. Examine the test leads for damaged insulation, exposed metal, or if the wear indicator shows. Check test lead continuity.
- Use conductors of adequate gauge to make current measurements. High current can cause excessive heating of underrated conductors and can cause a fire.
- Use this Product indoors only.
- Use only the mains power cord and connector approved for the voltage and plug configuration in your country and rated for the Product.
- Make sure the ground conductor in the mains power cord is connected to a protective earth ground. Disruption of the protective earth could put voltage on the chassis that could cause death.
- Replace the mains power cord if the insulation is damaged or if the insulation shows signs of wear.
- If the mains power cord is to be the accessible disconnect device, the mains power cord must not be longer than 3 meters (118.1 inches).
- Remove all probes, test leads, and accessories that are not necessary for the measurement.
- Do not remove the cover until the test leads are removed.
- Turn the Product off and remove the mains power cord. Stop for two minutes to let the power assemblies discharge before you open the fuse door.
- Do not operate the Product with covers removed or the case open. Hazardous voltage exposure is possible.
- Disconnect the mains power cord before you remove the Product covers.
- Remove the input signals before you clean the Product.
- Use only specified replacement parts.
- Use only specified replacement fuses.
- The mains power service must be rated for 16 A , and if the mains power cord is internally fused, a 10 A fuse must be fitted in the mains power cord plug.
- Have an approved technician repair the Product.
- When the cover is removed, voltages more than 1.5 KV can be present.
- Properly terminate the sense leads to prevent exposure to hazardous voltages on the sense terminals. The voltage sense terminals are at output voltage when the two-wire function is set.
- Never touch a lead or terminal on the Product when a dangerous voltage is present.
- Do not use low voltage spade-terminated leads to connect to a hazardous voltage ($\mathbf{> 3 2} \mathbf{V}$ ac rms or $>\mathbf{4 2} \mathbf{V ~ p k}$). A general purpose probe kit is supplied with the Product for safe measurement at higher voltages.
- Do not touch exposed metal on banana plugs, they can have voltages that could cause death.
- Do not use test leads if they are damaged. Examine the test leads for damaged insulation and measure a known voltage.
- Use the correct terminals, function, and range for measurements.
- Keep fingers behind the finger guards on the probes.
- Connect the common test lead before the live test lead and remove the live test lead before the common test lead.
- Remove signal connections before the protective ground connection is removed. For example, the mains power cord must be connected when the signal leads are connected.
- Do not connect or disconnect signal leads while they are connected to a hazardous voltage or current source.
- Disconnect power and discharge all high-voltage capacitors before you measure resistance, continuity, capacitance, or a diode junction.
- Before the Product is connected to a circuit to make a current measurement, check the fuses on the Product and turn off the power to the circuit.
- Limit operation to the specified measurement category, voltage, or amperage ratings.
- Do not connect measurement probes directly to mains.
- Complete safety tests after a part replacement to make sure the Product is safe.
- Do not connect an external capacitance greater than 50 nF to the Product terminals.

Symbols

The following safety and electrical symbols may be used on the Multimeter or in this manual.

\triangle	Risk of danger. Important information. See manual.	\sim	AC (Alternating Current).
\triangle	Hazardous voltage. Voltage $>30 \mathrm{~V}$ dc or ac peak might be present.	=	DC (Direct Current).
$\begin{aligned} & \bar{\sim} \\ & \underset{\sim}{\text { or }} \end{aligned}$	AC or DC (Alternating or Direct Current)	4	Potentially hazardous voltage.
Ω	Digital signal.	(1)	Power ON / OFF
$\stackrel{1}{=}$	Earth ground.	\square	Fuse.
${ }_{6}$	Recycle.	\square	Double insulated.
CAT II	Measurement Category II is applicable to test and measuring circuits connected directly to utilization points (socket outlets and similar points) of the low-voltage MAINS installation.		
CAT III	Measurement Category III is applicable to test and measuring circuits connected to the distribution part of the building's low-voltage MAINS installation.		
CAT IV	Measurement Category IV is applicable to test and measuring circuits connected at the source of the building's low-voltage MAINS installation.		
2	This product complies with the WEEE Directive (2002/96/EC) marking requirements. The affixed label indicates that you must not discard this electrical/electronic product in domestic household waste. Product Category: With reference to the equipment types in the WEEE Directive Annex I, this product is classed as category 9 "Monitoring and Control Instrumentation" product. Do not dispose of this product as unsorted municipal waste. Go to Fluke's website for recycling information.		
C ϵ	Product conforms with the requirements of the applicable EC directives.		

Service Information

In case of difficulty within the 1-year Warranty period, return the Multimeter to a Fluke Service Center for Warranty repair. For out of Warranty repair, contact a Fluke Service Center for a cost estimate.
This service manual provides instructions for verification of performance, calibration, and maintenance. If you choose to repair a malfunction, information in this manual can help you to determine which module (PCA) has a fault. See Chapter 5 for cautions about handling the internal components.

Contact Fluke Calibration

To contact Fluke Calibration, call one of the subsequent telephone numbers:

- Technical Support USA: 1-877-355-3225
- Calibration/Repair USA: 1-877-355-3225
- Canada: 1-800-36-FLUKE (1-800-363-5853)
- Europe: +31-40-2675-200
- Japan: +81-3-6714-3114
- Singapore: +65-6799-5566
- China: +86-400-810-3435
- Brazil: +55-11-3759-7600
- Anywhere in the world: +1-425-446-6110

To see product information and download the latest manual supplements, visit Fluke Calibration's website at www.flukecal.com.
To register your product, visit http://flukecal.com/register-product.

Specifications

Figure 1-1 shows the overall dimensions of the 8505A Reference Multimeter.

Figure 1-1. 8508A Dimentional Outline Drawing

General Specifications

Power

Voltage
115 V Setting ... 100 V to 120 V rms designed for additional voltage fluctuations $\pm 10 \%$.
230 V Setting ... 200 V to 240 V rms designed for additional voltage fluctuations $\pm 10 \%$.
Frequency .. 50 Hz to 60 Hz designed for additional frequency variation of $\pm 3 \mathrm{~Hz}$.
Consumption.. 80 VA
Power Cord ... NEM
Dimensions
Height.. 88 mm (3.5 inches)
Width.. 427 mm (16.8 inches)

Depth ... 487 mm (19.2 inches)
Weight... 11.5 kg (25.5 lbs)

Environment

Temperature
Operating .. $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Specified Operation .. $5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
Calibration (TCal).. $20^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$
Factory Cal Temp ... $23^{\circ} \mathrm{C}$
Storage .. $20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Warm Up.. 4 hours to full uncertainty specification.
Relative Humidity (non- condensing)
Operating ${ }^{[18]}$.. $5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}<90 \%$.
Storage ... $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}<95 \%$
Altitude
Operating ... < 2000 meters
Storage .. < 12000 meters
Vibration and Shock.. Complies with MIL-PRF-28800F Class 3.

CAN/CSA-C22.2 No.61010.1-04,
CE marked and ETL (US \& C) listed.
Pollution Degree 2.
Installation Category II.
Equipment Class I (single insulation / Earthed metal case).
Protection against water ingress IP20 (general indoor conditions).
EMC
EN61326-1:2006 class B,
FCC Rules part 15 sub part B,
Measurement Isolation
Guard to Safety Ground $<3300 \mathrm{pF},>10 \mathrm{G} \Omega$.
Lo to Guard
In Remote Guard .. $<2800 \mathrm{pF},>10 \mathrm{G} \Omega$ (Not in Resistance function).
In Local Guard.. Lo and Guard terminals are internally shorted
(in Resistance $<2800 \mathrm{pF},>10 \mathrm{G} \Omega$).

Autorange

Range Up... 100 \% of range.
Range Down .. 9 \% of range (18 \% on 1000 V range).
Remote Interface...IEEE 488.2
Warranty ... 1 Year

Maximum Voltage and Current Inputs

Notes to maximum voltage and current input specifications

- Maximum DC input equal to maximum rms input. Maximum peak input is $\mathrm{rms} \times 1.414$
- Specifications apply equally to front and rear input terminals except where noted below.
- Front to rear isolation allows opposing polarity of maximum terminal voltage on each input.
- Digital I/O Ground (DigGnd) is internally connected to Safety Ground (Ground).
- Maximum Common Mode voltage with respect to Safety Ground is $1.7 \times 10^{5} \mathrm{VHz}$.

DC and AC Voltage

Ground

Maximum rms terminal voltages

Notes

- The A terminal is open circuit in these functions.
- In 4 wV mode Sense Hi is internally connected to Hi and Sense Lo is internally connected to Lo.

DC and AC Current

Ground
Maximum rms terminal voltages

							Sense Hi
						Hi	250 V
					Sense Lo	1000 V	1000 V
				Lo	250 V	1000 V	1000 V
			A	5 V	250 V	1000 V	1000 V
		Guard	250 V	250 V	250 V	1000 V	1000 V
	DigGnd	650 V	650 V	650 V	650 V	1000 V	1000 V
Ground	0 V	650 V	650 V	650 V	650 V	1000 V	1000 V

Maximum rms terminal currents

	Guard	A	Lo	Sense Lo	Hi	Sense Hi
Front Input	n.a	20 A	20 A	n.a	n.a	n.a
Rear input	n.a	2 A	2 A	n.a	n.a	n.a

Notes

- The Sense Lo, Sense Hi, and Hi Terminals are open circuit in these functions.
- The front input A terminal protection is automatic and self-resetting, and does not interrupt current flow. Damage is likely to occur if more than 20 A is applied.
- The rear input A terminal is protected by a fuse mounted on the rear panel.

Resistance and Temperature

Maximum rms terminal voltages

Ground

Note

- The A terminal is open circuit in these functions.

Electrical Measurement Specifications

Note
Fluke guarantees 8508A performance verification using specifications stated to 99% confidence level.
DC Voltage

Range	Full Scale ${ }^{[15]}$	Uncertainty Relative to Cal Stds			Absolute Uncertainties	
		\pm (ppm Reading + ppm Range) ${ }^{[4]}$				
		$\begin{gathered} 24 \text { hour } \\ \text { TCal } \pm 1^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 90 \text { day } \\ \text { TCal } \pm 1{ }^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 365 \text { day } \\ \text { TCal } \pm 1^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 365 \text { day } \\ \text { TCal } \pm 1{ }^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 365 \text { day TCal } \\ \pm 5^{\circ} \mathrm{C} \end{gathered}$
95 \% Confidence Level						
200 mV	199.990000	$0.7+0.5$	$1.4+0.5$	$2.7+0.5$	$4.5+0.5$	$5.0+0.5$
2 V	1.99990000	$0.5+0.2$	$1.4+0.2$	$2.7+0.2$	$3.0+0.2$	$3.5+0.2$
20 V	19.9990000	$0.5+0.2$	$1.4+0.2$	$2.7+0.2$	$3.0+0.2$	$3.5+0.2$
200 V	199.990000	$1.0+0.2$	$2.6+0.2$	$4.0+0.2$	$4.5+0.2$	$5.5+0.2$
1000 V	1050.00000	$1.0+0.5$	$2.6+0.5$	$4.0+0.5$	$4.5+0.5$	$5.5+0.5$
99 \% Confidence Level						
200 mV	199.990000	$0.8+0.6$	$2.0+0.6$	$3.5+0.6$	$6.0+0.6$	$6.5+0.6$
2 V	1.99990000	$0.6+0.25$	$1.8+0.25$	$3.5+0.25$	$4.0+0.25$	$4.5+0.25$
20 V	19.9990000	$0.6+0.25$	$1.8+0.25$	$3.5+0.25$	$4.0+0.25$	$4.5+0.25$
200 V	199.990000	$1.2+0.25$	$3.5+0.25$	$5.2+0.25$	$6.0+0.25$	$7.0+0.25$
1000 V	1050.00000	$1.2+0.6$	$3.5+0.6$	$5.2+0.6$	$6.0+0.6$	$7.0+0.6$

DC Voltage (Secondary Specifications) ${ }^{[1][2][3]}$

Range	Transfer Uncertainty 20 mins $\pm 1^{\circ} \mathrm{C} \pm$ (ppm Reading+ ppm Range)	Temperature Coefficient		
		$15{ }^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$	$\begin{gathered} 5^{\circ} \mathrm{C}-15^{\circ} \mathrm{C} \\ 30^{\circ} \mathrm{C}-40^{\circ} \mathrm{C} \end{gathered}$	$5^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}{ }^{[16]}$
		\pm ppm Reading $/{ }^{\circ} \mathrm{C}$		$\pm \mathrm{V} /{ }^{\circ} \mathrm{C}$
200 mV	$0.4+0.3$	0.4	0.6	100 n
2 V	$0.12+0.1$	0.3	0.5	200 n
20 V	$0.12+0.1$	0.3	0.5	1μ
200 V	$0.4+0.1$	0.7	1.0	20μ
1000 V	$0.4+0.3$	0.7	1.0	100μ

CMRR ($1 \mathrm{k} \Omega$ unbalance) \qquad 140 dB at DC and $1-60 \mathrm{~Hz}$	
NMRR ${ }^{[5]}$	
Filter Out .. 60 dB at $50 / 60 \mathrm{~Hz} \pm 0.09$ \%	
Filter In ... 110 dB at 50/60 Hz ± 0.09 \%	
Protection (All ranges)..................................... 1 kV rms	
Input Impedance	
200 mV to 20 V Ranges.................................... > $10 \mathrm{G} \Omega$	
200 V \& 1000 V Ranges $10.1 \mathrm{M} \Omega \pm 1$ \%	
Max Input Current .. 50 pA	
Ratio Accuracy	
Range to Range.	Apply an RSS summation of Net Front Input Accuracy and Net Rear Input Accuracy ${ }^{[17]}$
Within Range	Using the 24 hour or 20 minute Transfer Uncertainty specifications as appropriate, apply an RSS summation of specified accuracy of the Front Input signal and the specified accuracy of the Rear Input signal

Settling Time (to 10 ppm step size)
Filter Out .. $<50 \mathrm{~ms}$
Filter In .. <1 s

DC Current

DC Current ${ }^{[1][2][3]}$

Range	Full Scale ${ }^{[15]}$	Uncertainty Relative to Cal Stds			Absolute Uncertainties	
		\pm (ppm Reading + ppm Range) ${ }^{[4]}$				
		$\begin{gathered} 24 \text { hour } \\ \mathrm{TCal} \pm 1^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 90 \text { day } \\ \text { TCal } \pm 1^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 365 \text { day } \\ \text { TCal } \pm 1^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 365 \text { day } \\ \text { TCal }+1^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 365 \text { day } \\ \text { TCal } \pm 5^{\circ} \mathrm{C} \end{gathered}$
95 \% Confidence Level						
$200 \mu \mathrm{~A}$	199.99000	$5.5+2.0$	$6.0+2.0$	$6.5+2.0$	$12+2.0$	$12+2.0$
2 mA	1.9999000	$5.5+2.0$	$6.0+2.0$	$6.5+2.0$	$12+2.0$	$12+2.0$
20 mA	19.999000	$6.5+2.0$	$7.0+2.0$	$8.0+2.0$	$13+2.0$	$14+2.0$
200 mA	199.99000	$28+4.0$	$30+4.0$	$33+4.0$	$36+4.0$	$48+4.0$
2 A	1.9999000	$80+8.0$	$125+8.0$	$170+8.0$	$170+8.0$	$185+8.0$
20 A	19.999000	$200+20$	$290+20$	$380+20$	$380+20$	$400+20$
99 \% Confidence Level						
$200 \mu \mathrm{~A}$	199.99000	$7.0+2.0$	$7.5+2.0$	8.0 + 2.0	$15+2.0$	$16+2.0$
2 mA	1.9999000	$7.0+2.0$	$7.5+2.0$	$8.0+2.0$	$15+2.0$	$16+2.0$
20 mA	19.999000	$8.0+2.0$	$9.0+2.0$	$10+2.0$	$16+2.0$	$18+2.0$
200 mA	199.99000	$35+4.0$	$37+4.0$	$40+4.0$	$45+4.0$	$60+4.0$
2 A	1.9999000	$100+8.0$	$150+8.0$	$205+8.0$	$210+8.0$	$225+8.0$
20 A	19.999000	$250+20$	$350+20$	$450+20$	$455+20$	$500+20$

DC Current (Secondary Specifications) ${ }^{[1][2][3]}$

Range	Input Impedance (Ω)		Temperature Coefficient		
			$15^{\circ} \mathrm{C}-30{ }^{\circ} \mathrm{C}$	$\begin{array}{r} 5^{\circ} \mathrm{C}-15^{\circ} \mathrm{C} \\ 30^{\circ} \mathrm{C}-40^{\circ} \mathrm{C} \\ \hline \end{array}$	$5^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}{ }^{[16]}$
	Front	Rear	$\pm \mathrm{ppm}$ Reading $/{ }^{\circ} \mathrm{C}$		$\pm \mathrm{A} /{ }^{\circ} \mathrm{C}$
$200 \mu \mathrm{~A}$	150	150	0.4	0.6	50 p
2 mA	15.2	15.2	0.4	0.6	300 p
20 mA	1.8	1.9	1.2	1.8	3 n
200 mA	1.2	1.3	6. 0	9.0	50 n
2 A	0.3	0.4	8.0	12	500 n
20 A	0.04	-	15	20	10μ

Type \qquad Multi-slope, multi-cycle A-D Converter
Protection
Front Input.
20 A rms
Rear Input.
2 A rms, Rear Panel Fuse

Settling Time

$200 \mu \mathrm{~A}$ to 200 mA Ranges, to 10 ppm step size Filter Out < 50 ms , Filter $\mathrm{In}<1 \mathrm{~s}$
2 A Range
to 100 ppm step size... $<1 \mathrm{~s}$
to 75 ppm step size... $<30 \mathrm{~s}$
to 30 ppm step size... <5 minutes

20 A Range (at 10 A)
to 300 ppm step size \qquad <1 s
to 250 ppm step size \qquad <30 s
to 100 ppm step size < 5 minutes

AC Voltage
AC Voltage ${ }^{[1][2][6][7][9]}$

Range	Full Scale ${ }^{[15]}$	Frequency (Hz)	Uncertainty Relative to Cal Stds			Absolute Uncertainties	
			\pm (ppm Reading + ppm Range) ${ }^{[4]}$				
			$\begin{gathered} 24 \text { hour } \\ \text { TCal } \pm 1^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 90 \text { day } \\ \text { TCal } \pm 1^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 365 \text { day } \\ \text { TCal } \pm 1^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 365 \text { day } \\ \text { TCal } \pm 1^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 365 \text { day } \\ \text { TCal } \pm 5{ }^{\circ} \mathrm{C} \end{gathered}$
95\% Confidence Level							
200 mV	199.9900	$\begin{gathered} 1-10 \\ 10-40 \\ 40-100 \\ 100-2 k \\ 2 k-10 k \\ 10 \mathrm{k}-30 \mathrm{k} \\ 30 \mathrm{k}-100 \mathrm{k} \end{gathered}$	$\begin{gathered} \hline 80+70 \\ 80+20 \\ 60+20 \\ 40+10 \\ 60+20 \\ 250+30 \\ 400+100 \end{gathered}$	$\begin{gathered} 120+70 \\ 120+20 \\ 100+20 \\ 100+10 \\ 100+20 \\ 300+40 \\ 700+100 \end{gathered}$	$\begin{gathered} 120+70 \\ 120+20 \\ 100+20 \\ 100+10 \\ 100+20 \\ 300+40 \\ 700+100 \end{gathered}$	$\begin{gathered} \hline 160+70 \\ 130+20 \\ 110+20 \\ 105+10 \\ 105+20 \\ 305+40 \\ 705+100 \end{gathered}$	$\begin{gathered} \hline 165+70 \\ 140+20 \\ 115+20 \\ 110+10 \\ 135+20 \\ 340+40 \\ 765+100 \end{gathered}$
$\begin{gathered} 2 \mathrm{~V}, 20 \mathrm{~V} \text { \& } \\ 200 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 1.999900 \\ & 19.99900 \\ & 199.9900 \end{aligned}$	$\begin{gathered} \hline 1-10 \\ 10-40 \\ 40-100 \\ 100-2 k \\ 2 k-10 k \\ 10 k-30 k \\ 30 k-100 k \\ 100 k-300 k \\ 300 k-1 M \end{gathered}$	$70+60$ $70+10$ $50+10$ $30+10$ $50+10$ $100+20$ $250+100$ $0.15 \%+0.1 \%$ $1 \%+0.5 \%$	$\begin{gathered} 100+60 \\ 100+10 \\ 80+10 \\ 60+10 \\ 80+10 \\ 200+20 \\ 500+100 \\ 0.3 \%+0.1 \% \\ 1 \%+1 \% \end{gathered}$	$\begin{gathered} 100+60 \\ 100+10 \\ 80+10 \\ 60+10 \\ 80+10 \\ 200+20 \\ 500+100 \\ 0.3 \%+0.1 \% \\ 1 \%+1 \% \end{gathered}$	$140+60$ $105+10$ $85+10$ $65+10$ $85+10$ $205+20$ $505+100$ $0.3 \%+0.1 \%$ $1 \%+1 \%$	$\begin{gathered} 150+60 \\ 115+10 \\ 90+10 \\ 75+10 \\ 110+10 \\ 220+20 \\ 570+100 \\ 0.3 \%+0.1 \% \\ 1 \%+1 \% \end{gathered}$
$1000 \mathrm{~V}^{[8]}$	1050.000	$\begin{gathered} 1-10 \\ 10-40 \\ 40-10 k \\ 10 k-30 k \\ 30 k-100 k \end{gathered}$	$\begin{gathered} 70+70 \\ 70+20 \\ 50+20 \\ 100+40 \\ 250+200 \end{gathered}$	$\begin{gathered} 100+70 \\ 100+20 \\ 80+20 \\ 200+40 \\ 500+200 \end{gathered}$	$\begin{gathered} 100+70 \\ 100+20 \\ 80+20 \\ 200+40 \\ 500+200 \end{gathered}$	$\begin{gathered} 140+70 \\ 110+20 \\ 95+20 \\ 205+40 \\ 510+200 \end{gathered}$	$\begin{gathered} 150+70 \\ 120+20 \\ 115+20 \\ 225+40 \\ 580+200 \end{gathered}$
99\% Confidence Level							
200 mV	199.9900	$\begin{gathered} \hline 1-10 \\ 10-40 \\ 40-100 \\ 100-2 k \\ 2 k-10 k \\ 10 k-30 k \\ 30 k-100 k \end{gathered}$	$\begin{gathered} \hline 90+80 \\ 90+25 \\ 70+25 \\ 45+12 \\ 70+25 \\ 270+35 \\ 450+120 \end{gathered}$	$\begin{gathered} \hline 140+80 \\ 140+25 \\ 115+25 \\ 115+12 \\ 115+25 \\ 340+50 \\ 750+120 \end{gathered}$	$\begin{gathered} \hline 140+80 \\ 140+25 \\ 115+25 \\ 115+12 \\ 115+25 \\ 340+50 \\ 750+120 \end{gathered}$	$\begin{gathered} \hline 200+80 \\ 145+25 \\ 125+25 \\ 125+12 \\ 125+25 \\ 345+50 \\ 755+120 \end{gathered}$	$\begin{gathered} \hline 210+80 \\ 160+25 \\ 135+25 \\ 135+12 \\ 165+25 \\ 395+50 \\ 855+120 \end{gathered}$
$\begin{gathered} 2 \text { V, } 20 \text { V \& } \\ 200 \text { V } \end{gathered}$	$\begin{aligned} & 1.999900 \\ & 19.99900 \\ & 199.9900 \end{aligned}$	$\begin{gathered} \hline 1-10 \\ 10-40 \\ 40-100 \\ 100-2 k \\ 2 k-10 k \\ 10 k-30 k \\ 30 k-100 k \\ 100 \mathrm{k}-300 \mathrm{k} \\ 300 \mathrm{k}-1 \mathrm{M} \end{gathered}$	$\begin{gathered} \hline 80+70 \\ 80+12 \\ 60+12 \\ 35+12 \\ 60+12 \\ 115+25 \\ 270+120 \\ 0.15 \%+0.12 \% \\ 1 \%+0.6 \% \end{gathered}$	$\begin{gathered} \hline 115+70 \\ 115+12 \\ 90+12 \\ 70+12 \\ 90+12 \\ 240+25 \\ 550+120 \\ 0.3 \%+0.12 \% \\ 1 \%+1.2 \% \end{gathered}$	$\begin{array}{\|c} \hline 115+70 \\ 115+12 \\ 90+12 \\ 70+12 \\ 90+12 \\ 240+25 \\ 550+120 \\ 0.3 \%+0.12 \% \\ 1 \%+1.2 \% \\ \hline \end{array}$	$180+70$ $120+12$ $95+12$ $75+12$ $95+12$ $245+25$ $555+120$ $0.3 \%+0.12 \%$ $1 \%+1.2 \%$	$\begin{gathered} \hline 190+70 \\ 135+12 \\ 110+12 \\ 90+12 \\ 135+12 \\ 260+25 \\ 650+120 \\ 0.3 \%+0.12 \% \\ 1 \%+1.2 \% \end{gathered}$
$1000 \mathrm{~V}^{[8]}$	1050.000	$\begin{gathered} 1-10 \\ 10-40 \\ 40-10 k \\ 10 k-30 k \\ 30 k-100 k \end{gathered}$	$\begin{gathered} \hline 80+80 \\ 80+25 \\ 60+25 \\ 115+50 \\ 270+250 \\ \hline \end{gathered}$	$\begin{gathered} \hline 115+80 \\ 115+25 \\ 90+25 \\ 240+50 \\ 600+250 \\ \hline \end{gathered}$	$\begin{gathered} \hline 115+80 \\ 115+25 \\ 90+25 \\ 240+50 \\ 600+250 \\ \hline \end{gathered}$	$\begin{gathered} \hline 180+80 \\ 135+25 \\ 110+25 \\ 250+50 \\ 615+250 \\ \hline \end{gathered}$	$\begin{gathered} \hline 190+80 \\ 145+25 \\ 140+25 \\ 265+50 \\ 700+250 \\ \hline \end{gathered}$

AC Voltage (Secondary Specifications) ${ }^{[1][2][9]}$

Range	Frequency (Hz)	Temperature Coefficient	
		$15{ }^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$	$\begin{gathered} 5^{\circ} \mathrm{C}-15^{\circ} \mathrm{C} \\ 30^{\circ} \mathrm{C}-40^{\circ} \mathrm{C} \end{gathered}$
		$\pm \mathrm{ppm}$ Reading $/{ }^{\circ} \mathrm{C}$	
200 mV	1-10	5	10
	10-40	5	10
	40-100	5	10
	100-2 k	5	10
	2k-10k	12	20
	$10 \mathrm{k}-30 \mathrm{k}$	15	20
	$30 \mathrm{k}-100 \mathrm{k}$	40	60
$\begin{gathered} 2 \mathrm{~V} \\ 20 \mathrm{~V} \\ 200 \mathrm{~V} \end{gathered}$	1-10	5	10
	10-40	5	10
	40-100	5	10
	100-2 k	5	10
	2k-10k	10	15
	$10 \mathrm{k}-30 \mathrm{k}$	12	20
	$30 \mathrm{k}-100 \mathrm{k}$	40	60
	$100 \mathrm{k}-300 \mathrm{k}$	60	90
	$300 \mathrm{k}-1 \mathrm{M}$	80	120
1000 V	1-10	5	10
	10-40	5	10
	40-10 k	10	15
	$10 \mathrm{k}-30 \mathrm{k}$	12	20
	$30 \mathrm{k}-100 \mathrm{k}$	40	60

AC Current

AC Current

Range	Full Scale ${ }^{[15]}$	Frequency (Hz)	Uncertainty Relative to Cal Stds			Absolute Uncertainties	
			\pm (ppm Reading + ppm Range) ${ }^{[4]}$				
			$\begin{gathered} 24 \text { hour } \\ \text { TCal } \pm 1^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 90 \text { day } \\ \text { TCal } \pm 1^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 365 \text { day } \\ \text { TCal }+{ }^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 365 \text { day } \\ \text { TCal } \pm 1{ }^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 365 \text { day } \\ \text { TCal } \pm 5^{\circ} \mathrm{C} \end{gathered}$
95\% Confidence Level							
$200 \mu \mathrm{~A}$	199.9900	$\begin{aligned} & 1-10 \\ & 10-10 \mathrm{k} \\ & 10 \mathrm{k}-30 \mathrm{k} \\ & 30 \mathrm{k}-100 \mathrm{k} \end{aligned}$	$\begin{aligned} & 200+100 \\ & 200+100 \\ & 500+100 \\ & 0.35 \%+100 \end{aligned}$	$\begin{aligned} & 250+100 \\ & 250+100 \\ & 600+100 \\ & 0.4 \%+100 \end{aligned}$	$\begin{aligned} & 250+100 \\ & 250+100 \\ & 600+100 \\ & 0.4 \%+100 \end{aligned}$	$\begin{aligned} & 475+100 \\ & 475+100 \\ & 650+100 \\ & 0.4 \%+100 \end{aligned}$	$\begin{aligned} & 500+100 \\ & 500+100 \\ & 710+100 \\ & 0.4 \%+100 \end{aligned}$
$\begin{aligned} & 2 \mathrm{~mA} \& \\ & 20 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 1.999900 \\ & 19.999000 \end{aligned}$	$\begin{aligned} & 1-10 \\ & 10-10 \mathrm{k} \\ & 10 \mathrm{k}-30 \mathrm{k} \\ & 30 \mathrm{k}-100 \mathrm{k} \end{aligned}$	$\begin{aligned} & 200+100 \\ & 200+100 \\ & 500+100 \\ & 0.35 \%+100 \end{aligned}$	$\begin{aligned} & 250+100 \\ & 250+100 \\ & 600+100 \\ & 0.4 \%+100 \end{aligned}$	$\begin{aligned} & 250+100 \\ & 250+100 \\ & 600+100 \\ & 0.4 \%+100 \end{aligned}$	$\begin{aligned} & 290+100 \\ & 280+100 \\ & 650+100 \\ & 0.4 \%+100 \end{aligned}$	$\begin{aligned} & 310+100 \\ & 300+100 \\ & 710+100 \\ & 0.4 \%+100 \end{aligned}$
200 mA	199.9900	$\begin{aligned} & 1-10 \\ & 10-10 k \\ & 10 \mathrm{k}-30 \mathrm{k} \end{aligned}$	$\begin{aligned} & 200+100 \\ & 200+100 \\ & 500+100 \end{aligned}$	$\begin{aligned} & 250+100 \\ & 250+100 \\ & 600+100 \end{aligned}$	$\begin{aligned} & 250+100 \\ & 250+100 \\ & 600+100 \end{aligned}$	$\begin{aligned} & 290+100 \\ & 250+100 \\ & 600+100 \end{aligned}$	$\begin{aligned} & \hline 310+100 \\ & 290+100 \\ & 625+100 \end{aligned}$
2 A	1.999900	$\begin{aligned} & 10-2 k \\ & 2 k-10 k \\ & 10 k-30 k \\ & \hline \end{aligned}$	$\begin{aligned} & 500+100 \\ & 600+100 \\ & 0.25 \%+100 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 600+100 \\ & 700+100 \\ & 0.3 \%+100 \\ & \hline \end{aligned}$	$\begin{aligned} & 600+100 \\ & 700+100 \\ & 0.3 \%+100 \end{aligned}$	$\begin{aligned} & 600+100 \\ & 710+100 \\ & 0.3 \%+100 \\ & \hline \end{aligned}$	$\begin{aligned} & 620+100 \\ & 735+100 \\ & 0.3 \%+100 \end{aligned}$
20 A	19.99900	$\begin{aligned} & 10-2 k \\ & 2 k-10 k \end{aligned}$	$\begin{aligned} & 700+100 \\ & 0.2 \%+100 \end{aligned}$	$\begin{aligned} & 800+100 \\ & 0.25 \%+100 \end{aligned}$	$\begin{aligned} & 800+100 \\ & 0.25 \%+100 \end{aligned}$	$\begin{aligned} & 800+100 \\ & 0.25 \%+100 \end{aligned}$	$\begin{aligned} & 820+100 \\ & 0.25 \%+100 \end{aligned}$
99\% Confidence Level							
$200 \mu \mathrm{~A}$	199.9900	$\begin{aligned} & 1-10 \\ & 10-10 \mathrm{k} \\ & 10 \mathrm{k}-30 \mathrm{k} \\ & 30 \mathrm{k}-100 \mathrm{k} \end{aligned}$	$\begin{aligned} & 250+120 \\ & 250+120 \\ & 600+120 \\ & 0.35 \%+120 \end{aligned}$	$\begin{aligned} & 300+120 \\ & 300+120 \\ & 700+120 \\ & 0.4 \%+120 \end{aligned}$	$\begin{aligned} & 300+120 \\ & 300+120 \\ & 700+120 \\ & 0.4 \%+120 \end{aligned}$	$\begin{aligned} & 590+120 \\ & 590+120 \\ & 775+120 \\ & 0.4 \%+120 \end{aligned}$	$\begin{aligned} & \hline 620+120 \\ & 620+120 \\ & 800+120 \\ & 0.4 \%+120 \end{aligned}$
$\begin{aligned} & 2 \mathrm{~mA} \& \\ & 20 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 1.999900 \\ & 19.99900 \end{aligned}$	$\begin{aligned} & 1-10 \\ & 10-10 k \\ & 10 \mathrm{k}-30 \mathrm{k} \\ & 30 \mathrm{k}-100 \mathrm{k} \end{aligned}$	$\begin{aligned} & 250+120 \\ & 250+120 \\ & 600+120 \\ & 0.35 \%+120 \end{aligned}$	$\begin{aligned} & 300+120 \\ & 300+120 \\ & 700+120 \\ & 0.4 \%+120 \end{aligned}$	$\begin{aligned} & 300+120 \\ & 300+120 \\ & 700+120 \\ & 0.4 \%+120 \end{aligned}$	$\begin{aligned} & 380+120 \\ & 340+120 \\ & 775+120 \\ & 0.4 \%+120 \end{aligned}$	$\begin{aligned} & 400+120 \\ & 370+120 \\ & 800+120 \\ & 0.4 \%+120 \end{aligned}$
200 mA	199.9900	$\begin{aligned} & 1-10 \\ & 10-10 k \\ & 10 k-30 k \end{aligned}$	$\begin{aligned} & 250+120 \\ & 250+120 \\ & 600+120 \end{aligned}$	$\begin{aligned} & 300+120 \\ & 300+120 \\ & 700+120 \end{aligned}$	$\begin{aligned} & 300+120 \\ & 300+120 \\ & 700+120 \\ & \hline \end{aligned}$	$\begin{aligned} & 380+120 \\ & 305+120 \\ & 700+120 \end{aligned}$	$\begin{aligned} & 400+120 \\ & 360+120 \\ & 740+120 \end{aligned}$
2 A	1.999900	$\begin{aligned} & 10-2 k \\ & 2 k-10 k \\ & 10 k-30 k \end{aligned}$	$\begin{aligned} & 600+120 \\ & 700+120 \\ & 0.25 \%+120 \end{aligned}$	$\begin{aligned} & 700+120 \\ & 800+120 \\ & 0.3 \%+120 \end{aligned}$	$\begin{aligned} & 700+120 \\ & 800+120 \\ & 0.3 \%+120 \end{aligned}$	$\begin{aligned} & 705+120 \\ & 815+120 \\ & 0.3 \%+120 \end{aligned}$	$\begin{aligned} & 725+120 \\ & 860+120 \\ & 0.3 \%+120 \end{aligned}$
20 A	19.99900	$\begin{aligned} & \hline 10-2 k \\ & 2 k-10 k \end{aligned}$	$\begin{aligned} & 800+120 \\ & 0.2 \%+120 \end{aligned}$	$\begin{aligned} & \hline 900+120 \\ & 0.25 \%+120 \end{aligned}$	$\begin{aligned} & \hline 900+120 \\ & 0.25 \%+120 \end{aligned}$	$\begin{aligned} & \hline 900+120 \\ & 0.25 \%+120 \end{aligned}$	$\begin{aligned} & \hline 920+120 \\ & 0.25 \%+120 \end{aligned}$

AC Current (Secondary Specifications) ${ }^{[1][2][6][9]}$

Range	Frequency (Hz)	Temperature Coefficient		Input Impedance (Ω)		
		$15^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$	$\begin{gathered} 5^{\circ} \mathrm{C}-15^{\circ} \mathrm{C} \\ 30^{\circ} \mathrm{C}-40^{\circ} \mathrm{C} \end{gathered}$			
		$\pm \mathrm{ppm}$ Reading $/{ }^{\circ} \mathrm{C}$		Range	Front	Rear
$\begin{aligned} & 200 \mu \mathrm{~A}, 2 \mathrm{~mA} \& \\ & 20 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 1-10 \\ & 10-10 k \\ & 10 \mathrm{k}-30 \mathrm{k} \\ & 30 \mathrm{k}-100 \mathrm{k} \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 12 \\ & 40 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 20 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \mu \mathrm{~A} \\ & 2 \mathrm{~mA} \\ & 20 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 150 \\ & 15.2 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 150 \\ & 15.2 \\ & 1.9 \end{aligned}$
200 mA	$\begin{aligned} & 1-10 \\ & 10-10 k \\ & 10 k-30 k \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 20 \end{aligned}$		1.2	1.3
2 A	$\begin{aligned} & 10-2 k \\ & 2 k-10 k \\ & 10 k-30 k \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 30 \\ & \hline \end{aligned}$		0.3	0.4
20 A	$\begin{aligned} & 10-2 k \\ & 2 k-10 k \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$		0.04	-

Type
True rms, AC coupled. DC coupled gives $\sqrt{\left(\mathrm{ac}^{2}+\mathrm{dc}^{2}\right)}$

Protection			
Front Input... 20 A rms			
Rear Input .. 2 A rms, Rear Panel Fuse			
Settling Time	$200 \mu \mathrm{~A}$ to 200 mA Ranges	2 A Range	20 A Range (at 10 A)
	to 100 ppm of step	to 100 ppm of step	to 300 ppm of step
100 Hz filter..	<0.5 s	<1 s	<1 s
40 Hz filter..	<1.25 s	<2 s	<2 s
10 Hz filter..	< 5 s	<10 s	<10 s
1 Hz filter..	< 50 s	< 50 s	< 50 s

Resistance

Resistance ${ }^{[1][2][3]}$

Range	Full Scale ${ }^{[15]}$	Mode ${ }^{[10]}$	Uncertainty Relative to Cal Stds			Absolute Uncertainties	
			\pm (ppm Reading + ppm Range) ${ }^{[4]}$				
			$\begin{gathered} 24 \text { hour } \\ \text { TCal } \pm 1^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 90 \text { day } \\ \text { TCal } \pm 1{ }^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 365 \text { day } \\ \text { TCal } \pm 1^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 365 \text { day } \\ \text { TCal } \pm 1^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 365 \text { day } \\ \text { TCal } \pm 5^{\circ} \mathrm{C} \end{gathered}$
95\% Confidence Level							
2Ω	1.99990000	Normal	$5.0+2.0$	$8.0+2.0$	$10+2.0$	$15+2.0$	$17+2.0$
20Ω	19.9990000	Normal	$2.5+0.7$	$4.5+0.7$	$7.0+0.7$	$9.0+0.7$	$9.5+0.7$
200Ω	199.990000	Normal	$1.5+0.25$	$4.0+0.25$	$7.0+0.25$	$7.5+0.25$	$8.0+0.25$
$2 \mathrm{k} \Omega$	1.99990000	Normal	$1.0+0.25$	$3.5+0.25$	$7.0+0.25$	$7.5+0.25$	$8.0+0.25$
$20 \mathrm{k} \Omega$	19.9990000	Normal	$1.0+0.25$	$3.5+0.25$	$7.0+0.25$	$7.5+0.25$	$8.0+0.25$
$200 \mathrm{k} \Omega$	199.990000	Normal	$1.0+0.25$	$3.5+0.25$	$7.0+0.25$	$7.5+0.25$	$8.0+0.25$
$2 \mathrm{M} \Omega$	1.99990000	Normal	$2.0+0.5$	$4.0+0.5$	$7.0+0.5$	$8.5+0.5$	$9.0+0.5$
20 M ת	19.9990000	Normal	$3.5+5.0$	$6.0+5.0$	$9.0+5.0$	$15+5.0$	$20+5.0$
$200 \mathrm{M} \Omega$	199.990000	Normal	$20+50$	$25+50$	$30+50$	$60+50$	$120+50$
$2 \mathrm{G} \Omega$	1.99990000	Normal	$250+500$	$350+500$	$500+500$	$525+500$	$1510+500$
2Ω	1.99990000	Lo Current	$5.0+2.0$	$8.0+2.0$	$10+2.0$	$15+2.0$	$17+2.0$
20Ω	19.9990000	Lo Current	$2.5+0.7$	$4.5+0.7$	$7.0+0.7$	$9.0+0.7$	$9.5+0.7$
200Ω	199.990000	Lo Current	$2.5+0.7$	$5.0+0.7$	$7.0+0.7$	$7.5+0.7$	$8.0+0.7$
$2 \mathrm{k} \Omega$	1.99990000	Lo Current	$2.5+0.7$	$5.0+0.7$	$7.0+0.7$	$7.5+0.7$	$8.0+0.7$
$20 \mathrm{k} \Omega$	19.9990000	Lo Current	$2.5+0.7$	$5.0+0.7$	$7.0+0.7$	$7.5+0.7$	$8.0+0.7$
$200 \mathrm{k} \Omega$	199.990000	Lo Current	$5.0+0.5$	$6.5+0.5$	$7.0+0.5$	$7.5+0.5$	$8.0+0.5$
$2 \mathrm{M} \Omega$	1.99990000	Lo Current	$7.0+0.5$	$8.0+0.5$	$9.0+0.5$	$10+0.5$	$15+0.5$
$20 \mathrm{M} \Omega$	19.9990000	Lo Current	$20+5.0$	$20+5.0$	$25+5.0$	$35+5.0$	$90+5.0$
$200 \mathrm{M} \Omega$	199.990000	Lo Current	$250+500$	$350+500$	$500+500$	$515+500$	$1505+500$
$2 \mathrm{G} \Omega$	1.99990000	Lo Current	$250+500$	$350+500$	$500+500$	$525+500$	$1510+500$
$20 \mathrm{M} \Omega$	19.9990000	High Voltage	$2.0+0.5$	$4.0+0.5$	$7.0+0.5$	$15+0.5$	$17+0.5$
$200 \mathrm{M} \Omega$	199.990000	High Voltage	$3.5+5.0$	$6.0+5.0$	$9.0+5.0$	$60+5.0$	$65+5.0$
$2 \mathrm{G} \Omega$	1.99990000	High Voltage	$20+50$	$25+50$	$30+50$	$150+50$	$180+50$
$20 \mathrm{G} \Omega^{[18]}$	19.9990000	High Voltage	$250+500$	$350+500$	$500+500$	$525+500$	$1510+500$
99\% Confidence Level							
2Ω	1.99990000	Normal	$6.0+2.5$	$10+2.5$	$12+2.5$	19 + 2.5	$22+2.5$
20Ω	19.9990000	Normal	$3.0+0.9$	$5.5+0.9$	$8.5+0.9$	$11.5+0.9$	$12.0+0.9$
200Ω	199.990000	Normal	$1.8+0.3$	$5.0+0.3$	$8.5+0.3$	$9.5+0.3$	$10+0.3$
$2 \mathrm{k} \Omega$	1.99990000	Normal	$1.2+0.3$	$4.5+0.3$	$8.5+0.3$	$9.5+0.3$	$10+0.3$
$20 \mathrm{k} \Omega$	19.9990000	Normal	$1.2+0.3$	$4.5+0.3$	$8.5+0.3$	$9.5+0.3$	$10+0.3$
$200 \mathrm{k} \Omega$	199.990000	Normal	$1.2+0.3$	$4.5+0.3$	$8.5+0.3$	$9.5+0.3$	$10+0.3$
$2 \mathrm{M} \Omega$	1.99990000	Normal	$2.5+0.6$	$5.0+0.6$	$8.5+0.6$	$10.5+0.6$	$12+0.6$
$20 \mathrm{M} \Omega$	19.9990000	Normal	$4.5+6.0$	$7.5+6.0$	$12+6.0$	$20+6.0$	$25+6.0$
$200 \mathrm{M} \Omega$	199.990000	Normal	$25+60$	$30+60$	$35+60$	$75+60$	$150+60$
$2 \mathrm{G} \Omega$	1.99990000	Normal	$325+600$	$450+600$	$650+600$	$675+600$	$1810+600$
2Ω	1.99990000	Lo Current	$6.0+2.5$	$10+2.5$	$12+2.5$	$19+2.5$	$22+2.5$
20Ω	19.9990000	Lo Current	$3.0+0.9$	$5.5+0.9$	$8.5+0.9$	$11.5+0.9$	$12.0+0.9$
200Ω	199.990000	Lo Current	$3.0+0.9$	$6.5+0.9$	$8.5+0.9$	$9.5+0.9$	$10.0+0.9$
$2 \mathrm{k} \Omega$	1.99990000	Lo Current	$3.0+0.9$	$6.5+0.9$	$8.5+0.9$	$9.5+0.9$	$10.0+0.9$
$20 \mathrm{k} \Omega$	19.9990000	Lo Current	$3.0+0.9$	$6.5+0.9$	$8.5+0.9$	$9.5+0.9$	$10.0+0.9$
$200 \mathrm{k} \Omega$	199.990000	Lo Current	$6.0+0.6$	$8.0+0.6$	$9.0+0.6$	$9.5+0.6$	$10.0+0.6$
$2 \mathrm{M} \Omega$	1.99990000	Lo Current	$8.0+0.6$	$10.0+0.6$	$12.0+0.6$	$13.0+0.6$	$17.0+0.6$
$20 \mathrm{M} \Omega$	19.9990000	Lo Current	$25+6.0$	$25+6.0$	$30+6.0$	$45+6.0$	$110+6.0$
$200 \mathrm{M} \Omega$	199.990000	Lo Current	$325+600$	$450+600$	$650+600$	$670+600$	$1810+600$
$2 \mathrm{G} \Omega$	1.99990000	Lo Current	$325+600$	$450+600$	$650+600$	$675+600$	$1810+600$
$20 \mathrm{M} \Omega$	19.9990000	High Voltage	$2.5+0.6$	$5.0+0.6$	$8.5+0.6$	$19+0.6$	$20+0.6$
$200 \mathrm{M} \Omega$	199.990000	High Voltage	$4.5+6.0$	$7.5+6.0$	$12+6.0$	$75+6.0$	$80+6.0$
$2 \mathrm{G} \Omega$	1.99990000	High Voltage	$25+60$	$30+60$	$35+60$	$195+60$	$230+60$
$20 \mathrm{G} \Omega^{[88]}$	19.9990000	High Voltage	$325+600$	$450+600$	$650+600$	$675+600$	$1810+600$

\longrightarrow _

Resistance - Normal Mode (Secondary Specifications) ${ }^{[1][2][3][10]}$

Resistance - Lo Current Mode (Secondary Specifications) ${ }^{[1][2][3][10]}$

Range	Measurement Current	Transfer Uncertainty $20 \mathrm{mins} \pm 1^{\circ} \mathrm{C}$ \pm (ppm Reading + ppm Range)	Temperature Coefficient		
			$15^{\circ} \mathrm{C}-30{ }^{\circ} \mathrm{C}$	$\begin{array}{r} 5^{\circ} \mathrm{C}-15^{\circ} \mathrm{C} \\ 30^{\circ} \mathrm{C}-40^{\circ} \mathrm{C} \\ \hline \end{array}$	$5^{\circ} \mathrm{C}-40{ }^{\circ} \mathrm{C}^{[16]}$
			$\pm \mathrm{ppm}$ Reading $/{ }^{\circ} \mathrm{C}$		$\pm /^{\circ} \mathrm{C}$
2Ω	100 mA	$2.0+2.0$	1.5	2.5	1.5μ
20Ω	10 mA	$0.8+0.7$	0.6	1.0	15μ
200Ω	1 mA	$0.8+0.7$	0.6	1.0	150μ
$2 \mathrm{k} \Omega$	$100 \mu \mathrm{~A}$	$0.8+0.7$	0.6	1.0	1.5 m
$20 \mathrm{k} \Omega$	$10 \mu \mathrm{~A}$	$0.8+0.7$	0.6	1.0	15 m
$200 \mathrm{k} \Omega$	$10 \mu \mathrm{~A}$	$0.5+0.5$	0.6	1.0	20 m
$2 \mathrm{M} \Omega$	$1 \mu \mathrm{~A}$	$2.0+0.5$	2	3	200 m
$20 \mathrm{M} \Omega$	100 nA	$15+5$	20	30	2
$200 \mathrm{M} \Omega$	10 nA	$200+500$	200	300	20
$2 \mathrm{G} \Omega$	10 nA	$200+500$	200	300	100

Range	Measurement Current	Transfer Uncertainty 20 mins $\pm 1^{\circ} \mathrm{C}$ \pm (ppm Reading + ppm Range)	Temperature Coefficient		
			$15{ }^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$	$\begin{array}{r} 5^{\circ} \mathrm{C}-15^{\circ} \mathrm{C} \\ 30^{\circ} \mathrm{C}-40^{\circ} \mathrm{C} \end{array}$	$5^{\circ} \mathrm{C}-40{ }^{\circ} \mathrm{C}^{[16]}$
			$\pm \mathrm{ppm}$ Reading $/{ }^{\circ} \mathrm{C}$		$\pm \%^{\circ} \mathrm{C}$
$20 \mathrm{M} \Omega$	$10 \mu \mathrm{~A}$	$0.5+0.5$	0.6	1.0	2
$200 \mathrm{M} \Omega$	$1 \mu \mathrm{~A}$	$2.0+0.5$	2.0	3	20
$2 \mathrm{G} \Omega$	100 nA	$15+50$	20	30	200
$20 \mathrm{G} \Omega^{[18]}$	10 nA	$200+500$	200	300	2k

Type..True 4-wire with Ohms guard. 2-wire selectable.
2 Wire Adder... $\pm(10 \mathrm{pA} / \mathrm{Ir}) \times 10^{6} \mathrm{ppm}$ of Reading $\pm 50 \mathrm{~m} \Omega \pm 3 \mathrm{~m} \Omega /{ }^{\circ} \mathrm{C}$, where ir is the
measurement current, where the temperature related factor is based
on the temperature difference between the present operating
temperature and the temperature where the instrument was last
zeroed.

Ratio Accuracy
Range to Range..Apply an RSS summation of Net Front Input and Rear Input Accuracy ${ }^{[17]}$
Within Range
Using the 24 hour or 20 minute Transfer Uncertainty specifications as appropriate, apply an RSS summation of specified accuracy of the Front Input signal and the specified accuracy of the Rear Input signal ${ }^{[17]}$
Settling Time Up to $200 \mathrm{k} \Omega$ range generally the same as DC Voltage Filter In but depends on external connections

Temperature

Temperature Readout ${ }^{[1][2][3]}$

Resistance Range	Absolute Resistance Measurement Uncertainty 365 day Tcal $\pm 1^{\circ} \mathrm{C}^{(4)}$ $\pm(\text { ppm Reading }+\mathrm{m} \Omega)^{[11]}$	Typical Equivalent Temperature Measurement Uncertainty ${ }^{121]}$			
		Probe Type	Nominal Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Resistance (Ω)	Accuracy $\pm\left({ }^{\circ} \mathrm{C}\right)$
95\% Confidence Level					
0-199.990 000 ת	$7.5+0.14$	25Ω PRT/SPRT	-200	5	0.0016
		25Ω PRT/SPRT	0	25	0.0033
		25Ω PRT/SPRT	660	84	0.0096
		100Ω PRT/SPRT	-200	20	0.0007
		100Ω PRT/SPRT	0	100	0.0023
		100Ω PRT/SPRT	232	185	0.0042
200-1999.900 00Ω	$7.5+0.5$	100Ω PRT/SPRT	400	250	0.0069
99\% Confidence Level					
0-199.990 000 ת	$9.5+0.18$	25Ω PRT/SPRT	-200	5	0.0021
		25Ω PRT/SPRT	0	25	0.0042
		25Ω PRT/SPRT	660	84	0.0122
		100Ω PRT/SPRT	-200	20	0.0009
		100Ω PRT/SPRT	0	100	0.0029
		100Ω PRT/SPRT	232	185	0.0053
200-1999.900 00Ω	$9.5+0.6$	100Ω PRT/SPRT	400	250	0.0086

Temperature Readout (Secondary Specifications) ${ }^{[1][2][3]}$

Resistance Range	Resistance Measurement Uncertainty				
	$\begin{aligned} & \text { Transfer Uncertainty } \\ & 20 \text { Minute } \pm 1^{\circ} \mathrm{C} \\ & \pm(\text { ppm Reading }+\mathrm{m} \Omega)^{[11]} \end{aligned}$	2-Wire Adder (Ω)	3-Wire Adder (Ω)	Temp Coeff. $\pm \mathrm{ppm}$ Reading $/{ }^{\circ} \mathrm{C}$	
				$15{ }^{\circ} \mathrm{C}-30{ }^{\circ} \mathrm{C}$	$\begin{gathered} 5^{\circ} \mathrm{C}-15^{\circ} \mathrm{C} \\ 300^{\circ} \mathrm{C}-40^{\circ} \mathrm{C} \end{gathered}$
0-199.990 000Ω	$0.8+0.14$	0.1	0.005	0.6	1.0
200-1999.900 00Ω	$0.2+0.5$	0.1	0.005	0.5	0.8

Type \qquad 4-wire current reversal resistance measurement with readout of equivalent temperature. 2-wire and 3-wire selectable without current reversal. Refer to Resistance specifications for additional details.
Temperature Range $-200^{\circ} \mathrm{C}$ to $660^{\circ} \mathrm{C}$, readout also available in ${ }^{\circ} \mathrm{F}$ or K .
Linearization
ITS-90 or Callendar van Dusen. Entry and storage of coefficients and nominal resistance for up to 100 probes.
Current Source 1 mA

Read Rate and Additional Uncertainty
Read Rate and Additional Uncertainty

Function	Resolution	Filter Frequency (Hz)	Read Rate (readings/second)		$\begin{gathered} \text { Additional Errors }{ }^{[13]} \\ \pm \text { (ppm Reading + ppm Range) } \end{gathered}$	
			Normal	Fast	Normal	Fast
DCV, DCI \& Ohms ${ }^{[10]}$	8		1/25	1/6	$0+0$	$0+0.1$
	7		1/6	1/2	$0+0.1$	$0+0.5$
	6		2	35	$1.0+0.5$	$0+2.5$
	5		35	150	$0+5$	$0+25$
ACV \& ACI ${ }^{[6]}$	6	1	1/50		$0+0$	
		10	1/5		$0+0$	
		40	1/2		$0+0$	
		100	1		$0+0$	
	5	1	1/50		$0+5$	
		10	1/5		$0+5$	
		40	1/2		$0+5$	
		100	2		$0+5$	
ACV Transfer Off ${ }^{[6]}$		1	1/25		$200+20$	
		10	1/2.5		$200+20$	
		40	1		$200+20$	
		100	4		$200+20$	
PRT \& Tru Ohms	8	-	1/90	1/30	$0+0$	
	7	-	1/30	1/10	$0+0.1$	
	6	-	1/4	1/3	$1.0+0.5$	
	5	-	1/3	1/3	$0+5$	

Notes to Performance Specifications

[1] Specifications apply for max resolution in each function, normal mode
[2] Assumes 4 hour warm-up period
[3] Input zero or offset null required whenever the temperature moves more than $\pm 1^{\circ} \mathrm{C}$ from the temperature at which the previous null/zero was performed.
[4] TCal = Ambient calibration temperature
[5] Integration time >1 Power Line cycle
[6] Valid for signals >1 \% Full Scale, Transfer Mode On. Signals must be DC coupled $<40 \mathrm{~Hz}$.
[7] Max Volt. Hertz 3×10^{7}
[8] $>300 \mathrm{~V},<10 \mathrm{kHz}$ add: $\pm 0.0004 \times$ (Reading- 300$)^{2} \mathrm{ppm}>300 \mathrm{~V}, 10 \mathrm{kHz}-30 \mathrm{kHz}$ add: $\pm\left(0.0004+(\right.$ Frequency -10000$\left.) \times 10^{-7}\right) \times$ (Reading-300) ${ }^{2} \mathrm{ppm}>300 \mathrm{~V},>30 \mathrm{kHz}$ add: $\pm 0.0024 \times(\text { Reading-300) })^{2} \mathrm{ppm}$
[9] Typical below 10 Hz for ACV, below 10 Hz and above 10 kHz for ACI .
[10] Tru Ohms mode available on 2Ω to $20 \mathrm{k} \Omega$ ranges. Read Rate reduced in Tru Ohms Mode. Specification for Tru Ohms same as corresponding Normal or Lo Current range
[11] Valid for 4-wire sensor
[12] Not including sensor uncertainty
[13] Assume Range and Full Scale $=2000 \mathrm{~V}$ when calculating for 1000 V Range. For DCI, additional errors only apply in 5 digit resolution
[14] Fast mode not available in PRT
[15] The maximum display value for the Analog to Digital converter is 199990000 counts. This sets the maximum value measurable on each range to be a one followed by four nines. For example, the maximum measured values on the 2 V range on DC Voltage are $\pm 1.99990000 \mathrm{~V}$. However, the 1000 V ranges are limited to a maximum 1050 V .
[16] The zero TC specification only needs to be applied if an input zero has not been performed within $\pm 1^{\circ} \mathrm{C}$ of the current operating temperature.
[17] RSS (Root Sum Square). For more information refer to the Ratio Measurements portion of the "Applying the Specifications" area of these specifications
[18] $>2 \mathrm{G} \Omega$ Relative Humidity Operating $<80 \%$ to $30^{\circ} \mathrm{C}<70 \%$ to $40^{\circ} \mathrm{C}$

Applying the Specifications

Introduction

The Fluke 8508A has been designed specifically for metrologists. Not only does it provide the performance metrologists need, but it is specified in a way to allow users to really understand the uncertainties of the measurements, and easily make allowance for those uncertainty contributions when performing measurement uncertainty analyses and compiling uncertainty budgets. Contemporary metrology practices, including ISO17025 based laboratory accreditation schemes, require uncertainty analysis to be performed in accordance with the statistically based techniques described in the ISO Guide to the Expression of Uncertainty in Measurement (often referred to as the 'GUM'). For convenience, the 8508 A specifications are quoted at a coverage factor of $\mathrm{k}=2$, equivalent to a confidence level of approximately 95%, as required by these methods. Specifications are also provided at a confidence level of 99%.

Performance specifications for the 8508A consist of two elements, the first is a contribution expressed as parts-per-million of the Reading, and the second contribution is expressed as parts-per-million of the Range. These must be evaluated and combined for the relevant reading and range values applicable to the measurement being made, ensuring that both elements are evaluated on the same basis, such as parts per million of the measured value or in absolute terms (volts, amps, ohms, etc). The two elements are combined by adding algebraically. For example measuring 10 V on the 20 VDC range and applying the 365 day
$\pm 1{ }^{\circ} \mathrm{C}$ specifications:
First, expressing the contributions in terms of parts-per-million of the measured value:

$$
= \pm\left(3.0+0.2 \times \frac{20}{10}\right)= \pm(3.0+0.4)= \pm 3.4 \mathrm{ppm} \text { of } 10 \mathrm{~V}
$$

Second, expressing the contributions in volts:

$$
= \pm\left(3.0 \times 10^{-6} \times 10+0.2 \times 10^{-6} \times 20\right)= \pm 3.4 \times 10^{-5}= \pm 34 \mu \mathrm{~V}
$$

The 8508 A is designed to provide accuracy and stability without the need for internal auto or self calibration routines which may otherwise compromise the continuity and traceability of measurement performance history. To realise the full potential of the 8508A performance accepted metrology practices should be employed, such as performing a zeroing or null operation to remove any offsets present in the measurement setup when making DC measurements. The 8508A specifications assume that these methods are employed.

Absolute and Relative Specifications

The Relative to Calibration Standards specifications describe the performance of the 8508A itself for the time periods and temperature range listed excluding the uncertainty of the standards used to perform calibration of the 8508A during manufacture. The Absolute specifications include the uncertainty of the standards used to perform calibration of the 8508A at manufacture and may be used to determine the uncertainty of measurements made with the 8508 A for periods up to 1 year and over a temperature range of $\pm 5^{\circ} \mathrm{C}$ from calibration. If the user has their 8508 A calibrated with different uncertainties, the Relative specifications can be combined with the uncertainties applicable to that calibration to determine the effective absolute uncertainty following that calibration.

Applying User's Calibration Uncertainties

When the 8508 A is calibrated by another laboratory the uncertainties of the calibration standards used may be applied by combining those uncertainties with the 8508A's Relative to Standards specifications. The applicable calibration uncertainties and the 8508A relative specifications must both be expressed at the same confidence level, and be combined in a RSS (Root Sum Square) summation. Accepted metrology practice mandates that calibration uncertainties are stated at 95%. Check the applicable calibration uncertainties are stated at 95% and then combine them with the 8508A 95% Relative specifications. For example, if the 8508A is calibrated at 10 V DC with an uncertainty of 1.5 ppm at 95% : The absolute uncertainty at 10 V for a period of 90 days and $\pm 1^{\circ} \mathrm{C}$ from calibration is:
$= \pm \sqrt{1.5^{2}+\left(1.4+0.2 \times \frac{20}{10}\right)^{2}}= \pm 2.3 \mathrm{ppm}$ of 10 V

Operating and Calibration Temperature Ranges

As a metrology tool, the 8508 A will commonly be used in a calibration laboratory where the temperature would be controlled to $\pm 1^{\circ} \mathrm{C}$, and the $8508 \mathrm{~A} \pm 1^{\circ} \mathrm{C}$ specifications are applicable to those situations. The majority of electrical calibration laboratories operate at a nominal temperature of $23^{\circ} \mathrm{C}$, the temperature at which the 8508 A is calibrated by Fluke during manufacture and service. The 8508A is also capable of being calibrated at any temperature between $20^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ and the $\pm 1^{\circ} \mathrm{C}$ specifications will apply to operation within $\pm 1^{\circ} \mathrm{C}$ of that calibration temperature. In the 8508 A specification tables the temperature of calibration is referred to as TCal. Specifications for $\pm 5^{\circ} \mathrm{C}$ are provided for situations where the 8508A is operated in environments with wider temperature variations up to $\pm 5^{\circ} \mathrm{C}$. For applications where the knowledge of the effect of temperature on 8508A performance is important, temperature coefficients are listed in the 8508 A specifications. If the operating temperature is within the range $15^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ the $15^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ temperature coefficient specifications are applicable otherwise use the $5^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C} / 30^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ figures, provided the temperature lies within that range. The 8508A may be operated at temperatures between $0^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$, but performance is not specified outside the range $5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.

Applying Temperature Coefficient Specifications

The 8508A specification tables include information for the typical operating conditions of $\pm 1^{\circ} \mathrm{C}$ for calibration laboratories with tight temperature control, and $\pm 5^{\circ} \mathrm{C}$ for calibration laboratories with looser temperature control or uncontrolled environments within that temperature range. For the majority of applications choosing the Absolute specifications for the most appropriate operating temperature range will be adequate. However performance at other temperatures may be determined by including an allowance for temperature coefficient over the additional temperature range. Care should be taken when making this calculation as an amount of temperature coefficient is already included in the 8508A specifications and those specifications are themselves based on combining contributions using techniques similar to those employed in uncertainty analysis. For example, consider operating at $33{ }^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C}$ from the $23^{\circ} \mathrm{C}$ calibration temperature. The $\pm 5^{\circ} \mathrm{C}$ specifications already include a contribution for $5^{\circ} \mathrm{C}$ of temperature difference, so this amount of temperature effect must be removed before the effect of the $10^{\circ} \mathrm{C}$ difference is added. Consider 10 V on the 20 VDC range: 365 day absolute specification (95%) at $33^{\circ} \mathrm{C}$ expressed in parts-per-million of 10 V is:

$$
= \pm \sqrt{\left(3.5+0.2 \times \frac{20}{10}\right)^{2}-(5 \times 0.3)^{2}+(10 \times 0.5)^{2}}= \pm 6.16 \mathrm{ppm} \text { of } 10 \mathrm{~V}
$$

Ratio Measurements

The 8508A Ratio mode will automatically take measurements of inputs applied to the front and rear terminals and display the result as a ratio in the voltage and resistance functions. The measurements can be made on the same range or different ranges. When making measurements on different ranges the error in each measurement is evaluated by applying the relevant specification for each range and combining the two specifications in an RSS summation, expressing the contributions in parts-per-million of the measured values. For example, making measurements of the ratio of 100 mV on the 200 m VDC range and 100 V on the 200 VDC range, applying the 365 day $\pm 1^{\circ} \mathrm{C}$ Absolute specifications:
$= \pm \sqrt{\left(4.5+0.5 \times \frac{200 \times 10^{-3}}{100 \times 10^{-3}}\right)^{2}+\left(4.5+0.2 \times \frac{200}{100}\right)^{2}}= \pm 7.37 \mathrm{ppm}$ of the ratio
Making measurements on the same range will eliminate range to range errors, such as drift since the time of calibration, and improve the result. When making measurements on the same range these errors will affect both measurements and effectively cancel, leaving short term noise and linearity as the dominant errors. The 20 minute Transfer Uncertainty Specifications are provided to describe the performance obtained when making ratio measurements on the same range. The error in each measurement is evaluated by applying the relevant 20 minute Transfer Uncertainty Specification for each value and combining the two specifications in an RSS summation, expressing the contributions in parts-per-million of the measured values. If the measurements are made within the same range, but independently (not using the ratio mode) with an elapsed time greater than 20 minutes but less than 24 hours between the measurements, then the 24 hour specifications should be applied instead.
For example, making measurements of the ratio of 5 V and 10 V on the 20 VDC range, applying the 20 minute Transfer Uncertainty specifications:

$$
= \pm \sqrt{\left(0.12+0.1 \times \frac{20}{5}\right)^{2}+\left(0.12+0.1 \times \frac{20}{10}\right)^{2}}= \pm 0.61 \mathrm{ppm} \text { of the ratio }
$$

Additional Errors

The 8508 A specifications are listed for the maximum resolution in each function, using the Normal reading mode. For measurements taken in other resolutions or the Fast read mode additional error contributions listed in the Read Rate and Additional Uncertainty table must be included. These additional contributions must be added algebraically to the relevant specifications. For example measuring 10 V on the 20 VDC range at 5 digit resolution in Fast mode and applying the 365 day $\pm 1^{\circ} \mathrm{C}$ Absolute specifications:
$= \pm\left((3.0+0)+(0.2+25) \times \frac{20}{10}\right)= \pm(3.0+50.4)= \pm 53.4 \mathrm{ppm}$ of 10 V
Other additional contributions apply in certain situations and are also to be added algebraically to the relevant specifications. These additional contributions include the DC Accuracy specification to be applied when making DC measurements on the AC Voltage function when DC coupled, and the High Voltage adder when making measurements above 300 V on the AC Voltage function.

Chapter 2 Theory of Operation

Title Page
Introduction 2-3
Overall Functional Description 2-3
Main Assemblies 2-3
Power Supplies 2-6

Service Manual

Introduction

This chapter provides a board-level theory of operation for the 8508A Reference Multimeter. Functional block diagrams supplement the text when appropriate. In addition to providing a conceptual overview of the Multimeter's operation, the descriptions are helpful for troubleshooting and isolating problems to a board level.
Reference Designators are used throughout this chapter to identify the major Printed Circuit Assemblies (PCAs) used in the Multimeter. These reference designators also appear in the List of Repaceable Parts (Chapter 5) to simplify the process of purchasing replacement modules and PCAs.

Overall Functional Description

Main Assemblies

Refer to the functional block diagram shown in Figure 2-1 while reading this description. In addition to identifying all of the assemblies contained in the Multimuter, this diagram provides a functional view of the data flow between the assemblies. Assembly interconnections and cable identification is detailed in chapter 4, Maintenance.
The following list identifies the six major assemblies contained in the Multimeter and includes a description of the basic functions each assembly performs:

A1	DC PCA	Optical isolation; measurement configuration; V dc, I dc and I ac measurements
A2	AC PCA	True-rms measurement
A3	Ohms PCA	Resistance measurements: 2-wire, 4-wire, high-voltage, ratio, etc.
A4	Digital PCA	Out-guard power supplies, control of IEEE (GPIB) and serial data (measurement and control)
A5	Bezel Assembly	Front panel user interface, display and keyboard, includes the A5A1 Display PCA.
A6	Rear Input Assembly (optional)	Rear input connections, includes the A6A1 Rear Input PCA.

Normal operator interaction with the Multimeter begins at the front panel (A5) which includes a keyboard for entering measurement configurations (functions, ranges, etc.) and a display for verifying the selected configurations and for displaying measurement results. Both the keyboard switches and the display are included on the A5A1 Display PCA. A rubber keypad, whose keys include a conductive backing, provides switching information to A5A1. A controller on the A4 Digital PCA provides the addressing, strobing, and storage of data coming from and going to the A5A1 Display PCA. The data stored on the A4 Digital PCA includes both the manually entered configuration data for use by the display and other assemblies, as well as, the resulting measurement data for use by the display as measurement results.
Before being used by the Multimeter, the stored configuration data is converted on the A4 Digital PCA from a parallel to serial format. Similarily, the A4 Digital PCA receives serial measurement data from the instrument and converts it to a parallel format for use as display data. A rear panel IEEE-488 (GPIB) bus is intergrated into the format conversion process.

Figure 2-1. 8508A Functional Block Diagram

A 16-pin cable (W3) enables serial control and measurement data to move between the A4 Digital PCA and the A1 DC PCA. Opto-isolators on the A1 DC PCA optically isolate the external control and display circuits of the Multimeter from the measurement circuits. This isolation minimizes problems associated with noise and current loops in the measurement circuits. Throughout this chapter, this isolation is referred to as in-guard (measurement circuits) and out-guard (control and data transfer circuits).

Control data from the A4 Digital PCA passes through the opto-isolators and serves as input to a series of tri-state latches. These latches retain the control data, and they provide the input to a series of relay drivers, which in turn drive a series of configuration relays. These relays establish the necessary connections between the various assemblies to perform the measurement called for from the front panel keyboard (or GPIB inputs). These relays also route analog data (and associated guarding) from the input terminals (front and rear) to the appropriate assemblies as defined by the measurement control data.
The A1 DC PCA, in addition to switching the measurement configurations and the routing of input and measurement signals, includes the circuits to perform the following functions:

- DC measurements

Handles both DC voltage and dc current measurements

- Analog to digital conversion (ADC)

The ADC processes all measurement data (volts, ohms, and current) before routing it (in digital form) to the A4 digital PCA for display and GPIB access.

- Current to voltage conversion

Both the ac and dc current measurement functions (IDC and IAC) use the same current shunts.

- Self-Test

Produces a variety of reference signals from -10 to +10 volts and places them on the internal signal bus for measurement and display. These tests provide a high degree of certainty that the Multimeter is functioning correctly, and they are useful for troubleshooting to the board level.
The A2 AC PCA performs the ac voltage and ac current measurements. The ac voltage portion of the assembly includes an associated collection of range, configutation, and filter circuits, as well as an ac preamplifier, and an rms-to-dc converter. The output of the rms-to-dc converter is a dc voltage proportional to the true-rms value of the input signal. The multiplexer on the A1 DC PCA receives the dc voltage and routes it to the ADC (Analog-to-Digital Converter) which, in turn, sends the digital results to the opto isolators. The opto isolators couple the digital data to the A4 Digital PCA for access by the display and GPIB.
The A1 DC PCA provides the configuration control required to connect the ac input signal to the A2 AC PCA. For ac voltage measurements the input signal is routed in much the same manner as a dc measurement signal. For ac current measurements, the ac input current is routed through the same set of current shunts used to make dc current measurements. To measure the ac current, the A2 AC PCA measures the voltage drop across the shunt and sends the results to the A4 Digital PCA as when making an ac voltage measurement.
The A3 Ohms PCA performs 2-wire, 4-wire, high-voltage, and ratio measurements. All of these measurements derive the unknown resistance value by passing a constant stimulus current through the unknown resistor and measuring the resulting voltage drop across it. By limiting the current to a value of 1×10^{-n}, the voltage drop is equal to the resistance value, e.g., 1 mA through $2.12 \mathrm{k} \Omega=2.12 \mathrm{~V}$. To accommodate range changes, the reference current changes to match the selected range. The reference current starts at 2 nA for the $2 \mathrm{G} \Omega$ range and increases to .1 mA for the 2Ω range. A high-gain inverting amplifier with low-input current and low-offset voltage performs the voltage
measurement across the unknown resistor. Configuration relays on the A1 DC PCA perform the change in terminal connections between two- and four-wire measurements.
The A3 Ohms PCA includes an alternative high-resistance measurement feature for resistance measurements above $20 \mathrm{M} \Omega$. These measurements use 10 times the standard stimulus current and result in a 10 times increase in the voltage across the resistor. This high-voltage resistance feature enables the Multimeter to make quiter and faster measurements. It also enables the inclusion of a $20 \mathrm{G} \Omega$ resistance range.
Another feature included on the A3 Ohms PCA is true-ohms. This feature eliminates the input offset-voltage from the measurement circuit by continuously reversing the direction of current flow through the unknown resistence. The stimulus current reversal is timed so that the current flows continuously thus maintaining identical and constant self-heating of the unknown in both forward and reverse measurements. To ensure same-polarity measurements, voltage sensing of the unknown resistor synchronously reverses with the current.
The true-ohms ratio function uses a similar current reversal process. However, the current is applied to both unknown resistors simultaneously.

Power Supplies

The Multimeter has two types of power supplies, out-guard supplies and in-guard supplies. The out-guard supplies provide power for the digital (earth ground) side of the Multimeter. This includes the A4 Digital PCA, the A5A1 Display (and keyboard), and the opto couplers on the A1 DC PCA. The in-guard supplies provide power for the analog (measurement) side of the Multimeter. This includes the A1 DC PCA, the A2 AC PCA, and the A3 Ohms PCA.

Two chassis-mounted transformers (T1 and T2) are the source of all the various voltages required for operation of the Multimeter. See Figure 2-2. Transformer T2 is the fused line-powered (mains) transformer. It has a single 24 V center-tapped secondary which provides ac power for both the out-guard and in-guard power supplies. On the A4 Digital PCA, the 24 V ac drives three conventional rectifiers and regulators to provide +5 V , +8 V , and +17 V sources for the out-guard circuits. The +5 and +8 volts provide power for out-guard digital logic circuits; the +17 volts, along with a driver on the A4 Digital PCA, supplies the power (17 V ac) to drive the primary of the in-guard transformer T 1.

Transformer T1 has 3 secondaries which drive a series of conventional rectifiers and regulators located on the A1 DC PCA. These T1 supplies provide the following in-guard operating voltages:

- $\quad+5 \mathrm{~V}$ dc regulated
- $\quad+8 \mathrm{~V}$ dc un-regulated
- $\quad \pm 15 \mathrm{~V}$ dc regulated
- $\pm 36 \mathrm{~V}$ dc regulated
- 250 Vac

All of the in-guard PCAs use these in-guard voltages, with the exception of the 250 V ac which goes directly to the A3 Ohms PCA where it is rectified and filtered for use in making the high-voltage ohms measurements. The 250 V dc supply is active only when the High Voltage Ohms function is selected.

A few other in-guard voltages, which are uniquely developed and used on the A3 Ohms PCA, include $+5 \mathrm{~V},-15 \mathrm{~V}, \pm 6 \mathrm{~V}$, and +5.5 V . The in-guard voltages on the A1 DC PCA are the original source driving all of these uniquely developed voltages on the A3 Ohms PCA.

Figure 2-2. Power Supplies - Simplified Block Diagram

Service Manual

Chapter 3
 Calibration and Verification

Title Page
Introduction 3-3
Calibration Overview 3-3
Calibration Interval and Performance 3-3
Calibration Points 3-3
Non-Nominal Values 3-4
Enabling Access to Calibration Mode 3-4
Calibration Menus 3-4
Accessing the Calibration Menus and Calibration Mode 3-4
Calibration Menu 3-4
SET VALUE Menu 3-5
SPOT CAL Menu 3-6
SPOT (1 to 6) RMS Menus 3-6
SPOT FREQUENCY (1 to 6) Menu 3-6
Special Calibration 3-7
SPCL Menu 3-7
SER \# = Menu 3-7
Hvlin Menu. 3-8
Non-volatile input offset compensation 3-8
Routine Calibration 3-9
Equipment Required for Calibration 3-10
Preparing for Calibration 3-10
Interconnections 3-11
ADC Calibration 3-14
DC Voltage Calibration 3-14
AC Voltage Calibration 3-16
Resistance Calibration 3-18
DC Current Calibration 3-25
AC Current Calibration 3-27
Frequency Calibration 3-28
Exit From Calibration Mode and Non-Volatile Input Offset Adjustment 3-29
Cal Due Date Entry and Calibration Mode Disable 3-30
ACV Spot Frequency Calibration 3-30
Performance Verification 3-31
Equipment Requirements 3-32
Interconnections 3-32
Applicable Verification Tolerance and Conditions 3-32
Preparation 3-33
DC Voltage Checks 3-33
AC Voltage Checks 3-35
Resistance Checks 3-37
DC Current Checks. 3-40
AC Current Checks. 3-41
Frequency Checks 3-43

Introduction

This chapter describes the calibration menus, and lists the calibration and performance verification procedures for the Multimeter. Remote commands for calibration of the Multimeter are described in Chapter 4 of the Users Manual, Remote Operations using the IEEE 488 Interface. In this chapter, menu and button selections are shown as all-caps text.

Calibration Overview

An electronic autocal feature allows full calibration of all functions of the Multimeter from the front panel (or remotely via the IEEE 488.2 Interface). No hardware adjustments are necessary.

For each combination of function and range, an appropriate calibration standard (source) is input. At each setting, one keystroke immediately calibrates to the standard by updating an internal non-volatile calibration memory. The Multimeter automatically determines whether the operation is to be a Zero or Range Gain calibration; or for AC ranges whether it is to be a Zero, LF Gain or HF Gain calibration. As part of the calibration procedure, a non-volatile input-offset compensation is adjusted independently for the front and rear inputs. The autocal process can operate only when the rear panel Calibration switch is in the 'Enable' position. Applying an integrity seal or calibration sticker to prevent access to the rear panel Calibration switch is a convenient way to ensure the security of calibration. When a calibration operation is performed the Multimeter's internal calibration memory is immediately updated. It is possible to calibrate a single range or single point if the user chooses to do so. However, it is recommended that the calibration procedure listed later in this chapter be followed closely.

Calibration Interval and Performance

It is recommended that the Multimeter be calibrated on either a 365-day or 90-day interval depending on the requirements of the applications for which the Multimeter is used and the performance specifications required. The performance of the Multimeter is specified for periods of 365 days and 90 days - if recalibration takes place on a 90 -day cycle use the 90 -day specifications for improved performance.
During manufacture, the Multimeter is calibrated with low uncertainties, reflected in the Absolute Specifications listed in Chapter 1 Introduction and Specifications. After recalibration, the user should apply the calibration uncertainties for the calibration standards and for the process applicable to that calibration by combining those calibration uncertainties with the Multimeter Relative to Standards specifications, as described in Chapter 1.

Many Multimeter owners prefer using Fluke calibration services instead of maintaining their own standards to support their Multimeter.To help ensure optimum performance from the Multimeter, Fluke offers our calibration service at a variety of worldwide locations. Our worldwide service network provides fast efficient calibration to ensure low uncertainties and optimum accuracy consistent with the original calibration at manufacture.

Calibration Points

There is generally more than one calibration point for each range. An initial measurement (made when the calibration is triggered) determines the intended calibration point. The points for each range and function are listed later in this chapter.

Non-Nominal Values

The Set facility allows the user to set the calibration target to the value of the calibration source available. This facility is most useful when the user's calibration source is not available at the nominal values specified, or when the user has knowledge of the actual output of the calibration source at the required points. In these cases, the use of the Set facility with a table of errors for the calibration source is recommended and will improve the accuracy of the Multimeter's calibration.

Enabling Access to Calibration Mode

The setting of a Calibration-switch on the rear panel enables or restricts access to the calibration mode. Setting the switch to ENABLE allows access to the calibration mode via the front panel CAL key and the CALIBRATION menu, and also enables the remote IEEE 488 interface calibration commands. Setting the switch to DISABLE and applying an integrity seal or calibration sticker to cover the Calibration switch is a convenient way to ensure the security of calibration and to prevent unauthorized access to the switch.

Calibration Menus

Accessing the Calibration Menus and Calibration Mode

Pressing the CAL key on the front panel causes the Multimeter to respond as follows:

1. Enters the calibration (CAL) mode
2. Displays and allows access to the CALIBRATION menu
3. Displays the CAL legend on the main display

To exit the CALIBRATION menu Press the Quit softkey. On exit the Multimeter displays the prompt to enter a calibration due date.

When in CAL mode the following front panel keys become inoperative: CLR, TEST, OFFSET, PRT and INPUT. Also the function of the SAMPLE key changes to become the trigger key for initiating a calibration operation.

Abstract

\triangle Caution When in CAL mode with the CAL legend appearing on the main display the function of the SAMPLE key is modified from normal operation. If pressed, the SAMPLE key will initiate a calibration operation and permanently alter the Multimeter's calibration state. To avoid accidental mis-calibration do not attempt to operate the Multimeter in External Trigger mode from the front panel when in Cal, and only press the SAMPLE key when a calibration operation is intended to be performed.

Calibration Menu

This menu allows calibration operations at the calibration point nominal values via Auto, or selection of calibration operations at non-nominal values via Set. It also offers access to the special calibration menu. The CAL legend appears in the left-hand display when in CAL mode.
GHLEEIION: Futo 5et Swecial wuit

This menu defines four тепи keys:
Futio Indicates to the user that the calibration point is automatically set according to the amplitude (and frequency in ACV) of the signal detected. Auto is the default selection on entry to the CALIBRATION menu. Refer to the tables appearing later in this chapter for the calibration points for the selected range. An indication of the use of the SAMPLE key is also displayed
Set. The Set feature is available in all functions, allowing the user to enter the true value of the calibration standard where it differs from nominal calibration point value. Pressing Set displays the SET VALUE menu except in ACV Spot Frequency mode, when the SPOT CAL menu is displayed. Spot Frequency calibration reduces flatness errors within $\pm 10 \%$ of the spot frequency. Set is not available for DCV, DCI, and Resistance range zero calibrations.
SFeciel Special Cal is indicated on the main display. The SPCL menu is displayed which allows pre-calibration of the Multimeter, calibration of the frequency counter, and entry to other calibration utilities.
Duit. Exits from the CALIBRATION menu via the CALIBRATION DUE ? menu, where the recommended next calibration date can be entered, before finally quitting the calibration mode.

SET VALUE Menu

This menu is obtained by pressing the Set key in the CALIBRATION menu on all functions except ACV Spot Frequency.
SET URLIE $=$
adj139f.eps

SET VALUE Menu

When this menu appears, it shows the nominal calibration point value, allowing the user to enter the true output value of the calibration standard at the point to be calibrated. The keyboard is activated, locking out all other keys. The Set value is entered in exponential format expressed in Volts, Amps, or Ohms, and must be above 20% of range (40% on the 1000 V DCV and ACV ranges). The SAMPLE key has no effect until the Set value is stored by pressing the Enter key.
The Multimeter always chooses the most-recently stored Set value when calibrating. Set is not available for DCV, DCI, and Resistance range zero calibrations.

\triangle Caution

Enter: The new value is stored and the keyboard is deactivated. The set value remains on the dot-matrix display for comparison with the reading on the main display after the SAMPLE key has been pressed.

Quit: Reverts to the CALIBRATION menu, deleting the set value from store.

SPOT CAL Menu

This menu is obtained by pressing the Set key in the CALIBRATION menu when the Multimeter is in ACV Spot Frequency mode. It provides a means of calibrating the Multimeter at any of six user-specific spot frequencies, at non-nominal calibration values for each ACV range. The Multimeter will already be set to an ACV range on entry to the menu.

Gex Om	5 F	5 F 2	5 F	5 F	5	FFe

SPOT CAL Menu
This menu allows a user to select a spot frequency (Spx) for the selected range. It defines six menu keys:
SF1: \quad Displays the SPOT 1 RMS menu, where users define the RMS value for the Spot Frequency 1 calibration point on the currently selected range.
SF2-6: \quad Same as $S p 1$ but permitting their own RMS values to be defined.

SPOT (1 to 6) RMS Menus

On entry to one of the six SPOT ($x=1$ to 6) RMS menus, the nominal cardinal point value is displayed and the keyboard is activated. A numeric value can be entered that represents the RMS value of the calibration source signal.

SPOT n RMS Menus
Enter- Stores the displayed RMS value and de-activates the keyboard.
The dot-matrix display moves to the SPOT FREQUENCY (1 to 6) menu, showing the calibration signal frequency.
Duit. Reverts to the SPOT CAL menu, not storing any new Spot value.
Note
The SAMPLE key is still enabled in the next menu.

SPOT FREQUENCY (1 to 6) Menu

Enter this menu by pressing Enter in the SPOT (1 to 6) RMS menu, which also stores the RMS value keyed in during this menu. The value in the SPOT FREQUENCY (1 to 6) menu is the measured frequency of the present calibration input signal.

> GFiT FPEDEEVG $n=$
> ise $h t$ Li
> dee militiE to initiente GHi.. operation

SPOT FREQUENCY n Menu
Pressing the SAMPLE key causes the selected ACV range to be spot-calibrated at the calibration signal frequency. The frequency value is stored and can be viewed from the UTILITY menu. Any subsequent measurement on this range whose frequency is within
$\pm 10 \%$ of the stored frequency is accuracy enhanced by reducing frequency response flatness errors.
Calibrate the spot at a new frequency:
To calibrate the spot at a new frequency, change the input signal to the desired new frequency and press SAMPLE as before.

Quit. Reverts to the SPOT CAL menu with the original Spot calibration intact.

Special Calibration

The SPCL menu provides alignment of the main ADC and calibration of the frequency counter.

It also allows the High Voltage Linearity Pre-Calibration to be performed and a section of the Non-Volatile memory to be cleared for test purposes. These facilities are used in the factory for initial pre-calibration processes; they should not require access during the life of the Multimeter unless repairs have been carried out. They appear here for completeness.

SPCL Menu

The SPCL menu appears after pressing the Spcl key in the CALIBRATION menu. At the same time the Multimeter is placed in special calibration mode, and the Special CAL legend appears on the main display.
When in Special CAL mode the following front panel keys remain inoperative: CLEAR, TEST, OFFSET, PRT and INPUT. Also, the function of the SAMPLE key changes to become the trigger key for initiating the Hvlin calibration operation.

SPCL Menu
The SPCL menu provides the selection:
Ser\# Permits entry of the Multimeter's serial number.
Fde Aligns the different resolutions available from the Multimeter's main analog-to-digital converter, so that there are no significant differences in readings when changing resolutions with a constant input value. No external input signals are required for this calibration. Calibration is initiated directly by making this selection from the SPCL menu.
Fref Calibrates the frequency counter against an external source. Calibration is initiated directly by making this selection from the SPCL menu.
Holin Selects the sequence required to correct the linearity of the 1 kV DC range.
ClrW Provides the capability to clear a section of the non-volatile memory for 'test purposes only'.
Duit Reverts to the CALIBRATION menu.

SER \# = Menu

This menu is obtained by pressing Ser\# in the SPCL menu. On entry to the menu, the most-recently-entered serial number is shown, and the keyboard is activated. A numeric value can be entered.

```
SER# = % %% Enter Quit.
```

SER\# Menu
The SER\# menu provides the selection:
Enter- Stores the new serial number, de-activates the keyboard, and reverts to the SPCL menu.

Wuit. Reverts to the SPCL menu, leaving the old serial number intact.

Hvlin Menu

This menu sequence is obtained by selecting Hvlin from the SPCL menu. It allows the linearity of the 1 kV DC range to be calibrated with the application of five input signals of $-1000 \mathrm{~V},-500 \mathrm{~V}, 0 \mathrm{~V},+500 \mathrm{~V}$ and +1000 V in turn, with the 1 kV DC range selected. On entry to the menu, the user is prompted to apply the first input signal required and step through the sequence:

Fres signl for Huline -500 Fre mes HEXT

Brd signal for Holin= 0.0 Fress SAMFLE to meseure $\%$ sove	FREU HEXT

4 th signal for Hulin= +500 Fress SAlifLE to meseure of sove	FREU HEXT
5 th Eignal for Holin= +1000 Fress SAMFLE to mesure \& sove	FREV CALC

Hvlin Menus

Pressing the SAMPLE key initiates the calibration operation at the signal level displayed for the step in progress and; also, saves the result for calculation of the Hvlin linearity correction factor at the end of the sequence.
FREU Moves back to the previous menu allowing the user to repeat the previous step in the sequence if required.
HEXT Moves forward through the sequence to the next step and signal level.
CALC. Initiates calculation and storage of the high voltage linearity correction factor, completing the Hvlin calibration process.

Non-volatile input offset compensation

Good metrology practice should ensure that all high-precision measurements made with the Multimeter are preceded by an input zero of each measurement. However, a nonvolatile input-offset compensation is independently available for the front and rear inputs and will be used whenever the input zero capability is not in use. The compensation is retained after power down, is unaffected by clearing the volatile input zeros, and is unaffected by range zero calibration adjustments. Compensation is available on all functions, and includes separate compensation of 2 -wire and 4 -wire measurements in the resistance functions.

Non-volatile input-offset compensation adjustment is available only when the rear panel calibration keyswitch is in the ENABLE position and the CAL legend is not shown on the main display.
Adjustment is performed by initiating an input zero operation with the Multimeter in this condition, using the INPUT menu as described in Chapter 3 or using the IEEE 488 input zeroing commands described in Chapter 4 . Appy a high-integrity low-thermal emf 4 -wire short to the input terminals for this operation. Following adjustment for a particular combination of function, range, and input a compensation is also stored for the corresponding volatile input zero, and the Zero legend is shown on the main display. The Zero legend may be removed from the display without affecting the stored non-volatile compensation by using one of the following operations:

1. Power the Multimeter down.
2. Press the CLEAR key and make any of the selections from the CLEAR menu.
3. Press the CAL key and entering CAL mode.
4. Use the corresponding IEEE 488 commands.

Routine Calibration

The 8508A Digital Reference Multimeter offers state-of-the-art performance. This procedure is intended as a guide for qualified metrology personnel who have access to a standards laboratory with equipment available to support an Multimeter of this level of accuracy. It reflects the calibration process used by Fluke to perform Multimeter calibration implemented in an automated system, but as a manual procedure for users to follow. The procedure is based on the following assumptions:

1. Users are familiar with relevant best measurement practice.
2. Users will take precautions to avoid introducing errors from sources such as thermal emfs, leakages, electromagnetic interference, etc.
3. Users will make adequate allowance for equipment stabilization and measurement settling times.

This routine calibration procedure describes the calibration points and sequence of operations required to calibrate the Multimeter and assumes calibration references of adequate traceable uncertainty are available - in this case a Fluke 5720A calibrator and 5725A amplifier used with an 8508A-7000 Calibration Kit. The procedure assumes the user is able to calibrate and characterize the calibration standards, without describing the process required to do so.
Characterization of the 5720A/5725A combination allows the 8508A to be calibrated with uncertainties lower than otherwise available from that equipment. The characterization process determines the $5720 \mathrm{~A} / 5725 \mathrm{~A}$ errors from nominal at the values required for 8508A calibration, and may be performed using Fluke's recommended verification procedures appearing in the 5700A/5720A Service Manual as a guide. If a characterized $5720 \mathrm{~A} / 5725 \mathrm{~A}$ combination is available where the error from nominal at the various points required is known, those errors may be taken into account during calibration to reduce the uncertainties. The errors may be determined by measurement against suitable standards or may be taken from an applicable certificate of calibration. The uncertainty of the characterized calibrator should be combined with the Multimeter Relative to Standards specifications to determine Multimeter performance after calibration. (RSS summation is recommended).
If the calibrator is not characterized to determine its errors from nominal, its output should be assumed to be nominal at all points. Its performance specifications should be
used to provide calibration uncertainties to be combined with the 8508A Relative to Standards specifications to determine the achieved Multimeter performance after calibration. (RSS summation is recommended).
See Chapter 5 for more details of combining 8508A Relative to Standards specifications and calibration uncertainties.

$$
\text { Note }
$$

The Multimeter should be thoroughly checked to ensure it is operating
correctly before attempting calibration. A performance verification
procedure appears later in this section.

Equipment Required for Calibration

The equipment required for Calibration and Performance Verification is listed in Table 3-1.

Table 3-1. Required Equipment for Calibration Adjustments and Performance Verification

Equipment Name	Minimum Use Specifications (ranges and accuracy)	Recommended Models			
Multifunction Calibrator ${ }^{[1][2]}$		Fluke 5720A			
Amplifier ${ }^{[2]}$		Fluke 5725A			
Signal Lead Set	One 1 G Ω Standard, two precision low thermal emf 4-wire shorting devices, and connecting leads.	Fluke 8508A-7000K			
Calibration Kit	PC/Network Printer/ Cables	Any			
PC/Network Printer/ Cables	Metrology bd software				Fluke MetBase
Metrology Calibration Software	Fluke Metcal v6.11 or later				
[1] Availability of a 1 MHz frequency reference signal may be required for 5720A frequency locking during 8508A frequency					
calibration procedure.					
[2] Best uncertainties are obtained by characterizing the outputs of the 5720A and 5725A at the points used for 8508A calibration.					

Alternate equipment may be used, but users should ensure it provides adequate calibration uncertainties. Performance of the Multimeter after calibration should be determined by combining the applicable calibration uncertainties provided by the calibration equipment with the 8508A Relative to Standards specifications. (RSS summation is recommended).

Preparing for Calibration

The following procedures represent the recommended order of calibration, giving all the necessary setup commands.

1. Allow the Multimeter to warm-up under power in the specified environment for at least 4 hours.
2. Press the CLEAR key, select Pwr Up Dflt to restore the power up default configuration and display the DCV menu.
3. Set the rear panel Calibration switch to Enable. Removal of any calibration sticker or integrity seal covering the calibration switch will be necessary.
4. Press the CAL key.
5. The CALIBRATION menu is displayed.

The calibration menu appears, and the CAL legend appears on the main display. When entering CAL mode and selecting a function the optimum resolution for performing calibration in that function is automatically selected. Refer to Table 3-2 for the full multimeter calibration sequence.

Note

It is recommended that the default resolutions are used for calibration purposes. Other resolutions may be selected and calibration operations performed, but accuracy of calibration will be degraded if calibration is performed in lower resolutions.

Abstract

Caution When in CAL mode with the CAL legend appearing on the main display, the function of the SAMPLE key is modified from normal operation. If pressed, the SAMPLE key will initiate a calibration operation and permanently alter the Multimeter's calibration state. To avoid accidental mis-calibration do not attempt to operate the Multimeter in External Trigger mode from the front panel when in Cal, and only press the SAMPLE key when a calibration operation is intended to be performed.

Table 3-2. Calibration Sequence

	neral Sequence for Full Multimeter Calibration ${ }^{[1]}$
Enable Calibration Enter Cal mode	Set rear panel calibration switch to ENABLE. Access CALIBRATION menu .
Adc Cal	Analog to digital converter alignment. Performed only if required.
DCV	Range Zeros and Range Gains (200 mV to 1 kV Ranges).
ACV	Range Zeros, Range LF Gains and Range HF Gains (200 mV to 1 kV Ranges).
Ohms	Range Zeros and Range Gains: Ohms: 2Ω to $2 \mathrm{G} \Omega$ Ranges, then Lol Ohms. Tru $: 2 \Omega$ to $20 \mathrm{k} \Omega$ Ranges, then Lol Tru Ω. $\mathrm{HiV} \Omega: 20 \mathrm{M} \Omega$ to $20 \mathrm{G} \Omega$ Ranges.
DCI	Range Zeros and Range Gains ($200 \mu \mathrm{~A}$ to 20 A Ranges).
ACl	Range Zeros and Range Gains ($200 \mu \mathrm{~A}$ to 20 A Ranges).
Frequency	Frequency counter cal at 1 MHz
Exit Cal mode NV input offsets	Quit the CALIBRATION menu. Front \& rear non-volatile input offset adjustments: DCV, Ohms, Tru $\Omega, \operatorname{HiV} \Omega$ (including Lol , 2 \& 4-wire).
Set CAL DUE	Set the date for the next external calibration
Disable Calibration	Set rear panel calibration switch to DISABLE.
[1] To meet user's need, just one range on one function can be calibrated.	

Interconnections

The Fluke 8508A-7000K Calibration kit contains a specially designed lead set which connects directly to the terminals of the Multimeter, the 5720A, and the 5725A for the purpose of Multimeter calibration. It is recommended that this lead kit be used to avoid introducing measurement errors due to interconnections and to duplicate the
configuration used by Fluke for Multimeter calibration. Figure 3-1 shows the interconnections used in detail. If alternate leads are substituted, make sure they are metrology grade leads, and of adequate voltage and current ratings. Leads should be kept as short as possible, constructed from low capacitance low leakage dielectric material (PTFE) with low thermal emf terminations, and exactly duplicate the configuration and interconnections shown.

When calibrating the $2 \mathrm{G} \Omega$ and $20 \mathrm{G} \Omega$ resistance ranges the $1 \mathrm{G} \Omega$ standard resistor supplied in the Fluke 8508A-7000K Calibration kit plugs directly into the Multimeter's front input terminals, without any interconnecting leads. If alternate resistance standards are used for resistance calibration, refer to the resistance-measurements section of Chapter 3 Making Measurements for connection details.

The Fluke 8508A-7000K Calibration kit also contains two precision low-thermal emf 4-wire shorting devices for use when performing the non-volatile input offset adjustments at the front and rear input terminals. These devices link the input terminals in the following order: Input Lo to Input Hi to Sense Hi to Sense Lo. If these devices are not available it is recommended that a U-shaped piece of thick bare copper wire be used to link the terminals in the same manner.

Figure 3-1. Equipment Connections Required for Calibration

ADC Calibration

ADC (analog to digital converter) calibration aligns the different resolutions available from the Multimeter's analog to digital converter, so that there are no significant differences in readings when changing resolutions with a constant input value. It is recommended that ADC CAL is only performed if performance verification indicates significant resolution differences. If required, it is recommended that ADC calibration is performed before any other calibrations.

No external equipment or signals are required to perform ADC calibration.

Procedure

1. Ensure that no signals are present on the Multimeter's inputs. The Multimeter may be left connected to the calibrator as shown above provided the calibrator output is set to STANDBY.
2. On the Multimeter, Press CAL to enter the CALIBRATION menu, and select SPCL.
3. Select Adc to initiate the calibration operation, which will take approximately 3 minutes to complete.

Calibration is complete when the Busy legend goes out.
DC Voltage Calibration

仓 \triangle Warning
 The Calibrator can deliver a lethal electric shock.
 To avoid electric shock when performing the following calibration procedures:

- Never touch any lead or terminal unless you are absolutely certain that no dangerous voltage is present.
- Make sure that signal leads are in a safe condition before you handle them in any way.

Initial Setup

1. Press the DCV key, select the 200 mV range.
2. Press the CONFIG key. Select Filt.
3. In calibration mode the resolution defaults to RESL7 in the DCV function. It is recommended that this resolution is used for calibration of all DCV ranges.
4. Reselect DCV.
5. Confirm that the Multimeter is configured for internal guard (External Guard is deselected) by checking that the Ext Grd legend does not appear on the left-hand display.
6. Ensure that the calibrator output is set to STANDBY and configured for Internal Guard (EXT GRD is deselected).
7. Connect the Calibrator to the Multimeter as shown above.

Range Zero and Gain Calibration Procedure

After the initial setup and connecting up, use the following procedure to calibrate range zero, then positive and negative range gains on all DCV ranges. Just one range can be calibrated if required, but for a full calibration start with the 200 mV range and work up to the 1 kV range, as shown in Table 3-3.

Table 3-3. DC Voltage Calibration Points and Sequence

8508A Range				Point	Voltage
200 mV	Zero	0 mV			
	Range Gain +ve	+100 mV			
	Range Gain -ve	-100 mV			
	Zero	0 V			
	Range Gain +ve	+1 V			
	Range Gain -ve	-1 V			
200 V	Zero	0 V			
	Range Gain +ve	+10 V			
	Range Gain -ve	-10 V			
1000 V	Zero	0 V			
	Range Gain +ve	+100 V			
	Range Gain -ve	-100 V			
	Zero	0 V			
	Range Gain +ve	+1000 V			
	Range Gain -ve	-1000 V			

The procedure assumes the user has knowledge of the actual output value of the calibrator at the range gain values, from a measurement or from a certificate of calibration. The Set feature allows a user to enter the true output value of the calibration standard where it differs from the nominal range gain point. If the calibrator output is considered to be exactly nominal, use of the Set feature is not required, also omit steps 24 for the Range Gain Points.

On each range, the Multimeter automatically recognizes the appropriate value as range zero or range gain from the applied signal amplitude and polarity.

Zero Point

1. On the Multimeter, select the required range.
2. On the Calibrator, set zero output and Operate.
3. On the Multimeter, press CAL to enter the CALIBRATION menu.
4. Press SAMPLE to initiate the calibration operation.

Calibration is complete when the Busy legend goes out and the calibrated measurement is displayed.

Range Gain Points

1. On the Calibrator, select the positive Range Gain point Output value.
2. On the Multimeter, Press CAL to revert to CALIBRATION menu.
3. Select Set on the CALIBRATION menu.
4. Use the numeric keys with the SET VALUE menu to key in the true output value of the calibrator at the range gain value, then press Enter.
5. Press SAMPLE to initiate the calibration operation.

Calibration is complete when the Busy legend goes out and the calibrated measurement is displayed.
6. On the Calibrator, select the negative Range Gain point Output value.
7. Repeat steps 3 to 5 above to calibrate the negative Range gain point.
8. On the Calibrator, set Standby.
9. Press the DCV key to revert to the ranges menu.

AC Voltage Calibration

今 $\mathrm{\Delta}$ Warning
 The Calibrator can deliver a lethal electric shock.
 To avoid electric shock when performing the following calibration procedures:

- Never touch any lead or terminal unless you are absolutely certain that no dangerous voltage is present.
- Make sure that signal leads are in a safe condition before you handle them in any way

Initial Setup and Connections

1. Press the ACV key, select the 200 mV range..
2. Press the CONFIG key. In calibration mode in the ACV function Transfer mode defaults to On for enhanced performance, resolution defaults to RESL6, and the 100 Hz RMS filter is automatically selected. It is recommended that this resolution, Transfer On and 100 Hz Filter is used for calibration of all ACV ranges.
3. Reselect ACV
4. Confirm that the Multimeter is configured for internal guard (External Guard is deselected) by checking that the Ext Grd legend does not appear on the left-hand display.
5. Ensure that the calibrator output is set to STANDBY and configured for Internal Guard (EXT GRD is deselected).
6. Connect the Calibrator to the Multimeter as shown above.

Range Zero, LF, and HF Gain Calibration Procedure (not in Spot Frequency mode)
Using the following procedure to calibrate range zero then range LF and HF gains on all ACV ranges at the voltages and frequencies detailed in Table 3-4. Just one range can be calibrated if required, but for a full-calibration start with the 200 mV range and work up to the 1 kV range.

Table 3-4. AC Voltage Calibration Points and Sequence

8508A Range	Point	Voltage	Frequency
200 mV	Zero (5 \% Range)	10 mV	1 kHz
	Range Gain LF	100 mV	1 kHz
	Range Gain HF	100 mV	60 kHz
2 V	Zero (0.5 \% Range)	10 mV	1 kHz
	Range Gain LF	1V	1 kHz
	Range Gain HF	1V	60 kHz
20 V	Zero (0.5 \% Range)	100 mV	1 kHz
	Range Gain LF	10 V	1 kHz
	Range Gain HF	10 V	60 kHz
200 V	Zero (0.5 \% Range)	1 V	1 kHz
	Range Gain LF	100 V	1 kHz
	Range Gain HF	100 V	60 kHz
$1000 \mathrm{~V}^{[1]}$	Zero (0.5 \% Range)	5 V	1 kHz
	Range Gain LF	500 V	1 kHz
	Range Gain HF	500 V	30 kHz
[1] 1000 V range Gain calibrations may be performed at voltages above 500 V . The 1000 V range Gain and Zero calibrations should be performed together, with the Zero cal performed at 1% of the nominal value used for Gain cal.			

The procedure assumes the user has knowledge of the actual output value of the calibrator at each point, from a measurement or from a certificate of calibration. The Set feature allows a user to enter the true output value of the calibration standard where it differs from the nominal point. If the calibrator output is considered to be exactly nominal, use of the Set feature is not required, also omit steps 3-5.
On each range, the Multimeter automatically recognizes the appropriate value as range zero from the applied signal amplitude, and automatically recognizes the range LF and HF gain points from the applied signal frequency.

1. On the Multimeter, select the required Range.
2. On the Calibrator select Output Voltage and Frequency, Operate
3. On the Multimeter, Press CAL to revert to CALIBRATION menu.
4. Select Set on the CALIBRATION menu.
5. Use the numeric keys with the SET VALUE menu to key in the true output value of the calibrator, then press Enter.
6. Press SAMPLE to initiate the calibration operation.

Calibration is complete when the Busy legend goes out and the calibrated measurement is displayed Note that HF gain calibrations are iterative, and repeating the HF calibration may improve the result.
7. On the Calibrator, set Output to STANDBY.
8. On the Multimeter, press ACV key to revert to the ranges menu.

Resistance Calibration

When calibrating the resistance function，each of the resistance modes（Normal，LoI， $\operatorname{Tru} \Omega$ ， $\operatorname{Tru} \Omega \mathrm{LoI}$ and $\mathrm{HiV} \Omega$ ）must be individually calibrated．The following procedure assumes use of a multifunction calibrator and calibrates each resistance mode in turn， range by range．If individual standard resistors are used it may be more convenient to calibrate all the modes in turn for each resistance value to avoid connecting the same resistance standard several times during the calibration sequence．A $1 \mathrm{G} \Omega$ standard resistor provided in the $8508 \mathrm{~A}-7000 \mathrm{~K}$ calibration kit is used for ranges above $200 \mathrm{M} \Omega$ as the highest resistance available from the 5720A calibrator is $100 \mathrm{M} \Omega$ ．Refer to Table 3－5 for the resistance calibration points and sequence．

Table 3－5．Resistance Calibration Points and Sequence

8508A Range	Modes	Point	Resistance
2Ω	Normal，Normal Lol， Tru』，Tru Lol	Zero	0Ω
		Range Gain	1Ω
20Ω	Normal，Normal Lol， Tru』，Tru Lol	Zero	0Ω
		Range Gain	10Ω
200Ω	Normal，Normal Lol， Truß，Tru Lol	Zero	0Ω
		Range Gain	100Ω
$2 \mathrm{k} \Omega$	Normal，Normal Lol， Tru』，Tru Lol	Zero	0Ω
		Range Gain	$1 \mathrm{k} \Omega$
$20 \mathrm{k} \Omega$	Normal，Normal Lol， Tru ，Tru Lol	Zero	0Ω
		Range Gain	$10 \mathrm{k} \Omega$
$200 \mathrm{k} \Omega$	Normal，Normal Lol	Zero	0Ω
		Range Gain	$100 \mathrm{k} \Omega$
$2 \mathrm{M} \Omega$	Normal，Normal Lol	Zero	0Ω
		Range Gain	$1 \mathrm{M} \Omega$
$20 \mathrm{M} \Omega$	Normal，Normal Lol， $\mathrm{HiV} \Omega$	Zero	0Ω
		Range Gain	$10 \mathrm{M} \Omega$
$200 \mathrm{M} \Omega$	Normal，Normal Lol， $\mathrm{HiV} \Omega$	Zero	0Ω
		Range Gain	$100 \mathrm{M} \Omega$
$2 \mathrm{G} \Omega$	Normal，Normal Lol， $\mathrm{HiV} \Omega$	Zero	0Ω
		Range Gain	$1 \mathrm{G} \Omega$
$20 \mathrm{G} \Omega$	HiV ，	Zero	0Ω
		Range Gain	Optional ${ }^{[1]}$
［1］ $20 \mathrm{G} \Omega$ range gain is calibrated automatically during $2 \mathrm{G} \Omega$ Hiv Ω range gain cal，but may be calibrated separately （after $2 \mathrm{G} \Omega$ Hiv Ω range cal）at $10 \mathrm{G} \Omega$ if a standard is available．The $100 \mathrm{M} \Omega$ and $2 \mathrm{G} \Omega$ Normal Ω ranges must be calibrated before $2 \mathrm{G} \Omega \mathrm{HiV} \Omega$ range gain point．			

Initial Setup and Connections

1. Press the Ω key and select the 200Ω range.
2. Press the CONFIG key and select Filt and $4 w \Omega$.
3. In calibration mode the resolution defaults to RESL7 in the resistance function. It is recommended that this resolution is used for calibration of all resistance ranges.
4. Reselect Ω.
5. Confirm that the Multimeter is configured for internal guard (External Guard is deselected) by checking that the Ext Grd legend does not appear on the left-hand display.
6. Ensure that the calibrator output is set to STANDBY and configured for Internal Guard (EXT GRD is deselected). On the calibrator select EX SNS (4-wire).
7. Connect the Calibrator to the Multimeter as shown earlier in this chapter.
8. If using standard resistors in place of the calibrator refer to "Measuring Resistance" in Chapter 3 of the Users Manual for information regarding 4-wire resistance connections.

Normal Ω Mode Calibration

1. Press the Ω key and select the 2Ω range.
2. Press the CONFIG key and select Filt and $4 \mathrm{w} \Omega$. Ensure LoI is deselected.

Range Zero and Gain Calibration Procedure

After the initial setup and connecting up, use the following procedure to calibrate range zero and range gain for the ranges and points detailed in Table 3-5 for the Normal Ω mode. For the $2 \mathrm{G} \Omega$ range use the $1 \mathrm{G} \Omega$ standard resistor in place of the calibrator. Just one range can be calibrated if required, but for a full-calibration start with the 2Ω range and work up to the $2 \mathrm{G} \Omega$ range.
Note that EX SNS (4-wire) is not available on the $5720 \mathrm{~A} 100 \mathrm{M} \Omega$ range, and the 8508 $7000 \mathrm{~K} 1 \mathrm{G} \Omega$ standard resistor is used as a 2 -wire device with the calibrator 2 -wire resistance zero used for the corresponding zero points. $4 \mathrm{~W} \Omega$ is deselected on the Multimeter when calibrating the $200 \mathrm{M} \Omega$ and $2 \mathrm{G} \Omega$ range, range zero, and range gain points.
On each range, the Multimeter automatically recognizes the appropriate value as range zero or range gain from the applied resistance value.

Note

It is unlikely that the resistance standard will be at exactly the nominal value required. The Set feature allows a user to enter the true output value of the calibration standard where it differs from nominal range gain point. If the resistance value is exactly the nominal value required, omit steps 2-4 for the Range Gain Point.

Zero Point

1. On the Multimeter, select the required range.
2. On the Calibrator, select zero and Operate. Alternatively if using a standard resistor connect the standard resistor for a 4 -wire resistance zero. (For the $200 \mathrm{M} \Omega$ and $2 \mathrm{G} \Omega$ ranges, de-select EX SNS on the calibrator and de-select $4 \mathrm{~W} \Omega$ on the Multimeter.)
3. On the Multimeter, press CAL to enter the CALIBRATION menu.
4. Press SAMPLE to initiate the calibration operation.

Calibration is complete when the Busy legend goes out and the calibrated measurement is displayed

Range Gain Point

1. On the Calibrator, select the Range Gain point resistance value. Alternatively if using a standard resistor re-connect the standard resistor to measure its resistance. (For the $2 \mathrm{G} \Omega$ range the $8508-7000 \mathrm{~K} 1 \mathrm{G} \Omega$ standard resistor is used in place of the calibrator. For the $200 \mathrm{M} \Omega$ and $2 \mathrm{G} \Omega$ ranges, de-select EX SNS on the calibrator and de-select $4 \mathrm{~W} \Omega$ on the Multimeter.)
2. On the Multimeter, Press CAL to revert to CALIBRATION menu.
3. Select Set on the CALIBRATION menu.
4. Use the numeric keys with the SET VALUE menu to key in the true output value of the calibrator (or the value of the resistance standard) at the range gain value, then press Enter.
5. Press SAMPLE to initiate the calibration operation.

Calibration is complete when the Busy legend goes out and the calibrated measurement is displayed.
6. On the Calibrator, set STANDBY.
7. Press the Ω key to revert to the ranges menu.

Lol Ω Mode Calibration

1. Press the Ω key and select the 2Ω range.
2. Press the CONFIG key and select Filt, Lol and $4 \mathrm{w} \Omega$.

Range Zero and Gain Calibration Procedure

After the initial setup and connecting up, use the following procedure to calibrate range zero and range gain for the ranges and points detailed in Table 3-5 for the LoI mode. For the $2 \mathrm{G} \Omega$ range use the $1 \mathrm{G} \Omega$ standard resistor in place of the calibrator. Just one range can be calibrated, if required, but for a full-calibration start with the 2Ω range and work up to the $2 \mathrm{G} \Omega$ range.
Note that EX SNS (4-wire) is not available on the $5720 \mathrm{~A} 100 \mathrm{M} \Omega$ range, and the 8508 $7000 \mathrm{~K} 1 \mathrm{G} \Omega$ standard resistor is used as a 2 -wire device with the calibrator 2 -wire resistance zero used for the corresponding zero points. $4 \mathrm{~W} \Omega$ is deselected on the Multimeter when calibrating the $200 \mathrm{M} \Omega$ and $2 \mathrm{G} \Omega$ range, range zero, and range gain points.

On each range, the Multimeter automatically recognizes the appropriate value as range zero or range gain from the applied resistance value.

Note

It is unlikely that the resistance standard will be at exactly the nominal value required. The Set feature allows a user to enter the true output value of the calibration standard where it differs from nominal range gain point. If the resistance value is exactly the nominal value required, omit steps 2-4 for the Range Gain Point.

Zero Point

1. On the Multimeter, select the required range.
2. On the Calibrator, select zero Ω and Operate. Alternatively if using a standard resistor connect the standard resistor for a 4 -wire resistance zero. (For the $200 \mathrm{M} \Omega$ and $2 \mathrm{G} \Omega$ ranges, de-select Ex SNS on the calibrator and de-select $4 \mathrm{~W} \Omega$ on the Multimeter.)
3. On the Multimeter, press CAL to enter the CALIBRATION menu.
4. Press SAMPLE to initiate the calibration operation.

Calibration is complete when the Busy legend goes out and the calibrated measurement is displayed.

Range Gain Point

1. On the Calibrator, select the Range Gain point resistance value. Alternatively if using a standard resistor re-connect the standard resistor to measure its resistance. (For the $2 \mathrm{G} \Omega$ range the $8508-7000 \mathrm{~K} 1 \mathrm{G} \Omega$ standard resistor is used in place of the calibrator. For the $200 \mathrm{M} \Omega$ and $2 \mathrm{G} \Omega$ ranges, de-select Ex SNS on the calibrator and de-select $4 \mathrm{~W} \Omega$ on the Multimeter.)
2. On the Multimeter, Press CAL to revert to CALIBRATION menu.
3. Select Set on the CALIBRATION menu.
4. Use the numeric keys with the SET VALUE menu to key in the true output value of the calibrator (or the value of the resistance standard) at the range gain value, then press Enter.
5. Press SAMPLE.

Calibration is complete when the Busy legend goes out and the calibrated measurement is displayed.
6. On the Calibrator, set STANDBY.
7. Press the Ω key to revert to the ranges menu.

Trus Mode Calibration

1. Press the Ω Plus key and select Tru Ω. From the Tru Ω menu select the 2Ω range.
2. Press the CONFIG key and select Filt and $4 \mathrm{w} \Omega$. Ensure Lol is deselected.

Range Zero and Gain Calibration Procedure

After the initial setup and connecting up, use the following procedure to calibrate range zero and range gain for the ranges and points detailed in Table 3-5 for the Tru Ω mode. Just one range can be calibrated, if required, but for a full-calibration start with the 2Ω range and work up to the $20 \mathrm{k} \Omega$ range.
On each range, the Multimeter automatically recognizes the appropriate value as range zero or range gain from the applied resistance value.

Note
It is unlikely that the resistance standard will be at exactly the nominal value required. The Set feature allows a user to enter the true output value of the calibration standard where it differs from nominal range gain point. If the resistance value is exactly the nominal value required, omit steps 2-4 for the Range Gain Point.

Zero Point

1. On the Multimeter, select the required range.
2. On the Calibrator, select zero Ω and Operate. Alternatively if using a standard resistor connect the standard resistor for a 4 -wire resistance zero.
3. On the Multimeter, press CAL to enter the CALIBRATION menu.
4. Press SAMPLE to initiate the calibration operation.

Calibration is complete when the Busy legend goes out and the calibrated measurement is displayed.

Range Gain Point

1. On the Calibrator, select Range Gain point Output value. Alternatively if using a standard resistor re-connect the standard resistor to measure its resistance.
2. On the Multimeter, Press CAL to revert to CALIBRATION menu.
3. Select Set on the CALIBRATION menu.
4. Use the numeric keys with the SET VALUE menu to key in the true output value of the calibrator (or the value of the resistance standard) at the range gain value, then press Enter.
5. Press SAMPLE to initiate the calibration operation.

Calibration is complete when the Busy legend goes out and the calibrated measurement is displayed.
6. On the Calibrator, set STANDBY.
7. Press the Ω key to revert to the ranges menu.

Trus Lol Mode Calibration

1. Press the Ω Plus key and select Tru . From the Tru Ω menu select the 2Ω range.
2. Press the CONFIG key and select Filt, Lol and $4 \mathrm{w} \Omega$.

Range Zero and Gain Calibration Procedure

After the initial setup and connecting up, use the following procedure to calibrate range zero and range gain for the ranges and points detailed in Table 3-5 for the Tru Ω LoI mode. Just one range can be calibrated if required, but for a full calibration start with the 2Ω range and work up to the $20 \mathrm{k} \Omega$ range.
On each range, the Multimeter automatically recognizes the appropriate value as range zero or range gain from the applied resistance value.

Note
It is unlikely that the resistance standard will be at exactly the nominal value required. The Set feature allows a user to enter the true output value of the calibration standard where it differs from nominal range gain point. If the resistance value is exactly the nominal value required, omit steps 2-4 for the Range Gain Point.

Zero Point

1. On the Multimeter, select the required range.
2. On the Calibrator, select zero Ω and Operate. Alternatively if using a standard resistor connect the standard resistor for a 4 -wire resistance zero.
3. On the Multimeter, press CAL to enter the CALIBRATION menu.
4. Press SAMPLE to initiate the calibration operation.

Calibration is complete when the Busy legend goes out and the calibrated measurement is displayed.

Range Gain Point

1. On the Calibrator, select Range Gain point Output value. Alternatively if using a standard resistor re-connect the standard resistor to measure its resistance.
2. On the Multimeter, Press CAL to revert to CALIBRATION menu.
3. Select Set on the CALIBRATION menu.
4. Use the numeric keys with the SET VALUE menu to key in the true output value of the calibrator (or the value of the resistance standard) at the range gain value, then press Enter.
5. Press SAMPLE to initiate the calibration operation.

Calibration is complete when the Busy legend goes out and the calibrated measurement is displayed.
6. On the Calibrator, set STANDBY.
7. Press the Ω key to revert to the ranges menu.

HiVs Mode Calibration

$\triangle \triangle$ Warning
 The Multimeter can deliver a lethal electric shock when operating in the High Voltage Resistance mode. Voltages up to 240V may appear on the terminals.

To avoid electric shock when performing the following calibration procedures:

- Never touch any lead or terminal unless you are absolutely certain that no dangerous voltage is present.
- Make sure that signal leads are in a safe condition before you handle them in any way.

1. Press the Ω Plus key and select HiV Ω. From the $\operatorname{HiV} \Omega$ menu select the $20 \mathrm{M} \Omega$ range.
2. Press the CONFIG key and select Filt and $4 w \Omega$.

Range Zero and Gain Calibration Procedure

After the initial setup and connecting up, use the following procedure to calibrate range zero and range gain for the ranges and points detailed in Table 3-5 for the HiV Ω mode. Just one range can be calibrated if required, but for a full calibration start with the $20 \mathrm{M} \Omega$ range and work up to the $20 \mathrm{G} \Omega$ range.

For the $2 \mathrm{G} \Omega$ range use the $1 \mathrm{G} \Omega$ standard resistor in place of the calibrator. To avoid the requirement for a $10 \mathrm{G} \Omega$ standard, the $20 \mathrm{G} \Omega$ range is automatically calibrated when the $2 \mathrm{G} \Omega$ range gain calibration is triggered. It is also necessary for the $100 \mathrm{M} \Omega$ and $1 \mathrm{G} \Omega$ Normal Ω ranges to be calibrated prior to the $2 \mathrm{G} \Omega \mathrm{HiV} \Omega$ range for the result to be valid. A $10 \mathrm{G} \Omega$ standard resistor may be used for calibrating the $20 \mathrm{G} \Omega$ range if available, but if performed, this operation must take place after the $2 \mathrm{G} \Omega$ range gain point calibration to avoid the automatic process overwriting the result.
Voltages of approximately 200 V will be developed across the resistance standard at full scale, ensure the resistance standards used are suitable for operation at these voltages.

Note that EX SNS (4-wire) is not available on the 5720A $100 \mathrm{M} \Omega$ range, and the 8508 $7000 \mathrm{~K} 1 \mathrm{G} \Omega$ standard resistor is used as a 2 -wire device with the calibrator 2-wire resistance zero used for the corresponding zero points. $4 \mathrm{~W} \Omega$ is deselected on the Multimeter when calibrating the $200 \mathrm{M} \Omega$ and $2 \mathrm{G} \Omega$ range, range zero, and range gain points.
On each range, the Multimeter automatically recognizes the appropriate value as range zero or range gain from the applied resistance value.

Note
It is unlikely that the resistance standard will be at exactly the nominal value required. The Set feature allows a user to enter the true output value of the calibration standard where it differs from nominal range gain point. If the resistance value is exactly the nominal value required, omit steps 2-4 for the Range Gain Point .

Zero Point

1. On the Multimeter, select the required range.
2. On the Calibrator, select zero Ω and Operate. (For the $200 \mathrm{M} \Omega$ range and above, deselect Ex SNS on the calibrator and de-select $4 \mathrm{~W} \Omega$ on the Multimeter.) Alternatively if using a standard resistor connect the standard resistor for a 4-wire resistance zero.
3. On the Multimeter, press CAL to enter the CALIBRATION menu.
4. Press SAMPLE to initiate the calibration operation.

Calibration is complete when the Busy legend goes out and the calibrated measurement is displayed.

Range Gain Point

1. On the Calibrator, select Range Gain point Output value. Alternatively if using a standard resistor re-connect the standard resistor to measure its resistance. (For the $2 \mathrm{G} \Omega$ range the $8508-7000 \mathrm{~K} 1 \mathrm{G} \Omega$ standard resistor is used in place of the calibrator. For the $200 \mathrm{M} \Omega$ range and above, de-select Ex SNS on the calibrator and de-select $4 \mathrm{~W} \Omega$ on the Multimeter. Calibration of the $20 \mathrm{G} \Omega$ range gain point takes place automatically when calibrating $2 \mathrm{G} \Omega$ range, and calibration against an external standard is optional if a suitable standard is available).
2. On the Multimeter, Press CAL to revert to CALIBRATION menu.
3. Select Set on the CALIBRATION menu.
4. Use the numeric keys with the SET VALUE menu to key in the true output value of the calibrator (or the value of the resistance standard) at the range gain value, then press Enter.
5. Press SAMPLE to initiate the calibration operation.

Calibration is complete when the Busy legend goes out and the calibrated measurement is displayed.
6. On the Calibrator, set STANDBY.
7. Press the Ω key to revert to the ranges menu.

DC Current Calibration
全
The Calibrator can deliver a lethal electric shock.
To avoid electric shock when performing the following calibration procedures:

- Never touch any lead or terminal unless you are absolutely certain that no dangerous voltage is present.
- Make sure that signal leads are in a safe condition before you handle them in any way.

Initial Setup

1. Press the DCl key, select the $200 \mu \mathrm{~A}$ range.
2. Press the CONFIG key. Select Filt.
3. In calibration mode the resolution defaults to RESL7 in the DCI function. It is recommended that this resolution is used for calibration of all DCI ranges.
4. Reselect DCI.
5. Confirm that the Multimeter is configured for internal guard (External Guard is deselected) by checking that the Ext Grd legend does not appear on the left-hand display.
6. Ensure that the calibrator output is set to STANDBY and configured for Internal Guard (EXT GRD is deselected).
7. Connect the Calibrator to the Multimeter as shown above.

Range Zero and Gain Calibration Procedure

After the initial setup and connecting up, use the following procedure to calibrate range zero, then positive and negative range gains on all DCI ranges. Just one range can be calibrated if required, but for a full calibration start with the $200 \mu \mathrm{~A}$ range and work up to the 20A range, as shown in Table 3-6.

Table 3-6. DC Current Calibration Points and Sequence

8508A Range	Point	Current
$200 \mu \mathrm{~A}$	Zero	$0 \mu \mathrm{~A}$
	Range Gain +ve	$+100 \mu \mathrm{~A}$
	Range Gain -ve	$-100 \mu \mathrm{~A}$
20 mA	Zero	0 mA
	Range Gain +ve	+1 mA
	Range Gain -ve	-1 mA
	Zero	0 mA
	Range Gain +ve	+10 mA
	Range Gain -ve	-10 mA
	Zero	0 mA
	Range Gain +ve	+100 mA
	Range Gain -ve	-100 mA
2 A	Zero	0 A
	Range Gain +ve	+1 A
	Range Gain -ve	-1 A
20 A	Zero	0 A
	Range Gain +ve	+10 A
	Range Gain -ve	-10 A

The procedure assumes the user has knowledge of the actual output value of the calibrator at the range gain values, from a measurement or from a certificate of calibration. The Set feature allows a user to enter the true output value of the calibration standard where it differs from the nominal range gain point. If the calibrator output is considered to be exactly nominal, use of the Set feature is not required, also omit steps 24 for the Range Gain Points.
On each range, the Multimeter automatically recognizes the appropriate value as range zero or range gain from the applied signal amplitude and polarity.

Zero Point

1. On the Multimeter, select the required range.
2. On the Calibrator, set to zero output and Operate.
3. On the Multimeter, press CAL to enter the CALIBRATION menu.
4. Press SAMPLE to initiate the calibration operation.

Calibration is complete when the Busy legend goes out and the calibrated measurement is displayed.

Range Gain Points

1. On the Calibrator, select the positive Range Gain point Output value.
2. On the Multimeter, Press CAL to revert to CALIBRATION menu.
3. Select Set on the CALIBRATION menu.
4. Use the numeric keys with the SET VALUE menu to key in the true output value of the calibrator at the range gain value, then press Enter.
5. Press SAMPLE to initiate the calibration operation.
6. Calibration is complete when the Busy legend goes out and the calibrated measurement is displayed.
7. On the Calibrator, select the negative Range Gain point Output value.
8. Repeat steps 3 to 5 above to calibrate the negative Range gain point.
9. On the Calibrator, set STANDBY.
10. Press the DCI key to revert to the ranges menu.

AC Current Calibration

\triangle Warning
 The Calibrator can deliver a lethal electric shock.
 To avoid electric shock when performing the following calibration procedures:

- Never touch any lead or terminal unless you are absolutely certain that no dangerous voltage is present.
- Make sure that signal leads are in a safe condition before you handle them in any way.

Initial Setup and Connections

1. Press the ACI key, and select the $200 \mu \mathrm{~A}$ range.
2. Press the CONFIG key. In calibration mode in the ACI function resolution defaults to RESL6 and the 100 Hz RMS filter is automatically selected. It is recommended that this resolution and 100 Hz Filter is used for calibration of all ACI ranges.
3. Reselect ACI.
4. Confirm that the Multimeter is configured for internal guard (External Guard is deselected) by checking that the Ext Grd legend does not appear on the left-hand display.
5. Ensure that the calibrator output is set to STANDBY and configured for Internal Guard (EXT GRD is deselected).
6. Connect the Calibrator to the Multimeter as shown above.

Range Zero and LF Gain Calibration Procedure

Using the following procedure to calibrate range zero then range gain on all ACI ranges at the currents and frequencies detailed in Table 3-7. Just one range can be calibrated if required, but for a full-calibration start with the $200 \mu \mathrm{~A}$ range and work up to the 20A range.

Table 3-7. AC Current Calibration Points and Sequence

8508A Range	Point	Current	Frequency
$200 \mu \mathrm{~A}$	Zero (5 \% Range)	$10 \mu \mathrm{~A}$	300 Hz
	Range Gain	$100 \mu \mathrm{~A}$	300 Hz
2 mA	Zero (0.5 \% Range)	$10 \mu \mathrm{~A}$	300 Hz
	Range Gain	1 mA	300 Hz
20 mA	Zero (0.5\% Range)	$100 \mu \mathrm{~A}$	300 Hz
	Range Gain	10 mA	300 Hz
200 mA	Zero (5 \% Range)	10 mA	300 Hz
	Range Gain	100 mA	300 Hz
2 A	Zero (5 \% Range)	100 mA	300 Hz
	Range Gain	1 A	300 Hz
20 A	Zero (5 \% Range)	1 A	300 Hz
	Range Gain	10 A	300 Hz

The procedure assumes the user has knowledge of the actual output value of the calibrator at each point, from a measurement or from a certificate of calibration. The Set feature allows a user to enter the true output value of the calibration standard where it differs from the nominal point. If the calibrator output is considered to be exactly nominal, use of the Set feature is not required, also omit steps 3-5.
On each range, the Multimeter automatically recognizes the appropriate value as range zero or range gain from the applied signal amplitude.

1. On the Multimeter, select the required Range.
2. On the Calibrator select Output Current and Frequency, Operate.
3. On the Multimeter, Press CAL to revert to CALIBRATION menu.
4. Select Set on the CALIBRATION menu.
5. Use the numeric keys with the SET VALUE menu to key in the true output value of the calibrator, then press Enter.
6. Press SAMPLE to initiate the calibration operation.

Calibration is complete when the Busy legend goes out and the calibrated measurement is displayed.
7. On the Calibrator, set Output to STANDBY.
8. On the Multimeter, press ACI key to revert to the ranges menu.

Frequency Calibration

The Multimeter frequency calibration operation requires a signal at exactly 1 MHz (Set is not available on the Multimeter for frequency calibration). If the calibrator frequency output is not exactly nominal or sufficiently close to nominal it may be phase locked to an external reference frequency at the required output frequency applied to its rear panel phase lock input, for example from a laboratory frequency standard or off-air reference receiver. If used, the calibrator should be disconnected from the frequency reference and phase locking disabled before attempting any other calibration operations with the calibrator.

Alternatively, the 1 MHz frequency reference may be used directly as an input signal for the Multimeter for frequency calibration.

Initial Setup and Connections

1. Press the ACV key, select the 2 V range.
2. Confirm that the Multimeter is configured for internal guard (External Guard is deselected) by checking that the Ext Grd legend does not appear on the left-hand display.
3. Ensure that the calibrator output is set to STANDBY and configured for Internal Guard (EXT GRD is deselected).
4. Connect the Calibrator to the Multimeter as shown above.
5. If required, connect the calibrator rear panel phase lock input to a 1 MHz reference frequency and enable phase locking via the front panel menus.

Procedure

1. On the calibrator select 1 V 1 MHz , Operate.
2. On the Multimeter, Press CAL to enter the CALIBRATION menu, and select SPCL.
3. Select Freq to initiate the calibration operation.

Calibration is complete when the Busy legend goes out.
4. On the Calibrator, set STANDBY.

Exit From Calibration Mode and Non-Volatile Input Offset Adjustment

Use the following procedure to perform non-volatile input offset adjustment on all DCV and resistance ranges (including LoI, 2 -wire, and 4 -wire) for the front and rear inputs.

Initial Setup and Connections

1. Press the CAL key and select Quit.
2. From the CAL DUE ? menu select Quit.
3. The Multimeter will exit from CAL mode, the CAL legend on the main display will extinguish, and he right-hand display will revert to the currently selected function menu.
4. Disconnect all calibration leads and connect a $8508-7000 \mathrm{~K}$ precision 4 -wire short device to the front input terminals and also, if fitted, to the input terminals as shown above.

Procedure

Omit step 4 if the Multimeter is not fitted with rear input terminals.

1. Press the DCV key
2. Press the INPUT key and select Front.
3. From the INPUT menu select Zero Func to perform zero offset adjustment on all ranges.
4. From the INPUT menu select Rear. Repeat step 3.
5. Press the Ω key and select the 2Ω range.
6. Press the CONFIG key and select Filt, Lol and $4 \mathrm{w} \Omega$. Repeat steps 3 and 4 .
7. Press the CONFIG key and select $2 \mathrm{w} \Omega$. Repeat steps 3 and 4 .
8. Press the CONFIG key, select $4 \mathrm{w} \Omega$ and de-select Lol. Repeat steps 3 and 4 .
9. Press the CONFIG key and select $2 \mathrm{w} \Omega$. Repeat steps 3 and 4.
10. Press the Ω PLUS key and select Tru Ω. From the Tru Ω menu the 2Ω range.
11. Press the CONFIG key and select Filt and Lol. Repeat steps 3 and 4.
12. Press the CONFIG key and de-select Lol. Repeat steps 3 and 4.
13. Press the Ω PLUS key and select $\operatorname{HiV} \Omega$. From the $\operatorname{HiV} \Omega$ menu the $20 \mathrm{M} \Omega$ range.
14. Press the CONFIG key and select Filt and $2 \mathrm{w} \Omega$. Repeat steps 3 and 4.
15. Press the CONFIG key and select $4 \mathrm{w} \Omega$. Repeat steps 3 and 4 .
16. Press the DCV key and remove the shorting devices from the input terminals.

Cal Due Date Entry and Calibration Mode Disable

On completion of all calibration operations it is recommended that the user updates the stored CAL due date with the date for next recalibration. For consistency, this date should be the same as the calibration due date shown on any calibration stickers the user may also attach to the Multimeter. It is also recommended that a calibration seal or integrity sticker is applied to prevent unauthorized access to the rear panel calibration enable switch.

Set Cal Due Date

1. Press the CAL key and select Quit.
2. From the CAL DUE ? menu select Enter.
3. Use the keypad to key in the calibration due date. Up to eight characters may be entered in any format. Any character available from the keypad may be used, but it is recommended that one of the common date formats such as dd.mm.yy or mm.dd.yy is used for ease of interpretation.
4. Press Enter to store the CAL due date.

Disable cal mode

1. Set the rear panel Calibration Enable switch to DISABLE .
2. Apply a security seal to cover the rear panel Calibration Enable switch to prevent unauthorized access.

ACV Spot Frequency Calibration

The ACV Spot frequency mode calibration is not normally performed as part of routine calibration. ACV Spot frequency calibration is only performed if the user intends to make use of spot frequency mode. In spot frequency mode the accuracy of AC Voltage measurements can be improved by calibrating the Multimeter at specific frequencies of interest, reducing frequency response flatness errors at these points. The following procedure provides guidance on spot frequency calibration for users wishing to make use of Spot frequency mode.

To Calibrate at Spot Frequencies

Spot Calibration is available only when in AC Voltage function with Spot already selected on the ACV CONFIG menu. Each spot (six per range) can be calibrated at a valid input frequency to a non-nominal RMS value. In subsequent use, frequency response flatness errors are reduced within $\pm 10 \%$ of the calibrated spot frequency.
Assuming that the Multimeter is in calibration mode and the setup is connected as described above under Initial Setup and Connections for routine calibration. The configuration defaults to Tfer and RESL6 (both required).
Proceed as follows:

1. Select ACV and select the required Range.
2. Press the CONFIG key and select Spot.
3. Press the CAL key.

The CALIBRATION menu is displayed.
4. Select Set.

The SPOT CAL menu is displayed.
5. Select the soft key for the required spot, 1 to $6(\mathrm{Sp} 1$ to Sp 6$)$.

The SPOT ($\mathrm{x}=1$ to 6) RMS menu is displayed.
6. Key in the true RMS output value of the standard, then select Enter.

The SPOT FREQUENCY menu is displayed, showing the frequency at which the spot will be calibrated.
7. Press SAMPLE to initiate the calibration operation.

Calibration is complete when the Busy legend goes out and the calibrated measurement is displayed. The menu display reverts to the SPOT CAL menu.
8. On the Calibrator, set STANDBY.
9. On the Multimeter, select other spots as required, repeating the process for each selection.
10. Exit from the SPOT CAL menu by pressing any hard key.

Performance Verification

The 8508A Digital Reference Multimeter offers state of the art performance. This procedure is intended as a guide for qualified metrology personnel who have access to a standards laboratory with equipment available to verify the performance of an instrument of this level of accuracy. The procedure assumes users are familiar with relevant best measurement practice, and will take precautions to avoid introducing errors from sources such as thermal emfs, leakages, electromagnetic interference, etc. It also assumes users will make adequate allowance for equipment stabilization and measurement settling times.

This routine performance verification procedure describes the test points and sequence of operations required to check the Multimeter and assumes calibration references of adequate traceable uncertainty are available - in this case a Fluke 5720A calibrator and 5725A amplifier used with an 8508A-7000 Calibration Kit. The procedure assumes the user is able to calibrate and characterize the calibration standards, without describing the process required to do so. Refer to the Routine Calibration section for more information on the characterization process.

Equipment Requirements

The equipment required for performance verification of the Multimeter is identical to the equipment required for routine calibration listed in Table 3-1. Alternate equipment may be used, but users should ensure it provides adequate uncertainties, and consider the impact of those uncertainties on allowable tolerance limits.

Interconnections

The Fluke 8508A-7000K Calibration kit contains a specially designed lead set which connects directly to the terminals of the Multimeter, the 5720A, and the 5725A for the purpose of Multimeter calibration and performance verification. It is recommended that this lead kit be used to avoid introducing measurement errors due to interconnections and to duplicate the configuration used by Fluke for Multimeter calibration. A diagram showing the interconnections used in detail appears in the Routine Calibration section. If alternate leads are substituted users must ensure they are metrology grade leads, and of adequate voltage and current rating. Leads should be kept as short as possible, constructed from low capacitance low leakage dielectric material (PTFE) with low thermal emf terminations, and exactly duplicate the configuration and interconnections shown.

When checking the $2 \mathrm{G} \Omega$ and $20 \mathrm{G} \Omega$ resistance ranges the $1 \mathrm{G} \Omega$ standard resistor supplied in the Fluke 8508A-7000K Calibration kit plugs directly into the Multimeter's front input terminals without any interconnecting leads. If alternate resistance standards are used for verifying performance of the resistance function, refer to the resistance measurements section of Chapter 3 Making Measurements for connection details.

Applicable Verification Tolerance and Conditions

The tolerances* listed in this verification procedure are derived from the Multimeter's 365 day Tcal $\pm 1^{\circ} \mathrm{C} 99 \%$ Confidence Level Absolute specifications, which include contributions for the performance of the Multimeter itself and the uncertainty of the calibration standards used to perform calibration adjustment of the Multimeter at the Fluke factory. They are applicable to a verification performed within a period of 365 days from calibration and at a temperature within $\pm 1^{\circ} \mathrm{C}$ of the temperature at which calibration was performed ($23{ }^{\circ} \mathrm{C}$ for calibrations performed by Fluke). It is recommended that these tolerances only be used for verification of the Multimeter following calibration by Fluke, and if the above time period and temperature conditions are met. No allowance has been made for the uncertainty of the equipment used for verification. If the required conditions are met but the temperature lies within $\pm 5^{\circ} \mathrm{C}$ of factory calibration, it is recommended that the user applies the 365 day $\mathrm{Tcal} \pm 5^{\circ} \mathrm{C}$ Absolute specifications instead.
For other circumstances, such as following calibration by another laboratory, it is recommended that the user derive verification tolerances* from the applicable Multimeter's 99 \% Confidence Level Relative to Standards specifications (90 day or 365 day) combined with the calibration uncertainties applicable to the previous calibration. (RSS summation is recommended, with calibration uncertainties also expressed at 99% confidence level).

The Multimeter's temperature coefficient specifications should also be applied if the temperature at verification is outside the range applicable to the Multimeter's specifications.

Refer to Chapter 1 for further information on applying specifications and combining uncertainties.

* Fluke guarantees the Multimeter's performance verification using specifications stated to 99% confidence level.

Preparation

1. Allow the Multimeter to warm-up under power in the specified environment for at least 4 hours.
2. Press the CLEAR key, select Pwr Up Dflt to restore the power up default configuration and display the DCV menu.
3. Press the Test key and select Std to initiate a selftest. Should the Multimeter fail, contact your local authorized Service Center, ensuring that the full circumstances of the failure are reported.

DC Voltage Checks

Δ Warning
 The Calibrator can deliver a lethal electric shock.
 To avoid electric shock when performing the following calibration procedures:

- Never touch any lead or terminal unless you are absolutely certain that no dangerous voltage is present.
- Make sure that signal leads are in a safe condition before you handle them in any way.

Equipment Configuration

1. Ensure that the calibrator output is set to STANDBY and configured for Internal Guard (EXT GRD is deselected).
2. Connect the equipment as described for Routine Calibration.
3. Press the DCV key
4. Press the CONFIG key. Select Filt and RESL7.
5. Confirm that the Multimeter is configured for internal guard (External Guard is deselected) by checking that the Ext Grd legend does not appear on the left-hand display.

Procedure

Repeat the following sequence for each range, starting with the 200 mV range and working up to the 1 kV range, as listed in Table 3-8. An input zero operation is performed on each Multimeter range prior to performing the range verification measurements with the calibrator set to zero by range locking the calibrator in the range from which the output will be obtained.

1. Select the required Multimeter range.
2. On the calibrator set the output to zero. Select OPERATE.
3. On the Multimeter press the INPUT key, and select Zero Rng to initiate the zeroing operation.
The Busy legend will appear, and then extinguish when the zero operation has completed.
4. On the calibrator select the value required for verification in the positive polarity.
5. Note the Multimeter's reading. Compare the result with the allowable tolerance, taking into account any known error from nominal of the calibrator for this output.
6. On the calibrator select the value required for verification in the negative polarity.
7. Note the Multimeter's reading. Compare the result with the allowable tolerance, taking into account any known error from nominal of the calibrator for this output.
8. Set the calibrator output to STANDBY.

Table 3-8. DC Voltage Verification Points and Sequence

8508A Range	Voltage	Tolerance ${ }^{[1]}$
200 mV	0 mV	Perform input zero operation to calibrator range locked zero output
	+100 mV	$\pm 0.00072 \mathrm{mV}$
	-100 mV	$\pm 0.00072 \mathrm{mV}$
2 V	0 V	Perform input zero operation to calibrator range locked zero output
	+1 V	$\pm 0.0000045 \mathrm{~V}$
	-1 V	$\pm 0.0000045 \mathrm{~V}$
20 V	0 V	Perform input zero operation to calibrator range locked zero output
	+1 V	$\pm 0.000009 \mathrm{~V}$
	+10 V	$\pm 0.000045 \mathrm{~V}$
	+19 V	$\pm 0.000081 \mathrm{~V}$
	-1 V	$\pm 0.000009 \mathrm{~V}$
	-10 V	$\pm 0.000045 \mathrm{~V}$
	-19 V	$\pm 0.000081 \mathrm{~V}$
200 V	0 V	Perform input zero operation to calibrator range locked zero output
	+100 V	$\pm 0.00065 \mathrm{~V}$
	-100 V	± 0.00065 V
1000 V	0 V	Perform input zero operation to calibrator range locked zero output
	+1000 V	$\pm 0.0066 \mathrm{~V}$
	-1000 V	$\pm 0.0066 \mathrm{~V}$
[1] Based on 365 day $\mathrm{Tcal} \pm 1^{\circ} \mathrm{C} 99 \% \mathrm{CL}$ Absolute specifications. See comments in Applicable Verification Tolerance section above regarding the impact of calibration uncertainties and use of other specifications.		

AC Voltage Checks

\triangle © Warning
 The Calibrator can deliver a lethal electric shock.
 To avoid electric shock when performing the following calibration procedures:

- Never touch any lead or terminal unless you are absolutely certain that no dangerous voltage is present.
- Make sure that signal leads are in a safe condition before you handle them in any way.

Equipment Configuration

1. Ensure that the calibrator output is set to STANDBY and configured for Internal Guard (EXT GRD is deselected).
2. Connect the equipment as described for Routine Calibration.
3. Press the ACV key
4. Press the CONFIG key. Select Tfer On and RESL6.
5. Confirm that the Multimeter is configured for internal guard (External Guard is deselected) by checking that the Ext Grd legend does not appear on the left-hand display.

Procedure

Repeat the following sequence for each range, starting with the 200 mV range and working up to the 1 kV range, as listed in Table 3-9.

1. Select the required range on the multimeter.
2. On the Multimeter press CONFIG and select the appropriate filter for the point being verified as listed in Table 3-9.
3. On the calibrator set the output to the voltage and frequency for the point being verified as listed in Table 3-9. Set the output to OPERATE.
4. Note the Multimeter's reading. Compare the result with the allowable tolerance, taking into account any known error from nominal of the calibrator for this output.
5. Repeat steps $2-4$ for each point to be verified on the Multimeter's range to be verified.
6. Repeat steps $1-5$ for each Multimeter range to be verified.
7. Set the calibrator output to STANDBY.

Table 3-9. AC Voltage Verification Points and Sequence

8508A Range	Voltage	Frequency	8508A Filter	Tolerance ${ }^{1}$
200 mV	100 mV	20 Hz	10 Hz	$\pm 0.0195 \mathrm{mV}$
	100 mV	55 Hz	40 Hz	$\pm 0.0175 \mathrm{mV}$
	100 mV	1 kHz	100 Hz	$\pm 0.0149 \mathrm{mV}$
	100 mV	3 kHz	100 Hz	$\pm 0.0175 \mathrm{mV}$
	100 mV	10 kHz	100 Hz	$\pm 0.0175 \mathrm{mV}$
	100 mV	30 kHz	100 Hz	$\pm 0.0445 \mathrm{mV}$
	100 mV	60 kHz	100 Hz	$\pm 0.0995 \mathrm{mV}$
	100 mV	100 kHz	100 Hz	$\pm 0.0995 \mathrm{mV}$
2 V	1 V	20 Hz	10 Hz	$\pm 0.000144 \mathrm{~V}$
	1 V	55 Hz	40 Hz	$\pm 0.000119 \mathrm{~V}$
	1 V	1 kHz	100 Hz	$\pm 0.000099 \mathrm{~V}$
	1 V	3 kHz	100 Hz	$\pm 0.000119 \mathrm{~V}$
	1 V	10 kHz	100 Hz	$\pm 0.000119 \mathrm{~V}$
	1 V	30 kHz	100 Hz	$\pm 0.000295 \mathrm{~V}$
	1 V	60 kHz	100 Hz	$\pm 0.000795 \mathrm{~V}$
	1 V	100 kHz	100 Hz	$\pm 0.000795 \mathrm{~V}$
	1 V	500 kHz	100 Hz	$\pm 0.034000 \mathrm{~V}$
	1 V	1 MHz	100 Hz	$\pm 0.034000 \mathrm{~V}$
20 V	1 V	1 kHz	100 Hz	$\pm 0.00032 \mathrm{~V}$
	10 V	20 Hz	10 Hz	$\pm 0.00144 \mathrm{~V}$
	10 V	55 Hz	40 Hz	$\pm 0.00099 \mathrm{~V}$
	10 V	1 kHz	100 Hz	$\pm 0.00119 \mathrm{~V}$
	10 V	3 kHz	100 Hz	$\pm 0.00119 \mathrm{~V}$
	10 V	10 kHz	100 Hz	$\pm 0.00119 \mathrm{~V}$
	10 V	30 kHz	100 Hz	$\pm 0.00295 \mathrm{~V}$
	10 V	60 kHz	100 Hz	$\pm 0.00795 \mathrm{~V}$
	10 V	100 kHz	100 Hz	$\pm 0.00795 \mathrm{~V}$
	10 V	500 kHz	100 Hz	$\pm 0.34000 \mathrm{~V}$
	10 V	1 MHz	100 Hz	$\pm 0.34000 \mathrm{~V}$
	19 V	1 kHz	100 Hz	$\pm 0.00167 \mathrm{~V}$

Table 3-9. AC Voltage Verification Points and Sequence (cont)

8508A Range	Voltage	Frequency	8508A Filter	Tolerance ${ }^{[1]}$
200 V	100 V	20 Hz	10 Hz	$\pm 0.0144 \mathrm{~V}$
	100 V	55 Hz	40 Hz	$\pm 0.0119 \mathrm{~V}$
	100 V	1 kHz	100 Hz	$\pm 0.0099 \mathrm{~V}$
	100 V	3 kHz	100 Hz	$\pm 0.0119 \mathrm{~V}$
	100 V	10 kHz	100 Hz	$\pm 0.0119 \mathrm{~V}$
	100 V	30 kHz	100 Hz	$\pm 0.0295 \mathrm{~V}$
	100 V	60 kHz	100 Hz	$\pm 0.0795 \mathrm{~V}$
	100 V	100 kHz	100 Hz	$\pm 0.0795 \mathrm{~V}$
1000 V	500 V	55 Hz	40 Hz	$\pm 0.088 \mathrm{~V}$
	500 V	1 kHz	100 Hz	$\pm 0.088 \mathrm{~V}$
	500 V	3 kHz	100 Hz	$\pm 0.088 \mathrm{~V}$
	500 V	10 kHz	100 Hz	$\pm 0.088 \mathrm{~V}$
	500 V	30 kHz	100 Hz	$\pm 0.223 \mathrm{~V}$
	1000 V	1 kHz	100 Hz	$\pm 0.331 \mathrm{~V}$
	1000 V	30 kHz	100 Hz	$\pm 1.476 \mathrm{~V}$

[1] Based on 365 day $\mathrm{Tcal} \pm 1^{\circ} \mathrm{C} 99 \% \mathrm{CL}$ Absolute specifications. See comments in Applicable Verification Tolerance section above regarding the impact of calibration uncertainties and use of other specifications.

Resistance Checks

When verifying the resistance function, each of the resistance modes (Normal Ω, Tru Ω, $\mathrm{LoI} \Omega$ and $\mathrm{HiV} \Omega$) must be individually checked. The following procedure assumes use of a multifunction calibrator and verifies each resistance mode in turn, range by range. If individual standard resistors are used it may be more convenient to check all the modes in turn for each resistance value to avoid connecting the same resistance standard several times during the calibration sequence. A $1 \mathrm{G} \Omega$ standard resistor is used for ranges above $200 \mathrm{M} \Omega$ as the highest resistance available from the 5720 A calibrator is $100 \mathrm{M} \Omega$.

Equipment Configuration

1. Ensure that the calibrator output is set to STANDBY and configured for Internal Guard (EXT GRD is deselected).
2. Connect the equipment as described for Routine Calibration.
3. Press the Ω key
4. Press the CONFIG key. Select Filt, RESL7, and 4W Ω.
5. Confirm that the Multimeter is configured for internal guard (External Guard is deselected) by checking that the Ext Grd legend does not appear on the left-hand display.

Procedure

Perform the following sequence for each resistance mode and each range, as listed in Table 3-10, starting with the 2Ω range and working up to the $2 \mathrm{G} \Omega$ range for the Normal Ω and Normal Ω LoI resistance modes. Then continue the sequence for the Tru Ω and Tru Ω LoI modes, starting with the 2Ω range and working up to the $20 \mathrm{k} \Omega$ range. Finally complete the sequence for the $\mathrm{HiV} \Omega$ mode, starting with the $20 \mathrm{M} \Omega$ range and working up to the $20 \mathrm{G} \Omega$ range. An input zero operation is performed on each Multimeter range prior to performing the range verification measurements with the calibrator set to zero Ω. A separate zero operation is required on each range for each resistance mode.

Note that EX SNS (4-wire) is not available on the $5720 \mathrm{~A} 100 \mathrm{M} \Omega$ range, and the 8508 $7000 \mathrm{~K} 1 \mathrm{G} \Omega$ standard resistor is used as a 2 -wire device with the calibrator 2 -wire resistance zero used for the corresponding zero point. $4 \mathrm{~W} \Omega$ is deselected on the Multimeter when checking the $200 \mathrm{M} \Omega$ and $2 \mathrm{G} \Omega$ range, range zero, and range gain points.

© Warning

The Multimeter can deliver a lethal electric shock when operating in the High Voltage Resistance mode. Voltages up to 240V may appear on the terminals.

To avoid electric shock when performing the following calibration procedures:

- Never touch any lead or terminal unless you are absolutely certain that no dangerous voltage is present.
- Make sure that signal leads are in a safe condition before you handle them in any way.

1. Press the Ω key.
2. Press the CONFIG key and select Filt, RESL7, and $4 w \Omega$. Ensure Lol is deselected.
3. Select the required Multimeter range.
4. On the Calibrator, select zero Ω and Operate. Alternatively if using a standard resistor connect the standard resistor for a 4 -wire resistance zero. (For the $200 \mathrm{M} \Omega$ range and above, de-select Ex SNS on the calibrator and de-select $4 \mathrm{~W} \Omega$ on the Multimeter.)
5. On the Multimeter press the INPUT key, and select Zero Rng to initiate the zeroing operation.

The Busy legend will appear, and then extinguish when the zero operation has completed.
6. On the Calibrator, select Range Gain point Output value. Alternatively if using a standard resistor re-connect the standard resistor to measure its resistance.
7. Note the Multimeter's reading. Compare the result with the allowable tolerance, taking into account the actual value of the calibrator resistance output for this value or the calibrated value of the resistance standard used.
8. Repeat steps $3-7$ for the remaining ranges of the selected resistance mode. (For the $2 \mathrm{G} \Omega$ and $20 \mathrm{G} \Omega$ ranges the $8508-7000 \mathrm{~K} 1 \mathrm{G} \Omega$ standard resistor is used in place of the calibrator. For the $200 \mathrm{M} \Omega$ range and above, de-select Ex SNS on the calibrator and de-select $4 \mathrm{~W} \Omega$ on the Multimeter).
9. Set the calibrator output to STANDBY.
10. Press the Ω key.
11. Press the CONFIG key and select Filt, RESL7, $4 \mathrm{w} \Omega$, and Lol.
12. Repeat steps 3-9 for the Normal Ω LoI ranges.
13. Press the Ω Plus key and select Tru Ω.
14. Press the CONFIG key and select Filt, RESL7, and $4 w \Omega$. Ensure Lol is deselected.
15. Repeat steps $3-9$ for the Tru Ω ranges.
16. Press the Ω Plus key and select Tru Ω.
17. Press the CONFIG key and select Filt , RESL7, $4 \mathrm{w} \Omega$, and Lol.
18. Repeat steps $3-9$ for the Tru Ω Lol ranges.
19. Press the Ω Plus key and select HiV Ω.
20. Press the CONFIG key and select Filt , RESL7, and $4 w \Omega$.
21. Repeat steps 3-9 for the $\mathrm{HiV} \Omega$ ranges.

Table 3-10. Resistance Verification Points and Sequence

8508A Range	Resistance	Tolerance ${ }^{[1]}$	
		Normal Ω and Tru ${ }^{[2]}$	Normal Ω Lol and Tru Ω Lol ${ }^{[2]}$
2Ω	0Ω	Perform input zero operation to calibrator range locked zero output	
	1Ω	$\pm 0.0000240 \Omega$	$\pm 0.0000240 \Omega$
20Ω	0Ω	Perform input zero operation to calibrator range locked zero output	
	10Ω	$\pm 0.000133 \Omega$	$\pm 0.000133 \Omega$
200Ω	0Ω	Perform input zero operation to calibrator range locked zero output	
	100Ω	$\pm 0.00101 \Omega$	$\pm 0.00113 \Omega$
$2 \mathrm{k} \Omega$	$0 \mathrm{k} \Omega$	Perform input zero operation to calibrator range locked zero output	
	$1 \mathrm{k} \Omega$	$\pm 0.0000101 \mathrm{k} \Omega$	$\pm 0.0000113 \mathrm{k} \Omega$
$20 \mathrm{k} \Omega$	$0 \mathrm{k} \Omega$	Perform input zero operation to calibrator range locked zero output	
	$10 \mathrm{k} \Omega$	$\pm 0.000101 \mathrm{k} \Omega$	$\pm 0.000113 \mathrm{k} \Omega$
$200 \mathrm{k} \Omega$	$0 \mathrm{k} \Omega$	Perform input zero operation to calibrator range locked zero output	
	$100 \mathrm{k} \Omega$	$\pm 0.00101 \mathrm{k} \Omega$	$\pm 0.00107 \mathrm{k} \Omega$
$2 \mathrm{M} \Omega$	$0 \mathrm{M} \Omega$	Perform input zero operation to calibrator range locked zero output	
	$1 \mathrm{M} \Omega$	$\pm 0.0000117 \mathrm{M} \Omega$	$\pm 0.0000142 \mathrm{M} \Omega$
$20 \mathrm{M} \Omega$	$0 \mathrm{M} \Omega$	Perform input zero operation to calibrator range locked zero output	
	$10 \mathrm{M} \Omega$	$\pm 0.000320 \mathrm{M} \Omega$	$\pm 0.000570 \mathrm{M} \Omega$
$200 \mathrm{M} \Omega$	$0 \mathrm{M} \Omega$	Perform input zero operation to calibrator range locked zero output	
	$100 \mathrm{M} \Omega$	$\pm 0.01950 \mathrm{M} \Omega$	$\pm 0.18700 \mathrm{M} \Omega$
$2 \mathrm{G} \Omega$	$0 \mathrm{G} \Omega$	Perform input zero operation to calibrator range locked zero output	
	$1 \mathrm{G} \Omega$	$\pm 0.0018750 \mathrm{M} \Omega$	$\pm 0.0018750 \mathrm{M} \Omega$

Table 3-10. Resistance Verification Points and Sequence (cont)

8508A Range	Resistance	Tolerance ${ }^{1}$
		HiV Ω^{2}
$20 \mathrm{M} \Omega$	$0 \mathrm{G} \Omega$	Perform input zero operation to calibrator range locked zero output
	$10 \mathrm{M} \Omega$	$\pm 0.0000202 \mathrm{M} \Omega$
$200 \mathrm{M} \Omega$	$0 \mathrm{G} \Omega$	Perform input zero operation to calibrator range locked zero output
	$100 \mathrm{M} \Omega$	$\pm 0.0000870 \mathrm{M} \Omega$
$2 \mathrm{G} \Omega$	$0 \mathrm{G} \Omega$	Perform input zero operation to calibrator range locked zero output
	$1 \mathrm{G} \Omega$	$\pm 0.0003150 \mathrm{G} \Omega$
$20 \mathrm{G} \Omega$	$0 \mathrm{G} \Omega$	Perform input zero operation to calibrator range locked zero output
	$1 \mathrm{G} \Omega$	± 0.012675 G Ω
[1] Based on 365 day Tcal $\pm 1^{\circ} \mathrm{C} 99 \% \mathrm{CL}$ Absolute specifications. See comments in Applicable Verification Tolerance section above regarding the impact of calibration uncertainties and use of other specifications. [2] Ranges require separate input zero operation in each resistance mode.		

DC Current Checks

Equipment Configuration

1. Ensure that the calibrator output is set to STANDBY and configured for Internal Guard (EXT GRD is deselected).
2. Connect the equipment as described for Routine Calibration.
3. Press the DCI key
4. Press the CONFIG key. Select Filt and RESL7.
5. Confirm that the Multimeter is configured for internal guard (External Guard is deselected) by checking that the Ext Grd legend does not appear on the left-hand display.

Procedure

Repeat the following sequence for each range, starting with the $200 \mu \mathrm{~A}$ range and working up to the 20A range, as listed in Table 3-11. An input zero operation is performed on each Multimeter range prior to performing the range verification measurements with the calibrator set to zero by range locking the calibrator in the range from which the output will be obtained.

1. Select the required Multimeter range.
2. On the calibrator set the output to zero. Select OPERATE.
3. On the Multimeter press the INPUT key, and select Zero Rng to initiate the zeroing operation.
The Busy legend will appear, and then extinguish when the zero operation has completed.
4. On the calibrator select the value required for verification in the positive polarity.
5. Note the Multimeter's reading. Compare the result with the allowable tolerance, taking into account any known error from nominal of the calibrator for this output.
6. On the calibrator select the value required for verification in the negative polarity.
7. Note the Multimeter's reading. Compare the result with the allowable tolerance, taking into account any known error from nominal of the calibrator for this output.

Table 3-11. DC Current Verification Points and Sequence

8508A Range	Current	Tolerance ${ }^{[1]}$
$200 \mu \mathrm{~A}$	$0 \mu \mathrm{~A}$	Perform input zero operation to calibrator range locked zero output
	$+100 \mu \mathrm{~A}$	$\pm 0.00190 \mu \mathrm{~A}$
	$-100 \mu \mathrm{~A}$	$\pm 0.00190 \mu \mathrm{~A}$
2 mA	0 mA	Perform input zero operation to calibrator range locked zero output
	$+1 \mathrm{~mA}$	$\pm 0.0000190 \mathrm{~mA}$
	-1mA	$\pm 0.0000190 \mathrm{~mA}$
20 mA	0 mA	Perform input zero operation to calibrator range locked zero output
	$+10 \mathrm{~mA}$	$\pm 0.000200 \mathrm{~mA}$
	-10mA	$\pm 0.000200 \mathrm{~mA}$
200 mA	0 mA	Perform input zero operation to calibrator range locked zero output
	+100mA	$\pm 0.00530 \mathrm{~mA}$
	-100mA	$\pm 0.00530 \mathrm{~mA}$
2 A	0 A	Perform input zero operation to calibrator range locked zero output
	+1A	$\pm 0.0002260 \mathrm{~A}$
	-1A	$\pm 0.0002260 \mathrm{~A}$
20 A	0 A	Perform input zero operation to calibrator range locked zero output
	+10A	$\pm 0.004950 \mathrm{~A}$
	-10A	$\pm 0.004950 \mathrm{~A}$
[1] Based on 365 day $\mathrm{Tcal} \pm 1^{\circ} \mathrm{C} 99 \% \mathrm{CL}$ Absolute specifications. See comments in Applicable Verification Tolerance section above regarding the impact of calibration uncertainties and use of other specifications.		

AC Current Checks

Equipment Configuration

1. Ensure that the calibrator output is set to STANDBY and configured for Internal Guard (EXT GRD is deselected).
2. Connect the equipment as described for Routine Calibration.
3. Press the ACl key
4. Press the CONFIG key. Select RESL6 and 100 Hz Filter.
5. Confirm that the Multimeter is configured for internal guard (External Guard is deselected) by checking that the Ext Grd legend does not appear on the left-hand display.

Procedure

Repeat the following sequence for each range, starting with the $200 \mu \mathrm{~A}$ range and working up to the 20A range, as listed in Table 3-12.

1. Select the required Multimeter range.
2. On the calibrator set the output to the current and frequency for the point being verified as listed in Table 3-12. Set the output to OPERATE.
3. Note the Multimeter's reading. Compare the result with the allowable tolerance, taking into account any known error from nominal of the calibrator for this output.
4. Repeat steps $2-4$ for each point to be verified on the Multimeter's range to be verified.
5. Repeat steps $1-5$ for each Multimeter range to be verified.
6. Set the calibrator output to STANDBY.

Table 3-12. AC Current Verification Points and Sequence

8508A Range	Current	Frequency	Tolerance ${ }^{[1]}$
$200 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	300 Hz	$\pm 0.0830 \mu \mathrm{~A}$
	$100 \mu \mathrm{~A}$	1 kHz	$\pm 0.0830 \mu \mathrm{~A}$
	$100 \mu \mathrm{~A}$	3 kHz	$\pm 0.0830 \mu \mathrm{~A}$
	$100 \mu \mathrm{~A}$	5 kHz	$\pm 0.0830 \mu \mathrm{~A}$
	$100 \mu \mathrm{~A}$	10 kHz	$\pm 0.0830 \mu \mathrm{~A}$
2 mA	1 mA	300 Hz	$\pm 0.000580 \mathrm{~mA}$
	1 mA	1 kHz	$\pm 0.000580 \mathrm{~mA}$
	1 mA	3 kHz	$\pm 0.000580 \mathrm{~mA}$
	1 mA	5 kHz	$\pm 0.000580 \mathrm{~mA}$
	1 mA	10 kHz	$\pm 0.000580 \mathrm{~mA}$
20 mA	10 mA	300 Hz	$\pm 0.00580 \mathrm{~mA}$
	10 mA	1 kHz	$\pm 0.00580 \mathrm{~mA}$
	10 mA	3 kHz	$\pm 0.00580 \mathrm{~mA}$
	10 mA	5 kHz	$\pm 0.00580 \mathrm{~mA}$
	10 mA	10 kHz	$\pm 0.00580 \mathrm{~mA}$
200 mA	100 mA	300 Hz	$\pm 0.0545 \mathrm{~mA}$
	100 mA	1 kHz	$\pm 0.0545 \mathrm{~mA}$
	100 mA	3 kHz	$\pm 0.0545 \mathrm{~mA}$
	100 mA	5 kHz	$\pm 0.0545 \mathrm{~mA}$
	100 mA	10 kHz	$\pm 0.0545 \mathrm{~mA}$
2 A	1 A	300 Hz	$\pm 0.000945 \mathrm{~A}$
	1 A	1 kHz	$\pm 0.000945 \mathrm{~A}$
	1 A	3 kHz	$\pm 0.001055 \mathrm{~A}$
	1 A	5 kHz	$\pm 0.001055 \mathrm{~A}$
	1 A	10 kHz	$\pm 0.001055 \mathrm{~A}$
20 A	10 A	300 Hz	$\pm 0.01140 \mathrm{~A}$
	10 A	1 kHz	$\pm 0.01140 \mathrm{~A}$
	10 A	3 kHz	$\pm 0.02740 \mathrm{~A}$
	10 A	5 kHz	$\pm 0.02740 \mathrm{~A}$
	10 A	10 kHz	$\pm 0.02740 \mathrm{~A}$
1] Based on 365 day Tcal $\pm 1^{\circ} \mathrm{C} 99 \% \mathrm{CL}$ Absolute specifications. See comments in Applicable Verification Tolerance section above regarding the impact of calibration uncertainties and use of other specifications.			

Frequency Checks

Equipment Configuration

1. Ensure that the calibrator output is set to STANDBY and configured for Internal Guard (EXT GRD is deselected).
2. Connect the equipment as described for Routine Calibration.
3. Press the ACV key, select the 2 V range
4. Press the CONFIG key. Select Tfer On, Filt 40Hz.
5. Confirm that the 8508A is configured for internal guard (External Guard is deselected) by checking that the Ext Grd legend does not appear on the left-hand display.

Procedure

1. On the 8508A press MONITOR and then CONFIG. Deselect FREQ GATE Fast.
2. Press the MONITOR key and select FREQ.
3. On the calibrator set the output to the voltage to 1 V and frequency to 1 MHz . Set the output to OPERATE.
4. Note the Multimeter's frequency reading. Check the result is within $\pm 0.000012 \mathrm{MHz}$, taking into account any known error from nominal of the calibrator output frequency for this point.
5. Set the calibrator output to STANDBY.

Service Manual static awareness

A Message From Fluke Corporation

Some semiconductors and custom IC's can be damaged by electrostatic discharge during handling. This notice explains how you can minimize the chances of destroying such devices by:

1. Knowing that there is a problem.
2. Leaning the guidelines for handling them.
3. Using the procedures, packaging, and bench techniques that are recommended.

The following practices should be followed to minimize damage to S.S. (static sensitive) devices.

1. MINIMIZE HANDLING

2. KEEP PARTS IN ORIGINAL CONTAINERS UNTIL READY FOR USE.

3. DISCHARGE PERSONAL STATIC BEFORE HANDLING DEVICES. USE A HIGH RESISTANCE GROUNDING WRIST STRAP.

4. HANDLE S.S. DEVICES BY THE BODY.

5. USE STATIC SHIELDING CONTAINERS FOR HANDLING AND TRANSPORT.

6. DO NOT SLIDE S.S. DEVICES OVER ANY SURFACE.

7. AVOID PLASTIC,VINYL AND STYROFOAM ${ }^{\circledR}$ IN WORK AREA.

[^0]
8. WHEN REMOVING PLUG-IN ASSEMBLIES HANDLE ONLY BY NON-CONDUCTIVE EDGES AND NEVER TOUCH OPEN EDGE CONNECTOR EXCEPT AT STATIC-FREE WORK STATION. PLACING SHORTING STRIPS ON EDGE CONNECTOR HELPS PROTECT INSTALLED S.S. DEVICES.

9. HANDLE S.S. DEVICES ONLY AT A STATIC-FREE WORK STATION.
10. ONLY ANTI-STATIC TYPE SOLDERSUCKERS SHOULD BE USED.
11. ONLY GROUNDED-TIP SOLDERING IRONS SHOULD BE USED.

Chapter 4
 Maintenance

Title
 Page

Introduction 4-3
Access Procedures 4-3
Before You Start 4-3
Cabling and Wiring Connections 4-4
Removing the A1 DC PCA 4-5
Removing the A2 AC PCA 4-6
Removing the A3 Ohms PCA 4-7
Removing the A4 Digital PCA 4-9
Removing the A5 Bezel Assembly 4-10
Removing the A5A1 Display PCA 4-11
Removing the A6 Rear Input Assembly 4-12
Fuse Replacement and Line-Voltage Selection 4-14
Line-Power Fuse F1 and Voltage Selection 4-14
Rear-Input Current Fuse F2 (Rear Inputs Option) 4-15
Self Test 4-15
Self-Test Errors 4-15
Fatal Errors 4-18
Execution Errors 4-20
Device Dependant Errors 4-21

Service Manual

Introduction

This chapter contains access procedures for replaceable assemblies (PCAs) and error messages assocated with the self-test procedure. All of the access procedures describe how to remove a PCA or assembly. In all cases, unless otherwise noted, the reassembly/replacement procedure is a logical reversal of the removal procedure.

Access Procedures

This section of the manual includes access procedures for the following assemblies:

- A1 DC PCA
- A2 AC PCA
- A3 Ohms PCA
- A4 Digital PCA
- A5 Bezel Assembly
- A5A1 Display PCA
- A6 Rear Input Assembly

Before You Start

To ensure your safety and for the protection of the Multimeter follow all of the considerations and recommendations that follow:

1. Unless you are qualified to service the the Multimeter do not remove the covers from the unit.
2. To avoid shock hazards and for the protection of the unit, disconnect all power cords, rear-panel cables, and front/rear test leads from the Multimeter.
3. Be aware that removing either or both of the cover(s) will void calibration of the Multimeter.
4. Before removing the covers, place the Multimeter on an appropriate bench top or work surface.
5. To avoid damage to the Multimeter from static electricity, use best practice anti-static techniques after the covers are removed from the Multimeter.
6. Do not unnecessarily touch any part of the PCAs or straighten component positions on the PCAs.

Cabling and Wiring Connections

To help avoid making incorrect cable connections during reassembly, refer to the internal wiring and cabling diagram shown in Figure 4-1.

Figure 4-1. Internal Wiring and Cabling Diagram

Removing the A1 DC PCA

Use the following procedure to remove the A1 DC PCA. See Figure 4-2.

1. Position the unit on the work surface so it is bottom-side up.
2. Remove both rear feet (1).
a. Remove the three hex screws from each foot.
b. If the feet are still in place, pull them from the unit.
3. Remove the bottom cover (2).
a. Remove the one philips screw at rear of the bottom cover.
b. Slide the cover toward the back of the unit, and lift it off.
4. Remove the bottom shield (3).
a. Remove the six philips screws from the shield.
b. Slide the shield toward front of unit, and lift it out.
5. Remove the A1 DC PCA (4).
a. Disconnect the Rear Input PCA from the A1 DC PCA.
b. Disconnect the five connectors from the rear edge of the A1 DC PCA.
c. Disconnect the 10 connectors from the front edge of the A1 DC PCA.
d. Disconnect the red and black wires from the screw termininals on the PCA.
e. Remove the two philips screws from the A1 DC PCA.
f. Slide the A1 DC PCA to the side and lift it from the chassis.

Figure 4-2. Removing the A1 DC PCA

Removing the A2 AC PCA

Use the following procedure to remove the A2 AC PCA. See Figure 4-3.

1. Position the unit on the work surface so it is top-side up.
2. Remove both rear feet. (1)
a. Remove the three hex screws from each foot.
b. If the feet are still in place, pull them from the unit.
3. Remove the top cover. (2)
a. Remove the one philips screw at rear of the top cover.
b. Slide the cover toward the back of the unit, and lift it off.
4. Remove the top shield. (3)
a. Remove the four philips screws from the shield. (4)
b. Slide the shield toward front of unit, and lift it out.
5. Remove the A2 AC PCA. (5)
a. Remove the eight philips screws holding the shield to the A2 AC PCA.
b. Lift the shield from the PCA.
c. Disconnect the one connectors from the rear edge of the A2 AC PCA.
d. Disconnect the three connectors from the front edge of the A2 AC PCA.
e. Remove the four philips screws from the PCA.
f. Using a flat-blade screwdriver, remove the four plastic standoffs from the PCA.
g. Lift the A2 AC PCA from the chassis.

Figure 4-3. Removing the A2 AC PCA

Removing the A3 Ohms PCA

Use the following procedure to remove the A3 Ohms PCA. See Figure 4-4.

1. Position the unit on the work surface so it is bottom-side up.
2. Remove both rear feet. (1)
a. Remove the three hex screws from each foot.
b. If the feet are still in place, pull them from the unit.
3. Remove the bottom cover. (2)
a. Remove the one philips screw at rear of the bottom cover.
b. Slide the cover toward the back of the unit, and lift it off.
4. Locate the two connectors on the A1 DC PCA with the green, red, orange, yellow and the black, brown wires.
5. Disconnect both connectors from the A1 DC PCA. These cables are hardwired to the A3 Ohms PCA and must be disconnected before the A3 Ohms PCA can be removed.
6. Position the unit on the work surface so it is top-side up.
7. Remove the top shield. (3)
a. Remove the four philips screws from the shield.
b. Slide the shield toward front of unit, and lift it out.
8. Remove the A3 Ohms PCA. (4)
a. Disconnect the two connectors from the rear edge of the A3 Ohms PCA.
b. Remove the one philips screws from the A3 Ohms PCA.
c. Slide the A3 Ohms PCA toward the rear of the unit (about $1 / 4 \mathrm{inch}$).
d. Lift the A3 Ohms PCA, and free the two hardwired cables before removing it from the unit.

Figure 4-4. Removing the A3 Ohms PCA

Removing the A4 Digital PCA

Use the following procedure to remove the A4 Digital PCA. See Figure 4-5.

1. Position the unit on the work surface so it is top-side up.
2. Remove both rear feet. (1)
a. Remove the three hex screws from each foot.
b. If the feet are still in place, pull them from the unit.
3. Remove the top and bottom covers. (2)(3)
a. Remove one philips screw at rear of each cover.
b. Slide the covers toward the back of the unit, and lift them off.
4. Remove the Rear Panel (4)
a. Remove the six flat-head philips screws from the rear panel (two on either side of the panel and two with the input/sense connector group.
b. Remove the seven pan-head philips screws distributed across the rear panel.
c. Pull the gray sheet metal portion of the rear panel away from the unit.
5. Set the unit on its side, and remove the screw holding the input/sense connector group to the chassis. (5)
6. Return the unit to its original position.
7. Disconnect the five cable connectors from the A4 Digital PCA.
8. Free the A4 Digital PCA by sliding it out the rear of the chassis. (6)

Figure 4-5. Removing the A4 Digital PCA

Removing the A5 Bezel Assembly

Use the following procedure to remove the A5 Bezel Assembly. See Figure 4-6.

1. Position the unit on the work surface so it is bottom-side up.
2. Remove both rear feet. (1)
a. Remove the three hex screws from each foot.
b. If the feet are still in place, pull them from the unit.
3. Remove the bottom cover. (2)
a. Remove one philips screw at rear of the bottom cover.
b. Slide the cover toward the back of the unit, and lift it off.
4. Remove the bottom shield (3).
a. Remove the six philips screws from the shield.
b. Slide the shield toward front of unit, and lift it out.
5. Locate the five connectors (J109 through J113) on the A1 DC PCA with the green and white, blue, brown, red, and black wires. (When reassembling the unit make sure you reconnect the connectors in the left to right color sequence described in this step).
6. Disconnect all five connectors from the A1 DC PCA. These cables are hardwired to the A5 Bezel Assembly and must be disconnected before the A5 Bezel Assembly can be removed.
7. Remove the two hex screws from the side of each of the front handles. (4)
8. Thread the disconnected cables/wires through the chassis opening and pull the A5 Bezel Assembly a few inches away from the unit. (5)
9. Free the A5 Bezel Assembly from the unit by disconnecting the two ribbon cables from the A5A1 Display PCA.

Figure 4-6. Removing the A5 Bezel Assembly

Removing the A5A1 Display PCA

Use the following procedure to remove the A5A1 Display PCA. See Figure 4-7.

1. Remove the A5 Bezel Assembly (described earlier in this chapter).
2. Remove the seven small self-threading Philips screws holding the A5A1 Display PCA to the plastic bezel (front panel). (1)
3. Lift the top of the A5A1 Display PCA until it clears the lip of the bezel, and then pull the A5A1 Display PCA toward the lip of the plastic bezel. (2)
Before reassembling the A5 Bezel Assembly, check the position of the rubber key pads to ensure that all of the buttons are correctly seated in their holes. (3)

Figure 4-7. Removing the A5A1 Display PCA

Removing the A6 Rear Input Assembly

Use the following procedure to remove the A6 Rear Input Assembly. See Figure 4-8.

1. Position the unit on the work surface so it is bottom-side up.
2. Remove both rear feet. (1)
a. Remove the three hex screws from each foot.
b. If the feet are still in place, pull them from the unit.
3. Remove the top and bottom covers. (2)(3)
a. Remove the one philips screw at the rear of each of the covers.
b. Slide the covers toward the back of the unit, and lift them off.
4. Remove the Rear Panel. (4)
a. Remove the six flat-head philips screws from the rear panel (two on either side of the panel and two with the input/sense connector group.
b. Remove the seven pan-head philips screws distributed across the rear panel.
c. Pull the gray sheet metal portion of the rear panel away from the unit.
5. Remove the bottom shield (5).
a. Remove the six philips screws from the shield.
b. Slide the shield toward front of unit, and lift it out.
6. Locate, and remove the screw holding the input/sense connector group to the chassis. (6)
7. Cut the tie holding the input/sense connector cable to the chassis.
8. Using a pair of long-nose pliers, release (depress) the latch on each of the three standoff clips holding the A6A1 Rear Input PCA to the A1 DC PCA.
9. With all three latches released on the standoffs, gently unplug the A6A1 Rear Input PCA from the A1 DC PCA by lifting it straight up and away from its connectors on the A1 DC PCA. 7

Figure 4-8. Removing the A6 Rear Input Assembly

Fuse Replacement and Line-Voltage Selection

\triangle Caution

To avoid fire hazard, use only the fuse arrangements that appear in the fuse specification Tables 4-1 and 4-2 below.

Additionally, the supply network must be fused at a maximum of 16 A , and if the power cable plug is internally fused, a 10 A fuse must be fitted in the power cable plug.
To avoid shock hazards, disconnect all line-power and input terminal connections before attempting to access the fuse(s).

Line-Power Fuse F1 and Voltage Selection

The power-input and voltage-selection module on the rear of the Multimeter houses the line-power fuse F1. See Figure 4-9. A fuse tray to the right of the module serves as a fuse holder and a line-voltage-selection device. A small window on the fuse tray shows the currently selected line voltage, 115 or 230 . The fuse rating is a function of the selected line voltage as shown in Table 4-1.
Use the following procedure to change the fuse or change the line power selection:

1. Remove the fuse tray by placeing a small screwdriver blade under the tab on the fuse tray and pulling the tray from the module.
2. To change the voltage selection, rotate and position the fuse holder in the tray so the desired line voltage shows in the fuse-tray window.
3. As necessary, remove and replace the fuse with one that corresponds to the selected line voltage. See Table 4-1.
4. Slide the fuse tray back into the power-input and voltage-selection module, and secure it by firmly pressing it into place.

adj019f.eps
Figure 4-9. Rear Panel - Power Input Fuse and line Power Locations
Table 4-1. Power Input Fuse 1 - T 1.25AH 250V

Power Input Fuse F1	Fuse Action	$\begin{gathered} \text { Fuse Rating } \\ \text { IEC } 127 \text { (UL/CSA) } \end{gathered}$	Fluke Part No.	Manufacturer \& Type No.
$\begin{aligned} & 115 \text { VAC, } \\ & 230 \text { VAC } \end{aligned}$	TH Time delay HBC	1.25 A (2 A) @ 250 V	2059740	$\begin{gathered} \hline \text { Schurter } \\ 0001.2505 \end{gathered}$
				$\begin{gathered} \text { Bussman } \\ \text { S505-1.25-R } \end{gathered}$
				$\begin{aligned} & \text { Littelfuse } \\ & 2151.25 \mathrm{P} \end{aligned}$
				$\begin{gathered} \text { Bel Fuse } \\ 5 \mathrm{HT} 1.25-\mathrm{R} \end{gathered}$

Rear-Input Current Fuse F2 (Rear Inputs Option)

The rear input option includes a fuse (F2) to limit the current at the rear-input A terminal to 2A. The fuse is located at the rear of the Multimeter just to the left of the current input terminal (A). A half-twist of the fuse cap releases the fuse for inspection or replacement. Use the fuse specified in Table 4-2 when replacement is necessary.

Table 4-2. Current Function Rear Input Fuse 2 - F 1.6AH 250V

Fuse Action	Fuse Rating IEC 127 (UL / CSA)	Fluke Part No.	Manufacturer \& Type No.
FH		1582072	Bussman S501-1.6-R
Fast acting HBC	$1.6 \mathrm{~A}(2 \mathrm{~A}) @ 250 \mathrm{~V}$		Littelfuse 021601.6HXP
			Littelfuse 021601.6MXP

Self Test

This section of the manual contains a collection of the error codes which might be generated either on the display of the Multimeter or by way of the IEEE-488 system bus. Error codes described in this section are shown in tabular form with both the error codes and the descriptions of the most likely faults, causes, or conditions. Typically, the error codes contain two parts, a four digit address code and a two digit id code. However, some error codes consist only of the four digit address. The combination for any given code is identified by the presence or absence of the id column in the error code table.
The error codes are classified as Self-Test Errors, Fatal Errors, Execution Errors, and Device Dependant Errors. All error conditions other than Fatal Errors are recoverable.
For help in determining what to do in the event of a self-test error, make a note of the full error message and contact your nearest Fluke Service Center.

Self-Test Errors

When a Self-Test is run and successfully completed no error messages result and the Multimeter is considered operational. If a self-test error does occur, an error message beginning with self test failed shows on the display. A function indicator and a test id number follow to complete the message. See Table 4-3 for descriptions of the selftest errors that might occur.

Table 4-3. Self-Test Errors

DC VOLTS			
Test No 10	Err 2101	P001	Main Ref Check
Test No 11	Err 2101	P002	6.2 V Ref Check
Test No 20	Err 2201	P003	100mV Range Zero Check
Test No 21	Err 2211	P004	1V Range Zero Check
Test No 22	Err 2221	P005	10V Range Zero Check
Test No 23	Err 2231	P006	100V Range Zero Check
Test No 24	Err 2241	P007	100mV Range Positive Gain Check
Test No 25	Err 2251	P008	100mV Range Negative Gain Check
Test No 26	Err 2261	P009	1V Range Positive Gain Check

Test No 27	Err 2271	P010	1V Range Negative Gain Check
Test No 28	Err 2281	P011	10V Range Positive Gain Check
Test No 29	Err 2291	P012	10V Range Negative Gain Check
Test No 30	Err 2301	P013	100V Range Positive Gain Check
Test No 31	Err 2311	P014	100V Range Negative Gain Check
DC CURRENT			
Test No 40	Err 2401	P032	100uA DC Range: Zero Input Check
Test No 41	Err 2411	P033	100ųA DC Range: 100ųA Input Gain Check
Test No 42	Err 2421	P034	1mA DC Range: Zero Input Check
Test No 43	Err 2431	P035	1mA DC Range: 1mA Input Gain Check
Test No 44	Err 2441	P036	$10 \mathrm{~mA} \mathrm{DC} \mathrm{Range:} \mathrm{Zero} \mathrm{Input} \mathrm{Check}$
Test No 45	Err 2451	P037	10mA DC Range: 10 mA Input Gain Check
Test No 46	Err 2461	P038	100mA DC Range: Zero Input Check
Test No 47	Err 2471	P039	100mA DC Range: 100mA Input Gain Check
Test No 48	Err 2481	P040	1A DC Range: Zero Input Check
Test No 49	Err 2491	P041	1A DC Range: 100mA Input Gain Check
AC CURRENT			
Test No 50	Err 2501	P042	1mA AC Range: Zero Input Check
Test No 51	Err 2511	P043	$1 \mathrm{~mA} \mathrm{AC} \mathrm{Range:} 1 \mathrm{~mA}$ Input Gain Check
RESISTANCE			
Test No 60	Err 2601	P044	Follower Offset Check
Test No 61	Err 2611	P045	Follower 100mA Output Check
Test No 62	Err 2621	P046	Follower 10mA Output Check
Test No 63	Err 2631	P047	Follower 1mA Output Check
Test No 64	Err 2641	P048	3.0V Clamp Check
Test No 65	Err 2651	P049	6.7V Clamp Check
Test No 66	Err 2661	P050	27V Clamp Check
Test No 67	Err 2671	P051	Current Sink Clamp Check
Test No 68	Err 2681	P052	10ųA Current Sink and Follower 10V Output Check
Test No 69	Err 2691	P053	1ųA Current Sink Check
Test No 70	Err 2701	P054	100nA Current Sink Check
Test No 71	Err 2711	P055	10nA Current Sink Check
Test No 72	Err 2721	P056	HV Ohms Follower Offset Check
Test No 73	Err 2731	P057	HV Ohms Follower Output Current Check
Test No 74	Err 2741	P058	HV Ohms Output Voltage and 240V Clamp Check

AC VOLTS			
Test No 80	Err 2801	P015	100mV AC Range: Zero Input Check
Test No 81	Err 2811	P016	100mV AC Range: +179mV DC Input Checks at PreAmp Output
Test No 82	Err 2821	P017	100mV AC Range: -179mV DC Input Checks at PreAmp Output
Test No 83	Err 2831 $2832 \text { raw }$	P018	1V AC Range: Zero Input Check
Test No 84	Err 2841	P019	1V AC Range: +993mV DC Input Checks at PreAmp Output
Test No 85	Err 2851	P020	1V AC Range: -993mV DC Input Checks at PreAmp Output
Test No 86	Err 2861	P021	1V AC Range: +993mV DC Input Checks at RMS Converter Output
Test No 87	Err 2871	P022	1V AC Range: -993mV DC Input Checks at RMS Converter Output
Test No 88	Err 2881 $2882 \text { raw }$	P023	10V AC Range: Zero Input Check
Test No 89	Err 2891	P024	10V AC Range: +9.78 V DC Input Checks at PreAmp Output
Test No 90	Err 2901	P025	10V AC Range: -9.78V DC Input Checks at PreAmp Output
Test No 91	Err 2911 2912 raw	P026	100V AC Range: Zero Input Check
Test No 92	Err 2921	P027	100V AC Range: +9.78V DC Input Checks at PreAmp Output
Test No 93	Err 2931	P028	100V AC Range: -9.78V DC Input Checks at PreAmp Output
Test No 94	Err 2941 2942 raw	P029	1000V AC Range: Zero Input Check
Test No 95	Err 2951	P030	1000V AC Range: +9.78V DC Input Checks at PreAmp Output
Test No 96	Err 2961	P031	1000V AC Range: -9.78V DC Input Checks at PreAmp Output

Fatal Errors

Fatal errors are reported only via the front panel display. These messages are all coded as 9000 series faults. Each of the fatal errors that might occur are identified in the following paragraphs.

When a fatal error occurs the processor halts the operation of the multimeter. Cycling the power off and on may clear the message. Howerver, fatal errors are generally caused by hardware or software faults which require repair by at a Fluke Service Center.

```
goon Sustem Kernel Feult
Addr id
```

This error is generated for system queue errors, stack overflows etc.
See Table 4-4 for descriptions of 9000 system kernel fault errors.

Table 4-4. 9000 System Kernel Fault Errors

id	Fault
00	user stack overwritten (addr = user stack pointer address)
01	activity at head of queue not current (addr = address of queue)
$\square 2$	current activity not at head of queue (addr = address of queue)

gout Run Time Sustem Error

This error is detected and generated by the Pascal run time system support e.g. variable out of range.
gowe Unexfected Excertion Fddr id
See Table 4-5 for descriptions of unexpected exception errors.

Table 4-5. Unexpected Exception Errors

id	Exception
02	bus error (usually due to addressing non-existant memory or IO)
08	address error (due to attempting a word access to an odd address)
04	illegal instruction
05	zero divide
08	privilege violation
09	trace (trace facility is not used)
10	unimplemented instructions
11	unimplemented instructions
24	spurious interrupt (most likely cause is noise)

goos From Sumcheck Failure
G004 RHM Check Feilure

gous Serial Interfece Feult. Fddr id

When this fatal error occurs the system will continuously try to repeat whatever it was doing - the user interface will be inoperative.
See Tabe 4-6 for descriptions of the serial interface errors.

Table 4-6. Serial Interface Errors

id	Fault	
01	Phase Error	The phase counter is either out of range for the current sequence or an interrupt from the serial interface or delay timer occurred the other was expected. Probably due to corruption of the phase counter. This could be either a software or a hardware fault.
02	NOT Transfer Complete	a) Tx_complete status was false when "interrupt on Tx complete" received. b) Tx_complete did not become true within timeout period when "on RTx" received. Both caused by fault in interface hardware, probably digital ULA fault.
03	True Complement Error	True_compl_error was true after a read transfer. Tested during read sequence on all transfers Can be because serial data coming from the analog subsystem to the digital ULA is corrupt. Could also be a serial clock or enable problem.
04	In Guard Error	Indicates in_guard circuit latches corrupted, and new update required. Reported as fail after 20 consecutive errors. (This signal may be polled during updates, otherwise it causes an interrupt.)
05	State Change Timeout	Interface state change between "read", "wait" and "write" states did not occur within timeout period. Interface hardware fault - suggests ULA (or associated signals) problem.
06	A-D timeout	A-D did not produce RTx within hardware timeout period after CI. A-D or hardware fault. Suggests AD not being initiated or RTx not getting back to digital ULA. Could be an analog problem if the A-D locks up.
07	No RTx after abort	Latched RTx did not appear after abort sent. A-D or CI hardware fault. Suggests A-D not being initiated or RTx not getting back to digital ULA Could be an analog problem if the A-D locks up.
08	Switching counter inoperative	Switching counter in-operative when tested at power-on. suggests ULA (or associated signals) problem.

```
S006 - Serigl LOOF Mismetch $NOQQ id
```

$\times \infty \times \infty$ is the actual data received in binary format.
See Table 4-7 for descriptions of the serial loop mismatch errors.

Table 4-7. Serial Loop Mismatch Errors

id	Fault
00	U901_C pattern mismatch - should be 00000001 (00000000 if rear fitted)
01	U901_B pattern mismatch - should be 00010000
02	U901_A pattern mismatch - should be 10100100
06	U902_C pattern mismatch - should be 00000000
04	U902_B pattern mismatch - should be 00000000
05	U902_A pattern mismatch - should be 00000000
06	U903_C pattern mismatch - should be 00010101
07	U903_B pattern mismatch - should be 01111111
08	U903_A pattern mismatch - should be 11111011

9007 Unknoun Engine Instruction Fddr id

id indicates the code that the engine was attempting to interpret as an instruction.

Execution Errors

An Execution Error is generated if a received command cannot be executed because it is incompatible with the current device state, or because it attempts to command parameters which are out-of-limits.

In remote operation, the EXE bit (4) is set true in the Standard-defined Event Status Byte, and the error code number is appended to the Execution Error queue.

The error is associated with status reporting, and the queue entries can be read destructively as LIFO by the Common query command EXQ?. There is no queue when execution errors occur during manual operation; instead, the description of the error is sent directly on the Menu display.
See Table 4-8 for descriptions of the execution errors.

Table 4-8. Execution Errors

$1000-$	EXE queue empty when recalled	$1024-$	Illegal Range/Input Combination
$1001-$	Option not installed	$1025-$	Auto not available in Tru ratio
$1002-$	Calibration disabled	$1026-$	Probe identity unrecognized
$1005-$	Input Zero not allowed in Scan	$1027-$	Input Zero not allowed in PRT
$1007-$	Data entry error	$1028-$	Only allowed in Voltage function
$1008-$	Must be in AC Function	$1029-$	Scan modes not allowed in PRT
$1010-$	Divide-by-zero not allowed	$1050-$	Scan modes not allowed in ACI/DCI
$1012-$	No more errors in list	$1031-$	4 wV not available via rear input
$1013-$	Data out of limit	$105--$	Input Zero not allowed in Cal
$1014-$	Illegal Range/Function combination	$1053-$	Calibration not allowed in PRT
$1015-$	Command allowed only in Remote	$1034-$	PRT Ceof Limit @ a+, b+, c+ a-, b-, c-
$1016-$	Not in Special Calibration	$1055-$	Cannot edit the default PRT
$1021-$	Test not allowed when Cal enabled	$1056-$	Block or Rolling average required

Device Dependant Errors

Device-dependent errors are associated mainly with test and calibration operations. A Device-Dependent Error is generated if the device detects an internal operating fault (e.g., during self-test). The DDE bit (3) is set true in the Standard-defined Event Status Byte, and the error code number is appended to the Device-Dependent Error queue.
In remote mode operations, the error is associated with status reporting, and the queue entries can be read destructively as LIFO by the Common query command DDQ?.
In local mode operations, the DDE status is checked at the end of the operation (e.g., Cal , Zero, Test). If true, an error has occurred, and the content of the last entry in the queue is displayed on the front panel.
If both bus and front panel users attempt to read the queue concurrently, the error data is read out destructively on a first-come, first-served basis. Thus one of the users cannot read the data on one interface as it has already been destroyed by reading on the other. This difficulty should be solved by suitable application programming to avoid the possibility of a double readout. Ideally the IEEE 488 interface should set the instrument into REMS or RWLS to prevent confusion. The bus can ignore the queue, but the front panel user will have to read it to continue.
There are three categories of Device Dependant Errors: Correction Errors, Corruption Errors, and Miscellaneous Errors. The errors that may occur in each category are described in the Table 4-9.

Table 4-9. Device Dependent Errors

Correction Errors		
2000-	Error During Zero Cal	The input signal was outside : Zero +/-1 \% of Full Range
2001-	Error During Gain+ Cal	The input signal was outside : +full range +/- 10% of full range
2002-	Error During Gain- Cal	The input signal was outside : -full range $+/-10 \%$ of full range
2003-	Error During HF trim Cal	
2004-	Error During Input Zero	The input signal was outside : Zero $+/-1 \%$ of full range
2005-	Error During Lol Zero Cal	The input signal was outside : Zero $+/-1 \%$ of full range
2006-	Error During Lol Gain Cal	The input signal was outside : +full range +/- 10% of full range
2008-	Error During A to D Cal	error numbers between 2030 and 2089 (see section 2)
2010-	Error During Frequency Cal	
2012-	Error During DCcp Cal	
2025-	Error During HiV Lin Read	
2026-	Error During HiV Lin Calc	
2027-	Error During 2wr Ohms Calc	
Corruptions		
2014-	Serial Number Corrupt	
2015-	Cal Due Date Corrupt	
2017-	Bus Address Corrupt	
2018-	Line Frequency Corrupt	
2020-	Invalid Corrections (ram)	Combined corrections - checksum error
2021-	Calibration Corrupt	
2022-	NV RAM Write Failure	
Micellaneous		
2109	Bad Data from Analog Sys	
2022-	NV Ram write failure	
2023-	Engine - Load factor err	
2024-	Engine - Store factor err	

Chapter 5
 List of Replaceable Parts

Title Page
Introduction. 5-3
How to Obtain Parts. 5-3
How to Contact Fluke 5-3
Parts Lists 5-4

Service Manual

Introduction

This chapter contains an illustrated list of replaceable parts for the 8508A Reference Multimeter to the board level only. Parts are listed by assembly; alphabetized by reference designator. Each assembly is accompanied by an illustration showing the location of each part and its reference designator. The parts lists give the following information:

- Reference designator
- An indication if the part is subject to damage by static discharge
- Description
- Fluke stock number
- Total quantity
- Any special notes (i.e., factory-selected part)

\triangle Caution
 A * symbol indicates a device that may be damaged by static discharge.

How to Obtain Parts

Electrical components may be ordered directly from the manufacturer by using the manufacturers part number, or from the Fluke Corporation and its authorized representatives by using the part number under the heading FLUKE STOCK NO. To order components directly from Fluke Corporation, call (toll-free) 800-526-4731. Parts price information is available from the Fluke Corporation or its representatives.
To ensure prompt delivery of the correct part, include the following information when you place an order:

- Fluke stock number
- Description (as given under the Description heading)
- Quantity
- Reference designator
- Part number and revision level of the pca containing the part.
- Instrument model and serial number

How to Contact Fluke

To contact Fluke, call one of the following telephone numbers:
USA: 1-888-99-FLUKE (1-888-993-5853)
Canada: 1-800-36-FLUKE (1-800-363-5853)
Europe: +31 402-675-200
Japan: +81-3-3434-0181
Singapore: +65-738-5655
Anywhere in the world: +1 -425-446-5500
Or, visit Fluke's Web site at www.fluke.com.

$$
\underset{\text { Nucd }}{\substack{\text { and }}}
$$

This instrument may contain a Nickel-Cadmium battery. Do not mix with the solid waste stream. Spent batteries should be disposed of by a qualified recycler or hazardous materials handler. Contact your authorized Fluke service center for recycling information.

Parts Lists

The following tables list the replaceable parts for the 8508A Reference Multimeter. Parts are listed by assembly; alphabetized by reference designator. Each assembly is accompanied by an illustration showing the location of each part and its reference designator. The parts lists give the following information:

- Reference designator
- An indication if the part is subject to damage by static discharge
- Description
- Fluke stock number
- Total quantity
- Any special notes (i.e., factory-selected part)
\triangle Caution
A * symbol indicates a device that may be damaged by static discharge.

Table 5-1. 8508A Final Assembly

Reference Designator	Description	Fluke Part No	Tot Qty	Notes
MP1	Top Cover	1988598	1	
MP2	Bottom Cover	1988604	1	
MP3	Cover, Stripe Side	2398145	2	
MP4	Bumper, Foot, Self Adhesive	2398373	4	
MP5	Foot, Rear	1628388	2	
MP6	Bottom, Foot, Moulded	868786	4	
MP7	Bail, Tilt Stand	1988619	2	
MP8	Label Calibration Sticker	2398123	3	
MP9	Label, Barcode, ModelL/Serial Number	2398138	1	
MP10	Label, Modification Record	2398114	1	
H1	Washer, M4 Crinkle SS GKN	2398274	6	
H2	Screw, 8-32 X 3/8 SH SKTHD Black	295105	6	
H3	Screw, M3 X 8 Pozipan	2398200	2	
© F^{1}	Fuse 630 mA 250 V 20 mm (TH)	1582145	1	
$\triangle \mathrm{F} 1$	Fuse 1.6A 250V 20 mm (F)	1582072	1	
$\triangle \mathrm{F} 1$	Fuse 1.25A 250 V 20 mm (TH)	1582150	1	
	Mains Lead (Power Cord)		1	Not shown
	Mains Lead IEC TO CEE7/7	769422		
	Mains Lead IEC UK 5A 2m	769455		
	Mains Lead IEC AUS/NZ 10A 2.5m	658641		
	Mains Lead IEC USA/JAPAN	284174		
	Mains Lead IEC SWISS 10A 2.5m	769448		
	Mains Lead IEC INDIA 10A 2.5m	782771		
	SPRT 25R5-200 TO 660 DEG C	1656430		
	PRT 100R -200 TO 660 DEG C	1654000		
	Users Manual, 8508A	1673798	1	Not shown
	Service Manual, 8508A (sold separately)	2150128		Not shown
	Manual Set, CD, PDF files (includes Service Manual)	2150143	1	Not shown

Figure 5-1. 8508A Final Assembly

Table 5-2. 8508A Chassis Assembly

Reference Designator	Description	Fluke Part No	Tot Qty	Notes
A1	DC PCA	1988709	1	*
A2	AC PCA	1988727	1	*
A3	Ohms PCA	1988748	1	*
A4	Digital PCA	1988730	1	*
A5	Bezel Assembly	1605337	1	
A6	Rear Input Assembly (optional)	2398049	1	
A401	Reference Module POS Assembly	2398024	1	*
H1	Screw 8-32 X 3/8 SH SKTHD BLK	295105	4	
H2	Screw M3 X 8 Pozipan	2398200	19	
H3	Binding Post Brass NiPL	102707	1	
H4	Binding Head Brass NiPL	102889	1	
H5	Clip Cable Flat Ribbon	2398320	4	
H6	Washer M3 INT-SHAKP SZP	2398239	2	
H7	Nut Full M3 SZP	2398288	2	
H8	Washer M6 INT-SHAKP SZP	2398263	1	
H9	Nut Full 1/4-28 UNF BNP	2398301	1	
H10	Nut Nylock M4 SZP	2398295	4	
H11	Washer M4 Plain SZP	2398242	4	
H12	Screw M3 X 6 Pozicsk	2398189	22	
H13	Standoff M3 X 16 M/F Nylon	2398221	4	
H14	Screw M3 X 8 Pozicsk	2398192	6	
MP1	PCB Card Guide	2398312	2	
MP3	Bush Insulating 8.8 ID Black	2398347	1	
MP2	Hole Plug 5/8" Black	2398358	7	1
T1	Low Voltage Transformer Assembly	2398036	1	
T2	Mains Transformer Assembly	2398060	1	
W1	Cable Sig I/P Assembly	2398008	1	
W2	Cable Ribbon Assembly 16W	2398013	1	
W3	Cable Ribbon DC-DIG Assembly	2398072	1	
W4	Cable Ribbon DC-OHM Assembly	2398085	1	
W5, W6	Cable Ribbon DIG-DS Assembly	2398097	2	
W7	Wire 7/. 2 PTFE 1 kV Green	2398150	1	
	Lead Kit PTFE	1886203		
	Lead Kit Standard	2398911	1	

Figure 5-2. 8508A Chassis Assembly

Figure 5-2. 8508A Chassis Assembly (cont)

Figure 5-2. 8508A Chassis Assembly (cont)

Table 5-3. A5 Bezel (front panel) Assembly

Reference Designator	Description	Fluke Part No	Tot Qty	Notes
A1	Display PCB Assembly	1988711	1	
C1, C2	Capicator, ceramic, 470 pF 10\% 2 kV	2397993	2	
H1	Screws, 8/32 x 3/8	295105	4	
H2	Screw, K25 x 8, POZIPAN SZP, ST	2398217	7	
H3	Washer M3, Int-SHAKP SZP	2398239	1	
H4	Washer M4, Int-SHAKP SZP	2398256	6	
H5	Washer, Terminal	859939	1	
H6	Nut, Full, M3, SZP	2398288	1	
H7	Nut Terminal 8-32 UNC	850334	12	
J1, J2, J3	Terminal, Low Thermal, Red	886382	3	
J4, J5	Terminal, Low Thermal, Black	886379	2	
J6	Terminal, Low Thermal, Blue	886366	1	
L1	Ferrite Core, 8680 nH	2398386	1	
MP2	Front Handle	1605343	2	
MP3	Display Lens	1607661	1	
MP5	Keypad Set	1605272	1	
MP4	Front Panel Decal	1607677	1	
W1	Cable Assembly, Front Input	2398051	1	

Figure 5-3. A5 Bezel (front panel) Assembly

Table 5-4. A6 Rear Input Assembly (optional)

Reference Designator	Description	Fluke Part No	Tot Qty	Notes
A1	Rear Input PCA	2399180	1	
C1, C2	Capicator CD 470 pF 10\% 2 kV	2397993	2	
©F1	Fuse 1.6 A 250 V 20 mm	1582072	1	
FH	Fuse Holder 20 mm Panel Mount	2398399	1	
H1	Tie, Cable 3.6 x 142 mm	2398161	1	
H2	Washer M4 Int-Shakp SZP	2398256	6	
H3	Nut 8-32 UNC Terminal	850334	12	
H4	Washer Terminal	859939	6	
H5	Washer Terminal Large	613606	6	
H6	Washer M3 Int-Shakp SZP	2398239	1	
H7	Nut Full M3 SZP	2398288	1	
H8	Screw M3 x 6 POSICSK SZP	2398189	2	
H9	Tie Cable 2.5 x 115 mm	2398177	3	
H10	Tie Holder	2398335	1	
H11	Screw M3 x 8 POZIPAN SEMS	2398200	1	
H12	Circuit Board, Support	2398364	3	
H13	Terminal Insulator	894183	6	
H14	Terminal Base	885459	6	
J2, J4	Terminal, Low Thermal, Black	886379	2	
J1, J3, J5	Terminal, Low Thermal, Red	886382	3	
J6	Terminal, Low Thermal, Blue	886366	1	
L1	Ferrite 26 x 14 x 11 8680 nF	2398386	1	
W1	Cable Assembly Rear Input (8 wires w/ terminals)	2398106	1	

Figure 5-4. Rear Input Assembly (optional)

Service Manual

Manual Supplement

Manual Title:	8508A Service	Supplement Issue:	$\mathbf{5}$
Print Date:	September 2004	Issue Date:	$12 / 15$
Revision/Date:	$2,3 / 13$	Page Count:	3

This supplement contains information necessary to ensure the accuracy of the above manual. This manual is distributed as an electronic manual on the following CD-ROM:

CD Title:	8508A
CD Rev. \& Date:	$6,3 / 2013$
CD PN:	2150143

Change \#1, 66660

On page 1-3, under Safety Considerations, remove the first paragraph.
On page 1-6, replace the Symbols table with:

Symbol	Description
A	Risk of danger. Important information. See manual.
Hazardous voltage. Voltage >30 V dc or ac peak might be	
present.	

On page 4-14, Figure 4-9 and Table 4-1, remove IEC 127 from the Fuse Rating.
On page 4-15, Table 4-2, remove IEC 127 from the Fuse Rating.

Change \#2, 427

On page 1-8, under General Specifications, replace the Safety and EMC with:
Safety
IEC 61010-1: Overvoltage CAT II, Pollution Degree 2, 1420 Vpk max transient into measurement terminals.
Electromagnetic Compatibility (EMC)
IEC 61326-1..............................(Controlled EM Environment); CISPR 11, Group 1, Class A
Group 1 Equipment....................Group 1 has intentionally generated and/or use conductively coupled radio-frequency energy which is necessary for the internal functioning of the equipment itself.
Class AEquipment is equipment suitable for use in all establishments other than domestic and those directly connected to a low voltage power supply network which supplies buildings used for domestic purposes. Caution - There may be potential difficulties in ensuring electromagnetic compatibility in other environments, due to conducted and radiated disturbances.
Emissions which exceed the levels required by CISPR 11 can occur when the equipment is connected to a test object.
USA (FCC)................................ 47 CFR 15 subpart B, this product is considered an exempt device per clause 15.103
Korea (KCC)Class A Equipment (Industrial Broadcasting \& Communication Equipment)
This product meets requirements for industrial (Class A) electromagnetic wave equipment and the seller or user should take notice of it. This equipment is intended for use in business environments and not to be used in homes.

Change \#3, 430

On page 1-19, under the Note to Perfomance Specifications:
Change: [18] $>2 \mathrm{G} \Omega$ Relative Humidity Operating $<80 \%$ to $30^{\circ} \mathrm{C}<70 \%$ to $40^{\circ} \mathrm{C}$
To: $\quad[18]>10 G \Omega$ Typical
Change \#4, 201
Following the Warranty page add:

OPERATOR SAFETY SUMMARY

WARNING

LETHAL VOLTAGE

may be present on the terminals, observe all safety precautions.
To avoid electrical shock hazard, the operator should not electrically contact the meter terminals or circuits connected to these terminals. The terminal ratings permit lethal voltages of up to 1000 VAC RMS or dc to be present on these terminals.

Whenever the nature of the operation permits, keep one hand away from equipment to reduce the hazard of current flowing through vital organs of the body.

- Laboratory test equipment for measurement of controlled sources only.
- Do not connect the measurement terminals to mains or mains circuits.
- Use only current limited and controlled sources.

Change \#5, 230

On page 3-40, replace the Tolerance for $200 \mathrm{M} \Omega$,

$200 \mathrm{M} \Omega$	$\pm 0.00870 \mathrm{M} \Omega$

Instrument Security Procedures

Model:

8508A

Product Name:

8508A Reference Multimeter

Instrument Description:

The Fluke 8508A is an 8.5-digit resolution instrument designed specifically for metrologists. With superior accuracy and stability over a wide range of measurements, the 8508A is designed to serve as a versatile precision measurement tool for calibration laboratories that must meet increasingly stringent measurement uncertainty analysis requirements demanded by ISO 17025 , as well as the need for increased productivity.

Memory Description:

The Fluke 8508A has the following memory devices:

1. SRAM 256 kB, Contains run time data and temporary configuration data, input zero correction data.
2. PROM 256 kB Memory. Contains embedded program and associated storage area. It contains no user data.
3. EEPROM 16 kB . This contains user-defined data such as bus address, PRT coefficients, HF corrections.
4. EEPROM 48 kB . This contains calibration constants.

Memory Cleaning Instructions:

1. SRAM 256 kB , This area is volatile and contents are lost on power down.
2. PROM 256 kB Memory. This area is programmed at manufacture and cannot be cleared.
3. EEPROM 16 kB . To set the NV stores (PRT data, bus address, contrast etc) to their default state put the 8508 into calibration mode using the switch on the rear panel. Turn the instrument on. Press the 'CAL' button on the front panel. Then select the 'Special' softkey. Then the 'ClrNV' softkey, and then the 'ALL' softkey. After a short delay, the NV stores will be cleared. Power off the instrument and move the cal switch on the rear panel to the Disable position.
4. EEPROM 48 kB . There are no user defined items of data stored in this area and cannot be cleared.

[^0]: PORTIONS REPRINTED
 WITH PERMISSION FROM TEKTRONIX INC
 AND GERNER DYNAMICS, POMONA DIV.

