of

CLASS C-21-HLD

 PRIMARY FREQUENCY STANDARD```
EORM 233
```



GENERAL RADIO COMPANY CAMBRIDGE. . MASSACHUSETTS, U.S.A.

# INSTRUCTIONS FOR <br> INSTALLATION AND OPERATION OF 

## CLASS C-2I-HLD PRIMARY FREQUENCY STANDARD

ENGINEERING DEPARTMENT
GENERAL RADIO COMPANY
CAMBRIDGE, MASSACHUSETTS, U. S. A.

Type 693-B Syncronometer

Type 692-B Multivibrator
1 KC

10 KC

50 KC

100 CYCLES

Type 698-A Duplex Multivibrator
9 - 11 KC

Terminal Strip

Type 690-D Piezo Electric
Oscillator
Type 691-C Temperature-Control
Un1t

Type 694-C Control Un1t

Type 696-C Power Supply


FIGURE 1. Class C-2l-HLE Standard- equency Assembly for complete a-c operation. For floating-battery operation, the Type 696-C Power Supply and the blank panel are replaced by a Type 695-C Charging Unit.

## FOREWORD

This book is an installation and operating manual for a coordinatedeassembly of individual instruments designed to furnish accurately-known reference frequencies distributed over the entire radio spectrum. fies this assembly in a general way, but for a complete specification the type numbers of the individual instruments are required.

The assembly consists of the followling components. There are two possible book applies to both:

Type 693-B Syncronometer
Type 692-B Multivibrator (1-kc)
Type 692-B Multivibrator (10-kc
Type 692-B Multivibrator ( 50 kc )
Type 692-B Multivibrator ( 100 cycles)
Type 698-A Duplex Multivibrator
Type 691-C Constant Temperature Unit
ype 690-D Pezo Oscillator
Type 694-C Control Unit
COMPLETE A-C OPERATION
When the assembly is intended for operation without batteries from the 60cycle line a Type 696-C Power Supply is used.

## FLOATING-BAT'TERY OPERATION

Where trickle-charged battery operation is desired, Type 695-C Charging Unit is used. Each of these power-supply units causes minor changes in some of the aux11ar are given in rull detail on page 35 .

The engineering department of the help with the solution of problems arising from the use of this primary frequency standard. Reports outlining details of the performance of the assembly are always gratefully received.

## T.ABLE OF CONTENTS

Part Title ..... Page
PART I Fundamental Principles ..... 1
PART II Description of Individual Instruments,3
Type 694-C Control Unit ..... 3
Type 691 C Constant Temperature Unit ..... 4
Type 690 D Piezo Oscillator. ..... 5
ype 676-B Quartz Bar ..... 5
Type 692 B Multivibrators. ..... 8
Type 698 A Duplex Multivibrator. ..... 11
Type 693-B Syncronometer ..... 13
Type 695 C Charging Unit ..... 15
Type 696 C Power Supply ..... 17
Type 697 Cables. ..... 19
FART III Installation and Adjustment. ..... 26
PART IV Instructions for Operating Complete A C Assembly ..... 27
ART V Operating Instructions for Floating Battery Assembly .....  28

## PART I

## FUNDAMENTAL PRINCIPLES

PURPOSE The primary frequency standard is destane to supply for lab as dosigned frer oratorys, ach of which is known with an quencles, each of which is known with an accuracy of five parts in ten million or entire communication spectrum, all of which are derived from and controlled by a single high precision standard of frequency.

DESCRIPTION Since frequency is measured in cyctes per second, the element of time enters directly into the


FIGURE 2. Basia principle of a primary standard of frequency
determination of frequency. In the final analysis, the exact measurement of frequency consists of counting a number of operations of a given type and dividing by the exact time interval in which they ocunid An oscillator or generator may be as uniquely defined in terms of its period between them being $f$ irequency, the elemen of time, therefore, is of $\frac{1}{T}$. fundamental importance in the precision determination of frecirency. A primary standard of frequency is defined as one whose frequency is determined directly by comparison with mean solar time. The General Radio clay C 21 lis Pry under this classification.

Figure 2 is an outline chart which shows without confus detail the basic principles of this primary frequency stan-
dard. A source of radio frequency voltdard is first established, the frequency of which is nearly enough constant to justify the statement that its instantaneous frequency deviates rrom its mean frequency by a negligibly small amount. Apparatus is next provided for counting the number of oscillations executed by this frequency standard during a standard time interval, which, for conrenience, may take the fort of a clock. The time interval usually choThe total number of oscillations executed by the standard in one mean solar day, divided by the number of seconds in the day gives its mean frequency in cycles per second.

In order that the output frequencies needed for use in measurements may be secured, the conversion equipment which is necessary for the reduction of the frequency or the working standard to the value employed in operating a synchronous motor driven clock is utilized. This equipment merely derives the desired frequencies (which may be expressed as harmonics and subharmonics of the frequency of the working standard) by frequency multiplication and division

FUNCTIONAL ARRANG:MENT Figure 3 shows the actual primary in more detal The working standard is a temperature controlled piezo electric quartz crystal oscillator. The frequency of the working standerd is chosen as 50 kilocycles. For special work, other frequencies may be more suitable. Both the timing and conver-
sion functions are performed by two multi vibrators operating as frequency dividers, t rundameal for and absolute control of the working-standard oscillator. The l-kc output voltage of the second multivibrator is amplified to operate a syncronometer which is so geared that when the driving voltage has a fre quency of exactly lkc , the symcronometer keess correct time. A means of comparing the indicated syncronometer time with stan card time as given by radio or other time signals completes the timing sequence.

The "useful output" is derived from the harmonics of the $10-\mathrm{kc}, 1 \mathrm{kc}$ and $100-$ cycle multivibrators as well as from the is aperated at a fundemental prequency
equal to that of the working-standard oscillator. Since each of the "useful out put frequencies is derived from the work ing standard by harmonic frequency multithe same percentage accuracy as that with which the prequency of the working stand ard is known. ard is known.
units membly contains, in addition to control panel, a temperature-control unit and a power-supply unit.

The General Radio type numbers of the units are listed in the Foreword. For brief descriptions of the individual units the user is referred to Part II which fol lows, Figure 1 is a photograph of the assembly


FIGURE 3. Schematic representation of a Class C 2l-HLD Primary Frequency Standard showing the frequency distribution of the standard harmonics it makes available for frequency measurements

## PART II

## DESCRIPTION OF INDIVIDUAL INSTRUMENTS

The following pages give briep descriptions and show the complete wiring diagrams for each of the component instru ments of the Class C-21 HLD Primary Fr quency Standard. It is intended that these descriotions will serve as a summary op the operating principles for each compo nent and at the same time be complete enough to make possible an intelligent search for trouble should any operating difficulties arise.

It has been previously pointed out that two different types of power supply equipment were avallable and that a cholce between them was made when the order for this primary frequency standard was placed with the General Radio Company. The completely a-c operated assembly uses a
ype 696 C Power Supply and the floating battery-operated assembly uses the Type 695-8 Charging Unit. These two instruments are described separately and on page 19 is explained the difference between the quires.

The alternative type of power-supply equipment can be obtained at any time, if desired, by ordering the new power supply unit and the new interconnecting cable that its use requires. When changing over from floating battery operation (with the Type 695 C Chargirg Unit) to complete a-c operation (with the Type 696-C Power Sup ply) it is advisable to order a Type 480 cer Panel to 911 out the rack.
Prices will be quoted on request.

TYPE 694-C CONTROL UNIT

On the Type 694 C Control Unit are mounted the necessary meters and controls temnerature unit. The wiring for both these Dieces of apparatus (See the follow ing pages) should be studied in connection
with the wiring diagram for the control unit.
fovision is made for operation or the temperature-control unit fror either ary 230 volt supply, by change or pri mary connections to transformer T 1 .

PARTS LIST



FIGURE 4. Wiring diagrem for Type 694-C Control Unit

This unit is the temperature control unit for the Type 676 B Quartz Bar. The unit consists of two temperature control boxes, one inside the other.

The two temperature control boxes are in size. Each box consists of:
(1) A balsa insulating layer.
(2) A layer of distributed heaters.
(3) An aluminum distributing layer. ting layer. layer. ${ }_{\text {(6) A second asbestos pressboard }}$ attenuating layer.
(7) A third aluminum distributing layer.

The principles of operstion and the design considerations will not be discussed here, but are fully covered in an article previously published (see reference 4, page 31. ).

It should, however, be pointed out that the use of a two stage unit makes possible a very precise control of temnera gainst only the temperature fluctuations remaining from the operation of the outer unit. If the outer unit reduces the fluc tuation in room temperature by a factor, $n$, then in the inner unit the total reduction is of the order of $n^{2}$.

PARTS LIST
THERMOMETERS
INNER: Type 139489
OUTER: Type 139481

T'HERMOST'ATS
NNER: Type 139503600 OU'TER: Type 139 503-550

FUSI BLE LINKS
Type 547-50

LAMPS
W-1 = Mazda 44
N-2 = Mazda 44

The temperature of the inner box of the temperature control unit fluctuates less than 0.010 C . for changes in room temperature from 50 to $50^{\circ} \mathrm{C}$ ( $\approx 00$ to 1220 F ). the ultimate frequency stability of the system. The outer unit controls to better than $0.1^{\circ} \mathrm{C}$.

A diagram of the heat control circuits is shovm in Figures 4 and 5. Rriefly, the system operates as follows:

When the temperature is below its oporating value, the end of the mercury column in the thermostat is below the upper contact, the winding of the relay is energized, the armature of the relay is closed, and current is supplied to the heaters. Under this condition, the heat indicator lamp is lighted.

When the temperature rises to such a value that the mercury colurin reaches the upper contact, the winding of the relay is short circuited, anc the armature chrcuit turning off the heat indicator lamp. When the temperature at the thermostat drops ifhempere ar ain as a cycle Fusible link
outer and crystal placed in the ina protection against damage to the tempera-ture-control unit or its contents should the heat control circuit fall. If the temperature should ever reach about $65^{\circ} \mathrm{C}$, the links melt and open the heater circuits.


FIGURE 5. Wiring diagram for Type 691 C Constant Temperature Unit

## DESCRIPTION OF INSTRUMENTS

## TYPE 690-D PIEZO-ELECTRIC OSCILLATOR

This unit consists of a piezo electric oscillator, an isolating output amplifier and an elementary vacuum tube volt meter for indication of oscillation. The oscillator employs a bridge circuit, in which the crystal operates at, or very near, series resonance. The complete cir cuit diagram is given in Figure 6.

The oscillator circuit consists of a high gain tuned amplifier stage, $V$ l, working into a phase inverter stage, $V$, quartz bar, $Q$ with its series reactance quartz bar, Q 1, with its series reactance and the lamp, $P$ 1. The output of the bridge is taken to the arid of the ampli fier V 1.

On starting up the oscillator, the lamp P 1 is cold and its resistance is low. anced, the large and in proper phase to produce oscil lation. Oscillation builds up rapidiy and as it does so, the lamp resistance begins to increase, bringing the bridge toward balance. As this occurs, the bridge out put decreases, decreasing the feedback voltage and decreasing the amplitude of oschliation. Equilibriun is reached when the bridge is just equal to the wain from
the output to the input of the bridge, through the amplifier. The amplitude of oscillation is thus automatically held at a small and practically constant level, without any limiting or distortion taking place in the tube circuits.

The frequency of oscillation is deter mined wholly by the quartz crystal, operating at its series resonant frequency, when there is no phase-shift in the amplithe crystal the reactan been checked for zero phase shift, and the adjustments locked. No appreciable phase adjustments locked. No appreciable phase time. The quartz crystal is adjusted of frequency when the series reactance is practically zero. Any minor changes in crystal frequency can then be corrected by moving C 11 from its reference setting. Increasing the dial reading will increase the oscillator frequency. The total change in frequency, over the range of C 11, is approximately plus or minus 5 parts per million. The temperature coefp1cient of the crystal oscillator is from 0.5 to 1.5 parts per million per degree Centigrade. Changes in sujply voltages, changes in frequency.

## TYPE 676-B QUARTZ BAR

This quartz bar and its mounting are the result of considerable study and research in the General Radio laboratories. The design of the holder is such that max imum stability and freedom from external effects is obtained. The bar vibrates a long its longest dimension in a direction perpendicular to 1ts electric axis. Under these conditions, the point of minimum mo tion is at the geometrical center of the plated faces, and the bar is clamped at these points.

The two plates or "baffles" near the end of the bar are designed to minimize ends. These air waves are reflected the nearby surfaces, and, if the reflected waves are not in phase with the m.tion of the bar, an appreciable reactive comonent
s introduced in the crystal impedance as well as an increase in its damping factor. The baffles are set at the point which results in maximum crystal amplitude which nance occurs. Under this condition, the preration of the bar is areatly loproved and the epfect of changes in atmospheric pressure is minimized.

The air gap usually existing between the electrodes and the quartz bar is avoided by forming the electrodes directly on quency variations caused by variations in air gap (which are very appreciable in most air gap type mountings) but results also in much improved electrical performance.

PARTS LIST
TYPE 690-D PIEZO OSCILLATOR
(Figure 6)

|  |
| :---: |
| Condensers |
| $\mathrm{C}-2=100$ |
| $\mathrm{c}-3=0.0002$ |
| $C-4=0.01 \mu \mathrm{f}$$\mathrm{C}-5=0.5 \mu \mathrm{f}$ |
|  |  |
|  |
| $\mathrm{C-7}=1 \mu \mathrm{f}$ |
| $\mathrm{C}-8=0.01 \mu \mathrm{f}$ |
| $\mathrm{C}-9=0.01 \mu \mathrm{f}$ |
| $\begin{aligned} & \mathrm{C}-10=0.025 \mu \mathrm{f} \\ & \mathrm{C}-11=325 \mu \mu \mathrm{f} \end{aligned}$ |
|  |  |
|  |
| . 02 |

Resistors
Resistors

$$
\begin{aligned}
& R-3=1 N ? \\
& R-4=560 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{R}-6=2400 \Omega \\
& \mathrm{R}-7=370 \Omega \\
& \mathrm{R}-8=2700 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{R}-9=2700 \Omega \\
& \mathrm{R}-10=4700 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& R-12=15000 \\
& R-13=390 \Omega \\
& R-14=2000
\end{aligned}
$$

Quartz Bar
$Q=$ Type $676-$ B


$$
\begin{aligned}
& R-1=220 \Omega \\
& R-2=15000
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{R}-2=15000 \\
& \mathrm{R}-3=1 \mathrm{M}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{R}-4=560 \Omega \\
& \mathrm{R}-5=2600 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{R}-8=2700 \Omega \\
& \mathrm{R}-9=2700 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{R}-10=4700 \Omega \\
& \mathrm{R}-11=4700 \Omega \\
& \mathrm{R}-12=15000 \Omega
\end{aligned}
$$



FIGURE 6. Wiring diagrams for Type 690-D Piezo Oscillator

$$
\begin{aligned}
& -1=1 \mu \mathrm{f} \\
& \begin{array}{l}
c-2=100 \mu \mu \mathrm{f} \\
c-3=0.00025 \mu \mathrm{f}
\end{array} \\
& -4=0.01 \mu \mathrm{f} \\
& -6=0.5 \mu \mathrm{f} \\
& \begin{array}{l}
\mathrm{C}-7=1 \mathrm{\mu f} \\
\mathrm{C}-8=0.01 \mu \mathrm{f}
\end{array} \\
& \begin{array}{l}
\mathrm{C}-9=0.01 \mu \mathrm{f} \\
\mathrm{C}-10=0.025 \mu \mathrm{f}
\end{array} \\
& \begin{array}{l}
C-11=325 \mu \mu \mathrm{f} \\
C-12=0.00025
\end{array}
\end{aligned}
$$

## TYPE 692-B MULTIVIBRATORS

Tne multivibrator is an oscillating system which falls in the general class of relaxation oscillators". In practice it fier with the output coupled back to the indut, which causes it to "motor-boat" at frequency determined by the resistance and capacitance values in the circuit. This type of oscillation kas a highly dis torted waveform, and the output voltage contains hundreds of harmonics. Although unstable when operated by itself, the multivibrator is readily controlled by intro ducing into its circuit a small voltage from another oscillator, the frequency of which is in the vicinity of the fundanental or a harmonic or the uncontrolled multivibrator frequency. Under this condi tion, the fundamental frequency of the mul tivibrator will then assume a value equal or to this frequency divided by in intecer. When the multivibrator is in control small changes in its circuit constants and oper ating voltages do not change its frequency which is entirely determined by the frequency of the controlling source.

If the frequency of the controlling tandard is P , then any harmonic frequen as

$$
f_{n}=\frac{f_{c} n}{n}
$$

where m is the ratio of the standard fre quency to the multivibrator funcamental 1.e., the factor by which the crystal fre quency is divided, and $n$ is the order of When the frequency division ratio $m=\frac{\rho_{c}}{\rho}$ is an odd whole number, best control is obtained if the control voltage is ap olied to only one of the multivibrator tubes, but,if an even ratio is desired, it is best to introduce the control voltage in both tubes. The Type 692-B Multivibra tor is provided with a switch by means of ho che bith two positions of this switch are engraved ODD and EVEN respectively.

Control from a source whose erequency is a subharmonic of the multivibrator fundamentel is, in general, difficult to real quency contains an appreciable harmonic whose frequency corresponds to that of the multivibrator fundamental, this harmonic may be filtered and amplified and used as a controlling voltage.

In the Type 692 B Multivibrator an input amplifier is provided, through which the controlling voltage is introduced. in is done so that not only nay the input im tion e the unit be high but the reac ling source may be kept small. Two output amplifiers are provided, either or both of which may be used as required. One, the CONTROL OUTPUT, is primarily intended for use when several multivibrators are opera output waverorm while by nors sinusol dal pundemental prequency ro or HARMONIC OUTPUT, is Durposely arranged to accentuate the higher harmonics of the multivibrator frequency in urder that these may be used in frequency measurements. The output impedance is roughly 65 ohms, for use with shielded cables.

In the Class C-21-HLD Primary Frequency Standard four multivibrators are employed. A $50-k c$ unit is used to obtain a large number of harmonics of the crystal frequency; a $10-k c$ unit divides the crystal frequency by five and provides a large number of harmonics at multiples or 10 kc , the $1-\mathrm{kc}$ unit dics which is 1 soth of the crystal er (ike for operation of the syncronometer; the 100 cycle unit divides the 1 kc erequency by 10 and provides output irequencies which are very useful in the audio-frequency range. wiring diagram of the Type 692-B Multivibrators is given in Figure 7. The units are similar mechanically for the irequencies used ard differ electrically only in the constants as listed in parts

PARTS LIST
TYPE 692-B MULTIVIBRATORS
(Common Condensers
(Common $\mathrm{t} \frac{\text { Resistors }}{\text { all Frequencies) }}$
$\mathrm{R}-1=1 \mathrm{MR}$
$\mathrm{R}-2=47 \mathrm{k} \Omega$
$\mathrm{R}-3=2200 \Omega$
R
$\mathrm{R} 4=18 \mathrm{k} \Omega$
$\mathrm{R}=5=5 \mathrm{k} \Omega$
$\mathrm{R}-5=5 \mathrm{k} \Omega$
$\mathrm{R}-12=1 \mathrm{M} \Omega$
$\mathrm{R}-12=1 \mathrm{M} \Omega$
$\mathrm{R}-13=47 \mathrm{k} \Omega$
$\mathrm{R}=14=2200 \mathrm{k}$
$\mathrm{R}-14=2200 \Omega$
$\mathrm{R}-15=18 \mathrm{k} \Omega$
$\mathrm{R}-16=1500 \Omega$
$\mathrm{R}-21=5 \mathrm{k} \Omega$

## Tubes

 $\mathrm{V}-1=\mathrm{RCA} 6 \mathrm{~J} 5 \mathrm{C}$ $v-1=R C A 6 J 5 C$| $V-2=R C A ~ 6 J 5 G$ |  |
| :--- | :---: |
| $V-3=$ RCA 6J5G |  |
| $V-4=R C A 6 J 5 G$ | Fuses |
| $V-5=R C A 6 J 5 G$ | (Bussmann $7-A G)$ |
|  | $F-1=5 \mathrm{a}$ |

## P1lot Lamp

$\mathrm{F}-1=5 \mathrm{a}$
$\mathrm{F}-2=0.2 \mathrm{a}$
P-1 = 6.3 v 139-939
$C-1=0.002 \mu \mathrm{f}$
$\mathrm{C}-2=1.0 \mu \mathrm{f}$
$\mathrm{C}-3=1.0 \mu \mathrm{f}$
$\mathrm{C}-4=0.02 \mu \mathrm{f}$
$\mathrm{C}-10=1.0 \mu \mathrm{f}$
$\mathrm{C}-11=1.0 \mu \mathrm{f}$
$\mathrm{C}-15=1.0 \mu \mathrm{f}$
$\mathrm{C}-16=1.0 \mu \mathrm{f}$

## Switches

$\mathrm{S}-1=$ DPST 139-333
$\mathrm{S}-2=\mathrm{SPDT}$ 139-320

|  | 100 CYCLES | 1 KC | 10 KC | 50 KC |
| :---: | :---: | :---: | :---: | :---: |
| R-6 = | $40 \mathrm{k} \Omega$ | $25 \mathrm{k} \Omega$ | 7,500 |  |
| $\mathrm{R}-6 \mathrm{~A}=$ | $20 \mathrm{k} \Omega$ | $12.20 \mathrm{k} \Omega$ | 20 $10 \mathrm{k} \Omega$ | 10 k |
| R-7 | 12,500 | 12,500 ${ }^{30}$ | $20 \mathrm{k} \Omega$ $20 \mathrm{k} \Omega$ | $\begin{gathered} 0 \\ 20 \mathrm{k} \Omega \end{gathered}$ |
| R-8 | $30 \mathrm{k} \Omega$ | $30 \mathrm{k} \Omega$ | 7,500 20 | $20 \mathrm{k} \Omega$ $10 \mathrm{k} \Omega$ |
| R-9 | $12.40 \mathrm{k} \Omega$ | 12.500 k / ${ }^{\text {c }}$ | 7,500 <br> 20 <br> 8 | $10 \mathrm{k} \Omega$ |
| R-10 $=$ | 12,500 $\Omega^{\text {a }}$ | 12,500 ${ }^{30} \mathrm{k}$ | $20 \mathrm{k} \Omega$ $20 \mathrm{k} \Omega$ | $\begin{gathered} 0 \\ 20 \mathrm{k} \Omega \end{gathered}$ |
| $\mathrm{R}-11=$ | $30 \mathrm{k} \Omega$ | ${ }_{30}{ }_{0} \mathrm{k} \Omega$ | $400 \mathrm{k} \Omega$ | $20 \mathrm{k} \Omega$ $4.7 \mathrm{k} \Omega$ |
| $\mathrm{R}-17$ $\mathrm{R}-18=$ | 0 | 0 | 4.7 k ¢ 165 S | 4.7 k 165 |
| $\begin{aligned} & R-18= \\ & R-19= \end{aligned}$ | ${ }_{18}^{0} \mathrm{k} \Omega$ | 0 $18 \mathrm{k} \Omega$ | 165 \% | $\begin{array}{r} 165 \Omega \\ 0 \end{array}$ |
| $\begin{aligned} & R-19= \\ & R-20= \end{aligned}$ | $18 \mathrm{k} \Omega$ $1.8 \mathrm{k} \Omega$ | $1.8 \mathrm{k} \Omega$ | $1.8 \mathrm{k} \Omega$ | $1.8 \mathrm{k} \Omega$ |
| C-5 = | $0.05 \mu \mathrm{f}$ | $0.0055 \mu \mathrm{f}$ | $0.0016 \mu \mathrm{f}$ | $0.00035 \mu \mathrm{f}$ |
| c-7 = | $0.057 \mu \mathrm{f}$ | $0.0055 \mu \mathrm{f}$ | $0.0016 \mu \mathrm{f}$ | $0.00035 \mu \mathrm{f}$ |
| C-9 = | $0.025 \mu \mathrm{f}$ | $0.025 \mu \mathrm{f}$ | $0.002 \mu \mathrm{f}$ | $0.002 \mu \mathrm{f}$ |
| $\mathrm{C}-12=$ | $0.5 \mu \mathrm{f}$ | $0.025 \mu \mathrm{f}$ | $0.002 \mu \mathrm{f}$ | $0.002 \mu \mathrm{r}$ |
| $\mathrm{c}-13=$ | $0.005 \mu \mathrm{f}$ | $0.005 \mu \mathrm{f}$ | $0.0001 \mu \mathrm{f}$ | $0.0001 \mu \mathrm{f}$ |
| $\mathrm{C}-14=$ | $0.025 \mu \mathrm{f}$ | $0.025 \mu \mathrm{f}$ | $0.002 \mu \mathrm{f}$ | $0.002 \mu \mathrm{f}$ |
| $\mathrm{C}-17=$ | $3.0 \mu \mathrm{f}$ | $1.0 \mu \mathrm{f}$ | $1.0 \mu \mathrm{f}$ |  |
| L-1 $=$ $\mathrm{L}-2=$ |  |  | 8 mh 5 | $\begin{aligned} & 8 \mathrm{mh} \\ & 5 \mathrm{mh} \end{aligned}$ |
| L-3 = | 500 mh | 500 mh |  |  |
| L-4 $=$ | 20 h | 20 h |  |  |



The Type 698-A Duplex Multivibrator provides standard frequency harmonics at multiples of either 9 or 11 kilocycles. Selection of the operating frequency is made by means of a switch. It is used primarily in frequency measurement to overcome the difficulties encountered when ery low beat rrequencies are obtalned beharmonics of the $10-\mathrm{kc}$ multivibrator. For any frequency being measured (except 990 kc and multiples thereof), if a very low beat frequency is obtained against 10-kc harmonics, beats of $1,2,3,4$ or 5 kc olus or minus the small frequency difference will be obtained when the duplex multivibrator is used.

The principles of operation of the Type 698 A Duplex Multivibrator are identical with those of the Type 692 B Multivibrators (page 8). The circuit arrangement of the duplex multivibrator differs only in the addition of switching facillties for changing from 9 to 11 kc and for used only in radio frequency measurements, the control output amplifier is omitted. Special selective filters are incorporated in the unit for obtaining 90 kc and 110 kc control voltages (which control, respectively, the 9 kc and $11-\mathrm{kc}$ fundamental frequencies) from the output of the 10 kc multivibrator. In this manner fundamental frequencies which are not integral submultiples of 50 kc are obtainable.

Resistors


L l = 8 mh
$\mathrm{L}-2=2-139-597$ in series
$\mathrm{L} 101=32.5 \mathrm{mh}$
$\mathrm{L}-102=32.5 \mathrm{mh}$

Tubes
$\mathrm{V}-1=\mathrm{RCA} 6 \mathrm{~J} 5 \mathrm{G}$
$V-2=R C A 6 J 5 G$
$V-3=$ RCA 6 J 5 G

Condensers

| $\mathrm{C}-1$ | $=0.002 \mu \mathrm{f}$ |
| ---: | :--- |
| $\mathrm{C}-2$ | $=1.0 \mu \mathrm{f}$ |
| $\mathrm{C}-3$ | $=1.0 \mu \mathrm{f}$ |
| $\mathrm{C}-4$ | $=0.02 \mu \mathrm{f}$ |
| $\mathrm{C}-5$ | $=0.0016 \mu \mathrm{f}$ |
| $\mathrm{C}-7$ | $=0.0016 \mu \mathrm{f}$ |
| C 13 | $=0.0001 \mu \mathrm{f}$ |
| $\mathrm{C}-14=0.002 \mu \mathrm{f}$ |  |
| $\mathrm{C}-15=1.0 \mu \mathrm{f}$ |  |
| $\mathrm{C}-16=1.0 \mu \mathrm{f}$ |  |
| $\mathrm{C}-17=1.0 \mu \mathrm{f}$ |  |
| $\mathrm{C}-101=40-100 \mu \mu \mathrm{f}$ |  |
| $\mathrm{C}-102=40-100 \mu \mu \mathrm{f}$ |  |
| $\mathrm{C}-103=0.002 \mu \mathrm{f}$ |  |
| $\mathrm{C}-104=40100 \mu \mu \mathrm{f}$ |  |
| $\mathrm{C}-105=40-100 \mu \mu \mathrm{f}$ |  |
| $\mathrm{C}-106=0.002 \mu \mathrm{f}$ |  |
| $\mathrm{C}-107=40-100 \mu \mu \mathrm{f}$ |  |
| $\mathrm{C}-108=40-100 \mu \mu \mathrm{f}$ |  |
| $\mathrm{C}-109=0.00025 \mu \mathrm{f}$ |  |
| C |  |

Fuses
$F-1=5 a$
$F-2=0.2 a$
Switches
$S-1=139-333$
$S-3=698-35-2$
Pilot Lamp

## TYPE 693-B SYNCRONOMETER

In this unit the necessery amplifying equipment is provided for the rurning of the syncronometer on the output voltage avallable from the multivibrator assemblies. A circuit diagram is given in Figure 9.

The voltage available for driving the clock is generally considerably in excess of the amount required for satisfactory opvider is provided for regulating the voltone the grid or the clock amplifier tube. A second amplifier clube is fed from the harmonic output of the l-kc multivibrator; the output of this amplifier is connected to the l-kc outlet on the terminal strip for supplying $l \mathrm{kc}$ harmonics to external circuits.

The syncronometer is designed and constructed so that when it is operated from a supply frequency of 1 kc , it keeps true time. The number of teeth on the rotor disc is 100; the disc, therefore, makes 10 revolutions per second. The rotation of the disc is stepped down through wormi gearrevolution per second This countershaft drives the clock train through a worm and differential gearing giving a reduction of 60 to 1 , so that the main shaft of the clock mechanism proper turns at l revolution per minute.

Interpdsed between the driving mechan1 sm and the clock train is a set of planetary differential gears which are normally locked so that the driven shaft rotates at exactly the same speed as the driving shaft.

By means of a crank inserted to the left and above the clock face, the differ in either din may be unlocked and shifted driving shaft. The shaft carries to the
and a stop-spring engaging the teeth of this gear, so that the position of the shaft on which the crank is mounted may be advanced or retarded by definite steps. Each notch of the gear corresponds to a one-half second change in the position of the second hand of the clock. If the crank ond-hand of the clock will be advanced see hale second. In this manner it is possible to set the clock while running to within plus or minus one quarter second of any desired time, without slipping the hands.

To the right of the clock face is mounted the micro dial the clock face is the time indicated by the clock may be accurately compared with time signals. The contact is driven at one revolution per second as it is mounted on the main coun tershaft. The contact is closed for about 0.95 of each second. The instant at which the contacts close may beadjusted by turning a crank inserted at the right of the clock face. If the contacts are connected across the telephones or loud speaker of a time signal receiver (from which any direct current in the output has been illtered) the operation of the cam may be adjusted so as to short-circuit all but signal. The reading of the micro-dial then gives the eraction of a second that the clock differs from the time signal. Each division equals 0.01 second. The microdial contacts may be utilized for transmission of second's pulses for laboratory purposes.

A push-button switch for operating the 60-cycle starting motor is mounted to the right of the clock mote

$$
\frac{\text { PARTS LIST }}{\text { See Figure }}
$$

## Resistors

$\mathrm{R}-1=100 \mathrm{k} \Omega$ $\mathrm{R}-2=47 \mathrm{kN}$ $\mathrm{R}-3=2200 \Omega$ $\mathrm{R}-4=50 \mathrm{k} \Omega$ $R-5=22 \mathrm{k} \Omega$ $R-6=3300{ }^{3}$ $\mathrm{R}-7=390 \Omega$

Condensers

$$
\begin{aligned}
& C-1=0.01 \mu f \\
& C-2=1.0 \mu f \\
& C-3=1.0 \mu f \\
& C-4=0.025 \mu f \\
& C-5=0.01 \mu f \\
& C-6=1.0 \mu f
\end{aligned}
$$

Fuses (Bussmann 7-AG)
$\mathrm{F}-1=5.0 \mathrm{amp}$.
$\mathrm{F}-2=0.1 \mathrm{amp}$.

## Tubes

$\mathrm{V}-1=\mathrm{RCA}$ 6J5G $\mathrm{V}-1=\mathrm{RCA}$ 6J5G
$\mathrm{V}-2=\mathrm{RCA}$ 6K6G

LUBRICATION The ball bearings are enclosed and do not require ubrication over periods of a fen years. About every three months a drop of ght clock o1l should be placed at the following points:
(a) Motor spindle worm
c) Cross-shaft worm-gear.
c) Shaft bushing projecting from
rear of clock-train, between clock-train and the differential setting mechanism.
(d) Microdial cam surface. If a squeak develops at this point, lubricate as necessary.

Every two to three years, it is advisable, but not always necessary, to dis assemble the synchronous motor and clean and lubricate all bearings.


WIRING DIAGRAM FOA 693-B SYNCRONOMETER


ELEMENTARY SCHEMATIC DIAGRAM

FIGURE 9. Wiring diagram for Type 693-B Syncronometer

## TYPE 695-C CHARGING UNIT <br> (FOR OPERATION OF ASSEMBLY <br> FROM FLOATING BATTERIES

DESCRIPTION This unit includes transformers and rectifiers for both filament and plate battery chargers
with a smoothing filter in the latter for
 use in maintaining beataries on floating charge. The necessary fuses and switches
are furinished. Meters are provided in both battery circuits to indicate the charge and discharge currents of the batteries and the voltages of both batteries. Controls are provided in both circuits for regulating the charging current. Relays are provided for automatically transfer ring the heater circuits of the temperature control unit to either a reserve bat tery or auxiliary power supply in case of fallure of the a c supply

OPERATING CHARACTERISTICS
Load Capacity and current outputs for the hi h ond lowe voltage circuits, respectively, are:

| Voltage | Current |
| :---: | :---: |
| $180-200$ volts | 100 milliamperes |
| 6 volts | 12 amperes |

Indut The input power supply is 11015 volts, 5060 cycles (or 220230 volts, as ordered).
Circuit Figure 10 is a complete circuit $\frac{\text { diragram. }}{\text { dian }}$

Separate leads are used for the char ging and load circuits to avoid introducing any hum into the assembly due to the ellter section is used in the high voltage
supply to keep the l-kc current from the lock and 1 kc multivibrator from entering the other units.

Batteries -When using this power supply, the following batteries are recomnendFor FILAMENT SUPPLY: two 6 volt, 125ampere hour storage batteries in parallel. volt, 6 ampere hour storage battery.

No blasing or other batteries are required.
Operate charging equipment to main tain battery voltages at 2.15 volts per cell.

- Auxiliary Heat Reserve--Provision is made for connecting either one of two ting the temperature control heaters dur ing an interruption in the regular 115 ng an interrup a) One pair onnection to a battery "standing by", is under continuous trickle charge from the charging equipment. It is recommended that the battery so used (desgnated "auxiliary heat reserve battery") be a duplicate of the 180- to 190 volt plate battery so that it.can also serve as a spare for plate-circuit service.
b) Another pair of wires is provided for connection to any 115 volt a c or d-c supply that is independent of the regular rerred a "auplliary heat reserve line " A battery could of course be used here but it would be necessary to charge it in dependently of the charging equipment in the assembly.

PARTS LIST

CONDENSERS
C $1=0.01 \mu \mathrm{f}$
$-2=0.01 \mu$
RESISTORS
R $1=1 \mathrm{~K}$ \&
TUBES
V $1=\mathrm{RCA}-83$

## TuScs

 Bussmann 7-AG$F 1=5 a$
$\mathrm{F}-2=5 \mathrm{a}$
F $3=1$ a
$\mathrm{F}-4=1$ a
$\mathrm{F}-5=15 \mathrm{a}$
$\mathrm{F}-6=0.2 \mathrm{a}$
$\begin{aligned} \mathrm{F}-6 & =0.2 \mathrm{a} \\ \mathrm{F} 7 & =15 \mathrm{a}\end{aligned}$
$F-8=0.2 a$



LLEMENTARY SCHEMATI DIAGRAM

FIGURE 10. Wiring diagram for Type 695 C Charging Unit


## TYPE 696-C POWER SUPPL

 (FOR OPERAT ION OF ASSEMBLY FROM A-C LINE)DESCRIPTION The unit includes a transformer for furnishing the proper filament and plate voltages, a rec tifier and filter for the plate supply. A manual regulator is provided for regulaing the voltages and necessary switches, Puses and meters are included. In cases
where interruptions of the supply are in where interruptions of the supply are in
frequent, or are not objectionable, the frequent, or are not objectionable, the
primary frequency standard may be operated with this supply without batteries of any kind.

OFERATING CHARACTERISTICS Load Capacity --The voltage and current outputs for the high-and low voltage circuits are respectively
 ate from 110-115 volt, 5060 cycles or 220-230 volts) by change of transformer connections. is given in Figure 11.

Separate transformer windings and leads are provided for the f1lament circuits of each of the units of the assembly. An extra filter section is used on the high voltage supply to keep the 1000 -cycle current in the clock and 1 kc multivibra tor from entering other units.

$\mathrm{V}-1=\mathrm{RCA} 8$
P1lot Lamp
$\mathrm{P}-1=6.3 \mathrm{v} .139939$

## TYPE 697 CABLES AND TERMINAL STRIP



ELEMENTARY SCHEMATIC DIAGRAM

| ITEM |  | START |  |  | FINISH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CODE | WIRE | $\begin{aligned} & \text { INSTR. } \\ & \text { NO. } \\ & \hline \end{aligned}$ | TERMINAL NO. | $\begin{aligned} & \text { INSTR. } \\ & \text { NO. } \end{aligned}$ | TERM INAL NO. |
| **619 E Output (Phones) | R | $\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~S} \end{aligned}$ | 619-E | Left Socket No. 11 Left Socket No. 12 No Connection | 612 C | 5th Socket No. 9 5th Socket No. 10 5th Socket No. 12 |
| 614 B Output | S | H | 614 B | Left Socket No. 8 Left Socket No. 12 No connection | 612-C | 5th Socket No. 11 5th Socket No. 12 5th Socket No. 12 |
| CIRCUITS OUT OF TYPE 612-C |  |  |  |  |  |  |
| $\begin{aligned} & 617 \text { C } \\ & \text { Input } \end{aligned}$ | N | H | 612-C | 6th Socket No. 9 6th Socket No. 10 6th Socket No. 12 | 617 C | Left Socket No. 7 Left Socket No. 8 No connection |
| $\begin{aligned} & 619 \mathrm{E} \\ & \text { Input } \end{aligned}$ | L | H | 612-C | lst Socket No. 11 lst Socket No. 12 lst Socket No. 10 | 619-E | Left Socket No. 7 <br> Left Socket No. 8 <br> Left Socket No. 9 |
| Speaker Input | M | H <br> L <br> S | 612 C | 6th Socket No. 7 <br> 6th Socket No. 8 <br> 6th Socket No. 12 | Speaker | One side of Type 274 M Plug Other side of Type 274 M Plug <br> No connection |
| TYPE 699-A INPUT CIRCUITS |  |  |  |  |  |  |
| $\begin{aligned} & 1 \mathrm{KC} \\ & \text { Harmonics } \end{aligned}$ | G | H | 612 C | 3rd Socket No. 11 <br> 3rd Socket No. 12 <br> 3rd Socket No. 10 | 699-A | Left Socket No. 11 Left Socket No. 12 -Left Socket No. 10 |
| $\begin{aligned} & \text { (Control) } \end{aligned}$ | F | H | Terminal <br> Board | 3rd Socket No. 7 <br> 3rd Socket No. 8 <br> 3rd Socket No. 9 | 699 A | Left Socket No. 7 <br> Left Socket No. 8 <br> Left Socket No. 9 |
| *617-C <br> Output | T | H | 617 C | Left Socket No. 11 Left Socket No. 12 No connection | 699-A | Center Socket No. 7 <br> Center Socket No. 8 <br> Center Z̈cket No. 12 |
| $\begin{aligned} & \text { **619 E } \\ & \text { Output } \end{aligned}$ | U | H L S S | 619-E | Left Socket No. 11 Left Socket No. 12 No connection | 699 A | Center Socket No. 9 <br> Center Socket No. 10 <br> Center Socket No. 12 |
| 614-B Output | V | H | 612 C | 5th Socket No. 11 <br> 5th Socket No. 12 <br> 5th Socket No. 12 | 699 A | Center Socket No. 11 <br> Center Socket No. 12 <br> Center Socket No. 12 |
| MISCELLANEOUS CIRCUITS |  |  |  |  |  |  |
| 1 KC Harmonics into 614-B | K | H H | 612 C | 3rd Socket No. 11 <br> 3rd Socket No. 12 <br> 3rd Socket No. 10 | 614-B | Left Socket No. 7 Left Socket No. 12 No connection |
| 614-B Out- <br> put into <br> 617-C | W | H | 614 B | Left Socket No. 8 Left Socket No. 12 No connection | 617-C | Left Socket No. 9 <br> Left Socket No. 12 <br> Left Socket No. 12 |
| 616 C R.F. Output | X | H <br> L <br> S |  | Left Socket No. 7 Left Socket No. 8 Left Socket No. 9 | 616 C | $\begin{array}{cc} \text { Free end of cable H } \\ \text { labeled } & \text { L } \\ \text { "616" } & \text { S } \end{array}$ |

* Shilelds of these two cables connected together at Type 617-C (left socket).
** Shields of these two calies connected toge ther at Type 619-E (left socket).
And insulate from ground in both cases.

TYPE 697-40C POWER CABLE
for Floating Battery Operation

| ITEM | COLOR CODE | START |  | FINISH |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { INSTR. } \\ & \text { NO. } \end{aligned}$ | TERMINAL NO. | $\begin{aligned} & \hline \text { INSTR. } \\ & \text { NO. } \\ & \hline \end{aligned}$ | TERMINAL NO. |
| A + (Charge ) <br> A-(Charge) <br> $\mathrm{B}+$ (Charge) <br> B-(Charge) | Red No. 12 Black No, 12 Slate (Yellow) Yellow(Black) | $\begin{aligned} & 695-C \\ & 695-c \\ & 695-C \\ & 695-C \end{aligned}$ | Right Plug No. 1 <br> Right Plug No. 2 <br> Right Plug No. 3 <br> Right Plug No. 4 |  | Battery A+ <br> Battery A <br> Battery B+ <br> Battery B- |
| $\begin{aligned} & A+(D 1 s c h a r g e) \\ & A \text { \& } G \text { (Dise } \\ & \text { charge) } \\ & B+(D 1 s c h a r g e) \\ & B-\text { \& } \text { (Dis } \\ & \text { charge) } \end{aligned}$ | Red No. 12 <br> Black No. 12 <br> Slate(Yellow) <br> Yellow(Black) |  | Battery A+ <br> Battery A- <br> Battery B+ <br> Battery B- | $\begin{aligned} & 695-C \\ & 695 \text { C } \\ & 695-C \\ & 695-C \end{aligned}$ | Center Socket No. 7 <br> Center Socket No. 12 <br> Center Socket No. 11 <br> Center Socket No. 12 |
| A+( Loa d) | Red No. 12 | 695-C | Right Plug No. 7 | $\begin{array}{cc} 694 & C \\ 698 & A \\ 692-B \\ (100 \sim-1 \\ 692 & \mathrm{~B} \\ (50 & \mathrm{KC}) \\ 692-\mathrm{B} \\ (10 \mathrm{KC}) \\ 692 & \mathrm{~B} \\ (1 \mathrm{KC}) \\ 693 & \mathrm{~B} \\ 695-\mathrm{C} \end{array}$ | Right Socket No. 7 <br> Right Plug No. 7 |
| $\begin{aligned} & \text { A+(691-C) } \\ & \text { A-( Load ) } \end{aligned}$ | Orange No. . 14 Black No. 12 | $694-\mathrm{C}$ | Right Socket No. 9 <br> Right Plug No. 12 | $691-\mathrm{C}$ $694-\mathrm{C}$ $691-\mathrm{C}$ 698 692 B $(100 \sim)$ $692-\mathrm{B}$ $(50 \mathrm{KC})$ $692-\mathrm{B}$ $(10 \mathrm{KC})$ 692 B (1 K $)$ $693-\mathrm{B}$ 695 C | Right Socket No. 7 <br> Right Socket No. 8 <br> Right Socket No.' 8 <br> Right Socket No. 8 <br> Right Plug No. 8 |
| $\mathrm{B}+(1 \mathrm{KC})$ | Slate (Red) | 695-C | Right Plug No. 10 | $\begin{aligned} & 692 \mathrm{~B} \\ & (100 \sim) \\ & 692-\mathrm{B} \\ & (1 \mathrm{KC}) \\ & 693 \mathrm{~B} \end{aligned}$ | Right Socket No. 11 <br> Right Socket No. 11 <br> Right Socket No. 11 |
| B+(Load) | Slate | 695-C | Right Plug No. 11 | $\begin{gathered} \hline 694 \mathrm{C} \\ 698 \mathrm{~A} \\ 692-\mathrm{B} \\ (50 \mathrm{KC}) \\ 692-\mathrm{B} \\ (10 \mathrm{KC} \end{gathered}$ | Right Socket No. 11 <br> Right Socket No. 11 <br> Right Socket No. 11 <br> Right Socket No. 11 |
| B+(691-C ) | Slate(Black) | 694-C | Right Socket No. 10 | 691 c | Right Socket No. 11 |

CABLE DATA

|  |  |  | START |  | FINISH |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ITEM | COLOR CODE | INSTR. <br> NO. | TERMINAL NO. | INSTR. <br> NO. | TERMINAL NO, |
| B- \& G(Lofd) | Yellow | 695-C | Right Plug No. 12 | 694 C | Right Socket No. 12 |
|  |  |  |  | 691-C | R1ght Socket No. 12 |
|  |  |  |  | 698-A | R1ght Socket No. 12 |
|  |  |  |  | 692-B | Right Socket No. 12 |
|  |  |  |  | (100~) |  |
|  |  |  |  | $692-B$ $(50 \mathrm{KC})$ | Right Socket No. 12 |
|  |  |  |  | 692-B | Right Socket No. 12 |
|  |  |  |  | (10 KC) | ght |
|  |  |  |  | 692-B | Right Socket No. 12 |
|  |  |  |  | (1 KC) |  |
|  |  |  |  | 693-B | Right Socket No. 12 |



TYPE 697-41C POWER CABLE

| ITEM | COLOR CODE | START |  | FINISH |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | INSTR. NO. | TERMINAL NO. | $\begin{aligned} & \text { INSTR. } \\ & \text { No. } \end{aligned}$ | TERMINAL NO. |
| F11. (694-C) | $\begin{gathered} 2 \mathrm{Red} \text { No. } 14 \\ \text { (Twisted) } \\ \hline \end{gathered}$ | 696-C | $\begin{aligned} & \text { Center Plug No. } 3\} \\ & \text { Center Plug No. } 4 \\ & \hline \end{aligned}$ | 694-C | Right Socket No. 7 <br> Right Socket No. 8 |
| F11. (691-C) | $\begin{aligned} & 2 \text { Yellow No. } 14 \\ & \text { (Tw1sted) } \\ & \hline \end{aligned}$ | 694-C | R1ght Socket No. 9 Right Socket No. 8$\}$ | 691-C | R1ght Socket No. 7 |
| F11. (698-A) | $2 \text { Slate No. } 14$ | 696-C | $\begin{aligned} & \text { Right Plug No. } 13 \\ & \text { R1ght Plug No. } 2\} \\ & \hline \end{aligned}$ | 698-A | R1ght Socket No. 7 R1ght Socket No. 8 |
| $\begin{array}{\|c} \hline \text { F11. (E92-B) } \\ 100 \sim \\ \hline \end{array}$ | 2 Blue No. 4 | 696-C | Center Plug No. 5 Center Plug No. 6$\}$ | $\begin{aligned} & 692-B \\ & (100 \sim) \end{aligned}$ |  |
| $\begin{gathered} \hline \text { F11. }(692-B) \\ 50 \mathrm{KC} \\ \hline \end{gathered}$ | $\begin{gathered} 2 \text { Orange No. } 14 \\ \text { (Twisted) } \end{gathered}$ | 696-C | Center Plug No. 11 Center Plug No. 12 | $\begin{gathered} \hline 692-B \\ (50 \mathrm{KC}) \end{gathered}$ | R1ght Socket No. 7 R1ght Socket No. 8 |

CABLE DATA


| HEATER AND MOTOR CIRCUITS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Line Line $N\left(\begin{array}{cc}115 & \text { or } \\ 230 & \mathrm{v} \\ \text { (Trans } \\ \text { Pri. }\end{array}\right)$ | $\begin{aligned} & \text { Red (Blue) } \\ & \text { Red } \end{aligned}$ | 696-C | Right Plug No. 8 <br> Right Plug No. 9 | $\begin{aligned} & 694-C \\ & 694-C \end{aligned}$ | Center Socket No. 5 Center Socket No. 6 |
| $\begin{aligned} & \text { Line }\left\{\begin{array}{l} \text { Trans. } \\ \text { Sine } N \\ \text { Sec. } \\ 115 \text { v } \end{array}\right. \end{aligned}$ | $\begin{aligned} & \text { Green(Black) } \\ & \text { Green } \end{aligned}$ | $\begin{aligned} & 694-C \\ & 694-C \end{aligned}$ |  | $\begin{aligned} & \text { 693-B } \\ & \text { 693-B } \\ & \text { ket. } \end{aligned}$ | R1ght Sucket No. 9 <br> Right Socket No. 10 |
| Inner Heater Outer Heater Common | Red (Green) <br> Red (Yellow) <br> Green (Red) | $\begin{aligned} & 694-C \\ & 694 \text { C } \\ & 694-C \end{aligned}$ | Center Socket No. 10 Center Socket No. 11 Center Socket No. 12 | $\begin{aligned} & 691-C \\ & 691-C \\ & 691-C \end{aligned}$ | Center Socket No. 10 <br> Center Socket No. 11 <br> Center Socket No. 12 |


| Meter + Meter - | $\begin{array}{\|ll} \hline \text { Blue } & \text { (Red) } \\ \text { Blue } & \text { (Yellow) } \end{array}$ | $\begin{aligned} & 691-\mathrm{C} \\ & 691-\mathrm{C} \end{aligned}$ | Right Socket No. 9 <br> Right Socket No. 10 | $\begin{aligned} & 694-C \\ & 694-C \end{aligned}$ | Right Socket No. 1 Right Socket No. 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Inner <br> Thermostat | Black(Green) | 691-C | Center Socket No. 8 | 694 C | Center Socket No. 8 |
| Outer <br> Thermostat | Black(Yellow) | 691-C | Center Socket No. 9 | 694-C | Center Socket No. 9 |

TYPE 697-42C CABLE
Frequency Standard Signal Cable

| ITEM | CODE | START |  |  | FINISH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & \text { INSTR. } \\ & \text { NO. } \end{aligned}$ | TERM INAL NO. | $\begin{aligned} & \hline \text { INSTR. } \\ & \text { NO. } \end{aligned}$ | TERMINAL NO. |
|  | CONTROL CIRCUITS |  |  |  |  |  |
| 50 KC | A | H L S | 691-C | Left Socket No. 10 <br> Left Socket No. 12 <br> Left Socket No. 12 | $\begin{aligned} & 692-\mathrm{B} \\ & (50 \mathrm{KC}) \end{aligned}$ | Left Socket No. 7 <br> Left Socket No. 12 No connection |
| 50 KC | B | H L S | $\begin{gathered} 692-\mathrm{B} \\ (50 \mathrm{KC}) \end{gathered}$ | Left Socket No. 7 <br> Left Socket No. 12 <br> Left Socket No. 12 | $\begin{gathered} 692-\mathrm{B} \\ (10 \mathrm{KC}) \end{gathered}$ | Left Socket No. 7 <br> Left Socket No. 12 No connection |
| 10 KC | C | H | $\begin{gathered} 692-B \\ (10 \mathrm{KC}) \end{gathered}$ | Left Socket No. 10 <br> Left Socket No. 12 <br> Left Socket No. 12 | $\begin{aligned} & 692-B \\ & (1 \mathrm{KC}) \end{aligned}$ | Left Socket No. 7 <br> Left Socket No. 12 No connection |
| 1 Kc | D | H L S | $\begin{aligned} & 692-\mathrm{B} \\ & (1 \mathrm{KC}) \end{aligned}$ | Left Socket No. 10 <br> Left Socket No. 12 <br> Left Socket No. 12 | 693-B | Left Socket No. 7 <br> Left Socket No. 12 <br> No connection |
| 1 KC | E | H | $\begin{aligned} & 692-B \\ & (1 \mathrm{KC}) \end{aligned}$ | Left Socket No. 10 <br> Left Socket No. 12 <br> Left Socket No. 12 | $\begin{aligned} & 692-B \\ & (100 \sim) \end{aligned}$ | Left Socket No. 7 <br> Left Socket No. 12 <br> No connection |
| 100~ | J | H | $\begin{aligned} & 692-\mathrm{B} \\ & (100 \sim) \end{aligned}$ | Left Socket No. 10 <br> Left Socket No. 12 <br> Left Socket No. 12 | $\begin{aligned} & \text { Terminal } \\ & \text { Board } \end{aligned}$ | Center Plug No. 7 <br> Center Plug No. 8 <br> Center Plug No. 9 |

HARMONIC OUTPUT CIRCUITS

| ITEM CODE |  | START |  |  | FINISH |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | WIBE | $\begin{aligned} & \text { INSTR. } \\ & \text { NO. } \end{aligned}$ | TERMINAL NO. | $\begin{aligned} & \text { INSTR. } \\ & \text { NO. } \end{aligned}$ | TERMINAL NO. |  |
| $\begin{aligned} & 50 \\ & \text { KC } \end{aligned}$ | N | $\begin{gathered} \mathrm{H} \\ \mathrm{~L} \\ \mathrm{~S} \end{gathered}$ | $\begin{gathered} 692-B \\ (50 \mathrm{KC}) \end{gathered}$ | Left Socket No. 11 <br> Left Socket No. 9 <br> Left Socket No. 12 | Terminal Board | lst Plug No. 11 <br> lst Plug No. 12 <br> lst Plug No. 10 | And Shielded <br> Plug - 50 KC <br> 1 <br> 2 3 |
| $\begin{aligned} & 10 \\ & \text { KC* } \end{aligned}$ | R | $\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~S} \end{aligned}$ | $\begin{gathered} 692-B \\ (10 \mathrm{KC}) \end{gathered}$ | Left Socket No. 11 <br> Left Socket No. 9 <br> Left Socket No. 12 | 698-A | Left Socket No. <br> Left Socket No. <br> Left Socket No. |  |
| $\begin{aligned} & 9,10 \\ & \text { or } \\ & \text { KC } \end{aligned}$ | M | L S | 698-A | Left Socket No. 11 <br> Left Socket No. 12 <br> Left Socket No. 10 | Terminal Board | 1st Plug No. 7 <br> lst Plug No. 8 <br> 1st Plug No. 9 | And Shielded <br> Plug - 10 KC <br> 1 <br> 2 3 |

[^0]CABLE DATA

|  | START |  |  |  | FINISH |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITEM | CODE |  | INSTR. NO. | TERMINAL NO. | $\begin{aligned} & \text { INSTR. } \\ & \text { NO. } \end{aligned}$ | TERMINAL NO. |  |
| 1 KC | F | H | $\begin{aligned} & 692-B \\ & (1 . \mathrm{KC}) \end{aligned}$ |  | 693-B | Left Socket No. 11 <br> Left Socket No. 12 No connection |  |
| 1 KC | H | H | 693 B | Left Socket No. 9 <br> Left Socket No. 8 <br> Left Socket No. 12 | $\begin{array}{\|c} \text { Terminal } \\ \text { Board } \end{array}$ | 4th Plug No. 11 <br> 4th Plug No. 12 <br> 4th Plug No. 10 | $\begin{gathered} \text { And Shielded } \\ \text { Plug - } 1 \mathrm{KC} \\ 1 \\ 2 \\ 3 \end{gathered}$ |
| 100~ | G | H | $\begin{aligned} & 692-B \\ & (100 \sim) \end{aligned}$ | Left Socket No. 11 <br> Left Socket No. 9 <br> Left Socket No. 12 | $\left\|\begin{array}{c} \text { Terminal } \\ \text { Board } \end{array}\right\|$ | $\begin{aligned} & \text { 4th Plug No. } 7 \\ & \text { 4th Plug No. } 8 \\ & 4 \text { th Plug No. } 9 \end{aligned}$ | And Shielded $\begin{gathered} \text { Plug - } 100 \sim \\ 1 \\ 2 \\ 3 \end{gathered}$ |
| M1crodial | L | H | 693-B | Left Socket No. 10 <br> Left Socket No. 12 <br> Left Socket No. 12 | Terminal Board | 3rd Plug No. 11 <br> 3rd Plug No. 12 <br> 3rd Plug No. 10 | And Shielded Plug, Microdial 1 2 3 |

## PART III

 ure 1.

| pe | 693 B Syncronometer |
| :---: | :---: |
| Type 6 | 692-B Multivibrator (1 kc) |
| Type 6 | 692-B Multivibrator (10 kc) |
| Tyde 6 | 692 B Multivibrator ( 50 kc ) |
| Type 6 | 692 B Multivibrator (100 cycles) |
| Type 6 | 698 A Duplex Multivibrator (9-11 k |
| Type 6 | 697 Terminal Strip (Attached to |
| pe 6 | 691-C Constant Temperature Unit |
| Typs 6 | 694 C Control Unit |

> Instruments cormmon to both "a c opera tion" and " floating battery operation." Typs 694 C Control Unit

Type 480 P2 Blank Panel
Type $696-\mathrm{C}$ Power Supply (a c
operated)

Type 695 C Charging Unit
(a c operated)

```
\#Before mounting the Type 693-B Syncroprojecting through the bottom of the unit midway between the clock mountings at each
end of the clock. These are used to clamp
```

POWER CONNECTIONS Connect the a c power box mounted in the rear of the function

INSTALLING CABLES In the case of a ON A-C ASSEMBLY operation, all conxcepuion those to nections, with the 50- to 60-cycle mains the 115 or 230 volt, $50-$ to 60 -cycle mains, are made by plug in cables furnished with the equipment (See 1gure 1).

| INSTALLING CABLES ON | In the case of |
| :---: | :--- |
| FLOATING BATTERY | floating battery |
| OPERATED ASSEMBLY | operation, the ca |
|  | bles are fitted | OPERATED ASSEMBLY loating battery bles are fitted with 10-foot leads for connections to the plate and fllament batteries and to the aux1liary heat reserve battery" and the 15). All connections to the equipment on the rack,with the exception of the connec tions to the 115 or $23 C$ volt, 50 to 60 cycle mains, are made by plug in cables furnished with the equipment.

The long leads mentioned in the preceding paragraph are coded for connection as follows:

3 Red \#12 wires to positive (+)) 6 volt *3-Black \#12 wires to nega $\}$ Battery


| 2-Slate (Yellow Tracer) to positive $(+)$ | 180-Volt |
| :---: | :---: |
| 2 Yellow (Black Tracer) to negative ( ) | Battery |
| $\left.\begin{array}{l} 1 \text { Blue (Brown Tracer) to } \\ \text { Dositive }(+) \end{array}\right\}$ | Auxiliary |
| $\begin{aligned} & 1 \text { Yellow (Blue Tracer) to } \\ & \text { negative ( }- \text { ) } \end{aligned}$ | Heat Reserve <br> Battery † |
|  | Auxiliary Heat Reserve Line $\dagger$ |

*Can be distinguished from the other black wire by their large
PCAUTION: In order to prevent an accident-
al short circuit of the supply in use as al short circuit of the supply in use as
auxiliary heat reserve, the ends of the auxiliary heat reserve, the ends of the should be taped. All four wires should be
taped if no auxiliary heat reserve is used.

TUBES A complete set of vacuum tubes is furnished with the equipment. A complete list of the tubes supplied is giv en in the shipping list for the assembly, page 35. These should be installed as shown in the wiring diagrams for the indi vidual instruments, as given in pages 3 to 18.

Six-volt pilot lights are shipped in place in all units. (See also list of spares on shipping list, page 35. )

ADJUSTMENTS
Before heating the temperature control unit, the Type 676 B Quartz Bar should be placed in the inner compartment and the three wires soldered to the terminals provided on the base. Inspection of the thermostats should be made for broken mercury columns. If broken, warm up the thermostat in hot gether in the expansion chamber at the top gether in the expansion chamber at the top operates at $60^{\circ} \mathrm{C}$., the outer at 550 C .

Inspection should also be made to see that the thermostat and thermal fuse connections are all firmly made. These connections appear on the terminal strips at the top of both inner and outer boxes. In the front nanel the threr thermomer is the front banel. The outer thermometer is O.10C. steds. DO NOT force the thermome ters into olace. If there seems to be any obstruction, a rod or a drill may be used to clear the hole for the thermometer.

## PART IV

## NSTRUCTIONS FOR OPERATING COMPLETE A.C ASSEMBLY

## (See Part V for Floating-Battery Operation)

The following paragraphs give a.ll the information necessary for starting up an assembly in which power is derived from a Type 696 C Power Supply. If difficulties are encountered, turn to Part VI for sug estions.
In placing the equipment in operation, the temperature control should be started hours before the apparatus is to be used. It is recormmended, even though the equipment as a whole may not be operated con tinuously, that the temperature control be left on at all times.

The temperature control circuits are turned on and off by the HEAT switch moun ted at the left on the Type 694-C Control Un1t. Leave the MASTER switch on the Type 696 C Power Supply in the OFF position.

On first closing the HEAl' switch, both "inner" and outer" relays should oprate, and both heat indicator lamps should light. The thermostats will not. operate unti the heat has been applied for ture in the crystal compartment does not reach its pinal value unt1l a period of six to twelve hours has elapsed.
The final inner temperature should be $60^{\circ} \mathrm{C}$. within $\pm 0.5^{\circ}$ and it should remain constant to within $0.01^{\circ} \mathrm{C}$. The outer ther mometer should read approximately 570 C .

To place the assembly in operation proceed as follows

1. Throw MASTER switch on Type 696 Power Supply to ON. Pilot should light Set ADUST filament voltmeter, at red line.
2. Throw FIL PL switch on the Type 694 C Control Unit to ON. The filament pilot lamp should light and, after a few
moments, the PLATE meter should read. I the meter reading is 20-30 microamperes, the crystal oscillator is Nor oscillating. from 75 to 110 microamperes when first starting the meter will show a reading of 200 microamperes momentarily, decreasin quickly to the normal current.

Turn on the various multivibrators and the syncronometer in order, from the bottom toward the top of the rack. The voltage and current readings of the power supply unit are given in the test data page 32.
3. Unless adjustments have been disturbed in shipment, the multivibrators should be operating at the correct frequen ing the. multivibrators are given in Par VI.
4. To start the clock motor, press the push button on panel, thus turning on the 60-cycle supply to the starting mo tor. Due to the pull of the steady plate current the motor will not turn until the FIL PL switch is thrown to OFF momentarily. Return this switch to ON immediately. The clock rotor will now turn and pick up speed.

The motor reaches synchronous speed in about two seconds as indicated on the clock face. In most cases the 1000-cycle motor will take hold and prevent the bu cycle motor from any furcher increase in spen. is soled carries the rotor throuch symchronous speed, simply release the switch. Th 1000-cycle motor may fall into step whil coasting. If not, simply press the starting motor switch and bring the 1000 cycle motor up to synchronous speed again.

## PART V

## INSTRUCTIONS FOR OPERATING FLOATING-BATTERY ASSEMBLY

 (See Part IV for Complete A.C Operation)The following paragraphs give all the information necessary for starting up an assembly in which power is derived from a Type 695-C Charging Unit. If difficulties gestions.

In placing equipment in operation, the temperature control should be started at least twelve, and preferably twentyfour hours before the apparatus is to be used. It is reconmended that even though the equipment as a whole may not be operated continuousiy, that the temperature As sen
s supply to the Type 695-C Charging Unit is turned on, the The temperature control circuits are rned on and off by the HEAT switch mounted at the left on the Type 694-C Control Unit. On first closing this switch, both inner and outer relays should operate, and both heat indicator lamps should light. The thermostats will not operate until the heat has been applied for roughly one-half to one hour. The temperature in the crystal comnartment does not reach its inal value until a period of from six to twelve hours has elapsed. The ifnal inner temperature should be $600 \mathrm{C} . \pm$. 5 and should The outer thermometer should read approxi mately $57^{\circ} \mathrm{C}$.

To place the assembly in operation, proceed as follows:

1. On throwing on both the FILAMENT Charge and PLate charge switches on the Type 695-C Charging Unit, the Pilament and plate charging current meters should indicate. On throwing the FILAMENT-LOAD and PLATE-LOAD switches to LOAD, the filament and plate load current meters should ind1cate the total load current in each cir the batteries in a charged condition, ad just the charging current to slightly ex ceed the load current. The excess must be determined to maintain the batteries at 2.15 volts per cell.

If all the FIL-PL and FILAMENT switch-
es on each instrument are OFF when the equipment is first started, then tre fllagive no readings.
2. Throw FIL-PL switch on the Type 694-C Control Unit to ON. The fllament poments, the should light and, after a few the meter reading is $20-30$ microamperes, the crystal oscillator is NOT oscillating, When osciliating the reading should be from 75 to 110 microamperes. When first tarting, the meter will show a reading of 200 microamperes momentarily, decreasing quickly to the normal current.
Turn on the various multivibrators and the syncronometer in order, from the bottom toward the top of the rack. The oltage and current readings of the power page 32.
3. Unless adjustments have been disturbed in shipment, the multivibrators should be operating at the correct Prequening the multivibrators are given in Part VI.
4. To stert the clock motor, press the switch on the syncronometer panel, thus turning on the 60-cycle supply to the starting motor. Due to the pull of the teady plate current, the is thrown to OFF momentarily. Return this switch to ON inmediately. The clock rotor will now turn and pick up speed.

The motor reaches synchronous speed in about two seconds, as indicated on the clock face. In most cases the 1000-cycle notor will take hold and prevent any further increase in speed. The switch on the clock face may then be released. If the 60 -cycie motor carries the rotor through ynchronous speed, simply release the step while coasting. If not, simply press the starting motor switch and bring the 1000-cycle motor up to synchronous speed again.

## PART VI

## OPERATING SUGGESTIONS

After the assembly has been installed and put in operation as described in eithious adjustments is desirable.

1. CRYSTAL OSCILLATOR If the oscillator ake certain that does not operate, 6) is screwed firmly into the socket. If the oscillator still does not operate, inspect the fllament of the lamp, $\mathrm{P}-1$, for reakage or test the lamp with an ohmmeter. inally, inspect the quartz bar for displacement in the mounting due to shipment. he bar should be in allgnment in the holdr, with the bariles paraliel to the ends. The two air-gaps should be equal. The crystal should be clamped firmly enough so hat shaking the holder does not cause any isplacement or clamping of the two plated faces CAUTION. Handlo
CAUTION: leads.
2. MULTIVIBRATORS The Type 692-B Mult1vibrators should oprate at very nearly their rated frequency when no control voltage is applied, that 1s, when the control voltage adjustment is control is advanced slightly the multivibrator should go into control and remain at the controlled frequency as the control voltage is increased over quite a range. If sufficient control voltage is applied, the multivibrator frequency may be pulled up to the next higher value. Set the control voltage adjustment at about $80 \%$ of the value where this Jump occurs.

If only a very small control voltage is used, it will be found that as the frequency control is varied (by removing the snap cover on the panel end adjusting the ontrol with a screw driver) control may obtain over a narrow range. set the control in the middle of this range readjustment, proceed as follows:

Use a heterodyne recelver or hetero-dyne-frequency meter covering a range of oreferably 100 kc to 150 kc (any $50-\mathrm{kc}$ interval covering two crystal harmonics can a frequency as Dossible).

First, identify the settings for two crystal harmonics, suchas 100 kc and 150 kc, by coupling the receiver to the crystal oscillator RF OUTPUT terminal at the rear of the temperature-control unit.

Next, turn on the 50-kc multivibrator. The settings where beats are heard
should agree with those previously obtain ed, and the beat tones should be as clea and steady as when listening to the crystal oscillator directly. Control should be obtained over a wide range on the control voltage adjustment (left-hand control). Turn off the multivibrator.

Turn on the $10-\mathrm{kc}$ multivibrator using the settings given in test data. Startin at 100 kc count the zero beat points found on the recelver between this point and the 100 nc is point should be pive 'he multivibra tor is then operating at $50 / 5 \quad 10 \mathrm{kc}$. If the count gives four, the erequency is $50 / 4=12.5 \mathrm{kc}$, etc. If the multivibrator frequency is too low, adjust the frequency control toward the right until the proper Prequency is obtained; if the Prequency is too high, turn it to the left. Make the final setting by reducing the control volt age to a smail vaiue and adjusting the fre quency to the middle of the control range. These adjustments are best made when lis tening to a multivibrator harmonic which is not a crystal harmonic, such as 110 kc 120 kc , etc.

To check the l-kc multivibrator, compare the output frequency with a callbraed start the clock and compare with a watch If the clock keeps time the frequency is l kc. It it gains or loses by about $10 \%$ the multivibrator frequency must be readjusted. Obtain the final setting of the control by reducing the control voltage and setting the frequency control in the middle of the control range.

In checking the adjustments of the Type 698 Duplex Multivibrator, the following procedure is suggested.

Set the Type 619 Heterodyne Detector to 90 kc . Turn switch on Type 698 Duplex Multivibrator to 9 kc . If the duplex mulshould be pbtained Now ofeset the hetero dyne detector to obtain a low beat tone

- 'Turn the input control of the Tvpe 8 Duplex Multivibrator, upper left or panel, toward the left until the beat tone just becomes unsteady, or changes to different tone. Slightly readjust the $9-k c$ irequency adjustment, lower right or panel, to obtain original beat tone. Agair reduce input, following with frequency ad justment until the input voltage has beer reduced to a low value and the erequency control gives the correct frequency over narrow rige. Set frequency control al center of this range and leave it at this
point. Advance input control about three quarters of the way to the right. Check frequency of multivibrator to be certain it is 9 kc . This can be done by callbration of the Type 619 Heterodyne Detector or by the direct reading dial of the Type 616 Heterodyne Frequency Meter
ng the Type 619 Heterodyne Det by set ting the Type 619 Heterodyne Detector to 698 Duplex Multivibrator to 11 kc and pro ceeding as above. The same input control, upper left on panel, is used; the frequen cy adjustment is the upper right control on panel. Check frequency to be certain it is 11 kc .

When viewed from the rear, the arms or the Prequency control resistors should point almost towards each other; the upper one about stralght down, the lower about straight up.
Since the output of the selective pilter is greater on 90 kc than on 110 kc , the lower left hand control provides for equalizing the outputs. This adjustment at the factory.

DETERMINATION AND ADJUSTMENT The frequency
OF CRYSTAL FREQUENCY of the system
mining and can be corrected for errors and deviations. The timing equipment provides a means for counting the number of cycles executed by the crystal, so, to determine the average frequency over any time interval, we have only to divide the number of cycles occurring during that interval by the length of the interval in seconds. The reading of the syncronometer is a measure of the number of cycles executed by the crystal, so, if we set the syncronometer to standard time, and, arter an appreits reading with standard time, the amount by which its reading differs from the stan dard $t$ ime is a measure of the deviation of the crystal frequency from its assigned value. In practice this can be applied as follows:

Suppose we compare the syncronometer with standard time signals as transmitted by radio and find the syncronometer to be 0.12 second fast. The next day ( 24 hours later) the syncronometer is found to be 0.46 second fast. Then the time interval read on the syncronometer is 24 hours plus ( $0.46-0.12$ ) second and the frequency of the crystal oscillator is

## $\frac{86,400+(0.460 .12)}{86,400} \times 50,000$

or $50,000.195$ cycles per second.
It is generally more convenient to consider the deviation of the frequency from its assigned value, expressed in parts
per million, or other convenient Dercentage terms. Since there are 86,400 seconds in one day, one part in a million devia tion in the average frequency means that the syncronometer will gain or lose 0.0864 seconds in twenty four hours. If, then the seconds gained or lost by the syncro the deviation of the avarage frequer 1 he ded obtained, expressed in parts per million, to any and all of the frequencios derived from the assembly
Obviously, the accurate determination or the frequency depends on the time signals being correct. Actually there are small errors in the transmission, and cor rection for these will be supplied on re station.
COMPARISON OF The following inSYNCRONOMETER structions for mak WITH TIME SIGNALS ing comparisons between time kept by the assembly and time signals are based on the transmissions of servatory through NAA and NOS. There are used for transmissions at various times during 24 hours, and although occasional changes are made, there are probably few if any, places where one or more trans missions cannot be received satisfactorily. It is suggested that, if possible, these transmissions be used until the operating engineer, has become thoroughly famillar with the operation of the assembly.

To the right of the syncronometer face is mounted the micro dial, by means of which the time indicated by the syncro nometer may be accurately compared with time signals. The contact is driven at revolution per second by the main counter output terminals marked MICRO DIAL. The contacts are closed for about 0.95 second. The instant at which the contacts close may be ad fusted by turning the knurled wheel by inserting the key in the opening just to the right of the syncronometer face. If the contacts are connected across the telephones or loud speaker of a time re ceiver (from which any direct current in the output has been f1ltered)the operation of the cam may be adjusted so as to short circuit all but the beginning of each pulse of the time signal as transmitted by the U. S. Naval Observatory. This adjust ment is made by advancing the wheel from zero on the scale toward lower readings each transmitted time dot. This adjustment may generally be made to better than 0.01 second. The arrangement requires,

OPERATING SUGGESTIONS
if the readings are to be taken directly from the figures on the scale, that fractions of a second be expressed as positive increments from the last whole second. For example, if the clock were 0.30 seconds slow, the reading would be 11 h .59 m . 59.70 seconds on the syncronometer and
micro dial scales. Each division on the m1cro dial scale corresponds to 0.01 sec ond.

The micro dial contacts may be util ized for transmission of second's pulses for laboratory purposes. This is helpful, for instance, if time kept by the assembly is to be compared with time signals from a of transmision in which 61 rulsthic type or transmission in which 61 pulses or dots that the method of coincidences be used. It is thus merely necessary to compare, by aural or other means, the seconds puises from the standard with the pulses of the transmission.

GREATER PRECISION Where the reliability is great enough to of the time signals parison than the 0.01 second provided by the micro-dial, the General Radio Company is prepared to furnish a syncronometer that can be compared with time signals to better than 0.001 second. Stroboscopic means are utilized. Prices and other detalls will be supplied on request.
ADJUSTMENT OF After the frequency of
FREQUENCY
the system has been de termined by means or time signals for several the frequency to ex may be made to bring. If the adjustment be made is small, the ADJUST dial on th unit may de used.*
\#An increase in dial reading corresponds to an

## REFERENCES

 The following references can be consulted for moreinformation about the Class C-21-HLD Primary Frequency Standard

1. "'Universal' Frequency Standardization from a Single Frequency Standard", by J. K. Clapp: Journal of the Op tical Society of America and Review of Scientific In interest because this paper is the first to disclose the use of the multivibrator for frequency division.
2. "A Convenient Method for Referring Standard Frequen cy Standards to a Standard Time Interval",by L. M. Hull and J. K. Clapp: Proceedings of the Institute of Radio s also of historical interest. It describes the oper ation of the first experimental equipment from which the present primary frequency standard has evolved.
3. "Interpolation Methods for use with Harmonic Frequency Standards", by J. K. Clapp: Proceedings of the Institute of Radio Engineers, Vol.18, No. 9, September, 1930. Describes in general terms methods for interpola $t$ ing between standard harmonic freq
4. "Temperature Control for Frequency Standards" by J. K. Clapp: Proceedings of the Institute of Radio Engineers, Vol. 18, No. 12, December, 1930. Describes the design considerations behind General Radio temperature control boxes.

Approximate total plate current taken by each unit. Taken by turning off each unit and
noting plate current increase noting porate current increase turned on again.
TYPE 693 B SYNCRON:OMETER
$\qquad$ _ma

TYPE 692-B MUL'i'IVIPRATORS

| Frequency | Serial No. | Control Switch (Irıside) |
| :---: | :---: | :---: |
| 1 kc | - | EVEN |
| 10 kc | - | ODD |
| 50 kc |  | ODD |
| $100 \sim$ |  | EVEN |

TYFE 698 A DUPLEX MULI'IVIBRATOR
$\qquad$
Serizl No.
9 or 11 kc $\qquad$

TYPE 690-D PIEZO OSCILLATOR
Seriel No.
Frequency Adust
div.

TYYE 691 C CONSTANT TEMPERATURE UNIT
Serial No.
INNER Temperatur
OU'ER Temperatur $\qquad$ or.

TYPE 676 B QUARTZ BAR
Serial No.
Frequency $\qquad$ —kc.

TYPE 694-C CONTROL UNIT
Serial No
Plate Meter Reading $\qquad$ $-\mu^{a}$

TYPE 695-C CHARGING UNIT

```
Serial No.
FILAMENT LOAD
FILAMENT VO
PLATE LOAD
``` \(\qquad\)

PLATE VOLTAGE

TYPE 696-C POWER SUPPLY
Serfal No
FILAMENT VOLT
PLATE CURRENT \(\qquad\) v
-
ma
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{GENERAL' RADIO COMPANY} \\
\hline \multicolumn{9}{|c|}{VACUUM-TUBE DATA} \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
Voltages are measured between terminals shown with meter of 20,000 ohms per volt (d-c); l,000 ohms per volt (a c). \\
Currents are measured in series with terminal shown.
\end{tabular}} \\
\hline \multicolumn{3}{|r|}{SOCKET} & RIGHT & \multicolumn{2}{|l|}{} & \[
\text { V } 4
\] & LEFT as V-5 & from REAR NOTES \\
\hline \(693-\mathrm{B}\) & \(2-7\)
\(8-G n d\)
\(8-5\)
3
3
3
\(4-8\)
4 &  & 6J5G
5.6
22.5
22.5
142
11.5
- & 6K6G
5.6
17.5
17.5
123
38
155
6.5 & & - & & A \\
\hline 692 В 1 KC & \(2-7\)
\(8-G n d\)
\(8-5\)
\(3-8\)
3 & \[
\begin{array}{lll}
v & a-c \\
v & d & c \\
v & d & c \\
v & d-c \\
v & d-c \\
m a & d-c
\end{array}
\] & \[
\begin{array}{r}
6 J 5 G \\
5.8 \\
12.5 \\
10 \\
78 \\
4.7
\end{array}
\] & \[
\begin{array}{r}
6 \mathrm{~J} 5 \mathrm{G} \\
5.8 \\
0 \\
0 \\
55 \\
3.0
\end{array}
\] & \[
\begin{array}{r}
6 J 5 G \\
5.8 \\
0 \\
0 \\
60 \\
2.8
\end{array}
\] & \[
\begin{array}{r}
6 J 5 G \\
5.8 \\
11 \\
10 \\
80 \\
4.3
\end{array}
\] & \[
\begin{array}{r}
6 J 5 G \\
5.8 \\
23 \\
23 \\
147 \\
15
\end{array}
\] & A, B \\
\hline 692-B 10 KC & \[
\begin{aligned}
& 2-7 \\
& 8-G n d \\
& 8-5 \\
& 3-8 \\
& 3
\end{aligned}
\] & \begin{tabular}{l}
v a-c \\
\(v\) d c \\
v d-c \\
v 1 c \\
mad c
\end{tabular} & \[
\begin{array}{r}
6 J 5 G \\
5.8 \\
10 \\
7.5 \\
70 \\
3.8
\end{array}
\] & \[
\begin{array}{r}
\text { 6J5G } \\
5.8 \\
0 \\
0 \\
56 \\
2.2
\end{array}
\] & \[
\begin{array}{r}
6 \mathrm{~J} 5 \mathrm{G} \\
5.8 \\
0 \\
0 \\
57 \\
2.5
\end{array}
\] & \[
\begin{array}{r}
6 J 5 G \\
5.8 \\
10 \\
8 \\
67 \\
3.8
\end{array}
\] & \[
\begin{array}{r}
6 J 5 G \\
5.8 \\
12 \\
12 \\
95 \\
7.3
\end{array}
\] & A, B \\
\hline 692-B 50 KC & \[
\begin{aligned}
& 2-7 \\
& 8-G n d \\
& 8-5 \\
& 3-8 \\
& 3
\end{aligned}
\] & \begin{tabular}{l}
v a-c \\
v d-c \\
v d-c \\
v d c \\
ma d-c
\end{tabular} & \[
\begin{array}{r}
6 J 5 G \\
5.6 \\
10 \\
8 \\
118 \\
2.1
\end{array}
\] & \[
\begin{array}{r}
6 J 5 G \\
5.6 \\
0 \\
0 \\
75 \\
4.8
\end{array}
\] & \[
\begin{array}{r}
6 J 5 G \\
5.6 \\
0 \\
0 \\
77 \\
4.6
\end{array}
\] & \[
\begin{array}{r}
6 J 5 G \\
5.6 \\
10 \\
8 \\
77 \\
4.2
\end{array}
\] & \[
\begin{array}{r}
\text { 6J5G } \\
5.6 \\
12 \\
12 \\
112 \\
8.4
\end{array}
\] & A , B \\
\hline 692 B 100~ & \[
\begin{aligned}
& 2-7 \\
& 8-\text { Gnd } \\
& 8-5 \\
& 3-8 \\
& 3
\end{aligned}
\] & \begin{tabular}{l}
v a-c \\
v d-c \\
v d-c \\
v d-c \\
ma d-c
\end{tabular} & \[
\begin{array}{r}
6 J 5 G \\
6.0 \\
10 \\
8 \\
70 \\
3.8
\end{array}
\] & \[
\begin{array}{r}
6 J 5 G \\
6.0 \\
0 \\
0 \\
50 \\
2.6
\end{array}
\] & \[
\begin{array}{r}
6 J 5 G \\
6.0 \\
0 \\
0 \\
55 \\
2.4
\end{array}
\] & \[
\begin{array}{r}
6 \mathrm{~J} 5 \mathrm{G} \\
6.0 \\
10 \\
8 \\
70 \\
3.9
\end{array}
\] & \[
\begin{array}{r}
6 J 5 G \\
6.0 \\
16 \\
16 \\
120 \\
11
\end{array}
\] & A, B \\
\hline 698 A & \[
\begin{aligned}
& 2-7 \\
& 8-\text { Gnd } \\
& 8-5 \\
& 3-8 \\
& 3
\end{aligned}
\] & \begin{tabular}{l}
v a-c \\
\(v\) d-c \\
v d-c \\
v d c \\
ma d-c
\end{tabular} & \[
\begin{array}{r}
6 J 5 G \\
6.0 \\
10 \\
8 \\
63 \\
4.0
\end{array}
\] & \[
\begin{array}{r}
6 J 5 G \\
6.0 \\
0 \\
0 \\
50 \\
2.7
\end{array}
\] & \[
\begin{array}{r}
6 J 5 G \\
6.0 \\
0 \\
0 \\
-\quad 50 \\
2.7
\end{array}
\] & \begin{tabular}{l}
Om1tted \\
二
二
\end{tabular} & \[
\begin{array}{r}
6 \mathrm{~J} 5 \mathrm{G} \\
6.0 \\
11 \\
11 \\
97 \\
7.6
\end{array}
\] & A, B, C \\
\hline 690-D & \begin{tabular}{ll}
2 & 7 \\
7 & 8 \\
\(5-G n d\) \\
3 & Gnd \\
6 & Gnd \\
3 & 4 \\
4 & 5 \\
\(8-\) Gnd \\
2 & Gnd \\
5 & Gnd \\
6 & Gnd \\
8 & \\
6 \\
2
\end{tabular} &  & \[
\begin{array}{r}
6 \text { AC7 } \\
6.2 \\
1.5 \\
\\
1.5 \\
165 \\
\\
150 \\
5.8 \\
2.7
\end{array}
\] & \(6 S N 7-67\)
6.2
24
22
0.25
142
165 & 6H6 GT
\[
6.2
\] & & & D \\
\hline
\end{tabular}


NOTES
A. Remove signal cable plug when making readings.
B. Remove \(V 2\) when readings for \(V-1, V-3, V-4\) or \(V-5\) are taken. Insert \(\vee \mathrm{V} 2\), and remove V 3, when making readings for \(V-2\).
C. \(\quad V-4\) is omitted in Type 698-A.
D. Disconnect connections to quartz bar when taking readings. In Type 690-D Oscillator tubes are in order V 1, P 1, V-2, V-3, seen from REAR, left to right. Radio frequency output measured with 20,000 ohm oxide-rectifier
E. Data taken with full load on power supply unit.

\section*{GENERAL RADIO COMPANY}

\section*{SHIPPING LIST}

Tne following is a list of the instruments, accessories, and spare parts shipped with the Class C-2l-HLD'Primary Fre quency Standard for which this book is the instruction manual.

1- Instruction Book
1 - Type 480 P Relay Rack
1- Type 693 B Syncronometer
1- Type 692 B Multivibrator ( 10 kc )
Type 692 B Multivibrator ( 50 kc )
1 - Type 692 B Multivibrator ( 100 cycles)
- Type 692 B Multivibrator (100 cy
. Type 691-C Constant Temperature Unit
1 - Type 690 D Piezo Oscillator (Inside Type 691-C)
Type 676 B Quartz Bar (Inside Type 691 C
1 - Type 139-503 Thermostat (550) - OUTER \(\}\) Shipped in place.
1 - Type 139-503 Thermostat ( 600 ) - INNER
1 - Type 139-489 Thermometer INNER
1 - Type 139481 Thermometer - OUTER
1 Type 694 C Control Unit
Type 697-42C High-Frequency Connecting Cable and Terminal Strip
5 Type X3-12 Cannon Shielded Plugs
48 Panel Screws
TUBES
1 6K6G
1 - 6АС7
1-6SN7-GT
6H6-GT
25-6J5G
183
6 watt, 120 volt Mazda Candelabra base

FOR FLOATING-BATTERY OPERATED ASSEMBLY
1 Type 695 C Charging Unit
Type 697-40C Power-Supply Cable
1 - 115 volt Attachment Cord

FOR COMPLETELY A C OPERATED ASSEMBLY
1 Type 696 C Power Supply
1 Type 697 41C Power Supply Cable
1 - 115 Volt Attachment Cord

SPARE PARTS

FOR FLOAT'ING-BATTERY OPERATED ASSEMBLY
4 Type 691 P5 Fusible Links
28 - Mazda 44 Lamps
5 120-v, 6 w , candelabra base lamps
1 box
boxes - 0.2 a fuse
2 boxes - 1.0 a puses
1 box - 1.0 a fuses
1 box - 1.5 a fuses
1 box - 2.0-a fuses
1 box - 2.5 a fuses
6 boxes - 5.0 a fuse
1 box -15.0 a fuses

FOR COMPLETELY A C OPERATED ASSEMBLY
4 Type 691 P5 Fusible Links
8 Mazda 44 Lamps
5-120 v, 6 w , candelabra base lamps
1 box
7 boxes 0 a
1 box 1.0 a puses
1 box - 1.5 a fuses
1 box - 1.5 a fuses
1 box \(2.0-\mathrm{a}\) fuses
5 boxes - 5.0 a fuses

\section*{PATENT NOTICE}

This equipment is manuiactured and sold under the following U. S. Patents and license agreements:

Patents of the American Telephone and Telegraph Company, solely for utilization in research, investigation, measurement, testing, instruction and development work in pure and applied science, including industrial and engineering fields.
Patents and Datent applications of Dr. G. W. Plerce pertaining to piezo electric crystals and their associated circuits

Patent No. 1,967,185
Patent No. 2,009,013
Patent No. 1,967,184
Patent No. 2,029,358```


[^0]:    Also serves as control for Type 698-A

