

CALIBRATION OF AC-DC CURRENT TRANSFER STANDARDS BASED ON CALCUABLE THERMAL CONVERTERS ON QUARTZ SUBSTRATE

Torsten Funck

Contents

- Introduction
- Quartz-PMJTCs for current transfer
- Calculation of the current transfer difference
- Validation of the model used for calculation
- Measurement setup
- AC-DC current transfer standards
- Step-up chains
- Improved measurement uncertainties
- Conclusions

Electrical quantities are defined, realized an maintained at direct current (dc).

For alternating current (ac) calibrations, traceability is given due to ac-dc transfer.

For current, the measured quantity is δ_i , the ac-dc current transfer difference:

$$\delta_{1} = \frac{I_{ac} - I_{dc}}{I_{dc}}$$

EM Day 2007 AC-DC current transfer standards

Quartz-PMJTCs

Planar multijunction thermal converters (PMJTCs) on a quartz substrate are used as a calcuable standard

- + Very low conductivity of the substrate
- + Low dielectric constant \mathcal{E}_r
- + Low, calculable transfer difference
- Difficult to manufacture
- Low thermal time-constant
- Low sensitivity

Calculation of δ_i due to heater impedance

$$\delta_{i1} = \sqrt{\frac{R_{\rm H}}{{\rm Re}\{\underline{Z}\}}} - 1$$

EM Day 2007 AC-DC current transfer standards

Calculation of δ_i due to stray capacitances

EM Day 2007 AC-DC current transfer standards

Current transfer differences

EM Day 2007 AC-DC current transfer standards

Validation of the calculation

EM Day 2007 AC-DC current transfer standards

Uncertainties using built-in Tee

EM Day 2007 AC-DC current transfer standards

Measurement setup using driven guards

- Symmetrical setup
- Upper standard connected "upside down"
- Constant voltage across parasitic capacitances => equal transfer differences in "upper position" and "lower position"

AC-DC current transfer standards

PMJTC with low heater • Low currents:

Problem:

resistance

Technology limits 90 $\Omega < R_{\rm H} < 900 \Omega$

• Medium currents:

Problems: Current dependence Shunt + PMJTC

Shunt inductance

• High currents:

Cooled shunt + PMJTC

Problems: Shunt inductance **Current dependence Compliance voltage of current source**

EM Day 2007 AC-DC current transfer standards

Shunts used at PTB

Up to 300 mA:PTB design(top)500 mA to 5 A:Holt design(middle)10 A and 20 A:Fluke design(bottom)

EM Day 2007 AC-DC current transfer standards

Shunts in Justervesenet design

- + Low cost materials
- + Large number of resistors ensure equal current distribution
- + Very small area of current path yields low inductive coupling

Justervesenet

13

- No case

EM Day 2007 AC-DC current transfer standards

High current shunts

EL-9800 (NIST Design)

Set of four shunts:

- 10 A to 30 A (25 m Ω)
- 30 A to 50 A (10 m Ω)
- 50 A to 80 A (5 m Ω)
- 80 A to 100 A (3 mΩ)

New high current shunts

Proven design scaled for higher currents

800 mV nominal output voltage

Available up to 100 A

- + Precision resistors provide also dc accuracy
- + Large number of resistors ensure equal current distribution
- + Small area of current path yields low inductive coupling
- No case
- Quite expensive

EM Day 2007 AC-DC current transfer standards

Step-up chains using different standards

Step \ Chain	Α	В	С	
start	20 mA	30 mA	30 mA	
1	50 mA	100 mA	100 mA	
2	100 mA	500 mA	300 mA	
3	200 mA	1 A	1 A	
4	500 mA	5 A	3 A	
5	1 A		5 A	
6	2 A			
7	5 A			

Chains A & B: Self-made and Holt shunts

Chain C: Justervesenet-Shunts (two sets)

Comparison of the chains: 1 A at 1 MHz: Δ < 10 μ A/A

5 A at 100 kHz: Δ < 5 μ A/A

Assumption:

Current level dependence of shunts results from self-heating

Measurement approach:

Shunt with low voltage drop used as a standard

- => Low power => low self-heating => low current level dependence
- Low voltage drop => voltage-amplifier necessary to operate PMJTC

Measurement setup: Shunt with Amplifier

EM Day 2007 AC-DC current transfer standards

The following sources of uncertainty of the step-up procedure can be identified for each step:

 $u(\delta_{std})$ Standard uncertainty of the (calculable) transfer difference of the standard used, i.e. uncertainty of previous step

 $u(\delta_{\rm C})$ Standard uncertainty of the comparison procedure

 $u(\delta_A)$ Type A standard uncertainty, i.e. the standard deviation of the mean

- $u(\delta_{Lev})$ Standard uncertainty due to the current level effects in the shunt
- $u(\delta_{LF})$ Standard uncertainty due to PMJTC low frequency effects, which are level dependent

Improvements in measurement uncertainties

Qurrent	Expanded uncertainty of measurement in μ AA at the frequencies							
	10 Hz	1 kHz	10 kHz	100 kHz	500 kHz	1 MHz		
30 mA	5	5	5	10	-	-		
	1	1	1	1	1	2		
100 mA	5	5	5	10	-	-		
	2	2	2	2	2	5		
300 mA	10	10	10	20	-	-		
	2	2	2	2	3	5		
1A	10	10	10	30	-	-		
	4	3	3	4	6	10		
3A	20	20	20	60				
	4	4	4	8				
10 A	25	25	25	80				
	12	12	12	25	Red : ol	d (2002)		
30 A	-	-	-	-	Blue: (20	100		
	30	30	60	120				
100 A	-	-	-	-				
	40	40	80	150				

Conclusions

- PMJTCs on quartz substrate developed at PTB are well suited for current transfer at low current up to 1 MHz
- Potential driven guarding reduces the uncertainty of the comparison measurements
- New shunts with low current level dependence and low transfer difference allow further reduction of the step-up procedure's uncertainty
- New approaches for the determination of the current level dependence allow for corrections and therefore for further reduction of the uncertainty

Thank you for your attention!

Torsten Funck

EM Day 2007 AC-DC current transfer standards

