Errata

Title & Document Type: 4261A Digital LCR Meter Operating and Service Manual

Manual Part Number: 04261-90006

Revision Date: December 1986

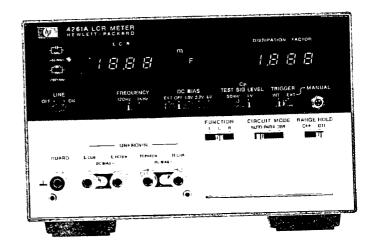
HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product


Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.

4261A DIGITAL LCR METER

SAFETY SUMMARY

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings given elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements.

GROUND THE INSTRUMENT

To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three-conductor ac power cable. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet. The power jack and the mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

KEEP AWAY FROM LIVE CIRCUITS

Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

DO NOT SERVICE OR ADJUST ALONE

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the instrument. Return the instrument to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.

DANGEROUS PROCEDURE WARNINGS

•

= 1 - 1 - -

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed.

WARNING

Dangerous voltages, capable of causing death, are present in this instrument. Use extreme caution when handling, testing, and adjusting.

SAFETY SYMBOLS

General Definitions of Safety Symbols Used On Equipment or In Manuals.

Instruction manual symbol: the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual in order to protect against damage to the instrument.

Indicates dangerous voltage (terminals fed from the interior by voltage exceeding 1000 volts must be so marked).

Protective conductor terminal. For protection against electrical shock in case of a fault. Used with field wiring terminals to indicate the terminal which must be connected to ground before operating equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common, as well as providing protection against electrical shock in case of fault. A terminal marked with this symbol must be connected to ground in the manner described in the installation (operating) manual, and before operating the equipment.

A OR _

Frame or chassis terminal. A connection to the frame (chassis) of the equipment which normally includes all exposed metal structures.

 \sim

Alternating current (power line).

===

Direct current (power line).

 $\overline{}$

Alternating or direct current (power line).

WARNING

A WARNING denotes a hazard. It calls attention to a procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in injury or death to personnel.

CAUTION

The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product.

Note

A Note denotes important information. It calls attention to a procedure, practice, condition or the like, which is essential to highlight.

Herstellerbescheinigung

Hiermit wird bescheinigt, daß das Gerät HP 4261A digital LCR meter in Übereinstimmung mit den Bestimmungen von Postverfügung 1046/84 funkentstört ist.

Der Deutschen Bundespost wurde das Inverkehrbringen dieses Gerätes angezeigt und die Berechtigung zur Überprüfung der Serie auf Einhaltung der Bestimmungen eingeräumt.

Anm: Werden Meß- und Testgeräte mit ungeschirmten Kabeln und/oder in offenen Meßaufbauten verwendet, so ist vom Betreiber sicherzustellen, daß die Funk-Entstörbestimmungen unter Betriebsbedingungen an seiner Grundstücksgrenze eingehalten werden.

GERÄUSCHEMISSION

Į,

Lpa < 70 dB am Arbeitsplatz normaler Betrieb nach DIN 45635 T. 19

Manufacturer's Declaration

This is to certify that this product, the HP 4261A digital LCR meter, meets the radio frequency interference requirements of directive 1046/84. The German Bundespost has been notified that this equipment was put into circulation and was granted the right to check the product type for compliance with these requirements.

Note: If test and measurement equipment is operated with unshielded cables and/or used for measurements on open set-ups, the user must insure that under these operating conditions, the radio frequency interference limits are met at the border of his premises.

ACOUSTIC NOISE EMISSION

Lpa < 70 dB operator position normal operation per ISO 7779

HP 4261A

Digital LCR Meter

MANUAL IDENTIFICATION -

Model Number: HP 4261A Date Printed: Not Specified Part Number: 04261-90006

This supplement contains information for correcting manual errors and for adapting the manual to newer instruments that contain improvements or modifications not documented in the existing manual

To use this supplement
1 Make all ERRATA corrections
2. Make all appropriate serial-number-related changes listed below

SERIAL PREFIX OR NUMBER	MAKE MANUAL CHANGES	SERIAL PREFIX OR NUMBER MAKE MANUAL CHANGES
All	1	
ļ		
		/ L

► New Item

Some LCR components used in the HP 4261A have been standardized to decrease the number of similar components. For example, if a unit uses both $6.8k\Omega$ 5% and $6.81k\Omega$ 1% resistors, the standard resistor will be $6.81k\Omega$ 1%.

Change the part numbers in the Replaceable Parts List of Section 6 as given in the table on the next page.

NOTE

Manual change supplements are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request the latest edition of this supplement. Free copies are available from all HP offices. When requesting copies, quote the manual identification information from your supplement, or the model number and print date from the little page of the manual.

Date/Div: April 1, 1987/33

Page: 1 of 2

Table 1 Parts Standardization Change

Old D	ort	New Part			
Old P Part Number	Description	Part Number	Description		
0683-1015 0683-1025 0683-1035 0683-1045 0683-1055 0683-1225 0683-1225 0683-1245 0683-1515 0683-1535 0683-1535 0683-2215 0683-2215 0683-2225 0683-2225 0683-2715 0683-2725 0683-2725 0683-3315 0683-3325 0683-3325 0683-3325 0683-3925 0683-3925 0683-4705 0683-4705 0683-4745 0683-4745 0683-4745 0683-5625 0683-5645 0683-7525 0683-8225	Resistor 100Ω 5% Resistor $10k\Omega$ 5% Resistor $10k\Omega$ 5% Resistor $100k\Omega$ 5% Resistor $12k\Omega$ 5% Resistor $12k\Omega$ 5% Resistor $12k\Omega$ 5% Resistor $120k\Omega$ 5% Resistor $120k\Omega$ 5% Resistor 150Ω 5% Resistor 150Ω 5% Resistor 150Ω 5% Resistor 220Ω 5% Resistor $22k\Omega$ 5% Resistor $22k\Omega$ 5% Resistor $22k\Omega$ 5% Resistor 270Ω 5% Resistor 270Ω 5% Resistor $33k\Omega$ 5% Resistor $33k\Omega$ 5% Resistor $33k\Omega$ 5% Resistor $39k\Omega$ 5% Resistor $39k\Omega$ 5% Resistor $47k\Omega$ 5%	0757-0401 0757-0280 0757-0442 0757-0465 0698-8827 0757-0274 0757-0467 0698-3438 0698-3156 0757-0278 0698-3441 0698-0084 0757-0199 0698-3132 0698-0085 0698-3160 0698-3160 0698-3161 0698-3155 0698-3161 0698-3155 0698-3162 0698-3162 0698-3260 0757-0200 0698-8824 0757-0440 0757-0441	Resistor 100Ω 1% Resistor $1k\Omega$ 1% Resistor $10k\Omega$ 1% Resistor $10k\Omega$ 1% Resistor $100k\Omega$ 1% Resistor $121k\Omega$ 1% Resistor $121k\Omega$ 1% Resistor $121k\Omega$ 1% Resistor 147Ω 1% Resistor 147Ω 1% Resistor 147Ω 1% Resistor 215Ω 1% Resistor 215Ω 1% Resistor 215Ω 1% Resistor 261Ω 1% Resistor 261Ω 1% Resistor 316Ω 1% Resistor 316Ω 1% Resistor 316Ω 1% Resistor $38k\Omega$ 1% Resistor		

MANUAL CHANGES

HP 4261A

Digital LCR Meter

MANUAL IDENTIFICATION -

Model Number: HP 4261A Date Printed: Dec 1986 Part Number: 04261-90006

This supplement contains information for correcting manual errors and for adapting the manual to newer instruments that contain improvements or modifications not documented in the existing manual

To use this supplement

1 Make all ERRATA corrections
2 Make all appropriate serial-number-related changes listed below

SERIAL PREFIX OR NUMBER	MAKE MANUAL CHANGES	SERIAL PREFIX OR NUMBER	MAKE MANUAL CHANGES
All	1		
All	'		

► New Item

► CHANGE 1

Page 6-7, 6-9, Table 6-3, Replaceable Parts:

Refer to the parts change list.

Table 1 Parts Change List

CHANGE	Page	Note	Reference Designator	Part Number	Description
1	6-7	►C	A5Q9 to A5Q14	1855-0091	TRANSISTOR J-FET N-CHAN
	6-9	►C ►C ►C ►C	A6Q8 A6Q9 A6Q10 A6Q22 A6Q23	1855-0091 1855-0091 1855-0091 1855-0091 1855-0091	TRANSISTOR J-FET N-CHAN

▶: New Item

C: Change

D. Delete NOTE

A: Add

Manual change supplements are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request the latest edition of this supplement. Free copies are available from all HP offices. When requesting copies, quote the manual identification information from your supplement, or the model number and print date from the little page of the manual.

Date/Div: Jan. 14, 1988/33

Page: 1 of 1

OPERATING AND SERVICE MANUAL

MODEL 4261A DIGITAL LCR METER

(Including Options 001, 002, 003 and 010)

SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 2514 J.

With changes described in Section Ⅶ, this manual also applies to instruments with serial numbers prefixed 1545J, 1622J, 1810J, and 1821 J.

For additional important information about serial numbers, see INSTRUMENTS COVERED BY MANUAL in Section $\, {\rm I} \,$

© COPYRIGHT YOKOGAWA-HEWLETT-PACKARD LTD., 1976 9-1, TAKAKURA-CHO, HACHIOJI SHI, TOKYO, JAPAN

Manual Part No. 04261-90006 Microfiche Part No. 04261-90056

Printed 1 DEC .. 1986

TABLE OF CONTENTS

	_		_			m:ll-	_
Sect	ion	Title	Page	Secti	ion	Title Page	9
I	GENEF	RAL INFORMATION	. 1-1		3-31.	Optional Operation3-2	0
	1-1.	Introduction			3-33.	BCD Parallel Data	^
	1-4. 1-6.	Specifications			3-35.	Output (Option 001)3-20 Parameter Serial Data	J
	1-0.	Safety Considerations Instrument Covered by Manual			J-JJ.	Output (OPT. 002) 3-24	4
	1-14.	Description			3-37.	Remote Control3-24	4
	1-17.	Options				OPT. 0033-24	4
	1-19.	Option 001					
	1-21.	Option 002					
	1-23.	Option 003			3-41.	Operator Maintenance	1
	1-25.	Option 010	. 1-1		3-42. 3-44.	Foot and Stand	T
	1-29.	Accessories Supplied	. 1-7		0-11.	Replacement3-2	6
	1-31.	Equipment Available			3-46.	Instruction Card	
	1-33.	Recommended Test Equipment				Replacement3-2	
II	INSTA	LLATION	. 2-1		3-48.	Special Modification3-3	0
	2-1.	Introduction		IV	PERF	ORMANCE TESTS 4-	1
	2-3.	Initial Inspection			4-1.	Introduction 4-	1
	2-5.	Preparation for Use	. 2-1		4-3.	Equipment Required 4-	
	2-6.	Power Requirements	. 2-1		4-5.	Test Record 4-	1
	2-8.	Line Voltage and			4-7.	Calibration Cycle 4-	1
	2-10.	Fuse Selection Power Cable			4-9. 4-10.	Measurement Frequency Test 4- Capacitance and Dissipation	_
	2-10. $2-14.$	Interconnections			4-10.	Factor Accuracy Test 4-	3
	2-16.	Mating Connectors	-		4-11.	Resistance Accuracy Test 4-	
	2-18.	Operating Environment			4-12.	Dissipation Factor Confirmation Check 4-	
	2-21.	Installation Instructions	. 2-3		4-13.	Inductance Accuracy Test4-1	
	2-23.	Rack Mounting and Handle	0.0		4-14.	Internal DC Bias Source Test4-1	2
	2 25	Installation		v	۸ تی سر د	STMENT 5-	1
	2-25. $2-28.$	Storage and Shipment		V	5-1.	Introduction 5-	
	2-30.	Option Installation			5-4.	Safety Requirements 5-	
	2-33.	Option 001 BCD Parallel	•		5-9.	Equipment Required 5-	1
		Data Output Installation.	. 2-5		5-11.	Factor Selected Components 5-	1
	2-34.	Option 002 Parameter Seri			5-14.	Adjustment Relationships 5-	
		Data Output Installation.			5-16.	Adjustment Locations 5-	
	2 - 35.	Option 003 Remote Control			5-18.	Power Supply Voltage Adjustment 5-A4 Board Offset Adjustment 5-	
		Installation	. 2-5		5-19. 5-20.	A4 Board Offset Adjustment 5- A5 Board Offset Adjustment 5-	
					5-20.	A6 Board Offset Adjustment 5-	
T 7 T	OPER	A COLCONT	. 3-1		5-22.	A5 Board Final Offset Adjustment 5-	8
111	3-1.	Introduction	•		5-23.	Confirmation Check5-1	0
	3-3.	Panel Features		VI	REPL	ACEABLE PARTS 6-	1
	3-5.	Operating Check		,	6-1.	Introduction 6-	1
	3-7.	Operating Instructions			6-3.	Abbreviations 6-	1
	3-8.	General Operating			6-5.	Replaceable Parts List 6-	1
	2 10	Information			6-7.	Ordering Information 6-	2
	3-10. 3-18.	Test Fixtures and Leads	. 3-1		6-10. 6-12.	Spare Parts Kit 6- Direct Mail Order System 6-	.2
	3-10.	General Component Measurement	3_18		0-12.	Direct Mail Order System 0-	_
	3-20.	Semiconductor Device		VII	MANII	AL CHANGES 7-	1
		Measurement	. 3-18		7-1.	Introduction	· 1
	3-22.	External DC Bias			7-3.	Manual Changes 7-	-1
	3-25.	Offset Adjustment			7-6.	Manual Change Instructions 7-	-2
	3-27.	External Trigger Circuit .			7-7.	Instrument Improvement Modifications7-1	G
	3-29.	Operating Cautions	. 3-40			MOUITICALIONS	٠.

TABLE OF CONTENTS

Section	Title	Page	Section	Title Page
VIII SERV	ICE	8-1	8-34.	Digital Section
8-1.	Introduction			Troubleshooting 8-40
8-3.	Theory of Operation		8-36.	Built-in Self Test
8-5.	Basic Theory			Function 8-40
8-11.	Block Diagram Discussion	8-2	8-41.	Recommended Test Equipment 8-41
8-24.	Timing Diagram Discussion	8-6	8-44.	Repair 8-41
			8-45.	Q1 Removal 8-41
8-28.	Troubleshooting	8-38	8-46.	Removal of Q2
8-30.	How to Isolate Trouble			or Q3 8-41
	to Either Analog		8-47.	Removal of CR1 thru
	or Digital			CR3 8-41
	Sections	8-38	8-48.	Removal of A1 Switch
8-32.	Troubleshooting Analog			Board 8-41
	Section to Assembly		8-49.	Product Safety Checks 8-42
	Level	8_40		

LIST OF TABLES

Number	Title	Page	Number	Title	Page
1-1.	Specifications	1-2	5-1.	Factory Selected Components	5-1
1-2.	General Information		5-2.	Adjustable Components	5-2
1-3.	4261A Options and Components		5-3.	Alignment Procedure	5-3
1-4.	Equipment Available	1-8	٠٠.	mighten i roccourt,,	J-0
1-5.	Recommended Test Equipment	1-9			
•	recommended rest Equipment	1-0	6-1.	List of Reference Designators	
2-1.	Mating Connectors	2_2		and Abbreviations	6-1
	Maring Connectors	2-2	6-2.	Manufacturers Code List	6-2
3-1.	Test Fixtures and Leads	3-6	6-3.	Replaceable Parts	
3-2.	Parameter Terminology				
3-3.	Dissipation Factor Equations	3-7	7-1.	Manual Changes he	
3-4.	Test Signal Level	3-8	1-1.	Manual Changes by	- 1
3-5.	Measurement Ranges	3-8	7 2	Serial Number	7-1
3-6.	Annunciation Display Magnings	3-0 3-10	7-2.	Summary of Changes	
	Annunciation Display Meanings	3-10		by Assembly	7-1
3-7.	Unusual Operating Indications	3-21			
4-1.	Recommended Components for		8-1.	Mnemonic Information	8-8
	Accuracy Checks	4-2	8-2.	ASM Chart Check Procedures	
4-2.		4-12	8-3.	Self Test Display Sequences	

LIST OF ILLUSTRATIONS

Number	Title	Page	Number	Title	Page
1-1.	Instrument and Accessories		8-2.	Cp Measurement Principle	8-2
•	Supplied	1-1	8-3.	Analog Section Block Diagram	
1-2.	Serial Number Plate		8-4.	Digital Section Block Diagram	
1-4.	bellal little i lace		8-5.	Timing Diagram	
2-1.	Voltage and Fuse Selection	2-2	8-6.	ASM Chart	8-26
2-1. 2-2.			8-7.	Front Panel Symptoms of Inte	
	Power Cable		0-1.		
2-3.	Rack and Handle Installation	_	0.0	Control Misadjustme How to Use Troubleshooting	:m 0-55
2-4.	Option Installation	2-5	8-8.		0.20
0.1		0.0	0.0	Guides	
3-1.	Front Panel Features		8-9.	How to Isolate Analog Section	
3-2.	Rear Panel Features		0.10	from Digital Section	
3-3.	Operating Check	3-5	8-10.	Analog Section Troubleshoots	
3-4.	Conversion between Parallel			to Assembly Level .	
	and Series Equivalent		8-11.	Isolation of A1, A2 and A10 F	
3-5.	Relationship of Dissipation to Serie	S		in Digital Section	
	and Parallel Resistance		8-12.		
3-6.	Accuracy	3-11		Level for A3, A7 and	d
3-7.	General Component			A8 Boards	8-48,49
	Measurements	3-12	8-13.	Service Cable Connections	
3-8.	Semiconductor Device		8-14.	Schematic Diagram Notes	
• • •	Measurements	3-14	8-15.	Assembly and Adjustment Lo	
3-9.	External DC Bias Circuits		J - J.	(Top Internal View).	
3-10.	C OFFSET Adjustment		8-16.	Al Switch Board Assembly	
3-10. 3-11.	External Trigger Circuits		0-10.	Component Location	s 8-55
3-11. 3-12.	Data Outputted by Option 001		8-17.	Al Switch Board Assembly	5 0-00
	Printout Format and Data	. 5-47	0-11.	Schematic Diagram	Q_55
3-13.		2 25	8-18.	A2 Display Board Troublesho	
9 14	Code Meanings	. 3-20	0-10.		
3-14.	4261A Connections to	0.00	0.10	Guide	0-90
	HP Printers		8-19.		- 0.55
3-15.	Option 002 Data Selection Switch	. 3-27		Component Location	s 8-57
3-16.	Option 002 Connection to		8-20.	A2 Display Board Assembly	
	External Printers			Schematic Diagram	8-57
3-17.	Option 003 Remote Control		8-21.	A3 Display Driver Board	
3-18.	Foot Stand Replacement			Troubleshooting Gui	
3-19.	Instruction Card Replacement	. 3-30	8-22.	A3 Display Driver Board Ass	sembly
				Component Location	ıs 8-59
4-1.	Measurement Frequency		8-23.	A3 Display Driver Board Ass	sembly
	Test Setup	. 4-2		Schematic Diagram	
4-2.	Capacitance Accuracy		8-24.		
	Test Setup	. 4-4		Board Troubleshoot	
4-3.	Resistance Accuracy Test Setup			Guide	
4-4.	Dissipation Factor Accuracy	• - •	8-25.	A4 Oscillator/Range Resisto	
	Test Setup	4-9		Assembly Componer	
4-5.	Inductance Accuracy Test Setup			Locations	
4-6.	Internal DC Bias Source	. 4-11	Q_ 9 6	A4 Oscillator/Range Resisto	
4-0.		4 19	0-20.	Assembly Schematic	
	Test Setup	. 4-14		Diagram	
F 1	Daniel Complex Vallege Addington and	- 2	0 27		
5-1.	Power Supply Voltage Adjustment.		8-27.	A5 Process Amplifier Board	
5-2.	A4 Board Offset Adjustment		0.00	Troubleshooting Gui	
5-3.	Waveform at A4TP3		8-28.	A5 Process Amplifier Board	
5-4.	A5 Board Offset Adjustment			Assembly Componer	
5-5.	Waveform at A5TP1			Locations	
5-6.	Waveform at A5TP2		8-29.	· · · · · · · · · · · · ·	
5-7.	Waveform at A5TP3			Assembly Schematic	
5-8.	A8 Self Test Switch			Diagram	
5-9.	A5 Board Final Offset Adjustment.	. 5-9	8-30.		
				Board Troubleshoot	
8-1.	Basic Block Diagram	. 8-1		Guide	8-64

List of Illustrations

LIST OF ILLUSTRATIONS

Number	Title	Page	Number	Title	Page
8-31	A6 Phase Detector /Integrator		8-41.	A10 Motherboard Assembly	
0 0-1	Board Component			Component Locations	8-73
	Locations	8-65	8-42.	A10 Motherboard Assembly	
8-32	A6 Phase Detector, Integrator			Schematic Diagram	8-73
0 0	Board Assembly		8-43.	A21 Parallel BCD Data Output	
	Schematic Diagram	8-65		Board (OPT. 001)	
8-33.	A7 Clock Pulse Generator, Counter			Troubleshooting Guide	8-74
0 00.	Board Assembly		8-44.	A21 Parallel BCD Data Output	
	Component Locations	8-67		Board Assembly	
8-34	A7 Clock Pulse Generator Counter			Component Locations	8-75
0 01.	Board Assembly		8-45.	A21 Parallel BCD Data Output	
	Schematic Diagram	8-67		Board Assembly	
8-35.				(OPT. 001)	
0 00.	Assembly Component			Schematic Diagram	8-75
	Locations	8-69	8-46.	A22 Parameter Serial Parallel	
8-36.				BCD Data Output	
0 00.	Assembly Schematic			Board (OPT. 002)	
	Diagram	8-69		Troubleshooting Guide	
8_37	DC Power Supply Section		8-47.	A22 Parameter Serial Parallel BCI)
0 01.	Troubleshooting Guide	8-70		Data Output Board	
8_38	A9 Power Supply Board Assembly			Assembly Component	
0-00.	Component Locations	. 8-71		Locations	8-75
8_30	DC Power Supply Section		8-48.	A22 Parameter Serial Parallel BCI)
0-00.	Schematic Diagram	8-71		Data Output Board Assemb	·ly
8-40.		• - •-		Assembly (OPT. 002)	
0 10.	Guide	8-72		Schematic Diagram	, 8-77

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION.

1-2. This Operating and Service Manual contains the information required to install, operate, test, adjust and service the Hewlett-Packard Model 4261A Digital LCR Meter. Figure 1-1 shows the instrument and accessories supplied. This section covers specifications, instrument identification, description, options, accessories, and other basic information.

1-3. Listed on the title page of this manual is a Microfiche part number. This number can be used to order 4 x 6 inch microfilm transparencies of the manual. Each microfiche contains up to 60 photoduplicates of the manual pages. The microfiche package also includes the latest Manual Changes supplement as well as all pertinent Service Notes. To order an additional manual use the part number listed on the title page of this manual.

1-4. SPECIFICATIONS.

1-5. Complete specifications of the Model 4261A

LCR Meter are given in Table 1-1. These specifications are the performance standards or limits against which the instrument is tested. The test procedures for the specifications are covered in Section IV Performance Tests. Table 1-2 lists general information. General information is not specifications but is typical characteristics included as additional information for the operator. When the 4261A LCR Meter is shipped from the factory, it meets the specifications listed in Table 1-1.

1-6. SAFETY CONSIDERATIONS.

1-7. The Model 4261A LCR Meter has been designed to conform to the safety requirements of an IEC (International Electromechanical Committee) Safety Class I instrument.

1-8. This operating and service manual contains information, cautions and warnings which must be followed by the user to ensure safe operation and to maintain the instrument in a safe condition.

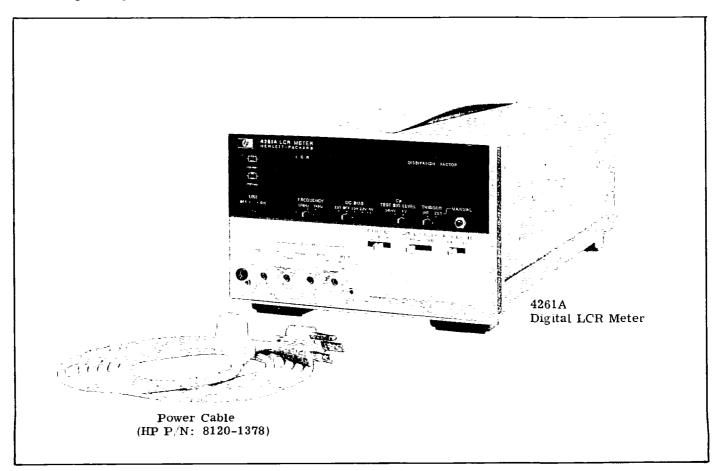


Figure 1-1. Instrument and Accessories Supplied.

Table 1-1. Specifications (Sheet 1 of 2).

COMMON SPECIFICATIONS

Parameters Measured: C-D, L-D and R.

Range Mode: Auto or Range Hold.

Display: 3 1/2 Digits, Max. Display 1900

Measurement Frequencies:

Circuit Modes: Auto, Parallel and Series.

120Hz ±3% $1 \text{kHz} \pm 3\%$

Measurement Circuit: Five-terminal Method.

Trigger: Internal, Manual or External.

C-D MEASUREMENT

Range	С	120Hz 1kHz	1000pF 100.0pF	10.00nF 1000pF	100 0nF 10.00nF	1000n F 100, 0n F	10.00 μF 1000n F	100.0μ F 10.00μ F	1000μ F 100.0μ F	$10.00 { m mF} \ 1000 { m \mu F}$	
	D		0.001 to 1.900, 1 range, common to all C ranges								
Test Signal		-		11	or 50mV						
Level		-I -				1 0 μ A	100μΑ	1mA	10mA	70mA	
	AUTO Same as Mode Sam						me as — Mode				
C Accurac	ev	1}- -7		0.2%	+ 1 count +	(Test signal level; 1V)					
,	*2 *3	-L.w	0 5 % + 3 counts		0.3°° + 2 c	3° + 2 counts			(Test signal level; 50mV)		
		⊣⊦ ₩-				0	. 3 ⁰ + 2 cou	nts	$0.5^{\circ}_{o} + 2c $ ount s	1°0 + 2counts *4	
		AUTO	San	ne as 🗕	₩	Iode	San	me as — Mode			
D Accura	ev			0.2% +	(2 + 200 °C	k) counts		(Test	signal leve	1; 1V)	
1	*2	1,,,,		0.	$3^{\circ}_{0} + (2 + 1)$	000 Cx) cou	unts	(Test	signal leve	1; 50mV)	
		-11	0.3% + (2 + C					$\frac{1\%}{(5 + 500)}$ counts $\frac{1\%}{(5 + 500)}$ counts			
		AUTO	San	ne as 🗕	W N	lode	San	ne as 🕕	- M	ode	

*1. Typical data, varies with value of D and number of counts.

*2. \pm ($^{\circ}_{0}$ of reading + counts + a). Cx is capacitance readout in counts.

Accuracy applies over a temperature range of $23^{\circ}\,C$ $\pm 5^{\circ}\,C$ (at $0^{\circ}\,C$ to $55^{\circ}\,C$, error doubles).

^{*3.} C accuracies are applicable only when \tilde{D} value is less than 1.901. See Table 1-2 for C accuracies when D is more than 1.900. *4. $5^{\circ}_{0} + 2$ counts at 1kHz.

Table 1-1. Specifications (Sheet 2 of 2).

			- · ·		L-D M	MEASURE!	MENT			
	Dance	L	120Hz 1kHz	1000 μH 100. 0μH	10.00mH 1000μH	1000mH 1000mH	1000mH 100 0mH	10. 00H 1000mH	100.0H 10.00H	1000H 100. 0H
	Range	D			0.001 to 1.					
	rest Signal		-[L	v	
	Level		-m	70mA	$10 \mathrm{mA}$	1mA	100 μΑ	$10 \mu { m A}$		
	.1		AUTO	Sa	me as -780	-₩- Mod	Same as	-[Mode	
	L Accurac	y	-[0.3% + 2 counts $1% +$			counts
		·2 ·3	-38-**		0.2	+ 2 counts +	0.2μΗ			
		_	AUTO	Sa	me as -780	-₩- Mod	e	Same as - Mode		
1 -	D Accurae	сy	-[**]-					$0.3^{\circ}_{0} + (3 + Lx 500)$ counts		$+\frac{L\kappa}{500}$)
	,	+2	-285-W-		0 2% +	(3 + 200 Lx)	counts			
			AUTO	Sa	ume as -75		de Same as			- Mode

- *1. Typical data, varies with value of D and number of counts.
- *2. $\pm ({}^{0}_{0})$ of reading + counts). Lx is inductance readout in counts.
- *3. L accuracies are applicable only when D value is less than 1.901. See Table 1-2 for L accuracies when D is more than 1.900.

R MEASUREMENT

RANGE	120Hz or 1kHz	$1000 \mathrm{m}\Omega$	10.00Ω	100.0Ω	1000Ω	10. 00kΩ	100 0kΩ	1000kΩ	10 00 M Ω	
Test Signal					1 V					
Level	-08	70mA	10mA	1mA	100μΑ	1 0μ A				
	АИТО	Sar	ne as 🗸	55~~~	Mode Same as - Mode					
R Accuracy					0.3% + 2 counts					
*2 *3	-367-W-		0.	. 2°0 + 2 cou	ounts					
	AUTO	Sar	meas 🗸	88~ ~	Mode Same as Mode					

- *1. Typical data, varies with number of counts *2. \pm ($^{o}_{0}$ of reading + counts).
- *3. R accuracies are applicable only when D value measured in L or C function is greater than 0.500. See Table 1-2 for R accuracies when D is less than 0.501

Accuracy applies over a temperature range of 23° C $\pm 5^{\circ}$ C (at 0° C to 55° C, error doubles).

DC BIAS

Internal Source. 1.5V, 2.2V, 6V (Accuracy $\pm 5\%$).

External Source: Provision for external DC bias voltage of +30V maximum at binding posts on rear panel.

Table 1-2. General Information (Sheet 1 of 2).

READING RATE

The period between the start of a measurement and the start of next measurement is equal to the measuring time plus 30 milliseconds (typical) hold time.

MEASURING TIME

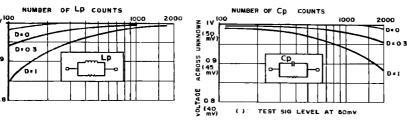
The period between start of a measurement and completion of the measurement is equal to measuring time when RANGE HOLD is set to ON (see figure below) plus time required for autoranging. The following are typical times for a measurement of approximately 1000 counts on low loss components when RANGE HOLD is set to ON.

Time required for autoranging (RANGE HOLD: OFF):

1kHz: 180 x n (ms) 120Hz: 670 x n (ms)

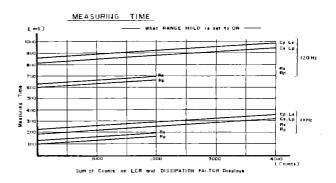
where n is the number of ranges stepped by 4261A autorange circuit.

L-D C-D Accuracies when D > 1.900 and R accuracies when $D \le 0.500$:


For L-D C-D accuracies when D > 1.900 and R accuracies when $D \le 0.500$, the following error factors should be added to accuracy specifications:

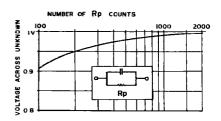
Note

- D display is blanked when Cp or Ls value is less than 80 counts.
- Both displays will show 1999 counts and "OUT OF RANGE" lamp will light when measured value for Cs, Lp or Rp is less than about 60 counts (right display is blanked during R measurements).


TEST SIGNAL LEVEL

Voltage applied to sample under test and current flow through sample are to some extent changed by value and dissipation factor of the sample.

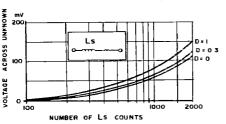
Note: These charts assume that impedance between HIGH terminals and ground is infinite.

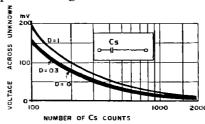

1kHz	C L	220 - 260ms
TMIA	R	120 - 160ms
120Hz	C L	$900\mathrm{ms}$
12002	R	700ms

CIRCUIT MODE	Additional Error
Parallel Capacitance	D 10 ° of reading (Test Sig Level: 1V) D 5 ° of reading (Test Sig Level: 50mV)
Series Capacitance	D 5 % of reading
Parallel Inductance Series Inductance	D 5% of reading
Parallel Resistance Series Resistance	0.2 D % of reading

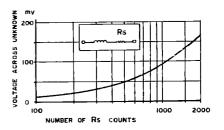
Parallel Equivalent Mode (Lp, Cp, Rp)

Since the output of constant voltage driver is somewhat affected by sample, the voltage across sample varies as shown in below charts:




Note: This chart assumes that impedance between HIGH terminals and ground is infinite and that unknown device is an almost pure resistance.

UNKNOW



The constant current source built into the 4261A is affected by the sample. Voltage

across sample also varies with the value and dissipation factor of the sample as shown in below charts:

Note: These charts assume that impedance between HIGH terminals and ground is infinite.

Note This chart assumes that impedance between HIGH terminals and ground is infinite and that unknown device is an almost pure resistance.

TRIGGER

Internal When TRIGGER switch is set to INT position, the 4261A triggers itself automatically at reading rate speed.

Manual: When TRIGGER is set to EXT position, the 4261A is triggered every time the MAN-UAL button is depressed and released.

External: When TRIGGER is set to EXT position, the 4261A is triggered by the trailing edge of a TTL level negative going pulse applied to EXT TRIGGER input connector on rear panel or by opening center conductor of EXT TRIGGER connector after earthing. Negative pulse width of trigger should be more than $20\,\mu\text{s}$.

External Encode: When the 4261A is equipped with any option, it may be triggered by an external device. The 4261A is triggered by the trailing edge of a TTL level negative going pulse from the external device. Negative pulse width for External Encode signal should be more than $20\,\mu s$.

WARM-UP TIME

Approximately 15 minutes.

Note

Measurement accuracy is not affected by dc bias application from either internal or external bias sources ($\leq 200V$).

OPTIONS

Option 001: BCD Output of C/L/R and D (Simultaneous)

Option 002: BCD Output of C'D, L/D and R (Alternately)

Data (C. L. R or D) separately selectable by switch on internal board (04261-77022). Option 003: BCD Remote Control (except for DC bias function)

ACCESSORIES AVAILABLE

16061A: Test Fixture (direct coupled type),5terminal construction.

16062A: Test Leads with alligator clips, 4-terminal construction (for low impedance measurements).

16063A: Test Leads with alligator clips, 3terminal construction (for high impedance measurements).

OTHER

Operating Temperature:

0°C to 55°C (32°F to 131°F)

Operating Humidity:

Relative humidity less than 95% at 40°C.

Altitude: 50,000ft.

Power.

100 120 220 240Vac $\pm 10\%$, 48 to 66Hz

Power Consumption: approximately 25VA (including optional configurations).

Dimensions:

Approximately 213(w) x 134 (h) x 422 (d) mm.

Weight: approximately 7.5kg.

1-9. INSTRUMENTS COVERED BY MANUAL.

1-10. Hewlett-Packard uses a two-section nine character serial number which is marked on the serial number plate (Figure 1-2) attached to the instrument rear panel. The first four digits and the letter are the serial prefix and the last five digits are the suffix. The letter placed between the two sections identifies country where instrument was manufactured. The prefix is the same for all identical instruments; it changes only when a change is made to the instrument. The suffix, however, is assigned sequentially and is different for each instrument. The contents of this manual apply to instruments with the serial number prefix(es) listed under SERIAL NUMBERS on the title page.

1-11. An instrument manufactured after the printing of this manual may have a serial number prefix that is not listed on the title page. This unlisted serial number prefix indicates the instrument is different from those described in this manual. The manual for this new instrument may be accompanied by a yellow Manual Changes supplement or have a different manual part number. This supplement contains "change information" that explains how to adapt the manual to the newer instrument.

1-12. In addition to change information, the supplement may contain information for correcting errors (called Errata) in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is identified with this manual's print date and part number, both of which appear on the manual's title page. Complimentary copies of the supplement are available from Hewlett-Packard. If the serial prefix or number of an instrument is lower than that on title page of this manual, see Section VII Manual Changes.

1-13. For information concerning a serial number prefix that is not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard office.

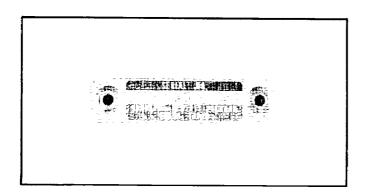


Figure 1-2. Serial Number Plate.

1-14. DESCRIPTION.

1-15. The HP Model 4261A LCR Meter is a general purpose, easy-to-use, high reliability component test instrument designed to automatically measure the parameters of an impedance element with high accuracy and at high speed. The 4261A LCR Meter measures capacitance, inductance, resistance and dissipation factor over a wide range at test frequencies of 120Hz and 1kHz in a five-terminal connection configuration between the component and the instrument. The measuring circuit for the device to be measured is capable of both parallel and series equivalent circuit measurements and the measured values are displayed on two three-full digits LED displays on the front panel.

1-16. The measuring range for capacitance is from 0.1pF to 19mF, inductance from 0.1 μ H to 1900H, and resistance from $1m\Omega$ to $19M\Omega$ all of which are measured with a basic accuracy of 0.2 to 0.3% depending on test signal level, frequency and measuring equivalent circuit, and at a typical measuring speed of 200 milliseconds. The wide range capability of the 4261A enables a measurement range from small capacitances such as mica capacitors and the parasitic capacitance of a semiconductor device through high capacitances such as the measurement of electrolytic capacitors to be covered. A wide range of inductance measurements from the inductance of a high frequency transformer to that of a power transformer can be measured. The wide resistance range permits the measurement of wirewound resistors through the measurement of solid resistors. In parallel capacitance measurements, the 4261A Digital LCR Meter can select either a test signal level of 1Vrms, or 50mVrms. Other versatile 4261A capabilities are, for example, the use of internal and external dc bias voltages, the availability of test fixtures, and options providing for BCD output and remote control operation (at the rear panel).

1-17. OPTIONS.

1-18. Options for the Model 4261A LCR Meter are available for adding BCD parallel data output at two rear panel connectors (opt 001), for providing a BCD parallel data output connector on the rear panel (opt 002), and for attaching a rear panel input connector for remote control of the 4261A (opt 003). Detailed descriptions of the various options follow.

1-19. Option 001.

1-20. The 4261A Option 001 provides separate BCD parallel data output of capacitance, inductance or resistance and dissipation factor simultaneously from the two rear connectors. With this option, external data processing devices such as digital printer comparators can be connected to the 4261A Digital LCR Meter. Table 1-3 lists the components required for installation of this option to a standard unit.

Table 1-3. 4261A Options.

Option Function		Components		
		HP Part No.	Q'ty	Description
Option 001	BCD Parallel Data Output	04261-77021 5060-4020	1 2	A21 Board Ass'y Connector Assembly 50-pm
Option 002	Parameter Serial BCD Data Output	04261 -77022 5060-4020 04261 -85023	1 1 1	A22 Board Ass'y Connector Assembly 50-pm Name Plate
Option 003	BCD Remote Control	04261-77123 04261-72023	1 1	Connector Ass'y 50-pin 50-pin Flat Cable Ass'y

1-21. Option 002.

1-22. The 4261A Option 002 provides for outputting inductance, capacitance or resistance and dissipation factor values as measured with the 4261A LCR Meter alternately from one rear connector in BCD data parallel form. When the 4261A is equipped with an option 002, a digital printer, digital comparator or other such external devices can be interfaced. The components required for installation of option 002 with a standard 4261A are listed in Table 1-3.

1-23. Option 003.

1-24. The 4261A option 003 adds remote control capability to the 4261A permitting external control of FUNCTION, RANGE, etc. functions at a rear input connector for combination with an external control device. Table 1-3 shows the components needed for installation of the Option 003.

1-25. Option 010.

١,

1-26. The 4261A Option 010 changes 120Hz standard measurement frequency to 100Hz. All specifications given in Table 1-1 apply directly to Option 010 instruments equipped with 100Hz and 1kHz measurement frequencies. Change all 120Hz descriptions to 100Hz.

1-29. ACCESSORIES SUPPLIED.

1-30. Figure 1-1 shows the HP Model 4261A LCR Meter, power cord (HP Part No. 8120-1378), fuses (HP Part No. 2110-0201 and 2110-0202), and the Operating and Service Manual.

1-31. EQUIPMENT AVAILABLE.

1-32. Three styles of fixtures and leads for the measurement of various components are available for effective and easy measurement. These are listed in Table 1-2. A brief description of each of these fixtures and leads is given in Table 1-4. Refer to Section III paragraph 3-10 for detailed information on these devices.

1.33. RECOMMENDED TEST EQUIPMENT.

1-34. The equipment required to maintain the Model 4261A is listed in Table 1-4. Other equipment may be substituted if it meets or exceeds the critical specifications listed in the table.

Table 1-4. Equipment Available.

Table 1-4. Equipment Model	Description
HP 16061A	Test Fixture (direct coupled type) for general measurement of both axial and vertical lead components.
HP 16062A	Test Leads (with alligator clips) useful for low inductance, high capacitance or low resistance (less than 10kΩ) measure-ments.
HP 16063A	Test Leads (with alligator clips) for general component measurement and especially useful for high impedance measurements.
HP P, N 5060-4017	Extender Board used for 4261A troubleshooting.

Table 1-5. Recommended Test Equipment.

Instrument	Critical Specifications	Recommended Model	*Use
Frequency Counter	Frequency Range: 40Hz to 10kHz Sensitivity 50mVrms min.	HP 5300A w5306A	P
Capacitance Standard (See para. 4-3)	Capacitance Values. 100pF, 1000pF, 10nF 100 nF, 1000 nF and 10μ F	HP 16361A	Р, А
Resistance Standard (See para, 4-3)	Resistance Values $1 \mathrm{k}\Omega$, $10 \mathrm{k}\Omega$, $100 \mathrm{k}\Omega$ and $10 \mathrm{M}\Omega$	HP 16361A	Р, А
Inductance Standard (See para, 4-3)	Inductance Value 100mH	HP 16361A	P
DC Voltmeter	Voltage Range: 1V to 10V Sensitivity 10mV min.	HP 5300A/ w5306A	Р, А
Oscilloscope	Bandwidth: 10MHz min. Vertical Sensitivity: 5mV/div. Horizontal Sweep Rate: 1 μ s/div.	HP 1740A	A
Logic State Analyzer	Repetition Rate: 0 to 1MHz Input Threshold TTL (approx. +1.5V) Minimum Clock Pulse Width: 1µs	HP 1601A/ w 180C HP 1600A	т
Logic Probe	Input Impedance: >25k Ω Logic one Threshold: 2V ± 0.2 V Logic zero Threshold: 0.8V ± 0.2 V, -0.4V Input Minimum Pulse Width: 1 μ s	нр 10525Т	т

2-1. INTRODUCTION.

2-2. This section provides installation instructions for the Model 4261A LCR Meter. The section also includes information on initial inspection and damage claims, preparation for using the 4261A and packaging, storage and shipment.

2-3. INITIAL INSPECTION.

2-4. The 4261A LCR Meter as shipped from the factory meets all the specifications listed in Table 1-1. On receipt, inspect the shipping container for damage. If the shipping container or cushioning material is damaged, notify the carrier as well as the Hewlett-Packard office and be sure to keep the shipping materials for carrier's inspection until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. The contents of the shipment should be as shown in Figure 1-1. The procedures for checking the general electrical operation are given in Section III (Paragraph 3-5 OPERATOR'S CHECK) and the procedures for checking the 4261A LCR Meter against its specifications are given in Section IV. Firstly, do the operator's check. If the 4261A LCR Meter is electrically questionable then do the Performance Tests to determine whether the 4261A has failed or If contents are incomplete, if there is mechanical damage or defects (scratches, dents, broken switches, etc.), or if the performance does not meet the operator's or performance tests, notify the nearest Hewlett-Packard office (see list at back of this The HP office will arrange for repair or replacement without waiting for claim settlement.

2-5. PREPARATION FOR USE.

- 2-6. Power Requirements.
- 2-7. The 4261A requires a power source of 100, 120, 220, or 240Volts ac $\pm 10^{\circ}$, 48 to 66Hz single phase. Power consumption is approximately 25 watts.

WARNING

IF THIS INSTRUMENT IS TO BE ENERGIZED VIA AN EXTERNAL AUTOTRANSFORMER FOR VOLTAGE REDUCTION, BE SURE THAT THE COMMON TERMINAL IS CONNECTED TO THE NEUTRAL POLE OF THE POWER SUPPLY.

2-8. Line Voltage and Fuse Selection.

CAUTION

BEFORE TURNING THE 4261A LINE SWITCH TO ON, VERIFY THAT THE INSTRUMENT IS SET TO THE VOLTAGE OF THE POWER SUPPLIED.

2-9. Figure 2-1 provides instructions for line voltage and fuse selection. The line voltage selection card and the proper fuse are factory installed for the voltage appropriate to instrument destination.

CAUTION

USE PROPER FUSE FOR LINE VOLTAGE SELECTED.

CAUTION

MAKE SURE THAT ONLY FUSES FOR THE REQUIRED RATED CURRENT AND OF THE SPECIFIED TYPE ARE USED FOR REPLACEMENT. THE USE OF MENDED FUSES AND THE SHORT-CIRCUITING OF FUSE-HOLDERS MUST BE AVOIDED.

- 2-10. Power Cable.
- 2-11. To protect operating personnel, the National Electrical Manufacturer's Association (NEMA) recommends that the instrument panel and cabinet be grounded. The Model 4261A is equipped with a three-conductor power cable which, when plugged into an appropriate receptacle, grounds the instrument. The offset pin on the power cable is the ground wire.
- 2-12. To preserve the protection feature when operating the instrument from a two contact outlet, use a three prong to two prong adapter (HP Part No. 1251-8196) and connect the green grounding tab on the adapter to power line ground.

CAUTION

THE MAINS PLUG MUST ONLY BE INSERTED IN A SOCKET-OUTLET PROVIDED WITH A PROTECTIVE EARTH CONTACT. THE PROTECTIVE ACTION MUST NOT BE NEGATED BY THE USE OF AN EXTENSION CORD (POWER CABLE) WITHOUT PROTECTIVE CONDUCTOR (GROUNDING).

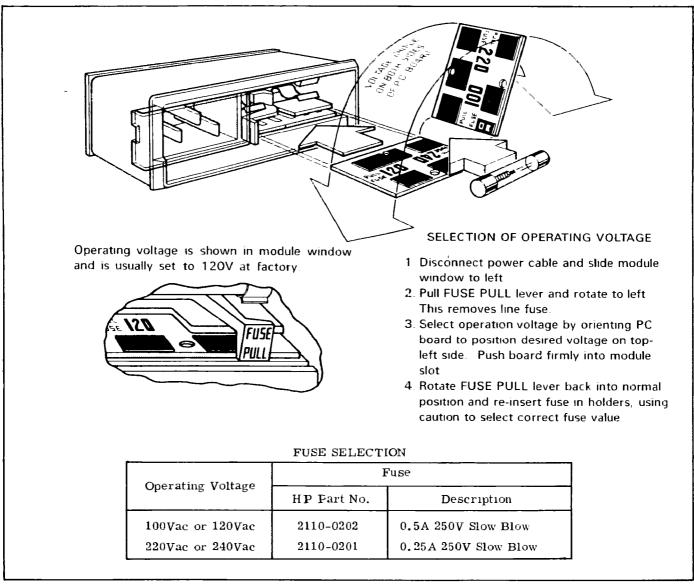
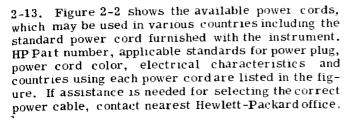



Figure 2-1. Voltage and Fuse Selection.

Table 2-1. Mating Connectors.

Mating Connector	Industry Description	HP Part No.	Alternate Source
C OFFSET	DVG -1-	1950 0400	
EXT TRIGGER	BNC, male	1250-0408	
DC BIAS	Dual Banana Plug	1251-2816	
LCR DATA OUTPUT			
D DATA OUTPUT	Micro-Ribbon 50-pin	1251-0086	Amphenol 57-30500-375
REMOTE INPUT			

2-14. Interconnections.

2-15. When an external bias is applied to the sample capacitor through DC BIAS input connectors on the 4261A rear panel, both plus and minus sides of the external power supply should be connected to the plus and minus connectors of the 4261A DC BIAS input connectors, respectively.

CAUTION

THE MAINS PLUG MUST BE INSERT-ED BEFORE EXTERNAL CONNEC-TIONS ARE MADE TO MEASURING AND OR CONTROL CIRCUITS.

- 2-16. Mating Connectors.
- 2-17. The mating connectors used for the 4261A are shown in Table 2-1. This table identifies each connector and gives the HP Part Number and part number of an alternate source.
- 2-18. Operating Environment.
- 2-19. Temperature. The instrument may be operated in temperatures from $0^{\rm o}\,\text{C}$ to +55° C.
- 2-20. Humidity. The instrument may be operated in environments with relative humidities to 95% to 40° C. However, the instrument should also be protected from temperature extremes which cause condensation within the instrument.
- 2-21. Installation Instructions.
- 2-22. The HP Model 4261A can be operated on the bench or in a rack mount. The 4261A is ready for bench operation as shipped from the factory. For bench operation a two-leg instrument stand is used. When in use, the instrument stands are designed to be pulled towards the front of instrument.
- 2-23. Rack Mounting and Handle Installation
- 2-24. The 4261A can be installed in a rack and be operated as a component of a measurement system. Rack mounting information for the 4261A is presented in Figure 2-3. Various rack mounting configurations are shown with the necessary additional parts. To convert for rack installation or to install handles, refer to Figure 2-3 and proceed as follows:
 - a. Remove the two rear feet and the two front feet with stands.
 - Follow the instructions in Figure 2-3 for desired installation.

2-25. STORAGE AND SHIPMENT.

- 2-26. Environment.
- 2-27. The instrument may be stored or shipped in environments within the following limits:

Temperature	-40° C to +75° C
Humidity	to 95%
Altitude	50, 000ft

The instrument should also be protected from temperature extremes which cause condensation inside the instrument.

2-28. Packaging.

- 2-29. Original Packaging. Containers and materials identical to those used in factory packaging are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. Also mark the container FRAGILE to assure careful handling. In any correspondence, refer to the instrument by model number and full serial number.
- 2-30. Other Packaging. The following general instructions should be used for re-packing with commercially available materials:
 - a. Wrap instrument in heavy paper or plastic. If shipping to Hewlett-Packard office or service center, attach tag indicating type of service required, return address, model number, and full serial number.
 - Use strong shipping container. A double-wall carton made of 350 pound test material is adequate.
 - c. Use enough shock absorbing material (3 to 4 inch layer) around all sides of instrument to provide firm cushion and prevent movement inside container. Protect control panel with cardboard.
 - d. Seal shipping container securely.
 - e. Mark shipping container FRAGILE to ensure careful handling.
 - In any correspondence, refer to instrument by model number and full serial number.

2-31. OPTION INSTALLATION.

- 2-32. When it is desired to add one of the available optional features to a standard 4261A instrument, perform the installation as follows:
 - a. Push LINE switch to OFF.
 - b. Remove instrument top cover.
 - c. Follow the appropriate paragraph below:

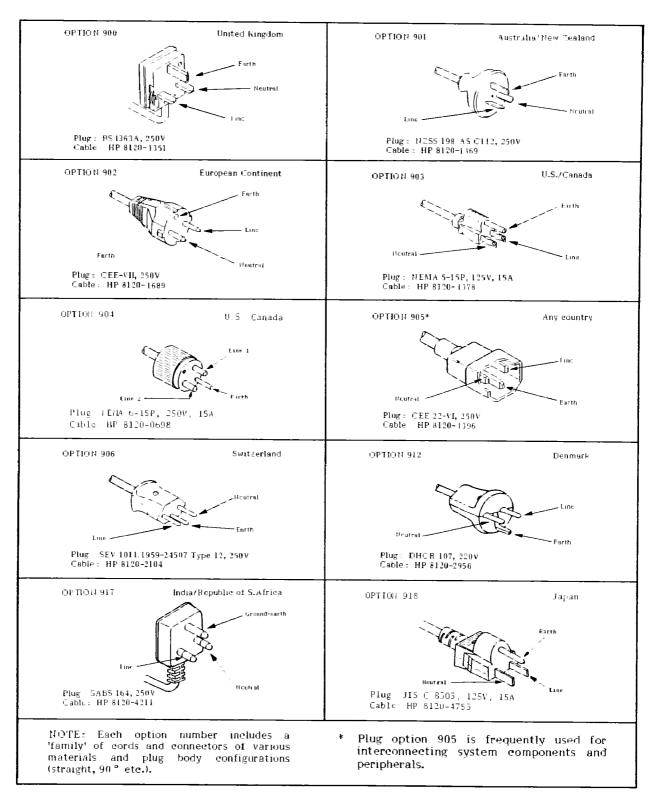
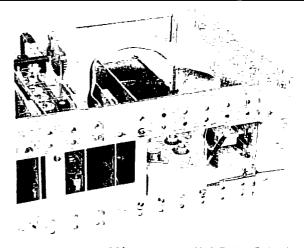
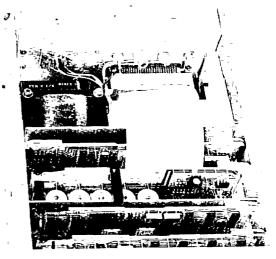




Figure 2-2. Power Cables Supplied

- 2-33. Option 001 BCD Parallel Data Output Installation.
 - Remove the two top blind covers from the rear panel.
 - b. Install two 50-pin Connector Assemblies in the openings as shown in Figure 2-4.
 - Insert A21 Board Assembly into optional receptacle (see Figure 2-4).
 - d. Plug flat cable assemblies from option board to connector boards of Connector Assemblies.
- 2-34. Option 002 Parameter Serial BCD Data Output Installation.
 - a. Remove top blind cover on rear panel.
 - b. Install a 50-pin Connector Board Assembly in the opening as shown in Figure 2-4.
 - c. Insert A22 Board Assembly into optional plugin receptacle (see Figure 2-4).
 - d. Plug flat cable assembly from option board to connector board of Connector Assembly.
- 2-35. Option 003 BCD Remote Control Installation.
 - a. Remove instrument bottom cover and bottom blind cover from rear panel.
 - b. Install connector assembly in the opening.
 - c. Connect the flat cable assembly between connector board of connector assembly and A1 Mother board (see Figure 2-4).

Option 001 BCD Parallel Data Output

Option 002 Parameter Serial BCD Data Output

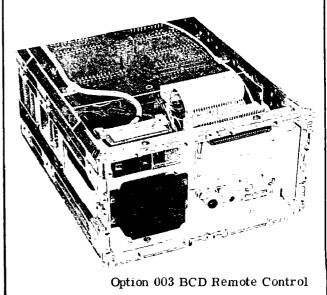
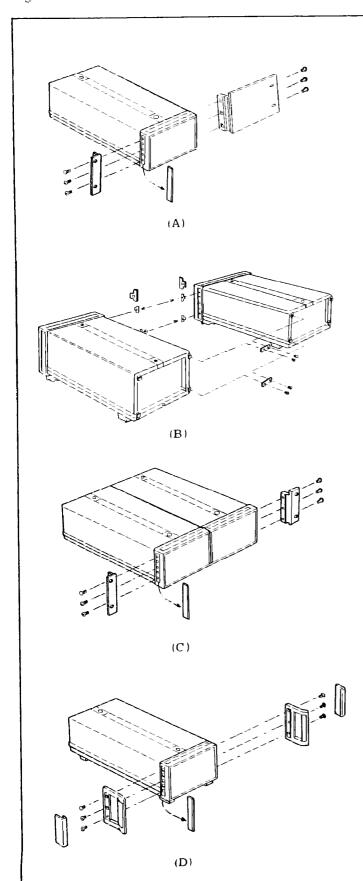



Figure 2-4. Option Installations.

A. Rack Installation (only 4081A)

- Remove the two plastic side trim strips from front frame.
- Attach flange and adapter panel assembly with screws.

Parts required:

HP Part No.	Q'ty	Description
5061-9657	1	Rack Adapter Kit

B. Horizontal Lock Installation

- 1. Remove the plastic side trim strips from front frame.
- 2. Attach front horizontal lock links to side of front frames.
- 3. Connect the two instruments together and attach rear lock links to rear panels.

Parts required:

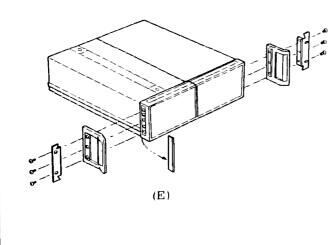
HP Part No.	Q'ty	Description
5061-9694	1	Vertical and Horizontal Lock Link Kit

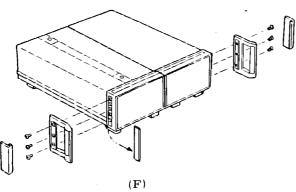
C. Rack Installation for Horizontally Locked Unit

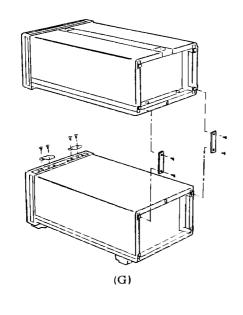
- 1. Remove the plastic side trim strips from front frame.
- 2. Attach flanges with screws.

Parts required:

HP Part No.	Q'ty	Description	
5061-9677	1	Rack Flange Kit	
Flus all parts needed for B.			


D. Handle Installation


- Remove the plastic side trim strips from front frame.
- 2. Attach handles with screws.


Parts required:

HP Part No.	Q't y	Description
5061-9689	1	Handle Kit

Figure 2-3. Rack and Handle Installation (Sheet 1 of 2).

E. Handle and Rack Installation for Horizontally Locked Unit

- 1. Remove front side trim strips from front frame.
- 2. Attach Handles with screws.
- 3. Attach flanges with screws.

Parts required:

HP Part No.	Q'ty	Description	
5061-9683	1	Handle Kıt	
Plus all parts needed for B.			

F. Handle Installation for Horizontally Locked Unit

- Remove front side trim strips from front frame.
- 2. Attach handles with screws.

Parts required:

HP Part No.	Q'ty	Description
5061-9689	1	Handle Kit
Plus all parts needed for B.		

G. Vertical Lock Installation

- 1. Remove top trim strips from front frame of bottom instrument.
- 2. Attach front vertical lock links.
- 3. Connect the two instruments together and attach rear vertical lock links with screws.

Parts required:

HP Part No.	Q'ty	Description
5061-9694	1	Vertical and Horizontal Lock Link Kit

Figure 2-3. Rack and Handle Installation (Sheet 2 of 2).

SECTION III OPERATION

3-1. INTRODUCTION.

3-2. This section provides the operating information to acquaint the user with the 4261A LCR Meter. Basic product features and characteristics, measurement procedures for various applications, an operational check of the fundamental electrical functions and operator maintenance information are presented in this section. Operating cautions throughout the text should be carefully observed.

3-3. PANEL FEATURES.

3-4. Front and rear panel features for the 4261A are described in Figures 3-1 and 3-2. Description numbers match the numbers on the photograph. Other detailed information for panel displays and controls are covered in the Operating Instructions (paragraph 3-7).

3-5. OPERATING CHECK.

WARNING

ANY INTERRUPTION OF THE PROTECTIVE CONDUCTOR INSIDE OR OUTSIDE THE INSTRUMENT OR DISCONNECTION OF THE PROTECTIVE EARTH TERMINAL IS LIKELY TO CAUSE THE INSTRUMENT TO BE DANGEROUS. INTENTIONAL INTERRUPTION IS PROHIBITED.

WARNING

WHENEVER IT IS LIKELY THAT THE PROTECTION OFFERED BY FUSES HAS BEEN IMPAIRED, THE INSTRUMENT MUST BE MADE INOPERATIVE AND BE SECURED AGAINST ANY UNINTENDED OF ERATION.

CAUTION

BEFORE ANY OTHER CONNECTION IS MADE, THE PROTECTIVE EARTH TERMINAL MUST BE CONNECTED TO A PROTECTIVE CONDUCTOR.

3-6. Figure 3-3, Operating Check procedure, may be performed as an incoming inspection or when the user wants to determine that the instrument works properly before making a measurement. If the instrument is suspected to be faulty during the operating check, it is best to repeat the check to verify the trouble and to clearly establish the symptoms and then to advance to the troubleshooting guide provided in Section VIII SERVICE or to performance tests in Section IV.

3-7. OPERATING INSTRUCTIONS.

- 3-8. General Operating Information.
- 3-9. Connecting DUT. The 4261A UNKNOWN terminals consist of five connectors: H_{CUR} , H_{POTEN} , L_{CUR} , L_{POTEN} and GUARD. These terminals are sometimes converted to a three terminal configuration including GUARD terminal. A four-terminal measurement configuration, which is useful for accurate low inductance, high capacitance or low resistance measurement, is also feasible. When converting to three terminals, shorting bars are attached to the instrument combine H_{CUR} and H_{POTEN} terminals, and L_{CUR} and L_{FOTEN} terminals, respectively.

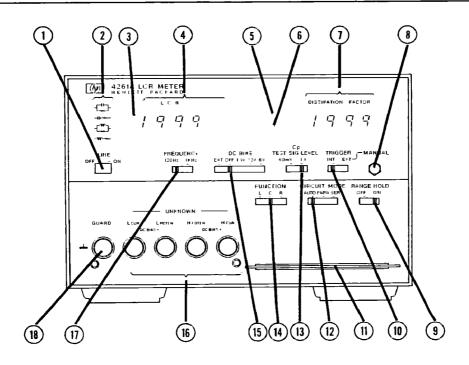
CAUTION

FOR CERTAIN TERMINAL MEAS-UREMENT CONFIGURATIONS, THE HCUR TERMINAL MUST BE CON-NECTED TO HPOTEN TERMINAL AND THE LCUR TERMINAL CON-NECTED TO THE LPOTEN TERMINAL, OTHERWISE THE DISPLAYS WILL HAVE NO MEANING AND THE LIFE OF THE RELAYS USED IN THE IN-STRUMENT WILL SOMETIMES BE SHORTENED.

Note

The 4261A can not measure a sample which has one lead connected to earth (grounded).

- 3-10. Test Fixtures and Leads.
- 3-11. The 4261A has three kinds of test fixtures and leads available. These are described in Table 3-1. The characteristics of the sample to be measured should determine which accessory should be selected. In a similar way to these available accessories, user built test fixtures or leads may be constructed for special measurement requirements.
- 3-12. Measuring Circuit Modes. The circuit mode which treats and measures the unknown as a parallel capacitance is called the Cp (parallel capacitance) mode, and in like manner, the other measuring modes are:


Cs mode: series capacitance.

Lp mode: parallel inductance.

Ls mode: series inductance.

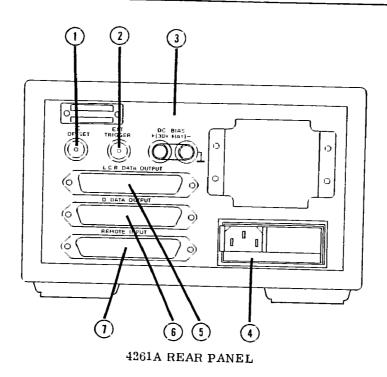
Rp mode: parallel resistance.

Rs mode: series resistance.

- 1 LINE ON/OFF switch: Turns instrument on and readies instrument for measurement.
- 2 Circuit Mode Indicator: LED lamp, next to equivalent measuring circuit being used, lights. Sample connected to UNKNOWN terminals (b) is measured in an equivalent circuit selected by FUNCTION (d) and CIRCUIT MODE (d) switches and is indicated by appropriate LED lamp. Equivalent circuits are shown as electronic circuit symbols at the left of indicator lamps. Desired circuit parameter of component is measured in one of the following selected circuit modes:

_	
Parallel capacitance	_ _ _
Parallel resistance	L-\\\\-
Series capacitance	-I-W-
Parallel inductance	-[
Series inductance	OTD 444
Series resistance	2 00 5

3 Trigger Lamp: Turns on during sample measuring period. Turns off during period when instrument is not taking measurement (or hold period). There is one turn-on-and-off cycle per measurement. This lamp turns on and off repeatedly when TRIGGER (n) is set to INT.

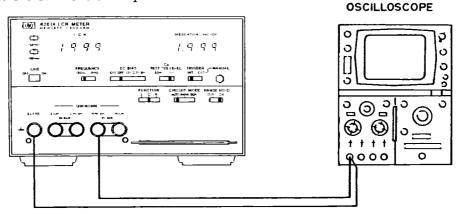

- (4) LCR Display: Inductance, capacitance or resistance value including the decimal point and unit is displayed by this 3-1/2 digit display. Displayed counts over the range between 0 and 1900 have meaning and number counts outside this range are meaningless. Both LCR(4) and DISSIPATION FACTOR displays (1) will indicate 1999 counts and OUT OF RANGE lamp (5) will light when number of counts for inductance, capacitance or resistance is less than about 60 counts in parallel inductance (Lp), series capacitance (Cs) or parallel resistance (Rp) measurement modes. This condition does not occur when measurement mode is series inductance (Ls), parallel capacitance (Cp) or series resistance (Rs).
- (5) OUT OF RANGE lamp: This lamp is turned on if inductance, capacitance, resistance or dissipation factor measured is out of the measurement range as determined by selected range when RANGE HOLD (3) is set to ON; and by selected CIRCUIT MODE (12) when RANGE HOLD (3) is OFF. When OUT OF RANGE lamp lights, either one or both displays will be blank or read 1999 counts.
- (6) REMOTE lamp. When this lamp is on, it means that instrument is being remotely controlled by external devices connected to 4261A Option 003 or Opt on 101. Front panel FREQUENCY (17), CP TEST SIG LEVEL (11), TRIGGER (18), FUNCTION (14), CIRCUIT MODE (12), and RANGE HOLD (3) controls are disabled when REMOTE lamp is lit.

- DISSIPATION FACTOR Display. Value for dissipation factor is always displayed as a decimal. Dissipation factor measurements in the range of 0.000 to 1.900 can be measured with meaning. Other dissipation factor values measured with the instrument do not have meaning. This display is blanked when making resistance measurements and when number of counts for inductance (Ls) or capacitance (Cp) is less than 80 counts.
- MANUAL Trigger Pushbutton Switch. When this button switch is pushed and released, it triggers a measurement cycle. The switch is normally used when TRIGGER (10) is set to EXT, but it also functions when TRIGGER (10) is set to INT. A measurement cycle is initiated when the TRIGGER pushbutton is released. Holding the TRIGGER pushbutton in its depressed position holds the measurement. Releasing the button initiates a measurement and permits INT (internal) triggering to continue.
- RANGE HOLD Switch. Setting this switch to OFF enables the instrument to make measurements in autoranging mode. When RANGE HOLD is set to ON, range is held on range selected just prior to setting RANGE HOLD to ON. When RANGE HOLD is in ON position, range is scaled down by one decade when changing test frequency from 120Hz to 1kHz and scaled up by one decade by changing from 1kHz to 120Hz except in resistance measurements.
- TRIGGER Switch. This switch selects trigger mode, INT or EXT. INT trigger is internal trigger mode and enables instrument to make repeated automatic measurements. In external trigger (EXT) mode, triggering is performed by either operating MANUAL trigger button (3), by a trigger signal through EXT TRIGGER input connector on rear panel or by a remote control signal via rear REMOTE INPUT connector.
- Instruction Card. This card provides simplified measurement procedures and outlines measurement ranges.
- CIRCUIT MODE Selector Switch. Appropriate circuit mode for taking a measurement is selected and set with this switch. A parallel equivalent circuit is selected when the switch is set to PARA position and series equivalent circuit in the SER position. The instrument automatically selects the appropriate parallel or series equivalent in when set to AUTO circuit mode position. Measurement range for each position is shown in the Instruction Card (1).

- (13) Cp TEST SIG LEVEL selector switch. This switch is effective only in parallel capacitance measurements and permits selection of test voltage to be applied to sample (50mVrms or 1Vrms). The 50mV test voltage is generally utilized in semiconductor device measurements.
- FUNCTION Switch. This switch selects electrical circuit parameter to be measured with the instrument as follows:

FUNCTION	Parameter(s) measured	
L	inductance and dissipation factor	
С	capacitance and dissipation factor	
R	resistance	

- (15) DC BIAS Selector Switch. This switch permits selection of internal DC bias voltage applied to sample (1.5Vdc, 2.2Vdc, or 6.0Vdc) or when switch is set to EXT, is used to apply external bias voltage from rear DC BIAS input connectors. OFF position is selected in no bias voltage is necessary.
- UNKNOWN Terminals. Consists of four terminals: High current terminal (H_{CUR}), High potential terminal (H_{POTEN}), Low potential terminal (L_{POTEN}) and Low current terminal (L_{CUR}). The five-terminal configuration is constructed by adding the GUARD terminal (18). A three-terminal configuration is constructed by shorting High terminals and Low terminals together with shorting bars. The high terminals are biased with a positive DC voltage with respect to LOW terminals.
- 17) FREQUENCY Selector Switch. Permits selection of frequency of test signal applied to sample, either 120Hz or 1kHz.
- GUARD Terminal. This is connected to chassis ground of instrument and can be used as Guard terminal for increasing accuracy in certain measurements.



- (1) C OFFSET Signal Output Connector. A capacitance offset adjustment can be made by using the signal from this connector. In addition, the test voltage applied to sample can be monitored with an ac voltmeter or oscilloscope connected to this connector. DC bias voltage is not outputted from this connector.
- 2 EXT TRIGGER Connector. This connector is used for external triggering the instrument by inputting a trigger signal from an external device including a user designed triggering circuit. For external triggering, TRIGGER switch on front panel is normally set to EXT position.
- 3 DC BIAS Voltage Input Connectors. External DC bias voltage can be applied to the sample up to the maximum voltage of plus 30V through the connectors.
- 4 AC Power Input Connector. Permits line voltage selection of 100Vac, 120Vac, 220Vac or 240Vac.

- 5 LCR DATA OUTPUT Connector. With Option 001 BCD parallel data for inductance, capacitance and resistance measured values are outputted through this 50-pin connector. Option 002 adds dissipation factor output also in BCD parallel data form in serial with inductance or capacitance data (Option 001) from this connector.
- (6) D DATA OUTPUT Connector. BCD parallel data of measured dissipation factor are outputted through this 50-pin connector (Option 001).
- REMOTE INPUT Connector. An External device can remotely control the instrument by inputting control signals through this 50-pin connector. Front panel controls for FRE-QUENCY, Cp TEST SIG LEVEL, FUNCTION, CIRCUIT MODE and Ranging can be controlled.

OPERATING CHECK

1. Connect 4261A to Oscilloscope:

2. Set 4261A to:

FUNCTION C CIRCUIT MODE PARA

3. Set oscilloscope and check operating frequencies, test signal levels and internal bias as follows:

Oscilloscope Settings	Frequency Internal Bias Voltage
VOLTS/DIV: 0.05V TIME/DIV: 2msec DC input mode	Frequency displayed on oscilloscope should change as 4261A FREQUENCY control (120Hz & 1kHz) is changed. Signal level displayed on oscilloscope should change as 4261A Cp TEST SIG LEVEL control (50mV & 1V) is changed.
VOLTS DIV: 0.2V TIME DIV: 2msec DC input mode	DC level of test signal on oscilloscope should change as DC BIAS control is switched from 1.5V to 2.2V and 6V.

- 4. Disconnect oscilloscope.
- 5. Check that the circuit mode indicator lamp correctly lights when FUNCTION and CIRCUIT MODE switches are changed. Fable shows FUNCTION and CIRCUIT MODE arrangement.

EUNICIPION	CIRCUIT MODE	
FUNCTION	PARA	SER
L		-æ-₩-
С	- 	-1 -
R		-787-W-

Figure 3-3. Operating Check (Sheet 1 of 2).

Operating Check (Continued).

6. The two 4261A displays should indicate maximum counts when 4261A controls are set as follows:

4261 A Settings	Display
FUNCTION R CIRCUIT MODE AUTO TRIGGER INT UNKNOWN device Open ($\infty \Omega$)	Left display should read 19.99M Ω .
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Right display should read 1.999.

- 7. Check that trigger lamp repeatedly turns on and off when 4261A TRIGGER is set to INT.
- 8. Measurement lamp unit display check. Measurement unit lamp displays should light sequentially when 4261A is operated as follows:

 - 2. Push MANUAL button.
 - 3. Short High and Low terminals together.
 - 4. As MANUAL button is pushed and released unit display should sequentially change as follows:

FUNCTION	Unit Dısplay
L	$H \longrightarrow mH \longrightarrow \mu H$
С	$pF \longrightarrow nF \longrightarrow \mu F \longrightarrow mF$
R	$M\Omega \longrightarrow k\Omega \longrightarrow \Omega \longrightarrow m\Omega$

9. The 4261A left display will read some minimum value in milliohms (typical value may be $006m\Omega$, for example) when unit is set to

- 10. Set RANGE HOLD to ON.
- 11. Check that left display unit maintains its previous $m\Omega$ display when UNKNOWN device terminals are opened ($\infty \Omega$).
- 12. OUT OF RANGE lamp should light if 4261A is set as follows:

FUNCTION	R
CIRCUIT MODE	
-	
TRIGGER	
UNKNOWN device Oper	I (\$\$\$\$)

Table 3-1. Test Fixtures and Leads.

Accessory	Characteristics	
16061A Test Fixture	This fixture facilitates easy measurement of general tubular type components with axial or vertical leads. To install fixture, disconnect shorting bars between high terminals and between low terminals. Insert fixture plugs into UNKNOWN terminals. Tighten fixture screws to firmly attach fixture to instrument. Two kinds of inserts are included (for components with either axial or vertical leads).	
16062A Test Leads	These test-leads are especially useful for the measurement of low impedances (e.g., a low inductance - less than approx. 2H at 1kHz or 20H at 120Hz, a high capacitance - more than approx. $10nF$ at $1kHz$ or $100nF$ at $120Hz$ or a low resistance - less than approx. $10k\Omega$). If the measuring sample is more than approx. $300\mu F$ at $1kHz$ or less than approx. $100\mu H$ at $1kHz$, it is recommended that the respective potential leads and current leads should be twisted together.	
16063A Test Leads	These test-leads are particularly useful for measuring high impedances (e.g., an inductance of more than approx. 3mH at 1kHz or 30mH at 120Hz, a capacitance lower than approx. $10\mu\text{F}$ at 1kHz or $100\mu\text{F}$ at 120Hz, or a resistance more than approx. 20Ω). They are not intended to be used for accurate measurement of small capacitances less than approx. 100pF due to the residual capacitance of the leads.	

The four-terminal measurement configuration is adopted for measurements of low series inductance (Ls), high series capacitance (Cs) or low series resistance (Rs) to eliminate the effect of residual impedance of measuring terminals and lead wires. The GUARD terminal is sometimes used to compensate for the effects of stray capacitance and leakage resistance existing between terminals and lead wires when measuring low capacitance or high inductance. Table 3-2 relates the instrument measuring circuit mode to the equivalent circuit and parameter terminology.

3-13. Parameter values for a component measured in a parallel equivalent circuit and that measured in series equivalent circuit are different from each

Table 3-2. Parameter Terminology.

Circuit Mode	Equivalent Circuit	Terminology
Cp mode Rp mode	-Cur Rp	Cp: parallel capacitance Rp: parallel resistance
Cs mode	Cs Rs -1 W -	Cs: series capacitance Rs: series resistance
Lp mode	Lp Rp	Lp: parallel inductance Rp: parallel resistance
Ls mode Rs mode	Ls Rs	Ls: series inductance Rs: series resistance

other. For example, the parallel capacitance of a given component is not equal to the series capacitance of that component. Figure 3-4 shows the relationships between parallel and series parameters for various values of D. Applicable diagrams and equations are given in the chart. For example, a parallel capacitance (Cp) of 1000pF with a dissipation factor of 0.5, is equivalent to a series capacitance (Cs) value of 1250pF at 1kHz. As shown in Figure 3-4, inductance or capacitance values for parallel and series equivalents are almost identical when the dissipation factor is less than 0.01. The letter D in Figure 3-4 represents dissipation factor and is calculated by the equations presented in Table 3-3 for each circuit mode. The dissipation factor of a component always has the same dissipation factor at a given frequency for both parallel equivalent and series equivalent circuits.

Note

Dissipation factors displayed when CIRCUIT MODE is switched between PARA and SER may exhibit slight differences due to the measurement accuracy of the 4261A.

The reciprocal of the dissipation factor (D) is quality factor (Q) and D is often represented as $\tan \delta$ which is the tangent of the dissipation angle (δ). Figure 3-5 is a graphical presentation of the equations in Table 3-3. For example, a series inductance of $1000\,\mu\mathrm{H}$ which has a dissipation factor of 0.5 at 1kHz has a series resistance of 3.14 ohms.

Table 3-3. Dissipation Factor Equations.

Ci	ircuit Mode	Dissipation Factor	Conversion to other modes
Cp mode	-Cp	$D = \frac{1}{2\pi f C p R p} \left(= \frac{1}{Q} \right)$	$Cs = (1 + D^2)Cp, Rs = \frac{D^2}{1 + D^2} \cdot Rp$
Cs mode	Cs Rs	$D = 2\pi f C s R s \ (= \frac{1}{Q})$	$Cp = \frac{1}{1 + D^2} Cs, Rp = \frac{1 + D^2}{D^2} Rs$
Lp mode	- L P	$D = \frac{2\pi f Lp}{Rp} \ (= \frac{1}{Q})$	Ls = $\frac{1}{1 + D^2}$ Lp, Rs = $\frac{D^2}{1 + D^2}$ Rp
Ls mode	Ls Rs	$D = \frac{Rs}{2\pi f Ls} \ (= \frac{1}{Q})$	$Lp = (1 + D^2)Ls$, $Rp = \frac{1 + D^2}{D^2} \cdot Rs$

^{*}f: Test signal frequency.

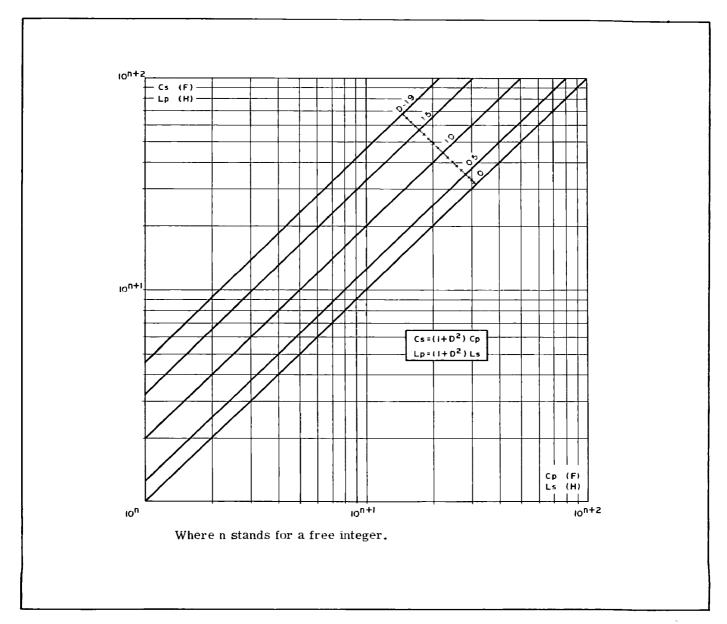


Figure 3-4. Conversion Between Parallel and Series Equivalents.

Table 3-4. Test Signal Level.

	CIRCUIT MODE							
RANGE	Ls	Lp	Cs	Ср	Rs	Rp		
1	70mA rms			1Vrms(50mVrms)*	70mA rms			
2	10mA rms		<u></u>	1V rms (50mV rms)*	10mA rms	 _		
3	lmA rms			1V rms (50mV rms)*	1mA rms			
4	$100\mu\mathrm{A}\ \mathrm{rms}$	1V rms	$10\mu\mathrm{A}~\mathrm{rms}$	1Vrms (50mVrms)*	$100~\mu\mathrm{A}~\mathrm{rms}$	1V rms		
5	10 μA rms	1V rms	$100\mu\mathrm{A}\;\mathrm{rms}$	1Vrms(50mVrms)*	$10~\mu\mathrm{A}~\mathrm{rms}$	1V rms		
6		1V rms	1 μA rms			1V rms		
7		1V rms	10mA rms			1V rms		
8			70mArms			1V rms		

^{*} When Cp TEST SIG LEVEL is set to 50mV.

3-14. Test Signals. Two test signal frequencies are available; these are 120Hz and 1kHz sinusoidal waveforms which have a frequency accuracy of 3%. The typical voltage applied to the sample or current flowing thourh the sample is specified in Table 3-4 for both test signal frequencies. A constant test voltage is supplied to the sample when measuring parallel parameters Lp, Cp and Rp. The constant current method is adopted for the measurement of Ls, Cs and Rs. The 50mV rms test voltage is available only for Cp measurement.

Note

Voltage or current applied to sample is detailed in Table 1-2 for the various devices under test.

3-15. Measurement Range. The 4261A has wide measurement ranges as shown in Table 3-5. Seven or eight ranges are available (depending upon measurement function) and the range is automatically selected for the sample value connected to the 4261A. Four or five ranges, however, are used for measurements in series and parallel equivalent circuit modes. When the CIRCUIT MODE is set to AUTO, the 4261A will automatically select the circuit mode, range over all the measurement ranges shadowed in Table 3-5, and measure the sample. An instruction card attached to the instrument also outlines all measurement ranges.

3-16. Display. The 4261A has two displays, the LCR display (left side) and the DISSIPATION FACTOR display (right side). The circuit mode indicator lamp

Table 3-5. Measurement Ranges.

Table 3-5. Meastifement Kanges.									
					RANGE				
CKT MODE	FRE- QUENCY	1	2	3	4	5	6	7	8
Lp	120 Hz 1kHz				0000mH 000.0mH	00.00 H 0000mH	00.00 H	000.0 H	
Ls	120Hz 1kHz	0000μΗ 000.0μΗ	00,00mH 0000μH	000.0mH 00.00mH	0000mH 000.0mH	00.00 H 0000mH			
Ср	120Hz 1kHz	0000pF 000.0pF	00.00nF 0000pF	000.0nF	0000nF 000.0nF	00.00μF 0000nF			
Cs	120Hz 1kHz				0000nF 000.0nF	00.00μF 0000nF	000.0μF 00.00μF	0000μF 000.0μF	00.00mF
Rp	120Hz 1kHz				0000Ω 0000Ω	00,00kΩ 00,00kΩ	000,0kΩ 000,0kΩ	0000kΩ 0000kΩ	00,00MΩ 00,00MΩ
Rs	120Hz 1kHz	Ω m0000	00,00Ω	000, 0Ω 000, 0Ω	0000Ω	00, 00kΩ 00, 00kΩ			

Note: $0000 \mu H$ indicates a range of $0001 \mu H$ to $1900 \mu H$ (and similarly for F and Ω).

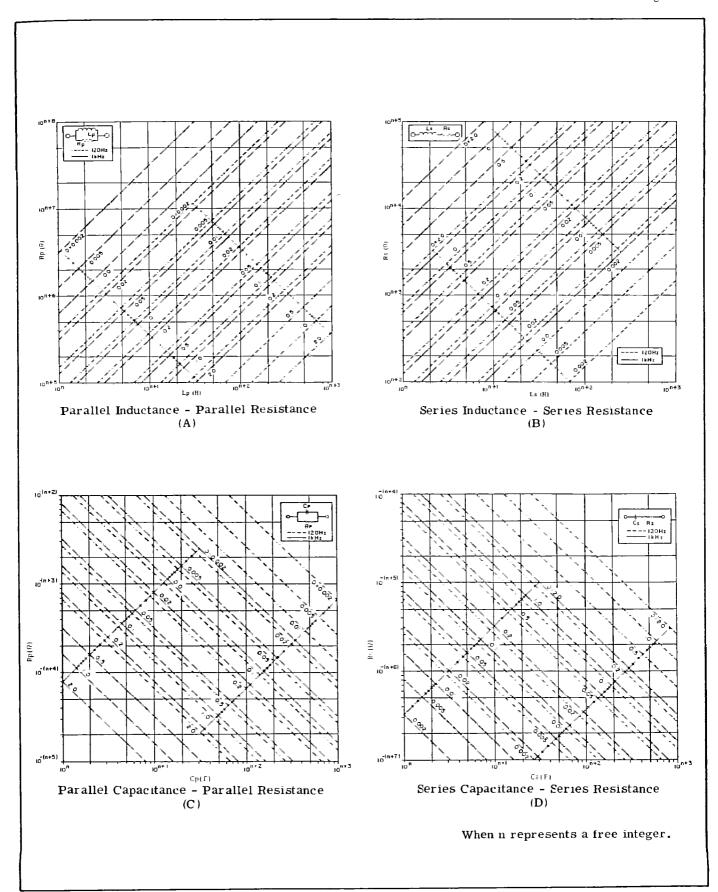


Figure 3-5. Relationship of Dissipation to Series and Parallel Resistance.

is lit as assigned by the settings of FUNCTION and CIRCUIT MODE. The unit lamps light and are read in conjunction with the numerical LCR display to their left. The right side display is blanked during resistance measurement. Table 3-6 describes operator action to be taken when OUT OF RANGE lamp is lit, when the display is blanked, or when a minus display occurs.

Note

LCR display is meaningful even if D diaplay shows 1999 counts and OUT OF RANGE lamp lights. However, measurement error will increase in proportion to increase in D value. See Table 1-2 for details.

CAUTION

DISSIPATION FACTOR DISPLAY SOMETIMES RANDOMLY DISPLAYS A MEASUREMENT OR A BLANK CONDITION WHEN VALUE OF CAPACITANCE OR INDUCTANCE IS AROUND 80 COUNTS ON MINIMUM MEASUREABLE RANGE AT ANY PANEL CONTROL SETTING.

3-17. Accuracy. Figure 3-6 is a graphic representation of the accuracy specifications provided in Table 1-1. The horizontal axis for all curves is the reading of the 4261A in counts and the vertical axis

Table 3-6. Annunciation Display Meanings.

Display	Indicated Condition	Action	
OUT OF RANGE	At least one of two displays exceeds 1999 counts (in this case, at least one display shows 1999 counts).	a. Set 4261A to: CIRCUIT MODE: AUTO RANGE HOLD: OFF	
	2. Measured value for Lp, Cs or Rp is less than about 80 counts. Both displays show 1999 counts. In Rp mode, right display is always being blanked.	b. Try changing FUNCTION to L, C or R.	
	3. Range is held to one not specified as a measurable range for parallel or series circuit modes. When this occurs, numerals (only) of both displays are blanked. Decimal point is still lit.		
Display is blanked.	Right display (only) is blanked during Rp or Rs measurement.	Normal operation.	
	Range is held to one not specified as measurable range for parallel or series circuit mode, OUT OF RANGE lamp is also lit.	a. Set 4261A to: CIRCUIT MODE: AUTO	
	3. Right display (only) is blanked when measured value of inductance (Ls) or capacitance (Cp) is less than 80 counts.	RANGE HOLD: OFF FREQUENCY: 120Hz b. Check that FUNCTION	
	4. Right display (only) is blanked when Lp or Cs value exceeds 1999 counts. In this case, OUT OF RANGE lamp is lit.	is correct.	
Minus (-) is displayed.	Minus display sometimes occurs when sample having a value around zero is measured.	Zero counts display is meaningful when minus (-) display repeatedly turns on and off.	
	2. Sometimes a minus display occurs when a capacitor (or inductor) is measured in L (or C) FUNCTION.	Change to correct FUNCTION.	
	3. Offset adjustment signal applied is too great (causes minus display).	Readjust offset signal to proper magnitude.	

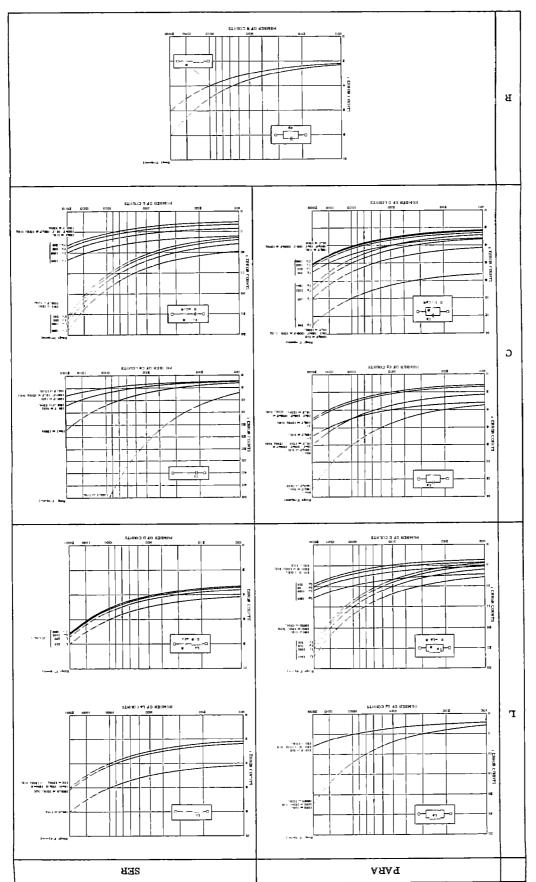
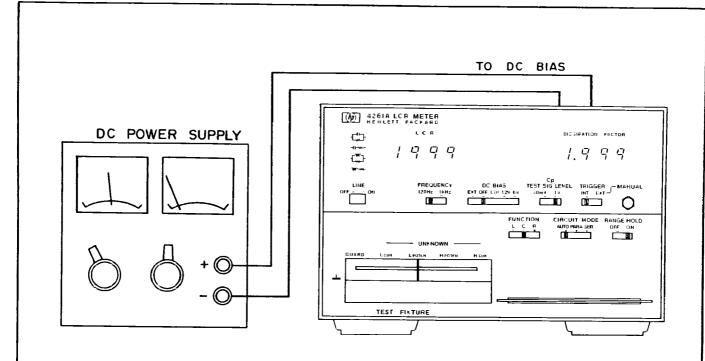



Figure 3-6. Accuracy.

1. Remove shorting bar connections between high terminals and between low terminals (all terminals are now isolated from each other). Connect 16061A Test Fixture to 4261A UNKNOWN terminals.

Note

User constructed test fixture may also be connected as stray capacitance of test fixture connection can be compensated for by using C OFFSET signal from rear connector. Refer to Figure 3-10 for details. GUARD terminal is sometimes used in small capacitance measurements. Refer to paragraph 3-9 for details.

2. Set 4261A controls as follows

FREQUENCY	120Hz or 1kHz
DC BIAS	OFF
Cp TEST SIG LEVEL	1v
TRIGGER	INT
FUNCTION	L. C or R
CIRCUIT MODE	AUTO
RANGE HOLD	OFF

Note

If manual triggering is required, TRIGGER switch is set to EXT position and MANUAL button pushed and released to trigger measurement. In Cp mode, Cp TEST SIG LEVEL may be set to 1V for a more accurate measurement than that with 50mV test level.

3. Push LINE to turn instrument ON. Check that trigger lamp turns on and off.

Figure 3-7. General Component Measurements (Sheet 1 of 2).

4. Connect sample to be measured (L, C or R) to Test Fixture.

Note

When OUT OF RANGE, minus (-) or blank display occurs, see Table 3-6 for solution. Measured values for semiconductor devices are sometimes unreliable when Cp TEST SIG LEVEL is set to 1V position. In these instances, follow Figure 3-8 for semiconductor device measurement.

5. If internal DC bias is required, set DC BIAS switch to 1.5V, 2.2V or 6V. If not, OFF position should be selected.

Note

DC bias application may only be used for capacitance measurements.

CAUTION

POSITIVE POLE OF ELECTROLYTIC CAPACITOR MUST BE CONNECTED TO HIGH TERMINALS AS PLUS BIAS VOLTAGE IS APPLIED TO HIGH TERMINALS WITH RESPECT TO LOW TERMINALS.

Note

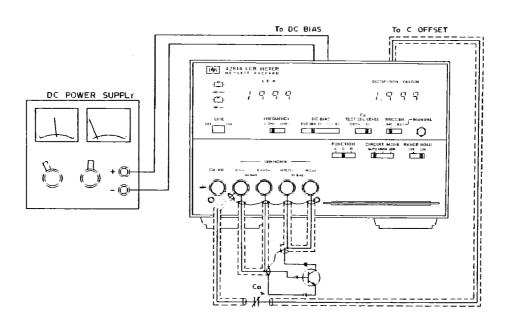
An external bias voltage up to +30V may be applied to EXT BIAS rear panel connector. Connect DC power supply to EXT BIAS connectors. Set DC BIAS switch to EXT.

CAUTION

EXTERNAL DC BIAS THROUGH EXT BIAS CONNECTOR MUST NEVER EXCEED +30V.

6. Read measured value on display. Refer to Figure 3-6 for accuracy of reading.

Note


It is usually best to set RANGE HOLD switch to ON when measuring multiple samples having almost the same value.

Note

Series resistance of electrolytic capacitors, inductors or transformers can be measured in Rs measurement mode. In these cases, the number of digits is sometimes reduced. On the other hand, resistance can, of course, be indirectly measured with the C L FUNCTION and calculated from one of the following equations:

Rs = D/ω Cs (Cs-D measurement) Rs = ω Ls D (Ls-D measurement) Rs = ω Lp $\cdot \frac{D}{1+D^2}$ (Lp-D measurement)

Figure 3-7. General Component Measurements (Sheet 2 of 2).

Note

Base-collector junction capacitance of NPN transistor may be measured using the test setup shown in this figure (for example).

1. Construct setup as shown above:

Note

Test leads or fixture may be user designed for this measurement. If external DC bias is not necessary or capacitance offset adjustment function is not needed, arrangement and procedures associated with these functions can be deleted from setup.

2. Set 4261A controls as follows:

FREQUENCY 1k	Hz
DC BIAS O	\mathbf{FF}
Cp TEST SIG LEVEL 50r	nV
TRIGGER	\mathbf{T}
FUNCTION	C
CIRCUIT MODE PAI	
RANGE HOLD O	\mathbf{FF}

CAUTION

CIRCUIT MODE SHOULD NOT BE SET TO AUTO OR SER. Cp TEST SIG LEVEL MUST BE IN 50mV.

- 3. Push LINE to turn instrument ON. Verify that trigger lamp is turning on and off.
- 4. If necessary, apply DC bias voltage internally or externally at rear panel DC BIAS connectors.

CAUTION

NEVER APPLY AN EXTERNAL DC BIAS OVER +30V.

Figure 3-8. Semiconductor Device Measurements (Sheet 1 of 2).

Notes

- a. DC BIAS switch must be in EXT position during application of external DC BIAS at rear panel connectors.
- b. External de bias source should be stable with low noise.
- Adjust capacitance offset adjustment pot (Co) for zero capacitance reading.
 See Figure 3-10 for details.
- 6. Connect semiconductor device to test lead or to fixture. The following are examples of connections for the various parameters to be measured:

Notes

- It is impossible to measure junction capacitance when bias current flows through sample.
- b. It is recommended that the device be connected directly to 4261A terminals. If test cable is used, it should be shielded.
- c. Set TRIGGER switch to EXT and use MANUAL switch for manual triggering. External trigger at rear panel connector may also be used. See Figure 3-11 for reference. It is recommended that RANGE HOLD be set to ON when measuring multiple samples whose values are about the same.
- 7. Read displayed values. Refer to Figure 3-6 for accuracy.

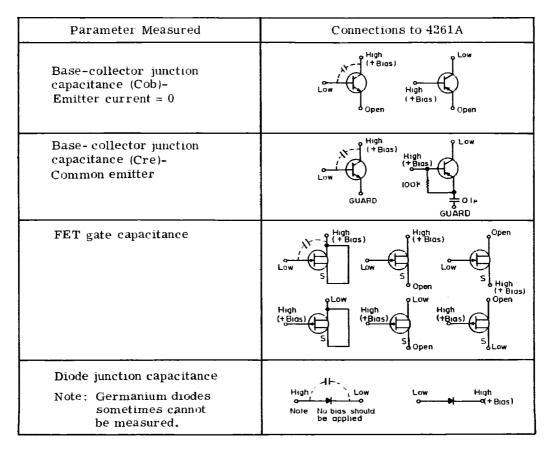
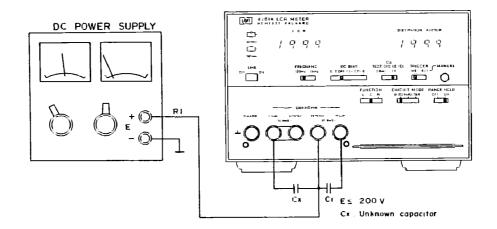


Figure 3-8. Semiconductor Device Measurements (Sheet 2 of 2).

External DC Voltage Bias Circuits (30V <, < 200V)


1. Connect external dc bias source as shown in diagram:

CAUTION

DO NOT APPLY DC VOLTAGE EXCEEDING 200 VOLTS. IF APPLIED, 4261A CIRCUITRY WILL BE DAMAGED.

Note

+E voltage is applied to Cx in figure. -E voltage can be applied to Cx in this figure. In this arrangement, the polarity of Cx and C1 must be taken into consideration.

CAUTION

NEVER SHORT BETWEEN H_{POTEN} AND LOW TERMINALS WHEN R_1 IS SMALLER THAN $1k\Omega$. IT IS BETTER TO MAKE SURE THAT UNKNOWN CAPACITOR IS NOT DEFECTIVE BEFORE CONNECTING TO INSTRUMENT.

Note

Ripple or noise on external dc bias source should be as low as possible. The low frequency noise of bias source should be less than 1mVrms for a Cp TEST SIG LEVEL of 50mV and 30mVrms for 1V.

2. Minimum values for C1 (dc blocking capacitor) and minimum values R1 are given in table below:

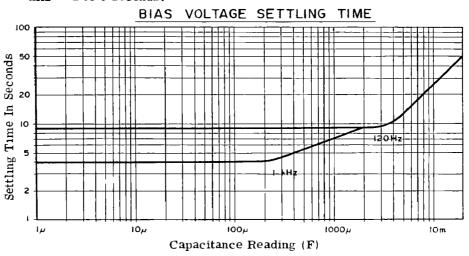
Note

Insulation resistance for Cx must be greater than a certain value. Refer to Table 3-7, page 3-23 of Unusual Operating Indications.

	120Hz	1000pF	10.00nF	100.0nF	1000nF	$10.00 \mu extbf{F}$
Range	1kHz	100,0pF	1000pF	10.00nF	100.0nF	1000n F
Minimum	120Hz	$0.01 \mu ext{F}$	0.1μ F	$1\mu extbf{F}$	$10 \mu extbf{F}$	$100 \mu extbf{F}$
C ₁ (F)	1kHz	$0.01 \mu ext{F}$	$0.01\mu extbf{F}$	$0.1 \mu extbf{F}$	$1 \mu extbf{F}$	$10 \mu extbf{F}$
Minimum R	1 (Ω)	300kΩ	100kΩ	10kΩ	1kΩ	100Ω

Figure 3-9. External DC Bias Circuits (Sheet 1 of 3).

Note


DC withstand voltage for C_1 capacitor must be greater than dc applied voltage E. Also observe polarity of capacitor C_1 with respect to applied voltage.

3. Set 4261A controls as follows:

FUNCTION	C
CIRCUIT MODE	
DC BIAS	OFF
Other controls any s	setting

4. Read displayed value after allowing time for bias voltage to settle. Typical settling times are:

120Hz: 6 to 7 seconds. 1kHz 2 to 3 seconds.

Note

If C1 and R1 are larger than those given in table on Sheet 1 are connected, longer settling times are necessary.



Figure 3-9. External DC Bias Circuits (Sheet 2 of 3).

Note

DC power supply should be floated from ground.

Note

If cable between low terminals of 4261A and power supply is relatively long, it should be shielded cable. The outer conductor is connected to GUARD terminal.

2. Set 4261A as follows:

FREQUENCY	120Hz or 1kHz
DC BIAS	EXT
FUNCTION	
CIRCUIT MODE	, PARA or SER
RANGE HOLD	ON

Note

First, set RANGE HOLD set to OFF and determine range by connecting sample with no dc bias current applied. Then set RANGE HOLD to ON.

3. Recommended inductance ranges and maximum bias currents are:

	120Hz	$1000 \mu H$	10,00mH	100.0mH	1000mH	10.00H	100.0H
RANGE	1kHz	100.0μΗ	$1000\mu\mathrm{H}$	10.00mH	100.0mH	$1000 \mathrm{mH}$	10.00H
CIRCUIT MODE			SER		-	PARA	
Maximur Current	n Bias	52 mA	$40 \mathrm{mA}$	13 _m A	52mA	40mA	13mA

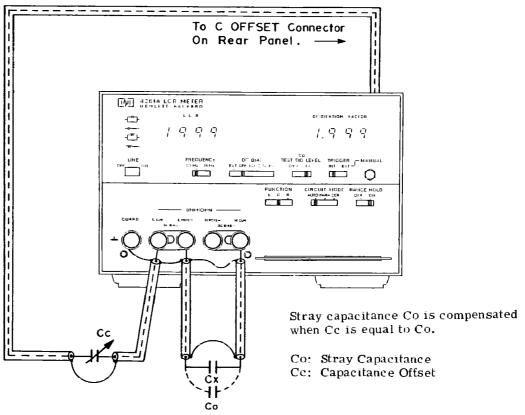
CAUTION

DC BIAS OVER +30 VOLTS MUST NOT BE APPLIED TO EXTERNAL DC BIAS INPUT CONNECTOR.

Figure 3-9. External DC Bias Circuits (Sheet 3 of 3).

is the number of error counts which are added to or subtracted from the readings.

3-18. General Component Measurement.


3-19. Figure 3-7 shows the operating procedures for measuring an L, C or R (inductance, capacitance Almost all disor resistance) circuit component. crete circuit components (inductors, capacitors or resistors) except for components having special shapes or dimensions can be measured with this Special components may be measured by using Test Leads 16062A and 16063A or by specially designed user built fixtures instead of 16061A Test Fixture. Although both external dc bias and capacitance offset adjustment can be used with the setup shown in Figure 3-7 by connecting a DC bias source and by using the C OFFSET signal, the two functions are not covered in this procedure. For these applications refer to Figures 3-9 or 3-10.

3-20. Semiconductor Device Measurement.

3-21. The procedures for using the 4261A semiconductor device measurement capabilities are described in Figure 3-8. For example, the junction (interterminal) capacitance of diodes, collector output capacitance of transistors, etc., can easily and accurately be measured (with and without dc bias).

3-22. External DC Bias.

3-23. A special biasing circuit using external voltage or current bias, as needed for capacitor or inductor measurements, is illustrated in Figure 3-9. The figure shows sample circuitry appropriate to 4261A applications. The biasing circuits avoid permitting dc current to flow into the 4261A as dc current increase the measurement error and because the excess current sometimes may cause damage to the instrument. When applying a dc voltage to capacitors, be sure applied voltage does not exceed maximum working voltage and that you are observing

Procedure:

1. Connect signal from C OFFSET connector through a variable capacitor Cc to 4261A Low UNKNOWN terminals.

Notes

- a. An air capacitor is recommended for capacitor (Cc). If unavailable, other low loss capacitors may be used. Reading error for D display will be increased if a lossy capacitor is used.
- b. It is recommended that connection between Cc and Low terminal be made with a shielded cable to eliminate the effects of noise.
- 2. Adjust Cc so that a display of 000 is obtained on LCR DISPLAY when no unknown capacitor is connected to UNKNOWN terminals.

Notes

- a. Compensation for stray capacitance is 0 to 100pF. Actual value of compensation realized depends upon method of connection and residual value of variable compensating capacitor (see Cc in above figure). Lowest actual compensating capacity achievable is typically on the order of a few pico-farads.
- b. A display of -000 (minus) should be avoided when adjusting compensation. Adjust for 000 display.

Figure 3-10. C OFFSET Adjustment Setup.

polarity of capacitor. Note that the external bias voltage is present at H_{CUR} and H_{POTEN} terminals.

3-24. Bias Voltage Settling Time. When a measurement with dc bias voltage superposed is performed, it takes some time for voltage across sample to reach a certain percentage of applied (desired) voltage. Figure 3-9 shows time for dc bias voltage to reach more than 99% of applied voltage and for 4261A to display a stable value. If the bias voltage across sample is not given sufficient time to settle, the displayed value may fluctuate or 1999 counts may be displayed and OUT OF RANGE lamp may light. Read measured value after display settles.

3-25. Offset Adjustments.

3-26. One of the sophisticated capabilities of the 4261A is its offset adjustment control which permits a direct, accurate display of actual measured value of sample by compensating for stray capacitance. Figure 3-10 shows recommended offset adjustment circuit and adjustment reange for capacitance measurements.

3-27. External Trigger Circuit.

3-28. Figure 3-11 illustrates an example of a trigger circuit device for triggering the 4261A externally via the external triggering connector on the 4261A rear panel. In addition, both manual trigger (by MANUAL pushbutton) and electronic trigger (by TTL level trigger circuit) are also useable. The unit is set for manual triggering by switching TRIGGER switch from INT to EXT (manual) position. In the EXT trigger mode, the 4261A may be triggered by a TTL level signal that is transmitted from low (+0V) to high (+5V) state by an external trigger circuit.

Since all trigger signals, both internal and external (BNC on rear panel), are parallel connected in the 4261A, all triggers are always effective.

3-29. Operating Cautions.

3-30. Under some measurement conditions, the 4261A LCR Meter may occasionally show a display or exhibit a phenomena seems to indicate that the 4261A is faulty. These unusual displays and phenomena usually occur when the characteristics of the measured sample, residual impedance or stray conductance of the test fixture or test leads, and the measurement theory of the 4261A accumulate to produce these effects. Some of these conditions are inherent in the 4261A measurement scheme but most are not. Be sure to refer to Table 3-7 which outlines these indications their causes and countermeasures.

3-31. OPTIONAL OPERATION.

3-32. Installation information for options 001, 002, 003 and 101 is covered in Section II of this manual. Control signal timing and output data signal information with designators and pin connections for optional rear connectors are described in Section VIII (Service Sheet).

3-33. BCD Parallel Data Output (Option 001).

3-34. The 4261A option 001 outputs BCD L C R and D data, respectively, from two rear connectors in a parallel data scheme. In addition to L C R D information, equivalent circuit mode, range, frequency, annunciation, and polarity data are simultaneously outputted. Figure 3-12 lists data outputted through the connector. Since the data from D DATA OUTPUT connector (when 4261A FUNCTION is set to R) has

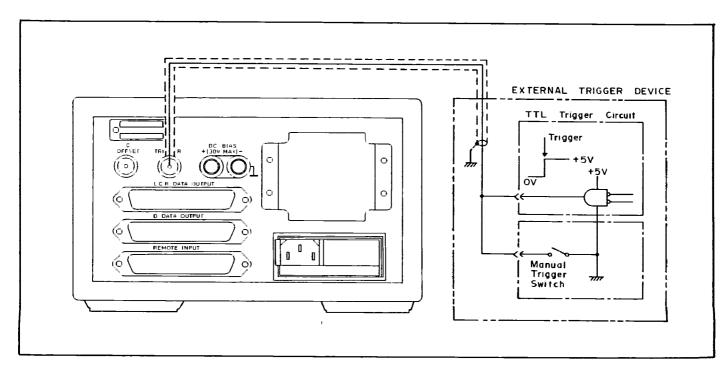
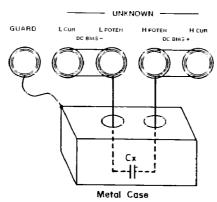


Figure 3-11. External Trigger Circuits.

1. Indication: A, Same sample sometimes shows quite different values between PARA and SER CIRCUIT MODE measurements. B. The decimal point moves and measurement unit changes. A and/or B may occur in the following cases.

Resistance of low loss inductor or capacitor being measured in R FUNCTION.


Inductance of lossy inductor or capacitance for lossy capacitor being measured in L or C FUNCTION.

What to do: A. Do not set CIRCUIT MODE to AUTO. Set CIRCUIT MODE to a PARA or SER setting that shows a valid display. B. Set TRIGGER to EXT, push MANUAL button, set RANGE HOLD to ON and set TRIGGER to INT.

- 2. Indication: The displayed value fluctuates on minimum capacitance, maximum inductance or maximum resistance ranges in either PARA or SER circuit modes. Here are some of the reasons why this happens:
 - A. A large size sample is being measured.
 - B. A high voltage power line or similar exists near the 4261A.
 - $\ensuremath{\text{C}}$. The 4261A and sample are connected together with relatively long, non-shielded cable.

What to do:

1. Enclose sample in metal case. Connect case electrically to 4261A GUARD terminal as shown below:

2. Use shielded cable for connection between sample and the instrument. Connect cable shield to GUARD. For reference, see also Figure 3-8 (sheet 1) page 3-14.

Table 3-7. Unusual Operating Indications (Sheet 2 of 3).

3. <u>Indication:</u> When measuring a low impedance (small inductance, resistance or high capacitance), measurement error is excessive.

What to do:

Cause of error	Action
1. Residual impedance (induc- tance, capacitance or resis- tance) of test leads during	Use test leads in four-terminal configuration and measure.
two terminal measurements.	Twist current leads (H_{CUR} and L_{CUR}) together. Do the same with potential
2. Mutual test lead induction between current leads (H _{CUR} and L _{CUR}) and potential leads (H _{POTEN} and L _{POTEN}).	leads (H_{POTEN} and L_{POTEN}). Additional error is presented as $\omega^2 LrCx \times 100$ ($^{\circ}_{o}$) for C measurement, where
	 ω = 2πf f = test frequency Lr = residual inductance Cx = unknown capacitance

4. Indication: Measurement error is excessive when high impedance (high inductance, small capacitance) is measured:

What to do:

Measurement	Cause of error	Action
High Inductance	Stray capacitance between High and Low leads.	Use shielded cable for connection between sample and 4261A UNKNOWN terminals. Connect outer conductor to GUARD terminal.
Small Capacitance	Stray capacitance between High and Low leads.	Measure stray capacitance and sub- tract it from measured value.

5. <u>Indication</u>: Excessive measurement error.

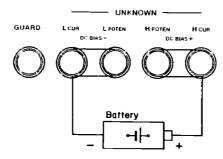
What to do Cause A. Effect of Low terminal capacitance with respect to ground. Sometimes the measurement can not be performed when a relatively large capacitance between L_{POTEN} terminal and ground exists. Allowable magnitude for the stray capacitance without additional error are:

Measurement Frequency	Allowable Stray Capacitance Magnitude
$120\mathrm{Hz}$	$100\mathrm{nF}$
$1 \mathrm{kHz}$	$1000 \mathrm{pF}$

Cause B. Effect of High terminal capacitance with respect to ground. The stray capacitance will reduce test signal level applied to the sample measured during capacitance measurement. This decrease in signal level will not produce an additional error even when measurement signal level is reduced to a third of its nominal level. It is neccessary, of course, that special care be taken to use the proper test signal level when a device is measured whose parameters may be affected by the test signal level. Display fluctuations may sometimes appear.

- 6. Indication: When a sample (for example, an iron core inductor) is measured in AUTO of CIRCUIT MODE, the instrument repeats range selection and does not complete the measurement depending upon level of test current used.
 - What to do: Try to determine the range (test current level) that measures that sample properly by repeating ON and OFF RANGE HOLD operation several times. Must operate in Range HOLD mode for these cases.
- 7. <u>Indication:</u> When a capacitor is measured with dc bias voltage applied, an abnormal display occurs.

What to do: There are limitations to the permissible insulation resistance of a capacitor measured with dc bias. See below:


	MODE		R	ANGE			
Ср	120Hz	1000pF	10,00nF	100.0nF	1000nF	10.00 μF 1000nF	
	1kHz	100.0pF	1000pF	10.00nF	100.0nF		
Cs	120Hz	1000nF	$10.00 \mu extbf{F}$	100.0 μ F	$1000 \mu extbf{F}$	10.00mF	
	1kHz 100.0nl		1000nF	1000nF 10.00μF		$1000 \mu ext{F}$	
ınsul	iissible ation tance (Ri)	22.5M Ω	2250kΩ	225 kΩ	22.5k Ω	2250Ω	

Note: Ri given in above table is applicable for a dc bias of 30V. When the bias voltage is less than 30V, Ri limit is RiVb/30 (Ω) where Ri is value given in the table and Vb is applied dc bias voltage.

8. Indication: Internal resistance of a battery can not be measured.

What to do:

1. Connect sample battery (observe polarity) as illustrated below:

- 2. Batteries up to 30V are measured under no load conditions.
- 3. If battery voltage exceeds 4V, set DC BIAS to EXT and disconnect shorting bar from EXT DC BIAS connectors on rear panel.
- 4. Since the internal resistance of a battery is relatively very low, use the four-terminal measurement configuration.

no meaning, this connector should not be used. Figure 3-13 is the printer print format with the meaning of printed data shown. Here is an example of how to read the printed output:



Figure 3-14 shows connections between the 4261A option 001 and HP devices. Model 4261A operation with option 001 follows standard operations described in Figure 3-7 and 3-8 except for connection of external devices. Operating information for HP printers is covered in the respective operating and service manuals.

3-35. Parameter Serial Data Output (OPT. 002).

3-36. The 4261A option 002 is capable of outputting three kinds of data selectable by switching the internal slide switch mounted on the option board (see Figure 3-15). The first form (LCR mode) for data output is to continuously output inductance, capacitance or resistance values. The second (LCR & D mode), it to output inductance, capacitance or resistance and dissipation factor data alternately through The third form (D mode) is one rear connector. dissipation factor only continuously outputted from 4261A connector. In resistance measurements, the first LCR mode should be selected because 4261A dissipation factor in resistance measurements is meaningless. Printout format for Option 002 through one connector is the same as that for 4261A option 001 (refer to Figure 3-13). The connections between the option 002 and the external devices which are HP printers (in this case) are shown in Figure 3-16. Operating procedure for an instrument equipped with option 002 is the same as for a standard 4261A except for connections to the external device. Information for external device (e.g. printer) operation can be obtained from the operating and service manual.

3-37. Remote Control OPT. 003.

3-38. All the front panel controls except for DC BIAS can be remotely selected by control signals through the rear connector of an option 003 instrument. Remote control devices should be designed by the 4261A user since a specially designed controller from HP for the 4261A is not available. Information needed for controller design is presented in Figure 3-17. This includes pin locations, control signals and timing diagram. Controller design should include the following considerations:

- REM signal must be always at low level during remote control. If not, remote control functions will not occur.
- 2. $\overline{\text{EXE}}$ signal triggers the 4261A when its state changes from low to high level. Pulse width of $\overline{\text{EXE}}$ must be greater than $20\,\mu\text{s}$.
- 3. Remote control settings for the 4261A from remote controller should not be changed during a 4261A measurement cycle. If changed during measurement cycle, the measured values will not be reliable because of operational error in the 4261A.

3-41. OPERATOR MAINTENANCE.

3-42. Fuse Replacement.

3-43. The main ac line fuse is located at the rear of the instrument next to the line cord jack. The ac line cord must be removed to gain access to the fuse

4261A FUNCTION Setting Rear Connector	L	С	R
LCR DATA OUTPUT	Inductance Value Polarity Annunciation Test Frequency Range Function CKT Mode	Capacitance Value Polarity Annunciation Test Frequency Range Function CKT Mode	Resistance Value Polarity Annunciation 'Test Frequency Range Function CKT Mode
D DATA OUTPUT	D Value Polarity Annunciation Test Frequency Function CKT Mode	D Value Polarity Annunciation · Test Frequency Function · CKT Mode	1999 Polarity Annunciation/Test Frequency Function/CKT Mode

Figure 3-12. Data Outputted by Option 001.

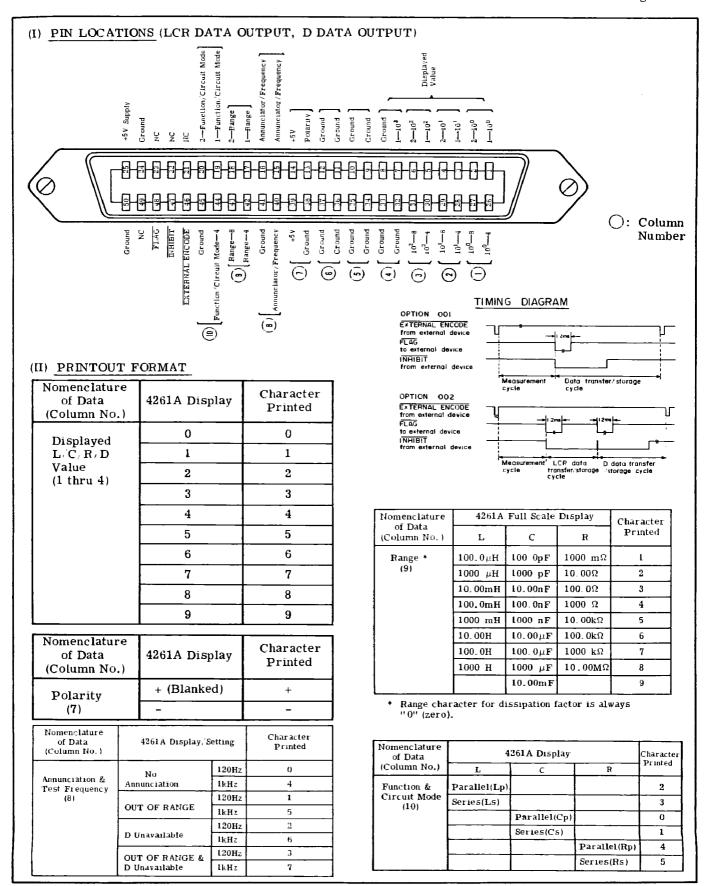


Figure 3-13. Printout Format and Data Code Meanings.

compartment. The fuse may be removed by pulling FUSE PULL lever inside the fuse compartment. For 100 or 120 Vac supply source, use a 500mA fuse and for a 220 or 240Vac supply source, use a 250mA line fuse.

CAUTION

BE SURE THAT ONLY FUSES OF SPECIFIED TYPE (NORMAL BLOW, TIME DELAY, ETC.) AND REQUIRED RATED CURRENT ARE USED FOR REPLACEMENT THE USE OF FUSES AND THE SHORT CIRCUITING OF FUSE HOLDERS MUST BE AVOIDED.

3-44. Foot and Stand Replacement.

3-45. The 4261A has four molded feet and two tilt stands for stable bench mounting. If a foot is cracked or the stand is bent, replace with new part. See instructions in Figure 3-18.

3-46. Instruction Card Replacement.

3-47. If the "pull-out" Instruction Card installed along the lower right front edge of the instrument requires replacement, proceed as follows (see Figure 3-19):

a. Remove the four feet from bottom cover.

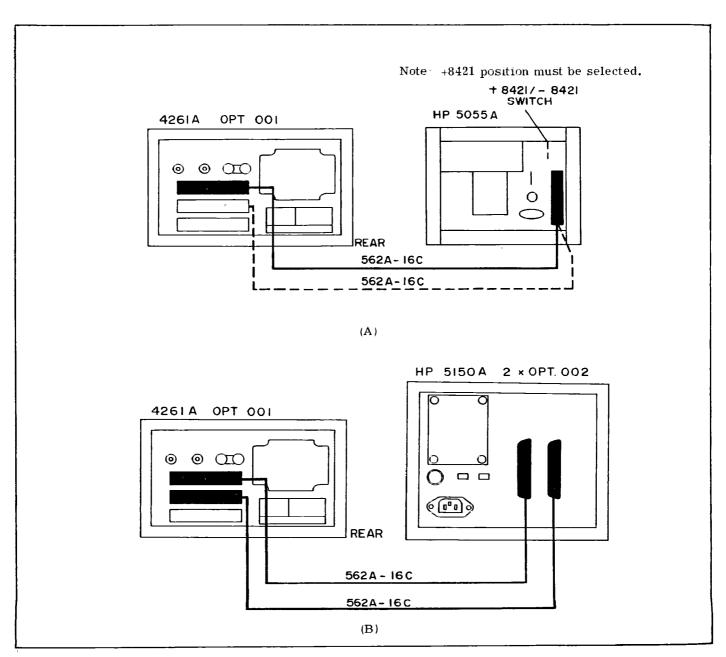


Figure 3-14. 4261A Connections to HP Printers.

- b. Remove bottom cover by removing screw at rear and sliding cover to rear.
- c. Remove button stopper from instruction card.
- d. Pull card from front panel.
- e. Insert new card into front panel slot.
- f. Attach button stopper.
- g. Replace bottom cover and feet.

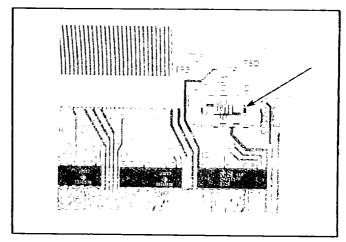


Figure 3-15. Option 002 Data Selection Switch.

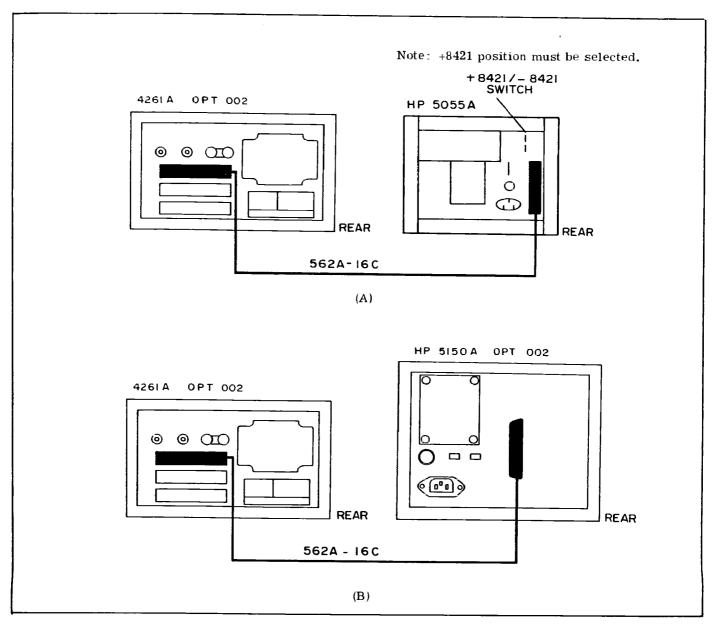
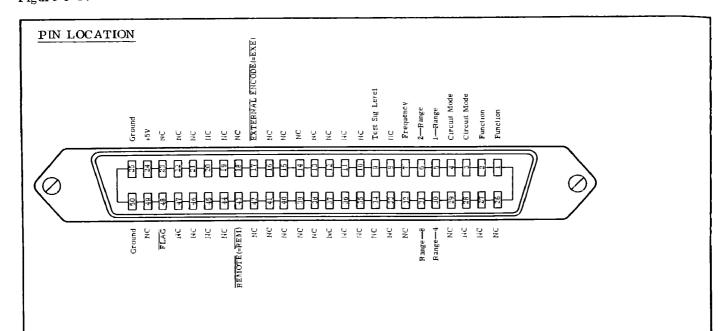



Figure 3-16. Option 002 Connection to External Printers.

REMOTE CONTROL FORMAT

	В	II:1	۱ ا		P	na T
FUNCTION	P	ш,		CIRCUIT		-
	1	2		MODE	3	4
L	High	High		AUTO	*	High
C	Low	Low		PARALLEL	Low	Low
R	High	Low		SERIES	High	Low

FREQUENCY	ЬШ
FREQUENCI	7
120Hz	High
1kHz	Low

TEST SIG LEVEL	PIN
TEST SIG LEVEL	9
50mV	Hıgh
1 V	Low

		PI	4			Full Scale Mea	surement Range					
Range	5	6	30	31	FUNCTION FREQUENCY	L	С	R				
				_	120Hz	1000 μΗ	1000 pF	1000 mΩ				
1	Low	Low	Low	Low	1kHz	100.0μΗ	100,0pF					
					120Hz	10 00mH	10_00nF					
2	High	Low	Low	Low	1kHz	1000μΗ	1000 pF	10, 00Ω				
					120Hz	100.0mH	100, 0n F					
3	Low	High	Low	Low	1kHz	10 00mH	10 00nF	100 0Ω				
					120Hz	1000 mH	1000 nF					
4	High	High	Low	Low	1kHz	100.0mH	100, On F	1000 Ω				
					120Hz	10.00H	10,00μF					
5	Low	Low	High	Low	1kHz	1000 mH	1000 nF	10, 00kΩ				
					120Hz	100.0H	100.0 $\mu {f F}$					
- 6	High	Low	High	Low	1kHz	10.00H	$10.00 \mu extbf{F}$	100.0kΩ				
	Ì				120Hz	1000 H	1000 μF					
7	Low	High	High	Low	1kHz	100.0H	100, 0μF	1000 kΩ				
					120Hz	1000 H	10,00mF	10.0010				
8	High	High	High	Low	1kHz	100 OH	1000 μF	10, 00MΩ				
					120Hz	1000 μH-1000 H	1000 pF-10.00mF	1000 mΩ-10,00MΩ				
Auto	1 *	*		*		* * *		Hıgh	1kHz	100, 0μH-100, 0H	100.0pF-1000 μF	

Note: High is TTL High level (>2.0V) and Low is TTL Low level (<0.8V).

*: Either logic state can be selected.

Figure 3-17. Option 003 Remote Control (Sheet 1 of 2).

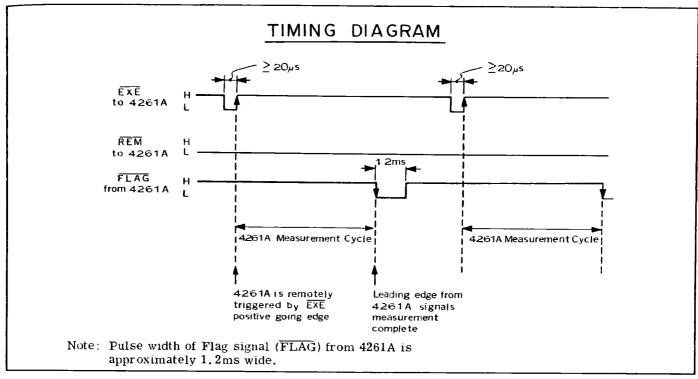


Figure 3-17. Option 003 Remote Control (Sheet 2 of 2).

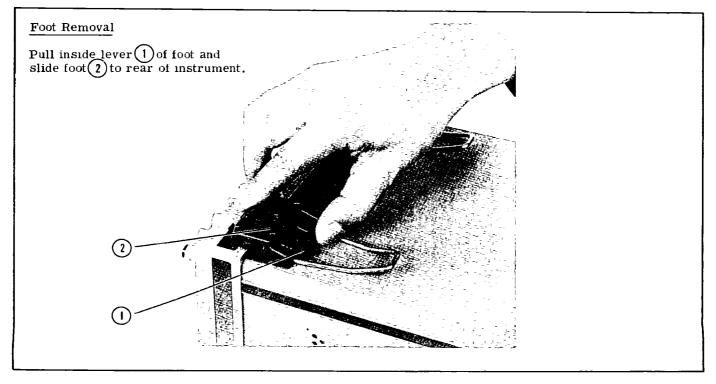


Figure 3-18. Foot Stand Replacement,

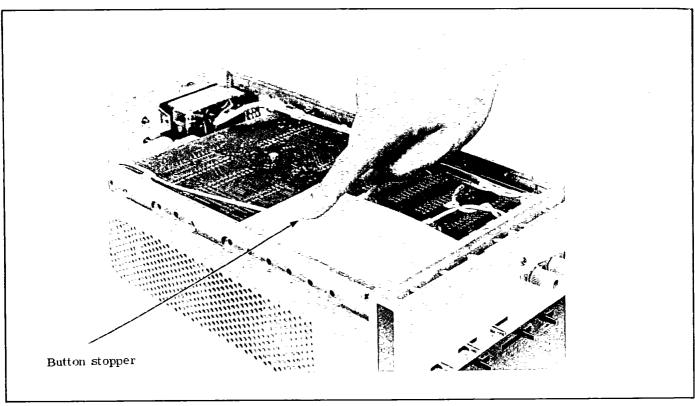


Figure 3-19. Instruction Card Replacement.

3-48. Special Modifications.

3-49. Two special functions may be added to the Model 4261A by changing the internal connections on a PC board which are easily done. These two functions are "Dissipation Factor Display Blanking" and "Local Triggering for Opt. 003". The following paragraphs describe the functions including modification procedures.

3-50. Dissipation Factor Display Blanking.

3-51. The Dissipation factor measurement can be deleted from C-D or L-D measurement modes by shorting two points (through holes) together on the A8 (04261-77108) board. This modification may be performed when D measurement and D display is not needed. This permits the measurement time to be decreased by 80 milliseconds (minimum at 1kHz) or 220 milliseconds (minimum at 120Hz). Modification procedure for deleting Dissipation Factor measurement follows:

- 1. Turn 4261A LINE to OFF.
- 2. Remove top cover from the unit.
- 3. Take out A8 board (04261-77108).
- 4. Short the two PC board points labelled "W1" and located at the left top of A8 board together (see parts locations in service sheet No. 8).

CAUTION

BE CAREFUL NOT TO SHORT ADJACENT PC BOARD CIRCUIT PATTERNS TOGETHER.

- 5. Reinstall A8 board and instrument cover.
- 3-52. Local Triggering for OPT. 003.
- 3-53. The 4261A can normally only be triggered by an external control device when equipped with an option 003. This modification enables local trigger of the option 003 unit from front panel without using an external device. The procedure to add this function is given below:
 - 1. Turn 4261A LINE to OFF.
 - 2. Remove top cover from the unit.
 - 3. Take out A8 board (04261-77108).
 - 4. Short together two PC board points labelled "W2" and located at left bottom of A8 board. (See part locations in service sheet No. 8).

CAUTION

BE CAREFUL NOT TO SHORT ADJACENT PC BOARD CIRCUIT PATTERNS TOGETHER.

5. Reinstall A8 board and instrument cover.

SECTION IV PERFORMANCE TESTS

4-1. INTRODUCTION.

4-2. This section provides the check procedures that verifies the 4261A specifications listed in Table 1-1. All tests can be performed without access to the interior of the instrument. A simpler operational test is presented in Section III under Operating Check (paragraph 3-5). The performance test procedures in this section can also be used to do the incoming inspection of the instrument and to verify whether the instrument meets its specified performance after troubleshooting or making adjustments. If specifications are found to be out of limits, check that controls are properly set, and then proceed to adjustments or troubleshooting.

Note

Allow a 15-minute warm-up and stabilization period before conducting any performance test.

4-3. EQUIPMENT REQUIRED.

4-4. Equipment required for the performance tests is listed in the Recommended Test Equipment table in Section I. Any equipment whose characteristics equal the critical specifications given in the table may be substituted for the recommended model(s).

Accuracy checks in this section use standard LCR components as the samples to be connected to the 4261A. HP Model 16361A DUT box, can be utilized for this purpose. HP 16361A is a DUT (device under test) box from which any desired component can be selected and connected to the 4261A through cables by use of a rotary switch. If HP

16361A is unavailable, use the discrete components recommended in Table 4-1 (See note in paragraph 4-10).

Note

All the components used as standards should be calibrated by an instrument whose specifications are traceable to NBS, PTB, LNE, NPL, NRC, JEMIC, or equivalent standards group; or all components should be calibrated directly by an authorized calibration organization such as NBS. The calibration cycle should be determined by the stability specification for each component.

4-5. TEST RECORD.

4-6. Results of the performance tests may be tabulated on the Test Record at the end of these procedures. The Test Record lists all the tested specifications and their acceptable limits. Test results recorded at incoming inspection can be used for comparison in periodic maintenance and trouble-shooting and after repairs or adjustments.

4-7. CALIBRATION CYCLE.

4-8. This instrument requires periodic verification of performance. Depending on the use and environmental conditions, the instrument should be checked with the following performance tests at least once every year. To maximize the "up time" of the instrument, the recommended preventive maintenance frequency for the 4261A is twice a year.

Table 4-1. Recommended Components for Accuracy Checks.

Compone	nt	HP Part Number	Alternate Source
Capacitor:	100pF	0160-0336	1
	1000pF	0160-3766	
	10n F	0160-0408	HP Model 4440B
	100n F	0160-4113	
	1000n F	0160-3645	
	$10 \mu\mathrm{F}$	0160-3563	SOSHIN
	$1000 \mu\mathrm{F}$	-	TM-520C
	10mF		
Resistor:	1kΩ	0698-3491	1
	10 kΩ	0698-6360	GR Type
	100kΩ	0698-4158	1433-Y
	10 $\mathrm{M}\Omega$	0698-8194]
Inductor:	100mH		GR Type 1482-L
Dissipation Factor:			
1000nF in paralle	el with 887Ω	0160-3645	
$(D \approx 1.50 \text{ at } 12)$	0 Hz)	0698-4464	
100nF in parallel	with 887Ω	0160-1571	
$(D \approx 1.79 \text{ at } 1)$	kHz)	0698-4464	1

4-9. MEASUREMENT FREQUENCY TEST.

SPECIFICATION:

Measurement Frequencies: 120Hz $\pm 3\%$. 1kHz $\pm 3\%$.

DESCRIPTION:

This test verifies the accuracy of the $\,$ measurement frequencies that are applied to sample connected to the 4261A.

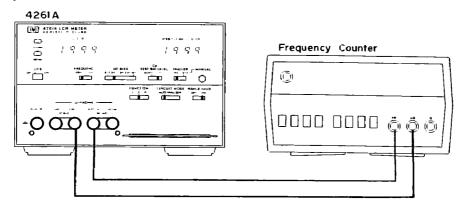


Figure 4-1. Measurement Frequency Test Setup.

EQUIPMENT:

Frequency Counter HP 5300A w5306A

PROCEDURE:

- 1. Connect frequency counter to the 4261A UNKNOWN terminals as shown in Figure 4-1.
- 2. Set range of frequency counter as appropriate for measuring 4261A test frequencies of 120Hz and 1kHz.
- 3. Read display output of frequency counter when 4261A FREQUENCY is set to 120Hz or 1kHz.
- 4. Frequency readouts must be within the following limits (record measured frequency in table below as the data is used in paragraph 4-12):

FREQUENCY	Test Limit	Counter Readout
120Hz	116.4 - 123.6Hz	
1kHz	970 - 1030Hz	

Note

Test limits in table above do not take into account reading error caused by measurement error in test equipment.

5. If this test can not be met, refer to troubleshooting in Section VIII.

4-10. CAPACITANCE AND DISSIPATION FACTOR ACCURACY TEST.

Note

If the following tests satisfy the accuracy specifications, all the accuracy specifications listed in Table 1-1 are guaranteed.

(I) Capacitance and Dissipation Factor Accuracy

ſ	FREQ	CERCUIT MODE	Cp TEST SIG LEVEL	1000pF	1000pF	10.00nF	100 On F	1000nF	10 00µF	-	
		PARA	50mV	$\geq \leq$				ļ			VALID RANGE
1	120Hz	PAHA	17	$\geq \leq$							
-		SER	1 V	$\geq \leq$	><	><	$\geq \leq$		L		NON-APPLICABLE RANGE FOR
Ì		PARA	50mV					<u> </u>	$\geq \leq$		LISTED VALUE
-	14 H=	PARA	1 V	Ĺ		Ļ		ļ	$\geq \leq$		OF STANDARD
١		SER	iv	$\geq \leq$	$\geq \leq$	\leq		<u> </u>	<u> </u>]	

Tests for dissipation factor accuracy with above capacitance standards should be done at the same time as capacitance tests.

Check all parallal (PARA) mode ranges. It is sufficient to check any one range in series (SER) mode.

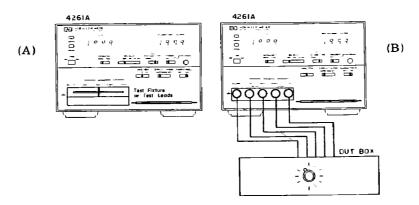
(II) Resistance Accuracy

Resistance accuracy has only to be proved for one resistor of about full scale value on any one range to verify specifications for both 120Hz and 1kHz.

(III) Inductance Accuracy

Inductance accuracy has only to be proved for one inductor of about full scale value on any one range to verify specifications for both 120Hz and 1kHz.

(IV) Dissipation Factor Accuracy


Dissipation factor accuracy for one D standard which has a D value of approx. 1.8 need only be proved to guarantee D accuracy.

Test items, except for those listed above, are also included in the performance test items outlined in paragraphs 4-10 thru 4-13.

Tests, other than those listed above, can not be made unless the test components to perform such tests are available.

DESCRIPTION:

This test checks capacitance and dissipation factor measurement accuracies for zero and full scale displays at two test frequencies and at two signal levels. This test is made by connecting a stable capacitor more accurate than the 4261A to the instrument and reading the display to verify that the 4261A meets its measurement accuracy specifications. Check all ranges in Cp mode and one range in Cs mode at both 120Hz and 1kHz frequencies to guarantee C and D measurement accuracies since all variable elements (range resistors and detecting phases) needed for C and D measurements are thus checked. In this test, almost all ranges, from minimum through maximum ranges, are being verified.

Note: Either setup can be used.

Figure 4-2. Capacitance Accuracy Test Setup.

SPECIFICATIONS:

C-D MEASUREMENT

Range	120Hz 1kHz	1000pF 100.0pF	10 00սF 1000pF	100.0nF 10 00nF	1000nF 100.0nF	10 00 μF 1000n F	$100.0 \mu F$ $10.00 \mu F$	1000μ F 100. 0μ F	10.00mF 1000μF	
)		0.001	to 1.900, 1	C ranges		·			
С	_H		0.2°a	+ 1 count +	(Test	signal love	l. 1V)			
*1	li i	0.5% 3 counts		0. 3 ⁷⁸ + 2 c	(Test	signal leve	I 50m V)			
	-1 				ats $ \begin{array}{c c} 0.5\% + 1\% + \\ 2counts & 2counts \cdot 1 \end{array} $					
	AUTO	San	ne as -	M - M	ude	San	nie as — Mode			
D Accuracy			$0.2_0^{c_0} + (2 + 100 \text{ Cm}) \text{ counts}$					signal leve	1 1V)	
*1	-t.,,,-		0	3°0 + (2 + 10	0 00 (3)cou	ints	(Test	signal leve	1, 50mV)	
	-11				0. 3% + (2 + C:		500) counts 1° + (5 + (5 + 500) counts 1° + (5 + 500) counts			
	AUTO	San	1e as 🗕	M	ode	Same as ———— Mode			ode	

- *1. ± (% of reading + counts + d). Cs is capacitance readout in counts
 *2. C accuracies are applicable only when D value is less than 1.901. See Table 1-2 for C accuracies when D is more than 1.900
 *3. 5% + 2 counts at lkHz.

Accuracy applies over a temperature range of 13°C $\pm 5^{\circ}$ C (at 0°C to 55°C, error doubles).

EQUIPMENT:

Test Fixture or Leads HP 16061A DUT Box HP 16361A

Note

User built test fixture or DUT box may be used instead of those HP provides. If user supplied, the residual impedance and stray capacitance of the fixture and box must be taken into account.

PROCEDURE:

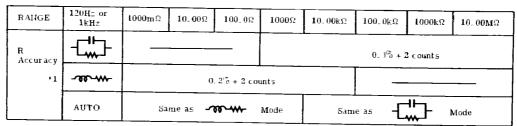
- 1. Connect test fixture or leads to 4261A UNKNOWN terminals. If DUT box is available, connect it to 4261A.
- 2. Set 4261A FUNCTION to C, RANGE HOLD to OFF and DC BIAS to OFF.
- 3. Confirm that the following table is satisfied when the measurements are made by changing FREQUENCY, CIRCUIT MODE, Cp TEST SIG LEVEL and DUT as given in table below. Record capacitance and dissipation factor readings in blank spaces provided in table.

FREQ	CIRCUIT MODE	SIGNAL LEVEL	0pF	100pF	1000pF	10n F	100n F	1000nF	1 0μ F	1000µF	t0mF
		50m V	C. V * ±3 counts ()	C. V. ±4 counts ()	C. V ±8 counts (———)			C. V. ±5 counts (±3 counts)	C.V. ±5 counts (±3 counts)		
120Hz	PARA	1 V			C.V. ±4 counts ∉3 counts)	C. V. ±3 counts (±3 counts)	C.V. ±3 counts (±3 counts)	C.V. ±3 counts (±3 counts)	C. V. ±3 counts (±3 counts)		
	SER	1V					C.V. ±3 counts (±3 counts)	C.V. ±5 counts (±4 counts)	C.V. ±5 counts (±4 counts)	C. V. ±7 counts (±4 counts)	C.V. ±12 counts (±7 counts)
	DADA	50mV	C. V ±3 counts ()	C. V ±8 counts ()	C. V. ±5 counts (±3 counts)	C. V. ±5 counts (±3 counts)	C.V. ±5 counts (±3 counts)	C. V. ±5 counts (±3 counts)			
1kHz	PARA	1v	C V ±3 counts (———)	C.V ±5 counts (±3 counts)	C.V. ±4 counts (±3 counts)	C V ±3 counts (±3 counts)	C.V. ±3 counts (±3 counts)	C. V. ±3 counts (±3 counts)			
	SER	1V				±3 counts	C.V ±5 counts (±4 counts)	C.V ±5 counts (±4 counts)	±5 counts	C. V. ±52 counts (±7 counts)	

*C. V = Calibrated Value of Standard Component

Test limits in parenthases are those for dissipation factor measurement values.

Note


Error caused by stability of standard component is not taken into account for test limits in table above.

If tests fail, proceed to Section V ADJUSTMENTS or Section VIII SERVICE.

4-11. RESISTANCE ACCURACY TEST.

SPECIFICATION:

R MEASUREMENT

^{*1.} $\pm 1^{00}$ of reading + counts).

Accuracy applies over a temperature range of $23^{\circ}\mathrm{C}$ $\pm5^{\circ}\mathrm{C}$ (at $0^{\circ}\mathrm{C}$ to $55^{\circ}\mathrm{C}$, error doubles).

DESCRIPTION:

This test verifies that resistance measurement accuracies for 4261A tested meets the specifications listed above. Standard resistors (listed in table 4-1) are used to check the accuracies. The DUT box (HP16361A) can also be utilized. Although R measurement accuracies are actually guaranteed when C measurement accuracies meet the specifications, almost all ranges in Rp mode are checked in this test.

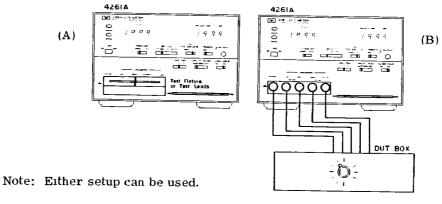


Figure 4-3. Resistance Accuracy Test Setup.

EQUIPMENT:

Note

User built fixture/leads or DUT box can be used. If user supplied, the residual resistance must be considered.

PROCEDURE:

- 1. Connect test fixture or leads to 4261A UNKNOWN terminals. If DUT box is available, connect it to 4261A.
- 2. Set 4261A FUNCTION to R, CIRCUIT MODE to PARA, and FREQUENCY to 1kHz.

3. Check that the resistance measurement accuracies meet specifications according to table below:

C. V. = Calibrated Value of Standard Component

DUT	1kΩ	$10 \mathrm{k}\Omega$	100kΩ	10ΜΩ
Test Limits	C.V. ±5 counts	C. V. ±5 counts	C. V. ±5 counts	C.V. ±5 counts
R Readout				

Note

Error caused by stability of standard component is not taken into account for test limits in table above.

Note

If this test fails, go to Section V or Section VIII for the troubleshooting.

4-12. DISSIPATION FACTOR CONFIRMATION CHECK

SPECIFICATIONS:

C-D MEASUREMENT

Range	C	120Hz 1kHz	1000pF 100 0pF	10.00nF 1000pF	1000n F 1000n F	1000nF 100 0nF	10.00μF 1000nF	1000μF 1000μF	1000μF 100.0μF	10.00mF 1000µF
	D	0.001 to 1 900, 1 range, common to all C ranges								
D Accurac	y	0. 2'% + (2 + 100 Ca) counts						(Test signal level 1V)		
	1	- 		0.3% + (2 + 1000 Cx) counts				(Test signal level 50mV)		
				0. 3% + (2 + C				$x/500$) counts $\begin{pmatrix} 1^0_0 + (5 + 5) \\ C = 500 \end{pmatrix}$ counts		
		AUTO	San	ie as 🗕	м	ode	Sarr	ne as —	₩ M	ode

^{*1} $\pm t^{0}$ of reading + counts + α). Cx is capacitance readout in counts.

Accuracy applies over a temperature range of 23°C ±5°C (at 0°C to 55°C, error doubles).

L-D MEASUREMENT

Range	L	120Hz 1kHz	1000 μH 100. 0μH	10.00mH 1000μH	100 0mH 10.00mH	1000mH 100.0mH	10.00H 1000mH	100.0H 10.00H	1000H 1000H	
<u></u>	D		0.001 to 1.900, 1 range, common to all L ranges							
D Accurac	[-[0.3% + (3 - coun		1 ^o 0 + (∃ count	+ ^{C±} ₅₀₀) ts	
•	1	-40-44-		0.2% +	(3 + 200 Lx)	counts			:	
		AUTO	5a	me as	Mode	e	Same as	~ss~**	- Mode	

*1. $\pm {}^{\circlearrowleft}_0$ of reading + counts). Lx is inductance readout in counts.

DESCRIPTION:

This test verifies that a tested 4261A satisfies dissipation factor measurement accuracies. Only one Dissipation Factor (D = 1.8) is checked for both $120 \, \text{Hz}$ and $1 \, \text{kHz}$ in this check because only one detecting phase needs to be checked. All other factors influencing D accuracy were checked in paragraphs 4-10 and 4-11.

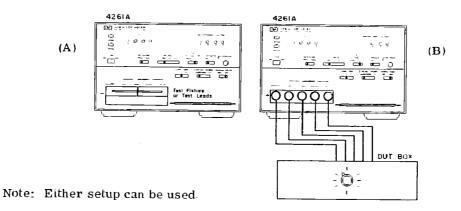


Figure 4-4. Dissipation Factor Check Setups.

EQUIPMENT:

Note

HP 16361A DUT Box is equipped with D standards (D=1.8) calibrated at 1kHz frequency. For the test at 120Hz frequency or if DUT box is not available, it is recommended that the following DUT's be used as D standards:

DUT	Freq	Values of components	Calculated D	Tolerance*
┌─ ぺ ┌─ ┦ ┣─ <u></u>	120Hz	C : 1000nF(HP P/N 0160-3645) R : 887Ω (HP P/N 0698-4464)	1.495	±0.030
R	1kHz	C : 100nF (HP P/N 0160-1571) R : 887Ω (HP P/N 0698-4461)	1.794	±0.036

* After calibrating capacitance C to within 0.1% and resistance R to within 0.02%, the dissipation factor tolerance is ±0.002 for each DUT.

PROCEDURE:

Note

If HP 16361A is available and connected to 4261A, perform procedure A. If not, do procedure B.

Procedure A:

- 1. Connect HP DUT Box 16361A to 4261A.
- Set 4261A FUNCTION to C.
- 3. Check D accuracies according to following table:

FREQ	CIRCUIT MODE	Cp TEST SIG LEVEL	D Test Limits	D Reading
	PARA	$50 \mathrm{mV}$	Calibrated Value • X ± 8 counts	
1kHz	PARA	1V	Calibrated Value · X ± 6 counts	-
	SER	1V	Calibrated Value • X ± 8 counts	

Note

Error caused by stability of standard component is not taken into account for test limits in table above.

Procedure B:

1. Set 4261A FUNCTION to C and CIRCUIT MODE to PARA.

2. Connect D standard recommended in EQUIPMENT on page 4-9.

3. Check D accuracies according to following table.

FREQ	Cp TEST D Test Limits		D Reading
120Hz	50mV	Calibrated Value · X ± 9 counts	
120112	1V	Calibrated Value • X ± 6 counts	
1kHz	50mV	Calibrated Value • X ± 9 counts	
1.112	1V	Calibrated Value · X ± 6 counts	

Note: x in above table is produced by test frequency error and may be determined from the following equations:

120Hz:

$$x = -\frac{fx}{120}$$

1kHz:

$$x = \frac{fx}{1000}$$

where fx is measured frequency from paragraph 4-9.

Note

Error caused by stability of standard component is not taken into account for test limits in table above. If the test fails, refer to Section VIII Service.

4-13. INDUCTANCE ACCURACY TEST.

SPECIFICATIONS:

L-D MEASUREMENT

RANGE	120Hz 1kHz	1000μH 100 0μH	10,00mH 1000μh	100,0mH 10,00mH	1000mH 100, 0mH	1000H 1000mH	100 OH 10.00H	1000H 100.0H
L Accuracy	-[0 3% + 2 counts				1% + 2 counts		
*1	-40-**	0.2% 2 counts + 0 2μH						
	AUTO	San	ne as	Mode	3	Same as	-(**)-	Mode

*1 ± (% of reading + counts).

Accuracy applies over temperature range of 23°C ± 5 °C (at 0°C to 55°C, error doubles).

DESCRIPTION:

This test verifies that the inductance measurement accuracy satisfies the specifications listed above. Laccuracy is proved to meet the specification when the results obtained in the accuracy checks of paragraphs 4-9 through 4-12 satisfies the specifications. This test is performed to confirm the Laccuracy specification.

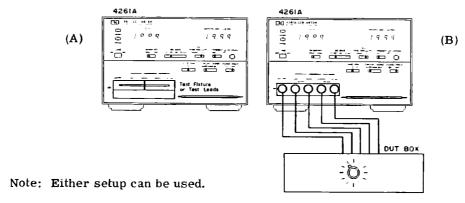


Figure 4-5. Inductance Accuracy Test Setups.

EQUIPMENT:

Note

User built test fixture/leads or DUT box must take residual impedance into consideration.

PROCEDURE:

- Connect Test Fixture or Leads to 4261A UNKNOWN terminals. If DUT box is available, connect it to the unit instead.
- 2. Set 4261A FUNCTION to L and Cp TEST SIG LEVEL to 1V.

- 3. Connect 100mH inductor.
- 4. Confirm that L accuracy is within the test limits shown in table below:

Note

Test limits below are given for 100mH inductance measurement. If another inductance value is measured, refer to SPECIFICATIONS above.

FREQ	CIRCUIT MODE	l Tact Limite	
120Hz	PARA	Calibrated Value ± 3 counts	
120HZ	SER	Calıbrated Value ± 3 counts	
1kHz	PARA	Calibrated Value ± 5 counts	
IKUZ	SER	Calibrated Value ± 4 counts	

Note: Error caused by stability of standard component is not taken into account for test limits in table above. If this test fails, refer to Section VIII Service.

4-14. INTERNAL DC BIAS SOURCE TEST.

SPECIFICATIONS:

DC bias, Internal Source:

1. 5V $\pm 5^{\circ\prime}_{0}$, 2. 2V $\pm 5^{\circ\prime}_{0}$, 6V $\pm 5^{\circ\prime}_{0}$

DESCRIPTION:

This test verifies that the internal dc bias source will apply the specified bias values to the device under test.

Figure 4-6. Internal DC Bias Source Test Setup.

EQUIPMENT:

DC Voltmeter HP 5300A, w 5306A

PROCEDURE:

- 1. Connect DC Voltmeter to 4261A UNKNOWN terminals as shown in Figure 4-6.
- 2. Set 4261A controls as follows:

Note

Do not connect anything to UNKNOWN terminals.

PERFORMANCE TESTS

3. Test limits are shown below. Read dc voltmeter output with DC BIAS switch set as follows:

DC BIAS Switch Setting	Test Limit	Voltmeter Readout
1.5V	1. 425V thru 1. 575V	
2. 2V	2. 09V thru 2. 31V	
6V	5.7V thru 6.3V	

Note

Reading error caused by measurement error of test equipment is not taken into account for test limits in table above.

4. If tests fail, proceed to Troubleshooting in Section VIII.

Table 4-2. Performance Test Summary.

Test Instrument Parameters	Performance Specifications	Test Method
Measurement Frequency	Test Frequencies 120Hz and 1kHz. Accuracy, $\pm 3\%$	Test frequency at High terminals is measured with electronic counter.
Capacitance Accuracy	Capacitance Measurement Accuracies: Cp, 1V: $0.2\% + 1$ count $+0.2$ pF *Cp, 50 mV: $0.5\% + 3$ counts or 0.3% + 2 counts *Cs: $0.3\% + 2$ counts, $0.5\% + 2$ counts, 1% + 2 counts or $5% + 2$ counts	Stable standard capacitor is connected to 4261A and 4261A is proved to be satisfactory with an accuracy test.
Resistance Accuracy	Resistance Measurement Accuracies: Rp: 0.3% +2 counts Rs: 0.2% +2 counts	Stable standard resistor is con- nected to 4261A and 4261A is proved to meet required accuracies.
Dissipation Factor Accuracy	D Measurement Accuracy: Cp, 1V: 0.2% + (2 + 200 Cs) counts *Cp, 50mV: 0.3% + (2 + 1000 Cs) counts *Cs: 0.3% + (2 + Cx/500) counts or 1% + (5 + Cx/500) counts *Lp: 0.3% + (3 + Lx/500) counts or 1% + 2 counts Ls: 0.2% + (3 + 200 Lx) counts	Stable D standard is connected to 4261A and 4261A is proved to meet required D accuracy specifications.
Inductance Accuracy	Inductance Measurement Accuracies: *Lp: 0.3% +2 counts or 1% +2 counts Ls: 0.2% +2 counts +0.2 μ H	Stable standard inductor is con- nected to 4261A and the 4261A is checked to verify accuracy specification.
Internal DC Bias Source Accuracy	DC Bias Voltage Accuracy: 1.5V 2.2V, 6V $\pm 5\%$	Internal dc bias voltage at High terminals is measured with an

^{*} Some accuracy specifications depend on range. Refer to Table 1-1, Specification pages 1 and 2 to determine how accuracies and ranges correspond with each other.

Hewlett-Packard Model 4261A LCR METER Serial No.

Tested by	 	 	
Data		 	

Paragraph	Test		Results		
Number	Test		Minimum	Actual	Maximum
4-9	MEASUREMENT FREQUE	NCY TEST	:		
	120Hz		116.4		123.6
	1kH:	z	970		1030
4-10	CAPACITANCE ACCURAC	Y TEST			
	120Hz PARA 50mV	$0 \mathrm{pF}$	C.V.* - 3 counts		C.V. + 3 counts
		$100 \mathrm{pF}$	C.V 4 counts		C.V. +4 counts
		$1000 \mathrm{pF}$	C.V8 counts		C.V. +8 counts
		10nF	C.V 5 counts		C.V. +5 counts
		100 nF	C.V 5 counts		C.V. +5 counts
İ		$1000 \mathrm{nF}$	C.V 5 counts		C.V. +5 counts
		$10 \mu {\rm F}$	C.V 5 counts		C.V. +5 counts
	120Hz PARA 1V	0pF	C.V 2 counts		C.V. + 2 counts
		$100\mathrm{pF}$	C.V 2 counts		C.V. + 2 counts
ĺ		$1000 \mathrm{pF}$	C.V 4 counts		C.V. + 4 counts
		10n F	C.V 3 counts		C.V. + 3 counts
		100nF	C.V 3 counts		C.V. +3 counts
		1000n F	C.V 3 counts		C.V. + 3 counts
		${\bf 10} \mu {\bf F}$	C.V 3 counts		C.V. + 3 counts
	120Hz SER 1V	100n F	C.V 3 counts		C.V. + 3 counts
		1000n F	C.V 5 counts		C.V. +5 counts
		$10 \mu extbf{F}$	C.V 5 counts		C.V. +5 counts
		$1000 \mu extbf{F}$	C.V7 counts		C.V. +7 counts
		10mF	C.V 12 counts		C.V. + 12 counts
	1kHz PARA 50mV	0p F	C.V 3 counts	-	C.V. +3 counts
		100pF	C.V8 counts		C.V. +8 counts
		1000pF	C.V 5 counts		C.V. + 5 counts
		10n F	C.V 5 counts		C.V. + 5 counts
		100n F	C.V5 counts		C.V. +5 counts
		1000nF	C.V 5 counts		C.V. + 5 counts

^{*} C. V. = Calibrated Value.

Paragraph				Results	
Number	Test		Minimum	Actual	Maximum
4-10	CAPACITANCE ACCU	RACY TEST	-		
	1kHz PARA 1V	$0 \mathrm{pF}$	C.V.*-3 counts	_ 	C.V. +3counts
		100pF	C.V 5 counts		C.V. +5 counts
		1000pF	C.V 4 counts		C.V. +4counts
		10n F	C.V 3 counts		C.V. +3counts
		100nF	C.V 3 counts		C.V. +3counts
		1000n F	C.V 3 counts		C.V. +3counts
	1kHz SER 1V	10n F	C.V 3 counts		C.V. +3counts
		100n F	C.V 5 counts		C.V. +5 counts
ļ		$1000\mathrm{n}\mathbf{F}$	C.V 5 counts		C.V. +5 counts
		$10\mu\mathbf{F}$	C.V 5 counts		C.V. +5 counts
		$1000\mu\mathrm{F}$	C.V 52 counts		C.V. + 52 counts
4-11	RESISTANCE ACCUR	ACY TEST			
	1	$1 \mathrm{k}\Omega$	C.V 5 counts		C.V. +5 counts
		10 kΩ	C.V 5 counts		C.V. +5 counts
ļ		$100 \mathrm{k}\Omega$	C.V 5 counts		C.V. +5 counts
		$10 \mathrm{M}\Omega$	C.V 5 counts		C.V. +5 counts
4-13	INDUCTANCE ACCUP	RACY TEST (100mH)			
	120Hz	PARA	C.V 5 counts		C.V. +5 counts
		SER	C.V 4 counts		C.V. +4 counts
	1kHz	PARA	C.V 5 counts		C.V. + 5 counts
		SER	C.V4 counts		C.V. +4 counts
4-14	INTERNAL DC BIAS	SOURCE TEST		`	
		1.5V	1.425		1.575
		2.2V	2.09		2, 31
		6 V	5.7		6.3

^{*} C.V. = Calibrated Value.

SECTION V ADJUSTMENT

5-1. INTRODUCTION.

- 5-2. This section provides the information needed to adjust the 4261A to its specifications (listed in Table 1-1). Included in this section are test setups and procedures. Adjustment locations referred to in the individual tests are identified pictorically in Section VIII.
- 5-3. A fifteen minute instrument warm up is required before beginning the adjustments in this section. Required instruments for the adjustments are listed in Table 1-5. Besides the test instrumentation, only a screwdriver is needed to perform the adjustments.

5-4. SAFETY REQUIREMENTS.

5-5. Although the instrument has been designed in accordance with international safety standards, this manual contains information, cautions and warnings which must be followed to ensure safe operation and to keep the instrument in safe condition (see Sections II and III). Adjustments described in this section should be performed only by qualified service personnel.

WARNING

ANY INTERRUPTION OF THE PROTECTIVE (GROUNDING) CONDUCTOR (INSIDE OR OUTSIDE THE INSTRUMENT) OR DISCONNECTION OF THE PROTECTIVE EARTH TERMINAL IS LIKELY TO MAKE THE INSTRUMENT DANGEROUS. INTENTIONAL INTERRUPTION IS PROHIBITED.

- 5-6. The opening of covers or removal of parts, except those to which access can be gained by hand, is likely to expose live parts. Accessible terminals may also be live.
- 5-7. The instrument must be disconnected from all voltage sources before any adjustment. All work must be done by a technically skilled person who is aware of the hazard involved.
- 5-8. Capacitors inside instrument may still be charged even if instrument has been disconnected from its source of supply.

WARNING

ADJUSTMENTS DESCRIBED HEREIN ARE PERFORMED WITH POWER SUPPLIED TO THE INSTRUMENT AFTER PROTECTIVE COVERS HAVE BEEN REMOVED. ENERGY EXISTING AT MANY POINTS MAY, IF CONTACTED, RESULT IN PERSONAL INJURY.

5-9. EQUIPMENT REQUIRED.

5-10. Equipment needed to make the adjustments described in this section are listed in Table 1-5. (Page 1-9) of the Section I.

5-11. FACTORY SELECTED COMPONENTS.

5-12. Factory selected components can be recognized by an asterisk near the reference designator on the schematic diagrams in Section VIII (a nominal value is shown). Section VI, Replaceable Parts,

Table 5-1. Factory Selected Components.

Component	Nominal Value Range	Effect on Performance
A4C11	HP P/N 0160-2201 C:FXD 51pF HP P'N 0140-0205 C:FXD 62pF HP P/N 0140-0193 C:FXD 82pF HP P/N 0160-2202 C:FXD 75pF HP P/N 0160-2204 C:FXD 100pF	Maximizes D measurement accuracy on 100pF range (1kHz). If D display is low, use less capacitance; if high use more capacitance.

Table 5-2. Adjustable Components

Reference Designator	Name of Control	Purpose
A4R87 (para. 5-19)	OFFSET	To eliminate de offset in range resistor amplifier.
A5R31 (para. 5-20) A5R40 (para. 5-20)	OFFSET-1 OFFSET-2	To eliminate do offset in differential amplifier.
A5R54 (para. 5-20)	OFFSET-3	To eliminate de offset in measure- ment signal amplifier.
A5R85 (para. 5-22)	OFFSET-4	To set auto phase adjustment circuit for optimum functioning.
A6R67 (para. 5-21) A6R68 (para. 5-21)	PHASE OFFSET ZERO OFFSET	To eliminate dc offset in phase converter and zero detector.
A9R6 (para. 5-18)	+12V ADJ.	To set output of +12V dc power supply.

lists the part number of the nominal value component. If the nominal value of the selected component is changed, the Manual Change supplement, supplied with this manual, will list the change to update the manual. Table 5-1 lists all factory selected components with their nominal value ranges and their influence on instrument performance.

5-13. Adjustable components, with reference designators, are listed in Table 5-2. The table gives the name of the control to be adjusted and the purpose of its adjustment.

5-14. ADJUSTMENT RELATIONSHIPS.

5-15. For best 4261A performance, adjustments presented in this section must be performed in the order indicated by the procedures. If adjustment is neglected, the 4261A specifications may not be met. Table 5-3 shows alignment procedures required when repairing the instrument (replacement of component or board). The adjustments in Table 5-3 assume that no other adjustments were attempted prior to board or component replacement.

5-16. ADJUSTMENT LOCATIONS.

5-17. For reference, adjustment location illustrations are given in Figure 8-15.

Table 5-3. Alignment Procedure

Assembly Repaired- Replaced	Required Adjustments
A1(04261-77001)	
A2(04261-77002)	None
A3(04261-77103)	
A4(04261-77004)	Para. 5-19 thru 5-22
A5(04261-77005)	Para. 5-19 thru 5-22
A6(04261-77006)	Para. 5-21 and 5-22
A7(04261-77007)	
A8(04261-77108)	None
A9(04261-77009)	Para, 5-18
A10(04261-77010)	
A21(04261-77021)	None
A22(04261-77022)	

5-18. POWER SUPPLY VOLTAGE ADJUSTMENT.

Service Sheet No. 9.

DESCRIPTION:

This adjustment sets the dc power supply voltages for the 4261A internal circuits. Although there are three dc output voltages (+12V, -12V and +5V), only an adjustment of the +12V is required. The -12V and +5V are automatically set to appropriate values by +12V adjustment.

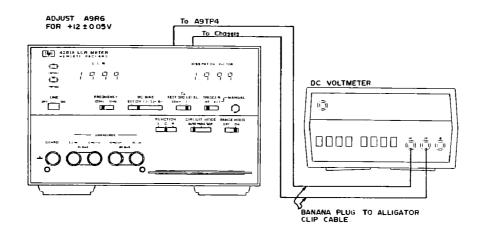


Figure 5-1. Power Supply Voltage Adjustment.

EQUIPMENT

DC VOLTMETER HP 5300A w HP 5306A

PROCEDURE:

- a. Connect voltmeter plus input to 4261A test point A9TP4 and minus input to 4261A chassis with dual banana plug to alligator clip cable. See Figure 5-1.
- b. Set DC voltmeter range as appropriate for measuring +12 volts.
- c. Adjust A9R6 "+12V" for +12 volts ± 0.05 volts (see Figure 8-15 for location).
- d. After adjustment of +12V, check that dc voltages at A9TP5 and A9TP6 are -12V ± 0.15 V and ± 5 V ± 0.15 V, respectively.
- e. Remove cables and DC voltmeter from 4261A.

Note

This adjustment is not affected by any other adjustment. If this adjustment fails to bring any of the output voltages to their specified values, refer to Section VIII Service Sheet No. 9 for troubleshooting.

5-19. A4 BOARD OFFSET ADJUSTMENT.

Service Sheet No. 4.

DESCRIPTION:

This adjustment eliminates any residual dc offset voltage from range resistor amplifier to maximize accurate measurement.

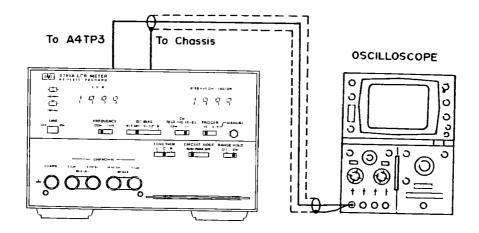


Figure 5-2. A4 Board Offset Adjustment.

EQUIPMENT:

Oscilloscope HP 180C w 1801A w 1821A

PROCEDURE:

- a. Connect BNC to alligator clip cable between oscilloscope and 4261A A4TP3 and 4261A chassis (see Figure 5-2).
- b. Set 4261A controls as follows:

FREQUENCY	1kHz
DC BIAS	OFF
TEST SIG LEVEL	IV
TRIGGER	INT
FUNCTION	
CIRCUIT MODE P	ARA
RANGE HOLD	OFF

c. Connect nothing (open, $\infty \Omega$) to UNKNOWN terminals.

Note

High terminals and Low terminals, respectively, must be connected together.

- d. Set oscilloscope voltage sensitivity to 0.005 volts div. and sweep speed to 0.5 milliseconds/div.
- e. Set input mode of oscilloscope to ground. Adjust position control of oscilloscope so that baseline is centered on the CRT.
- f. Set oscilloscope trigger mode to automatic. Set oscilloscope input mode to dc input.

g. Adjust A4R87 OFFSET until dc level of displayed waveform is within $0mV \pm 2mV$. Refer to Figure 5-3 which shows well-adjusted waveform.

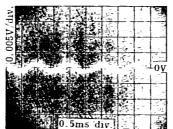


Figure 5-3. Waveform at A4TP3.

5-20. A5 BOARD OFFSET ADJUSTMENT.

Service Sheet No. 5.

DESCRIPTION:

This adjustment eliminates any residual dc offset voltage from the A5 board process amplifier assembly.

- (I) To A5TP1 or
- (II) To A5TP2 or (III) To A5TP3
- BNC TO ALLIGATOR CLIP CABLE

 TO Chassis

 OSCILLOSCOPE

 | PRODUCT | Clip of the part of the

Figure 5-4. A5 Board Offset Adjustment.

EQUIPMENT.

Oscilloscope HP 180C/w 1801A/w 1821A

Note

The adjustments in these steps can be performed separately. However, a power supply voltage adjustment (paragraph 5-18) must precede these adjustments. The A5 Board adjustments must be done prior to A6 Board offset adjustments (paragraph 5-21) and A5 Board final offset adjustments (paragraph 5-22). Adjustments in these steps may interact with other adjustments. If adjustments are not successful, see Section VIII service sheet for troubleshooting.

PROCEDURE:

- (I) OFFSET-1 Adjustment
- a. Connect BNC to alligator clip cable between oscilloscope and 4261A A5TP1 and 4261A chassis (see Figure 5-4).

b. Set 4261A controls as follows:

FREQUENCY	1kHz
DC BIAS	OFF
TEST SIG LEVEL	1 V
TRIGGER	INT
FUNCTION	L
CIRCUIT MODE	SER
RANGE HOLD	OFF

- c. Short the four UNKNOWN terminals together.
- d. Set oscilloscope voltage sensitivity to 0.005 volts/div. and sweep speed to 0.5 milliseconds/div.
- e. Set input mode of oscilloscope to ground. Adjust position control of oscilloscope so that baseline is centered on the CRT.
- f. Set oscilloscope trigger mode to automatic. Set oscilloscope input mode to dc input.
- g. Adjust A5R31 OFFSET-1 until dc level of displayed waveform is within $0mV \pm 2mV$. Refer to Figure 5-5 which shows well-adjusted waveform.

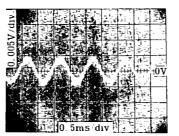


Figure 5-5. Waveform at A5TP1.

- (II) OFFSET-2 Adjustment
- a. Connect BNC to alligator clip cable between oscilloscope and 4261A A5TP2 and 4261A chassis (see Figure 5-4).
- b. Change 4261A controls as follows:

FUNCTION C CIRCUIT MODE PARA

c. Connect nothing between UNKNOWN high terminals and low terminals.

Note

High terminals and Low terminals, respectively, must be connected together.

d. Adjust A5R40 OFFSET-2 until dc level of displayed waveform is within $0 mV \pm 2 mV$. Refer to Figure 5-6 which shows well-adjusted waveform.

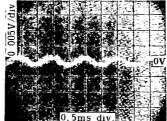
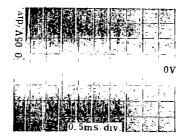



Figure 5-6. Waveform at A5TP2.

(III) OFFSET-3 Adjustment.

- a. Connect BNC to alligator clip cable between oscilloscope and 4261A A5TP3 and 4261A chassis (see Figure 5-4).
- b. Change 4261A Cp TEST SIG LEVEL to 50mV.
- c. Change oscilloscope sensitivity to 0.05V/div.
- d. Adjust A5R54 OFFSET-3 until dc level of displayed waveform is within $0mV \pm 10mV$. Refer to Figure 5-7 which shows well-adjusted waveform.

Note

Signal observed may be somewhat noisy. Adjust offset control so that signal is equally balanced around 0 yolts dc.

Figure 5-7. Waveform at A5TP3.

5-21. A6 BOARD OFFSET ADJUSTMENT.

Service Sheet No. 6.

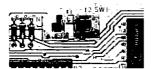
Note

This adjustment is affected by other adjustments. Refer to Section VIII paragraph 8-28 for troubleshooting if the adjustment fails to bring display to specified values.

DESCRIPTION:

These adjustments eliminate any residual dc offset voltage in the phase and zero detectors to minimize measurement errors. Except for the device to be connected to 4261A UNKNOWN terminals, no equipment is required for this adjustment.

PROCEDURE:


a. Set 4261A controls as follows:

FREQUENCY 11	ίΗz
DC BIAS C	FF
TEST SIG LEVEL	
TRIGGER	\mathbf{NT}
FUNCTION	L
CIRCUIT MODE	ER
RANGE HOLD O	

b. Short UNKNOWN terminals together (0Ω) .

c. Set the slide switch on A8 Sequential Control Board Assembly (P N 04261-77108) to TEST 2 as shown in Figure 5-8.

Note

Set the two slide switches to TEST(T2) as shown at right for A8 board P/N: 04261-77008.

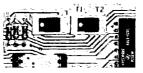


Figure 5-8. A8 Self Test Switch.

- d. Set RANGE HOLD to ON (at any time).
- e. Set OFFSET-4 potentiometer (A5R85) on A5 board (04261-77005) to its mid position.
- f. Adjust ZERO OFFSET A6R68 for 1000 ±2 counts on 04261A LCR display.
- g. Adjust PHASE OFFSET A6R67 for 0 to 2 counts on 4261A DISSIPATION FACTOR display.
- h. Reset A8 Self Test Switch(es) to NORMAL position(s).
- i. Change 4261A controls as follows:

FUNCTION	C
CIRCUIT MODE PA	RA
RANGE HOLD O	F F

j. Connect a 10nF standard capacitor to 4261A UNKNOWN terminals.

Note

Standard capacitor (10nF) used in step $_J$ and resistor (100k $\!\Omega\!$) used in step m are listed in Table 4-1. HP 16361A provides these standard components.

- k. Carefully adjust PHASE OFFSET A6R67 so that D display shows calibrated D value ± 2 counts for the unknown component.
- I. Change 4261A FUNCTION to R.
- m. Replace unknown device with a $100k\Omega$ resistor.
- n. Carefully adjust ZERO OFFSET A6R68 so that R display shows calibrated value ±2 counts of unknown resistor.

5-22. A5 BOARD FINAL OFFSET ADJUSTMENT.

Service Sheet No. 5.

Note

Since this adjustment is affected by all above adjustments, it should always be done last. If any other adjustments are performed, this adjustment must be also be done (last). If adjustment fails to bring instrument into specified range, see Section VIII for troubleshooting.

DESCRIPTION:

This adjustment is the last of all 4261A adjustments used to bring the 4261A performance into specifications (per Table 1-1). This adjustment removes any residual offset voltage in the A5 board duty cycle adjustment circuit.

EQUIPMENT:

Oscilloscope HP 180C w 1801A w 1821A

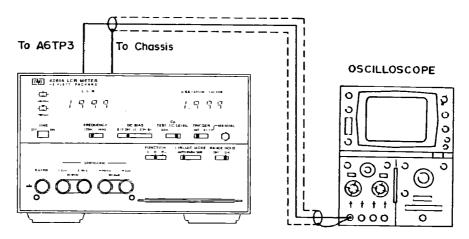


Figure 5-9. A5 Board Final Offset Adjustment.

PROCEDURE:

- a. Connect BNC to alligator clip cable between oscilloscope and 4261A A6TP3 and 4261A chassis (see Figure 5-9).
- b. Set 4261A controls as follows:

FREQUENCY	1kHz
DC BIAS	OFF
TEST SIG LEVEL	$50 \mathrm{mV}$
TRIGGER	
FUNCTION	
CIRCUIT MODE	. PARA
RANGE HOLD	

- c. Set oscilloscope voltage sensitivity to 0.5 volts div. and sweep speed to 50 milliseconds div..
- d. Set input mode of oscilloscope to ground. Adjust position control of oscilloscope so that baseline is centered on CRT.
- e. Set oscilloscope input mode to dc input. Set oscilloscope trigger mode to automatic.
- f. Adjust OFFSET-4 A5R85 for a 0V ±1V dc level oscilloscope waveform display.

5-23. CONFIRMATION CHECK.

The check in this paragraph confirms that adjustments in paragraphs 5--21 and 5--22 have been done satisfactorily.

- a. Use same setup as in paragraph 5-22.
- b. Set range of 4261A to 10.00nF range and RANGE HOLD to ON.
- c. Connect a 1000pF standard capacitor to 4261A UNKNOWN terminals.

Note

Standard capacitor (1000pF) used here is listed in Table 4-1. HP 16361A provides this component.

d. Check that D display shows the calibrated D value for the capacitor within a tolerance of \pm 2 counts.

If step d is unsatisfactory, repeat adjustments in paragraphs 5-21 and 5-23. If still unsatisfactory, refer to Section VIII troubleshooting.

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION.

6-2. This section contains information for ordering parts. Table 6-1 lists abbreviations used in the parts list and throughout the manual. Table 6-3 lists all replaceable parts in reference designator order. Table 6-2 contains the names and addresses that correspond to the manufacturer's code numbers.

6-3. ABBREVIATIONS.

6-4. Table 6-1 lists abbreviations used in parts list, schematics and throughout the manual. In some cases, two forms of abbreviations are used, one in all capital letters, and one in partial capitals or no capitals. This occurs because the abbreviations in parts list are always all capitals. However, in the schematics and in other parts of the manual, other abbreviation forms with both lower case and upper case letters are used.

6-5. REPLACEABLE PARTS LIST.

6-6. Table 6-3 is a list of replaceable parts and is organized as follows:

- a. Electrical assemblies and their components in alphanumerical order by reference designation.
- b. Chassis-mounted parts in alphanumerical order by reference designation.
- c. Miscellaneous parts.
- d. Illustrated parts breakdowns, if appropriate.

The information for each part includes:

- a. The Hewlett-Packard part number.
- b. The total quantity (Qty) in the instrument.

Table 6-1. List of Reference Designators and Abbreviations

			REFERENCE DESIG	GNATORS			
4	= assembly	E	= misc electronic part	P	= plug	U	= integrated circuit
3	= motor	F	= tuse	Q	= transistor	v	= vacuum, tube, neon
3T	= battery	FL	= tilter	R	= resistor		bulb, photocell, etc
-	= capacitor	J	= jack	RT	= thermistor	VR	= voltage regulator
P	= coupler	K	= relay	S	= switch	w	= cable
R	= diode	L	= inductor	T	= transformer	X	= socket
DΓ	= delay line	M	= meter	TB	= terminal board	Y	= crystal
OS	= device signaling (lamp)	MP	= mechanical part	TP	= test point		
			ABBREVIATI	ONS			
	= amperes	н	= henries	NPN	= negative-positive-	RWV	= reverse working
A.F.C	= automatic frequency control	HEX	= hexagonal		negative	••••	voltage
	= amplifier	HG	= mercury	NRFR	= not recommended for		Voltage
	•	HR	= hour(s)		field replacement		
	= beat frequency oscillator	Hz	= hertz	NSR	= not separately	S-B	= slow-blow
BE CU	= beryllium copper	_	_		replaceable	SCR	= Screw
3H	= binder head	IF	= intermediate freq.			SE	= selenium
3P	= bandpass	IMPG	= impregnated			SECT	= section(s)
BRS BWO	= brass	INCD	= incandescent	OBD	= order by description	SEMICON	= semiconductor
SW U	= backward wave oscillator	INCL	= include(s)	OH	= oval head	SI	= silicon
CW	= counter-clockwise	INS	= insulation(ed)	OX	= oxide	SIL	= Silver
CER	= ceramic	INT	= internal			SL	= slide
CMO	= cabinet mount only	k.	= kilo = 1000		•	SPG	= spring
OEF	= coefficient	LH	= left hand	P PC	= peak	SPL	= special
COM	= common	LH LIN	= left nand = linear taper		= printed circuit = pico = 10 ⁻¹²	SST	= stainless steel
OMP	= composition		= lock washer	p PH BRZ	= pico = 10 = phosphor bronze	SR	= split ring
	= complete	LOG	= lock washer = logarithmic taper	PHI.	= phosphor bronze = Phillips	STL	= steel
	= connector	LPF	= low pass filter	PIV	= Pnittips = peak inverse voltage		
CP.	= cadmium plate	LFF	= 10w pass filter	PNP	= peak inverse voitage = positive-negative-	TA	= tantalum
RT	= cathode-ray tube	m	$= milli = 10^{-3}$	PNP	= positive-negative- positive	TD	= time delay
:W	= clockwise	M	= meg = 10 ⁶	рο	= part of	TGL	= toggle
DE PC	= deposited carbon		= metal film	POLY	= polystyrene	THD	= thread
OR .	= drive	MET OX	= metallic oxide	PORC	= porcelain	TI	= titanium
		MFR	= manufacturer	POS	= position(s)	TOL	= tolerance
	= electrolytic	MINAT	= miniature	POT	= potentiometer	TRIM	= trimmer
	= encapsulated	MOM	= momentary	PP	= peak-to-peak	TWT	= traveling wave tube
TX	= external	MTG	= mounting	PΤ	= point		6
7	= farads	MY	= ''mylar '	PWV	= peak working voltage	μ	= micro = 10 ⁻⁶
	= femto = 10 ⁻¹⁵		*	••	Parameter	VAR	= variable
FH	= flat head	n N G	= nano = 10 ⁻⁹			VDCW	= dc working volts
IL H	≓ fillister head	N C	= normaily closed			w '	
TXD	= fixed	NE NI PL	= neon	RECT RF	= rectifier	w '	= with = watts
;	$= giga = 10^9$	N O	= nickel plate = normally open	RH	= radio frequency = round head or	WIV	= warts = working inverse
E	= germanium	NPO	= normany open = negative positive zero	nn	= round nead or right hand	WIV	= working inverse voltage
L	= glass	HEO	(zero temperature	RMO	= rack mount only	ww	= wirewound
RD	= ground(ed)		(zero remperature coefficient)	RMS	= rack mount only = root-mean square	ww	= wirewound = without
	Br samateat		Coefficient	LUNG	- 100t "itteatt square	** 0	- wtenout

- c. A description of the part.
- A typical manufacturer of the part in a five-digit code.
- e. The manufacturer's number for the part.

The total quantity for each part is given only once - at the first appearance of the part number in the list.

6-7. ORDERING INFORMATION.

- 6-8. To order a part listed in the replaceable parts table, give the Hewlett-Packard part number, indicate the quantity required, and address the order to the nearest Hewlett-Packard office.
- 6-9. To order a part that is not listed in the replaceable parts table, state the full instrument model and serial number, the description and function of the part, and the number of parts required. Address your order to the nearest Hewlett-Packard office.

6-10. SPARE PARTS KIT.

6-11. Stocking spare parts for an instrument is often done to insure quick return to service after a malfunction occurs. Hewlett-Packard has a Spare Parts Kit available for this purpose. The kit consists of selected replaceable assemblies and components for this instrument. The contents of the kit

and the Recommended Spares List are based on failure reports and repair data, and parts support for one year. A complimentary Recommended Spares List for this instrument may be obtained on request and the Spare Parts Kit may be ordered through your nearest Hewlett-Packard office.

6-12. DIRECT MAIL ORDER SYSTEM.

- 6-13. Within the USA, Hewlett-Packard can supply parts through a direct mail order system. Advantages of using the system are:
 - a. Direct ordering and shipment from the HP Parts Center in Mountain View, California.
 - b. No maximum or minimum on any mail order (there is a minimum order amount for parts ordered through a local HP Office when the orders require billing and invoicing).
 - Prepaid transportation (there is a small handling charge for each order).
- d. No invoices to provide these advantages, a check or money order must accompany each order.

6-14. Mail order forms and specific ordering information is available through your local HP Office. Addresses and phone numbers are located at the back of this manual.

Table 6-2. Manufacturers Code List.

MFR NO.	MANUFACTURER NAME	ADDRESS	Z(P CODE
NO. 00779 01121 01295 02735 02768 03888 04713 04866 07088 07263 10389 12697 16299 19701 24546 27014 28480 30983	AMP INC ALLEN-BRADLEY CO TEXAS INSTR INC SEMICOND CMPNT DIV RCA CORP SOLID STATE DIV ILLINOIS TOOL WORKS INC FASTEX DIV KDI PYROFILM CORP MOTOROLA SEMICONDUCTOR PRODUCTS NYLOK-DETROIT CORP KELVIN ELECTRIC CO FAIRCHILD SEMICONDUCTOR DIV CHICAGO SWITCH INC CLAROSTAT MFG CO INC CORNING GL WK ELEC CMPNT DIV MEPCO ELECTRA CORP CORNING GLASS WORKS (BRADFORD) NATIONAL SEMICONDUCTOR CORP HEWLETT-PACKARD CO CORPORATE HQ MEPCO ELECTRA CORP	ADDRESS HARRISBURG PA MILWAUKEE WI DALLAS TX SOMMERVILLE NJ DES PLADIES IL WHIPPANY NJ PHOENIX AZ TROY MI VAN NUYS CA MOUITAIN VIEW CA CHICAGO IL DOVER NH RALEIGH NC MINERAL WELLS TX BRADFORD PA SANT A CLARA CA PALO ALTO CA SAN DIEGO CA	
50522 56289 71785 72136 72962 73734 73743 75042 75915 76381 78189 79727 79963 80120 80126 81073 82389 9D949 93790	MONSANTO CO ELEK SPECIAL PROD SPRAGUE ELECTRIC CO TRW ELEK COMPONENTS CINCH DIV ELECTRO MOTIVE MFG CO INC ELASTIC STOP NUT DIV OF AMERACE FEDERAL SCREW PRODUCTS CO FISCHER SPECIAL MFG CO TRW INC PHILADELPHIA DIV LITTELFUSE INC 3M COMPANY ILLINOIS TOOL WORKS INC SHAKEPROOF C-W INDUSTRIES ZIERICK MFG CO SCHNITZER ALLOY PRODUCTS CO PACIFIC FLECTRICORD CO GRAYHILL INC SWITCHCRAFT INC AMPHENOL SALES DIV OF BUNKER-RAMO NO M/F DESCRIPTION FOR THIS MFG NUMBER	CUPERTINO CA NORTH ADAMS MA ELK GROVE VILLAGE IL WILLIMANTIC CT UNION NJ CHICAGO IL CINCINNATI OH PHILADELPHIA PA DES PLAINES IL ST PAUL MN ELGIN IL WARMINSTER PA MT KISCO NY ELIZABETH NJ GARDENA CA LA GRANGE IL CHICAGO IL HAZELWOOD MO	95014 01347 60007 06226 07083 60618 45206 19108 60016 55101 60126 18974 10549 07206 90247 60525 60630 63042

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
4Î	04261-77001	1	SWITCH BOARD ASSEMBLY	28480	04261-77001
4151 4152 4153 4154 4155	50c0-4801 50c0-4801 50c0-4301 50c0-4801 3101 1074	4	SLIDE SWITCH ASSEMBLY (FREQUENCY) SLIDE SMITCH ASSEMBLY (DC BIAS) SLIDE SWITCH ASSEMBLY (CP TEST SIG LEVEL) SLIDE SWITCH ASSEMBLY (TRIGGEP) SWITCH-PB SPST NO MOM LA 115VAC (MARUAL)	29480 28480 23480 28480 810 73	5060= 4801 5060= 4801 5060= 4801 506u= 4801 30~3
4156 1157 4158	5060-4802 5060-4802 5060-4802	3	SLIDE SWITCH ASSEMBLY (FUNCTION) SLIDE SWITCH ASSEMBLY (CIPCUIT MODE) SLIDE SWITCH ASSEMBLY (RANGE HOLD)	28480 28480 28480	5060-4802 5060-4802 5060-4802
41#1	8120-0352	1	CABLE ASSEMBLY AL MISCELLANEOUS		
	5020-3440 0 4261 30021 0 4261-30022 0 4261-30023	7 1 1	SPRING, CETENT BAR (131 MM) BAR (148 MM) BAR (95 MM)	28480 28480 28480 28480 28480	5020-3440 04261-30021 04261-30022 04261-30023
42	04261-77002	1	DISPLAY BOARD ASSEMBLY	28 480	04261-77002
A2051 A2052 A2053 A2054 A2055	1990-0452 1990-0434 1990-0434 1990-0434 1990-0452	2 ħ	DISPLAY NUM SEG 1 CHAP .3 IN HIGH	28480 28480 28480 28480 28480	1990-0+52 1990-0434 1990-0434 1990-0434 1990-0452
42056 42057 42058 42059 420510	1990-0434 1970-0434 1990-0434 1990-0517 1990-0517	17	DISPLAY NUM SEG L CHAR .3 IN HIGH DISPLAY NUM SEG L CHAR .3 IN HIGH DISPLAY NUM SEG L CHAR .3 IN HIGH OPTO-ISOLATOR LEO-PXSTR OPTO-ISOLATOR LED-PXSTR	28480 28480 28480 50522 50522	1990-0434 1990-0434 1990-0434 MC A 2-30 MC A 2-30
A20511 A20512 A20513 A20514 A20515	1990-0517 1990-0517 1990-0517 1990-0517 1990-0517		OPTO-ISCLATOR LED-PASTR OPTO-ISCLATOR LED-PASTR OPTO-ISCLATOR LED-PASTR OPTO-ISCLATOR LED-PASTR OPTO-ISCLATOR LED-PASTR OPTO-ISCLATOR LED-PASTR	50522 50522 50522 50522 50522	MCA 2-30 MCA 2-30 MCA 2-30 MCA 2-30 MCA 2-30
A2D516 A2D517 A2D518 A2D519 A2D520	1990-0517 1990-0517 1990-0517 1990-0517 1990-0517		OPTO-ISOLATOR LED-PKSTR OPTO-ISOLATOR LED-PKSTH OPTO-ISOLATOR LED-PKSTH OPTO-ISOLATOR LED-PKSTR OPTO-ISOLATOR LED-PKSTR OPTO-ISOLATOR LED-PKSTR	50522 50522 50522 50522 50522	MC A 2 = 30 MC A 2 = 30 MC A 2 = 30 MC A 2 = 30 MC A 2 = 30
A2D521 A2D522 A2D524 A2D525 A2J1 thru J8	1990-0517 1990-0517 1990-0517 1990-0517 1200-0638		OPTO-ISOLATOR LED-PXSTR OPTO-ISOLATOR LED-PXSTR OPTO-ISOLATOR LED-PXSTR OPTO-ISOLATOR LED-PXSTR SOCKET 14 CONT	50522 50522 50522 50522	MC A 2 = 30 MC A 2 = 30 MC A 2 = 30 MC A 2 = 30
4231 42R2 42R3 42R4 42R5	0683-2715 0683-2715 0683-2715 0683-2715 0683-2715	37	RESISTOR 270 5% -25W PESISTOR 270 5% -25W RESISTOR 270 5% -25W RESISTOR 270 5% -25W RESISTOR 270 5% -25W		
42K6 42R7 42R8 42K9 42R10	0683-2715 0683-1515 0683-1015 0683-2715 0683-2715	4	RESISTOR 270 5% -25W RESISTOR 150 5% -25W RESISTOR 100 5% -25W RESISTOR 270 5% -25W RESISTOR 270 5% -25W	01121	C81015
42R11 42R12 42R13 42R14 42R15	0683-2715 0683-1015 0683-1015 0683-1015 0683-1015		RESISTOR 270 5% -25W RESISTOR 100 5% -25W FC TC=-400/+500	01121 01121 01121 01121	C81015 C81015 C81015 C81015
42816 42817 42818 42819 42820	0m83 2715 0m83-2715 0m83-2715 0m83-2715 0m83-2715		RESISTOR 270 5% -25M FC TC==400/+500 RESISTOR 270 5% -25M FC TC=-400/+500 RESISTOR 270 5% -25M FC TC==400/+500 RESISTOR 270 5% -25M FC TC==400/+500 RESISTOR 270 5% -25M FC TC==400/+500		
42421 42822 42423	0583 1015 0683-1015 0683-2715		RESISTOR 100 5% -25W FC TC=-400/+500 RESISTOR 100 5% -25W FC TC=-400/+500 RESISTOR 270 5% -25W FC TC=-400/+500	01121 01121	CB1015 CB1015
#2#24 #2#25	0683-1015 0683-1015		RESISTER 100 5% -25W FC TC==400/+500 RESISTER 100 5% -25W FC TC=-400/+500	01121 01121	C81015 C81015
4 2 H 2 6 A 2 H 2 7 A 2 F 2 B A 2 F 2 9 A 2 R 3 0	0£93=1015 0.a3-1515 0.683-1515 0.683-1515 0.683-2715		RESISTOR 100 5% -25M FC TC=-400/+500 RESISTOR 150 5% -25M FC TC=-400/+600 RESISTOR 150 5% -25M FC TC=-400/+600 PESISTOR 150 5% -25M FC TC=-400/+600 RESISTOR 270 5% -25M FC TC=-400/+500	01121 01121 01121 01121	C81015 C81515 C81515 C81515

Table 6-3. Replaceable Parts (Cont'd).

Reference HP Part Oty Description Mfr Mf					Mar Dout N
Designation	Number	Q(y	Description	Code	Mfr Part Number
4 2 R 31 4 2 R 32 4 2 R 33 4 2 R 34 4 2 R 35	0683-2715 0643-1015 0683-1015 0683-1015 0683-1015		PESISTOP 270 5# .25M FC TC=-400/+500 RESISTOR 100 5# .25M FC TC=-400/+500 RESISTOR 100 5# .25M FC TC=-400/+500 RESISTOP 100 5# .25M FC TC=-400/+500 RESISTOR 100 5# .25M FC TC=-400/+500 RESISTOR 100 5# .25M FC TC=-400/+500	01121 01121 01121 01121	CF1015 CA1015 CB1015 CB1015
42W1 42W2 42W3	8120-0355 8120-0355 8120-0355	3	CABLE ASSEMBLY CABLE ASSEMBLY CABLE ASSEMBLY		
	0520-0127 04261-10032 04261-40025 04261-40026 04261-40027	2 ! ! ! !	AZ MISCELLAMEDUS SCREW-MACH 2-56 .188-IN-LG PAN-HD-POZI ANGLE SPACER FOR LED LAMP SPACER FOR LED LAMP SPACER FOR LED LAMP	26480 29480	0520-0127 04261-10029
	04261-85024	·	LABEL, INFORMATION	28490 	04261-85024
A3 A3C1	04261-77103	1	DECODER BOARD ASSEMBLY	28480	04261-77103
A3C2 A3C3 A3C4 A3C5	0180-0374 0180-0374 0180-0197 0160-2055 0160-2055	7 3 28	CAPACITOR-FXD 10UF +-10% 20VDC TA CAPACITOR-FXD 10UF +-10% 20VDC TA CAPACITOR-FXD 2.2UF +-10% 20VDC TA CAPACITOR-FXD 01UF +80-20% 100WVDC CEP CAPACITOR-FXD 01UF +80-20% 100WVDC CEP	56289 56289 56289 28480 28480	150D106
A3C6 A3C7 A3C8	0160-2055 0160-2055 0180-0374		CAPACITOR-FXD 01UF +80-20% 100WVDC CER CAPACITOR-FXD 01UF +80-20% 100WDDC CER CAPACITOR-FXD 10UF +-10% 20VDC TA	28480 28480 56289	0160-2055 0160-2055 ISOD106 x902082
A3JI A3J2 A3J3 A3J4	1200-0853 1200-0853 1200-0853 1200-0613	4	SOCKET-IC 16-CONT DIP-SLDR-TERMS SOCKET-IC 16-CONT DIP-SLDR-TERMS SOCKET-IC 16-CONT DIP-SLDR-TERMS SOCKET, ELEC, IC 28-CONT DIP SLDR TERM	28480	1200-0613
A3Q1 A3Q2 A3Q3 A3Q4	1854-0071 1854-0071 1854-0071 1854-0071	19	TPANSISTOR NPN SI PD=300MW FT=200MHz TPANSISTOR NPN SI PD=300MW FT=200MHz TPANSISTOP NPN SI PD=300MW FT=200MHz TPANSISTOR NPN SI PD=300MW FT=200MHz	28480 28480 28480 28480	1854-0071 1854-0071 1854-0071 1854-0071
A3R1 A3R2 A3R3 A3R4 A3R5	1810-0164 1810-0164 1810-0164 0683-1025 0683-1025	5 33	NETWOPE-PES 9-PIN-SIP .15-PIN-SPCG NETWOPE-RES 9-PIN-SIP .15-PIN-SPCG NETWOPE-PES 9-PIN-SIP .15-PIN-SPCG RESISTOP 14 5% 25W FC TC=400/+600 RESISTOP 14 5% .25W FC TC=400/+600	28480 28480 28480 01121 01121	1810-0164 1810-0164 1810-0164 CB1025 CB1025
A3P6 A3P7 A3P8 A3P9 A3P10	0683-1025 0683-1025 0683-1025 0698-4431 0757-0442		RESISTOR 1k 5% 25W FC TC=400/+600 RESISTOR 1k 5% 25W FC TC=400/+600 RESISTOR 1k 5% 25W FC TC=400/+600 RESISTOR 2.05k 1% RESISTOR 10k 1% .125W	01121 01121 01121	C81025 CB1025 CB1025
43U1 43U2 43U3 43U4 43U5	1820 1688 1820-1688 1820-0471 1820-1411 1820-0471	2 4 4	IC:SN74LS247 BCD TO 7-SEGMENT DECODEP IC:SN74LS247 BCD TO 7-SEGMENT DECODEP IC SN74 O5 N INV IC SN74LS 75 N LATCH IC SN74 O6 N INV	28480 28480 01295 01295 01295	1820-1688 1820-1638 SN7406N SN741575N SN7406N
43U10 43U7 43U9 43U9	1820-1411 1820-0471 1820-1436 1820-1436 1820-1199	2	IC SN74LS 75 N LATCH IC SN74	01295 01295 01295 01295 01295 01295	SN74L S75N SF7+06N SN74L S1 7UN SN74L S1 7DN SN74L S04N
43711 43012 43013 43714 43715	1620-1411 1920-1411 1820-1197 1620-1199 1820-1144	B.	IC SN74LS 75 N LATCH IC SN74LS 75 N LATCH IC SN74LS 00 N GATE IC SN74LS 04 N INV IC SN74LS 02 N GATE	01295 01295 01295 01295 01295 01295	SN74LS75N S174LS751 SN74LS00N SN74LS04N SN74LS02N
43018 43014 43019	1820-0902 1820-0902 1818-2271	2 L	IC SN75 450AN DHIVER IC SN75 450AN DRIVER IC, R.O.M.	01295 01295 28480	SN75450AN SN75450AN 1818-2271
A+	04261-77004	. - 1	OSCILLATOR/FANGE FESISTOR BOARD ASSEMBLY	 28480	04261-77004
4+CL 4+C2 4+C3 4+C6 4+C5	0160-1670 0160-1670 0190-0228 0180-0228 0180-1052	3 2	CAPACITOR-F±D 10000pF .5% CAPACITOR-F±D 10000pF .5% CAPACITOR-F±D 22UF←LO% 15∀0C TA CAPACITOR-F±D 22UF+ 10% 15∀0C TA CAPACITOR-F±D 22UF 6.3∀	28480 28480 56289 56289 28480	0150 1670 0160-1670 1500226×901582 1500726×901582 0180-1052
4+06 4+07 4+09 4+09 4+010	0180 1051 9180-1051 0180 1052 0180-1056	16 3	CAPACITOR-FAD 100UF 16V CAPACITOR-FAD 100UF 16V CAPACITOR-FAD 220UF 6.3V CAPACITOR-FAD 1000 UF 25VDC AL ELECT NOT ASSIGNED	28480 28480 28480 28480	0180-1051 0180-1051 0180-1052 0180-1055

Table 6-3. Replaceable Parts (Cont'd).

Table 6-3. Replaceable Parts (Cont'd).						
Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number	
*A4C11 A4C12 A4C13 A4C14 A4C15	0160-2202 0160-2307 0180-1054 0160-2264 0180-1051	1	CAPACITOP-F*D 75pF +-5% 300WVDC MICA CAPACITOP-F*D 47pF +-5% 300WVDC MICA CAPACITOP-F*D 100UF 16V CAPACITOP-F*D 20pF +-5% 500WVDC CER CAPACITOR-F*D 100UF 16V	28480 28480 28480 28480 28480	0160-2202 0160-2307 0180-1051 0160-2264 0180-1051	
A4C16 A4C17 A4C18 A4C19	0180-1051 0180-1051 0180-1051 0180-1051		CAPACITOP-FXD 100UF 16V CAPACITOP-F*D 100UF 16V CAPACITOP-F*D 100UF 16V CAPACITOR-FXD 100UF 16V	28480 28480 28480 28480	0180-1051 0180-1051 0180-1051 0180-1051	
A4CP1 A4CR2 A4CR3 A4CR4 A4CP5	1901-0040 1901-0040 1902-3037 1902-0554 1901-0040	4.2 1 1	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNP 3.16V 2% DO-7 PD=.4W TC=064% DIODE-ZNP 10V 5% DO-7 PD=1W	28480 28480 04713	190 -0040 190 -0040	
A4CR6 A4CR7 A4CR8 A4CR9 A4CR9	1901-0040 1902-0845 1901-0040 1901-0040 1901-0040		DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 11V 5% PD=1W TC=+.07% DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480 28480	1901-0040 1901-0040 PD11FB 1901-0040 1901-0040 1901-0040	
A4CR11 A4CR12 A4CR13 A4CP14 A4CR15	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040		DIODE-SWITCHING BOV SOMA 2NS DO-35 DIODE-SWITCHING BOV SOMA 2NS DO-35 DIODE-SWITCHING BOV SOMA 2NS DO-35 DIODE-SWITCHING BOV SOMA 2NS DO-35 DIODE-SWITCHING BOV SOMA 2NS DO-35	28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040	
A4CP16 A4CP17 A4CP18 A4CP19 A4CR20	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040	-	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040	
A4CP21 A4CR22 A4CR23 A4CR24 A4CR25	1901-0040 1902-3149 1902-0845 1902-0845 1901-0040	5 2	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNP 9.09V 5% DO-7 PD=_WW TC=+.057% DIODE-ZNP 11V 5% PD=1W TC=+- 07% DIODE-ZNP 11V 5% PD=1W TC=+- 07% DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 04713 28480 28480 28480	1901-0040 SZ 10939-170 PD11FB RD11FB 1901-0040	
A4CR26 A4CR27 A4CR28	1901-0040 1901-0040 1901-0040		DIODE-SWITCHING BOV SOMA 2NS DO-35 DIODE-SWITCHING BOV SOMA 2NS DO-35 DIODE-SWITCHING BOV SOMA 2NS DO-35	28480 28480 28480	1901-0040 1901-0040 1901-0040	
A4 K1 A4 + 2 A4 K3 A4 L4	0490-0226 0490-0234 0490-0234 0490-0234		PELAY:REED RELAY:REED PELAY-REED RELAY:REED			
A4Q1 A4Q2 A4Q3 A4Q4 A4Q5	1855-0062 5080-3830 1855-0082 1854-0071 1854-0071	8 21 1	FRANSISTOR J-FET N-CHAN D-MODE SI FRANSISTOR J-FET N-CHAN D-MODE SI FRANSISTOR MOSFET P-CHAN D-MODE SI FRANSISTOR NPN SI PD=300MW FT=200MHz TRANSISTOR NPN SI PD=300MW FT=200MHz	28480 28480 28480 28480	1855-0062 1855-0082 1854-0071 1854-0071	
A406 A407 A408 A409 A4012	1853-0020 1853-0020 1854-0071 1853-0020 1854-0071	24	TPANSISTOR PNP SI PD=300MW FT=150MHz TRANSISTOR PNP SI PD=300MW FT=150MHz TPANSISTOR NPN SI PD=300MW FT=200MHz TPANSISTOR NPN SI PD=300MW FT=150MHz TPANSISTOR NPN SI PD=300MW FT=200MHz TPANSISTOR NPN SI PD=300MW FT=200MHz	28480 28480 28480 28480 28480 28480	1853-0020 1853-0020 1854-0071 1853-0020 1854-0071	
A4013 A4014 A4015 A4016 A4017	1854-0071 1854-0071 1854-0071 1854-0071 1854-0071		TRANSISTOR NPN SI PD=300MW FT=200MHz TRANSISTOR NPN SI PD=300MW FT=200MHz TRANSISTOR NPN SI PD=300MW FT=200MHz TRANSISTOR NPN SI PD=300MW FT=200MHz TRANSISTOR NPN SI PD=300MW FT=200MHz	28480 28480 28480 28480 28480	1854-0071 1854-0071 1854-0071 1854-0071 1854-0071	
A4018 A4019 A4020 A4021 A4022	854-0071 854-007 <u>1</u> 5080-3830 5080-3830 5080-3830		TPANSISTOR NPN SI PD=300MW FT=200MHz TPANSISTOR NPN SI PD=300MW FT=200MHz TPANSISTOP J-FET N-CHAN D-MODE SI TPANSISTOP J-FET N-CHAN D-MODE SI TPANSISTOP J-FET N-CHAN D-MODE SI	28480 28480	1854-0071 1854-0071	
A4Q23 A4Q24 A4Q25 A4Q26 A4Q27	5080-3830 5080-3830 5080-3830 1855-0128 5080-3830	1	TPANSISTOR J-FET N-CHAN D-MODE SI TPANSISTOR J-FET N-CHAN D-MODE SI TPANSISTOR J-FET N-CHAN D-MODE SI TPANSISTOR J-FET N-CHAN E-108 TPANSISTOR J-FET N-CHAN D-MODE SI	28480	1855-0128	
A4028 A4029 A4030 A4031 A4032	1854-0013 1853-0012 1853-0020 1853-0020 1853-0020	1	TRANSISTOR NPN 2N2218A SI TO-5 PD=800MW TPANSISTOR PNP 2N2904A SI TO-5 PD=600MW TPANSISTOR PNP SI PD=100MW FT=150MHz TPANSISTOR PNP SI PD=300MW FT=150MHz TRANSISTOR PNP SI PD=300MW FT=150MHz	04713 01295 28480 28480 28480	2N2218A 2N2904A 1853-0020 1853-0020 1853-0020	
A4Q33 A4Q34	1853-0020 1853-0020		TRANSISTOP PNP SI PD=300MW FT=150MHz TRANSISTOP PNP SI PD=300MW FT=150MHz	28480 28480	1853-0020 1853-0020	
A4R1 A4R2 A4R3 A4R4 A4R5	0757-0486 0698-3136 0757-0486 0757-0448 0698-3451	2 1 1 2	RESISTOR 7501 1% .125W F TC=0+-100 PESISTOR 17.8F 1% 125W F TC=0+-100 RESISTOR 750F 1% .125W F TC=0+-100 RESISTOR 18.2F 1% 125W F TC=0+-100 RESISTOR 133F 1% .125W F TC=0+-100	24546 16299 24546 24546 16299	NA4 C4-1/8-T0-1782-F NA4 C4-1/8-T0-1822-F C4-1/8-T0-1333-F	

Table 6-3. Replaceable Parts (Cont'd).

	Table 6-3. Replaceable Parts (Cont'd).					
Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number	
A4R6 A4R7 A4R8 A4R9 A4R10	0698-3451 0757-0317 0757-0278 0698-3155 0683-3335	2 1 4 38	RESISTOR 133K 1% .125W F TC=0+-100 RESISTOR 1.33K 1% .125W F TC=0+-100 RESISTOR 1.78K 1% .125W F TC=0+-100 RESISTOR 4.64K 1% .125W F TC=0+-100 RESISTOR 33K 5% .25W FC TC=-400/+800	16299 24546 24546 16259 01121	C4-1/8-T0-1333-F C4-1/8-T0=1331-F C4-1/8-T0=1781-F C4-1/8-T0=4641-F C83335	
A4R11 A4R12 A4R13 A4R14 A4R15	0683-8225 0698-3154 0683-3335 0683-1035 0757-0443	1 1	RESISTOR 8.2K 5% .25M FC TC=-400/+700 RESISTOR 4.22M 1% .125M F TC=0+-100 RESISTOR 33K 5% .25M FC TC=-400/+800 RESISTOR 10K 5% .25M FC TC=-400/+800 RESISTOR 11K 1% .125M F TC=0+ 100	01121 16299 01121 01121 24546	C88225 C4-1/8-T0-4221-F C83335 C83335 C4-1/8-T0-1102-F	
A4R16 A4R17 A4R18 A4R19 A4R20	0757-0416 0698-4442 0698-4420 0683-3335 0683-3335	3 1 1	RESISTOR 511 1% .125W F TC=0++100 RESISTOR 4.42M 1% .125W F TC=0+-100 RESISTOR 226 1% .125W F TC=0+-100 RESISTOR 33K 5% .25W FC TC==400/+800 RESISTOR 33K 5% .25W FC TC==400/+800	24546 16299 16299 01121 01121	C4=1/8-T0-511R-F C4-1/8-T0-4421-F C4-1/8=T0-226R-F C83335 C83335	
A4R21 44R22 A4R23 A4R24 A4R25	0683 3335 0683-3335 0683-4725 0683-7525 0757-0442	43 1 4	RESISTOR 33K 5% .25W FC TC==400/+800 RESISTOR 33K 5% .25W FC TC==400/+800 RESISTOR 4.7K 5% .25W FC TC==400/+700 RESISTOR 7.5K 5% .25W FC TC=-400/+700 RESISTOR 10K 1% .125W F TC=0+-100	01121 01121 01121 01121 01121 24546	C83335 C83335 C84725 C87525 C4-1/8-T0-1002-F	
A4R26	0698-3515	1	RESISTOR 5.90K 1% .125W F TC=0+-100	16299	C4-1/8-T0-5901-F	
A4R27 A4R28	0683-1535 0683-1535	3	RESISTOR 15K 5% .25W FC TC==400/+800 RESISTOR 15K 5% .25W FC TC==400/+800	01121 01121	CB1535 CB1535	
A4R 29 A4R 30 A4R 31 A4R 32 A4R 33	0683-0275 0683-0275 0764-0015 0757-0465 0757-0442	4 1 4	RESISTOR 2.7 5% .25% FC TC==400/+500 RESISTOR 2.7 5% .25% FC TC==400/+500 RESISTOR 560 5% 2% MO TC=0+=200 RESISTOR 100% 1% .125% F TC=0+-100 RESISTOR 10% 1% .125% F TC=0+-100	01121 01121 24546 24546 24546	CB27G5 CB27G5 FP42=2-T00-561-J C4-1/8-T0=1003-F C4-1/8-T0=1002-F	
A4R35	069 8-0 083	2	RESISTOR 1.96# 1% .125# F TC=0+-100	16299	C4=1/8-TG=1961=F	
A4R37 A4R38	0698-3440 0698-3440	2	RESISTOR 196 1% .125W F TC=0+=100 RESISTOR 196 1% .125W F TC=0+-100	16299 16299	C4-1/8-T0=196P=F C4-1/8=T0=196P=F	
A4R39 A4R40 A4R41 A4R42 A4R43	0683=0825 0683-3335 0683-3335 0683-3335 0683-3335	1	RESISTOR 8.2 5% .25W FC TC=-400/+500 RESISTOR 33K 5% .25W FC TC==400/+800 RESISTOR 33K 5% .25W FC TC==400/+800 RESISTOR 33K 5% .25W FC TC==400/+800 RESISTOR 33K 5% .25W FC TC==400/+800	01121 01121 01121 01121 01121	CB82G5 CB3335 CB3335 CB3335 CB3335	
44R44 44R45 44R46 44R47	0683 3335 0683-3335 0683-3335 0683-3335	6	RESISTOR 33K 5% .25W FC TC==400/+800 RESISTOR 33K 5% .25W FC TC==400/+800 RESISTOR 33K 5% .25W FC TC==400/+800 RESISTOR 33K 5% .25W FC TC==400/+800	01121 01121 01121 01121	CB3335 CB3325 CB3325 CB3335	
44R 50 44R 51 44R 52 44R 53	068 3-5 625 0683-2215 0698-2225 0698-2295	1 2 1 1	RESISTOR 5.6K 5% .25W FC TC=~400/+700 RESISTOR 220 5% .25W FC TC=~400/+700 RESISTOR:FXD 90.0K QHM 0.05% 1/8W MF RESISTOR:FXD 11.090 0HM 0.05%	01121 01121 28480 28480	CB5625 0698-2225 0698-2295	
44R 54 44R 55 44R 56 44R 57 44R 58	0698-3329 0683-1055 0683-1055 0698-2296 0683-1055	1	RESISTOR 10K .5% .125W F TC=0+-100 RESISTOR 1M 5% .25W FC TC=-800/+900 RESISTOR 1M 5% .25W FC TC=-800/+900 PESISTOP-FND 1010-1 0HM 0 .05% RESISTOF 1M 5% .25W FC TC=-800/+900	03888 01121 01121 28480 01121	PME55-1/8-T0-1002-3 C81055 C81055 0498-2296 C81055	
44R59 44R60 44R61 A4R62 44R63	0683-1055 0698-2294 0683-1055 0683-1055 0698-2298	1	RESISTOR IM 5% -25% FC [C==800/+900 RESISTOP=FWD 100 10HH 0.05% PESISTOR IM 5% -25% FC [C=-800/+900 RESISTOR IM 5% -25% FC [C=-800/+900 PESISTOR:FWD 10 0HM 0.05%	01121 28480 01121 01121 28480	CB1055 0658-2294 CB1055 CB1055 0698-2298	
44R64 44R65 44R66 44R67 44R68	0683=1055 0683-1055 0683-4705 0683-4705 0683-1035	2 11	RESISTOR 1M 5% .25W FC TC=-800/+900 RESISTOR 1M 5% .25W FC TC=-800/+900 RESISTOR 47 5% .25W FC TC=-400/+500 RESISTOR 47 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	C81055 C81055 C84705 C84705 C81035	
A4R 69 A4R 70 A4R 71 A4R 72 A4R 73	0683-1035 0757-1090 0683-0275 0683-0275 0757-1090	2	RESISTOR 10K 5% .25W FC TC==400/+700 RESISTOR 261 1% .5N F TC=0+=100 RESISTOR 2.7 5% .25W FC TC==400/+500 RESISTOR 2.7 5% .25W FC TC=400/+500 RESISTOR 261 1% .5N F TC=0+=100	01121 19701 01121 01121 19701	CB1035 MF7C1/2=T0-261P=F CR27G5 MF7C1/2=T0=261R=F	
A4R74 A4R75 A4R76 A4R77 A4R78	0683-3335 0683-3335 0683-3335 0683-3335 0683-3335		RESISTOR 33K 5% .25W FC TC==400/+800 RESISTOR 33K 5% .25W FC TC==400/+800	01121 01121 01121 01121 01121	CB3335 CB3335 CB3335 CB3335 CB3335	

Table 6-3. Replaceable Parts (Cont'd).

Table 6-3. Replaceable Parts (Cont'd),						
Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number	
A4P79 A4P80 A4P81 A4P82 A4P83	0683-3335 0683-3335 0683-3335 0683-3335 0683-3335		PESISTOP 33+ 5% 25W FC TC=-400/+800 PESISTOR 33+ 5% 25W FC TC=-400/+800 PESISTOR 33+ 5% 25W FC TC=-400/+800 PESISTOP 33+ 5% 25W FC TC=-400/+800 PESISTOP 33+ 5% 25W FC TC=-400/+800	01121 01121 01121 01121 01121	CB3335 CB3335 CB3335 CB3335 CB3335	
A 4 P 8 4 A 4 P 8 5 A 4 P 8 6 A 4 P 8 7	0683-3335 0698-0083 0683-1065 2100-2514]]	PESISTOP 331 5% 25W FC TC=-400/+800 RESISTOR 1 95 1% 125W F TC=0+-100 PESISTOP 10M 5% 25W FC TC=-900/+1000 PESISTOR-TRMP 201 10% C SIDE-ADJ 1-TURN	01121 16299 01121 30983	CB3335 C4-1/H-TO-1961-F CB1065 ET50W203	
44[]	9100 0846	1	TRANSFORMER-PULSE 412N3	28480	5100-0845	
4401 4402	1826-0139 1826-0013	6 1	IC MC 1458 OP AMP IC OP AMP	04713 28480	MC1458P1 1826~0013	
	04261-50022	1	SUPPORTER, BCAFD	28480	04261-50022	
45	04261-77005	1	PPOCESS AMPLIFIER BOARD ASSENBLY	28480	04261-77005	
45C1 45C2 45C3 45C4 45C5	0160-1678 0160-2254 0160-2204 0160-1678 0160-2204	3 1	C:FXD MY 0.1 UF 24 200VDCW CAPACITUR-FXC 7.5PF +25PF 500WVDC CER CAPACITUF-FXD 100PF +-5% 300WVDC MICA C:FXD MY 0.1 UF 2% 200VDCW CAPACITUR-FXC 100PF +-5% 300WVDC MICA	28480 28480 93790 28480 93790	0160-1678 0160-2254 RPM157101J3C 0160-1678 RFM15F101J3C	
4506 4507 4508 4509 45010	0160-2055 0160-2055 0180-1051 0160-2055 0180-1051		CAPACITOR—FXD .01UF +80~20% 100WVDC CER CAPACITOR—FXE .01UF +60~20% 100WVDC CER CAPACITOR—FXD 100UF 16V CAPACITOR—FXD .01UF +80~20% 100WVDC CEP CAPACITOR—FXD 100UF 16V	28480 28430 28480 28480 28480	0160 - 2055 0160 2055 0180- 1051 6160- 2055 0180 - 1051	
45 C 1 1 45 C 1 2 45 C 1 3 45 C 1 5 A5 C 1 6 A5 C 1 7 A5 C 1 9 A5 C 2 0 A5 C 2 0 A5 C 2 0 A5 C 2 0	0160 2055 0180-1051 0160 2055 0480-1051 0160 2055 0180-1051 0160-2055 0180-1051 0160-2055		CAPACITOR-FxD .01UF +80-20% 100WVDC CEP CAPACITOP-FxD .00UF +80-20% 100WVDC CER CAPACITOP-FxD .01UF +80-20% 100WVDC CER CAPACITOR-FxD .01UF +80-20% 100WVDC CEP CAPACITOR-FxD .01UF +80-20% 100WVDC CEP CAPACITOR-FxD .01UF +80-20% 100WVDC CER	28480 28480 28480 28430 28480 28480 28480 28480 28480 28480	0160-2055 0180-1051 0160-2035 0180-1051 0160-2055 0180-1051 0160-2055 0180-1051	
45tR1 45CR2	1901-0376 1901-0376	6	CICDE-GEN PPP CICDE-GEN PRP	28480 28480	1901-0376 1901-0376	
45CR4 45CR5	19010040 19010040		CIGDE-SWITCHING 30V 50MA 2NS DO-35 DIGDE-SWITCHING 30V 50MA 2NS OO-35	28480 28480	1501:0040 1501-0040	
43046 43087 43088 43089 430810	1501-0040 1561-0040 1501-0040 1501-0040 1901-0040		DICDE-SWITCHING 30V 50MA 2NS DC-35 CICDE-SWITCHING 30V 50MA 2NS DO-35 DICDE-SWITCHING 30V 50MA 2NS DO-35 DICDE-SWITCHING 30V 50MA 2NS DO-35 DICDE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28490 28480	1901-0040 1901-0040 1901-0040 1901-0040 1501-0040	
45CR11 45CR12 45CR13 45CR14 45CR16	1901-0040 1501-0040 1901-0040 1901-0040 1901-0040		DIODE-SWITCHING 30V 50MA 2NS DC-35 DIODE-SWITCHING 30V 50MA 2NS DC-35 DIODE-SWITCHING 30V 50MA 2NS DC-35 DIODE-SWITCHING 30V 50MA 2NS DC-35 CIODE-SWITCHING 30V 50MA 2NS DC-35	28480 25480 28480 28480 28480	1 901 - 0040 1 901 - 0040 1 901 - 0040 1 901 - 0040 1 901 - 0040	
A = CR B A = 5 CR 19 A = 5 CR 20 A = 5 CR 21 A = 5 CR 22	1502-0041 1502-0041 1501-0040 1901-0040 1902-0049	5	DIODE-ZNR 5.11V 5% DD-7 PD=.4W IC=009% CIGDE-ZNR 5.11V 5% DD-7 PD=.4W TC=009% DIODE-SWITCHING 3DV 50MA ZNS DD-35 DIODE-SWITCHING 3DV 50MA ZNS DC-35 DIODE-SWITCHING 3DV 50MA ZNS DC-35 DIODE-ZNR 6.15V 5% DO-7 PD=.4W TC=+.022%	04713 04713 28480 28480 04713	SZ 10939-98 SZ 10939-98 1901-0040 1501-0040 SZ 10939-122	
45Q1 45Q2 45Q3 45Q4 45Q5	1853-0020 1853-0020 1853-0620 1853-0020 1853-0020		TRANSISTOR PNP SI PD=300MW FT=150MHZ TPANSISTOR PNP SI PD=300MW FT=150MHZ	28480 23480 28480 28480 28480	1853-0020 1853-0020 1853-0020 1853-0020 1853-0020	
15Q7 45Q8 45Q9 45Q10 45Q11	1 853-0020 1 853-0020 5080-3830 5080-3830 5080-3830		TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR J=FET N=CHAN D=MDDE SI TRANSISTOR J=FET N=CHAN D=MDDE SI TPANSISTOR J=FET N=CHAN D=MDDE SI	28480 28480	1853-0020 1853-0023	
45 112 45413 45414 45415 45417	5080-3830 5080-3830 5080-3830 1855-0062 1855-0062		TRANSISTOR J-FET N-CHAN D-MODE SI	28480 28480	1855-0062 1855-0062	
45Q19 45Q20	1855-0062 1855-0062	1	TRANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOR J-FET N-CHAN D-MODE SI	28480 28480	1855-0062 1855-0062	

Table 6-3. Replaceable Parts (Cont'd).

	Table 6-3. Replaceable Parts (Cont'd).						
Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number		
A5P1 A5P2 A5R3 A5P4 A5P5	0683-1025 0683-2235 0683-1235 0683-2235 0683-2235	18	PESISTOR 1k 5% 25W FC TC=-400/+600 PESISTOR 22k 5% 25W FC TC=-400/+800 RESISTOR 12k 5% 25W FC TC=-400/+800 PESISTOR 22k 5% 25W FC TC=-400/+800 RESISTOR 22k 5% 25W FC TC=-400/+800	01121 01121 01121 01121 01121	CB1025 CB2235 CB1235 CB2235 CB2235		
A5R6 A5R7 A5R8 A5R9 A5R10	0683-2235 0683-2235 0683-1235 0683-2235 0683-2235		RESISTOR 22k 5% 25W FC TC=-400/+800 RESISTOR 22k 5% 25W FC TC=-400/+800 RESISTOR 12k 5% 25W FC TC=-400/+800 RESISTOR 22k 5% 25W FC TC=-400/+800 RESISTOR 22k 5% 25W FC TC=-400/+800	01121 01121 01121 01121 01121	CB2235 CB2235 CB1235 CB2235 CB2235		
A5R11 A5R12 A5R15 A5R17 A5R18	0683-2235 0683-2235 0683-2235 0683-2235 0683-1235		PESISTOR 22k 5% 25W FC TC=-400/+800 RESISTOR 22k 5% 25W FC TC=-400/+800 RESISTOR 22k 5% 25W FC TC=-400/+800 PESISTOR 22k 5% 25W FC TC=-400/+800 RESISTOR 12k 5% 25W FC TC=-400/+800	01121 01121 01121 01121 01121	CB2235 CB2235 CB2235 CB2235 CB2235		
A5R19 A5R20 A5R21 A5R22	0683-2235 0683-2235 0683-2235 0698-8827 0683-1035		PESISTOR 224 5% 25W FC TC=-400/+800 RESISTOR 224 5% 25W FC TC=-400/+800 RESISTOR 224 5% 25W FC TC=-400/+800 RESISTOR 1M OHM 1% 25W RESISTOR 10V 5% 25W FC TC=-400/+700	01121 01121 01121 01121	CB2235 CB2235 CB2235 CB1035		
A5F23 A5F24 A5F25 A5F26 A5F27 A5F28 A5F29	0698 - 2297 0698 - 2297 0698 - 2297 0683 - 1035 0757 0273 0757 - 0273 0683 - 5645	4	PESISTOR:FKD 3.01k OHM 0.05% RESISTOR FKD 3.01k OHM 0.05% RESISTOR 10k 5% .25W FC TC=-400/+700 RESISTOR 3.01k 1% .125W F TC=0+=100 RESISTOR 3.01k 1% .125W F TC=0+=100 RESISTOR 560k 5% .25W FC TC==800/+900	28480 28480 01121 24546 24546 01121	0698-2297 0698-2297 C81035 C4-1/8-T0-3011-F C4-1/8-T0-3011-F		
45R 31 45R 32 45R 33 45R 34	2100-2516 0698-8827 0698-2297 0698-2297	*	FESISTCF-TRMR 100+ 10% C SIDE-ADJ 1-TURN RESISTUR 1M 1% -25W FC TC==800/+300 PESISTOP FXD 3.01k OHM 0 05% RESISTOR FXD J.01k OHM 0 05%	30983 28480 28480	ET50X104 0698-2297 0698-2297		
45R 35 45R 36 45R 37 45R 38	0 683-1035 0757-0273 0757-0273 0683-5645		RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 3.01K 1% .125W F TC=0+-100 RESISTOR 3.01K 1% .125W F TC=0+-100 RESISTOR 56UF 5% .25W FC TC==800/+900	01121 24546 24546 01121	C81035 C4=1/8-T0-3011=F C4-1/8=T0=3011=F		
152 40 458 41 156 42 458 43 458 44	2100-2516 0698-2207 0698-2206 0698-2207 0698-2206	2 2	RESISTOR-TRMP 100k 10% C SIDE-ADJ 1-TURN RESISTOR FXD 900 DHM 0.05% 1/8W MF RESISTOR:FXD 100 DHM 0.05% 1/8W MF RESISTOR:FXD 900 DHM 0.05% 1/8W MF RESISTOR:FXD 100 DHM 0.05% 1/8W MF	30983 28430 28480 28480 28480	ET50x104 0698-2207 0698-2206 0698-2207 0698-2206		
45845 45846 45847 45848 45848	0683-1055 0683-1055 0683-1055 0683-1055 0683-1055		PESISTOF 1M 5% .25W FC TC=-800/+900 RESISTOR 1M 5% .25W FC TC=-800/+900 RESISTOR 1M 5% .25W FC TC=-800/+900 RESISTOR 1M 5% .25W FC TC=-000/+900 RESISTOR 1M 5% .25W FC TC=-800/+900	01121 01121 01121 01121 01121	CB1055 CB1055 CB1055 CB1055 CB1055		
438 50 437 51 437 52 438 53 438 54	0683 1055 0683-1025 0683-1035 0683-1055 2100-2516		RESISTOR 1M 5% .25W FC IC==800/+900 RESISTOR 1K 5% .25W FC TC==400/+600 RESISTOR 10K 5% .25W FC TC==400/+700 RESISTOR 1M 5% .25W FC TC==800/+900 RESISTOR=TRMR 100K 10% C SIDE=ADJ 1-TURN	01121 01121 01121 01121 30983	CB1055 CB1025 CB1035 CB1055 ET50x104		
43755 45656 45857 45859 45860	0683-1025 0683-2235 0683-1055 0683-1025 0683-2235		RESISTOR 1K 5% -25W FC TC=-400/+600 RESISTOR 22K 5% -25W FC TC=-400/+800 RESISTOR 1K 5% -25W FC TC=-800/+900 RESISTOR 1K 5% -25W FC TC=-400/+600 RESISTOR 22K 5% -25W FC TC=-400/+800	01121 01121 01121 01121 01121	CB1025 CB2235 CB1055 CB1025 C62235		
A 5R 61 A 5R 63 A 5R 64 A 5R 65 A 5R 66	0683-1055 0683-1025 0683-1035 0683-1025 0683-3935	1		01121 01121 01121 01121 01121	CB1055 CB1025 CB1035 CB1025 CB3935		
45R67 43R68 43R69 43R70 43R71	0633 4725 0683-1025 0683-2235 0683-1825 0683-1825	10	RESISTOR L-8K 5F - 25W FC TC=-400/+700	01121 01121 01121 01121 01121	C84725 C81025 C812235 C81825 C81825		
45H 72 45R 73 45R 74 45R 75 45R 76	0683-2235 0683-1025 0683-1045 0683-1025 0683-1055		RESISTER 22K 5% .25W FC TC==400/+800 RESISTER 1K 5% .25W FC TC==400/+600 RESISTER 1K 5% .25W FC TC==400/+800 RESISTER 1K 5% .25W FC TC==400/+600 RESISTER 1M 5% .25W FC TC==800/+900	01121 01121 01121 01121 01121	CB2235 CB1025 CB1045 CB1025 CB1055		
45R 77 45R 78 45R 79 45R 80 45R 81	0663-1055 0683-1015 0683-1015 0683-1015 0683-1015		RESISTOR 1M 5% -25% FC TC=-800/+900 RESISTOR 100 5% -25% FC TC=-400/+500 RESISTOR 100 5% -25% FC TC=-400/+500 RESISTOR 100 5% -25% FC TC=-400/+500 RESISTOR 100 5% -25% FC TC=-400/+500	01121 01121 01121 01121 01121	C81055 C81015 C81015 C81015 C81015		

Table 6-3. Replaceable Parts (Cont'd).

Reference HP Part Otyl Description Mfr Mr					
Designation	Number	Qty	Description	Mfr Code	Mfr Part Number
459 32 459 83 454 84 457 85 A5886 45 J1 45 J2 45 J3 45 J4 45 J4 45 J5	0683 1015 0683-1015 0683-1645 2100-2516 0683-4725 1026-1465 1826-0217 1826-0217 1826-0217 1826-0139	2 2	RESISTEN 100 5% -25% FC TG= 400/+500 PESISTUR 100 5% -25% FC TC=-400/+500 RESISTUR 100% 5% -25% FC TC=-400/+500 RESISTCTMP 100% 10% C SIDE-AUJ 1 TUEN PESISTOP 4.7% 5% .25% IC OP AMP IC PA 4558T OP AMP IC LE356M OP AMP IC PAY 4558T OP AMP	01121 01121 01121 30933	CALOIS CHIOIS CHIO45 ETSUXIO4 LT 1056CH LF356H MCLC53PI
3000 71.5.4 8654	1826-0139 1320-0125 1820-0321	1 2	IC MC 1:58 CP AMP IC UA 711C COMPARATUR IC UA 710C COMPARATOR	0+713 07263 07263	4014-532 (7114) 71040
43 430 L 430 L 430 L 430 L 430 L 430 L	04261-77006 04261-66906 0160-1366 0160-0207 0160-1570 0160-0127 0180-1052	2. 2.	PHASE DIFECTOR/INTEGRATUR 3044D 455EMBLY OPT. 010 C:=AD MY 0.1 UF 10% LOUVUCW C:FAD MY 0.01 UF 5% 200VDCW CAPACITOP-FAD 10000pF 0.05% CAPACITOP-FAD 10F +-20% 25WVDC CER CAPACITOR-FAD 220UF 6.3V	23430 23480 29480 28480 28480 23480	0+261 77:00+ 0160-1535 0160-0207 0150 1570 01*0-0127 01*0-0127
4300 40'7 4300 4309 45010 40011 40012 43012 43014 43015	0160-0127 0130-1052 0160-0040 0160-0040 0160-1553 0160-0207 0150-1603 0160-1674 J160-1554 0160-2055	2 1 1 2 3	CAPACITOR-FAD 1UF +-20% 25MVDC CER CAPACITOR-FAD 220UF 6.3V C=FAD 4Y 0.0+7 UF 5% 200VDCW C=FAD MY 0.0+7 UF 5% 200VDCW C=FAD MY 33UF 5% C=FAD MY 47UF 5% (0PT. 010) C=FAT 1% 0.01 UF 5% 200VDCW C=FAT 1% 0.01 UF 5% 200VDCW C=FAT 1% 0.33 UF 10% C=FAT MY 0.33 UF 10% C=FAT MY 0.33 UF 5% 200VDCU CAPACITCE-FAD 0.0UF >30 207 13GWVDC CEM	28430 21480 28480 23450 27480 28480 23430 21480 26480	01: 0-01: 27 01:0: 105: 1 01:0: 00: 40 01:0: 00: 40 01:0: 15: 17 01:0: 02: 07 01:0: 1: 103 01:0: 15: 17
4 3 C 1 6 A 3 C 1 7 4 3 C 1 7 4 3 C 1 9 4 6 C 2 0 A 6 C 2 2 A 6 C 2 2 A 6 C 2 2 A 6 C 2 3 A 6 C 2 5 A 6 C 2 5 A 6 C 2 5 A 6 C 2 7 A 5 C 8 7	0160-2055 0160-2055 0160-2055 0150-0197 0130-0197 0130-0197 0180-1051 0150-0075 0160-0763 0160-2197 1:02-3125 1:01-0040 1:01-0040 1:01-0040 1:02-3149 1:02-3149 1:02-3149 1:02-01040 1:01-0040 1:01-0040 1:01-0040 1:01-0040 1:01-0040	1	CAPACITOR FKG .DIUF +80 ZUT LOOWVOC CER CAPACITOR FKF .OIUF +80 ZOT 100HVOC CER CAPACITOR FKO .DIUF +80 ZOT 100HVOC CER CAPACITOR FKO .DIUF +10-ZOT 100HVOC CEP CAPACITOR FKO .Z.2UF+ 10% ZOVOC TA CAPACITOR FKO .Z.2UF+ 10% ZOVOC TA CAPACITOR FKO .O.0047UF .SOV CAPACITOR FKO .O.0047UF .SOV CAPACITOR FKO .O.0047UF .SOV CAPACITOR FKO .OIUF .SW .OIUF .	56.24c 56.269 28480 28480 28480 0.713 23480 21480 21480 27713 04712 23480 27713 04712 23480 27713	15J/705 x9020 - 2 15J/705 x0070 - 2 0180-1051 0180-1051 0150-0075 0160-075 0160-073 5/ 1073-132 190-0071 190-0071 5/ 1072+170 5/ 1072+170 1501-0090 1501-0090 1501-0090
400R11 400R12 400R13 400R14 400L10	1 +02-00+9 1+02-3059 1=01-0040 1+01-0040 1=01-0040	1	GINCE-ZYF 6.19V 5% UP 7 PD=.4W TC=+,022* DIND& ZWF 3.83V 5% DF 7 PD=.4W TC= .051*. DICOE SWITCHING BOV 50MA ZNS ND-35 CICDE-SWITCHING BOV 50MA ZNS NC-35 CICDE-SWITCHING BOV JOYA ZNS NC-35	04713 04713 28480 28480 28430	SZ 10934 122 SZ 10935 67 1531 0340 1501-0373 1601-0943
45CH.6 43CR17 40CR18 40CR19 43Cr20	1901-0040 1901-0040 1901-0040 1901-0040 1901-0049		CICOE-SWITCHING BOY SOMA 2NS DC-35 CITOE-SWITCHING BOY SOMA 2NS DC-35 CINCE SWITCHING BOY SOMA 2NS DC-35 CINCE-SWITCHING BOY SOMA 2NS DC-35 CITOE-SWITCHING BOY DOMA 2NS DC-35 CITOE-ZWH 6-19V 5K DC-7 PD-3W TC-+-0225	28460 28490 23480 28480 0-713	1901-00+9 1901-00+0 1901-00+0 1501-00+0 57 10927 172
ন স্থায়ী নতান্ত নতান্ত নতান্ত্ৰী নতান্ত্ৰিক নতান্ত্ৰী	1654 0071 1854-0023 1853-0034 1853-0034 1553-0020		TRANSISTER MPN 51 PC=30UMW FT=20UMHZ TRANSISTER NPN 51 PD=360MW TRANSISTER FNP 51 PD=300MW FT=150MHZ TRANSISTER PNP 51 PD=300MW FT=150MHZ TRANSISTER PNP 51 PD=300MW FT=150MHZ	23480 23480 23480 28480 28480	1354-0071 1864-0071 1853-0034 1853-0034 1852-0020
1007 70007 1003 1004 1009 1000 1000	1855-0081 1855-0081 5080-3830 5080-3830 5080-3830		TRANSISTUR J-FET N-CHAN D MODE SI TRANSISTOR J-FET N-CHAN D-MODE SI	23480 28480	1854-0023
+ 1411 + 1412 + 1413 + 144 + 1415	1855-0081 1855-0570 1855-0062 1855-0062 1855-0570	1 3	TRANSISTOR J-FET N-CHAN TRANSISTOR J-FET TRANSISTOR J-FET TRANSISTOR J-FET TRANSISTOR J-FET TRANSISTOR J-FET TRANSISTOR J-FET	2::430 2::430 2::480	1855-0081 251523-L1%M2 1855 00-2 1955-00-2 251523-L1%M2
43418 43017 43018 43029 43020	1850-0570 1853-0020 1853-0020 1854-0071 1853-0020		TRANSISTOR J-FET TRANSISTOR PAP ST PD=300MW FT=150MPZ TRANSISTOR PAP ST PD=300MW FT=150MPZ TRANSISTOR PAP ST PD=300MW FT=200MPZ TRANSISTOR PAP ST PD=300MW FT=200MPZ TRANSISTOR PAP ST PD=500MW FT=150MPZ	23490 23490 23480 23480	25F523-L1mM2 1893-3020 1863-3020 1865-0071 1855-0020

Table 6-3. Replaceable Parts (Cont'd).

	Table 6-3. Replaceable Parts (Cont a).						
Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number		
45721 45722 45723 45724 45725	1853-0020 5080-3830 5080-3830 1855-0049 1855-0062	1	TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOR-JEET CUAL N-CHAN D-MOUE SI TRANSISTOR J-FET N-CHAN D-MODE SI	28480 28480 28480	1953 0020 1855-0049 1855-0062		
4542 4542 4543 4084 4645	0633-1035 0683-1025 0698-3226 0698-3226 0683-4745	3	PEISTOF 10K 5% .25W FC TC=-400/+700 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 6.45K 1% .125W F TC=0+ L00 RESISTOR 6.45K 1% .125W F TC=0+ L00 RESISTOR 470F 5% .25W	01121 01121 16299 16299 01121	CP1035 CP1035 CP1025 C4-1/8-TU-5491-F C4-1/8-TU-5491-F		
45R5 45R7 A3KB 43R9 A3F10	0698-3151 0757-0416 0757-0416 0757-0435 0698-3226	1	RESISTOR 38.3% 1% .125W F TC=0+ LOO RESISTOR 511 14 .125W F TC=0+ 100 RESISTOR 511 17 .125W F TC=0+ 100 RESISTOR 3.92% 14 .125W RESISTOR 5.49V 14 .125W F TC=0+ LOO	16299 24546 24546 16299 16299	C4-1/8-T0-3832 F C4 1/8 TJ-511R-F C4-1/8-T0-511R-F C4-1/8-T0-6491-F		
45811 46812 46813 46814	0683-4725 0683-3335 0683-1225 0683-3925	2	RESISTOR 4.7M 5% .25W EC TC=-400/+700 RESISTOR 33K 5% .25W EC TC=-400/+800 RESISTOR 1.2M 5% .25W RESISTOR 3.9M 5% .25W EC TC=-400/+700	01121 01121 01121	CB4725 CB3335 CB3925		
A 5 R 1 5 A 5 R 1 6 A 5 R 1 7 A 5 R 1 8 A 5 R 1 9 A 5 R 2 20	0683-3335 0683-1225 0583-3925 0683-2225 0683-3335 0698-3439	1	RESISTOR 33K 5% .25W FC TC=-400/+800 RESISTCR 1.2F 5% .25W FC TC=-400/+70U RESISTOR 3.9F 5% .25W FC TC=-400/+70U RESISTOR 33K 5% .25W FC TC=-400/+800 RESISTOR 178 1% .125W F TC=0+100	01121 01121 01121 01121 16299	C83925 C83925 C82225 C83335 C4-1/8-T0-178R=F		
4 o ² 21 4 o f 22 4 o f 23 4 o f 24 4 o f 25	0638- 4137 0698-4157 0698-6943 0683-4725 0698-6543	z 2	RESISTOR 10K .17 .125N F TC=0 ← 50 RESISTCP 10K .17 .125N F TC=0 ← 50 RESISTOR 20K .17 .125N F TC=0 ← 50 RESISTOR 4.7K 5% .25N FC TC=-400/+700 RESISTOP 20K .17 .125N F TC=0 ← 50	24546 24546 24546 01121 24546	NC55 NC55 NC55 CB4725 NC55		
A 6 F 2 6 A 5 7 2 7 A 5 F 2 B A 6 F 2 9 A 9 F 3 0	0663-1035 0683-5655 0683-1045 0658-3157 0683-1055	1 2	RESISTOR 10K 5% .25M FC TC=-400/+70U RESISTOR 5.6M 5% .25M FC TC=-900/+1100 RESISTOR 100M 5% .25M FC TC=-400/+800 RESISTOR 19.6K 1% .125M F TC=04-100 RESISTOR 19.6K 1% .25M FC TC==800/+900	01121 01121 01121 15299 01121	CB1035 CB56E5 CB1045 C4 1/8-T0=1962-F CB1055		
A 3 3 L A 5 R 3 2 A 5 P 3 3 A 3 R 3 4 A 6 R 3 5	0757-0465 0683-4735 0698-3157 0683-1535 0757-0465	5	RESISTOF 100 K 1% .125W F TC=0+~100 PESISTOP 47K 5% .25W FC TC=+400/+800 RESISTOP 19-6 F 1% .125W F TC=0+100 RESISTOP 15K 5% .25W FC TC==400/+800 PESISTOR 100 K 1% .125W F TC=0+ 100	24546 01121 15299 01121 24546	C4-1/8-T0-1003-F C84735 C4-1/8-F0=1962-F C81535 C4-1/8-F0-1003 F		
45836 43737 43846 45839 46864 408740	0633-1055 0643-4735 0683-1055 0683-3335 0683-3335		RESISTOR 1M 5% -25W FC TC=-800/+900 RESISTOR 47K 5% -25W FC TC=- 400/+800 RESISTOR 1M 5% -25W FC TC=-800/+900 RESISTOR 33K 5% -25W FC TC=-400/+800 RESISTOR 33K 5% -25W FC TC=-400/+800	01121 01121 01121 01121 01121	CR1055 C84735 CB1055 CB3335 CB3335		
4 3 R 4 L 4 0 R 4 L 4 3 M 4 B 4 0 R 4 G A 5 R 4 S	0683-3335 0683-3135 0683-3335 0683-3335 0683-1245	1	RESISTOR 33K 5% .25M FC TC==400/+800 RESISTOR 33K 5% .25M FC TC==400/+800 PESISTOR 33K 5% .25M FC TC==400/+800 RESISTOR 33K 5% .25M FC TC==400/+800 RESISTOR 120K 5% .25M FC TC==800/+900	01121 01121 01121 01121 01121	CB3335 CB3335 CB3335 CB3345 CB1245		
4 5H 46 45F 47 46F 4B 4 3F 49 4 0F 50	0683-4735 0683-3335 0683-4725 0683-3335 0683-3335		RESISTOR 47k 5% -25M FC TC=-400/+800 RESISTOR 33k 5% -25M FC TC=-400/+700 RESISTOR 4-7k 5% -25M FC TC=-400/+700 RESISTOR 33K 5% -25M FC TC=-400/+800 RESISTOR 33K 5% -25M FC TC=-400/+800	01121 01121 01121 01121 01121	CB4735 CB3335 CB4725 CB3335 CB3335		
4 o R 51 4 o R 52 4 o R 53 4 o R 54 4 o R 55	0683 1055 0683-1055 0757-0290 0757-0349 0683-4735	1 1	RESISTOP 1M 5% .25W FC TC=-800/+900 RESISTOP 1M 5% .25W FC TC=-800/+900 RESISTOP 6.19% 1% 125W RESISTOP 22.6% 1% 25W RESISTOR 47% 5% .25W FC TC==400/+300	01121 01121 01121	C81055 Ce1055 C84735		
45R 56 40R 57 40R 58	0683-4735 0683-3325 0757-1094	2 1	RESISTOR 47K 5% -25W FC TC=-400/+800 RESISTOR 3.3K 5% -25W FC TC=-400/+700 PESISTOR 1.47K 1% -125W F TC=0+-100	01121 01121 24546	CB4735 CB3325 C4-1/8-T0=1471-F		
A 3F 59 A 6K 50 A 5R 61 A 6R 62 A GR 63	0698-3155 0683-3325 0757-0465 0698-4433 0757-0401	1 2	RESISTUR 4.64F LT .125W F TC=0+-100 RESISTUR 3.3K 5T .25W FC TC= 400/+700 RESISTUR 100K 1T .125W F TC=0+-100 RESISTUR 2.26F LT .125W F TC=0+-100 RESISTUR 100 LT .125W F TC=0+-100	15 299 01121 24546 15299 24546	C4=1/8-T0=4641-F CB3325 C4=1/8-T0-1003-F C4-1/8-T0=2261:F C4-1/8-T0=101-F		
45R 64 46R 65 46R 66 45R 67 45R 68	0757-0401 0683-4725 0683-1055 2100-2522 2100-2522	2	RESISTER LUO LT .125W F TC=0+-100 RESISTOR 4.7K 5T .25W FC TC==400/+700 RESISTOR LM ST .25W FC TC==800/+900 RESISTOR=TRMR 10+ 10T C SIDE=A0J 1-TURN RESISTOR=TRMR 10K LOT C SIDE=A0J 1-TURN	24546 01121 01121 30983 30983	C4=1/8~T0~101-F C8+725 C81055 EY50x103 EY50x103		
A6R69	0683-2265		RESISTOR 22M 5% .25W				

Table 6-3. Replaceable Parts (Cont'd).

Reference	HP Part	1		· —	
Designation	Number	Qty	Description	Mfr Code	Mfr Part Number
4501 4602 4503 460+ 4605	1820-0630 1826-0180 1820-0099 1820-0054 1820-0075	1 1 2 1	IC MC 4044P DIGITAL TIMER, NE555V IC:5N7493N IC 5N74 OO N GATE IC 5N74 OO N FLIP-FLUP	04713 28480 01295 01295 01295	MC4044P 1826-0180 SN7493N SN7400H SN7473H
4507 4507 4608 4509 45010	1820-0379 1820-0054 1826-0139 1826-0139 1826-0139	1	IC:ITL 4-W AND/OF GATE IC SN74 OO H GATE IC MC 1458 OP AMP IC MC 1458 CP AMP IC MC 1458 OP AMP	012°5 012°5 04713 04713	5N79H52 SN740U4 MC1458P1 MC1458P1 MC1458P1
46U11 46U12 46U13	1826-0271 1826-0271 1820-0321	5	IC UA 741C CP AMP IC UA 741C CP AMP IC UA 710C COMPARATOH	27014 27014 07263	LM741C9 LM741Cn 71 UHC
AĪ	04261-77007	1	CLOTE PULSE GENERATUR/COUNTER BRAPH ASSY	28480	04251-77007
A7C1 A7C2 A7C3 A7C4 A7C5	0160-2261 0160-2055 0160-2055 0160-2055 0160-2055	1	CAPACITOR-FXC 15PF + 5% 5000VDC CEP GAPACITCY-FXD .01UF +8D 20% 1000VDC CEP CAPACITOF FXD .01UF +8D-20% 1000VDC CEP CAPACITCF-FXD .01UF +8D-20% 1000VDC CEP CAPACITOP FXD .01UF +8D-20% 1000VDC CEP	28480 28480 28450 28480 23480	01c0-2251 01c0-2055 01c0-2055 01c0-2055 01c0-2055
4706	0180-0374		CAPACITOR-FXO 10UF+ 10% 20VDC TA	56299	1500106 x302082
47R1 47R2 47R3 47H4 47H5	0683-4725 0683-4725 0683-4725 0683-4725 0683-4725		RESISTOR 4.7K 57 .25W FC TC=-400/+700 RESISTOR 4.7K 57 .25W FC TC= 400/+700 RESISTOR 4.7K 51 .25W FC TC= 400/+700 RESISTOR 4.7K 51 .25W FC TC=-400/+700 RESISTOR 4.7K 51 .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB4725 CB4725 CB4725 CB4725 CB4725
4 7R 6	0683 4725		RESISTOR 4.7K 51 .25W FC TC= 400/+700	01121	CB4725
A7U1 A7U2 A7U3 A7U4 A7U5	1820-0567 1820-1490 1820-1490 1820-1490 1820-1112	1	IC NC 4024P MV IC SN74LS 90 N COUNTEH IC SN74LS 90 N COUNTER IC SN74LS 90 N COUNTER IC SN74LS 70 N COUNTER IC SN74LS 74 N FLIP-FLOP	04713 01295 01295 01295 01295	MC+02+° SN7+LS+07 SN7+LS+04 SN7+LS+04 SN7+LS+04
4706 4707 4708 4709 47010	1820-1490 1820-1478 1820-1478 1820-1477 1820-1217	2	IC SN74L5 90 N COUNTER IC SN74L5 93 N COUNTER IC SN74L5 93 N COUNTER IC SN74L5 03 L SATE IC SN74L5151 N MUKR	01295 01295 01295 01295 01295	5874L590
4701L 47012 47013 47014 47015	1820-1244 1820-1244 1820-1217 1820-1112 1820-1197	2	IC SN74L5153 N DATA SEL IC SN74L5153 N DATA SEL IC SN74L5151 N MUXP IC SN74L5 74 N PLIP FLUP IC SN74L5 00 N GATE	01295 01295 01295 01295 01295	SM74LS153N SM74LS1531 SM74LS151N SM74LS7+H SM74LS0U1
A 7016 A 7017 A 7018 A 7019 A 7020	1820-1112 1820 1197 1820-1217 1820-1217 1820-1204	1	IC SN74L5 74 N FLIF-FLOP IC 5N74L5 00 A GATE IC SN74L5151 N MUXR IC SN74L5151 N MUXP IC SN74L5 20 N GATE	01295 01295 01295 01295 01295	5N7+L374 + 5N7+L500 + 5N7+L5L5LN 5N7+L5L5LN 5N7+L520 +
47U21 A7W1 47Y1	1820-1440 8150-3490 0410-0209	1	IC SA74L5279 N LATCH JUNPEP WIFE 3cm CPYSTAL-QUAPTZ: 2 5465MHz	01295 28430	5N74ES2794 0410 0207
49	04261-77108		SEQUENTIAL CONTROL BOARD ASSEMBLY	23480	04261-77108
A3C1 48C2 A8C3 A8C4 A3C5	0160-2055 0160-2055 0180-0291 0180-0374 0160-2055	ι	CAPACITOR-FXO .010F +80-20% 100WVCC CFR CAPACITUR-FXD .010F +80 20% 100WVCC CFR CAPACITOR-FXC 10F+-10% 25VDC TA CAPACITOR-FXC .010F +00 20% 100WVCC CFR	28480 28480 55289 56289 28480	0160-2355 0160-2055 1500105×105512 1500105×102082 0160-2055
A 3 C 6	0180-0374	ĺ	CAPACITGR-FXE 10UF+ 10% 20VDC T4	55289	150010a%9020#2
ABCR1 ABCR2	1910-001 ₆ 1910-0016		DICOE-GE 60V 50NA 105 25-7 DIODE-GE 60V 60NA 105 DO-7	28490 28480	1910-0015 1910-0016
ABCR5	1901-0025	1	CIOCE-GEN PRP 100V 200MA CC-7	28480	1901-0025
JUEA	1200-0853		SGCKET-IC 16-CUNT DIP-SLDR-TERMS		
49Q1 2002	1854-0071 1654-0071		TFANSISTER NPN SI PD=300MW FT=200MHZ TFANSISTER NPN SI PD=300MW FT=200MHZ	28480 28480	185

Table 6-3. Replaceable Parts (Cont'd).

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
Designation	INGILIDE			Code	
A 3F 1 A 3F 2 A 8F 3 A 3F 4 A 3F 5	0:62-4725 0:685-4725 0:685-4725 0:683-4725 0:683-4725		RESISTER 4.7K 5% .25W FC TF=-400/+700 RESISTER 4.7K 5% .25W FC TC=-400/+700 RESISTER 4.7K 5% .25W FC TC=-400/+700 RESISTER 4.7K 5% .25W FC TC=-400/+700 RESISTER 4.7K FW FW .25W FC TC=-400/+700 RESISTER 4.7K FW FW .25W FC TC=-400/+700	01121 01121 01121 01121 01121 01121	CH4775 CB4725 CB4775 CB4775 CB4775
4 8 8 6 4 3 P 7 4 3 P 8 4 8 c 9 4 3 R 10	0683 4125 0683-4725 0683-4725 0663-4725 0683-4725		RESISTIF 4.7K 57 .25K FC TC= 400/+700 RESISTIF 4.7K 57 .25W FC TC=-400/+700 RESISTIF 4.7K 57 .25W FC TC=-400/+700 RESISTIF 4.7K 57 .25W FC TC=-400/+700 RESISTOR 4.7K 57 .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CR4715 CR4715 CR4775 CR4775 CR4775
A 3 R 1 L A 3 R 1 2 A 3 R 1 3 A 3 R 1 4 A 3 R 1 5	0583 4725 0583-4725 0583-1045 0583-3315 0683-4725	1	RESISTOR 4.7K 5% .25W FC TC= 400/+700 RESISTOR 4.7K 5% .25W FC TC= 400/+700 RESISTOR 100N 5% .25W FC TC= 400/+900 RESISTOR 330 5% .25W FC TC= 400/+600 RESISTOR 4.7K 57 .25W FC TC= 400/+700	0'121 01121 0112! 0.12! 0.121	CP 7775 CP 775 CP 10 5 CP 515 CR 4775
A 3 x 16 A 3 x 17 A 3 x 19 A 3 x 20 A 8 R 2 2 A 8 P 2 2 A 8 P 2 3 A 8 P 2 5 A 8 R 2 6 A 8 R 2 6 A 8 R 2 7	0u83 1035 0683-1035 0683-4725 0683-4725 0683-4725 0683-4725 0683-4725 0683-4725 0683-4725 0683-4725		### RESISTER 10F 5% .25H FC TC= 400/+700 ##################################	01121 01121 01121 01121 01121 01121 01121 01121 01121 01121	CH1035 CR1035 CR4735 CR4735 CR4735 CB4725 CB4725 CB4725 CB4725 CB4725
A851	3101-1313		SWITCH-SE SPDT-NS SUBMIN 2A 120VAC PC		
A 8 U 1 A 8 U 2 A 8 U 3 A 8 U 4 A 8 U 5	1820-1217 1820-1493 1820-1199 1820-1202 1820-1729	2 4 2	IC SN74LS151 N MUXP IC MM74C163N COUNTER IC SN74LS 04 N INV IC SN74LS 10 N GATE IC LATCH	01295 27014 01295 01295	SH74LS151N MM74C163N SH74LS04N SH74L510H 74L5259
A8U6 A8U7 A8U8 A8U10 43U12 43U12 43U13 43U13 43U14	1820-1217 1820-1493 1818-2272 1820-1729 1320-0-71 1320-1217 1620-1112 1820-1197 1620-1470	1	IC SN74LS151 N MUXR IC MN74C163N COUNTER IC, R.O.M IC LATCH IC 5N74 O6 N TIW IC SN74L5151 H MUXR IC SN74L5 74 T FLIP FLIP IC SN74L5 00 N GETE IC SN74L5157 H DATA SCL	01295 27014 28480 51295 01295 01295 01295	SN74LS151H MM74C163H 1818-2272 74LS259 SN74C1151H SN74L37H1 SN74L37H1 SN74L3157H
43015 43016 43018 43019	1620 1134 1620-1245 1820-1469 1620:1197	1 1	IC SN74LS193N COUNTER IC SN74LS155 N DECODER IC SN74LS107 N FLIP-PLOP IC SN74LS 00 N GATE	01295 01255 01255 01295	SN7463193N SN74651-07 Sn746507N Sn746500
4.9	04261-77009	1	PUNER SUPPLY BEARS ASSEMBLY	28480	09251-77009
43C1 43C2 43C3 43C4 43C5	0130-1057 0180-1057 0180-1057 0180-1056 0130-1056	3	CAPICITUSERE 2200 UF LEVACH AL ELECT CAPACITURERE 2200 UF LEVACH AL ELECT CAPACITURERENE 2200 UF LEVACH AL ELECT CAPACITURERENE 1000 UF 15VIC AL ELECT CAPACITURERENE 1000 UF 25VOC AL ELECT	26480 26480 26480 28480 28480	บ1ชอ-1057 อ1ชอ-1บ57 อ1หม 1057 บ1ชม 1055 บ1ชม 1055
A9C6 A9C7 A9C8 A9C4	0140-0200 0180-0814 0160-0814 0160-0814	1 3	CAPACITOR:FXC 1000F +-5% 300WYCC MICA CAPACITOR:FXC 1000F +100-10% 16V9Ch AL CAPACITOR:FXC 1000F +100-10% 16V9Ch AL CAPACITOR:FXC 16JUF +100-10% 16V9CW AL	72136 28480 28480 28480	CM15539130300WV1C- C190 091+ O180 091+ C150 081-
A 90R1 A 90R2	1901 0237 1901-0237	z	DIODE:SI, HECTIFILE BRICGE, 200V DIODE:SI, FECTIFIER BRIDGE, 200V	28480 28480	1901 023/ 1901 023/
4 301 4 302 4 303 4 304	1854-0039 5080-3078 5080-3078 5080-3078	i	TPANSISTER NPH 2:3053 ST 75:5 PD=1H TRANSISTEP NPN ST PD=300MW FT=200MHZ TPANSISTEP NPN ST PD=300MW FT=200MHZ TRANSISTOF NPN ST PD=300MW FT=200MHZ	04713 28490 23480 28480	2N3053 1894-0071 1854-0071 1854-0071
43KL 43R2 43K3 43R4 43R5	0811-2771 0611-1746 0663-1025 0911-1746 0757-0438	1 2	PESISTOR .18 5% IN PW TC=0+-90 RESISTOR .36 5% Zw PW TC=0+-800 RESISTOP IN 5% -25W FC TC=-400/+600 RESISTOP .36 5% ZW PW TC=0+-800 RISISTOR 5-11% 1% .125W F TC=0+ 100	75042 01121 75042 24546	9mH2 36/100-3 CB103F EWH2 35/.UU-J C4 1/A-T0-5LIT F
4 JR 6 4 JR 7 4 JR 8 4 JR 7 4 JR 10	2100-2521 0757-0440 0757-0289 0458-4020 0757-0442	1 1 1	PESISTON-TRMM 2K 10% C SICE-ADJ 1-TURM RESISTOP 7.5K 1K -125% F TC=0+-100 RESISTOM 12.3K 1K -125% F TC=0+-100 RESISTOM 9.53K 1% -125% F TC=0+-100 RESISTOM 1K -125% F TC=0+-100	30983 24546 19701 16299 24546	FT50x202 C4 \/B=T0 \/7501 \C MF4C1/2=T0=1032 \F C4-1/8=T0=9531=F +4-1/8=T0=1002=F

Table 6-3. Replaceable Parts (Cont'd).

Reference	HP Part	r —	ble 6-3. Replaceable Parts (Cont)	Mfr	
Designation	Number	Qty	Description	Code	Mfr Part Number
4 FR 11 4 FR 12 4 FR 13 4 FR 14 4 FR 15	0757-0+42 0698-3155 0698-3155 0698-3431 0757-0420	1	RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 4.64K 1% .125W F TC=0+=100 RESISTOR 4.64K 1% .125W F TC=0+=100 RESISTOR 23.7 1% .125W F TC=0+=100 RESISTOR 750 1% .125W F TC=0+=100	24546 16299 15299 03858 24546	C4-1/8-TU-1002-F C4-1/0-T0-\$641-F C4-1/8-TU-4641-F PME55-1/5-T0 23P7-F C4-1/8-T0-751-F
A JR 17 A JR 17 A JR 18 A JU 1 A JU 2 A JU 3 A JU 3 A JU 4	0698-3427 0757-0317 0757-0159 0683-7525 1826-0271 5080-3834 1826-0271	1	PESISTOR 13.3 L₹.125W F TC=0+=100 RESISTOR 1.33K l% .125W F TC=0+=100 PESISTOP 1W 1% .5W PESISTOP 7.5% 5% 25W IC UA 7+1C 0P AMP IC UA 741C CP AMP	03988 24546 27014 07263 27014 27014	PNE55-1/P-FO 13R3-F C4-1/B-FO-L23L-F LM7+1CN 723HC LM741CN LM741CN LM741CN
A10J1	04261-77010 04261-87010 1200-0853	1 1 7	MOTHER BOARD ASSEMBLY BOARD: BLANK SOCKET-IC 16-CONT DIP-SLOR-TERMS	28480 28480	04261-77010 04261-87010
A10R1 A10R2 A10U1 A10U2	1810-0164 1810-0164 1820-1470 1820-1470		NETWOPK-RES 9-PIN-SIP 15-PIN-SPCG NETWORK-RES 9-PIN-SIP 15-PIN-SPCG IC SN74L5157 N DATA SEL IC SN74L5157 N DATA SEL	28480 28480 01295 01295	1810-0164 1810-0164 SN74L5157N SN74L5157N
	0360-1653 1251-2035 1251-0194	4 15 1	A10 MISCELLAHEOUS TERMINAL-STUD SGL-PIN PRESS-MTG CUNNECTOR-PC EDGE 15-ONT/ROM 2-ROWS CONNECTOR-PC EDGE (PART OF 04261-72010) CABLE ASSEMBLIES	28480 71785	0360-1653 252-15-30-300
	04261-72003 04261-72004 04261-72005 04261-72006 04261-72007 04261-72010 04261-72008 04261-72023	7 1 1 1 1	CABLE ASSEMBLY (LCUP-A10) CABLE ASSEMBLY (LPOTEN-A10) CABLE ASSEMBLY (HPOTEN-A10) CABLE ASSEMBLY (HPOTEN-A10) CABLE ASSEMBLY (COFFSET-A10) CABLE ASSEMBLY (COFFSET-A10) CABLE ASSEMBLY (LINE MODULE-POWER SWITCH) CABLE ASSEMBLY (OPTION 003)	28480 28480 28480 28480 28480 28480	04261-72003 04261-72004 04261-72005 04261-72006 04261-72007
All thru A20	-		NOT ASSIGNED		
A21	04261-77021	1	PARALLEL DATA OUTPUT BUARD ASSEMBLY (DPTION OUT)	28480	04251-77321
A21C1 A21C2 A21C3 A21C4	0180-0374 0160-2055 0160-2055 0160-2055		CAPACITOR-FXC 10UF +10% 20V DC TA CAPACITOP-FXD .01UF +80≈20% 10U0V0C CER CAPACITCR-FXC .01UF +80≈20% 10U0V0C CER CAPACITCR-FXD .01UF +00≈20% 10U0V0C CEP	56289 28490 28460 28460	1500106 x 902002 9160 2055 6160 2055 0160 2055
421CR1 421CR2	1902-0041 1902-0041	1	DIODE- ZNP 5.11V 5% DO-7 PD=.4W TC=009% DIODE- ZNP 5.11V 5% DO-7 PO=.4W TC=009%	04713 04 7 13	SZ 10929 58 SZ 10939 <u>95</u>
A21J1 A21J2	0360-1706 0360-1706	3	RIBRON CABLE SO TERM INSUL DSPL TYPE RIBBON CABLE SO-TERM INSUL DSPL TYPE	76381 76381	342 6- 0000 3426-0000
A 2 LR 1 A 2 LR 2 A 2 LR 3 A 2 LR 4 A 2 LR 5	0083-4725 0683-1025 0683-1825 0683-1825 0683-1825		RESISTOR 4.7K 5% .25W FC TC=-400/+700 RESISTOP 1K 5% .25W FC TC=-400/+600 RESISTOR 1.8K 5% .25W FC TC= 400/+700 RESISTOR 1.8K 5% .25W FC TC= 400/+700 RESISTOR 1.8K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	C04735 C01035 C01035 C01035 C01035

Table 6-3. Replaceable Parts (Cont'd).

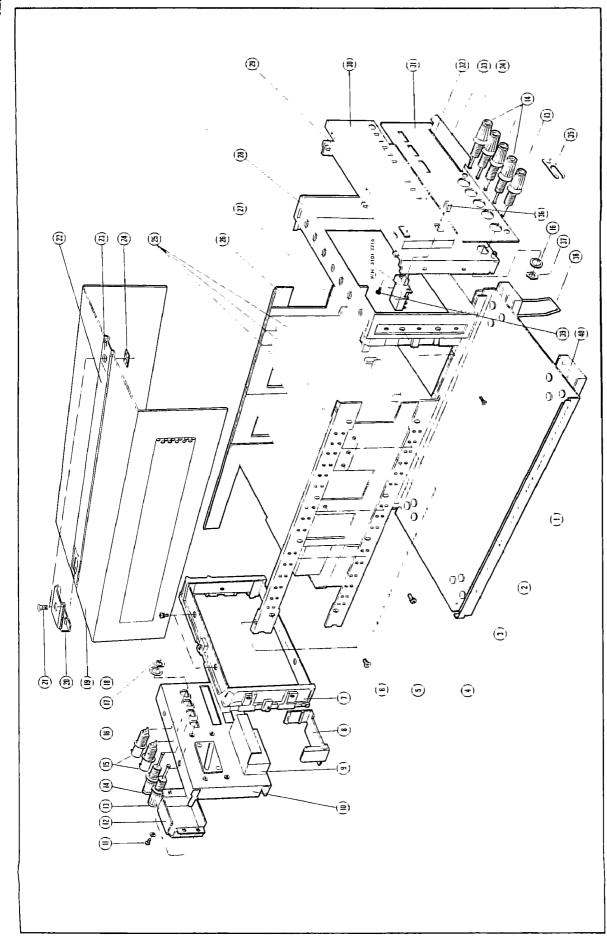

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A21R6 A21R7 A21R8 A21R9 A21R10	0683-1825 0683-1025 0683-1025 0683-2725 0683-2725	6	RESISTOR 1.8k 5% .25W FC TC=-400/+700 RESISTOR 1k 5% .25W FC TC=-400/+600 RESISTOR 1k 5% .25W FC TC=-400/+600 RESISTOR 2.7K 5% .25W FC TC=-400/+700 RESISTOR 2.7K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CR1825 CR1025 CB1025 CB2725 CB2725
A21R11 A21R12 A21R13 A21R14 A21R15	0683-2725 0683-2725 0683-1025 0683-1025 0683-1025		RESISTOR 2.7K 5% .25W FC TC="400/+700 RESISTOR 2.7K 5% .25W FC TC==400/+700 RESISTOR 1K 5% .25W FC TC==400/+600 RESISTOR 1K 5% .25W FC TC==400/+600 RESISTOR 1K 5% .25W FC TC==400/+600	01121 01121 01121 01121 01121	C82725 C82725 C81025 C81025 C81025
421R16 A21R17 421R18	0683-1025 0683-1025 0683-1025		RESISTOR 1K 5% .25% FC TC==400/+600 RESISTOR 1K 5% .25% FC TC==400/+600 RESISTOR 1K 5% .25% FC TC==400/+600	01121 01121 01121	C81025 C81025 C81025
421 U1 421 U2 421 U3 421 U4 421 U5	1820-0305 1820-0668 1820-0282 1820-0174 1820-1197	1 2 2 2	IC:TTL 4=BIT BIMARY FULL ADDER IC SN74 O7 N BUFFER IC SN74 06 N GATE IC SN74 04 N INV IC SN74LS OO N GATE	01295 01295 01295 01295 01295	SN7483N SN7407N SN7486H SN7404N SN74L500N
421U6 421U7 421U8 421U9 421U10	1820-1199 1820-1202 1820-0294 1820-0294 1820-0294	8	IC SN74LS 04 N INV IC SN74LS 10 N GATE IC DM 85 IC DM 85 IC DM 85	01295 01295	SN7+L50+N SN74C510N
421011	1820-0294		IC DM 85		
421W1 421W2	04261-72009 04261::72009	3	CABLE ASSEMBLY CABLE ASSEMBLY	28480 28480	04261=72009 04261=72009
A22	D4261-77022	1	PAPAMETER SEPIAL PAPALLEL BCD DATA OUTPUT BOARD ASSEMBLY (CPTION 002)	28480	04261-77022
A22C1 A22C2 A22C3 A22C4 A22C5	0180-0374 0160-2055 0160-2055 0160-2055 0160-2055		CAPACITOR-FXD 10UF ↔10₹ 20VDC TA CAPACITOR-FXD =01UF +80-20₹ 100WVDC CER CAPACITOP-FXD =01UF +80-20₹ 100WVDC CER CAPACITOP-FXD =01UF +80-20₹ 100WVDC CER CAPACITOR-FXD =01UF +80-20₹ 100WVDC CER	56289 28480 28480 28480 28480	1500106x902082 0160-2055 0160-2055 0160-2055 0160-2055
42206	0160-2055		CAPACITOR-FXD -01UF +80-20% LOOWVEC CER	28480	0160-2055
422CR1	L902-0041		DIODE-ZNR 5.11V 5% DO-7 PD=.4W TC= .009%	04713	SZ 10939 98
1L554	0360=1706		RIBBON CABLE SO-TERM INSUL DSPL TYPE	76381	3426-0003
42241 42242 42243 42244 42285	0683-1025 0683-1025 0683-1025 0683-1825 0683-1825		RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 1.8K 5% .25W FC TC=-400/+700 RESISTOR 1.8K 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	C81025 C81025 C81025 C81025 C81825
422R6 422R7 422R8 422R9 422R9	0683-4725 0683-1025 0683-2725 0683-2725 0683-1025		RESISTOR 4.7k 5% .25W FC TC=-400/+700 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 2.7k 5% .25W FC TC=-400/+700 RESISTOR 2.7k 5% .25W FC TC=-400/+700 RESISTOR 1K 5% .25W FC TC=-400/+600	01121 01121 01121 01121 01121	C84725 C81025 C82725 C82725 C82725 C81025
422R11 422R12 422R13 422R14 422R15	0683~1025 0683-1025 0683-4725 0683-4725 0683-4725		RESISTOR 1K 5% .25W FC TC==400/+600 RESISTOR 1K 5% .25W FC TC==400/+600 RESISTOR 4.7W 5% .25W FC TC=-400/+700 RESISTOR 4.7W 5% .25W FC TC=-400/+700 RESISTOR 4.7W 5% .25W FC TC=-400/+700	01121 01121 01121 01121 01121	CB1025 CB1025 CB4725 CB47725 CB47725
422R16 422R17 422R18 422R19 422R20	0683-4725 0683-4725 0683-4725 0683-4725 0683-4725		RESISTOR 4.74 5% .25W FC TC=-400/+700 RESISTOF 4.74 5% .25W FC TC=-400/+700 RESISTOR 4.74 5% .25W FC TC=-400/+700 RESISTOR 4.74 5% .25W FC TC=-400/+700 RESISTOR 4.74 5% .25W FC TC=-400/+700	01 121 01 121 01 121 01 121 01 121	C84725 C84725 C84725 C84725 C84725 C84725
4 2 2 R 2 1	Q68 3=4 725		RESISTOR 4.7% 5% .25W FC TC=>400/+700	01121	C84725
42251	3101=1313	1	SWITCH-SE DP3T=NS FINTR .5A 125VAC/DC PC	79727	G1 295-0004
A 22U1 A 22U2 A 22U3 A 22U4 A 22U5	1820-0910 1820-0511 1820-0668 1820-0282 1820-0174	1	IC SN74LS 83 N ADDER IC SN74 O8 N GATE IC SN74 O7 N BUFFEP IC SN74 96 N GATE IC SN74 O4 N INV	01295 01295 01295 01295 01295	SN74LS334 SN7408N SN7407N SN7486N SN7404N
422U6 422U7 422U8 422U9 422U9 422U10	1820=1157 1820=1159 1820=1202 1820=0762 1820=0762	4	IC SN74LS OO N GATE IC SN74LS OA N INV IC SN74LS IO N GATE IC SN74 157 N MUXR IC SN74 157 N MUXR	01295 01295 01295 01295 01295	SN74L500N SN74L504¥ SN74LS10N SN74L57N SN74L57N
]			

Table 6-3. Replaceable Parts (Cont'd).

Reference	HP Part	04.	D	Mfr	
Designation	Number	Qty	Description	Code	Mfr Part Number
422U11 422U12 422U13 422U14 422U15	1820 0762 1820-0762 1820-1433 1820-1433 1820-1433		IC SN74 157 N MUXP IC SN74 157 N MUXP IC SN74L5164 N PGTR IC SN74L5164 N PGTR IC SN74L5164 N PGTR	01295 01295 01295 01295 01295	SN7+157H SN7+157N SN7+1516+N SN7+1516+N SN7+1516+N
A22U1c A22U17 A22U18 A22U19 A22U20	1820-1433 1820 1112 1820-1202 1820-1212 1620-1144	l	IC SN74L5164 N PGTR IC SN74L5 74 N FLIP FLOP IC SN74L5 10 N GATE IC SN74L5112 H FLIP-FLIP IC SN74L5 02 N G-TE	01295 01295 01295 01295 01295	51.7+L51.6+N 5N.7+L57+H 5N.7+L51.0+ 5N.7+L51.2+ 5N.7+L50.2-H
4 22 W1	04261-72009		CABLE ASSEMBLY	28480	04281-72009
C1 C2 C3	0160-4259 2190-0205 3050-0010 0160-1586 0160-1586	4 4 6	CAPACITOR 0.22UF 10% WASHER (FOR TRANSISTOP RETAINING SCREWS) WASHER-FLAT CAPACITOR-FVD MY 0.1UF 10% 100VDCW CAPACITOR-FVD MY 0.1UF 10% 100VDCW	04712 04713 04713 28480 28480	SF2040 2 SF2040-2 1N39979
CP4 CP5 CP6 CP7	1901-0033 1901-0033 1901-0033 1901-0033		DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 130V 200MA DO-7 DIODE-GEN PRP 130V 200MA DO-7	28480 28480 28480 28480	1901-003) 1901-0033 1901-0033 1901-0033
FI	2110-0201 2110-0202]]	FUSE .25A 250V SLO-BLO 1.25% .25 UL TEC FUSE .5A 250V SLO-BLO 1.25% .25 UL TEC	75915 75915	313.250s 313.5005
P I P Z P J	0683-1025 0698-3391 0698-3391		PESISTOR 11 54 .25W FC TC=-400/+600 RESISTOR 21.5 OHM 14 1/2W RESISTOR 21.5 OHM 14 1/2W	01121	CB1025
W1	8120-1378	1	CABLE ASSY 3-COND 18-AWG (POWER)	28480	8120-1378
	6960-0016 7120-0321	1	PLUG-HOLE TR-HD .125-DIA NYL (INST CARD STOPPER) NAMEPLATE:CAUTION (JAPANESE)	02768 28480	207-080501-01-01p1 7120-0321
	2360-0117	6	SCPEW-MACH 6-32 .375-IN-LG PAN-HD-POZI FOR RETAINING A10	28480	2360-0117
	2360-0201	2	SCREW MACH 6-32 .375-IN-LG PAN-HD-POZI FOR PETAINING A10	28480	2360-0201
	1251-0048 2950-0 0 72	! 1	CONNECTOR-AC PWP 5-15 FEM ADPTR NUT-HEY-DBL-CHAM 1/4-32-THD .062-THF (FOR MANUAL SWITCH)	80126 82389	C-0602-000-BLACK P-1975
J10, JI1	5060-4020 7120-3185 5001-0439	2 1 2	CONNECTOR ASSEMBLY, 50-CONTACT (OPT- UOI/CO2) LABEL, INFO CAUTION (ENGLISH) TRIM SIDE	28480 28480 28480	5060-4020 7120-3185 5001-0439
	5040-7203 0590-0025	1 2	TPIM STRIP NUT-HEX-PLSTCE+G 6-32-THD .172-THH. (FOP YA9L)	28480 72962	5040-7203 65NA 97NM62
J12	04261-77123 04261-85021	1	CONNECTOR BOARD ASSEMBLY (OPTION 003) FILM (I) ANNUNCIATOR	28480 28480	04261-77123 04261-85021
	04261-40023 04261-40024 04261-85022 04261-85023 7120-5088	1 1 1 1	LAMP HOUSE (CIRCUIT MODE) LAMP HOUSE (UNIT) FILM (2) CHT MODE NAMEPLATE (OPTION OOZ) LABEL, INFO (POWEP PATING)	28480 28480 28480	04261-85022 04261-85023 7120-5088
			OPTION 010		
A 4 A 4 R 2	04261-66904	1	OSCILLATOP/PANGE PESISTOP BOARD ASSEMBLY		
A4P4 A4P5 A4P6	0698-4482 0698-3136 0757-0470 0757-0470		PESISTOR 17 44 OHM 1% .125W. PESISTOR 17 84 OHM 1% .125W RESISTOR 1624 OHM 1% .125W RESISTOR 1624 OHM 1% .125W		
A 6	04261-66906		PHASE DETECTOP/INTEGRATOR BOARD ASSEMBLY	j	
A6C10	0160-1563		CAPACITOR-FXD 47UF 5%		
AGCRS	1902-3083		DIODE-ZNR 4 64V 2%		
]					
				1	

Table 6-3. Replaceable Parts (Cont'd).

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
1 2 3 4 5	0515-0889 5061-9564 04261-10024 2360-0115 04261-10026	6 1 1 22 1	SCPEN-MACH M3 5 COVER, BOTTOM DECK, LEFT SCREW-MACH 6-32 312-IN-LG PAN-HO-POZI HEAT SINK	28480 28480 28480 28480 28480	04261-10024 2360-0115 04261-10026
6 7 8 9	0515-1668 5021-5816 5040-3318 0960-0443 04261-10001	16 1 1 1 1	SCREW-MACH 1 FRAME, PEAP COVER, L MODULE LINE MODULE PANEL, REAR	28480 28480 28480 28480	5040-3318 0960-0443 04261-10001
11 12 13(J1,J6) 14(J2-J5,J7) 15(J8,J9)	2200-0141 04261-10030 1510-0107 1510-0090 1250-0118	4 4 2 5 2	SEPEW-MACH 4-40 312-IN-LG PAN-HD-POZE TRANSISTOR COVER BINDENG POST-SGL 3/B-32 JGF/CBK SGL TU BINDING POST-SGL 3/B-32 JGF SGL TU CONNECTOR-PF BNC FEM SGL HOLE FR	28480 28480 28480 28480 90949	2200-0141 04261-10030 1510-0107 1510-0090 31-2221-1022
16 17 18 19 20	2190-0016 2950-0043 2360-0113 5001-0460 5041-6820	10 5 15 1	WASHER-LE INTL T NO3/8 .377-IN-ID NUT-HEX-DBL-CHAM 3/8-32-THD .094-THE SCPEW-MACH 6-32 .25-IN-LG PAN-HD-POZI COVER,TOP STRAP, HANDLE CAP, PIGHT	78189 73743 28480 28480 28480	1920-02 2x 28200 2360-0113 5001-0460
21 22 23 24 25	0515-1132 5060-9803 5041-6819 0535-0081 04081-10027	2 1 1 1 4	CAP, STPAP M5.0 STPAP, HANDLE STPAP, HANDLE CAP, FPONT NUT HEK M5 . O B SHIELD	28480 28480 28480 28480 28480	5060-9802 04081-10027
26 27 28 29 30 30 30	5021-5836 04261-10025 5021-5815 04261-00201 04261-50121 04261-50122 04261-50124	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	STRUT, CORNER DECK, PICHT FRAME, FPONT SUB PANEL FPONT PANEL, FPONT (YHP) PANEL, FFONT (HP) PANEL FFONT (OPT. 010) PANEL, FPONT PANEL, FPONT	28480 28480 28480 28480 28480 28480 28480	04261-10025 04261-50121 04261-50122 04261-10021 04261-10031
32 33 33 34 34 34 35 36 37 38	04261-10031 04261-99901 04261-99902 7120-0478 7120-1254 5000-4206 0370-2159 2950-0001 1460-1345 2200-0101	1 1 1 3 1 4 2	INSTRUCTION CAPD (ENGLISH) INSTRUCTION CAPD (JAPANESE) INSTRUCTION CAPD (JAPANESE) INSTRUCTION CARD (OPT. 010) TPADE NAPH (YHP) TPADE MAPH (HP) SHORTING LINK FNOB:PUSHBUTTON NUT-HEX-OBL-CHAM 3/8-32-THD .094-THK NIFEFORM 1.34-N 3-LG SST SCREW-MACH 4-40 .188 IN-LG PAN-HD-POZI	28480 28480 28480 28480 28480 28480 28480 28480 28480 28480	04261-99901 04261-99900 7120-0478 7120-0478 7120-1254 5000-4206 0370-2159 20/4-13 1460-1345 2200-0101
40 41 42 43 44	5040-7201 04261-10028 0360-1190 04271-10030 0520-0129	4 1 1	FOOT, FULL/HALF MODULE SHIELD TERMINAL-LUG-SLDP 3/8 SCP .38/.078 ID PLATE SCPEW-MACH 2-56 PAN-HD-POZI	28480 28480 79963 28480 28480	5040-7201 04261-10028 720- 380H 04261-10030 0520-0129
45 46 47 48(Q1) 49(CP3)	2190-0008 0624-0045 0340-0458 1854-0063 1902-1232	8 6 1 1	WASHER-LE EXT T NO6 .141-IN-ID SCPEM-TPG 6-20 .375-IN-LG PAN-HD PHL-PEC INSULATOR-XSTR TO-3 .003-THK TPANSISTOR NPN 2N3055 SI TO-3 PD=115W DIODE-ZNR IN3997AR 5.6V 5% 00-4 PD=10W	73734 28480 28480 28480 04713	1341 0624-0045 0340-0458 1854-0063 183997P
50(CR1,CR2) 51 52 53 54	1901-0496 0360-0270 3050-0226 1200-0080 2740-0003	2 3 4 4 3	DIODE-PHR PECT 100V 12A DO-4 TERMINAL-LUG-SLDR 10 SCP .195/ 09J ID WASHER-FL MTLC NO10 .203-IN-ID INSULATOP-JSTR TRANSISTOP .19-ID HUT-HE'-W/LFWP 10-32-THD .125-THE	04713 79963 80120 28480 73734	SP2080-2 607 AN960C10L 1200-0080 9227
55 56(Q2,Q3) 57 58 59 60(T1)	0340-0140 1854-0072 2510-0063 2190-0017 3050-0130 9100-0850	2 4 4 4 1	INSULATOR-XSTR TO-66 OOD-THK TRANSISTOR NPN 2N3054 SI TO-66 PD=25W SCREW-MACH 8-32 1.5-IN-LG PAN-HD-POZI WASHER-LK HLCL NO8 168-IN-ID MASHER-FL LAM 1 265-IN-ID 1 609-IN-OD TRANSFORMER-POWER	28480 02735 28480 28480 28480 28480	0340-0140 2N3054 2510-0063 2190-0017 3050-0130 9100-0850
-					

Section VI Table 6-3

SECTION VII MANUAL CHANGES

7-1. INTRODUCTION.

7-2. This section contains information for adapting this manual to instruments to which the contents do not directly apply. The following paragraphs explain how to adapt this manual to apply to older instruments with lower serial prefixes.

7.3. MANUAL CHANGES.

- 7-4. To adapt this manual to your particular instrument, refer to Table 7-1 and make all of the manual changes listed opposite your instrument serial number. Perform these changes in the sequence listed. Table 7-2 gives a manual changes summary by assembly.
- 7-5. If your instrument serial number is not listed on the title page of this manual or in Table 7-1 to the right, it may be documented in a yellow MANUAL CHANGES supplement. For additional information about serial number coverage, refer to INSTRUMENT COVERED BY MANUAL in Section I.

Table 7-1. Manual Changes by Serial Number.

Serial Prefix or Number	Make Manual Changes
1545J-00320 and below	A, B, C, D, E, F, G, H
1545J-00400 and below	B, C, D, E, E, G, H
1622J00640 and below	C, D, E, F, G, H
1622J01290 and below	D, E, F, G, H
1810J and below	E, F, G, H
1821J04090 and below	F, G, H
1821J06370 and below	G , Н
1821J08360 and below	Н

Table 7-2. Summary of Changes by Assembly.

							Assemb	oly					
CHANGE	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	A21	A22	No Prefix
Α		J1 thru J8		R53	C20								
В		04261- 40025, 04261- 40026, 04261- 40027,	A3 C8 J4 R9 R10 U18 CR1 CR2 CR3 CR4 J5 U30 U31			C13 R53 R54		A8 C8 CR2 CR3 J2 R25 R26 R27 S1 U8 CR4 CR5 J3 J4 J5 S2 U9					04261- 40023, 04261- 40024,
С				R14 R26									
D											-		C2 R2 C3 R3

Table 7-2. Summary of Changes by Assembly (Cont'd).

					-	A	ssembl	У			-		
CHANGE	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	A21	A22	No Prefix
E				CR4 CR7 CR10 CR11 CR23 CR24 K1 - K4 Q16 - Q19 R10 R13 R19 - R22 R40 - R47 R74 - R84									
F					U1 U3 CR1 CR2 R29 R30 R38 R39 R86								
G							Sl						
Н													Metrication

Model 4261A Section VII

7-6. MANUAL CHANGE INSTRUCTIONS.

CHANGE A.

1. Page 8-61, Figure 8-26, A4 circuit schematics, Add the following note:

A4R53 is constructed by two resistors in parallel, 11.111k Ω and 5.6M Ω . Since the resistance of these paralleled resistors is equal to 11.090k Ω , use A4R53 P N: 0698-2295 for repair.

2. Page 8-63, Figure 8-29, A5 circuit schematics, Add the following note:

In some instruments, A5C20 (39pF) is not installed in parallel with A5R31. Install A5C20 in all instruments (if not already included).

Page 6-3, Table 6-3, Replaceable Parts,
 Delete A2J1 thru J8, HP P/N: 1200-0474; jack.

Note

Above deletion does not apply to an instrument in which a a complete A2 board assembly has been used for repair.

CHANGE B.

 Page 6-9, Table 6-3, Replaceable Parts, Add following parts:

```
A6C13, HP P N: 0160-1675, C-FXD .22 \muF. A6R53, HP P N: 0757-0441, R-FXD 8.25k\Omega. A6R54, HP P N: 0757-0454; R-FXD 33.2k\Omega.
```

Delete following parts

```
A6C13, HP P N: 0160-1674; C-FXD 0.33 \muF. A6R53, HP P N: 0757-0290; R-FXD 6.19k\Omega. A6R54, HP P N: 0757-0349; R-FXD 22.6k\Omega.
```

Page 8-65, Figure 8-32, A6 circuit schematics, Change A6 circuit schematics partially per above changes.

2. Page 6-4, Table 6-3, Replaceable Parts, Delete following parts:

```
HP P N: 04261-40025 1 SPACER FOR LED LAMP
HP P N: 04261-40026 1 SPACER FOR LED LAMP
HP P N: 04261-40027 1 SPACER FOR LED LAMP
```

Page 6-15, Table 6-3, Replaceable Parts, Delete following parts:

HPPN:	04261 - 40023	1	LAMP HOUSE
HP P N:	04261-40024	1	LAMP HOUSE

3. Page 6-4, Table 6-3, Replaceable Parts, Add following parts

A3, HP P/N: 04261-77003; A3 DISPLAY DRIVER BOARD A3C8, HP P/N: 0160-2055; C-FXD $.01\mu$ F A3CR1, HP P/N: 1902-3002, DIODE-ZENER 2.37V A3CR2, HP P/N: 1902-3002; DIODE-ZENER 2.37V A3CR3, HP P/N: 1910-0016, DIODE GE SWITCHING A3CR4, HP P/N: 1910-0016, DIODE GE SWITCHING A3J4, HP P/N: 1200-0468; SOCKET A3J5, HP P/N: 1200-0468; SOCKET A3U30, HP P/N: 04261-85001; IC ROM A3U31, HP P/N: 04261-85002; IC ROM

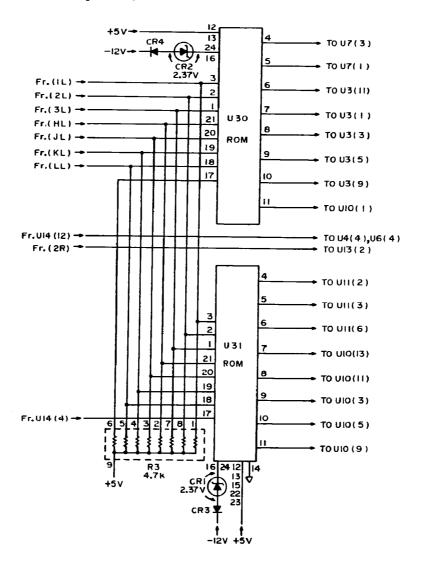
Delete following parts:

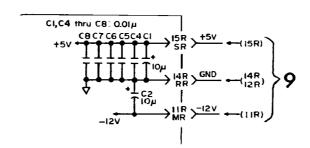
A3, HP P 'N: 04261-77103; A3 DISPLAY DRIVER BOARD A3C8, HP P 'N: 0180-0374; C-FXD 10μ F A3J4, HP P/N 1200-0613; SOCKET A3R9, HP P 'N: 0698-4431; R-FXD 2.05k Ω A3R10, HP P 'N: 0757-0442; R:FXD 10.0k Ω A3U18, HP P 'N: 1818-2271; IC-ROM

Pages 6-11 and 6-12, Table 6-3, Replaceable Parts, Add following parts:

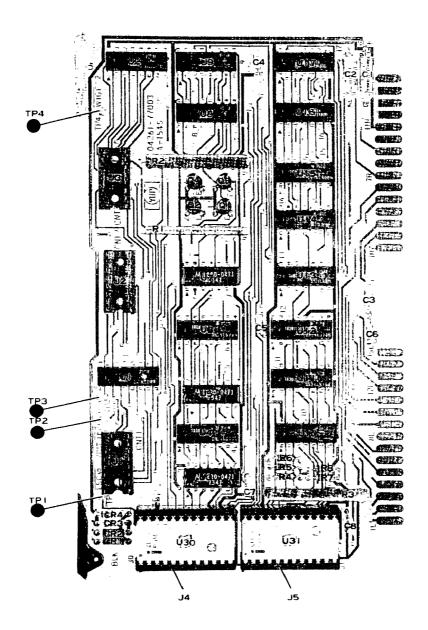
A8, HP P N: 04261-77008; A8 SEQUENCE CONTROL BOARD A8CR2, HP P'N: 1902-3002; DIODE-ZENER 2.37V A8CR3, HP P'N: 1910-0016; DIODE-SWITCHING A8CR4, HP P'N: 1902-3002; DIODE-ZENER 2.37V A8CR5, HP P'N: 1901-0025; DIODE A8J2, HP P N: 1200-0468; SOCKET A8J3, HP P'N: 1200-0468; SOCKET A8J4, HP P'N: 1200-0438; SOCKET A8J5, HP P'N: 1200-0438; SOCKET A8J5, HP P'N: 1200-0438; SOCKET A8S1, HP P'N: 3101-1274; SWITCH-SLIDE A8S2, HP P N: 3101-1274; SWITCH-SLIDE A8U8, HP P'N 04261-85003; IC-ROM A8U9, HP P N 04261-85004; IC-ROM

Note

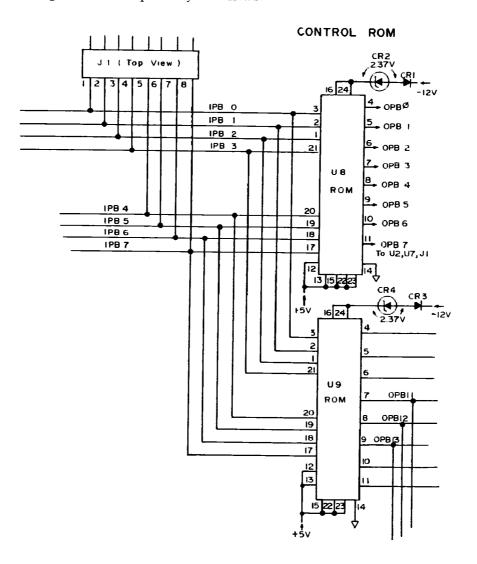

Delete following parts from above list for units serialized 1545J-00250 and below:

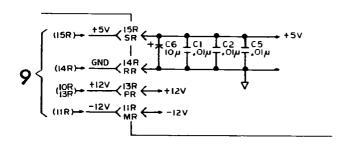

A8J4, HP P/N: 1200-0438, SOCKET A8J5, HP P N: 1200-0438, SOCKET

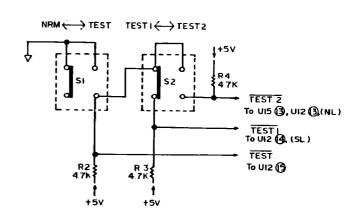
Delete following parts:


A8, HP P/N: 04261-77108; A8 SEQUENCE CONTROL BOARD A8C8, HP P/N: 0180-0197; C-FXD 2. 2μ F A8CR2, HP P/N: 1910-0016; DIODE SWITCHING A8CR3, HP P/N: 1901-0025; DIODE A8J2, HP P/N: 1200-0613; SOCKET A8R25, HP P/N: 0683-4725, R-FXD 4.7k Ω 5% A8R26, HP P/N: 0698-4431, R-FXD 2.05k Ω 1% A8R27, HP P/N: 0757-0442; R-FXD 10.0k Ω A8S1, HP P/N: 3101-1313; SWITCH-SLIDE A8U8, HP P/N: 1818-2272, IC ROM

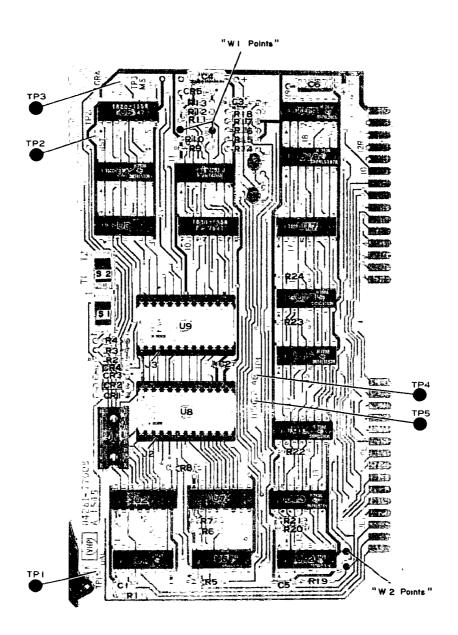
Page 8-59, Figure 8-23, A3 circuit schematics, Change schematics partially as follows:




Page 8-59, Figure 8-22, A3 Parts Locations, Change parts locations for A3 board as follows:



Replace A3U18 with A3U30, U31, and CR1 thru CR4 in the A3 board troubleshooting tree.


Page 8-69, Figure 8-36, A8 circuit schematics, Change schematics partially as follows.

Page 8-69, Figure 8-35, A8 Parts Locations, Change parts locations for A8 board as follows:

Note

 $\rm J4$ and J5 sockets are not installed in units serialized 1545J-00250 and below.

Replace A8U8 with A8U8, U9, and CR1 thru CR4 in troubleshooting guide Figure 8-12.

CHANGE C.

1. Page 5-1, Table 5-1:
Add the following table to Table 5-1.

Component	Nominal Value Range	Effect on Perfoemance
A4R26	HP P/N 0698-3259 R:FXD 7.87k HP P/N 0757-0440 R:FXD 7.50k HP P/N 0757-0441 R:FXD 8.25k	Changes oscillator level. If oscillator level is insufficient, use more resistance; if excessive, use less resistance.

2. Page 6-6, Table 6-3:

Add the following parts:

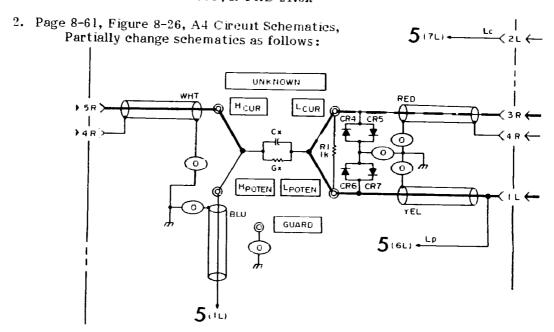
A4R14, HP P/N: 0683-3335; R-FXD 33k A4R26, HP P/N: 0698-3259; R-FXD 7.87k

Delete the following parts:

A4R14, HP P/N: 0683-1035; R-FXD 10k A4R26, HP P/N: 0698-3515; R-FXD 5.90k

3. Page 8-60, Figure 8-24:

Change the signal level limits in the first step to 6.2Vpp-7.2Vpp for both 120Hz and lkHz.


4. Page 8-61, Figure 8-26:

Change the gain value of the POWER AMPL to (x1.8) on the schematics.

CHANGE D.

Page 6-15, Table 6-3, Replaceable Parts, Delete following parts:

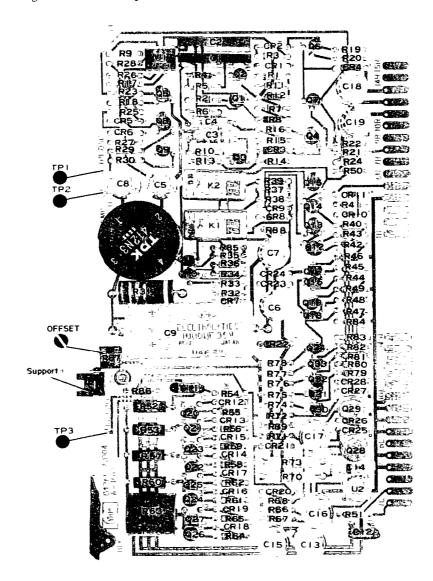
C2, HP P/N: 0160-1586; C-FXD 0.1 μ F C3, HP P/N: 0160-1586; C-FXD 0.1 μ F R2, HP P/N: 0698-3391; R-FXD 21.5 Ω R3, HP P/N: 0698-3391; R-FXD 21.5 Ω

CHANGE E.

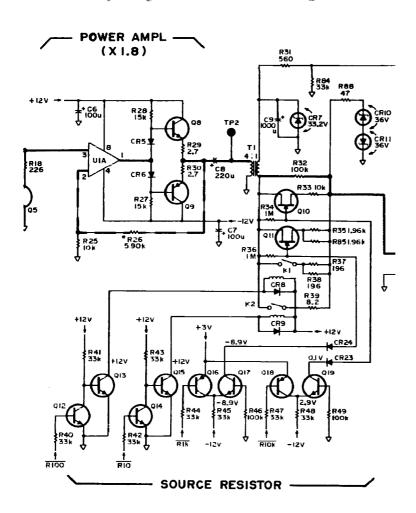
 Pages 6-5, 6-6 and 6-7, Table 6-3, Replaceable Parts, Change A4 board replaceable parts list to Table A.

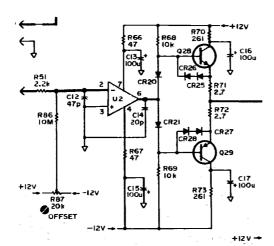
Table A (Sheet 1 of 3).

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
*A4C12 A4C13 A4C14 A4C15	0160-2202 0160-2307 0180-1051 0160-2264 0180-1051	1	CAPACITOP-F;D 75pF +-5% 300WVDC MICA CAPACITOP-F;D 47pF +-5% 300WVDC MICA CAPACITOP-F;D 100UF 16V CAPACITOP-F;D 20pF +-5% 500WVDC CEP CAPACITOP-F;D 100UF 16V	28480 28480 28480 28480 28480 28480	0160-2202 0160-2307 0180-1051 0160-2264 0180-1051
A4C16 A4C17 A4C1B A4C19	0180-1051 0180-1051 0180-1051 0180-1051		CAPACITOP-F*D 100UF 16V CAPACITOP-F*D 100UF 16V CAPACITOP-F*D 100UF 16V CAPACITOR-F*D 100UF 16V	28480 28480 28480 28480	0180-1051 0180-1051 0180-1051 0180-1051
A4CR1 A4CR2 A4CR3 A4CR4 A4CR5	1901-0040 1901-0040 1902-3036 1902-0025 1901-0040	42 1 1	DIODE-SHITCHING DOV 50MA 2N5 DO-35 DIODE-SHITCHING DOV 50MA 2N5 DO-35 DIODE-ZNP 3 16V 5% DO-7 PD= 4N TC=064% DIODE-ZNP 10V 5% DO-7 PD= 4N TC=+ 06% DIODE-SHITCHING BOV 50MA 2NS DO-35	28480 28480 04713 04713 28480 28480	1901-0040 1901-0040 57 10939-38 57 10939-182 1901-0040
A4CR6 A4CR7 A4CR8 A4CR9 A4CR10	1901-0040 1902-0654 1901-0040 1901-0040 1902-0844	Z	010DE-SWITCHING 30V 50MA 2HS D0-35 D10DE-ZMP 33.2V % D0-15 PD-1W TC++.075% D10DE-SWITCHING 30V 50MA 2MS D0-35 D10DE-SWITCHING 30V 50MA 2HS D0-35 D10DE-ZMP 36V 5% D0-7 PD=.4W TC=+.057%	28480 04713 28480 28480 28480 04713	1901-0040 52 11213-290 1901-0040 1901-0040 52 10939-170
A4CF31 A4CF32 A4CF33 A4CF34 A4CF34	1902-0844 1901-0040 1901-0040 1901-0040 1901-0040		010DE-ZNP 36V 5% DO-7 PD=:4N TC=+ 057% D10DE-SHITCHING 30V 50MA 2NS DO-35	04713 28480 28480 28480 28480	5Z 10939-170 1901-0040 1901-0040 1901-0040 1901-0040
A4CP16 A4CP17 A4CP18 A4CP19 A4CP20	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040		DIODE-SMITCHING 30V 50MA 2NS D0-35 DIODE-SMITCHING 30V 50MA 2NS D0-35 DIODE-SMITCHING 30V 50MA 2NS D0-35 DIODE-SMITCHING 30V 50MA 2NS D0-35 DIODE-SMITCHING 30V 50MA 2NS D0-35	28480 28480 28450 28480 28480	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040
A4CR21 A4CR22 A4CR23 A4CR24 A4CR25	1901-0040 1902-3149 1901-0025 1901-0025 1901-0040	5 2	DIODE-SWITCHING 30V SOMA 2NS DO-35 DIODE-ZHP 9 09V 5% DO-7 PD= 4W TC=+ 057% DIUDE-GEN PRP 100V 200NA DO-7 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 04713 28480 28480 28480 28480	1901-0040 52 109 19 - 170 1901-0025 1901-0025 1901-0040
A4CR26 A4CR27 A4CR28 A4F 1 A4F 2	1901-0040 1901-0040 1901-0040 0490-0234 0490-0226		DIODE-SWITCHING 30V 50MA 2MS DO-35 DIODE-SWITCHING 30V 50MA 2MS DO-35 DIODE-SWITCHING 30V 50MA 2MS DO-35 FSLNY:54-1 RELAY:PEED	28480 28480 28480 25410 28480	1901-0040 1901-0040 1901-0040 0490-0334 0490-0226
4+01 4+02 4+03 4+04 4+05	1855 0052 1855-0091 1855-0082 1854-0071 1854-0071	8 21 1	TRANSISTOR J FET N-CHAILD HODE SI TRANSISTUP J-FET N-CHAILD-MODE SI TRANSISTOR HOSETT P-CHIIL D-MODE SI TRANSISTOR NRN SI PD-300MH FT-200MHZ TRANSISTOR NRN SI PD-300MH FT-200MHZ	26460 28480 28480 28480 28180	1855 0062 1855-0091 1855-0082 1854-0071 1854-0071
4+46 4+47 4+48 4+07 4+419	1853 0020 1853-0020 1854-0071 1853 0020 1855-0118	24	THANSISTOR PNP SI PG=300MN FT=150MHZ TRANSISTOR PNP SI PD=300MN FT=150MHZ TRANSISTOE NPN SI PD=300MN FT=250MHZ TRANSISTOE PNP SI PD=300MN FT=150MHZ TPANSISTOR J-FET N-CHAN 25143P	28480 28480 28480 28480 28480	1853-0020 1853-0020 1854-0071 1853-0020 1855-0118
#4011 #4012 #4013 #4014 #4015	1855 0113 1854-0071 1854-0071 1854-0071 1854-0071		TRAIISISTOR J-FET N-CHAN 25143P TRANSISTOR NON 51 PD=300MW FT=200MHZ TRANSISTOR NEN 51 PD=300MW FT=200MHZ TRANSISTOR NEN 51 PD=300MW FT=200MHZ TRANSISTOR NEN 51 PD=300MW FT=200MHZ	28480 28480 28480 28480 28480	1955 UL18 1854-0071 1854-0071 1854-0071 1854-0071
A+U16 A+U17 ++U18 A+U19 A+U20	1854-0474 1854-0474 1853-0020 1854-0474 1855-0091	2	TRANSISTER PNP SI PD=300MW FT=150MHZ FRANSISTOR NPN SI PD=360MW FT=75MHZ FRANSISTOR PNP SI PD=300MW FT=150MHZ FRANSISTOR PPN SI PD=360MW FT=75MHZ FRANSISTOR J—FET N—CHAN N—MODE SI	28480 28480 28480 28480 28480	1853 0020 1854-0474 1853 0020 1854-0474 1855-0091
# 40 21 # +0 22 1 +0 23 # +0 24 4 +0 25	1835 0891 1855-0091 1855-0091 1855 0091 1855-0091		TRANSISTOP J FET N-CHAN D MOOF SI TRANSISTOP J-FET N-CHAN E-MUDE SI THANSISTOH J-FET N-CHAN S-MOOE SI TFANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOF J-FET N-CHAN D-MODE SI	28460 28460 29480 28480 28480	1855 0041 1855-0091 1855-0051 1855-0091 1855-0091
44026 44027 44028 44029 44050	1855 0117 1853-0091 1854-0013 1854-0012 1853-0020	1 1 1	TRANSISTOR J-FET N-CHAN D-MODE ST	28450 28480 04713 01295 28480	ZN2904A
###### ###### #######################	1853-0020 1853-0020 1853-0020 1853-0020		TPANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR PNP SI PD=300MW FT=150MHZ	28430 28480 28480 28480	1853-0020 1853-0020
A+FI +-2 A+F3 A+F4 A+F5	0757-0486 0648 3136 0757-0486 0757-0448 0698-3451	1 1 2	RESISTOR 17.8K 17.125K F TC=0+ 100 RESISTOR 750K 17.125K F TC=0+100 RESISTOR 18.2K 1%.125K F TC=0+ 100	24546 16299 24546 24546 16299	C4 1/8 FO-17F2 F Ma4 C4-1/9-FO 1822 F


Table A (Sheet 2 of 3).

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A +R 6 A +R 7 A +R B A +R 10	0698 3451 0757-0317 0757-0278 0698-3155 0683-3335	2 1 4 38	RESISTOR 133 k 1% -125 w f TC=0+-100 RESISTOR 1-33 + 1% -125 w f TC=0+-100 RESISTOR 1-78 + 1% -125 w f TC=0+-100 RESISTOR 4-64 f 1% -125 w f TC=0+ 100 RESISTOR 38 58 -25 w fC TC=-400/+800	16299 24546 24546 16299 01121	C4-1/8-T0-1333-F C4-1/8-T0-1331-F C4-1/8-T0-1781-F C4-1/8-T0-4641-F C63335
A 4R 11 A 4R 12 A 4R 13 A 4R 14 A 4R 16	0683 8225 0698-3154 0683-3335 0683-1035 0757-0443	1	RESISTOR 8.2K 5% .25W FC TC=-400/+700 RESISTOP 4.22K 1% .125W F TC=0+ 100 RESISTOR 33K 5% .25W FC TC=-400/+800 RESISTOR 10K 5% .25W FC TC=-400/+800 RESISTOP 11K 1% .125W F TC=0+ 100	01121 16299 01121 01121 24546	CP8225 C4-1/9-TU-4221-F C83325 C83335 C4-1/8 TO 1102-F
A 4R 16 A 4R 17 A +R 18 A +R 19 A 4R 20	0757 0416 0698-4442 0698-4420 0683-3335 0683-3335	3 1 1	PESISTOR 511 1% -125W F TC=0+-100 RESISTOP 4-42K 1% -125W F TC=0+-100 RESISTOR 226 1% -125W F TC=0+-100 RESISTOR 33K 5% -25W FC TC=-400/+800 RESISTOR 33K 5% -25W FC TC=-400/+800	24546 16299 16299 01121 01121	C4-1/6-T0 5119-F C4-1/8-T0-4421-F C4-1/8 T0-2268-F C83335
A R Z1 A 4R ZZ A 4R Z3 A 4R Z4 A 4R Z5	0483 3335 0683-3335 0683-4725 0683-7525 0757-0442	43 1 4	RESISTOR 33K 5% .25W FC TC==400/+800 RESISTOR 33K 5% .25W FC TC==400/+800 RESISTOR 4.7* 5% .25W FC TC==400/+700 RESISTOR 7.5* 5% .25W FC TC==400/+700 RESISTOR 10K 1% .125W F TC=0+-100	01121 01121 01121 01121 01121 24546	CR3335 CB3335 CB4725 CB4725 CB7525 C4=1/8-TU-10U2 F
A 4 K 26	0698-3515	1	RESISTOR 5.90k 1% .125W F TC=0+-100	16299	C4-1/B-T0-5901-F
44R27 44R28	0683-1535 0683-1535	3	RESISTOR 15K 5% -25W FC TC==400/+800 RESISTOR 15K 5% -25W FC TC==400/+80U	01121 01121	C81535
A 4R 29 A 4R 30 A 4R 31 A 4R 32 A 4R 33	0683-0275 0683-0275 0764-0015 0757-0465 0757-0442	4 1 4	RESISTOR 2.7 5% .25W FC TC==400/+50U RESISTOR 2.7 5% .25W FC TC==400/+50U RESISTOR 560 5% 2W MD TC=0+=200 RESISTOR 1000 1% .125W F TC=0+=10U RESISTOR 10W 1% .125W F TC=0++10U	01121 01121 24546 24546 24546	CB27G5 CB27G5 FP42=2-T00-5h1 J C4-1/8=T0-1003-F C4-1/8-T0-1002-F
44k 34 44k 35 44k 36 44k 37 44k 38	0683-1055 0698-0083 0683-1055 0698-3440 0698-3440	28 2 2	RESISTOR 1M 5% -25% FC TC=-80U/+900 RESISTOR 1-96% 1% -125% F TC=0+-100 RESISTOR 1M 5% -25% FC TC==80U/+900 RESISTOR 196 1% -125% F TC=0+-100 RESISTOR 196 1% -125% F TC=0+ 100	01121 16299 01121 16299 16299	Celoss C4-1/8-TO=1961-F CBLOSS C4-1/8-TU=196P-F C4-1/8-TU=195P-F
44R39 44R40 44R4 <u>I</u> 44R42 44R43	0683-0825 0683-3335 0683-3335 0683-3335 0683-3335	1	RESISTOR 8.2 5% .25W FC TC=-+00/+500 RESISTOR 33K 5% .25W FC TC==400/+800 RESISTOR 33K 5% .25W FC TC=-400/+800 RESISTOR 33K 5% .25W FC TC=-400/+800 RESISTOR 33K 5% .25W FC TC==400/+800	01 121 01 121 01 121 01 121 01 121	CB8335 CB335 CB3335 CB3335 CB3335
44R44 44R45 44R46 44R47 44R4B	0683 3335 0683-3335 0683-1045 0683-3335 0683-3335	6	RESISTOR 33K 5% .25W FC TC==400/+800 RESISTOR 33K 5% .25W FC TC==400/+800 RESISTOR 100W 5% .25W FC TC=-400/+800 RESISTOR 33K 5% .25W FC TC=-400/+800 RESISTOR 33K 5% .25W FC TC=-400/+800	01121 01121 01121 01121 01121	CB3335 CB3325 CB1045 CB3335 CB3335
A4R49 A4R50 A4R51 A4R52 A4R53	0463-1045 0683-5625 0683-2225 0698-2225 0498-2225	1 2 1 1	RESISTOR 100K 5% .25W FC TC=-400/+8U0 RESISTOR 5.6K 5% .25W FC TC=-400/+700 RESISTOR 2.2K 5% .25W FC TC= 400/+700 RESISTOR:FXD 90.0K 0HM 0.05% 1/8W MF RESISTOR FXD 11 090 0HM 0.05%	01121 01121 01121 26480 28480	C81045 C85625 CR2225 0698-2225 0698-2295
44R 54 44R 55 44R 56 44R 57 44R 58	0698-3329 0683-1055 0683-1055 0698-2296 0683-1055	L L	RESISTOR 10K .5% .125W F TC=U+-100 RESISTOR 1M 5% .25W FC TC=-800/+900 RESISTOR 1M 5% .25W FC TC=-800/+900 RESISTOR FVO 1010 1 OHM 0.105% RESISTOR FVO 1010 1 OHM 0.105% RESISTOR 1M 5% .25W FC TC=-800/+900	03888 01121 01121 28480 01121	PME55-1/8-T0-1002-D CB1055 CB1055 O698-2296 CB1055
448 59 448 60 448 61 A48 62 448 63	0683-1055 0698-2294 0683-1055 0683-1055 0698-2298	1	RESISTOR 1M 5% .25H FC TC=-800/+900 RESISTOR:FXD 100.10HM 0.05% RESISTOR 1M 5% .25H FC TC=-800/+900 RESISTOR 1M 5% .25H FC TC=-800/+900 RESISTOR:FXD 10 0HM 0 05%	01121 28480 01121 01121 28480	C81055 0698-2294 C81055 C81055 0698-2298
4 4 R 64 A 4 R 65 A 4 R 66 A 4 R 67 A 4 R 6B	0683-1055 0683-1055 0683-4705 0683-4705 0683-1035	2 11	RESISTOR 1M 5% .25M FC TC=-800/+900 RESISTOR 1M 5% .25M FC TC=-800/+900 RESISTOR 47 5% .25M FC TC=-\$00/+500 RESISTOR 47 5% .25M FC TC=-400/+500 RESISTOR 10W 5% .25M FC TC=-400/+700	01121 01121 01121 01121 01121	C81055 CR1055 CB4705 CB4705 CB1035
A4R 69 A4R 70 A4R 71 A4R 72 A4R 73	0 68 3- 1035 0757-1090 0 683-0275 0 683-0275 0 757-1090	2	RESISTOR 10* 5% -25W FC TC=-400/+700 RESISTOR 261 1% -5W F TC=0+-100 RESISTOF 2-7 5% -25W FC TC=-400/+500 RESISTOR 2-7 5% -25W FC TC=-400/+500 RESISTOR 2-7 5% -25W FC TC=-400/+500 RESISTOR 2-6 1% -5W F TC=0+-100	01121 19701 01121 01121 19701	CB1035 MF7C1/2~T0-261P-F CB27G5 CB27G5 CB27G5 MF7C1/2~T0-261R~F
A4R 74 A4R 75 A4R 76 A+R 77 A4R 78	0683-3335 0683-3335 0683-3335 0683-3335 0683-3335		RESISTOR 33k 5% -25k FC TC=-400/+800 PESISTOP 33k 5% -25k FC TC=-400/+800 PESISTOP 33k 5% -25k FC TC=-400/+800 PESISTOP 33k 5% -25k FC TC=-400/+800 RESISTOF 33k 5% -25k FC TC=-400/+800	01121 01121 01121 01121 01121	CB3335 CB3335 CB3335 CB3335 CB3335


Table A (Sheet 3 of 3).


Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A4R79 A4R80 A4R81 A4R82 A4R83 A4R84 A4R85 A4R86 A4R86	0683 - 3335 0683 - 3335 0683 - 3335 0683 - 3335 0683 - 3335 0683 - 3335 0698 - 0083 0683 - 1065 2100 - 2514	1	RESISTOR 33k 5% .25W FC TC=-400/+800 RESISTOR 1 96k 1% .125W F TC=0+-100 RESISTOR 10M 5% .25W FC TC=-900/+1000 RESISTOR-TRMP 20k 10% C SIDE-ADJ 1-TURN	01121 03121 01121 01121 01121 01121 01121 16299 01121 30983	CB3335 CB3335 CB3335 CB3335 CB3335 CB3335 C4-1/B-T0-1961-F CB1065 ET50W203
A4P88 A4T1 A4U1 A4U2	0683-4705 9100-0846 1826-0139 1826-0013	1 6 1	RESISTOR 470HM TRANSFORMEP-PULSE 412N3 IC MC 1458 OP AMP IC OP AMP	28480 04713 28480	9100-0846 MC1458Pl 1826-0013
	04261-50022	1	SUPPORTER, BCARD	28480	04261-50022

2. Page 8-61, Figure 8-25, A4 board component locations,
Change A4 board component location illustration as follows:

3. Page 8-61, Figure 8-26, A4 board schematic diagram,
Partially change A4 board schematic diagram as follows:

Section VII CHANGE E

 Page 8-60, Figure 8-24, A4 board Troubleshooting Guide, Change A4 board Troubleshooting Guide to Figure A.

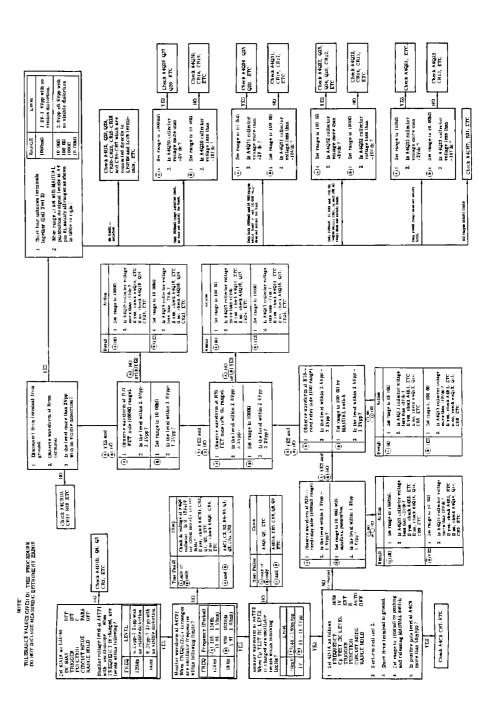
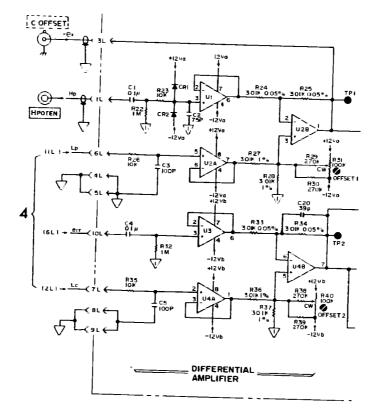


Figure A

CHANGE F.

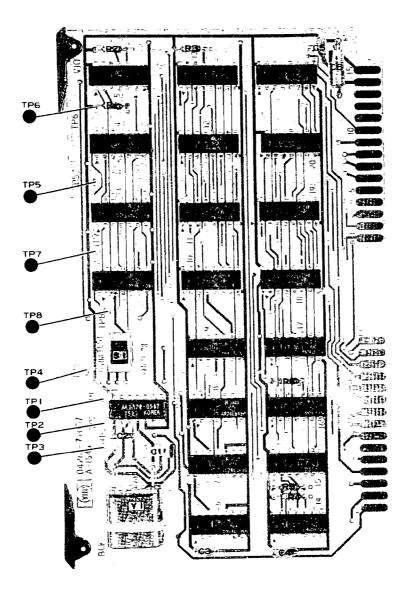

1. Pages 6-8 and 6-9, Table 6-3, Replaceable Parts, Add following parts:

A5CR1, HP P/N: 1901-0033; DIODE-GEN PRP 180V 200MA A5CR2, HP P/N: 1901-0033; DIODE-GEN PRP 180V 200MA A5CR3, HP P/N: 1902-3149; DIODE-ZNR 9.09V 5% PD=.4W A5R29, HP P/N: 0683-2745; R-FXD 270K 5%.25W A5R30, HP P/N: 0683-2745; R-FXD 270K 5%.25W A5R38, HP P/N: 0683-2745; R-FXD 270K 5%.25W A5R39, HP P/N: 0683-2745; R-FXD 270K 5%.25W A5R39, HP P/N: 0683-2745; R-FXD 270K 5%.25W A5U1, HP P/N: 1826-0043; IC LM 307 OP AMP A5U3, HP P/N: 1826-0043; IC LM 307 OP AMP

Delete following parts:

A5CR1, HP P/N: 1901-0376; DIODE-GEN PRP A5CR2, HP P'N: 1901-0376; DIODE-GEN PRP A5R29, HP P'N: 0683-5645; R-FXD 560K 5%.25W A5R38, HP P/N: 0683-5645; R-FXD 560K 5%.25W A5R86, HP P/N: 0683-4725; R-FXD 4.7K 5%.25W A5U1, HP P/N: 1826-0319; IC LF356H OP AMP A5U3, HP P/N: 1826-0319; IC LF356H OP AMP

2. Page 8-63, Figure 8-29, A5 circuit schematics, Change schematics partially as follows:



Section VII Model 4261A

CHANGE G.

1. Page 8-67, Figure 8-33. A7 Board Assembly Component Locations:

Change parts locations for the A7 board as follows:

Note

A switch, A7C1, is installed in place of jumper A7W1 on units serial-numbered $1821 \rm J06370$ and below.

CHANGE H.

1. Page 6-4, Table 6-3;

Change the part number of the ANGLE (PN 04261-10032) to 04261-10029.

2. Page 6-16, Table 6-3;

Change the part numbers and descriptions as shown below.

Reference Designation	HP Part Number	Description
1 2 6 7 20 21 23 24 26 28 29	2360-0333 5060-9964 2510-0192 5020-8816 5040-7220 2680-0172 5040-7219 0590-0639 5020-8836 5020-8815 04261-10022	SCREW-MACH 6-32 100 DEG FL HD POZI REC COVER BOTTOM SCREW-MACH 8-32 100 DEG FL HD POZI REC FRAME, REAR CAP, STRAP HANDLE, REAR SCREW-MACH 10-32 .375-IN-LG 100 DEG CAP, STRAP HANDLE, FRONT NUT STRUT, CORNER FRAME, FRONT SUB PANEL, FRONT

SECTION VIII SERVICE

8-1. INTRODUCTION.

8-2. This section contains information on servicing the Model 4261A including the theory of operation, troubleshooting and repair. Overall theory of operation of the instrument is covered in the first part of this section and detailed explanations are presented in the service sheets including detailed theory, component level troubleshooting, circuit schematics and parts location. Interior views, which show adjustment locations, are also included in this section.

8-3. THEORY OF OPERATION.

8-4. Ageneral explanation of the theory of operation of the 4261A LCR Meter follows. Since detailed circuit descriptions for each assembly are covered in the service sheets, the explanation that follows is limited to:

Basic Theory Block Diagram Discussions Timing Diagram Discussions

- 8-5. BASIC THEORY.
- 8-6. Figure 8-1 is the basic block diagram of the

4261A and shows the fundamentals of how the 4261A measures inductance L, capacitance C, resistance R and or dissipation factor D. The output of an oscillator is applied through a source resistor Ro to the unknown device and range resistor Rr. The effect of amplifier Rr is to cause the same current that flows through the unknown device to flow through Rr, and, as a result, to drive the junction of the unknown device and Rr to zero volts. Voltages E1 and E2 across the unknown device and across Rr, respectively, are connected to selector switches S1 and S2 which have two important functions. First, S1 selects either E1 or E2 as the voltage to drive the four phase generator (this also establishes the measurement mode - either series or parallel which is automatically or manually set (PARA or SER) as selected at the front panel) and, secondly, S2 selects either E1 or E2 as the measurement voltage to charge or discharge the integrator (as appropriate to the measurement function and mode, i.e. Cp, Cs, Lp, Ls, Rp or Rs). The Vector Voltage-Ratio Measurement Section calculates an L, C, R or D measurement by ascertaining the voltage ratio of E1 and E2 through a dual-slope (type) analog to digital conversion technique. technique is popularly used in digital voltmeters. The analog section receives its measurement instructions from a digital section.

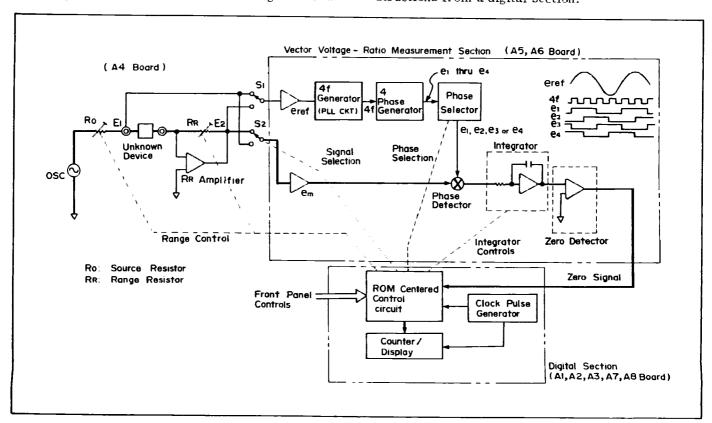


Figure 8-1. Basic Block Diagram.

8-7. Source and range resistors, Ro and Rr, are automatically selected by digital control circuits. For a series equivalent circuit measurement (Ls, Cs or Rs), Ro is set to a value much greater than the impedance of unknown device. Thus a constant current drive to the unknown device is realized. On the other hand, for a parallel equivalent circuit measurement (Lp, Cp or Rp), Ro is set to a much smaller value than the impedance of the unknown to achieve a constant voltage drive to the unknown. The resistance values of Ro and Rr are always equal.

8-8. Vector Voltage-Ratio Measurement Section. The $oldsymbol{e}_m$ signal selected by S2 (as directed by the logic circuit) is detected by a phase detector that outputs the rectangular component or in-phase component to an integrator. Phase detector signals e1 thru e4 supplied to the phase detector are produced in the following manner: A 4f signal is generated from an eref signal as selected by Switch S1 (the 4f generator is a phase lock loop circuit). This creates signals e_1 thru **e**₄, each being different by 90 degrees in phase from one another (a 4 phase generator). One of these signals, as directed by the digital circuitry, detects the e_m measurement signal. The phase of signals e1 thru e4 is very accurate as a PLL (phase lock loop) circuit is used for generating the reference phase signal to minimize measurement error. zero detector takes the output of the integrator and generates a zero detection signal (ZERO) every time the integrator output crosses the zero level. This furnishes a ZERO signal to the Digital Section.

8-9. The Digital Section is a kind of algorithmic state machine that is driven by the state clock from a built-in clock pulse generator. The major functions of this section are to manage the various sequences required to perform the desired measurements, to measure L, C, R and D values converted into time periods, and to display these values at the 4261A front panel.

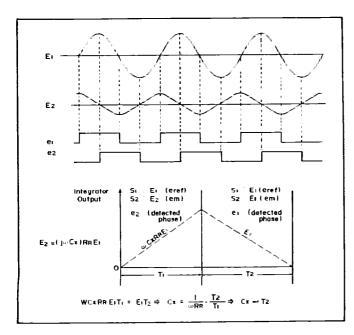
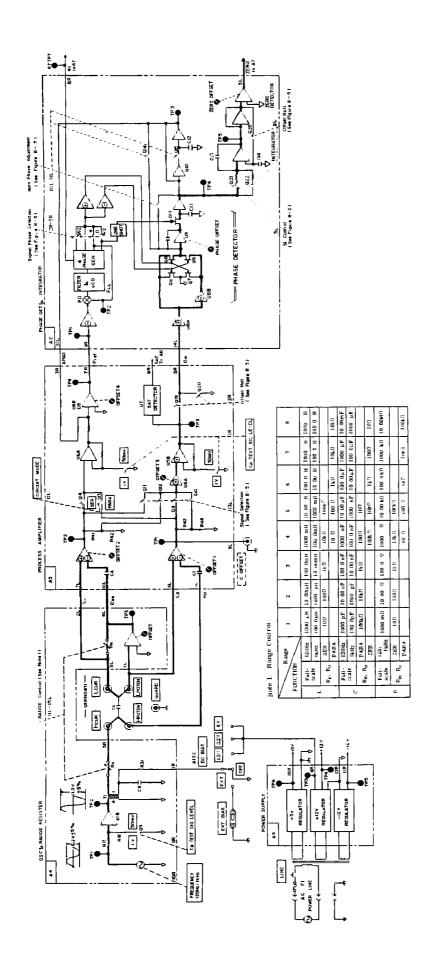


Figure 8-2. Cp Measurement Principle.


8-10. The parallel capacitance Cp measurement principle is discussed in this paragraph. To simplify the explanation, the example used here is that of measuring an ideal capacitor. See Figure 8-2, Cp Measurement. During time T1, the integrator is charged by that portion of the E2 sinusoidal waveform which is synchronously phase detected by the $oldsymbol{e}_2$ pulse train. Both S1 and S2 switches select the E1 signal that is fed to discharge the integrator after being phase-detected by the $\hat{\mathbf{e}}_1$ signal. Since time period T2, for the integrator to discharge to zero volts, is proportional to the value of Cx, Cx can be directly obtained from the contents of a counter if the values for Rr and T1 are properly and accurately set. Other measurements are done similar to the Cp measurement.

8-11. BLOCK DIAGRAM DISCUSSION.

8-12. Analog Block Diagram. Figure 8-3 is a detailed block diagram of the 4261A analog section. The construction of this diagram is based on the actual printed circuit board assembly. It is useful for troubleshooting.

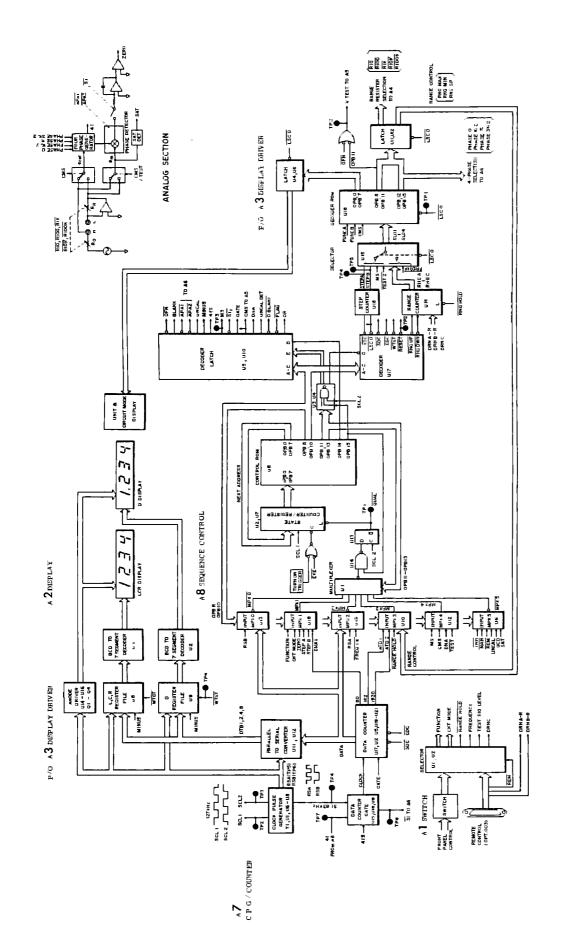
8-13. A4 Oscillator and Range Resistor Board. Oscillator output is fed through an attenuator (A3R17, R18 and Q5) and a power amplifier to transformer T1. The oscillator output can only be attenuated (A3Q5 turned on) when a Cp measurement is being made. In all other measurements, A3Q5 never turns on. The oscillator signal from the secondary of T1 is provided via source resistor Roto the unknown device (Cx in diagram). The current that flows through Cx also flows through range resistor Rr via the Range Resistor Amplifier. Ro and Rr are selected by a range control signal from the digital section. A note in Figure 8-3 describes how the resistors are con-The GUARD terminal is connected directly trolled. to the instrument chassis. The circuit common for all PC boards is also finally connected to the chassis. DC bias voltages up to +30 volts can be applied to the unknown device through A1S2 DC BIAS switch through A4R31, secondary wiring of T1, and Ro from A9 Power Supply (internal) or from an external de bias source connected to EXT BIAS connectors on rear panel.

8-14. A5 Process Amplifier. Voltages across the unknown device and across Rr are inputs for this assembly which feeds e_{ref} signal (reference phase signal used for phase detection) and $e_{
m m}$ signal (signal measured by the integrator) to A6 Board. The two input signals are selected according to specific measurement rules and are used as $\mathbf{e}_{ ext{ref}}$ and $\mathbf{e}_{ ext{m}}$ signals. The eref signal is chosen when the measurement circuit mode is selected. Setting the CIR-CUIT MODE switch to PARA selects the voltage across Cx as the e_{ref} signal. The SER position of the CIRCUIT MODE switch selects the voltage across Rr as the $e_{\rm ref}$. If the switch is set to AUTO, the $\mathbf{e}_{\mathrm{ref}}$ signal selection is done automatically and applied in a manner similar to the above. The selected **e**ref_signal is amplified by A5U6A and is wave-shaped by A5U6B and U8 which also adjust the duty cycle of eref by a control input (APAO signal) from A6 Board.

The \mathbf{e}_m signal is selected by FET switches A5Q9 thru Q12 which are, in turn, controlled by signal selection signals from the digital section. The method of selecting the \mathbf{e}_m signal is graphically shown in Figure 8-5 Timing Diagrams. The selected \mathbf{e}_m signal is amplified by A5U5A, U5B and becomes an input signal for the phase detector on A6 Board. C OFFSET signal on rear panel is a signal opposite in phase to the signal at the H_{CUR} terminal. When Cp TEST SIG LEVEL switch is set to 50mV position, the gain of amplifier A5U6A, U5B is increased. An SAT Detector detects an \mathbf{e}_m signal level that exceeds approximately ± 5 volts and transfers SAT signals to digital section (A8 Board).

8-15. A6 Phase Detector and Integrator. In this board, the two input signals e_{ref} and e_m are converted to a ZERO signal which is fed to the A8 Board (digital Section). The \boldsymbol{e}_m signal is used as an APAO (Auto Phase Adjustment Output) signal only when auto phase adjustment signal is fed to A6 Board to minimize any phase error which could cause a measurement error. However, firstly, eref is fed into the Phase Locked Loop (PLL) circuits consisting of a phase detector (PD), filter and VCO (voltage controlled oscillator) and is converted into four reference phase signals each being different by 90 degrees in phase one from the other. These four signals are individually selected by the digital circuitry and one is used as the phase detection signal for phase detector A6U6 thru U9 which phase detects the selected **e**_m signal. The dc output of the phase detector is applied to the integrator. The output of the integrator is monitored by the Zero Detector to observe the time that the zero level is crossed. This zero signal is sent to Digital Section (A7 Board) by Zero Detector. The output of the phase detector is also provided through A6U10, Q15, C12, etc. to A5 Board as an APAO (Auto Phase Adjustment Output) signal for the period of auto phase adjustment. All logic switches on this board are controlled by control signals from the digital section. See Figure 8-5 for details.

8-16. A9 Power Supply Board. This circuitry develops the dc power for the instrument. These voltages are the +5V, +12V and -12V. Internal dc bias voltages of 1.5V, 2.2V and 6V are also provided.


8-17. Digital Block Diagram. Figure 8-4 is the block diagram of the 4261A digital section. The construction of this diagram is based on the actual printed circuit board assembly. Thus, the diagram may be quite helpful when studying the function of an individual board or its schematic and trying to relate it to overall digital circuitry. In the following several paragraphs, each board assembly is described somewhat in detail.

8-18. A2 Display Board. This board displays the measured values with the measurement unit. All data signals, unit signals, circuit mode signals and the annunciation signal are sent from A3 Display Driver board which also provides anode driver signals to A2 Board to light the numeric displays.

8-19. A3 Display Driver Board. This board is divided into two parts, one of which is a numeric display driver (top left in Figure 8-4). The other circuit is a unit, circuit mode driver and range, phase decoder (right bottom in Figure 8-4). In the numeric display driver, the measured serial data from A7 Board is filed in A3U8 and U9 registers whose outputs are decoded into a data format suitable for lighting the 7-segment displays on the A2 Board; this is accomplished by the A3U1 and U2 decoders and the anode drive signals generated by A3U14 thru U16 and A3Q1 thru Q4 by inputting RSA and RSB signals from A7 Board. In the unit circuit mode driver section of the board, decoder ROM U18 functions as a unit circuit mode decoder and as a range control decoder only when the LSCO signal is enabled. During other periods, the ROM works as the decoder for phase selection control and V TEST signal generation. Information on unit circuit mode and range is stored in latches A3U4, U6, U11 and U12 to hold the information for at least one measurement cycle.

8-20. A7 Clock Pulse Generator / Counter Board. Clock Pulse Generator (A7Y1, U1, U6 thru U8) consists of two state clocks, SCL1 and SCL2. clocks have a frequency of 127kHz but have a phase difference of 90 degrees to each other. also generates a 31.83kHz clock for the Data Counter and RSA RSB signals used for data register, display and measurement control. In the Data Counter Gate circuit, either a 4f or a 31.83kHz signal is selected by the 4fS signal from A8 Board and sent to Data Counter as a clock pulse. The Data Counter Gate also generates an SI signal to control A6 Integrator. Data Counter counts the input clock pulses as directed by GATE, SDC and CDC control signals. A parallel to serial converter A7U21 and U12 converts parallel BCD data into serial BCD data by control of RSA and RSB signals and sends the data to register files in A3 Board. All input multiplexers (A7U10, U13, U18 and U19 on the A7 board and A8U12 and U6 on the A8 board) receive various data signals, control signals, measurement condition signals, etc., and provide outputs as directed and assigned by OPB8 thru OPB10 control signals. All multiplexer outputs are taken from the A8 board.

8-21. A8 Sequence Control Board. Output signals $(\overline{MPX0}, MPX1, \overline{MPX2}, MPX3, MPX4 and \overline{MPX5})$ from the six input multiplexers are applied to A8U1 Multiplexer which selects one of these input signals as directed by OPB11 thru OPB13 control signals. Multiplexer output is gated with OPB15 of A8U8, synchronized with SCL2 (State Clock 2) by A8U13 and becomes a qualifier input to State Counter/Register (A8U2, U7) which produces the input signals (IBP0 thru IPB7) to Control ROM U8 in synchronization with SCL1 (State Clock 1) from next address signal (OPB0 thru OPB7 of A8U8) and qualifier input signal. Control ROM A8U8 outputs OPB0 thru OPB15 which are used for next address signal, input multiplexer control signal, Multiplexer (A8U1) control signal and provides for various instruction outputs through Decoder (A8U17). The instruction outputs are control signals for both analog and digital circuitry.

Section VIII Paragraphs 8-22 to 8-27

A8U18 is a Step Counter and determines measurement step. A8U16 Range Counter receives range control signals and outputs range signals (RNG A, RNG B, RNG C) to A8U15 Selector which selects range signals only when LSCO signal is enabled or step signals (STEP A, STEP B or some step combination) when LSCO is disabled. The outputs of A8U15 Selector are sent as SLO1 thru SLO4 signals to A3 Decoder ROM input.

8-22. ROM State Machine. Since the 4261A has adopted a ROM-centered design in the digital section (A3 and A8 boards), only a brief explanation for its operation is presented here. The state machine has a state address (code) that manages the operation of the ROM state machine. ROM output is determined by the address inputted to the ROM. The state address for A8 ROM U8 is determined by next address from the ROM output and qualifier input. And it should be noted that the ROM output signal is also utilized for the control of qualifier signal. The state address sometimes increases one by one, repeats the same address several times, or jumps to higher or lower addresses. For example, if some condition should be maintained for a certain period, the state address repeats the same address during the desired number of state clocks. In this case, the instruction output does not change. Note that the ROM used in the A3 board functions as a decoder which has no feedback from ROM output to the input. The ASM chart in Figure 8-6 is very convenient for understanding the ROM-centered circuits.

8-23. A10 Mother Board.includes a selector circuit which selects local or remote control signals. If REM signal is at low level, remote control signals are selected and if at highlevel, local control signals are fed to internal circuitry. DRNA-R and DRNB-R signals are provided without passing through the selector.

8-24. TIMING DIAGRAM DISCUSSION.

8-25. Figure 8-5 presents a timing diagram for the 4261A. Firstly, output waveforms of the integrator, excute time for each measurement sequence, and main control signals are shown in the upper part of the diagram. The sequence excute times are different for measurement frequencies of 120Hz and 1kHz since the electrical response time for the frequencies are different and a 4f signal (four times the measurement frequency) is sometimes used for determining the charging cycle. Note that the excute time for the discharge sequence is variable. As you can understand from the diagram, the instrument first measures the L C or R value and then the Dissipation Factor (D). To minimize error, offset null and auto phase adjustment sequences precede the L/C and R measurements. Only an offset null sequence precedes a D measurement.

8-26. The lower part of the diagram shows how the analog circuits are controlled. Waveforms for the V TEST signal voltages (which control \boldsymbol{e}_m voltage selection -- selecting either the voltage across Rr or the voltage across the UNKNOWN) and detection phase for phase detector on A6 board are shown for each circuit mode in the table in Figure 8-5. Both upper and lower sections of the waveform timing diagram have the same time scale. -ex, -ex/10, -ey and -ey 10 in the \mbox{e}_{m} column are names for the voltages shown in diagram Note 2. The detection phases 0, $\pi/2$, π , or $3\pi/2$ are the same as the phase selection signals sent to the A6 board. The phase relationships of the voltages applied to phase detector FET switches A6Q6 and Q9 are shown in diagram Note 3 along with the phase of the eref signal at A6TP1. In R measurements, measurement steps 1 and 2 in D measurement cycle are skipped.

8-27. ASM (Algorithmic State Machine) Chart.

Figure 8-6 is an ASM chart which is similar to a flow chart and describes all the digital operations, including, of course, analog circuit control. This chart can be read in almost the same manner as a conventional flow chart. The chart is probably best used, as necessary, in combination with Figure 8-4 Digital Section Block Diagram, Table 8-1 Mnemonic Information, and circuit schematics. The chart is essential in troubleshooting the digital circuits (A3, A7 and A8 boards), so it may be referred to throughout the following section on digital troubleshooting.

The ASM chart is a diagrammatic description of the output function and the next-state function of the state machine. The symbols used in the ASM chart are for the State Box and the Decision Box.

The ASM chart has three basic elements; the state, the qualifier and the conditional output. A single state is indicated by a state box which contains state outputs as noted in Figure 8-6.

The output consists of mnemonics selected from a defined set of operations. The mnemonics name outputs which are given during the state time. The exit path of the state box leads to other state boxes or to decision boxes.

The Decision Box describes inputs to the state machine. The structure of the decision box is given in Figure 8-6. Each decision box has two exit paths.

One path is taken when the condition is true and the other when the condition is false. These two paths are usually indicated by 1 for true and 0 for false. The inputs are also called qualifiers in the sense that they qualify an output or a transition.

8-7

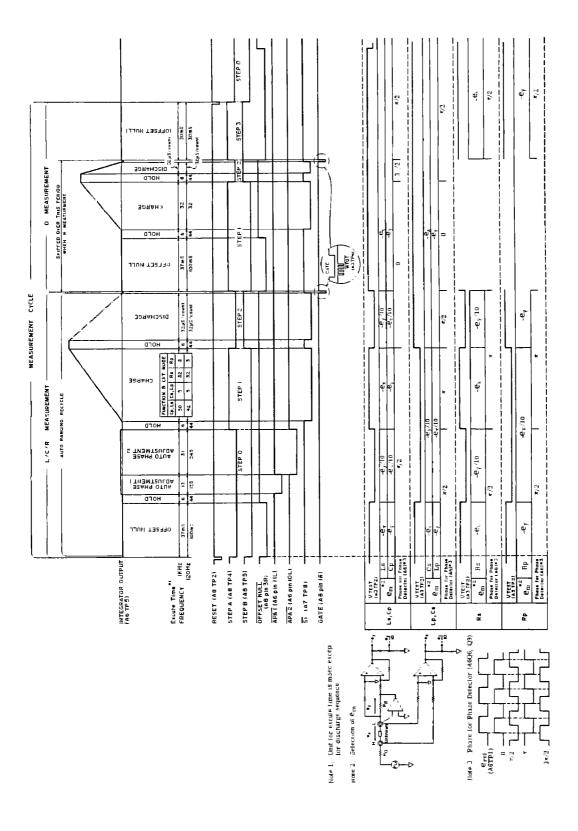


Table 8-1. Mnemonic Information (Sheet 1 of 2).

Mnemonic	Description	Mnemonic	Description
ALT	select output data for LCR or D (OPT. 002)	DRNB	direct range setting, bit B direct range setting, bit C
ANOD 1 thru ANOD 4	anode driver signal 1 for data display thru anode driver signal 4 for data display.	DRNC DRND DTB 1 thru	direct range setting, bit D data bit 1 from counter thru
APAO	error output for auto phase adjustment	DTB 8	data bit 8 from counter
APA I	perform 1st auto phase adjustment	e _m (EM) e _{ref} (E REF)	phase detector input voltage AC reference phase signal
APA 2	perform 2nd auto phase adjustment	e_{rr}	range resistor voltage
ATD 1	detected output for 162 counts	$\frac{-\mathbf{e}_{\mathbf{x}}}{\overline{\mathbf{E}}\mathbf{X}}\mathbf{E}} (-\mathbf{E}\mathbf{X})$	AC voltage for C OFFSET external encode signal
ATD 2 AUTRG	detected output for 1820 counts	EXT B (EXT BIAS)	external bias voltage
DAIDA	enable local triggering when in remote control	FLAG	flag signal to external device
BIAS	DC bias voltage	FREQ 1k (FREQ)	set test signal frequency to 1kHz
BLANK B 1.5V	blank display set internal bias voltage to 1.5V	FUNC A (FNC A)	function control, bit A
B 2.2V	set internal bias voltage to 2.2V	FUNC B (FNC B)	function control, bit B
\overline{C}	light "F" unit on front panel	GATE	gate control signal for counter
CDC	clear data counter	Нр	voltage at H _{POTEN} terminal
CL I	clock input	ĪNH	inhibit signal from external device
CLO	clock output	INT B	internal bias voltage
CMA	circuit mode signal, bit A	ĪSC	increment step counter
CMB	circuit mode signal, bit B	k	light "k" on front panel
CMS	set circuit mode to series	$\overline{\mathbf{L}}$	light unit "H" on front panel
\overline{CpRp}	light circuit mode indicator for Cp or Rp measurement	L'c	voltage at L' _{CUR} terminal
CQAL	clear qualifier flip-flop	Lp	voltage at L _{POTEN} terminal
CS	light circuit mode indicator for	$\overline{\mathrm{L}_{\mathrm{PA}}}$	light circuit mode indicator for Lp measurement
	Cs measurement	LSC 0	load zero to step counter
CTEN	enable counter to count 4f signal	LSD a	light segment "a" for left side
D BLANK DNA	blank Dissipation Factor display generate DBLANK signal	thru LSD g	numeric display thru light segment "g" for left side numeric display
DNAV	detected output for less than 80 counts in Cp Ls.	LsRs	light circuit mode indicator for Ls or Rs measurement
DP b	light decimal point for LCR display	M	light "M" on front panel
DP c	light decimal point for LCR	m	light "m" on front panel
DP-Loss	light decimal point for Dissi- pation Factor display	MAN	manual trigger signal from panel control.
DRNA	direct range setting, bit A	MINUS	display minus (-) mark on front panel

	Table 8-1. Mnemoni	c Information (She	et 2 of 2).
Mnemonic	Description	Mnemonic	Description
MPX 0 thru	multiplexer 0 output	RSB	read select bit B for A3 register
MPX 5	thru multiplexer 5 output		files
MS	measurement status. If D	RSD a	light segment "a" for right side
	measurement, MS is at high.	$\frac{\text{thru}}{\text{RSD g}}$	numeric display thru light segment "g" for right side
n	light "n" on front panel		numeric display
N2 - 4	output BCD signal, bit weight	R100k	set range resistor to $100 \mathrm{k}\Omega$
	4 for 2nd digit	R10k	set range resistor to 10kΩ
OFN	perform auto offset null	R1k	set range resistor to $1k\Omega$
	adjustment	R100	set range resistor to 100Ω
OFNA	perform auto offset null adjustment	R10	set range resistor to 10Ω
OPB 0	output bit 0 from A8 ROM	SAT	'signal indicating $oldsymbol{e}_{\mathbf{m}}$ saturation
thru OPB 15	thru	SCL 1	state clock 1
OR	output bit 15 from A8 ROM	SCL 2	state clock 2
_	out of range	SDC	set data counter to 1999
p	light "p" on front panel	<u>SI</u>	set integrator to function
PHASE 0 (PHB 1)	select 0 detection phase	$\overline{\mathrm{SI}_1},\overline{\mathrm{SI}_2}$	set integrator to function
PHASE $\pi/2$	1	SLO 1 thru	selector output 1 from A8
(PHB 2)	select $\pi/2$ detection phase	SLO 4	thru selector output 4 from A8
PHASE π (PHB 3)	select π detection phase	SQAL	set qualifier flip-flop
PHASE 3 π/2		STEP A (STP A)	measurement step, bit A
(PHB 4)	select 3 $\pi/2$ detection phase	STEP B	.,
QUAL	qualifier input to state counter/ register	(STP B)	measurement step, bit B
$\overline{\mathbf{R}}$	light "Ω" unit on front panel	TEST	perform test operation
REF V	reference voltage for bias	TEST 1	perform test 1 sequence
	voltages	TEST 2	perform test 2 sequence
REM	remote signal from external	TL	test level signal from A10
RESET	device	TLL	set test signal level to 50mV
KESEI	turn off trigger lamp on front panel	TRG L	light trigger lamp on front panel
RNG A	range signal, bit A	TOT	turn-on trigger
RNG B	range signal, bit B	UCD	detected output for UNCAL
RNG C	range signal, bit C		signal
RNG DWN	step down one decade range	UNCAL	detected output for SAT signal
RNG HOLD	hold measurement range	V TEST	select signal for $\mathbf{e}_{\mathbf{m}}$ by working
RNG MAX	maximum range signal	West and	with CMS
RNG MIN	minımum range signal	WTGT	enable data transfer
RNG SP	special range that 4261A does	ZERO	zero detector output
PNC UE	not measure	$\overline{\mu}$	light " μ " on front panel
RNG UP RSA	step up one decade range	4f	clock 4 times test frequency
NDA.	read select bit A for A3 register files	(4F)	
1		4fs	set 4f signal as clock to counter

Table 8-2. ASM Chart Check Procedures (Sheet 1 of 16).

Note

If 4261A settings are not specified in this table, any setting is acceptable except that TRIGGER must be set to INT and RANGE HOLD must be set to OFF.

State code is expressed in the octal system. It is recommended that the logic state analyzer be operated in the single trigger mode. Unless otherwise noted, the "start display" trigger word is given in the "Trigger Word for Logic State Analyzer" column of the table.

Sequence Check for (1) INITIAL SETUP TIME.

4261A Settings	Trigger Word for Logic State Analyzer (HP 1601A)	State Code Order
Normal (not Self Test) Operation		
Any settings Push 4261A RESET	001	001 002 003 004 005 006 007 010
CIRCUIT MODE: PARA	037	037 037 040 041 035 013
CIRCUIT MODE: SER	037	037 040 055
CIRCUIT MODE: AUTO FUNCTION: C Unknown: Open	037	037 042 043 046 047 050 013
CIRCUIT MODE: AUTO FUNCTION: C Unknown: Shorted	043	043 044 051 052 013
CIRCUIT MODE: AUTO FUNCTION: R Unknown: Shorted	043	043 046 052 013
CIRCUIT MODE: AUTO FUNCTION: L Unknown: Open	043	043 044 051 047 050 013

Table 8-2. ASM Chart Check Procedures (Sheet 2 of 16).

Sequence Check for (1) INITIAL SETUP TIME (Cont'd)

4261A Settings	Trigger Word for Logic State Analyzer (HP 1601A)	State Code Order
CIRCUIT MODE: AUTO	043	043
FUNCTION: L, C or R		044 045
Unknown: in-range component (do not use max. or min. ranges).		013
1. RANGE HOLD: OFF	043	043
TRIGGER: INT		046
2. CIRCUIT MODE: SER		052 053
FUNCTION: C		054
Unknown: Open		055 035
3. RANGE HOLD: ON		
TRIGGER: EXT		
4. CIRCUIT MODE: AUTO		
Push RESET for LSA.		
5. Change FUNCTION C to L.		
1. RANGE HOLD: OFF	043	043
TRIGGER: INT		044
2. CIRCUIT MODE: PARA		051 047
FUNCTION: C]	053
Unknown: Short		054 041
3. RANGE HOLD: ON		035
TRIGGER: EXT		
4. CIRCUIT MODE: AUTO		
Push RESET for LSA.		4
5. Change FUNCTION C to L.		
1. TRIGGER: INT	042	042
RANGE HOLD: OFF	,	0 4 2 053
CIRCUIT MODE: AUTO		054
FUNCTION: C		055 035
Unknown: Open		-
TRIGGER: EXT		
Push RESET for LSA		
2. Change FUNCTION C to L.		
Self Test Operation		
TEST 1, TRIGGER: INT	011	
RANGE HOLD: OFF	011	011 012
		013
TEST 2	011	011
FUNCTION: C	i	012 031
RANGE HOLD OFF		032
TRIGGER: INT		034 036
	Ontinued)	035

Table 8-2. ASM Chart Check Procedures (Sheet 3 of 16).

Sequence Check for 1 INITIAL SETUP TIME (Cont'd)

4261A Settings	Trigger Word for Logic State Analyzer (HP 1601A)	State Code Order
TEST 2 FUNCTION: L RANGE HOLD: ON TRIGGER: INT	011	011 012 031 033 034 035

Sequence Check for (2) AUTO OFFSET NULL TIME.

4261A Settings	Trigger Word for Logic State Analyzer (HP 1601A)	State Code Order
Normal Operation FREQUENCY: 1kHz	013	013 014 015 016
FREQUENCY: 120Hz	016	016 017 017
	020 End Display	017 020
FREQUENCY· 1kHz	020 End Display	020 020 021 022
FUNCTION: C CIRCUIT MODE. PARA Unknown: Shorted .	022	022 024 025 027 030 025
FUNCTION: C CIRCUIT MODE: PARA Unknown: Open	022	022 024 025 027 025
Note: Push RESET for LSA several times.	056 End Display	025 026 056
Test Operation TEST 1	022	022 023 026 056

Sequence Check for 3 HOLD TIME

FREQUENCY: 1kHz	056	056
		057
		063
	·	063
	064	063
	End Display	064

Table 8-2. ASM Chart Check Procedures (Sheet 4 of 16).

Sequence Check for (3) HOLD TIME (Cont'd)

4261A Settings	Trigger Word for Logic State Analyzer (HP 1601A)	State Code Order
FREQUENCY: 120Hz	057	057 060 060
	061	060
	End Display	061
	064 End Display	061
	End Display	061 062
		064
	064	064 175
-		064
•	1	065
Note: Push RESET for LSA	. L	066
several times. The state code order should be as		064
shown in the three blocks	1	065 114
to the right.		141
FUNCTION. R	141	141
CIRCUIT MODE: SER		142 143
Note: Push RESET for LSA		162
• several times		117 120
FUNCTION R	143	143
CIRCUIT MODE: PARA		162
		163 164
FUNCTION C	143	143
CIRCUIT MODE: PARA		144
FREQUENCY: 120Hz		145 146
		147
FUNCTION: C	143	143
CIRCUIT MODE: PARA		144
FREQUENCY: 1kHz		145 166
		167
FUNCTION: C	143	143
CIRCUIT MODE: SER	ļ	144 154
FREQUENCY: 120Hz		155
EUNCHION. C		156
FUNCTION: C	143	143
CIRCUIT MODE: SER]	144 154
FREQUENCY: 1kHz	1	146
FUNCTION: L	141	147
CIRCUIT MODE: PARA	141	141 142
CHICUIT MODE: PARA		153
		154

Table 8-2. ASM Chart Check Procedures (Sheet 5 of 16).

Sequence Check for (3) HOLD TIME (Cont'd)

4261A Settings	Trigger Work for Logic State Analyzer (HP 1601A)	State Code Order
FUNCTION: L CIRCUIT MODE: SER Unknown: Short	141	141 142 153 145
Note: Push RESET for LSA several times.	117 End Display	114 141 117
FUNCTION: R CIRCUIT MODE: SER	056 End Display	120 120 121 174 056
FUNCTION: R CIRCUIT MODE: PARA	174 End Display	164 164 165 174
FUNCTION: C CIRCUIT MODE: PARA FREQUENCY: 1kHz	171 End Display	167 167 170 171
	173 End Display	171 171 172 173
	174 End Display	173 173 174
FUNCTION: C CIRCUIT MODE: PARA FREQUENCY: 120Hz	151 End Display	147 147 150 151
	173 End Display	151 151 152 173
FUNCTION: C CIRCUIT MODE: SER FREQUENCY: 120Hz	160 End Display	156 156 157 160
	173 End Display	160 160 161 173
Test Operation TEST 1	114	114 115 116
TEST 2	114	114 115 117

Table 8-2. ASM Chart Check Procedures (Sheet 6 of 16).

Sequence Check for $\widehat{\text{(4)}}$ AUTO PHASE ADJUSTMENT TIME

4261A Settings	Trigger Word for Logic State Analyzer (HP 1601A)	State Code Order
Normal Operation		-
FREQUENCY: 120Hz	066	066 067 070 071 071
	073 End Display	071 072 073
-	101 End Display	073 073 074 076 077 100
FREQUENCY: 1kHz	070	070 075
	076 End Display	075 075 076
	113 End Display	101 101 102 112 113
FREQUENCY: 120Hz	103 End Display	101 102 103 103
	105 End Display	103 104 105
	107 End Display	105 105 106 107
	111 End Display	107 107 110 111
	056 End Display	111 111 112 113 056

Table 8-2. ASM Chart Check Procedures (Sheet 7 of 16).

Sequence Check for (5) DISCHARGE TIME.

4261 A Settings	Trigger Word for Logic State Analyzer (HP 1601A)	State Co	de Order
Normal Operation FUNCTION: C CIRCUIT MODE: PARA Unknown: Open Note: Check that 4261A is not displaying minus (-).	175	17 17 17 20 20 20 20	6 7 0 0 1 2 3
	212 End Display	20 20 20 20 20 21	4 3 5 6
FUNCTION: C CIRCUIT MODE: SER Unknown: Open	212 End Display	20 20 20 20 21	14 15 16
FUNCTION: L CIRCUIT MODE: AUTO Unknown: capacitor of a few μF, Note: Check that 4261A is displaying minus (-).	212 End Display	201 207 210 211 212	
FUNCTION: C CIRCUIT MODE: SER Unknown: Open Note: Two code orders should be displayed on LSA. Push RESET for LSA several times.	212	212 213 224 226 257 260	212 213 224 226 257 227
RANGE HOLD: ON	212	212 213 224 226 227	
Test Operation TEST 1	212	21 21 21	2 3
TEST 2	212	21 21 22 22 22 22	2 3 4 5

Table 8-2. ASM Chart Check Procedures (Sheet 8 of 16).

Sequence Check for (6) AUTORANGING TIME

4261A Settings	Trigger Word for Logic State Analyzer (HP 1601A)	State Code Order
Normal Operation		-
FUNCTION: C	260	260
CIRCUIT MODE: PARA		261 270
FREQUENCY: 120Hz		271
Unknown: Open		272 305
		227
FUNCTION: C	260	260
CIRCUIT MODE: SER		261 262
Unknown: Open	İ	263
		305 227
FUNCTION: R	261	261
CIRCUIT MODE SER	.	262
Unknown: Open		304 264
		227
FUNCTION: R	261	261 270
CIRCUIT MODE PARA	i	270 276
Unknown: Open		301
a		302 264
<u> </u>		227
FUNCTION: C	261	261 262
CIRCUIT MODE: PARA	ļ	263
Unknown: Short		$264 \\ 227$
FUNCTION: C	261	261
CIRCUIT MODE SER		270
Unknown: Shorted		276 277
U		302
TUNOTION :	201	264
FUNCTION: L	261	261 262
CIRCUIT MODE: PARA		304
Unknown: Shorted 1. FUNCTION: C	261	305
CIRCUIT MODE: PARA		262
Unknown: Open		$\begin{array}{c} 263 \\ 264 \end{array}$
2. TIRGGER: EXT		265
RANGE HOLD: ON		010
3. Unknown: Shorted		
Push RESET for LSA,	1	1
4. RANGE HOLD: OFF		

Table 8-2. ASM Chart Check Procedures (Sheet 9 of 16).

Sequence Check for (6) AUTORANGING TIME (Cont'd)

4261A Settings	Trigger Word for Logic State Analyzer (HP 1601A)	State Code Order
FUNCTION: C	277	277
CIRCUIT MODE: SER		302 303
Unknown. $100\Omega < , < 1k\Omega$	ŀ	227
1. FUNCTION: C	276	276
CIRCUIT MODE: PARA		277 300
Unknown · Open	1	264
2. RANGE HOLD: ON		
3. Unknown 2000pF		
4. Push RESET for LSA.		
RANGE HOLD: OFF	_	
1. FUNCTION: R	276	276
CIRCUIT MODE: PARA		301 302
Unknown: Shorted		264
2. RANGE HOLD: ON		
3. Unknown: $2k\Omega$	[
4. Push RESET for LSA.	1	
RANGE HOLD: OFF		
1. FUNCTION: C	261	261
CIRCUIT MODE: SER		262 263
Unknown: Shorted		305
2. TRIGGER. EXT		306 010
RANGE HOLD: ON		010
3. Unknown: Open		•
Push RESET for LSA.		
4. RANGE HOLD: OFF	_	
FUNCTION: C	261	261
CIRCUIT MODE: PARA		$\begin{array}{c} 270 \\ 271 \end{array}$
Unknown: approx. 1000pF		227
1. FUNCTION: C	260	260
CIRCUIT MODE: PARA		266 267
Unknown: Open		304
2. RANGE HOLD: ON		
TRIGGER: EXT		
3. Push RESET for LSA.		
4. CIRCUIT MODE: SER		
RANGE HOLD: OFF		

Table 8-2. ASM Chart Check Procedures (Sheet 10of 16).

Sequence Check for 6 AUTORANGING TIME (Cont'd)

4261 A Settings	Trigger Word for Logic State Analyzer (HP 1601A)	State Code Order
1. FUNCTION: L	260	260
CIRCUIT MODE: SER		266
Unknown: Shorted	1	263
2. TRIGGER: EXT		
RANGE HOLD: ON		
3. Push RESET for LSA.		
4. CIRCUIT MODE: PARA		
RANGE HOLD: OFF		
FUNCTION: C	272	
CIRCUIT MODE: PARA	212	272 273
Unknown: more than $1k\Omega$		274
•		275 227
FUNCTION: L	273	273
CIRCUIT MODE: SER		307
Unknown: $10\Omega < 1 \le 1 \le 1 \le 1 \le 1 \le 1 \le 1 \le 1 \le 1 \le 1$		227
1. FUNCTION: L	301	301
CIRCUIT MODE: AUTO		302
Unknown: more than 1kΩ		303 227
2. TRIGGER: EXT		221
3. Push RESET for LSA.		
4. CIRCUIT MODE: PARA	·	
1. FUNCTION: C	273	273
CIRCUIT MODE: SER	ĺ	. 274
Unknown: Shorted		305
2. RANGE HOLD: ON		
3. Unknown, approx. $0.1 \mu F$, $1 \mu F$ or $10 \mu F$		
4. Push RESET for LSA.		
5. RANGE HOLD: OFF		
1. FUNCTION: L	273	273
CIRCUIT MODE: PARA		307
Unknown: Open		310 305
2. RANGE HOLD. ON		000
3. Unknown: approx. 10mH, 100mH or 1000mH		
4. Push RESET for LSA.		
5. RANGE HOLD: OFF		İ

Table 8-2. ASM Chart Check Procedures (Sheet 11 of 16).

Sequence Check for (1) DNA DETECTION TIME

4261 A Settings	Trigger Word for Logic State Analyzer (HP 1601A)	State Coo	le Order
Normal Operation		22	7
FUNCTION: R	227	230)
CIRCUIT MODE: SER		244 245	
Unknown: Shorted		246	
Olikhown. Shorted		247	
	1	231 241	
		243	3
		311	
1. FUNCTION: R	246	246 256	
CIRCUIT MODE: SER		240)
Unknown Shorted		24: 31	
2. RANGE HOLD: ON		31	L
3. CIRCUIT MODE: PARA		1	
FUNCTION R	246	24 24	
CIRCUIT MODE: SER		250 250	
Unknown: Open		24	
FUNCTION: L	244	244 or	244
CIRCUIT MODE: SER		251 232	$\begin{array}{c} 251 \\ 232 \end{array}$
Unknown: Open		233	253
		234 235	25 4 235
		236	236
		240	240
FUNCTION: L	244	24 25	
CIRCUIT MODE: PARA		25	2 '
Unknown: Shorted		23 23	
	-	23	
FUNCTION: C	230	23	
CIRCUIT MODE PARA		23 23	
Unknown: Open	į	25	3
	İ	25 23	
		23	7
		24	
FUNCTION: C	230	23 23	
CIRCUIT MODE: SER		25	2
Unknown: Shorted		25 25	
FUNCTION: C	237	23	
CIRCUIT MODE: SER		24	ŧU
Unknown: Shorted			
Note: Push RESET for LSA several times			

Table 8-2. ASM Chart Check Procedures (Sheet 12 of 16).

Sequence Check for (1) DNA DETECTION (Cont'd)

4261 A Settings	Trigger Word for Logic State Analyzer (HP 1601A)	State Code Order
 FUNCTION: C CIRCUIT MODE: PARA Unknown: Open RANGE HOLD: ON Unknown: Short 	232	232 - 233 234
1. FUNCTION: L CIRCUIT MODE: SER Unknown: Shorted 2. RANGE HOLD: ON 3. CIRCUIT MODE: PARA	252	252 233 234 256 240
1. FUNCTION: C CIRCUIT MODE: SER Unknown: Shorted 2. RANGE HOLD: ON 3. CIRCUIT MODE: PARA	253	253 255 256
FUNCTION: C CIRCUIT MODE: PARA Unknown: Shorted Note: Push RESET for LSA several times.	234 End Display	227 234
FUNCTION. C CIRCUIT MODE: PARA Unknown capacitor of approx. 1000pF. Check that D value is displayed on front panel. Note: Push RESET for LSA several times.	227	227 234 235 237 242 311

Sequence Check for (8) DISPLAY TIME

Normal Operation		
FUNCTION: C CIRCUIT MODE: PARA Unknown: Open	312 End Display	311 311 312
	315 End Display	312 313 312 314 315
-	317 End Display	315 315 316 317
	321 End Display	317 317 320 321

Table 8-2. ASM Chart Check Procedures (Sheet 13 of 16).

Sequence Check for (8) DISPLAY TIME(Cont'd)

4261A Settings	Trigger Word for Logic State Analyzer (HP 1601A)	State Code Order
*FUNCTION: R CIRCUIT MODE: SER Unknown: Shorted	241 End Display	321 322 323 324 325 336 337 241
*FUNCTION: C CIRCUIT MODE: PARA Unknown: Shorted	325 End Display	325 326 330 331
**FUNCTION: R	241 End Display	321 321 322 323 324 325 336 337 241
**FUNCTION: C CIRCUIT MODE: SER Unknown Open	324	324 325 326 330 374 375
**1. FUNCTION C CIRCUIT MODE: SER Unknown Open 2. Shortcircuit jumper wire W1 on A8 board	324	324 325 326 330 331 336
FUNCTION C CIRCUIT MODE: PARA Unknown Shorted	340 End Display	323 332 333 334 335 340
1. FUNCTION: C CIRCUIT MODE: SER Unknown: Shorted 2. RANGE HOLD: ON 3. CIRCUIT MODE: PARA	340 End Display	323 332 334 335 340
FUNCTION: C CIRCUIT MODE PARA Unknown: Open	340 End Display	333 334 340

Note: Perform tests marked "*" only for units serialed 1545J-00400 and below (instead of test marked "**").

Table 8-2. ASM Chart Check Procedures (Sheet 14 of 16).

Sequence Check for (8) DISPLAY TIME (Cont'd).

4261A Settings	Trigger Word for Logic State Analyzer (HP 1601A)	State Code Order
Test Operation		
TEST 1	325	325 326 327 214

Sequence Check for 9 DATA TRANSFER TIME

Normal Operation		
FUNCTION: C CIRCUIT MODE: AUTO	340	340 341 342 343 344 345
	347 End Display	345 345 346 347
	352 End Display	347 350 351 352
	357 End Display	352 353 355 357
Note Push RESET for LSA several times.	004 End Display	357 357 360 004
Test Operation		
TEST 1	361 End Display	355 356 361
RANGE HOLD: ON	357 End Display	355 356 357

Sequence Check for $(\widehat{\underline{\mathfrak{y}}})\,\text{TEST}\,\,\mathbf{1}\,\,\&\,\,\text{TEST}\,\,\mathbf{2}$

'est Operation		
TEST 1	361	361
FREQUENCY: 1kHz		362 363
		366
	370	366
	End Display	$\begin{matrix} 366 \\ 367 \end{matrix}$
		370
	372 End Display	370 370
		371
	(0.411)	372

Table 8-2. ASM Chart Check Procedures (Sheet 15 of 16).

Sequence Check for (1) TEST 1 & TEST 2(Cont'd)

4261A Settin	g s	Trigger Word for Logic State Analyzer (HP 1601A)	State Code Order
Test Operation TEST 1 FREQUENCY: 1kHz Note: push RES several to	ET for LSA	004 End Display	372 372 373 004
TEST 1 FREQUENCY: 120H	łz	364 End Display	362 363 364
		371 End Display	364 364 365 371

Sequence Check for (1) TEST 1

Test Operation		į
TEST 1	116	116 122
FUNCTION C		123
CIRCUIT MODE: PARA		124
Unknown: Open		134 137
•		140
		117
1. TEST 1	123	123 127
FUNCTION: C		130
TRIGGER: EXT		134
2. Push MANUAL button until 4261A displays $1888 \mu F_{\odot}$		
3. Push RESET for LSA.		
4. Push MANUAL.		
1. TEST 1	123	123
FUNCTION: L		127 133
TRIGGER: EXT		135
 Push MANUAL until 4261A display 1888mH. 		136 137
3. Push RESET for LSA.		
4. Push MANUAL.		
1. TEST 1	123	123
FUNCTION: C	'	127 130
TRIGGER: EXT		131
Push MANUAL until 4261A display 1888n F (Cp).		132 137
3. Push RESET for LSA.		
4. Push MANUAL.		

Table 8-2. ASM Chart Check Procedures (Sheet 16 of 16)

Sequence Check for (1) TEST 1 (Cont'd).

4261A Settings	Trigger Word for Logic State Analyzer (HP 1601A)	State Code Order
 TEST 1 FUNCTION: L FREQUENCY: 1kHz TRIGGER: EXT Push MANUAL until 4261A display 188.8H Push MANUAL one more time. 4261A still displays 188.8H. Push RESET for LSA. 	123	123 127 133 134 137
5. Push MANUAL. 1. TEST 1 FUNCTION L FREQUENCY: 1kHz TRIGGER: EXT 2. Push MANUAL until 4261A displays no numeric display. 3. Push RESET for LSA. 4. Push MANUAL.		122 125 126 137
1. TEST 1 FUNCTION: C FREQUENCY: lkHz TRIGGER: EXT 2. Push MANUAL until 4261A displays no numeric displays. 3. Push RESET for LSA, 4. Push MANUAL.	122	122 125 136 137
TEST 1 RANGE HOLD ON	116	116 117

Sequence Check for (1) TEST 1

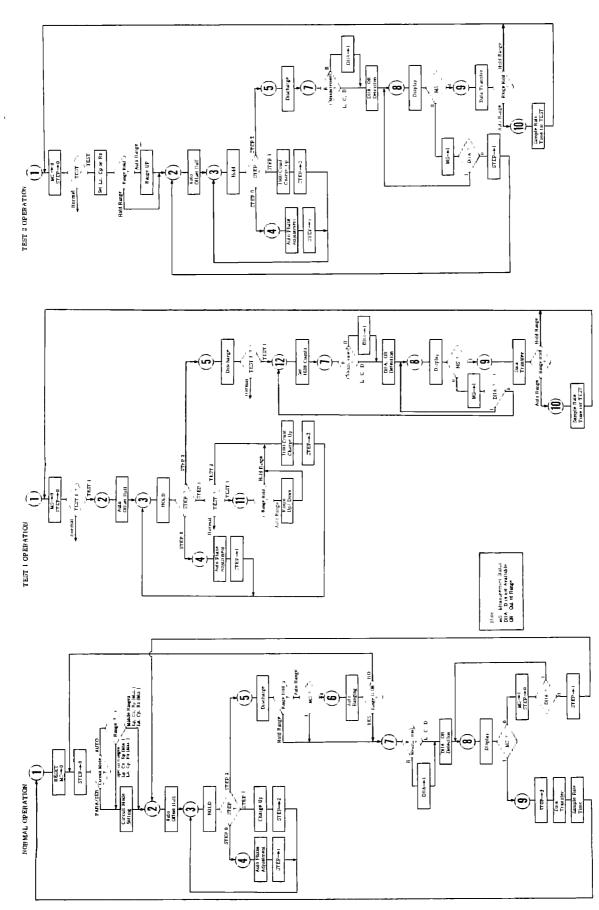
Test Operation		
TEST 1	214	214 215 216
	217 End Display	216 216 127
	220 End Display	217 217 220
-	221 End Display	220 220 221
_	227 End Display	221 221 222 223 227

Digital Section Troubleshooting Using Logic State Analyzer.

A logic state analyzer (for example the HP 1601A or 1600A) is very convenient for troubleshooting the 4261A ROM centered (state machine) logic circuitry. Figure 8-6 and Table 8-2 are provided to assist you in this kind of troubleshooting. Figure 8-6 is complete set of flow diagrams (ASM charts) for the 4261A. It also includes summarized flow diagrams for normal, Test 1, and Test 2 operations. Table 8-2 provides ASM chart check procedures that test all the flows included in Figure 8-6. Troubleshooting, using the logic state analyzer, should be done after the defective component is isolated to the digital section.

How to connect logic state analyzer to the 4261A: Although data inputs can be monitored directly at the pins of A8U8 (input address bits IPB0 thru IPB7) using the input probes of the logic state analyzer, it is recommended that the Service Cable (HP F N: 04261-65001) be connected to the spare jack (A8J1) on the A8 board and logic state analyzer input probes be connected to each cable line (see Figure 8-14). Clock inputs should be taken from A7TP2 (state clock 1).

How to troubleshoot: When the measurement is being repeated (trigger lamp turns on and off), first set the trigger word to 004 in octal and check the ASM chart. Then repeat the test, increasing the trigger word, so that the measurement sequence is excuted according to the front panel conditions (control settings, displays and the unknown device). The trouble may be located in the circuit corresponding with the signal that generates the flow that is inconsistent with front panel conditions.


If the measurement can not be repeated, set 4261A TRIGGER to EXT and the logic state analyzer SAMPLE MODE to SINGLE. The logic state analyzer can now check that the flow shown in the ASM chart block (() thru ($\widehat{\imath}$) in Figure 8-6) is or is not being excuted when the trigger word is set to the last word of the chart block and the 4261A MANUAL button is operated (the trigger word will be displayed on the logic state analyzer if the chart block is properly excuted). By doing this check, starting from ASM chart block ($\widehat{\imath}$), the trouble may be in the logic circuitry that corresponds to the chart block which does not excute. Locate that line in the abnormal chart block that halts the sequence. Check the circuitry that corresponds to the signal that halts the sequence.

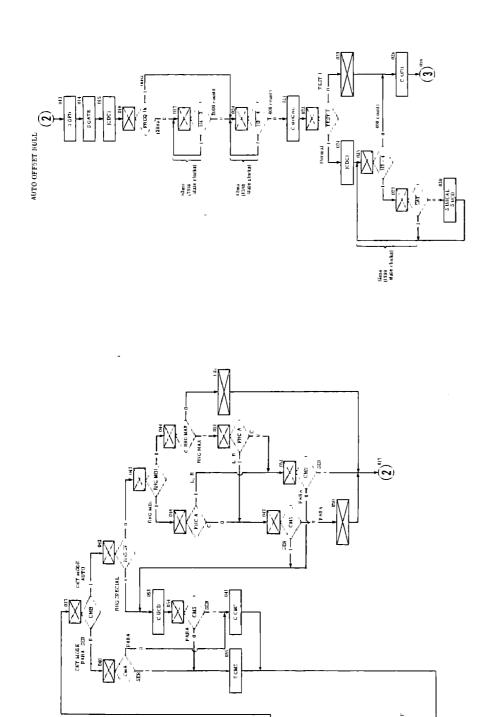
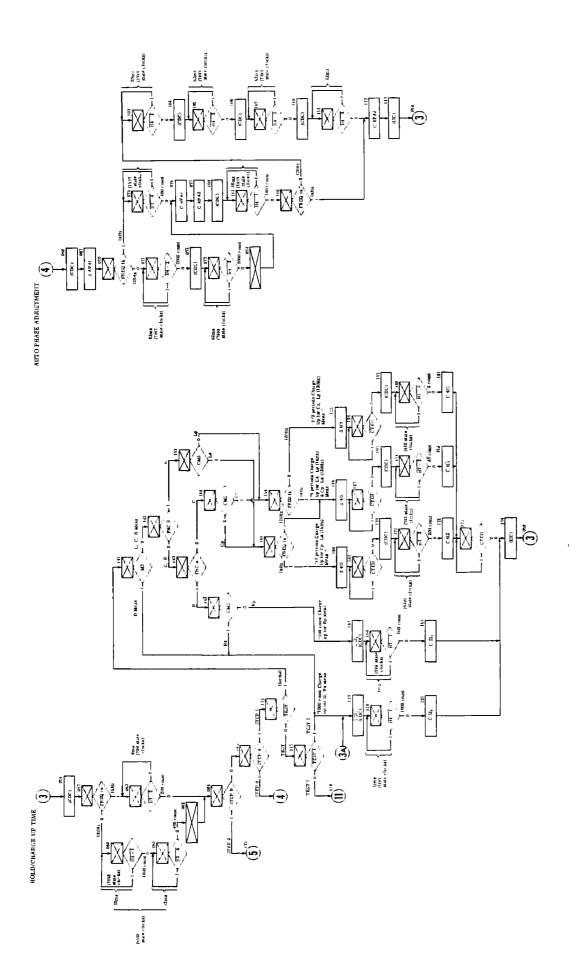
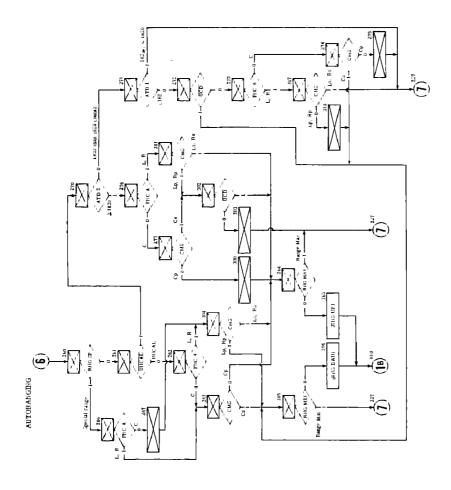
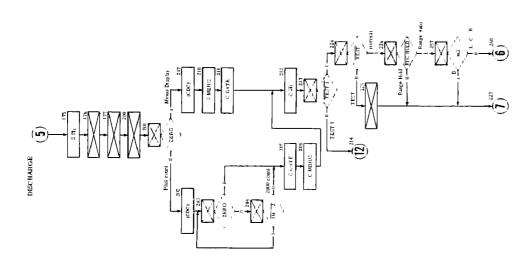

Note ASM CHART SYMBOLS *1. State code is represented in the octal system. STATE BOX *2. State output signals are those State Code (Address)*1 outputted from A8U5, U10 and U17, and expressed, for example, as follows: STATE DESCRIPTION State Output *2 OUTPUT Set FLAG signal output to State Exit Path S FLAG its true level. Clear FLAG signal output STATE DECISION BOX C FLAG to its false level. (L5C 0) Pulsed LSC 0 output signal to load zero to step counter. *3. Condition (signal in decision box) Condition*3 is the signal inputted into A8UL multiplexer. State code is incremented by one when QUAL (qualifier) signal at A8TP1 is at high level ("0" is denoted in the chart), and remains at or jumps if $\overline{ ext{QUAL}}$ Condition False Exit Path. signal is at low ("1" is denoted in Condition True Exit Path. the chart).

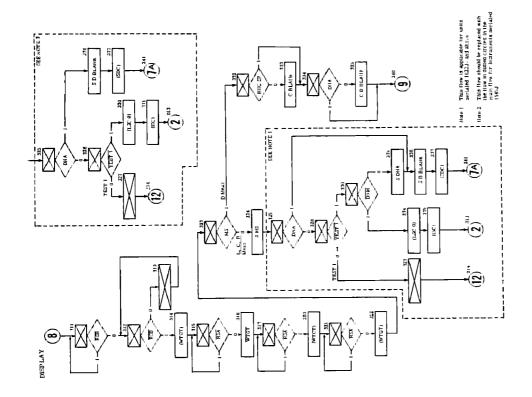
Figure 8-6. ASM Chart (Sheet 1 of 7).

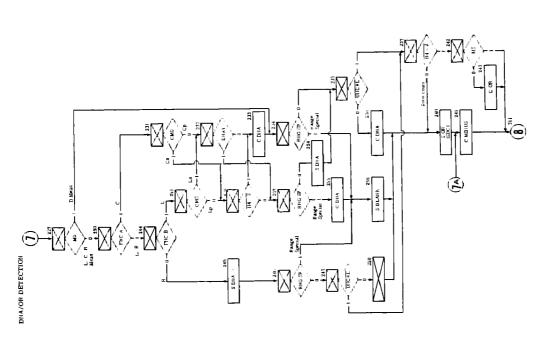
or TEST 2 operations.

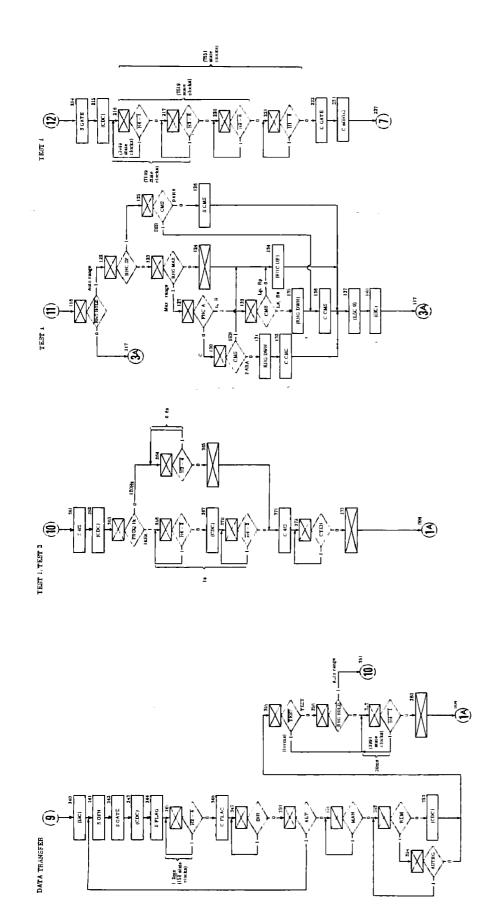

Shadowed part of ASM chart is excuted only during TEST 1






(3)


BITTIAL CONDITION SETUP



8-28. TROUBLESHOOTING.

CAUTION

THE OPENING OF COVERS OR RE-MOVAL OF PARTS, EXCEPT THOSE TO WHICH ACCESS CAN BE GAINED BY HAND, IS LIKELY TO EXPOSE LIVE PARTS; IN ADDITION, ACCES-SIBLE TERMINALS MAY ALSO BE LIVE.

THE APPARATUS SHALL BE DISCONNECTED FROM ALL VOLTAGE SOURCES BEFORE ANY ADJUSTMENT, PARTS REPLACEMENT OR MAINTENANCE AND REPAIR ARE PERFORMED FOR WHICH THE APPARATUS MUST BE OPENED.

IF, AFTERWARDS, ANY ADJUST-MENT, MAINTENANCE OR REPAIR OF THE OPENED APPARATUS UNDER VOLTAGE IS REQUIRED, IT SHALL BE CARRIED OUT ONLY BY A SKILLED PERSON WHO IS AWARE OF THE HAZARD INVOLVED.

8-29. Figure 8-8 "How to Use Troubleshooting Guides" is helpful when starting to troubleshoot the 4261A. Charts and diagrams to assist in troubleshooting are provided in this section under "Theory of Operation" and include:

Simplified Block Diagram	Figure 8-1
Analog Section Detailed Block Diagram	Figure 8-3
Digital Section Detailed Block Diagram	Figure 8-4
Timing Diagram	Figure 8-5
Logic Flow Diagrams (ASM Charts)	Figure 8-6

Table 8-1 Mnemonics Information will also be helpful in troubleshooting. The troubleshooting guide in Figure 8-9 first isolates the power supply or option sections from an overall unit and then describes how to tell whether the faulty assembly is located in the analog or digital section. Figure 8-7' describes typical front panel symptoms present when 4261A internal controls are not well-adjusted. A search for and interpretation of trouble symptoms by operating front panel controls is very important and often gives hints as to trouble location. For example, if the problem only occurs when FREQUENCY control is set to 120Hz, it is obvious you need only check the section which develops the test frequencies or which controls these frequencies. Figure 8-9 is an example of such approach to troubleshooting. Table 8-3, which employs the built-in self test functions, is also helpful in overall troubleshooting. Refer to paragraph 8-35 to learn about self-test. Figure 8-10 isolates a faulty board assembly in the analog section, and Figure 8-11 checks whether the A1, A2 or A10 boards are malfunctioning or not. Figure 8-12 and Table 8-2 are troubleshooting guides for the state machine section (A3, A7 and A8 boards) and assist in locating a malfunctioning part to the component level. This guide should used even when the trouble remedy specified is, for example, board replacement. Component level troubleshooting guides are outlined in service sheets for each major assembly (other than for A7 and A8 boards).

CAUTION

A3 THRU A9 BOARDS (P/N's 04261-77003 THRU 04261-77009) INSTALLED IN 4261A'S SERIALED 1545J-00400 AND BELOW ARE COATED WITH SILICONE EXCEPT FOR TEST POINTS AND BOARD PIN CONNECTORS. MONITORING OF THESE CIRCUITS SOMETIMES CAN NOT BE DONE WITH A VOLTMETER, OSCILLO-SCOPE OR OTHER TEST EQUIPMENT UNLESS THIS PROTECTIVE COAT-ING IS FIRST REMOVED. IN ORDER TO PREVENT DEGRADING PERFOR-MANCE IN HIGH HUMIDITY AREAS, THE COATING MUST BE REPLACED AFTER REPAIR.

A10 BOARD (P/N: 04261-77010) IN ALL INSTRUMENTS IS COATED WITH SILICONE AFTER APPLICATION OF THE SOLDER RESISTIVE MASKING.

A1 (P/N: 04261-77001), A2 (P/N: 04261-77002), A21 (P/N: 04261-77021) AND A22 (P/N: 04261-77022) BOARDS ARE NOT COATED WITH SILICONE.

8-30. How to Isolate Trouble to Either Analog or Digital Sections.

8-31. Follow the troubleshooting procedure in Figure 8-8 which provides specific instructions for isolating the Analog and Digital sections from each other.

WARNING

WHENEVER IT IS LIKELY THAT THE PROTECTION PROVIDED BY THE FUSES HAS BEEN IMPAIRED, THE INSTRUMENT MUST BE MADE INOPERATIVE AND MUST BE SECURED AGAINST ANY UNINTENDED OPERATION.

CAUTION

CAPACITORS INSIDE THE INSTRU-MENT MAY STILL BE CHARGED EVEN IF THE INSTRUMENT HAS BEEN DISCONNECTED FROM ALL VOLTAGE SOURCES.

BE SURE THAT ONLY FUSES OF THE REQUIRED RATED CURRENT AND OF THE SPECIFIED TYPE ARE USED FOR REPLACEMENT. THE USE OF MENDED FUSES AND THE SHORT-CIRCUITING OF FUSE HOLDERS MUST BE AVOIDED.

Misadjusted Control	Symptom
A4R87 (OFFSET)	When Cp TEST SIG LEVEL is set to 50mV, autoranging operation sometimes does not work well. DC level at A4TP3 varies on each range.
A5R31 (OFFSET-1)	Measurement accuracy when measuring as series equivalent is sometimes lower (due to improper dc level at A5TP3).
A5R40 (OFFSET-2)	Measurement error when measuring as parallel equivalent is sometimes excessive (due to improper dc level at A5TP3) especially when Cp TEST SIG LEVEL is set to 50mV.
A5R54 (OFFSET-3)	Measurement accuracy will decrease when offset voltage at A5TP3 is not 0 volts. This is usually more noticeable when Cp TEST SIG LEVEL is set to 50mV.
A5R84 (OFFSET-4)	D measurement error sometimes exceeds specifications (impossible to automatically adjust the detection phase of phase detector). This symptom is present when auto phase signal adjustment at A6TP3 exceeds 0 ±3 volts.
A6R65 (ZERO OFFSET)	Measurement errors for both LCR and D values have increased. The error is maximum for a 2000 count displays for either Cs, Lp and Rp measurements.
A6R67 (PHASE OFFSET)	D measurement has significant error (detection phase error).
-A9R6 (+12V ADJ.)	DC supply voltages at A9TP4 (+12V), A9TP5 (-12V) and A9TP6 (+5V) have shifted to improper dc levels.

Figure 8-7. Front Panel Symptoms of Internal Control Misadjustment.

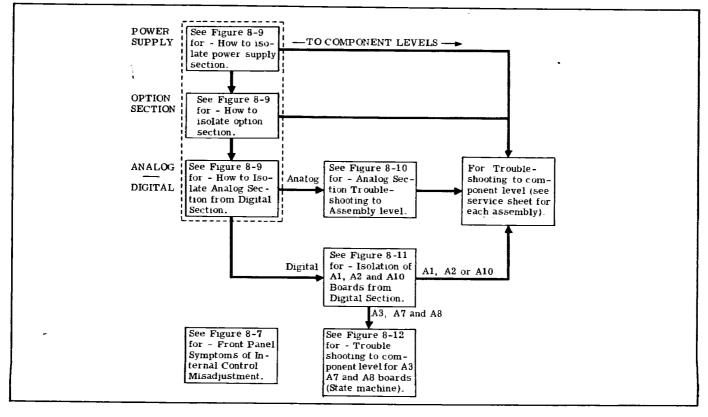


Figure 8-8. How to Use Troubleshooting Guides.

The following is a complete list of control signals from the digital circuits (A3, A7 and A8 boards) to the analog section:

TLL R100k, R10k, R1k, R100, R10	A3 → A4
V TEST	A3 → A5
PHASE 0, PHASE π , 2, PHASE π , PHASE 3, 2	A3 → A6
SI	A7→ A6
ŌFÑ	A8→ A5
OFNA	A8→(A5)→A6
APA 1, APA 2	A8→ A6

Only three signals are fed from the analog section (A4, A5 and A6 boards) to the digital section. These are.

SAT	 A5-►A8
4f	A6→A7
ZERO	AU-PAI

8-32. Troubleshooting Analog Section to Assembly Level.

8-33. Follow the troubleshooting procedures in Figure 8-10 Analog Section Troubleshooting Guide to isolate an analog fault to a board assembly. Troubleshooting to component level is covered in the service sheet for each assembly.

8-34. Digital Section Troubleshooting.

8-35. Figures 8-11, 8-12 and Table 8-2 are troubleshooting guides for isolating A1, A2 and A10 boards from the digital section and provide help in locating the defective part in the state machine consisting of the A3, A7 and A8 board circuitry. Refer to the individual service sheet in this section for component level troubleshooting for the A1, A2, A3 or A10 Final troubleshooting to the component level is covered in Figure 8-12 for the A3, A7 and A8 boards since these boards comprise the state machine in which it is difficult to isolate a defective part. Troubleshooting data for these boards is not provided in individual service sheets, so Figure 8-12 should be referred to when troubleshooting boards A3, A7 and A8 to the component level. Figure 8-6 also gives digital section troubleshooting using a logic state analyzer and the complete ASM chart. When using Figure 8-6, the Table 8-2 ASM chart check procedures will be helpful in troubleshooting.

8-36. Built-in Self Test Function.

8-37. The 4261A has a built-in self test function that checks whether the analog or digital section is working properly or not. To perform a self test, the slide switch mounted on the A8 board assembly (04261-77108) must be set to the proper position. Test operations are continuously repeated when EXT TRIGGER is set to INT; so it is usually better to set the TRIGGER selector to EXT and, for easy observation of front panel display, to advance the operation step-by-step with the MANUAL pushbutton. The following paragraphs explain self tests 1 and 2.

8-38. TEST 1 is a test position for the digital circuitry and almost all the digital circuitry can be checked merely by observing the front panel displays.

TEST 1 can be done without regard to the analog signal section except that the sample rate time is shortened when the 4f signal is not inputted. Thus, if the TEST 1 results are false, the trouble is probably located in the digital circuitry. Conversely, if TEST 1 results are true, the electrical defect can usually (but not always) be isolated to the analog circuits. TEST 1 permits a constant 1888 counts to the counter and displays these counts for each measurement range with the decimal point inserted as appropriate. The range is stepped automatically. Thus, if the range does not step properly in this test, the trouble may be in the autoranging circuit. Table 8-3 shows the display sequence for TEST 1 and TEST 2 for each function with the condition at the UNKNOWN terminals. Figure 8-6 shows flow diagrams for both TEST 1 and TEST 2.

8-39. TEST 2 is designed to check the analog circuitry. If the digital section is functioning satisfactorily and analog circuitry is not defective, front panel display will follow Table 8-3. TEST 2 integrates the reference signal for a period of 1000 counts and discharges the integrator with the same reference signal. The eref signal is phase-detected as an in-phase signal with respect to eref for LCR measurements and is phase-shifted by $\pi/2$ (= 90°) with respect to \boldsymbol{e}_{ref} for D measurements. Therefore, the LCR display will be about 1000 counts and the D display will be about 0 counts (if the phase error of the detecting signal is very small). This operation is performed sequentially for each range and includes an Ls, Cp and Rs test. Unknown connectors should be shorted together to perform TEST 2 for LR FUNCTIONS and open for a C FUNCTION test. If the results of TEST 1 are good and those of TEST 2 abnormal, the analog circuits are probably defective. LCR display must show 1000 counts ±5 counts and D display must show $0 \sim 5$ counts. If the displays are out of these ranges, the 4261A may not satisfy its measurement specifications. Successful results of both tests does not necessarily mean that the 4261A meets all its specifications even though the counts are within the above limits. However, what it does mean is that, if any one range displays 1000 counts on LCR display and 0 counts on D display, respectively, then the A5 circuitry (after signal selector), A6 phase detector, integrator and zero detector are probably normal.

8-40. If TEST 1 is normal and TEST 2 is attempted on normal ranges when the ZERO signal from the analog section remains continuously at LOW level, the display will always read 1999 counts. If ranging is abnormal under these conditions, the display will be blank. Conversely, if the conditions are the same as above except that the ZERO signal remains continuously at HIGH level, then the display results for TEST 2 will be as shown in the table which follows:

FUNCTION	Unknown	Display
L 'R	Open	1999 counts
L R	Short	-000
C	Open	-000
C	Short	1999

If ranging is abnormal under these conditions, the display will be blank.

Note

When LCR display shows -000 counts, D display is blanked.

Even if a 4f signal is not received by the digital section, both TEST 1 and 2 will appear normal except that the sample rate time will decrease.

8-41. RECOMENDED TEST EQUIPMENT.

8-42. Since a logic state analyzer is usually used when monitoring the state codes of the state machine for troubleshooting the logic circuitry, Hewlett-Packard provides a service cable which is helpful in connecting 4261A circuits to the logic state analyzer input cables. The HP part number for this cable is 04261-65001. Figure 8-14 is an illustration of the cable connections to HP logic state analyzer input cables. Extender Board P N 5060-4017, is useful for troubleshooting, and is available from Hewlett-Packard. The extender is listed in Table 1-4.

8-43. Table 1-5 lists all test equipment used for the troubleshooting outlined in this section. Hewlett-Packard often prepares a board kit or a spare parts kit to assist in troubleshooting and to reduce repair time. Contact your nearest HP office for information.

8-44. REPAIR.

8-45. Q1 Removal.

- a. Remove Q1 transistor cover (rear panel).
- b. Remove Q1 from rear panel by removing its two mounting screws.
- c. Install new Q1.
- d. Replace cover.

8-46. Removal of Q2 or Q3.

- a. Remove top cover from instrument.
- b. Remove the two transistor mounting screws.
- c. Lift out transistor.
- d. Install new transistor.

8-47. Removal of CR1 thru CR3.

a. Remove top and bottom covers from instrument.

Note

If any option is installed in instrument, remove flat cable from rear connector assembly.

- b. Unsolder diode wire lead.
- c. Remove 3/8" nut with hex driver.

- d. Install new diode.
- e. Solder lead to diode and mount diode on deck.

8-48. Removal of A1 Switch Board.

Note

Removal procedure for A2 Display board is printed on the angle blacket of A2 board. Remove top cover to locate and read these instructions.

- a. Remove top cover from the instrument.
- Remove both adhesive side trim strips from front frame.
- c. Remove the four screws from side frames.
- d. Pull front panel slightly forward.

Note

Do not use excessive force or wire connections to unknown terminals may break.

- e. Remove MANUAL switch mounting nut from front panel. Use 5/16 inch hex driver.
- Remove the A3 board by disconnecting the three flat cables.
- g. Remove the three screws which mount the A1 switch board to the front panel. A screw driver should be inserted in the opening between A3 board and front frame.
- Remove A1 board flat cable connector from A10 mother board.
- 1. Push A1 board to rear and lift out.

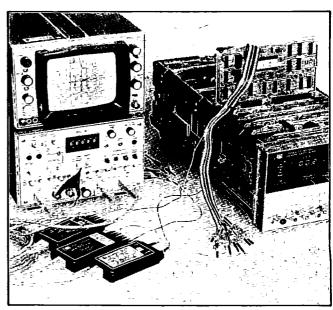
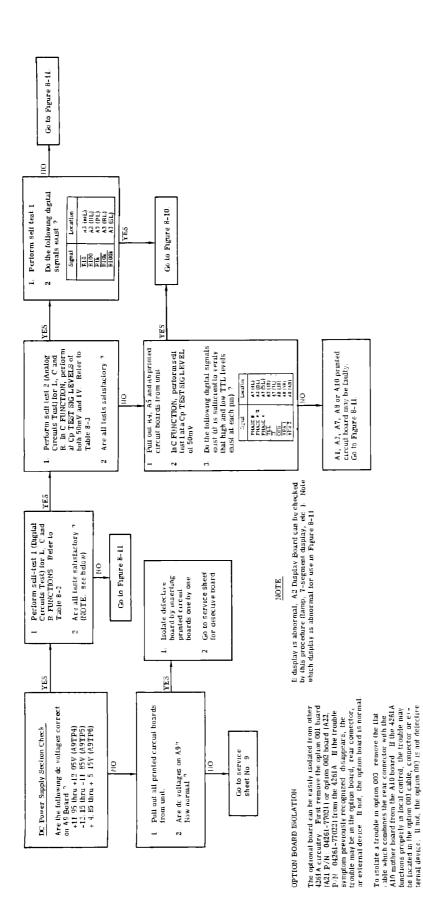


Figure 8-13. Service Cable Connections.

8-49. PRODUCT SAFETY CHECKS.


WARNING

WHENEVER IT APPEARS LIKELY THAT SAFETY PROTECTIVE PROVISIONS HAVE BEEN IMPAIRED, THE APPARATUS SHALL BE MADE INOPERATIVE AND BE SECURED AGAINST ANY UNINTENDED OPERATION. THE PROTECTION IS LIKELY TO BE COMPROMISED IF, FOR EXAMPLE:

- -- THE APPARATUS SHOWS VISIBLE DAMAGE.
- -- THE INSTRUMENT FAILS TO PERFORM THE INTENDED MEAS-UREMENT.
- -- THE UNIT HAS UNDERGONE PRO-LONGED STORAGE UNDER UN-FAVORABLE CONDITIONS.
- -- THE INSTRUMENT HAS SUFFERED SEVERE TRANSPORT STRESS.

8-50. The following five checks are recommended to verify the product safety of the 4261A LCR Meter (these checks may also be done to check for product safety after troubleshooting and repair). When such checks are needed, perform the following:

- 1. Visually inspect interior of instrument for any signs of abnormal internally generated heat, such as discolored printed circuit boards or components, damaged insulation, or evidence of arcing. Determine and remedy cause of any such condition.
- 2. Using a suitable ohmmeter, check resistance from instrument enclosure to ground pin on power cord plug. The reading must be less than 0.5 ohm. Flex the power cord while making this measurement to determine whether intermittent discontinuities exist.
- 3. Check GUARD terminal on front panel using procedure (2).
- 4. Disconnect instrument from power source. Turn power switch to on. Check resistance from instrument enciosure to line and neutral (tied together). The minimum acceptable resistance is two megohms. Replace any component which fails or causes a failure.
- 5. Check line fuse to verify that a correctly rated fuse is installed.

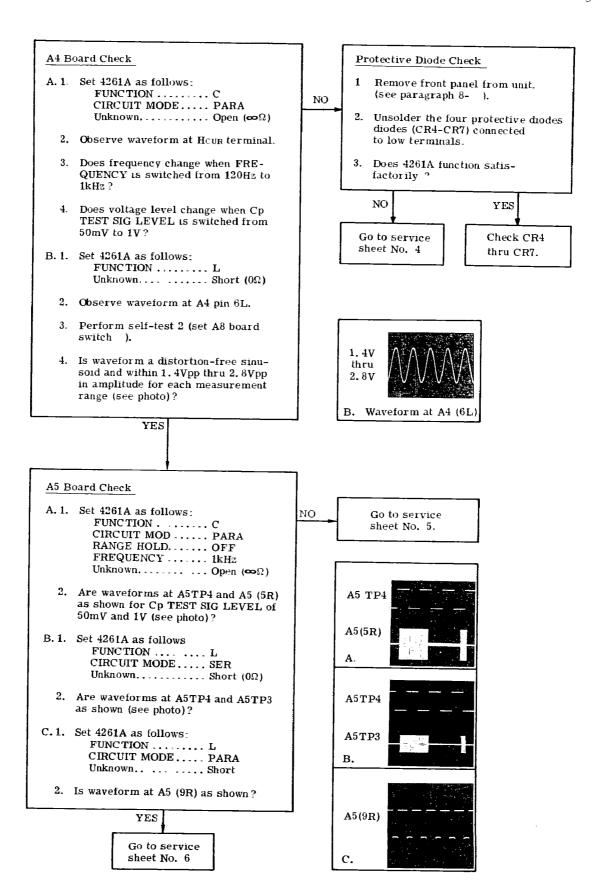
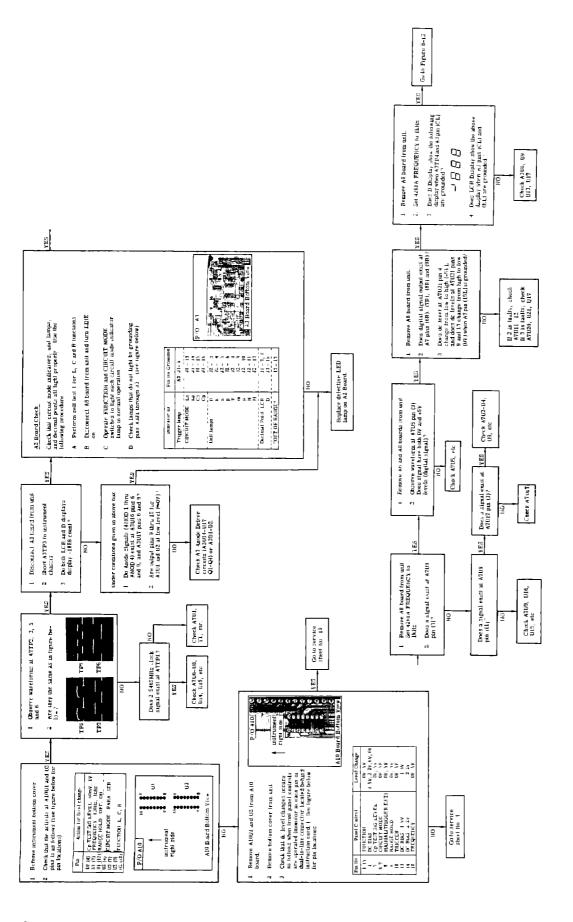
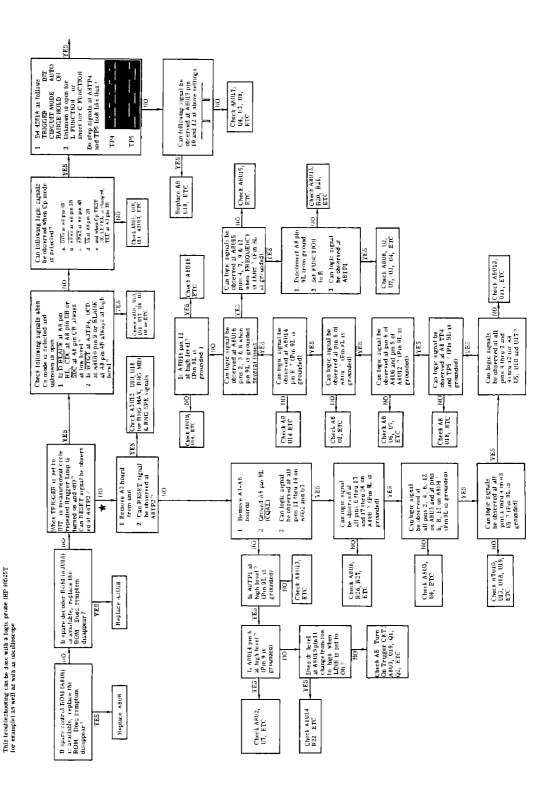




Figure 8-10. Analog Section Troubleshooting to Assembly Level.

Model 4261A

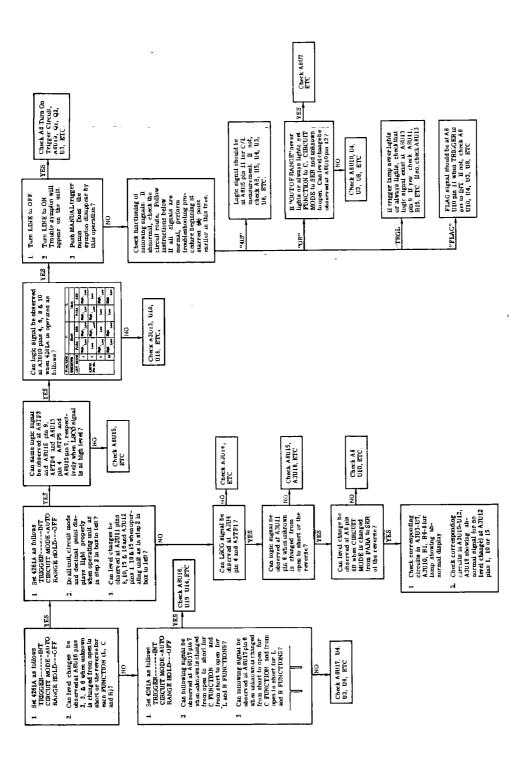


Figure 8-12. Troubleshooting to Component Level for A3, A7 and A8 Boards.

Table 8-3. Self Test Display Sequences (Sheet 1 of 2).

Note

- 1. It is easier to read display sequences with TRIGGER set to EXT and operating MANUAL button.
- 2. RANGE HOLD should be set to OFF for all display sequences.
- 3 TEST 1 is not affected by conditions at UNKNOWN terminals (shorted, DUT connected or otherwise).
- 4. In a TEST 2 operation, when Unknown terminals are open in L R FUNCTION or shorted in FUNCTION C, both 4261A displays will show 1999 counts and OUT OF RANGE lamp will be lit (except when sequencing produces an OUT OF RANGE condition --- here, display will be blanked).

TEST 1, FUNCTION L

]	FREQUE	NCY: 120H	z	FREQUENCY. 1kHz			
	L Display	Unit		D Display	L Display	Unit		D Display
	1888	μ H		1.888	188.8	μΗ		1.888
	18.88	mН		1.888	1888	μ H		1.888
Ls	188.8	mH		1.888	18.88	mH		1.888
	1888	mH		1.888	188.8	mH		1.888
	18.88	Н		1.888	1888	mH		1.888
	1888	mH		1 888	188.8	mH		1.888
	18.88	Н		1,888	1888	mH		1.888
	188.8	н		1.888	18.88	н		1.888
Lp	1888	Н		1.888	188.8	Н		1.888
	1888	н		1.888	188.8	н		1.888
	(Blank)	μ H	OUT OF RANGE	(Blank)	(Blank)	$\mu \mathbf{H}$	OUT OF RANGE	(Blank)

TEST 1. FUNCTION: C

		FREQUE	NCY: 120H	Z	FREQUENCY: 1kHz			
	C Display	Unit		D Display	C Display	Unit		D Dïsplay
	1888	pF		1.888	188.8	pF		1.888
	18.88	nF		1.888	1888	$p\mathbf{F}$		1.888
Сp	188.8	nF		1.888	18.88	nF		1.888
•	1888	nF		1.888	188.8	n F		1.888
	18.88	μ F		1.888	1888	nF		1.888
-	1888	$_{ m nF}$		1.888	188.8	nF		1.888
	18.88	$\mu \mathbf{F}$		1.888	1888	$n\mathbf{F}$		1.888
	188.8	$\mu \mathbf{F}$		1,888	18.88	$\mu \mathbf{F}$		1.888
Cs	1888	$\mu_{\mathbf{F}}$		1.888	188.8	$\mu \mathbf{F}$		1.888
	18.88	$_{ m mF}$		1.888	1888	$\mu {f F}$		1.888
	(Blank)	рF	OUT OF RANGE	(Blank)	(Blank)	$p\mathbf{F}$	OUT OF RANGE	(Blank)

Table 8-3. Self Test Display Sequences (Sheet 2 of 2).

TEST 1. FUNCTION: R

	FREQU	ENCY: 1	20 1kH::
	R Display	Unit	
1	1888	mΩ	
	18.88	Ω	
Rs	188.8	Ω	
	1888	Ω	
ļ	18.88	$k\Omega$	
1	1888	Ω	
	18.88	kΩ	
	188.8	kΩ	
Rp	1888	kΩ	İ
	18.88	$\mathbf{M}\Omega$	
	(Blank)	mΩ	OUT OF RANGE

TEST 2. FUNCTION: R, Unknown: Short

	FREQUENCY 120 1kHz							
	R Display	Unit						
†	1000 ±5	mΩ						
	10 00 ±5	Ω						
	100.0 ±5	Ω						
	1000 ±5	Ω						
Rs	10 00 ±5	$\mathbf{k}\Omega$						
	(Blank)	kΩ	OUT OF RANGE					
	(Blank)	kΩ	OUT OF RANGE					
	(Blank)	МΩ	OUT OF RANGE					

TEST 2. FUNCTION: L, Unknown: Short

		NCY 120Hz		FREQUENCY: 1kHz				
	L Display	Unit		D Display	L Display	Unit		D Display
1	1000 ±5	μ H		000 +5	100.0 ±5	μН		. 000 ⁺⁵ -0
	10.00 ±5	mH		000 ⁺⁵ -0	1000 ±5	μН		. 000 ⁺⁵ -0
	100 O ±5	mH		000 ⁺⁵ -0	10.00 ±5	mH		- 000 ⁺⁵ -0
	1000 ±5	mH		000 ⁺⁵ -0	100.0 ±5	mH		. 000 +5 -0
Ls 	10.00 ±5	н		000 ⁺⁵ -0	1000 ±5	mH		. 000 ⁺⁵ -0
	(Blank)	Н	OUT OF RANGE	(Blank)	(Blank)	н	OUT OF RANGE	(Blank) -
	(Blank)	Н	OUT OF RANGE	(Blank)	(Blank)	н	OUT OF RANGE	(Blank) -
	(Blank)	Н	OUT OF RANGE	(Blank)	(Blank)	н	OUT OF RANGE	(Blank)

TEST 2. FUNCTION C, Unknown: Open

	FREQUENCY 120Hz			FREQUENCY: 1kHz				
	C Display	Unit		D Display	C Display	Unit		D Display
1	1000 ±5	рF		000 ⁺⁵ -0	100.0 ±5	pF		. 000 ⁺⁵ -0
	10.00 ±5	n F		000 ⁺⁵ -0	1000 ±5	pF		. 000 ⁺⁵ -0
	100 O±5	n F		000 ⁺⁵ -0	10.00 ±5	nF		. 000 +5
	1000 ±5	n F		0 00 +5 -0	100, 0 ±5	nF		. 000 ⁺⁵ -0
Cp	10.00 ±5	$\mu \mathbf{F}$		000 ⁺⁵ -0	1000 ±5	nF		. 000 +5
	(Blank)	μ F	OUT OF RANGE	(Blank)	(Blank)	μ F	OUT OF RANGE	(Blank) "
	(Blank)	$\mu {f F}$	OUT OF RANGE	(Blank)	(Blank)	μF	OUT OF RANGE	(Blank) -
	(Blank) -	m F	OUT OF RANGE	(Blank)	(Blank)	$\mu \mathbf{F}$	OUT OF RANGE	(Blank)

Figure 8-14. Schematic Diagram Notes.

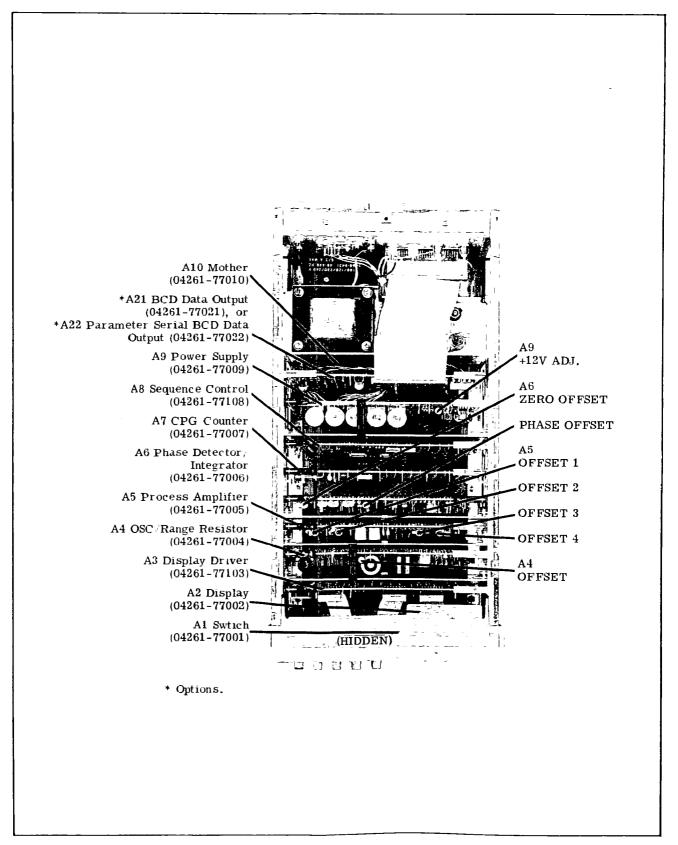


Figure 8-15. Assembly and Adjustment Locations. (Top Internal View)

Section VIII

1, A1

CIRCUIT DESCRIPTION

The A1 Switch Board Assembly consists of seven slide switches and one normally open pushbutton switch which control various measurement functions of the 4261A. The control signals set by the switches are transferred to A10 Mother board assembly through a 16-line flat cable (A1W1). Local control by the Al board assembly is only disabled when 4261A Option 003 or 101 are installed and an external device controls the 4261A. The control signals transmitted to A10 Mother board have the electrical conditions shown in table. An external encode $(=\overline{EXE})$ signal is generated when either FREQUEN-CY, CP TEST SIG LEVEL, FUNCTION, CIRCUIT MODE or the RANGE HOLD control is changed to any other setting or when MANUAL pushbutton is depressed and released. An EXE signal resets all the 4261A circuits and starts the measurement. The GND line is connected to instrument chassis through the A10 Mother board.

TROUBLESHOOTING INFORMATION

A1 Switch Removal Procedure is given in paragraph 8-48.

Al Switch Check.

Check voltages at A1W1 connector pins (component side of A1) with oscilloscope to verify they follow above table when controls are set to the various positions. The trouble could be, for example, the wearing away of switch board pattern or the loss spring tension in switch.

Table A. Front Panel Control Signals.

Signal and		FREQUENCY		
Connector Pir	No.	120Hz	1kHz	
FREQ 1kHz (= FREQ)	16	High	Low	

Signal and Connector Pin No.		Cp TEST SIG LEVEL		
		50mV	1 V	
Test Level Low (= TLL)	5	High	Low	

Signal and Connector Pin No.		DC BIAS					
		EXT	OFF	1.5V	2. 2V	6V	
REF Voltage 2		0V	0 V	1.5V	2. 2V	6V	
BIAS	3	Voltage applied to EXT BIAS input at rear panel.	0V	1.5V	2.2V	6V -	
Internal Bias (= INT B)	4	0 V	ov	1.5V	2.2V	6 V	
External B1as (= EXT B)	12	Voltage applied to EXT BIAS input at rear panel.	Voltage applied to EXT BIAS input at rear panel.	Voltage applied to EXT BIAS input at rear panel.	Voltage applied to EXT BIAS input at rear panel.	Voltage applied to EXT BIAS input at rear panel.	
BIAS 1.5V	13	0 V	ov	1.5V	0 V	0V	
BIAS 2.2V	14	0V	0 V	ov	2.2V	0V	

Signal and	d t	TRIGGER		
Connector Pi	n No.	INT	EXT	
MANUAL	10	High	Low	

Signal and		FUNCTION			
Connector Pir	No.	L	С	R	
FUNCTION A	1	High	Low	High	
FUNCTION B (= FNC B)	15	High	Low	Low	

Signal and Connector Pin No.		CIRCUIT MODE			
		AUTO	PARA	SER	
Circuit Mode A (= CMA)	6	Hìgh	Low	Hıgh	
Circuit Mode B (= CMB)	7	Hıgh	Low	Low	

Signal and		RANGE HOLD		
Connector Pin 1	No,	OFF	ON	
Range Hold	9	Hıgh	Low	

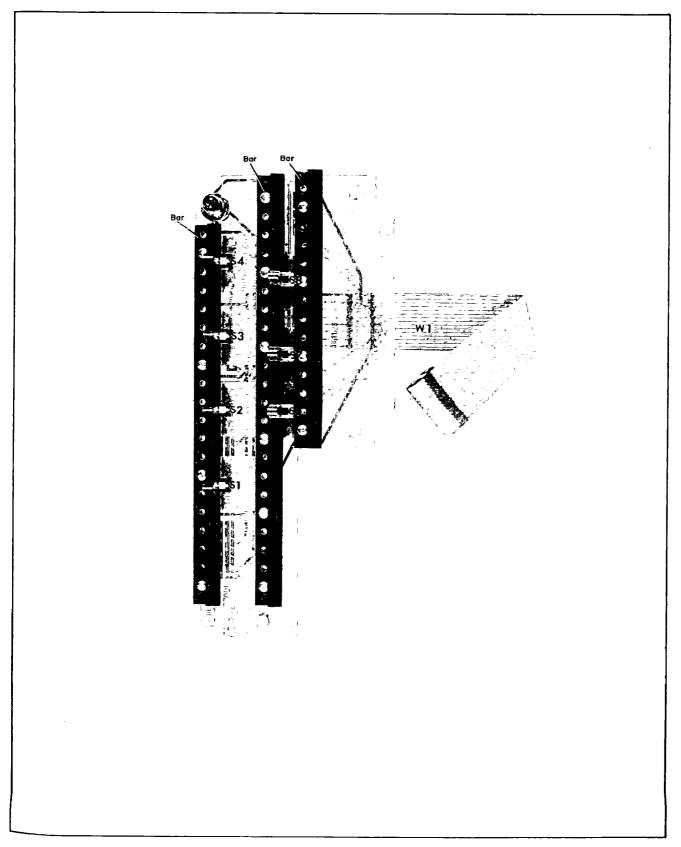


Figure 8-16. A1 Switch Board Assembly Component Locations.

2. AIWI includes connector plus flat cable NC means No Connection. | FREQUENCY | 1kHz | 1kHz | DC BLAS | OFF

T DC BIAS

1. This schematic shows circuit condition that exist when front panel controls are set as follows:

Note

Figure 8-17, Al Switch Board Assembly Schematic Diagram.

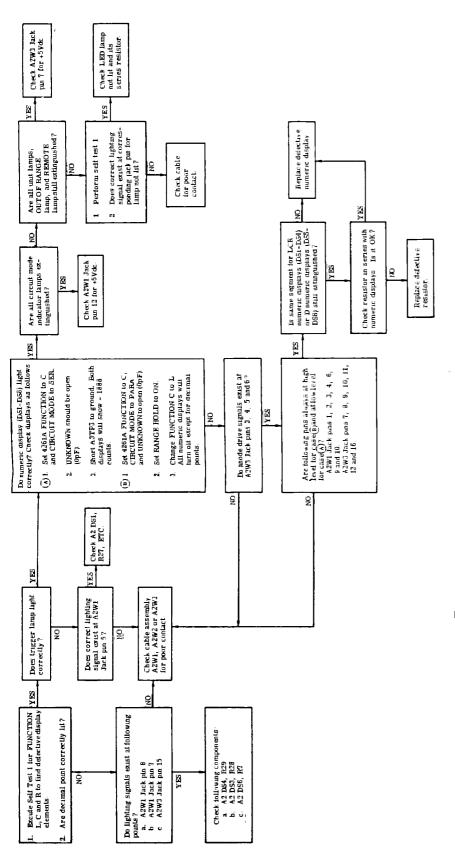


Figure 8-18. A2 Display Board Troubleshooting Guide.

2, A2

CIRCUIT DESCRIPTION

A2 Display Board Assembly receives display control signals from A3 Display Driver (via three flat cables), and displays the measured values with unit and annunciation. DS1 thru DS8 are seven-segment LED numeric displays and DS9 thru DS25 are single LED elements. All LED elements light when a TTL low signal is applied. The numeric displays (DS1 thru DS8) are driven sequentially by ANOD 1 thru ANOD 4 signals which supply dc power to each numeric display only during assigned period. LED dynamic lighting is graphically shown in Figure A below. For example, DS2 and DS6 can be lit in accordance with their control signals only when ANOD 2 signal is at high level.

TROUBLESHOOTING INFORMATION

Almost all troubles on A2 board may be found by excuting Self Test 1 (Digital Test) per procedure given The troubleshooting tree to be followed is also outlined.

To check displays, perform the following:

- -a. Remove top cover.
- b. Set 4261A TRIGGER to INT and RANGE HOLD to OFF
- c. Short A3TP3 (display test) to the instrument chassis (ground)...

- d. Set FUNCTION to L and CIRCUIT MODE to SER Connect nothing to UNKNOWN terminals (co Ω).
- e. Check that all numeric displays are lit (-1888 count display). OUT OF RANGE lamp is turned on and trigger lamp turns on and off.
- Set the slide switch mounted on A8 board (P N: 04261-77108) to TEST 1 as shown in Figure B below.
- g. When FUNCTION is set to L, C or R, check that LED elements for unit, circuit mode, and decimal point (except REMOTE) light as shown in Figure C below.

Note

Each LED element lights sequentially according to a format determined for each setting of FUNCTION switch (L, C or R).

h. REMOTE turns on only when an external device to remotely control the 4261A is connected to a 4261A Option 003 or Option 101. To check the LED's for REMOTE, ground pin 43 of REMOTE INPUT connector on rear panel (REMOTE lamp lights).

Note

Removal procedure for A2 Display Board is outlined on angle plate of A2 This instruction board assembly. label can easily be located after top cover has been removed.

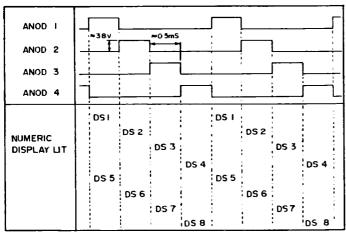
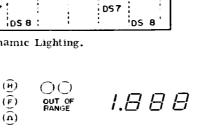



Figure A. Dynamic Lighting.

Note Set the two slide switches to TEST (T) and TEST 1 (T1), respectively, for A8 board P'N 04261-77008

Figure B. Self Test Switch Position(s).

18.8.8

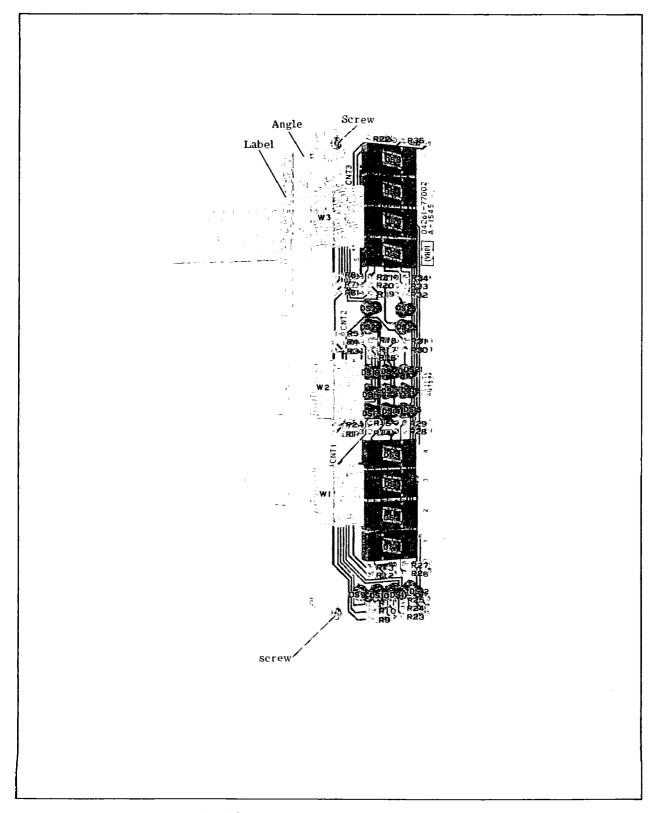
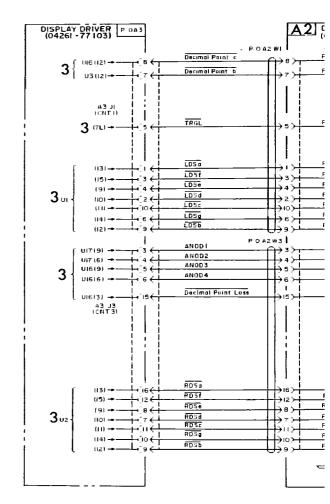
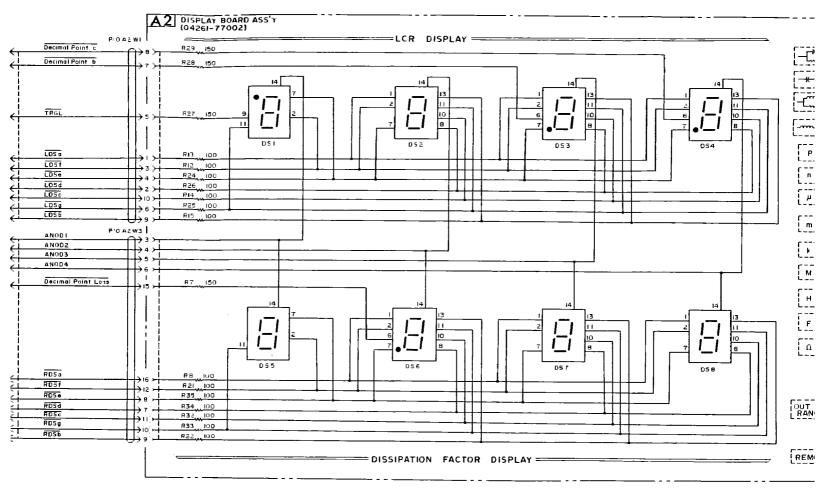
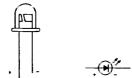




Figure 8-19. A2 Display Board Assembly Component Locations.

1.


1. Pin Locations of DS1 thru DS8.

Note that mounting positions of DS1 and DS5 are reverse to that of other numeric displays

2. Pin Locations of W1 thru W3.

Component side view of plug to A3 board.

3. DS9 - DS25 Polarity.

CAUTION: Never apply stress to legs of LED during soldering, or LED will open

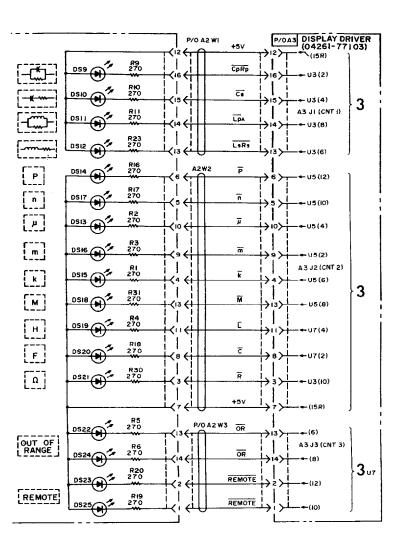


Figure 8-20. A2 Display Board Assembly Schematic Diagram.

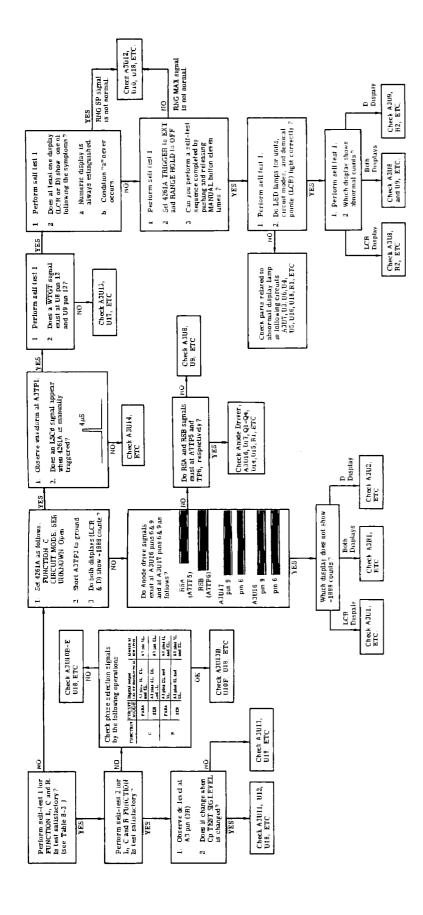
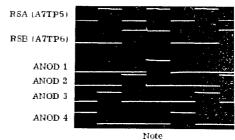



Figure 8-21. A3 Display Driver Board Troubleshooting Guide.

Measurement conditions:

FUNCTION ... C
CIRCUIT MODE ... PARA
FREQUENCY ... 1kHz
Cp TEST SIG LEVEL ... 1V

≈0.3ms div.

To observe waveforms ANOD 1 thru ANOD 4, connect a 500Ω resistor (approx.) between the oscilloscope probe tip and ground.

V TEST (A3TP2)

Measurement conditions:

FUNCTION C
CIRCUIT MODE PARA
FREQUENCY 1kHz
CP TEST SIG LEVEL 1V
Unknown 1JµF

STEP A (A8TP4)
STEP B |A8TP5|

PHASE 0
PHASE 7
PHASE 7
PHASE 3 7 2

Measurement conditions:

FUNCTION ... C
CIRCUIT MODE ... PARA
FREQUENCY ... 1kHz
CP TEST SIG LEVEL ... 1V

≈20m5 div

WTGT (A3TP4)

RSA (A7TP5)

RSB (A7TP6)

Measurement conditions:

FUNCTION ... C
CIRCUIT MODE ... PARA
FREQUENCY ... 120Hz
Cp TEST SIG LEVEL ... 1V

≈.3ms div

Display Board Assembly (A2) SERVICE SHEET 2

CIRCUIT DESCRIPTION

A3 Display Driver Board is functionally divided into two sections: these are the numeric display driver section and the LED lamp driver-phase decoderrange resistor decoder section. Firstly, data signals (DATA BIT 1, DATA BIT 2, DATA BIT 4, DATA BIT 8) converted to BCD code in A7 Board are inputted to U8 and U9 register files. U8 and U9 can store four BCD code signals. U8 memorizes L, C or R four-digit data BCD and U9 stores D four-digit data. These numeric data are stored on instructions of a WTGT (WRITE GATE) signal as synchronized with RSA and RSB signals. See Figure A.

BCD data stored in U8 and U9 are sent to U1 and U2 BCD to 7 segment Decoder, Driver in the order determined by RSA and RSB signals and their outputs are fed to A2 display board. At the same time, RSA and RSB signals are converted to Anode Drive signals (ANOD 1 thru ANOD 4) to dynamically light the numeric displays (U14, U15, Q1 thru Q4, U16 and U17). The read only memory (ROM) U18 has been programmed to light unit circuit mode lamps on A2

board in proper sequence and to select range resistor on A4 board and to pass selected range information (RANGE MAX, RANGE MINIMUM, RANGE SPECIAL) to A7 board. Here, the inputs to the ROM are functions (FUNC A or FUNC B), circuit mode (CMS) and range information (SLO 1 thru SLO 4). These output data are fixed during one measurement cycle by latches U4, U6, U11 and U12 when $\overline{\text{LSC 0}}$ signal is at low level. See Figure B below.

When $\overline{\text{LSC 0}}$ signal is at high level, ROM U18 is (additionally) used to select phase of detection signal fed to phase detection on A6 board (PHASE 0, PHASE $\pi/2$, PHASE π or PHASE $3\pi/2$) and to control V TEST signal to A5 board. Input signals to the ROM are the functions (FUNC A and FUNC B), circuit mode, step and MS (measurement status) signals which are identified as SLO 1 thru SLO 4 signals in the schematics.

TROUBLESHOOTING INFORMATION

Troubleshooting tree to be followed is presented at the left.

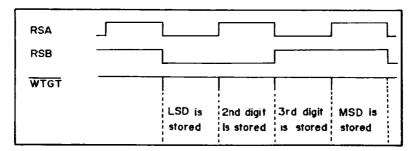


Figure A. Data Store Timing.

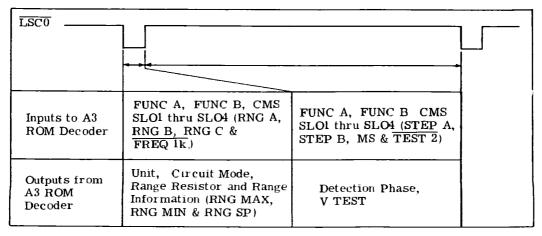


Figure B. ROM Operation.

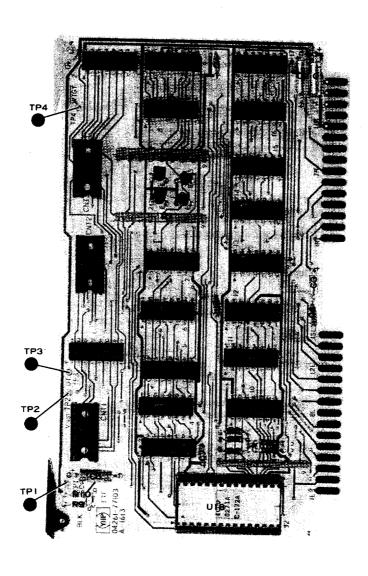
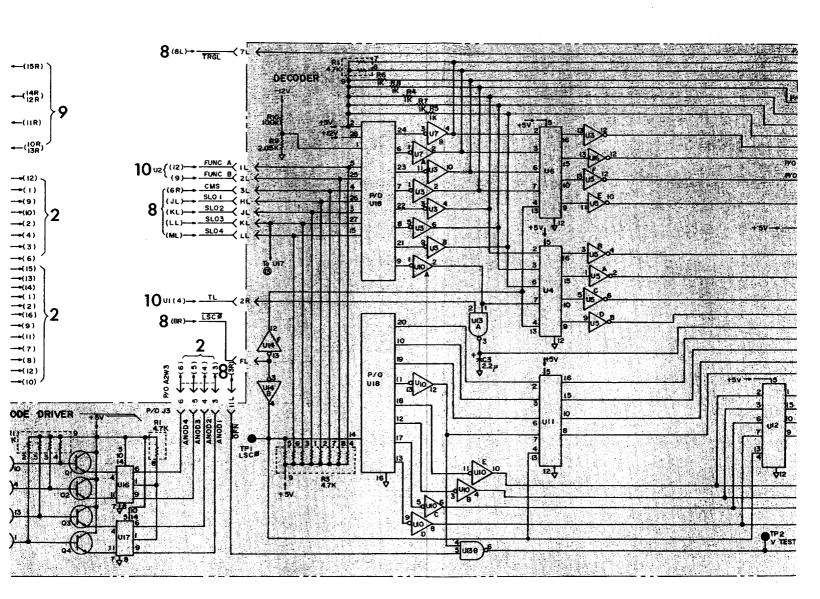
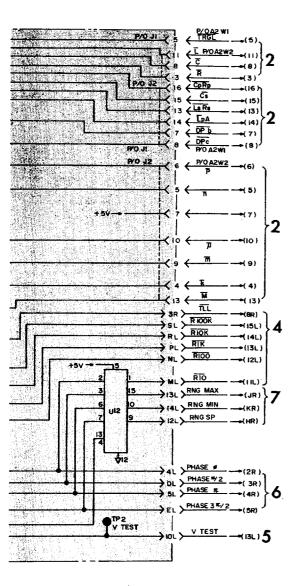




Figure 8-22. A3 Display Driver Board Assembly Component Locations.

1. When A3TP3 (DT = Display Test) is short-circuited to chassis, the display should show -1888 counts except for the blanked displays. A2 numeric displays (A2DS1 - DS8) and A3U1 & U2 can be tested by the above method. Never apply a voltage to A3TP3.

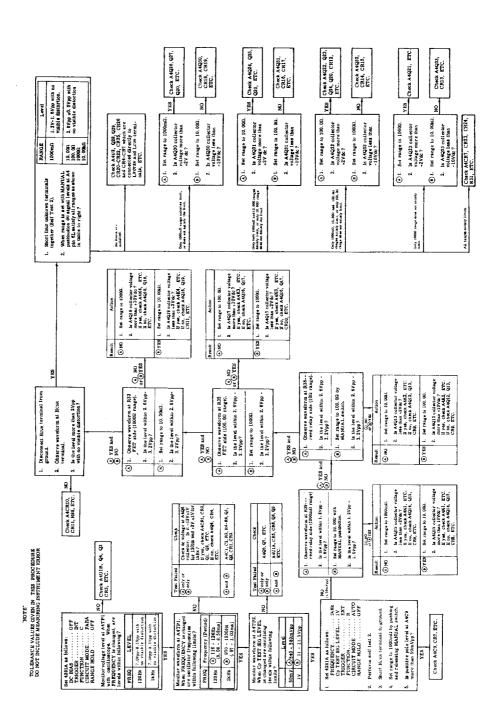
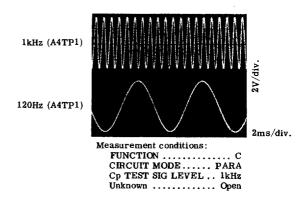
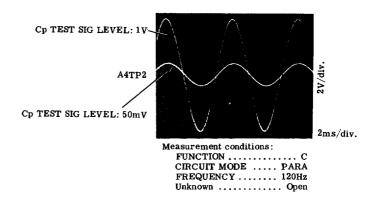
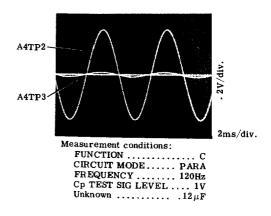





Figure 8-24, A4 Oscillator/Range Resistor Board Troubleshooting Gulde.

Display Driver Board Assembly (A3) SERVICE SHEET 3

CIRCUIT DESCRIPTION

The two parts of A4 are an oscillator and a range resistor section. The oscillator generates the 120Hz or 1kHz test signals using the Wien bridge technique. The range resistor section supplies a variable voltage proportional to the sample connected to UNKNOWN terminals and a constant reference voltage.

Oscillator Section. U1A, Q1 thru Q4 and associated components make up a Wien bridge oscillator with automatic level control. The 120Hz oscillator frequency is derived from the equation: 1 $(2\pi\sqrt{R_5R_6C_1C_2})$. When generating the 1kHz signal, FET's Q1 and Q2 are turned on and the frequency is then derived from the formula: $1/(2\pi\sqrt{(R_2)^2R_5}) \cdot (R_4)^2 \cdot (R_6) \cdot (R_4)^2 \cdot (R_6) \cdot (R_6$

The oscillator output level at TP1 is attenuated to 1 20 value only when Cp mode (FUNCTION: C, CIRCUIT MODE: PARA) and 50mV are selected. U1B, Q8, Q9, CR5 and CR6 form a class B power amplifier having a voltage gain of approximately 1.8. R32, R33, R35, R87, R37 thru R39 are source resistors through which the test signal is applied to the

device under test, and they are automatically selected as appropriate to the device under test (DUT). The resistance of the 100Ω and 10Ω source resistances include not only the resistance of resistances R37 thru R39 but also include the output resistance of transformer T1. The circuit which protects the DUT against excessive dc bias voltage is formed by R31, R84, C9 and CR7. The circuit, which includes R88, CR10 and CR11, protects the 4261A internal circuitry from high voltages which may invade the instrument through the UNKNOWN terminals.

Range Resistor Section. The purpose of the amplifier consisting of U2, Q28, Q29, CR20 and CR21 is to cause the same current flowing in the unknown device to flow through the range resistor. The result of this drive, is to bring the potential at the low terminals to approximately zero volts. The feedback to amplifier is taken from the range resistor which is automatically selected by the range resistor selecting circuitry as directed by selection signals ($\overline{R10}$, $\overline{R100}$, $\overline{R1k}$, $\overline{R10k}$ or $\overline{R100k}$) from the A3 Display Driver and Range Control sections. Table below shows the relationship of selected source and range resistors to the 4261A FUNCTION, CIRCUIT MODE and Range Settings. At any setting, both the range resistor (R_R) and source resistor (R_O) have the same value.

TROUBLESHOOTING INFORMATION

If troubles occur, it is recommended you follow the troubleshooting tree presented here.

Table A. Range Resistor (R_R) and Source Resistors (R_O) Selections.

FU	Range FUNCTION		1	2	3	4	5	6	7	8
L	Full- scale	$120 \mathrm{Hz}$	1000 μH	10.00mH	100.0mH	1000 mH	10.00 H	100,0 Н	1000 н	1000 H
		1kHz	100.0μΗ	1000 μΗ	10.00mH	100.0mH	1000 mH	10.00 H	100.0 H	100.0 H
	R _R , R _O	SER	10Ω	100Ω	$1 \mathrm{k}\Omega$	10kΩ	100kΩ			
		PARA				10 Ω	100 Ω	ÍkΩ	10kΩ	10kΩ
C	Full- scale	120Hz	1000 pF	10.00 nF	100.0 nF	1000 nF	10.00 μ F	$100.0 \mu extbf{F}$	1000 μ F	10.00mF
		1kHz	$100.0\mathrm{pF}$	1000 pF	10.00 nF	100.0 nF	1000 nF	$10.00 \mu extbf{F}$	100.0μF	$1000 \mu F$
	R _R , R _O	PARA	100kΩ	$10 \mathrm{k}\Omega$	$1 \mathrm{k}\Omega$	100Ω	10Ω			
		SER				$100 \mathrm{k}\Omega$	10kΩ	1kΩ	100Ω	10Ω
R	Full- scale	120 1kHz	1000 mΩ	10.00 Ω	100.0 Ω	1000 Ω	10.00 kΩ	100,0kΩ	1000 kΩ	10.00MΩ
	R_R , R_O	SER	10Ω	100Ω	1kΩ	10kΩ	$100 \mathrm{k}\Omega$			
		PARA				10 Ω	100 Ω	1kΩ	10kΩ	100kΩ

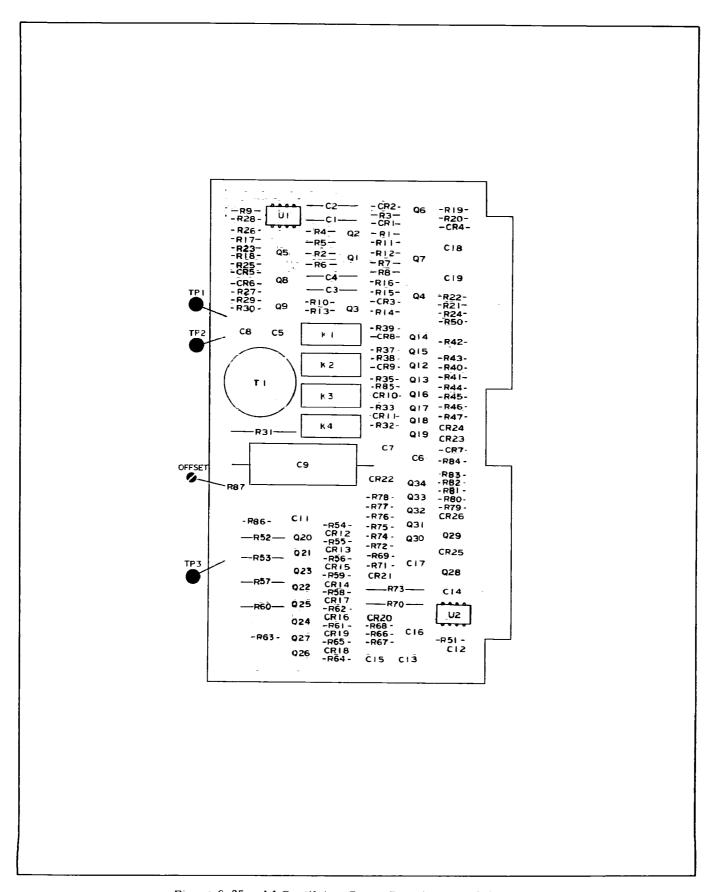
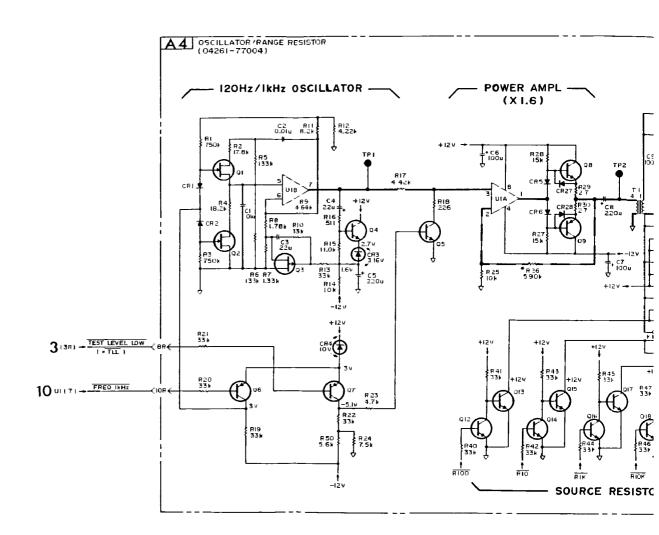
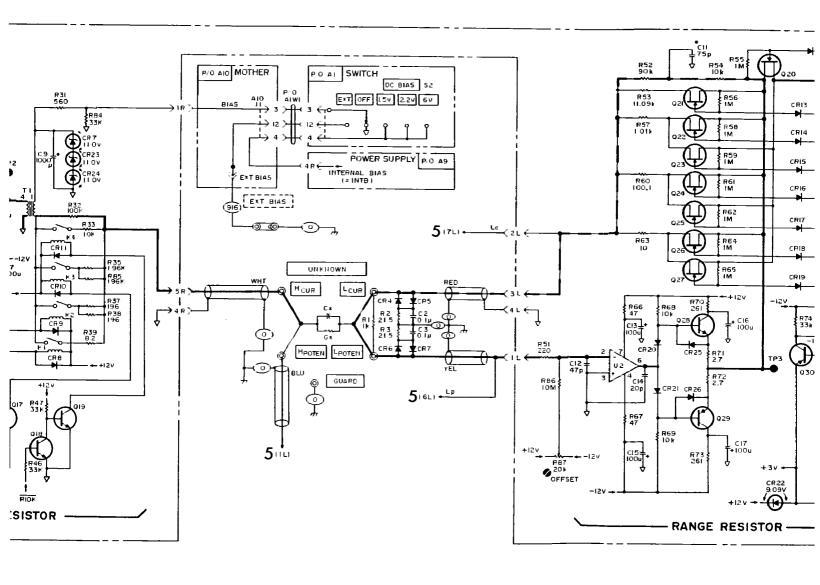
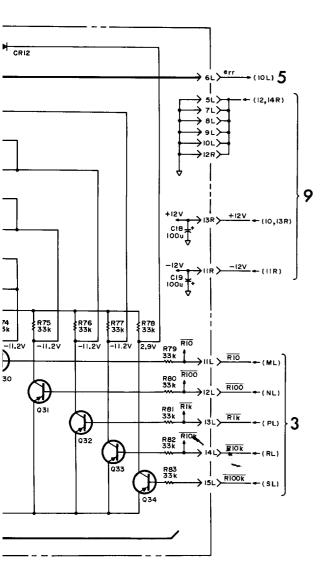





Figure 8-25. A4 Oscillator Range Resistor Board Assembly Component Locations.

- 1. Protective diodes CR4 thru CR7 and resistor R1 are mounted directly between unknown terminals and chassis inside the front panel.
- 2. Voltages denoted on the schematics are values under the following control settings:

FREQUENCY 1	kHz
DC BIAS	OFF
Cp TEST SIG LEVEL	1V
FUNCTION	С
CIRCUIT MODE AT	UTO
RANGE HOLD	OFF
Unknown	onen

4 A4, A1, A9, A10

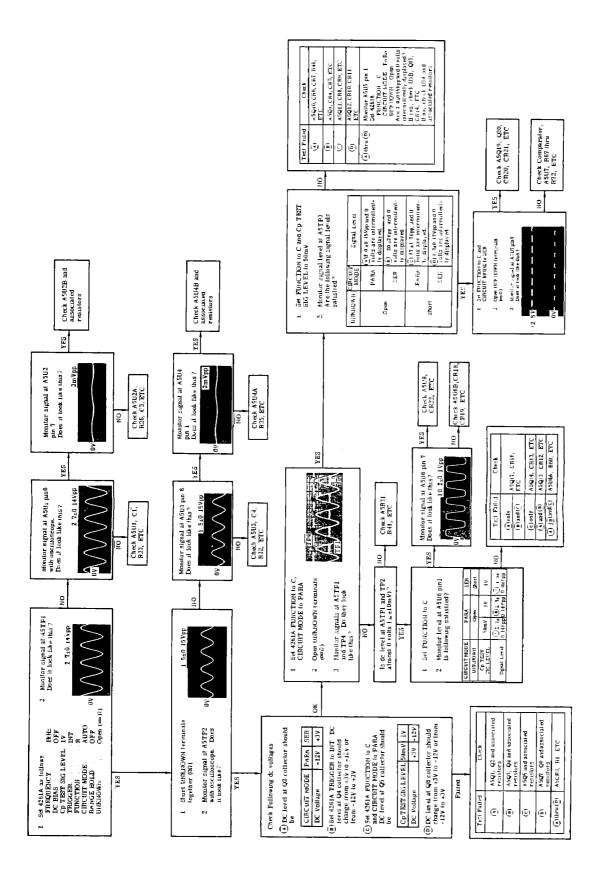
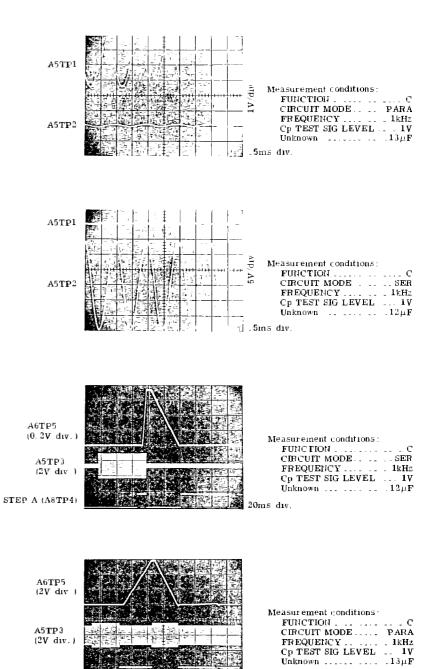



Figure 8-27. A5 Process Amplifier Board Troubleshooting Guide.

≈25ms div.

STEP A (A8TP4)

Oscillator Range Resistor Board Assembly (A4) SERVICE SHEET 4

CIRCUIT DESCRIPTION.

A5 Process Amplifier Board receives analog signals Hp (from HPOTEN terminal), Lp (from LPOTEN terminal through the mother board), L'c and err (from A4 board through the mother board), and outputs e_m and eref signals to the A6 board. Operational amplifiers U1 thru U4 are buffer amplifiers which present a high input impedance to the analog input signals. RC networks (R23, C2, R26, C3, R35 and C5) preceding the buffer amplifiers restrict high frequency noise (which affects the measurement accuracy) entering the instrument through the UNKNOWN terminals. C1 and C4 are dc voltage blocking capacitors. Differential amplifiers U2B and U4B amplify the differences between Hp and Lp signals, and between err and L'c signals, respectively. The voltage gain of the differential amplifiers is set to precisely one by external resistors R24, R25, R33 and R34 which have an accuracy of ± 0.05 percent. An offset adjustment circuit maintains the output de level of the differential amplifiers to approximately zero volts. The output of the amplifier is divided by ten by resistors R41 thru R44.

Signal selector circuit Q9 through Q13 selects appropriate differential amplifier output required for measurement by control signals Voltage Select (V TEST) and Circuit Mode Series (= CMS) which are fed from A3 and A8 boards, respectively. Figure A shows signal selection by V TEST and

CMS signals. The e_m signal selected by Signal Selector Circuits is amplified by U5A and U5B and fed to A6 Phase Detector and Integrator board. e_{ref} signal is amplified by U6A and is then converted to a pulse train by wave shaping circuits U6B and U8. APAO (Auto Phase Adjustment Output) signal is applied to input of U6B through R66 to control the duty cycle of e_{ref} signal for auto phase adjustment. CR18 and CR19 are used for clamping. U7 is a window comparator which outputs SAT (Saturation) signal to A8 Board when voltage level at A5TP3 exceeds ± 5 volts. In this board, the de power supply line is divided into three channels to avoid mutual interaction.

AUTO PHASE ADJUSTMENT (PHASE CONTROL).

The waveforms drawn in solid lines in Figure B are those that exist when 0V DC input (APAO) is applied. Waveforms in dotted lines are those that are present when a plus DC input (APAO) is applied. When AC signals with different dc levels are inputted, $extbf{C}_{ref}$ signals with different duty factors are generated as the AC signals are amplified with respect to a fixed (0V) reference. Therefore, the phase of the PLL output used for phase detection will vary since the PLL circuits detect only the trailing edge of an $extbf{C}_{ref}$ signal.

TROUBLESHOOTING INFORMATION.

If troubles occur, it is recommended that the troubleshooting tree presented at the left be followed.

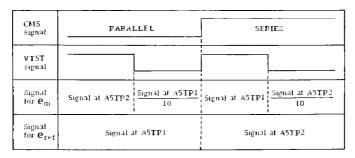


Figure A. Signal Selection.

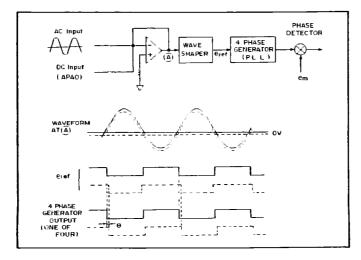


Figure B. Auto Phase Adjustment.

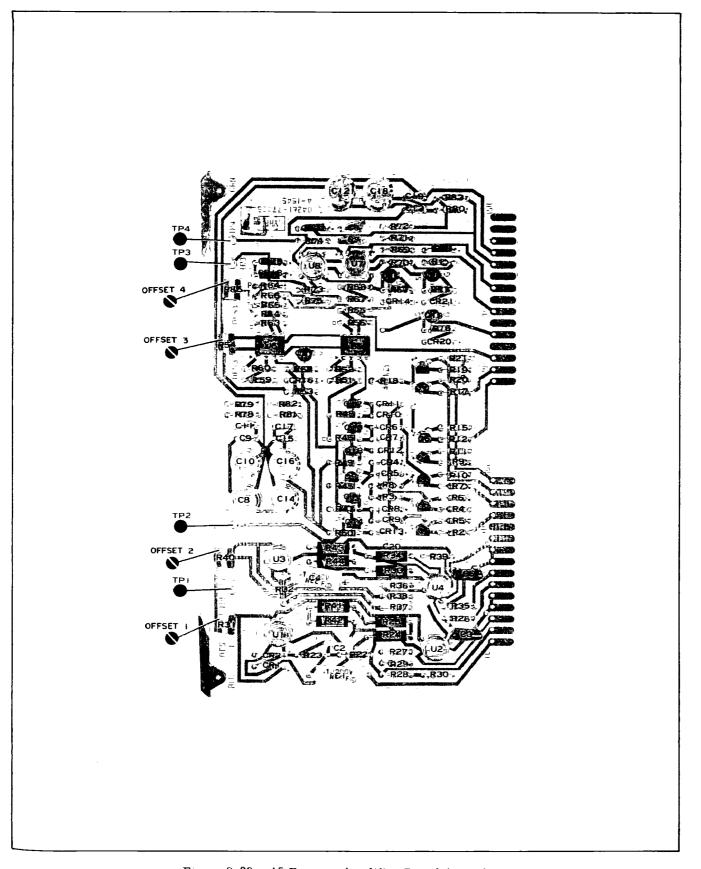
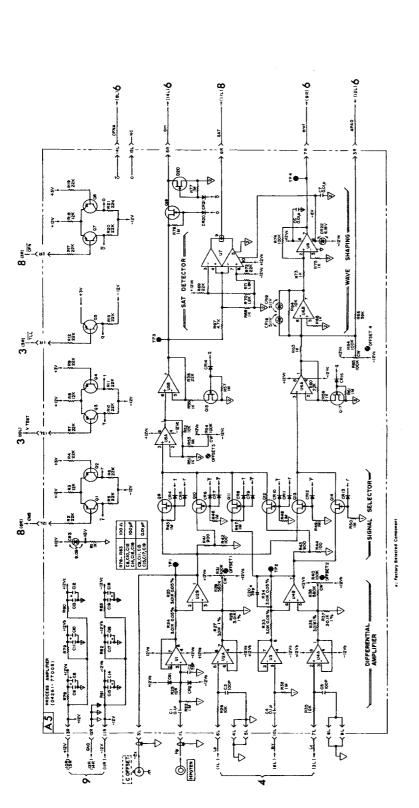



Figure 8-28. A5 Process Amplifier Board Assembly Component Locations.

Figure 8-29. A5 Process Amplifier Board Assembly Schematic Diagram,

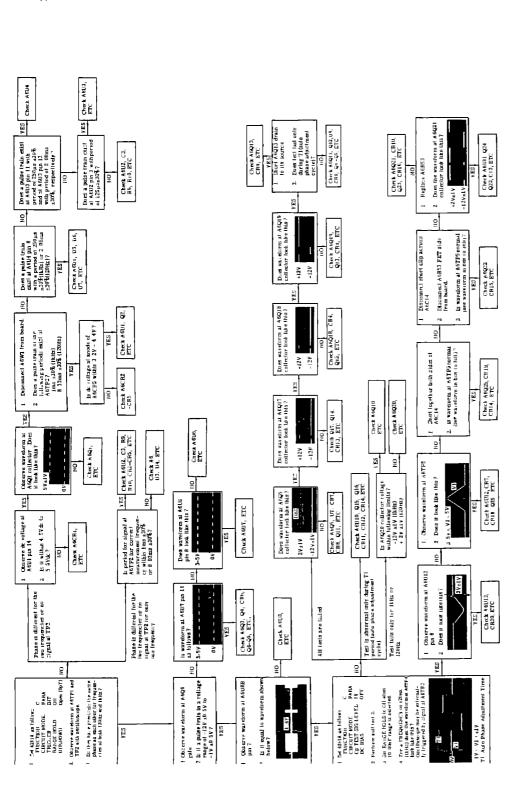
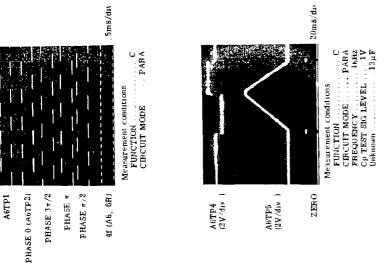
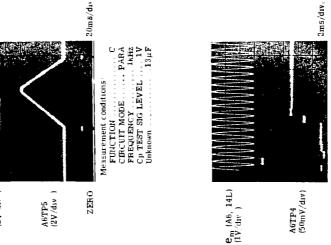




Figure 8-30. A6 Phase Detector/Integrator Board Troubleshooting Guide.

	£3
	Measurement conditions
.6, 14L)	TP4 nV/div)

PARA 1kHz 1V Open CIRCUIT MODE FREQUENCY Cp TEST SIG LEVEL Unknown FUNCTION

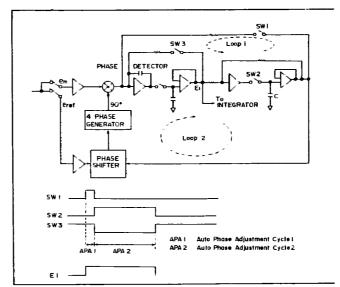
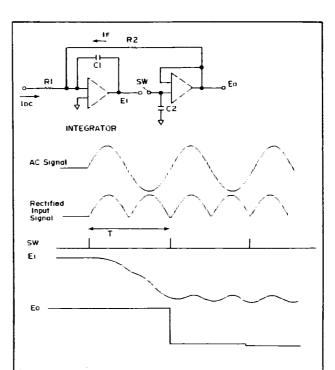


Figure D Auto Phase Adjustment.

The Auto Phase Adjustment is automatically performed to minimize the measurement error due to detection phase error. In the APA2 (Auto Phase Adjustment Cycle 2) period, the same signal is applied to both the phase detector and the phase shifter, and the four phase generator outputs a 90 degree phase shifted pulse. If any phase error exists between $oldsymbol{e}_m$ and e_{ref} signals, the phase detector outputs an E1signal which is the integrator output for such error signal. This E1 signal is amplified by the amplifier which follows. The output of this amplifier is sent to a phase shifter to adjust the phase of the 4 phase generator output so that the phase error is minimized. The operation discussed above is performed with Loop 2 (SW3: OFF, SW2: ON). After the APA2 period, SW3 is closed and SW2 is turned off to memorize the do voltage (phase control signal) stored in capacitor C which will be maintained during the For APA1 (Loop 1, Auto Phase measurement. Adjustment Cycle 1) period done prior to APA2, SW1 is closed to provide a phase control signal to the phase detector. APAI establishes the proper con-dition for phase adjustment of phase detector and helps to achieve a shorter auto phase adjustment cycle. APA1 and APA2 are performed before every measurement and establish the condition for minimum phase error between the $e_{
m m}$ and $e_{
m ref}$ channels.

Process Amplifier Board Assembly (A5) SERVICE SHEET 5

6, A6


CIRCUIT DESCRIPTION

A6 Phase Detector and Integrator board assembly receives eref and em signals from A5 Process amplifier. These signals are converted into signals required for the measurement by control signals from logic circuits. The output of this board is the ZERO signal detected by the zero detector. ZERO signal establishes the point at which the measurement is taken. It is sent on to the logic section for further processing. e_{ref} signal pulse trains are first multiplied to four times their frequency, by the Phase Locked Loop Circuits, U1 thru U5, Q1 thru Q3, etc. Then these 4f pulse trains are converted to four square wave signals, each having an exact phase difference of 0°, 90°, 180° and 270° with respect to the negative edge of the e $_{\mbox{ret}}$ signal. One of the four pulse trains is appropriately selected by a phase selection signal (PHASE 0, PHASE π 2, PHASE π , or PHASE $3\pi/2$) from A3 board, amplified by Q3 and Q4 circuits and applied to phase detector circuit U8, Q6 thru Q9.

The Phase Detector is a kind of the AC to DC converter using a period averaging technique (U9, Q11, etc.) which is further discussed below. Integrator circuit (Q24, U11, etc.) receives the output of the phase detector and integrates this signal. The integrator output about the zero volt level is amplified by U12 amplifier whose output is sent to zero comparator whose output is +3.4Vdc only when the integrator output is in the minus voltage region.

TROUBLESHOOTING INFORMATION

The troubleshooting tree (guide) for A6 board is presented at the left.

A period averaging technique was adopted to get pure de voltage at high speed from a signal having a large ac component. The figure above shows the full-wave rectified current input signal to this circuit. During the first T period, the input current is first integrated by the integrator. At the end of this period, the integrator output E1 is proportional to the dc current of the input signal since T is equal to one period of the input ac signal. After the first T period, the E1 signal is transferred to C2 by instantaneously short-circuiting SW and Eo (period averaging circuit output) becomes a step function. As the feed-back current (I_F) from E_O to the integrator is designed to be almost equal to I_{DC} (input current to the period averaging circuit), the difference between I_{DC} and I_{F} is integrated during the next (T) integrating period so that output voltage \mathbf{E}_{O} becomes exactly proportional to I_{DC} . After two or three periods, $E_{\rm O}$ will be a pure designal having no ac component and be precisely proportional to (I_{DC}) the dc input current.

Figure A. Period Averaging Technique.

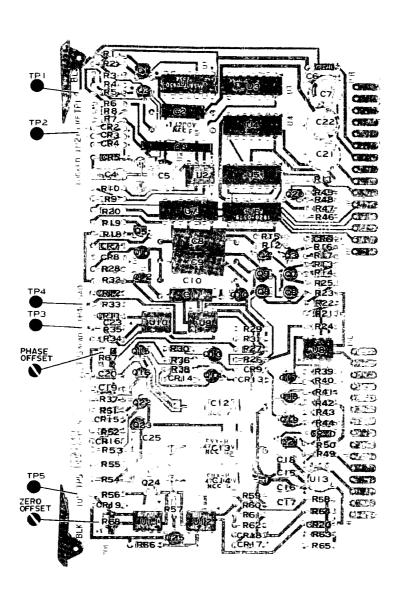


Figure 8-31. A6 Phase Detector Integrator Board Assembly Component Locations.

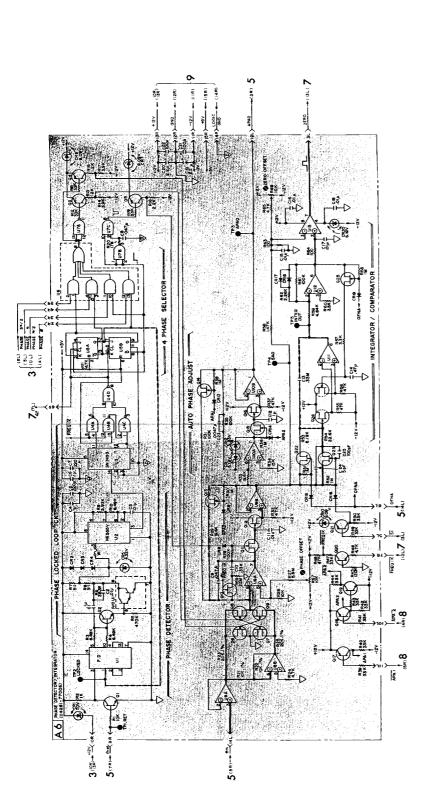
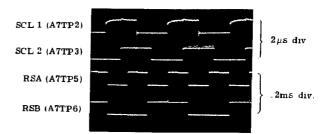
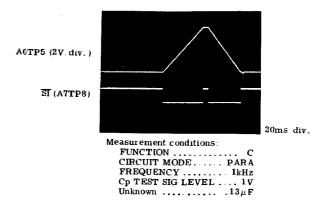




Figure 8-32. A6 Phase Detector/Integrator Board Assembly Schemattc Diagram.

A G

8-65

7, A7

CIRCUIT DESCRIPTION

A7 Board contains Clock Pulse Generator (Y1, U1, U6 thru U8, U14A/B and U15), Data Counter Gate (U9, U15 and U16), Data Counter (U17, U2 thru U5, U20 and U21), Parallel to Serial Converter (U11 and U12) and four Input Multiplexers (U10, U13, U18 and U19).

Clock Pulse Generator. Crystal Y1 and U1 comprise the crystal oscillator whose frequency is 2.5465MHz (TP1). The clock pulse of 31.83kHz at TP4 is generated by dividing 2.5465MHz with U6 and U7. This clock is fed to Data Counter through Data Counter Gate. RSA (at TP5) and RSB (at TP6) signals are outputs of U8 counter and have frequencies of 1.99kHz and 0.99kHz, respectively. These signals are used as the control signals for the Parallel to Serial Converter and sent to A3 board for display control. State clock pulses SCL1 at TP2 and SCL2 at TP3 have a frequency of 127.3kHz with a phase difference of 90° to each other. These signals are used to advance the state of ROM with which they are sychronized.

<u>Data Counter Gate</u> (U9) selects a clock pulse from either of two clocks, the 4f signal (at TP7) or 31.83 kHz (at TP4), as directed by 4fS (4f Select) control signal which is at high level only during L/C measurement and test. For R and D measurements the 31.83kHz clock is selected and fed to Data Counter.

 $\overline{SI_2}$ signal is at low level during charging period in L or C measurements, and $\overline{SI_1}$ is low during charging period in R or D measurements and discharge period for all measurements. \overline{SI} signal is at low when either $\overline{SI_1}$ or $\overline{SI_2}$ is at low level.

Data Counter is a 3-1-2 digit counter. CDC (Clear Data Counter) signal resets contents of counter to zero counts. SDC (Set Data Counter) signal sets counter to 1999 counts. U17, U20 and U21 detects 162 and 1820 counts for autoranging and 80 counts for D measurement.

Parallel to Serial Converter U11 and U12 converts parallel BCD data of the counter to serial BCD data with RSA and RSB control signals and its outputs to the A3 board appear as shown in Figure A below.

Input Multiplexer. The four input multiplexers receive various signals: contents of the counter, test frequency, function, range, circuit mode, step, and ZERO, RSA, RSB signals, etc; they each select one of these signals as required and as directed by control signals OPB8 (Output Bit 8) thru OPB10 from A8 board and output the selected signal to A8U1 Multiplexer on A8 Board.

TROUBLESHOOTING INFORMATION

The troubleshooting guide to component level for the A7 board is not given in this service sheet. See Figures 8-11 and 8-12 for A7 troubleshooting.

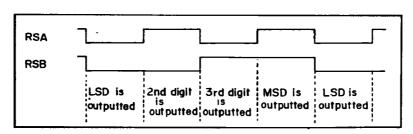


Figure A. Parallel to Serial Conversion.

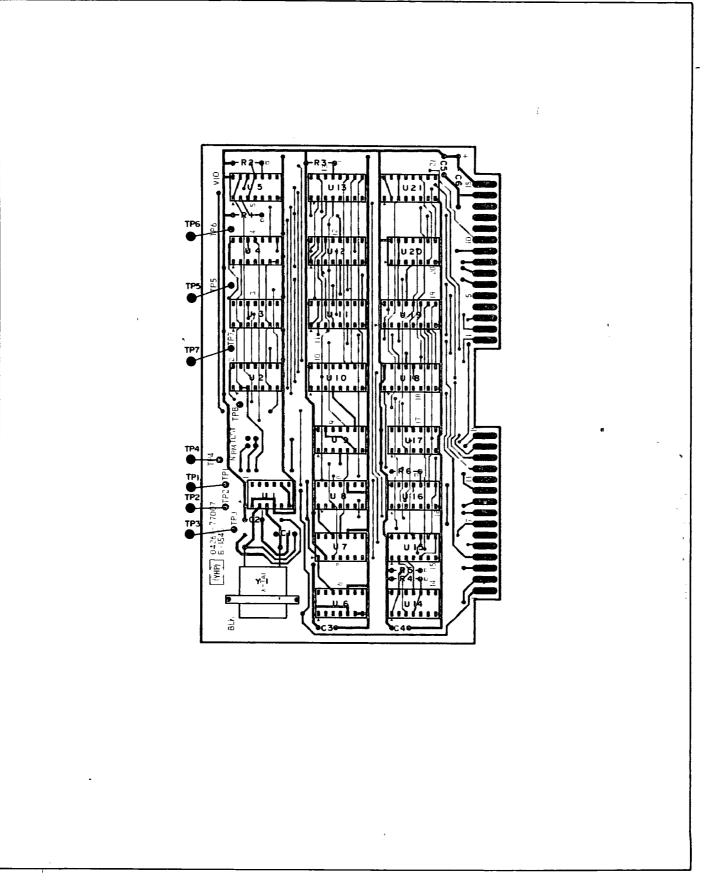
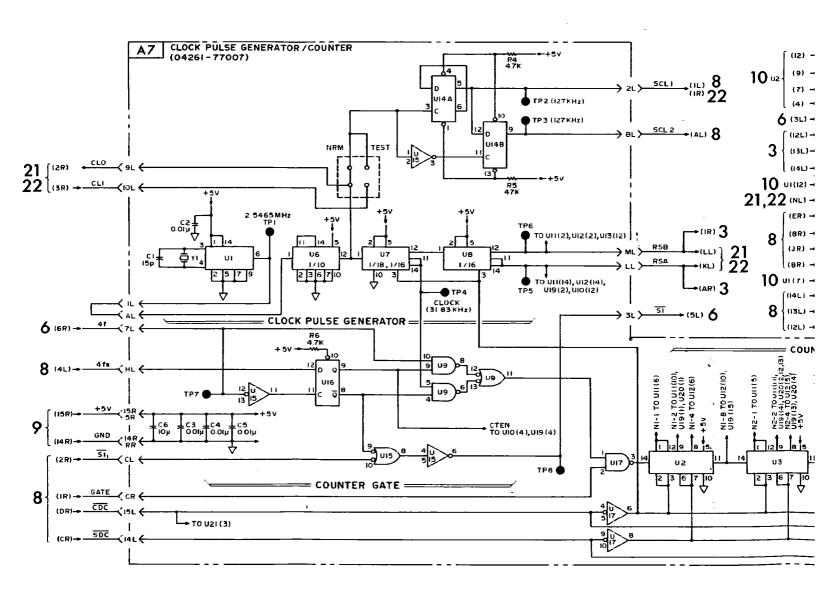
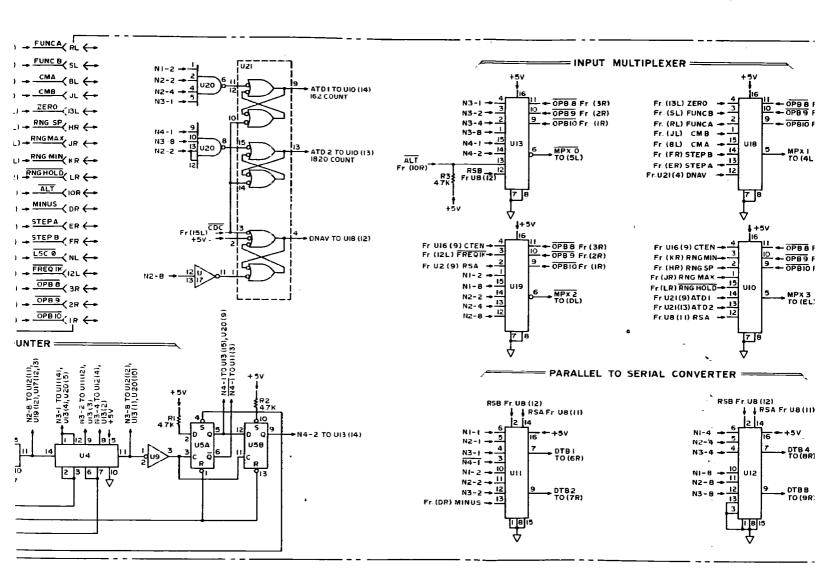
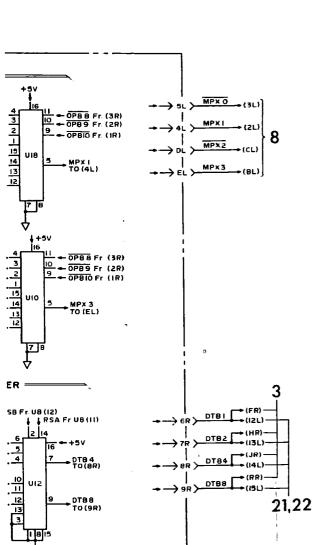





Figure 8-33. A7 Clock Pulse Generator/Counter Board Assembly Component Locations.

1. Truth table for A7U18 is given below. A7U10 operates the same as A7U18. A7U13 and U19 also operate similar to A7U18 except that the output is the complement of the selected input level.

OPB10 (9)	OPB9 (10)	OPB8 (11)	MPX1 (5)
L	L	L	ZERO
L	L	н	FUNC B
L	н	L	FUNC A
L	н	Н	СМВ
Н	L	L	CMA
Н	L	Н	STEP B
Н.	н	L	STEP A
Н	н	Н	DNAV

H: high level

L: low level

2. Truth table for A7U11 is given below. A7U12 operates the same as A7U11.

RSB (2)	RSA (14)	DTB 1 (7)	DTB 2 (9)
L	L	N1 - 1	N1 - 2
L	H	N2 - 1	N2 - 2
H	L	N3 - 1	N3 - 2
н	Н	N4 - 1	MINUS
l '			

H: high levelL: low level

3. A7S1 should be set to NRM position.

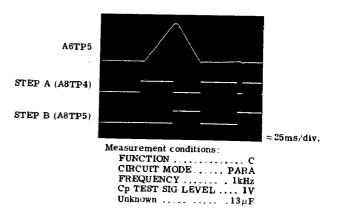
フ Aフ

Figure 8-34. A7 Clock Pulse Generator/Counter Board Assembly Schematic Diagram.

A6TP5

OFN (A8, 3R)

APA I (A8, 5R)


APA 2 (A8, AR)

MS (A8TP3)

GATE (A8, 1R)

Measurement conditions:

FUNCTION C
CIRCUIT MODE PARA
FREQUENCY 1kHz
Cp TEST SIG LEVEL 1V
Unknown 13 μF

CIRCUIT DESCRIPTION

The A8 Measurement Sequence Control board is the heart of the 4261A Digital Section and manages various Analog Section operations including the autoranging. This control board includes the Multiplexers, State Counter Register, ROM, Step Counter, Decoders and Range Step Selector. The Input Multiplexers (U12, U6) receive CMS, MS (Measurement Status), SAT (Saturation), and remove control signals, etc., and select one signal from among them as directed by control signals OPB8 (output Bit 8) thru OPB10 and output selected signal as Multiplexer U1 receives outputs from six MPX4 and $\overline{\text{MPX5}}$. input multiplexers (two on A8 board and four on A7 board) and selects one signal as directed by control signals OPB11 thru OPB13. The output of Multiplexer U1 is fed through U14 to U13 where it is sychronized with SCL2 (State Clock 2). Qualifier signal at TP1 is an output of U13 and is sent to State Counter/Register (U2, U7) which works as a latch for OPB0 thru OPB7 signals when the qualifier signal is at low level, or as a counter for SCL1 signal when qualifier is at high level. The outputs for State Counter Register are fed to ROM U8 which outputs OPB0 thru OPB15 signals. OPB0 thru OPB7 are fed back to State Counter Register to determine the next state of the ROM. Signals OPB8 thru OPB10 are sent to Input Multiplexers to select one signal and also sent to Decoders U5, U10 and U17 to output various instructions to Analog Section, Multiplexers and other circuits.

When the \overline{LSCO} signal is at low level, the U16 Presetable Up/down Counter receives range control signals (\overline{RNG} UP and \overline{RNG} DWN when RANGE HOLD is set to OFF), takes a counts, and outputs the counts as RNG A, RNG B and RNG C signals which are, in turn, selected by U15 selector and fed to A3 board as SLO1 thru SLO4 signals.

When <u>LSCO</u> signal is high, U15 selects STEP A, STEP B, MS and <u>TEST2</u> signals and outputs them as SLO1 thru SLO4. U18 is a step counter, whose input signal is <u>ISC</u> (Increment Step Counter), assigns the measurement step. U13 and U11 form a trigger lamp driver. The Turn On Trigger Generator consists of U19, U3, Q1 and Q2. It outputs a turn-on-trigger signal only when LINE switch is turned to ON.

TROUBLESHOOTING INFORMATION

See Figures 8-11 and 8-12 for A8 troubleshooting to the component level as an A8 troubleshooting guide is not provided in this service sheet.

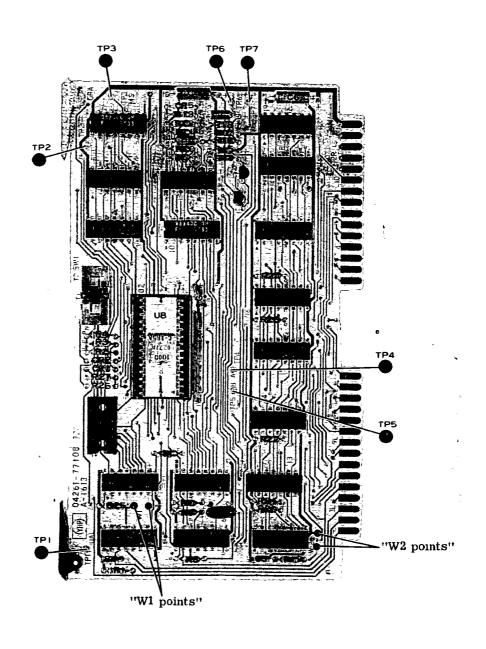
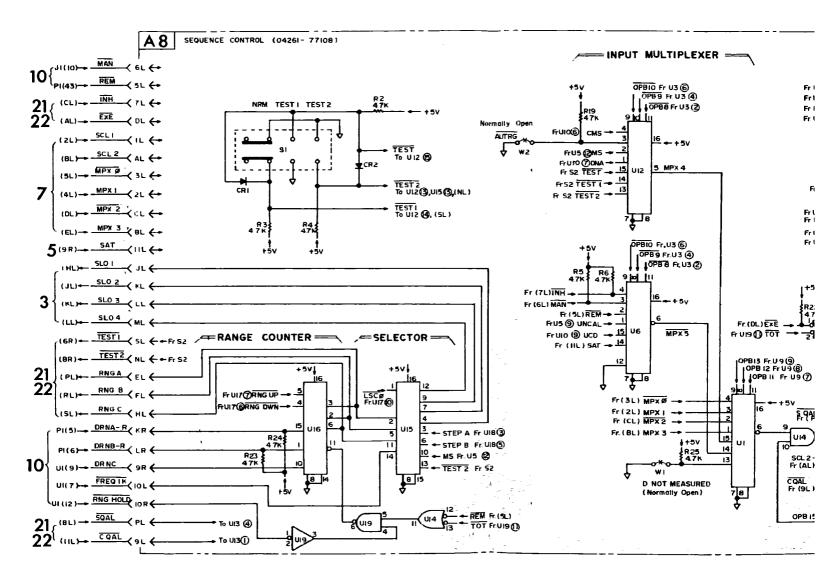
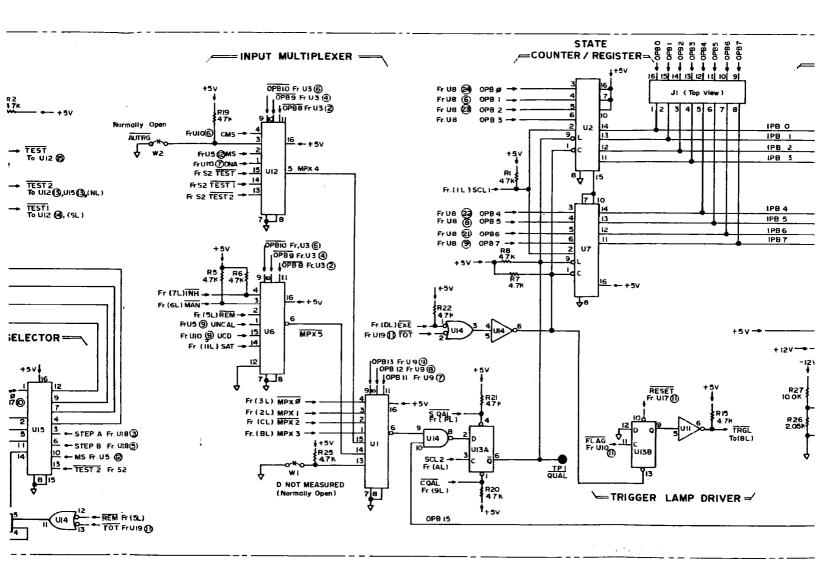
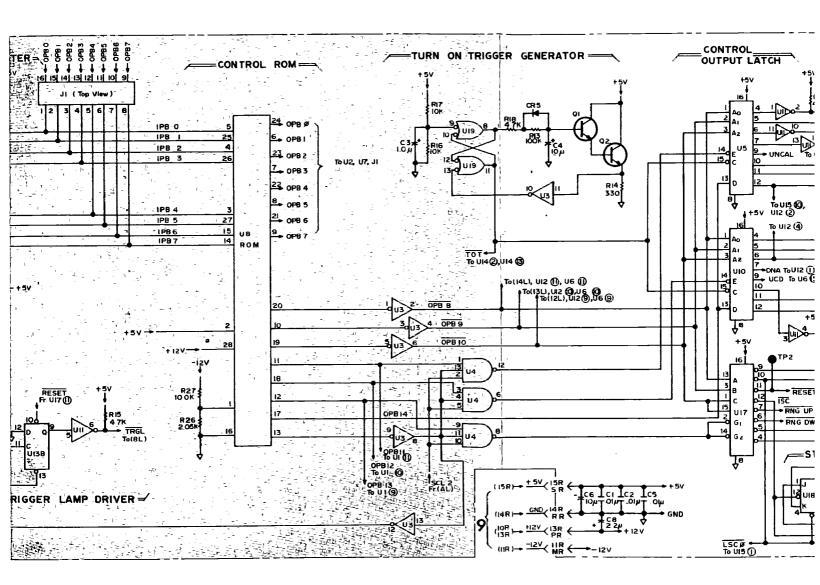
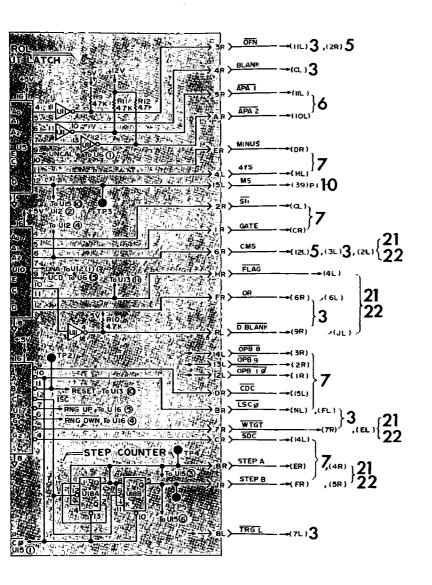






Figure 8-35. A8 Sequence Control Board Assembly Component Locations.

- 1. Truth table for A8U1, U6 and U12. See note 1 on A7 board circuit schematic.
- See Section III paragraph 3-48 for "how to use A8W1 and W2 jumper wire connections".
- 3. Truth table for A8U15:

SLO 1 (4)	SLO 2 (7)	SLO 3 (9)	SLO 4 (12)
			FREQ 1k
	RNG A	RNG A RNG B	

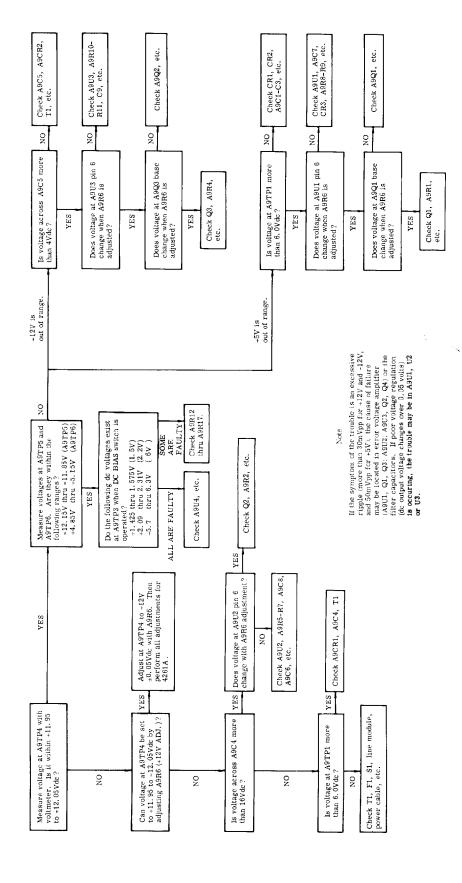


Figure 8-37. DC Power Supply Section Troubleshooting Guide.

CIRCUIT DESCRIPTION

AC line power is inputted to power transformer T1 through the power cable and a line module which houses a built-in filter and a line voltage selection card. A fuse (F1), of proper rating, is inserted in the line module. The three ac outputs from T1 are rectified and stabilized to dc voltages by their respective regulator circuits. Regulator transistor Q1 is mounted on the rear panel and diodes CR1 thru CR3 and transistors Q2 and Q3 are mounted directly on the instrument rear deck for best thermal radiation. A 5V dc voltage is developed by the circuitry consisting of CR1, CR2, Q1, A9Q1, A9U1, etc. A9R5 is a sensor resistor for over current protection and CR3 is an over voltage protection zener diode. The +12Vdc is generated by circuitry which includes A9CR1, Q2, A9U2, etc. and the -12Vdc by Q3, A9CR2, A9Q2 and Q3, A9U3, etc. Output dc voltages can be adjusted by A9R8 which sets the +12V to its exact operating voltage along with the +5V and -12V supplies. Note that exact +5V and -12V voltages depend directly on an exact setting of the +12V. A9U4 and associated resistors provide the internal dc bias source for +1.5V, 2.2V and 6V. The reference voltage for the bias source is the regulated +12V and divider.

TROUBLESHOOTING INFORMATION

The troubleshooting tree (guide) for the power supply section is presented at the left.

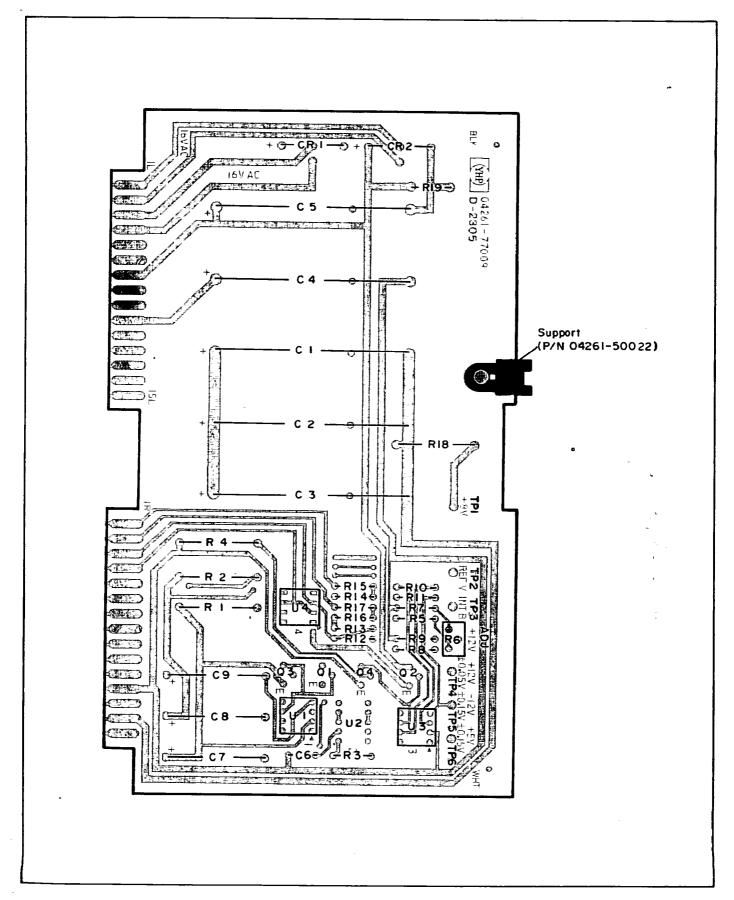
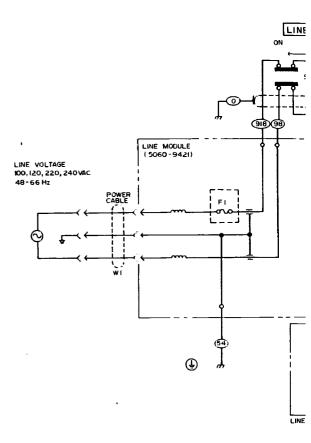
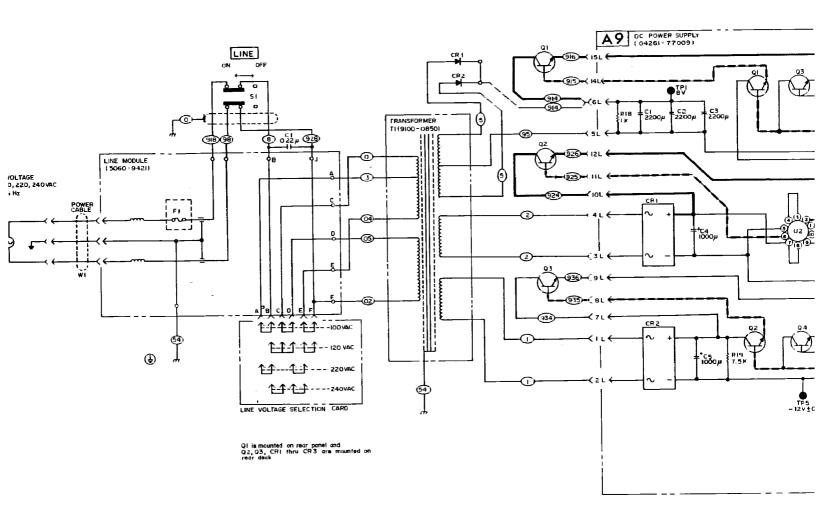
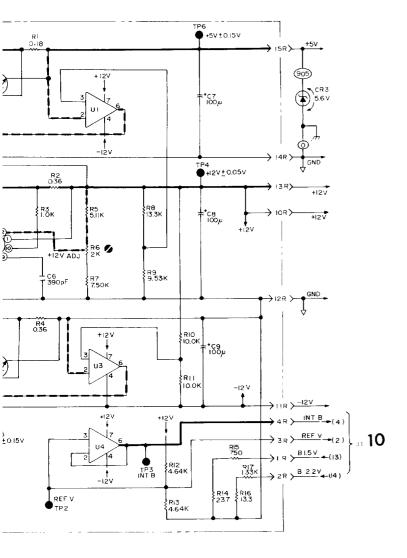





Figure 8-38. A9 Power Supply Board Assembly Component Locations.

Qt ii Q2, rear

Note

- 1. Ql is mounted on rear panel and Q2, Q3, CR1 thru CR3 are mounted on rear deck.
- 2. The part number of the cable assembly that connects the A9 board to the chassis mounted components (Q1 through Q3, CR1, CR2 and T1) is 04261-72010. The part number of the edge connector attached to the cable assembly is 1251-0194.

Figure 8-39. DC Power Supply Section Schematic Diagram.

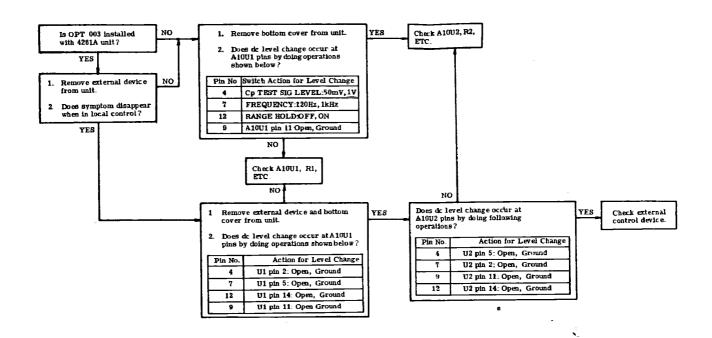


Figure 8-40. A10 Motherboard Troubleshooting Guide.

CIRCUIT DESCRIPTION

The A10 Mother board assembly is the interconnection between nearly all other board assemblies. All these interconnections are not shown in the circuit schematics for the For A10 board troubleshooting, only the main A10 board. connections are presented. The A10 Mother board includes a selector circuit for selecting either remote control or local control signals. Remote control signals are sent through the remote control plug of the AlO board from the rear panel remote input connector (OPT. 003), and local signals are transferred via a flat cable from the A1 switch board (front panel control). The selector (A10U1 & U2) outputs local control signals when pin 1 of both A10U1 and U2 (REM signal) are at high level, and outputs remote control signals when the REM signal is at low level. Two signals, DRNG A, DRNG B, are sent to 4261A internal circuit without going through the A10 selector. The A10 board plug not only receives the remote control signals, but also outputs the various signals shown in right bottom section of the circuit schematic and are utilized for automatic test in the factory. The lead wires from the UNKNOWN terminals are soldered directly to the A10 board. Wired connections for rear connectors such as EXT BIAS and C OFFSET are made on the A10 board.

· TROUBLESHOOTING INFORMATION

The A10 board troubleshooting guide is presented at the left.

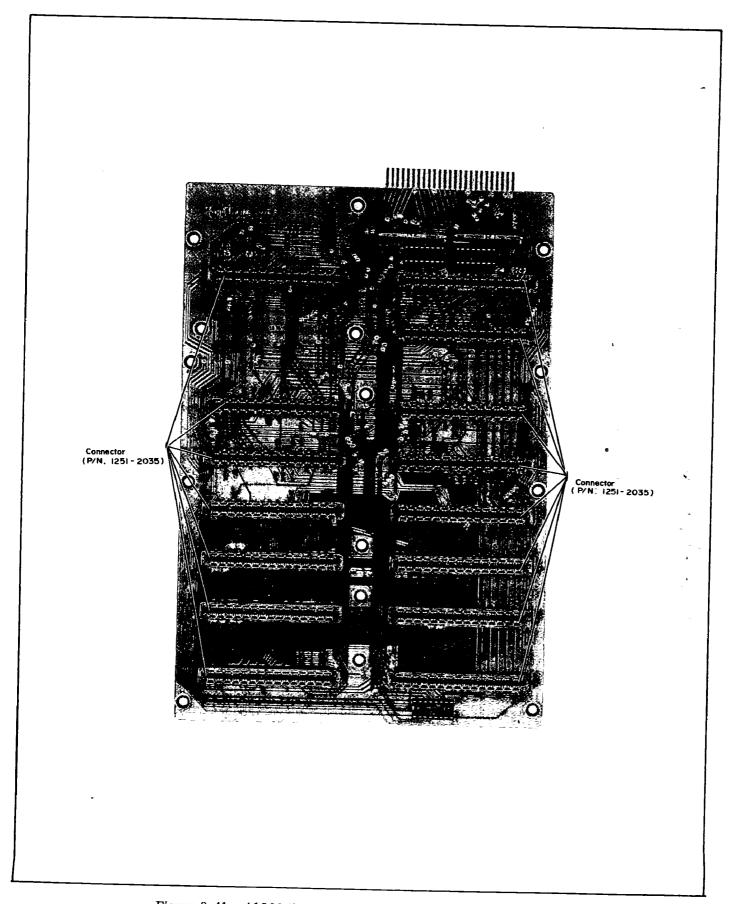


Figure 8-41. A10 Motherboard Assembly Component Locations.

-

(1) + REC R (1) +

REMOTE CONTROL CONTROL (OPT 003

8-73

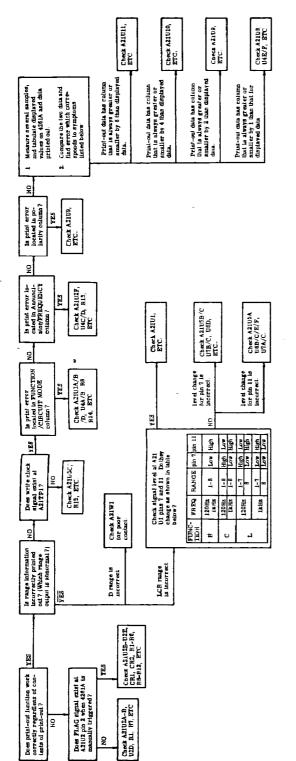


Figure 8-43. A21 Parallel BCD Data Output Board (OPT. 001) Troubleshooting Guide.

Table A. Output Data Format (Cont'd).

DATA	4261.	4		Pin	Character		
(Column No.)	Display S	15	16	40	41*	Printed	
Annunciation .	No	120Hz	L	L	L	L	0
& Test Frequency	Annunciation	11-Hz	L	L	н	L	4
(8)	OUT OF	120Hz	н	L	L	L	1
	RANGE	1 h Hz	н	L	н	I.	5
	D	120Hz	L	Н	L	L	2
	Unavailable	I ⊩HZ	L	H	Н	L	6
	OUT OF RANGE	120Hz	H	H	L	L	3
	Unavakiable		H	н	н	L	7

DATA	4261 A	Full 5∈ale I	Display	Γ	Pın	Character		
(Column No.)	L	С	P	17	18	42	43	Printed
Hinge	100 0µН	100. OpF	1000mΩ	Н	L	L	L	ı
(9)	1000µH	1000pF	10 00Ω	L	н	L	L	2
	10.00mH	10.00nF	100 0Ω	н	н	I.	L	1
	100 0mH	1000nF	1000Ω	L	L	Н	L	4
ļ	1000mH	1000nF	10 0 0kΩ	Н	L	H	L	5
	1000H	10.00μF	100. 0kΩ	L	Н	н	L	6
	100 OH	100 Oμ F	1000kΩ	н	Н	Н	L	7
	1000H	1000µF	10 00MΩ	L	L	L	Н	В
		10 00mF		Н	L	L	Н	9
	D.	1000		L	L	L	L	Ü

DATA OUTPUT	4	261.A Display	'	Pm No.				Character	
(Column No)	L	С	R 1		19 20		45*	Printed	
Function &	PARA(Lp)	-	, i	L	Н	L	L	2	
Circuit Mode (10)	5ER (Ls)			Н	н	L	L	1	
12,		PARA(Cp)		L	L	I	L	0	
		SER (Cs)		н	L	L	L	ı	
			PARA(Rp)	L	L	н	L	4	
			SER (Rs)	Н	L	H	L	5	

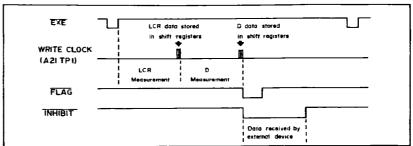


Figure A. Timing Diagram.

Motherboard Assembly (A10) SERVICE SHEET 10

CIRCUIT DESCRIPTION

The A21 Board Assembly receives the measured data, range, function, circuit mode, annunciation and frequency signals from the standard 4261A unit and outputs them to an external device through rear panel connectors. The transfer of these signals is managed by control signals FLAG, INHIBIT and EXE. A range decoder outputs range signals (RANGE 1, RANGE 2, RANGE 4 and RANGE 8) in BCD form. The range decoder includes A21U1 (full adder) that sums range signals RNG A, RNG B and RANGE C (A8 Range Counter output), and B1 and B2 signals. B1 and B2 signals are developed by A21 U5, U6 and U7 gates in the following manner

B1 is High and B2 is Low when either of the following measurements - are being made:

- a C measurement at 1kHz, or
- an L measurement at lkHz and when at least one of either RNG A, RNG B and RNG C is at low level, or
- -- an R measurement, or
- an L measurement at 120Hz and when RNG A, RNG B and RNG C are all at high level.

- a C measurement at 120Hz, or

— an L measurement at 120Hz and when at least one of either RNG A, RNG B and RNG C is at low level.

Both B1 and B2 are low when these measurements are being made:

— an L measurement at 1kHz and RNG A, RNG B and RNG C are all at high level.

Both B1 and B2 at high level never occurs.

Function, circuit mode, frequency, annunciation and FLAG signal are transferred to the external device, and EXE and INHIBIT signals are transferred to the 4261A via buffer gates on this board. A21U8 thru U11 integrated circuits are shift registers which input serial data signals (DTB1, DTB2, DTB4, DTB8) from A7 board synchronized with WRITE CLOCK signal at A21TP1 and which output the data in a parallel scheme to an external device after the FLAG signal goes to low level. The fundamental data transfer timing diagram is presented at the left. A table showing digital signals at each pin of the output connectors is included.

TROUBLESHOOTING INFORMATION

The troubleshooting tree (guide) for A21 board is presented at the left.

B2 is High and B1 is low when either of these measurements are being made:

Table A. Output Data Format.

DATA	4261 A D	ısplay		Pın			
OUTPUT		Digit					
(Column No.)		100	1	2	26	27	Character
}		10 [‡]	3	4	28	29	Printed
		102	5	6	30	31	
		103	7	8*	32*	33*	
Displayed L C R D	, 0		L	L	L	L	0
	1		н	L	L	L	1
Value (I thru 4)	2,		L	Н	L	L	2
	3	-	Н	Н	L	L	3
	4		L	L	Н	L	4
	5		н	L	Н	L	5
	6	- 0	L	H	Н	L	6
	7		Н	Н	Н	L	7
	8		L	L	L	Н	8
	9		Н	L	L	н	9

DATA	4261A Display		Pm	Character		
OUTPUT (Column No.)	4201A Display	13	14*	38+	39*	Printed
Polarity	+ (Blanked)	L	Н	L	H	+
(7)	-	Н	Н	L	Н	-

These pins are grounded except for pins 14 and 39 which are pulled up to +5V.

Note L: TTL Low Level.

H: TTL High Level

(Continued)

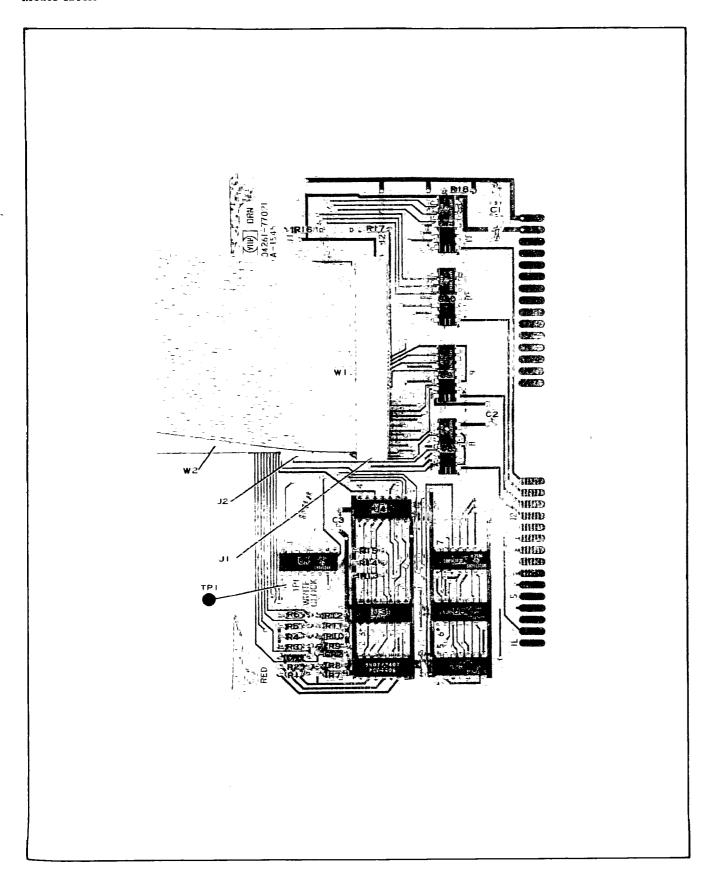
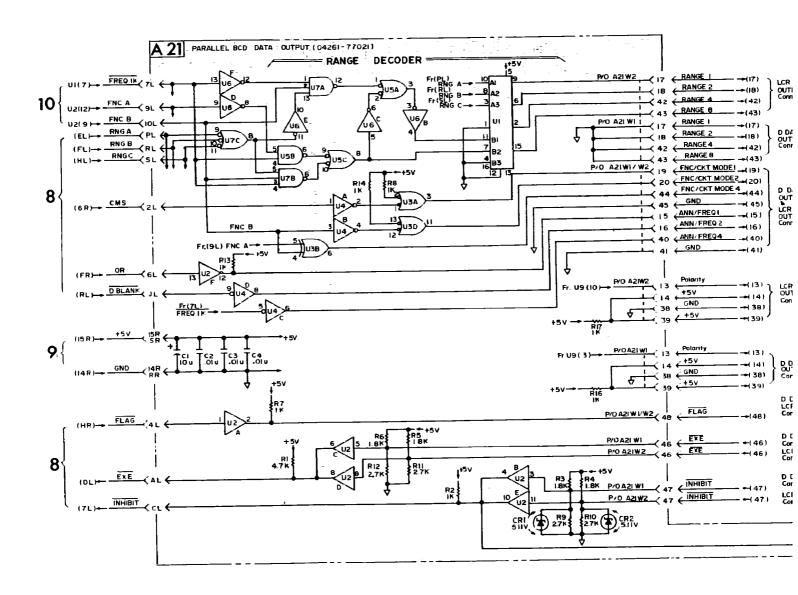
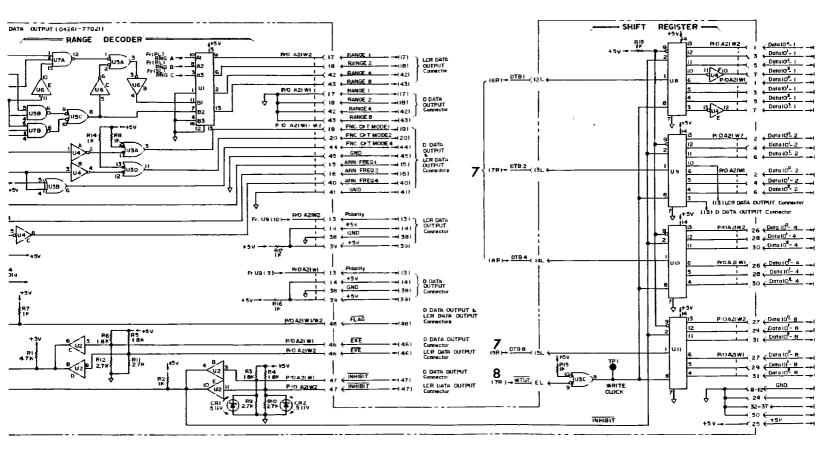
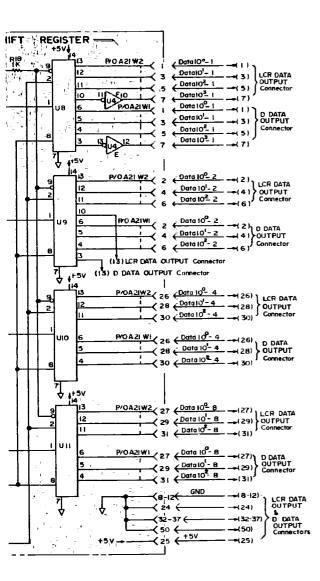





Figure 8-44. A21 Parallel BCD Data Output Board Assembly Component Locations.

Figure

Note

1. A21U1, 4bit binary full adder, works as follows:

E1 +
$$2^{1}E2 + 2^{2} \cdot E3 + 2^{3} \cdot E4$$

= $(A1 + 2^{1} \cdot A2 + 2^{2} \cdot A3) + (B1 + 2^{1} \cdot B2 + 2^{2} \cdot B3)$
E: output, A, B: input

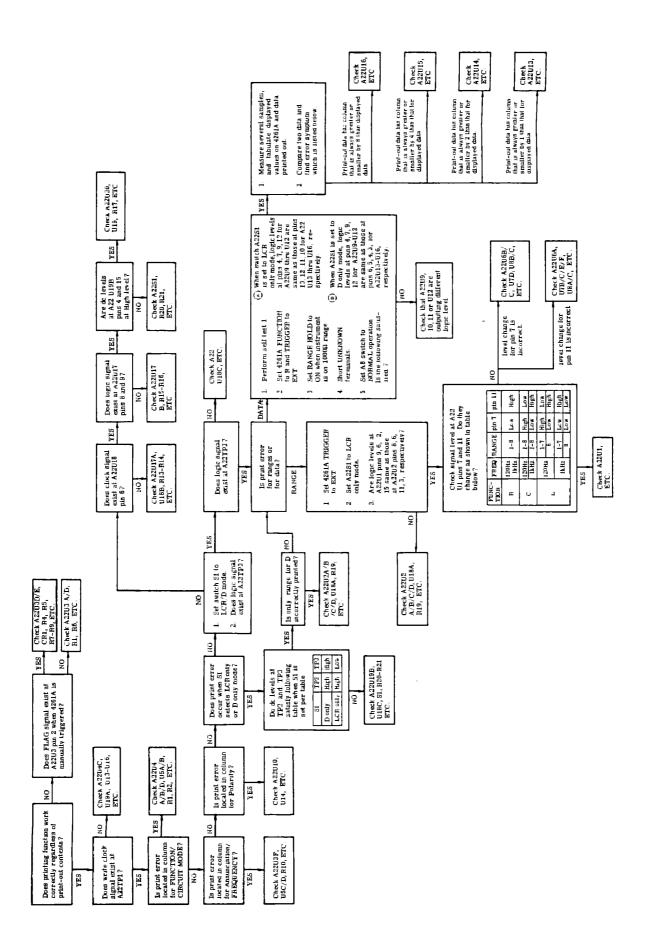


Figure 8-46. A22 Parameter Serial Parallel BCD Data Output Board (OPT. 002) Troubleshooting Guide.

Table A. Output Data Format (Cont'd).

DATA	42617	,		Pin No			Character	
OUTPUT (Column No)	Display 5	15	16	40	41*	Printed		
Test Frequency Annun	No	120Hz	L	L	L	L	0	
	Annunciation	1kHz	L	L	H	L	4	
	OUT OF	120Hz	Н	L	L	L	1	
	RANGE	1kHz	H	L	H	L	5	
i		120Hz	L	н	L	L	2	
	Unavailable		L	н	H	L	6	
	OUT OF RANCE	120Hz	H	н	L	L]	
	D Unavaijable	1kHz	H	Н	н	L	7	

DATA	4261A Full Scale Display				Pın		Character	
(Column No)	L	С	P	17	18	42	43	Printed
Range	100 OµH	100. 0pF	1000mΩ	Н	L	L	L	1
(9)	1000 µH	1000pF	1000Ω	L	Н	L	L	2
	10.00mH	10.00nF	100.0Ω	Н	н	L	L	3
	100 0mH	100.0nF	1000Ω	L	L.	н	L	4
	1000mH	1000nF	1000≱Ω	н	L	H	L	5
	10.00H	10.00µF	100.0⊾Ω	L	н	H	L	6
	100 OH	100 0µF	1000kΩ	н	н	н	L	7
	1000H	1000 µ F	10 00MΩ	L	L	L	н	В
		10.00mF	1	н	L	L	н	9
	D	1 000		L	L	L	L	0

DATA	4:	261 A Display	1		Pin	H o		Character		
(Column No)	L	С	P	19	20	44	45*	Printed		
Function &	PARA(Lp)			L	н	L	L	2		
Circuit Mode	SER (Ls)			H	н	L	L	3		
(10)		PARA(Cp)		L	L	L	L	0		
		SER (Cs)		н	L	L	L	1		
			PARA(Rp)	L	L	н	L	4		
			SER (Rs)	н	L	н	L	5		

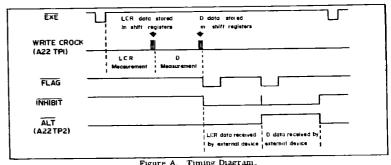


Figure A. Timing Diagram.
Parallel BCD Data Output Board Assembly (A21)
SERVICE SHEET 21

CIRCUIT DESCRIPTION

The A22 board assembly receives measured data, range, function, circuit mode, annunciation and frequency signals from the standard unit and outputs them to an external device through rear panel connectors. LCR and D data are serially transferred. A22S1 can select the output data as: LCR data only, LCR and D data, or D data only. The range decoder (A21U6, U7, U8, U1, U2) section works in the same manner as the range decoder on the A21 board (see service sheet No. 21) except that the outputted range signals (RANGE 1, RANGE 2, RANGE 4 and RANGE 8) are set to zero (low level) by being gated at A22U2 with the signal from A22TP3. The Data Selection Control section manages the selection of outputted data (LCR data or D data) and sends the D range signal to A22U18 and U2. The input signals for this section are INHIBIT, SCL 1, WTGT and signals from S1. SCL 1 signal is used as a clock for advancing the function of this section similar to that of a state machine. The WTGT signal initially resets the level at A22TP3 to low level. The logic level at TP3 is changed by the trailing edge of the NHIBIT signal. Shift registers A22U13 thru U16 store the measured data (LCR and D) from the A7 board and are synchronized with the WRITE CLOCK signal at A22TP1. A22U9 thru U12 are selectors which select LCR data when the voltage level at A22TP3 is low, and D data when TP3 is high. The following diagram shows the fundamental timing of data transfer. Digital signals at each pin of the output connector are included in the associated table below:

TROUBLESHOOTING INFORMATION

The troubleshooting tree (guide) for A22 board in presented at the left.

Table A. Output Data Format.

DATA	4261A Dis	play		Pin			
OUTPUT		Digit					
(Column No)		10^{0}	t	2	26	27	Characte
		101	3	4	28	29	Printed
1		102	5	6	30	31	
		103	7	8*	32*	33*	
Displayed	0	-	L	L	L	L	0
L C, R, D Value	1	-	н	L	L	L	1
(1 thru 4)	2		L	н	L	L	2
	3		Н	Н	L	L	3
	4		L	L	Н	L	4
	5		Н	L	Н	L	5
	6		L.	Н	Н	L	6
	7	-	Н	Н	Н	L	7
	8		L	L	L	H	8
	+ 9		Н	L	L	Н	9

DATA OUTPUT	4261A Display		Pın	Character		
(Column No)	4201A Display	13	14*	38*	39+	Printed
Polarity	+ (Blanked)	L	Н	L	Н	+
(7)	-	Н	Н	L	Н	

These pins are grounded except for pins 14 and 39 which are pulled up to +5V.

Note: L: TTL Low Level. H: TTL High Level.

(Continued)

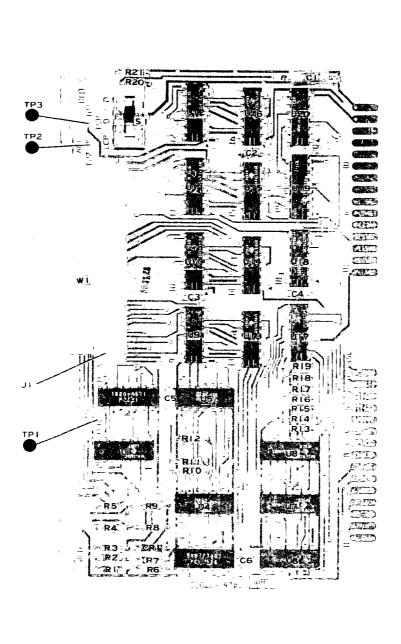
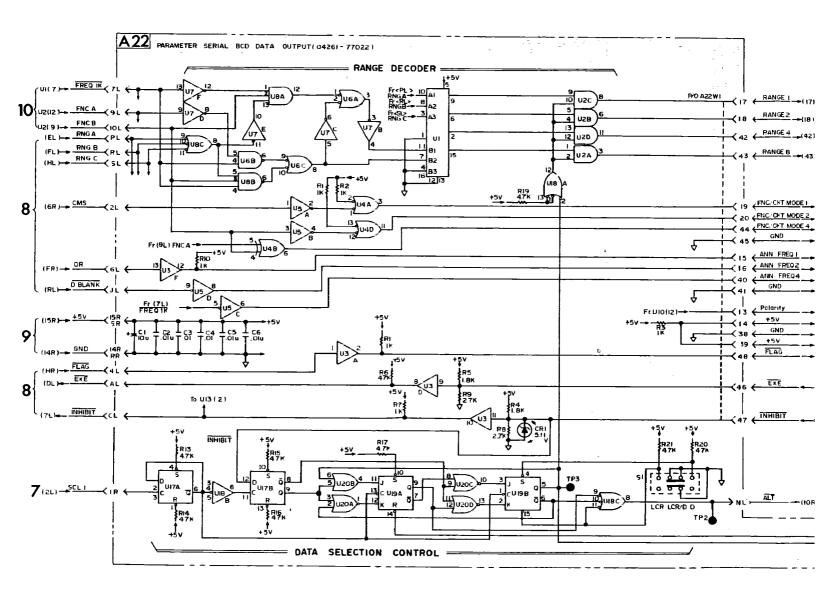



Figure 8-47. A22 Parameter Serial Parallel BCD Data Output Board Assembly Component Locations.

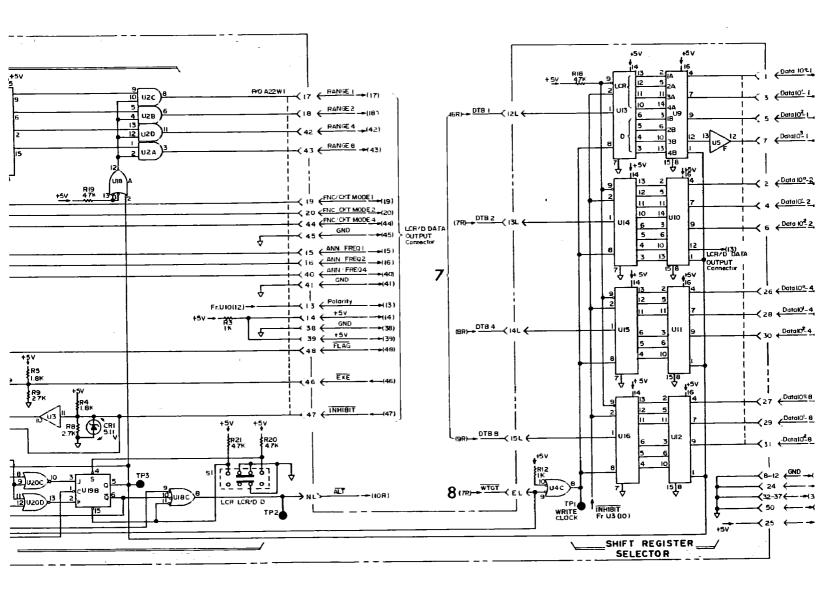
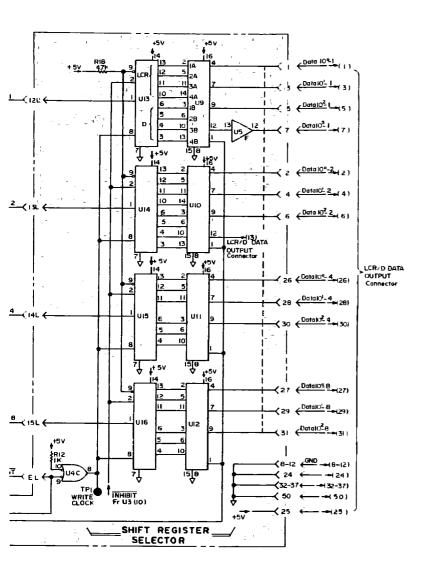



Figure 8-48. A22 Paramete

Note

1. See note 1 on A7 board circuit schematics for A8U1 operation.

Figure 8-48. A22 Parameter Serial Parallel BCD Data Output Board Assembly (OPT, 002) Schematic Diagram.