Service Guide

Agilent Technologies 8561E/EC and 8563E/EC Spectrum Analyzers

Agilent Technologies

Part Number: 08563-90214
Printed in USA
March 2001
Supersedes: December 1999

Notice

Agilent Technol ogies makes no warranty of any kind with regard to this material, including but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.
All Rights Reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copyright laws.

The information contained in this document is subject to change without notice.

Certification

Agilent Technologies certifies that this product met its published specifications at the time of shipment from the factory. Agilent further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology, to the extent allowed by the Institute's calibration facility, and to the calibration facilities of other International Standards Organization members.

General Safety Considerations

The following safety notes are used throughout this manual. Familiarize yourself with these notes before operating this instrument.

WARNING	Warning denotes a hazard. It calls attention to a procedure which, if not correctly performed or adhered to, could result in injury or loss of life. Do not proceed beyond a warning note until the indicated conditions are fully understood and met.
CAUTION	Always use the three-prong AC power cord supplied with this product. Failure to ensure adequate grounding may cause product damage.

WARNING	No operator serviceable parts inside. Refer servicing to qualified personnel. To prevent electrical shock do not remove covers.
CAUTION	Caution denotes a hazard. It calls attention to a procedure that, if not correctly performed or adhered to, could result in damage to or destruction of the instrument. Do not proceed beyond a caution sign until the indi cated conditions are fully understood and met.
WARNING	This is a Safety Class 1 Product (provided with a protective earth ground incorporated in the power cord). The mains plug shall be inserted only in a socket outlet provided with a protected earth contact. Any interruption of the protective conductor inside or outside of the product is likely to make the product dangerous. Intentional interruption is prohibited.
WARNING	Before this instrument is switched on, make sure it has been properly grounded through the protective conductor of the ac power cable to a socket outlet provided with protective earth contact.
	Any interruption of the protective (grounding) conductor, inside or outside the instrument, or disconnection of the protective earth terminal can result in personal injury.
	If this instrument is used in a manner not specified by Agilent Technologies, the protection provided by the instrument may be impaired.
	There are many points in the instrument which can, if contacted, cause personal injury. Be extremely careful. Any adjustments or service procedures that require operation of the instrument with protective covers removed should be performed only by trained service personnel.
CAUTION	Before this instrument is switched on, make sure its primary power circuitry has been adapted to the voltage of the ac power source.
	Failure to set the ac power input to the correct voltage could cause damage to the instrument when the ac power cable is plugged in.
	This product conforms to Enclosure Protection IP 20 according to IEC-529. The enclosure protects against finger access to hazardous parts within the endosure; the enclosure does not protect against the entrance of water.

Warranty

This Agilent Technologies instrument product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Agilent Technologies will, at its option, either repair or replace products that prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Agilent Technologies. Buyer shall prepay shipping charges to Agilent and Agilent shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to Agilent Technologies from another country.

Agilent Technologies warrants that its software and firmware designated by Agilent for use with an instrument will execute its programming instructions when properly installed on that instrument. Agilent Technologies does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error-free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.
NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. AGILENT TECHNOLOGIES SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. AGILENT TECHNOLOGIES SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

Contents

1. General Information
Introduction 26
How to Use this Guide 26
Conventions used in this guide 26
Documentation Outline. 27
Differences between 8560 EC-Series and E-Series Spectrum Analyzers 28
Instrument Variations 29
Serial Numbers and Repair Information 30
Agilent 85629B Test and Adjustment Module 32
Service Kit 33
Electrostatic Discharge 34
Reducing Potential for ESD Damage 35
Static-Safe Accessories 35
Returning Instruments for Service 36
ServiceTag 36
Original Packaging 36
Other Packaging 36
Recommended Test Equipment 38
Sales and Service Offices 45
2. Adjustment Procedures
Introduction 48
Safety Considerations 49
Which Adjustments Should Be Performed? 49
Test Equipment 49
Adjustable and Factory-Selected Components 50
Adjustment Tools 50
Instrument Service Position 50
Using the TAM 57
Test Equipment 57
Adjustment Indicator 57
3. High Voltage Power Supply Adjustment (8561E and 8563E) 60
Assembly Adjusted 60
Related Performance Test 60
Description 60
Equipment 61
Procedure 61
4. Display Adjustment (8561E and 8563E). 62
Assembly Adjusted 62
Related Performance Test 62
Description 62
Equipment 62
Procedure 63
Preliminary Adjustments 63
Cutoff Adjustment 63
Deflection Adjustments 63
Intensity Adjustments 65
Fast Zero Span Adjustments 66
5. IF Bandpass Adjustment 68

Contents

Assembly Adjusted 68
Related Performance Test 68
Description 68
Equipment 68
Procedure 69
LC Bandpass Adjustments 69
XTAL Bandpass Adjustments 71
4. IF Amplitude Adjustments 73
Assembly Adjusted 73
Related Performance Tests 73
Description 73
Equipment 74
Procedure 74
A5 Reference Attenuator Adjustment 75
A5 Adjustment Verification 76
5. DC Log Amplifier Adjustments 77
Assembly Adjusted 77
Related Performance Tests 77
Description 77
Equipment 78
A4 Limiter Phase Adjustment 78
A4 Linear Fidelity Adjustment 79
A4 LOG Fidelity Adjustment 80
6. Sampling Oscillator Adjustment 81
Assembly Adjusted 81
Related Performance Test 81
Description 81
Equipment 81
Procedure 81
Sampling Oscillator Adjustment 82
Sampler Match Adjustment 82
7. YTO Adjustment 84
Assembly Adjusted 84
Related Performance Tests 84
Description 84
Equipment 84
Procedure 85
YTO Main Coil Adjustments 85
YTO FM Coil Adjustments 86
8. LO Distribution Amplifier Adjustment (8561E/EC) 87
Assembly Adjusted 87
Related Performance Test 87
Description 87
Equipment 87
Procedure 88
9. LO Distribution Amplifier Adjustment (8563E/EC) 90
Assembly Adjusted 90
Related Performance Test 90
Description 90

Contents

Equipment 90
Procedure 91
10. Dual Band Mixer Bias Adjustment (8561E/EC) 93
Assembly Adjusted 93
Related Performance Test 93
Description 93
Equipment 93
Procedure 94
11. Frequency Response Adjustment (8561E/EC) 95
Assembly Adjusted 95
Related Performance Tests 95
Description 95
Equipment 96
Procedure 97
12. Frequency Response Adjustment (8563E/EC) 99
Assembly Adjusted 99
Related Performance Tests 99
Description 99
Equipment 100
Procedure 101
13. Calibrator Amplitude Adjustment 104
Assembly Adjusted 104
Related Performance Test 104
Description 104
Equipment 104
Procedure 104
14. 10 MHz Reference Adjustment — OCXO 106
Assembly Adjusted 106
Related Performance Test 106
Description 106
Equipment 107
Procedure 107
15. 10 MHz Reference Adjustment - TCXO (Option 103) 109
Assembly Adjusted 109
Related Performance Test 109
Description 109
Equipment 110
Procedure 110
16. Demodulator Adjustment 111
Assembly Adjusted 111
Related Performance Test 111
Description 111
Equipment 111
Procedure 112
17. External Mixer Bias Adjustment 114
Assembly Adjusted 114
Related Performance Test 114
Description 114
Equipment 114

Contents

Procedure 114
18. External Mixer Amplitude Adjustment 116
Assembly Adjusted 116
Related Performance Test 116
Description 116
Equipment 116
Procedure 117
19. Signal ID Oscillator Adjustment 119
Assembly Adjusted 119
Related Performance Test 119
Description 119
Equipment 120
Procedure 120
20. Switched YIG-Tuned Filter (SYTF) Adjustment (8561E/EC) 123
Assembly Adjusted 123
Related Performance Test 123
Description 123
Equipment 123
Procedure 124
21. YIG-Tuned Filter/Mixer (RYTHM) Adjustment (8563E/EC) 125
Assembly Adjusted 125
Related Performance Tests 125
Description 125
Equipment 125
Procedure 126
22. 16 MHz PLL Adjustment 128
Assembly Adjusted 128
Related Performance Tests 128
Description 128
Equipment 129
Procedure 129
23. 600 MHz Reference Adjustment (serial prefix 3406A and above) 132
Assembly Adjusted 132
Related Performance Test 132
Description 132
Equipment 132
Procedure 132
2a. Manual Adjustment Procedures: 3335A Source Not Available
What You'll Find in This Chapter 134
Required Test Equipment 135
4a. IF Amplitude Adjustments 136
Assembly Adjusted 136
Related Performance Tests 136
Description 136
Equipment 137
Procedure 137
A5 Reference Attenuator Adjustment 139
A5 Adjustment Verification 139

Contents

5a. DC Log Amplifier Adjustments 141
Assembly Adjusted 141
Related Performance Tests 141
Description 141
Equipment 142
A4 Limiter Phase Adjustment 142
A4 Linear Fidelity Adjustment 143
A4 LOG Fidelity Adjustment 144
3. Assembly Replacement
I ntroduction 148
Access to Internal Assemblies 149
Cable Color Code 150
Procedure 1. Spectrum Analyzer Cover 151
Removal/Replacement 151
Procedure 2A. A1 Front Frame/A 18 LCD (8561E C and 8563EC) 152
Removal of the Front Frame. 152
Removal of the Display Driver Board, I nverter Board, and LCD 154
Removal of the Backlights 155
Removal of the Line Switch from the Front Panel 155
Removal of the K eyboard 157
Replacement of the Front Frame 157
Replacement of the Display Driver Board, Inverter Board, and LCD 159
Replacing the Backlights 160
Replacement of the Line Switch 161
Replacement of the Keyboard. 161
Procedure 2B. A1 Front Frame/A18 CRT Display (8561E and 8563E) 162
Removal 162
Replacement 167
Procedure 3. A1A1 Keyboard/Front Panel Keys 170
Removal 170
Replacement 170
Procedure 4. A1A2 RPG 171
Removal 171
Replacement 171
Procedure 5. A2, A3, A4, and A5 Assemblies 172
Removal 172
Replacement 173
Procedure 6A. A6 Power Supply Assembly (8561EC and 8563E C) 180
Removal 180
Replacement 182
Procedure 6B. A6 Power Supply Assembly (8561E and 8563E) 183
Removal 183
Replacement 184
Procedure 7. A6A1 High Voltage Assembly (8561E and 8563E) 187
Removal 187
Replacement 189
Procedure 8. A7 through A13 Assemblies 191
A7 First LO Distribution Amplifier 195

Contents

Removal 195
Replacement 195
A8 Dual Mixer (8561E/EC) 196
Removal 196
Replacement 196
A8 Low Band Mixer (8563E/EC) 197
Removal 197
Replacement 197
A9 Input Attenuator 198
Removal 198
Replacement 198
A10 Switched YIG-Tuned Filter (SYTF, 8561E/EC) 200
Removal 200
Replacement 201
A10 YIG-Tuned Filter/Mixer (RYTHM, 8563E/EC) 202
Removal 202
Replacement 202
A11 YTO (Agilent 8561E/EC) 203
Removal 203
Replacement 203
A11 YTO (8563E/EC) 204
Removal 204
Replacement 204
A13 Second Converter 206
Removal 206
Replacement 206
Procedure 9. A14 and A15 Assemblies 207
Removal 207
Replacement 208
Procedure 10. A16 Fast ADC and A17 CRT Driver (8561E and 8563E) 210
Removal 210
Replacement 211
Procedure 11. B1 Fan 213
Removal/Replacement 213
Procedure 12. BT1 Battery 214
Removal/Replacement 214
Procedure 13. Rear Frame/Rear Dress Panel 215
Removal 215
Replacement 217
Procedure 14. W3 Line Switch Cable (8561E and 8563E). 220
Removal 220
Replacement (Using Contact Removal Tool, part number 8710-1791) 225
Replacement (without Contact Removal Tool) 226
Procedure 15. EEROM 229
Removal/Replacement 229
Procedure 16. A21 OCXO 231
Removal 231
Replacement 232

Contents

4. Replaceable Parts
Introduction 234
Ordering Information 235
Direct Mail-Order System 235
Direct Phone-Order System 235
Parts List Format 236
Firmware-Dependent Part Numbers 237
5. Major Assembly and Cable Locations
Introduction 280
6. General Troubleshooting
Introduction 296
Assembly Level Text 296
Block Diagrams 296
Assembly Test Points 297
Ribbon Cables 297
Service Cal Data Softkey Menus 302
Troubleshooting to a Functional Section 303
TAM (Test and Adjustment Module) 305
Diagnostic Functions 305
TAM Requirements 305
Test Connectors 306
Inconsistent Results 306
Erroneous Results (8561E and 8563E) 306
Blank Display (8561E and 8563E) 306
Automatic Fault Isolation 307
Manual Probe Troubleshooting 308
RF Path Fault Isolation 309
Calibration Oscillator Troubleshooting Mode 309
Error Messages 311
Viewing Multiple Messages 312
Error Message Elimination 312
System Analyzer Programming Errors (100 to 150) 312
ADC Errors (200 to 299) 314
LO and RF Hardware/F irmware Failures (300 to 399) 315
Automatic IF Errors (400 to 599) 327
System Errors (600 to 651) 340
Digital and Checksum Errors (700 to 799) 340
Option Module Errors (800 to 899) 344
User-Generated Errors (900 to 999) 344
Block Diagram Description 346
RF Section (8561E/EC) 348
RF Section (8563E/EC) 350
Synthesizer Section 353
IF Section 355
ADC/I nterface Section 357
Controller Section 359

Contents

Display/Power Supply Section 360
7. ADC/Interface Section
Introduction 380
Troubleshooting Using the TAM 383
Automatic Fault Isolation 383
Keyboard/RPG Problems 386
K eyboard Interface 386
RPG Interface 387
Triggering or Video Gating Problems 389
Preselector Peaking Control (Real Time DAC) 392
Flatness Control (RF Gain DACs) 393
A3 Assembly's Video Circuits 394
Log Offset/Log Expand 396
Video MUX 397
Video Filter 398
Video Filter Buffer Amplifier 399
Positive/Negative Peak Detectors 400
Peak Detector Reset 401
Rosenfell Detector 402
ADC MUX 403
Variable Gain Amplifier (VGA) 405
Track and Hold 405
A3 Assembly's ADC Circuits 406
ADC Control Signals 406
ADC Start/Stop Control 407
ADC ASM 408
ADC 408
Ramp Counter 409
A3 Assembly's Control Circuits 410
Analog Bus Drivers 410
Analog Bus Timing 411
Interface Strobe Select 413
A16 Assembly's Fast ADC Circuits (8561E and 8563E with Option 007) 414
Video Input Scaling Amplifiers and Limiter 414
8-Bit Flash ADC 415
Peak/Pit Detection 416
32 K-Byte Static RAM 417
A16 Assembly's Fast ADC Control Circuits (8561E and 8563E with Option 007) 418
CPU Interface and Control Registers 418
Reference Clock 421
Clock and Sample Rate Generator 421
Trigger 422
16-Bit Post-Trigger Counter 423
15-Bit (32 K) Circular Address Counter 423
Video Trigger Comparator 424

Contents

8. IF Section
I ntroduction 430
Troubleshooting Using the TAM 432
Troubleshooting the Log Amplifier with the TAM 433
Troubleshooting A5 with the TAM 433
Troubleshooting the Cal Oscillator with the TAM 437
Automatic IF Adjustment 439
Parameters Adjusted 440
Requirements 441
Performance Test Failures 442
IF Gain Uncertainty Performance Test 442
Scale Fidelity Performance Test 443
Resolution Bandwidths Performance Tests 443
Log Amplifier (P/O A4 Assembly) 444
Log Amplifier 444
Linear Amplifiers 446
Video Offset 447
Video Output 448
Frequency Counter Prescaler/Conditioner 448
AM/FM Demodulator 449
4.8 kHz IF Filters 449
10.7 MHz IF Filters 450
4.8 kHz and 10.7 MHz IF Filters 451
10.6952 M Hz VCXO 452
Input Switch 452
LO Switch 452
Synchronous Detector 453
Log Offset/Gain Compensation 454
Video MUX 455
A5 IF Assembly 456
IF Signature 457
Common IF Signature Problems 463
1 MHz Resolution Bandwidth Problems 466
30 kHz Resolution Bandwidth Problems 467
3 kHz and 10 kHz Resolution Bandwidth Problems 468
Step Gains 469
Cal Oscillator (P/O A4 Assembly) 470
Cal Oscillator Unlock at Beginning of IF Adjust 471
Inadequate CAL OSC AMPTD Range 472
300 Hz to 3 kHz Resolution Bandwidth Out of Specification 473
Low-Pass Filter 477
Sweep Generator 477
AM/FM Demodulation, Audio Amplifier, and Speaker 478
9. Controller Section
Introduction 486
Troubleshooting Using the TAM (8561E and 8563E only) 487
Blank Display 487
Digital Signature Analysis (8561E and 8563E) 490

Contents

Display Problems (8561E and 8563E) 491
Line Generators 491
Blanking 492
Display J umbled or Trace Off Screen 494
Intensity 498
Bad Characters or Graticule 499
Long Lines Dimmer Than Short Lines 499
Analog Zero-Span Problems (8561E and 8563E, Non-Option 007) 502
Frequency-Count Marker Problems (8561EC and 8563EC) 504
Frequency-Count Marker Problems (8561E and 8563E) 505
Frequency Counter (8561EC and 8563EC)) 506
Frequency Counter (8561E and 8563E) 508
Video Input Scaling Amplifiers and Limiter (8561EC and 8563EC) 510
12-Bit Flash ADC (8561EC and 8563EC) 512
32 K-Byte Static RAM (8561EC and 8563EC) 512
Reference Clock (8561EC and 8563EC) 513
16 MHz Harmonic Filter (8561EC and 8563EC) 513
State- and Trace-Storage Problems 514
K eyboard Problems 515
10. Synthesizer Section
Introduction 522
Troubleshooting Using the TAM 524
Troubleshooting Test Setup 530
Confirming a Faulty Synthesizer Section 531
General PLL Troubleshooting 537
PLL Locked at Wrong Frequency 537
Unlocked PLL 538
Unlocked Reference PLL (100 MHz VCXO) 540
Operation (100 MHz VCXO) 540
Troubleshooting (100 MHz VCXO) 540
Third LO Driver Amplifier (100 MHz VCXO) 543
Unlocked Reference PLL (600 MHz SAWR) 545
Operation (600 MHz SAWR) 545
Troubleshooting (600 MHz SAWR) 545
Third LO Driver Amplifier (600 MHz SAWR) 548
Unlocked Offset Lock Loop (Sampling Oscillator) 550
Operation 550
Troubleshooting 550
Unlocked YTO PLL 554
Operation 554
Troubleshooting an Unlocked YTO PLL 556
Unlocked Fractional N PLL 562
Operation 562
Confirming an Unlocked Condition 562
Fractional N PLL 563
Frequency Span Accuracy Problems 568
Determining the First LO Span 568
Confirming Span Problems 569

Contents

YTO Main Coil Span Problems (LO Spans $>20 \mathrm{MHz}$) 570
YTO FM Coil Span Problems (LO Spans 2.01 MHz to 20 MHz) 570
Fractional N Span Problems (LO Spans $\leq 2 \mathrm{MHz}$) 572
First LO Span Problems (All Spans) 572
First LO Span Problems (Multiband Sweeps) 574
Phase Noise Problems 575
Phase Noise in Locked versus Unlocked Spans 575
Reference versus Reference PLL Phase Noise 575
Fractional N versus Offset PLL or YTO PLL Phase Noise 576
Fractional N PLL Phase Noise 576
Sampler and Sampler IF 577
Sweep Generator Circuit (for Spectrum Analyzers with 100 s max. Sweep Time) 579
Sweep Generator Circuit (for Spectrum Analyzers with 2000 s max. Sweep Time) 581
A21 OCXO 585
11. RF Section
Introduction 594
Troubleshooting Using the TAM 595
Low Band Problems 598
High Band Problems 599
Low and High Band Problems 600
A7 LO Distribution Amplifier 602
A8 Dual Mixer (8561E/EC) 604
PIN Switch 604
High Band Bias (8561E/EC) 604
A8 Low Band Mixer (8563E/EC) 606
A9 I nput Attenuator 607
A13 Second Converter 609
A14 Frequency Control Assembly 611
LODA Drive 611
Control Latch for Band-Switch Driver 612
YTF Driver Circuit 613
A15 RF Assembly 618
Confirming a Faulty Third Converter 618
Confirming Third Converter Output 618
Third Converter 619
Flatness Compensation Control 621
Control Latches 621
SIG ID Oscillator (Option 008) 622
10 MHz Reference 623
12. Display/Power Supply Section
Introduction 632
LCD Display (8561EC and 8563EC) 633
Overview of A17 Display Driver Board 633
Troubleshooting the LCD Display 635
Blank Display 635
Dim Display 636

Contents

Troubleshooting using the VGA port 636
Troubleshooting using part substitution 636
CRT Display (8561E and 8563E) 638
Troubleshooting Using the TAM 640
Blank Display (Using the TAM) 642
Blank Display 643
Blanking Signal 644
Display Distortion 645
Focus Problems 647
Intensity Problems 649
Power Supply 651
Troubleshooting Using the TAM (8561E and 8563E only) 654
A6 Power Supply Assembly 655
Dead Power Supply 655
Line Fuse Blowing 657
Supply Restarting Every 1.5 Seconds (Kick Start) 657
Low Voltage Supplies 657
High Voltage Supplies (8561E and 8563E) 658
CRT Supply Dropping Out (8561E and 8563E) 659
Blanking Signal (8561E and 8563E) 660
Buck Regulator Control 660
DC-DC Converter Control 661
Power Up 661
13. Component-Level Information Packets
Introduction 668
Figure 1-1. Serial Number Label Example 30
Figure 1-2 . Earlier Serial Number Label Example 31
Figure 1-3 . Example of a Static-Safe Workstation 34
Figure 1-4. Spectrum Analyzer Shipping Container and Cushioning Materials 37
Figure 2-1 . High Voltage Power Supply Adjustment Setup 60
Figure 2-2 . Display Adjustment Setup 62
Figure 2-3 . CRT Adjust Pattern 65
Figure 2-4 . A2 Display Adjustment Locations 66
Figure 2-5 . IF Bandpass Adjustment Setup 68
Figure 2-6 . TAM Connector Pin Locations 69
Figure 2-7 . IF Amplitude Adjustment Setup 73
Figure 2-8 . IF Amplitude Adjustment Locations 74
Figure 2-9. DC Log Adjustment Setup 77
Figure 2-10 . DC Log Adjustment Locations 78
Figure 2-11. Sampler Adjustment Setup 81
Figure 2-12 . TAM Connector Pin Locations 82
Figure 2-13. YTO Adjustment Setup 84
Figure 2-14 . YTO Adjustment Locations 86
Figure 2-15 . 1st LO Distribution Amplifier Adjustment Setup 87
Figure 2-16 . TAM Connector Pin Locations 88
Figure 2-17. First LO Distribution Amplifier Adjustment Setup 90
Figure 2-18. TAM Connector Pin Locations 91
Figure 2-19 . Dual Band Mixer Bias Adjustment Setup 93
Figure 2-20 . Frequency Response Adjustment Setup (8561E/EC) 96
Figure 2-21. Frequency Response Adjustment Setup (8563E/EC) 100
Figure 2-22. Calibrator Amplitude Adjustment Setup 104
Figure 2-23. 10 MHz Reference Adjustment Setup and Adjustment Location 107
Figure 2-24 . 10 MHz Reference Adjustment Setup - TCXO 109
Figure 2-25. Demodulator Adjustment Setup 111
Figure 2-26 . Demodulator Adjustment Locations 113
Figure 2-27. External Mixer Bias Adjustment Setup 114
Figure 2-28. External Mixer Amplitude Adjustment Setup 116
Figure 2-29. Signal ID Oscillator Adjustment Setup 120
Figure 2-30 . Signal ID Oscillator Adjustment Jumper Location 121
Figure 2-31 . SYTF Adjustment Setup 123
Figure 2-32. RYTHM Adjustment Setup 125
Figure 2-33 . 16 MHz PLL Adjustment Setup 129
Figure 2-34 . 16 MHz PLL Adjustment Location 130
Figure 2a-1 . IF Amplitude Adjustment Setup 136
Figure 2a-2 . IF Amplitude Adjustment Locations 137
Figure 2a-3 . DC Log Adjustment Setup 141
Figure 2a-4 . DC Log Adjustment Locations 142
Figure 3-1 . Hinged Assemblies 151
Figure 3-2 . LCD Assembly - Exploded View 156
Figure 3-3 . Discharging the Post-Accelerator Cable 164

Figures

Figure 3-4 . A9, A18, and Line-Switch Assembly Mounting Screws 165
Figure 3-5 . Front-Frame Mounting Screws 166
Figure 3-6 . Installing the CRT and Front-Frame Assemblies 167
Figure 3-7 . Placing the CRT into the Front Frame 168
Figure 3-8. A2, A3, A4, and A5 Assembly Removal 173
Figure 3-9 . Assembly Cables (1 of 3) - EC-Series 174
Figure 3-10 . Assembly Cables (2 of 3) - EC-Series 175
Figure 3-11 . Assembly Cables (3 of 3)- E-series 176
Figure 3-12 . Coaxial Cable Clip - EC-Series 177
Figure 3-13 . Coaxial Cable Clip - E-Series 178
Figure 3-14. GPIB and A1A1 W1 Cable Placement 179
Figure 3-15 . Power Supply Cover 181
Figure 3-16 . Power Supply Cover 182
Figure 3-17. A6 Power Supply Connections 185
Figure 3-18 . Power Supply Cover 186
Figure 3-19 . A16 Fast ADC and A17 CRT Driver Mounting Screws 189
Figure 3-20 . 8561E/EC Assembly Locations 192
Figure 3-21 . 8563E/EC Assembly Locations 193
Figure 3-22 . 8561E/EC RF Section Bias Connections 194
Figure 3-23 . A9 Mounting Screw at Right Side Frame 199
Figure 3-24 . A10 Mounting Screws 200
Figure 3-25 . 8563E/EC A11 Mounting Screws at Right Side Frame 205
Figure 3-26 . A14 and A15 Assembly Removal 207
Figure 3-27. A14 and A15 Assembly Cables 209
Figure 3-28 . A16 and A17 Mounting Screws 211
Figure 3-29 . A16 Cable Routing 212
Figure 3-30 . Main Deck Screws 217
Figure 3-31. A6 Power Supply Cover 219
Figure 3-32. W3 Dress and Connection to A6 Power Supply 222
Figure 3-33 . Line-Switch Mounting Screw and Cable Dress 224
Figure 3-34. W3 Cable Connector 225
Figure 3-35 . Side Frame Mounting Screws 227
Figure 3-36 . A21 OCXO Mounting Screws 231
Figure 4-1 . Parts Identification, Assembly Mounting 253
Figure 4-2 . Parts Identification, Cover Assembly 261
Figure 4-3 . Parts Identification, Main Chassis (8561E and 8563E) 263
Figure 4-4 . Parts Identification, RF Section (8561E/EC Only) 265
Figure 4-5 . Parts Identification, RF Section (8563E/EC Only) 267
Figure 4-6 . Parts Identification, Front Frame (8561E and 8563E) 269
Figure 4-7 . Parts Identification, Rear Frame (8561E and 8563E) 271
Figure 4-8 . Parts Identification, Chassis (8561EC and 8563EC) 273
Figure 4-9 . Parts Identification, Front Frame (8561EC and 8563EC) 275
Figure 4-10 . Parts Identification, Rear Frame (8561EC and 8563EC) 277
Figure 5-1 . Hinged Assemblies 283
Figure 5-2 . Top View (A2 and A3 unfolded) - EC-Series 284
Figure 5-3. Top View (A2, A3, A4, and A5 Unfolded) - EC-Series 285
Figure 5-4 . Top View (A2 Unfolded) - E-Series 286
Figure 5-5 . Top View (A2 and A3 Unfolded) - E-Series 287
Figure 5-6. Top View (A2, A3, A4, and A5 Unfolded) - E-Series 288
Figure 5-7 . Bottom View (A15 Unfolded) 289
Figure 5-8 . Bottom View (A15 and A14 Unfolded) 290
Figure 5-9 . A16 Fast ADC (Option 007 in 8560 E-Series Instruments) 291
Figure 5-10 . 8561E/EC Front End 292
Figure 5-11.8563E/EC Front End 293
Figure 5-12 . Rear View EC-Series 294
Figure 5-13 . Rear View E-Series 294
Figure 6-1 . Assembly Test Points 298
Figure 6-2 . Ribbon Cable Connections (1 of 3) 299
Figure 6-3 . Ribbon Cable Connections (2 of 3) 300
Figure 6-4 . Ribbon Cable Connections (3 of 3) - EC-Series Only 301
Figure 6-5 . Service Cal Data Menu 302
Figure 6-6 . Functional Sections 347
Figure 6-7 . Phase Lock Loops 355
Figure 6-8 . Simplified 61E/EC Block Diagram 361
Figure 6-9 . Simplified 63E/EC Block Diagram 363
Figure 6-10 . Overall Block Diagram (1 of 7) 365
Figure 6-10 . Overall Block Diagram (2 of 7) 367
Figure 6-10 . Overall Block Diagram (3 of 7) 369
Figure 6-10 . Overall Block Diagram (4 of 7) 371
Figure 6-10 . Overall Block Diagram (5 of 7) 373
Figure 6-10 . Overall Block Diagram (6 of 7) 375
Figure 6-10 . Overall Block Diagram (7 of 7) 377
Figure 7-1 . A3 Test Connectors 383
Figure 7-2 . A3 Interface Assembly Block Diagram 425
Figure 7-3 . Fast ADC Block Diagram (Option 007 in E-Series Instruments) 427
Figure 8-1 . A4 and A5 Test Connectors 432
Figure 8-2 . IF Section Troubleshooting with the TAM 436
Figure 8-3 . IF Adjust Signature 459
Figure 8-4 . Detailed IF Adjust Signature (1) 460
Figure 8-5 . Detailed IF Adjust Signature (2) 461
Figure 8-6 . Detailed IF Adjust Signature (3) 461
Figure 8-7. Detailed IF Adjust Signature (4) 462
Figure 8-8. Detailed IF Adjust Signature (5) 462
Figure 8-9 . Noisy Signature 464
Figure 8-10 . Noise with Correct Shape 464
Figure 8-11 . Region B Amplitude Variation 465
Figure 8-12 . Region B Amplitude Offset 465
Figure 8-13 . Faulty Crystal Short 466
Figure 8-14. Faulty LC Pole 467
Figure 8-15 . Faulty Crystal Symmetry 468

Figures

Figure 8-16 . Output Waveform, 10 kHz Resolution Bandwidth 474
Figure 8-17. Output Waveform, 3 kHz Resolution Bandwidth 475
Figure 8-18. Output Waveform, 1 kHz Resolution Bandwidth 475
Figure 8-19. Output Waveform, 300 Hz Resolution Bandwidth 476
Figure 8-20 . Failed Crystal Set Symptoms 476
Figure 8-21 . A4 Log Amplifier/Cal Oscillator Block Diagram (1 of 2) 479
Figure 8-21 . A4 Log Amplifier/Cal Oscillator Block Diagram (2 of 2) 481
Figure 8-22. A5 IF Assembly Block Diagram 483
Figure 9-1 . A2 Test Connectors 488
Figure 9-2 . Line Generator Output Waveforms 492
Figure 9-3 . Blanking Waveforms 493
Figure 9-4 . Expanded Blanking Waveforms 494
Figure 9-5 . Switch Driver Waveform LCHAR 495
Figure 9-6 . Distorted X/Y Line Generator Waveforms 497
Figure 9-7 . Expanded X/Y Line Generator Waveforms 497
Figure 9-8 . Normal X/Y Line Generator Waveforms 498
Figure 9-9 . Delta X Waveform 500
Figure 9-10 . Delta Y Waveform 501
Figure 9-11. DEF1 Synchronization 503
Figure 9-12 . A2 Controller Block Diagram (E-Series) 517
Figure 9-13 . A2 Controller Block Diagram (EC-Series) 519
Figure 10-1 . A14 and A15 Test Connectors 524
Figure 10-2 . TAM Connector Pin Locations 524
Figure 10-3 . YTO Loop Test Setup 534
Figure 10-4 . Sampler and Sampling Oscillator Test Setup 535
Figure 10-5 . PLL Locked at Wrong Frequency 537
Figure 10-6 . Unlocked PLL 538
Figure 10-7 . Troubleshooting an Unlocked YTO PLL 556
Figure 10-8 . VCO Bias Voltages 565
Figure 10-9 . 8561E/EC Sweep and Scan Ramps 574
Figure 10-10 . 8563E/EC Sweep and Scan Ramps 574
Figure 10-11 . Simplified Sweep Generator 580
Figure 10-12 . Simplified Sweep Generator during Retrace 580
Figure 10-13 . Simplified Synthesizer Section 582
Figure 10-14 . Simplified A14 Assembly Block Diagram 583
Figure 10-15 . Simplified A15 Assembly Block Diagram 584
Figure 10-16 . Frequency Control Block Diagram 587
Figure 10-17 . RF Assembly Block Diagram 589
Figure 10-18 . RF Assembly Block Diagram 591
Figure 11-1 . A14 and A15 Test Connectors 595
Figure 11-2 . A14J10, Solder Side of A14 (Ignore Pin Numbers on Mating Connector) 602
Figure 11-3 . A7 First LO Distribution Amplifier Drive 612
Figure 11-4. 8561E/EC Rear-Panel SWP Output 614
Figure 11-5 . 8563E/EC Rear-Panel SWP Output 615
Figure 11-6. 8561E/EC Signal at A14J15 Pin 1 615
Figure 11-7. 8563E/EC Signal at A14J15 Pin 1 616
Figure 11-8 . 10 MHz Reference at A15J302 624
Figure 11-9. 10 MHz TTL Reference at U304 Pin 13 625
Figure 11-10 . 8561E/EC RF Section, Troubleshooting Block Diagram 627
Figure 11-11 . 8563E/EC RF Section, Troubleshooting Block Diagram 629
Figure 12-1 . Simplified Section Block Diagram 633
Figure 12-2 . Probe Power Socket 635
Figure 12-3 . Location of +5 V supplies to Inverter Board and Backlights 637
Figure 12-4 . Power Supply and CRT Block Diagram 639
Figure 12-5 . A17 Test Connector 640
Figure 12-6 . Probe Power Socket 643
Figure 12-7 . Simplified Power Supply Block Diagram 652
Figure 12-8 . Buck Regulator Waveform 656
Figure 12-9 . A17 CRT Driver Block Diagram 663
Figure 12-10 . A6 Power Supply Block Diagram 665
Figure 13-1 . 8560 EC-Series Interconnect Block Diagram 673
Figure 13-2 . 8560 E-Series Interconnect Block Diagram 675
Table 1-1 . Instrument Variations 29
Table 1-2 . Service Kit Contents 33
Table 1-3 . Static-Safe Accessories 35
Table 1-4 . Recommended Test Equipment 38
Table 1-5 . Agilent Technologies Sales and Service Offices. 46
Table 2-1 . Related Adjustments 51
Table 2-2 . Adjustable Components 54
Table 2-3 . Factory Selected Components 56
Table 2-4 . TAM Adjustments 58
Table 2-5. Required Test Equipment for TAM 59
Table 2-6 . Factory-Selected LC Filter Capacitors 70
Table 2-7 . LC Factory-Selected Capacitor Selection 70
Table 2-8 . Factory-Selected XTAL Filter Capacitors 71
Table 2-9. XTAL Factory-Selected Capacitor Selection 72
Table 2-10 . Capacitor Part Numbers 72
Table 2-11. Sampling Adjustments 83
Table 2-12 . Conversion Loss Data 118
Table 2a-1 . Recommended Test Equipment 135
Table 3-1 . Required Tools 150
Table 4-1 . Reference Designations 237
Table 4-2 . Abbreviations 238
Table 4-3. Multipliers 242
Table 4-4 . Replaceable Parts. 243
Table 4-5 . Replaceable Parts -8561E/EC and 8563E/EC (see Figure 4-1) 253
Table 4-6 . Parts List, Cover Assembly -8561E/EC and 8563E/EC (see Figure 4-2) 253
Table 4-7 . Parts List, Main Chassis - 8561EC and 8563EC (see Figure 4-8) 254
Table 4-8 . Parts List, Main Chassis -8561E and 8563E (see Figure 4-3) 255
Table 4-9 . Parts List, RF Section - 8561E/EC and for 8563E/EC (see Figures 4-4 and 4-5) 256
Table 4-10 . Parts List, Front Frame - 8561EC and 8563EC (see Figure 4-9) 256
Table 4-11 . Parts List, Front Frame -8561E and 8563E (see Figure 4-6) 257
Table 4-12 . Parts List, Rear Frame -8561EC and 8563EC (see Figure 4-10) 259
Table 4-13 . Parts List, Rear Frame -8561E and 8563E (see Figure 4-7) 260
Table 6-1 . Location of Assembly Troubleshooting Text 304
Table 7-1 . W2 Control Cable Connections 381
Table 7-2 . Automatic Fault Isolation References 384
Table 7-3. TAM Tests versus A3 Test Connectors 385
Table 7-4 . Keyboard Matrix 386
Table 7-5 . Counter Frequencies 388
Table 7-6 . Trigger MUX Truth Table 389
Table 7-7. A3U102 Latch Outputs 399
Table 7-8 . HMUX_SELO/1 versus Detector Mode 402
Table 7-9 . Logic Levels at A3U108 404
Table 7-10 . Demultiplexer A3U410 Truth Table 413
Table 7-11 . Demultiplexer A3U500 Truth Table 413
Table 7-12 . LP/Q Truth Table 417
Table 7-13. Control Word at Primary Address (U3 and U4). 419
Table 8-1 . Automatic Fault Isolation References 433
Table 8-2 . TAM Tests versus Test Connectors 434
Table 8-3. Sweep Width Settings. 438
Table 8-4 . IF Gain Application Guideline (ATTEN $=10 \mathrm{~dB}$) 446
Table 9-1 . TAM Tests versus Test Connectors 487
Table 9-2 . Gate Times 507
Table 9-3 . Gate Times 509
Table 10-1 . Measured Signal Line Location 525
Table 10-2 . Automatic Fault Isolation References 525
Table 10-3 . TAM Tests versus Test Connectors 527
Table 10-4 . Center Frequency Tuning Values 532
Table 10-5 . Sampling Oscillator Test Frequencies 536
Table 10-6 . Sampling Oscillator PLL Divide Numbers 551
Table 10-7 . Amplifier Polarities 555
Table 10-8 . Voltages in FM Coil and Main Loop Drivers 560
Table 10-9 . Main Coil Coarse and Fine DACs Voltages. 561
Table 10-10 . Postscaler Divide Numbers 563
Table 10-11 . Unlocked Fractional N Troubleshooting Areas 564
Table 10-12 . Divider and Integrator Troubleshooting 566
Table 10-13 . Sweep Signal Destination versus Span. 568
Table 10-14 . Harmonic Mixing Number versus Center Frequency 569
Table 10-15 . Settings of Sweep Switches 571
Table 10-16 . Settings for Switches and Comparators 573
Table 10-17 . Settings for Switches and Comparators 575
Table 11-1 . Automatic Fault Isolation References 596
Table 11-2 . TAM Tests versus Test Connectors 597
Table 11-3 . 8561E/EC Attenuator Control Truth Table 608
Table 11-4 . 8563E/EC Attenuator Control Truth Table 608
Table 11-5 . Sweep + Tune Multiplier Values 616
Table 11-6 . RF Section Mnemonic Table 626
Table 12-1 . Automatic Fault Isolation References 640
Table 12-2 . TAM Tests versus Test Connectors 641
Table 12-3 . W1 Power-Cable Connections 653
Table 12-4 . Automatic Fault Isolation References 654
Table 13-1 . CLIPs Available for 8561E, 8561EC, 8563E, and 8563EC Spectrum Analyzers 669

Introduction

This Agilent 8561E/ EC and Agilent 8563E/ EC Spectrum AnalyzersService Guide contains information required to adjust and service theAgilent 8561E, 8561EC, 8563E, and 8563EC to the assembly level.
How to Use this Guide page 26
Differences between E-series and EC-series Analyzers page 28
Instrument Variations page 29
Serial Number and Repair Information. page 30
Agilent 85629B Test and Adjustment Module. page 32
Service Kit page 33
Recommended Test Equipment page 38
Electrostatic Discharge. page 34
Returning Instrument for Service page 36

How to Use this Guide

Chapters 1 through 5 contain adjustments and parts information that can be used to adjust your spectrum analyzer and to help you fix problems.

Chapter 6, "General Troubleshooting", can be used to identify the location of a problem to a board or functional area in the spectrum analyzer.

Chapters 7 through 13, which cover functional areas, can then be used to help you localize the problem further.

Conventions used in this guide

Screen Text	This font indicates text displayed on the screen
Key	This font indicates a softkey or a hardkey
$8561 E / E C$,	These terms are used to refer to both E-series and
8563E/EC	EC-series instruments

Documentation Outline

Agilent Technologies 8560 E-Series and EC-Series Spectrum Analyzer Calibration Guide

- Tells you how to run verification software.
- Tells you what your spectrum analyzer's specifications are.
- Tells you how to test your spectrum analyzer.

Agilent Technologies 8560 E-Series and EC-Series Spectrum Analyzer User's Guide

- Tells you how to make measurements with your spectrum analyzer.
- Tells you how to install your spectrum analyzer.
- Tells you how to program your spectrum analyzer.

Agilent Technol ogies 8560 E-Series and EC-Series Spectrum Analyzer Quick Reference Guide

- Is an abbreviated version of the Agilent Technologies 8560 E-Series and EC-Series Spectrum Analyzer's User's Guide
- Provides you with a listing of all remote programming commands.

Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information

- Provides schematics and parts lists for the instrument.

Differences between 8560 EC-Series and E-Series Spectrum Analyzers

Features	$\mathbf{8 5 6 0}$ EC-Series	$\mathbf{8 5 6 0}$ E-Series
Display	- LCD display - color - display not adjustable - backlight bulbs are replaceable (replace both bulbs when display is dim) requires A17 LCD driver board	- CRT display - monochrome display adjustable for intensity, focus, and quadrature requires high voltage module (HVM), which is located in the A6 power supply requires A17 CRT driver board
Fast ADC sweep times (FADC) enables sweep times of 30 ms to 50 $\mu \mathrm{s}$	- FADC is standard - FADC circuitry integrated into A2 controller board	- FADC is available as an option (Option 007) separate A16 FADC board required
VGA port	- located on rear panel - always active - does not require user interface	Not available

In all other operational respects the EC-series and E-series are identical. Unless otherwise noted, the information in this manual applies to all 8561EC, 8563EC, 8561E and 8563E instruments.

FADC is a standard feature, and not an option in the 8560 EC-series instruments. However, it is still necessary that option "007" be in the instrument's serial ID string. For this reason, if you press the Datecode \&Options key, the message shown on the display will indicate that option 007 is present. In addition, a statement on the rear panel of the instrument reads "Option 007 must be in serial ID string".

Diagrams that illustrate features common to E-series and EC-series instruments are shown with E-series instruments. Where there are differences between E-series and EC-series features, separate diagrams are provided.

Instrument Variations

The following table lists the options that are available for the 8561E/EC and 8563E/EC spectrum analyzers, and identifies the assemblies which are unique to them.

Table 1-1 Instrument Variations

Option	Added	Deleted
8561E/EC and 8563E/EC Option 001 (2nd IF Output)	W19 Cable Assembly Rear-Panel J 10	
8561E/EC and 8563E/EC Option 005 (add Alternative Sweep Output)	W58 Cable Assembly	
8563E/EC Option 006 (Frequency Coverage Down to $\mathbf{3 0 ~ H z) ~}$	A8 Low Band Mixer (Opt 006)	A8 Low Band Mixer (Std)
8561E/63E Option 007 (Fast ADC) -Fast ADC is available as an option for 8561E and 8563E instruments -Fast ADC is a standard feature on 8561EC and 8563EC instruments which does not require additional assemblies	A16 Fast ADC Assembly A3 Interface Assembly (Opt 007) W20 Cable Assembly (Opt 007) W59 Cable Assembly	A3 Interface Assembly (Std) W20 Cable Assembly (Std)
8561E/EC and 8563E/EC Option 008 (SIG ID)	A15 RF Assembly (Opt 008)	A15 RF Assembly (Std)
8561E/EC and 8563E/EC Option 103 (Delete OCXO)	A15 RF Assembly (Opt 103)	A15 RF Assembly (Std) W49 Cable Assembly W50 Cable Assembly A21 OCXO
8561E/EC and 8563E/EC Option 104 (Delete 85620A)		85620A Mass Memory Module
8563E/EC Option 026 (Changes RF Input Connector to 3.5 mm)	J $150 \Omega 3.5$ mm RF Input Connector W41 (Opt 026)	J 1 Type-N 50Ω RF Input Connector W41 (Std)

Serial Numbers and Repair Information

Agilent Technologies makes frequent improvements to its products to enhance performance, usability, or reliability. Agilent service personnel have access to complete records of design changes to each type of equipment, based on the equipment's serial number. Whenever you contact Agilent Technologies about a product, have the complete serial number available to ensure obtaining the most complete and accurate information possible.

The serial number label is usually attached to the rear of the product. The serial number has two parts: the prefix (two letters and the first four numbers), and the suffix (the last four numbers).

Figure 1-1 Serial Number Label Example

The two letters identify the country in which the unit was manufactured. The four numbers of the prefix are a code identifying the date of the last major design change incorporated in your Agilent Technol ogies product. The four-digit suffix is a sequential number and, coupled with the prefix, provides a unique identification for each unit produced. Whenever you list the serial number or refer to it in obtaining information about your Agilent product, be sure to use the complete number, including the full prefix and the suffix.

Units which were produced before the serial number format was changed may also be covered by this documentation. On earlier serial number labels, the prefix consists of the first four numbers and a single letter. The suffix is a five-digit sequential number.

Figure 1-2 Earlier Serial Number Label Example

[^0]
Agilent 85629B Test and Adjustment Module

When attached to the rear panel of the spectrum analyzer, the 85629B test and adjustment module (TAM) provides diagnostic functions for the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$. Because the TAM connects directly to the internal data and address bus of the spectrum analyzer, it controls the hardware of the spectrum analyzer directly. It would be impossible to control the hardware to the same extent either from the front panel of the spectrum analyzer or over GPIB.

The TAM measures voltages at key points in the circuitry and flags a failure whenever the voltage falls outside the limits. The TAM locates the failure to a small functional area which can be examined manually.

Service Kit

The spectrum analyzer service kit (part number 08562-60021) contains service tools required to repair the instrument. Refer to Table 1-2 for a list of items in the service kit.
Table 1-2 Service Kit Contents

Description	Quantity	Part Number
Cable Puller	1	$5021-6773$
PC Board Prop	1	$5021-7459$
Line Filter Assembly	1	$5061-9032$
Line Switch Cable	1	$5062-0728$
Extender Cable	1	$5062-0737$
BNC to SMB (snap-on) Cable	2	$85680-60093$
Connector Extractor Tool Kit	1	$8710-1791$

Electrostatic Discharge

Electrostatic discharge (ESD) can damage or destroy electronic components. Therefore, all work performed on assemblies consisting of electronic components should be done at a static-free workstation.
Figure 1-3 is an example of a static-safe workstation using two kinds of ESD protection:

- Conductive table mat and wrist-strap combination
- Conductive floor mat and heel-strap combination

These methods may be used together or separately.
Figure 1-3 Example of a Static-Safe Workstation

Reducing Potential for ESD Damage

The suggestions that follow may help reduce ESD damage that occurs during instrument testing and servicing.

- Before connecting any coaxial cable to an spectrum analyzer connector for the first time each day, momentarily ground the center and outer connectors of the cable.
- Personnel should be grounded with a resistor-isolated wrist strap before touching the center pin of any connector and before removing any assembly from the unit.
- Be sure all instruments are properly earth-grounded to prevent build-up of static discharge.

Static-Safe Accessories

Table 1-3 Static-Safe Accessories

Part Number	Description
$9300-0797$	Set includes: 3 M static control mat $0.6 \mathrm{~m} \times 1.2 \mathrm{~m}(2 \mathrm{ft} \times 4 \mathrm{ft}$) and 4.6 cm (15 ft) ground wire. (The wrist-strap and wrist-strap cord are not included. They must be ordered separately.)
$9300-0980$	Wrist-strap cord, 1.5 m (5 ft)
$9300-1383$	Wrist-strap, col or black, stainless steel, without cord, four adjustable links and 7 mm post-type connection.
$9300-1169$	ESD heel-strap (reusable 6 to 12 months).

Returning Instruments for Service

Service Tag

If you are returning the instrument to Agilent Technol ogies for servicing, fill in and attach a blue service tag. Service tags are supplied in the back of this chapter.

Please be as specific as possible about the nature of the problem. If you have recorded any error messages that appeared on the screen, or have completed a performance test record, or have any other specific data on the performance of the spectrum analyzer, please send a copy of this information with the unit.

Original Packaging

Before shipping, pack the unit in the original factory packaging materials if they are available. If the original materials are unavailable, identical packaging materials may be acquired through any Agilent Technologies Sales and Service Office. Descriptions of the packaging materials are listed in Figure 1-4 on page 37.

Other Packaging

CAUTION
Spectrum analyzer damage can result from using packaging materials other than those specified. Never use styrene pellets in any shape as packaging materials. They do not adequately cushion the equipment or prevent it from shifting in the carton. They cause equipment damage by generating static electricity and by lodging in the spectrum analyzer fan.

Repackage the spectrum analyzer in the original packaging materials or with commercially available materials described in steps 4 and 5, below.

1. Attach a completed service tag to the instrument.
2. Install the front-panel cover on the instrument.
3. Wrap the instrument in antistatic plastic to reduce the possibility of damage caused by electrostatic discharge.
4. Use the original materials or a strong shipping container that is double-walled, corrugated cardboard carton with 159 kg (350 lb) bursting strength. The carton must be both large enough and strong enough to accommodate the spectrum analyzer and allow at least 3 to 4 inches on all sides of the spectrum analyzer for packing material.
5. Surround the equipment with at least 3 to 4 inches of packing material, or enough to prevent the equipment from moving in the carton. If packing foam is unavailable, the best alternative is SD-240 Air Cap ${ }^{\text {TM }}$ from Sealed Air Corporation (Commerce, CA 90001). Air Cap looks like a plastic sheet covered with 1-1/4 inch air-filled bubbles. Use the pink-col ored Air Cap to reduce static electricity. Wrap the equipment several times in this material to both protect the equipment and prevent it from moving in the carton.
6. Seal the shipping container securely with strong nylon adhesive tape.
7. Mark the shipping container ""FRAGILE, HANDLE WITH CARE" to assure careful handling.
8. Retain copies of all shipping papers.

Figure 1-4 Spectrum Analyzer Shipping Container and Cushioning Materials

Item	Part Number	Description
1	$9211-6969$	Outer Carton
2	$9220-5073$	Pads (2)
3	$9220-5072$	Top Tray

Recommended Test Equipment

Table 1-4 lists the recommended test equipment required for operation verification, performance tests, adjustments, troubleshooting, and the Test and Adjustment Module. Any equipment that meets the critical specifications given in the table can be substituted for the recommended model(s). Operation verification, and the performance tests, are located in the calibration guide.
Table 1-4 Recommended Test Equipment

Instrument	Critical Specifications for Equipment Substitution	Recommended Model	Use
Sources Synthesized sweeper (two required for 8560E/EC, $8561 E / E C$ and $8563 E / E C$) (onerequired for 8564E/EC and 8565E/EC)	Frequency range: $8560 \mathrm{E} / \mathrm{EC}, 10 \mathrm{MHz}$ to 12.0 GHz $8561 \mathrm{E} / \mathrm{EC}, 10 \mathrm{MHz}$ to 12.0 GHz $8563 \mathrm{E} / \mathrm{EC}, 10 \mathrm{MHz}$ to 26.5 GHz Frequency accuracy (CW): $1 \times 10^{-9} /$ day Leveling modes: Internal \&External Modulation modes: AM \&Pulse Power level range: -80 to +16 dBm	$\begin{gathered} \text { 8340A/B* } \\ \text { 83630A } \\ \text { Opt 001, } 008 \end{gathered}$	$\begin{aligned} & \mathrm{P}, \mathrm{~A}, \mathrm{~T}, \\ & \mathrm{M}, \mathrm{~V} \end{aligned}$
Synthesized sweeper (for 8564E/EC and 8565E/EC)	Frequency range: 8564E/EC, 10 MHz to 40.0 GHz $8565 \mathrm{E} / \mathrm{EC}, 10 \mathrm{MHz}$ to 50.0 GHz Frequency accuracy (CW): $1 \times 10^{-9} /$ day Leveling mode: Internal Power level range: -35 to +16 dBm	$\begin{gathered} \text { 83650A } \\ \text { Opt 001, } 008 \end{gathered}$	P,A,T, V
Synthesizer/ level generator	Frequency range: 200 Hz to 80 MHz Frequency accuracy: $1 \times 10^{-7} /$ month Flatness: $\pm 0.15 \mathrm{~dB}$ Attenuator accuracy: $< \pm 0.09 \mathrm{~dB}$ External 10 MHz reference input Frequency resolution: 1 Hz	3335A*, ${ }^{\text {¢ }}$	$\begin{aligned} & \mathrm{P}, \mathrm{~A}, \mathrm{~T} \\ & \mathrm{M}, \mathrm{~V} \end{aligned}$
Synthesized signal generator	Frequency range: 100 kHz to 2.5 GHz Residual SSB phase noise at 1 GHz : $<-73 \mathrm{dBc} / \mathrm{Hz}$ at 10 Hz offset $<-107 \mathrm{dBc} / \mathrm{Hz}$ at 1 kHz offset $<-124 \mathrm{dBc} / \mathrm{Hz}$ at 10 kHz offset $<-124 \mathrm{dBc} / \mathrm{Hz}$ at 100 kHz offset	8663A	P, V
Pulse/function generator	Frequency range: 10 kHz to 50 MHz Pulse width: $200 \mathrm{~ns} ;$ Output amplitude: 5 V peak-to-peak Functions: pulse \&triangle Pulse rise time: <100 ns TTL sync output	8116A	P,A

Table 1-4 Recommended Test Equipment

Instrument	Critical Specifications for Equipment Substitution	Recommended Model	Use
AM/FM signal generator	Frequency range: 1 MHz to 200 MHz Frequency modulation mode M odulation oscillator frequency: 1 kHz FM peak deviation: 5 kHz	$\begin{aligned} & \hline 8640 B \\ & 8642 A \end{aligned}$	A
Counters Frequency standard Microwave frequency counter Universal counter	Output frequency: 10 MHz Accuracy: $<1 \times 10^{-10}$ Frequency range: 9 MHz to 26.5 GHz Timebase accuracy (aging): $<5 \times 10^{-10}$ /day External frequency reference input Modes: TI A $\rightarrow \mathrm{B}$, frequency count Time interval measurement range: 100 ns to 120 s Frequency count range: 400 Hz to 11 MHz Frequency resolution: 1 mHz Timebase accuracy (aging): $<3 \times 10^{-7}$ /month External 10 MHz reference input	5061B 5343A* Option 001 5334A/B	$\begin{gathered} P, A \\ P, A, M, V \\ P \end{gathered}$
Receivers Spectrum analyzer (for 8560E/EC Option 002) Spectrum analyzer Measuring receiver	Frequency range: 300 kHz to 7 GHz Relative amplitude accuracy: 300 kHz to $2.7 \mathrm{GHz}:< \pm 1.8 \mathrm{~dB}$ 300 kHz to $7 \mathrm{GHz}:< \pm 4.0 \mathrm{~dB}$ Absolute amplitude accuracy: 3.9 GHz to 6.9 GHz : $< \pm 2.7 \mathrm{~dB}$ Frequency accuracy: $< \pm 10 \mathrm{kHz}$ at 7 GHz Frequency range: 300 kHz to 7 GHz Amplitude range: -70 dBm to +20 dBm Compatible w/power sensors dB relative mode Resolution: 0.01 dB Reference accuracy: $< \pm 1.2 \%$	8566B* 8566B* 8902A*	P,A,T A,T P,A,T, M, V
Sensors Power sensor (for 8560E/EC or 8561E/EC)	Frequency range: 10 MHz to 12 GHz Maximum SWR: 1.40 (10 to 30 MHz) 1.18 (30 to 50 MHz) 1.10 (50 MHz to 2 GHz) 1.18 (2 to 12.4 GHz)	8481A*	$\begin{aligned} & \mathrm{P}, \mathrm{~A}, \mathrm{~T}, \\ & \mathrm{M}, \mathrm{~V} \end{aligned}$
* Part of microwave workstation $\mathrm{P}=$ performance tests A = adjustments $\mathrm{M}=$ test \& adjustment module $\mathrm{T}=$ troubleshooting $\mathrm{V}=$ operation verification			

Table 1-4 \quad Recommended Test Equipment

I nstrument	Critical Specifications for Equipment Substitution	Recommended Model	Use
Power sensor	Frequency range: 250 MHz to 350 MHz Power range: 100 nW to $10 \mu \mathrm{~W}$ Maximum SWR: 1.15 (250 to 350 MHz)	8481D	P,A
Power sensor	Frequency range: 100 kHz to 2.9 GHz Maximum SWR: $\begin{aligned} & 1.1(1 \mathrm{MHz} \text { to } 2.0 \mathrm{GHz}) \\ & 1.30(2.0 \mathrm{GHz} \text { to } 2.9 \mathrm{GHz}) \end{aligned}$	8482A*	$\begin{aligned} & \mathrm{P}, \mathrm{~A}, \mathrm{~T} \\ & \mathrm{M}, \mathrm{~V} \end{aligned}$
Power sensor (for 8563E/EC)	```Frequency range: 50 MHz to 26.5 GHz Maximum SWR: 1.15 (50 to 100 MHz) 1.10 (100 MHz to 2 GHz) 1.15 (2.0 to 12.4 GHz) 1.20 (12.4 to 18 GHz) 1.25 (18 to 26.5 GHz)```	8485A*	$\begin{aligned} & \mathrm{P}, \mathrm{~A}, \mathrm{~T}, \\ & \mathrm{M}, \mathrm{~V} \end{aligned}$
Power sensor (for 8564E/ EC and 8565E/EC)	```Frequency range: 50 MHz to 50 GHz Maximum SWR: 1.15 (50 to 100 MHz) 1.10 (100 MHz to 2 GHz) 1.15 (2.0 to 12.4 GHz) 1.20 (12.4 to 18 GHz) 1.25 (18 to 26.5 GHz) 1.30 (26.5 to 40 GHz) 1.50 (40 to 50 GHz)```	8487A	P, V
Other Equipment Controller	Required to run operation verification software and adjustment/diagnostic software (8564E/EC and 8565E/EC)	$\begin{gathered} \text { 9816A, } \\ 9836 A / C, \\ 310,320 \\ 332,360 \end{gathered}$	V
Oscilloscope	Bandwidth (3 dB): dc to 100 MHz Two channels Minimum vertical deflection factor: $\leq 5 \mathrm{mV} / \mathrm{div}$ Minimum timebase setting: $<100 \mathrm{~ns}$ Digitizing display with time cursors Delta-t cursor accuracy in $500 \mathrm{~ns} /$ Div: $<0.1 \mu \mathrm{~s}$	54501A*	P,A,T
Amplifier	Frequency range: $8560 \mathrm{E} / \mathrm{EC}, 2.0$ to 2.9 GHz $8561 \mathrm{E} / \mathrm{EC}, 2.0$ to 6.5 GHz 8563E/EC, 2.0 to 8.0 GHz $8564 \mathrm{E} / \mathrm{EC}, 2.0$ to 8.0 GHz $8565 \mathrm{E} / \mathrm{EC}, 2.0$ to 8.0 GHz Minimum output power (leveled) 2.0 to 8.0 GHz : +16 dBm	11975	P
* Part of microwave workstation $\mathrm{P}=$ performance tests A = adjustments $\mathrm{M}=$ test \& adjustment module T =troubleshooting $\mathrm{V}=$ operation verification			

Table 1-4 Recommended Test Equipment

Instrument	Critical Specifications for Equipment Substitution	Recommended Model	Use
Power supply Signature multimeter Digital voltmeter	Output SWR (leveled): <1.7 Output voltage: $\geq 24 \mathrm{Vdc}$ Output voltage accuracy: < $\pm 0.2 \mathrm{~V}$ Clock frequency $>10 \mathrm{MHz}$ Time interval function Range: -15 Vdc to +120 Vdc Accuracy: $< \pm 1 \mathrm{mV}$ on 10 V range Input impedance: $\geq 1 \mathrm{M} \Omega$	$\begin{gathered} \text { 6114A } \\ \text { 5005A/B } \\ \text { 3456A* } \end{gathered}$	A T A,T
Probes DVM test leads High-frequency probe High-voltage probe	≥ 36 inches, alligator clips, probetips No substitute Voltage division ratio: 1000:1		$\begin{gathered} \mathrm{A}, \mathrm{~T} \\ \mathrm{~T} \\ \mathrm{~T} \end{gathered}$
Accessories Directional bridge	Frequency range: 1 to 80 MHz Coupling: 6 dB (nominal) Maximum coupling deviation: $<1 \mathrm{~dB}$ (nominal) Directivity: 40 dB minimum Impedance: 50Ω (nominal)	8721A	P
Directional coupler (for 8561E/EC) (two required)	Frequency range: 2.0 to 6.5 GHz Coupling: 16.0 dB (nominal) Maximum coupling deviation: $\pm 1 \mathrm{~dB}$ (nominal) Directivity: 14 dB minimum Flatness: 0.75 dB maximum VSWR: <1.45 Insertion loss: $<1.3 \mathrm{~dB}$	0955-0098	P
Directional coupler (for 8563E/ EC, 8564E/EC, and 8565E/ EC) (two required)	Frequency range: 2.0 to 8.1 GHz Coupling: 16.0 dB (nominal) Maximum coupling deviation: $\pm 1 \mathrm{~dB}$ (nominal) Directivity: 14 dB minimum Flatness: 0.75 dB maximum VSWR: <1.45 Insertion loss: $<1.3 \mathrm{~dB}$	0955-0098	P
10 dB step attenuator	Attenuation range: 30 dB Frequency range: dc to 80 MHz Connectors: BNC (f)	355D	P, V
1 dB step attenuator	Attenuation range: 12 dB Frequency range: dc to 80 MHz Connectors: BNC (f)	$355 C$	P, V
20 dB fixed attenuator	Frequency range: dc to 18 GHz Attenuation accuracy: $\leq \pm 1 \mathrm{~dB}$ M aximum SWR: 1.2 (dc to 2.9 GHz)	$\begin{gathered} \text { 8491B } \\ \text { Option } 020 \end{gathered}$	P, V
10 dB fixed attenuator	Frequency range: dc to 18 GHz	Agilent	P, V
* Part of microwave workstation $\mathrm{P}=$ performance tests A = adjustments $M=$ test \& adjustment module T = troubleshooting			

Table 1-4 Recommended Test Equipment

I nstrument	Critical Specifications for Equipment Substitution	Recommended Model	Use
V =operation verification			
	Attenuation accuracy: $< \pm 0.6 \mathrm{~dB}$ Maximum SWR: 1.2 (dc to 2.9 GHz)	Option 010	
Reference attenuator	supplied with 8481D	11708A	P, A
Termination (for 8560E/EC)	Frequency range: dc to 2.9 GHz I mpedance: 50Ω Maximum SWR: <1.10 Connector: Type N (m)	908A	P, M, V
Termination (for 8561E/EC)	Frequency range: dc to 6.5 GHz Impedance: 50Ω Maximum SWR: <1.10 Connector: Type N (m)	$\begin{gathered} \text { 909A } \\ \text { Option } 011 \end{gathered}$	P, M, V
Termination (for 8563E/EC)	Frequency range: dc to 26.5 GHz I mpedance: 50Ω Maximum SWR: <1.22 Connector: APC 3.5	$\begin{gathered} \text { 909D } \\ \text { Option } 012 \end{gathered}$	P, M, V
$\begin{aligned} & \text { Termination } \\ & \text { (for } 8564 \mathrm{E} / \mathrm{EC} \\ & \text { and } 8565 \mathrm{E} / \mathrm{EC} \text {) } \end{aligned}$	Frequency range: dc to 50 GHz Impedance: 50Ω Maximum SWR: <1.22 Connector: 2.4 mm (f)	85138B	P, V
Low-pass filter	Cutoff frequency: 50 MHz Rejection at $65 \mathrm{MHz}:>40 \mathrm{~dB}$ Rejection at $75 \mathrm{MHz}: ~>60 \mathrm{~dB}$	0955-0306	P, M, V
Low-pass filter (for 8563E/EC, 8564E/ EC and Agilent 8565E/EC) (two required)	Cutoff frequency: 1.8 GHz Rejection at $>3 \mathrm{GHz}:>45 \mathrm{~dB}$ 0.1 dB ripple	0955-0491	P
Low-pass filter (for 8561E/ EC 8563E/ EC, 8564E/EC and 8565E/EC) (two required)	Cutoff frequency: 4.4 GHz Rejection at $5.5 \mathrm{GHz}:>40 \mathrm{~dB}$	11689A	P
Power splitter (for 8560E/ EC or 8561E/ EC)	Frequency range: 1 kHz to 12 GHz Insertion loss: 6 dB (nominal) Output tracking: $<0.25 \mathrm{~dB}$ Equivalent output SWR: <1.22	11667A	P, A, M , V
Power splitter (for 8563E/EC)	Frequency range: 1 kHz to 26.5 GHz Insertion loss: 6 dB (nominal) Output tracking: $<0.25 \mathrm{~dB},<18 \mathrm{GHz}$ Equivalent output SWR: <1.22	11667B	P, A, M , V
$\begin{aligned} & \text { * Part of microwave workstation } \\ & P=\text { performance tests } \\ & A=\text { adjustments } \\ & M=\text { test } \& \text { adjustment module } \\ & T=\text { troubleshooting } \\ & V=\text { operation verification } \\ & \hline \end{aligned}$			

Table 1-4 Recommended Test Equipment

Table 1-4 \quad Recommended Test Equipment

Instrument	Critical Specifications for Equipment Substitution	Recommended Model	Use
Adapter(two required)	Type (m)-to-APC 3.5 (m)	1250-1743	P,M,V
Adapter	Type N (m)-to-APC 3.5 (f)	1250-1744	P, V
Adapter	Type N (m)-to-BNC (m)	1250-1473	P
Adapter	Type N (m)-to-N (f)	1250-1472	P
Adapter (two required)	Type N (f)-to-APC 3.5 (f)	1250-1745	P, V
Adapter (two required)	Type N (m)-to-SMA (f)	1250-1250	P, V
Adapter	Type N (f)-to-SMA (f)	1250-1772	P
Adapter	BNC (f)-to-BNC (f)	1250-0059	A
Adapter	BNC tee (f) (m) (f)	1250-0781	P,A,M, V
Adapter	BNC (f)-to-SMA (m)	1250-1200	P,A,V
Adapter	BNC (f)-to-dual banana plug	1251-2816	A, ${ }^{\text {, }}$
Adapter (two required)	APC 3.5 (f)-to-APC 3.5 (f)	5061-5311	P,M, V
Adapter (two required)	APC 3.5 (m)-to-APC 3.5 (m)	1250-1748	P, V
Adapter	2.4 mm (f)-to-2.4 mm (f)	11900B	P,A,T, V
Adapter	APC 3.5 (f)-to- 2.4 mm (f)	11901B	P
Adapter	APC 3.5 (m)-to- 2.4 mm (f)	11901D	P
Adapter	Type N (f)-to-2.4 mm (f)	11903B	P, A, T, V
Adapter	Type N (f)-to-2.4 mm (m)	11903C	P
* Part of microwave workstation			
$\mathrm{P}=$ performance tests			
$\mathrm{M}=$ test \& adjustment module			
T = troubleshooting			
$\mathrm{V}=$ operation verification			

Sales and Service Offices

Agilent Technol ogies has sales and service offices around the world providing complete support for Agilent Technol ogies products. To obtain servicing information, or to order replacement parts, contact the nearest Agilent Technol ogies Sales and Service Office listed in Table $1-5$. In any correspondence, be sure to include the pertinent information about model numbers, serial numbers, and assembly part numbers.

NOTE
Within the USA, a toll-free phone number is available for ordering replacement parts. Refer to "Ordering Information" on page 235 for the phone number and more information.

Table 1-5 Agilent Technologies Sales and Service Offices

UNITED STATES		
Instrument Support Center Agilent Technologies (800) 403-0801		
EUROPEAN FIELD OPERATIONS		
Headquarters Agilent Technologies S.A. 150, Route du Nant-d'Avril 1217 Meyrin 2/ Geneva Switzerland (41 22) 780.8111	France Agilent Technologies France 1 Avenue Du Canada Zone D'Activite De Courtaboeuf F-91947 Les Ulis Cedex France (33 1) 69826060	Germany Agilent Technologies GmbH Agilent Technologies Strasse 61352 Bad Homburg v.d.H Germany (49 6172) 16-0
Great Britain Agilent Technol ogies Ltd. Eskdale Road, Winnersh Triangle Wokingham, Berkshire RG41 5DZ England (44 118) 9696622		
INTERCON FIELD OPERATIONS		
Headquarters	Australia	Canada
Agilent Technologies	Agilent Technol ogies Australia	Agilent Technologies (Canada)
3495 Deer Creek Rd.	Ltd.	Ltd.
Palo Alto, CA 94304-1316	31-41 J oseph Street	17500 South Service Road
USA (415) 857-5027	$\begin{aligned} & \text { Blackburn, Victoria } 3130 \\ & \text { (61 3) 895-2895 } \end{aligned}$	Trans-Canada Highway Kirkland, Quebec H9] 2X8 Canada (514) 697-4232
J apan		
Agilent Technologies J apan, Ltd.	Singapore	Taiwan
M easurement Assistance Center	Agilent Technologies	Agilent Technologies Taiwan
9-1, Takakura-Cho, Hachioji-Shi,	Singapore (Pte.) Ltd.	8th Floor, H-P Building
Tokyo 192-8510, J apan	150 Beach Road	337 Fu Hsing N orth Road
TEL (81) -426-56-7832	\#29-00 Gateway West	Taipei, Taiwan
FAX (81) -426-56-7840	Singapore 0718 (65) 291-9088	(886 2) 712-0404
China		
China Agilent Technologies		
38 Bei San Huan X1 Road		
Shuang Yu Shu		
Hai Dian District		
Beijing, China (86 1) 256-6888		

2
 Adjustment Procedures

Introduction

This chapter contains information on automated and manual adjustment procedures. Perform the automated procedures using the Agilent 85629B test and adjustment module (TAM). Never perform adjustments as routine maintenance. Adjustments should be performed after a repair or performance test failure. Refer to Table 2-1 to for which adjustments to perform.

Automated Procedures

Using the TAM
page 57

Manual Procedures

1. High Voltage Power Supply Adjustment page 60
2. Display Adjustment. page 62
3. IF Bandpass Adjustment page 68
4. IF Amplitude Adjustments page 73
5. DC Log Amplifier Adjustments page 77
6. Sampling Oscillator Adjustment page 81
7. YTO Adjustment page 84
8. LO Distribution Amplifier Adjustment (Agilent 8561E/EC) page 87
9. LO Distribution Amplifier Adjustment (8563E/EC) page 90
10. Dual Band Mixer Bias Adjustment (Agilent 8561E/EC) page 93
11. Frequency Response Adjustment (Agilent 8561E/EC) page 95
12. Frequency Response Adjustment (8563E/EC) page 99
13. Calibrator Amplitude Adjustment page 104
14. 10 MHz Reference Adjustment - OCXO page 106
15. 10 MHz Reference Adjustment - TCXO (Option 103) page 109
16. Demodulator Adjustment. page 111
17. External Mixer Bias Adjustment page 114
18. External Mixer Amplitude Adjustment page 116
19. Signal ID Oscillator Adjustment page 119
20. Switched YIG-Tuned Filter (SYTF) Adjustment (8561E/EC) page 123
21. YIG-Tuned Filter/M ixer (RYTHM) Adjustment (8563E/EC) page 125
22. 16 MHz PLL Adjustment page 128
23. 600 MHz Reference Adjustment (prefix $\geq 3406 \mathrm{~A}$) page 132
NOTEBefore performing any adjustments, allow the spectrum analyzer towarm up for at least 5 minutes.

Safety Considerations

Although this instrument has been designed in accordance with international safety standards, this manual contains information, cautions, and warnings which must be followed to ensure safe operation and to prevent damage to the instrument. Service and adjustments should be performed only by qualified service personnel.

WARNING These servicing instructions are for use by qualified personnel only. To avoid electrical shock, do not perform any servicing unless you are qualified to do so.

The opening of covers or removal of parts is likely to expose dangerous voltages. Disconnect the product from all voltage sources while it is being opened.

Adjustments in this section are performed with power supplied to the instrument and protective covers removed. There are voltages at many points in the instrument which can, if contacted, cause personal injury. Be extremely careful. Adjustments should be performed only by trained service personnel.
Power is still applied to this instrument with the LINE switch in the off position. Before removing or installing any assembly or printed circuit board, remove the line-power cord.

The power cord is connected to internal capacitors inside that may remain live for 5 seconds after the instrument has been disconnected from its source of supply.

Use a nonmetallic adjustment tool whenever possible.

Which Adjustments Should Be Performed?

Table 2-1 lists the manual adjustments that should be performed when an assembly is repaired or changed. It is important to perform the adjustments in the order indi cated to ensure that the instrument meets its specifications.

Test Equipment

The equipment required for the manual adjustment procedures is listed in Table 2-1, "Related Adjustments," on page 51. Any equipment that satisfies the critical specifications given in the table may be substituted for the preferred test equipment.

If an Agilent 3335A is not available for performance tests, tests using alternate test equipment are available. See Chapter 2a, "M anual Adjustment Procedures: 3335A Source Not Available," on page 133.

Adjustable and Factory-Selected Components

Table 2-2 on page 54 lists the adjustable components by reference designation and name. For each component, the table provides a description and lists the adjustment number.
Refer to Table 2-3 on page 56 for a complete list of factory-selected components used in the instrument along with their functions.
Factory-selected components areidentified with an asterisk on the schematic diagrams.

Adjustment Tools

For adjustments requiring a nonmetallic tuning tool, use fiber tuning tool, part number 8170-0033.

Two different tuning tools may be necessary for IF bandpass adjustments, depending upon the type of tuning slug used in the slug-tuned inductors. If the tuning slug requires a slotted tuning tool, use part number 8710-1010. If the tuning slug requires a forked tuning tool, use part number 8710-0772.

Never try to force an adjustment control. This is especially critical when tuning variable capacitors or slug-tuned inductors. Required service accessories, with part numbers, are listed in Table 1-2 on page 33.

Instrument Service Position

Refer to Chapter 3, "Assembly Replacement," for information on removing the spectrum analyzer cover assembly and accessing all internal assemblies.

Table 2-1 Related Adjustments

Assembly Changed or Repaired	Perform the following related adjustments in the order listed	Adjustment Number
A1A1 keyboard	No related adjustment	
A1A2 RPG	No related adjustment	
A2 controller	16 MHz PLL adjustment Display adjustment (8561E and 8563E only) If EEROM from old A2 controller could not be used in new A2 or if EEROM must be replaced, also perform the following adjustments: LO distribution amplifier adjustment (8561E/EC) LO distribution amplifier adjustment (8563E/EC) Dual band mixer bias adjustment (8561E/EC) External mixer amplitude adjustment Switched YIG-tuned filter adjustment (8561E/EC) YIG-tuned filter/mixer adjustment (8563E/EC) Frequency response adjustment (8561E/EC) Frequency response adjustment (8563E/EC)	$\begin{gathered} \hline 22 \\ 2 \\ \\ 8 \\ 8 \\ 9 \\ 10 \\ 18 \\ 20 \\ 21 \\ 11 \\ 12 \end{gathered}$
A3 interface	Display adjustment-fast zero span (8561E/8563E) Frequency response adjustment (8561E/EC) Frequency response adjustment (8563E/EC)	$\begin{gathered} \hline 2 \\ 11 \\ 12 \end{gathered}$
A4 log amp/cal osc	Display adjustment—fast zero span (8561E/8563E) Demodulator adjustment IF amplitude adjustment DC log amplifier adjustment	$\begin{gathered} 2 \\ 16 \\ 4 \\ 5 \end{gathered}$
A5 IF	IF bandpass adjustment IF amplitude adjustment	3
A6 power supply	High voltage power supply adjustment (8561E and 8563E only) Display adjustment (8561E and 8563E only)	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
A6A1 HV module	High voltage power supply adjustment (8561E and 8563E only) Display adjustment (8561E and 8563E only)	1 2
A7 LO distribution amplifier	LO distribution amplifier adjustment (8561E/EC)	8

Table 2-1 Related Adjustments (Continued)

Assembly Changed or Repaired	Perform the following related adjustments in the order listed	Adjustment Number
	Frequency response adjustment (8561E/EC) (Or perform the frequency response performance test in the Agilent Technol ogies 8560 E-Series and EC-Series Spectrum Analyzer Calibration Guide The adjustment must be performed if the performance test fails.)	11
A7 switched LO distribution amplifier	LO distribution amplifier adjustment (8563E/EC) Frequency response adjustment (8563E/EC) (Or perform the frequency response performance test in the Agilent Technol ogies 8560 E-Series and EC-Series Spectrum Analyzer Calibration Guide The adjustment must be performed if the performance test fails.)	9 12
A8 dual band mixer	Dual band mixer bias adjustment (8561E/EC) Frequency response adjustment (8561E/EC)	$\begin{aligned} & 10 \\ & 11 \end{aligned}$
A8 low band mixer	Frequency response adjustment (8563E/EC)	12
A9 input attenuator	Frequency response adjustment (8561E/EC) (Or perform the frequency response performance test in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Calibration Guide The adjustment must be performed if the performance test fails.)	11
A9 input attenuator	Frequency response adjustment (8563E/EC) (Or perform the frequency response performance test in the Agilent Technol ogies 8560 E-Series Spectrum Anal yzer Calibration Guide The adjustment must be performed if the performance test fails.)	12
A10 SYTF	Switched YIG-tuned filter (SYTF) adjustment (8561E/EC) Frequency response adjustment (8561E/EC)	$\begin{aligned} & 20 \\ & 11 \end{aligned}$
A10 RYTHM	YIG-tuned filter/mixer (RYTHM) adjustment (8563E/EC) Frequency response adjustment (8563E/EC)	$\begin{aligned} & 21 \\ & 12 \end{aligned}$
A11 YTO	YTO adjustment	7
A13 2nd converter	Frequency response adjustment (8561E/EC) Frequency response adjustment (8563E/EC)	$\begin{aligned} & 11 \\ & 12 \end{aligned}$
A14 frequency control	Display adjustment (fast zero span) YTO adjustment LO distribution amplifier adjustment (8561E/EC) LO distribution amplifier adjustment (8563E/EC) Frequency response adjustment (8561E/EC) Frequency response adjustment (8563E/EC)	$\begin{gathered} 2 \\ 7 \\ 7 \\ 8 \\ 9 \\ 11 \\ 12 \end{gathered}$

Table 2-1 Related Adjustments (Continued)

Assembly Changed or Repaired	Perform the following related adjustments in the order listed	Adjustment Number
A15 RF	10 MHz reference adjustment (TCXO, Option 103)	15
	Calibrator amplitude adjustment	13
	External mixer bias adjustment	17
	Sampling oscillator adjustment	6
	Signal ID oscillator adjustment	19
	External mixer amplitude adjustment	18
	Frequency response adjustment (8561E/EC)	11
A15U100 sampler	Frequency response adjustment (8563E/EC)	12
A17 CRT driver	Sampling oscillator adjustment	6
A18V1 CRT	Display adjustment (8561E and 8563E)	2
A19 GPIB	No related adjustment	2
A21 OCXO	10 MHz reference adjustment (OCXO)	

Table 2-2
Adjustable Components

Reference Designator	Adjustment Name	Adjustment Number	Description
A2R152	16 MHz PLL ADJ	22	Adjusts the free-running frequency of the 16 $\mathrm{MHz} \mathrm{CPU} \mathrm{clock}$.
A2R206	DGTL X GAIN	2	Adjusts the horizontal gain in the X line generator.
A2R209	SWEEP OFFSET	2	Adjusts the beginning of the trace to the leftmost vertical graticule line in fast-analog zero-span mode.
A2R215	DGTL Y GAIN	2	Adjusts the vertical gain in the Y line generator.
A2R218	VIDEO OFFSET	2	Adjusts the vertical position in fast-anal og zero span to match the digital zero-span input.
A2R262	STOP BLANK	2	Adjusts the blanking at the end of a vector on the display.
A2R263	START BLANK	2	Adjusts the blanking at the start of a vector on the display.
A2R268	VIDEO GAIN	2	Adjusts the vertical gain in fast-analog zero span to match with the digital zero-span input.
A2R271	SWEEP GAIN	2	Adjusts the end of the trace to the rightmost vertical-graticule line in fast-analog zero-span mode.
A4C707	FM DEMOD	16	Adjusts the FM demodulation for a peak response.
A4R445	LIMITER PHASE	5	Adjusts Limiter Phase for peak response.
A4R531	LOG AMP TOS	5	Minimizes error to Top of Screen.
A4R826	CAL OSC AMPTD	4	Sets calibration oscillator output power (nominally -35 dBm). This power is injected into the IF during the AUTO IF ADJ UST routines.
A4R544	LIN FIDELITY BOW	5	Minimizes Linearity Fidelity error.
A5L300	LC CTR 1	3	Adjusts center frequency of first stage of LC bandwidth filter to 10.7 MHz .
A5L301	LC CTR 2	3	Adjusts center frequency of first stage of LC bandwidth filter to 10.7 MHz .
A5L700	LC CTR 3	3	Adjusts center frequency of third stage of LC bandwidth filter to 10.7 MHz .
A5L 702	LC CTR 4	3	Adjusts center frequency of fourth stage of LC bandwidth filter to 10.7 MHz .

Table 2-2 Adjustable Components (Continued)

Reference Designator	Adjustment Name	Adjustment Number	Description
A5R343	15 DB ATT	4	Adjusts the attenuation of the reference 15 dB attenuator for 15 dB between minimum and maximum attenuation.
A5T200	XTAL CTR 1	3	Adjusts center frequency of first stage of crystal bandwidth filter to 10.7 MHz .
A5T202	XTAL CTR 2	3	Adjusts center frequency of second stage of crystal bandwidth filter to 10.7 MHz .
A5T202	XTAL CTR 2	3	Adjusts center frequency of second stage of crystal bandwidth filter to 10.7 MHz .
A5T500	XTAL CTR 3	3	Adjusts center frequency of third stage of crystal bandwidth filter to 10.7 MHz .
A5T502	XTAL CTR 4	3	Adjusts center frequency of fourth stage of crystal bandwidth filter to 10.7 MHz .
A6R410	HV ADJ	1	Adjusts the voltage between A6TP405 and A6TP401 to the voltage marked on the A6A1 high voltage module.
A14R42	6.01 GHz	7	Adjusts the main coil tune driver current at a YTO frequency of 6.01 GHz (near the upper YTO frequency limit).
A14R76	FM SPAN	7	Adjusts the FM span accuracy by affecting the sensitivity of the FM coil driver.
A14R93	3.2 GHz	7	Adjusts the main coil fixed driver current at a YTO frequency of 3.2 GHz (near the lower YTO frequency limit).
A15C100	SMPL MATCH	6	Transforms the sampler input impedance to 50 ohms over the 285 to 297.2 MHz range.
A15C210	VCO RANGE	6	Adjusts the VCO tank capacitance so that 21V on the VCO tune line equals 298 MHz VCO frequency.
A15C629	SIG ID	19	Fine adjusts the 298 MHz SIG ID oscillator frequency to optimize its performance.
A15U302	10 MHz ADJ	15	Adjusts frequency of the temperature compensated crystal oscillator (TCXO) to 10 MHz .
A15R561	CAL AMPTD	13	Adjusts amplitude of the 300 MHz calibrator signal to -10.0 dBm .
A15R926	EXT BIAS ZERO	17	Adjusts zero bias point of external mixer bias.
A17R4	Z GAIN	2	Adjusts maximum intensity.

Table 2-2 Adjustable Components (Continued)

Reference Designator	Adjustment Name	Adjustment Number	Description
A17R11	CUTOFF	2	Adjusts intensity to turn off blanked lines.
A17R21	Z FOCUS	2	Adjusts focus for lines of different brightness.
A17R26	X FOCUS	2	Adjusts focus at the left and right corners of the display.
A17R55	COARSE FOCUS	2	Adjusts focus at the center of the display.
A17R57	X POSIN	2	Adjusts the horizontal-deflection amplifier gain.
A17R75	Y GAIN	2	Adjusts the CRT horizontal position.
A17R77	Y POSN	2	Adjusts the vertical-deflection amplifier gain.
A17R90	TRACE ALIGN	2	Adjusts the CRT vertical position.
A17R92	DDD	2	Adjusts the display axis rotation.
A17R93	ASTIG	2	Adjusts focus of the center of the display.
Adjusts for the spot roundness on the CRT			
display.			

Table 2-3 Factory Selected Components

Reference Designator	Adjustment Number	Basis of Selection
A5C204	3	Selected to optimize center frequency of LC tank that loads the crystal. Selected to optimize center frequency of LC tank that loads the crystal. Selected to optimize LC pole center frequency. A5C326
A5C327	3	3
A5C505	3	Selected to optimize LC pole center frequency. Selected to optimize center frequency of LC tank that loads the crystal. Selected to optimize center frequency of LC tank that loads the crystal. Selected to optimize LC pole center frequency.
A5C516	3	3
A5C718	3	Selected to optimize LC pole center frequency.

Using the TAM

The 85629B TAM can be used to perform approximately half of the spectrum analyzer adjustment procedures. Table 2-4 lists the TAM adjustments and their corresponding manual adjustments.

The TAM adjustments do not include procedures for choosing factory-selected components. If an adjustment cannot be made and a factory-selected component must be changed, refer to the corresponding manual adjustment.

To select an adjustment, press MODULE to display the TAM main menu, then press ADJUST. Position the pointer next to the desired adjustment using either the knob or step keys. Press EXECUTE, then follow the instructions displayed on-screen.

Test Equipment

During the TAM adjustments, instructions for setting test equipment controls are displayed, with the exclusion of the two tests listed below. Test equipment for these adjustments are controlled automatically.

Test 10. Low Band Flatness
Test 11. High Band Flatness and YTF
Table 2-5 on page 59 lists the test equipment needed to perform each TAM adjustment. Required models must be used. Substitutions may be made for recommended models. Substitute sources must operate over the frequency ranges indicated. Recommended substitutes are listed in the configuration menu. If you must substitute the source with a user-defined model, the adjustments run faster using a synthesized source rather than an unsynthesized source.

NOTE
When connecting signals from the Agilent 8340A/B (or any microwave source) to the adjustment setup, use a high-frequency test cable with minimum attenuation to 26.5 GHz . part number 8120-4921 is recommended for its ruggedness, repeatability, and low insertion loss.

Adjustment Indicator

To aid in making adjustments, the TAM displays an "Analog Voltmeter Display Box" along the left-hand side of the display. A horizontal line moves inside the box to represent the needle of an anal og voltmeter. A digital readout appears below the box. Tick marks are often displayed on the inside edges of the box indicating the desired needle position. (The tick marks and needle are intensified when the needle is within this acceptable region.) During some adjustments, an arrow appears along the right edge of the box. This arrow always indicates the highest
position the needle has reached. The arrow is useful when a component must be adjusted for a peak response; if the peak is overshot, the arrow indicates where the peak was. The component can be readjusted until the needle is at the same position as the arrow.

TAM Adjustment	Corresponding Manual Adjustment	Adjustment Number
1. IF bandpass, LC poles	IF bandpass adjustment	3
2. IF bandpass, crystal poles	IF bandpass adjustment	3
3. IF amplitude	IF amplitude adjustment	4
4. Limiter phase	DC log amplifier adjustments, A4 limiter phase	5
5. Linear fidelity	DC log amplifier adjustments, A4 linear fidelity	5
6. Log fidelity	DC log amplifier adjustments, A4 log fidelity	5
7. Sampling oscillator	Sampling oscillator adjustment	6
8. YTO	YTO adjustment	7
9. LO distribution amplifier	First LO distribution amplifier adjustment	8
10. Low band flatness	Frequency response adjustment	9
11. High band flatness and YTF	Frequency response adjustment	9
12. Calibrator amplitude	YIG-tuned filter/mixer adjustment	17
13. 10 MHz reference oscillator	Calibrator amplitude adjustment	10 MHz reference adjustment - TCXO
(Option 103)	12	
14. External mixer bias	External mixer bias adjustment	14
15. External mixer amplitude	External mixer amplitude adjustment	15

Table 2-5 Required Test Equipment for TAM

Adjustment	Equipment Used	Required Model	Recommended Model
1. IF bandpass, LC poles	None		
2. IF Bandpass, crystal poles	None		
3. IF amplitude	Synthesizer/level generator Test cable (SMB to BNC) Manual probe cable	$\begin{aligned} & 3335 \mathrm{~A} \\ & 5001-8743 \end{aligned}$	85680-60093
4. Limiter phase	Synthesizer/level generator Test cable BNC	3335A	10503A
5. Linear fidelity 6. Log fidelity	Synthesizer/level generator Test cable BNC Synthesizer/level generator Test cable BNC	3335A 3335A	$\begin{aligned} & \text { 10503A } \\ & 10503 A \end{aligned}$
7. Sampling oscillator	Manual probe cable	5001-8743	
8. YTO	Frequency counter (3 to 6.8 GHz)		5342A, 5343A
9. LO distribution amplifier	Manual probe cable	5001-8743	
10. Low band flatness	Source (10 MHz to 2.9 GHz) Power meter Power sensor (10 MHz to 2.9 GHz) Power splitter (10 MHz to 2.9 GHz)		$\begin{aligned} & 8340 \mathrm{~A} / \mathrm{B}, 8902 \mathrm{~A}, 436 \mathrm{~A}, \\ & 438 \mathrm{~A} \\ & 8482 \mathrm{~A}, 8481 \mathrm{~A} \\ & 11667 \mathrm{~B} \end{aligned}$
11. High band flatness and YTF	Source (2.8 to 26.5 GHz) Power meter Power sensor (2.8 to 26.5 GHz) Power splitter (2.8 to 26.5 GHz)		$\begin{aligned} & 8340 A \\ & 8902 A, 436 A, 438 A \\ & 8485 A \\ & 8902 A, 436 A, 438 A \end{aligned}$
12. Calibrator amplitude	Power meter Power sensor (300 MHz)	$\begin{aligned} & \text { 8482A, } \\ & 8481 A \end{aligned}$	
13. 10 MHz reference Oscillator	Frequency counter (9 to 11 MHz)		5342A, 5343A
14. External mixer bias	Manual probe cable	5001-8743	
15. External mixer amplitude	Power meter Power sensor ($310.7 \mathrm{MHz},-25$ to -35 dBm) Source ($310.7 \mathrm{MHz},-30 \mathrm{dBm}$)		$\begin{aligned} & 8902 \mathrm{~A}, 436 \mathrm{~A}, 438 \mathrm{~A} \\ & 8481 \mathrm{D}, 8484 \mathrm{~A} \\ & 8340 \mathrm{~A} / \mathrm{B} \end{aligned}$

1. High Voltage Power Supply Adjustment (8561E and 8563E)

Assembly Adjusted

A6 power supply

Related Performance Test

There is no related performance test for this adjustment.

Description

The high voltage power supply is adjusted to the voltage marked on the A6A1 HV module. The A6A1 HV module is characterized in the factory to ensure that the display filament voltage is set to 6.0 V rms when the +110 Vdc (nominal) supply is set to the voltage marked on the HV module.

WARNING To minimize shock hazard, use a nonmetallic adjustment tool when adjusting the A6 power supply

The following procedure probes voltages that, if contacted, could cause personal injury or death.

NOTE \quad Adjustment of the high voltage power supply should not be a routine maintenance procedure. Any adjustments should be done only if the A6 power supply, A6A1 HV module, or A18V1 CRT (display) is repaired or replaced.

You must perform the display adjustments after this adjustment if either the display or HV module has been replaced.

Figure 2-1 High Voltage Power Supply Adjustment Setup

Equipment

Digital multimeter . Agilent 3456A
DVM test leads . Agilent 34118A

Procedure

WARNING After disconnecting the ac power cord, allow capacitors in the high voltage supply to discharge for at least 30 seconds before removing the protective cover from the A6 power supply.

1. Turn the spectrum analyzer off by pressing LINE. Disconnect the power cord and remove the spectrum analyzer cover. Fold down the A2 controller, A3 interface, A4 log amplifier/cal oscillator, and A5 IF assemblies. Remove the A6 power supply cover.
2. Position the spectrum analyzer as shown in Figure 2-1. Connect the negative DVM lead to A6TP401 and the positive DVM lead to A6TP405 (place the positive DVM lead on the inductor (L401) lead which is adjacent to the label that reads "U401"; a white square outlines the area on the PC board where this lead is inserted into the A6 board).
3. Set the 3456A controls as follows:

Function. DCVOLTS
Range. 1000VOLTS
4. Reconnect the power cord to the spectrum analyzer and press LINE to the on position.
5. Record the voltage marked on the A6A1 HV module.

Voltage marked on A6A1 HV Module = \qquad Vdc
6. Adjust A6R410 HV ADJ for a voltage equal to the voltage recorded in step 5.
7. Press LINE to turn the spectrum analyzer off and disconnect the power cord. Wait at least 30 seconds for the high voltage power supply capacitors to discharge.
8. Disconnect the DVM test leads from A6TP401 and A6TP405. Reinstall the power supply cover.

2. Display Adjustment (8561E and 8563E)

Assembly Adjusted

A2 controller A17 CRT driver

Related Performance Test

Sweep Time Accuracy (Sweep Times <30 ms)

Description

Coarse adjustment of the deflection amplifiers, Z-axis amplifiers, and line generators is done using the CRT adjust pattern. Fine adjustments use the graticule. The fast zero-span amplitude adjustments correct for differences between analog and digital display modes. The displayed sweep time accuracy is adjusted in the fast zero-span sweep adjustments.

Figure 2-2 Display Adjustment Setup

Equipment

10 dB VHF step attenuator 355D
Adapters
Type-N (m) to BNC (f) 1250-1476
Cables
BNC, 122 cm (2 required) 10503A

Procedure

If the A2 controller assembly is not part number 08563-60017, perform the 16 M Hz PLL Adjustment in this chapter before proceeding with this adjustment.

1. Turn the spectrum analyzer off by pressing LINE. Remove the spectrum analyzer cover and fold out the A2 controller and A3 interface assemblies as illustrated in Figure 2-2. Connect the CAL OUTPUT to the INPUT. Adjustment locations are shown on the CRT neck for A17 adjustments and in Figure 2-4 on page 66 for the A2 adjustments.

Preliminary Adjustments

1. Set A17R55 X GAIN, A17R75 Y GAIN, A17R92 DDD, A17R93 ASTIG, A2R206 DGTL X GAIN, A2R215 DGTL Y GAIN, A2R262 STOP BLANK, and A2R263 START BLANK to midrange. Also set the rear-panel X POSN, Y POSN, and TRACE ALIGN to midrange.
2. Set A17R21 ZFOCUS, A17R26 X FOCUS, and A17R11 CUTOFF to midrange.
3. Set A17R4 Z GAIN fully clockwise.
4. Turn the spectrum analyzer on and allow it to warm up for at least 3 minutes. Adjust A17R11 CUTOF F until the display is visible and A17R34 COARSE FOCUS for best possible focus.

Cutoff Adjustment

5. Press PRESET, DISPLAY, INTENSITY, 255 ENTER, STORE INTENSITY, MORE 1 of 2, FOCUS, 127 ENTER, STORE FOCUS, then GRAT ON OFF (OFF). Adjust A17R11 CUTOFF until the retrace line between the bottom of trace A and the annunciators at the bottom of the display just disappears.

Deflection Adjustments

6. Press Grat on off (ON), MORE 2 of 2, INTENSITY, 80 ENTER, STORE INTENSITY, CAL, MORE 1 of 2, and CRT ADJ PATTERN. Fold up the A3 interface assembly to access the adjustments on the A2 controller assembly.
7. Refer to Figure 2-3 for locating the lines used for adjusting DGTL X GAIN and DGTL Y GAIN. E ach of these lines is actually two lines adjusted for coincidence. The two lines will form an "X" if they are not adjusted properly.
8. Adjust A2R206 DGTL X GAIN until the two vertical lines near the left edge of the display converge to one single line.
9. Adjust A2R215 DGTL Y GAIN until the two horizontal lines near the top edge of the display converge to one single line.
10.Adjust A2R262 STOP BLANK and A2R263 START BLANK for the sharpest corners of the outer box in the test pattern. The intensity of the corners should be the same as the middle of the lines between the corners.
11.Adjust the rear-panel TRACE ALIGN until the leftmost line of the test pattern is parallel with the CRT bezel. See Figure 2-3.
12.Adjust the rear-panel X POSN and A17R55 X GAIN until the leftmost "@" characters and the softkey labels appear just inside the left and right edges of the CRT bezel.
13.Adjust the rear-panel Y POSN and A17R75 Y GAIN until the softkey Iabels align with their appropriate softkeys.
14.Press PRESET. If necessary, readjust STOP BLANK and START BLANK for the best-looking intersection of the graticule lines. This will be most noticeable along the center vertical and horizontal graticule lines.

Figure 2-3 CRT Adjust Pattern
DEFLECTION ADJUSTMENTS

Intensity Adjustments

15.Press AMPLITUDE then set the REF LVL to - 70 dB and the LOG dB/DIV to 1 . This should almost completely fill the screen with the noise floor. Press SGL SWP. Adjust A17R4 Z GAIN until the intensity at the center of the screen is about medium. It should be fully illuminated, but not so bright that it burns the screen (15 NITs on a photometer/radiometer).
16.Press CAL, MORE 1 of 2, and CRT ADJ PATTERN. Locate the dot just bel ow the logo. Adjust A17R93 ASTIG for the smallest round dot possible.
17.Adjust A17R34 COARSE FOCUS and A17R92 DDD for the best focus of the characters at the center of the screen.
18.Adjust A17R21 Z FOCUS for the best focus of the test pattern's outside box.
19.Adjust A17R26 X F OCUS for best focus of the "@" characters at the corners of the test pattern.
20.Repeat steps 17 through 20 to obtain the best overall focus quality.

Figure 2-4 A2 Display Adjustment Locations

Fast Zero Span Adjustments

1. Set A2R209 SWEEP OFFSET, A2R218 VIDEO OFFSET, and A2R268 SWEEP GAIN to midrange. Adjustment locations are shown in Figure 2-4 for these A2 adjustments.
2. Set the Agilent 355D to 30 dB attenuation.
3. Press PRESET on the spectrum analyzer, and connect the equipment as shown in Figure 2-2. Set the spectrum analyzer controls as follows:

Center frequency ... 300 MHz
Span ... 0 Hz
Reference level.. -40 dBm
Resolution bandwidth ... 1 kHz
Video bandwidth... 300 Hz
Sweep time.. 50 ms
4. Press MKR, MKR \rightarrow, MARKER \rightarrow REF LVL. If the marker is not at the top graticule, press MARKER \rightarrow REF LVL again.
5. Press SAVE, SAVE STATE, and STATE 0.
6. Set the sweep time to 10 ms .
7. Press SAVE, SAVE STATE, and STATE 1.
8. Adjust A2R209 SWEEP OFFSET to place the beginning of the trace at the leftmost vertical graticule line.
9. Adjust A2R271 SWEEP GAIN to place the end of the trace at the tenth vertical graticule line (one division from the right edge of the graticule).
10.Press AMPLITUDE and press the \Uparrow key seven times.
11.Press SAVE, SAVE STATE, and STATE 2.
12.Set the sweep time to 50 ms . Press SAVE, SAVE STATE, and STATE 3.
13.Press RECALL, RECALL STATE, and STATE 1.
14.Switch between STATE 1 and STATE 2. Adjust A2R268 and A2R218 so that the trace in state 1 is lined up with the top line of the graticule and the state 2 trace is lined up with the eighth graticule down from the top (counting the top line). Repeat until the traces align to within ± 0.2 divisions.
15.Adjust A2R209 and A2R271 until the start of sweep is aligned to the leftmost vertical graticule line and the end of the sweep is aligned with the right most vertical graticule line.
16.Press STATE 2 and STATE 3. The two traces should be aligned within ± 0.1 divisions.
17.Press STATE 0 and STATE 1. The two traces should be aligned within ± 0.1 divisions.

3. IF Bandpass Adjustment

Assembly Adjusted

A5 IF assembly

Related Performance Test

Resolution bandwidth accuracy and selectivity

Description

The center frequency of each IF bandpass filter pole is adjusted by DAC-controlled varactor diodes and an inductor (for the LC poles) or a transformer (for the crystal poles). The inductors and transformers are for coarse tuning and the varactors are for fine tuning by the microprocessor. The inductors and transformers are adjusted such that the varactor diodes are biased near the middle of their capacitance range. The varactor diode bias is measured with the DVM.

NOTE	This procedure is not a routine adjustment. It should be performed only if repairs to the A5 IF assembly are made. If the entire A5 IF assembly is replaced, the assembly arrives pre-adjusted from the factory and requires no further adjustment.

Figure 2-5 IF Bandpass Adjustment Setup

Procedure

1. Turn the spectrum analyzer off by pressing LINE. Disconnect the power cord. Remove the spectrum analyzer cover and fold down the A2 controller, A3 interface, A4 log amp, and A5 IF assemblies.
Reconnect the power cord. Turn the spectrum analyzer on and allow it to warm up for at least 30 minutes.
2. Connect the negative DVM Iead to pin 6 of A5J 6 . See Figure 2-5 and Figure 2-6. Set the Agilent 3456A controls as follows:

Function DCVOLTS
Range. 10 V
3. On the spectrum analyzer press PRESET, SPAN, 2 , MHz, CAL, and IF ADJ ON OFF so OFF is underlined.

Figure 2-6 TAM Connector Pin Locations

LC Bandpass Adjustments

4. On the spectrum analyzer, press ADJ CURR IF STATE. Wait for the IF ADJUST STATUS message to disappear before continuing with the next step.
5. Read the voltage on A5TP5 (this is an empty-hole type of test point). If the voltage is less than +6.06 Vdc , turn A5L 300 LC CTR 1 clockwise. If the voltage is greater than +6.26 Vdc , turn LC CTR 1 counterclockwise.
6. Repeat steps 4 and 5 until the voltage reads $+6.16 \mathrm{Vdc} \pm 100 \mathrm{mV}$.

If the range for the LC CTR adjustment is insufficient, replace the appropriate factory-selected capacitor as listed in Table 2-6 on page 70. To determine the correct replacement value, center the LC CTR adjustment and press ADJ CURR IF STATE. After the IF ADJUST STATUS message disappears, read the DVM display. Choose a capacitor value from Table 2-7 on page 70, based on the DVM reading and the presently loaded capacitor value. Table 2-10 on page 72 lists a few capacitor part numbers.

CAUTION Turn the spectrum analyzer off by pressing LINE to the off position before removing or replacing any shield.
7. Move the positive DVM lead to A5TP6.
8. Adjust A5L 301 LC CTR 2 by repeating steps 4 through 6.
9. Move the positive DVM test lead to A5TP2 (this is a resistor-lead type of test point).
10.Adjust A5L 700 LC CTR 3 by repeating steps 4 through 6.
11.M ove the positive DVM test lead to A5TP1 (this is a resistor-lead type of test point).
12.Adjust A5L 702 LC CTR 4 using the procedure in steps 4 through 6.

Table 2-6 Factory-Selected LC Filter Capacitors

LC CTR Adjustment	Fixed Factory Select Capacitor
A5L300 LC CTR 1	A5C326
A5L301 LC CTR 2	A5C327
A5L700 LC CTR 3	A5C717
A5L702 LC CTR 4	A5C718

Table 2-7 LC Factory-Selected Capacitor Selection

DVM Reading (V)	Currently Loaded Capacitor Value (pF)						
	Replace 6.8 with:	Replace 8.2 with:	Replace 10 with:	Replace 12 with:	Replace 15 with:	Replace 18 with:	Replace 20 with:
0 to 1.5	*	*	*	*	*	*	*
1.5 to 2.5	18	18	*	*	*	*	*
2.5 to 3.5	15	15	18	18	*	*	*
3.5 to 4.5	10	12	15	15	18	*	*
4.5 to 5.5	8.2	10	12	15	18	*	*
5.5 to 6.5	No change	$\begin{gathered} \text { No } \\ \text { change } \end{gathered}$					
6.5 to 7.5	No change						
7.5 to 8.5	*	6.8	8.2	10	12	15	18
8.5 to 9.5	*	*	6.8	8.2	12	15	18
9.5 to 10	*	*	6.8	8.2	10	12	15

XTAL Bandpass Adjustments

13.On the spectrum analyzer, press SPAN, 1, MHz, and CAL.
14.M ove the positive DVM test lead to A5TP7.
15.On the spectrum analyzer, press ADJ CURR IF STATE. Wait for the IF ADJUST STATUS message to disappear before continuing to the next step.
16. Read the voltage displayed on the DVM. If the voltage is less than +6.06 Vdc , turn A5T200 XTAL CTR 1 clockwise. If the voltage is greater than +6.26 Vdc , turn XTAL CTR 1 counterclockwise.
17. Repeat steps 15 and 16 until the voltage reads $+6.16 \mathrm{Vdc} \pm 100 \mathrm{mV}$.

NOTE
If the range for the XTAL CTR adjustment is insufficient, replace the appropriate factory-selected capacitor as listed in Table 2-8. To determine the correct replacement value, center the XTAL CTR adjustment, and press ADJ CURR IF STATE. After the IF ADJUST STATUS message disappears, read the DVM display. Choose a capacitor value from Table 2-9 on page 72, based on the DVM reading and the presently loaded capacitor value. Table 2-10 on page 72 lists a few capacitor part numbers.

CAUTION Turn the spectrum analyzer off by pressing LINE to the off position before removing or replacing any shield.
18.Move the positive DVM test lead to A5TP8.
19.Adjust A5T 202 XTAL CTR 2 using the procedure in steps 15 through 17.
20.M ove the positive DVM test lead to A5TP3.
21.Adjust A5T500 XTAL CTR 3 using the procedure in steps 15 through 17.
22.M ove the positive DVM test lead to A5TP4.
23.Adjust A5T502 XTAL CTR 4 using the procedure in steps 15 through 17.

Table 2-8 Factory-Selected XTAL Filter Capacitors

XTAL CTR Adjustment	Fixed Factory Select Capacitor
A5T200 XTAL CTR 1	A5C204
A5T202 XTAL CTR 2	A5C216
A5T500 XTAL CTR 3	A5C505
A5T502 XTAL CTR 4	A5C516

Table 2-9
XTAL Factory-Selected Capacitor Selection

DVM Reading (V)	Currently Loaded Capacitor Value (pF)					
	Replace 15 with:	Replace 18 with:	Replace 20 with:	Replace 22 with:	Replace 24 with:	Replace 27 with:
0 to 1.5	*	*	*	*	*	*
1.5 to 2.5	27	*	*	*	*	*
2.5 to 3.5	22	27	27	*	*	*
3.5 to 4.5	18	22	24	27	27	*
4.5 to 5.5	18	20	22	24	27	*
5.5 to 6.5	No change					
6.5 to 7.5	No change					
7.5 to 8.5	*	15	18	18	22	24
8.5 to 9.5	*	15	15	18	20	24
9.5 to 10	*	*	15	18	20	24
* Indicates a condition that should not exist; suspect broken hardware.						

Table 2-10 Capacitor Part Numbers

Capacitor Value (pF)	Part Number
6.8	$0160-4793$
8.2	$0160-4792$
10	$0160-4791$
12	$0160-4790$
15	$0160-4789$
18	$0160-4788$
20	$0160-5699$
22	$0160-4787$
24	$0160-5903$
27	$0160-4786$

4. IF Amplitude Adjustments

The IF amplitude adjustments consist of the cal oscillator amplitude adjustment and the reference 15 dB attenuator adjustment.

Assembly Adjusted

A4 log amp/cal oscillator A5 IF assembly

Related Performance Tests

IF Gain Uncertainty Scale Fidelity

Description

This adjustment sets the output amplitude of the A4 log amp/cal oscillator and the absolute amplitude of the reference 15 dB attenuator.

The output of the A4 log amp/cal oscillator is adjusted so that a -55 dBm signal applied to the 10.7 MHz IF input on the A5 IF assembly (A5J 3) causes a displayed signal of -60 dBm . The effect of this adjustment is visible only after the ADJ CURR IF STATE sequence is complete. ADJ CURR IF STATE causes the IF gain adjustment to use the "new" output amplitude from the A4 log amp/cal oscillator.

This procedure also sets the attenuator of the reference 15 dB attenuator so that a source amplitude change of 50 dB combined with a spectrum analyzer reference level change of 50 dB displays an amplitude difference of 50 dB .

Figure 2-7 IF Amplitude Adjustment Setup

Equipment

Frequency synthesizer 3335A
Adapters
Type N (m) to BNC (f) 1250-1476
Cables
BNC, 122 cm (48 in) 10503A
Test cable 85680-60093
Figure 2-8 IF Amplitude Adjustment Locations

The 15 dB reference attenuator adjustment is preset at the factory and need not be done if the entire A5 IF assembly is replaced.

Procedure

1. Press LINE to turn the spectrum analyzer off. Remove the spectrum analyzer cover and place the spectrum analyzer in the service position as illustrated in Figure 2-7.
2. Disconnect W29, violet coax cable, from A5J 3. Connect the test cable between A5J 3 and the 50Ω output of the 3335A. Press LINE to turn the spectrum analyzer on.
3. Set the spectrum analyzer controls as follows:
Center frequency

10.7 MHz

Span. 200 kHz
Reference level. 60 dBm
Attenuator . 0 dB
dB/division. 1 dB/DIV
Resolution bandwidth . 300 kHz
Video bandwidth . 100 Hz
On the spectrum analyzer, press MKR, CAL, and IF ADJ ON OFF so OFF is underlined.
4. Set the 3335A controls as follows:

> Frequency . 4 Hz Amplitude.
5. Note the marker value. I deally it should read $-60 \mathrm{dBm} \pm 0.1 \mathrm{~dB}$.
6. If the marker reads below -60.1 dBm , rotate A4R826 CAL OSC AMPTD one-third turn clockwise for every 0.1 dB below - 60 dBm . If the marker reads above -59.9 dBm , rotate A4R826 CAL OSC AMPTD one-third turn counter clockwise for every 0.1 dB above -60 dBm . See Figure 2-8 for the location of A4R826. A change in the displayed amplitude will not be seen until ADJ CURR IF STATE is pressed.

NOTE If A4R826 has inadequate range, refer to "I nadequate CAL OSC

7. Press ADJ CURR IF STATE. After allowing the analyzer time to complete the adjustments, the displayed amplitude and marker reading should change.
8. Repeat steps 7 and 8 until the marker reads $-60 \mathrm{dBm} \pm 0.1 \mathrm{~dB}$.
9. Disconnect the test cable from A5J 3 and reconnect W29 to A5J 3.

A5 Reference Attenuator Adjustment

10.Set the spectrum analyzer reference level to -60 dBm . If markers are displayed, press MKR and MARKERS OFF.
11.Set the 3335A AMPLITUDE to - 60 dBm .
12.Connect a BNC cable between the 50Ω output of the 3335A and the spectrum analyzer INPUT 50Ω.
13.On the spectrum analyzer, press CAL and REF LVL ADJ. Use the front-panel knob or step keys to place the peak of the displayed signal 3 dB to 5 dB below the reference level.
14. Press PEAK SEARCH and MARKER DELTA on the spectrum analyzer. Set the spectrum analyzer reference level to - 10 dBm .
15. Change the 3335A AMPLITUDE to -10 dBm .
16. Press CAL on the spectrum analyzer.
17. Note the $\triangle M K R$ amplitude. Ideally, it should read $50.00 \mathrm{~dB} \pm 0.1 \mathrm{~dB}$.
18.If the $\Delta M K R$ amplitude is less than 49.9 dB , rotate $A 5 R 34315 \mathrm{~dB}$ ATTEN one-half turn counterclockwise for each 0.1 dB below 50.00 dB . If the $\Delta \mathrm{M} K \mathrm{R}$ amplitude is greater than 50.1 dB , rotate A5R343 15 dB ATTEN one-half turn clockwise for each 0.1 dB above 50.00 dB . Do not adjust A5R343 more than five turns before continuing with the next step.
19.Press ADJ CURR IF STATE on the spectrum analyzer. Note the $\Delta M K R$ amplitude reading.
20.Repeat steps 11 through 20 until the $\triangle M K R$ amplitude reading is $50.00 \mathrm{~dB} \pm 0.1 \mathrm{~dB}$.

A5 Adjustment Verification

21.On the spectrum analyzer, disconnect W29 from A5J 3. Connect the test cable between A5J 3 and the 50Ω output of the 3335A.
22.Set the spectrum analyzer reference level to -10 dBm .
23. Set the 3335A AMPLITUDE to -5 dBm .
24.Press MKR and MARKER NORMAL on the spectrum analyzer.
25.The MARKER amplitude should read $-10 \mathrm{dBm} \pm 0.13 \mathrm{~dB}$. If the reading is outside of this range, repeat steps 4 through 21.
26.On the spectrum analyzer, reconnect W29 to A5J 3. Press PRESET and set the controls as follows:

Center frequency . 300 MHz
Span . OHz
Reference level . -10 dBm
Resolution bandwidth . 300 kHz
27.Connect a BNC cable between the 8563E/EC CAL OUTPUT and INPUT 50Ω.
28.On the spectrum analyzer, press MKR CAL and REF LVL ADJ.
29.Use the knob or step keys to adjust the REF LEVEL CAL setting until the MKR reads $-10.00 \mathrm{dBm} \pm 0.1 \mathrm{~dB}$.
30.On the spectrum analyzer, press STORE REF LVL.

5. DC Log Amplifier Adjustments

There are three DC log adjustments: limiter phase, linear fidelity, and log fidelity.

Assembly Adjusted

A4 log amp/cal oscillator

Related Performance Tests

IF Gain Uncertainty
Scale Fidelity

Description

These three adjustments need only be done under the following conditions:
Limiter phase Only if a repair is made to blocks $\mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{I}$, or J.
Linear fidelity Only if a repair is made to blocks C, D, F, G, H, I, J, K, O, IF gain accuracy, RBW switching, or log fidelity.
Log fidelity Only if a repair is made to blocks D, F, H, K, IF gain accuracy, RBW switching, or log fidelity.
If multiple adjustments are required they should be done in the following order:

1. Limiter phase
2. Linear fidelity
3. Log fidelity

Figure 2-9 DC Log Adjustment Setup

5. DC Log Amplifier Adjustments

Equipment

Frequency synthesizer 3335A
Adapters
Type-N (m) to BNC (f) 1250-1476
Cables
BNC, 122 cm (48 in) 10503A
Test cable 85680-60093
Figure 2-10 DC Log Adjustment Locations

Adjustments should be made with all of the shields on and only after allowing at least a 20 minute warmup.

A4 Limiter Phase Adjustment

1. Press LINE to turn the spectrum analyzer off. Remove the spectrum analyzer cover and place the spectrum analyzer in the service position as illustrated in Figure 2-9. See Figure 2-10 for adjustment location.
2. Connect the Agilent 3335A 50Ω output to the spectrum analyzer 50Ω input. Press LINE to turn the spectrum analyzer on.
3. Set the spectrum analyzer controls as follows:
Center frequency 15 MHz
Span 0
Reference level $-10 \mathrm{dBm}$
dB/division $1 \mathrm{~dB} / \mathrm{DIV}$
Resolution bandwidth 300 kHz
IF ADJ OF F
4. Set up the 3335A as follows:
Frequency 15 MHz
Amplitude $-18 \mathrm{dBm}$
5. Press CAL, ADJ CURR IF STATE, wait for the analyzer to completeadjustments then press MKR.
6. Adjust A4R445 for maximum on-screen amplitude. Refer to Figure 2-10 for the location of A4R445.
A4 Linear Fidelity Adjustment
7. Press LINE to turn the spectrum analyzer off. Remove the spectrum analyzer cover and place the spectrum analyzer in the service position as illustrated in Figure 2-9. See Figure 2-10 for adjustment location.
8. Connect the 3335A 50Ω output to the spectrum analyzer 50Ω input. Press LINE to turn the spectrum analyzer on.
9. Press PRESET AMPLITUDE, LINEAR, MORE 1 of 3, AMPTD UNITS,dBm, CAL, IF ADJ ON OFF, (OFF).
10. Set the spectrum analyzer controls as follows:
Center frequency 15 MHz
Span 5 MHz
Resolution bandwidth 300 kHz
Reference level $-10 \mathrm{dBm}$
11. Set up the 3335A as follows:
Frequency 15 MHz
Amplitude $-10 \mathrm{dBm}$6. Press PEAK SEARCH, MARKER DELTA.7. Reduce the 3335A input power to -58 dBm .8. If the delta marker amplitude reads $-40 \mathrm{~dB} \pm 2 \mathrm{~dB}$, no adjustment isnecessary.
12. If the signal is lower on the screen than expected (delta marker amplitude reads less than -42dB) then adjust A4R544 (see Figure 2-10) for an even lower level and press CAL, ADJ CURR IF STATE. Allow sufficient time for the analyzer to complete the adjustment.
10.If the signal is higher on the screen than expected (delta marker amplitude reads greater than -38 dB) then adjust A4R544 for an even higher level signal and press CAL, ADJ CURR IF STATE. Allow sufficient time for the analyzer to complete the adjustment.
11.Repeat steps 5 through 10.

A4 LOG Fidelity Adjustment

1. Press LINE to turn the spectrum analyzer off. Remove the spectrum analyzer cover and place the spectrum analyzer in the service position as illustrated in Figure 2-9. See Figure 2-10 for adjustment location.
2. Connect the 333550Ω output to the spectrum analyzer 50Ω input. Press LINE to turn the spectrum analyzer on.
3. Press PRESET, CAL, IF ADJ ON OFF (OFF), ADJ CURR IF STATE.
4. Set the spectrum analyzer controls as follows:

Center frequency . 15 MHz
Span . 0
Resolution bandwidth . 300 kHz
Reference level 10 dBm
5. Set up the 3335A as follows:

Frequency. 15MHz
Amplitude 10 dBm
6. Press MKR, MARKER DELTA on the spectrum analyzer.
7. Decrease the 3335A power to -26 dBm .
8. Calculate the error:

Error $=$ delta marker reading -16 dB
9. If the error is less than $\pm 0.2 \mathrm{~dB}$, no adjustment is necessary.
10.Set the 3335A power to -10 dBm .
11.Adjust A4R531 (see Figure 2-10) to read two times the error. For example, if the calculated error is +0.75 dB , adjust A4R531 for a delta marker amplitude reading of +1.5 dB . Press CAL, ADJ CURR IF STATE.
12. Repeat steps 7 through 11.

6. Sampling Oscillator Adjustment

Assembly Adjusted

A15 RF assembly

Related Performance Test

There is no related performance test for this adjustment procedure.

Description

The sampling oscillator tank circuit is adjusted for a tuning voltage of 5.05 Vdc when the sampling oscillator is set to 297.222 MHz . The voltage monitored is actually the tuning voltage divided by 4.05. The setting is then checked at other frequencies for the full tuning range of the sampling oscillator.

Figure 2-11 Sampler Adjustment Setup

Equipment

Digital voltmeter
.3456A

DVM test leads 34118A

Procedure

1. Press LINE to turn the spectrum analyzer off and disconnect the line power cord. Remove the spectrum analyzer cover and fold down the A15 RF and A14 frequency control assemblies. Prop up the A14 frequency control assembly. Reconnect the line power cord and press LINE to turn the spectrum analyzer on. Connect the equipment as illustrated in Figure 2-11.
2. Press PRESET on the spectrum analyzer and set the controls as follows:

Center frequency . 2126MHz
Span . 0 .
3. Set the 3456A controls as follows:

Function . DCVOLTS
Range . 10V, MANUAL

Sampling Oscillator Adjustment

4. Connect the negative DVM test lead to A15J 200 pin 6 . Connect the positive DVM lead to A15J 200 pin 13.
5. Adjust A15C210 VCO RANGE for a DVM reading of $5.05 \mathrm{~V} \pm 0.05 \mathrm{~V}$.

Figure 2-12 TAM Connector Pin Locations

Sampler Match Adjustment

6. Connect the negative DVM test lead to A15J 400 pin 6, and the positive DVM test lead to A15J 400 pin 1.
7. Press FREQUENCY and set the spectrum analyzer center frequency to 2302.3 MHz . This sets the sampling oscillator to 291.667 MHz .
8. Adjust A15C100 SMPL MATCH to peak the voltage displayed on the DVM.
9. Record the displayed voltage in Table 2-11 as the displayed voltage for the sampling oscillator frequency of 291.667 MHz .
10.Press FREQUENCY on the spectrum analyzer. Use the keypad to set the spectrum analyzer center frequency to the frequencies listed in Table 2-11. At each listed frequency, record the displayed voltage in the table.
11.If the difference between the maximum and minimum voltages is less than 0.50 V , and all voltage readings are between +0.5 and +2.5 Vdc , proceed to step 15.
10. Locate the center frequency at which the voltage is lowest. Use the keypad to set the spectrum analyzer to this frequency.
13.Readjust SMPL MATCH to set the displayed voltage to $0.8 \pm 0.1 \mathrm{Vdc}$.
14.Set the spectrum analyzer center frequency to 2302.3 MHz and repeat steps 9 through 13.
15.M ove the positive DVM test lead to A15J 400 pin 3. Check that the measured voltage is the negative of the voltage at pin 1 , within $\pm 0.1 \mathrm{Vdc}$.
16.Disconnect the DVM probes from A15J 400.

Table 2-11 Sampling Adjustments

Center Frequency (MHz)	Sampling Oscillator (MHz)	Displayed Voltage (Vdc)				
		1st Trial	2nd Trial	3rd Trial	4th Trial	5th Trial
2156.3	285.000					
2176.3	286.364					
2230.3	288.462					
2263.3	290.000					
2302.3	291.667					
2158.3	293.478					
2196.3	295.000					
2378.3	296.471					
2422.3	297.222					

7. YTO Adjustment

Assembly Adjusted

A14 frequency control assembly

Related Performance Tests

Frequency Span Accuracy
Frequency Readout Accuracy and Frequency Count Marker Accuracy

Description

The YTO main coil adjustments are made with the phase-lock loops disabled. The YTO endpoints are adjusted to bring these points within the capture range of the main loop. The YTO FM coil is adjusted to place the 300 MHz CAL OUTPUT signal at the center vertical graticule in a 20 MHz span.

Figure 2-13 YTO Adjustment Setup

Procedure

NOTE
This adjustment cannot be performed if preselected external mixer mode is selected.

The SAVELOCK ON OFF function must be OFF.

YTO Main Coil Adjustments

1. Press LINE to turn the spectrum analyzer off. Remove the spectrum analyzer cover and fold down the A15 RF and A14 frequency control assemblies.
2. Disconnect the 50Ω termination from the 1ST LO OUTPUT. Connect the equipment as shown in Figure 2-13. Press LINE to turn the spectrum analyzer on.
3. Move the jumper on A14J 23 from the NORM position (pins 1 and 2 jumpered) to the TEST position (pins 2 and 3 jumpered). See Figure 2-14 for the location on the A14 frequency control assemblies.
4. On the spectrum analyzer, press the following keys:

CONFIG, EXT MXR PRE UNPR, (UNPR)AUX CTRL, EXTERNAL MIXER, LOCK HARMONIC, 6 Hz SPAN, ZERO SPANFREQUENCY, CENTER FREQ, 18.8893 GHz , SGL SWPSAVE, SAVE STATE, STATE 0 FREQUENCY, 35.7493 GHzSAVE, SAVE STATE, STATE 1 RECALL, RECALL STATE, STATE 0.
5. On the 5343A, press SHIFT 7 and set the controls as follows:

Sample rate. Fully counterclockwise $10 \mathrm{~Hz}-500 \mathrm{MHz} / 500 \mathrm{MHz}-26.5 \mathrm{GHz}$ switch . $500 \mathrm{MHz}-26.5 \mathrm{Ghz}$
6. Adjust A14R93 3.2 GHz for the appropriate frequency counter reading of $3.200 \mathrm{GHz} \pm 1 \mathrm{MHz}$.
7. On the spectrum analyzer, press STATE 1.
8. Adjust A14R42 6.01 GHz for a frequency counter reading of $6.010 \mathrm{GHz} \pm 1 \mathrm{MHz}$.
9. On the spectrum analyzer, press STATE 0 .
10.Repeat steps 6 through 9 until both of these interacting adjustments meet their tolerances.

Figure 2-14 YTO Adjustment Locations

SP116E
11.Place the jumper on A14J 23 in the NORM position (pins 1 and 2 jumpered).
12.Disconnect the SMA cable from the 1ST LO OUTPUT jack and reconnect the 50Ω termination on the 1ST LO OUTPUT.

YTO F M Coil Adjustments

13.On the spectrum analyzer, press PRESET and set the controls as follows:
Center frequency 300 MHz
Span 20 MHz
14.Adjust A14R 76 FM SPAN until the 300 MHz CAL OUTPUT SIGNAL is aligned with the center vertical graticule line.

8. LO Distribution Amplifier Adjustment (8561E/EC)

Assembly Adjusted

A14 frequency control assembly

Related Performance Test

1ST LO OUTPUT Amplitude

Description

The gate bias for the A7 LO distribution amplifier assembly is adjusted to the value specified on A7. LO AMPTD is adjusted so that the LO SENSE voltage is 6 mV more negative than the value specified on the A7 LODA label.

Figure 2-15 1st LO Distribution Amplifier Adjustment Setup

MEASURING RECE IVER

DIGITAL VOLTMETER

SPECTRUM
ANALYZER

CONTROL
A 15 RF

Equipment

Measuring receiver 8902A
DVM 3456A
Power sensor 8485A
DVM test leads 34118A
Adapters
Type-N (f) to APC (m) 1250-1750

Procedure

1. Set the 8561E/EC LINE switch to off and disconnect the line cord. Remove the cover from the spectrum analyzer and fold down the A15 RF assembly and the A14 frequency control assembly. Reconnect the line cord.
2. Move the jumper on A2J 12 from the WR PROT to the WR ENA position. The jumper is on the edge of the A2 assembly and can be moved without folding the board down.
3. Reconnect the line cord and turn on the spectrum analyzer.
4. Set the 8561E/EC controls as follows:

Center frequency . 1.45 GHz
Span
OHz
5. On the 8561E/EC, press CAL, MORE 1 OF 2, SERVICE CAL DATA, LO LEVELS, and INT LO LEVEL.
6. Use the knob or key pad to enter the value 32. This sets the LO power to a low level.
7. To set the gate bias, connect the positive lead of the DVM to A14J 18 pin 15 and the negative lead to A14J 18 pin 6 . See the following figure for a pin location drawing.

Figure 2-16 TAM Connector Pin Locations
8. On the 8561E/EC, press LO GATE LEVEL.
9. Note the Gate Bias voltage printed on the A7 LO distribution amplifier label. Use the knob or keypad to change the displayed DAC value so the DVM reading is equal to the label voltage, $\pm 10 \mathrm{mV}$.
10.To set the low band sense voltage, connect the positive lead of the DVM to A14J 18 pin 13 and the negative lead to A14J 18 pin 6.
11.On the 8561E/EC, press INT LO LEVEL. The message dRIVE FOR BAND\# 0 will be displayed.
12.N ote the "LO Sense" voltage printed on the A7 LO distribution amp label. Use the knob or keypad, and press enter to change the displayed DAC value so the DVM reading is 6 mV more negative than the label voltage. For example, if the "LO Sense" voltage is -170 mV , change the di splayed DAC value so the DVM reading is -176 mV .
13.Record the DAC value:

DAC value for $1.45 \mathrm{GHz}=$ \qquad
14.To set the band 1 sense voltage, set the 8561E/EC center frequency to 4.60 GHz .
15.On the Agilent 8561E/EC, press CAL, MORE 1 OF 2, SERVICE CAL DATA, LO LEVELS, and INT LO LEVEL. The message DRIVE FOR BAND\# 1 will be displayed.
16. Use the knob or keypad to enter the DAC value for 1.45 GHz from the band 0 sense voltage adjustment above.
17.Set the Sense EXT value by pressing EXT LO LEVEL.
18.Use the knob or keypad to enter the DAC value for 1.45 GHz from the band 0 sense voltage adjustment above.
19.Save the adjustment values by pressing PREV MENU, STORE DATA, and YES.
20.M ove the jumper on A2J 12 from WR ENA back to the WR PROT position.

9. LO Distribution Amplifier Adjustment (8563E/EC)

Assembly Adjusted

A14 frequency control assembly

Related Performance Test

1ST LO OUTPUT Amplitude

Description

The gate bias and SENSE voltages for the A7 switched LO distribution amplifier is adjusted to the value specified on the label of A7.

Figure 2-17 First LO Distribution Amplifier Adjustment Setup

Equipment

DVM . 3456A

DVM test leads. 34118A

NOTE This procedure is only for the 8563E/EC.

Procedure

1. Set the 8563E/EC LINE switch to off and disconnect the line cord. Remove the cover and fold down the A15 RF and A14 Frequency Control assemblies.
2. Move the jumper on A2J 12 from the WR PROT to the WR ENA position. The jumper is on the edge of the A2 board assembly and can be moved without folding the board down.
3. Reconnect the line cord and turn on the spectrum analyzer.
4. Set the 8563E/EC controls as follows:

Center frequency . 1.45 GHz
Span. 0Hz
5. On the 8563E/EC, press CAL, MORE 1 OF 2, SERVICE CALDATA, LO LEVELS, and INT LO LEVEL.
6. Use the knob or keypad to enter the value 32. This sets the LO power to a low level.
7. To set the gate bias, connect the positive lead of the DVM to A14J 18 pin 15 and the negative lead to A14J 18 pin 6 . See Figure 2-18 for a pin location drawing.

Figure 2-18 TAM Connector Pin Locations

8. On the 8563E/EC, press LO GATE LEVEL.
9. Note the Gate Bias voltage printed on the A7 LO distribution amp label. Use the knob or keypad to change the displayed DAC value so the DVM reading is equal to the label voltage, $\pm 10 \mathrm{mV}$.
10.To set the low band sense voltage, connect the positive lead of the DVM to A14J 18 pin 13 and the negative lead to A14J 18 pin 6.
11.On the 8563E/EC, press INT LO LEVEL. The message DRIVE FOR BAND\# 0 will be displayed.
12.N ote the "B0 EXT Sense" voltage printed on the A7 LO distribution amp label. Use the knob or keypad, and press enter, to change the displayed DAC value so the DVM reading is 6 mV more negative than the label voltage. For example, if the "BO EXT Sense" voltage is -170 mV , change the displayed DAC value so the DVM reading is -176 mV .
13.Record the DAC value:

DAC value for $1.45 \mathrm{GHz}=$ \qquad
14.To set the band 1 sense voltage, set the 8563E/EC center frequency to 4.60 GHz .
15.On the 8563E/EC, press CAL, MORE 1 OF 2, SERVICE CAL DATA, LO LEVELS, and INT LO LEVEL. The message DRIVE FOR BAND\# 1 will be displayed.
16. Note the "B1 INT Sense" voltage printed on the A7 LO distribution amp label. Use the knob or keypad, and press enter, to change the displayed DAC value so the DVM reading is 6 mV more negative than the label voltage. For example, if the "B1 INT Sense" voltage is -170 mV , change the displayed DAC value so the DVM reading is -176 mV .
17.Record the DAC value:

DAC value for $4.60 \mathrm{GHz}=$ \qquad
18.To set the band 2 sense voltage, set the 8563E/EC center frequency to 9.46 GHz .
19.On the 8563E/EC, press CAL, MORE 1 OF 2, SERVICE CAL DATA, LO LEVELS, and INT LO LEVEL. The messagedRIVE FOR BAND\# 2 will be displayed.
20.Note the "B2 INT Sense" voltage printed on the A7 LO distribution amp label. Use the knob or keypad, and press enter, to change the displayed DAC value so the DVM reading is 6 mV more negative than the label voltage. For example, if the "B2 INT Sense" voltage is -170 mV , change the displayed DAC value so the DVM reading is -176 mV .
21.To set the band 3 sense voltage, press the step key \Uparrow to select DRIVE FOR BAND\# 3. Then set the band 3 sense voltage to the same value as band 1.
22.Use the knob or keypad to enter the DAC value for 4.60 GHz from the band 1 sense voltage adjustment above.
23.Set the "Sense EXT" value by pressing EXT LO LEVEL.
24.Use the knob or keypad to enter the DAC value for 1.45 GHz from the band 0 sense voltage adjustment above.
25.Save the adjustment values by pressing PREV MENU, STORE DATA, and YES.
26.M ove the jumper on A2J 12 from WR ENA back to the WR PROT position.

10. Dual Band Mixer Bias Adjustment (8561E/EC)

Assembly Adjusted

A14 frequency control assembly

Related Performance Test

Frequency Response
Second Harmonic Distortion ($>2.9 \mathrm{GHz}$)
Third Order Intermodulation Distortion ($>2.9 \mathrm{GHz}$)

Description

The A8 Dual Band Mixer bias is set by a DAC on the A14 frequency control assembly. The DAC values for high band are stored in the EEROM on theA2 controller assembly. TheEEROM is placed in its WR ENA (write-enable) mode and the DAC value is adjusted to yield the factory-derived bias for each band. The new DAC value is stored in the EEROM, then the EEROM is placed in WR PROT (write-protect) mode.

Figure 2-19 Dual Band Mixer Bias Adjustment Setup

Equipment

DVM . 3456A
DVM test leads . 34118A

Procedure

1. Connect the equipment as shown in Figure 2-19. Connect the positive DVM probe lead to A14J 19 pin 13. Connect the ground lead to pin 6 of A14J 19. Set the DVM to 10 Vdc range with 10 mV resolution.
2. Copy the bias voltages printed on the A8 dual band mixer label into Table 2-12 on page 118.
3. On the 8561E/EC, place the WR PROT/WR ENA jumper on the A2 controller assembly in the WR ENA position. Press PRESET, SPAN, ZERO SPAN, FREQUENCY, 3, GHz. Press CAL, MORE 1 OF 2, SERVICE CAL DATA, LO LEVELS and BAND 1 MIXER BIAS. The current mixer bias DAC value for Band 1 should appear in the active function area on the display.
4. Adjust the DAC value, using only the front-panel knob or keypad, for a DVM reading within 50 mV of the Band 1 mixer bias voltage listed in Table 2-12 on page 118.
5. On the 8561E/EC, press PREV MENU, STORE DATA and YES.
6. Place the WR PROT/WR ENA jumper on the A2 controller assembly to the WR PROT position.

Band Bias Voltage

1

11. Frequency Response Adjustment (8561E/EC)

Assembly Adjusted

A15 RF assembly

Related Performance Tests

Displayed Average Noise Level
Frequency Response

Description

A signal of the same known amplitude is applied to the spectrum analyzer at several different frequencies. At each frequency, the DAC controlling the flatness compensation amplifiers is adjusted to place the peak of the displayed signal at the same place on the screen. The preselector is centered at each frequency before setting the other DAC value. With firmware revisions greater than 920528 , there are correction points at 2 MHz and 6 MHz . These points are outside the synthesized sweeper's frequency range. The DAC values for these two points are set to a fixed offset from the DAC value at 10 MHz . The DAC values are stored in EEROM.

Figure 2-20 Frequency Response Adjustment Setup (8561E/E C)

Equipment

Synthesized sweeper 8340A/B
M easuring receiver 8902A
Power sensor 8482A
Power sensor. 8481A
Power splitter 11667A
Adapters
Type-N (m) to Type N (m) 1250-1475
Type-N (m) to APC 3.5 (m) 1250-1743
Type-N (f) to APC 3.5 (m) 1250-1750
Type-APC 3.5 (f) to APC 3.5 (f) 5061-5311
Cables
BNC, 122 cm (48 in) 10503A
APC 3.5, 91 cm (36 in) 8120-4921

Procedure

NOTE

The YIG-tuned filter/mixer slope and offset adjustment must be correct before the high band part of the frequency response adjustment can be done.

1. Connect the equipment as shown in Figure 2-20. Do not connect the 8482A Power Sensor to the 11667B Power Splitter.
2. Zero and calibrate the 8902A/8482A combination in log mode (power levels read out in dBm) and connect the power sensor through an adapter to the power splitter.
3. Place the WR PROT/WR ENA jumper on the A2 controller assembly in the WR ENA position. The jumper is on the edge of the A2 board assembly and can be moved without folding the board down.
4. Press PRESET on the 8561E/EC and set the controls as follows:

Center frequency. 10 MHz
Span. 0 . 0 Hz
Resolution bandwidth . 300 kHz
dB/division. 2 dB
5. Press INSTR PRESET on the 8340A/B and set the controls as follows:

CW . 4 MdBm
Power level
6. Set ref level cal DAC to zero. Press CAL, REF LVL ADJ and use the knob to set the value to 0 . Press STORE REF LVL.
7. On the Agilent 8561E/EC, press MKR CAL MORE 1 OF 2 SERVICE CAL DATA, then FLATNESS. The current value of the RF Gain DAC should be displayed in the active function area.
8. Enter the appropriate power sensor calibration factor into the 8902A.
9. Set the $8340 \mathrm{~A} / \mathrm{B}$ CW output to the frequency indicated in the active function area of the 8561E/EC display. Adjust the 8340A/B POWER LEVEL for a -10 dBm reading on the 8902A.
10.On the $8561 \mathrm{E} / \mathrm{EC}$, adjust the RF Gain DAC value using the front-panel knob or keypad until the marker reads -10 dBm $\pm 0.10 \mathrm{~dB}$. Each DAC count results in an amplitude change of approximately 0.01 dB .
11.On the 8561E/EC, press \Uparrow to proceed to the next frequency.
12.Repeat steps 7 through 10 for all low-band frequencies $\geq 10 \mathrm{MHz}$.
13.If the firmware revision is later than 920528, perform steps 13 through 17. Otherwise, skip to step 18.
14.Press \Uparrow until 10 MHz is displayed in the active function block. Record the RF gain DAC value at 10 MHz .

10 MHz RF gain DAC value \qquad
15.Add 67 to the 10 MHz RF gain DAC value and record as the 2 MHz RF gain DAC value.

2 MHz RF gain DAC value \qquad
16.Add 62 to the 10 MHz RF gain DAC value and record as the 6 MHz RF gain DAC value.

6 MHz RF gain DAC value \qquad
17.Press \Downarrow until 2 MHz is displayed in the active function block. Use the DATA keys to enter the 2 MHz RF gain DAC value recorded in step 15.
18.Press \Uparrow until 6 MHz is displayed in the active function block. Use the DATA keys to enter the 6 MHz RF gain DAC value recorded in step 16.
19.Press NEXT BAND on the 8561E/EC.
20.Disconnect the 8482A from the 11667A. Connect the 8481A to the 8902A. Zero and calibrate the 8902A/8481A combination. Connect the 8481A to the 11667A power splitter.
21.E nter the appropriate power sensor calibration factor into the 8902A.
22. Set the $8340 \mathrm{~A} / \mathrm{B} C W$ output to the frequency indicated in the active function area of the 8561E/EC display.
23.Adjust the 8340A/B POWER LEVEL to place the signal midscreen on the Agilent 8561E/EC display.
24.On the 8561E/EC, press PRESEL AUTO CTR.
25.Adjust the 8340A/B POWER LEVEL for a -10 dBm reading on the 8902A.
26.On the 8561E/EC, adjust the RF gain DAC value using the knob or keypad until the marker reads $-10 \mathrm{dBm} \pm 0.10 \mathrm{~dB}$.
27.On the 8561E/EC, press \downarrow to proceed to the next frequency.
28.Repeat steps 21 through 27 for the remaining frequencies in Band 1.
29.Press PREV MENU STORE DATA, then YES on the 8561E/EC.
30.Place the WR PROT/WR ENA jumper on the A2 controller assembly in the WR PROT position.

12. Frequency Response Adjustment (8563E/EC)

Assembly Adjusted

A15 RF assembly

Related Performance Tests

Displayed Average Noise Level
Frequency Response

Description

Abstract

A signal of the same known amplitude is applied to the spectrum analyzer at several different frequencies. At each frequency, the DAC controlling the flatness compensation amplifiers is adjusted to place the peak of the displayed signal at the same place on the screen. The preselector is centered at each frequency before setting the DAC value. With firmware revisions greater than 920528, there are correction points at 2 MHz and 6 MHz . These points are outside the synthesized sweeper's frequency range. The DAC values for these two points are set to a fixed offset from the DAC value at 10 MHz . The DAC values are stored in EEROM.

Figure 2-21 Frequency Response Adjustment Setup (8563E/EC)

Equipment

Synthesized sweeper 8340A/B
Measuring receiver 8902A
Power sensor 8482A
Power sensor 8485A
Power splitter 11667B
Adapters
Type-N (m) to Type N (m) 1250-1475
Type-N (m) to APC 3.5 (m) 1250-1743
Type-N (f) to APC 3.5 (m) 1250-1750
Type APC 3.5 (f) to APC 3.5 (f) 5061-5311
Cables
BNC, 122 cm (48 in) 10503A
APC 3.5, 91 cm (36 in) 8120-4921

Procedure

NOTE
The YIG-tuned filter/mixer slope and offset adjustment must be correct before the high band part of the frequency response adjustment can be done.

1. Connect the equipment as shown in Figure 2-21. Do not connect the 8482A power sensor to the 11667B power splitter.
2. Zero and calibrate the 8902A/8482A combination in log mode (power levels read out in dBm) and connect the power sensor through an adapter to the power splitter.
3. Place the WR PROT/WR ENA jumper on the A2 controller assembly in the WR ENA position. The jumper is on the edge of the A2 board assembly and can be moved without folding the board down.
4. Press PRESET on the 8563E/EC and set the controls as follows:

Center frequency. 10 MHz
Span. 0 . 0 Hz
Resolution bandwidth . 300 kHz
dB/division. 2 dB
5. Press INSTR PRESET on the 8340A/B and set the controls as follows:

CW frequency . 10M Mz
Power level. 4 dBm
6. Set ref level cal DAC to zero. Press CAL, REF LVL ADJ and use the knob to set the value to 0 . Press StORE REF LVL.
7. On the $8563 \mathrm{E} / \mathrm{EC}$, press MKR, CAL, MORE 1 OF 2, SERVICE CAL DATA, then FLATNESS. The current value of the RF Gain DAC should be displayed in the active function area.
8. Enter the appropriate power sensor calibration factor into the 8902A.
9. Set the $8340 \mathrm{~A} / \mathrm{B}$ CW output to the frequency indicated in the active function area of the 8563E/EC display. Adjust the 8340A/B POWER LEVEL for a -10 dBm reading on the 8902A.
10.On the 8563E/EC, adjust the RF gain DAC value using the front-panel knob or keypad until the marker reads -10 dBm $\pm 0.10 \mathrm{~dB}$. E ach DAC count results in an amplitude change of approximately 0.01 dB .
11.On the 8563E/EC, press \Uparrow to proceed to the next frequency.
12.Repeat steps 7 through 10 for all low-band frequencies $\geq 10 \mathrm{MHz}$.
13.If the firmware revision is later than 920528, perform steps 13 through 17. Otherwise, skip to step 18.
14.Press \Uparrow until 10 MHz is displayed in the active function block. Record the RF gain DAC value at 10 MHz .

10 MHz RF gain DAC value \qquad
15.Add 67 to the 10 MHz RF gain DAC value and record as the 2 MHz RF gain DAC value.

2 MHz RF gain DAC value \qquad
16.Add 62 to the 10 MHz RF gain DAC value and record as the 6 MHz RF gain DAC value.

6 MHz RF gain DAC value \qquad
17.Press \Downarrow until 2 MHz is displayed in the active function block. Use the DATA keys to enter the 2 MHz RF gain DAC value recorded in step 15.
18.Press \Uparrow until 6 MHz is displayed in the activefunction block. Use the DATA keys to enter the 6 MHz RF gain DAC value recorded in step 16.
19.Press NEXT BAND on the 8563E/EC.
20.Disconnect the 8482A and its adapter from the 11667B. Connect the 8485A to the 8902A. Zero and calibrate the 8902A/8485A combination. Connect the 8485A to the 11667B power splitter.
21.E nter the appropriate power sensor calibration factor into the 8902A.
22. Set the 8340A/B CW output to the frequency indicated in the active function area of the 8563E/EC display.
23.Adjust the 8340A/B POWER LEVEL to place the signal midscreen on the 8563E/EC display.
24.On the 8563E/EC, press PRESEL AUTO CTR.
25.Adjust the 8340A/B POWER LEVEL for a -10 dBm reading on the 8902A.
26.On the 8563E/EC, adjust the RF gain DAC value using the knob or keypad until the marker reads $-10 \mathrm{dBm} \pm 0.10 \mathrm{~dB}$.
27.On the $8563 \mathrm{E} / \mathrm{EC}$, press \uparrow to proceed to the next frequency.
28. Repeat steps 21 through 27 for the remaining frequencies in band 1 .
29.On the 8563E/EC, press NEXT BAND to proceed to band 2.
30.Repeat steps 21 through 27 for the remaining frequencies in band 2.
31.On the 8563E/EC, press NEXT BAND to proceed to band 3.
32. Repeat steps 21 through 27 for the remaining frequencies in band 3. 33.Press PREV MENU, STORE DATA, then YES on the 8563E/EC.
34.Place the WR PROT/WR ENA jumper on the A2 controller assembly in the WR PROT position.

13. Calibrator Amplitude Adjustment

Assembly Adjusted

A15 RF assembly
Related Performance Test
Calibrator Amplitude and Frequency Accuracy

Description

The CAL OUTPUT amplitude is adjusted for -10.00 dBm measured directly at the front panel CAL OUTPUT connector.

Figure 2-22 Calibrator Amplitude Adjustment Setup

SK113

Equipment

Measuring receiver 8902A
Power sensor 8482A
Adapters
Type-N (f) to BNC (m) 1250-1477

Procedure

NOTE

The spectrum analyzer should be allowed to warm up for at least 30 minutes before performing this adjustment.

1. Place the spectrum analyzer in the service position shown in Figure 2-22. Prop the A14 frequency control board assembly in the service position.
2. Zero and calibrate the 8902A/8482A combination in log display mode. Enter the power sensor's 300 MHz cal factor into the 8902A.
3. Connect the 8482A through an adapter directly to the spectrum analyzer CAL OUTPUT connector.
4. Adjust A15R561 CAL AMPTD for a -10.00 dBm reading on the 8902A display.

14. 10 MHz Reference Adjustment - OCXO

Assembly Adjusted

A21 OCXO assembly

Replacement oscillators are factory adjusted after a complete warmup and after the specified aging rate has been achieved. Thus, readjustment should typically not be necessary after oscillator replacement and is generally not recommended.

Related Performance Test

10 MHz Reference Accuracy

Description

The frequency of the internal 10 MHz frequency reference is compared to a known frequency standard and adjusted for minimum frequency error. This procedure does not adjust the short-term stability or long-term stability of the A21 10 MHz ovenized crystal oscillator (OCXO). Stability is determined by the characteristics of the particular oscillator and the environmental and warmup conditions to which it has been recently exposed. The spectrum analyzer must be on continuously for at least 24 hours immediately prior to oscillator adjustment to allow both the temperature and frequency of the oscillator to stabilize.

Figure 2-23 10 MHz Reference Adjustment Setup and Adjustment Location

SPECTRUM
ANALYZER

BOTTOM-SIDE VIEW OF MAIN DECK
FREQ

Equipment

Frequency counter
 5334A/B

Frequency standard 5061B Cesium Beam Standard
(or any 10 MHz frequency standard with accuracy $<+1 \times 10^{-10}$)

Cable

BNC, 122 cm (2 required) . 10503A

Procedure

Failure to allow a 24 hour minimum warmup time for OCXO frequency and temperature stabilization may result in oscillator misadjustment.

1. Connect equipment as shown in Figure 2-23 as follows:
a. Press LINE to turn the spectrum analyzer on. After the automatic power-on adjustment sequence is complete, press PRESET to ensure that the frequency reference is set to internal.
b. Allow the spectrum analyzer to remain powered on continuously for at least 24 hours to ensure that the A21 OCXO temperature and frequency stabilize.

NOTE
If the reference is set to $10 \mathbf{M H z}$ EXT, press $10 \mathbf{~ M H z}$ INT. Allow the 24 hour warmup for the OCXO before continuing. When the 10 MHz reference is set to 10 MHz EXT, the OCXO is not operating or warmed up.
c. Connect the frequency standard to the frequency counter rear panel TIMEBASE IN/OUT connector.
d. Connect a BNC cable between the spectrum analyzer rear panel 10 MHz REF IN/OUT connector and INPUT A on the frequency counter.
2. Set the frequency counter controls as follows:

Function/data . FREQA
Input. A
×10 Attenuator . OF OF
AC . OF F (DC coupled)

Auto Trigger . ON
100 kHz filter A . OFF
INT/EXT switch (rear panel). EXT
3. Select a 1 second gate time on the 5334A/B frequency counter by pressing GATE TIME, 1, GATE TIME.
4. To offset the displayed frequency by -10.0 MHz , press MATH, SELECT/ENTER, CHX/EEX, 10, CHS/EEX, 6, SELECT/ENTER, SELECT/ENTER. The frequency counter should now display the difference between the frequency of the INPUT A signal and 10.0 MHz with a displayed resolution of $0.010 \mathrm{~Hz}(10 \mathrm{MHz})$.
5. Locate the FREQ ADJ control on the spectrum analyzer. This control is accessible through the center deck of the spectrum analyzer. See Figure 2-23.
6. Remove the dust-cap screw.
7. Use a nonconductive adjustment tool to adjust the FREQ ADJ control on the A21 OCXO for a frequency counter reading of 0.00 Hz .
8. On the 5334A/B frequency counter, select a 10-second gate time by pressing GATE TIME, 10, GATE TIME. The frequency counter should now display the difference between the frequency of the INPUT A signal and 10.0 MHz with a resolution of $0.001 \mathrm{~Hz}(1 \mathrm{mHz})$.
9. Wait at least two gate periods for the frequency counter to stabilize, then adjust the FREQ ADJ control on A21 OCXO for a stable frequency counter reading of $0.000 \mathrm{~Hz} \pm 0.010 \mathrm{~Hz}$.
10.Replace the dust-cap screw to A21 OCXO.

15. 10 MHz R eference Adjustment - TCXO (Option 103)

Assembly Adjusted

A15 RF assembly

Related Performance Test

10 MHz Reference Output Accuracy (Option 103)

Description

The frequency counter is connected to the analyzer CAL OUTPUT. The CAL OUTPUT is locked to the 10 MHz frequency reference which yields better effective resolution. The temperature-compensated crystal oscillator (TCXO) is adjusted for a frequency counter reading of 300 MHz .

Figure 2-24 10 MHz Reference Adjustment Setup - TCXO

Equipment

Microwave frequency counter 5343A Option 001 Frequency standard 5061B Cesium Beam Standard (or any 10 MHz frequency standard with accuracy $< \pm 1 \times 10^{-10}$)

Cables

BNC, 122 cm (2 required) . 10503A

Procedure

NOTE

Allow the spectrum analyzer to warm up for at least 30 minutes before performing this adjustment.

1. Connect the equipment as shown in Figure 2-24. Prop up the A14 frequency control assembly.
2. Set the frequency counter controls as follows:

Sample rate
Midrange
$50 \Omega-1 \mathrm{M} \Omega$ switch
50Ω
$10 \mathrm{~Hz}-500 \mathrm{MHz} / 500 \mathrm{MHz}-26.5 \mathrm{GHz}$ switch . . . $10 \mathrm{~Hz}-500 \mathrm{MHz}$
3. Press AUX CTRL, REAR PANEL. Verify that the 10 MHz reference is set to $\mathbf{1 0} \mathbf{~ M H z}$ INT.

NOTE
When the 10 MHz reference is set to $\mathbf{1 0} \mathbf{~ M H z ~ E X T , ~ t h e ~ T C X O ~ i s ~ n o t ~}$ operating and warmed up. If the reference is set to $10 \mathbf{M H z}$ EXT, set the reference to 10 MHz INT and allow 30 minutes for the TCXO to warm up.
4. Remove dust cap from A15U 302, TCXO. The dust cap is toward the rear of the spectrum analyzer.
5. Adjust 10 MHz ADJ on A 15 U 302 for a frequency counter reading of $300.000000 \mathrm{MHz} \pm 30 \mathrm{~Hz}$.
6. Replace the dustcap on A15U302.

16. Demodulator Adjustment

Assembly Adjusted

A4 log amplifier/cal oscillator assembly

Related Performance Test

There is no related performance test for this adjustment.

Description

A 5 kHz peak-deviation FM signal is applied to the INPUT 50Ω. The detected audio is monitored by an oscill oscope. FM DEMOD is adjusted to peak the response displayed on the oscilloscope.

Figure 2-25 Demodulator Adjustment Setup

Equipment

AM/FM signal generator. 8640B
Oscilloscope 54501A

Adapters

Type-N (m) to BNC (f) (2 required)1250-1476
Type-N (f) to APC 3.5 (f) (Option 026 only)1250-1745
Cables
BNC, 122 cm (48 in) 10503A
Oscilloscope probe 10432A
Procedure

1. Press LINE to turn the spectrum analyzer off. Place the spectrum analyzer in the service position as illustrated in Figure 2-25.
2. Connect the oscilloscope probe from the oscilloscope channel 1 input to probe A4C723 (the end closest to A4U707) as in Figure 2-26. Press LINE to turn the spectrum analyzer on. Connect the Agilent 8640B RF OUTPUT to the spectrum analyzer INPUT 50Ω.
3. Set the 8640B controls as follows:
Range MHz 61 to 128
Frequency 100.000 MHz
Output level $-10 \mathrm{dBm}$
RF ON
AM OFF
FM INT
Modulation frequency 1000 Hz
Peak deviation 5 kHz
Scale FM (k/MHz)
4. Adjust the 8640B FM deviation vernier for a full-scale reading on the meter. Set the FM to off.
5. Set the oscilloscope controls as follows:
Channel 1 on
Channel 2 off
Channel 1 $50 \mathrm{mV} /$ division
Channel 1Channel 1BWlim
Time base $1.0 \mathrm{~ms} /$ division
Trigger auto
Trigger source. 1
Trigger level 0.0V
6. On the spectrum analyzer, press PRESET, then set the controls as follows:
Center frequency 100 MHz
Span 5 MHz
Reference level $-10 \mathrm{dBm}$
Resolution bandwidth 100 kHz
7. On the spectrum analyzer press:

PEAK SEARCH, MARKER \rightarrow CF SPAN, ZERO SPAN AUX CTRL, AM/FM DEMOD, FM DEMOD ON OFF(ON) CAL, IF ADJ ON OFF (OFF)TRIG, and SWEEP CONT SGL (SGL).

Set the volume control to midrange.
8. A 1 kHz sine wave should be observed on the oscilloscope. Rotate the volume knob on the front panel of the spectrum analyzer until the amplitude of the 1 kHz signal is at about 150 mV (3 divisions on the oscilloscope.)
9. Adjust A4C707 FM DEMOD for a maximum peak-to-peak response on the oscilloscope.
10.Press LINE to turn the spectrum analyzer off. Disconnect the test cable from A4C723.

Figure 2-26 Demodulator Adjustment Locations

17. External Mixer Bias Adjustment

Assembly Adjusted

A15 RF assembly

Related Performance Test

There is no related performance test for this adjustment.

Description

A voltmeter is connected to the spectrum analyzer IF INPUT with the external mixer bias set to off. The bias is adjusted for a 0 Vdc output.

Figure 2-27 External Mixer Bias Adjustment Setup

2. Set the 3456A controls as follows:

Function. DCVOLTS
Range. 0.1 V
Resolution . 100mV
3. On the spectrum analyzer press AUX CTRL, EXTERNAL MIXER, BIAS, then BIAS OFF.
4. Adjust A15R926 EXT BIAS ZERO for a DVM reading of 0.000 Vdc $\pm 12.5 \mathrm{mV}$.

18. External Mixer Amplitude Adjustment

Assembly Adjusted

A15 RF assembly

Related Performance Test

IF Input Amplitude Accuracy

Description

The slope of the flatness compensation amplifiers is determined. The user-loaded conversion losses for K-band are recorded and reset to 30 dB . A 310.7 MHz signal is applied to the power sensor and the power level of the source is adjusted for a -30 dBm reading. The signal is then applied to the IF INPUT. The flatness compensation amplifiers are then adjusted (via DACs) to place the displayed signal at the reference level.

Figure 2-28 External Mixer Amplitude Adjustment Setup

SK117

Equipment

Synthesized sweeper . 8340A/B
Measuring receiver . 8902A
Power sensor. 8481D
50 MHz reference attenuator . 11708A
(supplied with 8481D)

Adapters

Type-N (f) to SMA (f). 1250-1772
Type-N (m) to BNC (f) . 1250-1476
Type APC 3.5 (f) to APC 3.5 (f) . 5061-5311
Cables
BNC, 122 cm (48 in) . 10503A
SMA, 61 cm (24 in) . 8120-1578

Procedure

1. Press LINE to turn the spectrum analyzer off and disconnect the power cord. Remove the spectrum analyzer cover and reconnect the power cord.
2. Set up the equipment as illustrated in Figure 2-28. Do not connect the SMA cable to the spectrum analyzer.
3. Move the WR PROT/WR ENA jumper on the A2 controller assembly to the WR ENA position. The jumper is on the edge of the A2 board assembly and can be moved without folding the board down.
4. Press LINE to turn the spectrum analyzer on. On the spectrum analyzer, press CONFIG, EXT MXR PRE UNPR, (UNPR), AUX CTRL, EXTERNAL MIXER, AMPTD CORRECT, then CNV LOSS VS FREQ.
5. Press \Uparrow or \Downarrow to display the conversion loss value for each frequency listed in Table 2-12. Record any conversion loss reading not equal to 30 dB in Table 2-12 at the appropriate frequency.
6. If all conversion loss values equal 30 dB , skip to step 7, otherwise continue to step a.
a. Refer to Table 2-12 and press \Uparrow or \Downarrow to select a frequency at which the conversion loss value does not equal 30 dB .
b. Use the spectrum analyzer front-panel keys to set the conversion loss value to 30 dB .
c. Repeat steps a and b for all frequencies having a conversion loss value other than 30 dB .
7. Press INSTR PRESET on the 8340A/B and set the controls as follows:

CW frequency . 310.7 MHz
Power level .

Table 2-12 Conversion Loss Data

Frequency (GHz)	Conversion Loss (dB) ($\neq \mathbf{3 0} \mathbf{d B}$)
18	
20	
22	
24	
26	
27	

8. Connect the 8481D to the 11708A attenuator already connected to the 8902A RF power connector. Zero and calibrate the 8902A/8481D combination in log mode. Enter the power sensor 50 MHz cal factor into the 8902A. Connect the power sensor, through an adapter, to the SMA cable.
9. Adjust the 8340A/B POWER LEVEL until the power displayed on the 8902A reads $-30 \mathrm{dBm} \pm 0.05 \mathrm{~dB}$.
10.On the spectrum analyzer, press CAL, MORE 1 OF 2, SERVICE CAL DATA, 3RD IF AMP, then CAL 3RD AMP GAIN.
11.Wait until the message ADJUSTMENT DONE appears in the active function block and press EXT MXR REF CAL.
12.Disconnect the SMA cable from the power-sensor/adapter and connect the cable to the spectrum analyzer IF INPUT.
13.Use the spectrum analyzer front-panel knob, step keys, or keypad to change the amplitude of the displayed signal until the marker reads $0 \mathrm{dBm} \pm 0.17 \mathrm{~dB}$.
14.Press PREV MENU, STORE DATA, and YES on the spectrum analyzer.
15.Place the WR PROT/ WR ENA jumper on the A2 controller assembly in the WR PROT position.

NOTE
The following steps should only be performed if you need to replace the 30 dB conversion loss values to those recorded in Table 2-12.
16.Press AUX CTRL, EXTERNAL MIXER, AMPTD CORRECT, then CNV LOSS VS FREQ on the spectrum analyzer.
17.Press \Uparrow or \Downarrow to select frequencies where the conversion loss value was recorded in Table 2-12.
18.Use the spectrum analyzer front panel keys to enter the conversion loss values recorded for the frequency.

19. Signal ID Oscillator Adjustment

Assembly Adjusted

A15 RF assembly

Related Performance Test

There is no related performance test for this adjustment.

Description

NOTE This adjustment applies only to spectrum analyzers with A15 RF assembly 08563-60083 or earlier (serial prefix 3517A and below). Later A15 RF assemblies have no 298 MHz adjustment. This procedure is required for spectrum analyzers with a serial prefix less than 3310A (standard and all options), or from 3310A through 3517A with Option 008 installed.

The frequency range of the 298 MHz signal ID oscillator is determined by counting the 10.7 MHz IF as A15C629 is rotated through its range of adjustment. The SIG ID oscillator is then set to the frequency determined by the following equation:

$$
\text { Oscillator frequency }=12.7 \mathrm{MHz}+\left(\frac{\text { Oscillator frequency range }}{4}\right)
$$

Figure 2-29 Signal ID Oscillator Adjustment Setup

Equipment

Microwave frequency counter 5343A
Spectrum analyzer 8566A/B
Adapters
Type-N (m) to BNC (f) (2 required) 1250-1476
BNC tee ($\mathrm{f}, \mathrm{m}, \mathrm{f}$) 1250-0781
Cables
BNC, 122 cm (48 in) (2 required) 10503A
Test cable, BNC (m) to SMB (f) 85680-60093

Procedure

1. Press LINE to turn the spectrum analyzer off. Disconnect the power cord, and remove the spectrum analyzer cover. Fold down the A15 RF and A14 frequency control assemblies. Prop up the A14 frequency control assembly.
2. Connect the spectrum analyzer CAL OUTPUT to the INPUT 50Ω using an adapter. Disconnect the W29 cable from A15J 601 (10.7 MHz IF out) and connect the SMB end of the test cable to A15J 601. Connect the rest of the equipment as shown in Figure 2-29.
3. Remove the four screws holding the brace on the A15 RF assembly (near J 2.)
4. Connect a jumper between the leads of A15R914 and A15C904 (the ends near U908.) See Figure 2-30 for the location of the components.
5. Reconnect the power cord and press LINE to turn the spectrum analyzer on. After the power-on sequence is complete, set the spectrum analyzer controls as follows:

Center frequency. 300 MHz
Span
OHz
6. Press CAL, IF ADJ ON OFF so OFF is underlined, and SGL SWP.

Figure 2-30 Signal ID Oscillator Adjustment J umper Location

7. Press INSTR PRESET on the 8566A/B and set the controls as follows:

> Center frequency . M kHz Span . . .
8. Set the 5343A controls as follows:

Sample rate. Fully counterclockwise
$50 \Omega-1 \mathrm{M} \Omega$ switch . 50Ω
$10 \mathrm{~Hz}-500 \mathrm{MHz} / 500 \mathrm{MHz}-26.5 \mathrm{GHz}$ switch $10 \mathrm{~Hz}-500 \mathrm{Mhz}$
9. If no signal is displayed on the 8566A/B, adjust A15C629 SIG ID until a signal is displayed.

NOTE
If the 298 MHz SIG ID oscillator is severely mistuned, it might be necessary to widen the span on the 8566A/B to see the IF signal.
10.Rotate A15C629 SIG ID slightly while observing the 8566A/B display.

NOTE The nominal counted frequency should be 12.7 MHz , not 10.7 MHz .
11.While observing the 8566A/B display, adjust A15C629 SIG ID for the highest obtainable frequency, with less than 3 dB decrease in amplitude from maximum. Read this frequency from the frequency counter and record as $\mathrm{F}_{3 \mathrm{~dB} \text { HIGH. }}$.

$$
\mathrm{F}_{3 \mathrm{dBHIGH}}=_\mathrm{MHz}
$$

12.Observe the 8566A/B display as you adjust A15C629 SIG ID for the lowest obtainable frequency, with less than 3 dB decrease in amplitude from maximum. Record the frequency counter reading as $F_{3 \mathrm{~dB}}$ Low.

$$
\mathrm{F}_{3 \mathrm{dBLOW}}=\ldots \mathrm{MHz}
$$

13. Cal culate the difference between $\mathrm{F}_{3 \mathrm{~dB} \text { HIGH }}$ and $\mathrm{F}_{3 \mathrm{~dB} \text { LOW }}$, then divide results by four. Enter the result as F OFFSET.

$$
\mathrm{F}_{\text {OFFSET }}=\ldots \mathrm{MHz}
$$

14.Add F OFFSET to $\mathrm{F}_{3 \mathrm{~dB}}$ Low recorded in step 10 and record the result as $\mathrm{F}_{\text {SIGID }}$.

$$
\mathrm{F}_{\text {SIGID }}=
$$ MHz

15.Adjust A 15 C 629 for a frequency counter reading equaling $\mathrm{F}_{\text {SIGID }}$. The final adjusted frequency must equal $12.7 \mathrm{MHz} \pm 50 \mathrm{kHz}$.

20. Switched YIG-Tuned Filter (SYTF) Adjustment (8561E/E C)

Assembly Adjusted

A14 frequency control assembly

Related Performance Test

Image, Multiple, and Out-of-Band Responses
Second Harmonic Distortion
Frequency Response

Description

The slope and offset of the A10 SYTF tuning voltage are set by DACs on the A14 Frequency Control assembly. The offset DAC value is optimized at a low frequency and the slope DAC value is optimized at a high frequency.

Figure 2-31 SYTF Adjustment Setup

Equipment

Synthesized Sweeper 8340A/B
Adapters
Type-N (m) to APC 3.5 (f) 1250-1744
Type APC 3.5 (f) to APC 3.5 (f) 5061-5311
Cables
APC 3.5, 91 cm (36 in) 8120-4921

Procedure

1. Set the $8561 E / E C$ LINE switch to off and disconnect the line cord. Remove the spectrum analyzer cover and connect the line cord. Connect the equipment as illustrated in Figure 2-31. Set the LINE switch on.
2. Move the WR PROT/WR ENA jumper on the A2 controller assembly to the WR ENA position.
3. Press PRESET on the 8561E/EC and set the controls as follows:
\qquad
Span OHz
4. On the Agilent 8561E/EC, press CAL, IF ADJ OFF, MORE 1 OF 2, SERVICE CAL DATA, PRESEL ADJ, then PRESET ALL DACS.
5. Press INSTR PRESET on the 8340A and set the controls as follows:

CW
3.0 GHz

Power level. -10 dBm
Frequency standard switch (rear panel). EXT
6. Press PRESEL OFFSET on the 8561E/EC. Use the front-panel knob to peak the displayed trace. Record the offset DAC value below:

Offset at $3.0 \mathrm{GHz}=$ \qquad
7. Set the 8561E/EC center frequency and the Agilent 8340A CW to 6.0 GHz.
8. On the 8561E/EC, press CAL, MORE 1 OF 2, SERVICE CAL DATA, PRESEL ADJ, then PRESEL OFFSET. Key in the offset value noted in step 6.
9. Press PRESEL SLOPE on the 8561E/EC. Use the front-panel knob to peak the displayed trace. Record the slope DAC value below:

Slope at $6.0 \mathrm{GHz}=$ \qquad
10.Set the 8561E/EC center frequency and the 8340A CW to 3.0 GHz .
11.On the 8561E/EC, press CAL, MORE 1 OF 2, SERVICE CAL DATA, PRESEL ADJ, then PRESEL SLOPE. Key in the slope value noted in step 9.
12.Repeat steps 6 through 11 until both SLOPE and OFFSET are peaked. Adjust the OFF SET only at 3.0 GHz and the SLOPE only at 6.0 GHz.
13.Press PREV MENU, STORE DATA, and YES on the 8561E/EC.
14.Place the WR PROT/WR ENA jumper on the A2 controller assembly in the WR PROT position.
15.On the 8561E/EC, press RECALL, MORE 1 OF 2, FACTORY PRSEL PK, SAVE, then SAVE PRESEL PK.

21. YIG-Tuned Filter/Mixer (RYTHM) Adjustment (8563E/EC)

Assembly Adjusted

A14 frequency control assembly

Related Performance Tests

Image, Multiple, and Out-of-Band Responses
Second Harmonic Distortion
Frequency Response

Description

The slope and offset of the A10 RYTHM tuning voltage are set by DACs on the A14 frequency control assembly. The offset DAC value is optimized at a low frequency and the slope DAC value is optimized at a high frequency.

Figure 2-32 RYTHM Adjustment Setup

Equipment

Synthesized sweeper 8340A/B
Adapters
Type-N (m) to APC 3.5 (f) 1250-1744
Type APC 3.5 (f) to APC 3.5 (f) 5061-5311
Cables
APC 3.5, 91 cm (36 in) 8120-4921

Procedure

1. Set the $8563 \mathrm{E} / \mathrm{EC}$ LINE switch to off and disconnect the line cord. Remove the spectrum analyzer cover, fold down the A14 and A15 board assemblies, and connect the line cord. Connect the equipment as illustrated in Figure 2-32. Press LINE to turn the spectrum analyzer on.
2. Move the WR PROT/WR ENA jumper on the A2 controller assembly to the WR ENA position. The jumper is on the edge of the A2 board assembly and can be moved without folding the board down.
3. Press PRESET on the $8563 \mathrm{E} / \mathrm{EC}$ and set the controls as follows:
\qquad
Span OHz
4. On the 8563E/EC, press CAL, IF ADJ ON OFF so OFF is underlined, MORE 1 OF 2, SERVICE CAL DATA, PRESEL ADJ, then PRESET ALL DACS.
5. Press INSTR PRESET on the 8340A and set the controls as follows:

$$
\begin{aligned}
& \text { CW. }
\end{aligned}
$$

6. Press PRESEL OFFSET on the 8563E/EC. Use the front-panel knob to peak the displayed trace. Record the offset DAC value below:

Offset at $4.0 \mathrm{GHz}=$ \qquad
7. Set the $8563 \mathrm{E} / \mathrm{EC}$ center frequency and the 8340 A CW to 12.16 GHz .
8. On the 8563E/EC, press CAL, MORE 1 OF 2, SERVICE CAL DATA, PRESEL ADJ, then PRESEL OFFSET. Key in the offset value noted in step 6.
9. Press PRESEL SLOPE on the 8563E/EC. U se the front-panel knob to peak the displayed trace. Record the slope DAC value below:

$$
\text { Slope at } 12.16 \mathrm{GHz}=
$$

\qquad
10. Set the $8563 \mathrm{E} / \mathrm{EC}$ center frequency and the 8340 A CW to 4.0 GHz .
11.On the 8563E/EC, press CAL MORE 1 OF 2 SERVICE CAL DATA PRESEL ADJ, then PRESEL SLOPE. Key in the slope value noted in step 9.
12.Repeat steps 6 through 11 until both SLOPE and OFFSET are peaked. Adjust the OFFSET only at 4.0 GHz and the SLOPE only at 12.16 GHz .
13.Press PRESEL OFFSET. Press \Uparrow to display offset FOR BAND \#2. Key in the offset value recorded in step 6.
14.Press PRESEL SLOPE, then press \Uparrow on the 8563E/EC until SLOPE FOR BAND \#3 is displayed. Key in slope value noted in step 9.
15.Set the 8563E/EC CENTER FREQ and the 8340A CW frequency to 13.3 GHz .
16.Press CAL, MORE 1 OF 2, SERVICE CAL DATA, PRESEL ADJ, then PRESEL OFFSET. (Press \uparrow, if necessary, until OFFSET FOR BAND \#3 is displayed.)
17.Use the data entry knob to peak the displayed trace.
18.Set the 8563E/EC CENTER FREQ and the 8340A CW frequency to 25.2 GHz .
19.Press CAL, MORE 1 OF 2, SERVICE CAL DATA, PRESEL ADJ.
20.Press PRESEL SLOPE. Use the front panel data knob to peak the displayed trace.
21. Set the 8553E CENTER FREQ and the 8340A CW frequency to 13.3 GHz .
22.Repeat steps 16 through 21 until both the slope and offset are peaked. Adjust the OFFSET only at 13.3 GHz and the SLOPE at 25.2 GHz .
23.Press PREV MENU, STORE DATA, and YES on the 8563E/EC.
24.Place the WR PROT/WR ENA jumper on the A2 controller assembly in the WR PROT position.
25.On the 8563E/EC, press RECALL, MORE 1 OF 2, FACTORY PRSEL PK, SAVE, then SAVE PRESEL PK.

22. 16 MHz PLL Adjustment

NOTE	This adjustment applies only to spectrum analyzers with A2 controller assemblies other than 08563-60017.

Assembly Adjusted

A2 controller assembly

Related Performance Tests

Sweep Time Accuracy
Gate Delay Accuracy and Gate Length Accuracy
Delayed Sweep Accuracy
Fast Sweep Time Accuracy (Option 007)

Description

In spectrum anal yzers with serial prefix numbers greater than or equal to 3310A, the 16 MHz CPU clock is phase locked to the 10 MHz reference. The output of the 16 MHz PLL's loop integrator is adjusted for a clock frequency of approximately 14.4 MHz with the loop unlocked. This ensures that the CPU will still function and the display annotation will be distorted but readable, even if the 10 MHz reference to A 2 is absent.

If necessary, perform the display adjustments after performing the following adjustment.

Figure 2-33 16 MHz PLL Adjustment Setup

s j 140 e

Equipment

Microwave frequency counter . 5343A
10:1 probe . 10432A

Procedure

1. Press LINE to turn the spectrum analyzer off. Remove the spectrum analyzer cover and fold out the A2 controller and A3 interface assemblies. Use a pc board prop to hold up the A3 interface assembly, as shown in Figure 2-33.
2. Connect the equipment as shown if Figure 2-33. The 10:1 probe's ground lead connects to A2TP10 and the probe's tip connects to A2TP101.
3. The 16 MHz PLL adjustment location is shown in Figure 2-34.

Figure 2-34 16 MHz PLL Adjustment Location

sj141e
4. Press LINE to turn the spectrum analyzer on. Wait until the spectrum analyzer power-on adjustments have completed.
5. Set the microwave frequency counter as follows:

Sample rate
Fully counterclockwise $10 \mathrm{~Hz}-500 \mathrm{MHz} / 500 \mathrm{MHz}-26.5 \mathrm{GHz}$ switch $10 \mathrm{~Hz}-500 \mathrm{Mhz}$ $50 \Omega / 1 \mathrm{M} \Omega$ switch. $1 M \Omega$
6. On the spectrum analyzer, press AUX CTRL, REAR PANEL, and $10 \mathbf{~ M H z}$ EXT.
7. Disconnect W22 (10 MHz frequency counter) from A2J 8. The display will probably appear distorted and error messages may appear. I gnore the error messages.
8. Adjust A2R152 (16 MHz PLL ADJ) until the microwave frequency counter reads $14.4 \mathrm{MHz} \pm 200 \mathrm{KHz}$.
9. Reconnect W22 to A2J 8. The microwave frequency counter should read 16 MHz . If the counter reads 16 MHz and the display is still distorted, perform the display adjustments in "2. Display Adjustment (8561E and 8563E)" on page 62.
10.On the spectrum analyzer, press CAL, REALIGN LO and IF to clear any error messages.

23. 600 MHz Reference Adjustment (serial prefix 3406A and above)

Assembly Adjusted

A15 RF assembly

Related Performance Test

There is no related performance test for this adjustment.

Description

The 100 MHz VCXO and the tripler are adjusted for a maximum signal level at 600 MHz . A spectrum analyzer is used to monitor the amplitude of the 600 MHz signal while performing these adjustments.

Equipment

Spectrum analyzer . 8566A/B

Procedure

1. Press LINE to turn the spectrum analyzer off, disconnect the power cord, and remove the spectrum analyzer cover. Fold down the A15 RF and A14 frequency control assemblies. Prop up the A14 frequency control assembly.
2. Disconnect W33, gray/brown coax cable, from A15J 701.
3. Connect the signal at A15J 701 to the input of the $8566 \mathrm{~A} / \mathrm{B}$ spectrum analyzer.
4. Reconnect the power cord and press LINE to turn the spectrum analyzer on.
5. Set the center frequency of the $8566 \mathrm{~A} / \mathrm{B}$ to 600 MHz and set the frequency span and resolution bandwidth of the 8566A/B for the best display of the 600 MHz signal.
6. Set the peak of the 600 MHz signal near the top graticule line on the 8566A/B display and set to 1 dB per division.
7. Adjust A15 C750, VCXO Adjust, for maximum amplitude.
8. Adjust A15 C751 Tripler Adjust, for maximum amplitude. The level, after proper adjustment, should be between -3 and +4.8 dBm (typically 0 to +1 dBm).
9. Reconnect W33 to A15J 701.

2a Manual Adjustment Procedures: 3335A Source Not Available

What You'll Find in This Chapter

This chapter provides alternative procedures for the adjustment of the spectrum analyzer that do not require the use of the 3335A Synthesizer Level Generator. The 3335A has been obsol eted. Because of the unavailability of the 3335A, new adjustment procedures are required that use different signal sources. If the 3335A is not available, substitute these procedures for those of the same number found in Chapter 2, "Adjustment Procedures."

Required Test Equipment

The following table lists the test equipment required to execute the adjustments in this chapter. These adjustments originally required the use of the 3335A Synthesizer Level Generator.
Table 2a-1 Recommended Test Equipment

Instrument	Critical Specifications for Equipment Substitution	Recommended Model
Sources		
Synthesized Signal Generator	Frequency range: 250 kHz to 3 GHz Frequency resolution: 1 Hz Attenuator resolution: 0.02 dB Level accuracy: $\pm 0.5 \mathrm{~dB}$ External 10 MHz Ref. Input	$\begin{aligned} & \text { E4421B or } \\ & \text { E4422B, E4432B, } \\ & \text { E4433B } \end{aligned}$
Cables		
Cable, 50Ω coaxial (four required)	Connectors: BNC (m) Length: $\geq 122 \mathrm{~cm}$ (48 in.)	10503A
Cable	Test Cable	85680-60043
Adapters		
Adapter (four required)	Type-N (m)-to-BNC (f)	1250-1476
Adapter (Option 026 only)	APC-3.5 (f) to APC-3.5 (f)	5061-5311
Adapter (Option 026 only)	APC-3.5 (f) to BNC-3.5 (f)	1250-1200

4a. IF Amplitude Adjustments

The IF amplitude adjustments consist of the cal oscillator amplitude adjustment and the reference 15 dB attenuator adjustment.

Assembly Adjusted

A4 log amp/cal oscillator A5 IF assembly

Related Performance Tests

IF Gain Uncertainty Scale Fidelity

Description

This adjustment sets the output amplitude of the A4 log amp/cal oscillator and the absol ute amplitude of the reference 15 dB attenuator.

The output of the A4 log amp/cal oscillator is adjusted so that a -55 dBm signal applied to the 10.7 MHz IF input on the A5 IF assembly (A5J 3) causes a displayed signal of -60 dBm . The effect of this adjustment is visible only after the ADJ CURR IF STATE sequence is complete. ADJ CURR IF STATE causes the IF gain adjustment to use the "new" output amplitude from the A4 log amp/cal oscillator.

This procedure also sets the attenuator of the reference 15 dB attenuator so that a source amplitude change of 50 dB combined with a spectrum analyzer reference level change of 50 dB displays an amplitude difference of 50 dB .

Figure 2a-1 IF Amplitude Adjustment Setup

Equipment

Signal Generator E4421B
Adapters
Type-N (m) to BNC (f) 1250-1476
Cables
BNC, 122 cm (48 in) 10503A
Test cable 85680-60093

Figure 2a-2 IF Amplitude Adjustment Locations

sj115c

NOTE
The 15 dB reference attenuator adjustment is preset at the factory and need not be done if the entire A5 IF assembly is replaced.

Procedure

1. Press LINE to turn the spectrum analyzer off. Remove the spectrum analyzer cover and place the spectrum analyzer in the service position as illustrated in Figure 2a-1.
2. Disconnect W29, violet coax cable, from A5J 3. Connect the test cable between A5J 3 and the RF output of the E4421B. Press LINE to turn the spectrum analyzer on.

4a. IF Amplitude Adjustments

3. Set the spectrum analyzer controls as follows:
Center Frequency 10.7 M Hz
Span 200 kHz
Reference Level $-60 \mathrm{dBm}$
Attenuator 0 dB
dB/division $1 \mathrm{~dB} / \mathrm{DIV}$
Resolution bandwidth 300 kHz
Video bandwidth 100 Hz
4. On the spectrum analyzer, press MKR, CAL, and IF ADJ ON OFF soOFF is underlined.
5. Set the E4421B controls as follows:
Frequency 10.7 MHz
Amplitude $-55 \mathrm{dBm}$
Mod On/Off Off
6. Note the marker value. Ideally it should read $-60 \mathrm{dBm} \pm 0.1 \mathrm{~dB}$.
7. If the marker reads less than -60.1 dBm , rotate A4R826 CAL OSCAMPTD one-third turn clockwise for every 0.1 dB less than-60 dBm . See Figure 2a-2 for the location of A4R826. A change inthe displayed amplitude will not be seen until ADJ CURR IF STATE ispressed.
8. If the marker reads greater than -59.9 dBm , rotate A4R826 CAL OSC AMPTD one-third turn counter clockwise for every 0.1 dB greater than -60 dBm . See Figure 2a-2 for the location of A4R826. A change in the displayed amplitude will not be seen until ADJ CURR IF STATE is pressed.
NOTE If A4R826 has inadequate range, refer to "I nadequate CAL OSC AMPTD Range" on page 472.
9. On the spectrum analyzer, press ADJ CURR IF STATE. After allowing the analyzer time to complete the adjustments, the displayed amplitude and marker reading should change.
10.Repeat step 7 through step 9 until the marker reads -60 dBm $\pm 0.1 \mathrm{~dB}$.
11.Disconnect the test cable from A5J 3 and reconnect W29 to A5J 3.

A5 Reference Attenuator Adjustment

1. Set the spectrum analyzer reference level to -60 dBm . If markers are displayed, press MKR and MARKERS OFF.
2. Set the E4421B Amplitude to -60 dBm .
3. Connect a BNC cable between the RF output of the E4421B and the spectrum analyzer INPUT 50 Ω.
4. On the spectrum analyzer, press CAL and REF LVL ADJ. Use the front panel knob or step keys to place the peak of the displayed signal 3 dB to 5 dB below the reference level.
5. On the spectrum analyzer, press PEAK SEARCH and MARKER DELTA. Set the spectrum analyzer reference level to -10 dBm .
6. Change the 4421B Amplitude to -10 dBm .
7. On the spectrum analyzer, press CAL.
8. Note the $\triangle M K R$ amplitude. Ideally, it should read $50.00 \mathrm{~dB} \pm 0.1 \mathrm{~dB}$.
9. If the $\Delta M K R$ amplitude is less than 49.9 dB , rotate $A 5 R 34315 \mathrm{~dB}$ ATTEN one-half turn counterclockwise for each 0.1 dB less than 50.00 dB . Do not adjust A5R343 more than five turns before continuing with the next step.
10.If the Δ MKR amplitude is greater than 50.1 dB , rotate A5R343 15 dB ATTEN one-half turn dockwise for each 0.1 dB greater than 50.00 dB . Do not adjust A5R343 more than five turns before continuing with the next step.
11.On the spectrum analyzer, press ADJ CURR IF STATE. Note the Δ MKR amplitude reading.
12.Repeat step 1 through step 11 until the $\Delta M K R$ amplitude reading is $50.00 \mathrm{~dB} \pm 0.1 \mathrm{~dB}$.

A5 Adjustment Verification

1. On the spectrum analyzer, disconnect W29 from A5J 3. Connect the test cable between A5J 3 and the RF output of the E4421B.
2. Set the spectrum analyzer reference level to -10 dBm .
3. Set the E4421B Amplitude to -5 dBm .
4. On the spectrum analyzer, press MKR and MARKER NORMAL.
5. The MARKER amplitude should read $-10 \mathrm{dBm} \pm 0.13 \mathrm{~dB}$. If the reading is outside of this range, repeat step 4, on page 2a-138 through step 12, on page 2a-139.
6. On the spectrum analyzer, reconnect W29 to A5J 3. Press PRESET and set the controls as follows:
Center frequency 300 MHz
Span 0 Hz
Reference level $-10 \mathrm{dBm}$
Resolution bandwidth 300 kHz
7. Connect a BNC cable between the 8563E CAL OUTPUT and INPUT 50Ω.
8. On the spectrum analyzer, press MKR CAL and REF LVL ADJ.
9. Use the knob or step keys to adjust the REF LEVEL CAL settinguntil the MKR reads $-10.00 \mathrm{dBm} \pm 0.1 \mathrm{~dB}$.
10.On the spectrum analyzer, press STORE REF LVL.

5a. DC Log Amplifier Adjustments

There are three DC log adjustments; limiter phase, linear fidelity, and log fidelity.

Assembly Adjusted

A4 log amp/cal oscillator

Related Performance Tests

IF Gain Uncertainty Scale Fidelity

Description

These three adjustments need only be done under the following conditions:
Limiter phase Only if a repair is made to blocks $\mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{I}$, or J.
Linear fidelity Only if a repair is made to blocks C, D, F, G, H, I, J, K, O, IF gain accuracy, RBW switching, or log fidelity.
Log fidelity Only if a repair is made to blocks D, F, H, K, IF gain accuracy, RBW switching, or log fidelity.

If multiple adjustments are required they should be done in the following order:

1. Limiter Phase
2. Linear Fidelity
3. Log Fidelity

Figure 2a-3 DC Log Adjustment Setup

hj11e

Equipment

> Signal Generator . E4421B

Adapters

Type-N (m) to BNC (f) 1250-1476
Type-N (f) to 2.4 mm (f) 11903B
Cables
BNC, 122 cm (48 in) 10503A
Test cable 85680-60093

Figure 2a-4 DC Log Adjustment Locations

Adjustments should be made with all of the shields on and only after allowing at least a 20 minute warmup.

A4 Limiter Phase Adjustment

1. Press LINE to turn the spectrum analyzer off. Remove the spectrum analyzer cover and place the spectrum analyzer in the service position as illustrated in Figure 2a-3. See Figure 2a-4 for adjustment location.
2. Connect the E4421B RF output to the spectrum analyzer 50Ω input. Press LINE to turn the spectrum analyzer on.
Center Frequency 15 MHz
Span 0 MHz
Reference level $-10 \mathrm{dBm}$
dB/division 1 dB/DIV
Resolution bandwidth 300 kHz
IF ADJ

\qquad
OFF
3. Set the spectrum analyzer controls as follows:
4. Set the spectrum analyzer controls as follows:
5. Set up an E4421B as follows:
Frequency 15 MHz
Amplitude $-18 \mathrm{dBm}$
Mod On/Off Off
6. Press CAL, ADJ CURR IF STATE, wait for the analyzer to complete adjustments then press MKR.
7. Adjust A4R 445 for maximum on-screen amplitude. Refer to Figure2a-4 for the location of A4R445.
A4 Linear Fidelity Adjustment

1. Press line to turn the spectrum analyzer off. Remove the spectrumanalyzer cover and place the spectrum analyzer in the serviceposition as illustrated in Figure 2a-3. See Figure 2a-4 for adjustmentlocation.
2. Connect the E4421B RF output to the spectrum analyzer 50Ω input. Press LINE to turn the spectrum analyzer on.
3. On the spectrum analyzer, press PRESET AMPLITUDE, LINEAR, MORE 1 of 3, AMPTD UNITS, dBm, CAL, and IF ADJ ON OFF (OFF).
4. Set the spectrum analyzer controls as follows:
Center frequency 15 MHz
Span 5 MHz
Resolution bandwidth 300 kHz
Reference level $-10 \mathrm{dBm}$
5. Set up an E4421B as follows:
Frequency 15 MHz
Amplitude $-10 \mathrm{dBm}$
Mod On/Off Off
6. On the spectrum analyzer, press PEAK SEARCH and MARKER DELTA.7. Reduce the E 4421 B input power to -58 dBm .8. If the delta marker amplitude reads $-40 \mathrm{~dB} \pm 2 \mathrm{~dB}$, no adjustment isnecessary.
7. If the signal is lower on the screen than expected (delta marker amplitude reads less than -42dB) then adjust A4R544 (see Figure 2a-4) for an even lower level and press CAL and ADJ CURR IF STATE. Allow sufficient time for the analyzer to complete the adjustment.
10.If the signal is higher on the screen than expected (delta marker amplitude reads greater than -38 dB) then adjust A4R544 for an even higher level signal and press CAL and ADJ CURR IF STATE. Allow sufficient time for the analyzer to complete the adjustment.
11.Repeat step 7 through step 10.
A4 LOG Fidelity Adjustment
8. Press LINE to turn the spectrum analyzer off. Remove the spectrumanalyzer cover and place the spectrum analyzer in the serviceposition as illustrated in Figure 2a-3. See Figure 2a-4 for adjustmentlocation.
9. Connect the E4421B RF output to the spectrum analyzer 50Ω input. Press LINE to turn the spectrum analyzer on.
10. On the spectrum analyzer, press PRESET, CAL, IF ADJ ON OFF (OFF), and ADJ CURR IF STATE.
11. Set the spectrum analyzer controls as follows:
Center frequency 15 MHz
Span 0 MHz
Resolution bandwidth 300 kHz
Reference level $-10 \mathrm{dBm}$
12. Set up the E4421B as follows:
Frequency 15 MHz

Amplitude . -10 dBm
Mod On/Off . Off
6. On the spectrum analyzer, press MKR, MARKER DELTA on the spectrum analyzer.
7. Decrease the E4421B power to - 26 dBm .
8. Calculate the error:

$$
\text { Error }=\text { delta marker reading }-16 \mathrm{~dB}
$$

9. If the error is less than $\pm 0.2 \mathrm{~dB}$, no adjustment is necessary.
10.Set the 3335A power to -10 dBm .
11.Adjust A4R531 (see Figure 2a-4) to read two times the error. For example, if the calculated error is +0.75 dB , adjust A4R531 for a delta marker amplitude reading of +1.5 dB . Press CAL and ADJ CURR IF STATE.
12.Repeat step 7 through step 12.

3 Assembly Replacement

Introduction

This chapter describes the removal and replacement of all major assemblies. The following replacement procedures are provided:
Access to Internal Assemblies page 149
Cable Col or Code page 150
Procedure 1. Spectrum Analyzer Cover page 151
Procedure 2A. A1 Front Frame/A18 LCD(8561EC and 8563EC)... page 152
Procedure 2B. A1 Front Frame/A18 CRT (8561E and 8563E) page 162
Procedure 3. A1A1 K eyboard/Front Panel Keys page 170
Procedure 4. A1A2 RPG page 171
Procedure 5. A2, A3, A4, and A5 Assemblies page 172
Procedure 6A. A6 Power Supply Assembly (8561EC and 8563EC)page 180
Procedure 6B. A6 Power Supply Assembly (8561E and 8563E) page 183
Procedure 7. A6A1 High Voltage Assembly (8561E and 8563E) page 187
Procedure 8. A7 through A13 Assemblies page 191
A7 First LO Distribution Amplifier page 195
A8 Dual Mixer (8561E/EC) page 196
A8 Low Band Mixer (8563E/EC) page 197
A9 I nput Attenuator page 198
A10 Switched YIG-Tuned Filter (SYTF, 8561E/EC) page 200
A10 YIG-Tuned Filter/Mixer (RYTHM, 8563E/EC) page 202
A11 YTO (8561E/EC) page 203
A11 YTO (8563E/EC) page 204
A13 Second Converter page 206
Procedure 9. A14 and A15 Assemblies page 207
Procedure 10. A16 Fast ADCand A17 CRT Driver (8561E/ 8563E) page 210
Procedure 11. B1 Fan page 213
Procedure 12. BT1 Battery page 214
Procedure 13. Rear Frame/Rear Dress Panel page 215
Procedure 14. W3 Line Switch Cable (8561E and 8563E) page 220
Procedure 15. EEROM page 229
Procedure 16. A21 OCXO page 231
Tools required to perform the procedures are listed in Table 3-1 on page 150.

The words right and left are used throughout the replacement procedures to indicate the side of the spectrum analyzer as viewed from the front panel. See Figure 3-1 on page 151.

Numbers in parentheses are used throughout the replacement procedures to indicate numerical callouts on the figures.
$\begin{array}{ll}\text { CAUTION } & \begin{array}{l}\text { The spectrum analyzer contains static-sensitive components. Read the } \\ \text { section "Electrostatic Discharge" on page } 34 .\end{array}\end{array}$

Access to Internal Assemblies

Servicing the Agilent 8561E/EC or the 8563E/EC requires the removal of the spectrum analyzer's cover assembly and the folding down of six board assemblies. Four of these assemblies lay flat along the top of the spectrum analyzer and two lay flat along the bottom of the spectrum analyzer. All six assemblies are attached to the right side frame of the spectrum analyzer with hinges and fold out of the spectrum analyzer allowing access to all major assemblies. See Figure 3-1 on page 151.

- To remove the spectrum analyzer's cover, refer to "Procedure 1. Spectrum Analyzer Cover" on page 151.
- To access the A2, A3, A4, and A5 assemblies, refer to "Procedure 5. A2, A3, A4, and A5 Assemblies" on page 172.
- To access the A14 and A15 assemblies, refer to "Procedure 9. A14 and A15 Assemblies" on page 207.
- To remove the A17 display driver board and A18 LCD on EC-series instruments, refer to "Procedure 2A. A1 Front Frame/A18 LCD (8561EC and 8563EC)" on page 152.
- To remove and replace the backlight cables, which illuminate the A18 LCD, refer to "Procedure 2A. A1 Front Frame/A18 LCD (8561EC and 8563EC)" on page 152.
- To remove the A16 assembly or A17 CRT driver board on E-series instruments, refer to "Procedure 10. A16 Fast ADC and A17 CRT Driver (8561E and 8563E)" on page 210.

Cable Color Code

Coaxial cables and wires will be identified in the procedures by reference designation, or name, followed by a col or code. The code is identical to the resistor col or code. The first number indicates the base color with second and third numbers indicating any colored stripes. For example, W23, coax 93, indicates a white cable with an orange stripe.

Table 3-1 Required Tools

Description	Part Number
5/16-inch open-end wrench	
3-mm hex (Allen) wrench	$8720-0015$
4-mm hex (Allen) wrench	$8710-1366$
17-mm hex (Allen) wrench	$8710-1164$
No. 4 hex (Allen) wrench	T362609
No. 6 hex (Allen) wrench	$5020-0288$
7-mm nut driver	$5020-0289$
3/8-inch nut driver	$8710-1217$
7/16-inch nut driver	$8720-0005$
9/16-inch nut driver (drilled out, end covered	$8720-0006$
with heatshrink tubing)	$8720-0008$
Small No. 1 pozidrive screwdriver	$8710-0899$
Large No. 2 pozidrive screwdriver	$8710-0900$
T-8 TORX screwdriver	$8710-1614$
T-10 TORX screwdriver	$8710-1623$
T-15 TORX screwdriver	$8710-1622$
Long-nose pliers	$8710-0030$
Wire cutters	$8710-0012$

Procedure 1. Spectrum Analyzer Cover

Removal/Replacement

1. Disconnect the line-power cord, remove any adapters from the front panel connectors, and place the spectrum analyzer on its front panel.
2. If the 85620A Mass Memory M odule or 85629B Test and Adjustment M odule is mounted on the rear panel, remove it. Loosen (but do not remove) the four rear-bumper screws, using a 4 mm hex wrench. Pull the cover assembly off towards the rear of the instrument.
CAUTION When replacing the spectrum analyzer cover, use caution to avoid
3. When installing the cover assembly, be sure to locate the cover air vent holes on the bottom side of the spectrum analyzer. Attach with the four screws loosened in step 2, and tighten the four screws gradually to ensure that the cover is seated in the front frame gasket groove.
4. Torque each screw to 40 to 50 inch-pounds to ensure proper gasket compression to minimize EMI.

Figure 3-1 Hinged Assemblies

NOTE
Figure 3-1 shows an 8560 E-series instrument. In the assembly removal and replacement procedures the words "left" and "right" assume you are facing the front panel of the instrument, as shown in Figure 3-1, with A14 and A15 to your left, and A2 through A5 on your right. The 8560 EC-series instrument is identical except the A2 board is smaller.

Procedure 2A. A1 Front Frame/A18 LCD (8561EC and 8563E C)

Removal of the Front Frame

1. Remove the spectrum analyzer cover assembly as described in "Procedure 1. Spectrum Analyzer Cover." Place the instrument on its side, with the display section upper-most, as shown in Figure 3-1 on page 151.
2. Fold out the $A 2, A 3, A 4$, and $A 5$ assemblies as described in steps 2 through 6 under "Procedure 5. A2, A3, A4, and A5 Assemblies" on page 172. Facing the front panel, the A2, A3, A4, and A5 assemblies will lay to your left.
3. Fold out the A14 and A15 assemblies as described in steps 3 through 4 under "Procedure 9. A14 and A15 Assemblies" on page 207. Facing the front panel, the A14 and A15 assemblies will lay to your right.
4. Disconnect ribbon cable A1A1W1, which connects HDR1 on the A1 front frame assembly and A3J 602 on the A3 interface board.
5. Disconnect the following cables from the A2 controller board:
a. Ribbon cable W60, which connects J 8 on the A2 controller board with J 1 on the A17 display driver board.
b. W61, which connects J 9 on the A2 controller board with J 7 on the A17 display driver board.
6. Disconnect ribbon cable W64 from theJ 1 VGA port on the rear panel (do not disconnect W64 from the A17 display driver board).
7. Disconnect the W3 line switch cable from the power supply.
a. Remove the power supply cover. Use a T-6 TORX driver to remove the 3 screws (0515-2309) that secure the power supply cover to the power supply.
b. Remove the line switch connector from A6J 2 on the power supply.
c. Loosen FL 1. Remove the two screws (0515-2332) which are used to secure FL 1 to the right side of the chassis.
d. After FL 1 has been loosened, route the W3 line switch cable through the opening behind FL 1, from the left to the right side of the instrument (if you still have difficulty routing W3 through the opening, use an open ended $5 / 16$-inch wrench to further loosen, or disconnect FL 1).

To disconnect the line switch from the front panel, see "Removal of the Line Switch from the Front Panel" on page 155.
8. Disconnect the following connectors which are attached to the inside of the A1 front panel assembly.
a. INPUT 50Ω RF connector. Use a $5 / 16$-inch open-end wrench to disconnect cable W41 from the front panel. Loosen the opposite end of cable W41, which is connected to the attenuator.
b. RF OUT 50Ω connector for Option 002 spectrum analyzers. Use a 5/16-inch wrench to disconnect cable W47 from the front panel.
c. 1ST LO OUTPUT connector. Disconnect cable W42 from A7J 3 and from the front panel 1st LO OUTPUT connector.

To remove the 1st LO OUTPUT connector, use a $5 / 16$ socket and thread pliers. Use the pliers to hold the 1st LO connector in place, while loosening the connector inside the instrument with the 5/16-inch socket.
d. 1ST LO OUTPUT connector For Option 002 spectrum analyzers. Disconnect W46 from the front panel.
e. IF INPUT connector. Disconnect W36 from the front panel.
9. Remove the following from the face of the front panel:
a. VOLUME knob. Use a 0.050 Allen wrench to remove the two screws (3030-0007) that secure the volume knob to the face of the front panel. If necessary, use a $5 / 16$-inch nut driver to drill out the nut which secures the VOLUME potentiometer assembly. Cover the tip with heatshrink tubing or tape to avoid scratching the enameled front panel.
b. CAL OUTPUT connector. Use a 9/16-inch nut driver to remove the dress nut that holds the front panel CAL OUTPUT connector to the front panel. If necessary, drill out the nut driver to fit over the BNC connectors and cover the tip with heatshrink tubing or tape to avoid scratching the enameled front panel.
10.Remove the front frame from the chassis of the instrument.
a. Remove the screw (0515-1227) that secures the top of the attenuator to the inside of the front frame of the instrument.
b. Remove the three screws (0515-1101) that secure the A1 front frame assembly to the bottom of the spectrum analyzer.
c. Remove the three screws (0515-1101) that secure the A1 front frame assembly to the top of the spectrum analyzer.
d. Remove the A1 front frame assembly from the chassis.

Note that the line switch cable is still attached to the front frame. To remove the line switch you must first remove the display driver and LCD assembly. For instructions on removing the line switch, see "Removal of the Line Switch from the Front Panel" on page 155.

Removal of the Display Driver Board, Inverter Board, and LCD

After the front panel has been removed, follow these steps to remove the display driver and LCD:

1. Disconnect the following cables from the A17 display driver board. These can be disconnected through openings in the display driver shield. See Figure 3-2 on page 156
a. W60, a ribbon cable that connects J 1 on the A17 display driver board with J 8 on the A2 controller board.
b. W61, which connect J 7 on the A17 display driver board with J 9 on the A2 controller board.
2. Remove the four screws (0515-0665) that secure the display driver shield to the LCD backplate. Use a T-10 TORX driver set to 6 in ./lbs. Remove the display driver shield.
3. Disconnect the following cables from the A17 display driver board:
a. W64, the VGA ribbon cable, which connects J 4 on the A17 display driver board to J 1 on the rear panel.
b. W63, a ribbon cable that connect J 5 on the A17 display driver board with the LCD.
4. If you want to remove the A17A1 inverter board, proceed to step a. If you intend to keep the A17A1 inverter board secured to the A17 display driver board, proceed to step 4.
a. Remove the two screws (0515-0430) which secure the A17A1 inverter board to standoffs on the A17 display driver board.
b. Disconnect W62 from J 6 on the A17 display driver board (do not disconnect W62 from the A17A1 inverter board, to which it is attached).
5. Remove the two backlight cables from the inverter board.
6. Remove the four screws (0515-0372) which secure the display driver board to the LCD backplate. Use a T-10 TORX driver. Remove the display driver board.
7. Remove four black cushions (0400-0333) from the inner-most posts on the LCD backplate.
8. Remove the two large screws (0515-0382) which secure the LCD backplate to the left side of the front panel chassis. Use a T-15 TORX driver.
9. Remove the four (0515-0430) screws which secure the LCD backplate to the right side of the front panel chassis. Use a T-8 TORX driver.
10.Carefully lift the display driver backplate over the two backlight cables and the W63 ribbon cable.
11.Remove the LCD assembly from the black rubber mount Take care not to damage the backlight cables or W63 ribbon cable.
12.To remove the glass plate, first remove the LCD display from the display mount. Carefully remove the glass from the inside of the display mount.

The LCD glass plate was originally placed in the LCD assembly in a clean room environment to ensure optimal performance of the LCD display. Take all possible precautions to ensure that the glass plate is clean before replacing it in the LCD assembly.

Removal of the Backlights

1. Remove the LCD assembly by following steps 1 through 12 in "Removal of the Display Driver Board, Inverter Board, and LCD" on page 154.
2. Remove each backlight cable assembly (2090-0380). Carefully grasp the end of the metal backlight assembly, which is connected to the backlight cable, and pull the backlight out from its slot. The backlight cable slots are located at the top and at the bottom of the LCD.

Whenever there is a need to replace a single backlight, both backlights must be replaced.

Removal of the Line Switch from the Front Panel

After the A1 front frame assembly, the A17 display driver, and the A18 LCD have been removed, you can proceed to remove the line switch. Follow these steps:

1. Remove the green LED from the line switch assembly on the front frame, by gently pulling on the orange and black cables (wrapped in shrink tubing), to which the LED is connected.
2. Remove the two screws (0515-1521) that secure the line switch to the front frame.
3. Remove the screw (0515-0430) that secures the striped green and white ground cable to the line switch.
4. Remove the line switch from the front panel.

Figure 3-2 LCD Assembly - Exploded View

Removal of the Keyboard

1. Disconnect cable A1A1W1 from HDR1 on the A1 front panel assembly and from A3J 602 on the A3 interface board.
2. Disconnect the power probe cable from the probe power connector on the front frame PC board.
3. Unhook the RPG cable.
4. Remove the seven screws (0515-1934) that secure the front frame PC board to the front frame. Use a T-8_TORX driver set to 6-in/lbs.

Replacement of the Front Frame

1. Remove the cover assembly as described in "Procedure 1. Spectrum Analyzer Cover." Place the instrument on its side, with the display section upper-most, as shown in Figure 3-1 on page 151.
2. Fold out the A14 and A15 assemblies as described in steps 3 through 4 under "Procedure 9. A14 and A15 Assemblies" on page 207. Facing the front panel, the A14, and A15 assemblies will lie to your right.
3. Fold out the $A 2, A 3, A 4$, and $A 5$ assemblies as described in steps 2 through 6 under "Procedure 5. A2, A3, A4, and A5 Assemblies" on page 172. Facing the front panel, the $A 2, A 3, A 4$, and $A 5$ assemblies will lie to your left.
4. Place the A1 front frame assembly in the chassis of the instrument.
a. Position the A 1 front frame assembly in the chassis.
b. Insert the three screws (0515-1101) that secure the front frame chassis to the bottom of the spectrum analyzer.
c. Insert the three screws (0515-1101) that secure the front frame chassis to the top of the spectrum analyzer.
d. Insert the screw (0515-1227) that secures the top of the attenuator to the inside of the A1 front frame assembly.
5. Secure the following connectors to the inside of the A1 front panel assembly.
a. INPUT 50Ω RF connector. Use a $5 / 16$-inch open-end wrench to connect cable W41 to the front panel from the attenuator.
b. RF OUT 50Ω connector for Option 002 spectrum analyzers. Use a 5/16-inch open-end wrench to connect cable W47 to the front panel.
c. 1ST LO OUTPUT connector. Connect cable W42 from A7J 3 to the front panel 1st LO OUTPUT connector.

To replace the 1st LO OUTPUT connector use a $5 / 16$ socket and thread pliers. Use the pliers to hold the 1st LO connector in place,
while tightening the connector inside the instrument with the $5 / 16$-inch socket.
d. 1ST LO OUTPUT connector for Option 002 spectrum analyzers. Connect W46 from the front panel.
e. IF INPUT connector. Connect W36 from the front panel.
6. Replace the following from the face of the front panel:
a. VOLUME knob and potentiometer. Use a $5 / 16$-inch nut driver to secure the VOLUME potentiometer assembly. Usea 0.050 Allen wrench to replace the two screws (3030-0007) that secure the volume knob to the face of the front panel.
b. CAL OUTPUT connector. Replace the dress nut that holds the CAL OUTPUT connector to the front panel.
7. If the line switch has been disconnected from the power supply you will have to route the W3 line switch cable from the right side of the instrument, through the opening behind FL 1, to the power supply on the left side of the instrument.
a. Loosen the two screws (0515-2332) that secure FL 1 to the instrument's chassis.
b. Route the W3 line switch cable from the right side of the instrument to the left side, through the opening that can now be accessed, since FL 1 has been loosened. If the opening is still tight, loosen or remove FL 1 using a 5/16 -inch wrench.
c. Secure the W3 line switch cable to the instrument chassis by routing it through the white collar, that is adjacent to the power supply assembly, on the chassis of the instrument.
d. Route the W3 line switch cable through the notched opening on the right side of the power supply, and insert the line switch connector into A6J 2.
If the line switch has been disconnected from the front panel, see the instructions for its replacement on page 161.
8. Replace the power supply cover by inserting the 3 screws (0515-2309) that secure the power supply cover to the power supply.
9. If the LCD assemblies have not been removed from the front panel assembly, you will need to reconnect the following cables, which are routed through openings in the display driver shield.
a. W60, the large ribbon cable (80 lines) that goes to J 8 on the A 2 controller board.
b. W61, a coax cable that connects to J 10 on the A2 controller board.
c. W64, the VGA ribbon cable (10 lines), that goes to J 1 on the rear panel.

Replacement of the Display Driver Board, Inverter Board, and LCD

Follow these steps to replace the A18 LCD assembly, the A17 display driver, and the A17A1 inverter board.
NOTE

If the line switch assembly has been removed from the front panel, it must be replaced before you replace the display driver and LCD assemblies.

1. Place the front panel face down on your bench. The opening for the display will be on the right side of the front panel.
2. If the LCD glass place has been removed, carefully insert the glass plate into the brackets on the front side of the rubber display mount. Make sure that the side of the glass which has a broad silver border (the left side, when facing the front of the display) is inserted into the side of the mount that has larger brackets, into which the glass plate will slide.

The glass plate was originally placed in the LCD assembly in a clean room environment to ensure optimal performance of the LCD display. Take all possible precautions to ensure that the glass plate is clean before placing it in the LCD assembly.
3. Insert the LCD into the display mount. The LCD is correctly oriented when the small ribbon cable from the LCD extends through an opening in the right side of the display mount, and the two backlight cables extend through openings on the left side of the mount.
4. Carefully lower the LCD bookplate onto the display mount. Ensure that the ribbon cable on the right, and the two backlight cables on the left, are inserted into the appropriate openings in the LCD backplate.
5. Lower the LCD backplate and LCD assembly, as a unit, into the display section on the right side of the A1 front frame chassis.
6. Secure the LCD backplate to the chassis.
a. Insert four (0515-0444) screws into the right side of the backplate. Use a T-8 TORX driver.
b. Insert two large (0515-0382) screws into the left side of the LCD backplate. Use a T-15 TORX driver.
7. Place the four black cushions (0400-0333) on the four inner-most posts on the LCD backplate.
8. Place the A17 display driver board on the four black cushions. Insert the four screws (0515-0372) that secure the A17 display driver board to the LCD backplate, into the posts on which you have set the cushions. Use a T-10 TORX driver.
9. If the A17A1 inverter board has been removed from the driver board, proceed to step a. below. If the inverter board is attached to the A17 display driver, proceed to step 10.
a. Connect the W62 cable from the A17A1 inverter board toJ 6 on the A17 display driver board.
b. Insert 2 screws (0515-0430) that secure the A17A1 inverter board to the standoffs on the A17 display driver board.
10. Reconnect ribbon cable W63, which connects the A18 LCD with J 5 on the A17 display driver board.
11. Connect the two backlight cables from the A18 LCD to the two slotted connectors on the A17A1 inverter board.
12.Route W64, the VGA cable, from J 1 on the rear panel, through the rectangular opening in the display driver shield, toJ 7 on the A17 display driver board (the display driver shield has not yet been secured to the LCD backplate).
13.Lower the display driver shield onto the LCD backplate. Insert four screws (0515-0665) that secure the LCD backplate to the display driver board shield. Use a T-10 TORX driver.
14.Route cable W61 from J 9 on the A2 controller board, through the circular opening in the display driver shield, toJ 7 on the A17 display driver board.
15. Route cable W60 from J 8 on the A2 controller board, through the rectangular opening in the display driver shield, toJ 7 on the A17 display driver board.
16. Connect ribbon cable A1A1W1 from J 602 on the A3 interface board to HDR1 on the A1 front panel assembly.

Replacing the Backlights

1. If the LCD or backlights have not been removed from the front frame, follow the procedures outlined in "Removal of the Front Frame" on page 152, "Removal of the Display Driver Board, Inverter Board, and LCD" on page 154, and "Removal of the Backlights" on page 155, as needed.
2. Carefully grasp the end of the replacement backlight cartridge (2090-0380), which is attached to the backlight cable, and insert the backlight into the backlight slot at the top of the LCD. Repeat for the backlight located at the bottom of the LCD.
NOTE

Whenever there is a need to replace a single backlight, both backlights must be replaced.
3. Insert the LCD into the display mount. The LCD assembly is correctly oriented when the small ribbon cable extends through an opening in the right side of the display mount.
4. Follow steps 4 through 17 of "Replacement of the Display Driver Board, Inverter Board, and LCD" on page 159 to complete replacement of the LCD into the front panel. Follow the instructions in "Replacement of the Front Frame" on page 157 to replace the front panel in the front frame.

Replacement of the Line Switch

After you have replaced the A1 front frame assembly you can replace the line switch by following these steps (note that the line switch must be replaced before the LCD and display driver can be replaced):

1. Insert the line switch into the A1 front frame assembly. Insert the two screws (0515-1521) that secure the line switch to the front frame.
2. Insert the screw (0515-0430) that secures the striped green and white ground cable for the line switch (this screw also secures the ground for the power probe; if the black cable from the power probe cable assembly is not secured to the ground, secure it also).
3. Carefully insert the green LED from the top-center of theline switch assembly into the LED opening in the A1 front frame assembly.

Replacement of the Keyboard

1. Insert the seven screws (0515-1934) that secure the front frame PC board to the A1 front frame assembly. Use a T-8 TORX driver.
2. Connect the RPG cable to the RPG connector on the front frame PC board.
3. Connect the power probe cable to the connector that is labelled "probe power" on the front frame PC board.
4. Connect A1A1W1 from HDR1 on A1 front frame assembly to A3J 602 on the A3 interface board.

Procedure 2B. A1 Front Frame/A18 CRT Display (8561E and 8563E)

Removal

WARNING	Due to possible contact with high voltages, disconnect the spectrum analyzer line-power cord before performing this procedure.

1. Remove the spectrum analyzer cover assembly as described in "Procedure 1. Spectrum Analyzer Cover."
2. Fold out the A2, A3, A4, and A5 assemblies as described in "Procedure 5. A2, A3, A4, and A5 Assemblies" on page 172, steps 3 through 5.
3. Disconnect A1A1W1 from A3J 602.
4. Place the spectrum analyzer top-side-up on the work bench with A2 through A5 fol ded out to the right.

WARNING	The voltage potential at A6A1W3 is +9 kV . Disconnect at the CRT with caution! Failure to properly discharge A6A1W3 may result in severe electrical shock to personnel and damage to the instrument.

5. Connect the spectrum analyzer line-power cord to provide proper grounding while discharging the A6A1W3 post-accelerator cable. Make sure that the spectrum analyzer line-power switch is in the off position.
6. Connect a high-voltage probe (1000:1), such as the 34111A to a voltmeter with a 10 megohm input.
7. Connect the dip lead of the probe (ground) to the chassis of the spectrum analyzer.
8. Slip the tip of the high-voltage probe under the A6A1W3 post-accelerator cable's rubber shroud to obtain a reading on the voltmeter. See Figure 3-3 on page 164.
9. Keep the high-voltage probe on the post-accelerator connector until the voltage has dropped to a voltmeter reading of less than 5 mV (less than 5 V at the connector). This normally takes about 30 seconds.
10.Disconnect the line-power cord from the spectrum analyzer.
11.Using a small screwdriver with the shank in contact with the CRT shield assembly, slip the tip of the screwdriver under the A6A1W3 post-accelerator cable's rubber shroud and short the cable to ground on the CRT shield assembly. See Figure 3-3.
12.Remove the three screws securing the power supply shield to the power supply, and remove the shield.
13.Pull the cable tie (1), Figure 3-32 on page 222, to free W9 and the post-accelerator cables.
14.Disconnect W3 from A6J 2.
15.Pull W3 up from between the power supply and the CRT assembly to rel ease it from the cable clamp.
10. Place the spectrum analyzer on its right side frame.
17.Fold out the A14 and A15 assemblies as described in "Procedure 9. A14 and A15 Assemblies" on page 207, steps 3 and 4.

WARNING	The voltage potential at A6A1W3 is +9 kV . Failure to discharge A6A1W3 correctly may result in severe electrical shock to personnel and damage to the instrument.

Figure 3-3 Discharging the Post-Accelerator Cable

Figure 3-4 A9, A18, and Line-Switch Assembly Mounting Screws

sk1139e
18.Remove screw (2) securing the A9 input attenuator assembly to the center support on the front frame. See Figure 3-4.
19.Use a $5 / 16$-inch open-end wrench to disconnect W41 from the front-panel INPUT 50Ω connector. Loosen the opposite end of W41.
20.Disconnect W42 from A7 and the front-panel 1ST LO OUTPUT connector.
21.Disconnect W36, coax 86, from the front-panel IF INPUT connector.
22.Remove the VOLUME knob and potentiometer from the front panel. If necessary, drill out the nut driver used to remove the VOLUME potentiometer and cover the tip with heatshrink tubing or tape to avoid scratching the enameled front panel.
23.Use a 9/16-inch nut driver to remove the dress nut holding the front-panel CAL OUTPUT connector to the front panel. If necessary, drill out the nut driver to fit over the BNC connectors and cover the tip with heatshrink tubing or tape to avoid scratching the enameled front panel.
24.Loosen screw (3) securing the line-switch assembly to the front frame. This is a captive screw and cannot be removed from the line-switch assembly. See Figure 3-4.
25.Gently remove the line-switch assembly, using caution to avoid damaging A1W1 and power indicator LED A1W1DS1.
26.Remove A1W1 and A1W1DS1 from the line-power switch assembly.
27.Remove the three screws (1) securing the front-frame assembly to the right side frame of the spectrum analyzer. See Figure 3-5.

Figure 3-5 Front-Frame Mounting Screws

28.Remove the three screws securing the front-frame assembly to the left side frame of the spectrum analyzer.
29. Remove the four screws (1) (Figure 3-4) securing the CRT mounts to the deck.
30.Pull the cable tie (1) to free W9. See Figure 3-6. Gently pry W9, the CRT cable, from the end of the CRT assembly.
31.Support the A18 CRT assembly while gently pulling the front frame and CRT out of the spectrum analyzer 1 or 2 inches.
32.Disconnect A18W1, the trace align wires, from A17J 5. Remove the front-frame and CRT assemblies.
33.Gently pull the CRT assembly off of the front-frame assembly.

Figure 3-6 Installing the CRT and Front-Frame Assemblies

sm627e

Replacement

NOTE
Use care when handling the glass CRT EMI shield. The glass may be cleaned using thin-film cleaner (part number 8500-2163) and a lint-free cloth. When installing the glass shield, face the side of the glass with the silver coated edge towards the inside of the spectrum analyzer.

1. Place the spectrum analyzer on its right side frame with the front end extending slightly over the front of the work bench.
2. Gently place the A18 CRT assembly into the A1 front-frame assembly as illustrated in Figure 3-7.
3. Place the front-frame and CRT assemblies into the spectrum analyzer, using caution to avoid pinching any cables.
4. Dress the A18W1 trace-align wires between the CRT assembly mounts and the A6 power supply top shield.

Figure 3-7 Placing the CRT into the Front Frame

5. Connect A18W1 to A17J 5.
6. Snap CRT cable W9 onto the end of the CRT assembly.
7. Fully seat the front frame and CRT assemblies into the spectrum analyzer.
8. Secure the front frame to the side frames of the spectrum analyzer, using three flathead screws per side. See Figure 3-5.
9. Retighten the four screws securing the CRT mounts to the deck.
10.Place W9 between the CRT assembly and the A6 power supply assembly top shield so that the W9 wires are below the surface of the top shield.
11.Connect W42 to A7J 5 and the front-panel 1ST LO OUTPUT connector.
12. Use a 9/16-inch nut driver to reconnect CAL OUTPUT connector to the front panel.
13.Connect the VOLUME potentiometer and knob to the front panel.
14.Connect W36, coax 86, to the front-panel IF INPUT connector.
15.Use a 5/16-inch wrench to connect W41 from the A9 input attenuator to the front-panel INPUT 50Ω connector. Make sure that W40, W36, and A1W1 are routed between W41 and the attenuator bracket. Secure the A9 input attenuator bracket to the center support on the front frame using one panhead screw. See Figure 3-4 on page 165 (2).
16. Place led A1W1DS1 into the line-power switch assembly.
17.Attach the line switch assembly into the front-frame using one panhead screw. Be sure to connect the line-power switch ground lug with the screw. The screw is captive.
18.Fold up the A14 and A15 assemblies as described in "Procedure 9. A14 and A15 Assemblies" on page 207, steps 3 through 5.
19.Place the spectrum analyzer top-side-up on the work bench and connect A1A1W1 to A3J 602.
20.Snap post-accelerator cable A6A1W3 to the A18 CRT assembly.
21.Snap the black grommet protecting the A6A1W3 into the CRT shield.
22.Fold up assemblies A2, A3, A4, and A5 as described in "Procedure 5. A2, A3, A4, and A5 Assemblies" on page 172, steps 6 through 12.
23.Replace the spectrum analyzer cover assembly.
24.Connect the line-power cord and switch the spectrum analyzer power on. If the display does not operate properly, turn off spectrum analyzer power, disconnect the line cord, and recheck the spectrum analyzer.

Procedure 3. A1A1 Keyboard/Front Panel Keys

Removal

1. Remove the front frame from the spectrum analyzer. Place the front frame face down on the bench. For 8561EC and 8563EC instruments, follow the instructions in "Procedure 2A. A1 Front Frame/A18 LCD (8561EC and 8563EC)" on page 152. For 8561E and 8563E instruments, follow the instructions in "Procedure 2B. A1 Front Frame/A18 CRT Display (8561E and 8563E)" on page 162.
For 8561EC and 8563EC instruments, proceed to step 3. For 8561E and 8563E instruments, proceed to step 2.
2. Remove the front frame center support.
3. Disconnect A1W1 from A1A1J 3 and the RPG cable from A1A1f 2.
4. Remove the nine screws hol ding the A1A1 keyboard assembly to the front frame and remove the assembly.
5. Remove the rubber keypad.

NOTE

In 8561E and 8563E instruments, the front panel softkey actuators are part of the CRT bezel assembly and are not replaceable. Should the softkeys become damaged, replace the bezel assembly.

Replacement

1. Install the rubber keypad, ensuring that the screw holes are visible through the pad.
2. Place the A1A1 keyboard assembly over the rubber keypad. Secure with nine panhead screws.
3. Connect the RPG cable to A1A1J 2, and A1W1 to A1A1J 3.

For 8561EC and 8563EC instruments, proceed to step 5. For 8561E and 8563E instruments, proceed to step 4.
4. Secure the center support to the front frame using two panhead screws. The arrow stamped on the center support should point to the top of the frame.
5. Install the front frame assembly. For 8561EC and 8563EC instruments, follow the instructions in "Procedure 2A. A1 Front Frame/A18 LCD (8561EC and 8563EC)" on page 152. For 8561E and 8563 E instruments, follow the instructions in "Procedure 2B. A1 Front Frame/A18 CRT Display (8561E and 8563E)" on page 162.

Procedure 4. A1A2 RPG

Removal

1. Remove the A9 input attenuator as described in "Procedure 8. A7 through A13 Assemblies" on page 191.
2. Disconnect the RPG cable from the A1A1 keyboard assembly.
3. If the serial number of your instrument is equal to or above 3738A02041 (8561E/EC) or 3738A07705 (8563E/EC) proceed to step a. If the serial number of your instrument is below 3738A02041 (8561E) or 3738A07705 (8563E) proceed to step b.
a. Pull the front panel RPG knob off of the face of the front panel of the spectrum analyzer. Proceed to step 4.
b. Remove the set screw from the front panel RPG knob using a number 6 hex (Allen) wrench. Proceed to step 4.
4. Use a 7/16-inch nut driver, set to 20 -in./lbs., to remove the nut holding the RPG shaft to the front panel.
5. Remove the RPG.

Replacement

1. Place the RPG into the front frame with the cable facing the bottom of the spectrum analyzer. Place a lock washer and nut on the RPG shaft to hold it in the frame. If the serial number of your instrument is bel ow 3738A02041 (8561E) or 3738A07705 (8563E) proceed to step a. Otherwise, proceed to step 2.
a. Insert the set screw into the RPG knob using a number 6 hex (Allen) wrench. Proceed to step 2.
2. Use a 7/16-inch nut driver to secure the RPG assembly to the front frame.
3. Connect the RPG cable to A1A1J 2.
4. Insert the RPG knob into the front panel assembly.
5. Replace the A9 input attenuator as described in "Procedure 8. A7 through A13 Assemblies" on page 191.

Procedure 5. A2, A3, A4, and A5 Assemblies

Removal

1. Remove the spectrum analyzer cover.
2. Place the spectrum analyzer on its right side frame.
3. Remove the eight screws holding the A2, A3, A4, and A5 assemblies to the top of the spectrum analyzer. These screws are labeled (2), (3), and (4) in Figure 3-8 on page 173. They are also labeled on the back of the A2 board assembly.
4. Remove ribbon cable W4 from A2J 6. See Figure 3-8 on page 173.

CAUTION Do not fold the board assemblies out of the spectrum analyzer one at a time. Always fold the A2 and A3 assemblies as a unit and the A4 and A5 assemblies as a unit. Folding out one assembly at a time binds the hinges attaching the assemblies and may damage an assembly and hinge.
5. The board assemblies are attached to the right side frame of the spectrum analyzer with two hinges. Fold both the A2 and A3 assemblies out of the spectrum analyzer as a unit.
6. Fold both the A4 and A5 assemblies out of the spectrum analyzer as a unit.
7. Remove the cables from the assembly being removed, as illustrated in Figure 3-9 on page 174.
8. Remove the two screws that attach the assembly being removed to its two mounting hinges.

CAUTION	Do not torque shield TORX screws to more than 8 inch-pounds. Applying excessive torque will cause the screws to stretch.
NOTE	Diagrams that illustrate features common to E-series and E C-series instruments are shown with E-series instruments. Where there are differences between E-series and EC-series features separate diagrams are provided.

Figure 3-8 A2, A3, A4, and A5 Assembly Removal

Replacement

1. Place the spectrum analyzer on its right side on the work bench.
2. Attach the assembly being installed to the two chassis hinges with two panhead screws.
3. Leave the assembly in the folded-out position and attach ribbon cables W1 and W2.
4. Attach all cables to the assembly, as illustrated in Figure 3-9 on page 174.
5. Locate the cable clip on the inside of the right side frame.

Make sure that the coaxial cables are routed properly on the dip as illustrated in Figure 3-12 on page 177 for EC-series instruments, and in Figure 3-13 on page 178 for E -series instruments.
6. Lay the A2, A3, A4, and A5 assemblies flat against each other in the folded-out position. Make sure that no cables become pinched between the two assemblies.

Figure 3-9 Assembly Cables (1 of 3) - EC-Series

sp119c

Figure 3-10 Assembly Cables (2 of 3) - EC-Series

Figure 3-11 Assembly Cables (3 of 3)- E-series

7. Check to ensure that no cables will become pinched under the hinges when folding up the A4 and A5 assemblies.
8. Fold the A4 and A5 assemblies together as a unit into the spectrum analyzer. Use caution to avoid damaging any cable assemblies. The standoffs on the A5 assembly must fit into the cups on the A6 power supply top shield.
9. Fold the A2 and A3 assemblies together as a unit into the spectrum analyzer. Be sure to fold GPIB cable A19W1 between the A3 and A4 assemblies, using the two sets of hook and loop (Velcro) fasteners.
10.Fold ribbon cable A1A1W1 between A3 and A4 assemblies. Take care to dress the protective tubing as close to A3J 602 connector as possible, so that the tubing does not fold with the cable. See Figure 3-14 on page 179.
11.Attach ribbon cable W4 to A2J 6 while folding up the assemblies.
12. Secure the assemblies using the eight screws removed in step 3 of "Removal" on page 172.

Figure 3-13 Coaxial Cable Clip - E-Series

Figure 3-14 GPIB and A1A1 W1 Cable Placement

SK 133

Procedure 6A. A6 Power Supply Assembly (8561EC and 8563EC)

Removal

WARNING	The A6 Power Supply assembly contains lethal voltages with lethal currents in all areas. Use extreme care when servicing
this assembly. Always disconnect the power cord from the	
instrument before beginning this replacement procedure.	
Failure to follow this precaution will represent a shock hazard	
which may result in personal injury.	

1. Disconnect the power cord from the spectrum analyzer.
2. Remove the spectrum analyzer cover assembly. Refer to "Procedure 1. Spectrum Analyzer Cover."
3. Fold out the $A 2, A 3, A 4$, and $A 5$ assemblies as described in steps 2 through 6 under "Procedure5. A2, A3, A4, and A5 Assemblies."
4. Place the spectrum analyzer on the workbench with $A 2, A 3, A 4$, and A5 folded out to the right.
5. Remove the three screws securing the power supply shield to the power supply and remove the shield. See Figure 3-16 on page 182.
6. Disconnect all cables from the A6 power supply assembly. See Figure 3-18 on page 186.
7. Use a T-10 TORX driver to remove the screws from the shield wall, the heatsink, the base of the power supply (0515-1950) and the A6 power supply assembly.
8. Remove the A6 power supply assembly by lifting from the regulator heatsink toward the front of the spectrum analyzer.

Figure 3-15 Power Supply Cover

Replacement

1. Ensure that the bottom shield wall is in place before replacing the A6 power supply assembly.
2. Attach the A6 power supply assembly to the spectrum analyzer chassis and top shield wall using the four screws, torqued to 10-inch Ibs. Attach all other screws, torqued to 6-inch Ibs.
3. Connect W1 to A6J 1, W3 to A6J 2, fan power wires to A6J 3, W8 to A6J 4, and the line-power jack to A6J 101. See Figure 3-18 on page 186.
4. Ensure that all cables are safely routed and will not be damaged when securing the A6 cover.
5. Secure the power supply cover shield to the power supply using three flathead screws (1). See Figure 3-16 on page 182. One end of the cover fits into a slot provided in the rear frame assembly. Ensure that the extended portion of the cover shield is seated in the shield wall groove.
6. Fold the A2, A3, A4, and A5 assemblies into the spectrum analyzer as described in steps 6 through 12 under "Procedure 5. A2, A3, A4, and A5 Assemblies."

Figure 3-16 Power Supply Cover

Procedure 6B. A6 Power Supply Assembly (8561E and 8563E)

Removal

WARNING	The A6 power supply and A6A1 high voltage assemblies contain lethal voltages with lethal currents in all areas. Use extreme care when servicing these assemblies. Always disconnect the power cord from the instrument before beginning this replacement procedure. Failure to follow this precaution will present a shock hazard which may result in personal injury.

1. Disconnect the power cord from the spectrum analyzer.
2. Remove the spectrum analyzer cover assembly. Refer to "Procedure 1. Spectrum Analyzer Cover."
3. Fold out the $A 2, A 3, A 4$, and $A 5$ assemblies as described in "Procedure 5. A2, A3, A4, and A5 Assemblies," steps 2 through 6.
4. Place the spectrum analyzer top-side-up on the work bench with A2, A3, A4, and A5 folded out to the right.

WARNING	The voltage potential at A6A1W3 is +9 kV . Disconnect at the CRT with caution! Failure to properly discharge A6A1W3 may result in severe electrical shock to personnel and damage to the instrument.

5. Connect the spectrum analyzer line-power cord to provide proper grounding while discharging the A6A1W3 post-accelerator cable. Make sure that the spectrum analyzer line-power switch is in the off position.
6. Connect a high-voltage probe (1000:1), such as the 34111A to a voltmeter with a 10 megohm input.
7. Connect the clip lead of the probe (ground) to the chassis of the spectrum analyzer.
8. Slip the tip of the high-voltage probe under the A6A1W3 post-accelerator cable's rubber shroud to obtain a reading on the voltmeter. See Figure 3-3 on page 164.
9. Keep the high-voltage probe on the post-accelerator connector until the voltage has dropped to a voltmeter reading of less than 5 mV (less than 5 V at the connector). This normally takes about 30 seconds.
10.Disconnect the line-power cord from the spectrum analyzer.
11.Using a small screwdriver with the shank in contact with the CRT shield assembly, slip the tip of the screwdriver under the A6A1W3 post-accelerator cable's rubber shroud and short the cable to ground on the CRT shield assembly. See Figure 3-3.
12.Remove the three screws securing the power supply shield to the power supply and remove the shield.
13.Remove the three screws securing the A6A1 high voltage assembly to the A6 power supply assembly.
14.Disconnect ribbon cable A6A1W1 from A6J 5 and lift the A6A1 assembly out of the way. See Figure 3-17.
10. Disconnect all cables from the A6 power supply assembly. See Figure 3-17.
16.Use a TORX screwdriver to remove the hardware from the shield wall, the heatsink, and the A6 power supply assembly.
17.Remove the A6 power supply assembly by lifting from the regulator heatsink toward front of spectrum analyzer.

Replacement

1. Ensure that the bottom shield wall is in place before replacing the A6 power supply assembly.
2. Attach the A6 power supply assembly to the spectrum analyzer chassis and top shield wall using the four screws.
3. Connect W1 to A6J 1, W3 to A6J 2, fan power wires to A6J 3, W8 to A6J 4, and the line-power jack to A6J 101. See Figure 3-17.
4. Secure the A6A1 high voltage assembly to the A6 power supply assembly, using three panhead screws. Connect ribbon cable A6A1W1 to A6J 5.
5. Snap post-accelerator cable A6A1W3 to the CRT assembly.

Figure 3-17 A6 Power Supply Connections

6. E nsure that all cables are safely routed and will not be damaged when securing the A6 cover.
7. Secure the power supply cover shield to the power supply using three flathead screws (1). See Figure 3-18. One end of the cover fits into a slot provided in the rear frame assembly. Ensure that the extended portion of the cover shield is seated in the shield wall groove.
8. Fold the A2, A3, A4, and A5 assemblies into the spectrum analyzer as described in "Procedure 5. A2, A3, A4, and A5 Assemblies," steps 6 through 12.

Assembly Replacement
Procedure 6B. A6 Power Supply Assembly (8561E and 8563E)
Figure 3-18 Power Supply Cover

SP14E

Procedure 7. A6A1 High Voltage Assembly (8561E and 8563E)

Removal

WARNING

The A6 power supply and A6A1 high voltage assemblies contain lethal voltages with lethal currents in all areas. Use extreme care when servicing these assemblies. Always disconnect the power cord from the instrument before beginning this replacement procedure. Failure to follow this precaution can represent a shock hazard which may result in personal injury.

1. Disconnect the power cord from the spectrum analyzer.
2. Remove the spectrum analyzer cover assembly as described in "Procedure 1. Spectrum Analyzer Cover."
3. Fold out the $A 2, A 3, A 4$, and $A 5$ assemblies as described in "Procedure 5. A2, A3, A4, and A5 Assemblies."
4. Place the spectrum analyzer top-side-up on the work bench.

WARNING	The voltage potential at A6A1W3 is +9 kV . Disconnect at the CRT with caution! Failure to properly discharge A6A1W3 may result in severe electrical shock to personnel and damage to the instrument.

5. Connect the spectrum analyzer line-power cord to provide proper grounding while discharging the A6A1W3 post-accelerator cable. Make sure that the spectrum analyzer line-power switch is in the off position.
6. Connect a high-voltage probe (1000:1), such as the 34111A to a voltmeter with a 10 megohm input.
7. Connect the clip lead of the probe (ground) to the chassis of the spectrum analyzer.
8. Slip the tip of the high-voltage probe under the A6A1W3 post-accelerator cable's rubber shroud to obtain a reading on the voltmeter. See Figure 3-3 on page 164.
9. Keep the high-voltage probe on the post-accelerator connector until the voltage has dropped to a voltmeter reading of less than 5 mV (less than 5 V at the connector). This normally takes about 30 seconds.
10.Disconnect the line-power cord from the spectrum analyzer.
11.Using a small screwdriver with the shank in contact with the CRT shield assembly, slip the tip of the screwdriver under the A6A1W3 post-accelerator cable's rubber shroud and short the cable to ground on the CRT shield assembly. See Figure 3-3.
10. Pry out the black grommet protecting post-accelerator cable A6A1W3 from the CRT shield assembly.
13.Carefully unsnap the A6A1W3 post-accelerator cable from the CRT and discharge it by shorting the cable to chassis ground on the CRT shield assembly.
11. Remove the three screws securing the power supply shield to the power supply and remove the shield.
12. Remove the three screws securing the A6A1 high voltage assembly to the A6 power supply assembly.
16.Disconnect ribbon cable A6A1W1 from A6J 5. See Figure 3-17 on page 185.
17.For Option 007 spectrum analyzers: Remove the two screws (1) securing two board-mounting posts to the left side frame and remove the posts. See Figure 3-19.
13. Remove the two left side frame screws (2) securing the A17 assembly (and A16 assembly in Option 007). For Option 007 spectrum analyzers: Lift up the A16 FADC assembly and swing it out of the spectrum analyzer. Do not remove any cables.
14. Lift up the A17 CRT driver assembly and disconnect A6A1W2 from A17J 6. Do not remove any other cables from the A17 assembly.
20.Disconnect the tie wraps from the A6A1 assembly cables and remove the A6A1 high voltage assembly from the spectrum analyzer.

Figure 3-19 A16 Fast ADC and A17 CRT Driver Mounting Screws

s 1115 e

Replacement

1. Secure the A6A1 high voltage assembly to the A6 power supply using three panhead screws. Connect ribbon cable A6A1W1 to A6J 5.
2. Snap post-accelerator cable A6A1W3 to the CRT assembly.
3. Place the black grommet protecting the post-accelerator cable into the CRT shield.
4. E nsure that all cables are safely routed and will not be damaged when securing the A6 cover.
5. Secure the power supply cover shield to the power supply using three flathead screws (1). See Figure 3-18. One end of the cover fits into a slot provided in the rear frame assembly. Ensure that the extended portion of the cover shield is seated in the shield wall groove.
6. Connect A6A1W2 to A17J 6.
7. Place the A17 CRT Driver assembly into the center-deck mounting slot nearest the CRT. Use caution when routing cables to avoid damage.
8. For Option 007 spectrum analyzers: Place the A16 FADC assembly into the center-deck mounting slot nearest the left side frame. Ensure that the A16 FADC assembly is properly seated in the right end of the slot.
9. Secure the A17 assembly (and A16 assembly in Option 007) with the two flathead screws removed in step 18 under "Removal." See Figure 3-19 (2).
10.For Option 007 spectrum analyzers: Connect the two mounting posts to the left side frame using the two screws removed in step 17 under "Removal." See Figure 3-19 (1).
11.Fold the A2, A3, A4, and A5 assemblies into the spectrum analyzer and secure the spectrum analyzer cover assembly as described in "Procedure 5. A2, A3, A4, and A5 Assemblies."

Procedure 8. A7 through A13 Assemblies

A separate replacement procedure is supplied for each assembly listed below. Before beginning a procedure, do the following:

1. Fold out the A14 and A15 assemblies as described in "Procedure 9. A14 and A15 Assemblies" on page 207.
2. If the A11 YTO or A10 assembly (SYTF or RYTHM) is being removed, also fold down the A2, A3, A4, and A5 assemblies as described in "Procedure 5. A2, A3, A4, and A5 Assemblies."

A7 First LO Distribution Amplifier
A8 Dual Mixer (8561E/EC)
A8 Low Band Mixer (8563E/EC)
A9 Input Attenuator
A10 SYTF (8561E/EC)
A10 YIG-Tuned Filter/Mixer (RYTHM, 8563E/EC)
A11 YTO (8561E/EC)
A11 YTO (8563E/EC)
A13 Second Converter

- Figure 3-20 illustrates the location of the assemblies and major cables in the 8561E/EC.
- Figure 3-21 illustrates the location of the assemblies and major cables in the 8563E/EC.
- Figure 3-22 provides the colors and locations of the RF section bias wires. style of torque wrench may vary, but in all cases do not tighten the connectors beyond the point at which the torque wrench 'dicks' or 'breaks-away'.

Figure 3-20 8561E/EC Assembly Locations

Figure 3-21 8563E/EC Assembly Locations

sk1135e

Figure 3-22 8561E/EC RF Section Bias Connections

A7 First LO Distribution Amplifier

Removal

1. Remove the two screws securing the assembly to the spectrum analyzer center deck.
2. Use a 5/16-inch wrench to disconnect W38 and W39 at A7J 1 and A7J 2.
3. If the spectrum analyzer is an $8563 \mathrm{E} / \mathrm{EC}$, also disconnect W46 at A7J 3.
4. Disconnect W42 at the front-panel 1ST LO OUTPUT connector. Loosen W42 at A7J 3 (8561E/EC) or at A7J 5 (8563E/EC).
5. Remove $W 12$ from the $A 7$ assembly. If the spectrum analyzer is an 8561E/EC, also disconnect the gate bias wire (white/violet) from the A7 assembly.
6. Remove the assembly and disconnect W34.

Replacement

1. Use a $5 / 16$-inch wrench to attach W34 to A7J 4 and W42 to A7J 3 (8561E/EC) or A7J 5 (8563E/EC).
2. Connect W38 to A7J 1 and connect W39 to A7J 2.
3. If the spectrum analyzer is an 8563E/EC, connect W46 to A7J 3.
4. Connect W42 to the front-panel 1ST LO OUTPUT connector.
5. Connect cable W12 to the A7 assembly. If the spectrum analyzer is an $8561 \mathrm{E} / \mathrm{EC}$, connect the gate bias wire (white/violet) to the A7 assembly.
6. Use two panhead screws to secure A7 to the center deck. Be sure to attach the ground lug on the screw near the LO IN connector of A7 in the $8563 \mathrm{E} / \mathrm{EC}$, or on the screw next to A7J 4 in the 8561E/EC.
7. Torque all RF cable connections to 113 Ncm (10 in -lb).

A8 Dual Mixer (8561E/EC)

Removal

1. Place the spectrum analyzer upside-down on the work bench with A14 and A15 folded out to the left.
2. Remove PIN switch wire (violet) and mixer bias wire (grey) from the A8 assembly.
3. Use a 5/16-inch wrench to remove W45 from FL1 and A8J 1.
4. Loosen all of the semirigid cable connections at A8J 2, J 3, J 4, and J 5.
5. Remove the two screws securing A8 to the center deck.
6. Remove all of the semirigid coax cables from the A8 assembly.

Replacement

1. Place A8 on the center deck and attach all of the semirigid cables, starting with A8J 3 . Use caution to avoid damaging any of the cables' center-conductor pins.
2. Use two panhead screws to secure A8 to the center deck. Reconnect W45 to FL1 and A8.
3. Connect the violet (7) wire to the PIN switch pin and connect the grey (8) wire to the mixer bias pin on the A8 assembly.
4. Tighten all semirigid coax connections on A8 and torque them to 113 Ncm (10 in-lb).

A8 Low Band Mixer (8563E/EC)

Removal

1. Place the spectrum analyzer upside-down on the work bench with A14 and A15 folded out to the left.
2. Use a 5/16-inch wrench to remove W45 from FL1 and A8J 1.
3. Loosen W56 and W39 at A8J 2, and A8J 3.
4. Remove the two screws securing A8 to the center deck.
5. Remove W56 and W39 from the A8 assembly.

Replacement

1. Place A8 on the center deck and attach W56 and W39, using caution to avoid damaging any of the cables' center conductor pins.
2. Use two panhead screws to secure A8 to the center deck. Reconnect W45 to FL1 and A8.
3. Tighten all semirigid coax connections on A8 and torque them to 113 Ncm (10 in-lb).

A9 Input Attenuator

Removal

1. Place the spectrum analyzer upside-down on the work bench.
2. Remove W41 and W43.
3. Disconnect W34 from A7 and move this cable out of the way.
4. Remove screw (1) securing the attenuator to the front-frame center support. See Figure 3-22 on page 194.
5. Remove screw (1) securing the A9 input attenuator to the right side frame. See Figure 3-23.
6. Remove the attenuator and disconnect the attenuator ribbon cable.

Replacement

1. Ensure that the bracket that secures the attenuator to the front-frame center support is attached to the attenuator. The bracket should be on the same end as the ribbon cable connector.
2. Connect the attenuator-control ribbon cable to the A9 input attenuator.
3. Place the A9 input attenuator into the spectrum analyzer with the A9 mounting brackets resting against the front-frame center support and the right side frame. Use caution to avoid damaging any cables.
4. Attach the attenuator to the center support with one panhead screw (1). See Figure 3-22.
5. Attach the attenuator to the right side frame with one flathead screw (1). See Figure 3-23.
6. Connect semirigid cables W 41 and W 43 to the attenuator assembly. Torque all SMA connections to 113 Ncm (10 in-lb).

Figure 3-23 A9 Mounting Screw at Right Side Frame

A10 Switched YI G-Tuned Filter (SYTF, 8561E/E C)

Removal

1. Use a $5 / 16$-inch wrench to remove W43 and W44 from A10J 1 and A10 3.
2. Remove W56/F L2 W55 (as a unit) and disconnect W38 at the A11 assembly.
3. Disconnect the six bias wires connected to the A10 assembly.
4. Remove four screws (1) securing A10 to the center deck. These screws are located on the top-side of the center deck as illustrated in Figure 3-24. Screws (2) are identified for another replacement procedure
5. While holding onto the A10 assembly, disconnect W47 from A10J 2 and remove the A10 assembly.

Figure 3-24 A10 Mounting Screws

s1129e

Replacement

1. Orient the A10 assembly so that A10J 2 connects to W47 and A10J 1 connects to W43. Loosely attach A10 to W47.
2. Secure A10 to the spectrum analyzer center deck using four screws.
3. Connect the six A10 bias wires as illustrated in Figure 3-22.
4. Connect W38 to A11 and install W56/F L2NW57, W43, and W44.
5. Torque all SMA connections to 113 Ncm ($10 \mathrm{in}-\mathrm{Ib}$).

A10 YIG-Tuned Filter/Mixer (RYTHM, 8563E/EC)

Removal

CAUTION Do NOT remove the brackets from the A10 assembly. If these brackets are removed and reinstalled, the performance of A10 will be altered. A new or rebuilt A10 assembly indudes new mounting brackets already attached to it.

1. Disconnect W16 ribbon cable from the A10 assembly.
2. Use a $5 / 16$-inch wrench to remove W43, W44, and W46 from A10J 3, J 2, and J 4, respectively.
3. Remove W56/F L2/W57 (as a unit) and disconnect W48 from A10J 1.
4. Remove four screws (1) securing A10 to the center deck. These screws are located on the top-side of the center deck as illustrated in Figure 3-24.

Replacement

1. Orient the A10 assembly for the proper cable connections.
2. Connect W43, 44 and 46 to $A 10 J 3, J 2$, and J 4 , respectively.
3. Connect W48 (gray cable) to A10J 1.
4. Connect W16 ribbon cable to the A10 assembly.
5. Install W56/FL2/W57 and torque all SMA connections to 113 Ncm (10 in-lb).
6. Secure A10 to the spectrum analyzer center deck using four screws.

A11 YTO (Agilent 8561E/E C)

Removal

1. Use a 5/16-inch wrench to remove W43 and W44.
2. Remove W56/FL2MW5 (as a unit) and disconnect W38 at the A11 assembly.
3. Set the spectrum analyzer on its right side frame, allowing access to the four A11 mounting screws (2) illustrated in Figure 3-24 on page 200. Remove the screws while hol ding onto A11.
4. Disconnect W 10 ribbon cable from the A11 YTO assembly.

Replacement

1. Connect W 10 ribbon cable to the A11 YTO assembly.
2. Orient the A11 assembly in the spectrum analyzer as illustrated in "8561E/EC Assembly Locations" on page 192.
3. Set the spectrum analyzer on its right side frame and secure the A11 assembly to the center deck using four screws.
4. Connect W38 to A11 and install W43 between A9 input attenuator and A10 SYTF.
5. Install W56/F L2/W57 between A8J 2 and A13J 1.
6. Install W44 between FL1 and A10.
7. Torque all SMA connections to 113 Ncm ($10 \mathrm{in}-\mathrm{Ib}$).

A11 YTO (8563E/E C)

Removal

1. Disconnect W16 ribbon cable from the A10 assembly and move it out of the way.
2. Remove W56/F L2/W57 (as a unit) and disconnect W38 at the A11 assembly.
3. Remove four screws (1) securing A11 to the right side frame. See Figure 3-25. Remove the screws while hol ding onto A11.
4. Disconnect W10 ribbon cable from the A11 YTO assembly.

Replacement

1. Connect W10 ribbon cable to the A11 YTO assembly.
2. Orient the A11 assembly in the spectrum analyzer so its four mounting holes line up with the holes in the right side frame and the output connector is lined up with W38.
3. Secure the A11 assembly to the right side frame using four screws.
4. Connect W38 to A11.
5. Install W56/FL2/W57 between A8J 2 and A13J 1.
6. Reconnect W16 ribbon cable to the A10 assembly.
7. Torque all SMA connections to 113 Ncm ($10 \mathrm{in}-\mathrm{Ib}$).

Figure 3-25 8563E/EC A11 Mounting Screws at Right Side Frame

A13 Second Converter

CAUTION	Turn off the spectrum analyzer power when replacing the A13 second converter assembly. Failure to turn off the power may result in damage to the assembly.

Removal

1. Place the spectrum analyzer upside-down on the work bench.
2. Disconnect W33, coax 81, and W35, coax 92, from the A13 assembly.
3. Disconnect W48, coax 8, from A13J 3.
4. Disconnect W57 from A13J 1.
5. Remove the four screws securing A13 to the main deck and remove the assembly.
6. Disconnect ribbon cable W13 from the A13 assembly.

Replacement

1. Connect ribbon cable W13 to the A13 assembly.
2. Secure A13 to the spectrum analyzer main deck, using four panhead screws.
3. Connect W33, coax 81, to A13J 4600 MHz IN jack.
4. Connect W35, coax 92, to A13J 2310.7 MHz OUT jack.
5. Connect W48, coax 8, to A13J 3. Route W48 under W35, coax 92.
6. Connect W57 to A13J 1.
7. Torque all SMA connections to 113 Ncm ($10 \mathrm{in}-\mathrm{Ib}$).

Procedure 9. A14 and A15 Assemblies

Removal

1. Remove the spectrum analyzer cover as described in "Procedure 1. Spectrum Analyzer Cover."
2. Place the spectrum analyzer on its right side frame.
3. Remove the eight screws (1) holding the A14 and A15 assemblies to the bottom of the spectrum analyzer. See Figure 3-26.

Figure 3-26 A14 and A15 Assembly Removal

CAUTION	Washers are not captive. Loose washers in instrument may cause
internal damage.	

CAUTION DO NOT fold the board assemblies out of the spectrum analyzer one at a time. Always fold the A14 and A15 assemblies as a unit. Folding out one assembly at a time binds the hinges attaching the assemblies and may damage an assembly and hinge.
4. The board assemblies are attached to the right side frame of the spectrum analyzer with two hinges. Fold both the A14 and A15 assemblies out of the spectrum analyzer as a unit.
5. Remove all cables from the assembly being removed.
6. Remove the two screws that attach the assembly being removed to its two mounting hinges.

CAUTION DO NOT torque shield screws to more than 5 inch-pounds. Applying excessive torque will cause the screws to stretch.

Replacement

1. Attach the removed assembly to the two chassis hinges with two panhead screws.
2. Attach all cables to the assembly as illustrated in Figure 3-27 and torque the W34/A15 SMA connection to 113 Ncm ($10 \mathrm{in}-\mathrm{Ib}$).
3. Lay the A14 and A15 assemblies flat against each other in the folded out position. Make sure that no cables become pinched between the two assemblies. Ensure that all coaxial cables are clear of hinges and standoffs before continuing onto the next step.
4. Fold both board assemblies into the spectrum analyzer as a unit. Use caution to avoid damaging any cable assemblies.
5. Secure the assemblies using the eight screws removed in step 3 of "Removal." See Figure 3-26.
6. Secure the spectrum analyzer cover assembly as described in "Procedure 1. Spectrum Analyzer Cover."

Figure 3-27 A14 and A15 Assembly Cables

Procedure 10. A16 Fast ADC and A17 CRT Driver (8561E and 8563E)

Removal

1. Remove the spectrum analyzer cover assembly and fold out the A2, A3, A4, and A5 assemblies as described in steps 3 through 6 under "Procedure 5. A2, A3, A4, and A5 Assemblies" on page 172.
2. Place the spectrum analyzer top-side-up on the work bench with A2, A3, A4, and A5 folded out to the right.
3. For Option 007 spectrum analyzers: Remove two screws (1) securing the two board-mounting posts to the left side frame, and remove the posts. See Figure 3-28.
4. Remove two screws (2) securing the A17 assembly (and A16 assembly in Option 007) to the left side frame. Remove the two spacers (non-Option 007).
5. Pull the A17 assembly out of the spectrum analyzer.
6. For Option 007 spectrum analyzers: Pull the A16 assembly out of the spectrum analyzer.
7. Disconnect W7, W8, W9, A6A1W2, and A18W1 from the A17 CRT driver assembly.
8. For Option 007 spectrum analyzers: Disconnect all cables from the A16 Fast ADC assembly.

Figure 3-28 A16 and A17 Mounting Screws

Replacement

1. Connect W7, W8, W9, A6A1W2, and A18W1 to the A17 CRT driver assembly. Place the assembly into the center-deck mounting slot next to the CRT assembly.
2. For Option 007 spectrum analyzers: Connect all A16 assembly cables as illustrated in Figure 3-29 which shows the left side frame removed so that proper A16 assembly cable routing may be viewed. Place the A16 assembly into the center-deck mounting slot nearest the left side frame.
3. Secure the A17 assembly (and A16 assembly in Option 007) to the left side frame using two flathead screws (and two spacers in non-Option 007). For Option 007: Attach the board mounts to the left side frame using two flathead screws (1). See Figure 3-28.
4. Place the spectrum analyzer on its right side frame.
5. Fold the A2, A3, A4, and A5 assemblies into the spectrum analyzer as described in "Procedure 5. A2, A3, A4, and A5 Assemblies." Secure the spectrum analyzer cover assembly.

Figure 3-29 A16 Cable Routing

Procedure 11. B1 Fan

Removal/Replacement

WARNING Always disconnect the power cord from the instrument before beginning this replacement procedure. Failure to follow this precaution can present a shock hazard which may result in personal injury.

1. Remove the four screws securing the fan assembly to the rear frame.
2. Remove the fan and disconnect the fan wire from the A6 power supply assembly.
3. To reinstall the fan, connect the fan wire to A6J 3 and place the wire into the channel provided on the left side of the rear-frame opening. Secure the fan to the rear frame using four panhead screws.

NOTE The fan must be installed so that the air enters through the front and sides of the instrument and exits out the rear of the instrument.

Procedure 12. BT1 Battery

WARNING Battery BT1 contains lithium polycarbon monofluoride. Do not incinerate or puncture this battery. Dispose of discharged battery in a safe manner.

To avoid loss of the calibration constants stored on the A2 controller assembly, connect the spectrum analyzer to the main power source and turn on before removing the battery.

The battery used in this instrument is designed to last several years. An output voltage of +3.0 V is maintained for most of its useful life. Once this voltage drops to +2.6 V , its life and use are limited and the output voltage will deteriorate quickly. When the instrument is turned off, stored states and traces will only be retained for a short time and may be lost. Refer to "State- and Trace-Storage Problems" on page 514. The battery should be replaced if its voltage is +2.6 V or less.

Removal/Replacement

1. Remove any option module attached to the rear panel.
2. Locate the battery assembly cover on the spectrum analyzer rear panel. Use a screwdriver to remove the two flathead screws securing the cover to the spectrum analyzer.
3. Remove the old battery and replace it with the new one, ensuring proper polarity.
4. Measure the voltage across the new battery. Nominal new battery voltage is approximately +3.0 V . If this is not the case, check the battery cable and A2 controller assembly.
5. Secure the battery assembly into the spectrum analyzer.

Procedure 13. Rear Frame/Rear Dress Panel

Removal

WARNING The A6 power supply (in E-series and EC-series instruments) and the A6A1 high voltage (in E-series instruments) assemblies contain lethal voltages with lethal currents in all areas. Use extreme care when servicing these assemblies. Always disconnect the power cord from the instrument before beginning this replacement procedure. Failure to follow this precaution can present a shock hazard which may result in personal injury.

Diagrams that illustrate features common to E-series and EC-series instruments are shown with E -series instruments. Where there are differences between E-series and EC-series features, separate diagrams are provided for E-series and for EC-series instruments.

1. Disconnect the line-power cord from the spectrum analyzer.
2. Remove the spectrum analyzer cover, and place the spectrum analyzer on its right side frame.
3. Fold out the $A 2, A 3, A 4$, and $A 5$ assemblies as described in steps 3 through 5 of "Procedure 5. A2, A3, A4, and A5 Assemblies" on page 172.
4. Disconnect the GPIB cable at A2J 5.
5. Place the spectrum analyzer top-side-up on the work bench with A2 through A5 folded out to the right.

For EC-series instruments, proceed to step 13. For E-series instruments proceed to step 6.

WARNING	The voltage potential at A6A1W3 is +9 kV . Disconnect at the CRT with caution! Failure to properly discharge A6A1W3 may result in severe electrical shock to personnel and damage to the instrument.

6. Connect the spectrum analyzer line-power cord to provide proper grounding while discharging the A6A1W3 post-accelerator cable. Make sure that the spectrum analyzer line-power switch is in the off position.
7. Connect a high-voltage probe (1000:1), such as the Agilent 34111A to a voltmeter with a 10 megohm input.
8. Connect the dip lead of the probe (ground) to the chassis of the spectrum analyzer.
9. Slip the tip of the high-voltage probe under the A6A1W3 post-accelerator cable's rubber shroud to obtain a reading on the voltmeter. See Figure 3-3 on page 164.
10.Keep the high-voltage probe on the post-accelerator connector until the voltage has dropped to a voltmeter reading of less than 5 mV (less than 5 V at the connector). This normally takes about 30 seconds.
11.Disconnect the line-power cord from the spectrum analyzer.
12.Using a small screwdriver with the shank in contact with the CRT shield assembly, slip the tip of the screwdriver under the A6A1W3 post-accelerator cable's rubber shroud and short the cable to ground on the CRT shield assembly. See Figure 3-3.
10. Remove the three screws securing the power-supply shield to the power supply, and remove the shield. See (1) in Figure 3-31 on page 219.
14.Disconnect the fan and line-power cables from A6J 3 and A6J 101 on the A6 power supply assembly.
11. Remove the two flathead screws that secure the rear-panel battery assembly, and remove the assembly. Remove the battery and unsolder the two wires attached to the battery assembly.
16.Usea 9/16-inch nut driver to remove the dress nuts holding the BNC connectors to the rear frame. If necessary, drill out the nut driver to fit over the BNC connectors, and cover it with heatshrink tubing or tape to avoid scratching the dress panel.
17.Remove four screws that secure the rear frame to the main deck. See (1) in Figure 3-30.
12. Remove the six screws that secure the rear frame to the left and right side frames.
13. Remove the knurled nut that secures the earphone jack. Carefully remove the jack using caution to avoid losing the lock washer located on the inside of the rear-frame assembly. Replace the washer and nut onto the jack for safekeeping.
20.Remove the rear-frame assembly.
21.To remove the rear dress panel, remove the two nuts located on the inside of the rear frame near the display adjustment holes.

Figure 3-30 Main Deck Screws

Replacement

1. If the rear dress panel is removed, secure it to the rear frame using two nuts. Ensure that the dress panel is aligned with the frame.
2. Place the spectrum analyzer on its front panel allowing easy access to the rear-frame area.
3. Place the rear frame on the spectrum analyzer and secure the knurled nut on the earphone jack. A lock washer should be used on the inside of the rear frame and a flat washer on the outside.
4. Place the coax cable's BNC connectors into the appropriate rear-frame holes as described below. Use a 9/16-inch nut driver to attach the dress nuts holding the BNC connectors to the rear frame.

Rear Panel J ack

EC-series	E-series	RF Cable
J 1	n / a	W 64, VGA
n / a	J 1	W
J 4	J 4	$\mathrm{~W} 24, \operatorname{coax} 5$
J 5	J 5	$\mathrm{~W} 23, \operatorname{coax} 93$
J 6	J 6	W25, coax 4
J 7	n / a	W
J 8	J 8	W18, coax 97
J 9	J 9	W31, coax 8
J11	J 11	W58, coax 8

5. Secure the rear frame to the spectrum analyzer main deck, using four panhead screws (1). See Figure 3-30.
6. Secure the rear frame to the spectrum analyzer side frames using three flathead screws per side. Use caution to avoid damaging any coaxial cables.
7. Place the spectrum analyzer top-side-up on the work bench.
8. Pull the red and black battery wires through the rear-frame's battery-assembly hole. Solder the red wire to the battery-assembly's positive lug and the black wire to the negative lug. Replace the battery.
9. Secure the battery assembly to the rear frame, using two flathead screws.
10.Connect the fan and line-power cables to A6J 3 and A6J 101 on the A6 power supply.

For EC-series instruments, proceed to step 13. For E-series instruments proceed to step 11.
11.Snap the A6A1W3 post-accel erator cable to the CRT assembly.
12.Snap the black grommet protecting A6A1W3 into the CRT shield.
13.E nsure that all cables are safely routed and will not be damaged when securing the A6 cover.
14.Secure the power-supply cover shield to the power supply, using three flathead screws (1). One end of the cover fits into a slot provided in the rear-frame assembly. Ensure that the extended portion of the cover shield is seated in the shield wall groove. See Figure 3-31.
15. Connect the GPIB cable to A2J 5 .
16.Fold the A2, A3, A4, and A5 assemblies into the spectrum analyzer as described in procedure 5.

Figure 3-31 A6 Power Supply Cover

SP 14 E

Procedure 14. W3 Line Switch Cable (8561E and 8563E)

Removal

NOTE	To remove the line switch for 8561EC and 8563EC instruments see "Removal of the Line Switch from the Front Panel" on page 155.
WARNING	Due to possible contact with high voltages, disconnect the spectrum analyzer line-power cord before performing this procedure.
	1. Remove the spectrum analyzer cover assembly as described in "Procedure 1. Spectrum Analyzer Cover."
	2. Fold out the A2, A3, A4, and A5 assemblies as described in "Procedure 5. A2, A3, A4, and A5 Assemblies" on page 172, steps 3 through 5.
	3. Disconnect A1A1W1 from A3J 602.
	4. Place the spectrum analyzer top-side-up on the work bench with A2 through A5 folded out to the right.
WARNING	The voltage potential at A6A1W3 is +9 kV . Disconnect at the CRT with caution! Failure to properly discharge A6A1W3 may result in severe electrical shock to personnel and damage to the instrument.

5. Connect the spectrum analyzer line-power cord to provide proper grounding while discharging the A6A1W3 post-accelerator cable. Make sure that the spectrum analyzer line-power switch is in the off position.
6. Connect a high-voltage probe (1000:1), such as the 34111A to a voltmeter with a 10 megohm input.
7. Connect the clip lead of the probe (ground) to the chassis of the spectrum analyzer.
8. Slip the tip of the high-voltage probe under the A6A1W3 post-accelerator cable's rubber shroud to obtain a reading on the voltmeter. See Figure 3-3 on page 164.
9. Keep the high-voltage probe on the post-accelerator connector until the voltage has dropped to a voltmeter reading of less than 5 mV (less than 5 V at the connector). This normally takes about 30 seconds.
10.Disconnect the line-power cord from the spectrum analyzer.
11.Using a small screwdriver with the shank in contact with the CRT shield assembly, slip the tip of the screwdriver under the A6A1W3 post-accelerator cable's rubber shroud and short the cable to ground on the CRT shield assembly. See Figure 3-3.
12.Remove the three screws securing the power supply shield to the power supply, and remove the shield.
13.Pull the cable tie (1), Figure 3-32, to free W9 and the post-accelerator cables.
14.Disconnect W3 from A6J 2.
15.Pull W3 up from between the power supply and the CRT assembly to release it from the cable clamp.
10. Place the spectrum analyzer on its right side frame.
17.Fold out the A14 and A15 assemblies as described in "Procedure 9. A14 and A15 Assemblies" on page 207, steps 3 and 4.
18.L oosen the screw (1) securing W3, the line switch assembly, to the front frame. The screw is captive. See Figure 3-33.

Figure 3-32 W3 Dress and Connection to A6 Power Supply

19.Remove A1W1 and A1W1DS1 from the line-switch assembly. Let each hang freely.

NOTE If contact removal tool, part number 8710-1791, is available, complete assembly removal by performing "Removal," steps 20 and 21. If not, skip to step 22 of "Removal."
20. With wire cutters, clip the tie wrap holding the cable to the contact housing. From the top side of the spectrum analyzer, use contact removal tool, Part Number 8710-1791, to remove the four wires from the W3 connector. See Figure 3-34 on page 225.
21. Completely remove the cable from the instrument.

If steps 20 and 21 have been performed, stop the procedure here; do not perform steps 22,23 , and 24.

22.Remove the A1 F ront-F rame assembly and A18 CRT assembly as described in "Procedure 2B. A1 Front Frame/A18 CRT Display (8561E and 8563E)" on page 162, steps 16 through 29.
 23. Remove the left side frame from the spectrum analyzer using the hardware listed below. (The side frame will still be attached by the speaker wires. Do not let it hang freely.)

Screw Quantity
(1) SCREW-MACH M4 X 0.78 mm-LG FLAT HD 3
(2) SCREW-MACH M3 X 0.535 mm -LG FLAT HD 2
(3) SCREW-MACH M3 X 0.56 mm-LG FLAT HD 6
24.Remove the line-switch cable assembly.

Figure 3-33 Line-Switch Mounting Screw and Cable Dress

sk 1140 e

Figure 3-34 W3 Cable Connector

POSITION OF
TIE WRAP KNUCKLE

SK151

Replacement (Using Contact Removal Tool, part number 8710-1791)

1. Ensure that the action of the switch is working properly. With a pair of wire cutters, clip the tie wrap holding the cable to the contact housing of the replacement W3 assembly.
2. Using the contact removal tool, remove the four wires from the replacement cable assembly's connector.
3. From the bottom side of the spectrum analyzer, insert the contact end of W3 through the slotted opening in the main deck. W3 should come through to the top side of the spectrum analyzer between the A18 CRT assembly and the post-accelerator cable.
4. Place LED A1W1DS1 into the line-switch assembly.
5. Attach the line-switch assembly into the front frame, using the captive panhead screw. Ensure the connection of the line-switch grounding lug to the screw.
6. Dress W3 between the main deck standoff and the side frame. See Figure 3-33.
7. On the top side of the spectrum analyzer, redress W3.
8. Insert the four contacts into the W3 connector.
9. Attach the cable to the connector housing using the supplied tie wrap.
10.Connect W3 to A6J 2. Dress W3 into the slotted opening in the deck.
11.Connect A1A1W1 to A3J 602.
12.Secure the power-supply cover shield to the power supply, using three flathead screws. One end of the cover fits into a slot provided in the rear-frame assembly. Ensure that the extended portion of the cover shield is seated in the shield wall groove.
10. Redress W3 and the other cable assemblies down between the CRT assembly and the power supply cover such that the W9 wires are below the surface of the power-supply cover.
14.Fold up the A2, A3, A4, and A5 assemblies into the spectrum analyzer as described in "Procedure 5. A2, A3, A4, and A5 Assemblies" on page 172, steps 5 through 10.
15.Fold up A14 and A15 assemblies as described in "Procedure 9. A14 and A15 Assemblies" on page 207, steps 9 through 11.

Replacement (without Contact Removal Tool)

1. Lay the replacement line-switch cable assembly between the side frame and main deck. Ensure that the action of the switch is working properly.
2. Attach the left side frame to the deck and rear frame. See Figure 3-35.

Screw

 Quantity(1) SCREW-MACH M4 X 0.78 mm-LG FLAT HD 3
(2) SCREW-MACH M3 X 0.535 mm -LG FLAT HD 2
(3) SCREW-MACH M3 X 0.56 mm-LG FLAT HD 6
3. Dress W3 between the main deck standoff and the side frame. See Figure 3-33.
4. Attach the A1 Front Frame assembly and the A18 CRT assembly as described in "Procedure 2B. A1 Front Frame/A18 CRT Display (8561E and 8563E)" on page 162, steps 1 through 15.
5. Place LED A1W1DS1 into the line-switch assembly.
6. Attach the line-switch assembly into the front frame using the captive panhead screw. Be sure to connect the line-switch grounding lug with the screw.

Figure 3-35 Side Frame Mounting Screws

(6 PLACES)
sm113e
7. On the top side of the spectrum analyzer, redress W3.
8. Connect W3 to A6J 2. Dress W3 into the slotted opening in the deck.
9. Connect A1A1W1 to A3J 602.
10.Secure the power-supply cover shield to the power supply using three flathead screws. One end of the cover fits into a slot provided in the rear-frame assembly. Ensure that the extended portion of the cover shield is seated in the shield wall groove. See Figure 3-31 on page 219.
11.Place W3 and the other cable assemblies between the CRT assembly and the power supply cover so the W9 wires are bel ow the surface of the power-supply cover.
12.Fold up the A2, A3, A4, and A5 assemblies into the spectrum analyzer as described in "Procedure 5. A2, A3, A4, and A5 Assemblies" on page 172, steps 5 through 10.
13.Fold up A14 and A15 assemblies as described in "Procedure 9. A14 and A15 Assemblies" on page 207, steps 3 through 5.
14.Replace the spectrum analyzer cover assembly.
15. Connect the line-power cord and switch the spectrum analyzer power on. If the spectrum analyzer does not operate properly, turn off the spectrum analyzer power, disconnect the line cord, and recheck the spectrum analyzer.

Procedure 15. EEROM

Removal/Replacement

CAUTION The EEROM is replaced with the power on. Use a nonmetallic tool to remove the defective EEROM and install the new EEROM.

NOTE

In EC-series analyzers the EEROM reference designator is U23. In newer E-series analyzers the EEROM reference designator is U500. In older spectrum analyzers the EEROM reference designator is U501.

1. Turn off the LINE switch of the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$. Remove the spectrum analyzer cover assembly and fold out the A2, A3, A4, and A5 assemblies as described in "Procedure 5. A2, A3, A4, and A5 Assemblies" on page 172, steps 3 through 5.
2. Turn on the LINE switch of the Agilent 8561E/EC or 8563E/EC.
3. Set the WR PROT/WR ENA jumper on the A2 controller assembly to the WR ENA position.
4. Press CAL, MORE 1 OF 2, SERVICE CAL DATA, COPY EEROM. The spectrum analyzer will store the contents of the EEROM into the program RAM.
5. Using a nonmetallic tool, carefully remove the defective EEROM.
6. Carefully install a new EEROM.
7. Press COPY TO EEROM. The spectrum analyzer will store the contents of the program RAM into the new EEROM.
8. Turn the LINE switch of the or $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$ off, then on, cyding the spectrum analyzer power. Allow the power-on sequence to finish.
9. If error message 701, 702, or 703 is di splayed, press RECALL, MORE, and RECALL ERRORS. Use the STEP keys to view any other errors.
10.If error message 701 or 703 is displayed, perform either adjustment "11. Frequency Response Adjustment (8561E/EC)" on page 95, or adjustment " 12 . Frequency Response Adjustment (8563E/EC)" on page 99. (If a TAM is available, perform the module's "Low Band Flatness" and "High Band Flatness and YTF" adjustments. Press MODULE, ADJUST to enter the adjust menu of theTAM.)
11.If error message 704 is displayed, press SAVE, SAVE PRSEL PK, and PRESET.
12.If there are no errors after cyding the spectrum analyzer power, the EEROM is working properly, but the frequency-response correction data might be invalid. Check the spectrum analyzer frequency response.
13.Place the WR PROT/WR ENA jumper in the WR PROT position.
14.Fold the A2 and A3 assemblies into the spectrum analyzer as described in "Procedure 5. A2, A3, A4, and A5 Assemblies" on page 172. Secure the spectrum analyzer cover assembly.

Procedure 16. A21 OCXO

Removal

1. Remove the rear-frame assembly as described in "Procedure 13. Rear Frame/Rear Dress Panel" on page 215, steps 1 through 20.
2. Place the spectrum analyzer on its right side frame.
3. Fold out the A14 and A15 assemblies as described in "Procedure 9. A14 and A15 Assemblies" on page 207, steps 3 and 4.
4. Remove the three screws (1) securing the OCXO to the main deck. See Figure 3-36.
5. Disconnect W49, coax 82, from the OCXO and disconnect W50 (orange cable) from the A15 RF assembly. Clip the tie wraps that hold W49 and W50 together and remove the OCXO from the spectrum analyzer (with the orange cable connected).

Figure 3-36 A21 OCXO Mounting Screws

sk1141e

Replacement

1. Connect W49, coax 82, to the OCXO and position the OCXO in the spectrum analyzer. Dress W50, orange cable, next to W49 through the opening in the deck.
2. Secure the OCXO to the spectrum analyzer main deck using three screws (1). See Figure 3-36.
3. Connect W50 to A15J 306. Install tie wraps to hold W49 and W50 together.
4. Fold the A14 and A15 assemblies into the spectrum analyzer as described in "Procedure 9. A14 and A15 Assemblies" on page 207.
5. Perform the rear-frame assembly repl acement procedure described in "Procedure 13. Rear Frame/Rear Dress Panel" on page 215.

Introduction

This chapter contains information on ordering all replaceable parts and assemblies. Locate the instrument parts in the following figures and tables:

Table 4-1 on page 237. Reference Designations
Table 4-2 on page 238. Abbreviations
Table 4-3 on page 242. Multipliers
Table 4-4 on page 243. Replaceable Parts
Table 4-5 on page 253. Parts List, Assembly Mounting
Table 4-6 on page 253. Parts List, Cover Assembly
Table 4-7 on page 254. Parts List, Main Chassis (EC-series)
Table 4-8 on page 255. Parts List, Main Chassis (E-series)
Table 4-9 on page 256. Parts List, RF Section
Table 4-10 on page 256. Parts List, Front Frame (EC-series)
Table 4-11 on page 257. Parts List, Front Frame (E-series)
Table 4-12 on page 259. Parts List, Rear Frame (EC-series)
Table 4-13 on page 260. Parts List, Rear Frame (E-series)
Figure 4-1 on page 253. Parts Identification, Assembly Mounting Figure 4-2 on page 261. Parts Identification, Cover Assembly Figure 4-3 on page 263. Parts Identification, Main Chassis (E-series)
Figure 4-4 on page 265. Parts Identification, RF Section (8561E/EC)
Figure 4-5 on page 267. Parts Identification, RF Section (8563E/EC)
Figure 4-6 on page 269. Parts Identification, Front Frame (E-series)
Figure 4-7 on page 271. Parts Identification, Rear Frame (E-series)
Figure 4-8 on page 273. Parts Identification, Main Chassis (EC-series)
Figure 4-9 on page 275. Parts Identification, Front Frame (EC-series)
Figure 4-10 on page 277. Parts Identification, Rear Frame (EC-series)

Ordering Information

To order a part or assembly, quote the part number, indicate the quantity required, and address the order to the nearest Agilent Technologies office.
To order a part that is not listed in the replaceable parts table, include the instrument model number, the description and function of the part, and the number of parts required. Address the order to the nearest Agilent office.

Direct Mail-Order System

Within the USA, Agilent Technol ogies can supply parts through a direct mail-order system. Advantages of using the system are as follows:

- Direct ordering and shipment from the Agilent Technol ogies Support Materials Organization in Roseville, California.
- No maximum or minimum on any mail order. (There is a minimum order amount for parts ordered through a local Agilent office when the orders require billing and invoicing.)
- Prepaid transportation. (There is a small handling charge for each order.)
- No invoices.

To provide these advantages, a check or money order must accompany each order. Mail-order forms and specific ordering information is available through your local Agilent Sales and Service office.

Direct Phone-Order System

Within the USA, a phone order system is available for regular and hotline replacement parts service. A toll-free phone number is available, and M astercard and Visa are accepted.
Regular Orders: The toll-free phone number, (800) 227-8164, is available 6 am to 5 pm, Pacific standard time, M onday through Friday. Regular orders have a four-day delivery time.

Abstract

Hotline Orders: Hotline service for ordering emergency parts is available 24 hours a day, 365 days a year. There is an additional hotline charge to cover the cost of freight and special handling.

The toll-free phone number is (800) 227-8164, is available 6 am to 5 pm, Pacific standard time, M onday through Friday and (916) 785-8HOT for after hours, weekends, and holidays. Hotline orders are normally delivered the following business day.

Parts List Format

The following information is listed for each part:

1. The part number.
2. The total quantity (Qty) in the assembly. This quantity is given only once, at the first appearance of the part in the list.
3. The description of the part.
4. A five-digit code indicating a typical manufacturer of the part.
5. The manufacturer part number.

Firmware-Dependent Part Numbers

Refer to the following firmware note (part number 5961-6734): 8560 Series, 85620A, and 85629B FirmwareNote
Table 4-1 Reference Designations

REFERENCE DESIGNATIONS					
A	Assembly	F	Fuse	RT	Thermistor
AT	Attenuator, Isolator,	FL	Filter	S	Switch
	Limiter, Termination	HY	Circulator	T	Transformer
B	Fan, M otor	J	Electrical Connector (Stationary Portion), J ack	TB	Terminal Board
BT	Battery			TC	Thermocouple
C	Capacitor			TP	Test Point
CP	Coupler	K	Relay	U	Integrated Circuit,
CR	Diode, Diode	L	Coil, Inductor		Microcircuit
	Thyristor, Step	M	Meter	V	Electron Tube
	Recovery Diode, Varactor	MP	Miscellaneous Mechanical Part	VR	Breakdown Diode (Zener),
DC	Directional Coupler	P	Electrical Connector (Movable Portion),		Voltage Regulator
DL	Delay Line			W	Cable, Wire, J umper
DS	Annunciator, Lamp,		Plug	X	Socket
	Light Emitting Diode (LED), Signaling Device	Q	Silicon Controlled Rectifier (SCR), Transistor,	Y	Crystal Unit (Piezoel ectric, Quartz)
	(Visible)		Triode Thyristor	Z	Tuned Cavity,
E	Miscellaneous Electrical Part	R	Resistor		Tuned Circuit

Table 4-2
Abbreviations

ABBREVIATIONS					
A		C		CONT	Contact, Continuous, Control, Controller
A	Across Flats, Acrylic, Air (Dry Method),	C	Capacitance, Capacitor,		
	Ampere		Center Tapped,	CONV	Converter
ADJ	Adjust, Adjustment		Cermet, Cold,	CPRSN	Compression
ANSI	American National		Compression	CUP-PT	Cup Point
	Standards Institute (formerly USASI-ASA)	CCP	Carbon Composition Plastic	CW	Clockwise, Continuous Wave
		CD	Cadmium, Card, Cord		
ASSY	Assembly			D	
AWG	American Wire Gage	CER	Ceramic	D	Deep, Depletion, Depth, Diameter, Direct Current
		CHAM	Chamfer		
	B	CHAR	Character,		
BCD	Binary Coded Decimal		Characteristic,		
			Charcoal	DA	Darlington
				DAP-GL	Diallyl Phthalate
BD	B oard, Bundle	CMOS	Complementary Metal Oxide		Glass
BE-CU	Beryllium Copper			DBL	Double
BNC	Type of Connector		Semiconductor	DCDR	Decoder
BRG	Bearing, Boring	CNDCT	Conducting,	DEG	Degree
BRS	Brass		Conductive,	D-HOLE	D-Shaped Hole
BSC	Basic		Conductivity,	DIA	Diameter
BTN	Button		Conductor	DIP	Dual In-Line Package

Table 4-2 Abbreviations					
	D			HEX	Hexadecimal,
DIP-SLDR	Dip Solder	fdthru	Feedthrough		Hexagon
D-MODE	Depletion Mode	FEM	Female		Hexagonal
DO	Package Type Designation	FIL-HD	Fillister Head	HLCL	Helical
		FL	Flash, Flat, Fluid	HP	HewlettPackard
DP	Deep, Depth, Diametric Pitch, Dip	$\begin{aligned} & \text { FLAT-P } \\ & \text { T } \end{aligned}$	Flat Point		Company, High Pass
		FR	Front		I
DP3T	Double Pole Three	FREQ	Frequency	IN	Inch
	Throw	FT	Current Gain	J	
DWL	Dowell		Bandwidth Product	JFET	J unction Field
E			(Transition Frequency),		Effect Transistor
E-R	E-Ring		Feet,		
EXT	Extended, Extension, External, Extinguish		Foot	K	
		FXD	Fixed	K	Kelvin, Key, Kilo, Potassium
F		G			
F	Fahrenheit, Farad, Female, Film (Resistor), Fixed, Flange, Frequency	GEN	General, Generator	KNRLD	Knurled
		GND	Ground	KVDC	
		GP	General Purpose, Group		
					L
FC	Carbon Film/		H	LED	Light Emitting Diode
	Composition, Edge	H	Henry, High		
	of Cutoff Frequency,	HDW	Hardware	LG	Length, Long
F	Fahrenheit, Farad,	HEX	Hexadecimal,	LIN	Linear, Linearity

Table 4-2
Abbreviations

L		N		PC	Printed Circuit
LK	Link, Lock	N	Nano, None		
LKG	Leakage, Locking	$\begin{aligned} & \mathrm{N}-\mathrm{CHA} \\ & \mathrm{~N} \end{aligned}$	N-Channel	PCB	Printed Circuit Board
LUM	Luminous	NH	Nanohenry	P-CHAN	P-Channel
		NM	Nanometer, Nonmetallic	PD	Pad, Power
M		NO	Normally Open, Number		Dissipation
				PF	Picofarad, Power
M	Male, Maximum, Mega, Mil, Milli, Mode	NOM	Nominal		Factor
		NPN	Negative Positive	PKG	Package
			Negative (Transistor)	PLSTC	Plastic
MA	Milliampere	NS	Nanosecond, Non-Shorting, Nose	PNL	Panel
MACH	Machined			PNP	Positive Negative
MAX	Maximum	NUM	Numeric		Positive (Transistor)
MC	Molded Carbon	NYL	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Nylon } \\ \text { (Polyamide) } \end{array} \end{array}$	POLYC	Polycarbonate
MET	Metal, M etallized	0		POLYE	Polyester
MHz	Megahertz	OA	Over-All	POT	Potentiometer
MINTR	Miniature	OD	Outside Diameter	POZI	Pozidriv Recess
MIT	Miter			PREC	Precision
MLD	Mold, Molded	OP AMP	Operational	PRP	Purple, Purpose
MM	Magnetized Material,		Amplifier	PSTN	Piston
	Millimeter	OPT	Optical, Option,	PT	Part, Point,
MOM	Momentary		Optional		Pulse Time
MTG	Mounting		P	PW	Pulse Width
MTLC	Metallic	PA	Picoampere, Power		Q
SMA	Subminiature		Amplifier	Q	Figure of Merit
MW	Milliwatt	PAN-HD	Pan Head		

Table 4-2
Abbreviations

R		SPST	Single Pole Single Throw	U	
R	Range, Red, Resistance, Resistor, Right, Ring			UCD	Microcandela
		SQ	Square	UF	Microfarad
		SST	Stainless Steel	UH	Microhenry
REF	Reference	STL	Steel	UL	Microliter, Underwriters' Laboratories, Inc.
RES	Resistance, Resistor	SPCG	Spacing		
RF	Radio Frequency	SPDT	Single Pole		
RGD	Rigid	T		UNHDND	Unhardened
RND	Round	T	Teeth, Temperature, Thickness, Time, Typical	V	
RR	Rear			V	Variable, Violet, Volt, Voltage
	\mathbf{S}				
SAWR	Surface Acoustic			VAC	Vacuum, Volts- Alternating Current
	Wave Resonator	PB	Lead (Metal),		
SEG	Segment	TA	Ambient Temperature, Tantalum	VAR	Variable
SGL	Single			VDC	Volts—Direct Current
SI	Silicon, Square Inch				W
		TC	Temperature Coefficient	W	Watt, Wattage, White, Wide, Width
SL	Slide, Slow				
SLT	Slot, Slotted	THD	Thread, Threaded	W/SW	With Switch
SMA	Subminiature A Type (Threaded Connector)	$\begin{array}{\|l\|} \hline \text { THK } \\ \hline \text { TO } \end{array}$	Thick	WW	Wire Wound
			Package Type	X	
			Designation	X	By (Used with Dimensions), Reactance
SMB	Subminiature B Type (Slip-on Connector)	TPG	Tapping		
		TR-HD	Truss Head		
		TRMR	Trimmer	Y	
SMC	Subminiature C-Type (threaded connector) Connector)	TRN	Turn, Turns	YIG	Yttrium-I ronGarnet
		TRSN	Torsion	Z	
				ZNR	Zener

Multipliers

MULTIPLIERS					
Abbreviation	Prefix	Multiple	Abbreviation	Prefix	Multiple
T	tera	10^{12}	m	milli	10^{-3}
G	giga	10^{9}	μ	micro	10^{-6}
M	mega	10^{6}	n	nano	10^{-9}
k	kilo	10^{3}	p	pico	10^{-12}
da	deka	10	f	femto	10^{-15}
d	deci	10^{-1}	a	atto	10^{-18}
C	centi	10^{-2}			

Manufacturers Code List

Refer to the Manufacturers Code List in the 8560 E-Series and EC-Series Spectrum Analyzer Component Level Information.

Table 4-4
Replaceable Parts

Reference Designation	Part Number	Qty	Description	Mfr Code	Mfr Part Number
	$\begin{aligned} & 1810-0118 \\ & 1250-0780 \\ & 10502 \mathrm{~A} \\ & 8710-1755 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 3 \end{aligned}$	ACCESSORIES SUPPLIED TERMINATION-COAXIAL SMA; $0.5 \mathrm{~W} ; 50 \Omega$ ADAPTER-COAX F-BNC M-N 50Ω COAX CABLE WITH BNC MALE WRENCH-HEX KEY	$\begin{aligned} & 16179 \\ & 24931 \\ & 28480 \\ & 55719 \end{aligned}$	$\begin{aligned} & \text { 2003-6113-02 } \\ & \text { 29J P104-2 } \\ & \text { 10502A } \\ & \text { AWML4 } \end{aligned}$
	5062-0800	1	OPTION 908 RACK KIT WITH FLANGES (Includes Parts Listed Below)		
	5001-8739	2	PANEL-DRESS	28480	5001-8739
	5001-8740	2	PANEL-SUB	28480	5001-8740
	5001-8742	2	SUPPORT-REAR	28480	5001-8742
	5021-5807	2	FRAME-FRONT	28480	5021-5807
	5021-5808	2	FRAME-REAR	28480	5021-5808
	5021-5836	5	CORNER-STRUT	28480	5021-5836
	0510-1148	10	RETAINER-PUSH-ON KB-TO-SHFT EXT	11591	669
	0515-0886	16	SCREW-MACH M $3 \times 0.56 \mathrm{MM}-\mathrm{LG}$ PAN-HD	28480	0515-0886
	0515-0887	8	SCREW-MACH M 3.5×0.6 MMM-LG PAN-HD	28480	0515-0887
	0515-0889	12	SCREW-MACH M $3.5 \times 0.66 \mathrm{MM}-\mathrm{LG}$	28480	0515-0889
	0515-1241	8	SCREW-MACH M $5 \times 0.812 \mathrm{MM}-\mathrm{LG}$ PAN-HD	28480	0515-1241
	0515-1331	22	SCREW-METRIC SPECIALTY M4×0.7THD; 7MM	28480	0515-1331
	5061-9679	2	MOUNT FLANGE	28480	5061-9679
	0515-1114	6	SCREW-MACH M 4×0.7 10MM-LG PAN-HD	28480	0515-1114
	8710-1755		WRENCH-HEX KEY	55719	AWML4
	5958-6573	2	ASSEMBLY INSTRUCTIONS	28480	5958-6573
			OPTION 909		
	5062-1900	1	RACK KIT WITH FLANGES AND HANDLES (Includes Parts Listed Below)		
	5001-8739		PANEL-DRESS	28480	5001-8739
	5001-8740		PANEL-SUB	28480	5001-8740
	5001-8742		SUPPORT-REAR	28480	5001-8742
	5021-5807		FRAME-FRONT	28480	5021-5807
	5021-5808		FRAME-REAR	28480	5021-5808
	5021-5836		CORNER-STRUT	28480	5021-5836
	0510-1148		RETAINER-PUSH-ON KB-TO-SHFT EXT	11591	669
	0515-0886		SCREW-MACH M $3 \times 0.56 \mathrm{MM}-\mathrm{LG}$ PAN-HD	28480	0515-0886
	0515-0887		SCREW-MACH M $3.5 \times 0.66 \mathrm{MM}-\mathrm{LG}$ PAN-HD	28480	0515-0887
	0515-0889		SCREW-MACH M $3.5 \times 0.66 \mathrm{MM}-\mathrm{LG}$	28480	0515-0889
	0515-1241		SCREW-MACH M 5×0.8 12MM-LG PAN-HD	28480	0515-1241

Replaceable Parts

Reference Designation A1	Part Number 0515-1331 5061-9501 5061-9685 0515-1106 8710-1755 5958-6573 1494-0060 0515-0949 0515-1013 0515-0909 0535-0080	Qty 2 2 6	```Description SCREW-METRIC SPECIALTY M4 × 0.7THD; 7MM FRONT HANDLE ASS'Y MOUNT FLANGE SCREW-MACH M4 }\times0.7\mathrm{ 16MM-LG PAN-HD WRENCH-HEX KEY ASSEMBLY INSTRUCTIONS RACK SLIDE KIT SLIDE-CHAS 25-IN-LG 21.84-IN-TRVL (Includes Parts Listed Below. Slides Cannot be Ordered Separately.) SCREW-MACH M5 < 0.8 14MM-LG PAN-HD SCREW-MACH M 4 0 0.7 12MM-LG SCREW-MACH M4 }\times0.7\mathrm{ 12MM-LG PAN-HD NUT-CHANNEL M4 }\times0.73.5MM-TH 10.3MM-WD \\ MAJ OR ASSEMBLIES \\ FRONT FRAME ASSEMBLY \\ (not available as a field replacement)```	$\begin{aligned} & \text { Mfr } \\ & \text { Code } \\ & 28480 \\ & \\ & 28480 \\ & 28480 \\ & 28480 \\ & 55719 \\ & 28480 \\ & \\ & 01561 \\ & \\ & \\ & 28480 \\ & 28480 \\ & 28480 \\ & 28480 \end{aligned}$	Mfr Part Number $0515-1331$ $5061-9501$ $5061-9685$ $0515-1106$ AWML4 $5958-6573$ C858-2 $0515-0949$ $0515-1013$ $0515-0909$ $0535-0080$
(The A1 assembly includes the front frame, front aceplate, front-panel keys, and other hardware. Refer to Figure 4-6 on page 269 and Figure 4-9 on page 275 for individual part numbers.)					
A1A1 A1A1 A1A1W1	$\begin{aligned} & 08563-60162 \\ & 08562-60140 \\ & 5062-8259 \end{aligned}$	1 1 1	BD AY-KEYBOARD BD AY-KEYBOARD CABLE ASSEMBLY, RIBBON, KEYBOARD (A1A1J 1 to A3J 602)	$\begin{array}{\|l\|} \hline 28480 \\ 28480 \\ 28480 \end{array}$	$\begin{aligned} & 08563-60162 \\ & 08562-60140 \\ & 5062-8259 \end{aligned}$
A1A2	1290-1525	1	RPG ASSEMBLY (Includes Cable) S/N $\leq 3728 A 02040$ (8561) or 3728A07704 (8563)	28480	1290-5125
A1A2	0960-0745	1	RPG ASSEMBLY (Includes Cable) $\mathrm{S} / \mathrm{N} \geq 3728 \mathrm{~A} 02041$ (8561) or 3728A07705 (8563)	28480	0960-0745
A1W1	8120-8153	1	CABLE ASSEMBLY PROBE POWER/LED	28480	8120-8153
A2 (EC-series)	08563-60160	1	CONTROLLER ASSEMBLY	28480	08563-60160
A2 (E-series)	08563-60032	1	CONTROLLER ASSEMBLY*†	28480	08563-60032
A2 (E-series)	08563-60017	1	CONTROLLER ASSEMBLY* (For serial prefix numbers preceding 3310A) ${ }^{\dagger}$	28480	08563-60017
* These board assemblies are part of the rebuilt board exchange program. To order a rebuilt board, use the same number as that of the new board with the exception of the 7th digit which should be a 9. Example: New board number is 08562-60094. Therefore, the rebuilt board number will be 08562-69094 ${ }^{\dagger}$ A2 boards prior to serial prefix 3310A use firmware that is not compatible with A2 boards with serial prefix 3310A or after.					

Table 4-4 Replaceable Parts

Reference Designation	Part Number	Qty	Description	Mfr Code	Mfr Part Number
			MAJ OR ASSE MBLIES		
A3	08563-60021	1	INTERFACE ASSEMBLY	28480	08563-60021
A3	08563-60033	1	INTERFACE ASSEMBLY	28480	08563-60033
Option 007					
A4	08563-60050	1	LOG AMPLIFIER/CAL OSC. ASSY.*	28480	08563-60050
A5	08563-60023	1	IF FILTER ASSEMBLY	28480	08563-60023
A6	08563-60020	1	POWER SUPPLY ASSEMBLY* (Does not include A6A1)	28480	08563-60020
A6A1	5062-7089	1	HIGH VOLTAGE ASSEMBLY	28480	5062-7089
A7	5086-7744	1	LO DISTRIBUTION AMPLIFIER	28480	5086-7744
8561E/EC					
A7	5086-7885	1	SWITCHED LO DISTRIBUTION AMPL REBUILT A7, EXCHANGE REQUIRED	28480	5086-7885
8563E/EC	5086-6885				5086-6885
A8	5086-7821	1	DUAL BAND MIXER	28480	5086-7821
8561E/EC	5086-6821	1	REBUILT DUAL BAND MIXER	28480	5086-6821
A8	5086-7908	1	LOW BAND MIXER	28480	5086-7908
8563E/EC					
Standard					
A8	5086-7748	1	LOW BAND MIXER	28480	5086-7748
8563E/EC	5086-6748	1	REBUILT LOW BAND MIXER	28480	5086-6748
Option 006					
A8	5086-7982	1	LOW BAND MIXER	28480	5086-7982
8563E/EC					
Prefix ≥ 3645 A					
A9	5086-7822	1	PORT ATTENUATOR, 6.5 GHz	28480	5086-7822
8561E/EC	5086-6822	1	REBUILT A9, EXCHANGE REQUIRED	28480	5086-6822
A9	5086-7796	1	PORT ATTENUATOR, 26.5 GHz	28480	5086-7796
8563E/EC	5086-6796	1	REBUILT A9, EXCHANGE REQUIRED	28480	5086-6796
A10	5086-7803	1	SWITCHED YIG-TUNED FILTER	28480	5086-7803
A10	5086-7884	1	YIG-TUNED FILTER/MIXER (RYTHM)	28480	5086-7884
8563E/EC	5086-6884		REBUILT A10, EXCHANGE REQUIRED	28480	5086-6884
A11	$\begin{aligned} & 5086-7906 \\ & 5086-6906 \end{aligned}$	1	PORTABLE LVLD YTO REBUILT A11, EXCHANGE REQUIRED	28480	5086-7906
				28480	5086-6906
A13	5086-7812	1	SECOND CONVERTER	28480	5086-7812
A14	08561-60034	1	FREQUENCY CONTROL ASSEMBLY*	28480	08561-60034
8561E/EC					
A14 8563E/EC	08563-60090	1	FREQUENCY CONTROL ASSEMBLY*	28480	08563-60090
* These board assemblies are part of the rebuilt board exchange program. To order a rebuilt board, use the same number as that of the new board with the exception of the 7th digit which should be a 9. Example: New board number is 08562-60094. Therefore, the rebuilt board number will be 08562-69094.					

Table 4-4
Replaceable Parts

Reference Designation	Part Number	Qty	Description	Mfr Code	Mfr Part Number
			MAJ OR ASSE MBLIES (continued)		
A15	08563-60044	1	RF ASSEMBLY (Standard)*	28480	08563-60044
Standard					
A15	08563-60043	1	RF ASSEMBLY (TCXO)*	28480	08563-60043
Option 008					
Option 103					
A15	08563-60046	1	RF ASSEMBLY (SIGID)*	28480	08563-60046
A15	08563-60045	1	RF ASSEMBLY (TCXO/SIG ID)*	28480	08563-60045
Option 103					
Option 008					
A15U100	5086-7806	1	SAMPLER	28480	5086-7806
A16	08563-60030	1	FAST ADC ASSEMBLY	28480	08563-60030
Option 007					
A17 (EC-series)	08562-60161	1	LCD DRIVER	28480	08562-60161
A17A1 (EC-series)	0950-3644	1	LCD INVERTER BOARD	28480	0950-3644
A17 (E-series)	08563-60101	1	CRT ASSEMBLY	28480	08563-60101
A18 (EC-series)	08563-60170	1	LCD ASSEMBLY-I ncludes LCD, LCD MOUNT, LCD GLASS, and BACKLIGHTS	28480	08563-60170
A18DS! and A18DS2	2090-0380	1	Replaceable LCD Backlight Cartridge (part of LCD ASSEMBLY)	28480	2090-0380
A18 (E-series)		1	CRT ASSEMBLY (Order by Individual Parts)		
A18MP (E-series)	5062-7095	1	CRT WIRING ASSEM. (Includes Shield A18L1, and A18W1)	28480	5062-7095
A18MP2 (E-series)	5041-3987	1	SPACER, CRT	28480	5041-3987
A18V1 (E-series)	2090-0225	1	TUBE, CRT 6.7 IN	28480	2090-0225
$\begin{aligned} & \text { A18W1 } \\ & (8562 \mathrm{E}) \end{aligned}$			CABLE ASSEMBLY, TWO WIRE,TRACE ALIGN (P/O A18MP1, A17J 5 to A18L1)		
A19	08562-60042	1	GPIB ASSEMBLY	28480	08562-60042
A19W1	5061-9031	1	CABLE ASSEMBLY, RIBBON, GPIB (A2J 5 to Rear Panel J 2)	28480	5061-9031
A20	5062-7755	1	BATTERY ASSY (Includes W6)	28480	5062-7755
A21	5063-0245	1	OCXO 10.0 M Hz	28480	5063-0245
Standard					
AT1	0955-0994	1	DC BLOCK	28480	0955-0994
B1	5061-9036	1	FAN ASSEMBLY (Includes Wire)	28480	5083-9036
BT1	1420-0341	1	BATTERY 3.0V 1.2 A-HR LITHIUM POLYCARBON MONOFLORIDE	08709	BR 213 A 55P

[^1]Table 4-4 Replaceable Parts

Reference Designation	Part Number	Qty	Description	Mfr Code	Mfr Part Number
F1	2110-0709	1	MAJ OR ASSE MBLIES (continued) THIONYL FUSE 5A 250V NTD FE IEC (230 VAC Operation)	16428	GDA-5
F1	2110-0756	1	FUSE 5A 125V NTD UL (115 VAC Operation)	28480	2110-0756
FL1	0955-0703	1	LOW-PASS FILTER	28480	0955-0703
FL2	0955-0519	1	LOW-PASS FILTER, 4.4 GHz	28480	0955-0519
FL3			NOT ASSIGNED		
FL4	5061-9032	1	LINE FILTER ASSEMBLY	28480	5061-9032
LS1	9160-0282	1	LOUDSPEAKER 2.5 IN SQ (Part of W5)	28480	9160-0282
			CHASSIS MECHANICAL PARTS		

(See Figure 4-1 on page 253 through Figure 4-10 on page 277 for a completelisting of mechanical chassis parts.)

			ASSE MBLY SHIELDS		
A3 Assembly	5021-6723	1	PEAK DETECTOR (TOP)	28480	5021-6723
	5021-6724	1	PEAK DETECTOR (BOTTOM)	28480	5021-6724
	0515-2080	2	SCREW M 2.5 14L	28480	0515-2080
	0515-1486	10	SCREW M 2.5 9.5L	28480	0515-1486
	0905-0375	12	0-RING .070ID	28480	0905-0375
	2190-0583	12	WSHR LK M 2.51 D	28480	2190-0583
A4 Assembly	5063-0220	1	AMP 1 (BOTTOM)	28480	5063-0220
	5063-0221	1	AMP 1 (TOP)	28480	5063-0221
	5063-0219	1	AMP 2 (TOP)	28480	5063-0219
	5063-0222	1	AMP 2 (BOTTOM)	28480	5063-0222
	0515-1486	4	SCREW SMM 2.510 PNTROX	28480	0515-1486
	0515-2080	23	SCREW M 2.5 14L	28480	0515-2080
	2190-0583	23	WSHR LK M 2.51 D	28480	2190-0583
	0905-0375	23	O-RING .070ID	28480	0905-0375
A5 Assembly	5021-6729	1	IF 1 (TOP)	28480	5021-6729
	5021-6730	1	IF 1 (BOTTOM)	28480	5021-6730
	5021-6731	1	IF 2 (TOP)	28480	5021-6731
	5021-6732	1	IF 2 (BOTTOM)	28480	5021-6732
	0515-2081	16	SCREW 5MM 2.5 16 PNPDS	28480	0515-2081
	0905-0375	16	O-RING .070ID	28480	0905-0375
	2190-0583	16	WSHR LK M 2.51 D	28480	2190-0583
A14 Assembly	5063-0209	1	FC (TOP)	28480	5063-0209
	5063-0210	1	FC (BOTTOM)	28480	5063-0210
	0515-0951	13	SCREW 5MM 2.5 16 PNPDS	28480	0515-0951

* These board assemblies are part of the rebuilt board exchange program. To order a rebuilt board, use the same number as that of the new board with the exception of the 7th digit which should be a 9. Example: New board number is 08562-60094. Therefore, the rebuilt board number will be 08562-69094.

Table 4-4
Replaceable Parts

Table 4-4 Replaceable Parts

Table 4-4
Replaceable Parts

Reference Designation	Part Number	Qty	Description	Mfr Code	Mfr Part Number
W34	8120-5446	1	CABLE ASSEMBLY, COAX 0, 1ST LO SAMP. (A7J 4 to A15A2J 1)	28480	8120-5446
W35	5062-0710	1	CABLE ASSEMBLY, COAX 92, INT 2ND IF (A13J 2 to A15J 801)	28480	5062-0710
W36	5062-0725	1	CABLE ASSEMBLY, COAX 86, EXT 2ND IF (Front Panel J 3 to A15J 802)	28480	5062-0725
W37	5062-0707	1	CABLE ASSEMBLY, COAX 85, 10 MHz REF 1 (A15J 303 to A14J 301)	28480	5062-0707
W38	5022-0183	1	CABLE ASSEMBLY, SEMI-RIGID, 1ST LO (A11J 2 to A7J 1)	28480	5022-0183
W39	5022-0188	1	CABLE ASSEMBLY, SEMI-RIGID, 1ST MIXER	28480	5022-0188
W39	5022-1081	1	CABLE ASSEMBLY, SEMI-RIGID, 1ST MIXER	28480	5022-1081
8563E/EC			LO (A7J 2 to A8J 3)		
Prefix ≥ 3541					
W40	5062-0724	1	CABLE ASSEMBLY, COAX 89, CAL OUT (A15J 501 to Front Panel J 5)	28480	5062-0724
W41 8561E/EC	5021-8635	1	CABLE ASSEMBLY, SEMI-RIGID, RF INPUT (Front panel J 1 to A9J 1)	28480	5021-8635
W41 8563E/EC	5022-0169	1	CABLE ASSEMBLY, SEMI-RIGID, RF INPUT (Front panel J 1 to A9J 1)	28480	5022-0169
Standard					
W41 8563E/EC	5021-7481	1	CABLE ASSEMBLY, SEMI-RIGID, RF INPUT (Front panel J 1 to A9J 1)	28480	5021-7481
Option 026					
W42	5022-0189	1	CABLE ASSEMBLY, SEMI-RIGID, 1ST LO OUT (A7J 5 to Front Panel J 4)	28480	5022-0189
W43	5021-9992	1	CABLE ASSEMBLY, SEMI-RIGID	28480	5021-9992
W43	5022-0186	1	CABLE ASSEMBLY, SEMI-RIGID	28480	5022-0186
8563E/EC			(A9J 2 to A10J 3)		
W44	5022-1126	1	CABLE ASSEMBLY, SEMI-RIGID	28480	5022-1126
8561E/EC			(A10J 3 to FL1J 1)		
W44	5022-1124	1	CABLE ASSEMBLY, SEMI-RIGID	28480	5022-1124
8563E/EC			(A10J 2 to FL1J 1)		
W45	5022-1123	1	CABLE ASSEMBLY, SEMI-RIGID	28480	5022-1123
8561E/EC			(FL1J 2 to A8J 1)		
W45	5022-1128	1	CABLE ASSEMBLY, SEMI-RIGID	28480	5022-1128
8563E/EC			(FL1J 2 to A8J 1)		
W45	5022-1080	1	CABLE ASSEMBLY, SEMI-RIGID	28480	5022-1080
8563E/EC			(FL1J 2 to AT1)		

Table 4-4 Replaceable Parts

Reference Designation	Part Number	Qty	Description Prefix ≥ 3541 and <3804 W45 $8563 E / E C$ Option 006 Prefix ≥ 3541 and <3804 W46	$5022-2820$	1

Table 4-4

Reference Designation	Part Number	Qty	Description	Mfr Code	Mfr Part Number
W59	5063-0282	1	CABLE ASSEMBLY, COAX 839, FADC CLOCK	28480	5063-0282
W60	8120-6919	1	DISPLAY CABLE, RIBBON (A2J 8 to A17J 1)	28480	8120-6919
W61	8120-5026	1	CABLE, COAX (A2J 9to A17J 7)	28480	8120-5026
W62	8120-8482	1	CABLE, RIBBON (A17J 6 to A17A1)	28480	8120-8482
W63	8120-8409	1	CABLE, RIBBON (A17J 5 to A18)	28480	8120-8409
W64	8121-0062	1	VGA CABLE ASSEMBLY (A17J 4 toj 1 on rear panel)	28480	8121-0062
Option 007			(A2J 15 to A16J 3)		

Figure 4-1 Parts Identification, Assembly Mounting

Table 4-5 Replaceable Parts -8561E/EC and 8563E/EC (see Figure 4-1)

Item	Part Number	Qty	Description	Mfr Code	Mfr Part Number
1	$0515-1349$	11	SCREW-MACH M3 X 30MM-LG PAN-HD TORX	28480	$0515-1349$
2	$0515-2310$	3	SCREW-MACH M3 X 60MM-LG PAN-HD TORX	28480	$0515-2310$
3	$0515-3208$	2	SCREW-MACH M3 X 100MM-LG PAN-HD TORX	28480	$0515-2308$
4	$0515-2332$	10	SCREW-MACH M3 X 6MM-LG PAN-HD TORX	28480	$0515-2332$
5	$0515-0664$	1	SCREW-MACH M3 X 12MM-LG PAN-HD TORX	28480	$0515-0664$

Table 4-6 Parts List, Cover Assembly -8561E/EC and 8563E/EC (see Figure 4-2)

Item	Part Number	Qty	Description	Mfr Code	Mfr Part Number
1	$5041-8911$	1	BAIL HANDLE	28480	$5041-8911$
2	$5041-8912$	2	TRIM CAP	28480	$5041-8912$
3	$0515-1114$	4	SCREW MACH M4 X 10MM-LG PAN-HD	28480	$0515-1114$
4	$1460-2164$	2	SPRING-CPRSN .845 IN-OD 1.25-1N-OA-LG	28480	$1460-2164$

Table 4-6 Parts List, Cover Assembly -8561E/EC and 8563E/EC (see Figure 4-2)

Item	Part Number	Qty	Description	Mfr Code	Mfr Part Number
5	$5021-6343$	2	RING GEAR	28480	$5021-6343$
6	$5021-6344$	2	SOCKET GEAR	28480	$5021-6344$
7	$5021-8667$	2	HANDLE PLATE	28480	$5021-8667$
8	$5001-8728$	2	BACKUP PLATE	28480	$5001-8728$
9	$0515-1367$	6	SCREW MACH M4 X 8MM-LG 90DEG-FLH-HD	28480	$0515-1367$
10	$0515-1133$	2	SCREW-MACH M5 X 16MM-LG	28480	$0515-1133$
11	$5001-8800$	1	COVER	28480	$5001-8800$
12	$5041-7238$	1	MOISTURE DEFLECTOR-LF	28480	$5041-7238$
13	$5041-3989$	1	MOISTURE DEFLECTOR-RT	28480	$5041-3989$
14	$5041-8913$	2	SIDE TRIM	28480	$5041-8913$
15	$0515-1114$	2	SCREW-MACH M4 X 10MM-LG PAN-HD	28480	$0515-1114$
16	$5041-8907$	2	REAR FOOT	28480	$5041-8907$
17	$0900-0024$	4	O-RING .145-1N-XSECT-DIA SIL	51633	A5568-007
18	$2190-0587$	4	WASHER-LK HLCL 5.0 MM 5.1-MM-ID	28480	$2190-0587$
19	$0515-1218$	4	SCREW-SKT-HD-CAP M5 X 40MM-LG	28480	$0515-1218$
20	$08562-80028$	1	INSULATOR 292 X 355 MM .51 THK	28480	$08562-80028$

Table 4-7 Parts List, Main Chassis - 8561EC and 8563EC (see Figure 4-8)

Item	Part Number	Qty	Description	Mfr Code	Mfr Part Number
1	$0515-2145$	4	SCREW-MACH M3 X 8MM-LG PAN-HD TORX	28480	$0515-2145$
5	$5002-1010$	1	COVER, A6 POWER SUPPLY (Includes label)	28480	$5002-1010$
6	$0515-2309$	3	SCREW-MACH M3 X 0.5 45MM-LG TORX	28480	$0515-2309$
14	$5002-1008$	1	MAIN DECK	28480	$5002-1008$
15	$5002-1002$	1	FRONT END DECK	28480	$5002-1002$
16	$0515-1101$	4	SCREW-MACH M4 X 8MM-LG FLH-HD TORX	28480	$0515-1101$
17	$0515-1227$	2	SCREW MACH M3 X 6MM-LG FLH-HD TORX	28480	$0515-1227$
18	$5021-7464$	2	SIDE FRAME	28480	$5021-7464$
19	$0515-1101$	12	SCREW-MACH M4 X 8MM-LG FLH-HD TORX	28480	$0515-1101$
20	$0515-1227$	12	SCREW MACH M3 X 6MM-LG FLH-HD TORX	28480	$0515-1227$
21	$0515-1227$	8	SCREW MACH M3 X 6MM-LG FLH-HD TORX	28480	$0515-1227$
22	$0515-1227$	5	SCREW MACH M3 X 6MM-LG FLH-HD TORX	28480	$0515-1227$
23	$5021-5484$	5	MOUNTING POST	28480	$5021-5484$
24	$5062-0750$	2	HINGE, 2 BOARD	28480	$5062-0750$
25	$5062-0751$	2	HINGE, 4 BOARD	28480	$5062-0751$
26	$5041-7250$	1	CABLE CLAMP	28480	$5041-7250$
28	$0515-1227$	2	SCREW-MACH M3 X 6MM-LG FLH-HD TORX	28480	$0515-1227$
30	$5063-0269$	1	SHIELD WALL, TOP	28480	$5063-0269$
31	$5063-0268$	1	SHIELD WALL, BOTTOM	28480	$5063-0268$
33	$0515-0430$	2	SCREW-INVERTER BOARD	28480	$0515-0430$
34	$0515-0372$	4	SCREW-DISPLAY DRIVER	28480	$0515-0372$
35	$0400-0333$	4	STANDOFF CUSHIONS	28480	$0400-0333$
36	$1000-1014$	1	LCD GLASS PLATE	$1000-1014$	

Table 4-7 Parts List, Main Chassis - 8561EC and 8563EC (see Figure 4-8)

Item	Part Number	Qty	Description	Mfr Code	Mfr Part Number
37	$5041-9632$	1	LCD MOUNT	28480	$5041-9632$
38	$5000-8314$	1	LCD BACKPLATE	28480	$5000-8314$
39	$5022-3667$	1	LCD DRIVER SHIELD	28480	$5022-3667$
A17	$08562-6016$	1	LCD DRIVER BOARD	28480	$08562-6016$
A17A1	$0950-60166$	1	INVERTER BOARD		
A18	$2090-0379$	1	LCD ASSEMBLY - INCLUDES LCD GLASS, LCD	28480	$0950-60166$
		MOUNT, AND A18DS1 and A18DS2 BACKLIGHTS			

Table 4-8 Parts List, Main Chassis -8561E and 8563E (see Figure 4-3)

Item	Part Number	Qty	Description	Mfr Code	Mfr Part Number
1	0515-2145	4	SCREW-MACH M 3 X 8MM-LG PAN-HD TORX	28480	0515-2145
3	0515-1715	3	SCREW-MACH M $3 \times 35 M M-L G$ PAN-HD TORX	28480	0515-1715
4	0380-2052	2	SPACER .937LG .166ID	28480	0380-2052
5	5002-1010	1	COVER, A6 POWER SUPPLY (Includes label)	28480	5002-1010
6	0515-2309	3	SCREW-MACH M $3 \times 0.545 \mathrm{MM}$-LG TORX	28480	0515-2309
7	5041-7246	1	BOARD MOUNT	28480	5041-7246
8	0515-0372	2	SCREW-MACH M 3 X 8MM-LG PAN-HD TORX	28480	0515-0372
9	5041-8961	1	COVER, A17	28480	5041-8961
10	5021-5486	2	CRT MOUNT	28480	5021-5486
11	5001-5870	2	CRT MOUNT STRAP	28480	5001-5870
13	0515-0372	4	SCREW-MACH M 3 X 8MM-LG PAN-HD TORX	28480	0515-0372
14	5002-1008	1	MAIN DECK	28480	5002-1008
15	5002-1002	1	FRONT END DECK	28480	5002-1002
16	0515-1101	4	SCREW-MACH M $4 \times 8 \mathrm{M}$-LG FLH-HD TORX	28480	0515-1101
17	0515-1227	2	SCREW MACH M 3 X 6MM-LG FLH-HD TORX	28480	0515-1227
18	5021-7464	2	SIDE FRAME	28480	5021-7464
19	0515-1101	12	SCREW-MACH M $4 \times 8 \mathrm{M}$-LG FLH-HD TORX	28480	0515-1101
20	0515-1227	12	SCREW MACH M 3 X 6MM-LG FLH-HD TORX	28480	0515-1227
21	0515-1227	8	SCREW MACH M 3 X 6MM-LG FLH-HD TORX	28480	0515-1227
22	0515-1227	5	SCREW MACH M 3 X 6MM-LG FLH-HD TORX	28480	0515-1227
23	5021-5484	5	MOUNTING POST	28480	5021-5484
24	5062-0750	2	HINGE, 2 BOARD	28480	5062-0750
25	5062-0751	2	HINGE, 4 BOARD	28480	5062-0751
26	5041-7250	1	CABLE CLAMP	28480	5041-7250
27	0515-2164	2	SCREW-MACH M $3 \times 35 \mathrm{MM}$-LG TORX	28480	0515-2164
28	0515-1227	2	SCREW-MACH M 3 X 6MM-LG FLH-HD TORX	28480	0515-1227
29	5181-5040	1	LABEL, ASSEMBLY LOCATIONS	28480	5181-5040
30	5063-0269	1	SHIELD WALL, TOP	28480	5063-0269

Table 4-8 Parts List, Main Chassis -8561E and 8563E (see Figure 4-3)

Item	Part Number	Qty	Description	Mfr Code	Mfr Part Number
31	$5063-0268$	1	SHIELD WALL, BOTTOM	28480	$5063-0268$
A18MP1	$5062-7095$	1	CRT WIRING ASSY (INCLUDES A18L1, A18W1)	28480	$5062-7095$
A18MP2	$5041-3987$				
A18V1	1	SPACER, CRT			
2090-0225	1	TUBE, CRT A/O A18MP1	28480	$5041-3987$	

Table 4-9 Parts List, RF Section - 8561E/EC and for 8563E/EC (see Figures 4-4 and 4-5)

Item	Part Number	Qty	Description	Mfr Code	Mfr Part Number
1	$0515-1032$	2	SCREW-MACH M3 X 6MM-LG PAN-HD TORX	28480	$0515-1032$
2	$0515-2332$	2	SCREW-MACH M3 X 6MM-LG PAN-HD TORX	28480	$0515-2332$
3	$0515-2332$	2	SCREW-MACH M3 X 6MM-LG PAN-HD TORX	28480	$0515-2332$
4	$5021-7467$	1	FILTER CLAMP	28480	$5021-7467$
5	$08562-20060$	1	RHYTHM BRACKET (8561E/EC ONLY)	28480	$08562-20060$
6	$0515-2332$	2	SCREW-MACH M3 X 6MM-LG PAN-HD TORX	28480	$0515-2332$
7	$5002-1008$	1	MAIN DECK	28480	$5002-1008$
8	$0515-1227$	2	SCREW-MACH M3 X 6MM-LG FLH-HD TORX	28480	$0515-1227$
9	$5002-1002$	1	FRONT END DECK	28480	$5002-1002$
11	$0515-1227$	4	SCREW-MACH M3X 6MM-LG FLH-HD TORX	28480	$0515-1227$
12	$2360-0461$	4	SCREW-MACH 6-32 .375-IN-LG TORX	28480	$2360-0461$
13	$0515-0372$	1	SCREW-MACH M3 X 8MM-LG PAN-HD TORX	28480	$0515-0372$
14	$0515-1250$	2	SCREW-MACH M3X 6MM-LG PAN-HD TORX	28480	$0515-1250$
15	$5001-8731$	1	ATTENUATOR BRACKET	28480	$5001-8731$
18	$08560-00002$	1	ATTENUATOR BRACKET		
19	$0515-1250$	2	SCREW-MACH M3X 6MM-LG PAN-HD TORX	28480	$0515-1250$
20	$0515-1227$	1	SCREW-MACH M3X 6MM-LG FLH-HD TORX	28480	$0515-1227$
22	$0515-1227$	4	SCREW-MACH M3X 6MM-LG FLH-HD TORX	28480	$0515-1227$
23	$0515-1410$	2	SCREW-MACH M3X 6MM-LG FLH-HD TORX	28480	$0515-1410$

Table 4-10 Parts List, Front Frame - 8561EC and 8563EC (see Figure 4-9)

Item	Part Number	Qty	Description	Mfr Code	Mfr Part Number
1	$08561-80007$	1	8561EC - DRE SS PANEL OVE RLAY	28480	$08561-80007$
1	$08563-80086$	1	$8563 E C$ - DRE SS PANEL OVE RLAY	28480	$08563-80086$
1	$08563-80087$	1	$8563 E C$ (006) - DRESS PANEL OVERLAY	28480	$08563-80087$
2	$5181-8245$	1	CONNECTOR OVERLAY	28480	$5181-8245$
4	$0370-3069$	1	KNOB BASE 1-1/8 J GK .252-IN-IO (INCLUDES ITEM 5)	28480	$0370-3069$
5	$3030-0022$	2	SCREW-SET 6-32 .125-I N-LG SMALL CUP-PT		
6	$2950-0043$	1	NUT-HEX-DBL-CHAM 3/8-32-THD .094-IN-THK	00000	DESCRIBE
7	$2190-0016$	1	WASHER-LK INTL T 3/8 IN .377-IN-ID	28480	DESCRIBE $2190-0016$

Table 4-10 Parts List, Front Frame - 8561EC and 8563EC (see Figure 4-9)

Item	Part Number	Qty	Description	Mfr Code	Mfr Part Number
8	$5181-8246$	1	FRONT PANEL-DRESS	28480	$5181-8246$
9	$5060-0467$	1	PROBE POWER J ACK	28480	$5060-0467$
10	$0590-1251$	1	NUT-SPCLY 15/32-32-THD .1-I N-THK .562-WD	00000	DESCRIBE
11	$6960-0171$	1	PLUG-HOLE (Opt. 327)(not shown)	28480	$6960-0171$
12	$1250-1666$	2	ADAPTOR COAX STR F-SMA F-SMA	28480	$1250-1666$
13	$50515-2145$	12	SCREW-MACH M3 X 0.5 8M M-LG PAN-HD TX	28480	$0515-2145$
15	$5021-5483$	2	CATCH LATCH	28480	$5062-4806$
16	$0515-0366$	4	SCREW-MACH M2.5 X 0.45 6MM-LG PAN-HD TX	28480	$0515-0366$
17	$5022-0199$	1	FRONT FRAME	28480	$5022-0199$
18	$8160-0520$	1	RFI ROUND STRIP STL MSH/SIL RBR CU/SN	28480	$8160-0520$
19	$2950-0154$	1	NUT for 8561EC	28480	$2950-0154$
19	$0590-2563$	1	NUT for 8563EC for Standard and for Opt. O26	28480	$0590-2563$
20	$2190-0016$	1	WASHER-LK INTL T 3/8 IN .377-IN-ID	28480	$2190-0016$
21	$2950-0043$	1	NUT-HEX-DBL-CHAM 3/8-32-THD .094-IN-THK	00000	DESCRIBE
22	$1250-1811$	1	$8561 E C-R F ~ I N P U T ~ A S S E M B L Y$	28480	$1250-2191$
22	$5064-3968$	1	8563EC - RF INPUT ASSEMBLY	28480	$5064-3968$
22	$5064-3969$	1	8563EC (Option 026) - RF INPUT ASSEMBLY	28480	$5064-3968$
23	$5022-3711$	1	WASHER for 8561EC	28480	$5022-3711$
23	$5022-3710$	1	WASHER for 8563EC	28480	$5022-3710$
24	$5041-9630$		RUBBER KEYPAD (INCLUDES KEYCAPS)	28480	$5041-9630$
25	$1990-1131$	1	LED-LAMP LUM-INT=560UCD IF=20MA-MAX	$2 M 627$	LD-101MG
26	$5063-3966$	1	LINE SWITCH CABLE ASSEMBLY	28480	$5063-3966$
27	$0900-0010$	1	O-RING .101-IN-ID .07-IN-XSECT-DIA NTRL	51633	AS568-005
28	$0515-0664$	1	SCREW-MACHINE ASSEMBLYM3 X0.5 12MM-LG	28480	$0515-0664$
31	$0515-1934$	7	SCREW-MACH M2.5 X 0.45 6MM-LG PAN-HD TX	28480	$0515-1934$
32	$2100-4232$	1	R-VC 20K 20\% LOG	28480	$2100-4232$
33	$3050-0014$	2	WASHER-FL .250ID12	28480	$3050-0014$
34	$2190-0067$	1	WASHER-LK INTL .256-IN-ID	28480	$2190-0067$
35	$2950-0072$	1	NUT-HEX 1/4-32 THD	28480	$2950-0072$
36	$0370-3079$	1	KNOB RND .125 J G	28480	$0370-3079$

Table 4-11 Parts List, Front Frame-8561E and 8563E (see Figure 4-6)

Item	Part Number	Qty	Description	Mfr Code	Mfr Part Number
1	$0515-1622$	4	SCREW-SKT-HD-CAP M4 X 0.7 8MM-LG	28480	$0515-1622$
2	$5041-8906$	1	CRT BEZE L	28480	$5041-8906$
3	$1000-0897$	1	RFI CRT FACEPLATE		
4	$0370-3069$	1	KNOB BASE 1-1/8 J GK .252-I N-IO (INCLUDES ITEM 5)	28480	$1000-0897$
5	$3030-0022$	2	SCREW-SET 6-32 .125-IN-LG SMALL CUP-PT	00000	DESCRIBE

Table 4-11 Parts List, Front Frame-8561E and 8563E (see Figure 4-6)

Item	Part Number	Qty	Description	Mfr Code	Mfr Part Number
6	2950-0043	1	NUT-HEX-DBL-CHAM 3/8-32-THD .094-IN-THK	00000	DESCRIBE
7	2190-0016	1	WASHER-LK INTL T 3/8IN .377-IN-ID	28480	2190-0016
8	08561-00016	1	FRONT PANEL-DRESS (Agilent 8561E/EC)	28480	08561-00016
8	08563-00009	1	FRONT PANEL-DRESS (Standard) (8563E)	28480	08563-00009
8	08563-00010	1	FRONT PANEL-DRESS (Option 006) (8563E)	28480	08563-00010
9	5060-0467	1	PROBE POWER J ACK	28480	5060-0467
10	0590-1251	1	NUT-SPCLY 15/32-32-THD .1-IN-THK .562-WD	00000	DESCRIBE
11	1250-1666	2	ADAPTOR COAX STR F-SMA F-SMA	28480	1250-1666
12	0515-2145	12	SCREW-MACH M3 X 0.5 8MM-LG PAN-HD TX	28480	0515-2145
13	5062-4806	1	BUMPER KIT (Includes 4 bumpers)	28480	5062-4806
14	0905-1018	4	O-RING .126TD	28480	0905-1018
15	5021-5483	2	CATCH LATCH	28480	5021-5483
16	0515-0366	4	SCREW-MACH M 2.5×0.45 6MM-LG PAN-HD TX	28480	0515-0366
17	5022-0199	1	FRONT FRAME	28480	5022-0199
18	8160-0520	1	RFI ROUND STRIP STL MSH/SIL RBR CU/SN	28480	8160-0520
19	0535-0082	3	NVTM W LKWR M4	28480	0535-0082
20	2190-0016	1	WASHER-LK INTL T 3/8IN .377-IN-ID	28480	2190-0016
21	2950-0043	1	NUT-HEX-DBL-CHAM 3/8-32-THD .094-IN-THK	00000	DESCRIBE
22	5086-7895	1	RF INPUT ASSEMBLY (Standard)	28480	5086-7895
22	08673-60040	1	RF INPUT ASSEMBLY (Option 026)	28480	08673-60040
23	0515-2145	2	SCREW-MACH M3 X 0.5 8MM-LG PAN-HD TX	28480	0515-2145
24	5041-8985	1	RUBBER KEYPAD (INCLUDES KEYCAPS)	28480	5041-8985
25	1990-1131	1	LED-LAMP LUM-INT=560UCD IF =20MA-MAX	2M627	LD-101MG
26	5041-1682	1	KEYCAP "LINE"	28480	5041-1682
27	0900-0010	1	O-RING .101-IN-ID .07-IN-XSECT-DIA NTRL	51633	AS568-005
28	0515-0664	1	SCREW-MACHINE ASSEMBLY M3X 0.5 12MM-LG	28480	0515-0664
29	5021-5482	1	SUPPORT CENTER	28480	5021-5482
30	0515-1143	2	SCREW-MACH M 4 X 0.7 16MM-LG PAN-HD TX	28480	0515-1143
31	0515-1934	9	SCREW-MACH M2.5 X 0.45 6MM-LG PAN-HD TX (P/O A1W1)	28480	0515-1934
32	2100-4232	1	R-VC 20K 20\% LOG	28480	2100-4232
33	3050-0014	2	WASHER-FL . 2501 D 12	28480	3050-0014
34	2190-0067	1	WASHER-LK INTL .256-IN-ID	28480	2190-0067
35	2950-0072	1	NUT-HEX 1/4-32 THD	28480	2950-0072
36	0370-3079	1	KNOB RND . 125 J G	28480	0370-3079
	5021-9320	2	FLANGE MOUNT (Opt. 026)(not shown)	28480	5021-9320

Table 4-12 Parts List, Rear Frame-8561EC and 8563EC (see Figure 4-10)

Item	Part Number	Qty	Description	Mfr Code	Mfr Part Number
1	0515-1946	2	SCREW-MACH M 3 6MM-LG FLH-HD TORX	28480	0515-1946
2	5062-7755	1	BATTERY HOLDER (INCLUDES WIRES)	28480	5062-7755
3	0515-2216	4	SCREW-MACH M4 40MM-LG PAN-HD TORX	28480	0515-2216
4	3160-0309	1	FAN GRILL	28480	3160-0309
5	0380-0012	4	SPACER-RND .875-IN-ID	28480	0380-0012
6			NOT ASSIGNED		
7	6960-0002	1	PLUG-HOLE TR-HD FOR 0.5-D-HOLE STL	05093	SS-48152
8	6960-0023	1	PLUG-HOLE DOME-HD FOR 0.312-D-HOLE STL	04213	$\begin{aligned} & \text { D-2730-LC } \\ & 2 \end{aligned}$
9	1250-1753	1	ADAPTOR-COAX STR F-SMA OPT 001 (INCLUDES WASHER AND NUT)	28480	1250-1753
10	0515-1946	4	SCREW-MACH M 3 6MM-LG FLH-HD TORX	28480	0515-1946
11	0515-0684	1	SCREW-MACH M 3 6MM-LG PAN-HD TORX	28480	0515-0684
12	2950-0035	1	NUT HEX 15/32THD	28480	2950-0035
13	1252-0995	1	CONNECTOR-TEL 2-CKT .141-SHK-DIA (INCLUDES NUT AND J ACK)	28480	1252-0995
14	5002-4049	1	REAR PANEL-DRESS	28480	5002-4049
15	0515-2145	4	SCREW-MACH M 3 6MMLG PAN-HD TORX	28480	0515-2145
16	8160-0520	1	RFI ROUND STRIP STL SPIRA . 150	28480	8160-0520
17	5022-3778	1	REAR FRAME	28480	5022-3778
18	5021-6391	2	SCREW-CONNECTOR GPIB	28480	5021-6391
19	2200-0225	2	SCREW-MACH 4-40 .25-IN-LG TORX	28480	2200-0225
20	0535-0082	2	NUT M4.0 W/LOCKWR	28480	0535-0082
21	0515-0433	1	SCREW-MACH M 3 6MM-LG PAN-HD TORX	28480	0515-0433
22	0535-0023	2	NUT-HEX DBL-CHAM M4 X 0.7 3.2MM-THK	28480	0535-0023
23	8121-0062	1	VGA CONNETOR AND CABLE	28480	8121-0062
B1	5061-9036	1	FAN ASSEMBLY (INCLUDES WIRE)	28480	5061-9036
BT1	1420-0341	1	BATTERY 3.0V 1.2A-HR LITHIUM POLYCARBON MONOFLUORIDE	08709	$\begin{array}{\|l} \text { BR 2/3A } \\ \text { SSP } \end{array}$

Table 4-13 Parts List, Rear Frame-8561E and 8563E (see Figure 4-7)

Item	Part Number	Qty	Description	Mfr Code	Mfr Part Number
1	0515-1946	2	SCREW-MACH M 3 6MM-LG FLH-HD TORX	28480	0515-1946
2	5062-7755	1	BATTERY HOLDER (INCLUDES WIRES)	28480	5062-7755
3	0515-2216	4	SCREW-MACH M 4 40MM-LG PAN-HD TORX	28480	0515-2216
4	3160-0309	1	FAN GRILL	28480	3160-0309
5	0380-0012	4	SPACER-RND .875-IN-ID	28480	0380-0012
6			NOT ASSIGNED		
7	6960-0002	1	PLUG-HOLE TR-HD FOR 0.5-D-HOLE STL	05093	SS-48152
8	6960-0023	1	PLUG-HOLE DOME-HD FOR 0.312-D-HOLE STL	04213	$\begin{aligned} & \text { D-2730-LC } \\ & 2 \end{aligned}$
9	1250-1753	1	ADAPTOR-COAX STR F-SMA OPT 001 (INCLUDES WASHER AND NUT)	28480	1250-1753
10	0515-1946	4	SCREW-MACH M 3 6MM-LG FLH-HD TORX	28480	0515-1946
11	0515-0684	1	SCREW-MACH M 3 6MM-LG PAN-HD TORX	28480	0515-0684
12	2950-0035	1	NUT HEX 15/32THD	28480	2950-0035
13	1252-0995	1	CONNECTOR-TEL 2-CKT .141-SHK-DIA (INCLUDES NUT AND J ACK)	28480	1252-0995
14	5002-1012	1	REAR PANEL-DRESS	28480	5002-1012
15	0515-2145	4	SCREW-MACH M 3 6MMLG PAN-HD TORX	28480	0515-2145
16	8160-0520	1	RFI ROUND STRIP STL SPIRA . 150	28480	8160-0520
17	5021-5479	1	REAR FRAME	28480	5021-5479
18	5021-6391	2	SCREW-CONNECTOR GPIB	28480	5021-6391
19	2200-0225	2	SCREW-MACH 4-40.25-IN-LG TORX	28480	2200-0225
20	0535-0082	2	NUT M 4.0 W/LOCKWR	28480	0535-0082
21	0515-0433	1	SCREW-MACH M 3 6MM-LG PAN-HD TORX	28480	0515-0433
22	0535-0023	2	NUT-HEX DBL-CHAM M4 X 0.7 3.2MM-THK	28480	0535-0023
B1	5061-9036	1	FAN ASSEMBLY (INCLUDES WIRE)	28480	5061-9036
BT1	1420-0341	1	BATTERY 3.0V 1.2A-HR LITHIUM POLYCARBON MONOFLUORIDE	08709	$\begin{array}{\|l\|} \hline \text { BR 2/3A } \\ \text { SSP } \end{array}$

Figure 4-2. Parts Identification, Cover Assembly

Figure 4-4. Parts Identification, RF Section (8561E and 8561EC)

5
 Major Assembly and Cable Locations

Introduction

This chapter identifies the instrument's assemblies and cables and contains the following figures:

Figure 5-1. Hinged Assemblies

page 283

Figure 5-2. Top View (A2 U nfolded) EC-Series page 284
Figure 5-3. Top View (A2 and A3 Unfolded) EC-Series page 285
Figure 5-4. Top View (A2 Unfolded) E-Series................... page 286
Figure 5-5. Top View (A2 and A3 Unfolded) E-Series....... page 287
Figure 5-6. Top View (A2, A3, A4, A5 Unfolded) E-Series .. page 288
Figure 5-7. Bottom View (A15 Unfolded).......................... page 289
Figure 5-8. Bottom View (A15 and A14 Unfolded)............ page 290
Figure 5-9. A16 Fast ADC (Option 007)............................ page 291
Figure 5-10. 8561E/EC Front End page 292
Figure 5-11. 8563E/EC Front End page 293
Figure 5-12. Rear View, EC-Series..................................... page 294
Figure 5-13. Rear View, E-Series....................................... page 294
Diagrams that illustrate features common to E-series and EC-series instruments are shown with E -series instruments. Where there are differences between E-series and EC-series features, separate diagrams are provided.
Use the list below to determine the figure(s) illustrating the desired assembly or cable.
Assemblies Figure
A1 front frame 5-8
A1A1 keyboard 5-8
A2 controller 5-1, 5-2
A3 interface 5-1, 5-2
A4 log amplifier/cal oscillator 5-1, 5-3
A5 IF filter 5-1, 5-6
A6 power supply 5-6
A6A1 high voltage module 5-6
8561E/EC A7 first LO distribution amplifier (LODA) 5-10
8563E/EC A7 first LO distribution amplifier (SLODA) 5-11
A8 dual mixer (8561E/EC) 5-10
A8 low band mixer (8563E/EC) 5-11
A9 RF attenuator 5-10, 5-11
A10 Yig-tuned filter (SYTF, 8561E/EC) 5-10
A10 Yig-tuned filter/mixer (RYTHM, 8563E/EC) 5-11
A11 YTO (8561E/EC) 5-10
A11 YTO (8563E/EC) 5-11
A12 (NOT ASSIGNED)
A13 second converter 5-10, 5-11
A14 frequency control 5-1, 5-8
A15 RF 5-1, 5-75-6, 5-8
A16 fast ADC (Option 007) 5-95-8
A17 CRT driver 5-6
A18 CRT assembly 5-6
A19 GPIB 5-6
A20 battery assembly 5-12
A21 OCXO 5-6
B1 fan. 5-12
Assemblies
Figure
BT1 battery5-12
FL1 Low-pass filter 5-10, 5-11
FL2 Low-pass filter 5-10, 5-11
FL3 (NOT ASSIGNED)
FL4 line filter 5-12
LS1 speaker 5-6, 5-9
Cables
Figure
A1A1W1 keyboard cable 5-2, 5-6
A3W1 interface cable 5-2
A19W1 GPIB cable 5-2, 5-6
W1 power cable $5-2,5-3,5-6,5-7$
W2 control cable 5-2, 5-3, 5-6, 5-7
W3 line switch cable 5-6, 5-10, 5-11
W4 option module cable 5-6
W5 (NOT ASSIGNED)
W6 battery cable (part of A20 battery assembly) 5-2
W7 display cable. 5-2
W8 display power cable 5-6
W9 CRT yoke cable 5-6
W10 A11 YTO drive cable 5-8, 5-10, 5-11
W11 A9 attenuator drive cable 5-8
W12 A7 LODA drive cable 5-8, 5-10, 5-11
W13 A13 second conv. drive cable 5-8
W14 (NOT ASSIGNED)
W15 A8 bias-control (8561E/EC) 5-8
W16 A10 drive cable 5-10, 5-11
W17 (NOT ASSIGNED)
W18 LO sweep (coax 97) 5-8
W19 Second IF out (coax 83) 5-7
W20 Zero-span video (coax 6) 5-2
W21 (NOT ASSIGNED)
W22 10 MHz frequency count (coax 0) 5-2, 5-7
W23 ext. trigger in (coax 93) 5-2
W24 video out (coax 5) 5-2
W25 blanking out (coax 4) 5-2
W26 (NOT ASSIGNED)
W27 filtered 10.7 MHz 5-3, 5-6
W28 (NOT ASSIGNED)
W29 10.7 IF (coax 7). 5-6, 5-7
W30 (NOT ASSIGNED)
W31 ref. in/out (coax 8) 5-7
W32 sampler IF (coax 87) 5-7,5-8
W33 second LO drive (coax 81) 5-7, 5-10, 5-11
CablesFigure
W34 first LO Samp. (coax 0) 5-7, 5-8, 5-10, 5-11
W35 int Second IF (coax 92) $.5-7,5-10,5-11$
W36 ext. Second IF (coax 86) 5-7
W37 10 MHz ref. 1 (coax 85) 5-7, 5-8
W38 semirigid coax, A11J 2 to A7J 1 5-10, 5-11
W39 semirigid coax, A7J 2 to A8J 4 (8561E/EC) 5-10
W39 semirigid coax, A7J 2 to A8J 3 (8563E/EC) 5-11
W40 cal. out (Coax 89) 5-7
W41 semirigid coax, front-panel J 1 to A9J 1 5-9
W42 semirigid coax, A 7J 3 to front-panel J 4 (8561E/EC) 5-10
W42 semirigid coax, A7J 5 to front-panel J 4 (8563E/EC). 5-11
W43 semirigid coax, A9j 2 to A10J 1 (8561E/EC) 5-10
W43 semirigid coax, A9j 2 to A10J 3 (8563E/EC) 5-11
W44 semirigid coax, A10J 3 to FL1J 1 (8561E/EC) 5-10
W44 semirigid coax, A10J 2 to FL1J 1 (8563E/EC) 5-11
W45 semirigid coax, FL1J 2 to A8J 1 5-10, 5-11
W46 semirigid coax, A7J 3 to A10J 4 (8563E/EC) 5-11
W47 semirigid coax, A10J 2 to A8J 3 ($8561 E / E C$) 5-10
W48 first IF, high band 5-10, 5-11
W49 OCXO 10 MHz out (coax 82) 5-7
W50 OCXO power (part of A21 OCXO assembly) 5-7
W51 10 MHz in (coax 84) 5-3, 5-7
W52 cal oscillator out (coax 9) 5-6
W53 frequency counter (coax 1) 5-2,5-3
W54 video (coax 2) 5-2,5-3
W55 audio out 5-3, 5-6
W56 semirigid coax, A8J 2 to FL2J 1. 5-10,5-11
W57 semirigid coax, FL2J 2 to A13J 1 5-10, 5-11
W58 alt sweep out (coax 8) 5-8
W60 ribbon, A2J 8 to A17J 1 5-2, 5-3
W61 coax, A2J 9 to A17 J 7 5-2, 5-3
W62 ribbon, A17J 6 to A17A1 5-2, 5-3
W63 ribbon, A17J 5 to A18 5-2, 5-3
W64, A17J 4 toJ 1 on the rear panel (VGA port) 5-2, 5-3

Figure 5-1 Hinged Assemblies

Figure 5-1 shows an 8560 E-series instrument. EC-series instruments are identical except the A2 board is smaller.

Figure 5-2 Top View (A2 and A3 unfolded) - EC-Series

Figure 5-3 Top View (A2, A3, A4, and A5 Unfolded) - EC-Series

Figure 5-4 Top View (A2 Unfolded) - E-Series

GRAY/ORANGE/WHITE
(OPTION 007)

Figure 5-5 Top View (A2 and A3 Unfolded) - E-Series

SK157

Figure 5-6 Top View (A2, A3, A4, and A5 Unfolded) - E-Series

Figure 5-7 Bottom View (A15 Unfolded)

Figure 5-8 Bottom View (A15 and A14 Unfolded)

Figure 5-9 A16 Fast ADC (Option 007 in 8560 E-Series Instruments)

Major Assembly and Cable Locations
Introduction

Figure 5-10 8561E/EC Front End

Figure 5-11 8563E/EC Front End

sk1135e

Figure 5-12 Rear View EC-Series

Figure 5-13 Rear View E-Series

SK 162

Introduction

> This chapter provides information needed to troubleshoot your spectrum analyzer to one of the six major functional sections. Chapters 7 through 12 cover troubleshooting for each of these sections. Before troubleshooting, read the rest of this introduction. To begin troubleshooting, refer to "Troubleshooting to a Functional Section" on page 303 .
Troubleshooting to a F unctional Section page 303
TAM (Test and Adjustment Module) page 305
Error Messages page 311
System Analyzer Programming Errors (100 to 150) page 312
Block Diagram Description page 346
NOTE When a part or assembly is replaced, adjustment of the affected circuitry is usually required. Refer to Chapter 2, "Adjustment Procedures."
WARNING Troubleshooting and repair of this instrument without the cover exposes high voltage points that may, if contacted, cause personal injury. Maintenance and repair of this instrument should, therefore, be performed only by a skilled person who knows the hazards involved. Where maintenance can be performed without power applied, the power should be removed. When any repair is completed, be sure that all safety features are intact and functioning and that all necessary parts are connected to their grounds.

Assembly Level Text

To locate troubleshooting information for an individual assembly, refer to Table 6-1, "L ocation of Assembly Troubleshooting Text," on page 304.

Block Diagrams

Instrument-level block diagrams are located at the end of this chapter. Power levels and voltages shown on block diagrams are provided as a troubleshooting aid only. They should not be used for making instrument adjustments.

Assembly Test Points

The spectrum analyzer board assemblies contain four types of test points: post, pad, extended component lead, and test jack. Figure 6-1 illustrates each type of test point as seen on both block diagrams and circuit boards. The name of the test point will be etched into the circuit board next to the test point (for example, TP2). In some instances, the test point will be identified on the board by its number only.

Pad

E ach pad test point uses a square pad and a round pad etched into the board assembly. The square pad is the point being measured. The round pad supplies a grounding point for the test probe.

Test J ack

The test jack is a collection of test points located on a 16-pin jack. There are approximately 20 test jacks used throughout the spectrum analyzer. The Agilent 85629B test and adjustment module uses the spectrum analyzer test jacks during diagnostic and adjustment procedures. The pins on the test jack may be manually probed, provided caution is used to prevent accidental shorting between adjacent pins.
Figure 6-1 illustrates the pin configuration for the test jack. Line names are the same for all test jacks. The following mnemonics are used: MS (measured signal), TA (test and adjustment module address line), and OS (output signal). Test jack test points are identified on block diagrams by both the jack/pin number and line name.

Ribbon Cables

Ribbon cables are used extensively in the spectrum analyzer. The following five cables use different pin numbering methods on the jacks (signal names remain the same but the pin numbers vary):

W1, power cable
W2, control cable
W4, option cable
A3W1, interface cable
A19W1, GPIB cable
Figure 6-2 on page 299 and Figure 6-3 on page 300 illustrate the pin configurations of these five cables. Cables W1 and W2 use two pin numbering methods on their many jacks. These methods are identified in the interconnect and block diagrams by the letters "A" and "B" next to the jack designator (for example, J l(A)). Board assembly jacks connected to W1 will always be labeled J 1. Board assembly jacks connected to W2 will always be labeled J 2.

Figure 6-4 on page 301 shows the pin configuration for the 80 pin, W60 cable that is found on EC-series instruments. The numbering of the pins is identical on the A2 Controller board and the A17 Display Driver board.

Figure 6-1 Assembly Test Points

TEST POINTS ON CIRCUIT BOARD ASSEMBLY

SK163

Figure 6-2 Ribbon Cable Connections (1 of 3)

sp 149 e

Figure 6-3 Ribbon Cable Connections (2 of 3)

B

	A 19 J 1	
DIO1	-24 23 -	D105
D102	- 2221 -	D106
D103	- 2019	D107
DIO4	- $18 \quad 17$ -	D108
EOI	- $16 \quad 15$ -	REN
DAV	- 1413	D GND
NRF D	- 1211	D GND
NDAC	- 109	D GND
IFC	- 87	D GND
SRQ	- 65	D GND
ATN	- 430	D GND
NC	-2 2 -	D GND

REAR			
PANEL J2			
D101	- 1	$13 \bullet$	D105
D102	- 2	$14 \bullet$	D 106
D103	- 3	15 •	D 107
D104	- 4	$16 \bullet$	D108
EOI	- 5	17 •	REN
DAV	- 6	$18 \bullet$	D GND
NRFD	- 7	$19 \bullet$	D GND
NDAC	- 8	20 •	D GND
IFC	- 9	21 •	D GND
SRQ	- 10	$22 \bullet$	D GND
ATN	- 11	23 •	D GND
NC	- 12	24	D GND

GND SX	- 80	- 79	addrmsx2
addrmsx 3	- 78	- 77	GND SX
addrmsx 6	- 76	- 75	addrmsx 7
GND SX	- 74	- 73	addrmsx 10
addrmsx 11	- 72	- 71	GND SX
NC	- 70	- 69	NC
6ND SX	- 68	. 67	NC
NC	- 66	- 65	GND SX
NC	- 64	- 53	NC
GNDSX	- 62	- 61	DATAMSX 2
DATAMSX 3	- 60	- 59	GND SX
DATAMSX 6	- 58	- 57	DATAMSX 7
GND SX	- 56	- 55	DATAMSX 10
DATAMSX11	- 54	- 53	GNSD SX
DATAMSX 14	- 52	- 51	DATAMSX 15
GND SX	- 50	- 49	NC
RESETMSX	- 48	- 47	GND SX
NC	- 46	- 45	+5V BKLTSX
+5VBKLTSX	- 44	- 43	+5VBKLTSX
+5VBLKTSX	- 42	- 41	+5VSX
addrmsx 1	- 40	- 39	GND SX
addrmsx 4	- 38	- 37	addrmsx 5
gnd sx	- 36	- 35	addrmsx 8
addrmsx 9	- 34	- 33	GND SX
ddrmsx 12	- 32	- 31	addrmsx 13
GND SX	- 30	- 29	NC
NC	- 28	- 27	GNDSX
NC	- 26	- 25	NC
GND SX	- 24	- 23	DATAMSX
DATAMSX 1	- 22	- 21	GND SX
DATAMSX 4	- 20	- 19	DATAMSX 5
GND SX	- 18	- 17	DATAMSX 8
DATAMSX 9	- 16	- 15	GND SX
DATAMSX 12	- 14	13	DATAMSX 13
GND SX	- 12	11	LMUX-INSX
EN1SX	- 10	- 9	GND SX
NC	- 8	7	NC
GND SX	- 6	5	+5VBKLTSX
+5V BKLTSX	- 4	3	+5VBKLTSX
+5V BKLTSX	- 2	1	+5VSX

Figure 6-4 shows A2J 8 connections on 8560 EC-Series Instruments. Lines $2-5$ and 42 - 44 supply +5 V to the two LCD backlights. Lines 1 and 41 supply +5V to the A17A1 Inverter board. Lines 1 - 6 and 41 - 44 are identical on A17J 1.

Service Cal Data Softkey Menus

The jumper on A2J 12 is shipped from the factory in the WR PROT (write protect) position (jumper on pins 2 and 3). When the jumper is set to the WR ENA (write enable) position (jumper on pins 1 and 2), an additional service cal data menu is displayed under CAL. Figure 6-5 illustrates those areas of the service cal data menu that are available.

Figure 6-5 Service Cal Data Menu


```
* PRESEL ADJ key and the associated menu
    BAND 1 MXR BIAS key applies to
```


Troubleshooting to a Functional Section

1. Refer to Table 6-1 on page 304 for the location of troubleshooting information.
2. If the Agilent 85629B test and adjustment module (TAM) is available, refer to "TAM (Test and Adjustment Module)" on page 305.
3. If error messages are displayed, refer to "E rror Messages" on page 311. You will find both error descriptions and troubleshooting information.
4. If a signal cannot be seen, and no errors messages are displayed, the fault is probably in the RF Section. Refer to Chapter 11, "RF Section."
5. Blank displays result from problems caused by either the controller or display/power-supply sections. Because error messages 700 to 759 caused by the controller section cannot be seen on a blank display, use the following BASIC program to read these errors over GPIB. If the program returns an error code of 0 , there are no errors.
```
10 DIM Err$[128]
20 OUTPUT 718;"ERR?;"
30 ENTER 718; Err$
40 PRINT Err$
50 END
```

a. If there is no response over GPIB, set an oscilloscope to the following settings:
\qquad
Amplitude scale. $1 \mathrm{~V} / \mathrm{div}$
b. The signals at A2J 202 pin 3 and pin 14 should measure about 4 Up-p. If the levels are incorrect, refer to Chapter 9, "Controller Section," and troubleshoot the A2 controller assembly.
c. Set the oscilloscope to the following settings:

Sweep time. 1 Ims/div
Amplitude scale. 2V/div
d. The signal at A2J 202 pin 15 should consist of TTL pulses. If the signal is at a constant level (high or low), troubl eshoot the A2 controller assembly.
6. Display problems such as intensity or distortion are caused by either the controller or display/power-supply sections. Refer to Chapter 9 or Chapter 12.

Table 6-1 Location of Assembly Troubleshooting Text

Instrument Assembly	Location of Troubleshooting Text
A1A1 keyboard	Chapter 7. ADC/I nterface Section
A1A2 RPG	Chapter 7. ADC/I nterface Section
A2 controller	Chapter 9. Controller Section
A3 interface	Chapter 7. ADC/I nterface Section
	Chapter 8. IF Section
A4 log amplifier/cal oscillator	Chapter 8. IF Section
A5 IF	Chapter 8. IF Section
A6 power supply	Chapter 12. Display/Power Supply Section
A6A1 HV module	Chapter 12. Display/Power Supply Section
A7 LODA (8561E/EC)	Chapter 11. RF Section
A7 SLODA (8563E/EC)	Chapter 11. RF Section
A8 dual band mixer (8561E/EC)	Chapter 11. RF Section
A8 Iow band mixer (8563E/EC)	Chapter 11. RF Section
A9 input attenuator	Chapter 11. RF Section
A10 SYTF (8561E/EC)	Chapter 11. RF Section
A10 RYTHM (8563E/EC)	Chapter 11. RF Section
A11 YTO	Chapter 10. Synthesizer Section
A13 2nd converter	Chapter 11. RF Section
A14 frequency control	Chapter 10. Synthesizer Section
A15 RF assembly	Chapter 11. RF Section
A17 LCD driver (8561EC and 8563EC)	Chapter 10. Synthesizer Section
A17 CRT driver (8561E and 8563E)	Chapter 11. RF Section
A18 LCD (8561EC and 8563EC)	Chapter 12. Display/Power Supply Section
A18 CRT (8561E and 8563E)	Chapter 12. Display/Power Supply Section
A19 GPIB	Chapter 12. Display/Power Supply Section
A21 OCXO	Chapter 12. Display/Power Supply Section
FL1, FL2	Chapter 9. Controller Section

TAM (Test and Adjustment Module)

When attached to the spectrum analyzer rear panel, the Agilent 85629B test and adjustment module (TAM) provides diagnostic functions for supporting the spectrum analyzer. Because the TAM is connected directly to the spectrum analyzer internal data and address bus, it controls the spectrum analyzer hardware directly through firmware control. It would be impossible to control the hardware to the same extent either from the spectrum analyzer front panel or over the GPIB.

The TAM measures voltages at key points in the circuitry and flags a failure whenever the voltage falls outside the limits. The TAM locates the failure to a small functional area which can be examined manually. Remember the following when using the TAM:

- Besure the spectrum analyzer power is turned off when installing or removing the TAM.
- Use the HELP softkey (found in all menus) for useful information.
- Pressing MODULE will return you to the TAM 's main menu.
- The TAM acts as the active controller on the GPIB bus. No other active controller should be connected to the bus.

Diagnostic Functions

The TAM provides the four diagnostic functions listed below. (Additional menu selections support the TAM itself.) Refer to the following for a description of each function.

Diagnostic

1. Automatic Fault I solation
2. Manual Probe Troubleshooting (requires cover removal)
3. RF Path Fault I solation
4. Calibration Oscillator Troubleshooting Mode (requires cover removal)

TAM Requirements

For the TAM to function properly, certain parts of the spectrum analyzer must be operating properly. These include the CPU, parts of the program ROM and program RAM, the keyboard and keyboard interface, and the display.

Even though theTAM communicates to the operator via the display, some display problems can be troubleshot using the TAM. This is possible by using the Print Page softkey. Even if the display is dead, Print Page is still active. Refer to Chapter 6 for instructions on using the TAM when the display is not functioning.

Test Connectors

The TAM uses a built-in dc voltmeter and DAC to measure voltages on any one of the "test connectors" (or test jacks) located throughout the spectrum analyzer.

Revision Connectors

One test connector on each assembly is reserved as a "revision connector." The TAM uses the revision connector to identify the assembly's design revision. A "revision voltage" placed onto one measured signal line (MSL) pin, indicates design changes.

TheTAM must be plugged into the revision connector first to determine which tests to use for the assembly. If the revision connector has not been probed, a message will appear instructing you to connect the probe to the revision connector and press TEST. You can then probe the rest of the assembly's connectors.

NOTE

If the revision of the PC board is newer than the TAM, a message will be displayed stating that the revision code for this board is not known by this module. The choices presented are to use the test for the latest known revision board, measure only voltages, or exit. In general, most points will not change from one board revision to another, so using the most current tests is still very useful. However, any failure should be verified using the manual troubleshooting procedures before doing a repair.

Inconsistent Results

Many of the signals measured by theTAM are digitally controlled. If inconsistent results are obtained, or if failures appear in unrelated areas, the digital control may be at fault. Refer to the manual troubleshooting procedures for those assemblies to isol ate those failures.

Erroneous Results (8561E and 8563E)

If the TAM manual probe troubleshooting seems to be giving erroneous results, its performance can be checked by placing the probe on the TAM test connector (A2J 11) located on the A2 controller assembly and executing the manual probe diagnostics. If either of the tests fail, the TAM is malfunctioning and should be serviced.

Blank Display (8561E and 8563E)

It is possible to use the TAM's manual probe troubleshooting without a display if an GPIB printer is available. Refer to Chapter 12 for more information.

Automatic Fault Isolation

Automatic fault isolation (AFI) is designed to isolate most faults to one or two assemblies. AFI can be run with the spectrum analyzer cover in place and requires only the CAL OUTPUT signal as a stimulus. The entire procedure takes less than 2 minutes to complete if no failures are found.

AFI performs checks of five functional areas in a pre-defined sequence. The sequence minimizes the chance of making false assumptions. The TAM checks the spectrum analyzer "from the inside out." For example, the ADC is checked before the IF is checked. This ensures that if no signal is detected through the IF, the fault is in the IF section and not a faulty ADC. The ADC measures the video signal from the IF section.

The sequence of checks is as follows:

1. Controller check
2. ADC/interface check
3. IF/log check
4. LO control check
5. RF low band check

Only the low band of the spectrum analyzer is checked by AFI. This is because the only stimulus to the RF section is from the 300 MHz CAL OUTPUT signal. A signal greater than 2.9 GHz would be required to check the high band path.

Display/Power Supply

AFI cannot check the display/power-supply section because this section powers the TAM and provides the display of AFI results.

Controller Check

The TAM performs a check-sum of all ROMs, RAMs, and the EEROM. The CPU is also checked, since parts of the CPU could be nonfunctional while the TAM still operates. These checks are very similar to those done by the spectrum analyzer at power-on.

ADC/Interface Check

The keyboard interface and strobe-select circuitry must be functioning correctly, since these are required to operate the TAM. The TAM checks the ADC by attempting to measure three signals from three different locations. This ensures that an open or short in one cable will not hide the fact that the ADC is operating satisfactorily. The analog bus (W2 control cable) is checked by sending data out on the data lines and reading the data back. If this check fails, disconnect one board at a time and rerun AFI to determine if an assembly causes the problem. If the fault remains with all assemblies disconnected from W2, troubleshoot W2 or the A3 interface assembly.

IF/LOG Check

The TAM uses the cal oscillator on the A4 assembly as the stimulus for checking the IF section. If the signal is undetected, the TAM repeats the test with a signal originating from the RF section. Presence of this signal through the IF indicates a faulty cal oscillator.

LO Control Check

The LO control check verifies that all phase-lock loops (PLLs) in the synthesizer section lock. Some oscillators are checked to ensure that they will lock outside their normal operating frequency range. The TAM also performs an operational check on several DACs in the synthesizer section.

RF Check

TheTAM tests the operation of the A8 dual band mixer (8561E/EC), the A8 low band mixer (8563E/EC), the A9 input attenuator, the A10 switched YIG-tuned filter (SYTM) (8561E/EC), the A10 YIG-tuned filter/mixer (RYTHM) (8563E/EC), the second IF distribution, the third converter (A15), and most of the A13 second converter.

AFI also checks the flatness compensation amplifiers (part of the A15 RF assembly), ensuring that their gain can be adjusted over a certain range.
If no signal is detected through the RF section, AFI will substitute the 298 MHz SIG ID oscillator, if present, for the third LO while simultaneously decreasing the first LO frequency by 2 MHz . If a signal can now be detected, troubleshoot the third LO driver amplifier on the A15 RF assembly.

Manual Probe Troubleshooting

Manual probe troubleshooting probes the instrument's test connectors to perform the following types of measurements:

- Amplifier and oscillator dc current draw by monitoring the voltage across a resistor of known value.
- Oscillator tune voltages ensuring proper operation of phase/frequency detectors and loop integrators.
- Static bias voltages.
- DAC output voltages.

If probing a connector for a check yields a "FAIL" indication, select the desired check using either the knob or step keys and press More Info. A description of the function checked (with measured and expected voltages or currents) is displayed with a list of additional areas to check. These areas can sometimes be checked by looking at another TAM connector, but usually require manual troubleshooting techniques
to isol ate the problem further. If an GPIB printer is connected, press Print Page to provide a hard copy of the currently displayed screen (the softkey labels will not be printed).

E ach test connector has fifteen pins (one pin is missing to act as a key). The pins contain eight measured signal lines (measured signal lines denoted as MS1 through MS8), one input signal line (OS1), one ground, and five pins encoding a five-bit connector address.

The TAM needs to probe each assembly's revision connector once; subsequent readings are not necessary. It is possible, for example, to probe the A5 IF assembly, then the A4 log amplifier assembly, and then return to A5 without having to re-probe A5's revision connector. However, the revision connector must be re-probed if the spectrum analyzer is returned to normal operation and then back to TAM control. (This is also true if the spectrum analyzer is turned off.)

RF Path Fault Isolation

RF path fault isolation checks high-band RF paths. (automatic fault isolation checks the low-band RF path.) An external microwave source with a frequency range of 5 GHz to 20 GHz is required. The source is not controlled over GPIB. The user is prompted by the TAM to set the source to $5 \mathrm{GHz}, 10 \mathrm{GHz}, 15 \mathrm{GHz}$, or 20 GHz (5 GHz only for an $8561 \mathrm{E} / \mathrm{EC}$) at -10 dBm . (The TAM expects -10 dBm at the input of the spectrum analyzer; the amplitude at the source output may have to be higher to account for cable loss.)

The source also provides a signal for high band. The TAM checks the operation of the A9 input attenuator. TheTAM checks the A10 switched YIG-tuned filter (Agilent 8561E/EC) and the A10 YIG-tuned filter/mixer ($8563 \mathrm{E} / \mathrm{EC}$) at 5 GHz . If no signal is present, the TAM will use the 298 MHz SIG ID oscillator, if present, as is done in AFI.

Calibration Oscillator Troubleshooting Mode

The cal osc troubleshooting mode enables front-panel control of the cal oscillator on the A4 assembly. The cal oscillator can be fixed-tuned to three different frequencies. The cal oscillator may also be set to one of four sweep widths, centered at 10.7 MHz . Fixed-tuned settings:
11.5 MHz
10.7 MHz
9.9 MHz

Sweep-width settings:
20 kHz
10 kHz
4 kHz
2 kHz

TAM (Test and Adjustment Module)

The cal osc troubleshooting mode sends the cal oscillator output (-35 dBm) to the A5 IF assembly. On the A5 IF assembly all crystal filter poles are shorted, all LC poles are enabled, and the 15 dB attenuator is disabled. Signals from the RF section are attenuated as much as possible.

Error Messages

The spectrum analyzer displays error messages in the lower right-hand corner of the display. A number, or error code, is associated with each error message. These error messages alert the user to errors in spectrum analyzer function or use.
Multiple error messages may exist simultaneously. Refer to "Viewing Multiple Messages" next.

The following information can be found in this section:
Viewing Multiple Messages
Error Message Elimination
System Analyzer Programming Errors (100 to 150)
ADC Errors (200 to 299)
LO and RF Hardware/Firmware Failures (300 to 399)
YTO Loop Errors (300 to 301)
Roller PLL Errors (302 to 316)
YTO Loop Errors (317 to 320)
Roller Oscillator Errors (321 to 329)
YTO Loop Error (331)
600 M Hz Reference Loop (333)
YTO Leveling Loop (334)
Sampling Oscillator (335)
10 MHz Reference (336)
Fractional N PLL (337)
YTO Loop Settling Errors (351 to 354)
Sampling Oscillator (355)
Automatic IF Errors (400 to 599)
System Errors (600 to 651)
Digital and Checksum Errors (700 to 799)
EEROM Checksum Errors (700 to 704)
Program ROM Checksum Errors (705 to 710)
RAM Check Errors (711 to 716)
Microprocessor Error (717)
Battery Problem (718)
Model Number Error (719)
System Errors (750 to 759)
Fast ADC Error (760)
Option Module Errors (800 to 899)
User Generated Errors (900 to 999)

Viewing Multiple Messages

Although multiple errors may exist, the spectrum analyzer displays only one error message at a time. To view any additional messages, do the following:

1. Press RECALL and MORE 1 OF 2.
2. Press RECALL ERRORS. An error message is displayed in the active function block.
3. Use the up and down step keys to scroll through any other error messages which might exist, making note of each error code.

Error Message Elimination

When an error message is displayed, always perform the following procedure.

1. Press SAVE and SAVE STATE.
2. Store the current state in a convenient STATE register. (It may be necessary to set SAVELOCK to OFF.)
3. Press CAL and REALIGN LO \&IF. Wait for the sequence to finish.
4. Press RECALL and RECALL STATE.
5. Recall the previously stored STATE.
6. If an error message is still displayed, refer to the list of error messages below for an explanation of the error messages.

System Analyzer Programming Errors (100 to 150)

Refer to the 8560 E-series and EC-series Spectrum Analyzer User's Guidefor information on programming the spectrum analyzer.

100 NO PWRON	Power-on state is invalid; default state is loaded. Press SAVE, PWR ON STATE to clear error message.
101 NO STATE	State to be RECALLed not valid or not SAVEd.
106 ABORTED!	Current operation is aborted; GPIB parser reset.
107 HELLO ??	No GPIB listener is present.
108 TIME OUT	Analyzer timed out when acting as controller.
109 CtrlFail	Analyzer unable to take control of the bus.

110	NOT CTRL	Analyzer is not system controller.
111	\# ARGMTS	Command does not have enough arguments.
112	??CMD?	Unrecognized command.
113	FREQ NO!	Command cannot have frequency units.
114	TIME NO!	Command cannot have time units.
115	AMPL NO!	Command cannot have amplitude units.
116	?UNITS??	Unrecognizable units.
117	NOP NUM	Command cannot have numeric units.
118	NOP EP	Enable parameter cannot be used.
119	NOP UPDN	UP/DN are not valid arguments for this command.
120	NOP ONOF	ON/OFF are not valid arguments for this command.
121	NOP ARG	AUTO/MAN are not valid arguments for this command.
122	NOP TRC	Trace registers are not valid for this command.
123	NOP ABLK	A-block format not valid here.
124	NOP IBLK	I-block format not valid here.
125	NOP STRNG	Strings are not valid for this command.
126	NO ?	This command cannot be queried.
127	BAD DTMD	Not a valid peak detector mode.
128	PK WHAT?	Not a valid peak search parameter.
129	PRE TERM	Premature A-block termination.
130	BAD TDF	Arguments are only for TDF command.
131	?? AM/FM	AM/FM are not valid arguments for this command.
132	!FAV/RMP	FAV/RAMP are not valid arguments for this command.
133	! INT/EXT	INT/EXT are not valid arguments for this command.
134	??? ZERO	ZERO is not a valid argument for this command.

135	??? CURR	CURR is not a valid argument for this command.
136	??? FULL	FULL is not a valid argument for this command.
137	??? LAST	LAST is not a valid argument for this command.
138	! GRT / DSP	GRT/DSP are not valid arguments for this command.
139	PLOTONLY	Argument can only be used with PLOT command.
140	? ? PWRON	PWRON is not a valid argument for this command.
141	BAD ARG	Argument can only be used with FDIAG command.
142	BAD ARG	Query expected for FDIAG command.
143	NO PRESL	No preselector hardware to use command with.
144	COUPL??	Invalid COUPLING argument, expected AC or DC.

ADC Errors (200 to 299)

These errors are directly related to the ADC/interface section. Suspect a faulty A2 controller, A3 interface assembly or, in 8560 E-series analyzers, the A16 fast ADC (FADC) assembly (Option 007).

Errors 202 through 207 apply only to EC-series analyzers and E-series analyzers with fast ADC (Option 007).
200 SYSTEM $\left.\begin{array}{ll} & \begin{array}{l}\text { ADC driver/ADC hardware/firmware } \\ \text { interaction; check for other errors. }\end{array} \\ 201 \text { SYSTEM } & \begin{array}{l}\text { ADC controller/ADC } \\ \text { hardware/firmware interaction; check } \\ \text { for other errors. }\end{array} \\ 202 \text { FADC CAL } & \begin{array}{l}\text { Binary search failed during FADC } \\ \text { linear offset calibration. }\end{array} \\ 203 \text { FADC CAL } & \begin{array}{l}\text { This error applies only to EC-series } \\ \text { analyzers and E-series analyzers with } \\ \text { fast ADC (Option 007). }\end{array} \\ \hline\end{array} \begin{array}{l}\text { Binary search failed during FADC log } \\ \text { offset calibration. }\end{array}\right\}$

204 FADC CAL	Binary search failed during FADC log expand offset calibration.
	This error applies only to EC-series analyzers and E-series analyzers with fast ADC (Option 007).
205 FADC CAL	Slope derivation failed during FADC linear offset calibration.
	This error applies only to EC-series analyzers and E-series analyzers with fast ADC (Option 007).
206 FADC CAL	Slope derivation failed during FADC log offset calibration.
	This error applies only to EC-series analyzers and E-series analyzers with fast ADC (Option 007).
207 FADC CAL	Slope derivation failed during FADC log expand offset calibration.
	This error applies only to EC-series analyzers and E-series analyzers with
fast ADC (Option 007).	

analyzers and E-series analyzers with fast ADC (Option 007)

Binary search failed during FADC log expand offset calibration.

This error applies only to EC-series analyzers and E-series analyzers with fast ADC (Option 007).

Slope derivation failed during FADC linear offset calibration.

This error applies only to EC-series analyzers and E-series analyzers with fast ADC (Option 007).

Slope derivation failed during FADC log offset calibration.

This error applies only to EC-series analyzers and E -series analyzers with fast ADC (Option 007).

Slope derivation failed during FADC log expand offset calibration.

This error applies only to EC-series analyzers and E-series analyzers with fast ADC (Option 007).

ADC input is outside of ADC range.
Microprocessor not receiving interrupt from ADC.

LO and RF Hardware/Firmware Failures (300 to 399)

YTO Loop Errors These errors often require troubleshooting the A14 frequency control (300 to 301) assembly (synthesizer section) or the ADC circuits.
300 YTO UNLK \(\left.\quad \begin{array}{l}YTO (first LO) phase locked loop is

unlocked. The ADC measures

YTO_ERR voltage under phase-lock

condition.\end{array}\right\}\)| YTO (first LO) phase locked loop is |
| :--- |
| unlocked. Same as ERR 300 except |
| ERR 301 is set if the voltage is outside |
| certain limits. |

Roller PLL	These errors indicate a faulty roller oscillator on the A14 frequency
Errors	control assembly. Refer to Chapter 10. The A3 interface ADC circuits
(302 to 316)	may also be faulty. If error codes 333 and 499 are present, suspect the

10 MHz reference, the A 21 OCXO , or on the A15 assembly (Option 103). These errors do not apply to the hardware in an 8560 E -series or EC-series spectrum analyzer. If they occur in an 8560 E -series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.

302 OFF UNLK

303 XFR UNLK

304 ROL UNLK

Offset roller oscillator PLL is unlocked. May indicate loss of 10 MHz reference. The 10 MHz reference should measure greater than -7 dBm at A15J 303. The ADC measures OFFSENSE at the beginning of each sweep and, if the voltage is outside certain limits, the offset oscillator pretuned DAC is adjusted to bring OFFSENSE within the proper range. ERR 302 is set if this cannot be accomplished. This error is not applicable to 8560 E-series or EC-series spectrum analyzers. If it occurs in an 8560 E-series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.

Transfer roller oscillator PLL is unlocked. May indicate loss of 10 MHz reference. The 10 MHz reference should measure greater than -7 dBm at A15J 303. The ADC measures XFRSENSE at the beginning of each sweep and, if the voltage is outside certain limits, the transfer oscillator pretuned DAC is adjusted to bring XFRSENSE within the proper range. ERR 303 is set if this cannot be accomplished. This error is not applicable to 8560 E-series or EC-series spectrum analyzers. If it occurs in an 8560 E-series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.

Main roller oscillator PLL is unlocked. May indicate loss of 10 MHz reference. The 10 MHz reference should measure greater than -7 dBm at A15J 303. The ADC measures MAINSENSE at the beginning of each sweep and, if the voltage is outside certain limits, the

305 FREQ ACC

306 FREQ ACC

307 FREQ ACC
main roller pretune DAC is adjusted to bring OFFSENSE within the proper range. ERR 304 is set if this cannot be accomplished. This error is not applicable to 8560 E-series or EC-series spectrum analyzers. If it occurs in an 8560 E-series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.
Unable to adjust MAINSENSE close to 0 volts using the coarse adjust DAC. The coarse adjust and fine adjust DAC are used together to set MAINSENSE to 0 volts with the loop opened. ERR 305 is set if the coarse adjust DAC cannot bring MAINSENSE close enough to 0 volts for the fine adjust DAC to bring MAINSENSE to exactly 0 volts. This error is not applicable to 8560 E-series or EC-series spectrum analyzers. If it occurs in an 8560 E-series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.

Unable to adjust MAINSENSE to 0 volts using the fine adjust DAC. The coarse adjust and fine adjust DAC are used together to set MAINSENSE to 0 volts with the loop opened. ERR 306 is set if the fine adjust DAC cannot bring MAINSENSE to 0 volts. This error is not applicable to 8560 E -series or EC-series spectrum anal yzers. If it occurs in an 8560 E-series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.

Transfer oscillator pretuned DAC out of range. The transfer oscillator pretune procedure attempts to find pretuned DAC values by programming the PLL to 25 different frequencies and incrementing the transfer oscillator pretune DAC until XFRSENSE changes polarity. ERR 307 is set if the

308 FREQ ACC

309 FREQ ACC

310 FREQ ACC

DAC is set to 255 (maximum) before XFRSENSE changes polarity. This error is not applicable to 8560 E-series or EC-series spectrum analyzers. If it occurs in an 8560 E-series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.

Offset oscillator pretune DAC not within prescribed limits at low frequency. The offset oscillator pretune DAC is set to provide a frequency less than 189 MHz while the PLL is programmed for 189 MHz . ERR 308 is set if XFRSENSE is greater than +5 V (it should be at the negative rail). This error is not applicable to 8560 E-series or EC-series spectrum analyzers. If it occurs in an 8560 E-series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.
Offset oscillator pretune DAC not within prescribed limits at high frequency. The offset oscillator pretune DAC is set to provide a frequency less than 204 MHz while the PLL is programmed for 204 MHz . ERR 309 is set if XFRSENSE is greater than +5 V (it should be at the negative rail). This error is not applicable to 8560 E -series or EC-series spectrum analyzers. If it occurs in an 8560 E-series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.

Main roller pretune DAC set to 255. The main roller pretune DAC is set to 5, causing MAINSENSE to go to the positive rail. The DAC is incremented until MAINSENSE changes polarity. ERR 310 is set if the DAC is set to 255 before MAINSENSE changes to a negative polarity. This error is not applicableto 8560 E-series or EC-series spectrum analyzers. If it occurs in an 8560 E-series or EC-series spectrum

311 FREQ ACC

312 FREQ ACC

313 FREQ ACC

314 FREQ ACC
analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.

Main roller pretune DAC set to 255. The main roller pretune DAC is set to 5, causing MAINSENSE to go to the positive rail. The DAC is incremented until MAINSENSE changes polarity. ERR 311 is set if the DAC is set to 255 beforeMAINSENSE changes to a negative polarity. This error is not applicable to 8560 E-series or EC-series spectrum analyzers. If it occurs in an 8560 E-series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.

Unable to adjust MAINSENSE to 0 volts using the fine adjust DAC. The coarse adjust and fine adjust DAC are used together to set MAI NSENSE to 0 volts with the loop opened. ERR 312 is set if the fine adjust DAC cannot bring MAINSENSE to 0 volts. This error is not applicable to 8560 E -series or EC-series spectrum analyzers. If it occurs in an 8560 E-series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.

Error in LO synthesis algorithm. ERR 313 is set if a combination of sampler oscillator and roller oscillator frequencies could not be found to correspond to the required YTO start frequency. Contact the factory. This error is not applicable to 8560 E -series or EC-series spectrum anal yzers. If it occurs in an 8560 E-series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.

Indicates problems in the span calibration. Troubleshoot any unlocks before attempting to troubleshoot span calibration problems, because the loops must all lock in order to perform the

315 FREQ ACC

316 FREQ ACC
calibration. If LO spans greater than 1 MHz are correct, check A14U114B, A14U 115A, A14U 116, or A14Q101. This error message appears when the main roller oscillator sweep sensitivity is 0 . A sweep ramp is injected into the locked main roller loop which should generate a negative-going ramp on MAINSENSE. ERR 314 is set if the slope of this ramp is 0 . This is an indication of an unlocked main roller loop or lack of a sweep ramp. This error is not applicable to 8560 E -series or EC-series spectrum analyzers. If it occurs in an 8560 E-series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.

Indicates problems in the span calibration. Troubleshoot any unlocks before attempting to troubleshoot span calibration problems, because the loops must all lock in order to perform the calibration. If LO spans greater than 1 MHz are correct, check A14U 114B, A14U 115A, A14U 116, or A14Q101. This error message appears when the roller span attenuator DAC is out of range. This DAC value is recalculated each time there are changes to the span or start frequency. ERR 315 is set if this value is less than 10 or greater than 245. This error is not applicable to 8560 E-series or EC-series spectrum analyzers. If it occurs in an 8560 E-series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.

Sensitivity of main roller pretune DAC is 0 . Once the main roller is locked, the MAINSENSE voltage is measured and the pretune DAC value is incremented by two. ERR 316 is set if the difference between the new MAINSENSE voltage and the previous MAINSENSE voltage is 0 . This error is not applicable to 8560 E-series or EC-series spectrum
analyzers. If it occurs in an 8560 E-series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.

YTO Loop Errors These messages indicate that the YTO main coil coarse DAC (ERR 317) (317 to 320) or fine DAC (ERR 318) is at its limit. If error codes 300 or 301 are not present, a hardware problem exists in the YTO loop but the loop can still acquire lock. Refer to Chapter 10, "Synthesizer Section," to troubleshoot the YTO PLL. The ADC circuit on the A3 interface assembly may also cause this error.
317 FREQ ACC $\left.\begin{array}{ll} & \begin{array}{l}\text { Main coil coarse DAC at limit. The } \\ \text { main coil coarse DAC is set to bring } \\ \text { YTO ERR close enough to } 0 \text { volts for } \\ \text { the main coil fine DAC to bring YTO }\end{array} \\ & \text { ERR to exactly } 0 \text { volts. ERR } 317 \text { is set if } \\ \text { the main coil coarse DAC is set to one } \\ \text { of its limits before bringing YTO ERR } \\ \text { dose enough to } 0 \text { volts. }\end{array}\right\}$

Roller Oscillator These errors indicate a faulty roller oscillator on the A14 frequency Errors
(321 to 329)
control assembly. The A3 interface ADC circuits may also be faulty. If error codes 333 and 499 are also present, suspect the 10 MHz reference, the A21 OCXO, or the A15 assembly (Option 103). These errors do not apply to the hardware in an 8560 E-series or EC-series spectrum analyzer. If they occur in an 8560 E-series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.

321 FREQ ACC

Main roller tuning sensitivity is not greater than 0 . The MAINSENSE voltage is noted in a locked condition and the main roller is programmed to a frequency 400 kHz higher. ERR 321 is set if the new MAINSENSE voltage is not greater than the previous MAINSENSE voltage. This error is not

322 FREQ ACC

324 FREQ ACC

325 FREQ ACC
applicableto 8560 E-series or EC-series spectrum analyzers. If it occurs in an 8560 E-series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.

Main roller pretune DAC value set greater than 255. During the LO adjust sequence, the main roller is locked and then programmed to a frequency 1.6 MHz higher. A new pretune DAC value is calculated based upon the main roller tuning sensitivity. ERR 322 is set if this calculated value is greater than 255. This error is not applicable to 8560 E-series or EC-series spectrum analyzers. If it occurs in an 8560 E-series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.

Unable to adjust MAINSENSE close to 0 volts using the coarse adjust DAC. The coarse adjust and fine adjust DAC are used together to set MAINSENSE to 0 volts with the loop opened. ERR 324 is set if the coarse adjust DAC cannot bring MAINSENSE dose enough to 0 volts for the fine adjust DACs to bring MAINSENSE to exactly 0 volts. This error is not applicable to 8560 E-series or EC-series spectrum analyzers. If it occurs in an 8560 E-series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.

Unable to adjust MAINSENSE to 0 volts using the fine adjust DAC. The coarse adjust and fine adjust DAC are used together to set MAINSENSE to 0 volts with the loop opened. ERR 325 is set if the fine adjust DAC cannot bring MAINSENSE to 0 volts. This error is not applicable to 8560 E-series or EC-series spectrum analyzers. If it occurs in an 8560 E-series or EC-series

326 FREQ ACC

327 OFF UNLK

328 FREQ ACC
spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.

Fine adjust DAC near end of range. The fine adjust DAC is set to bring MAINSENSE to 0 volts. ERR 326 is set if the fine adjust DAC value is set to less than 5 or greater than 250. This error is not applicable to 8560 E -series or EC-series spectrum anal yzers. If it occurs in an 8560 E-series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.

Offset roller oscillator PLL is unlocked. May indicate loss of 10 MHz reference. The 10 MHz reference should measure greater than -7 dBm at A15J 303. The ADC measures OFFSENSE at the beginning of each sweep and, if the voltage is outside certain limits, the offset oscillator pretune DAC is adjusted to bring OFFSENSE within the proper range. ERR 327 is set if this cannot be accomplished. This error is not applicable to 8560 E-series or EC-series spectrum analyzers. If it occurs in an 8560 E-series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.

Roller fine adjust DAC sensitivity less than or equal to 0 . During the LO adjust routine, the fine adjust DAC is set to two different values and the MAINSENSE voltage is measured at each setting. ERR 328 is set if the difference between these voltages is 0 or negative. This is typically the result of the main roller loop's being unlocked. This error is not applicable to 8560 E-series or EC-series spectrum analyzers. If it occurs in an 8560 E-series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.

329 FREQ ACC	Roller coarse adjust DAC sensitivity less than or equal to 0 . During the LO adjust routine, the coarse adjust DAC is set to two different values and the MAINSENSE voltage is measured at each setting. ERR 329 is set if the difference between these voltages is 0 or negative. This is typically the result of the main roller loop's being unlocked. This error is not applicable to 8560 E-series or EC-series spectrum analyzers. If it occurs in an 8560 E-series or EC-series spectrum analyzer, suspect a problem with the model number identification in the spectrum analyzer firmware.
317 FREQ ACC	Main coil coarse DAC at limit. The main coil coarse DAC is set to bring YTO ERR dose enough to 0 volts for the main coil fine DAC to bring YTO ERR to exactly 0 volts. ERR 317 is set if the main coil coarse DAC is set to one of its limits before bringing YTO ERR close enough to 0 volts.
318 FREQ ACC	Main coil fine DAC at limit. The main coil fine DAC is set to bring YTO ERR to 0 volts after the main coil coarse DAC has brought YTO ERR close to 0 volts. ERR 318 is set if the main coil fine DAC is set to one of its limits before bringing YTO ERR to 0 volts.
319 WARN COA	YTO coarse tune DAC near limit.
320 WARN FIN	YTO fine tune DAC near limit.

YTO LOOp	This error rarely occurs but is usually indicative of a digital hardware
Error (331)	failure.

331 FREQ ACC | Invalid YTO frequency. Firmware | |
| :--- | :--- |
| attempted to set the YTO to a | |
| frequency outside the range of the YTO | |
| $(2.95$ to 6.8107 GHz$)$. Suspect a digital | |
| | hardware problem, such as a bad RAM |
| on the A2 controller assembly. Contact | |
| the factory. | |

Fractional N PLL This error indicates an unlocked fractional N phase locked loop. This

YTO Loop Settling Errors (351 to 354) error only applies to the hardware in an 8560 E-series or EC-series spectrum analyzer.

337 FN UNLK Fractional N circuitry is unable to lock.
These errors are generated when the YTO loop error voltage will not stabilize at an acceptable value during the YTO loop locking routines. These errors only apply to the hardware in an 8560 E-series or EC-series spectrum analyzer.

351 SETL FLD
352 TWID FLD

353 SRCH FLD
354 LK ITERS

YTO error voltage is not settling.
Unable to bring YTO error voltage DAC's to quiescent point.

No acceptable YTO DAC value found.
Cannot lock. Lock iteration routine terminated.

Sampling This error indicates an unlocked sampling oscillator during the local oscillator (LO) alignment routine. This error only applies to the hardware in an 8560 E-series or EC-series spectrum analyzer.

Sampler unlock condition during calibration routine. This error remains until a successful recalibration is performed.

Span Accuracy Calibration Errors (356 to 361)

```
355 SMP CAL
```

```
355 SMP CAL
```

These errors are generated when the span accuracy calibration fails. The span accuracy calibration is done during "power up," IF calibration (every 5 minutes), and LO IF realignment routines. Span accuracy calibration sweeps occur during the retrace (dead time) of the main sweep ramp. The firmware then detects any span accuracy calibration errors. These errors only apply to firmware revisions 931216 and later.

356 SPAC CAL

357 SPAC CAL

Sweep data problem finding "bucket 1" of the span accuracy calibration sweep. This error indicates a possible failure of the sweep generator, span attenuator, or main/FM coil sweep switches on the A14 frequency control assembly. Refer to Chapter 10, "Synthesizer Section."

Cannot find the "x" intersection for "bucket 1" of the span accuracy calibration sweep. This error indicates a possible failure of the sweep generator, span attenuator, or main/FM coil sweep switches on the A14 frequency control assembly. Refer to Chapter 10, "Synthesizer Section."
358 SPAC CAL $\left.\begin{array}{l}\text { Sweep data problem finding "bucket 2" } \\ \text { of the span accuracy calibration sweep. } \\ \text { This error indicates a possible failure of } \\ \text { the sweep generator, span attenuator, } \\ \text { or main/F M coil sweep switches on the }\end{array}\right\}$

Automatic IF Errors (400 to 599)

These error codes are generated when the automatic IF adjustment routine detects a fault. This routine first adjusts amplitude parameters, then resolution bandwidths in this sequence: $300 \mathrm{kHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz}$, $30 \mathrm{kHz}, 10 \mathrm{kHz}, 3 \mathrm{kHz}, 1 \mathrm{kHz}, 300 \mathrm{~Hz}, 100 \mathrm{~Hz}, 30 \mathrm{~Hz}, 10 \mathrm{~Hz}, 3 \mathrm{~Hz}$, 1 Hz , and 2 MHz . The routine restarts from the beginning if a fault is detected. Parameters adjusted after the routine begins but before the fault is detected are correct; parameters adjusted later in the sequence are suspect. Refer to "Automatic IF Adjustment" on page 439.

The IF Section relies on the ADC and video circuitry to perform its continuous IF adjustments. IF-related errors occur if the ADC, video circuitry, or A4 assembly linear path is faulty.

400 AMPL <300 \begin{tabular}{ll}

\& | Unable to adjust amplitude of |
| :--- |
| resolution bandwidths less than |
| 300 Hz. |

401 AMPL 300 \& | Unable to adjust amplitude of 300 Hz |
| :--- |
| resolution bandwidth. |

402 AMPL 1K \& | Unable to adjust amplitude of 1 kHz |
| :--- |
| resolution bandwidth. |

403 AMPL 3K \& | Unable to adjust amplitude of 3 kHz |
| :--- |
| resolution bandwidth. |
| Unable to adjust amplitude of 10 kHz |
| resolution bandwidth. |

\end{tabular}

Errors 405 to 416: When these 10K resolution bandwidth (RBW) error messages appear, use the following steps to check for errors 581 or 582.

1. Press LINE to turn spectrum analyzer off.
2. Press LINE to turn spectrum analyzer on and observe the lower right-hand corner of the display for 10 seconds.
3. If ERR 581 or ERR 582 appears, the fault is most likely caused by the cal oscillator. Refer to errors 581 and 582.
4. If ERR 581 or ERR 582 does not appear, troubleshoot the A5 IF assembly.
Multiple IF errors during IF adjust: If a FULL IF ADJ sequence (pressing CAL and FULL IF ADJ) results in IF errors while displaying IF ADJUST STATUS: AMPLItUDE, the cal oscillator on the A4 assembly might not be providing the correct output signal. Perform the following steps:
5. Disconnect W30 (white) from A5J 4.
6. Connect W30 to the input of a second spectrum analyzer and set its controls as follows:
Center frequency. 10.7 M Hz
Reference level 20 dBm
7. Observe the spectrum analyzer display while pressing FULL IF ADJ on the spectrum analyzer. If a -35 dBm signal does not appear, troubleshoot the cal oscillator on the A4 assembly.
8. If a -35 dBm signal does appear, troubleshoot the A5 IF assembly.

405 RBW 10K Unable to adjust 10 kHz resolution bandwidth in first crystal pole.

Unable to adjust 10 kHz resolution bandwidth in second crystal pole.

407	RBW	10K	Unable to adjust 10 kHz resolution bandwidth in third crystal pole.
408	RBW	10K	Unable to adjust 10 kHz resolution bandwidth in fourth crystal pole.
409	RBW	10K	Unable to adjust 10 kHz resolution bandwidth in first crystal pole.
410	RBW	10K	Unable to adjust 10 kHz resolution bandwidth in second crystal pole.
411	RBW	10K	Unable to adjust 10 kHz resolution bandwidth in third crystal pole.
412	RBW	10K	Unable to adjust 10 kHz resolution bandwidth in fourth crystal pole.
413	RBW	10K	Unable to adjust 10 kHz resolution bandwidth in first crystal pole.
414	RBW	10K	Unable to adjust 10 kHz resolution bandwidth in second crystal pole.
415	RBW	10K	Unable to adjust 10 kHz resolution bandwidth in third crystal pole.
416	RBW	10K	Unable to adjust 10 kHz resolution bandwidth in fourth crystal pole.
417	RBW	3K	Unable to adjust 3 kHz resolution bandwidth in first crystal pole.
418	RBW	3K	Unable to adjust 3 kHz resolution bandwidth in second crystal pole.
419	RBW	3K	Unable to adjust 3 kHz resolution bandwidth in third crystal pole.
420	RBW	3K	Unable to adjust 3 kHz resolution bandwidth in fourth crystal pole.
421	RBW	10K	Unable to adjust 10 kHz resolution bandwidth in first crystal pole.
422	RBW	10K	Unable to adjust 10 kHz resolution bandwidth in second crystal pole.
423	RBW	10K	Unable to adjust 10 kHz resolution bandwidth in third crystal pole.
424	RBW	10K	Unable to adjust 10 kHz resolution bandwidth in fourth crystal pole.
425	RBW	3K	Unable to adjust 3 kHz resolution bandwidth in first crystal pole.

426	RBW	3K	Unable to adjust 3 kHz resolution bandwidth in second crystal pole.
427	RBW	3K	Unable to adjust 3 kHz resolution bandwidth in third crystal pole.
428	RBW	3K	Unable to adjust 3 kHz resolution bandwidth in fourth crystal pole.
429	RBW	<300	Unable to adjust resolution bandwidths less than 300 Hz . ADC handshake.
430	RBW	300	Unable to adjust 300 Hz resolution bandwidth. ADC handshake.
431	RBW	1K	Unable to adjust 1 kHz resolution bandwidth. ADC handshake.
432	RBW	3K	Unable to adjust 3 kHz resolution bandwidth. ADC handshake.
433	RBW	10K	Unable to adjust 10 kHz resolution bandwidth. ADC handshake.
434	RBW	300	300 Hz resolution bandwidth amplitude low in first crystal pole.
435	RBW	300	300 Hz resolution bandwidth amplitude low in second crystal pole.
436	RBW	300	300 Hz resolution bandwidth amplitude low in third crystal pole.
437	RBW	300	300 Hz resolution bandwidth amplitude low in fourth crystal pole.
438	RBW	1K	1 kHz resolution bandwidth amplitude low in first crystal pole.
439	RBW	1K	1 kHz resolution bandwidth amplitude low in second crystal pole.
440	RBW	1K	1 kHz resol ution bandwidth amplitude low in third crystal pole.
441	RBW	1K	1 kHz resolution bandwidth amplitude low in fourth crystal pole.
442	RBW	3K	3 kHz resolution bandwidth amplitude low in first crystal pole.
443	RBW	3K	3 kHz resolution bandwidth amplitude low in second crystal pole.
444	RBW	3K	3 kHz resolution bandwidth amplitude low in third crystal pole.

445	RBW 3K	3 kHz resolution bandwidth amplitude low in fourth crystal pole.
446	RBW 10K	10 kHz resolution bandwidth amplitude low in first crystal pole.
447	RBW 10K	10 kHz resolution bandwidth amplitude low in second crystal pole.
448	RBW 10K	10 kHz resolution bandwidth amplitude low in third crystal pole.
449	RBW 10K	10 kHz resolution bandwidth amplitude low in fourth crystal pole.
450	IF SYSTM	IF hardware failure. Check other error messages.
451	IF SYSTM	IF hardware failure. Check other error messages.
452	IF SYSTM	IF hardware failure. Check other error messages.
454	AMPL	Unable to adjust step gain amplifiers. Check other errors.
455	AMP L	Unable to adjust fine attenuator of the step gain amplifiers.
456	AMP L	Unable to adjust fine attenuator of the step gain amplifiers.
457	AMP L	Unable to adjust fine attenuator of the step gain amplifiers.
458	AMPL	U nable to adjust first step gain stage.
459	AMPL	Unable to adjust first step gain stage.
460	AMPL	U nable to adjust first step gain stage.
461	AMPL	Unable to adjust second step gain stage.
462	AMPL	Unable to adjust second step Gain stage.
463	AMP L	Unable to adjust third step Gain stage.
464	AMPL	Unable to adjust third step Gain stage.
465	AMP L	U nable to adjust third step Gain stage.
466	LIN AMPL	Unable to adjust linear amplifier scale.
467	LOG AMPL	Unable to adjust step gain amplifiers.
468	LOG AMPL	Unable to adjust third step Gain stage.

469	LOG	AMPL	Unable to adjust step gain amplifiers.
470	LOG	AMP L	Unable to adjust third step Gain stage.
471	RBW	30K	Unable to adjust 30 kHz resolution bandwidth in first LC pole.
472	RBW	100K	Unable to adjust 100 kHz resolution bandwidth in first LC pole.
473	RBW	300K	Unable to adjust 300 kHz resolution bandwidth in first LC pole.
474	RBW	1M	Unable to adjust 1 MHz resolution bandwidth in first LC pole.
475	RBW	30K	Unable to adjust 30 kHz resolution bandwidth in second LC pole.
476	RBW	100K	Unable to adjust 100 kHz resolution bandwidth in second LC pole.
477	RBW	300K	Unable to adjust 300 kHz resolution bandwidth in second LC pole.
478	RBW	1M	Unable to adjust 1 MHz resolution bandwidth in second LC pole.
483	RBW	10K	Unable to adjust 10 kHz resolution bandwidth.
484	RBW	3K	Unable to adjust 3 kHz resolution bandwidth.
485	RBW	1K	Unable to adjust 1 kHz resolution bandwidth.
486	RBW	300	Unable to adjust 300 Hz resolution bandwidth.
487	RBW	100	Unable to adjust 100 Hz resolution bandwidth.
488	RBW	100	Unable to adjust 100 Hz resolution bandwidth.
489	RBW	100	Unable to adjust 100 Hz resolution bandwidth.
490	RBW	100	Unable to adjust 100 Hz resolution bandwidth.
491	RBW	<300	Unable to adjust the resolution bandwidths less than 300 Hz . Crystal sweep gain problem.
492	RBW	300	Unable to adjust 300 Hz resolution bandwidth. Crystal sweep gain problem.

493	RBW	1K	Unable to adjust 1 kHz resolution bandwidth. Crystal sweep gain problem.
494	RBW	3K	Unable to adjust 3 kHz resolution bandwidth. Crystal sweep gain problem.
495	RBW	10K	Unable to adjust 10 kHz resolution bandwidth. Crystal sweep gain problem.
496	RBW	100	Unable to adjust 100 Hz resolution bandwidth. I nadequate Q.
497	RBW	100	Unable to adjust 100 Hz resolution bandwidth. Alignment problem.
498	RBW	100	Unable to adjust 100 Hz resolution bandwidth. Gain problem.
499	CAL	UNLK	Cal oscillator is unlocked. Verify the unlocked conditions as follows:

1. Place A4 in its service position and disconnect W51 (gray-yellow) from A4J 7.
2. Connect W51 to the input of another spectrum analyzer. This is the 10 MHz reference for the cal oscillator.
3. If a 10 MHz signal (approximately 0 dBm) is not present, suspect the A15 RF assembly, the A21 OCXO, or the A15 assembly TCXO (Option 103). If the 10 MHz reference is present, continue with step 4.
4. Reconnect W17 to A4J 7 and monitor the tune voltage at A4J 9 pin 3 with an oscilloscope.
5. Press PRESET on the spectrum analyzer under test.
6. If the voltage is either +15 Vdc or -15 Vdc , the Cal Oscillator is probably at fault. Normally, the voltage should be near +15 V during a sweep, and between -9 V and +9 V during retrace.
An intermittent error 499 indicates the cal osc phase-locked-loop probably can lock at 10.7 MHz , but cannot lock at the 9.9 and 11.5 MHz extremes. This may prevent the cal oscillator from adjusting the 1 MHz or 30 kHz through 300 kHz bandwidths. This symptom implies a failure in the oscillator, function block X. (See the A4 log amp/cal oscillator schematic sheet 4 of 4.) The oscillator is unable to tune the required frequency range with the -9 V to +9 V control voltage. Troubleshoot A4CR 802 (most probable cause), L801, C808, C809, and U807.

501	AMPL . 1M	Unable to adjust amplitude of 100 kHz resolution bandwidth.
502	AMPL . 3M	Unable to adjust amplitude of 300 kHz resolution bandwidth.
503	AMPL 1M	Unable to adjust amplitude of 1 MHz resolution bandwidth.
504	AMPL 30K	Unable to adjust amplitude of 30 kHz resolution bandwidth.
505	AMPL . 1 M	Unable to adjust amplitude of 100 kHz resolution bandwidth.
506	AMPL . 3 M	Unable to adjust amplitude of 300 kHz resolution bandwidth.
507	AMPL 1M	Unable to adjust amplitude of 1 MHz resolution bandwidth.
508	AMPL 30K	Unable to adjust amplitude of 30 kHz resolution bandwidth. Insufficient gain during LC bandwidth calibration.
509	AMPL . 1M	Unable to adjust amplitude of 100 kHz resolution bandwidth. Insufficient gain during LC bandwidth calibration.
510	AMPL . 3 M	Unable to adjust amplitude of 300 kHz resolution bandwidth. Insufficient gain during LC bandwidth calibration.
511	AMPL 1M	Unable to adjust amplitude of 1 MHz resolution bandwidth. Insufficient gain during LC bandwidth calibration.
512	RBW <300	Unable to adjust resolution bandwidths less than 300 Hz . Insufficient gain during crystal bandwidth calibration.
513	RBW 300	Unable to adjust 300 Hz resolution bandwidth. Insufficient gain during crystal bandwidth calibration.
514	RBW 1K	Unable to adjust 1 kHz resolution bandwidth. Insufficient gain during crystal bandwidth calibration.
515	RBW 3K	Unable to adjust 3 kHz resolution bandwidth. Insufficient gain during crystal bandwidth calibration.
516	RBW 10K	Unable to adjust 10 kHz resolution bandwidth. Insufficient gain during crystal bandwidth calibration.

517	RBW	100	Unable to adjust 100 Hz resolution bandwidth. Crystal sweep problem.
518	RBW	300	Unable to adjust 300 Hz resolution bandwidth. Crystal sweep problem.
519	RBW	1K	Unable to adjust 1 kHz resolution bandwidth. Crystal sweep problem.
520	RBW	3K	Unable to adjust 3 kHz resolution bandwidth. Crystal sweep problem.
521	RBW	10K	Unable to adjust 10 kHz resolution bandwidth. Crystal sweep problem.
522	RBW	10K	Unable to adjust symmetry of 10 kHz resolution bandwidth in first crystal pole.
523	RBW	10K	Unable to adjust symmetry of 10 kHz resolution bandwidth in second crystal pole.
524	RBW	10K	Unable to adjust symmetry of 10 kHz resolution bandwidth in third crystal pole.
525	RBW	10K	Unable to adjust symmetry of 10 kHz resolution bandwidth in fourth crystal pole.
526	RBW	<300	ADC timeout during IF ADJ UST of $<300 \mathrm{~Hz}$ resolution bandwidth.
527	RBW	<300	Step gain correction failed for $<300 \mathrm{~Hz}$ resolution bandwidth. Check narrow bandwidth SGO attenuator.
528	RBW	<300	Calibration of dc level at ADC failed for $<300 \mathrm{~Hz}$ resolution bandwidth.
529	RBW	<300	Invalid demodulated data for $<300 \mathrm{~Hz}$ resolution bandwidth flatness and IF down-converter. Demod data for calibration may be bad.
530	RBW	<300	Adjustment of VCXO down-converter failed with resolution bandwidths less than 300 Hz. Narrow bandwidth VCXO calibration failed.
531	RBW	<300	Flatness correction data for resolution bandwidths $<300 \mathrm{~Hz}$ not acceptable.
532	RBW	<300	Absolute gain data for resolution bandwidths $<300 \mathrm{~Hz}$ not acceptable.

533	RBW	<300	ADC timeout adjusting resolution bandwidths less than 300 Hz . Timeout during data sampling narrow bandwidth chunk.
534	RBW	<300	Unable to do frequency count of CAL OSC using IF down-converter when adjusting resolution bandwidths less than 300 Hz .
535	RBW	<300	Unable to obtain adequate $F M$ demod range to measure 500 Hz IF filter with resolution bandwidths less than 300 Hz .
536	RBW	<300	Unable to auto-rangechirp signal while setting VCXO or doing flatness calibration with resolution bandwidths less than 300 Hz .
537	RBW	<300	Unable to auto-range CW CAL OSC signal to count VCXO signal with resolution bandwidths less than 300 Hz .
538	RBW	<300	Shape of 500 Hz IF filter appears too noisy to adjust VCXO down-converter for resolution bandwidths less than 300 Hz .
539	RBW	<300	Unable to auto-range the CW CAL OSC signal to pretune the VCXO for resolution bandwidths less than 300 Hz .
540	RBW	<300	Unable to find CW CAL OSC signal during VCXO pretune at power-up with resolution bandwidths less than 300 Hz .
550	ID	CALOSC	CAL Oscillator ID. Indicates incompatible hardware. Cal Osc not expected
551	ID	LOGBD	LOG Board ID. Indicates incompatible hardware. Log board not expected.
552	LOG	AMP L	Unable to adjust amplitude of log scale.
553	LOG	AMP L	Unable to adjust amplitude of log scale.
554	LOG	AMPL	Unable to adjust amplitude of log scale.
555	LOG	AMPL	Unable to adjust amplitude of log scale

556	LOG AMPL	Unable to adjust amplitude of log scale.
557	LOG AMPL	Unable to adjust amplitude of log scale.
558	LOG AMPL	Unable to adjust amplitude of log scale.
559	LOG AMPL	Unable to adjust amplitude of log scale.
560	LOG AMPL	Unable to adjust amplitude of log scale.
561	LOG AMPL	Unable to adjust amplitude of log scale. Possible problem in Second Step Gain.
562	LOG AMPL	Unable to adjust amplitude of log scale. Possible problem in Second Step Gain.
563	LOG AMPL	Unable to adjust amplitude of log scale. Possible problem in Third Step Gain range.
564	LOG AMPL	Unable to adjust amplitude of log scale.
565	LOG AMPL	Unable to adjust amplitude of log scale.
566	LOG AMPL	Unable to adjust amplitude of log scale.
567	LOG AMPL	Unable to adjust amplitude of log scale. Possible problem in Log offset/Log Expand stage.
568	LOG AMPL	Unable to adjust amplitude of log scale. Possible problem in Log offset/Log Expand stage.
569	LOG AMPL	Unable to adjust amplitude of log scale. Possible problem in Log offset/Log Expand stage.
570	LOG AMPL	Unable to adjust amplitude of log scale. Possible problem in Log offset/Log Expand stage.
571	AMPL	Unable to adjust step gain amplifiers.
572	AMPL 1M	Unable to adjust amplitude of 1 MHz resolution bandwidth.
573	LOG AMPL	Unable to adjust amplitude of log scale. Check video offset circuitry.
574	LOG AMPL	Unable to adjust amplitude of log scale. Check video offset circuitry.
575	LOG AMPL	Unable to adjust amplitude of log scale. Check video offset circuitry.
576	LOG AMPL	Unable to adjust amplitude of log scale. Check video offset circuitry.

577 LOG AMPL

578 LOG AMPL

579 LOG AMPL

580 LOG AMPL

581 AMPL

582 AMPL

Unable to adjust amplitude of log scale. Check video offset circuitry.
Limiter calibration error from DC logger calibration.

Attenuator CAL level error from DC logger calibration.

Calibration level error from DC logger fidelity calibration.
Unable to adjust 100 kHz resolution bandwidth and resolution bandwidths less than or equal to 10 kHz . ADC/CALOSC handshake calibration problem in crystal sweep. Refer to Error 582.

Unable to adjust 100 kHz resolution bandwidth and resolution bandwidths less than or equal to 10 kHz . Bad CALOSC Calibration in Sweep Rate. Test the 100 kHz resolution bandwidth filter 3 dB bandwidth as follows:

1. Connect the CAL OUTPUT signal (A4J 8) to the INPUT 50Ω.
2. Press PRESET and set the controls as follows:

Center frequency.	300 MHz
Span.	500 kHz
Resolution bandwidth.	100 kHz
Log dB/div .	. 1 dB
Referencelevel.............. place signal peak at to	.Adjust to

3. Press PEAK SEARCH and MARKER DELTA and turn the knob clockwise to position the marker until the delta MKR reads -3 dB $\pm 0.1 \mathrm{~dB}$.
4. Press MARKER DELTA and move the marker to the other side of the peak until the delta $M K R$ reads $0 \mathrm{~dB} \pm 0.1 \mathrm{~dB}$.
5. If the delta MKR frequency is between 90 kHz and 110 kHz , the 100 kHz resolution bandwidth is working properly. If the frequency is outside these limits, read the following information on the A4 Cal Oscillator sweep generator.

If the 100 kHz resolution bandwidth works properly, the cal oscillator sweep generator is failing to sweep its oscillator frequency at the correct rate. The error is detected in sweeping on the skirts of the 100 kHz resolution bandwidth.

A properly operating sweep generator generates a series of negative-going parabolas. These parabolas generate the sweeps used to adjust resolution bandwidths of 10 kHz and below. Check the sweep generator with the following steps. Refer also to " 300 Hz to 3 kHz Resolution Bandwidth Out of Specification" on page 473.

1. Remove the shields.
2. Connect an oscilloscope probe to A4U804C pin 8.
3. On the spectrum analyzer, press CAL and FULL IF ADJ.
4. Approximately 8 seconds after starting the FULL IF ADJ, check for negative-going parabolas (similar to half-sine waves) 5 ms wide and approximately -4 V at their peak. Refer to Chapter 8 , "IF Section," for more information on the A4 Log Amp/Cal Oscillator Assembly.

583	RBW	30K	Unable to adjust 30 kHz resolution bandwidth.
584	RBW	100K	Unable to adjust 100 kHz resolution bandwidth.
585	RBW	300K	Unable to adjust 300 kHz resolution bandwidth.
586	RBW	1M	Unable to adjust 1 MHz resolution bandwidth.
587	RBW	30K	Unable to adjust 30 kHz resolution bandwidth.
588	RBW	100K	Unable to adjust 100 kHz resolution bandwidth.
589	RBW	300K	Unable to adjust 300 kHz resolution bandwidth.
590	RBW	1M	Unable to adjust 1 MHz resolution bandwidth.
591	LOG	AMPL	Unable to adjust amplitude of log scale.
592	LOG	AMPL	Unable to adjust amplitude of log scale.
593	LOG	TUNE	Limiter calibration tune error from DC logger calibration.
594	LOG	OFST	Attenuator calibration offset error from DC logger calibration.
595	LOG	ATTN	Attenuator calibration absolute error from DC logger calibration.
596	LOG	FID	Fidelity error from DC logger calibration.

597 LOG OFST

598 LOG OFST

599 LOG GAIN

Fidelity offset error from DC logger calibration.

Fidel ity offset unstable from DC logger calibration.

Fidelity gain error from DC logger calibration.

System Errors (600 to 651)

ADC timeout errors occur if the A2 controller assembly frequency counter is faulty. Refer to Chapter 7, "ADC/I nterface Section."

600 SYSTEM

601 SYSTEM

650 OUTOF RG
651 NO IRQ

Hardware/firmware interaction; check other errors.

Hardware/firmware interaction; check other errors.
ADC input is outside of the ADC range.
Microprocessor is not receiving interrupt from ADC.

Digital and Checksum Errors (700 to 799)

EEROM
Checksum
Errors (700 to 704)

Faults on the A2 controller assembly can cause these errors. Refer to Chapter 9, "Controller Section." Although some of these errors might result in a blanked display, it is possible to read these errors over GPIB. Refer to "Troubleshooting to a Functional Section" on page 303.

The EEROM on A2 is used to store data for frequency response correction, elapsed time, focus, and intensity levels. Error codes from 700 to 703 indicate that some part of the data in EEROM is invalid. An EEROM error could result from either a defective EEROM or an improper sequence of storing data in EEROM. Check the EEROM with the following steps:

1. Place the WR PROT/WR ENA jumper on the A2 controller assembly in the WR ENA position.
2. On the spectrum analyzer, press CAL, MORE 1 OF 2, SERVICE CAL dATA, FLATNESS, and FLATNESS DATA. E nter a value of 130. Press PREV MENU, STORE DATA, YES, and DISPLAY.
3. Press INTEN, enter an intensity value of 90, and press STORE INTEN.
4. Press MORE 1 OF 2 FOCUS, enter a focus value of 128, and press STORE FOCUS. Turn the LINE switch off, then on, cyding the power.
5. If errors are still present, the EEROM A2U501 is defective. Refer to the EEROM replacement procedure in "Procedure 15. EEROM" on page 229.

700 EEROM	Checksum error of EEROM A2U501.
701 AMPL CAL	Checksum error of frequency response correction data.
702 ELAP TIM	Checksum error of elapsed time data. 703 AMPL CAL 704 PRESELCT Correction data. Default values being used.
	Checksum error of customer preselector peak data. External preselector data recalled in internal mode, or internal preselector data recalled in external mode. To clear the error, press RECALL, MORE 1 OF 2,
	FACTORY PRSEL PK, SAVE, and SAVE
PRSEL PK.	

Program ROM The instrument power-on diagnostics perform a checksum on each Checksum Errors

RAM Check	The instrument power-on diagnostics check the program RAM. This
includes the two RAM s used for STATE storage. If any STATE	
Errors	(711 to 716)
	information is found to be invalid, all data in that RAM is destroyed. A separate error code is generated for each defective program RAM. All RAM is battery-backed. See "State- and Trace-Storage Problems" on page 514.

Error Messages

	711 RAM U303	Checksum error of system RAM A2U303.
	712 RAM U302	Checksum error of system RAM A2U302.
	713 RAM U301	Checksum error of system RAM A2U301.
	714 RAM U300	Checksum error of system RAM A2U300.
	715 RAM U305	Checksum error of system RAM A2U305.
	716 RAM U304	Checksum error of system RAM A2U304.
Microprocessor Error (717)	717 BAD uP	Microprocessor not fully operational. Refer to Chapter 9, "Controller Section."
Battery Problem (718)	If STATE or TR display RAMs a information. If th generated. To ch refer to "State-	und to be corrupt, the processor tests the RAMs containing the STATE working properly, this error message is attery and the battery backup circuitry, age Problems" on page 514.
	718 BATTERY?	Nonvolatile RAM not working; check battery BT1. This error can also be generated if the battery has been disconnected then reconnected. If this is the cause, cycling power dears the error.
Model Number Error (719)	If this error occu 719 MODEL \#?	instrument to a service center for repair. Could not read ID string from EEROM A2U501.
System Errors (750 to 759)	These errors oft interface assem	bleshooting the A2 controller and A3
	750 SYSTEM	Hardware/firmware interaction, zero divide. Check for other errors.
	751 SYSTEM	H ardware/firmware interaction, floating point overflow. Check for other errors.
	752 SYSTEM	Hardware/firmware interaction, floating point underflow. Check for other errors.

753 SYSTEM \begin{tabular}{ll}

754 SYSTEM \& | Hardware/firmware interaction, log |
| :--- |
| error. Check for other errors. |

755 SYSTEM \& | Hardware/firmware interaction, |
| :--- |
| integer overflow. Check for other errors. |

756 SYSTEM \& | Hardware/firmware interaction, square |
| :--- |
| root error. Check for other errors. |

757 SYSTEM \& | Hardware/firmware interaction, triple |
| :--- |
| overflow. Check for other errors. |

758 SYSTEM \& | Hardware/firmware interaction, BCD |
| :--- |
| overflow. Check for other errors. |

759 SYSTEM \& | Unknown system error. |
| :--- |
| Hardwareffirmware interaction. Code |
| invoked for wrong instrument. |

\end{tabular}

Fast ADC Error (760)
This error applies only to EC-series instruments and E-series instruments with the fast ADC (Option 007).
760 NO FADC

The FADC circuitry did not respond properly to initialization commands.

Option Module Errors (800 to 899)

These error codes are reserved for option modules, such as the Agilent 85629 test and adjustment module and the Agilent 85620A mass memory module. Refer to the option module manual for a listing of error messages.

User-Generated Errors (900 to 999)

These error codes indi cate user-generated errors.

900 TG UNLVL	Tracking generator output is unleveled.
901 TGFrqLmt	Tracking generator output unleveled because START FREQ is set below tracking generator frequency limit (300 kHz).
902 BAD NORM	The state of the stored trace does not match the current state of the spectrum analyzer.
903 A > DLMT	Unnormalized trace A is off-screen with trace math or normalization on.
$904 \mathrm{~B}>$ DLMT	Calibration trace (trace B) is off-screen with trace math or normalization on.
905 EXT REF	Unabletolock cal oscillator when set to external frequency reference. Check that the external 10 MHz reference is within tolerance.
906 OVENCOLD	The oven-controlled crystal oscillator (OCXO) oven is cold.
907 DO IF CAL	Unit is still performing IF calibrations, or is in need of IF calibrations which were not yet done due to an OVENCOLD condition, since an OVENCOLD error is indicative of a bandwidth $\leq 1 \mathrm{kHz}$ not getting calibrated.
908 BW>>SPCG	Channel bandwidth is too wide, compared to the channel spacing, for a meaningful adjacent channel power computation.
909 SPANACP	The frequency span is too small to obtain a valid adjacent channel power (ACP) measurement.

The frequency span is too wide, compared to the channel bandwidth, to obtain a valid adjacent channel power (ACP) measurement.

Block Diagram Description

The spectrum analyzer is comprised of the six main sections listed bel ow. See Figure 6-6. The following descriptions apply to the simplified block diagram and overall block diagram located at the end of this chapter. Assembly level block diagrams are located in Chapters 7 through 12.

Figure 6-6 Functional Sections

RF Section (8561E/EC)

The RF section of the 8561E/EC includes the following assemblies:

- A7 LODA (LO distribution amplifier)
- A8 dual band mixer
- A9 input attenuator
- A10 SYTF (switched YIG-tuned filter)
- A11 YTO (YIG-tuned oscillator)
- A13 second converter
- A14 frequency control assembly (also in synthesizer section)
- A15 RF assembly (also in synthesizer section)
- FL1, FL2 low-pass filters

The RF section converts all input signals to a fixed IF of 10.7 MHz . The RF section's microcircuits are controlled by signals from the A14 frequency control and A15 RF assemblies.

> Band 0. 2.9 to 6.5 GHz
> Band 1.

Band 0 uses triple conversion to produce the 10.7 MHz IF and a fourth conversion used only in the digital resolution bandwidths ($\leq 100 \mathrm{~Hz}$). A8 dual band mixer up-converts the RF input to a first IF of 3.9107 GHz . A13 second converter down-converts the 3.9107 GHz IF to an IF of 310.7 MHz . A third conversion on the A15 RF assembly down-converts the second IF to the 10.7 MHz third IF. A fourth conversion on the A4 log amplifier assembly down-converts the third IF to the 4.8 kHz fourth IF used only in the digital resolution bandwidths ($\leq 100 \mathrm{~Hz}$).

Bands 1 uses double conversion. A third conversion is used for the digital resolution bandwidths ($\leq 100 \mathrm{~Hz}$). A8 dual mixer down-converts the RF input to a first IF of 310.7 MHz . Although this IF passes through the A 13 second converter, it bypasses the second mixer. The second conversion on the A15 RF assembly down-converts the 310.7 M Hz IF to 10.7 MHz . A third conversion on the A4 log amplifier assembly down-converts the second IF to the 4.8 kHz third IF used only in the digital resolution bandwidths $(\leq 100 \mathrm{~Hz})$.

A7 LODA

The A7 LODA (LO distribution amplifier) levels the output of the A11 YTO and distributes the power to the front-panel 1ST LO OUTPUT, A8 dual mixer and A15U100 sampler. The leveling circuitry is on the A14 frequency control assembly.

A8 Dual Band Mixer

A8 dual band mixer contains two separate mixers; one for low band and one for high band. The low-band mixer is dc-coupled and contains a limiter. The high-band mixer uses ac coupling. A PIN diode switch (controlled by the A14 frequency control assembly) directs the 1st LO to the appropriate mixer.

The A14 frequency control assembly provides the high-band bias. This bias minimizes second- and third-order distortion and conversion loss. The spectrum analyzer stores the bias values in EEROM.

A9 Input Attenuator

The attenuator is a 50Ω precision, coaxial step attenuator. Attenuation in 10 dB steps from 0 dB to 70 dB is accomplished by switching the signal path through one or more of the three resistive pads. The attenuator automatically sets to 70 dB when the spectrum analyzer turns off, providing ESD protection. (Note that the input attenuator is not field-repairable.) A fourth attenuator section switches a blocking capacitor in and out.

A10 SYTF

The SYTF (switched YIG-tuned filter) is a combination of an RF switch and a tracking preselector. The RF switch directs the RF input to either the low-band or high-band paths.

The SYTF functions as a tunable bandpass filter for high-band signals. Coarse frequency control originates from slope and offset DACs located on the A14 frequency control assembly. Slope and offset DAC values are loaded into EEROM.

Fine frequency control originates from a preselector peak DAC located on the A3 interface assembly. Values for the preselector peak DAC are interpolated approximately every 17 MHz based upon data taken during the frequency response (flatness) adjustment.

The preselector's bandwidth varies from 25 MHz at 2.75 GHz , to approximately 40 MHz at 6.5 GHz .

A11 YTO

A11 is a YTO (YIG-tuned oscillator). YIG (yttrium-iron-garnet) is a ferro-magnetic material which is polished into a small sphere and precisely oriented in a magnetic field. Changes in this magnetic field alter the frequency generated by the YTO. Current control of the magnetic field surrounding the YIG sphere tunes the oscillator to the desired frequency.

A13 Second Converter

The A13 second converter down-converts the 3.9107 GHz first IF to a 310.7 MHz 2nd IF. In high band, it passes the 310.7 MHz first IF from the A10 YIG-tuned filter/mixer to the A15 RF assembly. The converter generates a 3.6 GHz second LO by multiplying a 600 MHz reference. Bandpass filters remove unwanted harmonics of the 600 MHz driving signal. First IF and 2nd LO signals are filtered by cavity filters.

Second IF Amplifier (part of A15)

The second IF amplifier (SIFA) amplifies and filters the second IF. Access to this pre-filtered signal is available at the rear-panel 2ND IF OUTPUT (Option 001 only).

The external mixing input from the front-panel's IF INPUT connector is also directed through the SIFA. A dc bias is placed onto the IF INPUT line for biasing external mixers.

Third Converter (part of A15)

The third converter down-converts the 310.7 MHz IF to 10.7 MHz . A PIN-diode switch selects the LO signal used. For normal operation, a 300 MHz LO signal is used. The signal is derived from the 600 MHz reference PLL. During signal identification (SIG ID ON), the 298 MHz SIG ID oscillator is fed to the double balanced mixer on alternate sweeps.

Flatness Compensation Amplifiers (part of A15)

The flatness compensation amplifiers amplify the output of the double-bal anced mixer. The amplifier's variable gain (0 to 45 dB) compensates for flatness variations within a band. Band conversion loss is compensated by step gain amplifiers in the IF section.

Control for the amplifiers originates from two DACs on the A3 I nterface assembly. (DAC values are interpolated approximately every 17 MHz based on data obtained during the frequency response adjustment.) A15's flatness-compensation control circuitry converts the RF GAIN voltage, from A3, into two currents: RF GAIN 1 and RF GAIN2. These currents drive PIN diodes in the flatness compensation amplifiers.

RF Section (8563E/EC)

The RF section of the 8563E/EC includes the following assemblies:

- A7 SLODA (switched LO distribution amplifier)
- A8 low band mixer
- A9 input attenuator
- A10 YIG-tuned filter/mixer (RYTHM)
- A11 YTO (YIG-tuned oscillator)
- A13 second converter
- A14 frequency control assembly (also in synthesizer section)
- A15 RF assembly (also in synthesizer section)
- FL1, FL2 low-pass filters

The RF section converts all input signals to a fixed IF of 10.7 MHz . The RF section's microcircuits are controlled by signals from the A14 frequency control and A15 RF assemblies.
Band 0.
9 kHz to 2.9 GHz
Bands 1 through 3
2.75 to 26.5 GHz

Band 0 uses triple conversion to produce the 10.7 MHz IF and a fourth conversion used only in the digital resolution bandwidths ($\leq 100 \mathrm{~Hz}$). A8 low band mixer up-converts the RF input to a first IF of 3.9107 GHz . A13 second converter down-converts the 3.9107 GHz IF to an IF of 310.7 MHz . A third conversion on the A15 RF assembly down-converts the second IF to the 10.7 MHz third IF. A fourth conversion on the A4 log amplifier assembly down-converts the third IF to the 4.8 kHz fourth IF used only in the digital resolution bandwidths ($\leq 100 \mathrm{~Hz}$).

Bands 1 through 3 use double conversion. A third conversion is used for the digital resolution bandwidths ($\leq 100 \mathrm{~Hz}$). A10 YIG-tuned filter/mixer (RYTHM) down-converts the RF input to a first IF of 310.7 MHz . Although this IF passes through the A13 second converter, it bypasses the second mixer. The second conversion on the A15 RF assembly down-converts the 310.7 MHz IF to 10.7 MHz . A third conversion on the A4 log amplifier assembly down-converts the second IF to the 4.8 kHz third IF used only in the digital resolution bandwidths ($\leq 100 \mathrm{~Hz}$).

A7 SLODA

The A7 SLODA (switched LO distribution amplifier) levels the output of the A11 YTO and distributes the power to the front-panel 1ST LO OUTPUT, A8 low band mixer, A10 YIG-tuned filter/mixer, and A15U 100 sampler. The leveling circuitry is on the A14 frequency control assembly.

A8 Low Band Mixer

A8 low band mixer is ac-coupled and contains a limiter. (Option 006 is dc-coupled.) The high band mixing is done in the A10 YIG-tuned filter/mixer. A PIN diode switch in A10 directs the RF input to the appropriate mixer. A PIN diode switch in A7 SLODA directs the first LO to the appropriate mixer.

A9 Input Attenuator

The attenuator is a 50Ω precision, coaxial step attenuator. Attenuation in 10 dB steps from 0 dB to 70 dB is accomplished by switching the signal path through one or more of the three resistive pads. The attenuator automatically sets to 70 dB when the spectrum analyzer turns off, providing ESD protection. (Note that the input attenuator is not field-repairable.)

A10 YIG-Tuned Filter/Mixer

The YIG-tuned filter/mixer (RYTHM) is a combination of an RF switch, a high band mixer, and a tracking preselector. The PIN diode switch directs the RF input to the appropriate mixer in the A10 RYTHM assembly or A8 low band mixer.

The tracking preselector is a YIG-tuned filter. It functions as a tunable bandpass filter for high band signals. Coarse frequency control originates from slope and offset DACs located on the A14 frequency control assembly. (Slope and offset DAC values are loaded into EEROM.)

Fine frequency control originates from a preselector peak DAC located on the A3 interface assembly. Values for the preselector peak DAC are interpolated approximately every 17 MHz based upon data taken during the frequency response (flatness) adjustment. The preselector's bandwidth varies from greater than 30 MHz , at 2.75 GHz , to greater than 60 MHz , at 26.5 GHz .

The high band mixer is ac coupled. It uses the first, second, and fourth harmonics, mixed with the first local oscillator, to cover the frequency range. A PIN diode switch in A7 SLODA directs the first LO to the appropriate mixer. The A14 frequency control assembly provides PIN diode bias.

All YTO

A11 is a YTO (YIG-tuned oscillator). YIG (yttrium-iron-garnet) is a ferro-magnetic material which is polished into a small sphere and precisely oriented in a magnetic field. Changes in this magnetic field alter the frequency generated by the YTO. Current control of the magnetic field surrounding the YIG sphere tunes the oscillator to the desired frequency.

A13 Second Converter

The A13 second converter down-converts the 3.9107 GHz first IF to a 310.7 MHz 2nd IF. In high band, it passes the 310.7 MHz first IF from the A10 YIG-tuned filter/mixer to the A15 RF assembly. The converter generates a 3.6 GHz second LO by multiplying a 600 MHz reference. Bandpass filters remove unwanted harmonics of the 600 MHz driving signal. First IF and 2nd LO signals are filtered by cavity filters.

Second IF Amplifier (part of A15)

The second IF amplifier (SIFA) amplifies and filters the second IF. Access to this pre-filtered signal is available at the rear-panel 2ND IF OUTPUT (Option 001 only).

The external mixing input from the front-panel's IF INPUT connector is also directed through the SIFA. A dc bias is placed onto the IF INPUT linefor biasing external mixers.

Third Converter (part of A15)

The third converter down-converts the 310.7 MHz IF to 10.7 MHz . A PIN-diode switch selects the LO signal used. For normal operation, a 300 MHz LO signal is used. The signal is derived from the 600 MHz
reference PLL. During signal identification (SIG ID ON), the 298 MHz SIG ID oscillator is fed to the double balanced mixer on alternate sweeps.

Flatness Compensation Amplifiers (part of A15)

The flatness compensation amplifiers amplify the output of the double-bal anced mixer. The amplifier's variable gain (0 to 45 dB) compensates for flatness variations within a band. Band conversion loss is compensated by step gain amplifiers in the IF section.
Control for the amplifiers originates from two DACs on the A3 Interface assembly. (DAC values are interpolated approximately every 17 MHz based on data obtained during the frequency response adjustment.) A15's flatness-compensation control circuitry converts the RF GAIN voltage, from A3, into two currents: RF GAIN1 and RF GAIN2. These currents drive PIN diodes in the flatness compensation amplifiers.

Synthesizer Section

The first LO is phase-locked to the instrument's internal 10 MHz standard by four PLLs. See Figure 6-7 on page 355.

The reference PLL supplies reference frequencies for the instrument. The three remaining PLLs tune and phase-lock the LO through its frequency range. To tune the LO to a particular frequency, the instrument's microprocessor must set the programmable feedback dividers (N) and reference dividers (R) contained in each PLL.

Sweeping the First LO

The spectrum analyzer uses a method called lock and roll to sweep the first LO (A11 YTO) for LO spans $>2 \mathrm{MHz}$. This involves phase-locking the spectrum analyzer at the start frequency during the retrace of the sweep, then sweeping through the desired frequency range in an unlocked condition. The sweep ramp, which sweeps the LO during the roll part of the lock and roll process, is generated on the A14 frequency control assembly. It is applied to either A11 YTO's main coil or the A11 YTO's FM coil. For LO spans $\leq 2.0 \mathrm{MHz}$, the YTO PLL remains locked and the fractional N PLL sweeps while remaining phase locked. The frequency/span relationships are as follows:

Al1 YTO Spanwidth
20.1 MHz to 3.8107 GHz
2.01 MHz to 20.0 MHz

100 Hz to 2 MHz

Sweep Applied to
A11 YTO's main coil
A11 YTO's FM coil
Fractional N phase locked loop

When the sweep ramp is applied to the YTO, the spectrum analyzer must prevent this loop from trying to compensate for changes in the output frequency. To accomplish this, the spectrum analyzer opens the PLL by disconnecting the YTO PLL's phase detector output.

Reference PLL (part of A15)

The 600 MHz reference PLL provides 600 MHz for the second LO, 300 MHz for the third LO, and the sampling oscillator reference, and 10 MHz to the fractional N PLL. The reference PLL is locked to a 10 MHz OCXO (oven-compensated crystal oscillator) or a TCXO (Option 103). The PLL can also be locked to an external frequency reference.

The 10 M Hz reference al so supplies the reference for the frequency counter on the A2 controller assembly, and the cal oscillator on the A4 assembly.

YTO PLL (A7, A11, part of A14, part of A15)

The YTO PLL produces the instrument's first LO (3.0 to 6.81 GHz). The YTO's output is mixed with a harmonic of the sampling oscillator in the sampler (A15A2), and the resulting frequency is phase-locked to the output of the fractional N PLL.

The A15U 100 sampler mixes the LO signal from the A7 SLODA with a harmonic of the sampling oscillator. The mixing product, the sampler IF, is between 60 and 96 MHz (same frequency range as the fractional N PLL).

Offset Lock Loop (part of A15)

The 285 MHz to 297.2 MHz sampling oscillator is used to sample the YTO. By changing the offset lock loop's programmable dividers, the YTO frequency can be changed.

Figure 6-7 Phase Lock Loops

1ST LO OUTPUT $3.0-6.81 \mathrm{GHz}$

Fractional N PLL (part of A14)

The fractional N PLL produces an output of 60 MHz to 96 MHz . This PLL's output serves as the reference frequency for the YTO PLL. A one-to-one relationship in frequency tracking exists between the fractional N PLL and the YTO. A change of 1 MHz in the fractional N PLL will produce a 1 MHz change in the YTO frequency.

IF Section

The IF section processes the 10.7 MHz output of the RF section and sends the detected video to the ADC/interface section. The following major assemblies are included in this section:

- A3 interface assembly
- A4 log amplifier/calibration oscillator assembly
- A5 IF assembly

The spectrum analyzer uses trace-data manipulation to generate the 5 dB /DIV scale from the $10 \mathrm{~dB} /$ DIV scale. The A3 interface assembly amplifies and offsets the $10 \mathrm{~dB} / \mathrm{DIV}$ video to generate the $2 \mathrm{~dB} / \mathrm{DIV}$ scale. The 1 dB/DIV scale is generated from the 2 dB/DIV scale through trace data manipulation. The first 50 dB of IF gain (log and linear mode) is achieved using the A5 assembly's linear step-gain amplifiers.

The A4 assembly's video-offset circuit provides the remaining 60 dB of log mode IF gain. The A4 assembly's linear amplifiers provide 40 dB of linear mode gain. IF gain steps of less than 10 dB (regardless of the reference level) are accomplished on the A5 assembly.

A4 Log Amplifier/Cal Oscillator Assembly

The A4 log amplifier has separate log and linear amplifier paths. After amplification, the signal path consists of a linear detector, video log amp, buffer amplifier, video offset, and video buffer amplifier. Other auxiliary functions include the frequency counter prescaler/conditioner, the AM/FM demodulator, and down-conversion to 4.8 kHz for digital resolution bandwidths of 1 Hz through 100 Hz .

The cal oscillator, which is part of A4, supplies the stimulus signal for automatic IF adjustments. Normally, the oscillator operates only during retrace (for a few milliseconds) to adjust part of the IF. (All IF parameters will be re-adjusted approximately every five minutes.) With continuous IF adjust on, a group of IF parameters are adjusted during each retrace period (non-disruptive). If continuous IF adjust is off, the most recent IF calibration data will be used.

The IF parameters adjusted include step gains, log amplifier gain and offset, bandwidth centering, 3 dB bandwidth, bandwidth amplitude, crystal-filter symmetry, and oscillator frequency used in 1 Hz through 100 Hz resolution bandwidths.

The cal oscillator's output has three forms (all -35 dBm):

- 10.7 MHz
- 9.9 to 11.5 MHz in 100 kHz steps
- Frequency sweeps from 20 kHz to 2 kHz centered at 10.7 MHz (lasting 5 to 60 ms respectively)
The purpose of these signals is to:
- Adjust gains, log amps, and video slopes and offsets
- Adjust 3 dB bandwidth and center frequencies of LC resolution BW filters (30 kHz through 1 MHz).
- Adjust 3 dB bandwidth, symmetry, and gain of the crystal resolution BW filters (300 Hz through 10 kHz).
- Adjust gain and gain-vs-frequency for digital resolution bandwidths (1 Hz through 100 Hz).

A5 IF Assembly

The A5 IF assembly has four crystal filter poles, four LC filter poles, and step gain amplifiers. The crystal filters provide resolution bandwidths of 300 Hz to 10 kHz . The LC filters provide resolution bandwidths of 30 kHz to 2 MHz . All filter stages are in series. PIN diode switches bypass unwanted stages.

An automatic IF adjustment, in spectrum analyzer firmware, sets center frequency and 3 dB bandwidth of all filter poles through varactor and PIN diodes. The firmware also controls crystal-pole symmetry and the step gain amplification.

ADC/I nterface Section

The ADC/interface section is the link between the controller section and the rest of the spectrum analyzer. It controls the RF, synthesizer, and IF sections through address and data lines on the W2 control cable (analog bus). Analog signals from these sections are monitored by the ADC/interface section's ADC (analog to digital converter) circuit.

The ADC/interface section includes the A3 interface assembly, A1A1 keyboard, and A1A2 RPG (front-panel knob). The A3 assembly includes log expand, video filter, peak detector, track-and-hold, real-time DACs, RF gain DACs, +10 V reference, and ADC circuitry. The assembly's digital section includes ADC ASM, sweep trigger, keyboard interface, RPG interface, and analog bus interface circuitry.

ADC

The spectrum analyzer can digitize signals with either the main ADC on the A3 interface assembly, or the optional A16 fast ADC (Option 007). The main ADC is used for digitizing video signals (when the sweep time is $\geq 30 \mathrm{~ms}$) and various other signals such as PLL error voltages. The fast ADC is used only to digitize video signals for sweep times $\leq 30 \mathrm{~ms}$.

Main ADC (part of A3 interface assembly). For slower sweep times ($\leq 30 \mathrm{~ms}$) the spectrum analyzer uses a successive-approximation type of ADC. The main ADC has a 10-bit resolution but it is realized with 12-bit hardware. The ADC algorithmic state machine (ADC ASM) controls the interface between the start/stop control and the ADC itself, switching between positive and negative peak detectors when the NORMAL detector mode is selected, and switching the ramp counter into the ADC for comparison to the analog sweep ramp.

Fast ADC. In EC-series instruments, or when Option 007 is installed in E-series instruments, and sweep times $\leq 30 \mathrm{~ms}$ are selected, the spectrum analyzer digitizes video signals with fast ADC circuitry. The fast ADC uses an 8-bit flash ADC, sampled at a 12 MHz rate. Only POS PEAK, NEG PEAK, and SAMPLE detector modes are available with fast ADC; NORMAL detector mode is not available. Pretriggering is possible with fast ADC.

Log Expand/Video Functions

The A3 interface assembly performs log expand and offset functions. The log expand/log offset amplifier provides a $2 \mathrm{~dB} / \mathrm{Div}$ log scale. When the main ADC is used, the $5 \mathrm{~dB} / \mathrm{Div}$ scale is derived by multiplying the digitized $10 \mathrm{~dB} / \mathrm{Div}$ trace data by two in the CPU. When the fast ADC is used, the $5 \mathrm{~dB} / D i v$ scale is derived by amplifying the video signal by two. The $1 \mathrm{~dB} / D i v$ scale is similarly derived by either multiplying the $2 \mathrm{~dB} /$ Div trace data by two (main ADC) or amplifying the video signal by two (fast ADC).

The spectrum analyzer uses two types of video filters. An RC low-pass circuit provides 300 Hz to 3 MHz video bandwidths. Video bandwidths $\leq 100 \mathrm{~Hz}$ are generated using digital filtering. When a digital filter is selected, a D appears along the left edge of the CRT, indicating that something other than the normal detector mode is being used. Digitally filtered video bandwidths use a sample detector.

When sample detector is selected, the effective video bandwidth is limited to approximately 450 kHz .

After filtering, the video is sent to the positive and negative peak detectors. These detectors are designed for optimum pulse response. The positive peak detector resets at the end of each horizontal "bucket" (there are 601 such buckets across the screen). The negative peak detector resets at the end of every other bucket. When reset, the output of the peak detector equals its input.

Triggering

The spectrum analyzer has five trigger modes: free run, single, external, video, and line. The free run and single trigger signal comes from the 1 MHz ADC clock. The line trigger signal comes from the A6 power supply. Video triggering originates from A3's video filter buffer circuit. External triggering requires either a high or low TTL logic level as determined by the setting of the trigger polarity function. The external trigger signal is received from a rear-panel BNC connector. A DAC in the trigger circuit sets the video trigger level. The trigger circuit is responsible for setting HSCAN high.

Controller Section

The controller section includes the A2 controller assembly and A19 GPIB assembly. The battery on the rear panel provides battery backup for state and trace storage.
In 8561EC and 8563EC instruments the A2 contains the CPU, RAM, ROM, the display ASM, Fast ADC circuitry, GPIB interface, control, frequency counter, display RAM, option module interface, and EEROM.

In 8561E and 8563E instruments the A2 contains the CPU, RAM, ROM, the display ASM and line generators, CRT blanking, focus, intensity, GPIB interface, control, frequency counter, display RAM, option module interface, and EEROM. In 8561E and 8563E instruments the A2 assembly controls the A17 CRT driver through W7.

The A19 GPIB is a mechanical interface between the standard GPIB connector and the ribbon cable connector on the A2 controller assembly.
All six RAM IC's (four RAM IC's on 16 MHz controller assemblies) are battery-backed. The battery-backed RAM stores trace information (two display memory RAMs) and spectrum analyzer state information (two program RAMs). A total of eight traces and ten states may be stored. Typical battery life is five years with the lithium battery. Trace and state information may be retained for up to 30 minutes with a dead battery and power turned off. This is due to the RAM 's very low data retention current.

EEROM

The EEROM stores important amplitude-related correction data. This includes data for LO distribution amplifier DACs, preselector slope and offset DACs, RF gain DACs (flatness correction), and preselector peak DAC. The spectrum analyzer serial number, model number, and installed options are also stored in EEROM.

Firmware

The spectrum analyzer firmware reads the model number and installed options from the EEROM to determine how to respond to certain keystrokes.

Display ASM

Much of the miscellaneous digital control is performed by A2U100. U100 functions as the display ASM (algorithmic state machine) and character ROM. It also converts the 16 -bit CPU data bus to an 8 -bit data bus for the rest of the spectrum analyzer.

Display/Power Supply Section

A6 Power Supply

The A6 power supply is a switching supply operating at 40 kHz for low voltages in both EC-series and E-series instruments.

In E-series instruments, the power supply also provides the 30 kHz signal for the CRT supplies (cathode, filament, +110 Vdc , and post accelerator). The A6A1 high voltage module contains the high-voltage transformer and post-accelerator multiplier. Power is distributed through W8 to A17 and through W1 to the rest of the assemblies. A6A1W2 supplies CRT cathode and filament voltages to the A17 assembly.

The speed of the spectrum analyzer fan is variable. A thermistor on A6 senses the temperature and adjusts the fan speed accordingly. This allows the spectrum analyzer to run quietly in most room-temperature environments and faster (louder) only when necessary.

A17 LCD Display Driver (EC-series)

The display is an LCD color flat panel screen with 640×480 VGA resolution. A connector for an external VGA is available at the rear panel. The A17A1 backlight supply provides the high voltage to supply the two backlights in the LCD display. The LCD display is not adjustable.

The display driver board consists of the Hitachi 7707 processor, an Actel FPGA, DRAM, SRAM, a filter circuit, and a video DAC. This board monitors the 8560 EC-series controller board, copies display instructions to local memory, creates a bitmap from the data, and generates the signals needed to drive the LCD and a VGA monitor. The video DAC converts the digital color information from the LCD to analog; these analog signals drive the RGB col or lines on the VGA port on the rear panel.

A17 CRT Display Driver (E-series)

The line generators on the A2 assembly drive the A17 CRT driver. The A17 assembly contains X and Y deflection amplifiers, focus and intensity grid amplifiers, and miscellaneous CRT bias circuitry. The high voltage is supplied by A6A1 high voltage module.

In fast-analog zero-span mode (sweep times $\leq 30 \mathrm{~ms}$ without Option 007), the 0-SPAN VIDE O signal from A3 and the sweep ramp from A14 connects to the A17 CRT driver. The graticule and annotation are still digitally drawn.

7 ADC/I nterface Section

Introduction

The ADC/I nterface section includes the A1A1 keyboard, A1A2 RPG(rotary pulse generator), A3 interface, and A16 fast ADC (Option 007)assemblies. Table 7-1 on page 381 lists signal versus pin numbers forcontrol cable W2.
Troubleshooting Using the TAM page 383
Automatic Fault Isolation page 383
Keyboard/RPG Problems page 386
K eyboard Interface page 386
RPG Interface page 387
Triggering or Video Gating Problems page 389
Preselector Peaking Control (Real Time DAC) page 392
Flatness Control (RF Gain DACs) page 393
A3 Assembly's Video Circuits page 394
Log Offset/Log Expand page 396
Video MUX page 397
Video Filter page 398
Video Filter Buffer Amplifier page 399
Positive/Negative Peak Detectors page 400
Peak Detector Reset page 401
Rosenfell Detector page 402
ADC MUX page 403
Variable Gain Amplifier (VGA) page 405
Track and Hold page 405
A3 Assembly's ADC Circuits page 406
ADC Control Signals page 406
ADC Start/Stop Control page 407
ADC ASM page 408
ADC page 408
Ramp CounterA3 Assembly's Control Circuits
page 410
Analog Bus Drivers page 410
Analog Bus Timing. page 411
Interface Strobe Select page 413
A16 Assembly's FADC Circuits (8560E-series, 007) page 414
Video Input Scaling Amplifiers and Limiter page 414
8-Bit Flash ADC page 415
Peak/Pit Detection. page 416
32 K-Byte Static RAM page 417
A16 Assembly's FADC Control Circuits (8560E -series, 007). page 418
CPU Interface and Control Registers page 418
Reference Clock page 421
Clock and Sample Rate Generator page 421
Trigger page 422
16-Bit Post-Trigger Counter page 423
15-Bit (32 K) Circular Address Counter page 423
Video Trigger Comparator page 424

Table 7-1 W2 Control Cable Connections

Signal	A3J 2 (pins)	A4J 2 (pins)	A5J 2 (pins)	A14J 2 (pins)	A15J 2 (pins)
D0	1*	1	50	1	1
D GND	2*	2	49	2	2
D1	3*	3	48	3	3
D2	4*	4	47	4	4
D3	5*	5	46	5	5
D4	6*	6	45	6	6
D GND	7*	7	44	7	7
D5	8*	8	43	8	8
D6	9*	9	42	9	9
D7	10*	10	41	10	10
A0	11*	11	40	11	11
D GND	12*	12	39	12	12
A1	13*	-	38	13	13
A2	14*	-	37	14	14
A3	15*	15	36	15	15
A4	16*	-	35	16	16
D GND	17*	17	34	17	17
A5	18*	-	33	18	-
A6	19*	-	32	-	-
A7	20*	-	31	20	-
D GND	21*	21	30	21	21
LRF_STB	22*	-	-	-	22
LFC_STB	23*	-	-	23	-
LIF_STB	24*	-	27	-	-
CAL OSC TUNE	25	25*	-	-	-
LLOG_STB	26*	26	-	-	-
VCMON	-	-	-	27	-
D GND	28*	28	23	28	28
RT PULSE	29*	-	-	-	-
HSCAN	30*	-	-	30	-
D GND	31*	31	20	31	31
* Indicates signal source.					

Table 7-1 W2 Control Cable Connections

Signal	A3J 2 (pins)	A4J 2 (pins)	A5J 2 (pins)	A14J 2 (pins)	A15J 2 (pins)
RESERVED	-	-	-	-	-
OFL ERR	33	-	-	-	33*
R/T DAC3	34*	-	-	-	-
A GND	35*	35	16	35	35
RF GAIN	36*	-	-	-	36
LO3 ERR	-	-	-	37	37*
A GND	38*	38	13	38	38
LVFC_ENABLE	39*	-	-	39	-
FC ERR	40	-	-	40*	-
A GND	41*	41	10	41	41
YTO ERR	42	-	-	42*	-
+10V REF	43*	43	-	-	43
A GND	44*	44	7	44	44
SCAN RAMP	45	-	-	45*	-
VIDEO TRIGGER	46*	-	-	-	-
A GND	47*	47	4	47	47
NC	-	-	-	-	-
R/T DAC2	49*	-	-	-	-
R/T DAC1	50*	-	-	50	-
* Indicates signal source.					

Troubleshooting Using the TAM

When using Automatic Fault I solation, the TAM indicates suspected circuits that need to be manually checked. Use Table 7-2 on page 384 to locate the manual procedure.

Table 7-3 on page 385 lists assembly test connectors associated with each Manual Probe Troubleshooting test. Figure 7-1 on page 383 illustrates the location of A3's test connectors.

Figure 7-1 A3 Test Connectors

Automatic Fault Isolation

Analog data bus errors that occur during Automatic Fault Isolation result from either a shorted W2 control cable or faulty A3 assembly. Perform the following steps to determine the cause of the error.

1. Disconnect W2 from A3J 2 and repeat the Automatic Fault Isolation procedure.
2. If the analog data bus error is still present, troubleshoot the A3 Interface assembly. If the error disappears, look for a short on W2 or another assembly connecting to it.
3. To isolate a short on W2, reconnect W2 to A3J 2 and disconnect W2 from all other assemblies.
4. Repeat the Automatic Fault I solation routine.

Table 7-2

Automatic Fault Isolation References

Suspected Circuit Indicated by Automatic Fault Isolation	Manual Procedure to Perform
Check ADC ASM	ADC ASM
Check ADC MUX	ADC MUX
Check ADC Start/Stop Control	ADC Start/Stop Control
Check Analog Bus Drivers	Automatic Fault Isolation (in this chapter) Analog Bus Drivers
Check Analog Bus Timing	Automatic Fault Isolation (in this chapter) Analog Bus Timing
Check Interface Strobe Select	Interface Strobe Select
Check Keyboard Interface	Keyboard/RPG Problems
Check Negative Peak Detector	Positive/Negative Peak Detectors
(steps 3 through 10)	

Table 7-3 TAM Tests versus A3 Test Connectors

Connector	Manual Probe Troubleshooting Test	Measured Signal Lines
A3J 105	Video Input to Interface Video to Rear Panel Video MUX LOG Offset/LOG Expand Video Filter Buffer Amp. Video Peak Detectors ADC MUX Variable Gain Amplifier Track and Hold	MS1 MS1, MS2 MS1, MS3 MS1, MS3 MS3, MS5, OS1 MS5, MS6 MS6 MS6, MS7 MS7, MS8
A3J 400	Revision Trigger ADC Start/Stop Control Video Trigger DAC Real Time DAC \#1 RF Gain DACs	$\begin{aligned} & \text { MS2 } \\ & \text { MS8 } \\ & \text { MS7 } \\ & \text { MS1 } \\ & \text { MS3 } \\ & \text { MS6 } \end{aligned}$

Keyboard/RPG Problems

Keyboard Interface

Refer to function block G of A3 Interface Assembly Schematic Diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

A pressed key results in a low on a keyboard sense line (LKSNS0 through LKSNS7). This sets the output of NAND gate U607 high, generating KBD/RPG_IRQ. The CPU determines the key pressed by setting only one keyboard scan line (LKSCN 0 through LKSCN5) Iow through U602 and reading the keyboard sense lines.

1. If none of the keys or RPG responds, check ribbon cable, A1A1W1. (This cable connects the A1A1 keyboard to the A3 interface assembly.) The keys are arranged in a row/column matrix, as shown in Table 7-4.
2. If an entire row or column of keys does not respond, and the RPG does respond, there might be an open or shorted wire in A1A1W1.

Table 7-4 Keyboard Matrix

	LKSNS0	LKSNS1	LKSNS2	LKSNS3	LKSNS4	LKSNS5	LKSNS6	LKSNS7
LKSCN0	CONFIG	SAVE	RECALL	GHz	MHz	kHz	Hz	PRESET
LKSCN1	MODULE	TRIG	DISP	9	6	3	BK SP	\uparrow
LKSCN2	PEAK SEARCH	BW	TRACE	8	5	2	\bullet	\downarrow
LKSCN3	FREQ	AUTO	MKR \rightarrow	7	4	1	0	HOLD
LKSCN4	SOWEEP	SK1	SK2	SK3	SK4	SK5	SK6	MKR
LKSCN5	AUX	MEAS/USER	CAL	SGL	COPY	FRE-	SPAN	AMPLI-TUDE

3. Check that all inputs to NAND gate A3U607 (LKSNS lines) are high when no key is pressed. If any input is low, continue with the following:
a. Disconnect A1A1W1 from A3J 602 and again check all inputs to U607.
b. If any input is Iow with A1A1W1 disconnected, suspect A3U 604, A3U607, or A3U602.
c. Reconnect A1A1W1 to A3J 602.
4. Monitor A3U607 pin 8 with a logic probe. A TTL high should be present when any key is held down. Monitor this point while pressing each key in succession.
5. Check that the LKSCN lines (outputs of A3J 602 pins 1 through 6) read a TTL low with no key pressed. (Any TTL high indicates a faulty A3 Interface assembly.)
6. Check that a pulse is present at each LKSCN output of U602 when a key is pressed.
7. Check that only one input to U607 (LKSNS lines) goes low when a key is pressed.
8. Check that U602 pin 9 (LKBD_RESET) pulses low when a key is pressed.
9. If LKBD_RESET is incorrect and a pulse is not present at each of the LKSCN outputs of U602 when a key is pressed, check for LWRCLK and LSCAN_KBD.

RPG Interface

Refer to function block J of A3 Interface Assembly Schematic Diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

U608B latches the RPG direction from the two RPG outputs, RPG_COUNT and RPG_COUNT1. Counterclockwise RPG rotation produces low-going pulses which result in a high output on U608B. Clockwise RPG rotation results in a low output from U608B. U612A provides the edge to trigger one-shot U423B, which generates a 90 ms pulse. This pulse gates U610A for counting of RPG pulses by U606. Gates U610D and U614D prevent retriggering of U423B until its 90 ms pulse has timed out.

Elsewhere, RPG_COUNT1 is referred to as RPG_01 and RPG_COUNT is referred to as $\overline{\mathrm{R} P G} 02$.

1. Monitor A3U 401 pin 2 with a logic probe or oscilloscope. Pulses should be present as the RPG is rotated.
2. Monitor A3U608 pin 12 as the RPG is rotated. Pulses should be present.
3. If pulses are missing at both points, check for power and ground signals to A1A1W1 and A1A2W1. If both power and ground are there, the A1A2 RPG is probably defective.
4. If pulses are missing at only one point, check for an open or short on A1A1W1 and A1A2W1. If these cables are working properly, A1A2 RPG is probably defective.
5. Press LINE to turn spectrum analyzer off and disconnect A1A1W1 from A3J 602. J umper A3U 608 pin 12 (RPG_COUNT1) to U 608 pin 14 (+5 Vdc). J umper U401 pin 2 (RPG_COUNT1) to U511 pin 11 (HDPKD_CLK). This provides a 7.8 kHz square wave to the RPG_COUNT input of the RPG Interface.
6. Press LINE to turn spectrum analyzer on.
7. Check A3U 608 pin 9 for narrow, low-going pulses approximately every 90 ms .
8. Check A3U 608 pin 13 (LRPG_RESET) for narrow, low-going pulses approximately every 90 ms .
9. Check A3U612 pin 5 for narrow, low-going pulses approximately every 90 ms .
10.Check U608 pin 5 (HRPG_IRQ) for narrow, high-going pulses approximately every 90 ms .
11.If HRPG_IRQ is correct but LRPG_RESET is incorrect, check U505 pin 13 (LKBD/RPG_IRQ) for narrow, low-going pulses approximately every 90 ms .
12.If HRPG_IRQ and LKBD/RPG_IRQ are correct but LRPG_RESET is incorrect, suspect a failure on the A2 controller assembly.
13.Check U610 pin 3 for a 7.8 kHz square wave. Check U606 pin 2 (HRPG_RESET) for narrow, high-going pulses approximately every 90 ms . \bar{R} efer to Table 7-5 and check the frequencies at divide-by-16 counter A3U606.
14.If all the checks above are correct but the spectrum analyzer does not respond to the RPG, suspect a problem in either the A1A2 RPG or the A1A1 K eyboard.
15.Press LINE to turn spectrum analyzer off.
10. Reconnect A1A1W1 to A3J 602 and remove all jumpers.

Table 7-5 Counter Frequencies

A3U606 pin \#	Nominal Frequency (Hz)
3	3900
4	1950
5	975
6	488
11	244
10	122
9	61

Triggering or Video Gating Problems

Refer to function block H of A3 Interface Assembly Schematic Diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

The 1 MHz ADC clock provides synchronization in FREE RUN and SINGLE triggering. LINE triggering synchronization originates on the A6 power supply. Trigger MUX A3U 613 selects between FREE RUN, VIDEO, LINE, and EXTERNAL trigger sources. The trigger signal sets the output of the HSCAN latch high. HBADC_CLK0 provides the trigger signal for FREE RUN. The VIDEO TRIG signal must be at least 25 mV (0.25 divisions) peak-to-peak to trigger in video trigger mode.

The trigger for Gated Video has two modes of operation, level mode and edge mode. In the edge mode, positive-edge or negative-edge triggering can be selected. Output 0 from pin 10 of A3U 617 generates the gate delay and output 1 from pin 13 of A3U 617 generates the gate length. The duration of these two time intervals is set using front-panel softkeys under the SWEEP key. The trigger input for Gated Video is the rear-panel EXT/GATE TRIG INPUT (TTL > $10 \mathrm{k} \Omega$).

1. Check that the trigger MUX is receiving the proper trigger source information by selecting each of the following trigger modes and checking the TRIG_SOURCE 0 and TRIG_SOURCE1 lines as indicated in Table 7-6.
2. If a trigger mode does not work, check that a trigger signal is present at the appropriate trigger MUX input, as indicated in the table.

Table 7-6 \quad Trigger MUX Truth Table

Trigger Mode	TRIG_SOURCE0 U613 pin 14	TRIG_SOURCE1 U613 pin 2	MUX Input Pin Number U613
FREE RUN	L	L	6
VIDEO	H	L	5
LINE	H	H	3
EXTERNAL	L	H	4

3. Check that the appropriate trigger MUX input signal is present at the trigger MUX output (A3U613 pin 7).
4. To check the video trigger level DAC, connect a DVM's positive lead to A3J 400 pin 1 and the negative DVM lead to A3TP4.
5. Press trig and video.
6. Press the STEP ∇ key several times while noting the DVM reading and position of the video trigger level on the screen.
7. Check that the voltage displayed on the DVM changes by 1 V for each step of the VIDEO TRIG LEVEL.
8. If the voltage changes incorrectly, proceed as follows:
a. Check the -10 Vdc reference (A3U 409 pin 4).
b. While using the front-panel knob to adjust the video trigger level, check for the presence of pulses on A3U 409 pin 15 (LDAC2).
c. While using the front-panel knob to adjust the video trigger level, check for the presence of pulses on A3U409 pin 16 (LWRCLK).
d. Check that pulses are present on U409 pin 6 (IAO).
9. If the LWRCLK and LDAC2 signals are not correct, refer to "Interface Strobe Select" on page 413.
10.If correct trigger pulses are present at the trigger MUX output (A3U 613 pin 7), but the instrument does not appear to be sweeping, proceed as follows:
a. Press PRESET, SWEEP, and DLY SWP ON OFF until ON is underlined, then DLY SWP [] 30 milliseconds.
b. Using an oscilloscope, check for activity at pins 1 and 3 of A3U615A.
c. If there is activity at pin 1 but not at pin 3 of A3U 615A, suspect A3U 616 or A3U617.
d. If there is activity at pin 1 and pin 3 of A3U 615A, suspect A3U615. (Check pin 5 for activity.)
11.If there is a problem with Video Gating, proceed as follows:
a. Press PRESET and set the spectrum analyzer as follows:
\qquad
Span ..0Hz
Sweep time .. 150ms
b. Press TRIG, EXTERNAL, then SWEEP and GATE ON OFF until ON is underlined.
c. Press GATE DLY [] 10 milliseconds, then press GATE LEN [] 30 milliseconds.
d. Connect a pulse/function generator (such as the 8116A) to provide a 5 V peak-to-peak square wave (TTL level) to the spectrum analyzer rear-panel EXT/GATE TRIG INPUT and also (using a BNC tee) to the channel 4 input of the oscilloscope (Agilent 54501A).
e. Set the pulse/function generator to NORMAL mode with a duty cycle of 50% and a frequency of 10 Hz .
f. Press the following keys on the oscilloscope:

CLEAR DISPLAY

off frame axes grid \qquad highlight grid connect dots off on highlighton

TRIG

source 1234 highlight4
level 2V
TIMEBASE
TIMEBASE 50ms/div
CHAN
CHANNEL 1234 off on
highlight CHANNEL 1 on
set $\mathrm{V} / \mathrm{div}$ to 0.2 V and offset to 0.6 V (10:1 probe used)
highlight CHANNEL 4 on
set $\mathrm{V} / \mathrm{div}$ to 2 V and offset to 0 V
DISPLAY
DISPLAY norm avg env
\qquad highlightnorm
g. Using a 10:1 probe connected to channel 1 of the oscilloscope, check for activity at pins 10 and 13 of A3U617.
h. If either pin (or both) show no activity, check for activity at pin 21 (LTIMER) of A3U 617.
i. If LTIMER is not active, troubleshoot the Interface Strobe Select circuitry (block K)
j. If there was activity at pins 10 and 13 of A3U 617, suspect A3U616.

Preselector Peaking Control (Real Time DAC)

Refer to function block H of A3 Interface Assembly Schematic Diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information. The spectrum analyzer uses a real-time DAC (R/T DAC1) to peak the preselector.

1. Press PRESET on the spectrum analyzer and set the span to 0 Hz .
2. Connect a positive DVM lead to A3J 400 pin 3 and the negative DVM lead to A3TP4.
3. Press MKR, AUX CTRL, INTERNAL MIXER, and PRESEL MAN ADJ.
4. Monitor the DVM reading while changing the PRESELECTOR TUNE value from 0 to 255 . The PRESELECTOR TUNE value is R / T DAC1's setting.
5. Check that the DVM reading increases from 0 to approximately +10 Vdc as R/T DAC1 is set from 0 to 255.
6. If the voltage does not change as described, set the spectrum analyzer to single trigger mode and check the following:
a. Check that A3U 409B pin 18 is at -10 Vdc .
b. Check for the presence of pulses at U409 pin 6 (IAO).
c. Check that pulses are present at U 409 pin 15 (LDAC2).
d. Check that pulses are present at U409 pin 16 (LWRCLK).
7. If the LDAC2 or LWRCLK signals are incorrect, refer to "I nterface Strobe Select" on page 413.

Flatness Control (RF Gain DACs)

Refer to function block M of A3 Interface Assembly Schematic Diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

RF Gain DACs control the A15 assembly's flatness compensation amplifiers. The RF Gain DACs are arranged so that the output of one DAC is the voltage reference for the other DAC. This results in an RF GAIN voltage which is exponentially proportional to the DAC settings. E ach DAC is set to the same value. The A15 RF assembly converts the RF GAIN signal to a current for driving the PIN diode attenuators in the Flatness Compensation Amplifiers. The exponentially-varying voltage compensates for the nonlinear resistance-versus-current characteristic of the PIN diodes.

1. Place the WR PROT/WR ENA jumper on the A2 controller assembly in the WR ENA position.
2. Press CAL, MORE 1 OF 2, SERVICE CAL DATA, FLATNESS, and FLATNESS DATA. Press NEXT BAND until "FLATNESS BAND \#0" is displayed.
3. Press the $\mathbf{\Delta}$ key until "DATA @ 300 MHz is displayed. Note the number directly bel ow "DATA @ 300 MHz "; this is the RF Gain DAC value.
4. Connect a positive DVM lead to $A 33400$ pin 13 and the negative DVM lead to A3TP4.
5. Check that the DVM reading increases from near 0 Vdc to between -1.3 and -1.9 Vdc as the RF Gain DAC is increased from 0 to 4095.
6. If the DVM readings are incorrect, press PRESET, SGL SWP, CAL, MORE 1 OF 2, SERVICE CAL DATA, FLATNESS, and FLATNESS DATA. Press NeXt band until "FLATNESS BAND \#0" is displayed. Press the $\boldsymbol{\Delta}$ key until "DATA @ 300 MHz " is displayed. Proceed as follows:
a. Check the +10 V reference.
b. Check for narrow, low-going pulses at A3U 417 pin 13 (LWRCLK).
c. While rotating the front-panel knob, check for narrow, low-going pulses at A3U417 pin 1 (LDAC1) and pin 14 (LDACU1).
d. While rotating the front-panel knob, check for narrow, low-going pulses at U417 pin 16 (L_IA0) and pin 15 (IA4).
7. If the LWRCLK, LDAC1, or LDACU1 is incorrect, refer to the Interface Strobe Select block diagram later in this chapter.
8. Place the WR PROT/ WR ENA jumper on the A2 controller assembly in the WR PROT position. Press PRESET.

A3 Assembly's Video Circuits

Voltages from A3J 101 to A3's Variable Gain Amplifier correspond (approximately) to on-screen signal levels. (One volt corresponds to the top of the screen and zero volts corresponds to the bottom of the screen.) This is true for both log and linear settings except when the spectrum analyzer is in $1 \mathrm{~dB} / \mathrm{div}$ or $2 \mathrm{~dB} / \mathrm{div}$. In these cases the log expand amplifier is selected, and 1 V corresponds to top-screen and 0.8 or 0.9 V corresponds to bottom-screen. The spectrum analyzer can be set to zero span at the peak of a signal to generate a constant dc voltage in the video circuits during sweeps.

1. Disconnect W26 from A3J 101 and W20 from A2J 4.
2. Connect W26 to A2J 4.
3. Set the spectrum analyzer to the following settings:
Span 0 Hz
Sweep time 20ms
Resolution bandwidth 1 MHz
Log/division 10dB/DIV
4. If a trace is displayed, troubleshoot the A3 assembly. If a trace is absent, connect an oscilloscope to the rear-panel BLKG/GATE OUTPUT.
5. The presence of a TTL signal (TTL low during 20 ms sweep) indicates a good A3 Interface Assembly. Troubleshoot the IF section.
6. If the BLKG/GATE OUTPUT is always at a TTL high or low, troubleshoot the A3's trigger/video gating circuits.
7. Reconnect W26 to A3J 101 and W20 to A2J 4.
8. Remove the A3 assembly's shield.
9. If the video filters appear to be faulty, refer to "Video Filter" on page 398.
10.If there appears to be a peak detector problem, refer to "Positive/Negative Peak Detectors" on page 400.
11.Connect the spectrum analyzer CAL OUTPUT to the INPUT 50Ω and set the controls as follows:
Center frequency 300 MHz
Span 0 Hz
Reference level $-10 \mathrm{dBm}$
12.If the spectrum analyzer works correctly in $5 \mathrm{~dB} / \mathrm{div}$ and $10 \mathrm{~dB} / \mathrm{div}$ but not in $1 \mathrm{~dB} / \mathrm{div}$ or $2 \mathrm{~dB} / \mathrm{div}$, refer to "Log Offset/L og Expand" on page 396. Continue with step 13 if the problem involves on-screen amplitude errors which appear to originate in the video chain.

13.Press CAL and IF ADJ ON OFF until OFF is underlined. Monitor A3TP9 with an oscilloscope. If the voltage is not approximately +1 Vdc, troubleshoot the Log Amplifier on A4. (Refer to the IF troubleshooting procedure in Chapter 8 , "IF Section.")

14.To confirm proper video input to the video circuit, set the spectrum analyzer to Log 10 dB per division and change the reference level in 10 dB steps from -10 dBm to +30 dBm . At each 10 dB step, the input voltage should change 100 mV . The input level should be +0.6 Vdc for a +30 dBm reference level.
NOTE

The on-screen amplitude level will probably not change as expected, since the video circuitry is assumed to be faulty.
15.M onitor A3TP14 while stepping the reference level from -10 dBm to +30 dBm . If the vol tage does not step approximately 100 mV per 10 dB step, refer to "Video MUX" on page 397.
16.If the Video MUX is working properly, monitor A3TP15 with the oscilloscope and step the reference level from -10 dBm to +30 dBm . If the voltage does not change 100 mV per 10 dB step, refer to "Video Filter" on page 398.
17.If the voltage at A3TP15 is correct, move the oscilloscope probe to A3TP17 and step the reference level between -10 dBm and +30 dBm . If the voltage does not change 100 mV per 10 dB step, refer to "Video Filter Buffer Amplifier" on page 399.
18.If the voltage at A3TP17 is correct, move the oscilloscope probe to A3TP6. Set the following controls to keep the ADC MUX set to the MOD_VIDEO input during the sweep:
Sweep time 50s
Detector mode Sample
19.Step the reference level from -10 dBm to +30 dBm while monitoring the voltage change on the oscilloscope. If the vol tage does not change 100 mV per 10 dB step, refer to "ADC MUX" on page 403.
20.If the voltage at A3TP6 is correct, move the oscilloscope probe to A3TP8 and step the reference level between -10 dBm and +30 dBm . If the voltage at A3TP8 is not the same as that at A3TP6, replace A3U110.
21.If the voltage at A3TP8 and A3TP6 are equal, move the oscilloscope probe to A3TP7.
22.Change the reference level from -10 dBm to 0 dBm . The voltage change on A3TP 7 should be between 630 mV and 770 mV . If the voltage change is outside of these limits, refer to "Variable Gain Amplifier (VGA)" in this chapter. The gain of the VGA should be $7 \pm 10 \%$.

Log Offset/Log Expand

Refer to function block X of A3 Interface Assembly Schematic Diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Leve Information.

The log scales are modified using a combination of amplification and digital trace manipulation. The video input to the A3 assembly is either $10 \mathrm{~dB} / \mathrm{div}$ or linear. To obtain the $5 \mathrm{~dB} / \mathrm{div}$ scale, the CPU manipulates the trace data from the $10 \mathrm{~dB} / \mathrm{div}$ scale. To obtain the $2 \mathrm{~dB} / \mathrm{div}$ scale, the video signal is amplified and offset so that top-screen in $10 \mathrm{~dB} / \mathrm{div}$ corresponds to top-screen in $2 \mathrm{~dB} / \mathrm{div}$. To obtain the $1 \mathrm{~dB} / \mathrm{div}$ scale, the CPU manipulates trace data from the $2 \mathrm{~dB} / \mathrm{div}$ scale.

In $2 \mathrm{~dB} / \mathrm{div}$, Log Offset/Log Expand amplifies the top 20 dB of the display. This is done by offsetting the video signal by -0.8 V and providing a gain of 5 to the top 0.2 V of the video signal. The -0.8 V offset is accomplished by sinking 2 mA through R114 by current source U105/Q101.

1. On the spectrum analyzer, press PRESET, SPAN, ZERO SPAN, CAL, and IF ADJ OFF.
2. Disconnect W26 (coax 2) from A3J 101 and connect the output of a function generator to A3J 101.
3. Set the function generator to the following settings:

Output	Sinewave
Amplitude	1V pk-to-pk
DC Offset +500 mV
Frequency	. 50 Hz

4. Set the spectrum analyzer sweep time to 50 ms .
5. Adjust the function generator amplitude and offset until the sine wave fills the entire graticule area.
6. Measure and note the function generator's peak-to-peak voltage using an oscilloscope.
$\mathrm{V}_{(10 \mathrm{~dB} / \mathrm{div})}=$ \qquad V
7. Set the spectrum analyzer to $2 \mathrm{~dB} / \mathrm{div}$.
8. Readjust the function generator amplitude and offset until the sine wave again fills the entire graticule area.
9. Measure the function generator's peak-to-peak voltage and dc offset.
$\mathrm{V}_{(2 \mathrm{~dB} / \mathrm{div})}=$ \qquad V
10.The ratio of voltage recorded in step 6 to the voltage recorded in step 9 should be $5 \pm 3 \%$. If the ratio is not 5 , troubleshoot the A3 Interface assembly.

Video MUX

Refer to function block U of A3 Interface Assembly Schematic Diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

1. Press PRESET and set the spectrum analyzer controls as follows:

Center frequency .. 300MHz
Span ... 0 OHz
2. Press SGL SWP, CAL, and IF ADJ OFF. Connect the CAL OUTPUT to the INPUT 50Ω connector.
3. Check for a TTL high on A3U 104 pin 2 and a TTL Iow on U104 pin 10. Set the spectrum analyzer to $2 \mathrm{~dB} / \mathrm{div}$ and check for a TTL high on A3U104 pin 10 and a TTL low on A3U 104 pin 2.
4. If the logic levels on A3U 104 are incorrect, check the LLOG_STB signal as follows:
a. Monitor A3U 104 pin 9 with an oscilloscope or logic probe. Check that a 1 microsecond, low-going pulse is present when switching between $10 \mathrm{~dB} / \mathrm{div}$ and $2 \mathrm{~dB} / \mathrm{div}$.
b. Check the inputs to $\mathrm{A} 3 \cup 104$ (pins 3 and 11) while switching between $10 \mathrm{~dB} / \mathrm{div}$ and $2 \mathrm{~dB} / \mathrm{div}$.
c. If the logic signals are incorrect, refer to "Analog Bus Drivers" on page 410 and "Analog Bus Timing" on page 411.
5. Check comparators A3U 109A/C for proper outputs. The outputs should be high when the noninverting input is greater than the threshold voltage of +1.3 Vdc .
6. If A3U104 and A3U109 are working properly, set the AMPLITUDE and REF LVL to 0 dBm .
7. Monitor the voltage at A3TP14 while switching the spectrum analyzer between $10 \mathrm{~dB} / \mathrm{div}$ and $2 \mathrm{~dB} / \mathrm{div}$. The voltage should switch between 0.8 and 0.4 Vdc .
8. If the voltage at A3TP14 is incorrect, suspect either A3Q220 or A3Q221.
9. The Video MUX will appear faulty if A3CR109 is shorted or leaky. Diode A3CR109 clamps the voltage at A3TP 14 to -0.4 V when in log expand with less than 0.8 V at J 101. To confirm this failure, lift diode A3CR 109's cathode and perform steps 1 through 7 again.
10.To return the spectrum analyzer to automatic sweep, press SWEEP, SWEEP CONT SGL or press PRESET.

Video Filter

Refer to function block V of A3 Interface Assembly Schematic Diagram in the Agilent Technol ogies 8560 E -Series Spectrum Analyzer Component Level Information.

The spectrum analyzer uses digital filtering for 1 Hz to 100 Hz video bandwidths. An RC low-pass filter is used for 300 Hz to 3 MHz video bandwidths. Various series resistances and shunt capacitances switch into the video filter to change its cutoff frequency.

When sample detector is selected, the effective video bandwidth is limited to approximately 450 kHz by the track and hold circuitry.
When Gated Video is selected, the video signal is "gated" (turned on periodically for a set duration of time). This function is shown in block V of the block diagram as a series switch that allows the video signal to pass only when it is closed. The actual switch, U109B/CR118, shunts the video to ground (video signal is passed only when the switch is open). The control circuitry for this switch is described under "Triggering or Video Gating Problems" on page 389. The rear-panel EXT/GATE TRIG INPUT provides the connection for triggering in the Gated Video mode. The gate output signal is available at the rear-panel BLKG/GATE OUTPUT connector. Positive or negative edge mode, or level mode can be selected from the front panel.

1. Press PRESET and set the spectrum analyzer controls to the following settings:
Center frequency 225 MHz
Span 550 MHz
Sweep time Uncoupled(MAN)
2. Press CAL and IF ADJ OFF.
3. Step the Video BW from 3 MHz to 10 kHz . At each step, the peak-to-peak deviation of the noise should decrease.
4. Step the Video BW down to 1 Hz . At each step, the amplitude of the LO feedthrough should decrease.
5. Refer to Table 7-7 on page 399 and check for correct latched levels for the selected video bandwidth setting.
6. If latch A3U 102's output is not correct, trigger an oscilloscope on LLOG_STB (U102 pin 9) and monitor U102 pin 1 and other latch inputs while changing the video bandwidth.
7. If the inputs are incorrect, troubleshoot the analog bus. Correct inputs with bad outputs indicate a faulty U102.
8. Check that the outputs of A3U111A, A3U111B, and A3U 107A/B/C/D are correct for their inputs. The outputs should be high with noninverting inputs higher than the +1.4 V threshold voltage. If a voltage drop is noticed across these components, suspect A3CR109 or A3Q317B. Since no dc current flows through any of the series resistances or FETS (drain to source), no voltage drops should occur.
9. To return the spectrum analyzer to automatic sweep, press SWEEP, SWEEP CONT SGL or PRESET.
Table 7-7 A3U102 Latch Outputs

Video BW	Pin $\mathbf{2}$	Pin $\mathbf{5}$	Pin $\mathbf{7}$	Pin $\mathbf{1 0}$	Pin $\mathbf{1 2}$	Pin $\mathbf{1 5}$
300 Hz	H	L	L	L	L	L
1 kHz	L	L	L	L	L	H
3 kHz	L	H	L	L	L	L
10 kHz	L	L	L	L	H	L
30 kHz	H	L	H	L	L	L
100 kHz	L	L	H	L	L	H
300 kHz	L	H	H	L	L	L
1 MHz	L	L	H	L	H	L
3 MHz	L	L	L	H	L	L

Video Filter Buffer Amplifier

Refer to function block W of A3 Interface Assembly Schematic Diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

The video filter buffer amplifier provides outputs for video trigger, positive and negative peak detectors, and the analog zero-span (sweeps $<30 \mathrm{~ms}$). The zero-span video output is terminated in 500 ohms on the A2 Controller assembly. The amplifier is a high-input-impedance buffer amplifier with a gain of one when properly terminated.

Current source U307C provides twice the current of Q316. Resistor R145 and current source U307D shift the dc level. Resistor R260 terminates the peak detector inputs in 500 ohms. The unterminated gain is 1.1. Diode CR114 prevents latchup during positive overdrive conditions while CR113 protects Q318 during overdrive. Diode CR117 is a 12.7 V zener that limits the peak detector's output to +1.5 V . Typically, limiting occurs at +1.1 V .

Positive/Negative Peak Detectors

Refer to function blocks Y and Z of A3 Interface Assembly Schematic Diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Leve Information.

The following information pertains to the positive peak detector and is applicable to troubleshooting the negative peak detector.
The positive peak detector consists of an input amplifier (A3U204 and A3Q210) followed by detector diodes (A3CR203 and A3CR204) and hold capacitor A3C217. Output amplifier A3Q206, Q211, and Q212 buffers the hold capacitor. Both the input and output amplifiers have a gain of one. Each amplifier has local feedback. On the output amplifier the emitter of Q212 connects to Q206's gate. On the input amplifier the feedback goes through Q209 and Q208 back to the base of U204D. Global feedback occurs from the output amplifier through R223 back to the input amplifier U204D. The peak detector resets through Q207.

1. Press PRESET and set the spectrum analyzer controls as follows:
Center frequency 300 MHz
Span 500 MHz
Resolution bandwidth AUTO
Video bandwidth AUTO
Log dB/division 10dB/DIV
2. If the spectrum analyzer does not meet the conditions in steps athrough e below, the positive and negative peak detectors areprobably faulty. Continue with step 3 to check the detectors.
a. The peak-to-peak deviation of the noise in NORMAL detector mode should be approximately two divisions. Press TRACE, TRACE B, CLEAR WRITE B, VIEW B, TRACE A, MORE 1 of 3, and DETECTOR MODES.
b. Select DETECTOR POS PEAK mode.c. Confirm that the noise is about one-third division peak-to-peak.The noise should also be no higher than the top of the noise levelin NORMAL detector mode.
d. Select DETECTOR NEG PEAK mode. The noise should be about one-third of a division peak-to-peak. The noise should also be no lower than the bottom of the noise in NORMAL mode.
e. Select DETECTOR SAMPLE mode. Check that the noise appears between the top and bottom of the noise in NORMAL mode.
3. On the spectrum analyzer, connect the front-panel CAL OUTPUT tothe INPUT 50Ω and set the controls to the following settings:
Center frequency 300 MHz
Span 0 Hz
Sweep time 5s
Detector mode POSPEAK
4. Monitor A3TP17 and A3TP16 simultaneously with an oscilloscope.
5. Change the reference level from -10 dBm to +30 dBm and verify a voltage change at both A3TP 17 and A3TP 16 of 0.9 V to 0.5 V in 100 mV steps.
6. Check the entire range of the detector by substituting a dc source at J 101 and varying its output from 0 V to 1 V .
7. If the peak detector appears latched up, check LPOS_RST (U422 pin 4) for a negative TTL level reset pulses. The reset pulses should occur every $130 \mu \mathrm{~s}$ and should be approximately 250 ns wide.
8. If the reset pulses are absent, troubleshoot the Peak Detector Reset circuitry.
9. If the reset pulses are present, check the gate of Q207. The pulses should be positive-going from -12.7 V to -1.35 V .
10.The peak detector can be made into a unity gain amplifier by shorting the, cathode of CR203 to the anode of CR204. If the peak detector functions normally as a unity gain amplifier, suspect Q208 or CR203 or CR204.

Peak Detector Reset

Refer to function block R of A3 Interface Assembly Schematic Diagram in the Agilent Technologies 8560 E-Series Spectrum Analyzer Component Leve Information.

1. Press PRESET on the spectrum analyzer and set the controls as follows:

Center frequency .. 300M Hz
Span ..0Hz
Sweep time ..5s
Detector mode ... POSPEAK
2. Check that HHOLD (A3U526 pin 11) has 18μ s wide pulses every $128 \mu \mathrm{~s}$.
3. Check that HODD (U408 pin 5) is a square wave with a period of 16.7 ms ($2 \times$ sweep time/600).
4. Check LPOS_RST (U422 pin 4) for 200 ns low-going pulses every $128 \mu \mathrm{~s}$.
5. Check LNEG_RST (A3U422 pin 12) for 200 ns low-going pulses every $128 \mu \mathrm{~s}$.
6. Set the detector mode to NORMAL and check that LNEG_RST (A3U 422 pin 12) has two pulses spaced 40μ s apart and then a single pulse approximately $88 \mu \mathrm{~s}$ from the second pulse.
7. Check HMUX_SELO (A3U408 pin 3) and HMUX_SEL1 (A3U408 pin 9) according to Table 7-8.

Table 7-8 HMUX_SE LO/1 versus Detector Mode

Detector Mode	HMUX_SELO (U408 pin 3)	HMUX_SEL1 (U408 pin 9)
NORMAL	15μ s pulse every $128 \mu \mathrm{~s}$	$40 \mu \mathrm{~s}$ pulse every $128 \mu \mathrm{~S}$
SAMPLE	H	H
POS PEAK	H	L
NEG PEAK	L	H

Rosenfell Detector

Refer to function block S of A3 Interface Assembly Schematic Diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

If both HPOS_HLDNG and HNEG_HLDNG are high during the same bucket, HROSE NFELL will also be set high. This indicates that the video signal probably consists of noise, since it rose and fell during the same period. The HROSE NFELL signal is valid only when the NORMAL (rosenfell) detector mode is selected.

1. Remove anything connected to the 8561E/EC or $8563 \mathrm{E} / \mathrm{EC}$ front-panel INPUT 50Ω connector. Press PRESET on the spectrum analyzer and set the controls as follows:
Center frequency 300 MHz
Span OHz
Sweep time 5s
Detector mode NORMAL
2. Check LPOS_RST and LNEG_RST as described in "Peak Detector Reset" on page 401.
3. Check A3U 423 pin 4 for two low-going 3.3μ s pulses 40μ s apart occurring every $130 \mu \mathrm{~s}$.
4. Check that HROSENFELL (A3U610 pin 6) has two pulses spaced approximately $40 \mu \mathrm{~s}$ apart and then a third pulse $60 \mu \mathrm{~s}$ from the second pulse. E ach pulse should be approximately 10μ s wide and low-going.
5. Monitor HROSENFELL with an oscilloscope while reducing the video bandwidth from 1 MHz to 1 kHz .
6. As the video bandwidth is decreased to 1 kHz , the HROSENFELL line should increasingly show a low logic level. With a video bandwidth of 1 kHz , a nearly flat line should be displayed on the CRT.
7. Set the sweep time to 50 ms . Externally trigger the oscilloscope using the spectrum analyzer rear-panel BLKG/GATE OUTPUT.
8. Check that HPOS_HLDNG (A3U416 pin 4) is mostly high with a 1 MHz video bandwidth and mostly low with a 1 kHz video bandwidth.
9. Check that LNEG_HLDNG (U408A pin 13) is mostly high with a 1 MHz video bandwidth and mostly low with a 1 kHz video bandwidth.

ADC MUX

Refer to function block AA of A3 Interface Assembly Schematic Diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Leve Information.

The ADC MUX switches various inputs into the video path for conversion by the ADC. The SCAN RAMP input is used during sweeps having a width of equal to or greater than 2.01 MHz times N , to control the timing of the ADC operations. Some combination of MOD_VIDEO, NEG_PEAK, and POS_PEAK is used for the video signal to be converted by the ADC. The YTO ERR, FCMUX, CAL OSC TUNE, and OFL ERR inputs are used only during diagnostic and auto adjust routines and during retrace.

1. Set the spectrum analyzer to the following settings:

Center frequency ... 300 MHz
Span .. 0 OHz
Reference level .. 10 dBm
Sweep time .50s
DETECTOR MODE SAMPLE
2. Refer to Table 7-9 on page 404 and check for correct logic levels at A3U 108 pins 1, 15, and 16. Check for proper output signals at TP 6. If the select lines are not changing, suspect the ADC ASM or the VGA/ADC MUX Control. If the select lines are changing, but the proper video inputs are not being switched to the output, replace U108. In SAMPLE mode, the input is MOD_VIDEO (pin 7); in POS PEAK mode, the input is POS_PEAK (pin 5); and in NEG PEAK mode, the input is NEG_PEAK (pin 6).
3. Check for the presence of the YTO ERR signal at A3J 2 pin 42 with an oscilloscope probe.
4. If ERR 300 YTO UNLK or 301 YTO UNLK occurs and the voltage is near zero during a sweep and positive during retrace (YTO is being
locked), the fault is on the A3 assembly. If a constant dc voltage is present, refer to the Synthesizer section troubleshooting procedure in Chapter 10, "Synthesizer Section."

Table 7-9 Logic Levels at A3U108

Detector Mode	U108 pin 1	U108pin 15	U108pin 16
SAMPLE	H	L	H
POS PEAK	H	L	L
NEG PEAK	L	L	H

5. Set the spectrum analyzer to the following settings:

Span
5 MHz
Sweep time ... 50ms
6. Check for the presence of the SCAN RAMP signal by connecting an oscilloscope probe to A3J 2 pin 45 (component side of A3J 2). Connect the negative-probe lead to A3TP4.
7. A 0 to 10 V ramp should be present in both LINE and FREE RUN trigger modes. If the waveform is present only in LINE trigger, ADC control signal HBADC_CLK 0 may be faulty. Refer to "ADC Control Signals" on page 406.
8. If the scan ramp is present, but is not being switched to the output of U108, replace U108. If the scan ramp is absent in either mode, do the following:
a. Connect the oscilloscope probe to A3J 400 pin 15 (HSCAN).
b. A TTL signal (high during 50 ms sweep time and low during retrace) should be present, indicating A3 is working properly. Refer to the Synthesizer section troubleshooting procedure in Chapter 10. A faulty TTL signal indicates a bad A3 Interface assembly.
9. Set the spectrum analyzer to the following settings:

Sweep time
100 ms
Span 100 MHz
10.Press CAL and IF ADJ ON and check for the presence of the CAL OSC TUNE signal by monitoring A3J 401 pin 25 with an oscilloscope. If ERR 499 CAL UNLK is displayed and a signal within the range of -10 V to +10 V is present during part of the retrace period, the fault is on the A3 assembly.
11.If a constant dc voltage is present during the sweep and all of the retrace period, refer to the IF Section troubleshooting procedure in Chapter 8.

Variable Gain Amplifier (VGA)

Refer to function block AB of A3 Interface Assembly Schematic Diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Leve Information.

The VGA provides adjustable gain in the video path. Its nominal gain of 7 can be adjusted $\pm 10 \%$. U112 removes dc offset to keep U113 in its monotonic range. (Both U112 and U113 are set to the same value.) The DAC settings cannot be changed from the front panel.

Track and Hold

Refer to function block AC of A3 Interface Assembly Schematic Diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

1. Press PRESET on the spectrum analyzer and set the controls as follows:

Center frequency .. 300 MHz
Span ...0Hz
Detector mode ...Sample
Reference level .. -70 dBm
Log dB/division ...2dB/DIV
Sweep time .. 50ms
2. Disconnect any signal from the spectrum analyzer input. A full scale display of sampled noise should be present.
3. Trigger an oscilloscope on the positive going edge of HHOLD (A3U506 pin 16).
4. The waveform at A3TP10 should be random noise with an average level of approximately 4 V . The noise should have a flat spot in its response while HHOLD is high, indicating proper operation of U114.

A3 Assembly's ADC Circuits

The ADC consists of a 12-bit DAC, 12-bit successive approximation register (SAR), data multiplexers, and data latches. The ADC ASM (algorithmic state machine) controls the ADC. Eight inputs are controlled by the ADC MUX. These indude a positive peak detector, negative peak detector, sampled video, scan ramp, YTO error voltage, FC MUX voltages, Cal Oscillator tune voltage, and offset lock error voltage. A MUX on the A14 frequency control assembly selects which voltage is sent to the ADC MUX on the FC MUX signal line.

During NORMAL detector mode sweeps, when noise is detected by the rosenfell detector, the ADC ASM automatically switches between POS PEAK and NEG PEAK.

ADC Control Signals

Refer to function blocks B and F of A3 Interface Assembly Schematic Diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Leve Information.
The ADC requires two signals from the A2 controller assembly: HBADC_CLKO and HBBKT_PULSE. HBBKT_PULSE is used only in zero span. Use the following steps to verify the signals.

1. Disconnect W22 from A2J 8.
2. If a 10 MHz TTL signal is absent on W 22 , refer to the 10 MHz Reference (on the A15 RF assembly) troubleshooting procedure in Chapter 11, "RF Section."
3. Set the spectrum analyzer SPAN to zero.
4. Reconnect W22.
5. With an oscilloscope probe, monitor A3J 401 pin 20.
6. If TTL pulses are absent, the A2 controller assembly is faulty. Refer to Chapter 9 . The presence of TTL pulses indicates a faulty A3 assembly.
7. Monitor A3J 401 pin 23 (HBADC_CLK0). If a 1 MHz TTL clock signal is present, HBADC_CLKO is working properly.
8. If HBKT_PULSE or HBADC_CLKO is missing, disconnect A3W1 from A2] 2.
9. Monitor A2U5 pin 3 for HBKT_PULSE and A2U5 pin 7 for HBADC_CLKO.
10.If HBADC_CLK0 is absent, troubleshoot the A2 controller assembly.
11.HBKT_PULSE is absent, refer to the information on troubleshooting the frequency counter in Chapter 9.
12.Reconnect A3W1 to A2J 2.

ADC Start/Stop Control

Refer to function block B of A3 Interface Assembly Schematic Diagram in the Agilent Technologies 8560 E-Series Spectrum Analyzer Component Leve Information.

The ADC Start/Stop Control determines the start time of all ADC conversions. Multiplexer A3U509 chooses the source of the start signal. Both HSTART_SRC and HBUCKET tell the ASM to start a conversion.

1. Press PRESET on the spectrum analyzer and set the following controls:

Span
0 Hz

Sweep time ...60s
Detector mode
SAMPLE
2. Check for a TTL high at A3U 509 pin 2 and a TTL Iow at A3U509 pin 14.
3. Set the detector mode to NORMAL.
4. Check that A3U 509 pins 2 and 14 are both TTL Iow.
5. Set the spectrum analyzer to the following settings:
\qquad
Detector mode SAMPLE
6. Check for a TTL high at A3U 509 pin 2 and a TTL low at A3U509 pin 14.
7. Press CAL and REALIGN LO \&IF. During the realignment, A3U 509 pin 2 should be TTL low and pin 14 should be TTL high until the 10 kHz and narrower resolution bandwidths are adjusted. If correct, the Start/Stop Control circuitry is being selected properly by the processor and U508 in the ADC Register block is working properly.
8. Press PRESET on the spectrum analyzer and set the controls as follows:

Span 0 Hz
Detector mode SAMPLE
Sweep time 400ms
9. Check that A3U 509 pin 7 has positive $15 \mu \mathrm{~s}$ pulses with a $667 \mu \mathrm{~s}$ period (sweep time/600). Check that A3U509 pin 9 has positive $15 \mu \mathrm{~s}$ pulses with a 667μ s period (sweep time/600). The pulses should be present during the sweep but absent during retrace.
10. Set the detector mode to NORMAL.
11.Check that A3U 509 pin 9 has pulses every 130μ s and U509 pin 7 has pulses every $667 \mu \mathrm{~s}$ (although pulse widths may be changing).

ADC ASM

Refer to function block F of A3 Interface Assembly Schematic Diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

1. Press PRESET on the spectrum analyzer and set the controls as follows:
\qquad
Sweep time ...60s
Detector mode
SAMPLE
2. Check that HSTART_SRC (U504 pin 4) goes TTL high, causing HHOLD (U506 pin 16) to go high $15 \mu \mathrm{~s}$ later.
3. Check that HSTART_ADC (U506 pin 15) goes TTL high $19 \mu \mathrm{~s}$ after HSTART_SRC goes high.
4. HHOLD should stay TTL high for approximately $18 \mu \mathrm{~s}$, and HSTART_ADC should stay high for approximately $31 \mu \mathrm{~s}$.
5. Check that LCMPLT (U504 pin 15) goes TTL low 12μ s after HSTART_ADC goes high (12 bits at 1μ s per bit). LCMPLT indicates that the successive approximation state machine (SASM) has completed the ADC conversion.
6. Check that LDONE (U506 pin 19) goes TTL low approximately $2 \mu \mathrm{~s}$ after LCM PLT goes low.

Abstract

ADC Refer to function block A of A3 Interface Assembly Schematic Diagram in the and Agilent Technologies 8560 E-Series Spectrum Analyzer Component Leve Information.

The successive approximation state machine (SASM) consists of A3U527 and A3U528. Upon the occurrence of HSTART_ADC, the SASM successively toggles bits from high to low starting with the most significant bit. The digital result is then converted to an analog current in DAC U518 and compared with the SAMPLED VIDEO. If the DAC current is too high, the output of U512 will be low, telling the SASM that the "guess" was high and that the bit just toggled should remain low. It then moves on to the next most significant bit until all 12 bits have been "guessed" at. E ach "guess" takes 1μ s (one cycle of HBADC CLK0), or $12 \mu \mathrm{~s}$ to complete a conversion. When the conversion is completed, the SASM sets LCMPLT low. The bits are written to the data bus by buffers U514 and U516.

1. Set the spectrum analyzer controls as follows:

C	300 MHz
Span	... 0 Hz
Sweep time	.60s
Detector mode	.SAMPLE

2. Trigger an oscilloscope on HSTART_ADC (U506 pin 15) and monitor the outputs of the SASM (U527 pins 18 and 19; U528 pins 14 through 23). Each bit should start high and be switched low. It will either stay low or return to a high state $1 \mu \mathrm{~s}$ later, depending on the comparison at U512.
3. If the outputs do not exhibit this bit pattern, and the ADC ASM checks are working properly, suspect A3U 527, U528, or one of the latches (U514/516). If the output of comparator U512 does not toggle back and forth during a conversion, suspect either U512 or one of the clipping diodes (CR500/CR501).

Because currents are being summed at U512 pins 2 and 3, voltage levels at these points are difficult to interpret.

Ramp Counter

Refer to function block D of A3 Interface Assembly Schematic Diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information

The ramp counter is used for sweeps with widths greater than 2.0 MHz times N. The analog sweep ramp is compared to the digital ramp counter. When the analog sweep ramp exceeds the DAC output generated for that ramp counter setting, HRAMP_COMP toggles high, indicating the end of a bucket. The ramp counter counts horizontal buckets. There are 601 buckets per sweep, so the ramp (bucket) counter counts from 0 to 600. The ramp counter is incremented by HRST_PK_ENA.

1. Press PRESET on the spectrum analyzer and set the controls as follows:

Span ... 5MHz
Detector mode SAMPLE
2. For spans greater than 2.0 MHz times N0, HODD (A3U 525 pin 3) is a square wave with a period defined by ($2 \times$ sweep time/600). For example, for a 6 s sweep time, HODD has a period of 20 ms . The ramp (bucket) counter will be odd every other bucket.

A3 Assembly's Control Circuits

A digital control problem will cause the following three steps to fail.

1. On the spectrum analyzer, press AMPLITUDE, ATTEN MAN, 7, 0, dB.
2. A click should be heard after pressing $d B$ in step 1 , unless ATTEN was previously set to 70 dB .
3. Press 1, 0, and dB. Another click should be heard. If no clicks were heard, but the ATTEN value displayed on the CRT changed, the digital control signals are not operating properly.

Analog Bus Drivers

Refer to function block N of A3 Interface Assembly Schematic Diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

1. Press PRESET on the spectrum analyzer, and set the controls as follows:

Span 0 Hz
Trigger Single
2. Monitor A3U401 pin 3 (LRF_STB) with an oscilloscope or logic probe. This is the strobe for the A15 RF Assembly.
3. Press AUX CTRL and REAR PANEL and check that pulses occur when toggling between $10 \mathbf{~ M H z ~ I N T ~ a n d ~} 10$ MHz EXT.
4. Monitor U401 pin 5 (LFC_STB) with an oscilloscope or logic probe. This is the strobe for the $\overline{\mathrm{A}} 14$ frequency control assembly.
5. Press AMPLITUDE and check that pulses occur when toggling between ATTEN settings of 10 and 20 dB .
6. Monitor U401 pin 7 (LIF_STB) with an oscilloscope or logic probe. This is the strobe for the A5 IF assembly.
7. Press AMPLITUDE and check that pulses occur when toggling between REF LVL settings of -10 dBm and -20 dBm .
8. Monitor U401 pin 9 (LLOG_STB) with an oscilloscope or logic probe. This is the strobe for the log amplifier on the A4 assembly.
9. Press AMPLITUDE and check that pulses occur when toggling between LINEAR and LOG dB/DIV.
10.To check the Address and Data Lines, place a jumper from A3TP1 and A3TP2 to A3U406 pin 20 (+5 V).
11. Check that address lines A0 through A7 and data lines D0 through D7 are all TTL high.
12.If any address or data line is low, press LINE to turn spectrum analyzer off and disconnect the W2 control cable from A3J 2. Press LINE to turn spectrum analyzer on. I gnore any error messages.
13.Check that address lines A0 through A7 and data lines D0 through D7 are all high. If all address and data lines arehigh, suspect a fault either in W2 or one of the other four assemblies which connect to W2.
14.If any address or data line is low, check the appropriate input of either U405 (data lines) or U406 (address lines).
15.If a data line input is stuck low, check the data bus buffer. If an address line input is stuck low, check A3W1 and the A2 controller assembly.
16.If the appropriate input is high or toggling between high and low, suspect a failure in either U405 (data lines) or U406 (address lines).
17.Remove jumpers.

Analog Bus Timing

Refer to function block P of A3 Interface Assembly Schematic Diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.
Analog bus timing (ABT) generates the strobes for the A4, A5, A14, and A15 assemblies. The A14 frequency control assembly also requires a qualifier for its strobe, LVFC_ENABLE. A3U400 and A3U414 providea 2μ s delay between the time $\bar{H} A N A _B U S$ goes high and the enable line to demultiplexer A3U 407 goes low.

1. Press PRESET on the spectrum analyzer and set the controls as follows:

> Center frequency .. 300MHz

Span ... 100MHz
2. Check that A3U 407 pin 1 goes low approximately 2μ s after HANA_BUS (A3U400 pin 3) goes high.
3. If HANA_BUS is absent, check for pulses on ABT A3U505 pin 2 and IA10 (A3U505 pin 5).
4. If A3U 407 pin 1 is not delayed 2μ s from HANA_BUS, check for the presence of the 1 MHz HBADC_CLK 0 .
5. If A3U 407 pin 1 is not delayed 2μ s from HANA_BUS and HBADC_CLK0 is correct, suspect a fault in either A3U414 or A3U 400.
6. Press PRESET and set the controls as follows:

> Span .. ${ }^{\text {SIN }}$ Trigge
7. Monitor A3U401 pin 3 (LR_STB) with an oscilloscope or logic probe. This is the strobe for the $A \overline{1} 5 R F$ assembly.
8. Press AUX CTRL and REAR PANEL and check that pulses occur when toggling between 10 MHz INT and 10 MHz EXT.
9. Monitor A3U401 pin 5 (LF_STB) with an oscilloscope or logic probe. This is the strobe for the A14 frequency control assembly.
10.Press AMPLITUDE and check that pulses occur when toggling between ATTEN settings of 10 and 20 dB .
11.Monitor A3U 401B pin 7 (LIF_STB) with an oscilloscope or logic probe. This is the strobe for the A5 IF assembly.
12.Press AMPLITUDE and check that pulses occur when toggling between REF LVL settings of -10 dBm and -20 dBm .
13.Monitor A3U401B pin 9 (LLOG_STB) with an oscilloscope or logic probe. This is the strobe for the A4 log amplifier/cal oscillator assembly.
14.Press AMPLITUDE and check that pulses occur when toggling between LINEAR and LOG DB/DIV.

Interface Strobe Select

Refer to function block K of A3 Interface Assembly Schematic Diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

Interface strobe select generates the various strobes used by circuits on the A3 I nterface Assembly. Table 7-10 and Table 7-11 are the truth tables for demultiplexers A3U410 and A3U500.
Table 7-10
Demultiplexer A3U410 Truth Table

Selected Output Line	IA1	IA2	IA3
Pin 15, LSCAN_KBD	L	L	L
Pin 14, LDACU1	H	L	L
Pin 13, LDAC1	L	H	L
Pin 12, LDAC2	H	H	L
Pin 11, LDAC3	L	L	H
Pin 10	H	L	H
Pin 9, LTIMER	L	H	H
Pin 7, LADC_REG1	H	H	H

Table 7-11
Demultiplexer A3U500 Truth Table

Selected Output Line	IA0	IA1	IA2
Pin 15, LSENSE_KBD	L	L	L
Pin 14, LINT_PRIOR	H	L	L
Pin 13, LADC_DATA1	L	H	L
Pin 12, LDAC_DATA0	H	H	L
Pin 11, HCNTR_LD0	L	L	H
Pin 10, HCNTR_LD1	H	L	H
Pin 9, LRPG_RD	L	H	H
Pin 7, LADC_REG0	H	H	H

A16 Assembly's Fast ADC Circuits (8561E and 8563E with Option 007)

The fast ADC consists of video signal scaling and limiting amplifiers, an 8-bit flash ADC, peak/pit detection of the digitized video signal, a 32 K-byte RAM, and the fast ADC control circuitry.

Video Input Scaling Amplifiers and Limiter

Refer to function block L of the A16 fast ADC assembly schematic diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

The video input scaling amplifiers help provide scaling ($10 \mathrm{~dB} / \mathrm{div}$, $5 \mathrm{~dB} / \mathrm{div}, 2 \mathrm{~dB} / \mathrm{div}$, or $1 \mathrm{~dB} / \mathrm{div}$) and buffer the flash video output. When the GAINX2 control line is low, switch U44D is open and switch U44C is closed. Thus, the scaled video at TP26 virtually follows the video input ($0-1 \mathrm{~V}$). When the GAINX2 control line is high, switch U44C is open and switch U44D is closed. Amplifier U43 then provides a gain of $2\left(\mathrm{~V}_{\text {in }}\right)-1 \mathrm{~V}$. Voltage clamp CR4 prevents the scaled video input to amplifier U45 from going more negative than -0.35 V or more positive than +1.25 V .

NOTE
When measuring voltages or waveforms on the A16 fast ADC assembly, connect the ground (or common) lead to the ground-plane trace on the A16 assembly. This digital ground plane is totally isolated from the chassis.

1. Press PRESET on the Option 007 spectrum analyzer and set the controls as follows:

Center frequency	300 MHz
Span	. 0 Hz
Reference level	$-10 \mathrm{dBm}$
Log/division	10dB/DIV
Sweep time20ms

2. Connect the CAL OUTPUT to the INPUT 50Ω connector.
3. Adjust the Option 007 spectrum analyzer reference level to place the signal at the top graticule line on the CRT display.
4. Measure the dc level at TP25. If the voltage measured is not +1.0 $\pm 0.15 \mathrm{~V}$, troubleshoot the A3 interface assembly.
5. Measure the dc level at TP26. The level should be approximatelythe same as the level measured at TP25. If not, suspect switch U44.
6. Set the Option 007 spectrum analyzer scale to 5 dB per division.
7. Adjust the Option 007 spectrum analyzer reference level to place the signal at the top graticule line on the CRT display.
8. Measure the dc level at TP25 and TP26. The level should be +1.0 $\pm 0.25 \mathrm{~V}$. If the level measured at TP26 differs from the level measured at TP 25 by more than 0.25 volts, troubleshoot U43 and associated circuitry.
9. Disconnect the CAL OUTPUT signal from the INPUT 50Ω connector.
10.The level at TP26 should drop to -0.35 Vdc . If the level is less (more negative) than -0.35 Vdc , replace voltage clamp CR4.
11.M easure the dc level of the flash video at TP27. The level should be near 0 Vdc with the signal at the bottom graticule line (no input to the spectrum analyzer).
12.Connect the CAL OUTPUT to the INPUT 50Ω connector.
13.M easure the dc level of the flash video at TP27. The level should be near +1.7 Vdc .

8-Bit Flash ADC

Refer to function block I of the A16 fast ADC assembly schematic diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

The flash ADC (U35) converts the analog video signal into 8-bit digital values at a fixed rate of 12 megasamples per second.

When measuring voltages or waveforms on the A16 fast ADC assembly, connect the ground (or common) lead to the ground-plane trace on the A16 assembly. This digital ground plane is totally isolated from the chassis.

1. Press PRESET on the Option 007 spectrum analyzer and set the controls as follows:

Center frequency ... 300MHz
Span ... 0 OHz
Reference level ...-20dBm
Log/division .. $5 \mathrm{~dB} / \mathrm{DIV}$
Sweep time .. 20ms
2. Connect the CAL OUTPUT to the INPUT 50Ω connector.
3. Pins 4 through 10 (ADC7-ADC1) and pin 21 (ADC0) of U35 should all be high (logic 1), corresponding to an ADC digital count of 255 for the analog input of +2 volts or greater.
4. Disconnect the CAL OUTPUT signal from the INPUT 50Ω connector.
5. Pins 4 through 10 (ADC7-ADC1) and pin 21 (ADC0) of U35 should all be low (logic 0), corresponding to an ADC digital count of zero for the analog input of 0 volts or less.

Peak/Pit Detection

Refer to function block J of the A16 fast ADC assembly schematic diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

Peak detection or pit (negative peak) detection can be enabled whenever the sample rate is less than 12 MHz (sweep times greater than $50 \mu \mathrm{~s}$). Peak detection uses the maximum value of all the samples taken within each bucket (between adjacent display points). Pit detection uses the minimum value of all the samples taken within each bucket. And sample detection uses the last sample of all the samples taken within each bucket.

The different detection modes are implemented by selectively docking latch U30, depending on the state of LP/Q which is generated in PAL U1 (block A). When LP/Q is low, U30 is clocked by WCLK. When LP/Q is high, U30 is not docked. LP/Q is a function of the 12M_SEL, SCLK-1, LSAMPLE, LPEAK, P_LO, and P_HI signals. See Table-7-12 on page 417.

If the sample rate is $12 \mathrm{MHz}, 12 \mathrm{M}$ _SEL is high, which forces LP/Q Iow so that every sample is clocked into latch U30 and latched into RAM U32 (block K). If the sample rate is less than 12 MHz and the detection mode is peak or pit, the SCLK-1, LPEAK, P_LO, and P_HI signals control the LP/Q signal. In these detection modes, latch U30 stores the peak or pit value of the samples taken for each bucket. The 8-bit digital magnitude comparator, U31, compares the input byte (P) with the output byte (Q) from latch U30. When P is greater than $Q, P _$LO is low (0) and $P_{-} H I$ is high (1). When P is less than Q, P_{-}LO is high (1) and $P_{-} \mathrm{HI}$ is $\mathrm{Io}^{-} \mathrm{W}(0)$. When P is equal to $\mathrm{Q}^{2} \mathrm{P}_{-} \mathrm{LO}$ and $\bar{P}_{-} \mathrm{HI}$ are both low (0). See Table 7-12.

Table 7-12 LP/Q Truth Table

Mode	LP/Q	12M_SEL	SCLK-1	LSAMPLE	LPEAK	P_LO	P_HI
12MHz	L	H	X	X	X	X	X
SAMPLE	L	X	X	L	X	X	X
POS	L	L	L	H	L	L	H
PEAK	H	L	L	H	L	H	L
NEG	H	L	L	H	H	L	H
PEAK	L	L	L	H	H	H	L
(Pit)	H	L	L	H	H	L	L
Clocking	L	L	H	H	X	X	X
Peak/Pit						L	
Sample							

32 K-Byte Static RAM

Refer to function block K of the A16 fast ADC assembly schematic diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

The static RAM stores the flash ADC samples that are taken when the fast ADC circuitry is in the "write" mode. When not in the "write" mode, the static RAM is read by the CPU on the A2 controller assembly to retrieve the fast ADC data.

The 8-bit Q bus connects the outputs of latch U30 to the data port of static RAM U32.

A16 Assembly's Fast ADC Control Circuits (8561E and 8563E with Option 007)

The fast ADC control circuits consist of the CPU interface and control registers, the reference clock, a clock and sample rate generator, a trigger circuit, a 16-bit post-trigger counter, a 15-bit circular address counter, a video trigger comparator, and the reference and power supply circuits.

CPU Interface and Control Registers

Refer to function block A of the A16 fast ADC assembly schematic diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

The A16 assembly's digital interface to the A2 controller assembly consists of an 8-bit bi-directional data bus, one address line, a most-significant byte strobe, and a least-significant byte strobe.

The A16 fast ADC assembly can be accessed by firmware (on the A2 controller assembly) at two logical addresses. When the address line (ADDR3) is low, the primary address is selected. When the ADDR3 is high, the secondary address is selected. The data transfers between the A16 fast ADC assembly and the A2 controller assembly are docked by the two strobe lines, MSB_STRB and LSB_STRB. 16-bit word transfers occur as two sequential byte transfers; the most-significant byte first, followed by the least-significant byte. The primary address (ADDR3 low) contains the 16-bit control word written by the firmware on the A2 controller assembly. The secondary address (ADDR3 high) supports both 8 -bit byte and 16 -bit word reads and writes. There is no read/write line on the A16 fast ADC assembly to control the direction of data transfer. The fast ADC is preconfigured to read or write by setting the appropriate bits in the 16-bit control word. Refer to Table 7-13 on page 419. If the control word is not correct, it may result in a bus conflict.

Table 7-13 Control Word at Primary Address (U3 and U4)

Bit	Mnemonic	State	Description
Bit 0	WRITE		$\begin{array}{l}\text { Allows samples to be written to FADC } \\ \text { memory. }\end{array}$
Bit 1	ARM		$\begin{array}{l}\text { All on-board docks running and samples } \\ \text { being written to FADC memory. (FADC } \\ \text { memory cannot be read by A2 controller in } \\ \text { this mode.) }\end{array}$
All on-board docks turned off and no			
samples being written to FADC memory.			
(FADC memory can be read by A2			
controller.)			

FADC assembly armed to accept trigger

from HSWP line or video trigger.

FADC assembly cannot be triggered.\end{array}\right\}\)

Table 7-13 Control Word at Primary Address (U3 and U4)

Bit	Mnemonic	State	Description
Bit 6	LLOADADDR	1 0	Enables load address counter. "Writes" to the address counter disabled. "Writes" to the address counter enabled.
Bit 7	LLOADPOST	1 0	Enables load post-trigger counter. "Writes" to the post-trigger counter disabled. "Writes" to the post-trigger counter enabled.
Bit 8	LVTRIG_EN	1 0	Enables digital video trigger on A16. Digital video trigger disabled. Digital video trigger enabled.
Bit 9	LREADCLK	1	Clocks counters during "read" mode. Used to Ioad post-trigger counter or address counter. Also used to post-increment address counter following memory "reads". Read clock disabled. Read clock enabled.
Bit 10	LREADMEM	1	Enables read FADC memory. Read FADC memory disabled. Read FADC memory enabled.
Bit 11	LREADADDR	1	Enables read trigger address latch. "Reads" from trigger address latch disabled. "Reads" from trigger address latch enabled.
Bit 12	LRATELATCH	1	E nables load sample rate latch. "Writes" to the sample rate latch are disabled. "Writes" to the sample rate latch are enabled.

Table 7-13 Control Word at Primary Address (U3 and U4)

Bit	Mnemonic	State	Description
Bit 13	LRLSHSWP		Releases HSWP strobe. Release HSWP strobe disabled. Release HSWP strobe enabled.
Bit 14	LLOADTRIG	0	1
Bit 15	LPEAK	1	Enables load video trigger level. Load digital video trigger level di sabled. Load digital video trigger level enabled.

Reference Clock

Refer to function block B of the A16 fast ADC assembly schematic diagram in the Agilent Technologies 8560 E-Series Spectrum Analyzer Component Level Information.

The reference clock circuitry takes the 8 MHz CMOS square wave dock from the A2 controller assembly (via W59, coax 839) and triples the frequency to 24 MHz . Inverters U5A and U5B provide the proper match for the 8 MHz clock input, and also the desired drive level into the 24 MHz bandpass filter. The 24 MHz bandpass filter consists of R5, C8, L1, C9, C10, L2, C11, L3, C12, L4, C13, C14, and R6. Inverters U6A and U6B provide amplification of the 24 MHz clock to produce CMOS levels, and also buffer the 24 MHz clock output.

Clock and Sample Rate Generator

Refer to function block C of the A16 fast ADC assembly schematic diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

The dock and sample rate generator takes the 24 MHz reference clock signal and generates all of the various clock signals used on the A16 fast ADC assembly. The sample rate generator consists of CMOS latch U15, CMOS counters U14 and U16, and CMOS flip-flops U7B and U9A. The sample rate generator only controls the rate at which the static RAM address counter (15-bit circular address counter) and the 16-bit post-trigger counter are clocked (ACLK and PCLK respectively). The
sample rate generator also controls the number of flash ADC samples taken per bucket. The range of the sample rate is 1 sample per bucket (12 MHz rate) to 256 samples per bucket (less than 12 MHz rate).
SCLK-1 is an input to PAL U1 (block A) and affects the LP/Q signal to ensure that the first sample of a bucket is always clocked into latch U30 (block J) and written into static RAM U32 (block K) when the detection mode is peak or pit and the sample rate is less than 12 MHz . Refer to Table 7-12 on page 417.

Trigger

Refer to function block D of the A16 fast ADC assembly schematic diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

When the A16 fast ADC is triggered, the current static RAM address is latched into trigger address latches U27 and U28 (block G), and the post-trigger counter (U19, U20, U21, U22, and U47) begins counting. Samples continue to be written to consecutive addresses in RAM U32 until the post-trigger counter reaches its terminal count. The CPU on the A2 control ler assembly monitors the HSWP line and starts a software timer when HSWP goes high after being triggered. The software timer is set to slightly longer than the post-trigger counter will be counting, so at the end of the "time-out" the post-trigger counter has already reached its terminal count. At the end of this "time-out" the CPU on the A2 controller assembly takes the fast ADC out of "write" mode and reads latches U27 and U28 to determine the static RAM address of the sample that was taken when the trigger occurred. The CPU then writes the trigger address (read at U27/U28) to the fast ADC static RAM address counter (15-bit circular address counter). If pre-trigger or post-trigger (delay) is being used, the CPU adds or subtracts appropriately and writes the "adjusted" trigger address to the static RAM counter. The CPU then begins reading the fast ADC data, starting from the trigger (or offset trigger) address.

The trigger circuitry is enabled by the ARM signal (bit 1 of the fast ADC control word). Once a trigger occurs, the fast ADC cannot be triggered again until the ARM line goes low (disarmed), then high again (armed).

The fast ADC is triggered by the HSWP line in FREE RUN, LINE, and EXTERNAL trigger modes. When VIDEO trigger is being used, a synchronous digital videotrigger signal, VCLK, is generated by PAL U1 (block A) and U17A (block D).

16-Bit Post-Trigger Counter

Refer to function block E of the A16 fast ADC assembly schematic diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information. The 16-bit post-trigger counter controls the number of static RAM memory locations that will be written after the trigger occurs. This counter consists of U19, U20, U21, U22, and U47. The counter is loaded from the CPU on the A2 controller assembly when the A16 fast ADC assembly is in "read" mode. The CPU loads the counter by first setting the LLOADPOST (bit 7 of the fast ADC control word) and the LREADCLK (bit 9 of the fast ADC control word) to their low state. The CPU then writes the 16-bit word to the fast ADC secondary address. The rising edge of PCLK then latches the 16-bit data into the post-trigger counter.

The post-trigger counter begins counting upward in "write" mode on the first rising edge of PCLK after the LCOUNT signal from the trigger circuit goes low. The frequency of PCLK is the programmed sample rate. When the post-trigger counter reaches its terminal count, the LSTOP signal goes low and disables the static RAM address counter from further counting. LSTOP also forces LCOUNT high in NAND gate U11D, which disables the post-trigger counter.

15-Bit (32 K) Circular Address Counter

Refer to function block G of the A16 fast ADC assembly schematic diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

This 15-bit programmable circular counter provides the address lines of the static RAM (U32). The counter consists of U23, U24, U25, and U 26 . It counts upward from 0 to 32767 and then back to 0 in a circular fashion. When a trigger occurs, latches U27 and U28 latch the current static RAM address so that the CPU on the A2 controller assembly can later read the latches and determine the static RAM address of the sample that was taken when the trigger occurred.

The CPU loads the address counter during "read" mode by first setting LLOADADDR (bit 6 of the fast ADC control word) and LREADCLK (bit 9 of the fast ADC control word) to their low state. The CPU then writes the 16 -bit load value to the CPU secondary address. The rising edge of ACLK then latches the 16-bit data into the address counter.

After the address counter is loaded by the CPU during "read" mode, the static RAM is read by the CPU. The RAM is read by first setting LREADMEM (bit 10 of thefast ADC control word) and LREADCLK (bit 9 of the fast ADC control word) to their low state. Since the LREADCLK control bit is low, a negative-going pulse on the ACLK line will occur on every static RAM "read" by the CPU. This causes the address counter to increment at the end of each static RAM "read" so that the address counter automatically post-increments to the next
address of RAM U32. In order for this address post-increment to occur, the LSTOP count enable signal from the post-trigger counter must be high. LSTOP goes low when the post-trigger counter reaches its terminal count in the "write" mode to stop the address counter from counting. When the fast ADC assembly is changed from "write" mode to "read" mode, LSTOP will be low. So the CPU on the A2 controller board must always first program the post-trigger counter to a value other than the terminal count (65535) to force LSTOP high.

Video Trigger Comparator

Refer to function block M of the A16 fast ADC assembly schematic diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

This 8-bit digital magnitude comparator, U34, compares the digitized samples from the flash ADC (latch U29 output) to the programmed video trigger level. The video trigger level value on IOB2 through IOB7 is latched into the P input (top portion of U34) by the firmware on the A2 controller assembly when the fast ADC is in "read" mode. When the sample on the Q input is higher than the video trigger level on the P input, V_HI output is high, and V_LO output is low. When the Q input is lower than the P input, $\mathrm{V}_{-} \mathrm{HI}$ output is low and $\mathrm{V}_{\text {_ }} \mathrm{LO}$ output is high. And when P is equal to Q, both $V_{-} H I$ and V _LO arelow. These two signals (V_HI and V_LO) go to PĀL U1 (block A) and are used to clock the video trigger generator (block D).

8 IF Section

Introduction

The IF Section contains the A4 log amplifier/cal oscillator and A5 IF assemblies.

Troubleshooting Using the TAM page 432
Troubleshooting the Log Amplifier with the TAM page 433
Troubleshooting A5 with the TAM page 433
Troubleshooting the Cal Oscillator with the TAM page 437
Automatic IF Adjustment page 439
Parameters Adjusted page 440
Requirements page 441
Performance Test Failures page 442
IF Gain Uncertainty Performance Test page 442
Scale Fidelity Performance Test page 443
Resolution Bandwidths Performance Tests page 443
Log Amplifier (P/O A4 Assembly) page 444
Log Amplifier page 444
Linear Amplifiers page 444
Video Offset page 447
Video Output page 448
Frequency Counter Prescaler/Conditioner page 448
AM/FM Demodulator page 449
4.8 kHz IF Filters page 449
10.7 MHz IF Filters. page 450
4.8 kHz and 10.7 MHz IF Filters page 452
10.6952 MHz VCXO page 452
Input Switch page 452
LO Switch page 452
Synchronous Detector page 453
Limiter page 453
I solation Amplifier page 454
Detector/Mixer page 454
Log Offset/Gain Compensation page 454
Log Offset Compensation page 454
Log Gain Compensation. page 454
Video MUX page 455
A5 IF Assembly page 456
IF Signature page 457
Common IF Signature Problems page 463
1 MHz Resolution Bandwidth Problems page 466
30 kHz Resolution Bandwidth Problems page 467
3 kHz and 10 kHz Resolution Bandwidth Problems page 468
Step Gains page 469
Cal Oscillator (P/O A4 Assembly)Cal Oscillator Unlock at Beginning of IF Adjustpage 471
I nadequate CAL OSC AMPTD Range page 472
300 Hz to 3 kHz Resolution Bandwidth Out of Specification. page 473

	Low-Pass Filter ... 477 Sweep Generator 477 AM/FM Demodulation, Audio Amplifier, and Speaker page 478
NOTE	Because the cal oscillator circuitry on the A4 assembly is such an integral part of the IF adjustment, always check this assembly first, before checking the rest of the IF Section. A faulty cal oscillator can cause many apparent "faults" in the rest of the IF Section.

Sw-ep GeneratoSweep Generatorpage 477
AM/FM Demodulation, Audio Amplifier, and Speaker page 478
integral part of the IF adjustment, always check this assembly first, before checking the rest of the IF Section. A faulty cal oscillator can cause many apparent "faults" in the rest of the IF Section.

Troubleshooting Using the TAM

When using Automatic Fault Isolation, the TAM indicates suspected circuits that need to be manually checked. UseTable 8-1 on page 433 to locate the manual procedure. Table 8-2 on page 434 lists assembly test connectors associated with each Manual Probe Troubleshooting test. Figure 8-1 illustrates the location of A4 and A5 test connectors. Figure $8-2$ on page 436 illustrates the levels and paths through the IF Section.

Figure 8-1 A4 and A5 Test Connectors

Table 8-1 Automatic Fault Isolation References

Suspected Circuit Indicated by Automatic Fault Isolation	Manual Procedure to Perform
Check Cal Oscillator on A4 Assembly	Troubleshooting the Cal Osc with the TAM
Check Input Switch on A5 IF	Troubleshooting A5 with the TAM
Assembly	
Check Linear Amplifiers on A4	Linear Amplifiers
Assembly	
Check Log Expand on A3 I nterface	Refer to "Log Expand" in this chapter
Assembly	Step Gains
Check Step Gains on A5 IF	
Assembly	Video Offset (steps 1 through 4)
Check Video Offsets on A4	
Assembly	Video Output
Check VIDEO OUT on A4	
Assembly	

Troubleshooting the Log Amplifier with the TAM

Manual probe troubleshooting tests several dc bias points and signal path voltages. A dc bias is measured in the limiter and a fault here indicates a broken limiter stage. Signal path voltages are measured at the input, after the video amplifier in the linear path, after the offset and gain compensation circuits in the log path, and after the video offset.

The cal oscillator on A4 is used as an input to the log amp for the purpose of measuring gains. Faults in the signal path voltages indicate broken circuitry in prior stages. This technique locates dead stages, but might not report slightly degraded ones. Both +15 V and -15 V are measured. The revision code is on J 11.

Troubleshooting A5 with the TAM

Manual Probe Troubleshooting calculates stage bias-currents which test the operation of the IF chain. (This technique locates dead stages, but might not report slightly degraded ones.) DACs that are monitored are listed below:
IFDAC1 A5U812
IFDAC2 A5U813
IFDAC3 A5U809
IFDAC4 A5U807
IFDAC5 A5U810
IFDAC6 A5U806

Table 8-2 TAM Tests versus Test Connectors

Connector	Manual Probe Troubleshooting Test	Measured Signal Lines
A3J 105	Video Input to Interface Video to Rear Panel Video MUX Log Offset/Log Expand Video Filter Buffer Amplifier Video Peak Detectors ADC MUX Variable Gain Amplifier Track and Hold	MS1 MS2 MS3 MS1,MS3 MS3, MS5, OS1 MS5, MS6 MS6 MS6, MS7 MS7, MS8
A3J 400	Video Trigger DAC Revision Real Time DAC \#1 RF Gain DACs ADC Start/Stop Control Trigger	MS1 MS2 MS3 MS6 MS7 MS8
A4J 9	Cal Osc Sweep Gen Hardware Cal Osc Tune Line Test Cal Osc ALC Test Cal Osc Sweep Gen Output	MS1, MS2 MS3 MS4 MS6
A4J 10	Log Amp Input Switch Log Amp Limiter Bias Positive 15 V Supply	MS1 MS2 MS5
A4J 11	Logamp Linear Output Logamp Linear MUX Path Logamp Log Output Logamp Compensation Logamp Log MUX Path Logamp Video Offset	MS2 MS2,MS3,MS8 MS3 MS3,MS4 MS4,MS8 MS8

Table 8-2

TAM Tests versus Test Connectors

Connector	Manual Probe Troubleshooting Test	Measured Signal Lines
A4J 11(Cont)	-15 V Supply Revision	$\begin{aligned} & \text { MS7 } \\ & \text { MS5 } \end{aligned}$
A5] 6	1st Step Gain Stage 1 1st Step Gain Stage 2 1st XTAL Pole Stage 2nd XTAL Pole Stage 1st LC Pole Stage 1 1st LC Pole Stage 2	MS1, MS2, MS8 MS1, MS2, MS3 MS2, MS3, MS4 MS3, MS4, MS5 MS4, MS5, MS6 MS5, MS6, MS7
A5J 7	Ref 15 dB Attenuator Stage 2nd Step Gain Stage 2nd/3rd Step Gain Stage 3rd Step Gain Stage Fine Atten/3rd XTL Pole 3rd XTAL Pole Stage	$\begin{aligned} & \hline \text { MS1, MS2, MS3 } \\ & \text { MS2, MS3, MS4 } \\ & \text { MS3, MS4, MS5 } \\ & \text { MS4, MS5, MS6 } \\ & \text { MS5, MS6, MS7 } \\ & \text { MS6, MS7, MS8 } \end{aligned}$
A5J 8	Revision 4th XTAL Pole Stage Post Amplifier Stage 1 Post Amplifier Stage 3 3rd LC Pole Stage 4th LC Pole Stage	MS8 MS1, MS2, MS3 MS2, MS3, MS4 MS3, MS4, MS5 MS5, MS6, MS7 MS6, MS7
A5) 9	IFDAC Channels 'A' IFDAC Channels 'B' IFDAC Channels 'C' IFDAC Channels 'D' Latched IF Control Lines Negative 15 V Supply 5 V Supply 10 V Reference	MS1 MS3 MS4 MS2 MS5 MS6 MS7 MS8

Both the digital control and DACs are multiplexed onto test point "channels" through resistive networks. One DAC from each of the quad-DAC packages feeds into a network. The TAM varies each DAC individually to isolate which ones failed. Similarly, 10 digitally-controlled lines feed into a network and are monitored by the TAM. The channels used to monitor the DACs are listed below:
Channel A
A5J 9 pin 1 (MS1)
Channel B
A5J 9 pin 3 (MS3)
Channel C
A5J 9 pin 4 (MS4)
Channel D
A5J 9 pin 2 (MS2)

1. On the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer, press PRESET, MODULE, and Diagnose. Select Cal Osc Troubleshooting Mode.
2. On the 8561E/EC or 8563E/EC spectrum analyzer, disconnect W27 (coax 3) from A5J 5 and monitor the output of A5J 5 with a second spectrum analyzer.
3. Set the other spectrum analyzer controls as follows:

Span ..

4. On the 8561E/EC or 8563E/EC spectrum analyzer, set the cal oscillator to 10.7 MHz by selecting Fixed Tuned to 10.7 MHz .
5. $\mathrm{A}-25 \mathrm{dBm}$ signal from A 5 J 5 should be displayed. If the signal is missing, disconnect W52 (coax 9) from A5J 4. This is the cal oscillator signal input from the cal oscillator on the A4 assembly.
6. Connect the end of cable W52 to the input of the second spectrum analyzer. The signal coming from cable W52 should be -35 dBm at 10.7 MHz. If the cal oscillator signal from cable W52 is correct, the A5 IF assembly is probably at fault.

Troubleshooting the Cal Oscillator with the TAM

1. Enter the TAM Cal Osc Troubleshooting Mode.
2. On the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer, disconnect cable W52 (coax 9) from A5J 4 and connect this end of cable W52 to the input of a second spectrum analyzer.
3. Set the controls of the second spectrum analyzer connected to cable W52 to the following:

Span 5 MHz
Reference level .. -30 dBm
Center frequency .. 10.7 MHz
4. Select each of the fixed-tuned frequencies. Verify at each frequency that the signal amplitude measures -35 dBm . If the frequency is incorrect, do the following:
a. Verify that the reference divider output (A4U811 pin 9) is 100 kHz . If it is not, verify that the 10 MHz reference is present at A4U811 pin 1.
b. Verify that the frequency found on the output of the divider (A4U808 pin 15) matches the output of the reference divider. Matching frequencies indicate the oscillator loop is locked. If the loop is not locked, troubleshoot the divider, oscillator, or phase detector.
c. Verify that the frequency found at the divider input (A4U808 pin 3) matches the CW frequency chosen in step a. Matching frequencies indicate a properly working oscillator. If the frequency is different, troubleshoot the divider.
d. Repeat step c for all the CW frequencies provided by the test.
5. Select each of the sweep widths (these sweeps are centered about 10.7 MHz).
6. Reduce the span of the other spectrum analyzer to check that the cal oscillator is actually sweeping. If the oscillator is not sweeping, perform the following steps:
a. The output of the sweep generator circuit (A4U804 pin 8 of function block Z) should be a series of negative-going parabolas (frequency and amplitude vary depending on the sweep width chosen). Table 8-3 lists the RANGE, MA0, and MA1 values for the sweep widths. If a failure is indicated in the IF/LOG CHECK, press More Info to provide more detailed information about the detected failure. If an GPIB printer is available, connect it to the Agilent 8561E/EC or 8563E/EC spectrum analyzer GPIB connector, then press Print Page for a hard copy output.

Table 8-3 Sweep Width Settings

Sweep Width	Sweep Time	Res BW Adjusted	RANGE A4U105 Pin 6	MA1 A4U105 Pin 2	MA0 A4U105 Pin 5
20 kHz	5 ms	10 kHz	+5 V	0 V	0 V
10 kHz	10 ms	3 kHz	+5 V	0 V	+5 V
4 kHz	30 ms	1 kHz	+5 V	+5 V	0 V
2 kHz	15 ms	300 Hz	+5 V	+5 V	+5 V

Automatic IF Adjustment

The 8561E/EC or 8563E/EC spectrum analyzer performs an automatic adjustment of the IF Section whenever needed.

The cal oscillator on the A4 assembly provides a stimulus signal which is routed through the IF during the retrace period.

The A3 Interface assembly measures the response using its analog-to-digital converter (ADC). The 8561E/EC or 8563E/EC spectrum analyzer turns the cal oscillator off during a sweep.

When IF ADJ is ON, the 8561E/EC or 8563E/EC spectrum analyzer readjusts part of the IF circuitry during each retrace period to readjust the IF completely every 5 minutes.

Automatic IF adjustment is performed upon the following conditions:

- Power on: (unless STOP ALIGN is pressed). The IF parameter variables are initialized to values loaded in program ROM and all possible IF adjustments are made. If STOP ALIGN is pressed, the adjustment is halted.
- If REALIGN LO \&IF is selected: All possible IF adjustments (and LO adjustments) are made with the most recent IF parameter variables used as the starting point.
- If FULL IF ADJ is selected: All possible IF adjustments are made with the most recent IF parameter variables used as the starting point. (FULL IF ADJ is located in the CAL menu.)
- If ADJ CURR IF STATE is selected: All amplitude data and some resolution bandwidths are adjusted. The bandwidths adjusted are a function of the currently selected resolution bandwidth setting.
- Between sweeps: IF ADJ must be set to ON. When IF ADJ is OFF, an A is displayed along the left side of the graticule.
If a FULL IF ADJ sequence cannot proceed beyond the amplitude portion, check the output of the cal oscillator on the A4 assembly as follows:

1. Disconnect cable W52 (coax 9) from A5J 4. Connect cable W52 to the input of a second spectrum analyzer.
2. Set the second spectrum analyzer center frequency to 10.7 MHz and the reference level to -30 dBm .
3. On the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer under test, press FULL IF ADJ and observe the display of the second spectrum analyzer.
4. If a -35 dBm signal does not appear, the cal oscillator is probably at fault.

Parameters Adjusted

The following IF parameters are adjusted in the sequence listed:

1. Amplitude
a. Video Offsets: analog (using log amplifier video offset DAC) and digital (applying stored constant to all readings)
2. Linear Scale Offset
3. Log Scale Offset
4. Wideband and Narrowband modes
5. 0 to 60 dB range in 10 dB steps
6. $10 \mathrm{~dB} / \mathrm{division}$ and $2 \mathrm{~dB} /$ division (log expand) modes
b. Step Gains (A5 IF Assembly)
7. First Step Gain for 16 different DAC settings
8. Second Step Gain for 16 different DAC settings
9. Third Step Gain for 0,15 , and 30 dB attenuation relative to maximum gain
10. Fine Attenuator for 32 evenly-spaced DAC settings
c. Log Amplifier Slopes and Fidelity
11. Wideband (RES BW 300 kHz through 2 MHz) and Narrowband modes (RES BW 300 Hz through 100 kHz)
12. $10 \mathrm{~dB} /$ division and $2 \mathrm{~dB} /$ division (log expand) modes
d. Linear Scale Gains - On the log amplifier assembly (P/O A4)
e. Peak Detector Offsets (both positive and negative peak detectors with respect to normal sample path used by Auto IF Adjust)
13. LC Bandwidths
a. 300 kHz resolution bandwidth center frequency, bandwidth, and gain
b. 1 MHz resolution bandwidth center frequency, bandwidth, and gain
c. 2 MHz resolution bandwidth gain
d. 100 kHz resolution bandwidth center frequency, bandwidth, and gain
e. 30 kHz resolution bandwidth center frequency, bandwidth, and gain
f. Gain of all resolution bandwidth relative to the 300 kHz RES BW
14. Crystal Bandwidths
a. The cal oscillator sweep rate is measured against the 100 kHz resolution bandwidth filter skirt. This result is used in compensating the sweeps used for adjusting the crystal bandwidths.
b. 10 kHz resolution bandwidth
15. Center frequency of LC tank that loads the crystal
16. Symmetry adjustment to cancel crystal case capacitance
17. Bandwidth
c. 3 kHz resolution bandwidth: center frequency of LC tank and bandwidth of resolution bandwidth
d. 1 kHz resolution bandwidth: bandwidth
e. 300 Hz resolution bandwidth: bandwidth
f. Gain of all resolution bandwidth relative to the 300 kHz RES BW
18. Digital Bandwidths (1 Hz through $100 \mathrm{~Hz} ; 10 \mathrm{~Hz}$ through 100 Hz if Option 103)
a. VCXO (final LO) tuned to align digital bandwidths with crystal bandwidth center frequency
b. Overall gain
c. Gain variation with input frequency

Requirements

For the Automatic IF Adjustment routine to work, the spectrum analyzer must provide the following basic functions:

- Power supplies
- Control signals
- ADC
- 10 MHz frequency reference to the A 4 log amp/cal oscillator
- A15 RF assembly isolation from the RF signal during IF adjustment.

A15 RF assembly isolation is a function of the REDIR signal in the A15 Flatness Compensation Control block.

The references against which the Automatic IF Adjustment routine aligns are:

- 10 MHz reference (A15)
- Linear scale fidelity, especially the 10 dB gain stage in A4 linear amplifier block.
- 15 dB reference attenuator (A5)
- Cal Oscillator output power (A4)

Performance Test Failures

Failures in IF -Section-related performance tests may be investigated using the following information.

IF Gain Uncertainty Performance Test

Failure of this performance test indicates a possible problem with the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer IF gain circuits. Assuming no major IF problems causing IF adjustment errors, IF gain problems in the first 50 dB of IF gain (REF LVLs of 0 dBm to -50 dBm with 10 dB ATTEN) are a result of faults on the A5 IF Assembly. IF gain problems in the next 60 dB of IF gain (REF LVLs of -60 dBm to $-110 \mathrm{dBm}, 10 \mathrm{~dB}$ ATTEN) result from log amplifier faults on the A4 assembly.

A signal level of -5 dBm is required at input (A5J 3) for displaying a signal at top screen with 10 dB input attenuation and a 0 dBm reference level.
Isolate IF gain problems on the log amplifier assembly (A4) with the following steps:

1. On the 8561E/EC or 8563E/EC spectrum analyzer, press PRESET, SPAN, ZERO SPAN, FREQUENCY, 1 GHz, AMPLITUDE, -50 dBm .
2. Press CAL and IF ADJ OFF.
3. Disconnect cable W27 (coax 3) from A5J 5 and connect cable W27 to the output of a signal generator.
4. Set the signal generator controls as follows:

Amplitude .. Mz
Frequency
5. Simultaneously decrease the signal generator output and the 8561E/EC or 8563E/EC spectrum analyzer REF LVL in 10 dB steps. The signal displayed by the spectrum analyzer should remain at the reference level for each step. If the signal deviates from the reference level, troubleshoot the video offset circuitry on the A4 assembly.
6. Repeat steps 1 through 5 with the 8561E/EC or 8563E/EC spectrum analyzer set to linear.

Scale Fidelity Performance Test

Failure of this performance test indicates a possible problem with the A4 assembly.

- If the Linear, $5 \mathrm{~dB} / \mathrm{div}$, or $10 \mathrm{~dB} / \mathrm{div}$ scales are out of specification, the fault is most likely on the log amplifier assembly (P/O A4).
- If only the $1 \mathrm{~dB} / \mathrm{div}$ or $2 \mathrm{~dB} / \mathrm{div}$ scales are out of specification, the fault is most likely on the A3 interface assembly.

Resolution Bandwidths Performance Tests

Most resolution bandwidth problems are a result of A5 IF assembly failures. The resolution bandwidths are adjusted in the following sequence using 300 kHz as the reference: $1 \mathrm{MHz}, 2 \mathrm{MHz}, 100 \mathrm{kHz}$, $30 \mathrm{kHz}, 10 \mathrm{kHz}, 3 \mathrm{kHz}, 1 \mathrm{kHz}, 300 \mathrm{~Hz}, 100 \mathrm{~Hz}, 30 \mathrm{~Hz}, 10 \mathrm{~Hz}, 3 \mathrm{~Hz}$, and 1 Hz . The 3 Hz and 1 Hz bandwidths are not available with Option 103.
If the IF adjustment routine encountered an error, the previously adjusted resolution bandwidths should be working properly and default DAC values are used for the remaining resolution bandwidth settings.

If the IF bandpass adjustments and the automatic IF adjustments fail to bring the resolution bandwidths within specification, troubleshoot the A5 IF assembly.

Log Amplifier (P/O A4 Assembly)

The log amplifier on the A4 assembly performs several functions. It provides log and linear paths converting the 10.7 MHz IF signal to video. In addition it also provides offset circuitry, AM/FM demodulator circuitry, a frequency counter output, and down conversion of the 10.7 MHz IF to 4.8 kHz for use by the digital IF.

The log amp results are realized by using a wide dynamic range linear detector followed by a video log amp. The detector is used for both linear and log paths and contains a mixer that acts as the down converter mixer for the digital IF.

CAUTION For troubleshooting, it is recommended that you use an active probe, such as an Agilent 85024A, and another spectrum analyzer. If an Agilent 1120A active probe is being used with a spectrum analyzer having dc coupled inputs, such as the Agilent 8566A/B, 8569A/B and the 8562A/B, either set the active probe for an ac-coupled output or use a dc-blocking capacitor between the active probe and the spectrum analyzer input. Failure to do this can result in damage to the spectrum analyzer or the probe.

Log Amplifier

Refer to function blocks K, L, and AE of A4 Log Amplifier Schematic Diagram (sheets 3 of 4 and 4 of 4) in the Agilent Technologies 8560 E-Series Spectrum Analyzer Component Level Information. The log amplifier receives the detected video signal from the detector/mixer and outputs a voltage proportional to the log of the input voltage. The linear output is tapped off at the emitter of U501D. U507 provides input offset adjustment capability and adjusts the offset of the op amp formed by U501A, B, C, and D. Q502 is a buffer. Q501 switches in additional offset for digital RBWs. The logarithmic characteristic of the base-emitter junction of U502B is used in the feedback path to produce the logging affect. U502D is used to adjust for nonlinearities in the linear mode. R531 is used to adjust log fidelity at the top of the screen.

Use the following steps to verify proper operation of the log amplifier chain:

1. Press CAL and IF ADJ OFF. Set the digital multimeter to read dc volts and connect the negative lead to the chassis of the 8561E/EC or 8563E/EC spectrum analyzer.
2. Remove W27 from A4J 3 and inject a 10.7 MHz signal of +10 dBm into A4J 3.
3. Set the 8561E/EC or 8563E/EC spectrum analyzer to log mode, with a resolution bandwidth of 300 kHz and single sweep.
4. Using the DMM, check the voltage at U503 pin 6.
5. Verify that this level is about -700 mV .
6. Adjust the source amplitude to place the signal at the reference level.
7. Reduce the input signal level in 10 dB steps, down to -60 dBm , while noting the vol tage displayed on the DMM. The voltage should increase (become less negative) at a rate of 30 mV for each 10 dB decrease in input power. Troubleshoot the A4 assembly if the signal does not decrease properly.
8. Set the 8561E/EC or 8563E/EC spectrum analyzer resolution bandwidth to 100 kHz to place the wide/narrow filter in narrow mode.
9. Repeat steps 2 through 7.
10.If log fidelity is poor near the bottom of the screen or the 1 MHz resolution bandwidth is narrow, a fault might exist in the wide/narrow filter switch. (Refer to function block G of A4 log amplifier schematic diagram in the Agilent Technologies 8560 E-Series Spectrum Analyzer Component Level Information.) Check this switch as follows:
a. Monitor voltages on A4U302 pins 1 and 7 while changing the 8561E/EC or 8563E/EC spectrum analyzer resolution bandwidth from 100 kHz to 300 kHz .
b. If the voltages do not come within a few volts of the +15 V and -15 V supplies, U 103 and U302 are suspect.
c. Disconnect the digital multimeter and reconnect W27 to A4J 3.

Linear Amplifiers

Refer to function block C of A4 Log Amplifier Schematic Diagram (sheet 2 of 4) in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Leve Information.

The linear amplifiers consist of two variable gain stages, U201C and U201E as well as the buffer amplifier A4U201B, A4U201D, and A4Q201. The linear amplifiers provide 0 to 40 dB of IF gain in 10 dB steps. The gain of A4U 201C can be increased by 20 dB by turning on A4CR201 and A4CR210 with the control line LIN_20B. The gain of A4U201E can be increased by either 10 dB or 20 dB with the control lines LIN_10 or LIN_20A respectively. The gain can be selected by setting the $8561 \mathrm{E} / \mathrm{E} \bar{C}$ or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer's reference level.

Table 8-4 IF Gain Application Guideline (ATTE N =10 dB)

Power into A4J 3	Reference Level	Gain of A4U201C (Pin 8 in; Pin 3 out)	Gain of A4U201E (Pin 3in; Pin 10 out)	Total Gain
+6 dBm	-50 dBm	0 dB	0 dB	0 dB
-4 dBm	-60 dBm	0 dB	10 dB	10 dB
-14 dBm	-70 dBm	0 dB	20 dB	20 dB
-24 dBm	-80 dBm	20 dB	10 dB	30 dB
-34 dBm	-90 dBm	20 dB	20 dB	40 dB

Total gain can be measured by injecting the specified power into A4J 3 and measuring the total gain provided by A4U 201C and A4U 201E. The following procedure provides a means of troubleshooting the linear amplifiers.

1. On the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer, press PRESET, SPAN, ZEROSPAN, CAL, IF ADJ OFF, FREQUENCY, 1 GHz, AMPLITUDE, -50 dBm, LINEAR, MORE, AMPTDUNITS, dBm, and AMPLITUDE.
2. Disconnect W27 (coax 3) from A4J 3 and connect the output of a signal generator to A4J 3.
3. Set the signal generator controls as follows:
Amplitude leaders $1+6 \mathrm{dBm}$
Frequency 10.7 MHz
4. Simultaneously decrease the signal generator output and 8561E/EC or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer REF LVL in 10 dB steps to -90 dBm . At each step, the signal displayed on the spectrum analyzer should be within one division of the previous position.
5. If a problem exists, isolate it by comparing the actual gain of A4U201C and A4U201E with those listed in the above gain guidelines.
6. Reconnect W27 (coax 3) to A4J 3.

Video Offset

Refer to function block P of A4 Log Amplifier Schematic Diagram (sheet 3 of 4) in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Leve Information.

The circuit provides a programmable video offset, with a step size of 5 mV , from -300 mV to +900 mV .

1. On the 8561E/EC or 8563E/EC spectrum analyzer, press PRESET, SPAN, ZERO SPAN, FREQUENCY, 1 GHz, AMPLITUDE, -50 dBm , CAL, IF ADJ OFF.
2. Disconnect W27 (coax 3) from A4J 3 and connect a signal generator to A4J 3.
3. Set the signal generator controls as follows:

Amplitude .. 10.7 MHz
Frequency
4. Simultaneously decrease the signal generator output and 8561E/EC or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer reference level in 10 dB steps down to -110 dBm . At each step, the signal displayed on the spectrum analyzer should be close to the reference level.
5. Reconnect W27 (coax 3) to A4J 3 and cycle the spectrum analyzer power. Press STOP REALIGN when it appears.
6. On the 8561E/EC or 8563E/EC spectrum analyzer, press SWEEP, SINGLE, CAL, and IF ADJ OFF.
7. The offset DAC, A4U102 pin 2, should now be at its default value of approximately +2.45 V . The voltage at U 601 pin 3 should be approximately 0 V for a DAC output of 2.45 V .
8. If this default offset voltage is incorrect, DAC U 102 is the most probable cause.

Video Output

1. On the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer, press PRESET, FREQUENCY, 300 MHz , SPAN, 100 Hz , AMPLITUDE, -10 dBm , SGLSWP, CAL and IF ADJ OFF.
2. Connect the CAL OUTPUT to the INPUT 50Ω connector.
3. Disconnect W54 (coax 2) from A4J 4. Connect a short SMB to SMB cable from A4J 4 to an SMB tee and connect W54 to the tee. Connect a test cable from the tee to the input of an oscilloscope.
4. Set the oscilloscope controls as follows:
\qquad
Amplitude scale $200 \mathrm{mV} / \mathrm{div}$
Offset $+400 \mathrm{mV}$
Coupling dc Sweep time $50 \mu \mathrm{~s} / \mathrm{division}$
5. The oscilloscope should display a 4.8 kHz sine wave.
6. Disconnect the cable from the CAL OUTPUT and the INPUT 50Ω connectors.
7. Set the resolution bandwidth to 2 MHz .
8. Broadband noise should be displayed on the oscilloscope from approximately +200 mV to +400 mV .
9. As the REF LVL is decreased in 10 dB steps from -10 dBm to -70 dBm , the noise displayed on the oscilloscope should increase in 100 mV increments. If this response is not observed, refer to "Step Gains" on page 469 and "Video Offset" on page 447.
10. Reconnect cable W54 to A4J 4.

Frequency Counter Prescaler/Conditioner

Refer to function block Q of A4 Log Amplifier Schematic Diagram (sheet 4 of 4) in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Leve Information.

The frequency counter prescaler/conditioner divides the frequency by two, and then attenuates it. The circuit consists of frequency divider (U703A) and an output attenuator. The frequency divider turns on only when the instrument is counting.

AM/F M Demodulator

Refer to function block R of A4 Log Amplifier Schematic Diagram (sheet 4 of 4) in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Leve Information.

The demodulator circuitry on the log amplifier on A4 produces a low-level audio signal. This audio signal is then amplified by the audio amplifier on A4. The FM demodulator demodulates narrowband FM (5 kHz deviation) signals. The detector (block J) demodulates AM signals.

1. If demodulation problems occur when the spectrum analyzer is in the frequency domain, perform the Frequency Span Accuracy performance test and, if necessary, the YTO Adjustments procedure.
2. If an FM signal cannot be demodulated, perform the Demodulator Adjustment procedure. If the output of A4C707 cannot be adjusted as described in the Demodulator Adjustment procedure, troubleshoot the FM Demodulator or Audio MUX circuits on A4.

4.8 kHz IF Filters

Refer to function block N of A4 Log Amplifier Schematic Diagram (sheet 3 of 4) in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Leve Information.

Problems with the 4.8 kHz filters can result in spurious signals appearing 2.88 kHz to 3.52 kHz above the frequency of the desired response. Also, ERR 536 RBW <300 may occur when problems exist with the 4.8 kHz IF filters.

Measure the passband of the 4.8 kHz IF filters as described in the following procedure.

1. On the 8561E/EC or 8563E/EC spectrum analyzer, press CAL, IF ADJ OFF, SPAN, and 600 Hz .
2. Disconnect W27 from A4J 3 and inject a 10.7 M Hz signal of -20 dBm into A4J 3.
3. Fine-tune the frequency of the signal generator to center the signal on the screen. Set the signal generator to sweep one 2 kHz span about this center frequency. Press SGL SWP on the 8561E/EC or 8563E/EC spectrum analyzer.
4. Set another spectrum analyzer, such as the $8566 \mathrm{~A} / \mathrm{B}$, to 4.8 kHz center frequency and 2 kHz span.
5. Connect the VIDEO OUTPUT (rear panel) of the 8561E/EC or 8563E/EC spectrum analyzer through a 20 dB attenuator and dc block to the input of the 8566A/B. Set the sweep time of the 8566A/B to 10 seconds.
6. Set the 8566A/B to single trigger and press TRACE A CLEAR-WRITE. Trigger a sweep of the 8566A/B and the signal generator simultaneously. The 8566A/B shows the passband of the 4.8 kHz IF filters. The 3 dB bandwidth of the filters should be 1.2 kHz . The passband of the filters should be flat within 2 dB over 800 Hz .
7. Reconnect W27 (coax 3) to A4J 3.

10.7 MHz IF Filters

1. Press PRESET, FREQUENCY, 300 MHz , SPAN, $600 \mathrm{~Hz}, \mathrm{CAL}$, and IF ADJ OFF.
2. Disconnect W29 (coax 7) from A5J 3. Set the signal generator for a 10.7 M Hz signal at -50 dBm and connect it to A5J 3 .
3. Fine tune the frequency of the signal generator to center the signal on the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer display. Set the signal generator to sweep one 2 kHz span about this center frequency.
4. On the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer, press SGL SWP.
5. Disconnect W27 (coax 3) from A5J 5. Connect a test cable from A5J 5 to the input of an 8566A/B.
6. Set the 8566A/B as follows:

Center frequency	
Span	.. 2 kHz
Reference level	$+10 \mathrm{dBm}$
Sweep	Single

7. Press TRACE A CLEAR-WRITE on the 8566A/B.
8. Trigger a sweep on the signal generator and on the 8566A/B simultaneously. The 8566A/B should display a 3 dB bandwidth of approximately 500 Hz .
9. Reconnect W27 (coax 3) to A5J 5 and W29 (coax 7) to A5J 3.

4.8 kHz and 10.7 MHz IF Filters

1. On the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer, press PRESET, FREQUENCY, 300 MHz , SPAN, $600 \mathrm{~Hz}, \mathrm{CAL}$, and IF ADJ OFF.
2. Disconnect W29 (coax 7) from A5J 3. Set the signal generator for a 10.7 MHz signal at -60 dBm and connect it to A5J 3.
3. Fine tune the frequency of the signal generator to center the signal on the 8561E/EC or 8563E/EC spectrum analyzer display. Set the signal generator to sweep one 2 kHz span about this center frequency.
4. On the 8561E/EC or 8563E/EC spectrum analyzer, press SGL SWP.
5. Set the 8566A/B to 4.8 kHz center frequency and 2 kHz span.

CAUTION

Damage to the 8566A/B results if a dc block is not used. The 8566A/B and many other spectrum analyzers have dc-coupled inputs and cannot tolerate dc voltages on their inputs.
6. Connect the VIDEO OUTPUT (rear panel) of the 8561E/EC or 8563E/EC spectrum analyzer through a 20 dB attenuator and dc block to the input of the 8566A/B. Set the sweep time of the 8566A/B to 10 seconds.
7. Set the 8566A/B to single trigger and press TRACE A CLEAR-WRITE. Trigger a sweep on the 8566A/B and on the signal generator simultaneously. The 8566A/B should show a 3 dB bandwidth of $600 \mathrm{~Hz} \pm 100 \mathrm{~Hz}$.
8. Reconnect W29 (coax 7) to A5J 3.

10.6952 MHz VCXO

Refer to function block E of A4 Log Amplifier Schematic Diagram (sheet 2 of 4) in the Agilent Technologies 8560 E-Series Spectrum Analyzer Component Leve Information.

The purpose of the 10.6952 MHz voltage-controlled crystal oscillator (VCXO) is to provide an LO for down-converting the peak of the 10.7 MHz IF filter's passband to 4.8 kHz . Since the peak of the passband of the 10.7 MHz IF filters is $10.7 \mathrm{MHz} \pm 300 \mathrm{~Hz}$, the frequency of the VCXO is between 10.6949 MHz and 10.6955 MHz . This frequency can best be measured at the collector of A4Q202.

The center frequency of the 300 Hz resolution-bandwidth filters and the 1 Hz to 100 Hz filters should differ no more than 10 Hz . If the center frequency is different by more than this, or if no signal is present in the 1 Hz to 100 Hz resolution-bandwidth settings, troubleshoot the 10.6952 M Hz VCXO .

Error message ERR 539 may occur if the VCXO is not oscillating. If problems exist with the VCXO control voltage, error messages ERR 536 or ERR 530 may occur.
 Between sweeps the VCXO, at times, is turned off. To prevent the oscillator from turning off, press PRESET, FREQUENCY, 0.3 GHz , SPAN, 1 kHz, SGL SWP, CAL, and IF ADJ OFF.

Input Switch

Refer to function block D of A4 Log Amplifier Schematic Diagram (sheet 2 of 4) in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Leve Information.

The input switch switches between log and linear modes. In addition it contains a 20 dB attenuator which is used only in digital resolution bandwidth settings. CR207, CR208, and CR209 form the input switch. CR205 and CR206 switch in R234 when in linear mode to maintain a constant impedance at J 3. CR210, CR211, CR212, and CR221 switch the 20 dB attenuator in and out.

LO Switch

Refer to function block F of A4 Log Amplifier Schematic Diagram (sheet 2 of 4) in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Leved Information.

The LO switch switches the limiter input between the 10.7 MHz path or the 10.6952 MHz VCXO path.

Synchronous Detector

A wide dynamic range linear detector is realized by the limiter (block G), the isol ation amplifier (block H), the LO amplifier (block I), and the detector/mixer (block J). The combination of these circuits form what is commonly known as a synchronous detector.
The input signal is split between two paths. One path flows through the isolation amplifier and the other path flows through the limiter and LO amplifier The path flowing through the limiter generates the LO for the detector/mixer block. The path through the isolation amplifier drives the RF port.

To troubleshoot this group of circuits set the RBW to 300 kHz . Inject 10.7 MHz at +6 dbm intoJ 3. Probe the gate of A4Q404 or A4Q405 with a scope. Look for a 0 to - 3 V square wave. Decrease the input power from +6 dBm to -84 dBm in 10 dB steps. The square wave signal should remain unchanged. It is normal for the phase of the signal to jitter at the lowest signal levels.

The signals at the gates of A4Q404 and A4Q405 should be 180 degrees out of phase from each other. If they are not 180 degrees out of phase or one of the signals are not present, troubleshoot the LO Amplifier or the FETs in the mixer. If the signal is not a symmetrical square wave, troubleshoot the LO amplifier. If the signal drops out prematurely or is not present at all, troubleshoot the limiter or LO amplifier.

Repeat the procedure for an RBW $\leq 100 \mathrm{kHz}$. If the log amplifier works in the 300 kHz RBW but not in the narrower RBWs, troubleshoot the log narrow filter in the limiter or isolation amplifier. A4CR302 and A4CR303 are varactor diodes in the limiter filter and are used to tune the filter.

Limiter

Refer to function block G of A4 Log Amplifier Schematic Diagram (sheet 2 of 4) in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Leve Information.

The limiter consists of 7 identical 20 dB gain stages. A "log narrow filter" is switched in for RBWs $\leq 100 \mathrm{kHz}$. This filter is switched in using the control lines NARROW between the 4th and 5th stages. During normal operation, the limiter serves to amplify even the smallest 10.7 MHz signals up to a level sufficient to drive the LO Amplifier and subsequent detector/mixer. This signal serves as the LO for the mixer circuitry.

Isolation Amplifier

Refer to function block H of A4 Log Amplifier Schematic Diagram (sheet 3 of 4) in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Leve Information.

The isolation amplifier prevents LO port to RF port feedthrough in the mixer from feeding back to the input of the limiter and causing loop oscillations. In addition, the isolation amplifier matches the phase of the non-limited signal path to the phase of the limited signal path. The isolation amplifier should have a gain of about 4 dB and also has a "log narrow filter" that is switched with the control line NARROWB.

Detector/Mixer

Refer to function block J of A4 Log Amplifier Schematic Diagram (sheet 3 of 4) in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Leve Information.

Sum and difference frequencies are produced in the detector/mixer. The difference frequency produces video (dc to approximately 3 MHz), since the two signals are at the same frequency. During digital resolution bandwidths the two signals are separated by about 4.8 kHz .

Log Offset/Gain Compensation

Refer to function blocks L and M of A4 Log Amplifier Schematic Diagram (sheet 3 of 4) in the Agilent Technologies 8560 E-Series Spectrum Analyzer Component Level Information.

Log Offset Compensation

The gain of A4U503 is set to unity, with A4R539 and A4R540 combining for a gain of 0.5. Therefore, the gain from A4U 503 pin 3 to A4U508 pin 3 should be 0.5 .

Log Gain Compensation

The gain of A4U508 is nominally 6.8, measuring from pin 3 to pin 8 . To check the log offset/gain compensation circuits inject a +10 dBm signal into J 3 with the Agilent 8561E/EC or 8563E/EC spectrum analyzer set to log mode. Measure A 4 U 503 pin $3, \mathrm{~V}_{\text {in }}(1)$ and A 4 U 508 pin $3, \mathrm{~V}_{\text {out }}$ (1) and record the results. Decrease the input level to -40 dBm and make the same measurements recording $\mathrm{V}_{\text {in }}(2)$ and $\mathrm{V}_{\text {out }}(2)$.

The gain is then:

$$
\frac{\left(\mathrm{V}_{\mathrm{OUT}}(1)-\mathrm{V}_{\mathrm{OUT}}(2)\right)}{\left(\mathrm{V}_{\mathrm{IN}}(1)-\mathrm{V}_{\mathrm{IN}}(2)\right)}
$$

This gives an offset-independent gain measurement.

Video MUX

The video MUX switches the video output between linear, log and 4.8 kHz IF (for digital RBWs). The demod video is an unused feature. The easiest way to troubleshoot this circuit is to look for blown FETs. Bad FETs are characterized by having significant gate current. Only one of the signal lines LIN_VIDEO, IF_VIDEO or LOG_VIDEO should be high (+15 V) at any given time. The others should be low (-15 V). Also look for a voltage drop of several volts across the gate resistors R601, R605, R609, or R613 when in either the off or on state. This indicates gate current and thus a bad FET.

A5 IF Assembly

The input switch connects the IF to either the cal oscillator on the A4 assembly or the 10.7 MHz IF output from the A15 RF assembly. The automatic IF adjustment uses the cal oscillator on A4 at instrument turn-on and between sweeps to align the IF filters and step-gain amplifiers. During sweeps the input switch selects the 10.7 MHz IF output from A15. The LC filters are variable-bandwidth filters that provide resolution bandwidths from 30 kHz to 2 MHz . The automatic IF adjustment sets the bandwidths and center frequencies of each filter stage.

Thecrystal filters are variable-bandwidth filters that provide resolution bandwidths from 300 Hz to 10 kHz . The automatic IF adjustment sets the filter bandwidths and symmetry.

The step-gain amplifiers consist of the first step-gain stage, second step-gain stage, and third step-gain stage. These amplifiers provide gain when the 8561E/EC or 8563E/EC spectrum analyzer reference level is changed. The amplifiers also provide gain range to compensate for variations in the IF filter gains, which change with bandwidth and environmental conditions, and band conversion loss in the front end. Fixed-gain amplifiers shift the signal levels to lower the noise of the IF chain.

The assembly has two variable attenuators. The fine attenuator provides the 0.1 dB reference level steps. The reference 15 dB attenuator provides a reference for automatic adjustment of the step-gain amplifiers and the log amplifier. The reference 15 dB attenuator also provides gain for changes in spectrum analyzer reference level.

Various buffer amplifiers provide a high-input impedance to prevent loading of the previous filter pole and a low-output impedance to drive the next filter pole.

Digital control signals from the W2 control cable, the "analog bus," drive the control circuitry. At the beginning of each sweep the analog bus sets each control line for instrument operation. At the end of each sweep the analog bus sets each control line for the next portion of the automatic IF adjustment routine. IF adjustments continuously remove the effects of component drift as the spectrum analyzer temperature changes.
The assembly contains a reference limiting amplifier. This amplifier provides a known amount of limiting for the automatic IF adjustment routines. (Limiting occurs only during the automatic IF adjustment routines.) The LC34_Short switches are open during sweeps. The current in the reference limiter is increased during sweeps to prevent limiting.

CAUTION	For troubleshooting, it is recommended that you use an active probe, such as an 85024A, and another spectrum analyzer. If a 1120A active probe is being used with a spectrum analyzer having dc-coupled inputs, such as the 8566A/B, 8569A/B and the 8562A/B, either set the active probe for an ac-coupled output or use a dc-blocking capacitor between the active probe and the spectrum analyzer input.
CAUTION	Do not short control voltages to ground. These voltages are not short-circuit protected. DACs damaged by shorting these voltages might not fail until several weeks after the shorting takes place.
	Do not short power-supply voltages to ground. The 8561E/EC or 8563E/EC spectrum analyzer power-supply current limiting cannot protect the resistors in series with the power supply.
NOTE	Some transistors have collectors connected to the case. Electrical connection of the case to the collector might not be reliable, making collector voltage measurements on the transistor case unreliable.
	IF Signature
	1. Disconnect W27 (coax 3) from A5J 5.
	2. Connect an SMB tee to $A 5 \mathrm{~J}$, using a short coaxial cable with SMB connectors.
	3. Connect one output of the tee to cable W27 (coax 3).
	4. Connect a 85024A active probe, with a $10: 1$ divider installed, to the other output of the tee.
	5. Connect the output (type-N connector) of the active probe to the input of the 8566A/B spectrum analyzer.
	6. Connect the probe power cable to the 8561E/EC or 8563E/EC spectrum analyzer front-panel PROBE POWER connector (you may need to use a probe power extension cable, Agilent 10131B).
	7. Set the 8566A/B controls as follows:
	Reference level .. 10.7 MHz Center frequency
	Span .. 0 Hz
	Resolution bandwidth .. 300 kHz
	Video bandwidth .. 300 kHz
	Sweep time ... 5.5s
	Trigger .. Single
	8. On the 8566A/B, press SHIFT, (trace A blank) to set detector to SAMPLE mode.

9. On the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer, press PRESET and set the controls as follows:
Center frequency 300 MHz
Span 5 MHz
10.On the 8561E/EC or 8563E/EC spectrum analyzer, press SGL SWP and CAL.
10. Simultaneously press SINGLE on the 8566A/B and ADJ CURR IF STATE on the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer. The IF signature is displayed on the 8566A/B display. It may be necessary to experiment with different time intervals between initiating the sweep on the 8566A/B and initiating the current IF state adjustment on the 8561E/EC or 8563E/EC spectrum analyzer.
11. Compare the IF signature to the signature of a properly operating spectrum analyzer illustrated in Figure 8-3 on page 459. If the signatures do not closely resemble each other, a more detailed view of the signature may show the failed hardware.
a. Set the 8566A/B controls as follows:
\qquad
dB/division 5 dB
Reference leve $-5 \mathrm{dBm}$
b. Press SINGLE on the 8566A/B and, a very short time later, press ADJ CURR IF STATE on $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer. Figure $8-4$ on page 460 through Figure $8-8$ on page 462 illustrate detailed IF signatures of a properly operating 8561E/EC or 8563E/EC spectrum analyzer. It may be necessary to experiment with different time intervals between initiating the sweep on the 8566A/B and initiating the current IF state adjustment on the 8561E/EC or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer to obtain the waveforms shown. Note the changes in the 8566A/B video bandwidth and sweep time.
13.Reconnect W27 (coax 3) to A5J 5.

Figure 8-3 IF Adjust Signature

Figure 8-4 Detailed IF Adjust Signature (1)

Figure 8-5 Detailed IF Adjust Signature (2)

Figure 8-6 Detailed IF Adjust Signature (3)

Figure 8-7 Detailed IF Adjust Signature (4)

Figure 8-8 Detailed IF Adjust Signature (5)

Common IF Signature Problems

Region A of Figure 8-4 on page 460 is noisy:	Suspect the first LC pole.
Region B of Figure 8-4 on page 460 is flat:	Suspect the third step-gain stage, the fine attenuator, or the fourth LC-pole output amplifier.
Region C of Figure 8-4 on page 460	
has no 15 dB step:	Suspect the reference 15 dB attenuator.
Region D of Figure 8-4 on page 460 is flat:	Suspect the second step-gain stage.
Entire signature noisy:	If the signature resembles Figure 8-9 on page 464, suspect a broken
first step-gain stage or a break in	
the signal path in the input switch,	
first crystal pole, or second crystal	
pole.	

Figure 8-9
Noisy Signature

Figure 8-10 Noise with Correct Shape

Figure 8-11 Region B Amplitude Variation

Figure 8-12 Region B Amplitude Offset

1 MHz Resolution Bandwidth Problems

Check the crystal shorting switches as follows:

1. On the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer, press PRESET and set the controls as follows:
\qquad
Span .. 500 kHz Center frequency .. 300 MHz
2. On the 8561E/EC or 8563E/EC spectrum analyzer, connect the 300 MHz CAL OUTPUT to the INPUT 50Ω.
3. If the trace flatness is not within 2.5 dB , a failure probably exists.
4. A trace similar to Figure 8-13 indicates a crystal short failure.
5. Press SPAN to set the spectrum analyzer to 3 MHz . A trace that slopes across the screen (see Figure 8-14 on page 467) indicates a failed LC pole. To isolate the broken pole refer to the shape factor information in " 30 kHz Resolution Bandwidth Problems" on page 467.

Figure 8-13 Faulty Crystal Short

Figure 8-14 Faulty LC Pole

30 kHz Resolution Bandwidth Problems

Shape factor too high: Shape factor is the ratio of the 60 dB bandwidth to the 3 dB bandwidth. Shape factor should be less than 15:1. If one of the LC poles malfunctions, the shape factor may be the only indication of the failure. I solate the non-functioning pole with the IF signature. Region E of Figure 8-8 on page 462 illustrates the four LC-pole adjustments. Take several signatures to examine the LC-pole adjustments. If one of the four sections of Region E is consistently longer than the others, the corresponding LC pole is faulty.
IF gain compression: FET transistors Q301, Q303, Q700, and Q701 can deteri orate with age. Measuring less than 0 volts on the FET source indicates a bad FET.

Bandwidth too wide: Check for contamination on the printed-circuit board. Clean the board as required.

3 kHz and $\mathbf{1 0} \mathbf{~ k H z}$ Resolution Bandwidth Problems

Asymmetric Filter Response: Check the crystal symmetry control with the following steps.

1. Press PRESET.
2. Set the 8561E/EC or 8563E/EC spectrum analyzer controls as follows:

Resolution bandwidth .. 3kHz
Span ... 100 kHz
Center frequency ... 300 MHz
3. On the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer, connect the 300 MHz CAL OUTPUT to the INPUT 50Ω.
4. A trace similar to Figure 8-15 indicates a failed crystal-symmetry circuit.

Narrow 10 kHz resolution bandwidth: Check for printed-circuit board contamination. Clean the board as required.

IF Gain Compression in $\mathbf{1 0} \mathbf{~ k H z}$ resolution bandwidth: FET transistors Q202, Q203, Q501, and Q503 can deteriorate with age. Measuring less than 0 volts on the FET source indicates a bad FET.

Figure 8-15 Faulty Crystal Symmetry

Step Gains

Refer to function blocks B, H, and I of A5 IF filter schematic diagram (sheets 1 of 3 and 2 of 3) in the Agilent Technologies 8560 E-Series Spectrum Analyzer Component Leve Information.

1. On the 8561E/EC or 8563E/EC spectrum analyzer, press PRESET, SPAN, ZEROSPAN, FREQUENCY, and 1 GHz .
2. Press CAL and IF ADJ OFF.
3. Disconnect W29 (coax 7) from A5J 3 and W27 (coax 3) from A5J 5.
4. Inject a $-5 \mathrm{dBm}, 10.7 \mathrm{MHz}$ signal into A 5 J 3 .
5. Monitor the output of A5J 5 with another spectrum analyzer.
6. Simultaneously decrease the signal generator output and 8561E/EC or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer reference level in 10 dB steps down to a -50 dBm reference level.
7. At each step, the signal displayed on the other spectrum analyzer should be close to +10 dBm . (More subtle IF gain problems might require smaller signal generator and reference level steps.)
8. Reconnect W29 to A5J 3 and W27 (coax 3) to A5J 5.

Cal Oscillator (P/O A4 Assembly)

The cal oscillator on the A4 assembly supplies the stimulus signal for automatic IF adjustments. Normally, the oscillator operates only during retrace (for a few milliseconds) to adjust part of the IF. (All IF parameters are to be readjusted about every 5 minutes.) With continuous IF adjust ON, a group of IF parameters are adjusted during each retrace period (non-disruptive). If continuous IF adjust is OFF, the most recent IF calibration data is used.

The IF parameters adjusted include step gains, log amplifier gain and offset, bandwidth centering, 3 dB bandwidth, bandwidth amplitude, and crystal-filter symmetry.

The cal oscillator provides three types of output signals (all -35 dBm):

- 10.7 MHz
- 9.9 to 11.5 MHz in 100 kHz steps
- Frequency sweeps from 20 kHz to 2 kHz centered at 10.7 MHz (lasting 5 to 60 ms respectively)
The signals perform the following functions:
- Adjust gains, log amps, and video slopes and offsets.
- Adjust 3 dB bandwidth and center frequencies of LC resolution bandwidth filters (30 kHz through 1 MHz).
- Adjust 3 dB bandwidth, symmetry, and gain of the crystal resolution bandwidth filters (300 Hz through 10 kHz).

The cal oscillator uses a phase-locked loop (PLL). The oscillator (function block X) is locked to the instrument 10 MHz reference. The reference divider (function block U) divides the reference and delivers a 100 kHz TTL signal to the phase detector (function block V). The divide-by-N circuitry (function block Y) divides the oscillator output of 9.9 MHz to 11.5 MHz (by 99 to 115) resulting in a 100 kHz output to the phase detector. When the cal-oscillator PLL is locked, narrow positive and negative of equal width pulses occur at the phase detector output. Since the phase detector drives a low-input impedance at the loop integrator, observe the positive pulses at A4CR808 anode and negative pulses at A4CR809 cathode.

The loop integrator acts as a low-pass filter that filters the pulses and inverts the result. If the anode of A4CR808 is more positive (with respect to ground) than the cathode of A4CR809 is negative, the loop integrator output should saturate to approximately -13 V . Conversely, if the anode of A4CR808 is less positive than the cathode of A4CR809 is negative, the integrator should saturate to a positive voltage.
NOTE
If error messages ERR 581 AMPL or ERR 582 AMPL appears, refer to error message ERR 582 AMPL in Chapter 6 and perform the procedure provided.

1. The oscillator output frequency should exceed 11.5 MHz if the CAL OSC TUNE line, A4U804 pin 14, exceeds +9 V . The oscillator frequency should be less than 9.9 MHz if CAL OSC TUNE is below -9 V . The oscillator only operates when CALOSC_OFF is low (0 V).
2. If the cal oscillator remains locked (no error code ERR 499 displayed) but does not have the correct output level, troubleshoot the output leveling circuitry (function blocks AA, AB, and AC) or output attenuator (function block AD).

Cal Oscillator Unlock at Beginning of IF Adjust

1. Press LINE to turn the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer off and then on. The words IF ADJUST STATUS appear on the display 10 seconds after the instrument is turned on (assuming the rest of the instrument is working correctly). Immediately observe the lower right corner of the display for error messages. If the message ERR499 CAL UNLK appears (before errors ERR 561, ERR 562 and ERR 565), the cal oscillator is unable to phase-lock. Expect to see the ERR 499 message for only about 1 second.
2. If the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer registers an unlocked cal oscillator, continue with step 3 to verify the presence of externally supplied signals.
3. Check A4U811 pin 9 for a 100 kHz TTL-level square wave verifying operation of A4U811, A4Q802, and the 10 MHz input signal from A4J 7.
4. Check the $+15 \mathrm{VF},+5 \mathrm{VF}$ and -15 V power supplies, and +10 V reference on the A4 assembly.
5. Check that A4U807 pin 5 (CALOSC_OFF) becomes TTL low (0 V) at the start of a FULL IF ADJ (press CAL and FULL IF ADJ). The phase modulation output at A4U804 pin 8 should also remain at 0 volts. If these checks are correct, troubleshoot blocks V, W, X, and Y. See Figure 8-21 on page 479, A4 log amplifier/cal oscillator Block Diagram.

Inadequate CAL OSC AMPTD Range

Refer to function block AC of A4 Log Amplifier Schematic Diagram in the Agilent Technologies 8560 E-Series Spectrum Analyzer Component Level Information.

1. If A4R826, CAL OSC AMPTD, has inadequate range to perform the IF Amplitude Adjustment, press CAL.
2. Rotate A4R826 fully clockwise and disconnect W52 (coax 9) from A5J 4.
3. Connect A5J 4 to the input of a second spectrum analyzer.
4. Set the other spectrum analyzer controls as follows:
\qquad
Center frequency 10.7 MHz

Reference level $-30 \mathrm{dBm}$
5. Observe the spectrum analyzer di splay while pressing FULL IF ADJ. The signal level should be above -34.55 dBm . If the signal level is incorrect, continue with step 7.
6. Rotate A4R826 fully counterclockwise. The signal should be below -36.25 dBm . If the signal level is correct at both settings, troubleshoot the A5 IF assembly. If the signal level is incorrect, continue with step 7.
7. Troubleshoot the ALC loop on this assembly using the following steps:
a. Connect a positive DVM probe to A4J 9 pin 4.
b. On the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer, press CAL.
c. Press FULL IF ADJ. Observe the DVM reading between the displayed messages IF ADJUST STATUS: 300 kHz RBW and IF ADJUST STATUS: 3 kHz RBW. During this time period, the voltage should be within a 2 to 10 Vdc range.
d. Observe the DVM reading while IF ADJUST STATUS: AMPLITUDE is displayed. The reading should be within the 2 to 10 Vdc range.
e. If the DVM reading is outside the range in step c but inside the range in step d, suspect one of the filter's reactive components.
8. If the ALC loop is working correctly (A4J 9 pin 4 within the test tolerances given), then either the output attenuator is defective, or A4U810 pin 6 (in ALC loop integrator) is outside of its +3 to +6 Vdc range.
9. Reconnect W52 (coax 9) to A5J 4.

300 Hz to $\mathbf{3} \mathbf{~ k H z}$ Resolution Bandwidth Out of Specification

1. If the 3 dB bandwidth of one of these filters is incorrect, suspect a failure of one of the five available sweeps from the cal oscillator's sweep generator (function block Z). These sweeps are generated by changing the switch settings of A4U803 which routes signals through A4U802 and A4U 804.
2. Disconnect W52 (coax 9) from A4J 8.
3. Connect an SMB tee to A4J 8, using a short coaxial cable with SMB connectors.
4. Connect one output of the tee to cable W52 (coax 9).
5. Connect an 85024A active probe to the other output of the tee.
6. Connect the output (type-N connector) of the active probe to the input of the 8566A/B spectrum analyzer.
7. Connect the probe power cable to the 8561E/EC or 8563E/EC spectrum analyzer front-panel PROBE POWER connector (you may need to use a probe power extension cable, Agilent 10131B).
8. Press INSTR PRESET on the 8566A/B and set the controls as follows:

Center frequency ... 10.8 MHz
Span .. 0 Hz
Reference level .. -43 dBm
Resolution bandwidth ... 100kHz
Video bandwidth ... 10kHz
Sweep time ... 50ms
Scale .. 1 dB/division
Sweep .. Single
9. On the 8561E/EC or 8563E/EC spectrum analyzer, press PRESET and CAL.
10.Press FULL IF ADJ. When the display reads ADJUSTING IF: 10 kHz RBW, press SINGLE on the 8566A/B.
11.The 8566A/B screen illustrates frequency versus time of the cal oscillator's output sweeps. See Figure 8-16 on page 474. The slope of the 8566A/B 100 kHz resolution bandwidth is used to detect frequency changes. Sweeps that vary (greater than 30 percent) from the normal levels, trigger error code ERR 581 or ERR 582.
12.Press FULL IF ADJ. When the display reads ADJUSTING IF: 3 kHz , press SINGLE on the 8566A/B.
13.Figure 8-17 on page 475 illustrates normal operation. Severe failures (slope error greater than 30 percent) and subtle 3 kHz resolution bandwidth errors (less than 30 percent) indicate a problem with A4U802, A4U803, A4U804, or A4U 106.
14.Severe failure of the bandwidth accompanied by subtle errors in the output signal indicate an A5 failure.
15.Set the 8566A/B controls as follows:

Center frequency
10.710 MHz

Resolution bandwidth .. 10 kHz
Video bandwidth ... 1 kHz
Sweep time ... 200 ms
16.On the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer, press FULL IF ADJ. When the message IF ADJUST STATUS:1 kHz RBW appears, press SINGLE on the 8566A/B.
17.Figure 8 -18 on page 475 illustrates normal operation. Severe failures (slope error greater than 30 percent) and subtle 3 kHz resolution bandwidth errors (less than 30 percent) indicate a problem with A4U802, U803, U804, or U106.
18.On the 8561E/EC or 8563E/EC spectrum analyzer, press FULL IF ADJ. When the message IF ADJUST STATUS: 300 Hz RBW appears, press SINGLE on the 8566A/B.
19.Figure 8 -19 on page 476 illustrates normal operation. Severe failures (slope error >30 percent) and 3 kHz resolution bandwidth errors (less than 30 percent) indicate a problem with A4U802, U803, U804, or U 106.
20.Reconnect W52 (white) to A4J 8.

Figure 8-16 Output Waveform, 10 kHz Resolution Bandwidth

Figure 8-17 Output Waveform, $\mathbf{3} \mathbf{~ k H z}$ Resolution Bandwidth

Figure 8-18 Output Waveform, 1 kHz Resolution Bandwidth

Figure 8-19 Output Waveform, $\mathbf{3 0 0} \mathbf{~ H z ~ R e s o l u t i o n ~ B a n d w i d t h ~}$

Figure 8-20 Failed Crystal Set Symptoms

Low-Pass Filter

Refer to function block AB of A4 Log Amplifier Schematic Diagram (sheet 4 of 4) in the Agilent Technologies 8560 E-Series Spectrum Analyzer Component Leve Information.

1. Connect a DVM positive probe to A4J 9 pin 4.
2. On the 8561E/EC or 8563E/EC spectrum analyzer, press CAL.
3. Press FULL IF ADJUST. Observe the DVM reading between the displayed messages IF ADJUST STATUS: 300 kHz RBW and IF ADJUST STATUS: 3 kHz RBW. During this time period, the voltage should be within a 2 to 10 Vdc range.
4. Observe the DVM reading while IF ADJUST STATUS: AMPLITUDE is displayed. The reading should be within the 2 to 10 Vdc range.
5. If the DVM reading is outside the range in step 3 but inside the range in step 4, suspect one of the filter's reactive components.

Sweep Generator

Refer to function block Z of A4 Log Amplifier Schematic Diagram (sheet 4 of 4) in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Leve Information.

A properly operating sweep generator generates a series of negative-going parabolas. Before the sweep, switches A4U802C and A4U 802D turn on, shorting A4C802 and A4C801 (the output is at 0 volts). These switches open to start the sweep. The output of A4U804A, pin 1, is 0.35 V to 10 V , depending on the sweep width selected by A4U 802A and A4U803A. This voltage appears across A4R801. Capacitor A4C801 integrates the current through A4R801. The output of $A 4 U 804 B$ is a straight, negative-going ramp. Capacitor A4C802 and resistor A4R802 integrate the output of A4U804A which starts a negative ramp (A4U804C) at the beginning of the sweep. The ramp from A4U804B is added to the current in A4R802 via A4U803B. Integrating this ramp results in the parabolic output waveform.

AM/F M Demodulation, Audio Amplifier, and Speaker

> Refer to function blocks R, S, and T of A4 Log Amplifier Schematic (sheet 4 of 4) Diagram in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.
> If the audio circuits are not functioning use the following procedure to isol ate the problem.

1. Set an AM signal generator controls as follows:
Frequency 100 MHz
Amplitude $-6 \mathrm{dBm}$
Modulation type 80\%AM
Modulation frequency 400 Hz
2. Set the 8561E/EC or 8563E/EC spectrum analyzer controls asfollows:
Center frequency 100 MHz
Span OHz
Sweep time 50 ms
Reference level 0 dBm
Resolution bandwidth 10 kHz
Amplitude scale LINEAR
3. Adjust the 8561E/EC or 8563E/EC spectrum analyzer reference level and center frequency to display the 400 Hz modulation frequency eight divisions peak-to-peak.
4. On the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzer, press AUX CTRL, AM/FM DEMOD, AM DEMOD ON, and set the sweep time to 5 seconds.
5. Vary the volume and listen for the variation in speaker output level. Clipping is normal at the highest volume levels.
6. If the audio is not working correctly monitor the signal at A4U 704 pin 3 with an oscilloscope. The signal should be 20 mV peak-to-peak ± 25 percent (with +2.5 V of dc bias). If the signal measures outside these limits, the fault is prior to the audio amplifier (block T).
7. If the signal is correct, troubleshoot the audio amplifier and speaker.

$9 \quad$ Controller Section

Introduction

The controller section includes the A2 controller assembly, A19 GPIB assembly, and BT1 battery. The presence of a display (graticule and annotation) verifies that most of A2 controller assembly is operating properly.

Troubleshooting Using the TAM (E-Series) page 487
Blank Display page 487
Digital Signature Analysis (DSA) (E-Series) page 490
Display Problems (E-Series) page 491
Line Generators page 491
Blanking page 492
Display J umbled or Trace Off Screen page 494
Intensity page 498
Bad Characters or Graticule page 499
Long Lines Dimmer Than Short Lines page 499
Analog Zero-Span Problems (Non-Option 007) page 502
Frequency Count Marker Problems (EC-Series) page 504
Frequency Count Marker Problems (E-Series) page 505
Frequency Counter (EC-Series) page 506
Frequency Counter (E-Series) page 508
Video Input Scaling Amplifiers and Limiter (EC-Series)page 510
12-Bit Flash ADC page 512
32 K-Byte Static RAM page 512
Reference Clock (EC-Series) page 513
16 MHz Harmonic Filter (EC-Series) page 513
State- and Trace- Storage Problems page 514
Keyboard Problems page 515
NOTEWhen measuring voltages or waveforms, make ground connections toA2TP3. The metal board-standoffs are not grounded and should not beused when taking measurements.

Troubleshooting Using the TAM (8561E and 8563E only)

Table 9-1 lists assembly test connectors associated with each Manual Probe Troubleshooting test. Figure 9-1 on page 488 illustrates the location of A2's test connectors.

Table 9-1 TAM Tests versus Test Connectors

Connector	Manual Probe Troubleshooting Test	Measured Signal Lines
A2J 11	ADC/MUX Test	MS1, MS3 through MS6, MS8 DAC test
A2J 201	10 volt reference test Switch drive test	MS4
	Buffered X \&Y DAC outputs X line gen test	MS8
	YS2, MS7	
Intensity offset output 202	Revision	MS6
	X, Y, \&Z Output Offset	MS1
	X output amplifier	
Y output amplifier	MS3	
	Blanking test	
Focus DAC test	MS7	

Blank Display

Use the following procedure if the instrument's display is blank. This procedure substitutes an GPIB printer for the display.

1. Connect the printer to the spectrum analyzer and set the printer's address to the value required by the TAM. This is usually 1.
2. All of the power-supply indicator LEDs along the edge of the A2 controller assembly should belit.
3. The rear-panel CRT +110 VDC ON indicator might not be lit, even if the +110 V is present.
4. Connect the TAM's probe cable to A2J 11.
5. Press MODULE, SOFT KEY \#3, \downarrow, SOFT KEY \#1. (The top softkey is \#1.)
6. The yellow LED next to A2J 11 should blink approximately ten times. If the LED fails to blink correctly, troubleshoot the digital section of the A2 controller assembly.
7. Move the probe cable to A2J 202. Press SOFT KEY \#1 and wait 5 seconds.
8. Press SOFT KEY \#4. The results should be sent to the printer.
9. If a failure is indicated in any of these tests, the fault lies on the A2 controller assembly. To obtain more information:
a. Press the step down key, \Downarrow one less time than the test number. (For example, press it twice for the third test on the list.)
b. Press SOFT KEY \#3, then SOFT KEY \#4, and when the printout is complete, SOFT KEY \#6.

Figure 9-1 A2 Test Connectors

10.Move the probe cable to A2J 201, press SOFT KEY \#1 and wait 5 seconds.
11.Press SOFT KEY \#4. The results will be sent to the printer. Follow the procedure in step 9 to obtain more information on any of the tests.
12.If no failures were indicated in testing the A2 controller, move the probe cable to A17J 4.
13.Press SOFT KEY \#1 and wait 5 seconds.
14.Press SOFT KEY \#4. The results will be sent to the printer.
15.If no failure is indicated in the printout, refer to "High Voltage Supplies (8561E and 8563E)" on page 658.

Digital Signature Analysis (8561E and 8563E)

Digital signature analysis (DSA) places microprocessor, A2U 1, in a simplified known state. This simplified state consists of placing a one-word instruction, MOVE QUICK, (0111 XX10 XXXX XXX0) on the data bus. The microprocessor cycles through its address range continually reading the instruction. Perform the following DSA procedure to test the operation of microprocessor, A2U1:

1. Press LINE to turn the spectrum analyzer off.
2. Move the DSA jumper on J 3 (located in the middle of the A2 assembly) from the DISable position to the ENAble position.
3. Remove jumper A2E 1 . A2E 1 is a 16 pin dual-in-line package located in the middle of the A2 Assembly. Press LINE to turn the spectrum analyzer on.
4. Use an oscilloscope to confirm that address lines, address strobe, and chip selects are toggling at proper levels.
5. Use an oscilloscope to check the address line sequencing. The signal on each line (starting with A1 and ending with A23) should be one-half the frequency of the previous line.
6. If step 4 reveals problems, microprocessor A2U 1 is probably faulty.
7. Press LINE to turn the spectrum analyzer off. Replace jumper A2E 1. Move the DSA jumper from connecting E5 and E6 back to connecting E6 and E 7 .

Display Problems (8561E and 8563E)

Line Generators

Refer to function blocks D and I of A2 controller schematic diagram (sheet 1 of 4) in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.
The line generators convert the digital display information to an analog output suitable to drive the A17 CRT driver assembly. These circuits change the digital words into vectors, or lines, which move the beam of the CRT. The vectors are each 6μ s long (width of the INTEGRATE pulse) followed by a 1μ sAMPLE pulse. When characters of text are being drawn, the vectors are $3 \mu \mathrm{~s}$ long.

1. On the spectrum analyzer, press PRESET.
2. On the spectrum analyzer, press CAL MORE CRT ADJ PATTERN. If the display is blank, press the bottom softkey and then the top softkey.
3. Set an oscilloscope to the following settings:

Amplitude scale ... 3V/div
Sweep time ... $1 \mathrm{~ms} / \mathrm{div}$
Triggering ... External
4. Externally trigger the oscilloscope off the signal at A2U207 pin 8 (LBRIGHT).
5. Compare the signals at the following test points with those illustrated in Figure 9-1 on page 488.

X POS: A2J 202 pin 14
Y POS: A2j 202 pin 3
Z OUT: A2J 201 pin 3
BLANKING: A2J 202 pin 15
Waveforms displayed on an analog scope may show considerably more spikes. This is normal and is due to the wider displayed bandwidth.
6. Troubleshoot the circuits associated with any bad waveforms.

Figure 9-2 Line Generator Output Waveforms

Blanking

Refer to function block J of A2 Controller Schematic Diagram (sheet 1 of 4) in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

1. Using an oscilloscope, check for blanking pulses at A2J 202 pin 15. A2U 206 pin 6 should be at a TTL high. Blanking pulses turn the CRT beam off during the sample time of the line generators and when moving the CRT beam to a new position for drawing the next vector.
2. Set an oscilloscope to the following settings:

Amplitude scale	V/div
Amplitude offset	+2.5V
Sweep time	$20 \mu \mathrm{~s} / \mathrm{div}$
Triggering	External

3. Externally trigger the oscilloscope off the signal at A2U207 pin 8 (LBRIGHT).
4. Compare the blanking-circuit input signals at the following test points with those illustrated in Figure 9-3 on page 493.
BLANKING: J 202 pin 15
BLANK: U214 pin 12
VECTOR: U214 pin 11
U213 pin 13
5. The waveforms in Figure 9-3 must match the timing of the vectors being drawn. To do this, U215B is used to adjust the leading edge, and U215A is used to adjust the trailing edge. The first six horizontal divisions show the line drawing mode where the VECTOR pulses are 6μ s apart. The remaining divisions shows character mode (VECTOR pulses $3 \mu \mathrm{~s}$ apart). The BLANK pulses are synchronized to the VECTOR pulses by U214B. The fourth trace shows the double pulses which delay the leading and trailing edges of the blanking pulses.
6. Set the oscilloscope to the following settings to expand the first and fourth traces. This displays how the rising edges of U213-13 determine the transitions of the blanking pulses. See Figure 9-4 on page 494.

Amplitude scale ... 4V/div
Amplitude offset .. +2.5V
Sweep time ... $2 \mu \mathrm{~s} / \mathrm{div}$
Delay from trigger ... $96 \mu \mathrm{~s}$
Triggering ...External
Figure 9-3
Blanking Waveforms

Figure 9-4 Expanded Blanking Waveforms

U213-13

BLANKING

Display J umbled or Trace Off Screen

Refer to function blocks D and I of A2 controller schematic diagram (sheet 1 of 4) in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.
The two line generators are identical circuits, so the following steps apply to both. The X generator is referenced below, with Y generator references in parentheses.

1. The voltage at A2U202B pin 7 should measure 10.0 V .
2. Perform steps 1 through 5 of "Line Generators" on page 491. If the X POS and Y POS waveforms look different from those illustrated in Figure 9-2 on page 492, check the waveforms at the low-pass filter's input (function block E in the component-level information binder).
3. The waveform at the low-pass filter should look like X POS in Figure $9-2$ on page 492 but have an amplitude from 0 V to +5 V .
4. If the waveform in step 3 is incorrect, set an oscilloscope to the following settings:

Amplitude scale ... 10V/div
Sweep time .. 20 $2 \mathrm{~s} / \mathrm{div}$
Triggering ...External
5. Trigger the oscilloscope on the signal at U207 pin 8 (LBRIGHT).
6. Compare the line-generator input signals at the following test points with those illustrated in Figure 9-5. INTE GRATE and SAMPLE waveforms are replicas of VECTOR except for polarity and amplitude. LCHAR is low when characters are drawn.

INTEGRATE: Q202's collector
SAMPLE: Q201's collector
LCHAR: U207 pin 9
VECTOR: U213 Pin 9
Figure 9-5 Switch Driver Waveform LCHAR

	10.0	V / d		0.00	V	20.0	us/d	div	0.00	00 s	
	$7 \square$	T		$\square \square \square$	$\pi \square$	$\square \square \square$	$\square \square \square$	7	17000	170076	
I NTEGRATE	11	11			111	11	111	\|111		1111	1/11
							\| 1	-1 $1 \mid$	-1	\|1	
SAMPLE	- -	-	U	\square	$4 L$	$\pi \square$	-	UU	U	U	
							\square				
LCHAR											
	$\Lambda \Lambda$	$\Delta \Lambda$	ム		$\wedge \Lambda$	$\wedge \Lambda$	$\wedge \Lambda$	$\wedge \triangle N$	$\triangle \triangle M$	$\triangle \Lambda$	
VECTOR											

7. All of the DAC inputs should change state two or more times within a 5 ms window. If one or more DAC bits are not working correctly, this will effect the entire display, especially the diagonal lines that go from lower left to upper right. When these lines are drawn, both the X and Y DACs are stepped one count at a time. A "stuck" bit will distort the diagonal in a repetitive manner. The quicker the repetition, the less significant the "stuck" bit. Horizontal distortions apply to the X LINE GENERATOR DAC, while vertical distortions apply to the Y LINE GENERATOR DAC. The DACS have current outputs so they are not readily observable with an oscilloscope. Continue with step 8 to observe the DAC outputs.
8. To break the effect of feedback in the line generators and to observe the output of the DACs, short J 201 pin 13 (J 201 pin 1) to TP3 (GND) to observe U 201 pin 1 and TP2 (U203 pin 1 and TP1.) Continue with step 9.
9. Set an oscilloscope to the following settings:

Amplitude scale .. 5V/div
Sweep time .. $1 \mathrm{~ms} / \mathrm{div}$
Coupling AC
\qquad
10.Trigger the oscilloscope on the signal at U207 pin 8 (LBRIGHT).
11.The following waveforms should look like Figure 9-6 on page 497 on the oscilloscope. The top two traces are for the X line generator and the bottom two traces for the Y line generator.

X line generator

- U201 pin 1
- TP2

Y line generator

- U203 pin 1
- TP1
12.Figure 9-7 on page 497 illustrates the waveforms in step 11 expanded to show relative timing. the second and fourth traces are delayed by 5 ms from the first and third. The oscilloscope settings are changed as follows:

Sweep time .. $20 \mu \mathrm{~s} / \mathrm{div}$
13.Figure 9-8 on page 498 illustrates the waveforms of properly working line generators. Whenever there is a pulse on TP2 (or TP1), the appropriate integrator U201B (or U203B) generates a ramp (the output vector) which feeds back to U201A (U203A) and shows on its output.

Figure 9-6 Distorted X/Y Line Generator Waveforms

U201A-1

TP2

U203A-1

TP 1

Figure 9-7 Expanded X/Y Line Generator Waveforms

Figure 9-8 Normal X/Y Line Generator Waveforms

Intensity

1. The length of the vector being drawn can effect intensity. U210A, U210C, and U210D sum the lengths of the X and Y vectors. Refer to "Long Lines Dimmer Than Short Lines" on page 499.
2. Short A2U207 pin 6 to pin 7 . If the display does not brighten, troubleshoot LBRIGHT switch, U207B. This switch intensifies trace A and active softkeys.
3. Short A2U207 pin 2 to pin 3. If the display does not brighten, troubleshoot DEF1 switch, U207A. This switch is used in analog zero-span.
4. Change the intensity (under DISPLAY). If the intensity does not change, troubleshoot the intensity DAC, A2U212A. (A2U212A is controlled from the front panel.) The amplitude of the waveform at U211A pin 1 should increase or decrease with intensity changes.
5. Clamp U211B limits the voltage to about 4.2 V . Short A2J 201-1 to ground and set the intensity DAC to a number greater than 80. A major portion of the waveform should be limited to 4.2 V .
6. If a major portion of the waveform is not limited to 4.2 V , troubleshoot the maximum brightness clamp, A2U211C.

Bad Characters or Graticule

If the displayed characters are bad but the graticule is correct (or if the symptoms are reversed), troubleshoot the X - and Y - generator switches A2U207D and A2U 207C. Check that the switch driver signal LCHAR is working properly. Refer to "Display J umbled or Trace Off Screen" on page 494.

Long Lines Dimmer Than Short Lines

Refer to function block M of A2 controller schematic diagram (sheet 1 of 4) in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

The Z output function block contains the absolute value circuits which determine the intensity of vectors drawn on the display. The vector length is approximated by the sum of the X length and Y length. The voltage corresponding to the X length, ΔX, is converted to current by R274. If the voltage is negative, it is amplified by 2 in A2U210C, converted to current by A2R246, and added to the current from A2R274. This effectively turns both negative and positive voltages into positive currents, hence absolute value.

1. Short A2J 201 pin 13 to ground (A2TP3).
2. Connect channel A of an oscilloscope to A2J 201 pin 2. Connect channel B to A2U210D-14.
3. Set an oscilloscope to the following settings:

Amplitude scale .. 10V/div
Sweep time ... $1 \mathrm{~ms} / \mathrm{div}$
Triggering ... External
4. Externally trigger the oscilloscope off the signal at A2U207 pin 8 (LBRIGHT).
5. The waveforms should look like those illustrated in Figure 9-9 on page 500. If the waveform at J 201 pin 2 is bad, troubleshoot the X line generator (function block D of the A2 controller schematic, sheet 1 of 4).
6. If the waveform at U210D pin 14 is bad, troubleshoot the Z output circuit (function block M of A2 controller schematic, sheet 1 of 4).
7. Remove the short from J 201 pin 13 to ground. Short A2J 201 pin 1 to ground.

Figure 9-9 Delta X Waveform

J201-2	10.0	V / di	$\checkmark 0$	0.00	V	1.00	ms / d	div	0.	000 s
	Lond	\cdots		-	m $\sqrt{ }$,	「M	\sim	$\sqrt{ }$	-
U210D-14										
				\square		N				\square
	\square	~ 4	\checkmark			\square	W		N	

8. Move the oscilloscope's channel A probe toJ 201 pin 14.
9. The waveforms should look like those illustrated in Figure 9-10 on page 501. If the waveform at J 201 pin 14 is bad, troubleshoot the Y line generator (function block I of A2 controller schematic, sheet 1 of 4).
10.If the waveform at U210D pin 14 is bad, troubleshoot the Z output circuit (function block M of A2 controller schematic, sheet 1 of 4).
11.Remove the jumpers.

Figure 9-10
Delta Y Waveform

Analog Zero-Span Problems
 (8561E and 8563E , Non-Option 007)

1. On the spectrum analyzer press PRESET, SPAN, ZERO SPAN, SWEEP, 1, ms, CAL, MORE, and CRT ADJ PATTERN.
2. Set an oscilloscope to the following settings:

Amplitude scale .. 10V/div
Sweep time ... $1 \mathrm{~ms} / \mathrm{div}$
Triggering ...External
3. Externally trigger the oscilloscope off the signal at A2U 207 pin 8 (LBRIGHT).
4. The display should be similar to Figure 9-11 on page 503 except that the untriggered trace should show at the left edge of the screen. In these settings, DEF 1 causes switching between the line generators and the analog inputs (sweep and video). DEF 1 remains high when the CRT adjust pattern is on. Refer to function block M of the A2 controller schematic, 1 of 4.
5. The sweep input from J 1-41 should go from 0 V to +10 V ; the video In signal should go from about 0 V to 1 V from the bottom to the top of the screen. Apply a dc voltage to A2J 4, Video In, to test the circuit.
6. In Figure 9-11, "DEF1 Synchronization," there is no synchronization between DEF 1 and the video patterns X POS and Y POS when DEF 1 is TTL high. The Y POS level when DEF 1 is low is the Video In level.

Figure 9-11 DEF1 Synchronization

Frequency-Count Marker Problems (8561EC and 8563E C)

The FREQ COUNT function works by dividing the 10.7 MHz IF signal by two (prescaling) and counting the divided-down signal using the frequency counter on the A2 controller assembly. The prescaler is on the A4 Log amplifier/cal oscillator assembly. Perform the following steps to determine whether the problem is on the A4 log amplifier/cal oscillator or the A2 controller assembly:

1. Disconnect W53 from A2J 13.
2. Connect the output of a synthesized source, such as an Agilent 3335A, to A2J 13.
3. Set the synthesized source to the following settings:

Amplitude ... +10 dBm
Frequency ... 5.35 MHz
4. Set the spectrum analyzer to the following settings:

Center frequency ... 300 MHz
Span .. 1 MHz
5. On the spectrum analyzer, press FREQ COUNT. The frequency counter actually reads one half the frequency of the 10.7 MHz IF. If the CNT frequency display reads all asterisks, the frequency counter is probably at fault.
6. If a valid frequency is displayed, troubleshoot the prescaler on the A4 log amplifier/cal oscillator assembly.
7. Reconnect W53 to A2J 13.

Frequency-Count Marker Problems (8561E and 8563E)

The FREQ COUNT function works by dividing the 10.7 MHz IF signal by two (prescaling) and counting the divided-down signal using the frequency counter on the A2 controller assembly (block Z of the A2 schematic diagram). The prescaler is on the A4 Log amplifier/cal oscillator assembly (block Q of the A4 schematic diagram). Perform the following steps to determine whether the problem is on the A4 log amplifier/cal oscillator or A2 controller assembly:

1. Disconnect W53 from A2J 7.
2. Connect the output of a synthesized source, such as an Agilent 3335A, to A2J 7.
3. Set the synthesized source to the following settings:

Amplitude .. +10 dBm
Frequency ... 5.35 MHz
4. Set the spectrum analyzer to the following settings:

Center frequency ... 300MHz
Span ... 1MHz
5. On the spectrum analyzer, press FREQ COUNT. The frequency counter actually reads one half the frequency of the 10.7 MHz IF. If the CNT frequency display reads all asterisks, the frequency counter is probably at fault.
6. If a valid frequency is displayed, troubleshoot the prescaler on the A4 log amplifier/cal oscillator assembly.
7. Reconnect W53 to A2J 7.

Frequency Counter (8561EC and 8563E C))

The frequency counter counts the frequency of the last IF and provides accurate timing signals for digital zero-spans. The circuit also provides timing signals to the ADC (analog to digital converter) on the A3 interface assembly. The nominal input frequency is 5.35 MHz (10.7 M Hz divided by 2). The 10 MHz reference from the A15 RF assembly provides the frequency reference in the frequency count mode. The frequency reference in digitized zero spans (sweep times $\geq 30 \mathrm{~ms}$) is the 4 MHz HPIB _CLK, selected by a dock select multiplexer in U35.

The 10 MHz reference from the A15 RF assembly is first filtered and passed through a comparator to generate a TTL, 50 percent duty cycle signal. C128, L16, and R91 provide a bandpass filter centered at 10 MHz . The output of comparator U33B is the actual reference used for the Frequency Counter. An additional stage of filtering is performed on this signal to provide a 10 MHz signal for the A17 LCD Driver assembly.
In the frequency count mode, the 10 MHz reference is prescaled by 5 to generate a 2 MHz timebase. This timebase feeds through the clock select multiplexer in U35 to the CLK2 input of programmable timer U15. The output (OUT2) of programmable timer U15 is the gating signal (HBKT_PULSE); it performs the frequency count. The gating time interval is a function of the counter resolution which may be set between 10 Hz and 1 MHz . Table 9-2 on page 507 lists the gate time for each setting of COUNTER RES. The gate time is the period during which HBKT_PULSE (pin 20 of U15) is low.

The FREQ COUNT input, A2J 13, is gated by HBKT_PULSE. The gated signal clocks divide-by-16 counters within U35. These counters are cascaded to form a divide-by- 256 counter. The MSB of this counter, CD7, clocks the CLK 0 input of U15. The frequency of CD7 is a function of COUNTER RES as shown in Table 9-2 on page 507. If timer U 15 overflows, OUT0 will be set, generating CNTOVFLIRQ, which will interrupt the CPU.

If IRQAK2 is high, HBKT_PULSE will generate FREQCNTLIRQ. Upon receiving the FREQCNTLIRQ interrupt, the CPU latches the CD0 to CD7 onto the BID bus by setting LCDRD (low counter data read) low and reading the counter data from the BID bus. TheCPU will also read the data from the timer, U15, by setting L8254CS and LCNTLRD Iow, placing the timer data on the BID bus. The CPU then resets IRQAK 2 low.

Table 9-2 Gate Times

Counter Res	Gate Time* (U15 pin 20 low state)	A2TP16	A2TP15
10 Hz	200 ms	2 MHz	4.18 kHz
100 Hz	20 ms	2 MHz	418 Hz
1 kHz	2 ms	2 MHz	41.8 Hz
10 kHz	2 ms	2 MHz	41.8 Hz
100 kHz	2 ms	2 MHz	41.8 Hz
1 MHz	2 ms	2 MHz	41.8 Hz
$* \cup 15 \operatorname{pin~} 10=($ FREQ COUNT input \times Gate Time) $/ 256$			

1. Disconnect W22 from A2J 9.
2. If a 10 MHz , TTL-level signal is not present at the end of W22, continue with step 3. If a 10 MHz signal is present at W 22 , proceed as follows:
a. Reconnect W22 to A2J 9.
b. Set the spectrum analyzer to the following settings:

Span
ZeroSpan
Sweep time 20 ms
c. Monitor the signal at A2J 2 pin 21. This is an output of the frequency counter, HBUCKET PULSE.
d. If HBUCKET PULSE is stuck high, troubleshoot the frequency counter.
3. Check for a 10 MHz signal at A 15 J 302 . If the signal is not present at A15J 302, the A15 RF assembly is probably defective.

Frequency Counter (8561E and 8563E)

See function block Z of A2 schematic diagram (sheet 4 of 4) in the Agilent Technologies 8560 E-Series Spectrum Analyzer Component Level Information.

The frequency counter counts the frequency of the last IF and provides accurate timing signals for digital zero-spans. The circuit also provides timing signals to the A3 interface assembly ADC (analog to digital converter). The nominal input frequency is $5.35 \mathrm{MHz}(10.7 \mathrm{MHz}$ divided by 2). The circuit frequency reference in the frequency count mode is the 10 MHz reference from the A15 RF assembly. The frequency reference in digitized zero spans (sweep times $\geq 30 \mathrm{~ms}$) is the 4 MHz HPIB_CLK, selected by MUX U 704.

In the frequency count mode, U 702 prescales the 10 MHz reference by 5 to generate a 2 MHz timebase. This timebase feeds through MUX U704 to programmable-timer U700 CLK2 input. Programmable-timer U700 output (OUT2) is the gating signal (HBKT_PULSE) for performing the frequency count. The gating time interval is a function of the counter resolution which may be set between 10 Hz and 1 MHz . Table 9-2 on page 507 lists the gate time for each setting of COUNTER RES. The gate time is the period during which U511 pin 3 is high.

The FREQ COUNT input, A2 7 , is gated in U511B by HBKT PULSE. The gated signal clocks divide-by-16 counters U703A and U703BB. These counters are cascaded to form a divide-by-256 counter. The MSB of this counter, CD7, clocks the CLK0 input of U700. The frequency of CD7 is a function of COUNTER RES as shown in Table 9-2 on page 507. If timer U700 overflows, OUT0 will be set and U701B clocked, generating CNTOVFLIRQ, which will interrupt the CPU.

If IRQAK 2 is high, HBKT_PULSE will clock U701A, generating FREQCNTLIRQ. Upon receiving the FREQCNTLIRQ interrupt, the CPU latches the CD0 to CD7 onto the BID bus by setting LCDRD (low counter data read) low and reading the counter data from the BID bus. The CPU will also read the data from the timer, U700, by setting L8254CS and LCNTLRD Iow, placing the timer data on the BID bus. The CPU resets U701A by setting IRQAK 2 low via the BID bus and latch U506.

Table 9-3 Gate Times

Counter Res	Gate Time* (U511 pin 3 high state)	A2TP16	A2TP15
10 Hz	200 ms	2 MHz	4.18 kHz
100 Hz	20 ms	2 MHz	418 Hz
1 kHz	2 ms	2 MHz	41.8 Hz
10 kHz	2 ms	2 MHz	41.8 Hz
100 kHz	2 ms	2 MHz	41.8 Hz
1 MHz	2 ms	2 MHz	41.8 Hz
$*$ TP15 =(FREQ COUNT input \times Gate Time)/256			

1. Disconnect W22 from A2J 8.
2. If a 10 MHz , TTL-level signal is not present at the end of W22, continue with step 3. If a 10 MHz signal is present at W 22 , proceed as follows:
a. Reconnect W22 to A2J 8.
b. Set the spectrum analyzer to the following settings:

Span
ZeroSpan
Sweep time 20 ms
c. Monitor the signal at A2J 2 pin 21. This is an output of the frequency counter, HBUCKET PULSE.
d. If HBUCKET PULSE is stuck high, troubleshoot the frequency counter.
3. Check for a 10 MHz signal at A 15 J 302 . If the signal is not present at A15J 302, the A15 RF assembly is probably defective.

Video Input Scaling Amplifiers and Limiter (8561EC and 8563E C)

The video input scaling amplifiers help provide scaling ($10 \mathrm{~dB} / \mathrm{div}$, $5 \mathrm{~dB} / \mathrm{div}, 2 \mathrm{~dB} / \mathrm{div}$, or $1 \mathrm{~dB} / \mathrm{div}$) and buffer the flash video output. When the GAINX2 control line is low, switch U44D is open and switch U44C is closed. Thus, the scaled video at TP26 virtually follows the video input ($0-1 \mathrm{~V}$). When the GAINX2 control line is high, switch $U 44 \mathrm{C}$ is open and switch U44D is closed. Amplifier U43 then provides a gain of $2\left(\mathrm{~V}_{\text {in }}\right)-1 \mathrm{~V}$. Voltage clamp CR4 prevents the scaled video input to amplifier U45 from going more negative than -0.35 V or more positive than +1.25 V .

NOTE

When measuring voltages or waveforms on the Fast ADC section of the A2 controller assembly, connect the ground (or common) lead to the ground-plane trace associated with the shield. This digital ground plane is totally isolated from the chassis.

1. Press PRESET on the 8560 EC-series spectrum analyzer and set the controls as follows:

Center frequency	300 MHz
Span 0 Hz
Reference level	...-10dBm
Log/division	$10 \mathrm{~dB} / \mathrm{DIV}$
Sweep time 20 ms

2. Connect the CAL OUTPUT to the INPUT 50Ω connector.
3. Adjust the spectrum analyzer reference level to place the signal at the top graticule line on the LCD display.
4. Measure the dc level at pin 3 of U10. If the voltage measured is not $+1.0 \pm 0.15 \mathrm{~V}$, troubleshoot the A3 interface assembly.
5. Measure the dc level at pin 3 of U17. The level should be approximately the same as the level measured at pin 3 of U10. If not, suspect switch U9.
6. Set the spectrum analyzer scale to 5 dB per division.
7. Adjust the spectrum analyzer reference level to place the signal at the top graticule line on the LCD display.
8. Measure the dc level at pin 3 of U10 and pin 3 of U17. The level should be $+1.0 \pm 0.25 \mathrm{~V}$. If the level measured at pin 3 of U 17 differs from the level measured at pin 3 of U 10 by more than 0.25 volts, troubleshoot U10 and associated circuitry.
9. Disconnect the CAL OUTPUT signal from the INPUT 50Ω connector.
10.The level at pin 3 of U 10 should drop to -0.35 Vdc . If the level is less (more negative) than -0.35 Vdc , replace voltage clamp D3.
11.Measure the dc level of the flash video at pin 2 of R47. The level should be near 0 Vdc with the signal at the bottom graticule line (no input to the spectrum analyzer).
12.Connect the CAL OUTPUT to the INPUT 50Ω connector.
10. Measure the dc level of the flash video at pin 2 of R47. The level should be near +1.7 Vdc .

12-Bit Flash ADC (8561E C and 8563E C)

The flash ADC (U22) converts the analog video signal into 12-bit digital values at a fixed rate of 12 megasamples per second.
When measuring voltages or waveforms on the Fast ADC of the A2 controller assembly, connect the ground (or common) lead to the ground-plane trace associated with the shield. This digital ground plane is totally isolated from the chassis.

1. Press PRESET on the spectrum analyzer and set the controls as follows:

$$
\begin{aligned}
& \text { Center frequency .. } \\
& \text { Span } \\
& \text { Reference level } \\
& \text { Log/division } \\
& \text { Sweep time }
\end{aligned}
$$2. Connect the CAL OUTPUT to the INPUT 50Ω connector.3. Pins 2 through 13 (ADC0-ADC11) of U22 should all be high (logic 1),corresponding to an ADC digital count of 255 for the analog input of+2 volts or greater.

4. Disconnect the CAL OUTPUT signal from the INPUT 50Ω connector.
5. Pins 2 through 13 (ADCO-ADC11) of $U 22$ should all be low (logic 0), corresponding to an ADC digital count of zero for the analog input of 0 volts or less.

32 K-Byte Static RAM (8561EC and 8563E C)

The static RAM stores the ADC samples that are taken when the Fast ADC circuitry is in the "write" mode. When not in the "write" mode, the static RAM is read by the CPU to retrieve the fast ADC data. The 8-bit DFADC bus connects the outputs of latches within U35 to the data port of static RAM U21.

Reference Clock (8561E C and 8563E C)

The reference dock circuitry takes the 8 MHz square wave dock and triples the frequency to 24 MHz . This is accomplished through two stages of filtering of the 8 MHz signal, to extract the third harmonic. The 8 MHz signal is first passed through a high pass filter consisting of C123 and L15. The the signal passes through a bandpass filter centered at 24 MHz , consisting of C106, C08, L13, and R80. The comparator U28B generates a square wave. The signal then passes through a second stage of filtering by using the bandpass filter consisting of C89, C88, L12, and R77. Comparator U 28A then regenerates the square wave. A divide-by-two flip flop in U16 divides the 24 MHz signal to create the 12 MHz signal used by the ADC.

16 MHz Harmonic Filter (8561E C and 8563E C)

The 16 MHz Harmonic Filter generates a 16 MHz signal through a series of stages, consisting of a filter and a comparator. The 10 MHz reference signal from the A15 RF assembly is first prescaled by 2.5 to yield a 4 MHz signal with a 20 percent duty cycle. This prescaling is performed within U35. The 4 MHz signal is then passed, first, through a high pass filter, and then, through a bandpass filter at 16 MHz . The high pass filter consists of R85, C122, and L14. The bandpass filter consists of L19 and C139. The filter basically filters the fourth harmonic of the 4 MHz signal to generate a 16 MHz signal. The resulting signal is then passed through comparator U34A to generate a 16 MHz square wave. Three more stages, consisting of a bandpass filter followed by a comparator, further filter the signal so that a clean 16 MHz signal results. The 16 MHz signal which is the result of these successive stages of filtering is output at pin 10 of U34. U35 buffers this signal to provide the 16 MHz clock for the CPU. In addition, divide-by-two flip flops are located within $U 35$, which generate 8 MHz and 4 MHz signals.

State- and Trace-Storage Problems

State storage is in the two of the four Program RAMs and trace storage is in the two display RAMs. With low battery voltage, it is normal for states and traces to be retained if the power is off for less than 1 minute. If the power is left off for more than thirty minutes with low battery voltage, the stored states and traces will be lost.
The following steps test battery backup for EC-series instruments:

1. Measure the voltage on W 6 at A 2 J 3 . If the voltage is less than 2.6 V , check the BT1 battery.
2. If the battery voltage is correct, reconnect W6 to A2J 3, turn the analyzer power off and wait 5 minutes.
3. Measure the voltage at A2U 19 pin 32and A2U 26 pin 32.
4. If the voltage is less than 2.0 Vdc , the RAM power battery-backup circuitry on the A2 controller assembly is probably at fault.

The following steps test battery backup for E-series instruments:

1. Measure the voltage on W 6 at $A 2 J 10$. If the voltage is less than 2.6 V , check the BT1 battery.
2. If the battery voltage is correct, reconnect W6 to A2J 10, turn the analyzer power off and wait 5 minutes.
3. Measure the voltage at A2U 101 pin 28 and A2U 102 pin 28.
4. If the voltage is less than 2.0 Vdc , the RAM power battery-backup circuitry on the A2 controller assembly is probably at fault.

Keyboard Problems

If the analyzer does not respond to keys being pressed or the knob being rotated, the fault could be either on the A3 interface assembly or the A2 controller assembly. To isolate the A2 controller assembly, use the following procedure. This procedure tests the analyzer response over GPIB and the keyboard/RPG interrupt request signal.

1. Enter and run the following BASIC program:
```
10 OUTPUT 718; "IP; SP 1 MHz;"
20 WAIT 2 ! Wait 2 seconds
30 OUTPUT 718;"AT 70 DB;"
40 WAIT 2 ! Wait 2 seconds
50 OUTPUT 718;"AT 30 DB;"
60 WAIT 2 ! Wait 2 seconds
70 OUTPUT 718;"AT 10 DB;"
80 END
```

2. When the program runs, three or four clicks should be heard. This is the A9 input attenuator changing attenuation value.
3. If the display shows the analyzer to be in RMT and the ATTEN value displayed on the LCD (CRT on E-series instruments) changed according to the program, the A2 controller assembly is working properly. Refer to Chapter 7, "ADC/I nterface Section."
4. If there was no response over GPIB, the A2 controller is probably defective. Be sure to also check the A19 GPIB assembly and A19W1.
5. If there was an improper response (for example, the displayed ATTEN value changed but no clicks were heard), the A2 controller is probably working properly.
6. On EC-series instruments, attach a logic probe to A2U35 pin 213. On E-series instruments, attach a logic probe to A2U2 pin 2.

Look for pulses while pressing a key and rotating the knob (RPG). This is the interrupt request signal for the keyboard and RPG.
7. If the interrupt request signal is always low, troubleshoot the A2 controller assembly.
8. If the interrupt request signal is always high, the fault is on either the A3 interface or A1A1 keyboard assembly.

Introduction

> The synthesizer section includes the A7 first LO distribution amplifier (Agilent $8561 \mathrm{E} / \mathrm{/C}$) or the A7 switched first LO distribution amplifier (Agilent $8563 \mathrm{E} / \mathrm{FC}$), the A11 YTO, and parts of the A14 frequency control and A15 RF assemblies. Simplified and detailed block diagrams for each assembly are located at the end of this chapter.
Troubleshooting Using the TAM page 524
Troubleshooting Test Setup page 530
Confirming a Faulty Synthesizer Section page 531
General PLL Troubleshooting page 537
PLL Locked at Wrong Frequency page 537
Unlocked PLL page 538
Unlocked Reference PLL (100 MHz VCXO) page 540
Operation (100 MHz VCXO) page 540
Troubleshooting (100 MHz VCXO) page 540
Third LO Driver Amplifier (100 MHz VCXO) page 543
Unlocked Reference PLL (600 MHz SAWR) page 545
Operation (600 MHz SAWR) page 545
Troubleshooting (600 MHz SAWR) page 545
Third LO Driver Amplifier (600 MHz SAWR) page 548
Unlocked Offset Lock Loop (Sampling Oscillator) page 550
Operation page 550
Troubleshooting page 550
Unlocked YTO PLL page 554
Operation page 554
Troubleshooting an Unlocked YTO PLL page 556
Unlocked Fractional N PLL page 562
Operation page 562
Confirming an Unlocked Condition page 562
Fractional N PLL page 563
Frequency Span Accuracy Problems page 568
Determining the First LO Span page 568
Confirming Span Problems page 569
YTO Main Coil Span Problems (LO Spans $>20 \mathrm{MHz}$) page 570
YTO FM Coil Span Problems (LO Spans 2.01 MHz to 20 MHz) page 570
Fractional N Span Problems (LO Spans $\leq 2 \mathrm{MHz}$). page 572
First LO Span Problems (All Spans) page 572
First LO Span Problems (Multiband Sweeps) page 574
Phase Noise Problems page 575
Phase Noise in Locked versus Unlocked Spans page 575
Reference versus Reference PLL Phase Noise page 575
Fractional N versus Offset PLL or YTO PLL Phase Noisepage 576Fractional N PLL Phase Noisepage 576
Sampler and Sampler IF page 577
Sweep Generator Circuit page 579
A21 OCXO page 585

CAUTION	All of the assemblies are extremely sensitive to electrostatic discharge (ESD). For further information regarding electrostatic cautions, refer to "Electrostatic Discharge" on page 34.
CAUTION	Using an active probe, such as an Agilent 85024A, with a spectrum analyzer is recommended for troubleshooting the RF circuitry. If the 1120A active probe is being used with a spectrum analyzer, such as the 8566A/B, or 8569A/B having dc coupled inputs, either set the active probe for an ac coupled output or use a dc blocking capacitor (Agilent 11240B) between the active probe and the spectrum-analyzer input. Some spectrum analyzers can be set to ac coupled. Failure to do this can result in damage to the analyzer or the probe.

Troubleshooting Using the TAM

When using automatic fault isolation, the TAM indicates suspected circuits that need to be manually checked. Use Table 10-2 on page 525 to locate the manual procedure.

Table 10-3 on page 527 lists assembly test connectors associated with each manual probe troubleshooting test. Figure 10-1 illustrates the location of A14 and A15 test connectors.

The pin locations of a 16-pin TAM connector are indicated in Figure $10-2$. Table 10-1 on page 525 indicates the correspondence between a measured signal line and the TAM connector pin.

Figure 10-1 A14 and A15 Test Connectors

sp128e

Figure 10-2 TAM Connector Pin Locations

Table 10-1 Measured Signal Line Location

Measured Signal Line	Connector Pin
MSL1	$\operatorname{pin} 1$
MSL2	$\operatorname{pin} 2$
MSL3	$\operatorname{pin} 3$
MSL4	$\operatorname{pin~} 4$
MSL5	$\operatorname{pin} 5$
GND	$\operatorname{pin} 6$
MSL6	$\operatorname{pin} 13$
MSL7	$\operatorname{pin} 14$
MSL8	$\operatorname{pin} 15$

Table 10-2

Automatic Fault Isolation References

Suspected Circuit Indicated by Automatic Fault Isolation	Manual Procedure to Perform
Check the YTO loop	Confirming a Faulty Synthesizer Section (steps 12-33)
Check first LO	Confirming a Faulty Synthesizer Section (steps 9-11)
Check first LO pretune frequency and amplitude	U nlocked YTO PLL (steps 9-12)
Check the fractional N oscillator	U nlocked YTO PLL (steps 13-17)
Check 3rd LO drive	Third LO Driver Amplifier (steps 1-6)
Check 10 MHz reference to phase/frequency detector	U nlocked Reference PLL (steps 8-13)
Check for 10 MHz signal at other input to phase/frequency detector	U nlocked Reference PLL (steps 12 and 13)
Check A3 ADC MUX function block	Confirming a Faulty Synthesizer Section (steps 1-4)
Check A14 frequency control assembly	Confirming a Faulty Synthesizer Section (steps 12-18)
Check A14J 30110 MHzREF input	Confirming a Faulty Synthesizer Section (steps 5-8)
Check A15 RF assembly	Confirming a Faulty Synthesizer Section (steps 18-25)
Check current source U307	First LO Span Problems (All Spans) (steps 14-21)
Check FM loop sense	U nlocked YTO PLL (steps 27-34)

Table 10-2 Automatic Fault Isolation References

Suspected Circuit Indicated by Automatic Fault Isolation	Manual Procedure to Perform
Check YTF gain and offset DACs	YTF Driver Circuit (steps 10-23)
Check level at amplifier Input	Third LO Driver Amplifier (steps 1-6)
Check levels into mixer U400	Unlocked Offset PLL (steps 3-13)
Check loop references	Unlocked Offset PLL (steps 1 and 2)
Check main coil tune DAC	Unlocked YTO PLL (steps 45-49)
Check main coil coarse and fine DACs	Unlocked YTO PLL (steps 41-44)
Check offset span accuracy	First LO Span Problems <2 MHz (step 8)
Check phase/frequency detector	Unlocked Reference PLL (steps 17-22)
Check path to phase/frequency detector	Unlocked Offset PLL (steps 3-7, 14-19)
Check sampler drive output of A7	Unlocked YTO PLL (steps 18-21)
Check sampler IF	Unlocked YTO PLL (steps 22-26)
Check sampler/sampler IF operation	
Check span attenuator	Sampler and Sampler IF (steps 1-15)
Check sweep generator	First LO Span Problems (All Spans) (steps 6-13)
Check sweep +tune multiplier	Sweep Generator Circuit
Check the 600 M Hz reference loop amplifier	
Check the YTO loop	YTF Driver Circuit (steps 4-9)
Check YTO FM coil driver	Unlocked Reference PLL (steps 23-26)
voltage driver coil driver and main loop error	Unlocked YTO PLL (steps 35-40)

Table 10-3 TAM Tests versus Test Connectors

Connector	Manual Probe Troubleshooting Test	Measured Signal Lines
A14J 15	Sweep generator Span attenuator DAC Span attenuator switches Sweep + tune mult input amp Sweep + tune mult input switches	MS8 MS7 MS7 MS1, OS1 MS1, MS3
A14J 16	FAV generator FAV generator $0.5 \mathrm{~V} / \mathrm{GHz}$ output YTF offset DAC YTF gain and offset input YTF gain DAC YTF drive Band switch driver	MS4 MS5 MS6 MS2 MS1 MS3 MS8
A14J 17	Main coil coarse DAC Main coil fine DAC Main coil DACs output Main loop error volt DVR Option drive Option drive switch Option drive DAC	MS3 MS2 MS5 MS4 MS8 MS7 MS6
A14J 18	$\pm 10 \mathrm{~V}$ reference LODA drive Main coil tune DAC Sweep gen DAC Sweep gen DAC	$\begin{aligned} & \text { MS1, MS2 } \\ & \text { MS5, MS6, MS7, MS8 } \\ & \text { MS3 } \\ & \text { MS4* } \\ & \text { MS4* } \end{aligned}$
A14J 19	Second converter PIN switch Second converter mixer bias Second converter drain bias Second converter doubler bias Second converter driver bias First mixer drive switch	$\begin{aligned} & \text { MS8 } \\ & \text { MS1 } \\ & \text { MS3 } \\ & \text { MS4 } \\ & \text { MS5 } \\ & \text { MS7 } \end{aligned}$

Troubleshooting Using the TAM

Table 10-3 TAM Tests versus Test Connectors

Connector	Manual Probe Troubleshooting Test First mixer drive DAC	Measured Signal Lines MS6
A14J 302	Revision Fractional N out Divided reference Feedback buffer bias Outamp bias	MS7 MS1 MS4 MS5 MS6
A15J 200	Positive 15 volt supply Sampler drive buffer bias Sampling oscillator bias Offset lock drive buffer OFL error voltage Negative 10 volt supply Offset lock loop BW DAC	MS1 MS2 MS3 MS4 MS6 MS8 MS5,MS7,MS8
A15J 400	Positive 15 volt supply Offset lock RF buffer IF AMP/limiter bias Offset lock loop buffer D Offset lock loop buffer C Sampler bias test	MS2 MS4 MS6 MS7 MS8 MS3
A15J 502	Positive 15 volt supply Third LO tune voltage Offset lock loop buffer 600 MHz oscillator bias Calibrator AGC amp bias Calibrator ampl adj 3rd LO driver amp	MS2 MS3 MS4 MS5 MS6 MS7 MS1, MS8
* Only on A14 assemblies with part numbers 08561-60033, 08561-69033, 08561-60034, 08561-69033, 08563-60019, 08563-69019, 08563-60026, and 08563-69026.		

Table 10-3 TAM Tests versus Test Connectors

Connector	Manual Probe Troubleshooting Test	Measured Signal Lines
A15J 602	Positive 15 volt supply Flatness compensation 3 Flatness compensation 2 Flatness compensation 1 SIG ID collector bias RF gain control test	MS8
A15J 901	Revision External mixer switch Signal ID switch Ten volt reference External mixer bias	MS5
	MS6	

Troubleshooting Test Setup

Some synthesizer section problems require placing the YTO PLL in an unlocked condition. This is done by moving jumper A14J 23 to theTEST position. This grounds the YTO ERROR signal, disabling the CPU's ability to detect an unlocked YTO. The FM coil driver output is set to its mid-range level causing the YTO to be controlled only by the main coil tune DAC.

Synthesizer section troubleshooting is best done with the spectrum analyzer SPAN set to 0 Hz (even though it is still possible to sweep the Main and FM coils of the YTO).

With the YTO in its unlocked conditions and the SPAN set to 0 Hz , the nominal YTO frequency is not necessarily the value listed as LO FREQ in the Frequency Diagnose menu. The YTO has an initial pretune accuracy of $\pm 20 \mathrm{MHz}$. To display the nominal YTO's frequency, press CAL, MORE 1 OF 2]], FREQ DIAGNOSE, LO FREQ.

The fractional N oscillator frequency is the same as the desired sampler IF. To display the fractional N oscillator frequency press CAL, MORE 1 OF 2, FREQ DIAGNOSE, FRAC N FREQ. If the sampler IF is negative (YTO frequency is lower than the desired sampling oscillator harmonic), the fractional N frequency will be displayed as a negative number.

Confirming a Faulty Synthesizer Section

The A11 YTO (the spectrum analyzer first LO) is a YIG-tuned oscillator which tunes from 2.95 to 6.8107 GHz . In the Agilent 8561E/EC spectrum analyzer, the A7 LO distribution amplifier (LODA) levels A11's output and distributes the signal to the A8 dual band mixer, A15U 100 sampler, and the front panel's 1ST LO OUTPUT. In the 8563E/EC spectrum analyzer, the A7 switched LO distribution amplifier (SLODA) levels A11's output and distributes the signal to the A8 low band mixer, A10 YIG-tuned mixer/filter (RYTHM), A15U100 sampler, and the front panel's 1ST LO OUTPUT. The synthesizer section includes the following PLLs (Phase Locked Loops):

YTO PLL
Offset PLL (sampling oscillator PLL)

Fractional N PLL
Reference PLL

A7, A11, A14 and A15 assemblies
A15 RF assembly

A14 frequency control assembly
A15 RF assembly

The fractional N PLL is sometimes swept backwards (higher frequency to lower frequency). This is necessary because of the way in which the sampler IF signal is produced.

NOTE
The frequency control board is digitally controlled. If multiple failures appear in unrelated areas of the circuitry, the control may be at fault. Refer to the troubleshooting procedures in this chapter for further help on isolating those failures.

The TAM tests the signal path circuitry by digitally controlling the hardware and monitoring the control lines to make sure they are responding properly. Use the TAM's automatic fault isolation routine or verify the RF levels manually to ensure proper operation.

Check A3 ADC
MUX Function Block (steps 1-4)

1. Connect a DVM's positive lead to A15J 200 pin 13 and the negative lead to A15J 200 pin 6 . This measures the sampling oscillator tune voltage which is an input to the A3 interface assembly's ADC MUX.
2. Set the spectrum analyzer to the following settings:

Span ... 0Hz
Center frequency ... 389.5 MHz
Trigger ... Single
3. Use the data entry keys to tune the CENTER FREQ to the values listed in Table 10-4 on page 532.

Table 10-4 Center Frequency Tuning Values

8561E/EC/8563E/EC Center Frequency (MHz)	Sampling Oscillator's Frequency (MHz)
2156.3	285.000
2176.3	286.364
2199.5	287.500
2230.3	288.462
799.3	288.889
2263.3	290.000
2282.3	290.909
2302.3	291.667
2155.3	292.500
2158.3	293.478
2336.3	294.444
2196.3	295.000
1.3	296.000
2378.3	296.471
2410.3	297.000
2422.3	297.222

Check A14J301 10 MHz reference input (steps 5-8)
4. As the sampling oscillator frequency is increased, the DVM reading should also increase. If the tune voltage is correct, but the ADC measures the voltage and determines it to be out of specification, troubleshoot the A3 assembly's ADC MUX.
5. Disconnect W37 from A14J 301.
6. Connect a test cable from W37 to the input of another spectrum analyzer. Tune the other spectrum analyzer to the following settings:

Center frequency .. 10MHz
Span .. 2MHz
7. The amplitude of the 10 MHz reference signal should measure $>1 \mathrm{dBm}$. If the signal does not measure $>1 \mathrm{dBm}$, troubleshoot A15's 10 MHz distribution and A21 OCXO (if not Option 103).
8. Reconnect W37 to A14J 301.

Check first LO (steps 9-11)

Check A14 frequency control assembly (steps 12-18)
9. Connect the CAL OUTPUT to INPUT 50Ω
10.Set the spectrum analyzer to the following settings:

Center frequency .. 300 MHz
Span ... 100 MHz
11.If the first LO is present, a signal should be displayed at about -10 dBm (approximately $\pm 20 \mathrm{MHz}$ from the center frequency). If no signal is displayed and ERR 334 LO AMPL is not present, suspect the A7 LODA (8561E/EC) or theA7 SLODA (8563E/EC). If no signal is displayed and ERR 334 LO AMPL is present, check the A11 YTO as follows:
a. Set jumper A14J 23 to the TEST position.
b. Set the spectrum analyzer to the following settings:
Center frequency

50 Hz

CF step ... 300 MHz
Span 0 Hz
c. Connect a power meter directly to the output of the A11 YTO.
d. Press the spectrum analyzer step-up key and measure the YTO output power at each step.
e. Check that A11 YTO's output power is between +9 and +13 dBm .
f. Set jumper A14J 23 to the NORM position and reconnect the A11 YTO.
12.On the spectrum analyzer press PRESET, SPAN, ZERO SPAN, CAL, MORE 1 OF 2, FREQ DIAGNOSE, and FRAC N FREQ. N ote the fractional N oscillator frequency. (Ignore the minus sign, if present.)

Fractional N Oscillator Frequency $=$ \qquad MHz
13.Check A14J 304 (FRAC N TEST) port with a spectrum analyzer for this exact frequency. The amplitude should be approximately -10 dBm .
14.Disconnect W32 from A14J 501 and connect the output of a signal source to A14J 501. Remove the jumper from A14J 23. Connect a DVM's positive lead to A14J 23 pin 1 and negative lead to A14J 23 pin 3. See Figure 10-3 on page 534.
15.Set the signal source to the following settings:

Power 0 dBm
Frequency Frequency recorded in step 12
16.Tune the source 1 kHz bel ow the fractional N frequency. The voltage measured on the DVM should be approximately 12 Vdc .

Confirming a Faulty Synthesizer Section

17.Tune the source 1 kHz above the fractional N frequency. The voltage measured on the DVM should be approximately -12 Vdc .
18.If the DVM reading does not change, the A14 frequency control assembly is defective. Reconnect W32 to A14J 501. Replace the jumper on A14J 23 to the NORM position.

Figure 10-3 YTO Loop Test Setup

Sp127e
Check A15 RF assembly
19.Disconnect W34 from A15U 100J 1 and disconnect W32 from A15J 101.(steps 19-25)
20.Connect a frequency counter to A 15 J 101. Connect a high-frequency test cable from an Agilent 8340A/B synthesized sweeper to A15U 100J 1. See Figure 10-4 on page 535.
21.Connect a BNC cable from the spectrum analyzer 10 MHz REF IN/OUT to the 8340A/B's FREQUENCY STANDARD EXT input.
22. Set the 8340A/B to the following settings:
Frequency standard EXT
Power level $-5 \mathrm{dBm}$
23.Set the spectrum analyzer to the following settings:
Span 0 Hz
Trigger Single
24.Set the spectrum analyzer and 8340A/B frequencies to the combinations listed in Table 10-5 on page 536 and press SGL SWP on the spectrum analyzer.

Figure 10-4 Sampler and Sampling Oscillator Test Setup

25.At each combination, the frequency counter should measure a sampler IF as shown in Table 10-5 on page 536. (The offset PLL's sampling oscillator tunes to the frequencies listed in the table.) If the frequency counter does not read the indicated sampler IF $\pm 10 \mathrm{kHz}$, suspect the A15 RF assembly.
26.Reconnect W34 to A15U100J 1 and W32 to A15J 101.
27.The 1ST LO OUTPUT, located on the front panel, must be terminated in 50 ohms. If the YTO unlocks only with certain center frequency and span combinations, check that the termination is in place.
28.Set the spectrum analyzer CENTER FREQ and SPAN to generate the unlock conditions.
29.On the spectrum analyzer, press SGL SWP.
30.Move jumper A14J 23 to the TEST position.
31.Disconnect W34 from A15U 100J 1 and measure the power of the signal at the end of W34.
32.If the power is less than -6.5 dBm , suspect W34, A7 LODA (8561E/EC), A7 SLODA (8563E/EC), or A11 YTO.
33.M ove jumper A14J 23 to the NORM position.

Table 10-5 Sampling Oscillator Test Frequencies

Agilent 8340A CW Frequency (GHz)	$8563 E / E C$ Center Frequency (MHz)	Offset PLL Sampling Oscillator Freq (MHz)	Counter Reading Sampler IF (MHz)
6.067000	2156.3	285.000	82.000
6.087000	2176.3	286.364	73.364
6.110200	2199.5	287.500	72.700
6.141000	2230.3	288.462	83.308
4.710000	799.3	288.889	87.778
6.174000	2263.3	290.000	84.000
6.193000	2282.3	290.909	83.909
6.213000	2302.3	291.667	88.000
6.066000	2155.3	292.500	76.500
6.069000	2158.3	293.478	94.044
6.247000	2336.3	294.444	63.667
6.107000	2196.3	295.000	88.000
3.912000	1.3	296.000	64.000
6.289000	2378.3	296.471	63.118
6.321000	2410.3	297.000	84.000
6.333000	2422.3	297.222	91.333

General PLL Troubleshooting

The synthesizer section relies heavily on phase-locked loops (PLL). Typically, faulty PLLs are either locked at the wrong frequency or unlocked. The information below applies to troubleshooting these two classes of problems on a generalized PLL.

PLL Locked at Wrong Frequency

Numbers in the following text identify items in Figure 10-5.

- Any frequency errors at reference (1) will be multiplied by N / M on the PLL's output.
- A sampler reference-frequency error (2) will be multiplied by its harmonic on the PLL's output.
- A mixer reference-frequency error (3) produces the identical error on the PLL's output.
- If divider input or output frequencies (4) are wrong, check for incorrect divide numbers and data controlling the dividers.

Figure 10-5 PLL Locked at Wrong Frequency

Unlocked PLL

An unlocked PLL can be caused by problems inside or outside the PLL. Troubleshoot this problem by working backward from the oscillator as described in the steps below. Numbers in the following text identify items in Figure 10-6.

1. The loop integrator's output voltage (1) should be attempting to tune the oscillator to the correct frequency.

The voltage at (1) should increase as the frequency increases on all of the PLLs:

PLL	Measurement Point
YTO PLL	A14J 23 pin 1 (YTO ERROR)
Reference PLL	A15J 502 pin 3 (LO3 ERR)
Sampler PLL	A15J 200 pin 13 (OFL ERR)
Fractional N PLL	A14TP13 (INTEGRATOR)

Figure 10-6 Unlocked PLL

2. If the integrator's output voltage changes in the manner described in step 1, the problem is external to the PLL. For example, the reference frequency could be faulty. If the integrator's output voltage appears incorrect, confirm that the pulses out of the phase detector (2) are attempting to tune the oscillator in the correct direction.
3. If the phase detector's output is bad, check the inputs to the detector (3). One input should be higher in frequency than the other; this should match the phase detector outputs.
4. Confirm proper power levels for the signals at the input to the " N " dividers (4), the reference inputs (5 and 7), and the loop's feedback path (6).

Unlocked Reference PLL (100 MHz VCXO)

NOTE The following information is for A15 RF assemblies 08563-60054, 08563-60055, and 08563-60056. For earlier A15 RF assemblies, proceed to "Unlocked Reference PLL (600 MHz SAWR)" on page 545.

Operation (100 MHz VCXO)

The 600 MHz reference is generated by tripling, then doubling the output of the 100 MHz phase-locked loop. If the 600 MHz reference is off frequency, the 100 MHz phase-lock circuitry is probably at fault. If there is no signal present at A15J 701, or if the level is less than -3 dBm , the 100 MHz VCXO, the tripler, or the doubler circuitry has probably failed. Refer to function blocks Q, R, and S of the A15 RF schematic (08563-90071, 08563-90072, or 08563-90073) sheet 2 of 4 in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Leved Information binder.

Troubleshooting (100 MHz VCXO)

Check 100 MHz VCXO, tripler, and doubler (steps 1-7)

1. Using an active probe/spectrum analyzer combination, such as the Agilent 85024A/8566B, measure the tripler output at A15TP 700. The tripler output should be $+3 \mathrm{dBm} \pm 2 \mathrm{~dB}$.
2. If the tripler output is within tolerance, suspect the doubler circuitry. Refer to function block S of the A15 RF schematic.
3. If the tripler output is too low, probe the output of A15U 700 RF amplifier. The level should be $+16.5 \mathrm{dBm} \pm 2 \mathrm{~dB}$. The level at the input of A 15 U 700 should be $+8.5 \mathrm{dBm} \pm 2 \mathrm{~dB}$.
4. If the level at the input of A 15 U 700 is too low, suspect a faulty 100 MHz VCXO. Refer to function block Q of the A15 RF schematic.
5. On the spectrum analyzer, press AUX CTRL, REAR PANEL, and 10 MHz INT.
6. Measuring the tune voltage indicates if the 100 MHz PLL is locked. Connect the ground lead the voltmeter to A15J 1 pin 3 and measure the voltage at A15J 700 pin 3.
7. The tune voltage should be between +1 and +24 Volts. If the tune voltage is incorrect, place the P700 jumper (on A15J 700) in the TEST position (pin 1 to pin 2). This sets the tune voltage for varactor A15CR700 to the nominal +13 Volts, making it easier to troubleshoot the 100 MHz VCXO, tripler, and doubler. Remember to return P700 jumper to the NORMAL position when you have finished troubleshooting the oscillator circuitry.

Check 10 MHz reference to phase/frequency detector (steps 9-14)

Check phase/frequency detector (steps 17-22)
8. If the 100 MHz oscillator is working, the reason for the unlocked condition is either a problem in the 10 MHz reference or a fault in the signal path around the loop.
9. On the spectrum analyzer, press AUX CTRL, REAR PANEL, and 10 MHz INT.
10.Check the 10 MHz reference frequency-accuracy by connecting a frequency counter to A15J 301 and verify that the reference frequency is $10 \mathrm{MHz} \pm 40 \mathrm{~Hz}$ after a 5 minute warm-up period.
11.If a 10 MHz signal $>1 \mathrm{~V}$ peak-to-peak is not present at A15J 301, refer to the "" 10 MHz Reference" on page 623.
12.M easure the signal at TP301 with an oscilloscope. Refer to function block M of A15 RF schematic.
13.Measure the signal at U502 pin 11 with an oscilloscope. Refer to function block X of A15 RF schematic. This signal should be TTL levels at 10 MHz with a 60 percent duty cycle.
14.If TTL-level signals (approximately 10 MHz) are not present, check signals backwards through the loop to find a fault in the signal path.
15.Measure the signals at the following test points with an active probe/spectrum analyzer combination:

J unction of C570 and C571 $100 \mathrm{MHz},+2.5 \mathrm{dBm} \pm 2 \mathrm{~dB}$
J unction of R715, $\quad 100 \mathrm{MHz},-3 \mathrm{dBm} \pm 2 \mathrm{~dB}$
R716, R567, and R 568
U700 pin $3100 \mathrm{MHz},+16.5 \mathrm{dBm} \pm 2 \mathrm{~dB}$
U700 pin $1 \quad 100 \mathrm{MHz},+8.5 \mathrm{dBm} \pm 2 \mathrm{~dB}$
16.If an approximately 10 MHz TTL signal is present at U502 pin 11 with 60 percent duty cyde, and the RF portion of the phase-lock loop is functioning, the fault probably lies in the phase/frequency detector or the 100 MHz lock loop integrator.
17.M onitor U504 pin 5 and U503 pin 9 with an oscilloscope. These are the two outputs of the phase/frequency detector. Refer to function block O of A15 RF schematic.
18.A locked loop will exhibit stable, narrow (approximately 20 ns wide), and positive-going TTL pulses occurring at a 10 MHz rate at U504 pin 5 and U503 pin 9.
19.If the loop is unlocked, but signals are present on both inputs of the phase/frequency detector, the output pulses will be superimposed on each other.
20.If the loop is unlocked, and there is no signal at one of the phase/frequency detector inputs, one phase detector output will be at TTL low and the other will be at TTL high. For example, if there is no input signal at U504 pin 3, U504 pin 5 will be TTL low and U503 pin 9 will be TTL high. If there is no input signal at U503 pin 11, U503 pin 9 will beTTL low and U504 pin 5 will be TTL high.
21.To remove the 10 MHz reference input to the phase/frequency detector, press AUX CTRL, REAR PANEL, and 10 MHz EXT with no signal applied to the rear-panel 10 MHz REF IN/OUT connector.
22.To remove the divided-down 100 MHz signal from the phase/frequency detector, short R595. Refer to function block X of A15 RF schematic.

Check the 100 MHz lock loop integrator (steps 23-27)
23. Remove 10 MHz reference input to the phase/frequency detector by pressing AUX CTRL, REAR PANEL, and 10 MHz EXT. No signal should be connected to the rear-panel 10 MHz REF IN/OUT connector.

NOTE

The outputs of phase/frequency detector are low-pass filtered to reduce the 10 MHz component of the signal. The filtered signals are then integrated by U506 and the result is fed to the tune line of the 100 MHz VCXO.
24.Check that the voltage on A15J 502 pin 3 is less than 0 Vdc. Refer to function block P of A15 RF schematic.
25.Press AUX CTRL, REAR PANEL, and $\mathbf{1 0} \mathbf{~ M H z}$ INT and remove the divided-down 100 MHz input to the phase/frequency detector by shorting R572.
26. Check that the voltage on A15J 502 pin 3 is greater than 13 Vdc .
27.If the loop is locked, the voltage on A15J 502 pin 3 should be between 0 and +6 Vdc .
28.If the front-panel CAL OUTPUT amplitude is out of specification and cannot be brought within specification by adjusting A15R561, CAL AMPTD, check the calibrator AGC amplifier with the following steps. Refer to function block W of A15 RF schematic.

NOTE

The 300 MHz CAL OUTPUT signal comes from the tripled 100 MHz which is passed through a leveling loop. The 300 MHz signal passes through a low-pass filter for reducing higher harmonics. These harmonics can fool the detector. The 300 MHz signal passes through a variable attenuator controlled by PIN diode CR503 which is controlled by the feedback loop. Diode CR504 is the detector diode (the same type as CR505). Diode CR504 provides temperature compensation between the reference voltage and the detected RF voltage.
a. Measure the level of 300 MHz at A15 TP505 with an active probe/spectrum analyzer combination. If the signal is less than +2 dBm , repeat the first 27 steps of this procedure.
b. If the signal at this point is correct, place a short across the PIN diode CR503.
c. If the signal level at the CAL OUTPUT is still less than -10 dBm with CR503 shorted out, troubleshoot the RF forward path through amplifier Q505. (The signal amplitude decreases.)
d. If the CAL OUTPUT signal level is greater than -10 dBm , troubleshoot the PIN diode attenuator, the detector, or the feedback path.
29.Measure the detector voltage at A15J 502 pin 14. The voltage should measure approximately +0.3 Vdc when the CAL OUTPUT signal is at -10 dBm . This voltage should change with adjustment of A15R561, CAL AMPTD.
30. Check that the voltage at U507A Pin 3 is +1.7 Vdc . If this voltage is not correct, there may be a problem with the +10 V reference.
31.Measure voltage at U507B pin 5 while adjusting R561. This is the temperature-compensated adjustable voltage reference to which the detected voltage is compared. It should vary between +0.15 V and +0.6 V.
32.Adjust R561 to its limits and verify that the output U507B pin 7 measures approximately +1 Vdc at one limit and -12 Vdc at the other limit.

Third LO Driver Amplifier (100 MHz VCXO)

The third LO driver amplifier (Q503) amplifies the 300 MHz from the 300 MHz distribution amplifier to a sufficient level to drive the LO port of the double balanced mixer. During the SIG ID operation, diodes CR501 and CR502 turn off the 3rd LO driver amplifier in order to minimize the amount of 300 MHz going to the double-balanced mixer.

Check level at amplifier input (steps 1-6)

1. Press AUX CTRL, INTERNAL MIXER. Press SIG ID OFF, if Option 008 is installed.
2. Use an active-probe/spectrum-analyzer combination to confirm the power level of the 300 MHz signal at the following test points:

A15X602 pin 5
A15TP504

$$
\begin{aligned}
& \geq+7 \mathrm{dBm} \\
& \geq+15 \mathrm{dBm}
\end{aligned}
$$

3. If the signal at A15X602 pin 5 is low, but the signal at A15TP504 is correct, press AUX CTRL, INTERNAL MIXER. Press SIG ID OFF, if present.
4. Check that PIN diode switches CR603 and CR605 are reverse biased by approximately +10 Vdc . Refer to function block F of A15 RF schematic.
5. Measure 300 MHz signal at A15TP503 using an active probe/spectrum analyzer combination. If the signal is not approximately +10 dBm , refer to "U nlocked Reference PLL (100 MHz VCXO)" on page 540.
6. If the level at the TP503 is correct, but signal at TP504 is too low, the fault is probably in the amplifier.

Unlocked Reference PLL (600 MHz SAWR)

NOTE
The following information is for A15 RF assemblies earlier than 08563-60054, 08563-60055, or 08563-60056. For A15 RF assemblies with the aforementioned part numbers, refer to "Unlocked Reference PLL (100 MHz VCXO)" on page 540.

Operation (600 MHz SAWR)

The reference PLL's 600 MHz output is generated by a 600 MHz SAWR (surface acoustical wave resonator) VCO. The SAWR provides a high Q feedback path in the oscillator ensuring good phase noise. If the oscillator is off-frequency, the phase-lock circuitry is probably at fault. If there is no signal present at A15J 701, or if the level is less than -3 dBm , the oscillator has failed. Transistor Q703 provides active bias for oscillator transistor Q701. Transistor Q704 provides active bias for 600 MHz buffer amplifier Q702. Refer to function blocks Q and R of A15 RF schematic in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Leve Information.

Troubleshooting ($\mathbf{6 0 0} \mathbf{~ M H z ~ S A W R) ~}$

1. If Q701 and Q703 are functioning, check the bias on varactors CR701 and CR 702. The varactors should be reverse-biased between 0 V and 18 V , depending on tune voltage.
2. If the active devices are functioning properly, check the SAWR by placing a 100 -ohm resistor across U 701 pins 1 and 2 . This bypasses the SAWR, but provides the equivalent loss of a correctly functioning SAWR.
3. If the oscillator begins to oscillate, the SAWR is probably defective.
4. On the spectrum analyzer, press AUX CTRL, REAR PANEL, and 10 MHz INT.
5. Measuring tune line voltage (LO3 ERR) indicates if the Reference PLL is locked. Measure the voltage at A15J 502 pin 3 . Connect the ground lead to A15J 200 pin 6.
6. If voltage is not between 0 V and 5.75 V , the loop is unlocked and ERR 333600 unLk should be displayed on the CRT.
7. If the 600 MHz oscillator is working, the reason for the unlocked condition is either a problem in the 10 MHz reference or a fault in the signal path around the loop.

Check 10 MHz reference to phase/freque ncy detector (steps 8-13)
8. On the spectrum analyzer, press AUX CTRL, REAR PANEL, and 10 MHz INT.
9. Check the 10 MHz reference frequency-accuracy by connecting a frequency counter to A15J 301 and verify that the reference frequency is $10 \mathrm{MHz} \pm 40 \mathrm{~Hz}$ after a 5 minute warmup period.
10.If a 10 MHz signal $>1 \mathrm{~V}$ peak-to-peak is not present at A15J 301, refer to the " 10 MHz Reference" on page 623.
11.Measure the signal on U504 pin 3 with an oscilloscope. Refer to function block O of A 15 RF schematic.
12. Measure the signal at U504 pin 11 with an oscilloscope. Refer to function block O of A15 RF schematic. This signal should be TTL levels at 10 MHz with a 90 percent duty cycle.
13.If TTL-level signals (approximately 10 MHz) are not present, check signals backwards through the loop to find a fault in the signal path.
14.Use an oscilloscope to check for 50 MHz TTL level signal at U503 pin 2. Refer to function block X of A15 RF schematic (sheet 2 of 4).
15. Measure the signals at the following test points with an active probe/spectrum analyzer combination such as the 85024A/8566A/B. The signal level at TP701 should be sufficient to drive an ECL input.

U502 pin 2	$50 \mathrm{MHz}, \geq+3 \mathrm{dBm}$
U502 pin 15	$300 \mathrm{MHz}, \geq+3 \mathrm{dBm}$
TP503	300 MHz , approximately +8 dBm
TP502	300 MHz (ECL level), approximately +3 dBm
TP701	600 MHz (ECL level), approximately +3 dBm

16.If an approximately 10 MHz TTL signal is present at U504 pin 11 with 90 percent duty cycle, and the RF portion of the phase-lock loop is functioning, the fault probably lies in the phase/frequency detector or the 600 MHz reference loop amplifier.

Check phase/freque ncy detector (steps 17-22)
17. Monitor U504 pins 5 and 9 with an oscilloscope. These are the two outputs of the phase/frequency detector. Refer to function block O of A15 RF schematic.
18.A locked loop will exhibit stable, narrow (approximately 20 ns wide), and positive-going TTL pulses occurring at a 10 MHz rate at U504 pins 5 and 9.
19.If the loop is unlocked, but signals are present on both inputs of the phase/frequency detector, the output pulses will be superimposed on each other.

20.If the loop is unlocked, and there is no signal at one of the phase/frequency detector inputs, one phase detector output will be at TTL low and the other will be at TTL high. For example, if there is no input signal at U504 pin 3, U504 pin 5 will be TTL low and U504 pin 9 will be TTL high. If there is no input signal at U504 pin 11, U504 pin 9 will beTTL low and U504 pin 5 will beTTL high.

21.To remove the 10 MHz reference input to the phase/frequency detector, press AUX CTRL, REAR PANEL, and $10 \mathbf{~ M H z ~ E X T ~ w i t h ~ n o ~}$ signal applied to the rear-panel 10 MHz REF IN/OUT connector.
22.To remove the divided-down 600 MHz signal from the phase/frequency detector, short R572. Refer to function block X of A15 RF schematic.

Check the 600 MHz reference loop amplifier (steps 23-26)
23.Remove 10 MHz reference input to the phase/frequency detector by pressing AUX CTRL, REAR PANEL, and 10 MHz EXT. No signal should be connected to the rear-panel 10 MHz REF IN/OUT connector.

The outputs of phase/frequency detector are low-pass filtered to reduce the 10 MHz component of the signal. The filtered signals are then integrated by U506 and the result is fed to the tune line of the 600 MHz oscillator.
24.Check that the voltage on A15J 502 pin 3 is less than 0 Vdc . Refer to function block P of A15 RF schematic.
25.Press AUX CTRL, REAR PANEL, and $10 \mathbf{~ M H z ~ I N T ~ a n d ~ r e m o v e ~ t h e ~}$ divided-down 600 MHz input to the phase/frequency detector by shorting R572.
26.Check that the voltage on A15J 502 pin 3 is greater than 5.75 Vdc .
27.If the loop is locked, the voltage on A15J 502 pin 3 should be between 0 V and +5.75 Vdc .
28.If the front-panel CAL OUTPUT amplitude is out of specification and cannot be brought within specification by adjusting A15R561, CAL AMPTD, check the calibrator AGC amplifier with the following steps. Refer to function block W of A15 RF schematic.

The 300 MHz CAL OUTPUT signal comes from the divided down 600 MHz which is passed through a leveling loop. The 300 MHz signal passes through a low-pass filter for reducing higher harmonics. These harmonics can fool the detector. The 300 MHz signal passes through a variable attenuator controlled by PIN diode CR503 which is controlled by the feedback loop. Diode CR504 is the detector diode (the same type as CR505). Diode CR504 provides temperature compensation between the reference voltage and the detected RF voltage.
a. Measure the level of 300 MHz at A15 TP505 with an active probe/spectrum analyzer combination. If the signal is less than +2 dBm , repeat the first 29 steps of this procedure.
b. If the signal at this point is correct, place a short across the PIN diode CR503.
c. If the signal level at the CAL OUTPUT is still less than -10 dBm with CR503 shorted out, troubleshoot the RF forward path through amplifier Q505. (The signal amplitude decreases.)
d. If the CAL OUTPUT signal level is greater than -10 dBm , troubleshoot the PIN diode attenuator, the detector, or the feedback path.
29. Measure the detector voltage at A15J 502 pin 14. The voltage should measure approximately +0.3 Vdc when the CAL OUTPUT signal is at -10 dBm . This voltage should change with adjustment of A15R561, CAL AMPTD.
30.Check that the voltage at U507A Pin 3 is +1.7 Vdc . If this voltage is not correct, there may be a problem with the +10 V reference.
31.Measure voltage at U507B pin 5 while adjusting R561. This is the temperature-compensated adjustable voltage reference to which the detected voltage is compared. It should vary between +0.15 V and +0.6 V.
32.Adjust R561 to its limits and verify that the output U507B pin 7 measures approximately +1 Vdc at one limit and -12 Vdc at the other limit.

Third LO Driver Amplifier (600 MHz SAWR)

The third LO driver amplifier (Q503) amplifies the 300 MHz from the 600 MHz phase-lock loop to a sufficient level to drive the LO port of the double balanced mixer. During the SIG ID operation, diodes CR501 and CR502 turn off the 3rd LO driver amplifier in order to minimize the amount of 300 MHz going to the double-balanced mixer.

Check level at amplifier input (steps 1-6)

1. Press AUX CTRL, INTERNAL MIXER. Press SIG ID OFF, if present. This key will only be present if the spectrum analyzer has firmware revision 920528, or if option 008 is installed and the firmware revision is 930226.
2. Use an active-probe/spectrum-analyzer combination to confirm the power level of the 300 MHz signal at the following test points:

A15TP602

$\geq+7 \mathrm{dBm}$
A15TP504
$\geq+15 \mathrm{dBm}$
3. If the signal at A15TP602 is low, but the signal at A15TP504 is correct, press AUX CTRL, INTERNAL MIXER. Press SIG ID OFF, if present.
4. Check that PIN diode switches CR603 and CR605 are reverse biased by approximately +10 Vdc . Refer to function block F of A15 RF schematic.
5. Measure 300 MHz signal at A15TP503 using an active probe/spectrum analyzer combination. If the signal is not approximately +10 dBm , refer to "Unlocked Reference PLL (600 MHz SAWR)" on page 545.
6. If the level at the TP503 is correct, but signal at TP504 is too low, the fault is probably in the amplifier.

Unlocked Offset Lock Loop (Sampling Oscillator)

Operation

Abstract

The offset lock loop drives the A15U 100 sampler. The offset lock loop's sampling oscillator tunes to one of sixteen discrete frequencies between 285 MHz and 297.222 MHz . Refer to A15 schematic. Mixer A15U 400 mixes the oscillator's output with 300 MHz from the reference PLL, producing a 3 MHz to 15 MHz IF signal. The 3 MHz to 15 MHz signal is compared in the phase/frequency detector with the divided-down 300 MHz from the reference PLL. The phase/frequency detector drives a voltage-to-current diode switch which drives the loop integrator. Loop bandwidth switches vary the loop bandwidth to minimize noise sidebands. The sampling oscillator must produce low noise because the A15U 100 sampler multiplies noise by a factor of approximately 24.

Table 10-6 on page 551 lists the prescaler and postscaler divide numbers in the offset loop reference divide chain, for each of the 16 discrete frequencies to which the offset lock loop may be set. It also indicates what the reference frequency into the phase/frequency divide chain is. Refer to function block AN on the RF schematic.

Troubleshooting

Check loop references (steps 1 and 2)

1. Use an active probe and spectrum analyzer to confirm the presence of the following reference to the offset lock loop's input.

Al5TP404

300 MHz at +5 dBm
2. If this signal is not correct, refer to "Unlocked Reference PLL (100 MHz VCXO)" on page 540, or "Unlocked Reference PLL (600 MHz SAWR)" on page 545.

Check levels into mixer
(steps 3-13)
3. Set the spectrum analyzer to the following settings:
a. Center frequency 300 MHz
b. Span .0 Hz
c. Trigger Single
4. Force the PLL to unlock by shorting A15X201 pin 1 to A15X201 pin 5 with a short length of wire. Then connect a dc power supply to A15J 200 pin 16.
5. Monitor A15TP201 with an active probe/spectrum analyzer combination. Vary the dc supply until the frequency of the sampling oscillator is 296 MHz .
6. The voltage required to tune the oscillator should measure between +15 Vdc and +19 Vdc . If the voltage is out of this range, perform the sampling oscillator adjustment in Chapter 2.
7. Vary the voltage to tune the sampling oscillator to 296 MHz .
8. Use an active probe/spectrum analyzer combination to measure the 300 MHz LO signal at the following test point:

A15TP402
+7 dBm
9. If the signal is not measured near the indicated power, troubleshoot the offset lock loop buffer (function block AM of A15 RF schematic sheet 3 of 4).
Table 10-6 Sampling Oscillator PLL Divide Numbers

Sampling Oscillator Frequency (MHz)	Center Frequency * (MHz)	Reference Divide Chain		Reference
		Prescaler	Postscaler	
285.000	2156.3	10	2	15.000
286.364	2176.3	11	2	13.636
287.500	2199.5	8	3	12.500
288.462	2230.3	13	2	11.538
288.888	799.3	9	3	11.111
290.000	2263.3	10	3	10.000
290.909	2282.3	11	3	9.091
291.666	2302.3	9	4	8.333
292.500	2155.3	8	5	7.500
293.478	2158.3	23	2	6.522
294.444	2336.3	9	6	5.556
295.000	2196.3	10	6	5.000
296.000	1.3	15	5	4.000
296.471	2378.3	17	5	3.529
297.000	2410.3	20	5	3.000
297.222	2422.3	18	6	2.778
* To set the sampling oscillator to a desired frequency, set span to 0 Hz and CENTER FREQ to the value listed in the table.				

10. Measure the 296 MHz loop feedback signal at the following test point:

A15TP400 +2 dBm

11.If the feedback signal is not near the indicated power, measure the signals at the following test points on the feedback path. Refer to function blocks AD, AG, and AH of A15 RF schematic.

A15TP200

A15TP201
A15TP202
+4 dB m
$+9 \mathrm{dBm}$
$+5.5 \mathrm{dBm}$
12. Measure the 4 MHz loop-IF signal at the mixer output. The frequency of theIF is the same as the reference frequency and can be found in Table 10-6 on page 551.

A15R 447 (end nearest L414) -6 dBm
13.If the IF signal is not near the indicated power, troubleshoot the loop mixer (function block AI).

Check path to phase/frequency detector (steps 14-19)
14.Measure the loop IF signal at the input to the IF amplifier/limiter (function block $A K$):

A15L428 (end nearest U411) 4 MHz (approximately -6 dBm)
15. Confirm the presence of a 4 MHz square-wave reference frequency signal at U406 pin 3. The square wave is TTL and should go below +0.6 V and above +2.2 V .
16.Disconnect the jumper from X201 pins 1 and 5. Disconnect the dc power supply which is connected to A15J 200 pin 16.
17.Set the spectrum analyzer to the following settings:

Center frequency .. 300 MHz
Span 0 Hz
18.Use an oscilloscope to confirm the presence of a 4 MHz TTL-level reference frequency signal at U406 pin 11.
19. Connect a short across A15R 425. Connect A15U 406 pins 3 and 11 together. This puts the same signal on both the phase/frequency detector inputs.
20.Observe the phase/frequency detector outputs, U406 pins 6 and 9,with an oscilloscope. Narrow TTL pulses should be present. Pin 9 isnormally low, pulsing high, and pin 6 is normally high, pulsing low.
21.Check the end of L417 (nearest C445) with an oscilloscope. With the oscilloscope's input ac-coupled, a triangle waveform approximately 20 mV p-p should be present.
22.Short C441 with a wire jumper. (Connect the jumper from the end of R462 nearest C441 to the end of R460 nearest C443.) This changes the loop integrator into a voltage follower. Refer to function block $A B$ of A15 RF schematic.
23.Check the voltages at the following points:
A15U408 pin 6 +2.5 Vdc (approximately)
A15X201 pin 1 +2.5 Vdc (approximately)
24.If the voltages are not correct suspect A15U 408.
25.Remove the jumpers.

Unlocked YTO PLL

Operation

The A11 YTO is locked to two other oscillators, the fractional N oscillator and the offset PLL's sampling oscillator. For LO spans of 2.01 MHz and above, either the FM or main coil of the YTO is swept directly. For LO spans of 2 M Hz and below, the fractional N oscillator is swept. The sampling oscillator remains fixed-tuned during all sweeps.
The output of A11 YTO feeds through the A7 LO distribution amplifier (Agilent 8561E/EC) or A7 switched LO distribution amplifier (8563E/EC) to the A15U 100 sampler. The offset PLL's sampling oscillator, which drives the sampler, oscillates between 285 and 297.222 MHz . The sampler generates harmonics of the sampling oscillator and one of these harmonics mixes with the YTO frequency to generate the sampler IF frequency. As a result, the frequency of the sampler IF is determined by the following equation:

$$
\mathrm{F}_{\mathrm{IF}}=\mathrm{F}_{\mathrm{YTO}}-\left(\mathrm{N} \times \mathrm{F}_{\mathrm{SAMP}}\right)
$$

Where:

- $F_{\text {IF }}$ is the sampler IF
- FYto is the YTO's frequency
$-N$ is the desired sampling oscillator harmonic
- $\mathrm{F}_{\text {SAMP }}$ is the sampling oscillator frequency

Notice that $\mathrm{F}_{\text {IF }}$ can be positive or negative depending upon whether the sampling oscillator harmonic used is below or above the YTO frequency. The actual sampler IF is always positive, but the sign is carried along as a "bookkeeping" function which determines which way to sweep the fractional N oscillator (up or down) and what polarity the YTO error voltage should have (positive or negative) to maintain lock.

To check if a negative sampler IF is selected, press CAL, MORE 1 OF 2, FREQ DIAGNOSE, FRAC N FREQ. If the fractional N oscillator frequency is positive, the sampler IF is also positive. A negative fractional N frequency indicates that the sampler IF is negative.
Notice that the polarity of the YTO loop error voltage (YTO ERROR) out of the YTO loop phase/frequency detector changes as a function of the polarity of the sampler IF. That is, for positive sampler IFs, an increasing YTO frequency results in an increasing YTO ERROR signal. For negative sampler IFs, an increasing YTO frequency results in a decreasing YTO ERROR signal. This implies that to maintain lock in both cases, the sense of YTO ERROR must be reversed such that, with
a negative sampler IF, an increasing YTO ERROR results in an increasing YTO frequency. This is accomplished with error-sign amplifier, A14U 328B. This amplifier can be firmware-controlled to operate as either an inverting or non-inverting amplifier. Digital control line ERRSGN (from A14U313 pin 19) controls the polarity of this amplifier. When ERRSGN is high (positive sampler IF), the amplifier has a positive polarity.

In fractional N spans (LO Spans $\leq 2 \mathrm{MHz}$) the YTO remains locked to the sweeping fractional N PLL. Thus, the sampler IF must always equal the fractional N oscillator frequency (conditions for lock). Since the YTO must always sweep up in frequency, for negative sampler IFs, the fractional N oscillator must sweep from a higher frequency to a lower frequency. This is necessary since an increasing YTO frequency decreases the sampler IF for negative sampler IFs. The opposite is true for positive sampler IFs, so in these cases, the fractional N oscillator sweeps more conventionally from a lower frequency to a higher frequency.

Table 10-7 summarizes the amplifier polarities for the various combinations of sampler IF polarities and LO spans.

The YTO main coil filter is used to improve residual FM in FM spans. See function block I of A14 frequency control schematic in the Component-Level Information binder. Transistors Q304 and Q305 switch the filter (capacitor C36 and resistor R48) into the circuit. Transistor Q303 and U333 keep C36 charged during main spans so the frequency does not jump when C36 is switch in.
Table 10-7 Amplifier Polarities

		YTO Error Sign Amplifier	ERRSGN (A14U313 pin 19)
Fractional N Oscillator Swept	Positive Sampler IF Negative Sampler IF	Positive	TTL High
FM/Main YTO			
Coils Swept	Positive Sampler IF Negative Sampler IF	Positive	TTL Low
Negative	TTL Low High		

Troubleshooting an Unlocked YTO PLL

1. If the YTO PLL is unlocked, error code 301 should be displayed. Place the spectrum analyzer in ZERO SPAN. Figure 10-7 illustrates the simplified YTO PLL.
2. Move the jumper on A14J 23 to connect pins 2 and 3 (TEST position). Refer to Figure 10-1 on page 524 for the location of A14J 23. Error code 301 should no longer be displayed. (The YTO PLL's feedback path is now open and the YTO error voltage is forced to zero.)
3. On the spectrum analyzer, press CAL, MORE 1 OF 2, FREQ DIAGNOSE, and LO FREQ. The displayed LO FREQ is the desired YTO frequency calculated. Record the YTO's calculated frequency below:
YTO Frequency (calculated) =
\qquad MHz
4. Measure the YTO frequency at the front-panel's 1ST LO OUTPUT jack and record below:

YTO Frequency $($ measured $)=$ \qquad MHz

Figure 10-7 Troubleshooting an Unlocked YTO PLL

5. Calculate the YTO's frequency error by subtracting the frequency recorded in step 3 from the frequency recorded in step 4. Record the result below:

YTO Frequency Error = MHz

YTO Frequency Error = YTO Frequency (MEASURED)-YTO Frequency (CALCULATED)
6. On the spectrum analyzer, press MORE 1 OF 2, FREQ DIAGNOSE, and FRAC N FREQ. Record the fractional N frequency below:

Fractional N frequency $=$ MHz

CAUTION
Replacement of the phase/frequency detector chip A14U204 is not recommended. The part is very delicate and requires special tool ing to install successfully.
7. If the YTO frequency error recorded in step 5 is greater than 20 MHz , do the following:
a. Check the YTO Adjustments using the TAM or the procedure in Chapter 2.
b. Check the YTO DACs using the procedure in steps 41 through 49 below, or using manual probe troubleshooting with the TAM on A14J 17 and A14J 18.
c. Refer to steps 9 through 34 below.
8. If the YTO Frequency error recorded in step 5 is less than 20 MHz , do the following:
a. Measure the frequency at A14J 304. The frequency should be equal to the frequency recorded in step 6. If not, refer to "Unlocked Fractional N PLL" on page 562.
b. Measure the input and output levels of the A15U 100 sampler. If the sampler appears defective, check the LO drive to the sampler as described in "Sampler and Sampler IF" on page 577.
c. Refer to steps 34 through 51 below.

Check first LO pretune frequency and amplitude (steps 9-12)
9. The first LO's pretuned frequency must be sufficiently accurate for the YTO loop to acquire lock. The first LO's amplitude must be sufficient to drive the A15U 100 sampler. Perform the YTO Adjustment procedure, particularly the YTO main coil adjustments. (If available, use a synthesized microwave spectrum analyzer instead of the microwave frequency counter specified in the adjustment procedure.)
10.If the YTO's main coil cannot be adjusted, proceed to step 33 to troubleshoot the main coil coarse and fine DACs and main coil tune DAC.
11.The front-panel 's 1ST LO OUTPUT should measure between +14.5 and +18.5 dBm in amplitude.
12.If the 1ST LO OUTPUT amplitude is out of the specified range, perform the first LO distribution amplifier adjustment procedure. Refer to Chapter 2.

Check the fractional N oscillator (steps 13-17)
13.Set the spectrum analyzer to the following settings:
Center frequency ... 300 MHz
Span 0 Hz
14.M onitor the fractional N PLL's output at A14J 304 (F RAC N TEST) with a synthesized spectrum analyzer such as the 8568A/B or 8566A/B. Refer to function block AI of A14 frequency control schematic.
15.The signal at A14J 304 (FRAC N TEST) should measure approximately -10 dBm at 66.7 MHz . If the loop is unlocked, the sampler IF frequency can also be seen on A14J 304, about 30 dB below the fractional N signal.
16.If a problem exists only at particular CENTER FREQ and SPAN settings, determine the desired fractional N oscillator frequency by pressing CAL, MORE 1 OF 2, FREQ DIAGNOSE, FRAC N FREQ and setting the 8563E/EC to SI NGLE trigger mode.
17.If the fractional N oscillator frequency is not correct, refer to "Unlocked Fractional N PLL" on page 562.
Check
sampler drive output of A7 LODA
(8561E/EC), or
A7 SLODA
(8563E/EC)
(steps 18-21)

18. Set jumper A14J 23 to the TEST position and set the spectrum analyzer to the following settings:
\qquad
Span 0 Hz
19.Disconnect cable W34 from A15U100J 1.
20.Use a power meter to measure the A7 LODA (8561E/EC) or A7 SLODA (8563E/EC) sampler-drive output at the end of W34. The power should measure greater than -9 dBm .
21.Place jumper A14J 23 in the NORMAL position and reconnect W34 to A15U 100 1.
23.Place jumper A14J 23 in the TEST position.
24.Disconnect W32 from A15J 101. M onitor the sampler IF output(A15J 101, SAMPLER IF) with a synthesized spectrum analyzersuch as an Agilent 8568A/B or Agilent 8566A/B.
25.The sampler IF should measure between 46 MHz and 86 MHz at -15 dBm to +2 dBm . If the signal frequency or amplitude is incorrect, refer to "Unlocked Offset Lock Loop (Sampling Oscillator)" on page 550.
26.Set jumper A14J 23 in the NORMAL position. Reconnect W32 toA15J 101.
Check FM loop sense (steps 27-34)
27.Set jumper A14J 23 in the TEST position.
28.Set the spectrum analyzer to the following settings:
Center frequency 300 MHz
Span 0 Hz
29.Connect an RF signal-generator output to A14J 501. Set the signalgenerator to the following settings:
Frequency 56 MHz
Amplitude 0dBm
30.M onitor A14J 17 pin 1 with a DVM or oscilloscope. Connect ground to A14J 17 pin 6.
31.As the signal generator frequency is increased to 76 MHz , the voltage at A14J 17 pin 1 should change from approximately +12 V to -12 V.
32.Set the signal generator to the following settings and repeat step 30.
Frequency ... 56 MHz
Amplitude ... 15 dBm
33.If the voltage monitored in step 30 is correct with a 0 dBm output but not with -15 dBm output, suspect the limiting amplifier function block AE.
34.Place jumper A14J 23 in the NORMAL position and reconnect W32 to A14J 501.

Check YTO FM coil driver and main loop error voltage driver
(steps 35-40)
35.To troubleshoot the YTO FM coil driver, refer to step 6 of "YTO FM Coil Span Problems (LO Spans 2.01 MHz to 20 MHz)" on page 570.
36.Steps 36 through 40 verify that the YTO-loop error voltage is reaching the FM coil. The main loop error voltage driver has a gain of either 1.5 or 15 ; the analyzer firmware controls the gain during the locking process. The error voltage is read by the ADC on the A3 interface assembly. U324D calibrates out any offsets from true ground. A14U326A inverts the sense of the YTO loop to lock the

> YTO on lower sampler-sidebands (YTO frequency (sampler frequency \times sampler harmonic)). The fractional N frequency indicated in the FREQ DIAGNOSE menu will be negative when locking to lower sidebands. Refer to function blocks E, M, and N of A14 frequency control schematic in the Agilent Technol ogies 8560 E-Series Spectrum Anal yzer Component Leve Information binder.

Set the spectrum analyzer to the following settings:

> Center frequency .. 0 Hz Span
37.Remove jumper A14J 23 and connect a dc power supply to A14J 23 pin 2. Connect ground to A14J 23 pin 3 . Set the dc power supply to +7.5 Vdc .
38.Verify the nominal test-point voltages listed in Table 10-8.
39. Change the input voltage to -7.5 volts and re-verify that the voltages listed in Table 10-8 are the same except for a change in polarity.
40.Change the CENTER FREQ to 678.8 MHz with the SPAN remaining 0 Hz . This will change the switch setting of U326A and invert the voltages listed in Table 10-8.

Table 10-8 Voltages in FM Coil and Main Loop Drivers

Measurement Points	Voltages
A14U 405 pin 6	+2.8 Vdc
A14U322 pin 2	0 Vdc
A14J 17 pin 4	$>+10 \mathrm{Vdc}$

Check main coil coarse and fine DAC's (steps 41-44)
41.The main coil coarse and fine DACs correct any initial pretune errors in the YTO main coil. The DACs adjust the FM-coil current to zero before any sweep begins. Refer to function block J of A14 frequency control schematic.
42. Set the spectrum analyzer to the settings listed below. This sets both DACs to 128 (the DAC setting range is 0 to 255).

Center frequency .. 300 MHz
Span 0 Hz
Trigger ... Single, EXT
(with no external trigger connected)
43.Press SAVE, PWR ON STATE and turn off the spectrum analyzer. coil tune DAC (steps 45-49)

Check main 44.Place jumper A14J 23 in the TEST position and turn on the spectrum analyzer.
45.Verify the voltages listed in Table 10-9.

Table 10-9 Main Coil Coarse and Fine DACs Voltages

Measurement Points	Voltages
A14J 17 pin 2	-5 Vdc
A14J 17 pin 3	-5 Vdc
A14J 17 pin 5	+5 Vdc

46.Place jumper A14J 23 in the NORMAL position.
47.Set the spectrum analyzer to the following settings:

Center frequency ... 300 MHz
Span ...0Hz
48.Place jumper A14J 23 in the TEST position.
49.M easure the output of the main coil tune DAC (A14J 18 pin 3) with a DVM. Refer to function block E of A14 frequency control schematic.
50.If the spectrum analyzer center frequency is 300 MHz , the voltage at A14J 18 pin 3 should measure $-3.35 \mathrm{~V} \pm 0.25 \mathrm{~V}$. The voltage may also be determined from the following equation:
$\mathrm{V}=-($ First LO Frequency $-2.95 \mathrm{GHz}) \times 2.654 \mathrm{~V} / \mathrm{GHz}$
51.The voltage at A14U330 pin 2 should measure $-3.4 \mathrm{~V} \pm 0.2 \mathrm{Vdc}$. This represents a current setting the YTO to approximately 2.95 GHz .
52.Return jumper A14J 23 to the NORMAL position.

Unlocked Fractional N PLL

Operation

The fractional N oscillator is used in the 8563E/EC as a reference for the first LO phase locked loop. It provides the 1 Hz start- frequency resolution for the first LO, and is the means by which the first LO is swept in LO spans of 2 MHz or less (fractional N spans). The prescaler, fractional N divider, and the postscaler are preset at power-on.
The PLL operates to produce an output frequency in the range of 60 MHz to 96 MHz selectable in 1 Hz increments. The output frequency can be swept (increasing or decreasing) over a selectable 100 Hz to 2 MHz range.

To determine the fractional N frequency for any given center frequency, press CAL, MORE 1 OF 2, FREQ DIAGNOSE, and FRAC N FREQ. The FRAC N FREQ frequency displayed is the frequency that will be measured at A14J 304 with the 8563E/EC in zero span.

Confirming an Unlocked Condition

1. Set the spectrum analyzer to the following settings:
\qquad
Span OHz
2. Connect A14J 304 FRAC N TEST to the input of a synthesized spectrum analyzer and view the fractional N PLL output at 66.7 MHz.

If a synthesized spectrum analyzer is not available, connect A14J 304 to the input of a 20 dB gain amplifier, such as an Agilent 8447E. Connect the output of the amplifier to the input of a frequency counter.
3. If the fractional N oscillator measures a stable 66.7 MHz , the fractional N PLL is probably locked.
4. Check the two LED's visible through the shield on A14. If either LED is lit, the fractional N PLL is not locked.
5. If either LED on A14 is lit, and no error message is displayed, check FC MUX U305. Refer to function block AH of A14 frequency control schematic.
6. If neither LED is lit, but the output frequency is wrong by more than 1 MHz , check the postscaler, function block AV.
7. Check that the postscaler is dividing properly. The frequency at A14J 304 should be equal to the frequency at A14TP4 divided by either 5, 6, or 7 . Refer to Table 10-10. To keep the divide number at a constant value set the spectrum analyzer to:

Span 0 Hz
Trigger .. Single, EXT
(with no external trigger connected)

Table 10-10 Postscaler Divide Numbers

Divide Number	D11	D10	D9	Input Range (MHz) (A14J 304)	Output Range (MHz) (A14TP4)
7	0	0	1	840 to 973	60.0 to 69.5
6	0	1	0	834 to 987.96	69.5 to 82.33
5	0	1	1	823.2 to 960	82.33 to 96.0

If the output frequency is wrong by less than 1 MHz , the phase locked loop is not unlocked but still requires repair. Continue with the next section "Fractional N PLL."

Fractional N PLL

The fractional N PLL provides a synthesized frequency in the range of 60 MHz to 96 MHz . The 800 MHz to 1020 MHz voltage controlled oscillator (VCO) in the loop is divided down to lock with the 2.5 MHz reference. Simultaneously, the VCO is divided by two and then by either 5,6 , or 7 to generate the 60 MHz to 96 MHz output.
The prescaler (function block AR) supplies the clock signal for the fractional divider and is required for the fractional divider to operate. At the start of a fractional N sweep the fractional divider is set to a value for the start frequency and a sweep rate. It then sweeps for as long as HSCAN is high. Use the following procedure to troubleshoot unlocked loop problems or problems of locking to the wrong frequency (by less than 1 MHz):

1. Check the two LEDs on A14 frequency control assembly. If either LED is lit, the fractional N phase locked loop is not locked.
2. The 10 MHz reference is required for fractional N operation. It is divided by four to 2.5 MHz in the reference divider circuitry, block AN. It is used to lock the divided voltage controlled oscillator (VCO) frequency. Check that the 10 MHz reference is present at A14J 301. The 10 MHz reference is derived from the 600 MHz reference on the A15 RF assembly.
3. Change the spectrum analyzer from the fractional N span to 0 Hz .
4. Check the frequency at A14TP1. It should equal the value found by pressing CAL, MORE 1 OF 2, FREQ DIAGNOSE, and RAW OSC FREQ.
5. Check the tune voltage at R240 in function block AQ.
6. Look up the expected problem area in Table 10-11 with the information from steps 4 and 5 . Go to the appropriate troubleshooting steps.
Table 10-11 Unlocked Fractional N Troubleshooting Areas

Measured VCO Frequency Relative to Expected Value	Tune Voltage				
	Below $-12.5 \mathrm{~V}$	About $-11 \text { V }$	$\begin{aligned} & \text { Between } \\ & \pm 10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { About } \\ & \text { +11 V } \end{aligned}$	Above +12.5 V
M easured > expected	VCO clamp	VCO	Divider or integrator	Divider or integrator	VCO clamp
M easured < expected	VCO clamp	Divider or integrator	Divider or integrator	VCO	VCO clamp
M easured, not oscillating	VCO clamp	VCO	VCO	VCO	VCO clamp

7. VCO clamp troubleshooting: Q131, Q132 and the associated components should limit the tune voltage at R 240 to about $\pm 11 \mathrm{~V}$. If the integrator (its output voltage is on TP13) tries to produce a voltage outside this range, excess current is shunted through CR131 and Q131 for positive excursions or CR132 and Q132 for negative excursions. The bases of these transistors should be at about $\pm 9.6 \mathrm{~V}$ for proper operation.
8. VCO troubleshooting: Check the dc biases in the VCO function block. The bias voltages, for some points in the VCO, are indicated in Figure 10-8 on page 565.

Figure 10-8 VCO Bias Voltages

9. Divider and integrator troubleshooting: Measure the frequency of the pulses at TP6 in block AO. Look up the expected problem area in Table 10-12 on page 566 and go to the appropriate troubleshooting steps.

Table 10-12 Divider and Integrator Troubleshooting

Measured VCO Frequency Relative to Expected Value	TP6 Frequency			
	zero	2.5 MHz	2.5 MHz	>2.5 MHz
Measured > expected	Dividers	Dividers	Dividers	Det or integrator
Measured < expected	Both	Det or integrator	Dividers	Dividers

10.Divider troubleshooting:
a. Check the frequency at A14TP2. It should be equal to the frequency at A14TP 1 divided by two.
b. The signal at A14TP3 should be above -14 dBm .
c. Use an analog oscilloscope to view the signal at A14TP5. Adjust the scope's triggering to view the divide-by- 16 signal. The frequency at this point will be varying as the prescaler changes its divide number to either $16,17,20$, or 21 . The prescaler uses 16 as the divide number most frequently. The frequency displayed on the oscilloscope should equal the frequency from TP2 divided by 16.
d. Use an oscilloscope to view the signal at pin 8 of U112. Its average frequency should be given by:
$\mathrm{f}=\mathrm{f}(\mathrm{A} 14 \mathrm{TP5}) \times 80 \mathrm{MHz} /$ RAW OSC FREQ
where: $f(A 14 T P 5)$ is the frequency measured at TP5, and RAW OSC FREQ comes from step 4.

If the frequency is in error, the fractional divider, block AS, is not functioning. Check that FRAC N RUN on U113 pin 39 is high.
e. Use an oscilloscope to verify that the signals at N_in (U112 pin 8) and N_out (TP6) are identical except for a sub-microsecond delay.

Detector and integrator troubleshooting: Check the phase detector output on TP11 in block AO. If F_ref is higher in frequency than TP6 (redocked VCO/N), then the average voltage at TP 11 should be positive by 0.05 V to 10 V . If F_ref is lower, TP11 should be -0.05 V to -10 V.

The polarity of the output of the loop gain (block AP, TP12) should be the same as the polarity of the input (TP11). The integrator op amp (U106) output (TP13) should try to go very positive (about +12 V) if its average input (TP12) is positive. If its average input is negative, it should try to go very negative (about -12 V). If its average input is zero and it is functioning correctly, it may take on any output voltage between -12 V and +12 V .

Frequency Span Accuracy Problems

The spectrum analyzer employs lock-and-roll tuning to sweep the first LO for spans greater than 2.0 MHz . The first LO is locked to the start frequency immediately after the previous sweep has been completed. The first LO is then unlocked, and, when a trigger signal is detected, the first LO sweeps (rolls).
When there is a considerable delay between the end of one sweep and the beginning of the next, the actual first LO start frequency may differ from the locked start frequency. This start frequency drift will be most noticeable in a 2.01 MHz LO span (the narrowest FM coil span). This drift is not noticeable in either free run or line trigger modes.

The sweep is generated by different oscillators in the synthesizer section depending on the desired first-LO's span (due to harmonic mixing, this is not necessarily the same as the span setting of the analyzer). Refer to Table 10-13 for a listing of sweep-signal destinations versus First LO spans.
Sweeping the fractional N oscillator results in sweeping the YTO's FM coil. There is a one-to-one relationship between the fractional N oscillator's frequency span and the first-LO's span. The fractional N oscillator sweep is generated digitally. The oscillator is always synthesized, rather than employing lock and roll tuning.

Table 10-13 Sweep Signal Destination versus Span

First LO Span	Sweep Signal Destination
$>20 \mathrm{MHz}$	A11 YTO's main coil
2.01 MHz to	A11 YTO's FM coil
20 MHz	
$\leq 2 \mathrm{MHz}$	None Fractional N oscillator sweeps without a sweep ramp signal.

Determining the First LO Span

Thefirst-LO's span depends on the spectrum analyzer harmonic-mixing number. Use the following steps to determine the first LO's span:

1. Read the span setting displayed on the spectrum analyzer.
2. Determine the harmonic-mixing number from the information in Table 10-14 on page 569.

Table 10-14 Harmonic Mixing Number versus Center Frequency

Center Frequency	Harmonic Mixing Number
9 kHz to 2.9 GHz	1
2.75 GHz to 6.46 GHz	1
5.86 GHz to 13.2 GHz	2
12.4 GHz to 26.5 GHz	4
18 GHz to 325 GHz	6 through 54
	depending upon lock harmonic selected
*2.75 GHz 6.5 GHz for Agilent 8561E/EC	

3. Use the following equation to determine the first LO span used.

$$
\text { First LO Span }=\frac{\text { Display Span Setting }}{\text { Current Band Harmonic Mixing Number }}
$$

4. Refer to Table 10-13 on page 568 to determine the circuit associated with the span.

Confirming Span Problems

1. If all first-LO spans or only first-LO spans of 2.01 MHz or above are affected, perform the YTO Adjustment procedure in Chapter 2.

- On the spectrum analyzer press CAL, REALIGN LO \&IF, and retest all spans.
- If the YTO adjustment has sufficient range and only LO spans of 2.01 MHz or above are faulty, test YTO linearity by performing step c.
- Test the span in question at different center frequencies in the same band. If the span accuracy changes significantly (2\% or more), suspect the A11 YTO.

2. If only first-LO spans of 2 MHz or less are faulty, suspect A14's fractional N PLL.
3. If there are several spans in the main coil and FM coil ranges affected, suspect A14's span attenuator.

YTO Main Coil Span Problems (LO Spans $\mathbf{> 2 0} \mathbf{~ M H z)}$

For YTO main coil spans, the YTO is locked at the beginning of the sweep and the sweep ramp is summed into the main coil tune driver.

1. Perform the YTO adjustment procedure in Chapter 2. If the YTO adjustments cannot be performed, continue with step 2.
2. Set the spectrum analyzer to the following settings:

> Start frequency .. GHz Stop frequency
3. Verify that a -1.2 V to -4.8 V ramp (approximately) is present at A14U331 pin 2.
4. If this ramp is not present, troubleshoot the main/F M sweep switch. See function block H of A14 frequency control schematic.
5. Measure the output of the main coil tune DAC at A14J 18 pin 3. At the frequency settings of step 2 , this should be -2.48 V . If the voltage is not -2.48 V , troubleshoot the main coil tune DAC. See function block E of A14 frequency control schematic.

YTO FM Coil Span Problems (LO Spans 2.01 MHz to 20 MHz)

In YTO FM coil spans, the YTO loop is locked and then opened while the sweep ramp is summed into the FM coil. The FM coil sensitivity is corrected by changing the sensitivity of the FM coil driver.

1. Perform the YTO Adjustment procedure in Chapter 2. If the YTO adjustments cannot be performed, continue with this procedure.
2. Set the spectrum analyzer to the following settings:

Center frequency ... 300MHz
Span .. 20MHz
Sweep time ... 50 ms
3. Check for the presence of a 0 V to -10 V sweep ramp at A14J 15 pin 14 (input to the main/F M sweep switch). Refer to function block H of A14 frequency control schematic.
4. Check for the presence of a 0 V to +5 V sweep ramp at A 14 U 405 pin 6 (YTO FM coil driver). Refer to function block M of A14 frequency control schematic.
5. Check the state of the Main/F M sweep switches as indicated in Table $10-15$ on page 571.
6. The rest of the procedure troubleshoots the YTO FM coil driver.

Refer to function block M of A14 frequency control schematic.

Table 10-15 Settings of Sweep Switches

Switch	Switch State	Switch Control Line (Pin \#)	Control Line State (TTL)
U318A	Closed	1	High
U318B	Open	8	Low
U318C	Closed	9	Low
U318D	Open	16	High

7. Set the spectrum analyzer to the following settings:
Center frequency 300 MHz
Span .0 Hz

Trigger SINGLE,EXT
a. On the spectrum analyzer, press SAVE, SAVE STATE, STATE 0.
b. Remove jumper A14J 23 and connect a dc voltage source to A14J 23 pin 2. Connect the voltage source ground to A14J 23 pin 3.
c. Connect a microwave frequency-counter or another spectrum analyzer to the spectrum analyzer 1ST LO OUTPUT (front panel output).
d. Set the dc-voltage source's output for 0 Vdc and note the 1st LO frequency.
e. Set the dc-voltage source's output for +10 Vdc . The first LO frequency should momentarily increase approximately +15.6 MHz .
f. The voltage at A14U 332 pin 2 should be approximately 19% of the voltage at A14J 23 pin 2.
g. If the first LO frequency did not change in step e, press LINE to turn spectrum analyzer off and disconnect W10 from A14J 3.
h. Place a jumper between A14J 3 pins 9 and 10. Place a 50Ω, 3 watt resistor across A14J 3 pins 5 and 6 (resistor, part number 0811-1086). Press LINE to turn spectrum analyzer on.
i. On the spectrum analyzer, press RECALL, STATE, STATEO.
j. If the voltage at U332 pin 2 is correct with A14J 3 pins 9 and 10 shorted, but was incorrect with W10 connected, the YTO FM coil is probably open; replace the A11 YTO.
k. Replace jumper A14J 23.

Fractional N Span Problems (LO Spans $\leq \mathbf{2} \mathbf{~ M H z) ~}$

If the fractional N spans are inaccurate or non-existent, but the fractional N PLL is locked to the correct frequency and other spans are correct, there may be a problem with the HSCAN signal. Check that HSCAN is present at the fractional divider, U 113 pin 41 in function block AS. HSCAN comes from the A3 interface assembly and goes to the sweep generator circuitry in function block A and to fractional N .

First LO Span Problems (All Spans)

1. Set the spectrum analyzer to the following settings:

Center frequency .. $\begin{array}{r}300 \mathrm{MHz} \\ 2 \mathrm{MHz}\end{array}$
Span .. 2 MHz
Resolution BW ... 1MHz
Video BW .. 1MHz
Sweep time .. 50ms
2. Check that there is 0 V to +10 V ramp of 50 ms duration at A 14 J 15 pin 15.
3. If a scan ramp is not present, refer to "Sweep Generator Circuit (for Spectrum Analyzers with 100 s max. Sweep Time)" on page 579, or "Sweep Generator Circuit (for Spectrum Analyzers with 2000 s max. Sweep Time)" on page 581.
4. If there is a 0 to -10 V ramp at A 14 J 15 pin 14, the fault is probably in the Main/F M sweep switch. See function block H of A14 frequency control schematic.
5. Check that there is a 0 V to +10 V ramp at U 325 pin 1 . The spectrum analyzer ADC obtains information about the sweep from this node.

Check span attenuator (steps 6-13)
6. Continue with step 7 to check the span attenuator. See function block L of A14 frequency control schematic.
7. With the spectrum analyzer set to the settings in step 1, monitor A14U323 pin 6 with an oscilloscope. A 0 V to - 10 V ramp should be present.
8. Change the spectrum analyzer span to 1 MHz and check for a 0 V to -5 V ramp at U323 pin 6.
9. Change the spectrum analyzer span to 400 kHz and check for a 0 V to - 2 V ramp at U 323 pin 6.
10. Set the spectrum analyzer to the following settings:

Start frequency .. 10MHz
Stop frequency .. 2.9 GHz
Sweep time ... 80 ms
11.Monitor A14J 15 pin 14 for a 0 V to-7.5 V ramp. Switches U317A, U317B, and U317D should be open and U317C should be closed.
12.Change the spectrum analyzer SPAN to 365 MHz and check for a 0 mV to -1.0 V ramp at A14J 15 pin 14. Switch U317C should be open and U317B closed.
13.Change the spectrum analyzer SPAN to 36.5 MHz and check for a 0 mV to - 100 mV ramp at A14J 15 pin 14. Switch U317B should be open and U317A closed.

Check current source (steps 14-21)
14.Check the sweep generator's current source with the following steps (function block A of A14 frequency control schematic).
15.Set the spectrum analyzer to the following settings:

Center frequency ... MHz
Span
Sweep time ... 50ms
16.Use a DVM to monitor the voltage at A14J 18 pin 4. The voltage should measure approximately -8.45 Vdc .
17.Set the spectrum analyzer sweep time to 100 ms . The voltage at J 18 pin 4 should measure approximately -4.21 Vdc .
18.Set the spectrum analyzer sweep time to 200 ms . The voltage at J 18 pin 4 should measure approximately -2.1 Vdc .
19.The analog switches and comparators should be set as listed in Table 10-16.
20. Check that U312D opens when the sweep time is set to 2 seconds.
21. Check that U312B and U312C close when the sweep time is set to 20 seconds.
Table 10-16 Settings for Switches and Comparators

Sweep Time	Switch U312B	Switch U312C	Switch U312D	Comparator U319A Pin 1	Comparator U319B Pin 7
200 ms	Open	Open	Closed	High	High
2 s	Open	Open	Open	High	High
20 s	Closed	Closed	Open	High	High

First LO Span Problems (Multiband Sweeps)

During multiband sweeps, the sweep ramp at A14J 15 pin 15 should go from 0 V to +10 V for each band or portions of a band covered. See function block A of A14 frequency control schematic in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information binder. However, the scan ramp at A14U 325A pin 1 is scaled according to the percentage of the total span that the band is covering. See function block B of A14 schematic. Also, the sum of the individual ramps is 10 V . For the Agilent 8561E/EC, Figure 10-9 illustrates both sweep and the scan ramp for a 0 GHz to 6.5 GHz span with instrument preset conditions. For the 8563E/EC, Figure 10-10 illustrates both sweep and the scan ramp for a 0 GHz to 26.5 GHz span with instrument preset conditions.

Figure 10-9
8561E/E C Sweep and Scan Ramps
stopped

1 f-3.225 V

Figure 10-10
8563E/E C Sweep and Scan Ramps
hp stopped

Phase Noise Problems

System phase noise can be a result of noise generated in many different areas of the spectrum analyzer. When the spectrum analyzer is functioning correctly, the noise can be observed as a function of the distance away (the offset) from the carrier frequency. The major contributor to system noise can be characterized as coming from specific circuit areas depending upon the offset frequency.
Some very general recommendations can be made for identifying which circuitry is the cause of the noise at certain offsets. The recommendations below apply with a center frequency of 1 GHz .

Table 10-17 Settings for Switches and Comparators

Carrier Frequency Offset	Major Contributor (when working correctly)
100 Hz	Reference (OCXO or TCXO)
1 kHz	600 MHz reference PLL
3 kHz	Fractional N PLL
10 kHz to 150 kHz	Offset lock loop or YTO loop
$>150 \mathrm{kHz}$	YTO

Phase Noise in Locked versus Unlocked Spans

Input a signal to the spectrum analyzer. Set the center frequency to the input signal frequency, set the span to 2 MHz , and plot the display. This plots the system noise for a locked sweep. Plot the display again with a span of 2.01 MHz (lock and roll sweep).

The crossover point of the noise floor of the two plots is typically at an offset of about 50 kHz , for a functioning instrument.

If the crossover point is shifted out to a higher offset frequency, suspect the YTO loop circuitry.

If the crossover point is shifted in to a lower offset frequency, suspect the offset or fractional N loop circuitry.

Reference versus Reference PLL Phase Noise

If the problem seems to be in the frequency reference or reference PLL circuitry, measure the noise with internal and external references. If there is no difference, suspect the circuitry associated with the SAWR A15U 701.

Fractional N versus Offset PLL or YTO PLL Phase Noise

If the spectrum analyzer has excessive noise at $>1 \mathrm{kHz}$ offset, measure the noise with center frequencies of 100 MHz and 2.5 GHz .

If the measurements are equal, suspect the fractional N circuitry and the YTO loop circuitry on the A14 frequency control assembly.

If the measurements differ by 2 dB to 5 dB , with the 2.5 GHz measurement at a higher noise level, suspect the offset lock loop circuitry.

Fractional N PLL Phase Noise

Check the noise on the 5 V regulators on A14, particularly the regulator in the reference divider circuitry A14U 121. Refer to function block AN on the A14 frequency control assembly schematic.

- The noise level of the voltage regulator should be $<1 \mathrm{mV}$. The typical noise level is $40 \mu \mathrm{~V}$ RMS between 10 Hz and 100 kHz .
- A coaxial probe with very little unshielded tip area should be used to avoid picking up radiated 60 Hz . Check that your measurement is valid by probing ground on the circuit and verifying that the measured value is well under the 1 mV threshold that indicates a defective regulator.

There can also be phase noise problems if the loop gain is incorrect. See function block AP for loop gain troubleshooting information.

Sampler and Sampler IF

The A15U 100 sampler creates and mixes harmonics of the sampling oscillator with the first LO. The resulting sampler IF (60 MHz to 96 MHz) is used to phase-lock the YTO. The sampler IF filters unwanted products from A15U 100's output and amplifies the IF to a level sufficient to drive the YTO loop. When the IF is between 78 and 87 MHz, PIN diodes switch a 120 MHz notch filter in the sampler IF section.

1. Set the spectrum analyzer to the following settings:

> Center frequency .. 0 Hz Span
2. Disconnect W32 from A15J 101.
3. Connect the input of a power splitter to A15J 101. Connect W32 to one of the splitter outputs. Connect the other splitter output to the input of another spectrum analyzer.
4. If a 66.7 MHz signal, greater than -15 dBm , is not displayed on the other spectrum analyzer, set a microwave source to the following settings:

Frequency 4.2107 GHz

Amplitude $-5 \mathrm{dBm}$
5. Connect the microwave source to A15U 100J 1. A 66.7 MHz signal at approximately 0 dBm should be displayed on the other spectrum analyzer.
6. Use an active probe/spectrum analyzer combination to measure the signal at the following test points:

A15TP 101
A15TP201 $66.7 \mathrm{MHz},-8 \mathrm{dBm}$
7. If a correct signal is seen at A15TP201 but the signal at A15TP101 is wrong, proceed as follows:

Use an oscilloscope to measure the signals at the following test points:

A15J 400 pin $1+0.8 \mathrm{Vdc}$ to $+1.6 \mathrm{Vdc}(\leq 0.5 \mathrm{Vp}-\mathrm{p}$ variation)
A15J 400 pin $3-0.8 \mathrm{Vdc}$ to $-1.6 \mathrm{Vdc}(\leq 0.5 \mathrm{Vp}-\mathrm{p}$ variation)
If these levels are wrong, perform the power and sampler match adjustments in the " 6 . Sampling Oscillator Adjustment" on page 81.

If adjusting the sampler match does not bring the signal at A15TP101 within specification when the signal at A15TP201 is correct, the A15U 100 sampler is defective.
8. The sampler IF signal at A15J 101 is 60 MHz to 96 MHz at -10 dBm to +5 dBm . If the signal at A15TP101 is correct, but the signal at A15J 101 is wrong, the fault lies in the sampler IF circuitry. Continue with the following steps.
9. Set the $8563 \mathrm{E} / \mathrm{EC}$ to the following settings:

Center frequency .. 300 MHz
Span OHz
10.Set a microwave source to the following settings:

Frequency
4.2107 GHz

Amplitude $-5 \mathrm{dBm}$
11.Connect the microwave source to A15U100J 1.
12.Measure the signal at U103 pin 1 using an active probe/spectrum analyzer combination.
13.If a 94.7 MHz signal, approximately -14 dBm , is present, but the signal at A15J 101 is low, suspect U 103.
14. When U104 pin 3 is at TTL Iow, U 104 pin 6 should near -15 Vdc and PIN diodes CR101, CR102, and CR103 should be reverse-biased.
15.Set 8563E/EC to the following settings:

Center frequency 89.3 MHz

Span 0 Hz
16. Check that U104 pin 3 is at a TTL high and U104 pin 6 is greater than +7 V. PIN diodes CR101, CR102, and CR103 should all be turned on with about 7 mA of forward current.
17.Disconnect the power splitter and reconnect W32 to A15J 101.

Sweep Generator Circuit (for Spectrum Analyzers with 100 s max. Sweep Time)

The sweep generator operates by feeding a constant current from DAC U307 into an integrator, U320B. See function block A of A14 frequency control schematic. This current is scaled by resistors R20 through R24 and U312B/C/D. See Figure 10-11 on page 580. The capacitors used in the integrator depend on the sweeptime range; smaller-value capacitors provide faster sweep times.

The integration is initiated by HSCAN going high. This opens U312A which places the output of U320A near -15 Vdc , turning CR6 off and allowing the output of integrator U320B to ramp from 0 V to +10 Vdc . The analyzer ADC (via the scan ramp attenuator U320B pin 7) monitors the scan ramp at U325A pin 1. When the ramp reaches +10 V (for single-band sweeps), HSCAN is brought low and the integration ends. During normal non-fast-zero spans (sweep times >30 ms), comparators U319A and B are high. This turns off diodes CR1, CR2 and turns on transistors Q1 and Q2. The integrating current has a maximum value of $236 \mu \mathrm{~A}$.

During retrace, HSCAN is low, closing U306B and U312A. See Figure $10-12$ on page 580. The output of U320A tries to go high, turning CR6 on and sourcing current through R26. This current discharges the capacitors in the integrator, forcing U320B pin 7 toward 0 Vdc . Ultimately, the output of U320B will be brought and held to 0 V by U320A supplying a current equal to that which is sunk by the current source.

For more information, refer to "First LO Span Problems (Multiband Sweeps)" on page 574.

Figure 10-11 Simplified Sweep Generator

Figure 10-12 Simplified Sweep Generator during Retrace

Sweep Generator Circuit (for Spectrum Analyzers with 2000 s max. Sweep Time)

The sweep generator circuitry generates a ramp from 0 to 10 volts during the sweep time. The available sweep times range from 50μ s to 2,000 seconds. The sweep times are generated in two different ranges, a $50 \mu \mathrm{~s}$ to 30 ms range and a 50 ms to 2,000 second range. The $50 \mu \mathrm{~s}$ to 30 msec range is only needed for analog zero span sweeps.
The sweep generator is controlled with an 8-bit latch and the control signal HSCAN. The latch, U308, controls the sweep rate. HSCAN determines when to reset the scan ramp and when to let it sweep.
Operation of the 50 ms to 2,000 second range will be described using a 50 ms sweep time as the example. For a 50 ms sweep time, Q1 shorts out C16. The D to A converter U307, has zero output current. U334A is a buffer with zero offset, because there is no current coming out of U307. The buffering of U334 makes the base-emitter voltages on Q3A and Q3B the same. These two transistors are matched, so their collector currents should be identical when their base-emitter voltages are identical. The emitter current of Q3B is $200 \mu \mathrm{~A}$, therefore the emitter current of Q3A is $200 \mu \mathrm{~A}$ and the sweep ramp is generated by C14. The sweep time is given by the formula:

$$
\text { sweeptime }=\text { capaci } \operatorname{tance}(C 14) \times \frac{\Delta V}{\text { current }}
$$

The DAC setting is increased for longer sweep times. This increases the current sunk by the DAC output U307 pin 4, which increases the emitter voltage on Q3A, decreasing the base-emitter voltage drop. Q3A acts as an exponentiator and reduces its collector current, creating a slower sweep ramp.

For the shorter sweep times, $50 \mu \mathrm{~s}$ to 30 ms , Q1 is opened putting C16 in series with C14. This changes the effective capacitance from $1 \mu \mathrm{~F}$ to $1,000 \mathrm{pF}$, or a reduction of 1,000 to 1 .

The HSCAN signal uses Q2 to reset the ramp. Q2 shorts the integrator and sets its output nominally to ground.

Figure 10-13 Simplified Synthesizer Section

Figure 10-14 Simplified A14 Assembly Block Diagram

Figure 10-15 Simplified A15 Assembly Block Diagram

A21 OCXO

The spectrum analyzer uses an oven-controlled crystal oscillator (OCXO). It is deleted in Option 103 and replaced by a temperature-compensated crystal oscillator (TCXO), located on the A15 RF assembly. Connectors J 305 and J 306 on the A15 RF assembly are located where the TCXO would be installed in an Option 103. The oven in the OCXO is powered only when the spectrum analyzer is powered on; there is no standby mode of operation. The OCXO's oscillator operates only when the internal frequency reference is selected. Control line HEXT (High = EXTernal frequency reference) is inverted by A15U 303B (Refer to the A15 RF assembly schematic diagram, block M, sheet 2 of 4) to generate LEXT. LEXT is sent to the OCXO via A15J 306 pin 4. When LEXT is low, the oscillator in the OCXO will be turned off.

Replacement OCXOs are factory adjusted after a complete warmup and after the specified aging rate has been achieved. Thus, readjustment should typically not be necessary after OCXO replacement, and is generally not recommended.

If adjustment is necessary, the spectrum analyzer must be on continuously for a minimum of 24 hours immediately prior to oscillator adjustment to allow both the temperature and frequency of the oscillator to stabilize. Failure to allow sufficient stabilization time could result in oscillator misadjustment.

Check operation of the A21 OCXO as follows:

1. Disconnect W49 (Coax 82) from A15J 305. Connect the output of W49 to the input of another spectrum analyzer.
2. Check that the fundamental frequency is 10 MHz and that the power level is $0 \mathrm{dBm} \pm 3 \mathrm{~dB}$. Also check that the harmonics are at least -25 dBc . Excessive harmonics can generate spurious responses on the fractional N oscillator on the A14 frequency control assembly.
3. If the OCXO has no output, check A15J 306 pin 1 for +15 Vdc. Check A15J 306 pin 4 for a TTL-high level.
4. If A15J 306 pin 4 is at a TTL-low level, press AUX CTRL and REAR PANEL. Press 10 MHz EXT INT until INT is underlined. A15J 306 pin 4 should read a TTL-high level. Press $10 \mathbf{~ M H z ~ E X T ~ I N T ~ u n t i l ~ E X T ~ i s ~}$ underlined. A15J 306 pin 4 should read a TTL-low level.

11 RF Section

Introduction

The RF Section converts the input signal to a 10.7 MHz IF (Intermediate Frequency). See Figure 11-10 on page 627 (8561E/EC) or Figure 11-11 on page 629 (8563E/EC) for a detailed block diagram.

Troubleshooting Using the TAM

When using Automatic Fault I solation, the TAM indicates suspected circuits that need to be manually checked. Use Table 11-1 on page 596 to locate the manual procedure.

Table 11-2 on page 597 lists assembly test connectors associated with each Manual ProbeTroubleshooting test. Figure 11-1 illustrates the location of A15's test connectors.

Figure 11-1 A14 and A15 Test Connectors

Table 11-1 Automatic Fault Isolation References

Suspected Circuit Indicated by Automatic Fault Isolation	Manual Procedure to Perform
Check 2nd IF Amplifier	Third Converter
Check 2nd IF Distribution	Third Converter
Check 10.7 M Hz IF Out of Double Balanced Mixer	Third Converter
Check 300 MHz CAL OUTPUT	"13. Calibrator AmplitudeAdjustment" on page 104
Check A7 First LO Distribution Amplifier	A7 SLODA (Switched LO Distribution Amplifier)
Check A8 Dual Mixer (8561E/EC)	A8 Dual Mixer (8561E/EC)
Check A8 Low Band Mixer (8563E/EC)	A8 Low Band Mixer (8563E/EC)
Check A9 Input Attenuator	A9 Input Attenuator
Check A13 Second Converter	A13 Second Converter
Check A13J 2 INT 2nd IF	A13 Second Converter (steps 1 to 6)
Check A14 Latch	Control Latch for Band-Switch Driver
Check A15 Control Latches	Control Latches
Check A15J 601 10.7 MHz	Third Converter Output
Check External 10 MHz Reference Operation	10 MHz Reference (steps 5 to 11)
Check Gain of Flatness Compensation Amplifier	Third Converter
Check High-Band Bias (8561E/EC)	High-Band Bias (8561E/EC)
Check INT 10 MHz Reference Operation	10 MHz Reference (steps 1 to 4)
Check LO Feedthrough	Low Band Problems (steps 1 to 3)
Check LO Power	Low and High Band Problems (steps 4 to 9)
Check PIN Switch (8561E/EC)	PIN Switch (8561E/EC)
Check PIN Switches in SIG ID Oscillator (Opt 008)	SIG ID Oscillator (Opt 008 Only)
Check Second Converter Control	A13 Second Converter
Check SIG ID Oscillator (Opt 008)	"19. Signal ID Oscillator Adjustment" on page 119
Check SIG ID Oscillator Operation (Opt 008)	SIG ID Oscillator (Opt 008 Only)
Check Third Converter	Low and High Band Problems (step 10)

Table 11-2 TAM Tests versus Test Connectors

Connector	Manual Probe Troubleshooting Test	Measured Signal Lines
A14J 16	YTF Offset DAC YTF Gain and Offset Input YTF Gain DAC YTF Drive Band Switch Driver	$\begin{aligned} & \text { MS6 } \\ & \text { MS2 } \\ & \text { MS1 } \\ & \text { MS3 } \\ & \text { MS8 } \end{aligned}$
A14J 17	Main Coil Coarse DAC	MS3
A14J 18	LODA Drive	MS5, MS6, MS7, MS8
A14J 19	Second Conv PIN Switch Second Conv Mixer Bias Second Conv Drain Bias Second Conv Doubler Bias Second Conv Driver Bias First Mixer Drive Switch First Mixer Drive DAC	MS8 MS1 MS3 MS4 MS5 MS7 MS6
A14J 302	Revision	MS7
A15J 400	IF AMP/Limiter Bias	MS6
A15J 502	Third LO Tune Voltage 3rd LO Driver Amp	MS3 MS1, MS8
A15J 602	SIG ID Collector Bias RF Gain Control Test	MS7 MS1, MS3
A15J 901	Revision External Mixer Switch Signal ID Switch External Mixer Bias	MS3 MS1, MS8 MS5, MS6 MS7

Low Band Problems

1. Disconnect all inputs from the front-panel INPUT 50Ω connector.
2. Set the Agilent 8561E/EC or 8563E/EC to the following settings:
Center frequency 0 Hz
Span 1 MHz
Input attenuator 0 dB
3. The LO feedthrough's amplitude observed on the display should be between -6 and -30 dBm .

NOTE

The marker will not PEAK SEARCH on the LO Feedthrough when in a non-zero span. To measure the LO Feedthrough amplitude with the markers, set the SPAN to 0 Hz and CENTER FREQ to 0 Hz . Press MKR ON.
4. If the LO feedthrough's amplitude is within limits, but signals are low, the RF path following the A8 mixer is probably operating properly.
5. If the LO feedthrough's amplitude is higher than -5 dBm (signal will be "clipped" at top of screen) and signals are low in amplitude, suspect a defective A8 mixer assembly.
6. Perform the steps located in "Control Latch for Band-Switch Driver" on page 612.
7. Check A13 second converter mixer diode bias at A14J 19 pin 1. The bias voltage should be between -150 and -800 mVdc .
8. Troubleshoot the signal path. Refer to the power levels listed on Figure 11-10 on page 627, 8561E/EC RF Section Troubleshooting Block Diagram or Figure 11-11 on page 629, 8563E/EC RF Section Troubleshooting Block Diagram.

High Band Problems

1. For $8563 \mathrm{E} / \mathrm{EC}$ spectrum analyzers, proceed to step 4.
2. Perform the steps located in "PIN Switch" on page 604 to confirm A8 dual mixer operation.
3. Perform the steps located in "High Band Bias (8561E/EC)" on page 604 to confirm A8 dual mixer operation.
4. Perform the steps located in "Control Latch for Band-Switch Driver" on page 612.
5. Troubleshoot the signal path. Refer to the power levels listed in Figure 11-10 on page 627, Agilent 8561E/EC RF Section Troubleshooting Block Diagram or Figure 11-11 on page 629, 8563E/EC RF Section Troubleshooting Block Diagram.

Low and High Band Problems

1. On the Agilent 8561E/EC or 8563E/EC, press PRESET and REALIGN LO \&IF. If any error messages are displayed, refer to "Error Messages" on page 311.
2. Perform "18. External Mixer Amplitude Adjustment" on page 116. If this adjustment cannot be completed, perform the steps located in "Third Converter" on page 619.
3. Perform the "1st LO OUTPUT Amplitude" performance test. (Refer to the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Calibration Guide or useTAM functional test).
4. If the performance test fails, perform the " 8 . LO Distribution Amplifier Adjustment (8561E/EC)" on page 87, or "9. LO Distribution Amplifier Adjustment (8563E/EC)" on page 90. If the adjustment fails, set the 8561E/EC or $8563 \mathrm{E} / \mathrm{EC}$ to the following settings:
\qquad
Span .0 Hz
5. Place the jumper on A14J 23 in theTEST position. Remove W38 from the input of $A 7$.
6. Use a power meter or another spectrum analyzer to measure the output of A11 YTO. The power should be between +2 dBm and +13 dBm .
7. Reconnect W38 to A7. Place the jumper on A14J 23 in the NORM position.
8. If ERR 334 (unlevelled output) is present and the A11 YTO power output is correct, the A7 drive circuit may be defective. Refer to"A7 LO Distribution Amplifier" on page 602.
9. Troubleshoot the signal path. Refer to the power levels listed on Figure 11-10 on page 627, Agilent 8561E/EC RF Section Troubleshooting Block Diagram or Figure 11-11 on page 629, 8563E/EC RF Section Troubleshooting Block Diagram.
10.Check Third Converter as follows:
a. On the 8561E/EC or 8563E/EC, press PRESET and set the controls as follows:

Center frequency .. 300MHz
Span ...0Hz
b. Inject a - $28 \mathrm{dBm}, 310.7 \mathrm{MHz}$ signal into A15J 801.
c. If a flat line is displayed within 2 dB of the reference level, but the

A7 LO Distribution Amplifier

NOTE	YTO unlock errors may occur if the power delivered to the A15U 100 sampler is less than -9.5 dBm . Frequency response will be degraded in both internal and external mixing modes if the output power is low or unlevelled.
CAUTION	Connecting or disconnecting the A7's bias with the Agilent 8561E/EC or 8563E/EC LINE switch on will destroy the A7 assembly. Always press LINE to turn the 8561E/EC or 8563E/EC off before removing or reinstalling W12 to either the A7 or A14J 10.
NOTE	Err 334 may be displayed if the LO OUTPUT connector on the front panel is not properly terminated into a 50Ω termination.
Figure 11-2	A14J 10, Solder Side of A14 (Ignore Pin Numbers on Mating Connector)

1. Press LINE to turn the spectrum analyzer off. Disconnect W12 from A14J 10.
2. Connect a jumper between A14J 10 pin 5 and A14J 19 pin 6 . Connect a jumper between A14J 18 pin 13 and A14J 18 pin 1. See Figure 11-2.
3. Connect a DVM's positive lead to A14J 18 pin 14 and the negative lead to A14J 18 pin 6.
4. Press LINE to turn the spectrum analyzer on.
5. The voltage measured on the DVM should be more negative than -9.4 Vdc .
6. Move the jumper from A14J 18 pin 1 to A14J 18 pin 2. The voltage measured on the DVM should be more positive than +12.3 Vdc .
7. If the voltages do not meet the limits listed in steps 5 and 6 , troubleshoot the A14 frequency control assembly.
8. Connect the positive DVM lead to A14J 10 pin 1.
9. The measured voltage should be approximately +5 Vdc . If the voltage is not +5 Vdc , troubleshoot the A 14 frequency control assembly.
10.Connect the DVM's positive lead to A14J 18 pin 15. The voltage should measure within $\pm 10 \mathrm{mV}$ of the Gate Bias voltage listed on A7's label.
11.If this voltage is not within the correct range, refer to the " 8 . LO Distribution Amplifier Adjustment (8561E/EC)" on page 87, or "9. LO Distribution Amplifier Adjustment (8563E/EC)" on page 90".
12.If the voltage varies between 0 Vdc and -2 Vdc , adjust the Gate Bias for a DVM reading within $\pm 10 \mathrm{mV}$ of the Gate Bias voltage listed on A7's label. If the voltage does not vary between 0 Vdc and -2 Vdc , troubleshoot the A14 Frequency Control Assembly.
10. Disconnect the jumper from A14J 19 to A14J 10. Press LINE to turn the spectrum analyzer off. Reconnect W12 to A14J 10. Press LINE to turn the spectrum analyzer on.
14.If the DVM reading changes significantly, the A7 is probably defective.

A8 Dual Mixer (8561E/EC)

PIN Switch

1. Connect a DVM 's positive lead to A14J 19 pin 14 and negative lead to A14J 19 pin 6.
2. Set the 8561E/EC's center frequency to 1 GHz .
3. The voltage measured by the DVM should be between +10 Vdc and +13 Vdc .
4. Set the 8561E/EC's center frequency to 4 GHz .
5. The voltage measured by the DVM should be between -10 Vdc and -13 Vdc .
6. If the measured voltages in steps 3 and 5 are within the limits, the PIN switch is operating properly. If the voltages are not within the limits, remove W15 from A14J 11.
7. Set the 8561E/EC's center frequency to 1 GHz .
8. The voltage measured by the DVM should be between +14 Vdc and +15 Vdc.
9. Set the 8561E/EC's center frequency to 4 GHz .
10.The voltage measured by the DVM should be between -14 Vdc and -15 Vdc .
11.If the measured voltages in steps 8 and 10 are within the limits, the PIN switch driver is operating properly. If the voltages are not within the limits, troubleshoot the A14 frequency control assembly.
12.Reconnect W15.

High Band Bias (8561E/EC)

1. Connect a DVM's positive lead to A14J 19 pin 13 and the negative lead to A14J 19 pin 6.
2. Set the $8561 \mathrm{E} / \mathrm{EC}$'s span to 0 Hz .
3. Record the DVM reading at a center frequency setting of 5 GHz .
$5 \mathrm{GHz}($ Band 1$)=$ \qquad V
4. The DVM reading recorded in step 3 should be within 50 mV of the mixer-bias voltage printed on the A8 assembly's label. If the voltage is not within the limits, perform the "10. Dual Band Mixer Bias Adjustment (8561E/EC)" on page 93. If the voltage is within limits, continue with step 5.
5. Set the 8561E/EC to the following settings:

Center frequency ...5GHz
Span ... 10MHz
Log/division .. 2 dB/div
6. On the 8561E/EC, press CAL, MORE 1 OF 2, SERVICE CAL DATA, LO LEVELS, and BAND 1 MXR BIAS. The mixer bias DAC value should be displayed in the active function block.
7. Apply a $5 \mathrm{GHz}, 0 \mathrm{dBm}$ signal to the INPUT 50Ω connector of the 8561E/EC.
8. Note the mixer bias DAC value; this will have to be reset later.

Mixer Bias DAC Value= \qquad V
9. Observe the voltage indicated on the DVM while stepping the DAC through its 0 to 255 range. The voltage should increase as the DAC is stepped from 0 to 255.
10.The displayed signal should exhibit a peak (sometimes 2 peaks) as the DAC is stepped through its range.
11.If the bias voltage does not vary, disconnect W15 from A14J 11 and continue with step 13.
12.Step the DAC to the value noted in step 9.
13.Reconnect W15 to A14J 11 and place the WR PROT/WR ENA jumper in the WR PROT position.

A8 Low Band Mixer (8563E/EC)

1. Connect the 8563E/EC CAL OUTPUT to the INPUT 50Ω connector.
2. Set the $8563 \mathrm{E} / \mathrm{EC}$ as follows:

> Center frequency .. 300 Mz Span

Input attenuation ... 10dB
3. Using another spectrum analyzer, check for approximately -21 dBm (300 MHz) at the input of A8. (This level can easily be measured at the output of FL1 by disconnecting W45 from FL1.)
4. If the level at the input of A8 is less than -25 dBm , suspect FL 1 low-pass filter, A10 RYTHM, or A9 input attenuator. Refer to power levels shown on Figure 11-11 on page 629, 8563E/EC RF Section Troubleshooting Block Diagram.
5. Check for approximately $-30 \mathrm{dBm}(3.9107 \mathrm{GHz})$ at the output of A 8 . (This level can easily be measured at the output of FL2 by disconnecting W57 from FL2.)
6. If the level at the output of A8 is less than -35 dBm , suspect A8 low band mixer or FL2 low-pass filter.

A9 I nput Attenuator

1. Perform the "Input Attenuator Accuracy" performance test in Chapter 3 of the Agilent Technologies 8560 E-Series Spectrum Analyzer Calibration Guide.
2. If there is a step-to-step error of approximately 10 dB or more, continue with step 3.
3. On the spectrum analyzer, press AMPLITUDE, and ATTEN AUTO MAN until MAN is highlighted.
4. Step the input attenuator from 0 dB to 70 dB . A "dick" should be heard at each step. The absence of a click indicates faulty attenuator drive circuitry. It will be necessary to use the DATA keys to enter an input attenuator setting of 0 dB (the step key will not allow selecting 0 dB input attenuation).
5. Monitor the pins of A14U 420 with a logic probe or DVM while setting the input attenuator to the values listed in Table 11-3 on page 608 for the $8561 \mathrm{E} / \mathrm{EC}$, or Table 11-4 on page 608 for the 8563E/EC.
6. If one or more logic levels listed in the tables is incorrect, disconnect W11 from A14J 6 and repeat step 4 checking only pins 3, 5, 11, and 13 of $A 14 U 420$. Pins $4,6,10$, and 12 should all read low TTL levels.
7. If one or more logic levels listed in the tables is incorrect with W11 disconnected, troubleshoot the A14 frequency control assembly.
8. If all logic levels are correct, the A9 input attenuator is probably defective.

NOTE
The logic levels listed in Table 11-3 on page 608 and Table 11-4 on page 608 show the default ac usage (pin 5 low, pin 6 high). Dc usage (pin 5 high, pin6 low) is not shown.

Table 11-3 8561E/EC Attenuator Control Truth Table

8561E/EC	A14U420 Pin Number							
ATTEN Setting	3	4	5	6	10	11	12	13
(dB)	20 dB	20 dB	DC	AC	40 dB	40 dB	10 dB	10 dB
0	high	Iow	low	high	low	high	low	high
10	high	Iow	low	high	low	high	high	low
20	low	high	low	high	low	high	low	high
30	low	high	low	high	low	high	high	low
40	high	Iow	low	high	high	low	low	high
50	high	Iow	low	high	high	low	high	low
60	low	high	low	high	high	low	low	high
70	Iow	high	Iow	high	high	Iow	high	low

Table 11-4 8563E/EC Attenuator Control Truth Table

8563E/EC	A14U420 Pin Number							
ATTEN Setting	3	4	5	6	10	11	12	13
(dB)	20 dB	10 dB	10 dB					
0	high	low	high	low	Iow	high	Iow	high
10	high	low	high	low	Iow	high	high	low
20	high	low	low	high	Iow	high	low	high
30	high	low	low	high	Iow	high	high	low
40	high	low	low	high	high	low	low	high
50	high	low	low	high	high	low	high	low
60	low	high	Iow	high	high	Iow	Iow	high
70	low	high	Iow	high	high	Iow	high	low

A13 Second Converter

CAUTION The A13 assembly is extremely sensitive to Electrostatic Discharge (ESD). For further information regarding electrostatic cautions, refer to

 "Electrostatic Discharge" on page 34.1. Connect the 8561E/EC or 8563E/EC CAL OUTPUT to the INPUT 50Ω connector.
2. Set the 8561E/EC or 8563E/EC to the following settings:

Center frequency .. 300MHz
Span ...0Hz
Input attenuation ... 10 dB
3. Disconnect W35 (coax 92) from A13J 2.
4. Connect a test cable from A13J 2 to the input of another spectrum analyzer.
5. Tune the other spectrum analyzer to 310.7 MHz . The signal displayed on the other spectrum analyzer should be approximately -38 dBm .
6. Connect the DVM 's positive lead to A14J 19 pin 15.
7. Set the 8561E/EC or 8563E/EC CENTER FREQ to 3 GHz .
8. The DVM should measure between -2.0 Vdc and -3.5 V dc. If the voltage measures outside this limit, perform the following steps:
a. Set the spectrum analyzer LINE switch OFF, disconnect W13 from A14J 12, and set the LINE switch ON.
b. Wait for the power-on sequence to finish and then set the spectrum analyzer settings to the following:
\qquad
Span .0 Hz
c. If the DVM measures $-15 \mathrm{Vdc} \pm 0.2 \mathrm{~V}$, the A 13 second converter is probably defective. If the DVM measures outside this limit, the A14 frequency control assembly is probably defective.
9. Set the LINE switch OFF and reconnect W13 to A14J 12.
10.Remove the test cable from A13J 2 and reconnect W35 to A13J 2.
11.Disconnect W33 (coax 81) from A13J 4 and connect W33 through a test cable to the input of another spectrum analyzer.
12.Tune the other spectrum analyzer to a center frequency of 600 MHz .
13.If a 600 MHz signal is not present, or its amplitude is less than -5 dBm , the fault is probably on the A15 RF assembly.
14. Reconnect W33 to A13J 4.
15.Connect a DVM's positive lead to A14J 19 pin 15 and the negative lead to A14J 19 pin 6.
16.If the DVM does not measure between +14.0 Vdc and +15.0 Vdc perform the following:
a. Press LINE to turn spectrum analyzer off and disconnect W13 from A14J 12.
b. Press LINE to turn spectrum analyzer on and set the spectrum analyzer to the following settings:

> Center frequency .. 300MHz

Span .. 10MHz
c. The voltage should measure $+15 \mathrm{Vdc} \pm 0.2 \mathrm{~V}$. If the voltage measures outside this limit, the A14 frequency control assembly is probably defective.
d. Press LINE to turn spectrum analyzer off. Reconnect W13 to A14J 12, and press LINE to turn spectrum analyzer on. Set the 8561E/EC or 8563E/EC to the following settings:
\qquad
Center frequency 300 MHz
Span 0 Hz
17.M ove the DVM 's positive lead to A14J 19 pin 1. The voltage should measure between -150 mVdc and -800 mVdc . If the voltage measures outside this limit, the A13 Second Converter is probably defective.

A14 Frequency Control Assembly

NOTE
 The block diagrams for the A14 and A15 assemblies are located in Chapter 10, Synthesizer Section.

LODA Drive

Refer to function block Z on the A14 Frequency Control Schematic Diagram (sheet 3 of 5) in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Leve Information.

1. Set the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$ to the following settings:

> Center frequency .. 300MHz

Span .. 2MHz
2. On the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$, press SGL SWP and measure the signal power at the output of A7 (see item (1) of Figure 11-3 on page 612).
3. If the output power is low, A14U 429B's output voltage at A14J 18 pin 14 (item (2) of Figure 11-3 on page 612) should be above 0 V . If the output power is high, the voltage should be more negative than -10 V . If the voltages do not measure as indicated, check that the voltages at A14J 18 pins 5 and 13, item (4), are consistent with the operational amplifier's output.

If a TAM is available, use Manual Probe Troubleshooting to make measurements on A14J 18 pins 5, 13, and 14. These voltages are referred to as AMP CNTL, LO SENSE, and PIN ATTEN respectively.
4. If the voltages measure as indicated in step 3, measure the A11 YTO output. (See item (3) of Figure 11-3 on page 612).
5. If all measurements are within limits, refer to "A7 LO Distribution Amplifier" on page 602.

Figure 11-3 A7 First LO Distribution Amplifier Drive

sm66e

Control Latch for Band-Switch Driver

Refer to function block P on A14 Frequency Control Schematic Diagram (sheet 3 of 5) in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Leve Information.

1. Connect a DVM 's positive lead to A14U 417 pin 14 and the negative lead to A14J 18 pin 6.
2. Set the 8561E/EC or 8563E/EC to the following settings:
\qquad
Span .0 Hz
3. The voltage should measure approximately 0 Vdc (TTL Iow).
4. Set the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$'s center frequency to 3 GHz .
5. The voltage should measure approximately +5 Vdc (TTL high).

YTF Driver Circuit

The YTF driver circuitry consists of the Sweep + Tune Multiplier, FAV (Frequency Analog Voltage) Generator, YTF Gain and Offset, and YTF Drive. Refer to function blocks Q, R, S, and T on A14 Frequency Control Schematic Diagram (sheet 3 of 5). The FAV Generator generates the $0.5 \mathrm{~V} / \mathrm{GHz}$ signal. The YTF driver circuitry can be half-split by checking the rear-panel's $0.5 \mathrm{~V} / \mathrm{GHz}$ output.

The rear-panel output changes according to the external-mixer mode selected. The preselected external-mixer mode must not be selected while executing this procedure.

The Sweep + Tune Multiplier takes tune information (YTO start frequency) and sweep (based on LO span) and multiplies it so that it is correct for the appropriate YTF band.

The FAV Generator's C31 holds the YTF steady during retraces between multiband sweeps. Switch U 415C and R94 provide the YTF dehysteresis pulse. A dehysteresis pulse is activated at the end of spans greater than 1 MHz . In high band, amplifier U402A provides an offset voltage to account for the 310.7 M Hz offset (U415A open) between the desired harmonic of the YTO frequency and the center frequency. In low band, switch U415A is closed to account for the 3.9107 GHz first IF offset between the YTO frequency and the center frequency. This signal is $0.5 \mathrm{~V} / \mathrm{GHz}$ of tuned frequency and is available at the rear panel.

1. On the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$, press PRESET, and set the controls to the following settings:

8561E/EC

\qquad
\qquad

8563E/EC

Start frequency ... 0 OHz
Stop frequency ...26.5GHz
2. On the 8561E/EC or 8563E/EC, press AUX CTRL, REAR PANEL, and $.5 \mathrm{~V} / \mathrm{GHz}$ (FAV).
3. Monitor the rear-panel LO SWP | $0.5 \mathrm{~V} / \mathrm{GHz}$ OUTPUT with an oscilloscope. The waveform should resemble Figure 11-4 on page 614 for the 8561E/EC, or Figure 11-5 on page 615 for the 8563E/EC.
4. Set the spectrum analyzer controls as follows:

8561E/EC

Start frequency.. 2.75 GHz
Stop frequency ..6.5GHz

8563E/EC

Start frequency ... 8 GHz
Stop frequency ...10GHz
5. Monitor A14J 15 pin 1 with an oscilloscope. The waveform should resemble Figure 11-6 on page 615 for the 8561E/EC or Figure 11-7 on page 616 for the 8563E/EC.
6. If the ramp is not correct, confirm the operation of the Main Coil Tune DAC and Sweep Generator. Refer to "Unlocked YTO PLL" on page 554, steps 36 through 40, and "Sweep Generator Circuit (for Spectrum Analyzers with 100 s max. Sweep Time)" on page 579, or "Sweep Generator Circuit (for Spectrum Analyzers with 2000 s max. Sweep Time)" on page 581.
7. Set the 8561E/EC or 8563E/EC to the following settings:

> Center frequency .. Span
8. Monitor A14J 15 pin 3 with a DVM. For a center frequency of 5 GHz , the voltage should measure $-1.33 \mathrm{Vdc} \pm 0.2 \mathrm{Vdc}$. Use the following formula to calculate the voltage:

$$
\mathrm{V}_{(\mathrm{J} 15 \text { PIN } 3)}=\frac{-0.25 \mathrm{~V}}{\mathrm{GHz}}(\text { freq in } \mathrm{GHz})-0.078 \mathrm{~V}
$$

Figure 11-4 8561E/E C Rear-Panel SWP Output
tp stopped

Figure 11-5 8563E/EC Rear-Panel SWP Output

HP awaiting trigger

4 ₹ 2.000 V

Figure 11-6 8561E/EC Signal at A14J 15 Pin 1
hp stopped

$4 \approx 0.000 \mathrm{~V}$

Figure 11-7 8563E/EC Signal at A14J 15 Pin 1

tp stopped

$1 \approx 1.788 \mathrm{~V}$
9. Check the voltage at A14J 15 pin 3 with the spectrum analyzer center frequency set to the frequencies listed in Table 11-5. The following table lists the voltage that should be measured at A14J 15 pin 3, the settings for the three switches (U416 in function block Q), and the gain through the Sweep +Tune Multiplier.

Table 11-5 Sweep + Tune Multiplier Values

$\mathbf{N}^{\boldsymbol{\dagger}}$	Center Frequency	A14J 15 Pin 3(V dc)	$\mathbf{U 4 1 6 A}$	U416B	U416C	Gain*
1	5 GHz	-1.33	Open	Closed	Closed	$\times-0.208$
2	10 GHz	-2.58	Open	Closed	Open	$\times-0.417$
4	15 GHz	-3.83	Open	Open	Open	$\times-0.833$
4	20 GHz	-5.08	Open	Open	Open	$\times-0.833$

* Measured from A14J 15 pin 1 to A14J 15 pin 3.
${ }^{\dagger} \mathrm{N}$ is the harmonic mixing mode.
10.M ove the WR PROT/WR ENA jumper on the A2 Controller assembly to the WR ENA position.
11.Set the 8561E/EC or 8563E/EC to the following settings:
Center frequency 5 GHz
Span OHz
12.On the 8561E/EC or 8563E/EC, press CAL, MORE 1 OF 2, SERVICE CAL DATA, PRESEL ADJ, and PRESEL OFFSET.
13.Connect a DVM to A14J 16 pin 13.
14.Set the DAC to values from 0 to 255 to yield DVM readings from 0 V to -10 V respectively.
15.M ove the jumper on A14J 14 from the NORM to the OPT position.
16.Connect the DVM to A14J 16 pin 1.
17.Press PRESEL SLOPE.
18.Set the DAC to values from 0 to 255 to yield DVM readings from 0 V to +10 V respectively.
19.M ove the jumper on A14J 14 from the OPT to the NORM position.
20.On the 8561E/EC or 8563E/EC, press CAL and REALIGN LO \&IF.
21.Connect the DVM to A14J 16 pin 3.

22. Change the center frequency in 1 GHz steps and confirm that the voltage changes by $266 \mathrm{mV} / \mathrm{GHz}$.
23.MovetheWR PROT/WR ENA jumper on the A2 Controller assembly to the WR PROT position.

A15 R F Assembly

NOTE \quad The block diagrams for the A14 and A15 assemblies are located in Chapter 10, "Synthesizer Section."

Confirming a Faulty Third Converter

1. Perform the "IF Input Amplitude Accuracy" performance test in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Calibration Guide. This exercises most of the third converter.
2. If the performance test fails, perform the "18. External Mixer Amplitude Adjustment" on page 116.
3. If adjustment cannot be made, disconnect W35 (coax 92) from A15J 801.
4. On the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$, press PRESET and set the controls to the following settings:
\qquad
Span 0 Hz
5. Connect a signal generator to A15J 801.
6. Set the signal generator to the following settings:
Frequency 310.7MHzCW
Power
$-28 \mathrm{dBm}$
7. If a flat line is displayed within 2 dB of the reference level and the performance test passed, troubleshoot microcircuits A7, A8, A9, and A13.
8. If a flat line is displayed within 2 dB of the reference level and the performance test failed, troubleshoot the A15 RF assembly.
9. Disconnect the signal generator from A15J 801 and reconnect W35.

Confirming Third Converter Output

1. Connect the 8561E/EC or 8563E/EC's CAL OUTPUT to the INPUT 50Ω connector.
2. Set the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$ to the following settings:

Center frequency .. 300 MHz
Span ...0Hz
Input attenuation ... 10 dB
3. Press SGL SWP, CAL, IF ADJ OFF.
4. Disconnect W29 (coax 7) from A15J 601.
5. Connect a test cable from A15J 601 to the input of another spectrum analyzer.
6. Tune the other spectrum analyzer to 10.7 MHz . The signal displayed on the other spectrum analyzer should be approximately -15 dBm .
7. Remove the test cable from A15J 601 and reconnect W29 to A15J 601.

Third Converter

Refer to function blocks A, B, C, D, and E on A15 RF Section Schematic Diagram (sheet 4 of 4) in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

The 3rd converter consists of the 2nd IF distribution, 2nd IF amplifier, double balanced mixer, 10.7 MHz bandpass filter, and flatness compensation amplifier. The 2nd IF distribution switches between two possible 2nd IF inputs: the internally generated 2nd IF, or the external mixing IF INPUT. A variable dc bias can be applied to the IF INPUT for external mixers which require such bias. The selected input is fed to the 2nd IF Amplifier. This amplifier consists of four stages of gain and two stages of SAW filters for image frequency rejection.

The flatness compensation amplifier consists of two fixed-gain stages and two stages of variable gain. This provides an overall adjustable gain of 4 dB to 30 dB . This gain is adjusted during an spectrum analyzer sweep to compensate for front-end conversion-loss versus frequency. Perform the following steps to test the amplifier's gain:

The 10.7 MHz bandpass filter provides a broadband termination to the mixer while filtering out unwanted mixer products.

1. On the $8561 E / E C$ or $8563 E / E C$, press AUX CTRL, then INTERNALMIXER.
2. In the 2nd IF distribution (function block A), diode CR802 should be forward biased and diode CR801 should be reverse biased.
3. Disconnect W35 (coax 92) and connect a signal source to A15J 801. Set the source to the following settings:

Frequency 310.7 MHz

Amplitude ... 30 dBm
CAUTION For troubleshooting, it is recommended that you use an active probe, such as an Agilent 85024A, and another spectrum analyzer. If the 1120A active probe is being used with an analyzer with dc coupled inputs, such as the 8566A/B, 8569A/B and the 8562A/B, either set the active probe for an ac-coupled output or use a dc-blocking capacitor between the active probe and the spectrum analyzer input. Failure to do this can result in damage to the spectrum analyzer or the probe.
4. Use an active probe with another spectrum analyzer to measure the signal at A15TP601 (function block C). The signal should measure $-17 \mathrm{dBm} \pm 4 \mathrm{~dB}$ confirming the operation of the 2nd IF Amplifier.
5. Use an active probe with another spectrum analyzer to measure the 300 MHz into the third mixer's LO port. The signal should measure at least +20 dBm .
6. Measure the power of the mixer's 10.7 MHz IF output. The signal level should be approximately -22 dBm .
7. Move the A2 controller assembly's WR PROTMRR ENA jumper to the WR ENA position.
8. While measuring the signal at the mixer's 10.7 MHz IF output, adjust the signal source until the level of the 10.7 MHz IF is -40 dBm .
9. On the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$, press SGL SWP, CAL, IF ADJ OFF, MORE 1 OF 2, and FLATNESS. Increase the gain of the flatness compensation amplifiers to maximum by entering 0 using the data keys. This sets the gains in the flatness compensation amplifiers to their maximum values.
10.Connect the other spectrum analyzer to A15J 601 and measure the 10.7 MHz IF signal level. The signal should measure greater than -10 dBm . If the signal level is incorrect, continue with step 13.
11.Enter 4095 into the 8561E/EC or 8563E/EC Flatness Data. The signal level at A15J 601 should measure less than -36 dBm . This sets the gain of flatness compensation amplifiers to a minimum. If the signal level is incorrect, continue with step 13.
12. Check that the gain stages are properly biased and functioning.
13. Check the attenuator stages and flatness compensation control circuitry.
a. For minimum gain (flatness data equals 4095), RF GAIN (A15U 909 pin 10) should be at -1.6 Vdc and the current through each section as measured across R667 or R668 should be about 7 mA .
b. For maximum gain (flatness data equals 0), RF GAIN (A15U 909 pin 10) should be at approximately 0 Vdc and the current through each attenuator section should be close to 0 mA .

As long as the flatness data just entered is not stored, the previously stored flatness data will be present after the power is cycled.
14.Move the A2 controller assembly's WR PROT/WR ENA jumper to the WR PROT position.
15. Reconnect the cable to A15J 801.

Flatness Compensation Control

Refer to function block G on A15 RF Section Schematic Diagram (sheet 1 of 4) in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

The Flatness Compensation Control consists of a buffer amp (U909C) and two identical voltage-to-current converters (U909B and U909D). The thermistor RT901 in the buffer amp provides temperature compensation for the PIN diodes in the gain stages and the SAW filters. The gain of the Flatness Compensation Amplifiers is driven to a minimum by the REDIR line going low during Automatic IF Adjustment.

Control Latches

Refer to function block H on A15 RF Section Schematic Diagram (sheet 1 of 4) in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Level Information.

The control Iatches control the PIN Switch Drivers illustrated in Function Block I.

1. Connect a DVM's positive lead to A15J 901 pin 15 (HEXTMIX). Connect the negative lead to A15J 901 pin 6 . The measured signal controls the switching between internal and external IF signals.
2. On the $8561 E / E C$ or $8563 E / E C$, press AUX CTRL and EXTERNAL MIXER. The voltage on the DVM should measure approximately +5 Vdc (TTL high).
3. On the 8561E/EC or 8563E/EC, press AUX CTRL and INTERNAL MIXER. The voltage on the DVM should measure approximately 0 Vdc (TTL low).
4. Connect the DVM 's positive lead to A15J 901 pin 13 (LSID). The signal measured turns on the SIG ID oscillator.
5. On the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$, press SIG ID ON (if present), SGL SWP.
6. Subsequent pushes of SGL SWP should cause the signal measured on the DVM to toggle between TTL high and low levels.
7. Connect an oscilloscope probe to A15U902 pin 7 (LRDIR) and the probe ground lead to A15J 901 pin 6. The signal measured controls the flatness compensation circuit.
8. On the 8561E/EC or 8563E/EC, press PRESET and set the SPAN to 1 MHz .
9. Set the oscilloscope for the following settings:
\qquad
10.The waveform should be at a TTL high during part of the retrace period and a TTL low during the sweep (about 50 ms).

SIG ID Oscillator (Option 008)

Refer to function block F on A15 RF Section Schematic Diagram (sheet 4 of 4) in the Agilent Technol ogies 8560 E-Series Spectrum Analyzer Component Leve Information.

SIG ID is available on all Agilent 8560 E-Series spectrum analyzers with firmware revision 920528. SIG ID is available only with Option 008 if the firmware revision is 930226 or later. The SIG ID Oscillator provides a shifted third LO (approximately 298 MHz) to distinguish true signals from false signals (such as image or multiple responses). When the 8561E/EC or 8563E/EC is set to SIG ID ON, the SIG ID Oscillator turns on during alternate sweeps.

1. Set the 8561E/EC or 8563E/EC the following settings:
\qquad
Trigger singlesweep
SIGID on
2. Use an active probe with another spectrum analyzer to measure the signal level at A15X602.
3. On the $8561 E / E C$ or $8563 E / E C$, press SGL SWP. With each press of SGL SWP, the analyzer alternates between the following two states:

State 1:

A15J 901 pin 13 (LSID)
TTL Iow
SIG ID Oscillator ON
Signal at A15X602 $298 \mathrm{MHz} \pm 50 \mathrm{kHz}$ (at least +1 dBm)

State 2:

A15J 901 pin 13 (LSID)
TTL high
SIG ID Oscillator
OFF
3rd LO Driver Amplifier Provides LO for double balanced Mixer
4. With the SIG ID Oscillator on, measure the frequency at A15X602 with a frequency counter and an active probe. If the frequency is not $298 \mathrm{MHz} \pm 50 \mathrm{kHz}$, refer to the "19. Signal ID Oscillator Adjustment" on page 119. (There is no adjustment for instruments with A15 RF assembly 08563-60084 or greater.)
5. On the 8561E/EC or 8563E/EC, press SGL SWP until A15J 901 pin 13 is at TTL Iow. Diodes CR603 and CR605 should be forward biased and CR604 should be reverse biased (approximately 6 Vdc reverse bias). Diodes CR501 and CR502 should be forward-biased, disabling the 3rd LO Driver Amplifier.
6. The voltage at the R622/R623 node should measure approximately -5 Vdc , biasing Q604 on.
7. If oscillator bias voltages are correct, place a 100Ω resistor across SAWR U602 input and output. If the SAWR has failed, this will provide the equivalent loss of a correctly functioning SAWR, and the circuit will begin to oscillate.

10 MHz Reference

The spectrum analyzer 10 MHz reference consists of 10 MHz OCXO (Option 103: TCXO) with associated TTL level generator and distribution circuitry. The OCXO (or TCXO) and TTL level generator are turned off when an external 10 MHz reference is used. Also, with the analyzer set to EXTernal frequency reference, U304A output (Iow) forces the output of U304D to stay high. This allows U304B to control the outputs of U303B, U304C, and U303D. In INTernal frequency reference, U304D controls the outputs of these three NAND gates, and the output of U 304B is held high.
Check the 10 MHz reference by performing the following steps:

1. Set the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$'s 10 MHz reference to internal by pressing AUX CTRL, REAR PANEL, and 10 MHz INT.
2. Use a spectrum analyzer to confirm the presence of a 10 MHz signal at the following test points:

A15J 303 .. $\geq-10 \mathrm{dBm}$
A15J 304 .. $\geq-10 \mathrm{dBm}$
A15J 301 ... $\geq-2 \mathrm{dBm}$
3. Check for a $1.3 \mathrm{Vp}-\mathrm{p}$ waveform at A15J 302 using an oscilloscope (see Figure 11-8 on page 624).
4. Check that the signal at A15J 301 is $10 \mathrm{MHz} \pm 40 \mathrm{~Hz}$ (with Option 103 TCXO reference) using a frequency counter. If necessary, perform the appropriate 10 MHz reference adjustment.
5. If there is no problem with INTernal 10 MHz reference operation, check EXTernal 10 MHz reference operation as follows:
6. Set the $8561 \mathrm{E} / \mathrm{EC}$ or $8563 \mathrm{E} / \mathrm{EC}$'s 10 MHz reference to external by pressing 10 MHz EXT.
7. Connect a $10 \mathrm{MHz},-2 \mathrm{dBm}$, signal to the rear-panel 10 MHz REF IN/OUT connector.
8. Check the signals at A15J 301, A15J 302, A15J 303, and A15J 304 according to the procedure in steps 2 through 4.
9. If the signals are correct in EXTernal operation, but not in INTernal operation, the problem lies in A21 OCXO (or Option 103 TCXO), its voltage reference, or the TTL level generator. Check these areas as follows:
a. On the spectrum analyzer, press $10 \mathbf{~ M H z ~ I N T . ~}$
b. Check U305 pin 3 for approximately +12 Vdc (Option 103 only).
c. Check for a 10 MHz sine wave greater than or equal to 1 V p-p at J 305 (standard 8563E/EC), or at U302 pin 3 with an oscilloscope (Option 103).
10.If the signal at U304 pin 13 is correct (see Figure 11-9 on page 625), but there is a problem with the signals at A15J 301, A15J 302,
A15J 303, or A15J 304, suspect U303 or U304 in the 10 MHz Distribution circuitry.

Figure 11-8 $\quad 10 \mathrm{MHz}$ Reference at A15J 302
hp running

Figure 11-9 10 MHz TTL Reference at U304 Pin 13

```
tp stopped
```


Table 11-6 on page 626 lists the RF Section mnemonics shown in Figure $11-10$ on page 627 and Figure 11-11 on page 629, and provides a brief description of each.

Table 11-6 RF Section Mnemonic Table

Mnemonic	Description
TUNE +, TUNE-	YTF Tune Signal (SYTF or RYTHM)
HTR+, HTR-	YTF Heater Power
MAIN COIL+, MAIN COIL-	YTO Main Coil Tune Signal
FM +, FM-	YTO FM Coil Tune Signal
LO SENSE	LO Amplitude Sense Voltage
LEVEL ADJ UST	LO Amplitude Adjustment Voltage (PIN ATTEN)
GATE BIAS	LODA Gate Bias Voltag
HEXTMIXB	External Mixer: $\quad+12 \mathrm{~V}=E \times \mathrm{T}$ MIX
	$-12 \mathrm{~V}=$ NT MIX
HSIGIDOFFA	SIGID $+12 \mathrm{~V}=$ SIG ID Oscillator ON: OFF
	$-8 \mathrm{~V}=$ SIG ID ON
PIN SW	PIN Diode Switch Control (SYTF or RYTHM LO Band/HI Band)
PIN DIODE SWITCH	PIN Diode Switch Control For 2ND Conv. IF Output
MIXER BIAS	Detected Voltage on 2ND Converter Mixer Diode to Attenuate Position (Active High)*
RFGAIN	Voltage to Control Gain of Flatness Comp. Amps.
RFGAIN 1 AND	
RFGAIN2	Current to drive PIN diodes in Flatness Comp. Amps.
L10dB A, L40dB B	Control lines to set attenuator sections A, B, C, and D to attenuate position (Active Low)*
10dB A, 40dB B,	Control lines to set attenuator sections A, D, C, and D to attenuate Position (Active High)*
20dB C, LAC D	
*In the $8561 \mathrm{E} / \mathrm{EC}$, section D of the input attenuator is a dc blocking capacitor which is switched in or bypassed by the LDC D and LAC D control lines. In the $8563 \mathrm{E} / \mathrm{EC}$, the LDC D and LAC D control linesare used to switch between 20 dB and 0 dB , through Section B, of the input attenuator in the $8563 \mathrm{E} / \mathrm{EC}$ is a 20 dB section (rather than a 40 dB section) switched in or bypassed by the 40dB Band L40dB B control lines.	

12 Display/Power Supply Section

Introduction

This chapter consists of the following sections:
A17 LCD Display (8561EC and 8563EC) page 633
A17 CRT Display (8561E and 8563E) page 638
A6 Power Supply page 651
WARNING The A6 power supply in 8560E-series and EC-series instruments, and the A6A1 high voltage assembly in 8560 E -series instruments, contain lethal voltages with lethal currents in all areas. Use extreme care when servicing these assemblies. Always disconnect the power cord from the instrument before servicing these assemblies. Failure to follow this precaution can represent a shock hazard which may result in personal injury.

The voltage potential at A6A1W3, in 8560 E-series instruments,
is +9 kV . If the cable must be disconnected, always disconnect it
at the CRT with caution! Failure to properly discharge A6A1W3
may result in severe electrical shock to personnel and damage
to the instrument. See procedure 2 in Chapter 3, "Assembly
Replacement."

Do not discharge the CRT second anode directly to ground,
with the A6A1 high voltage cable connected. This can damage
the A17 CRT driver assembly. Always discharge through a high
resistance, such as a high voltage probe.

Always use an isolation transformer when troubleshooting
either the A6 power supply or the A6A1 HV module. When using
an isolation transformer, connect a jumper between AGTP101
and AGTP301. This connects the circuit common to earth
ground. Remove this jumper when the isolation transformer is
not used.

LCD Display (8561EC and 8563EC)

The display section of 8561EC and 8563EC instruments contain the A17 display driver, the A17A1 inverter board, the A18 LCD (liquid crystal display), and the A6 power supply. Refer to "A6 Power Supply Assembly" on page 655. Figure 12-1 on page 633 illustrates the LCD block diagram.

Troubleshooting the LCD Display.................................... page 635
Blank Display ... page 635
Dim Display... page 636
Troubleshooting using the VGA port page 636
Troubleshooting using part substitution page 636
Figure 12-1 _ Simplified Section Block Diagram

sj 136 c

Overview of A17 Display Driver Board

The A17 display driver board monitors the 8560 EC-series controller board, copies display instructions to local memory, creates a bitmap from the data, and generates the signals needed to drive the LCD display and a VGA monitor. The display driver consists of a Hitatchi 7707 processor, an FPGA, DRAM, SRAM, a filter circuit, and a video DAC.

The FPGA is connected to the address bus, data bus, and the display memory control signals on the controller board. TheFPGA monitors the control signals and determines when the Hitatchi 7707 processor writes to display memory. When this occurs, the FPGA makes a duplicate of this information on the display driver board. The other main function of the FPGA is to provide the signals necessary to drive a TFT LCD display and a standard VGA monitor.

The processor reads display information received from the controller board, creates a bitmap, and copies the bitmap into SRAM. The FPGA outputs this information to the LCD and VGA displays. The DRAM is used by the processor to run its program. The filter circuit provides the clock signals that are needed to run the display driver board. The video DAC converts the digital col or information that goes to the LCD to analog signals; these signals drive the RGB col or lines on the VGA port.

Troubleshooting the LCD Display

NOTE

 There are no adjustments for intensity or contrast of the LCD.
Blank Display

1. If the LED above the front-panel LINE switch is lit, most of the A6 power supply is functioning properly.
2. Carefully check the voltages on the front-panel PROBE POWER jack. Be careful to avoid shorting the pins together. See Figure 12-2.
3. Check that the fan is operating. If the PROBE POWER voltages are correct, and the fan is turning, the A6 power supply is probably working properly.
4. If all of the power supply indicators along the outside edge of the A2 controller assembly are lit, the A6 power supply is probably working properly.
5. Connect a VGA monitor to the VGA port on the rear of the instrument. If the display is still blank, suspect the A2 controller, a loose cable, or the display driver.
6. If the LED is not lit, or the fan is not working, or the probe power voltages are not correct, or the power supply indicators on the edge of the A2 controller assembly are not working properly, proceed to the section on troubleshooting the power supply on page 655.
7. Open the left side of the instrument (see procedure A2 on page 152). Make voltage measurements at pins 1, 2, 3, 4, 5, 41, 42, 43, 44, and 45 on J 8 of the A2 controller (see Figure 12-3 on page 637). These pins should measure $5 \mathrm{~V} \pm 0.25 \mathrm{~V}$. If any of these measurements is out of tolerance suspect the A2 controller board or the power supply. If the voltages for these pins are correct, make the same measurements at the identical pins on J 1 of the A17 display driver board. If these measurements are correct, suspect the A18 LCD assembly or the A17A1 inverter board. If these measurements are not correct, suspect the A17 LCD driver or A17A1 inverter board.

Figure 12-2 Probe Power Socket

Dim Display

1. If the display is dim, suspect the backlights, which are inserted into the LCD assembly from the backlight assembly. Always replace both backlights at the same time. To replace the backlights, see procedure 2A on page 152.

Troubleshooting using the VGA port

1. Connect a VGA monitor to the rear VGA port of the instrument (the VGA port is always active and requires no user interaction).
2. Observe the display.

If the display on the VGA monitor is working correctly, the problem is probably caused by the LCD, or by a cable problem. Proceed to step 1 in "Troubleshooting using part substitution," next.

If the display on the VGA monitor shows the same symptom(s) you have seen on the instrument's LCD, the problem is probably caused by the A2 controller board, the display driver, or by a cable problem. Proceed to step 2 in "Troubleshooting using part substitution." If you proceed past step 3, skip step 4.

Troubleshooting using part substitution

1. Disconnect the power cord, turn the instrument off, and open the left side. Ensure that W60, W61, W62, W63, and W64 are tight. Reconnect the power cord and check the instrument to see whether the problem is corrected. If not, proceed to step 2.
2. Disconnect the power cord and turn the instrument off. Replace W60, the ribbon cable that connects the A2 board to the display driver board. Reconnect the power cord and check the display to see whether the problem is corrected. If not, proceed to step 3.
3. Disconnect the power cord and turn the instrument off. Replace W61, the 10 MHz reference cable that connects the A2 board to the display driver board. Reconnect the power cord and check to see whether the problem is corrected. If not, proceed to step 5.
4. Disconnect the power cord and turn the instrument off. Remove and replace (see procedure 2 A on page 152) the A 17 display driver board. Reconnect the power cord and check the instrument to see whether the problem is corrected. If not, proceed to step 5.
5. Remove and replace (see procedure 5 on page 172) the A2 controller board. Check to see whether the problem is corrected. If not, proceed to step 6.
6. Disconnect the power cord and turn the instrument off. Remove and replace (see procedure 2A on page 152) the A18 LCD. Reconnect the power cord and check to see whether the problem is corrected.

Figure 12-3 Location of +5 V supplies to Inverter Board and Backlights

GND SX	- 80	- 79	addrmsx2
addrmsx 3	- 78	- 77	GND SX
addrmsx 6	- 76	- 75	addrmsx 7
GND SX	- 74	- 73	addrmsx 10
addrmsx 11	- 72	- 71	GND SX
NC	- 70	- 69	NC
6ND SX	- 68	- 67	NC
NC	- 66	- 65	GND SX
NC	- 64	- 53	NC
GNDSX	- 62	- 61	DATAMSX 2
DATAMSX 3	- 60	- 59	GND SX
DATAMSX 6	- 58	- 57	DATAMSX 7
GND SX	- 56	- 55	DATAMSX 10
DATAMSX11	- 54	- 53	GNSD SX
DATAMSX 14	- 52	- 51	DATAMSX 15
GND SX	- 50	- 49	NC
RESETMSX	- 48	- 47	GND SX
NC	- 46	- 45	+5V BKLTSX
+5VBKLTSX	- 44	- 43	+5VBKLTSX
+5VBLKTSX	- 42	- 41	+5VSX
addrmsx 1	- 40	- 39	GND SX
addrmsx 4	- 38	- 37	addrmsx 5
gnd sx	- 36	- 35	addrmsx 8
addrmsx 9	- 34	- 33	GND SX
ddrmsx 12	- 32	- 31	addrmsx 13
GND SX	- 30	- 29	NC
NC	- 28	- 27	GNDSX
NC	- 26	- 25	NC
GND SX	- 24	- 23	DATAMSX
DATAMSX 1	- 22	- 21	GND SX
DATAMSX 4	- 20	- 19	DATAMSX 5
GND SX	- 18	- 17	DATAMSX 8
DATAMSX 9	- 16	- 15	GND SX
DATAMSX 12	- 14	- 13	DATAMSX 13
GND SX	- 12	- 11	LMUX-INSX
EN1SX	- 10	- 9	GND SX
NC	- 8	- 7	NC
GND SX	- 6	5	+5VBKLTSX
+5V BKLTSX	- 4	- 3	+5VBKLTSX
+5V BKLTSX	- 2	- 1	+5VSX

sj114c

Figure 12-3 shows A2] 8 connections on 8560 EC-Series Instruments. Lines $2-5$ and $42-44$ supply +5 V to the two LCD backlights. Lines 1 and 41 supply +5V to the A17A1 Inverter board. Lines 1 - 6 and 41 - 44 are identical on A17J 1.

CRT Display (8561E and 8563E)

The CRT display section contains the A6 power supply, A6A1 HV module, A17 CRT driver, and A18 CRT. The A6 power supply and A6A1 HV module are explained in the section on the power supply which begins on page 590. Figure 12-4 on page 639 illustrates the section block diagram.
Troubleshooting Using the TAM page 640
Blank Display (Using the TAM) page 642
Blank Display page 643
Blanking Signal. page 644
Display Distortion page 645
Focus Problems. page 647
Intensity Problems page 649

The A6 power supply and A6A1 high voltage assemblies contain lethal voltages with lethal currents in all areas. Use extreme care when servicing these assemblies. Always disconnect the power cord from the instrument before servicing these assemblies. Failure to follow this precaution can represent a shock hazard which may result in personal injury.
The voltage potential at A6A1W3 is +9 kV . If the cable must be disconnected, always disconnect it at the CRT with caution! Failure to properly discharge A6A1W3 may result in severe electrical shock to personnel and damage to the instrument. See procedure 2 in Chapter 3.

Do not discharge the CRT second anode directly to ground, with the A6A1 high voltage cable connected. This can damage the A17 CRT driver assembly. Always discharge through a high resistance, such as a high voltage probe.
Always use an isolation transformer when troubleshooting either the A6 power supply or the A6A1 HV module. When using an isolation transformer, connect a jumper between AGTP101 and AGTP301. This connects the circuit common to earth ground. Remove this jumper when the isolation transformer is not used.

Figure 12-4 Power Supply and CRT Block Diagram

sp141e

Troubleshooting Using the TAM

When using automatic fault isolation, the TAM indicates suspected circuits that need to be manually checked. UseTable 12-1 to locate the manual procedure.

Table 12-2 on page 641 lists assembly test connectors associated with each manual probe troubleshooting test. Figure 12-5 illustrates the location of A17 test connectors.

Table 12-1 Automatic Fault Isolation References

Suspected Circuit Indicated by Automatic Fault Isolation	Manual Procedure to Perform
Check A2 Controller	Blanking Signal
Check All Power Supply Outputs	Dead Power Supply (steps 1-5)
Check Buck Regulator	Dead Power Supply (steps 13-23)
Check Buck Regulator Control	
Circuitry	Dead Power Supply (steps 11-21)
Check High-Voltage Supplies	High Voltage Supplies
Check Input Rectifier	Dead Power Supply (steps 6-7)
Check Intensity Adjustments	Intensity Problems (steps 1-4)
Check Kick Start/Bias Circuitry	Dead Power Supply (steps 8-10)
Check Low-Voltage Supplies	Low Voltage Supplies

Figure 12-5 Al7 Test Connector

Table 12-2 TAM Tests versus Test Connectors

Connector	Manual Probe Troubleshooting Test	Measured Signal Lines
A17J 4	Revision Constant current Source Intensity input Intensity offset Blanking control	MS5
	MS1	
A2J 201	Switch drive test	MS7
	Buffered X \&Y DAC outputs X line generator test Y line generator test	MS8
	Intensity offset output	MS4
A2J 202	Revision	MS3
	X, Y, \&Z output offset	MS6
	X output amplifier	
Y output amplifier	MS1	
	Blanking test Focus DAC test	MS8

Blank Display (Using the TAM)

Use the following procedure if the instrument display is blank. This procedure substitutes a GPIB printer for the display.

1. Connect the printer to the 8561E or 8563E spectrum analyzer and set the printer address to the value required by the TAM. This is usually 1.
2. All of the power-supply indicator LEDs along the edge of the A2 controller assembly should be lit.
3. The rear panel CRT +110 VDC ON indicator should also be lit.
4. Connect the TAM probe cable to A2J 11.
5. Press MODULE, SOFT KEY \#3, $\boldsymbol{\nabla}$, and SOFT KEY \#1. (The top soft key is \#1.)
6. The yellow LED next to A2J 11 should blink approximately ten times. If the LED fails to blink correctly, troubleshoot the digital section of the A2 controller assembly.
7. Move the probe cable to A2J 202. Press SOFT KEY \#1 and wait 5 seconds.
8. Press SOFT KEY \#4. The results should be sent to the printer.
9. Move the probe cable to A2J 201, press SOFT KEY \#1 and wait 5 seconds.
10.Press SOFT KEY \#4. The results will be sent to the printer.
11.If a failure is indicated in any of these tests, the fault lies on the A2 controller assembly. to obtain more information:
a. Press the down arrow key one less time than the test number. (For example, press it twice for the third test on the list.)
b. Press SOFT KEY \#3, then SOFT KEY \#4, and when the printout is complete, SOFT KEY \#6.
12.If no failures were indicated in testing the A2 controller, move the probe cable to A17J 4.
13.Press SOFT KEY \#1 and wait 5 seconds.
14.Press SOFT KEY \#4. The results will be sent to the printer.
15.If no failure is indicated in the printout, check the high-voltage supplies as described "High Voltage Supplies (8561E and 8563E)" on page 658.

Blank Display

1. If the LED above the front panel LINE switch is lit, most of the A6 power supply is functioning properly.
2. Carefully check the voltages on the front panel PROBE POWER jack. Be careful to avoid shorting the pins together. See Figure 12-6.
3. Check that the fan is operating. If the PROBE POWER voltages are correct, and the fan is turning, the A6 power supply is probably working properly.
4. If the CRT +110 VDC ON LED on the rear panel is lit, the high-voltage supplies should also be operating. (The high-voltage supplies will be turned off if the HV SHUT_DOWN line is low.) The A6 power supply feeds +5 V to the A 2 controller through W 1 . The A2 assembly distributes this +5 V to the A17 CRT driver through W7. A17 sends +5 V back to A 6 as the HV SHUT_DOWN signal on W8. As a result, A2, A17, W1, W7, and W8 must all be in place for the high-voltage supplies to operate.
5. If all of the power supply indicators along the outside edge of the A2 controller assembly are lit, the A6 power supply is probably working properly.

Figure 12-6 Probe Power Socket

6. Press FREQUENCY, 1 , GHz.
7. Allow the analyzer to warm up for at least 1 minute.
8. While observing the display, press LINE to turn the spectrum analyzer off. If a green flash appears on the display, the CRT is probably working properly; troubleshoot either the A2 controller or the A17 CRT driver.
9. If a flash does not appear on the display, the A2 controller, A6A1 HV module, A17 CRT driver, or A18V1 CRT might be at fault.

Blanking Signal

1. Connect an oscilloscope probe to A 2 J 202 pin 3 . Connect the oscilloscope ground lead to TP3. Set the oscilloscope to the following settings:

Sweep time
$2 \mathrm{~ms} / \mathrm{div}$

Vertical scale $1 \mathrm{~V} / \mathrm{div}$
2. If a $4 \mathrm{Vp}-\mathrm{p}$ signal is not observed, the A 2 controller assembly is faulty.
3. Repeat steps 1 and 2 with the oscilloscope probe on A2J 202 pin 14.
4. Set the oscilloscope to the following settings:

Sweep time ... $1 \mu \mathrm{~s} / \mathrm{div}$
Vertical scale $2 \mathrm{~V} / \mathrm{div}$
5. Connect the positive probe lead to A2J 202 pin 15 . This is the blanking output.
6. TTL-level pulses should be observed. If the signal is either always high or always low, the display will be blanked; suspect the A2 controller assembly.
7. If the signals on A2J 202 pins 3, 14, and 15 are correct, troubleshoot the A17 CRT driver.

Display Distortion

The Agilent 8561E and 8563E use a vector display. The graticule lines, traces, and characters are composed of a series of straight lines ("vectors") placed end-to-end. If the vectors do not begin and end at the proper points, the display appears distorted, but in focus. Symptoms range from characters appearing elongated and graticule lines not meeting squarely, to an entirely unreadable display.

1. If the spectrum analyzer is in external frequency reference mode (an " X " is displayed along the left side of the display), ensure that an external 10 MHz reference is supplied. Otherwise the 16 MHz CPU clock will be off-frequency, causing distortion.
2. Use the CRT ADJ PATTERN to check for distortion. Press CAL, MORE 1 OF 2, and CRT ADJ PATTERN. If vector distortion (described above) occurs, perform the " 2 . Display Adjustment (8561E and 8563E)" on page 62 to test the function of the A2 controller assembly.
3. If there is distortion along with slight focus degradation, but the graticule lines meet (not necessarily squarely), the A17 CRT driver, CRT, DDD/TRACE ALIGN adjustments, or cable connections might be at fault.
4. If the A2 controller assembly is not part number 08563-60017, perform the " 22.16 MHz PLL Adjustment" on page 128 . If the 16 MHz CPU clock is off-frequency, the display will be distorted.
5. Perform the "2. Display Adjustment (8561E and 8563E)" on page 62. I sol ate the problem to either the X or Y axis by noting the behavior of the adjustments. If the line generator or fast zero-span portion of the adjustment fails, troubleshoot the A2 controller assembly.
6. If the adjustments do not remedy the problem, press LINE to turn the spectrum analyzer off and place the A17 CRT driver in the service position.
7. Distortion confined to one axis (vertical or horizontal only), indicates a faulty X or Y deflection amplifier on the A17 assembly. Use the alternate good deflection amplifier for obtaining typical voltages. (There is enough symmetry in a typical display that the voltages should be similar between these circuits.)
8. Monitor the waveforms at A17TP11 and A17TP14 (or TP12 and TP13). The 50 to 100 Vp -p ac component of the waveforms at the X and X (or Y and Y) outputs should be mirror images of each other. The dc average should be 55 V .
9. The appropriate POSN adjustment (A17R57 or A17R77) should change the dc component of both X and X (or Y and Y) outputs in opposite directions.
10.The appropriate GAIN adjustment (A17R55 or A17R75) should change the ac component in both outputs by the same amount.
11.If the display is a single dot, check the base of A17Q18 for -10.3 V $\pm 0.3 \mathrm{~V}$. Verify the signals at TP11, TP14, TP12, and TP13.
12.If signals are correct and cables to the CRT are good, suspect the CRT.

Focus Problems

Focus problems may be due to a defective A18V1 CRT, the A17 CRT driver (especially the grid level shifter section), or the A2 controller focus control circuitry. Focus problems may also be due to improper adjustments, improper connections, or absence of high voltage.
Although A17 grid level shifter (function block D) is the leading cause of A17 focus problems, function blocks C, E, F, and H generally have less effect on focus, but may cause poor focus that is a function of screen position, length of line, or intensity.

1. Connect the positive lead of a DVM to A2J 202, pin 2. Connect the negative lead to A2J 202 pin 6.
2. Use the knob to change the focus DAC value from 0 to 255 .
3. If the DVM reads near 0 Vdc with the focus set to 0 , and near -10 Vdc with the focus set to 255 , the A 2 focus control circuitry is working properly.
4. Perform the "2. Display Adjustment (8561E and 8563E)" on page 62. Note that A17R 34 COARSE FOCUS has the greatest effect on focus. Adjustment A17R93 ASTIG and A17R92 DDD have a lesser effect, and A17R21 Z FOCUS, A17R26X FOCUS and front panel adjustment (press DISPLAY, MORE 1 OF 2, FOCUS, and turn knob) have less effect on focus.
5. If the focus of some areas of the screen are worse than normal, continue with step 11. If no part of the screen can be brought to sharp focus, continue with step 6. (CRTs have some normal focus variation across their face.)
6. Turn off the analyzer and place A17 in the service position. Connect the ground lead of a high-voltage probe (Agilent 34111A) to the chassis, and use it with a DVM to measure A17J 7(10).
7. The nominal $\mathrm{A} 17 \mathrm{~J} 7(10)$ voltage is -1600 Vdc , but the CRT will function if this voltage is within 200 V of -1600 Vdc .
8. Adjusting A17R34 COARSE FOCUS should vary the A17J 7(10) voltage by 150 V . If these voltages are correct, suspect the CRT.
9. Check the A6A1 high voltage module cathode supply output at A17TP16 using a high voltage probe. If the cathode voltage is $-2450 \mathrm{~V} \pm 250 \mathrm{~V}$, check the focus grid level shifter.
10.If the cathode voltage is not correct, check the A6A1 high voltage module and its connections.
11.Connect an oscilloscope probe to A17TP9. This signal corrects the focus for the X position of the CRT beam, and for intensity level. It also provides the front panel focus adjusting voltage.

Focus Problems

12.Press DISPLAY, MORE 1 OF 2, and FOCUS. While turning the front panel knob, verify the dc level of the signal at TP9 adjusts about 30 Vp-p.
13.Verify that the front panel intensity adjustment, when used with the A17R21 Z FOCUS, changes the peak-to-peak voltage at TP9 by 25 V . Access the intensity adjustment by pressing DISPLAY, INTENSITY, and turning the front panel knob.
14. Set front panel intensity to minimum. Set A17R21 Z FOCUS and A17R26 X F OCUS fully counterdockwise. Verify that the peak-to-peak voltage at TP9 is about 40 Vp -p (due to X-dynamic focus circuit).
15.If circuit operation seems correct, the A18V1 CRT is probably at fault.

Intensity Problems

Intensity problems, or absence of display, can be due to the A17 assembly intensity amplifier (function block A), intensity grid level shifter (function block B), CRT (A18V1), interconnections, or lack of proper supplies or inputs to A17.

1. On the 8561E or 8563E spectrum analyzer, press DISPLAY and INTENSITY.
2. Rotate the front panel knob (RPG), and check that the intensity changes from dim, but readable, to bright.
3. If the intensity function does not function properly, troubleshoot the A2 controller assembly.
4. Perform the preliminary and Z-axis portions of the " 2 . Display Adjustment (8561E and 8563E)" on page 62. Verify that A17R11 CUTOFF functions properly. If A17R11 CUTOFF does not function properly, place the A17 CRT driver in the service position.
5. Verify that blanking pulses are present at A17TP2 using an oscilloscope. The pulses should be normal TTL levels, approximately $1 \mu \mathrm{~s}$ wide and 4 or $7 \mu \mathrm{~s}$ apart. If the blanking pulses are not correct, check the BLANKING output of the A2 controller assembly and cable W7.
6. If blanking pulses are present, check A17TP10 with the oscilloscope. The TP 10 signal should vary with the front panel intensity adjustment, and be approximately 55 Vp -p maximum. The signal will be composed of both blanking pulses and varying intensity levels for the lines being drawn.

- If a proper signal is not present at A17TP 10, check A17Q1, Q2, CR1, and CR2.
- If the TP10 signal does not vary with the front panel intensity adjustment, check the signals at A17TP4 and A17TP1. Both signals should vary with the front panel intensity adjustment. The TP 4 signal should be up to $4 \mathrm{Vp}-\mathrm{p}$, and the TP 1 signal should be up to approximately $12 \mathrm{Vp}-\mathrm{p}$.

WARNING	The A17 CRT Driver contains lethal voltages with lethal currents. Use extreme care when servicing this assembly. Always disconnect the power cord from the instrument before servicing this assembly. Failure to follow this precaution can present a shock hazard which may result in personal injury.

NOTE The fol Iowing measurements should be made with a high-voltage probe,such as the Agilent 34111A. When using the high-voltage probe, connectthe ground lead securely to the 8561E or 8563E chassis.
7. Carefully measure the grid voltage at A17J 7 pin 6 , and the cathode voltage at A17J 7 pin 4. The display will work with a cathode voltage of $-2450 \mathrm{~V} \pm 250 \mathrm{~V}$, provided the grid voltage (A17J 7 pin 6) is 30 to 100 V more negative than the cathode. A17R11, CUTOFF, should be able to adjust the voltage difference over a 60 V range to account for tube variations, and achieve proper intensity.
8. If the grid and cathode voltages are correct, turn off the 8561E or 8563E spectrum analyzer and check A17CR 10 with an ohmmeter. If A17CR10 is good, suspect the A18V1 CRT.
9. If the grid and cathode voltages are too low, turn off the power and disconnect W8 from the base of A18V1 CRT, and recheck the grid and cathode voltages.
10.If the grid and cathode voltages are still too low, refer to "CRT Display (8561E and 8563E)" on page 638, and the "1. High Voltage Power Supply Adjustment (8561E and 8563E)" on page 60.
11.If voltages are correct when the tube is disconnected, the CRT is probably defective.

CAUTION

The pins on the A18V1 CRT bend easily. Be careful not to bend pins when connecting W8 to A18V1.

Power Supply

The power supply section contains the A6 power supply and, in 8561E and 8563E instruments, the A6A1 HV module. Figure 12-7 on page 652 illustrates the power supply block diagram. Table 12-3 on page 653 lists signal versus pin numbers for power cable W1.
A6 Power Supply Assembly page 655
Dead Power Supply page 655
Line Fuse Blowing. page 657
Supply Restarting Every 1.5 Seconds (Kick Start) page 657
Low Voltage Supplies page 657
High Voltage Supplies (8561E and 8563E only) page 658
CRT Supply Dropping Out (8561E and 8563E only).. page 659
Blanking Signal (8561E and 8563E only) page 660
Buck Regulator Control page 660
DC-DC Converter Control page 661
Power Up page 661
WARNING The A6 power supply in 8560 6E-series and EC-series instruments, and the A6A1 high voltage assembly in 8560 E-series instruments, contain lethal voltages with lethal currents in all areas. Use extreme care when servicing these assemblies. Always disconnect the power cord from the instrument before servicing these assemblies. Failure to follow this precaution can represent a shock hazard which may result in personal injury.

The voltage potential at A6A1W3, in 8560 E-series instruments,
is $\mathbf{+ 9} \mathbf{k V}$. If the cable must be disconnected, always disconnect it
at the CRT with caution! Failure to properly discharge A6A1W3
may result in severe electrical shock to personnel and damage
to the instrument. See procedure 2 in Chapter 3.

Do not discharge the CRT second anode directly to ground,
with the A6A1 high voltage cable connected. This can damage
the A17 CRT driver assembly. Always discharge through a high
resistance, such as a high voltage probe.

Always use an isolation transformer when troubleshooting

either the A6 power supply or the A6A1 HV module. When using
an isolation transformer, connect a jumper between A6TP101
and AGTP301. This connects the circuit common to earth
ground. Remove this jumper when the isolation transformer is
not used.

Power Supply

Figure 12-7 Simplified Power Supply Block Diagram

sp141e

NOTE
The block diagram in Figure 12-7 shows the power supply in an E-series instrument. The power supply in EC-series instruments is identical except that the CRT and high voltage supplies in an EC-series instrument are inactive, and are not connected to CRT circuitry.

Table 12-3 W1 Power-Cable Connections

Signal	A2J 1 (pins)	A3] 1 (pins)	A4J 1 (pins)	$\begin{array}{\|l\|} \hline \text { A5J } 1 \\ \text { (pins) } \end{array}$	A6J 1(pins)	A14J 1 (pins)	$\begin{array}{\|l\|} \hline \text { A15J } 1 \\ \text { (pins) } \end{array}$
NC	-	-	-	-	-	-	-
NC	-	-	-	-	-	-	-
A GND	-	3	3	48	3*	3	3
NC	-	-	-	-	-	-	-
NC	-	-	-	-	-	-	-
A GND	-	6	6	45	6*	6	6
NC	-	-	-	-	-	-	-
NC	-	-	-	-	-	-	-
A GND	-	9	9	42	9*	9	9
SCAN RAMP	41	10	-	-	-	10*	-
NC	-	-	-	-	-	-	
A GND	-	12	12	39	12*	12	12
-12.6 V	38	13	-	-	13*	-	-
-15 V	-	14	14	37	14*	14	14
A GND	-	15	15	36	15*	15	15
-15 V	-	16	16	35	16*	16	16
+15 V	-	17	17	34	17*	17	17
A GND	-	18	18	33	18*	18	18
+15 V	-	19	19	32	19*	19	19
+28V	-	20	-	-	20*	20	20
+28V	-	21	-	-	21*	21	21
PWR UP	29	-	-	-	22*	-	
-15 V	-	23	23	28	23*	23	23
-15 V	-	24	24	27	24*	24	24
+15 V	-	25	25	26	25*	25	25
+15 V	-	26	26	25	26*	26	26
+5V	-	27	27	24	27*	27	27
+5V	-	28	28	23	28*	28	28
+5V	-	29	29	22	29*	29	29
+5V	-	30	30	21	30*	30	30
D GND	20	31	31	20	31*	-	31
D GND	19	32	32	19	32*	-	32
A GND	18	33	33	18	33*	33	33
A GND	17	34	34	17	34*	34	34
D GND	16	35	35	16	35*	35	35
D GND	15	36	36	15	36*	36	36
D GND	14	37	37	14	37*	37	37
D GND	13	38	38	13	38*	38	38
+5V	12	39			39*		
+5 V	11	40	-	-	40*	-	-
+5 V	10	41	-	-	41*	-	-
+5 V	9	42	-	-	42*	-	-
+5 V	8	43	-	-	43*	-	-
+5V	7	44	-	-	44*	-	-
+28 V	6	45	-	-	45*	-	-
LINE	-	46	-	-	46*	-	-
TRIGGER							

Table 12-3 W1 Power-Cable Connections

Signal	A2J 1 (pins)	A3J 1 (pins)	A4J 1 (pins)	A5J 1 (pins)	A6J 1- (pins)	A14J 1 (pins)	A15J 1 (pins)
+15 V	4	47	-	-	47^{*}	-	-
$+15 \vee$	3	48	-	-	48^{*}	-	-
$-15 \vee$	2	49	49	-	49^{*}	-	-
$-15 \vee$	1	50	50	-	50^{*}	-	-
*Indicates signal source.							

Troubleshooting Using the TAM (8561E and 8563E only)

When using automatic fault isolation, the TAM indicates suspected circuits that need to be manually checked. Use Table 12-4 to locate the manual procedure.

Table 12-4 Automatic Fault Isolation References

Suspected Circuit Indicated by Automatic Fault Isolation	Manual Procedure to Perform
Check A2 Controller	Blanking Signal
Check All Power Supply Outputs	Dead Power Supply (steps 1-5)
Check Buck Regulator	Dead Power Supply (steps 13-23)
Check Buck Regulator Control	Dead Power Supply (steps 11-21)
Circuitry	
Check High-Voltage Supplies	High Voltage Supplies
Check Input Rectifier	Dead Power Supply (steps 6-7)
Check Intensity Adjustments	Intensity Problems (steps 1-4)
Check Kick Start/Bias Circuitry	Dead Power Supply (steps 8-10)
Check Low-Voltage Supplies	Low Voltage Supplies

A6 Power Supply Assembly

Agilent 8561E, 8563E, 8561EC, and 8563EC spectrum analyzers use a switching power supply operating at 40 kHz to supply the low voltages for most of the analyzer hardware. In the 8561E and 8563E, the power supply also provides a 30 kHz switching supply (CRT supply) for the high voltages used by the CRT display used in E-series instruments. The CRT supply will be treated as a separate supply since the remainder of A6 must be operating for the CRT supply to operate.
Kick starting occurs when there is a fault either on the power supply or on one of the other assemblies. The power supply will try to start by generating a 200 ms pulse ("kick") every 1.5 seconds. A kick-starting power supply often appears to be dead, but the fan will make one or two revolutions and stop every 1.5 seconds.

Dead Power Supply

1. Use an isolation transformer and connect a jumper between A6TP101 and A6TP301.
2. Connect the negative lead of a DVM to A6TP301.
3. Check TP308 for +5 V .
4. Check TP302 for +15 V .
5. Check TP303 for -15 V .
6. Check TP304 for +28 V .
7. Check TP305 for -12.6 V.
8. Measure the voltage at TP 108 to verify the output of the input rectifier. The voltage should be between +215 Vdc and +350 Vdc .
9. If it is not within this range, check the rear panel fuse, input rectifier, input filter, and the rear panel line voltage selector switch.
10.M easure the voltage at TP206 to verify the output of the kick-start/bias-circuitry. The voltage should be approximately +14 Vdc . Test point 206 is on pin 1 of U203.
11.If there is no voltage at TP206, check TP210 for pulses 200 ms wide with an amplitude of 14.7 V . If there are no pulses present, the kick-start circuitry is probably defective. If the pulses are low in amplitude (about 1 V), Q201 is probably shorted.
12.If there are pulses at TP206, or there are pulses at TP210, but not at TP206, the buck regulator control circuitry is probably faulty.
13.Disconnect the power cord from the 8561E or 8563E spectrum analyzer.
14.Connect the positive output of a current-limited dc power supply to the cathode of A6CR201 (TP206) and the ground to A6TP201.
15.Set the current limit of the power supply to about 500 mA and the voltage to 12 Vdc .
16.Make sure a jumper is connected from A6TP101 to A6TP301. This independently powers the buck regulator control circuitry.
10. Connect a jumper from the output of a +12 Vdc power supply to the end of A6R202 physically nearest A6C211.
11. Connect a jumper from +12 Vdc to the end of C207 nearest C209.
19.If the current draw exceeds approximately 50 mA , suspect a short in the buck regulator control circuitry or a shorted CR201.
20.Check TP 204 for an 80 kHz sawtooth (4 Vp-p).
21.Check TP203 and TP207 for 40 kHz square (12 Vp-p). If the waveforms at either TP203 or TP207 are bad, one of the FETs in the DC-DC Converter is probably defective.
22.Check TP105 and TP106 for a $12 \mathrm{Vp}-\mathrm{p}$ sawtooth waveform that is flattened at the bottom. If the waveform is a squarewave, the FET to which the test point is connected has failed or shorted.
23.Check TP202 for 80 kHz pulses ($12 \mathrm{Vp}-\mathrm{p}$).
24.Short TP401 to TP 102. Check TP 103 for a waveform similar to that in Figure 12-8.
25.If the waveform at TP202 is correct but the waveform at TP103 is bad, suspect either Q102 or CR106.

Figure 12-8 Buck Regulator Waveform

Line Fuse Blowing

1. If the line fuse blows with the LINE switch in the off position, suspect either the input filter or the power switch cable assembly.
2. If the line fuse blows when the 8561E/EC and 8563E/EC spectrum analyzers are turned on, disconnect the power cord and lift the drain of A6Q102 from TP 108. If the line fuse still blows, suspect CR102 through CR105.
3. If the fuse is not burned out, check A6TP 108 for a voltage of between +215 V and +350 V .
4. If the voltage at TP108 is correct, disconnect the power cord. Wait 60 seconds for the high voltage to discharge. Remove and check A6Q102.
5. If Q102 is shorted, Q103, Q104, CR106, and CR108 are also probably shorted. If Q102 is working properly, measure the resistance between TP102 and TP 101 (positive ohmmeter lead to TP102).
6. If the resistance is less than $1 \mathrm{k} \Omega$, suspect either Q103 or Q104 in the DC-DC Converter.

Supply Restarting Every 1.5 Seconds (Kick Start)

See function blocks G, H and L of A6 power supply schematic diagram in the component-level information binder.
If there is a short on the power supply or on one of the other assemblies, the power supply will attempt to "kick start." (Every 1.5 seconds the supply will attempt to start, but will be shut down by a fault condition.) The kick start and bias circuits provide power for the control circuitry during power-up. The kick start circuitry is an RC oscillator which emits a 200 ms pulse every 1.5 seconds. These pulses switch current from the I nput Rectifier through Q201 to charge C201. When the power supply is up, a winding on T103 provides power to the control circuitry. This voltage is high enough to keep Q201 turned off.

1. Monitor the waveforms at TP206 and TP208 simultaneously on an oscilloscope.
2. If the signal at TP208 goes high before the signal at TP206 goes low, an overcurrent condition has been detected. Suspect a short in the secondary (output rectifier, voltage regulators, or another assembly).

Low Voltage Supplies

1. Connect the negative lead of a DVM to A6TP301.
2. Check A6TP 302 for +15 Vdc .
3. Check A6TP 303 for -15 Vdc .
4. Check A6TP 304 for +28 Vdc .
5. Check A6TP 305 for -12.6 Vdc .
6. Check A6TP 308 for +5 Vdc .
7. If the voltages measured above are correct but the power supply LEDs on the A2 controller assembly are not lit, check W1.
8. If the voltages are low, disconnect W1 from A6J 1 and measure the test point voltages again. Unless a dummy load is connected to the A6 power supply, the voltages should return to their nominal voltages but be unregulated.
9. If the voltages do not return to near their nominal range, the A6 power supply is probably at fault.
10.If the +5 V supply is low, suspect the +5 V regulator or the feedback circuit. To check the feedback circuit, measure the voltage of the +5 V reference (U 305 pin 6) and the $\pm 5 \mathrm{~V}$ references to the voltage regulators (U306B pin 7 and U306D pin 14).
10. Check output of U306A pin 1. If the feedback circuit is working properly, the output of U306A should be near +13 Vdc .
11. Check output of U302; its output should be high if the feedback circuit is working properly.

High Voltage Supplies (8561E and 8563E)

1. Press LINE to turn spectrum analyzer off, disconnect the power cord, and remove the power supply shield.
2. Connect the negative lead of a DVM to A6TP401 and positive lead to A6TP405.
3. Press LINE to turn spectrum analyzer on.
4. If the voltage displayed on the DVM is approximately +110 Vdc and the rear panel CRT +110 VDC ON indicator is lit, the A6A1 HV module is probably at fault.

Ideally, the DVM should read the voltage written on the label of the A6A1 HV module. If necessary, perform the "1. High Voltage Power Supply Adjustment (8561E and 8563E)" on page 60".
5. If the DVM does not read approximately +110 Vdc , measure the voltage on A6U 401 pin 10. This is theHV_SHUT_DOWN signal and should be near +5 Vdc .
6. If HV_SHUT_DOWN is low, suspect a bad connection along W8 between the Ā6 power supply and the 17 CRT driver.
7. If HV_SHUT_DOWN is correct, connect an oscilloscope to A6TP402. Connect the scope probe negative lead to TP401. Set the oscilloscope to the following settings:
Sweep time .. $10 \mathrm{~V} / \mathrm{d} / \mathrm{div}$
Vertical scale
8. A nearly-sinusoidal waveform, greater than $30 \mathrm{Vp}-\mathrm{p}$, with an approximately +18 Vdc offset, should be observed.
9. If the waveform is a dc vol tage near 0 Vdc with narrow, positive- and negative-going pulses, the A6A1 HV module is faulty. If the waveform is a dc voltage near +18 Vdc with narrow, positive- and negative-going pulses, connect the probe to TP403.
10.If the waveform at TP403 is a sawtooth waveform with a 1.8 V amplitude, the A6A1 HV module is faulty.

If the TP403 waveform has pulses similar to those on TP402, the A6 power supply is probably faulty.

CRT Supply Dropping Out (8561E and 8563E)

See function block K of A6 power supply schematic diagram in the component-level information binder.

The CRT supply is a separate switching supply which provides the +110 dc for the A17 CRT driver from a winding on the A6A1 HV module. The CRT supply operates at approximately 30 kHz . The exact frequency is determined by the inductance of the primary winding of A6A1T1 and A6C407. The supply will only operate if the HV_SHUT_DOWN line is high.

If the power supply keeps dropping out, there is probably a short on the A17 CRT driver assembly.

1. Disconnect W8 from A6J 4.
2. Connect an IC clip to U401 and connect a jumper between U401 pin 10 and TP308 (+5 Vdc).
3. Connect voltmeter to TP405 and press LINE to turn the analyzer on.
4. Check TP405 for a voltage of approximately +110 Vdc . It will probably measure higher since there is no load on the supply.
5. If the voltage at TP405 is correct, suspect a short on A17. If the voltage at TP 405 is not correct, check U401 pin 8 for a sawtooth signal. The sawtooth should be flat-topped and about $5 \mathrm{Vp}-\mathrm{p}$ at a frequency of about 30 kHz .
6. If the sawtooth is not flat-topped, suspect U402A and its associated circuitry.
7. If the sawtooth is correct, check the base of Q401 for 30 kHz pulses.
8. If the duty cycle is high, but there is no +110 Vdc , suspect the bridge rectifier, CR401 through CR404.

Blanking Signal (8561E and 8563E)

1. Connect an oscilloscope probe to A2J 202 pin 3 . Connect the oscilloscope ground lead to TP3. Set the oscilloscope to the following settings:
\qquad
Sweep time
$2 \mathrm{~ms} / \mathrm{div}$
Vertical scale $1 \mathrm{~V} / \mathrm{div}$
2. If a $4 \mathrm{Vp}-\mathrm{p}$ signal is not seen, the A 2 controller assembly is faulty.
3. Repeat steps 1 and 2 with the oscilloscope probe on A2J 202 pin 14.
4. Set the oscilloscope to the following settings:
\qquad
Sweep time $1 \mu \mathrm{~s} / \mathrm{div}$
Vertical scale $2 \mathrm{~V} / \mathrm{div}$
5. Connect the positive probe lead to A2J 202 pin 15. This is the blanking output.
6. TTL-level pulses should be observed. If the signal is either always high or always low, the display will be blanked; suspect the A2 controller assembly.
7. If the signals on A2J 202 pins 3,14 , and 15 are correct, troubleshoot the A17 CRT driver.

Buck Regulator Control

See function block H of the A6 power supply schematic diagram in the component-level information binder.
The buck regulator control pulse-width modulates the buck regulator and provides a synchronized signal to the DC-DC converter control circuitry. The buck regulator control has two feedback paths. The first is the output of the buck regulator, which provides coarse regulation. The second is the feedback circuit which samples and compares the +5 Vdc output of the output rectifier.

U202B and associated circuitry senses the output of the input rectifier and will turn off U203 if the voltage at TP108 is less than approximately +170 Vdc . Also, it will not allow U203 to start up until this voltage exceeds +215 Vdc . A low on the output of U202B will also clear the overcurrent latch in the DC-DC converter control circuitry.
Thermal shutdown occurs when RT201, mounted on the main heatsink, reaches a temperature of 100 C . When this occurs, the voltage at U203 pin 13 exceeds 0.6 V and inhibits pulses to the buck regulator.

R203, R204, U211, and associated circuitry provide feedforward for U203. This makes the loop gain independent of input line voltage and cancels 120 Hz ripple by more than 10 dB .

U202C and its associated circuitry permit the power supply to start up at low line voltages at low temperatures. At low line voltages U202C will draw charge away from C206 through R205. This allows the buck regulator to turn on and draw current through the thermistors in the input rectifier. This warms up the thermistors, thereby decreasing their resistance and increasing the voltage at TP108. When the voltage is sufficiently high at TP108, the output of U202C will open and C206 will be allowed to charge normally.

U202A converts the sawtooth at TP204 to a squarewave to drive the DC-DC Converter Control circuitry. The frequency of the sawtooth is determined by the resistance at pin 7 of U203 and the capacitance at pin 8 of U203.

DC-DC Converter Control

See function block I of A6 power supply schematic diagram in the component-level information binder.

The DC-DC converter control circuitry divides the 80 kHz squarewave from U202A and generates two complementary 40 kHz squarewaves to drive the FETs in the DC-DC converter. Also, U 202D and its associated circuitry monitor the voltage across sense resistor R116 in the DC-DC converter. When the current through the FETs in the DC-DC converter exceeds 1.8 A, the voltage across R116 will cause the output of U202D to go high. This sets a latch in U204 which turns off U203.

Power Up

See function block M of the A6 power supply schematic diagram in the component-level information binder.

The power up circuitry generates the PWR UP signal, which tells the microprocessor that the supplies are up and stable. PWR UP will go high when the +5 Vdc supply exceeds +4.99 Vdc . PWR UP will go low when this voltage is less than +4.895 Vdc. Once PWR UP is set low, it will stay low for at least 50 ms before going high, even if the +5 Vdc supply exceeds +4.99 Vdc before 50 ms have elapsed.

13 Component-Level Information Packets

Introduction

Component-Level Information Packets (CLIPs) contain a parts list, a component-location diagram, and schematic diagrams for selected instrument assemblies. A new CLIP with a new part number is issued whenever an assembly is changed.
Updated or replacement CLIPs may be ordered through your local Agilent Technologies Sales or Service Office. Use the CLIP part numbers provided in Table 13-1.

A single volume CLIP set that contains all repairable assemblies for the 8560 E-series and EC-series is also available. Order this CLIP set by using part number 5967-8582.
With the exception of the A2 controller board, the A1A1 keyboard, and the A17 display driver board, the E-series assemblies for which CLIPs have been generated are identical to the same assemblies in EC-series instruments.

Each of the CLIPs in the CLIP set can also be ordered individually.
NOTE CLIPs may be unavailable for recently introduced assemblies.

Table 13-1 $\begin{aligned} & \text { CLIPs Available for 8561E, 8561E C, 8563E , and 8563E C } \\ & \text { Spectrum Analyzers }\end{aligned}$

Board Assembly	Instrument Serial Prefix	Assembly Part Number	CLIP Part Number
A1A1 Keyboard (E-series)	3611A and above	08562-60140	08562-90188*
A1A1 Keyboard (EC-series only)	New Assembly	08563-60162	08563-90222*
A2 Controller Assembly (EC-series only)	New Assembly	08563-90160	08563-90224*
A2 Controller Assembly (E-series only)	3213A through 3305A 3310A through 3329A 3331A through 3410A 3416A through 3741A 3743A and above	$\begin{aligned} & \hline 08563-60017 \\ & 08563-60032 \\ & 08563-60065 \\ & 08564-60010^{\dagger} \\ & 08564-90025 \end{aligned}$	$\begin{aligned} & \hline 08563-90055 \\ & 08563-90074 \\ & 08563-90101 \\ & 08563-90003 \\ & 08564-90028^{*} \end{aligned}$
A3 Interface Assembly (E-series, non-Option 007)	3213A through 3337A 3350A through 3515A 3517A and above	$\begin{aligned} & \hline 08563-60021 \\ & 08563-60069 \\ & 08563-60078 \end{aligned}$	$\begin{aligned} & \hline 08563-90056 \\ & 08563-90102 \\ & 08563-90117 \end{aligned}$
A3 Interface Assembly (E-series, Option 007)	3310A through 3337A 3350A through 3515A 3517A and above	$\begin{aligned} & \hline 08563-60033 \\ & 08563-60070 \\ & 08563-60078 \end{aligned}$	$\begin{aligned} & \hline 08563-90075 \\ & 08563-90103 \\ & 08563-90117 \end{aligned}$
A3 Interface Assembly (E- and EC-series)	3611A and above	08563-60098	08563-90017*
A4LogAmplifier/Cal Osc	3213A through 3246A 3301A through 3406A 3410A through 3514A 3515A through 3727A 3728A and above	08563-60025 08563-60050 08563-60074 08563-60076 ${ }^{\dagger}$ 08563-60103	$\begin{aligned} & \hline 08563-90057 \\ & 08563-90082 \\ & 08563-90090 \\ & 08563-90119 \\ & 08563-90166^{*} \end{aligned}$
A5 IF Filter (8561)	3213A to 3724A01956 3724A01957 and above	$\begin{aligned} & \hline 08563-60023 \\ & 08563-60123 \end{aligned}$	$\begin{aligned} & \hline 08563-90058 \\ & 08563-90186^{*} \end{aligned}$
${ }^{\dagger}$ Denotes refurbished board assemblies avail able. Refurbished board assembly part numbers have 9 as the second digit of the suffix. For example, 08563-69032 is the refurbished part number for board assembly 08563-60032. \ddagger Same as for A15 Option 103 with SIG ID. *Denotes current version of assembly.			

Table 13-1 CLIPs Available for 8561E, 8561EC, 8563E , and 8563E C Spectrum Analyzers (Continued)

Board Assembly	Instrument Serial Prefix	Assembly Part Number	CLIP Part Number
A5 IF Filter (8563)	3213A to 3724A07205 3724A07206 and above	$\begin{aligned} & \hline 08563-60023 \\ & 08563-60123 \end{aligned}$	$\begin{aligned} & \hline 08563-90058 \\ & 08563-90186^{*} \end{aligned}$
A6 Power Supply	3213A through 3310A 3327A through 3350A 3406A through 3751A 3804A through 3821A 3846A and above	08563-60020 08563-60064 08564-60008 ${ }^{\dagger}$ 08564-60028 08564-60031 ${ }^{\dagger}$	$\begin{aligned} & \hline 08563-90059 \\ & 08563-90100 \\ & 08564-90004 \\ & 08564-90032 \\ & 08564-90039 * \end{aligned}$
A6A2 Power Supply Regulator Board	3818A and above	08564-60030	08564-90034*
A14 Frequency Control (8561)	3213A through 3305A 3310A through 3416A 3424A through 3450A 3508 through 3820A 3821A and above	08561-60033 08561-60034 08561-60040 08561-60041 ${ }^{\dagger}$ 08561-60055	08561-90058 08561-90061 08561-90062 08561-90063 08561-90080*
A14 Frequency Control (8563)	3213A through 3305A 3310A through 3416A 3424A through 3818A 3821A and above	$\begin{aligned} & 08563-60019 \\ & 08563-60026 \\ & 08563-60057^{\dagger} \\ & 08563-60135 \end{aligned}$	$\begin{aligned} & 08563-90060 \\ & 08563-90084 \\ & 08563-90105 \\ & 08563-90202 * \end{aligned}$
A15 RF Board (Option 103) (with SIG ID)	3213A through 3221A 3240A through 3304A 3305A through 3432A 3436A through 3450A 3514A through 3517A 3551A through 3818A 3821A and above	$\begin{aligned} & \hline 08563-60010 \\ & 08563-60035 \\ & 08563-60045 \\ & 08563-60055 \\ & 08563-60082 \\ & 08563-60085^{\dagger} \\ & 08563-60133 \end{aligned}$	$\begin{aligned} & \hline 08563-90062 \\ & 08563-90068 \\ & 08563-90072 \\ & 08563-90111 \\ & 08563-90121 \\ & 08563-90128 \\ & 08563-90200^{*} \end{aligned}$

[^2]$\begin{array}{ll}\text { Table 13-1 } & \begin{array}{l}\text { CLIPs Available for 8561E, 8561E C, 8563E , and 8563E C } \\ \text { Spectrum Analyzers (Continued) }\end{array}\end{array}$

Board Assembly	Instrument Serial Prefix	Assembly Part Number	CLIP Part Number
A15 RF Board (Option 103) (without SIG ID)	3305A through 3432A 3436A through 3450A 3514A through 3517A 3551A through 3818A 3821A and above	$\begin{aligned} & \text { 08563-60043 } \\ & 08563-60055^{\ddagger} \\ & 08563-60082^{\ddagger} \\ & 08563-60085^{\ddagger \ddagger} \\ & 08563-60133^{\ddagger} \end{aligned}$	$\begin{aligned} & 08563-90070 \\ & 08563-90111 \\ & 08563-90121 \\ & 08563-90128 \\ & 08563-90200^{*} \end{aligned}$
A15 RF Board (Standard) (with SIG ID)	3213A through 3221A 3240A through 3304A 3305A through 3432A 3436A through 3450A 3514A through 3517A 3551A through 3818A 3821A and above	$\begin{aligned} & \hline 08563-60016 \\ & 08563-60036 \\ & 08563-60046 \\ & 08563-60056 \\ & 08563-60083 \\ & 08563-60086^{\dagger} \\ & 08563-60134 \end{aligned}$	$\begin{aligned} & \hline 08563-90061 \\ & 08563-90069 \\ & 08563-90073 \\ & 08563-90112 \\ & 08563-90122 \\ & 08563-90129 \\ & 08563-90201^{*} \end{aligned}$
A15 RF Board (Standard)	3305A through 3432A 3436A through 3450A 3514A through 3517A 3551A through 3818A 3821A and above	08563-60044 08563-60054 08563-60081 08563-60084 ${ }^{\dagger}$ 08563-60132	$\begin{aligned} & \hline 08563-90071 \\ & 08563-90110 \\ & 08563-90120 \\ & 08563-90127 \\ & 08563-90199 * \end{aligned}$
A16 Fast ADC (Option 007 in E-series instruments only)	3310A and above	08563-60030	08563-90076*
A17 LCD Driver (EC-series)	New Assembly	08563-60161	08563-90221*
A17 CRT Driver (E-series)	3213A through 3220A 3221A through 3432A 3442A through 3738A 3741A and above	$\begin{aligned} & \hline 08562-60165 \\ & 08562-60166 \\ & 08563-60077^{\dagger} \\ & 08563-60122 \end{aligned}$	$\begin{aligned} & \hline 08562-90187 \\ & 08562-90193 \\ & 08563-90113 \\ & 8563-90182^{*} \end{aligned}$
A19 GPIB	3213A and above	08562-60042	08562-90115*
${ }^{\dagger}$ Denotes refurbished board assemblies available. Refurbished board assembly part numbers have 9 as the second digit of the suffix. For example, 08563-69032 is the refurbished part number for board assembly 08563-60032. * Denotes the current version of assembly. ${ }^{\ddagger}$ Same as for A15 Option 103 with SIG ID.			

8563EC INTERCONNECT DIAGRAM

Numerics

1 MHz resolution bandwidth problems, 466
10 kHz and 3 kHz resolution bandwidth problems, 468
10 MHz reference adjustment OCXO, 106
TCXO, 109
10.6952 M Hz VCXO troubleshooting, 452
10.7 MHz and 4.8 kHz IF filter troubleshooting, 451
10.7 MHz IF filter troubleshooting, 450
100 MHz oscillator, 540
100 MHz VCXO, 540
3 kHz and 10 kHz resolution bandwidth problems, 468
30 kHz resolution bandwidth problems, 467
300 Hz to 3 kHz resolution bandwidth problems, 473
4.8 kHz and 10.7 MHz IF filter troubleshooting, 451
4.8 kHz IF filter troubleshooting, 449
600 MHz oscillator, 545
8561E/63E options information, 29
85629B Test and Adjustment Module, 57
85629B test and adjustment module, 32

A

A10 SYTF
removal and replacement (8561E), 200
A10 YIG-tuned filter/mixer (RYTHM) removal and replacement (8563E), 202

A11 YTO

removal and replacement (8561E), 203
removal and replacement
(8563E), 204
A13 second converter
removal and replacement, 206
A14 and A15 RF assembly removal, 207
A14 and A15 RF assembly replacement, 208
A16 fast adc driver
removal and replacement, 210
A17 crt driver
removal and replacement, 210

A2, A3, A4, and A5 removal, 172 replacement, 173
A21 OCXO removal and
replacement, 231
A4 limiter phase adjustment, 142
A4 linear amplifier failures, 446
A4 linear fidelity adjustment, 143
A4 log amplifier troubleshooting, 444
A4 log fidelity adjustment, 144
A5 IF assembly problems, 456
A6 power supply
removal, 183
replacement, 182, 184
A7 first LO distribution amplifier removal and replacement, 195
A8 dual mixer removal and replacement (8561E), 196
A8 low band mixer
removal and replacement (8563E), 197
A9 input attenuator
removal and replacement, 198
abbreviations, 237
access to internal assemblies, 149
accessories, 243
ADC troubleshooting, 403
ADC/interface check, 307
ADC/interface section, 357
addresses of sales and service offices, 45
adjustment
adjustable components table, 54
factory selected components, 56
related adjustments table, 51
safety considerations, 49
TAM and corresponding manual adjustments, 58
TAM test equipment information, 57
TAM test equipment list, 58 tools, 50
using TAM, 57
adjustment procedures, 48, 59
10 MHz reference adjustment, OCXO, 106
10 MHz reference adjustment, TCXO, 109
1ST LO distribution amplifier adjustment, 87
cal oscillator amplitude, 73, 136
calibrator amplitude adjustment, 104
DC Iog amplifiers, 77, 141
demodulator adjustment, 111
display, 62
dual band mixer bias adjustment, 93
external mixer amplitude adjustment, 116
external mixer bias adjustment, 114
first LO distribution amplifier, 90
frequency response adjustment, 95, 99
high voltage power supply adjustment, 60
IF amplitude, 73, 136
IF bandpass adjustment, 68
intensity, 65
LO distribution amplifier, 90
sampling oscillator adjustment, 81
signal ID oscillator adjustment, 119
SYTF adjustment, 123
YIG-tuned filter/mixer adjustment, 125
YTO adjustment, 84
adjustments
recommended test equipment, 135
AFI
synthesizer, 525
TAM troubleshooting, 307
Agilent sales and service offices, 45
AM/FM demodulator
troubleshooting, 449, 478
amplitude adjustments, 73
analog bus drivers troubleshooting, 410
analog bus timing, 411
attenuator, 349, 351
audio amplifier troubleshooting, 478
automatic fault isolation, 307
automatic IF adjustment, 439
automatic IF adjustment parameters, 440

B

B1 fan removal and replacement, 213
battery
caution, 214
removal and replacement, 214
warning, 214
blank display, 306, 487, 635
blanking, 492
blanking signal, 644

Index

block diagram
description, 346
BT1 battery
removal and replacement, 214

C

cable color code, 150
cables, 174, 179
cables, pin out, 299
cal oscillator, 356
amplitude (A4R826) range troubleshooting, 472
low-pass filter troubleshooting, 477
troubleshooting, 470
unlock at start of IF adjust, 471
unlock conditions troubleshooting, 471
CAL OUTPUT, 542, 547
calibration menu, 302
calibration oscillator troubleshooting, 309
calibrator amplitude adjustment, 104
center frequency, harmonic number, 569
character problem, 499
chassis parts, 253, 263
components
adjustable components table, 54
controller
block diagram, 517
check, 307
converter
second, 349, 352, 609
third, 350, 352
cover assembly parts, 253, 261
cover removal/replacement, 151
CRT
driver, 360
removal, 162
replacement, 167
crt
driver removal and replacement, 210
CRT display, 638
CRT driver, assembly, 210
CRT, simplified block diagram, 639
CRT, troubleshooting using the TAM, 640
crystal filter adjustments, 71

D

DC log amplifer adjustments, 141
DC log amplifier adjustments, 77 demodulator adjustment, 111
demodulator troubleshooting, AM/FM, 449
detector/mixer troubleshooting, 454
diagnostic functions, 302, 305
digital signature analysis
microprocessor, 490
display
adjustment, 62
ASM, 359
blank, 487
jumbled, 494
line variations, 499
problems, 491
troubleshooting, 307
display section, 360
dual mixer, 604
removal and replacement (8561E), 196

E

EEROM, 359
removal and replacement, 229
electrostatic discharge, 34
equipment required, 37
error codes
200 to 299, 314
error messages, 311, 312, 345
accessory module error messages 800 to 899, 344
amplitude error message 582, 338
automatic IF error messages 400 to 599, 327
battery error message 718, 342
cal unlock error message 499, 333
digital and checksum errors, 340
EEROM checksum error messages 700 to 704, 340
elimination, 312
fractional N PLL error message 337, 326
microprocessor error message 717, 342
model number error message 719, 342
option modules, 344
programmed ROM error messages 705 to 710,341
programming errors, 312
RAM check error messages 711 to 716, 341
sampling oscillator error message 335, 325
sampling oscillator error message 355, 326
span accuracy calibration error messages 356 to 361,326
system error messages 750 to 759, 342
user generated error messages 900 to 999, 344
viewing error messages, 312
YTO leveling loop error message 334, 325
YTO loop error message 331, 324
YTO loop error messages 300 to 301, 315
YTO loop error messages 317 to 318, 321
YTO loop settling error messages 351 to 354, 326
ESD requirements, 34
external mixer
amplitude adjustment, 116
bias adjustment, 114

F

FADC
removal and replacement, 210
FADC (E), assembly, 210
FADC Circuits (Option 007)
8-bit flash ADC, 414
control word, 414
GAINX2, 414
peak/pit detection, 414
RAM, static, 414
video input section, 414
FADC Control Circuits (Option 007)
circular address, 414
clock sample, 414
comparator, 414
control registers, 414
control word, 414
counter, 414
CPU, 414
post-trigger counter, 414
reference check, 414
reference generator, 414
trigger, 414
video trigger, 414
fan
removal and replacement, 213
fault isolation, 307
fault isolation RF path, 309
filter adjustment, 68
firmware, 359
firmware-dependent part
numbers, 237
first LO distribution amplifier removal and replacement, 195
first LO problems, multiband sweeps, 574
first LO span problems, 572
flatness adjustment, 99
flatness compensation amplifiers, 350, 353
flatness control troubleshooting, 393
FM coil, 560
fractional N
divider, 566
oscillator, 554
phase noise, 576
span problems, 572
troubleshooting, 534
fractional N PLL, 355, 563
unlocked, 562
frequency control (A14) assembly removal, 207
frequency control (A14) assembly replacement, 208
frequency control assembly troubleshooting, 611
frequency control block diagram, 582
frequency counter, 506, 508
frequency counter prescaler/conditioner troubleshooting, 448
frequency response adjustment, 99
frequency-count marker problems, 504, 505
front frame
removal, 162
replacement, 167
front frame parts, 253, 269
front frame(EC), assembly, 152

G

general information
serial number label description, 30
graticule problem, 499

H

harmonic number versus center frequency, 569
high and low band problems, 600
high band bias (8561E), 604
high band problems, 599
high voltage power supply adjustment, 60

I

IF adjustment, automatic, 440
IF amplifier, 350, 352
IF amplitude adjustments, 73, 136
IF assembly, 356
IF assembly troubleshooting, 439, 456
IF bandpass adjustment, 68
IF filter troubleshooting, 10.7 $\mathrm{MHz}, 450$
IF filter troubleshooting, 4.8 kHz , 449
IF filter troubleshooting, 4.8 kHz and $10.7 \mathrm{MHz}, 451$
IF filter, 4.8 kHz and 10.7 MHz problems, 451
IF gain uncertainty performance test failures, 442
IF parameters adjusted, 440
IF section, 355
IF section general troubleshooting, 430
IF signature problems, 463
IF signature troubleshooting, 457
IF/LOG check, 308
input attenuator, 349, 351, 607
removal and replacement, 198
input switch problems, 452
instrument variations, 29
intensity adjustments, 65
intensity problems, 498
interface check, 307
interface section, 357
interface strobe troubleshooting, 413
internal assemblies, access to, 149
isolation amplifier problems, 454

J

jumper write protect/enable, 302

K

keyboard
problems, 386, 515
keyboard, assembly, 170
L
LC filter adjustments, 69
LCD (EC), assembly, 152
LCD, display, 633
LCD, simplified block diagram, 634
LCD, troubleshooting the, 635
limiter phase adjustment, 142
limiter problems, 453
line generator, 491, 495
line switch (E), assembly, 220
line switch (EC), assembly, 155
line switch cable
replacement, 225
linear amplifier troubleshooting, 446
linear fidelity adjustment, 79, 143
lines dim, 499
LO control check, 308
LO distribution amplifier, 351, 554
removal and replacement, 195
LO distribution amplifier troubleshooting, 602
LO span problems, 572, 574
LO switch troubleshooting, 452
LODA
removal and replacement, 195
troubleshooting, 602
Log amplifier, 356
log amplifier
adjustments, 77
detector/mixer troubleshooting, 454
failures, 444
input switch troubleshooting, 452
isolation amplifier troubleshooting, 454
limiter troubleshooting, 453
troubleshooting, 444
log check, 308
log expand functions, 358
log expand troubleshooting, 396
log fidelity adjustment, 80, 144
log gain compensation troubleshooting, 454
log offset compensation troubleshooting, 454
log offset troubleshooting, 396
low and high band problems, 600
low band mixer, 351
removal and replacement
(8563E), 197
Iow band mixer (8563E), 606
low band problems, 598
low-pass filter troubleshooting, 477

M

main chassis parts, 253, 263
main coil, 561
manual probe troubleshooting, 308
manufacturers code list, 238

Index

marker problems, 504, 505
mechanical parts, 253, 263
mixer amplitude adjustment, 116
mixer bias adjustment, 114
mixer/detector log amplifier troubleshooting, 454

0

OCXO, 585
OCXO adjustment, 106
OCXO removal and replacement, 231
offset lock loop, 354, 550
offset PLL phase noise, 576
option 908, 243
option 909, 243
ordering information, 235

P

packaging, 36, 37
packaging part numbers, 37
part ordering, 235
peak detectors troubleshooting, 400
performance test failures troubleshooting, 442
performancetests
recommended test equipment, 37, 38
phase locked loops, 537
phase noise
fractional N, 576
int/ext reference, 575
locked spans, 575
offset PLL, 576
problems, 575
unlocked spans, 575
YTO, 576
PLL locked at wrong frequency, 537
postscaler, 551, 563
power cable connections, 634
power supply, 651
cover, 219
removal, 183
replacement, 182, 184
section, 360
troubleshooting, 307
power supply adjustment, high voltage, 60
power supply warning, 633
power supply, assembly, 180
power supply, simplified block diagram, 652
prescaler, 551
preselector peaking, 392
probe power socket, 635
probe troubleshooting, 308
programming errors, 312

R

rack slide kit, 243
real time DAC, 392
rear dress panel
removal, 215
replacement, 217
rear frame, 271
removal, 215
replacement, 217
rear frame parts, 259
recommended test equipment, 37, 38
reference adjustment
OCXO, 106
TCXO, 109
reference attenuator adjustment, 76
reference designations, 237
reference divide chain, 551
reference PLL, 354
phase noise, 575
unlocked, 545
unlocked 100 MHz VCXO, 540
required tools, 150
resolution bandwidth
1 MHz problems, 466
3 kHz and 10 kHz problems, 468
30 kHz problems, 467
300 Hz to 3 kHz problems, 473
resolution bandwidth
performance test failures, 443
returning instruments for service, 36
revision connectors, 306
RF (A15) assembly removal, 207
RF (A15) assembly replacement, 208
RF assembly troubleshooting, 618
RF block diagram, 584
RF check, 308
RF gain DACs, 393
RF parts, 253
RF path fault isolation, 309
RF section, 348, 350
RF section parts, 265, 267
rosenfell detector
troubleshooting, 402
RPG
problems, 386
RPG, assembly, 171
RYTHM, 351
removal and replacement (8563E), 202
RYTHM adjustment, 125

S

sales and service offices, 45
sales offices, 45
sampler, 577
sampler IF, 559, 577
sampler troubleshooting, 535
sampling oscillator, 550, 554
sampling oscillator adjustment, 81
SAWR, 545
scale fidelity performance test
failures, 443
scan ramps, 574
second converter, 349, 352, 609
removal and replacement, 206
second IF amplifier, 350, 352
serial numbers, 30
service functions, 302
service kit, 33
service kit contents, 33
service menu, 302
service offices, 45
service tools, 33
shipping
shipping container, 36, 37
signal ID oscillator adjustment, 119
SLODA, 351, 554
adjustment, 90
removal and replacement, 195
span
$>20 \mathrm{MHz}, 570$
$2 \mathrm{MHz}, 572$
2.02 MHz to $20 \mathrm{MHz}, 570$
span accuracy problems, 568
span problems, 569, 572
multiband sweeps, 574
speaker troubleshooting, 478
state storage problems, 514
step gains troubleshooting, 469
surface acoustic wave resonator, 545
sweep generator, 579, 581
sweep generator troubleshooting, 477
sweep ramp, 574
sweeping, 353
span accuracy, 568
YTO, 555
switched YIG-tuned filter (SYTF)
removal and replacement
(8561E), 200
switching LO distribution amplifier, 554
adjustment, 90
synthesizer section, 353, 531
simplified block diagram, 581
troubleshooting, 530
SYTF
removal and replacement
(8561E), 200

T

TAM, 305
automatic fault isolation, 525
controller troubleshooting, 487
printing, 305
RF section connectors, 527
synthesizer section, 524, 527
troubleshooting A4 section, 433
troubleshooting A5 section, 433
troubleshooting the cal oscillator assembly, 437
troubleshooting the IF section, 432
TAM adjustments, 57, 59
adjustment indicators, 57
corresponding manual adjustments, 58
test equipment information, 57
test equipment list, 58
TCXO adjustment, 109
test and adjustment module, 57
controller, 487
test and adjustment module, 85629B, 32
test equipment, 37
test equipment list, 135
test equipment list for TAM
adjustments, 58
test points, 297
third converter, 350, 352
third LO driver amplifier, 543, 548
tools
adjustment, 50
tools required, 150
trace storage problems, 514
triggering, 358
triggering problems, 389
troubleshooting instrument, 303
troubleshooting, blank CRT, 642
troubleshooting, blank LCD, 635
troubleshooting, blanking signal, 644
troubleshooting, blown line fuse, 657
troubleshooting, CRT focus, 647
troubleshooting, CRT intensity, 649
troubleshooting, dead power supply, 655
troubleshooting, dim LCD, 636
troubleshooting, display distortion, 645
troubleshooting, high voltage supplies, 658
troubleshooting, kickstarting, 657
troubleshooting, low voltage supplies, 657
troubleshooting, the LCD, 635

U

unlocked PLL, 538
user generated error messages, 344

v

VCO, 564
VCO bias voltages, 565
VCXO troubleshooting, 10.6925 $\mathrm{MHz}, 452$
video circuits troubleshooting, 394
video filter troubleshooting, 398
video functions, 358
video gating problems, 389
video MUX troubleshooting, 397, 455
video offset troubleshooting, 447
voltage tuned oscillator, 564

w

W1 power-cable connections, 634
W3 line switch cable replacement, 225
wire assembly cables, 243
write protect/enable jumper, 302
\mathbf{Y}
YIG-tuned filter/mixer, 351
removal and replacement
(8563E), 202
YIG-tuned filter/mixer adjustment, 125
YIG-tuned oscillator adjustment, 84
YTO, 349, 352
adjustment, 84
FM coil span problems, 570
main coil span problems, 570
phase noise, 576
removal and replacement
(8561E), 203
removal and replacement
(8563E), 204
sweeping, 555
troubleshooting, 534
YTO PLL, 354
unlocked, 554

Z

zero-span problems, 502

[^0]: It is important that you realize that the new serial number format (US00000000) is always considered "above" the earlier format (0000A00000) when you encounter change information such as "....serial prefix 3425A and above" or "....serial number 3425A00564 and above."

[^1]: * These board assemblies are part of the rebuilt board exchange program. To order a rebuilt board, use the same number as that of the new board with the exception of the 7th digit which should be a 9 . Example: New board number is 08562-60094. Therefore, the rebuilt board number will be 08562-69094.

[^2]: ${ }^{\dagger}$ Denotes refurbished board assemblies available. Refurbished board assembly part numbers have 9 as the second digit of the suffix. For example, 08563-69032 is the refurbished part number for board assembly 08563-60032.
 ${ }^{\ddagger}$ Same as for A15 Option 103 with SIG ID.

 * Denotes current version of assembly.

