Errata

Title & Document Type: 8640M RF Section Operating and Service Manual

Manual Part Number: 08641-90008

Revision Date: December 1976

About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, life sciences, and chemical analysis businesses are now part of Agilent Technologies. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A. We have made no changes to this manual copy.

Support for Your Product

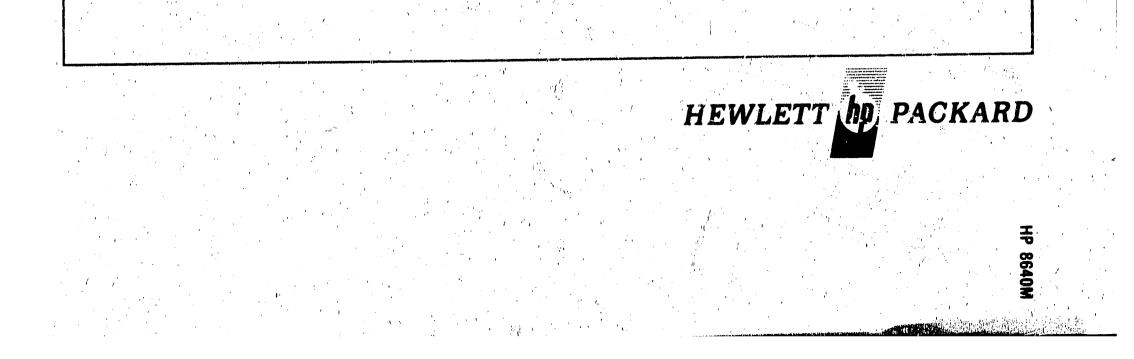
Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

www.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.



PERATING AND SERVICE MANUA


8640M SIGNAL GENERATOR

HP 8640M

CERTIFICATION

The Hewlett-Packara Company certifies that the instrument met its published specifications at the time of shipment from the factory. Hewlett-Packard Company further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY AND ASSISTANCE

This Hewlett-Packard product is warranted against defects in materials and workmanship for a period of one year from the date of shipment. Hewlett-Packard will, at its option, repair or replace products which prove to be defective during the warranty period provided they are returned to Hewlett-Packard, and provided the preventive maintenance procedures in the manual are followed. Repairs necessitated by misuse of the product are not covered by this warranty. NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-ULAR PURPOSE. HEWLETT-PACKARD IS NOT LIABLE FOR CON-SEQUENTIAL DAMAGES.

Service contracts or customer assistance agreements are available for Hewlett-Packard products

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

HEWLETT **hp** PACKARD

OPERATING AND SERVICE MANUAL

8640M SIGNAL GENERATOR

SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 1634A and 1639A.

For additional important information about serial numbers see INSTRUMENTS COVERED BY MANUAL in Section I.

© HEWLETT PACKARD COMPANY 1976 1501 PAGE MILL ROAD, PALO ALTO, CALIFORNIA, U.S.A.

MANUAL PART NO. 08641-90008 Microfiche Part No. 08641-90010

i e Sa

11.

Printed: December 1976

Contents

CONTENTS

Page

Section

	n dia si N	GENERAL INFORMATION	1-1
	1-1.	Introduction.	1-1
	1-6.	Specifications	1-1
	1-8.	Instruments Covered by Manual	1-1
, .	1.13	General Description	1-2
	1.18	Performance Characteristics.	1-2
	1-19.		1-2
	1-2,5.		1-2
	1.29.	Phase-Lock Mode	1-3
	1-34.		1-3
	1-37.		1-4
	1-40.	Frequency Modulation	1-4
	1-43.	Internal Modulation Oscillator	1-4
	1-45.	Multi-Function Meter	1-5
	1-49.	Output Range	1.5
	1.52	Accessories Supplied	1-9
	1-54	Equipment Available	1-5
,	1.59	Service and User Aids.	1-5
•	1-63	Warranty	1-5
	1-65	. Test Equipment Required	1-6
	د •		
	II	INSTALLATION	2-1
+	•	Introduction	2-1
	2-3.		2-1
	2-5.	Preparation for Use	2-1
	2-6.	Power Requirements	2-1
<u>1</u>	2-8.	Line Voltage Selection	۵-۵ 9-9
	2-11	Power Cable	2-2 999
· ,	2-13	Mating Connectors.	2-4 9-7
	2-15	. Operating Environment	م- <u>م</u> 2.2
	2-18	Operation	2-2
		Storage and Snipment	2-2
	2-21		
	2-23	Packaging	<u>4</u> °U
	i e Navali	OPERATION	3.1
	III		3.1
	3-1.	Panel Features	3.1
	3-3. 2-5		3.1
	3-5. 3-7.	Operator 5 Operations	3-1
			3-1
•	3-9.	Operator 5 manuemance	

	Page
Section ,	
4-17. Residual AM Test	.4-14
4-17. Residual FM Test	.4-16
4-19. Output Level Accuracy Test	.4-18
4-20. Output Level Flatness Test	.4-21
4-21. Output Leakage Test	.4-22
4-22. Modulation Oscillator Frequency Accuracy	
Test	.4-24
4-23. AM Bandwidth Test	.4-24
4.24. AM Distortion 'Test	.4-26
4-25 Indicated AM Accuracy Test	
4.26 FM Bandwidth Test	. 4 28
4-27. FM Distortion Test	4-29
4-28. Indicated FM Accuracy Test	. 4-31
4-29. Pulse Modulation Test	4-33
4-30. Pulse ON/OFF Ratio Test	4-35
4-31. Counter External Sensitivity Test	, .4-36
4-32, Counter Accuracy Test	4-37
V ADJUSTMENTS	5-1
5-1. Introduction.	
5-3 Safety Considerations.	
5-9 Test Equipment Required	. 5-1
5-11. Pozidriv Screwdrivers	. 5-1
5-13. Blade Tuning Tools	9 ⁻¹
5-15. Service Aids	5-1
5-19. Factory Selected Components	. 5-2
5-22. Post-Repair Tests and Adjustments	
5-25. Power Supply Adjustments	
5-26. Internal Modulation Oscillator Adjustment	
5-27. Pulse Generator and Timer Adjustments	. J- ð
5-28. Meter Adjustments	
5-29. RF Detector Offset Adjustment	5 10 ··
5-30. Output Level and Meter Adjustment	5 10
5-31. AM Sensitivity Adjustment	5 19
5-32. Range Switch Adjustment	5 1 2
5-33. V _T Pot Adjustment	5 12 5 12
5-34. V _T Voltage Adjustment	5.1A
5-35. RF Oscillator End Stop Adjustment	5 12
5-36. RF Oscillator Output Power Adjustment	5.17
5-37. RF Filter Adjustment.	5.91
5-38. Preliminary FM Adjustments	5.99
5-39. FM Linearity Adjustment	0-44

IVPERFORMANCE TESTS4-14-1.Introduction.4-14-4.Equipment Required4-14-6.Test Record4-14-8.Test Procedures.4-14-12.Basic Functional Checks4-24-13.Frequency Range Test4-84-14.Harmonic Distortion Test4-94-15.Single Sideband Phase Noise Test4-104-16.Single Sideband Broadband Noise Floor Test4-13

ii

VIREPLACEABLE PARTS6-16-1.Introduction.6-16-3.Exchange Assemblies6-16-5.Abbreviations6-1

......

Contents

CONTENTS (Cont'd))

	Section	'ı	Section	Page	
	6-7. Replaceable Parts List		8-12. Rec	commended Test Equipment 8-1	
:	6-11. Ordering Information		8-14. Serv	vice Aids	,
	6-14. Spare Parts Kit		8-22. Rep	pair	•
	6-16. Illustrated Parts Breakdowns 6-1		8-23.	Factory-Selected Components 8-3	
1.		,	8-25.	Etched Circuits 8-3	
÷ *		, ,	8-27.	Etched Conductor Repair 8-3	
	VII MANUAL CHANGES		8-29.	Component Replacement 8-3	
- 1	7-1. Introduction		8-36.	Illustrated Parts Breakdowns 8-5	
		ji i Na	8-38. Basi	ic Circuit Theory	
•?	VIII SERVICE		8-39.	Binary Circuits and Symbols 8-5	
,	8-1. Introduction	×	8-52.	Binary Registers	
	8-5. Principles of Operation		8-59.	Decade Counters and Symbols	
	8-8. Troubleshooting		8-67.	Linear Integrated Circuits	

SERVICE SHEETS

Serv	rice Sheet Page	Serv	vice Sheets Page
1	Overall Block Diagram	19	Counter Time Base Schematic Diagram
2	FM Circuits and RF Oscillator Block Diagram8-21	20	Up/Down Counter and Display Schematic
3	AM/AGC Circuits and Output Amplifier Block		Diagram
	Diagram	21	Counter Phase Lock Circuits Schematic
·` 4	Counter/Lock Circuits Block Diagram 8-25	•	Diagram
5	RF Oscillator Simplified Diagram	22	Power Supply Circuits Schematic Diagram 8-65
6	FM Amplifiers Schematic Diagram	23	-5.2V Regulator and Fan Circuits
7	FM Shaping Circuits and Phase Lock Loop	. ¹	Schematic Diagram
	Filter Schematic Diagram	24	Power Supply Mother Board Interconnection
8	Over-Deviation Detector and Meter Control		Diagram
1	Circuits Schematic Diagram	25	Modulation/Metering Mother Board
. 9	Internal Modulation Oscillator Schematic		Interconnection Diagram. ,
	Diagram	A	A1 Output Level Assembly Illustrated
10	RF Filters Schematic Diagram	• .	Parts Breakdown
11	RF Dividers Schematic Diagram	B	A3 RF Oscillator Illustrated Parts
12	AGC Amplifiers and Amplitude Modulator		Breakdown'
in di ([™]).	Schematic Diagram	С	A8 Counter/Lock Assembly Illustrated
13	RF Amplifier, Pulse Switching and Step	X ·	Parts Breakdown
	Attenuators Schematic Diagram	D	A9 Peak Deviation and Range Switch
13B		· · ·	Assembly Illustrated Parts Breakdown
1	Diagram	Ε	A10 Divider/Filter Assembly and A23
14	AM Preamplifier Schematic Diagram		Modulation Mode/Frequency Switch
15	AM Interconnections and RF ON/OFF Switch	а 1 - Г	Illustrated Parts Breakdown
		· · · ·	ADC AM/ACC and DE Annifian Accomply

- 18 Counter RF Scaler Schematic Diagram 8-55

iii

75

A STATISTICS AND A STATIS

Contents

Model 8640M

LIST OF ILLUSTRATIONS

Page

Figure

Tigui		
1.1.	HP Model 8640M Signal Generator	1-0
1-2.	Measured Single Sideband Noise vs Offset	
	from Carrier	1-3
1-3.	Specified Signal-to Phase-Noise Ratio at	
	20 kHz Offset vs Carrier Frequency	, 1-3 ,
1-4.	AM Distortion vs AM Rate Measured at	1
	200 MHz and +13 dBm	1-4
1-5.	Pulsed RF 20 MHz Carrier.	1-4
1-6.	FM Distortion vs FM Rate Measured on the	1
	816 MHz Range	1-4
1-7.	Noise Phase Lock Circuit	.1-17
1-8.	FM Linearity Circuit	1-17
2-1	Line Selector	2.1
3-1	Lamp Replacement	3-1
3-2.		
 .	Connectors	. 3-2
3-3.		3-4
	Operator's Checks	. 3-5
	Setting the Frequency and Amplitude	, t.,
	Controls	3.9
3-6	Setting the Modulation Controls.	
00.		· · · ·
4-1.	Single Sideband Phase Noise Test Setup	4-11
4-2.	Single Sideband Broadband Noise Floor Test	
	Setup	4-13
4-3.	Residual AM Test Setup	4-15
4.4.	Residual FM Test Setup	
4.5.	Output Level Accuracy Test Setup	4-18
46.		4-22
4.7.		4-25
4-8.		4-26
4-9.	FM Bandwidth 'Test Setup	4-28
4-10	. FM Distortion Test Setup	4-30
4-11	. Indicated FM Accuracy Test Setup	4-31
4-12	Pulse Modulation Test Setup	4-33
4-13	8. Pulse Measurements	4-34
•	$h_{\rm eff} = -\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2}$	
5-1.	AM Sensitivity Adjustment Test Setup	5-11
5-2.		5-13
~ 0	Leastions of RE Oscillator Ston Adjustments	

5-10. FM Linearity Adjustment (Alternate) Test	· · · · · ·
Setup	.5-25
5-11. FM Sensitivity Adjustment Test Setup	.5-27
5-12. Output Impedance Adjustment Test Setup	.5-29
5-13. Internal Reference Frequency Adjustment	
Test Setup	.5-31
	** * * * *
6-1. Front Panel Mechanical Parts	.6-40
6-2. Cabinet Parts	.6-41
6-3. Type N Connector.	.6-42
8-1. Signal Generator With Circuit Boards on	<i>,</i>
Extenders	. 8-2
8-2. Examples of Diode and Transistor Marking	
Methods.	. 8-4
8-3 Binary Symbols.	. , 8-6
8-4. Open Collector Output Stage (AND Gate)	8-6
8-5. Triggered Flip-Flop	8-7
8-6. D Flip-Flop	8-7
8-7. Schmitt Trigger.	
8-8. J/K Flip-Flop	. 8-8
8-9. Multiple Input J/K Flip-Flop	. 8-8
8-10. Binary Latch	. 8-8
8-11. Binary Shift Register	. 8-9
8-12. Basic Decade Counter (Scaler)	8-9
8-13. Programmable Counter	8-9
8-14. Programmable Up/Down Counter	8-11
8.15. Operational Amplifier	8-12
8-16. Comparator	8-13
8-17. Overall Block Diagram	8-19
8-18. FM Circuits and RF Oscillator Block Diagram.	8-21
8-19. AM/AGC Circuit and Output Amplifier	че ^н
Block Diagran.	8-23
8-20. Counter/Lock Circuits Block Diagram	
8-21. A3A1A2 Divider/Filter Buffer Amplifier	
Board Assembly	8-27
8-22, A3A1A3 Counter Buffer Amplifier Board	
Assembly	8-27
8.23 P/O A3A4 Connector Board Assembly	
Component Locations	8-27
8-24. RF Oscillator Simplified Diagram	

2...

iv

ILLUSTRATIONS (Cont'd)

	Figur	e · · · · · · · · · · · · · · · · · · ·	Page
			, , , , , ,
	8-31.	P/O A9A1 Peak Deviation Range Switch	* 0 00
		Board Assembly Component Locations ,	8-32
	8-32.	P/O A7 FM Shaping Assembly Component	
•		Locations	. 8-33
	8-33.	Over-Deviation Detector and Meter Control	A A A
		Circuits Schematic Diagram	
		A23A1 Modulation Mode Select.	
		A23A2 Modulation Frequency Select	8-34
,	8-36.	A11 Internal Modulation Oscillator	1 0 0 -
		Component Locations	8-35
	8-37.	Internal Modulation Oscillator Schematic	
		Diagram	8-35
		Action of RANGE Switch	8-36
	3-39.	A10A1 RF Filter Assembly Component	
	a Kanala A	Locations (Bottom View)	8-36
	8-40.	A10A1 RF Filter Assembly Component	·
		Locations (Top View)	
	8-41.	RF Filters Schematic Diagram	8-37
	8-42.	Simplified Logic Diagram of the	an ta a
		Divider/Filter Assembly	8-38
	8-43.	A10A2 RF Divider Assembly Component	
	• • • •	Locations.	8-39
,	8-44.	RF Dividers Schematic Diagranis	
	8-45.	A26A3 Modulator Assembly Component	
• •	• •	Locations,	8-41
	8-46.	A26A4 AGC Amplifier Assembly Component	
	С	Locations.	.8-41
	8-47.	AGC Amplifiers and Amplitude Modulator	· · · ·
		Schematic Diagram	8-41
	8-48.	A26A1 Power Amplifier and AGC Defector	· •
- 171		Assembly Component Locations	3-43
	8-49.	P/O A26A2 AM Offset and Pulse Switching	
	8-50.	Assembly Component Locations	,
		Attanuators Schematic Diagram	
	8-51.	A21 Reverse Power Protection Assembly,	
		Bottom View	8-45
	8-52	A21A1 Reverse Power Protection Board	
ì	1	Assembly, Component Locations	
	8-53	Reverse Power Protection Assembly	
		Schematic Diagram	8-45
		A CARLES AND A C	الع المراجع ال المراجع المراجع

Figure

Ť.	1	Pau
		1 46

8-61. A8A1 RF Scaler Assembly Component	
Locations	8-55
8-62. P/O A8A3 Time Base Assembly Component	
Locations	8-55
8-63. Counter RF Scaler Schematic Diagram	8-55
8-64. P/O A8A3 Time Base Assembly Component	• • •
Locations.	8-57
8-65. Counter Time Base Schematic Diagram	8-57
8-66. Up Counter (Count-up Mode) Simplified	
Diagram	8.59
8-67. Down Counter (Count-down Mode) Simplified	·)
Diagram	8-59
8-68, A8A2A2 Counter Display Assembly	
Component Locations	8-61
8-69. P/O A8A2A1 Counter/Lock Board Assembly	
Component Locations	8-61
8-70. Up/Down Counter and Display Schematic	
	. 8-61
8-71. P/O A8A2A1 Counter/Lock Board Assembly	· · · · ·
and A8A5 Counter Switch Component	
Locations.	8-63
8-72. Counter Phase Lock Circuits Schematic	L.
Diagram.	8-63
8-73. A12 Rectifier Assembly Component	
	8-64
8-74. A20 +5.2 and +44.6V Regulator Assembly	n n n n n n n n n n n n n n n n n n n
Component Locations	. 8-65
8-75. A22 +20V and -20V Regulator Assembly	
Component Locations	8-65
8-76. Power Supply Circuits Schematic Diagram	10 C 1
8-77. A18 – 5.2V Regulator and Fan Driver	
Assembly Component Locations	8-67
8-785.2V Regulator and Fan Circuits Schematic	
Diagram	
8.79. A17 Power Supply Mother Board Assembly	
Component Locations	8-69
8-80. Power Supply Mother Board Interconnection	
Diagram	18 60
8-81. A13 Modulation/Metering Mother Board	4700
Assembly Component Locations	. , ,1
(Bottom View)	870
	0-10

8-54. P/O A26A2 AM Offset and Pulse Switching Assembly Component Locations8-47 8-55. AM Preamplifier Schematic Diagram8-47 8-56. AM Interconnections and RF ON/OFF Switch Schematic Diagram .8-49 8-57. P/O A1 Output Range Assembly and A1A1 Sug. 8-58. RF Vernier Schematic Diagram 8-59. A2 Meter Detector and Drive Assembly $\geq r$ Component Locations8-53

8-82, AI3 Modulation/Metering Mother Board $e^{i \hat{E}}$ Assembly Component Locations (Top View)8-71 8-83, Modulation/Metering Mother Board Interconnection Diagram .8-71 194 8-84. A1 Output Level Assembly Illustrated Parts Breakdown..... 18-73 8-85. RF Oscillator Transistor Preparation8-74 8-86. RF Oscillator Transistor Orientation. . .8-74 8-87. A3 RF Oscillator Illustrated Parts Breakdown. .8-75

ILLUSTRATIONS (Cont'd)

Figure	Figure Page
Parts Breakdown	8-91. A23 Modulation Mode/Frequency Switch Illustrated Parts Breakdown
0.05. As i can be vanion and rungs so to	8-92. A26 AM/AGC and RF Amplifier Assembly Illustrated Parts Breakdown
Breakdown	8-93. Top Internal Views
8-90. A10 Divider/Filter Assembly Illustrated Parts Breakdown	8-94. Rear Panel View

TABLES

Table	Page
-}	
1-1.	Specifications
	Environmental Performance
	Characteristics
1-3.	Recommended Test Equipment
1-4.	Recommended Test Accessories
. • •	
	Date Development (Design
4-1.	Recommended Test Equipment (Basic
	Functional Checks)
4-2	Record of Basic Functional
	Checks
4.3	Performance Test Record

Contents

Table		Page
5-1	Factory Selected Components	5-3
5-2.	Post-Repair Test and Adjustments	5-4
5-3.	RF Filter Check	5-20
6-1.	Part Numbers for Exchange Assemblies	
6-2.	Reference Designations and Abbreviations	6-3
6-3.	Replaceable Parts	
	Code List of Manufacturers	
8-1.	Etched Circuit Soldering Equipment	8-4
8-2.	Logic Levels	
8-3.	Assembly Information Index	8-13
8-4.	Schematic Diagram Notes	8-14

SAFETY CONSIDERATIONS

GENERAL

This product and related documentation must be reviewed for familiarization with safety markings and instructions before operation. This product has been designed and tested in accordance with international standards.

SAFETY SYMBOLS

Instruction manual symbol: the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual in order to protect against damage (refer to Table of Contents).

Indicates hazardous voltages.

Indicates earth (ground) terminal.

WARNING

The WARNING sign denotes a hazard. It calls attention to a procedure, practice, or the like, which, if not correctly performed or adhered to, could result in personal injury. Do not proceed beyond a WARNING sign until the indicated conditions are fully understood and met.

CAUTION

The CAUTION sign denotes a hazard. It calls attention to an

SAFETY EARTH GROUND

This is a Safety Class I product (provided with a protective earthing terminal). An uninterruptible safety earth ground must be provided from the main power source to the product input wiring terminals, power cord, or supplied power cord set. Whenever it is likely that the protection has been impaired, the product must be made inoperative and be secured against any unintended operation.

BEFORE APPLYING POWER

Verify that the product is configured to match the available main power source per the input power configuration instructions provided in this manual.

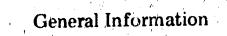
If this product is to be energized via an auto-transformer make sure the common terminal is connected to the neutral (grounded side of mains supply).

SERVICING

WARNINGS

Any servicing, adjustment, maintenance, or repair of this product must be performed only by qualified personnel.

Adjustments described in this manual may be performed with power supplied to the product while protective covers are removed. Energy available at many points may, if contacted, result in personal injury.


operating procedure, practice, or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product. Do not proceed beyond a CAU-TION sign until the indicated conditions are fully understood and met.

Capacitors inside this product may still be charged even when disconnected from its power source.

To avoid a fire hazard, only fuses with the required current rating and of the specified type (normal blow, time delay, etc.) are to be used for replacement.

vii

NAME AND

1-0

Model 8640M

an same same and thinks

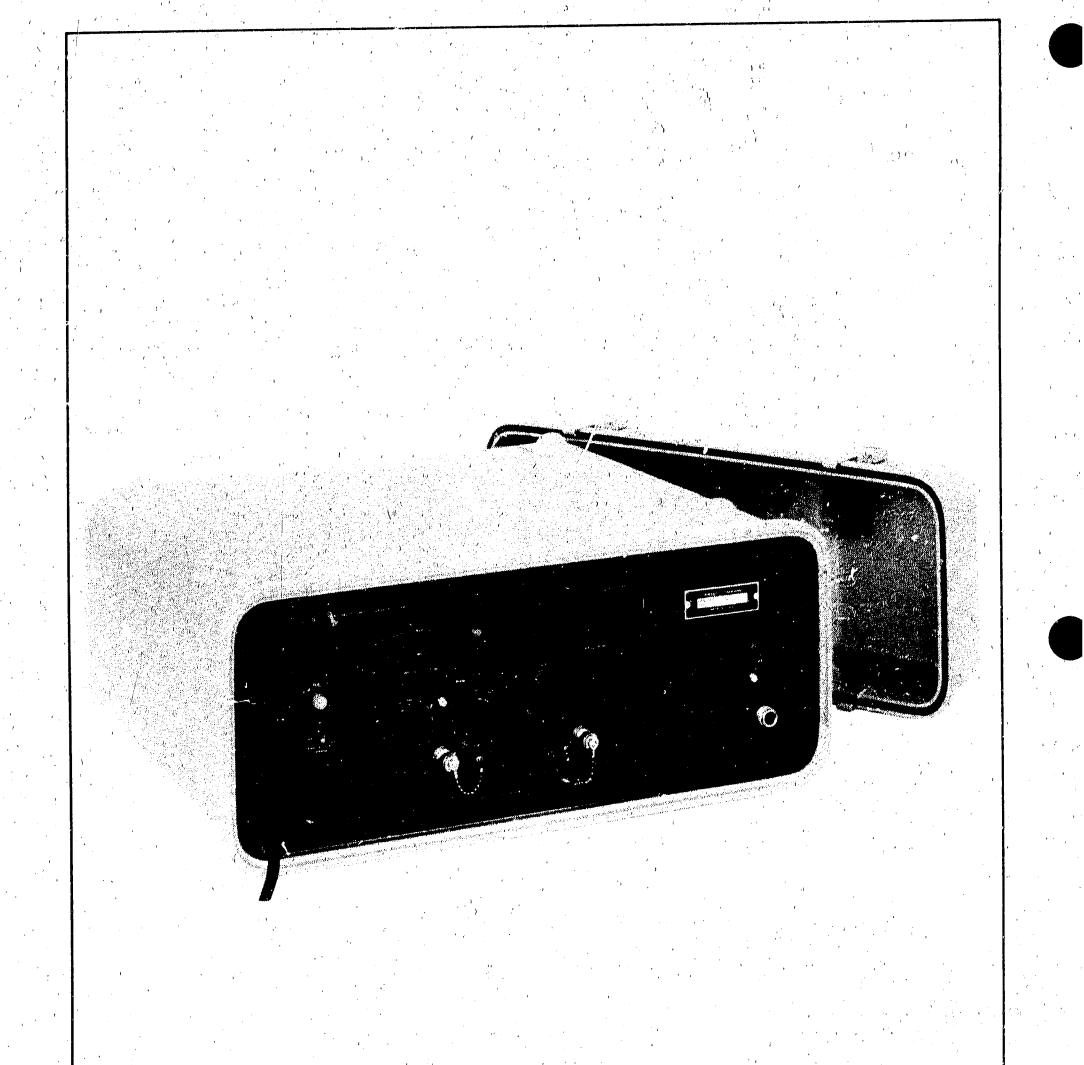


Figure 1-1. HP Nodel 8640M Signal Generator

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION

1-2. This manual contains the operating and service information for the Hewlett-Packard Model 8640M Signal Generator. The Signal Generator is shown in Figure 1-1.

1-3. This section of the manual describes the instruments documented by this manual and covers instrument description, accessories, specifications, and other basic information. The other sections contain the following information:

Section II, Installation: provides information about initial inspection, preparation for use, and storage and shipment.

Section III, Operation: provides information about panel features, and provides operating checks, instructions, and maintenance information.

Section IV, Performance Tests: provides information required to check the performance of the instrument ag inst the critical specifications in Table 1-1.

Section V, Adjustments: provides the information required to properly adjust and align the instrument.

Section VI, Replaceable Parts: provides ordering information for all replaceable parts and assemblies.

Section VII, Manual Changes: this section is reserved to provide manual change information in future revisions of this manual.

Section VIII, Service: provides the information required to repair the instrument.

1-4. Packaged with this manual is an Operating Information Supplement. This is simply a copy of the first three sections of this manual, and should stay with the instrument for use by the operator. Additional copies can be ordered through your nearest Hewlett-Packard Sales and Service office; the part number is listed on the title page of this manual and on the rear cover of the supplement. film transparencies of the manual. Each microfiche contains up to 96 photo duplicates of the manual's pages. The microfiche package also includes the latest Manual Changes supplement as well as all pertinent Service Notes.

1-6. SPECIFICATIONS

1-7. Instrument specifications are listed in Table 1-1. These specifications are the performance standards or limits against which the instrument can be tested. Paragraph 1-18 lists some supplemental performance characteristics. Supplemental characteristics are not specifications but are typical characteristics included as additional information for the user. Table 1-2 lists environmental performance characteristics.

1-8. INSTRUMENTS COVERED BY MANUAL

1-9. This instrument has a two-part serial number. The first four digits and the letter constitute the serial number prefix. The last five digits form the sequential suffix that is unique to each instrument. The contents of this manual apply directly to instruments having the same serial number prefix as listed under SERIAL NUMBERS on the title page.

1-10. An instrument manufactured after the printing of this manual may have a cerial prefix that is not listed on the title page. This unlisted serial prefix indicates that the instrument is different from those documented in this manual. The manual for this instrument is supplied with a Manual Changes supplement that contains "change information" documenting the differences.

1-11. In addition to change information, the supplement may contain information for correcting errors in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is keyed to this manual's print date and part number, both of which appear on the title page. Complimentary copies of the supplement are available from Hewlett-Packard.

1-5. Also listed on the title page of this manual is a "Microfiche" part number. This number can be used to order $102 \times 152 \text{ mm} (4 \times 6 \text{ inch})$ micro-

1-12. For information concerning a serial number prefix not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett Packard office.

1.1

1-13. GENERAL DESCRIPTION

1-14. The Model 8640M Signal Generator is a ruggedized generator covering the frequency range 500 kHz to 512 MHz (450 kHz to 550 MHz with over-range) and can be extended to 1024 MHz with an external doubler. This broad coverage, together with calibrated output and modulation, permits complete RF and IF performance tests on virtually any type of HF, VHF, or UHF receiver. Protection against RF power accidentally applied into the generator output is installed.

1-15. This solid-state generator has an output level range of +18 to -145 dBm (1.8V to 0.013 μ V) from 500 kHz to 512MHz and is calibrated and metered. The output is leveled to within +0.75 to -1.25 dB across the full frequency range of the instrument.

1-16. The generator also provides AM, FM, and PULSE modulation for a wide range of receiver test applications. AM, FM, and PULSE can be performed in either the internal or external modes. This modulation is calibrated and metered for readout under all operating conditions. The internal modulation oscillator provides frequencies of 400, 1000, and 5000 Hz for AM and FM. The internal pulse generator can be varied in width and rate.

1-17. Other significant features are extremely low noise, built-in counter, phase lock, and front panel controls designed for operating convenience and flexibility. The generator has the ON/OFF switch interconnected with thermal protection, also an elapsed time meter keeps count of operating hours.

1-18. PERFORMANCE CHARACTERISTICS

1-19. Spectral Purity

1-2

1-20. The basic frequency source of the Signal Generator is a mechanically-tuned high-Q cavity oscillator that operates over the frequency range 230-550 MHz. This oscillator has an inherent

1-21. Frequency tuning within a selected range is accomplished with an 8-turn FREQUENCY TUNE control (see Figure 3-2) for fast selection of the desired output frequency. A mechanical FINE TUNE control has a tuning range of 1000 ppm for precise frequency setting.

1-22. Restabilization time is short when tuning the frequency across any one range. The total frequency excursion after any frequency change is typically < 20 ppm and within 15 minutes the output has restabilized to the specified 15 ppm/10 min. When *not* phase locked, no restabilization time is required when switching frequency ranges for a fixed position on the FREQUENCY TUNE control.

1-23. Noise performance of the generator is stateof-the-art for a solid-state generator. The high-Q cavity oscillator has been optimized by use of a low noise microwave transistor for a spectrally pure output signal. Figure 1-2 shows the typical measured single-sideband noise performance in a 1 Hz bandwidth for various offsets from a (256 and 512 MHz) carrier. The low close-in noise characteristic is ideally suited for the stringent adjacent channel tests that are commonly made on a wide variety of communication receivers.

1-24. Figure 1-3 gives a plot of the guaranteed SSB noise performance for a 20 kHz offset from the carrier for the 256–512 MHz range. From 230 to 450 MHz, noise is > 125 dB/ $\sqrt{\text{Hz}}$ below the carrier level and rises to 115 dE/ $\sqrt{\text{Hz}}$ at 550 MHz. This signal-to-noise ratio decreases by approximately 6 dB for each division of the output frequency down to the broadband noise floor of better than 130 dB/ $\sqrt{\text{Hz}}$.

1-25. Frequency Counter

1-26. The Signal Generator has a built-in 550 MHz frequency counter and phase lock synchronizer with a 6-digit LED display. The resolution for the internal count mode is 10 Hz at 0.5 MHz and 10 kHz at 512 MHz but can be increased using the

stability of better than 15 ppm/10 min and exceptionally low noise characteristics. The lower 9 frequency ranges are obtained by dividing the basic oscillator frequency and filtering the unwanted harmonics. Using this technique, sub-harmonic and non-harmonic spurious signals are virtually eliminated. A band over-range of +7% and -10% adds convenience when operating near the nominal band edges. An external doubler which is available extends the frequency range to 1024 MHz. INT X10. When using the INT X10, it is possible for significant digits or the decimal point to be shifted off the display. An OVERFLOW light reminds the operator that the display is not showing the complete output frequency.

1-27. This resolution, combined with the high stability of the generator, allows precise frequency selection and meaningful measurements on high performance receiver systems.

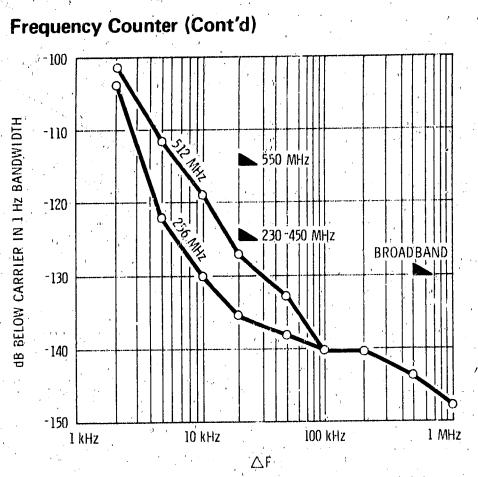
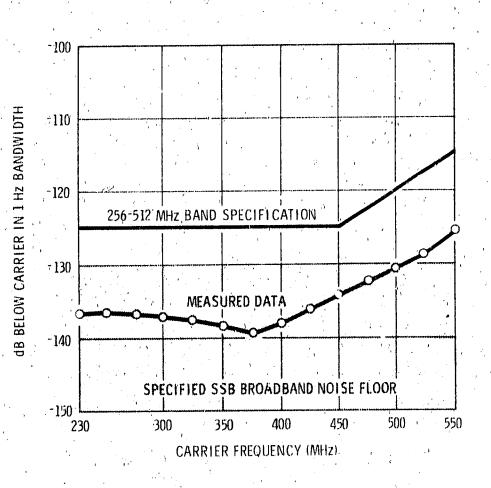



Figure 1-2. Measured Single Sideband Noise vs Offset from Carrier (stated in a 1 Hz bandwidth at 256 and 512 MHz carrier frequencies on 256-512 MHz Range). Markers indicate specified limits.

General Information

counter in many measurement systems. Input sensitivity is ≥ 125 mVrms into 50 Ω . Maximum resolution in the EXT count mode is 10 Hz for 0-10 MHz and 1 kHz for 10-550 MHz.

1-29. Phase Lock Mode

1-30. Also included in the Signal Generator is a built-in phase lock synchronizer that locks the RF output frequency to the crystal time base used in the counter. In this locked mode, output stability is better than 2 ppm/10 min and the spectral purity and FM capability (down to 50 Hz rates) of the unlocked mode are preserved.

1-31. Phase locking the generator is simple - just select the front panel LOCK position. The generator is then locked to the frequency shown on the LED display. If lock is broken (for example by tuning to a new output frequency or during warmup), there is an immediate indication: the LED display blinks. The generator can be relocked by switching to NORM, retuning and switching back to LOCK.

1-32. The generator can be locked in the normal counter mode or in the X10 INT mode. It is not possible to lock when counting external inputs. Maximum resolution when in the phase lock mode is 1 Hz for 500 kHz to 1 MHz and 1 kHz for 100 to 512 MHz.

1-33. When phase locked, the narrow bandwidth of the phase lock loop (< 5 Hz) preserves full FM capabilities down to rates of 50 Hz and assures no degradation in noise from the unlocked mode.

1-34. Amplitude Modulation

1-35. AM is variable from 0 to 95% with the bandwidth, accuracy, and low incidental FM reuired for the most stringent AM applications. The front panel meter gives a readout of AM% in either the internal or external mode. This is read on the 0-10 scale in tens of percent.

Figure 1-3. Specified Signal-to-Phase-Noise Ratio at 20 kHz Offset vs Carrier Frequency (stated in a 1 Hz bandwidth). For lower frequencies, phase noise decreases approximately 6 dB per frequency division down to the broadband noise floor.

1-28. The built-in counter can also be used to count external input signals from 10 Hz to 550 MHz and eliminates the need for a separate frequency

1-36. AM at rates up to 60 kHz is possible depending on carrier frequency and modulation depths. Distortion is specified at 1000 Hz to be < 5% up to 70% AM, < 10% to 95% AM. Figure 1-4 shows measured AM distortion characteristics for other modulation frequencies. Note that for 0-50% AM, distortion is < 1% to approximately 50 kHz for an output frequency of 200 MHz.

1-3

and the second second

General Information

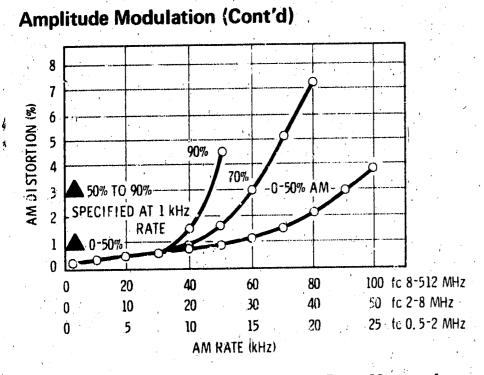
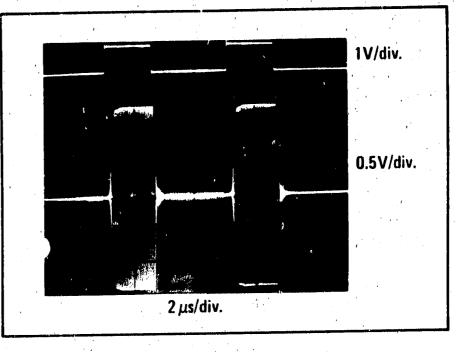
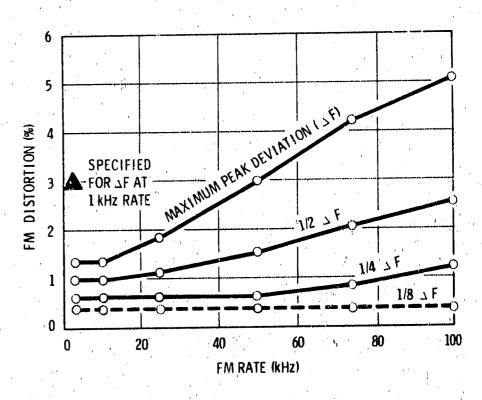


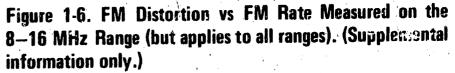
Figure 1-4. AM Distortion vs AM Rate Measured at 200 MHz and +13 dBm (but applies to all ranges). (Supplemental information only.)

1-37. Pulse Modulation


1-38. Also included on the MODULATION MODE switch are positions for EXT and INT PULSE modulation. In EXT PULSE mode, pulse inputs with repetition rates to 500 kHz and widths down to 2 μ s can be applied to modulate the RF carrier. Rise and fall times vary with output frequency down to <1 μ s from 8 to 512 MHz. The INT PULSE can be changed in PULSE WIDTH from 1 to 40 μ s and in RATE from 0.05 to 5 kHz.

1-39. Pulse inputs turn the RF on. Hence with no pulse input the RF will read approximately zero on the built-in level meter. Figure 1-5 shows pulsed RF 20 MHz carrier. For pulse inputs greater than 0.5V, the RF output is on, level calibration is preserved, and the level meter reads the pulse-on power of the RF output. For repetition rates below that specified, the pulsed RF output is still z vailable but the pulse-on level is no longer cali-Lrated or metered.


1-40. Frequency Modulation


1-4

1-41. FM is calibrated, metered, and constant with

1-42. For narrowband FM applications, a minimum full-scale deviation of 5 kHz is provided on the meter and the PEAK DEVIATION range switch. When switching from the OFF to FM mode, there is negligible shift in carrier frequency and no degradation in spectral purity. With the generator in the phase locked mode it is possible to modulate at rates from 50 Hz to 250 kHz with accurate narrowband FM and the carrier drift stability of a crystal oscillator. Using the unlocked mode, it is possible to modulate from dc to 250 kHz with a carrier drift stability of <15 ppm/ 10min.

RF frequency and range changes. Figure 1-6 shows FM distortion vs FM rate measured on the 8-16 MHz range. Peak deviations to at least 0.5% of carrier frequency are available (i.e., 1% of the minimum frequency in each octave range). On the 256-512 MHz range, for example, the maximum deviation is 2.56 MHz peak or 5.12 MHz peak-topeak. With this capability, it is possible to sweep the generator, using FM EXT DC and a saw-tooth input, to test and align IF filters and discriminators.

1-43. Internal Modulation Oscillator

1-44. Standard tones for internal AM and FM are 400, 1000, 5000 Hz. These frequencies and the

Internal Modulation Oscillator (Cont'd)

internal pulse generator output are available at the front panel whenever an internal modulation mode is selected.

1-45. Multi-Function Meter

1-46. The panel mater on the Signal Generator monitors the RF output level in dBm and volts, the AM percentage, and the FM peak deviation in kHz or MHz.

1-47. A front panel annunciator indicates when certain settings of FM medulation controls exceed specified limits. Besides alerting the operator to invalid control settings, the annunciator indicates how to return the instrument to proper operation.

1-48. The REDUCE PEAK FM DEVIATION annunciator lights whenever the PEAK FM DEVIA-TION switch or the LEVEL vernier has been set to exceed the allowable limits. The specification allows for a maximum peak deviation of 1% of the minimum frequency in each range (e.g., 2.56 MHz on the 256-512 MHz range). When the switch setting exceeds this limit, the annunciator lights, the FM is automatically turned off, and the FM meter reads zero. If the LEVEL control is set so that the input to the FM amplifier is >1V peak, the annunciator lights but the FM remains on.

1-49. Output Range

1-50. The wide output range of the generator is achieved with a 10 dB step attenuator and a concentric vernier. Output levels are read on the meter, in conjunction with the output level switch.

1-51. The maximum output level of +18 dBm permits high level tests on receiver IF's, amplifiers, and mixers without additional power amplification. At the same time, extremely low leakage enables receiver sensitivity measurements down to levels of $0.03 \,\mu$ V in a shielded system.

1-52. ACCESSORIES SUPPLIED

to 5 kHz. This is accomplished by heterodyning a 5.0 to 5.5 MHz output from the generator with a 5 MHz local oscillator. Output level and modulation calibration of the Signal Generator are preserved, and the output frequency is that displayed by the generator minus 5 MHz. For convenience the output of the Down Converter can be switched to provide direct output from the Signal Generator.

1-56. Termination. The HP Model 11507A Termination maintains the generator's output level calibration when the output is connected to load impedances other than 50 ohms. It can provide source impedances of 25 and 5 ohms, and can simulate a broadcast-band dummy antenna. The frequency range is 50 kHz to 65 MHz.

1-57. 75-Ohm Adapter. The HP Model 11687A 50-to-75 Ohm Adapter connects to the generator's output to provide a source impedance of 75 ohms.

1-58. Doubler. The HP Model 11690A Doubler extends the usable frequency range of the generator one octave to 1024 MHz (actually to 1100 MHz with 7% frequency overrange). Conversion loss in the doubler is typically < 13 dB.

1-59. SERVICE AND USER AIDS

1-60. Video Tapes. Video tapes covering instrument use, application, and service are available. Contact the nearest Hewlett-Packard Sales and Service Office for a list of presently available tapes.

1-61. Application Notes. Informative notes concerning the use of signal generators are also available from the nearest Hewlett-Packard Sales and Service Office.

1-62. Service Notes. Hewlett-Packard makes design improvements to its current line of instruments on a continuing basis. Many of these improvements can be incorporated in instruments produced earlier. Modification and general service information is passed on in the f in of Service Notes. To obtain the Service Notes contact the nearest

1-53. The Model 8640M is supplied with a Combination Wrench (HP 08640-00027) mounted inside chassis. This wrench is used on SMC type connectors.

1-54. EQUIPMENT AVAILABLE

1-55. Down Converter. The HP Model 11710A Down Converter is a self-contained unit that extends the frequency range of the generator down Hewlett-Packard Sales and Service Office.

1-63. WARRANTY

1-64. The Signal Generator is warranted and certified as indicated on the inner front cover of this manual. For further information, contact the nearest Hewlett-Packard Sales and Service Office; addresses are provided at the back of this manual.

1-5

1-65. TEST EQUIPMENT REQUIRED

1-56. Tables 1-3 and 1-4 list the test equipment and accessories required to check, adjust and repair the Signal Generator. (Table 4-1 is a separate list of relatively inexpensive, commonly available test equipment for the Basic Functional Check only.) If substitute equipment is used it must meet the listed critical specifications.

NOTE

The safety classifications of this instrument is Safety Class I. It has been designed and tested according to international standards. The instruction manual contains information, warnings, and cautions which must be followed by the user to ensure safe operation and to retain the instrument in safe condition.

Table 1-1. Specifications (1 of 5)

(All specifications apply over the nominal Frequency Ranges and over the top 10 dB of the output level vernier range unless otherwise specified.)

FREQUENCY CHARACTERISTICS

Range: 500 kHz to 512 MHz in 10 octave ranges, (to 1024 MHz with External Frequency Doubler).

Ranges and Range Overlap: Ranges extend approximately

10% below and 7% above the nominal Frequency Ranges shown below.

Frequency Ranges (MHz)	Frequency Range (MHz) (with overlap)
0.5-1	0.45-1.07
1-2	0.90-2.14
2-4	1.80-4.29
48	3.60-8.59
8-16	7.20-17.1
16-32	14.1-34.3
32-64	28.8-68.7
64-128	57.5-137
128-256	115-275
256-512	230-550
External Dou	bler Range
512-1024 ¹	460-1100

Internal Counter Resolution (Unlocked):

Frequency Ranges (MHz)	Normal Mode	Expand x10
0.5-1	10 Hz	1 Hz
1-16	100 Hz	10 Hz
16-128	1 kHz	100 Hz
128-1024	10 kHz	1 kHz

Optimum Counter Resolution When Phase-Locked:

Frequency Ranges (MHz)	Resolution
0.5-0.999999	1 Hz
1.0-9.99999	10 Hz
10.0-99.9999	100 Hz
100.0-999.999	1 kHz
1000-1024	10 kHz

Accuracy: 6-digit LED display with X10 expand.

Total

Count=Resolution+ErrorAccuracy(± 1 count)(INT or EXT)

² Counter

Reference

Internal Reference Error: See counter internal reference characteristics.

¹512-1024 MHz can only be obtained using an external doubler such as Model 11690A.

²When phase locked, Co[°] nter Resolution error is eliminated.

1-6

General Information

Table 1-1. Specifications (2 of 5)

FREQUENCY CHARACTERISTICS (Cont'd)

Fine Tuning: Unlocked > 1000 ppm total range.

Stability:

	Normal	Locked
Time (after 3 hour warm-up)	<15 ppm/10 min.	<2 ppm/10 min
Temperature	<50 ppm/°C	<1 ppm/°C ¹
Line Voltage ² (±5% line voltage change)	<10 ppm	<0.1 ppm

SPECTRAL PURITY

Harmonics (at 1 volt, +10 dBm output range and below): 0.5 to 512 MHz: > 30 dB below carrier (dBc).

Subharmonics and Nonharmonic Spurious: (excluding frequencies within 15 kHz of carrier: > 95 dB below carrier.

Noise: (Averaged rms noise level below carrier stated in a 1 Hz bandwidth):

- SSB Phase Noise at 20 kHz offset from carrier.
 256 to 512 MHz: > 125 dBc from 230 to 450 MHz increasing linearly to > 115 dBc at 550 MHz.
 0.5 to 256 MHz: decreases approximately 6 dB for each divided frequency range until it reaches SSB Broadband Noise Floor of > 130 dBc.
- SSB Broadband Noise Floor at maximum output vernier and greater than 500 kHz offset from carrier. 0.5 to 512 MHz: >130 dBc.

Residual FM and AM: (Averaged rms):

Post-Detection Noise Bandwidth	FM ³ CW and up to 1/8 maximum allowable peak deviation	AM
300 Hz to 3 kHz	<5 Hz, typical	>80 dBc, typical
20 Hz to 15 kHz	<50 Hz	>70 dBc

OUTPUT CHARACTERIS) .CS

Impedance: 50Ω , ac coupled, SWR <2.5 on 2V and 1V output ranges; <2.0 on all other ranges.

Range: 10 dB steps and 18 dB vernier provide output power settings from +18 to -145 dBm (1.8V to 0.013 μ V) into 50 Ω .

1-7

sir sealthe

¹ Phase lock may break due to temperature change (i.e., during warm-up) simply relock at desired frequency.

This specification is for short term transient line changes.

³ Residual FM is measured on the 256–512 MHz range and not locked. For lower ranges residual FM decreases by approximately 1/2 for each divided frequency range until limited by the Broadband Noise Floor. This limit for 300 Hz to 3 kHz bandwidth is ≈ 1 Hz and for 20 Hz to 15 kHz bandwidth is ≈ 4 Hz.

Table 1-1. Specifications (3 of 5)

		OUTPUT O	HARACTERIS	ICS (Cont'd)		
Lev	el Accuracy (total acc	uracy as indicated on	Level Meter): ¹	i en Santa i g		
ſ			Outpu	t Level (dBm)		
Frequency	Using T	op 10 dB of Vernie	r Range	Using Full Vernier Range		
	Range (MHz)	+13 to -7	7 to47	-47 to -137	+18 to -145	
	0.5-512	±2.0 dB	±2.5 dB	±3.0 dB	Add ±0.5 dB	,

Reverse Power Damage Level: 40 Vdc maximum or 50W (+47 dBm) of RF power (between dc and 1100 MHz) into generator output.

Level Flatness: < +0.75 dB to -1.25 dB from 0.5 to 512 MHz referred to output at 50 MHz. (Flatness applies from +13 to -7 dBm and for top 10 dB of vernier range.) Leakage (with all unused outputs terminated properly): Leakage limits are below those specified in MIL-I-6181D. Furthermore, less than $3 \mu V$ is induced in a 2-turn, 1-inch diameter loop one inch away from any surface and measured into a 50 Ω receiver. This permits receiver sensitivity measurements to at least $< 0.03 \mu V$ in a shielded system.

MODULATION CHARACTERISTICS

General

Types: Internal and External AM, FM, and PULSE.

External Sensitivity: Nominal 1 volt peak yields 100% AM or maximum peak deviation (with vernier in full cw position). Internal Modulation Sources:
Sine Wave: Frequency: fixed 400 Hz, 1 kHz and 5 kHz ±5%.
Pulse: Rate: 50 to 5000 pps Width: 1 to 40 μs.

Amplitude Modulation

(AM specifications apply to the top 10 dB of output vernier range unless otherwise specified.)

Depth: 0 to 95%

AM Rates: External ac; 20 Hz to AM 3 dB bandwidth. External dc; dc to AM 3 dB bandwidth. AM Distortion (1 kHz rates): 0 to 70% AM: < 5% 70 to 95% AM: < 10%

AM 3-dB Bandwidth:

1

1-8

Frequency Ranges (MHz)	0 to 50% AM	50 to 90% AM
0.5-2	20 kHz	12.5 kHz
2-8	40 kHz	25 kHz
8-512	60 kHz	50 kHz

Indicated AM Accuracy (1 kHz rates using internal meter): $\pm(7.5\% \text{ of reading } +1.5\% \text{ full scale})$

Peak Incidental Phase Modulation (at 30% AM): 0.5 to 128 MHz: < 0.15 radians. 128 to 512 MHz: < 0.3 radians.

Peak Incidental Frequency Deviation: Equals peak incidental phase modulation X modulation rate.

Level Accuracy error consists of allowances for: meter accuracy, detector linearity, temperature, flatness, attenuator accuracy, and twice the measurement error. All but the attenuator accuracy and the measurement error can be calibrated out with a power meter at a fixed setting. See HP Application Note 170-1.

General Information

1-9

A PERSONAL PROPERTY AND

Model 8640M

Table 1-1. Specifications (4 of 5)

	Freque	ncy Modulation
Deviation: Maximum allow lowest frequency in each	vable deviation equals 1% of a range as shown below.	FM 3-dB Bandwidth: ² Internal and External ac: 20 Hz to 250 kHz. External dc: dc to 250 kHz.
Frequency Range (MHz)	Maximum Peak Deviation (kHz)	FM Distortion (1 kHz rates): $< 1.5\%$ for deviations up to 1/ β maximum allowable.
0.5-1	5	< 5% for deviations up to maximum allowable.
1-2 2-4 4-8	10 20 40	Indicated FM Accuracy (1 kHz, rates using internal meter) Excluding maximum peak deviation position: ±(12% of reading +1.5% full scale).
8—16 16—32	80 160	Maximum peak deviation position: $\pm(15\%)$ of reading $\pm 1.5\%$ full scale), typically.
$\begin{array}{c} \textbf{32-64} \\ \textbf{64-128} \end{array}$	320 640	Incidental AM (1 kHz rates):
128—256 256—512	1280 2560	< 0.5% AM for FM deviations up to 1/8 maximum allowable.
512-1024 ¹	5120	< 1.0% AM for FM deviations up to maximum allowable.

Pulse Modulation

(Specifications apply for top 10 dB of output vernier range)

Frequency Ranges (MHz)	0.5 to 1	1 to 2	2 to %	8 to 32	32 to 512
Rise and Fall Times	<9 μs	<4 μs	< 2. µs	<1	μ5
Pulse Repetition Rate		Hz) kHz	50 Hz to 100 kHz	50 Hz to 250 kHz	50 Hz to 500 kHz
Pulse Width Minimum for Level Accuracy Within 1 dB of CW (> 0.1% duty cycle)	10	μs	5 µs	2	μs
Pulse ON/OFF Ratio At Maximum Vernier			>40 dB		

External Peak Input Required

Nominally > +0.5V(+5V max.) waveform, return to zero, into 50 Ω Schmitt trigger.

¹ 512-1024 MHz can be obtained using an external doubler such as Model 11690A.

 2 When in locked mode, FM is possible only for vates greater than 50 Hz.

Table 1-1. Specifications (5 of 5)

COUNTER CHARACTERISTICS

External RF Input:

Frequency Range: 10 Hz to 550 MHz.

Sensitivity: ≥ 125 mVrms, ac only, into 50Ω

(≥ -5 dBm). Input level may not exceed +15 dBm

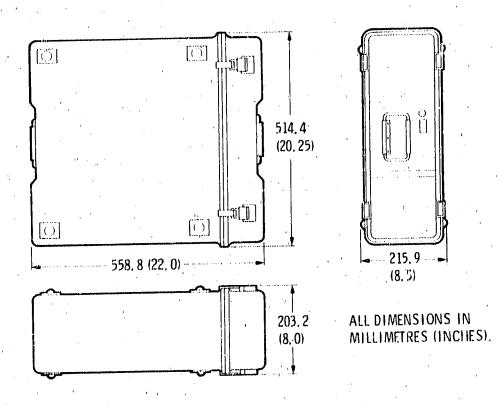
(1.3 Vrms).

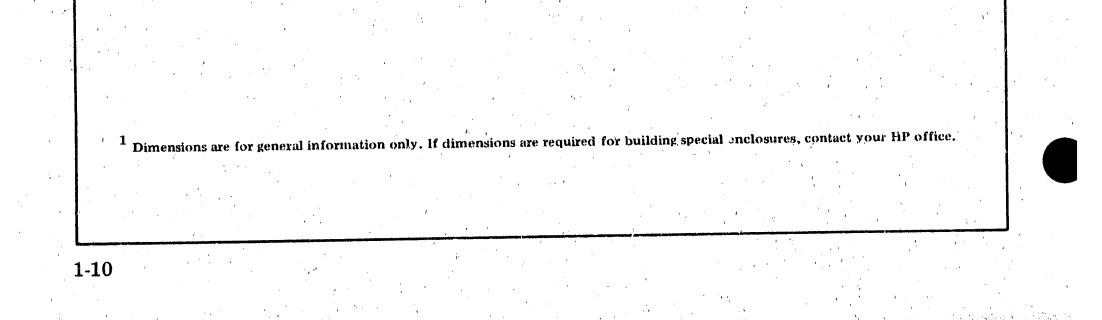
External Count Resolution:

MODE (MHz)	Resolution
EXT 0-10	10 Hz
EXT 10-550	1 kHz

Internal Reference Accuracy (after calibration at 25° C): $< \pm 20$ ppm (between -40° C and $+55^{\circ}$ C). Better than ± 2 ppm for 15° C to 35° C typical.

GENERAL CHARACTERISTICS


Operating Temperature Range: -40° to $+55^{\circ}$ C.

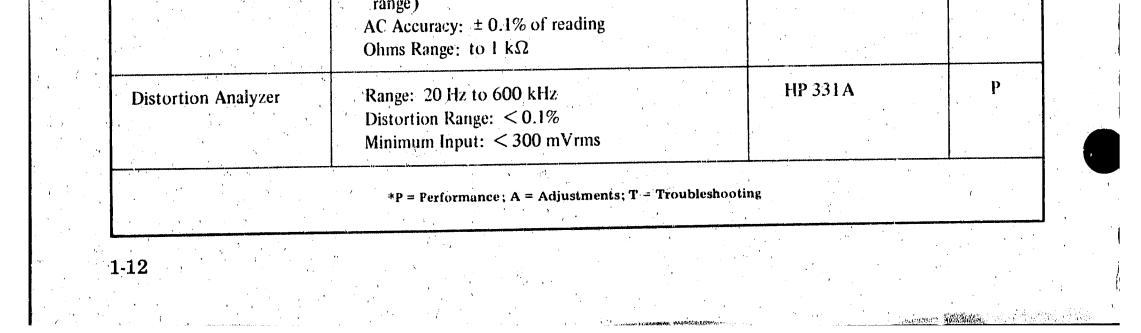


Power Requirements: 115 Vac ±10% 47.5-420 Hz or 230 Vac ±10% 47.5-66 Hz.

Weight: without case 20 kg (44 lb), with case and accessories 29.6 kg (65 lb).

Dimensions:¹ 558.8 mm L x 514.4 mm W x 215.9 mm H (22.0 in. L x 20.25 in. W x 8.5 in. H).

Table 1-2. Environmental Performance Characteristics


emperature: MIL-STD-810B, Method 501, 502 Proc. 1.	Vibration: MIL-T-	21200J Class II tested to:
Operating: 1. Continuous operation allowed between -40° C (-40° F) and $+55^{\circ}$ C (131° F).	Vibration Rates	Displacement (D.A.)
 Intermittent operation (< 20 min.) allowed up to +71°C (160°F). 	5-15 Hz 16-25 Hz 26-55 Hz	0.06 inch 0.04 inch 0.02 inch
on- Cperating: Storage allowed between - 60°C (- 76°F) and + 85°C (185°F).	rain and wind con	IQB Method 506 Proc. 1. Simulated ditions up to 12 in./hour rainfall a
umidity: MIL-STD-810B, Method 507 Proc. 1. 10-day test.	up to 40 mph win ing configuration.	d. Instrument was in normal opera
Operating: -40° C (-40° F) to $+40^{\circ}$ C (104° F) at up to 95% RH.	Explosive Atmosphe Proc. 1.	re: MIL-STD-810B Method 511
Non-Operating: Storage allowed between -60°C (-76°F) and +60°C (140°F) up to 95% RH. Condensation allowed.	Type testing verif	ied successful operation in potentianere laden with avionic fuel vapor.
Ititude: MIL-STD-810B, Method 500 Proc. 1. Operating: 3048m (10,000 ft.)	A mechanical mo	-810B Method 509 Proc. 1. ck-up was tested to verify the non of parts, materials, and processes.
Non-Operating: 15240m (50,000 (t.).	Fungus: Non-fungi	is nutrient material used.
will withstand 20 g's shock in any of 3 planes without	Tumo tostori nor N	
damage.	Methods CE 03 ar	IIL-STD-461A, Class C1, Test nd RE 02.

ς.

.

Instrument Type	Critical Specifications	Suggested Model	Use*
20 dB Amplifier (2 required)	Range: 0.5-520 MHz Gain: 20 to 25 dB Flatness over Range: ±2 dB Impedance: 50Ω Noise Figure: <5 dB	HP 8447A	Ρ
20 dB Amplifier	Range: .4-1200 MHz Gain: > 20 dB Flatness: ± 2 dB Impedance: 50 Ω Noise Figure: < 5 dB to 1 GHz	HP 8447B	P
40 dB Amplifier	Range: 5 Hz to 100 kHz Gain: 20 and 40 dB ± 1 dB Input Impedance: >5 k Ω Output Impedance: 50 Ω Noise: < 25 μ Vrms referred to input Output: >1 Vrms into 50 Ω	HP 465A	P, A
40 dB Amplifier	Range: 20 Hz to 100 kHz Gain: 40 \pm 1 dB Input Impedance: 50 Ω Noise Figure: < 3 dB when driven from 50 Ω Output Level: > 100 mV in 50 Ω	НР 08640- 60506	P
One-Inch Loop Antenna	To ensure measurement accuracy, no substitution is possible. Fabrication depends upon machining and assembling to close tolerances.	HP 08640-60501	Р
10 dB Step Attenuator	Attenuation: 0-120 dB in 10 dB steps Range: 0.45-1 GHz Accuracy: ±1.5 dB to 90 dB, ±0.3 dB to 120 dB (below 1 kHz)	HP 355D	P, A
10 dB Attenuator	Accuracy: ±0.5 dB to 1.2 GHz	HP 8491A Opt. 010	Α
Crystal Detector	Range: $0.45-1200$ MHz Low Level Sensitivity: > 0.35 mV/ μ W No internal dc return	HP 8471A	Р, А
Digital Multimeter	DC Accuracy: ± (0.01% of reading + 0.02% of range)	HP 3490A	P, A, T

Table 1 3. Recommended Test Equipment (1 of 4)

General Information

*

Use* **Suggested Model Critical Specifications Instrument Type** P CIR-Q-TEL** 15 kHz low-pass (7 pole) 15 kHz Low-Pass Filter FLT/21B-15K-Impedance: 50Ω 7/50-3A/3B Ripple: $< \pm 0.2 \text{ dB}$ Frequency Counter P, A, T HP 5327C Range: to 550 MHz Input Sensitivity: <100 mV Inputs: 50Ω and high impedance (1 M Ω) Accuracy: <1 ppm Period and Frequency Measurement Capability Time Base: 10 MHz Ranges: 100 kHz to 10 MHz Frequency Meter P, A HP 5210A Linearity: < 0.05% Analog Output 1V for full scale Output Low-Pass Filters for Frequency Meter HP 10531A Filter Kit (20 kHz and 1 MHz Butterworth filters) Frequency: 10 MHz, 5 MHz, 1 MHz, or 100 kHz Α Suitable House Frequency Standard Accuracy: $< 10^{-7}$ (preferred) Standard HP 08640-60503 A. FM Linearity Circuit See Figure 1–8 (see para. 5-39 for possible requirement) HP 10514A P, A **Double Balanced** Mixer Range: 0.45-550 MHz HP 08640-60504 P See Figure 1-7 Noise Phase Lock Circuit HP 180C/1801A/ P, A, T 50 MHz Real Time Oscilloscope 1820C Sensitivity: 5 mV/division Internal/External Sweep and Triggering P, A, T HP 435A Accuracy: ±1% of reading **Power Meter** Range 0.45-1200 MHz HP 8482A Power Sensor Input Level: -20 to + 20 dBm

Table 1-3. Recommended Test Equipment (2 of 4)

	VSWR: < 1.2:1			
Pulse Generator	Range: 50 Hz to 500 kHz Output: > 1V into 50 Ω Pulse Width: down to 1 μ s Transition Time: < 50 ns	HP 8003A	P, A, T	
RMS Voltmeter (continued on next page)	Range: 10 Hz to 100 kHz Reading: True rms (ac only) Voltage Range: 1 mV to 10V full scale	HP 3400A	P	
**CI	*P = Performance; A = Adjustments; T = Troubleshootin R-Q-TEL INC. / 10504 Wheatley / Kensington, MD. 20795 / Pho			
			1-13	
				an tha a tha an

General Information

Table 1-3. Recommended Test Equipment (3 of 4)

Instrument Type	Gritical Specifications	Suggested Model	Use*
RMS Voltmeter (continued)	Accuracy: 1% of full scale 50 Hz to 50 kHz Scale: Voltage and dB		
Signal Generator	Range: $0.45-550 \text{ MHz}$ Output: > 13 dBm into 50Ω Drift: < 20 ppm/10 min. SSB Phase Noise: > 130 dB down from 230 to 450 MHz increasing linearly to > 122 dB down at 550 MHz (stated in a 1 Hz bandwidth at 20 kHz offset from carrier) and decreasing approximately 6 dB/octave for each divided down range - but need not be less than 140 dB down. Residual FM: < 15 Hz rms in 20 Hz to 15 kHz post-detection noise bandwidth. Aux RF Out: > -5 dBm. Leakage: < 3 μ V induced in a 2- turn, 1- inch diameter loop 1 inch away from any surface and measured into a 50 Ω receiver. FM: dc coupled, at least 40 kHz deviation for 1V input.	HP 8640A	P, A
Audio Spectrum Analyzer	Range: 20-200 kHz Amplitude Calibration: Display Accuracy: ±0.25 dB/dB but not more than 1.5 dB over 70 dB dynamic range.	HP 8556A/8552B/ 141T	P, A
	Flatness: ± 0.2 dB Vertical Reference Scale: 10 dB/division log, 2 dB/division (or less) log, and linear display calibration.		
	Average Noise Level: < -120 dBm (50 Ω) with 1 kHz IF bandwidth.		
	Spurious Responses: > - 60 dB down for nominal specified inputs.		
	Tracking Generator: Flatness: ± 0.25 dB Level: > 3 Vrms into 600Ω		:
RF Spectrum Analyzer	Range: 0.5-1250 MHz	HP 8554B/8552B/	P, A, 7

RF Spectrum Analyzer

1-14

Amplitude Calibration:

Display Accuracy: ±0.25 dB/dB but not more than 1.5 dB over 70 dB dynamic range.

Flatness: ±1 dB

ć,

IF Gain Step Accuracy: ±0.2 dB

*P = Performance; A = Adjustments; T = Troubleshooting

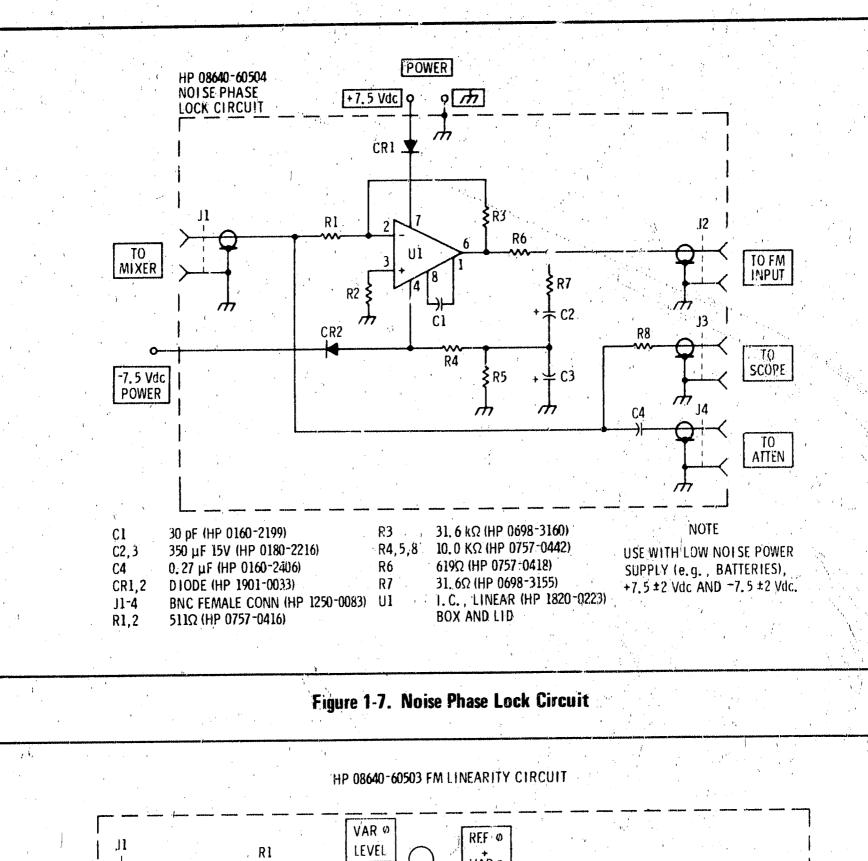
141T

Model 8640M

Table 1-3. Recommended Test Equipment (4 of 4)

Instrument Type	Critical Specifications	Suggested Model	Use*
RF Spectrum Analyzer (continued)	 Amplitude Calibration (continued): Vertical Reference Scale: 10 dB/division log, 2 dB/division (or less) log, and linear display calibration. Average Noise Level: < - 102 dBm with 10 kHz IF bandwidth Spurious Responses: > 60 dB down for inputs of -40 dBm or less Span Width: 0-1 GHz Compatible with Tracking Generator 		
Test Oscillator	Range: 10 Hz to 10 MHz Output Impedance: 600 Ω and 50 Ω Distortion: >40 dB down Output Level: >3 Vrms	HP 651B	P, A, T
Test Oscillator	Frequency: 600 kHz Output Impedance: 600Ω Output: > 10 Vrms into 600Ω	HP 200CD	T
Tracking Generator	Output: to 0 dBm (50Ω) Flatness: ±0.5 dB Compatible with Spectrum Analyzer (HP 8554B/8552B/141T)	HP 8444A	A
Variable Phase Oscillator (see para. 5-39 for pos- sible requirement)	Frequency: 1 kHz Level: > 1V into 600Ω Phase Variability: 0 to 360°	НР 203А	Α
VSWR Bridge	Range: 0.45-1200 MHz Connectors: Type N	Wiltron Model** 60N50	A

1-15


General Information

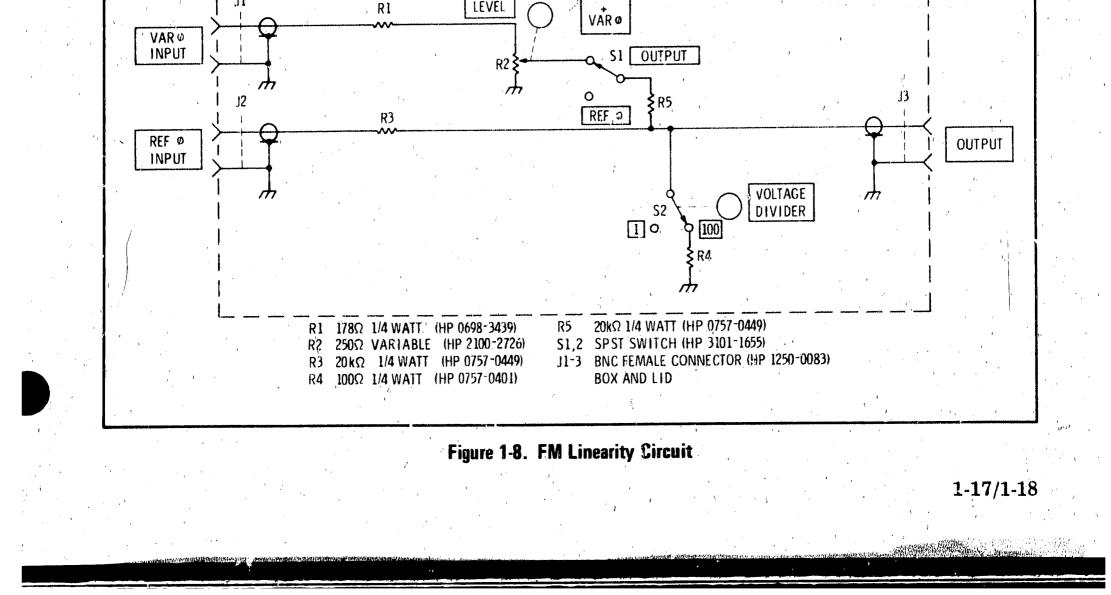

Accessory Type	Suggested Model
Adapter (Type N male and BNC Female connectors)	HP 1250-0067
Adapter (BNC Male and Jual Banana post connectors)	HP 10110A
Adapter (two SMC Male connectors)	HP 1250- 0827
Adapter (Type N Male to GR 874)	HP 1250-0847
Double Shielded Cable (BNC Male connectors, coaxial)	HP 08708-6033
Nine- inch Cable (BNC Male connectors, coaxial)	HP 10502A
Test Cable (48-inch, BNC Male connectors, coaxial)	HP 10503A
Test Cable (SMC Male and BNC Male connectors)	HP 11592-60001
600 Ohm Feedthrough	HP 11095A
50 Ohm Load (Male, BNC, coaxial)	HP 11593A
50 Ohm Load (Male Type N)	HP 908A
Coaxial Short (Male Type N)	HP 11512A
Tee (Coaxial, BNC, one Male and two Female connectors)	HP 1250-0781
Voltage Probe (1:1) (2 preferred)	HP 10025A
Extender Board (30 pins)	HP 08640- 60036
Extender Board (20 pins)	HP 5060-0256
Bumpers (2) for Extender Board	HP 0403-0115
1 kΩ Resistor	HP 0757-0280
100Ω Resistor	HP 0757-0401

Table 1-4. Recommended Test Accesssories

1-16

General Information

SECTION II INSTALLATION

2-1. INTRODUCTION

2-2. This section explains how to prepare the Model 8640M Signal Generator for use. It explains how to position the slide switch to accept available line voltage, and it also describes operation, storage, and shipment.

2-3. INITIAL INSPECTION

2-4. Inspect the shipping container for damage. If the shipping container or cushioning material is damaged it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. The contents of the shipment should be as shown in Figure 1-1, and procedures for checking electrical performance are given in Section IV. If the contents are incomplete, if there is mechanical damage or defect, or if the instrument does not pass the electrical performance test, notify the nearest Hewlett-Packard office. If the shipping container is damaged, or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping materials for carrier's inspection. The HP office will arrange for repair or replacement of the instrument without waiting for claim settlement.

2.5 PREPARATION FOR USE

2-6. Power Requirements

2-7. The Model 8640M requires a power source of 115 Vac $\pm 10\%$, 47.5 to 420 Hz or 230 Vac $\pm 10\%$, 47.5 to 66 Hz, single phase. Power consumption is 175 VA maximum.

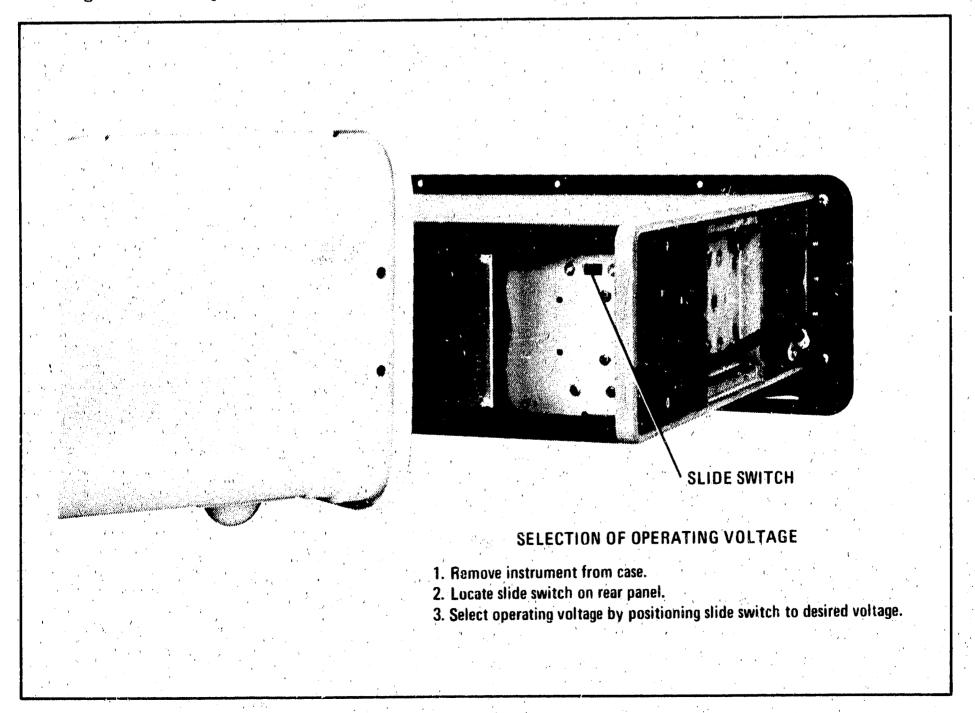



Figure 2-1. Line Selector

2-8. Line Voltage Selection

To prevent damage to the instrument, make the line voltage selection BEFORE connecting the line power. Also ensure the line power cord is connected to a line power socket that is provided with a protective earth contact.

2-9. A rear panel, screwdriver-operated slide switch permits operation on line power of 115 or 230 Vac. The number visible on the slider indicates the nominal line voltage to which the instrument must be connected (see Figure 2-1).

2-10. To prepare the instrument for operation, slide the instrument from its case, and set rear panel slide switch to line voltage available. Install proper line fuse for selected voltage into front panel fuse holder.

NOTE

The correct fuse rating for the line voltage selected is 2 AMP for 115 Vac and 1.5 AMP for 230 Vac. More information about fuses is given in the table of replaceable parts in Section VI (reference designation is F1).

2-11. Power Cable

2-12. In accordance with international safety standards, this instrument is equipped with a three-wire power cable. When connected to an appropriate power line outlet, this cable grounds the instrument cabinet.

WARNING

To avoid the possibility of injury, the following precautions must be followed before the instrument is switched on:

a. If this instrument is to be energized via an autotransformer, make sure that the common terminal is connected to the neutral (grounded side of mains supply).

b. The power cable plug shall only be inserted into a socket outlet provided with a protective earth contact. The protective action must not be negated by the use of an extension cord without a protective conductor (grounding).

c. Before switching on the instrument, the protective earth terminal of the instrument must be connected to a protective conductor of the power cord. This is accomplished by ensuring that the instrument's internal earth terminal is correctly connected to the instrument's chassis and that the power cord is wired correctly (see Service Sheet 22).

2-13. Mating Connectors

2-14. Mating connectors used with the Model 8640M should be either 50 ohm-type BNC male or Type N male connectors that are compatible with US MIL-C-39012.

2-15. Operating Environment

2-16. The operating environment should be within the following limitations:

Temperature	$\dots -40^{\circ}$ C to $+55^{\circ}$ C
Humidity	
Altitude	3048 m (< 10 000 feet)

2-17. A forced-air cooling system is used to maintain the operating temperature required within the instrument. The air intake and exhaust is through the front panel louvered ducts. An air filter is mounted on the rear panel near the fan.

2-18. Operation

2-19. The instrument has a waterproof combination case providing a protective outer shell and cushioned mounts for operation is a wide range of environments. With the front panel cover removed and primary power applied, the instrument is ready to operate.

2-20. STORAGE AND SHIPMENT

2-21. Environment

2-22. The instrument should be stored in a clean, dry environment. The following environmental limitations apply to both storage and shipment:

Temperature	$\dots, \dots, -60^{\circ}$ C to +85° C
Humidity	
Altitude	. 15 240 m (< 50 000 feet)

Installation

Model 8640M

2-23, Packaging

 $\left(\gamma \right)$

2-24. Original Packaging. Containers and materials identical to those used in factory packaging are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. Also, mark the container FRAGILE to assure careful handling. In any correspondence, refer to the instrument by model number and full serial number.

2-25. Other Packaging. The following general instructions should be used for re-packaging with commercially available materials:

a. Wrap the instrument in heavy paper or plastic. (If shipping to a Hewlett-Packard office or

service center, attach a tag indicating the type of service required, return address, model number, and full serial number.)

b. Use a strong shipping container. A doublewall carton made of 350-pound test material is adequate.

c. Use enough shock-absorbing material (3to 4-inch layer) around all sides of the instrument to provide a firm cushion and prevent movement inside the container.

d. Seal the shipping container securely.

e. Mark the shipping container FRAGILE to assure careful handling.

OPERATION.

SECTION III OPERATION

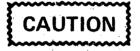
3-1. INTRODUCTION

3-2. This section describes the functions of the controls and indicators of the Model 8640M Signal Generator. It explains how to set the frequency, amplitude, and modulation controls, and covers such operator maintenance as fuse and indicator lamp replacement and fan filter cleaning.

3-3. PANEL FEATURES

3-4. Front panel controls, indicators, and connectors are shown and described in Figure 3-2. Re/ur panel controls and connectors are shown and described in Figure 3-3.

3-5. OPERATOR'S CHECKS

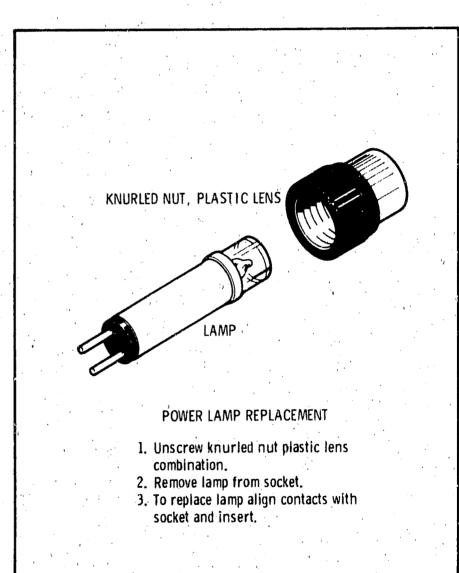

3-6. Use the operator's checks in Figure 3-4 to verify proper operation of the Signal Generator's main functions.

3-7. OPERATING INSTRUCTIONS

3-8. Figures 3-5 and 3-6 explain how to set the irequency, amplitude, and modulation controls. Figure 3-5 also explains how to use the frequency counter and phase lock controls.

3-9. OPERATOR'S MAINTENANCE

3-10. Fuse. The main ac line fuse is located on the front panel. To remove the fuse, disconnect line power cable from power line outlet, and rotate fuse holder cap in direction of arrow.



Be sure to select the correct fuse rating for the selected line voltage (see LINE VOLTAGE SELECTION in Section II). water and soap, or replace it, using the part number listed in the table of replaceable parts in Section VI.

3-12. The fan motor has factory lubricated, sealed bearings and requires no periodic maintenance.

3-13. Lamp Replacement. Figure 3-1 explains how to replace the lamp used in the line power circuit.

3-14. Meter Zeroing. To mechanically zero the front panel meter, set LINE switch to OFF and place instrument in its normal operating position. Turn adjustment screw cw until indicator indicates zero, then turn adjustment slightly ccw to free mechanism from adjusting peg.

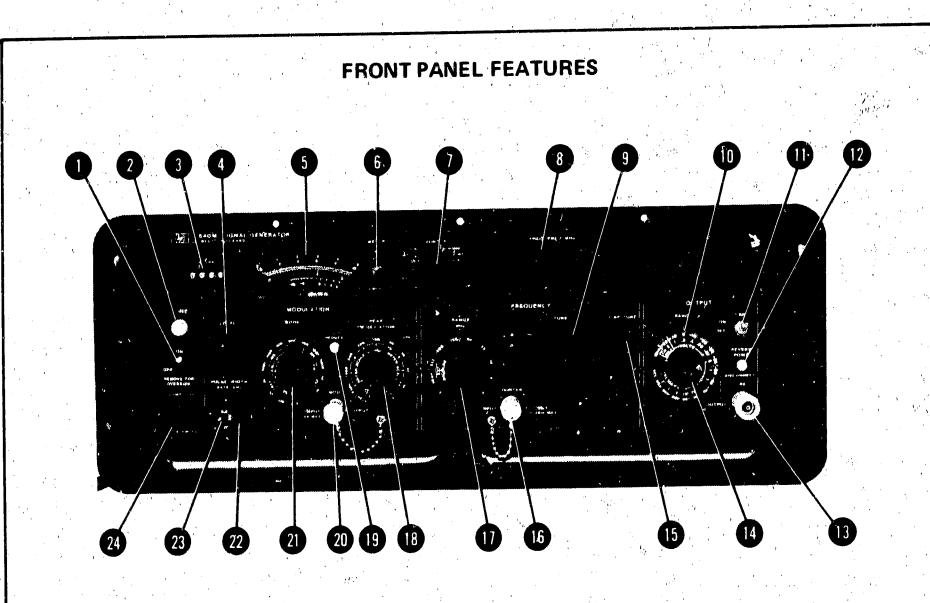

3-11. Fan. The cooling fan's filter is located on the rear panel. To service the filter, use a No. 2 Pozidriv screwdriver (HP 8710-0900) to remove the four screws that hold the filter to the rear panel. Then clean it, using a solution of warm

Figure 3-1. Lamp Replacement

3-1

(4)

3-2

ON/OFF: switch applies or removes AC power. A third position is available to override the internal thermal protection.

2 LINE: indicator that lights when ac power is applied to the signal generator.

HOURS: elapsed time meter M2 indicates total time signal generator has operated.

LEVEL: potentiometer controls amount of modulation from the internal modulation oscillator.

5 METER: multifunction meter that provides indication of amplitude and frequency modulation and RF output level. Amplitude modulation is indicated in percent on the 0 to 10 scale; frequency modulation is indicated in kHz or MHz on the 0 to 3, 0 to 5, or 0 to 10 scales. RF output level is indicated in microvolts, millivolts, or volts on the 0 to 3 or 0 to 10 scales and in dBm on the lower-most scale. The MODULATION MODE, PEAK FM DEVIATION, and OUTPUT RANGE control positions indicate which meter scale is to be read. **COUNTER** switch: controls operation of frequency counter.

> EXT 0-10, 10-550: programs counter to count frequency of signal at COUNTER IN-PUT jack; also selects counter frequency range in MHz.

INT NORM: programs counter to count frequency of Signal Generator.

LOCK: phase locks Signal Generator to the internal crystal reference. Display indicates lock frequency; loss of lock causes display to flash and indicate actual frequency of Signal Generator.

INT X10: expands resolution one digit, moving the decimal point one place to the left.

6 METER control: toggle switch that selects either RF LEVEL or MODULATION to be indicated on the multifunction meter M1. **B** FREQUENCY MHz: six-digit display that indicates the frequency to which the signal generator output is tuned or, in the EXT mode, the frequency at the COUNTER INPUT.

9 FREQUENCY TUNE: coarse frequency control.

Figure 3-2. Front Panel Controls, Indicators, and Connectors (1 of 2)

10

(i3.)

(14)

15

FRONT PANEL FEATURES

17

18

19

20

21

22

24

OUTPUT RANGE: rotary switch and potentiometer, concentrically mounted, that attenuate the RF output level. The rotary switch with a calibrated dial has 16 positions to control a step attenuator in 10 dB steps. Dial indicates attenuation in microvolts, millivolts, volts, and dBm. The inner control, a potentiometer, provides continuous attenuation over an 18 dB range.

RF ON/UFF: toggle switch that enables or disables RF OUTPUT.

NOTE

The RF ON/OFF switch is wired to turn off only the amplitude modulator. This allows the RF Oscillator to remain warmed up, the Auxiliary RF Output to remain on, and the counter and phase lock to remain operating (see Service Sheet B).

REVERSE POWER: annunciator that lights when reverse power has been applied to RF OUTPUT.

RF OUTPUT: type N connector for applying RF output signal to user equipment.

RANGE vernie: potentiometer for continuous control over 18 dB of RF level.

NOTE

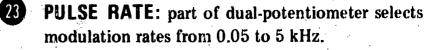
For optimum operation, use vernier in the top 10 dB of its range.

FINE TUNE: fine tunes the oscillator over a frequency range of 1000 parts per million on each frequency range.

CAUTION

Do not apply dc voltage or > +15 dBm to COUNTER INPUT.

RANGE MHz: eleven-position rotary switch assembly that selects one of ten octave frequency ranges from 0.5 to 1 MHz, to 256 to 512 MHz. The eleventh position is calibrated for extending the output frequency to 1024 MHz through the use of an external frequency doubler.


MODULATION PEAK FM DEVIATION: elevenposition rotary switch assembly selects range of peak FM deviation. Dial also shows which meter scale to read.

REDUCE: indicator lights when FM modulation level and/or deviation settings exceed capability of signal generator.

MODULATION INPUT/OUTPUT: coaxial jack that is used for applying an external modulation signal. Also, when signal generator is in internal modulation mode, jack is used as an output port for the internally generated modulation signal.

MODULATION MODE: thirteen-position rotary switch assembly that selects modes of modulation. Also selected are external or internal sources and the modulation frequencies for the internal AM and FM modes.

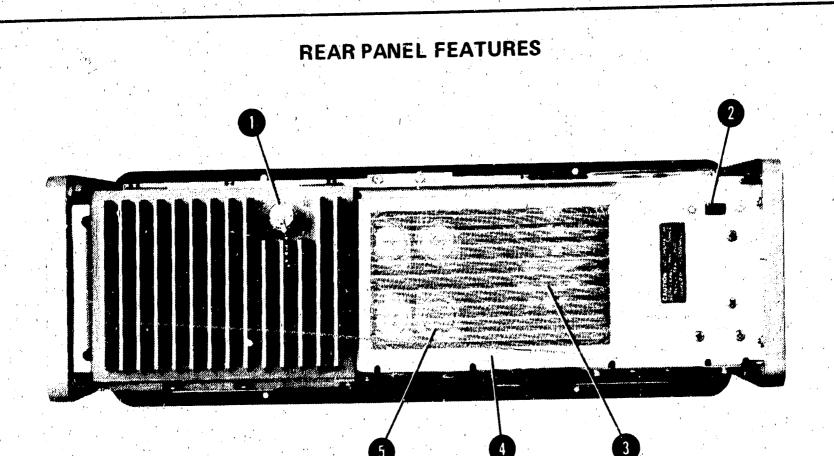
PULSE WIDTH: part of dual-potentiometer selects modulation pulse widths from 1 to 40 microseconds.

FUSE: input ac power line protection. Fuse size

COUNTER INPUT: jack providing for external

inputs to frequency counter.

2A for 115 Vac operation and 1.5A for 230 Vac


3-3

operation.

Figure 3-2. Front Panel Controls, Indicators, and Connectors (2 of 2)

2

3-4

AUX RF OUTPUT: nominal -5 dBm auxiliary RF output; 500 ohm source impedance. Signal does not contain amplitude or pulse modulation (however, it does contain FM). On the 512-1024 MHz range the auxiliary RF output is one-half the frequency of the indicated RF frequency.

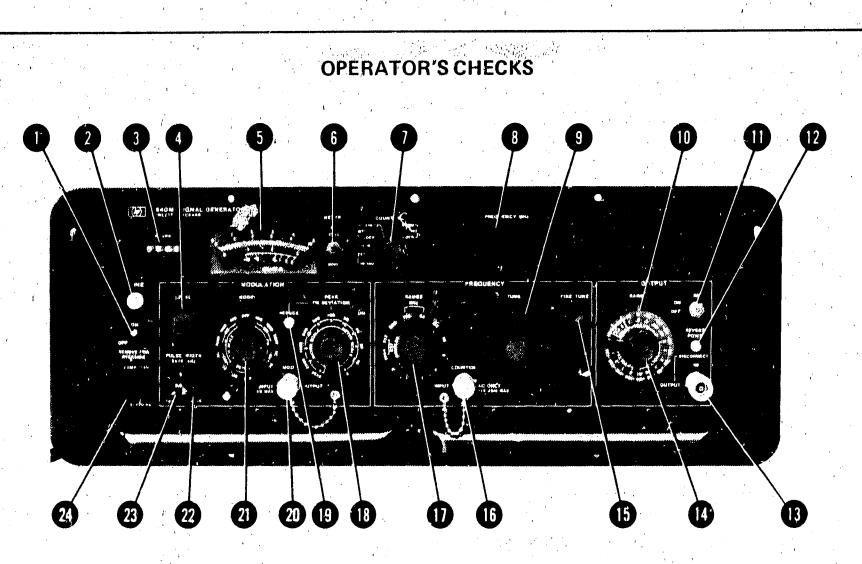
LINE POWER SWITCH: permits operation from 115 or 230 Vac. The number visible in window indicates nominal line voltage to which instrument must be connected. Line power cable center conductor is safety earth ground.

WARNING

Any interruption of the protective (grounding) conductor inside or outside

the instrument or disconnection of the protective earth terminal is likely to make the instrument dangerous. Intentional interruption is prohibited. (See Section II).

3 FAN: internal cooling of the instrument provided by circulating air taken in through louvered ducts on front panel.


FILTER: collects dust present in the operating environment. Can be cleaned with soap and water.

POWER SUPPLY TRANSISTORS: Q1 +5.2V, Q2 +20V, Q3 +44.6V, and Q4 -20V.

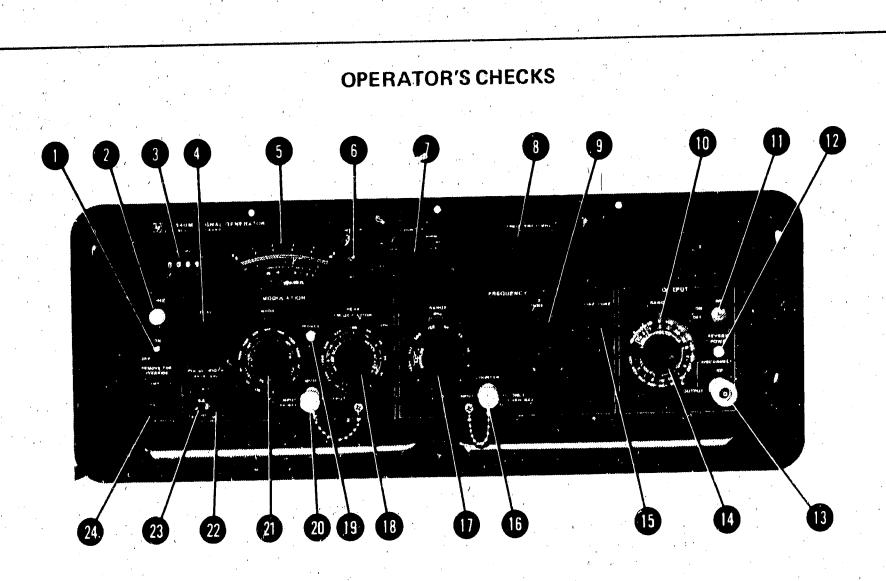
Figure 3-3. Rear Panel Features

Operation

3-5

INITIAL CONTROL SETTINGS

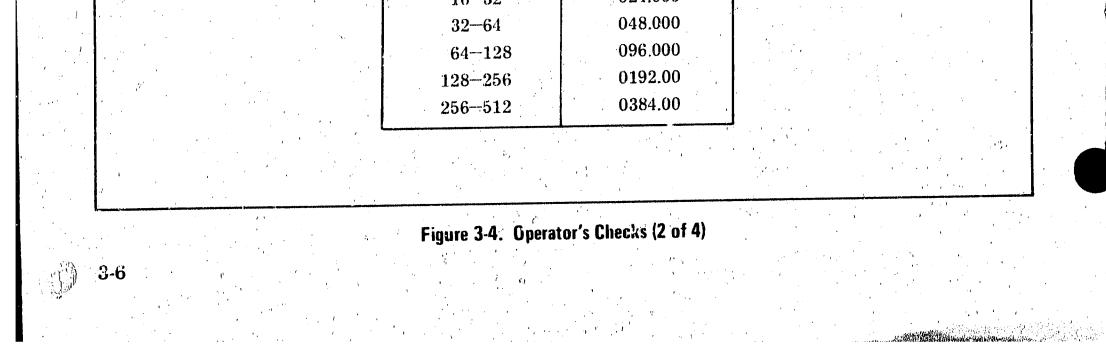
a. Set LINE switch 10 to ON.


b. Set the controls as follows:

				1	
COUNTER.		а. •	• • •	•	INT NORM
6 METER		• • •	• • •	•	RF LEVEL
4 MODULATI	ON: LEVEL	• • •		•	Fully ccw
22	PULSE	WIDTH	• • •	•	Fully cw
. 23					Fully cw
21	MODE	· · ·		•	AM INT 1000
18	PEAK F	M DEVIA	ATION.	•	5 kHz
17 FREQUENC	Y: RANGE	• • •	• • •	•	0.5-1 MHz
9	TUNE	• • •	• • •	•	Fully ew
15	FINE TU	JNE .		•	Centered
10 OUTPUT: F	RANGE Swite	h		•	+10 dBm
F F	RANGE Verni	er	<u>.</u>	•	Fully cw
The second secon	RF ON/OFF	• • •		•	ON

Use FREQUENCY FINE TUNE in conjunction with FREQUENCY TUNE to set whatever frequency is required.

Figure 3-4. Operator's Checks (1 of 4)


Operation

COUNTER AND RF OSCILLATOR

- c. Use a Type N to BNC adapter and a BNC to BNC cable to connect RF OUTPUT 13 to COUNTER. INPUT 16
- d. Adjust FREQUENCY TUNE (9) and FINE TUNE (15) until FREQUENCY (8) reads 0.75000 MHz. Set COUNTER to INT X10 (7); FREQUENCY display (8) should read about .750000 MHz (the reading should shift one place to the left).
- e. Set COUNTER to INT NORM . With RANGE D set as follows, FREQUENCY should read approximately as shown:

Range MHz	FREQUENCY MHz
0.5-1	0.75000
1 –2	01.5000
2-4	03.0000
4-8	06.0000
8-16	12.0000
1632	024.000

f.

g.

3-7

OPERATOR'S CHECKS

PHASE LOCK

Set RANGE 11 to 256-512 MHz. Note that the right-hand digit on the FREQUENCY display flickers between two digits. Set COUNTER to INT LOCK 17; the flickering should stop. Slowly adjust FINE TUNE 15 one-quarter turn; the FREQUENCY reading should not change. Adjust FREQUENCY TUNE 9 one-quarter turn; the FREQUENCY display should blink at about a 2 Hz rate and the reading should change (the reading should follow FREQUENCY TUNE).

RF OUTPUT

Set COUNTER 1 to EXT 10-550. Adjust FREQUENCY TUNE 9 until FREQUENCY 8 reads 384.000 MHz. Step through the ranges specified in step e. FREQUENCY should read approximately as shown in step e, with the exception of the position of the decimal point. Set COUNTER 1 to EXT 0-10 when switching to lower 4 ranges (4-8 through 0.5-1 MHz).

METER

h. Set GUTPUT RANGE (1) to 1 VOLT (+10 dBm) and OUTPUT RANGE vernier (14) until the meter (5) indicates 5 on the 0-10 scale.

i. Adjust OUTPUT RANGE vernier fully cw, meter indicates full scale (>10) on the 0–10 scale.

AMPLITUDE MODULATION

j. Set RANGE 11 to 0.5-1 MHz. Set METER 6 to MOD and MODULATION MODE 21 to AM INT 1000. Slowly turn LEVEL 4 clockwise until the meter indicates 10 (i.e., 100% modulation).

FREQUENCY MODULATION

- k. Set MODULATION MODE 21 to FM INT 1000. Set PEAK FM DEVIATION 1B to 5 kHz and LEVEL 4 fully counterclockwise; the METER 5 should indicate 0.
- 1. Turn LEVEL 4 fully clockwise; the METER 5 should indicate greater than 5 kHz and the REDUCE PEAK FM DEVIATION 19 annunciator should light.
- m. Reduce LEVEL 4 until METER 5 reads 5 kHz (the annunciator should go out). Set PEAK FM

DEVIATION 18 to 10 kHz; the REDUCE PEAK FM DEVIATION 19 annunciator should light and the meter should indicate 0.

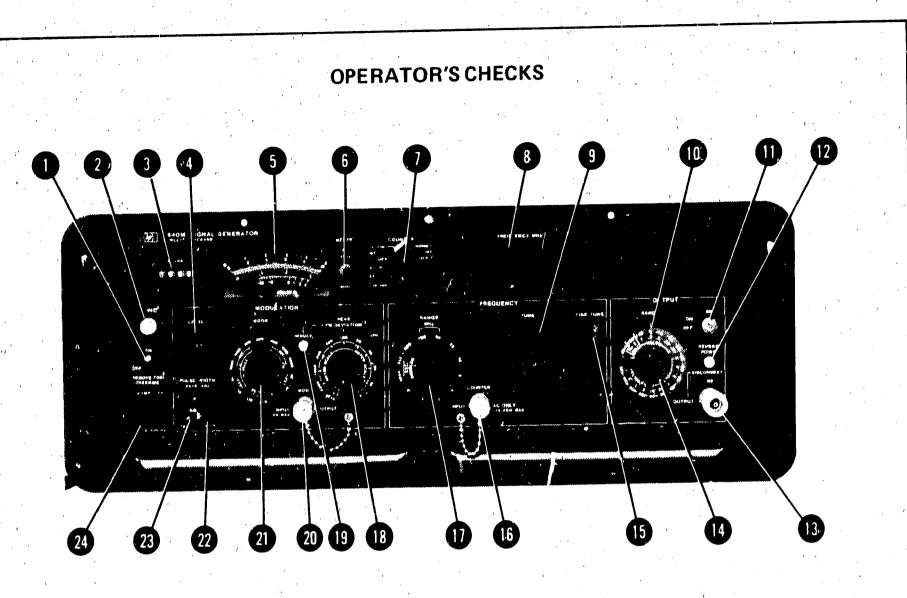

n. Set RANGE 11 to 1-2 MHz (the annunciator should go out) and turn the LEVEL 4 fully counterclockwise; the METER 5 should indicate 0 on the 0-10 scale.

Figure 3-4. Operator's Checks (3 of 4)

a calendaria da la calendaria da calendaria

(ART)大水市的详细的长来的行为)的

Operation

INTERNAL MODULATION OSCILLATOR

о.

3-8

Using the BNC to BNC cable, connect MOD OUTPUT 20 to COUNTER INPUT 16. Set COUNTER to EXT 0-10. Set MODULATION MODE 21 in turn to AM INT 400, 1000 and 5000. The FREQUENCY MHz 8 should display approximately 0.00040, 0.00100, and 0.00500.

Figure 3-4. Operator's Checks (4 of 4)

3-9

SETTING FREQUENCY AND AMPLITUDE

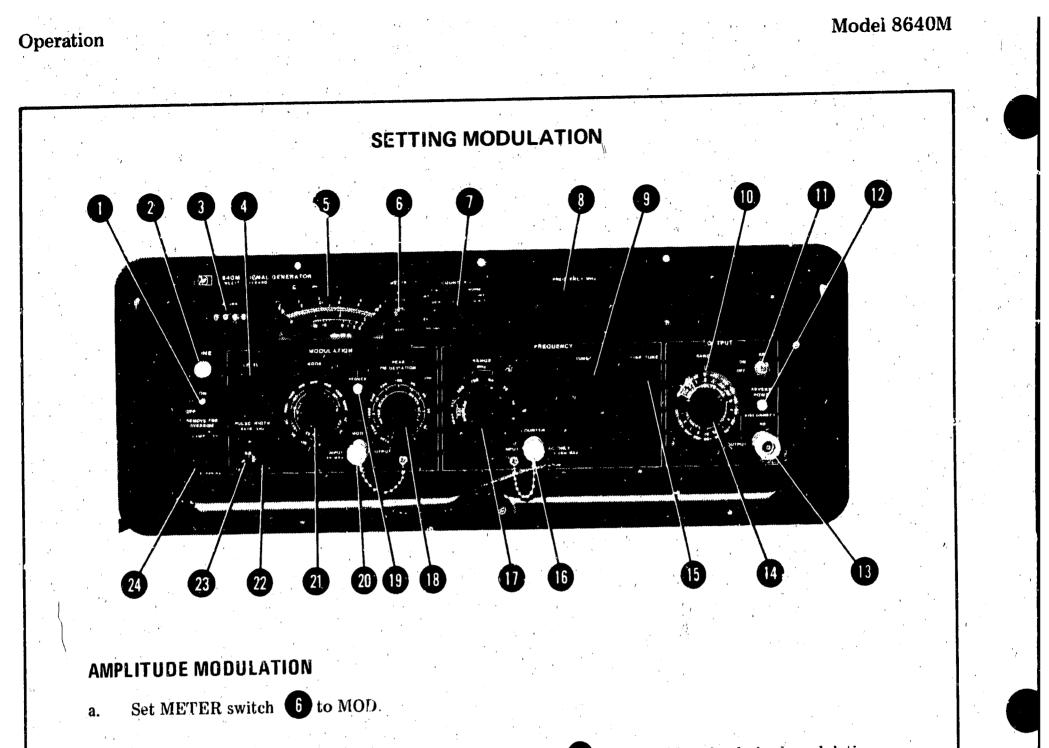
FREQUENCY

- a. Set COUNTER 1 to INT NORM.
- b. Set RANGE 11 to span the desired frequency.
- c. Use FREQUENCY TUNE (9) and FINE TUNE (15) to set the Signal Generator to the desired frequency.
- d. The decimal point on the FREQUENCY display (8) is automatically set by the RANGE control. For more resolution, set COUNTER (11) to INT X10.
- e. To phase lock the generator's output, set COUNTER 1 to INT LOCK.

NOTE

If the OVERFLOW annunciator lights, the generator will not enter calibrated phase lock.

- f. Whenever phase lock is lost, FREQUENCY MHz (8) will flash. To re-establish phase lock, switch COUNTER (7) from LOCK to either X10 or NORM depending on mode then back to LOCK.
- g. To use an external frequency doubler, connect doubler to RF OUTPUT 13 and set RANGE 11 to 512-1024 MHz EXT DOUBLER. The frequency display will indicate the frequency out of the doubler (i.e., FREQUENCY MHz 8 indicates twice the frequency at RF OUTPUT).


AMPLITUDE

C.

- a. Use OUTPUT RANGE 10 and vernier 14 to set the desired signal level (there are two types of scales; rms volts and dBm). Set METER switch 6 to RF LEVEL. To enable the RF OUTPUT signal, set the RF ON/OFF 11 to ON.
- b. To determine output level, the meter is read in conjunction with the OU'TPUT RANGE switch (1) (i.e., with OUTPUT RANGE switch set to .03 VOLTS, a meter reading of 2.1 indicates that the actual level is 21 mVrms).

If a 50 ohm to 75 ohm adapter (consisting of a 25 ohm series resistor) is connected to RF OUTPUT 13, the OUTPUT RANGE 14 voltage scale will be correct if the instrument is used with 75 ohm terminations. However, 1.76 dB must be subtracted from the dB scale for correct readings.

Figure 3-5. Setting the Frequency and Amplitude Controls

- b. To use the internal oscillator, set MODULATION MODE (2) to AM INT at the desired modulation frequency and adjust LEVEL (3) for percent of modulation. Modulation is indicated by the METER (5) (i.e., a meter reading of 5.4 on the 10 scale indicates 54% AM).
 - With the MODULATION MODE 21 set to AM INT the internal modulation oscillator signal is present at the MOD INPUT/OUTPUT 20 jack.
 - To use an external modulation signal, set MODULATION MODE (2) to AM EXT AC (or DC if modulation signal is less then 20 Hz). Apply the signal to the MOD INPUT. The signal generator requires 1 Vpk (0.707 Vrms) for 100% modulation. Set percent of modulation with the LEVEL (4), percent AM is indicated by the meter.

NOTE

The meter reading is accurate when AM is set to DC only if no DC offset is applied to the MOD INPUT jack. The meter responds to

the positive peet of the ac component of the modulating signal.

PULSE MODULATION

c.

d.

3-10

a. Set METER switch 6 to RF LEVEL.

Figure 3-6. Setting the Modulation Controls (1 of 2)

C.

d.

e.

SETTING MODULATION

Operation

3-11/3-12

A Stand States

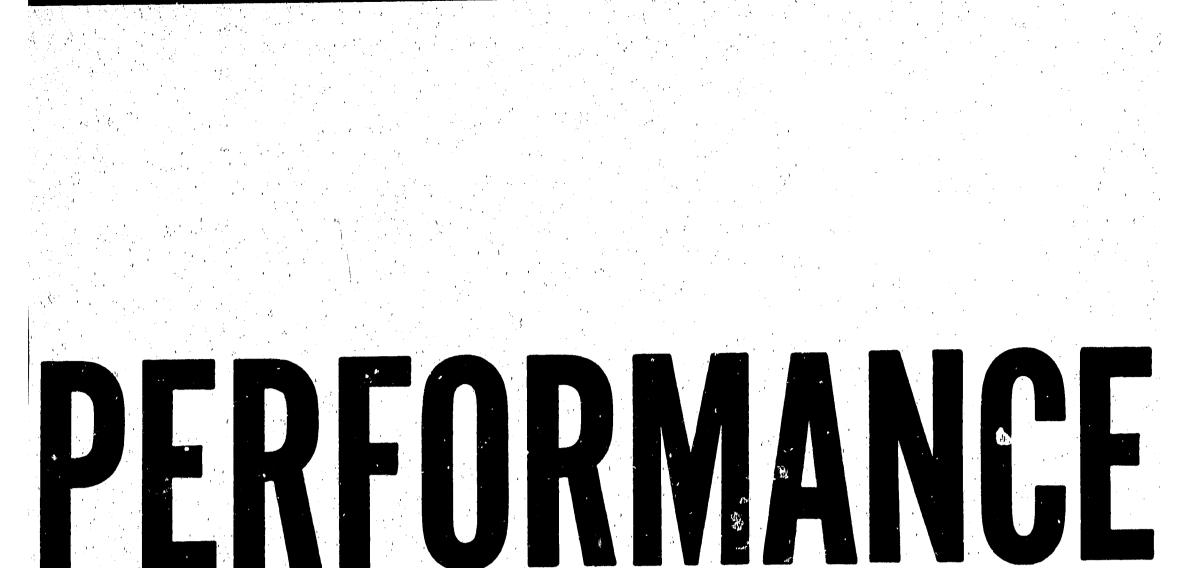
PULSE MODULATION (Cont'd)

- b. Set the desired pulse-on level using OUTPUT RANGE switch 10 and vernier 14
- c. To use the internal pulse generator, set MODULATION MODE (2) to PULSE INT, and select the desired PULSE WIDTH (22) and RATE (23).
- d. To use an external input, set MODULATION MODE 21 to PULSE EXT (this disables the RF OUTPUT). Apply the modulation pulse (> 0.5V) to the MOD INPUT jack 20. The Signal Generator requires a positive level to produce an RF output.

FREQUENCY MODULATION

- a. Set METER switch 🚺 to MOD.
- b. To use the internal modulation oscillator, set MODULATION MODE (2) to FM INT at the desired modulation frequency. Set PEAK FM DEVIATION (18) to the desired deviation range. Use LEVEL (4) in conjunction with the meter to set the exact deviation desired.

NOTE


The REDUCE PEAK FM DEVIATION annunciator I lights when the PEAK DEVIATION switch setting is too high for the selected frequency range, or when the LEVIN, control is set too high. When it lights, reduce peak deviation.

Peak frequency deviation is indicated by the METER 5 and is read in conjunction with PEAK FM DEVIATION switch 18 (i.e., with PEAK FM 320 kHz, a meter reading of 2.8 indicates that peak frequency deviation is 280 kHz.

With the MODULATION MODE switch 21 set to FM INT the internal modulation oscillator is present at the MOD OUTPUT jack 20

To use an external modulation signal, set MODULATION MODE (2) to FM EXT AC (or DC if modulation signal is less than 20 Hz). Apply the signal to the MOD INPUT jack (20). The Signal Generator requires 1V pk (0.707 Vrms) for full peak deviation. The PEAK FM DEVIATION controls and the METER are used the same way as when using the internal modulation oscillator signal.

Figure 3-6. Setting the Modulation Controls (2 of 2)

SECTION IV PERFORMANCE TESTS

4.1. INTRODUCTION

4-2. The procedures in this section test the critical electrical performance of the Signal Generator using the specifications of Table 1-1 as the performance standards. The first test (Basic Functional Checks) presents steps for checking the overall basic functions of the generator. The performance tests that follow provide the most comprehensive check of the specifications. A simpler operational test is included in Section III under Operator's Checks.

4-3. The Basic Functional Checks should be useful for incoming inspections, routine maintenance and general post-repair checks, but is not intended to be a complete check of specifications. The test requires only commonly available equipment and is written so that a wide variety of models with equivalent specifications may be used.

4-4. EQUIPMENT REQUIPED

4-5. Table 4-1 lists the test equipment recommended for the Basic Functional Checks only. Equipment required for the other performance tests is listed in the Recommended Test Equipment table in Section I. Any equipment that satisfies the critical specifications given in the tables may be substituted for the recommended model(s).

4-6. TEST RECORD

4-7. A separate check-off list is provided as a test record at the end of the Basic Functional Checks. Results of the other performance tests may be tabulated on the Test Record at the end of the procedures. The Test Record lists all of the tested specifications and their acceptable limits. Test results recorded at incoming inspection can be used for comparison in periodic maintenance and troubleshooting and after repairs or adjustments. specified test equipment. Equipment settings, other than those for the Model 8640M are stated in general terms. For example, a test might require that a spectrum analyzer's resolution bandwidth be set to 100 Hz; however, the time per division setting would not be specified and the operator would set that control so that the analyzer operates correctly.

4-10. It is also assumed that the person performing the tests will supply whatever cables, connectors, and adapters are necessary. The Test Accessories table in Section I lists the requirements for some of these items.

4-11. Unless otherwise specified, set the following controls as shown:

· .	
COUNTER	INT NORM
METER,	RF LEVEL
LINE	
MODULATION:	LEVEL
	PULSE WIDTH Fully cw
	PULSE RATE Fully cw
	MODE
, ,	PEAK FM DEVIATION 5 kHz
FREQUENCY:	RANGE
	TUNE
	FINE TUNECentered
OUTPUT: RAN	NGE Switch +10 dBm
RAN	NGE VernierFully cw
RF	ON/OFF ON

Use FREQUENCY FINE TUNE in conjunction with FREQUENCY TUNE to set whatever frequency is required.

CAUTION

4-8. TEST PROCEDURES

4-9. It is assumed that the person ; rforming the following tests understands how to operate the

To avoid the possibility of damage to test equipment, read completely through each test before starting it. Make any preliminary control settings necessary for correct test equipment operation.

4-1

PERFORMANCE TESTS

4-12. BASIC FUNCTIONAL CHECKS

DESCRIPTION: A minimum of test equipment is used to check the overall basic functions of the signal generator.

Instrument Type	Critical Specifications	Suggested Models
AC Voltmeter	Accuracy: ±1% at 0.7 Vrms	HP 400E, or HP 34740A/34702A, or HP 3490A
Frequency Counter	Range: 10 MHz Accuracy: <0.1 ppm	HP 5326C Option 010, or HP 5382A Option 001
Power Meter	Frequency Range: 10 MHz to 1.5 GHz Max Input Level: 10 dBm Accuracy: ±1%	HP 435A/8482A, or HP 432A/478A
Spectrum Analyzer	Range: >100 MHz Resolution Bandwidth: >100 kHz to <3 kHz Log and linear display	HP 8558B/182C, or HP 8553B/8552A/141T, or HP 651B
Test Oscillator	Range: > 10 kHz Output: > 1 Vrms into 600Ω	HP 204D, or HP 651B

Table 4-1. Recommended Test Equipment (Basic Functional Checks)

PROCEDURE:

1.

Set the Signal Generator's controls as follows. Return the controls to these initial settings before starting any section within the check.

COUNTER		
METER		MOD
		ON
MODULATION:		Fully ccw
MODULITIE	PULSE WIDTH	Fully cw
	PULSE RATE	
		OFF
	PEAK FM DEVIATION	5 kHz
	RANGE	0.5—1 MHz
T TUESCE STATE T.	TUNE	Approximately centered

 FINE TUNE
 Approximately centered

 OUTPUT:
 RANGE Switch
 +10 dBm

 RANGE Vernier
 Fully cw

 RF ON/OFF
 ON

4-3

4-12. BASIC FUNCTIONAL CHECKS (Cont'd)

- 2. Preliminary Checks (refer to step 1 for initial control settings):
 - a. Set LINE switch to OFF. The panel meter should read exactly 0 when viewed directly from the front.
 - b. Set LINE switch to ON. The lamp above the switch should light.
 - c. The fan should be operating.
 - d. Every six minutes, the elapsed time meter should produce an audible click, and the HOURS total should increment by one each hour.
 - e. Set PEAK FM DEVIATION to 10 kHz, and MODULATION MODE to FM INT 400. The REDUCE annunciator should light.
 - f. Set PEAK FM DEVIATION to 5 kHz and MODULATION LEVEL fully cw. The REDUCE annunciator should light. Return MODULATION MODE to OFF and MODULATION LEVEL fully ccw.
- 3. Counter and Frequency Checks (refer to step 1 for initial control settings):
 - a. Measure the frequency of the RF OUTPUT with an accurate 1 Hz resolution counter. The frequency should agree on both counters to ± 20 ppm ± 1 count. For example if the generator is set for a reading of 0.70000 MHz on its counter, the external counter should read between 699 985 and 700 015 Hz.
 - b. Set FREQUENCY RANGE and COUNTER as indicated below. The location of the decimal point should be correct as shown.

FREQUENCY RANGE (MHz)	COUNTER	Decimal Point
$128-1024 \\ 16-128 \\ 1-16 \\ 0.5-1 \\ 0.5-1 \\ 0.5-1$	INT NORM INT NORM INT NORM INT NORM INT X10	X X

- c. At the last setting in b, tune FREQUENCY TUNE fully cw. The OVERFLOW annunciator should be on.
- d. Using FREQUENCY RANGE and TUNE controls, check each display digit for proper lighting of the LEDs.
- e. Set COUNTER to INT NORM then to LOCK. The displayed count should be

steady and the display should not blink.

f. -

g.

Rotate FINE TUNE one-quarter turn cw. The display should remain unchanged.

Rotate FINE TUNE one-half turn ccw. The display should remain unchanged.

Model 8640M

PERFORMANCE TESTS

4-12. BASIC FUNCTIONAL CHECKS (Cont'd)

h.

i. /

k.

n.

4-4

Rotate FREQUENCY TUNE one-half turn. Phase lock should break and display should blink.

Set COUNTER to EXT 0-10, FREQUENCY RANGE to 0.5-1 MHz, TUNE to fully ccw position, FINE TUNE centered, and OUTPUT RANGE switch to 0 dBm. Meter switch to RF LEVEL and OUTPUT RANGE vernier adjusted to -5 dBm on meter. Connect RF OUTPUT to COUNTER INPUT. Counter should read 0.450 MHz or less (but not all zeros).

Rotate FREQUENCY TUNE to fully cw position. Counter should read 1.07 MHz or greater.

Set FREQUENCY TUNE for display of 0.500 MHz. Set FREQUENCY RANGE as indicated below and note frequency displayed for COUNTER set to both EXT 0-10 and INT NORM. The frequency should be correct as shown and except for the number of significant digits displayed, should be the same for both counter modes.

FREQUENCY RANGE (MHz)	Counter Reading (MHz)		
$\begin{array}{c} 0.5-1\\ 1-2\\ 2-4\\ 4-8\\ 8-16\end{array}$	0.500 1.00 2.00 4.00 8.00		

Continue as in the preceding step except set EXT range to 10–550. Compare the counter reading for COUNTER set to both EXT 10–550 and INT NORM.

FREQUENCY RANGE (MHz)		Counter Reading (MHz)	
	8-16	8.00	
	1632	16.0	
. •.	32-64	32.0	
	64-128	64.0	
	128-256	128	
	256-512	256	
	512-1024	256 (EXT); 512 (INT)	

Set FREQUENCY RANGE to 256-512 MHz and turne to 550 MHz. Counter

should read 550 MHz with COUNTER set to EXT 10-550.

Tune frequency to approximately 345 MHz. Slowly rotate FREQUENCY TUNE in a cw direction. A faint but audible click should be heard when tuning through the range 355-357 MHz. This is relay switching of the high band filters.

 \mathbb{R}

4-5

新花的花子的花花的花花

PERFORMANCE TESTS

4 12. BASIC FUNCTIONAL CHECKS (Cont'd)

C.

4.	Meter and Modulation Oscillator Checks (refer to step 1 for initial control settings):
	a. Set MODULATION MODE to AM EXT AC and LEVEL fully cw, and METER to MOD. Connect a test oscillator to MOD INPUT through a BNC tee. Con- nect an ac voltmeter to the tee. Set test oscillator to 1 kHz and 0.707 Vrms as read on the voltmeter. The generator's front panel meter should read be- t veen 9.6 and 10.4.
	b. Disconnect test oscillator and voltmeter. Set MODULATION MODE to AM INT 1000. Connect high impedance external counter to MOD OUTPUT. The counter should read between 950 and 1050 Hz. Record this frequency for future reference.
	9501050 Hz
	c. Set MODULATION MODE to PULSE INT. Set PULSE RATE fully cw; counter should read greater than 5 kHz. Set PULSE RATE fully ccw; counter should read less than 50 Hz.
5.	Output Level Checks (refer to step 1 for initial control settings):
	a. Set FREQUENCY RANGE to 32–64 MHz, FREQUENCY TUNE to 50 MHz, and METER to RF LEVEL. Connect a power meter to RF OUTPUT and set OUTPUT RANGE vernier for a front panel meter indication of -1 dB. The power meter should read between +8.5 and +9.5 dBm.
	b. Reduce OUTPUT RANGE vernier to -7 dB as read on the panel meter. The power meter should read between +2.5 and +3.5 dBm.
	c. Return OUTPUT RANGE vernier to +9 dBm as read on the power meter. Tune across all frequency ranges for which the power sensor is specified and note maximum and minimum level variations. The level should be between +8.0 and +10.0 dBm.
6.	AM and Pulse Checks (refer to step 1 for initial control settings):
	a. Set FREQUENCY RANGE to 64-128 MHz, FREQUENCY TUNE to 100 MHz, and OUTPUT RANGE switch to -40 dBm (with vernier fully cw). Connect RF OUTPUT to the input of a spectrum analyzer.
	b Set analyzer controls to display the 100 MHz signal with 100 kHz or greater

set analyzer controls to display the 100 MHz signal with 100 kHz of greater resolution bandwidth, linear vertical scale, 5 to 20 kHz of display smoothing, and zero frequency span width. Check that the signal is peaked on the display and adjust the vertical sensitivity for 4 divisions of deflection. (Also ensure

that the base line with no signal is at the bottom line of the display.)

Set MODULATION MODE to AM INT 1000. Adjust MODULATION LEVEL for a panel meter reading of 50%. The peak-to-peak amplitude on the display should be between 3.6 and 4.4 divisions centered about the fourth division from bottom. The waveform should appear undistorted.

PERFORMANCE TESTS

4-12. BASIC FUNCTIONAL CHECKS (Cont'd)

7.

a.

b.

c.

d.

4-6

- d. Set MODULATION MODE to OFF. Set analyzer resolution bandwidth to 100 kHz or greater and no display smoothing.
- e. Check that signal is peaked and at fourth division. Set MODULATION MODE to PULSE INT. The level of the flat part of the pulses should be between 3.5 and 4.5 divisions.
- f. Set MODULATION MODE to OFF. Adjust analyzer to view the 100 MHz signal in smallest resolution bandwidth and frequency span that is reasonable, and set vertical scale to 10 dB log per division. Step OUTPUT LEVEL switch down in 10 dB steps and check that the output signal decreases in 10 dB steps to the lowest visible level on the analyzer

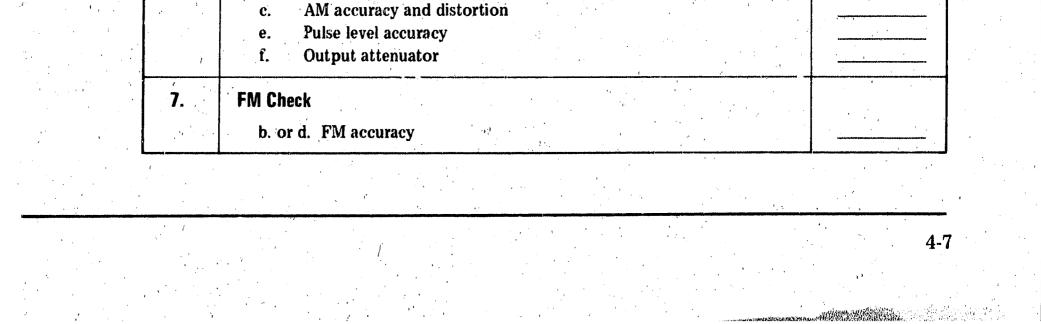
FM Check (refer to step 1 for initial control settings):

Set FREQUENCY TUNE to 1 MHz, and OUTPUT RANGE switch to -40 dBm. Locate signal on spectrum analyzer. Adjust analyzer for full-scale deflection of signal with 10 dB log per vertical division, 100 Hz resolution bandwidth, and 500 Hz to 2 kHz frequency span per division. (If 100 Hz resolution bandwidth is not available, see steps c and d.)

Set MODULATION MODE to FM INT 1000 and increase PEAK FM DEVIA-TION vernier for a panel meter reading of 2.4 kHz (note that the carrier decreases as peak deviation increases). The carrier signal should be down greater than 18 dB from its original level (which corresponds to a peak deviation accuracy of $\pm 10\%$).

NOTE

To obtain a more accurate measurement, adjust PEAK FM DEVIATION vernier for a carrier null. The panel meter should read 2.405 times the modulation rate measured in step 4b $(\pm 10\%)$. The above steps may also be repeated for other carrier frequencies.


If a spectrum analyzer with 100 Hz resolution bandwidth is not available, set FREQUENCY RANGE to 4-8 MHz, FREQUENCY TUNE to 8 MHz, and OUTPUT RANGE switch to -40 dBm. Locate signal on spectrum analyzer. Adjust analyzer for full-scale deflection of signal in the 10 dB log per vertical division setting with 3 kHz resolution bandwidth and 20 kHz frequency span per division.

Set an external audio oscillator to 1 Vrms at 10 kHz, connect to MOD INPUT, and set MODULATION MODE to FM EXT AC. Set the 10 kHz frequency with a counter. Set PEAK FM DEVIATION switch to 40 kHz and increase PEAK FM DEVIATION vernier for a panel meter reading of 24 kHz (note that the carrier decreases as peak deviation increases). The carrier signal should be down greater than 18 dB from its original level (which corresponds to a peak deviation accuracy of $\pm 10\%$.

PERFORMANCE TESTS

4-12 BASIC FUNCTIONAL CHECKS (Cont'd)

2. Preliminary. Checks a. Meter mechanical zero. b. LINE ON/OFF lamp c. Fan d. Elapsed time meter e. REDUCE annunciator (switch) f. REDUCE annunciator (vernier) 3. Counter and Frequency Checks a. Prequency accuracy b. Decimal point c. OVERFLOW annunciator d. Frequency display LEDs e. Phase lock range g. Phase lock trange h. Phase lock trange j. High frequency range j. High frequency range j. High frequency range j. High frequency sensitivity 0.5–16 MHz n. Range check and counter sensitivity 16–1024 MHz m. Cot.nter high frequency sensitivity n. High band/how-band switching 4. Meter and Modulation Oscillator Checks a. Panel meter accuracy b. Modulation oscillator frequency accuracy – sinewave c. Modulation oscillator frequency accuracy – pulse	Step	Description	\checkmark
a. Meter mechanical zero b. LINE ON/OFF lamp c. Fan d. Elapsed time meter e. REDUCE annunciator (switch) f. REDUCE annunciator (vernier) 3. Counter and Frequency Checks a. Frequency accuracy b. Decimal point c. OVERFLOW annunciator d. Frequency display LEDs e. Phase lock ange g. Phase lock range g. Phase lock range h. Phase lock range j. High frequency range k. Range check and counter sensitivity 0.5–16 MHz i. Low frequency range k. Range check and counter sensitivity 16–1024 MHz m. Counter signify frequency sacitivity n. High frequency sacitivity n. High frequency sacitivity m. Counter significator Checks a. Panel meter accuracy b. Modulation oscillator frequency accuracy — sinewave c. Modulation oscillator frequency accuracy — sinewave	2.	Preliminary Checks	
b. LINE ON/OFF lamp c. Fan d. Elapsed time meter e. REDUCE annunciator (switch) f. REDUCE annunciator (vernier) 3. Counter and Frequency Checks a. Prequency accuracy b. Decimal point c. OVERFLOW annunciator d. Frequency display LEDs e. Phase lock range g. Phase lock range h. Phase lock range h. Phase lock range h. Phase lock broken i. Low frequency range j. High frequency range k. Range check and counter sensitivity 0.5–16 MHz i. Range check and counter sensitivity 16–1024 MHz m. Couter high frequency sensitivity n. High-band/low-band switching 4. Meter and Modulation Oscillator Checks a. Panel meter accuracy b. Modulation oscillator frequency accuracy – pulse 5. Output Level Checks a. Output level accuracy +9 dBm b. <td< td=""><td></td><td></td><td></td></td<>			
c. Fan d. Elapsed time meter e. REDUCE annunciator (switch) f. REDUCE annunciator (vernier) 3. Counter and Frequency Checks a. Prequency accuracy b. Decimal point c. OVERFLOW annunciator d. Frequency display LEDs e. Phase lock cange g. Phase lock range h. Phase lock rooken i. Low frequency range j. High frequency range j. High frequency range k. Range check and counter sensitivity 0.5–16 MHz i. Range check and counter sensitivity 16–1024 MHz m. Counter bigh frequency sensitivity n. High-band/low-band switching 4. Meter and Modulation Oscillator Checks a. Panel meter accuracy b. Modulation oscillator frequency accuracy – sinewave c. Modulation oscillator frequency accuracy – pulse 5. Output Level Checks a. Output level accuracy +9 dBm b. Output level accuracy +3 dBm			·
d. Elapsed time meter		b. LINE ON/OFF lamp	······
e. REDUCE annunciator (switch) f. REDUCE annunciator (vernier) 3. Counter and Frequency Checks a. Frequency decuracy b. Decimal point c. OVERFLOW annunciator d. Frequency display LEDs e. Phase lock range g. Phase lock range g. Phase lock range h. Phase lock broken i. Low frequency range j. High frequency range j. High frequency sensitivity 0.5–16 MHz l. Range check and counter sensitivity 16–1024 MHz m. Cotater high frequency sensitivity n. High-band/low-band switching 4. Meter and Modulation Oscillator Checks a. Panel meter accuracy b. Modulation oscillator frequency accuracy – sinewave c. Modulation oscillator frequency accuracy – pulse 5. Output Level Checks a. Output level accuracy +9 dBm b. Output level accuracy +3 dBm		c. Fan	
f. REDUCE annunciator (vernier) 3. Counter and Frequency Checks a. Frequency accuracy b. Decimal point c. OVERFLOW annunciator d. Frequency display LEDs e. Phase lock achieved f. Phase lock achieved f. Phase lock range g. Phase lock broken i. Low frequency range j. High frequency range j. High frequency range k. Range check and counter sensitivity 0.5–16 MHz m. Counter high frequency sensitivity 16–1024 MHz m. Counter high frequency sensitivity n. High-band/low-band switching d. Meter and Modulation Oscillator Checks a. Panel metér accuracy b. Modulation oscillator frequency accuracy – sinewave c. Modulation oscillator frequency accuracy – pulse 5. Output Level Checks a. Output lével accuracy +9 dBm b. Output level accuracy +3 dBm		d. Elapsed time meter	
f. REDUCE annunciator (vernier) 3. Counter and Frequency Checks a. Frequency accuracy b. Decimal point c. OVERFLOW annunciator d. Frequency display LEDs e. Phase lock achieved f. Phase lock achieved f. Phase lock range g. Phase lock broken i. Low frequency range j. High frequency range j. High frequency range j. High frequency range k. Range check and counter sensitivity 0.5–16 MHz i. Low frequency range j. High frequency sensitivity 16–1024 MHz m. Coutter high frequency sensitivity 16–1024 MHz m. Coutter high frequency sensitivity n. High-band/low-band switching 4. Meter and Modulation Oscillator Checks a. Panel meter accuracy b. Modulation oscillator frequency accuracy – sinewave c. Modulation frequency accuracy – pulse 5. Output Level Checks a. Output level accu		e REDUCE appunciator (switch)	
3. Counter and Frequency Checks a. Frequency accuracy b. Decimal point c. OVERFLOW annunciator d. Frequency display LEDs e. Phase lock achieved f. Phase lock achieved g. Phase lock range h. Phase lock broken i. Low frequency range j. High frequency range j. High frequency range k. Range check and counter sensitivity 0.5–16 MHz m. Could the requency range k. Range check and counter sensitivity 16–1024 MHz m. Could the requency sensitivity n. High-band/low-band switching 4. Meter and Modulation Oscillator Checks a. Panel meter accuracy b. Modulation oscillator frequency accuracy – sinewave c. Modulation frequency accuracy – pulse 5. Output Level Checks a. Output level accuracy +9 dBm b. Output level accuracy +3 dBm			,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
a. Frequency accuracy b. Decimal point c. OVERFLOW annunciator d. Frequency display LEDs e. Phase lock achieved f. Phase lock range g. Phase lock range h. Phase lock trange i. Low frequency range j. High frequency range j. High frequency range k. Range check and counter sensitivity 0.5–16 MHz i. Range check and counter sensitivity 16–1024 MHz m. Coulter high frequency sensitivity n. High-band/low-band switching 4. Meter and Modulation Oscillator Checks a. Panel meter accuracy b. Modulation oscillator frequency accuracy – sinewave c. Modulation oscillator frequency accuracy – pulse 5. Output Level Checks a. Output level accuracy +9 dBm b. Output level accuracy +3 dBm		I. REDUCE annunciator (vernier)	
a. Frequency accuracy b. Decimal point c. OVERFLOW annunciator d. Frequency display LEDs e. Phase lock achieved f. Phase lock range g. Phase lock range h. Phase lock range i. Low frequency range j. High frequency range j. High frequency range k. Range check and counter sensitivity 0.5–16 MHz i. Row frequency sensitivity 16–1024 MHz m. Cou.iter high frequency sensitivity n. High-band/low-band switching 4. Meter and Modulation Oscillator Checks a. Panel meter accuracy b. Modulation oscillator frequency accuracy – sinewave c. Modulation oscillator frequency accuracy – pulse 5. Output Level Checks a. Output level accuracy +9 dBm b. Output level accuracy +3 dBm	3.	Counter and Frequency Checks	
b. Decimal point			
c. OVERFLOW annunciator			х
d. Frequency display LEDs			
e. Phase lock achieved			
g. Phase lock range			
g. Phase lock range		f. Phase lock range	· · · ·
h. Phase lock broken			
j. High frequency range			·
j. High frequency range		i. Low frequency range	
I. Range check and counter sensitivity 16-1024 MHz			
m. Counter high frequency sensitivity n. High-band/low-band switching 4. Meter and Modulation Oscillator Checks a. Panel meter accuracy b. Modulation oscillator frequency accuracy - sinewave c. Modulation oscillator frequency accuracy - pulse 5. Output Level Checks a. Output level accuracy +9 dBm b. Output level accuracy +3 dBm		k. Range check and counter sensitivity 0.5–16 MHz	1.00 · ·····
n. High-band/low-band switching 4. Meter and Modulation Oscillator Checks a. Panel meter accuracy b. Modulation oscillator frequency accuracy — sinewave c. Modulation oscillator frequency accuracy — pulse 5. Output Level Checks a. Output level accuracy +9 dBm b. Output level accuracy +3 dBm		I. Range check and counter sensitivity 16–1024 MHz	۰
4. Meter and Modulation Oscillator Checks a. Panel meter accuracy b. Modulation oscillator frequency accuracy - sinewave c. Modulation oscillator frequency accuracy - pulse 5. Output Level Checks a. Output level accuracy +9 dBm b. Output level accuracy +3 dBm		m. Counter high frequency sensitivity	Light - South and the sector and the sector of the sector
 a. Panel meter accuracy b. Modulation oscillator frequency accuracy - sinewave c. Modulation oscillator frequency accuracy - pulse 5. Output Level Checks a. Output lével accuracy +9 dBm b. Output level accuracy +3 dBm 		n. High-band/low-band switching	
 a. Panel meter accuracy b. Modulation oscillator frequency accuracy - sinewave c. Modulation oscillator frequency accuracy - pulse 5. Output Level Checks a. Output lével accuracy +9 dBm b. Output level accuracy +3 dBm 			
b. Modulation oscillator frequency accuracy - sinewave	4.	Meter and Modulation Oscillator Checks	
b. Modulation oscillator frequency accuracy - sinewave		a Panel meter accuracy	
c. Modulation oscillator frequency accuracy – pulse 5. Output Level Checks a. Output lével accuracy +9 dBm b. Output level accuracy +3 dBm	(i)		······································
5. Output Level Checks a. Output lével accuracy +9 dBm b. Output level accuracy +3 dBm			
a. Output lével accuracy +9 dBm b. Output level accuracy +3 dBm		c. Modulation oscillator including accuracy pulse	
a. Output lével accuracy +9 dBm b. Output level accuracy +3 dBm	5	Output Level Checks	
b. Output level accuracy +3 dBm			
c. Output level flatness			
		c. Output level flatness	

PERFORMANCE TESTS

4-13. FREQUENCY RANGE TEST

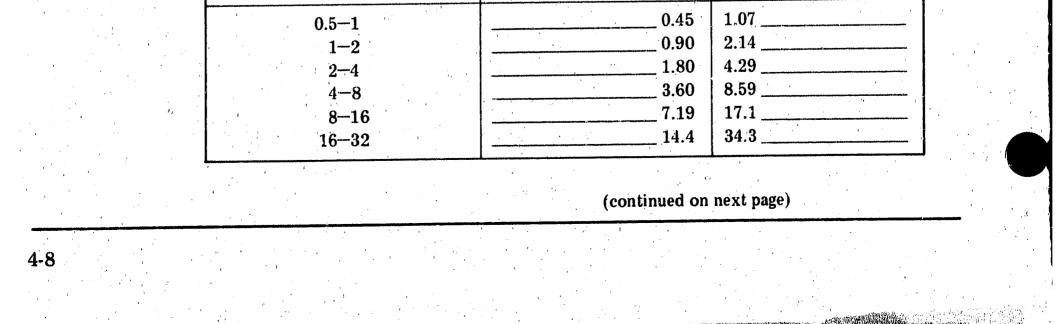
SPECIFICATION: Range: 500 kHz to 512 MHz in 10 octave ranges (to 1024 MHz with external frequency doubler).

Ranges and Range Overlap: Ranges extend approximately 10% below and 7% above the nominal frequency ranges shown below.

FREQUENCY RANGES (MHz)	FREQUENCY RANGES (MHz) (with overlap)
0.5-1	0.45-1.07
1-2	0.90-2.14
2-4	1.80-4.29
4-8	3.608.59
8-16	7.19-17.1
16-32	14.4-34.3
32-64	28.8-68.7
64-128	57.5-137
128-256	115-275
256-512	230-550
External Do	oubler Range
512-1024	460-1100

DESCRIPTION:

The frequency range is verified by using the generator's internal counter to indicate the frequency at the high and low end of each range. The Counter External Sensivitity Test (paragraph 4-31) can be performed to verify the actual existence of a signal at the output for each range.


PROCEDURE:

1. Set Signal Generator controls as follows:

COUNTER		INT NORM
MODULATICN MODE		OFF
FREQUENCY: RANGE		0.5—1 MHz
TUNE	•	Fully ccw
FINE TUNE.	,	Approximately centered

2. Note displayed frequency for each FREQUENCY RANGE. Set FREQUENCY TUNE fully cw and repeat. For each FREQUENCY RANGE setting, the frequency should be within the limits shown below.

FREQUENCY RANGES (MHz)	Low End (MHz)	High End (MHz)	
• • •			1

PERFORMANCE TESTS

4-13. FREQUENCY RANGE TEST (Cont'd)

FREQUENCY RANGES (MHz)	Low End (MHz)	High End (MHz)	
32-64	28.8	68.7	
64-128	57.5	137	
128-256	115	275	
256-512	230	550	
512-1024	460*	1100*	

4-14. HARMONIC DISTORTION TEST

1.

SPECIFICATION:	Harmonics (at 1 volt, +10 dBm output range and below):
	0.5 to 512 MHz: >30 dB below carrier (dBc)

DESCRIPTION:	Harmonics are measured with a spectrum	analyzer as the Signal	Generator frequency is
· , ,	tuned from 0.5 to 512 MHz.		

EQUIPMENT: Spectrum Analyzer HP 8554B/8552B/141T

PROCEDURE:

Connect Signal Generator RF OUTPUT to spectrum analyzer input after setting generator controls as follows:

	· · · · ·				
COUNTER	• • • • •	•			INT NORM
	ION MODE				
FREQUEN	CY: RANGE .	•	•	•	0.5–1 MHz
	TUNE	•	. ,	•	0.5 MHz
OUTPUT:	RANGE Switch				
	RANGE Vernier	•	÷	•	Meter reads +3 dB

2. Set spectrum analyzer input attenuation to 40 dB (use an external attenuator if necessary). Set analyzer resolution bandwidth, frequency span per division, center frequency controls and Signal Generator FREQUENCY RANGE control as listed in the following table. For each FREQUENCY RANGE setting, tune FREQUENCY TUNE across range beginning at high frequency end and note level of harmonics with respect to the fundamental. Harmonics should be within the limits shown.

4-9

a state factor and the

Performance Tests

PERFORMANCE TESTS

4-14. HARMONIC DISTORTION TEST (Cont'd)

Spectrum Analyzer			Sig. Gen.	Harmonics	
Frequency Span per Division (MHz)	Center Frequency (MHz)	Resolution Bandwidth (kHz)	FREQUENCY RANGES (MHz)	(dB down from fundamental)	
			0		
1	0	100	0.5-1	30	
2	, 0	100	12	30	
5	0	300	2-4	30	
10	0	300	4-8	30	
10	50	≥ 300	8-16	30	
20	100	≥ 300	16-32	30	
50	250	≥ 300	32-64	30	
100	500	≥ 300	64-128	30	
100	600	≥ 300	128 - 256	30	
100	700	≥ 300	256-512	30	

4-15. SINGLE SIDEBAND PHASE NOISE TEST

SPECIFICATION: SSB phase noise at 20 kHz offset from carrier:

[averaged rms noise level below carrier (dBc) stated in a 1 Hz bandwidth.]

256 MHz to 512 MHz: >125 dBc from 230 to 450 MHz increasing linearly to >115 dBc at 550 MHz.

0.5 MHz to 256 MHz: Decreases approximately 6 dB for each divided frequency range until it reaches SSB Broadband Noise Floor of > 130 dBc.

DESCRIPTION:

4-10

Phase noise is measured with a spectrum analyzer. A reference signal generator and a mixer are used to down-convert the test Signal Generator's CW signal to 0 Hz (the two signal generators are phase locked together). Then the spectrum analyzer measures SSB phase noise at a 20 kHz offset from the carrier.

NOTE

This test measures the total SSB phase noise of both generators. Therefore, the reference signal generator must have SSB phase noise that is less than or equal to the specification for the test

generator.

Performance Tests

4-11

MANAGER

PERFORMANCE TESTS

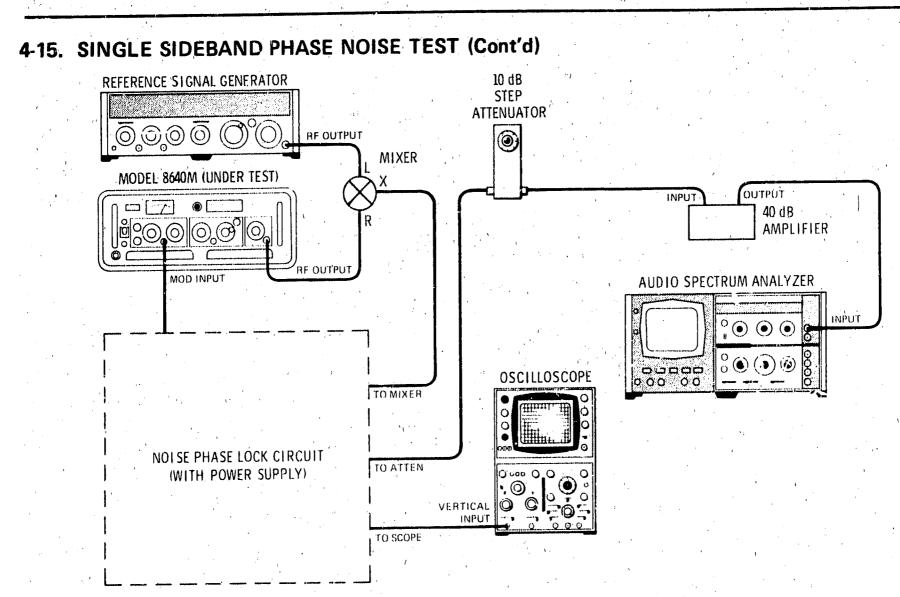


Figure 4-1. Single Sideband Phase Noise Test Setup

EQUIPMENT:	Reference Signal GeneratorHP 8640AMixerHP 10514A10 dB Step AttenuatorHP 355D40 dB AmplifierHP 08640-60506OscilloscopeHP 180C/1801A/1820CSpectrum AnalyzerHP 8556A/8552B/141TNoise Phase Lock CircuitHP 08640-60504
PROCEDURE:	1. Connect equipment as shown in Figure 4-1 after setting test Signal Generator's controls as follows:
	COUNTER INT NORM METER INT NORM MODULATION: LEVEL MODE INT NORM OFF

2.

PEAK FM DEVIATION5 kHzFREQUENCY:RANGE256-512 MHzTUNE550 MHzOUTPUT:RANGE Switch-10 dBmRANGE VernierFully cw

Set analyzer's input level control to -40 dBm, resolution bandwidth to 1 kHz, dBm/dBV control to dBm 50 ohms, span width per division (scan width) to 5 kHz, and center frequency controls to 20 kHz. Set display reference level

PERFORMANCE TESTS

4-15. SINGLE SIDEBAND PHASE NOISE TEST (Cont'd)

Performance Tests

to -40 dBm (at 10 dB per division). Using analyzer's 20 kHz markers, measure and note 20 kHz on the display.

3. Set oscilloscope's volts/div control to 0.02 and time/div control to 50 μ s; set the input to measure dc. Set 10 dB step attenuator to 80 dB. Set 40 dB amplifier's input impedance switch to 50 ohms.

4. Set reference signal generator for a 549.98 MHz, CW signal at +13 dBm (i.e., 20 kHz below test generator's frequency). Fine adjust its frequency for a 20 kHz signal on analyzer's display. Adjust analyzer's display reference level controls so that the 20 kHz signal is 4.3 dB below the top (reference) graticule line.

NOTE

The correction factors for this measurement are as follows:

a. The DSB to SSB transfer is -6 dB because the mixing process translates two correlated 1 kHz BW portions of the noise into the 1 kHz BW of the analyzer – giving twice the effective noise voltage.

b. +2.5 dB because noise is average detected after logging.¹

c. -0.8 dB. Effective noise BW is 1.2 x 3 dB BW which gives -0.8 dB -10 log (actual 3 dB BW/nominal 3 dB BW).¹

Summing of correction factors gives $-4.3 \text{ dB} -10 \log (actual 3 \text{ dB BW/nominal 3 dB BW})$ or approximately $-4.3 \text{ dB} \pm 1 \text{ dB}$.

5. Phase lock the generators by setting test generator's MODULATION MODE switch to FM EXT DC and by tuning reference signal generator to 550 MHz (i.e., for a difference frequency of 0 Hz). Monitor phase lock on oscilloscope, checking that mixer's output is 0 Vdc (if it is not, fine tune reference generator until it is).

Set analyzer's display smoothing (video filter) to 10 Hz. Set step attenuator to 0 dB. The top (reference) graticule line on analyzer's display represents $110 dB/\sqrt{Hz}$ below carrier level (the transfer from a 1 kHz BW to a 1 Hz BW is 30 dB). The average noise level on the display should be >5 dB below top graticule line at 20 kHz (i.e., >115 dB below carrier).

5 dB

15 dB

NOTE

Set oscilloscope to check for possible line-related signals in test setup. They should be <10 mVp-p.

Set test Signal Generator to 450 MHz and MODULATION MODE switch to OFF. Set reference signal generator to 449.98 MHz (i.e., 20 kHz below the test generator's frequency). Repeat steps 2 through 6. The average noise level on the display should be >15 dB below top graticule line at 20 kHz (i.e. > 110 dBc).

¹See Hewlett-Packard Application Note 150-4, Spectrum Analysis — Noise Measurements.

6.

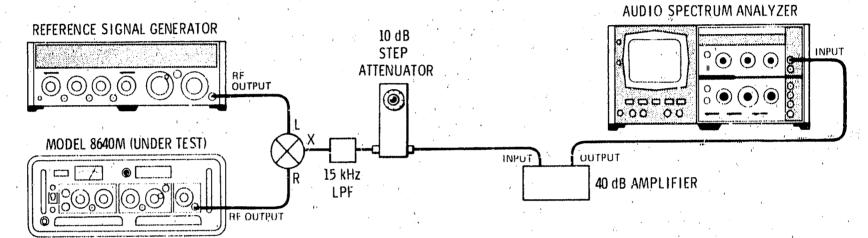
7.

4 - 12

Performance Tests

4-13

23.2万部资料部


PERFORMANCE TESTS

4-16. SINGLE SIDEBAND BROADBAND NOISE FLOOR TEST

SPECIFICATION: SSB Broadband Noise Floor at maximum output vernier and greater than 500 kHz offset from carrier: (Averaged rms noise level below carrier stated in a 1 Hz bandwidtn.) 0.5 to 512 MHz: >130 dBc.

DESCRIPTION:

A spectrum analyzer is used to measure the broadband noise floor (a reference signal generator and a mixer are used to down-convert the test Signal Generator's RF output and noise to within the range of the spectrum analyzer). A reference level is set on the analyzer with a 5 kHz signal, the signal is changed to 500 kHz and removed from the analyzer with a filter, and the broadband noise floor is measured.

EQUIPMENT:	Reference Signal GeneratorHP 8640AMixerHP 10514A15 kHz Low-Pass FilterCIR-Q-TEL 7 Pole10 dB Step AttenuatorHP 355D40 dB AmplifierHP 355040 dB AmplifierHP 3550 <tr< th=""></tr<>
PROCEDURE:	 Connect equipment as shown in Figure 4-2 after setting test Signal Generator's controls as follows:
	COUNTER INT NORM METER

TUNE500.000 MHzOUTPUT:RANGE Switch-10 dBmRANGE VernierFully cw

- 2. Set 10 dB step attenuator to 80 dB. Set reference signal generator for a 500.005 MHz (i.e., 5 kHz above the test generator's frequency), CW signal at +13 dBm (output vernier maximum cw). Set 40 dB amplifier's input impedance switch to 50 ohms.
- 3. Set spectrum analyzer's resolution bandwidth to 1 kHz, set input level control to -40 dBm and dBm/dBV to dBm 50 ohms, and adjust frequency controls to set the 5 kHz difference frequency in the center of the display. Set analyzer's display ref-

PERFORMANCE TESTS

4-16. SINGLE SIDEBAND BROADBAND NOISE FLOOR TEST (Cont'd)

erence level controls for 10 dB per division with the 5 kHz difference signal 1.3aB from the top (reference) graticule line on the display.

NOTE

The correction factors for this measurement are as follows:

The DSB to SSB transfer is -3 dB because the mixing process a. translates two uncorrelated 1 kHz BW portions of the noise into the 1 kHz BW of the analyzer – giving $\sqrt{2}$ times the effective noise voltage.

+2.5 dB because noise is average detected aftering logging.¹ **b**.

-0.8 dB. Effective noise BW is $1.2 \times 3 \text{ dB}$ BW which gives С. -0.8 dB -10 log (actual 3 dB BW/nominal 3 dB BW).¹

Summing the correction factors gives $-1.3 dB - 10 \log$ (actual 3 dB BW/nominal 3 dB BW) or approximately -1.3 dB ± 1 dB.

Change reference signal generator's output frequency to 500.50 MHz. Set 10 dB step attenuator to 0 dB. Set analyzer's display smoothing (video filter) to 10 Hz. The top graticule line on analyzer's display represents -110 dB (the transfer from a 1 kHz BW to a 1 Hz BW is 30 dB). The average noise level on the display should be >20 dB below the top graticule line (i.e., >130 dB below carrier).

20 dB

NOTE

If the test generator appears to be out of specification, check for excessive noise in the test setup by disconnecting the test generator. The noise level on the analyzer's display should decrease at least 10 dB.

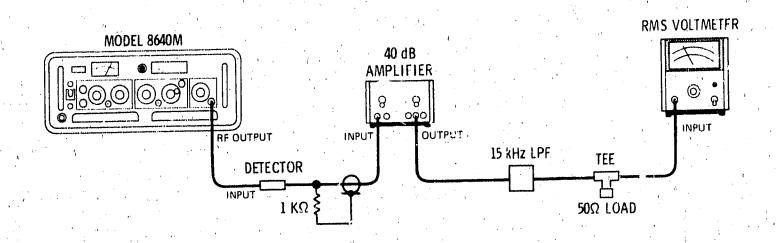
4-17. RESIDUAL AM TEST

4-14

SPECIFICATION: Residual AM (averaged rms):

	Post-I)etection No	ise Bandwidth
•	300 Hz to 3 kHz		20 Hz to 15 kHz
1	>80 dBc, typical		>70 dBc

¹See Hewlett-Packard Application Note 150-4, Spectrum Analysis - Noise Measurements.


>80 dBc, typical

PERFORMANCE TESTS

4-17. RESIDUAL AM TEST (Cont'd)

DESCRIPTION:

An rms voltmeter is calibrated with a measured amount of amplitude modulation from the Signal Generator. Then the AM is removed and the generator's residual AM is read directly from the coltmeter. Residual AM is measured only for a 20 Hz to 15 kHz postdetection noise bandwidth since any out-of-tolerance condition for it will also be out of the typical range for a 300 Hz to 3 kHz bandwidth.

Figure 4-3. Residual AM Test Setup

RMS Voltmeter	• • • • • • •	. HP 3400A
Crystal Detector		. HP 8471A
15 kHz Low-Pass	Filter (LPF)	. CIR-Q-TEL / Pole
40 dB Amplifier		. HP 465A
50 Ohm Load		. HP 11593A
1 k Ω Resistor .	• • • • • • • •	. HP 0757-0280

PROCEDURE:

1.

3.

EQUIPMENT:

Connect equipment as shown in Figure 4-3 (with the generator connected to the rms voltmeter through the detector, amplifier, 15 kHz LPF, and across the 50 ohm load). Set Signal Generator's controls as follows:

COUNTER	, i			•		INT NORM
METER .	• •				•	MOD
MODULAT	ION:	LEVEL	• /•	•		Fully ccw
· · · · · · · · · · · · · · · · · · ·		MODE		•	•	AM INT 1000
FREQUENC	CY:	RANGE		•	•	256-512 MHz
						500 MHz
OUTPUT:	RAN	GE Swit				+10 dBm
	RAN	GE Ver	nier.	÷.	к. •	Fully cw

. Slowly turn Signal Generator's MODULATION LEVEL control clockwise until its panel meter indicates 10% AM. Note voltmeter reading in dB.

Set generator's MODULATION MODE switch to OFF. Residual AM should read >50 dB below the reference noted in step 2 (i.e., >70 dB down, since the 10% AM, after detection, is 20 dB below the carrier level). 50 dB _____

1,1,10

4-15

PERFORMANCE TESTS

Post-Detection Noise Bandwidth

CW and up to 1/8 maximum allowable peak deviation

20 Hz

to 15 kHz

<50 Hz

300 Hz

to

3 kHz

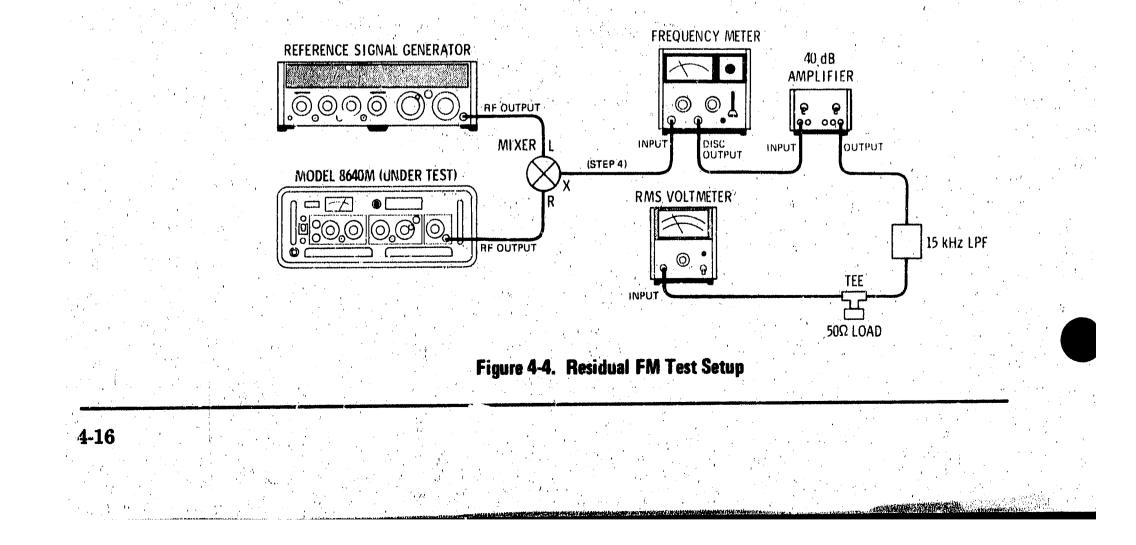
<5 llz, Typical

4-18. RESIDUAL FM TEST

SPECIFICATION: Residual FM (averaged rms):

256 to 512

Note: Residual FM is measured on the 256–512 MHz range and not locked. For lower ranges residual FM decreases by approximately 1/2 for each divided frequency range until limited by the Broadband Noise Floor. This limit for 300 Hz to 3 ltHz bandwidth is ≈ 1 Hz and for 20 Hz to 15 kHz bandwidth is ≈ 4 Hz.


FREQUENCY RANGE (MHz)

DESCRIPTION:

A frequency meter is used as an FM discriminator to measure FM deviation (a reference signal generator and a mixer are used to down-convert the test Signal Generator's RF output to within the range of the discriminator). The discriminator output is filtered and amplified and then measured with a voltmeter. The voltmeter reading, in mVrms, is proportional to the rms frequency deviation of the residual FM.

NOTE

This test measures the total residual FM of both generators. Therefore, the reference generator must have residual FM that is less than or equal to the specification for the test generator. Residual FM is measured only for a 20 Hz to 15 kHz post-detection noise bandwidth since any out-of-tolerance condition for it will also be out of the typical range for a 300 Hz to 3 kHz bandwidth.

Model 8640M

Performance Tests

PERFORMANCE TESTS

4-18. RESIDUAL FM TEST (Cont'd)

EQUIPMENT:

Frequency Meter	• • • • •	. HP 5210A
Filter Kit	• • • •	. HP 10531A
RMS Voltmeter	• • • • •	. HP 3400A
40 dB Amplifier	• • • • •	. HP 465A
Reference Signal Generator .		
Mixer		
15 kHz Low-Pass Filter (LPF))	. CIR-Q-TEL 7 Pole
50 Ohm Load		

PROCEDURE

1. Connect equipment as shown in Figure 4-4 after setting test Signal Generator's controls as follows:

			,					1	
	COUNTER		• • • •			• .′•	•		INT NORM
	METER .	• • •	• • • •		• •		•	• •	RF LEVEL
	MODULAT								
1		MO	DDE .	•••		• •	•		FM EXT AC
									320 kHz
,	FREQUEN	CY: RA	NGE .	• •	• •	• •		•	256-512 MHz
									500 MHz
	OUTPUT:	RANGE	Switch	• •	• •	•••		• •	—10 dBm
		RANGE	Vernie	c	• •	• • •	•		Fully cw
				,					

2. Install shorting board in frequency meter and calibrate it for 1 Vdc (at the output jack) for a full-scale meter reading. Remove shorting board, prepare a 20 kHz Butterworth low-pass filter (from filter kit), and install filter in frequency meter.

3. Set reference signal generator for a 500.10 MHz, CW signal at +13 dBm.

4. Connect frequency meter to mixer. Set frequency meter's range to 100 kHz and sensitivity to 0.01 Vrms. Fine tune either generator for a full-scale meter reading on frequency meter.

5. Connect amplifier to discriminator output. Connect voltmeter through 15 kHz L^{P} o amplifier's output. The signal out of the amplifier is 0.5 mVrms per 1 Hz (rms) of residual FM deviation, and the average voltmeter reading should be less than 25 mVrms (i.e., < 50 Hz (rms) residual FM).

25 mVrms

4-17

and a state of the second s

NOTE

Test setup calibration can be checked by setting the test generator's MODULATION MODE switch to FM INT 1000 and PEAK FM DEVIATION to 5 kHz (as read on panel meter with METER set to MOD). The voltmeter should read 1.77 Vrms.

water a service of the state

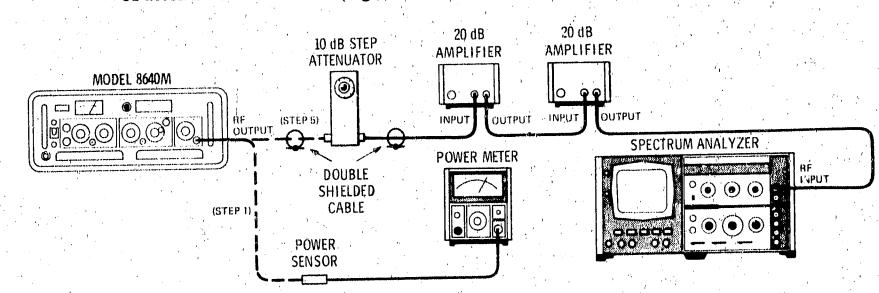
PERFORMANCE TESTS

4-19. OUTPUT LEVEL ACCURACY TEST

SPECIFICATION: Range: 10 dB steps and 18 dB vernier provide output power settings from +18 to -145 dBm (1.8V to 0.013 μ V) into 50 Ω .

Level Accuracy (total accuracy as indicated on level meter):

Output Level (dBm)								
FREQUENCY RANGE (MHz)	Using To	op 10 dB of Ve	ernier Range	Using Full Vernier Range				
	+ 13 to -7	-7 to -47	-47 to -137	+18 to -145				
0.5-512	±2.0 dB	±2.5 dB	±3.0 dB	Add ±0.5 dB				


DESCRIPTION:

EQUIPMENT:

4-18

The RF level accuracy for the upper four OUTPUT RANGE attenutor settings is measured with a power meter. For the lower ranges, a reference signal is established on a spectrum analyzer display, the Signal Generator's OUTPUT RANGE switch and the spectrum analyzer's vertical scale log reference level control are stepped together, and any amplitude variations are measured on the analyzer's display. An RF attenuator and amplifier at the RF OUTPUT are adjusted for analyzer compatibility and best sensitivity.

This procedure uses an IF substitution technique in which the spectrum analyzer's IF is the standard. The IF step accuracy should be within ± 0.2 dB overall. The IF step accuracy can be checked using the above technique by comparing a lab calibrated attenuator (such as HP Model 355D Option H36) with the IF step control at the frequency of attenuator calibration (e.g., 3 MHz for the HP 355D Option H36).

Elevera A.E. Output Loval Accuracy Test Setun

Figure 4-5. Untput Level Accuracy Test Security

Spectrum AnalyzerHP 8554B/8552B/141TPower MeterHP 435APower SensorHP 8482A20 dB Amplifier (2 required)HP 8447A10 dB Step AttenuatorHP 355DDouble Shielded Cable (2 required)HP 08708-6033

4-19

PERFORMANCE TESTS

4-19. OUTPUT LEVEL ACCURACY TEST (Cont'd)

PROCEDURE: 1.

2.

3.

4.

5.

Connect equipment as shown in Figure 4-5 after setting Signal Generator's controls as follows:

1			and the second
COUNTER		• •	INT NORM
METER .		• •	RF LEVEL
MODULAT	ION MODE	• •	OFF
FREQUEN	CY: RANGE	• •	256–512 MHz
	TUNE	• •	512 MHz
OUTPUT:	RANGE Switch		
	RANGE Vernier	• •	Meter reads +3 dB

Set power meter's controls so that it can measure +13 dBm. Connect power sensor to Signal Generator's RF OUTPUT.

Set Signal Generator's OUTPUT RANGL controls for levels (using generator's panel meter) shown in the table below; verify that the level on the power meter is within the specified tolerance.

Signal Ge			
OUTPUT RANGE Switch (dBm)	Panel Meter Indication (dB)	Power Meter Reading (dBm)	
+10	+3	+11.0+15.0	
	-2 -7	+6.0 +10.0 +1.0 + 5.0	
	-10	-2.5 + 2.5	
0	+3	+1.0 + 5.0	
10	+3	-9.54.5	

Set step attenuator to 70 dB. Set spectrum analyzer center frequency ± 5512 MHz, resolution bandwidth to 1 kHz, frequency span per division (scan width) to 0.5 kHz, input attenuation to 0 dB, tuning stabilizer on, display smoothing (video filter) to 100 Hz, and vertical log display to 2 dB per division with a -20 dBm reference level.

Connect attenuator to generator's RF OUTPUT without disturbing generator's controls. Center signal on analyzer's display. Consider the center horizontal graticule line equivalent to -7 dBm (with a panel meter reading of +3 dB), then with the vertical scale reference vernier control set the signal peak to be equal to the last level

measured on the power meter.

NOTE

If, for example, the last power meter reading was -7.4 dBm, the vertical scale resolution is 2 dB/division, therefore, the signal peak should be 0.4 dB or 0.2 division below the center (reference) graticule line.

PERFORMANCE TESTS

4-19. OUTPUT LEVEL ACCURACY TEST (Cont'd)

7.

8.

9.

4-20

:80

6. Step Signal Generator's OUTPUT RANGE switch and analyzer's vertical scale log reference level control switch as shown in the following table. Verify that the amplitude falls within the specified tolerance. If necessary, use generator's OUTPUT RANGE vernier to reset panel meter +3 dB.

Signal Generator	Spectrum	Analyzer
OUTPUT RANGE Switch (dBm)	Log Reference Level Control (dBm)	Display Amplitude (dB)
10 20 30 40	$ \begin{array}{r} -20 \\ -30 \\ -40 \\ -50 \end{array} $	Set Level -2.5+2.5 -2.5+2.5 -2.5+2.5

Set analyzer's vertical scale log reference level to -10 dBm and reset the 10 dB step attenuator to 30 dB. With the versal scale log reference vernier, set the signal peak to the same level, with respect to the horizontal center (reference) graticule line, as the last measurement recorded on the preceding table.

NOTE

If generator appears to be out of specification, check accuracy of spectrum analyzer's vertical scale calibration.

Step Signal Generator's OUTPUT RANGE switch and analyzer's vertical scale log reference level control switch as shown in the following table. Verify that the ampl[±]tude is within the specified tolerance. If necessary, use generator's OUTPUT RA^{*} (GE vernier to reset panel meter to +3 dB.

Signal Generator	gnal Generator Spectrum Analzyer				
OUTPUT RANGE Switch (dBm)	Log Reference Level Control (dBm)	Display Amplitude (dB)			
40	-10	Set Level			
-50	-20	-3.0 +3.0			
60	-30	-3.0+3.0			
70	-40	-3.0 +3.0			
00	50	-3.0 $+3.0$			

Set step attenuator to 0 dB; set spectrum analyzer's vertical scale log reference level to -20 dBm. Adjust vertical scale log reference vernier to give the same level, with respect to the center (reference) graticule line, as the last recorded entry on the previous table.

PERFORMANCE TESTS

4-19. OUTPUT LEVEL ACCURACY TEST (Contid)

10. Set Signal Generator and analyzer controls as shown in the following table. The amplitude levels should be within the specified tolerances. If necessary, use generator's OUTPUT RANGE vernier to reset panel meter to +3 dB.

Signal Generator	Spectrum Analyzer				
OUTPUT RANGE Switch (dBm)	Log Reference Level Control (dBm)	Display Amplitude (dB)			
	-20	Set Level			
90	-30	-3.0 +3.0			
-100	-40	-3.0 +3.0			
-110	-50	-3.0+3.0			
120	-60	-3.0 +3.0			

11. Set analyzer's display to 10 dB/division log. Adjust log reference level vernier to set signal to -10 dB graticule line (one major division from top of display) plus last recorded entry on previous table.

NOTE

If the following step appears to be out of specification, check the accuracy of the analyzer's display with an external, calibrated attenuator.

12. Set generator's OUTPUT RANGE switch to -130 dBm (adjust vernier for +3 dB indication on panel meter). The amplitude level indicated on analyzer's display should be within ± 3.0 dB of the -20 dB graticule line (second major division from top of display).

-23.0 _______ -17.0 dB

4-21

NOTE

The noise level on the analyzer's display should be >10 dB below the signal level. The signal should drop into the noise when the OUTPUT RANGE vernier is turned fully ccw.

4-20. OUTPUT LEVEL FLATNESS TEST

EQUIPMENT:

SPECIFICATION: Level Flatness: <+0.75 dB to -1.25 dB from 0.5 to 512 MHz referred to output at

50 MHz (flatness applies from +13 to -7 dBm and for top 10 dB of vernier range).

DESCRIPTION: Output flatness across each frequency range is measured with a power meter.

Power Meter....HP 435APower Sensor....HP 8482A

The power sensor's SWR should be < 1.2:1.

NOTE

Model 8640M

PERFORMANCE TESTS

4-20. OUTPUT LEVEL FLATNESS TEST (Cont'd)

PROCEDURE: 1.

Connect power sensor to generator's RF OUTPUT after setting Signal Generator's controls as follows:

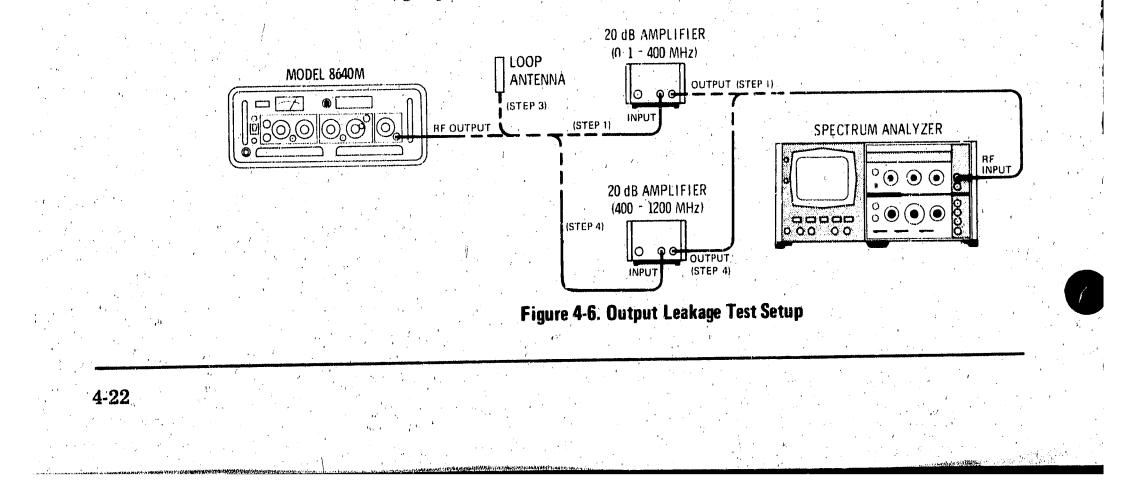
COUNTER		•	•	•.	•	INT NORM
METER .	· · · · · · ·	•	٠	•	•	RF LEVEL
MODULAT	TION MODE		•		•	OFF
FREQUEN	CY: RANGE .	•	•	•	•	32-64 MHz
	TUNE	•	•	•	•	50 MHz
OUTPUT:	RANGE Switch	•	•	•	•	+10 dBm
	RANGE Vernier	•	•	•	•	Meter reads -1 dB

2. Adjust OUTPUT RANGE vernier for a power meter reading of +9 dBm at 50 MHz. Using FREQUENCY RANGE TUNE controls, slowly tune Signal Generator from 512 MHz to 0.5 MHz. On each range, note maximum and minimum power meter readings in dBm. The overall maximum reading and the overall minimum reading should both be between +7.75 and +9.75 dBm.

4-21. OUTPUT LEAKAGE TEST

SPECIFICATION: Leakage (with all unused outputs terminated properly):

Leakage limits are below those specified in MIL-I-6181D. Furthermore, less than $3 \mu V$ is induced in a 2-turn, 1-inch diameter loop 1 inch away from any surface and measured into a 50 Ω receiver.


DESCRIPTION:

A loop antenna is held one inch from all surfaces of the Signal Generator and any leakage monitored with a spectrum analyzer. The loop antenna is suspended in a molding so that when the molding is in contact with a surface, the loop antenna is one inch from the surface.

NOTES

The use of a screen room may be necessary to reduce external radiated interference.

To avoid disturbing antenna's field and causing measurement error, grasp antenna at the end that has the BNC connector.

PERFORMANCE TESTS

4-21. OUTPUT LEAKAGE TEST (Cont'd)

1.

2.

3.

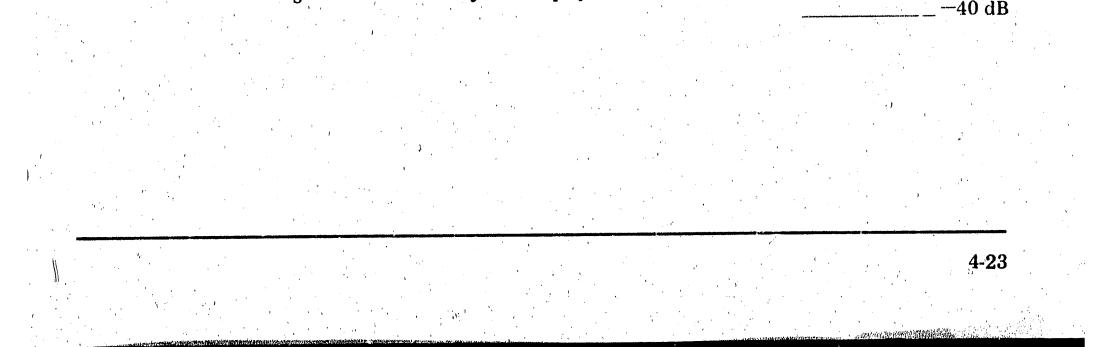
4.

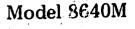
EQUIPMENT:

One-Inch Loop Antenna	HP 08640-60501
20 dB Amplifier (0.5–400 MHz)	HP 8447A
20 dB Amplifier (400–1200 MHz)	
Spectrum Analyzer	HP 8554B/8552B/141T

PROCEDURE:

Connect equipment as shown in Figure 4-6 (with Signal Generator connected to spectrum analyzer through 0.5–400 MHz amplifier) after setting Signal Generator's controls as follows:


	· · · · · · · · · · · · · · · · · · ·			1.		
•.	COUNTER		• •	۰. • •	• .1	INT NORM
:	METER			••	•	RF LEVEL
	MODULATION	MODE	• •		•	OFF
	FREQUENCY:	RANG	Е.		•	64–128 MHz
		TUNE	• •	• •	•	100 MHz
	OUTPUT: RA	NGE Sw	itch	• •		—100 dBm
	RA	NGE Ve	rnier	• •	,	Meter reads +3 dB


Set spectrum analyzer's resolution bandwidth to 30 kHz, input attenuation to 0 dB, frequency span per division (scan width) to 50 kHz, scale to log (10 dB per division), scale reference level controls to -50 dBm, and scale center frequency controls to 100 MHz. Calibrate the analyzer by using the scale reference level controls to set the -97 dBm (3 μ V) signal from the generator to the -40 dB graticule line on the display. Disconnect generator from analyzer. Install caps on COUT-ER INPUT and MOD INPUT/OUTPUT. (Internal rear panel AUX RF OUTPUT cap assumed to be installed.)

Connect one-inch loop antenna to analyzer through 0.5–400 MHz amplifier. Set analyzer frequency span to 20 MHz per division. Hold end of loop antenna cylinder in contact with all surfaces of Signal Generator. Repeat the test for a 300 MHz center frequency. All signals and noise should be below the -40 dB graticule line on analyzer's display (below $3 \mu V$) from 0.5 to 400 MHz.

-40 dB

Replace 0.5-400 MHz amplifier with 400-1200 MHz amplifier. Set analyzer's center frequency controls to 500 MHz; set generator's FREQUENCY RANGE control to 256-512 MHz and FREQUENCY TUNE control to 500 MHz, and connect generator to analyzer and calibrate analyzer as specified in step 2. Then reconnect loop antenna to analyzer and hold end of loop antenna cylinder in contact with all surfaces of generator. Repeat the test for center frequencies of 700, 800, and 1100 MHz. All signals and noise should be below the -40 dB graticule line on analyzer's display from 400 to 1200 MHz.

PERFORMANCE TESTS

MODULATION MODE Switch	Frequency	Limits (Hz)
INT AM 400	380	420
INT AM 1000	950	1050
INT AM 5000	4750	5250

Set MODULATION MODE switch to PULSE INT. Set PULSE RATE fully cw. Counter should read 5000 Hz or greater.

5000 Hz _____

Set PULSE RATE fully ccw. Counter should read 50 Hz or less.

50 Hz

4-23. AM BANDWIDTH TEST

SPECIFICATION: AM 3-dB Bandwidth:

3.

4.

FREQUENCY RANGES (MHz)	0 to 50% AM	50 to 90% AM	
0.5-2	20 kHz	12.5 kHz	
2-8	40 kHz	25 kHz	
8-512	60 kHz	50 kHz	

DESCRIPTION:

4-24

The Signal Generator is externally amplitude modulated by a test oscillator. The AM is demodulated with a spectrum analyzer in a zero span mode. The demodulated AM, available at the analyzer's vertical output, is measured with a distortion analyzer which is used as an adjustable voltmeter. As the test oscillator frequency is increased, the decrease in AM depth is noted.

3 dB

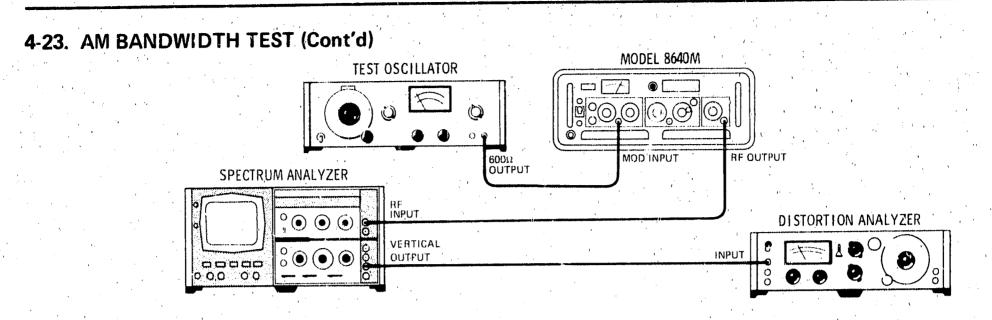
_3 dB

4 - 25

STATE AND

Model 8640M

PROCEDURE:


1.

2.

3.

4.

PERFORMANCE TESTS

Figure 4-7. AM Bandwidth Test Setup

EQUIPMENT:	Spectrum Analyzer .			HP 8554B/8552B/141T
	Distortion Analyzer.			HP 331A
and the second	Test Oscillator	• • • • •	• • •	HP 651B
		. N. A.	•	

Connect equipment as shown in Figure 4-7 after setting Signal Generator as follows:

1. N.			,
COUNTER	• • • • • •	•	INT NORM
METER .	· · · · · · · ·		. MOD
MODULAT	ION: LEVEL.		. Fully ccw
	MODE	• •	AM EXT AC
FREQUEN	CY: RANGE .	• •	. 1–2 MHz
	TUNE		
OUTPUT:	RANGE Switch		40 dBm
	RANGE Vernier	• •	. Fully cw
• • •			

Set spectrum analyzer resolution bandwidth to 300 kHz or greater, input attenuation to 0 dB, vertical scale to linear, display smoothing (video filter) to minimum (off), and adjust center frequency controls to center 2 MHz signal on display. Set frequency span to 0; fine adjust frequency controls to peak signal on display. Adjust vertical reference level controls to bring signal level to approximately fourth graticule line from bottom of display.

Set test oscillator to 1 kHz and 1 Vrms into 600Ω .

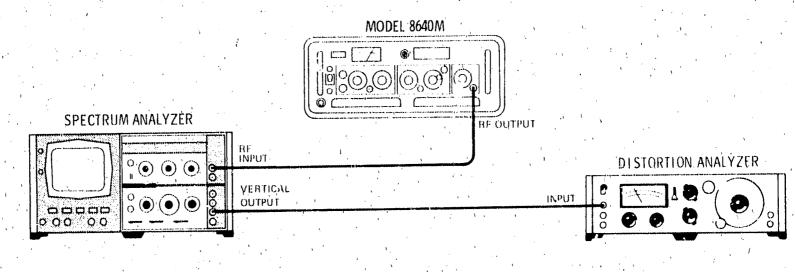
Increase MODULATION LEVEL until panel meter indicates 50% AM. Set distortion analyzer to set level position and adjust set level control for an indication of 0 dB. Increase test oscillator frequency to 20 kHz. Distoriton analyzer should indicate a level of within 3 dB.

5. Set test oscillator back to 1 kHz. Increase MODULATION LEVEL for 90% AM. Re-adjust distortion analyzer's set level for 0 dB. Increase test oscillator frequency to 12.5 kHz. Distortion analyzer should indicate a level of within 3 dB.

PERFORMANCE TESTS

4-23. AM BANDWIDTH TEST (Cont'd)

Repeat steps 2 through 5 with the Signal Generator set to the frequencies given 6. below. The distortion analyzer should indicate a level of within ± 3 dB for the test oscillator frequencies indication.


Signal Generator		Test Oscillator Frequency			
FREQUENCY	FREQUENCY TUNE	for 50% AM	for 90% AM		
RANGES (MHz)	(MHz)	(kHz)	(kHz)		
48	8	40	25		
816	16	60	50		

4-24. AM DISTORTION TEST

SPECIFICATION: AM Distortion (at 1 kHz rate): 0 to 70% AM: <5%

70 to 95% AM: <10%

The Signal Generator is amplitude modulated by the internal modulation oscillator. The **DESCRIPTION:** AM is demodulated by a spectrum analyzer in a zero span mode and percent of AM is set; a distortion analyzer is connected to the analyzer's vertical output and used to measure AM distortion.

Figure 4-8. AM Distortion Test Setup

EQUIPMENT:

PROCEDURE:

4-26

Spectrum Analyzer Distortion Analyzer.

HP 331A

HF 3554B/8552B/141T

A MARTIN A MANAGER

Connect equipment as shown in Figure 4-8 after setting Signal Generator's con-1. trols as follows:

INT NORM COUNTER MOD **MET'ER** LEVEL Fully cew **MODULATION:** OFF MODE

Performance Tests

PERFORMANCE TESTS

4-24. AM DISTORTION TEST (Cont'd)

2.

3.

4.

FREQUEN	CY:	RANGE .		•	•		•	256-512 MH
		TUNE						
OUTPUT:	RA	NGE Switch		•	•	•	•	-40 dBm
	RA	NGE Vernier	۰.	•	•	•'	•	Fully cw
								· · · · · · · · · · · · · · · · · · ·

Set spectrum analyzer's resolution bandwidth to 300 kHz or greater, input attenuation to 0 dB, vertical scale to linear, display smoothing (video filter) to 10 kHz, and adjust center frequency controls to center 512 MHz signal on display. Set frequency span to 0; fine adjust frequency controls to peak signal on display. Adjust vertical reference level controls to bring signal level to approximately fourth graticule line from bottom of display.

Set generator's MODULATION MODE switch to AM INT 1000 and adjust MOD-ULATION LEVEL control for 70% AM as read on panel meter.

Calibrate distortion analyzer and measure distortion. Distortion should be less than 5%.

5. Increase AM to 95%. Calibrate distortion analyzer and measure distortion. Distortion should be less than 10%.

6. Increase OUTPUT RANGE switch to -30 dBm and reduce OUTPUT RANGE vernier 10 dB (panel meter should read -7 dB in RF LEVEL). Repeat steps 2 thru 5.

> 70% AM _____ 5% 95% AM _____10%

10%

4 - 27

4-25. INDICATED AM ACCURACY TEST

SPECIFICATION: Indicated AM Accuracy (1 kHz rate using internal meter): ±(7.5% of reading + 1.5% of full scale).

DESCRIPTION: The Signal Generator is internally amplitude modulated. The AM is demodulated by a spectrum analyzer in a zero span mode. The AM depth is measured directly on the display and is compared with the panel meter reading.

PROCEDURE: 1. Connect Signal Generator RF OUTPUT to spectrum analyzer input after setting generator's controls as follows:

INT NORM COUNTER . MOD METER MODULATION: LEVEL Fully ccw MODE . AM INT 1000 RANGE 256-512 MHz FREQUENCY: TUNE . 512 MHz **OUPTUT:** RANGE Switch -40 dBm **KANGE Vernier** . Fully cw

Performance Tests.

Model 8640M

PERFORMANCE TESTS

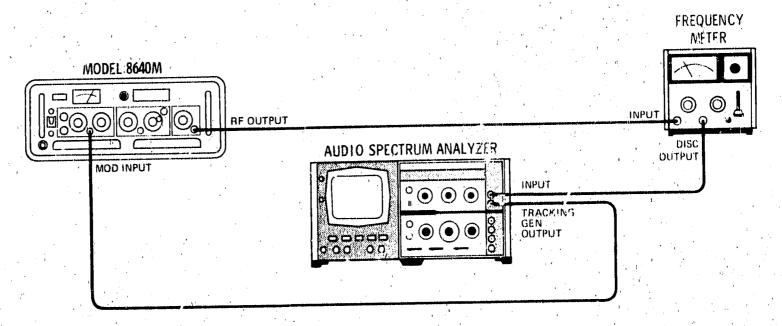
4-25. INDICATED AM ACCURACY TEST (Cont'd)

2.

3.

Set analyzer controls to display the 512 MHz signal with 300 kHz or greater resolution bandwidth, 0 dB input attenuation, linear vertical scale, 5 to 20 kHz of display smoothing, and zero frequency span width. Check that the signal is peaked on the display and adjust the vertical sensitivity for 4 divisions of deflection. (Also ensure that the base line is at the bottom line of the display with no signal applied.)

Adjust generator's MODULATION LEVEL until demodulated signal spans the second and sixth graticule lines from the bottom of the display. Panel meter should read between 44.75 and 55.25% (i.e., $50\% \pm (0.075 \times 50\% + 1.5\%)$ = $50\% \pm 5.25\%$).


4-26. FM BANDWIDTH TEST

SPECIFICATON: FM 3-dB Bandwidth:

Internal and external ac; 20 Hz to 250 kHz. External dc; dc to 250 kHz.

DESCRIPTION:

An au lio spectrum analyzer is used to measure the 3-dB bandwidth. The analyzer is set to svep over the specified audio frequency range and its tracking generator output is used to frequency modulate the Signal Generator. The generator's RF output is demoduled with a frequency meter. The demodulated signal is fed to the analyzer's input and any amplitude variation is measured on the analyzer's display. Bandwidth is checked at maximum deviation on the 3-16 MHz range.

Figure 4-9. FM Bandwidth Test Setup

Audio Spectrum Analyzer HP 8556A/8552B/1411 **EQUIPMENT**: . . HP 5210A **Frequency Meter** Filter Kit (for Frequency Meter) HP 10531A Connect equipment as shown in Figure 4-9 after setting Signal Generator's con-**PROCEDURE:** 1. trols as follows: INT NORM COUNTER MOD METER 4-28

Performance Tests

PERFORMANCE TESTS

4-26. FM BANDWIDTH TEST (Cont'd)

2.

3.

MODULATION:	LEVEL	Fully cw
	MODE	
	PEAK FM DEVIATION	80 kHz
FREQUENCY:	RANGE	8–16 MHz
	TUNE	8 MHz
OUTPUT: RAN	GE Switch	+10 dBm
	GE Vernier	

Prepare a 1 MHz Butterworth low-pass filter and install it in the frequency meter. Set frequency meter's range to 10 MHz and input sensitivity to 1V.

Set Signal Generator's MODULATION MODE switch to FM EXT AC. Set spectrum analyzer's resolution bandwidth to 3 kHz and its center frequency controls to 1 kHz (with no sweep). Set analyzer's tracking generator output level for 80 kHz peak deviation as read on generator's panel meter. Set the analyzer's frequency controls for a 0 to 250 kHz sweep. Set the analyzer's display for 2 dB per division; adjust the display reference level controls to display the demodulated sweep.

4. Measure the sweep on the analyzer's display. Total amplitude variation from 20 Hz to 250 kHz should be ±3 dB.

-3 dB_____+3 dB

4-29

NOTE

Is the frequency meter's incidental AM rejection is insufficient, the generator could appear to be out of specification. To check the frequency meter, note analyzer's reading (in dBm), set generator's MODULATION MODE switch to AM EXT AC and connect analyzer's tracking generator output to MOD INFUT. Set MODULATION LEVEL for 10% as read on panel meter. The analyzer should read >30 dB below the reading noted above. If it does not, adjust frequency meter sensitivity and trigger level (or generator's OUTPUT RANGE vernier) until it does. Then repeat steps 2 through 4.

4 27. FM DISTORTION TEST

SPECIFIC ATION:

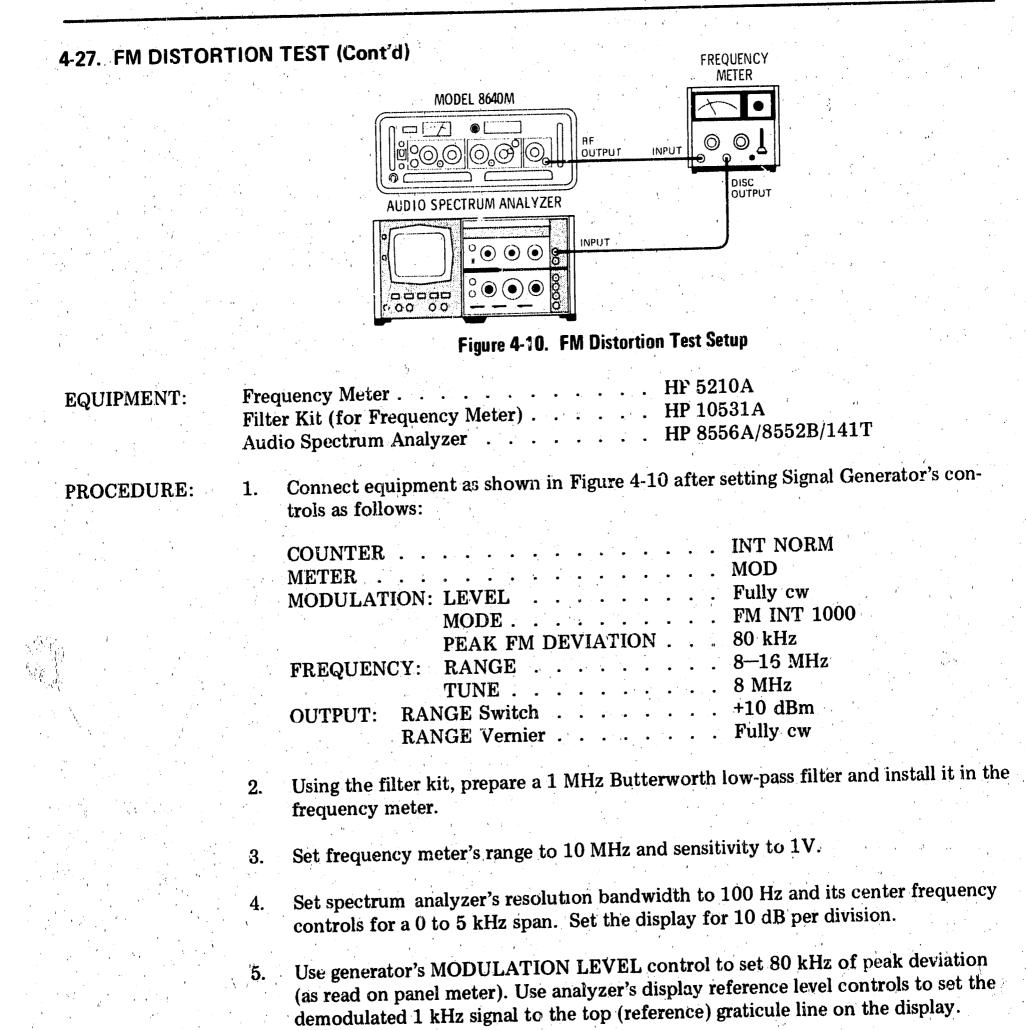
DESCRIPTION:

FM Distortion (at 400 and 1 kHz rates):

< 1.5% for deviations up to 1/8 maximum allowable.

< 5% for deviations up to maximum allowable.

The Signal Generator is modulated with a 1 kHz signal. The generator's RF output is then demodulated with a frequency meter and the distortion on the frequency meter output is measured with a spectrum analyzer.


Performance Tests

6.

7.

4-30

PERFORMANCE TESTS

- Note the level of the 1 kHz signal's harmonics (2 kHz, 3 kHz, etc.). For less than 5% distortion, they should be more than 26 dB below the reference graticule line.
 - Set generator's PEAK FM DEVIATION switch to 10 kHz. If necessar , use generator's MODULATION LEVEL control to set 10 kHz of peak deviation; use analyzer's display reference level controls to set the demodulated 1 kHz signal to the reference graticule line.

26 dB

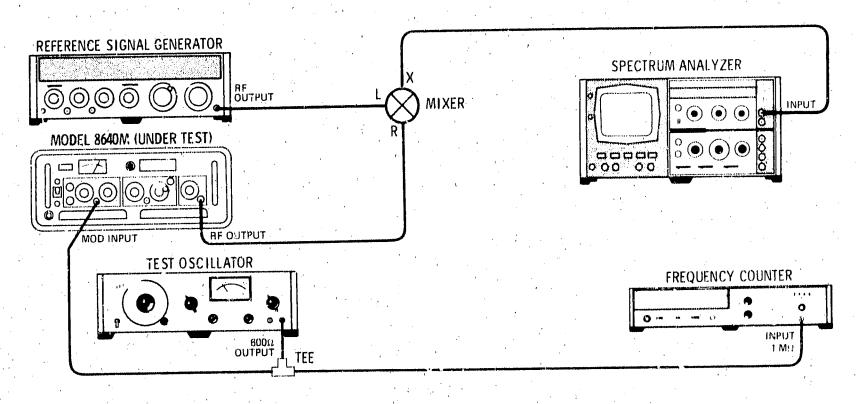
mander recentification

Model 8640M

PERFORMANCE TESTS

4-27. FM DISTORTION TEST (Cont'd)

For less than 1.5% distortion, the 1 kHz signal's harmonics should be more than 8. 36.5 dB below the reference graticule line.


36.5 dB

4-28. INDICATED FM ACCURACY TEST

SPECIFICATION: Indicated FM Accuracy (1 kHz rate using internal meter): Excluding maximum peak deviation position: $\pm (12\% \text{ of reading} + 1.5\% \text{ of full})$ scale).

DESCRIPTION:

The Signal Generator's indicated FM accuracy is checked using the carrier (Bessel) null technique. An externally applied 2.079 kHz signal is used to FM the generator. The modulation signal's amplitude is adjusted for the first order null of the carrier and the panel meter reading noted. (For the first order null of the carrier, peak deviation equals 2.405 times the 2.079 MHz modulation rate or 5 kHz deviation.) The reference generator and mixer convert the signal into the range of the spectrum analyzer.

Figure 4-11. Indicated FM Accuracy Test Setup

NOTE

The reference signal generator should have frequency drift and residual FM specifications equal to the Model 8640A.

EQUIPMENT:

HP 651B Test Oscillator HP 5327C Frequency Counter HP 8554B/8552B/141T Spectrum Analyzer HP 8640A Reference Signal Generator . . HP 10514A Mixer

Performance Tests

Model 8640M

PERFORMANCE TESTS

4 28. INDICATED FM ACCURACY TEST (Cont'd)

3.

4.

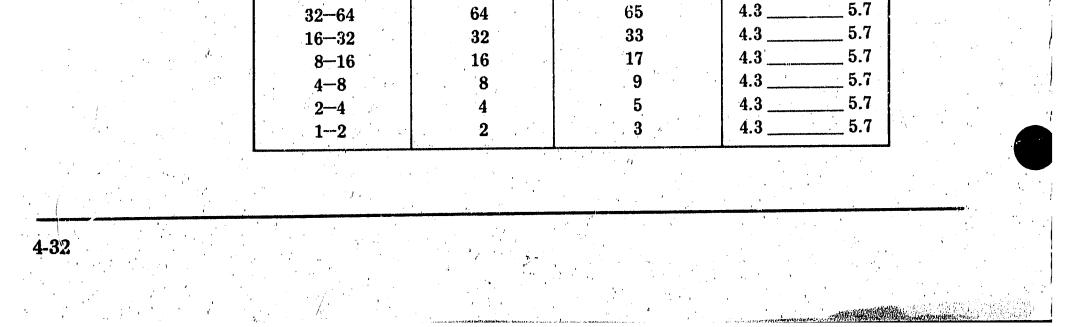
5.

PROCEDURE: 1.

Connect equipment as shown in Figure 4-11 (with test Signal Generator connected to mixer, and mixer connected to analyzer) after setting test generator's controls as follows:

COUNTER .	· · · · · · · · · · · · · · · · · · ·	. INT NORM
METER		. MOD
MODULATIC		. Fully cw
	MODE	. OFF
		. 5 kHz
FREQUENCY		. 256-512 MHz
	TUNE	. 512 MHz
OUTPUT: F	ANGE Switch	. —10 dBm
F	ANGE Vernier	. Fully cw

2. Set reference signal generator for a 513 MHz, CW signal at +13 dBm.


Set spectrum analyzer's center frequency controls to 1 MHz, input attenuation to 20 dB, resolution bandwidth to 0.1 kHz, span width per division (scan width) to 1 kHz, and set display to 10 dB per division. Set reference level controls to put peak of the signal at top (log reference) graticule line on the display.

Set test oscillator for approximately 0.7 Vrms signal at 2.079 kHz. Set test generator's MODULATION MODE switch to FM EXT AC and fine adjust test oscillator's amplitude for the first carrier null on analyzer's display (at least 50 dB below the top graticule line). The panel meter should read between 4.3 and 5.7 kHz (i.e., 5 kHz \pm 13.5%).

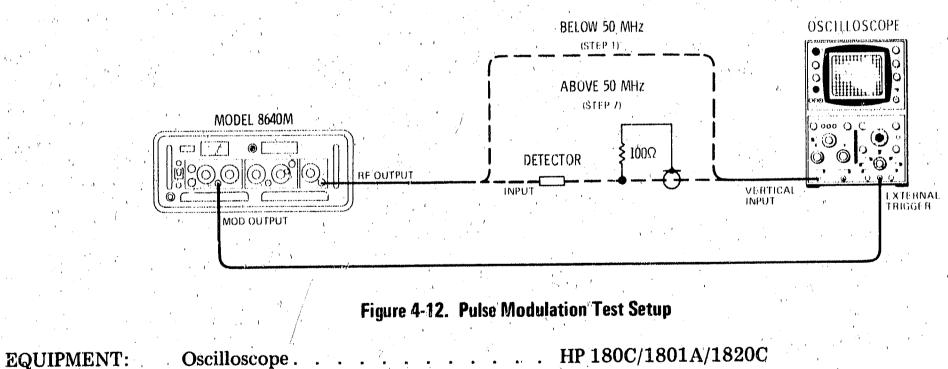
4.3 _____ 5.7 kHz

Use the procedures given above to check the remaining ranges by setting the test Signal Generator's FREQUENCY RANGE switch as shown below. As outlined in steps 1 through 4, on each range set MODULATION MODE to OFF and tune the generators for a 1 MHz difference. Set the reference on the analyzer, set MODU-LATION MODE to FM EXT AC (with a 2.079 kHz modulating signal at approximately 0.7 Vrms) and adjust the modulating signal's amplitude for the first carrier null. The panel meter should read 5 kHz \pm 13.5%.

FREQUENCY RANGES (MHz) FREQUENCY TUNE (MHz)		Reference Generator Frequency (MHz)	Panel Meter Reading (kHz)		
128-256	256	257	4.3 5.7		
64-128	128	129	4.3 5.7		

PERFORMANCE TESTS

4-29. PULSE MODULATION TEST


SPECIFICATION: Pulse Modulation (specifications apply for top 10 dB of output vernier range):

FREQUENCY Ranges (MHz)	0.5 to 1	1 to 2	2 to 8	8 to 32	32 to 512
Rise and Fali Times	<9 μs	<4 μs	$< 2\mu{ m s}$		$< 1 \ \mu s$
Pulse Repetition Rate	50 to 50	Hz kHz	50 Hz to 100 kHz	50 Hz to 250 kHz	50 Hz to 500 kHz
Pulse Width Minimum for Level Accuracy Within 1 dB of CW (>0.1% duty cycle)	1(0 μs	5 μs		2. µs
External Peak Input Required	Nominally > Schmitt (and the second	nax) waveform	, return to zero, i	nto 50 Ω

DESCRIPTION:

.1

The Signal Generator is internally pulse modulated. For low frequencies the RF pulses are observed directly on an oscilloscope. For high frequencies, the RF is detected and the detected envelope is observed on the oscilloscope.

HP 8471A

HP 0757-0401

PROCEDURE: 1. Connect equipment as shown in Figure 4-12, with oscilloscope connected directly to test generator's RF OUTPUT, after setting test Signal Generator's controls as follows:

Crystal Detector

100 Ω Resistor

COUNTERINT NORMMETERRF LEVELMODULATION: PULSE WIDTHFully cwPULSE RATEFully cwMODEPULSE INT

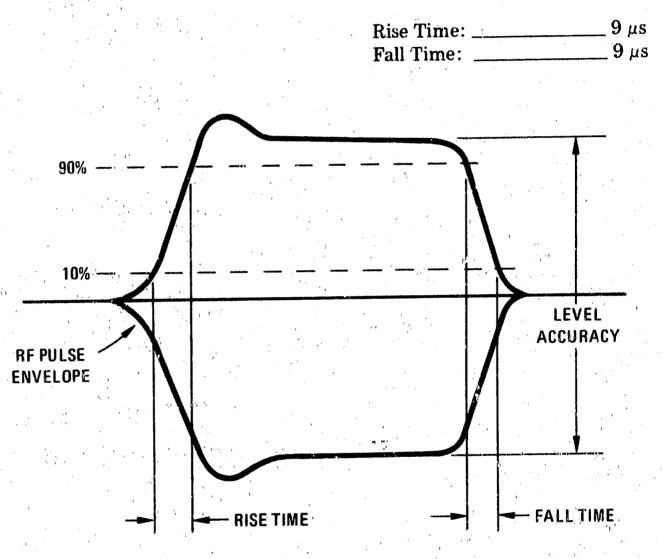
___ 6.7 div

5.4 _

Performance Tests

PERFORMANCE TESTS

4-29. PULSE MODULATION TEST (Cont'd)


4.

5.

4-34

FREQUEN	CY: RANGE .		•	•	• '	0.5–1 MHz
	TUNE					
OUTPUT:	RANGE Switch	•	•	•	•	—20 dBm
	RANGE Vernier	•	•	•	•	Meter reads +3 dB

2. Adjust oscilloscope to display the RF pulse envelope. Adjust generator's PULSE RATE for 100 Hz (or 10 ms period) as read on oscilloscope. Adjust the PULSE WIDTH for 10 μ s (measured at 50% amplitude points) and measure the rise and fall times (see Figure 4-13). Both should be less than 9 μ s (measured between 10% and 90% of the full pulse amplitude).

3. Set test Signal Generator's MODULATION MODE switch to OFF and adjust oscilloscope's vertical controls for 6 divisions of deflection on the display (peak to peak).

Set test Signal Generator's MODULATION MODE switch to PULSE INT. Pulse

amplitude (peak to peak) on oscilloscope's display should be 5.4 to 6.7 divisions.

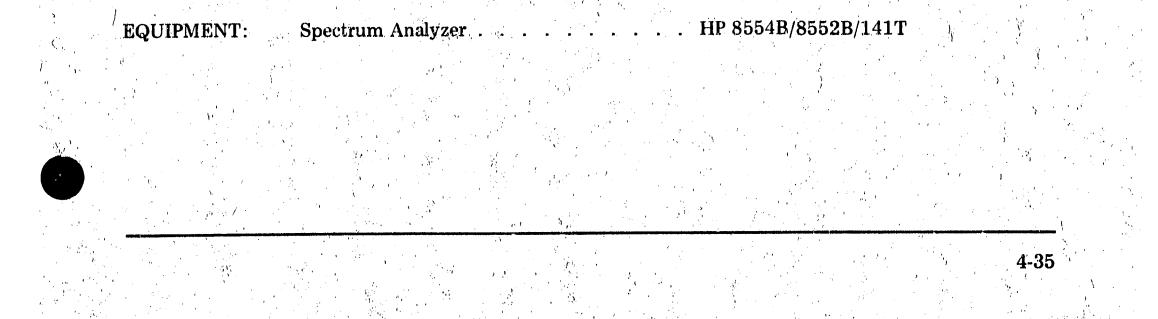
Repeat steps 1 through 5 for the frequency ranges shown below. The rise and fall times and level accuracy should be as specified.

PERFORMANCE TESTS

4-29. PULSE MODULATION TEST (Cont'd)

Signal G	enerator	,	4)		
FREQUENCY Ranges (Mrz)	PULSE RATE (Hz)	PULSE WIDTH (µs)	Rise Time (µs)	Fall Time (µs)	Level Accuracy (Divisions)
$ \begin{array}{r} 1-2 \\ 2-4 \\ 4-8 \\ 3-16 \\ 16-32 \\ \end{array} $	100 200 200 500 500	10 5 5 2 2 2	4 2 2 1 1	4 2 2 1 1	5.4 - 6.7 $5.4 - 6.7$ $5.4 - 6.7$ $5.4 - 6.7$ $5.4 - 6.7$ $5.4 - 6.7$

6. Connect detector and 100Ω detector load to RF OUTPUT as shown in Figure 4-12. Set OUTPUT RANGE switch to +10 dBm.


7. Repeat steps 1 through 5 (using the detector to monitor the pulse envelope) for the frequency ranges shown below. For the level accuracy portion of the measurement the oscilloscope's vertical controls should be adjusted for 6 divisions of deflection with respect to ground (dc coupled). The rise and fall times and level accuracy should be as specified.

Signal Generator							
FREQUENCY RANGES (MHz)	PULSE RATE (Hz)	PULSE WIDTH (μs)	Rise Time (µs)	Fall Time (µs)	Level Accuracy (Divisions)		
$\begin{array}{r} 32-64\\ 64-128\\ 128-256\\ 256-512 \end{array}$	500 500 500 500	2 2 2 2 2	1 1 1	1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

4-30. PULSE ON/OFF RATIO TEST

SPECIFICATION: Pulse ON/OFF ratio at maximum vernier: >40 dB.

DESCRIPTION: The on/off ratio of the pulse modulation circuits is measured with a spectrum analyzer.

Performance Tests

PERFORMANCE TESTS

4-30. PULSE ON/OFF RATIO TEST (Cont'd)

1.

2.

3.

PROCEDURE:

4-36

Connect generator's RF OUTPUT to analyzer's input after setting Signal Generator's controls as follows:

1 A.		P.	Ľ.		•
COUNTER		. li		•	INT NORM
METER .		• 1	• •	•	ICF LEVEL
MODULAT	ION MODE	•	• •	•	OFF
FREQUEN	CY: RANGE .			•	256-512 MHz
	TUNE	•	• •	.•	256 MHz
OUTPUT:	RANGE Switch		• •	•	-10 dBm
	RANGE Vernier	•	, .	•	Fully cw

Set spectrum analyzer's input attenuation to 20 dB. Adjust center frequency controls to center the 256 MHz signal on the display. Adjust scale reference level controls to set the signal to the top (0 dB) graticule line with the scale controls set to display 10 dB per division.

Set generator's MODULATION MODE switch to PULSE EXT and tune across range. The signal on the analyzer's display should decrease and remain more than 40 dB below reference.

40 dB

4-31. COUNTER EXTERNAL SENSITIVITY TEST

SPECIFICATION:	External RF Input: Frequency Range: 10 Hz to 550 MHz. Sensitivity: ≥125 mVrms, ac only, into 50Ω (≥ −5 dBm).
DESCRIPTION:	The Signal Generator's RF output is used to verify the counter's range and sensitivity.
PROCEDURE:	1. Connect RF OUTPUT to COUNTER INPUT after setting Signal Generator's con- trols as follows:
	COUNTER EXT 10-550 METER RF LEVEL MODULATION MODE OFF FREQUENCY: RANGE 256-512 MHz TUNE 550 MHz OUTPUT: RANGE Switch 0 dBm

RAMGE vernier . . . Meter reads 5 u

- 2. Slowly tune Signal Generator down to 10 MHz using FREQUENCY RANGE and TUNE. The display should indicate the frequency of the signal at the RF OUT-PUT at all frequencies. 10 to 550 MHz _____($\sqrt{$)}
- 3. Set COUNTER to EXT 0–10. Slowly tune Signal Generator down to 0.5 MHz using FREQUENCY RANGE and TUNE. The display should indicate the frequency of the signal at all frequencies. 0.5 to 10 MHz _____($\sqrt{}$)

PROCEDURE:

4-32. COUNTER ACCURACY TEST

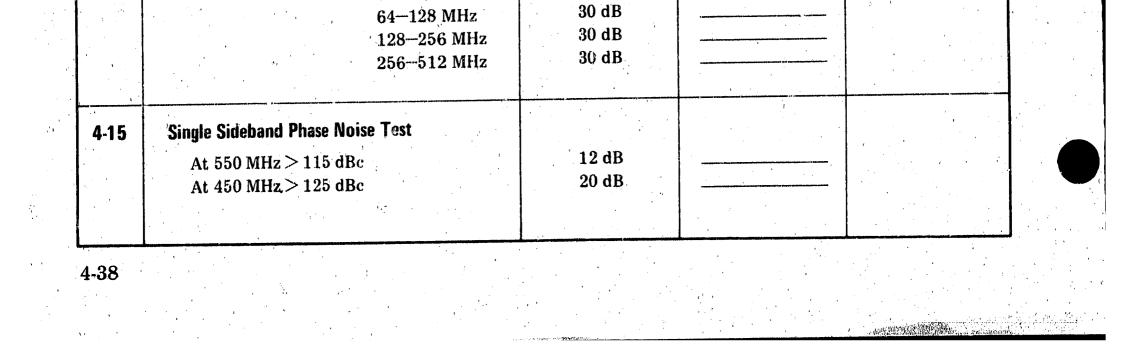
SPECIFICATION: Internal Reference Accuracy (after calibration at 25° C): < ± 20 ppm.

DESCRIPTION: The frequency of the RF output is measured with an external counter and compared to the internal counter reading.

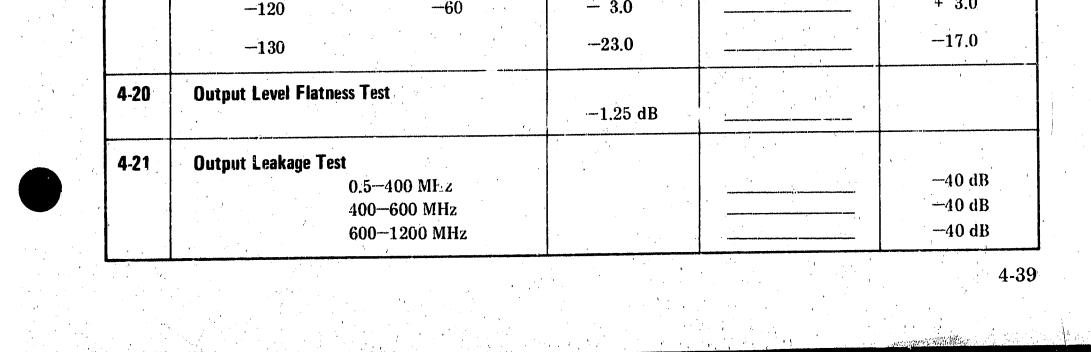
> 1. Connect frequency counter to RF OUTPUT after setting Signal Generator's controls as follows:

COUNTER		•	•		•	INT X10
MODULAT	ION MODE	•	•	•		OFF
FREQUEN	CY: RANGE .	•	د		•	8–16 MHz
•	TUNE	•	•	•	•	10 MHz
OUTPUT:	RANGE Switch	•	•	• 1		0 dBm
	RANGE Vernier	•	•.		•	Fully cw

2. Set counter gate time to 100 ms. The external and internal counters should read the same frequency \pm 206 Hz.

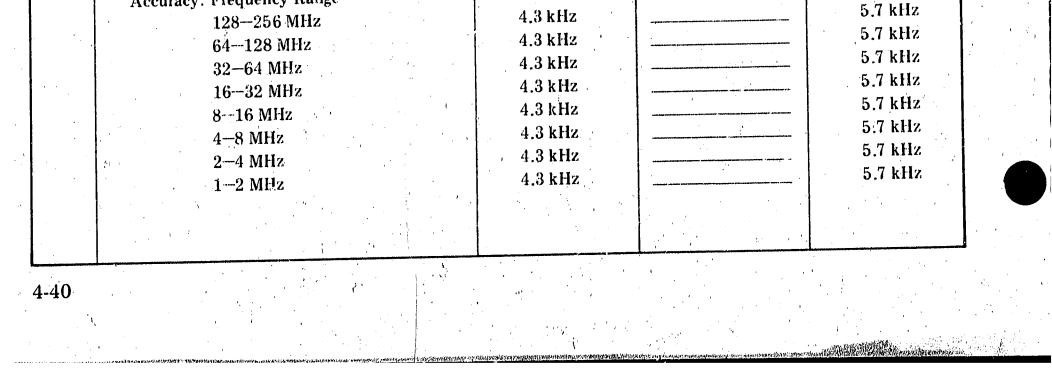

-200 Hz _____ +200 Hz

Performance Tests

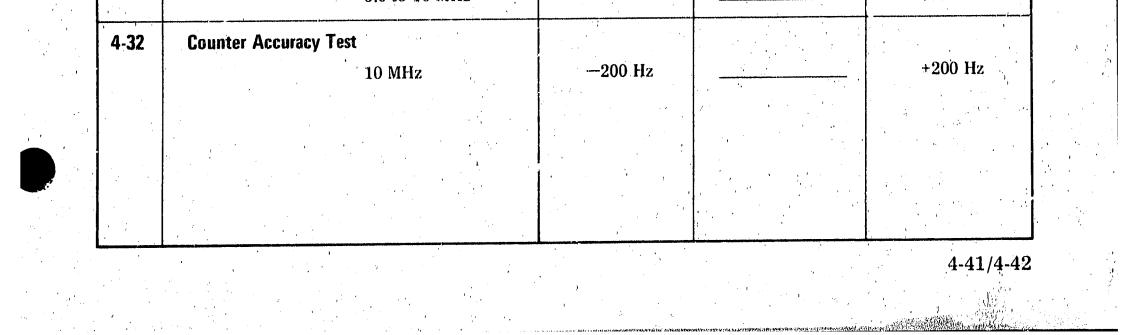

Table 4-3.	Performance	Test	Record	(1	of.	4
------------	-------------	------	--------	----	-----	---

	lett-Packard lel 8640M		Tested By		
Sign	al Generator al No		Date		·
, ·*					
Para				Results	1
No.	Test Description	DN	Min	Actual	Мах
4-13	Frequency Range Test				
	External Doubler Range:	512-1024 MHz	1100 MHz		
· .	High End of Band:	256-512 MHz	550 MHz		
l		128–256 MHz	275 MHz		
		64128 MHz	137 MHz		· · ·
		32-64 MHz	68.7 MHz		
, /		16-32 MHz	34.3 MHz 17.1 MHz		
		8-16 MHz	8.59 MHz		
		4—8 MHz	4.29 MHz		
	1	2-4 MHz	2.14 MHz		
		1-2 MHz 0.5-1 MHz	1.07 MHz		
۰. ۱۹		· · · · · ·			460 MHz
,	External Doubler Range:	512-1024 MHz			230 MHz
	Low End of Band:	256-512 MHz			115 MHz
	$\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} $	128–256 MHz			57.5 MHz
		64-128 MHz			28.8 MHz
		32-64 MHz		····	14.4 MHz
		16-32 MHz			7.19 MHz
		8-16 MHz			3.60 MHz
		48 MHz			1.80 MHz
		2—4 MHz 1—2 MHz		· · · · · · · · · · · · · · · · · · ·	0.90 MHz
ан Этар 19		0.5–1 MHz			0.45 MHz
		0.0 1 0012			
4-14	Harmonic Distortion Test				
1. j	Frequency Range:	0.5-1 MHz	30 dB	1	
•		1–2 MHz	30 dB		
• 		2–4 MHz	30 dB		
· ·		4-8 MHz	30 dB	۲۰ و الم	
•		8-16 MHz	30 dB	۵۰ 	
•	$\mathbf{V}_{\mathbf{r}} = \mathbf{V}_{\mathbf{r}}$	16-32 MHz	30 dB		
		32-64 MHz	30 dB	· · ·	

Table 4-3. Performance Test Record (2 or 4)


Dere		Results			
Para No.	Test Description	Min	Actual	Мах	
4-16	Single Sideband Broadband Noise Floor Test				
4-10	>130 dBc	30 dB			
4-17	Residual AM Test		· · · · · · · · · · · · · · · · · · ·		
	> 80 dBc 300 Hz to 3 kHz	60 dB			
	> 70 dBc 20 Hz to 15 kHz	50 dB			
4-18	Residual FM Test	<u></u>		Ţ	
4-10	< 50 Hz 20 Hz to 15 kHz	25 mVrms			
4-19	Output Level Accuracy Test				
4-13	•		Power Meter		
	OUTPUT RANGEPanel METERSwitch (dBm)Indication (dB)		Reading (dBm)		
	+3	+11.00		+15.0	
	-2	+ 6.0		+10.0	
· .	+10 -7	+ 1.0		+ 5.0	
	-10	- 2.5		+ 2.5	
	0 +3	+ 1.0		+ 5.0	
	-10 +3	- 9.5		- 4.5	
	Spectrum Analyzer		Spectrum Analyzer		
•	Log Reference		Display Amplitude		
	Level Control (dBm)		(d B)		
а 1. 1			Set Level		
	$ \begin{array}{cccc} -10 & -20 \\ -20 & -30 \end{array} $	- 2.5		+ 2.5	
	-30 -40	- 2.5			
	-40 -50	- 2.5			
			Set Level	and the second	
•	$\begin{array}{ccc} -40 & -10 \\ -50 & -20 \end{array}$	- 3.0		+ 3.0	
х - с	-50 -30 -30	- 3.0		+ 3.0	
	-70 -40	-3.0		+ 3.0	
x		3.0		+ 3.0	
			Set Level		
· · ·	$ \begin{array}{cccc}80 &20 \\90 &30 \end{array} $	- 3.0		+ 3.0	
• • • • 2	$ \begin{array}{cccc} -90 & -30 \\ -100 & -40 \end{array} $	- 3.0		+ 3.0	
	-100 -50	-3.0		+ 3.0	
	-110 -60	-3.0		+ 3.0	

Performance Tests


Table 4-3.	Performance	Test	Record	(3)	uf 4)
		,				

			Results	
Para No.	Test Description	Min	Actual	Max
-22	Modulation Oscillator Frequency Accuracy Test 400 Hz Fixed 1 kHz Fixed 5 kHz Fixed	380 Hz 950 Hz 4750 Hz		420 Hz 1050 Hz 5250 Hz
-23	AM Bandwidth Test			
	Range % AM Bandwidth 0.5–2 MHz 50% 0–20 kHz 90% 0–12.5 kHz			3 dB 3 dB 2 dB
	2-8 MHz 50% 0-40 kHz 90% 0-25 kHz			3 dB 3 dB 3 dB
, , ,	8-512 MHz 50% 0-60 kHz 90% 0-50 kHz			3 dB
-24	AM Distortion Test			
n National Antonio Antonio National Antonio	Range Vernier Setting % AM			5%
۱ ۱	0.5–512 MHz cw 70% 95%			10%
	0.5–512 MHz –10 dB 70% 95%		· · · · · · · · · · · · · · · · · · ·	5% 10%
-25	Indicated AM Accuracy Test			
	Indicated Accuracy: 90% 70%	81.75% 63.25%		98.25% 76.75% 55.25%
	50% , 30% 20%	44.75% 26.25% 17.00%	· · · · · · · · · · · · · · · · · · ·	33.75% 23.00%
	10%	7.75%		12.25%
1-26	FM Bandwidth Test			3 dB
4-27	FM Distortion Test	9C 0 4D		
•	Maximum allowab ^l e 1/8 Maximum allowable	26.0 dB 36.5 dB		
4-28	Indicated FM Accuracy Test			
	Accuracy: Frequency Range	4.3 kHz		5.7 kHz

Para				Result	, , , , , , , , , , , , , , , , , , ,
No.	Test Desc. 54.	3 n	Min	Actual	Max
4-29	Pulse Modulation Test	, <u>, , , , , , , , , , , , , , , , , , </u>			
		Time	به ۲۰۰۰ ۲۰۰۰ می ا		9 μs
		Time	1		9 μs
		l Accuracy	5.4 div	1 1	6.7 div
	•	Time	0.1 4.7		4 μs
		Time			4 μs
		l Accuracy	5.4 div	and an an and a second s	6.7 div
		Time	0.4 uiv		2 μs
		Time	, ,		2 μs
			5.4 div		6.7 div
		l Accuracy Time	C.T UIV		2 μs
	· · · · · · · · · · · · · · · · · · ·	Time			2 μs
			5.4 div		6.7 div
н 1		l Accuracy	U.T UIV	a second se	1 µs
		Time ,			1 μs
		Time	5.4 div		6.7 div
		l Accuracy	J.4 UIV	·	$1 \ \mu s$
		Time			$1 \ \mu s$
	•	Time	5.4 div	·······	6.7 div
		l Accuracy	J.4 UIV		1 μs
		Time		, <u>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19</u>	1 μs
		Time	5.4 div	- particular and a second s	6.7 div
•			J.4 UIV		$1 \ \mu s$
		Time			1 μs
* x		Time	5.4 div	· · · · · · · · · · · · · · · · · · ·	6.7 div
a a		Accuracy	J.4 UN	·	1 μs
		Time			$1 \mu s$
1		Time	5.4 div		6.7 div
•	i i i i i i i i i i i i i i i i i i i	el Accuracy Time	J.4 UIV		1 μs
14 - A				······································	1 µs
		Time	5.4 div		6.7 div
	TeAé	Accuracy	U.T UIV	1. An and the second s Second second sec	
4-30	Pulse ON/OFF Ratio Test				
20 1	Frequency Range: 256	-512 MHz	40 dB		
4-31	Counter External Sensitivity	Test			
		o 550 MHz			· · · · · · · · · · · · · · · · · · ·
	IUU	U UUU MILLA			()

Table 4-3. Performance Test Record (4 of 4)

SECTION V ADJUSTMENTS

5-1. INTRODUCTION

Model 8640M

5-2. This section describes adjustments required to return the Signal Generator to peak operating condition when repairs are required. Included in this section are test setups and check and adjustment procedures. Removal and replacement procedures are given on the alphabetic so vice sheets (after the schematics in Section VIII). Adjustment location photographs are given on the last two foldouts in Section VIII.

5-3. SAFETY CONSIDERATIONS

5-4. Although this instrument has been designed in accordance with international safety standards, this manual contains information and warnings which must be followed to ensure safe operation and to retain the instrument in a safe condition (refer to Safety Considerations page in the front of the manual). Service and adjustments should be performed only by qualified service personnel.

WARNING

An interruption of the protective (grounding) conductor inside or outside the instrument or disconnection of the protective earth terminal is likely to make the apparatus dangerous. Intentional interruption is prohibited.

5-5. Any adjustment, maintenance, and repair of the opened instrument with voltage present should be avoided as much as possible and, when inevitable, should be carried out only by a skilled person who is aware of the hazard involved. The opening of covers or removal of parts, except those to which access can be gained by hand, may expose 5-8. Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

5-9. TEST EQUIPMENT REQUIRED

5-10. Tables 1-3 and 1-4 contain a list of test equipment and test accessories required in the adjustment procedures. In addition, the tables contain the required minimum specifications and a suggested manufacturer's model number.

5-11. Pozidriv Screwdrivers

5-12. Many screws in the instrument appear to be Phillips, but are not. To avoid damage to the screw slots, Pozidriv screwdrivers should be used.

5-13. Blade Tuning Tools

5-14. For adjustments requiring a non-metallic metal-blade tuning tool, use the J.F.D. Model No. 5284 (HP 8710-1010). In situations not requiring non-metallic tuning tools, an ordinary small screw-driver or other suitable tool is sufficient. No matter what tool is used, never try to force any adjust-ment control in the generator. This is especially critical when tuning variable slug-tuned inductors, and variable capacitors.

5-15. Service Aids

5-16. Miscellaneous Hardware Kit. The HP 08640-60095 Miscellaneous Hardware Kit contains mechanical spare parts for the generator — such things as nuts, bolts, screws and washers.

5-17. Extender Board. An extender board (HP 08640-60036) is available which can be used to extend all circuit plug-in boards (except the A10A2 RF Divider Assembly, A2 Meter Detector and Drive, and the A12 Rectifier Assembly). The RF Divider Assembly is self-extending; just remove the riser board and insert the Divider Assembly into the riser's socket.

live parts, and also accessible terminals may be live.

5-6. Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

5-7. Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement. The use of repaired fuses and the short-circuiting of fuseholders must be avoided.

5-18. Wrench. A wrench is supplied with the generator. One end fits 7/32 inch connectors while the other fits the 1/4 inch size. Both these sizes of SMC RF connectors are used in the generator.

5-1

LOCAL STREET, S

Adjustments

5-19. FACTORY SELECTED COMPONENTS

5-20. Table 5-1 contains a list of factory selected components by reference designation, basis of selection, and schematic diagram location. Factory selected components are designated by an asterisk (*) on the schematic diagrams in Section VIII.

5-21. The following information supplements Table 5-1.

a. A5R42 Selection: If the A3 RF Oscillator Assembly has been changed, perform the FM Sensitivity Adjustment. If insufficient adjustment range exists on the Low-End Sensitivity Adjustment pot, A3A4R2, to achieve a carrier null (of at least 50 dB), a resistor, A5R42 should be added between pins 11 and 12 of the A5 FM Amplifier Assembly. The addition of this resistor increases the overall gain of the FM Amplifier. Select the value as follows:

- 1. Set up the FM Sensitivity Adjustment at 16 MHz and adjust A3A4R2 for maximum sensitivity (e.g., fully cw until no further effect is noticed).
- Adjust the frequency of the test oscillator downward until a carrier null (at least 50 dB) is achieved. Note this frequency.
- 3. Compute the value of A5R42 using the following formula:

A5R42 =
$$\frac{36}{40 - (2.405)f_{\text{null}}}$$

where: A5R42 is in kilohms and f_{null} is the frequency in kHz where the null (at least 50 dB) occurred.

- 4. Choose the next lowest standard resistance value and solder it between pins 11 and 12 of the A5 FM Amplifier circuit board.
- 5 Perform the FM Sensitivity Adjustment.

- 2. If the display shows a frequency count greater than 550 MHz, increase A8A1C5 and C8 until no count is displayed. C8 has a greater effect than C5. Do not increase C5 or C8 to a value greater than 4.7 pF.
- 3. If the display hows a frequency count less than 550 MHz, decrease C11 by one standard value until no count is displayed.
- 4. When the point is reached where no count is displayed, check counter external sensitivity. At 55°C, if the counter's sensitivity 1 not within specified limits at high frequencies, increase C11 to increase sensitivity (but not to a value greater than 4.7 pF).

c. A8A1C12 Selection. When counting high frequency signals (> 250 MHz) at high levels (> 0 dBm) in the EXT 10-550 MHz mode, and the counter either miscounts or displays no count. The signal to A8A1U1 may have too high a harmonic content. Check the level of the second harmonic at A8A1U1 pin 13 with a spectrum analyzer. If it is less than 6 dB below fundamental, add A8A1C12 to the holes provided at pin 13 of A8A1U1. Increasing C12 decreases the second harmonic level, however, values greater than 4.7 pF should not be used.

d. A9A2C6, C7 and C8 Selection. If the A9A2 FM Gain Switch Board Assembly has been replaced or repaired, measure the 3-dB bandwidth at A7TP3 with an oscilloscope on the following RF frequency ranges while driving the FM INPUT with an external test oscillator. Change the corresponding capacitor, if necessary, for best flatness (less than 3 dB down at 250 kHz rate). Increase capacitance to decrease deviation (at 250 kHz rate).

RANGE (MHz)	PEAK DEVIATION Range (kHz)	Capacitor
512-1024	5	A9 A2C8
256-512	5	A9 A2C7
128-256	5	A9 A2C6

O, a official the same source of the second se

b. A8A1C5, C8, and C11 Selection. If the A8A1 RF Scaler has been repaired, selection of A8A1C5, C8, and C11 may be necessary in order to achieve the proper high frequency sensitivity while preventing self-oscillation in the EXT 10-550 MHz mode. Select as follows:

5-2

1. Set COUNTER MODE source to EXT and range to 10-550 MHz and remove all connections to counter input.

NOTE

Changing any capacitor will likely affect flatness on other ranges.

e. A10A2R3 Selection. If A10A2U11 or U12 is replaced and RF output irregularities are

FACTORY SELECTED COMPONENTS (Cont'd)

observed, it may be necessary to change the value of A10A2R3. Select the proper value as follows:

- 1. Set RANGE to 64–128 MHz.
- 2. Observe RF OUTPUT signal with spectrum analyzer.
- 3. Tune FREQUENCY TUNE across range.
- 4. If signal irregularities (e.g., erratic frequency, sub-harmonics, or increased level of the noise floor) are observed, increase the value of A10A2R3 within the range of values shown in Table 5-1.

f. A10A2R6-8, R12-14, and R18-20 Selection. If A26U2 (Service Sheet 12) has been replaced, check second harmonic level at RF OUT-PUT jack on the following ranges: 128-256 MHz, 64-128 MHz, and 32-64 MHz. If second harmonic level is out of specification, increase affected range's divider output attenuation until second harmonic level is within specification. The following table indicates correct values of resistance for 3 to 6 dB of attenuation (change attenuation in 1 dB steps).

9 To change attenuation, change all three resistors associated with the range that's out of specification. For example, if 64–128 MHz range's second harmonic is too high, then R12, R13, and R14 will have to be changed. Change attenuation in 1 dB steps (e.g., to change their attenuation to 5 dB, change R12 to 31.6Ω , R13 to 178Ω , and R14 to 178Ω .)

Frequency Range (MHz)	Resistors (A10A2)				
128-256	R6	R7	R8		
64-128	R12	R13	R14		
32-64	R18	R19	R20		
Attenuation		Resistance			
3 dB	17.8Ω 23.7Ω 31.6Ω 38.3Ω	287Ω	287Ω		
4 dB		237Ω	237Ω		
5 dB		178Ω	178Ω		
6 dB		147Ω	147Ω		

Table 5-1. Factory Selected Components

Component	Service Sheet	Range of Values	Basis of Selection
A5R42	6	10 k Ω to infinity	See paragraph 5-21a
A8A1C5, C8, C11	18	0-4.7 pF	See paragraph 5-21b
A8A1C12	18	04.7 pF	See paragraph 5-21c
A9A2C6	ана, , , , , , , , , , , , , , , , , , ,	50–150 pF	
A9A2C7	6	500—1500 pF	See paragraph 5-21d
A9A2C8		1000-3000 pF	
A10A2R3	11	51.1-75.0Ω	See paragraph 5-21e
A10A2R6- 8, R12-14,& R18-20	, 11		See paragraphs 5-21 f-g
A26A3C3,C4,C5,C6	12	0.22 pF	See paragraph 5-21h
A10A2C55	11	2.2 pF	See paragraph 5-21i

NOTE

Attenuation should be no higher than necessary to bring a range's second harmonic within specification. Excessive attenuation may reduce maximum RF output level below +18 dBm.

h. A26A3C3, C4, C5, and C6 Selection. If the modulator has been repaired, check RF output for harmonics. If the harmonics are too high, they can be lowered by proper selection of A26A3C3, C4, C5, and C6. Capacitors may or not be used; their values are always 0.22 pF. Select as follows:

- 1. Set AM switch to PULSE, RANGE to 256-512 MHz, and RF ON/OFF to ON.
- 2. Connect a spectrum analyzer to RF OUT-PUT jack, A26A3J1.

5 - 3

MARCAN CONTRACTOR OF CONTRACTOR OF THE CONTRACTOR OF

1, 3

4

1,4

FACTORY SELECTED COMPONENTS (Cont'd)

- 3. Check from 256 to 512 MHz (tune FRE-QUENCY TUNE across range). Signals should always be below -58 dBm.
- 4. Add or remove capacitors across diodes as necessary to keep signals below -58 dBm.

j. If A10A2U11 has been replaced, use a RF spectrum analyzer to check for low frequency spurious signals while tuned to 520 MHz. The spurs will occur at approximately 80 dBc between 5 and 30 MHz. To suppress the spur, add A10A2C55, 2.2 pF, from A10A2U11 pin 8 to ground.

NOTE

A low-pass or notch filter at the input of the spectrum analyzer will prevent overdriving its input mixer with the signal generator fundamental.

5-22. POST-REPAIR TESTS AND ADJUSTMENTS

5-23. Table 5-2 lists the performance tests and adjustments needed to calibrate or verify calibration of a repaired assembly. The tests and adjustments are classified by assembly repaired. All tests on which a given faulty assembly could have an effect are listed with that assembly. This makes the list useful for troubleshooting conditions which are out of specification (rather than catastrophic failures) because it serves as a cross reference between performance tests and the possible source of failure. For many repairs not all the tests listed need be performed. The notes under each assembly

Assembly Repaired	Reference	Performance Tests and Adjustments	Notes
A1 Output Range Assembly	4-12	Basic Functional Checks (steps 1 and 5)	1
NOTE	4-19	Output Level Accuracy Tests	
1. Perform if A1 replaced.			
	4-20	Output Level Flatness Test	1
	4-21	Output Leakage Test	1
	5-30	Output Level and Meter Adjustment	1
A2 Meter Detector and Drive Assembly	4-12	Basic Functional Checks (steps 1 and 4)	1
M1 Parel Meter	5-28	Meter Adjustments	1
	5-30	Output Level and Meter Adjustment	· · ·
NOTE			· ·
1. Perform for all A2 and M1 repairs.			
A3 RF Oscillator Assembly	4-13	Frequency Range Test	1
	4-14	Harmonic Distortion Test	n National Antoine National Antoine
NOTES	4-15	Single Sideband Phase Noise Test	}
1. Perform if A3 replaced.	4-18	Residual FM Test	2
2 Perform if A3Q1 replaced.			

4-20

4.21

4-27

4-28

5-33

5-34

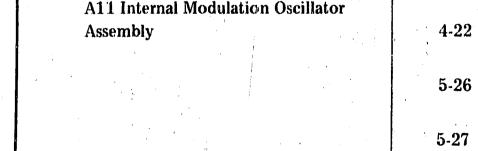
5-35

Table 5-2. Post-Repair Tests and Adjustments (1 of 3)

- 3. Perform if A3A1A2 or A3A1A3 repaired.
 - Perform if A3R1 replaced or loosened.

4.

5-4


Output Leakage Test FM Distortion Test Indicated FM Accuracy Test V_T Pot Adjustment V_T Voltage Adjustment RF Oscillator End Stop Adjustment

(cont'd on next page)

Output Level Flatness Test

	Assembly Repaired	Reference	Performance Test and Adjustments	Notes
	A3 (cont'd)	5-36	RF Oscillator Output Power Adjustment	1, 2, 3
1		5-40	FM Linearity Adjustment (Alternate)	1
		5-41	FM Sensitivity Adjustment	1
	A5 FM Amplifier Assembly	4-12	Basic Functional Checks (steps 1, 2, and 7)	3
	A7 FM Shaping Assembly	4-15	Single Sideband Phase Noise Test	
• 9	NOTES	4-18	Residual FM Test	2
	1. Perform if shapers repaired.	4-26	FM Bandwidth Test	
	2. Perform if phase lock loop filter	4-27	FM Distortion Test	
1	repaired. 3. Perform if over-deviation detector	4-28	Indicated FM Accuracy Test	
:/ · · ·	repaired.	5-38	Preliminary FM Adjustments	2
/		5-40	FM Linearity Adjustment (Alternate)	1
		5-41	FM Sensitivity Adjustment	1
	A8 Counter/Lock Assembly	4/12	Basic Functional Checks (steps 1 and 3)	1
	NOTES	4-18	Residual FM Test	2
X	1. Perform for all A8 repairs.	4-21	Output Leakage Test	1
	2. Perform with COUNTER set to	4-31	Counter External Sensitivity Test	
•	INT LOCK X10 if phase lock system repaired.	4-32	Counter Accuracy Test	
	system regared.	5-44	Internal Reference Frequency Adjustment	
	A9 Peak Deviation and Range Switch			
* <u>.</u>	Assembly	4-12	Basic Functional Checks (steps 1, 2, 3, and 7)	1
	1. Perform for all A9 repairs.	4-26	FM Bandwidth Test	•
		4-28	Indicated FM Accuracy Test	•
		5-32	Range Switch Adjustment	1
	A10 Divider/Filter Assembly	4-14	Harmonic Distortion Test	1, 2
	NOTES	4-20	Output Level Flatness Test	1, 2
,	1. Perform if A10A1 repaired.	4-21	Output Leakage Test	1, 2
	2. Perform if A10A2 repaired.	5-34	V _T Voltage Adjustment	2
		5-37	RF Filter Adjustment	

Table 5-2. Post-Repair Tests and Adjustments (2 of 3)

Model 8640M

Modulation Oscillator Frequency Accuracy Test

Sinewave Modulation Oscillator Adjustment

-V

Pulse Generator and Timer Adjustments

i. Ny s

.

ar print and

5-5

	Assembly Repaired	Reference	Performance Test and Adjustments	Notes
	A12 Rectifier Assembly	4-15	Single Sideband Phase Noise Test	
	A16 Fan Motor Assembly	4-18	Residual FM Test	
	A18 –5.2V Regulator and Fan Driver Assembly	5-25	Power Supply Adjustments	
	A20 +5.2 and +44.6V Regulator Assembly			
· · . ·	A22 +20V and -20V Regulator Assembly			1
•	A21 Reverse Power Protection Assembly	4-19	Output Level Accuracy Test	
	NOTES	4-20	Output Level Flatness Test	1
	1. Perform for all A21 repairs.	4-21	Output Leakage Test	
a	 Perform if relay (K1) replaced. 	5-42	Output Impedance Adjustment	.2
		5-43	Reverse Power Level Sense Adjustment	1
, [:]	A26 AM/AGC and RF Amplifier Assembly	4-12	Basic Functional Checks (steps 1 and 6)	
,	NOTES	4-14	Harmonic Distortion Test	1,2,3
	1. Perform if A26U1 replaced.	4-16	Single Sideband Broadband Noise Floor Test	
	2. Perform if A26U2 replaced.	4-17	Residual AM Test	4
	3. Perform if modulator repaired.	4-19	Output Level Accuracy Test (steps 1 to 3)	.4
, ,	4. Perform if AM and leveling circuits	4-20	Output Level Flatness Test	1,2,3
	(except for RF components)	4-21	Output Leakage Test	1, 2
١	repaired.	4-23	AM Bandwidth Test	4
	5. Perform if pulse circuits repaired.	4-24	AM Distortion Test	1,4
4 C	$\omega_{\rm eff} = \omega_{\rm eff} + \omega_{\rm$	4-25	Indicated AM Accuracy Test	· .
		4-29	Pulse Modulation Test	5
		4-30	Pulse On/Off Ratio Test	3
		5-29	RF Detector Offset Adjustment	i, 4
		5-30	Output Le and Meter Adjustment	1,4
. 1		5-31	AM Sensitivity Adjustment	1

Table 5-2. Post-Repair Tests and Adjustments (3 of 3)

indicate which of the tests and adjustments listed

e instrument are functioning properly. Also if

should be performed for many common repairs.

5-24. For all repairs the Basic Functional Checks (paragraph 4-12) are recommended to verify that the assembly is operating and that all other parts of any casting was opened or any RF connectors removed during a repair, the Output Leakage Test (paragraph 4-21) should be performed. In general, the power supply voltages should be checked but not adjusted unless out of tolerance (see Power Supply Adjustment, paragraph 5-25).

ADJUSTMENTS

5-25. POWER SUPPLY ADJUSTMENTS

REFERENCE:

Service Sheets 22 and 23.

DESCRIPTION:

PROCEDURE:

A digital voltmeter is used to check the power supply voltages. They are then adjusted for the correct voltage. These voltages should be checked before making any other adjustment.

EQUIPMENT: Digital Voltmeter.

Set LINE switch to ON. The fan should run and five LED's located on power 1. supply boards (A18, A20, and A22) should light.

HP 3490A

Connect DVM to each of the test points listed below. The voltages should be 2. within the tolerances shown; if not, adjust appropriate resistor for a reading within the indicated tolerances.

Test Po	int	Adjust		Voltage Level		1	ŀ
-5.2V A1	8TP5	A18R2	-5.200V	± 10 mV		. (* ,
+5.2V A2	0TP10	A20R16	+5.200V	± 10 mV		.!	
+20V A2	2ТР4	A22R7	+20.000V	± 10 mV			**
-20V A2	2TP9	A22R19	-20.000V	± 10 mV	-		***
+44.6V A2	0ТР4	A20R8	+44.600V	± 100 mV	, 		

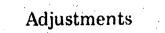
For ambient temperatures other than 25° C, modify the voltage level setting by $-4.2 \text{ mV}/^{\circ}$ C.

** Perform Internal Reference Frequency Adj. (paragraph 5-44).

***Perform VARACTOR BIAS adjustment (paragraph 5-38, step 20).

5-26. INTERNAL MODULATION OSCILLATOR ADJUSTMENT

REFERENCE: Service Sheet 9.


A digital voltmeter is used to monitor the audio oscillator's output while setting its **DESCRIPTION**: level.

			•			· · · · · · · · · · · · · · · · · · ·
FOILDMENT.	Digital	Valtmaton			1.1	P 3490A
EQUIPMENT:	LIBIUM	Voltmeter.		• .•		r 0400A
• • • • • •			•			

1). 1 Connect DVM to A11TP7 (Audio). Set Signal Generator's MODULATION **PROCEDURE:** MODE to AM INT 1000.

 $\left\{ \cdot \right\}$

- Adjust Audio Output pot, A11R4, for 850 ± 20 mVrms as read on DVM. 2.
- 3. Set MODULATION MODE to AM INT 400 and 5000 and note DVM reading. If the readings are not within 850 ±20 mVrms, readjust A11R4 to bring all three readings (400, 1000, and 5000 Hz) within limits.

SSN ACTOR

ADJUSTMENTS

1 4 1 1	5-27. PULSE GEN	IERATOR AND TIMER ADJUSTMENTS
3. 	REFERENCE :	Service Sheet 9
•	DESCRIPTION:	The pulse generator's repetition rate and timer's frequency are set using a counter. The pulse generator's pulse width is set using an oscilloscope.
	EQUIPMENT:	Frequency Counter HP 5327C Oscilloscope
	PROCEDURE:	1. Connect counter's high impedance input to test point A11TP6. Set counter to measure frequency with a 10 s gate time.
. 1		2. The frequency should read 0.7 Hz. If it does not adjust Meter Frequency pot, A11R3, for a reading of 0.7 Hz.
1 . 1 .		3. Now set counter to measure period with a one-period average. Fine adjust Meter Frequency pot, A11R3, for a period of 1.40 to 1.41 s (1.40625 s would be exact).
		NOTE
		If counter overflows, assume an initial "1" count in the unit seconds digit.
		4. Connect counter input to test point A11TP1, Rate. Set counter to measure frequency with a 1 s gate time.
N		5. Set Signal Generator's MODULATION MODE to PULSE INT and PULSE RATE fully cw. Adjust Pulse Rate pot, A11R1, for a frequency of 5.1 to 5.2 kHz.
		6. Set PULSE RATE fully ccw. Check that rate is less than 50 Hz.
		7. Set PULSE RATE fully ccw and PULSE WIDTH fully ccw. Connect oscilloscope to test point A11TP2.
4. · •		8. Adjust oscilloscope to observe the +1.5V pulses, triggering on the + slope. Adjust Pulse Width pot, A11R2, for a width of 0.5 to 0.9 μ s.
		9. Set PULSE WIDTH fully cw. Check that pulse width is greater than 40 μ s.

5-8

MERCENCERNER CONTRACTORS OF

'.; ';; **REFERENCE:** Service Sheet 14 and 17.

DESCRIPTION: The panel meter is mechanically zeroed. The meter circuitry is then adjusted at zero and full scale. Meter scale linearity is also checked.

EQUIPMENT: Digital Voltmeter. HP 3490A

PROCEDURE: 1. With LINE switch set to OFF, place Signal Generator in its normal operating position.

ADJUSTMENTS

5-28. METER ADJUSTMENTS (Cont'd)

2.

Adjust mechanical zero adjustment screw beneath the panel meter face, cw for a zero meter reading. Then turn screw slightly ccw to free mechanism from adjusting peg.

3. Set generator's controls as follows:

METER .			MOD
	ION: LEVEL		
· · ·			AM INT 1000
LINE	• • • • •	• •	ON

- 4. Connect DVM to BUFFER test point, A2TP2 on A2 Meter Detector and Drive Assembly. Adjust A2R3 for 0 ± 1 mVdc at A2TP2.
- 5. Connect DVM to MET adjust test point A2TP4. Adjust A2R2 for 0 ± 1 mVdc at A2TP4.

6. Connect DVM to AM 1N test point, A26A2TP1. Adjust MODULATION LEVEL control clockwise until DVM reads 0.707 Vrms at AM IN test point, A26A2TP1. Then adjust A2R1 for a full scale reading (10 on the 0-10 scale) on the panel meter.

7. Adjust the MODULATION control to give the panel meter readings indicated in the table below and check the voltage at A26A2TP1 against the listed tolerances. If a DVM reading falls out of limits, adjust A2R1 until all meter settings yield voltages within the ranges below.

Set Panel	Voltage at A26A2TP1 (mVrms)					
Meter (% AM)	Minimum	Nominal	Maximum			
100	697	707	718			
70	487	495	503			
50	345	354	362			
30	205	212	220			

5-29. RF DETECTOR OFFSET ADJUSTMENT

REFERENCE:

Service Sheets 12 and 13.

DESCRIPTION: A digital voltmeter is used to set the proper offset voltage out of the RF detector.

EQUIPMENT:

PROCEDURE:

Digital Voltmeter HP 3490A

1. Connect DVM to DET test point, A26A4TP2, and set Signal Generator's controls as follows:

ADJUSTMENTS

5-29. RF DETECTOR OFFSET ADJUSTMENT (Cont'd)

- 2. Set AGC switch, A26A4S1, to off. Adjust detector offset adjust pot (DET), A26A1R19 for -60 ± 1 mVdc at DET test point, A26A4TP2.
- 3. Set AGC switch to on and set front panel RF ON/OFF switch to ON.
- 4. Perform Output Level and Meter Adjustment, paragraph 5-30.

5-30. OUTPUT LEVEL AND METER ADJUSTMENT

REFERENCE: Service Sheet 12.

DESCRIPTION: With the OUTPUT RANGE vernier fully clockwise, the output level is adjusted for +13.2 dBm (on the ± 10 dB range). Then the level is set to +13.0 dBm and the panel meter adjusted to correspond.

NOTE

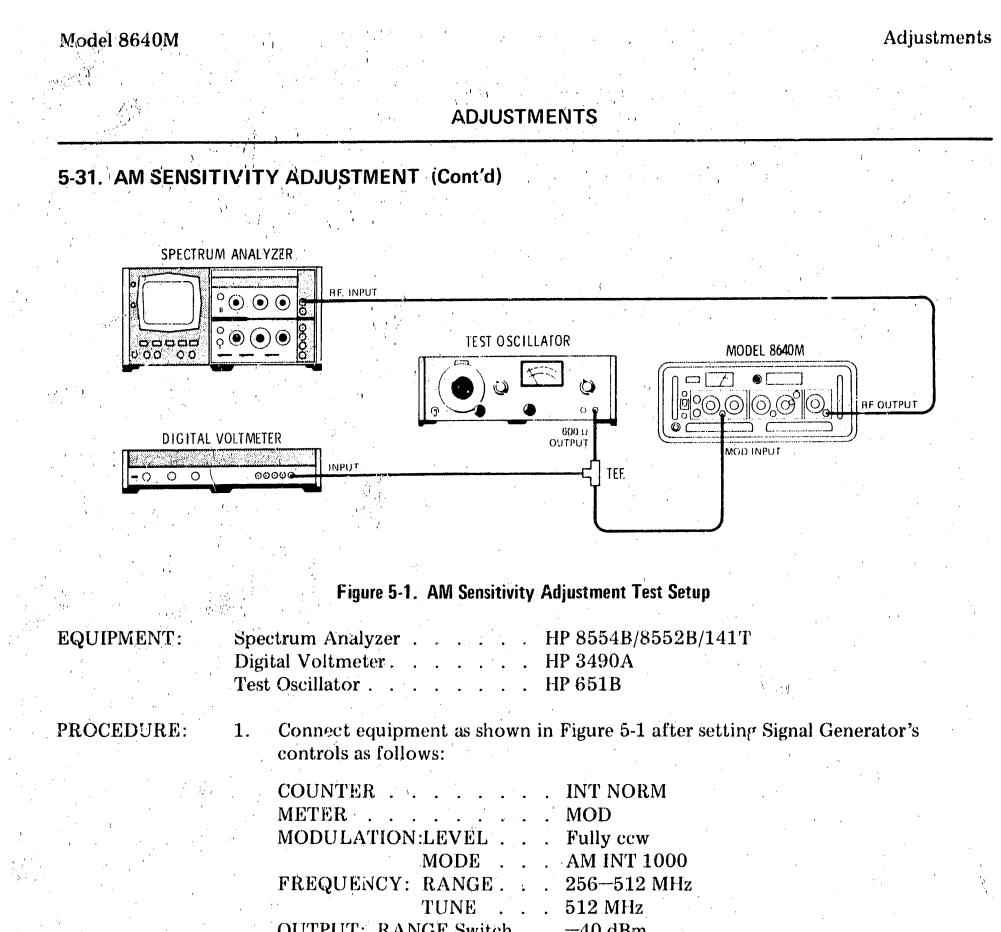
Check that the Meter Adjustments (paragraph 5-28) and RF Detector Offset Adjustment (paragraph 5-29) are correct before performing this adjustment.

•	EQUIPMENT:	Power Meter.	•		•		•	•	•	HP 435A
	· · · · · · · · · · · · · · · · · · ·	Power Sensor	•	•	•	•	•	•	•	HP 8482A

PROCEDURE: 1. Connect power sensor to generator's RF OUTPUT after setting Signal Generator's controls as follows:

COUNTER	• • • • • •		INT NORM
METER .			RF LEVEL
MODULAT	ION MODE		OFF
FREQUEN	CY: RANGE.	•	32-64 MHz
	TUNE		
OUTPUT:	RANGE Switch		+10 dBm
e e e	RANGE Vernier	•	Fully ew
	RF ON/OFF .	•	ON

- 2. Adjust LVL pot, A26A4R1, for a +13.2 dBm reading on power meter.
- 3. Turn OUTPUT LEVEL vernier ccw until power meter reads +13.0 dBm. Adjust


MET pot, A26A4R12, for a panel meter indication of +3 dB.

5-31. AM SENSITIVITY ADJUSTMENT

REFERENCE: Service Sheet 14.

5-10

DESCRIPTION: AM sensitivity is adjusted while comparing the actual amount of amplitude modulation to the level of the input modulating signal. The AM is demodulated by a spectrum analyzer in a zero span mode. The AM depth is measured directly on the display.

OUTPUT: RANGE Switch . . -40 dBm RANGE Vernier. . Fully cw RF ON/OFF . . . ON

2. Set analyzer controls to display the 512 MHz signal with 300 kHz or greater resolution bandwidth, 0 dB input attenuation, linear vertical scale, 5 to 20 kHz of display smoothing, and zero frequency span width. Check that the signal is peaked on the display and adjust the vertical sensitivity for 4 divisions of deflection. (Also ensure the base line is at the bottom line of the display with no signal

applied.)

1

3. Set generator's MODULATION LEVEL control fully cw. Set test oscillator for a 1 kHz, 353.6 mVrms signal as read on DVM (50% AM).

4. Adjust % AM adjustment, A26A2R19, until the demodulated signal spans exactly the second and sixth division (i.e., 50% AM).

5-11

ADJUSTMENTS

5-32. RANGE SWITCH ADJUSTMENT

1.

3.

REFERENCE:

Adjustments

Service Sheet 10.

DESCRIPTION:

The frequency at RF OUTPUT is monitored with the internal counter. The divider/ filter cams are positioned so that the frequency at RF OUTPUT agrees with the frequency indicated on the generator's readout. The FREQUENCY RANGE switch knob is then set to the correct range. This procedure should be performed whenever the A9 Peak Deviation and Range Switch Assembly or the A10 Divider/Filter Assembly has been removed or replaced.

NOTE

For disassembly and contact rotor alignment procedures, see Service Sheet D.

PROCEDURE:

5-12

Connect RF OUTPUT to COUNTER INPUT. Set Signal Generator's controls as follows:

	•	• .	INT NORM
N MODE .			OFF
: RANGE.	•	•	Fully ccw
TUNE .			0.5 MHz
ANGE Switch	•	•	0 dBm
ANGE Vernie	r	•;;	Fully cw
FON/OFF .	•	1	ÓN
	N MODE RANGE . TUNE NGE Switch NGE Vernie	N MODE RANGE TUNE NGE Switch . NGE Vernier	N MODE RANGE TUNE NGE Switch NGE Vernier . ON/OFF

2. Monitor generator's frequency with COUNTER set alternately to INT NORM and EXT 0-10. Loosen shaft coupling between FREQUENCY RANGE switch and divider/filter cams and check that the FREQUENCY RANGE switch is rotated fully ccw. Rotate cam side of shaft until the frequency display indicates the same frequency for both INT NORM and EXT 0-10 (i.e., to approximately 500 kHz). Tighten shaft coupler.

NOTE

When the correct position of the cam shaft is determined, be sure it is centered in its own detent before tightening the coupler.

Loosen FREQUENCY RANGE switch knob, position it so that it indicates that the range is 0.5–1 MHz, and tighten it.

4. Set FREQUENCY RANGE switch to each of its other positions (from both directions). The frequency counter should display readings that agree for both INT NORM and EXT 0-10 (above 10 MHz set COUNTER to EXT 10-550). The correct frequency counter reading for the 512-1024 MHz EXT DOUBLER range is one half that indicated for INT NORM.

Model 8640M

ADJUSTMENTS

5-33, V₁ POT ADJUSTMENT

REFERENCE:

Service Sheet 5 and B.

DESCRIPTION:

The V_T pot, A3R1, is aligned so that it will not hit either end-stop as the FREQUENCY TUNE control is tuned through its full range. This adjustment should be performed whenever the pot has been replaced and if the RF Oscillator end stops cannot be adjusted properly.

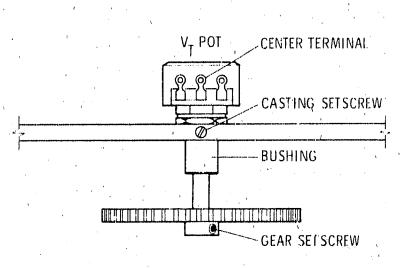


Figure 5-2. V_T Pot Adjustment

PROCEDURE:

1. Set FREQUENCY TUNE fully cw.

2. Hand tighten the bushing to V_T pot and set shaft fully cw.

3. Install pot with gear in casting so that center terminal (934 wire) is in line with casting setscrew (see Figure 5-2).

4. Tighten setscrews in gear and casting.

Perform V_{T} Voltage Adjustment (paragraph 5-34).

5-34. V_T VOLTAGE ADJUSTMENT

5.

REFERENCE: Service Sheets 5, 10, and 11.

DESCRIPTION: This procedure should be performed whenever either the V_T pot, the A3 RF Oscillator Assembly, or the A10A2 RF Divider Assembly has been replaced or repaired.

PROCEDURE: 1. Set Signal Generator's controls as follows:

COUNTER INT NORM METER **RF LEVEL MODULATION MODE** OFF FREQUENCY: RANGE . . . 256-512 MHz TUNE . . . 340 MHz FINE TUNE . Centered OUTPUT: RANGE Switch . . 0 dBm RANGE Vernier. . Meter reads 0 dB RF ON/OFF . . . ON

ADJUSTMENTS

5-34. V₁ VOLTAGE ADJUSTMENT (Cont'd)

- 2. Set FREQUENCY TUNE to 356.5 MHz by tuning cw; adjust V_T adjustment pot, A3A4R1 until the realys in the A10 assembly just actuate. When the relays actuate, they make a faint but audible click.
- 3. Tune FREQUENCY TUNE one turn ccw and then cw until relays actuate. The frequency at actuation should be 356-357 MHz.
- 4. Tune FREQUENCY TUNE from 256 to 512 MHz. The generator's panel meter should read 0 dBm through the entire frequency range.

5-35. RF OSCILLATOR END STOP ADJUSTMENT

REFERENCE: Service Sheets 5, 6, and 7.

DESCRIPTION:

This procedure describes the adjustment of the high and low frequency end stops of the A3 RF Oscillator. Slight adjustment of the end stops may be necessary when the RF Oscillator or fine tune assembly has been repaired or replaced.

NOTE

Normally, the adjustment can be made with the RF Oscillator in place. However, if the oscillator has already been removed, the adjustment is easier if the A3A4 Connector Board Assembly is plugged in and the oscillator set into place with the front resting on the front panel. Temporarily connect the RF cable (W2) to the counter and install the FREQUENCY TUNE knob.

PROCEDURE:

5-14

1. Set Signal Generator's controls as follows:

COUNTER	• • • • •	•	INT NORM
FREQUENCY:	RANGE.	•	0.5-1 MHz
	FINE TUNE	•	Centered
	LINE	•	OFF

- 2. Switch LINE to ON and let instrument warm up for one hour.
- 3. Check that Varactor Anode bias is -14.70 ± 0.01 Vdc at A7TP2. If adjustment is necessary, connect DVM to Varactor Anode A7TP2 and set VAR pot (varactor labeled) A7D10 to 14.70 \pm 0.01 Vdc

anode bias) A7R19 to-14.70 ±0.01 Vdc.

4. Tune FREQUENCY TUNE fully ccw. Compare the position of the stop ring teeth with Figure 5-3.

NOTE

Notice how the teeth on the stop rings line up in a staircase at the end stops. The stop pin and the adjustable stop ring determine the lower frequency limit. The stop pin and forward-most stop ring determine the high frequency limit, however, adjustment of this ring will also affect the low frequency limit.

ADJUSTMENTS

5-35. RF OSCILLATOR END STOP ADJUSTMENT (Cont'd)

Model 8640M

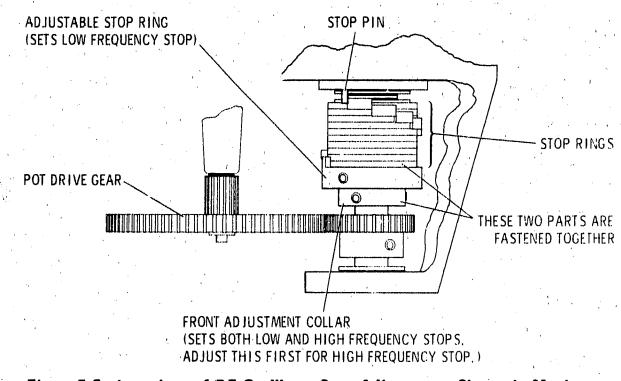


Figure 5-3. Locations of RF Oscillator Stop Adjustments Shown in Maximum ccw Position. Top View with Instrument Upside Down

- 5. Adjust FREQUENCY TUNE fully cw. The frequency should read between 1.0752 and 1.0760 MHz. If it does not, note how far off the frequency is.
- 6. Adjust FREQUENCY TUNE ccw until first setscrew on front adjustment collar appears. Loosen setscrew.
- 7. Tune further ccw until second setscrew appears.
- 8. Loosen setscrew and rotate FREQUENCY TUNE up or down by the amount of correction needed (as noted in step 6), and tighten setscrew. Do not allow front adjustment collar to rotate.
- 9. Recheck high stop frequency and repeat preceding step as needed until stop frequency is correct. Then secure both setscrews.

NOTE

If the preceding steps have no effect, check that the V_T and FM Gain Compensation pots do not reach their stops first. If so, loosen the gear on the pot shaft and continue.

10. Adjust FREQUENCY TUNE fully ccw. The frequency should read between

0.4475 and 0.4482 MHz. If it does not, note how far off the frequency is.

11. Adjust FREQUENCY TUNE cw until first setscrew on adjustable stop ring appears. Loosen setscrew.

12. Tune further cw until second setscrew appears.

13. Loosen setscrew and rotate FREQUENCY TUNE up or down by the amount of correction needed (as noted in step 10), and tighten setscrew. Do not allow adjustable stop ring to rotate.

ADJUSTMENTS

5-35. RF OSCILLATOR END STOP ADJUSTMENT (Cont'd)

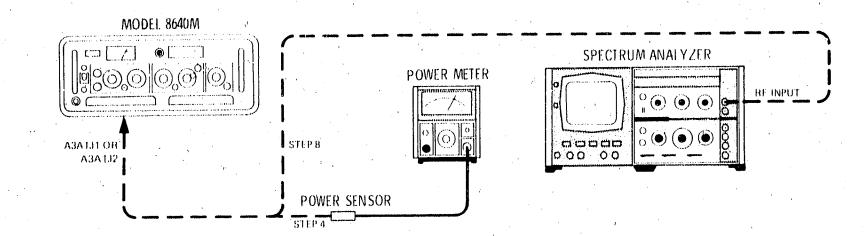
14. Recheck low stop frequency and repeat preceding step as needed until stop frequency is correct. Then secure both setscrews.

NOTE

If the preceding steps have no effect, check that the V_T and FM Gain Compensation pots do not reach their stops first. If so, loosen the gear on the pot shaft and continue.

15. Recheck both stop frequencies.

16. If either the V_T or FM Gain Compensation pots were altered, perform either the V_T Pot Adjustment (paragraph 5-33), or Preliminary FM Adjustment (paragraph 5-38).


5-36. RF OSCILLATOR OUTPUT POWER ADJUSTMENT

REFERENCE: Service Sheet 5.

DESCRIPTION:

Adjustments

The A3 RF Oscillator output will require adjustment if the power level varies beyond -1 to +3.5 dBm at the Divider/Filter Buffer Amplifier, or beyond the limits -3 to +3 dBm at the Frequency Counter Buffer Amplifier. The power level is adjusted by changing the input loop penetration of the appropriate buffer amplifier in the oscillator cavity.

.

5-16

Figure 5-4. RF Oscillator Output Power Adjustment Test Setup

EQUIPMENT:

2.

Power Meter.HP 435APower SensorHP 8482ASpectrum AnalyzerHP 8554B/8552B/141T

PROCEDURE:1.Remove A3 RF Oscillator from chassis and reinstall knob on FREQUENCY
TUNE shaft. Refer to Service Sheet B for removal procedure.

Remove cover from the appropriate buffer amplifier assembly.

ADJUSTMENTS

5-36. RF OSCILLATOR OUTPUT POWER ADJUSTMENT (Cont'd)

3.	Re-insert A3A4 Connector Board Assembly into place while keeping oscillator	、 [.]
	section free of chassis. (It may be necessary to unsnap the clip on the rear of the	è
	oscillator housing to free the wiring harness.)	

4. Connect power meter sensor to oscillator output connector A3A1J1 (Divider/ Filter Amplifier) or A3A1J2 (Counter Buffer Amplifier). See Figure 5-4.

5. Turn LINE to ON. Tune FREQUENCY TUNE across entire range and note point of minimum power as read on power meter. Tune to frequency of minimum power.

6. Loosen two screws on the buffer amplifier board and slide board forward or backward until power reads -1.0 dBm (Divider/Filter Buffer Amplifier) or -3 dBm (Counter Buffer Amplifier). (Pushing board forward will increase power.)

7. Tighten screws and check power level across range. Power should remain within the limits of -1.0 to +3.5 dBm (Divider/Filter Buffer Amplifier) or -3 to +3 dBm (Counter Buffer Amplifier).

8. Disconnect power sensor and connect spectrum analyzer to the buffer amplifier output.

9. Set analyzer's input attenuation to 50 dB, resolution bandwidth to 300 kHz, frequency controls to span 200 to 1200 MHz, and vertical sensitivity (reference level) controls to +10 dBm.

10. Tune oscillator across range and observe second and third harmonics, which should be more than 17 dB below fundamental for all frequencies.

11. Re-install RF Oscillator.

12. Perform Harmonic Distortion Test (paragraph 4-14), Output Level Flatness Test (paragraph 4-20), and Output Leakage Test (paragraph 4-21).

5-37. RF FILTER ADJUSTMENT

DESCRIPTION:

REFERENCE: Service Sheet 10.

A spectrum analyzer and a tracking generator are used to measure the insertion loss and frequency response of each of the RF filters. Those filters that are adjustable are adjusted if necessary. A frequency counter, connected to the tracking generator's auxiliary output, is used to accurately set the analyzer's frequency. This procedure should be performed only when the RF filters have been repaired or are suspect.

The filters must meet specified pass band and stop band characteristics. Figure 5-5 illustrates the terms used in the procedure.

Adjustments

ADJUSTMENTS

5-37. RF FILTER ADJUSTMENT (Cont'd)

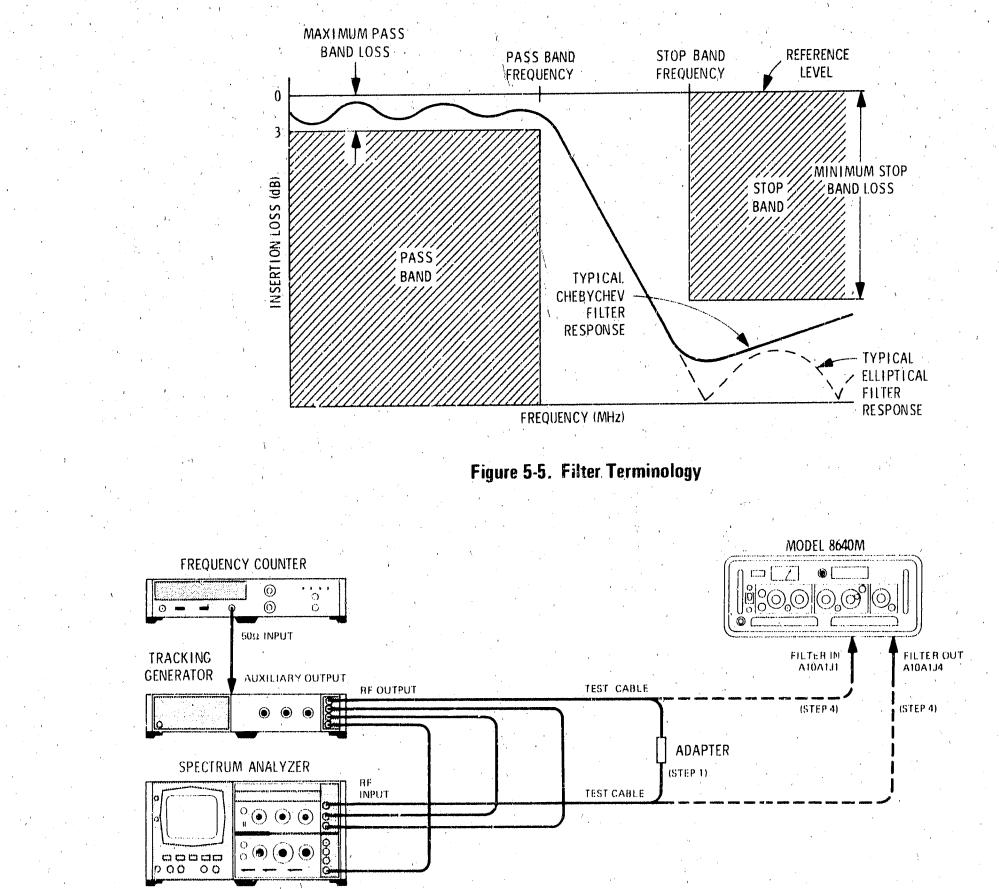


Figure 5-6. RF Filter Adjustment Test Setup

EQUIPMENT: S

5-18

Spectrum Analyzer......HP 8554B/8552B/141TTracking Generator......HP 8444AFrequency Counter......HP 5327CTest Cable (2 required)......HP 11592-60001Adapter.........HP 1250-0827

ADJUSTMENTS

5-37. RF FILTER ADJUSTMENT (Cont'd)

1.

 $\mathbf{2}.$

3.

4.

c.

e.

PROCEDURE:

Connect equipment as shown in Figure 5-6 after setting Signal Generator's controls as follows:

Adjustments

5-19

FREQUENCY: RANGE . . . 256--512 MHz TUNE . . . Fully cw RF ON/OFF . . OFF

Set spectrum analyzer center frequency to 550 MHz, frequency span (scan width) to 100 MHz per division, resolution bandwidth to 10 kHz, and input attenuation to 20 dB.

Set tracking generator's output level to 0 dBm. Adjust the tracking for maximum response in a 10 kHz resolution bandwidth. (Tracking should be checked periodically during this test.) Set analyzer's resolution bandwidth to 300 kHz.

For each of the frequency ranges listed in Table 5-3, perform the following:

a. Connect spectrum analyzer's RF input to tracking generator's RF output (use test cables and adapter as shown in test setup). Set Signal Generator's FREQUENCY RANGE and TUNE controls as listed in the table. Set spectrum analyzer's frequency span (scan width) controls to zero Hz.

NOTE

Geometric mean switching (on the 8 to 512 MHz ranges) occurs near the middle of the frequency range. Switching is controlled by the position of the FREQUENCY TUNE control and switches between the high and low band filters for the frequency range. It can be noted either by listening for the faint but audible clicking of the RF relays or by observing a change in the spectrum analyzer's display when connected to the RF filters,

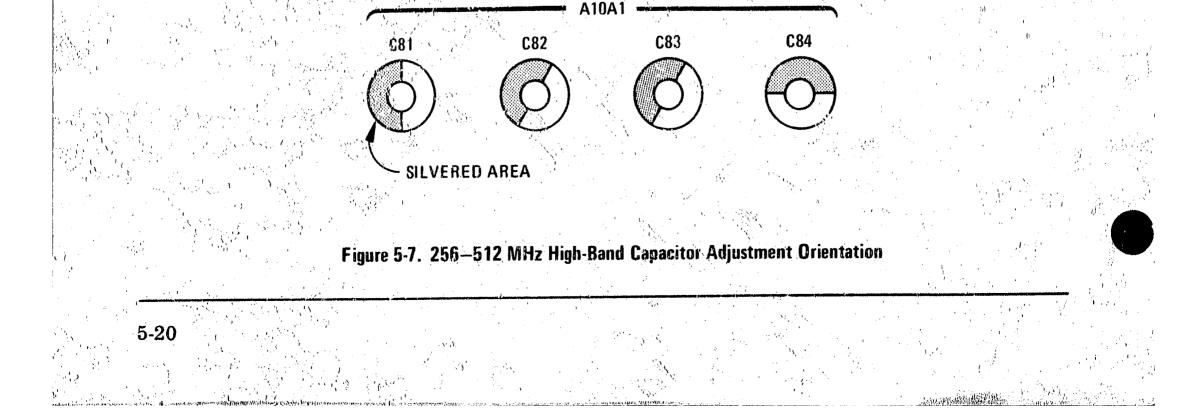
- b. Adjust analyzer's center frequency controls for a frequency counter indication of the pass band frequency listed in the table. Adjust analyzer's vertical sensitivity controls to set trace to top (reference) graticule line on display (use 2 dB log per division); this sets the reference level for the filter check.
 - Set analyzer's frequency span controls as listed in the table. Connect test cables to RF filter input and output as shown in the test setup. Check maximum loss at pass band frequency (center vertical graticule line) and below; it should be as specified.
- d. Set analyzer's frequency span controls to zero Hz. Adjust analyzer's center frequency controls for a frequency counter indication of the stop band frequency listed in the table. Then reset frequency span controls as listed in the

table and set analyzer's display for 10 dB log per division.

NOTE

To measure the stop band frequency on the highest range it is necessary to set a frequency of 492 MHz at the second vertical graticule line to the left of center. This puts 692 MHz at the center (the counter will only read to 550 MHz.

Check minimum loss at stop band frequency (center vertical graticule line) and above; it should be as specified.


ADJUSTMENTS

5-37. RF FILTER ADJUSTMENT (Cont'd)

in the second second								· · · · · · · · · · · · · · · · · · ·
S	ignal Generator		Spectrum Analyzer	Pass I	Band,	Stop B	Sand	Adjust-
RANGE (MHz)	FREQUENCY TUNE	Filter	Frequency Span per Division (MHz)	Frequency (MHz)	Maximum Loss (dB)	Frequency (MHz)	Minimum Loss (dB)	ment (A10A1)
256-512	Fully cw Fully ccw	High Low	100 50	550 356	3 3	692 460	30 30	C81-84 L43-45
128-256	Fully cw Fully ccw	High Low	50 20	275 128	3 ³⁰⁰ 3	346 230	30 30	L40—42 L37—39
64-128	Fully cw Fully ccw	High Low	20 10	137 89	3 3	173 115	30 25	L31—33 None
32-64	Fully cw Fully cew	High Low	10 5	69 45	3 3	86.5 58	25 25	None None
16-32	Fully cw Fully ccw	High Low	5 2	34 22	3 3	43.2 28.7	20 20	None None
8-16	Fully cr: Fully ccw	High Low	2 2	17.0 11.0	3 3	$\begin{array}{c} 21.6\\ 14.3\end{array}$	15 15	None None
4-8	*	*	1	8.6	3	10.7	38	None
2-4	*	*	1	4.3	3	5.40	40	None
12	*		1	2.2	3	2.70	30	None
0.5-1	1997 - 19	*		, 1.1	3	1.30	30	None

Table 5-3./RF Filter Check

* The 0.5 to 8 MHz ranges have a single fifter for each range. Geometric mean switching does not take place and the FREQUENCY RUNE control can be left at any position.

ADJUSTMENTS

5-37. RF FILTER ADJUSTMENT (Cont'd)

- f. If necessary, on the 64–512 MHz ranges, adjust the appropriate filter components to set pass band and stop band insertion loss within the specified limits.
 - Use a non-metallic tuning tool.

NOTE

The 256-512 MHz high-band is the most difficult to adjust and usually takes many iterations. Start with the adjustment capacitors oriented as in Figure 5-7. Stop band minimum loss should be > 30 dB from 692-1000 MHz.

5-38. PRELIMINARY FM ADJUSTMENTS

ł

REFERENCE: Service Sheet 6 and 7.

DESCRIPTION:

A digital voltmeter is used to correctly set the mechanical position of the FM compensation pot on the RF oscillator (this is necessary only if either the oscillator or the pot has been changed). Then the DVM is used to adjust the offset (balance) voltages in the FM amplifiers.

EQUIPMENT:	Dig	ital Voltmeter HP 3490A	
PROCEDURE:	1.	Set Signal Generator's controls as follows:	
		COUNTER	INT NORM
$= \frac{1}{n} \sum_{i=1}^{n} $,	METER	MOD
		MODULATION: LEVEL	
			OFF
		PEAK FM DEVIATION	2.56 MHz
		FREQUENCY: RANGE	256-512 MHz
	н 1	TUNE	Fully ccw
	,	RFON/OFF	ÓN

NOTE

If compensation pot, A3R2, has been replaced or reoriented, continue with step 2; if not, continue with step 5.

- 2. To set the compensation pot, A3R2, turn generator's LINE switch to OFF. Loosen setscrews in the gear on pot's shaft. Set DVM to measure ohms, and connect it between 936 and 938 wires on the pot.
- 3. Without changing position of FREQUENCY TUNE knob, rotate compensation pot's shaft until DVM indicates between 0 and 9 ohms across the two wires.
- 4. Remove DVM, tighten setscrews, and set LINE to ON.
- 5. To adjust amplifier offset voltages set MODULATION MODE to FM EXT DC, and set FREQUENCY TUNE to 300 MHz. Connect DVM to BUFFER OUT test point, A5TP6, and adjust buffer offset adjustment, A5R23, for 0 ± 1.0 mVdc at A5TP2.
- 6. Connect DVM to OUTPUT test point, A5TP2, and adjust amplifier OFFSET adjustment, A5R8, for 0 ± 1.0 mVdc at A5TP2.
- 7. Connect DVM to VARACTOR CATHODE test point, A7TP3, and set PEAK DEVIATION switch as shown below. The DVM should read as specified.

ADJUSTMENTS

5-38. PRELIMINARY FM ADJUSTMENTS (Cont'd)

Adjustments

PEAK DEVIATION	DVM Reading at A7TP3
2.56 MHz 1.28 MHz 640 kHz 320 kHz 160 kHz 80 kHz 40 kHz 20 kHz 10 kHz 5 kHz	$= < \pm 5.6 \text{ mVdc}$ $= < < \pm 5.6 \text{ mVdc}$ $= - < < \pm 5.6 \text{ mVdc}$ $= - < < \pm 5.6 \text{ mVdc}$ $= - < < \pm 4.5 \text{ mVdc}$ $= - < < \pm 2.2 \text{ mVdc}$ $= - < < \pm 2.2 \text{ mVdc}$ $= - < < \pm 0.6 \text{ mVdc}$ $= - < < \pm 0.6 \text{ mVdc}$ $= - < < \pm 0.6 \text{ mVdc}$
***************************************	······································

- 8. Reset PEAK FM DEVIATION to 2.56 MHz. Turn MODULATION LEVEL control and FREQUENCY TUNE control through their ranges. The voltage at A7TP3 should remain less than 5.6 mVdc.
- 9. Set MODULATION MODE to OFF and note frequency displayed on generator's counter. Set MODULATION MODE to FM EXT DC; the frequency should change less then 5 kHz.
- 10. To set VAR pot (varactor bias) A7R19, connect DVM to Varactor Anoda A7TP2 and check that voltage is -14.70 ± 0.01 Vdc. If it is not, adjust A7R19 until it is.
- 11. Perform the FM Linearity Adjustment, paragraph 5-39 or 5-40.

5-39. FM LINEARITY ADJUSTMENT

REFERENCE: S

5-22

Service Sheet 7.

The positive and negative shaping circuits are adjusted to match the characteristics of the varactors in the RF oscillator. The reference output of a variable-phase generator is used to drive the Signal Generator's FM circuits: its variable phase output is used to drive an oscilloscope's horizontal circuits and the FM linearity circuit. A frequency meter is used to demodulate the FM and the demodulated signal is subtracted (i.e., summed 180° out of phase) from the modulation signal in the FM linearity circuit and fed to the oscilloscope's vertical circuits. The shaping circuits are then adjusted for the flatest trace possible on the oscilloscope's display. A reference signal generator and a mixer are used to down-convert the test generator's output to within the range of the frequency meter.

The Preliminary FM Adjustments (paragraph 5-38) should be made before performing this adjustment.

NOTE

A simpler method for adjusting FM linearity, using less test equipment, is presented in paragraph 5-40. This alternate method however, is not as effective for locating the source of FM distortion when used in troubleshooting.

EQUIPMENT:

PROCEDURE:

۶.,

ASSESSMENT CONTRACTOR AND A STRATEGY

Adjustments

5-23

ADJUSTMENTS

5-39. FM LINEARITY ADJUSTMENT (Cont'd) REFERENCE SIGNAL GENERATOR (1) (1) $\overline{0}$ RF. OUTPUT FREQUENCY MODEL 8640M (UNDER TEST) METER \odot \bigcirc τυανι RF OUTPUT MOD INPUT DISC OUTPUT FMLINEARITY CIRCUIT MIXER VARIABLE PHASE GENERATOR REF Ø ۹ 8 20 dB AMPLIFIER VAE Ø INPUT VAR Ø OUTPUT ŢEE REF Ø OUTPU Թ ଡ OSCILLOSCOPE 0000 INPUT OUTPUT OUTPUT HORIZ VEF

Figure 5-8. FM Linearity Adjustment Test Setup

	Reference Signal Generator .	•	•		•	HP 8640A
	Mixer					
	Frequency Meter					
;	Filter Kit (for Frequency Mete	r)	•	•	•	HP 10531A
	Variable-Phase Generator .	•	•	U		HP 203A
	Oscilloscope	•	•	• 1		HP 180C/1801A/1820C
	FM Linearity Circuit	•	•	•		HP 08640-60503
,	20 dB Amplifier	• ·	•	•	•	HP 465A

NOTE

The reference signal generator should have low RF drift, low residual

FM (performance approximately equal to the Model 8640A) and be capable of producing 355 MHz at +7 dBm.

1. Connect equipment as shown in Figure 5-8 after setting Signal Generator's controls as follows:

COUNTER......INT NORMMETER......MOD

ADJUSTMENTS

5-39. FM LINEARITY ADJUSTMENT (Cont'd)

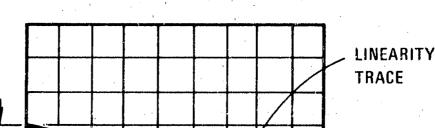
3.

MODULATION:	LEVEL .	• • • • • • • •	Fully cw
	MODE .		FM EXT AC
		DEVIATION	
FREQUENCY:	RANGE .		. 256–512 MHz
e *	TUNE	الم الم الم الم الم	. 360 MHz
OUTPUT: RANG	GE Switch .		. —10 dBm
RANG	GE Vernier .		. Fully cw
RF O	N/OFF		. ON

NOTE

If it is desired to optimize FM linearity at a frequency other than mid-band, proceed as follows:

a. Set FREQUENCY RANGE and TUNE to the desired frequency.


b. Set FREQUENCY RANGE to 256-512 MHz.

c. Set the reference signal generator 5 MHz below the test generator's output frequency.

2. Set reference signal generator for a 355 MHz, CW signal at +7 dBm.

Calibrate the frequency meter; prepare a 20kHz filter (from the filter kit) and install it in the frequency meter. Set FM linearity circuit's output switch to ref ϕ . Adjust variable-phase generator's variable phase output's amplitude and the oscilloscope's horizontal gain for full screen deflection on the display. Adjust reference signal generator for 5 MHz on the frequency meter.

Set variable-phase generator's reference phase output for a 1 kHz signal at an 4. amplitude that gives a 2.56 MHz peak deviation indication on the Signal Generator's panel meter. Set linearity circuit's voltage divider switch to 100. Adjust generator's variable phase output's phase for a straight line on the display as shown in Figure 5-9. Adjust oscilloscope's vertical gain for ± 1 division at edge of display.

-1 DIV

A

5-24

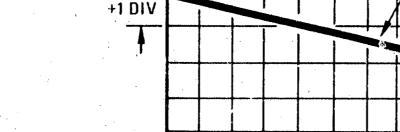
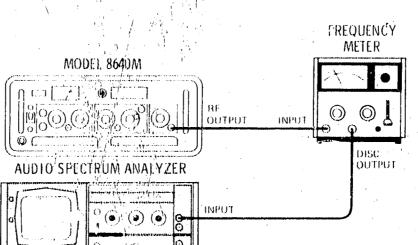


Figure 5-9. FM Linearity Display

5-25

5-39. FM LINEARITY ADJUSTMENT (Cont'd)

- 5. Set linearity circuit's output switch to ref ϕ + var ϕ and the voltage divider switch to 1. This calibrates the display for 1% error in linearity per division.
- 6. Adjust variable-phase generator's variable phase output's phase and linearity circuit's var ϕ level control for the best possible horizontal straight line over *center* portion of trace.
- 7. Adjust POS SHAPE and NEG SHAPE adjustments, A7R12 and A7R41, for the best possible horizontal straight line at both ends of the trace (but within \pm one major division or $\pm 1\%$).
- 8. Perform the FM Sensitivity Adjustment (paragraph 5-41).


5-40. FM LINEARITY ADJUSTMENT (Alternate)

- **REFERENCE:** Service Sheet 7.
- **DESCRIPTION:**

The Signal Generator is modulated with a 1 kHz signal. The generator's RF output is then demodulated with a frequency meter and the distortion on the frequency meter output is observed with a spectrum analyzer. The shaping circuits are then adjusted for minimum distortion across the 0.5 to 1 MHz frequency range. (See paragraph 5-39 for another FM Linearity Adjustment which should be more useful in troubleshooting FM distortion).

NOTE

The preliminary FM Adjustment (paragraph 5-38) should be made before performing this adjustment.

Figure 5-10. FM Linearity Adjustment (Alternate) Test Setup

EQUIPMENT:

Frequency Meter......HP 5210AFilter Kit (for Frequency Meter)...HP 10531AAudio Spectrum Analyzer......

ADJUSTMENTS

5-40. FM LINEARITY ADJUSTMENT (Alternate) (Cont'd)

PROCEDURE:

Connect equipment as shown in Figure 5-10 after setting Signal Generator's controls as follows:

•		· · ·	
COUNTER			INT NORM
METER			MOD
MODULATION	: LEVEL		Fully cw
	, MODE	• •	FM 1000
	PEAK FM DEVIATION	•	5 kHz
FREQUENCY:	RANGE	• •	0.5-1 MHz
	TUNE		0.7 MHz
OUTPUT: RAN	IGE Switch	• •	+10 dBm
	IGE Vernier		Fully cw
RF C	ON/OFF	• •	ON

NOTE

If it is desired to optimize FM linearity at a frequency other than mid-range, proceed as follows:

a. Set FREQUENCY RANGE and TUNE to the desired frequency. b. Set FREQUENCY RANGE to 0.5-1 MHz.

Using the filter kit, prepare a 20 kHz Butterworth low-pass filter and install it in the frequency meter.

Set the frequency meter's range to 1 MHz and sensitivity to 1V.

Set spectrum *z* alyzer's resolution bandwidth to 100 Hz and its center frequency controls for a 0 to 5 kHz span. Set the display for 10 dB per division.

Use generator's MODULATION LEVEL control to set 5 kHz peak deviation (as read on panel meter). Use analyzer's display reference level controls to set the demodulated 1 kHz signal to the top (reference) graticule line on the display.

Adjust POS SHAPE and NEG SHAPE adjustments, A7R12 and A7R41, for minimum distortion. Observe both second and third harmonics.

Slowly tune from 0.5 to 1 MHz and observe distortion. If harmonics are less than 30 dB down (3% distortion) or if it is desired to minimize distortion across the range, adjust A7R12 and A7R41 for best compromise. However, harmonics must always be greater than 30 dB down.

8. Perform the FM Sensitivity Adjustment (paragraph 5-41).

230 w mitheles of a particular by a particular way of the second of the

5-26

3.

4.

5.

6.

7.

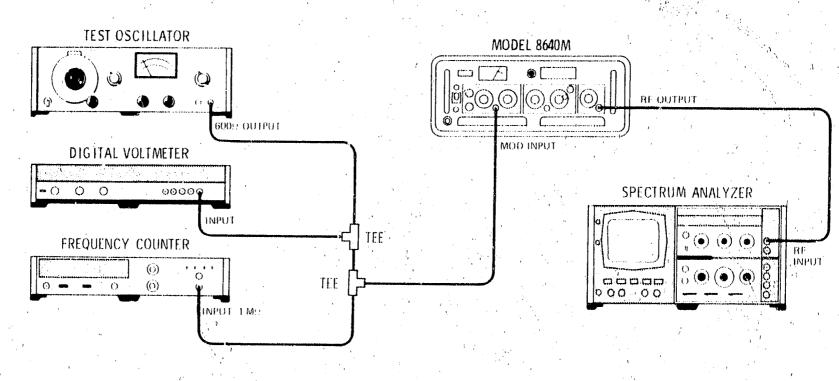
Adjustments

5 - 27

A BARREN

ADJUSTMENTS

5-41. FM SENSITIVITY ADJUSTMENT


REFERENCE: Service Sheets 6 and 7.

DESCRIPTION:

The Signal Generator is frequency modulated with an accurate, 1 Vpk, 16.63 kHz signal. The modulated RF output is monitored on a spectrum analyzer and r'M sensitivity is adjusted for the first carrier (Bessel) null.. The adjustments are made at midrange and at both ends of the range. (Peak deviation = $2.405 \times f_{mod}$ at first carrier null.)

NOTE

The FM Linearity Adjustment (paragraph 5-39 or 5-40) should be made before performing this adjustment.

Figure 5-11. FM Sensitivity Adjustment Test Setup

EQUIPMENT:	Test Oscillator HP 651B Digital Volumeter
PROCEDURE:	1. Connect equipment as shown in Figure 5-11 after setting Signal Generator's controls as follows:
	COUNTER INT NORM METER MOD MODULATION: LEVEL Fully cw

MODE OFF PEAK FM DEVIATION 40 kHz FREQUENCY: RANGE 16-32 MHz TUNE 24 MHz OUTPUT: RANGE Switch --40 dBm RANGE Vernier Fully cw RF ON/OFF **ON**

ADJUSTMENTS

5-41. FM SENSITIVITY ADJUSTMENT (Cont'd)

2.

Adjustments

Set spectrum analyzer's center frequency to 24 MHz, resolution bandwidth to 3 kHz frequency span per division to 20 kHz, and input attenuation to 0 dB. Center signal on display and use reference level controls (set for 10 dB/division) to set signal peak to top (0 dB reference) graticule line on display.

3. Set Signal Generator's MODULATION MODE to FM INT AC. Adjust test oscillator for a frequency counter reading of 16.63 kHz at 707 mVrms as read on DVM.

4. Adjust MID FM SENS adjustment, A3A4R3, for at least 50 dB of carrier null.

NOTE

The carrier is the center spectrum line on the display. A 50 dB null is when it drops 50 dB or more below its CW amplitude (set in step 2).

- 5. Set Signal Generator's FREQUENCY TUNE to 16 MHz. Adjust analyzer to center the carrier on the display. Adjust LOW FM SENS adjustment, A3A4R2 for at least 50 dB of carrier null.
- 6. Set Signal Generator's FREQUENCY TUNE to 32 MHz. Adjust analyzer to center the carrier on the display. Adjust HI FM SENS adjustment, A3A4R4, for at least 50 dB of carrier null.
- 7. Repeat steps 4 through 6 until carrier null of greater than 50 dB at 16, 24, and 32 MHz is obtained.
- 8. Perform the FM Distortion Test (paragraph 4-27) and Indicated FM Accuracy Tests (paragraph 4-28).

5-42. OUTPUT IMPEDANCE ADJUSTMENT

REFERENCE:

Service Sheet 13B.

DESCRIPTION:

5-28

A tracking generator is used as an external 50Ω signal source to feed an SWR bridge. The output port of the bridge is connected to a spectrum analyzer. The through port of the bridge is connected to a short circuit to establish a reference, then to the output of A21 Reverse Power Protection Assembly. Return loss versus frequency is dispalyed on the spectrum analyzer.

5-29

STANSA OF STAL

ADJUSTMENTS

5-42. OUTPUT IMPEDANCE ADJUSTMENT (Cont'd)

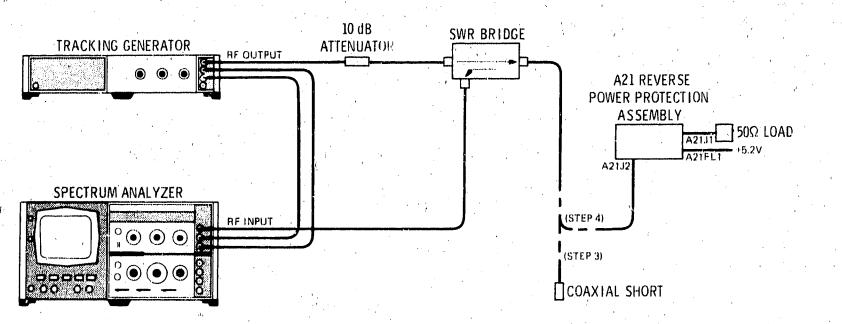


Figure 5-12. Output Impedance Adjustment Test Setup

Tracking Generator HP 8444A
Spectrum Analyzer HP 8554B/8552B/141T
SWR Bridge Wiltron 60N50
Coaxial Short
10 dB Attenuator HP 8491A OPT 10
50Ω Load
1. Remove cables and screws securing A21 Reverse Power Protection Assembly. Orient assembly so that circuit components are accessible and the +5.2V supply and ground (if needed) are connected.

- 2. Connect equipment as shown in Figure 5-12.
- 3. Set spectrum analyzer for a frequency span of 50 to 550 MHz, 300 kHz resolution bandwidth, 20 dB input attenuation, and 10 dB per division log display. Set tracking generator output level to 0 dBm.
- 4. To establish a reference level, connect coaxial short to bridge output port. Use the spectrum analyzer's vertical scale, logarithmic level controls to set the reference level trace to the top of the analyzer display.
- 5. Remove coaxial short and connect bridge output to output jack A21J2.

6. Set Signal Generator LINE to ON.

7.

The level now shown on the spectrum analyzer should be greater than 18 dB down from the reference level set in step 5. If not, adjust FLATNESS ADJ, A21C9, or A21L1 and L2 for minimum level (i.e., maximum return loss). A21L1 and L2 can be adjusted by bending them, or raising and lowering them after they are desoldered.

ADJUSTMENTS

5-42. OUTPUT IMPEDANCE ADJUSTMENT (Cont'd)

NOTE

If adjustment seems necessary, check the return loss of the 50 Ω load alone by connecting it to the bridge output. Return loss should be greater than 30 dB.

5-43. REVERSE POWER LEVEL SENSE ADJUSTMENT

REFERENCE:

Service Sheet 13.

DESCRIPTION:

The output jack, A21J2, of A21 Reverse Power Protection Assembly is driven by a 1 MHz source. Input jack A21J1 is monitored by a high impedance ac voltmeter. The LEVEL SENSE ADJ is set to trip the level sensor at a signal level of 6.1 Vrms.

NOTE

This procedure is also useful for verifying the operation of the reverse power protection without endangering the generator output circuitry.

EQUIPMENT:

5-30

HP 651B Test Oscillator . HP 3490A Digital Voltmeter.

PROCEDURE:

1.

Remove cables and screws securing A21 Reverse Power Protection Assembly. Orient assembly so that circuit components are accessible and the +5.2V supply and ground (if needed) are connected.

Connect voltmeter to input jack A21J1. 2.

Connect 50 Ω output of test oscillator to output jack A21J2. Set test oscillator 3. frequency to 1 MHz at approximately 3 Vrms into an open circuit.

Set Signal Generator LINE to ON. 4.

Avoid setting the switching point below the stated limits. The Signal Generator's own output can trip the Level Sensor (particularly during low frequency, open-circuit operation). This condition can cause relay contact chatter and reduce contact life.

ADJUSTMENTS

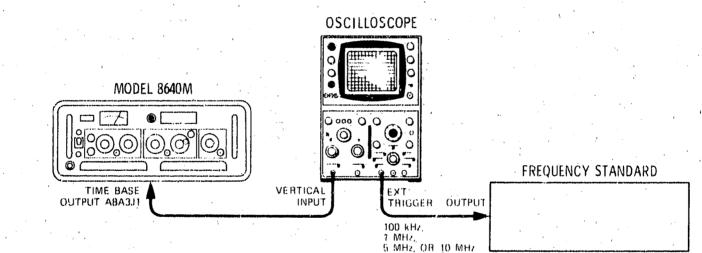
5-43. REVERSE POWER LEVEL SENSE ADJUSTMENT (Cont'd)

5.

Slowly increase test oscillator level until the reading on the voltmeter switches to zero. Note the signal level at which this occurs. The signal level should be between 6.0 and 6.2 Vrms. If the signal level is incorrect, adjust LEVEL SENSE ADJ, A21R2, until switching occurs within the correct limits.

NOTE

Always approach switching point from a lower level. The level sensor has a small amount of hysteresis causing the switching point to be lower for a decreasing signal level than for an increasing level.


5-44. INTERNAL REFERENCE FREQUENCY ADJUSTMENT

REFERENCE:

Service Sheet 19.

DESCRIPTION:

An oscilloscope triggered by an external reference is used to set the internal reference frequency.

Figure 5-13. Internal Reference Frequency Adjustment Test Setup

EQUIPMENT: Frequency Standard

Suitable House Standard such as HP 5062C

5-31

Oscilloscope. HP 180C/1801A/1820C

PROCEDURE:

1. Remove counter top cover and extend Counter/Lock board assembly as shown in Figure 8-1.

- 2. Allow generator to warm up for 2 hours.
- 3. Connect equipment as shown in Figure 5-13. Connect oscilloscope vertical input to A8A3J1 Time Base oscillator output.

4. Set oscilloscope's vertical sensitivity to view time base output and horizontal scale for $0.1 \,\mu$ s/div. Set oscilloscope's trigger to external.

ADJUSTMENTS

5-44. INTERNAL REFERENCE FREQUENCY ADJUSTMENT (Cont'd)

5. Set time base adjustment, in A8A3Y1 for a stationary waveform.

NOTE

Movement of the waveform to the right at a rate of 1 div/s means that the generator's time base frequency is low by 0.1 ppm. Movement of the waveform to the left of 1 div/s means the time base is high by 0.1 ppm.

6. Re-assemble counter assembly.

PARDIG

Replaceable Parts

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION

6-2. This section contains information for ordering parts. Table 6-2 lists abbreviations used in the parts list and throughout the manual. Table 6-3 lists all replaceable parts in reference designator order. Table 6-4 contains the names and addresses that correspond to the manufacturer's code numbers.

6-3. EXCHANGE ASSEMBLIES

6-4. Table 6-1 lists assemblies within the instrument that may be replaced on an exchange basis, thus affording a considerable cost saving. Exchange, factory-repaired and tested assemblies are available only on a trade-in basis; therefore, the defective assemblies must be returned for credit. For this reason, assemblies required for spare parts stock must be ordered by the new assembly part number.

6-5. ABBREVIATIONS

6-6. Table 6-2 lists abbreviations used in the parts list, schematics and throughout the manual. In some cases, two forms of the abbreviation are used, one all in capital letters, and one partial or no capitals. This occurs because the abbreviations in the parts list are always all capitals. However, in the schematics and other parts of the manual, other abbreviation forms are used with both lower case and upper case letters.

6-7. REPLACEABLE PARTS LIST

6-8. Table 6-3 is the list of replaceable parts and is organized as follows:

b. The total quantity (Qty) in the instrument.

c. The description of the part.

d. A typical manufacturer of the part in a fivedigit code.

e. The manufacturer's number for the part.

6-10. The total quantity for each part is given only once - at the first appearance of the part number in the list.

6-11. ORDERING INFORMATION

6-12. To order a part listed in the replaceable parts table, quote the Hewlett-Packard Part number, indicate the quantity required, and address the order to the nearest Hewlett-Packard office.

6-13. To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument serial number, description and function of the part, and the number of parts required. Address the order to the nearest Hewlett-Packard office.

6-14. SPARE PARTS KIT

6-15. Stocking spare parts for an instrument is often done to ensure quick return to service after a malfunction occurs. Hewlett-Packard has a "Spare Parts Kit" available for this purpose. The kit consists of selected replaceable assemblies and components for this instrument. The contents of the kit and the "Recommended Spares" list are based on failure reports and repair data, and provides parts support for one year. A complimentary "Recommended Spares" list for this instrument may be obtained on request and the "Spare Parts Kit" may be ordered through your nearest Hewlett-Packard office.

a. Electrical assemblies and their components in alpha-numerical order by reference designation.

b. Chassis-mounted parts in alpha-numerical order by reference designation.

c. Miscellaneous parts.

6-9. The information given for each part consists of the following:

a. The Hewlett-Packard part number.

6-16. ILLUSTRATED PARTS BREAKDOWNS

6-17. Illustrated Parts Breakdowns for the following assemblies are given on the alphabetic foldout

ILLUSTRATED PARTS BREAKDOWNS (Cont'd)

pages in this manual (located after the numbered, schematic foldouts:

- A1 Output Range Assembly
- A3 RF Oscillator Assembly
- A8 Counter/Lock Assembly
- A9 Peak Deviation and Range Switch Assembly

- A10 Divider/Filter Assembly
- A23 Modulation Mode Frequency Switch
- A26 AM/AGC and RF Amplifier Assembly

6-18. Figure 6-1 locates front panel mechanical parts. Figures 6-2 and 6-3 are breakdowns of the generator's cabinet parts and the parts that constitute the Type N connector, J1.

Assy N	New Assy
	641-60194 641-60174

Table 6-1. Part Numbers for Exchange Assemblies

Table 6-2. Reference Designations and Abbreviations

REFERENCE DESIGNATIONS

A		assembly
AT	at	tenuator; isolator;
	ter	rmination
В.		fan; motor
BT	• • • • •	battery
с.		capacitor
СР		coupler
Ck		diode; diode
	th	yristor; varactor
DC	c	directional coupler
DL		, delay line
DS -	• • • • •	annunciator;
	sig	naling device
	(a)	udible or visual);
	lár	mp; LED

É	• • •	electrical part
_		
F . :		fuse
FL .		filter
Ή.		hardware
HY .	• • •	circulator
J	• •	electrical connector
		(stationary portion); jack
к.		relay
L .		coil: inductor
Μ.		meter
MP		miscellaneous
		mechanical part

Р	•	•	•		electrical connector
					(movable portion);
					plug
Q			•	•	transistor: SCR;
	·				triode thyristor
R	•'	•	•		resistor
\mathbf{R}	Г	•	•		thermistor
S		•			switch
T	•	•			transformer
TE	3				'terminal board
TC	3	•	•	•	thermocouple
ΤF	>			۰.	test point

U integrated circuit; microcircuit
V electron tube VR voltage regulator;
breakdown diode W cable: transmission path; wire
X socket Y crystał unit (piezo-
electric or quartz) Z, tuned cavity; tuned circuit

ABBREVIATIONS

		'
A ampere	COEF	coefficient
ac alternating current	COM .	common
ACCESS accessory		composition
ADJ adjustment	COMPI	complete
A/D analog-to-digital	CONN	connector
AF audio frequency	CP	cadmium plate
AFC automatic		cathode-ray tube
frequency control		complementary
AGC automatic gain		transistor logic
control		continuous wave
AL aluminum		clockwise
ALC automatic level		centimeter
control		digital-to-analog
AM amplitude modula-		decibel
tion		decibels below carrier
AMPL amplifier	dBm .	decibel referred
APC automatic phase		to 1 mW
control		direct current
ASSY assembly		degree (temperature
AUX auxiliary		interval or differ-
avg average	• ,	ence)
AWG American wire		degree (plane
gauge		andla
BAL balance	°C '	degree Celsius
BCD binary coded		(centigrade)
decimal	F	degree Fahrenheit
BD board	к.	degree Kelvin
BE CU beryllium		deposited carbon
copper		detector
BFO beat frequency		diameter
oscilletor		diameter (used in
BH binder head		parts list)

EDP electronic data
processing
ELECT electrolytic
ENCAP encapsulated
EXT external
F farad
FET field-effect
transistor
F/F flip-flop
FH flat head
FIL H fillister nead
FM frequency modulation
FP front panel
FREQ frequency
 FXD fixed
g gram
GE gerinanium
GHz gigahertz
GL glass
GRD ground(ed)
H henry
h hour
HET heterodyne
HEX hexagonal
HD head
HDW hardware
 HF high frequency
HG mercury
HI high
HP Hewlett-Packard
NEW ROLL REAL REAL REAL
HPF nigh pass offer

.... hour (used in

• • • • •
INT internal
kg kilogram
kHz kilohertz
$k\Omega$ kilohm
$k\Omega$ kilohm kV kilovolt
lb pound
lb pound LC inductance-
capacitance
LED . light-emitting diode
LF low frequency
LG long
LH left hand
LIM limit
LIN linear taper (used
in parts list)
lin linear
LK WASH lock washer
LO low; local oscillator
LOG logarithmic taper
(used in parts list)
log logrithm(ic)
LPF low pass filter
LV , low voltage
m meter (distance)
mA milliampere
MAX maximum
MΩ megohm
MEG meg (10 ⁶) (used
in parts list)
MET FLM metal film
MET OX , metallic oxide
MF medium frequency;
microfarad (used in

6-3

	BKDN breakdown	DIFF AMPL differential	parts list)	microfarad (used in	
	BP bandpass	amplifier	HV high voltage	parts list)	
	BPF bandpass filter	div division	Hz Hertz	MFR manufacture:	
	BRS brass	DPDT double-pole,	IC integrated circuit	mg milligram	
	BWO backward-wave	double-throw	ID inside diameter	MHz megahertz	
	oscillator	DR drive	IF intermediate	mH millihenry	
· .	CAL calibrate	DSB double sideband	frequency	mho mhc	
	cew counter-clockwise	DTL diode transistor	IMPG impregnated	MIN minimum	
•	CER ceramic	logic	in inch	min , minute (time)	
	CHAN channel	DVM digital voltmeter	INCD incandescent	' minute (plane	
÷.	cm centimeter	ECL 'emitter coupled	INCL include(s)	angle)	
	CMO cabingt mount only	logic	INP input	MINAT miniature	•
	COAX coaxial	EMF electromotive force	INS insulation	mm millimeter	

HR ..

NOTE

All abbreviations in the parts list will be in upper-case.

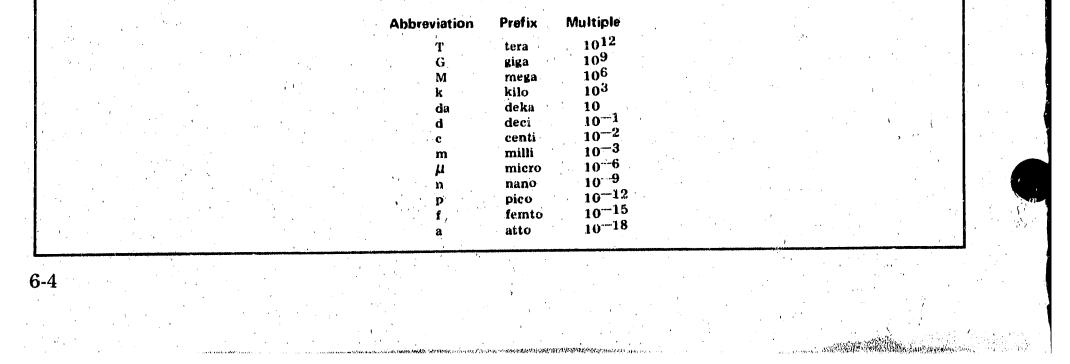
Model 8640M

ì

Table 6-2. Reference Designations and Abbreviations (Cont'd)

	1
MOD modulator	
MOM momentary	
MOS metal-oxide	
semiconductor	
ms millisecond	
MTG mounting	
MTR meter (indicating	
	. :
mV millivolt	
mVac millivolt, ac mVdc millivolt, dc	
mVdc millivolt, dc	
mVpk millivolt, peak	
mVpk millivolt, peak mVp-p millivolt, peak-	
to-peak	
mVrms millivolt, rms mW milliwatt	
MUX multiplex	
MY	
μA microampere	
μF microfarad	
•	
μH microhenry	
μmho micromho	
$\begin{array}{cccc} \mu s & \dots & \text{microsecond} \\ \mu s & \dots & \text{microvolt} \\ \mu V & \dots & \text{microvolt, ac} \\ \mu V ac & \dots & \text{microvolt, ac} \\ \mu V dc & \dots & \text{microvolt, dc} \end{array}$	
μν microvolt α	
μ vac microvolt, ac	
μνας microvolt, neak	
μVpk microvolt, peak μVp-p microvolt, peak-	÷
to-peak μVrms microvolt, rms	
μW microwatt	
nA nanoampere	
NC no connection	
N/C normally closed	
NE neon	
NE negative	'
nF nanofarad	
nF nanofarad NI PL nickel plate	
negative novitive	
NPO negative-positive	
zero (zero tempera-	
ture coefficient)	
NRFR not ecommended	
for field replace-	
ment	: •
NSR not separately	
replaceable	
ns nanosecond	
nW nanowatt	
OBD order by descrip-	
tion	
	•

OD outside diameter
OH oval head
OP AMPL operational
amplifier
OPT option
OSC oscillator
OX oxide
oz ounce
52 onm
P peak (used in parts
list)
PAM pulse amplitude
modulation
modulation
PC printed circuit
PCM pulse-code modula-
tion; pulse-count
modulation
PDM pulse-duration
modulation
pF picofarad
PH BRZ phosphor bronze
PH BRZ phosphor bronze
PHL , Phillips
PIN positive-intrinsic-
negative
PIV peak inverse
voltage
pk peak
PL phase lock
PLO phase lock
oscillator
PM phase modulation
PNP positive-negative-
positive
P/O part of POLY polystyrene
POLY polystyrene
PORC porcelain
P/O part of POLY polystyrene PORC porcelain POS positive; position(s)
(used in parts list)
POSN position
PCT potentiometer
p-p peak-to-peak
PP peak-to-peak (used
in parts list)
PPM pulse position
modulation
PREAMPL preamplifier
PRF pulse-repetition.
frequency
PRR pulse repetition
rate
ps, picosecond
PT point
PTM pulse-time
modulation
PWM pulse-width
modulation
modulation


PWV	peak working
	voltage
RC	capacitance
RECT .	rectifier
REF	reference
REG	
REPL	replaceable
RF .	vadio frequency
RFI	radio frequency
•	interference
RH	round head; right
	hand
RLC .	resistance-
	inductance-
	capacitance
RMO	rack mount only
TIME	. root-mean-square
RND.	read-only memory
R&P	read-only memory
	and a second
	voltage
S	scattering parameter
5	second (time)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	second (plane angle)
S-B	slow-blow (fuse)
	(used in parts list)
SCR .	silicon controlled
· · · ·	rectifier: screw
SE	selenium
SECT	sections
SEMIC	ON semicon- ductor
SHF	superhigh fre-
Jun	quency
SI	silicon
SIL	silver
SNR .	signal-to-noise ratio
SPDT	single-pole,
	double-throw
SPG .	spring
SR	
SPST	
SSB .	single-throw
SSD .	stainless steel
STL .	steel
SQ	steel
SWR .	. standing-wave ratio
SYNC	synchronize
T t	med (slow-blow fuse)
TA :.	tantalum
ТС	temperature
	compensating

TO	time delay
	Anno in al
T. E. PC IVI	Ler mindi
TFT .	thin-film transistor
TGL .	toggie thread
THD .	thread
	through
Into .	
TI .	titanium tolèrance
TOL	tolerance
TRIM	trinimer
TSTR	transistor
	transistor-transistor
	logic
ΤV	television
	elevision interference
TWT .	traveling wave tube
1	traveling wave tube
U	, micro (10) (usea
e dari Ali ana	in parts list)
UF	microfarad (used in
	parts list)
UHF .	ultrahigh frequency
TIND 94	G unregulated
UNREG	, , , , unregulated
V	voltampere
VA	voltampere
Vac .	volts, ac
VAR	variable
VCO	voltage-controlled
v.v.v.	oscillator
	oscillator
Vdc	volts, ac
VDCW,	volts, dc volts, dc, working
	(used in parts list)
V(F)	volts, filtered
VFO.	variable-frequency
	oscillator
VHE .	very-high fre-
<u>.</u>	quency
Vpk 👌	volts, peak
Vp-p	volts, peak-to-peak
Vrms	volts, rms
VOUD	The second secon
vown	voltage standing
	wave ratio
VTO .	voltage-tuned
	oscillator
VTVM	vacuum-tube
	voltmeter
VIYA	volts, switched
W /	watt
W/	with
WIV .	, working inverse
	voltage
ww	wirewound
WIG .	wirewound
W/U.	
ΥIG ,	yttrium-iron-garnet
Z ₀	characteristic
	impedance
	6. State 19
	-

NOTE

All abbreviations in the parts list will be in upper-case.

MULTIPLIERS

 $\Delta \alpha$

÷

: {

. do <u>Sameral (</u>

6-5

Ne andre sons.

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
AI	08641-60194 08641-60202	1	RESTORED 08641-60194, REQUIRES EXCHENGE	28480	08641-60194
A1MP1 A1MP2 A1MP3 A1MP4 A1MP5	03641-60202 08640-00112 0380-0660 3130-0038 0510-0005 3050-0103	1 2 1 2 4	SUPPORT, VARIABLE RESISTOR SPACER-RND 1.25LG .128LD .1900 SYL CO-PL COUPLER:SWITCH SST U-GHAPED RETAINER-RING .25-DIA CD PL STL WASHER-FL MTLC NO12 .35-IN-ID	28480 28480 76854 0018A 28480	08640-00112 0380-0660 12276-6 1400-25-CD 3050-0103
A1MP6 A1MP7 A1MF8 A1MP9 A1MP9	1460-0019 06640-20249 08640-00111 08640-20266 3130-0462	4 2 1 1 1	SPRING-CPRSN .384-0D .375-LG MUW Switch, Rotor 3-C Support Board Support, Attenuator Shaft, Inner 0.125" DIAB 9.38" LG	28480 28480 28480 28480 28480 76854	1460-0019 08640-20249 08640-00111 06640-20266 A-3130-9008-1
A1MP11 A1PP12 A1MP13 A1MP14 A1MP15	2190-0016 2950-0001 2200-0127 0550-0053 2200-0109	2 1 3 2 8	WASHER-LK INTL T NO3/8 .377-IN-ID NUT-HEX-DBL-CHAM 3/8-32-THD .094-THK SCREW-MACH 4+40 1.75-IN-LG PAN-HD-POZI SCREW-MACH 5-40 .75-IN-LG PAN-HD-POZI SCREW-MACH 4-40 .438-IN-LG PAN-HD-POZI	28480 28480 28480 28480 28480 28480	2190-0016 2950-0030 2200-0127 0555-0055 2200-0109
A1MP16 A1MP17 A1MP18	2190-0019 2190-0020 08641-00004	17 2 1	WASHER-LK HLCL NO4 .115-IN-ID Washer-Lk HLCL NO5 .128-IN-ID Cover, Attenuator	28480 28480 28480	2190-0019 2190-0020 08641-90004
AIRL	2100-2728	1	RESISTOR-VAR CONTROL C 14 20% LIN	28480	2100-2728
A1A1	08641+60232	1	RF VERNIER ATTENUATOR SWITCH	28480	56500-272
A1A1R1 A1A1R2 A1A1R3 A1A1R3 A1A1R4	0698-7532 0698-7794 0698-3449 0757-0280	22 22 22	RESISTOR 100 .25% .125W F TC=0+-100 RESISTOR 10K .25% .125W F TC=0+-100 RESISTUR 28.7K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	19701 19701 24546 24546	MF4C1/8-T0-100R-C MF4C1/8-T0-1002-C C4-1/8-T0-2872-F C4-1/8-T0-1001-F
A1A1TP1 A1A1TP2	1251-0600 1251-0600	68	CONTACT-CONN U/W-POST-TYPE MALE DP9LDR Contact-Conn u/W-Post-type male dp9LDR	29480 ; 28460	1251-0600 1251-0600
A1A2	08640-60144	. 1	OUTPUT ATTENUATOR ASSEMBLY	.28480	08640-60144
A1A2C1			MSR		
A1A2J1 A1A2J2			NSR NSR		
A2	08641=60031	1	METER DETECTOR AND DRIVER ASSEMBLY	28480	08641-60031
A2C1 A2C2 A2C3 A2C4 A2C5	0180-0197 0180-0116 0180-0116 0180-0116 0180-0228 0180-0116	18 9 4	CAPACITOR-FXD 2.2UF+=10% 20VDC TA CAPACITOR-FXD 6.8UF+=10% 35VDC TA CAPACITOR-FXD 6.8UF+=10% 35VDC TA CAPACITOR-FXD 22UF4=10% 15VDC TA CAPACITOR-FXD 6.8UF+=10% 35VDC TA	56289 56289 56289 56289 56289	1500225X9020A2 1500665X903582 1500665X903582 1500226X901582 1500226X901582 1500635X903582
A2C6 A2C7 A2C8 A2C9 A2C9 A2C10	0160-2055 0160-2055 0140-0190 0180-2207 0180-0116	25 2	CAPACITOR-FXD .01UF +80-20% 100HVDC CER CAPACITOR-FXD .01UF +80-20% 100HVDC CER CAPACITOR-FXD 39PF +-5% 300HVDC MICA CAPACITOR-FXD 100UF+-10% 10VDC TA CAPACITOR-FXD 6.8UF+-10% 35VDC TA	28480 28400 72134 56284 56284	0160-2055 0160-2055 DM15E390J0300WV1CR 150D107X9010R2 150D683X903582
AZCR1	1901-0040	31	DIODE-SWITCHING BOV SOMA' 2NS DD-35	28480	1901-0040
A2L1 A2L2	9140=0096 9140=0096	, 3	COIL-MLD 10H 10% 0=50 .1550%.375LG COIL-MLD 10H 10% 0=50 .1550%.375LG	99800 99800	1537-12 1537-13
105A	1854-0404	1,3	TRANSISTOR NPN SI TO+18 PD=360MW	28480	1654-0404
A2R1 A2R2 A2R3 A2R4 A2R5	2100-2574 2100-2522 2100-2633 0698-3160 0757-0442	2 1 2 36	RESISTOR-TRMR 500 10% C SIDE-ADJ 1-TRN RESISTOR-TRMR 10% 10% C SIDE-ADJ 1-YRN RESISTOR-TRMR 1% 10% C SIDE-ADJ 1-YRN RESISTOR 31,6% 1% 125W F TC=0+-100 RESISTOR 10% 1% 125W F TC=0+-100	30983 30983 30983 24546 24546	ET50X501 ET50X103 ET50X102 C4-1/8-T0-3162-F C4-1/8-T0-1002-F
A2R6 A2R7 A2R8 A2R9 A2R10	0757=0158 0698=3440 0698=3194 0757=0279 0698=0084	1723	RESISTOR 619 1% .5W F TC70++100 RESISTOR 196 1% .125W F TC#0+-100 RESISTOR 20K .25% .125W F TC#0+-50 RESISTOR 3.16K 1% .125W F TC=0++100 RESISTOR 2.15K 1% .125W A TC=0++100	19701 24546 03888 24546 24546	MF7C1/2-10-619R-F C4-1/8-T0-196H-F PME55-1/8-T2-2002-C C4-1/8-T0-3161-F C4-1/8-T0-2152-F

Table 5-3. Replaceable Parts

	A2R7 A2R8 A2R9 A2R9	0698-3440 0698-3194 0757-0279 0698-0084	7 2 3 3	RESISTOR 196 12 .125W F TC=0+-100 RESISTOR 20K .25% .125W F TC=0+-100 RESISTOR 3.16K 1% .125W F TC=0+-100 RESISTOR 2.15K 1% .125W F TC=0++100	24546 038883 24546 24546	C4-1/8-T0-196R#F PME55-1/8-T2-2002-C C4-1/8-T0-3161-F C4-1/8-T0-215:-F
	A2R11 A2R12 A2R13	0757-0420 0757-0442 0698-3460	9	RESISTOR 750 1% .125W F 7C=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 422K 1% .125W F TC=0+-100	24546 24546 91637	C4-1/8-T0-751-F C4-1/8-T0-1002-F CMF=55-1, T-1
	A2TP1 42TP2 A2TP3 A2TP4	1251-0600 1251-0600 1251-0600 1251-0600		CONTACT-CONN U/W-POST-TYPE MALE DPSLDR Contact-conn u/W-Post-type male dpsldr Contact-conn u/W-Post-type male dpsldr Contact-conn u/W-Post-type male dpsldr	28480 28480 28480 28480 28480	1251-0500 1251-0600 1251-0600 1751+0600
	A2U'1 / A2U2 A2U3	1826-0011 1820-0158 1820-0476	2 2 1	IC UA 741 OP AMP IC LM 302 OP AMP IC UA 715C OP AMP	07263 277014 07263	741HM LM302H T15HC
1 <u>1</u>						

See introduction to this section for ordering information

٦. 1: i(1,1,1)

11

1.1

6-6

ан. Так у

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number	
AZVRI AZVRZ	1902-0025 1903-0041	3	DIODE-ZNR 10V 5% DO-7 PD=.4% TC=+.05% DIODE-ZNR 5.11V 5% DO-7 PD=.4W TC=7.009%	28480 15818	1902-0025 CD 35822	
A3 > 1554 A3	08641-60174 08641-60201	1	RF OSCILLATOR ASSY(SEE SERVICE SHEET 0) Restored 08:041-60174, Requires Exchange	28480 28490	08641-60174 08641-60201	
A3MP1 A3MP2 A3MP3 A3MP4 A3MP5	0510-0052 0510-0055)430-0537 1430-0759 08640-00085	3 2 1 4 1	RETAINER-RING .125-UIA STL CD-PL RETAINER-RING .43A-DIA CD PL ST GEAR SPUR GEAR SPUR GASKET, CUVER(FINE JUNE)	97464 C0184 28480 28480 28480 28480	7: 37-12-CD 1400-43-CD 1430-0537 1430-0759 08640-20085	
A 3MP6 43MP7 A 3MP8 A 3MP9 A 3MP10	98640-20106 8160-0233 08640-20106 03640-20224 08640-60206	2	BUSHING, POT RFI PLUG BE CU AU PL .173-00 .18-L BUSHING, POT CAP, TPANSISTOR OSCILLATOR, FINE TUNE ASSEMBLY	28480 28480 28480 28480 28480 28480	0864(,-20106 8160-0233 08640 20106 08640-20224 08640-00208	() - () - () - ()
A3MP11 A3MP12 A3MP13 A3MP14 A3MP15	2200-0151 2190-0019 8160-0203 0510-0055 3030-0007	5 1 9	SCREW-MACH 4-40.75-IN-LG PAN-HD-POZI WASHER-LK HLCL NO44.115-IN-ID RFI ROUND STRIP NI ALY .06-00 RETAINER-RING .430-DIA CD PL STL SCREW-SET 4-40.125-IN-LG SMALL GUP-PT	28480 28480 07700 00184 28460	2200-0151 2190-0019 20-90044 1400-43-CD 3030-0007	
A3MP16 A3MP17 A3M018 A3M019 A3MP20	1430-0759 3030-0199 2199-0016 3030+0196 2199-0016	2	GEAR SPUR SCREW-SET 4-40 .108-IN-LG SMALL CUP-PT NASMEG-LK INTL T NO378 .377-IN4ID SCREW-SET 4-40 .188-IN-LG SMALL CUP-PT WASHER-LK INTL T NC378 .377-IN-ID	28480 28480 28480 28480 28480 28480	1430=0759 3030=0196 2190=0016 3030=0196 2190=0016	
43MP21 A3MP22 A3MP23 A3MP24 A3MP25	3030-0007 2510-0135 3050-0001 2190-0017 08640-20193	1 1 1	SCREW-SET 4-40 .125-IN-LG SMALL CUP+PT SCREW-MACH 8-32 2.25-IN-LG PAN-HD-POZI WASHER-FL MTLC NO8 .172+IN-ID WASHER-LK HUCL NO8.168+IN-ID SHAFT MOD. FINE TUNE	28430 28480 28480 28480 26480 28480	3030+0007 2510-0135 3050-0001 2190-0017 08640-20193	
43MP26	0510-0015	2	RETAINER-RING .125+DIA CD PL STL	AB1CD	1500-12-00	
A344 A3R1 A3R2	5084-4282 2100-3265 2100-0541	1	TRANSISTOR PESISTOR-VAR 10% 20% C RESISTOR-VAR PREC WW 1-TRN 1K 3% Note: When Replacing A3R1,72, ALSO Replace Bushing A3MP6 or MP8.	28480 71450 28480	5084-4282 550 2100-0541	
A3A1	08641-\$0200	`1	FILTER/BUFFER AMPLIFIER ASSY, NRFR	28480	0864:	
43A1FL1 A3A1FL2 A3A1FL3 A3A1FL4 A3A1FL4	0160-0204 0160-0204 0160-0204	10	FILTER-LP STUD-TERMS SLITER-LP STUD-TERMS NSR FILTEN-LP STUD-TERMS	01121 01121 01121	SMF8+42 SMF8+42 SMF8-42	
A3A1FLS	0160-0204		FILTER-LP SYUD-TERMS	/0:121	SMF8-A2	
A3A1J1 A3A1J2	1250-0830 1250-0830	2. 	CONNECTOR-RF SMC M SGL HOLE FR CONNECTOR-RF SMC M GGL HOLE FR	2×497 2×497	701.873 701.873	
A3A1MP1 A3A1MP2 A3A1MP3 A3A1MP4 A3A1MP4 A3A1MP5	08640-00011 2200-0105 3050-0105 8166-0229 08540-00011	4 20 2	COVER, BUFFER BUAHD SCREWWAACH 4-40 .512-IN-LG PAN-HD-POZI WASHER-FL MTLC NO4 .125-IN-10 GASKET, RFI COVER, BUFFER BOARD	28480 28480 28480 07700 28480	n (640-00011 2200-01/15 3050-0105 48-9/092 08640-00011	
A3A1MP6 A3A1WP7 A3A1NP8 A341MP9 A341MP9	8160-0229 2200-0105 3050-0195 2:40-0001 2190-9011	S,S	GASKET, RF1 SCREW-MACH 4-40 .312-20-LG PAN-HD-POZI HASHER-FL MTLC NO4; 125-IN-ID NUT-HEX-DB, 4CHAM 10-32-745 209-14K WASHER-LK INTL T NO10-1195-IN-ID	07770 28480 28480 28480 28480 06791	48-90092 2200-0105 3030-0105 2740-0001 1022	
A3A1MP21 A3A1MP12 A3A3MP13 A3A1MP14 A3A1MP15	2740.0001 2190.0011 2700.0121 2190.0019 2190.0019 2190.0019	10	NUT-HEX-DBL-CHAM 10+32-THD, 104-THX WASHER-LK INTL T ND10 .195-IN-ID SCPEW-MACH 4-40 1,125-IN-LG PAN-HU-POZI WASHER-LK HLGL NO4 .115-IN-ID WASHER-LK HLGL NO4 .115-IN-ID	28400 05791 23490 28480 58480	2740-0001 1022 2200-0121 2190-0019 2190-0019	
A3A1MP16	2200-0143	1 	10REW-MACH 4-40 . 375-IN-LG PAN-HD-021	28400	2200-0143	
AJAJAZ	00640-20117	en frankriger alter State alter State	VARACIDA HEAD FILTER ASBY, NAFR RF DIVIDES/FILTER BUFFER AMPLIFIER ASS/	28480	08440-20117 08440-60124	
A3A1A2C1 A3A1A2C1 A3A1A2C2 A3A1A2C3 A3A1A2C3 A3A1A2C5	0160-3456 0160-3456 0160-3456 0160-3456 0160-3456 0160-3456	39 7	CAPACITOR-FXD 1000PF +-10% 1000WVDC CER CAPACITOR-FXD 1000PF +-10% 2000WVDC CER CAPACITOR-FXD 1000PF +-30% 1000WVDC CER CAPACITOR-FXD 1000PF +-10% 1000WVDC CER CAPACITOR-FXD 1000PF /-10% 1000WVDC CER	28480 28480 28480 28480 28430 28430	0160-3456 0160-3456 0160-3456 0160-3856 0160-3456	

Ses introduction to this section for ordering information

burgensigner fra

6-7

a state state

Table 6-3. Replaceable Parts

15

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
ASA1A2C6) BSA1A2C7 ASA1A2C9 ASA1A2C9	0160-7878 0160-3456 0160-3873 0150-3876	2	CAPACITOR-FXD 1000PF +-20% 100WVDC CER CAPACITOR-FXD 1000PF +-10% 1000WVDC CER CAPACITOR-FXD 4.7PF +5PF 200WVDC CER CAPACITOR-FXD 47PF +-20% 200WVDC CER	28480 28480 28480 28480	0160-3876 0160-3456 0160-3873 0160-3876
A¥A1A2L1 A3A1A2L2	9140-0142 9140-0142	4	COIL-MLD 2.20H 10% G=32 .095DX.25LG COIL-MLD 2.20H 10% G=32 .095DX.25LG	99800 99800	1025-28 1025-28
1 A3A1A2MP1	1200-0173	$\left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) = \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right)$	INSULATUR-XSTR TO-5 .075-THK	28480	1200-0173
43414201 43414202	1054-0247	8	TRANSISTOR NEN SI 10+39 PD=1W FT=800MHZ TRANS/STOP NEN SI 10-39 PD=1W FT=800MHZ	28480 28480	1854-0247 1854-0247
A JA 1 A 2 H 1	0757-0422 0698-7212 0698-7188 0698-3445 0698-3445	5 B - 4 N	RESISTOR 909 1% .125W F TC=00-100 RESISTOR 100 1% .05W F TC=0+-100 RESISTOR 10 1% .05W F TC=0+-100 RESISTOR 348 1% .125W F TC=0+-100 RESISTOR 121 1% .05W F TC=0+-100	24546 24346 24346 24346 24346 24546	C4+1/8-T0-909R=F C3+1/8-T0-100R+G C3+1/8-T00-10R-G C4+1/8+T0-348R=F C3+1/8+T0+121R=G
A3A1A2R6 A3A1A2R7 A3A1A2R6 A3A1A2R6 A3A1A2R9 A3A1A2R10	0698-7224 0757-0722 0698-7193 06%8-3445 06%8-7214	2	RESISTOR 316 1.2 .05W F TC=0+-100 RESISTOR 909 12 .125W F TC=0+-100 RESISTOR 16.2 12 .05W F TC=0+-100 RESISTOR 348 12 .125W F TC=0+-100 RESISTOR 348 12 .125W F TC=0+-100 RESISTOR 121 12 .05W F TC=0+-100	24546 24546 24546 24546 24546	C3-1/8-T0-316R-G C4-1/8-T0-909R-F C3-1/8-T00-16R2-G C4-1/8-T0-348R-F C3-1/8-T0-121P+G
A3A14271	08640-0007 08640-60037	3	LOOP BUFFER INPUT Counter/Buffer Amplifier Assy	28480 28460	08640-00007
A'A1A3C1 A3A1A3C2 A3A1A3C3 A3A1A3C3 A3A1A3C4 A3A1A3C5	0100-3456 0160-3456 0140-3456 0160-3456 (160-3456		CAPACIT/R-FXD 1000PF +- 10% 1000WVDC CER CAPACITOR-FXD 1000PF +-10% 1000WVDC CER CAPACITOR-FXD 1000PF +-10% 1000WVDC CER CAPACITOR-FXC 1000PF +-10% 1000WVDC CER CAPACITOR-FXC 1000PF +-10% 1000WVDC CER	28480 28480 28480 28480 28480 28480	0160-3456 0160-3456 0160-3878 0160-3456 0160-3456
434143C0 434143C7	0160-3878 0160-3456		CAPACITOR-FXD 1000PF +-20% 103WVDC CER CAPACITOR-FXD 1000PF +-20% 1000WVDC CER	28480 28480	0140-3378
A3A1A3L1 A3A1A5L2	9140-0142 9140-0142		COIL-MED 2.20H 10% G#32 .095DX.25LG COIL-MED 2.20H 10% G#32 .095DX.25LG	99800 99800	1025-28
AJALAJMPI	1200-0173		INSULATOR-NOTE TU-5 .075-THK	28480	1200-0175)
43414301 43474302	1854-0247		TRANSISTOR NEN SI TO-39 PD=1W FT=800MHZ	28480 28480	1854-0247
43414377 43414372 43414372 43414373 43414374 43414374	0757-0422 0698-7217 0688-7188 0698-1445 0698-7216		RESISTOR 909 1% .125W F TC+0+-100 RESISTOR 100 1% .05W F TC+0+-100 RESISTOR 10 1% .05W F TC+0+-100 RESISTOR 346 1% .125W F TC+0+-100 RESISTOR 147 1% .05W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-909R+F C3-1/8-T0-100R-G C3-1/8-T00-10R-G C4-1/8-T0-348H-F C3-1/8-T0-348H-F
A3A1A3K6 A3A1A3R7 A3A1A3R8 A3A1A3R8 A3A1A3R9 A3A1A3R10	0698-7224 0757-0482 0698-7193 0698-3445 0698-7196		PESISTUR 316 1% .05W F TC=0+-100 RESISTOR 909 1% .125W F TC=0+-100 RESISTOR 16.2 1% .05W F TC=0+-100 RESISTOR 348 1% .125W F TC=0+-100 RESISTOR 21.5 2% .05W F TC=0+-100	24546 24546 24546 24546 24546	C3+1/8-T0+316R-G C4+1/8-T0+909R-F C3+1/8-T00+16R2-G C4+1/8-T0-348R-F G3+1/8-T0-348R-F
A3A1A3R11 A3A1A3R12	0698-/146/ 0698-7205	2	HE915YOR 21.5 2% .05W F TC=0+-100 RE915TUR 51.1 1% .05W F TC=0+-100	24546 24546	C3-1/8-T00-2185-G C3-1/8-T00-5181-G
A3A1A3T1	08640-000077		LOOP BUFFER INPUT	28480	08540-00007
4342	08640-60134	1	VARACTOR HEAD ASSY, URFR	28480	08640-60134
4343	03640-60135	1	OSCILLATOR LOOP ASSY, NHER	20400	07540-00135
A3A4 17 (1)	08640+60195	1	CONNECTOR BOARD ASSY	28480	08640-60196
A3A4C1 A3A4C2	0180-0116 0180-0116		CAPACITOR-FXD 6.80F+-10% 35VDC TA CAPACITOR-FXD 6.80F+-10% 35VDC TA	56289 56289	1500685X40 582
A3A41.1 A3A41.2	9100-1664 9100-1664	5	COIL-MLD 3MH 5% 0=70 215D: 56LG COIL-MLD 3MH 5% 0=70, 215DX 56LG	24220	55/305 55/305
4344MP1	08640-00036		SUPPORT, P.C. BOARD	20480	08640-00036

A3A4MP2 A3A4MP3 A3A4MP4 A3A4MP4 A3A4MP5 A3A4R1 A3A4R2	2200-0141 3050-0105 2/90-0009 22507-3009 2100-3054 2120-3109		2-IN-LG PAN-HD-PO71 28480 4 .125-IN-10 28480 8 .186-1N-10 06791 THD .CP4-THK .25-A/F 28480 0x c Side-Adj 17-TKN 32997	08640-00036 2200-0141 3050-0105 820-BC 2260-0011 3006P-1+503 3006P-1+503	
АЗА4РЗ Аза4Р4 Аза4Р5 Аза4Р5 Аза4Р5	2100-3123 2100-3154 C498-3439 0757-0416 0757-0416	5 RECISTOR-TAMA 500 1 8 RESISTOR-TAMA 1K 10 1 RESISTOR 178 1% 13 17 RESISTOM 511 1% 12 RESISTOM 511 1% 12	0% C SIDE-ADJ 17-YRN 32997 % C SIDE-ADJ 17-YRN 32997 5W F TC=0+-100 24546 5W F TC=0+-200 24546	10CUP+1-501 3006P-1-102	

See introduction to this section for ordering information

1.

Table	6-3.	Repla	iceable	Parts
-------	------	-------	---------	-------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A3A4TP1 A3A4TP2	1251-0600 1251-0600		CONTACT-CONN U/W-POST-TYPE MALE OPSLOR Cuntact-conn u/w-post-type male opslor	28480 28480	1251-0600 1251-0600
A4			NOT ASSIGNED		an an an Anna an Dùrach an Anna an Anna an Anna an Anna an Anna an Anna an Anna Anna an Anna an Anna an Anna Anna
A5	V8540-50029	1 Harris (1	FM AMPLIFIER ASSY (DOES NOT INCL A5MR33		0864^=60029
ASC1 ASC2 ASC3 ASC4 ASC5	0160-2228 0160-2228 0180-0116 0180-1715 0180-1715 0180-0269	2 3 1	CAPACITOR-FXD 2700PF +-5% 300WVDC MICA CAPACITOR-FXD 2700PF +-5% 300WVDC MICA CAPACITOR-FXD 6.8UF+-10% 35VDC TA CAPACITOR-FXD 150UF+-10% 6VDC TA CAPACITOR-FXD 110+75-10% 150VDC AL	26420 28480 56289 56289 56289 56289	0160-2228 0160-2228 150D685X903582 150D157X9006R2 30D105G1508A2
ASC6 ASC7 ASC8	0180-0197 0180-0116 0180-2211	.1	CAPACITOR-FX0 2.2UF+-10% 20VDC TA CAPACITOR-FXD 6.8UF+-10% 35VDC TA CAPACITOR-FXD 5UF+50-10% 150VDC AL	56289 56289 56289	150D225X9020A2 150D685X903582 30D505F130CC2
A5CR1- A5CR4 A5CR5 A5CR6 A5CR6	1901-0025 1901-0025 1901-0025	20	NOT ASSIGNED DIDDE-GEN PPP 100V 200MA. DO-7 CIODE-GEN PRP 100V 200MA. DO-7 DIODE-GEN PRP 100V 200MA DO-7	28480 28480 28480	1901-0025 1901-0026 1901-0025
45CR8 45CR9 45CR10 45CR11 45CR12	1901-0025 1901-0025 1901-0050 1901-0050 1901-0050	17	DIODE-GEN PRP 100V 200MA D0-7 DIODE-GEN PRP 100V 200MA D0-7 DIODE-SWITCHING 80V 200MA 2NS D0-7 DIODE-SWITCHING 80V 200MA 2NS D0-7 DIODE-SWITCHING 80V 200MA 2NS D0-7	28480 28480 28480 28480 26480 26480	1901-0025 1901-0025 1901-0050 1901-0050 1901-0050
ASCR13	1901-0025		DIODE-GEN PRP 100V 200MA DO-7	28480	1901-0025
A5MF1 A5MP2 A5MP3	4040-0750 1480-0073 4040-0756 1480-0073 0400-0418	1 13 1	EXTRACTOR-PC BD RED POLYC .062-BD-THKNS PINIDRIVE 0.250" LG Extractor-PC Board, white Pinidrive 0.250" LG Channel Brommet, 1.25" LG	28480 00000 28480 00000 00000	4640-0750 087 4640-0756 080 080
4501 4502 4503 4504 4505	1 A54+0721 1854-0721 1854-0404 1853-0404 1853-0638 1205-0011 1200-0173	5 	TRANSISTOR-DUAL NPN PD#750MW TRANSISTOR-DUAL NPN PD#750MW TRANSISTOR NPN SI TO-18 PD#360MW TRANSISTOR NPN SI TO-18 PD#360MW TRANSISTOR PNP SI TO-39 PD#1W FT#100MHZ HEAT SINK TO-5/TO-39-PKG INSULATOR-XSTP TO-5 .075-THK	28480 28480 28480 28480 28480 28480 28480 28480 28480	1854-0221 1854-0221 1854-0404 1854-0404 1853-0038 1205-0011 1200-0173
A5Q6 A5Q7	1853-0038 1205-0011 1200-0173 1853-0038 1200-0173		TRANSISTOR PNP SI TO-39 PD=1W FT=100MHZ HEAT SINK TO-5/TO-39-PKG INSULATUR-XSTR TO-5 _075-THK TRANSISTOR PNP SI TU-39 PC=1W FT=100MHZ INSULATOR-X(TR TO-5 _075-THK	28480 28480 28480 28480 28480 28480	1853-0038 1205-0011 1200-0173 1853-0038 1200-0175
A508 A509	1854~0039 1205~0011 1200~0173 1854~0022 1200~0173	3	TRANSISTOR NPN 2N3053 SI TO-5 PD=1W HEAT SINK TO-5/TO-39-PKG INSULATOR-XSTR TO-5 .075-THK TRANSISTOR NPN SI TO-39 PD=700MW INSULATOR-XSTR TO-5 .075-THK	04713 28480 28480 07263 28480	2N3053 1205-0011 1200-0173 517843 1200-0173
A5010	1854-0237 0510-0003 1205-0085 2360-0179 2420-0003 2190-0018 2190-0007	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TRANSISTOR NPN BI TO-66 PD=20W FT=10MHZ THREADED INSERT-NUT 6-32.062-LG HEAT SINK TO-66-PKG SCREW-MACH 6-32.438-IN-LG PANHD-POZI NUT-HEX-DBL-CHAM 6-32-THD .094-THK WASHER-LK HLCL NO6.141-IN-ID WASHER-LK INTL T NO6.141-IN-ID	04713 28480 28480 28480 28480 28480 28480 78189	2N3738 0510-0002 1205-0085 2360-0199 2420-0004 2190-0018 1906-00
A5Q11 A5Q12	1053-0012 1200-0173 1854-0237 0510-0002 1205:0085 2360-0199 2420-0003 2190-3018 2190-0007	3. 	TRANSISTOR PNP 2N2904A SI TO-5 PD=600MW INSULATOR-XSTR TO-5 .075-THK TRANSISTOR NPN SI TO-66, PD=26W FT=10MHZ THRENDED INSERT-NUT 6-32 .062-LG HEAT SINK TO-66-PKG SCREW-MACH 6-32 .438-IN-LG PAN-HD-POZI NUT-HEX-DBL-CHAM 6-32-THD .094+THK WASHER-LK HLCL NO6 .141-IN+ID WASHER-LK INTL T NO6 .141-IN+ID	01295 28480 04713 28480 28480 28480 28480 28480 28480 78189	2N2904A 1206+0173 2N3738 0510+0002 1205+0085 2360+0199 2420+0004 2190+0013 1905+00

A5H1 A5R2 A5R3 A5R4 A5R5	2190-0007 0698-3162 0757-0180 30757-0403 0757-0403 20757-0290 7 0757-J317 7	WASHER-1K INTL T NO6,141-1N-10 RESISTOR 46,4K 1% 125W F TC#0+-100 RESISTOR 31.6 1% 125W F TC#0+-100 RESISTOR 121 1% 125W F TC#0+-100 RESISTOR 6,19K 1% 125W F TC#0+-100 RESISTOR 1,33K 1% 125W F TC#0+-100	78189 24546 24546 24546 19701 24546	1905-00 C4=1/8-70-4642=F C4, T=0 C4=1/8-T0=121H=F MF4C1/8-T0=6191=F C4=1/8=T0=1331=F
A5R6 A5R7 A5R0 A5R9 A5R1.0	0698-3132 9 0698-3410 1 2100-3164 1 0698-0085 7 0757-0317	RESISTOR 261 1% .125W F TC=0+-100 RESISTON 3.15K 1% .5W F TC=0+-100 RESISTON-TRMM 10 20% C SIDE-ADJ 17-TRN RESISTOR 2.51K 1% .125W F TC=0+-100 RESISTOR 1.33K 1% .125W F TC=0+-10C	24546 91637 32997 24546 24546	C4-1/8-T0-2610-F MFF-1/2-10 3006P-1-300 C4-1/8-T0-2611-F C4-1/8-T0-1331-F
6-8	L Sæ i	L	tion	

Table 6-3. Replaceable Parts

	Reference Designation) HP Part Number	Oty	Description	Mfr Code	Mfr Part Number	н 11-3 1
) 	ASR11 A5R12 A5R13 A5R14 A5R14 A5R15	0698-3132 0757-0290 0757-0180 0757-0403 0698-3162		PESISTOR 261 1% .125W F TC#0+=100 RESISTOR 6.19K 1% .125W F TC=0+=100 RESISTOR 31.6 1% .125W F TC=0+=100 RESISTOR 121 1% .125W F TC=0+=100 RESISTOR 45.4K 1% .125W F TC=0+=100	24546 19701 24546 24546 24546	C4-1/8-70-2610-F MF4C1/8-T0-6191-F C4, T=0 C4-1/8-T0-121R-F C4+1/8-T0-4642-F	
· · · · · · · · · · · · · · · · · · ·	A5F16 A5F17 A5F18 A5F19 A5F79	0757-0401 0698-3446 0648-3132 0757-0461 0757-0346	15 2 1.4	HESISTOR 100 12 .125W F TC=0+=100 RESISTOR 383 12 .125W F TC=0+=100 RESISTOR 261 12 .125W F TC=0+=100 RESISTOR 100 12 .125W F TC=0+=100 RESISTOR 100 12 .125W F TC=0+=100 RESISTOR 10 12 .125W F TC=0+=100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-101-F C4-1/8-10-383R-F C4-1/8-T0-2610-F C4-1/8-T0-101-F C4-1/8-T0-10R0-F	;
	A5R21 A5R22 A5R23 A5R24 A5R24 A5R25	0698-3430 2100-3154 0757-0280 0757-0280	1 1	NOT ASSIGNED RESISTOR 21.5 1% .125W F TC=0+-100 RESISTOR-TRMR 1K 10% C SIDE-4DJ 17-TRN RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	03888 32997 2º546 24546	PME55-1/8-T0-21R5-F 3006P-1-102 C4-1/8-T0-1001-F C4-1/8-T0-1001-F	
	A5R26 A5R27 5R28 A5R29 A5R30	(757-0346) 0757-0441 0757-0440 0698-3158 0757-0443	6 7 1 3	RESISTOR 10 1% 1254 F TC=0+=100 RESISTOR 8.65K 1% 1254 F TC=0+=100 RESISTOR 7.5K 1% 1254 F TC=0+=100 RESISTOR 23.7K 1% 1254 F TC=0+=100 RESISTOR 11K 1% 1254 F TC=0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-10R0-F C4-1/8-T0-8251-F C4-1/8-T0-7501-F C4-1/8-T0-2372-F C4-1/8-T0-1102-F	
	A5R31 A5R32 A5P33 A5R34 A5R34 A5R35	0757-0442 0757-0438 0698-0085 0698-0085 0757-0399	31 5	RESISTOR 1(K 1% .123W F T(=0) -100 RESISTUR 5.11K 1% .125W F T(=0+-100 RESISTOR 2.51K 1% .125W F T(=0+-100 RESISTOR 2.61K 1% .125W F T(=0+-100 RESISTOR 82.5 1% .125W F T(=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-5111-F C4-1/8-T0-2011-F C4-1/8-T0-2011-F C4-1/8-T0-82R5-F	
	A5R36 A5R37 A5P38 A5R39 A5R40	0757-0399 0698-3391 0757-0198 0698-5839 0698-5839	1 2 2	RESISTOR 02.5 1% .125W F TC=0+-100 RESISTOR 2125 1% .5W F TC=0+-100 RESISTOR 100 1% 5W F TC=0+-100 RESISTOR 7.1 5% .25W FC TC=-400/+500 RESISTOR 9.1 5% .25W FC TC=-400/+500	24546 19701 19701 01121 01121	C4-1/8-T0-82R5-F MF7C-1 MF7C1/2-T0-101-F C891G5 C891G5	
	A5R41 A5R42	0698-3260 0698- <i>3</i> 157	24	RESISTOR 464K 1% ,125W F TC=0++100 RESISTOR 19.6K 1% ,125W F TC=0+-100	91637 24546	CMF-55-1, T-1 C4-1/8-T0-1962-F	
	A5TP1 A5TP2 A5TP3 A5TP4 A5TP5	$0360 - 1514 \\ 0360 - 150 \\ 0360 - 1$	46	TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG	28480 28480 28480 28480 28480 28490	0360-1514 036J-1514 0360-1514 0360-1514 0360-1514 0369-1514	
	45790	0360-1514		TERMINAL-STUD SGL-PIN PRESS-MTG	28480	0360-1510	
	A 5U 1	1820-0158		IC LM 302 OP AMP	27014	LM302H	
	A6			NOT ASSIGNED			
) /	.47	08640-60309	1	FM SHAPING BOARD ASSY	28480	08640-60309	
	A7C1 A7C2 A7C3 A7C4 A7C5	0180-1735 0180-1735 0180-0373 0180-2141 0180-0141	3 1 1 2	CAPACITOR-FXD .22UF+-10% 3540C TA CAPACITOR-FXD .22UF++10% 3540C TA CAPACITOR-FXD .64UF+-10% 3540C TA CAPACITOR-FXD 3.JUF+-10% 5040C TA CAPACITOR-FXD 50UF+75-10% 5040C AL	56289 56289 56289 56289 56289 56289	150D224X9035A2 150D224X9035A2 150D664X9035A2 150D335X9050B2 30D506G050DD2	
	47C6 47C7 47C8 47C9 47C10	0180-1715 0160-2453 0180-1846 0160-2204 0180-0141	1 1 6	CAPACITOR-FXD 150UF+-10X 6VDC TA CAPACITOR-FXD .22UF +-10X 80WVDC POLYE CAPACITOR-FXD 2.2UF+-10X 35VDC TA CAPACITOR-FXD 100 F +-5X 300WVDC MICA CAPACITOR-FXD 50UF+75-10X 50VDC AL	562(9 28480 56289 28480 56289 56289	150D157X9006R2 0160-2453 150D225X9035H2 0160-2204 30D506G050DD2	
	A7C11 A7C12 A7C13	0180-1715 0180-2204 0180-2296	3	CALACITOR-FXD 150UF+-10% 6VDC TA CAPACITOR-FXD 100PF +-5% 300WVDC MICA CAPACITOR-FXD 60UF+-10% 6VDC TA	56289 28480 56289	150D157X9005R2 0160~2204 150D606X9006B2	
8	A7CR1 A7CR2 A7CR3 A7CR4 A7CR5	1901-0033 1901-0033 1901-0033 1901-0033 1901-0033	20	DICDE-GEN PRP 180V 200MA DO-7 DICDE-GEN PRP 180V 200MA DO-7 DICDE-GEN PRP 180V 200MA DC-7 DICDE-GEN PRP 180V JMA DO-7 DICDE-GEN PRP 180V 200MA DO-7	28480 28480 28480 28480 28480 28480	1901-0033 1901-0033 1901-0033 1901-0033 1901-0033	
	A7CR6 A7C77 A7CR8 A7CR9 A7CR9 A7CF10	1901-0033 1901-0033 1901-0033 1901-0033 1901-0033 1901-0025) '	DIODE GEN PRP 180% 200MA DO-7 DIDDE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 100V 200MA DO-7	28480 28400 28480 28480 28480 28480	1901-0033 1901-0033 1901-0033 1901-0033 1901-0033	· ·
	A7C011 A7C012 A7C013 A7C013 A7C014 A7C015	1901-0033 1901-0033 1901-0033 1901-0033 1901-0033		DIQDE-GEN PRP 180V 200MA DO-7 DIQDE-GEN PRP 180V 200MA DO-7 DIQDE-GEN PRP 180V 200MA DO-7 DIQDE-GEN PRP 180V 200MA DO-7 DIQDE-GEN PRP 180V 200MA DO-7	28480 28480 28480 28480 28480 28480	1901-0033 1901-0033 1901-0033 1901-0033 1901-0033	*** *
). 				,
L.			See ir	ntroduction to this section for ordering informa	tion		
	an an an an an Arright an Arrith an Arright an Arright Arright an Arright an Arright an		, , ,			6-9	
Ъ., -	an an taon an t					$ \begin{array}{l} \left(\begin{array}{c} \mathbf{P} \\ \mathbf{P} \end{array} \right) = \left(\begin{array}{c} \mathbf{P} \end{array} \right) = \left(\begin{array}{c} \mathbf{P} \\ \mathbf{P} \end{array} \right) = \left(\begin{array}{c} \mathbf{P} \\ \mathbf{P} \end{array} \right) = \left(\begin{array}{c} \mathbf{P} \\ \mathbf{P} \end{array} \right) = \left(\begin{array}{c} \mathbf{P} \end{array} \right) = \left(\begin{array}{c} \mathbf{P} \\ \mathbf{P} \end{array} \right) = \left(\begin{array}{c} \mathbf{P} \\ \mathbf{P} \end{array} \right) = \left(\begin{array}{c} \mathbf{P} \end{array} \right) = $	۰.

. .

Replaceable Parts

.,

۲.

1 5

۰,

¢,

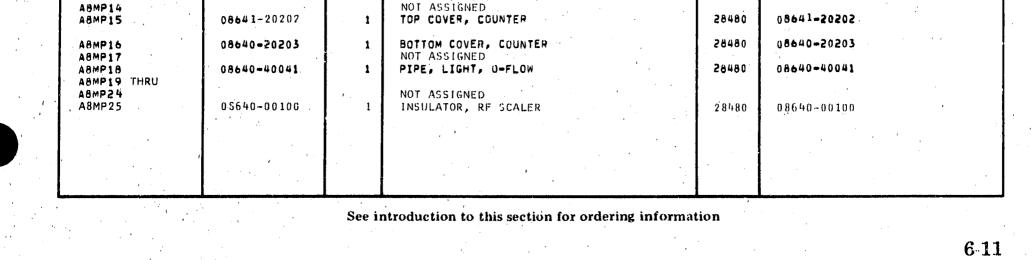
2.8

Table 6-3. Replaceable Parts

.

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A7CR16 A7CR17 A7CR18 A7CR19 A7CR19 A7CR20	1901-0033 1901-0033 1901-0033 1901-0033 1901-0033 1901-0033		DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7	28480 28480 28480 28480 28480 28480	1901-0033 1901-0033 1901-0033 1901-0033 1901-0033
A7CR21	1901-0033		DIODE-GEN PRP 180V 200MA DO-7	28480	1901-0033
A7K1	0490-1080	1	RELAY-REED IC .25A 150V CONT 5V-CUIL	28480	0490-1080
A7MP1 A7MP2	4040-0751 1480-0073 4040-0748 1480-0073	3	EXTRACTOR-PC BD ORN POLYC .062-BD-THKNS PINIDRIVE 0.250" LG EXTRACTOR-PC BD BLK POLYC .062-BD-THKNS PINIDRIVE 0.250" LG	28480 00000 28480 00000	4040-0751 OBD 4040-0748 CBD
A7Q1 A7Q2 A7Q3 A7Q4	1854-0071 1854-0071 1854-0022 1200-0173 1853-0020	26	TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI TU=39 PD=700MW INSULATOR=XSTR TO=5 .075=THK TRANSISTOR PNP SI PD=300MW FT=150MHZ	28480 28480 07263 28480 28480	1854-0071 1854-0071 517843 1200-0173 1853-0020
A7W5 A7Q6 A7Q7 A7Q8	1854-0071 1853-0038 1200-0173 1853-0020 1853-0020		TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR PNP SI TO=39 PD=1W FT=100MHZ INSULATOR=XSTR TO=5 .075=THK YRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR PNP SI PD=300MW FT=150MHZ	28480 28480 28480 28480 28480 28480	1854-0071 1853-0038 1200-0173 1853-0020 1853-0020
A7R1 A7R2 A7R3 A7R4 A7R5	0698-3162 0698-3450 0699-3153 0757-0199 0757-0440	6 3 4	RESISTOR 46.4K 1% .125# F TC=0+=100 RESISTOR 42.2K 1% .125# F TC=0+=100 RESISTOR 3.63K 1% .125# F TC=0+=100 RESISTOR 21.5K 1% .125# F TC=0+=100 RESISTOR 7.5K 1% .125# F TC=0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-4642=F C4-1/8-T0-4222=F C4-1/8-T0-3831=F C4-1/8-T0-2152=F C4-1/8-T0-7501=F
A7R6 A7R7 A7R8 A7R9 A7R10	0698-3243 0698-3454 0757-0289 0698-3161 0698-3154	2 1 3 2 7	RESISTOR 178K 1% .125W F TC=0+-100 RESISTOR 215K 1% .125W F TC=0+-100 RESISTOR 13.3K 1% .125W F TC=0+-100 RESISTOR 38.3K 1% .125W F TC=0+-100 RESISTOR 4.22K 1% .125W F TC=0+-100	24546 24546 19701 24546 24546	C4-1/8-T0-1783-F C4-1/8-T0-2153-F MF4C1/8-T0-1332-F C4-1/8-T0-3832-F C4-1/8-T0-4221-F
A7R11 A7R12 A7R13 A7R14 A7R15	0757-0288 2100-3109 0698-3155 0698-3260 0757-0458	1 9 5	RESISTOR 9.09K 1% .125W F TC=0+-100 RESISTOR-TRMR 2K 10% C SIDE-ADJ 17-TRN RESISTOR 4.64K 1% .125W F TC=0+-100 RESISTOR 464K 1% .125W F TC=0+-100 RESISTOR 51.1K 1% .125W F TC=0+-100	19701 32997 24546 91637 24546	MF4C1/0-T0-9091=F 3006P-1=202 C4+1/8=T0=4641=F CMF=55=1, T=1 C4=1/8=T0=5112=F
A7R16 A7R17 A7R10 A7R19 A7R20 A7R21 A7R22 A7R22 A7R23 A7R23 A7R25 A7R25 A7R26	0757-0443 0698-3155 0757-0123 2100-3103 0698-3152 0698-3437 0757-0417 0598-0083 0757-0279 0698-3154 0757-0438	1 1 2 3 1 16	RESISTOR 11K 1% .125W F TC=0+=100 RESISTOR 4.64K 1% .125W F TC=0+=100 RESISTOR 34.6K 1% .125W F TC=0+=100 RESISTOR TRMR 10K 10% C SIDE=ADJ 17=TRN RESISTOR 3.48K 1% .125W F TC=0+=100 RESISTOR 133 1% .125W F TC=0+=100 RESISTOR 562 1% .125W F TC=0+=100 RESISTOR 3.16K 1% .125W F TC=0+=100 RESISTOR 3.16K 1% .125W F TC=0+=100 RESISTOR 3.16K 1% .125W F TC=0+=100 RESISTOR 4.22K 1% .125W F TC=0+=100 RESISTOR 5.11K 1% .125W F TC=0+=100	24546 24546 24546 24546 24546 24546 24546 24546 24546 24546 24546	C4=1/8=T0=1102=F C4=1/8=T0=4641=# C4=1/8=T0=3438=F 3006P=1=103 C4=1/8=T0=3481=F C4=1/8=T0=133R=F C4=1/8=T0=562R=F C4=1/8=T0=3161=F C4=1/8=T0=3161=F C4=1/8=T0=4221=F C4=1/8=T0=5111=F
A7R27 A7R28 A7R29 A7R30 A7R31	0757-0290 0757-0439 0757-0401 0698-4037 0698-4037	6 7	RESISTOR 6.19K 1X .125W F TC=0+~100 RESISTOR 6.81K 1X .125W F TC=0+~100 RESISTOR 100 1X .125W F TC=0+~100 RESISTOR 46.4 1X .125W F TC=0+~100 RESISTOR 46.4 1X .125W F TC=0+~100	19701 24546 24546 24546 24546	MF4C1/8-T0-6191-F C4-1/8-T0-6811-F C4-1/8-T0-101-F C4-1/8-T0-46R4-F C4-1/8-T0-46R4-F
A7R32 A7R33 A7R34 A7R35 A7R36	0698-4037 0698-4037 0698-4037 0698-4037 0698-4037 0698-4037		RESISTOR 46.4 1% .125W F TC=0+-100 RESISTOR 46.4 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-46R4-F C4-1/8-T0-46R4-F C4-1/8-T0-46R4-F C4-1/8-T0-46R4-F C4+1/8-T0-46R4-F C4+1/8-T0-46R4-F
A7R37 A7H38 A7R39 A7R40 A7R41	0757-0180 0757-0401 0757-0280 0757-0439 2100-3109		RESISTOR 31.6 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR81K 1% .125W F TC=0+-100 RESISTOR81K 1% .125W F TC=0+-100 RESISTOR-TRMR 2K 10% C SIDE-ADJ 17-TRN	24546 24546 24546 24546 32997	C4, T=0 C4=1/8=T0=101=F C4=1/8=T0=1001=F C4=1/8=T0=6811=F 3006P=1=202
A7R42 A7R43 A7R44 A7R45 A7R46	0757-0442 0698-3155 0757-0443 0698-3156 0757-0441	3	RESISTOR 10K 1% .125W F TC=0+→100 RESISTOR 4,64K 1% .125W F TC=0+→100 RESISTOR 11K 1% .125W F TC=0+→100 RESISTOR 14.7K 1% .125W F TC=0+→100 RESISTOR 8.25K 1% .125W F TC=0+→100	24545 24546 24546 24546 24546 24548	C4=1/8=T0=1002=F C4=1/8=T0=4641=F C4=1/8=T0=1102=F C4=1/8=T0=1472=F C4=1/8=T0=8251=F
A7R47 A7R48 A7R49 A7R50 A7R51	0757-0440 0757-0439 0757-0290 0757-0200 0757-0438	2	RESISTOR 7.5K 1% .125W F TC=0+-100 RESISTOR 6.81K 1% .125W F TC=0+-100 RESISTOR 6.19K 1% .125W F TC=0+-100 RESISTOR 5.62K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100	24546 24546 19701 24546 24546	C4-1/8-T0-7501-F C4-1/8-T0-6811-F MF4C1/8-T0-6191-F C4-1/8-T0-5621-F C4-1/8-I0-5111-F
A7R52 A7R53 A7454 A7R55 A7R55	0698-3155 0757-0200 0757-0439 0757-0401 0698-3432	2	RESISTOR 4.64K 1% .125W F TC=0+-100 RESISTOR 5.62K 1% .125W F TC=0+-100 RESISTOR 6.81K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 26.1 1% .125W F TC=0+-100	24546 24546 24546 24546 03888	C4-1/8-T0-4641-F C4-1/8-T0-5621-F C4-1/8-T0-6811-F C4-1/8-T0-101-F PME55-1/8-T0-26R1-F

See introduction to this section for ordering information


6-10

¢

1.7

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A7R57 A7R58 A7R59 A7R60 A7R61	0757-0402 0757-0401 0757-0400 0757-0399 0757-0398	1 3 3	RESISTOR 110 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 90.9 1% .125W F TC=0+-100 RESISTOR 82.5 1% .125W F TC=0+-100 RESISTOR 75 1% .125W F C=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8+T0-111-F C4-1/8+T0-101-F C4-1/8+T0-90P9-F C4-1/8+T0-82R5-F C4-1/8+T0-75R0-F
A7R62 A7R63 A7R64 A7R65 A7R66	0757-0397 0757-0276 0757-0395 0757-0394 0757-0401	6 4 1 9	RESISTOR 68,1 1% .125W F TC=0+=100 RESISTOR 61.9 1% .125W F TC=0+=100 RESISTOR 56.2 1% .125W F TC=0+=100 RESISTOR 51.1 1% .125W F TC=0+=100 RESISTOR 100 1% .125W F TC=0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-68R1-F C4-1/8-T0-6192-F C4-1/8-T0-56R2-F C4-1/8-T0-51R1-F C4-1/8-T0-101-F
A7R67 A7R68 A7R69 A7R70 A7R71	0698-3150 0757-0424	5	NDT ASSIGNED NDT ASSIGNED NDT ASSIGNED RESISTOR 2.37K 1% .12% F TC=0+-100 RESISTOR 1.1K 1% .125W F TC=0+-100	24546 24546	C4-1/8-T0-2371-F C4-1/8-T0+1101-F
A7R72 A7R73 A7R74 A7R75 A7R76	0698-3450 0698-3450 0698-3150 0757-0420 0757+0441		RESISTOR 42.2K 1% .125W F TC=0+-100 RESISTOR 42.2K 1% .125W F TC=0+-100 RESISTOR 2.37K 1% .125W F TC=0+-100 RESISTOR 750 1% .125W F TC=0+-100 RESISTOR 8.25K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-4222=F C4-1/8-T0-4222=F C4-1/8-T0-2371=F C4-1/8-T0-751=F C4-1/8-T0-8251=F
A7R77 A7R78 A7R79	0757-0438 0757-0346 0757-0416	1	RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100	24546 24546 24546	C4-1/8-T0+5111-F C4-1/8-T0+10R0-F C4-1/8-T0-511R-F
A7TP1 A7TP2 A7TP3 A7TP4 A7TP5	0.360-1514 0360-1514 0360-1514 0360-1514 0360-1514		TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG	28480 28480 28480 28480 28480 28480	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514
A7U1 A7U2 A7U3	1826-0013 1820-0125 1820-0175	1 1 1	IC 741 OP AMP IC UA 711C COMPARATOR IC-DIGITAL SN7405N TTL HEX 1	28430 07263 01295	1826-0013 711HC SN7405N
A7VR1 A7VR2	1902-0049 1902-3182	4 2	DIODE-ZNR 6.19V 5X DO-7 PD=.4W TC=+.022X DIODE-ZNR 12.1V 5X DO-7 PD=.4W TC=+.064X	28480 28480	1902-0049 1902-3182
A 8	08641-60176	. 1	COUNTER/LOCK ASSEMBLY (SEE SEPVICE SHEET C)	28480	08641-60176
A8C1 A8C2 A9C3 A8C4 A8C5	0160-2049 0160-2049 0160-2049 0160-2357	13	CAPACITOR-FDTHRU 5000PF +80 -20% 500V CAPACITOR-FDTHRU 5000PF +80 -20% 500V NOT ASSIGNED CAPACITOR-FDTHRU 5000PF +80 -20% 500V CAPACITOR-FDTHRU 1000PF +80 -20% 500V	28480 28480 28480 28480 28480	0160-2049 0160-2049 0160-2049 0160-2357
A8C6	0160-2357		CAPACITOR-FOTHRU 1000PF +80 -20% 500V	28480	0160-2357
ABFL1 ABFL2 ABFL3	0160-0204 0160-0204 0160-0204		FILTER-LP STUD-TERMS Filter-LP Stud-terms Filter-LP Stud+terms	01121 01121 01121	9MFB-A2 9MFB-A2 9MFB-A2
A8L1 A8L2 A8L3	9100=2232 9100=2232	4	COIL-MLD 560NH 10% G=50 .156DX.375LG COIL-MLD 560NH 10% Q=50 .156DX.375LG NDT ASSIGNED	24226 24226	15/560 15/560
A8L3 A8L4 A8L5	9100-2232 9100-2232		COIL-MLD 560NH 10% Q#50 .156DX.375LG COIL-MLD 560NH 10% Q#50 .156DX.375LC	24226 24226	15/560 15/360
Авмр 1 Авмр2 Авмр3 Авмр4 Авмр4 Авмр5	2200-0704 2190-0027 3050-0443 8160-0219 8160-0220	1 3 2 1	SCREW-MACH 4-40 .375-IN-LG BDG-HD-SLT WASHER-LK INTL T NO1/4 .256-IN-ID WASHER-FL NM NO8 .176-IN-ID .375-IN-00 RFI STRIP NI ALY 1.06-W 2.64-L RFI STRIP NI ALY 2.48-W 4.215-L	28480 78189 86928 28480 28480	2200-0704 1914-00 5624-16-10 8160-0219 8160-0220
А8МР6 А8МР7 А8МР8 А8МР9 А8МР10	08641-00047 08640-00009 08640-00051 08640-00052 08640-20059	1 1 1 1 1 1	SHIELD, LED COVER, COUNTER FILTER FRAME C, SHIELD, LARGE FRAME C, CHIELD, SMALL COUNTER COVER, INPUT	28480 28480 28480 28480 28480 28480	08641-00047 08640-00009 08640-00051 08640-00052 08640-20059
A8MP11 A8MP12 A8MP13 A8MP14	08641-20226 08640 -2 0089	1	HEAT SINK, COUNTER Not Assigned Support, P.C. Board, counter Not Assigned	28480 28480	08641-20226 08540-20089

.

.

.

 Table 6-3.
 Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
АВМР26 Авмр27 Авмр28 Авмр29 Авмр30	2200-0147 2200-0107 2200-0151 2190-0005 2950-0006	5 51 2 3	SCREW-MACH 4-40 S-IN-LG PAN-HD-POZI SCREW-MACH 4-40 375-IN-LG PAN-HD-POZI SCREW-MACH 4-40 75-IN-LG PAN-HD-POZI WASHER-LK EXT T NO4 116-IN-ID NUT-HEX-DBL-CHAM 1/4-32-THO .094-THK	28480 28480 28480 78189 73734	2200-0147 2200-0107 2200-0151 1804-01 9000
48MP31 48MP32 48MP33 48MP34 48MP35	2200-0140 08640-00102 2200-0105	71	SCREW-MACH 4-40 .25-IN-LG 100 DEG INSULATOR, COUNTER (TIME BASE) SCREW-MACH 4-40 .312-IN-LG PAN-HD-POZI NOT ASSIGNED NOT ASSIGNED	28480 28480 28480	2200-0140 08640-00102 2200-0105
А8МР36 А8МР37 А8МР38 А8МР39	0516-0005 2200-0103 0361-0207	2 5 2	SCREW-MACH 0-80 .188-IN-LG PAN-HD-SLT SCREW-MACH 4-40 .25-IN-LG PAN-HD-POZI NOT ASSIGNED PIVETIBLIND, BLACK NYLUN 0.125" DIA	28480 28480 00000	0516=0005 2200=0103 080
A8MP40	2200-0504	4	SCREW-MACH 4-40 1,062-IN-LG PAN-HD-POZI	28480	2200-0506
ABMP41 ABMP42 ABMP43 ABMP44 ABMP45 ABMP45 ABMP46 ABMP47 ABMP48 ABMP48	08640-00096 0520-0174 2190-0124 2170-0019 2950-0078 08640-20297 2950-0001 2190-0016	1 1 8 1 1 2	INSULATOR, COUNTER, HEAT SINK SCREW-MACH 2-56 .25-IN-LG PAN-HD-POZI WASHER-LK INTL T NO10 .195-IN-ID WASHER-LK HLCL NO4 .115-IN-ID NUT-HEX-DBL-CHAM 10-32-THD .067-THK GROUND, SCALER HEX NUT-DBL-CHAM 3/8-32-THD .094"THK WASHER, LOCK /NT T NO3/8.377-IN-ID NOT ASSIGNED	28480 28480 74163 28480 74163 28480 28480 28480	08640-00096 0520-0174 500222 2190-0019 500220 08640-20297 2950-0001 2190-0016
A8U2 A8U3 A8U4 A8U5	1990-0462 1990-0462 1990-0462 1990-0462	6	DISPLAY-NUM DOT MAT 1-CHAR 29-H DISPLAY-NUM DOT MAT 1-CHAR 29-H DISPLAY-NUM DOT MAT 1-CHAR 29-H DISPLAY-NUM DOT MAT 1-CHAR 29-H	28480 28480 28480 28480 28480	1990-0462 1990-0462 1990-0462 1990-0462
ABU6 , ABU7 ABU8	1990-0462 1990-0462 1820-1003	1	DISPLAY-NUM DO'T MAT 1-CHAR .29-H Display-num dut mat 1-char .29-H IC-Digital Ecl Hexadec	28480 28480 28480	1990-0462 1990-0462 1820-1003
A8A1	08640-60306	1	RF SCALER BOARD ASSEMBLY (DOES NOT INCLUDE A8U8)	28480	08640-60306
A8A1C1 A8A1C2 A8A1C3 A8A1C3 A8A1C4 A8A1C5	0160-3878 0160-3878 0160-3878 0160-3878 0160-3879	20	CAPACITOR=FXD 1000PF +=20% 100WVDC CER CAPACITOR=FXD 1000PF +=20% 100WVDC CER CAPACITOR=FXD 1000PF +=20% 100WVDC CER CAPACITOR=FXD .01UF +=20% 100WVDC CER CAPACITOR=FXD .01UF +=20% 100WVDC CER CAPACITOR, FXD, NORMALLY NOT LOADED	28480 28480 28480 28480 28480	0100-3878 0160-3878 0160-3878 0160-3878 0160-3879
A8A1C6 A8A1C7 A8A1C8 A8A1C9 A8A1C9 A8A1C10	0160-3879 0160-4084 0160-0690 0160-3879 0160-3879	4	CAPACITOR-FXD .01UF +-20% 100WVDC CER CAPACITOR-FXD .1UF +-20% 50WVDC CER CAPACITOR-FXD 1PF +5PF 100WVDC CER CAPACITOR-FXD .01UF +-20% 100WVDC CER CAPACITOR-FXD .01UF +-20% 100WVDC CER	28480 28480 28480 28480 28480 28480	0160-3879 0160-4084 0160-0690 0160-3879 0160-3879
A8A1C11 A8A1C12 A8A1C13	0160-3872 0150-0572	2	CAPACITOR-FXD 2.2PF +25PF 200WVDC CER CAPACITOR, FXD, NORMALLY NOT LOADED CAPACITOR-FXD 2200PF +-20% 100WVDC CER	28480 28480	0160=3872 C160=0572
ABA1CR1 ABA1CR2 ABA1CR3 ABA1CR4 ABA1CR5	1901-0036 1901-00506 1901-6637 1901-6637 1901-0037 1901-0639	3	DIODE-SWITCHING BOV 200MA 2NS DO-7 DIODE-SWITCHING BOV 200MA 2NS DO-7 DIODE-PIN 110V DIODE-SWITCHING BOV 200MA 2NS DO-7 DIODE-PIN 110V	28480 28480 28480 28480 28480 28480	1901-0050 1901-0050 1901-0639 1901-0050 1901-0639
A8A1CR6 A8A1CR7 A8A1CR8 A8A1CR8 A8A1CR9	1901-0050 1901-0050 1901-0639 1901-0650		DIODE-SWITCHING BOV 200MA 2NS DD-7 DIUDE-SWITCHING BOV 200MA 2NS DD-7 DIODE-PIN 110V DIODE-SWITCHING BOV 200MA 2NS DD-7	28480 28480 28480 28480 28480	1901-0050 1901-0050 1901-0639 1901-0050
A8A1J1 A8A1J2	1250-1220 1250-1220	6	CONNECTOR-RF SMC M PC Connector-RF SMC M PC	98291 98291	50=051=0109 50=051=0109
A8A1K1	0490-1073	6	RELAY-REED 1A 250MA 120VAC 4.5VDC-COIL	28480	0490-1073
A8A1L1 A8A1L2			PRINTED CIRCUIT TRACE INDUCTANCE PRINTED CIRCUIT TRACE INDUCTANCE		
ABA1C2 ABA1Q1 AB41Q2 A&A1Q3	1854-0345 1854-0404 1854-0404	2	TRANSISTOR NPN 2N5179 31 TO-72 PD=200MW TRANSISTOR NPN SI TO-18 PD=360MW TRANSISTOR NPN SI TO-18 PD=360MW	04713 28480 28480	2N5179 1854-0404 1854-0404
48A1R1 A8A1R2 A8A1R3 A8A1R3 A8A1R4 A8A1R5	0698-7215 0698-7218 0698-7215 0698-7215 0698-7188 0698-7206	35	RESISTOR 133 1% .05W F TC=0+-100 RESISTOR 178 1% .05W F TC=0+-100 RESISTOR 133 1% .05W F TC=0+-100 RESISTOR 10 1% .05W F TC=0+-100 RESISTOR 56.2 1% .05W F TC=0+-100	24546 24546 24546 24546 24546 24546	C3-1/8-T0-133R-G C3-1/8-T0-178R-G C3-1/8-T0-133R-G C3-1/8-T00-10R-G C3-1/8-T00-10R-G C3-1/8-T00-56R2-G
A8A1R6 A8A1R7 A8A1R8 A3A1R8 A3A1R9 A8A1R10	0698-7206 0698-3152 0698-7205 0757-0394 0757-0416		RESISTOR 56.2 1% .05W F TC=0+-100 RESISTOR 3.48K 1% .125W F TC=0+-100 RESISTOR 51.1 1% .05W F TC=0+-100 RESISTOR 51.1 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C3-1/8-T00-56R2-G C4-1/8-T0-3481-F C3-1/8-T00-51R1+G C4-1/8-T0-51R1=F C4-1/8-T0-511R=F

See introduction to this section for ordering information

 $\dot{1}$

okhi

2.

۶,

6-13,

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A8A1R11 A8A1R12 A8A1R13 A8A1R14 A8A1R15	0698-7227 0698-7201 0757-0280 0757-0394 0698-7240	6 1 2	RESISTOR 422 1% .05W F TC=0+=100 RESISTOR 34.8 1% .05W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 51.1 1% .125W F TC=0+=100 RESISTOR 1.47K 1% .05W F TC=0+=100	24546 24546 24546 24546 24546	C3-1/8-T0-422R-G C3-1/8-T00-34R8-G C4-1/8-T0-1001=F C4-1/8-T0-51R1=F C3-1/8-T0-1471=G
A8A1R16 A8A1R17 A8A1R18 A8A1R19 A8A1R20	0698-7240 0757-0416 0757-1094 0757-0465 0698-3132	4 5	PESISTOR 1.47K 1% .05W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 1.47K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 261 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C3-1/8-T0-1471-G C4-2/8-T0-511R-F C4-1/8-T0-1471-F C4-1/8-T0-1003-F C4-1/8-T0-2610-F
A8A1R21 A8A1R22	0698-3434 0757-1094	1	RESISTOR 34.8 1% .125W F TC=0+-100 RESISTOR 1.47K 1% .125W F TC=0+-100	24546 24546	C4-1/8-T0-34R8-F C4-1/8-T0-1471-F
A8A1U1 A8A1U2 A8A1U3 A8A1U4 A8A1U5	1820-0736 1820-0145 1820-0817 1820-082	2 6 1 3	IC-DIGITAL ECL DUAL BIN Not assigned IC-Digital MC1010P ECL QUAD 2 NOR IC-DIGITAL MC10131P ECL DUAL D-M/S IC 5084-0164 DIFF AMPL	28480 04713 04713 28480	1820-0736 MC1010P MC10131P 1820-0982
A8A1U6	1820-0982	1	IC 5084-0164 DIFF AMPL	28480	1820-0982
i -			A8A1 MISCELLANEOUS		
	1200-0475	33	CONNECTOR-SGL CONT SKT .016-IN-BSC-SZ	22526	75060-007
A8A2 .	68641=60196	1	COUNTER LOCK/DISPLAY ASSEMBLY (DOES NOT INCLUDE ABU1 THRU ABU7)	28480	08641-60196
484241	· · · · · · · · · · · · · · · · · · ·		NSR, P/O ABA2, COUNTER/LOCK ASSEMBLY	28480	
48A2A1C1 A8A2A1C2 A8A2A1C3 A8A2A1C4 A8A2A1C5	0160-3456 0160-3094 0160-3094 0180-0374 0180-1735	9 10	CAPACITOR-#XD 1000PF +-10% 1000wVDC CER CAPACITOR+FXD .1UF +-10% 100WVDC CER CAPACITOR-FXD .1UF +-10% 100WVDC CER CAPACITOR-FXD 10UF+-10% 20VDC TA CAPACITOR-FXD .22UF+-10% 35VDC TA	28480 28480 28480 56289 56209	0160-3456 0160-3094 0160-3094 150D106×9020B2 150D224×9035A2
48424106 48424107 48424108 48424109 48424109 484241010	0180=0197 0160=3456 0180=0228 0180=0228 0180=0228 0160=3455	3	CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD 1000PF +-10% 1000WVDC CER CAPACITOR-FXD 22UF+-10% 15VDC TA CAPACITOR-FXD 22UF+-10% 15VDC TA CAPACITOR-FXD 470PF +-10% 1000WVDC CER	56289 28480 56289 56289 28480	150D225X9020A2 0160-3456 150D226X901582 150D226X901582 0160-3455
A8A2A1C11 A8A2A1C12 A8A2A1C13 A6A2A1C14 A8A2A1C15	0160-3455 0160-2204 0160-2207 0160-3875 0160-3879	1 2	CAPACITOR-FXD 470PF +=10% 1000WVDC CER CAPACITOR-FXD 100PF +=5% 300WVDC MICA CAPACITOR-FXD 300PF +=5% 300WVDC MICA CAPACITOR-FXD 22PF +=5% 200WVDC CER CAPACITOR-FXD _01UF +=20% 100WVDC CER	28480 28480 28480 28480 28480 28480	C160-3455 0160-2204 0160-2207 0160-3875 0160-3879
A8A2A1C16 A8A2A1C17 A8A2A1C18 A8A2A1C19 A8A2A1C20	0160-3879 0160-0174 0160-3094 0160-2201 0180-0291	4 1 1 0	CAPACITOR-FXD .01UF +-20% 100WVDC CER CAPACITUR-FXD .47UF +85-20% 25WVDC CER CAPACITOR-FXD .1UF +-10% 100WVDC CER CAPACITOR-FXD 51PF +-5% 300WVDC MICA CAPACITOR-FXD 1UF+-10% 35VDC TA	28480 28480 28480 28480 28480 55289	0160-3879 0160-0174 0160-3094 0160-2201 1500105×9035A2
ABA2A1C21 ABA2A1C22 ABA2A1C23 ABA2A1C24 ABA2A1C24 ABA2A1C25	0180-0197 0160-3879 0180-0197 0160-2055 0160-2055		CAPACITOR-FXD 2.2UF+=10% 20VDC TA CAPACITOR-FXD .01UF +=20% 100WVDC CER CAPACITOR-FXD 2.2UF+=10% 20VDC TA CAPACITOR-FXD .01UF +80=20% 100WVDC CER CAPACITOR-FXD .01UF +80=20% 100WVDC CER	56289 28480 56289 28480 28480	150D225X9020A2 0160-3879 150D225X9020A2 0160-2055 0160-2055
AUA2A1C26 ABA2A1C27 ABA2A1C28 ABA2A1C29 ABA2A1C29 ABA2A1C30	0160-2055 0140-0205	3	CAPACITOR-FXD _01UF +80-20% 100WVDC CER CAPACITOR-FXD 62PF +-5% 300WVDC MICA NOT ASSIGNED NOT ASSIGNED NUT ASSIGNED	28480 72136	0160-2055 DM15E620J0300WV1CR
ABA2A1C31 ABA2A1C32 ABA2A1C33	0160-3456 0180-0374 0160-3877	2	CAPACITOR-FXD 1000PF +-10% 1000WVDC CER CAPACITOR-FXD 10UF+-10% 20VDC TA CAPACITOR-FXD 100PF +-20% 200WVDC CER	28480 56289 28480	0160-3456 150D106×902082 0160-3877
A8A2A1CR1 A8A2A1CR2 A8A2A1CR3	1901-0040 1901-0040 1901-0539	6	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SCHOTTKY	28480 28480 28480	1901-0040 1901-0040 1901-0539
	. · · · ·				

Table 6-3. Replaceable Parts

	ABAZA1CR3	1901=0539	6	DIODE-SCHOTTKY	28480	1901-0539	
	A8A2A1L1 A8A2A1L2 A8A2A1L3	9140-0112 9140-0112 9140-0210	3	COIL-MLD 4.70H 10% Q=33 .155DX.375LG COIL-MLD 4.70H 10% G=33 .155DX.375LG COIL-MLD 1000H 5% G=50 .155DX.375LG	24226 24226 24226	15/471 15/471 15/103	
•	ABAZA101 ABAZA102 ABAZA103 ABAZA104 ABAZA105	1854-0071 1853-0020 1853-0020 1854-0071 1854-0071		TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ	28480 28480 28480 28480 28480 28480	1854-0071 1853-0020 1853-0020 1854-0071 1854-0071	
	A8A2A106 A8A2A107 A8A2A108 A8A2A108 A8A2A109 A8A2A1010	1855-0062 1853-0020 1854-0071 1854-0071 1854-0071	1	TRANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ	28480 28480 28480 28480 28480 28480	1855-0062 1853-0020 1854-0071 1854-0071 1844-0071	л. Л.
					, s		

See introduction to this section for ordering information

9,1

- Q. .

S²⁰⁰

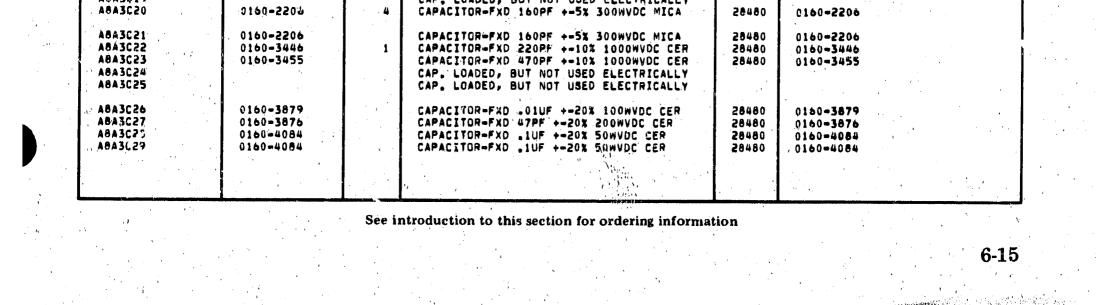
6-14

THE REAL PROPERTY OF THE PARTY OF

,

Table 6-3. Replaceable Parts

	Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
	A8A2A1Q11 A8A2A1Q12 A8A2A1Q13 A8A2A1Q14 A8A2A1Q15	1854-0071 1854-0071 1853-0020 1854-0071 1854-0071		TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ	28480 28480 28480 28480 28480 28480	1854-0071 1854-0071 1853-0020 1854-0071 1854-0071
	ABA2A1Q16 ABA2A1Q17 ABA2A1Q18	1853-0020 1853-0020 1854-0071		YRANSISTOR PNP SI PD#300MW FT#150MHZ FRANSISTOR PNP SI PD#300MW FT#150MHZ TRANSISTOR NPN SI PD#300MW FT#200MHZ	28480 28480 28480	1853-0020 1853-0020 1854-0071
	ABAZA1R1 ABAZA1R2 ABAZA1R2 ABAZA1R3 ABAZA1R4 ABAZA1R5	0698-7219 0757-0280 0698-7253 0698-7253 0698-7253		RESISTOR 196 1% .05W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .05W F TC=0+-100 RESISTOR 5.11K 1% .05W F TC=0+-100 RESISTOR 1.33K 1% .05W F TC=0+-100	24546 24546 24546 24546 24546	C3-1/8-T0-196R-G C4-1/8-T0-1001-F C3-1/8-T0-5111-G C3-1/8-T0-5111-G C3-1/8-T0-1331-G
1 1 1	ABA2A1R6 Aba2a1R7 Aba2a1R7 Aba2a1R6 Aba2a1R9 Aba2a1R9	0698-7239 0698-7246 0698-7246 0698-7246 0698-7277 0698-7277	4	REA/STOR 1.33K 1% .05W F 1C=0+-100 RES/STOR 2.61K 1% .05W F TC=0+-100 RESISTOR 2.61K 1% .05W F TC=0+-100 RESISTOR 51.1K 1% .05W F TC=0+-100 RESISTOR 51.1K 1% .05W F TC=0+-100	24546 24546 24546 24546 24546	C3-1/8-T0-1331-G C3-1/8-T0-2611-G C3-1/8-T0-2611-G C3-1/8-T0-5112-G C3-1/8-T0-5112-G
	ABA2A1R11 ABA2A1R12 ABA2A1R12 ABA2A1R13 ABA2A1R14 ABA2A1R15	0683-8245 0683-8245 0698-7267 0698-7272 0698-7277	5	RESISTOR 820K 5% .25W FC TC==800/+900 RESISTOR 820K 5% .25W FC TC==800/+900 RESISTOR 19.6K 1% .05W F TC=0+=100 RESISTOR 31.6K 1% .05W F TC=0+=100 RESISTOR 51.1K 1% .05W F TC=0+=100	01121 01121 24546 24546 24546	C88245 C88245 C3-1/8-T0-1962-G C3-1/8-T0-3162-G C3-1/8-T0-5112-G
	ABA2A1R16 ABA2A1R17 ABA2A1R18 ABA2A1R18 ABA2A1R19 ABA2A1R20	0698-7267 0698-7277 0698-7284 0698-7270 0698-7288	2 1 1	RESISTOR 19.6K 1% .05W F TC=0+-100 RESISTOR 51.1K 1% .05W F TC=0+-100 RESISTOR 100K 1% .05W F TC=0+-100 RESISTOR 26.1K 1% .05W F TC=0+-100 RESISTOR 147K 1% .05W F TC=0+-100	24546 24546 24546 24546 24546	C3-1/8-T0-1962-G C3-1/8-T0-5112-G C3-1/8-T0-1003-G C3-1/8-T0-2612-G C3-1/8-T0-1473-G
	A8A2A1R21 A8A2A1R22 A8A2A1R23 A8A2A1R23 A8A2A1R24 A8A2A1R25	0698-7253 0698-7253 0698-7277 0698-7260 0698-7284	•	RESISTOR 5.11K 1% .05W F TC=0+-100 RESISTOR 5.11K 1% .05W F TC=0+-100 RESISTOR 51.1K 1% .05W F TC=0+-100 RESISTOR 10K 1% .05W F TC=0+-100 RESISTOR 100K 1% .05W F TC=0+-100	24546 24546 24546 24546 24546	C3-1/8-T0-5111-G C3-1/8-T0-5111-G C3-1/8-T0-5112-G C3-1/8-T0-1002-G C3-1/8-T0-1003-G
	ABA2A1R26 ABA2A1R27 ABA2A1R28 ABA2A1R28 ABA2A1R29 ABA2A1R30	0698-3453 0698-7260 0698-7258 0698-7258 0698-7258	2	RESISTOR 196K 12 .125W F TC=0+-100 RESISTOR 10K 12 .05W F TC=0+-100 RESISTOR 8.25K 12 .05W F TC=0+-100 RESISTOR 6.81K 12 .05W F TC=0+-100 RESISTOR 8.25K 12 .05W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1963-F C3-1/8-T0-1002-G C3-1/8-T0-8251-G C3-1/8-T0-6811-G C3-1/8-T0-8251-G
	A8A2A1R31 A8A2A1R32 A8A2A1R33 A8A2A1R33 A8A2A1R34 A8A2A1R34	0698-7260 0698-7260 0698-7264 0698-7243 0698-7229	1 3 5	RESISTOR 10K 1% .05W F TC=+-100 RESISTOR 10K 1% .05W F TC=+-100 RESISTOR 14.7K 1% .95W F TC=+-100 RESISTOR 1.96K 1% .05W F TC=+-100 RESISTOR 511 1% .05W F TC=+-100	24546 24546 24546 24546 24546	C3-1/8-T0-1002-G C3-1/8-T0-1002-G C3-1/8-T0-1472-G C3-1/8-T0-1961-G C3-1/8-T0-511R-G
	A8A2A1R36 A8A2A1R37 A8A2A1R38 A8A2A1R38 A8A2A1R39 A8A2A1R40	0757-0442 0757-0416 0598-3442 0757-0442 0757-0442	1	RESISTOR 1JK 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 237 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 3.16K 1% .125W F TC=0+-100	24546 24546 24546 74546 24546	C4-1/8-T0-1002-F C4-1/8-T0-511R-F C4-1/8-T0-237R-7 C4-1/8-T0-1001 C4-1/8-T0-3161-F
	AGAZA1R41 ABAZA1R42 ABAZA1R43 ABAZA1R43 ABAZA1R44 ABAZA1R45	0757-0442 0698-0083 0698-0083 0698-0083		RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 1.96K 1% .125W F TC=0+-10C NOT ASSIGNED	24546 24546 24546 24546	C4=1/8-T0=1002=F C4=1/8-T0=1961=F C4=1/8-T0=1961=F C4=1/8-T0=1961=F
•	A6A2A1R46 A6A2A1R47 A6A2A1R47 A6A2A1R48 A6A2A1R49 A6A2A1R50	0757-0416 0698-7243 0698-7236	4	NOT ASSIGNED RESISTOR 511 1% ,125W F TC=0+-100 NOT ASSIGNED RESISTOR 1.96K 1% ,05W F TC=0+-100 RESIS IR 1K 1% ,05W F TC=0+-100	24546 24546 24546	C4-1/8-T0-511R-F C3-1/8-T0-1961-G C3-1/8-T0-1001-G
	A8A2A1R51 A8A2A1R52 A8A2A1R53 A8A2A1R53 A8A2A1R54 A8A2A1R55	0698-7248 0698-7248 0698-7229 0698-7229 0698-7229 0698-7236	2	RESISTOR 3.16K 1% .05W F TC=0+-100 RESISTOR 3.16K 1% .05W F TC=0+-100 RESISTOR 511 1% .05W F TC=0+-100 RESISTOR 511 1% .05W F TC=0+-100 RESISTOR 1K 1% .05W F TC=0+-100	24546 24546 24546 24546 24546	C3-1/8-T0-3161-G C3-1/8-T0-3161-G CJ-1/8-T0-511R-G CJ-1/8-T0-511R-G C3-1/8-T0-1001-G
	A8A2A1R56 A8A2A1R57 A8A2A1R57 A8A2A1R58 A8A2A1R59 A8A2A1R60	0811-1662 0698-3440 0698-7281 0698-7188	1	RESISTOR .47 5% 2W PW TC=0+-800 RESISTOR 196 1% .125W F TC=0+-100 NOT ABSIGNED RESISTOR 75K 2% .05W F TC=0+-100 RESISTOR 10 1% .05W F TC=0+-100	75042 24546 24546 24546	BWH2-47/100-J C4-1/8-T0-196R+F C3-1/8-T0-7502-G C3-1/8-T00-10R-G
	A8AZA1R61 A8AZA1R62 A8AZK1R63	0698-7243 0698-0090 0698-7253		RESISTOR 1.96K 1% .05W F TC=0+-100 RESISTOR 464 1% .5W F TC=0+-100 RESISTOR 5.11K 1% .05W F TC=0+-100	24546 91637 24546	C3-1/8-T0-1961-G MFF-1/2-10 C3-1/8-T0-5111-G
•	A6A2A1TP1 A6A2A1TP2 A6A2A1TP3 A6A2A1TP3 A6A2A1TP4 A6A2A1TP5	1251-0600 1251-0600 1251-0600 1251-0600 1251-0600 1251-0600		CONTACT-CONNIU/W-POST-TYPE MALE DPSLDR Contact-conn U/W-Post-type male dpsldr Contact-conn U/W-Post-type male dpsldr Contact-conn U/W-Post-type male dpsldr Contact-conn U/W-Post-type male dpsldr	28480 28480 28480 28480 28480 28480	1251-0600 1251-0600 1251-0600 1251-0600 1251-0600 1251-0600


See introduction to this section for ordering information

io con

WEIRING TO THE WEIRING

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A8A2A1TP6	1251-0600	, ,	CONTACT-CONN U/W-POST-TYPE MALE DPSLDR	28480	1251-0600
	19 E	,			
ADAZA1U1	1820-0077	1	IC-DIGITAL SN7474N TTL DUAL D-TYPE	01295	SN7474N
SU1ASA8A	1820-1197	•	IC-DIGITAL \$N74LSOON TTL LS QUAD 2 NAND IC-DIGITAL SN74LSOON TTL LS QUAD 2 NAND	01295	SN74LBCON SN74LBCON
ABAZA1U4	1820-1199	1 1	IC-DIGITAL SN74LSOUN TTL LS HEX 1	01295	SN74LS04N
ABAZA1U5	1820-1112	3	IC-DIGITAL SN74L874N TTL LS DUAL	01295	SN74LS74N
A A A A A A A				01305	SN74502N
A8A2A1U6 A8A2A1U7	1820-1322		IC-DIGITAL SN74902N TTL S GUAD 2 NOR IC-DIGITAL 93L14DC TTL L D-TYPE	01295	93L140C
ABAZA1UB	1820-0701		IC-DIGITAL 93L14DC TTL L D-TYPE	07263	93L14DC
PULASA84	1820-0701	1	IC-DIGITAL 93L14DC TTL L D-TYPE	07263	93L14DC
A8A2A1U10	1820-0701		IC-DIGITAL 93L14DC TTL L D-TYPE	07263	Ø3L14DC
ABAZA1U11	1820-0701		IC-DIGITAL 93L14DC TTL L D-TYPE	07263	93L14DC
A84241U12	1820-0701		IC-DIGITAL 93L14DC TTL L D-TYPE	07263	93L14DC
ABAZA1U13	1820-1201	. 4	IC-DIGITAL SN74LSOON TTL LS QUAD 2 AND	01295	SN74LBOON
ABAZA1U14	1820-0205	1	IC-DIGITAL MC3003P TTL QUAD 2 OR	04713	MC3003P
A8A2A1U15	1820-0054	1	IC-DIGITAL SN7400N TTL QUAD 2 NAND	01295	5N74G0N
8A2A1U16	1820-1197		IC-DIGITAL SN74LSOON TTL LS QUAD 2 NAND	01295	SN74LBOON
8A2A1U17	1820-1201		IC-DIGITAL SN74LSOON TTL LS QUAD 2 AND	01295	SN74LBOBN
8A2A1U18	1820-1201		IC-DIGITAL SN74L908N TTL LS GUAD 2 AND	01295	SN74LSOON
8A2A1U19	1820-0546	1 6	IC-DIGITAL SN74192N TTL DECD UP/DOWN	01295	SN74192N
8A2A1U2U	1820-1684	6	IC-DIGITAL 9LS192PC TTL LS BCD	07263	9L\$192PC
12U1ASA8	1820-1684		IC-DIGITAL 9LS192PC TTL LS BCD	07263	9L8192PC
5201A2A8	1820-1684		IC-DIGITAL 9L9192PC TTL LS BCD	07263	9L8192PC
8A2A1U23	1820-1684	ļ (IC-DIGITAL 915192PC TTL LS BCD	07263	91819200
8A2A1U24	1820-1684	1	IC-DIGITAL 9LS192PC TTL LS BCD	07263	9L8192PC
0A2A1U25	1820-1322		IC+DIGITAL SN74SO2N TTL S QUAD 2 NOR	01295	SN74802N
4241U26	1820-1112	a the	IC-DIGITAL SN74LSTAN TTL LS DUAL	01295	SN74L874N
8A2A1U27	1820-1208	2	IC=DIGITAL \$N74L\$32N TTL/L\$ QUAD 2 OR	01295	8N74L832N
8A2A1U28	1820-1684		IC-DIGITAL 9LS192PC TTL LS BCD	07263	9L9192PC
8A2A1U29	1826=0092	2	IC MC 1458 OP AMP	28480	1826-0092
BAZALVR1 BAZALVR2	1902-3070 1902-3182	1	DIODE-ZNR 4.22V 5% DO-7 PD=.4W TC=038% DIODE-ZNR 12.1V 5% DO-7 PD=.4W TC=+.064%	15818 28480	CD 35598 1902-3182
24248	08641-60182	1	COUNTER DISPLAY ASSEMBLY (DOES NOT INCLUDE ABU2 THRU ABU7)	28480	08641-60182
BA2A2D91 BA2A2D92	2140=0016		NOT ASSIGNED LAMP-INCAND 683 5VDC 60MA T-1-BULB	00501	11-4823
8A2A2E1	1251-4244	1 1	CONNECTOR 11-PIN M PUST TYPE (PINS 1 THRU 11)	22525	65521-411
8A2A2E2	1251-4243	1	CONNECTOR 25-PIN M POST TYPE	22526	o5521=425
		_	(PINS 12 THRU 36)	-	
A2A2J1A	1200-0595	2	SOCKET-IC 28-CONT DIP-SLDR	28480	1200-0595
AZAZJ18	1200-0595		SOCKET-IC 28-CONT DIP-SLDR	28480	1200-0595
8A3	08641-60183	1	TIME BASE ASSY	28480	08641-60183
BAJCI	0160-3879		CAPACITOR-FXD .01UF +-20% 100WVDC CER	28480	0160-3879
SA3C2	0160=3879		CAPACIYOR-FXD _01UF +-20% 100WVDC CER	28480	0160-3079
BA3C3	0160=3879		CAPACITOR-FXD .01UF +=20X 100WVDC CER	28480	0160-3879
8A3C4	0160-3079		CAPACITOR-FXD .01UF +-20X 100WVDC CER	28480	0160-3879
8A3C5	0160-3879		CAPACITOR-FXD .01UF +-20% 100WVDC CER	28460	0160-3879
8A3C6	0160-4084		CAPACITOR-FXD .1UF +-20% 50WVDC CER	28480	0160-4084
CA3C7	0160-0575	5	CAPACITOR+FXD _047UF +=20% SOWVDC CER	28480	0160-0575
0.43C8 8A3C9	0160-0575		CAPACITOR-FXD .047UF +-20% 50WVDC CER	28480	0160-0575
BA3C10	0160-3879 0160-3879		CAPACITOR-FXD _01UF +-20X 100WVDC CER CAPACITOR-FXD _01UF +-20X 100WVDC CER	28480 28480	0160-3879 0160-3879
BA3C11	0180-0197		CAPACITOR-FXD 2.2UF+-10% 20VDC TA	56289	1500225X9020A2
BA3C12	0180-0197	N	CAPACITOR FXD 2.20F+=10% 20VDC TA	56289	150D225X9020A2
BAGC14	0160-3879		CAPACITOR-FXD _01UF +-20% 100WVDC CER CAP. LOADED, BUT NOT USED ELECTRICALLY	28480	0160-3879
A3C15	0180-0197		CAPACITOR-FXD 2.2UF+-10% 20VDC TA	56289	150D225X9020A2
147614	140-3030				
BA3C16 BA3C17	0160=3579 0160=3879		CAPACITOR+FXD .01UF +=20X 100WVDC CER CAPACITOR+FXD .01UF +=20X 100WVDC CER	28480 28480	0160-3879 0160-3879
BA3C18			CAP, LOADED, BUT NOT USED ELECTRICALLY	20100	V & V U = J O / 7
0A3C19			CAP, LOADED, BUT NOT USED ELECTRICALLY	. · [· · · · · · · · · · · · · · · · · · ·
8A3C20	0160-2204	- 4	CAPACITOR-FXD 160PF +-5% 300WVDC MICA	28480	0160-2206

6-16

*

• • •

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
8A3CR1 8A3CR2			DIODE,LOADED, BUT NOT USED ELECTRICALLY DIODE,LGADED, BUT NOT USED ELECTRICALLY		
8A3J1	1250-1383	1	CONNECTOR-RE SM SNP M SGL HOLE RR	28480	1250-1383
A8A3L1 A8A3L2 A8A3L3 A8A3L4 A8A3L5	9140-0137 9140-0137 9140-0137 9140-0137 9140-0137 9140-0137	10	COIL=MLD 1MH 5% GE60 .19DX.44LG SRF#3MHZ COIL=MLD 1MH 5% GE60 .19DX.44LG SRF#3MHZ	99800 99800 99800 99800 99800 99800	2500-28 2500-28 2500-28 2500-28 2500-28
A8A3L6 A8A3L7 A8A3L8 A8A3L9 A8A3L10	$\begin{array}{c} 08640 - 80001 \\ 08640 - 80001 \\ 9140 - 0137 \\ 9140 - 0137 \\ 9140 - 0137 \end{array}$	7	FILTER, TOROID FILTER, TOROID COIL-MLD 1MH 5% Q#60 .19DX.44LG SRF#3MHZ COIL-MLD 1MH 5% Q#60 .19DX.44LG SRF#3MHZ COIL-MLD 1MH 5% Q#60 .19DX.44LG SRF#3MHZ	28480 28480 99800 99800 99800	08640-80001 08640-80001 2500-28 2500-28 2500-28
4843L11 4843L12 4843L13	9140-0137 9140-0137 08540-80001		COIL-MLD 1MH 5% Q#60 .19DX.44LG SRF=3MHZ COIL-MLD 1MH 5% Q#60 .19DX.44LG SRF=3MHZ FILTER, TORDID	99800 99800 28480	2500-28 2500-28 08640-80001
ABA3MP1 ABA3MP2	08640-20211 08640-40040	6 1	GUIDE, CONNECTOR COUNTER Insulator, Switch	28480 28480	08640-20211 08640-40040
ABA3Q1 Aba3g2 Aba3g3	1854-0019 1854-0071	1	TSTR,LOADED, BUY NOT USED ELECTPICALLY TRANSISTOR NPN SI TO-18 PD=360MW TRANSISTOR NPN SI PD=300MW FT=200MHZ	28480 28480	1854-0019 1854-0071
A8A3R1 A8A3R2 A8A3R3 A8A3R4 A8A3R4	0757-0442 0757-0274 0698-3155 1810-0206	2	RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 1.21K 1% .125W F TC=0+=100 RESISTOR 4.64K 1% .125W F TC=0+=100 NETWORK-RES 8=PIN=SIP .1=PIN=SPCG	24546 24546 24546 11236	C4=1/8=T0=1002=F C4=1/8=T0=1213=F C4=1/8=T0=4641=F 750=81=R10K
A8A3R5- A8A3R10			NOT ASSIGNED		
A8A3R11 A8A3R12 A8A3R13 A8A3R14 A8A3R14 A8A3R15	0757-0442 0757-0442 0698-3151 0757-0416 0757-0442	1	RESISTOR 10K 1% .125W F TC#0+=100 RESISTOR 10K 1% .125W F TC#0+=100 RESISTOR 2.87K 1% .125W F TC#0+=100 RESISTOR 511 1% .125W F TC#0+=100 RESISTOR 10K 1% .125W F TC#0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-1002-F C4+1/8-T0-1002-F C4-1/8-T0-2871-F C4-1/8-T0-511R-F C4-1/8-T0-1002-F
A8A3R10	0757-0416		RESISTOR 511 1% .125W F TC=0+-100 RES.,LOADED, BUT NOT USED ELECTRICALLY	24546	C4-1/8-T0-511R-F
A8A3R16 A8A3R17 A8A3R17 A8A3R17 A8A3R18	0757-0442 0757-0442		RESISTOR 10X 1X .125W F TC=0+-100 RESLOADED, BUT NOT USED ELECTRICALLY RESISTOR 10K 1X .125W F TC=0+-100	24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-1002-F
A8A3R18		2 	RES., LOADED, BUT NOT USED ELECTRICALLY	.	
A8A3R19 A8A3R19 A8A3R20 A8A3R21 A8A3R21 A8A3R22	0757-1094 0698-0083 0898-0083 0757-0317		RESISTOR 1.47K 1% .125W F TC=0+-100 RES.,LOADED, BUT NOT USED ELECTRICALLY RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 1.33K 1% .125W F TC=0+-100	24546 24546 24546 24546	C4-1/8-T0-1471-F C4-1/8-T0-1961-F C4-1/8-T0-1961-F C4-1/8-T0-1331-F
A8A3R23 A8A3R24 A8A3R25 A8A3R25	0698-3157 0698-3444 0698-3444	3	RESISTOR 19.6K 1% 125W F TC=0+-100 RESISTOR 316 1% 125W F TC=0+-100 RESISTOR 316 1% 125W F TC=0+-100 RES.,LOADED, BUT NOT USED ELECTRICALLY	24546 24546 24546	C4-1/8-T0-1952-F C4-1/8-T0-316R-F C4-1/8-T0-316R-F
ABA3R26 ABA3R26 ABA3R26	0698 ~7275	1,	RESISTOR 42.2K 1% .05W F TC=0+=100 RES.,LOADED, BUT NOT USED ELECTRICALLY	24546	C3-1/8-T0-4222-G
A8A3R27 A8A3R28 A8A3R29 A8A3R30 A8A3R30 A8A3R31	0698-7215 0698-7210 0698-7224 0698-7272 0698-7272		RESISTOR 133 1% .05% F TC=0+=100 RESISTOR 82.5 1% .05% F TC=0+=100 RESISTOR 316 1% .05% F TC=0+=100 RESISTOR 31.6K 1% .05% F TC=0+=100 RESISTOR 1K 1% .05% F TC=0+=100	24546 24546 24546 24546 24546	C3-1/8-T0-133R-G C3-1/8-T00-82R5-G CD-1/8-T0-316R-G C3-1/8-T0-3162-G C3-1/8-T0-1001-G
ABA3TP1	1251-0600		CONTACT-CONN U/W-POST-TYPE MALE DPSLOR	28480	1251=0600
A8A3U1 A8A3U2 A8A3U3 A8A3U4 A8A3U5 A8A3U5	1820-1442 1820-1112 1820-1421 1820-1442 1820-1442 1820-1208	5	IC-DIGITAL SN74LS290N TTL LS DECU IC-DIGITAL SN74LS74N TTL LS DUAL IC-DIGITAL SN74LS96N TTL LS R-S IC-DIGITAL SN74LS290N TTL LS DECD IC-DIGITAL SN74LS32N TTL LS GUAD 2 OR IC, LOADED, BUT NOT USED ELECTRICALLY	01295 01295 01295 01295 01295 01295	9N74L9290N 9N74L974N 9N74L996N 9N74L9290N 9N74L932N
A8A3U6 A8A3U7 A8A3U8 A8A3U9 A8A3U9 A8A3U10	1020-1177 1020-1197 1020-1752 1020-1442 1020-1752	3	IC-DIGITAL SN74LSOUN TTL LS QUAD 2 NAND IC-CIGITAL SN74LSOON TTL LS QUAD 2 NAND IC-DIGITAL 93LOO TTL L BCD SYNCHRO IC-DIGITAL SN74LS290N TTL LS DECD IC-DIGITAL 93LOO TTL L BCD SYNCHRO	01295 01295 34335 01295 34335	SN74LS00N SN74LS00N 93L10PC SN74LS290N 93L10PC
A8A3U11 A8A3U12 A8A3U13 A8A3U13 A8A3U14 A8A3U15	1820-1201 1820-1053 1820-1752 1820-1442 1820-1442	1	IC-DIGITAL SN74LSOON TTL LS GUAD 2 AND IC-DIGITAL SN7414N TTL HEX 1 IC-DIGITAL 93LOO TTL L BCD SYNCHRO IC-DIGITAL SN74LS29ON TTL LS DECD IC-DIGITAL SN74LS29ON TTL LS DECD	01295 01295 34335 01295 01295	9N74L808N 9N7414N 93L10PC 9N74L3290N 9N74L3290N
ABAJVRI	1902-3203	1	DIODE-ZNR 14.7V 5% DO-7 PD#.4W TC#+.057%	28480	1902-3203

.

. 2

٠.

6-17

. A STATE OF A STATE OF

٠,

•

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A8A3XA8A5	1251-2035		CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS	71785	252-15-30-300
A8A3Y1	1813-0063	1	IC XTAL USC	26480	1813-0063
A6A4	08640-60028	1	COUNTER, RISER BOARD ASSEMBLY	28480	08640-60028
A8A4XA842A	1251-2035		CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS	71785	252~15-30-300
A8A5	08641-60180	1	COUNTER CONTROL SWITCH	28480	06641-60180
A8A5CR1 A8A5CR2	1901-0537 1901-0539		DIGDE-SCHOTTKY DIGDE-SCHOTTKY	28480 28480	1901-0539 1901-0539
A8A5S1	3100-3336	1	SWITCH, ROTARY 0.812 STRUT CTR SPCG	76854	
A9	08641-60177	1	PEAK DEVIATION & RANGE SWITCH ASSY (See Service Sheet D) (Does not include Shaft Coupler MP29)	28480	08641-60177
A9MP1 A9MP2 A9MP3 A9MP4 A9MP5	0380-0013 2190-0008 0510-0005 3030-0018 3030-0022	1 1 2	3PACER-RND 1LG .18ID .250D BRS NI-PL WASHER-LK EXT T NO6 .141-IN-ID RETAINER-RING .25-DIA CU PL STL SCREW-SET 4-40 .25-IN-LG FLAT-PT ALY STL SCREW-SET 6-32 .125-IN-LG SMALL CUP-PT	28480 78189 0018A 28480 28480	0380-0014 1806-00 1400-25-CD 3030-0018 3030-0022
А9МР6 А9МР7 А9МР8 А9МР9 А9МР9	0510-0015 0510-0052 3030-0007 1430-0759 1430-0772	2	RETAINER-RING .125-DIA CD PL STL RETAINER-RING .125-DIA STL CD-PL SCREW-SET 4-40 .125-IN-LG SMALL CUP-PT GEAR SPUR GEARIPLANET	0018A 97464 28480 28480 28480	1500=12=CD 7100=12=CD 3030=0007 1430=3759 1430=0772
ASMP11 A9MP12 A9MP13 A9MP14 A9MP15	1430-0772 1430-0773 1430-0774 1460-0019 1460-0019	1	GEARIPLANET GEARICOMBINATION GEARICOMBINATION SPRING-CPRSN .384-00 .375-LG MUW SPRING-CPRSN .384+00 .375-LG MUW	28480 28480 28480 28480 28480 28480	1430-0772 1430-0773 1430-0774 1460-0019 1460-0019
A9MP16 A9MP17 A9MP18 A9MP19 A9MP20	1460-0019 2190-0390 3050-0103 3050-0103 3050-0103	1	SPRING-CPRSN .384-OD .375-LG MUW WASHER-FL NM NO1/4 .26-IN-ID WASHER-FL MTLC NO12 .25+[N-1D WASHER-FL MTLC NO12 .25-IN-ID WASHER-FL MTLC NO12 .25-IN-ID	28480 73734 28480 28480 28480	1460-0019 103204 3050-0103 3050-0103 3050-0103
A9MP21 A9MP22 A9MP23 A9MP24 A9MP25	3130-0503 3130-0504 08640-00091 08640-00092 08640-00093	1 1 1 1 1	SHAFT INDEX ASSEMBLY Shaft Index Assembly Mounting plate, detents Mounting plate, gears Mounting plate, pot	28480 28480 28480 28480 28480 28480	3130-0503 3130-0504 08640-00091 08640-00092 08640-00093
A9mp26 A9mp27 A9mp28 A9mp29 A9mp30	08640-00098 08640-20241 08640-20242 08640-20248 08640-20248 08640+20249	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BOARD, SUPPORT RUSHING, PLASTIC Shaft, FM GAIN SWITCH Switch, Rotor 4-contact(P/O A9A2S1) Switch, Rotor 3-contact(P/O A9A1S2)	28480 28480 28480 28480 28480	08640-00098 08640-20241 08640-20242 08640-20248 08640-20248
A9MP31 A9MP32 A9MP33 A9MP34 A9MP35	08640-20250 2360-0220 2360-0123 2260-0009	1 1 2	SWITCH, ROTOR 2-CONTACT(P/O A9A151) SCREW-MACH 6-32 2.25+IN+LG PAN-HD-POZI SCREW+MACH 6-32 .625+IN+LG PAN+HD+ROZI NUT-HEX-W/LKWR 4-40+THD .094+THF .25+A/F NOT ASSIGNED	28480 28480 28480 28480 28480	08640-20250 2360-0220 2360-0123 2260-9011
а9мр36 19мр37 19мр38 19мр39 19мр40	2260-0135 2200-0107 2360-0129 2190-0006 2950-0006	1	SCREW-MACH 6-32 1.5-IN-LG PAN-HD-PQZI SCREW-MACH 4-40 .375-IN-LG PAN-HD-POZI SCREW-MACH 6-32 1-IN-LG PAN-HD-POZI WASHER-LK HLCL NO6 .141-IN-ID NUT-HEX-DBL-CHAM 1/4-32-THD .094-THK	28480 28480 28480 28480 73734	2360-0135 2200-0107 2360-0129 2190-0006 9000
9MP41	2190+0027		WASHER-LK INTL T NO1/4 .256-IN-ID	78189	1914-00
941	08641-60234	1	PEAK DEVIATION BAND SWITCH BOARD ASSY (Does not include rotors agaimp31 and Agaimp30, P/O S1 And S2)	28480	08641-60234
9A1R1 9A1R2 9A1R3	0698-0299 0698-0298 0698-8298	1	RESISTOR 4,259K .25% .125W F TC=0+-25 RESISTOR 1.071K .25% .125W F TC=0+-25 RESISTOR 1.284K .25% .125W F TC=0+-25	19701 19701 19701	MF4C1/8-T9+42598+C MF4C1/8-T9-10718-C MF4C1/8-T9-12848-C

Table 6-3. Replaceable Parts

A9A1W1	8120-2247	1	CABLE ASSY 26AWG 16-CNDCT	28480	8120-2247
A9A191 A9A192			NSR, INCLUDES P.C. TRACES & ROTOR A9MP31. NSR, INCLUDES P.C. TRACES & ROTOR A9MP30.		
A9A1R6 A9A1R7 A9A1R8 A9A1R9	0757-0399 0698-8295 0757-0400 0757-0400	1	RESISTOR 82.5 1% .125% F TC=0+-100 RESISTOR 1.556K .25% .125% F TC=0+-25 RESISTOR 90.9 1% .125% F TC=0+-100 RESISTOR 90.9 1% .125% F YC=0+-100	24546 19701 24546 24546	C4+1/8-T0-82R5-F MF4C1/8-T9-1556R-C C4-1/8-T0-90R9-F C4-1/8-T0-90R9-F
A9A1R3 A9A1R4 A9A1R5	0757-0398 0698-8296	3	RESISTOR 1.284K .25% .125W F TC=0+-25 RESISTOR 75 1% .125W F TC=0+-100 RESISTOR 1.493K .25% .125W F TC=0+-25	24546 19701	C4+1/8=T0=75R0+F MF4C1/8=T9=1493R=C

14 - 4 34

See introduction to this section for ordering information , A.

••

•

`

1

- A 1

.

et dates, enterin

÷.

6-18

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A9A2	08641-60233	· · · · · · · · · · · · · · · · · · ·	FM GAIN SWITCH BOARD ASSEMBLY (DDES NOT INCLUDE ROTOR ASMP29, 1970 S1)	28480	08641-60233
A9A2C1 A9A2C2 A9A2C3 A9A2C4 A9A2C4 A9A2C5	$\begin{array}{c} 0140 - 0191 \\ 0140 - 0191 \\ 0140 - 0191 \\ 0140 - 0191 \\ 0140 - 0191 \\ 0140 - 0191 \end{array}$	6	CAFACITOR-FXD 56PF +-5% 300WVDC MICA CAPACITOR-FXD 56PF +-5% 300WVDC MICA CAPACITOR-FXD 56PF +-5% 300WVDC MICA CAPACITOR-FXD 56PF +-5% 300WVDC MICA CAPACITOR-FXD 56PF +-5% 300WVDC MICA	72136 72136 72136 72136 72136 72136	DM15E560J0300WV1CR DM15E560J0300WV1CR DM15E560J0300WV1CR DM15E560J0300WV1CR DM15E560J0300WV1CR DM15E560J0300WV1CR
A9A2C6 A9A2C7 A9A2C8	0160-2222 0160-2218 0140-0198	1 1 1	CAPACITOR-FXD 1500PF +-5% 300WVDC MICA CAPACITOR-FXD 1000PF ++5% 300WVDC MICA CAPACITOR-FXD 200PF +-5% 300WVDC MICA	28480 28480 72136	0160-2222 0160-2218 DM15F201J0300WV1CR
A9A2R1 A9A2R2 A9A223 A9A223 A9A2R4 A9A2R5	0757-0280 0757-0278 0757-0274 0757-0416 0698-0082	6	RESISTOR 1K 1% .125W F TC#0+=100 RESISTOR 1.78K 1% .125W F TC#0+=100 RESISTOR 1.21K 1% .125W F TC#0+=100 RESISTOR 511 1% .125W F TC#0+=100 RESISTOR 464 1% .125W F TC#0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1781-F C4-1/8-T0-1213-F C4-1/8-T0-511R-F C4-1/8-T0-4640-F
A9A2R6 A9A2R7 A9A2R8 A9A2R8 A9A2R9 A9A2R10	0757-0280 0698-7799 0698-5669 0698-8212 0698-5669	1 6 1	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 2K .25% .125W F TC=0+-100 RESISTOR 1.5K .25% .125W F TC=0+-25 RESISTOR 6K .25% .125W F TC=0+-25 RESISTOR 1.5K .25% .125W F TC=0+-25	24546 19701 24546 19701 24546	C4-1/8-T0-1001-F MF4C1/8-T0-2001-C NE55 MF4C1/4-T9-6001-C NE55
A9A2R11 A9A2R12 A9A2R13 A9A2R13 A9A2R14 A9A2R15	0598-8213 0598-5669 0598-8213 0757-0280 0698-5669	4	RESISTOR 3K .25% .125W F TC=0+-25 RESISTOR 1.5K .25% .125W F TC=0+-25 RESISTOR 3K .25% .125W F TC=0+-25 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1.5K .25% .125W F TC=0+-25	19701 24546 19701 24546 24546	MF4C1/4-T9-3001-C NE55 MF4C1/4-T9-3001-C C4-1/8-T0-1001-F NE55
A9A2R16 A9A2R17 A9A2R18 A9A2R19 A9A2R20	0698-8213 0698-5669 0898-8213 0698-5669 0757+0447	2	RESISTOR 3K .25% .125W F TC=0+-25 RESISTOR 1.5K .25% .125W F TC=0+-25 RESISTOR 3K .25% .125W F TC=0+-25 RESISTOR 1.5K .25% .125W F TC=0+-25 RESISTOR 16.2K 1% .125W F TC=0+-100	19701 24546 19701 24546 24546	MF4C1/4-79-3001-C NE55 MF4C1/4-79-3001-C NE55 C4-1/8-30-1622-F
A94251			NSR, INCLUDES P.C. TRACES & ROTOR A9MP29.		
A9A2TP1	1251-0600		CONTACT-CONN U/W+POST-TYPE MALE DPSLDR	28480	1251-0600
A9A2W1	8120-2246	1	CABLE ASSY 26AWG 16-CNDCT	28480	8120=2246
A10	08641-60188	1	DIVIDER/FILTER ASSY(SEE SERVICE SHEET E) (DOES NOT INCLUDE SHAFT COUPLER MP29)	28480	08641-60188
A10MP1 A10MP2 A10MP3 A10MP4 A10MP5	0403-0156 0403-0157 0403-0158 8160-0226 08640-00047	2 2 1	GUIDE-PC BD YEL POLYC .062-BD-THANS 1-LG GUIDE-PC 9D GRN POLYC .062-BD-THANS 1-LG GUIDE-PC BD BLU POLYC .062-BD-THANS 1-LG RFI ROUND STRIP NI ALY .062-0D SHIELD, SPRING #1	28480 28480 28480 28480 28480 28480	0403-0156 0403-0157 0403-0158 8160-0225 08640-00047
A10MP6 A10MP7 A10MP8 A10MP9 A10MP10	08640-00048 08640-00049 08640-00050 08640-20098 08640-20099	1 1 1 1	SHIELD, SPRING #2 SHIELD, SPRING #3 SHIELD, SPRING #4 CAST, TOP COVER, D/F CAST, CENTER, D/F	28480 28480 28480 28480 28480 28480	08640-00048 08640-00049 08640-00050 08640-20098 08640-20099
A10MP11 A10MP12 A10MP13 A10MP14 A10MP15	2190-0003 2200-0101 2200-0121 2200-0147 2200-0127	t J	WASHER-LK HLCL NO4 .115-IN-ID SCREW-MACH 4-40 .188-IN-LG PAN-HD-POZI SCREW-MACH 4-40 1.125-IN-LG PAN-HD-POZI SCREW-MACH 4-40 .5-IN-LG PAN-HD-POZI SCREW-MACH 4-40 1.75-IN-LG PAN-HC-POZI	28480 28480 28480 28480 28480 28480	2190-0003 2200-0101 2200-0121 2200-0127 2200-0127
A10MP16 A10MP17 A10MP18 A10MP19	2190-0124 2950-0078 2200-0129 0361-1071	2	WASHER-LK INTL T NO10 .195-IN-ID NUT-HEX-DBL-CHAM 10-32-THD .067-THK SCREW-MACH 4-40 2-IN-LG PAN-HD-POZI RIVETIBLIND, DOME HD 0.125" DIA	74163 74163 28480 11815	500222 500220 2200-0129 AAP-4-3
AIOAI	08540-60053	1	RF FILTER ASSY	28480	08640-60053
A10A1C1 A10A1C2 A10A1C3 A10A1C4 A10A1C4	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055		CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD .01UF +80-20% 100WVDC CER	28480 28480 28480 28480 28480 28480	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055
A10A1C6 A10A1C7 A10A1C6 A10A1C6 A10A1C9 A10A1C9	0160-2055 0160-2055 0160-2055 0160-2055 0140-0219 0140-0226	5	CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD 180PF +-2% 300WVDC MICA CAPACITOR-FXD 320PF +-1% 300WVDC MICA	28480 20400 26400 28400 72136 72136	G160-2055 0160-2055 0160-2055 DM15F181G0300WV1CR DM15F321F0300WV1C
A10A1C11 A10A1C12 A10A1C13 A10A1C14 A10A1C14	0140-02260140-02200140-0290140-0290140-02200140-0220	32	CAPACITOR-FXD 320PF +-1% 300WVDC MICA CAPACITOR-FXD 200PF +-1% 300WVDC MICA CAPACITOR-FXD 130PF +-5% 300WVDC MICA CAPACITOR-FXD 200PF +-1% 300WVDC MICA CAPACITOR-FXD 200PF +-1% 300WVDC MICA	# d136 72136 72136 72136 72136 72136	DM15F321F0300WV1C DM15F201F0300WV1CR DM15F131J0300WV1CR DM15F201F0300WV1CR DM15F201F0300WV1CR
		. I	and the second	1	

See introduction to this section for ordering information

Ϋ́ 191

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A10A1C16 A10A1C17 A10A1C18 A10A1C19 A10A1C20	0140-0195 0160-4456 0160-3940 0160-2587 0160-4217	1 1 1	CAPACITOR-FXD 130PP +-5% 300WVDC MICA CAPACITOR-FXD 750PF +-1% 300WVDC MICA CAPACITOR-FXD 3200PF +-1% 100WVDC MICA CAPACITOR-FXD 4000PF +-1% 100WVDC MICA CAPACITOR-FXD 3900PF +-1% 500WVDC MICA	72136 28480 26480 28480 28480	DM15F131J0300WV1CR 0160-4456 0160-3940 0163-2587 0160-4217
A10A1C21 A10A1C22 A10A1C23 A10A1C24 A10A1C25	0160=2276 0140=0172 0163=2585 0160=3537 0160=0341	1 2 3 2	CAPACITOR-FXD 2780PF +=2% 300WVDC MICA CAPACITOR-FXD 3000PF +=1% 100WVDC MICA CAPACITOR-FXD 2000PF +=1% 100WVDC MICA CAPACITOR-FXD 360PF +=1% 300WVDC MICA CAPACITOR-FXD 640PF +=1% 300WVDC MICA	28480 72136 28480 28480 28480	0160-2276 DM19F302F0100WV1CR 0160-2585 0160-2537 0160-0341
A10A1C26 A10A1C27 A10A1C28 A10A1C29 A10A1C30	0160-0341 0140-0200 0140-0199 0160-0939 0160-0939	1	CAPACITOR-FXD 640PF +-1% 300WVDC MICA CAPACITOR-FXD 390PF +-5% 300WVDC MICA CAPACITOR-FXD 240PF +-5% 300WVDC MICA CAPACITOR-FXD 430PF +-5% 300WVDC MICA CAPACITOR-FXD 430PF +-5% 300WVDC MICA	28480 72136 72136 28480 28480	0160-0341 DM15F391J0300WV1CR DM15F241J0300WV1CR 0150-0939 0160-0939
A10A1C31 A10A1C32 A10A1C33 A10A1C34 A10A1C34 A10A1C35	0140-0199 0160-2537 0160-3092 0160-2585 0160-3937	1 	CAPACITOR-FXD 240PF +-5% 300WVDC MICA CAPACITUR-FXD 360PF +-1% 300WVDC MICA CAPACITOR-FXD 1600PF +-1% 100WVDC MICA CAPACITOR-FXD 2000PF +-1% 100WVDC MICA CAPACITOR-FXD 1916PF +-1% 100WVDC MICA	72136 28480 28480 28480 28480 28480	DM15F241J0300WV1CR 0160=2537 0160=3092 0160=2585 0160=3937
A10A1C36 A10A1C37 A10A1C39 A10A1C39 A10A1C39 A10A1C40	0160-3939 0160-3938, 0160-2387 0160+0335 0160+2206	1 1 2 2	CAPACITCR-FXD 1400PF +-1X 100WVDC MICA CAPACITOR+FXD 1470PF +-1X 100WVDC MICA CAPACITOR-FXD 1000PF +-1X 500WVDC MICA CAPACITUR-FXD 91PF +-1X 300WVDC MICA CAPACITOR+FXD 160PF +-5X 300WVDC MICA	28480 28480 28480 28480 28480 28480	0160-3939 0160-3938 0160-2387 0160-0335 0160-2206
A10A1C41 A10A1C42 A10A1C43 A10A1C43 A10A1C44 A10A1C45	0160-2206 0160-2204 0140-0205 0160-083? 0160-0839	2	CAPACITOR-FXD 160PF +-5% 300WVDC MICA CAPACITOR-FXD 100PF +-5% 300WVDC MICA CAPACITOR-FXD 62PF +-5% 300WVDC MICA CAPACITOR-FXD 110PF +-1% 300WVDC MICA CAPACITOR-FXD 110PF +-1% 300WVDC MICA	28480 28480 72156 28480 28480	0160-2206 0160-2204 DM15E620J0J0300WV1CR 0160-0839 0160-0839
A10A1C45 A10A1C47 A10AIC48 A10AIC48 A10A1C49 A10A1C50	0140-0205 0140-0219 0160-3395 0160-2387 0160-3935	, .1 .1	CAPACITUR-FXD 52PF +-5% 300WVDC MICA CAPACITUR-FXD 180PF +-2% 300WVDC MICA CAPACITOR-FXD 800PF +-1% 300WVDC MICA CAPACITUR-FXD 1000PF +-1% 300WVDC MICA CAPACITUR-FXD 958PF +-1% 100WVDC MICA	72136 72136 28440 28480 28480	DM15E620J0300WV1CR DM15F181G0300WV1CR 0160-3395 0160-2387 0160-3933
A10A1C51 A10&1C52 A10A1C53 A10A1C53 A10A1C55	0160-3936 0160-4456 0140-0234 0160-2307 0160-0974	1 2 3 2	CAPACITOR-FXD 700PF +-1% 100WVDC MICA CAPACITOR-FXD 750PF +-1% 300WVDC MICA CAPACITOR-FXD 500PF +-1% 300WVDC MICA CAPACITOR-FXD 47PF +-5% 300WVDC MICA CAPACITOR-FXD 80PF +-2% 300WVDC MICA	28480 28480 72136 28480 28480	0160-3936 0160-4456 DM13F501F0300WV1C 0160-2307 0160-0974
A10A1C56 A10A1C57 A10A1C58 A10A1C59 A10A1C59 A10A1C59	0160+0974 0160+457 0160-2306 0160-4457 0160-4457	3	CAPACITOR-FXD BOPF +-2% 300P, VDC MICA CAPACITOR-FXD 51PF +-5% 300P, VDC MICA CAPACITOR-FXD 87PF +-5% 300WVDC MICA CAPACITOR-FXD 51PF +-5% 300WVDC MICA CAPACITOR-FXD 51PF +-5% 300WVDC MICA	28480 28480 28480 28480 28480 28480	0160-0974 0160-445/ 0160-2306 (0160-4457 0160-4457
A10A1C61 A10A1C62 A10A1C63 A10A1C64 A10A1C64 A10A1C65	0160-2199 0160-0335 0160-2538 0140-0234 0160-2542	1 1	CAPACITOR-FXD 30PF +-5% 300WVDC M/LA CAPACITUR-FXD 91PF +-1% 300WVDC M/LA CAPACITOR-FXD 400PF +-1% 300WVDC MICA CAPACITOR-FXD 500PF +-1% 300WVDC MICA CAPACITOR-FXD 480PF +-1% 300WVDC MICA	20480 20480 20480 72136 20490	0160-2199 0140-0335 0160-2938 DM15F501F5330WV1C 0160-2543
A10A1C66 A10A1C67 A10A1C68 A10A1C68 A10A1C69 A10A1C70	0160-3934 0160-2537 0160-3046 0160-2255 0140-0190	10 10 11 11 11 11	CAPACITOR-FXD 350PF +1% 100WVDC MICA CAPACITOR-FXD 360PF +-1% 300WVDC MICA CAPACITOR-FXD 250PF +-1% 100WVDC MICA CAPACITOR-FXD 22PF +-3% 500WVDC CER CAPACITOR-FXD 39PF +-5% 300WVDC MICA	28480 28480 28450 20480 72136	0160-3034 9160-2537 0160-3046 0160-2265 DM15E390J0300#/1CR
A10A1C71 A1071C72 A10A1C73 A10A1C74 A10A1C74 A10A1C75	0140=0190 0160=3266 0160=2260 6160=2266 0140=2266	3 3 1	CAPACITOR-FXD 39PF +-5% 300WVDC MICA CAPACITOR-FXD 24PF +-5% 500WVDC CER CAPACITOR-FXD 13PF +-5% 500WVDC CER CAPACITOR-FXD 24PF +-5% 500WVDC CER CAPACITOR-FXD 24PF +-5% 500WVDC CER	72136 28480 28480 28480 28480	DM15E300J0300WV1CR 0160-2246 0160-2266 0160-2266 0160-2266
	0160-2262 0160-2257 0160-2263 0160-2263 0160-2263 0160-2257	5	CAPACITOR-FXD 16PF +-5% 500WVDC CER CAPACITOR-FXD 10PF +-5% 500WVDC CER GAPACITOR-FXD 10PF +-5% 500WVDC CER CAPACITOR-FXD 10PF +-5% 500WVDC CER CAPACITOR-FXD 10PF +-5% 500WVDC CER	28480 28480 28480 28480 28480 28480	0160-2262 0160-2257 0160-2257 0160-2263 0160-2263

ang di) // //				20400	0100-2257,		
$\sim 1^{-1}$	ALCAICOL	0121-0060	2	CAPACITOR-V TRMR-CER 2/6PF 350V PC-MTG	00068	304322 2/8PF NPD		· · .
1.4	A10A1C82	0121=0061	<u>S</u> .	CAPACITOR-V TRMR-CER 5.5/18PF 330V	00868	304322 5.5/18PF NED		
1 .	A10A1C83	0121-0061		CAPACITOR-V TRMR-CER 5.5/18PS 190V	J0865	304322 5.5/18PF NPO	· · · ·	1 (¹ ())
2 1 N	A10A1C84 (1997)	0121-0000		CAPACITOR-V TRMR-CER 2/8PF 350V PC-MTG	00865	304322 2/0PF NPD		
, "I	A10A1C85	0150-0174	· •	CAPACITOR-FAD .47UF +80-20% 25WVOC CER	28480	0160-0174		·
							1 A A A A A A A A A A A A A A A A A A A	
	AIDALC86	0180-0197	1 1	CAPACITOR-PXD 2.2UF+-10% 20VOC TA	56289	1500225x9020A2		1.000
1997 - 1998 -	A10A1C87	0160-0174		CAPACITO WAT AND 47UF +80-20% 25WVDC CFR	28480	0160-0174		1 · .
	A10A1C88	0180+0197	,).	CAPACITOR-FXD 2.20E+-10% 20VDC TA	552891	1500225×902042		
	A10A1089	0160-0174	1 2	CAFACITUA-FXD . 470F - 00-20% 25WVD UER	28480	0100-0174		19 - J. S. J.
	A1CA1C90	0100-0197	$(\mathbf{A}_{i}) \in \mathbb{R}^{d}$	CAPACITOR-FXD 2.2UF - 0% 20VDC TA	50289	1500225X9020A2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
							1 11 I	· .

See introduction to this section for ordering information

6-20

Int to an a principality aller to date principality

Marker manual and hands bereath a constant

17 412

ï

Table 6-3. Replaceable Parts

Reference	HP Part	Qty	Description	Mfr Code	Mfr Part Number
Designation	Number		an an an Anna an Anna Anna Anna Anna An		0160-2055
A10A1C91 A10A1FL1 A10A1FL2	016072055		DAPACITOR-PXD GIUT BU-26% 100000 CER Filter-LP Siud-TEHMS Filter-LP Stud-Terms	28480	SMF8-42 SMF8-42
A1UA1FL3 A10A1J1 A10A1J2 A10A1J2	0160-0204 1230-1220 1250-1220 1250-1220 1250-1220		FILTER LP STUD-TERMS CONNECTOR-RF SMC H PC CONNECTOR-RF SMC M PC CONNECTOR-RF SMC M PC CONNECTOR-RF SMC M PC	01121 98291 98291 98291 98291 98291	SHFB-A2 50-051-0109 50+051+0109 50-051-0109 50+051-0109
A10A1J4 A10A1K1 A10A1K2 A10A1K3 A10A1K3 A10A1K3	0490-1073 0490-1073 0490-1073 0490-1073		RELAY-REED IA 250MA 120VAC 4.5VDC+COIL RELAY-REED 1A 250M4 120VAC 4.5VDC+COIL RELAY-REED 1A 250M4 120VAC 4.5VDC+COIL RELAY-REED 1A 250MA 120VAC 4.5VDC+COIL RELAY-REED 1A 250MA 120VAC 4.5VDC+COIL	28480 20490 26490 28480 28480	0490-1073 0490-1073 1990-1073 1490-1073
A10A1L1 A10A1L2 A10A1L3 A1041L4 A1041L4	9100-3375 9100-3365 9100-3375 9100-3361 9100-3362	20	COIL-MLD 4620H 5% 0=40 .190%.30546 COIL-MLD 500NH 5% 0=40 .190%.30546 COIL-MLD 462NH 5% 0=40 .190%.30546 COIL-MLD 300NH 5% 0=40 .190%.30546 COIL-MLD 323NH 5% 0=40 .20%.30546	00044 00044 00044 78480 00044	AE - 442J=P AE - 50 ;; =P AE - 402J=P 4100=3361 AD - 323J=P
A10A1L6 A10A1L7 A10A1L7 A10A1L8 A10A1L9 A10A1L9	9100-3361 9100-3364 9100-3364 9100-3363 9100-3363 9100-3369	12	COIL-MLD 300NH 5% 0=40 .190X.385LG COIL-MLD 80H 5% 0=40 .20X.385LG \$RF=1MHZ/ COIL-MLD 40H 5% 0=40 .190X.385LG COIL-MLD 4.740H 5% 0=40 .190X.385LG COIL-MLD 924NH 5% 0=40 .190X.385LG	28480 00044 00044 00044 00044	9100-3361 AH-8.00J-J AK-4.00J-F AK-4.74J-P AK-4.74J-P AK-6.924J-P
A10A1L11 A10A1L12 A10A1L13 A10A1L14 A10A1L14	9100-3370 9100-3369 9100-3369 9100-3368 9100-3367 9100-3368	3	COIL-MLO 10H 5% 0=40 .190%.385LG COIL-MLO 924NH 5% 0=40 .190%.385LG COIL-MLD 600NH 5% 0=40 .190%.385LG COIL-MLD 646NH 5% 0=40 .190%.385LG COIL-MLD 640NH 5% 0=40 .190%.385LG	0004A 0004A 0004A 0004A 0004A	ΔF = 1.00 J=P ΔF = .924 J=P ΔE = .600 J=P ΔE = .600 J=P ΔE = .600 J=P
A10A1L16 A1CA1L17 A10A1L17 A10A1L19 A10A1L19 A10A1L20	9100-3374 9100-3372 9100-3373 9100-3359 9100-3360	1 2 2	COIL-MLD 40H 57 0=40 .190%.385LG COIL-MID 20H 57 0=40 .190%.385LG COIL-MID 20H 57 0=40 .190%.385LG COIL-MLD 2.370H 5% 0=40 .190%.385LG COIL-MLD 231NH 5% 0=40 .190%.385LG COIL-MLD 250NH 5% 0=40 .190%.385LG	00044 00044 00044 00044 00044	$ AK = 4,00, J \neq P AJ = 2,00, J = P AJ = 2,37, J = P AC = 231, J = P AC = 250, J = P AC = 250, J = P $
ALGAIL21 AICAIL22 AICAIL22 AICAIL23 AICAIL23 AICAIL25	9100-3359 9100-3357 9100-3358 9100-3358 9100-3357 9100-3372	2	CUTL-MLD 231NH 5% GE40 .190%.385%G COIL-MLD 150NH 5% GM40 .190%.385%G COIL-MLD 162NH 5% GM40 .190%.385%G COIL-MLD 162NH 5% GM40 .190%.385%G COIL-MLD 20H 5% Gm40 .190%.385%G	00044 00044 00044 00044 00044	AC=.231J=P AC=.150J*P AC=.162J=P AC=.162J=P AC=.JS0J=P AJ=R.00J*P
A10A1L26 A10A1L27 A10A1L28 A10A1L28 A10A1L29 A10A1L30	9100-3370 9100-3371 9100-3355 9100-3355 9100-3355	1 2 1	COIL-MLD 10H 5% 0040 .190%.385LG COIL-MLD 1.100H 5% G=40 .190%.385LG COIL-MLD 115NH 5% G=40 .190%.385LG COIL-MLD 115NH 5% G=40 .190%.385LG COIL-MLD 115NH 5% G=40 .190%.385LG	0004'A 0004A 0004A 0004A 0004A	AF-1,00J-P AG-1,18J-P AC-,115J-P AC-,125J-P AC-,125J-P AC-,115J-P
A10A1L31 A10A1L32 A10A1L33 A10A1L34 A10A1L34	9100 = 3513 9100 = 3513 9100 = 3513 9100 = 3513 9100 = 3370 9100 = 3365	3	COIL FAD NON-MOLDED AN CHOKE 750H GOIL AD NON-MOLDED AF CHOKE 750H COIL FAD NON-MOLDED AF CHOKE 750H COIL AND 10H 5% 0=40 190%.385LG COIL MILD 500NH 5% 0=40 .190%.385LG	24226 24226 24226 24226 24226 0004A 0004A	8123+2 8123-2 8123-2 4F-1.00J-P AF-5,500J-P
A10A1L36 A10A1L37 A10A1L38 A10A1L38 A10A1L39 A10A1L39	9100-3366 9100-3512 9100-3512 9100-3512 9100-3512 9100-3514	1 .3	COIL-MLD 5924H 5% 0840 .1908.365LG COIL-FXD NON-MOLDED RF CHOKE 500H COIL-FXC NON-MOLDED RF CHOKE 500H COIL-FXD NON-MOLDED RF CHOKE 500H COIL-FXD NON-MOLDED RF CHOKE 500H	00044, 24226 24226 24226 24226	AE ~, 592J-P 8103-1 0123-1 8123-1 8123-1 8123-1 8123-3
A10A1L41 A10A1L42 A10A1L43 A10A1L44 A10A1L44 A10A1L45	9100-3514 9100-3514 9100-3514 9100-3514 9100-3514 9100-3514		COIL-FAD NON-MOLDED RF CHUNE 300H COIL-FAD NON-MOLDED RF CHUNE 300H COIL-FAD NON-MOLDED RF CHUKE 300H CUIL-FAD NON-MOLDED RF CHUKE 300H CUIL-FAD NON-MOLDED RF CHUKE 300H	24220 24220 24226 24226 24226	8123+3 A123+3 0123+3 8123+3 8123+3 8123+3
A1UA1L46 A10A1L47 A10A1L48 A10A1L48 A10A1L49 A10A1L49	9140-0144 9140-0144	2	PART OF ETCHED CIPCUIT BOARD PART OF ETCHED CIRCUIT BUASO PART OF EYCHED CIRCUIT BUASO CDIL-FXD MOLOSU, RF CHCKE, 4.70H 103 CDIL-FXD MOLDED RF CHOKE, 4.70H 103	24225	10/471 10/471
A10A1L51 A10A1L52 A10A1L53 A10A1L53	08640-80001 08640-80001 08640-80001 08640-80001		FILTER, TOROID FILTER, TOROID FILTER, TOROID FILTER, TOROID	28480 28480 28480 28460	08640-50001 08640-60001 08640-60001 08640-60001
A1(A1MP1 A10A1MP2 A10A1MP3 A10A1MP4 A10A1MP5	1480-0352 00335-20034 05640-00029 08640-20087 08640-20083		RINEDETENT 0.055 X 0.750" DIA Ruller, detent Sphing, detent Shaft, cam Shaft, cam	00000 28480 28480 28480 28480 28480	1480-0352 00335-20034 08640+00024 08640-20082 (8640-20083
A10A1MP6 A10A1MP7 A10A1MP7	08649-20200 08640-20214 08640-20192 08640-40004		DIVIDER/FILTER COVER (BOTTOM) BUSHING, CAM HOUSING COVER, CAM, ALC, FOLLOWER, CAM	28480 28480 28480 28480	08640-20214 08640-20214 08640-20192

See introduction to this section for ordering information

2.4.1.21126.21126.2014.6.6.6.6

784.45

Table 6-3. Replaceable Parts

Reference Designation	HP Fart Number	Qty	Description	Mfr Code	Mifr Part Number	
A10A1MP11 A10A1MP12 A10A1MP12 A10A1MP13 A10A1MP14 A10A1MP15	2200-0105 08640-20133 3030-0007 2200-0145 08640-20206/		SCREW-MACH 4-40 .312-IN-LG PAN-HD-POZI SUPPORT, CLAMP SCREW-BET 4-40 .125-IN-LG SMALL CUP-PT SCREW-MACH 4-40 .438-IN-LG PAN-HD-POZI PETAINER, SLIDER	26440 28480 25489 28480 28480	2200-0105 09540-20133 3030-0007 2200-0145 08640-20206	
A10A1MP16 A1941MP17	0510-0015 3050-0080	1 1 1 1 1 1 1 1 1	RETAINER-RING .125-DIA CD PL STL WASHER-FL NM NO5 .13-IN-ID .25-IN-00	0018A 76854	1500-12-CD 3482-12	
A10A1R1 A10A1R2 A10A1R3 A10A1R3 A10A1R4 E10A1R5	0757-0346 0757-0346 0757-0346 0757-0346 0757-0346		RESISTOR 10 1% .125W 5 TC=0+-100 RESISTOR 10 1% .125W 5 TC=0+-100 RESISTOR 10 1% .125% F TC=0+-100 RESISTOR 10 1% .125% F TC=0+-100 RESISTOR 10 1% .125% F TC=0+-100	24546 24546 24546 24546 24546	C4-1/A-T0-10R0=F C4-1/G-T0-10R0=F C4-1/A-T0-10R0=F C4-1/A-T0-10R0=F C4-1/A=T0-10R0=F C4-1/G=T0-10R0=F	
A10A1R6 A10A1R7 A10A1R7 A10A1R9	0757-0346 0757-0346 0757-0346 0757-0346 0757-0346		RESISTOR 10 1X .125W F TC=0+-100 RESISTOR 10 1X .125W F TC=0+-100 RESISTOR 10 1X .125W F TC=0+-100 RESISTOR 10 1X .125W F TC=0+-100	24546 24546 24546 24546	C4-1/8-T0-1980-F C4-1/8-T0-1080-F C4-1/8-T0-1080-F C4-1/8-T0-1080-F C4-1/8-T0-1080-F	
A104192 A104193	08640+60106 3230+0480 08640-60/36 3130-0480 08640-60/36 3230-0480 3230-0480	8	SWITCH, SLIDE D/F CONTACTISWITCH SWITCH, SLIDE D/F CONTACTISWITCH SWITCH, SLIDE D/F CONTACTISWITCH	28480 28480 28480 28480 28480 28480 28480	,08646 - 65106 3130 - 9480 08640 - 60106 3130 - 0480 08640 - 60106 3130 - 0480 3130 - 0480	
0.104154 4104125 4104156	08640-60106 3130-0480 06640-60106 3130-0480 08640-60106 3130-0480		SWITCH, SLIDE D/F CONTACTOSWITCH Syitch, SLIDE D/F Contact/ISWITCH Switch, SLIDE D/F Contact/ISWITCH	28480 28480 28480 2,,480 28480 28480 28480	08640-60106 3130-0480 08640-60106 3130-0480 08640-60106 3130-0480	
A10A187 A1,6A1,58	08640-60100 3130-0480 08640-60106 3130-0480		SWITCH, SLIDE D/F Convact:SWITCH Switch, SLIDE D/F Convact:Switch	28480 28480 28480 28480 28480	08640-60106 3130-0480 08640-60106 3130-0480	ана 1971 — Ул 1971 — Ул 1971 — Ул
A10A1W1 A10A102 A10A102	8120-1830 8120-1830 8120-1832 8120-1831		CABLE-COAX 50 ONM .086-00 Cable-Coax 50 ONM .086-00 Cable-Coax 50 ONM .086-00	28480 28460 28480	8120-1830 8120-1832 8120-1832	
A10A , XA: U.A3A A10A1XA; 0A30	1251-2035	5	CONNECTOR-PC EDGE 15-CONT/ROW 2-RCW3 Connector-VC Edge 18-Cont/Row 2-RCW3	71785	252-15-30-300 252-10-30-300	
ASUAZ	08640-50923		RF DIVIDER ASSY:	28480	08940-90053	
A10A7C1 //10/2C2 410/2C3 A10/2C4 /10/2C5	0100-3456 0100-3456 0160-3456 4160-3456		CAPACITOR-FXD 1000PF ++10% 1000WVDC CER CAPACITOR-FXD 1000PF ++10% 1000WVDC CER CAPACITOR-FXD 1000PF ++10% 1000WVDC CER CAPACITOR-FXD 1000PF ++10% 1000WVDC CER NOT A3SIGNED	28480 28480 28480 28480	0160-3455 C160-3456 0160-3455 0160-3455	
A10A2C6 A10A2C7 A10A2C7 A10A2C8 A10A2C9 A10A2C10	0160-3456 0160-3456 0160-3456 0160-2055 0160-2055		CAPACITUR-FXD 1000PF +-10% 1000WVUC CER CAPACITOR/FXD 1000PF +-10% 1000WVUC CER CAPACITOF-FXD 1000PF +-10% 1000WVUC CER CAPACITOR-FXD .01UF +80-20% 100WVUC CER CAPACITUR-FXD .61UF +80-20% 100WVUC CER	28480 28480 28480 28480 28480 28480	0160-3456 0160-3456 0160-3456 0160-2055 0160-2055	
A1042C11 A1042C12 A1042C13 A1042C13 A1042C14 A1042C15	0160-3456 0160-2055 0360-3456 0160-3456 0160-3456 (160-3456		CAPACITOR-FXD 1000PF +-10% 1000WVUC CFR CAPACITOR-FXD .01UF +80-20% 100WVUC CER CAPACITOR-FXD 1000PF +-20% 1000WVUC CER CAPACITOR-FXD 1000PF +-10% 1000WVUC CER CAPACITOR-FXD 1000PF10% 1000WVUC CER	28480 28480 28400 28460 28480	0160-3456 0160-2055 0160-3456 0160-3456 0160-3456	
A10A2C16 A10A2C1; A10A2C1; A10A2C19 A10A2C19 A10A2C20	0180-0100 0160-345¢ 0180-0100 0180-0197 0180-0374		CAPACITOR-FXD 4.70F+-10% 35VDC TA CAPACITOR-FXD 4.70F+-10% 35VDC TA CAPACITOR-FXD 4.70F+-10% 35VDC TA CAPACITOR-FXD 2.20F+-10% 20VDC TA CAPACITUR-FXD 100F+-10% 20VDC TA	56289 28460 56289 56289 56289	150D475X9035B2 0160=3456 150D475X9035B2 150D225X9020A2 150D106X9020B2	en e
A10A2C21 A10A2C22	0180-1743	1173 2 1 7	CAPACITOR-FXD .10F-10% 35VDC TA	56289	1500104×9035A2)
A10A2C23 A10A2C24 A10A2C25	0160-3456 0160-3456		CAPACITOR-FXD 100F+-10X 20VDC TA Capacitor-FXD (000PF +-10X 1000WVDC CER Capacitor-FXD 1000PF +-10X 1000WVDC CER	56289 28480 28480	150D106X9020B2 0160-3456 0160-3456) ()) ()
A10A2C25 A10A2C27 A10A2C27 A10A2C26 A10A2C27 A10A2C30	0140-3456 0160-3456 0160-3456 0160-3456 0160-3456 0160-3456		CAPACITOR-FXD 1000PF +-10% 1000WVDC CER CAPACITOR-FXD 1000PF +-10% 1000WVDC CER CAPACITOR-FXD 1000PF +-10% 1000WVDC CER CAPACITOR-FXD 1000PF +-10% 1000WVDC CER CAPACITOR-FXD 1000PF +-10% 1000WVDC CER	28480 28480 28480 28480 28480 28480	0160-3456 0160-3456 0160-3455 0160-3455 0160-3455 0160-3455	
A10A2C31 A10A2C32 A10A2C33 A10A2C33 A10A2C34 A10A2C35/	0160-3456 0160-3456 0160-3456 0160-3456 0160-3455 0160-3455		CAPACITOR-FXD 1000PF +-10% 1000WVDC CER CAPACITOR-FXD 1000FF +-10% 1000WVDC CER CAPACITOR-FXD 1000PF +-10% 1000WVDC CER CAPACITOR-FXD 1000PF +-10% 1000WVDC CER CAPACITOR-FXD 1000PF +-10% 1000WVDC CER	28480 28480 28480 28480 28480	0160-3456 0160-3456 0160-3456 0160-3456 0160-3456 0160-3456	an a
				internationale References		

See introduction to this section for ordering information

4. 1

2

6-22

12

Model 8640M

 E_{i}^{*}

and the second state of the second states

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number		Description	Mfr Code	Mfr Part Number
A10A2C36 A10A2C37 A10A2C38 / A10A2C39 A10A2C40	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055 0160-2055		CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD .01UF +80-20% 100WVDC CEF CAPACITO.+FXD .01UF +80-20% 100WVDC CER	28480 28480 28480 28480 28480 28480	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055 0160-2055
A10A2C41 A10A2C42 A10A7C43 A10A7C43 A10A2C44 A10A2C45	0160-2055 0180-1743 0180-1743 0180-1743 0180-1743 0180-1743		CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD .1UF+-10% 35VDC TA CAPACITOR-FXD .1UF+-10% 35VDC TA CAPACITOR-FXD .1UF+-10% 35VDC TA CAFACITOR-FXD .1UF+-10% 35VDC TA	28480 56289 56289 56289 56289	0160-2055 150D104X9035A2 150D104X9035A2 150D104X9035A2 150D104X9035A2
A10A2C46 A10A2C47 A10A2C4A A102C4A A102C49 A10A2C50	0180-1743 0180-1743 0180-1743 0180-1743 0180-1743 0180-1743		CAPACITOR-FXD .3UF+-10X 35VFC TA CAPACITOR-FXD .1UF+-10X 35VDC TA CAPACITOR-FXD .1UF+-10X 35VDC TA CAPACITOR-FXD .1UF+-10X 35VDC TA CAPACITOR-FXD .1UF+-10X 35VDC TA	56289 56289 56289 56289 56289	150D104X9035A2 150D104X9035A2 150D104X9035A2 150D104X9035A2 150D104X9035A2 150D104X9035A2
A1442C51 A1042C52 A1042C53 A1042C53 A1042C55 A1042C55 A1042CR1 A1042CR2 A1042CR3 A1042CR3 A1042CR4 A1042CR5	0160 - 3456 $0180 - 0197$ $0.180 - 0197$ $0160 - 3872$ $1901 - 0025$ $1901 - 0025$ $1901 - 0025$ $1901 - 0025$ $1901 - 0025$ $1901 - 0025$		CAPACITOR-FXD 1000PF +-10% 1000WVDC CER CAPACITOR-FXD 2.2UF+=10% 20V0C TA CAPACITOR-FXD 2.2UF+=10% 20VDC TA CAPACITOR-FXD 1000PF +-10% 1000WVDC CER CAPACITOR-FXD 2.2 PF ±0.25PF 200WVDC CER DIDDE-GEN PRP 100V 200MA DO-7 DIODE-GEN PRP 100V 200MA DO-7	28480 56289 56289 28480 28480 28480 28480 28480 28480 28480 28480 28480	0160-3456 150D225x9020A2 150D225x9020A2 0160-3872 1901-0025 1901-0025 1901-0025 1901-0025 1901-0025 1901-0025
A10A2CR6 A10A2CR7 A10A2CR8 A10A2CR8 A10A2CR9	1901-0025 1901-0025 1901-0025 1901-0025		DIODE-GEN PRP 100V 200MA DO-7 DIODE-GEN PRP 100V 200MA DO-7 DIODE-GEN PRP 100V 200MA DO-7 DIODE-GEN PRP 100V 200MA DO-7	28480 28480 28480 28480 28480	1901-0025 1901-0025 1901-0025 1901-0025
A10A2L1 A10A2L2 A10A2L3 A10A2L3 A10A2L4 A10A2L4	9100-1620 9140-0096 9100-1612	13	PART OF ETCHED CIRCUIY BOARD NOT ASSIGNED COIL-MLD 15UH 10% G=65 .1550%.375LG COIL-MLD 10H 10% G=50 .1550%.375LG COIL-MLD 330NH 20% G#45 .1550%.375LG	24226 99800 99800	15/152 1537-12 1537-04
A10A2L6 A10A2L7 A10A2L8 A10A2L9 A10A2L9 A10A2L10	9140-0044 9100-1615 9140-0098 9100-1618 9140-0114	1 1 1 1	COIL-MLD 680NH 10% 0=50 .155DX.375LG COIL-MLD 1.2UH 10% 0=33 .155DX.375LG COIL-MLD 2.2UH 10% 0=33 .155DX.375LG COIL-MLD 5.6UH 10% 0=45 .155DX.375LG COIL-MLD 10UH 10% 0=55 .155DX.375LG	24216 24226 24226 99800 99800	157680 157121 157221 1537-30 1537-36
A10A2L11 A10A2L12 A10A2L13 A10A2L14 A10A2L15	9100-1520 9100-1620 9100-1628 9100-1620 9100-1620 9100-1620	2	COIL-MLD 15UH 10% G=65 ,155DX.375LG CUIL-MLD 15UH 10% G=65 .155DX.375LG CUIL-MLD 43UH 5% G=60 .155DX.375LG COIL-MLD 15UH 10% G=65 .155DX.375LG COIL-MLD 15UH 10% G=65 .155DX.375LG	24226 24226 24226 24226 24226 24226	15/152 15/152 15/432 15/152 15/152
A10A2L16	9100-1628	ω'	COIL-MLD 430H 5% 0000 .155DX.375LG	24226	15/432
A10A201 A10A202 A10A203 A10A204 A10A204 A10A205	1854-0071 1853-0034 1853-0034 1853-0034 1853-0034 1854-0345	9	TRANSISTOR NPN SI PD=300MW FT=200MHI TRANSISTOR PNP SI TO=18 PD=360MW TRANSISTOR PNP SI TO=18 PD=360MW TRANSISTOR PNP SI TO=18 PD=360MW TRANSISTOR NPN 2N5179 SI TO=72 PD=200MW	28480 28480 28480 28480 04713	1854-0071 1853-0034 1853-0034 1853-0034 295179
A10A2R1 A10A2R2 A10A2R3 A10A2R3 A10A2R4 A10A2R5	0757-0394 0757-0354 0757-0276 0757-0984 0757-0438	2 9	RESISTOR 51.1 1% .125w F TC=0+-100 RESISTOR 51.1 1% .125w F TC=0+-100 RESISTOR 61.9 1% .125w F TC=0+-200 RESISTOR 10 1% .5W F YC=0+-100 RESISTOR 5,11K 1% .125W F TC=0+-100	24546 24546 24546 19701 24546	C4-1/8-T0451R1-F C4-1/8-T051R1-F C4-1/8-T0-6192-F MF7C1/2-T0-10R0-F C4-1/8-T0-5111+F
A10A2R6 A10A2R7 A10A2R7 A10A2R6 A10A2R4 A10A2R4	0698+7197 0698-7221 0698-7221 0757-0394 0757-0984	2	RESISTOR 23.7 1% .05W F TC=0+-100 RESISTOR 237 1% .05W F XC=0+-100 RESISTOR 237 1% .05W F XC=0+-100 RESISTOR 237 1% .05W F TC=0+-100 RESISTOR 51.1 1% .125W F TC=0+-100	24546 24546 24546 24546 19701	C3-1/8-T00-23R7-G C3-1/8-J0-237R-G C3-1/8-T0-237R+G C4-1/8-T0-51R1-F MF7C1/2-T0-10R0-F
A10A2R11 A10A2R12 \$10A2R13 A10A2R14	0757-0438 0598-7200 0598-7218 0598-7218	2	REBISTOR 5,11K 1% .125W F TC=0+-100 RESISTOR 31.6 1% .05W F TC=0+-100 RESISTOR 178 1% .05W F TC=0+-100 RESISTOR 178 1% .05W F TC#0+-100	24546 24546 24546 24546	C4-1/8-Y0-5111-F C3-1/8-T00-31R6-G C3-1/8-T0-178R-G C3-1/8-T0-178R-G

A10A2R12 \$10A2R13 A10A2R14 A10A2R15	0698-7200 0698-7218 0698-7218 0757-0394	2 RESISTOR 31.6 1% .05W F TC=0+=100 RESISTOR 178 1% .05W F TC=0+=100 RESISTOR 178 1% .05W F TC=0+=100 RESISTOR 51.1 1% .125W F TC=0+=100	24546 24546 24546 24546	C3+1/8+100-3188-6 C3-1/8+10+1788-6 C3-1/8+10+1788-6 C4-1/8+10+5181-F	 A start for a sta
A10A2R16 A10A2R17 A10A2R18 A10A2R18 A10A2R19 A10A2R20	0757-0438 0757-0984 0598-7200 0698-7218 0698-7218	RESISTOR 5.114 1% .125W F TC#0+-100 RESISTOR 10 1% .5W F TC#0+-100 RESISTOR 31.6 1% .05W F TC#0+-100 RESISTOR 178 1% .05W F TC#0+-100 RESISTOR 176 1% .05W F TC#0+-100	24546 19701 24546 24546 24546	C4+1/8-T0-5111-F MF7C1/2-T0-10R0-F C3-1/8-T0-31RA-G C3-1/8-T0-178R-G C3-1/8-T0-178R-G	
A10A2R21 A10A2R22 A10A2R23 A10A2R23 A10A2R24 A10A2R25	0757-0398 0757-0984 0757-0984 0698-7224 0698-7219	RESISTOR 75 1% .125W F TC=0+-100 RESISTOR 10 1% .5W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 316 1% .05W F TC=0+-100 RESISTOR 196 1% .05W F TC=0+-100	24546 19701 24546 24546 24546	C4-1/8-T0-75R0-F MF7C1/2-T0-10R0-F C4-1/8-T0-5111-F C3-5/8-T0-316R-G C3-1/8-T0-196R-G	

See introduction to this section for ordering information

 $\sum_{i=1}^{n} a_i$

 $i \in \mathcal{J}$

þ

`. .

i

1.10

6-23

er here state for the

ų.

٠,٠

6303

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A10A2R26 A10A2R27 A10A2R27 A10A2R28 A10A2R29 A10A2R30	0898-7190 0898-7227 0878-7227 0898-3437 0757-0399	2 .2 	RESISTOR 12.1 1% .05W F TC≈0+-100 RESISTOR 422 1% .05W F TC≈0+-100 RESISTOR 422 1% .05W F TC=0+-100 RESISTOR 133 1% .125W F TC=0+-100 RESISTOR 82.5 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C3-1/8-T00-12R1-G C3-1/8-T0-422R-G C3-1/8-T0-422R-G C4-1/8-T0-133R-F C4-1/8-T0-82R5-F
A10A2R31 A10A2R32 A10A2R33 A10A2R33 A10A2R34 A10A2R35	0757=0984 0757-0433 0698-7224 0698-7219 0698-7190		RESISTOR 10 1X .5W F TC=0+-100 RESISTOR 5.11K 1X .125W F TC=0+-100 RESISTOR 316 1X .05W F TC=0+-100 RESISTOR 196 1X .05W F TC=0+-100 RESISTOR 12.1 1X .05W F TC=0+-100	19701 24546 24546 24546 24546	MF7C1/2-T0-10R0-F C4-1/8-T0-5111=F C3-1/8-T0-316R=G C3-1/8-T0-196R=G C3-1/8-T00-12R1=G
A10A2R36 A10A2P37 A10A2R38 A10A2R38 A10A2R39 A10A2R40	0698-7227 0698-7227 0757+0984		RESISTOR 422 1X .05W F TC=0+-100 Resistor 422 1X .05W F TC=0+-100 Not Assigned Not Assigned Resistor 10 1X .5W F TC=0+-100	24546 24546 19701	C3-1/8-T0-422R-G C3-1/8-T0-422R-G MF7C1/2-T0-10R0-F
A10A2R41 A10A2R42 A10A2R43 A10A2R44 A10A2R44 A10A2R45	0757-0438 0757-0964 0757-0438 0757-0984 0698-7253		RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 10 1% .5W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 10 1% .5W F TC=0+-100 RESISTOR 5.11K 1% .05W F TC=0+-100	24546 19701 24546 19701 24546	C4-1/8-T0-5111-F MF7C1/2-T0-10R0-F C4-1/8-T0-5111-F MF7C1/2-T0-10R0-F C3-1/8-T0-5111-G
A10A2R46 A10A2R37 A10A2R48 A10A2R49 A10A2R49 A10A2R50	0698-7253 0898-3440 0698-3444 0757-0379 0698-3447	1 9	RESISTOR 5.11K 1% .05% F TC=0+=100 RESISTOR 196 1% .125% F TC=0+=100 RESISTOR 316 1% .125% F TC=0+=100 RESISTOR 12.1 1% .125% F TC=0+=100 RESISTOR 422 1% .125% F TC=0+=100	24546 24546 24546 19701 24546	C3-1/8-T0-5111-G C4-1/8-T0-196R-F C4-1/8-T0-316R-F MF4C1/8-T0-12R1-F C4-1/8-T0-422R-F
A10A2R51 A10A2R52 A10A2R53 A10A2R54 A10A2R54 A10A2R55	0698-3447 0757-0442 0757-0984 0757-0442 0698-0085		RESISTOR 422 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10 1% .5W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 2.61K 1% .125W F TC=0+-100	24546 24546 19701 24546 24546	C4-1/8-T0-422R-F C4-1/8-T0-1002+F MF7C1/2+T0-10R0-F C4-1/8-TG-1002=F C4-1/8-T0-2611=F
A10A2R56 A10A2R57 A10A2R58 A10A2R58 A10A2R59 A10A2R59 A10A2R60	0757-1094 0698-3243 0757-0442 0757-0280		NOT ASSIGNED RESISTOR 1.47K 1% .125W F TC=0+-100 RESISTOR 178K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	24546 24546 24546 24546	C4-1/8-T0-1471-F C4-1/8-T0-1783-F C4-1/8-T0-1002-F C4-1/8-T0-1001-F
A10A2R6 A10A2R62	0757-0280 0757-0416		RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100	24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-511R-F
A10A2T1 A10A2T2 A10A2T3 A10A2T4 A10A2T5	08553-6012 08553-6012 08553-6012 08553-6012 08553-6012 08553-6012	5	TRANSFORMER, RF(CODE = BLUE) TRANSFORMER, RF(CODE = BLUE) TRANSFORMER, RF(CODE = BLUE) TRANSFORMER, RF(CODE = BLUE) TRANSFORMER, RF(CODE = BLUE)	28480 28480 28480 28480 28480	08553-6012 08553-6012 08553-6012 08553-6012 08553-6012
A10A276	08640-80002	1	TRANSFORMER, RF 12-TURN	28480	08640=80002
A10A2TP1 A10 \2'FP2 A10A2TP3 A10A2TP4	1251-0600 1251-0600 1251-0600 1251-0600	د . ۱۹۹۰ - ۲۰۱۹ ۱۹۹۹ - ۲۰۱۹ - ۲	CONTACT-CONN U/W-POST-TYPE MALE DPSLDR CONTACT-CONN U/W-POST-TYPE MALE DPSLDR Contact-Conn u/W-Post-Type male dpsldr Contact-Conn u/W-Post-Type male dpsldr	28480 28480 28480 28480 28480	1251-0600 1251-0600 1251-0600 1251-0600
A10A2U1 A10A2U2 A10A2U3 A10A2U3 A10A2U5	1826-0303 1820-0102 1820-0102 1820-0102 1820-0102 1820-0143	1 4 2	IC CA 741 OP AMP IC-DIGITAL MC1013P ECL J-K IC-DIGITAL MC1013P ECL J-K IC-DIGITAL MC1013P ECL J-K IC-DIGITAL MC1027P ECL J-K	02735 04713 04713 04713 04713	CA741CG MC1013P MC1013P MC1013P MC1027P
A10A2U6 A10A2U7 A10A2U8 A10A2U9 A10A2U9 A10A2U10	1820-0535 1820-0145 1820-0145 1820-0145 1820-0145 1820-0753	1	IC-DIGITAL 3N754518P TTL DUAL 2 ANC IC-DIGITAL MC1010P ECL QUAD 2 NOR IC-DIGITAL MC1010P ECL QUAD 2 NOR IC-DIGITAL MC1010P ECL QUAD 2 NOR IC-DIGITAL ECL DUAL 3	01295 04713 04713 04713 04713 28480	SN754519P MC1010P MC1010P MC1010P 1820=0753
A10A2U11 A10A2U12 A10A2U13 A10A2U13 A10A2U14	1820-0982 1820-0736 1820-0753 1820-1354		IC 5084-0164 DIFF AMPL IC-DIGITAL ECL DUAL BIN IC-DIGITAL ECL DUAL 3 IC-DIGITAL ECL BIN	28480 28480 28480 28480	1 820-0982 1 820-0736 1 820-0753 1 820-0753

A10A2U16 A10A2U17 A10A2U18 A10A2U19 A10A2U20 A10A2VR1	1820-0557 1820-0145 1820-0143 1820-0145 1820-0145 1820-0102	1	IC-DIGITAL ECL D-M/S IC-DIGITAL MC1010P ECL GUAD 2 NOR IC-DIGITAL MC1027P ECL J-K IC-DIGITAL MC1010P ECL QUAD 2 NOR IC+DIGITAL MC1013P ECL J-K DIODE-ZNR 2.37V 5% D0-7 PD=.4W TC=074%	28480 04713 04713 04713 04713 15618	1020-0557 MC1010P MC1027P MC1010P MC1013P CD 35526	
A10A2W1 A10A2W2 A10A2W3 A10A2W3 A10A2W4 A10A2W5	9120-1823 8120-1824 8120-1825 8120-1825 8120-1826 8120-1828	1 1 1 1 1 1 1 1 1 1 1 1 1 1	CABLE-COAX 50 OHM .086-OD CABLE-CUAX 50 OHM .086-OD CABLE-CUAX 50 OHM .086-OD CABLE-COAX 50 OHM .086-OD CABLE-COAX 50 OHM .086-OD CABLE-COAX 50 OHM .086-OD	28480 28480 23480 28480 28480 28480	8120-1823. A120-1824 8120-1825 A120-1825 A120-1826 8120-1828	

See introduction to this section for ordering information

,· 1

· · · ·

Model 8640M

 $\Delta C_{\rm ec}$

(18:15) 新闻

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A10A2W6 A10A2W7	8120-1827 8120-1829	1	CABLE-COAX 50 OHM .086-0D CABLE-COAX 50 OHM .086-0D	28480 28480	8120-1827 8120-1829
A10A3	08640-60022	1	RISER ASSY	28480	08640-60022
A10A3XA1CA2A A10A3XA10A28	1251-2035 1251-2026		CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS	71785 71785	252-15-30-300 252-18-30-300
A11,	08641-60230	1	INTERNAL MODULATION OSCILLATOR	28480	08641-60230
A11C1 A11C2 A11C3 A11C4 A11C5	0160-0148 0180-0058 0180-0374 0180-0374 0180-0374	1 4	CAPACITOR-FXD .01UF +=2% 100WVDC MICA CAPACITOR-FXD 50UF+75=10% 25VDC AL CAPACITOR-FXD 10UF+=10% 20VDC TA CAPACITOR-FXD 10UF+=10% 20VDC TA CAPACITOR-FXD 100UF+75=10% 25VDC AL	28480 56289 56289 56289 56289 56289	0160-0148 30D506G025CC2 150D106X902082 150D106X902082 30D107G025DD2
A11C6 A11C7 A11C8 A11C8 A11C9 A11C10	0180-2207 0160-2204 0160-0889 0180-0374 0180-1746	1	CAPACITOR-FXD 100UF+-10% 10VDC TA CAPACITOR-FXD 100PF +-5% 300WVDC MICA CAPACITOR-FXD .33UF +-10% 80WVDC POLYE CAPACITOR-FXD 10UF+-10% 20VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA	56289 28480 28480 56289 56289	150D107X9010R2 0160-2204 0160-0889 150D106X9020B2 150D156X9020B2
A11C11 A11C12 A11C13 A11C14 A11C14 A11C15	0180-2206 0180-0374 0160-0159 0180-1746 0160-1746	2	CAPACITOR-FXD 60UF+-10% 6VDC TA CAPACITOR-FXD 10UF+-10% 20VDC TA CAPACITOR-FXD 6800PF +-10% 200WVDC POLYE CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA	56289 56289 56289 56289 56289 56289	1500606X900682 1500106X902082 292268292 1500156X902082 1500156X902082
A11C16 A11C17 A11C18 A11C19 A11C20	0180=0374 0160=2055 0160=3536 0160=3536 0180=0374	2	CAPACITOR-FXD 10UF+-10% 2CVDC TA CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD 620PF +-5% 100WVDC MICA CAPACITOR FXD 620PF +-5% 100WVDC MICA CAPACITOR-FXD 10UF+-10% 20VDC TA	56289 28480 28480 28480 56289	150D106X902082 0160-2055 0160-3536 0160-3536 150D106X902082
A11CR1 A11CR2 A11CR3 A11CR4 A11CR4 A11CR5	1901-0040 $1901-0040$ $1901-0040$ $1901-0040$ $1901-0040$ $1901+0040$		DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2N3 DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040
A11CR6 A11CR7 A11CR8 A11CR8	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040		DIODE-SWITCHING 30V 50MA 2N9 DO-35 DIODE-SWITCHING 30V 50MA 2N5 DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1901-0040
A11MP1 A11MP2 A11MP3 A11MP4	1251-0600 1251-0600 1251-0600 4040-0749	3	CONTACT-CONN U.W-POST-TYPE MALE DPSLDR CONTACT-CONN U/W-POST-TYPE MALE DPSLDR CONTACT-CONN U/W-POST-TYPE MALE DPSLDR Extr-PC 8D BRN POLYC .052-8D-THKN3	28480 28480 28480 28480 28480	1251-0600 1251-0600 1251-0600 4040-0749
A1101 A1102 A1103 A1103 A1104 A1105	1853-0020 3854-0071, 1854-0404 1854-0404 1854-0404		TRANSISTON PNP SI PD=300MW FT=150MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI TO-18 PD=360MW TRANSISTOR NPM SI TO-18 PD=360MW TRANSISTOR NPN SI TO-18 PD=360MW	28480 28480 28490 28480 28480 28480	1853-0020 1854-0071 1854-0404 1854-0404 1854-0404
A1106 A1107 A1108 A1109	1854-0404 1853-0020 1854-0071 1853-0020		TRANSISTOR NPN SI TO-18 PD=360MW TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR PNP SI PD=300MW FT=150MHZ	28480 28480 28480 28480	1854-0404 1853-0020 1854-0071 1853-0020
A11R1 A11R2 A11R3 A11R4 A11R5	2100-2574 2100-2413 2100-2514 2100-2633 0757-0346	5	RESISTOR-TRMR 500 10% C SIDE-ADJ 1-TRN RESISTOR-TRMR 200 10% C SIDE-ADJ 1-TRN RESISTOR-TRMR 20K 10% C SIDE-ADJ 1-TRN RESISTOR-TRMR 1K 10% C SIDE-ADJ 1-TRN RESISTOR 10 1% .125W F TC=0+-100	30983 30983 30983 30983 24546	ET50×501 ET50×201 ET50w203 E¥50×102 C4-1/8-T0-10R0-F
A11R6 A11R7 A11R8 A11R8 A11R9 A13R10	0757=0198 0757=0438 0757=0442 0757=0441 0698=3155		RESISTOR 100 1% ,5W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 4.64K 1% .125W F TC=0+-100	19701 24546 24546 24546 24546	MF7C1/2-T0-101-F C4-1/8-T0-5111-F C4-1/8-T0-1002-F C4-1/8-T0-101-F C4-1/8-T0-4541-F
A11R11 A11R12 A11P13 A11R14 A11R15	0757-0458 0698-3457 0698-3162 0698-3162 0598-3162	1	RESISTOR 51.1K 1% .125W F TC=0+-100 RESISTOR 316K 1% .125W F TC=0+-100 RESISTOR 46.4K 1% .125W F TC=0+-100 RESISTOR 46.4K 1% .125W F TC=0+-100 RESISTOR 46.4K 1% .125W F TC=0+-100	24546 91637 24546 24546 24546	C4~1/8-T0=5112=F CMF=55=1, T=1 C4-1/8-T0=4042=F C4-1/8-T0=4042=F C4-1/8-T0=4042=F
A11R16 A11R17 A11R18 A11R18 A11R19 A11R20	0690-3162 0698-0083 0690-3162 0698-3155 0698-3155		RESISTOR 46.4K 1% .125W F TC=0+-100 RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 46.4K 1% .125W F TC=0+-100 RESISTOR 46.4K 1% .125W F TC=0+-100 RESISTOR 46.4K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-4642-F C4-1/8-T0-1961-F C4-1/8-T0-4642-F C4-1/8-T0-4641-F C4-1/8-T0-4642-F
A11R21 A11R22 A11R23 A11R23 A11R24 A11R25	0757-0401 0757-0280 9757-0441 0757-0438 0757-0439		RESISTOR 100 1% ,125W F TC=0+-100 RESISTOR 10 1% ,125W F TC=0+-100 RESISTOR 8.25K 1% ,125W F TC=0+-100 RESISTOR 5.11K 1% ,125W F TC=0+-100 RESISTOR 6.81K 1% ,125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-101-F C4-1/8-T0-1001-F C4-1/8-T0-8251-F C4-1/8+T0-5111-F C4-1/8+T0-5111-F

See introduction to this section for ordering information

۱. L

6-25

ale Merry Test Con

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number	
A11826 A11827 A11828 A11829 A11830	0698-0024 0757-0416 0698-3440 0757-0442 0757-0280	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	RESISTOR 2.61K 1% .5W F TC=0+=100 RESISTOR 511 1% .125W F TC=0+=100 RESISTOR 196 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100	91637 24546 24546 24546 24546 24546	MFF-1/2-10 C4-1/8-T0-511R- C4-1/8-Y0-196R-F C4-1/8-T0-1002-F C4-1/8-T0+1001-F	
A11R31 A11R32 A11R33 A11R34 A11R35	0757=0438 0757=0280 0757=0280 0757=0280 0698=0083		RESISTOR 5.11K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 1.96K 1% .125W F TC=0+=100	24546 24546 24546 24546 24546	C4~1/8-T0-5111-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-1961-F	
A11R36 A11R37 A11R38 A11R39 A11R40	0698-0083 0757-0401 0757-0003 0698-3432 0757-0447	1	RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 26.1 1% .5W F TC=0+-100 RESISTOR 26.1 1% .125W F TC=0+-100 RESISTOR 16.2K 1% .125W F TC=0+-100	24546 24546 19701 03888 24546	C4-1/8-T0-1961-F C4-1/8-T0-101+F MF7C1/2-T0-26R1-F PME55-1/8-T0-26R1-F C4-1/8-T0-1622-F	
A11R41 A11R42	0757-0416	e e	RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100	24546 24546	C4-1/8-T0-511R-F C4-1/8-T0-5111-F	
A11TP1 A11TP2 A11TP3 A11TP4 A11TP5	1251-0600 1251-0600 1251-0600 1251-0600 1251-0600		CONTACT-CONN U/W-POST-TYPE MALE DPSLDR CONTACT-CONN U/W-POST-TYPE MALE DPSLDR CONTACT-CONN U/W-POST-TYPE MALE DPSLDR CONTACT-CONN U/W-POST-TYPE MALE DPSLDR CONTACT-CONN U/W-POST-TYPE MALE DPSLDR	28480 29480 28480 28480 28480	1251-0600 1251-0600 1251-0600 1251-0600 1251-0600	-
A11TP6 A11TP7	1251-0600 1251-0600		CONTAGT-CONN U/W-POST-TYPE MALE DPSLDR Contagt-Conn U/W-Post-type male dpsldr	28480 28480	1251-0600 1251-0600	
A11U1 A11U2 A11U3 A11U4 A11U5	1820-0223 1820-0261 1820-0223 1820-1478 1820-1478	2 1 2	IC LM 301A OP AMP IC-DIGITAL SN74121N TTL MONOSTBL IC LM 301A OP AMP IC-DIGITAL SN74LS93 ¹ , TTL LS BIN IC-DIGITAL SN74LS93N TTL LS BIN	27014 01295 27014 01295 01295	LM3014H SN74121N LM301AH SN74LS93N SN74LS93N	F
A11U6 A11U7	1820-1197 1826-0011		IC-DIGITAL SN74LSOON TTL LS QUAD 2 NAND IC ua 741 OP Amp	01295 07263	9N74L900N 741HM	4
A11VR1 A11VR2 A11VR3	1902-0041 1902-0202 1902-0049	3	DIODE-ZNR 5.11V 5% DO-7 PD#.4W TC#009% DIODE-ZNR 15V 5% DO-15 PD#1W TC#+.057% DIODE-ZNR 6.19V 5% DO-7 PD=.4W TC#+.022%	15818 28480 28480	CD 35622 1902-0202 1402-0049	
A12	08640-60326	. 1	RECTIFIER ASSY	28480	08640-60326	
A12C1 A12C2 A12C3 A12C3 A12C4 A12C5	0160-0168 0160-0168 0160-0168 0160-0168 0160-0168	5	CAPACITOR-FXD .1UF +-10% 200WVDC POLYE CAPACITOR-FXD .1UF +-10% 200WVDC POLYE CAPACITOR-FXD .1UF +-10% 200WVDC POLYE CAPACITOR-FXD .1UF +-10% 200WVDC POLYE CAPACITOR-FXD .1UF +-10% 200WVDC POLYE	56289 56289 56289 56289 56289 56289	292P10492 292P10492 292P10492 292P10492 292P10492 292P10492	•
A12CR1 A12CR2 A12CR3 A12CR3 A12CR4 A12CR5	1901-0418 1901-0418 1901-0418 1901-0418 1901-0418 1901-0418	20	DIODE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A	04713 04713 04713 04713 04713 04713	SR1846-12 SR1846-12 SR1846-12 SR1846-12 SR1846-12 SR1846-12	
A12CR6 A12CR7 A12CR8 A12CR8 A12CR9 A12CR10	1901-0418 1901-0418 1901-0418 1901-0418 1901-0418 1901-0418		DIODE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A	04713 04713 04713 04713 04713 04713	SR1846-12 SR1846-12 SR1846-12 SR1846-12 SR1846-12 SR1846-12	
A12CR11 A12CR12 A12CR13 A12CR13 A12CR14 A12CR15	1901-0418 1901-0418 1901-0418 1901-0418 1901-0418 1901-0418		DIODE-PWR RECT 400V 1.5A DIGDE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A	04713 04713 04713 04713 04713 04713	SR1846-12 SR1846-12 SR1846-12 SR1846-12 SR1846-12 SR1846-12	
A12CR16 A12CR17 A12CR18 A12CR18 A12CR19 A12CR20	1901-0418 1901-0418 1901-0418 1901-0418 1901-0418 1901-0418		DIODE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A	04713 04713 04713 04713 04713 04713	SR1846-12 SR1846-12 SR1846-12 SR1846-12 SR1846-12 SR1846-12	
A17MP1	0403-0026	3	GLIDE #NYLON	28480	0403-0026	
A1201 A12R1 A12R2 A12R3 A12R4 A12R5	0757=0199 0757=0442 0757=0442		NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED RESIGTOR 21.5k 1% .125W F TC=0+-100 RESISTOR 10k 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	24546 24546 24546	C4-1/8-T0-2152-F C4-1/8-T0-102-F C4-1/8-T0-3002-F	
A12R6 A12R7	0757-0442 0757-0442		RESISTOR 10H 1% _125W F TC=0+-100 RESISTOR 10H 1% _125W F TC=0+-100	24546 24546	C4-1/8-T0-1002-F C4-1/8-T0+1002-F	

See introduction to this seation for ordering information

51 91 -

۰^۰

Replaceable Parts

6-26

1

Model 8640M

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A13	08640-602\$2	1	MODULATION/METE ING MOTHER BOARD ASSY	28480	08640-60222
A13C1 A13C2 A13C3	0180-2208 0180-0058 0180-2154	2 2 2 1	CAPACITOR-FXD 220UF+-10% 10VDC TA CAPACITOR-FXD 50UF+75-10% 25VDC AL CAPACITOR-FXD 1900UF+75-10% 15VDC AL	56289 56289 56289	1500227X901082 3005066025CC2 39019860156L4
413CR1	1901-0040		DIODE-SWITCHING BUV SOMA 2NS DO-35	28480	1901-0040
A13J1 A13J2 A13J3 A13J4 A13J4 A13J5	1250-0257 1250-0257	2	CONNECTOR-RF SMB M PC 50-0HM NOT ASSIGNED CONNECTOR-RF SMB M PC 50-0HM NOT ASSIGNED NOT ASSIGNED	28480 28480	1250=0257 1250-0257
A13J6 A13J7 A13J8 A13J9 A13J10	1200-0507 1200-0507 1200-0508 1200-0508 1251-3898	1	SOCKET-IC 16-CONT DIP-SLDP-TERMS SOCKET-IC 16-CONT DIP-SLDP-TERMS SOCKET-IC 14-CONT DIP-SLDR-TERMS SOCKET-IC 14-CONT DIP-SLDR-TERMS CONNECTOR 10-PIN M POST TYPE	06776 06776 06776 06776 28480	ICN-163-53W ICN-163-53W ICN-143-53W ICN-143-53W 1251-3898
A13K1	0490-1013	1	RELAY-REED 10 250MA 28VAC 5VDC-COIL 3VA	28480	0490-1013
A13MP1 A13MP2 A13MP3 A13MP4 A13MP5	0403-0026 0403-0026 1400-0049 5040-0170 08640-20211	1 1 1 1 1 1 1 1 1 1 1 1 1 1	GLIDE:NYLON GLIDE:NYLON CLAMP-CA .A12-DIA .5-WD NYL GUIDE:PLUG-IN PC BOARD GUIDE, CONNECTOR DOWELS	28480 28480 95987 28480 28480	0403-0026 0403-0026 13/16-6 5040-0170 08640-20211
A13MP6	08640-20211		GUIDE, CONNECTOR DOWELS	28480	08640-20211
11301	1854-0039 1853-0007	. j u	TRANSISTOR NPN 2N3053 SI TO-5 PD=1W Transistor PNP 2N3251 SI TO-18 PD=360MW	04713 04713	2N3053 2N3251
A 1 3 R 1 A 1 3 R 2 A 1 3 R 3 A 1 3 R 4	0698-3405 0698-3194 0698-0083 0757-0442		RESISTOR 422 1% .5% F TC=0+-100 RESISTOR 20K .25% .125% F TC=0+-50 RESISTOR 1.96% 1% .125% F TC=0+-100 RESISTOR 10K 1% .125% F TC=0+-100	19701 03888 24546 24546	MF7C1/2+T0+422R+F PME55-1/8-T2-2002-C C4-1/8+T0+1951-F C4-1/8+T0+1002-F
A13XA2 A13XA5 A13XA7 A13XA11 A13XA11 A13XA15	1251+0472 1251-2571 1251-2571 1251-2571 1251-2571 1251-2035	2	CONNECTOR-PC EDGE &=CONT/ROW 2=ROWS CONNECTOR-PC EDGE 15-CONT/ROW 1=ROW CONNECTOR-PC EDGE 15-CONT/ROW 1=ROW CONNECTOR-PC EDGE 15-CONT/ROW 1=ROW CONNECTOR-PC EDGE 15-CONT/ROW 2=ROWS	71785 26742 26742 26742 26742 71785	252-06-30-300 91-6915-0702-00 91-6915-0702-00 91-6915-0792-00 252-15-30-300
A13XA3A4	1251-047?		CONNECTOR-PC ZDGE 6-CONT/ROW 2-ROWS	71785	252-06-30-300
			A13 MISCELLANEOUS		
an An Angalan Angalan An Angalan Angalan	1251-0600	52	CONTACT-CONN U/W-POST-TYPE MALE DPSLDR	28480	1251-0400
A14			NOT ASSIGNED	н. Т	
	08640-60018		RISER ASSY	28480	08640-60018
A15 A15MP1 A15MP2	0403-0153 0403-0154	2	GUIDE-PC BD BRN POLYC .062-BD-THKNS 1-LG Guide-PC BD RED PolyC .062-BD-THKNS 1-LG Guide-PC BD ORN PolyC .062-BD-THKNS 1-LG	28480 28480 28480	0403=0153 0403=0154 0403=0155
A15MP3	1251-3300	1 1 1 1 1 1	CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS	71785	252-12-30-032
	08640=60119		FAN MOTOR ASSEMBLY	28480	08640-50119
A16	3140-0490	• • •	MOTOR BRUSHLESS 10VDC 2550-RPM	3H768	1AD3001-0A
A1681 A16P1	1251-0198 5040-0327	1	CONNECTOR-PC EDGE 6-CONT/ROW 2-ROWS Hood:Connector	71785 28480	251-00-30-261 5040-0327
A17	05540-60001		POWER SUPPLY MOTHER BOARD ASSY	25480	08640-60001
A17 A17MP1	1251=2361		CONTACT-CONN MALE OPSLOR	00779	86091=2
A177412	1251=2034	3	CONNECTOR-PC EDGE 10-CJNT/ROW 2-ROWS	71785	252-10-30-300
A17XA18 A17XA18 A17XA20 A17XA22 A17XA24	1251-2571 1251-2571 1251-2571 1251-2571 1251-2034		CONNECTOR-PC EDGE 15-CONT/ROW 1-ROW CONNECTOR-PC EDGE 15-CONT/ROW 1-ROW CONNECTOR-PC EDGE 15-CONT/ROW 1-ROW CONNECTOR-PC EDGE 10-CONT/ROW 2-ROWS	26742 26742 26742 71785	91-6915-0702-00 91-6915-0702-00 91-6915-0702-00 252-10-30-300
A17XA26	1251-2034		CONNECTOR-PC EDGE 10-CONT/ROW 2-ROWS	71785	252-10-30-300
A18	08641~60185	1999) 1999 - 1 99	REGULATOR & FAN DRIVER ASSY, -5.29	28480	08641=60185
A18C1 A18C2 A18C3 A18C4 A18C4 A18C5	0180-0229 0160-3534 0160-2214 0180-0197 0160-2055	5 4 1 1 2 2 2 2 1	CAPACITOR-FX0 33UF+-10% 10VDC TA CAPACITOR-FXD 510PF +-5% 100WVDC MICA CAPACITOR-FXD 90UF+75-10% 16VDC AL CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD .01UF +80-20% 100WVDC CER	50289 28480 56289 56289 28480	1500336X901082 0160-3534 3009066016CC2 1500225X9020A2 0160-2055

See introduction to this section for ordering information

, li

.

 z_{j}

· 1

T	able	6-3.	Replace	able Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A18CR1 A18CR2 A18CR3 A18CR4 A18CR5	1901-0040 1901-0025 1901-0025 1901-0040 1901-0040 1901-0040		DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-GEN PRP 100V 200MA DO-7 DIODE-GEN PRP 100V 200MA DO-7 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480 28480	1901-0040 1901-0025 1901-0025 1901-0040 1901-0040
A18CR6 A18CR7 A18CR7 A18CR9 A18CR9 A18CR10	1901-0159 1901-0040 1901-0040 1901-0049 1901-0049	2	DIUDE-PWR RECT 400V 750MA DO-41 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-PWR RECT 50V 750MA DO-29 DIODE-PWR RECT 50V 750MA DO-29	04713 28480 28480 28480 28480 28480	SR1358-4 1901-0040 1901-0040 1901-0049 1901-0049
A18CR11 A18CR12	1901-0040 1901-0050	÷.,	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-7	28480 28480	1901-0040 1901-0050
A18051	1990-0326	5	LED-VISIBLE LUM-INT=300UCD IF=50MA-MAX	28480	1990-0326
A18F1	2110-0425	·	FUSE 2A 125V SLO-BLO .25X.27	71400.	GMW 2A
A18MP1	4040-0752 1480-0073	2	EXTR-PC BD YEL POLYC _062-8D-THKNS PINIDRIVE 0_250" LG	28480 00000	4040 -0752 05D
A1801 A1802 A1803 A1804	1853=0020 1854=0232 1200=0173 1884=0012 1854=0003 1200=0173	4 5 1	TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR NPN SI TO-39 PD=1W FT=15MHZ INSULATOR~XSTR TO-5 .075-THK THYRISTOR-SCR JEDEC 2N3528 TRANSISTOR NPN SI TO-39 PD=800MW INSULATOR-XSTR TO-5 .075-THK	28480 28480 28480 02735 28480 28480 28480	1853-0020, 1854-0232 1200-0173 2N3528 1854-0003 1200+0173
A1805 A1866 A1807	1853-0027 1200-0173 1853-0050 1853-0027 1200-0173	4	TRANSISTOR PNP SI TO-39 PD=1W FT=100MH2 INSULATOR-XSTR TO-5 .075-THK TRANSISTOR PNP SI TO-18 PD=360MW TRANSISTOR PNP SI TO-39 PD=1W FT=100MHZ INSULATOR-XSTR TO-5 .075-THK	28480 28480 28480 28480 28480 28480	1853-0027 1200-0173 1853-0050 1853-0027 1200-0173
A1808 A1809 A18010 A18011	1853-0050 1853-0050 1853-0027 1200=0173 1853-0050		TRANSISTOR PNP SI TO-18 PD#360MW TRANSISTOR PNP SI TO-18 PD#360MW TRANSISTOR PNP SI TO-39 PD#1W FT=100MHZ INSULATOR-XSTR TO-5 .075-THK TRANSISTOR PNP SI TO-18 PD#360MW	28480 28480 28480 28480 28480 28480	1853-0050 1853-0050 1853-0027 1200-0173 1853-0050
S10812	1853~0027	te a	TRANSISTOR PNP SI TO-39 PD=1W FT=100MHZ INSULATOR-XSTR TO-5 _075-THK	28480 28480	1853-0027 1200-0173
A18R1 A18R2 A18R3 A18R4 A18R5	0757-0317 2100-3123 0757-0278 0683-0335 0757-0420	1 1	RESISTOR 1.33K 1% .125W F TC=0+-100 RESISTUR-TRMR 500 10% C SIDE+ADJ 17-TRN RESISTOR 1.78K 1% .125W F TC=0+-100 RESISTOR 3.3 5% .25W FC TC=-400/+500 RESISTOR 750 1% .125W F TC=0+-100	24546 32997 24546 01121 24546	C4-1/8-T0-1331-F 3006P-1-501 C4-1/8-T0-1781-F C033G5 C4-1/8-T0-751-F
A1886 A1887 A1888 A1889 A1889 A18810	0698-3440 0757-0420 0698-3161 0811+2813 0757-0276	3 2	RESISTOR 196 1X .125W F TC=0+-100 RESISTOR 750 1X .125W F TC=0+-100 RESISTOR 38.3K 1X .125W F TC=0+-100 RESISTOR 1 5% .75W PW TC=0+-50 RESISTOR 61.9 1X .125W F TC=0+-100	24546 24546 24546 91637 24546	C4-1/8-T0-196R-F C4-1/8-T0-751-F C4-1/8-T0-3832-F R\$1/2-T2-1R0-J C4-1/8-T0-6192 TF
A10R11 A10R12 A10R13 A10R14 A10R15	0757-0317 0757-0397 0698-3447 0757-0290 0757-0453		RESISTOR 1.33K 1% .125W F TC=0+-100 RESISTOR 66.1 1% .125W F TC=0+-100 RESISTOR 422 1% .125W F TC=0+-100 RESISTOR 6.19K 1% .125W F TC=0+-100 RESISTOR 51.1K 1% .125W F TC=0+-100	24546 24546 24546 19701 24546	C4-1/8-T0-1331-F C4-1/8-T0-68R1-F C4-1/8-T0-422R-F MF4C1/8-T0-6191-F C4-1/8-T0-5112-F
A18R16 A18R17 A18R18 A18R19	0811-1553 0698-3438 0598-3438 0698-7246	1 4	RESISTOR .68 5% 2W PW TC=0+=800 RESISTOR 147 1% .125W F TC=0+=100 RESISTOR 147 1% .125W F TC=0+=100 RESISTOR 2.61K 1% .05W F TC=0+=100	75042 24546 24546 24546	BwH2-11/16-J C4-1/8-T0-147R-F C4-1/8-T0-147R-F C3-1/8-T0-2611-G
A187P1 A187P2 A187P3 A187P4 A187P5	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514 0360-1514		TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG	28480 28480 28480 28480 28480 28480	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514
A187P6	0360-1514		TERMINAL-STUD SGL-PIN PRESS-M'G	28480	0360-1514
A18U1	1826-0177	5	IC UA 723 V RGLTR	15818	723BE
A18VR1 A18VR2 A18VR3	1902-3005 1902-3094 1902-0049	. 2	DIODE-ZNR 2.43V 5% DO-7 PD=.4W TC=076% DIODE-ZNR 5.11V 2% DO-7 PD=.4W TC=009% DIODE-ZNR 6.19V 5% DO-7 PD=.4W TC=+.022%	04713 04713 28480	sz 10939=5 sz 10939=99 1902=0049
A18XF1A A18XF18	1251-2313 1251-2313	10	CONNECTOR-SGL CONT SKT .04-DIA Connector-Sgl Cont Skt .04-DIA	00779 00779	3-332070-5 3-332070-5
A19			NOT ASSIGNED		
054	08640-00005	1	REGULATOR ASSEMBLY,+5.2V & +44.6V	28480	08640-60005

See introduction to this section for ordering information

3

. ' F

1

ar Strift) (

Replaceable Parts

.`

6-28

,

Model 8640M

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
N20C1 N20C2 N20C3 N20C4 N20C4 N20C5	0160-0153 0180-0229 0180-0234 0180-0234 0180-0228 0160-0300	1	CAPACITOR-FXD 1000PF +-10% 200WVDC POLYE CAPACITOR-FXD 33UF+-10% 10VDC TA CAPACITOR-FXD 33UF+-20% 75VDC TA CAPACITOR-FXD 22UF+-10% 15VDC TA CAPACITOR-FXD 2700PF +-10% 200WVDC POLYE	56289 56289 56289 56289 56289 56289	292P10292 150D336×901082 109D336×0075F2 150D226×901582 292P27292
A20C6 A20C7 A20C8	0180-2208 0180-0229 0160-3094		CAPACITOR-FXD 220UF+-10X 10VDC TA CAPACITOR-FXD 33UF+-10X 10VDC TA CAPACITOR-FXD .1UF +-10X 100WVDC CER	56289 56289 28480	150D227X901U52 150D336X901082 0160-3094
A20CR1 A20CR2 A20CR3 A20CR3 A20CR4 A20CR5	1901-0159 1901-0050 1901-0159 1901-0050 1901-0050		CIODE-PWR RECT 4007 750MA DO-41 DIODE-SWITHING 807 200MA 2NS DO#7 DIODE-PWR RECT 4007 750MA DO-41 DIODE-SWITGHING 807 200MA 2NS DO-7 DIODE-SWITCHING 807 200MA 2NS DO-7	04713 28480 04713 28480 28480	SR1358-4 1901-0050 SR1358-4 1901-0050 1901-0050
A20081 A20082	1990-0326 1990-0326		LED-VISIBLE LUM-INT=300UCD IF=50MA-MAX LED-VISIBLE LUM-INT=300UCD IF=50MA-MAX	28480 28480	1990-0326 1990-0326
A20F1 A20F2	2110-0332 2130-0047	1	FUSE 3A 125V NORM-BLO .25X.27 FUSE 1A 125V NORM-BLO .25X.27	71400 71400	GMW 3 GMW-1
A20MP1 A20MP2	4040-0748 1480-0073 4040-0753 1480-0073	2	EXTRACTOR-PC BD BLK POLYC .062-BD-THKNS PINIDRIVE 0.250" LG Extractor-PC BD GRN Polyc .062-BD-ThKNS PINIDRIVE 0.250" LG	28480 00000 28480 00000	4040-0749 CBD 4040-0753 CBD
A2001 A2002 A2003	1884-0012 1854-0232 1200-0173 1854-0022 1200-0173		THYRISTOR-SCR JEDEC 2N3528 TRANSISTOR NPN SI TO-39 PD=1W FT=15MHZ INSULATOR-XSTR TO-5 .075-THK TRANSISTOR NPN SI TO-39 PD=700MW INSULATOR-XSTR TO-5 .075-THK	02735 28480 28480 07263 28480	2N3528 1854=0232 1200=0173 517843 1200=0173
A20Q4 A20Q5 A20Q6 A20Q7	1853-0224 1200-0173 1853-0920 1654-0023 1884-0012	1	TRANSISTOR PNP SI TO-39 PD=1W FT=15MHZ INSULATJR-XSTR TO-5 .075-THK TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR NPN SI TO-18 PD=360MW THYRISTOR-SCR JEDEC 2N3528	02735 28480 28480 28480 02735	2N5415 1200-0173 1853-0020 1854-0023 2N3528
A20R1 A20R2 A20R3 A20R4 A20R5	0698-3160 0698-3438 0757-0462 0698-0083 0698-3407	1	RESISTOR 31.6K 1% .125W F TC=0+-100 RESISTOR 147 1% .125W F TC=0+-100 RESISTOR 75K 1% .125W F TC=0+-100 RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 1.96K 1% .5W F TC=0+-100	24546 24546 24546 24546 91637	C4-1/8-T0-3162-F C4-1/8-T0-147R-F C4-1/8-T0-7502-F C4-1/8-T0-1961-F MFF-1/2-10
A20R6 A20P7 A20H8 A20R4 A20R4 A20R4	0698-3155 0698-3449 2100-3154 0757-0438 0811-2813		RESISTOR 4.64K 1% .125W F TC=0+-100 RESISTOR 28.7K 1% .125W F TC=0+-100 RESISTOR-TRMR 1K 10% C SIDE-ADJ 17-TRN RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 1 5% .75W PW TC=0+-50	24546 24546 32997 24546 91637	C4-1/8-T0-4641-F C4-1/8-T0-2872-F 3006P-1-102 C4-1/8-T0-5111-F R51/2-T2-1R0-J
A20R11 A20R12 A20R13 A20R13 A20R14 A20R15	0757-0819 0757-0397 0698-3447 0811-1666 0757-0420	1	RESISTOR 909 1% .5W F TC=0+-100 REDISTOR 68.1 1% .125W F TC=0+-100 RESISTOR 422 1% .125W F TC=0+-100 RESISTOR 1 5% 2W PW TC=0+-800 RESISTOR 750 1% .125W F TC=0+-100	19701 24546 24546 75042 24546	MF7C1/2-T0-909R-F C4-1/8-T0-68R1-F C4-1/8-T0-422R-F BWH2-1R0-J C4-1/8-T0-751-F
A20R16 A20R17 A20R18 A20R19 A20R20	2100-3123 0698-3150 0757-0416 0698-3440 0757-0420		RESISTOR-TRMR 500 10% C SIDE-ADJ 17-TRN RESISTOR 2.37K 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 196 1% .125W F TC=0+-100 RESISTOR 750 1% .125W F TC=0+-100	32997 24546 24546 24546 24546	3006P-1-501 C4-1/8-T0-2371-F C4-1/8-T0-511R-F C4-1/8-T0-196R-F C4-1/8-T0-196R-F C4-1/8-T0-751-F
A20R21 A20R22 A20R23 A20R23 A20R24 A20R25	0811-2813 0757-0276 0757-0397 0698-3447 0811-1666		RESISTOR 1 5% .75% PW 7C=0+-50 RESISTOR 61.9 1% .125% F TC=0+-100 RESISTOR 68.1 1% .125% F TC=0+-100 RESISTOR 422 1% .125% F 7C=0+-100 RESISTOR 1 5% 2% PW TC=0+-800	91637 24546 24546 24546 75042	R51/2-T2-1R0-J C4+1/8-T0-6192-F C4-1/8-T0-68R1-F C4-1/8-T0-422R-F BWH2-1R0-J
A20R26 A20R27	0811-1660 0698-7246		RESISTOR 1 5% 2% PW TC=0+=800 Revisior 2.61k 1% .05% f tC=0+=100	75042 24546	BWH2-1R0-J C3-1/8-T0-2611-G
A20TP1 A20TP2 A20TP3 A20TP4 A20TP4 A20TP5	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514		TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG	28480 28480 28480 28480 28480 28480	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514 0360-1514
A20TP6 A20TP7 A20TP8 A20TP9 A20TP9 A20TP10	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514		TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG	28480 28480 28480 28480 28480 28480	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514
1005V	1826-0177 1826-0177	A.C. J.	IC UA 723 V RGLTR IC UA 723 V RGLTR	15818 15818	7238E 7238E
A20VR1 A20VR2 A20VR3 A20VR4 A20VR5	1902-0025 1902-3234 1902-0244 1902-3345 1902-3005	1 2 1	DIODE-ZNR 10V 5% DO-7 PD=.4W TC=+.06% DICDE-ZNR 19.6V 5% DO-7 PD=.4W TC=+.073% DIODE-ZNR 30.1V 5% DO-15 PD=1W TC=+.075% DIODE-ZNR 51.1V 5% DO-7 PD=.4W TC=+.081% DIODE-ZNR 2.43V 5% DO-7 PD=.4W TC=076%	28480 04713 28480 04713 04713	1902-0025 SZ 10939-266 1902-0244 SZ 10939-386 SZ 10939-5

See introduction to this section for ordering information ٠,

Έ.

.' .

AN ACCOMPANIA OF DESCRIPTION OF THE OWNER.

6-29

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A20VR6	1902-0049		DIODE-ZNR 6,19V 5% DO-7 PD=,4W TC=+,"22%	28480	1902-0049
A20XF1A A20XF19 A20XF2A A20XF26	1251-2313 1251-2313 1251-2313 1251-2313 1251-2313		CONNECTOR-SGL CONT SKT .04-DIA Connector-SGL Cont Skt .04-DIA Connector-SGL Cont Skt .04-DIA Connector-SGL Cont Skt .04-DIA	00779 00779 00779 00779	3-332070-5 3-332070-5 3-332070-5 3-332070-5
A21	08641-60189	1	REVERSE POWER ASSEMBLY	28480	08641-60189
A21FL1 A21FL2	9135-0002 9135-0002	2	FILTER-LP SOLDER-TERMS FILTER-LP SOLDER-TERMS	28480 28480	9135-0062 9135-0002
A21J1 A21J2	1250-0829 1250-0829	3	CONNECTOR-RF SMC M SGL-HOLE-FR 50-0HM Connector-RF SMC M SGL-HOLE-FR 50-0HM	98291 98291	50-045-4610 50-045-4610
A21L1 A21L2	1460-1395 1460-1395	2	W_REFORM CU ALY Wireform CU Aly	28480 28480	1460-1395 1460-1395
A21MP1 A21MP2	08640-20276 2200-0103	1	HOUSING, REVERSE POWER ASSY Screw-Mach 4-40 _25-IN-LG PAN-HD-POZI	28480 28480	08640-20276 2200-0103
A21A1	08640-60049	1	POWER PROTECTOR BOARD ASSEMBLY	28480	08640-60049
A21A1C1 A21A1C2 A21A1C3 A21A1C4 A21A1C4	0160-0576 0160-0576 0160-3879 0180-0197 0160-3877	4	CAPACITOR-FXD .1UF +-20% 50WVDC CER CAPACITOR-FXD .1UF +-20% 50WVDC CER CAPACITOR-FXD .01UF +-20% 100WVDC CER CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD 100PF +-20% 200WVDC CER	28480 28480 28480 56289 28480	0160=0576 0160=0576 0160=3879 150D225×9020A2 0160=3877
A21A1C6 A21A1C7 A21A1C8 A21A1C9 A21A1C9 A21A1C10	0160-0576 0160-3675 0160-3873 0121-0448 0160-0699	1	CAPACITOR-FXD .1UF +-20% 50WVPC CER CAPACITOR-FXD 22PF +-5% 200WVDC CER CAPACITOR-FXD 4.7PF +5PF 200WVDC CER CAPACITOR-V TRMR-CER 2.5/5PF 63V PC-MTG CAPACITOR-FXD 1PF +1PF 100WVDC CER	28480 28480 28480 00868 72982	0160-0576 0160-3875 0160-3873 55-TRIKO-04 2.5-5 PF-N033 8101-A112-C0K-1098
A21A1C11	0160-3879		CAPACITOR-FXD _01UF +=20% 100WVDC CER	28480	0160-3879
A21A1CR1 A21A1CR2 A21A1CR3 A21A1CR3 A21A1CR4	1901-0050 1901-0518 1901-0050 1901-0050	7	DICDE-SWITCHING 80V 200MA 2NS DO-7 Diode-Schottky Diode-Switching 80V 200MA 2NS DO-7 Diode-Schottky	28480 28480 28480 28480	1901-0050 1901-0518 1901-0050 1901-0518
AZIALKI	0490-1073		RELAY-REED 1A 250MA 120VAC 4.5VDC-COIL	28480	0490-1073
A21A1MP1 A21A1MP2	0363-0105 0363-0105	2	CONTACT Contact	28480 28480	0363-0105 0363-0105
A21A1Q1 A21A1Q2 A21A1Q3	1854-0210 1854-0210 1854-0210	1 g - 3 1	TRANSISTOR NPN 2N2222 SI TO-18 PD=500MW Transistor NPN 2N2222 SI TO-18 PD=500MW Transistor NPN 2N2222 SI TO-18 PD=500MW	04713 04713 04713	2N2222 2N2222 2N2222
A21A1R1 A21A1R2 A21A1R3 A21A1R3 A21A1R4 A21A1R5	0698-7241 2100-1986 0683-1055 0698-7277 0698-7212	1 1 5	RESISTOR 1.62K 1% .05W F TC=0+-100 RESISTOR-TRMR 1K 10% C TOP-ADJ 1-TRN RESISTOR 1M 5% .25W FC TC=-800/+900 RESISTOR 51.1K 1% .05W F TC=0+-100 RESISTOR 100 1% .05W F TC=0+-100	24546 73138 01121 24546 24546	C-3, T-0 62-206-1 C01055 C3-1/8-T0-5112-G C3-1/8-T0-100R-G
A21A1R6 A21A1R7 A21A1R6 A21A1R6 A21A1R9 A21A1R10	0683-0275 0698-7277 0698-7236 0698-7229 0698-7229	3	RESISTOR 2.7 5% .25W FC TC=-400/+500 RESISTOR 51.1K 1% .05W F TC=0+-100 RESISTOR 1K 1% .05W F TC=0+-100 RESISTOR 511 1% .05W F TC=0+-100 RESISTOR 511 1% .05W F TC=0+-100	01121 24546 24546 24546 24546	C927G5 C3-1/8-T0-5112-G C3-1/8-T0-1001-G C3-1/8-T0-511R-G C3-1/8-T0-511R-G
A21A1R17	0757-0346		RESISTOR 10 1% _125W F TC=0+-100	24546	C4=1/8+T0=10R0-F
A21A1U1	1826-0026	2	IC LM 311 COMPARATOR	27014	LM311H
A21A1VR1 A21A1VR2 A21A1VR3	1902-0554 1902-0244 1902-0554	2	DIODE-ZNA 10V 5% D0-15 PD=1W TC=+.06% DIODE-ZNA 30.1V 5% D0-15 PD=1W TC=+.075% DIODE-ZNA 10V 5% D0-15 PD=1W TC=+.06%	28480 28480 28480	1902-0554 1902-0244 1902-0554
A22	08640-60177	1	REGULATOR ASSY, +20V & -20V	28480	05640-60177
A22C1 A22C2 A22C3	0180-0229 0160-3534 0160-0158	5	CAPACITOR-FXD 33UF+-10% 10VDC TA Capacitor-FXD 510PF +-5% 100WVDC MICA Capacitor-FXD 5600PF +-10% 200WVDC POLYE	56289 28480 56289	1500336x901082 0160-3534 292P56292

• (A22C3	0160-0158 2	CAPACITOR-FXD 5600PF +-10% 200WYDC POLYE	56289	292P56292
	A22C4	0180-0058	Capacitor-FXD 50UF+75-10% 25VDC AL	56289	30D504002 5CC 2
	A22C5	0180-0229	Capacitor-FXD 33UF+-10% 10VDC TA	56289	150D336X901082
	A22C6	0160-3534	CAPACITOR-FXD 510PF +-5% 100WVDC MICA	28480	0160-3534
	A22C7	0160-0158	CAPACITOR-FXD 5600PF +-10% 200WVDC POLYE	56289	292856292
	A22C8	0180-0058	CAPACITOR-FXD 50UF+75-10% 25VDC AL	56289	30D506G025CC2
	A22CR1 A22CR2 A22CR3 A22CR4 A22CR4 A22CR5	1901-0025 1901-0159 1901-0050 1901-0025 1901-0025	DIOCE-GEN PRP 100V 200MA DO-7 DIODE-PWR RECT 400V 750MA DO-41 CIODE-SWITCHING 80V 200MA 2NS DO-7 DIODE-GEN PRP 100V 200MA DO-7 DIODE-SWITCHING 80V 200MA 2NS DO-7	28480 04713 28480 28480 28480 28480	1901=0025 \$R1358=4 1901=0050 1901=0025 1901=0050
· · ·					

and an and the second amount of the

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number	•
A22CR6	1901-0159		DIGDE-PWR RECT 400V 750MA DO-41	04713	SR1358-4	
A22DS1 A22DS2	1990-0320		LED-VISIBLE LUM-INT=300UCD IF=50MA+MAX LED-VISIBLE LUM-INT=300UCD IF=50MA-MAX	28480 28480	1990-0326 1990-0326	• 12
A22F1 A22F2	2110-0424 2110-0424	2.	FUSE .75A 125V SLO-BLO .25X.27 Fuse .75A 125V SLO-BLO .25X.27	71400 71400	GMW 3/4A GMW 3/4A	
A22MP1 A22MP2	4040-0748 1480-0073 4040-0754 1480-0073	1,	EXTRACTOR-PC BD BLK POLYC .062-BD-THKNS PIN:DRIVE 0.250" LG EXTRACTOR-PC BD BLU POLYC .062-BD-THKNS PIN:DRIVE 0.250" LG	28480 00000 28480 00000	4040=0748 ORD 4040=0754 OBD	
A22Q1 A22Q2 A22Q3	1084-0012 1854-0232 1200-0173 1854-0232 1200-0173		THYRISTOR-SCR JEDEC 2N3528 TRANSISTOR NPN 3I TO-39 PD=1W FT=15MHZ INSULATOR-XSTR TO-5 .075+THK TRANSISTOR NPN SI TO-39 PD=1W FT=15MHZ INSULATOR+XSTR TO-5 .075-THK	02735 28480 28480 28480 28480	2N3528 1854-0232 1200-0173 1854-0232 1200-0173	
A2204	1884=0012		THYRISTOR-SCR JEDEC 2N3528	02735	2N3528	
A22R1 A22R2 A22R3 A22R4 A22R4 A22R5	0698-0085 0757-0280 0698-3154 0757-0401 0698-0084		RESISTOR 2.61K 1X .125W F FC=0+-100 RESISTOR 1K 1X .125W F TC=0+-100 RESISTOR 4.22K 1X .125W F TC=0+-100 RESISTOR 100 1X .125W F TC=0+-100 RESISTOR 2.15K 1X .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-2611-F C4-1/8-TG-1001-F C4-1/8-T0-4221-F C4-1/8-T0-101-F C4-1/8-T0-2151-F	
A22R6 A22R7 A22R8 A22R9 A22R9 A22R10	0757-0438 2100-3123 0683-0275 0698-3132 0757-0397		RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR-TRMR 500 10% C SIDE-ADJ 17-TRN RESISTOR 2.7 5% .25W FC TC=-400/+500 RESISTOR 261 1% .125W F TC=0+-100 RESISTOR 68.1 1% .125W F TC=0+-100	24546 32997 01121 24546 24546	C4-1/8-T0-5111-F 3006P-1-501 C827G5 C4-1/8-T0-2610-F C4-1/8-T0-68R1-F	· .
A22R11 A22R12 A22R13 A22R14 A22R14 A22R15	0698-3447 0811-1668 0757-0278 0698-0085 0757-0280	2	RESISTOR 422 1% .125W F TC=0+-100 RESISTOR 1.5 5% 2W PW TC=0+-400 RESISTOR 1.78K 1% .125W F TC=0+-100 RESISTOR 2.61K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	24546 75042 24546 24546 24546	C4-1/8-T0-422R-F BWH2-1R5-J C4-1/8-T0-1781-F C4-1/8-T0-2611-F C4-1/8-T0-1001-F	•
A22R16 A22R17 A22R18 A22R19 A22R20	0698-3154 0757-0401 0757-0438 2100-3123 0598-0084		RESISTOR 4.22K 1X .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 5.11K 1X .125W F TC=0+-100 RESISTOR-TRMR 500 10% C SIDE-ADJ 17-TRN RESISTOR 2.15K 1X .125W F TC=0+-100	24546 24546 24546 32997 24546	C4-1/8-T0-4221-F C4-1/8-T0-101-F C4-1/8-T0-5111-F 3006P-1-501 C4-1/8-T0-2151-F	
A22R21 A22R22 A22R23 A22R24 A22R24 A22R25	0683-0275 0698-3132 0757-0397 0698-3447 0811-1668		RESISTOR 2.7 5% .25W FC TC=-400/+500 RESISTOR 261 1% .125W F TC=0+-100 RESISTOR 65.1 1% .125W F TC=0+-100 RESISTOR 422 1% .125W F TC=0+-100 RESISTOR 1.5 5% 2W PW TC=0+-400	01121 24546 24546 24546 75042	CB27G5 C4-1/8-T0-2610-F C4-1/8-T0-68R1-F C4-1/8-T0-422R-F BWH2-1R5-J	•••
A22R26 A22R27 A22R28	0698-7260 0698-721) 0757-0278		RESISTOR 10K 1% ,05W F TC=0+=100 RESISTOR 10K 1% ,05W F TC=0+=100 RESISTOR 1.78K 1% ,125W F TC=0+=100	24546 24546 24546	C3-1/8-T0-1002-G C3-1/8-T0-1002-G C4-1/8-T0-1781-F	
A22TP1 A22TP2 A22TP3 A22TP4 A22TP5	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514 0360-1514		TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG	28480 28480 28480 28480 28480 28480	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514 0360-1514	
A22TP6 A22TP7 A22TP8 A22TP9 A22TP9 A22TP10	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514		TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG	28480 28480 28480 28480 28480 28480	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514	
A22U1	1826-0177 1826-0177		IC UA 723 V RGLTR IC UA 723 V RGLTR	15818 15818	7238E 7238E	
A22VR1 A22VR2 A22VR3 A22VR4 A22VR4	1902-0202 1902-3256 1902-0761 1902-0202 1902-3256	5	DIODE-ZNR 15V 5% DO-15 PD=1W TC=+,057% DIODE-ZNR 23,7V 5% DO-7 PD=,4W TC=+,076% DIODE-ZNR 1N821 6,2V 5% DO-7 PD=,25W DIODE-ZNR 15V 5% DO+15 PD=1W TC=+,057% DIODE-ZNR 23,7V 5% DO-7 PD=,4W TC=+,076%	28480 04713 04713 28480 04713	1902=0202 9Z 10939-290 1N821 1902-0202 8Z 10939-290	
A22VR6	1902-0761		DIODE-ZNR 18821 6.2V 5% DO-7 PD=.25W	04713	11.951	
A22XF1A A22XF1B A22XF2A A22XF2B	1251-2313 1251-2313 1251-2313 1251-2313 1251-2313		CONNECTOR-SGL CONT SKT .04-DIA Connector-SGL Cont Skt .04-DIA Connector-SGL Cont Skt .04-DIA Connector-SGL Cont Skt .04-DIA	00779 00779 00779 00779	3-332070-5 3-332070-5 3-332070-5 3-332070-5	
A23	08641=50192	. 1	MODULATION MODE/ FREQUENCY SWITCH	28480	08641-60192	•
A2 3MP 1 A2 3MP 2 A2 3MP 3 A2 3MP 4 A2 3MP 5	2200-0113 3050 0105 0380-0020 0380-0011 2190-0018	2 2 2 4 4	SCREW-4-40 .625-IN-LG PAN-HD-POZI WASHER-FLAT MTLC NO.4 .125-IN-ID STANDOFF-RND .25-IN-LG .128-ID.188-OD BRS SPACER-RND .75-IN-LG.18-ID.25-OD BRS NI WASHER-LOCK HLCL NO.6 .141-IN-ID	28480 28480 76854 28480 28480 28480	2200-0113 3050-0105 2295-616 0380-0011 2190-0018	

Model 8640M

•

1

1 1

×γ

novement and a second second

6-31

b.

 ~ 10

, ,

Ę.

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A2 3MP6 A2 3MP7 A2 3MP8 A2 3MP9 A2 3MP9	2360-0139 0510-0005 3050-0103 1450-0019 08640-20249	2 2 2 2 2	SCREW-MACH 6-32 2-IN-LG PAN-HD-POZI RETAINER-RING .25-DIA CD PL STL WASHER-FLAT MTLC NO.12 .25-IN-ID SPRING-COMPRESSION .384-IN-OD.375-IN-LG SWITCH ROTOR CONTACTS	28480 0018A 28480 28480 28480 28480	2360-0139 1400-25-CD 3050-0103 1460-0019 08640-20249
A 2 3MP 1 1 A 2 3MP 1 2	08641-00054 3130-0525	1	DETENT PLATE Shaft index assembly	28480 28480	08641-00054 3130-0525
A23A1	08641-60235	· 1	MODULATION MODE SELECT	28480	08641-60235
A23A1MP1 - 5	1251-0600		CONTACT-CONN U/W-POST-TYPE MALE DP5LDR	28480	1251-0600
A23A1R1	0757-0420	· .	RESISTOR 750 1% .125W F TC=0+-100	24546	C4-1/8-TO-751-F
A23A1W1	8120-2384	1	CABLE ASSEMBLY	28480	8120-2384
A23A2	08641-60236	1	MODULATION FREQUENCY	28480	08641-60236
A23A2R1 A23A2R2 A23A2R3 A23A2R3 A23A2R4 A23A2R4	0698-3160 0698-8272 0757-0479 0757-0453 0698-8272	2	RESISTOR 31.6K 1% ,125W F TC=0+-100 RESISTOR 157K 1% ,125W F TC=0+-100 RESISTOR 392K 1% ,125W F TC=0+-100 RESISTOR 30.1K 1% ,125W F TC=0+-100 RESISTOR 157K 1% ,125W F TC=0+-100	24546 19701 19701 24546 19701	C4-1/8-T0-3162-F MF4C1/8-T0-1573-F MF4C1/8-T0-3923-F C4-1/8-T0-3012-F MF4C1/8-T0-1573-F
AZJAZRO	0757-0479		RESISTOR 392K 1% ,125W F TC=0++100	19701	MF4C1/8-TU-3923-F
A23A2MP1 - 3	0362-0227	3	TERMINAL-CRIMP QDISC-FEM 30-24-AWG	28480	0362-0227
A23A2W1	8120-2385	· · · ·	CABLE ASSEMBLY	28480	8120-2385
		С.			
A23A3	08641-60237	· 1 ·	MODULATION LEVEL POT	28480	08641-60237
A23A3R1 A23A3R2	2100-2729 0757-0421	1	RESISTOR-VAR CONTPOL C 2.5K 20% LIN Resistor 825 1% .125W F TC#0++100	11236 24546	550 C4-1/8-T0-825R-F
				1997 - 1997 1997 - 1997	
· · · · · · · · · · · · · · · · · · ·					
A24	08640-60007	1	SERIES REGULATOR SOCKET ASSY	28480	08640-60007
A24MP1 A24MP2	0403-0152 0361-0009	1	GUIDE-PC BD BLK POLYC .062-BD-THKNS 1-LG Rivet, semitubular oval HD 0.188" LG	28480 00000	040 3-0152 OBD
A24XQ1 A24XQ2 A24XQ3 A24XQ4	1200-0041 1200-0041 1200-0041 1200-0041	4	SOCKET-XSTR 2-CONT TO-3-PKG Socket-XSTR 2-CONT TO-3-PKG Socket-XSTR 2-CONT TO-3-PKG Socket-XSTR 2-CONT TO-3-PKG	22753 22753 22753 22753 22753	PTS-1 PTS-1 PTS-1 PTS-1
A25	North Constant and States an	i.	NOT ASSIGNED	$x_{i} \in \mathbb{R}^{n}$	
				· ·	
A26	08641-00198	1. 	AM/AGC & RF AMPLIFIER (See Service Smeet F) (DOES NOT INCLUDE A2601,02)	28480	08643-60198
A26C1 A26C2 A26C3 A26C4 A26C5	0160-2049 0160-2049 0160-3219 0160-3219 0160-3219 0160-2049	3	CAPACITOR-MOTHRU 5000PF +80 -20% 500V CAPACITOR-FOTHRU 5000PF +80 -20% 500V CAPACITOR-FOTHRU 100PF 20% 500V (CERAMIC CAPACITOR-FOTHRU 100PF 20% 500V (CERAMIC CAPACITOR-FOTHRU 2000PF +80 -20% 500V	28480 28480 28480 28480 28480 28480	0160-2049 0160-2049 0160-3219 0160-3219 0160-3219
A26C6 A26C7 A21C8 A26C3 A26C3 A26C1	0160-2049 0160-2049 0160-2049 0160-2049 0160-2049 0160-2049		CAPACITOR-FOTHPU 5000PF +80 -20% 500V CAPACITOR-FUTHRU 5000PF +80 -20% 500V CAPACITOR-FUTHRU 5000PF +80 -20% 500V CAPACITOR-FUTHRU 5000PF +80 -20% 500V CAPACITOR-FUTHRU 5000PF +80 -20% 500V	25480 28480 28480 28480 28480 28480	0160-2049 0160-2049 0160-2049 0160-2049 0160-2049

420010	0100-2044	CAPACITUR FUTHED SUDUPP TOU FECA SUDY	20400	0100-2044	
A26C11 A26C12 A26C13 A26C14 A26C15	0160-3961 1 0160-3219 0160-2049	NOT ASSIGNED NOT ASSIGNED Capacitor=Fothru 56PF 20% 500V ceramic Capacitor=Fothru 100PF 20% 500V ceramic Capacitor=Fothru 5000PF +80 -20% 500V	28480 28480 28480	0160=3961 0160=3219 0160=2049	
A26C16 A26C17 A26C18	0160-2049 0160-2152 2 0160-2152 2	CAPACITOR-FOTHRU SOCOPF +80 -20% 500V Capacitor-Fothru 10PF 20% 500V ceramic Capacitor-Fothru 10PF 20% 500V ceramic	28480 28480 28480	0160-2049 0160-2132 0160-2152	

.

3

. i '

ĴĻ

31

ĵ,

et the lot

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A26J1 A26J2	1250-0829		CONNECTOR-RF 3MC M SGL-HOLE-FR 50-0HM NSR, P/O A26W4	98291	50-045-4610
A20L1 A20L2 A20L3 A26L4 A26L5	9100-1620 9100-1621 9100-1620 9100-1620 9100-1620 9100-1620	1	COIL-MLD 15UH 10% G=65 .155DX.375LG COIL-MLD 18UH 10% G=75 .155DX.375LG COIL-MLD 15UH 10% G=75 .155DX.375LG COIL-MLD 15UH 10% G=65 .155DX.375LG COIL-MLD 15UH 10% G=65 .155DX.375LG	24226 24226 24226 24226 24226 24226	15 152 15/182 15/152 15/152 15/152
A26L6 A26L7 A26L8	9140-0178 9100-1620	1	NO7 ASSIGNED COIL-MLD 12UH 10% Q=65 .155DX,375LG COIL-MLD 15UH 10% Q±65 .1550X.375LG	24226 24226	15/122, 15/152
A26MP1 A26MP2 A26MP3 A26MP4 A26MP5	6160-0218 8160-0222 8160-0223 6160-0224 68640-00012	1 1 1 1 1	RFI STRIP NI ALY .782-W 4.728-L RFI STRIP NI ALY 2.027-W 3.053-L RFI STRIP NI ALY 1-W 2.196-L GASKET:MOD BOTTOM LOVER COVER, ACCESS	28480 28480 28480 28480 28480 28480	8160-0218 8160-0222 8160-0223 8160-0224 08640-00\$12
A26MP6 A26MP7 A26MP8 A26MP9 A26MP10	08640-00018 08640-20263 08640-20264 08640-00013	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COVER, FILTER MODULE NOT ASSIGNED CASTING, MODULE COVER, BOTTOM MODULE COVER, AMPLIFIER FILTER (EXCEPT OPTION 002. FOR OPT 002, SEE SECOND A26 LISTING, A26A1MP1).	28480 28480 28480 28480 28480	08640-20263 08640-20263 08640-20264 08640-00013
A26MP11 A26MP12 A26MP13 A26MP14 A26MP15	0403+0153 0403-0156 0403-0157 1250-1423		GUIDE-PC BD ARN POLYC .062-BD-THKNS 1+LG GUIDE-PC BD YEL POLYC .062-BD-THKNS 1+LG GUIDE-PC BD GRN POLYC .062-3D-THKNS 1-LG NOT ASSIGNED CAP-COAX TO FIT F-BNC NON-SHTG 2.5-CH	28480 28480 28480 28480	0403-0153 0403-0154 0403-C157 28PC107-1
A26MP10 A26MP17 A26MP18	2200-0107 2950-0035 2190-0068	1	SCREW-MACH 4-40 "375-IN-LG PAN-HD-POZI NUT-HEX-DOL-CHAM 15/32-32-THD .078-THK WASHER-LK INTL T NO1/2 .505-IN-ID	28480 26480 78189	2200+0107 2950+0039 1924+02
A26MP19 A26MP20	1251-3231	5	CONNECTOR; PC EDGE; 15-CONT; WIRE WRAP	28480	1251-3231
A26MP21 A26MP22 A26MP23 A26MP24	2200-0107 1251-1886 2200-0107	6	SCREW-MACH 4-40 .375-IN-LG PAN-HD-POZI CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS NOT ASSIGNED SCREW-MACH 4-40 .375-IN-LG PAN-HD-POZI	28480 71785 28480	2200-0107 252-15-30-340 2200-0107
A26MP26 A26MP26 A26MP27 A26MP28 A26MP29 A26MP30	0520-0173 2360-0203 2140-0018 3050-0066 2360-0203	4 4	SCREW-MACH 2-56 .188-IN-LG PAN-HD-POZI NOT ASSIGNED SCREW-MACH 5-32 .625-IN-LG PAN-HD-POZI WASHER-LK HLCL NO.+6 .141-IN-ID WASHER-FL MTLC NO.+6 .147-IN-ID SCREW-MACH 6-32.625-IN-LG PAN-HD-POZI	28480 28480 28480 28480 28480 28480	0520#0173 2360=0203 2190=0018 3050=0066 2360=0203
A26MP31 A26MP32 A26MP33 A26MP34 A26MP35	2190-0018 3050-0066 68640-00002 2200-0105 2950-0078	2	WASHER-LK HLCL NO6 .141-IN-ID WASHER-FL MIC NO6 .147-IN-ID HEAT SINK, MICROCIRCUITS SCREW-MACH 4-40 .312-IN+LG PAN-HD-POZI NUT-HEX-DBL-CHAM 10-32+THD .067-THK	28480 28480 28480 28490 74183	2190=0018 3050=0066 08640=00002 2200=0105 500220
A26MP36 A26MP37 A26MP38 A26MP39 A26MP39 A26MP40	2190-0124 2950-0078 2190-0124 2950-0078 2190-0124 2950-0078		ASHER-LK INTL T NO10 195-IN-ID NUT-HEX-DBL-CHAM 10-32-THD 067-THK WASHER-LK INTL T NO10 195-IN-ID NUT-HEX-DBL-CHAM 10-32-THD 067-THK WASHER-LK INTL T NO10 195-IN-ID	74163 74163 74163 74163 74163	500222 500220 500222 500222 500220 500222
A26MP41 A26MP42 A26MP43 A26MP44 A26MP45	2950-0078 2190-0124 2200-0105 2200-0107 2200-0107		NUT+HEX-OBL-CHAM 10-32+THD .007+THK WASHER-LK INTL T NC10 .195+IN+ID SCREW-MACH 4-40 .312+IN+LG PAN-HD-PDZI SCREW-MACH 4-40 .375-IN+LG PAN-HD+PDZI SCREW-MICH 4-40 .375+IN+LG PAN-HD-PDZI	74163 74153 28480 28480 28480	500220 500222 2200~105 2200~0:07 2200+0107
A26MP46 A26MP47 A26MP48	2200-0107 2190-0034 2200-0105		SCREW-MACH 4-40 .375-IN-LG PAN-HD-FORT WASHER-LK HLCL NU10 .194-IN-ID SCREW-MACH 4-40 .312-IN-LG PAN-HD-PC71	28480 28480 28480	2200-0107 2190-0034 2200-0105
A2681	0757-0159		RESISTON 1K 1X .5W F TC=0+-100	19701	MF7C1/2-T0-1A0-F
42601 42602	08640-67002		OUTPUT AMPLIFIER Modulator preamplifier	28480 28480	0.8640=67002 08640=67003
A26W1 A26W2 A26W3 A26W3	6120-1889 6120-1887 8120-1887 8120-1905 8120-1892	1 1 1 1	CABLE-COAX .086-0D CABLE-COAX 50 DHM .086-0D CABLE-COAX .086-0D CABLE-COAX .086-0D	28480 28480 28480 28480 28480	8120-1889 8120-1887 8120-1905 8120-1892
A26A1	08640-60043	1	PCWER AMPLIFIER & AGC DETECTOR A33Y (EXCEPT OPTION 002. FOR OPT 002, SEE Second A26 LISTING.) (Includes A26W1 And A26W2)	28480	08040-60643
A26A1C1 A26A1C2 A26A1C3 A26A1C4	0160-3094 0160-3094 0160-3094 0160-2209		CAPACITOR-FXD .10F +-10% 100WVDC CER CAPACITOR-FXD .10F +-10% 100WVDC CER CAPACITOR-FXD .10F +-10% 100WVDC CER CAPACITOR-FXD 360PF +-5% 300WVDC MICA CAPACITOR-FXD 100PF +-5% 300WVDC MICA	28480 28480 28480 28480 28480	0160-3094 0160-3094 0160-3094 0160-2209 0160-2204

See introduction to this section for ordering information. . ¹

 $\dot{\Phi}_{i}e$

ð., '

616 7**6-1-** 10 No. 10 No. B INDREAUSCITYNAU'A

 i_{i}^{i}

,∮

b

 $^{\prime}$.

n. Ny 1

6-32

Model 8640M

Table 5-3. Replace Die Parts

	Reference Designation	HP Part Number	Qt:	Description	Mfr Code	Mfr Part Number	
	A2641C6	C180-0197		CAPACITOR-FXD 2.2UF+-10% 20VDC TA	56289	150D225x9020A2	
	A24A1CH1 A26A1CH2 A26A1CH3 A26A1CH3 A26A1CH4 A26A.CH5	1901-0040 1901-0022 1901-0040 1901-0040 1901-0040	c. (DTODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ST BISTOR 10V 250MA DIODE-STITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480 28480	1901-0040 1901-0022 1901-0040 1901-0040 1901-0040	
	A26A1CR6 ;	1901-0539		DIODE -SCHOTTKY	28440	1901-0539	
	A2641L1 A2641L2	9100-1520 9140-016J	.t	COIL- D 15UH 10% 0=65 .155DX.375LG COIL-MLD 2.7UH 10% 0=33 .155DX.375LG	24226 24226	15/152 · · · · · · · · · · · · · · · · · · ·	
	A26A101 A26A102 A26A103 A26A104 A26A104 A26A105	1,853-0007 1855-0049 1855-0020 1853-0007 1854-0071	1	TRANSISTOR PNP 2N3251 31 TO-18 PD#360MW TRANSISTOR-JFET DUAL N-CHAR SHOOE SI TRANSISTOR J-FET N-CHAN SHODE TO-18 SI TRANSISTOR PNP 2N3251 SI TO-18 PD#360MW TRANSISTOR NPN 31 PD#300MN FT#200MHZ	04713 26480 28480 04713 28480	2N3251 1855-0044 1855-0020 2N3251 1854-0072	
	A26A106 A26A107 A26A108 A26A109	1854-0071 1854-0071 1854-0071 1854-0071		TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ	26490 26480 28480 28480 28480	1854-0071 1854-0071 1854-0071 1854-0071 1854-0071	
	A26A1R1 A26A1R2 A26A1R2 A26A1R1 A26A1R4 A26A1R5	0698-3447 (0698-3446 0757-0420 0757-0317 (,757-0420		RF 19TOA 427 13 .125W F TC=0+=100 RESISTOR 381 11 .125W F TC=0+=100 RESISTOR 750 11 .125W F TC=0+=100 RESISTOR 1.35K 11 .125W F TC=0+=100 RESISTOR 750 11 .125W F TC=0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-422R-F C4-1/8-T0-383R-F C4-1/8-T0-751-F C4-1/8-T0-2331-F C4-1/8-T0-751-F	
	A26A1R6 A26A1R7 A26A1R8 A26A1R9 A26A1R10	0757-0280 0757-0441 0698-3443 0757-0199 0757-0199		RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 8.25K 1% .125W F TC=0+=100 RECISTOR 287 1% .125W F TC=0+=100 RESISTOR 21.5K 1% .125W F TC=0+=100 RESISTOR 21.5K 1% .125W F TC=0+=100	24546 24546 24546 24546 24546	C4=1/8+T0=1001=F C4=1/8+T0=0251=F C4=1/8+T0=2437R=F C4=1/8=T0=2152=F E4=1/8=T0=2152=F	
	A20A1R11 A20A1R12 A20A1H13, A24A1R14 A26A1R15	0757-0458 043-3155 0698-3450 0698-3450 0698-3450 0683-1055		RESISTOR 51.1K 12 .125W F. TC=L -100 RESISTOR 3.34/5% .25W FC TC=-100 RESISTOR 3.34/5% .25W FC TC=-900/+1100 RESISTOR 32.2K 1% .125W F TC=0+-100 RESISTOR 42.2K 1% .175W F TC=0+-100 RESISTOR 1M 5% .25W FC TC=-800/+900	24546 01121 24546 24546 01121	C4-1/8-T0-5112-F C83355 C4-1/8-T0-4222-F C4-1/8-T0-4222-F C81055	
	4 A26A1R16 A26A1P17 A2641R18 A26A1R19 A26A1R20	0658-3438 0698-3132 0757-0438 2100-2601 0757-6442		PESIS/OR 147 1X 135W F TC=0+=100 RESISTOR 261 1X 125W F TC=2+=100 RESISTOR 5.11K 1X 125W F TC=0+=100 RESISTOR 5.11K 1X 125W F TC=0+=100 RESISTOR TRMP/200 10X C TDP=00J 1=TRN RESISTOR 10Y 1X 125W F TC=0+=100	24546 24546 24546 73138 24546	C4-1/8+T0-147R-F C4-1/8-T0-2010-F C4-1/8-T0-5111-F 62-204-1 C4-1/8-T0-1002+F	
1	A2641R21 A2641R22 A2641R23	1698-7233 1698-7272 0683-1272	$-\frac{1}{f}$	RESISTUR 750 12 .05W P/TC=0+-100 PESISTOR 31.6K 13 .05W 7 TC=0+-100 AESISTOR 14 5% .25W FC TC=-8002+900	24546 24546 01121	C3-1/8-70-750R-C C3-1/8-70-3162-G C81055	
	A26A1TR1	0360-1514		TERMINAL-STUD SGL-PIN PRESS-MTG	26460	0360-1514 013-2061-09-0 479	
allan an Ar Allan an Ar Allan an Ar	A26A1TP2	1902-0184	j 2	TERMINAL-STUD DEL-TUR PRESS-MTG DIODE-ZNA 10.2V 5% DO-7 PD= 44 TC=+.000%	04713	52 10939-242	
	A26A1XA26U1A-E	1902-0048		DIODE-ZNR 6.01V 5% DO-7 PDR.4W TCR+.043% CUNNECTOR-86L CONT SKT .033-IN-80C-52	04713	SZ 10939-134	
	A'24A2	UB440-60015	1	AM OFFRET & PULSE SWITCHING ASSY	28480	08640-60014	
	A26A2C1 A26A2C2 A26A2C3 A26A2C3 A26A2C4 A26A2C5	0180-0291 0180-0291 0180-0291 0180-0291 0180-0291 0180-0291 0180-3450	2	CAPACITOR-FXD 1UF-102 35VDG TA CAPACITOR-FXD 1UF+-10X 35VDG TA CAPACITOR-FXD 1UF+-10X 35VDC TA CAPACITOR-FXD 1UF+-10X 35VDC TA CAPACITOR-FXD 1UF+-10X 35VDC TA CAPACITOR-FXD 5000PF +-1 2 259WVDC CER	56289 56289 56289 56289 56289 28483	1500105X9035A2 1500105X9035A2 1500105X9035A2 1500105X9035A2 1500105X9035A2 0160=3450	
	A26A2C6 A26A2C7 A26A2C8 A26A2C9 A26A2C9 A26A2C10	0140-0161 0160-3450 0180-1743 0180-0100	Ż	CAPACITOR-1XD GIUF + 10X 2054VDC POLYE CAPACITOR-FXD 5000PF +-10X 250WJPC CER CAPACITOR-FXD 10F+-10X 35VDC TA NOT, ASSIGNED CAMACITOR-FXD 4.74P+-10X 35VDC TA	54289 28480 56289 56289	292910392 0160-3450 150D104×9035/ 150D475×9035/	
	A26A2C11 A26A2C12	0180-0116		CAPACITO7-FX0/6.GUF++10% 35VDC T4 CAPACITOR-FX0 117+-10% 35VDC TA	56289	1500485×902.32 1500105×903/A2	
	A26A2CR1 A26A2CR2 A26A2CR3 A26A2CR3 A26A2CR4 A20A2CR4	1901-0022 1901-0022 1901-0022 1901-0022		DIDDE-STABISTOR 10V 250MA DIODE-STABISTOR 10V 250MA DIODE-STABISTOR 10V 250MA DIODE-STABISTOR 10V 250MA DIODE-STABISTOR 10V 250MA NUT ASSIGNED	28480 28480 28480 28480	1901-0022 1901-0022 1901-0022 1901-0022	
	A26A2CR6 A26A2CR7 A26A2CR7 A26A2CR8 A26A2CR9	1901-0040		NYY ASGIGNED DIODE-SWITCHING BUV, 50MA 2NS DO-35 Not Assigned Diode-Schottky	28480	1901-0539	
	A26A2CR10	1901-0040		DIODE-SWITCHING BOV SOMA 2NS DD-35	28489 	1901-0040	
			See in	troduction to this section for ordering informat	ion (6-33	
1977 - S. S. 1977 - S.						and the second	

> · · · · · · ·

> > Ú.

.t

11.11

in unital interior

6-34

NACE CEL MARSHING COMPLETEN

14

- 1

ener albertise

areas Constraints and the State State State

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A26A2CR11 A26A2CR12 A26A2CR12 A26A2CR13 A26A2CR14 A26A2CR15	1901-0040 1901-0040 1901-0539 1910-0022 1910-0022	1. 	DIODE-SWITCHING JUV SOMA 2NS DO-35 DIODE-SWITCHING JUV SOMA 2NS DO-35 DIODE-SCHUTTKV DIODE-GE 5V GONA 3.5NS DO-7 DIODE-GE 5V 60NA 3.5NS DO-7	28480 28483 26480 28480 28480 28480	1901-0040 1901-0040 1901-0539 1910-0022 1910-0022
A26A2CR16 A26A2CR17 A26A2CR18	1710-0022 1901-2040 1910-0022		DICUE-GE 57 60NA 3.5NS DU-7 DICUE-SWITCHING 30V 50MA 2NS DU-35 DICUE-GE 57 60NA 3.5NS DU-7	20400 20400 20400 20400	1910-0022 1901-0022 1910-0022
A26'A2L1 A26A2L2 A26A2L3	9100-1641 9100-1641 9100-1620	1997 - 14 1997 - 14 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	COIL-MLD 2400H 5% 0=65 .1550%.375LG COIL-MLD 2400H 5% 0=65 .1550%.375LG COIL-MLD 150H 10% 0=65 .1550%.375LG	24226 24226 24226	15/243 15/243 15/152
A26A214P1	4040-0749 1480-0073 4040-0752 1480-0073		EXTR-PC BD BRN POLYC .062-BD-THENS PINIDRIVE 0.250" LG EXTR-PC BD YEL POLYC .062-BD-THENS PINIDRIVE 0.250" LG	20400 00000 28460 00000	4040-0749 OBD 4040-0752 OBD
A26A201 A26A202 A26A203 A26A204 A26A204 A26A205	1854-0221 1854-0404 1853-0034 1853-0034 //1854-0404		TRANSISTOR-DUAL NPN PD#750MW TRANSISTUR NPN SI TO-10 PD7360MW TRANSISTOR PNP SI TU-10 PD#360MW TRANSISTOR PNP SI TO-10 PD#360MW TRANSISTOR NPN SI TO-10 PD#360MW	28480 28480 28480 28480 28480 28480	1854-0221. 1854-0404 1853-0934 1853-0934 1853-0934 1854-0404
A26A206 A26A207 A26A208 A26A209	1854-0404 1854-0404 1853-0034 1853-0034		TRANSISTOR NPN SI TO-18 PD=360MW TRANSISTOR NPN SI TO-18 PD=360MW TRANSISTOR PNP SI TO-18 PD=360MW TRANSISTON PNP SI TO-18 PD=360MW	28480 28480 28480 28480	1854-0404 1854-0404 1853-0034 1853-0034
A26A2R1 A26A2R2 A26A2R3 A26A2R3 A26A2R4 A26A2R4	0757-0465 0757-0440 0757-0442 0757-0442 0757-0442 0698-3155		RESISTOR 100K 1% 125K F TC=0+-100 RESISTOR 7.5K 1% 125W F TC=0+-100 RESISTOR 10K 1% 125W F TC=0+-100 RESISTOR 10K 1% 125W F TC=0+-100 RESISTOR 10K 1% 125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/B-T0-1003-F C4-1/B-T0-7501-F C4-1/B-T0-1002-F C4-1/B-T0-1002-F C4-1/B-T0-1002-F C4-1/B-T0-4641-F
A26A2R6 A26A2R7 A26A2R8 A26A2R8 A26A2R9 A26A2R10	0757-0442 0757-0440 0757-0422 0757-0421 0757-0421 0757-0419		RESISTOR 10K 1X .125W F TC=0+-100 RESISTOR 7.5K 1X .125W F TC=0+-100 RESISTOR 909 1X .125W F TC=0+-100 RESISTOR 825 1X .125W F TC=0+-100 RESISTOR 6.81K 1X .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-7501-F C4-1/8-T0-409R-F C4-1/8-Y0-R25R-F C4-1/8-Y0-825R-F C4-1/8-Y0-6811-F
A26A2R11 A26A2R12 A26A2R13 A26A2R13 A26A2R14 A26A3R15	0737-0442 0757-0442 0757-0401 0757-0421 0757-0438		RESISTOR 10K 1% .125W F TC=0+=10C RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 100 1% .125W F TC=0+=100 RESISTOR 825 1% .125W F TC=0+=100 RESISTOR 5.11K 1% .125W F TC=0+=100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-101-F C4-1/8-T0-825R-F (4-1/8-T0-3111-F
A26A2R16 A26A2R17 A26A2R17 A26A2R18 A26A2R19 A26A2R19	0757-0280 0698-3440 0757-0438 2100-2413 0698-3157		RESISTOR 1K 1% .125W F TC=0+-100 REARSTOR 196 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR TRMR 200 10% C SIDE=ADJ 1-TRN RESISTOR 19.6K 1% .125W F TC=0+-100	24546 24546 24546 30983 24546	C4=1/8=T0+1001=F C4=1/8=T0=196R=F C4=1/8=T0=5111=F ET50X201 C4=1/8=T0=1962=F
A26A2R21 A26A2R22 A26A2R23 A26A2R24 A26A2R24 A26A2R25	0757-0416 0757-0394 0698-3162 0757-0438 0698-3162		RESISTOR 511 1X 125W F TC=0+-100 RESISTOR 51.1 1X 125W F TC=0+-100 RESISTOR 46,44 1X 125W F TC=0+-100 RESISTOR 5.11K 1X 125W F TC=0+-100 RESISTOR 40,4K 1X 125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T4-511R-F C4-1/8-T0-51R1-F C4-1/8-T0-4642-F C4-1/8-T0-5111-F C4-1/8-T0-5111-F C4+1/8-TC-4642-F
A26A2H26 A26A2R27 A26A2R28 A26A2R28 A26A2R29 A26A2R30	0757-0438 0698-0085 0698-3162 0698-3150 0737-0438		RESISTOR 5.11K 1% .125W F TC=0+=100 RESISTOR 2.61K 1% .125W F TC=0+=100 RESISTOR 46.4K 1% .125W F TC=0+=100 RESISTOR 2.37K 1% .125W F TC=0+=100 RESISTOR 5.11K 1% .125W F TC=0+=100	24546 24546 24546 24546 24546 24546	[4-1/8-T0-5111-F C4-1/8-T0-2611-F C4-1/8-T0-4642-F C4-1/8-T0-2371-F C4-1/8-T0-5111-F
A26A2R31 A26A2R32 A26A2R33 A26A2R33 A26A2R34 A26A2R35	0698-3154 0757-0438 0698-3450 0757-0289 0698-3447		RESISTOR 4.22K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 42,2K 1% .125W F TC=0+-100 RESISTOR 42,2K 1% .125W F TC=0+-100 RESISTOR 422 1% .125W F TC=0+-100	24546 24546 24546 19701 24546	C4-1/8-T0-4221+F C4-1/8-T0-5111-F C4-1/8-T0-4222=F MF4C1/8-T0-1332-F C4-1/8-T0-4228=F
A2642R36 A26A2R37 A26A2R38 A26A2R38 A26A2R39 A26A2R40	0698-0083 0757-0442 0757-0438 0698-0083 0698-3157		RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 19.6K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1961-F C4-1/8-T0-1002+F C4-1/8-T0-5111-F C4-1/8-T0-1961-F C4-1/8-T0-1961-F C4-1/8-T0-1962-F
A26A2TP1 A26A2TP2 A26A2TP3 A26A2TP3 A26A2TP4 A26A21P5	$\begin{array}{c} 0360 - 1514 \\ 0360 - 1514 \\ 0360 - 1514 \\ 0360 - 1514 \\ 0360 - 1514 \\ 0360 - 1514 \end{array}$		TERMINAL-STUD SGL-PIN PRESS-MYG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG	28480 28480 26480 28480 28480 28480	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514 0360-1514
A26A2TP6 A26A2TP7 A26A2TP8	0360-1514 0360-1514 0360-1514		TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG	28460 28460 28480	0360-1514 0360-1514 0360-1514
A26A2U1 A26A2U2 A26A2U3	1826-0114 1820-0448 1820-0579	10 10 10 10	IC UA 710 COMPARATOR IC-DIGITAL SN5400N TTL QUAD 2 NAND IC-DIGITAL SN74123N TTL DUAL	07263 01295 01295	71.0HM SN5400N SN/4123N

See introduction to this section for ordering information

がいだわい

• *

3.2MAXAK

)

6-35

ñ.,

the st

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
426A2NF1	1902-3139	1	DIODE-ZNR 8.25V 5% DO-7 PD=.4W TC=+.053	04713	SZ 10939-158
42643	08640-60016	1	MODULATOR ASSY (INCLUDES A26W3)	28480	08640-60016
A26A3C1 A26A3C2 A26A3C3 A26A3C3	0160-3074 0160-3094 0150-0048 0150-0048	4	CAPACITOR-FXD .1UF + 10% 100WVDC CER CAPACITOR-FXD .1UF + 10% 100WVDC CER CAPACITOR-FXD .22PF +-5% 500WVDC TI DIO CAPACITOR-FXD .22PF +-5% 500WVDC TI DIO	95121	0160-3094 0160-3094 TYPE GC TYPE GC TYPE GC
A26A'3C5	0150-0048/		CAPACITOR-FXD .22PF +-54 SOUWVOC TI DIO) CAPACITOR-FXD .22PF +-54 SOUWVOC TI DIO)		TYPE OC
A2643C6	0150+0048 08640=60163		MATCHED DIGDE SET	28480	08640-60163
A26A3CR1 A26A3CR2 A26A3CR3 A26A3CR4			(INCLUDES A26A3CR2 THRU 8, NEP) NSR, PART OF A26A3CR1. NSR, PART OF A26A3CR1. NSR, PART OF A26A3CR1.		
A26A3CR5 A26A3CR6 A26A3CR7 A26A3CR7 A26A3CR8			NSP, PART OF A26A3CR1. NSP, PART OF A26A3CR1. N , PART OF A26A3CR1. NSR, PART OF A26A3CR1.		
A26A3J1 A26A3J2	1250-1425	1.8	CONNECTOR-RF SMC M SGL HULE RR CONNECTOR-SGL CONT SKT .021-IN-PSC-SZ	2K497 00779	700177-1 3-331272-0
A26A31.1 A26A31.2	9100-1620		COIL-MLD 150H 10% 0#65 .1550%.3756G Coil-MLD 4.70H 10% 0#33 .1550%.3756G	24226 24226	15/152 15/471
A2UA3P1 A26A3P2 426A3P3 A26A3R4 A26A3R4 A26A3R5	0698-7227 0698-3132 0698-3132 0757-0416 0757-0416		RESISTOR 422 1% .05W F 7C#0+-100 RESISTOR 261 1% .125W F 7C#0+-100 RESISTOR 261 1% .125W F 7C#0+-100 PESISTOR 511 1% .125W F 7C#0+-100 RESISTOR 511 1% .125W F 7C#0+-100	24546 24545 24546 24546 24546	C3-1/8-T0-422R-G C4-1/8-T0-2610-F C4-1/8-T0-2610-F C4-1/8-T0-511R-F C4-1/8-T0-511R-F
A264311 A264372	08640-80003 08640-80003	5	BALUN ASSY Balun Assy	28480 28480	08640-80003 08640-80003
$ \begin{array}{c} T_{\rm eff} = \int_{0}^{\infty} \int_{0}^$			A26A3 MISCELLANEOUS	00779	1-331677-3
	1251-2229		CONNECTOR-SGL CONT SKT JUSS-DIA Connector-SGL Cont Skt .033-IN-BSC-SZ	00775	50864-3
A26A3XA26U1A-E	1251-2613	10	AGC AMPLIFIER ASSY	28480	08640-60337
A26A4C1 A26A4C2 A26A4C3 A26A4C4 A26A4C5	0180-0291 0180-0291 0190-0291 0190-0291 0160-2307 0160-2307		CAPACITOR-FXD 10F+-10X 35VDC TA CAPACITOR-FXD 10F+-10X 35VDC TA CAPACITOR-FXD 10F+-10X 35VDC TA CAPACITOR-FXD 10F+-10X 35VDC TA CAPACITOR-FXD 47PF +-5X 300WVDC MICA CAPACITOR-FXD 47PF +-5X 300WVDC MICA	56289 56289 56289 28480 28480	150D105X9035A2 150D105X9035A2 150D105X9035A2 150D105X9035A2 0160-2307 0160-2307
A26A~C6 A26A4C7 A20A4C8 A26A4C9 A26A4C10	$0160 - 3458 \\ 0180 - 0291 \\ 0160 - 0197 \\ 0160 - 0197 \\ 0160 - 0161 \\ 0760 - 0302 $	1	CAPACITOR-FXD 5000PF +-10% 250WVDC CER CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD .01UF +-10% 200WVDC POLYE CAPACITOR-FXD .018UF +-10% 200WVDC POLYE	28480 56289 56289 56289 56289	0140-3458 1500105X9035A2 1500225X9020A2 292P10392 292P18392
A26A4C11 A26A4C12 A26A4C13 A26A4C14 A26A4C14 A26A4C15	0160-0159 0140-0191 0180-2206 0160-0575 0160-0297		CAPACITOR-FXD 6800PF +-10% 200W DC POLYE CAPACITOR-FXD 56PF +-5% 300WVDC MICA CAPACITOR-FXD 600F+-10% 6VDC TA CAPACITOR-FXD .19F +-20% 50WVDC CEP CAPACITOR-FXD 1200PF +-10% 200WVDC POLYE	72136 56289 28480	292P68292 DM15E560J3300WV1CR 150D606X9006B2 0160~0576 292P12292
A2644C16 A2644C17	0100-3534	1.	CAPACITOR-FXD S10PF +-3% 100WVDC MICA CAPACITOR-FXD .02UF +-20% 100WVDC CER	28480	0160-3534 0160-3459
A26A4CR1 A7*A4CR2 A25A4CR3 A26A4CR4	1901-0040 1901-0040		DIODE-S. ITCAING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 NOT ASSIGNED NOT ASSIGNED	28480 28480	1901-0040 1901-0040
A36A4CR5 A26A4CR6 A26A4CR7 A26A4CR7 A26A4CR8 A26A4CR9	1901-0022 1901-0518 1901-0518 1901-0518 1901-0518		DIODE-STABISTOR 10V 250MA DIODE-STABISTOR 10V 250MA DIODE-SCHOTTKY DIODE-SCHOTTKY DIODE-SCHOTTKY DIODE-STABISTOR 10V 250MA	28480 28480 28480 28480 28480 28480	1901-0022 1901-0022 1901-0518 1901-0518 1901-0518 1901-0518
A26A4CR11 A26A4CR11 A26A4CR12 A26A4CR13 A26A4CR13 A26A4CR14	1901-0022 1901-0040 1531-0022 1901-0518 1902-0518		DIODE-SWITCHIN()30V 50MA 2NS DO-35 DIODE-SWITCHIN()30V 50MA 2NS DO-35 DIODE-SCHOTTKY DIODE-SCHOTTKY	28480 28400 20480 28480	1901-0040 1901-0022 1901-0518 1901-0518
A26A4L1 A26A4L2	9100-1641 9100-1641		COIL-MED 2400H 5% 0#65 .150DX.375LG CCIL-MED 2400H 5% 0#65 .155DX.375LG	24226 24226	15/243
A2\$44MP1 A26A4MP2	4040-0749 1480-0073 4040-0753 1480-0073		EXTR-PC 80 BRN POLYC .062-80+THKNS PINIDRIVE 0.250* LG EXTRACTOR-PC 80 GRN POLYC .062-80-THKNS PINIDRIVE 0.250* LG	28480 00000 28480 00000	4040-0749 CBD 4040-0753 CBD

See introduction to this section for ordering information

Э.

1

ý.

1,3

÷,

)

)

).

11 **1**2

7

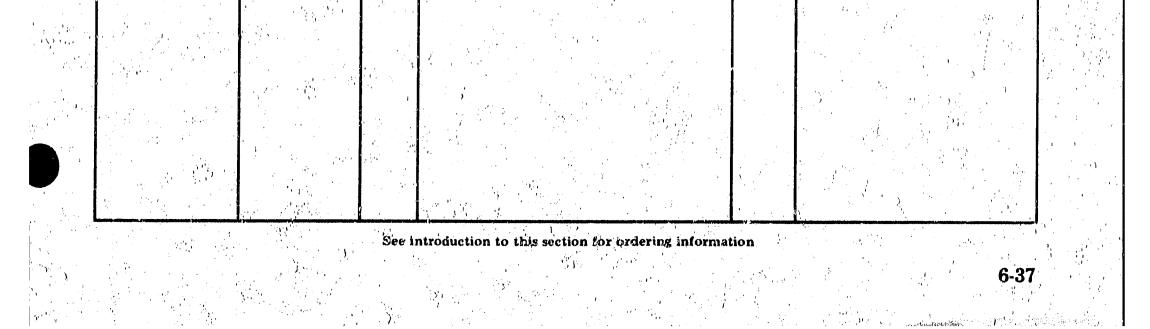

Í:

Table 6-3. Replaceable Parts

3.52

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A26A4G1 A26A4G2 A26A4G3 A26A4G4 A26A4G4	1854+0221 1854+0071 1853-0007 1854+0221 1853-0034		TRANSISTOR-DUAL NPN FD=7504W TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR PNP 2N3251 SI TO-18 PD=360MW TRANSISTOR-DUAL NPN PD=750MW TPANSISTOR PNP SI TO-18 PD=360MW	28480 28480 04713 28480 28480	1854-0221 1854-0071 2N3251 1854-0221 1853-0034
A26A406 A26A407 A26A408 A26A409	1854-0071 1853-0034 1854-0071		TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR PNP SI TO-18 PD=360MW NOT ASSIGNED TRANSISTOR NPN SI PD=300MW FT=200MHZ	20480 28480 28480	1854-0071 1853-0034 1854-0071
A26A4R1 A26A4R2 A26A4R3 A26A4R4 A26A4R4	2100-2521 0757-0401 0757-0290	1	RESISTOR-TRMR 2K 10% C SIDE-ADJ 1-TRN NOT ASSIGNED RESISTOR 100 1% .125% F TC=0+-100 RESISTOR 6.19K.1% .125% F TC=0+-100 NOT ASSIGNED	30983 24546 19701	ET50×202 C4-1/8-T0-101-F MF4C1/8-T0-6191-F
A26A4R6 A26A4R7 A26A4R8 A26A4R9 A26A4R10	0757-0440 0698-3154 0757-0440 0757-0465 0757-0442		RESISTOR 7.5K 1% .125W F TC=0+-100 RESISTOR 4.22K 1% .125W F TC=0+-100 RESISTOR 7.5K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-7501-F C4-1/8-T0-4221-F C4-1/8-T0-7501-F C4-1/8-T0-1003-F C4-1/8-T0-1003-F
A26A4R11 A26A4R12 A26A4R13 A26A4R14 A26A4R14	0757-0442 2100-2514 0698-3156 0757-0442 0698-3156		RESISTOR 10K 1% 125W F TC=0+-100 RESISTOR-TRMR 20K 10% C SIDE-ADJ 1-7RN RESISTOR 14.7K 1% 125W F TC=0+-100 RESISTOR 10K 1% 125W F TC=0+-100 PESISTUR 14.7K 1% 125W F TC=0+-100	24546 30985 24546 24546 24546	C4-1/8-T0-1002-F ET50W203 C4-1/8-T0-1472-F C4-1/8-T0-1002-F C4-1/8-T0-1472-F
A26A4916 A26A4917 A26A4918 A26A4919 A26A4919	0757-0438 0698-3453 0698-3153 0757-0464 0757-0438		RESISTOR 5.11K 1% .125W F 'TC=0+-100 RESISTOR 196K 1% .125W F 'TC=0+-100 RESISTOR 3.83K 1% .125W F TC=0+-100 RESISTOR 90.9X 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100	24546 24546 24546 74546 24546	C4-1/8-T0-5111-F C4-1/8-T0-1963-F C4+1/8-T0-3831-F C4-1/8-T0-9092-F C4-1/8-T0-5111-F
A26A4R21 A26A4R22 A26A4R23 A26A4R23 A26A4R24 A26A4R25	0757-0438 0757-0278 0757-0290 0698-0083 0757-0458		RESISTOR 5.11K 1% .125W F TC=0+=100 RESISTOR 1.7CK 1% .125W F TC=0+=100 RESISTOR 5.19K 1% .125W F TC=0+=100 RESISTOR 5.19K 1% .125W F TC=0+=100 RESISTOR 51.1K 1% .125W F TC=0+=100	24546 24546 19701 24546 24546	C4-1/8-T0-5111-F C4-1/8-T0-1781-F MF4C1/8-T0-6191-F C4-1/8-T0-191-F C4-1/8-T0-512-F
A20A4R26 A26A4R27 A26A4R28 A26A4R28	0757-0438 0757-0458 0757-0442		RESISTOR 5.11K 1% .125W F TC=0+-100" RESISTOR 51.1K '125W F TC=0+-100 NOT ASSIGNED RESISTOR 10K 1% .125W F YC=0+-100	24546 24546 24546 24546	C4-1/8-T0-5111-F C4+1/8+T0-5112-F C4-1/8+T0-1002-F C4-1/8+T0-8251-F
A26A4R30 A26A4R31 A26A4R32 A26A4R33 A26A4R34 A26A4R34 A26A4R35	0757-0441 0757-0317 0757-0442 0757-0438 0683-1055 0683-1055		RESISTOR 8.25K 1% .125W F TC=0+-100 RESISTOR 1.33K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+0/+900 RESISTOR 1M 5% .25W FC TC=-800/+900	24546 24546 24546 01121 01121	C4-1/8-Y0-1331-F C4-1/8-T0-1002-F C4-1/8-T0-5111-F CR1055 C81055
A26A4R36 A26A4R37 A26A4R38 A26A4R38 A26A4R39 A26A4R39	0698-0083 0757-0394 0698-3153 0757-0280 0698-3437		RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 51.1 1% .125W F TC=0+-100 RESISTOR 3.83K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 133 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1961-F C4-1/8-T0-51R1-F C4-1/8-T0-3831-F C4-1/8-T0-1001-F C4-1/8-T0-133R-F
A26A4R41 A26A4R42 A26A4R43 A26A4R43 A26A4R44 A26A4R45	0757-0465 0757-0465 0698-0083 0757-0421 0757-0442		RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 025 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1003-F C4-1/8-T0-1003-F C4-1/8-T0-1961-F C4-1/8-T0-825R-F C4-1/8-T0-825R-F C4-1/8-T0-1002-F
AZ6A4R46 A26A4R47 A26A4R48 A26A4R49 A26A4R50	0698-3154 0757-0401 0757-0289 0698-3150 0698-3451	1	RESISTOR 4.22K 1% .125W F T(=0+-100 RESISTOR 100 1% .125W F T(=0+-100 RESISTOR 13.3K 1% .125W F T(=0+-100 RESISTOR 2.37K 1% .125W F T(=0+-100 RESISTOR 133K 1% .125W F T(=0+-100	24546 24546 19701 24546 24546	C4-1/8-T0-4221-F C4-1/8-T0-101-F MF4C1/8-T0-1332-F C4-1/8-T0-2371-F C4-1/8-T0-1333+F
A264 51 A26A4R52 A26A4R53	0757-0280 0757-0278		NOT ASSIGNED RESISTOR 1K 1% .125W F TG=0++100 RESISTOR 1.78K 1% .125W F TC=0++100	24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1781-F
A26A451 A26A4TP1 A26A4TP2 A26A4TP3 A26A4TP3 A26A4TP3 A26A4TP5	3101-0860 1251-0600 1251-0600 1251-0600 1251-0600 1251-0600		SWITCH-SL DPDT-NS MINTR .5A 125VAC/DC PC CONTACT-CONN U/W-POST-TYPE MALE DPSLDP CONTACT-CONN U/W-PDST-TYPE MALE DPSLDP CONTACT-CONN U/W-POST-TYPE MALE DPSLDP CONTACT-CONN U/W-POST-TYPE MALE DPSLDP CONTACT-CONN U/W-POST-TYPE MALE DPSLDP	79727 28480 28460 28480 28480 28480 28480 28480	GF126-0064B 1251-0600 1251-0600 1251-0600 1251-0600 1351-0600 1351-0600
A26A4TP6 A26A4TP7 A26A4TP8	1251-0600 1251-0600 1251-0600		CONTACT-CONN U/W-POST-TYPE MALE DPSLOR Contact-conn u/W-Post-Type Male DPSLOB Contact-conn u/W-Post-Type Male DPSLDR	28480 28480 28480	1251-0600 1251-0600 1251-0600
F 2 7 (K) (F)	1826-0092 1826-0026 1820-0328		IC MC 1458 OP AMP IC LM 311 COMPANATOR , IC-DIGITAL SN7402N TTL QUAD 2 NOR IC-DIGITAL SN74066 TTL HEX 1	20480 ,27014 ,01295 01295	1826-9042 LM311H SN7402N SN7406N

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A26A4VR1 A26A4VR2 A26K5 A26A5XA26A6	1902-0025 1902-0184 08640-60302 1251-3231		DIODE-ZNR 10V 5% DO-7 PD=.4W TC=+.06% DIODE-ZNR 16.2V 5% DO-7 PD=.4W TC=+.066% RISER ASSY CONNECTOR; PC EDGE; 15-CONT; WIRE WRAP	28480 04713 28480 28480 28480	1902-0025 5Z 10939-242 08640-60302 1251-3231 08640-60911
A26A6 A26A6XA26A2 A26A6XA26A4	08640-60011 1251-1886 1251-1886	1	AM MOTHER BOARD ASSY Connector-PC Edge 15-Cont/Row 2-Rows Connector-PC Edge 15-Cont/Row 2-Rows	28480 71785 71785	252-15-30-340 252-15-30-340
$\mathcal{M}_{i} = \left\{ egin{array}{c} \mathcal{M}_{i} & \mathcal{M}_{i} & \mathcal{M}_{i} \\ \mathcal{M}_{i} & \mathcal{M}_{i} & \mathcal{M}_{i} \\ \mathcal{M}_{i} & \mathcal{M}_{i} & \mathcal{M}_{i} \\ \mathcal{M}_{i} & \mathcal{M}_{i} & \mathcal{M}_{i} \end{array} ight\}$					

• • •

6-38

jiai Verse 1.1

ter (2) aanvaraanna **an san ka**n ka sa ka

()

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
			CHASSIS PARTS		
C1 C2 C3 C4 C5	0180-2530 0180-2530 0180-2334 0180-2277 0180-2277	2 1 2	CAPACITOR-FXD 3900UF+75-10% 50VDC AL CAPACITOR-FXD 3900UF+75-10% 50VDC AL CAPACITOR-FXD 3900UF+75-10% 75VDC AL CAPACITOR-FXD 8200UF+75-10% 25VDC AL CAPACITOR-FXD 8200UF+75-10% 25VDC AL	56289 56289 56289 56289 56289 56289	36D392G050AC2B 36D392G050AC2B 36D392F075B82B 36D822G025AC2A 36D822G025AC2A
DS1 DS2	1450-0509 1450-0508 2140-0092 1450-0153 1450-0153	1 1 2 2 2	LIGHT-IFD CLR-TP .291-DIA BIPIN-TERM LIGHT-IND LAMPHOLDER WHT TP LENS LAMP-INCAND 685 5VDC 60MA T-1-BULB LIGHT-IND LAMPHOLDER LENS CAP WHT-TL .219-DIA 12-40 THD	20480 28400 71744 08717 08717	1450-0509 1450-0508 CM685 1028-R BODY 102-W-STD LENS
DS3	2140-0092 1450-0153 1450-0157		LAMP-INCAND 685 5VDC 60MA T-1-BULB LIGHT-IND LAMPHOLDER LENS CAP WHT-TL .219-DIA 12-40 THD	71744 08717 08717	CM685 1029-R 00DY 102-W-STD LENS
F1	2110-0002 2110-0465 2110-0467 2110-0470 2190-0037 0900-0028	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FUSE 2A 250V FAST-BLO 1,25x.25 UL IEC FUSEHOLDER-EXTR POST UL/IEC',25X1.25FUSE NUT, HEX SINGLE CHAMFER 1/2-28 THREAD FUSEHOLDER-EXTR POST 20A 200V UL/IEC WASHER-LK INTL T NO1/2 .512-IN-ID "RING" ,426"ID, .07"XSECT-DIA NTRL	75915 28480 75915 75915 78189 51633	312002. 2110-0455 903-070 345003-010 1224-08 5427-89
FL1	9135-0012 08640-60103	1	FILTER-LINE SOLDER-TERMS CONNECTOR ASSEMBLY, OUTPUT	28480 28480	9135-0012 08640-60103
J1 M <u>K</u> M2	1120-1566 0960~0340 1460-0615 08641+40004		METER; 2,50" 1 MA FSD;TAUT BAND Counter, electric;ta==40 to +80 deg c spring=clip .625+W 2.01=Lg sst psvt Housing, elapsed; Meter	32171 00371 28480 28480	820-614A CE70DN3099E02 1460-0615 08641-40004
MP1 MP2 MP3 MR4	0340-0486 08641-00023 08541-00036 08541-00046	1	INSULATOR-COVER TO- 3 .33-THK (FOR G5) KNOB, RANGE KNOB, LEVEL (MOD) KNOB, COUNTER	0011J 28480 28480 28480	A22-2003 08641-00023 08641-0003n 08641-00046
мр5 мр6 мр? мг8 мр9	08641-00021 08641-20051 08641-20055 08641-20039 08641-00039	1 1 1 2 1	KNOB, PEAK DEVIATION BRACKET, SIDE FRAME, LEFT Bracket, Side Frame, Right Knob, Fine Tune Bracket, Meter Hoard	28480 28480 28480 28480 28480 28480	08641-00021 08641-20051 08641-20055 08641-00039 08641-00006
MP10 MP11 MP12	08641-00039 08641-00022 0403-0026	1	KNOB, VERNIER Knob, Mude Clide:Nylon'	28480 28480 28480	08641-00039 08641-00022 0463-0026

Table 6-3. Replaceable Parts

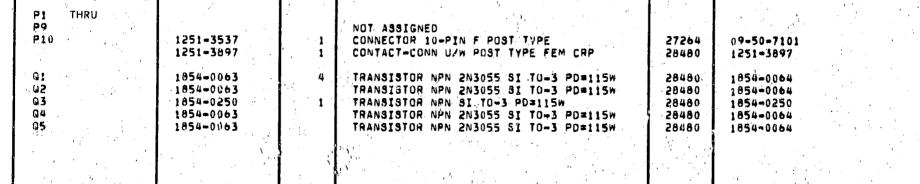
MP10 MP11 MP12	08641-00039 18641-00022 1 0403-0026 3	KNOB, VERNIER KNOB, MODE CLIDE:NYLON'	28480 28480 28480	08641-00039 08641-00022 0463-0026	, ,	
MP13	0590-1011 2	MAIN DECK NUT-KNRLD-R 15/32-32-THD .12+THK .61-WD	28480	0590-1011		
MP14	1250-1423	CAP-COAX TO FIT F-BNC NON-SHTG 2.5-CH	24931	28PG107-1	1	
MP15	1250-1423	(COUNTER IN, MOD. 1/O) CAP-COAX TO FIT F-BNC NON-SHTG 2,5-CH	24931	28PC107-1		
 MP16	4040-0976 1	(COUNTER IN, MOD. 1/0) Cover, capacitor	00000	OBD		·
M#17 MP18 MP19 MP20 MP21	$\begin{array}{c} 3150-0203 \\ 5001+0135 \\ 5060+0109 \\ 08641-20224 \\ 08640+00021 \end{array}$	FILTER-CARTRIDGE EXP AL 3.6-W 6-L WRENCH, COMB Connegtoriis contacts Lockout, override Shield, FM Amplifier	26480 28480 26480 26480 26480	3150-0203 5001-0125 5060-0109 08641-20224 08640-00021		

 \mathcal{A}^{i}

۰.

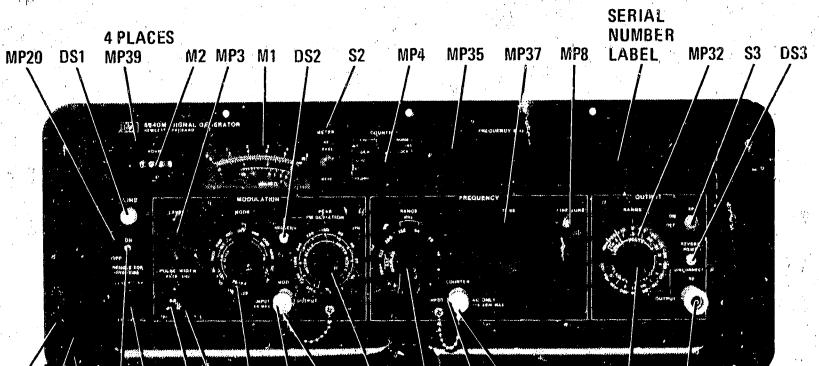
. No

J.).


6-39

36

4,


Table 6-3. Replaceable Parts

		<u>r</u>		1	r
Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
MP 22 MP 23 MP 24 MP 25 MP 26	08641-20225 08640-00022 08540-00030 08640-00058 08640-00059		SHAFT, CENTER SWITCH Support, PC Buard Support, modulator Insulator, counter Insulator, connector	28480 28480 28480 28480 28480 28480	08641-20225 08640-00022 08640-00030 08640-00058 08640-00059
MP27 MP28 MP29 MP30 MP31	0360=1114 0360=1484 1500=0433 0340=0137 08641=00061	1 1 1 2 3 3 4 1	CUVER-BARR BLOCK 3-TERM NPRN 1.5-IN-L BARRIER BLOCK 3-TERM 6-32 TWIN SCREW COUPLER-FLEX .66+LG NYL/BR9 GROMMET, ROUND 0.312"ID, 5" GROOVE OD SUPPORT, METER	A4971 75382 99934 0011E 28480	TA 15 M02-03 600A-3 A-201-34A 0340-0137 08641-00061
MP 32 MP 33 MP 34 MP 35 MP 36	08641=00020 0400=0175 08641=00037 08641=40001 08641=00038		KNOB, DIAL ASSEMBLY, OUTPUT GROMMET, ROUND 0.125" ID .219" GROOVE OD KNOB, PJLSE WIDTH WINDOW, COUNTER KNOB, PULSE RATE	28480 77969 28480 28480 28480	08641-00020 9#1 MOD 08641-00037 08641-40001 68641-400038
MP37 MP38 MP39 MP40 MP41	08641-00024 0400-0192 0624-0311 0403-0313	1 1 4 4	CRANK, KNOB ASSEMBLY GROMMET, ROUND 0.425" ID .562" GROUVE OD SCREW-TPG 4-20 .5-IN-LG 82 DEG BUMPER, FOOT PRS-IN .31-THK RBR ATTENUATOR SHAFT	28480 00000 00089 77969	08641-00024 QBD 9105-0
MP42	0400-0201	2 2 2 2 2	GROMMET, ROUND _25"ID _438" GROOVE OD DSCILLATOR SMAFT	00000	OBD
MP43	0900-0023	ین 1 مربع مربع	"O" RING 0.250"ID (Reduce ds2)	07322	MR 8010
MP44 MP45 MP46	0624-0267 0905-0300 1200-0043	8 1 5	SCREW-TPG 6-20 .625-IN-LG PAN-HD-POZI GASKET, REC7, .062" THK 1.5-LG .75W (FRONT PANEL TO M2) INSULATOR-XSTR ALUMINUM	28480 00000 76530	0624-0277 09D 322047
MP 47 MP 48	3160-0217 5040-0170	1	FAN BLADE .76-THK 3-OD .079-ID Guideiplug-in PC Board	28480 28480	3160-0217 5040-0170
MP49	1251-2361	1	CONTACT-CONN MALE DPSLOR (FRONT PANEL TO M1)	00779	86091-2
MP50 MP51 MP52 MP53 MP54	08641-00014 0400-0005 08620+20016 08640-00014 08640-00015	1 1 1 1	BRACKET, PC BOARD, MTG PLAYE FOR S6 GROMMETIRUBBER FOR 0.562" DIA HOLE HEAT SINK, TRANSISTOR DECK, TRANSFORMER DECK, MAIN	28480 7 3734 28480 28480 28480	08641-00014 #1660 08620-20016 08640-00014 03640-00015
MP55 MP56 MP57	0900-0017 0905-0502 0403-0026	1	RING:RUBBER (METER ADJUST) GASKET, RECT.062-IN-THK 3.14-LG 1.5W (PIN ON POWER SUPPLY MOTHER BOARD) GLIDE, NYLON	28480 00000 28480	0900-, ', 17 0BD 0403-0026
MP58 THRU MP61 MP62	no. 40 - 2005 -		(NEAR FM SHIELD)		
MP63 THRU MP66	08640-20057	. 8	NOULATOR, TRANSISTOR	28480	08640-20057
MP67 MP68 MP67 MP70	1400-0017 08640-00072 08640-00073 08640-00073	1 1 1 1	CLAMP-CA .312-DIA .375-WD NYL Bracket, fan top Bracket, fan Bottom Fram Strip, Bottom Cover	71616 28480 26480 28480	CPJ-1953-58 08640-00072 J8640~00075 08640~90074
MP71 THRU MP75			NO' ASSIGNED		
MP76 MP77 THRU MP80 MP81 MP82	8160-0245 08640-00037 08640-00037	1	RFI GASKET NI ALY 1.56-W 3.97-L Not Assigned Insulator, bottom cover Insulator, bottom cover	28480 28480 28480	3160=0245 08640=00037 08640=00037
MP83 MP84 MP85	08640-40058 0380-0004	1 2	NOT ASSIGNED Transformer cover, protective Spacer-RND .188LG .18ID .2500 BRS NI-PL	28480 28480 20480	08640-40068 0380-0005

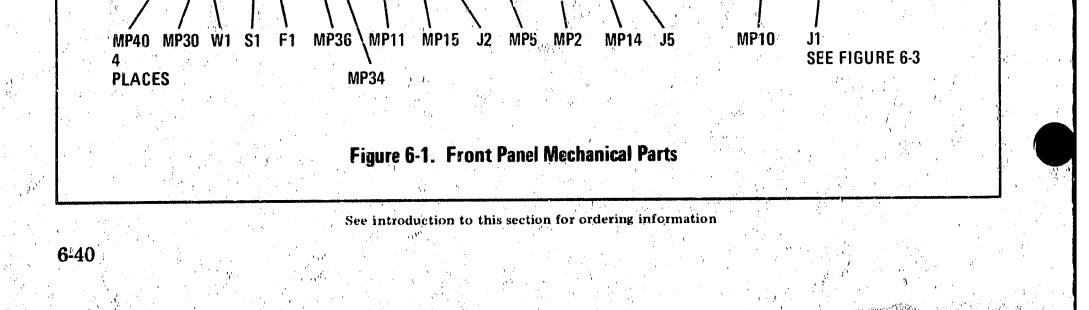


Table 6.3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
R1 R2 R3A R3B	2100-3579	10 10 10 10 10 10 10 10 10 10 10 10 10 1	NOT ASSIGNED Not assigned Resistor, var trimmer P/O R3A	26480	2100-3579
51 32 33	3101-1941 3101-1808 3101-1224 3101-0957 3101-1224	1 1 2 1	SWITCH-TGL BASIC DPDT NS 20A 115VAC SCH SWITCH, TOGGLE SM,SPDT,ON-N-ON 115VAC BOOT-TOGGLE .265-IN OA HGT; INTEGRAL NUT SWITCH-TGL SUBMIN OPDT NS 5A 115VAC BOOT-TOGGLE .265-IN OA HGT; INTEGRAL NUT	28480 09353 97539 28480 97539	3101-1941 7101-D N50328 3101-0957 N50328
84 95 56	3101-1234 3103-0042 3103-0028	1 1 1	SWITCH-SL DPDT-NS STD 1.5A 250VAC SLDR Switch-Thrm FXD +171F 2A OPN ON RIGE Switch-Thrm FXD +52F 1A CL-ON-RISE	82389 28480 28480	11A-1242A 3103-0042 3103-0028
n TI - Marken Brand	9100-3918	1	TRANSFORMER	28480	9100-3918
w1 w2 w3 w4 w5	8120-2401 8120-1885 8120-1890 08540-50127	11111111111111111111111111111111111111	CABLE, POWER CAPLE-COAX .086-DD CABLE ASSY-COAX 5.253-LG CABLE ASSEMBLY, MOD. INPUT/OUTPUT NOT ASSIGNED	28480 28480 26480 28480 28480	8120-2401 8120-1886 8120-1890 08640-60127
W6 W7 W8 W9	8120+1881 8120-1882 8120-0580		CABLE-COAX .086+0D CABLE-COAX .086+0D CABLE-CUAX .085+0D NOT ASSIGNED CABLE-CUAX .086+0D	28480 28480 28480 28480	8120-1881 8120-1882 8120-0580 8120-0581
W10 1 Sylam and a	8120-0581 08640-20245	1 } - → 1	CABLE ASSEMBLY, OUTPUT	28480	08640-20245
w 1 2 w 1 3 w 1 3 w 1 4	8120-1111 1250-1193 8120-0659	1 1 1	NOT ASSIGNED CABLE-COAX 50 OHM .11-OD 28AWG CONNECTOR-RF SM SLD FEM UNMTD CABLE ASSY-COAX	28480 98291 28480	8120-1111 52-328-0019 8120-0659
W15 W16 W17 W18	8120-1593	1.	NUT ASSIGNED CABLE-SHLD 22AWG 5+CNDCT JGK-JKT .26=00 NOT ASSIGNED NOT ASSIGNEC	28480	A120-1593
WP19	08640-20244	1	CABLE ASSEMBLY, ATTENUATOR	28480 28480	08640-20244 A120-2116
W20	8120-2116	, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CABLE SHLD 2-COND 22AWG	20400	HIGU-EXIO

	l able 5-3. Replaceable Parts							
Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number			
			8					
			FIGURE 6-2. CABINET PARTS					
1	18641-20054 0510-0075	2	FRAME ASSY, 5 X 16 NUT-SHMET-U 6-32-THD .5-WD STL	28460 78553	08641-20054 C11351-632-248			
3	08641-00043 08641-00050	· · · · 1	FRONT PANEL Panel, Rear	28480 28480	08641-00043			
4 5 6	5000-8703 5000-8707 08641-00002	2 2 1	COVER, SIDE Cover:Front Side Cover, Top	28480 28480 26480	5000-8705 5000-8707 08641-00002			
7 8 9	08641-00011 5000-8711 9211-1781	1	COVER, BOTTOM COVER, FRONT SIDE PLATE(PERFORATED) CASE, MOLDED	26480 25480 26480	08641-00011 5000-8711 9211-1781			
10 11 12 13	08641-20229 08640-00109 08640-00114 08640-00074 08641-00013	2 1 1 1	HANDLE, FRONT PANEL FOAM STRIF, TOP COVER FOAM STRIP, TOP COVER FOAM STRIP, BOTTOM COVER COVER, SIDE, MODIFIED	28480 28480 28480 28480 28480 28480	08641-20229 08640-00109 08640-00114 08640-00074 08641-00013			
)			, , , , , , , , , , , , , , , , , , , ,				
an de la companya de La companya de la comp		<u>,</u> ,						
· ·		· · ·						
				5				
		\langle						
	· · · · · ·		A DECEMBER OF A					
		đ						
		· · ·			7			
5				3				
				· · ·				
				,				
	9							
				· · · ·	Y A CARACTER STATE			
				•				
n J								
		4	Figure 6-2. Cabinet Parts					
		1 7			· · · · ·			

Table 6-3. Replaceable Parts

See introduction to this section for ordering information

í

1.

;

١

χ

1.5

1'c

;

Model 8640M

Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number	
			FIGURE 6-3. TYPE N CONNECTOR			
11MP1 11MP2	1250=0914 1250=0915	1	CONNECTOR-RF APC-N FEM UNMTD 50-0HM Contact, RF connector, female center	9D949 71785	131-150 131-149	
11MP2 11MP4 11MP5 11MP5 11MP6 11MP7	2190-0104 2950-0132 5040-0306 08555-20093 08555-20094		WASHER-LK INTL T ND7/16 .439-IN-ID' NUT-HEX-DBL-CHAM 7/16-28-THD .094-THK INSULATOR CENTER CONDUCTOR BODY, BULKHEAD	78189 73734 28480 26480 28480	1922-04 76500NP 5040-0306 08555-20093 08555-20094	
1MP8	JA761-2027	1	INSULATOR	28480	08761-2027	
		• · ·				
		· · ·				, . :
				\mathbf{h}	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	
)		· · ·				
		• • •	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$			
			6			,
			b minimum		en en ser en	
					an an Arthur Anna an Arthur Anna an Arthur Arthur	
	2		CONTRACT TO A CONTRACT OF A			· •
1				4 		i i
1				4		
1				4		
1						
1						
1						
1						
1			Figure 6-3. Type N Connector			
1	0360-0040		Figure 6-3. Type N Connector	73734	1958	
1	0360-0040 0360-1155 1400-0090 08641 ~60197		Figure 6-3. Type N Connector	73734 79963 00000 28480	1953 110 OBD 08641-c0197	
1	0360-1155		Figure 6-3. Type N Connector MISCELLANFOUS TERMINAL-SLOH LUG LK-MTG FOR-M1/4-SCR TERMINAL-LUG-SLOR 12 SCR .25/.093 ID WASHERIRUBBER 5/8" OD WIRING HARNESS	79963 00000 28480	110 (BD 08641-60197	
1	0360-1155 1400-0090 08641~60197 2190-0104 2200-0129		Figure 6-3. Type N Connector TERMINAL-SLOR LUG LK-MTG FOR-MI/4-SCR TERMINAL-LUG-SLOR 12 SCR .25/.093 ID WASHERIRUBBER 5/8" OD WIRING HARNESS WASHER-LK INTL T'NO7/16 .439-IN-ID SCREW-MACH 4-40 2-IN-LG PAN-HD-POZI	79963	110 (BD 08641-60197 1922-04 2200-0129 2200-0512	
	0360-1155 1400-0090 08641~60197 2190-0104		Figure 6-3. Type N Connector TERMINAL-SLOW LUG LK-MTG FOR-#1/4-SCR TERMINAL-LUG-SLOR 12 SCR .25/.093 ID WASHER:RUBBER 5/8" OD WIRING HARNESS WASHER-LK INTL T'ND7/16 .439-IN-ID	79963 00000 28480 78189 28470	110 (BD 08641-60197 1922-04 2200-0129	
	0360-1155 1400-0090 08641~60197 2190-0104 2200-0129 2200-0512 2200-0527 2360-0180 2360-0181 2360-0191	232	MISCELLANFOUS TERMINAL-SLOR LUG LK-MTG FOR-#1/4-SCR TERMINAL-SLOR LUG LK-MTG FOR-#1/4-SCR TERMINAL-LUG-SLOR 12 SCR .25/.093 ID WASHER-LK INTL T'NO7/16 .439-IN-IO SCREW-MACH 4-40 2-IN-LG PAN-HD-POZI SCREW-MACH 4-40 .312-IN-LG 82 DEG FL-HU SCREW-MACH 4-40 .562-IN-LG 82 DEG FL-HU SCREW-MACH 4-40 .562-IN-LG 82 DEG FL-HU SCREW-MACH 6-32 .188-IN-LG 82 DEG SCREW-MACH 6-32 .188-IN-LG 72 DEG SCREW-MACH 6-32 .188-IN-LG 72 DEG	79963 00000 28480 78189 28450 28450 28480 28480 28480 28480 28480	110 (BD) 08641-00597 1922-04 2200-0129 2200-0512 2200-0527 2360-0180 2360-0181 2360-0191	
	0360-1155 1400-0090 08641760197 2190-0104 2200-0129 2200-0512 2200-0512 2360-0180 2360-0181	2323	MISCELLANFOUS TERMINAL-SLOR LUG LK-MTG FOR-#1/4-SCR TERMINAL-SLOR LUG LK-MTG FOR-#1/4-SCR TERMINAL-LUG-SLOR 12 SCR .25/.093 ID WASHER: IRUBBER 5/8" OD WIRING HARNESS WASHER-LK INTL T'NO7/16 .439-IN-ID SCREW-MACH 4-40 2-IN-LG PAN-HD-POZI SCREW-MACH 4-40 .312-IN-LG 82 DEG FL-HD SCREW-MACH 4-40 .562-IN-LG 82 DEG FL-HD SCREW-MACH 6-32 .198-IN-L3 82 DEG SCREW-MACH 6-32 25-IN-LG 32 DEG	79963 00000 28480 28480 28450 28450 28480 28480 28480 28480 28480	110 OBD 08641-00197 1922-04 2200-0129 2200-0512 2200-0512 2360-0180 2360-0181	
1	0360-1155 1400-0090 08641~60197 2190-0104 2200-0129 2200-0512 2200-0527 2360-0180 2360-0181 2360-0181 2360-0191 2510-0198 2580-0118	2323	Figure 6-3. Type N Connector MISCELLANFOUS TERMINAL-SLOH LUG LK-MIG FOR-MI/4-SCR TERMINAL-LUG-SLOR 12 SCR .25/.093 ID WASHER-LK INTL T'NO7/16 .439-IN-ID SCREW-MACH 4-40 2-IN-LG PAN-HD-POZI SCREW-MACH 4-40 .512-IN-LG 92 DEG FL-HU SCREW-MACH 4-40 .502-IN-LG 82 DEG SCREW-MACH 6-32 .188-IN-LG 82 DEG SCREW-MACH 6-32 .188-IN-LG 92 DEG SCREW-MACH 6-32 .5-IN-LG 72 DEG SCREW-MACH 6-32 .5-IN-LG 72 DEG SCREW-MACH 6-32 .5-IN-LG 72 DEG SCREW-MACH 0-32 .5-IN-LG 72 DEG	79963 00000 28480 28480 28450 28450 28480 28480 28480 28480 28480 28480 28480 28480	110 0BD 08641-00197 1922-04 2200-0129 2200-0512 2200-0512 2360-0180 2360-0181 2360-0191 2510-0198 2680-0118	

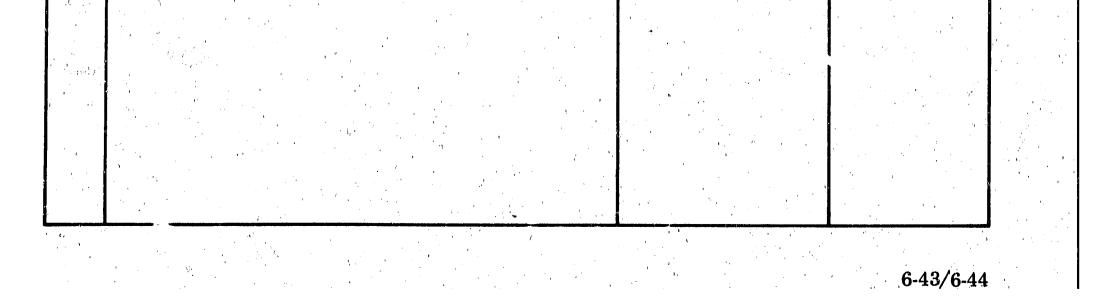
De

See introduction to this section for ordering information

.

ł

1


¥

. Pij

 $(i_{1}, i_{2}) \in \mathcal{A}$

Table 6-4. Code List of Manufacturers

Mfr ode	Manufacturer Name	Address	Zip Code
G791	THOMPSON BREMER DIV VARE	CHICAGO IL	60622
0000	ANY SUPPLIER OF THE U.S.A.	4	
044 1184	ARIZONA COIL INC Ar Yech Packaging Corp	NOGALES AZ Lowell Ma	83621 01854
501	ARIZONA COIL INC AR TECH PACKAGING CORP Illuminated Products Inc Amp Inc Stettner-Trush Inc	ANAHEIM CA	92803
779	AMP INC	HARRISBURG PA	17105
865		CAZENOVIA NY	13035
121		MILWAUKEE WI	53212
295	TEXAS INSTA INC SEMICOND CMPNT DIV	DALLAG TX Sommerville Nj	75231 08 876
0.00	KDI PVROFILM CORP	WHIPPANY NJ	07981
713	MOTOROLA SEMICONDUCTOR PRODUCTS	PHOENIX AZ	85008
776	ROBINSON NUGENT INC	NEW ALBANY IN	47150
263	FAIRCHILD SEMICONDUCTOR DIV	MOUNTAIN VIEW CA	94040
700 236	TECHNICAL WIRE PRODUCTS INC	CRANFORD NJ	07016
815	CHERRY DIVEY DIV TOWNSEND CO	BERNE IN Santa ana ca	46711 92707
010	TELEDYNE SEMICUNDUCTOR	MOUNTAIN VIEW CA	94040
701	MEPCOZELECTRA COMP	MINERAL WELLS TX	74067
	CABLER JE SYSTEMS INC	NORTH HAVEN CT	06473
329	BERG ELECTRONIC INC	CUMBERLAND PA	17070
753 226	U I D ELECTRONICS CORP Gowanda Electronics corp	GOWANDA NY	33021 14070
546	CABLEK /E SYSTEMS INC BERG ELECTRONIC INC U I D ELECTRONICS CORP Gowanda Electronics Corp Corning Glass Works (Bradford)	BRADFORD PA	16701
331	SPECIALTY CONNECTOR CO INC	INDIANAPOLIS IN	46227
42.	METHUDE ELECTRONICS INC	CHICAGO IL	60656
114	NAVIONAL SEMICONDUCTOR CORP	SANTA CLARA GÀ	95051
	HEWLETT-PACKARD CO CORPORATE HG	PALO ALTO CA	94304
168	SIEMENS CORP Mepco/electra corp	ISELIN NJ San Diego ca	08830
97	BOURNS INC TRIMPOT PROD DIV	RIVERSIDE CA	42121 92507
35	ADVANCED MICRO DEVICES INC	SUNNYVALE CA	94086
89	SPRAGUE ELECTRIC CO	NORTH ADAMS MÁ	01247
00	BUSSMAN MEG DIV OF MCGRAW-EDISON CO	ST LOUIS MO	63017
50	SIEMENS CORP MEPCO/ELECTRA CORP BOURNS INC TRIMPOT PROD DIV ADVANCED MICRO DEVICES INC SPRAGUE ELECTRIC CO BUSSMAN MFG DIV OF MCGRAW-EDISON CO CTS CORP TRW ELEK COMPONENTS CINCH DIV ELECTRO MOTIVE CORP SUB IEC ERIE TECHNOLOGICAL PRODUCTS INC	ELKHART IN	46514
785 36 -	TRW ELEK COMPONENTS CINCH DIV Electro mutive corp sup iec	ELK GROVE VILLAGE IL WILLIMANTIC CT	60007
582	ERIE TECHNOLOGICAL PRODUCTS INC	ERIE PA	06226
30	BECKMAN INSTRUMENTS INC HELIPOT DIV	FULLERTON CA	72634
114	FEDERAL SCREW PRODUCTS CO	CHICAGO IL	00618
63.	PHELPS DODGE CORP	NEW YORK NY	10022
42	TRW INC PHILADELPHIA DIV	PHILADELPHIA PA	19108
354 189	DAK IND INC SW DIV	CRYSTAL LAKE IL	60014
53	ILLINDIS TOOL WORKS INC SHAKEPROOF	ELGIN IL Cleveland om	60126
izi	TINNERMAN PRODUCTS INC C-W INDUSTRIES SEASTROM MFG CO AMPHENOL SALES DIV OF BUNKER-RAMO	WARMINSTER PA	18974
28	SEASTROM MEG CO	GLENDALE CA	91201
49	AMPHENOL SALES DIV OF BUNKER-RAMO	HAZELWOOD MO	+3042
37	DALE ELECTRONICS INC	COLUMBUS NE	68601
51	GUALITY COMPONENTS INC	ST MARYS PA	15057
164	TADISTRIAL PETATATA PING CO	CHICAGO IL Irvington nj	60641 07111
91	AMPHENOL SALES DIV OF BUNKER-RAMO DALE ELECTRONICS INC GUALITY COMPONENTS INC WECKESSER CO INC INDUSTRIAL RETAINING RING CO SEALECTRO CORP AMER PRUN IND INC DELEVAN DIV	MAMARONECK NY	10544
00	SEALECTRO CORP Amer Prun Ind Inc Delevan div	AURORA NY	14052
	AMER PRCN IND INC DELEVAN DIV	· · · · · · · · · · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · · ·
	[1] A. M. M. M. K. M.	· · · · · · · · · · · · · · · · · · ·	1,
·			
·•	and the second		
·		· · · · ·	•
4 E			
		$(x_1, \dots, x_{n-1}, X_{n-1}, \dots, X_{n-1}) \in \mathbb{R}^n$	
	en en ser en		, · · · · · · · · · · · · · · · · · · ·
· .			

SECTION VII MANUAL CHANGES

7-1. INTRODUCTION

Model 8640M

7-2. This section normally contains information for adapting this manual to instruments for which the content does not apply directly. Since this manual does apply directly to instruments having serial numbers listed on the title page, no change information is given here. Refer to INSTRU-MENTS COVERED BY MANUAL in Section I for additional important information about serial number coverage.

7-1/7-2

a service and the service of the ser

SERVICE INFO

8-1. INTRODUCTION

Model 8640M

8-2. This section contains instructions for troubleshooting and repairing the Signal Generator.

8-3. Principles of operation and troubleshooting information are located opposite the block diagram on the foldout Service Sheets. The last two foldouts in this manual have top and bottom internal views of the instrument showing the locations of the major assemblies and some of the chassis parts. Also included are top and bottom internal views with the covers removed from the castings; these views show the locations of the sub-assemblies, the adjustments and most of the instrument's test points. The last foldout also shows a rear panel view of the instrument.

8-4. The rest of this section has general service information that should help you to quickly service and repair the Signal Generator.

8-5. PRINCIPLES OF OPERATION

8-6. Principles of operation appear on the foldout pages opposite the block diagrams and the schematics on the Service Sheets. Service Sheet 1 is an overall block diagram that briefly describes overall instrument operation. It is keyed, by the numbers in the lower right-hand corners of the blocks, to the detailed block diagrams. They provide an assembly-by-assembly description of instrument operation.

8-7. The detailed block diagrams, in turn, are keyed to the schematics on the Service Sheets that follow them. These Service Sheets provide a stage-by-stage description of the circuits on the schematics. The stages are keyed to the descriptions by the stage names that appear on the schematics.

NOTE

method is to use the results of the Basic Funct and Checks and the performance tests (given in Section IV) and the table of Post-Repair Performance Tests and Adjustments, found in Section V. More information about this method is given in Section V.

Service

8-10. Overall Troubleshooting. The second, and primary, troubleshooting method is to use the overall block diagram (found on Service Sheet 1) and the troubleshooting block diagrams that follow it to isolate a problem to a particular assembly or circuit. The troubleshooting information on Service Sheet 1 explains how to use the block diagrams.

8-11. Circuit-Level Troubleshooting. Once a problem has been isolated to a particular assembly or circuit, the schematic and component locators aid in circuit level troubleshooting.

8-12. RECOMMENDED TEST EQUIPMENT

8-13. Test equipment and test equipment accessories required to maintain the Signal Generator are listed in Tables 1-3 and 1-4. Equipment other than that listed may be used if it meets the listed critical specifications.

8-14. SERVICE AIDS

8-15. Pozidriv Screwdrivers. Many screws in the instrument appear to be Phillips, but are not. To avoid damage to the screw slots, Pozidriv screw-drivers should be used.

8-16. Service Kit. The following parts can be ordered for use in a service kit for the generator. (Before ordering, check to ensure that they are not on hand; most of them are common to service kits for other Hewlett-Packard instruments.)

Table 8.4, Schematic Diagram Notes, explains any unusual symbols that appear on the schematics. The table also explains the switch-wafer numbering system.

8-8. TROUBLESHOOTING

8-9. This manual provides two methods to isolate a problem to a particular assembly. The first

 1
 SMC Adapter.
 HP 1250-0827

 2
 Test Cables SMC to BNC.
 HP 11592-60001

 1
 Extender Board 30 pins.
 HP 08640-60036

 1
 Extender Board - 20 pins.
 HP 5060-0256

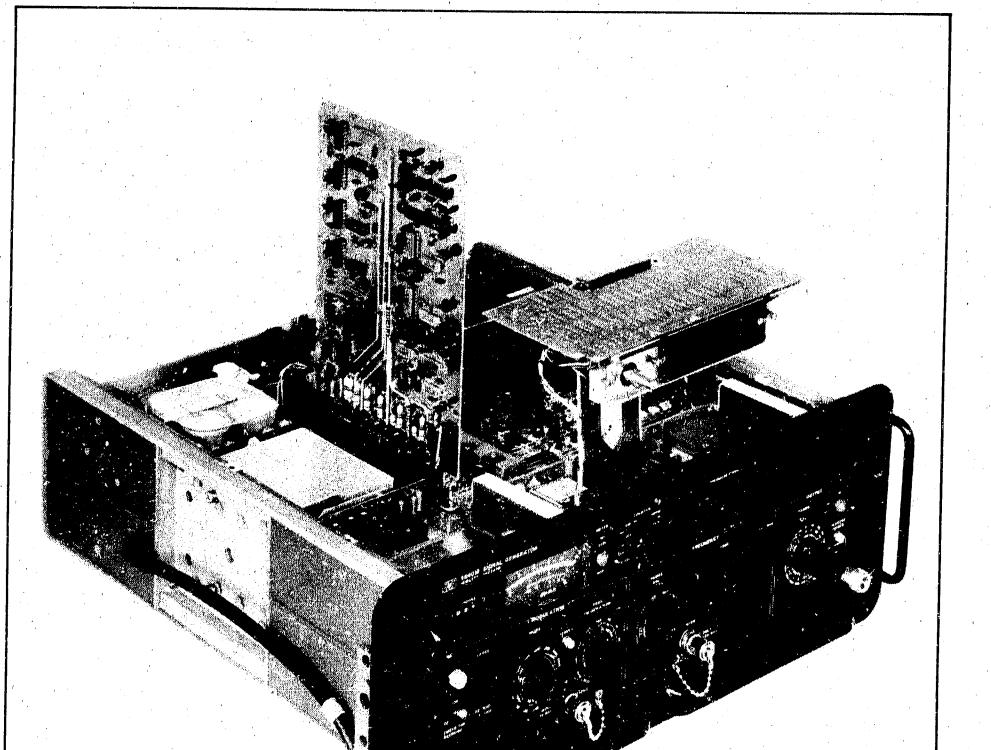
 1
 Extender Board - 12 pins.
 HP 5060-0257

 2
 Bumpers (for Board)
 HP 0403-0115

8-1

Service

8-2


SERVICE AIDS (Cont'd)

8-17. Hardware Kit. The HP 08640-60095 Hardware Kit contains miscellaneous mechanical spare parts for the generator — such things as nuts, bolts, screws and washers,

8-18. Extender Board. An extender board (HP 08640-60036) is available that can be used to extend all circuit boards (except the A10A2 RF Divider Assembly, the A2 Meter Detector and Drive, and the A12 Rectifier Assembly) that are not accessible by removing a casting cover.

The RF Divider Assembly is self-extending -- just remove the riser board and insert the RF Divider Assembly into the riser's slot. Figure 8-1 shows the extender board in use and the RF Divider Assembly extended.

8-19. Wrench. A wrench is supplied with the generator. One end fits 7/32-inch connectors while the other end fits 1/4-inch connectors. Both of these SMC RF connector sizes are used in the generator. (See Service Sheet H for location.).

Figure 8-1. Signal Generator With Circuit Boards on Extenders

SERVICE AIDS (Cont'd)

8-20. Part Location Aids. The locations of some chassis-mounted parts and the major assemblies are shown on the last two foldouts in this manual. In addition, illustrated parts breakdowns located in Section VI and the alphabetical Service Sheets in Section VIII facilitate the identification of mechanical parts. The locations of individual components mounted on printed circuit boards or other assemblies are shown on the appropriate schematic diagram page or on the page opposite it. The part reference designator is the assembly designator plus the part designator (for example, A6R9 is R9 on the A6 assembly). For specific component description and ordering information refer to the parts list in Section VI.

8-21. Servicing Aids on Printed Circuit Boards. The servicing aids include test points, transistor and integrated circuit designations, adjustment callouts and assembly stock numbers.

8-22. REPAIR

8-23. Factory-Selected Components

8-24. Some component values are selected at the time of final checkout at the factory (see Table 5-1). Usually these values are not extremely critical; they are selected to provide optimum compatibility with associated components. These components are identified on individual schematics by an asterisk (*). The recommended procedure for replacing a factory-selected part is as follows:

a. Try the same value as the component just removed, then perform the calibration test specified for the circuit in the performance and adjustment sections of this manual.

b. If calibration cannot be accomplished, try the typical value shown in the parts list and repeat the test.

c. If the test results are still not satisfactory, substitute various values within the tolerances specified in Table 5-1, until the desired result is obtained. a. Avoid unnecessary component substitution; it can result in damage to the circuit board and/or adjacent components.

b. Do not use a high-power soldering iron on etched circuit boards. Excessive heat may lift a conductor or damage the board.

c. Use a suction device (Table 8-1) or wooden toothpick to remove solder from component mounting holes. DO NOT USE A SHARP METAL OBJECT SUCH AS AN AWL OR TWIST DRILL FOR THIS PURPOSE. SHARP OBJECTS MAY DAMAGE THE PLATED-THROUGH CON-DUCTOR.

d. After soldering, remove excess flux from the soldered areas and apply a protective coating to prevent contamination and corrosion. (Avoid getting flux remover on the printed circuit board extractors.) See Table 8-1 for recommendation.

8-27. Etched Conductor Repair

8-28. A broken or burned section of conductor can be repaired by bridging the damaged section with a length of tinned copper wire. Allow adequate overlay and remove any varnish from etched conductor before soldering wire into place.

8-29. Component Replacement

8-30. Remove defective component from board.

NOTE

Although not recommended on boards with high-frequency signals or where both sides of a board are accessible, axial lead components, such as resistors and tubular capacitors, can be replaced without unsoldering. Clip leads near body of defective component, remove component and straighten leads left in board.

8-25. Etched Circuits

8-26. The etched circuit boards in the Signal Generator are of the plated-through type consisting of metallic conductors bonded to both sides of insulating material. The metallic conductors are extended through the component mounting holes by a plating process. Soldering can be done from Wrap leads of replacement component one turn around original leads. Solder wrapped connection and clip off excess lead.

8-31. If component was unsoldered, remove solder from mounting holes, and position component as original was positioned. DO NOT FORCE LEADS INTO MOUNTING HOLES; sharp lead ends may damage plated-through conductor.

8-3

a WEAR A STAR

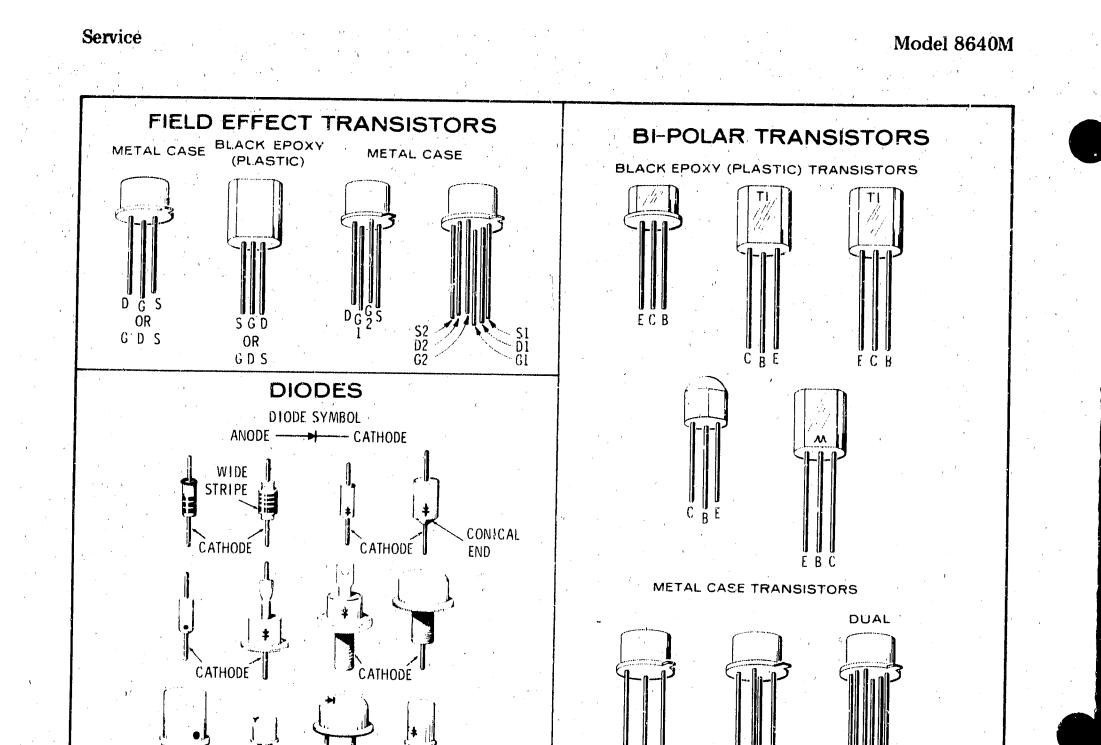


Figure 8-2. Examples of Diode and Transistor Marking Methods

Table 8-1. Etched Circuit Soldering Equipment

C

E

SHIELD

8

E2 82 C2

B1 E1

ltem	Use	Specification	Item Recommended
Soldering tool	Soldering, unsoldering	Wattage range: 37-50; Tip Temp: 750-800 $^\circ$	Ungar #766 handle w/* Ungar #1237 heating u
Soldering Tip	Soldering, unsoldering	*Shape: pointed	*Ungar #PL111
De-soldering Aid	To remove molten solder from connection	Suction device	Soldapullt by Edsyn Co., Arleta, California
Resin (flux) Solvent	Remove excess flux from soldered area before ap- plication of protective coating	Must not dissolve etched circuit base board	Freon; Acetone; Lacquer Thinner
Solder	Component replacement Circuit board repair Wiring	Resin (flux) core, high tin content (60/40 tin/lead), 18 gauge (SWG) preferred	
Protective	Contamination, corro- sion protection	Good electrical insulation; corrosion- prevention properties	Silicone Resin such as GE DRI-FILM**88
* For workin 850-900 d	ng on circuit boards: for gén egrees) and Ungar No. PL11	eral purpose work, use Ungar No. 4037 Heating	Unit (47½-56½W) tip temperature of
3		s Dept., Waterford, New York, U.S.A.	

: :

CATHODE

CATHODE

Model 8640M

8-32. Transistor Replacement. Transistors are packaged in many physical forms. This sometimes results in confusion as to which lead is the collector, which is the emitter, and which is the base. Figure 8-2 shows typical epoxy and metal case transistors and the means of identifying the leads.

8-33. To replace a transistor, proceed as follows:

a. Do not apply excessive heat; see Table 8-1 for recommended soldering tools.

b. If possible, use long-nose pliers between transistor and hot soldering tools.

c. When installing replacement transistor, ensure sufficient lead length to dissipate soldering heat by using about the same length of exposed lead as used for original transistor.

d. Integrated circuit replacement instructions are the same as those for transistors.

8-34. Some transistors are mounted on heat sinks for good heat dissipation. This requires good thermal contact with mounting surfaces. To assure good thermal contact for a replacement transistor, coat both sides of the insulator with Dow Corning No. 5 silicone compound or equivalent before fastening the transistor to the chassis. Dow Corning No. 5 compound is available in 8 oz. tubes from Hewlett-Packard; order HP 8500-0059.

8-35. Diode Replacement. Solid state diodes have many different physical forms. This sometimes results in confusion as to which lead is the anode (positive), since not all diodes are marked with the standard symbols. Figure 8-2 shows examples of some diode marking methods. If doubt exists as to polarity, an ohmmeter may be used to determine the proper connection. It is necessary to know the polarity of the ohms lead with respect to the common lead for the ohmmeter used. (For the HP Model 410B Vacuum Tube Voltmeter, the ohms lead is negative with respect to the common; for the HP Model 412A DC Vacuum Tube Voltmeter, the ohms lead is positive with respect to the common). When the ohmmeter indicates the least diode resistance, the cathode of the diode is connected to the ohmmeter lead which is negative with respect to the other lead.

Service

8-36. Illustratec) Parts Breakdowns

8-37. Illustrated parts breakdowns for the generator's major assemblies are given on Service Sheets A through H. They are keyed to disassembly and removal instructions (given on the alphabetical service sheets) and to the replaceable parts list given in Section VI. In addition, Section VI contains illustrated parts breakdowns for the N Type output connector, the cabinet parts, and front panel mechanical parts.

8-38. BASIC CIRCUIT THEORY

8-39. Binary Circuits and Symbols

8-40. Introduction. The binary circuits and symbols used in this manual are as shown in Figure 8-3. This instrument uses three different families of logic circuits: TTL, ECL, and EECL. Most of the logic devices used in this instrument are TTL; there are notes on the Service Sheets that indicate what families the non-TTL devices belong to. Table 8-2 indicates the voltage levels that are associated with each family. The table also shows the effect that an open and a ground has on each family.

Table 8-2. Logic Levels

Logic Voltage Levels

LOGIC	TTL	ECL	EECL	
High (1)	≥2V	≥-0.5V	≥ 0.1V	
Low (0)	≼0.8V	≤-1.5V	≤-0.6V	

Input Conditioning

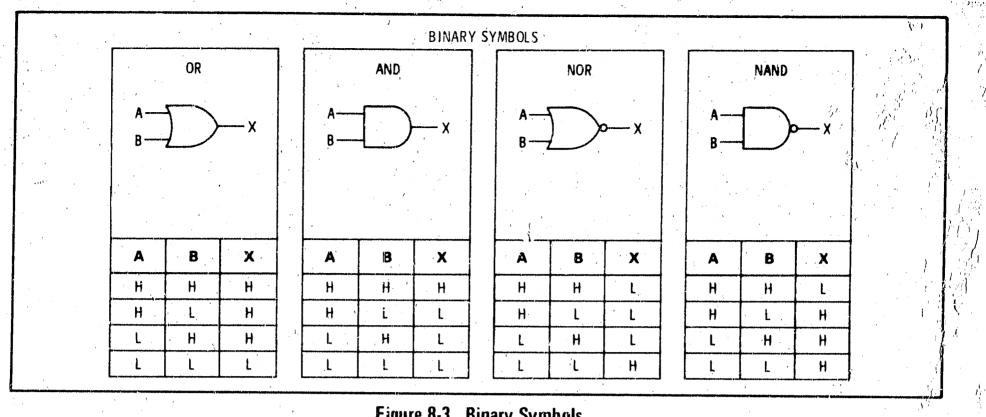
INPUT	TTL	ECL	EECL	
Grou [,] ded	Low (0)	High (1)	High (1)	
Open	High (1)	Low (0)	Low (0)	

NOTE

Replacement instructions are the same as those listed for transistor replacement.

COUNTER/LOCK CIRCUITS

8-41. Symbols used to designate binary circuits in this manual should be interpreted according to the following general rules:


a. Signals that are active-low are indicated with an L in parenthesis (e.g., CLOCK (L) indicates a clock signal that is active low).

b. Signals that are active-high are indicated with an H in parenthesis.

8-5

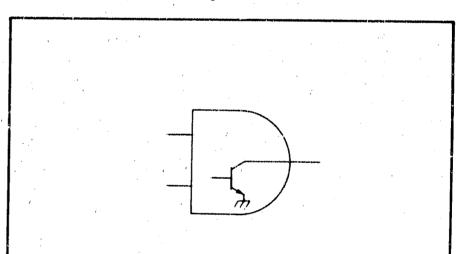
Service

Model 8640M

Figure 8-3. Binary Symbols

Binary Circuits and Symbols (Cont'd)

c. A circle (O) at an input indicates that it is active low. A circle at an output indicates inversion or that the output is active-low.


d. A dynamic indicator symbol (->) at an input indicates that the input triggers (is active) only on the leading or trailing edge of an input signal. If a circle is present at the same input, it is sensitive to the trailing edge. If no circle is present, the input triggers on the leading edge. Inputs that are not edge sensitive are referred to as level sensetive and are shown without the dynamic indicator symbol.

e. Complementary outputs are usually designated with a not-bar (e.g., the complement of the J/K flip-flop's Q output is its \overline{Q} output). Both Q and \overline{Q} may be simultaneously high in some instances (e.g., when both SET and CLEAR are low on some D flip-flops).

NOTES

The term "binary coded decimal" (or BCD) refers to four-bit binary circuits that range from decimal 0 to 9 in 8421

8-43. Open collector TTL. Some TTL gates have open collector outputs. This feature is indicated by a note on the Service Sheet. In open collector logic the output stage is an NPN transistor with the emitter grounded and the collector connected directly to the output terminal (with no internal pull-up resistor or transistor) as shown in Figure 8-4. The output is low when the output transistor is saturated and is high when the transistor is off. (However, the output can only be high when the collector is connected to the positive supply through an external pull-up resistor.) Open collector gates are often used to switch in non-TTL devices such as lamps, relays, and capacitors.

code.

The term "binary", when applied to four-bit binary circuits, refers to circuits that range from decimal 0 to 15 in 8421 code.

8-42. Trigger (T) inputs are usually high-going (edge sensitive) unless there is a circle at the input (which would make them low-going). All other inputs are usually level sensitive.

8-6

Figure 8-4. Open Collector Output Stage (AND Gate)

3-44. Triggered Flip-Flop. There are two kinds of triggered flip-flops. The bistable triggered flip-flop toggles (changes states) when triggered by a pulse at the T input (shown in Figure 8-5). This effectively divides the input by two, giving one output pulse at the Q output for every two input pulses.

Service

Service

Model 8640M

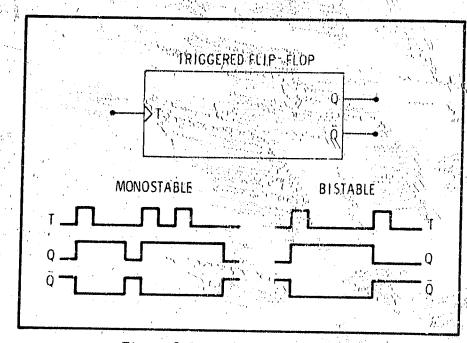
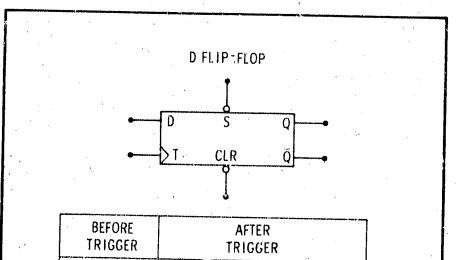



Figure 8-5. Triggered Flip-Flop

Binary Circuits and Symbols (Cont'd) 8-45. The monostable triggered flip-flop's Q output goes high when triggered at the T input. Unless disturbed by another input pulse, the Q output will automatically return to the original state after a set amount of time. This period of time is usually determined by external components. The monostable flip-flop (or one-shot) is used to stretch or shape pulses.

8-46. D Flip-Flop. The D-type flip-flop, shown in Figure 8-6, is used as a storage latch or buffer. The information at the data input (D) is transferred to the Q output when the trigger input (T) is high-going. Once the T input has passed its threshold, the D input is locked out and the Q outputs do not change until another high-going transition occurs at the T input.

output is forced low. Although normally the \overline{Q} output is the compliment of the Q output, simultaneous low inputs at S and CLR will force both \overline{Q} and \overline{Q} high on some D flip-flops.

8-48. Schmitt Trigger. A typical Schmitt Trigger is shown in Figure 8-7. Some Schmitt triggers have complementary outputs. The device initially triggers when the input signal passes a voltage reference called the upper trip point. It triggers back into its initial state when the input voltage passes a voltage reference called the lower trip point. One or both trip points may be indicated.

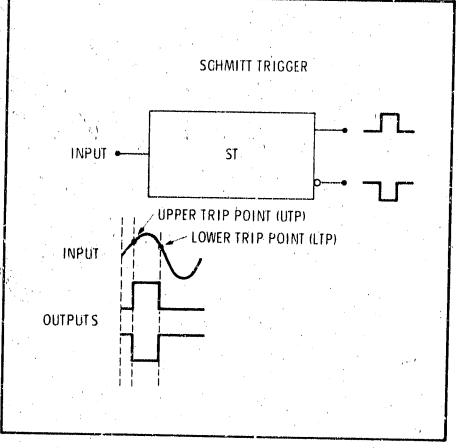


Figure 8-7. Schmitt Trigger

8-49. J/K Flip-Flop. Figure 8-8 shows a typical J/K flip-flop. The trigger (T) input is activated by a low-going signal as indicated by the circle on the symbol. Flip-flop response is determined by the values of the J and K inputs at the instant that a low-going signal is applied to the trigger input:

a. When J and K are low, the Q outputs will not change state.

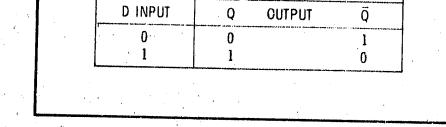


Figure 8-6. D Flip-Flop

8-47. 'The set (S) and clear (CLR) inputs override all other input conditions: when set is low, the Qoutput is forced high; when clear is low, the Q b. When J is low and K is high, Q will go low (unless it is already low).

c. When J is high and K is low, Q will go high (unless it is already high).

d. When J and K are connected together and high, the Q output will change state with each trigger pulse. The result is a flip-flop which divides the trigger frequency by two.

8-7

Model 8640M

Service

Model 8640M

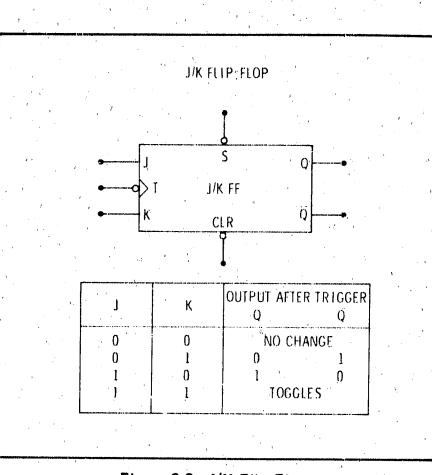


Figure 8-8. J/K Flip-Flop

Binary Circuits and Symbols (Cont'd)

Service

8-50. The set (S) and clear (CLR) inputs override all other input conditions: when S is low, Q is forced high; when CLR is low, Q is forced low. Although normally the \overline{Q} output is the compliment of the Q output, simultaneous low inputs at S and CLR will force both Q and \overline{Q} high on some J/K flip-flops.

8-51. Multiple Input J/K Flip-Flop. A multiple input J/K flip-flop is shown in Figure 8-9. It behaves like a J/K flip-flop with NORed inputs: if A, B and C are low, J is high, if A, B or C is high, J is low. A J-related and a K-related input may be tied together to form a trigger input; in this case the trigger would be active-low (if all other inputs are low).

8-52. Binary Registers

8-8

AAL QCIMM

8-53. Binary Latch. The four bit binary register shown in Figure 8-10 is used as a storage latch. Information data $(D_n)^1$ inputs are transferred to the respective Q_n^1 outputs when the enable (EN) input is low. When the enable goes high, the outputs are latched and are no longer affected by the data inputs.

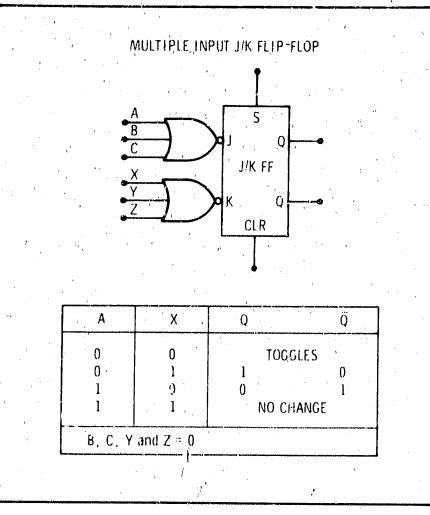
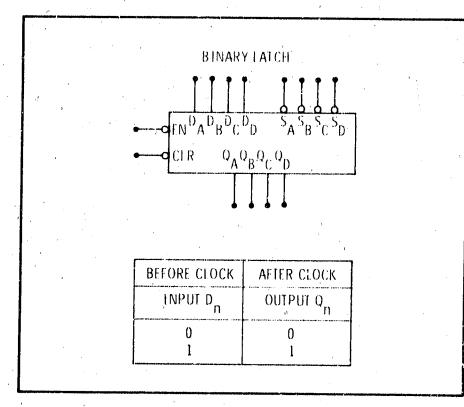
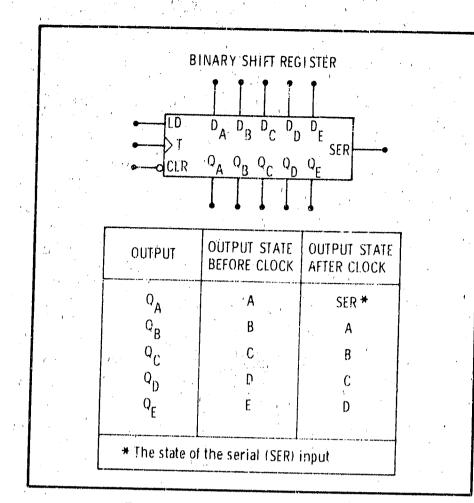


Figure 8-9. Multiple Input J/K Flip-Flop



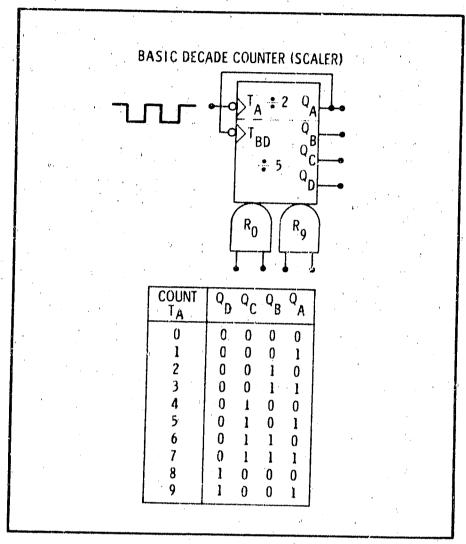

Figure 8-10. Binary Latch

8-56. Binary Shift Register. A five bit binary shift register is shown in Figure 8-11. Information at the data $(D_n)^1$ inputs is transferred to the respective Q_n^1 outputs when the load (LD) input is high. The load input is independent of the clock (T) input.

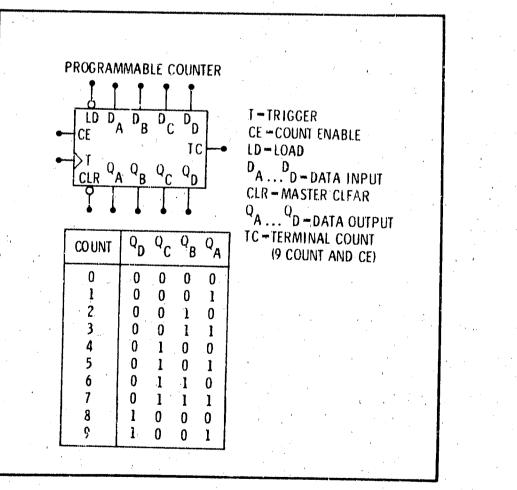
8-54. When enabled, any output may be set (to a high) by a low on the respective set (S_n) input which overrides the data input. When not enabled, the set inputs have no effect on the outputs.

8-55. A low on the master clear (CLR) input overrides all other conditions and forces all outputs low. $I_n = A, B, C, \text{ or } D$ 8-57. If the load input is low, a high going clock pulse shifts the output to the next adjacent output (e.g., the output at QB now appears at the output of QC). Also, the input state at the serial (SER) input appears at the QA output.

Model 8640M


Binary Registers (Cont'd)

8-58. A low at the clear (CLR) input clears all outputs to a low independent of the clock. The clear input overrides the load input.


8-59. Decade Counters and Symbols

8-60, Basic Counter. The basic decade counter (or scaler or divider), shown in Figure 8-12, has ten logic states. The active-high outputs (QA, QB, QC, and QD) increment by one BCD count each time the trigger (TA) or clock input goes from a high to a low. The count sequence is also shown in the figure. The counter may be subdivided into a divide-by-two and a divide-by-five counter. The two counters are connected in series (the QA output connected to the TBD input) to obtain a divide-by-ten counter. The counter has two ANDed clear or reset-to-zero (R_0) inputs. When both R_0 inputs are high, the outputs clear to zero. The clear function overrides the clock. Similarly, the two ANDed set or reset-to-nine (R9) inputs set the outputs to the nine count. If all reset-to-zero and reset-to-nine inputs are simultaneously high, the

clock (T) input. The outputs remain in the preset state until the load input returns to a high and the trigger (T) or clock input again goes high — at which time the count increments by one. The counter may be preset to a count greater than nine, but never counts beyond 9. If preset to a count of 10 to 15 it will return to its normal count sequence within two clock pulses.

reset-to-nine overrides the reset-to-zero.

8-61. Frogrammable Counter. The programmable decade counter, shown in Figure 8-13, operates similarly to the basic decade counter when the load (LD) input is high. The counter shown has only a single clear (CLR) input which is active-low. When the load input is low, the information at the data (or preset) inputs (DA, DB, DC, and DD) is transferred to the outputs at the next high going

Figure 8-13. Programmable Counter

8-9

Service

Decade Counters and Symbols (Cont'd)

8-62. If the counter has a count enable (CE) input, it must be held high for successive T inputs to cause the counter to increment (or count). When the counter reaches the nine count, a terminalcount or carry (in this case, a high) appears at the carry (TC) output.

8-63. A low on the clear (CLR) input clears all outputs to a low independent of any other input conditions.

8-64. Programmable Up/Down Counter. The programmable up/down counter, shown in Figure 8-14, operates similarly to the programmable counter (which could be called a programmable up counter). The up/down counter has two trigger or clock inputs, count up (CU) and count down (CD). A low-to-high transition of either count input (while the other count input is held high) increments the count up or down by one. If both CU and CD are high, the count does not increment.

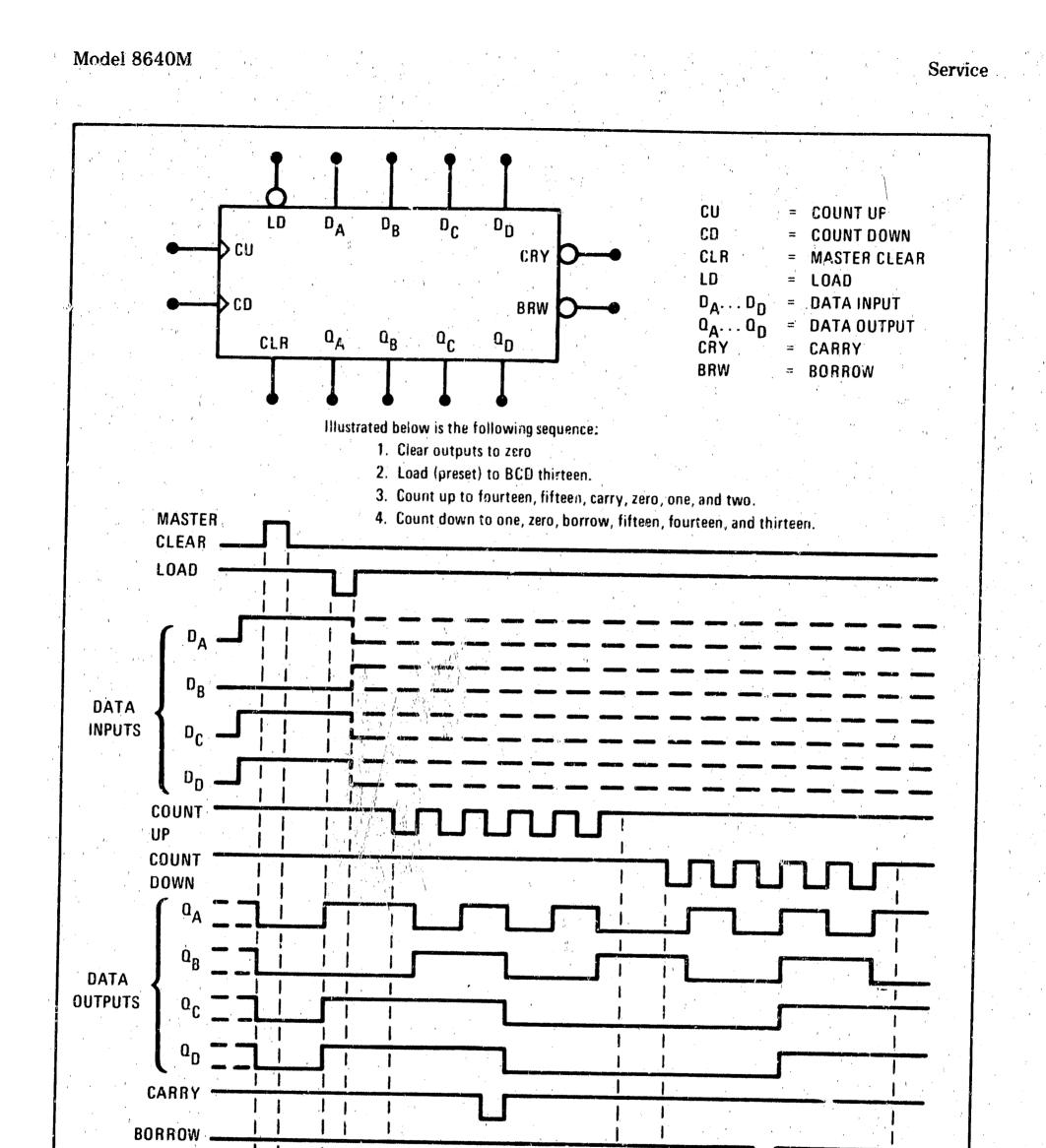
8-65. The counter's outputs (Q_A , Q_B , Q_C , and $Q_{\rm D}$) can be set to any count from zero to fifteen by entering the count at the data inputs $(D_A, D_B,$ D_{C} , and D_{D}) while the load input (LD) is held low. Then the count can be incremented up or down by activating either the CU or CD input.

8-66. The borrow (BRW) output is low whenever the Q outputs are at BCD zero (0000). The carry (CRY) output is low whenever the Q outputs are at BCD nine (1001). The master clear input (CLR) overrides all other input conditions and forces the Q outputs to BCD zero.

8-67. Linear Integrated Circuits

8-68. Operational Amplifier. Figure 8-15 shows a typical operational amplifier. Circuit A is a noninverting buffer amplifier with a gain of 1. Circuit B is a non-inverting amplifier with gain determined by the impedance of R1 and R2. Circuit C is an inverting amplifier with gain determined by R2 and

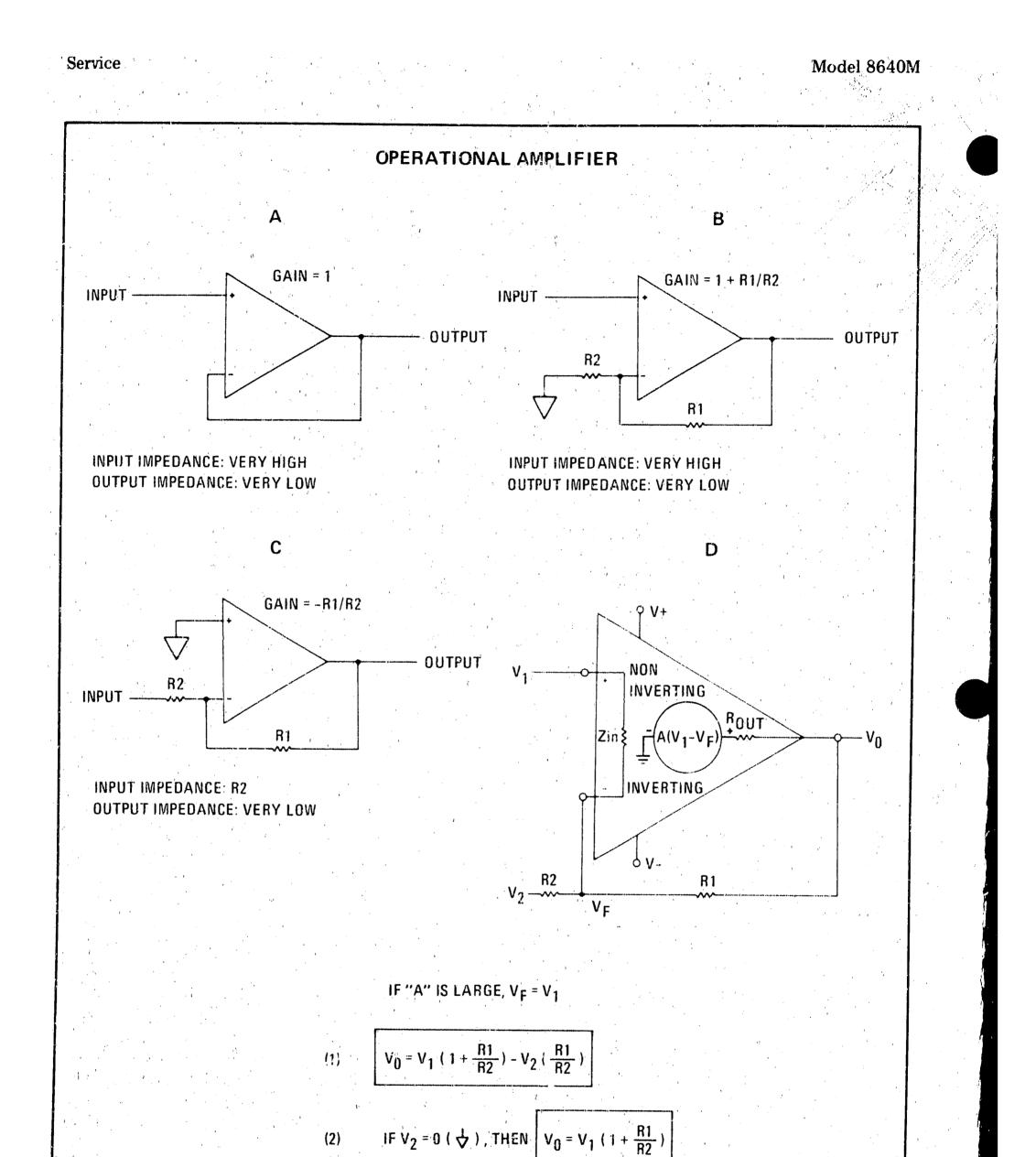
R1. Circuit D shows typical circuit connections and parameters. It is assumed that the amplifier has high gain, low output impedance, and high imput impedance.


8-69. An operational amplifier can be characterized as an ideal voltage amplifier having low output impedance, high input impedance, and very high gain. Also the output voltage is proportional to the difference in the voltages applied to the two input terminals. In use, the amplifier output drives the input voltage difference close to zero through a negative feedback path.

8-70. When troubleshooting an operational amplifier, measure the voltages at the two inputs with no signal applied; the difference between these voltages should be less than 10 mV. A difference voltage much greater than 10 mV indicates trouble in the amplifier or its external circuitry. Usually this difference will be several volts and one of the inputs will be very close to an applied circuit operating voltage (for example, +20V, -12V).

8-71. Next, check the amplifier's output voltage. It will probably also be close to one of the applied circuit potentials: ground, +20V, -12V, etc. Check to see that the output conforms to the inputs. For example, if the inverting input is positive, the output should be negative; if the non-inverting input is positive, the output should be positive. If the output conforms to the inputs, check the amplifier's external circuitry. If the amplifier's output does not conform to its inputs, it is probably defective.

8-72. Comparator. Comparators are used as sense amplifiers, pulse height discriminators, and voltage comparators. A voltage reference is connected to one of the amplifier's inputs as shown in Figure 8-16. When the input signal voltage crosses the reference, the output goes positive; the output remains positive until the signal re-crosses the reference.


8-10

SEQUENCE ILLUSTRATED 13 0 14 15 2 0 15 14 13 COUNT UP COUNT DOWN CLEAR PRESET NOTES: A. Clear overrides load, data, and count inputs. B. When counting up, count-down input is high: when counting down, count-up input is high. . 1

8-11

Figure 8-14. Programmable Up/Down Counter

(3) IF V₁ = 0 ($\frac{1}{2}$), THEN V₀ = -V₂ ($\frac{R1}{R2}$)

Figure 8-15. Operational Amplifier

(2)

8-12

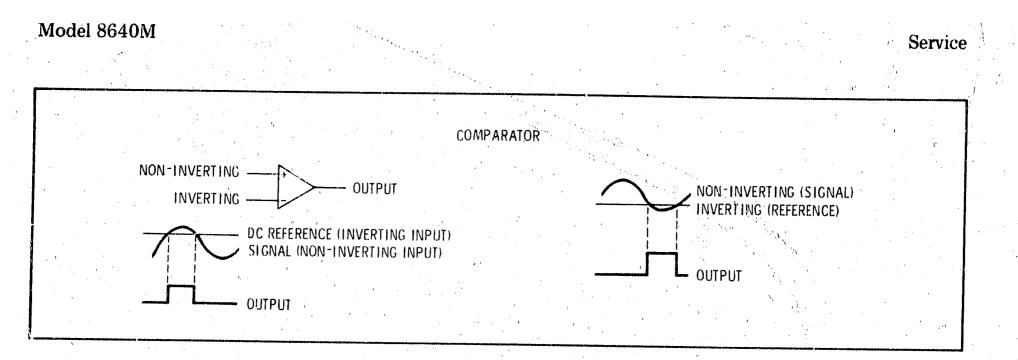


Figure 8-16. Comparator

	~ ~					
Tabla	0 3	Assemb		f		'a e
E MELSPA	D	Accomn	1917 - KN	TOTO	3110m	Inday
* ********	C C		, , , , , , , , , , , , , , , , , , ,		aliun	HIU/X

	Assembly ¹	Schematic ²
A1 A2 A3 A5 A7 A8 A9 A10 A11 A12 A13 A15 A16 A17 A18 A20 A21 A22	RF Output Range Assy ³ Meter Detector and Drive Assy RF Oscillator Assy ⁴ FM Amplifier Assy FM Shaping Assy Counter/Lock Assy ⁵ Peak Deviation and Range Switch Assy ⁶ Divider/Filter Assy ⁷ Internal Modulation Oscillator Assy Rectifier Assy Modulation/Metering Mother Board Assy Riser Assy Fan Motor Assy Power Supply Mother Board Assy -5.2V Regulator and Fan Drive Assy +5.2 and +44.6V Regulator Assy Reverse Power Protection Assy	Service Sheets 13, 13B, 16 Service Sheet 17 Service Sheets 5, 6 Service Sheet 6 Service Sheet 7, 8 Service Sheets 18, 19, 20, 21 Service Sheets 6, 7, 8, 15, 19 Service Sheets 10, 11 Service Sheet 9 Service Sheet 22 Service Sheets 6, 9, 14, 25 Service Sheets 14, 15, 16 Service Sheet 23 Service Sheet 24 Service Sheet 23 Service Sheet 23
A22 A23 A24 A26	+20 and -20V Regulator Assy Modulation Mode Frequency Switch Series Regulator Socket Assy AM/AGC and RF Amplifier Assy ⁸	Service Sheet 22 Service Sheet 9 Service Sheet 22 Service Sheet 22 Service Sheets 12, 13, 14, 15, 16

¹ Odd numbered assemblies and sub-assemblies are accessible from bottom of instrument. Even numbered assemblies and subassemblies are accessible from top of instrument. See Service Sheets G and H for top and bottom internal views of instrument.

 2 Component location photographs are given on the service sheet with the schematic.

³ A1 Assembly Illustrated Parts Breakdown is located on Service Sheet A. ⁴ A3 Assembly Illustrated Parts Breakdown is located on Service Sheet B. ⁵ A8 Assembly Illustrated Parts Breakdown is located on Service Sheet C. ⁶ A9 Assembly Illustrated Parts Breakdown is located on Service Sheet D. 7 A10 and A23 Assemblies Illustrated Parts Breakdowns are located on Service Sheet E.

⁸ A26 Assembly (accessible from both top and bottom of instrument) []ustrated Parts Breakdown is located on Service Sheet F.

8-13

的问题。用它的影响

Table 8-4. Schematic Diagram Notes (1 of 3)

Resistance in ohms, capacitance in picofarads, inductance in microhenries unless otherwise noted. Binary symbols explained beginning with paragraph 8-39.

Tool-aided adjustment.

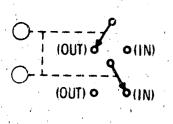
Manual control.

Enclosed front-panel designation.

Encloses rear-panel designation.

Circuit assembly borderline.

Other assembly borderline. Also used to indicate mechanical interconnection (ganging) and RF shielding.

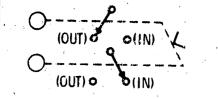

Heavy line with arrows indicates path and direction of main signal.

Heavy dashed line with arrows indicates path and direction of main feedback and also count down/phase lock signal flow.

Wiper moves toward cw with clockwise rotation of control (as viewed from shaft or knob).

A direct conducting connection to the earth, or a conducting connection to a structure that has a similar function (e.g., the frame of an air, sea, or land vehicle).

Relay Contact moves in direction of arrow when energized.



C₩

Service

O.

Indicates interlocked pushbutton switches. Only one switch can be in (IN) at a time.

С

Indicates interconnected pushbutton switches. Pushing one switch in (IN) releases the other.

Indicates multiple paths represented by only one line. Letters or names identify individual paths. Numbers indicate number of paths represented by the line.

Coaxial or shielded cable.

1

Model 8640M

8-14

٠.,

Stripline (i.e., RF transmission line above ground)

RF coupling by magnetic (H) field.

Indicates twisted wire pair. (T indicates twisted wire triplet.)

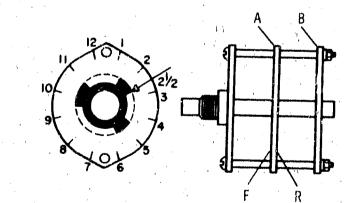
BINARY CIRCUIT SYMBOLS

AND Gate

OR Gate

Inverter

Active-low input/output

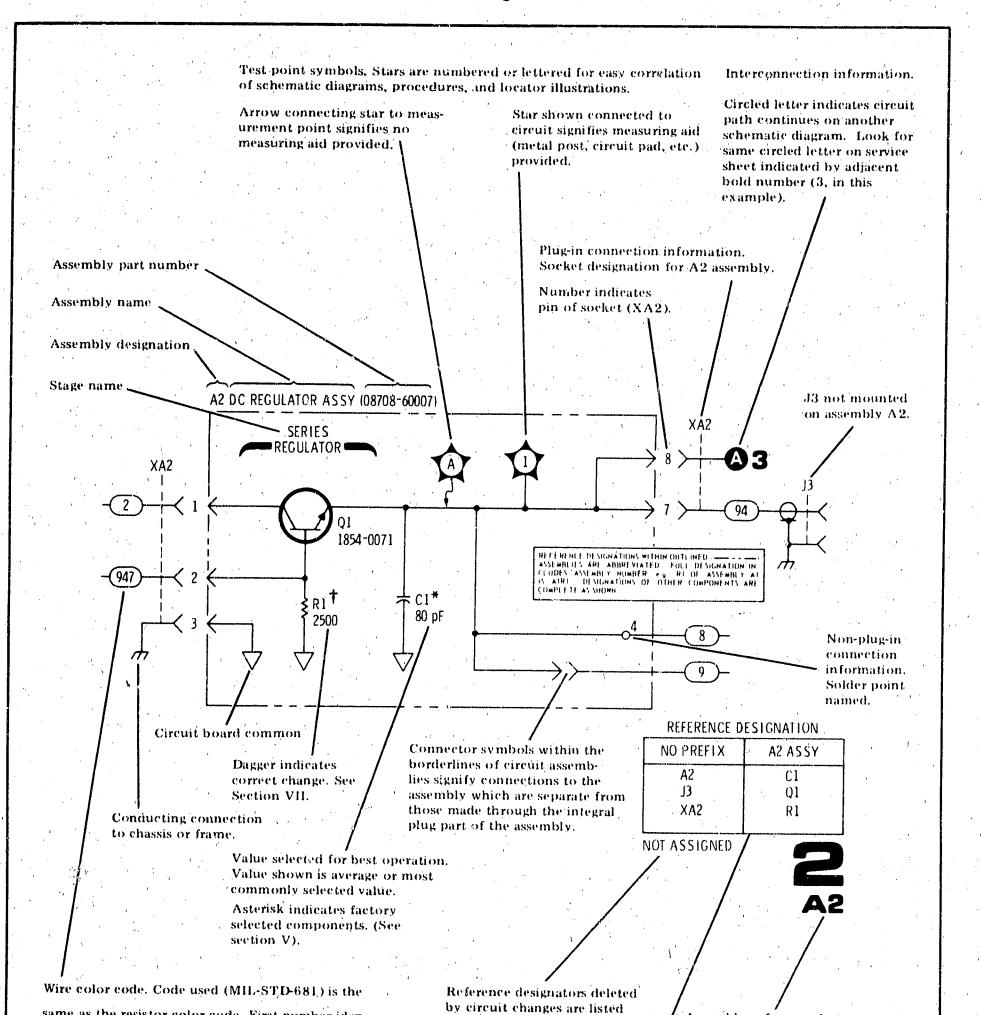

High-going edge sensitive trigger

Low-going edge sensitive trigger

EXAMPLE: A3SIAR(2-1/2) A3SI - SWITCH SI WITHIN ASSEMBLY A3 A - Ist WAFER FROM FRONT (A - Ist, ETC) R - REAR OF WAFER (F - FRONT) (2-1/2) - TERMINAL LOCATION (2-1/2) (VIEWED FROM FRONT)

OUT

IN



8-15

Service

Model 8640M

Table 8-4. Schematic Diagram Notes (3 of 3)

same as the resistor color code. First number iden-

tifies the base color, second number the wider stripe,

and the third number the narrower stripe. Example,

8-16

denotes white base, yellow wide stripe,

violet narrow stripe.

here.

List of all the reference designations on the diagram. Assembly reference designator(s).

Large numbers in lower right corners of schematic diagrams are service sheet numbers. They are provided for convenience in tracing interconnections.

CHARLEN CONTRACT

SERVICE SHEET 1

PRINCIPLES OF OPERATION

General

The Hewlett-Packard Model 8640M Signal Generator is a mechanically-tuned, solid-state RF source producing signals from 0.5 to 512 MHz. The RF oscillator produces a basic frequency range of 256 to 512 MHz. Nine lower ranges (0.5 to 256 MHz) are obtained by dividing down this range. The leveled output may be continuously varied over an 18 dB range or attenuated in 10 dB steps from +18 to -145 dBm. Calibrated AM, FM and PULSE, (either internal or external) modulation capabilities are provided. The RF output frequency is read on an internal counter which may also be used to count external signals up to 550 MHz or to phase lock the generator to a stable internal reference oscillator.

FM Circuits and RF Oscillator

The RF source is a 256 to 512 MHz cavity-tuned oscillator that is mechanically tuned by the FRE-QUENCY TUNE and FINE TUNE controls. The oscillator can also be electrically tuned over a smaller range by the FM circuits and the counter/ lock circuits. The FM circuits amplify and shape the modulation input to provide linear, calibrated frequency modulation. The phase lock circuits tune the oscillator to phase lock it to a reference. FM inputs can be either external (ac or dc coupled), or internal from the modulation oscillator.

AM/AGC Circuit and Output Amplifier

The RF oscillator drives the RF dividers (a chain of binary dividers) which yield the RF for the lower nine frequency ranges. The RF filters remove the harmonics from the RF signal.

The AM/AGC circuits form a feedback system to control the amplitude of the output and to provide AM or pulse modulation. The detector senses the level of the RF signal from the RF output amplifier. A summing amplifier compares the detector output against an input reference and drives the modulator. The modulator acts as a current-controlled attenuator to control the RF level. dc coupled) or internal (from the modulation oscillator). In the pulse modulation mode, internal or external modulation pulses switch the modulator off and on. Amplitude leveling is maintained in this mode by storing the detector output between pulses.

The 10 dB RF step attenuator further controls the output level. The meter circuits monitor either the detector output (and hence the output level), the positive peak of the AM modulating signal (calibrated to give % AM), or the positive peak of the FM modulating signal (calibrated to give peak deviation).

Counter/Lock Circuits

In the internal count mode, the counter always counts the 256-512 MHz signal from the RF oscillator. In the external count modes, external input signals are counted directly. In the phase lock mode, the counter compares the count of the RF signal against the count just before acquisition of phase lock and adjusts the frequency of the RF oscillator to make the counts coincide. The counter time base reference is the internal 5 MHz crystal.

Reverse Power Protection

Reverse power protection consists of a power level sensor, limiter, and RF relay which opens the RF path to the output connector when excessive RF power is sensed. A front panel annunciator indicates this condition.

TROUBLESHOOTING

Use the overall block diagram to isolate the trouble to a specific section of the instrument. Then turn to the troubleshooting block diagram that covers that section of the instrument and use the information on the diagram to isolate the trouble to the defective assembly. Next, turn to the Service Sheet that covers that assembly and isolate the trouble to the defective component or replace the assembly. For example, suppose the AM functions are out of specification. The block diagram on Service Sheet 1 is keyed to the troubleshooting block diagrams that follow it — in this case, Service Sheet 3. Service Sheet 3 gives a list of generator control settings (the list is located in the box on the righthand side of the sheet) and the voltages and waveforms that should be found at the test points and along the signal paths. To check a voltage at a test point, change the control settings as specified in the box associated with that test point, check the voltage, then reset the controls to the initial control settings specified in the box.

8-17

The reference to the summing amplifier consists of the level reference, which comes from the output level vernier, and the modulation signal, if present. The modulation signal can be either external (ac or

Service

NOTE

The last two foldouts in this manual have top and bottom internal views of the instrument that show the locations of the test points, assemblies, and cables (all RF cables are accessible from the bottom of the instrument).

The blocks on Service Sheet 3 are keyed, by the numbers located in their lower right-hand corners. to the Service Sheets that have the circuit schematics. In our example, suppose the signals to the A26A3 Assembly are correct and the signals from A26A3 are incorrect. Turn to Service Sheet 12 and isolate the trouble to the component or replace A26A3.

NOTE

After repairs are complete, see Table 5-2 for appropriate post-repair tests and adjustments.

WARNINGS

The opening of covers or removal of parts, except those to which access can

be gained by hand, is likely to expose live parts, and also accessible terminals may be live. Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided as much as possible and, if inevitable, should be carried out only by a skilled person who is aware of the hazard involved.

Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement. The use of repaired fuses and the short-circuiting of fuse-holders must be avoided.

Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

8-18

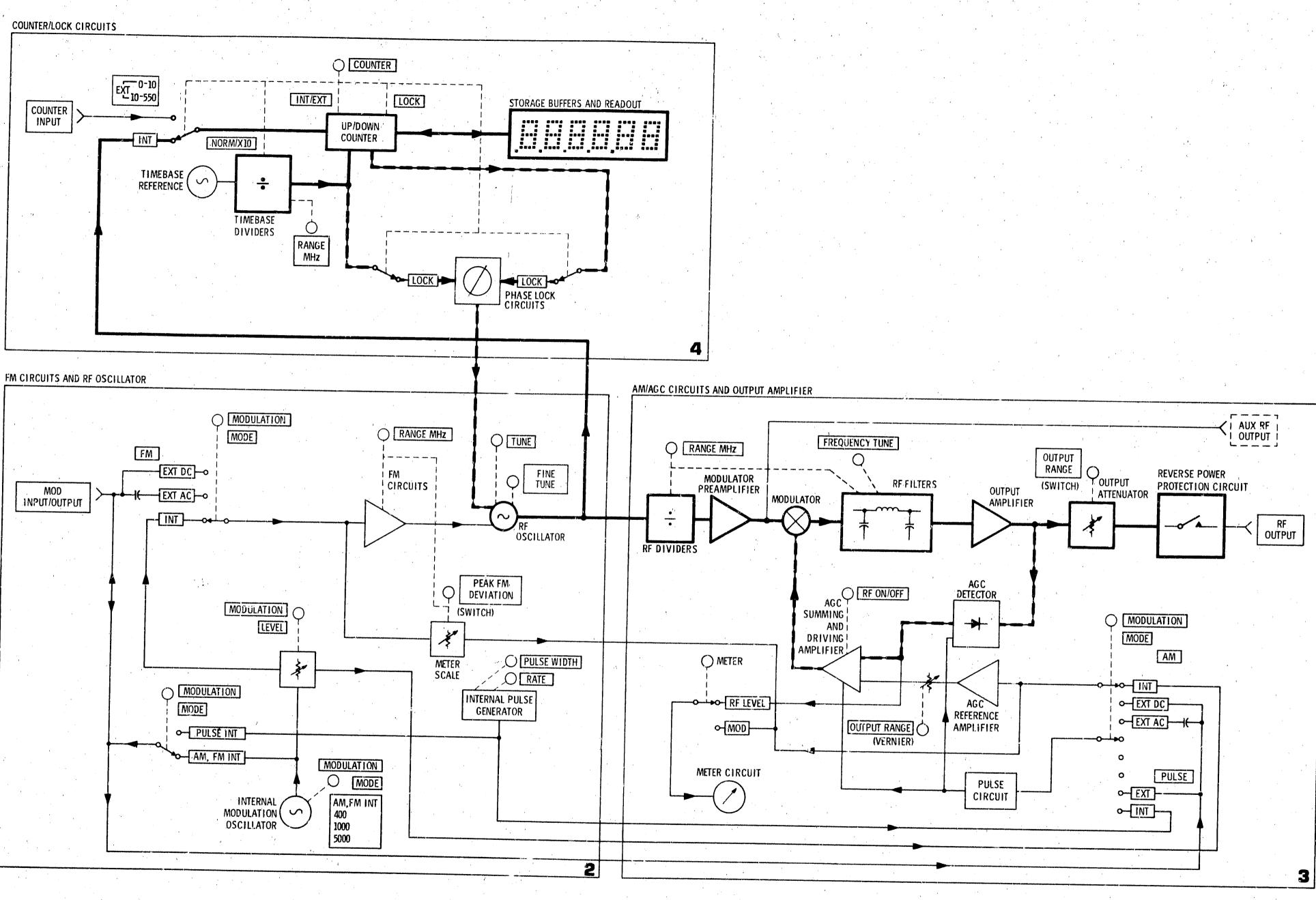


Figure 8-17. Overall Block Diagram

8-19

Service

.

_

Service

SERVICE SHEET 2

PRINCIPLES OF OPERATION

RF Oscillator

The full frequency range of the RF Oscillator is 230 to 550 MHz (nominally ⁷⁵6–512 MHz). The oscillator uses a single high-frequency transistor in a foreshortened cavity. Frequency is controlled by varying the capacitive loading of the cavity. The oscillator drives two output amplifiers. The Frequency Counter Buffer Amplifier drives the frequency counter; the Divider/Filter Buffer Amplifier drives the dividers which drive the amplitude modulating and leveling circuits. The oscillator's cavity has two varactor diodes that allow the capacitive loading to be varied by voltages (at the anode and cathode) to provide FM and phase lock.

FM Circuits

The RF oscillator's varactor cathode is driven by the FM Amplifier which provides accurate amplification or attenuation of the modulation signal and shapes the signal to compensate for the nonlinear characteristics of the varactor diodes. Separate shaping circuits are used for positive and negative voltage excursions. The PEAK FM DEVI-ATION switch, which controls basic FM amplifier gain, is mechanically linked to the RANGE MHz switch since, for a given amount of peak deviation, the percent deviation (i.e., the amount of deviation relative to the carrier frequency) changes as the frequency range is changed. Also, as the frequency is tuned, the FM deviation changes. An FM Gain Compensation circuit with a potentiometer, which is geared to the FREQUENCY TUNE control, adjusts for the change in FM sensitivity with tuning,

Inputs to the FM circuits are routed through the MODULATION MODE switch. External inputs are applied in AC and DC, and an internal modulation signal in INT. The MODULATION LEVEL adjusts the input into a unity gain Buffer Amplifier. In addition to driving the FM amplifier, the Buffer Amplifier drives the Over-Deviation Detector and the Meter Attenuator. In the event that the input signal exceeds ±1.1V, the Over-Deviation Detector turns on the REDUCE PEAK FM DEVIATION annunciator. The Meter Attenuator scales the input signal to give the correct reading on the meter. modulation circuits and MOD OUTPUT jack or the FM modulation circuits and MOD OUTPUT jack. The internal modulation oscillator has three fixed frequencies; 400 Hz, 1 kHz, and 5 kHz. The oscillator frequencies are available whenever the MOD-ULATION MODE switch is in the AM INT or FM INT position.

The internal pulse generator for pulse modulation is part of the Internal Modulation Oscillator Assembly. The pulse generator can be varied in WIDTH from 1 to $40 \,\mu s$ and in RATE from 0.05 to 5 kHz. This output is also available at the MOD OUTPUT jack when INT PULSE is selected.

Power Supplies and Fan

The instrument has five regulated supply voltages, +44.6V, +20V, -20V, +5.2V, -5.2V. All supplies are protected against overloading, over voltage, and reverse voltage. An LED annunciator on each supply indicates proper operation when on. The cooling fan is driven by a dc brushless motor controlled by the Fan Driver Circuits. Power is applied to or removed from the Fan Driver circuits through the cold sensing thermostat. The ac line voltage circuit has a heat sensing thermostat to open the line whenever an over-temperature condition exists.

TROUBLESHOOTING

It is assumed that a problem has been isolated to the FM circuits and RF oscillator as a result of using the overall block diagram. Troubleshoot by using the test equipment and procedures specified below.

Test Equipment

Digital Voltmeter	• • • • • • • • • • • • • • • •	. HP 3490A
Oscilloscope		01A/1820C

Initial Test Conditions

Top and bottom covers removed (see Service Sheet G).

Modulation Oscillator

Internal AM and FM is provided by the Modulation Oscillator. The oscillator drives either the AM 8-20

Procedure

Set the generator's controls as listed in the box at the right-hand side of the diagram. To check a voltage at a test point, change the control settings as specified in the box associated with that test point, check the voltage, then reset the controls to the settings specified in the box at the right-hand side.

......

-

The blocks are keyed (to the Service Sheets that have the circuit schematics) by the numbers located in their lower right-hand corners.

NOTES

The last two foldouts in this manual have top and bottom internal views of

the instrument that show the locations of the test points, assemblies, and cables accessible from the bottom of the instrument.

After repairs are complete, see Table 5-2 for appropriate post-repair test and adjustments.

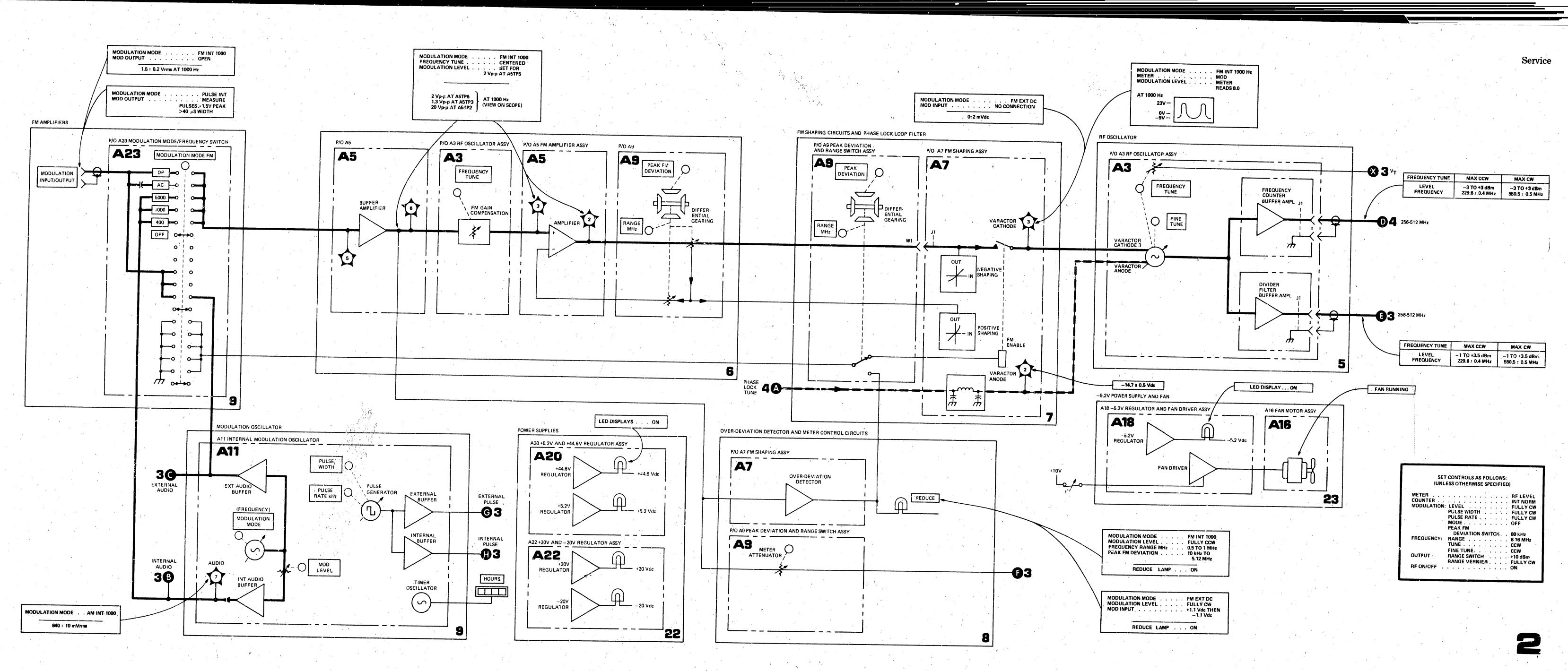


Figure 8-18. FM Circuits and RF Oscillator Block Diagram

- ____

, ____

_

_

8-21

SERVICE SHEET 3

PRINCIPLES OF OPERATION

Divider/Filters

Except for the 256-512 MHz and 512-1024 MHz frequency ranges, the RF signal from the Divider/Filter Buffer Amplifier (Service Sheet 2) is routed through a series of binary frequency dividers (i.e., $\div 2$) by slide switches on the filter section of the A10 Divider/Filter Assembly. The RF signal is divided to the selected range. This is also illustrated in the simplified logic diagram, Figure 8-42.

The divided signal passes through the Modulator Preamplifier, the Modulator, and then to the RF Filters. The filters remove unwanted harmonics from the signal (which is approximately a square wave after being divided). The upper frequency ranges have two filters per range - one for the lower half (Low-Band Filters) and one for the upper half (High-Band Filters) of the range. This is necessary to effectively remove the second harmonic on the lower half of the range. The midpoint of the range is sensed by a Schmitt Trigger which compares a reference voltage to a voltage proportional to the frequency tuning. On the four lowest frequency ranges the RF signal has little second harmonic content because of good waveform symmetry; therefore, each range has only one filter.

AM/AGC Circuits

The output of the RF Filters is amplified by the Output Amplifier located in the AM/AGC Assembly.

The amplified output is peak-detected and buffered by the Detector Buffer Amplifier. The detected voltage, which is negative, is summed (in the Summing Amplifier) with a positive AGC reference voltage from the OUTPUT RANGE vernier. The AGC reference may also have the amplitude modulation voltage superimposed on it. The sum of the detector and reference voltages is amplified by the Summing and Modulator Driver Amplifiers. The Modulator Driver Amplifier supplies control current to the Modulator which adjusts the RF output level.

In the pulse modulation mode, the Modulator Driver Amplifier is switched on and off by input pulses from the Schmitt Trigger. To maintain a constant detector voltage into the summing amplifier, the detected output voltage is sampled during the RF-on period and then stored in the Sample-And-Hold section of the Detector Buffer Amplifier when the RF is off. The Pulse Overload Detector senses any large errors in the leveling circuit which may occur when the OUTPUT RANGE vernier is reduced. In case of large errors, the hold function is defeated until equilibrium occurs. The Rate Detector senses pulses of low repetition rate and turns off the meter circuit when the rate is so low that the meter is no longer accurate.

Service

The Meter Amplifier produces an output voltage proportional to the detected output voltage (and hence the output level) to drive the meter circuits. The AGC reference voltage originates in the AM Offset Amplifier where it is summed with any AM input signal. The voltage out of the amplifier then passes through the OUTPUT RANGE vernier to the modulation Summing Amplifier. The Modulator can be disabled (i.e., maximum modulator attenuation) by the RF ON/OFF switch.

Meter Circuits

The meter can be set to measure either percent AM, peak frequency deviation (FM), or RF LEVEL. In measuring AM and FM, the modulation signal is peak-detected by the Positive Peak Detector and amplified. For output level, the output of the Meter Amplifier, which is proportional to the detector output, is amplified by the Meter Drive Amplifier.

Reverse Power Protection Circuit

If high level reverse power is applied into the RF OUTPUT jack, this level is sensed by a comparator which drives an RF relay and opens the RF path. The Limiter protects the generator's output circuits during the time that elapses while the relay is de-energizing. The relay contacts are open when the generator is off.

TROUBLESHOOTING

It is assumed that a problem has been isolated to the AM/AGC circuits and output amplifier as a result of using the overall block diagram. Troubleshoot by using the test equipment and procedures specified below.

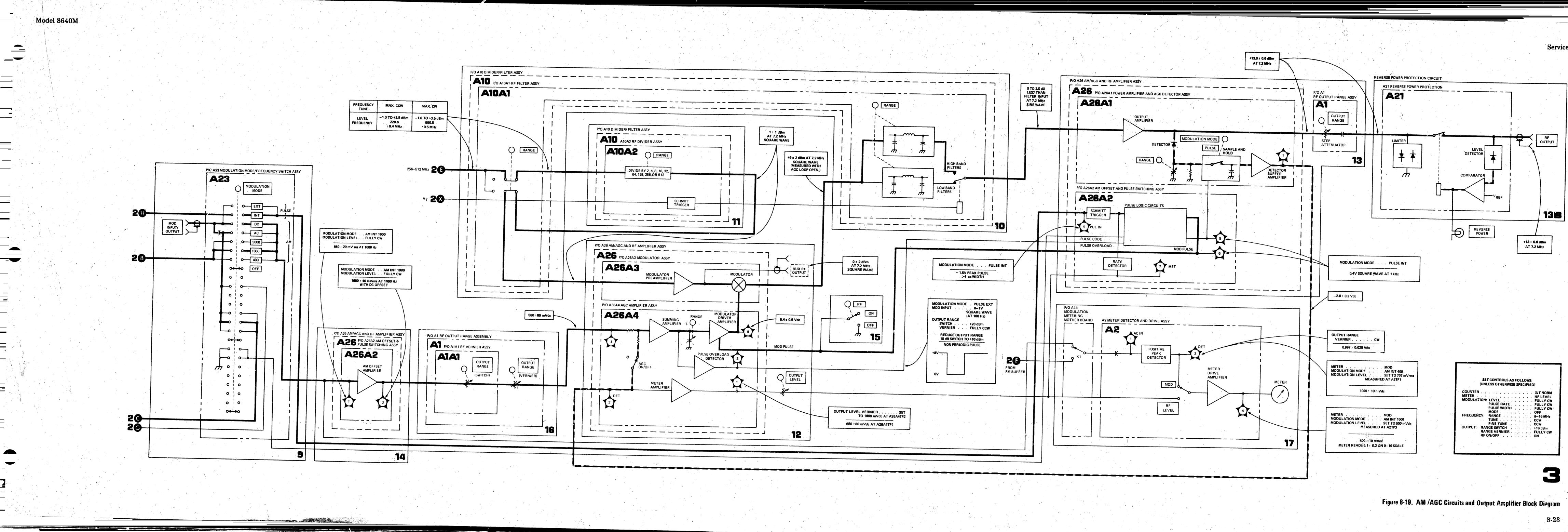
Test Equipment

Digital Voltmeter HP 3490A Oscilloscope HP180C/1801A/1820C Power Meter and Sensor HP 435A/8482A

Initial Test Conditions

Top and bottom covers removed (see Service Sheet G).

Procedure


Set the generator's controls as specified in the box at the right-hand side of the diagram. To check a voltage at a test point, change the control setting as specified in the box associated with that test point, check the voltage, then reset the controls to the settings specified in the box at the right-hand side.

The blocks are keyed, by the numbers located in their lower right-hand corners, to the Service Sheets that have the circuit schematics.

NOTES

The last two foldouts in this manual have top and bottom internal views of the instrument that show the locations of the test points, assemblies, and cables (all RF cables are accessible from the bottom of the instrument).

After repairs are complete, see Table 5-2 for appropriate post-repair tests and adjustments.

Service

SERVICE SHEET 4

PRINCIPLES OF OPERATION

Counter Time Base

The time base serves two functions: (1) in the unlocked mode, it gates the counter and determines the count period; (2) in the phase lock mode, it is the reference with which the divideddown RF signal is compared in the phase detector.

— The time base is derived from the internal 5 MHz Reference Oscillator. The 5 MHz reference signal is then divided by 5

---- The 1 MHz signal is then divided by N1 and N2. The N1 x N2 combination programs the gate —— period of the counter. This period compensates for the frequency division of the RF oscillator output by the RF dividers (see Service Sheet 3) since the counter input is from the RF oscillator itself (and not the divided down output signal). Next, the Expand Decoder divides the time base ______ signal by 1 (INT NORM) or 10 (INT X10 or EXT). The final divider (Lock Decoder) is either a ÷100 (INT LOCK) or ÷101 (INT NORM). When unlocked, the time base is high for 100 counts of the input and low for one count. This one count gives adequate time for the counter to transfer its count to the Display and to reset to zero between count cycles. When locked the ± 100 makes the = time base period equal to the period of the high time when the counter was unlocked (i.e., the _____ one-count low period is eliminated.

—— The Decimal Point Decoder positions the decimal properly in the display for a selected count —— mode.

RF Scaler

The RF Scaler is the counter front end. It conditions the RF input signal to be compatible with the Up/Down Counter. The RF signal comes from either the RF Oscillator or front panel - COUNTER INPUT as selected by the COUNTER switch. The Amplifier/Trigger shapes the RF signal waveform for use by subsequent logic circuits.

With either INT or EXT 10-550 MHz COUNTER switch setting, the RF signal is divided by 64. For EXT 0–10 MHz COUNTER setting the $\div 64$ is bypassed. The signal frequency that is fed into the Up/Down Counter is always less than 10 MHz.

Up/Down Counter and Display – Unlocked Mode

- In the unlocked mode, the Up/Down Counter is configured as a six-decade up-counter. The counter operation is controlled by the time base. When the time base is high, the counter counts the input signal, incrementing one count for each input pulse. When the time base goes low, the count input is inhibited, the counter outputs are transferred to the Storage Buffers, and the latest count appears on the Display. The Storage Buffers are then latched (i.e., they are no longer influenced by the counter outputs), and the counters are cleared to zero. When the time base returns to a high, the counter counts the input pulses beginning at zero, and the cycle repeats.

SERVICE SHEET 4 (Cont'd)

If the count exceeds 999999, a carry (CRY) pulse is generated. The Overflow Detector then turns on the OVERFLOW annunciator to warn that a significant digit is not shown on the Display.

Up/Down Counter and Phase Lock Circuits — Phase Lock Mode

In the phase lock mode the Up/Down Counter is configured as a six-decade down-counter. The counter is free running and is not controlled by the time base. When the COUNTER LOCK switch is first set, the counter continues to count up until the present count cycle is terminated. The count is then stored in the Storage Buffers for the Display and for the down-counter as Countdown Preset. The counter enters the phase lock mode and counts down beginning at the Countdown Preset Frequency. The counter counts to zero, then underflows (i.e., count is 999999) and a Counter Load pulse is generated. The counter is again preset to the same number and the cycle is repeated.

The time of occurrence of the underflow (the Counter Load pulse) is compared with the termination of the time base cycle in the null phase detector. The phase detector produces a voltage proportional to the phase (or time difference) between the two signals. The detector voltage, after low-pass filtering and conditioning, drives the varactor anode of the RF Oscillator (see Service Sheet 2). This voltage tunes the oscillator to synchronize the counter load pulses with the time

The phase lock circuits form a variation of an M/N phase lock loop. The time base reference (5 MHz) divided by M is compared in the Null Phase Detector to the RF Oscillator frequency divided by N. In operation, the two frequencies compared are 5 MHz \div 5 \div N1 \div N2 \div 100 and the RF Oscillator frequency \div 64 \div Countdown Preset.

If the two frequencies differ, the RF oscillator is tuned to synchronize the signals. M is a fixed number and N is self-programmed since it is determined by the count just prior to entering phase lock.

If the phase detector voltage exceeds preset limits, an error condition occurs, and the counter reverts to the count-up mode. The error also switches on a 2 Hz Flash Oscillator causing the Display to blink (an indication that phase lock has been broken).

TROUBLESHOOTING

Description

A fault in the counter can usually be isolated to the functional level by following the steps in the troubleshooting table. The steps are simple and make maximum use of front panel controls and

NOTE

Countdown Preset is the complete number shown in Display (without decimal point). The down counter produces one Counter Load pulse each time it counts to zero from the preset number.

SERVICE SHEET 4 (Cont'd)

display indications for diagnosis. The steps of the table should be followed in order. When the first abnormality is observed, turn to the service sheet indicated and begin troubleshooting. After a repair has been completed, return to this table and check the counter again by following the steps below to the conclusion.

Procedure

- Remove instrument top cover (see Service Sheet G for top and bottom cover removal procedure).
- Set controls as follows:

	COUNTE	R	•		•	• •	•	•		••	•	•	INT NOF
	METER.	• • •	•		•	• •	•	•	•			•	RF LEVI
	LINE .	• • •	•	• •	. •	• •	•.	•			•		OFF
	MODULA	TION				• •							Fully ccw
			Pl	JLS	E W	IDT	H	• •	•		•	•	Fully cw
			Pl	JLS	E RA	ATE	.	•		•			Fully cw
			M	OD	Ε,			•				-	AM INT :
			PI	EAK	FM	DE	VI	AT	IO	N	•	•	5 kHz
	FREQUEN	ICY:	R	ANC	ΞE								0.5—1 MH
,			Τl	JNE	•	• •							Fully ccw
			FI	NE	TUN	JÉ.						•	Centered
	OUTPUT:	RAN	GE	Swi	tch		•				•		0 dBm
	•	RAN	GE	Ver	nier	•	•				_		Fully cw
•	· · · -]	RF O				•	•	•	•				ON
					•								

3. Follow the steps in the troubleshooting table below in sequence.

Step	Instruction	Normal Indication	If Indication Abnormal
1	Set LINE to ON.	Five power supply LED indicators on.	See Service Sheets 22 & 23: Check regulator circuits.
		Panel meter shows RF power at \approx +3 dBm.	See Service Sheets 2 & 3: Check RF circuits beginning with AUX RF OUTPUT.
		Display not blinking.	 (1) See Service Sheet 21: Lock Switching, Error Detector, Phase Detector Circuits (2) See Service Sheet 20: Flash Oscillator.
		All digits lighted.	If all digits are blank, (1) See Service Sheet 19: Time Base. (2) See Service Sheet 20: Flash Oscillator. If one or more digits are blank, (1) See Service Sheet 19: Time Base. (2) See Service Sheet 20: Counter-Count Up Mode

Counter/Lock Circuits Troubleshooting (1 of 4)

Γ NORM LEVEL lly ccw ly cw ly cw INT 5000 -1 MHz ly ccw tered

9p	Instructions Set controls as follows and note decimal position.		Normal Indi	ication	If Indication Abnormal		p Instructions		Lock Circuits Troubleshooting (3 Normal Indication	
ļ			Dee Dervice Dieet 15: Decimal Politi		5	Set COUNTER to IN Adjust FREQUENC	IT NORM.		If Indication Abnormal See Service Sheet 19: Time Base	
	FREQUENCY RANGE COUNTER Display		Display		a dis mate			Displayed Frequency (MHz)		
_	(MHz)					ľ	Switch RANGE as shown and note			
	$\begin{array}{r} 0.5{-1} \\ 1{-16} \\ 16{-128} \\ 128{-1024} \end{array}$	INT NORM	X•X X X X X X X X•X X X X X X X X•X X X X X X X•X X X X X X X•X X				display.	$ \begin{array}{c c} 0.5-1 \\ 1-2 \\ 2-4 \\ 4-8 \\ 8-16 \end{array} $	0.500 1.00 2.00 4.00 8.00	
	$\begin{array}{c} 0.5{1} \\ 1{16} \\ 16{128} \\ 128{1024} \end{array}$	INT X10	•X X X X X X X X•X X X X X X X X•X X X X					$16-32 \\ 32-64 \\ 64-128 \\ 128-256$	16.0 32.0 64.0 128	
		EXT 10-550	XXX _• XXX					256-512	256	
•		EXT 0-10	X•X X X X X			.		512-1024	512	
	Set COUNTER to EXT 10—Display blank in OFF. Display550 MHz. Switch LINE between000.000 in ON after a short waOFF and ON at least 5 times with5 seconds between switchings.		F. Display a short wait.	If display other than 000.000 and remains the same for each ON, see Service Sheet 20: Counter-Count Up Mode.		Set COUNTER to EX 10-550 MHz. Conner OU'TPUT to COUNTI Switch RANGE as fol display. (Tune FRE- QUENCY TUNE	ct RF ER INPUT.		 See Ser.ice Sheet 18: Checker (1) See Ser.ice Sheet 18: Checker (2) See Service Sheet D: Checker (2) See Service Sheet	
					If display other than 000.000 (or one or more digits blank) and changes for each ON, see Service Sheet 19: Time Base.		QUENCY TUNE cw to obtain the first reading.)	512-1024 256-512 128256 64-128	Displayed Frequency (MHz) 512 512 256 128	(3) See Service Sheet 11: Check switching of RF Dividers.
	Set LINE to ON. O INPUT/OU'TPU't t INPUT. Set COUN	• COUNTER	Display reads 0.0050	0.	If display is 0.00000, (1) See Service Sheet 18: Input Cir- cuits, then Dividers. (2) See Service Sheet 20: Shaping, then Counter-Count Up Mode.			3264 1632 816 Set COUNTER 48	64 0 32.0 16.0 to EXT 0-10. 8.0	
				(; })	If display constant (except 0.00000) but incorrect, (1) See Service Sheet 19: Time Base. (2) See Service Sheet 20: Counter- Count Up Mode.	7	With FREQUENCY R 0.5-1 MHz, set COUN	2-4 1-2 0.5-1 ANGE set to	4.0 2.0 1.0 OVERFLOW lamp on.	See Service Sheet 20: Overflow Detector.

Counter / lock Circuite Troubleshasting /2 of A

Service

Model 8640M

Step	Instructions	Normal Indication	If Indication Abnormal		
8	Return frequency to approximately 0.7 MHz. Set COUNTER to INT LOCK.	Displayed count is steady and not blinking.	 (1) See Service Sheet 21: Lock Switching then Phase Detector Circuits. (2) See Service Sheet 20: Counter- Count Down Mode. (3) See Service Sheet 19: Time Base (4) See Service Sheet 7: Check Phas Lock Loop Filter. Check RF Oscil- 		
9	Tune FREQUENCY TUNE one turn cw.	Display blinks at a 2 Hz rate.	lator's stability and ability to FM. See Service Sheet 21: Error Detec- tor then Lock Switching.		
10	Set COUNTER to INT NORM, then back to INT LOCK. Tune FREQUENCY TUNE fully ccw.	Display blinks at a 2 Hz rate.	See Service Sheet 21: Error Detector.		
11	Set COUNTER to INT NORM, then back to INT LOCK. Tune FINE TUNE one quarter turn cw, then one half turn ccw.	No change in display. No blink- ing of display.	See Service Sheet 21: Phase Detector and Error Detector.		
12	Miscellaneous problems: Counter frequency slightly in error.	TIME BASE output A8A3J1 at bottom of A8, 5 MHz.	Perform paragraph 5-44, Internal Reference Frequency Adjustment.		
	Excessive residual, FM only when locked.	Residual FM same as when unlocked.	See Service Sheet 21: Phase Detector Circuits.		
	Count when locked disagrees significantly with that measured on external counter.	Both read the same (allowing for time base error and ± 1 count of external counter).	See Service Sheet 20: Counter- Count Down Mode.		
	Fails input sensitivity test.	Counts properly for levels down —7 dBm.	See Service Sheet 18: Input Circuits.		

Counter/Lock Circuits Troubleshooting (4 of 4)

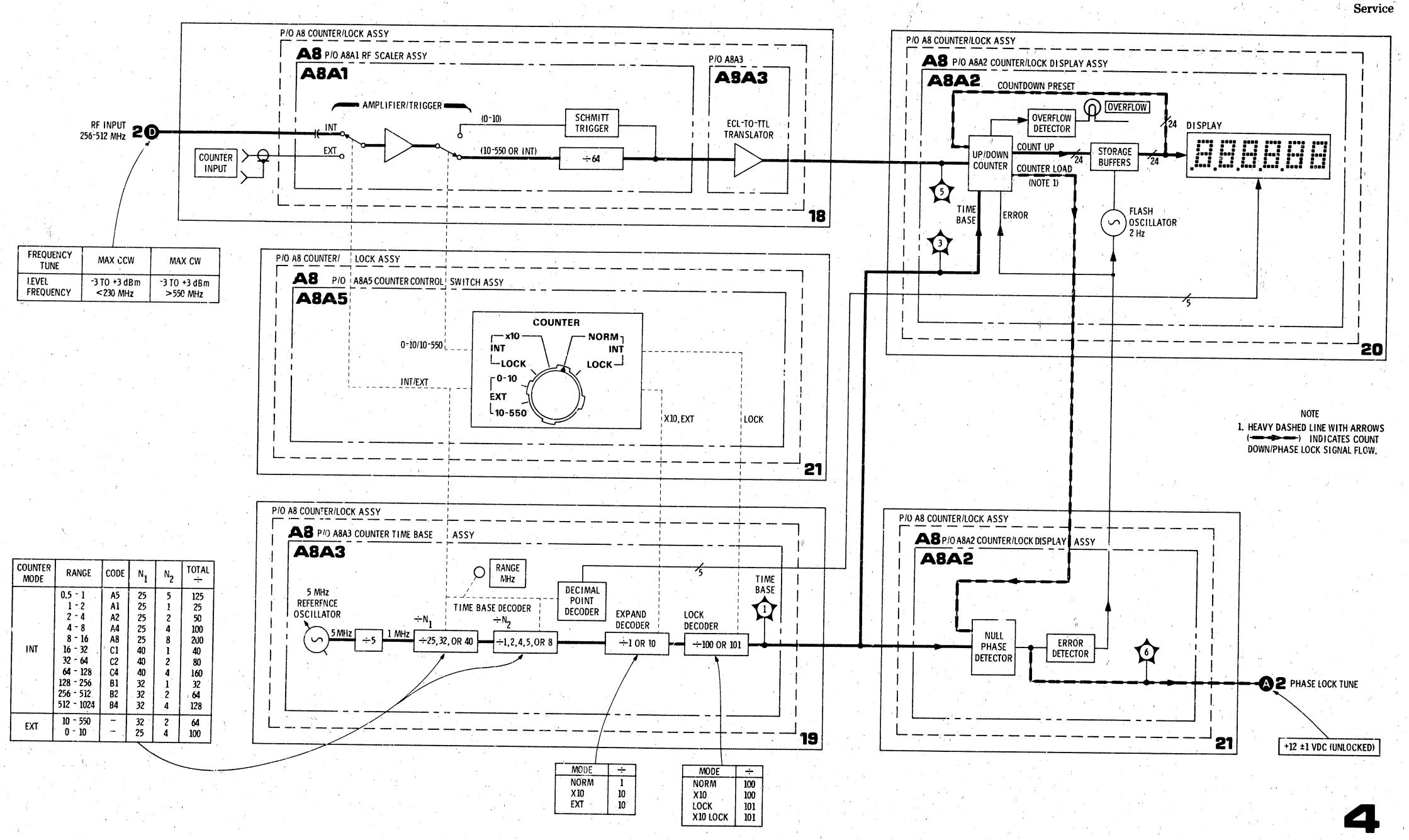


Figure 8-20. Counter/Lock Circuits Block Diagram

8-25/8-26

_

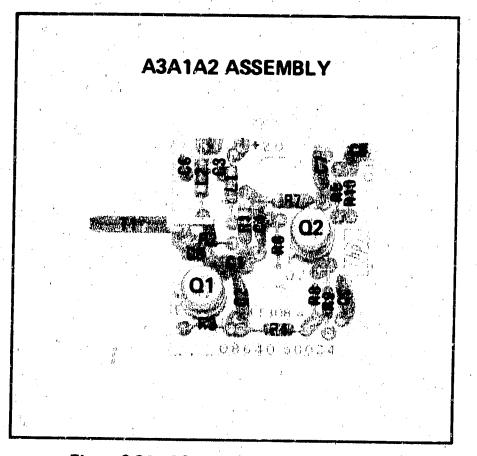


Figure 8-21. A3A1A2 Divider/Filter Buffer Amplifier Board Assembly

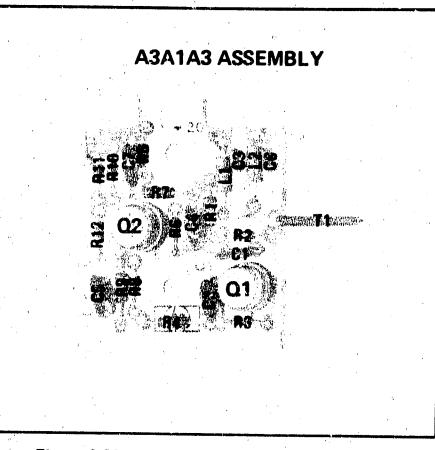


Figure 8-22. A3A1A3 Counter Buffer Amplifier **Board Assembly**

14

ACCESSION OF

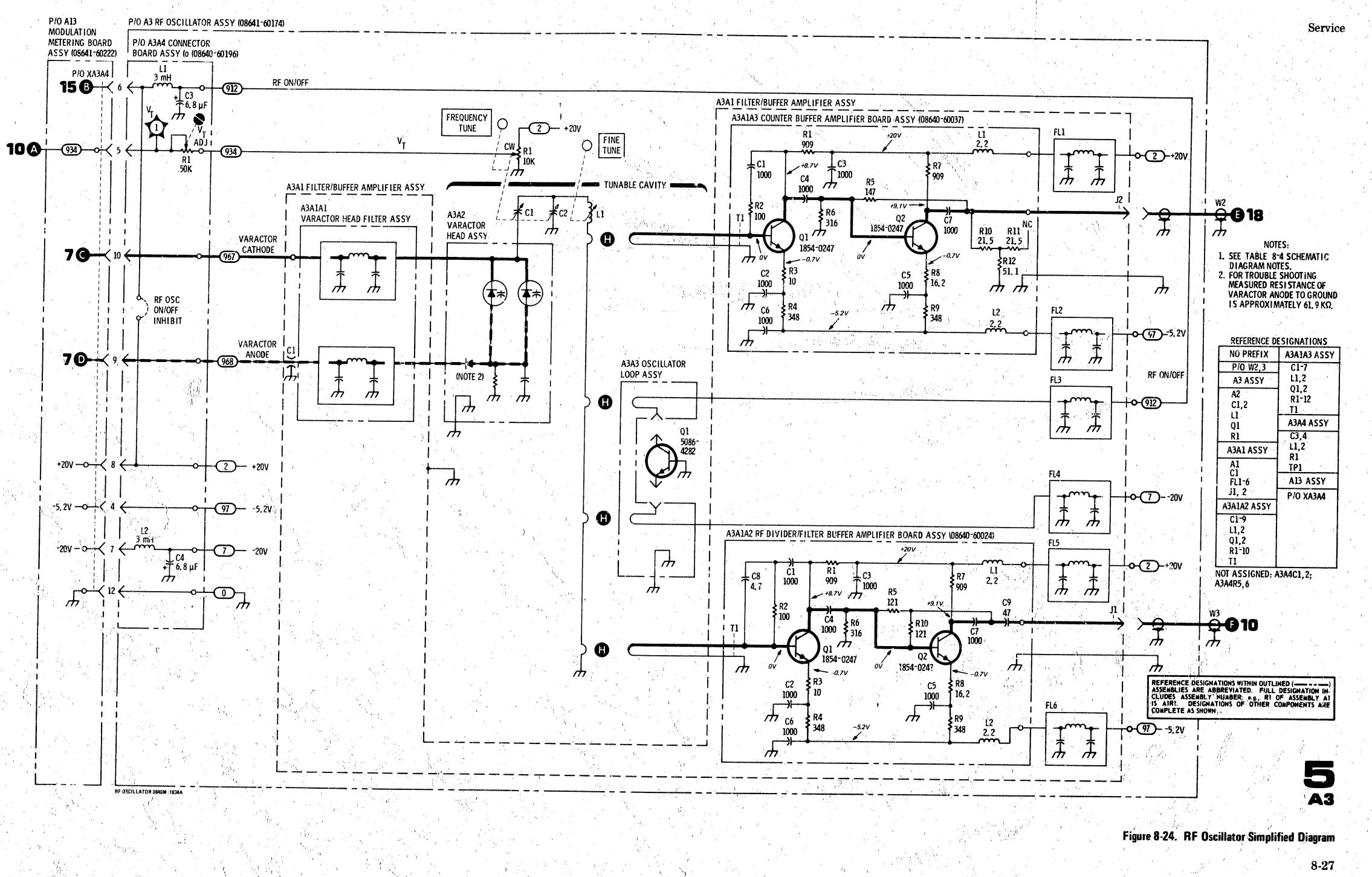
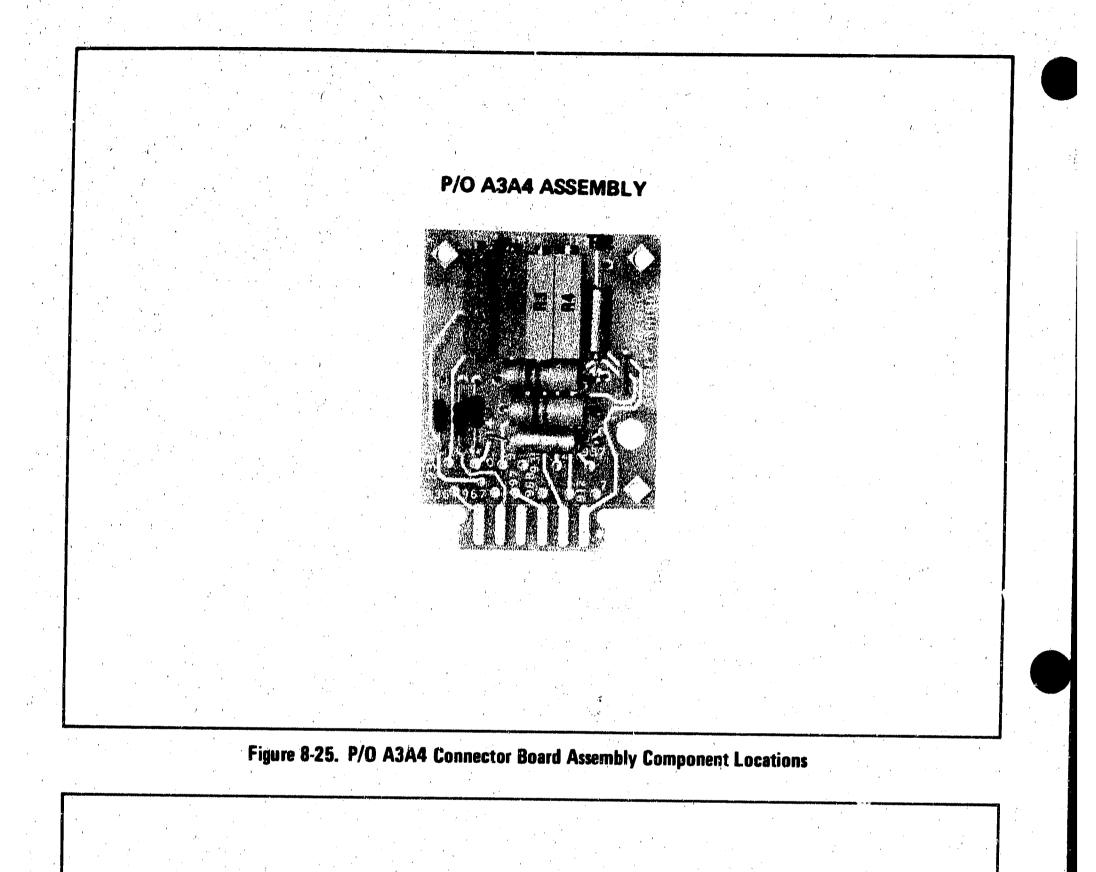
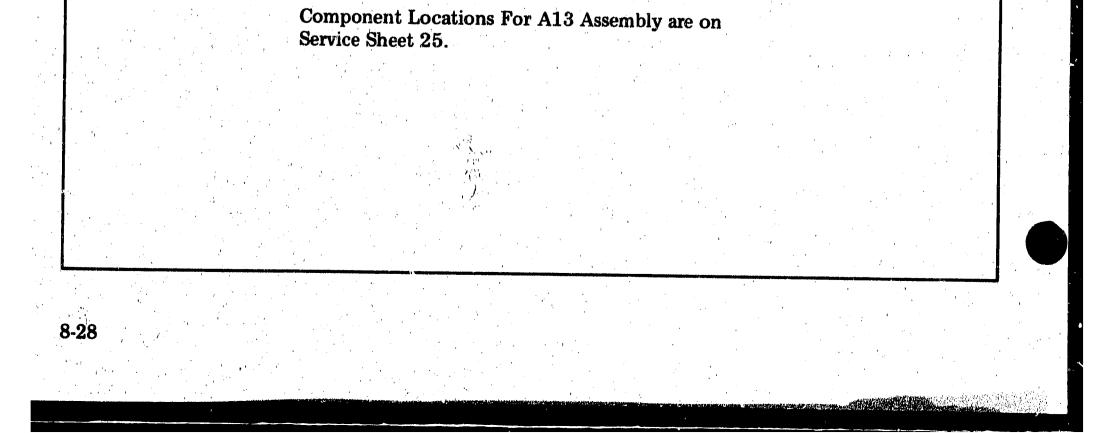
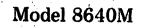




Figure 8-23. P/O A3A4 Connector Board Assembly Component Locations





Service

A13

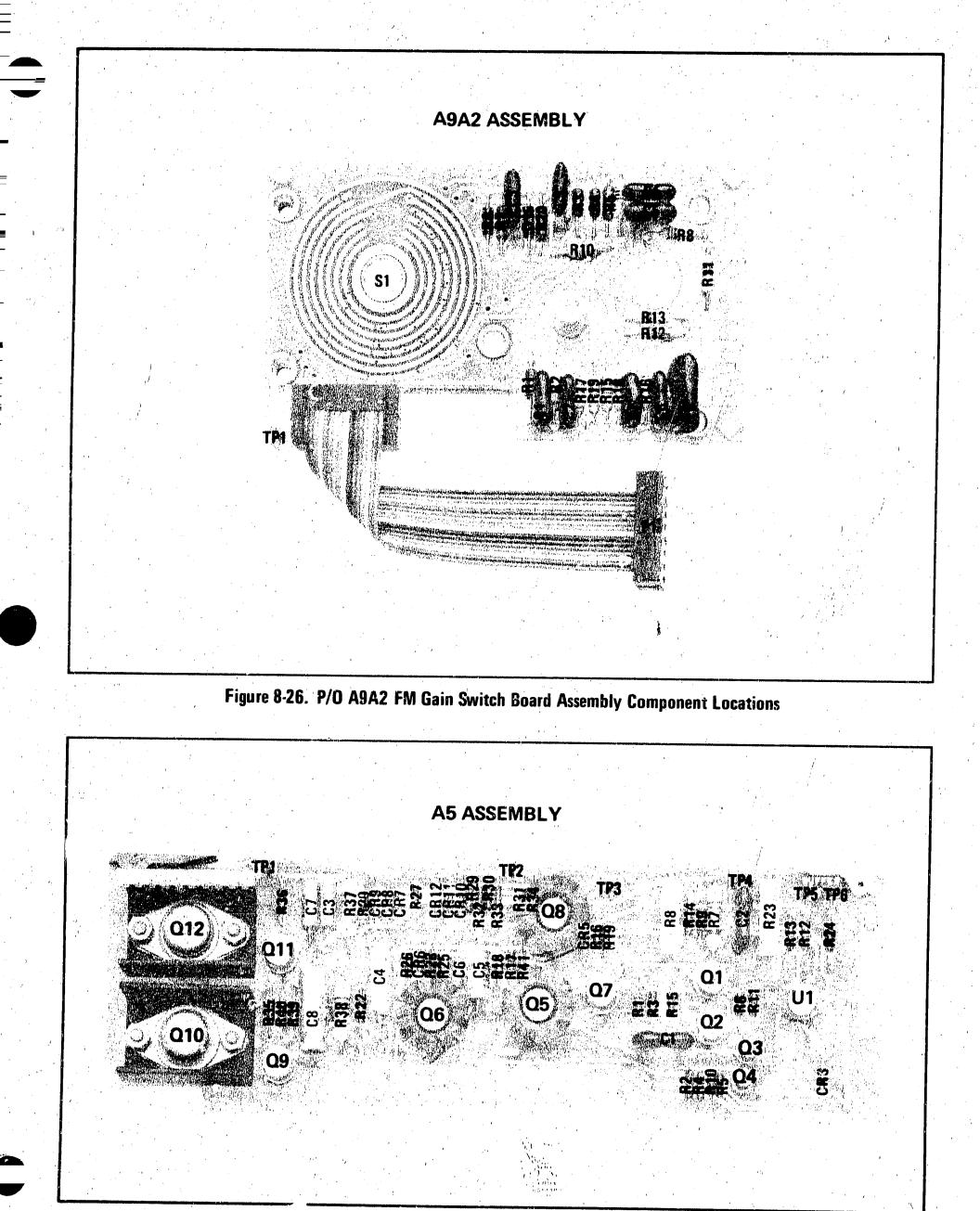


Figure 8-27. A5 FM Amplifier Assembly Component Locations

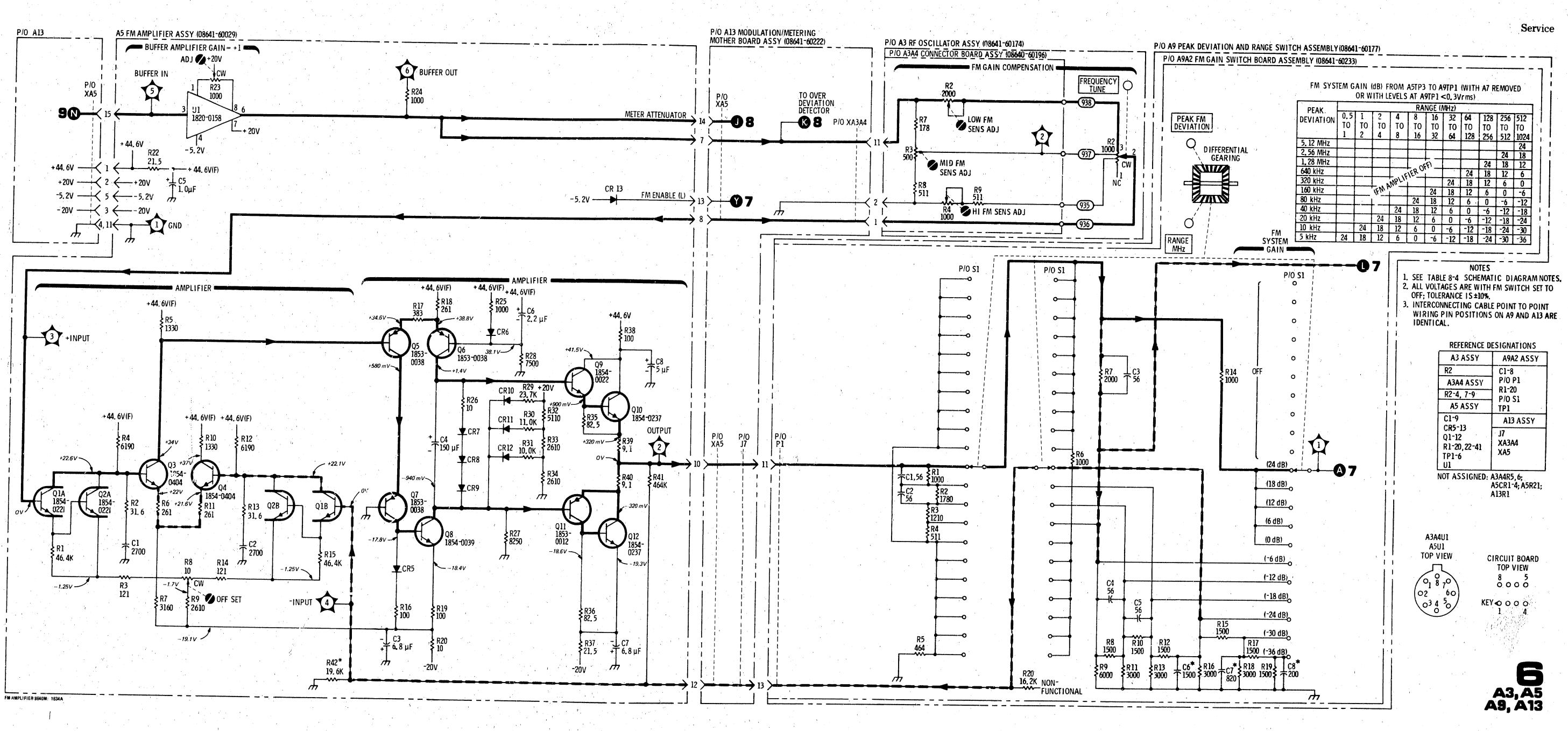


Figure 8-28. FM Amplifiers Schematic Diagram

8-29/8-30

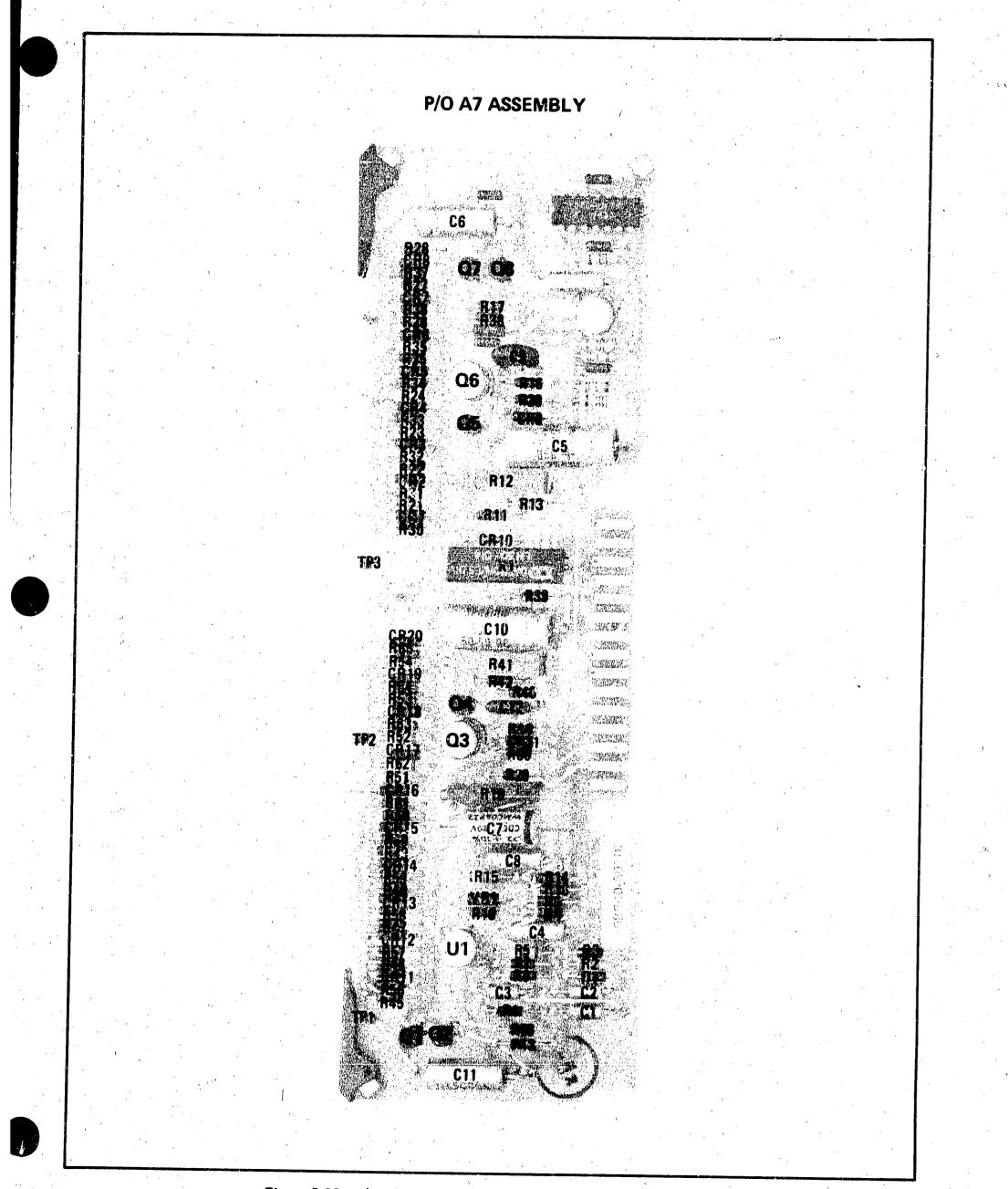


Figure 8-29. P/O A7 FM Shaping Assembly Component Locations

and the second second

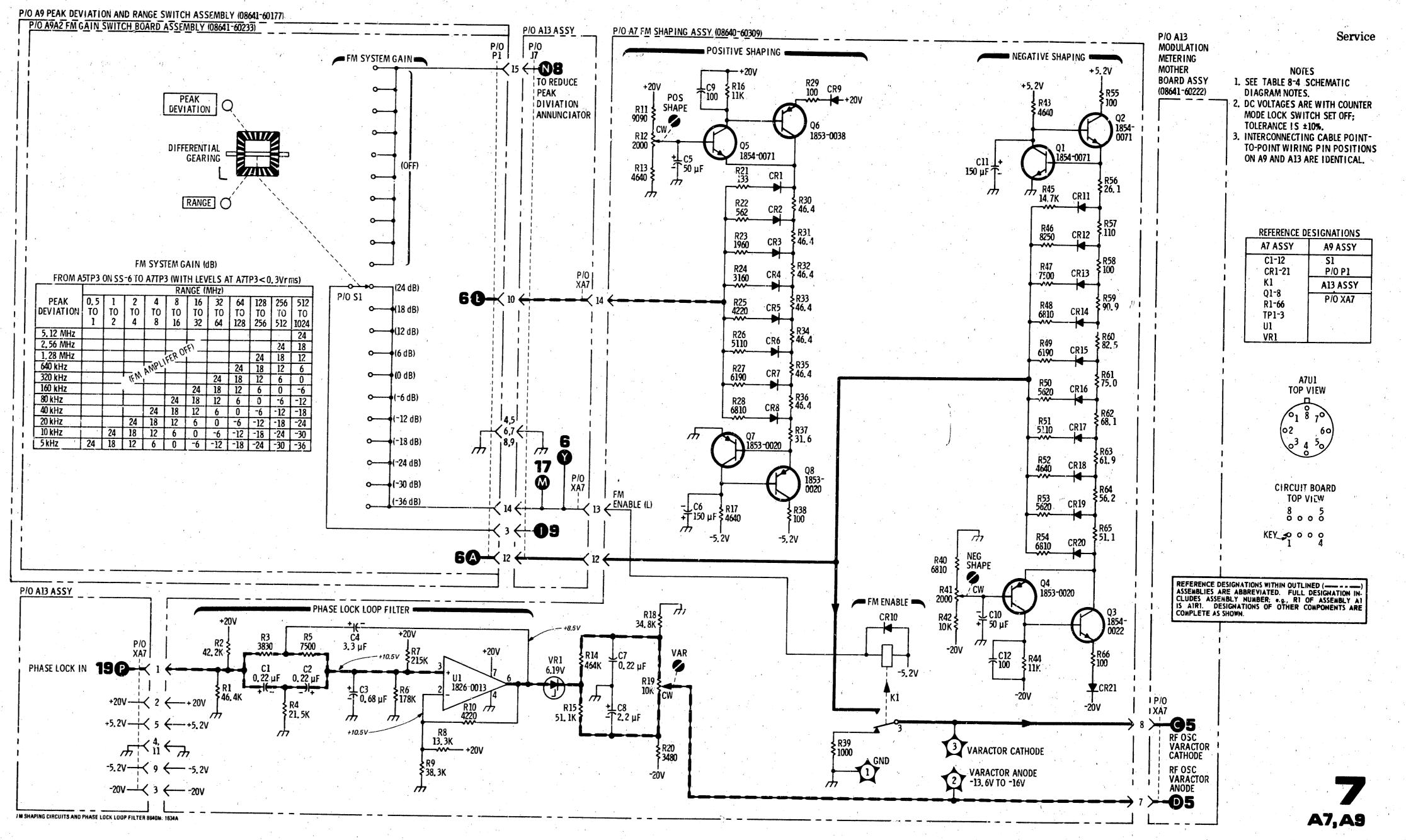
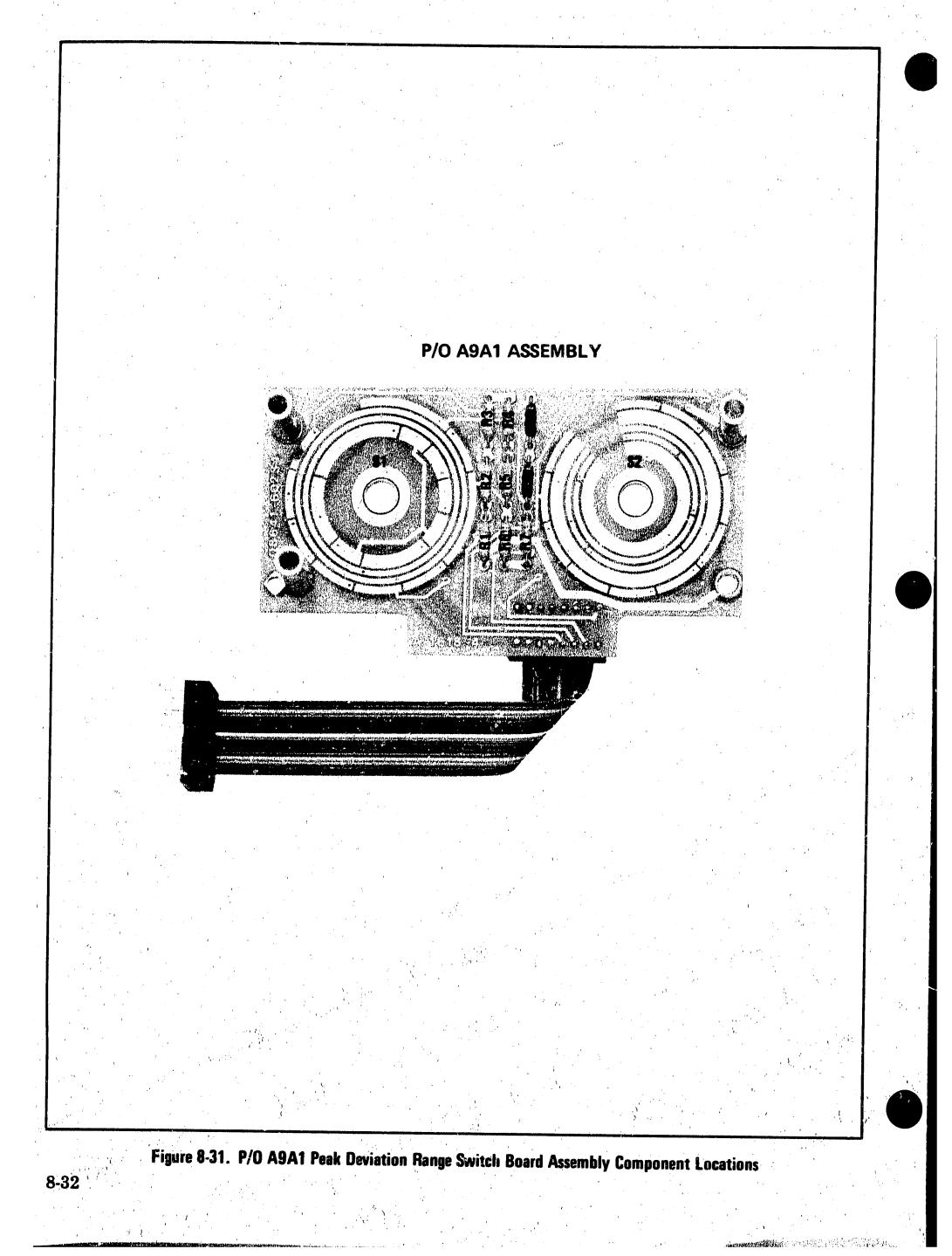
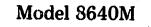




Figure 8-30. FM Shaping Circuits and Phase Lock Loop Filter Schematic Diagram

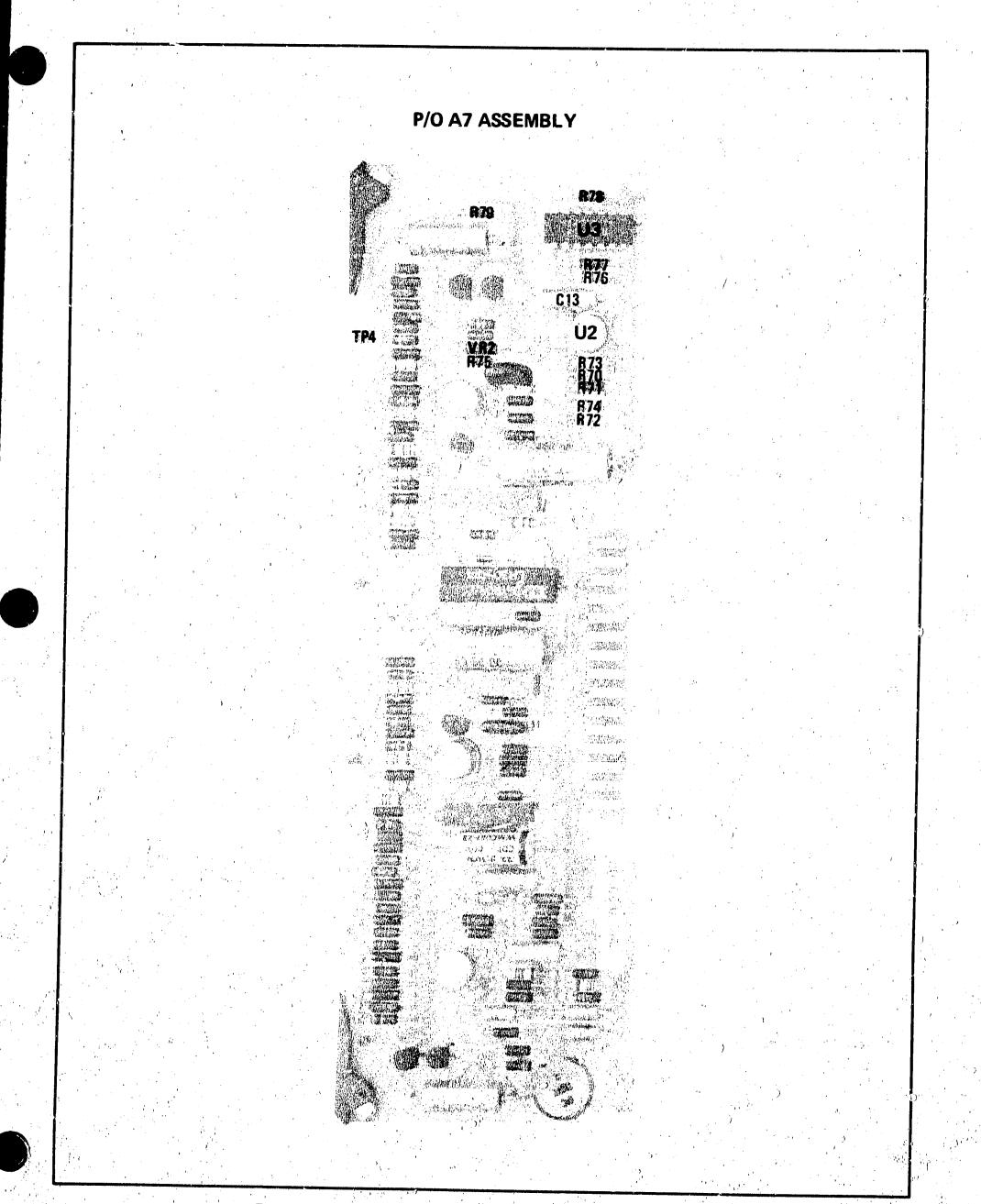
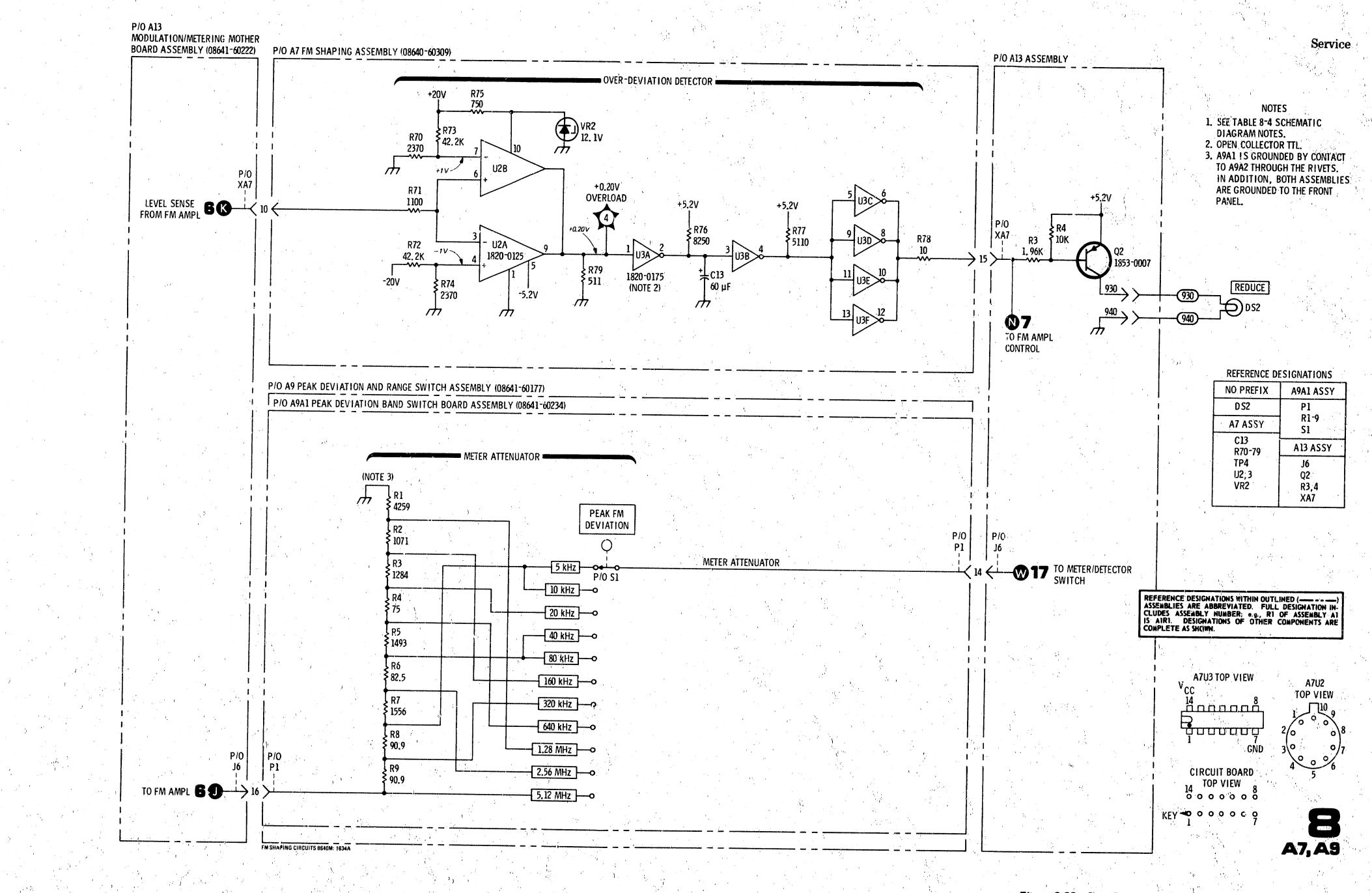
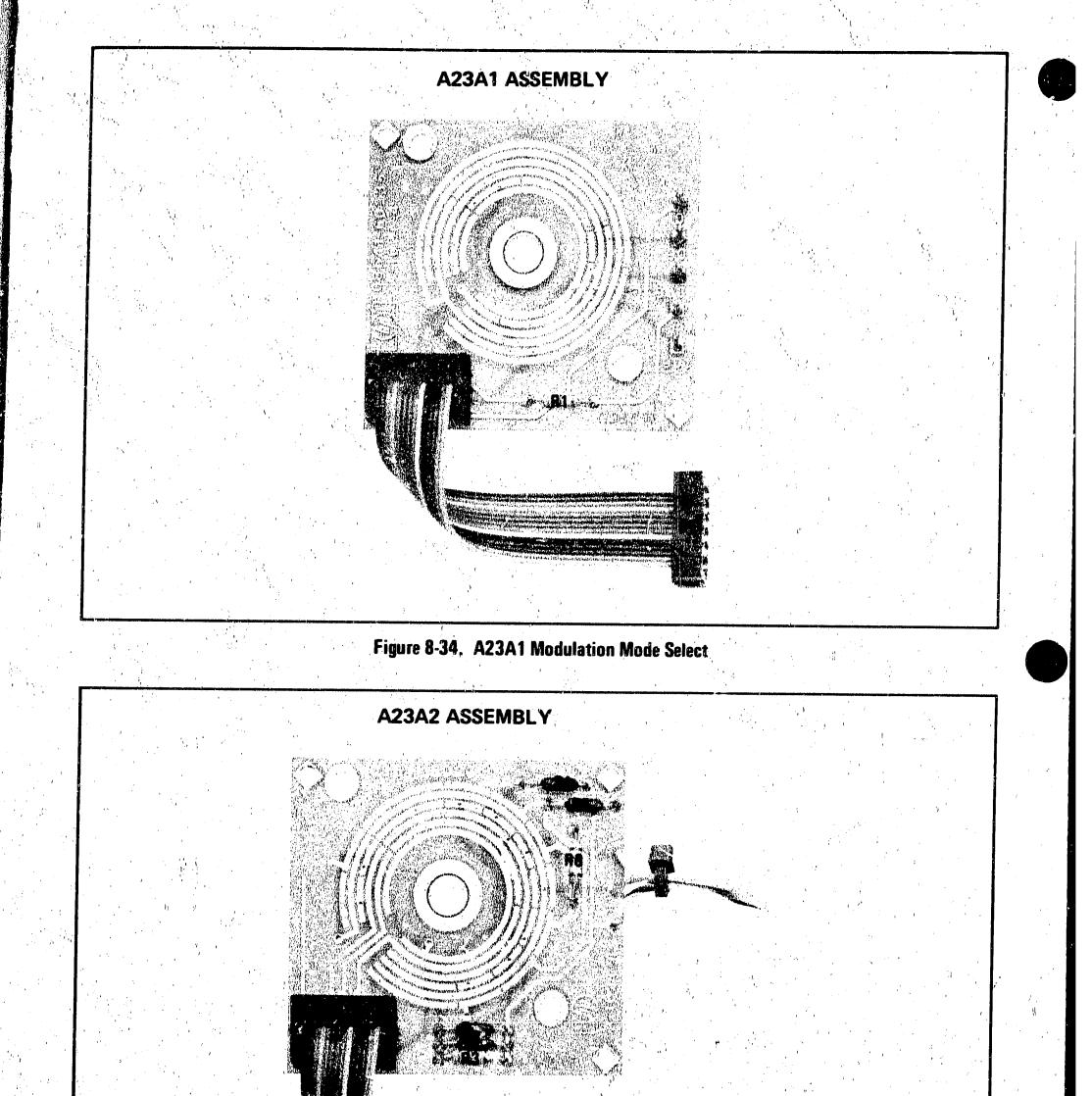



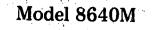
Figure 8-32. P/O A7 FM Shaping Assembly Component Locations

х) У


Figure 8-33. Over-Deviation Detector and Meter Control Circuits Schematic Diagram

8-34

Model 8640M


un fam

....) ky (spa

and the state of t

Figure 8-35. A23A2 Modulation Frequency Select

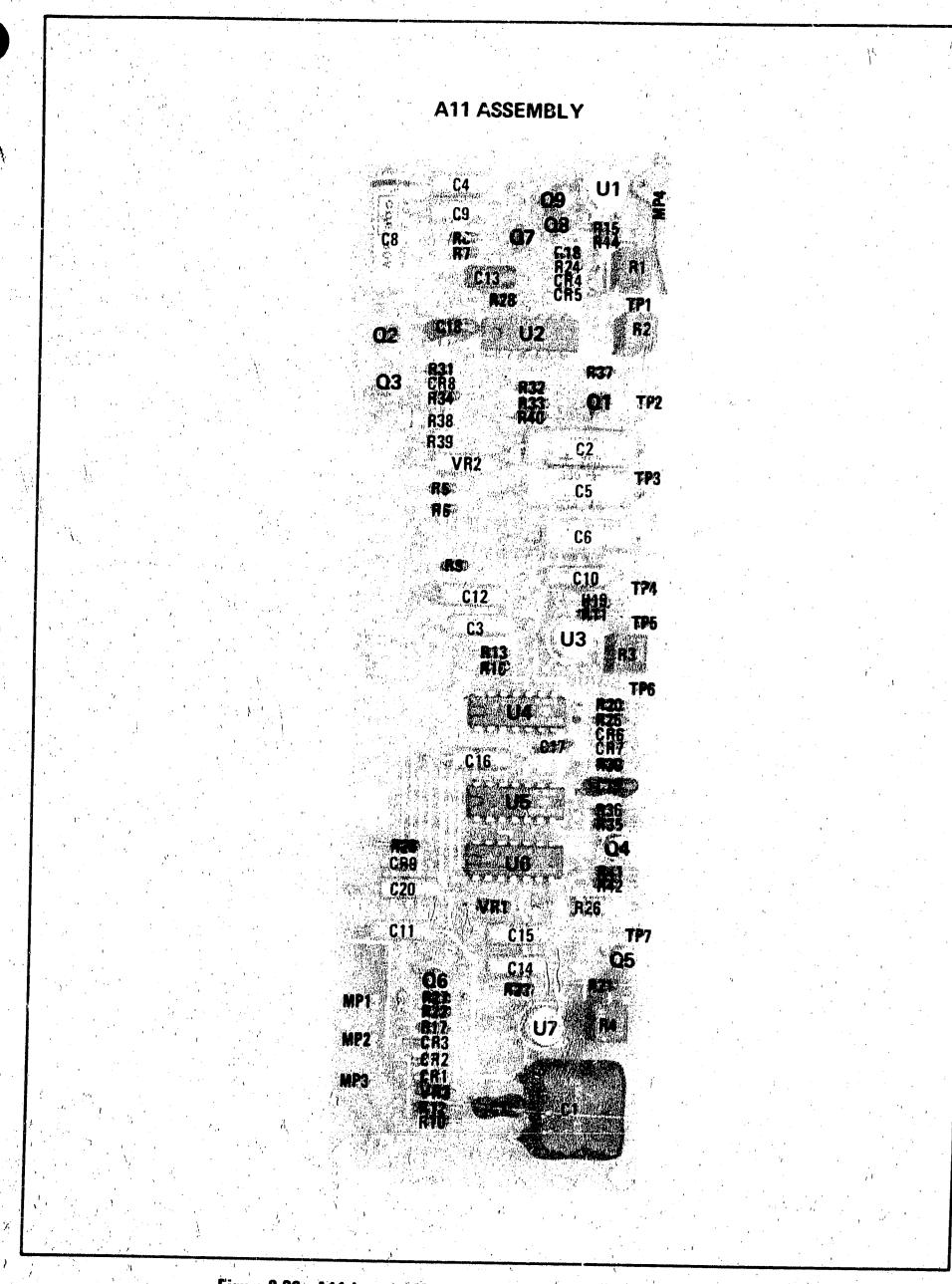


Figure 8-36. A11 Internal Modulation Oscillator Component Locations

t /

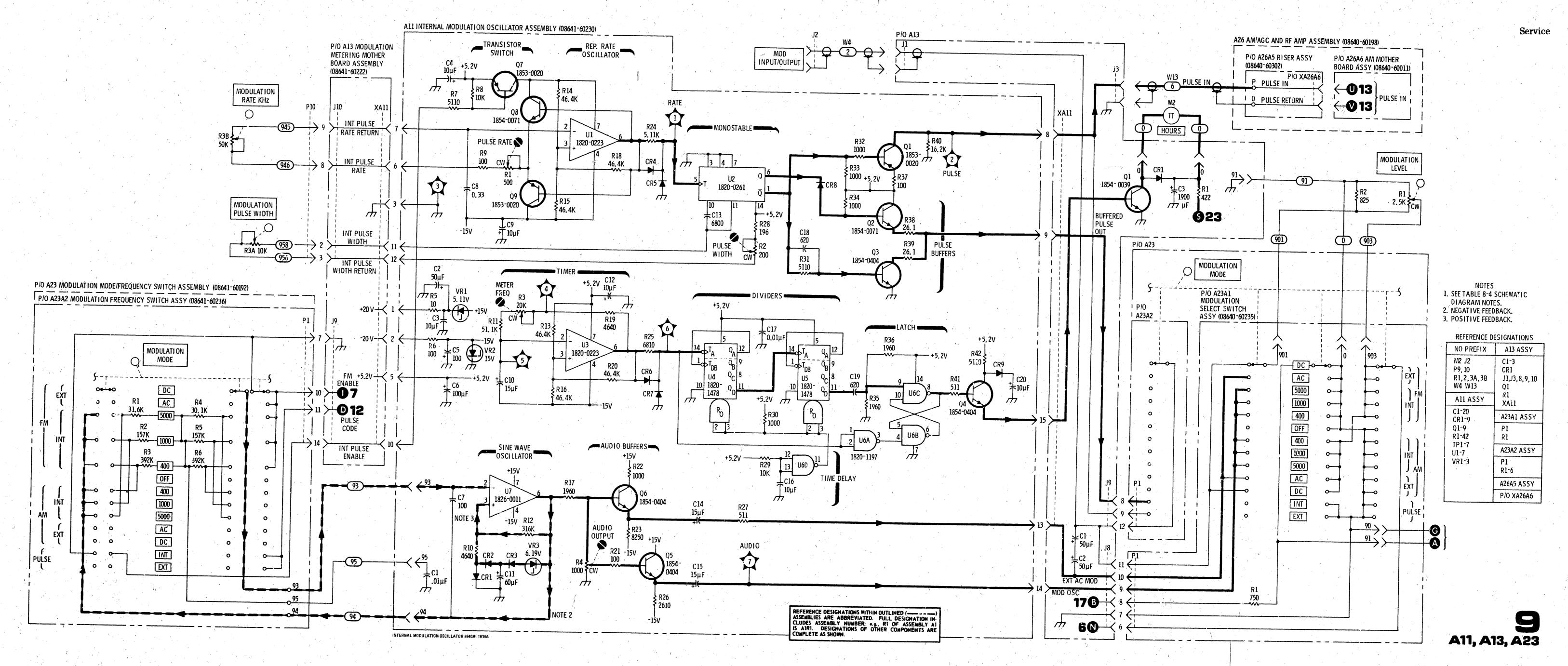
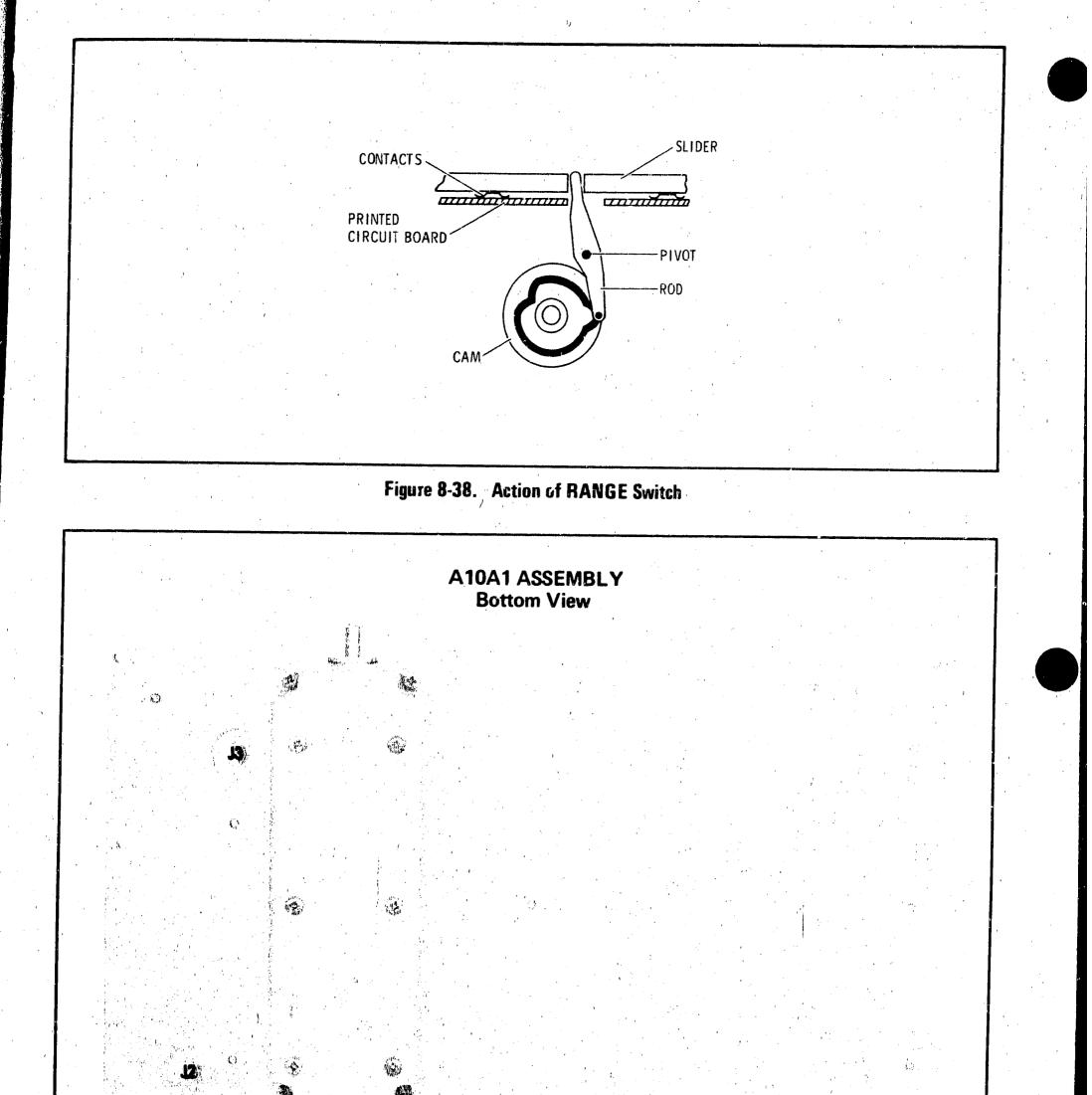



Figure 8-37. Internal Modulation Oscillator Schematic Diagram

58058 13 Figure 8-39. A10A1 RF Filter Assembly Component Locations (Bottom View) 8-36

THE REPORT OF THE PARTY OF THE

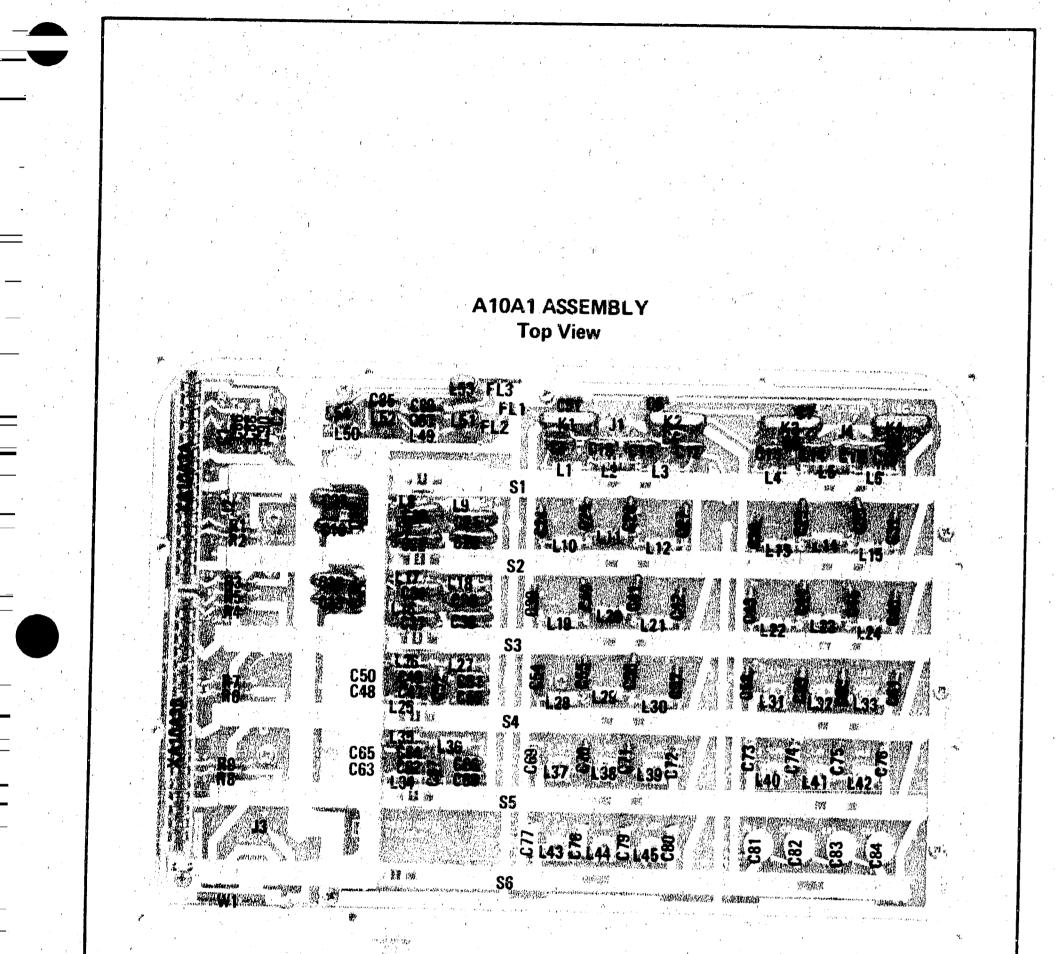
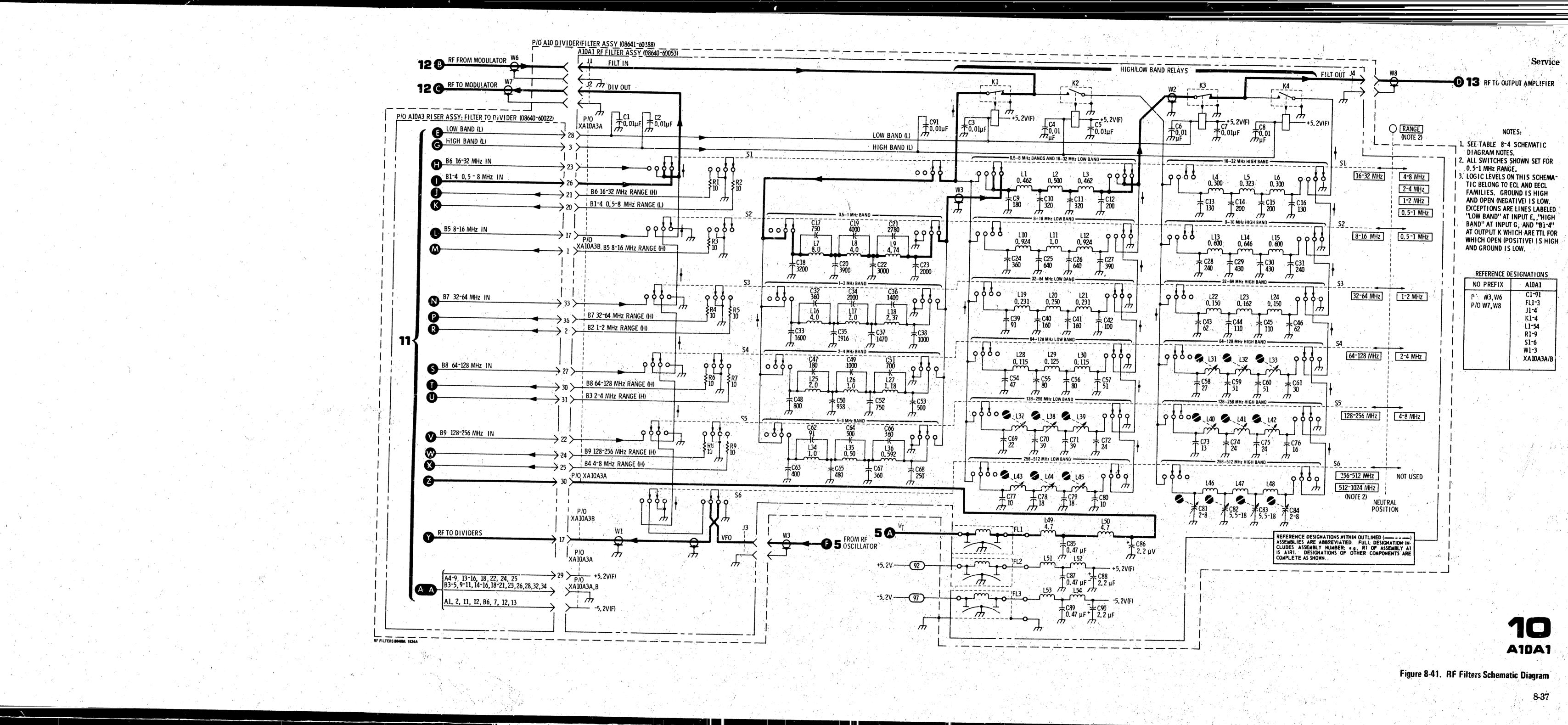
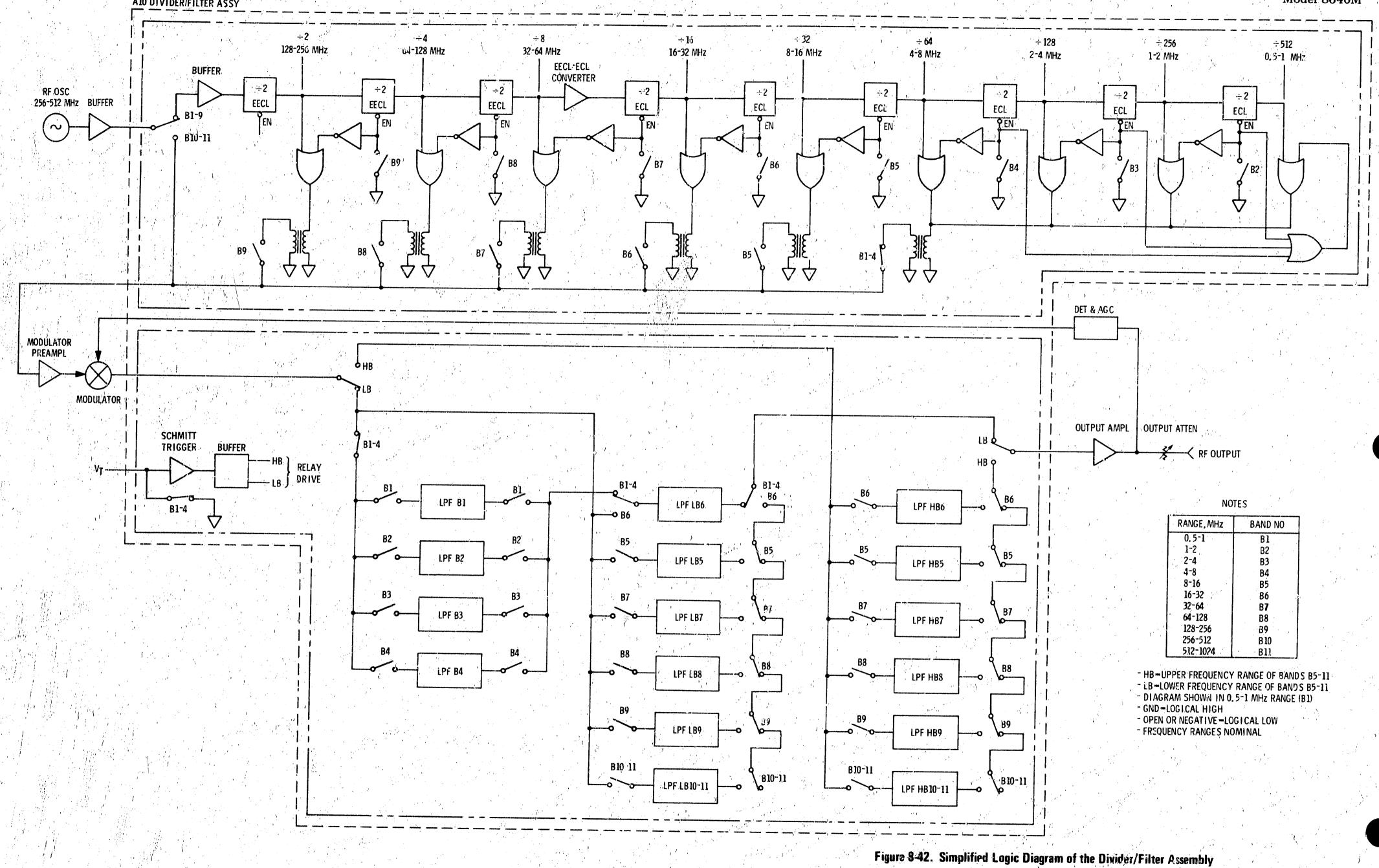
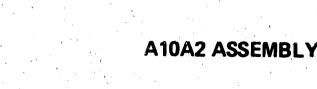




Figure 8-40. A10A1 RF Filter Assembly Component Locations (Top View)

8-38

A10 DIVIDER/FILTER ASSY

_


U

Service

Model 8640M

13210

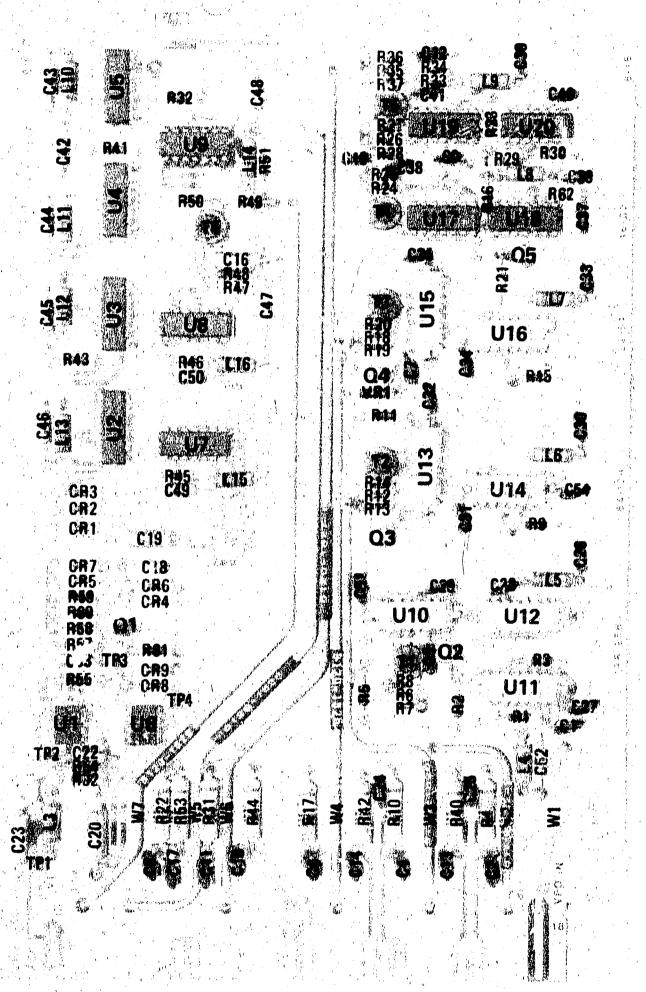


Figure 8-43. A10A2 RF Divider Assembly Component Locations

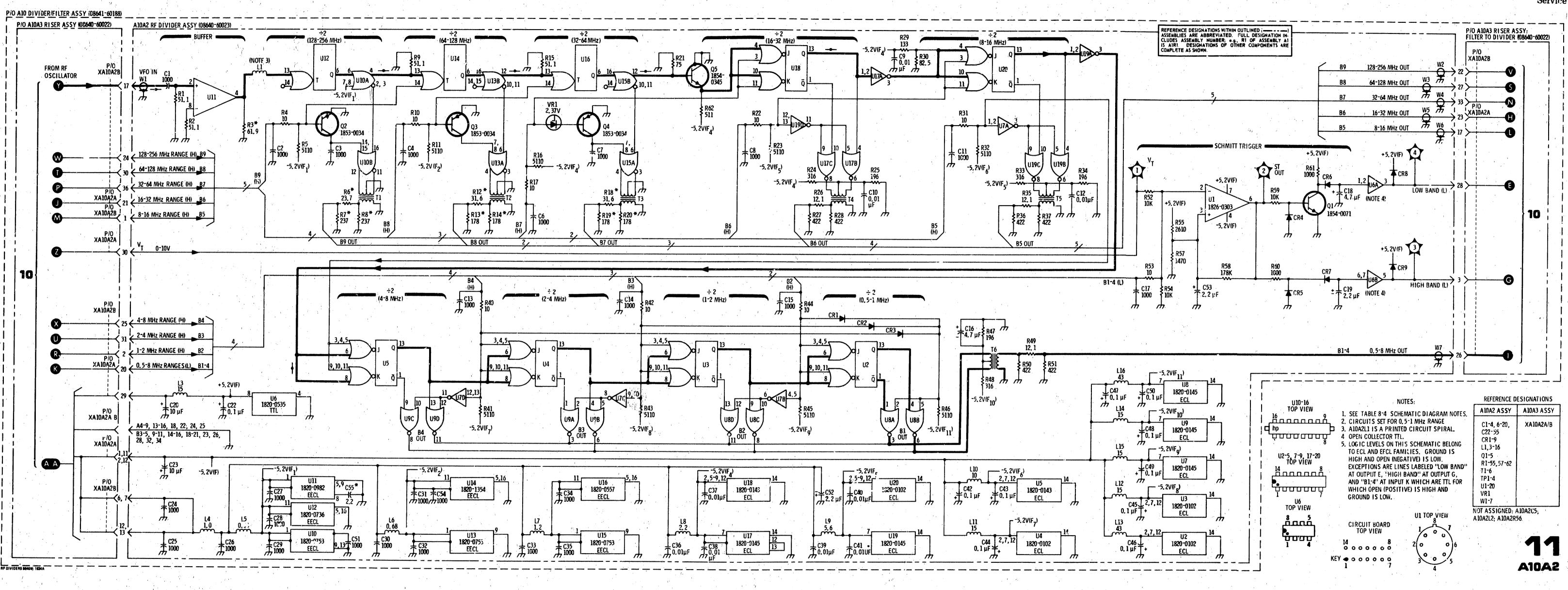
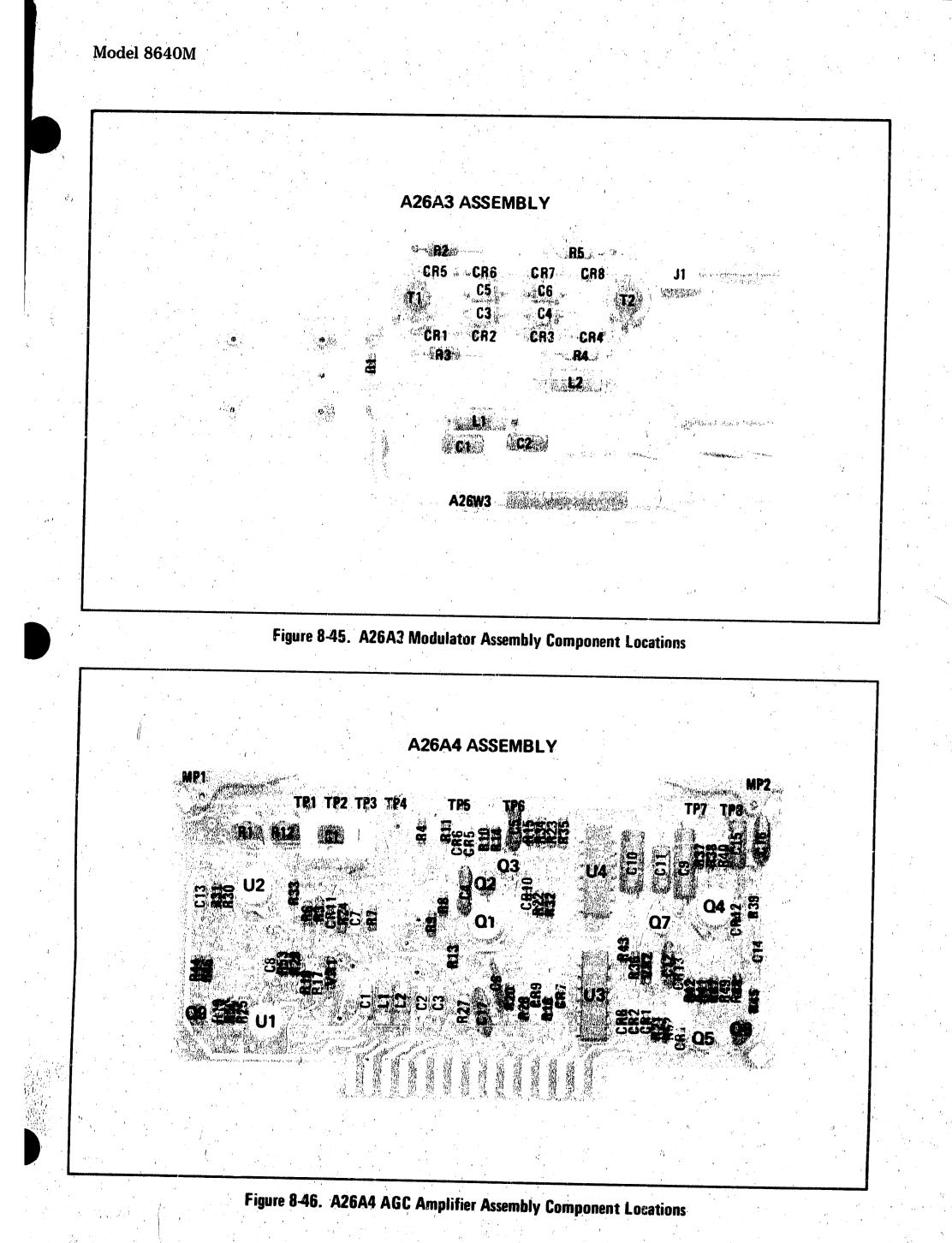
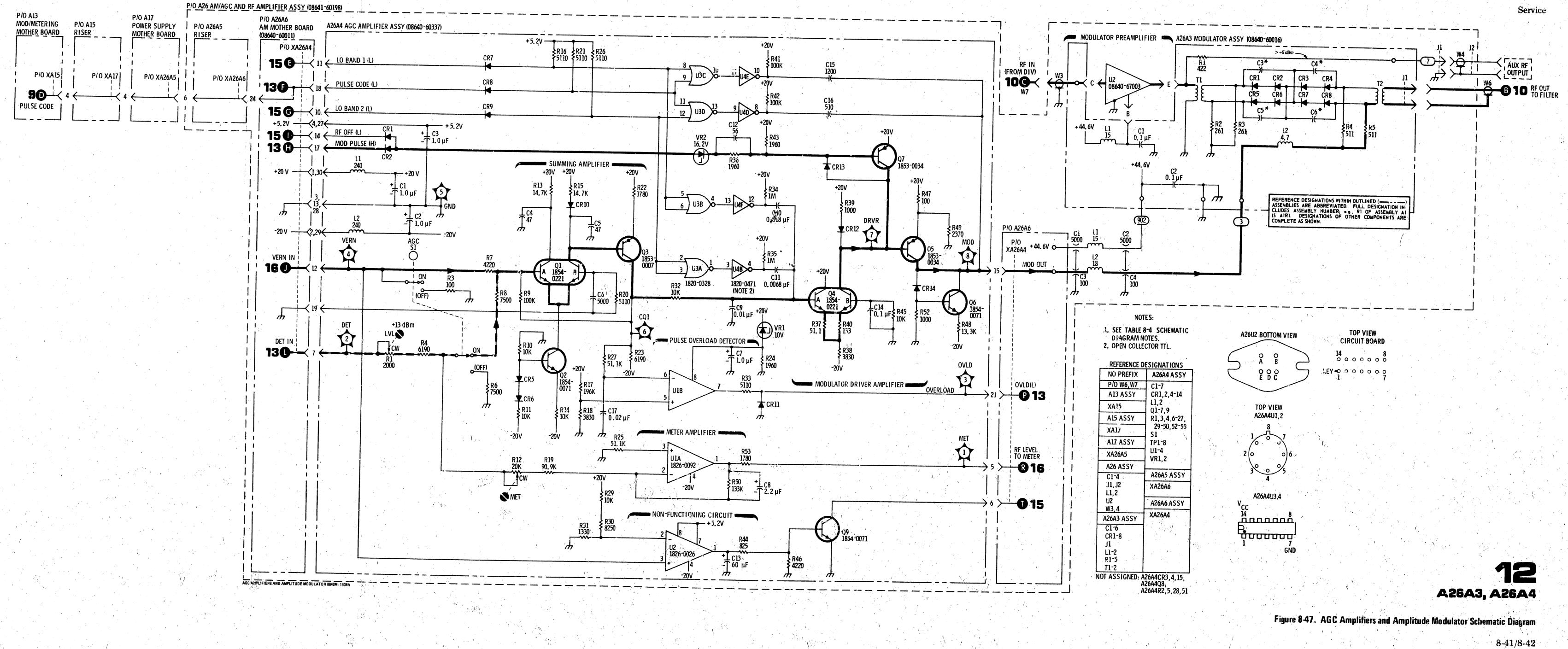
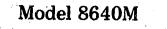
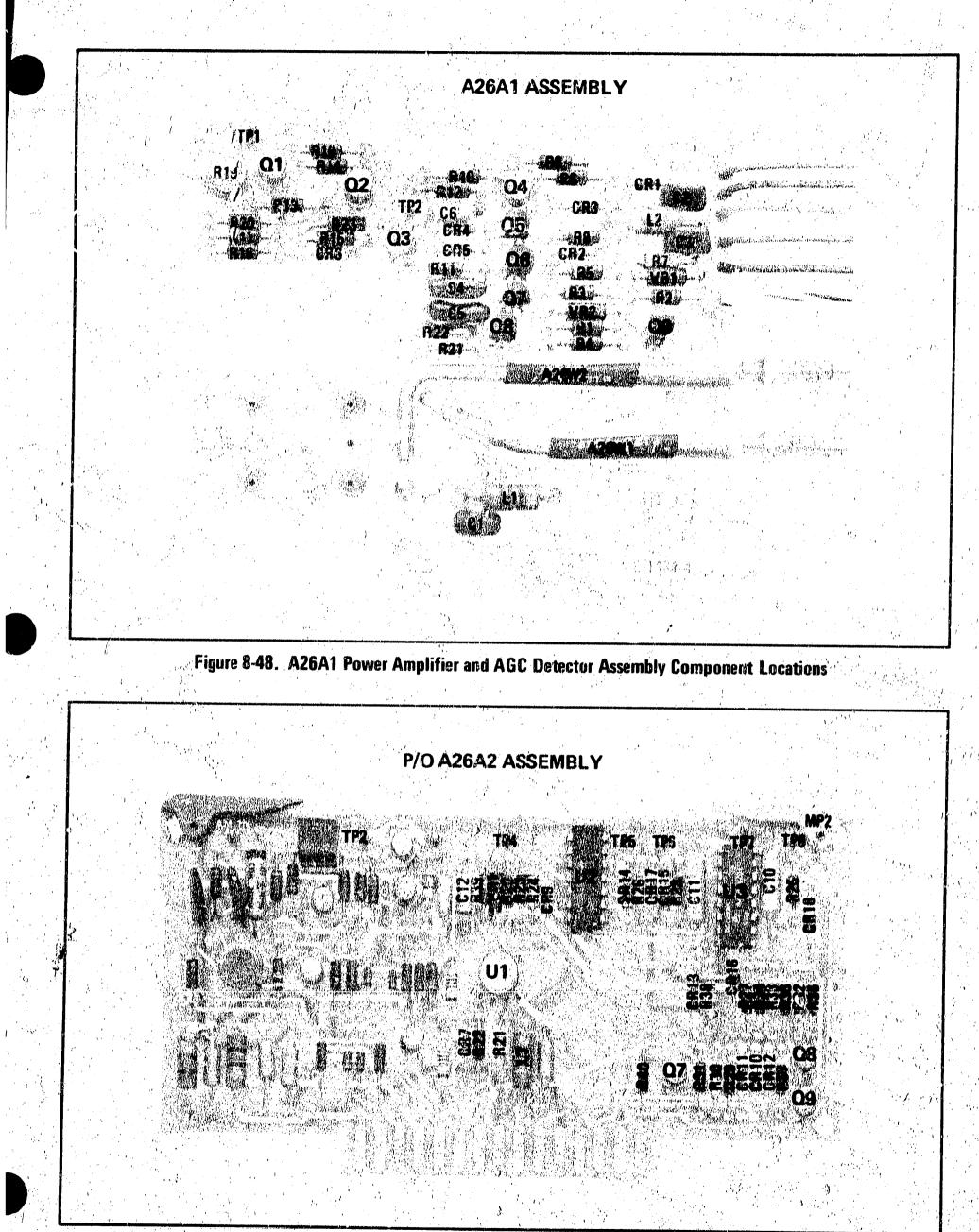
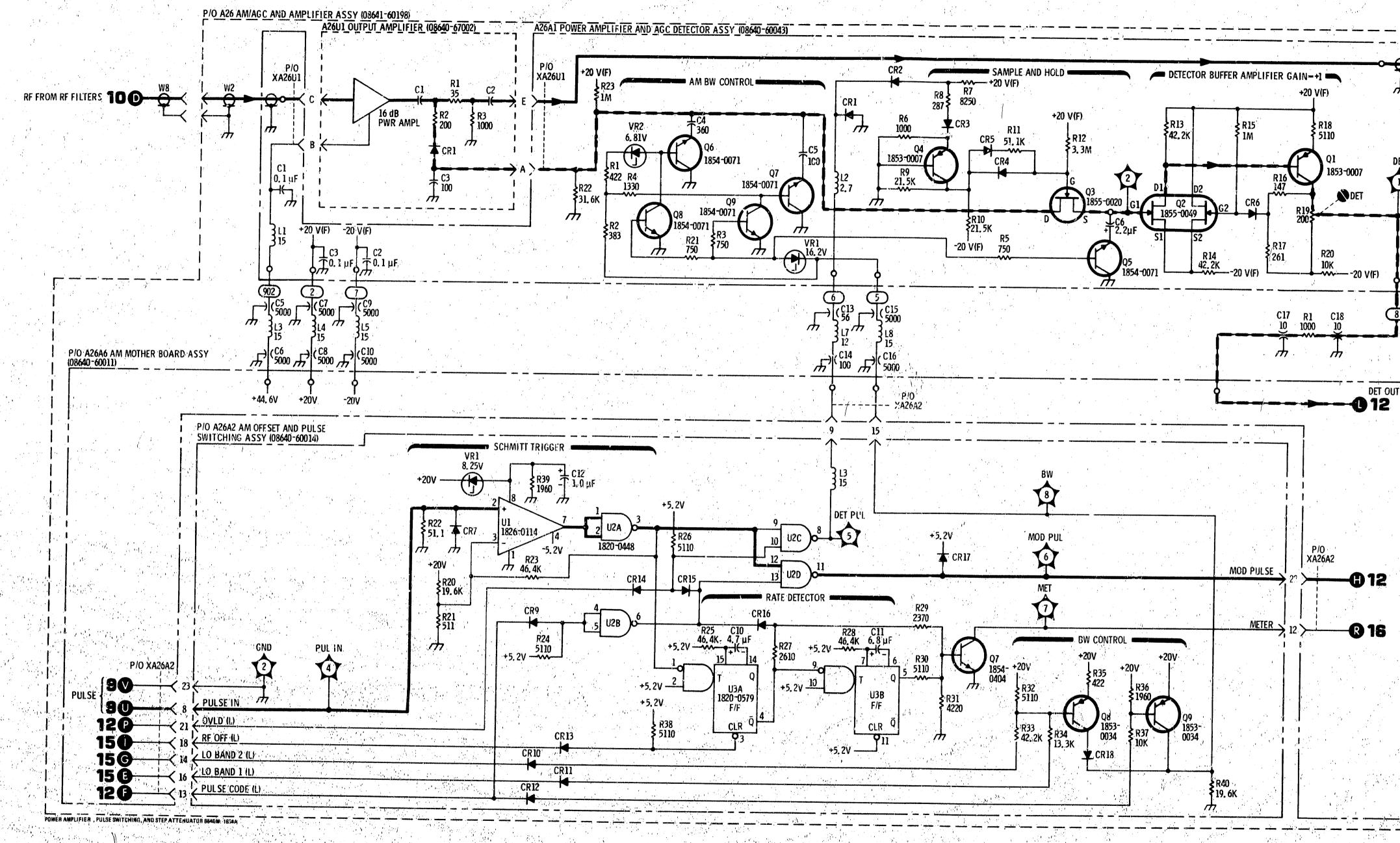
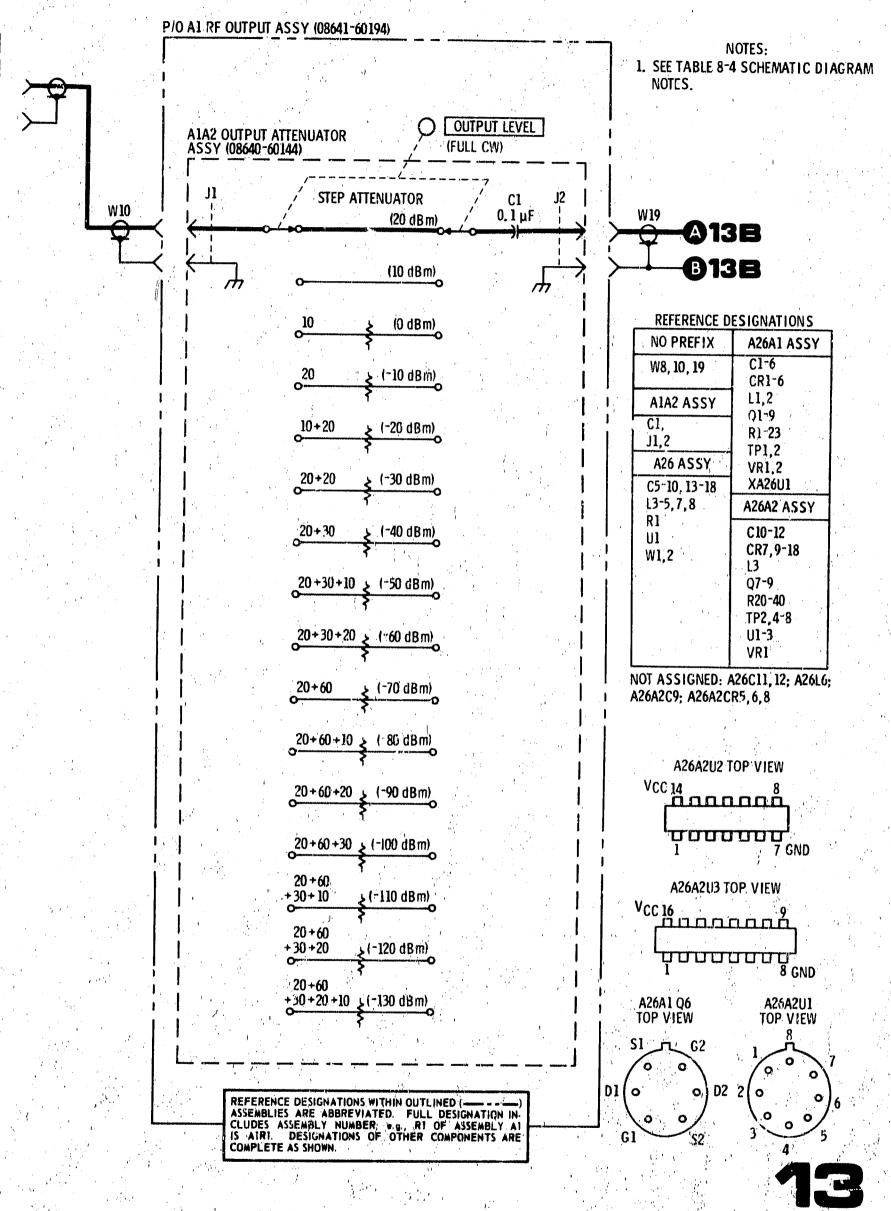





Figure 8-44. RF Dividers Schematic Diagrams


Figure 8-49. P/O A26A2 AM Offset and Pulse Switching Assembly Component Locations

``

100 0 O

Service

A1, A26A1 A26A2

Figure 8-50. RF Amplifier, Pulse Switching and Step Attenuators Schematic Diagram

OFRIGE INFO

at 11

_

_

_

=

_

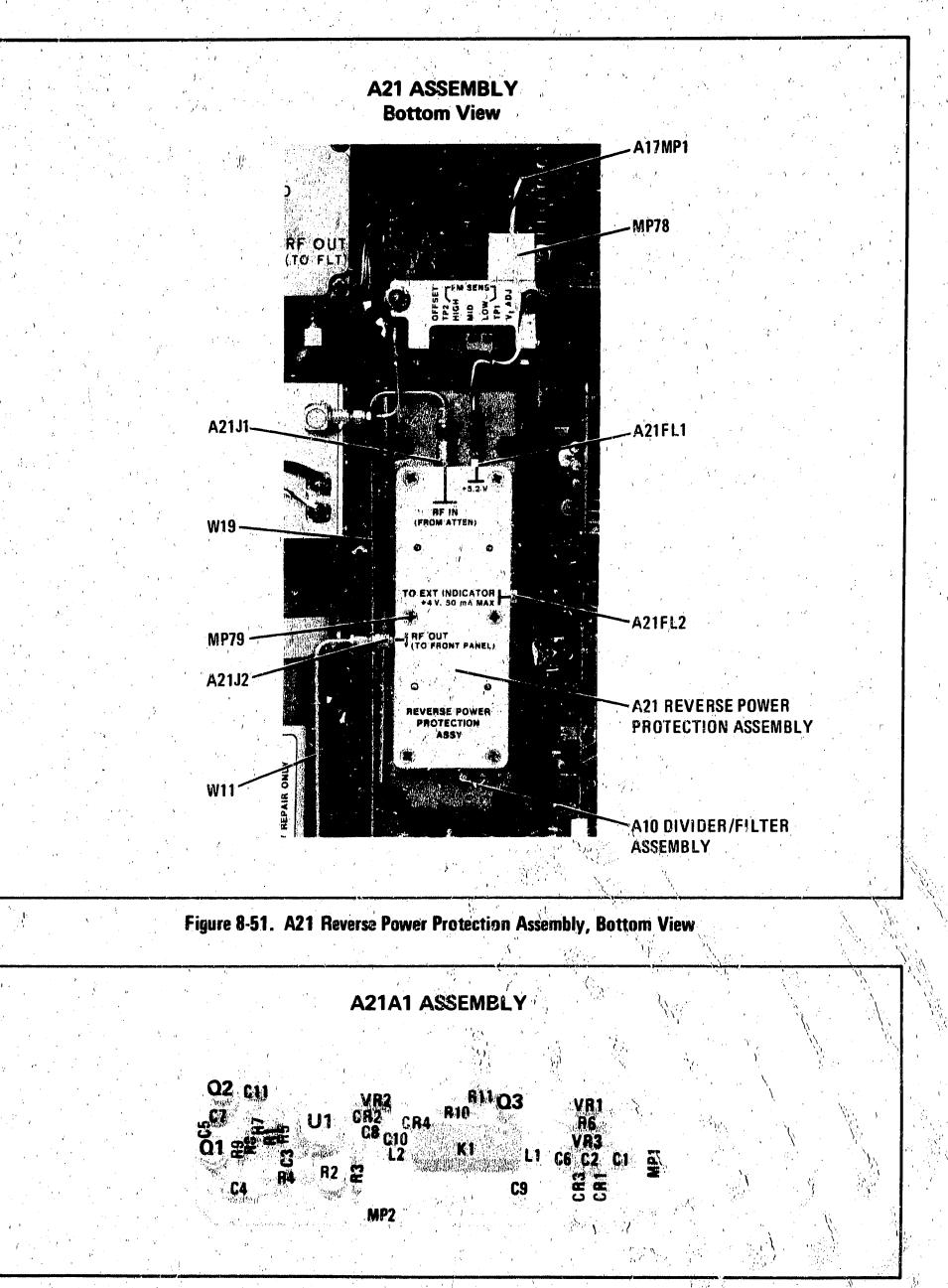
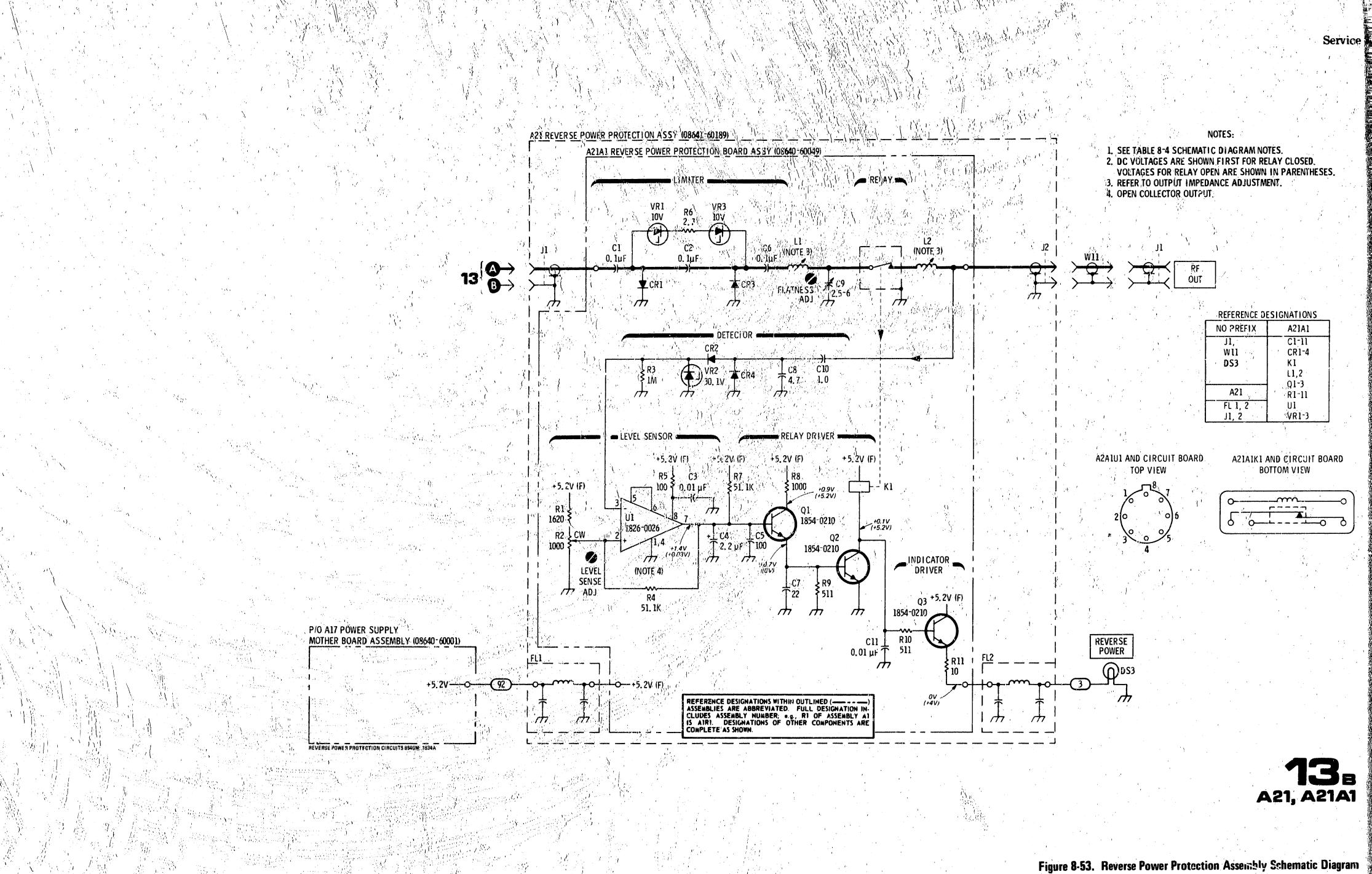



Figure 8-52. A21A1 Reverse Power Protection Board Assembly, Component Locations

•

8-45/8-46

£ II B

----=

· _____ `

_

____;

-

P/O A26A2 ASSEMBLY

1.1

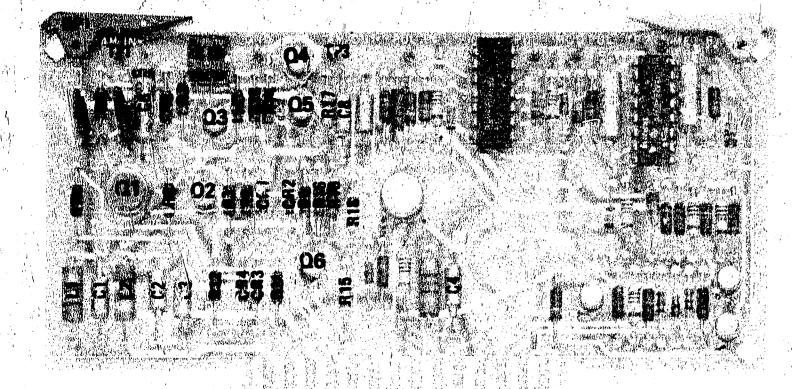
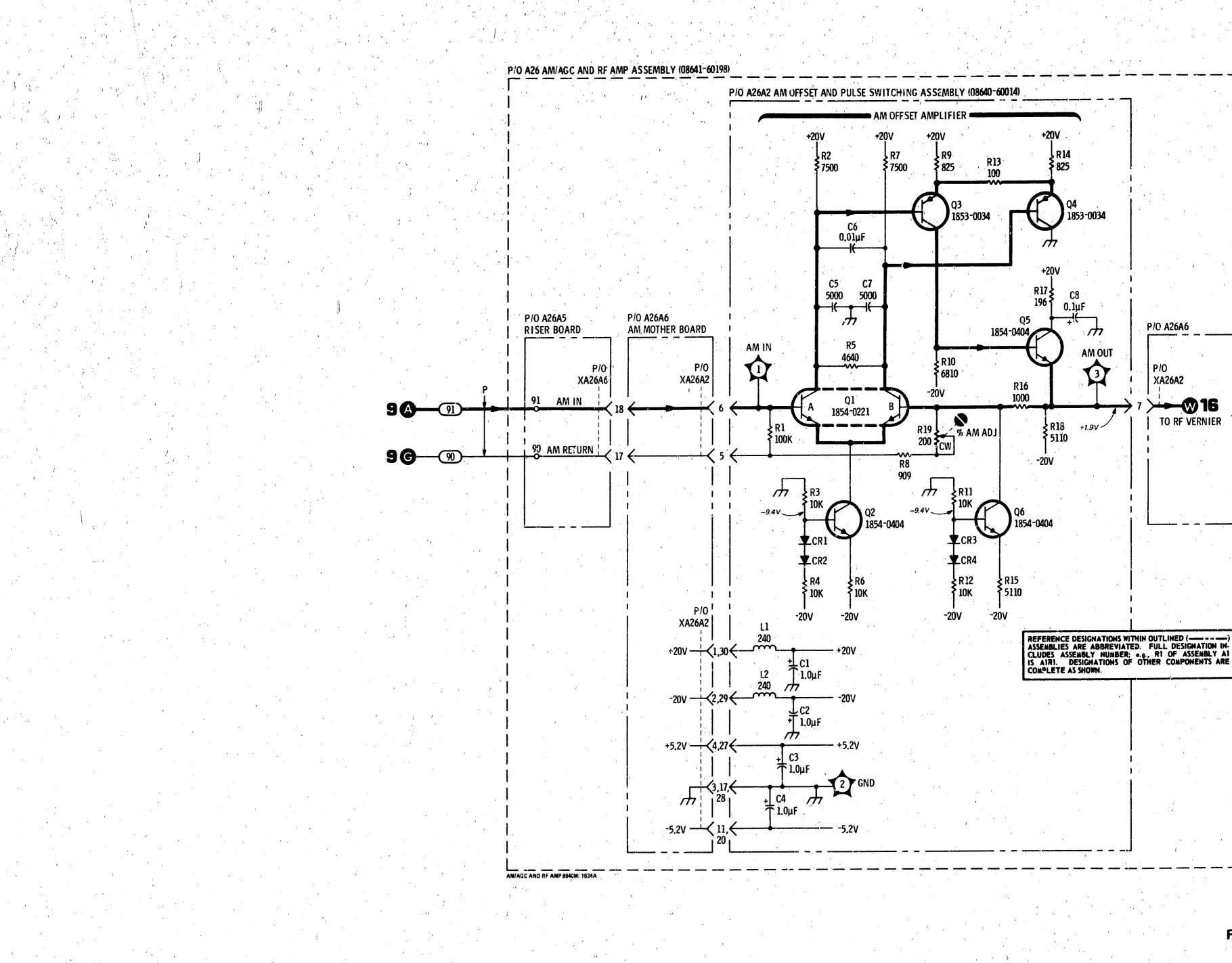




Figure 8-54. P/O A26A2 AM Offset and Pulse Switching Assembly Component Locations

A13

Component Locations for A13 Assembly are on Service Sheet 25.

REFERENCE DESIGNATIONS

the second se
A26A5 ASSY
P/O XA26A6
A26A6 ASSY
P/O XA26A2
and the second sec

Figure 8-55. AM Preamplifier Schematic Diagram

24,

-·· __)

Ţ

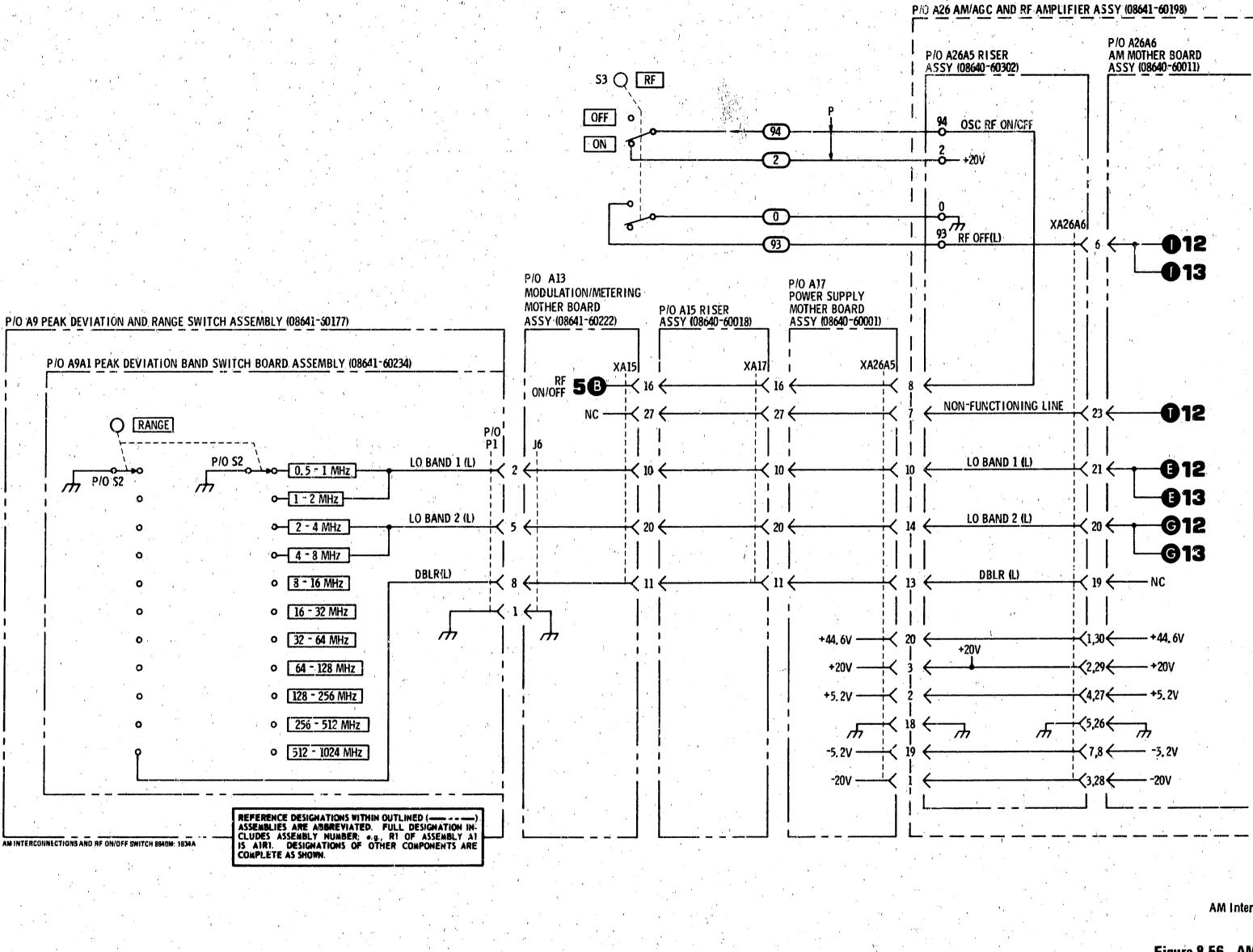
____.

—

: =

7

1





A9A1

Component Locations for A9A1 Assembly are on Service Sheet 8.

`	REFERENCE D	ESIGNATIONS				
	NO PREFIX	A15 ASSY				
	S3	P/OXA17				
	A9A1 ASSY	A17 ASSY P/OXA26A5				
	P/0 P1					
	P/0 S2	A26A5 ASSY				
	A13 ASSY	P/OXA26A5				
	P/OXA15	1				

AM Interconnections and RF ON/OFF Switch Schematic Diagram

Figure 8-56. AM Interconnections and RF ON/OFF Switch Schematic Diagram

8-49/8-50

<u>.</u>____

!

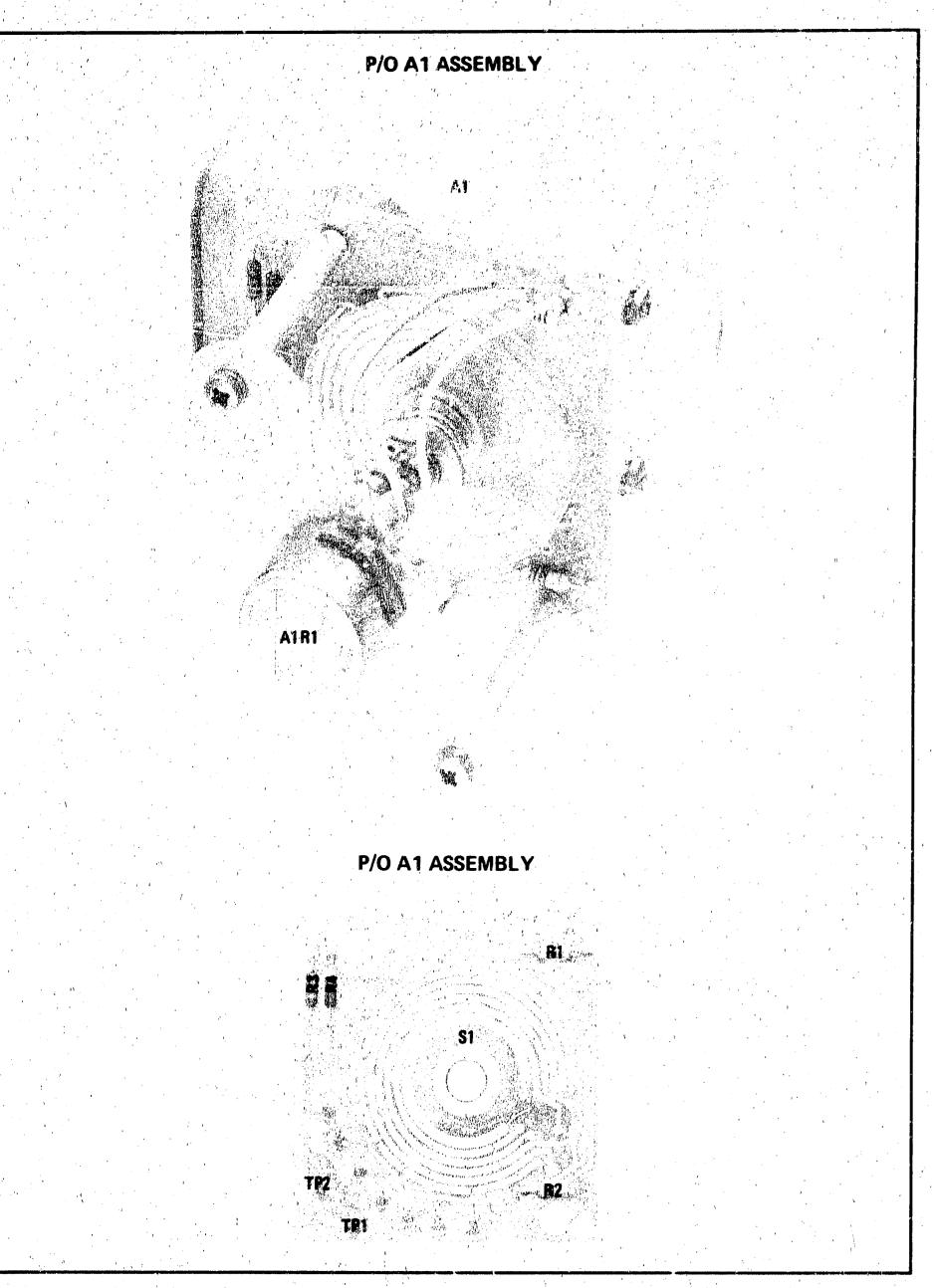
- - - -

- - 4

a....

.....

_....



.__.__

y Mariana A Maria

مولديم ا

, i

1

[այ ամե

l N

. 🖬 💧

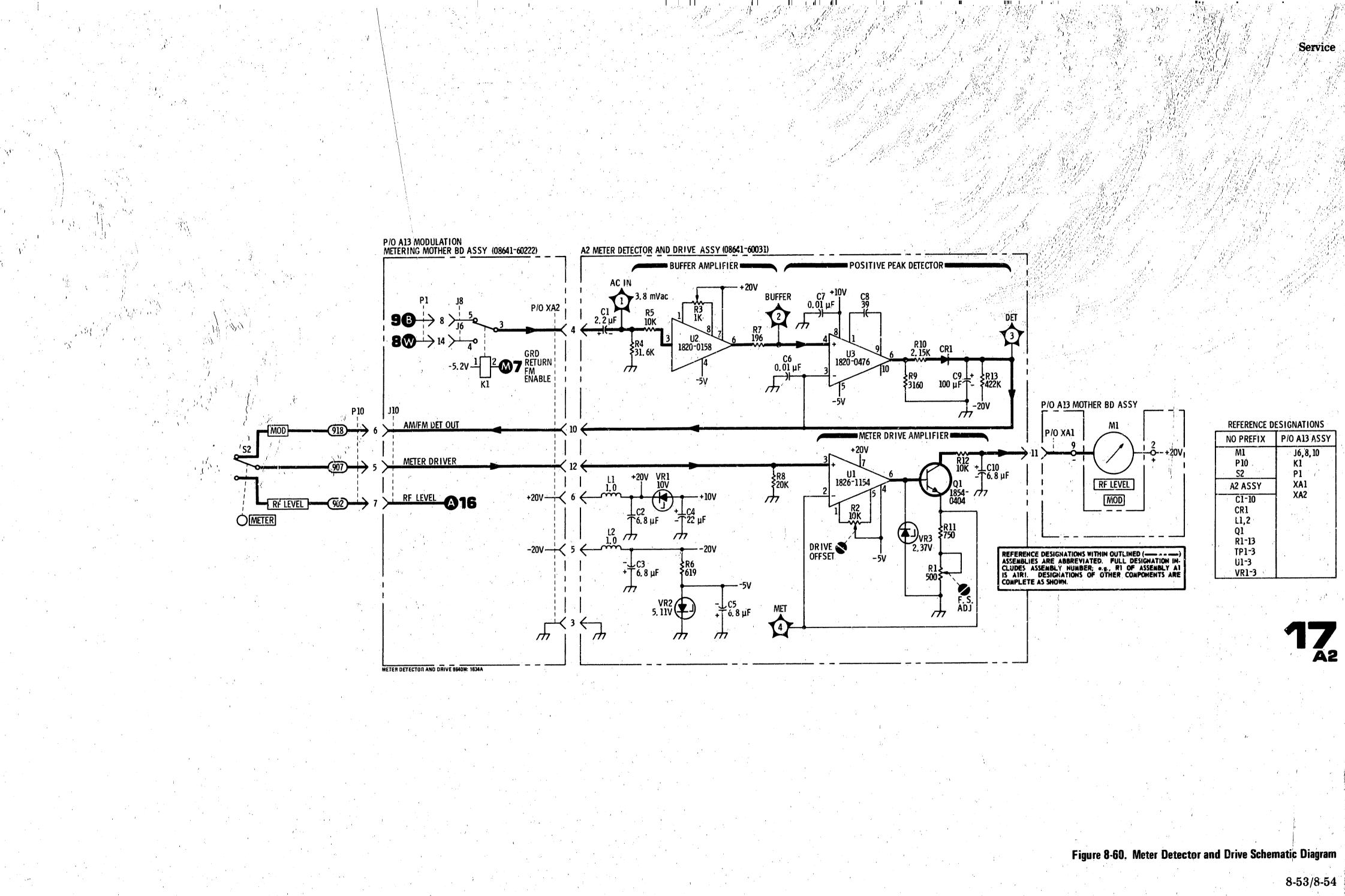
Figure 8-57. P/O A1 Output Range Assembly and A1A1 RF Vernier Component Locations

_

.....

7

3


......

ar 🔿 Cê فيعالمهم والارتجار والمرجا والمراجع والمراجع

A2 ASSEMBLY

Figure 8-59. A2 Meter Detector and Drive Assembly Component Locations

MARCH MARCHINE MARCH

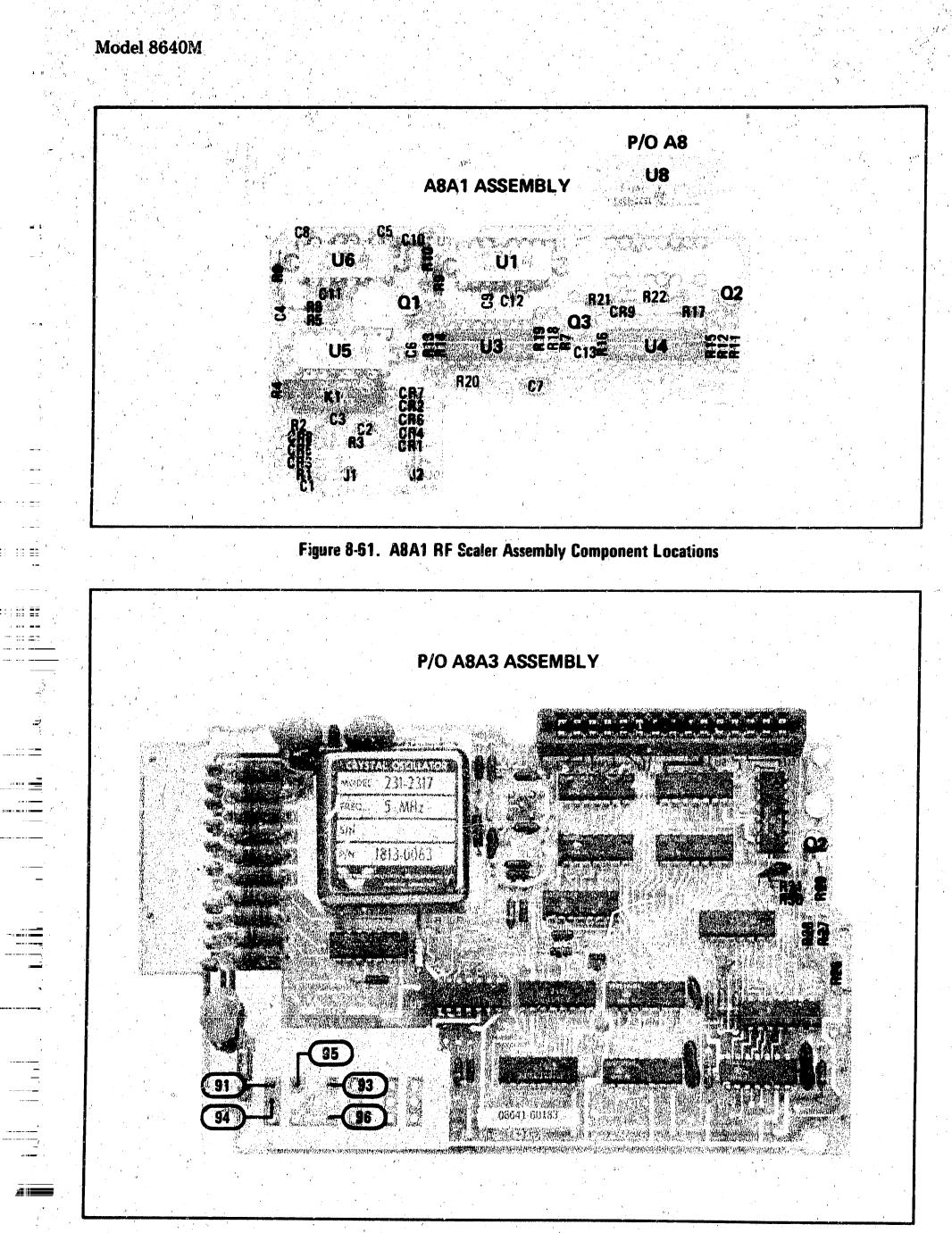
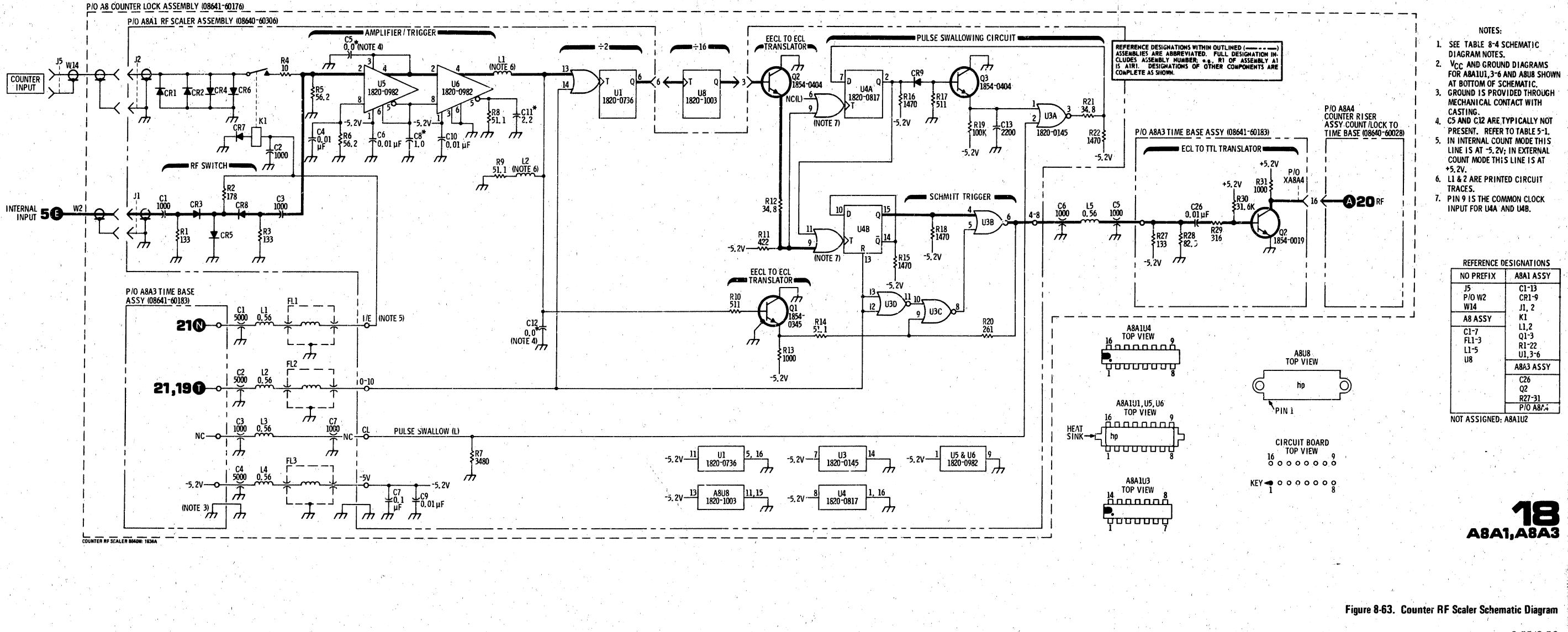
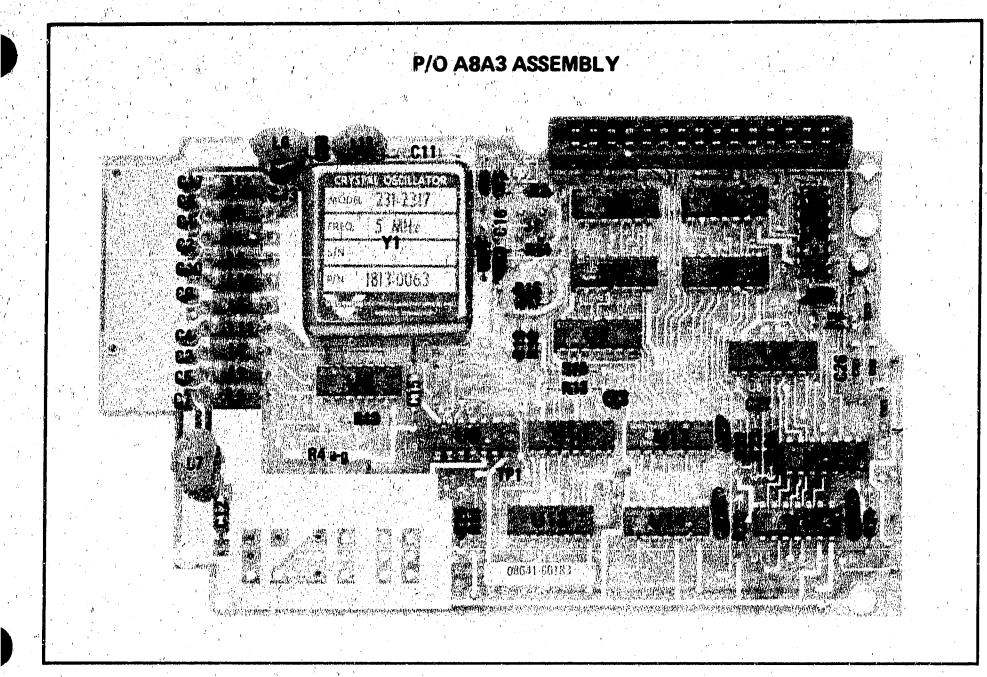
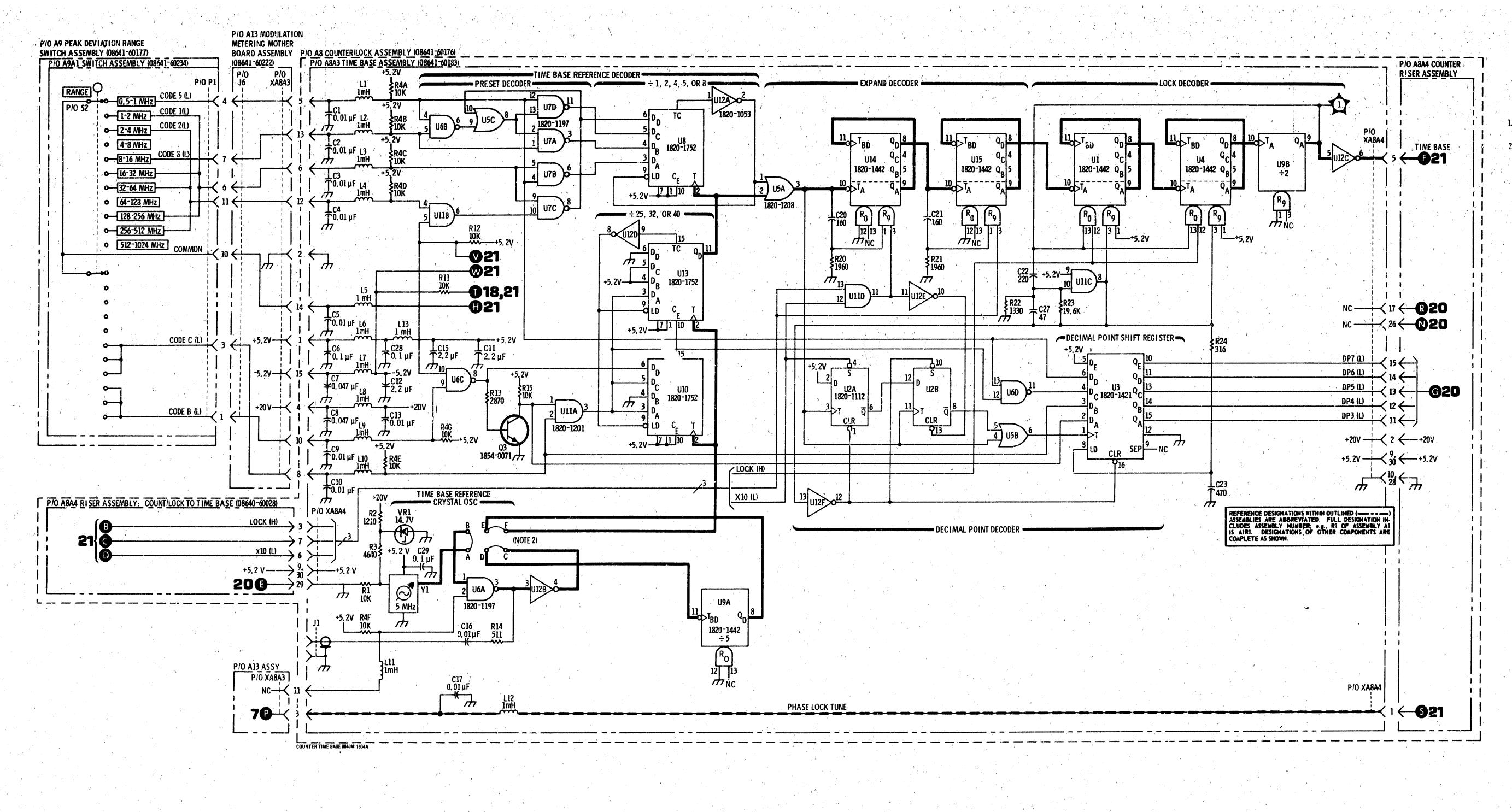
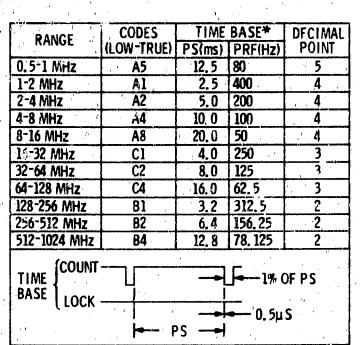
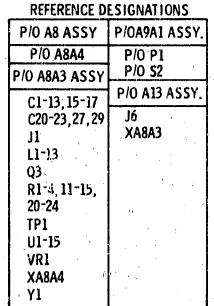



Figure 8-62. P/O A8A3 Time Base Assembly Component Locations

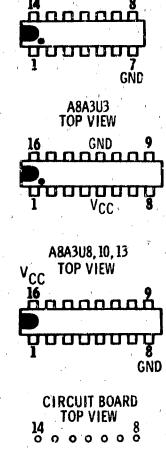




Figure 8-64. P/O A8A3 Time Base Assembly Component Locations

A9A1


Component Locations for A9A1 Assembly are on Service Sheet 8.

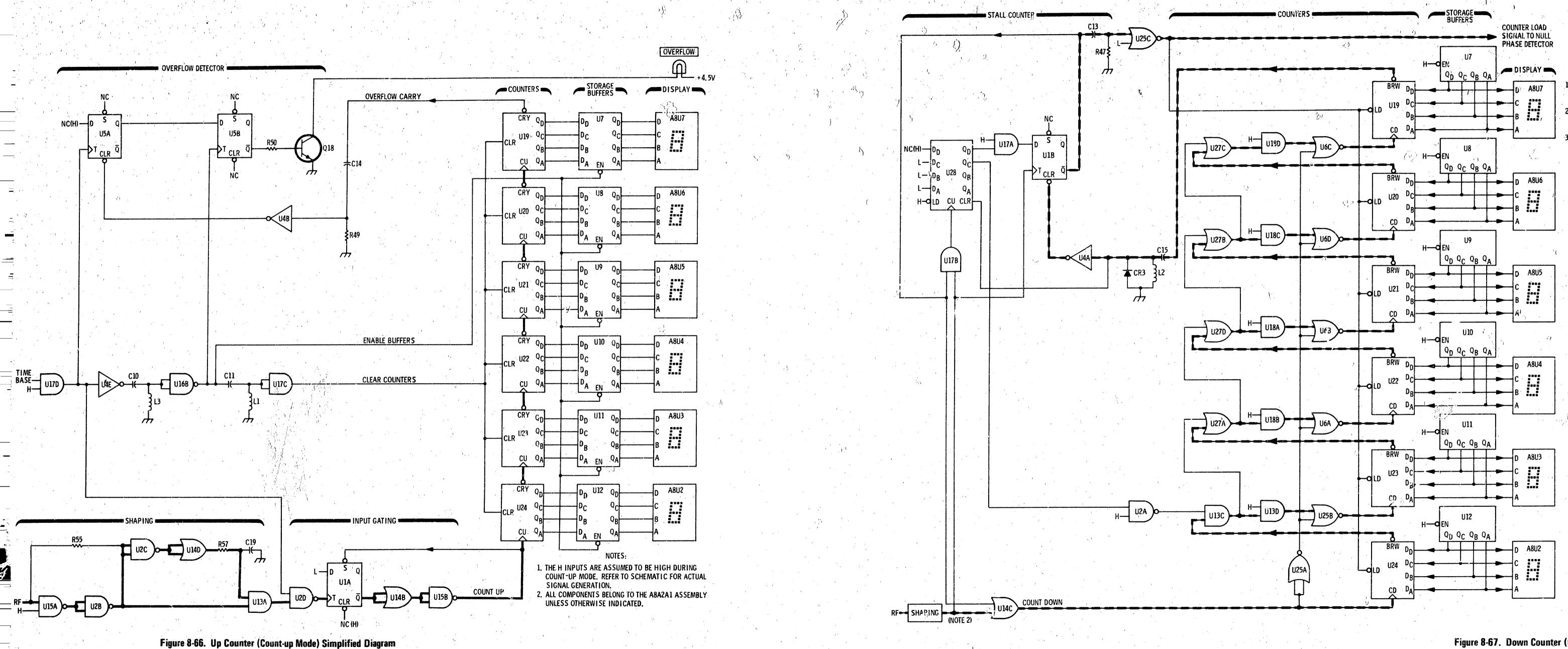
1. SEE TABLE 8-4 SCHEMATIC DIAGRAM NOTES



^{*}PRF(Hz) SHOWN FOR LOCK MODE. PRF(Hz) FOR COUNT MODE IS 1% LESS THAN THAT SHOWN.

NOT ASSIGNED: A8A3R5-10

A8A3R4 A-G TOP VIEW									
1	2	3	4	5	6	7	8		
V _{CC}	B	D	A	C	Ε	G	F		



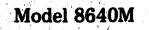
A8A3U1,2,4-7, 9, 11,12,14,15 TOP VIEW

19 A8A3,A9

KEY • • • • • • •

Figure 8-65. Counter Time Base Schematic Diagram

NOTES:


 $-k^{\prime} = \sum_{i=1}^{k^{\prime}} \sum_{j=1}^{k^{\prime}} \sum_{$

12.71

. THE H INPUTS ARE ASSUMED TO BE HIGH DURING COUNT DOWN MODE. REFER TO SCHEMATIC FOR ACTUAL SIGNAL GENERATION.

- SIGNAL FLOW. 3. ALL COMPONENTS BELONG TO THE A8A2A1 ASSEMBLY UNLESS OTHERWISE INDICATED.

Figure 8-67. Down Counter (Count-down Mode) Simplified Diagram

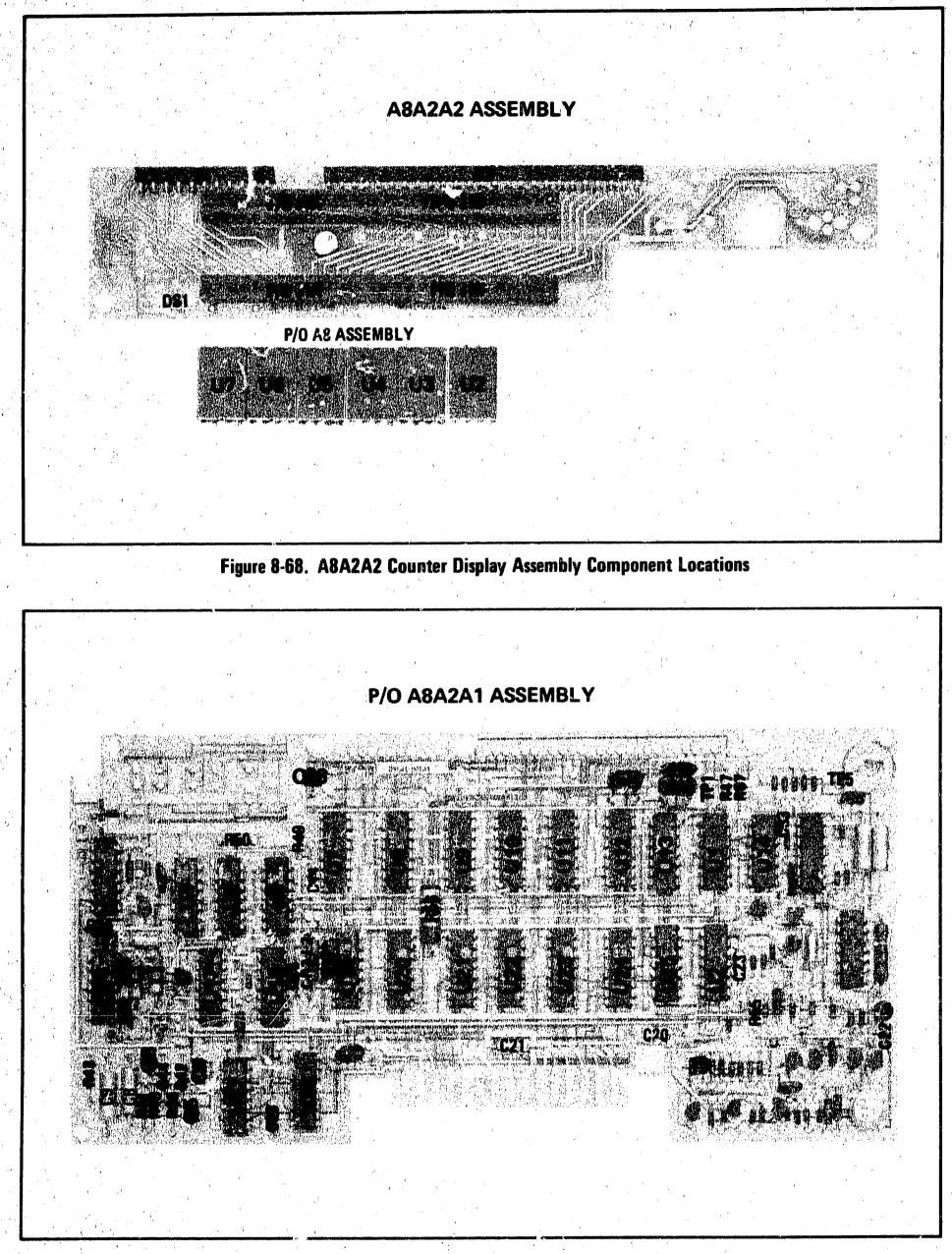


Figure 8-69. P/O A8A2A1 Counter/Lock Board Assembly Component Locations

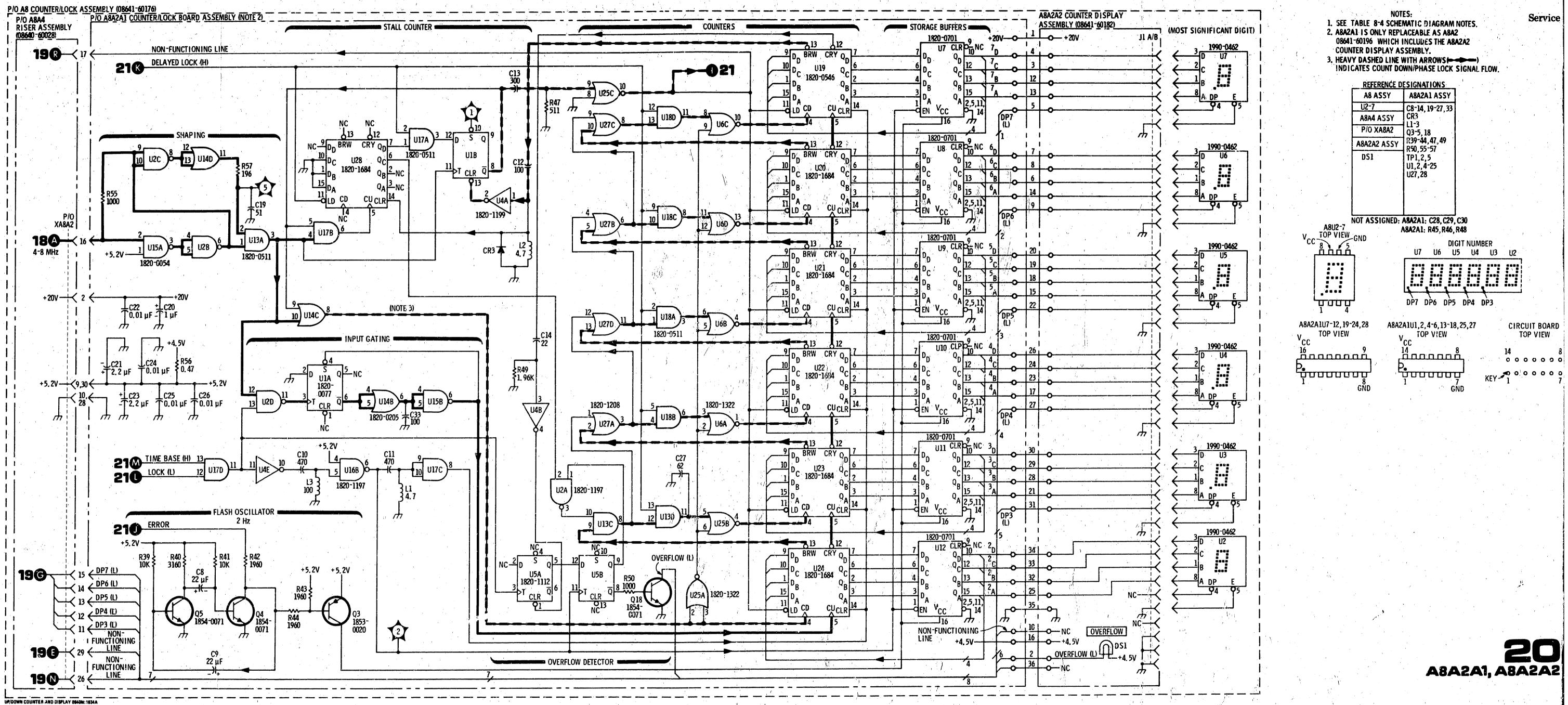
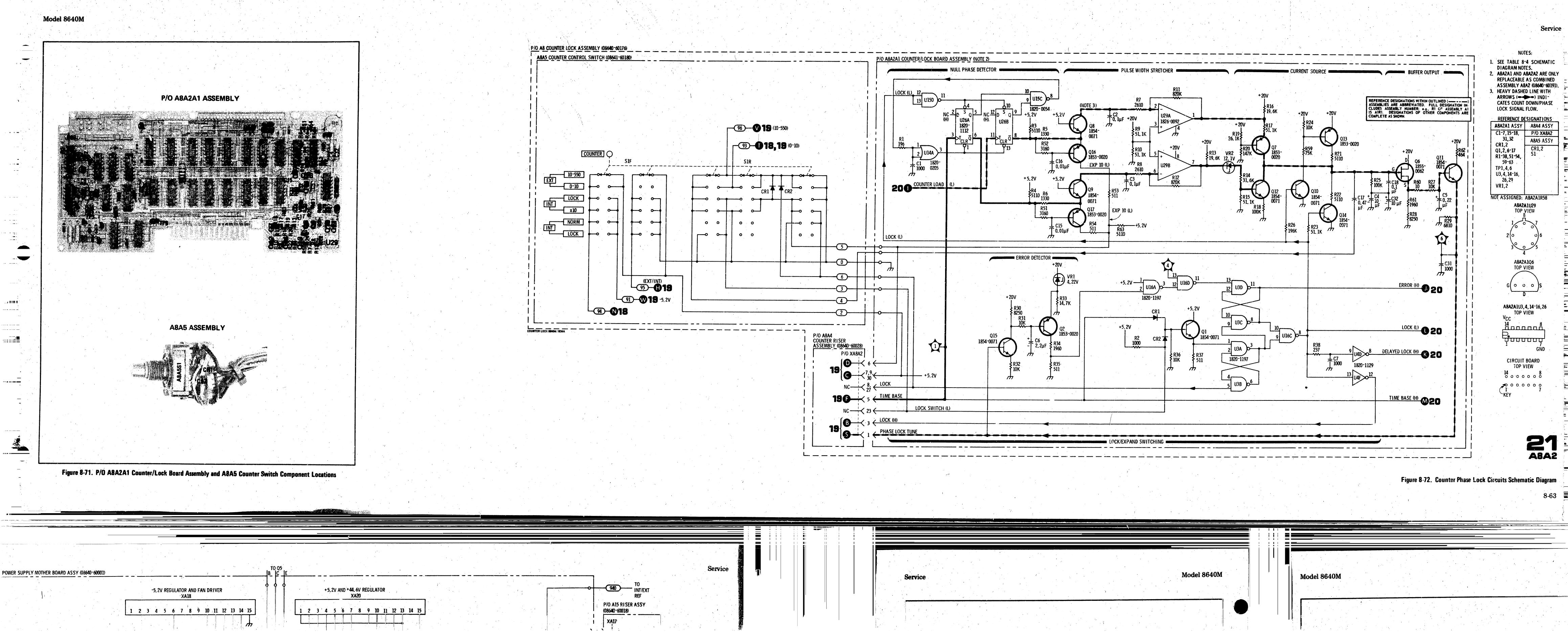



Figure 8-70. Up/Down Counter and Display Schematic Diagram

8-61/8-62

Service

8-63 📃

Service

A12 ASSEMBLY

CR19

CR9

CR17

÷.,•

CR4 CR2 CR20 CR18 CR5 CR7 **62** CR11 CRS CR6 CR12 (CR10

CR13 CR15 **C4**

CR16 CR14 84

CR1 CR3

Model 8640M

Figure 8-73. A12 Rectifier Assembly Component Locations

8-64

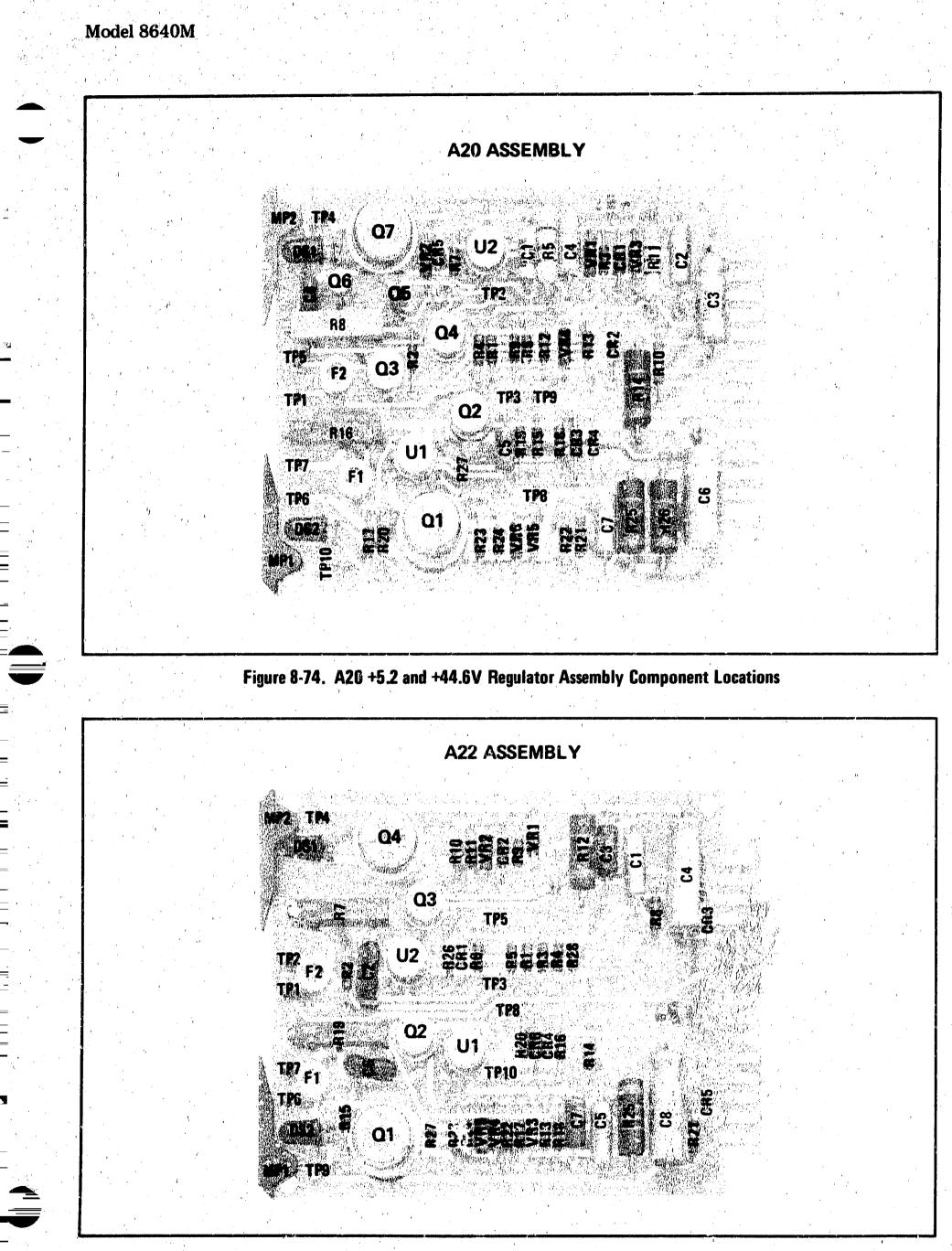



Figure 8-75. A22 +20V and -20V Regulator Assembly Component Locations

. . I.

1 i 🖆

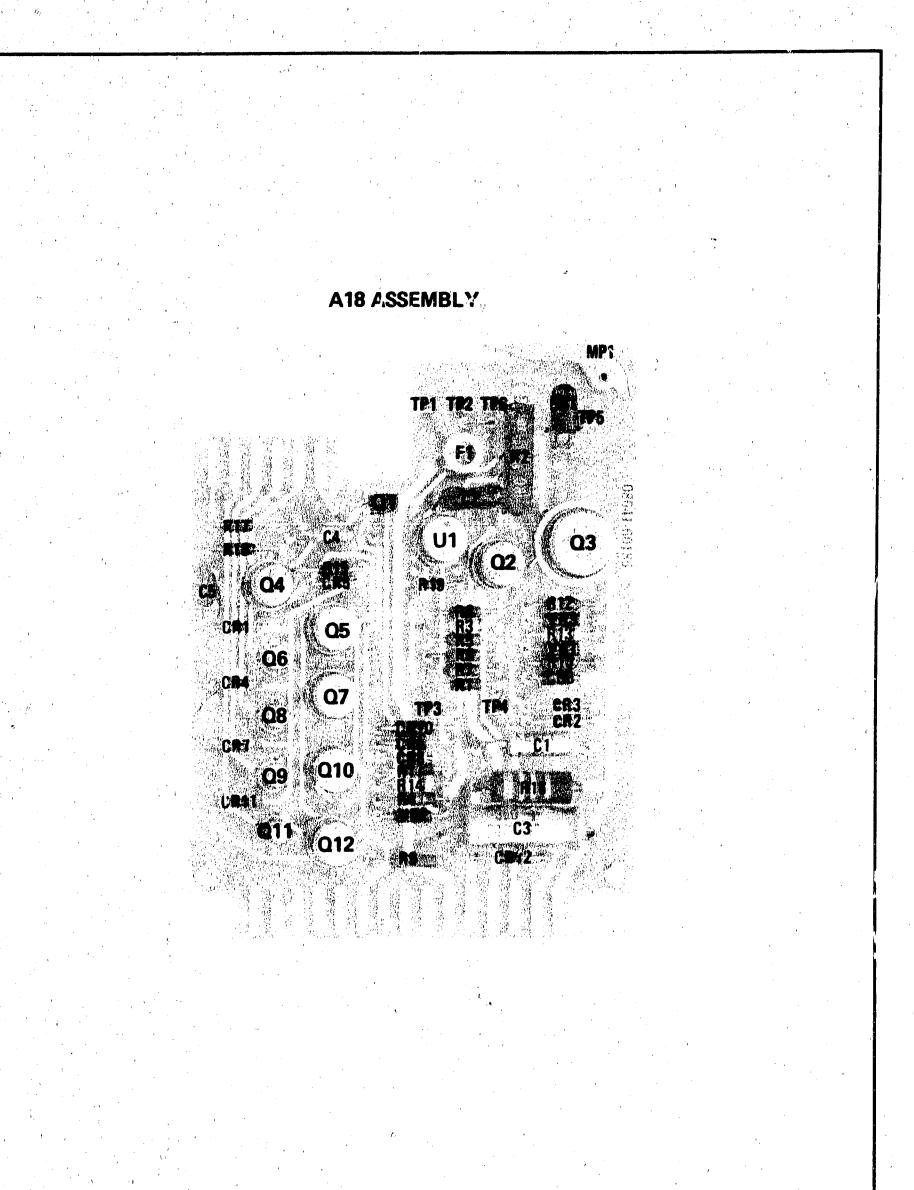
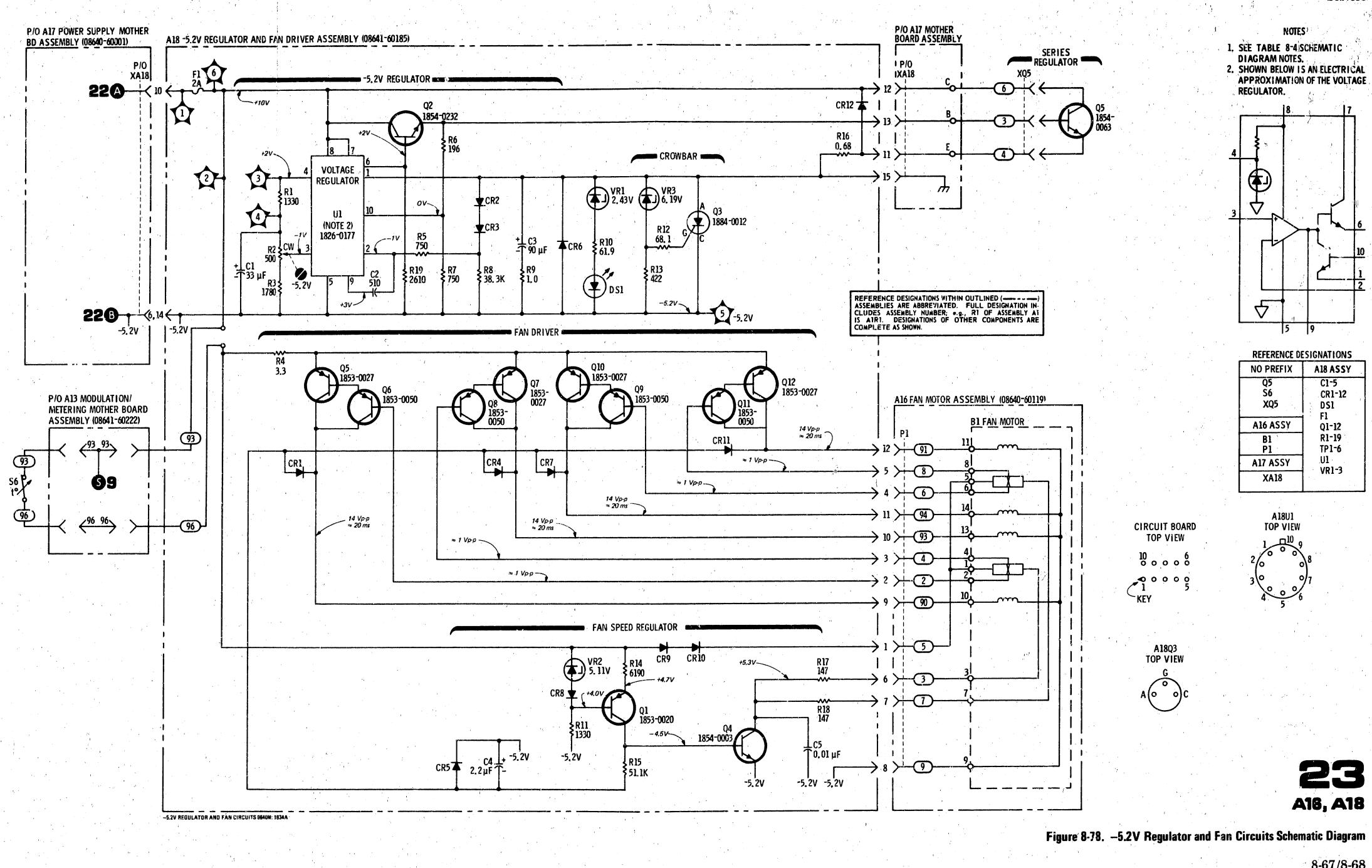
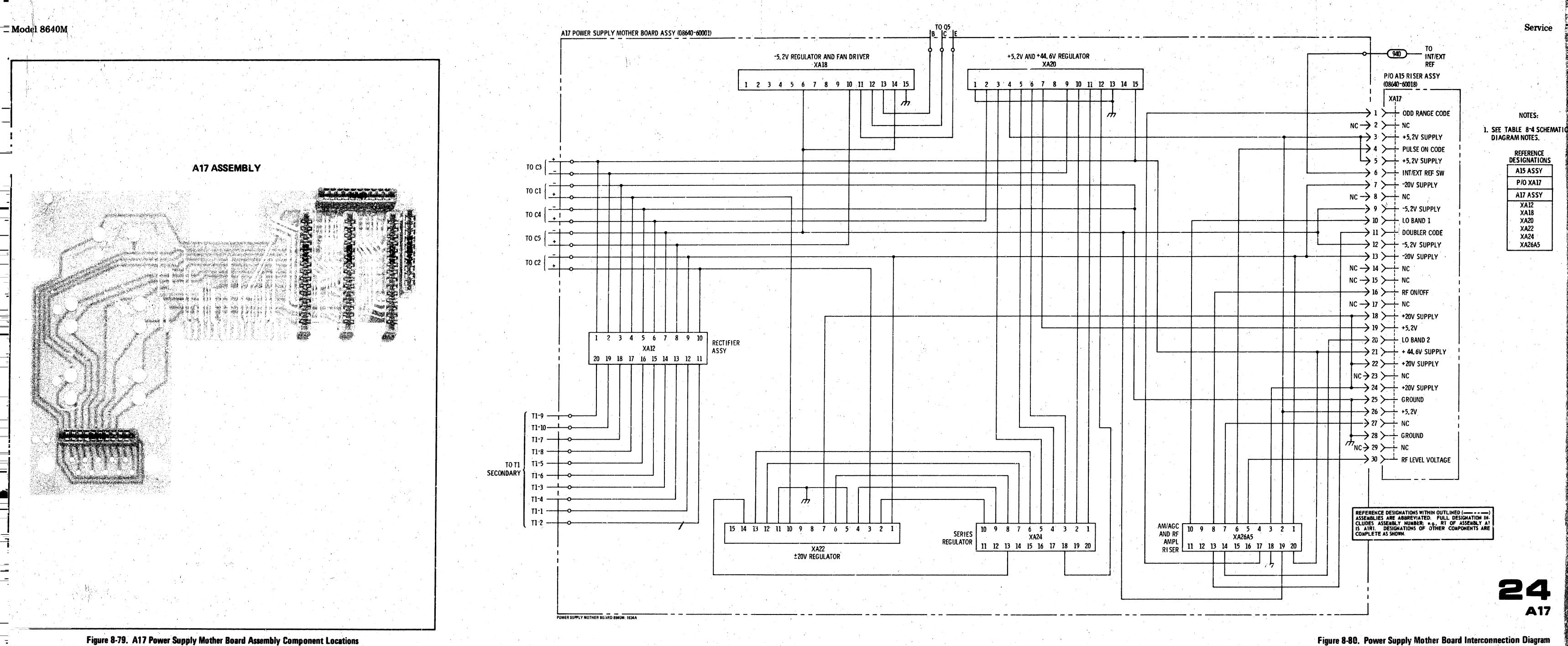
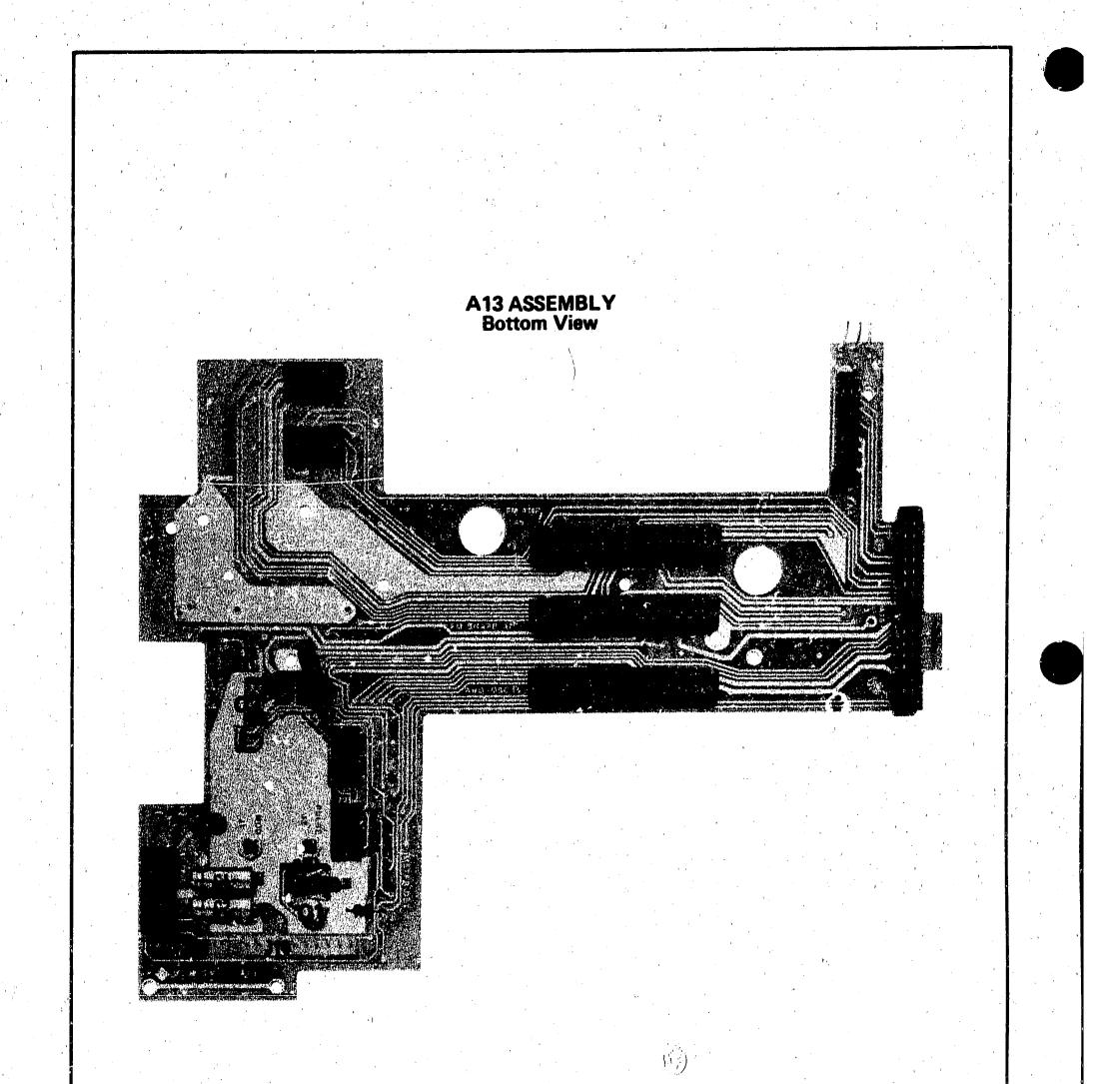
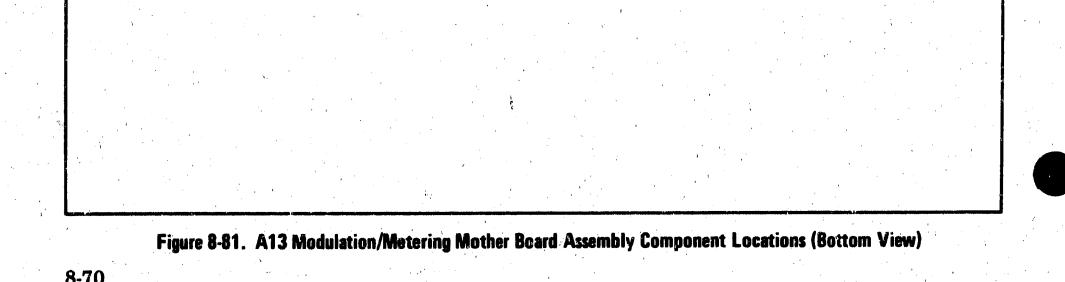




Figure 8-77. A18 – 5.2V Regulator and Fan Driver Assembly Component Locations




8-67/8-68

8-69

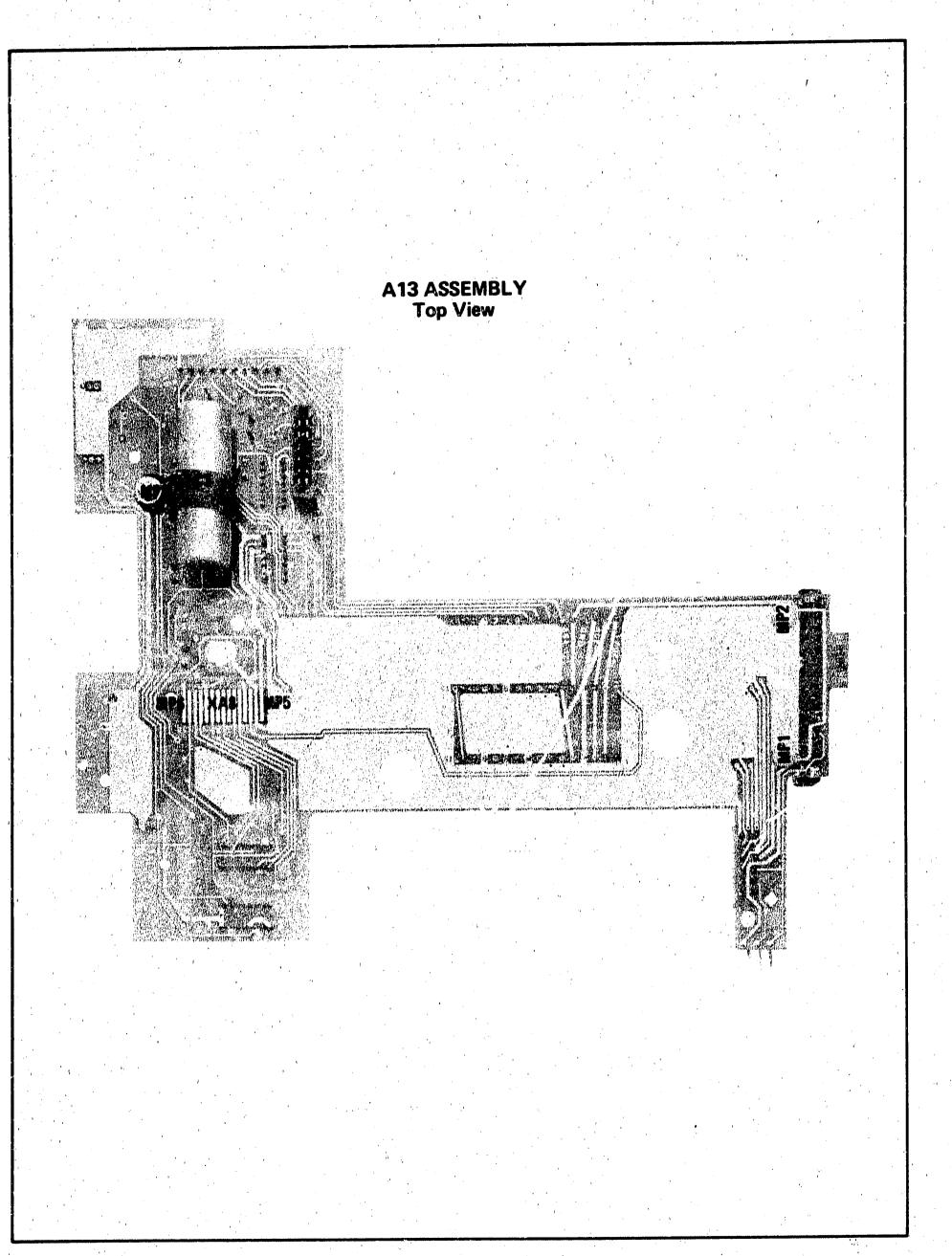
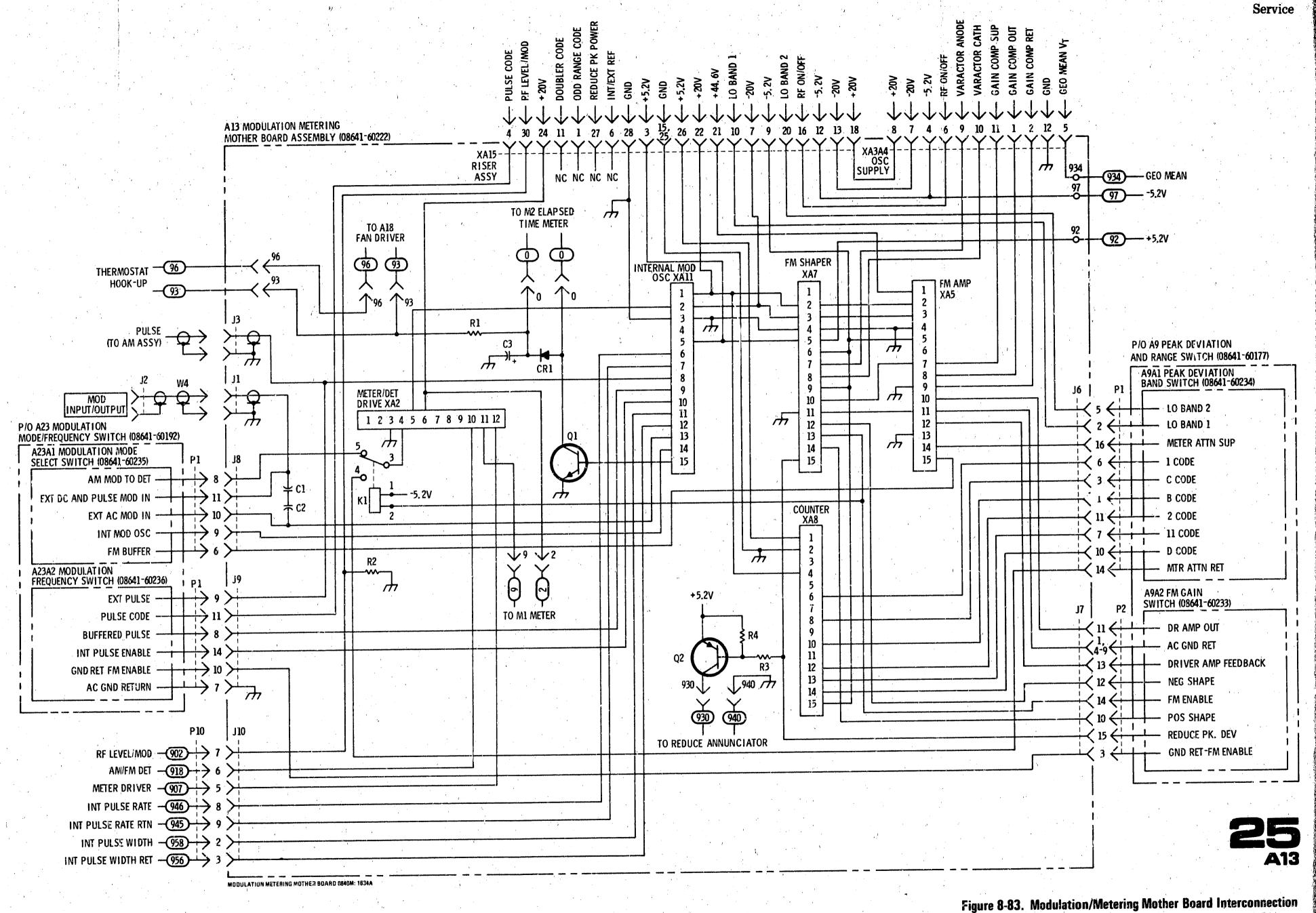



Figure 8-82. A13 Modulation/Metering Mother Board Assembly Component Locations (Top View)

Diagram

SERVICE SHEET A

A1 Assembly Removal Procedure

. Remove instrument from combination case, place instrument upside down, and remove bottom cover (Service Sheet G).

CAUTION

While working with and around the semirigid coaxial cables in the generator, do NOT bend the cables more than necessary. Do NOT torque the RF connectors to more than 5 inch-pounds.

2. Remove two OUTPUT RANGE knobs from front panel. The knobs are secured to concentric shafts with allen screws in the knobs.

3. Disconnect two semi-rigid coaxial cables from bottom of the A1A2 Output Attenuator Assy

(cable W10 at A1A2J1 and cable W19 at A1A2J2).

- 4. Disconnect 7 push on wire connections from A1A1 RF Vernier Assy (located at rear of A1 Output Range Assy.)
- 5. Disconnect two semi-rigid coaxial cables from bottom of A8 Counter/Lock Assy (cable W2 at A8A1J1 and cable W14 at A8A1J2).
- 6. Remove front side plate cover from righthand side frame by removing two flat-head screws.
- 7. Remove four pan-head screws (with lockwashers) that secure Attenuator to mounting plate (it is not necessary to remove the mounting plate). Remove assembly by sliding it to the rear and up; use care to avoid damage.
- 8. Reinstall assembly by reversing the procedure in steps one through seven.

A1 Output Range Assembly Logond

ltem

Number

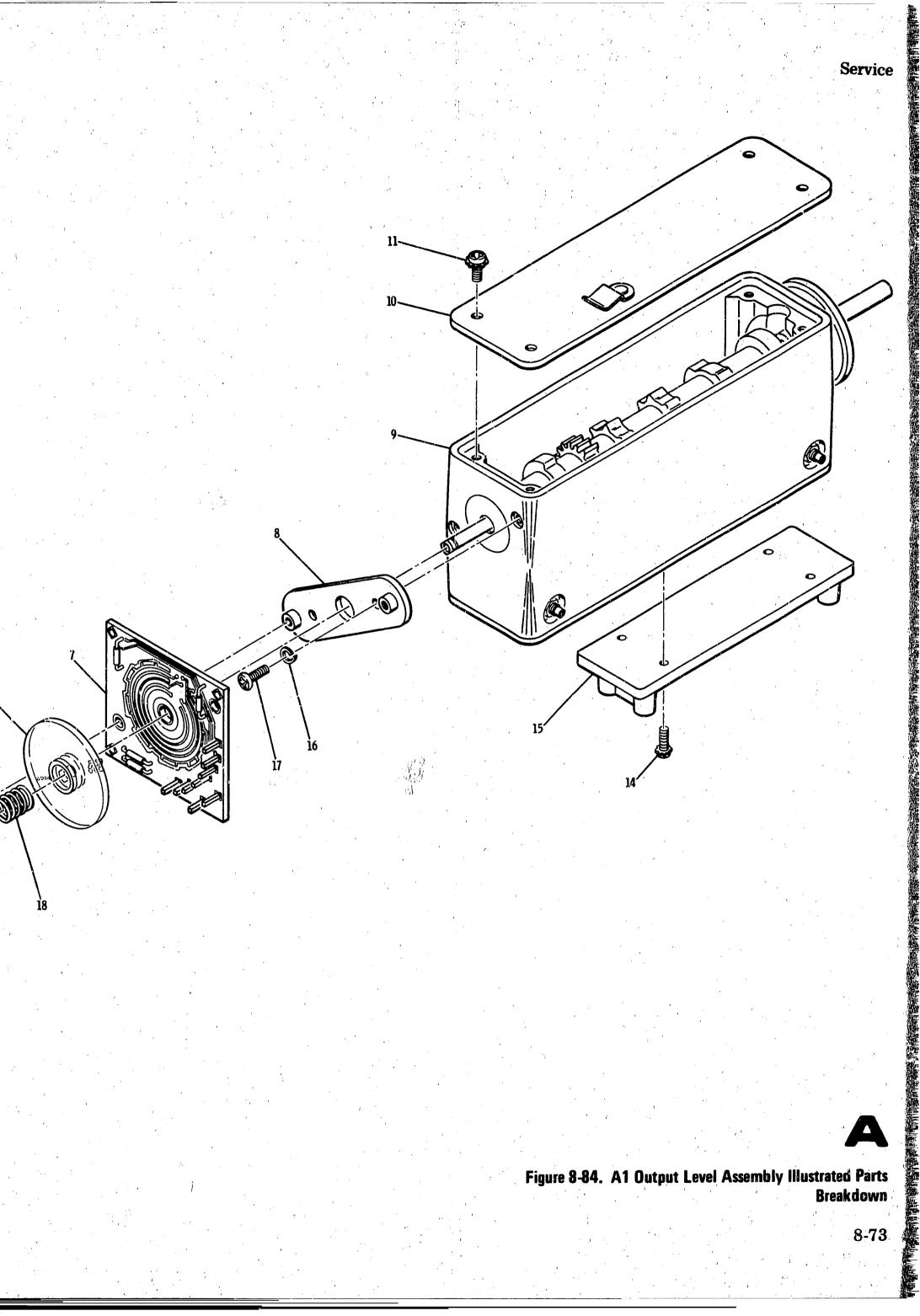
10

11

12

13

14 15


17

18 19 20

22 23

24 25

Reference Designator	Description
A1MP13	Machine Screw
A1MP16	Lock Washer
A1MP1	Potentiometer Support
A1MP2	Spacer Post
A1MP5	Flat Washer
A1MP7	Switch Rotor
A1A1	RF Vernier Assembly
A1MP8	P.C. Board Support
A1A2	Output Attenuator Assembly
A1MP18	Attenuator Cover
A1MP15	Machine Screw
Deleted	Deleted
Deleted	Deleted
A1MP15	Machine Screw
A1MP9	Attenuator Support
A1MP17	Lockwasher
A1MP14	Machine Screw
A1MP6	Compression Spring
A1MP4	Retainer Ring
A1MP10	Inner Shaft
A1MP3	Coupler
A1MP12	Hex Nut
A1MP11	Lock Washer
A1MP11	Lock Washer
A1R1	Potentiometer

SERVICE SHEET B

RF ON/OFF Switch Modification

The RF ON/OFF Switch function may be wired to:

a. switch off both the RF Oscillator and Modulator leaving the RF output completely off but requiring a stabilization period after turn on; or

b. switch off only the Modulator leaving the RF Oscillator on and warmed up, the Auxiliary RF Output on, and the counter and phase lock operating. In this case, however, the RF is not truly "off" but is reduced by an amount equal to the pulse on/off ratio (at least 40 dB down and dependent on OUTPUT LEVEL vernier setting).

Either configuration can be easily altered to the other as follows:

a. Remove instrument from combination case and remove bottom cover (see Service Sheet **G**).

b. Remove two nuts that secure A3A4 Connector Board Assembly, and remove board. The board is located directly behind the Range Switch cam housing.

c. To modify the circuitry to leave the RF Oscillator on at all times, add a jumper wire between the two holes labeled "RF OSC ON/OFF INHIBIT" (see Service Sheet 5). To modify the circuitry so the RF Oscillator is switched off, remove the existing jumper wire.

d. Reinstall board and bottom cover.

e. Check RF ON/OFF operation by observing counter or Auxiliary RF Output signal.

A3 Removal Procedure

1. Remove instrument from combination case place instrument upside down, and remove bottom cover (Service Sheet G).

While working with and around the semirigid coaxial cables in the generator, do not bend the cables more than necessary. Do not torque the RF connectors to ' more than 5 inch-pounds.

SERVICE SHEET B (Cont'd)

- 2. Set Frequency to 230 MHz.
- 3. Remove front panel FREQUENCY TUNE and FINE TUNE control knobs.
- 4. On rear of oscillator assembly, disconnect coaxial connectors W2 at A3A1J2 (27), and W3 at A3A1J1 (32).
- 5. Remove two 8-32 nuts (35) that secure connector board assembly A3A4 to chassis. Lift out connector board assembly from mating connector.
- 6. Remove four 8-32 screws (51) securing oscillator to center plate of chassis.

CAUT ON

Do not twist oscillator assembly while removing or inserting in chassis. Doing so may loosen the front section of the oscillator causing excessive RF leakage and poor frequency calibration.

7. Exert firm pressure on assembly toward the front panel and raise assembly about 1/4 inch to clear mounting studs. Ease the assembly back and upwards to clear the tuning shafts. This completes removal.

A3A1A2 Removal Procedure

- 1. Remove eight 4-40 screws (45) securing cover plate to buffer housing.
- 2. Unsolder three leads connecting buffer board and two feedthrough filters (30 and 31) and RF connector (32).
- 3. Remove two 6-32 screws (48) securing the buffer board to the housing.
- 4. Lift out buffer board, ensuring that attached probe doos not bind in cavity opening.

NOTE

The buffer board has two adjustment slots for attaching to the housing. Refer to the adjustment procedure in Section V, paragraph 5-36, when reinstalling the buffer board.

SERVICE SHEET B (Cont'd)

A3A1A3 Removal Procedure

- 1. Remove eight 4-40 screws (16) securing cover plate to buffer housing.
- 2. Unsolder three leads connecting buffer board and two feedthrough filters (25 and 26) and **RF** connector (27).
- 3. Remove two 6-32 screws securing the buffer board to housing.
- 4. Lift out buffer board, ensuring that attached probe does not bind in cavity opening.

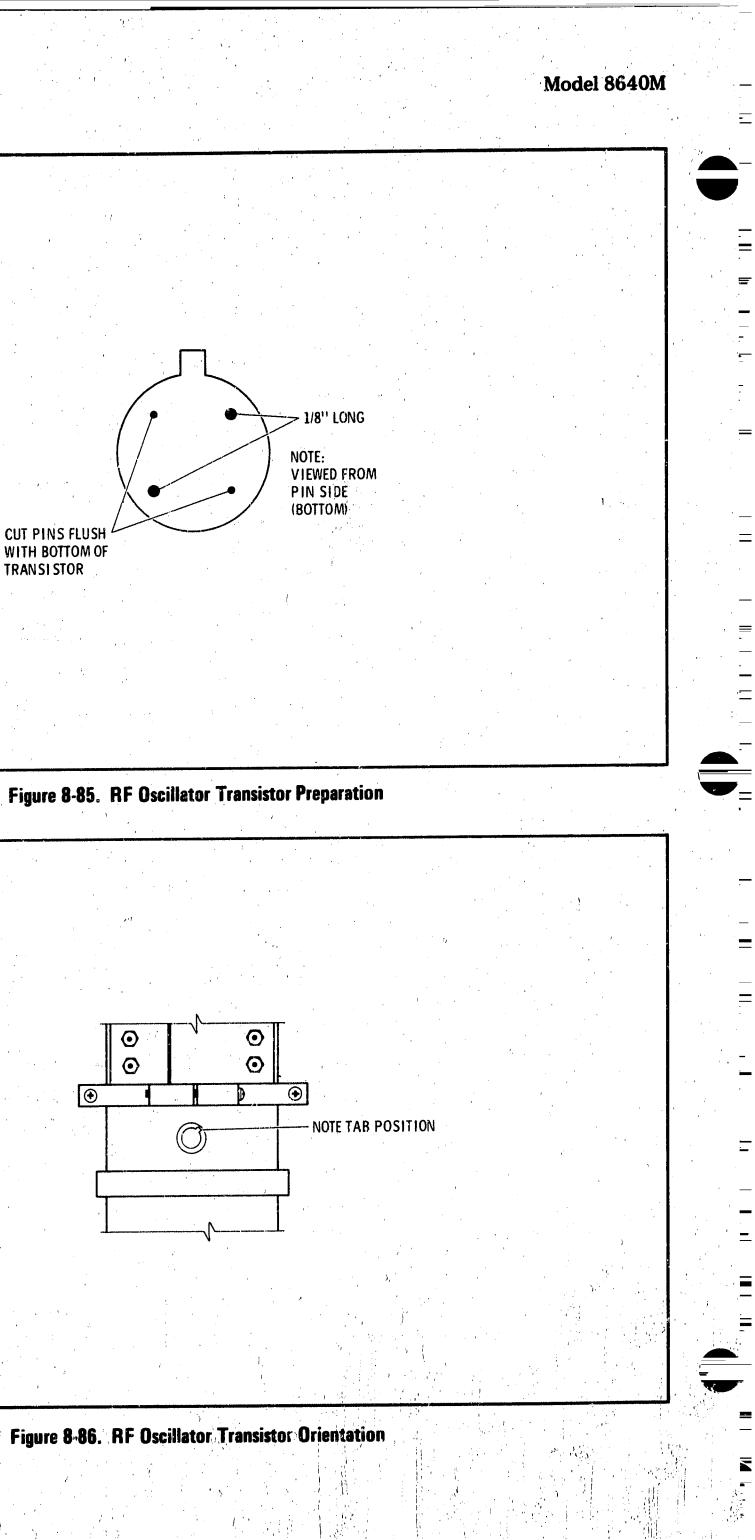
NOTE

The buffer board has two adjustment slots for attaching to the housing. Refer to the adjustment procedure in Section V, paragraph 5-36, when reinstalling the buffer board.

A3Q1 Replacement Procedure

- 1. Unscrew transistor cap (22).
- 2. Remove transistor (21).
- 3. Clip new transistor leads as shown in Figure 8-85.
- 4. Re-insert transistor as shown in Figure 8-86. Replace transistor cap (22) including the two RFI plugs (23 and 24).
- 5. Connect power meter and sensor (HP 435A/ 8482A) to the Divider/Fine r Buffer Amplifier output, A3A1J1 (32). Measure output power while tuning oscillator across range — it should always be within -1.0 to +3.5 dBm. If not, perform adjustment in paragraph 5-36.
- 6. Connect power meter sensor to the Counter Buffer Amplifier output, A3A1J2 (27). Measure output power while tuning oscillator across band — it should always be within -3to +3 dBm. If not, perform adjustment in paragraph 5-36.

3,1


8-74

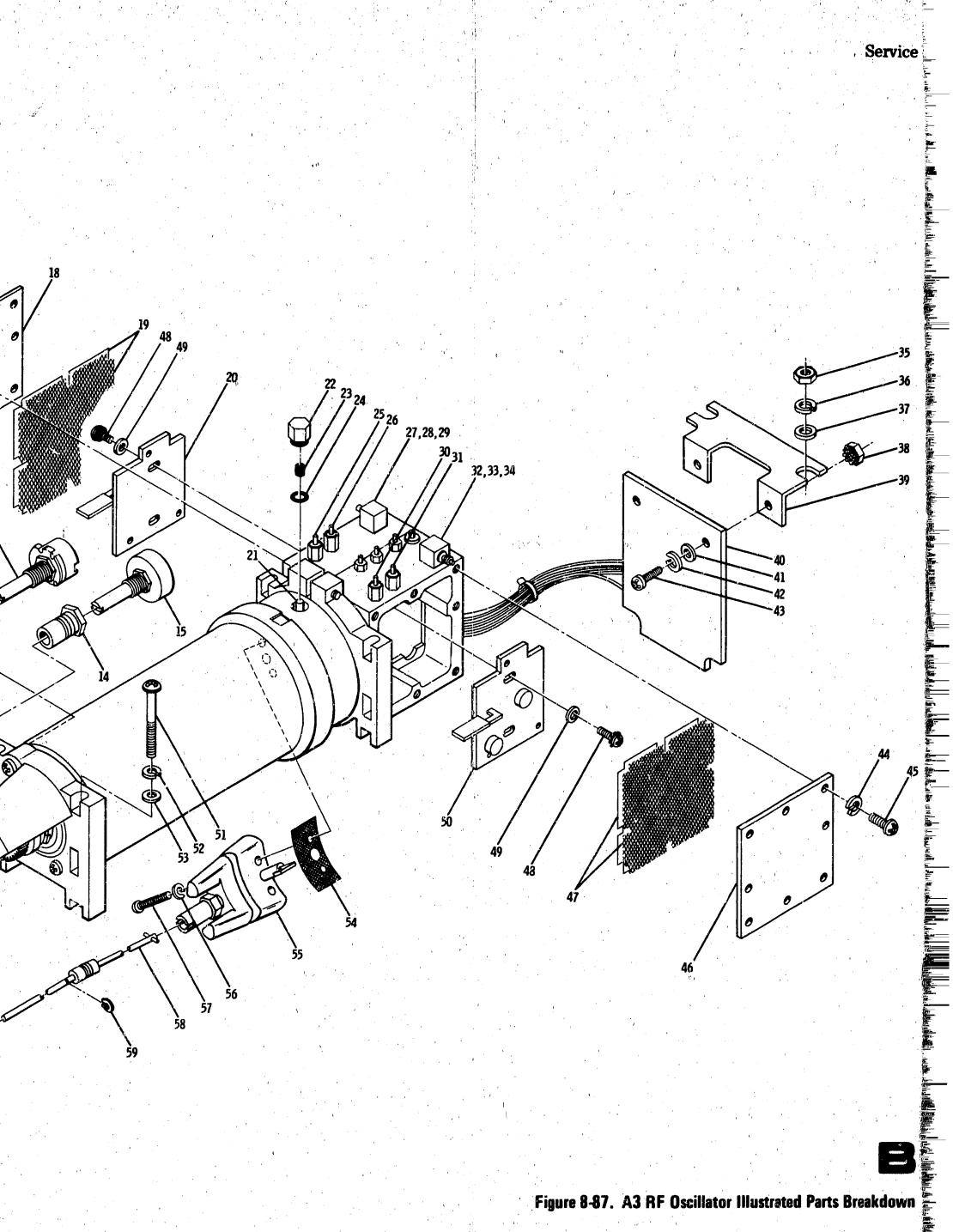
CUT PINS FLUSH

WITH BOTTOM OF TRANSI STOR

 \odot

 \odot

ltem Number	Reference Designator	Description
1	A3MP1	Retainer Ring
2	A3MP3	Spur Gear
3	Deleted	Deleted
4	A3MP17	Setscrew
5	A3MP4	Spur Gear
6	MP60	Retaining Collar
7	MP74	Setscrew
8	A3MP19	Setscrew
9	A3MP16	Spur Gear
10	A3MP19	Setscrew
11	A3MP19	Setscrew
12	A3MP6	Potentiometer Bushing
13	A3R2	Potentiometer, FM Gain Compensation
14	A3MP8	Potentiometer Bushing
15	A3R1	Potentiometer, Frequency Tune
16	A3A1MP13	Machine Screw
17	A3A1MP14	Lockwasher
18	A3A1MP1	Buffer Board Cover
19	A3A1MP4	RFI Gasket
20	A3A1A3	Counter Buffer Amplifier Assembly
21	A3Q1	Transistor
22	A3MP9	Transistor Cap
23	A3MP7	RFI Plug
24	A3MP13	RFI Plug
25	A3A1FL2	Filter Capacitor
26	A3A1FL1	Filter Capacitor
27	A3A1J2	RF Connector
28	A3A1MP10	Lockwasher
29	A3A1MP9	Hex Nut
30	A3A1FL6	Filter Capacitor
31	A3A1FL5	Filter Capacitor
32	A3A1J1	RF Connector
33	A3A1MP12	Lockwasher
34	A3A1MP11	Hex Nut
35	MP96	Hex Nut
36	MP95	Lock Washer
37	MP94	Flat Washer
38	A3A4MP5	Hex Nut
39	A3A4MP1	P.C. Board Support
40	A3A4MI I A3A4	Connector Board Assembly
40	A3A4MP3	Flatwasher
42	A3A4MP4	Lockwasher
43	A3A4MP2	Machine Screw
43	A3A4MP2 A3A1MP15	Lockwasher
44	A3A1MP15 A3A1MP16	Lockwasner Machine Screw
45 46	A3A1MP16 A3A1MP5	
		Buffer Board Cover
47	A3A1MP6	RFI Gasket
48	A3A1MP7	Machine Screw
49	A3A1MP8	Lockwasher
50	A3A1A2	RF Divider/Filter Buffer Amplifier Assembly


A3 RF Oscillator Assembly Legend

ltem Numb 5

59

ltem iumber	Reference Designator	Description	
51	A3MP22	Machine Screw	• • • • •
52	A3MP24	Lockwasher	· i
53	A3MP23	Flatwasher	
54	A3MP5	RFI Gasket	ix line
55	A3MP10	Oscillator Fine Tune Assembly	
56	A3MP12	Lockwasher	:
57	A3MP11	Machine Screw	
58	A3MP25	Fine Tune Shaft	
59	A3MP26	Retainer Ring	х. <u>1</u>
C3	Deleted	Deleted	• • •

A3 RF Oscillator Assembly Legend (Cont'd)

SERVICE SHEET C

A8 Assembly Removal and Disassembly Procedure

A8 Removal

NOTES

The entire A8 Assembly must be removed from the chassis to remove A8A1 A8A2, A8A3 and A8A5 Assemblies.

Do not attempt to replace components on the A8A1 and A8A3 Assemblies (except A8U8) without removing the boards.

1. Remove instrument from combination case, place instrument upside down and remove bottom cover (see Service Sheet G).

CAUTION

While working with and around the semirigid coaxial cables in the generator, do NOT bend the cables more than necessury. Do NOT torque the RF connectors to more than 5-inch pounds.

- 2. Disconnect two semi-rigid coaxial cables from bottom of A8 Assembly (cable W2 at A8A1J2 and cable W14 at A8A1J1).
- 3. Turn instrument right side up and remove top cover (see Service Sheet G).
- 4. Remove Counter knob with coupler (knob to switch shaft) and rubber o-ring from front panel.
- 5. Remove four pan-head screws (with lockwashers) at casting corners. These screws secure the A8 Assembly to the chassis.

6. Lift up and tilt assembly so that counter switch shaft clears front panel. Exercise some care to prevent damage to black connector with contacts on bottom of A8 Assembly.

A8 Casting Cover Removal

7. Place assembly right side up.

8. Remove three pan-head screws on front of casting. Remove eight pan-head screws (with lockwashers) that secure casting top cover to base.

Service

SERVICE SHEET C (Cont'd)

9. Lift cover from two "honey comb" RF shields and base casting.

A8A2A1, A8A2A2 and A8A5 Removal

10. Remove two pan-head screws that secure the A8A2 Assembly. Remove A8A2A1 Counter/ Lock Board Assembly and A8A4 Riser Assembly by lifting at the riser. The A8A2A2 Counter Display Assembly is attached to the A8A2A1 Assembly. Remove from sockets the wires that connect A8A5 Counter control switch to A8A3 Time Base Assembly.

NOTE

The A8A2A1 and A8A2A2 Assemblies can be extended for service by removing the A8A4 Riser Assembly from A8A2A1 and installing A8A2A1 on the extender board in the riser socket (A8A3XA8A4). This also gives access to the A8A3 Time Base Assembly.

A8A1 Access

WARNING

The edges of the RFI gasket may be sharp and may cause personal injury if not handled with care.

11. To gain access to the A8A1 RF Scaler Assembly, remove six pan-head screws (with lock-washers) that secure the cover shield. Remove the cover shield and gasket.

Model 8640M

A8A1 Removal

- 12. Remove two nylon screws that secure A8U8. Remove A8U8 and two mica washers.
- 13. On bottom of A8 Assembly Casting, under A8A1 Assembly, remove two hex nuts and lockwashers that secure coaxial connectors A8A1J1 and J2.
- 14. Unsolder four wires from feedthroughs to left of A8A1 Assembly. Remove A8A1.

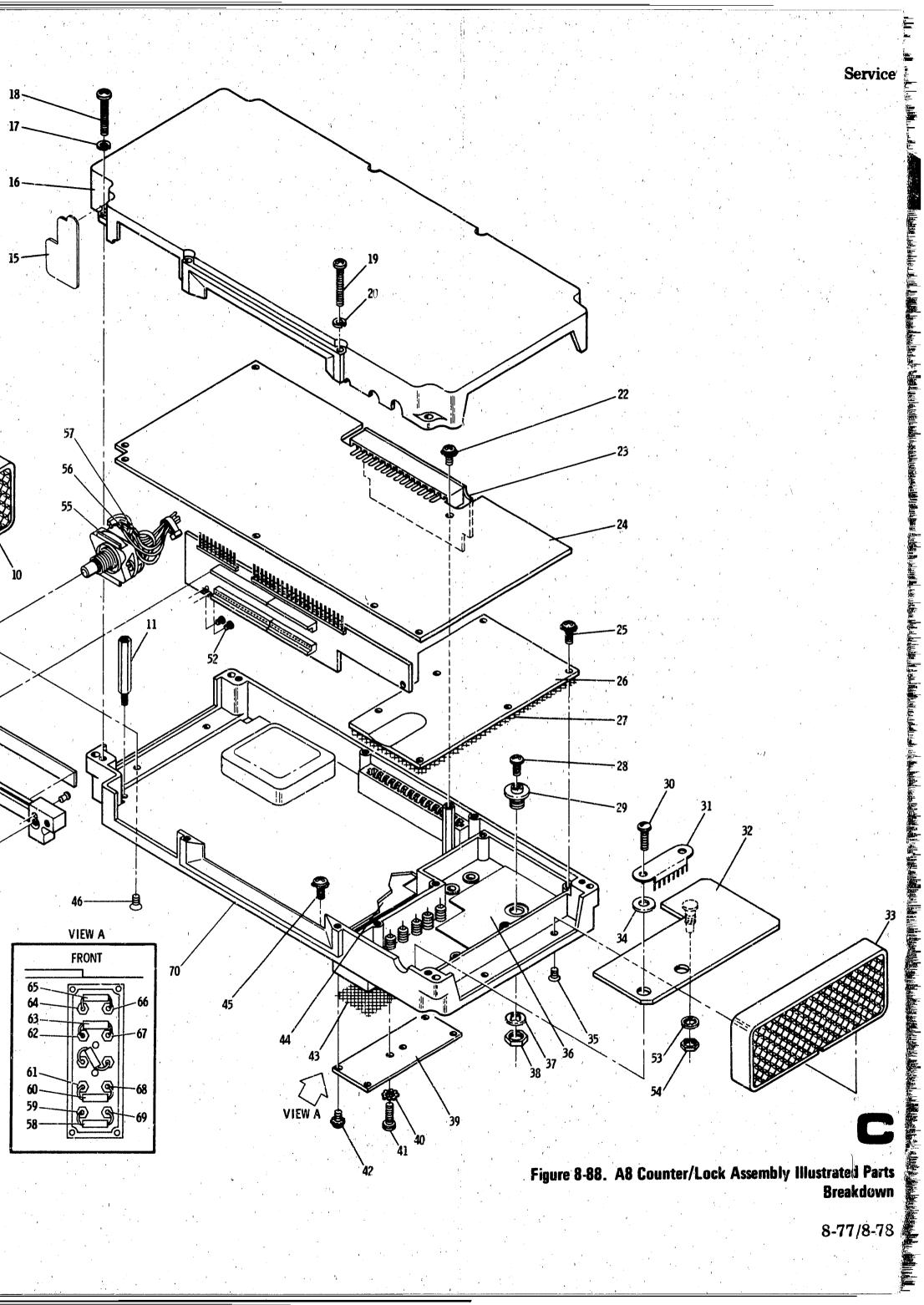
A8A3 Removal

- 15. On bottom of A8 Assembly casting, under A8A3 Assembly, remove hex nut and lockwasher that secure A8A3J1.
- 16. Unsolder four wires from feedthroughs to right of A8A3 Assembly.
- 17. Remove two board supports and pan-head screw. Remove A8A3.

Reassembly

18. Reassemble and reinstall A8 Assembly by reversing the procedures in steps 1 through 17.

NOTE


When replacing the casting top cover be sure that the curved, spring loaded, edges of the brass RFI shield are behind the casting wall.

odel 8640N

		ck Assembly Legend (1 of 2)	n de la companya de l En la companya de la c
ltem	Reference		
Number	Designator	Description	
	A8MP47	Hex Nut	1
		Lock Washer	
2	A8MP48 A8MP31	Machine Screw	
3	A8MP51 A8MP6	L.E.D. Shield	
4	Deleted	Deleted	
	A8MP18	Light Pipe	
6	A8MP11	Counter Heat Sink	
8	A8MP39	Nylon Rivet	
9	A8MP41	Heat Sink Insulator	P
1 0	A8MP41 A8MP9	Small Frame Shield	
	A8MP13	P.C. Board Support	
11	Deleted	Deleted	
12	Deleted	Deleted	
13	Deleted	Deleted	
14	MP25	RF Scaler Insulator	
15			
16	A8MP15	Counter Top Cover Lock Washer	
17	A8MF44		
18	A8MP26	Machine Screw Machine Screw	
19	A8MP40	Lock Washer	
20	A8MP44	Deleted	
21	Deleted	Machine Screw	
22	A8MP33		
23	A8A4 A8A2	Counter Riser Board Assembly	
24	A8A2 A8MP27	Counter Lock/Display Assembly Machine Screw	
25 26	A8MP27 A8MP10	Counter Input Cover Shield	
20	A8MP10 A8MP5	RFI Gasket	
21	A8MP5 A8MP42	Machine Screw	
28 29	A8MP42	Scaler Ground	1 1
30	A8MP40 A8MP1	Machine Screw	
30 31	ASUS	Divide-by-16 Counter	
32	A800 A8A1	RF Scaler Board Assembly	
33	A8MP8	Large Frame Shield	
34	ASMP3	Flat Washer	
35	A8MP31	Machine Screw	- ¹⁴
36	A8MP25	RF Scaler Insulator	
37	A8MP2	Lock Washer	4
38	A8MP30	Hex Nut	
39	A8MP7	Counter Filter Cover	
40	A8MP29	Lock Washer	
41	A8MP28	Machine Screw	
42	A8MP27	Machine Screw	
43	A8MP4	RFI Gasket	
44	A8MP32	Counter Time Base Insulator	
45	A8MP37	Machine Screw	
46	A8MP31	Machine Screw	з,
47	Deleted	Deleted	
48	Deleted	Deleted	
49	Deleted	Deleted	
49 50	A8U2-7	Numerical Display	
50 51	Deleted	Deleted	•
51 52	A8MP36	Machine Screw	
53	A&MP43	Lock Washer	
53 54	A8MP45	Hex Nut	
TU	430444 7 0	A4CA AVUS O	
	Fig. Market States		

8 A	Counter/L	.ock A	ssembly	Legend	(2	of	2))
------------	-----------	--------	---------	--------	----	----	----	---

Reference Designator	Description
A8A5S1	Counter Switch
A8A5CR2	Diode
A8A5CR1	Diode
A8L5	Inductor
A8C5	Feedthrough Capacitor
A8L4	Inductor
A8C4	Feedthrough Capacitor
A8C1	Feedthrough Capacitor
A8L1	Inductor
A8C2	Feedthrough Capacitor
A8L2	Inductor
A8FL2	Feedthrough Filter
A8FL1	Feedthrough Filter
A8FL3	Feedthrough Filter
A8C6	Feedthrough Capacitor
A8MP16	Counter Bottom Cover

.____

.

SERVICE SHEET D

A9 Assembly Removal and Disassembly Procedure

- 1. Set PEAK DEVIATION and RANGE switches fully ccw.
- 2. Remove PEAK DEVIATION and RANGE switch knobs. The knobs are secured with allen screws in the knobs.
- 3. Remove instrument from combination case, place instrument upside down and remove bottom cover (see Service Sheet G).
- . Remove two nuts that secure A9 Assembly to front panel (located at switch bushings).
- Remove connectors A9A1P1 and A9A2P1 from jacks on A13 Assembly. Lift rear of A9 Assembly until coupler slides apart. Gently slide the assembly back and up to remove. Reinctall assembly by setting both switch shafts fully ccw and reversing the procedures in steps one through six.

NOTE

The detents of both A9 Assembly and A10 Assembly switches must align and correspond to the same positions. Check that the actual RF output frequency agrees with the counter indication on all ranges.

A9A1 and A9A2 Removal

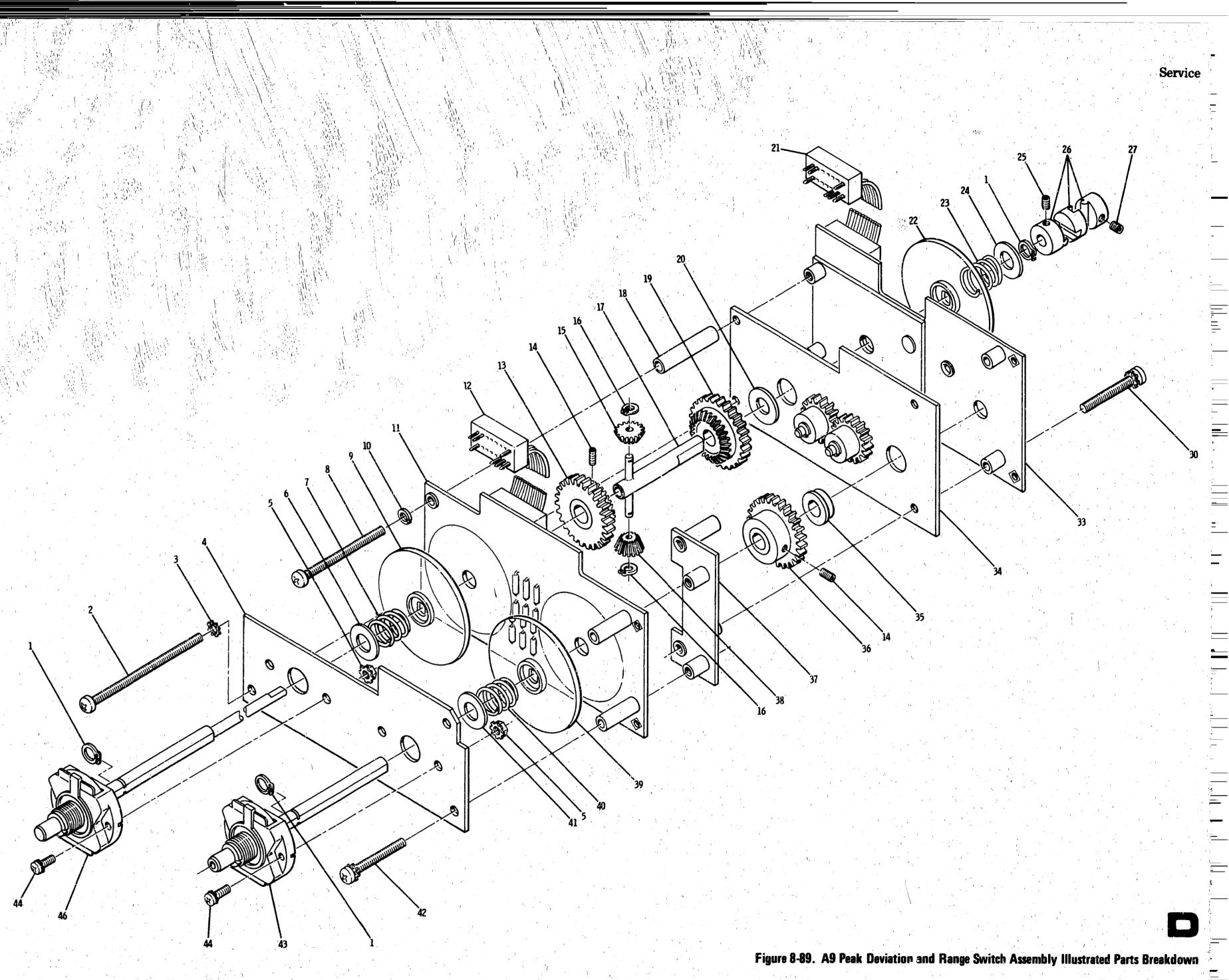
NOTE

For the following steps, orient the switch assembly with A9A1W1 and A9A2W1 up. Numbers in parentheses refer to items in the accompanying illustrated parts breakdown.

- 6. Remove retainer ring (1), washer (24), spring (23), and 4-contact rotor (22) at rear of switch.
- 7. Remove machine screw (30) at right rear of switch.

- 8. Remove two machine screws (2 and 8) and accompanying spacers (18) located at front left of switch.
- 9. Slide A9A2 Assembly (33) and gear mounting plate (34) off of detent shafts.
- 10. Slide T-shaft (17) with its accompanying combination gear (19) and planet gears (15 and 38) off of shaft (part of 46).
- 11. Loosen setscrews and remove combination gear (13) from shaft.
- 12. Loosen setscrews and remove spur gear (36) from shaft (part of 43).
- 13. Remove two machine screws (42) at front right of detent mounting plate (4), and remove P.C. board support (37).
- 14. Slide A9A1 Assembly (11) off of detent shafts.

A9 Reassembly


- 15. Reassemble A9 Assembly by reversiry steps 6 through 14 above, while observing the following points:
- a. If the shaft index assemblies (43 and 46) were removed, mount them with the index tab pointing to the top of the switch. Mount the shaft on the right side. When assembly is complete, check to be sure the shafts do not bind against the P.C. boards. If the shafts bind, loosen mounting screws (44) to adjust.
- b. Set detent shafts fully ccw.
- c. Install both the 3-contact rotor (9) and the 2-contact rotor (39) with contacts aligned vertically and toward the bottom of the switch.
- d. Set the rear, 4-contact rotor with contacts aligned vertically and pointing toward the top of the switch. This adjustment is made by loosening the set screws on the combination gear (13) to reset the rotor position.

A SAMA AND A

						· · · · ·		•							
			ţ.		•				· · ·	• • • • • • •					an a
									4	· ·					
A9 Peak Devia				· · · · · · · · · · · · · · · · · · ·			•			• .					
Reference	Item					•					•				, . .*
Designato	Number						•	•							.5 2
and the second sec				7. 									· . ·		
A9MP3 A9MP32	1 2			1997) 1997) 1997)			,	·		•		1 ·		•	•
A9MP2	3			, ,	1	.:	•	•						1	•
A9MP23	4			(· ·	• *
A9MP34 A9MP18	5		1.					,		• •		• •			
A9MP14	7							1.0		, ·	· · · ·				•
A9MP36	8				4	•	·						1 · · ·	•	
A9MP30 A9MP39	9 10		•		ľ,										
A9A1	11					с. Ц		·		•	н 2		×		
A9A1W1	12			· ·									٠.		•
A9MP12 A9MP8	13 14						, .								
A9MP11	15			n an d				•		!					·,
A9MP7	16												, . ,	• *	•
A9MP28 A9MP1	17 18				•	· · · ·		4 . N	.1						•
A9MP1 A9MP13	18			•								an a	• 4	р 	
A9MP17	20				•								· · · · ·	· •	۰.
A9A2W1	21			•	•	,		1. L.	· ·						
A9MP29	22								•				•		
A9MP15 A9MP19	23 24					•						•			
A9MP4	24						· ·	·							
MP29	26			•	۰.		•								
A9MP5	27		•			· • •					, P				
Deleted	28	· .										· · · · · · · · · · · · · · · · · · ·			
Deleted A9MP33	29 30		,		· .	1. 1									
Deleted	30	н	· .		е 	• ,					an a				
Deleted	32						, · · .	*			· · · · ·		:		
A9A2	33	"													
A9MP24	34										•				<i>.</i>
A9MP27 A9MP9	35 36			,								•		· •	
A9MP9 A9MP26	30								•	4			,	1	
A9MP10	38		•	•						, , ,	•				
A9MP31	39		•												
A9MP16	40			•		. •					·				
A9MP20	41 42		1					•	· .		۰. ۱				
A9MP38 A9MP22	42 43	٤"		i					н н 1				· · · · ·		
A9MP37	44		• . • • • •									. · ·			
Deleted	45			:.	•	•		- 1				• • • •	• *		
A9MP21	46		•									e e J		•	
		•							• .			·	a in the second	· · · ·	•

and Range Switch Assembly Legend

Description **Retainer Ring** Screw Star Washer **D**otent Mounting Plate Hex Nut Flat Washer **Compression Spring** Machine Screw Switch Rotor Lock Washer Peak Deviation Band Switch Board Assy Cable Assembly **Combination Cear** Setscrew Planet Gear Retainer Ring Switch Shaft Spacer Combination Gear Flat Washer Cable Assembly Switch Rotor **Compression Spring** Flat Washer Set Screw Shaft Coupler Setscrew Deleted Deleted **Machine Screw** Deleted Deleted FM Gain Switch Board Assembly Gear Mounting Plate **Plastic Bushing** Spur Gear PC Board Support Planet Gear Switch Rotor **Compression Spring** Flat Washer **Machine Screw** Shaft Index Assembly Machine Screw Deleted Shaft Index Assembly

Service

SERVICE SHEET E

A10 Assembly Removal and Disassembly Procedure

A10 Casting Cover Removal

- 1. Remove instrument from combination case, place instrument right side up and remove top cover (see Service Sheet G).
- 2. Remove fourteen pan-head screws (with lockwashers) that secure casting cover to casting (screws marked with asterisk -*- on cover).

NOTE

Note the location of the screws. The screws vary in length.

3. Lift cover from casting.

A10A2 Removal

4. Remove twelve pan-head screws (with lockwashers) that secure A10A2 Assembly to casting. Remove A10A2 RF Divider Assembly and A10A3 Riser Assembly by lifting at the riser.

NOTE

The A10A2 Assembly can be extended for service by removing the A10A3 Riser Assembly from A10A2 installing A10A2 in the riser socket (A10A1XA10A3A and B). Remove riser evenly to avoid cracking the connector.

When replacing transistors on A10A2, assure that the cans will not contact the casting top cover.

A10A1 Access

8-80

5. Remove four pan-head screws (with lockwashers) that secure casting center section to casting. A10A2 Assembly in the riser socket (A10A1XA10A3A and B) and reinstalling the power supply circuit boards (A18, A20 and A22).

A10A1 Removal

8. Remove instrument from combination case, turn instrument upside down and remove bottom cover (see Service Sheet G).

CAUTION

While working with and around the semirigid coaxial cables in the generator, do NOT bend the cables more than necessary. Do NOT torque the RF connectors to more than 5 inch-pounds.

- 9. Remove FM circuit boards (A5 and A7) and the A3A4 Connector Board Assembly (see Service Sheet F).
- Disconnect four semi-rigid coaxial cables from bottom of A10 Assembly (cable W3 at A10A1J3, cable W7 and A10A1J2, cable W6 at A10A1J1, and cable W8 at A10A1J4).
 A10A1J2 and J3 are located in area occupied by FM circuit boards. A10A1J1 and J4 are located in front of A26 Assembly.
- 11. Remove four hex nuts and lockwashers that secure coaxial connectors A10A1J1 through J4.
- 12. Turn instrument right side up. Unsolder three feedthroughs at rear center of A10A1 Assembly (located to right of two toroid inductors and to left of relay.

Be sure the terminals have been completely desoldered.

6. Remove three power supply circuit boards (A18, A20, and A22) that are between A10 Assembly and rear panel.
13. Remove the ten pan-head screws (with lock-washers) that secure A10A1 Assembly to casting. Remove A10A1.

7. Remove casting center section.

NOTE The A10A1 Assembly can be checked and adjusted by installing the NOTE

If necessary, the bottom casting cover can be removed by removing four panhead screws (with lockwashers), and

SERVICE SHEET E (Cont'd)

NOTE (Cont'd)

unsoldering three wires from feedthroughs on underside of instrument behind RF oscillator.

Reassembly

14. Reassemble A10 Assembly by reversing the
procedures in steps 1 thorugh 13.5. Move assembly to the rear to clear switch shaft
from front panel.

A23 Assembly Removal Procedure

1. Remove instrument from combination case, remove bottom cover from a strument (see Service Sheet G).

- 2. Remove Modulation Mode switch knob. Re-move nut holding assembly to front panel.
- 3. Remove connectors A23A1P1 and A23A2P1 from A13J8 and A13J9.
- 4. Remove five push-on connected wires from A23A1 assembly and three push-on connected wires that go from A23A2 to A11 Internal Modulation Oscillator.

A23 Reinstallation

6. Reinstall A23 Assembly by reversing the pro-cedures in steps 1 through 5.

A10 Divider/Filter Assembly Legend

ltem Number	Reference , Designator	Description
1	A10MP14	Machine Screw
2	A10MP11	Lock Washer
3	A10A1MP7	Cam Housing Bushing
4	A10A1MP9	Cam Follower
5	A10MP12	Machine Screw
6	A10A1MP2	Detent Roller
7	A10A1MP3	Detent Spring
8	A10A1MP1	Detent Pin
9	A10A1MP8	Cam Cover
10	A10A1MP4	Cam Shaft
11	A10A1MP13	Setscrew
12	A10MP17	Hex Nut
13	A10MP16	Lock Washer
14	A10A1MP12	Clamp Support
15	A10A1FL1-3	Feed Thru Filter
16	A10A1MP10	Slider Clamp
17	A10MP12	Machine Screw
18	A10MP8	Spring Shield No. 4
19	A10MP12	Machine Screw
20	A10A3	Riser Assembly
21	A10A3XA10A2A	P.C. Edge Connector
22	A10A3XA10A2B	P.C. Edge Connector
23	A10MP1	Yellow P.C. Board Guide
24	A10MP2	Green P.C. Board Guide
25	A10MP3	Blue P.C. Board Guide
26	A10MP9	D/F Top Cover Casting
27	A10MP11	Lockwasher
28	A10MP18	Machine Screw
29	A10MP18	Machine Screw
30	A10MP11	Lock Washer
31	A10MP15	Machine Screw
32	A10MP11	Lock Washer
33	A10MP14	Machine Screw
34	A10MP11	Lock Washer
35	A10A1MP11	Machine Screw
36	A10MP4	RFI Braid
37	A10MP13	Machine Screw
38	A10MP11	Lock Washer
39	A10A2	RF Divider Assembly
40	A10MP10	D/F Center Casting
41	A10MP5	Spring Shield No. 1
42	A10MP12	Machine Screw
43	A10MP7	Spring Shield No. 3
44	A10MP12	Machine Screw
45	A10MP6	Spring Shield No. 2
46	A10A1MP11	Machine Screw
47	A10A1	RF Filter Assembly
48	A10MP4	RFI Braid
49	A10A1MP6	D/F Bottom Cover Casting
50	A10A1MP5	Cam Follower Shaft

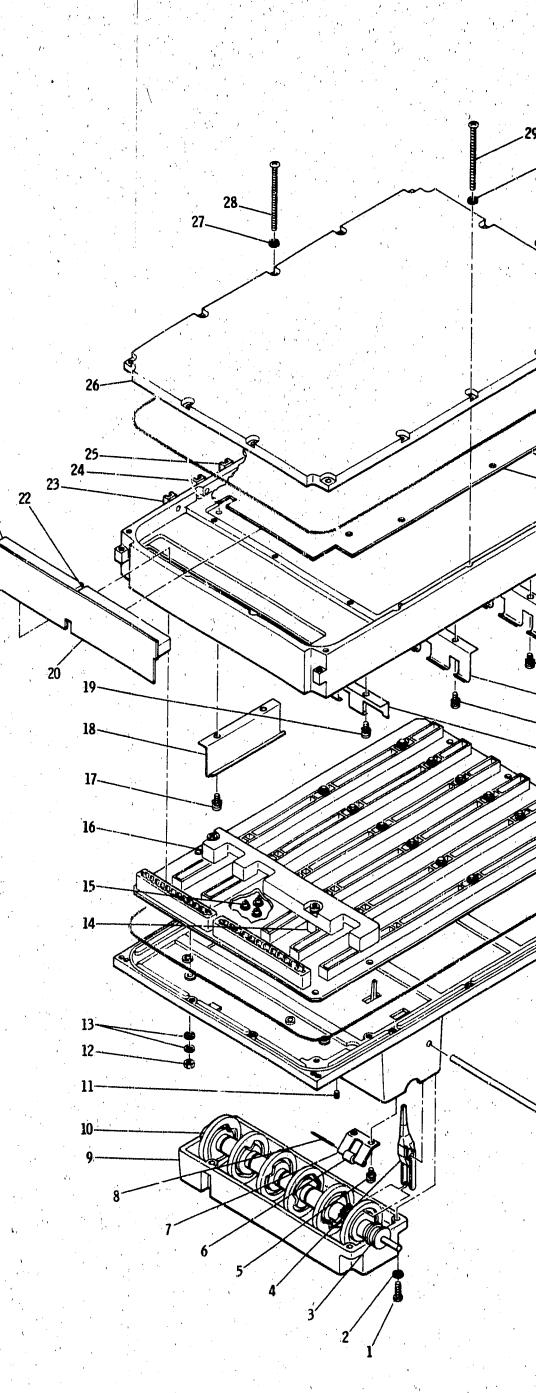
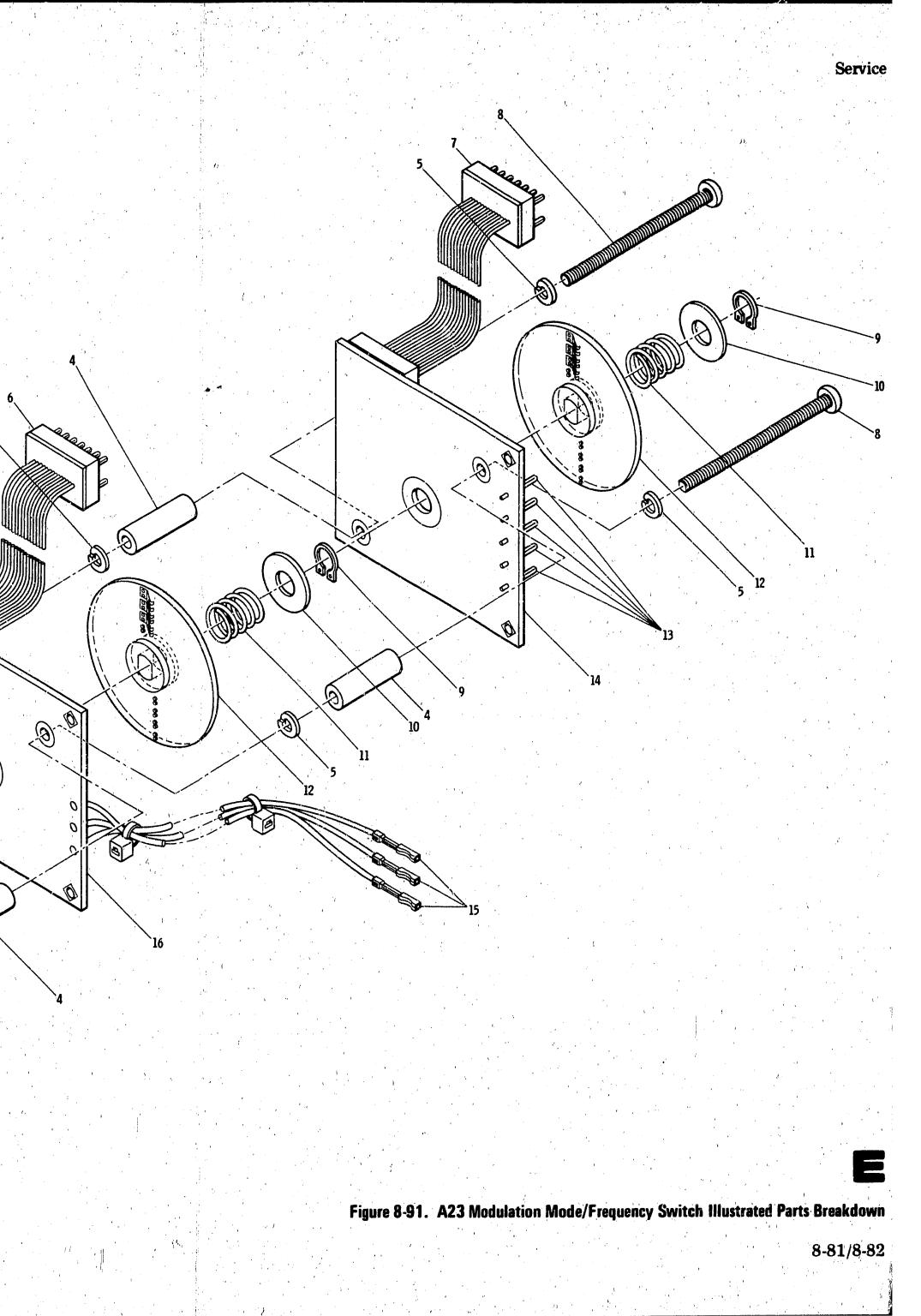



Figure 8-90. A10 Divider/Filter Assembly Illustrated Parts Breakdown

		1	
· ·	ltem Number	Reference Designator	Description
	1	A23MP1	Machine Screw .625 long
	2	A23MP2	Flat Washer #4
	3	A23MP3	Round Spacer .25" long
	4	A23MP4	Round Spacer .75" long
ĺ	5	A23MP5	Split Lock Washer
	6	A23A2W1	Cable Assembly
	7	A23A1W1	Cable Assembly
	8	A23MP6	Machine Screw 2" long
	9	A23MP7	Retainer Ring
	10	A23MP8	Flat Washer #12
	11	A23MP9	Compression Spring
	12	A23MP10	Switch Rotor Contacts
	13	A23A1MP1-5	Square Pin
	14	A23A1	Modulation Select Board Assembly
	15	A23A2MP1-3	Terminal Crimp Lug
	16	A23A2	Modulation Frequency Board Assembly
	17	A23MP11	Detent Plate
	18	A23MP12	Shaft Index Assembly
		•	

MAX .

A23 Modulation Mode Switch Assembly Legend

____ .

SERVICE SHEET F A26 Assembly Removal and Disassembly Procedure

A26A2 and A26A4 Access

- Remove instrument from combination case, place instrument right side up and remove top cover (see Service Sheet G).
- 2. To service either A26A2 or A26A4, gently lift board's extractors and reinstall it on extender
- 3. Reassemble by reversing procedures in steps one and two.

A26A1 and A26A3 Access

Remove instrument from combination case, place instrument upside down and remove bottom cover (see Service Sheet G).

CAUTION

While working with and around the semirigid coaxial cables in the generator, do NOT bend the cables more than necessary. Do NOT torque the RF connectors to more than 5 inch-pounds.

Remove ten pan-head screws (with lockwashers) that secure casting bottom cover to the casting.

WARNING

The RFI gasket on casting cover may have sharp edges and may cause personal injury if not handled with care.

Lift cover from casting, noting the orientation of the RFI gasket under the cover.

NOTE

Do not attempt to replace components on the A26A1 and A26A3 assemblies without removing them.

A26A1 and A26A3 Removal

- 4. Remove two pan-head screws (with washers) that secure microcircuit amplifier A26U1 or U2 to casting.
- 5. Remove A26U1 or U2.
- 6. Remove four pan-head screws (with lockwashers) that secure heat sink to the casting.
- Remove pan-head screws (with lockwashers) that secure the circuit board to the casting.

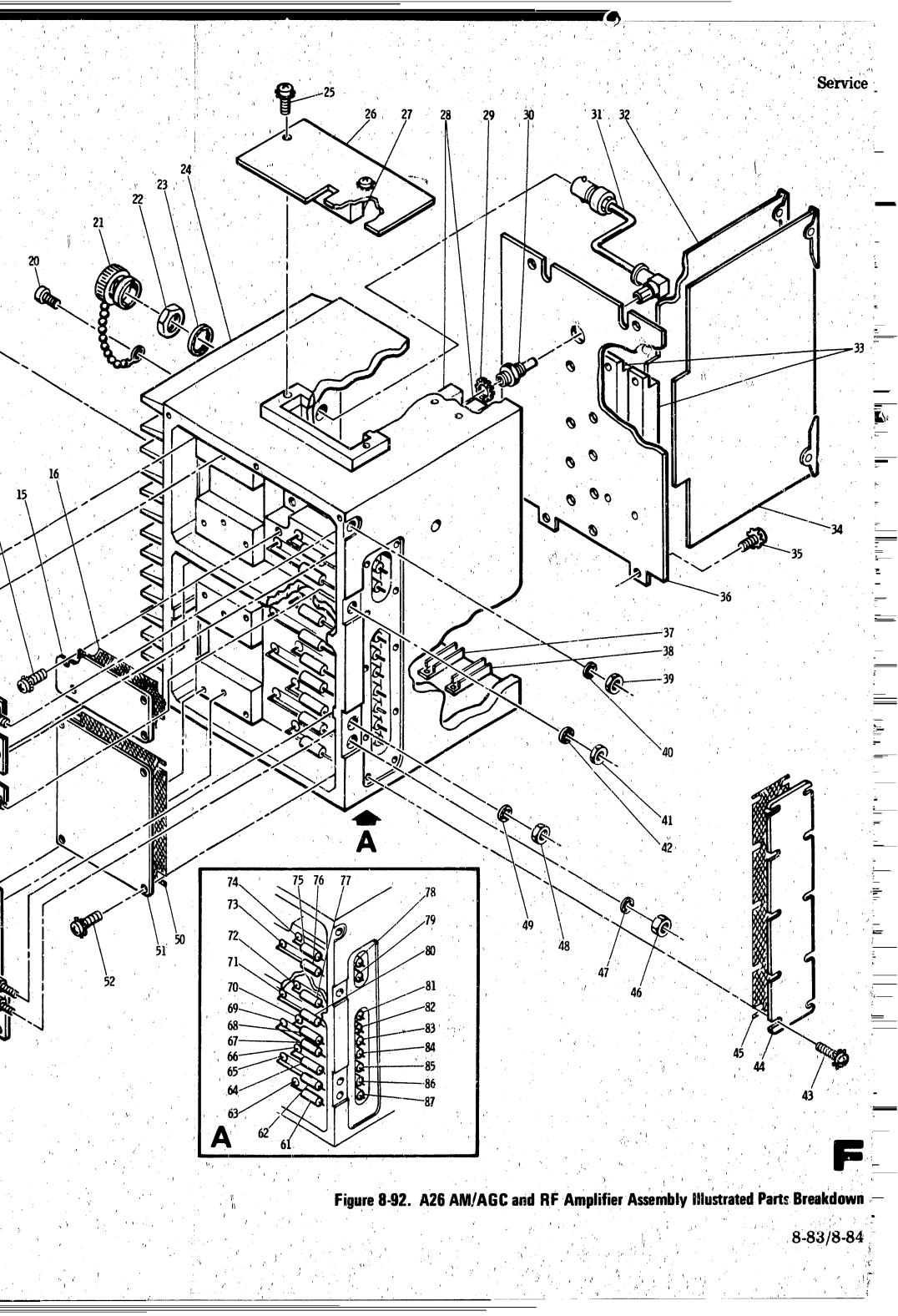
- Disconnect two coaxial cables from casting connectors and remove nuts and washers that secure cable connectors to casting.
- To replace components mounted on the circuit board, tilt the board up while sliding it to the rear.
- 10. To replace or remove the circuit board, label the wires soldered to the board before unsoldering them.
- 11. Reassemble by reversing procedures in steps 1 through 10.

A26 Assembly Removal

Remove instrument from combination case, place instrument upside down and remove bottom cover (see Service Sheet G).

While working with and around the semirigid coaxial cables in the generator, do not bend the cables more than necessary. Do NOT torque the RF connectors to more than 5 inch-pounds.

- 2. Disconnect 4 semi-rigid coaxial cables (W6, W7, W8, and W10) from the front of the A26 $\mathbf{1}$ Assembly.
- 3. Place instrument right side up and remove A26A2 and A26A4 assemblies by gently lifting their P.C. board extractors.
- Remove six allen-head screws (with lock washers) from the inside of the A26 casting.
- 5. Disconnect A16P1, and remove A18, A20, and A22 Regulator Assemblies by gently lifting their board extractors.
- 6. Slide A26 casting toward top of instrument until A26A5 Riser Assembly no longer mates with its connector (A17XA26A5).
- Remove the two pan-head screws holding the A26A5 Riser Assembly to the A26 casting module. Disconnect Riser by pulling it gently away from the casting.
- Slide the A26 Assembly toward the top of the instrument until it is removed.
- Reinstall the A26 Assembly by reversing the procedures in steps 1 through 8.


and a start of the second s

ltem Number	Reference Designator	Description		ltem Number	Reference Designator
1	A26MP34	Machine Screw		50	A26MP2
2	A26MP48	Machine Screw		51	A26MP10
3	A26MP25	Machine Screw		52	A26MP44
4	A26MP27	Machine Screw		53	A26W1
5	A26MP28	Lock Washer		54	A26W2
6	A26MP29	Flat Washer		55	A26A1
7	A26U2	Amplifier		56	A26MP33
8	A26MP34	Machine Screw		57	A26U1
9	A26MP33	Heat Sink		58	A26MP32
10	A26MP43	Machine Screw		59	A26MP31
11	A26A3	Modulator Assembly		60	A26MP30
12	A26W3	Coaxial Cable		61	A26L6
13	A26MP25	Machine Screw		62	A26L3
14	A26MP45	Machine Screw		63	A26C12
15	Å26MP6	Modulator Filter Cover		64 64	A26L4
16	A26MP3	RFI Gasket		65	A26C6
17	A26MP24	Machine Screw		66 66	A26C8
18	A26MP9	Bottom Module Cover		67	1
19	A26MP4	RFI Gasket			A26L8
20	A26MP16	Machine Screw		68 60	A26L7
20 21	A26MP15	Coaxial Cap		69 70	A26C16
21 22	A26MP17	Hex Nut		70	A26C14
22 23	A26MP18	Lock Washer		71	A26C10
f				72	A26C17
24 95	A26MP8	Casting Mashing Server		73	A26C1
25 96	A26MP19	Machine Screw		74	A26C3
26	A26A5	Riser Assembly		75	A26L2
27	A26MP20	PC Edge Connector		76	A26L1
28	A26MP11	Brown P.C. Board Guide		77	A26R1
29	A26MP47	Lock Washer		78	A26C4
30	A26J1	RF Connector		.79	A26C2
31	A26W4	Coaxial Cable		80	A26L5
32	A26A4	AGC Amplifier Assembly		81	A26C18
33	A26MP22	P.C. Edge Connector		82	A26C9
34	A26A2	AM Offset and Pulse Switching Assembl	y i i i i i i i i i i i i i i i i i i i	83	A26C13
35	A26MP21	Machine Screw		84	A26C15
36	A26A6	AM Mother Board Assembly		85	A26C7
37	A26MP13	Green P.C. Board Guide		86	A26C5
38	A26MP12	Yellow P.C. Board Guide		87	A26C11
39	A26MP41	Hex Nut			
40	A26MP42	Lock Washer		an an An an an An	
41	A26MP39	Hex Nut			_
42	A26MP40	Lock Washer			
43	A26MP46	Machine Screw			
44	A26MP5	Access Cover		·	
45	A26MP1	RFI Gasket		, , ,	
46	A26MP37	Hex Nut			
47	A26MP38	Lock Washer			
48	A26MP35	Hex Nut			
49	A26MP36	Lock Washer		, ,	
XV		ant va vytajas a			

A26 AM/AGC and RF Amplifier Assembly Legend (1 of 2)

A26 AM/AGC and RF Amplifier Assembly Legend (2 of 2)

Descriptio	DN
	<u></u>
RFI Gasket	
Amplifier Filter Cover	
Machine Screw	
Coaxial Cable	
Coaxial Cable	C Datastan Agar
Power Amplifier & AG	C Delector Assy
Heat Sink	
Amplifier Flat Washer	
Lock Washer	
Machine Screw Inductor	
Inductor Food Thru Conneitor	
Feed Thru Capacitor Inductor	
Feed Thru Capacitor	• · · ·
Feed Thru Capacitor Inductor	
Inductor	X .
Feed Thru Capacitor Feed Thru Capacitor	
•	
Feed Thru Capacitor	
Feed Thru Capacitor	
Feed Thru Capacitor	•
Feed Thru Capacitor	
Inductor	,
Inductor	
Resistor	· · · · · · · · · · · · · · · · · · ·
Feed Thru Capacitor	
Feed Thru Capacitor	1
Inductor	
Feed Thru Capacitor	1
Feed Thru Capacitor	• • • • • • • • •
Feed Thru Capacitor	
Feed Thru Capacitor	

0.20

1-

SERVICE SHEET G

General Removal Procedures

Combination Case Removal

- 1. Place instrument with front panel up.
- 2. Remove 3 pozidriv screws each from the top and bottom of the front panel.
- 3. Remove 2 pan-head screws each from left and right sides of the combination case.
- 4. Lift instrument by the handles on the front panel while pressing downward on edge of combination case.
- 5. Lift instrument straight upward to remove from case.

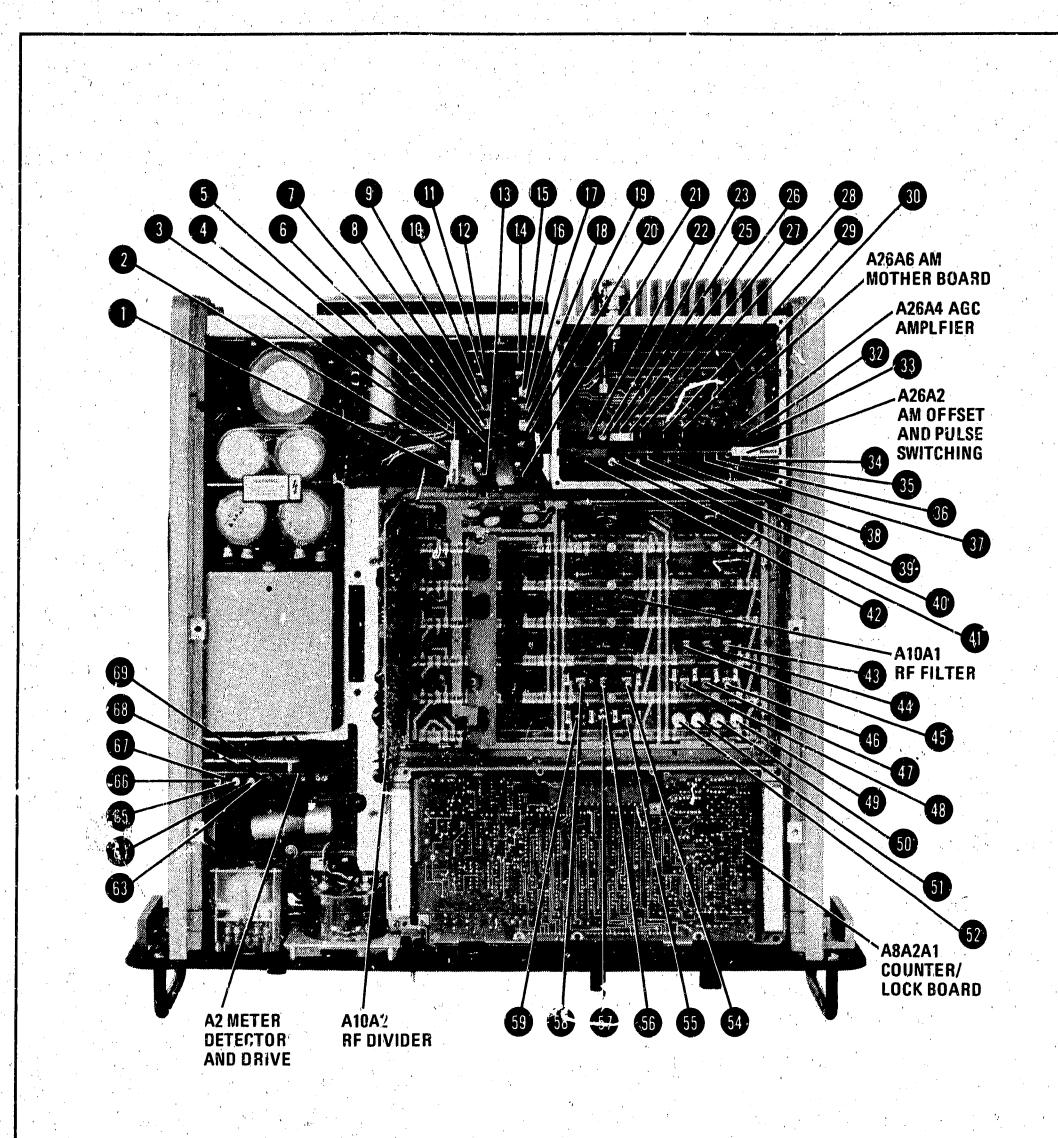
Top and Bottom Cover Removal

WARNING

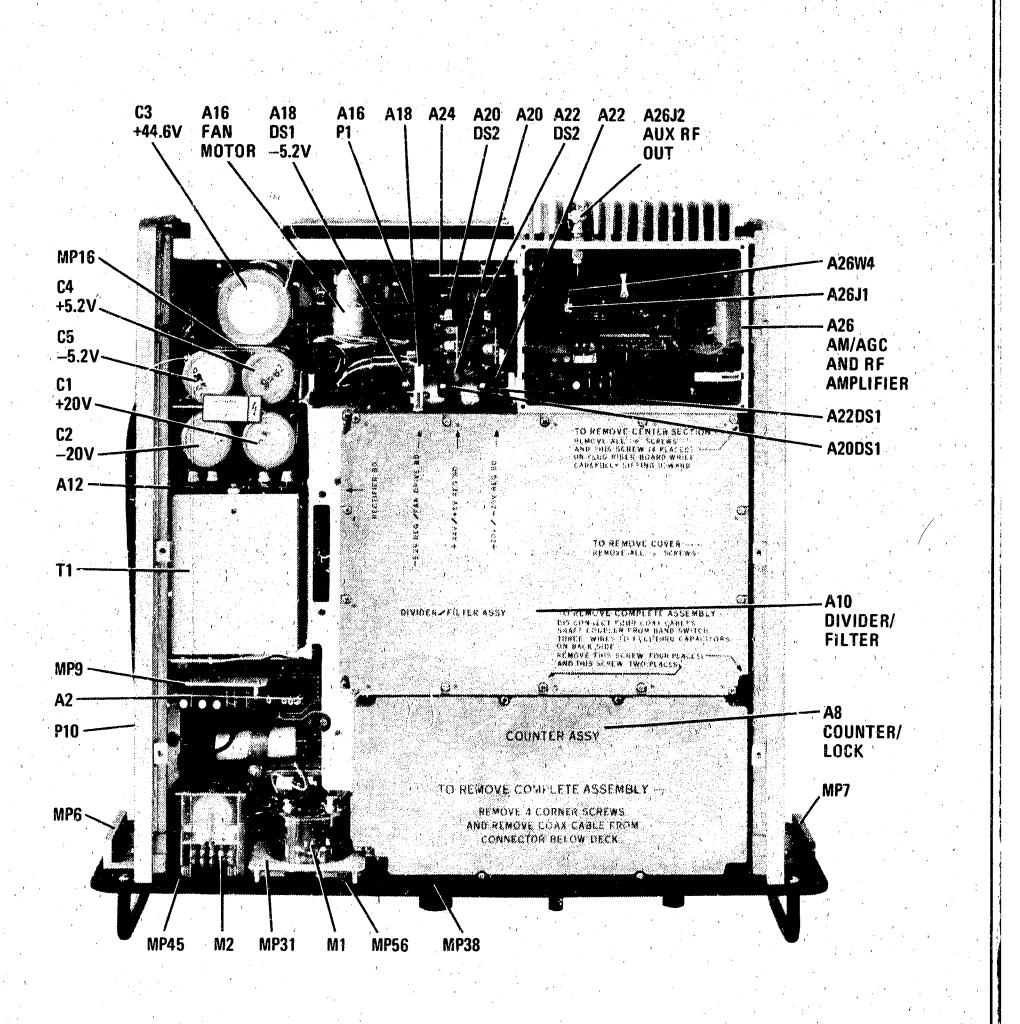
Before attempting to disassemble or remove any part of the generator, remove line power from the instrument by disconnecting the instrument's line power cable from the line power outlet.

1. Remove top cover by removing four screws. Slide cover to the rear approximately two

- inches to disengage it from flanges at the instrument's front and rear. Lift it off.
- 2. Remove bottom cover by removing four screws. Slide cover to the rear approximately two inches to disengage it from flanges at the instrument's front and rear. Lift it off.


Circuit Board Removal

3. Remove any plug-in circuit board by gently lifting the board's extractors (the extractors are color-keyed to the guides at the board's edges).


M1 Removal

- 1. Remove top cover.
- 2. Remove Modulation Mode switch knob. Remove nut holding A23 Modulation Mode switch assembly to front panel, and slide to rear.
- 3. Remove three flat head screws holding meter M1 to front panel. Disconnect wires from meter to A13 Modulation Metering mother board.
- 4. Push top edge of meter to the rear and lift meter from chassis.
- 5. To install meter, reverse procedure given in steps 1 through 4.

A1A1R1 (12)		А7ТРЗ	21	VARACTOR CATHODE
A1A1TP1 40	VERN	A7TP4	26 a s	+0.20 OVERLOAD
A1A1TP2 4	MET OUT	A7TP5	22	
		A9A21	'P1 35	
A3R1 39	FREQUENCY TUNE	AJA21		
A3R2 38	FREQ TUNE	A11R2		OSCILLATOR LEVEL
A3A4R1 6	V _T ADJ LOW FM SENS	A11R2 A11R3	- 1 - 1 - X - 1	
A3A4R2 4				AM-FM DRIVE ADJ
A3A4R3 3	MID FM SENS	A11R1		AUDIO OUTPUT
	LICH TM OF MO	A11TP		 A second sec second second sec
A3A4R4 2	HIGH FM SENS	A11R2		
A3A4TP1 5	v _T			
A3A4TP2		A11TP		
		A11TP		
A5R9 33	AMPLIFIER OFFSET	A11TP		
A5R23 31	BUFFER ADJ	A11R3		
A5TP1 1	GND	A11TP	5 18	
A5TP2 3	OUTPUT			
A5TP3 36	+ INPUT	A11TP	· 🛛 🗶 -	
		A11TP		$\frac{1}{2} = \frac{1}{2} \left[\frac{1}{2} + 1$
A5TP4 32	INPUT	A11R4	25	
A5TP5 30	FM BUFFER IN			
A5TP6 29	BUFFER OUT	A26U1		
		A26U2		
A7R12 23	POSITIVE SHAPING	A26W3	51	
A7R19 9	VARACTOR BIAS	A26A1		
A7R41 1	NEGATIVE SHAPING	A26A1	R34 4 9	DET ADJ
A7TP1 8	GND			
A7TP2 15	VARACTOR ANODE	A26A1′	ГР1 50	DET
		A26A1'	гра 48	PK DET
		A26A1	N2 43	
		A26A3.	53	

)

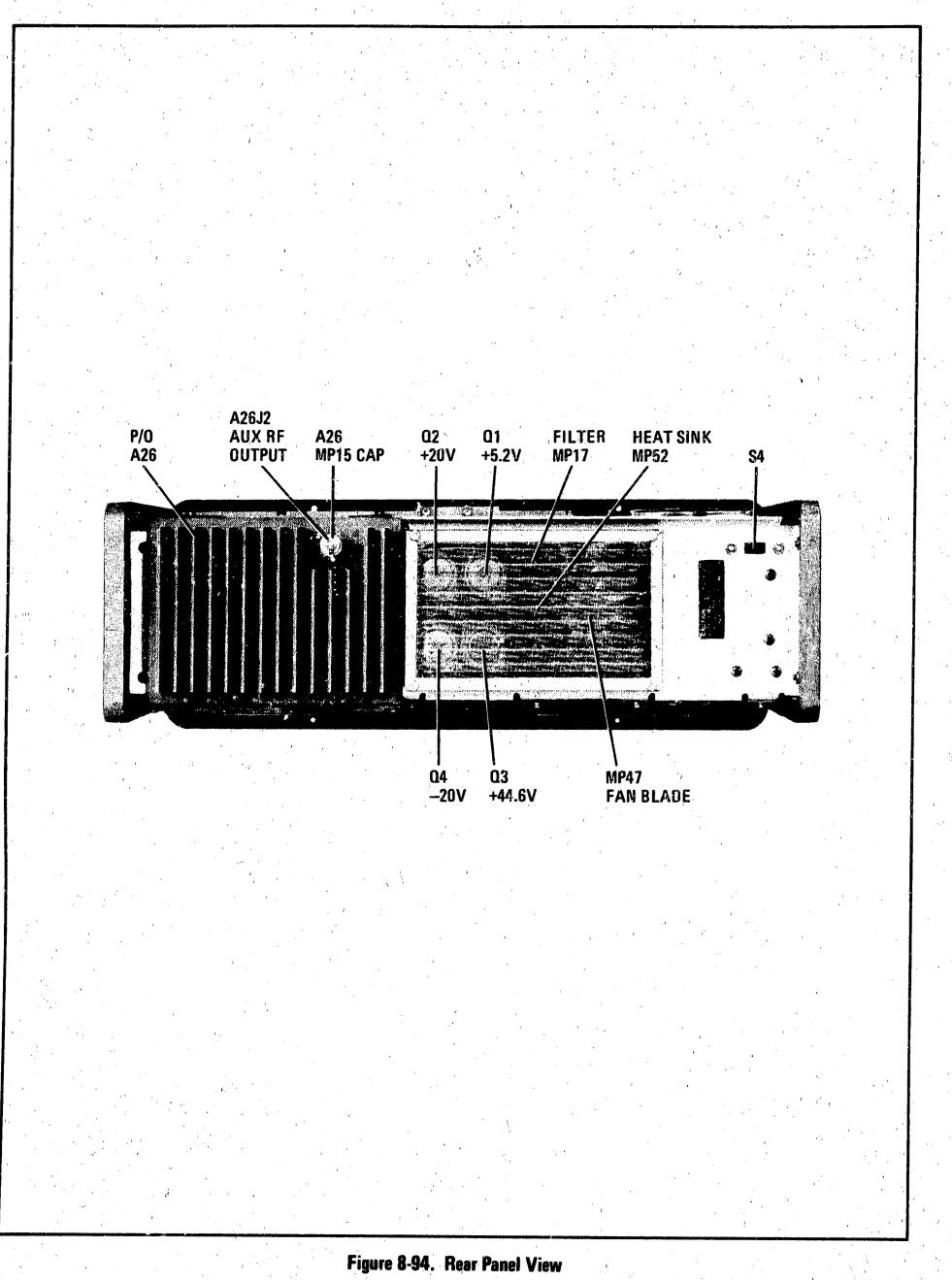
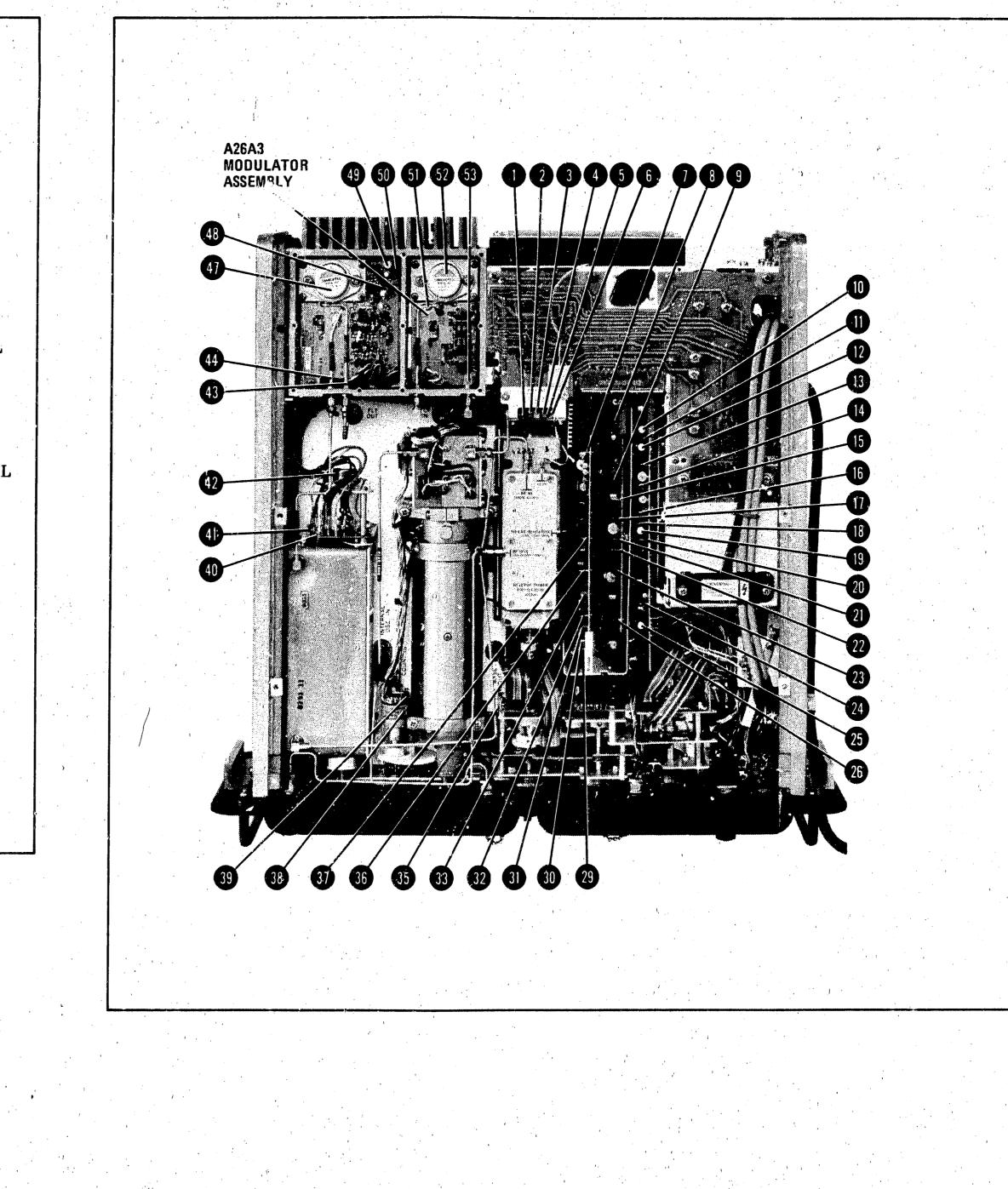
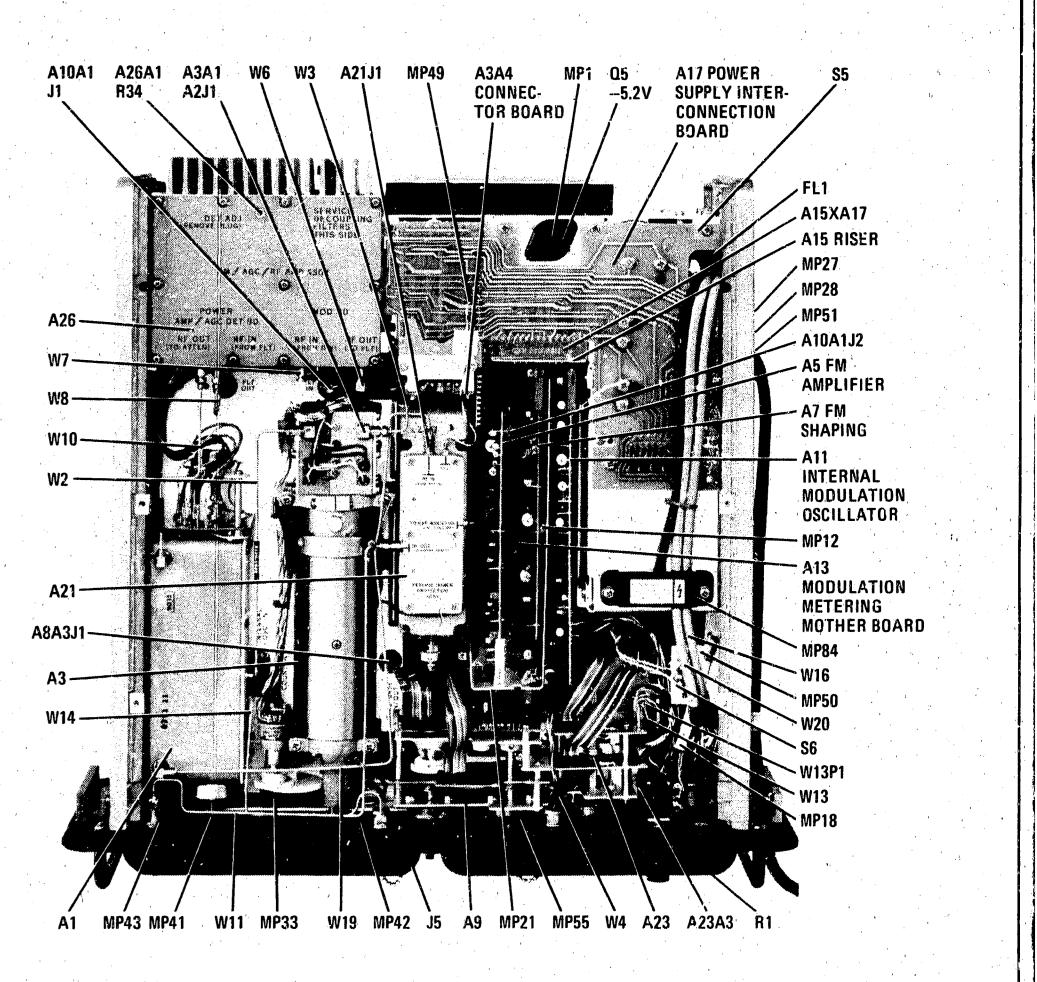


Figure 8-93. Top Internal View

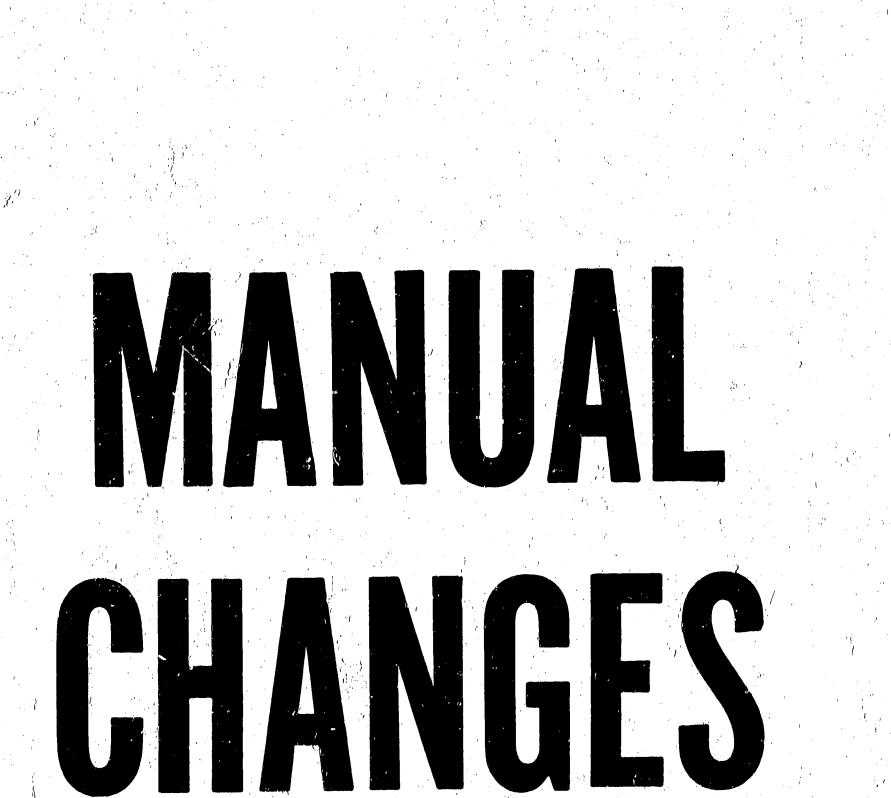
8-85/8-86


G


Service

					
A2R1 66	F.S. ADJ	A10A1L45 55		A22TP6	15 F1
A2R3 64				A22TP7	16 F1
A2R2 65	DRIVE OFFSET	A18R2 2	-5.2 ADJ	A22TP9	Ⅰ –20V
A2TP1 63	AC IN	A18TP1 5	F1		
A2TP2 69	BUFFER	A18TP2 3	TH1	A26A2R19	41) % AM
		A18TP5	-5.2	A26A2TP1	42 AM IN
A2TP4 61	MET	A18TP6 4	F1	A26A2TP2	40 GND
A2TP3 68	DET			A26A2TP3	39 AM OUT
		A20R8 6	+44.6V ADJ	A26A2TP4	38 PUL IN
A10A1C81 52		A20R16 9	+5.2V ADJ		
A10A1C82 51		A20TP1 8	F2	A26A2TP5	37 DET PUL
A10A1C83 50		A20TP4 13	+44.6V	A26A2TP6	36 MOD PUL
A10A1C84 49		A20TP5	F2	A26A2TP7	35 MET
A10A1L31 45					34 .BW
		A20TP6	Fl		
A10A1L32 44		A20TP7 10	F1	A26A4R1	23 LVL
A10A1L33 (43		A20TP10 12	+5.2V	A26A4R2	22 DBLR LVI
A10A1L37 58				A26A4TP1	25 MET
A10A1L38 56		A22R7 20	+20V ADJ	A26A4TP2	26 DET
A10A1L39 54		A22R19	-20V ADJ	A26A4TP3	21 OVLD
		A22TP1 18	F2		
A10A1L40 48		A22TP2 [9	F2	A26A4TP4	28 VERN
A10A1L41 41		A22TP4 21	+20V	A26A4TP5	29 GND
A10A1L42 46				A26A4TP6	10 CQ1
A10A1L43 59					32 DRIVER
A10A1L44 5				2	MOD
				• • • • •	
			· · · · · · · · · · · · · · · · · · ·		· · · ·
			· ·	1 · · · · · · · · · · · · · · · · · · ·	

1 ii .



8-87/8-88

Service

MANUAL CHANGES

- MANUAL IDENTIFICATION -

Model Number: 8640M Date Printed: December 1976 Part Number: 08641-90008

This supplement contains important information for correcting manual errors and for adapting the manual to instruments containing improvements made after the printing of the manual.

To use this supplement:

Make all ERRATA corrections

Make all appropriate serial number related changes indicated in the tables below.

SIGNAL GENERATOR

Serial	Prefix or	Nümber	Make Manual Changes
· · ·	1716A		1 · 1 · 201 · 1 · 201 · 1
	1729A		1, 2
	1742A		1-/3
	1746A		1-4 AM
	í(815A		1-5° 149 - 14
•	1820A		1-6
	1825A		1-7
	1828A	l '	1-8

Serial Prefix or Number 1837A, 1845A	Make Manual/Changes/
1903A	1-101 ····
1913A 1929A	$\frac{1}{1-11}$
1937A 1941A	1 -13 1-14
2017A ►2144A	1-15, 1-16

NEW ITEM

ERRATA

Page 1-9, Table 1-1:

Under Pulse Modulation, add the following footnote (3) to Pulse Aspetition Rate, ³Pulse performance degrades pelow 500 Hz repetition rates.

Page 4-2, Table 4-1:

For the Spectrum Analyzer, under Suggested Models, delete "or HP 651B".

Page 4-33, Paragraph 4-29:

Under SPECIFICATION, add the following footnote to Pulse Repetition Rate. Pulse performance degrades below 500 Hz repetition rates.

Page 4-34, naragraph 4-29:

Change the second sentence in step 2 to read as follows:

"Adjust generator's FULSE RATE for 500 Hz (or 2 ms period) as read on the oscilloscope." Change the first sentence in step 5 to read as follows:

"Repeat steps 1 through 4 for the frequency ranges shown below."

Page 4-35, paragraph 4-29:

- In the table at the top of the page change the first three Pulse Rate (Hz) entries to 500 Hz. Change the first sentence in step 7 to read as follows:
 - "Repeat steps 1 through 4 (using the detector to monitor the pulse envelope) for the frequency ranges shown below."

NOTE

Manual change supplements are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request the latest edition of this supplement. Free copies are available from all HP offices. When requesting copies quote the manual identification information from your supplement, or the model number and print date from the title page of the manual.

Jacuary 1, 1982 33 Pages

ERRATA (Cont'd)

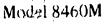
Page 5-3, paragraph 5-21:

In paragraph I, change the last sentence to read:

"The following table indicates correct values of resistance for 1.7 to 6 dB of attenuation." In the table at the top of the page, add the following entries:

Attenuation		Resistant	:e	
1.7 dB 2.0 dB	10Ω 12.1Ω	511Ω 422Ω	511Ω 422Ω	

Page 5-3, Table 5-1: Add the following:


Component	Service Sheet	Range of Values	Basis of Selection
A10A2R49-51	11		See paragraph 5-21j
A23A2R1		28.0 kΩ-31.7 kΩ	
A23A2R2	9	145 kΩ–160 kΩ	See paragraph 5-21 l
A23A2R3		375 kΩ–400 kΩ	

Page 5-4, paragraph 5-21:

Add the following:

j. A10A2R49-51 Selection. If A26U2 has been replaced, the second harmonic level at RF OUTPUT may rise out of specification on the low end of the 0.5-8 MHz ranges with low vernier settings. If the second harmonic level is out of specification, increase the output attenuation pad formed by R49-51. To determine proper attenuation, insert a 1 dB step attenuator in place of W7, between A10A1J2 and A26W3, RF IN (FROM DIV). Increase attenuation until harmonics are just within specified limits. Add the value of attenuation on the step attenuator to that presently installed on the A10A2 assembly and replace R49-51 with the new"values from the table below. Total attenuation greater than 6 dB is not recommended. Check harmonics, AUX RF OUTPUT, and maximum RF OUTPUT power.

		1	
Attenuation	R49	R50	R51
2 dB	12.1	422	422
3 dB	17.8	287	287
4 dB	23.7	237	237
5 dB	31.6	178	178
6 dB	38.3	147	147

NOTE

Attenuation should be no higher than necessary to bring a range's second harmonic within specification. Excessive attenuation may reduce maximum RF output level below +18 dBm.

ERRATA (Cont'd)

► A23A2R1, R2, and R3 Selection. If the A11 Internal Modulation Oscillator Assembly has been repaired or replaced, check the frequency of the internal modulation oscillator with the Signal Generator's MODULA', ICN MODE switch set to INT AM 5000, INT AM 1000, and INT AM 400. Measure the frequency output at the MOD OUTPUT connector with a high input impedance counter. If the frequency is out of specification, change the value of A23A2R1 (for 5000 Hz), A23A2R2 (for 1000 Hz), and A23A2R3 (for 400 Hz). A percent of increase in frequency will result from a decrease in the resistance value of twice that percentage. For example, to increase the frequency by 1%, the value of resistance would have to be decreased by 2%.

Page 5-11, paragraph 5-31: In step 1, change "AM INT 1000" to "AM EXT AC".

Page 6-2, Table 6-1:

Delete A1 RF Output Range Assy entry from the table.

►NOTE TO READER: The reference to CD in all section VI errata refers to the Check Digit in the table of Replaceable Parts (Table 6-3).

Page 6-5, Table 6-3:

A1MP10: The recommended replacement is 08640-80015 CD1 SHAFT, INNER 0.125" DIA 8 9.38 LG. A1A1R1: For recommended replacement, refer to Change 5.

▶ Page 6-9, Table 6-3: Change A5R42 to A5R42*.

Page 6-11, Table 6-3: A8L5: For recommended replacement, refer to Change 3.

▶Page 6-12, Table 6-3:

A8A1: For recommended replacement, refer to Change 16. Change A8A1C5 to A8A1C5*. Change A8A1C8 to A8A1C8*. (Refer to Change 12).

Change A8A1C11 to A8A1C11*.

Change A8A1C12 to A8A1C12*. (Refer to Change 12).

Page 6-13, Table 6-3:

A8A2A1C12: For recommended replacement, refer to Change 3. A8A2A1Q6: For recommended replacement, refer to Change 5.

Page 6-15, Table 6-3:

A8A2A1U14 and U15: For recommended replacements, refer to Change 3.
 A8A2A1U19: For recommended replacement, refer to Changes 3 and 16.
 A8A2A1U28: For recommended replacement, refer to Change 14.
 A8A2A1U29: For recommended replacement, refer to Change 15.

Page 6-16, Table 6-8: A8A3U8, U10 and U12: For recommended replacement, refer to Change 15.

▶ Page 6-17, Table 6-3:

Change A9MP21 to 3130-0503 CD8 SHAFT & INDEX ASSEMBLY 11 POS; 30 DEG.

ERRATA (Cont'd)

►Page 6-18, Table 5-3: Change A9A2C6 to A9A2C6*. Change A9A2C7 to A9A2C7*. Change A9A2C8 to A9A2C8*.

Page 5-20, Table 6-3: Change A10A1MP2 to 00355-20034.

Page 6-21, Table 6-3:

3130-0480: The recommended replacement is 08640-80013 CD9 CONTACT-SWITCH SWITCH CONTACT; 0.002-IN. The switch contacts are part of A10A1S1-S6, slide switches, and are listed under A10A1S1-S6.

Model 8460M

► A10A2: For recommended replacement, refer to Change 16.

►A19A2C6: The recommended replacement is 0160-4584 CD3 CAPACITOR-FXD .1 UF ±20% 50 VDC CER.

► Change A10A2C8 to A10A2C8*. (Refer to Change 12).

▶ Page 6-22, Table 6-3:

Change A10A2R2 to A10A2R2*. (Refer to Change 12).

Change A10A2R3 to A10A2R3*. (Refer to Change 12).

Change A10A2R4 to A10A2R4*. (Refer to Change 12).

Change A10A2R9 to A10A2R9* 0698-7229 CD8 RESISTOR 511 1% .05W F TC = 0 ± 100 . (Refer to Change 12). Change A10A2R10 to A10A2R10* 0698-7188 CD8 RESISTOR 10 1% .05W F TC = 0 ± 100 . (Refer to Change 12). Change A10A2R12 to A10A2R12* 0698-7229 CD8 RESISTOR 511 1% .05W F TC= 0 ± 100 . (Refer to Change 12).

Change A10A2R18 to A10A2R18* 0698-7221 CD0 RESISTOR 237 1% .05W F TC = 0 ± 100 .

(Refer to Change 12).

Change A10A2R20 to A10A2R20* 0698-7197 CD9 RESISTOR 23.7 1% .05W F TC = 0 ± 100 . (Refer to **Change 12**).

Change A10A2R21 to A10A2R21* 0698-7221 CD0 RESISTOR 237 1% .05W F TC = 0 ± 100 . (Refer to Change 12).

Page 6-23, Table 6-3:

Change A10A2R26 to A10A2R26* 0698-7229 CD8 RESISTOR 511 1% .05W F TC = 0 ± 100 . (Refer to Change 12).

Change A10A2R28 to A10A2R28* 0698-7188 CD8 RESISTOR 10 1% .05W F TC = 0 ± 100 . (Refer to Change 12).

Change A10A2R29 to A10A2R29* 0698-7229 CD8 RESISTOR 511 1% .05W F TC = 0 ± 100 . (Refer to Change 12).

- Change A10A2R69 to A10A2R69*. (Refer to Change 12).
- ► Change A10A2R70 to A10A2R70*. (Refer to Change 12).

► Change A10A2R72 to A10A2R72*. (Refer to Change 12).

Change A10A2T1-T5 to 08640-60355 TRANSFORMER RF (CODE BLUE) (Check Digit is 0).

NOTE

The above instruction regarding A10A2T1-T5 only applies to instruments with serial numbers prefixed 1634A to 1913A.

A10A2U12: For recommended replacement, refer to Change 14.

Page 6-27, Table 6-3:
▶ A18CR6: For recommended replacement, refer to Change 16. Change A18Q6, A18Q8, A18Q9, and A18Q11 to 1853-0007 TRANSISTOR PNP 2N3251 SI TO-18 PD=360 MW.

ERRATA (Cont'd)

▶ Page 6-28, Table 6-3:

A20CR1 and CR3: For recommended replacements, refer to Change 16.

Page 6-29, Table 6-3:

A2A1C1, C2, and C6: For recommended replacements, refer to Change 3. A22CR2: For recommended replacement, refer to Change 16.

▶ Page 6-30, Table 6-3:

A22CR6: For recommended replacement, refer to Change 16.

Page 6-31, Table 6-3:

Change A23A2R1 to A23A2R1*.

Change A23A2R2 to A23A2R2*.

► Change A23A2R3 to A23A2R3*.

Under A26, delete "(DOES NOT INCLUDE A26U1, U2)".

A26C17 and C18: For recommended replacements, refer to Change 4.

Page 6-32, Table 6-3:

A26R1: For recommended replacement, refer to Change 4.

NOTE

08641-90008

5

When replacing A26R1, check the value of A26A4R4. It should be 7500 Ω . If not, replace resistor. (Part number given in Change 5).

► Under A26A1, delete "(EXCEPT OPTION 002. FOR OPT 002, SEE SECOND A25 LISTING)".

 Page 6-35, Table 6-3: Change A26A3C3 to A26A3C3*. Change A26A3C4 to A26A3C4*. Change A26A3C5 to A26A3C5* Change A26A3C6 to A26A3C6*.

Page 5-36, Table 6-3:

A26A4U1: For recommended replacement, refer to Change 15.

Page 6-38, Table 6-3:

Add F1 2110-0043 FUSE 1.50A 250V FAST-BLO 1.25 X .25 UL IEC (FOR 220/240V OPERATION).

Page 6-40, Table 6-3:

W7: For recommended replacement, refer to Change 15.

Page 6-41, Table 6-3:
 ▶ Add beneath item 2 entry (08641-00043), 2510-0198 (Qty 6) CD2 SCREW-MACH 8-32 .625-IN-LG PAN-HD-POZ1 Change Reference Designation 11 part number to 08641-00040 and increase the quantity to 2 (Check Digit is 5).

Service Sheet 9 (schematic):

Add an asterisk (indicating factory selected value) to A23A2R1, R2, and R3.

Service Sheet 10 (schematic): Change A10A1C66 to 350 pF.

ERPATA (Con't)

Service Sheet 11 (schematic):

Change A10A2R9* to 511Ω . (Refer to Change 12).

Change A10A2R10^{*} to 10Ω . (Refer to Change 12).

Change A10A2R12* to 5112. (Refer to Change 12).

Change A10A2R18* to 237Ω . (Refer to Change 12). Change A10A2R20* to 23.7Ω . (Refer to Change 12).

Change A10A2R21* to 237Ω . (Refer to Change 12).

Change A10A2R26* to 511Ω . (Refer to Change 12).

Change A10A2R28* to 10Ω . (Refer to Change 12).

Change A10A2R29* to 511Ω . (Refer to Change 12). Add an asterisk (indicating factory selected values) to A10A2R49, R50, and R51.

Service Sheet 12 (schematic):

Add value of .22 pF to A26A3C3*, C4*, C5*, and C6*

Service Sheet 17 (schematic);

Change the part number of A2U1 to 1826-0011.

Service Sheet 19 (schematic):

On the A8A3 assembly, change U9B pin number 3 to pin 1 and change pin 1 to pin 3.

Service Sheet 20 (schematic):

Change the part number of A8A2A1U13, U17, and U18 to 1820-1201. Indicate the output of A8A2A1U25 as pin 1.

Change "NC" on pin 2 of A8A2A1U5A to "+5.2V".

Service Sheet 21 (schematic):

Change the part number of A8A2A1U4 to 1820-1199.

Service Sheet 23 (schematic):

Change the part number of A18Q6, A18Q8, A18Q9, and A18Q11 to 1853-0007.

Service Sheet B (legend):

Change Rem Number 13 to 15. Change Item Number 15 to 13.

Service Sheet G (legend):

Change the reference designation corresponding to 33 to A5R8. Change the reference designation corresponding to (48) to A26A1R19. Swap entire legend with legend on Service Sheet H.

Service Sheet H (legend): Swap entire legend with legend on Service Sheet G.

Model 8460N

• · · · ·	and the second second second			1997 - X			с	
,	Model 8640M	an Alian Managarian Alianan				9. 		
	CHANGE 1) 2 1	
Č.	Page 5-32: Add the atta	ached nar	agraph 5.45					

5-45. PHASE LOCK ERROR VOLTAGE ADJUSTMENT

REFERENCE: S

Service Sheet 21.

DESCRIPTION: When the instrument is operating in the normal count mode, a nominal mid-range (phase lock error) voltage should exist at test point A8A2A1TP6. A mid-range voltage ensures that the generator will maintain phase lock when the oscillator shifts up or down in frequency.

08641-90008

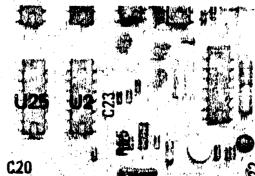
EQUIPMENT:	Digital Voltme	er	• • • • •	HI	P 3490A	
PROCEDURE:	1. Set Signa	Generator's	controls as follo	ws:		
	COUNTE	R	· · · · · · · ·	IN	T NORM	

2. Connect one lead of the voltmeter to test point A8A2A1TP6 and the other lead to ground. Adjust potentiometer A8A2A1R58 for a voltmeter reading of +11.5±1.0 Vdc.

Page 6-14, Table 6-3:

Change A8A2A1R47 to 0698-3444 RESISTOR 316 1% .125W F TC=0±100.

Change A8A2A1R58 to 2100-2497 RESISTOR-TRMR 2K 10% C TOF-ADJ 1-TRN.

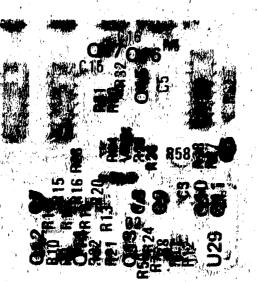

Delete A8A2A1R60 and R61.

Page 6-21, Table 6-3:

▶ Delete A10A2C7 part number and change the description to read NOT ASSIGNED.

► In the table of REFERENCE DESIGNATIONS under A10A2 ASSY, change C1-4, 6-20, 22-55 to read C1-14, 6, 8-20, 22-55.

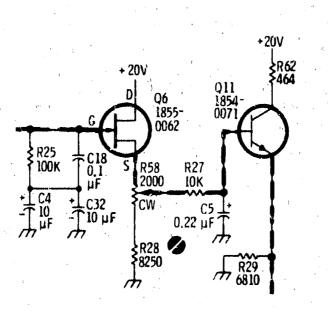
Service Sheet 20 (component locations): Replace appropriate portions of Figure 8-69 with the following partial Figure 8-69:



P/O Figure 8-69. P/O A8A2A1 Counter/Lock Board Assembly Component Locations (P/O Change 1)

CHANGE 1 (Cont'd)

Service Sheet 20 (schematic): Change A8A2A1R47 to 316Ω.


Service Sheet 21 (component locations): Replace appropriate portions of Figure 8-71 with the following partial Figure 8-71:

P/O Figure 8-71. P/O A8A2A1 Counter/Lock Board Assembly Component Locations (P/O Change 1)

Service Sheet 21 (schematic):

Replace appropriate portion of schematic with the following partial schematic:

Model 8460M

P/O Figure 8-72. Counter Phase Lock Circuits Schematic Diagram (P/O Change 1)

CHANGE 2

Page 6-13, Table 6-3:

Change A8A2A1C13 to 0160-3533 CAPACITOR-FXD 470 PF ±5% 300 VDC MICA 0+70.

Fage 6-15, Table 6-3:

Change A8A2A1U27 to 1820-1449 IC GATE TTL S OR QUAD 2-INP SN74S32N.

ALTINITATION PROFILE OF A CONTRACTOR OF A

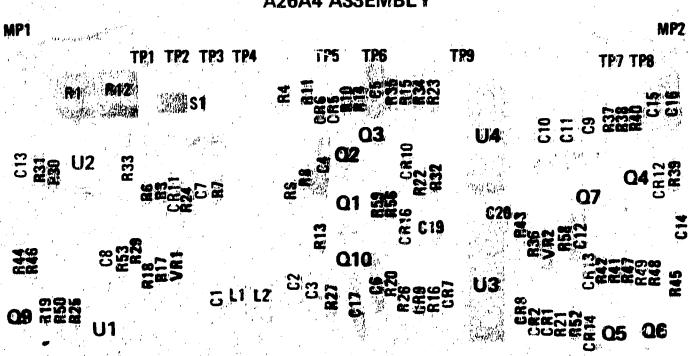
CHANGE 2 (Cont'd)

Pages 6-35 and 6-36, Table 6-3:

Change A26A4 to 08640-60351.

Add the following to the A26A4 listing:

C19, C20 0180-2619 CAPACITOR-FXD 22 UF ±10% 15 VDCTA (C18 not assigned).


CR16 1901-0040 DIODE-SWITCHING 30V 50 MA 2NS DO-35 (CR15 not assigned).

Q10 1853-0007 TRANSISTOR PNP 2N3251 SI TO-18 PD=360 MW.

► R56, R59 0757-0442 RESISTOR 10K 1% 0.125W F TC=0::100. (R54 and R55 not assigned). R58, 0757-0465 RESISTOR 100K 1% 0.125W F TC=0±100 (R57 not assigned).

Service Sheet 12 (component locations):

Replace Figure 8-46 with the attached figure 8-46:

A26A4 ASSEMBLY

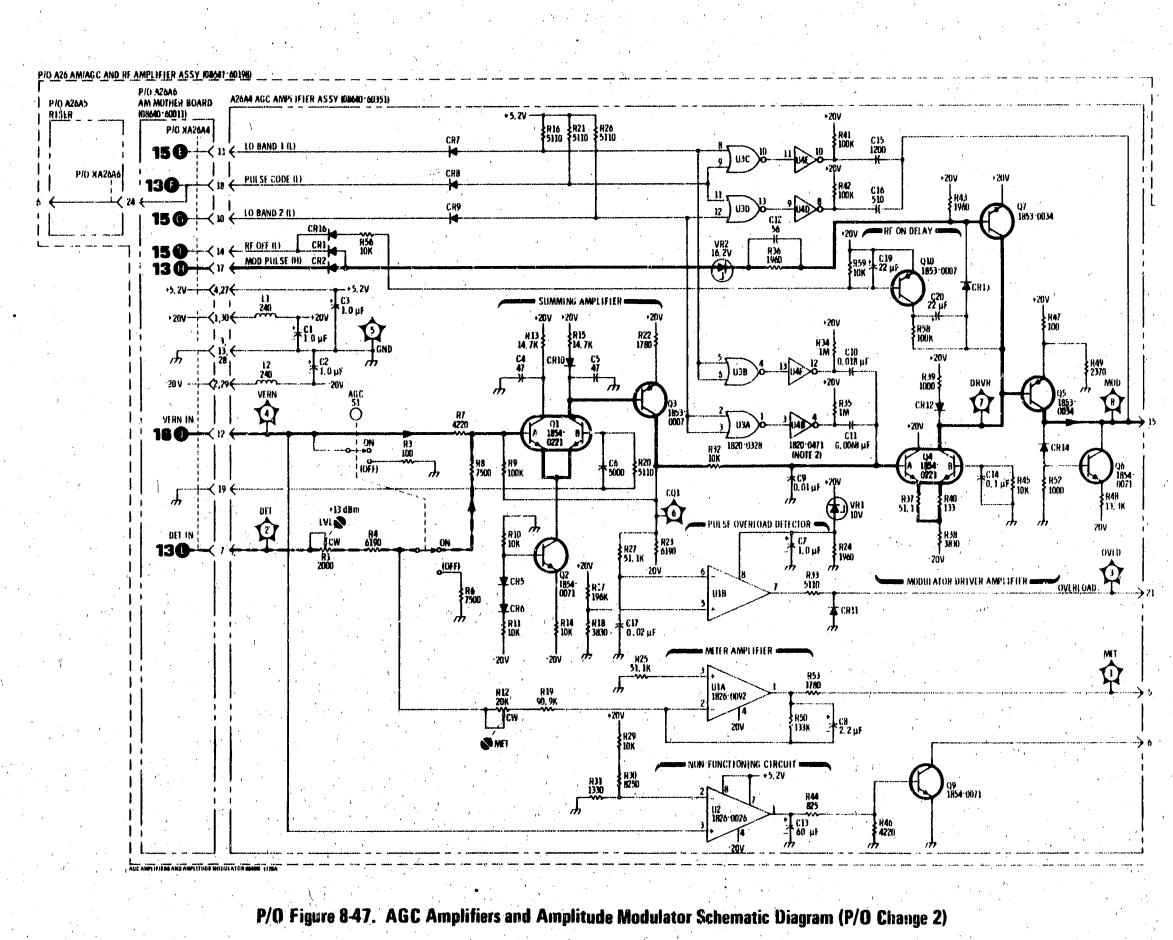

初8641-90008

Figure 8-46. A26A4 AGC Amplifier Assembly Component Locations (P/O Change 2)

Service Sheet 12 (schematic):

Replace appropriate poriton of the schematic diagram with the attached partial schematic on next page.

Service Sheet 20 (schematic): Change A8A2A1U27 to 1820-1449. Change A8A2A1U27 to 1820-1449.

10

LEED DE MARTINE MARTINE

08641-90008

Model 8460M

CHANGE 3

Page 6-11, Table 6-3:

Change A8L5 to 9100-1612 COIL MLD 330NH 20% Q = 45 .155DX .375 LG.

Page 6-12, Table 6-3:

Add A8A1C14 0160-3879 CAPACITOR-FXD 5.01 UF ±20% 100 VDC CER.

Page 6-13, Table 6-3:

Change A8A2.11C12 to 0140-0196 CAPACITOR-FXD 150 PF ±5% 300 VDC MICA.

Page 6-15, Table 6-3:

Change the following A8A2A1 listings:

Change U14 to 1820-1208 IC GATE TTL, LS OR QUAD 2-INP SN74LS32N. Change U15 to 1820-1197 IC GATE TTL LS NAND QUAD 2 INP SN74LS00N. Change U19 to 1830-1684 IC ONTR TTL LS BCD UP/DOWN ASYNCHRO 9LS192PC.

Page 6-24 and 6-25, Table 6-3:

Make the following changes to the A11 listings:

Change Q7 to 1854-0071 TRANSISTOR NPN SI PD-300 MW FT-300 MHZ.

Add Q10 1853-0001 TRANSISTOR PNP SI TO-39 PD-600 MW.

1200-0173 INSULATOR-XSTR DAP-GL.

Change R6 to 0757-0280 RESISTOR 1K 1% .125W F TC-0±160.

Add R43 0757-0442 RESISTOR 10K 1% .125W F TC=0±100.

Change VR2 to 1902-0184 DIODE-ZNR 16 2V 5% DO-7 PD=.4W TC=+.066%.

Page 6-29, Table 6-3:

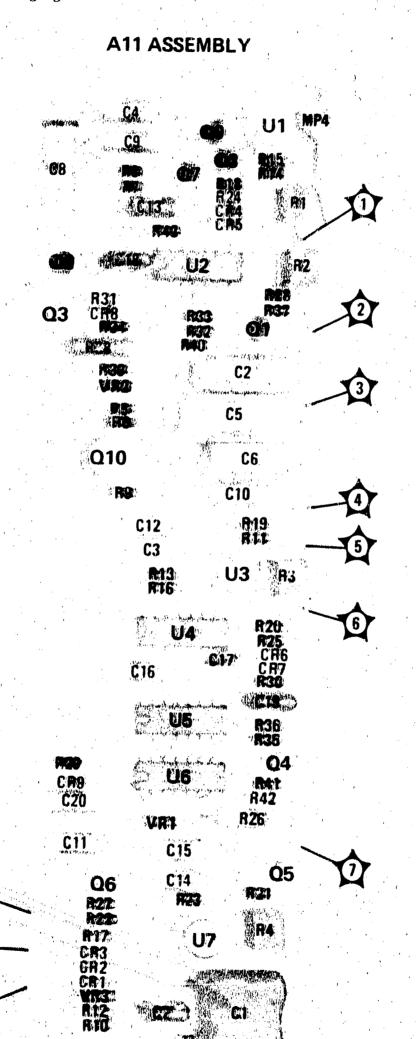
Change A21A1C1, C2, and C6 to 0160-4584 CAPACITOR FXD .1 UF ±20% 50 WVDC CER.

Page 6-40, 'l'able 6-3: '

Change S4 to 3101-1740 SWITCH-SL DPDT-NS, STD 2A 250VAC SLDR-LUG.

Continued .

CHANGE 3 (Cont'd)


Service Sheet 9, component locations: Replace Figure 8-36 with the following figure:

MP1

MP2

MP3

62

Model 8460M

"}

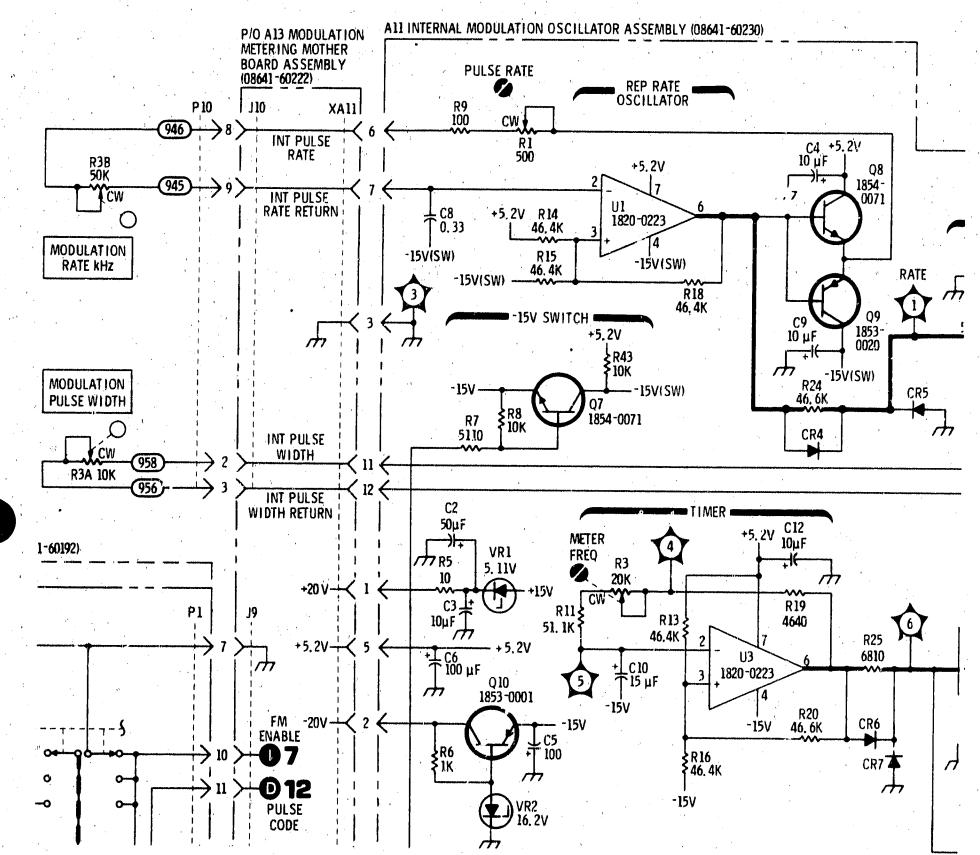
Figure 8-36. A11 Internal Modulation Oscillator Component Locations (P/O Change 3)

The Care

U7

A TALLAN

ЧÇ.


的行动和规则和

CHANGE 3 (Cont'd)

Service Sheet 9 (schematic):

Replace appropriate portion of schematic with the following partial schematic:

08641-90008

13

P/O Figure 8-37. Internal Modulation Oscillator Schematic Diagram (P/O Change 3)

Service Sheet 18 (schematic):

Change A8L5 to 0.33μ H.

On A8A1U5 draw in pin 7 and add C14, 0.01 μ F, between pins 7 and 8.

▶ In the table of REFERENCE DESIGNATIONS under A8A1 ASSY, change C1-13 to read C1-14. Service Sheet 20 (schematic):

Make the following changes to the A8A2A1 Assembly. Change C12 to 150 pF.

Change the part number of U14 to 1820-1208. Change the part number of U15 to 1820-1197. Change the part number of U19 to 1820-1684.

CHANGE 4

Page 6-31 and 6-32, Table 6-3:

Make the following changes to the A26 listing.

Change C17 and C18 to 0160-3219 CAPACITOR-FDTHRU 100 PF 20% 500V CER. Add L9 9140-0098 COIL-MLD 2.2 UH 10% Q=33.155DX.375 LG-NOM.

Delete R1 part number and change description to read NOT ASSIGNED.

Service Sheet 13 (schematic):

Make the following changes to the A26 assembly.

Change C17 and C18 to 100 pF.

Change R1 to L9, 2.2 μ H.

▶ In the table of REFERENCE DESIGNATIONS under A26 ASSY, change L3-5, 7, 8 to read L3-5, 7-9 and delete R1.

Model 8460M

Service Sheet F (legend):

, Change Item Number 77 (Reference Designator and Description) to A26L9 Inductor.

CHANGE 5

Page 6-5, Table 6-3:

Change A1A1R1 to 0757-0401 RESISTOR 100 1% .125W F TC=0±100.

Page 6-13, Table 6-3:

Change A8A2A1Q6 to 1855-0271 TRANSISTOR J-FET N-CHAN D-MODE SI.

Page 6-36, Table 6-3:

Change A26A4R4 to 0757-0440 RESISTOR 7500 1% .125W F TC = 0 ± 100.

Service Sheet 12 (schematic):

Change A26A4R4 to 7500 Ω . (Refer to Change 2).

Service Sheet 21 (schematic):

► Change the part number of A8A2A1Q6 to 1855-0271. (Refer to Change 1).

CHANGE 6

Page 6-9, Table 6-3:

Add A7C14 0180-0299 CAPACITOR-FXD 33UF ±10% 10 VDC TA.

Service Sheet 7 (schematic):

On the A7 Assembly, add C14, 33 μ F, from the +5.2V input line (positive polarity) to the ground input line. In the table of REFERENCE DESIGNATIONS under A7 ASSY, change C1-12 to read C1-12, 14.

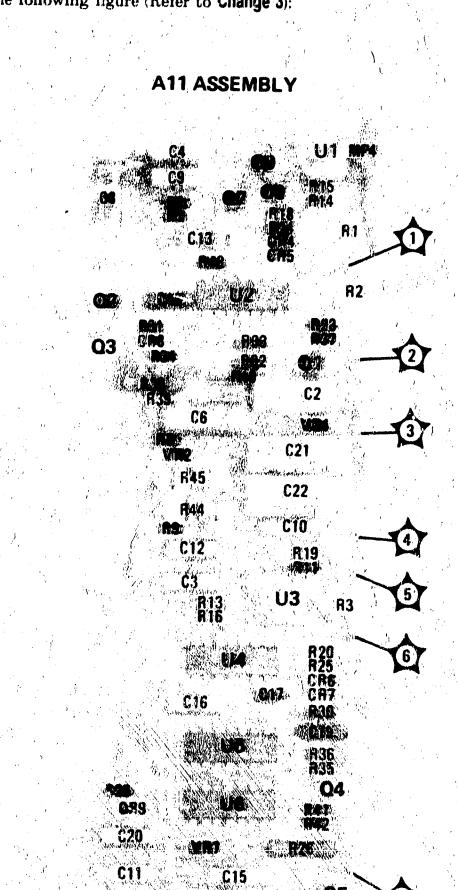
CHANGE 7

Page 6-24 and 6-25, Table 6-3:

Make the following changes to the A11 listing:

Delete C5 part number and change description to read NOT ASSIGNED.

- Add C21 and C22 0180-0058 CAPACITOR-FXD 50μ F+75-10% 25 VCD AL (Check Digit is 0). Add R44 0698-3400 RESISTOR 147 1% .5W F TC=0±100 (Check Digit is 9).
- Delete Q10 part number and change description to read NOT ASSIGNED. Delete INSULATOR (1200-0173). (Refer to Change 3).
- ► Delete R6 part number and change description to read NOT ASSIGNED. (Refer to Change 3). Add R45 0698-3102 RESISTOR 237 1% .5W F TC=0±100 (Check Digit is 8).
- ► Change VR2 to 1902-0202 DIODE-ZNR 15V 5% DO-15 PD=1W TC=+.057% (Check Digit is 9). (Refer to Change 3).
- Add VR4 1902-0202 DIODE-ZNR 15V 5% DO-15 PD=1W TC=+.057% (Check Digit is 9).


Page 6-39, Table 6-3:

14

Add MP86 08641-00064 INSULATOR, BARRIER BLOCK (Check Digit is 3). Add MP87 7120-4295 LABEL-WARNING (Check Digit is 6).

CHANGE 7 (Cont'd)

Service Sheet 9 (component locations): ► Replace Figure 8-36 with the following figure (Refer to Change 3):

08641-90008

 $\frac{1}{2}$ 15

Figure 8-36. A11 Instanal Modulation Oscillator Component Locations (P/O Change 7)

06

RT7

11 CR3 CR2 CR1 VR3 (12 R10

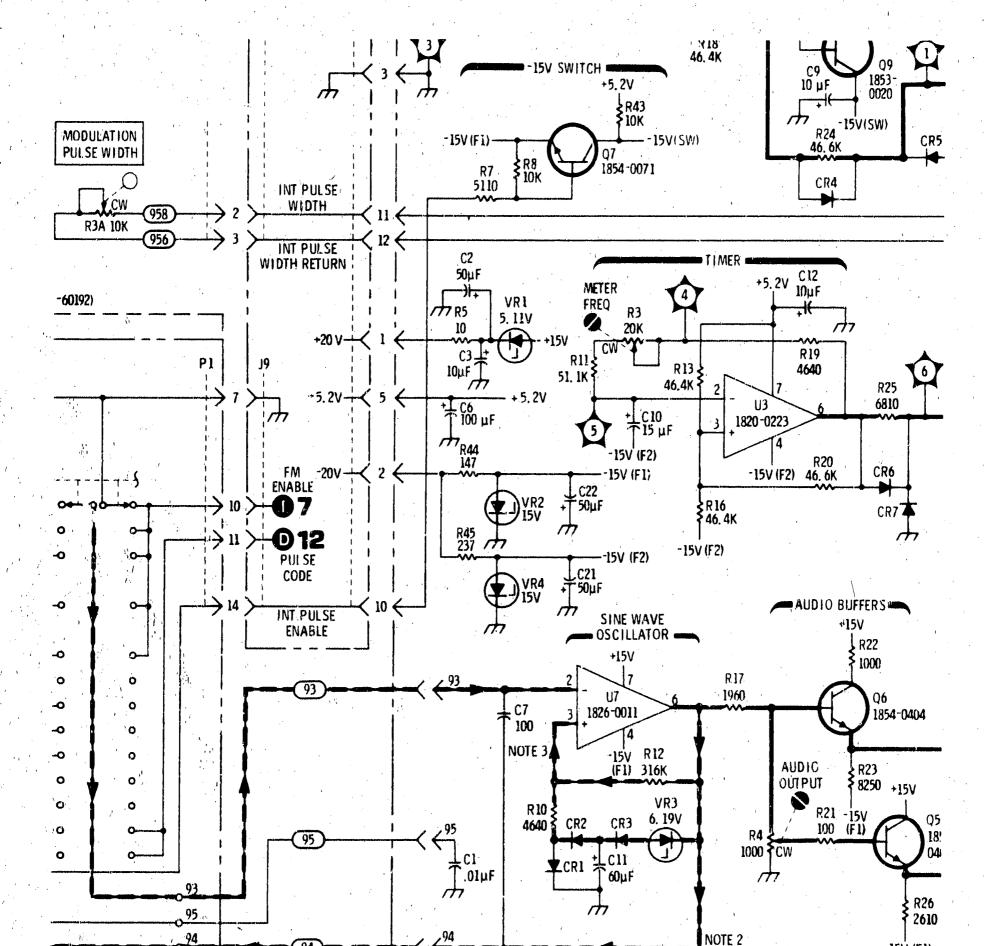
MP

MPZ

MP3

<u>C 14</u>

U7


05

R4

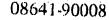
CHANGE 7 (Cont'd)

Service Sheet 9 (schematic):

► Replace appropriate portion of schematic with the following partial schematic (Refer to Change 3):

Model 8640M

-15V (F1)


INTERNAL MODULATION OSCILLATOR 8840M: 1825

P/O Figure 8-37. Internal Modulation Oscillator Schematic Diagram (P/O Change 7)

 $\mathbf{y} \neq \mathbf{y}$

16

Modei 8460M

CHANGE 8

Page 6-8, Table 6-3:

Add A5C10 0180-2617 CAPACITOR-FXD 6.8 UF ±10% 35VDC TA (A5C9 not Assigned) (Check Digit is 1).

Page 6-38, Table 6-3:

Make the following changes to the part listing under F1:

Delete 2110-0465.

Delete 2110-0467. Delete 2110-0470.

Delete 2190-0037.

Delete 0900-0028.

Add 2110-0564 FUSEHOLDER BODY 12A MAX; 250V MAX (Check Digit is 8). Add 2110-0565 FUSEHOLDER CAP BAYONET; 12A, 250V MAX (Check Digit is 9). Add 2110-0569 NUT-HEX, PLASTIC (Check Digit is 3).

Add 1400-0090 WASHER: RUBBER 5/8" OD (Check Digit is 9).

Page 6-39, Table 6-3:

Add MP88 08640-00138 RETAINER (FOR A12 RECTIFIER ASSEMBLY) (Check Digit is 1).

Page 6-40, Table 6-3:

► Change S4 to 3101-2299 SWITCH-SL DPDT-NS STD 5A 250VAC SLDR-LUG (Check Digit is 2). (Refer to Change 3).

Service Sheet 6 (schematic):

On the A5 Assembly, add C10, 6.8μ F, from the -20V input to the ground input line (positive polarity). ▶ In the table of REFERENCE DESIGNATIONS under A5 ASSY, change C1-9 to read C1-10.

CHANGE 9

Page 6-14, Table 6-3:

Add A8A2A1R64 0698-7260 CD7 RESISTOR 10K 1% .05W F TC=0±100 (A8A2A1R63 is not assigned).

Service Sheet 21 (schematic):

On the A8A2A1 Assembly add R64,10k, from pin 5 of U3B to the +5.2V supply line.

▶ In the table of REFERENCE DESIGNATIONS under A8A2A1 ASSY, change R1-38, 51-54, 59-63 to read R1-38, 51-54, 59-64.

CHANGE 10

Page 6-9, Table 6-3:

Add A7C15 0160-3876 CAPACITOR-FXD 47 PF ±20% 200 VDC CER (Check Digit is 4).

Service Sheet 7 (schematic):

On the A7 Assembly, add C15, 47 pF, across the base and collector of Q2.

▶ In the table of REFERENCE DESIGNATIONS under A7 ASSY, change C1-12

to read C1-12, 14, 15 (Refer to Change 6).

CHANGE 11

Page 6-34, Table 6-3:

Change A26A2R19 to 2100-2574 RESISTOR-TRMR 500 10% C SIDE-ADJ 1-TRN (Check Digit is 3). Change A26A2U2 to 1820-0054 IC GATE TTL NAND QUAD 2-INP (Check Digit is 5).

Service Sheet 13 (schematic):

Change the part number of A26A2U2A to 1820-0054.

Service Sheet 14 (schematic): Change the value of A26A2R19 to 500Ω.

CHANGE 12

Page 5-2, paragraph 5-21:

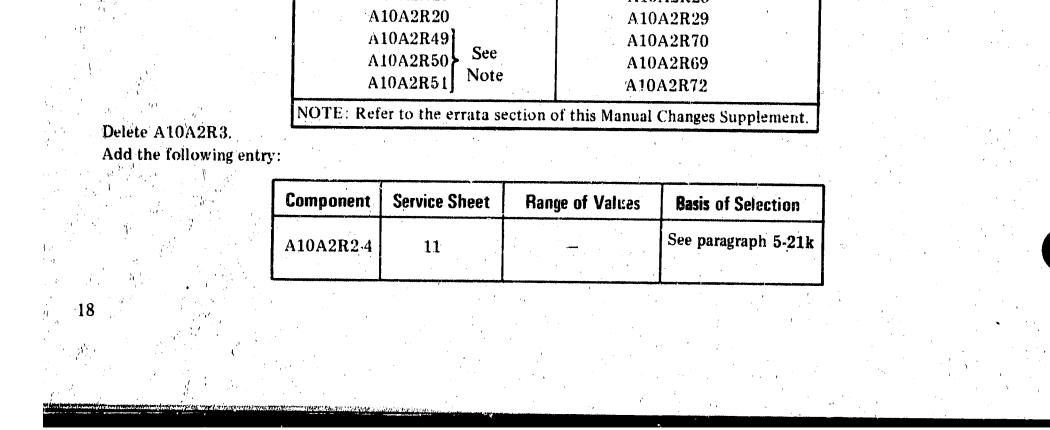
Delete the A10A2R3 Selection procedure.

Page 5-3, paragraph 5-21:

Under A10A2R6-R8, R12-14, and R18-R20 Selection, change the following reference designations:

Old Reference Designations	New Reference Designations
A10A2R6	A10A2R10
A10A2R7	A10A2R9
A10A2R8	A10A2R12
A10A2R12	A10A2R20
A10A2R13	A19A2R18
A10A2R14	A10A2R21
A10A2R18	A10A2R28
A10A2R19	A10A2R26
A10A2R20	A10A2R29

Page 5-3, Table 5-1:


Change the following reference designations:

Old Reference Designations	New Reference Designations
A10A2C55	A10A2C8
A10A2R6	A10A2R10
A10A2R7	A10A2R9
A10A2R8	A10A2R12
A10A2R12	A10A2R20
A10A2R13	A10A2R18
A10A2R14	A10A2R21
A10A2R18	A10A2R28
A10A2R19	A10A2R26

Model 8460M

19

Model 8460M

CHANGE 12 (Cont'd)

Page 5-4, paragraph 5-21:

Under step i change the reference designation of A10A2C55 to A10A2C8 (1 place).

Under A10A2R49-51 Selection change the reference designation of A10A2R49, R50, and R51 to A10A2R70, R69, and R72 respectively (4 places) (Refer to the errata section of this Manual Changes Supplement) Add the following after the A10A2R70, R69, and R72 Selection procedure (see above change):

k. A10A2R2-R4 Selection. If the RF Divider EECL Bias Adjustment (paragraph 5-46) cannot be performed successfully, it may be necessary to change the values of A10A2R2-R4. These resistors form an attenuator pad which sets the signal level into A10A2U11. For most cases, if the value of the pad is less than 2 dB, increase the attenuation of the pad. Refer to the following table for the resistor values. If increasing the attenuation does not correct the problem, try decreasing it.

	R	esistance ([Ω)
Attenuation (dB)	R2	·R3	R 4
0	Open	Short	51.1
1	825	6.8	825
1.7	511	10	511
2	422	12	422
3	287	17.8	287

NOTE

The RF Divider EECL Bias Adjustment, paragraph 5-46, should be performed if the values of A10A2R2-R4 have been changed.

Page 5-32:

Add the following after paragraph 5-45 (Refer to Change 1):

5-46. RF DIVIDER EECL BIAS ADJUSTMENT

REFERENCE: Service Sheet 11.

2.

DESCRIPTION: The output signal at RF OUTPUT is observed with a spectrum analyzer. The bias level for divider U12 is adjusted to eliminate any signal irregularities (that is, erratic frequency, sub-harmonics, or increased level of the noise floor) as the Signal Generator is tuned across the 256-128 MHz and 128-64 MHz ranges. This procedure should be performed whenever the A3 RF Oscillator Assembly has been repaired or replaced (that is, any changes that affect the oscillator's output power level) or when A10A2U11 or U12 is replaced.

PROCEDURE: 1.

Connect spectrum analyzer to the Signal Generator's RF OUTPUT after setting the Signal Generator's controls as follows:

COUNTER	8	. • •	•			•		•	•	INT NORM
METER		.•								RF LEVEL
MODULA	TION MODE .	•	÷	•		·		•		OFF
FREQUEN	ICY: RANGE	•		•	÷	•	•		•	256-512 MHz
· .	TUNE .	•	ø	•		•		· •		256 MH:
OUTPUT:	RANGE Switch	•	•		•	•	•	`. .	÷	-10 dBm
	RANGE Vernier		` .			•		•		Fully ew

Set the spectrum analyzer's center frequency to 250 MHz, frequency span (scan width) to 50 MHz per division, resolution bandwidth to 300 kHz, input attenuation to 20 dB, and vertical scale to 10 dB per division.

Model 8460M

08641-90008

CHANGE 12 (Cont'd)

3.

- While observing the RF OUTPUT signal with the spectrum analyzer, tune the Signal Generator across its frequency range. If the signal appears erratic or disappears or if the noise floor abruptly rises, adjust the BIAS adjustment, A10A2R6, until a clean and stable signal is again observed.
- Turn the FREQUENCY RANGE switch to the 128-64 MHz range and repeat step 3.
- 5. If the BIAS adjustment, A10A2R6, requires readjustment on the 128-64 MHz range, check the 256-128 MHz range again for any signal irregularities.

NOTE

If the bias level cannot be adjusted for satisfactory operation on both ranges without readjustment, it may be necessary to select new values for A10A2R2-R4. Refer to paragraph 5-19, Factory Selected Components.

Page 6-12 and 6-13, Table 6-3:

Change A8A1 to 08640-60357 CD2 (Description remains the same).

Make the following changes to the A8A1 Assembly.

Change C8 and C12 to 0160-3872 CD0 CAPACITOR-FXD 2.2 PF ±.25 PF 200 VDC CER.

Change C13 to 0160-0573 CD2 CAPACITOR-FXD 4700 PF ±20% 100 VDC CER.

Delete R21 part number and change description to read NOT ASSIGNED. Add R23 to 0757-1094 CD9 RESISTOR 1.47K 1% .125W F TC=0±100.

Change U3 to 1820-0802 CD1 IC GATE ECL NOR QUAD 2-INP.

Page 6-21 through 6-24, Table 6-3:

Replace the entire A10A2 listing with the attached parts list.

Service Sheet 11 (simplified logic diagram):

Make the following changes to the A10 Divider/Filter Assembly simplified logic diagram.

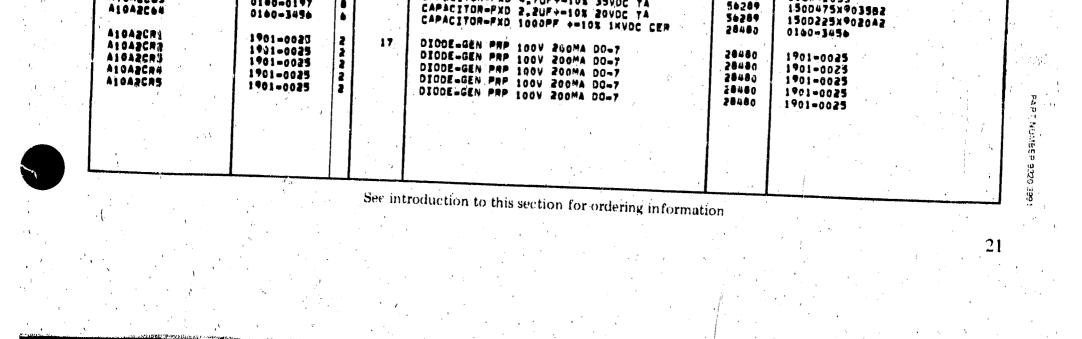
Change the third +2 divider from "EECL" to "ECL".

Move the "EECL-ECL Converter" stage (located after the third ± 2 divider stage) to after the second ± 2 divider stage.

Service Sheet 11 (component locations):

Replace Figure 8-43 with the attached Figure 8-43.

Service Sheet 11 (schematic):


Replace Figure 8-44 with the attached Figure 8-44.

20

	-	;	
1			

Table 6-3. Replaceable Parts

ReferenceHP PartDesignationNumber				Description	Mfr Code	Mfr Mfr Part Number	
an an an tha an an an thair An an Anna an Anna Anna Anna Anna Anna		.					
A10A2	08440-60354		,				
ALDARCI		' '	. 1	AF DIVIDER ASSEMBLY	28480	08640-60354	
ALOAZCZ	01#0=0374	3	2	CAPACITOR-FXD 174F+-10% 20VDC TA	56289		
A10A2C3 A10A2C4	0100-3456	0	28	コー・アウト ラビネナ いけゆう あい うざい ビター・バス うろいの クー・ト	56289	1500106×9c2082 1500106×902082	. · ·
A10A2C5	0100-3450		,	CAPACITOR-FXD 1000FF +-10% 18VDC CEP CAPACITOR-FXD 1000FF +-10% 18VDC CEP	28480	0160-3456	
ALOARCA				CAPACITOR-FXD 1000PF +=10% INVDC CER	28480	0100-3450	
A10A2C7	0100-4084 0180-1743	8	1	CAPACITOR-FXD .1UF +-20% SOVDC CER	28480		
ALOAZCE			/	CAPACITOR-PXD JUP+=10X 35VDC CER C6 IS TYPICALLY NOT PRESENT, REFER TO	56289	0160-4084 1500104×903542	
A10A2C9	0140-3454						· '
A1042C10				CAPACITOR-FXD 1000FF +-10X 14VDC CER	28480	0160-3456	
A10A2C11	0160-3455 0160-3455			CAPACITOR-FND 1000PF +-10% 18VDC CER	28480	0160-3450	
A10A2C12 A10A2C13	0160-3456	0		CAPACITON-FYD 1000PF +-10% IKVDC CER	28480	0160-3456	
ALGARC14	0160-3456	0		二 单位 网络卡尔曼内里尼美国 化自己的原因 法法法有限 医尿道氏病 法原告	20400	0160-3456 0160-3456	
A1042C15	0160-3456			THE ACTION PAD 1000PP +=10% INVOC CER	25480	0160-3456	
A10A2C16 A10A2C17	0140-3456		-	CAPACITOR-FXD 1000PF +-10% 1KVDC CER	28480	0160-3456	
6132401	0100-3456		I	CAPACITOR-FXD 1000FF +-10% INVOC CER	28480	0140-3456	
1045014	0100-2055		20		28480	0160=3456	1. A.
1042020	0140-3454			THE ACTION OF TO THE TOTAL TOTAL CEN	28480	0160-2055	· · ·
1042C21 1042C22	0160-3456	6		CAPACITOR-FXD 1000PF +-10% 1KVDC CER CAPACITOR-FXD 1000PF +-10% 1KVDC CER CAPACITOR-FXD 1000PF +-10% 1KVDC CER	28480	0100-3456	·
1042623	0140-3456				23480	0180-3456	
1045C54	0140-3454	6		CAPACITOR-FXD 1000PF +-10% 14VOC CER CAPACITOR-FXD 1000PF +-10% 14VOC CER	28480	0100-3450	
042025	0140-341.4	•			28480	0100-3454	
10A2026	0140-2055	9		CAPACITON-FXD 1000FF +-10% 1KVDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER	28480	0167-3456	
OA2C28	0100-3456 0100-3456	2		"王子""你想要!我你想你去父,我们们们更是一些你去去吧,我你以后来 医原始	28480	0100-2055	
DARC29	0160-3456	-		CAPACITOR-FXD 1000PF +-10% 18VDC CER CAPACITOR-FXD 1000PF +-10% 18VDC CER	28480	0160-3456 0167-3456	
042630		•			26480	0140-3454	
0A2C31 0A2C32	0180-0197 0140-2055	8		CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD 2.2UF+-10% 20VDC TA	28480	0100-2055	<i></i>
0A2C33 10A2C34	0100-2055	•. ·		"你们"你说来了好你吧你去说,"你不以你,你是你心没办法,我会认识你,你说你"	56289 28480	150D225x9020A2	
1	0140-2055	9		CAPACITOR-FXD .01UF +80-20X 100VDC CER CAPACITOR-FXD .01UF +80-20X 100VDC CER	28480	0140-2055	
442C35		•	· · ·	CAPACITOR-FXD .01UF +80-20% 10000C CER	28400	0160-2055	
942037		•		マウジウシネデジウマアスレーンロロロアデームホイクタートレンスホームメル	28480	0160-2055	
0A2C30 0A2C39	0140-2055	•		CAPACITOR-FXD DIUF ABO-20% LOOVDC CER	29480	0160-3456 0160-2095	· . · ·
2	0160-3456		` !	CAPACITOR-FXD 1000PF +=10% 14VDC CER	28480	0140-2055	
0A2C#0. 0A2C#1			- I I	CAPACITOR-FYD DIUF ABORDAN LOONDE TER		0160-3456	
DAPC42	0100-1743				28480	0140+2055	· · ·
DAZCA3 Dazcan	0160-2055			CAPACITOR FXD OILF ADDROX 100VDC CER	28480	150D104X9035A2 0160~2055	
			'	CAPACITOR-FXD _01UF +8C+201 100VCC CER	28480	0160=2055	
)A2C45)A2C46	0180=1743 2 0180=1743 2			APACITOR-FXD _ TUF++10% MENOR TA		· · · · · · · · · · · · · · · · · · ·	к.
A2C47 A2C48	0140-2055			"你们是我去!你你想把我们,我们是不再到我说,我能知道不可以。"	56289	1500104x4035A2 1500104x4035A2	
A2C44	0160-3456			APACITOR-PXD .CLUF +80-20X 100VDC CER APACITOR-FXD 1000PF +010X 18V0C CER	20400	0140-2055	
42050			C C	APACITOR-PAD 1000PF +=10% INVDC CER	28480	0160-3456	· ·
A2C51	0180-1743 2		C	APACITOR PED INFANTOR MENDE		· · · · · · · · · · · · · · · · · · ·	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
A2C52 A2C53	0180-1743 2	1	Īč	APACITOR-FXD AUFA-10% 35VDC 7A	54284	1500104x9035A2 1500104x9035A2	$\sim M_{\odot} = 1$
A2C54	0140+2055 9				20504	130D104X9035A2	s
A2C55		1	- ^c	APACITOR-PAD .OLUF +80-20% 100VDC CER	1)	0140-2055	х. — — — — — — — — — — — — — — — — — — —
A2C56.	0100-2055 9	1	· · C/	APACITOR-FXD OLUF ABO DAY LOOVER AND			
A2C57 A2C58	0160-3456		Ċ	APACITOR-FXD 1000PF +=100 100VDC CER.	28480	D160-2055 D160-2055	
2059	0100-2053 9	1		** ウダルイダウモビカロ いりすいア ウエウニマホダ ちゃちいちゃ メート	20400 .	3160-3456	
0635				THOTTONERAD 4. JUP +- 10% 3540C YA		2160-2035 150D475x903582	1 - E
2041	0180-0147 8 C160-2055 9			PACITOR-FXD 2.20F+-10% 20VDC. TA		I.	·
3093	0100+0100 3		CA	PACITOR-FXD 4 TUF+BLOW BUDG CER	28480 0	507225X9020A2	
2044			CA CA	PACITON-PXD 2.2UF-10% 20VDC TA	56289	500475x903582	·

,

Model 8460M

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	
1042CR6 1042CR7 1042CR8 1042CR8 1042CR9 1042CR10	: 901-0025 1901-0025 1901-0025 1901-0025 1901-0025 1901-0025	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		DIGDE-GEN PRP 100V 200MA DO-7 Digde-gen PRP 100V 200MA DO-7 Digde-gen PRP 100V 200MA DO-7 Digde-gen PRP 100V 200MA DO-7 Digde-gen PRP 100V 200MA DO-7	28480 28480 28480 28480 28480 28480	1901-0025 1901-0025 1901-0025 1901-0025 1901-0025	
1042CR11 1042CR12 1042CR12 1042CR13 1042CR14	1901-0025 1901-0025 1901-0025 1901-0025 1901-0025	2222		DIGDE-GEN PRP 100V 200MA DG-7 DIGDE-GEN PRP 100V 200MA DG-7 DIGDE-GEN PRP 100V 200MA DG-7 DIGDE-GEN PRP 100V 200MA DG-7 DIGDE-GEN PRP 100V 200MA DG-7	28480 28480 28480 28480 28480	1901-0025 1901-0025 1901-0025 1901-0025 1901-0025	
10ABCR16	1901-0025	2		DIODE-GEN PAP 100V 200MA DC-7 Diode-gen pap 100V 200MA DO-7	28480	1901-0025	
NIOA2L1 NOA2L2 A2L3 NL1	9100-1620 9140-0096 9140-0096 9100-1612	511	4	COIL-MLD 150H 10% GP65 1550%.375LG-NOM COIL-MLD 10H 10% GP50 1550%.375LG-NOM COIL-MLD 10H 10% GP50 1550%.375LG-NOM Coil-MLD 330NH 20% Q=45 .1550%.375LG-NOM PART OF ETCHED CIRCUIT BOARD	28480 28480 25430 28480	100-1020 140-00% 140-00% 91(10-1612)	
A10A2L6 A10A8L7 A90A8L8 A10A8L9 A10A2L9 A10A2L9	9140-0094 7100-1415 9140-0098 9140-0114 9100-1420	9 8 3 4 5	1	COIL-MLD 650NH 10% G=50 .1550%.375LG-NOM. COIL-MLD 1.2UH 10% G=33 .1550%.375LG-NOM COIL-MLD 2.2UH 10% G=33 .1550%.375LG-NOM COIL-MLD 10UH 10% G=55 .1550%.375LG-NOM COIL-MLD 150H 10% G=65 .1550%.375LG-NOM	28480 28480 28480 28480 28480 28480	9140-0094 9100-1615 9140-0098 9140-0114 9100-1620	
A10A2L11 A10A2L12	9100-1620 9100-1620 9100-1625	553		COIL_MLD 1504 10X 0065 .1550X.175LG-NOM COIL_MLD 1504 10X 0065 .1550X.375LG-NOM COIL_MLD 4304 5% 0060 .1550X.375LG-NOM	28480 28480 28480	9100-1620 9100-1620 9100-1625	
A10A2L13 A10A201 A10A202 A10A203 A10A203	1854-0071 1853-0034 1853-0034	700	1 2	TRANSISTOR NPN SI POBBOOMW FTE200MHZ TRANSISTOR PNP SI TO-18 PDB360MW TRANSISTOR PNP SI TO-18 PDB360MW NOT ASSIGNED TRANSISTOR NPN SI TO-72 PDB200MW FTE1GHZ	20480 28480 28480 28480	1854-0071 1853-0034 1853-0034 MM8006	
A104205 A104206	1834-0540	5	2	TRANSISTOR PNP SI PORIW FTESOMHZ TRANSISTOR PNP SI PORIW FTESOMHZ	04713	M ⁷ 8-U51 MP3-U51	
A10A2R1 A10A2R1 A10A2R2 A10A2R3 A10A2R3 A10A2R4	1853-0324 0789-1000 0498-7229 0498-7158 0498-7229 0757-0394	7	1. 2 1. 1. 1.	RESISTON 51.1 1X .5W F TC=0+=100 RESISTOR 511 1X .05W F TC=0+=100 RESISTOR 10 1X .05W F TC=0+=100 RESISTOR \$11 1X .05W F TC=0+=100 RESISTOR \$11 1X .05W F TC=0+=100 RESISTOR \$1.1 1X .125W F TC=0+=100	28480 24546 24546 24546 24546	0757-1000 C3-1/8-170-5118-G C3-1/8-10-108-G C3-1/8-70-5118-G C4-1/8-T0-5181-F	
A10A2R6 A10A2R6 A10A2R7 A10A2R7 A10A2R9 A10A2R9	2100-1484 0757-0486 0757-0436 0498-7221 0498-7147	7		REBISTOR TRMR 100 10% C TOP-ADJ 1-TAN PTSIRTOR 10 1% SW F TC=0+-100 REWISTOR 5.11K 1% .125W F TC=0+-100 NEBISTOR 237 1% .05W F TC=0+-100 REBISTOR 23.7 1% .05W F TC=0+-100	73139 28480 24546 24546 24546	82PR100 0757-0984 C4-1/8-T0-3111+F C3-1/8+T0-237R-G C3-1/8+T00-23R7+G	
A10A2R10 A10A2R11 A10A2R12 A10A2R13 A10A2R14 A10A2R14	0757-0344 0646-7221 0757-0344 0757-0484 0757-0484	0004		RESISTOR 51.1 1X .125W F TC=0+-100 RESISTOR 237, 1X .05W F TC=0+-100 RESISTOR 52.1 1X .125W F TC=0+-100' RESISTOR 10 1X .3W F TC=0+-100 RESISTOR 5.11K 1X .125W F TC=0+-100	24546 24546 24546 28480 28480	C4-1/8-70-51R1-F C3-1/8-70-237R-G C4-1/8-70-21R1-F 0757-0454 C4-1/8-20-5111-F	
A10A2R16 A10A2R17 A10A2R18 A10A2R18 A10A2R19 A10A2R20	0757-0484 0757-0438 0648-7218 0757-0344 0648-7200			RESISTOR 10 1% .5% F TC=0+=100 RESISTOR 5.11K 1% .125% F TC=0+=100 RESISTOR 178 1% .05% F TC=0+=100 MESISTOR 51.1 1% .125% F TC=0+=100 RESISTOR 31.6 1% .05% F TC=0+=100	28480 24546 24546 24546 24546	0757-0984 C4-1/8-70-8111-F C3-1/8-70-5178R-G C4-1/8-70-51R8-F C3-1/8-700-31R8-G	
A10A2721 A10A2722 A10A2723 A10A2723 A10A2723	0348-7218 0757-0394 0757-0418 0757-0484 0757-0484		5 0 7 4 3	NEGISYON 178 1% .05% F TC=0+-100 RESISTON 51.1 1% .125% F TC=0+-100 REGISTON 511 1% .125% F TC=0+-100 REGISTON 10 1% .5% F TC=0+-100 REGISTON 5.11% 1% .125% F TC=0+-100	24546 24546 24546 26460 24546		
A10A2R20 A10A2R27 A10A2R28 A10A2R28 A10A2R29 A10A2R29	Ch98-7218 0757-0394 0898-7200 0898-7218 0757-0394		5	RESISTOR 178 18.05% F YC=0+=100 RESISTOR 51.1 18.125% F YC=0+=100 RESISTOR 31.6 18.05% F TC=0+=100 RESISTOR 178 18.05% F YC=0+=100 RESISTOR 51.1 18.125% F TC=0+=100	24546 24546 24546 24546 24546	C3-1/8-T00-31R8-G C3-1/8-T9-1707-C	
A10A2R31 A10A2R32 A10A2R33 A10A2R33	0'757-0374 0757-0574 0757-0984 0757-0984 0757-0984		0 0 4 3 4	REBIBTOR 51.1 1% .125W F TCMC+-100 REBIBYOR 51.1 1% .125W F TCMC+-100 REBIBTOR 10 1% .5W F TCM0+-100 REBIBTOR 5.11K 1% .125W F TCM0+-100 REBIBTOR 10 1% .5W F TCM0+-100	74546 24546 26480 24546 28480	0757=0984 C4=1/8=T0=\$111=F 0757=0984	
A:0A2736 A:0A2737 A:0A2739 A:0A2739 A:0A2739 A:0A2740	8737-0394 0757-0438 0898-7287 0898-7190 0898-7190			RESISTOR 51.11 1X .125W F TC=0++100 RESISTOR 5.11K 1X .125W F TC=0++100 RESISTOR 422 1X .05W F TC=0+=100 RESISTOR 12.1 1X .05W F TC=0+=100 RESISTOR 422 1X .05W F TC=0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-5111=F C3-1/8-T0-423R=6 C3-1/8-T0-12R1=6 C3-1/8-T0-422R=6	PARTHU
A10A2841 A10A2842 A10A2843 A10A2844 A10A2844	0737-0394 0737-0394 0757-0394 0757-0394 0757-0394		0	RESISTOR 51.1 11 .125W F TC=C+-100 RESISTOR 51.1 11 .125W F TC=C+-100 RESISTOR 51.1 11 .125W F TC=O+-100 RESISTOR 51.1 11 .125W F TC=O+-100 RESISTOR 51.1 11 .125W F TC=O+=100	24546 24546 24546 24546 24546 24546	C4-1/8-70-51R1-F C4-1/8-70-51R1-F C4-1/8-70-51R1-F	WEE 8 320 38

Model 8640M

08641-90008

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D		Description	Mfr Code	Mir Part Number
1042846 1042847 1042847 1042848 1042849 1042850	0757+0457 0757-0477 0757-0437 0595-7277 0695-7277	20104		RESISTOR 5.11M 1% 125W F TC=0+=100 RESISTOR 10 1% 5W F TC=0+=100 RESISTOR 5.11M 1% 125W F TC=0+=100 REBISTOR 422 1% 05W F TC=0+=100 PESISTOR 12.1 1% 05W F TC=0+=100	24549 54249 54249 54249 54249 54249	C4-1/8-Y0-5111=F 0757-0984 C4-1/8-Y0-5112=F C3-1/8-Y0-422P=G C3-1/8-Y00-1291=G
10A21951 10A2852 10A2853 10A2853 10A2855	01,17-0344 06,78-7227 0757-0344 0757-0344 0757-0344	0 0 0 0	$\frac{1}{6}$	RESISTOR 51.1 1% 125% F TC=0+=100 RESISTOR 422 1% 05% F TC=0+=100 RESISTOR 51.1 1% 125% F TC=0+=100 RESISTOR 51.1 1% 125% F TC=0+=100 RESISTOR 51.1 1% 125% F TC=0+=100	24546 24546 24546 24546 24546	C4-1/R-T0-51R1-F C3-1/8-T0-422R+G C4-1/A-T0-51R1-F C4-1/8-T0-51R1-F C4-1/R-T0-51R1-F
10A2856 10A2857 1042858 1042858 10A2856 10A2860	073700442 075700944 07570094 07570094 075700442 06980442	9 4 7 7	́ц.,	RESISTOR 104 1% 125% F TC#0+=100 RESISTOR 10 1% 5% F TC=0+=100 RESISTOR 51.1 1% 125% F TC=0+=100 RESISTOR 104, 1% 125% F TC=0+=100 RESISTOR 2.614 1% 125% F TC=9+=100	24546 28460 24546 24546 24546	C4-1/8-Y0-1002=F 0757-0984 C4-1/8-T0-5181=F C4-1/8+T0-1002=F C4-1/8+T0-1002=F
10A2R43 10A2R43 10A2R43 10A2R43 10A2R43 10A2R43	0757-1094 0757-0438 0698-3440 0757-0394 0698-3243	4 3 7 0	3V 1910 1 1910 1 1910 1	RESISTOR 1.47% 1% 125% F TC#0+-100 RESISTOR 5.11% 1% 125% F TC#0+-100 RESISTOR 196 1% 125% F TC#0+-100 RESISTOR 51.1 1% 125% F TC#0+-100 RESISTOR 1784 1% 125% F TC#0+-100	24546 24546 24545 24545 24546 24546	C4=1/8=T0=147:=F C4=1/8=T0=5111=F C4=1/8=T0=196F=F C4=1/8=T0=51F1=F C4=1/8=T0=51F1=F
10A2866 10A2867 10A2868 10A2868 10A2869	0698-3444 0757-0280 0757-0442 0698-3447 0757-0379	1 3 0 1	2	RESISTOR 316 1% .125% # TC=0.=100 RESISTOR 1M 1% .125% # TC=0.=100 RESISTOR 10% 1% .125% # TC=0.=100 RESISTOR 422 1% .125% # TC=0.=100 RESISTOR 12.1 1% .125% # TC=0.=100	24946 24546 24546 24546 19701	C4=1/8=T0=316R=F C4=1/8=T0=1001=F C4=1/8=T0=1002=F C4=1/8=T0=12R=F PF4C1/8=T0=12R1=F
10A2R71	0757-0280	34.	, ````	RESISTOR 18 18 125% # TC=0+-100 RESISTOR 422 18 125% # TC=0+-100	24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-4228-F
10A2T2 10A2T2 10A2T3 10A2T3 10A2T4	08040-00355 08040-00355 98040-00355 98040-00355 98040-00355	0 0 0 0	. 5	TRANSFORMEN, RF, BLUE TRANSFORMER, RF, BLUE TRANSFORMER, RF, BLUE TRANSFORMER, RF, BLUE TRANSFORMER, RF, BLUE	59490 59490 59490 59490 59490	07640-60355 07640-60355 07640-60355 07640-60355 07640-60355 07640-60355
104276	50009-0440	0	,	TRANSFORMER, RF 12-TURN	28450	09970-90005
10427P1 10427P2 10427P3 10427P4	1251-0400 (1251-0400	0 0 0	4	CONNECTOR-SGL CONT PIN 1.14-MM-83C-82 30 Convictor-sgl cont pin 1.14-MM-89C-82 30 Connector-sgl cont pin 1.14-MM-83C-82 30 Connector-sgl cont pin 1.14-MM-88C-82 30	28480 28480 28480 28480	1251-0600 1251-0600 1251-0600 1251-0600
10A2U1 10A2U2 10A2U3 10A2U4 10A2U4 10A2U5	1826=0303 1820=0817 1820=0817 1820=0817 1820=0535 1820=0802	9 8 8 7 1	1 3 1 3	IC OP AMP GP B-DIP-P IC FF ECL D-M/S DUAL MC10131P IC FF ECL D-M/S DUAL MC10131P IC DRVR TTL AND DUAL 2-INP IC GATE ECL NOR GUAD 2-INP	0192 04713 04713 01295 04713	CA741G 4C10131P 4C10131P 5N754513P 4C10102P
10A2U6 10A2U7 10A2U8 10A2U9 10A2U9 10A2U10	1820+0753 1820-0753 1820-0803	1122	5	IC GATE ECL NOR GUAD 2-INP IC GATE ECL DUAL 3-INP IC GATE ECL DUAL 3-INP IC GATE ECL OR-NOR TPL IC GATE ECL OR-NOR TPL	0 - /13 28480 28480 04713 04713	MC10102P 1 M20-0755 1 A20-0755 MC10105P MC10105P MC10105P
1042U11 1042U12 1042U13 1042U13 1042U14	1820+0982 1820+0734 1820+1354 1820+1225 1820+1225 1820+0817	8 0 0 4 8	1	IC DIFF AMPL MG 16-DIP-C IC CNTR ECL BIN DUAL IC CNTR ECL BIN IC FF ECL D-M/S DUAL IC FF ECL D-M/S DUAL	20400 20400 2040 04713 04713	1 A 20 = 0 9 A 2 1 8 20 = 0 7 3 6 1 8 20 = 1 3 5 4 MC 1 0 2 3 1 P MC 1 0 1 3 1 P
10A2U1.0	1820-0802			IC GATE ECL NOR QUAD 2+INP	04713	MC10102P
0A2VR1		3	2	DIGDE-ZN# 2.37V 5% 00-7 PD#,4# TC#-,074% DIGDE-XN# 2.37V 5% 00-7 PD#,4# TC#-,074%	28480 28480	1902-5002
0 A 2 W 3 0 A 2 W 3 0 A 2 W 4 0 A 2 W 5	1820-1825	t R 0 4 5	1 1 1 1 1	CABLE ASSY-COAN 50-OHM 1.90IN-LG CAHLE ASSY-COAN 50-OHM 2.4-IN-LG IC REVR TTL BUS HEX CABLE ASSY-CUAN 50-OHM 5.6-IN-LG CABLE ASSY-CUAN 50-OHM 8.7-IN-LG	28480 58480 58480 58480	A120=1A23 A120=1A24 1A20=1A24 H120=1A25 H120=1A25 A120=1A27
0A2W6 0A2W7		3	1	CABLE, COAX 50-OHM 9-(N-L) CABLE ASSY-COAX 50-OMM 7.9-IN-LG	28480 28480	#120=2966 8120=1829

See introduction to this section for ordering information

召

CHANGE 12 (Cont'd)

C11;

5

A10A2 ASSEMBLY

C B4 1. C533-C B4 2. C62 GB6 0473 GB7 07710 757 CB1 C B17

讷

0.18

18(हे

(j 🗿

Model 8460M

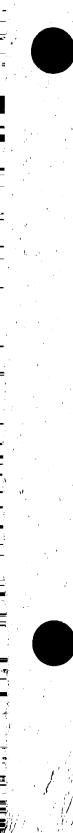


Figure 8-43. A10A2 RF Divider Assembly Component Locations (P/O Change 12)

24

n pain a

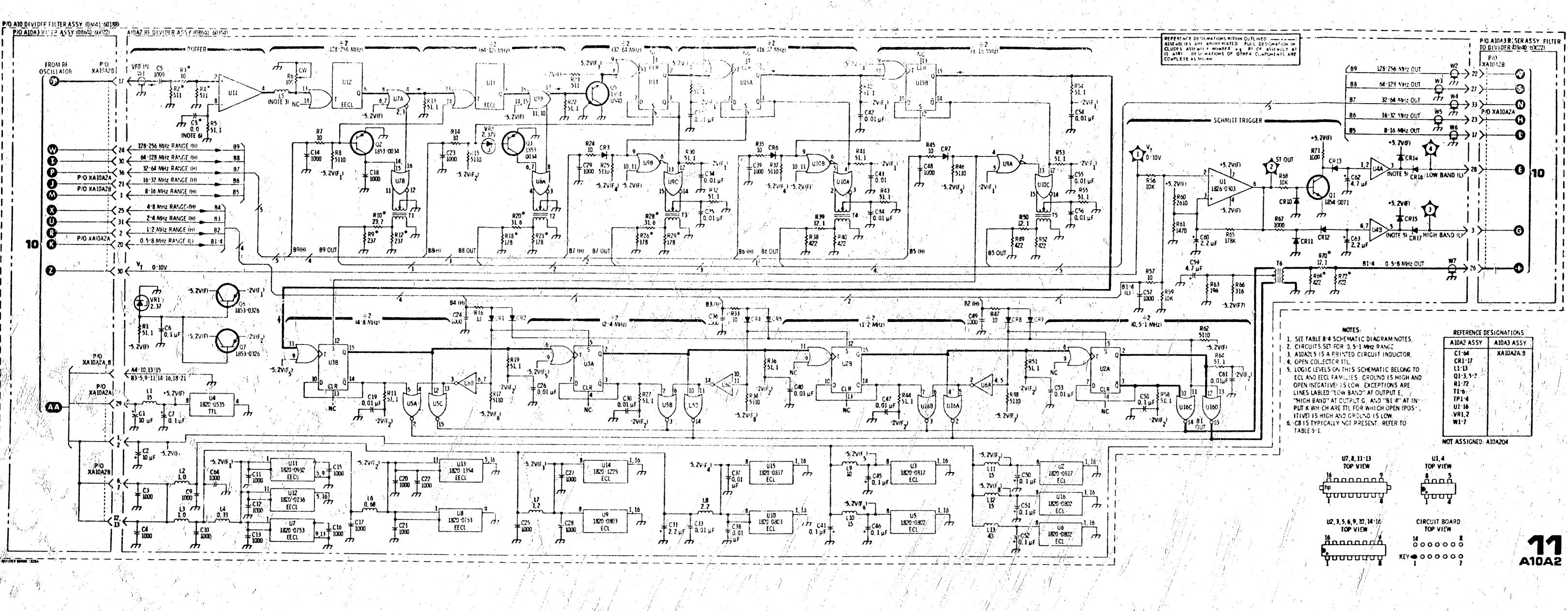
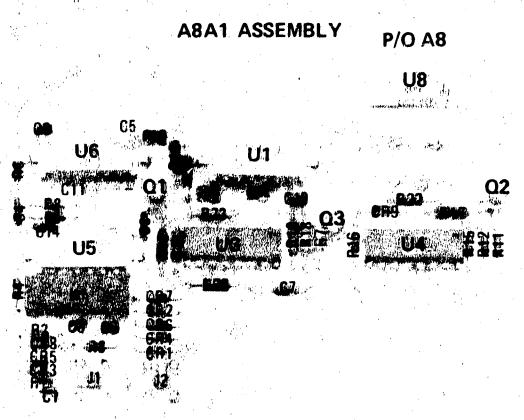


Figure 8-44. RF Divider Schematic Diagram (P/O Change 12)


25

Model 8640M

CHANGE 12 (Cont'd)

Service Sheet 18 (component locations): Replace Figure 8-61 with the attached Figure 8-61.

08641-90008

Service Sheet 18 (schematic):

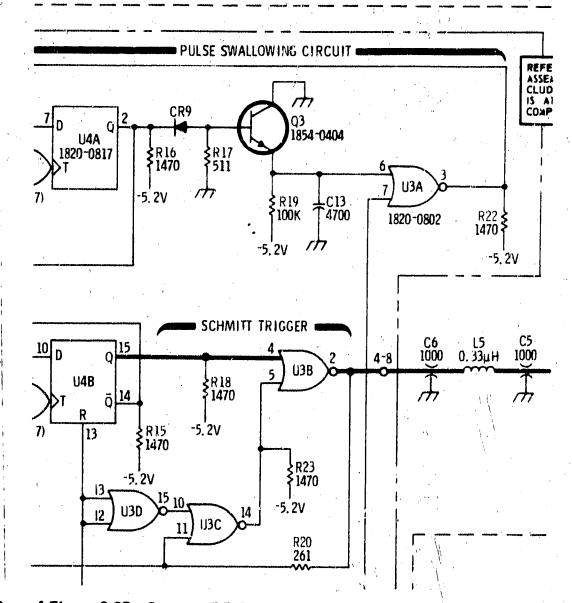
Change the part number of the A8A1 RF Scaler Assembly to 08640-60357.

Change A8A1C8 and C12 to 2.2 pF.


Change A8A1C11 to 0.0,

Change A8A1U3 to 1820-0802.

Change the pin numbers of A8A1U3 from "7" to "8" and from "14" to "1 and 16".


Replace appropriate portion of the schematic diagram with the attached partial schematic on the following page. In the table of REFERENCE DESIGNATIONS under A8A1 ASSY, change R1-22 to read R1-20, 22.

Continued . .

Model 8460M

CHANGE 12 (Cont'd)

CHANGE 13

Page 6-8, Table 6-3:

Change A5Q1 and Q2 to 1854-0475 CD5 TRANSISTOR-DUAL NPN PD=750 MW.

Page 6-9, Table 6-3:

Add A7C16 and C17 0180-2618 CD2 CAPACITOR-FXD 33 UF ±10% 10 VDC TA.

Page 6-10, Table 6-3:

Add A7L1 9140-0129 CD1 COIL-MLD 200 UH 5% Q-65 .155 DX .375 LG-NOM.

Service Sheet 6 (schematic):

Change the part number of A5Q1 and Q2 to 1854-0475.

Service Sheet 7 (component locations):

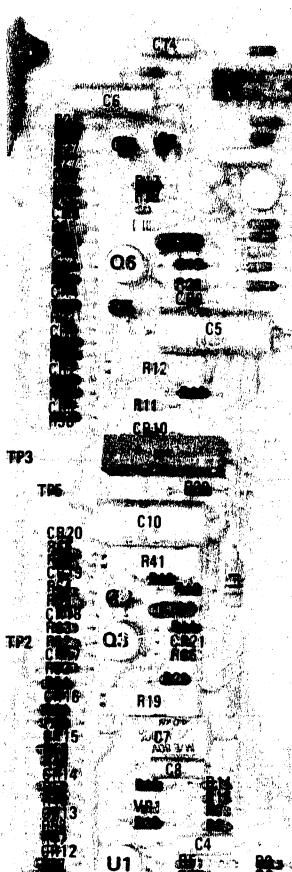
Replace Figure 8-29 with the attached Figure 8-29.

Service Sheet 7 (schematic):

Add A7L1 220 μ H between XA7-pin 5 (+5.2V line) and A7C14 (added in **Change 6**). In the table of REFERENCE DESIGNATIONS under A7 ASSY, add L1.

Service Sheet 8 (component locations): Replace Figure 8-32 with the attached Figure 8-32.

Service Sheet 8 (schematic):


28

Add A7C16, 33 μ F, from U2A-4 (- polarity) to ground (+ polarity). Add A7C17, 33 μ F, from U2B-7 (+ polarity) to ground (- polarity).

▶ In the table of REFERENCE DESIGNATIONS under A7 ASSY, change C13 to read C13, 16, 17.

29

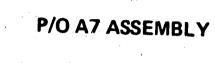
Model 8640M

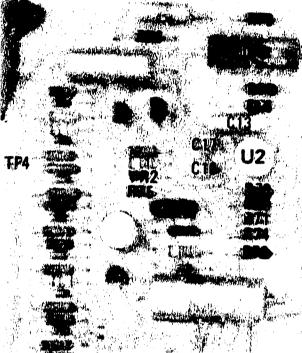
 $\frac{1}{2}$

Figure 8-29. P/O A7 FM Shaping Assembly Component Locations (P/O Change 13)

C11

1


18. R. B. B. B.


iki

Model 8460M

.m. 4.1

Figure 8-32. P/O A7 FM Shaping Assembly Component Locations (P/O Change 13)

30

A.

12-14 : The Admit Street of a

1 「「「「「「」」」

•

Model 8460M

08641-90008

31

CHANGE 14

Page 6-9, Table 6-3:

Add A7C18 0160-3451 CD1 CAPACITOR-FXD 0.01 UF +80 -20% 100 VDC CER.

Page 6-12, Table 6-3:

Change A8A1R7 to 0757-0428 CD0 RESISTOR 1.62K 1% .125W F TC=0±100.

Page 6-15, Table 6-3:

Change A8A2A1U28 to 1820-1277 CD6 IC CNTR TTL LS DEDC UP/DOWN SYNCHRO.

Page 6-23, Table 6-3:

Change A10A2U12 to 1820-2412 CD3 IC CNTR ECL BIN DUAL. (Refer to Change 12).

Page 6-25, Table 6-3:

Change A11R27 to 0757-0447 CD4 RESISTOR 16.2K 1% .125W F TC= 0 ± 100 .

Service Sheet 8 (schematic):

On A7 Assembly, add C18, 0.01 μ F, across R77.

► In the table of REFERENCE DESIGNATIONS under A7 ASSY, change C13 to read C13, 16-18. (Refer to Change 13).

Service Sheet 9 (schematic): Change A11R27 to $16.2 \text{ k}\Omega$.

Service Sheet 11 (schematic): Change the part number of A10A2U12 to 1820-2412. (Refer to Change 12).

Service Sheet 18 (schematic): Change A8A1R7 to 1620Ω.

Service Sheet 20 (schematic):

Change the part number of A8A2A1U28 to 1820-1277.

CHANGE 15

Page 6-14, Table 6-3:

Add A8A2A1R65 0698-7260 CD7 RESISTOR 10K 1%. 05W F TC=0±100.

Page 6-15, Table 6-3:

Change A8A2A1U29 to 1826-0547 CD3 IC OP AMP DUAL 8-DIP-P.

Page 6-16, Table 6-3:

Change A8A3U8, U10 and U13 to 1820-1431 CD4 IC CNTR TTL LS DECD SYNCRO.

Page 6-36, Table 6-3:

Change A26A4U1 to 1826-0547 CD3 IC OP AMP DUAL 8-DIP-P.

Page 6-40, Table 6-3: Change W7 to 08640-20363 CD6 CABLE ASSY-COAX 8.8-IN-LG.

Service Sheet 12 (schematic): Change A26A4U1 to 1826-0547.

Service Sheet 19 (schematic): Change A8A3U8, U10 and U13 to 1820-1431.

Model 8460M

CHANGE 15 (Cont'd)

Service Sheet 20 (schematic):

On the A3A2A1 Assembly, add R65, 10k, from pin 4 of U28 to the +5.2V supply line.

▶ In the table of REFERENCE DESIGNATIONS under A8A2A1 ASSY, change R50, 55-57 to R50, 55-57, 65.

Service Sheet 21 (schematic):

Change A8A2A1U29 to 1826-0547.

CHANGE 16

Page 5-3, Table 5-1:

Add the following (Refer to errata section and Change 12 of this Manual Changes Supplement):

Component	Service Sheet	Range of Values	Basis of Selection
A26A4C10		.01—.018µF	
A26A4C11	- 12	4700—6800µF	See paragraph 5-21m—n
A8A1R9 ⁽	18	42.2-51.1Ω	See paragraph 5-210

Page 5-4, Table 5-1:

Add the following (Refer to errata section and Change 12 of this Manual Changes Supplement):

m. A26A4C10 and C11 Selection. If the A26A4 AGC Amplifier Assembly has been repaired or replaced or if the instrument fails to pass its AM 3-dB Bandwidth (refer to paragraph 4-23), AM Distortion (refer to paragraph 4-24), or Pulse Modulation (refer to paragraph 4-29) performance tests for the 0.5-1 or 1-2 MHz ranges, decrease the value of A26A4C10 by approximately 20% and rerun all three tests.

n. Similarly, if the instrument fails to pass its AM 3-dB Bandwidth, AM Distortion, or Pulse Modulation performance tests for the 2-4 or 4-8 MHz ranges, decrease the value of A26A4C11 by approximately 20% and rerun all three tests.

0. A8A1R9 Selection. If the A8A1 RF Scaler Assembly has been repaired or replaced or if the counter should fail to pass its external sensitivity test (refer to paragraph 4-31) for the 100-400 MHz range but pass below 100 MHz or above 400 MHz, decrease the value of A8A1R9 by approximately 10% and rerun the test.

Page 6-5, Table 6-3:

Change A1R1 to 2100-3855 CD5 RESISTOR-VAR CONTROL CP 1K 10% LIN.

Page 6-6, Table 6-3:

Add A2VR3 1902-0943 CD5 DIODE-ZNR 2.40V 5% DO-7 PD=.4W TC= -.074%. Change A3MP7 to 1460-1855 CD2 SPRING-EXT .08-IN-OD MUW ZN. Change A3R1 to 2100-3856 CD6 RESISTOR-VAR CONTROL C 10K 10% LIN.

Page 6-12, Table 6-3:

Change A8U2 through A8U7 to 1990-0330 CD9 DISPLAY-NUM-DOT MAT 1-CHAR .29-H. Change A8A1R9 to A8A1R9*. (Refer to Change 12).

Page 6-15, Table 6-3:

Change A8A2A1U19 through A8A2A1U24 to 1820-1277 CD6 IC CNTR TTL LS DECD UP/DOWN SYNCHRO.

CHANGE 16 (Con't)

Page 6-17, Table 6-3:

Change A9MP4 to 3030-0007 (Qty 2) CD5 SCREW-SET 4-40 .125-IN-LG SMALL CUP-PT. Change A9MP5 to 3030-0022 (Qty 2) CD4 SCREW-SET 6-32 .125-IN-LG SMALL CUP-PT. 30

Page 6-21, Table 6-3:

Change A10A2 to 08640-60370 CD9 RF DIVIDER ASSEMBLY. (Refer to Change 12).

Page 6-22, Table 6-3:

Change A10A2L5 description to read NOT ASSIGNED. (Refer to Change 12).

Page 6-23, Table 6-3:

Change A10A2U12 to 1820-2642 CD1 IC CNTR ECL BIN DUAL. (Refer to Changes 12 and 14).

Change A10A2VR1 and VR2 to 1902-0943 CD5 DIODE-ZNR 2.40V 5% DO-7 PD=.4W TC= -.074%. (Refer to Change 12).

Page 6-27, Table 6-3:

Change A18CR6 to 1901-0328 CD8 DIODE-PWR RECT 400V 1A 6US.

Page 6-28, Table 6-3:

Change A20CR1 and CR3 to 1901-0028 CD5 DIODE-PWR RECT 400V 750MA DO-29.

Pages 6-29 and 6-30, Table 6-3:

Change A22CR2 and CR6 to 1901-0028 CD5 DIODE-PWR RECT 400V 750MA DO-29.

Page 6-35, Table 6-3: Change A26A4C10 to A26A4C10*.

Change A26A4C11 to A26A4C11*.

Page 6-39, Table 6-3:

Delete MP26 part number and change description to read NOT ASSIGNED. Change MP29 to 1500-0589 (Qty 1) CD3 COUPLER-FLEX .66-LG NYL-BRS.

Service Sheet 11 (schematic):

Change A10A2 RF DIVIDER ASSY part number to (08640-60370). (Refer to Change 12). Delete A10A2L5. Also, delete NOTE 3. In the table of REFERENCE DESIGNATIONS under A10A2 ASSY, change L1-13 to read L1-4, 6-13. (Refer to Change 12).

Change A10A2U12 part number to 1820-2642. (Refer to Changes 12 and 14.). Change voltage rating on A10A2VR1 and VR2 to 2.40V. (Refer to Change 12).

Service Sheet 12 (schematic):

Change A8A1R9 to A8A1R9*. (Refer to Change 12).

Change A26A4C10 to A26A4C10*. (Refer to Change 2).

Change A26A4C11 to A26A4C11*. (Refer to Change 2).

Service Sheet 17 (schematic): Change voltage rating on A2VR3 to 2.40V.

Service Sheet 20 (schematic):

Change A8U2 through A8U7 part number to 1990-0330. Change A8A2A1U19 through A8A2A1U24 to 1820-1277.