HP 8505A
 RF Network Analyzer Basic Measurements

${ }^{\circ}$ HEWLETT-PACKARD CO. 1976
Printed: SEPTEMBER 1982

HP 8505A RF Network Analyzer Basic Measurements

LOCAL OPERATION

NOVEMRER 1978

CONTENTS

INTRODUCTION 3Overview 0505A, test seta, and control functions.
TRANSMISSION MEASUREMENTS 15
Setup, calihration. and measurement sequences for:

 Insertion Loss and Gain

 Insertion Phase

 Electrical Length

 Deviation from Linear Phase

 Group Delay
 REFLECTION MEASUREMENTS 22
Setup, calibration, and measurement sequences for:
Keturn Loss, SWK
Reflection Coefficient
POWER LEVEL MEASUREMENTS25Measure the absolute power at the R, A, and B inputs.Normalization features of the 8501A to enhance 8505A measurementcapahilities.

PREFACE

This application note will help you make transmission and reflection measurements with the Hewlett-Packard Model 8505A RF Network Analyzer and its assoriated test sets. Previous experience in network analysis techniques is assumed, so the note concentrates on generalized setup, calibration, and measurement sequences rather than basic measurement theory. As you become familiar with operation of the instrument you can modify and extend these sequences to more specialized applications.

The first part of this note introduces the 8505A and the standard test sets, then describes the main operations to make measurements. The Transmission Measurements, Reflection Measurements, Power Level Measurements, and S-Parameter Measurements sections contain specific step-by-step sequences used to make particular measurements on a device. If you have a device to measure, go directly to one of these sequences and try it. Use the Introduction as a reference for operations that require more explanation. A section for the 8501A Storage- Normalizer provides a brief description of how to use this important accessory. A foldout at the rear of this note presents a photo of the 8505A front panel and a summary of the functions of the controls, indicators, and displays.

Learn by doing. Use the 8505A to measure a device with known characteristics. You will better appreciate the ease with which measurements are made if you have access to an 8505 A with test set from the very beginning. But, during the interval prior to arrival of your 8505 A , you can develop valuable background knowledge of instrument operation from this note. Although the 8505 A is fully programmable via the $\mathrm{HP}-\mathrm{IB}$, this note does not describe programming operations. It is recommended that you gain a good understanding of the 8505 A in manual operation before writing programs to control it.

INTRODUCTION

The 8505 A is a high performance $R F$ network analyzer thet includes a leveled source, frequency counter, two measurement channels, dual-trace CRT with both cartesian and polar displays, digital readout of the measured value, and an electronic line stretcher. 'logether with appropriate signal routing accessories, the 8505 A is a fully integrated stimulus/respunse test system that measures magnitude, phase, and delay characteristics of linear networks by comparing the incident signal with the signal transmitted through the device or reflected from its input.

The basic transmission measurements dessribed in this note are: insertion loss and gain, insertion phase, electrical length. deviation from linear phase, group delay, and transmission coefficient (S_{12} or S_{21}). Basic reflection mensurements are: return loss, from which $S W R$ can be calculated, and reflection coefficient (S_{11} ur S_{22}), from which impedance can be calculated or read from a Smith Chart overlay.

To begin limiliarizing yourself with the 8505A, recognize that it is packaged in two nases. The lower case contains the sweeper controls and displays, the receiver input connections, the measurement marker controls. and the frequency counter display. The upper case contains the dual trace CRT, the measurement selection controls, the measured value displays. and the electrical length controls and display. The boxed characters adjacent to the switches, buttons, and disylays are HP-IB* addressing codes used when programming the instrument.

Block Diagram Description

The source produces leveled $K F^{\prime}$ for the test device and a tracking local uscillator signal to the reccivers. Reference (R) and lest (A and B) inputs from the test setup are down-converted to 100 kHz IF frequency for application to the detectors. This combination of two identical fixed oscillators, which are phase-locked to a common reference and offset by 100 kHz , with a YIG -thned swepl uscillator provides continuous, very linear $3-1 / 2$ decade frequency sweeps and the precise local oscillator tracking reciuired for narrow bandwidth detection. High reliability thin-film technology enables all throe input mixers to have closely matched magniturte, phase, and delay characteristics with full $-1110-110$ dBn dynamic range and greater than 100 dB isolation between inputs.

Transmission and reflection characteristics can be mensured simultaneously by using two identical measurement chamels, one for the reference input and one switched between the A and B test inputs on alternate sweeps. Completely independenl magnitude, phase, delay, and polar detectors process the IF to bC levels for multiplexing to the GRT display. The electronic line stretcher allows electrical length of the A and B test signal paths to be independently matched to the reference signal path by addirig or subtracting up to 1700 degrces of linear phase shift per sweep prior to detection. This technique virtually eliminates the need for mechanioal line length adjustments and allows dirent measurement of deviation from lincar phase. The group delay detector provides direct, calibrated measurement regardless of sweep widilu or sweep rate.

Frequency, magnitude, phase, and delay are read directly from digital displays by positioning a measurement marker to any point on the trace. Frequency at the marker is messured using a new up-down counter which mestures the local oscillator frequency and subtracts the 100 kHz offset. This treshifiup provides up to 100 Hz resolution and ± 2 comot acouracy without the need to stop the sweep at the marker. Magnitude, phase, and delay values are measured by sampling the seledted detector outputs at the marker position. An autoranging voltmeter displays the measured value with up to $0.01 \mathrm{~dB}, 0.1$ degree, and 0.1 nanosecond resolution.
*IP-IB, the Hewlett-liackard Interface Bus, is Hewtell-Puckards implomentation of TEFE, 4RA.

INTRODUCTION

TEST SETS

The following test sets are designed especially for use with the 8505 .
For precision transmission tests, or ratio tests using a standard device as a reference, the 11851A RF Cable Kit and 11850A (50Ω) or 11850B (75Ω) Power Splitter provide the necessary RF connections and shielding with excellent magnitude and phase tracking characteristics over the 8505 frequency range. The 11850 B includes three 50Ω to 75Ω Model 11852A minimum loss pads.

11850A/B Three-Way Power Splitter

The 8502A (508) or 8502B (75R) Transmission/Reflection Test Set contains a power splitter and directional bridge allowing simultaneous transmission and reflection measurements. It also includes a 0 to $70 \mathrm{~dB}, 10 \mathrm{~dB}$ step attenuator which allows control of the incident signal level independent from the reference signal level. The 8502B includes one 50Ω to 75Ω Model 11852A minimum loss pad.

Transmission and reflection measurements on two port devices which require measurement of both forward and reverse characteristics can be accomplished easily using the 8503A (50Ω) or 8503B (75Ω) S-Parameter Test Set. With this test set and included cables, measurement of both forward and reverse characteristics can be accomplished without disconnecting and reversing the test device. DC bias connections for transistor testing are provided.

INTRODUCTORY MEASUREMENT SEQUENCE

With a basic understanding of the instrument and these test sets in mind, follow this typical operating sequence for measuring transmission insertion loss or gain. Use a bandpass filter or similar device with known characteristics. If you are not in front of an instrument, use the foldout at the rear of this note to locate the controls. This introductory sequence assumes measurements are made using the 8502 test set, or an 8503 test set with the front panel S-PARAMETER SELECT switch set to FORWARD.
Connent Test Set - See connection diagram. Do not connect the test device.

Set Signal Levels - Set the INPUT LEVEL dBin MAX switch to - 10 . Use the OUTPUT LEVEL dBm and VERNIER to set the approximate signal levels to the test device. (Refer to the Power Level Measurements sequence on page 25 to measure the absolute power, if necessary.)

Select Measurement - Set CHANNEI, 1 INPUT switch to B/R to select transmission, MODE to MAG to select magnitude ratio, and SCALE/DIV to $10 \mathrm{~dB} /$ division. Sct CHANNEL 2 MODE and ELECTRICAL LENGTH MODE to OFF,

Set CRT Display - Press to detent REF LINE POSN/BEAM CENTER to display reference line, then use CH1 $\frac{\Delta}{\nabla}$ to set reference line to desired position, usually center siseem. Set TRIGGER to AUTO.

Set Frequency Sweep - Set RANCE MHz to lowest range that includes frequency range of interest. Set sweeper MODE to LIN EXPAND, and WIDTH to START/STOP 1. Now use the FREQUFNCY controls below the FREQUFNCY MHz displays to set the end points of the frequency sweep. Read the end points of the frequency sweep from the FREQUENCY MHz displays.

Calibrate - Connect through. Set MARKERS switch to position 1, then use the adjacent vernier to set upwardpointing measurement marker to desired calibration frequency. Press CHANNEL 1 MKR, then press and hold ZRO until the iterative zero process is complete and the trace moves to the reference line. This establishes test set response at 0 dB insertion loss or gain.

Connect Test Device - See connection diagram.
Read Measured Value - Use the MARKERS 1 vernier to position the measurement marker to any point on the trace. If necessary to position the trace for viewing, use the CH1 $\boldsymbol{\Delta}$ control or the CHANNEL 1 RFF OFFSFT huttons (Δ moves trace up, ∇ moves trace down). Read the frequency at the measurement marker from the FREQ COLNTER MHz display. Press the CHANNEL 1 KEF button to display value of the reference line, then press MKR to display marker displacement from the reference line. The measured value (dB) is the surn of the RFF and MKR values.

The following paragraphs describe the functions of the controls used in these steps in more detail.

INTRODUCTION

SET SIGNAL LEVELS

Set Sweeper Output Level

The OUTPUT LEVEL attenuator and VERNIER set the sweeper output level at the RF connector to any level from +10 to -72 dBm . The sum of the rotary switch and the VERNIER setting is the RF output level, $\pm 1 \mathrm{~dB}$. If the OUTPUT controls are set to -30 and -6 , then the level at the RF connector will be $-36(\pm 1) \mathrm{dBm}$.

Set Reference and Test Channels Input Level

The maximum signal level which can be applied to the R, A, or B inputs is either -10 dBm or -30 dBm depending upon the INPUT LEVEL dBm MAX switch setting. If the signal level at any input is greater than the switch setting the R, A, or B OVERLOAD indicator on the dark panel above the switch will
 light to show that the input signal is near the compression point for the input mixer and measurement errors may result.
The switch is normally set at the -10 position. When making measurements in which the A or B inputs are below about -80 dBm and the R input is below -30 dBm , set the INPUT LEVEL dBm MAX switch to the -30 position. Selecting - 30 increases the signal level into the detectors (and adds appropriate display compensation) thus reducing the magnitude, phase, and delay measurement uncertainties for low signal level measurements.

Signal Level Considerations

Minimum measurement uncertainty is achieved when the input levels are near maximum. For example, when the test input drops from -20 dBm to -100 dBm , the magnitude ratio uncertainty increases from $\pm 0.01 \mathrm{~dB}$ to $\pm 4.0 \mathrm{~dB}$. The R, A, and B inputs are identical, each with -10 dBm to -110 dBm of range, thus allowing measurements to be made with 100 dB dynamic range. But, for best results in ratio measurements, the test input should be above -110 dBm for magnitude, -100 dBm for phase, and -90 dBm for delay.

The reference input level should remain constant for calibration and measurement. The test input level at calibration determines the gain and insertion loss range available for measurement without overload or excessive measurement uncertainty. Two examples are shown in this chart. Example (1) represents calibration levels for a passive device with both reference and test inputs at -10 dBm . When calibrated at this level the 8505 can measure the test device magnitude ratio to over 100 dB insertion loss. Example (2) represents calibration signal levels for an active device. It shows the reference level set to -10 dBm and the test channel set to -50 dBm . At these levels the magnitude ratio can be measured to 40 dB of gain and to over
 60 dB for insertion loss.
At low signal levels measurement uncertainty is seen as noise on the CRT trace. Select the 1 kHz IF bandwidth (the 1 kHz button to the right of the CRT) to reduce the pre-detection bandwidth and improve the signal-to-noise ratio into the detectors. Select the VIDEO FILTER to reduce the post-detection bandwidth and thus reduce the residual uncertainty caused by detector noise. Slower scan time may be required.

SELECT MEASUREMENT

The CHANNEL 1 and CHANNEL 2 MODE and INPUT switches function independently to select the measurement displayed on the CRT. This illustration shows the display formal and measurement selected for each combination of MODE and INPUT switch settings for either channel when the R input is the reference, the A input is the reflected, and the B input is the transmitted signal.

The MAG, PHASE, and DLY selections use the cartesian display: POLAR MAG and POLAR PHASF use the polar format. R, A, and B INPUT pusitions can only be selected with MODE in MAG. The MODE switch also selects the appropriate dB , degrees, microsecond or nanosecond units indicator near the measured value LED display. The CRT trace is identical for both POLAR MAG and POLAR PHASE selections. In POLAR MAG the dB ratio at the marker is displayed and in POLAR PHASE the phase angle ht the marker is displayed.

For A / R and B / R INPUT selections, the CRT trace and the measured value is always presented us the ratio of the test channel to the reference channel.

The SCAI.E/DIV switch uses four scales. The MAG, PHASE, and DLY scales set the value per division on the cartesian display; the POLAR FULL scale establishes the linear transmission or reflection coefficient value of the polar display outer circle. Note that the DLY scale uses additional st:aling factors which depend on the RANCEMHz switch position.

As an exercise, connect the RF output directly to one of the R. A, or B input connectors. Set the INPUT LEVEL dBm MAX switch to -10 , the OUTPUT LEVEL dBm VERNIER to -12, and the OUTPUT LEVEL dBm attenuator to -10 . Rotate the VERNIER toward zero and note the setting at which the OVERLOAD indicator lights. This is the simplest operator check you can make on the source and receiver. The OVERLOAD indicator lights at about +2 dB of the INPUT LEVEL switch setting. Make this test at each of the R, A, and B inputs using the -10 andior the -30 input switch setlings.

To observe the CRT Irace, sel CHANNEL 1 or CHANNEL 2 to R, A, or B MAC, set SCALE/DIV to $10 \mathrm{~dB} /$ division and repeat the above exercise. If the trace does not appear, set the CRT display as described on the next phge.

INTRODUCTION

SET CRT DISPLAY

Pressing to detent the REF LINE POSN/BEAM CENTER button displays the cartesian reference line or the polar beam center during the sweep retrace. Standard controls are used for beam focus, beam intensity, scale illumination, and trace align. This illustration presents a sequence for setting the cartesian reference line and polar beam center positions.

For the cartesian display, the reference line is the position from which SCALE/DIV expands or contracts the trace. The value of the reference line is initially zero $d B$, degrees or seconds and the trace is positioned above or below the reference line depending upon whether the response characteristic is positive or negative.

The reference line can be set to any position on the CRT at any time using the $\mathrm{CH} 1 \underset{\boldsymbol{v}}{\boldsymbol{\Delta}}$ and $\mathrm{CH} 2 \boldsymbol{\Delta}$ controls without disturbing the calibration values.

To continue the previous exercise, press to detent the REF LINE POSN/BEAM CENTER button and move the reference line to the center CRT graticule line. Connect the test set, and set CHANNEL 1 or CHANNEL 2 INPUT to R, A, or B and set MODE to MAG. If the REL indicator near the measured value display is lit, press and hold the CLR button until REL goes out $(\cong 2$ seconds at each INPUT position). Read the power at the R, A, and B inputs from the CRT display by assuming that the reference line is 0 dBm and noting the trace position with respect to the reference line.

For the polar display, reflection and transmission coefficient values can be read directly from the polar graticule. For magnitude ratio, the beam center position is the point of zero reflection coefficient (infinite dB return loss) and zero transmission coefficient (infinite dB insertion loss). The outer circle is the magnitude ratio reference line, having a linear coefficient value corresponding to the SCALE/DIV POLAR FULL selection. At POLAR FULL 1 (and zero dB REF OFFSET) the outer circle represents a reflection coefficient magnitude of $1(0 \mathrm{~dB}$ return loss) and transmission coefficient magnitude of $1(0 \mathrm{~dB}$ insertion loss). For phase angle, the zero degrees reference line is the right hand intersection of the center line and the concentric circles and is scaled from zero to ± 180 degrees.

Cartesian Display

Polar Display

SET FREQUENCY SWEEP

Frequency sweep is controlled by the RANGE MHz, MODE, and WIDTH switches. RANGE MHz selects the frequency range. MODE selects logarithmic or linear full sweep, or the linear expanded sweep selected by WIDTH. You can set and store an independent expanded sweep at each of the WIDTH switch START/STOP 1, START/STOP 2, and $\mathrm{CW} \pm \Delta \mathrm{F}$ positions using the FREQUENCY MHz displays and FREQUENCY controls. To familiarize yourself with operation of the sweeper frequency controls, follow this sequence.

Select LOG FULL or LIN FULL and cartesian display. Down-pointing markers are displayed according to WIDTH.
WIDTH to START/STOP 1. Position markers using START and STOP FREQUENCY controls.
WIDTH to START/STOP 2. Position markers using START and STOP FREQUENCY controls.
WIDTH to CW $\pm \Delta \mathrm{F}$. Set $\pm \Delta \mathrm{F}$ markers using $\pm \Delta \mathrm{F}$ FREQUENCY control; center $\pm \Delta \mathrm{F}$ markers on area of interest using CW FREQUENCY control.
Set MODE to LIN EXPAND and select scan using WIDTH. FREQUENCY controls are operative in all WIDTH positions except ALT.

START/STOP 1

START/STOP 2

ALT

$\mathrm{CW} \pm \Delta \mathrm{F}$

CW

In LOG FULL, the full selected frequency range is swept with a logarithmic frequency axis. (The log sweep end points are identified above the RANGE MHz switch and log frequency graticule overlays are available.) LIN FULL selects a linear sweep of the full selected frequency range (500 kHz to 13,130 , or 1300 MHz). In the full sweep modes selecting one of the START/STOP or CW $\pm \Delta \mathrm{F}$ places two down-pointing frequency markers on the CRT trace to identify the, sweep end points. The FREQUENCY controls position these markers: each adjacent VERNIER provides fine adjustment but does not change the FREQUENCY MHz displays.

For ALT, CHANNEL 1 displays the START/STOP 1 sweep and CHANNEL 2 displays the START/STOP 2 sweep. The FREQUENCY MHz displays and the FREQ COUNTER MHz display readings apply to the START/STOP 1 sweep unless CHANNEL 1 is off, in which case the readings apply to the CHANNEL 2 sweep. For CW, the frequency counter measures the actual CW frequency and displays it using the left-hand six-digit FREQUENCY MHz display.

In START/STOP and CW $\pm \Delta \mathrm{F}$ the FREQUENCY MHz displays do not have counter accuracy and thus should not be used for other than setting approximate frequency sweep widths. Residual FM performance is improved in the lower RANGE MHz settings, so select the lowest setting which includes the frequency range of interest for your measurement. The frequency controls can be set so that the start frequency is above the stop frequency, but degraded sweep linearity will reduce the accuracy of the measured frequency and group delay values.

Set Sweep Time

Time for a complete sweep of the selected frequency range is selected by the SCAN TIME SEC switch and adjacent VERNIER. Select the fastest sweep time then decrease until there is no distortion of the test device response. The vernier allows continuous adjustment within the selected range.

INTRODICTION

READ MEASURED VALUE

The general sequence to read the measured value at a particular point on the CRT trace is as follows.

Measured Value Display

Use REF OFFSET buttons and SCALE/DIV switch to position CRT trace on the screen.
Select one of the five measurement markers using the MARKERS switch, then position the marker on the CRT trace at the point to be measured using the adjacent numbered vernier.

Read the frequency at the measurement marker from the FREQ COUNTER MHz display
Press REF button and read the value of the reference line. Press MKR button and read the marker displacement from the reference line. Add the REF and MKR values to obtain the measured value at the measurement marker.

ESE and MKR Value Display Motes

When the REF button is pressed, the measured value display shows the value assigned to the reference line. When the MKR bulton is pressed the measured value display shows the displacement of the selected measurement marker from the reference line. The magnitude, phase, or delay value at any point on the CK I trace is then:
REF value + MKR value - Measured Value

If RFF OFFSET has not been used to position trace, REF will equal zero and the MKR value alone represents the measured value.

REFOFFSK

Pressing any REF OFFSET button increments the reference line value for that channel, thus moving the CRT trace in relation to the reference line. Holding a RFF OFFSFT bullon pressed increments the associated LEU numeral at the rate of about two digits per second. Momentarily pressing the CLR button resets the reference line value for that chanmel to zero.

There is no accuracy advantage in moving the CRI trace closer to the reference line to make the measurement. In fact, the MKR value is correct even when the CRT trace and the measurement marker are positioned off screen. However, when the SCAI.F/DIV switsh is at one of the four right-hand positions and the REF or MKR value is less than about 8 dB . 80 degrees, or 8 delay units, the displayed RLF or MKR value gains an additional decimal digit of resolution. To see this change, select MKR mode, move SCALE/DIV to one of the four right-hand positions, and use REF OFFSFT to move the CRT trace toward and away from the reference tine.

Using REF OFFSET, the magnitude, phase, and delay trace positions can be set independently. The REF value is stored in six independent Reference Offset registers; three for each channel, one for cach of the MAG, PHASE, and DI.Y selertions. (The POIAR MAG position shares the same Reference Offset register ts the MAG position and POLAR PHASE shares the PHASE register.]

Frequency Counter

The FREQ COIJNTER MHz display indicates the frepuency in MIIz at the selected measurement marker in all sweep modes except CW. In CW, the counter uses the left-hand FREQUENCY MHz display to indicate the CW frequemory.

Resolution of the FREQ COUNTER M1 Iz display is controlled by RANGE MHz and SCAN TIME SEC selections. Slow sweep times allow greater counter resolution, shift one or more digits off the left of the display and cause the display OVERFLOW indicator to light. To obtain six digit counter resolution, move SCAN TIME SEC to a faster sweep position to inspent the most significant digits, then to a slower sweep position to inspect the leasi significinat digits.

When the MARKERS rotary switch is moved to positions 2 through 5, all lower numbered markers are displayed on the CRT trace pointing down. 'lhe selected measurement marker points up.

Polar Display

The CRT trace is the same for both POLAR MAG and POLAR PHASE selections. The measured value display reads the magnitude ratio at the measurement marker in POLAR MAG and the phase angle at the measurement marker in POLAR PHASE.

For POLAR MAG, the displayed measured value is the same dB ratio as indicated for the MAG selertion. The megnitude part of the linear coefficient can be read from the concentric circles of the polar graticule, or calculated using the REF +
 MKR dB value and the HP Reflectometer Calculator (HP p/n 5952-0948) or the following equation:

$$
\tau \text { or } p=10^{11} \quad \text { where } \mathrm{D}=\frac{\text { Measured Value }}{20}
$$

Where τ and ρ represent the magnitude part of the linear transmission or reflection coefficient, respectively, and Measured Value (dB) represents the REF + MKR value. For example if the RFF + MKR value is -15 dB , the magnitude part of the lincar cocfficient is 0.178 .

The phase value of the linear coefficient, $\angle \phi$, is read from the radial lines of the polar graticule, or by selecting POLAR PHASE and reading the REF + MKR value from the measured value display.

INTRODUCTION

CALIBRATE

Mensurements on y lest devire are made relative to a measurement standard with known response characteristics. Calibration establishes the offsets required to obtain a correct measured value for the measurement standard using the same test set-up as will be used for measurements on the test device.

The calibration standard for transmission measurements is a "through" connection formect the prints at which the test device will be connected). Complete tiansmission calibration sets the magnitude ratio between 1he leanmilted and reference signals to unity (0 dB]. equalizes any electrical longth difference between the transmitted and reference signal paths, sets the phase to zero degrees, and the group delay to zero seconds. This establishos the transmission coefficient of the test set-up as $1<0^{\circ}$ with zero seconds group delay, the theoretical value fur a zero-length transmission line

The calibration standard for reflection mcasurements is normally a shorl circuit connected at the measurement plane (the point at which the test device will be comnoted). Complete reflection calibration sets the magnitude ratio thetween the reflected and reference signals to unity [0 dib] , equalizes any electrical length dif. ference between the reflected and reference signal paths, and scts the phase to 180 degrees. This establishers the reflection coefficient of the test set as $1 \angle 180^{\circ}$, the theoretical value for a short circuit.

Calibration values are stored in independent Stored Reference Offget registers, one for each measurement category. Thus, you can perform calibration for transmission and reflection magnitude, phase, and delay in sequence prior to measurement. Calibration values are shared by CHANNEL 1 and CHANNFI, 2 so calibration using one methsurement chamen serves for both. Also. calibration values for magnitude and phase are shared by the cartesian and polar-display modes so calibration using one display mode serves for both. Calibration values remain stored for as long as power is applied to the instrument or until manually cleared or changerd.

ZRO bultons for CHANNEI, 1 and CHANNET. 2 provide the magnitude, phase, and delay calibration function. Operation of the ZRO button depends upon the MKR or KLF display mode selection. The MKR, ZRO sequence is used to establish a zero reference, as for magnitude, transmission phase, and delay calibrations. MKR, ZRO stures the offset required to move the measurement marker and trace to the reference line, 'The REF', ZRO sequence is used to establish a non-zero reference, as for the + or -180 degree phase offset required for reflection phase calibration.

The REL indicator above the display lights to show that a calibration oftset is stored and that the mensured valuc is relative to the calibration standard. Pressing and holding CJ.R for about one second clears the stored calibration and extinguishes the REL indicator.

MKR, ZRO

To calibrate using MKR, 7RO, select the measurement mode, select MKR, then press and hold ZRO until the iterative process which moves the marker to the reference line and zeros the measured valuc display is complete [2 or 3 sweeps). Now the measurement marker is positioned on the relerence line and the MKR and REF values are both zero. The process assigns the reference line the value of zern, then stores the offset required to move the measurement marker to the reference line. This is an example of MKR. ZRU operation for magnitude calibration using a simple transmission test set with a through connection.

B / R dB magnitude ratio:

$$
\begin{aligned}
& =\mathrm{BdBm}-\mathrm{RdBm} \\
& =-6 \mathrm{dBm}-(-18 \mathrm{dBm}) \\
& =+12 \mathrm{~dB}
\end{aligned}
$$

B / R, MAG measured value:
$=\mathrm{B} / \mathrm{RdB}$ - Stored calibration reference offset.

Before calibration:

$$
\begin{aligned}
& =+12 \mathrm{~dB}-0.00 \\
& =+12 \mathrm{~dB}
\end{aligned}
$$

Atter MKR, ZRO calibration:
$=+12 \mathrm{~dB}-(+12)$
$=0.00 \mathrm{~dB}$

Calibration should be accomplished at higher than or equal to the resolution at which the measurement is to bo made. Thus, if high resolution measurements are made. talibration should proceed as a two-step process. First sel SCALF/DIV to one of the fomr left-hand prositions. press MKR, then hold ZRO pressed until the display is zero. Now move SCALE/UIV to one of the four right-hand (high resolution) positions and hold ZRO pressed until the display is zero again. Notice that the display deainal point moves one digit to the left during the second step.

Offset values in the calibration registers cannot be displayed. It is not necessary to examine the calibration value following calibralion becanse Ithe value only represents the offset value necessary to remove the test set losses and offsets from the measurement. The absolute value of the measurement is the sum of the calibration offset value, the REE value. and the MKR value. but the instrument automatically subtracts the calibration value from the measurement and the test device response characteristic is cepresented by the MKR + REF value alone.

Each time ZRO is pressed, a new calitration offset is stored. Thus, for exmmp, if the messurement marker is not at the correct calibration frequency the first time $\angle R O$ is pressed, the marker can be moved and ZRO pressed again. Normally. use ZRO only at calibration, CLR can be pressed momentarily to clear the displayed REF value. but holding it for about one secome will clear the calibration offset value. Fressing and holding CLR until the REL indicator goes out will make re-calibration necessary.

INTRODUCTION

SET ELECTRICAL LENGTH

Electrical length is equal in the reference and test signal paths when the linear insertion phase response does not vary (is constant) over the frequency sweep of interest. Constant insertion phase is identified by a flat trace in a cartesian measurement, or a small cluster in a polar measurement.

Equal Electrical Length. Phase relationship constant with frequency.
Unequal Electrical Length. Phase relationship shows linear variation with frequency.
On the ELECTRICAL LENGTH part of the control panel, INPUT selects display of the electrical length added to or subtracted from the reference signal path to equalize the A or B test signal path. There are two Electrical Length Offset registers, one for A and one for B. The LENGTH pushbuttons increment the register selected by INPUT, allowing independent equalization of the two test signal paths. Momentarily pressing the CLR button sets the selected register and display to zero. The A and B VERNIERS allow fine length adjustment without changing the LENGTH display or the value stored in the A or B electrical length register. Setting MODE to OFF removes the line length equalization for the test signal path selected by INPUT. Move the INPUT switch to the other position to deselect length for
 both channels.

The MODE switch selects the units for electrical length. When MODE is set to x 1 and x 10 , electrical length is introduced in units of meters or centimeters of equivalent air line as shown by the m or cm indicator above the display. When MODE is set to PHASE $\times 10^{\circ} /$ SCAN, ten times the displayed degrees of phase shift is introduced over the selected frequency sweep. The linear insertion phase added or subtracted is zero at the beginning of the frequency sweep, increasing linearly to ten times the display degrees at the end of the sweep. This degrees/scan mode allows greater range than the $\mathbf{x} 1$ or $\mathbf{x} 10 \mathrm{MODE}$ selection and is usually required for devices with long electrical length.

In the PHASE $x 10^{\circ} /$ SCAN MODE, equivalent electrical length can be calculated from the displayed value using the following computation,

$$
\begin{aligned}
\text { electrical length (meters) } & =\frac{\text { phase change (degrees) }}{\text { sweep width (Hertz) }} \times \frac{3 \times 10^{8} \text { meters } / \mathrm{sec}}{360 \text { degrees/cycle }} \\
& =\frac{\text { display value } \times(10)}{\text { sweep width }(\mathrm{MHz}) \times 1.2}
\end{aligned}
$$

where display value represents the ELECTRICAL LENGTH display reading, and sweep width represents the total selected frequency sweep in MHz . For example, if it is necessary to add +1350 degrees to flatten the phase response trace and the frequency sweep is from 1100 to 1110 MHz , the equivalent electrical length compensation is:

$$
(\text { meters })=\frac{+1350}{(1110-1100) 1.2}=+112.50 \text { meters }
$$

Electrical length calibration is accomplished by selecting the A or B input, equalizing the electrical length with the calibration standard connected, then pressing the ELECTRICAL LENGTH ZRO button. The displayed value is stored in the selected Stored Electrical Length register as the calibration electrical length offset, and the display is set to zero. The REL indicator lights to indicate that a non-zero calibration value is stored and that the display value is relative to the calibration value. Press and hold CLR until the REL light goes out to reset the stored calibration value to zero. Each time ZRO is pressed, the displayed value is added to the stored calibration value.

TRANSMISSION MEASUREMENTS

This section describes transmission insertion loss and gain, insertion phasc, electrical length, deviation from linear phase, and group delay measurements. These measurements are described individually, each with separate setup, calibration, and measuremenl sequences. For a generalized calibration sequence for ali transmission metsurements, refer to the S-Parameter Measurements, Ceneral Calibration Sequence. Below is a diagram of transmission test connections using the 8502 Transmission/Reflection Test Set.

Connections to the test set and test device are made using the cables supplied in the 11851A Cable Kit. The test device input port is connected to the 8502 front panel TEST connector. For transmission calibration, the cable which connects to the device output is connected to the 8502 TEST output. Whatever configuration is used, all cables, adapters, and fixtures required for the measurement should also be used for calibration.

TRANSMISSION MEASUREMENTS

INSERTION LOSS AND GAIN

This sequence lists the steps for a typical insertion loss or gain measurement.

SETUP

Set signal levels
Set frequency sweep
Set CRT display
MARKERS: 1, position measurement marker so FREQ COUNTER MHz reads desired calibration frequency.

GALIBRATION

Connect through.
CHANNEL 1
B/R, MAG, $10 \mathrm{~dB} / \mathrm{division}$, MKR, ZRO (hold until display zero).
MEASUREMENT

Connect test device.
MKR, ZRO moves marker to reference line.
Position measurement marker to read magnitude ratio (MKR + REF) and frequency.

Calibration for insertion loss and gain measurement sets the magnitude ratio between the transmitted and reference signals to zero $d B$ with the through connection. After connecting the test device, a negative measured value indicates insertion loss; a pesitive measured value indicates gain. Take carc to choose signal levels to achieve maximum dynamic range (see page 6).

This figure shows a display of the magnitude ratio response of a bandpass filter. The measurement marker is positioned to the minimum insertion loss proint in the passband. For this measurement no REF OFFSET has bcen added (the 0 dB reference line is positioned at the top graticule using $\mathrm{CH} 1 *$ or $\mathrm{CH} 2 \hat{*}$) so the displayed MKR value represents the insertion loss.

Relative Measurements

To measure the difference between two points on the trace. select MKR display mode, position the rmensurement marker to the first point, add or subtract REF OFFSET to make the MKR reading zero, then move the marker to the second point. The MKR reading at the second point represents the diflerence between the two points. Calibration is retained using this sequence and the measured value always represents the sum of the REF and MKR values al any point.

The same operation can be performed without preserving the original calibration value by positioning the marker to the first point, pressing MKR then ZRO (hold until display zero), the moving the marker to the setund point. Using this sequence, a new calibration value is stored and all further measured value readiugs (RFF' + MKR) will be relative to the first point instead of the original calibration value.

Thus, both sequences are equivalent, but the first sequence reldins the original calibration value. These sequences can also be used for magnilude, jhase, and delay measurements.

3 dB Frequencies

For example, the insertion loss ar gain measurement sequence can be extended to measure the 3 dB poinls of the filter.

SCALE/DIV: $1 \mathrm{~dB} /$ division.
Set frequency sweep to center the passband trace with 3 ob points visible.
Position measurement marker to center of passband or minimum insertion loss point
MKR, then use REF OFFSET so MKR value is zero.
Move marker so MKR value is $-\mathbf{3 . 0 0} \mathrm{dB}$
Read frequency from FREQ COUNTER MHz
Move marker to other 3 dB point and read frequency.
CLR (momentarily) to remove REF OFFSET.

Be sure to press CLR momentarily; if held for more than about one second, the REL Jight will go out indicating that the stored calibration offset has been cleared and recalibration is necessary,

Gain Compression

A sequence similar to that above can be used to measure the 1 dB gain compressiun uutput puwer.

Position measurement marker to frequency of interest
OUTPUT LEVEL dBm and VERNIER to increase incident power level until magnitude ratio begins to decrease.
MKR, then use REF OFFSET so MKR vaiue is zero.
Increase incident power until MKR value is -1 dB .
1

The amplifier output level an be estimated by summing the amplifier gain and sweeper output power, then subtracting test set transmission loss. A more precise measurement can be made by connecting the test device output directly to the B input and measuring the absolute power level by selecting B, MAG (ste page 25).

TRANSMISSION MEASLREMEN'IS

INSERTION PHASE

This sequence lists the steps for a typical insertion phase motasurement.

SETUP

Set signal levels
Set trequency sweep.
Set CRT display.
MARKERS: * position measurement marker so FREQ COUNTER MHz reads desired calibration frequency

CALIBRATION

Connect through.
CHANNEL 1:
B/R, PHASE, 90 degrees/division. ELECTRICAL LENGTH:
B. MODE as required (usually $\times 1$ or $\times 10$),

CLR if REL lighted.
LENGTH AND VERNIER B for flat response
CHANNEL 1 :
MKR, ZRO (hold until display zero).
Center marker, press Mk'; then press and hold CHANNLL 1 ZRO while adjusting LFNGTH

MEASUREMENT

Connect test device
Electrical length MODE (and sweep width if PHASE $\times 10^{\circ} / \mathrm{SCAN}$ selected) same as calitration.
Position measurement marker to read insertion phase (MKR + REF) and frequency.

This figure shows a bandpass filter insertion phase. The 8505A phase measurement range is +180 to -180 degrees, and the vertical line represents the transition between these valuss. Thus, bet trace hetween any two of these transition lines represents 360 degrees of phase shift.

I'o illustrate the display format, determine the total phase shift for the selected sweop width as follows: Position the measurement marker as far to the left as possible before the FREQ COUNTER MHz display blanks
 tion trace $(100+180)$. Next colnt the second and following transition traces and multiply by $360(2 \times 360)$. Now determine the number of degrees from the last transition trace to the right edge of the screen ($180+60$). The sum of these values represernts the tohal phase shift over the frequency sweep.

$$
(100+180\}+[3 \times 360)+(180)+60)=1600^{\circ}
$$

When the transmitied signal is below Ine moise floor for insertion phase measurements the CR'T trace manally reads zero degrees.

ELECTRICAL LENGTH

This sequence lists the sleps for a typical measurement of equivalent electrical length.

SETUP

Set signal levels.
Set frequency sweep
Set CRT display.
CALIBRATION

Connect through

CHANNEL 1 :
B/R, PHASE, 90 degrees/division
ELECTRICAL LENGTH:
B, MODE as required (usually PHASE $\times 10^{\circ} /$ SCAN), CLR if REL lighted,
LENGTH and VERNIER B for flat response,
Center marker, press MkR. then press and hold ZRO.
MEASUREMENT
Connect test device
Electrical length MODE (and sweep width if PHASE $\times 10^{\circ} /$ SCAN selected must be same as calibration.
ELECTRICAL LENGTH:
LENGTH for flat response over frequency range of interest. If MODE set to $\times 1$ or $\times 10$ read equivalent electrical length of test device from ELECTRICAL LENGTH display, or, if MODE set to PHASE $\times 10^{\circ} /$ SCAN, calculate equivalent electrical length of test device using

$$
\text { meters }=\frac{\text { display value } \times 10}{\text { sweep width }(\mathrm{MHz}) \times 12}
$$

This measurement determines the linear insertion phase required to equalize the electrical length of the reference and test channels with the test device installed. Note that if PH \wedge SF $10 \% / S C A N$ is selected the sweep width cannot be changed without affecting the calibration; if x 1 or x 10 is selected, changing sweep width does not affect calibration. To avoid the electrical length calculation required when the PHASE $\times 10^{\circ} / \mathrm{SCAN}$ mode is selected, measure electrical length with a frequency sweep width of 8.333 MHz . With this sweep width, the ELECTRICAL I.ENGTH display reads the length in centimeters directly.
The wide range of the electrical length controls allow great latitude in the test setup, but you should recognize the limitations. For best accuracy in phase and clectrical length measurements the maximum values listed below for electrical length should not be exceeded.

ELECTRICAL LENGTH MODE	RANGE MHz		
	0.5-13	0.5-130	0.5-1300
$\begin{gathered} x 1 \\ \times 10 \\ \text { PHASE } \times 10^{\circ} / \mathrm{SCAN} \end{gathered}$	$\begin{aligned} & \pm 19.9 \mathrm{~m} \\ & \pm 100 \mathrm{~m} \\ & \pm 1700^{\circ} \end{aligned}$	$\begin{aligned} & \pm 1.99 \mathrm{mI} \\ & \pm 10.9 \mathrm{~m} \\ & \pm 1700^{\circ} \end{aligned}$	$\begin{aligned} & \pm 19.4 \mathrm{cmi} \\ & \pm 100 \mathrm{~cm} \\ & \pm 1700^{\circ} \end{aligned}$

The values represent the sum of the calibration value and any length added during the measurement. Above these vhlues insertion phase linemrily is degraded.

TRANSMISSION MEASURFMENTS

DEVIATION FROM LINEAR PHASE

This sequence lists the steps for a typical measurement of deviation from linear phase.

```
SETUP
    Set signal levels.
    Set frequency sweep
    Set CRT display.
CALIBRATION
    Connect through.
    CHANNEL 1:
        B/R, PHASE, 90 degrees/division.
    ELECTRICAL LENGTH:
        B, MODE as required (usually PHASE }\times1\mp@subsup{0}{}{\circ}/\textrm{SCAN})
        CLR if REL lighted,
        LENGTH AND VERNIER B for flat response.
    Center marker, pross MKR, then press and thold
    CHANNEL 1 ZRO while adjusting LENGTH.
```


MEASUREMENT

```
Connect test device.
Electrical length MODE (and sweep width if PHASE \(\times 10^{\circ} /\) SCAN selected) must be same as calibration.
ELECTRICAL LENGTH:
LENGTH and VERNIER B for flat phase response in frequency range of interest.
Position measurement marker to read phase deviation.
```

Measuring deviation from linear phase is an alternative to measuring group delay made possible by the range of the 8505 electronic line stretrier. Insertion phase consists of two components, linear and non-linear. Leviation from lincar phase is a measure of the non-linear component of insertion phase. By compensating for the linear insertion phase component using the electrical length controls, the deviation from linear phase over the frequency sweep can be measured directly. Compared to group delay, deviation from linear phase is a fundamental measurement because delay is the derivative of phase change with frequency. Also, greater phase sensitivity allows a greater dynamic: rhnge than group delay measurencots, and deviation from linear phase will produce greater detail in areas where the phase response changes rapidly over a small frequency change.

This figure shows how introducing linear insertion phase (electrical length) allows determination of nonlinear insertion phase.

Note that the same maximum electrical length considerations as for the elealrical length measurements [page $19 \mid$ must be obscrved. If the network exhibits large phase changes with frequency, reduce the sweep width and make a serins uf metsurements over the frequency range of interest. This example shows the deviation from linear phase of a bandpass filter with markers at the 3 dB frequencies. Fven if the melwork must be specified in lerms of group delay, the deviation from linear phase measurement serves as a good check of the actual phase response. Using the dual-trace sapahility of the $85 t 15 A$, compare deviation from linear phase with the notwork group delay as described on the next page.

GROUP DELAY

This sequence lists the steps for a typiral group delay measurement.

```
SETUP
    Set signal levels.
    Set frequency sweep
    Set CRT display.
    MARKERS: 1, position measurement marker so FREQ COUNTER MHz reads desired
        calibration frequency.
CALIBRATION
    Connect through.
    CHANNEL 1:
        B/R, DLY, }100\mathrm{ nanoseconds/division,
        MKR, ZRO (hold until display zerol.
MEASUREMENT
    Connect test device
    MKR, 2FO moves marker to reteronce line.
    Position measurement marker to read group delay
        (MKR REF) and frequency.
```

A device with no phase distortion presents a linear insertion phase characteristic. Group delay will thus appear as a flat horizontal line. This figure shows that group delay varies as a function of frequency when the test device exhibits deviation from linear phase.

With slow sweep times or narrow frequency sweeps the instrument switches from the continuous mode to a sample mode in order to maintain lie loest signal-to-noise ratio for the measurcment. Maximun sample rate is 1000 samples per second. If the test device bondwidth will permit fast sweeps, increase the sweep speed until the instrument switches to the analog rnode, then slow lhe sweep speed until just before the switch to sampling. If not. slow to $\approx 1 \mathrm{scc} / \mathrm{sweep}$ and use the sample mode with video filtering.

The maximum group delay which can be displayed depends upon the RANGF. MHz selection as follows: $0.5-13$, ± 80 micraseconds; $0.5-130 . \pm 8$ microsecomets; and $0.5-1300, \pm 800$ nanoseconds and is the sum of the calibration offset value and the acturl measured value.

REFLECTION MEASUREMENTS

This section describes relurn loss and reflection coefficient mensurements, These measurements are described individually, cach with separate selup, calibration, and measurement sequences. For a generalized calibration sequence for all reflection measurements, refer to the S-Parametcr Measurements, General Calibration Sequence. Below is a diagram of reflection test connections using the b502 Transmission/Reflection Test Set.

Comections to the test set and test device are made using the cables supplied in the 11851A Cable Kit. The test device inpuł port is connected to the 8502 front panel TEST connectror. For rellection calibration, connect the short circuit at the same point to which the test dovice will be connected. Whatever configuration is used, all cables, adapters, and fixtures required for the memasurement should also be used during calibration.

RETURN LOSS

This sequence lists the steps for a typical return loss measurement.

SETUP

Set signal levels.
Set frequency sweep.

Set CRT display

MARKERS: 1, position measurement marker so FREQ COUNTER MHz reads desired calibratiori frequency
CALIBRATION
Commect short.
CHANNEL 1 :
$\mathrm{A} / \mathrm{R}, \mathrm{MAG}, 10 \mathrm{~dB} /$ division,
MKR, ZRO (hold until display zero).
MEASUREMENT
Connect test device.

MKR. ZRO moves marker to reterence line.
Position measurement marker to read magnitude ratio
(MKR + REF) and frequency.

Calibration for return loss sets the magnitude ratio between the reflested and reference signals to zero $d B$ with the short circuit. After connecting the test device a nogative value indicates that the reflected signal magnitude is less than the reference signal magnitude.

This figure shows a display of the return loss of a bandpass filter. The messurement marker is pusitioned to the minimmm return loss point in the passband. The 0 dB reference line is set to the center graticule using CH1 $\stackrel{\Delta}{\boldsymbol{*}}$ or $\mathrm{CH} 2 \underset{*}{\boldsymbol{*}}$ and no REF OFFSET has been added, so the absolute value of the MKR reading
 is the return loss measured value.

Standing wave ratio. SWR, can be calculaled from the relurn loss metsurad value using the HP Reflectometer Calculator or these equations:

$$
\begin{gathered}
\rho=10^{13} \quad \text { where } \mathrm{D}=\frac{\text { measured value }(\mathrm{dB})}{20} \\
\quad \mathrm{SWR}=\frac{1+\rho}{1-\rho}
\end{gathered}
$$

For cxample, if the measured magnitude ratio is $-30 \mathrm{~dB}, \rho$ is (0.032 and Ihe SWR is 1.07 .

REFLECTION MEASUREMENTS

REFLECTION COEFFICIENT

This sequence lists the steps for a typical reflection coefficient measurement.

SETUP

Set signal levels.
Set frequency sweep
Set CRT display, polar beam center.
MARKERS: 1, position measurement marker so FREQ
COUNTER MHz reads desired calibration frequency.
GALIBRATION
Connect short.
CHANNEL 1:
A/A, POLAR MAG. POLAR FULL 1
MKR, ZRO (hold until display zero),
ELECTRICAL LENGTH:

A, MODE as required \{usually $\times 1$ or $\times 10$), CLR if REL lighted, LENGTH and VERNIER A tor smallest cluster. CHANNEL 1:

POLAR PHASE.
MKR, ZRO (hold until display zero),
REF,
REF OFFSET so display reads ± 180 degrees,
ZRO.
MKR.
MEASUREMENT
Connect test device.
Electrical length MODE (and sweep width if PHASE $\times 10^{\circ} /$ SCAN selected) same as calibration.
Read $\rho<\phi$ at any point from polar display or: POLAR MAG,
Position measurement markers to read magnitude ratio (MKR + REF) and frequency.
Calculate ρ using

$$
\rho-10^{D} \quad \text { where } D-\frac{\text { retamloss (dB) }}{20}
$$

POLAR PHASE,
Read $\angle \phi$ value (MKR + REF).

Impedance - Using Smith Chart

Impedance can be read directly from the polar display reflection coefficient by installing a Smith rhart overlay. Smith chart overlays are supplied with the 8505 in four versions, $3.16,1.0$, $0.5,0.2$, and 0.1 full scale linear coefficient value of the outer circle. For the 3.16 full scale version use REF OFFSET to set the REF value to +10 dB in POLAR MAG and select POLAR FULL 1. For the other overlays, set the REF value to zero and stetett the POLAR FULL value corresponding to the full scale value of the Smith Chart.

POWER LEVEL MEASUREMENTS

With the INPITT swituh set to R, A, or B and the MODE switch set to MAG, the 8505 measures the absolute power level in dBm at the $\mathrm{R}_{+} \mathrm{A}$, or B input. Some applications for this capability are measuring and setting actual reference, reflected and transmitted signal levels into the R, A, and B inpuls prior to calibration; verifying signal levels at various points in the test setup including actual incident and transmitted power; and diregt measurement of losses in the test set, cablen, and fixtures.

R, A, or B, MAG
CLR (hold for 2 sec if REL lighted).
SCALE/DV and REF OFFSET to position trace.
Position measurement marker to read measured dBm value (MKR + REF)
If desired, convert dBm to mW using

$$
\mathrm{mW}=10^{10}
$$

The dBm difference between an $R, M A G$ and a $B, M A G$ measurement may not be identical to the B / R, MAG measured value. The 8505A measures ratio values ($\mathrm{A} / \mathrm{R}, \mathrm{B} / \mathrm{R}$) with greater acomacy ihan absolute power.

S-PARAMETER MEASUREMENTS

Using the 8503A S-Parameter Test Set with the 8505A you can measure both forward and reverse transmission and reflection characteristics without disconnecting the lest device. This illustration shows a typical 8505A/8503A installation. Use the 19 cm Type N cables supplied with the 8503A to connect RF. R. A, and Bon the 8505A and 8503A front patmels.

Be sure to connect the supplied test set intercomention cable between the 8505 A TEST SET INTFR-CONN commedor on the rear of the signal processor and the SIGNAL PROCESSOR IN"ER-CONNECIT connector on the rear of the 8503A test set.

The 8503A front panel FORWARD/REVERSE control switches the incident RF to Port 1 for FORWARD or Port 2 for reverse. These illustralions show the fumbitums of the 8505 A R, A, and B connections in FORWARD and REVERSE.

With these monnections, the forward (input) and reverse (output) parameters as follows:

$$
\begin{aligned}
& \text { FORWARD } \\
& \qquad S_{21}=\mathrm{B} / \mathrm{R}=\text { Forward Transmission Coefficient } \\
& \mathrm{S}_{11}-\mathrm{A} / \mathrm{R}=\text { Input Reflection Coefficient } \\
& \text { REVERSE } \\
& \mathrm{S}_{12}-\mathrm{A} / \mathrm{R}=\text { Roverse Transmission Coefficient } \\
& \mathrm{S}_{22}-\mathrm{B} / \mathrm{R}-\text { Output Reflection Cocfficient }
\end{aligned}
$$

Thus, the forward calibrations and measurements are made in exactly the same way as deseribed in the previous Transmission and Reflection Measurements sections. For reverse measurements the 8505 A and B inputs exchange transmission and reflection functions.

Connecting the 8503A test set rear panel interonection chble to the 8505A signal processor enables a second set of Reference Offset, Stored Reference Offset. Electrical Length Offset, and Stored Electrical Length Offset registers, allowing independent storage of forward and reverse magnitude, phase, delay, and eltharioal length calibrations.

Comeclions to the test device should be made using the 11857 A Test Port Fxtension Cables or with the 11608 A Transistor Fixture. As shown in the following illustrations, you may connect the test device direcily to the 8503A Port 1 or Port 2. Using two dables balances the electrical length of the test set up. Connenting the dovice directly lo the $8503 A$ port may reduce reflection errors at one port by reducing cable and adapter reflections. Whatever configuration is used, all cables, adapters, and fixtures, required to make the measurement should also be used during calibration.

Transistor Bias

BRIDGF, BIAS 1 and 2 on the 8503A rear panel provide connections for ± 30 Vde., +200 mA bias when measuring transistors. Use a dual de power supply, such as the HP 6205B, that is designed for use with bias tecs optimized for RF applications. (The HP 8717R Transistor Bias Supply is not compatible with the 8503A; it in designed for bias tees optimized for microwave frequencies and may cause the test device to ostillatej).

For common emitter configurations, hiss is established by setting $V_{c e}$ to the desired voltage them moniloring I_{c} as V_{b} in cumbination with resistor R_{1} establishes the base current.

For common base configurations, bias is established by setting $V_{\text {rb }}$ to the desired voltage then monitoring I_{e} as V_{eb} in combination with R_{1} establishes emitter current.

S-PARAMETER MEASUREMENTS

GENERAL CALIBRATION SEQUENCE

When testing most two port test devices it will probably be most convenient to perform complete forward and reverse transmission and reflection calibrations at one time. This sequence lists the steps for complete forward and reverse transmission and reflection calibration for all measurements.

```
SETUP
    Set signal levels
    Set frequency sweep.
    Set CRT display; polar beam center
MARKERS: 1, position measurement marker so FRFQ
    COLINTER MHz reads desired calibration frequency
FORWARD TRANSMISSION: S,1, Electrical Length,
    and Group Delay
    Setect 8503 FOFWARD
    Connect through.
    CHANNEL 1:
        B/R. POLAR MAG, POLAR FULL 1,
        MKR, ZRO (hold until display zero)
    ELECTRICAL LENGTH
        B MODF as required
        CLR if REL lighted,
        LENGTH and VERNIER B for smallest cluster
        ZRO.
    CHANNEL }
        POLAR PHASE
        ZRO (hold until display zero)
        DLY.
        ZRO (hold until display zero)
INPUT REFLECTION: S
    Connect forward short.
    CHANNEL 1:
        A/R, POLAR MAG.
        ZRO (hold until display zero)
    ELECTRICAL LENGTH
        A
        CLR if REL lighted
        ENGTH and VERNIER A for smallest cluster,
        ZRO
    CHANNEL }
        POLAR PHASE
        ZRO (hold until display zero)
        REF,
        REF OFFSET so display reads }\pm180\mathrm{ degrees,
        ZRO.
        MKR.
REVERSE TRANSMISSION: S:z
    Use above FORWARD TRANSMISSION sequence
    except select }8503\mathrm{ REVERSE, change CHANNEL 1
    B/R to A/R, and change ELECTRICAL LENGTH B to A.
OUTPUT REFLECTION: S%
    Use above INPUT REFLECTION sequence except
    connect short on output port, change CHANNEL 1
    A/R to B/R, and change ELECTRICAL LENGTH
```

 A to B
 The measured value for any of the $\mathrm{S}-\mathrm{P}^{3}$ arameters can be read directly from the polar display graticule. ' The
 read from the radial lines. (Also see page 11).

Magnitude and phase valius tan also be read using the measurement marker as follows:

Position measurement marker to desired point on trace
Select A/R or B/R.

Select POLAR MAG

Read magnitude ratio (MKR + REF).
Calculate linear magnitude coefficient using:

Tor $p=10^{\text {D }} \quad$ where $\mathrm{D}=\frac{\text { Measured Value }}{20}$
Select POLAR PHASE
Read phase angle, $\angle \phi,(M K R+R E F)$

The S-Parameter displayed is determined by combination of the R50; S-PARAMFTER SELECT switch and 8505 CIAANNEL 1 or CHANNEL 2 INPUT switoh position.

S-PARAMETER	8503A S-PARAMETER SELECT	8505A INPITT	MEASITRFMFNT
S_{11}	FORWARD	A/R	INPLIT REFIECTION
S_{21}	FORWARD	B/R	FORWARD TRANSMISSION
$S_{1,}$	REVERSE	A/R	REVERSIE 'RANSMISSION
S_{5}	REVERSF.	B/R	OU'THU' REFLECTION

For a device with greater than unity gain, the transmission coefficient will exceed 1 and REF OFFSET must be added Io place the full trace within the outer circle. Adding 20 dR of REF OFFSFT changes the polar full values by a factor of 10 as shown.

Electrical Length, Deviation from Linear Phase, Group Delay

These measurements can be made in the forward or reverse direstion using the measurement sequences described in the Transmission Measurements sedion.

Return Loss

Return loss can be measured using FORWARD. A/R or REVERSE. B/R in eiller MAG or POIAR MAG mode Refer to the Return Loss measurement sequence in the Reflection Measurements section.

Impedance - Using Smith Chart

Impedance can be read directly from the polar display of reflection coreficiant (S_{11} or S_{\ldots}) by installing a Smith Chart overlay. Smith chart overlays are supplied with the 8505A in four versions: 3.16. 1.0. 0.5. 0.2. and (I. 1 full scale linear confficient value of the outer circle. For the 3.16 full scale version use RFF OFFSFT to set the REF value to +10 du in PULAR MAC; and select POLAR FUIIL. 1. For the others, set the REF value to zero and solect the POLAR FULL value corresponding to the full scale value of the Smith Chart.

THE 8501A STORAGE-NORMALIZER

The 8501A provides independent processing and storage for both 8505 A measurtmerm channels. It serves as display memory for the $8505 \wedge$ by digitizing and storing measurement data at the 8505A sweep rate then outputting the processed trace to the $\mathrm{Ck}^{\prime} \mathrm{l}$ at a fixed display rate. Computational capabilities permit reh3 lime averaging and nomalization, and the mithoiliter can imeremse display resolution. Also, key 8505A Channel 1 and 2 measurement parameters are displayed as labels on the CRI.

4)!

With 8501A STORAGE ON the 8501A controls all information presented on the 8505A CRT display. The MKK and KEF values on the 8505 A measured value displays are not affected by 8501 A processing. All 8505A setup. calibration, and measurement sequences described in this note can be nocomplished with STORAGE ON but the labeling interface must the commented to display the reference line or beam center. Selecting 8501A STORAGE OFF bypasses the 8501A and returns the 8505A CKI to conventional analog operation.

To farmiliarize yourself with operation of the 8501 A make these control scttings then proceed with the following paragraphs:

STORAGE OFF LABELS OFF, MAGNIFIER X1,
Channel 1 and Channel 2 INPUT OFF, MEMORY VIEW OUT, AVERAGING OFF

Digital Storage

When the device response characteristic requires a slow sweep to avoid distortion of the measurement, select

STORAGE ON,
Channel 1 and/or Channel 2 INPUT ON.

Cartesian traces are digitized at 500 frequency points on the X axis and 500 points on the Y axis, with $\pm 50 \%$ overrange on the Y axis available to digitize an off-scale trace. Similarly, polar traces are digitized at 250 frequency points with $\pm 50 \%$ overrange for both the X and Y axis. Changing the roference line or beam center position away from the middle of the CRT moves off-scale points onto the display.

INPU' OFF blanks the Channel 1 or Channel 2 trace. STORAGE HOLD freezes the CRT displny far photography or further analysis and memory is not updated with new data on subsequent sweeps. ERASE Completely clears 8501A memory of all stored information.

Labels

Select I.ABfILSON. Sweep mode and frequencies appear at the bottom of the CRT and measurement mode selections, including the MKR value, appear at the top of the CRT. 8505A Channel 1 and/or Channel 2 MODF switches must be set to other than OFF for the labels to appear.

Averaging

Both accuracy and resolution are improved when averaging is used to remove random noise variations from measurements. To use averaging, select

ERASE (momentary),
Channel 1 and/or Channel 2 AVERAGING ON. AVERAGING FACTOR as required.

8501A averaging acts as a "digital" video filter, performing an exponential running average on the data al each frequency point. The current trace has the weight $1-1 / \mathrm{n}$ and the new trace has the weight $1 / \mathrm{n}$ where n is the selected AVERAGING FACTUR. Select an averaging factor appropriate for the sweep rate and degree of signai-to-nofise improvement desired, noting that 2 n sweeps are required to converge to 86% of the final value and $4 n$ sweeps are required to reach 98%. Signal-to-noise improvement increases with \sqrt{n}.

These CRT photos illustrate the improvement in group delay measurement accuracy obtained by averaging.

Magnification

High resolution displays t1 up to 0.01 dP , 1.1 degree, and 0.1 nanosecond per division are accomplished using the MAGNIFIER switch to expand the 8505A SCALE/DIV selecition. For example, with $0.1 \mathrm{~dB} /$ division set at the 8505 A and MAGNIFIER X10 selected, the CRT display resolution is 0.01 dB/division. The dala slored in memory is amplified prior to display and the MAGNIFILR expands the trace about the reference line or beam center position. Frequency response of y cable using a 500 MHz swerep width and $0.01 \mathrm{db} / \mathrm{division}$ is shown in this display. Digitizer resolution produces the step effect: each step represents a 0.002 dB change.

Passband Fipple at $0.01 \mathrm{~dB} /$ division using $\times 10$ magnification

Normalization

Normalization is the process of storing a reference trace in memory and then automatically subtrating the reference trace from the incoming trice and displaying the difference. Typical applications are to remove frequency response characteristics of the test setup from the measurement or to make a comparison measurement in which the test device is matched to a standard. Nommalization is independent for Channel 1 and Channel 2 and is ordinarily used onty for oartesian displays. To normalize:

```
Connect standard (open, short, through, or standard device),
8505A SCALE/DIV same as for measurement,
MEMORY STORE (momentary),
INPUT-MEM,
Connect test device.
```

When MEMORY SIORE is pressed, the displayod trace is transferred to reference memory. Seleciting INPIUTMEM displays the difference between the reference trace and the current trace, resulting in a flat trace at the геferent:e line if the reforence trace and the current trace are identical.

CONTROLS AND DISPLAYS SUMMARY

CRT DISPLAY - The response of both measurement channels can be displayed simultaneously with magnitude and phase response displayed in either cartesian or polar format.

BEAM CON'ROLS - Independent cartesian reference line position controls for each channel, beam center for both chanmels, and standard controls for beam and scale.

IF and VIDEO BANDWIDY'H - Select either 10 kHz or 1 kHz IF bandwidth, and 30 Hz post detention video filter to smooth trace.

SWEEPER OUTPUT - Sweeper output at RF connector is sum of step attenuator and VERNIER settings.

REFERENCE AND TEST INPITS - Three identical inputs for absolute or ratio measurements. Each input has a measurement range from -10 dBm to -110 dBm . Slide switch selects maximurn input level applied at R, A, and B inputs for linear operation. QVFRIOAD indicators above inputs light when level exceeded.

FREQUENCY SCAN CONTROLS AND DISPLAYS - RANGE MHz seletsts frequency range. MODE selects log and linear scans of full range or linear expanded scans selected by WIDTH. With MODE in LOG FULL or LIN FIJLL, WIDTH selections display down-pointing markers to identify end points of stored frequency displayed by the FREQUENCY MHz displays and set by the FREQUENCY controls. Moving MODF: to IIN EXPAND selects the frequency stored for the WIDTH selection.

MEASUREMENT MARKERS - The rotary MARKERS switch selects measurement marker 1 through 5 . The adjacent numbered vernier controls marker position on trase. The FRFQ COUNTER MHz display is blank when the measurement is not accurate. At positions 2 thorough 5, deselected markers point down, the sclected marker points up.

FREQLENCY COUNTER - Displays frequency of measurement marker selected by MARKERS. Resolution is controlled by RANGE MHz and SCAN TIME SEC. OVERFLOW indicates one or more most significant digits are shifted off left of display. Select fast scan time to inspect most significant digits, and slower scan time to inspect least significant digits.

ELECTRICAL LENGTH - Display shows equivalent electrical length or linear insertion phase added to reference channel to equalize electrical length in reference and A and B test signal paths depending upon INPUT and MODE selections. LENGTH buttons increment the displayed value. CLR (momentary) zeros display; CLR (hold until REL out) clears stored calibration; ZRO stores displayed value as ualibration and zeros display.

CHANNEL 1 und CHANNEJ. 2 - Two identical, independent measurement channels. INPUT and MOnF select measurement trace displayed on CRT. LED displays show the relerence line value (REF button pressed), or moasurcment marker displacement lrom reference line (MKR button pressed). Measured value at marker is sum of RFF and MKR values. REF OFFSET buttons increment the reference line value stored in separate magnitude. phase, and delay reference offset registers for each channel. CLR (momentary) resets the reference line value to zoro: CLR (held until REL out) clears stored reference offset calibration. $\angle R O$ stores the calibration reference offset for selected measurement.

(ip) PEWLEETT

For more information, call your local HP Sales Office or nearest Regional Office: Eastern (201) 255-5000; Midwestern (312) 255-9800; Southern (404) 955-1500; Western (213)

 $970-7500$; Canadian (416) 678 -9430. Ask the operator for instrument sales. Or write Hewlett-Packara, 1501 Page Mill Ruaul, Palu ativ, Ca 94304. In Lurape. Hicrictt Pochard