Errata

Title & Document Type: 8754A Operating & Service

Manual

Manual Part Number: 08754-90015

Revision Date: May 1979

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.

OPERATING AND SERVICE MANUAL

8754A NETWORK ANALYZER

4—1300 MHz

SERIAL NUMBERS

This manual applies directly to instruments whose serial number prefix is 1914A.

With changes described in Section VII, this manual also applies to instruments whose serial number prefixes are 1812A, 1825A, 1908A.

For additional information about serial numbers, see INSTRUMENTS COVERED BY THE MANUAL in Section I.

© Copyright HEWLETT-PACKARD COMPANY 1978 1400 FOUNTAIN GROVE PARKWAY, SANTA ROSA, CALIFORNIA 95404, U.S.A.

MANUAL PART NUMBER 08754-90015 Microfiche Part No. 08754-90017 Operating Information Supplement Part No. 08754-90016

Printed: May 1979

Table of Contents

CONTENTS

1	Sect	ion l	Page	Section	n	Page
	I	GENERAL INFORMATION	1-1	V	ADJUSTMENTS	5-1
	•	1-1. Introduction			5-1. Introduction	
		1.4. Specifications			5-3. Equipment Required	. 5-1
		1-6. Safety Considerations			5-7. Factory-Selected Components	5-1
		1-14. Instruments Covered by the Manual			5-9. Related Adjustments	
		1-19. Description			5-11. Low Voltage Power Supply Check	
		1-22. Options			and Adjustments	. 5-10
		1-31. Accessories Supplied			5-12. Sweep Generator	
		1-33. Accessories Available			Adjustment	. 5-12
		1-38. Recommended Test Equipment			5-13. Intensity Limit Adjustment	
		1-58. Recommended Test Equipment			5-14. Horizontal and Vertical Position	
	II	INSTALLATION AND OPERATION			and Gain Adjustment	. 5-18
	11	VERIFICATION	2-1		5-15. Frequency Accuracy and	
		2-1. Introduction			Sweep Width Adjustment	. 5-20
		2-3. Initial Inspection	2-1		5-16. Output dBm Calibration	
		2-5. Preparation for Use			and Harmonics Adjustment	5-28
		2-24. Storage and Shipment			5-17. Marker Adjustment	
		2-32. Operation Verification			5-18. VTO Frequency Adjustment	
		2-32. Operation verification	2-7		5-19. Phase-Lock Loop	:
	***	OPED ATION	3-1		Adjustment	5-38
	III	OPERATION	3-1		5-20. IF Filter Adjustment	
		(See Table of Contents in Section III.)			5-21. Magnitude Detector Accuracy	
	***	DED FORMANCE TESTS	4.1		Adjustment	547
	IV	PERFORMANCE TESTS			5-22. Sampler Adjustments	. 5 17 5-54
		4-1. Introduction.			5-23. Phase Detector Limiters	. 5-54
		4.4. Equipment Required			Adjustment	5-59
		4-6. Test Record			5-24. Phase Detector and Polar	. 5-57
		4-8. Calibration Cycle			Converter Adjustments	5.64
		4-10. Operation Verification			Converter Adjustments	. 5-07
		4-12. Frequency Readout Accuracy Test		VI	REPLACEABLE PARTS	6.1
		4-13. Marker Accuracy Test		VI	6-1. Introduction	
		4-14. Source Output Power Test				
		4-15. Source Spectral Purity Test			6-3. Replaceable Parts List	
		4-16. Input Port Match Test			6-6. Ordering Information	0-1
		4-17. Receiver Noise Level Test		* ***	MANUAL DACKDATING GHANGES	7 1
		4-18. Minimum R Input Level Test		VII	MANUAL BACKDATING CHANGES	
		4-19. Crosstalk Isolation Test	4-17		7-1. Introduction	
		4-20. Magnitude and Phase Frequency			7-6. Manual Change Instructions	/-1
		Respense 1 con 1 c	4-20			0.1
		4-21. Magnitude Dynamic Accuracy Test		VII	SERVICE	
		4-22. Magnitude Display Accuracy Test			8-1. Introduction	
		4-23. Phase Dynamic Accuracy Test			8-3. Assembly Service Sheets	
		4-24. Phase Reference Accuracy Test			8-5. Circuit Descriptions	
		4-25. Phase Display Accuracy Test			8-7. Troubleshooting	
		4-26. Polar Display Accuracy Test	4-37		8-11. Recommended Test Equipment	
		4.27 MAG/PHASE Output Accuracy Test	4-39		8-13. Repair	. 8-13

Table of Contents Model 8754A

ILLUSTRATIONS

1-1. Model 8754A Network Analyzer with Accessories Supplied 1-0 1-2. Typical Serial Number Plate 1-2 1-3. Service Accessories Package, HP Part Number 08754-60051 1-8 2-1. Voltage Selection with Power Module PC Board 2-2 2-2. Installation of Rack-Mounting Hardware and Handles 2-6 2-3. Preparation of Instrument for Shipment 2-7 2-4. Packaging for Shipment Using Factory Packaging Materials 2-8 4-1. Frequency Readout Accuracy Test Setup 4-3 3. Source Output Power Test Setup 4-3 4. Network Analyzer Tuned to 4-MHz Marker 4-6 4.5. Bandwidth Filter Slope Used for FM Demodulation 4-7 4-6. Source Spectral Purity Test Setup 4-7 4-7. Detection Slope 4-9 4-8. Input Port Match Test Setup 4-7 4-8. Input Port Match Test Setup 4-7 4-9. Input Port Match Test Setup 4-10 4-11. Minimum R Input Level Test Setup 4-12 4-12. R. And R. B. Crosstalk Test Setup 4-16 4-11. Manimum R Input Level Test Setup 4-16 4-11. Raginitude Dynamic Accuracy Test Setup 4-17 4-17. Againtude Dynamic Accuracy Test Setup 4-17 4-18. Magnitude Display Accuracy Test Setup 4-19 4-19. Phase Reference Accuracy Test Setup 4-19 4-11. Magnitude Dynamic Accuracy Test Setup 4-20 4-19. Rage Reference Accuracy Test Setup 4-20 4-19. Rage Reference Accuracy Test Setup 4-20 4-19. Rage Reference Accuracy Test Setup 4-20 4-19. Phase Reference Accuracy Test Setup 4-20 4-19. Rage Reference Accuracy Test Setup 4-20 4-20. Phase Reference Accuracy Test Setup 4-20 4-21. Phase Reference Test Display Accuracy Test Setup 4-20 4-22. Phase Display Accuracy Test Setup 4-20 4-23. Polar Display Accuracy Test Setup 4-26 4-23. Polar Display	5-18 5-19 5-21 5-21 5-22 5-26
1-2. Typical Serial Number Plate	5-18 5-19 5-21 5-21 5-22 5-26
1-2. Typical Serial Number Plate 1-3. Service Accessories Package, HP Part Number 08754-60051 1-8 2-1. Voltage Selection with Power Module PC Board 2-2. Installation of Rack-Mounting Hardware and Handles 2-6 2-3. Preparation of Instrument for Shipment 5-7 2-4. Packaging for Shipment Using Factory Packaging Materials 2-8 4-1. Frequency Readout Accuracy Test Setup 4-2 4-2. Marker Accuracy Test Setup 4-3. Source Output Power Test Setup 4-3. Source Output Power Test Setup 4-4. Network Analyzer Tuned to 4-MHz Marker 4-5. Bandwidth Filter Slope Used for FM Demodulation 4-6. Source Spectral Purity Test Setup 4-8. Input Port Match Test Setup (B and R INPUT Ports) 4-10. Receiver Noise Level Test Setup 4-11. Minimum R Input Level Test Setup 4-12 4-13. A-B Crosstalk Test Setup 4-14 4-15. Rad and R-B Crosstalk Test Setup 4-15. 4-MHz Marker Centered on CRT 4-16. Ratio Magnitude Dynamic Accuracy Test Setup 4-2 4-17. Magnitude Dynamic Accuracy Test Setup 4-2 4-19. Phase Reference Test Display. 4-21, Phase Reference Test Display. 4-22. Phase Display Accuracy Test Setup 4-23. Polar Display Accuracy Test Setup 4-24 4-27. Phase Reference Test Display. 4-25. Plase Display Accuracy Test Setup 4-26. Pake Reference Test Display. 4-27. Plase Display Accuracy Test Setup 4-28. Plane Dynamic Accuracy Test Setup 4-29. Phase Reference Test Display. 4-29. Phase Reference Test Display. 4-20. Phase Reference Test Display. 4-21. Phase Reference Test Display. 4-22. Phase Display Accuracy Test Setup 4-23. Polar Display Accuracy Test Setup 4-24. Plane Dynamic Accuracy Test Setup 4-25. Plane Reference Test Display. 4-26. Pake Display Accuracy Test Setup 4-27. Phase Reference Test Display. 4-28. Plane Demondration Test Setup 4-29. Phase Display Accuracy Test Setup 4-20. Phase Reference Test Display. 4-21. Phase Reference Test Display. 4-22. Phase Display Accuracy Test Setup 4-23. Polar Display Accuracy Test Setup	5-19 5-21 5-21 5-22 5-26
Number 08754-60051 2-1. Voltage Selection with Power Module PC Board 2-2. Installation of Rack-Mounting Hardware and Handles 2-3. Preparation of Instrument for Shipment 2-7. Packaging for Shipment Using Factory Packaging Materials 2-8. 4-1. Frequency Readout Accuracy Test Setup 2-9. Marker Accuracy Test Setup 2-1. Marker Accuracy Test Setup 2-1. More Accuracy Test Setup 2-2. Marker Accuracy Test Setup 2-3. Source Output Power Test Setup 2-4. Bandwidth Filter Slope Used for FM Demodulation 2-5. Bandwidth Filter Slope Used for FM Demodulation 2-6. Source Spectral Purity Test Setup 3-7. Detection Slope 3-8. Input Port Match Test Setup 3-9. Input Port Match Test Setup 4-10. Receiver Noise Level Test Setup 4-11. Minimum R Input Level Test Setup 4-12. Absolute Frequency Response Test Setup 4-13. A B Crosstalk Test Setup 4-14. Absolute Frequency Response Test Setup 4-15. AMPC Marker Centered on CRT 4-16. Ratio Magnitude Dynamic Accuracy Test Setup 4-19. Phase Dynamic Accuracy Test Setup 4-19. Phase Dynamic Accuracy Test Setup 4-20. Phase Beference Accuracy Test Setup 4-21. Phase Reference Accuracy Test Setup 4-22. Phase Display Accuracy Test Setup 4-23. Polar Display Accuracy Test Setup 4-24. Pakage Reference Accuracy Test Setup 4-25. Phase Display Accuracy Test Setup 4-26. All Magnitude Display Accuracy Test Setup 4-27. Phase Reference Test Display 4-28. Phase Display Accuracy Test Setup 4-29. Phase Display Accuracy Test Setup 4-20. Phase Reference Test Display 4-21. Phase Reference Test Display 4-22. Phase Display Accuracy Test Setup 4-23. Polar Display Accuracy Test Setup 4-23. Polar Display Accuracy Test Setup 4-24. Phase Reference Test Display 4-25. Phase Display Accuracy Test Setup 4-26. All Magnitude Display Accuracy Test Setup 4-27. Phase Reference Test Display 4-28. Phase Display Accuracy Test Setup 4-29. Phase Display Accuracy Test Setup 4-20. Phase Display Accuracy Test Setup 4-21. Phase Reference Test Display 4-22. Phase Display Accuracy Test Setup 4-23. Polar Display Accuracy Test Setup 4-24. Phase Displa	5-19 5-21 5-21 5-22 5-26
2-1. Voltage Selection with Power Module PC Board	5-21 5-21 5-22 5-26
Nodule PC Board 2-2. Installation of Rack-Mounting Hardware and Handles 2-6 2-3. Preparation of Instrument for Shipment 2-7 2-4. Packaging for Shipment Using Factory Packaging Materials 2-8 4-1. Frequency Readout Accuracy Test Setup 4-2. Marker Accuracy Test Setup 4-3. Source Output Power Test Setup 4-4. Network Analyzer Tuned to 4-MHz Marker 4-5. Bandwidth Filter Slope Used for FM Demodulation 4-7. Detection Slope 4-8. Input Port Match Test Setup 4-9. Input Port Match Test Setup 4-10. Receiver Noise Level Test Setup 4-11. Absolute Frequency Response Test Setup 4-12. R-A and R-B Crosstalk Test Setup 4-13. A-B Crosstalk Test Setup 4-14. Absolute Frequency Response Test Setup 4-15. 4-MHz Marker Centered on CRT 4-18. Magnitude Display Accuracy Test Setup 4-19. Phase Polynamic Accuracy Test Setup 4-20. Phase Reference Accuracy Test Setup 4-21. Phase Reference Accuracy Test Setup 4-22. Phase Display Accuracy Test Setup 4-23. Polar Display Accuracy Test Setup 4-24. Packaging for Shipment Using 4-25. Prequency Adjustment Locations 5-10. Frequency Adjustment Locations 5-11. Frequency Reference Adjustment Locations 5-12. Orientation of Resistor Array Header 5-13. OUTPUT dBm Calibration and Harmonics Adjustment Test Setup 5-14. OUTPUT dBm Calibration and Harmonics Adjustment Test Setup 5-14. OUTPUT dBm Calibration and Harmonics Adjustment Test Setup 5-15. Marker Adjustment Locations 5-16. Marker Adjustment Locations 5-17. Oscilloscope Display of Marker Birdie 5-18. VTO Frequency Adjustment Test Setup 5-20. Phase-Lock Loop Adjustment Test Setup 5-21. Phase-Lock Loop Adjustment Test Setup 5-22. In Filter Adjustment Test Setup 5-23. Oscilloscope Display of Frequency Reference Showing 0.4V Backstep 5-24. IF Filter Adjustment Test Setup 5-25. IF Filter Adjustment Locations 5-26. Oscilloscope Display of Sine Wave at A8TP1 5-27. Magnitude Detector Accuracy Adjustment Test Setup 5-29. Phase Display Accuracy Te	5-21 5-21 5-22 5-26
2-2. Installation of Rack-Mounting Hardware and Handles 2-6 2-3. Preparation of Instrument for Shipment 2-7 2-4. Packaging for Shipment Using Factory Packaging Materials 2-8 4-1. Frequency Readout Accuracy Test Setup 4-2. Marker Accuracy Test Setup 4-3. Source Output Power Test Setup 4-4. Network Analyzer Tuned to 4-MHz Marker 4-5. Bandwidth Filter Slope Used for FM Demodulation 4-6. Source Spectral Purity Test Setup 4-7. Detection Slope 4-8. Input Port Match Test Setup 4-8. Input Port Match Test Setup 4-9. Input Port Match Test Setup 4-10. Receiver Noise Level Test Setup 4-11. Minimum R Input Level Test Setup 4-12. R-A and R-B Crosstalk Test Setup 4-15. 4-MHz Marker Centered on CRT 4-15. 4-MHz Marker Centered on CRT 4-16. Ratio Magnitude Display Accuracy Test Setup 4-17. Magnitude Display Accuracy Test Setup 4-18. Magnitude Display Accuracy Test Setup 4-19. Phase Reference Adjustment Locations 5-10. Frequency Regivence Adjustment Locations 5-11. Grequency Regivence Adjustment Test Setup 5-12. Orientation of Resistor Array Header 5-13. OUTPUT dBm Calibration and Harmonics Adjustment Test Setup 5-14. OUTPUT dBm Calibration and Harmonics Adjustment Test Setup 5-15. Marker Adjustment Locations 5-15. Marker Adjustment Locations 5-15. Marker Adjustment Locations 5-16. Marker Adjustment Locations 5-17. OutPUT dBm Calibration and Harmonics Adjustment Test Setup 5-18. VIO Frequency Adjustment Test Setup 5-19. VTO Frequency Adjustment Test Setup 5-20. Phase-Lock Loop Adjustment Locations 5-20. Phase-Lock Loop Adjustment Locations 5-20. Phase-Lock Loop Adjustment Test Setup 5-21. Phase-Lock Loop Adjustment Test Setup 5-22. Display Blanked at 3-MHz Marker 5-23. Oscilloscope Display of Sine Wave at A8TP1 5-24. Magnitude Detector Accuracy Adjustment Test Setup 5-25. IF Filter Adjustment Test Setup 5-26. Oscilloscope Display of Sine Wave at A8TP1 5-27. Magnitude Detector Accuracy Adjustment Test Setup 5-29. Oscilloscope Display of Sine Wave at A8TP3 5-30. R Sampler Adjustment Locations 5-31. Sampler Adjustment Locations 5-32	5-21 5-22 5-26
Hardware and Handles	5-21 5-22 5-26
2-3. Preparation of Instrument for Shipment 2-7 2-4. Packaging for Shipment Using Factory Packaging Materials 2-8 4-1. Frequency Readout Accuracy Test Setup 4-2 4-2. Marker Accuracy Test Setup 4-2 4-3. Source Output Power Test Setup 4-4 4-4. Network Analyzer Tuned to 4-MHz Marker 4-6 4-5. Bandwidth Filter Slope Used for FM Demodulation 4-7 4-6. Source Spectral Purity Test Setup 4-7 4-7 4-8. Input Port Match Test Setup 4-8 4-9. Input Port Match Test Setup 4-10 4-10. Receiver Noise Level Test Setup 4-11 4-11. Minimum R Input Level Test Setup 4-12 4-13. A-B Crosstalk Test Setup 4-14 4-14. Absolute Frequency Response Test Setup 4-15 4-16. Ratio Magnitude Display Accuracy Test Setup 4-20 4-19. Phase Reference Adjustment Locations 5-12. Orientation of Resistor Array Header 5-13. OUTPUT dBm Calibration and Harmonics Adjustment Test Setup 5-14. OUTPUT dBm Calibration and Harmonics Adjustment Test Setup 5-16. Marker Adjustment Locations 5-17. Oscilloscope Display of Marker Birdie 5-18. VTO Frequency Adjustment Test Setup 5-19. VTO Frequency Adjustment Test Setup 5-20. Phase-Lock Loop Adjustment Test Setup 5-20. Phase-Lock Loop Adjustment Test Setup 5-21. Phase-Lock Loop Adjustment Test Setup 5-22. Display Blanked at 3-MHz Marker 5-23. Oscilloscope Display of Frequency Response Test Setup 5-24. IF Filter Adjustment Test Setup 5-25. IF Filter Adjustment Test Setup 5-26. Oscilloscope Display of Sine Wave at A8TP1. 5-29. Oscilloscope Display of Sine Wave at A8TP1. 5-29. Oscilloscope Display of Sine Wave at A8TP1. 5-29. Oscilloscope Display of Sine Wave at A8TP3. 5-30. R Sampler Adjustment Test Setup 5-31. Sampler Adjustment Test Setup 5-33. A and B Sampler Adjustment Test Setup	5-22 5-26
5-11. Frequency Reference Adjustment Locations. Factory Packaging Materials 5-12. Marker Accuracy Test Setup 4-2. Marker Accuracy Test Setup 4-3. Source Output Power Test Setup 4-4. Network Analyzer Tuned to 4-MHz Marker 4-5. Bandwidth Filter Slope Used for FM Demodulation. 4-7. Detection Slope 4-8. Input Port Match Test Setup 4-9. Input Port Match Test Setup 4-10. Receiver Noise Level Test Setup 4-11. Minimum R Input Level Test Setup 4-12. R-A and R-B Crosstalk Test Setup 4-13. A-B Crosstalk Test Setup 4-14. Absolute Frequency Response Test Setup 4-15. 4-MHz Marker Centered on CRT 4-16. Ratio Magnitude and Phase Frequency Response Test Setup 4-17. Magnitude Dynamic Accuracy Test Setup 4-18. Magnitude Display Accuracy Test Setup 4-19. Phase Reference Accuracy Test Setup 4-20. Phase Reference Accuracy Test Setup 4-31. Source Output Power Test Setup 4-32. Phase Display Accuracy Test Setup 4-34. Source Output Power Test Setup 4-45. Bandwidth Filter Slope Used for FM Demodulation. 4-7 5-18. Marker Adjustment Test Setup 5-19. VTO Frequency Adjustment Test Setup 5-19. VTO Frequency Adjustment Test Setup 5-20. Phase-Lock Loop Adjustment Test Setup 5-21. Phase-Lock Loop Adjustment Test Setup 5-22. Display Blanked at 3-MHz Marker 5-23. Oscilloscope Display of Frequency Reference Showing 0.4V Backstep 5-24. IF Filter Adjustment Test Setup 5-25. IF Filter Adjustment Test Setup 5-26. Oscilloscope Display of Sine Wave at A8TP1 5-27. Magnitude Detector Accuracy Adjustment Locations 5-29. Oscilloscope Display of Sine Wave at A8TP3 5-29. Oscilloscope Display of Sine Wave at A8TP3 5-30. R Sampler Adjustment Test Setup 5-31. Source Output Developed Test Setup 5-32. Effect of BI Adjustment Test Setup 5-33. A and B Sampler Adjustment Test Setup	5-22 5-26
Factory Packaging Materials 2-8 4.1. Frequency Readout Accuracy Test Setup 4-2 Marker Accuracy Test Setup 4-3 Source Output Power Test Setup 4-4 4. Network Analyzer Tuned to 4-MHz Marker 4-6 4.5. Bandwidth Filter Slope Used for FM Demodulation 4-7 Detection Slope 4-7 4.6. Source Spectral Purity Test Setup 4-7 4.7. Detection Slope 4-9 4.8. Input Port Match Test Setup 5-18. VTO Frequency Adjustment Test Setup 5-19. VTO Frequency Adjustment Test Setup 5-20. Phase-Lock Loop Adjustment Locations 5-22. Display Blanked at 3-MHz Marker 1-24. Phase Reference Accuracy Test Setup 4-20 4.11. Magnitude Display Accuracy Test Setup 4-21 4.12. Phase Reference Accuracy Test Setup 4-22 4.13. Palae Display Accuracy Test Setup 4-23 4-23. Polar Display Accuracy Test Setup 4-36 4-24. Phase Beference Accuracy Test Setup 4-36 4-22. Phase Display Accuracy Test Setup 4-37 4-3. Source Seadout Accuracy Test Setup 4-36 5-13. OUTPUT dBm Calibration and Harmonics Adjustment Test Setup 5-16. Marker Adjustment Locations 5-15. Marker Adjustment Locations 5-15. Marker Adjustment Locations 5-16. Marker Adjustment Locations 5-18. VTO Frequency Adjustment Test Setup 5-19. VTO Frequency Adjustment Test Setup 5-20. Phase-Lock Loop Adjustment Locations 5-22. Display Blanked at 3-MHz Marker 5-23. Oscilloscope Display of Frequency Reference Showing 0.4V Backstep 5-24. IF Filter Adjustment Test Setup 5-26. Oscilloscope Display of Sine Wave at A8TP1 5-27. Magnitude Detector Accuracy Adjustment Locations 5-29. Oscilloscope Display of Sine Wave at A8TP3 5-30. R Sampler Adjustment Test Setup 5-33. A and B Sampler Adjustment Te	5-26
5-13. OUTPUT dBm Calibration and Harmonics Adjustment Test Setup. 5-14. OUTPUT dBm Calibration and Harmonics Adjustment Test Setup. 5-14. OUTPUT dBm Calibration and Harmonics Adjustment Test Setup. 5-14. OUTPUT dBm Calibration and Harmonics Adjustment Test Setup. 5-15. Marker Adjustment Test Setup. 5-16. Marker Adjustment Test Setup. 5-16. Marker Adjustment Locations 5-17. Oscilloscope Display of Marker Birdie 5-18. VTO Frequency Adjustment Test Setup. 5-19. VTO Frequency Adjustment Test Setup. 5-20. Phase-Lock Loop Adjustment Locations 5-21. Phase-Lock Loop Adjustment Test Setup. 5-22. Display Blanked at 3-MHz Marker. 5-23. Oscilloscope Display of Frequency Reference Showing 0.4V Backstep. 5-24. IF Filter Adjustment Test Setup. 5-25. IF Filter Adjustment Test Setup. 5-26. Oscilloscope Display of Sine Wave at ASTP1. 5-28. Magnitude Detector Accuracy Adjustment Test Setup. 5-29. Oscilloscope Display of Sine Wave at ASTP1. 5-28. Magnitude Detector Accuracy Adjustment Locations. 5-19. VTO Frequency Adjustment Test Setup. 5-20. Phase Dynamic Accuracy Test Setup. 4-10. Receiver Noise Level Test Setup. 4-11. Absolute Frequency Response Test Setup. 4-12. Absolute Frequency Response Test Setup. 4-13. A-B Crosstalk Test Setup. 4-14. Absolute Frequency Response Test Setup. 4-15. Admit and Phase Frequency Response Test Setup. 4-16. Source Spectral Purity Test Setup. 4-17. Magnitude Dynamic Accuracy Test Setup. 4-20. Phase Reference Accuracy Test Setup. 4-21. Phase Dynamic Accuracy Test Setup. 4-22. Phase Display Accuracy Test Setup. 4-23. Polar Display Accuracy Test Setup. 4-24. Source Adjustment Test Setup. 5-16. Marker Adjustment Locations. 5-17. Oscilloscope Display of Marker Birdie. 5-18. VTO Frequency Adjustment Test Setup. 5-20. Phase Dynamic Accuracy Test Setup. 5-21. Phase Dynamic Accuracy Test Setup. 5-22. Phase Display Accuracy Test Setup. 5-23. Oscilloscope Display of Sine Wave at A8T	
Adjustment Test Setup	5-29
4.3. Source Output Power Test Setup 4.4 4.4. Network Analyzer Tuned to 4-MHz Marker 4.6 4.5. Bandwidth Filter Slope Used for FM Demodulation 4.7 4.6. Source Spectral Purity Test Setup 5-16. Marker Adjustment Locations 5-17. Oscilloscope Display of Marker Birdie 5-18. VTO Frequency Adjustment Test Setup 5-19. VTO Frequency Adjustment Locations 5-19. VTO Frequency Adjustment Locations 5-19. VTO Frequency Adjustment Test Setup 5-19. VTO Frequency Adjustment Test Setup 5-20. Phase-Lock Loop Adjustment Locations 5-20. Phase-Lock Loop Adjustment Test Setup 5-21. Phase-Lock Loop Adjustment Locations 5-22. Display Blanked at 3-MHz Marker 5-23. Oscilloscope Display of Frequency Reference Showing 0.4V Backstep 5-24. IF Filter Adjustment Test Setup 5-25. IF Filter Adjustment Test Setup 5-26. Oscilloscope Display of Sine Wave at ASTP1 5-27. Magnitude Detector Accuracy Adjustment Locations 5-29. Oscilloscope Display of Sine Wave at ASTP1 5-28. Magnitude Detector Accuracy Adjustment Locations 5-29. Oscilloscope Display of Sine Wave at ASTP3 5-30. R Sampler Adjustment Locations 5-29. Oscilloscope Display of Sine Wave at ASTP3 5-31. Sampler Adjustment Test Setup 5-32. Sine Wave at ASTP3 5-33. A and B Sampler Adjustment Test Setup 5-34. And B Sampler Adjustment Test Setup 5-35. A and B Sampler Adjustment Test Setup 5-36. And B Sampler Adjustment Test Se	5-29
Adjustment Locations 5-15. Marker Adjustment Test Setup. 5-16. Marker Adjustment Locations 5-17. Oscilloscope Display of Marker Birdie 5-18. VTO Frequency Adjustment Test Setup 5-19. VTO Frequency Adjustment Test Setup 5-20. Phase-Lock Loop Adjustment Test Setup 5-21. Phase-Lock Loop Adjustment Locations 5-22. Display Blanked at 3-MHz Marker 5-23. Oscilloscope Display of Frequency Reference Showing 0.4V Backstep 5-24. IF Filter Adjustment Locations 5-25. IF Filter Adjustment Locations 5-26. Oscilloscope Display of Sine Wave 4-17. Asolute Frequency Response Test Setup 4-18. As Band R Input Level Test Setup 4-19. Assolute Frequency Response Test Setup 4-19. Phase Dynamic Accuracy Test Setup 4-19. Phase Dynamic Accuracy Test Setup 4-20. Phase Reference Accuracy Test Setup 4-21. Phase Reference Accuracy Test Setup 4-22. Phase Polsplay Accuracy Test Setup 4-23. Polar Display Accuracy Test Setup 4-24. Phase Display Accuracy Test Setup 4-25. Plase Display Accuracy Test Setup 4-26. Plase Display Accuracy Test Setup 4-27. Plase Display Accuracy Test Setup 4-28. Plase Display Accuracy Test Setup 4-29. Plase Display Accuracy Test Setup 4-20. Plase Display Accuracy Test Setup 4-21. Phase Display Accuracy Test Setup 4-22. Plase Display Accuracy Test Setup 4-23. Polar Display Accuracy Test Setup 4-24. Plase Display Accuracy Test Setup 4-25. Plase Display Accuracy Test Setup 4-26. Plase Display Accuracy Test Setup 4-27. Plase Display Accuracy Test Setup 4-28. Plase Display Accuracy Test Setup 4-39. Polar Display Accuracy Test Setup 4-30. Plase Display Accuracy Test Setup 4-31. Sampler Adjustment Locations 5-32. Effect of BI Adjustment On Display 5-33. A and B Sampler Adjustment Test Setup 5-33. A and B Sampler Adjustment Test Setup	
5-15. Marker Adjustment Test Setup. 4-7. Detection Slope 4-8. Input Port Match Test Setup 4-8. Input Port Match Test Setup 4-9. Input Port Match Test Setup 4-10. Receiver Noise Level Test Setup 4-11. Minimum R Input Level Test Setup 4-12. R-A and R-B Crosstalk Test Setup 4-13. A-B Crosstalk Test Setup 4-14. Absolute Frequency Response Test Setup 4-15. 4-MHz Marker Centered on CRT 4-16. Ratio Magnitude and Phase Frequency Response Test Setup 4-17. Magnitude Display Accuracy Test Setup 4-18. Magnitude Display Accuracy Test Setup 4-19. Phase Reference Accuracy Test Setup 4-20. Phase Reference Accuracy Test Setup 4-21. Phase Reference Test Display 4-22. Phase Display Accuracy Test Setup 4-23. Polar Display Accuracy Test Setup 4-24. Phase Display Accuracy Test Setup 4-25. Phase Display Accuracy Test Setup 4-26. Phase Reference Test Display 4-27. Phase Display Accuracy Test Setup 4-28. Polar Display Accuracy Test Setup 4-37. And B Sampler Adjustment Test Setup 4-38. Input Port Match Test Setup 4-47. Magnitude Display Accuracy Test Setup 4-5-18. VTO Frequency Adjustment Test Setup 5-19. VTO Frequency Adjustment Locations 5-20. Phase-Lock Loop Adjustment Test Setup 5-21. Phase-Lock Loop Adjustment Test Setup 5-22. Display Blanked at 3-MHz Marker 5-23. Oscilloscope Display of Frequency Showing 0.4V Backstep 5-24. IF Filter Adjustment Test Setup 5-25. IF Filter Adjustment Locations 5-26. Oscilloscope Display of Sine Wave 4-19. Setup 5-29. Oscilloscope Display of Sine Wave at A8TP3 5-30. R Sampler Adjustment Test Setup 5-31. Sampler Adjustment Test Setup 5-32. Effect of BI Adjustment on Display 5-33. A and B Sampler Adjustment Test Setup 5-33. A and B Sampler Adjustment Test Setup	
Demodulation. 4-7 A-6. Source Spectral Purity Test Setup. 4-7 A-7. Detection Slope 4-9 A-8. Input Port Match Test Setup 5-18. VTO Frequency Adjustment Test Setup 5-19. VTO Frequency Adjustment Test Setup 5-20. Phase-Lock Loop Adjustment Test Setup 5-21. Phase-Lock Loop Adjustment Locations 5-22. Display Blanked at 3-MHz Marker 5-22. Display Blanked at 3-MHz Marker 6-22. Display Blanked at 3-MHz Marker 6-23. Oscilloscope Display of Frequency Reference Showing 0.4V Backstep 5-24. IF Filter Adjustment Test Setup 5-25. IF Filter Adjustment Test Setup 5-26. Oscilloscope Display of Sine Wave 4-15. 4-MHz Marker Centered on CRT 4-22 4-16. Ratio Magnitude Dynamic Accuracy Test Setup 4-26 4-17. Magnitude Dynamic Accuracy Test Setup 4-26 4-18. Magnitude Display Accuracy Test Setup 4-26 4-19. Phase Reference Accuracy Test Setup 4-26 4-19. Setup 5-29. Oscilloscope Display of Sine Wave 4-18 4-20. Phase Reference Accuracy Test Setup 4-36 4-30. R Sampler Adjustment Locations 4-37 5-31. Sampler Adjustment Test Setup 5-33. A and B Sampler Adjustment Test Setup 5-34.	
1-6. Source Spectral Purity Test Setup. 4-7 1-7. Detection Slope . 4-9 1-8. Input Port Match Test Setup (B and R INPUT Ports). 4-12 1-9. Input Port Match Test Setup (A INPUT Ports). 4-13 1-9. Input Port Match Test Setup (A INPUT Port) . 4-13 1-10. Receiver Noise Level Test Setup . 4-14 1-11. Minimum R Input Level Test Setup . 4-15 1-12. R-A and R-B Crosstalk Test Setup . 4-16 1-13. A-B Crosstalk Test Setup . 4-17 1-14. Absolute Frequency Response Test Setup . 4-20 1-15. 4-MHz Marker Centered on CRT . 4-22 1-16. Ratio Magnitude Dynamic Accuracy Test Setup . 4-26 1-17. Magnitude Dynamic Accuracy Test Setup . 4-26 1-18. Magnitude Dynamic Accuracy Test Setup . 4-27 1-19. Phase Reference Accuracy Test Setup . 4-28 1-20. Phase Reference Test Display . 4-34 1-22. Phase Display Accuracy Test Setup . 4-35 1-23. Polar Display Accuracy Test Setup . 4-36 1-24. Phase Display Accuracy Test Setup . 4-36 1-25. Polar Display Accuracy Test Setup . 4-36 1-3. A B Crosstalk Test Setup . 4-36 1-4. Absolute Frequency Response Test Setup . 4-29 1-5. A-MHz Marker Centered on CRT . 4-22 1-6. Ratio Magnitude Display Accuracy Test Setup . 4-26 1-7. Magnitude Display Accuracy Test Setup . 4-27 1-8. And Test Setup . 4-29 1-9. Input Port Match Test Setup . 4-29 1-17. Magnitude Dynamic Accuracy Test Setup . 4-29 1-18. Magnitude Display Accuracy Test Setup . 4-29 1-19. Phase Reference Accuracy Test Setup . 4-31 1-3. A B Crosstalk Test Setup . 4-31 1-4. Absolute Frequency Reference accuracy Test Setup . 4-29 1-17. Magnitude Dynamic Accuracy Test Setup . 4-29 1-18. Magnitude Display Accuracy Test Setup . 4-29 1-19. Phase Reference Accuracy Test Setup . 4-31 1-3. A B Crosstalk Test Setup . 4-31 1-4. Absolute Frequency Reference Accuracy Test Setup . 4-29 1-19. Phase Reference Accuracy Test Setup . 4-29 1-19. Phase Reference Test Display . 4-31 1-19. Phase Reference Test Setup . 4-31 1-19. Phase Reference Test Setup . 4-31 1-19. Phase Reference Test Setup . 4-31 1-3. A B Crosstalk Test Setup . 4-31 1-4. Absolute Test Setup . 4-29 1-5. In Filter Ad	5-32
4-7. Detection Slope	5-33
1-8. Input Port Match Test Setup (B and R INPUT Ports). 1-9. Input Port Match Test Setup (A INPUT Port) 1-10. Receiver Noise Level Test Setup 1-11. Minimum R Input Level Test Setup 1-12. R-A and R-B Crosstalk Test Setup 1-13. A-B Crosstalk Test Setup 1-14. Absolute Frequency Response Test Setup 1-15. 4-MHz Marker Centered on CRT 1-16. Ratio Magnitude and Phase Frequency Response Test Setup 1-17. Magnitude Dynamic Accuracy Test Setup 1-18. Magnitude Display Accuracy Test Setup 1-19. Phase Reference Accuracy Test Setup 1-20. Phase Reference Test Display 1-21. Phase Reference Test Display 1-22. Phase Display Accuracy Test Setup 1-23. Polar Display Accuracy Test Setup 1-24. Phase Display Accuracy Test Setup 1-25. Phase Lock Loop Adjustment Locations 1-20. Phase-Lock Loop Adjustment Locations 1-21. Phase-Lock Loop Adjustment Locations 1-22. Display Blanked at 3-MHz Marker 1-23. Polar Display Accuracy Test Setup 1-24. Phase Lock Loop Adjustment Locations 1-24. Phase-Lock Loop Adjustment Test Setup 1-24. Phase Lock Loop Adjustment Test Setup 1-24. Phase Reference Pisplay of Frequency Showing 0.4V Backstep 1-25. Display Blanked at 3-MHz Marker 1-26. Oscilloscope Display of Frequency Reference 1-26. Oscilloscope Display of Sine Wave 1-27. Magnitude Detector Accuracy Adjustment 1-28. Magnitude Detector Accuracy Adjustment 1-29. Oscilloscope Display of Sine Wave at A8TP3 1-20. Phase Reference Test Display 1-29. Oscilloscope Display of Sine Wave at A8TP3 1-20. Phase Reference Test Display 1-29. Oscilloscope Display of Sine Wave 1-29. Oscilloscope Display of Sine Wave 1-29. Oscillosco	5-35
(B and R INPUT Ports). 4-12 Input Port Match Test Setup (A INPUT Port) 4-13 I-10. Receiver Noise Level Test Setup 4-16 I-11. Minimum R Input Level Test Setup 4-16 I-12. R-A and R-B Crosstalk Test Setup 4-17 I-13. A-B Crosstalk Test Setup 4-19 I-14. Absolute Frequency Response Test Setup 4-20 I-15. 4-MHz Marker Centered on CRT 4-22 I-16. Ratio Magnitude and Phase Frequency Response Test Setup 4-24 I-17. Magnitude Dynamic Accuracy Test Setup 4-26 I-18. Magnitude Display Accuracy Test Setup 4-29 I-19. Phase Reference Accuracy Test Setup 4-29 I-19. Phase Reference Accuracy Test Setup 4-29 I-19. Phase Reference Test Display Accuracy Test Setup 4-31 I-20. Phase Reference Test Display Accuracy Test Setup 4-34 I-21. Phase Reference Test Display Accuracy Test Setup 4-34 I-22. Phase Display Accuracy Test Setup 4-36 I-23. Polar Display Accuracy Test Setup 4-37 Input Port Match Test Setup 5-21. Phase-Lock Loop Adjustment Locations 5-21. Phase-Lock Loop Adjustment Locations 5-21. Phase-Lock Loop Adjustment Locations 5-22. Display Blanked at 3-MHz Marker	5-36
5-21. Phase-Lock Loop Adjustment Locations	5-37
Care	5-38
5-23. Oscilloscope Display of Frequency Reference Showing 0.4V Backstep 5-24. IF Filter Adjustment Test Setup 5-25. IF Filter Adjustment Locations 5-26. Oscilloscope Display of Sine Wave 1-13. A-B Crosstalk Test Setup 5-25. IF Filter Adjustment Locations 5-26. Oscilloscope Display of Sine Wave 1-14. Absolute Frequency Response Test Setup 1-15. 4-MHz Marker Centered on CRT 1-16. Ratio Magnitude and Phase Frequency 1-17. Magnitude Dynamic Accuracy Test Setup 1-18. Magnitude Display Accuracy Test Setup 1-19. Phase Dynamic Accuracy Test Setup 1-20. Phase Reference Accuracy Test Setup 1-21. Phase Reference Test Display 1-22. Phase Display Accuracy Test Setup 1-23. Oscilloscope Display of Frequency Reference Showing 0.4V Backstep 1-24. IF Filter Adjustment Test Setup 1-25. IF Filter Adjustment Locations 1-26. Oscilloscope Display of Sine Wave 1-27. Magnitude Detector Accuracy Adjustment 1-28. Magnitude Detector Accuracy Adjustment 1-29. Oscilloscope Display of Sine Wave at A8TP3 1-29. Oscilloscope Display of Sine Wave 1-29. Oscilloscope Display of Sine Wave 1-20. Phase Reference Accuracy Test Setup 1-21. Phase Reference Test Display 1-22. Phase Display Accuracy Test Setup 1-23. Polar Display Accuracy Test Setup 1-23. Oscilloscope Display of Sine Wave 1-24. Test Setup 1-25. IF Filter Adjustment Locations 1-26. Oscilloscope Display of Sine Wave 1-27. Magnitude Detector Accuracy Adjustment 1-28. Magnitude Detector Accuracy Adjustment 1-29. Oscilloscope Display of Sine Wave at A8TP3 1-29. Oscilloscope Display of Sine Wave 1-29. Oscilloscope Display o	5-39
Showing 0.4V Backstep 4-16 Showing 0.4V Backstep 5-24. IF Filter Adjustment Test Setup 5-25. IF Filter Adjustment Locations 5-26. Oscilloscope Display of Sine Wave 4-17 at A8TP1 5-27. Magnitude Detector Accuracy Adjustment 5-28. Magnitude Detector Accuracy Adjustment 5-28. Magnitude Detector Accuracy Adjustment 5-28. Magnitude Detector Accuracy Adjustment 5-29. Oscilloscope Display of Sine Wave 4-24 at A8TP1 5-27. Magnitude Detector Accuracy Adjustment 5-28. Magnitude Detector Accuracy Adjustment 5-29. Oscilloscope Display of Sine Wave 4-29 4-29 base Reference Accuracy Test Setup 4-31 base Reference Accuracy Test Setup 4-32. Phase Reference Test Display 4-34 base Reference Test Display 4-35 base Reference Adjustment Test Setup 4-36 base Reference Test Display 4-37 base Showing 0.4V Backstep 5-24. IF Filter Adjustment Locations 5-26. Oscilloscope Display of Sine Wave 4-87 base Reference Accuracy Adjustment 5-28. Magnitude Detector Accuracy Adjustment 4-30 base Reference Accuracy Test Setup 5-30. R Sampler Adjustment Test Setup 5-31. Sampler Adjustment Locations 5-32. Effect of BI Adjustment on Display 5-33. A and B Sampler Adjustment Test Setup 5-33. A and B Sampler Adjustment Test Setup	541
4-12. R-A and R-B Crosstalk Test Setup	
4-13. A-B Crosstalk Test Setup	
4-14. Absolute Frequency Response Test Setup 4-20 4-15. 4-MHz Marker Centered on CRT 4-22 4-16. Ratio Magnitude and Phase Frequency Response Test Setup 4-24 4-17. Magnitude Dynamic Accuracy Test Setup 4-26 4-18. Magnitude Display Accuracy Test Setup 4-29 4-19. Phase Dynamic Accuracy Test Setup 4-31 4-20. Phase Reference Accuracy Test Setup 4-33 4-21. Phase Reference Test Display Accuracy Test Setup 4-34 4-22. Phase Display Accuracy Test Setup 4-36 4-23. Polar Display Accuracy Test Setup 4-37 5-26. Oscilloscope Display of Sine Wave at A8TP1. 5-27. Magnitude Detector Accuracy Adjustment Test Setup 5-28. Magnitude Detector Accuracy Adjustment Locations. 5-29. Oscilloscope Display of Sine Wave at A8TP3. 5-30. R Sampler Adjustment Test Setup 5-31. Sampler Adjustment Locations 5-32. Effect of BI Adjustment on Display 6-33. A and B Sampler Adjustment Test Setup 5-33. A and B Sampler Adjustment Test Setup 5-34.	5-43
4-15. 4-MHz Marker Centered on CRT	5-44
Response Test Setup	
Response Test Setup	5-46
4-17. Magnitude Dynamic Accuracy Test Setup 4-26 4-18. Magnitude Display Accuracy Test Setup 4-29 4-19. Phase Dynamic Accuracy Test Setup 4-31 4-20. Phase Reference Accuracy Test Setup 4-33 4-21. Phase Reference Test Display 4-34 4-22. Phase Display Accuracy Test Setup 4-36 4-23. Polar Display Accuracy Test Setup 4-37 5-28. Magnitude Detector Accuracy Adjustment Locations 5-29. Oscilloscope Display of Sine Wave at A8TP3. 5-30. R Sampler Adjustment Test Setup 5-31. Sampler Adjustment Locations 5-32. Effect of BI Adjustment on Display 5-33. A and B Sampler Adjustment Test Setup	
4-18. Magnitude Display Accuracy Test Setup 4-29 4-19. Phase Dynamic Accuracy Test Setup 4-31 4-20. Phase Reference Accuracy Test Setup 4-33 4-21. Phase Reference Test Display 4-34 4-22. Phase Display Accuracy Test Setup 4-36 4-23. Polar Display Accuracy Test Setup 4-37 4-24. Phase Display Accuracy Test Setup 4-36 4-37 4-38 Locations 5-29. Oscilloscope Display of Sine Wave at A8TP3. 5-30. R Sampler Adjustment Test Setup 5-31. Sampler Adjustment Locations 5-31. Sampler Adjustment on Display 5-32. Effect of BI Adjustment on Display 5-33. A and B Sampler Adjustment Test Setup 5-33. A and B Sampler Adjustment Test Setup 5-33. A and B Sampler Adjustment Test Setup 5-34.	5-48
4-19. Phase Dynamic Accuracy Test Setup4-315-29. Oscilloscope Display of Sine Wave at A8TP3.4-20. Phase Reference Accuracy Test Setup4-335-30. R Sampler Adjustment Test Setup4-21. Phase Reference Test Display4-345-31. Sampler Adjustment Locations4-22. Phase Display Accuracy Test Setup4-365-32. Effect of BI Adjustment on Display4-23. Polar Display Accuracy Test Setup4-375-33. A and B Sampler Adjustment Test Setup	
4-20. Phase Reference Accuracy Test Setup4-335-30. R Sampler Adjustment Test Setup4-21. Phase Reference Test Display4-345-31. Sampler Adjustment Locations4-22. Phase Display Accuracy Test Setup4-365-32. Effect of BI Adjustment on Display4-23. Polar Display Accuracy Test Setup4-375-33. A and B Sampler Adjustment Test Setup	5-49
4-21. Phase Reference Test Display4-345-31. Sampler Adjustment Locations4-22. Phase Display Accuracy Test Setup4-365-32. Effect of BI Adjustment on Display4-23. Polar Display Accuracy Test Setup4-375-33. A and B Sampler Adjustment Test Setup	
1-22. Phase Display Accuracy Test Setup 4-36 1-23. Polar Display Accuracy Test Setup	5-54
4-23. Polar Display Accuracy Test Setup	
	5-56
4-24. MAG/PHASE Output Accuracy 5-34. Phase Detector Limiters Adjustment	
Test Setup (Magnitude)	5-59
4-25. MAG/PHASE Output Accuracy 5-35. Phase Detector and Limiters	
Test Setup (Phase)	5-60
5-1. Low Voltage Power Supply Adjustment 5-36. Zero Crossings Aligned for 180-Degree	
Test Setup	
5-2. Low Voltage Power Supply Adjustment 5-37. Reference Adjustment Test Setup	5-64
Locations	
5-3. Sweep Generator Adjustment Test Setup 5-12 Adjustment Locations	
5-4. Sweep Generator Adjustment Locations 5-13 5-39. Oscilloscope Display for Reference	5-65
5-5. Intensity Limit Adjustment Test Setup 5-15 Adjustment	

ILLUSTRATIONS (Cont'd)

Figure	Page	Figure	Page
540. Phase Detector and Polar Converter		8-33. FR Waveform and Decreasing Slope Shaper	
Adjustment Test Setup	5-67	Waveform	8-53
5-41. 180-Degree Phase Transistion		8-34. FR and LO Waveforms	8-53
5-42. Gap at -135 Degrees		8-35. FR and SS Waveforms	
7-1. Channel 2 Summing Amplifier Partial		8-36. A7U3QB Bias, Simplified Schematic and	
Schematic	. 7-2	Equivalent Circuit	8-53
8-1. Schematic Diagram Notes		8-37. Shaper (A15), Component Locations	
8-2. Schematic Symbols for Digital Integrated		8-38. Source (A7), Component Locations	
Circuits	. 8-4	8-39. Shaper (A15) and Source (A7),	
8-3. Typical Test Setup for Waveforms		Block Diagram	8-57
84. HP 8754A Overall Block Diagram		8-40. Shaper (A15) and Source (A7),	
8-5. RF Source Section, Block Diagram		Schematic Diagram	8-59
8-6. Receiver Section, Block Diagram		8-41. BIRDY and PULSE Waveforms	
8-7. Display Section, Block Diagram		8-42. Pulse Width Discrimination	
8-8. Sweep Generator Timing Diagram		8-43. Pulse Width Discriminator Timing	
8-9. SINGLE Mode Timing Diagram		8-44. Marker Generator (A12), Component	
8-10. Sawtooth Generator, Simplified	0 2 0	Locations	8-65
Schematic	8-27	8-45. Marker Generator (A12), Block Diagram	
8-11. Display Blanking Pulse Logic		8-46. Marker Generator (A12), Schematic	
8-12. Pen Lift Logic		Diagram	8-69
8-13. Sweep Generator (A17), Component	0.50	8-47. Sampler, Simplified Schematic	
Locations	8.31	8-48. Sampler Timing Diagram	
8-14. Sweep Generator (A17), Block Diagram		8-49. Samplers (A3, A4, A5), Component	
8-15. Sweep Generator (A17), Schematic Diagram		Locations	8-72
8-16. Derivation of FREQ REF Voltage		8-50. Samplers (A3, A4, A5), Block Diagram	
8-17. Frequency Reference Circuit in START/CENTE		8-51. Samplers (A3, A4, A5), Schematic	
Mode, Simplified Schematic		Diagram	8-75
	0-37	8-52. VTO Operation at 3 MHz	
8-18. Frequency Reference Circuit in FULL 4-1300 Mode, Simplified Schematic	8-37	8-53. Voltage-Tuned Oscillator (A6), Component	
	0-37	Locations	8-80
8-19. Tuning Voltage from A15 Shaper, Simplified Schematic	8-37	8-54. Voltage-Tuned Oscillator (A6),	
		Block Diagram	8-81
8-20. Integrator Waveforms	0-30	8-55. Voltage-Tuned Oscillator (A6), Schematic	001
8-21. Equivalent Analog Circuitry During Segment 4	8-30	Diagram	8-83
8-22. Digit Select Timing Diagram	8-39	8-56. Phase Lock Loop Simplified Block Diagram	
8-23. Segment Driver		8-57. Phase Lock (A13), Component Locations	
8-24. FREQUENCY MHz Display Timing	8.42	8-58. Phase Lock Control (A14), Component	
8-25. Frequency Reference (A15), Component	. 0-12	Locations	8-86
Locations	8-44	8-59. Phase Lock (A13) and Phase Lock	
8-26. Digital Panel Meter (A2), Component	. 0-1-1	Control (A14), Block Diagram	8-866
Locations	8.45	8-60. Phase Lock (A13) Schematic Diagram	8-866
8-27. FREQUENCY MHz Display (A22), Component	. 0 15	8-61. Phase Lock Control (A14), Schematic Diagram.	
Locations	8.46	8-62. IF Switch Control Logic	
8-28. Frequency Reference (A15) and Digital Panel	, 0-40	8-63. A8 Rectifier, Equivalent Circuit	
Meter (A2, A22), Block Diagram	8.47	8-64. A8 DC Logger, Equivalent Circuit	
8-29. Frequency Reference (A15) and Digital Panel	. 0-47	8-65. IF Switch (A6), Component Locations	
	8.40	8-66. A, B, Detector, Component Locations	
Meter (A2, A22), Schematic Diagram		8-67. IF Switch (A6) and A, B Detector (A8),	5 7 5
8-30. FR and FS Waveforms	. 0-33	Block Diagram	8-97
8-31. Equivalent Circuit of Shaper with Break-Point	8 52	8-68. IF Switch (A6) and A, B Detector (A8),	0 7 1
Diodes	. 0-33	Schematic Diagram	8-99
8-32. Decreasing and Increasing Slope Shapers,	8.53	8-69. A11 Rectifier, Equivalent Circuit	8-102
Equivalent Circuit	. 0-23	6-67. ATT Recuirer, Equivalent Circuit	J-102

ILLUSTRATIONS (Cont'd)

i Figure		Page	Figure		Page
8-70.	A11 DC Logger, Equivalent Circuit	8-103	8-94.	Deflection Amplifiers (A18), Component	
8-71.	R Detector (A11), Component			Locations	8-151
	Locations		8-95.	Deflection Amplifiers (A18),	
8-72.	R Detector (A11), Block Diagram			Block Diagram	8-153
8-73.	R Detector (A11), Schematic Diagram		8-96.	Deflection Amplifiers (A18), Schematic	
8-74.	Polar Display	8-111		Diagram	8-155
8-75.	Variable Phase Shifter, Simplified		8-97.	High Voltage Power Supply (A21),	
	Block Diagram	8-112		Component Locations	8-159
8-76.	90-Degree Digital Phase Shifter, Timing		8-98.	High Voltage Power Supply (A21), Block	
	Diagram	8-114		Diagram	8-161
8-77.	Pulse Width Modulator for Leading Phase,		8-99.	High Voltage Power Supply (A21),	_
	Simplified Schematic	8-115		Schematic Diagram	8-163
8-78.	<i>EE E ,</i>		8-100.	IF Switch Control Logic, Equivalent	
	Simplified Schematic			Circuit	8-166
8-79.	Output of Summing Amplifier U9		8-101.	External Interface (A23, NORMALIZER	
8-80.	Y Multiplier, Simplified Schematic	8-118		INTERCONNECT), Component	
8-81.	Current-to-Voltage Converter, Simplified			Locations	8-169
	Schematic	8-119	8-102.	External Interface (A23, NORMALIZER	
8-82.	Resistive Divider in Modulator, Equivalent			INTERCONNECT), Schematic	
	Circuit	8-121		Diagram	
8-83.	±180-Degree Phase Detector and Pulse		8-103.	Front Panel Controls and Indicators (A1, A22	
	Width Modulator, Simplified			Component Locations	8-173
	Schematic	8-122	8-104.	Transformer Primary Connections for	
8-84.	±180-Degree Phase Detector and Pulse			Selected Line Voltages	8-176
	Width Modulator, Timing Diagram	8-123	8-105.	+20V Power Supply, Simplified Block	
8-85.	Hysteresis Summing, Simplified Block			Diagram	8-178
	Diagram	8-124	8-106.	Foldback Current Limit, Simplified	
8-86.	Phase Detector (A9), Component			Schematic	8-179
	Locations.	8-125	8-107.	-10V Power Supply, Simplified Block	
8-87.	Polar Converter (A10), Component			Diagram	
	Locations			Rectifier (A19), Component Locations	8-181
8-88.	Phase Detector (A9) and Polar Converter (A1)		8-109.	DC Regulator (A16), Component	
	Block Diagram			Locations	8-182
8-89.	Phase Detector (A9) and Polar Converter (A10		8-110.	Low Voltage Power Supply (A19, A16),	
	Schematic Diagram			Schematic Diagram	8-183
8-90.	Front Panel (A1), Component Locations	8-138	8-111.	Motherboard (A20), Component	
8-91.	Analog Processor (A2), Component			Locations	
	Locations	8-139		Motherboard (A20), Wire List	8-189
8-92.	Front Panel (A1) and Analog Processor (A2),		8-113.	Major Assembly Locations,	
	Block Diagram			Top View	8-197
8-93.	Front Panel (A1) and Analog Processor (A2),		8-114.	Major Assembly Locations,	
	Schematic Diagram	8-143		Bottom View	8-197

TABLES

1

Table Page		ble	Page
1-1. HP 8754A Network Analyzer Spec	cifications1-4 5	. Adju	stments
1-2. HP 8754A Performance Character			er Supply Voltages 5-12
1-3. Recommended Test Equipment			uency Linearity (Shaping)
2-1. AC Power Cables Available	2-3	A	djustments 5-24
2-2. HP Model 8754A Mating Connected	ors		uency Shaping Adjustments 5-28
4-1. Performance Tests	4-1 5	. Magi	nitude Detector Accuracy
4-2. Absolute Magnitude Frequency Re	esponse 4-23	V	erification Table 5-50
4-3. Magnitude Dynamic Accuracy, A	Channel 4-28 5	. Pola	Circle Radius Adjustments 5-71
4-4. Magnitude Dynamic Accuracy, R	Channel 4-28 6	. Refe	rence Designations and
4-5. Magnitude Display Accuracy	4-30	A	bbreviations
4-6. Phase Dynamic Accuracy	4-33 6	. Code	List of Manufacturers 6-4
4-7. Phase Display Accuracy	4-37 6	. Repl	aceable Parts 6-5
4-8. Polar Display Accuracy	4-38 7	. Man	al Backdating Changes by
4-9. MAG/PHASE Output Accuracy		S	erial Number Prefix 7-1
(B Channel, Magnitude)	4-41 8	. Seriv	ce Sheets 8-12
4-10. MAG/PHASE Output Accuracy	8	. Cros	s Reference of Assemblies to
(R Channel, Magnitude)	4-41	Se	ervice Sheets8-14
4-11. MAG/PHASE Output Accuracy	8	. Fron	t-Panel Control of
(PHASE B/R)	4-43	II	F Switch
4-12. Performance Test Record	4-44 8	. Cont	rol Logic Summary 8-134
5-1. Adjustable Components	5-2 8	. Disp	lay Switching 8-135
5-2. Factory Selected Components	5-7 8	. Signa	nl Selection and Display 8-148
5-3. Related Adjustments	5-8 8	'. IF S	witch Control Logic 8-165

General Information Model 8754A

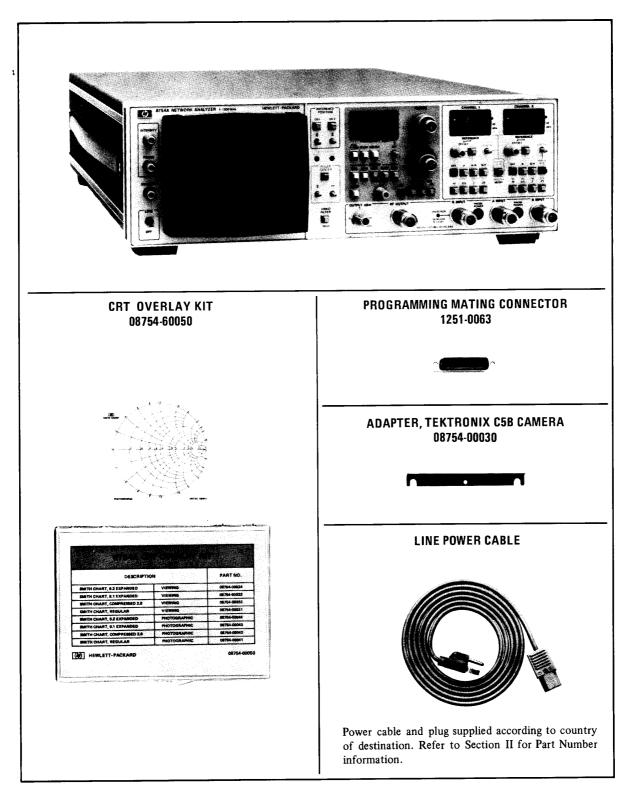


Figure 1-1. Model 8754A Network Analyzer with Accessories Supplied

General Information

1

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION

- 1-2. This Operating and Service Manual contains information required to install, operate, test, adjust, and service the Hewlett-Packard Model 8754A Network Analyzer. Figure 1-1 shows the instrument and accessories supplied. This section covers instrument identification, description, options, accessories, specifications, and other basic information.
- 1-3. This manual is divided into eight sections, which provide the following information:
- a. SECTION I, GENERAL INFORMATION, presents a brief description of the instrument, specifications, and lists of accessories and recommended test equipment.
- b. SECTION II, INSTALLATION AND OPERATION VERIFICATION, presents information relative to initial inspection, preparation for use, mounting, packing, shipping, and operation verification.
- c. SECTION III, OPERATION, presents instructions for operation of the instrument.
- d. SECTION IV, PERFORMANCE TESTS, presents procedures required to verify that performance of the instrument is in accordance with published specifications.
- e. SECTION V, ADJUSTMENTS, presents procedures required to properly adjust and align the instrument after repair.
- f. SECTION VI, REPLACEABLE PARTS, presents information required to order all parts and assemblies.
- g. SECTION VII, MANUAL BACKDATING CHANGES, presents backdating information to make this manual compatible with earlier shipment configurations.

h. SECTION VIII, SERVICE, presents circuit descriptions, schematic diagrams, component location diagrams, and troubleshooting procedures to aid the user in maintaining the equipment.

1-4. SPECIFICATIONS

1-5. Instrument specifications are listed in Table 1-1. These specifications are the performance standards or limits against which the instrument is tested. Table 1-2 lists performance characteristics, which are not specifications but typical characteristics included as additional information for the user. To ensure that the instrument meets the specifications listed in Table 1-1, performance tests (Section IV) should be performed every six months.

1-6. SAFETY CONSIDERATIONS

1-7. General

1-8. The Model 8754A is a Safety Class I instrument and has been manufactured and tested according to international safety standards.

1-9. Operation

1-10. BEFORE APPLYING POWER, make sure the ac input to the instrument is set for the available ac line voltage, that the correct fuse is installed, and that all normal safety precautions have been taken. (Refer to Safety Considerations at the beginning of this section.)

1-11. Service

1-12. Although the instrument has been manufactured in accordance with international safety standards, this manual contains information, cautions, and warnings which must be observed to insure safe operation and to avoid damage to the instrument. Warnings and cautions appear as appropriate throughout the manual. Service should be performed only by qualified personnel.

General Information Model 8754A

1-13. INSTRUMENTS COVERED BY THE MANUAL

1-14. Attached to the rear panel of the instrument is a serial number plate that is similar to that shown in Figure 1-2. The serial number is in two parts, a prefix and a suffix. The first four digits and the letter (e.g., 1339A) are the serial number prefix. The prefix is the same for all identical instruments; it is changed only when the instrument is modified. However, the numbers in the suffix are consecutive, regardless of changes in the prefix. The suffix is different for each instrument. The manual applies to instruments that have the serial number prefixes listed under SERIAL NUMBERS on the title page.

Figure 1-2. Typical Serial Number Plate

- 1-15. An instrument manufactured after the printing of this manual might have a serial number prefix that is not listed on the title page. This unlisted serial number prefix indicates that the instrument is different from that described in the manual. The manual for this newer instrument is accompanied by a yellow Manual Changes supplement, which contains "change information" that explains how to adapt the manual to the newer instrument.
- 1-16. In addition to change information, the supplement might contain information for correcting errors in the manual. Such "errata" information applies to all serial numbers.

1-17. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is identified with the print date and part number of the manual, both of which appear on the title page of the manual. Complimentary copies of the supplement are available from Hewlett-Packard. For information concerning a serial number prefix that is not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard office.

1-18. DESCRIPTION

- 1-19. The HP Model 8754A Network Analyzer consists of an internally leveled, 4- to 1300-MHz, swept source. Polar or rectangular measurements are displayed on a cathode-ray tube (CRT) through two independent channels. With appropriate signal-routing accessories, the 8754A is a fully integrated stimulus/response test system that measures magnitude and phase characteristics of linear networks by comparing the incident signal with the signal transmitted by the device under test or reflected from its input.
- 1-20. The basic transmission measurements are insertion loss or gain, insertion phase, and transmission coefficient (S_{21} or S_{12}). The basic reflection measurements are return loss, from which SWR can be calculated, and reflection coefficient (S_{11} or S_{22}), from which impedance can be calculated or read from a Smith chart overlay.

1-21. OPTIONS

1-22. Option 907, Front Handles

1-23. Option 907 instruments are supplied with a front handle kit. Refer to Section II for a detailed description of this kit and instructions for installation.

1-24. Option 908, Rack Flanges

1-25. Option 908 instruments are supplied with a rack flange kit. Refer to Section II for a detailed description of this kit and instructions for installation.

Model 8754A General Information

1-26. Option 909, Front Handles and Rack Flanges

1-27. Option 909 instruments are supplied with a front handle and rack flange kit. Refer to Section II for a detailed description of this kit and instructions for installation.

1-28. Option 910, Extra Manual

1-29. The standard instrument is supplied with one Operating and Service Manual. Option 910 instruments are supplied with two manuals.

1-30. ACCESSORIES SUPPLIED

- 1-31. Figure 1-1 shows the instrument and the accessories supplied. These accessories are:
 - Power cable (refer to Section II for part number)
 - Smith chart overlays. Set of four for viewing and four for photography. HP Part No. 08754-60050.
 - Adapter for Tektronix Model C5B camera, HP Part No. 08754-00030.
 - Mating connector for PROGRAM-MING connector, A23J7. HP Part No. 1251-0063.

1-32. ACCESSORIES AVAILABLE

1-33. Service Accessories

1-34. A service accessories package is available for convenience in troubleshooting and adjustment of the instrument. The service accessories package, with a complete list of its contents, is illustrated in Figure 1-3. The complete package may be obtained from Hewlett-Packard by ordering HP Part No. 08754-60051.

1-35. Measurement Accessories

1-36. The measurement accessories listed below are available for use with the 8754A. Refer to Section III for detailed descriptions of accessories.

- HP Model 8501A Storage-Normalizer
- HP Model 8750A Storage-Normalizer
- HP Model 8748A S-Parameter Test Set
- HP Model 11850A Power Splitter, 50 ohm
- HP Model 11850B Power Splitter, 75 ohm
- HP Model 8502A Transmission/Reflection Test Set, 50 ohm
- HP Model 8502B Transmission/Reflection Test Set, 75 ohm
- HP Model 10855A Broadband Preamp, 2 MHz to 1.3 GHz
- HP Model 1121A AC Probe
- HP Model 11853A Type N Accessory Kit, 50 ohm
- HP Model 11854A Type BNC Accessory Kit, 50 ohm
- HP Model 11855A Type N Accessory Kit, 75 ohm
- HP Model 11856A Type BNC Accessory Kit, 75 ohm

1-37. RECOMMENDED TEST EQUIPMENT

1-38. Equipment required for testing and adjustment of the instrument is listed in Table 1-3. Other equipment may be substituted if it meets the critical specifications indicated in the table.

Table 1-1. HP 8754A Network Analyzer Specifications (1 of 2)

SOURCE

FREQUENCY

Range: 4 MHz to 1300 MHz

Sweep Modes: Linear full sweep (4 MHz to 1300 MHz) and calibrated sweep widths with variable start or center frequency.

Markers: Internal, crystal-generated harmonic markers; amplitude markers for rectangular displays, intensity markers for polar displays.

Spacing: 1, 10, and 50 MHz

Accuracy: ±0.01%

Digital Frequency Readout: Indicates frequency of variable marker in linear full sweep mode and start or center frequency in calibrated sweep width mode.

Resolution: 1 MHz

Accuracy: ±10 MHz (20°C to 30°C). Readout is adjustable for calibration to internal crystal markers.

OUTPUT

Power:

Range: Calibrated 0 to +10 dBm Accuracy: ±0.8 dB at 50 MHz

Flatness: ±0.5 dB

Spectral Purity (at +10 dBm RF output level): Residual FM 1 : \leqslant 7 kHz RMS (10 kHz bandwidth)

bandwidth) **Harmonics:** -28 dBc

Spurious Signals: 4 MHz to 500 MHz, -65 dBc 500 MHz to 1300 MHz, -50 dBc

GENERAL

Trigger Modes: AUTO (repetitive) and TRIG (single sweep triggered by front-panel pushbutton or rear-panel PROGRAMMING connector)

RF Output Connector: Type N Female

RECEIVER

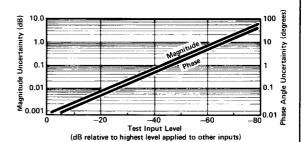
INPUT

Frequency Range: 4 MHz to 1300 MHz

Input Channels: Three Inputs, R, A, and B. Two test inputs (A and B) with 80 dB dynamic range and a reference input (R) with 40 dB dynamic range.

Impedance: 50Ω. Input port match ≥20 dB return

loss (≤1.22 SWR).


Maximum Input Level: 0 dBm Damage Level: +20 dBm (50 Vdc) Noise Level: <-80 dBm, A and B inputs

Minimum R Input Level: -40 dBm ($\geqslant -40 \text{ dBm}$

required to operate R input phase lock)

Crosstalk Between Channels: >83 dB

Error Limits:

MAGNITUDE

Frequency Response (flatness): Absolute (A, B, R): ±1 dB

Ratio (A/R, B/R): ±0.3 dB

Dynamic Accuracy (+20°C to +30°C):

±0.3 dB from 0 to -50 dBm ±0.5 dB from -50 to -60 dBm ±1 dB from -60 to -70 dBm ±2.5 dB from -70 to -80 dBm

¹ Applies in swept and CW modes.

Model 8754A General Information

Table 1-1. HP 8754A Network Analyzer Specifications (2 of 2)

RECEIVER (Cont'd)

Reference Offset:

Range: ±199 dB in 1 dB steps

Accuracy: Included in Dynamic Accuracy above.

Display Resolution: 10, 2.5, 1, 0.25 dB/div Display Accuracy: ±2% ±0.05 division

PHASE

1

Frequency Response: ≤±2.5°

Range: ±180°

Dynamic Accuracy:

 $\pm 2^{\circ}$ from 0 to -50 dBm $\pm 4^{\circ}$ from 0 to -70 dBm

Reference Offset:

Range: ±199° in 1° steps

Accuracy: ±1%

Display Resolution: 90°, 45°, 10°, 2.5°/major division

Display Accuracy: ±2% ±0.05 division

POLAR

See Magnitude and Phase specifications for Frequency Response, Dynamic Accuracy, and Reference Offset.

Display Accuracy: Actual value is within 2.5 mm of displayed value.

DISPLAY

Measurement Functions: CRT displays either polar

trace or two independent rectangular traces.

Channel 1: A Magnitude Absolute (dBm)

R Magnitude Absolute (dBm) A/R Magnitude Ratio (dB)

B/R Magnitude Ratio (dB)

Channel 2: B Magnitude Absolute (dBm)

B/R Magnitude Ratio (dB)

B/R Phase (degrees)

Polar: A/R Magnitude Ratio (dB) and

Phase (degrees)

DISPLAY (Cont'd)

Reference Position: Reference lines for Channel 1, Channel 2, and Polar Center can be independently set to any position on the CRT for calibration. Display resolution expands about the Reference Position line.

Graticule size:

Rectangular (cartesian): 100 mm (3.94 in.) horizontal by 80 mm (3.15 in.) vertical.

Polar: 80 mm (3.15 in.) in diameter

Both graticules internal to CRT

Smith Chart Overlays:

Viewing: 0.2 expanded, 0.1 expanded, com-

pressed 2.0, regular

Photographic: 0.2 expanded, 0.1 expanded,

compressed, 2.0, regular

Phosphor: P39

GENERAL

Magnitude/Phase Output: -10 mV/degree and -100 mV/dB at BNC female connector multiplexed by TTL level or contact closure at pin of PROGRAMMING connector for use with external digital voltmeter.

Accuracy:

Magnitude: See Magnitude Dynamic Accuracy specifi-

cation

Phase: $\pm 1.5\%$ (0 to $\pm 170^{\circ}$), $\pm 2\%$ ($\pm 170^{\circ}$ to $\pm 180^{\circ}$).

Environmental:

Temperature:

Operating: 0°C to +55°C except where noted

Storage: -40° C to $+75^{\circ}$ C

Power: Selection of 100, 120, 220, and 240 Vac +5%, -10%; 48 to 66 Hz; 200 VA maximum **Dimensions:** 133 mm x 425 mm x 505 mm

(5.25 in. x 16.75 in. x 19.875 in.)

Weight: Net, 17.7 kg (39 lb); Shipping: 20 kg (44 lb)

Table 1-2. HP 8754A Performance Characteristics (1 of 2)

SOURCE

FREQUENCY CHARACTERISTICS

Sweep Width Accuracy:

500 to 1000 MHz: Typically $\pm 2\%$ 50 to 200 MHz: Typically $\pm 5\%$ 1 to 20 MHz: Typically $\pm 8\%$

Stability

Temperature: Typically ±400 kHz/°C **Time:** Typically ±100 kHz/hour

OUTPUT CHARACTERISTICS

Impedance: $50\Omega.$ Source match typically less than

1.4 SWR (>16 dB return loss).

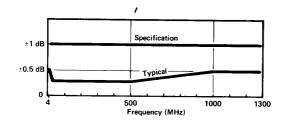
Power Range: Uncalibrated to typically +13 dBm

Spectral Purity (at +10 dBm): Harmonics: Typically -35 dBc

Spurious Signals:

4 to 500 MHz: Typically -75 dBc 500 to 1300 MHz: Typically -60 dBc

GENERAL CHARACTERISTICS

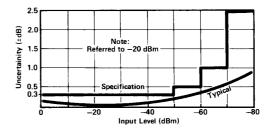

Sweep Time:

Approximately 10 ms to 500 ms in FAST mode Approximately 1 sec to 50 sec in SLOW mode

RECEIVER

MAGNITUDE CHARACTERISTICS

Frequency Response (flatness): Absolute (A, B):



RECEIVER (Cont'd)

Frequency Response (Flatness): Ratio (A/R, B/R):

Dynamic Accuracy (+20° to +30°C): Typically less than 0.01 dB/dB from -10 dBm to -40 dBm

Reference Offset:

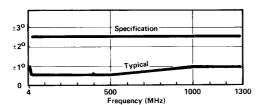
Accuracy: Typically less than ±0.1% of value.

Vernier Range: Typically ±80 dB of variable offset used for calibration of ratio measurements.

Error Resulting from Change in Harmonic Number:

Ratio (A/R and B/R): Typically ≤ 0.05 dB Absolute (A, B, and R): Typically ≤ 0.2 dB

Absolute Power Measurements (A, B, and R):


Calibrated in dBm; typically $\leq \pm 0.5$ dBm with 0 dBm, 50 MHz input

RECEIVER (Cont'd)

PHASE CHARACTERISTICS

1

Frequency Response:

Reference Offset Range: Vernier provides typically ±20° of variable offset used for phase calibration.

Electrical Length Adjustment Range: Typically 160 mm.

Phase Error Resulting from Change in Harmonic Number: Typically ≤0.5°.

DISPLAY:

Video Filter: Typically 100 Hz (10 kHz without filter)

GENERAL CHARACTERISTICS

External Sweep Input: 0 to +10V nominal. BNC female connector used to sweep CRT display when receiver is used with an externally swept source or to remotely program the frequency of an internal RF source from an external digital-to-analog converter.

Sweep Output: -5V to +5V nominal, BNC female connector, used to frequency modulate (sweep) external generator.

GENERAL CHARACTERISTICS (Cont'd)

X-Y Recorder/External CRT Output:

Horizontal: 0.1V/Div. (0 to 1V). **Vertical:** 0.1V/Div. (± 0.4 full scale).

 $\begin{tabular}{ll} \textbf{Penlift/Blanking:} & +5V & Blanking and & Penlift; & -5V \\ \end{tabular}$

intensifies crystal markers. **Connectors:** BNC female.

External Marker Input: typically -13 dBm RF signal into the External Marker Input will produce an amplitude (rectilinear) or intensity (polar) marker on the trace at the frequency of the RF signal. BNC female connector, 50Ω .

Probe Power: +15 Vdc and -12.6 Vdc, for use with 10855A Preamp or 1121A AC Probe. Two probe power jacks are available.

Storage-Normalizer Interfaces: directly compatible with both the HP 8750A Storage-Normalizer and the HP 8501A Storage-Normalizer. All 8501A features except CRT labels and graphics are available when the 8501A is used in conjunction with the 8754A.

Programming Connector:

Function: 25 pin Amphenol connector (with mating connector). Outputs include magnitude/ phase and sweep outputs and inputs described above as well as measurement mode selection by TTL levels or contact closures.

POLAR CHARACTERISTICS

Electrical Length Adjustment Range:

Typically 160 mm, resulting in an 80-mm adjustment to the reference plane in a reflection measurement.

General Information Model 8754A

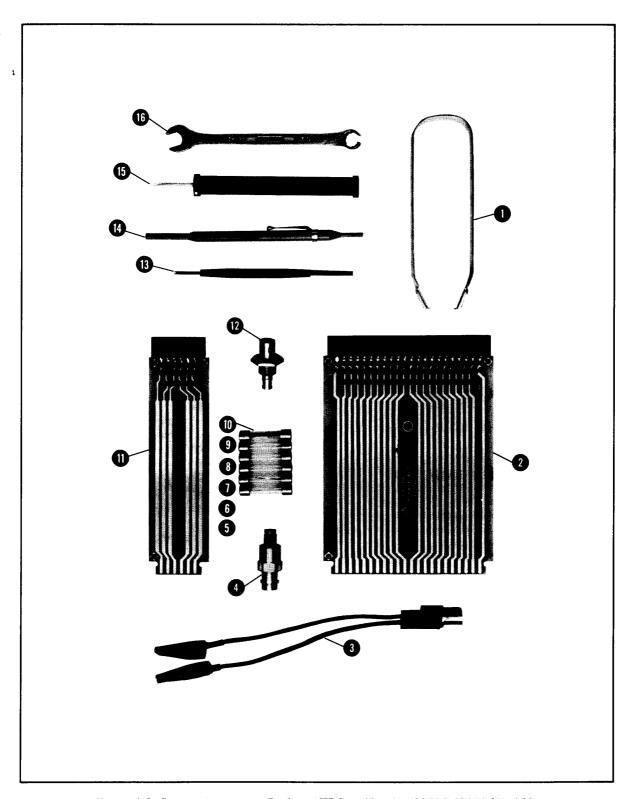


Figure 1-3. Service Accessories Package, HP Part Number 08754-60051 (1 of 2)

Model 8754A General Information

Item	Description	HP Part Number
0	Extractor for front-panel connectors	8710-0580
0	Extender board, 22 pin (44 conductors)	08565-60107
•	Test leads with alligator clips	8120-1292
•	Adapter, BNC female to SMA male (Quantity of 4)	1250-1200
6	Fuse, 2.5A, 250V	2110-0083
6	Fuse, 1.25A, 250V	2110-0094
0	Fuse, 1A, 250V	2110-0001
8	Fuse, .5A, 250V	2110-0012
9	Fuse, .25A, 250V	2110-0004
0	Fuse, .125A, 250V, slo-blo	2110-0318
•	Extender board, 6 pin (12 conductors)	08505-60109
1	Adapter, BNC female to SMB female, snap on	1250-1236
ß	Alignment tool, slotted-blade, plastic	8710-0772
•	Alignment tool, stainless steel blades	8710-0630
(5)	Alignment tool, non-metallic	8710-0033
6	Wrench, 5/16 inch, open end	08555-20097

Figure 1-3. Service Accessories Package, HP Part Number 08754-60051 (2 of 2)

Table 1-3. Recommended Test Equipment (1 of 2)

Equipment	Critical Specifications	Recommended Model	Use*
Adapter	Type BNC female to Type SMB female, Snap-on	HP 1250-1236	Λ, Τ
Adapter	SMB to SMB Male	HP 1250-0669	A
Adapter	Type N female to Type N female	HP 1250-0777	P, O
Adapter	Type N male to Type N male	HP 1250-0778	P
Adapter (2 required)	Type N male to Type BNC female	HP 1250-0780	P
Attenuator, 10 dB	Frequency: 4 MHz to 1.3 GHz Accuracy: ±0.5 dB	HP 8491B, Opt 010	P
Attenuator, 20 dB	Frequency: 4 MHz to 1.3 GHz Accuracy: ±0.5 dB	HP 8491B, Opt 020	Р, А
Attenuator, Step	Steps: 10 dB from 0 to 80 dB Frequency: 4 MHz to 1.3 GHz Accuracy: ±1.6% Connectors: Type N Female	HP 8496A, Opt 001	P, O, 1
Attenuator, Step	Steps: 10 dB from 0 to 80 dB Calibrated to uncertainty of ± (0.02 dB + 0.01 dB/10 dB step) at 30 MHz	HP 355D, Opt H82	P, A
Cable Kit, Matched	4 Cables; Type N male, both ends Phase matched to 4 degrees at 1.3 GHz	HP 11851A	P, A, O,
Connector, Test (For use with PROGRAMMING Connector)	24-Contact, 2 rows male. No substitute. (See Mag/ Phase Output Accuracy Test)	HP 1251-0063 with jumper	P, A
Directional Coupler	Frequency: 100 MHz to 1.3 GHz Directivity: 40 dB Coupling: 20 dB	HP 778D	P
Divider Probe, 10:1 (2 required)	Resistance: 10M Shunt Capacitance: 10 pF	HP 10004D	A, T
Frequency Counter	Frequency: 4 MHz to 1.3 GHz Sensitivity: -20 dBm	HP 5340A	P, A,

Table 1-3. Recommended Test Equipment (2 of 2)

Equipment	Critical Specifications	Recommended Model	U
Low-Pass Filter	Cutoff Frequency: 10 kHz Impedance: 50 Ohms Type: S-Pole Butterworth	НР 08505-60155	1
Oscilloscope	Frequency: 100 MHz Sensitivity: 5 mV/div Dual Channel	HP 1740A	A ,
Power Meter	Power Range: -20 dBm to +10 dBm	HP 435A	P, A
Power Sensor	Frequency: 4 MHz to 1.3 GHz Impedance: 50 Ohms	HP 8482A	P, A
Power Splitter, 3-Way	Frequency: 4 MHz to 1.3 GHz Impedance: 50 Ohms Tracking between any two output ports: 0.1 dB magnitude, 1.5 degrees phase	HP 11850A	P, A
Power Supply, DC	0 to 10 Vdc, 0 to 1A	HP 6214A	A,
Spectrum Analyzer	Frequency: 4 MHz to 1.3 GHz AUX A and AUX D outputs on mainframe	HP 8558B/181T	P,
Termination (2 required)	Impedance: 50 Ohms Type N male	HP 909A, Opt 012	P, A
Termination, Feedthrough	Impedance: 50 Ohms	HP 10100C	
Transmission/ Reflection Test Set	No substitute	HP 8502A	P
Voltmeter, Digital	Accuracy: 10V range ±(0.002% of reading + 1 digit)	HP 3455A	P,
Voltmeter, RMS	True rms response Sensitivity: 1 mV	HP 3400A	P

^{*}P = Performance Tests, A = Adjustments, O = Operation Verification, T = Troubleshooting

SECTION II INSTALLATION AND OPERATION VERIFICATION

2-1. INTRODUCTION

2-2. This section includes information on the initial inspection, preparation for use, storage and shipment, and operation verification of the HP Model 8754A Network Analyzer.

2-3. INITIAL INSPECTION

2-4. Inspect the shipping container for damage. If the container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the instrument has received mechanical and electrical inspection. (Refer to the Operation Verification portion of this section for verification of electrical operation.) If the contents are incomplete, if there is mechanical damage or defect. or if the instrument does not pass the electrical performance tests, notify the nearest Hewlett-Packard office. If the shipping container is damaged, or if the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping materials for the carrier's inspection. The Hewlett-Packard office will arrange for repair or replacement without waiting for a claim settlement.

2-5. PREPARATION FOR USE

2-6. Power Requirements

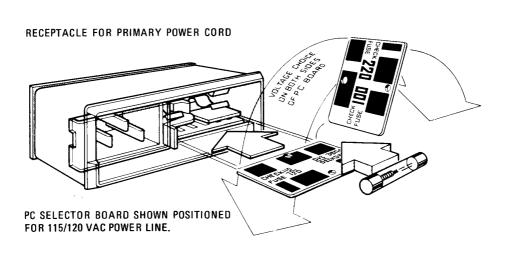
2-7. The HP Model 8754A requires a power source of 100, 120, 220, or 240 Vac, +5 percent, -10 percent, 48 to 66 Hz. Power consumption is less than 200 volt-amperes.

2-8. Line Voltage and Fuse Selection

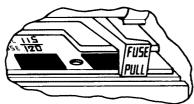
WARNING

BEFORE THE INSTRUMENT IS SWITCHED ON, its protective earth terminals must be connected to the protective conductor of the main power cable. The main plug shall be inserted only in a socket outlet provided with a protective earth contact. DO NOT negate the earth-

grounding protection by the use of an extension cable, power cable, or autotransformer that does not have a protective ground conductor. Failure to ground the instrument properly can result in personal injury.


CAUTION

BEFORE THE INSTRUMENT IS SWITCHED ON, make sure it is adapted to the voltage of the ac power source by the proper positioning of the voltage selector card. Failure to set the ac power input of the instrument for the correct voltage level could cause damage to the instrument when it is switched on.


- 2-9. Select the line voltage and fuse as follows:
- a. Measure the ac line voltage.
- b. Position the printed-circuit board in the rearpanel power line module to select the line voltage that is closest to the voltage measured in step a. (See Figure 2-1.) The selected line voltage must be within +5 percent or -10 percent of the measured ac line voltage. If it is not, use an autotransformer between the ac source and the 8754A.
- c. Make sure the correct fuse is installed in the fuse holder. A sticker providing the fuse ratings is affixed below the fuse holder.

2-10. Cable Connections

2-11. Power Cable. The instrument is equipped with a three-wire power cable in accordance with international safety standards. When connected to an appropriate power line outlet, the cable grounds the instrument cabinet. Table 2-1 includes illustrations of the main plug styles available on power cables supplied with Hewlett-Packard instrument. The part numbers are for complete power cables.

OPERATING VOLTAGE APPEARS IN MODULE WINDOW.

SELECTION OF OPERATING VOLTAGE

- 1. SLIDE OPEN POWER MODULE COVER DOOR AND PUSH FUSE-PULL LEVER TO LEFT TO REMOVE FUSE.
- 2. PULL OUT VOLTAGE-SELECTOR PC BOARD.
 POSITION PC BOARD SO THAT VOLTAGE
 NEAREST ACTUAL LINE VOLTAGE LEVEL
 WILL APPEAR IN MODULE WINDOW. PUSH
 BOARD BACK INTO ITS SLOT.
- 3. PUSH FUSE-PULL LEVER INTO ITS NORMAL RIGHT-HAND POSITION.
- 4. CHECK FUSE TO MAKE SURE IT IS OF COR-RECT RATING AND TYPE FOR INPUT AC LINE VOLTAGE. FUSE RATINGS FOR DIF-FERENT LINE VOLTAGES ARE INDICATED BELOW POWER MODULE.
- 5. INSERT CORRECT FUSE IN FUSEHOLDER.

Figure 2-1. Voltage Selection with Power Module PC Board

Table 2-1. AC Power Cables Available

Plug Type **	Cable HP Part Number	Plug Description	Cable Length (inches)	Cable Color	For Use In Country
250V N	8120-1351 8120-1703	Straight*BS1363A 90°	90 90	Mint Gray Mint Gray	United Kingdom, Cyprus, Nigeria, Rhodesia, Singapore, So. Africa, India
250V E	8120-1369 8120-0696	Straight*NZSS198/ASC112 90°	79 87	Gray Gray	Australia , New Zealand
250V E	8120-1689 8120-1692	Straight*CEE7-Y11 90°	79 79	Mint Gray Mint Gray	East and West Europe, Saudi Arabia, Egypt (unpolarized in many nations)
125V	8120-1348 8120-1398 8120-1754	Straight*NEMA5-15P 90° Straight*NEMA5-15P	80 80 36	Black Black Black	United States, Canada, Japan (100V or 200V),
N L	8120-1378 8120-1521 8120-1676	Straight*NEMA5-15P 90° Straight*NEMA5-15P	80 80 36	Jade Gray Jade Gray Jade Gray	Mexico, Philippines, Taiwan
250V	8120-2104	Straight*SEV1011 1959-24507 Type 12	79	Gray	Switzerland
250V E	8120-0698	Straight*NEMA6-15P			
250V E	8120-1860	Straight*CEE22-VI			

Part number shown for plug is industry identifier for plug only. Number shown for cable is HP Part Number for complete cable including plug.

E = Earth Ground; L = Line; N = Neutral

WARNING

If the instrument is to be energized through an autotransformer, make sure the common terminal of the autotransformer is connected to the protective earth contact of the power source outlet socket.

Any discontinuity in the protective ground, inside or outside the 8754A, is likely to create a safety hazard.

2-12. Mating Connectors. Front- and rearpanel connectors are listed in Table 2-2. An industry identification, Hewlett-Packard part number, and alternate source are given for the corresponding connector that mates with each connector on the instrument.

2-13. Operating Environment

- **2-14. Temperature.** The instrument may be operated at temperatures from 0° C to $+55^{\circ}$ C.
- **2-15. Humidity.** The instrument may be operated in environments with relative humidity of 5 percent to 95 percent at 0°C to +40°C. However, the instrument should also be protected from temperature extremes that cause internal condensation.
- **2-16.** Altitude. The instrument may be operated at altitudes up to 4572 metres (approximately 15,000 feet).

2-17. Bench Operation

- 2-18. The instrument cabinet has plastic feet and foldaway tilt stands for convenience in bench operation. The tilt stands raise the front of the instrument for easier viewing of the control panel. The plastic feet are shaped to make full-width modular instruments self-aligning when stacked.
- 2-19. A camera adapter is supplied with the instrument to allow the Tektronix C5B camera to be mounted on the CRT bezel. Figure 2-2 shows how to mount the adapter on the camera.

2-20. Rack Mounting (Options 908/909)

2-21. Instruments with Option 908 are equipped with a Rack Flange Kit, which supplies the hard-

ware and instructions to install the instrument in a rack with a spacing of 482.6 mm (19 inches). Installation instructions are also given in Figure 2-3.

2-22. Instruments with Option 909 are equipped with a Rack Flange and Front Handle Kit, which supplies the hardware and instructions to install the instrument, with front handles, in a rack with a spacing of 482.6 mm (19 inches). Installation instructions are given in Figure 2-3.

2-23. Front Handles (Option 907)

2-24. Instruments with Option 907 are equipped with a Front Handle Kit, which supplies hardware and instructions to install front handles on the instrument. Installation instructions are also given in Figure 2-3.

2-25. STORAGE AND SHIPMENT

2-26. Environment

2-27. The instrument may be stored or shipped with the following environments:

Temperature: -40° C to $+75^{\circ}$ C

Relative Humidity: 5 to 95 percent at 0°C to

+40° C

Altitude: To 15,240 metres (50,000 feet)

The instrument should be protected from temperature extremes that might cause condensation within the instrument.

2-28. Packaging

- **2-29. Original Packaging.** It is recommended that the original factory packaging materials be retained for later use. If original packaging material is not retained, identical material is available through Hewlett-Packard offices.
- **2-30. Preparation for Shipment.** Figure 2-4 illustrates the proper method of packaging the instrument for shipping using the original factory packaging materials. Part numbers and descriptions of the materials are presented in Figure 2-5.

Table 2-2. HP Model 8754A Mating Connectors

Connector	Mating Connector*					
on Instrument	Industry Identification	HP Part No.	Alternate Source			
I I RF OUTPUT J2 R INPUT J3 A INPUT J4 B INPUT	Type N male connector, U6-21G/U	1250-0882	Specialty Connector Co., Inc. The Bendix Corp. Microwave Devices			
J5 PROBE POWER J6 PROBE POWER	Connector assembly, female Sleeve for above	5060-0466 5040-0494	None None			
J7 EXT MARKER INPUT	Type BNC male connector, UG-88/U	1250-0256	Specialty Bendix			
J8 NORMALIZER	Connector, R & P, 24-pin male	1251-2204	ITT Cannon Electric Co. TRW ELEK Components, Cinch Division			
INTERCONNECT	Coaxial insert for subminiature D connector (5 required)	1251-0179	Cannon Cinch			
A23J1 SWEEP OUTPUT A23J2 EXT SWEEP OUTPUT A23J3 BLANK/PEN A23J4 HORIZ A23J5 VERT A23J6 MAG/PHASE	Type BNC male connector, UG-88/U	1250-0256	Specialty Bendix			
A23J7 PROGRAM- MING	Connector, 25-pin male, D Series	1251-0063	Cannon Cinch			

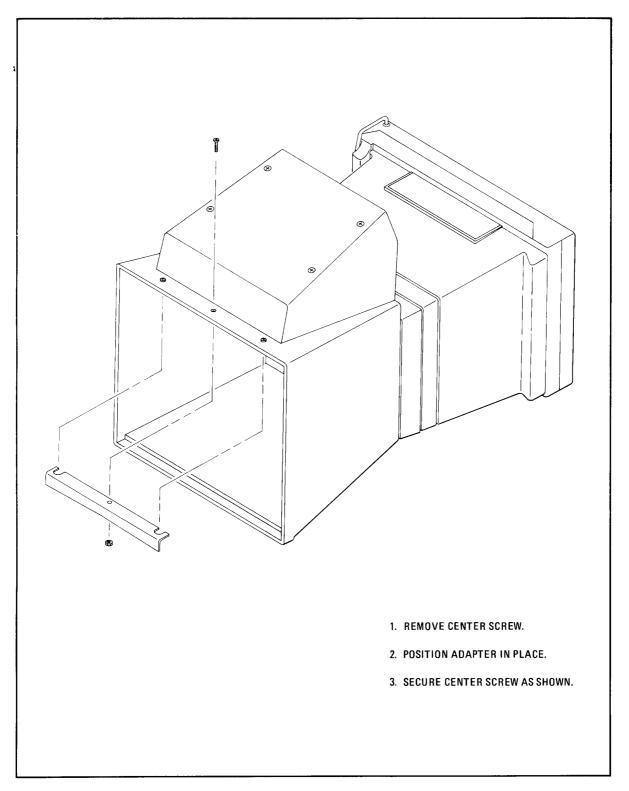


Figure 2-2. Camera Adapter Installation

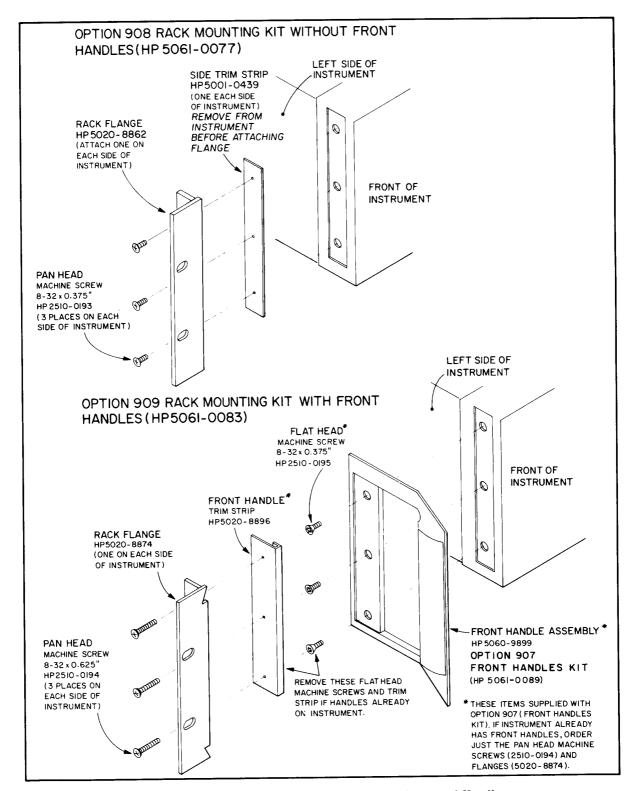


Figure 2-3. Installation of Rack-Mounting Hardware and Handles

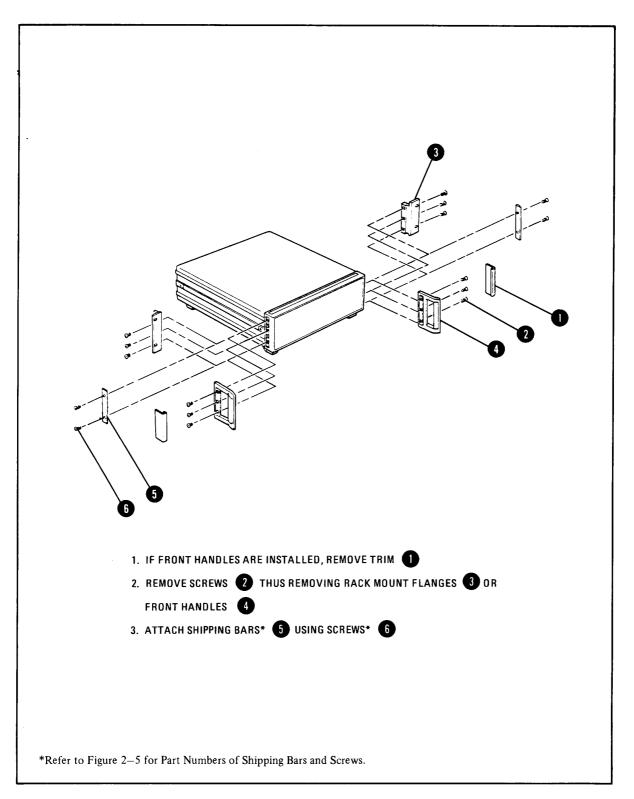


Figure 2-4. Preparation of Instrument for Shipment

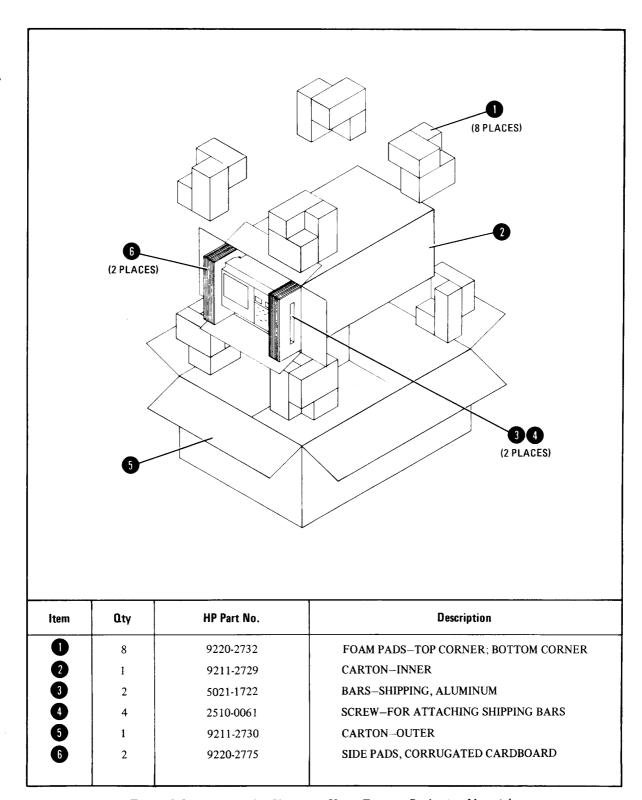


Figure 2-5. Packaging for Shipment Using Factory Packaging Materials

- **2-31. Other Packaging.** If it is necessary to use materals different from the original factory packaging, the following general instructions should be observed:
- a. Wrap the instrument in heavy paper or plastic.
- b. Protect the front panel with double-wall corrugated board.
- c. Place the instrument in a container with 8 to 10 cm (3 to 4 in.) of shock-absorbing material on each of the six sides to provide firm cushioning and to prevent movement inside the container. The container should be a double-wall corrugated carton of 125 kg (275 lb.) bursting strength.

- d. Seal the container securely and mark FRAGILE.
- **2-32. Return for Servicing.** If the instrument is being returned to Hewlett-Packard for servicing, a tag should be attached to the carton to indicate the type of service required, the return address, the model number, and the full serial number. In any correspondence, refer to the instrument by model number and full serial number.

2-33. OPERATION VERIFICATION

2-34. The following procedure is a means of checking the operation of the instrument without testing all the specifications listed in Table 1-1. Access to the interior or the instrument is not required.

2-35. OPERATION VERIFICATION TEST

NOTE

The Operation Verification procedure is not a valid test of the 8754A specifications, but is an overall check of instrument operation. If the 8754A does not meet tolerances in this procedure, do the related performance test indicated in this procedure to check instrument specifications.

DESCRIPTION:

The Operation Verification procedure checks the overall operation of the 8754A, and uses a minimum of test equipment. The procedure basically uses the 8754A to check itself.

8754 NETWORK ANALYZER

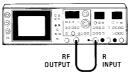


Figure 2-6. Absolute Measurement Test Setup

EQUIPMENT:

NOTE

Equipment listed is for more than one test setup.

3-Way Power Splitter
Matched Cable Kit
Step Attenuator
Adapter, Type N Female to Type N Female
50 Ohm Termination

2-35. OPERATION VERIFICATION TEST (Cont'd)

PROCEDURE:

1. Connect equipment as shown in Figure 2-6. Set controls as follows:

Sweep Mode	CENTER
SWEEP	AUTO, FAST
TUNING	50 MHz
SWEEP WIDTH MHz	10 MHz
SWEEP WIDTH MHz Vernier	CAL
MARKERS MHz	
OUTPUT dBm	
REFERENCE POSITION CH 1	
REFERENCE POSITION CH 2	
VIDEO FILTER	
POLAR A/R	off (out)
POLAR A/R LENGTH	Fully counterclockwise (0)
PHASE B/R LENGTH	Fully counterclockwise (0)
CHANNEL 1	
REFERENCE	-00
REFERENCE OFFSET button	off (out)
Measurement Select	OFF
Scale	1 dB/DIV
CHANNEL 2	
Measurement Select	OFF
SWEEP INT – EXT Switch (Rear Panel)	INT

- 2. Adjust REFERENCE POSTION CH1 🕏 control to position CRT trace on center graticule line.
- 3. Select MAN SWEEP and set SWEEP vernier full counterclockwise. Adjust HORIZONTAL POSN screwdriver adjustment to align trace dot on left edge of graticule scale.
- 4. Set SWEEP vernier full clockwise. Adjust HORIZONTAL GAIN screwdriver adjustment to align trace dot on right edge of graticule scale.
- 5. Set SWEEP pushbuttons as shown in Table 2-3 and verify correct indication.

Table 2-3. Sweep Operation Check

SWEEP pushbuttons selected (in)	Indication
TRIG, SLOW	One sweep is triggered when SINGLE pushbutton is pressed.
AUTO, SLOW	Sweep time is variable from approximately 1 to 50 seconds with SWEEP Vernier.
AUTO, FAST	Sweep time is variable from approximately 10 to 500 milliseconds with SWEEP Vernier.

2-35. OPERATION VERIFICATION TEST (Cont'd)

- 6. Select AUTO, FAST SWEEP and set SWEEP vernier to midrange. Adjust TUNING to center 50 MHz marker on the center graticule line of the CRT. Adjust FREQUENCY MHz CAL for a FREQUENCY indication of 050 MHz.
- 7. Adjust TUNING to increase the frequency in 100 MHz intervals and center marker on CRT display at each interval (150 MHz, 250 MHz, 350 MHz . . . 1250 MHz). Check that the FREQUENCY MHz display indicates the marker frequency at each interval within ± 10 MHz.
- 8. Select 1 MHZ MARKERS and set SWEEP WIDTH MHz switch to 1 MHz. Adjust TUNING to 700 MHz and center marker on the CRT. The marker should be approximately 1 division wide and have a horizontal jitter of less than 0.3 major division. This check is for residual FM and any frequency drift should be ignored. If jittering is excessive, Performance Test 4-15 for Residual FM should be performed.
- 9. Adjust TUNING control to position the leading edge of the marker on the left edge of the graticule display. Use markers to check sweep width accuracy as shown in Table 2-4.

Marker Spacing Typical Tolerance MARKERS MHz **SWEEP WIDTH MHz** (Major Divisions) (Minor Divisions) 4 1 10 divisions 2 2 5 divisions 1 5 2 divisions .8 10 1 division .4 20 5 divisions 2 10 50 2 divisions .5 100 1 division .25 200 2.5 divisions .6 50 500 1 division .1 1 K .5 division .05

Table 2-4. Sweep Width Accuracy Check

10. Press REFERENCE POSITION CH1 pushbutton to turn off reference trace. Press FULL 4-1300 button to select full sweep mode, and press MARKERS OFF button to turn off markers.

2-35. OPERATION VERIFICATION TEST (Cont'd)

11. The CRT trace should be near the middle of the CRT display and have a frequency response similar to the trace shown in Figure 2-7. If the trace variation is more than 2 dB peak-to-peak, Performance Tests 4-14 (RF Source Flatness) and 4-20 (Receiver Absolute Magnitude Response) should be performed.

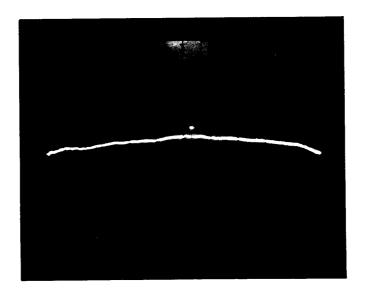


Figure 2-7. Full Sweep Display of R Absolute

- 12. Check the CRT display for the presence of the Full Marker. The marker position should be adjustable by the TUNING control and indicate the trace position of the frequency indicated by the FREQUENCY MHz display.
- 13. Note that the CRT trace moves up when the OUTPUT dBm control is adjusted clockwise. Non-linearities and overload occurs for power levels greater than approximately +2 dBm.
- 14. Set analyzer controls as follows:

SWEEP Vernier	Midrange
OUTPUT dBm	Full counterclockwise (0 dBm)
VIDEO FILTER	On (in)
CHANNEL 1	
REFERENCE	
Measurement Select	Α
Scale	2.5 dR/DIV
Scale	2.3 ub/ D1 v

15. Check that the CRT trace is below the center graticule line. This indicates the Receiver noise level is less than $-80 \, \mathrm{dBm}$.

2-35. OPERATION VERIFICATION TEST (Cont'd)

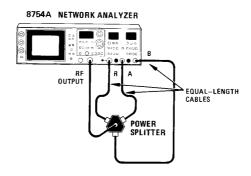


Figure 2-8. Ratio Measurement Test Setup

16. Connect equipment as shown in Figure 2-8. Set analyzer controls as follows:

Sweep Mode
SWEEP AUTO, FAST
SWEEP WIDTH MHz
VIDEO FILTER off (out)
CHANNEL 1
REFERENCE00
REFERENCE OFFSET off (out)
Measurement Select A/R
Scale
CHANNEL 2
REFERENCE00
REFERENCE OFFSET off (out)
Measurement Select
Scale
Scare

- 17. Check that the CRT trace variation is less than 0.6 dB peak-to-peak (2.4 divisions).
- 18. Press CHANNEL 1 Measurement Select OFF button and press CHANNEL 2 Measurement Select B/R button.
- 19. Press REFERENCE POSITION CH2 button and adjust ♦ control to position CRT trace on the center graticule line. Press button again to turn off reference trace.
- 20. Check that the CRT trace variation is less than 0.6 dB peak-to-peak (2.4 divisions).

2-35. OPERATION VERIFICATION TEST (Cont'd)

- 21. Press PHASE B/R Measurement Select button, and adjust PHASE B/R LENGTH control for a horizontal trace.
- 22. Check that the peak-to-peak deviation of the trace is ≤ 5 degrees (2 divisions).
- 23. Set analyzer controls as follows:

Sweep Mode	R
TUNING	Ηz
SWEEP WIDTH MHz 0 C	
POLAR A/R on (in	
CHANNEL 1	
REFERENCE(00
REFERENCE OFFSET button on (i	n)
CHANNEL 2	
REFERENCE	90
REFERENCE OFFSET button	n)

- 25. Adjust CHANNEL 1 and CHANNEL 2 REFERENCE OFFSET controls to place trace dot on the 0 degree point of the outermost graticule circle (magnitude = 1.0). Note that CHANNEL 1 offsets magnitude and CHANNEL 2 offsets phase.
- 26. Set CHANNEL 2 REFERENCE to +90, -90, +180, and -180 degree settings. The trace dot at each setting should be within a circle of radius 2.5 mm centered on the appropriate phase point on the outermost graticule circle.
- 27. Set CHANNEL 2 REFERENCE to -00.
- 28. Set CHANNEL 1 REFERENCE as indicated in Table 2-5. At each setting, the trace dot should be within a circle of radius 2.5 mm centered on the point shown in the table.

Table 2-5. Polar Display Accuracy

CHANNEL 1 REFERENCE (dB)	Display Point Magnitude Phase = 0 degrees)	Polar Circle Radius
+00	1.00	4 cm
+06	0.50	2 cm
+12	0.25	1 cm
+20	0.10	.4 cm

2-35. OPERATION VERIFICATION TEST (Cont'd)

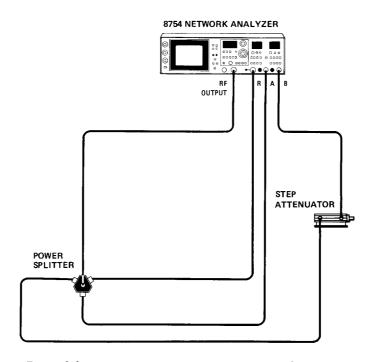


Figure 2-9. Magnitude Dynamic Accuracy Test Setup

29. Connect equipment as shown in Figure 2-9. Set analyzer controls as follows:

Sweep Mode
TUNING
SWEEP WIDTH MHz
OUTPUT dBm+10
VIDEO FILTER on (in)
POLAR A/R off (out)
CHANNEL 1
REFERENCE00
REFERENCE OFFSETon (in)
Measurement Select B/R
Scale
CHANNEL 2
Measurement Select OFF

- 30. Set step attenuator to 20 dB. Adjust CHANNEL 1 REFERENCE OFFSET vernier to position CRT trace on the center graticule line.
- 31. Set CHANNEL 1 Scale to 10 dB/DIV and check that the CRT trace remains on the center graticule line.
- 32. Set CHANNEL 1 REFERENCE lever switch to -20 dB and check that the CRT trace is two divisions above center graticule line (± 0.1 division). Set CHANNEL 1 REFERENCE lever switch to +20 dB and check that the CRT trace is two divisions below the center graticule line (± 0.1 division).

2-35. OPERATION VERIFICATION TEST (Cont'd)

NOTE

If the trace is within the Typical Limits listed in Tables 2-6 and 2-7, the 8754A probably meets the Magnitude Dynamic Accuracy specifications. If the trace is within the Maximum Limits listed in the tables, but not within the Typical Limits, the 8754A is operational, but the Performance Test in Paragraph 4-21 must be performed to verify specifications.

33. Set step attenuator and network analyzer controls according to Table 2-6. At each setting, note the deviation of the trace from the center graticule line (positive if above; negative if below). The allowable deviation for each setting is shown in Table 2-6.

Attenuator Setting (dB)	CHANNEL 1 Scale (dB/DIV)	CHANNEL 1 REFERENCE (dB)	Typical Allowable Deviation (dB)	Maximum Allowable Deviation (dB)
20 (ref.)	.25	+00	0 (ref.)	0 (ref.)
0	.25	+20	±0.4	±0.6
10	.25	+10	±0.4	±0.5
30	.25	-10	±0.4	±0.5
40	.25	-20	±0.4	±0.6
50	.25	-30	±0.5	±0.8
60	1	-40	±0.8	±1.1
70	1	-50	±1.5	±1.8
80	1	-60	±2.9	±3.3

Table 2-6. Magnitude Dynamic Accuracy, B Channel

34. Set analyzer controls as follows:

OUTPUT dBm +10 CHANNEL 1
Measurement Select OFF
CHANNEL 2
REFERENCE00
REFERENCE OFFSET on (in)
Measurement Select PHASE B/R
Scale

- 35. Set step attenuator to 20 dB. Adjust CHANNEL 2 REFERENCE OFFSET vernier to position the CRT trace on the center graticule line.
- 36. Step the step attenuator from 0 to 50 dB. The trace deviation from the center graticule line should be less than ± 2 degrees.

2-35. OPERATION VERIFICATION TEST (Cont'd)

- 37. Step the attenuator to 60 and 70 dB. The trace deviation from the center graticule line should be less than ± 4 degrees.
- 38. Switch the cables to the R and B INPUT ports so the attenuator is connected in the R path. Set the step attenuator to 20 dB and set analyzer controls as follows:

OUTPUT dBm	+10
CHANNEL 1	
REFERENCE	-00
Measurement Select	B/R
CHANNEL 2	
Measurement Select	OFF

39. Adjust CHANNEL 1 REFERENCE OFFST vernier to position CRT trace on the center graticule line. Set the step attenuator and network analyzer controls according to Table 2-7. At each setting, note the deviation of the trace from the center graticule line (positive if above; negative if below). The allowable deviation for each setting is shown in Table 2-7.

Table 2-7. Magnitude Dynamic Accuracy, R Channel

Attenuator Setting (dB)	CHANNEL 1 Scale (dB/DIV)	CHANNEL 1 REFERENCE (dB)	Typical Allowable Deviation (dB)	Maximum Allowable Deviation (dB)
20 (ref.)	.25	-00	0 (ref.)	0 (ref.)
0	.25	-20	±0.4	±0.6
10	.25	-10	±0.4	±0.5
30	.25	+10	±0.4	±0.5
40	.25	+20	±0.4	±0.6

40. Set step attenuator to 50 dB and check that the front-panel UNLOCKED indicator is on.

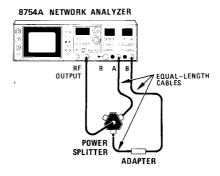


Figure 2-10. Phase Reference Accuracy Test Setup

1

2-35. OPERATION VERIFICATION TEST (Cont'd)

41. Connect equipment as shown in Figure 2-10. Set analyzer controls as follows:

Sweep Mode	FIII I 4 _ 1300
SWEEP	AUTO FACT
SWEEP WIDTH MHz	. AU10, FAS1
VIDEO FILTER.	
CHANNEL 1	off (out)
Measurement Select	OFF
CHANNEL 2	
REFERENCE	- 180 DEG
REFERENCE OFFSET	off (out)
Measurement Select	DUACE D/D
Scale	OO DEC /DIV
	. 90 DEG/DIV

- 42. Turn the PHASE B/R LENGTH control fully clockwise, then turn counterclockwise until the right-hand end of trace is at least 1 minor division below center graticule line and any noise present on the right-hand end of trace is gone.
- 43. Adjust TUNING to place the marker at the highest frequency at which the trace crosses the center graticule line. The trace should appear as in Figure 2-11.
- 44. Set analyzer controls as follows:

Sweep Mode	 CENTER
Scale)FG/DIV

- 45. Adjust TUNING to place the trace on the center graticule line.
- 46. Set CHANNEL 2 REFERENCE to +180 DEG. The deviation of the trace from the center graticule line should be no more than ±1.8 degrees (±0.72 division).

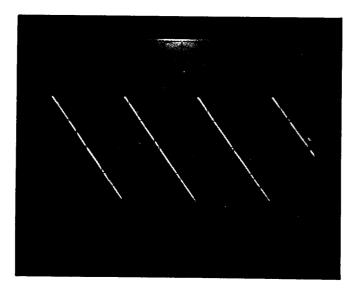


Figure 2-11. Phase Reference Test Display

SECTION IV PERFORMANCE TESTS

4-1. INTRODUCTION

1

- 4-2. The procedures in this section test the instrument's electrical performance using the specifications in Table 1-1 as the performance standards. None of the tests requires access to the interior of the instrument.
- 4-3. If a test measurement is marginal, go to Section V and perform adjustment procedures.

4-4. EQUIPMENT REQUIRED

4-5. Equipment required for the performance tests is listed under Recommended Test Equipment, Table 1-3, in Section I. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended model.

4-6. TEST RECORD

4-7. Results of the performance tests may be tabulated on the Test Record at the end of Section IV. The Test Record lists all of the tested specifications and their acceptable limits.

4-8. CALIBRATION CYCLE

4-9. This instrument requires periodic verification of performance. The instrument should be checked using the performance tests at least every six months.

4-10. OPERATION VERIFICATION

4-11. To assure that the instrument is operating properly without testing all of the specifications listed in Table 1-1, the Operation Verification procedure given in Section II may be used.

NOTE

Allow instrument to warm up for at least one half hour before doing performance tests.

Table 4-1. Performance Tests

Paragraph	Related Adjustment Paragraph	Performance Test
4-12	5-15	Frequency Readout Accuracy Test
4-13	5-17	Marker Accuracy Test
4-14	5-16	Source Output Power Test
4-15	5-16	Source Spectral Purity Test
4-16	NONE	Input Port Match Test
4-17	5-21	Receiver Noise Level Test
4-18	5-22	Minimum R Input Level Test
4-19	5-22	Crosstalk Isolation Test
4-20	5-22	Magnitude and Phase Frequency Response Test
4-21	5-11, 5-22, 5-21	Magnitude Dynamic Accuracy Test
4-22	5-11, 5-14	Magnitude Display Accuracy Test
4-23	5-23	Phase Dynamic Accuracy Test
4-24	5-11, 5-24	Phase Reference Accuracy Test
4-25	5-11, 5-24, 5-14	Phase Display Accuracy Test
4-26	5-11, 5-24, 5-14	Polar Display Accuracy Test
4-27	5-11, 5-22, 5-21, 5-24	MAG/PHASE Output Accuracy Test

PERFORMANCE TESTS

;4-12. FREQUENCY READOUT ACCURACY TEST

SPECIFICATION:

 ± 10 MHz (20 to 30 °C)

DESCRIPTION:

The frequency readout is calibrated with an external frequency counter at 200 MHz. The readout is then compared with the counted output frequency at several frequencies over the 4 to 1300 MHz range.

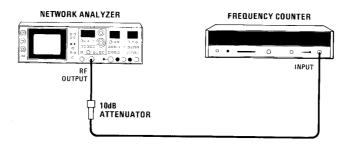


Figure 4-1. Frequency Readout Accuracy Test Setup

EQUIPMENT:

Frequency Counter		HP 5340A
10 dB Attenuator	HP 8491A	Option 010

PROCEDURE:

1. Set controls as follows:

Frequency Counter: RANGE
Network Analyzer:
Sweep Mode CENTER
SWEEP WIDTH MHz 0 CW
SWEEP WIDTH MHz Vernier
OUTPUT dBm 0 dBm

- 2. Connect equipment as shown in Figure 4-1.
- 3. Adjust TUNING so external frequency counter reads 200 (\pm 0.1) MHz.
- 4. Adjust FREQ CAL so FREQUENCY readout indicates 200 MHz.
- 5. Set TÜNING so the external frequency counter indicates 50.0 MHz. The FREQUENCY MHz readout should indicate 050 ± 10 MHz.
- 6. Set TUNING for external frequency counter indications of 4.0 MHz, 1000 MHz, and 1300 MHz. For each frequency setting, the FREQUENCY MHz readout should be within ± 10 MHz of the counted frequency.

PERFORMANCE TESTS

4-13. MARKER ACCURACY TEST

SPECIFICATION:

 $\pm\,0.01\%$

1

DESCRIPTION:

The analyzer is tuned to the 1300 MHz crystal marker and the RF output frequency is measured with an external counter.

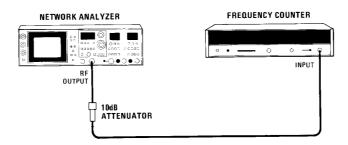


Figure 4-2. Marker Accuracy Test Setup

EQUIPMENT:

Frequency Counter	0 A)10
PROCEDURE:	
Set controls as follows:	
Frequency Counter: RANGE	
Network Analyzer:	
Sweep Mode CENTE	
SWEEP AUTO, FAS	
SWEEP Vernier	
SWEEP WIDTH MHz 1 MI	
SWEEP WIDTH MHz Vernier	
MARKERS MHz50 MI	
OUTPUT dBm0 dE	
REFERENCE POSITION CH 1 on (
REFERENCE POSITION CH 2 off (or	
POLAR A/Roff(o	
VIDEO FILTER off (or	ut)

PERFORMANCE TESTS

¹4-13. MARKER ACCURACY TEST (Cont'd)

CHANNEL 1
Measurement Select OFF

CHANNEL 2
Measurement Select OFF

- 2. Connect equipment as shown in Figure 4-2.
- 3. Adjust REFERENCE POSITION CH 1 \(\Display \) control to place trace at the center graticule line.
- 4. Adjust TUNING for a FREQUENCY indication of 1300 MHz. Fine tune to place the 1300 MHz marker on the center graticule line. (The 1300-MHz marker might be off screen. If so, turn the TUN-ING control until it appears.)
- Set SWEEP WIDTH MHz to 0 CW. The external frequency counter should indicate 1300.00 MHz ±0.13 MHz.

4-14. SOURCE OUTPUT POWER TEST

SPECIFICATIONS:

Power Accuracy: ±0.8 dB at 50 MHz

Flatness: $\pm 0.5 dB$

DESCRIPTION:

The power output at 50 MHz is checked with a power meter at 0, + 5, and + 10 dBm. The flatness across the frequency range is tested by manually sweeping through the range in the CW mode and observing the change in power meter indication.

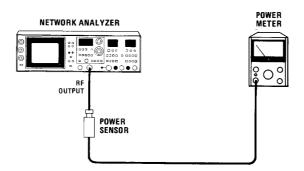


Figure 4-3. Source Output Power Test Setup

EQUIPMENT:

Power Meter	. HP 435A
Power Sensor	HP 8482A

PERFORMANCE TESTS

4-14. SOURCE OUTPUT POWER TEST (Cont'd)

PROCEDURE:

Power Accuracy at 50 MHz

- 1. Calibrate power meter.
- 2. Set analyzer controls as follows:

Sweep Mode	ΤER
SWEEP AUTO, F.	AST
SWEEP VERNIER fully clock	wise
TUNING	ИHz
SWEEP WIDTH MHz 1 M	MHz.
SWEEP WIDTH MHz Vernier	
MARKERS MHz 50 N	ИHz
OUTPUT dBm	
REFERENCE POSITION CH 1 on	ı (in)
POLAR A/R off ((out)

CHANNEL 1

Measurement Select OFF

CHANNEL 2

Measurement Select OFF

- 3. Adjust REFERENCE POSITION CH 1 ♦ control so that reference trace is at the center graticule line.
- 4. Adjust TUNING to center the 50 MHz marker on the center graticule line of the CRT.
- 5. Set SWEEP WIDTH MHz to 0 CW. Connect power meter to analyzer RF OUTPUT port as shown in Figure 4-3.
- 6. Measure the RF OUTPUT power. The meter indication should be 0 dBm ± 0.8 dB.
- 7. Set OUTPUT dBm to 5 dBm. The power meter should indicate +5 dBm ± 0.8 dB.
- 8. Set OUTPUT dBm to 10 dBm. The meter indication should be $+10 \text{ dBm } \pm 0.8 \text{ dB}$.

Flatness

9. Set analyzer controls as follows:

SWEEP WIDTH MHz	10 MHz
MARKERS MHz	1 MHz

- 10. Set TUNING to 004 MHz. Adjust TUNING until the display appears as in Figure 4-4. The 4 MHz marker is centered on the CRT and the trace is blanked below approximately 3 MHz.
- 11. Adjust FREQUENCY MHz CAL for a FREQUENCY indication of 004 MHz.

PERFORMANCE TESTS

4-14. SOURCE OUTPUT POWER TEST (Cont'd)

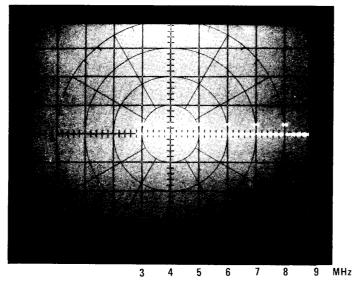


Figure 4-4. Network Analyzer Tuned to 4-MHz Marker

- 12. Set SWEEP WIDTH MHz to 0 CW.
- 13. Adjust OUTPUT dBm until the power meter indicates +9 dBm.
- 14. Adjust TUNING slowly through the range 004 MHz to 1300 MHz and note the maximum and minimum power meter readings. The difference between the two readings should not be greater than 1.0 dB.

4-15. SOURCE SPECTRAL PURITY TEST

SPECIFICATION:

(at + 10 dBm)

Swept Residual FM: 7 kHz rms (10 Hz to 10 kHz bandwidth)

Harmonics: -28 dBc

Spurious: 4—500 MHz: -65 dBc 500—1300 MHz: -50 dBc

DESCRIPTION:

The CW output signal of the network analyzer is slope detected by using the linear portion of a spectrum analyzer resolution bandwidth filter in the zero-span mode. The residual FM of the signal is represented by the auxiliary vertical output voltage from the spectrum analyzer, which is filtered and then measured by an rms responding voltmeter.

Harmonics and spurious signals are checked by observing the source output on a spectrum analyzer.

PERFORMANCE TESTS

4-15. SOURCE SPECTRAL PURITY TEST (Cont'd)

NOTE

This test uses the slope of the spectrum analyzer's 300 kHz resolution bandwidth filter to demodulate the residual FM into AM. A small, linear portion of the filter skirt about 14 dB down from the signal peak is used (see Figure 4-5). The system is calibrated by measuring the vertical output voltage produced by a 5 kHz/DIV sweep centered on the detection point of the filter slope (approximately 14 dB down from the peak).

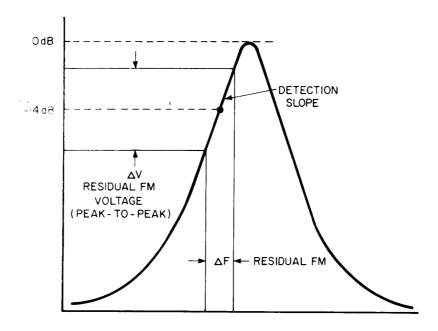
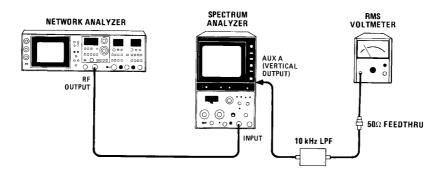



Figure 4-5. Bandwidth Filter Slope Used For FM Demodulation

PERFORMANCE TESTS

4-15. SOURCE SPECTRAL PURITY TEST (Cont'd)

EQUIPMENT:

Spectrum Analyzer	HP 8558B/181T (or any
	180-series mainframe
	AUX A-AUX D outputs)
RMS Voltmeter	
10 kHz Low-Pass Filter	
50 Ohm Feedthrough Termination	HP 10100C

PROCEDURE:

Residual FM

1. Set controls as follows:

Network Analyzer:
Sweep Mode
SWEEP AUTO, FAST
TUNING
SWEEP WIDTH MHz 0 CW
SWEEP WIDTH MHz Vernier
OUTPUT dBm 10 dBm
MARKERS MHz OFF

Spectrum Analyzer:

ti dili Allatyzer.	
START-CENTER	CENTER
TUNING	0.0 MHz
FREQ SPAN/DIV	500 kHz
RESOLUTION BW	
OPTIMUM INPUT	\dots - 10 dBm (30 dB atten)
REFERENCE LEVEL dBm	+10 dBm
10 dB/DIV—1 dB/DIV—LIN	10 dB/DIV
TIME/DIV	1 msec/DIV
TRIGGER	FREE RUN
BASELINE CLIPPER	. fully counterclockwise (OFF)
VIDEO FILTER	off (out)

- 2. Connect equipment as shown in Figure 4-6, but do not connect network analyzer at this point.
- 3. Adjust spectrum analyzer TUNING to center the L.O. feedthrough signal on the spectrum analyzer display.
- 4. Adjust spectrum analyzer REFERENCE LEVEL controls to place the peak of the signal trace at the reference level (top) graticule line.
- 5. Change the display scale to 1 dB/DIV and repeat step 4 if necessary.
- 6. Reduce FREQ SPAN/DIV to 5 kHz while keeping the signal centered with the TUNING control.

PERFORMANCE TESTS

4-15. SOURCE SPECTRAL PURITY TEST (Cont'd)

7. Decrease REFERENCE LEVEL by 10 dB and place trace at mid-screen by turning the TUNING control counterclockwise. A positive-slope ramp (a portion of the 300 kHz bandwidth filter trace) should now be centered on the display (see Figure 4-7).

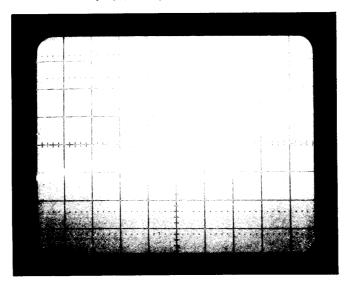


Figure 4-7. Detection Slope

8. Measure the filtered vertical output voltage from the spectrum analyzer with the RMS voltmeter (it should be approximately 60 to 70 mV). Record this voltage: _____ mV rms.

NOTE

The spectrum analyzer's vertical output in step 8 is a 100 Hz (1 msec/DIV sweep) sawtooth wave whose amplitude corresponds to a frequency modulation of 50 kHz peak-to-peak, or 14.4 kHz rms.

- 9. Connect network analyzer RF OUTPUT port to spectrum analyzer input.
- 10. Set spectrum analyzer controls as follows:

TUNING	. 50 MHz
FREQ SPAN/DIV	1 MHz
10 dB/DIV—1 dB/DIV—LIN	0 dB/DIV
REFERENCE LEVEL dBm	

- 11. Adjust spectrum analyzer TUNING to center the 50 MHz RF OUTPUT signal on the spectrum analyzer display.
- 12. Adjust spectrum analyzer REFERENCE LEVEL controls to place the peak of the signal trace at the reference level (top) graticule line.
- 13. Set spectrum analyzer display scale to 1 dB/DIV and repeat step 12 if necessary.

PERFORMANCE TESTS

1 4-15. SOURCE SPECTRAL PURITY TEST (Cont'd)

- 14. Reduce FREQ SPAN/DIV to 0 while keeping the signal centered on the CRT with the TUNING control.
- 15. Decrease REFERENCE LEVEL by 10 dB and position trace at midscreen by turning TUNING control counterclockwise.
- 16. Measure the filtered vertical output voltage from the spectrum analyzer with the RMS voltmeter to obtain the residual FM voltage. Calculate residual FM as follows:

Residual FM (kHz =
$$\frac{\text{residual FM voltage (mV rms)}}{\text{voltage from step 8 (mV rms)}} \times 14.4 \text{ kHz}$$
= $\frac{\text{kHz}}{\text{kHz}}$

Residual FM should be less than 7 kHz.

- 17. Repeat steps 10 through 16 with spectrum and network analyzers tuned to 600 MHz.
- 18. Repeat steps 10 through 16 with spectrum and network analyzers tuned to 1300 MHz.

Harmonics

19. Disconnect 10 kHz filter from auxiliary output of spectrum analyzer to protect voltmeter from transients. Set controls as follows:

Network Analyzer:

SWEEP
Spectrum Analyzer:
START-CENTER CENTER
FREQ SPAN/DIV
RESOLUTION BW 1 MHz
OPTIMUM INPUT
REFERENCE LEVEL dBm + 10 dBm

 $10\ dB/DIV-1\ dB/DIV-LIN\ \dots 10\ dB/DIV$ VIDEO FILTER 12 O'clock

- 20. Tune network analyzer to 500 MHz (center of spectrum analyzer display) with SWEEP vernier. Adjust spectrum analyzer REFERENCE LEVEL to set peak of 500 MHz signal at the reference level line.
- 21. Manually tune network analyzer from 4 to 500 MHz with SWEEP vernier and observe the harmonics of the network analyzer signal. All harmonics should be ≥28 dB below the peak of the fundamental signal.

PERFORMANCE TESTS

4-15. SOURCE SPECTRAL PURITY TEST (Cont'd)

22. Set START-CENTER switch on spectrum analyzer to START. Tune network analyzer with SWEEP vernier from 500 MHz to 1300 MHz and observe the harmonics of the network analyzer signal. All harmonics should be ≥28 dB below the peak of the signal.

NOTE

The spectrum analyzer originates some mixing harmonics that may appear on the display. If a signal is in question, increase the spectrum analyzer input attenuation by 10 dB. Note if signal decreases in amplitude by 10 dB, then return the attenuator to the original position. If the signal in question comes from an external source, it will change by 10 dB. If the signal in question originates in the spectrum analyzer, the level will either change by greater or less than 10 dB or may not change at all.

Spurious Signals

- 23. Set START-CENTER switch on 8558B to CENTER. Manually tune the network analyzer from 4 to 500 MHz with the SWEEP vernier and check for spurious (non-harmonic) signals. Any spurious signals should be ≥65 dB below the peak of the fundamental.
- 24. Set START-CENTER switch to START. Manually tune the network analyzer from 4 to 500 MHz and check for spurious signals. Any spurious signals should be ≥65 dB below the peak of the fundamental.
- 25. Set START-CENTER switch to CENTER. Manually tune the network analyzer from 500 to 1300 MHz and check for spurious signals. Any spurious signals should be ≥50 dB below the peak of the fundamental.
- 26. Set START-CENTER switch to START. Manually tune the network analyzer from 500 to 1300 MHz and check for spurious signals. Any spurious signals should be ≥50 dB below the peak of the fundamental.

4-16. INPUT PORT MATCH TEST

SPECIFICATION:

 \geq 20 dB return loss (\leq 1.22 SWR)

DESCRIPTION:

The return loss of the A, B, and R INPUT ports is measured with the aid of a transmission/reflection test set.

PERFORMANCE TESTS

, 4-16. INPUT PORT MATCH TEST (Cont'd)

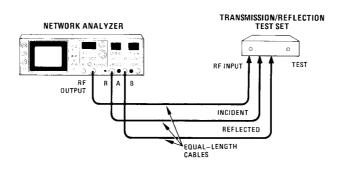


Figure 4-8. Input Port Match Test Setup (B and R INPUT Ports)

EQUIPMENT:

NOTE

Equipment listed is for two test setups, Figures 4-8 and 4-9.

Transmission/Reflection Test Set	HP 8502A
Matched Cable Kit	IP 11851A
Adapter, N male to N male HP	1250-0778

PROCEDURE:

1. Connect equipment as shown in Figure 4-8. Set the test set RF INPUT ATTENUATION dB switch to 10 and set the controls of the network analyzer as follows:

weep Mode FULL 4–1300
WEEP AUTO, FAST
WEEP VERNIER midrange
MARKERS MHz OFF
OUTPUT dBm 0 dBm
OLAR A/R off (out)
TDEO FILTER off (out)

CHANNEL 1

REFERENCE	00
REFERENCE OFFSET button	. on (in)
Measurement Select	` Á
Scale	dB/DIV

CHANNEL 2

Measurement Select OFF

PERFORMANCE TESTS

4-16. INPUT PORT MATCH TEST (Cont'd)

3. Adjust CHANNEL 1 REFERENCE OFFSET control to center the trace on the center graticule line. (If trace is off screen, adjust control until it appears.)

NOTE

Do not make further adjustments of the CHANNEL 1 OFFSET control until instructed to do so.

- 4. With a grease pencil, draw the trace on the CRT.
- 5. Connect B INPUT port through N male adapter to the TEST port of 8502A. Set CHANNEL 1 REF-ERENCE to -20 dB. The trace should be at or below the grease line for a return loss of ≥ 20 dB at the B INPUT port.
- 6. At the network analyzer, reverse the connections at the R and B inputs. Connect R INPUT port through N male adapter to TEST port of 8502A. The trace should be at or below the grease line for a return loss of ≥20 dB at the R INPUT port.
- 7. Erase the grease line.
- 8. Connect 8502A to the network analyzer as shown in Figure 4-9.

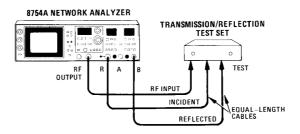


Figure 4-9. Input Port Match Test Setup (A INPUT Port)

9. Set analyzer controls as follows:

CHANNEL 1

10. Adjust the CHANNEL 1 REFERENCE OFFSET control to center the trace on the center graticule line.

NOTE

Do not make further adjustments of the CHANNEL 1 OFFSET during this test.

PERFORMANCE TESTS

1 4-16. INPUT PORT MATCH TEST (Cont'd)

- 11. With a grease pencil, draw the trace on the CRT.
- 12. Connect A INPUT port through N male adapter to the TEST port of the 8502A. Set CHANNEL 1 REFERENCE to -20 dB. The trace should be at or below the grease line for a return loss of ≥ 20 dB at the A INPUT port.

4-17. RECEIVER NOISE LEVEL TEST

SPECIFICATION:

- 80 dBm at A and B inputs.

DESCRIPTION:

The average noise level at the A and B inputs is measured with these inputs terminated.

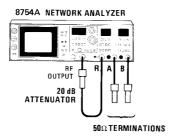


Figure 4-10. Receiver Noise Level Test Setup

EQUIPMENT:

20 dB Attenuator	HP 8491A Option 020
50 Ohm Termination (2)	HP 909A Option 012

PROCEDURE:

1. Connect equipment as shown in Figure 4-10. Set controls as follows:

Sweep Mode I		
SWEEP	A U7	O, FAST
SWEEP Vernier		midrange
MARKERS MHz		OFF
OUTPUT dBm		0 ~
VIDEO FILTER	. 	. on (in) =
POLAR A/R		off (out)

PERFORMANCE TESTS

4-17. RECEIVER NOISE LEVEL TEST (Cont'd)

CHANNEL I REFERENCE	out)- A-
Scale	/1 V
CHANNEL 2 Measurement Select O)FF

- 2. Press the REFERENCE POSITION CH 1 button and adjust control to place the reference trace on the center graticule line. Press the button again to turn off the reference trace.
- 3. The highest point of the noise trace should be at or below the center graticule line.
- 4. Set analyzer controls as follows:

CHANNI M	EL 1 easurement Select	 	OFF
R M	EL 2 EFERENCE EFERENCE OFFSET easurement Select eale	 	off (out)

- 5. Press REFERENCE POSITION CH 2 button and adjust \$\rightarrow\$ control to place the reference trace on the center graticule line. Press button again to turn off reference trace.
- 6. The highest point of the noise trace should be at or below the center graticule line.

4-18. MINIMUM R INPUT LEVEL TEST

SPECIFICATION:

-40 dBm ($\geq -40 \text{ dBm}$ required to operate reference channel phase lock)

DESCRIPTION:

The level of the R INPUT signal is reduced by an external attenuator until the reference channel phase lock will not operate. Then the level is increased to lock threshold and the input power is measured.

PERFORMANCE TESTS

1 4-18. MINIMUM R INPUT LEVEL TEST (Cont'd)

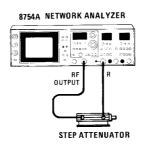


Figure 4-11. Minimum R Input Level Test Setup

EQUIPMENT:

PROCEDURE:

- 1. Connect equipment as shown in Figure 4-11. Set step attenuator to 0 dB.
- 2. Set analyzer controls as follows:

TUNING
SWEEP WIDTH MHz
Sweep Mode CENTER
SWEEP AUTO, FAST
SWEEP Vernier midrange
MARKERS MHz OFF
OUTPUT dBm
VIDEO FILTERoff (out)POLAR A/Roff (out)
POLAR A/R off (out)
CHANNEL 1
REFERENCE00 dBm -
REFERENCE OFFSET button off (out)
Measurement Select OFF (display R)
Scale
CHANNEL 2
Measurement Select OFF (display R)

- 4. Depress CHANNEL 1 REFERENCE OFFSET pushbutton and place right edge of trace on center horizontal graticule line using OFFSET control.
- 5. Set REFERENCE to -40 dB and Scale to 10 dB/DIV.
- 6. Increase attenuator in 10-dB steps until UNLOCKED light is on.

PERFORMANCE TESTS

4-18. MINIMUM R INPUT LEVEL TEST (Cont'd)

- 7. Increase OUTPUT dBm until UNLOCKED light is out.
- 8. Select 2.5 dB/DIV. Trace should be continuous (no dropouts, etc.) and should be below the CRT center line.

4-19. CROSSTALK ISOLATION TEST

SPECIFICATION:

> 83 dB isolation between ports.

DESCRIPTION:

The full band RF OUTPUT signal at +10 dBm is applied to the R input. The A and B inputs are terminated and the channel signal level is displayed. This signal level must be >83 dB below the level of the R input signal. To check the crosstalk between the A and B inputs, a directional coupler is used to provide the signal to both the R (for phase lock) and A or B inputs. The test channel input (A or B) is terminated and the signal level is displayed. This signal level must be >83 dB below the level at the other port.

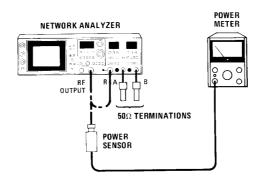


Figure 4-12. R-A and R-B Crosstalk Test Setup

NOTE

Equipment listed is for two test setups, Figures 4-12 and 4-13.

EQUIPMENT:

Power Meter	HP 435A
Power Sensor	HP 8482A
Directional Coupler	HP 778D
Matched Cable Kit	HP 11851A
50 Ohm Termination (2)	P 909A Opt 012
Adapter, Type N Female to Type N Female	HP 1250-0777

NOTE

Crosstalk may be degraded if improperly shielded cables are used.

PERFORMANCE TESTS

14-19. CROSSTALK ISOLATION TEST (Cont'd)

PROCEDURE:

R - A and R - B Crosstalk

1. Set analyzer controls as follows:

Sweep Mode	CENTER
SWEEP AU	ΓO, FAST
SWEEP Vernier	
TUNING	. 50 MHz ~
SWEEP WIDTH MHz	
SWEEP WIDTH MHz Vernier	CAL
MARKERS MHz	. 50 MHz -
OUTPUT dBm	+10 dBm ~
REFERENCE POSITION CH 1	on (in)
REFERENCE POSITION CH 2	off (out)
VIDEO FILTER	on (in)
POLAR A/R	off (out)
CHANNEL 1	

CHANNEL 1

REFERENCE	
REFERENCE OFFSET button	off (out)
Measurement Select	
Scale	5 dB/DIV

CHANNEL 2

Measurement Select OFF

- 2. Adjust REFERENCE POSITION CH 1 ♦ control to place reference trace on the center graticule line
- 3. Adjust TUNING to place the 50 MHz marker at the center graticule line.
- 4. Calibrate power meter and sensor. Connect power sensor to analyzer RF OUTPUT as shown in Figure 4-12 and adjust OUTPUT dBm for a meter indication of +10 dBm.

NOTE

Do not make further adjustments of the OUTPUT dBm control during this test.

- 5. Disconnect power sensor from analyzer. Connect RF OUTPUT to the R INPUT port and terminate the A and B INPUT ports as shown in Figure 4-12.
- 6. Set analyzer controls as follows:

Sweep Mode
SWEEP Vernier
MARKERS MHzOFF
REFERENCE POSITION CH 1off (out)

PERFORMANCE TESTS

4-19. CROSSTALK ISOLATION TEST (Cont'd)

- 7. The trace should be below the center graticule line (R-A isolation greater than 83 dB). (The trace might be off screen.)
- 8. Set controls on the network analyzer as follows:

CHANNEL 1 Measurement SelectOFF
CHANNEL 2 REFERENCE
Measurement Select. B Scale 2.5 dB/DIV

- 9. Press the REFERENCE POSITION CH 2 button and adjust \$\rightarrow\$ control to place reference trace on the center graticule line. Press button again to turn off reference trace.
- 10. The trace should be below the center graticule line (R-B isolation greater than 83 dB).

A - B Crosstalk

- 11. Connect equipment as shown in Figure 4-13 with 50 ohm termination at B INPUT port.
- 12. The trace should be below the center graticule line (A-B isolation greater than 83 dB).

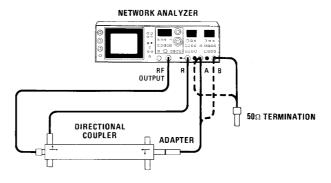


Figure 4-13. A-B Crosstalk Test Setup

13. Set controls as follows:

CHANNEL 1 Measurement Select
CHANNEL 2 Measurement SelectOFF
the analyzer A and R INPLIT parts, switch the 50 ohm termination and cable from the cour

- 14. At the analyzer A and B INPUT ports, switch the 50 ohm termination and cable from the coupler.
- 15. The trace should be below the center graticule line (A-B isolation greater than 83 dB).

PERFORMANCE TESTS

4-20. MAGNITUDE AND PHASE FREQUENCY RESPONSE TEST

SPECIFICATION:

Magnitude:

Absolute (A and B): ± 1 dB Ratio (A/R and B/R): ± 0.3 dB

Phase:

 ± 2.5 degrees

DESCRIPTION:

The receiver magnitude frequency response in the absolute mode is tested by applying the RF OUTPUT signal through a power splitter to the A or B INPUT port and a power meter. The power variations due to the source, as indicated on the meter, are subtracted from the variations of the analyzer CRT trace, giving a resultant variation due only to the receiver and display. The frequency response in the ratio modes is tested by applying the RF OUTPUT signal to all input ports and observing the A/R, B/R, PHASE B/R, and POLAR A/R traces directly on the display.

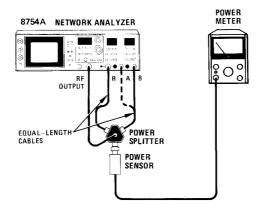


Figure 4-14. Absolute Frequency Response Test Setup

NOTE

Equipment listed is for two test setups, Figures 4-14 and 4-16.

EQUIPMENT:

Power Meter
3-Way Power Splitter
Power Sensor
Matched Cable Kit

PERFORMANCE TESTS

4-20. MAGNITUDE AND PHASE FREQUENCY RESPONSE TEST (Cont'd)

PROCEDURE:

Absolute Magnitude

- 1. Calibrate power meter, then connect equipment as shown in Figure 4-14, with cable connected to the A INPUT port.
- 2. Set controls on the network analyzer as follows:

Comment Made

Sweep Mode CENTER	
SWEEP AUTO, FAST	
SWEEP Vernier Fully clockwise	
TUNING	
SWEEP WIDTH MHz 10 MHz	
MARKERS MHz 1 MHz	
OUTPUT dBm	
POLAR A/R off (out)	
VIDEO FILTER off (out)	
CHANNEL 1 REFERENCE02 dBm- REFERENCE OFFSET button. off (out) Measurement Select	
CHANNEL 2	0.55

CENTED

3. Press the REFERENCE POSITION CH 1 button and adjust \$\rightarrow\$ control to place reference trace on the center graticule line.

Measurement Select OFF

- 4. Adjust TUNING until the 4 MHz marker is centered on the display. The trace is blanked below approximately 2.8 MHz, as shown in Figure 4-15.
- 5. Adjust FREQUENCY MHz CAL for a FREQUENCY indication of 004 MHz.
- 6. Set SWEEP WIDTH MHz to 0 CW and MARKERS MHz to OFF.
- 7. Press the REFERENCE POSITION CH 1 button again to turn off the reference trace.
- 8. Set power meter to the 0 dBm range. Adjust OUTPUT dBm on the analyzer until the power meter reads -2.0 dBm.

PERFORMANCE TESTS

1 4-20. MAGNITUDE AND PHASE FREQUENCY RESPONSE TEST (Cont'd)

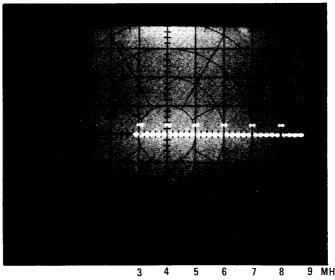


Figure 4-15. 4-MHz Marker Centered on CRT

- 9. Tune analyzer to points across the frequency band as indicated in Table 4-2. At each point record the power level indication from the analyzer display and the power meter reading under INPUT A in the table. Subtract the two readings to eliminate power variations due to the source. The difference reading in the last column of Table 4-2 should not vary more than ±1 dB (there should not be more than 2 dB difference between maximum and minimum values.)
- 10. Disconnect cable from the A INPUT port and connect this cable to the B INPUT port. Set controls as follows:

TUNING	004 MHz
CHANNI M	EL 1 leasurement Select OFF
R M	EL 2 -02 dBm EFERENCE -02 dBm EFERENCE OFFSET Button off (out deasurement Select Easle 1 dB/DIV

- 11. Adjust OUTPUT dBm for an indication of -2.0 dBm on the power meter.

PERFORMANCE TESTS

4-20. MAGNITUDE AND PHASE FREQUENCY RESPONSE TEST (Cont'd)

Table 4-2. Absolute Magnitude Frequency Response

FREQUENCY MHz (LED Readout)	Rea	er Power ding Bm)	Power Meter Reading (dBm)		Difference in Readings (dB)	
	INPUT A	INPUT B	INPUT A	INPUT B	INPUT A	INPUT B
004						
010						
050						
100						
200						
300						
400						
500				-		
600						
700						
800					-	
900						
1000						
1100						
1200						
1300						

^{13.} Tune analyzer to points across the frequency range as indicated in Table 4-2. At each point record the power reading from the analyzer display and the power meter reading. Subtract the two readings and record the result in the last column under INPUT B. The difference reading in the last column should not vary more than ±1dB (there should not be more than 2 dB difference between the maximum and minimum values).

PERFORMANCE TESTS

1 4-20. MAGNITUDE AND PHASE FREQUENCY RESPONSE TEST (Cont'd)

Ratio Magnitude

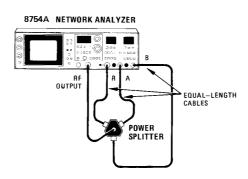


Figure 4-16. Ratio Magnitude and Phase Frequency Response Test Setup

14. Connect equipment as shown in Figure 4-16. Set analyzer controls as follows:

Sweep Mode FULL 4—130 SWEEP AUTO, FAS SWEEP Vernier midrang MARKERS MHz OF OUTPUT dBm 0 dBn	T ge F
CHANNEL 1 REFERENCE	ı) R
CHANNEL 2 Measurement Select OF	F-

- 15. Adjust CHANNEL 1 REFERENCE OFFSET control to place trace at mid-screen.
- 16. Note lowest and highest points on the trace. These points should not be separated by more than 0.6 dB (2.4 divisions) for a flatness of ± 0.3 dB.
- 17. Set controls as follows:

CHANNEL 1 Measurement Select	OFF
CHANNEL 2 REFERENCE REFERENCE OFFSET Measurement Select Scale	on (in)

PERFORMANCE TESTS

4-20. MAGNITUDE AND PHASE FREQUENCY RESPONSE TEST (Cont'd)

- 18. Adjust CHANNEL 2 REFERENCE OFFSET control to place the trace at midscreen.
- 19. Note highest and lowest point on the trace. These points should not be separated by more than 0.6 dB (2.4 divisions) for a flatness of ± 0.3 dB.

Phase

20. Set controls as follows:

CHANNEL 2	
Measurement Select	PHASE B/R
Scale	2.5 DEG/DIV

- 21. Press REFERENCE POSITION CH 2 button and adjust the center graticule line. Press button again to turn off reference trace.
- 22. Adjust PHASE B/R LENGTH control to obtain a horizontal trace.
- 23. Adjust CHANNEL 2 REFERENCE OFFSET control to place the trace at the center graticule line.
- 24. Readjust PHASE B/R LENGTH control, if necessary, for a horizontal trace.
- 25. The peak-to-peak deviation of the trace should be ≤ 5 degrees (2 divisions).
- 26. Set controls as follows:

POLAR A/R	on (in)
POLAR CENTER	on (in)

- 27. Adjust POLAR CENTER ♦ and ◆ controls to place dot at center of graticule. Press POLAR CENTER button to return it to the off (out) position.
- 28. Adjust the POLAR LENGTH control to make the trace into as small a dot as possible.
- 29. Adust CHANNEL 1 and CHANNEL 2 REFERENCE OFFSET controls to place the trace dot on the outermost graticule circle at the zero degrees position (3 o'clock).
- 30. The peak-to-peak width of the dot should be ≤ 5 degrees (1/2 polar division).

4-21. MAGNITUDE DYNAMIC ACCURACY TEST

SPECIFICATION:

- ± 0.3 dB from 0 to -50 dBm
- ± 0.5 dB from -50 to -60 dBm
- $\pm 1.0 \text{ dB from} -60 \text{ to} -70 \text{ dBm}$
- ± 2.5 dB from -70 to -80 dBm

PERFORMANCE TESTS

, 4-21. MAGNITUDE DYNAMIC ACCURACY TEST (Cont'd)

DESCRIPTION:

A CW signal from the analyzer source is input to the network analyzer in a ratio measurement mode. The signal is decreased in level with an external, calibrated attenuator and the deviation from the expected position of the trace is observed.

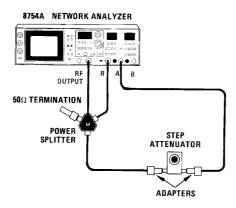


Figure 4-17. Magnitude Dynamic Accuracy Test Setup

EQUIPMENT:

3-Way Power Splitter	HP 11850A
Step Attenuator	HP 355D – H82
Matched Cable Kit	HP 11851A
Adapter, Type-N Female to BNC Male (2)	HP 1250 – 0077
50 Ohm Termination	P 909A Opt 012

PROCEDURE:

- 1. Connect equipment as shown in Figure 4-17 with step attenuator set at 20 dB.
- 2. Set network analyzer controls as follows:

Sweep Mode	TER 1
TUNING	ΜHz∞
VIDEO FILTER or	ı (in)^
SWEEP AUTO, F	AST
SWEEP Vernier fully clock	wise
OUTPUT dBm	
MARKERS MHz	OFF
SWEEP WIDTH MHz 0	$\mathbf{C}\mathbf{W}$
POLAR A/R off (out)

PERFORMANCE TESTS

4-21. MAGNITUDE DYNAMIC ACCURACY TEST (Cont'd)

CHANNEL 1
REFERENCE level switches +00
REFERENCE OFFSET switch on (in)
Input Select
Scale
CHANNEL 2
Measurement Select OFF

- 3. Press REFERENCE POSITION CH 1 button and adjust control to place trace on center graticule line. Press button again to turn off reference trace.
- 4. Set step attenuator to the 20 dB position. Set Channel 1 REFERENCE switch to -00 dB. Press Reference OFFSET pushbutton and adjust OFFSET control to place the CRT trace on the center graticule line. Do not change the OFFSET control setting during the test.
- 5. Step the attenuator and REFERENCE switch as shown in Table 4-3. At each attenuator-REFERENCE switch position, the trace should be at the reference line within the limits shown on the Table.

(It may be necessary to change Channel 1 dB/DIV to a less sensitive setting if the trace is off screen.)

- 6. Switch the cables at the R and the A INPUT ports.
- 7. Repeat steps 4 and 5 to measure R-channel dynamic accuracy using Table 4-4 instead of Table 4-3.

4-22. MAGNITUDE DISPLAY ACCURACY TEST

SPECIFICATION:

Magnitude Display Accuracy: $\pm 2\% \pm .05$ division

DESCRIPTION:

A CW signal from the analyzer source is input to the network analyzer in a ratio measurement mode. The CRT trace is offset with the REFERENCE switch and the display accuracy is checked.

PERFORMANCE TESTS

Table 4-3. Magnitude Dynamic Accuracy, A Channel

External Attenuator Setting	REFERENCE Switch	CRT Trace Deviation from Reference Line (Plus attenuator tolerance)
0 dB	+ 20.0 dB	±0.3 dB
10 dB	+ 10.0 dB	±0.3 dB
20 dB (Reference)	-00.0 dB	±0.0 dB (Reference Line)
30 dB	-10.0 dB	±0.3 dB
40 dB	-20.0 dB	±0.3 dB
50 dB	-30.0 dB	±0.3 dB
60 dB	-40.0 dB	±0.5 dB
70 dB	-50.0 dB	±1.0 dB
80 dB	−60.0 dB	±2.5 dB

NOTE

This procedure uses the 20 dB position of the external attenuator as reference. Measurements at other positions should subtract the calibration tolerance of the attenuator at 20 dB from the expected reading.

Table 4-4. Magnitude Dynamic Accuracy, R Channel

External Attenuator Setting	REFERENCE Switch	CRT Trace Deviation from Reference Line (Plus attenuator tolerance)
0 dB	→20.0 dB	±0.3 dB
10 dB	→ 10.0 dB	±0.3 dB
20 dB (Reference)	00.0 dB	±0.0 dB (Reference Line)
30 dB	∔ 10.0 dB	±0.3 dB
40 dB	≠ 20.0 dB	±0.3 dB
		• • • • • • • • • • • • • • • • • • • •

NOTE

This procedure uses the 20 dB position of the external attenuator as reference. Measurements at other positions should subtract the calibration tolerance of the attenuator at 20 dB from the expected reading.

LDEC + .

PERFORMANCE TESTS

4-22. MAGNITUDE DISPLAY ACCURACY TEST (Cont'd)

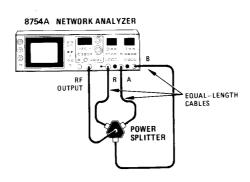


Figure 4-18. Magnitude Display Accuracy Test Setup

EQUIPMENT:

3-Way Power Splitter	HP 11850A
Matched Cable Kit	HP 11851A

PROCEDURE:

- 1. Connect equipment as shown in Figure 4-18.
- 2. Set network analyzer controls as follows:

Sweep Mode
SWEEP AUTO, FAST
SWEEP Vernier Fully clockwise
TUNING 50 MHz
SWEEP WIDTH MHz
MARKERS MHz OFF
OUTPUT dBm 0 dBm
POLAR A/R Off (out)
VIDEO FILTER Off (out)

CHANNEL 1

REFERENCE()()
REFERENCE OFFSET button Off (ou	ıt)
Measurement Select A/	R
Scale	V

PERFORMANCE TESTS

1 4-22. MAGNITUDE DISPLAY ACCURACY TEST (Cont'd)

- 3. Press the REFERENCE POSITION CH 1 button and adjust \(\phi \) control to place the reference trace on the center graticule line. Press button again to turn off reference trace.
- 4. Press the CHANNEL 1 REFERENCE OFFSET button and adjust OFFSET vernier to position CRT trace on the center graticule line. Do not change OFFSET vernier setting during test.
- 5. Set CHANNEL 1 Scale and REFERENCE controls according to Table 4-5. At each setting, check that the trace position is within limits given in Table 4-5.
- 6. Set CHANNEL 1 Measurement Select to OFF and CHANNEL 2 Measurement Select to B/R.
- 7. Repeat steps 3 through 5, substituting "CH2" and "CHANNEL 2" for "CH 1" and "CHANNEL 1" in these steps.

Table 4-5. Magnitude Display Accuracy

Scale (dB/DIV)	REFERENCE (dB)	Trace Offset From Center (Div.)	Tolerance (Div.)
.25	+1	_4	±0.13
.25	-1	+4	±0.13
1	+4	-4	±0.13
1	-4	+4	±0.13
2.5	+10	_4	±0.13
2.5	-10	+4	±0.13
10	+40	_4	±0.13
10	-40	+4	±0.13

PERFORMANCE TESTS

4-23. PHASE DYNAMIC ACCURACY TEST

SPECIFICATION:

 ± 2 degrees from 0 to -50 dBm ± 4 degrees from -50 to -70 dBm

DESCRIPTION:

A phase reference level is established with a CW signal. Using a step attenuator, the signal level is decreased through the dynamic range of the instrument and the variation in the phase indication on the CRT is checked.

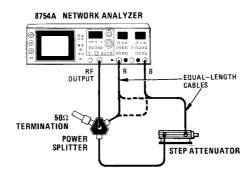


Figure 4-19. Phase Dynamic Accuracy Test Setup

EQUIPMENT:

Step Attenuator	HP 8496A Opt 001
3-Way Power Splitter	HP 11850A
50 Ohm Termination	
Matched Cable Kit Cable (2)	
Adapter, N male to N male	HP 1250-0778

PERFORMANCE TESTS

4-23. PHASE DYNAMIC ACCURACY TEST (Cont'd)

PROCEDURE:

1. Connect equipment as shown in Figure 4-19 with step attenuator set at 20 dB.

2. Set network analyzer controls as follows:

Sweep Mode
SWEEP AUTO, FAST
SWEEP Vernier midrange
TUNING 10 MHz
SWEEP WIDTH MHz 0 CW
MARKERS MHz OFF
OUTPUT dBm
VIDEO FILTER on (in)

CHANNEL 1

Measurement Select OFF

CHANNEL 2

REFERENCE00	
REFERENCE OFFSET button on (in))
Measurement Select	
Scale 2.5 DEG/DIV	·
PHASE B/R LENGTH fully clockwise	:

- 3. Press REFERENCE POSITION CH 2 button and adjust \$\rightarrow\$ control to place reference trace on the center graticule line. Press button again to turn off reference trace.
- 4. Adjust CHANNEL 2 REFERENCE OFFSET control to place trace on the center graticule line.
- 5. Step the 8496A from 0 dB to 70 dB as indicated in Table 4-6 and note the variation from the center graticule line.
- 6. Switch cables at B and R INPUT ports so that the step attenuator is connected to the R INPUT port. Set CHANNEL 2 scale to 2.5 DEG/DIV.
- 7. Set step attenuator to 20 dB and adjust CHANNEL 2 REFERENCE OFFSET control to place trace on center graticule line.
- 8. Step the attenuator from 0 dB to 40 dB. The variation of the trace from the center graticule line should be no more than ± 2 degrees.

PERFORMANCE TESTS

4-23. PHASE DYNAMIC ACCURACY TEST (Cont'd)

Table 4-6. Phase Dynamic Accuracy

Step Attenuator Setting (dB)	Allowable Deviation (degrees)
20	0 (ref.)
0 10 30 40 50	±2
60 70	±4

4-24. PHASE REFERENCE ACCURACY TEST

SPECIFICATION:

 $\pm 1\%$ of value

DESCRIPTION:

The swept RF OUTPUT signal is fed to the B and R INPUT ports through paths of unequal length. The analyzer is tuned to each frequency for which there is a 180-degree phase difference between the B and R signals. The phase reference is switched from -180 degrees to +180 degrees at each frequency and the difference in the displayed phase between these two settings is measured.

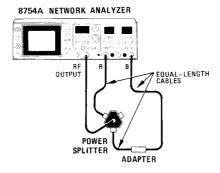


Figure 4-20. Phase Reference Accuracy Test Setup

EQUIPMENT:

3-Way Power Splitter	HP 11850A
Matched Cable Kit	HP 11851A
Adapter, Type N Female to Type N Female H	HP 1250-0777
• • • • •	

PERFORMANCE TESTS

, 4-24. PHASE REFERENCE ACCURACY TEST (Cont'd)

PROCEDURE:

- 1. Connect equipment as shown in Figure 4-20.
- 2. Set controls as follows:

Sweep Mode
SWEEP AUTO, FAST
SWEEP Vernier midrange
MARKERS MHz OFF
REFERENCE POSITION CH 2 off (out)
VIDEO FILTER off (out)
CHANNEL 1 Measurement Select OFF
CHANNEL 2
REFERENCE180 DEG
REFERENCE OFFSET button off (out)
Measurement Select
Scale 90 DEG/DIV

- 3. Press the REFERENCE POSITION CH 2 button and adjust \$\rightarrow\$ control to place the reference trace on the center graticule line. Press button again to turn off reference trace.
- 4. Turn the PHASE B/R LENGTH control fully clockwise. Then turn counterclockwise until the right-hand end of trace is at least 1 minor division below center graticule line and any noise present on the right-hand end of trace is gone.
- 5. Adjust TUNING to place the marker at the highest frequency at which the trace crosses the center graticule line. The trace should appear as in Figure 4-21.

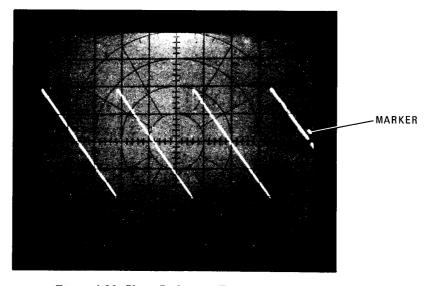


Figure 4-21. Phase Reference Test Display

PERFORMANCE TESTS

4-24.	PHASE REFERENCE ACCURACY TEST (Cont'	d)
-------	---------------------------------	-------	----

6.	Set contro	ls as i	fol	lows:
----	------------	---------	-----	-------

Sweep Mode	 	CENTER
SWEEP WIDTH MHz	 	0 CW
CHANNEL 2		

. Adjust TUNING to place the trace on the center graticule line.

8. Set CHANNEL 2 REFERENCE to +180 DEG. The deviation of the trace from the center graticule line should be no more than ±1.8 degree (±0.72 division).

9. Set controls as follows:

 Sweep Mode.
 FULL 4–1300

 CHANNEL 2
 -180 DEG

10. Position the marker at each of the other three frequencies at which the trace crosses the center graticule line and repeat steps 6 through 9 at each frequency.

4-25. PHASE DISPLAY ACCURACY TEST

SPECIFICATION:

Phase Display Accuracy: $\pm 2\% \pm .05$ division

DESCRIPTION:

A CW signal from the analyzer source is input to the network analyzer in a phase measurement mode. The CRT trace is offset with the REFERENCE switch, and the display accuracy is checked.

Performance Tests Model 8754A

PERFORMANCE TESTS

¹4-25. PHASE DISPLAY ACCURACY TEST (Cont'd)

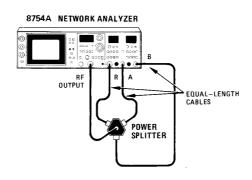


Figure 4-22. Phase Display Accuracy Test Setup

EQUIPMENT:

3-Way Power Splitter	HP 11850A
Matched Cable Kit	HP 11851A

PROCEDURE:

- 1. Connect equipment as shown in Figure 4-22.
- 2. Set network analyzer controls as follows:

Sweep Mode	. CENTER
SWEEP A	UTO, FAST
SWEEP Vernier Fu	
TUNING	
SWEEP WIDTH MHz	0 (CW)
MARKERS MHz	
OUTPUT dBm	0
POLAR A/R	Off (out)
VIDEO FILTER	
CHANNEL 1	
Measurement Select	OFF
CHANNEL 2	
REFERENCE	00
REFERENCE OFFSET button	On (in)
Measurement Select	PHASE B/Ŕ
Scale	
PHASE B/R LENGTH Fully coun	

3. Adjust REFERENCE POSITION CH2 ♦ control to place the reference trace on the center graticule line. Press the REFERENCE POSITION CH 2 button to turn off reference trace.

PERFORMANCE TESTS

4-25. PHASE DISPLAY ACCURACY TEST (Cont'd)

4. Adjust CHANNEL 2 OFFSET vernier to position CRT trace on the center graticule line. Do not change OFFSET vernier setting during test.

5. Set CHANNEL 2 Scale and REFERENCE controls according to Table 4-7. At each setting check that the trace position is within limits given in Table 4-7.

Scale (DEG/DIV)	REFERENCE (DEG)	Trace Offset From Center (Div.)	Tolerance (Div.)
2.5	+5	-2	±0.1
2.5	-5	+2	±0.1
10	+20	-2	±0.1
10	-20	+2	±0.1
45	+90	-2	±0.1
45	-90	+2	±0.1
90	+90	-1	±0.07
90	-90	+1	±0.07

Table 4-7. Phase Display Accuracy

4-26. POLAR DISPLAY ACCURACY TEST

SPECIFICATION:

Displayed value is within 2.5 mm of actual value.

DESCRIPTION:

A polar reference point is established with a CW signal at the A and R INPUT ports. The phase and magnitude REFERENCEs are changed and the polar indication on the display is checked.

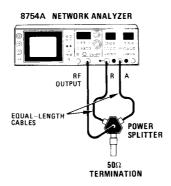


Figure 4-23. Polar Display Accuracy Test Setup

EQUIPMENT:

3-Way Power Splitter	HP 11850A
50 Ohm Termination	A Option 012
Matched Cable Kit	HP 11851A

Performance Tests Model 8754A

PERFORMANCE TESTS

4-26. POLAR DISPLAY ACCURACY TEST (Cont'd)

PROCEDURE:

- 1. Connect equipment as shown in Figure 4-23.
- 2. Set analyzer controls as follows:

Sweep Mode	CENTER
SWEEP AU	TO, FAST
SWEEP Vernier	midrange -
TUNING	030 MHz
SWEEP WIDTH MHz	0 CW
MARKERS MHz	
OUTPUT dBm	0 dBm
POLAR A/R	on (in)
CHANNEL 1	
REFERENCE	+00
REFERENCE OFFSET button	
CHANNEL 2	
REFERENCE	+00
REFERENCE OFFSET button	
TELL ENGLISE OF THE COMMON THE CONTROL OF THE CONTR	()

- 3. Press POLAR CENTER button and adjust ♦ and ◆▶ controls to set trace dot in the center of the graticule. Press button again to turn off reference trace.
- 4. Adjust CHANNEL 1 and CHANNEL 2 REFERENCE OFFSET controls to place trace dot on the 0 degree point of the outermost graticule circle (magnitude = 1.0).
- 5. Set CHANNEL 2 REFERENCE to the +90, -90, +180, and -180 degree settings. At each setting, the trace-dot must be at the phase point on the outer graticule circle. The tolerance of the trace-dot position is inside a circle of 2.5 mm (1/4 major division) radius centered on the specified point on the graticule.
- 6. Set CHANNEL 2 REFERENCE to +00.
- 7. Set CHANNEL 1 REFERENCE as indicated in Table 4-8. At each setting, the trace dot should be within a circle of 2.5 mm (1/4 major division) radius centered on the point shown in the table.

Table 4-8. Polar Display Accuracy

CHANNEL 1 REFERENCE (dB)	Display Point Magnitude (Phase = 0 degrees)
+00	1.00
+06	0.50
+12	0.25
+20	0.10

PERFORMANCE TESTS

4-27. MAG/PHASE OUTPUT ACCURACY TEST

SPECIFICATION:

```
Magnitude:
```

 $-100 \, mV/dB$

 $\pm 0.3 \, dB \, (\pm 30 \, mV) \, from \, 0 \, to \, -50 \, dBm$

 $\pm 0.5 \, dB \, (\pm 50 \, mV) \, from -50 \, to -60 \, dBm$

 $\pm 1.0 \text{ db} (\pm 100 \text{ mV}) \text{ from } -60 \text{ to } -70 \text{ dBm}$

 $\pm 2.5 \text{ dB} (\pm 250 \text{ mV}) \text{ from } -70 \text{ to } -80 \text{ dBm}$

Phase:

-10 mV/degree

 $\pm 1.5\%$ of value ($\pm 170^{\circ}$ range)

 $\pm 2\%$ of value ($\pm 180^{\circ}$ range)

DESCRIPTION:

A CW signal from the network analyzer source is input to the analyzer in a ratio measurement mode. The signal is decreased in level with a calibrated, external attenuator, and the magnitude output voltage is measured.

The magnitude accuracy is calculated by subtracting attenuator errors from the measured output.

For phase measurement, the phase output voltage is selected. The CHANNEL 2 REFERENCE thumb-wheels are used to offset the phase, and the output voltage is measured.

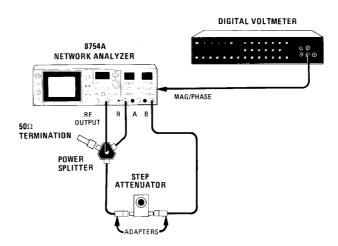


Figure 4-24. MAG/PHASE Output Accuracy Test Setup (Magnitude)

Performance Tests Model 8754A

PERFORMANCE TESTS

4-27. MAG/PHASE OUTPUT ACCURACY TEST (Cont'd)

EQUIPMENT:

Digital Voltmeter
Step Attenuator
3-Way Power Splitter
Matched Cable Kit
50 Ohm Termination
Adapter, Type N Female to BNC Male (2)
Test Connector; 24 contact, 2 rows; Male HP 1251-0063

PROCEDURE:

Magnitude

- 1. Connect equipment as shown in Figure 4-24 with step attenuator set at 20 dB.
- 2. Set network analyzer controls as follows:

Sweep Mode
SWEEP MAN
SWEEP Vernier Midrange
TUNING
SWEEP WIDTH MHz 0 CW
OUTPUT dBm
CHANNEL 1 Measurement Select B/R REFERENCE -00 dB REFERENCE OFFSET button Off (out) Scale 10 dB/DIV
CHANNEL 2
Measurement Select OFF

3. Press the REFERENCE POSITION CH1 button and adjust ♦ control to place the reference trace (dot) on the center graticule line. Press button again to turn off reference trace.

NOTE

Sheet 2 of Table 4-9 shows a sample of the B/R magnitude measurement.

- 4. Measure the Magnitude accuracy of B/R as follows:
 - a. On Table 4-9, fill in the values for columns B, C, and D for your calibrated attenuator.
 - b. Set the attenuator to 20 dB position, read the DVM indication and mark it into column F and G for 20 dB. Then calculate the value for column E. Put this value in all of the blanks in column E.
 - c. Calculate the values for F and fill them in on the table.
 - d. Measure the values for column G and fill them in on the table.
 - e. Compare the values in column G with those in column F to see if the measurements are within tolerance.
- 5. Switch the cables at the R and B INPUT ports. Set the step attenuator to 20 dB.
- 6. Repeat step 4 to measure R-channel magnitude output accuracy using Table 4-10. Sheet 2 of Table 4-9 shows a sample measurement.

PERFORMANCE TESTS

4-27. MAG/PHASE OUTPUT ACCURACY TEST (Cont'd)

7. Connect equipment as shown in Figure 4-25. Connect test connector, with jumper between pins 19 (REM MAG/PH) and 18 (ground), to rear-panel PROGRAMMING connector A23J7.

8. Set network analyzer controls as follows:

Sweep Mode	CENTER
SWEEP	MAN
SWEEP Vernier	Midrange
TUNING	30 MHz
SWEEP WIDTH MHz	0 CW
OUTPUT dBm	10 dBm
CHANNEL 1	O.F.F.
Measurement Select	OFF
CHANNEL 2	
Measurement Select	PHASE B/R-
REFERENCE	
REFERENCE OFFSET button	Off (out)
Scale	45 DEG/DIV
PHASE B/R LENGTH Fully coun	nterclockwise

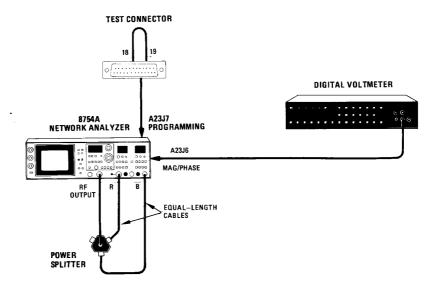


Figure 4-25. MAG/PHASE Output Accuracy Test Setup (Phase)

, 4-27. MAG/PHASE OUTPUT ACCURACY TEST (Cont'd)

Table 4-9. MAG/PHASE Output Accuracy (B Channel, Magnitude) (Sheet I of 2)

9		Measured DVM Value (Vdc)			(Ref.)								ttenuator.
	Expected DVM Reading (Vdc)	Allowable Measurement Tolerance (See Note 2)	0.030	0.030	(Reference)	0.030	0.030	0.030	0.050	0.100	0.250		ity of the HP 355D a
	Expecto Rea (V	Expected Reading With Corrections (D + E)	+1	+1		+1	+1	+1	+1	+1	+1) dB setting)}	2. The Allowable Measurement Tolerance in Column F does not include the calibration uncertainty of the HP 355D attenuator.
ш		Offset Correction (See Note 1) (Vdc)										1 Value of D at 20	oes not include the
a		Equivalent DVM Reading (C X 0.1 V/dB) (Vdc)										ulated as follows: ting) – (Calculated	ıce in Column F de
ပ	Actual	Attenuator Value (A + B) (dB)										Column E Offset Correction is calculated as follows: [(Actual DVM reading at 20 dB setting) – (Calculated Value of D at 20 dB setting)]	easurement Toleran
В	Attenuator	Calibration Value at Setting (dB)										Column E Offset Correction is calculated as follows: [(Actual DVM reading at 20 dB setting) – (Calculate)	2. The Allowable Mo
A		External Attenuator Setting (dB)	0	10	20 (Reference)	30	40	50	09	70	08	NOTES:	

4-27. MAG/PHASE OUTPUT ACCURACY TEST (Cont'd)

Table 4-9. MAG/PHASE Output Accuracy (B Channel, Magnitude) (Sheet 2 of 2)

9		Measured DVM Value	(Vdc)	. 0/3	1.002	2.008 (Ref.)	3.029	4.008	5.027	6.102	7.130	8.098		attenuator.
1	Expected DVM Reading (Vdc)	Allowable Measurement Tolerance	(See Note 2)	0:030	0.030	(Reference)	0.030	0.030	0.030	0.050	0.100	0.250		nty of the HP 355D
	Expecte Rear (V)	Expected Reading With Corrections	(D + E)	.020	1.023 ±	2.008	3.022 +	4.019	5.015	6.030 ±	7.023 ±	8.033 ±) dB setting)]	2. The Allowable Measurement Tolerance in Column F does not include the calibration uncertainty of the HP 355D attenuator.
ш		Offset Correction (See Note 1)	(Vdc)	t.020	t.020	t.020	t.020	4.020	4.020	+.020	4.020	t.020	Column E Offset Correction is calculated as follows: [(Actual DVM reading at 20 dB setting) – (Calculated Value of D at 20 dB setting)]	loes not include the
O		Equivalent DVM Reading (C X 0.1 V/dB)	(Vdc)	0	1.003	1.988	3.002	3.999	4.995	6.010	7.003	8.013	culated as follows: tting) – (Calculate	nce in Column F d
ú	Actual	Attenuator Value (A + B)	(qB)	0	10.03	19.88	30.02	32.99	49.95	60.10	70.03	80.13	t Correction is calc eading at 20 dB set	easurement Tolera
82	Attenuator	Calibration Value at Setting	(4B)	0	+.03	-0.12	+.02	10	05	+0.10	t.03	+0.13	Column E Offset Correction is calculated as follows: (Actual DVM reading at 20 dB setting) – (Calculate	2. The Allowable M
A		External Attenuator Setting	(qB)	0	10	20 (Reference)	30	40	. 50	09	70	08	NOTES:	

4-27. MAG/PHASE OUTPUT ACCURACY TEST (Cont'd)

Table 4-10. MAG/PHASE Output Accuracy (R Channel, Magnitude) (Sheet 1 of 2)

9		Measured DVM Value (Vdc)			(Ref.)				ttenuator.
L.	ed DVM ding dc)	Allowable Measurement Tolerance (See Note 2)	0.030	0.030	(Reference)	0.030	0.030		ity of the HP 355D a
	F Expected DVM Reading (Vdc)	Expected Reading With Corrections (D + E)	+ +	+1		+1	+1	dB setting)]	2. The Allowable Measurement Tolerance in Column F does not include the calibration uncertainty of the HP 355D attenuator.
ш		Correction (See Note 1) (Vdc)						1 Value of D at 20	es not include the
٥		Equivalent DVM Reading (C X 0.1 V/dB) (Vdc)						Column E Offset Correction is calculated as follows: [(Actual DVM reading at 20 dB setting) – (Calculated Value of D at 20 dB setting)]	ıce in Column F do
ပ	Actual	Value (A + B) (dB)						t Correction is calc ading at 20 dB set	easurement Tolerar
82	Attenuator	Value at Setting (dB)						Column E Offset Correction is calculated as follows: [(Actual DVM reading at 20 dB setting) – (Calculate)	2. The Allowable Mo
A	**************************************	Attenuator Setting (dB)	0	10	20 (Reference)	30	40	NOTES:	

4-27. MAG/PHASE OUTPUT ACCURACY TEST (Cont'd)

Table 4-10. MAG/PHASE Output Accuracy (R Channel, Magnitude) (Sheet 2 of 2)

9		Measured DVM Value (Vdc)	.0/3	1.002	2.008 (Ref.)	3.011	4.003		attenuator.
LL .	Expected DVM Reading (Vdc)	Allowable Measurement Tolerance (See Note 2)	0.030	0.030	(Reference)	0:030	0.030		2. The Allowable Measurement Tolerance in Column F does not include the calibration uncertainty of the HP 355D attenuator.
_	Expecte Rea (V	Expected Reading With Corrections (D + E)	.020	1.023 ±	2.008	3022 +	4.019 ±	0 dB setting)]	e calibration uncerta
ш		Correction (See Note 1)	t.020	t.020	t.020	t.020	4.020	1 Value of D at 20	oes not include th
O		Equivalent DVM Reading (C X 0.1 V/dB)	0	1.003	1.988	3.002	3.999	ulated as follows: ting) – (Calculated	nce in Column F de
ນ	Actual	Attenuator Value (A + B)	0	10.03	19.88	30.02	39.99	1. Column E Offset Correction is calculated as follows: [(Actual DVM reading at 20 dB setting) – (Calculated Value of D at 20 dB setting)]	feasurement Tolera
æ	Attenuator	Calibration Value at Setting		t.03	-0.12	4.02	10	1. Column E Offse [(Actual DVM 1	2. The Allowable M
A	,	External Attenuator Setting	0	10	20 (Reference)	30	40	NOTES:	

Performance Tests Model 8754A

PERFORMANCE TESTS

4-27. MAG/PHASE OUTPUT ACCURACY TEST (Cont'd)

- 10. Press CHANNEL 2 REFERENCE OFFSET button and adjust the OFFSET vernier for a DVM indication of 0.000 ± 0.001 V. Do not change OFFSET vernier setting during the test.
- 11. Set CHANNEL 2 REFERENCE as indicated in Table 4-11. At each setting, check that the DVM indication is within limits given in Table 4-11.

Table 4-11. MAG/PHASE Output Accuracy (PHASE B/R)

REFERENCE (degrees)	Ideal DVM Reading (Vdc)	Tolerance (Vdc)
-50	-0.500	±0.0075
-100	-1.000	±0.015
-180	±1.800*	±0.036
+180	±1.800*	±0.036
+100	+1.000	±0.015
+50	+0.500	±0.0075

^{*}At the 180 degree transition point, this may be a positive or negative voltage.

Table 4-12. Performance Test Record (1 of 5)

Hewlett-Packard Company	Tested By
Model 8754A	
Network Analyzer 4 – 1300 MHz	Date

Para.			Results	
No.	Test Description	Min.	Actual	Max.
4-12	Frequency Readout Accuracy			
	5. 50 MHz	40 MHz		60 MHz
	6. 4 MHz	-6 MHz		14 MHz
	1000 MHz	990 MHz		1010 MHz
	1300 MHz	1290 MHz		1310 MHz
4-13	Marker Accuracy			
	5. 1300 MHz	1299.87 MHz		1300.13 MHz
4-14	Source Output Power			
	Power Accuracy at 50 MHz			
	6. 0 dBm	−0.8 dBm		+ 0.8 dBm
	7. +5 dBm	+4.2 dBm		+ 5.8 dBm
	8. +10 dBm	+9.2 dBm		+10.8 dBm
	Flatness			
	14. 4 – 1300 MHz			
	(peak-to-peak variation)			1.0 dB
4-15	Source Spectral Purity			
	Residual FM			
	16. 50 MHz			7 kHz
	17. 600 MHz			7 kHz
	18. 1300 MHz			7 kHz
	Harmonics			
	21. 4 – 500 MHz	28 dBc		
	22. 500 – 1300 MHz	28 dBc		
	Spurious			
	25. 4 – 500 MHz (CENTER)	65 dBc		
	26. 4 – 500 MHz (START)	65 dBc		
	27. 500 – 1300 MHz (CENTER)	50 dBc		
	28. 500 – 1300 MHz (START)	50 dBc		

Performance Tests Model 8754A

Table 4-12. Performance Test Record (2 of 5)

_			Results	
Para. No.	Test Description	Min.	Actual	Max.
4-16	Input Port Match			
	Return Loss			
	5. B INPUT port	20 dB		
	6. R INPUT port 12. A INPUT port	20 dB 20 dB		
4-17	Receiver Noise Level			
	3. A INPUT 6. B INPUT			−80 dBm −80 dBm
4-18	Minimum R Input Level			
	8. Minimum level for phaselock			−40 dBm
4-19	Crosstalk Isolation			
	7. R–A isolation	83 dB		
	10. R–B isolation 12. A–B isolation	83 dB 83 dB		
	15. B–A isolation	83 dB		
4-20	Magnitude and Phase Frequency Response			
	Absolute Magnitude			
	A INPUT peak-to-peak variation B INPUT peak-to-peak variation			2 dB 2 dB
	Ratio Magnitude			
	16. A/R, peak-to-peak variation19. B/R, peak-to-peak variation			0.6 dB 0.6 dB
	Phase			
į	25. PHASE B/R, peak-to-peak variation			5 degrees
	30. POLAR A/R, peak-to-peak variation			5 degrees (1/2 polar division)

Table 4-12. Performance Test Record (3 of 5)

Para.			Results	
No.	Test Description	Min.	Actual	Max.
4-21	Magnitude Dynamic Accuracy			
	A Channel Deviation (-20 dBm reference)			
	5. 0 dBm -10 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm	3 dB 3 dB 3 dB 3 dB 3 dB 5 dB - 1.0 dB - 2.5 dB		+ .3 dB + .3 dB + .3 dB + .3 dB + .3 dB + .5 dB +1.0 dB +2.5 dB
	R Channel Deviation (-20 dBm reference) 7. 0 dBm -10 dBm -30 dBm -40 dBm	3 dB 3 dR 3 dB 3 dB		+.3 dB +.3 dB +.3 dB +.3 dB
4-22	Magnitude Display Accuracy			
	5. Channel 1 Accuracy (At ±4 divisions) Scale (dB/DIV) .25 .25 .1 .1 .2.5 .2.5 .10 .10	-3.87 div. +3.87 div. -3.87 div. +3.87 div. -3.87 div. +3.87 div. +3.87 div. +3.87 div.		-4.13 div. +4.13 div. -4.13 div. +4.13 div. -4.13 div. +4.13 div. +4.13 div.
	7. Channel 2 Accuracy (At ±4 divisions)			
	.25 .25 1 1 2.5 2.5 10	-3.87 div. +3.87 div. -3.87 div. +3.87 div. -3.87 div. +3.87 div. -3.87 div. +3.87 div.		-4.13 div. +4.13 div. -4.13 div. +4.13 div. -4.13 div. +4.13 div. -4.13 div. +4.13 div.

Table 4-12. Performance Test Record (4 of 5)

Para.		Results						
No.	Test Description	Min.	Actual	Max.				
4-23	Phase Dynamic Accuracy							
	5. B INPUT Phase Deviation (-20 dBm Reference)							
	0 dBm -10 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	-2 degrees -2 degrees -2 degrees -2 degrees -2 degrees -4 degrees -4 degrees		+2 degrees +2 degrees +2 degrees +2 degrees +2 degrees +4 degrees +4 degrees				
	8. R INPUT Phase Deviation (-20 dBm Reference)							
	0 dBm -10 dBm -30 dBm -40 dBm	-2 degrees -2 degrees -2 degrees -2 degrees		+2 degrees +2 degrees +2 degrees +2 degrees				
4-24	Phase Reference Accuracy							
	8. $+180^{\circ}$ to -180° deviation	-1.8 degrees		+1.8 degrees				
	10. +180° to -180° deviation	-1.8 degrees -1.8 degrees -1.8 degrees		+1.8 degrees +1.8 degrees +1.8 degrees				
4-25	Phase Display Accuracy							
	5. Scale Trace Offset (DEG/DIV) (divisions)							
	2.5	-1.9 div. +1.9 div. -1.9 div. +1.9 div. -1.9 div. +1.9 div. 93 div. + .93 div.		-2.1 div. +2.1 div. -2.1 div. +2.1 div. -2.1 div. +2.1 div. +1.07 div.				

Table 4-12. Performance Test Record (5 of 5)

Para.			Results	
No.	Test Description	Min.	Actual	Max.
4-26	Polar Display Accuracy			
	5. Phase			
	+90 degrees			2.5 mm
	-90 degrees			2.5 mm
	+180 degrees			2.5 mm
	-180 degrees			2.5 mm
	7. Magnitude		*	
	(+00 dB Reference)			
	+06 dB			2.5 mm
	+12 dB			2.5 mm
	+20 dB			2.5 mm
4-27	MAG/PHASE Output Accuracy			,
	4. B Channel Magnitude Deviation			
	(-20 dBm Reference)			
	0 dBm	03 Vdc		+.03 Vdc
	-10 dBm	03 Vdc		+.03 Vdc
	-30 dBm	03 Vdc		+.03 Vdc
	-40 dBm	03 Vdc		+.03 Vdc
	-50 dBm	03 Vdc		+.03 Vdc
	-60 dBm	05 Vdc		+.05 Vdc
	-70 dBm	10 Vdc		+.10 Vdc
	-80 dBm	25 Vdc		+.25 Vdc
	6. R Channel Magnitude Deviation			
	(-20 dBm Reference)			
	0 dBm	03 Vdc		+.03 Vdc
	-10 dBm	03 Vdc		+.03 Vdc
	-30 dBm	03 Vdc		+.03 Vdc
	-40 dBm	03 Vdc		+.03 Vdc
	11. Phase Output			
	(0 Degree Reference)			
	-50 degrees	4925 Vdc		5075 Vdc
	-100 degrees	985 Vdc		-1.015 Vdc
	-180 degrees	±1.764 Vdc		±1.836 Vdc
	+180 degrees	±1.764 Vdc		±1.836 Vda
	+100 degrees	+.985 Vdc		+1.015 Vdc
	+50 degrees	+.4925 Vdc		+.5075 Vdc

SECTION V ADJUSTMENTS

5-1. INTRODUCTION

1

5-2. This section describes the adjustments required to return the network analyzer to peak operating condition when repairs are required. Table 5-1 lists all of the adjustments by reference designation, adjustment name, adjustment paragraph, service sheet number, performance test paragraph, and description. Each procedure includes a test setup illustration and one or more adjustment location illustrations.

WARNING

With the covers removed, terminals are exposed that have voltages capable of causing death. The adjustments in this section should be performed only by a skilled person who knows the hazard involved.

NOTE

Before performing any adjustments, allow 1 hour warmup time for the instrument.

5-3. EQUIPMENT REQUIRED

5-4. A table of test equipment and test accessories required in the adjustment procedures is

presented in Section I. The table includes the required minimum specifications and a suggested manufacturer's model number.

5-5. Alignment Tools

5-6. The recommended alignment tools are included in the Service Accessories Package, HP Part No. 08754-60051. Never try to force any adjustment control in the instrument. This is especially critical when adjusting slug-tuned inductors and variable capacitors.

5-7. FACTORY-SELECTED COMPONENTS

5-8. Table 5-2 contains a list of factory-selected components that includes the reference designation, the schematic diagram location, the related performance test, and the basis of selection. A factory-selected component is designated by an asterisk (*) on the schematic diagram. Table 5-5 provides a list of resistors and capacitors with HP Part Numbers for selection.

5-9. RELATED ADJUSTMENTS

5-10. Interactive adjustments are noted in the procedures. Table 5-3 indicates, by paragraph numbers, the adjustments that must be performed if an assembly has been replaced or repaired or if an adjustment has been made on an assembly. Table 5-4 lists the adjustment procedures included in this section.

Table 5-1. Adjustable Components (1 of 5)

Reference Designation	Adjustment Name	Adjustment Paragraph	Service Sheet	Performance Test	Description
A2R6	HF	5-15	6, 7	_	Calibrates SWEEP WIDTH MHz control.
A2R19	+6V ADJ	5-11	15, 20	4-21, 4-22, 4-24, 4-25, 4-26, 4-27	Adjusts +6V supply.
A2R118	CH 2 OFS	5-22	9	_	Balances CHANNEL 1 and CHANNEL 2 REFERENCE OFFSET.
A2R119	MTR-CAL	5-15	6, 7	4-12	Sets sensitivity of the DPM circuit.
A2R128	-6V ADJ	5-11	15, 20	4-21, 4-22, 4-24, 4-25, 4-26, 4-27	Adjusts -6V supply.
A2R129	R SLOPE	5-22	15	_	Adjusts for min. average slope.
A3R11	FB	5-22	9	4-20	Minimizes B Sampler response changes at harmonic lock points.
A3R16	IF	5-22	9	4-20, 4-21, 4-27	Adjusts B Sampler IF gain for absolute B calibration.
A3R23	ВІ	5-22	9	4-20	Adjusts B Sampler bias for maximum sampling efficiency.
A4R11	FB	5-22	9	4-20	Minimizes A Sampler response changes at harmonic lock points.
A4R16	IF	5-22	9	4-20, 4-21, 4-27	Adjusts A Sampler IF gain for absolute A calibration.
A4R23	ВІ	5-22	9	4-20	Adjusts A Sampler bias for maximum sampling efficiency.
A5R11	FB	5-22	9	4-20	Minimizes R Sampler response changes at harmonic lock points.
A5R16	IF	5-22	9	4-20, 4-21, 4-27	Adjusts R channel IF gain to center A/R and B/R responses.
A5R23	ВІ	5-22	9	4-20	Adjusts R Sampler bias for maximum sampling efficiency.
A6C19	OSCILLATOR	5-18	10, 11	_	Sets tuning voltage sensitivity of VTO.
A7R2	+5 dBm	5-16	7	4-14	Calibrates +5 dBm setting of OUTPUT dBm control.
A7R7	+10 dBm	5-16	7	4-14	Calibrates +10 dBm setting of OUTPUT dBm control.
A7R9	0 dBm	5-16	7	4-14	Calibrates 0 dBm setting of OUTPUT dBm control.
A7R32	HARM	5-16	7	4-15	Minimizes harmonics from RF source.
A8C12	1 MHz TRIM	5-20	12	_	Fine tunes the 1 MHz IF bandpass filters.

Table 5-1. Adjustable Components (2of 5)

Reference Designation	Adjustment Name	Adjustment Paragraph	Service Sheet	Performance Test	Description
A8C24	NEG CAP	5-21	12	4-21, 4-27	Adjusts the rectifier linearity over the input range of -30 to -50 dBm.
A8C45	1 MHz TUNE	5-21	12	4-21, 4-27	Tunes the rectifier driver to 1 MHz.
A8L2	1MHz (L2)	5-20	12	_	Tunes the first stage of the 1 MHz bandpass filters to 1 MHz.
A8L3	1 MHz (L3)	5-20	12	_	Fine tunes the second stage of the 1 MHz IF bandpass filters to 1 MHz.
A8R50	LOG OFS	5-21	12	4-21, 4-27	Adjusts the output of the logger to 0V when a 1 MHz signal of 0.2236 Vrms is applied to the input.
A8R56	LOG GAIN	5-21	12	4-21, 4-27	Adjusts the slope of the logger output to 25 mV6dB.
A8R58	DET GAIN	5-21	12	4-21, 4-27	Adjusts the rectifier linearity over the input range of -60 to -70 dBm.
A8R82	DET BIAS	5-21	12	4-21, 4-27	Adjusts the quiescent bias of the rectifier.
A8R90	OFFSET	5-21	12	4-21, 4-27	Nulls the offset voltage of the log amplifier.
A8R94	ABS R OFS	5-22	9, 12		Sets absolute R channel level.
A9C38	LIM FLT	5-23	14	4-23	Minimizes phase error versus amplitude of A/B IF.
A9L13	1-MHz Filter*	5-23	14	4-23	Sets phase shift through the A/B IF limiters.
A9R1	POLAR OFS	5-24	14	4-26	Calibrates polar display at lower amplitudes.
A9R5	POLAR GAIN	5-24	14	4-26	Calibrates polar display at outer polar circle.
A9R39	POLAR MIN	5-24	14	4-26	Sets maximum range of polar amplitude response.
A9R45	RECT OFS	5-24	14	_	Sets offset of rectangular phase display.
A9R49	RECT GAIN	5-24	14	4-25, 4-27	Sets RF source rectangular phase display.
A9R55	POLAR ZERO	5-24	14	4-26	Sets zero phase point of polar display.
A10L13	1-MHz Filter*	5-23	14	4-23	Sets phase shift through R IF limiter.
A10R15	PH OFS	5-24	14	4-24	Sets zero phase point of phase offset circuit.
A10R20	TUNE**		14	_	Provides method of tuning VCO through its range.

Adjustments Model 8754A

Table 5-1. Adjustable Components (3 of 5)

Reference Designation	Adjustment Name	Adjustment Paragraph	Service Sheet	Performance Test	Description
A10R36	R BAL	5-23	14	4-23	Minimizes phase error versus amplitude of R IF.
A10R52	Y NULL	5-24	14	4-26	Nulls IF feedthrough in Y multiplier.
A10R72	X NULL	5-24	14	4-26	Nulls IF feedthrough in X multiplier.
A10R78	GAIN BAL	5-24	14	4-26	Adjusts X versus Y sensitivity of polar display.
A10R87	PH CAL	5-24	14	4-24, 4-27	Calibrates range of phase offset circuit.
A11C12	1 MHz TRIM	5-20	13	_	Fine tunes the 1 MHz IF bandpass filters.
A11C24	NEG CAP	5-21	13	4-21, 4-27	Adjusts the rectifier linearity over the input range of -30 to -50 dBm.
A11C45	1 MHz TUNE	5-21	13	4-21, 4-27	Tunes the rectifier driver to 1 MHz.
A11L2	1 MHz (L2)	5-20	13	_	Tunes the first stage of the 1 MHz bandpass filters to 1 MHz.
A11L3	1 MHz (L3)	5-20	13		Fine tunes the second stage of the 1 MHz IF bandpass filters to 1 MHz.
A11R50	LOG OFS	5-21	13	4-21, 4-27	Adjusts the output of the logger to 0V when a 1 MHz signal of 0.2236 Vrms is applied to the input.
A11R56	LOG GAIN	5-21	13	4-21, 4-27	Adjusts the slope of the logger output to 25 mV/dB.
A11R58	DET GAIN	5-21	13	4-21, 4-27	Adjusts the rectifier linearity over the input range of -60 to -70 dBm.
A11R82	DET BIAS	5-21	13	4-21, 4-27	Adjusts the quiescent bias of the rectifier.
A11R90	OFFSET	5-21	13	4-21, 4-27	Nulls the offset voltage of the log amplifier.
A11R94	DVM PH OFS	5-24	13, 14	_	Adjusts phase offset of DVM phase output to rear-panel MAG/PHASE connector.
A12C29	FREQ ADJ	5-17	8	4-13	Adjusts 50 MHz oscillator frequency.
A12R5	GAIN 1	5-17	8	_	Sets amplitude of 1 MHz marker birdies.
A12R12	BIAS 10, 50	5-17	8	_	Sets symmetry of 10 and 50 MHz marker birdies.
A12R13	BIAS 1	5-17	8	_	Sets symmetry of 1 MHz marker birdies.

Table 5-1. Adjustable Components (4 of 5)

Reference Designation	Adjustment Name	Adjustment Paragraph	Service Sheet	Performance Test	Description
A12R19	GAIN 50	5-17	8	_	Sets amplitude of 50 MHz marker birdies.
A12R26	GAIN 10	5-17	8	_	Sets amplitude of 10 MHz marker birdies.
A13C33	1 MHz ADJ	5-19	11	-	Sets 1 MHz IF reference oscillator frequency.
A13R79	PH OFS	5-19	11	_	Adjusts offset of phase detector.
A14R13	GAIN	5-19	11		Sets frequency-to-voltage relationship of discriminator.
A14R27	3 MHz	5-19	11	-	Adjusts display to blank below 3 MHz.
A14R47	8 MHz	5-18	11	ulik ser-	Sets VTO pre-tune frequency to 8 MHz.
A14R78	BKSTEP	5-19	11	_	Adjusts amount of frequency backstep.
A15R49	30	5-15	6, 7	4-12	Adjusts RF source frequency at 30 MHz.
A15R50	100	5-15	6, 7	4-12	Adjusts RF source frequency at 100 MHz.
A15R51	200	5-15	6, 7	4-12	Adjusts RF source frequency at 200 MHz.
A15R52	300	5-15	6, 7	4-12	Adjusts RF source frequency at 300 MHz.
A15R53	400	5-15	6, 7	4-12	Adjusts RF source frequency at 400 MHz.
A15R54	500	5-15	6, 7	4-12	Adjusts RF source frequency at 500 MHz.
A15R55	600	5-15	6,7	4-12	Adjusts RF source frequency at 600 MHz.
A15R56	800	5-15	6, 7	4-12	Adjusts RF source frequency at 800 MHz.
A15R57	900	5-15	6, 7	4-12	Adjusts RF source frequency at 900 MHz.
A15R58	1.0	5-15	6, 7	4-12	Adjusts RF source frequency at 1.0 GHz.
A15R59	1.1	5-15	6, 7	4-12	Adjusts RF source frequency at 1.1 GHz.
A15R60	1.2	5-15	6, 7	4-12	Adjusts RF source frequency at 1.2 GHz.
A15R61	1.3	5-15	6, 7	4-12	Adjusts RF source frequency at 1.3 GHz.

Adjustments Model 8754A

Table 5-1. Adjustable Components (5 of 5)

Reference Designation	Adjustment Name	Adjustment Paragraph	Service Sheet	Performance Test	Description
A15R98	1300	5-15	6, 7	4-12	Sets RF source local oscillator driver at 1300 MHz.
A15R100	0	5-15	6, 7	4-12	Sets offset of local oscillator driver.
A16R10	+20V ADJ	5-11	15, 20	_	Adjusts +20V supply.
A17R20	LF	5-12	5	_	Sets sweep ramp lower limit to 0V.
A17R24	HF	5-12	5	_	Sets sweep ramp upper limit to +10V.
A18R32	Y GAIN	5-14	15, 16	4-22, 4-25 4-26	Sets vertical RF source display.
A18R40	Y POSN	5-14	15, 16		Sets vertical offset of display.
A18R58	X GAIN	5-14	15, 16	4-26	Sets horizontal RF source display.
A18R64	X POSN	5-14	15, 16	_	Sets horizontal offset of display.
A21R28	INTEN LIMIT	5-13	17	_	Sets range of intensity control.
R5	TRACE ALIGN	5-13	17	_	Adjusts trace tilt.
R6	ASTIG	5-14	15, 16		Adjusts astigmatism of trace.

^{*}No name on PC board.

^{**}Used for troubleshooting only.

Table 5-2. Factory Selected Components

Reference Designator	Adjustment Paragraph	Service Sheet	Performance Test	Basis of Selection
A6C20	5-18	10		Selected so that A6C19 OSCILLATOR FREQ will adjust VTO frequency to make +10 V equal to 30 MHz.
A10C17	5-24	14	4-25	Selected for minimum eccentricity in polar circle.
A15R62	5-15	7	4-12	Selected so that A15R59 1.1 will adjust RF frequency to 1100 MHz when the FREQ REF voltage is +11.00 V.
A15R63	5-15	7	4-12	Selected so that A15R60 1.2 will adjust RF frequency to 1200 MHz when FREQ REF voltage is +12.00 V.
A15R64	5-15	7	4-12	Selected so that A15R61 1.3 will adjust RF frequency to 1300 MHz when FREQ REF voltage is +13.00 V.
A15R65		7	ļ	Selected to give best SWEEP WIDTH MHz accuracy at RF frequency of 1300 MHz.
A15R66	5-15	7	4-12	Selected so that A15R50 will adjust RF frequency to 100 MHz when FREQ REF voltage is +1.00 V.
A15R84		7		Selected to give +12.60 V at A15TP1.
A15A1R1 through A15A1R14	5-15	7	4-12	Selected to pre-shape source frequency to FREQ REF voltage. (Module supplied with A7U2.)
			1	

Table 5-3. Related Adjustments

	Assembly Changed or Repaired	Related Assemblies	Perform the Following Paragraph Number	
A1	Front Panel	A2, A7	5-15*, 5-16	
A2	Analog Processor	A2	5-11, 5-15*, 5-22	
A 3	B Sampler	A3, A4, A5	5-22	
A4	A Sampler	A3, A4, A5	5-22	
A 5	R Sampler	A3, A4, A5	5-22	
A 6	VTO and IF Switch	A6, A14, A3, A4, A5	5-18, 5-22	
A 7	Source (Board Only)	A 7	5-16	
A7U2	Source Microcircuit	A15, A2	5-15†	
A7U3	Amplifier-Detector Microcircuit	A 7	5-16	
A 8	A, B Detector	A3, A4, A5, A8, A10R15 "PH OFS"	5-20††, 5-21††, 5-22, 5-24	
A 9	Phase Detector	A9, A10	5-23††, 5-24	
A 10	Polar Converter	A9, A10	5-23††, 5-24	
A11	R Detector	A3, A4, A5, A10R15 "PH OFS", A11	5-20††, 5-21††, 5-22, 5-24	
A12	Marker Generator	A12	5-17	
A13	Phase Lock	A13	5-19	
A14	Phase Lock Control	A13	5-18, 5-19	
A15	Shaper	A15, A2	5-15†	
A16	DC Regulator	A16	5-11	
A17	Sweep Generator	A17, A14R78 "BKSTEP"	5-12, 5-19	
A18	Deflection Amplifiers	A18	5-14	
A 19	Rectifier	A16	5-11	
A21	High Voltage Power Supply	A21	5-13	
V1	CRT	A21	5-13	

^{*}Frequency Reference Adjustment Only.

 $[\]dagger$ Pre-shaping assembly A15A1 is factory-matched to A7U2 Source and should be installed on A15 before adjustment is performed.

^{††}Assembly has been factory-aligned. Adjustment is not necessary unless assembly has been altered or repaired.

Table 5-4. Adjustments

1

Paragraph	Adjustment
5-11	Low Voltage Power Supply Check and Adjustment
5-12	Sweep Generator Adjustment
5-13	Intensity Limit and Trace Alignment Adjustment
5-14	Horizontal and Vertical Position and Gain Adjustment
5-15	Frequency Accuracy and Sweep Width Adjustment
5-16	OUTPUT dBm Calibration and Harmonics Adjustment
5-17	Markers Adjustment
5-18	VTO Frequency Adjustment
5-19	Phase-Lock Loop Adjustment
5-20	IF Filter Adjustment
5-21	Magnitude Detector Accuracy Adjustment
5-22	Samplers Adjustment
5-23	Phase Detector Limiters Adjustment
5-24	Phase Detector and Polar Converter Adjustment

Adjustments Model 8754A

Table 5-5. HP Part Numbers of Standard Value Replacement Components (1 of 3)

CAPACITORS

RANGE: 1 to 24 pF TYPE: Tubular TOLERANCE: 1 to 9.1 pF = \pm .25 pF 10 to 24 pF = \pm 5%

RANGE: 27 to 680 pF TYPE: Dipped Mica TOLERANCE: ±5%

····	<u> </u>						
Value (pF)	HP Part Number	C D	Value (pF)	HP Part Number	C		
1.0	0160-2236	8	27	0160-2306	3		
1.2	0160-2237	9	30	0160-2199	2 5		
1.5	0150-0091	8	33	0160-2150	5		
1.8	0160-2239	1	36	0160-2308	5		
2.0	0160-2240	4	39	0140-0190	7		
2.2	0160-2241	5	43	0160-2200	6		
2.4	0160-2241	6	47	0160-2307	4		
2.7	0160-2242	7	51	0160-2201	7		
3.0	0160-2243		56	0140-0191	8		
3.3	0150-0059	8 8	62	0140-0205	5		
			68	0140-0192	9		
3.6	0160-2246	0	75	0160-2202	8		
3.9	0160-2247	1	82	0140-0193	0		
4.3	0160-2248	2	91	0160-2203	9		
4.7	0160-2249	3	100	0160-2204	0		
5.1	0160-2250	6	110	0140-0194			
			110 120	0160-2205	1		
5.6	0160-2251	7	130	0140-0195	1		
6.2	0160-2252	8	150	0140-0196	2 3		
6.8	0160-2253	9	160	0160-2206	2		
7.5	0160-2254	0	100	2133 2233	-		
8.2	0160-2255	1	180	0140-0197	4		
			200	0140-0198	5		
9.1	0160-2256	2	220	0160-0134	1		
10.0	0160-2257	3	240	0140-0199	6		
11.0	0160-2258	4	270	0140-0210	2		
12.0	0160-2259	5	_	01/0			
13.0	0160-2260	8	300	0160-2207	3		
10.0	0100 2200		330	0160-2208	4		
15.0	0160-2261	9	360	0160-2209	5		
16.0	0160-2262	0	390	0140-0200	0		
18.0	0160-2263	1	430	0160-0939	4		
20.0	0160-2264	2	470	0160-3533	0		
22.0	0160-2265	$\frac{2}{3}$	510	0160-3534	1		
22.0	0100-2203	3	560	0160-3535	2		
24.0	0160-2266	,	620	0160-3536	3		
24.0	0100-2200	4	680	0160-3537	. 4		

Table 5-5. HP Part Numbers of Standard Value Replacement Components (2 of 3)

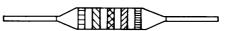
RESISTORS

RANGE: 10 to 464K Ohms

TYPE: Fixed-Film

1

WATTAGE: .125 at 125°C TOLERANCE: ±1.0%



(Ω)	HP Part Number	C D	Value (Ω)	HP Part Number	C D	Value (Ω)	HP Part Number	C D
10.0	0757-0346	2	464	0698-0082	7	21.5K	0757-0199	3
11.0	0757-0378	0	511	0757-0416	7	23.7K	0698-3158	4
12.1	0757-0378	1	562	0757-0417	8	26.1K	0698-3159	5
13.3	0698-3427	0	619	0757-0418	9	28.7K	0698-3449	6
14.7	0698-3428	1	681	0757-0419	0	31.6K	0698-3160	8
16.2	0757-0382	6	750	0757-0420	3	34.8K	0757-0123	3
17.8	0757-0382	9	825	0757-0421	4	38.3K	0698-3161	9
19.6	0698-3429	2	909	0757-0422	5	42.2K	0698-3450	9
21.5	0698-3430	5	1.0K	0757-0280	3	46.4K	0698-3162	0
23.7	0698-3431	6	1.1 K	0757-0424	7	51.1K	0757-0458	7
26.1	0698-3432	7	1.21K	0757-0274	5	56.2K	0757-0459	8
28.7	0698-3433	8	1.33K	0757-0317	7	61.9 K	0757-0460	1
31.6	0757-0180	2	1.47K	0757-1094	9	68.1K	0757-0461	2
34.8	0698-3434	9	1.62K	0757-0428	1	75.0K	0757-0462	3
38.3	0698-3435	0	1.78K	0757-0278	9	82.5K	0757-0463	4
42.2	0757-0316	6	1.96 K	0698-0083	8	90.9 K	0757-0464	5
46.4	0698-4037	0	2.15K	0698-0084	9	100K	0757-0465	6
51.1	0757-0394	0	2.37K	0698-3150	6	110K	0757-0466	7
56.2	0757-0394	1	2.61K	0698-0085	0	121K	0757-0467	8
61.9	0757-0276	7	2.87 K	0698-3151	7	133K	0698-3451	0
68.1	0757-0276	3	3.16K	0757-0279	0	147K	0698-3452	1
75.0	0757-0397	4	3.48K	0698-3152	8	162K	0757-0470	3
82.5	0757-0398	5	3.83K	0698-3153	9	178K	0698-3243	8
90.0	0757-0400	9	4.22K	0698-3154	0	196K	0698-3453	2
100	0757-0400	0	4.64K	0698-3155	1	215K	0698-3454	3
110	0757-0401	1	5.11K	0757-0438	3	237K	0698-3266	5
121	0757-0402	2	5.62K	0757-0200	7	261K	0698-3455	4
133	0698-3437	2	6.19K	0757-0290	5	287 K	0698-3456	5
147	0698-3438	3	6.81K	0757-0439	4	316 K	0698-3457	6
162	0757-0405	4	7.50K	0757-0440	7	348K	0698-3458	7
178	0698-3439	4	8.25K	0757-0441	8	383K	0698-3459	8
196	0698-3440	7	9.09K	0757-0288	1	422K	0698-3460	1
215	0698-3441	8	10.0K	0757-0442	9	464K	0698-3260	9
237	0698-3442	9	11.0K	0757-0443	0			
261	0698-3132	4	12.1K	0757-0444	1			
287	0698-3443	0	13.3K	0757-0289	2			
316	0698-3444	1	14.7K	0698-3156	2			
348	0698-3445	2	16.2K	0757-0447	4			
383	0698-3446	3	17.8K	0698-3136	8			
422	0698-3447	4	19.6K	0698-3157	3			

Table 5-5. HP Part Numbers of Standard Value Replacement Components (3 of 3)

RESISTORS

RANGE: 10 to 1.47M Ohms TYPE: Fixed-Film WATTAGE: .5 at 125°C TOLERANCE: ±1%

Value (Ω)	HP Part Number	C D	Value (Ω)	HP Part Number	C D	Value (Ω)	HP Part Number	C D	Value (Ω)	HP Part Number	C D
10.0	0757-0984	4	215	0698-3401	0	4.64K	0698-3348	4	110K	0757-0859	2
11.0	0575-0985	5	237	0698-3102	8	5.11K	0757-0833	2	121K	0757-0860	5
12.1	0757-0986	6	261	0757-1090	5	5.62K	0757-0834	3	133K	0757-0310	0
13.3	0757-0001	6	287	0757-1092	7	6.19K	0757-0196	0	147K	0698-3175	5
14.7	0698-3388	2	316	0698-3402	1	6.81K	0757-0835	4	162K	0757-0130	2
16.2	0757-0989	9	348	0698-3403	2	7.50K	0757-0836	5	178K	0757-0129	9
17.8	0698-3389	3	383	0698-3404	3	8.25K	0757-0837	6	196 K	0757-0063	0
19.6	0698-3390	6	422	0698-3405	4	9.09K	0757-0838	7	215K	0757-0127	7
21.5	0698-3391	7	464	0698-0090	7	10.0K	0757-0839	8	237K	0698-3424	7
23 7	0698-3392	8	511	0757-0814	9	12.1K	0757-0841	2	261K	0757-0064	1
26.1	0757-0003	8	562	0757-0815	0	13.3K	0698-3413	4	287K	0757-0154	0
28.7	0698-3393	9	619	0757-0158	4	14.7K	0698-3414	5	316K	0698-3425	8
31.6	0698-3394	0	681	0757-0816	1	16.2K	0757-0844	5	348K	0757-0195	9
34.8	0698-3395	1	750	0757-0817	2	17.8K	0698-0025	8	383K	0757-0133	5
38.3	0698-3396	2	825	0757-0818	3	19.6 K	0698-3415	6	422K	0757-0134	6
42.2	0698-3397	3	909	0757-0819	4	21.5K	0698-3416	7	464K	0698-3426	9
46.4	0698-3398	4	1.00K	0757-0159	5	23.7K	0698-3417	8	511K	0757-0135	7
51.1	0757-1000	7	1.10K	0757-0820	7	26.1K	0698-3418	9	562K	0757-0868	3
56.2	0757-1001	8	1.21K	0757-0821	8	28.7K	0698-3103	9	619K	0757-0136	8
61.9	0757-1002	9	1.33K	0698-3406	5	31.6K	0698-3419	0	681K	0757-0869	4
68.1	0757-0794	4	1.47K	0757-1078	9	34.8K	0698-3420	3	750K	0757-0137	9
75.0	0757-0795	5	1.62K	0757-0873	0	38.3K	0698-3421	4	825K	0757-0870	7
82.5	0757-0796	6	1.78K	0698-0089	4	42.2K	0698-3422	5	909K	0757-0138	0
90.0	0757-0797	7	1.96K	0698-3407	6	46.4K	0698-3423	6	1M	0757-0059	4
100	0757-0198	2	2.15K	0698-3408	7	51.1K	0757-0853	6	1.1M	0757-0139	1
110	0757-0798	8	2.37 K	0698-3409	8	56.2K	0757-0854	7	1.21M	0757-0871	8
121	0757-0799	9	2.61 K	0698-0024	7	61.9K	0757-0309	7	1.33M	0757-0194	8
133	0698-3399	5	2.87K	0698-3101	7	68.1K	0757-0855	8	1.47M	0698-3464	5
147	0698-3400	9	3.16K	0698-3410	1	75.0K	0757-0856	9	,,,,,,	3070-3404	ر ا
162	0757-0802	5	3.48K	0698-3411	2	82.5K	0757-0857	ó			
178	0698-3334	8	3.83K	0698-3412	3	90.9K	0757-0858	1			
196	0757-1060	9	4.22K	0698-3346	2	100K	0757-0367	7			

ADJUSTMENTS

5-11. LOW VOLTAGE POWER SUPPLY CHECK AND ADJUSTMENTS

REFERENCE:

Service Sheets 15 and 20

DESCRIPTION

The +20V supply is adjusted for correct output and the remaining low voltage supplies are checked. The +6V and -6V reference supplies are adjusted for correct output. Figure 5-1 shows the Low Voltage Power Supply Adjustment Test Setup.

EQUIPMENT:

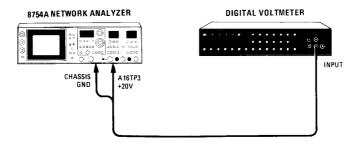


Figure 5-1. Low Voltage Power Supply Adjustment Test Setup

PROCEDURE:

- a. Connect equipment as shown in Figure 5-1. Connect digital voltmeter to A16TP3 +20V.
- b. Adjust A16R10 +20V ADJ for a digital voltmeter indication of +20.00 \pm 0.001 V.

Adjustments Model 8754A

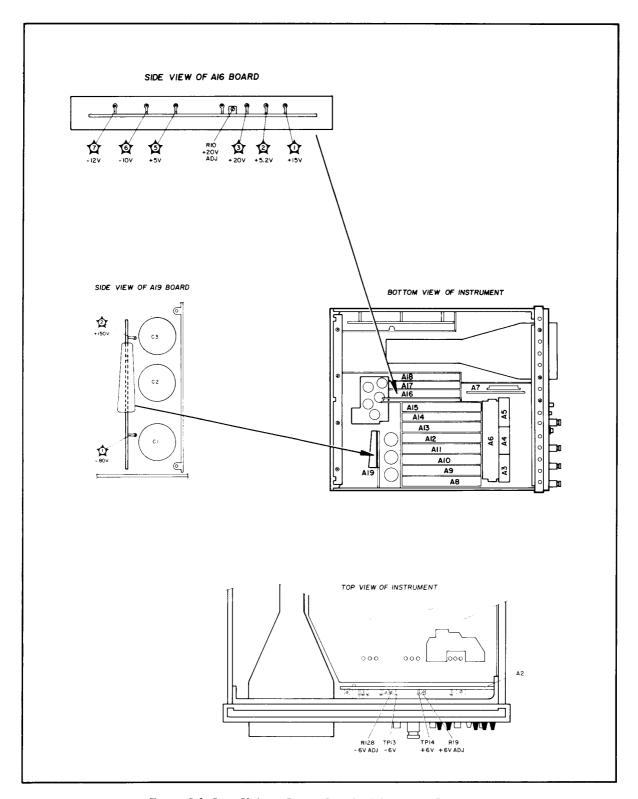


Figure 5-2. Low Voltage Power Supply Adjustment Locations

ADJUSTMENTS

5-11. LOW VOLTAGE POWER SUPPLY CHECK AND ADJUSTMENTS (Cont'd)

c. Check power supply voltages listed in Table 5-6.

Table 5-6. Power Supply Voltages

Test Point	Voltage (Vdc)	Limits (Vdc)
A16TP1	+15	+15 to +16*
A16TP2	+5.2	+4.95 to +5.45
A16TP5	+5	+4.75 to +5.25
A16TP6	-10	−9.975 to −10.035
A16TP7	-12	−11.4 to −12.6
A19TP1	-80 (-85 nom)	−72 to −98
A19TP2	+150 (+167 nom)	+142 to +192

- d. Connect digital voltmeter high input lead to A2TP14 +6V and adjust A2R19 for +6.000 \pm .001 V.
- e. Connect digital voltmeter high input lead to A2TP13 -6V and adjust A2R128 for $-6.000 \pm .001V$.
- f. Repeat steps d and e to optimize +6 and -6V adjustments.

5-12. SWEEP GENERATOR ADJUSTMENT

REFERENCE:

Service Sheet 5

DESCRIPTION:

The 8754A is operated in manual sweep mode and the Sweep Generator VSWP output endpoints are set for 0V and +10V.

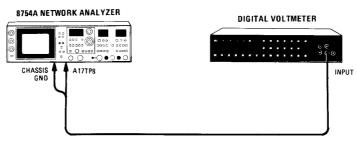


Figure 5-3. Sweep Generator Adjustment Test Setup

EQUIPMENT:

Digital Voltmeter..... HP 3455A

Adjustments Model 8754A

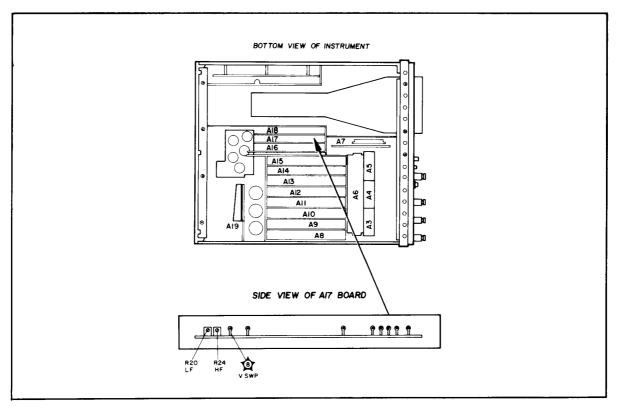


Figure 5-4. Sweep Generator Adjustment Locations

ADJUSTMENTS

5-12. SWEEP GENERATOR ADJUSTMENT (Cont'd)

PROCEDURE:

- a. Connect equipment as shown in Figure 5-3.
- b. Set 8754A controls as follows:

CHANNEL 1, CHANNEL 2
Measurement Select pushbuttons OFF
Sweep Mode
FREQUENCY MHz
SWEEP WIDTH 0 (CW)
REFERENCE POSITION CH 1 On (in)
REFERENCE POSITION CH 1 Control Midrange
SWEEP MAN
SWEEP Vernier Fully counterclockwise
POLAR A/R off (out)

- c. Connect digital voltmeter to A17TP8 VSWP.
- d. Adjust A17R20 LF adjustment for 0.000V at A17TP8.
- e. Set front-panel SWEEP vernier fully clockwise.
- f. Adjust A17R24 HF adjustment for +10.000V at A17TP8.

5-13. INTENSITY LIMIT ADJUSTMENT

REFERENCE:

Service Sheet 17

DESCRIPTION:

The voltage across A21TP3 and A21TP6 is proportional to the high voltage applied the CRT control grid. This voltage is measured to check the approximate voltage level of the High Voltage Power Supply. The Intensity Limit adjustment is then set to limit the CRT control grid voltage and, in effect, to limit the maximum CRT trace intensity. Trace Alignment is also adjusted.

Adjustments Model 8754A

ADJUSTMENTS

15-13. INTENSITY LIMIT ADJUSTMENT (Cont'd)

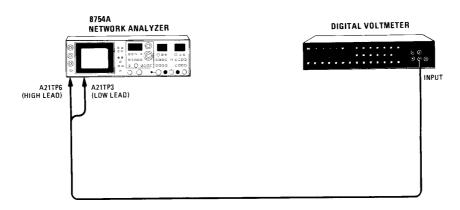


Figure 5-5. Intensity Limit Adjustment Test Setup

EQUIPMENT:

WARNING

The following procedure probes near voltages that, if contacted, may cause personal injury or death.

To minimize shock hazard use a non-metallic screwdriver for adjustments on A21 High Voltage Power Supply.

After turning off the 8754A, allow a minimum of 30 seconds for High Voltage Power Supply discharge before removing High Voltage Power Supply protective cover.

- a. Set LINE-OFF switch to OFF, remove 8754A side cover adjacent to A21 High Voltage Power Supply (see Figure 5-6). Connect equipment as shown in Figure 5-5. Connect digital voltmeter high input lead to A21TP6 and connect low input lead to A21TP3.
- b. Set LINE switch on, and set SWEEP pushbuttons for AUTO, MAN.
- c. Digital voltmeter should indicate approximately $-2.85 \pm .15$ V. If digital voltmeter indication is incorrect, refer to Service Sheet 17 and troubleshoot A21 High Voltage Power Supply.
- d. Set LINE-OFF switch to OFF, remove Voltmeter Leads from A21TP6 and A21TP3.

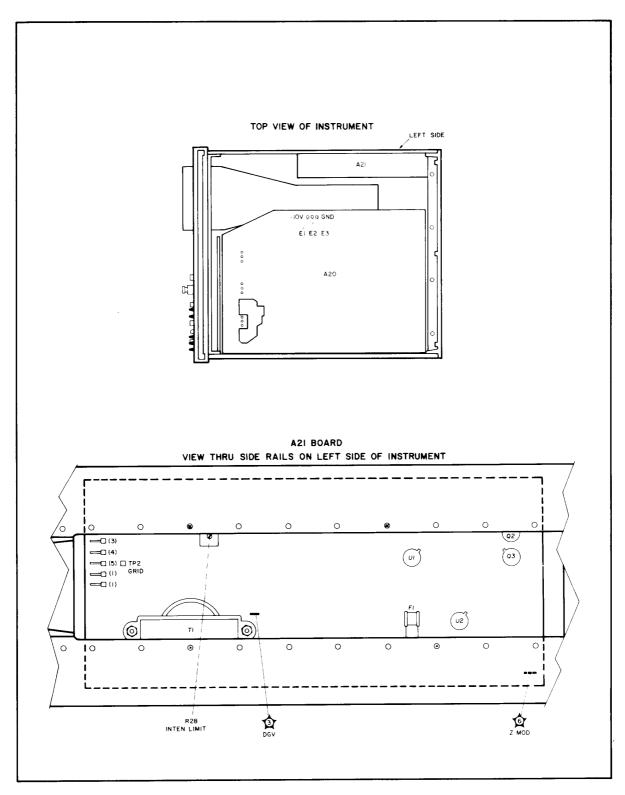


Figure 5-6. Intensity Limit Adjustment Locations and Trace Alignment Connections

ADJUSTMENTS

15-13. INTENSITY LIMIT ADJUSTMENT (Cont'd)

e. Set 8754A controls as follows:

LINE-OFFLINE
Sweep Mode
SWEEP AUTO, FAST
SWEEP vernier Mid-range
FREQUENCY MHz
MARKERS MHz OFF
POLAR A/R Out (off)
CHANNEL 1, CHANNEL 2 Measurement Select pushbutton OFF
REFERENCE POSITION CH 1 In (on)

f. Adjust front-panel INTENSITY control to see a trace. Adjust REFERENCE POSITION CH 1 control so that trace is near the horizontal center line of the CRT.

NOTE

In step g, if TRACE ALIGN adjustment has insufficient range, proceed to step h.

- g. Adjust rear-panel TRACE ALIGN screwdriver adjustment until trace is parallel with horizontal graticule lines.
- h. If the TRACE ALIGN adjustment has insufficient range, readjust TRACE ALIGN for each of the Trace Align coil wire connections to the Motherboard (A20) listed below until adjustment range is sufficient. (See Figure 5-6 for location of Trace Align coil connections on the Motherboard.) Repeat step g.
 - 1. Connect coil wires to A20E2 and A20E3.
 - 2. Interchange wire connections on A20E2 and A20E3.
 - 3. Connect wires to A20E2 and A20E1.
 - 4. Interchange wire connections on A20E2 and A20E1.
- i. Note horizontal position of full sweep marker. Select MANUAL sweep and place dot at center of marker using MANual SWEEP control. Dot should be approximately 0.3 division above normal trace level.
- j. Set POLAR A/R on (in) and POLAR CENTER on (in). Note dot on CRT. Using horizontal and vertical POLAR CENTER controls (◆▶ and ♣), place dot at CRT center.
- k. Reduce INTENSITY TO FULLY CCW. Shade CRT display from external glare and adjust A21R28 INTEN LIMIT so the dot is barely visible.

ADJUSTMENTS

5-14. HORIZONTAL AND VERTICAL POSITION AND GAIN ADJUSTMENT

REFERENCE:

Service Sheets 15 and 16

DESCRIPTION:

The 8754A is operated in polar mode and the front panel POLAR CENTER controls are adjusted for 0V and $\pm 1.2V$ POLAR X and POLAR Y deflection inputs to the Deflection Amplifiers (A18). With a 0V input, the CRT trace is centered by the position adjustments. With a $\pm 1.2V$ input, the gain is adjusted to position the CRT trace on the outer polar graticule. Then the front-panel HORIZ POSN and HORIZ GAIN screwdriver adjustments are adjusted for a swept display that exactly aligns with the left- and right-hand graticules.

Figure 5-7. Horizontal and Vertical Position and Gain Adjustment Test Setup

EQUIPMENT:

PROCEDURE:

- a. Connect equipment as shown in Figure 5-7.
- b. Set 8754A controls as follows:

POLAR A/R On (in)
POLAR CENTER On (in)
SWEEP MAN
Sweep Mode START
FREQUENCY MHz 500
SWEEP WIDTH 0 (CW)

- c. Connect digital voltmeter to A2TP9 FLT 1.
- d. Adjust front panel POLAR CENTER ♦ control for 0.00V at A2TP9. Adjust front-panel FOCUS control and rear-panel screwdriver adjustment ASTIG for sharp dot.
- e. Adjust A18R40 Y POSN to position CRT dot on center horizontal graticule line.

ADJUSTMENTS

15-14. HORIZONTAL AND VERTICAL POSITION AND GAIN ADJUSTMENT (Cont'd)

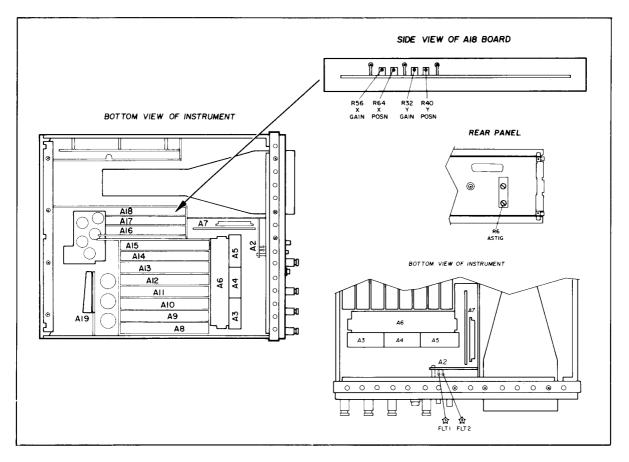


Figure 5-8. Horizontal and Vertical Position and Gain Adjustment Locations

- f. Adjust front panel POLAR CENTER ♦ control for +1.20V at A2TP9 and adjust front panel POLAR CENTER ◆ control to position CRT dot on center vertical graticule line.
- g. Adjust A18R32 Y GAIN to position CRT dot at intersection of center vertical line and outer polar graticule.
- i. Adjust front panel POLAR CENTER ♦ control to position CRT dot on center horizontal graticule line.
- j. Connect digital voltmeter to A2TP8 FLT 2.
- k. Adjust front panel POLAR CENTER ◆▶ control for 0.00V at A2TP8.

ADJUSTMENTS

5-14. HORIZONTAL AND VERTICAL POSITION AND GAIN ADJUSTMENT (Cont'd)

- 1. Adjust A18R64 X POSN to position CRT dot on center vertical graticule line.
- m. Adjust front panel POLAR CENTER ◆▶ control for +1.20V at A2TP8.
- n. Adjust A18R56 X GAIN to position CRT dot on left edge of outer polar graticule.
- o. Adjust front-panel POLAR CENTER $\triangleleft \triangleright$ control for -1.20V at A2TP8.
- p. Check that CRT dot is on right edge of outer polar graticule. If not, compromise adjustment of A18R56 X GAIN.

HORIZONTAL POSN and GAIN

a. Set 8754A controls as follows.

SWEEP MAN
POLAR A/R out (off)
POLAR A/R out (off)
CHANNEL 1, CHANNEL 2 Measurement Select pushbuttons OFF
CH 1 REFERENCE POSITION in (on)

- r. Adjust CH 1 REFERENCE POSITION control to place dot at vertical center of CRT.
- s. Set front-panel SWEEP vernier control fully counterçlockwise and adjust front-panel HORIZON-TAL POSN screwdriver adjustment to position CRT dot on left-hand graticule edge.
- t. Set SWEEP vernier control fully clockwise and adjust front-panel HORIZONTAL GAIN screwdriver adjustment to position CRT dot on right-hand graticule edge.

5-15. FREQUENCY ACCURACY AND SWEEP WIDTH ADJUSTMENT

REFERENCE:

Service Sheets 6 and 7

DESCRIPTION:

The Frequency Reference voltage is first aligned by adjusting the front-panel FREQUENCY MHz readout and SWEEP WIDTH attenuator. Then the frequency of the RF source is made to track the Frequency Reference voltage by first adjusting the end points (0 and 1300 MHz) and then adjusting the frequency at 13 intermediate points.

NOTE

Resistor array A15A1 is matched with the A7U2 microcircuit. If A7U2 is replaced, a matching A15A1 resistor array (shipped with new A7U2) must be installed on A15 Shaper Assembly. (Refer to Service Sheet 7 for proper replacement of A15A1.) If A15 Shaper Assembly is replaced, the A15A1 resistor array from the original A15 assembly should be installed on the new A15 assembly.

5-15. FREQUENCY ACCURACY AND SWEEP WIDTH ADJUSTMENT (Cont'd)

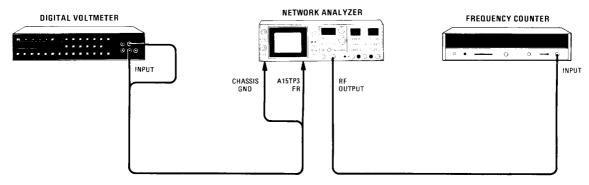


Figure 5-9. Frequency Accuracy and Sweep Width Adjustment Test Setup

EQUIPMENT:

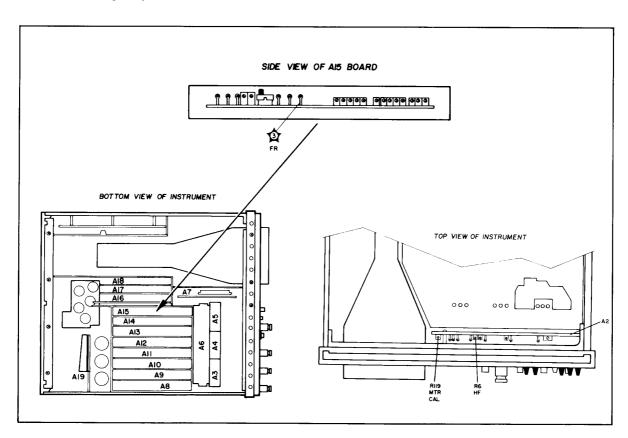


Figure 5-10. Frequency Accuracy and Sweep Width Adjustment Locations

5-15. FREQUENCY ACCURACY AND SWEEP WIDTH ADJUSTMENT (Cont'd)

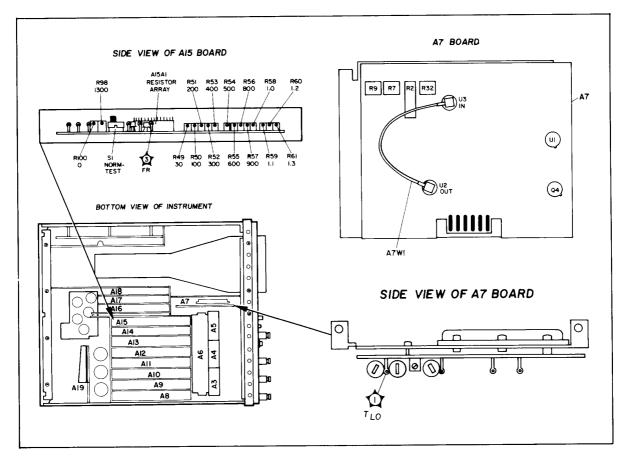


Figure 5-11. Frequency Reference Adjustment Locations

PROCEDURE:

Frequency Reference Adjustment

- a. Connect equipment as shown in Figure 5-9.
- b. Set 8754A controls as follows:

SWEEP WIDTH MHZ	1K
SWEEP WIDTH MHz vernier	CAL
Sweep Mode	START
SWEEP	MAN
SWEEP vernier Fully cou	unterclockwise
OUTPUT dBm	0

ADJUSTMENTS

, 5-15. FREQUENCY ACCURACY AND SWEEP WIDTH ADJUSTMENT (Cont'd)

- c. Connect digital voltmeter to A15TP3 FR.
- d. Adjust front-panel TUNING control for 0.000V at A15TP3.
- e. Set front-panel SWEEP vernier fully clockwise and adjust A2R6 HF for +10.000 ±0.010V at A15TP3.
- f. Reduce SWEEP WIDTH to 0 (CW). If necessary, readjust TUNING for 0.000V at A15TP3.
- g. Adjust front-panel FREQUENCY MHz CAL control for a FREQUENCY MHz indication of 000 MHz.
- h. Adjust front-panel TUNING and FINE TUNING controls for +13.000V at A15TP3.
- Adjust A2R119 MTR-CAL adjustment for a front-panel FREQUENCY MHz indication of 1300 MHz.

RF Source Adjustment

NOTE

This procedure assumes that the resistor array A15A1, which is factory-selected to match the A7U2 source microcircuit, has been installed on A15. If this array is unavailable, proceed to Alternate RF Source adjustment.

- j. Connect equipment as shown in Figure 5-9. Set A15S1 NORM-TEST switch to TEST position. Allow instrument warmup time of 30 minutes.
- k. Set 8754A controls as follows:

SWEEP WIDTH MHz	
SWEEP WIDTH MHz vernier	CAL
Sweep Mode	CENTER
SWEEP AUT	TO, FAST

- 1. Adjust front-panel TUNING control for 0.000 \pm 0.001 V at A15TP3 FR.
- m. Adjust A15R100 "0" adjustment for a frequency-counter indication of less than 1 MHz. (CRT should be blanked.)
- n. Adjust front-panel TUNING control for \pm 13.000 \pm 0.001 V at A15TP3.
- o. Adjust A15R98 "1300" adjustment for a frequency-counter indication of 1300.0 ±0.1 MHz.
- p. Set A15S1 NORM-TEST switch to NORM position.
- q. Adjust front-panel TUNING control for $+ 0.040 \pm 0.001V$ at A15TP3.
- r. Adjust A15R100 "0" adjustment for a frequency-counter indication of 4.0 \pm 0.1 MHz.

ADJUSTMENTS

5-15. FREQUENCY ACCURACY AND SWEEP WIDTH ADJUSTMENT (Cont'd)

- s. Adjust front-panel TUNING control for 0.300 ± 0.001 V at A15TP3.
- t. Adjust A15R49 "30" for a frequency-counter indication of 30.0 ± 0.1 MHz.
- u. Repeat steps q through t until no further adjustment is necessary.

NOTE

Adjust frequency shaping going from the lowest to the highest frequency. If it is necessary to readjust a potentiometer, adjustment of the remaining higher-frequency potentiometers is also necessary.

v. Adjust front-panel TUNING control for each voltage listed in Table 5-7 and adjust corresponding potentiometer on A15 Shaper Assembly for the frequency indicated.

Table 5-7. Frequency Linearity (Shaping) Adjustments

Adjust tuning for Vdc (A15TP3)	Then adjust Potentiometer	Adjust to MHz	If pot range is insufficient, change:	
1.000	R50 100	100	A15R66*	
2.000	R51 200	200		
3.000	R52 300	300		
4.000	R53 400	400		
5.000	R54 500	500		
6.000	R55 600	600		
8.000	R56 800	800		
9.000	R57 900	900		
10.000	R58 1.0	1000		
11.000	R59 1.1	1100	A15R62*	
12.000	R60 1.2	1200	A15R63*	
13.000	R61 1.3	1300	A15R64*	

Alternate RF Source Adjustment

NOTE

This procedure is to be used ONLY if the resistor array A15A1, which is factory-selected to (and normally supplied with) the A7U2 source microcircuit is lost or missing. If this array is properly installed on A15, perform the normal RF Source Adjustment.

ADJUSTMENTS

, 5-15. FREQUENCY ACCURACY AND SWEEP WIDTH ADJUSTMENT (Cont'd)

EQUIPMENT:

Adapter, SMB to SMB male HP 1250 – 0669
Adapter, BNC female to SMB female
Frequency Counter HP 5340A
Resistor Header
22-Pin Extender Board (Service Accessories Package)
6-Pin Extender Board (Service Accessories Package)
Large supply of 1/8W, metal-film, 1% resistors in standard 10%
values from 1K to 464K
Soldering iron
Solder
Flux remover
Flux cleaner

WARNING

Boards on extenders have voltages of up to 80V. Turn off power before removal or installation of resistors.

CAUTION

Use square pad or numeral "1" on printed-circuit board as orientation for pin 1 of header. (See Figure 5-12.)

NOTE

When soldering resistors, make sure leads are all the way into slots on header.

PROCEDURE:

- a. Set LINE-OFF switch to OFF.
- b. Disconnect A7W1 cable from A7U3 (with long-nose pliers).
- c. Install SMB to SMB male adapter and SBM to BNC adapter on the free end of cable A7W1.
- d. Ground A7TP1 TLO to chassis.
- e. Remove A15 board.
- f. Install resistor-array header in socket A15XA1 of A15 board, carefully noting orientation of pin 1 (see Figure 5-12).
- g. Install A15 board in instrument on 22-pin extender board.
- h. Set LINE-OFF switch to LINE.

ADJUSTMENTS

5-15. FREQUENCY ACCURACY AND SWEEP WIDTH ADJUSTMENT (Cont'd)

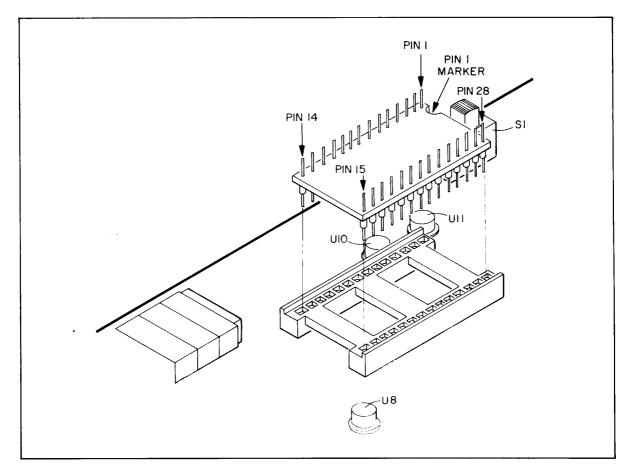


Figure 5-12. Orientation of Resistor Array Header

- i. Connect digital voltmeter to A15TP3 FR and frequency counter to SMB to BNC adapter on the free end of cable A7W1 from A7U2J1.
- j. Set A15S1 NORM-TEST switch to TEST.
- k. Set 8754A controls as follows:

SWEEP WIDTH MHz 0 (CW)
SWEEP WIDTH vernier CAL
Sweep Mode
SWEEP AUTO, FAST
FREQUENCY MHz1300

1. Adjust front-panel TUNING control for 13.000 ± 0.001 V at A15TP3 FR.

ADJUSTMENTS

35-15. FREQUENCY ACCURACY AND SWEEP WIDTH ADJUSTMENT (Cont'd)

NOTE

The general procedure in choosing a factory-selected resistor is to pick a mid-range value (e. g., 46.4K), insert it, note counter reading while holding body of resistor against header to make contact. Then try other values to make counter reading converge to desired value. Do not solder until correct value is found; then solder resistor in place.

- m. Select a resistor between pins 1 and 28 of header to give the counter reading closest to 3.000 ± 0.010 GHz.
- n. Adjust front-panel TUNING control for 0.000 ± 0.001 V at A15TP3 FR.
- o. Select a resistor between pins 2 and 27 of header to give the counter reading closest to 3.600 ± 0.010 GHz.
- p. Set LINE-OFF switch to OFF.
- q. Re-install cable A7W1 as follows:
 - 1. Disconnect counter and adapter from A7W1.
 - 2. Remove ground from A7TP1 TLO.
 - 3. Reconnect A7W1 cable to A7U3.

NOTE

At this point the A15 board is still on the extender board.

- r. Set LINE-OFF switch to LINE.
- s. Connect frequency counter as shown in Figure 5-9.

NOTE

It is important that the sequence in the following procedure not be interrupted. Proceed through all adjustments without excessive time spent between them. If it is necessary to repeat an adjustment, all higher-frequency adjustments must be repeated.

- t. For each voltage measured at A15TP3 FR (Table 5-8), adjust TUNING control to give the required voltage at A15TP3. Then pre-tune the designated potentiometer to mid-range by noting frequency counter reading versus potentiometer rotation. Select the resistor giving the counter reading closest to the required value; then solder the resistor and adjust the potentiometer to give the required counter reading.
- u. As a final adjustment, perform the RF Source Adjustment procedure.

ADJUSTMENTS

5-15. FREQUENCY ACCURACY AND SWEEP WIDTH ADJUSTMENT (Cont'd)

Table 5-8. Frequency Shaping Adjustments

Set TUNING for Voltage at A15TP3	A15S1 Switch	Select Resistor		Adjust Potentiometer		For Counter Reading	Notes	
FR (Vdc)	Position	Reference Designator	Between Pins	Reference Designator	Name	±0.1 MHz (MHz)	11000	
0.000	TEST	A15A1R3	3-26	A15R100	0	<1		
13.000	TEST	None	None	A15R98	1300	1300		
0.040	NORM	None	None	A15R100	0	4	Repeat until 4 and 30 MHz are	
0.300	NORM	A15A1R4	4-25	A15R49	30	30	±0.1 MHz.	
1.000	NORM	A15R66		A15R50	100	100	If potentiometer has insufficient range, change A15R66*.	
2.000	NORM	A15A1R5	5-24	A15R51	200	200		
3.000	NORM	A15A1R6	6-23	A15R52	300	300		
4.000	NORM	A15A1R7	7-22	A15R53	400	400		
5.000	NORM	A15A1R8	8-21	A15R54	500	500		
6.000	NORM	A15A1R9	9-20	A15R55	600	600		
8.000	NORM	A15A1R10	10-19	A15R56	800	800	If selection diverges, use pins 11	
9.000	NORM	A15A1R11 A15A1R13 A15A1R12	11-18 13-16 12-17	A15R57	900	900	and 18 for A15A1R11. If selection diverges, use pins 12 and 17 for A15A1R12.	
10.000	NORM	A15A1R14	14-15	A15R58	1.0	1000		
11.000	NORM	A15R62	_	A15R59	1.1	1100	If potentiometer has insufficient range, change A15R62*.	
12.000	NORM	A15R63	_	A15R60	1.2	1200	If potentiometer has insufficient range, change A15R63*.	
13.000	NORM	A15R64	_	A15R61	1.3	1300	If potentiometer has insufficient range, change A15R64*.	

5-16. OUTPUT dBm CALIBRATION AND HARMONICS ADJUSTMENT

REFERENCE:

Service Sheet 7

DESCRIPTION:

The 8754A is operated with a CW RF OUTPUT frequency and the RF OUTPUT power is measured with a power meter. Adjustments are performed to calibrate the front-panel OUTPUT dBm control at 0 dBm and +10 dBm. Control accuracy is chcked at +5 dBm and, if necessary, a resistor value is selected to optimize linearity of the OUTPUT dBm control. The RF OUTPUT harmonic separation is optimized by observing the full frequency range of the 8754A using a spectrum analyzer.

ADJUSTMENTS

15-16. OUTPUT dBm CALIBRATION AND HARMONICS ADJUSTMENT (Cont'd

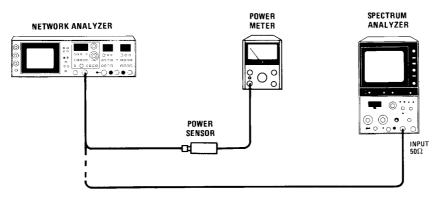


Figure 5-13. OUTPUT dBm Calibration and Harmonics Adjustment Test Setup

EQUIPMENT:

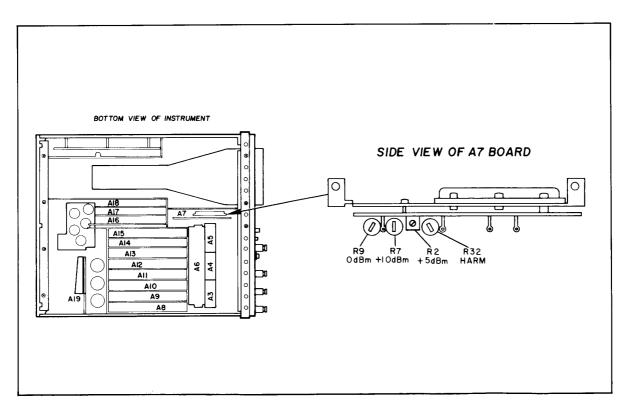


Figure 5-14. OUTPUT dBm Calibration and Harmonics Adjustment Locations

ADJUSTMENTS

5-16. OUTPUT dBm CALIBRATION AND HARMONICS ADJUSTMENT (Cont'd)

* OUTPUT dBm Calibration

- a. Connect equipment as shown in Figure 5-13 without connecting spectrum analyzer.
- b. Calibrate power meter at 50 MHz using its own standard.
- c. Set 8754A controls as follows:

SWEEP WIDTH MHz
Sweep Mode
SWEEP AUTO
FREQUENCY MHz50
OUTPUT dBm Fully counterclockwise

- d. Note point at which power just starts to increase as the OUTPUT dBm control is turned CW from full CCW. If necessary, set knob on shaft to align with "0" on front panel.
- e. Adjust A7R9 0 dBm adjustment for a power meter indication of 0 dBm.
- f. Set front-panel OUTPUT dBm control to +10 dBm.
- g. Adjust A7R7 + 10 dBm adjustment for a power meter indication of + 10 dBm.
- h. Set front-panel OUTPUT dBm control to 0 dBm and repeat steps e through g until no further adjustment is necessary.
- i. Set front-panel OUTPUT dBm control to +5 dBm and check that the power meter indicates +5 ± 0.5 dBm. If the meter reading is not within this range, adjust A7R2 for +5 dBm ± 0.5 dBm. Repeat steps e through i until no further adjustment is necessary.

, 5-16. OUTPUT dBm CALIBRATION AND HARMONICS ADJUSTMENT (Cont'd)

Harmonics Adjustment

- i. Calibrate the spectrum analyzer using its own 280 MHz CAL OUTPUT signal.
- k. Set 8558B controls as follows:

FREQUENCY SPAN/DIV	100 MHz
RESOLUTION BW	
SWEEP TIME/DIV	AUTO
SWEEP TRIGGER	FREE RUN
OPTIMUM INPUT	– 10 dBm
REFERENCE LEVEL dBm	+ 10 dBm
TUNING	500 MHz
START-CENTER	CENTER
10 dB/DIV – 1 dB/DIV – LIN	10 dB/DIV

1. Connect 8754A RF OUTPUT to spectrum analyzer input. Set 8754A OUTPUT dBm to +10 dBm.

NOTE

In the following step, switch spectrum analyzer between CENTER and START to view full 0 to 1500 MHz frequency spectrum.

m. Tune the 8754A frequency from 0 to 1300 MHz. Harmonics and subharmonics should be greater than 32 dB down from fundamental at all TUNING frequencies. Adjust A7R32 HARM adjustment to optimize harmonic separation.

5-17. MARKER ADJUSTMENT

REFERENCE:

Service Sheet 8

DESCRIPTION:

The marker oscillator is adjusted for a 50 MHz output. The 50 MHz, 10 MHz, and 1 MHz marker birdies are then adjusted for optimum amplitude and symmetry.

5-17. MARKER ADJUSTMENT (Cont'd)



Figure 5-15. Marker Adjustment Test Setup

EQUIPMENT:

Frequency Counter	HP 5340A
Oscilloscope	HP 1740A
1:1 Divider Probe (2 required)	HP 10007B

ADJUSTMENTS

1 5-17. MARKER ADJUSTMENT (Cont'd)

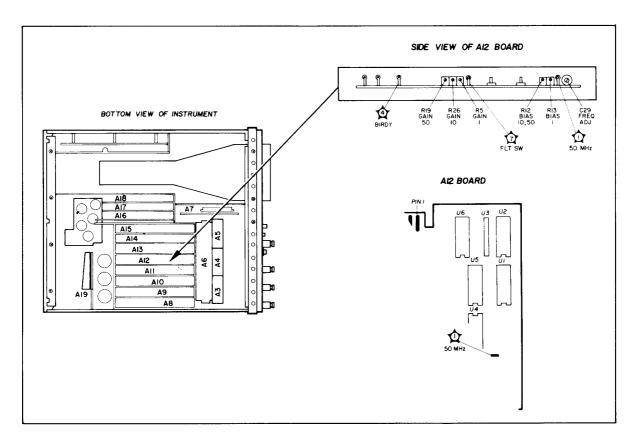


Figure 5-16. Marker Adjustment Locations

PROCEDURE:

- a. Connect equipment as shown in Figure 5-15. Connect RF OUTPUT to R INPUT or load RF OUT-PUT with a 50-ohm termination.
- b. Set 8754A controls as follows:

FREQUENCY MHz	
Sweep Mode	CENTER
SWEEP	AUTO, FAST
SWEEP Vernier	Fully clockwise
SWEEP WIDTH MHz	10 MHz
MARKERS MHz	50 MHz
OUTPUT dBm	0 dBm

c. Connect frequency counter through a 1:1 divider probe to A12TP1 50 MHz, and connect oscilloscope through a 1:1 divider probe to A12TP4 BIRDY.

ADJUSTMENTS

5-17. MARKER ADJUSTMENT (Cont'd)

d. Adjust A12C29 FREQ ADJ for $50.000000 \pm .000010$ MHz at A12TP1. Disconnect counter.

NOTE

To obtain EXTERNAL SWEEP on HP 1740A Oscilloscope, connect the external sweep signal into Channel B INPUT and select A vs. B mode. On other oscilloscopes, connect external sweep signal into EXTERNAL SWEEP INPUT and select EXTERNAL HORIZONTAL SWEEP mode.

- e. At oscilloscope, select dc coupled Channel B input and A vs. B mode to obtain external horizontal sweep mode. Adjust oscilloscope horizontal position and gain for an oscilloscope trace that just fills the 10 division graticule display. Connect oscilloscope (ac coupled) through a 1:1 probe to A12TP4 BIRDY and set oscilloscope sensitivity to 0.1V/DIV.
- f. Adjust front panel TUNING control to center the "birdy" on the oscilloscope CRT display.
- g. Ground A12TP7 FLT SW.
- h. Adjust A12R19 GAIN 50 adjustment for a 0.6V peak to peak "birdie" amplitude. (See Figure 5-17.)
- i. Adjust A12R12 BIAS 10,50 adjustment for approximately 0.4V peak-to-peak "birdie" amplitude at one division to the left and one division to the right of center. (See Figure 5-17.)
- j. Repeat steps f through i until no further adjustment is necessary.
- k. Tune the 8754A from 0 to 1300 MHz and note at what frequency the 50 MHz "birdie" amplitude is maximum. Set 8754A to this frequency. Repeat steps f through i.
- 1. Select 10 MHz marker and adjust front panel TUNING control to center "birdie" on oscilloscope CRT display.
- m. Adjust A12R26 GAIN 10 for a 0.6V peak-to-peak "birdie" amplitude.

NOTE

Remove ground from A12TP7 FLT SW.

- n. Select 1 MHz marker and set front panel SWEEP WIDTH MHz to 1. Remove ground from pin XA12-12 or XA12-34. Adjust front-panel TUNING control to center the "birdie" on the oscilloscope CRT display.
- o. Adjust A12R5 GAIN 1 adjustment for a 0.6V peak-to-peak "birdie" amplitude. (See Figure 5-17.)
- p. Adjust A12R13 BIAS 1 adjustment for approximately 0.4V peak-to-peak "birdie" amplitude at one division to the left and one division to the right of center. (See Figure 5-17.)
- q. Repeat steps o and p, keeping the "birdie" centered on the oscilloscope display, until no further adjustment is necessary.

ADJUSTMENTS

, 5-17. MARKER ADJUSTMENT (Cont'd)

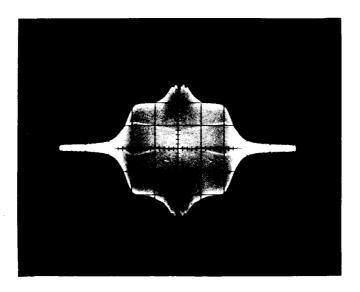


Figure 5-17. Oscilloscope Display of Marker Birdie

5-18. VTO FREQUENCY ADJUSTMENT

REFERENCE:

Service Sheets 10 and 11

DESCRIPTION:

The Voltage-Tuned Oscillator (VTO) is tuned for 30 MHz with +10V applied to its input. The VTO pretune voltage is adjusted for a VTO output frequency of 8 MHz.

ADJUSTMENTS

5-18. VTO FREQUENCY ADJUSTMENT (Cont'd)

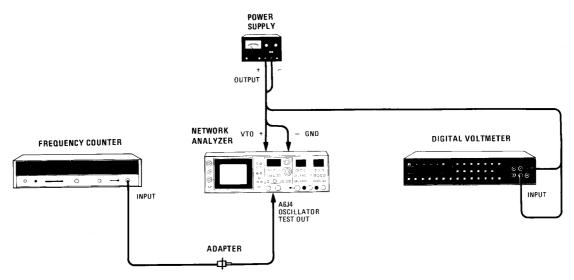


Figure 5-18. VTO Frequency Adjustment Test Setup

EQUIPMENT:

Digital Voltmeter	HP 6205B
Frequency Counter	HP 5340A
Adapter, BNC Female to SMB (subminiature	
snap-on) Female	P 1250-1236
Non-metalic Tuning Tool HP	08710-0033

PROCEDURE:

- a. Connect equipment as shown in Figure 5-18. Remove A13 Phase Lock Assembly.
- b. Set 8754A controls as follows:

FREQUENCY MHz	50
Sweep Mode CEN	1TER
SWEEP WIDTH MHz	0 CW

- c. Connect positive (+) power supply lead to the center conductor of A20W1 VTO shielded cable (cable on Motherboard between XA14 pin 10 and XA6 pin 21/43; See Figure 5-19.) Connect negative (-) power supply lead to ground.
- d. Adjust power supply for indication on digital voltmeter of $+10.00 \pm .01 \text{ V}$.

5-18. VTO FREQUENCY ADJUSTMENT (Cont'd)

NOTE

Use a non-metallic tuning tool (HP Part No. 08710-0033) for adjusting A6C19.

e. Adjust A6C19 OSCILLATOR FREQ adjustment for indication on frequency counter of 30.0 ±0.1 MHz.

NOTE

If A6C19 range is insufficient, value of A6C20* may need to be changed.

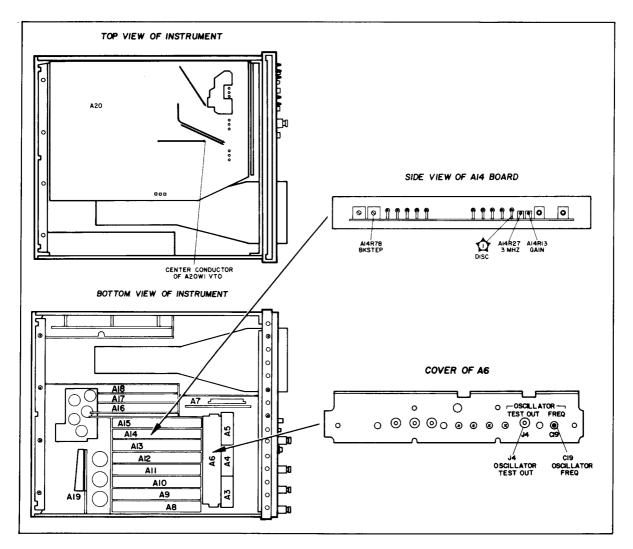


Figure 5-19. VTO Frequency Adjustment Locations

5-18. VTO FREQUENCY ADJUSTMENT (Cont'd)

- f. Turn LINE switch OFF. Disconnect dc power supply from 8754A. Reinstall A13 Phase Lock board. Turn LINE switch on.
- g. Jumper A14TP8 EXT SET to GND.
- h. Adjust front panel STABILITY control over its entire adjustment range and note frequency variation on frequency counter. Set STABILITY control to give a frequency counter indication at the center of this frequency range.
- i. Adjust A14R47 8 MHz for 8.00 ± 0.01 MHz on frequency counter.
- j. Disconnect jumper from A14TP8 and frequency counter from A6J4.

5-19. PHASE-LOCK LOOP ADJUSTMENT

REFERENCE:

1

Service Sheet 11

DESCRIPTION:

The frequency-to-voltage sensitivity of the discriminator used to sense the RF output frequency is adjusted. The intermediate frequency (IF) is adjusted to 1 MHz; then three adjustments affecting smoothness of display are made.

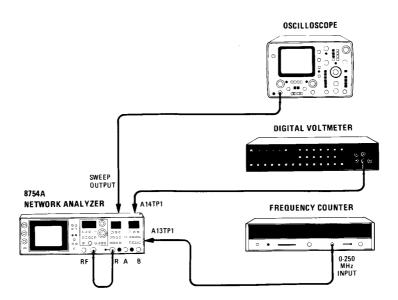


Figure 5-20. Phase-Lock Loop Adjustment Test Setup

1 5-19. PHASE-LOCK LOOP ADJUSTMENT (Cont'd)

EQUIPMENT:

Frequency Counter HP 5340A
Digital Voltmeter HP 3455A
Oscilloscope HP 1740A

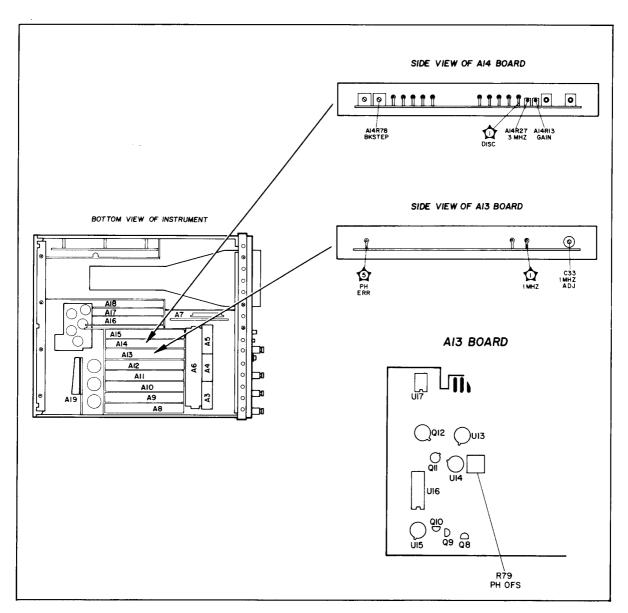


Figure 5-21. Phase-Lock Loop Adjustment Locations

5-19. PHASE-LOCK LOOP ADJUSTMENT (Cont'd)

PROCEDURE:

- a. Connect equipment as shown in Figure 5-20.
- b. Set 8754A controls as follows:

Sweep Mode
TUNÎNG
SWEEP WIDTH MHz
MARKERS MHz
OUTPUT dBm 0
SWEEP AUTO, FAST
SWEEP Vernier Fully clockwise
CHANNEL 1 and CHANNEL 2 Measurement Select OFF
REFERENCE POSITION CH 1 on (in)

- c. Center trace on screen with REFERENCE POSITION CH 1 \(\display \) control.
- d. Using TUNING, center the 50 MHz marker on screen. Reduce sweep width to 0 (CW) while keeping marker centered.
- e. Measure A14TP1 DISC with digital voltmeter. Adjust A14R13 GAIN for DVM reading of 0.50 ± 0.01 V.
- f. Adjust TUNING to 100 MHz and center marker on display. (Sweep width may have to be increased temporarily to do this.) DVM should now read $1.0 \pm .2V$.
- g. Monitor A13TP1 1 MHz with frequency counter (INPUT 1 $M\Omega$) and adjust A13C33 1 MHz ADJ for counter reading of 1.000 MHz \pm 10 Hz.
- h. Select MANUAL sweep.
- i. Place the A13 board on an extender board and monitor A13TP5 PH ERR with DVM.
- j. Check that UNLOCKED indicator is OFF and that it lights when RF cable is disconnected from R IN-PUT. With cable connected to R INPUT, adjust A13R79 PH OFS for DVM reading of $0.0V \pm 5$ mV.
- k. Set 8754A controls as follows:

SWEEP WIDTH MHz
Sweep Mode
FREQUENCY MHz
MARKERS MHz
SWEEP AUTO, FAST

ADJUSTMENTS

5-19. PHASE-LOCK LOOP ADJUSTMENT (Cont'd)

1. Adjust TUNE control to place 10 MHz marker at right edge of screen. Select 1 MHz markers and adjust A14R27 3 MHz so that display blanks just before the 3.0 MHz marker, as in Figure 5-22.

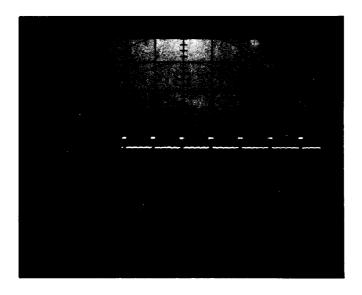


Figure 5-22. Display Blanked at 3-MHz Marker

NOTE

Steps m through p might require that samplers be roughly adjusted. (Refer to Samplers Adjustment.)

m. Set 8754A controls as follows:

n. Pre-adjust A14R78 BKSTEP fully counterclockwise.

ADJUSTMENTS

5-19. PHASE-LOCK LOOP ADJUSTMENT (Cont'd)

o. Connect rear-panel SWEEP OUTPUT to oscilloscope CHAN A input and internally trigger oscilloscope on CHAN A. Set oscilloscope to 0.2 volts/div (DC coupled), 0.5 msec/div, AC trigger on positive (+) slope. Adjust trigger level and vertical position to obtain a waveform similar to that shown in Figure 5-23. Note that the trace shows a voltage that increases, then backsteps, then is constant, and then increases again.

p. Adjust A14R78 BKSTEP until the backstep portion of the trace is 0.4V, or 2 divisions, as shown in Figure 5-23.

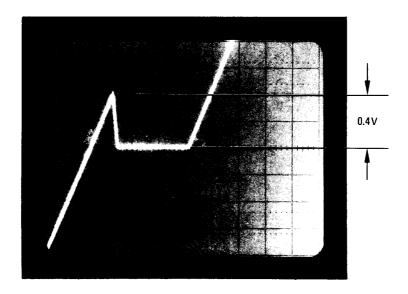


Figure 5-23. Oscilloscope Display of SWEEP OUTPUT Showing 0.4V Backstep

5-20. IF FILTER ADJUSTMENT

REFERENCE:

Service Sheets 12 and 13.

NOTE

The A, B, Detector (A8) and the R Detector (A11) are supplied from the factory with the adjustments in this section pre-aligned. Do not adjust A8 unless the A, B Bandpass Filter on A8 has been repaired or modified. Do not adjust A11 unless the R Bandpass Filter on A11 has been repaired or modified.

ADJUSTMENTS

,5-20. IF FILTER ADJUSTMENT (Cont'd)

NOTE

The Samplers (A3, A4, A5) might require rough alignment. Refer to Samplers Adjustment procedure.

DESCRIPTION:

A test is first performed to determine whether re-alignment is necessary. The phase is measured between two cables having equal electrical length; the displayed phase offset is due to instrument residual error. If the residual error exceeds 7.5 degrees, the IF filters on A8 and A11 are re-adjusted. The input and output waveforms are displayed on a two-channel oscilloscope. The phase relationship is adjusted to 0 degrees.

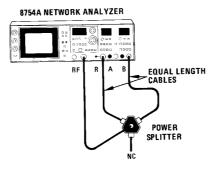


Figure 5-24. IF Filter Adjustment Test Setup

EQUIPMENT:

Oscilloscope	. HP 1740A
10:1 Divider Probes (2)	HP 10004D
Power Splitter	
Matched Cable Kit	HP 11851A
Extender Board, 22-Pin HP	08565-60107
Alignment Tool	P 8710-0772

ADJUSTMENTS

5-20. IF FILTER ADJUSTMENT (Cont'd)

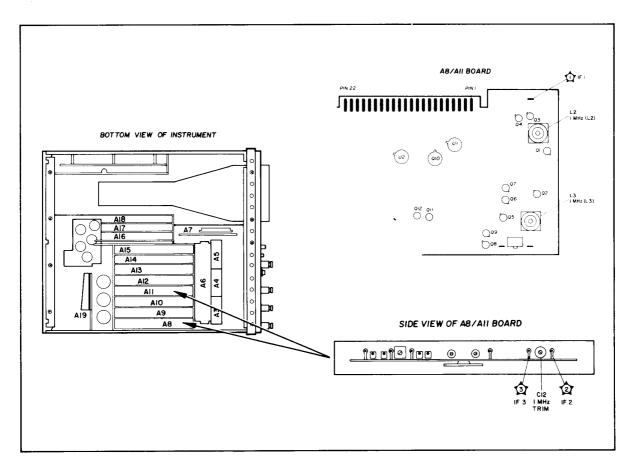


Figure 5-25. IF Filter Adjustment Locations

PROCEDURE:

Measurement of Absolute Phase Offset

a. Connect equipment as shown in Figure 5-24. Set 8754A controls as follows:

Sweep Mode I	FULL 4-1300
SWEEP A	AUTO, FAST
REFERENCE POSITION CH 2	Off (out)
VIDEO FILTER	Off (out)
POLAR A/R	Off (out)

CHANNEL 1	
Measurement Select	 OFF

15-20. IF FILTER ADJUSTMENT (Cont'd)

CHANNEL 2	
Measurement Select	PHASE B/R
REFERENCE	00
REFERENCE OFFSET Pushbutton	Off (out)
Scale	2.5 DEG/DIV

- c. Adjust PHASE B/R LENGTH for a horizontal trace.

NOTE

If indication in step d is out of tolerance, and A8 or A11 has not been repaired or modified, refer to Phase Detector and Polar Converter Adjustment procedure.

d. If the trace is within ± 3 divisions (± 7.5 degrees) of the center, do not perform the adjustments in this procedure. If the trace is more than ± 3 divisions from the center, adjust the IF bandpass filters on A8 and A11 as described in the following steps.

Bandpass Filter Adjustment

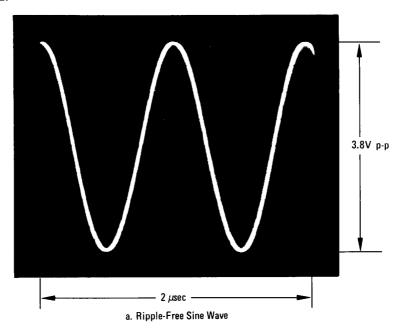
NOTE

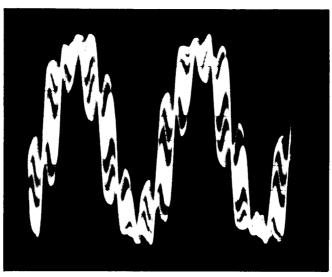
Steps e through k apply to both the A, B Detector (A8) and to the R Detector (A11). The procedure references A8; if A11 is to be adjusted, substitute A11 prefixes to the reference designations.

- e. Turn LINE switch OFF. Remove A, B Detector (A8) and install on extender board.
- f. Turn LINE switch on. Connect equipment as shown in Figure 5-24. Set 8754A controls as follows:

Sweep Mode
SWEEP MAN
SWEEP Vernier Midrange
FREQUENCY MHz
SWEEP WIDTH MHz 0 (CW)
SWEEP WIDTH MHz Vernier CAL (fully clockwise)
MARKERS MHz OFF
OUTPUT dBm
REFERENCE POSITION CH 2 Off (out)
VIDEO FILTER
POLAR A/R Off (out)

CHANNEL 1


Measurement Select OFF


CHANNEL 2

ADJUSTMENTS

5-20. IF FILTER ADJUSTMENT (Cont'd)

g. Connect oscilloscope Channel A to A8TP1 IF1 using a 10:1 divider probe. Set oscilloscope to .05V/DIV, AC coupled, 0.2 μSEC/DIV. Check for ripple-free sine wave (see Figure 5-26). If sine wave has ripples, set TUNING control fully counterclockwise and then slowly tune network analyzer back to 25 MHz.

b. Sine Wave with Ripples

Figure 5-26. Oscilloscope Display of Sine Wave at A8TP1

ADJUSTMENTS

, 5-20. IF FILTER ADJUSTMENT (Cont'd)

- h. Connect oscilloscope Channel B to A8TP1 IF1 using a 10:1 divider probe. Set Channel B to .05V/DIV, AC coupled. Set oscilloscope for alternate sweep and trigger on Channel A. Adjust Channel B position controls so that Channel A and Channel B waveforms coincide. The signals must be exactly in phase (coincident). If not, another oscilloscope with identical phase characteristics for Channels A and B must be selected.
- i. Move Channel B probe from A8TP1 IF1 to A8TP3 IF3. (The amplitude of the waveform will be approximately 2.5V peak-to-peak.)
- j. Adjust A8C12 1 MHz TRIM for 0 degrees phase shift between Channel A and Channel B waveforms.

NOTE

If the range of A8C12 is insufficient, perform the following steps:

- 1. Move the Channel B probe to A8TP2 IF2. The phase shift should be less than 3.6 degrees or $0.01~\mu sec.$ If it is not, adjust A8L2 1 MHz (L2) for 0 degrees phase shift. (Use alignment tool HP 8710-0772.) Total tuning range of L2 is about \pm 50 degrees (0.14 $\mu sec.$).
- 2. Connect oscilloscope Channel A to A8TP3 IF3. Adjust A8C12 1 MHz TRIM through its entire range and set it to the electrical center of its range (mid-range of phase shift on oscilloscope display).
- 3. Adjust A8L3 1 MHz (L3) for no phase difference between the two signals. Fine adjustment of phase can be made with A8C12.
- k. Turn LINE switch OFF. Install A8 in instrument.

NOTE

If the A8 or A11 IF filters are adjusted, perform the Phase Detector and Polar Converter Adjustment.

5-21. MAGNITUDE DETECTOR ACCURACY ADJUSTMENT

REFERENCE:

Service Sheets 12 and 13

NOTE

The A, B Detector (A8) and the R Detector (R11) are supplied from the factory pre-aligned with a special fixture that guarantees alignment over the entire dynamic range. The following procedure should be used only after determining that adjustment of A8 or A11 is necessary.

NOTE

The Magnitude section of the MAG/PHASE Output Accuracy Test (Section IV) should be performed before proceeding with the adjustments in this section. If the instrument passes the performance test, do not adjust either A8 or A11, even if repairs have been made.

If A or B detector accuracy is faulty, then proceed with the following verification and (if necessary) realignment of A8.

ADJUSTMENTS

5-21. MAGNITUDE DETECTOR ACCURACY ADJUSTMENT (Cont'd)

If R detector accuracy is faulty, then remove A8 and A11 and interchange their positions. Then proceed with the following verification and (if necessary) realignment of the R magnitude detector in A8 position.

If the instrument fails the performance test, the verification section of the following procedure provides a means to determine whether adjustment of A8 or A11 is necessary.

DESCRIPTION:

The first portion of the procedure provides a voltage check to determine whether the detector installed in A8 position is properly adjusted. Verification or adjustment requires a specially selected and calibrated step attenuator (HP 355D, H82) and a high-accuracy, high-resolution, digital voltmeter as part of the test equipment. The voltage at A8TP8 is monitored, and, if necessary, the magnitude detector is adjusted for the proper voltage at A8TP8 for each given value of Channel B input level.

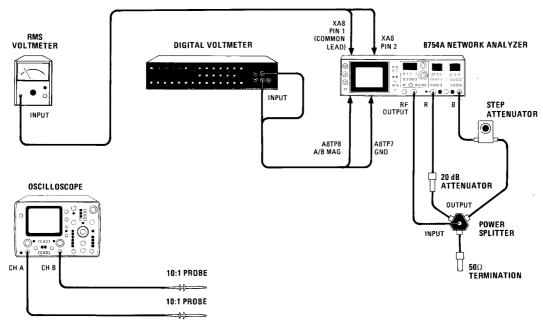


Figure 5-27. Magnitude Detector Accuracy Adjustment Test Setup

EQUIPMENT:

Digital Voltmeter	HP 3455A
RMS Voltmeter	HP 3400A
Oscilloscope	HP 1740A
Power Splitter (three-way)	. HP 11850A
Step Attenuator (calibrated) HP 3551	D, Option H82
20-dB Attenuator	B, Option 020
50-Ohm Termination	A, Option 012
10:1 Divider Probe	. HP 10004D
Extender Board, 22-pin	P 08565-60107

ADJUSTMENTS

1 5-21. MAGNITUDE DETECTOR ACCURACY ADJUSTMENT (Cont'd)

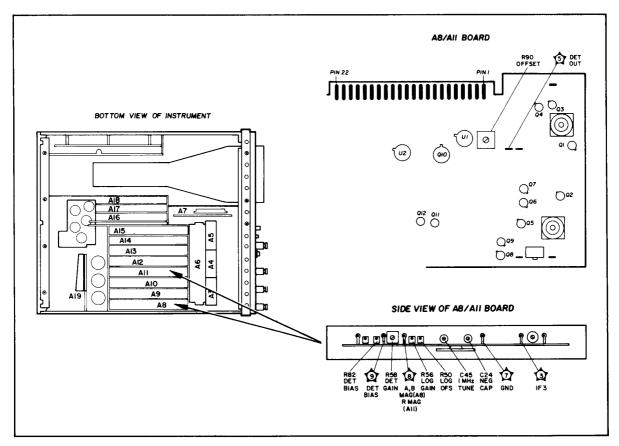


Figure 5-28. Magnitude Detector Accuracy Adjustment Locations

Verification

- a. Connect equipment as shown in Figure 5-27.
- b. Set 8754A controls as follows:

Sweep Mode CENTER
SWEEP MAN
SWEEP Vernier Midrange
FREQUENCY MHz
SWEEP WIDTH MHz
SWEEP WIDTH MHz Vernier CAL (Fully clockwise)
MARKERS MHz OFF
OUTPUT dBm
REFERENCE POSITION CH 2 Off (out)
VIDEO FILTER
POLAR A/R Off (out)

5-21. MAGNITUDE DETECTOR ACCURACY ADJUSTMENT (Cont'd)

CHANNEL 1	
Measurement Select O	FF
CHANNEL 2	
REFERENCE	(in) B/R

- c. In Table 5-9, fill in the values for columns B, C, and D for your calibrated attenuator. (See Table 5-9 sheet 1 of 2 for a sample and sheet 2 of 2 for your measurements.)
- d. Set the attenuator to 20 dB position, connect the DVM to A8TP8, then read the DVM indication. Calculate the value of Column E and fill in the value in all of the blanks in Column E.
- e. Calculate the values of F.
- f. Measure the value of G at each attenuator setting and record the value in Column G.
- g. Compare the values in column G with those in Column F to see if the measurements are within tolerance.
- h. If any of the measurements in step g were out of tolerance, proceed with the "Adjustment" paragraph following. If all of the measurements were within tolerance, the Magnitude Detector in A8 is correctly adjusted.

Adjustment

- a. Turn LINE switch OFF. Install A8 Assembly on extender board. Turn LINE switch on.
- b. Connect equipment as shown in Figure 5-27.
- c. Set 8754A controls as shown in step b of the verification procedure. Disconnect the RF OUTPUT from the power splitter input and connect the digital voltmeter between A8TP5 DET OUT and ground. Adjust A8R90 OFFSET for digital voltmeter indication of 0.000 ± 0.001 V.
- d. Turn LINE switch OFF. Remove assembly to be adjusted from the extender board and re-install it in the A8 location. Turn LINE switch on.
- e. Connect digital voltmeter between A8TP9 DET BIAS and ground. Adjust A8R82 DET BIAS for indication on the digital voltmeter of $+0.165 \pm 0.005$ V.
- f. Re-connect RF OUTPUT to power splitter. Set step attenuator to 0 dB. Connect oscilloscope Channel A to XA8 pin 2 (A, B IF on Motherboard) using a 10:1 divider probe. Set oscilloscope to .01 V/DIV, AC coupled, 0.2 uSEC/DIV. Check for a ripple-free sine wave (see Figure 5-29). If the signal has ripple, set TUNING control fully counterclockwise and then slowly tune network analyzer back to 25 MHz.

ADJUSTMENTS

5-21. MAGNITUDE DETECTOR ACCURACY ADJUSTMENT (Cont'd)

g. Connect RMS voltmeter between XA8 pin 2 (A, B IF) and XA8 pin 1 (A, B IF RET) with common lead connected to XA8 pin 1. Adjust front-panel OUTPUT dBm control for a voltmeter indication of 0.224 ± 0.002 Vrms.

- h. Connect oscilloscope Channel A, AC coupled, .05V/DIV to A8TP3 IF3 using a 10:1 divider probe. Check for 1-MHz sine wave of 2.5 ± 0.3 V peak-to-peak. If the sine wave is not within limits, check the input amplifier and bandpass filters. (See Service Sheet 12 or 13).
- i. Connect digital voltmeter to A8TP8 A/B MAG (or A11TP8 R MAG). Adjust A8R50 LOG OFS for digital voltmeter indication of 0.0000 ± 0.0002 V.
- j. Set step attenuator to 30 dB. Adjust A8R56 LOG GAIN for calculated voltage (30-dB attenuator setting) recorded in Table 5-9 Column F, with a tolerance of ± 0.0002 V.
- k. Set step attenuator to 50 dB. Adjust A8C24 NEG CAP for calculated voltage (50-dB attenuator setting) recorded in Table 5-9 Column F, with a tolerance of 0.0004V.

Table 5-9.	A8 Magnitude Detector Accura	acy Verification Table (1 of 2)
------------	------------------------------	---------------------------------

A External	B Attenuator	C Actual	D Equivalent	E Offset	Expected DVM	F Reading at A8TP8	G Measured
Attenuator Setting (dB)	Calibration Value at Setting (dB)	Attenuator Value at (A + B) (dB)	DVM Reading (C×025/dB)	Correction for A8TP8 (See Note 1) (Vdc)	Expected Reading (D + E) (Vdc)	Allowable Measurement Tolerance (Vdc)	Value on DVM at A8TP8 (Vdc)
0				0200	0200	± .0060	- <u>.0230</u>
10	+.03	10.03	- <u>0.2508</u>	0200	2708	± .0025	2701
20 (Reference)	- 0.12	<u> 19.88</u>	- <u>0.4970</u>	-,0200	- <u>.5170</u>	(Reference)	- <u>.5/70</u> (Ref.)
30	+ .02	<u> 30.02</u>	- <u>0.7505</u>	0200	7705	± .0025	- <u>.7725</u>
40	01	<u>39.99</u>	-1 <u>.0000</u>	0200	-1.0200	± .0050	- <u>1.0199</u>
50	05	<u>49.95</u>	-1 <u>.2488</u>	0200	- <u>1.2688</u>	± .0060	- <u>1.2699</u>
60	+0.10	60.10	-1 <u>.5025</u>	0200	-1.5225	± .0100	- <u>1.5198</u>
70	<u>+ .03</u>	<u>10.03</u>	-1 <u>.7508</u>	0200	- <u>1.7708</u>	± .0200	<u> 7. 7679</u>
80	+0.13	80.13	-2 <u>.0033</u>	0200	- <u>2.023</u> 3	± .0500	-2.0712

NOTES: 1. Column E Offset Correction is calculated as follows:

[(Actual DVM reading at 20 dB Setting) – (Calculated Value of D at 20 dB setting)].

2. The "Allowable Measurement Tolerance" in column F does not include the calibration uncertainty of the HP 355D attenuator.

ADJUSTMENTS

5-21. MAGNITUDE DETECTOR ACCURACY ADJUSTMENT (Cont'd)

- 1. Set step attenuator to 60 dB. Adjust A8C45 1 MHz TUNE as follows:
 - Initial adjustment (first time on this step): Adjust for most negative voltage indication on digital meter.
 - 2. Fine adjustment: Adjust for calculated voltage (60-dB attenuator setting) recorded in Table 5-9 Column F, with a tolerance of ±0.002V.
- m. Set step attenuator to 0 dB. Repeat steps i through I twice.

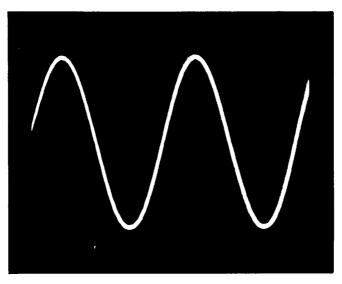
1

- n. Press CHANNEL 2 B/R pushbutton. Set step attenuator to 60 dB and CHANNEL 2 REFERENCE to -40 dB. Adjust OFFSET vernier to position 8754A CRT trace (dot) on center horizontal graticule line. Adjust A8R58 DET GAIN for minimum vertical peak-to-peak movement of 8754A CRT trace while rotating OUTPUT dBm control from +10 to 0. Typical trace movement is 0.15 dB.
- o. Set OUTPUT dBm to +9. Repeat verification procedure steps f through i to verify that adjustment is satisfactory.
- p. Turn LINE switch OFF. Remove A8 and A11 boards and interchange their positions, so the factory-adjusted board is in the A8 position.

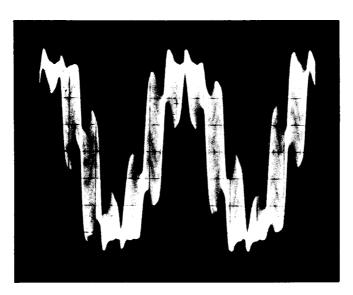
Table 5-9	. A8 Magnitude Detector Accuracy	Verification Table (2 of 2)
-----------	----------------------------------	-----------------------------

Α	B Attenuator	C Actual	D	E Offset	F Expected DVM Reading at A8TP8		G Measured
External Attenuator Setting	Calibration Value at Setting	Attenuator Value at (A + B)	Equivalent DVM Reading (C×025/dB)	Correction for A8TP8 (See Note 1)	Expected Reading (D + E)	Allowable Measurement Tolerance	Value on DVM at A8TP8 (Vdc)
(dB)	(dB)	(dB)	(Vdc)	(Vdc)	(Vdc)	(Vdc)	(Vuc)
0						± .0060	
10						± .0025	
20 (Reference)						(Reference)	(Ref.)
30						± .0025	
40						± .0050	
50						± .0060	
60						± .0100	
70						± .0200	
80						± .0500	

NOTES: 1. Column E Offset Correction is calculated as follows:


 $\hbox{[(Actual DVM reading at 20 dB Setting)}-\hbox{(Calculated Value of D at 20 dB setting)]}\,.$

2. The "Allowable Measurement Tolerance" in column F does not include the calibration uncertainty of the HP 355D attenuator.


Adjustments Model 8754A

ADJUSTMENTS

5-21. MAGNITUDE DETECTOR ACCURACY ADJUSTMENT (Cont'd)

a. Ripple-Free Sine Wave

b. Sine Wave with Ripples

Figure 5-29. Oscilloscope Display of Sine Wave at A8TP3

Model 8754A Adjustments

ADJUSTMENTS

5-22. SAMPLER ADJUSTMENTS

REFERENCE:

Service Sheet 9

DESCRIPTION:

Sampler Bias (BI) and feedback (FB) potentiometers on each of the three samplers (A3, A4, A5) are adjusted for a smooth transition at the phase lock acquisition points. The IF potentiometers are then adjusted to calibrate the R, A, and B IF with a 50 MHz, 0 dBm input.

Figure 5-30. R Sampler Adjustment Test Setup

NOTE

Equipment is for two adjustment test setups, Figures 5-30 and 5-33.

EQUIPMENT:

Power Meter	HP 435A
Power Sensor	HP 8482A
10 dB Attenuator H	P 8491A, Option 010
Three-Way Power Splitter	HP 11850A
Inree-way Power Spiller	IID 11051 A
Matched Cable Set	nr 11651A

PROCEDURE:

- a. Connect equipment as shown in Figure 5-30. The attenuator should be connected directly to R INPUT.
- b. Set 8754A controls as follows:

SWEEP AUTO, FAS SWEEP Vernier 90% Fully Clockwis REFERENCE POSITION CH 1 on(in OUTPUT dBm + 10 dBs Sweep Mode STAR SWEEP WIDTH MHz 200 MH SWEEP WIDTH MHz Vernier CA TUNING 000 MH MARKERS MHz 50 MI VIDEO FILTER off (or	se n) m Hz Hz Hz Hz
VIDEO FILTER off (or	ut)

15-22. SAMPLERS ADJUSTMENT (Cont'd)

CHANNEL 1 REFERENCE	ut) FF
CHANNEL 2	
Measurement Select O	FF
POLAR A/R off (or	ut)

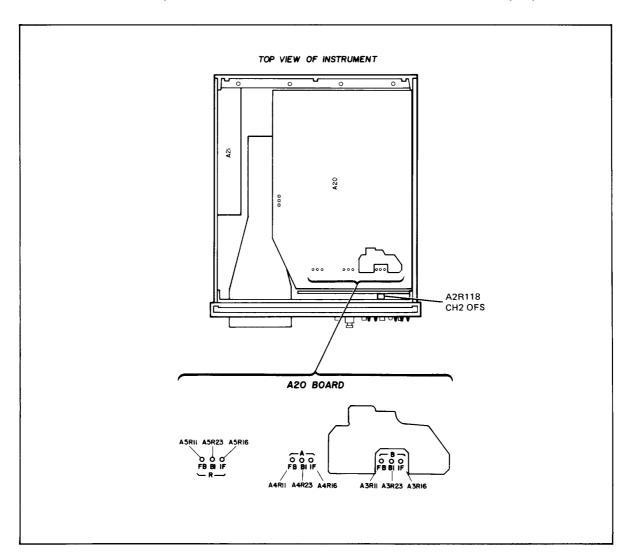


Figure 5-31. Sampler Adjustment Locations

5-22. SAMPLERS ADJUSTMENT (Cont'd)

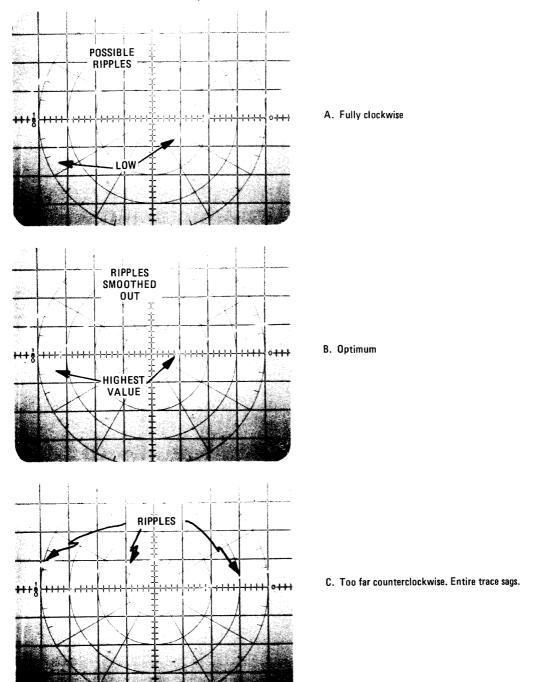


Figure 5-32. Effect of BI Adjustment on Display

Adjustments Model 8754A

ADJUSTMENTS

15-22. SAMPLERS ADJUSTMENT (Cont'd)

- c. Adjust REFERENCE POSITION CH 1 \$\display\$ control to place trace at the center graticule line.
- d. Adjust TUNING to place 100 MHz marker at CRT center. (The first marker near left edge is 50 MHz and the second marker is 100 MHz.) Press MARKERS OFF pushbutton. Press REFERENCE POSITION CH 1 pushbutton to turn off reference trace.

R Sampler

- e. Set R sampler A5R11 FB adjustment fully counterclockwise and A5R23 BI adjustment fully clockwise
- f. Adjust A5R16 IF potentiometer to display R Channel response similar to that shown in Figure 5-32.
- g. Adjust A5R23 BI adjustment for a peak in overall response and minimum step size at the harmonic lock points, as shown in Figure 5-32B.
- h. Set OUTPUT dBm control to 0 dBm and CHANNEL 1 REFERENCE to -10 dBm.
- i. Adjust A5R11 FB adjustment to align the end points to the three trace segments. The resultant trace should be smooth with no apparent steps at harmonic lock points.

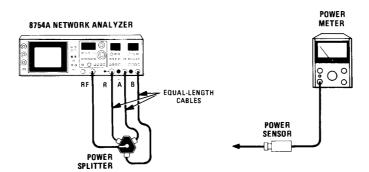


Figure 5-33. A and B Sampler Adjustment Test Setup

A Sampler

j. Set 8754A controls as follows:

OUTPUT dBm +10 dBr	n
CHANNEL 1 REFERENCE	t)

k. Remove 10 dB attenuator from R INPUT. Connect equipment as shown in Figure 5-33.

5-22. SAMPLERS ADJUSTMENT (Cont'd)

- 1. Set A Sampler A4R23 BI adjustment fully clockwise and A4R11 FB adjustment fully counterclockwise. Adjust A4R16 IF potentiometer to position the display at approximately center screen.
- m. Adjust A4R23 BI adjustment for a peak in overall response and minimum step size at the harmonic lock points, as shown in Figure 5-32B.
- n. Change OUTPUT dBm to 0 dBm. Adjust A4R11 FB adjustment to align the ends of the trace segments at the harmonic lock points. The overall response should be a flat line.

B Sampler

1

- o. Change OUTPUT dBm to +10 dBm. Change CHANNEL 1 Measurement Select to B/R. Set B Sampler A3R23 BI adjustment fully clockwise and A3R11 FB adjustment fully counterlockwise. Adjust A3R16 IF potentiometer to position the display at approximately center screen.
- p. Adjust A3R23 BI adjustment for a peak in overall response and minimum step size at the harmonic lock points, as shown in Figure 5-32B.
- q. Change OUTPUT dBm to 0 dBm. Adjust A3R11 FB adjustment to align the ends of the trace segments at the harmonic lock points. The overall response should be a flat line.
- r. At CHANNEL 2 set REFERENCE switches to -00 dB, REFERENCE OFFSET pushbutton to OFF (out), Measurement Select to B/R, and CHANNEL 2 Scale to .25 dB/DIV. Press REFERENCE POSITION CH 1 and CH 2 pushbuttons on (in).
- s. Adjust REFERENCE POSITION CH 1 and CH 2 controls to place both reference traces exactly on center graticule line. Press REFERENCE POSITION CH 1 and CH 2 pushbuttons to turn off reference traces.
- t. Adjust A2R118 CH 2 OFS adjustment (Figure 5-31) to align both traces at exactly the same position on the CRT display.

R SLOPE

- u. Make trace align adjustment in Paragraph 5-13, steps g and h before proceeding with R slope adjustments.
- v. Select FULL 4-1300 mode. Change CHANNEL 1 to A/R Measurement Select.
- w. Set REFERENCE OFFSET Channel 1 and 2 buttons on (IN).
- x. Adjust CHANNEL 1 and CHANNEL 2 offset controls to place left edge of each trace on center graticule.
- y. Adjust A2R129 "R SLOPE" to minimize ratio frequency response slope that is common to both display traces as shown in Figure 5-34, photo B.
- z. Change CHANNEL 1 to B/R Measurement Select and switch CHANNEL 1 and CHANNEL 2 REFERENCE OFFSET buttons off (out).

Adjustments Model 8754A

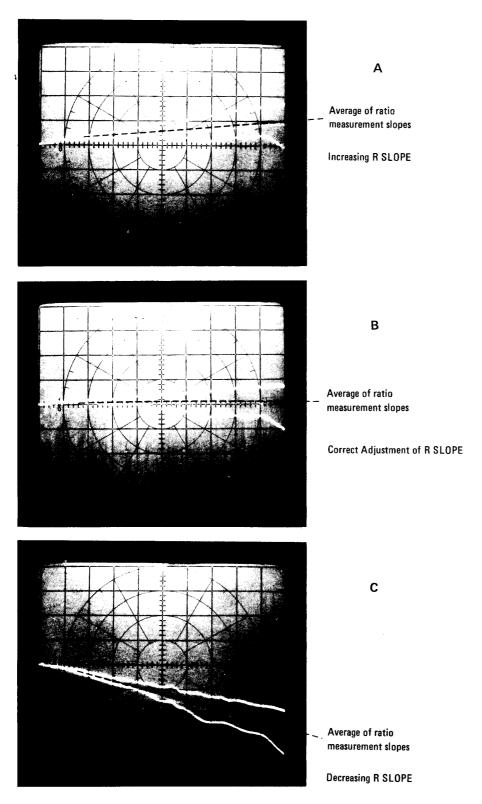


Figure 5-34. R SLOPE Adjustment Trace

1

ADJUSTMENTS

5-22. SAMPLERS ADJUSTMENT (Cont'd)

Absolute-Power Calibration

- aa. Select CENTER mode. Set MARKERS MHz switch to 50. Adjust TUNING to 50 MHz, then center marker on CRT. Reduce SWEEP WIDTH to 0 (CW).
- ab. Set CHANNEL 2 Measurement Select, OFF; CHANNEL 1 Measurement Select, A; CHANNEL 1 REFERENCE, -00; CHANNEL 1 REFERENCE OFFSET, OFF (out).
- ac. At power splitter, remove cable coming from A input and connect power meter to power splitter. Adjust OUTPUT dBm until power meter reads 0 dBm. Disconnect power meter and reconnect cable to power splitter.
- ad. Adjust A4R16 IF adjustment (A Channel) until trace is at center (reference) line.
- ae. Set CHANNEL 1 Measurement Select to A/R. Adjust A5R16 IF adjustment (R channel) until trace is at center screen.
- af. Set CHANNEL 1 Measurement Select to B/R. Adjust A3R16 IF adjustment (B channel) until trace is at center screen.
- ag. Set CHANNEL 1 and 2 Measurement Select to OFF (to display R). Adjust A8R94 ABS R OFS (pot closest to rear of 8754A) for trace at center screen.

5-23. PHASE DETECTOR LIMITERS ADJUSTMENT

REFERENCE:

Service Sheet 14

NOTE

A9 and A10 are supplied from the factory with the adjustments in this section pre-aligned. Do not adjust unless the limiters have been repaired or modified.

DESCRIPTION:

The A, B limiter (on A9) and the R limiter (on A10) are adjusted for a constant 180-degree phase shift from input to output, and to have minimum phase change with amplitude change.

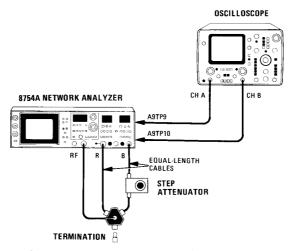


Figure 5-35. Phase Detector Limiters Adjustment Test Setup

' 5-23. PHASE DETECTOR LIMITERS ADJUSTMENT (Cont'd)

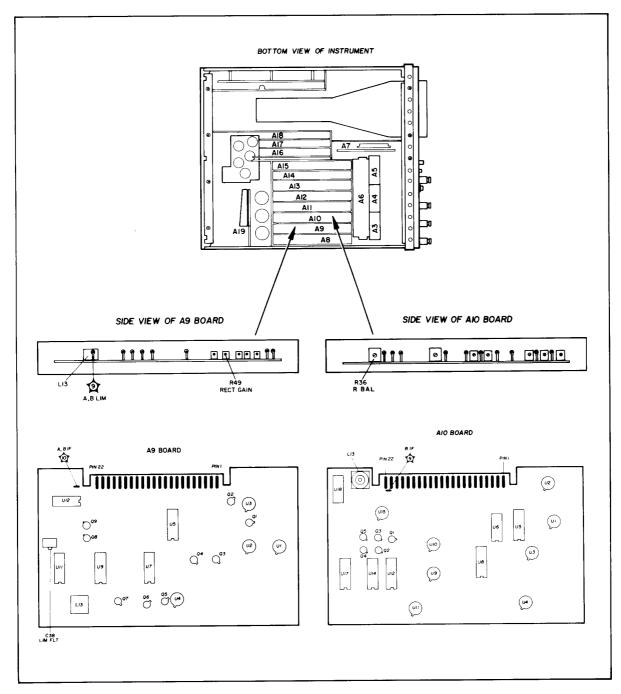


Figure 5-36. Phase Detector and Limiters Adjustment Locations

5-23. PHASE DETECTOR LIMITERS ADJUSTMENT (Cont'd)

EQUIPMENT:

Oscilloscope	HP 1740A
10:1 Divider Probe(s)	HP 10004D
Step Attenuator (10 dB/Step)	HP 8495A, HP 8496A, B
Power Splitter (three-way)	HP 11850A
Matched Cable Kit (4 cables)	HP 11851A
22-Pin Extender Board	HP 08565-60107
Termination, 50-ohm, type N male	HP 909A, Option 012
Alignment Tool	HP 8710-0772

PROCEDURE:

A, B Limiter Adjustment

NOTE

A9 is supplied from the factory with the following steps (a through m) pre-aligned, and A9L13 adjustment secured with dope. Do not adjust steps a through m unless the A, B limiter on A9 has been repaired or altered (refer to Service Sheet 14).

- a. Remove A9 Phase Detector assembly and place on 22-pin extender board. Connect equipment as shown in Figure 5-35. Connect oscilloscope CH A to A9TP9 A, B LIM using 10:1 probe. Connect oscilloscope CH B to A9TP10 A, B IF using 10:1 probe. Set attenuator to 10 dB.
- b. Set controls as follows:

$ \begin{array}{llllllllllllllllllllllllllllllllllll$
8754A:
FREQUENCY MHz 50 Sweep Mode CENTER SWEEP WIDTH MHz 0 (CW) SWEEP FAST, AUTO SWEEP Vernier Midrange MARKERS MHz OFF OUTPUT dBm +10
CHANNEL 1 Measurement Select
CHANNEL 2Measurement Select.PHASE B/RScale.90 DEG/DIVREFERENCE00 DEGREFERENCE OFFSET pushbuttonoff (out)VIDEO FILTER.on (in)

Adjustments Model 8754A

ADJUSTMENTS

5-23. PHASE DETECTOR LIMITERS ADJUSTMENT (Cont'd)

- c. Engage REFERENCE POSITION CH 2 button and position CRT trace to center screen using control. Release button.
- d. Select GND on CH A and CH B inputs of oscilloscope. Position both traces to center oscilloscope graticule line. Select AC on both inputs.
- e. Observe a square wave and a sine wave on oscilloscope. Adjust A9C38 LIM FLT over its range, observing phase relationship of square wave relative to sine wave. Adjust to center of its range.
- f. Adjust A9L13 (pot core, underneath TP9) for a 180-degree difference between oscilloscope traces, as shown in Figure 5-37.

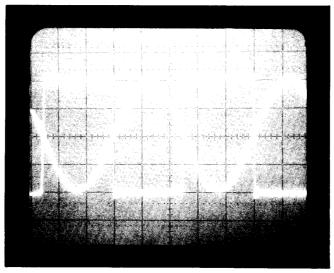


Figure 5-37. Zero Crossings Aligned for 180-Degree Difference Between Traces

- g. Press CHANNEL 2 REFERENCE OFFSET pushbutton. Using CHANNEL 2 REFERENCE level switch, move trace to center graticule line.
- h. Select CHANNEL 2, 2.5 DEG/DIV. Using OFFSET vernier, move trace to center line.
- i. Verify that if REFERENCE is changed by 10 degrees, trace moves 4 divisions ± 1 division. If not, preadjust A9R49 RECT GAIN.
- j. Step attenuator from 0 to 50 dB, adjusting A9C38 LIM FLT to minimize vertical shift of 8754A trace over this amplitude range. Continue stepping attenuator down to 70 dB. Verify specification:

0 to 50 dB: ± 2 degrees 50 to 70 dB: ± 4 degrees

k. Return attenuator to 10 dB. If there is not a 180-degree difference between sine and square wave, as shown in Figure 5-37, repeat steps f through j.

Model 8754A Adjustments

ADJUSTMENTS

5-23. PHASE DETECTOR LIMITERS ADJUSTMENT (Cont'd)

- 1. Secure pot core by applying a small amount of Hot Fuel Proof Dope (HP Part No. 6010-0011 or equivalent) to adjustable section.
- m. Install A9 board in instrument.

R Limiter Adjustment

NOTE

A10 is supplied from the factory with the following steps (n through w) pre-aligned, and inductor A10L13 secured with dope. DO NOT perform steps n through w unless the R limiter on A10 has been repaired or modified (refer to Service Sheet 14).

- n. Remove A10 Polar Converter assembly and place on 22-pin extender board. Connect equipment as shown in Figure 5-35, except that R and B inputs should be reversed (i.e., power splitter to B, step attenuator to R). Connect oscilloscope CH A to A10TP12 R LIM and CH B to A10TP9 R IF. Set attenuator to 10 dB.
- o. Repeat steps b-d if necessary.
- p. Adjust A10R36 R BAL to center of its mechanical rotation.
- q. Adjust A10L13 (pot core) for a 180-degree difference between oscilloscope traces, as shown in Figure 5-36.
- r. Using CHANNEL 2 REFERENCE lever switch, move trace to center graticule line.
- s. Select CHANNEL 2, 2.5 DEG/DIV. Using OFFSET Vernier, move trace to center line.
- t. Step attenuator from 0 to 40 dB. Adjust A10R36 R BAL to minimize vertical shift of 8754A trace over this amplitude range. Verify vertical shift is $\leq \pm 2$ degrees.
- u. Return attenuator to 10 dB. If there is not a 180-degree difference between sine and square waves, as shown in Figure 5-36, repeat steps q through t.
- v. Secure pot core by applying a small amount of Hot Fuel Proof Dope (HP Part No. 6010-0011 or equivalent) to adjustable section.
- w. Install A10 board in instrument.

Adjustments Model 8754A

ADJUSTMENTS

1 5-24. PHASE DETECTOR AND POLAR CONVERTER ADJUSTMENT

Service Sheet 14

REFERENCE:

Service Sheet 14

DESCRIPTION:

The scale factor of the phase reference is adjusted by making +180 degrees and -180 degrees coincide. Then, the reference is used as a standard to adjust the offset and gain of the rectangular phase detector. Last, the polar converter is adjusted so that the displayed amplitude and phase agree with the CH 1 and CH 2 references.

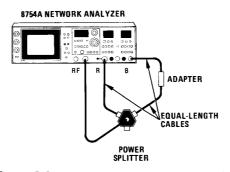


Figure 5-38. Reference Adjustment Test Setup

NOTE

Equipment is for two adjustment test setups, Figures 5-38 and 5-41.

EQUIPMENT:

Digital Voltmeter	HP 3455A
Power Splitter	. HP 11850A
Matched Cable Kit	
Adapter, type N female to type N female	HP 1250-0777
Test Connector	HP 1251-0063
Oscilloscope	HP 1740A
10:1 Divider Prove	

5-24. PHASE DETECTOR AND POLAR CONVERTER ADJUSTMENT (Cont'd)

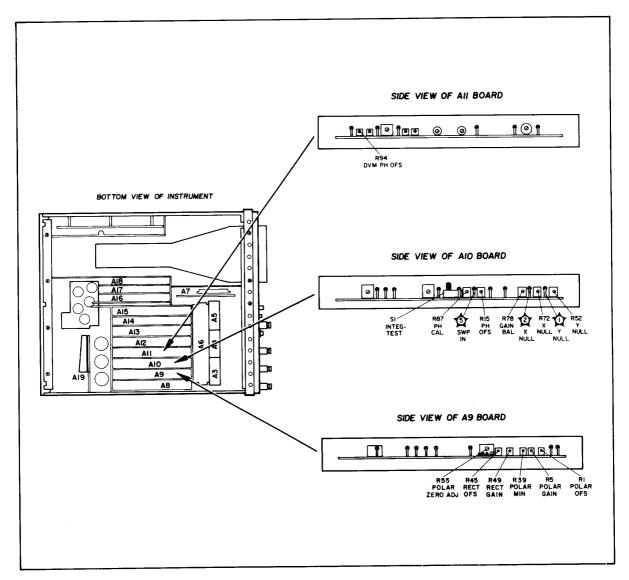


Figure 5-39. Phase Detector and Polar Converter Adjustment Locations

PROCEDURE:

Reference Adjustment

a. Connect equipment as shown in Figure 5-38. Verify that A10S1 INTEG-TEST switch is in the INTEG position.

Adjustments Model 8754A

ADJUSTMENTS

5-24. PHASE DETECTOR AND POLAR CONVERTER ADJUSTMENT (Cont'd)

b. Set 8754A controls as follows:

Sweep Mode	
SWEEP	
SWEEP Vernier	
MARKERS MHz	OFF
REFERENCE POSITION CH 2	Off (out)
VIDEO FILTER	
POLAR A/R	Off (out)
CHANNEL 1	
Measurement Select	OFF
CHANNEL 2	
REFERENCE	180
REFERENCE OFFSET pushbutton	Off (out)
Measurement Select	PHASE B/R
Scale	90 DEG/DIV
	, , , , , , , , , , , , , , , , , ,

- d. Turn the Phase B/R LENGTH control full clockwise. Then turn counterclockwise until right edge of trace is at least one minor division below the center graticule line, and any noise present on the right-hand side of trace is gone.
- e. Adjust TUNING to place the marker at the lowest frequency at which the trace crosses the center graticule line. The trace should appear as in Figure 5-40.
- f. Set 8754A controls as follows:

SWEEP WIDTH MHz	
CHANNEL 2 Scale	EG/DIV

- g. Adjust TUNING to place the trace on the center graticule line.
- h. Switch CH 2 REFERENCE between -180 and +180 degrees, noting movement of trace. Adjust A10R87 PH CAL until there is no movement in the displayed trace.
- i. Set 8754A controls as follows:

Sweep Mode	FULL 4-1300
Scale	90 DEG/DIV

5-24. PHASE DETECTOR AND POLAR CONVERTER ADJUSTMENT (Cont'd)

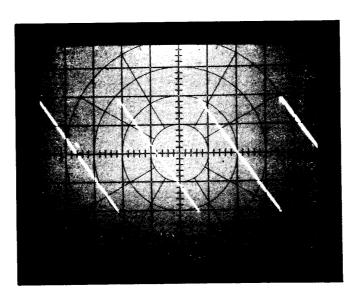


Figure 5-40. Oscilloscope Display for Reference Adjustment

j. At each of the other (three) zero crossings note the trace movement between -180 and +180 degrees as in steps f through i. At each crossing, the phase trace should move less than 1 degree. If necessary, compromise the adjustment of A10R87 PH CAL to minimize the trace movement between -180 and +180 degrees of all four points.

Phase Detector Adjustment

k. Connect equipment as shown in Figure 5-41. Connect test connector with jumper between pins 19 (MAG/PH) and 18 (GROUND) to rear panel PROGRAMMING connector J7.

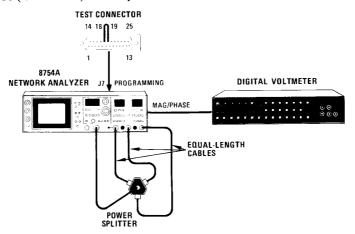


Figure 5-41. Phase Detector and Polar Converter Adjustment Test Setup

Adjustments Model 8754A

ADJUSTMENTS

5-24. PHASE DETECTOR AND POLAR CONVERTER ADJUSTMENT (Cont'd)

1. Set 8754A controls as follows:

Sweep Mode	
FREQUENCY MHz	
SWEEP WIDTH MHz	
SWEEP	
SWEEP Vernier	Midrange
CHANNEL 2	
	00
REFERENCE	
REFERENCE	on (in)
REFERENCE	

- n. Adjust CH 2 OFFSET Vernier so that dot is at center graticule line. If range is not sufficient, adjust A10R15 PH OFS to place dot on center graticule line. (If necessary, temporarily select 10 DEG/DIV to locate dot.)
- o. Adjust A11R94 DVM PH OFS (pot nearest rear of 8754) for $0.000 \pm .001$ reading on DVM.
- p. Set CHANNEL 2 REFERENCE switch to +100 DEG; digital voltmeter should indicate +1.000 ± 0.005 V. Set CHANNEL 2 REFERENCE switch to -100 DEG; digital voltmeter should indicate -1.000 ± 0.005 V. Adjust A9R49 RECT GAIN for best compromise of digital voltmeter indications (i.e. +100 DEG = +1.002V, -100 DEG = -0.998V).
- g. Set 8754A controls as follows:

SWEEP AUTO, FA	AST
CHANNEL 2 Scale	Ν
CHANNEL 2 REFERENCE	180

- r. Connect rear panel SWEEP OUTPUT to A10TP5 SWP IN. Adjust A9R45 RECT OFS to center vertically the 180-degree phase transition on the CRT, as shown in Figure 5-42.
- s. Select MANUAL sweep and sweep slowly through 180-degree transition in both forward and reverse directions. Note that in the reverse sweep direction, the transition point is above the top graticule line. Adjust A9R45 RECT OFS to equalize the distance below and above the graticule for the forward and reverse sweep directions respectively. Remove SWEEP from A10TP5.
- t. Set 8754A controls as follows:

Sweep Mode	FULL 4-1300
SWEEP	AUTO, FAST

Model 8754A Adjustments

ADJUSTMENTS

5-24. PHASE DETECTOR AND POLAR CONVERTER ADJUSTMENT (Cont'd)

CHANNEL 2	
REFERENCE	
REFERENCE OFFSET pushbutton	off (out)
Scale	2.5 DEG/DIV

NOTE

If adjustment range of A10R15 PH OFS is insufficient, the IF Bandpass Filters on A8 or A11 may require adjustment. See the IF Filters Adjustment procedure.

u. Adjust PHASE B/R LENGTH for flattest trace. Adjust A10R15 PH OFS to center trace on CRT graticule. (Note: p-p variation of trace should be <5 degrees.)

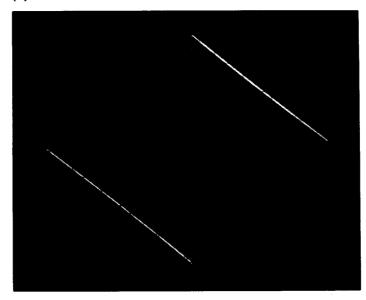


Figure 5-42. 180-Degree Phase Transition

Polar Converter Adjustments

a. Set 8754A controls as follows::

Sweep Mode	CENTER
FREQUENCY MHz	50
SWEEP WIDTH MHz	
SWEEP Al	UTO, FAST
SWEEP Vernier	. Midrange
CHANNEL 1	
Measurement Select	
REFERENCE	
REFERENCE OFFSET	On (in)
Scale	.25 dB/DIV

1 5-24. PHASE DETECTOR AND POLAR CONVERTER ADJUSTMENT (Cont'd)

CHANNEL 2
Measurement Select OFF
REFERENCE00
REFERENCE OFFSET Off (out)
POLAR A/R Off (out)

- b. Press the REFERENCE POSITION CH 1 button and adjust the

 control to place the trace on the center graticule line. Press button again to turn off.
- c. Adjust CHANNEL 1 REFERENCE OFFSET vernier until displayed trace is on the CRT center graticule line.
- d. Set 8754A controls as follows:

POLAR A/R	On (in)
SWEEP	. MÀŃ

- e. With a 10:1 probe, monitor A10TP1 Y NULL with an AC coupled oscilloscope. Adjust A10R52 Y NULL for minimum signal at TP1. Repeat this procedure to adjust A10R72 X NULL while monitoring A10TP2 X NULL.
- f. Press POLAR CENTER pushbutton. Center dot on CRT display with POLAR CENTER and controls. Press to release POLAR CENTER pushbutton.
- g. Select SWEEP AUTO, FAST. Connect rear-panel SWEEP OUTPUT to A10TP5 SWP IN. A circle should now be displayed, with a gap. Adjust CHANNEL 2 REFERENCE lever switch until the gap is in the lower-left quadrant of the display, as shown in Figure 5-43.

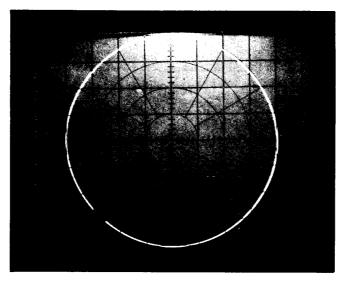


Figure 5-43. Gap at -135 Degrees

5-24. PHASE DETECTOR AND POLAR CONVERTER ADJUSTMENT (Cont'd)

- h. Adjust A9R5 POLAR GAIN so that the vertical diameter of the trace is 8 divisions; i.e., that the trace intersects the outer graticule circle at the +90- and -90-degree points.
- i. Adjust A10R78 GAIN BAL to set the displayed circle on the outer graticule circle at the 0- and 180-degree points. Note that the displayed circle varies less than 2.5 mm from the outer graticule circle at all points. If necessary, also select the value of A10C17 to set the trace on the outer graticule circle.
- j. Turn A9R39 POLAR MIN control fully counterclockwise and set Channel 1 REFERENCE switch to +50 dB. Adjust FOCUS AND INTENSITY for smallest and sharpest dot. Turn POLAR MIN control clockwise until dot just starts to increase in size.
- k. Switch Channel 1 REFERENCE switch between 00 dB and +20 dB and adjust A9R1 POLAR OFS and A9R5 POLAR GAIN so that displayed circle is on outer graticule circle with 00 dB OFFSET and has a radius of 2 minor divisions with +20 dB OFFSET. (Repetition of these two adjustments will be necessary.) Check the size of the displayed circle with the OFFSETS shown in Table 5-10.

	•
Reference Offset	Polar Circle Radius (±1 mm)
00	4 major divisions (Outer Circle)
+06	2 major divisions
+12	1 major division
+20	2 minor divisions
+26	1 minor division

Table 5-10. Polar Circle Radius Adjustments

- 1. Disconnect SWEEP from A10TP5.
- m. Set 8754A controls as follows:

Sweep Mode	FULL 4-1300
CHANNEL 2	
REFERENCE	00
REFERENCE OFFSET	Off (out)

n. Adjust POLAR A/R LENGTH control for smallest dot cluster. Adjust A9R55 POLAR ZERO ADJ so that cluster is at 0-degree point of polar display.

Model 8754A Replaceable Parts

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION

1

6-2. This section contains information for ordering parts. Table 6-1 is a list of exchange assemblies and Table 6-2 lists abbreviations used in the parts list. Table 6-3 lists replaceable parts in reference designator order. Table 6-4 contains names and addresses that correspond to the manufacturer's code numbers.

6-3. EXCHANGE ASSEMBLIES

6-4. Table 6-1 lists assemblies within the instrument that may be replaced on an exchange basis, thus affording considerable cost savings. Exchange, factory-repaired and tested assemblies are available only on a trade-in basis, therefore the defective assemblies must be returned for credit. For this reason, assemblies required for spare parts stock must be ordered by the new assembly part number.

6-3. REPLACEABLE PARTS LIST

- 6-6. Table 6-3 is the list of replaceable parts, is organized as follows:
- Electrical assemblies and their components in alpha-numerical order by reference designation.
- 2. Miscellaneous parts, at end of list for each major assembly.
- Chassis-mounted parts, in alpha-numerical order by reference designation, at end of parts list.

- 4. Illustrated parts breakdown.
- 6-7. The information given for each part consists of the following:
- 1. The Hewlett-Packard part number.
- 2. Part number check digit (CD).
- 3. The total quantity (Qty) in the instrument. This quantity is given only once, at the first appearance of the part in the list.
- 4. The description of the part.
- 5. A typical manufacturer of the part in a five-digit code.
- 6. The manufacturer part number.

6-8. ORDERING INFORMATION

- 6-9. To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number (with the check digit), indicate the quantity required, and address the order to the nearest Hewlett-Packard office. The check digit will ensure accurate and timely processing of your order.
- 6-10. To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument serial number, the description and function of the part, and the number of parts required. Address the order to the nearest Hewlett-Packard office.

<i>Table 6-1.</i>	Assemblies	Available j	for Modul	le Excl	nange
-------------------	------------	-------------	-----------	---------	-------

Assembly	New Part No.	Exchange Part No.
A7U2	08754-60035	08754-60036
A7U3	5086-7235	5086-6235
*For module exchange p	rocedure, see Paragraph 8-14.	

Replaceable Parts Model 8754A

Table 6-2. Reference Designations, Abbreviations, and Code List of Manufacturers (1 of 3)

	REFERENCE D	ESIGNATIONS		
AT attenuator; isolator; termination F B. fan; motor FL BT battery H C capacitor HY CP coupler J CR diode; diode thyristor; varactor DC directional coupler DL delay line K signaling device M	miscellaneous electrical part fuse filter hardware circulator electrical connector (stationary portion); jack relay coil; inductor meter miscellaneous mechanical part	P electrical or (movable p plug) Q transis triode thyn R R tt tt S tr T tr TB termi TC there	ortion); tor: SCR; stor resistor hermistor switch unsformer nal board nocouple	U integrated circuit; microcircuit V electron tube VR voltage regulator; breakdown diode W . cable; transmission path; wire X socket Y crystal unit (piezo- electric or quartz) Z . tuned cavity; tuned circuit
	ABBREVI	ATIONS		
A Across Flats, Acrylic, Air (Dry Method), Ampere ADJ	CNTR Counter CNTRL CONN Connection, Conn CONT Continuous, Control CONV Candle Power, ductive Plastic, Co CRT Tube, Crate CTR	Control Connect, ector Contact, rol, Controller Converter Cadmium Plate, Centipoise, Con- ne Point Cathode-Ray Center	EXCL-OF Exclus EYLT Farad, Flange FDTHRU FEM Conne	Encoder C Logic ive OR Fahrenheit, Female, Film (Resistor), Fixed, to, Flint, Fluorine, Frequency Feed Through Female Flange, Female tection; Flip Flop Flash, Flat,
BCD. Binary Coded Decimal BLO Blow BRDG Bridge BSC. Basic	DA DARL DBL DBM Referred to 1 Milli DCDR DECD DIP	Darlington Double Decibels watt Decoder Decade	FLG FR FT FW FXD	Flange Folder Feet, Foot Full Wave Fixed
C CBL Cable C-C Center to Center CC Carbon	Package DIP-SLDR	Divider Depletion	Genera GP GRV	General, ator General Purpose Grooved Gray
Composition, Cubic Centimeter CCP Carbon Composition Plastic CER Ceramic CFM Cubic Feet Per Minute CHAM Chamfer CLR Clear, Collar, Color	Master/Slave DO Designation DPDT Double Throw DR DX	Package Type Double Pole Drive Duplex	HEX Hexag HLCL IC Circuit	
CMOS Complementary Metal Oxide Semiconductor CMPNT	ECL		IEC Electro	Inside Diameter International otechnical Commission Forward ott, Intermediate Frequency

Model 8754A Replaceable Parts

Table 6-2. Reference Designations, Abbreviations, and Code List of Manufacturers (2 of 3)

IN Inch, Indium INP Input	N	PRP Purple
INT Integral,	NAND Logic Not-AND	PS Picosecono
Intensity, Internal INTL Internal,	NC National Coarse (Thread), No Connection, Normally	Poise, Polystyrene, Positive Shorting Pressure Sensitive
International	Closed	PTR Pointe
INV Invert,	N-CHAN N-Channel NH Nanohenry	PVC Polyviny Chloride
•	NO Normally Open,	PWR Power
J	Number NOM Nominal	Q
J-FET Junction	NOR Logic Not-OR	Q Figure o
Field Effect Transistor	NPN Negative	Merit
JG Jade Gray	Positive Negative (Transistor) NS Nanosecond,	QUAD Set of Fou
K	Non-Shorting	R
7.9-	NUM Numeric,	RBN Ribbo
K Kilo, Potassium	Numerical NYL Nylon	RCVR Receive
KVDC Kilovolts	(Polyamide)	RCVY Recover
Direct Current		RECT Rectangle Rectangular, Rectifier
	O	RES Research
L	OP AMP Operational	Resistance, Resistor
LED Light Emitting	Amplifier	RETRIG
Diode	OSC Oscillator, Overlap Slotted Container (All Flaps	RF Radio Frequenc
LG Length, Long LIN Linear, Linear	Same Length)	RGLTR Regulato
Taper, Linearity	OVH Oval Head	RGTR
LK Link, Lock		Square
LS Low Power Schottky, Series Inductance	P	RND Roun
LUM Luminous	PAN-HD Pan Head	R&P Rack and Pane R-S Reset-Se
	PB Lead (Metal),	RVT Reset-36
М	Push Button PC Picocoulomb,	Riveted
M Male, Maximum,	Piece, Printed Circuit	S
Mega, Mil, Milli, Mode, Momentary,	PCB Printed Circuit	
Mounting Hole Centers, Mounting	Board P-CHAN P-Channel	SCR Screw, Silico
Hole Diameter MA Milliampere	PD Pad, Palladium,	Controlled Rectifier SEG Sealin
MACH Machined	Pitch Diameter, Power Dissipation	SEL Select
MCD Millicandela	PF Picofarad;	Selected
MHZ Megahertz MIN Miniature,	Pipe, Female Connection; Power Fac- tor	SEMITUB Semitubula SER Serie
Minimum, Minor, Minute	PHBRZ Phosphor	SGL Singl
MINTR Miniature	Bronze	SHF-RGTR Shit
MLD Mold, Molded MM Millimeter	PIN Positive Intrinsic Negative (Transistor)	Register SI Silicon, Squar
MO Metal Oxide,	PKG Package	Inch
Milliounce, Molybdenum	PL Phase Lock,	SIP Sing
MOD Model,	Plain, Plate, Plug PMOS P-Channel	In-Line Package
Modified, Modular, Modulated, Modulator	Metal Oxide Semiconductor	SKT Skirt, Socke SL Slide, Slo
MOM Momentary	PNL Panel	SLDR Solde
MONO/ASTBL	PNP Positive	SM Samarium, Seam
Monostable / Astable MONOSTBL Monostable	Negative Positive (Transistor) POLYC Polycarbonate	Small, Square Meter, Sub Modula Subminiature
MOSFET Metal Oxide	POLYE Polyester	SMA Subminiature
Semiconductor Field Effect Transistor	POLYSTY Polystyrene	A Type (Threaded Connector)
MTI C Mounting	POS Position, Positive	SMB Subminiature
MTLC Metallic MUXR Multiplexer	POT Potentiometer	B Type (Snap-On Connector) SMF Square Mil Foo
MV Millivolt,	POZI Pozidriv	SNP Sna
Multivibrator	Recess	SPCG Spacin
MW Milliwatt MZ Milliounce Troy	PREC Precision PRL Parallel	SPDT Single Po Double Throw
	a Nacional Control of the Control of	DOUBLE LUIVW

Replaceable Parts Model 8754A

Table 6-2. Reference Designations, Abbreviations, and Code List of Manufacturers (3 of 3)

SQ Squa SUBMIN Subminiatu SW Single Wa Switch SWP Shell Whi Panel (HP 6009-0026), Sweep SZ Si T T Tab Widt Taper, Teeth, Temperature, The moplastic (Insulation), Thicknes Time, Timed, Tooth, Turns Rati Typical TA Ambie Temperature, Tantalum TBAX Tube Axi TC Ca Temperature, Technetium Temperature Coefficien Temperature Coefficien	re TPL III, TRIG Trigger Trigonom TRMR TRN TTL Transluce Logic h, errors, o, UA UCD UF UH UH UI UH Underwrig t, UNMTD	able, etry nt, Transist U	Tapping Triple Trigger, Triggering, Triggering, Trimmer Turn, Turns Tan or Transistor Microampere Microcandela Microfarad Microfarad Microfier, Ories, Inc.	VDC Current VRRM Peak Inve VSBL Oscillator VVC Variable of W White, W WDTH WSHR	Capacitor W ide, Width	Visible . Voltage Tuned Voltage . Watt, Wattage,
mocouple, Tinned Copper		V		7131K		Transistor
THD	V ick Variable, ent VAC	Violet, Volt, '	Vanadium, Voltage Vacuum; Volts,	Impedano	e	Maximum
	M	ULTIPLII	ERS			
$\begin{array}{ccc} \textbf{Abbreviation} & \textbf{Prefix} & \textbf{Multipl} \\ \textbf{T} & \text{tera} & 10^{12} \\ \textbf{G} & \text{giga} & 10^9 \\ \textbf{M} & \text{mega} & 10^6 \end{array}$		on Prefix deka deci	Multiple	Abbreviation n	Prefix nano	Multiple 10 ⁹
k kilo 10 ³	m μ	centi milli micro	10^{-1} 10^{-2} 10^{-3} 10^{-6}	p f a	pico femto atto	10^{-12} 10^{-15} 10^{-18}
k kilo 10 ³	m	centi milli micro	$\begin{array}{c} 10^{-2} \\ 10^{-3} \\ 10^{-6} \end{array}$	f a	femto	10-15
k kilo 10 ³ MANUFACTURER NI COBJS ANTIFROLAGET PIFA COROO ANY SATISFACTORY SUPPLIES	CODE LIST	centi milli micro	$\begin{array}{c} 10^{-2} \\ 10^{-3} \\ 10^{-6} \end{array}$	f a	femto	10-15

Table 6-3. Replaceable Parts

1

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1 A1C1 A1C2 A1C3 A1C4	08754=60001 0180=1706 0160=4084 0160=4084 0160=0134	0 7 8 8	1 3 126	BOARD ASSEMBLY, FRONT PANEL (DOES NOT INCLUDE ALDSI AIR24 AND AIR51) CAPACITOR=FXD 1000f+-20X 25VDC TA CAPACITOR=FXD .1UF +-20X 50VDC CER CAPACITOR=FXD .1UF +-20X 50VDC CER CAPACITOR=FXD 220 PF +-5% 300VDC MICA	28480 06001 28480 28480 28480	08754-00001 69F245G7 0160-4084 0160-4084 0160-0134
A [CR] A [CR2 A [CR3 A]]1 A]2 A]3 A]4	1901-0050 1901-0050 1990-0486 1251-4833 1251-4833 1251-5244 1251-5244	3 5 6 9 8 8	83 2 1	NOT ASSIGNED DIODE-SWITCHING ROV 200MA 2NS DO-35 DIODE-SWITCHING ROV 200MA 2NS DO-35 LED-VISIBLE LUM-INTE-IMCD CONNECTOR 34-PIN M POST TYPE CONNECTOR 34-PIN M POST TYPE CONNECTOR 6-PIN M POST TYPE CONNECTOR 6-PIN M POST TYPE	28480 28480 28480 28480 28480 28480 28480	1901-0050 1901-0050 1900-0486 1251-4853 1251-4853 1251-5244 1251-5244
A1R1 A1R2 A1R3 A1R4 A1R5	0757-0442 0757-0280 0757-0416 0698-3444 0757-0416	9 3 7 1 7	119 116 39 35	RESISTOR 10K 1X .125W F TC=0+=100 RESISTOR 1K 1X .125W F TC=0+=100 RESISTOR 511 1X .125W F TC=0+=100 RESISTOR 151 1X .125W F TC=0+=100 RESISTOR 511 1X .125W F TC=0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-1001-F C4-1/8-T0-511H-F C4-1/8-T0-51H-F C4-1/8-T0-51H-F
A1R6 A1R7 A1R8 A1R9 A1R10	0757-0280 0757-0280 0757-0199 0757-0438 0757-0441	3 3 3 8	7 53 5	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 21.5K 1% .125W F TC=0++100 RESISTOR 5.11K 1% .125W F TC=0++100 RESISTOR 8.25K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-2152-F C4-1/8-T0-5111-F C4-1/8-T0-8251-F
A1R11 A1R12 A1R13 A1R14 A1R15	0757=0280 2100=3672 0757±0280	3 4	1	NOT ASSIGNED RESISTOR 1% 1% 125% F TC=0+=100 RESISTOR=VAR DUAL 10%-10%-CP 500%-10%-CP NOT ASSIGNED RESISTOR 1% 1% 125% F TC=0+=100	24546 28480 24546	C4-1/8-T0-1001=F 2100-3672 C4-1/8-T0-1001=F
A1R16 A1R17 A1R18 A1R19 A1R20	2100-3745 2100-3674 0698-6624 0698-6625 0698-6360	2 6 5 6 6	1 1 14 8 37	RESISTOR-VAR CONTROL CCP 1K 10% LIN RESISTOR-VAR CONTROL CP 10K 10% LIN RESISTOR 2K 1% 125W F TC=0+-25 RESISTOR 6K 1% 125W F TC=0+-25 RESISTOR 10K 1% 125W F TC=0+-25	01121 28480 28480 28480 28480	**P4N0483102UZ 2100-3674 0698-6624 0698-6625 0698-6360
A1R21 A1R22 A1R23 A1R24 A1R24	0698-3194 0698-6629 0757-0440 2100-3192 0698-6631	8 0 7 3 4	1 3 17 2 7	RESISTOR 20K .25% .125W F TC=0+-50 RESISTOR 60K .1% .125W F TC=0+-25 RESISTOR 7.5% 1% .125W F TC=0+-100 RESISTOR-WAR PREC WW 10-TRN 5% 5% RESISTOR 2.5K .1% .125W F TC=0+-25	03888 28480 24546 28480 28480	PME55-1/8-T2-2002-C U698-6629 C4-1/8-T0-7501-F 2100-3192 0698-6631
A1R26 A1R27 A1R28 A1R28 A1R29 A1R30	0698-6358 0698-6627 0698-6360 2100-3807 0757-0442	2 8 6 7 9	7	RESISTOR 100K ,1% ,125W F TC=0+=25 RESISTOR 25K ,1% ,125W F TC=0+=25 RESISTOR 10K ,1% ,125W F TC=0+=25 RESISTOR-VAR CONTROL C 10K 10% 1 TRN RESISTOR 10K 1% ,125W F TC=0+=100	28480 28480 28480 28480 24546	0698-6358 0698-6627 0698-6360 2100-3807 C4-1/8-T0-1002-F
A1R31 A1R32 A1R33 A1R34 A1R35	0757-0458 0698-6360 2100-3807 0757-0458 0757-0442	7 6 7 7 9	15	RESISTOR 51.1K 1% .125W F TC=0+=100 RESISTOR 10K .1% .125W F TC=0+=25 RESISTOR-VAR CONTROL C 10K 10% 1 TRN RESISTOR 51.1K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100	24546 28480 28480 24546 24546	C4=1/8-T0=5112-F 0698-6360 2100-3807 C4=1/8-T0=5112-F C4-1/8-T0=1002-F
A1R36 A1R37 A1R38 A1R39 A1R40	2100-3807 0757-0458 0757-0442 0698-6631 0698-6358	7 7 0 4 2		RESISTOR-VAR CONTROL C 10K 10% 1 TRN RESISTOR 51.1K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 2.5K .1% .125W F TC=0+=25 RESISTOR 100K .1% .125W F TC=0+=25	28480 24546 24546 28480 28480	2100+3807 C4-1/8-T0-5112=F C4-1/8-T0-1002=F 0698-6358
A1R41 A1R42	0698-6627 0698-6360	8		RESISTOR 25K .1% .125W F TC#0++25 RESISTOR 10K .1% .125W F TC#0++25	28480 28480	0698-6627 0698-6360
A1R43 A1R44	0698-6624 0698-7339	5	1	RESISTOR 2K .1% .125W F TC=0+=25 RESISTOR 72K .25% .125W F TC=0+=50	28480 19701	0698-6624 MF4C1/8-T2-7202-C
A1R45 A1R46 A1R47 A1R48 A1R49	0698-8167 0698-6322 2100-3807 0757-0458	5 0 7 7	1 2	RESISTOR 18K .1% .125W F TC=0+-25 RESISTOR 4K .1% .125W F TC=0+-25 RESISTOR-VAR CONTROL C 10K 10% 1 TRN RESISTOR 11.1K 1% .125W F TC=0+-100 NOT ASSIGNED	19701 28480 28480 24546	MF4C1/8-T9-1802-8 0698-6322 2100-3807 C4-1/8-T0-5112-F
A1R50 A1R51 A1R52 A1R53 A1R54 A1R54	0698-6360 2100-3192 2100-3807 2100-3807	6 3 7 7		RESISTOR 10K .1% .125W F TC=0+-25 RESISTOR=VAR PREC HM 10=TRN 5% 5% RESISTOR=VAR CONTROL C 10K 10% 1 TRN RESISTOR=VAR CONTROL C 10K 10% 1 TRN NOT ASSIGNED NOT ASSIGNED	28480 28480 28480 28480	0698-6360 2100-3192 2100-3807 2100-3807
A1R56 A1R57 A1R58 A1R59 A1R60	0699-0154 2100-3807 2100-3744 2100-3744	6 7 1	1	RESISTOR 7,2K ,1% ,1250 F TC=0+-25 RESISTOR-VAR CONTROL C 10K 10% 1TRN NOT ASSIGNED RESISTOR-VAR CONTROLCCP 10K 10% LIN RESISTOR-VAR CONTROLCCP 10K 10% LIN	28480 28480 28480 28480	0699-0154 2100-3807 2100-3744 2100-3744

See introduction to this section for ordering information *Indicates factory selected value

6-5

Replaceable Parts Model 8754A

Table 6-3. Replaceable Parts

Г	Deference LIP Port o											
,	Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number					
	A1R61 A1R62 A1R63 A1R63 A1R65 A186 A181 A182 A183 A184 A185	0757-0438 0757-0280 0757-0280 0757-0280 0757-0317 0757-0442 3101-2124 3101-2124 3101-2136 3100-3451 3101-2124 3101-2124	3337922682	3 7 2 1	NOT ASSIGNED FESTSTOP 5.11K 1X .125W F TC=0+-100 RESISTOP 1K 1X .125W F TC=0+-100 RESISTOR 1K 1X .125W F TC=0+-100 RESISTOR 1.33K 1X .125W F TC=0+-100 RESISTOR 1.33K 1X .125W F TC=0+-100 SWITCH+PB DPDT ALTNG .25A 115VAC SWITCH+PB JSTATION 10WM C-C SPACING SWITCH+PB 3-STATION 10WM C-C SPACING SWITCH-PB 3-STATION 10WM C-C SPACING SWITCH-PB 1-5TATION 10WM C-C SPACING SWITCH-PB 1-5TATION 10WM C-C SPACING SWITCH-PB 1-5TATION 10WM C-C SPACING SWITCH-PB DPDT ALTNG .25A 115VAC SWITCH-PB DPDT ALTNG .25A 115VAC	24546 24546 24546 24546 28480 28480 28480 28480 28480 28480 28480	C4-1/8-T0-5]11-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-1053-F 0757-0442 3101-2124 3101-2124 3101-2124 3101-2124 3101-2124					
	A187 A188 A189 A1810	3101-2124 3101-2187 3101-2186 3101-2185	2 7 6 5	1 5	SWITCH-PB OPDT ALTNG .254 115VAC SWITCH-PB 2-STATION 10MM C-C SPACING SWITCH-PB 3-STATION 10MM C-C SPACING SWITCH-PB 4-STATION 10MM C-C SPACING	28480 28480 28480 28480	3101=2124 3101=2187 3101=2186 3101=2185					
	A1811 A1812 A1813 A1814 A1815	3101-2124 3101-2185 3101-2189 3101-2185 3101-2185	5 9 5	i	SHITCH-P8 DPDT ALTNG ,254 115VAC SHITCH-P8 4-STATION 10MM C-C SPACING SHITCH-P8 4-STATION 10MM C-C SPACING SHITCH-P8 4-STATION 10MM C-C SPACING SWITCH-PB 4-STATION 10MM C-C SPACING	28480 28480 28480 28480 28480	3101-2124 3101-2185 3101-2189 3101-2185 3101-2185					
	A1316 A1317	3101-2185 3101-2124	5		SWITCH-PB 4-STATION 10MM C-C SPACING SWITCH-PB OPDT ALTNG ,254 115VAC	28480 28480	3101=2185 3101=2124					
	A1VR1 A1XDS1	1902-0041 1200-0010	9	9	DIODE-ZNR 5,11V 5% DD-7 PD#,4W TC#-,009% SOCKET 2-CONT AI MISCELLANEOUS PARTS	28480 28480	1902-0041 1200-0010					
		0610-0001 1251-0688 1251-4834 2190-0014 2190-0069 3050-0381 3120-2525 08754-60034	4 4 1 2 4 2 1 2 1		NUT-HEX-DBL-CHAM 2-56 THD .062-IN-THK CONN CONTACT F CONN RGP 6 F2R WSHR LK .089 ID WSHR LK .256 ID WSHR FL .094 ID WSHR FL CLR PLASTIC .266 ID CBL ASSY RBN 50C HARNESS PROBE POWER	28480 28480 28480 28480 28480 28480 28480 28480 28480	0610-0001 1251-0688 1251-4834 2190-0014 2190-0067 3050-0098 3050-0381 8120-2525 08754-60053					
l		L	Ш			l						

1

Table 6-3. Replaceable Parts

Reference	HP Part	С	04.	Page 6-3. Replaceable Parts	Mfr	MG David November
Designation	Number	D	Qty	Description	Code	Mfr Part Number
A2C1 A2C3	08754-60002 0180-0291 0180-0197 0180-0197	1 3 5 8	1 29 61	ANALOG PROCESSOR ASSEMBLY (DOES NOT INCLUDE A251 AND A252) CAPACITOR-FXD 1UF10X 35VDC TA CAPACITOR-FXD 2.2UF10X 20VDC TA CAPACITOR-FXD 2.2UF10X 20VDC TA	28480 56289 56289 56289	08754+60002 1500105X9035A2 1500225X9020A2 1500225X9020A2
A2C4 A2C5 A2C6 A2C7 A2C8 A2C9 A2C9	0180-0197 0150-4084 0160-4084 0160-4084 0160-0945 0160-4084	80008	3	CAPACITOR=FXD 2,2UF+=10% 20VDC TA CAPACITOR=FXD .1UF +=20% 50VDC CER CAPACITOR=FXD .1UF +=20% 50VDC CER CAPACITOR=FXD 910PF +=5% 100VDC MICA CAPACITOR=FXD 910PF +=5% 100VDC MICA CAPACITOR=FXD 910PF +=2% 50VDC CER	56289 28480 28480 28480 28480 28480 28480	1500225x9020A2 0160-4084 0160-4084 0160-4084 0160-0945 0160-0945
A2C11 A2C12 A2C13 A2C14	0160-4084 0160-0197 0160-3456 0160-0168 0180-2207	8 6 1 5	23 1 1	CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD 1000PF +-10% 1KVDC CER CAPACITOR-FXD .1UF +-10% 200VDC POLYE CAPACITOR-FXD 100UF+-10% 10VDC TA	28480 56289 28480 28480 56289	0160-4084 1500225x902042 0160-3456 0160-0168 1500107x901042
A2C16 A2C17 A2C18 A2C19	0160-4084 0160-3456 0160-0573 0160-0573	8 6 2 2	5	CAPACITOR=FXD .1UF +-20% 50VDC CER CAPACITOR=FXD 1000PF ++10% 16VDC CER CAPACITOR=FXD 4700PF ++20% 100VDC CER CAPACITOR=FXD 4700PF ++20% 100VDC CER	28480 28480 28480 28480	0160-4084 0160-3456 0160-0573 0160-0573
AZCR1 AZCRZ AZCR3 AZCR4 AZCR5	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050	3 3 3		DIDDE-SWITCHING 80V 200MA 2NS DO-35 DIDDE-SWITCHING 80V 200MA 2NS DO-35 DIDDE-SWITCHING 80V 200MA 2NS DO-35 DIDDE-SWITCHING 80V 200MA 2NS DO-35 DIDDE-SWITCHING 80V 200MA 2NS DO-35	28480 28480 28480 28480	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050
42J1 5USA 2USA	1251-4737 1251-4737 1200-0508	5 5	1	CONNECTOR 50-PIN M RECTANGULAR CONNECTOR 50-PIN M RECTANGULAR SOCKET-IC 14-CONT DIP-SLDR	28480 28480 28480	1251-4737 1251-4737 1200-0508
A2U1	9100-1644	3	5	COIL-MLD 330UH 5% 0=65 .190%,444G-NDM	28480	9100-1644
A202 A203 A204	1853-0281 1854-0477 1853-0322	979	20 8 8	TRANSISTOR NPN 31 TO-18 PD=360MW TRANSISTOR PNP 2N2907A SI TO-18 PD=400MW TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW TRANSISTOR PNP 2N2946A SI TO-46 PD=400MW	28480 04713 07263 01295	1854-0404 2N222A 2N2324
A2R1 A2R2 A2R3 A2R4 A2R5	0698-6624 0698-6360 0698-6360 0698-6625 0698-3151	5 6 6 6 7	6	RESISTOR 2K ,1% ,125W F TC=0+-25 RESISTOR 10K .1% ,125W F TC=0+-25 RESISTOR 10K .1% ,125W F TC=0+-25 RESISTOR 6K ,1% ,125W F TC=0+-25 RESISTOR 2,87K 1% ,125W F TC=0+-100	28480 28480 28480 28480 24546	0698-6624 0698-6360 0698-6360 0698-6625 C4-1/8-T0-2871-F
AZR6 AZR7 AZR8	2100-3154 0757-0419 0757-0280	7 0 3	4 5	RESISTOR=TRMR 1K 10% C SIDE=ADJ 17-TRN RESISTOR 681 1% ,125% F TC=0+=100 RESISTOR 1K 1% ,125% F TC=0+=100	02111 24546 24546	43P102 C4-1/8-T0-681R-F C4-1/8-T0-1001-F
A2R9 A2R10	0757=0438 0698=3633	0	1	RESISTOR 5.11K 1% .125W F TC=0+=100 RESISTOR 390 5% 2W MO TC=0+=200	24546 28480	C4-1/8-T0-5111-F 0698-3633

Replaceable Parts Model 8754A

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
AZR11	0698-3154	0	4	RESISTOR 4,22K 1% .125W F TC=0++100	24546	C4-1/8-T0-4221-F
42R12 42R13	0757-0401	0	55 14	RESISTOR 100 1% 125W F TC=0+=100	24546	C4-1/8-T0-101-F C4-1/8-T0-5181-F
AZR14	0757-0394 0757-0280	3	, 4	RESISTOR 51.1 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100	24546	C4-1/8-10-1001-F
AZRIS	0757-0280	3		RESISTOR 1% 1% .125W F TC=0+=100	24546	C4-1/8-T0-1001-F
12R16	0757-0280	3		RESISTOR 1K 1% 125W F TC=0+=100	24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1001-F
12R17 12R18	0757=0280 0757=0439	3 4	9	RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 6.81K 1% .125W F TC=0+=100	24546	C4=1/8=10=1001=F
12R19	2100-3095	5	10	RESISTOR+TRMR 200 10% C SIDE-ADJ 17-TRN	28480	2100-3095
AZRZO	0698-3442	9		RESISTOR 237 1% .125W F TG0+-100	28480	0698-3442
AZRZI	0757-0419	0		RESISTOR 681 1% .125W F TC=0+-100	24546	C4=1/8=T0=6819=F
12822 12823	0698-6624	5		RESISTOR 2K .1% .125W F TC=0+=25 RESISTOR 2K .1% .125W F TC=0+=25	28480 28480	0698=6624 0698=6624
12R24	0757-0280	3		RESISTOR 1K 1% .125W F TC=0+-100	24546	C4-1/8-T0-1001-F
LZR25	0757-0401	0		RESISTOR 100 1% ,125W F TC=0+=100	24546	C4-1/8-T0-101-F
12R26 12R27	0757-1000 0757-0280	7	1	RESISTOR 51.1 1% .5W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100	28480 24546	0757-1000 C4-1/8-T0-1001-F
12R28	0757-0399	5	1	RESISTOR 82.5 1% .125W F TC#0+=100	24546	C4-1/8-T0-82R5-F
12R29	0698-3219	8	6	RESISTOR 300K .25% .125W F TC=0+-50	28480	0698-3219
12R30	0698-3219	8		PESISTOR 300K .25% .125W F TC#0+=50	28480	0698-3219
A2R31 A2R32	0698-6625 0698-3219	6		RESISTOR 6K .1% .125W F TC=0++25	28480 28480	0698-6625 0698-3219
12R33	0698-3234	7	2	RESISTOR 300K .25% .125W F TC=0+=50 RESISTOR 150K .25% .125W F TC=0+=50	28480	0698-3234
12R30	0699-0272	9	5	RESISTOR 75k .1% .125w F TC=0+=25 RESISTOR 60K .1% .125w F TC=0+=25	28480	0699-0272
12R35	0698-6629	0			28480	0698-6629
12R36	0699-0279	6	5	RESISTOR 30K _05% .1W F TC#0++15	28480 28480	0699-0279
12R37 12R38	0699-0278 0698-6614	5 3	2 3	RESISTOR 15K .05% .1W F TC=0+=15 RESISTOR 7.5K .1% .125w F TC=0+=25	28480	0699-0278 0698-6614
12R39 12R40	0699-0276 0699-0276	3	4	RESISTOR 7,5K ,1X ,125W F TC=0+=25 RESISTOR 2,5K ,02% ,1W F TC=0+=15 RESISTOR 2,5K ,02% ,1W F TC=0+=15	28480 28480	0699-0276 0699-0276
		3				
A2R41 A2R42	0757-0280 0699-0277	3		RESISTOR 1K 1% _125W F TC≈0+=100 RESISTOR 10K .02% .1W F TC=0+=15	24546 28480	C4=1/8=70=1001=F 0699=0277
42R43	0757=0438	3		RESISTOR 5,11K 1% ,125W F TC=0++100	24546	C4-1/8-T0-5111-F
A2R40 A2R49	0699-0277 0698-3243	4	1	RESISTOR 10K .02% .1W F TC=0+=15 RESISTOR 178K 1% .125W F TC=0+=100	28480 24546	0699-0277 C4-1/8-10-1783- F
					1	
A2R46 A2R47	0698-5437 0757-0280	6	5	RESISTOR 12K .1% .125W F TC=0+=50 RESISTOR 1K 1% .125W F TC=0+=100	28480	0698=5437 C4=1/8=T0=1001=F
A2R48	0757-0442	9		RESISTOR 10K 1% .125W F TC=0+=100	24546	C4-1/8-T0-1002-F
A2R49 A2R50	0757-0442 0699-0276	3		RESISTOR 10K 1% 125W F TC=0+-100 RESISTOR 2.5K .02% .1W F TC=0+-15	24546 28480	C4-1/8-T0-1002-F 0699-0276
A2R51 A2R52	0699-0276 0698-6360	3 6		RESISTOR 2.5K .02% .1W F TC=0+=15 RESISTOR 10K .1% .125W F TC=0+=25	28480 28480	0699-0276 0698-6360
A2R53	0698-6360	6		RESISTOR 10K .1% .125W F TC=0+-25	28480	0698=6360
A2R54 A2R55	0757-0438 0698-6360	3 6		RESISTOR 5,11K 1% ,125W F TC=0+=100 RESISTOR 10K ,1% ,125W F TC=0+=25	24546 28480	C4-1/8-T0-5111-F 0698-6360
A2R56	0698-6360			RESISTOR 10K .1% .125W F TC=0+=25	28480	0698-6360
A2R57	0757+0279	0	38	RESISTOR 3.16K 1% .125W F TC=0+=100	24546	C4-1/8-T0-3161-F
AZRSB AZRSB	0757-0280 0757-0442	3 9		RESISTOR 1K 1% .125W F TC=0+=100	24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1002-F
42R60	0698-3151	;		RESISTOR 10K 1X .125W F TC=0+-100 RESISTOR 2.87K 1X .125W F TC=0+-100	24546	C4-1/8-T0-2871-F
AZR61	0757-0442	,		RESISTOR LOK 1% .125W F TC=0+=100	24546	C4-1/8+T0-1002-F
AZR6Z	0757-0440	7		RESISTOR 7.5K 1% .125W F TC=0+-100	24546	C4-1/6-T0-7501-F
A2R63 A2R64	0757-0442 0757-0442	9		RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100	24546 24546	C4=1/8=T0=1002=F C4=1/8=T0=1002=F
12R65	0757-0442	;		RESISTOR 10K 1% .125W F TC=0+=100	24546	C4-1/8-T0-1002-F
A2R66	0757-0459	8	3	RESISTOR 56.2K 1% .125W F TC=0+-100	24546	C4-1/8-T0-5622-F
42R67	0698-6360	6		RESISTOR 10K .1% .125W F TC=0++25	28480	0698-6360
12R68 12R69	0698-6360 0757-0459	8		RESISTOR 10K .1% .125W F TC=0+=25 RESISTOR 56.2K 1% .125W F TC=0+=100	28480 24546	0698-6360 C4-1/8-10-5622-F
12R70	0698=6360	6		RESISTOR 10K .1% .125W F TC=0+=25	28480	0698=6360
12R71	0698-3219	8		RESISTOR 300K .25% .125W F TC=0+-50	28480	0698-3219
12R72 12R73	0698-3219 0698-6625	8		RESISTOR 300K ,25% ,125W F TC=0+=50 RESISTOR 6K ,1% ,125W F TC=0+=25	28480 28480	0698-5219 0698-6625
12R74	0698-3219	8		RESISTOR 300K .25% .125W F TC=0+-50	28480	0698-3219
12R75	0698-3234	7		RESISTOR 150K .25% .125W F TC=0+=50	28480	0698-3234
2R76	0699-0272	9		RESISTOR 75K .1% .125W F TC=0+=25	28480	0699-0272
12R77 12R78	0698-6629 0699-0279	6		RESISTOR 60K .1% .125W F TC=0+=25 RESISTOR 30K .05% .1W F TC=0+=15	28480 28480	0698-6629 0699-0279
12R79	0699-0278	5		RESISTOR 30K .05% .1W F TC=0+=15 RESISTOR 15K .05% .1W F TC=0+=15	28480	0699-0278
12R80	0698-6614	3		RESISTOR 7.5K .1% .125W F TC=0+=25	28480	0698=6614
42R81	0757-0280	3	,	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K .01% .1W F TC=0+-15	24546	C4-1/8-T0-1001-F 0699-0275
A2R82 A2R83	0699-0275 0699-0275	2 2	2	RESISTOR 1K .01% .1W F TC=0+-15	28480 28480	0699-0275
A2R84	0757-0440	7		RESISTOR 7.5K 1% .125W F TC=0+-100	24546	C4-1/8-T0-7501+F
12R85	0698-6360	6		RESISTOR 10K .1% .125W F TC=0+=25	28480	0698-6360
	I	1	l		1	

Table 6-3. Replaceable Parts

1

				Table 0-3. Replaceable Parts		
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A2R86 A2R87 A2R88 A2R88 A2R89 A2R90	0698-3460 0757-0438 0698-6614 0698-5437 0757-0447	1 3 3 6 4	2	RESISTOR 422K 1% ,125W F TC=0+-100 RESISTOR 5,11K 1% ,125W F TC=0+-100 RESISTOR 7,5K ,1% ,125W F TC=0+-25 RESISTOR 12K ,1% ,125W F TC=0+-50 RESISTOR 16,2K 1% ,125W F TC=0+-100	28480 28480 28480 28480	0598-3450 C4-1/8-70-5111-F 0598-6614 0698-3437 C4-1/8-70-1622-F
A 2R 9 1 A 2R 9 2 A 2R 9 3 A 2R 9 4 A 2R 9 5	0757-0447 0757-0442 0698-3150 0757-0280 0757+0442	4 9 6 3 9	5	RESISTOR 16.2K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 2.37K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100	24546 24546 24546 24546 24546	C4=1/8=70=1022=F C4=1/8=70=1002=F C4=1/8=70=2371=F C4=1/8=70=1001=F C4=1/8=70=1002=F
A2R96 A2R97 A2R98 A2B990	0757-0280 0698-3151 0698-3150 0757-0240	3 7 6 30		RESISTOR 1K 1% 125W F TC=0+=100 RESISTOR 2.87K 1% .125W F TC=0+=100 RESISTOR 2.37K 1% .125W F TC=0+=100 BESISTOB 16K1%x-1758WFFTGE0+=100	24546 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-2871-F C4-1/8-T0-2371-F E4-1/8-18-1882-F
A2R101 A2R102 A2R103 A2R104 A2R104	0757-0280 0698-6360 0757-0470 0757-0458 0698-3162	3 6 3 7 0	3	RESISTOR 1K 1X .125W F TC=0+=100 RESISTOR 10K .1X .125W F TC=0+=25 RESISTOR 102K 1X .125W F TC=0+=100 RESISTOR 51.1K 1X .125W F TC=0+=100 RESISTOR 46.4K 1X .125W F TC=0+=100	24546 28480 24546 24546 24546	C4-1/8-T0-1001-F 0098-6350 C4-1/8-T0-1623-F C4-1/8-T0-5112-F C4-1/8-T0-4042-F
A2R106 A2R107 A2R108 A2R108 A2R110	0698-3442 0698-3457 0757-0199 0698-0084 0757-0416	9 6 3 9 7	3 3 13	RESISTOR 237 1% ,125W F TC#0+=100 RESISTOR 316K 1% ,125W F TC#0+=100 RESISTOR 21,5K 1% ,125W F TC#0+=100 RESISTOR 2,15K 1% ,125W F TC#0+=100 RESISTOR 511 1% ,125W F TC#0+=100	24546 28480 24546 24546 24546	Cu=1/8=T0=237R=F 0698=3457 Cu=1/8=T0=2152=F Cu=1/8=T0=2151=F Cu=1/8=T0=511R=F
A2R111 A2R112 A2R113 A2R114 A2R114	0757-0442 0757-0442 0757-0458 0757-0458 0698-3260	9 7 7 9	8	RESISTOR 10K 1% ,125W F TC=0+=100 RESISTOR 10K 1% ,125W F TC=0+=100 RESISTOR 51,1K 1% ,125W F TC=0+=100 RESISTOR 51,1K 1% ,125W F TC=0+=100 RESISTOR 464K 1% ,125W F TC=0+=100	24546 24546 24546 24546 28480	C4=1/8=70=1002=F C4=1/8=70=1002=F C4=1/8=70=5112=F C4=1/8=70=5112=F 0698=3260
A2R116 A2R117 A2R118 A2R119 A2R120	0698-3151 0698-3160 2100-3274 2100-3095 0698-3452	7 8 2 5		RESISTOR 2,87K 1% ,125W F TC=0+-100 RESISTOR 31,6K 1% ,125W F TC=0+-100 RESISTOR=TRMR 10K 10% C SIDE-ADJ 1-TRN RESISTOR=TRMR 200 10% C SIDE-ADJ 17-TRN RESISTOR 147K 1% ,125W F TC=0+-100	24546 24546 28480 02111 24546	C4=1/8=T0=2871=F C4=1/8=T0=3162=F 2100=3274 43P201 C4=1/8=T0=1475=F
A2R121 A2R122 A2R123 A2R124 A2R125	0757-0428 0698-3444 0698-3444 0698-3444 0757-0280	1 1 1 3	5	RESISTOR 1.62K 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	24546 24546 24546 24546	C4-1/8-T0-1621-F C4-1/8-T0-3168-F C4-1/8-T0-3168-F C4-1/8-T0-3168-F C4-1/8-T0-1001-F
A2R126 A2R127 A2R128 A2R129 A2R130 A2R131 A281 A282	0757-0440 0698-8824 2100-3164 2100-3355 0683-1065 0757-0442 3100-3452	7 1 9 0 7 9 9	2	RESISTOR 7.5K 1% .125W F TC=0+-100 RESISTOR 562K 1% .125W F TC=0+-100 RESISTOR-TRWR 10 20% C SIDE=ADJ 17-TRN RESISTOR 100K 10% C SIDE ADJ 1-TRN RESISTOR 100K 30 .25W FC TC=-9001+1100 RESISTOR 10K 1% .125W F TC=0+-100 SWITCH-THUMBWHEEL MOD, LEVER ACTIVATED SWITCH-THUMBWHEEL MOD, LEVER ACTIVATED	24546 28480 02111 28480 28480 24546 28480 28480	C4-1/8-T0-7501-F 0098-8820 43P100 3100-3555 3100-1065 C4-1/8-T0-1002-F 3100-3452 3100-3452
A2TP1- A2TP18 A2U1 A2U2 A2U3 A2U3 A2U4 A2U5	0360-0535 1826-0431 1858-0047 1820-1413 1810-0346 1820-1545	0 4 5 2 7	1 1 1	TERMINAL TEST POINT PCB IC CONV TRANSISTOR ARRAY DA-PIN IC DCDR CMOS BCD-TO-7-SEG 4-TO-7-LINE NETWORK-RES 16-PIN-DIP 1-PIN-SPCG IC MURR/OATA-SE C CMOS TPL	00000 04713 13606 04713 28480 01928	ORDER BY DESCRIPTION MC144314 ULN-2003A MC145118CP 1810-0346 CD4053BY
A2U6 A2U7 A2U8 A2U9 A2U10	1826=0304 1826=0304 1826=0092 1826=0092 1826=0092	0 0 3 3 3	23	IC OP AMP TO-99	27014 27014 28480 28480 28480	LF355H LF355H 1826-0092 1826-0092 1826-0092
A2U11 A2U12 A2U13 A2U14 A2U15	1826-0420 1826-0261 1826-0261 1826-0092 1826-1201	1 8 8 3 6	10	IC 741 OP AMP TO-99 IC OP AMP TO-99	28480 28480 28480 28480 01295	1826=0092 1826=0261 1826=0261 1826=0092 9N74LS08N
A2U16 A2U17 A2U18 A2U19 A2U20	1826-0092 1820-1208 1820-1545 1820-1197 1826-0092	3 3 1 9	3	IC OP AMP TO-99 IC GATE TIL LS OR GUAD 2-INP IC MUXR/DATA-SEL CMOS TPL IC GATE TIL LS NAND GUAD 2-INP IC OP AMP TO-99	28480 01295 01928 01295 28480	1826=0092 SN74LS32N CD40538Y SN74LS00N 1826=0092
A2U21 A2U22 A2VR1 A2VR2	1826-0261 1326-0261 1902-0692 1902-0041	8	2	IC 741 OP AMP TO-99 (RECOMMENDED REPLACEMENT) IC 741 OP AMP TO-99 (RECOMMENDED REPLACEMENT) DIODE-ZNR 6.3V 1% DO-7 PD=.4W TC=+.001% DIODE-ZNR 5.1V 5% DO-7 PD=.4W TC=009%	28480 28480 28480 28480	1826-0261 1826-0261 1902-0692 1902-0041
				AZ MISCELLANEOUS PARTS		

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
	1251-3172 0380-1069	7	45 7	CONNECTOR-SGL CONT SKT .03-IN-BSC-SZ RND SPACER-RYT-ON .875-IN-LG .152-IN-ID	28480 00000	1251-3172 ORDER BY DESCRIPTION
A3	5086-7233	2	1	SAMPLER	28480	5086-7233
A3C1 A3C2 A3C3 A3C4 A3C5	0160-3879 0160-0174 0180-0291 0160-0174 0180-0291	7 9 3 9 3	8	CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD .47UF +80=20% 25VDC CER CAPACITOR=FXD 1UF+=10% 35VDC TA CAPACITOR=FXD .47UF +80=20% 25VDC CER CAPACITOR=FXD 1UF+=10% 35VDC TA	28480 28480 56289 28480 56289	0160-3879 0160-0174 1500105x9035A2 0160-0174 1500105x9035A2
A3C6 A3C7 A3C8 A3C9 A3C10	0100-4084 0100-0174 0100-3879 0100-3879 0180-0291	8 9 7 7 3		CAPACITOR=FXD .1UF +=20% 50VDC CER CAPACITOR=FXD .4TUF +80=20% 25VDC CER CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD 1UF+=10% 35VDC TA	28480 28480 28480 28480	0160-4084 0160-0174 0160-3879 0160-3879 1500105x9035A2
A3C11	0160-3875	3	1	CAPACITOR=FXD 22PF +=5% 200VDC CER 0+=30	28480	0160+3875
A3J2	1250-1001 1250-1553	2	1 1	CONNECTOR-RF SMA FEM 2-HOLE-FLG-FR Connector-RF SMB M 2-HOLE-FLG-FR 50-0HM	28480 28480	1250=1001 1250=1553
A3L1 A3L2 A3L3 A3L4 A3L5	9100-2247 9100-2247 9100-2247 9100-2247 9100-2247	2222	5	COIL-MLO 100NM 10% Q=34 ,0950%,25LG=NOM COIL-MLD 100NM 10% Q=34 ,0950%,25LG=NOM	28480 28480 28480 28480 28480	9100-2247 9100-2247 9100-2247 9100-2247 9100-2247
A3Q1 A3Q3 A3Q4 A3Q5	1854-0477 1855-0260 1853-0034 1853-0034 1854-0477	7 8 0 0 7	1 11	TRANSISTOR NPN 2N2222A SI TO=18 PD=500MW TRANSISTOR-MOSFET DUAL N=CMAN E=MODE SI TRANSISTOR PNP SI TO=18 PD=360MW TRANSISTOR PNP SI TO=18 PD=360MW TRANSISTOR NPN 2N2222A SI TO=18 PD=500MW	07263 28480 28480 28480 07263	2N2222A 1855-0260 1855-0034 1855-0034 2N2222A
A3R1 A3R2 A3R3 A3R4 A3R5	0757-0290 0757-0444 0757-0280 0698-3440 0698-3444	5 1 3 7 1	5 4 17	RESISTOR 6.19K 1X .125W F TC=0+=100 RESISTOR 12.1K 1X .125W F TC=0+=100 RESISTOR 1K 1X .125W F TC=0+=100 RESISTOR 196 1X .125W F TC=0+=100 RESISTOR 316 1X .125W F TC=0+=100	19701 24546 24546 24546 24546	MF4C1/8=T0=6191=F C4=1/8=T0=1212=F C4=1/8=T0=1001=F C4=1/8=T0=196R=F C4=1/8=T0=316R=F
A3R6 A3R7 A3R8 A3R9 A3R10	0698-3444 0757-0420 0698-3444 0698-3444 0757-0401	1 3 1 1 0	5	RESISTOR 316 1% ,125W F TC=0+-100 RESISTOR 750 1% ,125W F TC=0+-100 RESISTOR 316 1% ,125W F TC=0+-100 RESISTOR 316 1% ,125W F TC=0+-100 RESISTOR 100 1% ,125W F TC=0+-100	24546 24546 24546 24546	C4-1/8-T0-3168-F C4-1/8-T0-751-F C4-1/8-T0-3168-F C4-1/8-T0-3168-F C4-1/8-T0-101-F
A3R11 A3R12 A3R13 A3R14 A3R15	2100-3095 0698-0083 0698-0083 0698-0083 0757-0316	5 8 8 6	30 5	RESISTOR-TRMR 200 10% C SIDE-ADJ 17-TRN RESISTOR 1,96% 1% ,125% F TC=0+-100 RESISTOR 1,96% 1% ,125% F TC=0+-100 RESISTOR 1,96% 1% ,125% F TC=0+-100 RESISTOR 42.2 1% ,125% F TC=0+-100	02111 24546 24546 24546 24546	43P201 C4=1/8=TU=1961=F C4=1/8=TO=1961=F C4=1/8=TO=1961=F C4=1/8=TO=42R2=F
A3R16 A3R17 A3R16 A3R19 A3R20	2100-3123 0698-3440 0698-3444 0757-0279 0757-0316	0 7 1 0 6		RESISTOR-TRMR 500 10% C SIDE-ADJ 17-TRN RESISTOR 196 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 3.16% 1% .125W F TC=0+-100 RESISTOR 42.2 1% .125W F TC=0+-100	02111 24546 24546 24546 24546	43P501 C#=1/8=T0=196R=F C#=1/8=T0=316H=F C#=1/8=T0=3161=F C#=1/8=T0=42R2=F
A3R21 A3R22 A3R23 A3R24 A3R25	0698-8172 0757-0418 2100-3123 0757-0420 0698-6624	9 0 3 5	2	RESISTOR 4K .25% .125W F TC=0+-50 RESISTOR 619 1% .125W F TC=0+-100 RESISTOR-TRMR 500 10% C SIDE-ADJ 17-TRN RESISTOR 750 1% .125W F TC=0+-100 RESISTOR 2K 1% .125W F TC=0+-100	19701 24546 02111 24546 28480	MF4C1/8-T2-4001-C C4-1/8-T0-619R-F 43P501 C4-1/8-T0-751-F 0698-6624
43R26 43R27	0757-0401 0683-2265	0	,	RESISTOR 100 1% .125W F TC=0+=100 RESISTOR 22M 5% .25W FC TC==900/+1200	24546 01121	C4-1/8-T0-101-F CB2265
A3U1				SAMPLER, NOT SEPARATELY REPLACEABLE A3 MISCELLANEOUS PARTS		
	5021=0956 0520=0127 2200=0103	9 9	1 3 7	COVER, SAMPLER SCREW-MACH 2-56 .188-IN-LG PAN-MD-POZI SCREW-MACH 4-40 .25-IN-LG PAN-MD-POZI	28480 00000 00000	5021-0956 ORDER BY DESCRIPTION ORDER BY DESCRIPTION
A 4				SAMPLER, SAME AS A3, USE PREFIX A4		
A5				SAMPLER, SAME AS A3, USE PREFIX AS		
A6	08754-60006	5	1	VTO AND IF SWITCH	28480	08754-6000b
A6C1 A6C2 A6C3 A6C4 A6C5	0160-4084 0160-2055 0160-2055 0160-4084 0160-2055	89989	65	CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .01UF +80-20X 100VDC CER CAPACITOR-FXD .01UF +80-20X 100VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .01UF +80-20X 100VDC CER	28480 28480 28480 28480	0160-4084 0160-2055 0160-2055 0160-4084 0160-2055

Model 8754A Replaceable Parts

Table 6-3. Replaceable Parts

ì

Reference	HP Part	C	Qty	Description	Mfr Code	Mfr Part Number
Designation A6C6 A6C7 A6C8 A6C9 A6C10	Number 0160-2055 0180-0291 0160-4084 0160-4084	9 3 8 8 9	1	CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 220FF +-20% 100VDC CER	28480 56289 28480 28480 28480	0100-2055 1500105x9035A2 0100-4084 0100-4084 0150-0570
A6C11 A6C12 A6C13 A6C14 A6C15	0100-3878 0100-3878 0160-3878 0140-0205 0160-3878	6 6 6 5 6	8	CAPACITOR-FXD 1000PF +-20% 1000DC CER CAPACITOR-FXD 1000PF +-20% 1000DC CER CAPACITOR-FXD 1000PF +-20% 1000DC CER CAPACITOR-FXD 62PF +-5% 3000DC MICA CAPACITOR-FXD 1000PF +-20% 1000DC CER	28480 28480 28480 72136 28480	0160=3878 0160=3878 0160=3878 CM154620JU300WVICR 0160=3878
A6C16 A6C17 A6C18 A6C19 A6C20#	0140=0221 0160=2204 0180=0291 0121=0059 0160=2306	5 0 3 7 3	1 2	CAPACITOR=FXD 220PF +=1% 300VDC MICA CAPACITOR=FXD 100PF +=5% 300VDC MICA CAPACITOR=FXD 10F+=10% 35VDC TA CAPACITOR=V TRMR=CER 2=8PF 350V PC=MTG CAPACITOR=FXD 27PF +=5% 300VDC MICA	72136 28480 56289 52763 28480	DM15F221F0300WV1C 0160-2204 1500105x9035A2 304324 2/8PF NPO 0160-2306
A6C23 A6C23 A6C23	0180-0197 0180-0197 0160-4084 0160-4084 0160-4084	8 8 8 8		CAPACITOR=FXD 2.2UF+=10% 20VDC TA CAPACITOR=FXD 2.2UF+=10% 20VDC TA CAPACITOR=FXD .1UF +=20% 50VDC CER CAPACITOR=FXD .1UF +=20% 50VDC CER CAPACITOR=FXD .1UF +=20% 50VDC CER	56289 56289 28480 28480 28480	150D225x9020A2 150D225x9020A2 0160-4084 0160-4084
A6C26 A6C27 A6C28 A6C20 A6C30	0160+4084 0180=0197 0160=4084 0160=4084 0180=0291	8 8 8 3		CAPACITOR=FXD _1UF +=20X 50VDC CER CAPACITOR=FXD 2.2UF+=10X 20VDC TA CAPACITOR=FXD _1UF +=20X 50VDC CER CAPACITOR=FXD _1UF +=20X 50VDC CER CAPACITOR=FXD _1UF+=10X 35VDC TA	28480 56289 28480 28480 56289	0160-4084 150D25x9020A2 0160-4084 0160-4084 150D105x9035A2
A6C31 A6C32 A6C34 A6C35	0160~3873 0160~3873 0160~3873 0160~3873 0180~0197	1 1 8 3	4	CAPACITOR=FXD 4.7PF +5PF 200VDC CER CAPACITOR=FXD 4.7PF +5PF 200VDC CER CAPACITOR=FXD 4.7PF +5PF 200VDC CER CAPACITOR=FXD 2.2UF++10X 20VDC TA CAPACITOR=FXD 1UF+=10X 35VDC TA	28480 28480 28480 56289 56289	0160-3873 0160-3873 1500225×902042 150D105×9035A2
A6C36 A6C37 A6C38 A6C39	0180-0197 0180-0197 0160-3878 0160-3878	8 6 6		CAPACITOR=FXD 2.2UF+-10X 20VDC TA CAPACITOR=FXD 2.2UF+-10X 20VDC TA CAPACITOR=FXD 1000PF ++20X 100VDC CER CAPACITOR=FXD 1000PF ++20X 100VDC CER	56289 56289 28480 28480	1500225×9020A2 1500225×9020A2 0160-3878 0160-3878
A6CR1 A6CR2 A6CR3 A6CR4 A6CR5	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050	3 3 3 3		DIODE-SWITCHING 80V 200MA 2NS DD-35 DIODE-SWITCHING 80V 200MA 2NS DD-35 DIODE-SWITCHING 80V 200MA 2NS DD-35 DIODE-SWITCHING 80V 200MA 2NS DD-35 DIODE-SWITCHING 80V 200MA 2NS DD-35	28480 28480 28480 28480	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050
A6CR6 A6CR7 A6CR8 A6CR9 A6CR10	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050	3 3 3		DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35	28480 28480 28480 28480 28480	1901=0050 1901=0050 1901=0050 1901=0050 1901=0050
A6CR11 A6CR12 A6CR13 A6CR14 A6CR15	1901-0050 1901-0050 1901-0050 1901-1068 1901-1068	3 3 5 5	10	DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SKITCHING 80V 200MA 2NS DO-35 DIODE-SCHOTTKY DIODE-SCHOTTKY	28480 28480 28480 28480 28480	1901-0050 1901-0050 1901-0050 1901-1068 1901-1068
A6CR16 A6CR17 A6CR18 A6CR19 A6CR20	1901-1068 1901-1068 1901-1068 1901-1068 1901-0827	5 5 5 2	1	DIODE-SCHOTTKY DIODE-SCHOTTKY DIODE-SCHOTTKY DIODE-SCHOTTKY DIODE-SCHOTTKY DIODE-STEP-RECOVERY SILICON	28480 28480 28480 28480 28480	1901-1068 1901-1068 1901-1068 1901-1068 1901-0827
A6J1 A6J2 A6J3 A6Ju	1250+1512 1250+1512 1250+1512 1250+1512	3 3 3	4	CONNECTOR-RF SMB M PC 50-0MM CONNECTOR-FF SMB M PC 50-0MM CONNECTOR-FF SMB M PC 50-0MM CONNECTOR-RF SMB M PC 50-0MM	28480 28480 28480 28480	1250-1512 1250-1512 1250-1512 1250-1512
A6L1 A6L2 A6L3 A6L4 A6L5	9100-2562 9100-2459 9140-0114 9100-2258 9100-2258	6 0 4 7 7	6 1 14 3	COIL-MLD 100UH 10% Q=50 ,156D%,375LG-NOM COIL-MLD 121UH 10% Q=60 ,156D%,375LG-NOM COIL-MLD 10UH 10% Q=55 ,155D%,375LG-NOM COIL-MLD 1,2UH 10% Q=32 ,005D%,25LG-NOM COIL-MLD 1,2UH 10% Q=32 ,005D%,25LG-NOM	28480 28480 28480 28480 28480	9100-2562 9100-2459 9140-0114 9100-2258 9100-2258
A6L6 A6L7 A6L8 A6L9 A6L10	9140=0114 9140=0114 9100=2562 9100=1618 9100=2258	4 6 1 7	1	COIL-MLD 10UH 10% G=55 .155D%,375LG=NOM COIL-MLD 10UH 10% G=55 .155D%,375LG=NOM COIL-MLD 10UH 10% Q=50 .156D%,375LG=NOM COIL-MLD 5,6UH 10% Q=35 .155D%,375LG=NOM COIL-MLD 1,2UH 10% Q=32 .095D%,25LG=NOM	28480 28480 28480 28480 28480	9140-0114 9140-0114 9100-2562 9100-1618 9100-2258
A601 A602 A603 A604 A605	1854-0477 1853-0034 1854-0477 1854-0498 1854-0498	7 0 7 7	u	TRANSISTOR NPN 2N2222A 3I T0-18 PD±500MW TRANSISTOR PNP 3I T0-18 PD±360MW TRANSISTOR NPN 2N2222A 3I T0-18 PD±500MW TRANSISTOR NPN SI T0-39 PD-1W 01921 61274 TRANSISTOR NPN SI T0-39 PD-1W 01921 61274		2N2222A 1853-0034 2N2222A 2N5109 2N5109
A6Q6 A6Q7 A6Q8	1854-0498 1854-0498 1853-0405	7 7 9	2	TRANSISTOR NPN SI TO-39 PD=10 01921 61274 TRANSISTOR NPN SI TO-39 PD=10 01921 61274 TRANSISTOR PNP 2N4209 81 TO-18 PD=300MW		2N5109 2N5109 1853-0405
A609 A6010	1854-0477 1853-0405	7 9		TRANSISTOR NPN 2N2222A SI TO=18 PD=500MW TRANSISTOR PNP 2N4209 SI TO=18 PD=300MW	07263 28480	2N22224 1853-0405

Replaceable Parts Model 8754A

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A6911	1854-0477	7		TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW	07263	5×5557
A6012 A6013	1853-0034 1853-0034	0		TRANSISTOR PNP SI TO-18 PD=360MW TRANSISTOR PNP SI TO-18 PD=360MW	28480 28480	1853-0034 1853-0034
A6Q14	1854-0295	7	5	TRANSISTOR-DUAL NPN PD=400MM	28480	1854-0295
A6Q15	1853-0451	5	16	TRANSISTOR PNP 2N3799 SI TO-18 PD=360MW	01295	2N3799
A6016	1853-0451	5		TRANSISTOR PNP 2N3799 SI TO=18 PD=360MW	01295	2/3799
A6R1	0757-0422	5	•	RESISTOR 909 1% _125W F TC=0+=100	24546	C4-1/8-T0-909K-F
AGRZ	0698-0083	8		RESISTOR 1.96K 1% .125W F TC=0+-100	24546	C4-1/8-T0-1961-F
A6R3 A6R4	0698-0083 0698-3155	. 8	14	RESISTOR 1.96K 1% .125W F TC=0+=100	24546 24546	C4-1/8-T0-1961-F
AGRS	0757-0421	1 4	18	RESISTOR 4.64K 1% ,125W F TC=0+-100 RESISTOR 825 1% ,125W F TC=0+-100	24546	C4-1/8-T0-4641+F C4-1/8-T0-625R+F
A6R6	0757-0422	5		RESISTOR 909 1% .125W F TC=0+=100	24546	C4-1/8-T0-909R-F
A6R7	0698-0083	8		RESISTOR 1.96K 1% .125W F TC=0+=100	24546	C4-1/8-T0-1961-F
A6R8 A6R9	0698-0083	8		RESISTOR 1.96K 1% .125W F TC=0+-100	24546	C4-1/8-T0-1961-F
AéR10	0698=3155 0757=0421	1 4		RESISTOR 4,64K 1% 125W F TC=0+=100 RESISTOR 825 1% 125W F TC=0+=100	24546 24546	C4-1/8-T0-4641-F C4-1/8-T0-825R-F
		1.1		•		
A6R11 A6R12	0698-3457 0698-3159	3	1	RESISTOR 316K 1% .125W F TC=0+=100 RESISTOR 26.1K 1% .125W F TC=0+=100	28480 24546	0698-3457 C4-1/8-10-2612-F
A6R13	0698-0083	8	•	RESISTOR 1.96K 1% .125W F TC=0+=100	24546	C4-1/8-T0-1961-F
A6R14 A6R15	0757=0280 0757=0280	3 3		RESISTOR 1K 1% .125W F TC=0+=100	24546	C4-1/8-T0-1001-F
				RESISTOR 1K 1% _125W F TC=0+=100	24546	C4-1/8-T0-1001-F
A6R16 A6R17	0698-0083	8		RESISTOR 1.96K 1% .125W F TC=0+=100	24546	C4-1/8-T0-1961-F
A6R18	0698-0083 0698-3447	8	4	RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 422 1% .125W F TC=0+-100	24546 24546	C4-1/8-T0-1961-F C4-1/8-T0-422R-F
A&R19	0698-3155	i	•	RESISTOR 4.64K 1% .125W F TC=0+-100	24546	C4-1/8-T0-4641-F
AéRZO	0698-3155	1		RESISTOR 4.64K 1% .125W F TC=0++100	24546	C4=1/8+T0=4641=F
A6R21	0698-6624	5		RESISTOR 2K _1% _125W F TC=0+=25	28480	0698-6624
A6R22	0698-6624	5		RESISTOR 2K .1% .125W F TC#0+=25	28480	0698-6624
A6R23 A6R24	0757-0416	7		RESISTOR 511 1% 125W F TC=0+=100	24546	C4-1/8-T0-511R-F
AGRES	0698-6362	8		RESISTOR 511 1% 125W F TC=0+-100 RESISTOR 1K .1% 125W F TC=0+-25 RESISTOR 1K .1% .125W F TC=0+-25	28480 28480	0698-6362 0698-6362
		1.1			1	
A6R26 A6R27	0757-0416 0757-0416	7		RESISTOR 511 1% _125W F TC=0+-100 RESISTOR 511 1% _125W F TC=0+-100	24546	C4-1/8-T0-511R-F C4-1/8-T0-511R-F
A6R28	0757-0428	i		RESISTOR 1.62K 1% .125W F TC=0+-100	24546	C4-1/8-T0-1621-F
AGRZ9	0698-3439	4	1	RESISTOR 178 1% _125W F TC=0+=100	24546	C4=1/8=T0=178R=F
A6R30	0757-0416	7		RESISTOR 511 1% .125W F TC=0+=100	24546	C4-1/8-T0-511R-F
A6R31	0757-0397	3	5	RESISTOR 68.1 1% .125W F TC=0+=100 RESISTOR 68.1 1% .125W F TC=0+=100	24546	C4-1/8-T0-68R1-F
A6R32 A6R33	0757+0397 0698+3440	3 7		RESISTOR 68.1 1% .125W F TC=0+=100	24546 24546	C4-1/8-T0-68R1-F C4-1/8-T0-196R-F
46R34	0698-3440	+		RESISTOR 196 1% ,125W F TC=0+=100 RESISTOR 196 1% ,125W F TC=0+=100	24546	C4-1/8-T0-196R-F
46R35	0698-3440	7		RESISTOR 196 1% 125W F TC=0+=100	24546	C4=1/8=T0=196R=F
A6R36	0698-3440	7		RESISTOR 196 1% _125W F TC=0++100	24546	C4-1/8-T0-196R-F
A6R37	0698-3155	1 1		RESISTOR 4.64K 1% .125W F TC=0+=100	24546	C4=1/6=T0=4641=F
A6R38 A6R39	0698-3155 0698-3154	1 0		RESISTOR 4.64K 1% .125W F TC=0+-100 RESISTOR 4.22K 1% .125W F TC=0+-100	24546 24546	C4-1/8-T0-4641-F C4-1/8-T0-4221-F
A6R40	0698-3444	i		RESISTOR 316 1% .125W F TC=0+=100	24546	C4-1/8-T0-316R-F
A6R41	0698-3444	1		RESISTOR 316 1% .125W F TC=0+=100	24546	C4-1/8-T0-316R-F
ASRAZ	0757-0421	4		RESISTOR 825 1% .125W F TC=0+=100	24546	C4-1/8-T0-825R-F
A6R43 A6R44	0757-0416 0698-3428	7 1	4	RESISTOR 511 1% .125W F TC=0+=100	24546	C4=1/8=T0=511R+F PME55=1/8=T0=14R7=F
A6R45	0698-3428	i	"	RESISTOR 14.7 1% .125W F TC=0+=100 RESISTOR 14.7 1% .125W F TC=0+=100	03888 03888	PME55-1/8-T0-14R7-F
A6R46	0698-3428	.			l 1	
A6R47	0698-3428	11		RESISTOR 14.7 1% .125W F TC=0+=100 RESISTOR 14.7 1% .125W F TC=0+=100	03888 03888	PME55=1/8=T0=14R7=F PME55=1/8=T0=14R7=F
A6R48	0757-0416	7		RESISTOR 511 1% _125W F TC=0+=100	24546	C4-1/8-T0-511R-F
AéR49 AéR50	0698-3440 0698-7236	7	10	RESISTOR 196 12 125W F TC=0+=100 RESISTOR 1K 1X .05W F TC=0+=100	24546 24546	C4-1/8-TQ-196R-F C3-1/8-TQ-1001-G
		1 1			l l	23-110-10-1001-0
A6R51 A6R52	0698-7236	7		RESISTOR 1K 1% .05W F TC=0+=100	24546	C3-1/8-T0-1001-G
A6R53	0698-7236 0757-0401			RESISTOR 1K 1% _05W F TC=0+=100 RESISTOR 100 1% _125W F TC=0+=100	24546 24546	C3-1/8-T0-1001-G C4-1/8-T0-101-F
A6R54	0698-3607	8	2	RESISTOR 18 5% 2W MO TC=0+=200	27167	FP42-2-T00-18R0-J
A6R55	0698-3607	6		RESISTOR 18 5% 2W MD TC=0+-200	27167	FP42=2=100=18R0=J
A6R56	0698-7236	2		RESISTOR 1K 1% .05W F TC=0+=100	24546	C3=1/8=70=1001=G
A6R57 A6R58	0698-7236	;		RESISTOR 1K 1% _05W F TC=0+=100	24546	C3-1/8-T0-1001-G
AGRSO	0698-7236 0757-0158	4	2	RESISTOR 1K 1K .05W F TC=0+-100 RESISTOR 619 1X .5W F TC=0+-100	24546 28480	C3=1/8=T0=1001=G 0757=0158
AéRég	0698-3433		ī	RESISTOR 28,7 1x .125W F TC=0+=100	03888	PME55-1/8-10-2887-F
A6T1	08754-80001	2	i	TRANSFORMER, PULSE	28480	08754-80001
A6TP1 A6TP2	0360-0535 0360-0535	8		TERMINAL TEST POINT PCB TERMINAL TEST POINT PCB	00000	ORDER BY DESCRIPTION ORDER BY DESCRIPTION
A6U1	1826-0138		•	IC 339 COMPARATOR 14-DIP-P	04713	MLM339P
AéUž	1820-1308	4	9	IC ROVR ECL LINE ROVR TPL 2-INP	04713	MC10116L
A6U3	1810-0204	6	12	NETWORK-RES 8-PIN-SIP .1-PIN-8PCG	11236	750=81=R1K
1						

Table 6-3. Replaceable Parts

1

	Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A6VR1 A6VR2	1902-3082	9	5	DIODE-ZNR 4,64V 5% DD-7 PD=.4W TC=023% DIODE-ZNR 4,64V 5% DU-7 PD=.4W TC=023%	28480 28480	1902-3082 1902-3082
				A6 MISCELLANEOUS PARTS		
	1205-0329 2200-0164	3 5	4	HEAT SINK SGL TO-5/TO-39-PKG SCREW-MACH 4-40 .188-IN-LG 82 DEG	28480 00000	1205-0329 ORDER BY DESCRIPTION
	2200-0103 2190-0124	2	a	SCREW-MACH 4-40 .25-IN-LG PAN-MO-POZI WASHER-LK INTL T NO. 10 .195-IN-ID	00000 28480	ORDER BY DESCRIPTION 2190-0124
	2950-0078 1251-4666	9	10	NUT-HEX-DBL-CHAM 10-32-THD .067-IN-THK CONNECTOR-SGL CONT PIN .03-IN-BSC-SZ RND	28480 28480	2950=0078 1251=4666
A 7	08754-60007	•	1	RF SOURCE ASSEMBLY (BOARD ASSEMBLY ONLY, DOES NOT INCLUDE A7U2, A7U3 OR A7W1)	28480	08754-60007
A7C1 A7C2 A7C3 A7C4 A7C5	0180-0291	3		CAPACITOR-FXD 1UF+-10% 35VDC TA NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED	56289	150D105X9035A2
A7C6 A7C7	0180-1746 0160-2199	5 2	ű	CAPACITOR-FXD 15UF+=10% 20VDC TA CAPACITOR-FXD 30PF +=5% 300VDC MICA	56289 28480	150D156X902082 0160-2199
A7C8 A7C9	0160-2204 0180-0291	3	1	CAPACITOR-FXD 100PF +-5% 300VDC MICA CAPACITOR-FXD 1UF+=10% 35VDC TA	28480 56289	0160-2204 1500105x903542
A7C10	0180-0291	3		CAPACITOR=FXD 1UF+=10x 35VDC TA	56289	150D105x9035A2
A7C11 A7C12	0160=4084	8		NOT ASSIGNED CAPACITOR=FXD .1UF +-20% 50VDC CER	28480	0160=4084
A7CR1 A7CR2	1901-0050	3		NOT ASSIGNED DIDDE-SMITCHING BOY ZOOMA 2NS DD-35	28480 28480	1901=0050 1901=1068
ATCR3 ATCR4 ATCR5	1901-1068 1901-0050	3		DIODE-SWITCHING 80V 200M4 2NS DO-35 NOT ASSIGNED	28480	1901-0050
47CR6	1901-1068	5		DIODE-SCHOTTKY	28480	1901-1068
A7E1- A7E15	1251-3172	7		CONNECTOR-SGL CONT SKT .03-IN-BSC-SZ RND	28480	1251+3172
47L1 47L2	9140-0114	4 0	1	COIL-MLD 10UM 10% G=55 .1550%.375LG-NOM COIL-MLD 33UH 5% G=65 .1550%.375LG-NOM	28480 28480	9140-0114 9100-1625
47L3 47L4	9140-0114 9140-0114	4		COIL-MLD 10UH 10x G=55 .1550x.375LG-NOM COIL-MLD 10UH 10x G=55 .1550x.375LG-NOM	28480 28480	9140-0114 9140-0114
A7Q1 A7Q2 A7Q3 A7Q4	1853-0451 1853-0451 1854-0637	5 5	1	NOT ASSIGNED Transistor pnp 2N3799 SI TO-18 PD=360MW Transistor pnp 2N3799 SI TO-18 PD=360MW Transistor npn 2N2219A SI TO-5 PD=800MW	01295 01295 28480	2N3799 2N3799 1854+0637
ATR1 ATR2 ATR3 ATR4 ATR5	0757-0401 2100-3056 0757-0280	0 8 3		RESISTOR 100 1% .125W F TC=0+-100 RESISTOR-TRNR 5K 10% C-SIDE-ADJ 17 TRN RESISTOR 1K 1% .125# F TC=0+-100 NOT ASSIGNED NOT ASSIGNED	24546 32997 24546	C4-1/8-TO-101-F 3006P-1-502 i1/8-TO-1001-F
A7R6 A7R7 A7R8 A7R9	0757-0280 2100-1760 0698-3162 2100-1760	3 7 0 7 4	2	RESISTOR IK IX .125W F TC=0+=100 RESISTOR=TRMR 5K 5% WW SIDE=ADJ 1=TRN RESISTOR 46,4K 1X .125W F TC=0+=100 RESISTOR=TRMR 5K 5% WW SIDE=ADJ 1=TRN RESISTOR 6,81K 1X .125W F TC=0+=100	24546 28480 24546 28480 24546	C4-1/8-T0-1001-F 2100-1760 C4-1/8-T0-4642-F 2100-1760 C4-1/8-T0-6811-F
A7R11 A7R12	0757-0439 0698-3157 0757-1094	3 9	6	RESISTOR 19.6K 1% .125W F TC=0+=100 RESISTOR 1.47K 1% .125W F TC=0+=100	24546 24546	C4-1/8-T0-1962-F C4-1/8-T0-1471-F
A7R13 A7R14 A7R15	0757-0442 0698-3453 0757-0418	5 6	5 3	RESISTOR 10K 1% ,125W F TC=0+=100 RESISTOR 196K 1% ,125W F TC=0+=100 RESISTOR 619 1% ,125W F TC=0+=100	24546 24546 24546	C4=1/8=T0=1002=F C4=1/8=T0=1963=F C4=1/8=T0=619R=F
47R16 47R17	0698-3453 0698-3408	2 7	2	RESISTOR 196K 1% .125W F TC=0+=100 RESISTOR 2.15K1%,5W F TC=0+=100	24546 28480	C4-1/8-T0-1965-F 0698-3408
A7R18 A7R19 A7R20	0757-0279 0698-3396 0757-0796	5	5	RESISTOR 3.16K 1% .125W F TC=0+-100 RESISTOR 38.3 1% .5W F TC=0+-100 RESISTOR 82.5 1% .5W F TC=0+-100	24546 26480 26480	C4=1/8=T0=3161=F 0698=3396 0757=0796
ATR21 ATR22	0698-3400 0757-0799	9	1	RESISTOR 147 1% .5W F TC=0+=100 RESISTOR 121 1% .5W F TC=0+=100	28480 28480	0698=3400 0757=0799
A7R23 A7R24 A7R25	0757-0421 0757-0279	4 0		NOT ASSIGNED RESISTOR 825 1% ,125W F TC=0+=100 RESISTOR 3,16K 1% ,125W F TC=0+=100	24546 24546	C4-1/8-T0-825R-F C4-1/8-T0-3161-F
A7R26	0698-3396	2		RESISTOR 38,3 1% .5W F TC=0+=100	28480	0698-3396 C4-1/8-T0-625H-F
A7R27 A7R28 A7R29 A7R30	0757=0421 0757=0279 0757=0796 0757=0440	0 6 7		RESISTOR 625 1% 125W F TC=0+-100 RESISTOR 32.5 1% 1% 125W F TC=0+-100 RESISTOR 62.5 1% 5W F TC=0+-100 RESISTOR 7.5% 1% 125W F TC=0+-100	24546 28480 24546	C4-1/8-10-525F-F C4-1/8-T0-3161-F 0757-0796 C4-1/8-T0-7501-F

Model 8754A Replaceable Parts

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A7R31 A7R32 A7R33	0698-3443 2100-1753 0698-3408	0 8 7	2 1 7	RESISTOR 287 1% ,125W F TC=0+=100 RESISTOR=TRMR 20 5% WW SIDE=ADJ 1=TRN RESISTOR 2.17K 1% ,5W F TC=0+=100	24546 28480 28480	C4-1/8-T0-287R-F 2100-1755 0698-3408
A7TP1 A7TP2 A7TP3 A7TP4 A7U1 A7U2	0360-0535 0360-0535 0360-0535 0360-0535 1826-0371 08754-60035	0 0 0 1 0		TERMINAL TEST POINT PCB TERMINAL TEST POINT PCB TERMINAL TEST POINT PCB TERMINAL TEST POINT PCB OP AMP LOW NOISE 1-1300 MHZ SOURCE (INCLUDES MATCHED A15A1 RESISTOR ARRAY) (MUST BE	00000 00000 00000 00000 27014 28480	OHDER BY DESCRIPTION OHDER BY DESCRIPTION OHDER BY DESCRIPTION OHDER BY DESCRIPTION LF 256H 08754-60035
A7U2 A7U3	08754-60036 5086-7235	1 4	2	ORDERED SEPARATELY) (RESTORED 08754-60035; REQUIRES EXCHANGE) AMPLIFIER-DETECTOR (MUST BE ORDERED SEPARATELY)	28480	5086-7235
A7U3 A7W1	5086-6235 08505-60139	2 4	1	(RESTORED 5086-7235; REQUIRES EXCHANGE) CABLE ASSEMBLY, RED A7 MISCELLANEOUS PARTS	28480	08505-60139
	0380-0843 1251-4666	5	4	STANDOFF-RYT-ON .125-IN-LG 4-40TMD CONNECTOR-SGL CONT PIN .03-IN-BSC-SZ RND	00000 28480	ORDER BY DESCRIPTION 1251-4666
AB	08754-60008	,	1	A,B DETECTOR ASSEMBLY	28480	08754-60008
A8C1 A8C3 A8C4 A8C5	0160-0575 0160-3879 0180-0291 0160-2055 0160-3879	4 7 3 9 7	10	CAPACITOR-FXD .047UF +-20% 50VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .1UF+-10% 35VDC TA CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER	28480 28480 56289 28480 28480	0160-0575 0160-3879 1500105x903542 0160-2055 0160-3879
A8C6 A8C7 A8C8 A8C9 A8C10	0160=3156 0160=4664 0160=0575 0160=3879 0160=3156	3 0 4 7 3	5 5	CAPACITOR=FXD 750PF +=1% 300VDC MICA CAPACITOR=FXD 1600PF +=1% 63VDC POLYSTY CAPACITOR=FXD .047UF +=20% 50VDC CER CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD 750PF +=1% 300VDC MICA	28480 28480 28480 28480 28480	0160-3156 0160-4664 0160-0575 0160-3879 0160-3156
A8C11 A8C12 A8C13 A8C14 A8C15	0160-4664 0121-0105 0160-0575 0160-0575 0160-0575	04444	3	CAPACITOR=FXD 1600PF +=1% 63VDC POLYSTY CAPACITOR=V TRMR=CER 9=35PF 200V PC=MTG CAPACITOR=FXD ,047UF +=20% 50VDC CER CAPACITOR=FXD ,047UF +=20% 50VDC CER CAPACITOR=FXD ,047UF +=20% 50VDC CER	28480 52763 28480 28480 28480	0160-4664 304324 9/35PF N650 0160-0575 0160-0575 0160-0575
A8C16 A8C17 A8C18 A8C19 A8C20	0140-0192 0180-0197 0160-0575 0160-4084 0160-4084	9 8 4 8 8	3	CAPACITOR=FXD 68PF +=5% 300V0C MICA CAPACITOR=FXD 2,2UF+=10% 20VDC TA CAPACITOR=FXD ,047UF +=20% 50VDC CER CAPACITOR=FXD ,1UF +=20% 50VDC CER CAPACITOR=FXD ,1UF +=20% 50VDC CER	72136 56289 28480 28480 28480	DM15E680J0300WV1CH 150D225×9020A2 0160-0575 0160-4084 0160-4084
A6C21 A6C22 A6C23 A6C24 A6C25	0160-0575 0160-4084 0160-3872 0121-0444 0160-2055	48049	5	CAPACITOR-FXD .047UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 2.2PF +-25PF 20VDC CER CAPACITOR-V TRMR-CER 3-9PF 160V PC-MTG CAPACITOR-FXD .01UF +80-20% 100VDC CER	28480 28480 28480 28480 28480	0160-0575 0160-4084 0160-3872 0121-0444 0160-2055
A8C26 A8C27 A8C28 A8C29 A8C30	0160-0575 0160-0575 0160-4298 0160-4298 0160-2257	4 4 6 6 3	14	CAPACITOR=FXD .047UF +-20% S0VDC CER CAPACITOR=FXD .047UF +-20% S0VDC CER CAPACITOR=FXD 4700PF +-20% 250VDC CER CAPACITOR=FXD 4700PF +-20% 250VDC CER CAPACITOR=FXD 10PF +-5% 500VDC CER 0+-60	28480 28480 56289 56289 28480	0160-0575 0160-0575 C067F251M472M822-CDH C067F251M472M822-CDH 0160-2257
A8C31 A8C32 A8C33 A8C34 A8C35	0160-4298 0160-4298 0160-4298 0160-4298 0160-2225	6665	2	CAPACITOR-FXD 4700PF +-20% 250VDC CER CAPACITOR-FXD 2000PF +-5% 300VDC MICA	56289 56289 56289 56289 28480	C067F251M472M522=CDH C067F251M472M522=CDH C067F251M472M522=CDH C067F251M472M522=CDH 0160=2225
A8C36 A8C37 A8C38 A8C39 A8C40	0160-2261 0160-2261 0160-3454 0160-2055 0180-0197	99498	3 5	CAPACITOR-FXD 15PF +-5% 500VOC CER 0+=30 CAPACITOR-FXD 15PF +-5% 500VOC CER 0+=30 CAPACITOR-FXD 220PF +=10% 1KVDC CER CAPACITOR-FXD 0.01F +80-20% 100VOC CER CAPACITOR-FXD 2,2UF+=10% 20VDC TA	28480 28480 28480 28480 56289	0160-2261 0160-2261 0160-3454 0160-2055 1500225x9020A2
A8C41 A8C42 A8C43 A8C44 A8C45	0160=3456 0160=3466 0160=3454 0160=0575 0121=0444	00444	9	CAPACITOR-FXD 1000PF +-10% 1KVDC CER CAPACITOR-FXD 100PF +-10% 1KVDC CER CAPACITOR-FXD 220PF +-10% 1KVDC CER CAPACITOR-FXD 047UF +-20% 50VDC CER CAPACITOR-FXD 047UF20% 50VDC CER CAPACITOR-V TRMR-CER 3-9PF 160V PC-MTG	28480 28480 28480 28480 28480	0160-3456 0160-3466 0160-3454 0160-0575 0121-0444
A8C46 A8C47	0160-4084 0180-0197	8		CAPACITOR-FXD _1UF +-20% 50VDC CER CAPACITOR-FXD 2.2UF+-10% 20VDC TA	28480 56289	0160-4084 1500225x9020A2
ABCR1 ABCR2 ABCR3 ABCR4 ABCR5	1901-0639 1901-0539 1901-0539 1901-0040 1901-0040	3 1 1	1 6	DIODE-PIN 110V DIODE-SCHOTTKY DIODE-SCHOTTKY DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480	5082-3080 1901-0539 1901-0539 1901-0040 1901-0040
ASCR6 ASCR7 ASCRB	1901-0040 1901-0040 1901-0040	1 1 1		DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480	1901-0040 1901-0040 1901-0040
ABCR9 ABCR10	1901-0040 1901-0539	1 3		DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SCHOTTKY	28480 28460	1901-0040 1901-0539

Table 6-3. Replaceable Parts

1

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A8CR11 A8CR12 A8CR13	1901-0539 1901-0539 1901-0539	3 3 3		DIODE-SCHOTTKY DIODE-SCHOTTKY DIODE-SCHOTTKY	28480 28480 28480	1901=0539 1901=0539 1901=0539
ABL1 ABL2 ABL3 ABL4 ABL5	9100-2562 08754-80002 08754-80002 9100-2562 9100-2562	5 3 6 6	4	COIL-MLD 100UM 10% Q=50 .156D%.375LG-NOM INDUCTOR, VARIABLE INDUCTOR, VARIABLE COIL-MLD 100UM 10% Q=50 .156D%.375LG-NOM COIL-MLD 100UM 10% Q=50 .156D%.375LG-NOM	28480 28480 28480 28480 28480	9100-2562 08754-80002 08754-80002 9100-2562 9100-2562
A8L6 A8L7 A8L8 A8L9	9140-0210 9140-0210 9100-2573 9140-0210	1 9	34 1	COIL-MLD 100UM 5% Q=50 .155D%,375LG-NOM COIL-MLD 100UM 5% Q=50 .155D%,375LG-NOM COIL-MLD 1MM 10% Q=60 .155D%,375LG-NOM COIL-MLD 100UM 5% Q=50 .155D%,375LG-NOM	28480 28480 28480 28480	9140-0210 9140-0210 9100-2573 9140-0210
A 6 Q 1 A 6 Q 2 A 6 Q 3 A 6 Q 4 A 6 Q 5	1853-0034 1853-0034 1854-0404 1853-0451 1853-0034	00050		TRANSISTOR PNP SI TO-18 PD=360MW TRANSISTOR PNP SI TO-18 PD=360Mw TRANSISTOR NPN SI TO-18 PD=360Mw TRANSISTOR PNP 2N3799 SI TO-18 PD=360MW TRANSISTOR PNP SI TO-18 PD=360MW	28480 28480 28480 01295 28480	1855-0034 1855-0034 1854-0404 2N3799 1853-0034
A8G6 A8G7 A8G8 A8G9 A8G10	1854-0404 1854-0404 1853-0451 1854-0404 1854-0295	0 0 5 0 7		TRANSISTOR NPN SI TO-18 PD=360MW TRANSISTOR NPN SI TO-18 PD=360MW TRANSISTOR PNP Z-03799 SI TO-18 PD=360MW TRANSISTOR NPN SI TO-18 PD=360MW TRANSISTOR NPN SI TO-18 PD=360MW TRANSISTOR-DUAL NPN PD=400MM	28480 28480 01295 28480 28480	1854-0404 1854-0404 2N3799 1854-0404 1854-0295
A8Q11 A8Q12	1854-0404 1853-0034	0		TRANSISTOR NPN SI TO-18 PD=360MW TRANSISTOR PNP SI TO-18 PD=360MW	28480 28480	1854-0404 1853-0034
A 6 R 1 A 6 R 2 A 6 R 3 A 6 R 4 A 6 R 5	0757-0442 0757-0288 0757-0416 0757-0401 0757-0438	9 1 7 0 3	2	RESISTOR 10K 1X .125W F TC=0+=100 RESISTOR 9,09K 1X .125W F TC=0+=100 RESISTOR 511 1X .125W F TC=0+=100 RESISTOR 100 1X .125W F TC=0+=100 RESISTOR 5.11K 1X .125W F TC=0+=100	24546 19701 24546 24546 24546	C4-1/8-T0-1002-F MF4C1/8-T0-9091-F C4-1/8-T0-5118-F C4-1/8-T0-101-F C4-1/8-T0-5111-F
ABR6 ABR7 ABR8 ABR9 ABR10	0757-0438 0757-0279 0757-0280 0757-0401 0757-0438	3 0 3 0 3		RESISTOR 5,11K 1% ,125W F TC=0+-100 RESISTOR 3,16K 1% ,125W F TC=0+-100 RESISTOR 1K 1% ,125W F TC=0+-100 RESISTOR 100 1% ,125W F TC=0+-100 RESISTOR 5,11K 1% ,125W F TC=0+-100	24546 24246 24246 24246	C4=1/8=T0=5111=F C4=1/8=T0=3161=F C4=1/8=T0=1001=F C4=1/8=T0=101=F C4=1/8=T0=101=F
ABR11 ABR12 ABR13 ABR14 ABR15	0698-0083 0757-0401 0698-0084 0757-0401 0698-3447	8 0 9 0 4		RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 2.15K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 422 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1961-F C4-1/8-T0-101-F C4-1/8-T0-2151-F C4-1/8-T0-101-F C4-1/8-T0-422R-F
A8R16 A8R17 A8R18 A8R19 A8R20	0757-0279 0757-0279 0757-0442 0757-0401 0757-0279	0 0 0		RESISTOR 3,16K 1% ,125W F TC=0+-100 RESISTOR 3,16K 1% ,125W F TC=0+-100 RESISTOR 10K 1% ,125W F TC=0+-100 RESISTOR 100 1% ,125W F TC=0+-100 RESISTOR 3,16K 1% ,125W F TC=0+-100	24546 24546 24546 24546	C4-1/8-T0-3161-F C4-1/8-T0-3161-F C4-1/8-T0-1002-F C4-1/8-T0-101-F C4-1/8-T0-3161-F
48R21 A8R22 A8R23 A8R24 A8R25	0757-0438 0757-0458 0757-0458 0757-0458 0757-0398	3 7 7 3 4	4	RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 51.1K 1% .125W F TC=0+-100 RESISTOR 51.1K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 75 1% .125W F TC=0+-100	24546 24546 24546 24546	C4-1/8-T0-5111=F C4-1/8-T0-5112=F C4-1/8-T0-5112=F C4-1/8-T0-5111=F C4-1/8-T0-75R0=F
A8R26 A8R27 A8R28 A8R29 A8R30	0757-0398 0757-0280 0757-0442 0757-0288 0757-0438	4 3 9 1 3		RESISTOR 75 1% ,125W F TC=0+-100 RESISTOR 1K 1% ,125W F TC=0+-100 RESISTOR 10K 1% ,125W F TC=0+-100 RESISTOR 9,09K 1% ,125W F TC=0+-100 RESISTOR 5,11K 1% ,125W F TC=0+-100	24546 24546 24546 19701 24546	C4-1/8-T0-75R0-F C4-1/8-T0-1001-F C4-1/8-T0-1002-F MF4C1/8-T0-9091-F C4-1/8-T0-9111-F
A6R31 A6R32 A6R33 A6R34 A6R35	0757-0280 0757-0438 0698-0084 0757-0280 0757-0280	3 9 3		RESISTOR 1K 1% ,125W F TC=0+-100 RESISTOR 5,11K 1% ,125W F TC=0+-100 RESISTOR 2,15K 1% ,125W F TC=0+-100 RESISTOR 1K 1% ,125W F TC=0+-100 RESISTOR 1K 1% ,125W F TC=0+-100	24546 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-5111-F C4-1/8-T0-2151-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F
A6R36 A6R37 A6R38 A6R39 A6R40	0757-0279 0757-0279 0698-3150 0757-0428 0757-0346	0 6 1 2	!	RESISTOR 3.16K 1% .125W F TC=0+-100 RESISTOR 3.16K 1% .125W F TC=0+-100 RESISTOR 2.37K 1% .125W F TC=0+-100 RESISTOR 1.62K 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-3161=F C4-1/8-T0-3161=F C4-1/8-T0-2371=F C4-1/8-T0-1621=F C4-1/8-T0-1621=F
ABR41 ABR42 ABR43 ABR44 ABR45	0757-0280 0757-0438 0757-0438 0698-3156 0811-3403	3 3 3 2 4	6	RESISTOR 1K 1% ,125W F TC=0+-100 RESISTOR 5,11K 1% ,125W F TC=0+-100 RESISTOR 5,11K 1% ,125W F TC=0+-100 RESISTOR 14,7K 1% ,125W F TC=0+-100 RESISTOR 14,7K 1% ,125W F TC=0+-100 RESISTOR 1K 5% ,25W PW TC=+3400+-300	24546 24546 24546 24546 28480	C4=1/8=70=1001=F C4=1/8=70=5111=F C4=1/8=70=5111=F C4=1/8=70=1472=F 0811=3403
ABR46 ABR47 ABR48 ABR49 ABR50	0698-0054 0698-3260 0698-3260 0698-0083 2100-3056	9 9 8 8		RESISTOR 2,15% 1% ,125% F TC=0+=100 RESISTOR 464K 1% ,125% F TC=0+=100 RESISTOR 464K 1% ,125% F TC=0+=100 RESISTOR 1,96% 1% ,125% F TC=0+=100 RESISTOR=TRMR 5K 10% C SIDE=4DJ 17=TRN	24546 28480 28480 24546 02111	C4=1/8=T0=2151=F 0698=3260 0698=3260 C4=1/8=7U=1961=F 43P502

Replaceable Parts Model 8754A

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A8R51	0757-0419	0		RESISTOR 681 1% .125W F TC=0+-100	24546	C4-1/8-T0-681R-F
A6R52 A6R53	0757=0453 0757=0442	3	1	RESISTOR 30,1K 1% ,125W F TC=0+=100 RESISTOR 10K 1% ,125W F TC=0+=100	24546	C4=1/8=T0=3012=F C4=1/8=T0=1002=F
ABR54	0698-0085	6	4	RESISTOR 2.61K 1% .125W F TC=0+=100	24546	C4-1/8-T0-2611-F
A8R55	0698-3155	1		RESISTOR 4,64K 1% .125W F TC=0+-100	24546	C4-1/8-T0-4641-F
A6R56 A6R57	2100-3154 0757-0438	7		RESISTOR-TRMR 1K 10% C SIDE-ADJ 17-TRN RESISTOR 5,11K 1% ,125W F TC=0+-100	02111 24546	43P102 C4-1/8-T0-5111-F
48R58	2100-3274	2	_	RESISTOR-TRMR 10K 10% C SIDE-ADJ 1-TRN	28480	2100-3274
48R59 48R60	0698-3161 0757-0280	3	3	RESISTOR 38.3K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100	24546 24546	C4-1/8-T0-3832-F C4-1/8-T0-1001-F
A8R61	0757-0199	3		RESISTOR 21.5K 1% .125W F TC=0+=100	24546	C4-1/8-T0-2152-F
A8R62	0757-0440	7		RESISTOR 21.5K 1% .125W F TC=0+=100 RESISTOR 7.5K 1% .125W F TC=0+=100	24546 28480	C4-1/8-T0-7501-F
48R63 48R64	0698-6360 0698-6360	6		RESISTOR 10K .1% .125W F TC=0+=25 RESISTOR 10K .1% .125W F TC=0+=25	28480	0698-6360 0698-6360
ABR65	0757=0438	3		RESISTOR 5.11K 1% .125w F TC=0+-100	24546	C4-1/8-T0-5111-F
A8R66 A8R67	0698-6360 0698-6360	6		RESISTOR 10K .1% .125W F TC=0+=25	28480 28480	0698=6360 0698=6360
ASR68	0698-6363	•	1	RESISTOR 10K .1% .125W F TC=0+=25 RESISTOR 40K .1% .125W F TC=0+=25	28480	0698-6363
A8R69 A8R70	0698-6360 0698-6360	6		RESISTOR 10K .1% .125W F TC=0+=25 RESISTOR 10K .1% .125W F TC=0+=25	28480 28480	0698=6360 0698=6360
A8R71	0757-0200	,	1	RESISTOR 5.62K 1% .125W F TC=0+=100	24546	C4=1/8=T0=5621=F
A8R72	0698-0085	0	•	RESISTOR 2.61K 1% .125W F TC=0+=100	24546	C4-1/8-T0-2611-F
A6R73	0757-0401	9		RESISTOR 100 1% .125W F TC#0++100	24546	C4=1/8=T0=101=F C4=1/8=T0=2151=F
ABR74 ABR75	0698-0084 0757-0401			RESISTOR 2.15K 1% .125W F TC=0+=100 RESISTOR 100 1% .125W F TC=0+=100	24546	C4-1/8-T0-101-F
ABR76	0757-0419	0		RESISTOR 681 1% .125W F TC=0+=100 RESISTOR 2.61K 1% .125W F TC=0+=100	24546	C4-1/8-T0-681R-F
ABR77 ABR78	969820085 0757=0401	0		RESISTOR 2.61K 1% ,125W F TG=0+-100 RESISTOR 100 1% ,125W F TG=0+-100	24546 24546	C4=1/8=T0=2611=F C4=1/8=T0=101=F
A8R79 A8R80	0757-0401 0757-0401 0698-3453	0 2		RESISTOR 100 1% .125W F TC=0+=100 RESISTOR 196K 1% .125W F TC=0+=100	24546	C4=1/8=T0=101=F C4=1/8=T0=1963=F
		ΙI		•	28480	0698-3457
48R81 48R82	0698=3457 2100=3054	6	11	RESISTOR 316K 1% .125W F TC=0+=100 RESISTOR=TRMR 50K 10% C SIDE=ADJ 17=TRN	02111	439503
ABR83	0757-0440	7	٠.	RESISTOR 7.5K 1% .125W F TC=0+=100	24546	C4-1/8-T0-7501-F
48R84 48R85	0757-0442 0757-0401	3		RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 100 1% .125W F TC=0+=100	24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-101-F
ASR86	0757-0280	3		RESISTOR 1K 1% _125W F TC=0+=100	24546	C4-1/8-T0-1001-F
ASR87	0698-8827	4	7	RESISTOR 1M 1% .125W F TC=0+=100	28480	0698-8827
ASRSS ABRS9	0698-3160 0698-0085	8		RESISTOR 31.6K 1% .125W F TC=0+-100 RESISTOR 2.61K 1% .125W F TC=0+-100	24546 24546	C4=1/8=T0=3162=F C4=1/8=T0=2611=F
ABRTO	2100-3210	١	1	RESISTOR 2.61K 1% .125W F TC=0+=100 RESISTOR=TRMR 10K 10% C TOP=ADJ 1=TRN	28480	2100-3210
A8R91	0698-3260	9		RESISTOR 464K 1% ,125W F TC*0+=100	28480 28480	0698+3260 0698+8824
A8R92 A8R93	0698-8824 0698-8827	1 4	1	RESISTOR 562K 1% 125W F TC=0+=100 RESISTOR 1M 1% 125W F TC=0+=100	28480	0698=8827
ABR94	2100-3061	5	5	RESISTOR-TRMR 500K 10% C SIDE-ADJ 17-TRN	02111	43P504
ASTP1- ASTP10	0300-0535	ا ، ا		TERMINAL TEST POINT PCB	00000	ORDER BY DESCRIPTION
ABU1	1513-0041	5	1	IC OP AMP TO-99	27014	LH0042CH
ABUZ	1820-0223	0	_ i	IC 301 OP AMP TO-99	04713	MLM301AG
A8U3 A8U4	1826=0092	3		IC OP AMP TO=99 IC OP AMP TO=99	28480 28480	1826-0092 1826-0092
4805	1826-0092	3		IC OP AMP TO-99	28480	1826-0092
ABUS	1820-1973	9	5	IC SW PMOS ANALOG DUAL	01295	TL604CP
A6VR1	1902-0680	7	5	DIODE-ZNR 18827 6.2V 5% DO-7 PD#.25W	24046	1N827
ASVR2	1902-0025	4	4	DIODE-ZNR 10V 5% DO-7 PD=,4W TC=+,06%	28480	1902-0025
				AS MISCELLANEOUS PARTS		F0.00 + 0.F1
	5040-6853 5000-9043	6	10	BOARD EXTRACTOR, BROWN Pin	28480 28480	5040=6853 5000=9043
49	08754-60009	8	1	PHASE DETECTOR ASSEMBLY	28480	08754-60009
AGC 1	0180-0291	3		CAPACITOR=FXD 1UF+=10% 35VDC TA	56289	150D105x9035A2
APCZ	0180-0197	ă		CAPACITOR-FXD 2.2UF+-10% 20VDC TA	56289	150D225x9020A2
A903 A904	0180+0197 0160-2055	8		CAPACITOR=FXD 2.2UF+=10% 20VDC TA	56289 28480	150D225×9020A2 0160=2055
A9C4	0160-2055	9		CAPACITOR=FXD .01UF +80=20% 100VDC CER CAPACITOR=FXD .01UF +80=20% 100VDC CER	28480	0160=2055
A9C6	0160-4084	8		CAPACITOR-FXD .1UF +=20% 50VDC CER	28480	0160=4084
4907 4908	0160-2261 0180-0197	9		CAPACITOR-FXD 15PF +=5X 500VDC CER 0+=30 CAPACITOR-FXD 2_2UF+=10X 20VDC TA	28480 56289	0160=2261 150D225×9020A2
AOCO	0160-3466	å		CAPACITOR=FXD 100PF +=10% 1KVDC CER	28480	0160=3466
A+C10	0160-3939	0	i	CAPACITOR=FXD 1400PF +=1% 100VDC MICA	28480	0160-3939
	1	1	ı		1	

Table 6-3. Replaceable Parts

				Table 0-3. neplaceable raits		
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A9C11 A9C12 A9C13 A9C14 A9C15	0160-3536 0160-0839 0160-2543 0160-0218 0160-4084	3 0 2 8	1 1 1 3	CAPACITOR=FXD 620PF +-5% 100VDC MICA CAPACITOR=FXD 110PF +-1% 300VDC MICA CAPACITOR=FXD 500PF +-1% 300VDC MICA CAPACITOR=FXD 2400PF +-1% 300VDC MICA CAPACITOR=FXD ,1UF +-20% 50VDC CER	28480 28480 28480 28480 28480	0160-3536 0160-0839 0160-2543 0160-0218 0160-4084
A9C16 A9C17 A9C18 A9C19 A9C20	0160-4084 0160-4084 0160-4084 0160-4084 0160-4084	8 8 8 8		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480 28480 28480	0160-4084 0160-4084 0160-4084 0160-4084
A9C21 A9C23 A9C24 A9C25	0160-4084 0160-4084 0160-4084 0160-4084 0160-0218	8 8 8 8 2		CAPACITOR=FXD .1UF +=20% 50VDC CER CAPACITOR=FXD 2400PF +=1% 300VDC MICA	28480 28480 28480 28480 28480	0150=0518 0160=4084 0160=4084 0160=4084
A9C26 A9C27 A9C28 A9C29 A9C30	0160-4084 0160-4084 0160-2055 0160-3456	8 9 6 6		CAPACITOR=FXD .1UF +-20% 50VDC CER CAPACITOR=FXD .1UF +-20% 50VDC CER CAPACITOR=FXD .01UF +80=20% 100VDC CER CAPACITOR=FXD 1000PF +-10% 1KVDC CER CAPACITOR=FXD 1000PF +-10% 1KVDC CER	28480 28480 28480 28480 28480	0160-4084 0160-4084 0160-2055 0160-3456 0160-3456
A9C31 A9C32 A9C33 A9C34 A9C35	0180-0197 0160-3456 0160-4084 0160-4084 0160-4084	8 6 8 8		CAPACITOR=FXD 2.2UF+=10% 20VDC TA CAPACITOR=FXD 1000PF +=10% 14VDC CER CAPACITOR=FXD .1UF +=20% 50VDC CER CAPACITOR=FXD .1UF +=20% 50VDC CER CAPACITOR=FXD .1UF +=20% 50VDC CER	56289 28480 28480 28480 28480	150225x9020A2 0160=3456 0160=084 0160=4084 0160=4084
A9C36 A9C37 A9C38 A9C39 A9C40	0140-0192 0160-4084 0121-0105 0160-2055 0160-4084	9 8 4 9 8		CAPACITOR=FXD 68PF +=5% 300VDC MICA CAPACITOR=FXD _1UF +=20% 50VDC CER CAPACITOR=FXD _01UF +80=20% 100VDC CER CAPACITOR=FXD _01UF +80=20% 100VDC CER CAPACITOR=FXD _1UF +=20% 50VDC CER	72136 28480 52763 28480 28480	DM15E680J0300^V1CR 0160=4084 304124 9735PF N650 0160=2055 0160=4084
A9C41 A9C43 A9C44 A9C45	0160=4084 0160=3455 0160=3455 0160=3454 0140=0192	8 5 4 9	3	CAPACITOR=FXD _1UF +=20% 50vDC CER CAPACITOR=FXD #70PF +=10% 1KVOC CER CAPACITOR=FXD #70PF +=10% 1KVOC CER CAPACITOR=FXD 220PF +=10% 1KVOC CER CAPACITOR=FXD 66PF +=5% 300vDC MICA	28480 28480 28480 28480 72136	0160-4084 0160-3455 0160-3455 0160-3454 DM15E680J0300wY1Ch
49046 49047 49048 49049 49050	0140-0220 0180-0197 0180-0197 0160-4084 0160-4084	48888	i	CAPACITOR-FXD 200FF +-1% 300VDC MICA CAPACITOR-FXD 2.2UF++10% 20VDC TA CAPACITOR-FXD 2.2UF++10% 20VDC TA CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	72136 56289 56289 28480 28480	DM15F201F0300WY1CR 150D225X9020A2 150D225X9020A2 0160-4084 0160-4084
49051	0160-2055	9		CAPACITOR-FXD .01UF +80=20% 100VDC CER	28480	0160-2055
A9L1 A9L2 A9L3 A9L4 A9L5	9140=0210 9140=0114 9140=0210 9140=0181 9140=0155	1 4 1 5 3	2 3	COIL-MLD 100UH 5% Q=50 .155Dx.375LG-NOM COIL-MLD 10UH 10% Q=55 .155Dx.375LG-NOM COIL-MLD 100UH10% Q=50 .155Dx.375LG-NOM COIL-MLD 22UH 5% Q=50 .905Dx.25CG-NOM COIL-MLD 22UH 1% Q=60 .156DX.375LG-NOM	28480 28480 28480 28480	9140-0210 9140-0114 9140-0210 9140-0181 9140-0155
A916 A917 A918 A919 A9110	9140=0181 9140=0210 9140=0210 9140=0210 9140=0210	5 1 1 1		COIL-MLD 22UH 5% Q=50 .095D%.25LG-NOM COIL-MLD 100UH 5% Q=50 .155D%.375LG-NOM COIL-MLD 100UH 5% Q=50 .155D%.375LG-NOM COIL-MLD 100UH 5% Q=50 .155D%.375LG-NOM COIL-MLD 100UH 5% Q=50 .155D%.375LG-NOM	28480 28480 28480 28480	9140-0181 9140-0210 9140-0210 9140-0210 9140-0210
A9L11 A9L12 A9L13 A9L14 A9L15	9140-0210 9140-0210 08754-80002 9100-2562 9140-0210	1 1 3 6 1	-	COIL-MLD 100UH 5% Q=50 .155D%,375LG=NOM COIL-MLD 100UH 5% Q=50 .155D%,375LG=NOM INDUCTOR, VARIABLE COIL-MLD 100UH 10% Q=50 .156D%,375LG=NOM COIL-MLD 100UH 5% Q=50 .155D%,375LG=NOM	28480 28480 28480 28480 28480	9140=0210 9140=0210 08754=80002 9100=2562 9140=0210
49L16 49L17	9100=1638 9140=0210	5	1	COIL-MLD 130UH 5% Q=65 .155Dx,375LG-NOM COIL-MLD 100UH 5% Q=50 .155Dx,375LG-NOM	28480 28480	9100=1638 9140=0210
4991 4992 4993 4994 4995	1853-0316 1855-0413 1854-0485 1854-0485 1855-0413	1 3 7 7 7	3 4	TRANSISTOR-DUAL PNP PD=500MW TRANSISTOR J=FET P-CMAN D-MDDE TO-18 3I TRANSISTOR NPN SI TO-104 PD=175 MW TRANSISTOR NPN SI TO-104 PD=175 MW TRANSISTOR J=FET P-CMAN D-MODE TO-18 3I	28480 27014 28480 28480 27014	1853=0316 2N5116 1854=0485 1854=0485 2N5116
4906 4907 4908 4909 49010 4901 4902 4903 4903 4903	1853-0316 1854-0485 1853-0018 1853-0022 2100-3161 0757-0448 0757-0447 2100-3056	1 7 0 9 6 9 3 4 8	1	TRANSISTOR-DUAL PNP PD=500MW TRANSISTOR-NPN SI TO-104 PD=175 MW TRANSISTOR PNP SI TO-72 PD=200MW FT=1GMZ TRANSISTOR PNP SI TO-72 PD=200MW FT=1GMZ TRANSISTOR PNP 2N2946A SI TO-46 PD 400MW RESISTOR-THMR 20K 10% C SIDE-ADJ 17-TRN RESISTOR 10% 1% 1,25W F TC=0+-100 RESISTOR 5,11K 1% 1,25W F TC=0+-100 RESISTOR 16,2K 1% 1,25W F TC=0+-100 RESISTOR 16,2K 1% 1,25W F TC=0+-100 RESISTOR-TRMR 5K 10% C SIDE-ADJ 17-TRN	28480 28480 28480 28480 28480 02111 24546 24546 24546 02111	1853-031b 1854-0485 1853-0018 1853-0018 1853-0322 439203 C4-1/8-T0-1002-F C4-1/8-T0-5111-F C4-1/8-T0-1622-F 43P502
A9R6 A9R7 A9R8	0757-0289 0811-3403 0757-0421	2 4	4	RESISTOR 13,3K 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W PW TC=+3400+=300 RESISTOR 825 1% .125W F TC=0+=100	19701 28480 24546	MF4C1/8=T0=1332=F 0811=3403 C4=1/8=T0=625R=F
AGRG AGR10	0757-0465 0757-0290	5		PESISTOR 100K 1% .125W F TC=0+=100 RESISTOR 6,19K 1% .125W F TC=0+=100	24546 19701	C4-1/8-T0-1005-F MF4C1/8-T0-6191-F

Table 6-3. Replaceable Parts

Reference	HP Part			Table 0-0. Heplaceable Falls	NAF	
Designation Designation	Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A9R11 A9R12	0757-0465 0757-0465	0.0		RESISTOR 100K 1% .125W F TC=0+=100 RESISTOR 100K 1% .125W F TC=0+=100	24546 24546	C4-1/8-T0-1003-F C4-1/8-T0-1003-F
APRIS APRI4	0757-0442 0698-3150	9		RESISTOR 10K 1% .125W F TC=0+=100	24546	C4-1/8-T0-1002-F
A9R15	0757-0438	3		RESISTOR 2.37K 1% .125W F TC=0+=100 RESISTOR 5.11K 1% ,125W F TC=0+=100	24546	C4-1/8-T0-2371-F C4-1/8-T0-5111-F
49R16 49R17	0757-0280 0757-0401	3		RESISTOR 1K 1% ,125W F TC=0+=100 RESISTOR 100 1% ,125W F TC=0+=100	24546 24546	C4-1/8-TU-1001-F C4-1/8-TU-101-F
A9R1B A9R19	0757-0279 0698-3152	0	_	RESISTOR 3.16K 1% .125W F TC=0+-100	24546	C4-1/8-T0-3161-F
APRZO	0757-0416	8 7	5	RESISTOR 3.48K 1% .125W F TC=0+=100 RESISTOR 511 1% .125W F TC=0+=100	24546 24546	C4-1/8-T0-3461-F C4-1/8-T0-511R-F
AGR21 AGR22	0757-0416 0757-0280	7 3		RESISTOR 511 1% ,125W F TC=0+=100	24546	C4-1/8-T0-511R-F
A9R23	0757-0280	3		RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 5.11K 1% .125W F TC=0+=100	24546	C4-1/8-T0-1001-F C4-1/8-T0-1001-F
A9R24 A9R25	0757-0438 0757-0416	7		RESISTOR 5.11K 1% .125W F TC=0++100 RESISTOR 511 1% .125W F TC=0++100	24546 24546	C4-1/8-T0-5111-F C4-1/8-T0-511R-F
A9R26 A9R27	0757-0280 0757-0438	3		RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 5.11K 1% .125W F TC=0+=100	24546	C4=1/8=T0=1001=F
A9R28	0757-0401	0		RESISTOR 100 1% .125W F TC=0+=100	24546	C4-1/8-T0-5111=F C4-1/8-T0-101+F
AGRZG AGR30	0757-0439 0757-0280	3		RESISTOR 6.81K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100	24546	C4=1/8=T0=6811=F C4=1/8=T0+1001=F
A9R31	0698-3156	Į		RESISTOR 14.7K 1% .125W F TC=0+=100	24546	C4-1/8-T0-1472-F
A9R32 A9R33	0757-0280 0757-0280	3		RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1001-F
A9R34 A9R35	0757-0401 0757-0279	0		RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 3.16K 1% .125W F TC=0+-100	24546 24546	C4=1/8=T0=101=F C4=1/8=T0=3161=F
A9R36	0757-0280				l I	
A9R37	0698-3151	3 7		RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 2.87K 1% .125W F TC=0+=100	24546 24546	C4=1/8=T0=1001=F C4=1/8=T0=2871=F
A9R38 A9R39	0757-0463 2100-3123	4	1	RESISTOR 82.5K 1% .125W F TC±0+=100 RESISTOR=TRMR 500 10% C SIDE=ADJ 17⇒TRN	24546 02111	C4-1/8-T0-8252-F 43P501
A9R40	0698-0083	8		RESISTOR 1,96K 1% ,125W F TC=0+=100	24546	C4-1/8-T0-1961-F
A9R41 A9R42	0698-0083 0698-0084	8 9		RESISTOR 1.96K 1% .125W F TC=0+=100 RESISTOR 2.15K 1% .125W F TC=0+=100	24546 24546	C4-1/8-T0-1961-F C4-1/8-T0-2151-F
A9R43	0757-0416	7		RESISTOR 511 1x .125W F TC=0+-100	24546	C4-1/8-T0-511R-F
A9R44 A9R45	0757=0123 2100=3056	8	1	RESISTOR 34.8K 1% .125W F TC#0+=100 RESISTOR#TRMR 5K 10% C SIDE#ADJ 17#TRN	28480 02111	0757-0123 43P502
A9R46 A9R47	0698-3445 0757-0416	2 7	4	RESISTOR 348 1% 125W F TC=0+=100	24546	C4-1/8-T0-348R-F C4-1/8-T0-511R-F
A9R48	0757-0274	5	7	RESISTOR 511 1% .125W F TC=0+=100 RESISTOR 1.21K 1% .125W F TC=0+=100	24546 24546	C4-1/8-T0-1213-F
A9R49 A9R50	2100+3123 0757+0280	3		RESISTOR-TRMR 500 10% C SIDE-ADJ 17-TRN RESISTOR 1K 1% .125W F TC=0+-100	02111 24546	43P501 C4-1/8-T0-1001-F
APRS1 APRS2	0757=0416 0757=0279	7		RESISTOR 511 1x .125W F TC=0+=100	24546	C4-1/8-T0-511R-F
A9R53	0757-0279	0		RESISTOR 3.16K 1% .125W F TC=0+=100 RESISTOR 3.16K 1% .125W F TC=0+=100	24546 24546	C4-1/8-T0-3161-F C4-1/8-T0-3161-F
A9R54 A9R55	0757-0280 2100-3273	3	2	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR-TRMR 2K 10% C SIDE-ADJ 1-TRN	24546 28480	C4-1/8-T0-1001-F 2100-3273
A9R56	0757-0401	0		RESISTOR 100 1% 125W F TC#0+=100	24546	C4-1/8-T0-101-F
A9R57 A9R58	0757=0439 0757=0442	9		RESISTOR 6.81K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	24546	C4-1/8-T0-6811-F C4-1/8-T0-1002-F
A9R59 A9R60	0757=0416 0698=0083	7 8		RESISTOR 511 1% 125W F TC#0+=100 RESISTOR 1.96K 1% 125W F TC#0+=100	24546 24546	C4=1/8=T0=511R=F C4=1/8=T0=1961=F
A9R61	0757-0280	3			24546	C4-1/8-T0-1001-F
APR63	0757=0280 0757=0280	3		RESISTOR 1K 1% ,125W F TC=0+=100 RESISTOR 1K 1% ,125W F TC=0+=100 RESISTOR 1K 1% ,125W F TC=0+=100	24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1001-F
A9R64 A9R65	0698-3440 0757-0416	77		RESISTOR 196 1x 125W F TC=0+=100 RESISTOR 511 1x 125W F TC=0+=100	24546	C4-1/8-T0-196R-F
A9R66	0757-0416			RESISTOR 100 1% .125W F TC=0+=100	24546 24546	C4-1/8-T0-511R-F C4-1/8-T0-101-F
A9R67 A9R68	0757-0401	0		RESISTOR 100 1% .125W F TC=0+-100	24546	C4-1/8-T0-101-F
A9R69	0698-0083 0698-0083	8 8		RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 1.96K 1% .125W F TC=0+-100	24546 24546	C4-1/8-T0-1961-F C4-1/8-T0-1961-F
A9R70	0757-0279	0		RESISTOR 3.16K 1% .125W F TC=0+=100	24546	C4-1/8-T0-3161-F
A9871 A9872	0757-0439 0757-0442	4		RESISTOR 6.81K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100	24546 24546	C4-1/8-T0-6811-F C4-1/8-T0-1002-F
A9R73 A9R74	0757-0280 0757-0442	3 9	j	RESISTOR 1K 1% 125W F TC=0+=100 RESISTOR 10K 1% 125W F TC=0+=100	24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1002-F
A9R75	0757-0424		5	RESISTOR 1,1K 1% ,125W F TC=0+=100	24546	C4=1/8=10=1002=F C4=1/8=10=1101=F
A9R76 A9R77	0698-3136 0757-0441	8	5	RESISTOR 17.8K 1% .125W F TC=0+-100 RESISTOR 8.25K 1% .125W F TC=0+-100	24546 24546	C4=1/8=T0=1782=F C4=1/8=T0=8251=F
A9R78 A9R79	0698-3440	7		RESISTOR 196 1% _125W F TC=0+=100	24546	C4-1/8-T0-196R-F
A9R80	0757-0438 0757-0438	3		RESISTOR 5,11K 1% ,125W F TC=0+=100 RESISTOR 5,11K 1% ,125W F TC=0+=100	24546 24546	C4-1/8-T0-5111-F C4-1/8-T0-5111-F
A9R81 A9R82	0757-0401 0757-0401	0		RESISTOR 100 1% ,125W F TC#0++100	24546	C4=1/8=T0=101=F C4=1/8=T0=101=F
A9R83	0698-3444	i		RESISTOR 100 1% ,125W F TC=0+=100 RESISTOR 316 1% ,125W F TC=0+=100	24546	C4-1/8-T0-316R-F
49884 49885	0698-3444 0757-0440	;		RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 7.5K 1% .125W F TC=0+-100	24546 24546	C4-1/8-T0-316R-F C4-1/8-T0-7501-F
				11 11 11220 1 1010 100		E ECH IN TWENTY
,		щ	I			

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A9R86 A9R87 A9R88 A9R89 A9TP10	0757-0280 0757-0280 0757-0280 0757-0465 0360-0535	3 3 3 6 0		RESISTOR 1K 1% ,125W F TC=0+-100 RESISTOR 1K 1% ,125W F TC=0+-100 RESISTOR 1K 1% ,125W F TC 0+-100 RESISTOR 100K 1% ,125W F TC 0+-100 TERMINAL TEST POINT PCB	24546 24546 24546 24546 00000	C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-1003-F ORDER BY DESCRIPTION
A9U1 A9U2 A9U4 A9U4	1826-0261 1826-0304 1826-0092 1826-0092 1820-1308	8 0 3 3 4		IC 741 OP AMP TO=99 IC RCVR ECL LINE RCVR TPL Z=INP	28480 27014 28480 28480 04713	1826-0201 LF355H 1820-0092 1826-0092 MC10116L
A9U6 A9U7 A9U8 A9U9 A9U10	1810-0204 1820-1225 1810-0204 1820-1308 1810-0204	64646	i	NETWORK-RES 8-PIN-SIP .1-PIN-SPCG IC FF ECL D-M/S DUAL NETWORK-RES 8-PIN-SIP .1-PIN-SPCG IC RCVR ECL LINE RCVR TPL 2-INP NETWORK-RES 8-PIN-SIP .1-PIN-SPCG	11236 04713 11236 04713 11236	750-81-R1K MC10231P 750-81-R1K MC10116L 750-81-R1K
A9U11 A9U12	1820=1308 1858=0032	8	3	IC ROVE ECL LINE ROVE TPL 2-INP TRANSISTOR ARRAY	04713 01928	MC10116L CA3146E
A9VR1 A9VR2 A9Z1 A9Z2	1902-0680 1902-0041 9170-0847 9170-0847	7 4 3 3	9	DIODE-ZNR 1N827 6.2V 5% DO-7 PD=.25w DIODE-ZNR 5.11V 5% DO-7 PD=.4W TC .009 CORE-SHIELDING BEAD CORE-SHIELDING BEAD	24046 28480 28480 28480	1N827 1902-0041 9170-0847 9170-0847
	5040=6847 .5000=9043 1251=4666	6 6 6	1	A9 MISCELLANEOUS PARTS BOARD EXTRACTOR, RED PIN CONNECTOR-SGL CONT PIN .03-IN-BSC-SZ RND	28480 28480 28480	5040-6847 5000-9043 1251-4666
A10	08754-60010	1	1	POLAR CONVERTER ASSEMBLY	28480	08754=60010
A10C1 A10C2 A10C3 A10C4 A10C5	0180-0291 0180-0197 0180-0197 0180-0197 0160-3456	3 8 8 6		CAPACITOR=FXD 1UF+=10% 35VDC TA CAPACITOR=FXD 2,2UF+=10% 20VDC TA CAPACITOR=FXD 2,2UF+=10% 20VDC TA CAPACITOR=FXD 1000PF +=10% 1KVDC CER CAPACITOR=FXD 1000PF +=10% 1KVDC CER	56289 56289 56289 28480 28480	150D105X9035A2 150D225X9020A2 150D225X9020A2 0160-3456 0160-3456
A10C6 A10C7 A10C8 A10C9 A10C10	0160-4299 0160-3456 0180-0197 0160-4084 0160-4084	7 6 8 8 8	1	CAPACITOR-FXO 2200PF +-20x 250VDC CER CAPACITOR-FXD 1000PF +-10x 1KVDC CER CAPACITOR-FXD 2,2UF*-10x 20VDC TA CAPACITOR-FXD .1UF +-20x 50VDC CER CAPACITOR-FXD .1UF +-20x 50VDC CER	56289 28480 56289 28480 28480	CO67F251F222MS22=CDH 0160=3456 1500225x9020A2 0160=4084 0160=4084
A10C11 A10C12 A10C13 A10C14 A10C15	0160-4084 0160-3456 0160-3456 0160-3454 0160-3466	8 6 6 4 8		CAPACITOR=FXD .1UF +=20% 50VDC CER CAPACITOR=FXD 1000PF +=10% 1KVDC CER CAPACITOR=FXD 1000PF +=10% 1KVDC CER CAPACITOR=FXD 220PF +=10% 1KVDC CER CAPACITOR=FXD 100PF +=10% 1KVDC CER	28480 28480 28480 28480 28480	0160-4084 0160-3456 0160-3456 0160-3454 0160-3466
A10C16 A10C17+ A10C18 A10C19 A10C20	0140-0191 0160-2241 0160-3455 0160-2055 0160-2055	8 5 9 9	1	CAPACITOR=FXD 56PF +=5X 300VDC MICA CAPACITOR=FXD 2.2PF +=.25PF 500VDC CER CAPACITOR=FXD 470PF +=10% 1KVDC CER CAPACITOR=FXD .01UF +80-20% 100VDC CER CAPACITOR=FXD .01UF +80-20% 100VDC CER	72136 28480 28480 28480 28480	DM15E560J0300WV1CR 0160=2241 0160=3455 0160=2055 0160=2055
A10C21 A10C22 A10C23 A10C24 A10C25	0160-2055 0160-2055 0160-4084 0160-4084	9 9 8 8 8		CAPACITOR=FXD .01UF +80=20% 100VDC CER CAPACITOR=FXD .01UF +80=20% 100VDC CER CAPACITOR=FXD .1UF +=20% 50VDC CER CAPACITOR=FXD .1UF +=20% 50VDC CER CAPACITOR=FXD .1UF +=20% 50VDC CER	28480 28480 28480 28480 28480	0160-2055 0160-2055 0160-4084 0160-4084
A10C26 A10C27 A10C28 A10C29 A10C30	0160-4084 0160-4084 0160-4084 0160-4084 0160-0218	8 8 8 8		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 2400PF +-1% 300VDC MICA	28480 28480 28480 28480 28480	0160-4084 0160-4084 0160-4084 0160-4084
A10C31 A10C32 A10C33 A10C34 A10C35	0160-4084 0160-4084 0180-0197 0160-4084 0160-4084	8 8 8 8		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 2.2UF*+10% 20VDC TA CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 56289 28480 28480	0160=4084 0160=4084 1500225×9020A2 0160=4084 0160=4084
A10C36 A10C37 A10C38 A10C39 A10C40	0160=3456 0160=3456 0160=3466 0160=3454 0180=0197	6 6 8 4 8		CAPACITOR-FXD 1000PF +-10% 1KVDC CER CAPACITOR-FXD 1000PF +-10% 1KVDC CER CAPACITOR-FXD 100PF +-10% 1KVDC CER CAPACITOR-FXD 220PF +-10% 1KVDC CER CAPACITOR-FXD 2.2UF+-10% 20VDC TA	28480 28480 28480 28480 56289	0160-3456 0160-3456 0160-3466 0160-3454 1500225x9020A2
A10C41 A10C42 A10C43 A10C44 A10C45	0160=2055 0160=4084 0160=2101 0160=2204 0140=0191	9 8 6 0 8	1	CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .1UF +20% 50VDC CER CAPACITOR-FXD 27PF +-2% 300VDC MICA CAPACITOR-FXD 100PF +-5% 300VDC MICA CAPACITOR-FXD 56PF +-5% 300VDC MICA	28480 28480 28480 28480 72136	0160-2055 0160-4084 0160-2101 0160-2204 DM15E560J0300*V1CR

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A10C46 A10C47 A10C48 A10C49 A10C50	0160-4084 0160-2055 0160-2055 0160-3466 0160-3466	8 9 9 8		CAPACITOR-FXD ,1UF +-20% 50VDC CER CAPACITOR-FXD ,01UF +80-20% 100VDC CER CAPACITOR-FXD ,01UF +80-20% 100VDC CER CAPACITOR-FXD 100PF +-10% 1KVDC CER CAPACITOR-FXD 100PF +-10% 1KVDC CER	28480 28480 28480 28480 28480	0160-4084 0160-2055 0160-2055 0160-3466 0160-3466
A10051 A10052	0160-4084 0180-0197	8		CAPACITUR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 2.2UF+-10% 20VDC TA	28480 56289	0160-4084 1500225x9020A2
A10CR1 A10CR2 A10CR3	1901-0050 1901-0050 0122-0043	3	1	DIODE-SWITCHING 80V 200MA 2NS D0-35 DIODE-SWITCHING 80V 200MA 2NS D0-35 DIODE-VVC 39PF 2% C4/C25-MIN=1.9 8VR=30V	28480 28480 28480	1901-0050 1901-0050 0122-0045
A10L1 A10L2 A10L3 A10L4 A10L5	9140-0210 9140-0114 9140-0210 9100-1641 9100-1641	1 4 1 0 0	10	COIL-MLD 100UM 5% Q=50 .155D%,375LG-NOM COIL-MLD 10UH 10% Q=55 .155D%,375LG-NOM COIL-MLD 100UM 5% Q=50 .155D%,375LG-NOM COIL-MLD 240UM 5% Q=65 .155D%,375LG-NOM COIL-MLD 240UM 5% Q=65 .155D%,375LG-NOM	28480 28480 28480 28480	9140-0210 9140-0114 9140-0210 9100-1641 9100-1641
A10L6 A10L7 A10L8 A10L9 A10L10	9140-0144 9140-0210 9140-0144 9140-0210 9140-0210	0 1 0 1 1	4	COIL-MLD 4,7UM 10% Q=45 .0950%,25LG=NOM COIL-MLD 100UM 5% Q=50 .1550%,375LG=NOM COIL-MLD 4,7UM 10% Q=45 .0950%,25LG=NOM COIL-MLD 100UM 5% Q=50 .1550%,375LG=NOM COIL-MLD 100UM 5% Q=50 .1550%,375LG=NOM	28480 28480 28480 28480	9140=0144 9140=0210 9140=0144 9140=0210 9140=0210
A10L11 A10L12 A10L13 A10L14	9140+0210 9140-0155 08754-80002 9140-0155	1 3 3 3		COIL-MLD 100UH 5% Q=50 .155D%,375LG-NOM COIL-MLD 28UH 1% Q=60 .156D%,375LG-NOM INDUCTOR, VARIABLE COIL-MLD 28UH 1% Q=60 .156D%,375LG-NOM	28480 28480 28480 28480	9140-0210 9140-0155 08754-80002 9140-0155
A:0G: A:0G2 A:0G3 A:0G4 A:0G5	1853-0316 1853-0034 1855-0413 1853-0034 1855-0413	1 0 3 0 3		TRANSISTOR-DUAL PNP PD=500MM TRANSISTOR PNP SI TO-18 PD=360MM TRANSISTOR J-FET P-CHAN D-WODE TO-18 SI TRANSISTOR PNP SI TO-18 PD=360MM TRANSISTOR J-FET P-CHAN D-WODE TO-18 SI	28480 28480 27014 28480 27014	1853-0316 1853-0034 2N5116 1853-0034 2N5116
A10R1 A10R2 A10R3 A10R4 A10R5	0698-0083 0698-6624 0698-6624 0698-6317 0698-6317	8 5 5 3	2	RESISTOR 1,96K 1% ,125W F TC=0+-100 RESISTOR 2K ,1% ,125W F TC=0+-25 RESISTOR 2K ,1% ,125W F TC=0+-25 RESISTOR 500 .1% ,125W F TC=0+-25 RESISTOR 500 .1% ,125W F TC=0+-25	24546 28480 28480 03888 03888	C4=1/8=TU=19b1=F 0b98=6624 0b98=6b24 pMt55=1/8=T9=500R=B pmt55=1/8=T9=500R=B
A10R6 A10R7 A10R8 A10R9 A10R10	0757-0459 0698-3442 0698-6740 0757-0416 0757-0416	8 9 6 7 7		RESISTOR 56,2K 1% .125M F TC=0+=100 RESISTOR 237 1% .125M F TC=0+=100 RESISTOR 15K .1% .125M F TC=0+=100 RESISTOR 511 1% .125M F TC=0+=100 RESISTOR 511 1% .125M F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-5022=F C4-1/8-T0-237R=F 0698-6740 C4-1/8-T0-511R=F C4-1/8-T0-511R=F
A10R11 A10R12 A10R13 A10R14 A10R15	0757-0438 0757-0440 0698-3454 0698-3459 2100-3061	3 7 3 8 5	3 1	RESISTOR 5,11K 1% ,125W F TC=0+-100 RESISTOR 7,5K 1% ,125W F TC=0+-100 RESISTOR 215K 1% ,125W F TC=0+-100 RESISTOR 155K 1% ,125W F TC=0+-100 RESISTOR 155K 1% ,125W F TC=0+-100 RESISTOR-TRMR 500K 10% C SIDE-ADJ 17-TRN	24546 24546 24546 28480 02111	C4-1/8-T0-5111-F C4-1/8-T0-7501-F C4-1/8-T0-2153-F 0698-3459 43P504
A10R16 A10R17 A10R18 A10R19 A10R20	0698-3161 0757-0279 0698-3153 0757-0465 2100-3274	9 6 2		RESISTOR 38.3K 1% .125W F TC=0+-100 RESISTOR 3.16K 1% .125W F TC=0+-100 RESISTOR 3.83K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR-TRMR 10K 10% C SIDE-ADJ 1-TRN	24546 24546 24546 24546 28480	C4-1/8-T0-3832-F C4-1/8-T0-3161-F C4-1/8-T0-3831-F C4-1/8-T0-1003-F 2100-3274
A10R21 A10R22 A10R23 A10R24 A10R25	0757-0465 0698-3156 0757-0442 0698-0083 0757-0438	6 9 8 3		RESISTOR 100K 1% ,125W F TC=0+-100 RESISTOR 14,7K 1% ,125W F TC=0+-100 RESISTOR 10K 1% ,125W F TC=0+-100 RESISTOR 1,96K 1% ,125W F TC=0+-100 RESISTOR 5,11K 1% ,125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1003-F C4-1/8-T0-1472-F C4-1/8-T0-1002-F C4-1/8-T0-1901-F C4-1/8-T0-5111-F
A10R26 A10R27 A10R28 A10R29 A10R30	0757-0401 0757-0279 0757-0438 0757-0438 0757-0280	0 0 3 3 3	:	RESISTOR 100 1% ,125W F TC=0+-100 RESISTOR 3,16K 1% ,125W F TC=0+-100 RESISTOR 5,11K 1% ,125W F TC=0+-100 RESISTOR 5,11K 1% ,125W F TC=0+-100 RESISTOR 1K 1% ,125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-101-F C4-1/8-T0-3161-F C4-1/8-T0-5111-F C4-1/8-T0-5111-F C4-1/8-T0-5101-F
A10R31 A10R32 A10R33 A10R34 A10R35	0757-0416 0757-0401 0757-0438 0757-0280 0757-0442	7 0 3 3 9		RESISTOR 511 1% ,125W F TC=0+=100 RESISTOR 100 1% ,125W F TC=0+=100 RESISTOR 5,11K 1% ,125W F TC=0+=100 RESISTOR 1K 1% ,125W F TC=0+=100 RESISTOR 1K 1% ,125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-511R-F C4-1/8-T0-101-F C4-1/8-T0-5111-F C4-1/8-T0-1001-F C4-1/8-T0-1002-F
A10R36 A10R37 A10R38 A10R39 A10R40	2100-3273 0757-0280 0757-0274 0757-0401 0698-3161	1 3 5 0 9		RESISTOR-TRMR 2K 10% C SIDE-40J 1-TRN RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1,21K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 38.3K 1% .125W F TC=0+-100	28480 24546 24546 24546 24546	2100-3273 C4-1/8-T0-1001-F C4-1/8-T0-1213-F C4-1/8-T0-101-F C4-1/8-T0-3832-F
A10R41 A10R42 A10R43 A10R44 A10R45	0757-0416 0757-0416 0698-3151 0757-1094 0757-1094	7 7 7 9		RESISTOR 511 1% ,125W F TC=0+=100 RESISTOR 511 1% ,125W F TC=0+=100 RESISTOR 2,87K 1% ,125W F TC=0+=100 RESISTOR 1,47K 1% ,125W F TC=0+=100 RESISTOR 1,47K 1% ,125W F TC=0+=100	24546 24546 24546 24546 24546	C4-1/8-70-511R-F C4-1/8-70-511R-F C4-1/8-70-2871-F C4-1/8-70-1471-F C4-1/8-70-1471-F

Table 6-3. Replaceable Parts

0278 0417 02178 02178 03107 03107 03107 03107 03107 03107 0401	89893 02000 00786 69999 89890 02000 03086 69973 777	5 6	RESISTOR 562 1% ,125% F TC=0+=100 RESISTOR 1,78% 1% ,125% F TC=0+=100 RESISTOR 562 1% ,125% F TC=0+=100 RESISTOR 562 1% ,125% F TC=0+=100 RESISTOR 16 1% ,125% F TC=0+=100 RESISTOR 3,16% 1% ,125% F TC=0+=100 RESISTOR 100 1% ,125% F TC=0+=100 RESISTOR 1,78% 1% ,125% F TC=0+=100 RESISTOR 3,16% 1% ,125% F TC=0+=100 RESISTOR 100 1% ,125% F TC=0+=100 RESISTOR 50 1% 1% 125% F TC=0+=10	245446 245446 245446 245446 245546 24554	C4-1/8-T0-562H-F C4-1/8-T0-1781-F C4-1/8-T0-1781-F C4-1/8-T0-1781-F C4-1/8-T0-1781-F C4-1/8-T0-3161-F 43P202 C4-1/8-T0-3161-F C4-1/8-T0-3161-F C4-1/8-T0-3161-F C4-1/8-T0-3161-F C4-1/8-T0-3161-F C4-1/8-T0-101-F C4-1/8-T0-101-F C4-1/8-T0-101-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-101-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-501-F
3109 0279 0279 0279 0279 0279 0279 0270 0270	20000 00786 69999 89890 02000 03086 69973 777	4	RESISTOR 3-16K 12 1.25W F TC=0+-100 RESISTOR 100 12 1.25W F TC=0+-100 RESISTOR 100 12 1.25W F TC=0+-100 RESISTOR 100 12 1.25W F TC=0+-100 RESISTOR 1.5W 12 1.25W F TC=0+-100 RESISTOR 1.5W 12 1.25W F TC=0+-100 RESISTOR 10K 12 1.25W F TC=0+-25 RESISTOR 10K 12 1.25W F TC=0+-100 RESISTOR 1.47K 12 1.25W F TC=0+-100 RESISTOR 1.78K 12 1.25W F TC=0+-100 RESISTOR 1.78K 12 1.25W F TC=0+-100 RESISTOR 1.78K 12 1.25W F TC=0+-100 RESISTOR 3.16K 12 1.25W F TC=0+-100 RESISTOR 100 12 1.25W F TC=0+-100 RESISTOR 5.11K 12 1.25W F TC=0+-100 RESISTOR 5.11K 12 1.25W F TC=0+-100 RESISTOR 5.11K 12 1.25W F TC=0+-100	2111 24544 2454 24544 24	43P202 C4-1/8-T0-3161=F C4-1/8-T0-3161=F C4-1/8-T0-3161=F C4-1/8-T0-3161=F C4-1/8-T0-3161=F C4-1/8-T0-101=F C4-1/8-T0-101=F C4-1/8-T0-1001=F C4-1/8-T0-1002=F C4-1/8-T0-1002=F C4-1/8-T0-1002=F C4-1/8-T0-1002=F C4-1/8-T0-1002=F C4-1/8-T0-101=F C4-1/8-T0-1002=F
9401 940835 940835 940835 94083	0786 69999 89890 020000 03086 69973 7777		RESISTOR 100 1% 125% F TC=0+=100	245446 245446 245446 2455446 2455446 244554 244554 244455 244455 244455 244455 244456 2454	C4-1/8-T0-101-F C4-1/8-T0-1901-F 00-98-6025 00-98-6025 00-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-101-F C4-1/8-T0-108-F C4-1/8-T0-178-F C4-1/8-T0-178-F C4-1/8-T0-178-F C4-1/8-T0-178-F C4-1/8-T0-178-F C4-1/8-T0-178-F C4-1/8-T0-178-F C4-1/8-T0-178-F C4-1/8-T0-178-F C4-1/8-T0-101-F 00-98-6025 00-98-6025 C4-1/8-T0-1002-F
9442 1094	9999 89890 020000 03086 69973 777		RESISTOR 10% 1% ,125% F TC=0+=100 RESISTOR 10, 47% 1% ,125% F TC=0+=100 RESISTOR 1,47% 1% ,125% F TC=0+=100 RESISTOR 1,47% 1% ,125% F TC=0+=100 RESISTOR 1,47% 1% ,125% F TC=0+=100 RESISTOR 552 1% ,125% F TC=0+=100 RESISTOR 552 1% ,125% F TC=0+=100 RESISTOR 552 1% ,125% F TC=0+=100 RESISTOR 3,16% 1% ,125% F TC=0+=100 RESISTOR 100 1% ,125% F TC=0+=100 RESISTOR 6% ,1% ,125% F TC=0+=00 RESISTOR 10% 1% ,125% F TC=0+=100 RESISTOR 7,5% 1% 1,125% F TC=0+=100 RESISTOR 7,5% 1% 1% ,125% F TC=0+=100 RESISTOR 7,5% 1% 1% ,125% F TC=0+=100 RESISTOR 5,11% 1% ,125% F TC=0+=100	24546 24546	C4-1/8-T0-1002=F C4-1/8-T0-1471=F C4-1/8-T0-1471=F C4-1/8-T0-1471=F C4-1/8-T0-1781=F C4-1/8-T0-1781=F C4-1/8-T0-1781=F C4-1/8-T0-1781=F C4-1/8-T0-3161=F C4-1/8-T0-3161=F C4-1/8-T0-3161=F C4-1/8-T0-3161=F C4-1/8-T0-1161=F C4-1/8-T0-1161=F C4-1/8-T0-191=F C4-1/8-T0-191=F C4-1/8-T0-191=F C4-1/8-T0-191=F C4-1/8-T0-1901=F C4-1/8-T0-1901=F C4-1/8-T0-1002=F
278 4417 1278 1279 1279 1279 1279 1279 14420 14438 14438	9890 020000 03086 69973 7777		RESISTOR 1,78K 1% .125W F TC=0+=100 RESISTOR 52 1% .125W F TC=0+=100 RESISTOR 3,16K 1% .125W F TC=0+=100 RESISTOR 100 1% .125W F TC=0+=100 RESISTOR 100 1% .125W F TC=0+=100 RESISTOR 100 1% .125W F TC=0+=100 RESISTOR 1750 1% .125W F TC=0+=100 RESISTOR 1,96K 1% .125W F TC=0+=25 RESISTOR 6K .1% .125W F TC=0+=25 RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 7,5K 1% .125W F TC=0+=100 RESISTOR 7,5K 1% .125W F TC=0+=100 RESISTOR 7,5K 1% .125W F TC=0+=100 RESISTOR 5,11K 1% .125W F TC=0+=100	24546 24546 24546 24546 24546 24546 24546 24546 24546 24546 24546 24546 24546 24546 24546 24546 24546	Cu-1/8-T0-1781=F Cu-1/8-T0-528=F Cu-1/8-T0-1781=F Cu-1/8-T0-1161=F Cu-1/8-T0-1161=F Cu-1/8-T0-1161=F Cu-1/8-T0-1161=F Cu-1/8-T0-1161=F Cu-1/8-T0-101=F Cu-1/8-T0-101=F Cu-1/8-T0-101=F Cu-1/8-T0-101=F Cu-1/8-T0-1001=F
109 1279 1279 1401 1420 1123 1625 1625 1625 16442 1442 14440	20000 003086 69973		RESISTOR-THMR 2K 10% C SIDE-ADJ 17-TRN RESISTOR 3,16K 1% .125W F TC=0+-100 RESISTOR 3,16K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 750 1% .125W F TC=0+-100 RESISTOR-TRWR 500 10% C SIDE-ADJ 17-TRN RESISTOR-TRWR 500 10% C SIDE-ADJ 17-TRN RESISTOR .196K 1% .125W F TC=0+-100 RESISTOR 6K .1% .125W F TC=0+-25 RESISTOR 6K .1% .125W F TC=0+-25 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 7,5K 1% .125W F TC=0+-100 RESISTOR 7,5K 1% .125W F TC=0+-100 RESISTOR 5.11% 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546 02111 24546 28480 24546 24546 24546	43P202 C4-1/8-T0-3161=F C4-1/8-T0-3161=F C4-1/8-T0-101=F C4-1/8-T0-751=F 43P501 C4-1/8-T0-1961=F 0698-6625 0698-6625 C4-1/8-T0-1002=F C4-1/8-T0-1002=F C4-1/8-T0-1002=F C4-1/8-T0-1002=F
420 5123 6083 6025 6025 4442 4440 4438 4416	3 0 8 6 6 9 9 7 3 7		RESISTOR 750 1% 125% F TC=0+=100 RESISTOR 1,96% 1% .125% F TC=0+=100 RESISTOR 6% .1% .125% F TC=0+=25 RESISTOR 6% .1% .125% F TC=0+=25 RESISTOR 6% .1% .125% F TC=0+=100 RESISTOR 10% 1% .125% F TC=0+=100 RESISTOR 10% 1% .125% F TC=0+=100 RESISTOR 7,5% 1% .125% F TC=0+=100 RESISTOR 5.11% 1% .125% F TC=0+=100	24546 02111 24546 28480 24546 24546 24546	C4=1/8=T0=751=F 43P501 C4=1/8=T0=1961=F 0698=6625 C4=1/8=T0=1002=F C4=1/8=T0=1002=F C4=1/8=T0=1001=F
442 440 438 416	9 7 3 7 7		RESISTOR 10R 1X ,125W F TC=0+=100 RESISTOR 7,5K 1X ,125W F TC=0+=100 RESISTOR 5,11K 1X ,125W F TC=0+=100	24546 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-7501-F
154	7		RESISTOR 511 1% 125W F TC=0+-100		
084	2		RESISTOR-TAMR IN 10% C SIDE-ADJ 17-TRN RESISTOR 11% 12 125w F TC=00+100 RESISTOR 2.15% 1% 125w F TC=00+-100 RESISTOR 14.7% 1% 125w F TC=0+-100	24546 02111 24546 24546 24546	C4-1/8-T0-511P-F 43P102 C4-1/8-T0-1101-F C4-1/8-T0-2151-F C4-1/8-T0-1472-F
401	۰		RESISTOR 100 1% .125w F TC=0+=100	24546	C4-1/8-T0-101-F
273	0	- 1	SWITCH-SL DPDT-NS SUBMIN 2A 120VAC PC	28480	3101-1273
	0	109	TERMINAL TEST POINT PCB TERMINAL TEST POINT PCB	00000	DRDER BY DESCRIPTION ORDER BY DESCRIPTION
092 427 427	3 3 6 6	2 3	IC OP AMP TO-99 IC OP AMP TO-99 IC 1496 MODULATOR TO-100 IC 1496 MODULATOR TO-100 IC FF ECL D-M/S DUAL	28480 28480 04713 04713	1826-0092 1826-0092 MC1496G MC10131P
204 6 817 8 447 2	5 6 8 2 8	1	IC OSC ECL NETWORK-RES 8-PIN-SIP ,1-PIN-SPCG IC FF ECL D-M3 DUAL IC OP AMP TO-99 IC 741 OP AMP TO-99	04713 11236 04713 27014 28480	MC1648L 750-81-R1K MC10131P LF257H 1826-0261
802 1 204 6 817 8	1 6 8	2	IC OP AMP TO=99 IC GATE ECL NOR QUAD 2=INP NETHORK=RES 8=PIN-SIP ,1=PIN=SPCG IC FF ECL D=M/S DUAL IC OP AMP TO=99	28480 04713 11236 04713 28480	1826-0092 MC10102P 750-81-81K MC10131P 1826-0092
308 4	4		NETWORK-RES 8-PIN-SIP .1-PIN-SPCG IC RCVR ECL LINE RCVR TPL 2-INP TRANSISTOR ARRAY	11236 04713 01928	750-81-R1K MC10116L CA3146E
680 7	7		DIODE-ZNR 1N827 6.2V 5% 00-7 PD#.25W	24046	1827
- 1		1	BOARD EXTRACTOR, ORANGE PIN	28480 28480	5040-6852 5000-9043
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	92 94 17 92 94 18 98 18 90	322 3 1024 6 177 8 102 3 104 6 108 4 102 8	22 3 1 2 1 2 1 4 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	IC OP AMP TD=99 IC GATE ECL NOR QUAD 2=INP NETHORK=RES 8=PIN=SIP .1=PIN=SPCG IC FF ECL D=M/S DUAL IC OP AMP TD=99 NETHORK=RES 8=PIN=SIP .1=PIN=SPCG IC RCVR ECL LINE RCVR TPL 2=INP TRANSISTOR ARRAY DIODE=ZNR 1N827 6.2V 5% DD=7 PD=.25W A10 MISCELLANEOUS PARTS	1

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Num
A11		П		DETECTOR, SAME AS AB, USE PREFIX ALL		
A12	08754-60012	3	1	MARKER GENERATOR ASSEMBLY	28480	08754-60012
A12C1 A12C2 A12C3 A12C4 A12C5	0160-3877 0160-0572 0160-3879 0160-3872 0160-3873	5 1 7 0	1 1	CAPACITOR-FXD 100PF +-20% 200VDC CER CAPACITOR-FXD 2200PF +-20% 100VDC CER CAPACITOR-FXD 0.1UF +-20% 100VDC CER CAPACITOR-FXD 2.2PF +-25PF 200VDC CER CAPACITOR-FXD 4.7PF +5PF 200VDC CER	28480 28480 28480 28480	0160-3877 0160-0572 0160-3879 0160-3872 0160-3873
A12C6 A12C7 A12C8 A12C9 A12C10	0160=4084 0160=4084 0160=4084 0160=2208 0160=0945	88842	z	CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 300F +-5% 300VDC MICA CAPACITOR-FXD 910PF +-5% 100VDC MICA	28480 28480 28480 28480 28480	0160-4084 0160-4084 0160-4084 0160-2208 0160-0945
A12C11 A12C12 A12C13 A12C14 A12C15	0160-3539 0160-0174 0180-0197 0160-2220 0160-2230	6 6 0 2	1 1 1	CAPACITOR-FXD 820PF +-5% 100VDC MICA CAPACITOR-FXD .47UF +80-20% 25VDC CER CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD 1200PF +-5% 300VDC MICA CAPACITOR-FXD 3300PF +-5% 300VDC MICA	28480 28480 56289 28480 28480	0160=3539 0160=0174 1500225x9020A2 0160=2220
A12C16 A12C17 A12C18 A12C19 A12C20	0160-2229 0160-4084 0160-4084 0160-4084 0160-4084	8 8 8	1	CAPACITOR-FXD 3000PF +-5% 300VDC MICA CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480 28480	0160-2229 0160-4084 0160-4084 0160-4084
A12C21 A12C22 A12C24 A12C24	0180-0197 0160-2306 0160-2208 0160-2228 0160-0157	6 3 4 6 8	1 2	CAPACITOR-FXD 2.2UF+=10% 20VDC TA CAPACITOR-FXD 27PF +=5% 300VDC MICA CAPACITOR-FXD 330PF +=5% 300VDC MICA CAPACITOR-FXD 2700PF +=5% 300VDC MICA CAPACITOR-FXD 4700PF +=10% 200VDC POLYE	56289 28480 28480 28480 28480	1500225x902042 0160=2306 0160=2208 0160=2228 0160=0157
A12C26 A12C27 A12C28 A12C29 A12C30	0160-2204 0160-2203 0160-2055 0121-0036 0180-0197	0 9 0 8	1	CAPACITOR-FXD 100PF +-5x 300VDC MICA CAPACITOR-FXD 91PF +-5x 300VDC MICA 0+70 CAPACITOR-FXD 01UF +80-20x 100VDC CER CAPACITOR-V TRMR-CER 5,5-18PF 350V CAPACITOR-FXD 2.2UF+-10x 20VDC TA	28480 28480 28480 52763 56289	0160-2204 0160-2203 0160-2055 300324 5,5/18PF NPO 150D225x9020A2
A12C31 A12C32 A12C33 A12C34 A12C35	0180-0197 0180-0197 0180-0197 0180-0197 0160-2055 0180-0197	8 8 8 9		CAPACITOR-FXD 2.2UF+-10X 20VDC TA CAPACITOR-FXD 2.2UF+-10X 20VDC TA CAPACITOR-FXD 2.2UF+-10X 20VDC TA CAPACITOR-FXD 0.1UF +80-20X 100VDC CER CAPACITOR-FXD 2.2UF+-10X 20VDC TA	56289 56289 56289 28480 56289	150D225X9020A2 150D225X9020A2 150D225X9020A2 0160-2055 150D225X9020A2
A12C36 A12C37 A12C38 A12C39 A12C40	0180-0197 0160-2055 0160-4084 0160-4084 0160-2055	8 9 8 8		CAPACITOR-FXD 2.2UF+-10X 20VDC TA CAPACITOR-FXD .01UF +80-20X 100VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .01UF +80-20X 100VDC CER	56289 28480 28480 28480 28480	150D225X9020A2 0160=2055 0160=4064 0160=4064 0160=2055
A12C41 A12C42 A12C44 A12C44	0160-2055 0160-2055 0160-2055 0160-2055 0160-0291 0160-4084	9 9 3 8		CAPACITOR-FXD ,01UF +80-20% 100VDC CER CAPACITOR-FXD ,01UF +80-20% 100VDC CER CAPACITOR-FXD ,01UF +80-20% 100VDC CER CAPACITOR-FXD ,1UF +-10% 35VDC TA CAPACITOR-FXD ,1UF +-20% 50VDC CER	28480 28480 28480 56289 28480	0160+2055 0160+2055 0160+2055 1500105x9035A2 0160+4084
A12C46 A12C47 A12C48 A12C49 A12C50	0160-4084 0160-4084 0160-4084 0160-3456 0160-3456	8 8 8 6		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 1000PF +-10% 1KVDC CER CAPACITOR-FXD 1000PF +-10% 1KVDC CER	28480 28480 28480 28480 28480	0160=4084 0160=4084 0160=4084 0160=3456 0160=3456
A12C51 A12C52 A12C53 A12C54 A12C55	0160-2055 0160-2265 0160-2264 0160-4084 0160-2055	9 3 2 8 9	1 2	CAPACITOR-FXD ,01UF +80-20% 100VDC CER CAPACITOR-FXD 22PF +-5% 500VDC CER 0+-30 CAPACITOR-FXD 20PF +-5% 500VDC CER 0+-30 CAPACITOR-FXD ,1UF +-20% 50VDC CER CAPACITOR-FXD ,01UF +80-20% 100VDC CER	28480 28480 28480 28480 28480	0160=2055 0160=2265 0160=2264 0160=2064 0160=2055
A12054 A12057	0160=3878 0160=3878	6		CAPACITOR-FXD 1000PF +-20% 100VDC CER CAPACITOR-FXD 1000PF +-20% 100VDC CER	28480 28480	0160=3878 0160=3878
A:2CR: A:2CR2 A:2CR3 A:2CR4 A:2CR5	1901-1068 1901-1068 1901-0457 1901-0179 1901-0179	5 5 4 7 7	1 5	DIODE-SCHOTTKY DIODE-SCHOTTKY DIODE-STEP RCVY 30V DO-7 DIODE-SHITCHING 15V 50MA 750PS DO-7 DIODE-SHITCHING 15V 50MA 750PS DO-7	28480 28480 28480 28480 28480	1901-1068 1901-1068 1901-0457 1901-0479 1901-0179
A12CR6 A12CR7 A12CR8 A12CR9 A12CR10	1901-0179 1901-0179 1901-0179 1901-0050 1901-0050	7 7 7 3 3		DIODE-SMITCHING 15V SOMA 750PS DO-7 DIODE-SMITCHING 15V SOMA 750PS DO-7 DIODE-SMITCHING 15V SOMA 750PS DO-7 DIODE-SMITCHING 80V ZOMA ZNS DO-35 DIODE-SMITCHING 80V ZOMA ZNS DO-35	28480 28480 28480 28480 28480	1901-0179 1901-0179 1901-0179 1901-0050 1901-0050
A12CR11	1901-0050	3		DIODE-SWITCHING BOV 200MA 2NS DD-35	28480	1901-0050
A12J1 A12J2	1250-0257 1250-0257	1	2	CONNECTOR-RF 3MB M PC 50-0HM Connector-RF 8MB M PC 50-0HM	28480 28480	1250-0257 1250-0257

Model 8754A Replaceable Parts

Table 6-3. Replaceable Parts

. 1

Reference	HP Part	С	Qty	Description	Mfr	Mfr Part Number
Designation A12L1	Number 9100-2817	D 4		•	Code	
A12L1 A12L3 A12L4 A12L5	9100-2017 9100-1620 9100-1621 9140-0210 9100-1644	5 6 1 3	1 1 2	COIL-MLD 100NH 5% .095DX.25LG-NOM COIL-MLD 15UH 10% G=55 .155DX.375LG-NOM COIL-MLD 18UH 10% G=75 .155DX.375LG-NOM COIL-MLD 100UH 5% G=50 .155DX.375LG-NOM COIL-MLD 330UH 5% G=65 .19DX.44LG-NOM	28480 28480 28480 28480	9100-2817 9100-1620 9100-1621 9140-0210 9100-1644
A12L6 A12L7 A12L8 A12L9 A12L10	9100-1645 9140-0210 9140-0210 9140-0210 9140-0210	1 1 1 1	1	COIL-MLD 390UH 5% G=65 .19D%.44LG-NOM COIL-MLD 100UH 5% G=50 .155D%,375LG-NOM COIL-MLD 100UH 5% G=50 .155D%,375LG-NOM COIL-MLD 100UH 5% G=50 .155D%,375LG-NOM COIL-MLD 100UH 5% G=50 .155D%,375LG-NOM	28480 28480 28480 28480	9100-1645 9140-0210 9140-0210 9140-0210 9140-0210
A12L11 A12L12 A12L13 A12L14	9140-0210 9140-0105 9140-0210 9140-0210	1 3 1 1	1	COIL-MLD 100UM 5% Q=50 ,1550%,375LG=NOM COIL-MLD 8,2UM 10% Q=50 ,1550%,375LG=NOM COIL-MLD 100UM 5% Q=50 ,1550%,375LG=NOM COIL-MLD 100UM 5% Q=50 ,1550%,375LG=NOM	28480 28480 28480 28480	9140-0210 9140-0210 9140-0210
A1201 A1202 A1203 A1204 A1205	1855-0406 1855-0049 1855-0049 1853-0451 1854-0019	1 1 5 3	3 2	TRANSISTOR J=FET P=CHAN D=MODE SI TRANSISTOR=JFET OUAL N=CHAN D=MODE SI TRANSISTOR=JFET DUAL N=CHAN D=MODE SI TRANSISTOR PNP 2N3799 SI TO=18 PD=360MW TRANSISTOR NPN SI TO=18 PD=360MW	32293 28480 28480 01295 28480	IT110 1855-0049 1855-0049 2N3799 1854-0019
A1206 A1207 A1208 A1209	1853-0451 1855-0406 1855-0406	5 4 4		TRANSISTOR PNP 2N3799 SI TO-16 PD=360MH NOT ASSIGNED TRANSISTOR J-FET P-CHAN D-MODE SI TRANSISTOR J-FET P-CHAN D-MODE SI	01295 32293 32293	2N3799 IT110 IT110
A12R1 A12R2 A12R3 A12R4 A12R5	0698-7212 0698-3158 0698-7209 0698-7197 2100-3123	9 4 4 9 0	7 3 1 1	RESISTOR 100 1% ,05% F TC=0+-100 RESISTOR 23,7K 1% ,125% F TC=0+-100 RESISTOR 75 1% ,05% F TC=0+-100 RESISTOR 23,7 1% ,05% F TC=0+-100 RESISTOR-TRMR 500 10% C SIDE-ADJ 17-TRN	24546 24546 24546 24546 02111	C3-1/8-T0-100R-G C4-1/8-T0-2372-F C3-1/8-T00-75R0-G C3-1/8-T00-23R7-G 43P501
A12R6 A12R7 A12R8 A12R9 A12R10	0698-7212 0757-0401 0757-0401 0757-0279 0698-7212	9 0 0 0 9		RESISTOR 100 1% .05% F TC=0+-100 RESISTOR 100 1% .125% F TC=0+-100 RESISTOR 100 1% .125% F TC=0+-100 RESISTOR 3.16% 1% .125% F TC=0+-100 RESISTOR 100 1% .05% F TC=0+-100	24546 24546 24546 24546	C3-1/8-T0-100R-G C4-1/8-T0-101-F C4-1/8-T0-101-F C4-1/8-T0-3161-F C3-1/8-T0-100R-G
A12R11 A12R12 A12R13 A12R14 A12R15	0698=7260 2100=3054 2100=3162 0757=0416 0757=0401	7 6 7 7 0	1	RESISTOR 10K 1% .05W F TC=0+=100 RESISTOR=TRMR 50K 10% C SIDE=ADJ 17=TRN RESISTOR=TRMR 200K 10% C SIDE=ADJ 17=TRN RESISTOR 511 1% .125W F TC=0+=100 RESISTOR 100 1% .125W F TC=0+=100	24546 02111 02111 24546 24546	C3=1/8-T0=1002=G 43P503 43P204 C4=1/8-T0=511R=F C4=1/8-T0=101=F
A12R16 A12R17 A12R18 A12R19 A12R20	0757-0280 0698-3438 0757-0280 2100-3154 0757-0279	3 3 7 0	s	RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 147 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR-TAWN 1K 10% C SIDE-4DJ 17-TRN RESISTOR 3.16K 1% .125W F TC=0+=100	24546 24546 24546 02111 24546	C4=1/8=T0=1001=F C4=1/8=T0=147R=F C4=1/8=T0=1001=F 43=102 C4=1/8=T0=3161=F
A12R21 A12R22 A12R23 A12R24 A12R25	0698=3440 0698=3445 0757=0280 0757=0401 0757=0442	7 2 3 0 9		RESISTOR 196 1% ,125% F TC=0+=100 RESISTOR 348 1% ,125% F TC=0+=100 RESISTOR 1% 1% ,125% F TC=0+=100 RESISTOR 100 1% ,125% F TC=0+=100 RESISTOR 100 1% ,125% F TC=0+=100	24546 24546 24546 24546 24546	C4=1/8=T0=196R=F C4=1/8=T0=348R=F C4=1/8=T0=1001=F C4=1/8=T0=101=F C4=1/8=T0=1002=F
A12R26 A12R27 A12R28 A12R28 A12R29	2100=3123 0757=0280 0757=0280 0+98=3162 0757=0440	0 3 3 0 7		RESISTOR-TRMR 500 10% C SIDE-ADJ 17-TRN RESISTOR 1K 1% ,125W F TC=0+-100 RESISTOR 1K 1% ,125W F TC=0+-100 RESISTOR 46,4K 1% ,125W F TC=0+-100 RESISTOR 7,5K 1% ,125W F TC=0+-100	02111 24546 24546 24546 24546	43P501 C4=1/8=T0=1001=F C4=1/8=T0=1001=F C4=1/8=T0=4842=F C4=1/8=T0=7501=F
A12R31 A12R32 A12R33 A12R34 A12R35	0757=0438 0757=0438 0757=0438 0757=0416 0698=3441	3 3 7 8	6	RESISTOR 5.11K 1% .125W F TC=0+=100 RESISTOR 5.11K 1% .125W F TC=0+=100 RESISTOR 5.11K 1% .125W F TC=0+=100 RESISTOR 511 1% .125W F TC=0+=100 RESISTOR 215 1% .125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-5111-F C4-1/8-T0-5111-F C4-1/8-T0-5111-F C4-1/8-T0-511R-F C4-1/8-T0-215R-F
A12R36 A12R37 A12R38 A12R39 A12R40	0757=0416 0757=0280 0698=3158 0757=0280 0757=0442	7 3 4 3 9		RESISTOR 511 1% ,125% F TC=0+=100 RESISTOR 1K 1% ,125% F TC=0+=100 RESISTOR 23,7K 1% ,125% F TC=0+=100 RESISTOR 1K 1% ,125% F TC=0+=100 RESISTOR 10K 1% ,125% F TC=0+=100	24546 24546 24546 24546 24546	C4=1/8=T0=511R=F C4=1/8=T0=1001=F C4=1/8=T0=2572=F C4=1/8=T0=1001=F C4=1/8=T0=1002=F
A12R41 A12R42 A12R43 A12R44 A12R45	0757-0416 0757-0438 0757-0401 0757-0442 0757-0442	7 3 0 9		RESISTOR 511 1% ,125W F TC=0+=100 RESISTOR 5,11K 1% ,125W F TC=0+=100 RESISTOR 100 1% ,125W F TC=0+=100 RESISTOR 10K 1% ,125W F TC=0+=100 RESISTOR 10K 1% ,125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-511R=F C4-1/8-T0-5111=F C4-1/8-T0-101=F C4-1/8-T0-1002=F C4-1/8-T0-1002=F
A12R46 A12R47 A12R48 A12R49 A12R50	0698-3455 0683-1555 0757-0441 0757-0442 0757-0280	4 0 8 9 3	1	RESISTOR 261K 1% ,125m F TC=0+-100 RESISTOR 1,5M 5% ,25m FC TC==000/+1100 RESISTOR 8,25K 1% ,125m F TC=0+-100 RESISTOR 10K 1% ,125m F TC=0+-100 RESISTOR 1K 1% ,125m F TC=0+-100	24546 01121 24546 24546 24546	C4=1/8=70=2613=F C8 555 C4=1/8=70=8251=F C4=1/8=70=1002=F C4=1/8=70=1001=F
A12R51 A12R52 A12R53	0757-0280 0757-0280 0757-0280	3 3 3		RESISTOR 1K 1% 125W F TC=0+=100 RESISTOR 1K 1% 125W F TC=0+=100 RESISTOR 1K 1% 125W F TC=0+=100	24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F
A12R54 A12R55	0757=0280 0698=7212	3 9		RESISTOR 1K 1% 125W F TC=0+=100 RESISTOR 100 1% .05W F TC=0+=100	24546 24546	C4-1/8-T0-1001=F C3-1/8-T0-100R=G

Table 6-3. Replaceable Parts

Reference Designation		S a	lty	Description	Mfr Code	Mfr Part Numbe
A12R56 A12R57 A12R58 A12R59 A12R60	0757-0440 0757-0443 0757-0417	3 7 0 8 8	4	RESISTOR 1K 1% ,125W F TC=0+-100 RESISTOR 7,5K 1% ,125W F TC=0+-100 RESISTOR 11K 1% ,125W F TC=0+-100 RESISTOR 502 1% ,125W F TC=0+-100 RESISTOR 215 1% ,125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-7501-F C4-1/8-T0-1102-F C4-1/8-T0-502R-F C4-1/8-T0-215R-F
A12R61 A12R62 A12R63	0757-0280 0757-0442	3	!	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 NOT ASSIGNED	24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1002-F
A121P1~ A121P6	0360-0535			TERMINAL TEST POINT PCB	00000	ORDER BY DESCRIPTION
A12U1 A12U2 A12U3 A12U4 A12U5	1820=1363 1810=0204 1820=0809	5 6 8 2	3 1 1	IC CNTR ECL BCD POS=EDGE=TRIG IC CNTR ECL BCD POS=EDGE=TRIG NETHORK=RES 8=PIN=SIP ,1=PIN=SPCG IC RCVR ECL LINE RCVR UUAD 2=INP IC MUXR/DATA=SEL ECL 8=TO=1=LINE 8=INP	04713 04713 11236 04713 04713	MC10138L MC10138L 750-81-81K MC10115P MC10164L
A12U6 A12U7 A12U8 A12U9 A12U10	1810-0204 1826-0103 1826-0210	1 6 7 7 5	1 1 1	IC MUXR/DATA-SEL CMUS TPL NETHORK=RE3 8-PIN-SIP _1-PIN-SPCG IC WIDEBAND AMPL TO-100 IC COMPARATOR 14-DIP-P IC MULTIPLIER 16-DIP-C	01928 11236 04713 27014 04713	C040538Y 750-81-H1K MC15456 LM361N MC1494L
A12U11 A12U12 A12U13 A12U14 A12U15	1820+1547 1820+1422 1820+1112 1820+1197 1826-0180	3 8 9 0	2 1 3	IC MUXR/DATA-SEL CMOS IC MY TTL LS MONOSTBL RETRIG IC FF TTL LS D-TYPE POS-EDGE-TRIG IC GATE TTL LS NAND QUAD 2-INP IC TIMER TTL MONO/ASTBL	04713 01295 01295 01295 18324	MC140518CL 9N74L3122N 9N74L374N 9N74L900N NE555V
A12VR1 A12VR2	1902-0041	4 0	1	DIODE-ZNR 5.11V 5% DO-7 PD=,4W TC=-,009% DIODE-ZNR 3.83V 5% DO-7 PD=,4W TC=-,051%	28480 28480	1902-0041 1902-3059
A12Y1	0410+0594	8	1	CRYSTAL-QUARTZ 50 MHZ +001% WITH 36PF	28480	0410-0594
				A12 MISCELLANEOUS PARTS		
	5040=6848 5000=9043	7	1	BOARD EXTRACTOR, YELLOW PIN	28480 28480	5040=6848 5000=9043
A13	08754-60013	4	1	PHASE LOCK ASSEMBLY	28480	08754+60013
A13C1 A13C2 A13C3 A13C4 A13C5	0160-4084 0160-4084 0160-4084 0160-4084 0160-4084	8 8 6		CAPACITOR=FXD .1UF +-20X 50VDC CER CAPACITOR=FXD .1UF +-20X 50VDC CER CAPACITOR=FXD .1UF +-20X 50VDC CER CAPACITOR=FXD .1UF +-20X 50VDC CER CAPACITOR=FXD .1UF +-20X 50VDC CER	28480 28480 28480 28480	0160-4084 0160-4084 0160-4084 0160-4084
A13C6 A13C7 A13C8 A13C9 A13C10	0160-4084 0160-4084 0160-0134 0160-3534 0160-0939	8 1 1 4	1 1 1	CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 20PF +-5% 300VDC MICA CAPACITOR-FXD 510PF +-5% 100VDC MICA CAPACITOR-FXD 430PF +-5% 300VDC MICA	28480 28480 28480 28480 28480	0160=4084 0160=4084 0160=0134 0160=5534 0160=0939
A13C11 A13C12 A13C13 A13C14 A13C15	0160-2307 0140-0194 0160-2204 0160-4084 0160-4084	4 1 0 8 8	2 i	CAPACITOR-FXD 47PF +-5X 300VDC MICA CAPACITOR-FXD 110PF +-5X 300VDC MICA CAPACITOR-FXD 10PF +-5X 300VDC MICA CAPACITOR-FXD 1UF +-20X 50VDC CER CAPACITOR-FXD 1UF +-20X 50VDC CER	28480 72136 28480 28480 28480	0150=2307 DM15F111J0300WV1CR 0160=2204 0160=4084 0160=4084
A13C16 A13C17 A13C18 A13C19 A13C20	0150-4084 0150-4084 0150-4084 0150-0197 0180-0197	8 8 8 8		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF20% 50VDC CER CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD 2.2UF+-10% 20VDC TA	28480 28480 28480 56289 56289	150D225x9020A2 150D225x9020A2 150D225x9020A2
A:3C2: A:3C22 A:3C23 A:3C24 A:3C25	0180-0197 0160-2055 0160-4084 0180-0197 0180-0197	8 8 8 8		CAPACITOR-FXD 2.2UF++10X 20YDC TA CAPACITOR-FXD .01UF +80-20X 100VDC CER CAPACITOR-FXD 2.1UF++20X 50YDC CER CAPACITOR-FXD 2.2UF++10X 20YDC TA CAPACITOR-FXD 2.2UF++10X 20YDC TA	56289 28480 28480 56289 56289	1500225X9020A2 0160-2055 0160-4084 1500225X9020A2 1500225X9020A2
A13C26 A13C27 A13C28 A13C29 A13C30	0180-0197 0160-2055 0160-2055 0180-0197 0160-2055	8 9 9 8 9		CAPACITOR-FXD 2.2UF++10% 20VDC TA CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD 2.2UF++10% 20VDC TA CAPACITOR-FXD .01UF +80-20% 100VDC CER	56289 28480 28480 56289 28480	1500225x9020A2 0160-2055 0160-2055 1500225x9020A2 0160-2055
A13C31 A13C32 A13C33 A13C34 A13C35	0160-4084 0160-2307 0121-0105 0160-4084 0160-3879	8 4 4 8 7		CAPACITOR-FXD .1UF20% 50VDC CER CAPACITOR-FXD 47PF +-5% 300VDC MICA CAPACITOR-FXD .1UF20% 50VDC CER CAPACITOR-FXD .1UF20% 100VDC CER CAPACITOR-FXD .0UF20% 100VDC CER	28480 28480 52763 28480 28480	0160-4084 0160-2307 304322 9/35PF N650 0160-4084 0160-3879
A:3C36 A:3C37 A:3C38 A:3C39	0160-3879 0180-0197 0160-4084 0160-4084	7 8 8 8		CAPACITOR-FXD .01UF +-20X 100VDC CER CAPACITOR-FXD 2.2UF+-10X 20VDC TA CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER	28480 56289 28480 28480	0160-3879 150D225x9020A2 0160-4084 0160-4084
A13C40	0160-0336	5	1	CAPACITOR=FXD 100PF +=1% 300VDC MICA	28480	0160-0336

Table 6-3. Replaceable Parts

. 1

A13C41 A13C42 A13C43 A13C44 A13C44 A13C44 A13C44 A13C45 A13C45 A13C46 A13C47 A13C46 A13C47 A13C48 A13C50 A13C51 A13C52 A13C53 A13C53 A13C53 A13C55 A13C55 A13C55 A13C55 A13C56 A13C57 A13C56 A13C57 A13C56 A13C57 A13C58 A13C58 A13C58 A13C58 A13C58 A13C58 A13C59 A13C59 A13C59 A13C61 A13C62 A13C63 A13C64 A13C65 A13C68 A13C69 A13C68 A13C69 A13C68 A13C69 A13C68 A13C69 A13C69 A13C69 A13C69 A13C69 A13C69 A13C69 A13C7 A13C88 A13C80 A13C80 A13C80 A13C81 A13	225 4084 4084 4084 4084 4084 4084 4084 408	89828 88888 53999 98888 88380 88 99333 33	1	CAPACITOR=FXD 1UF +=20X 50VDC CER CAPACITOR=FXD 01UF +=5X 300VDC MICA CAPACITOR=FXD 01UF +80-20X 100VDC CER CAPACITOR=FXD 1UF +=20X 50VDC CER CAPACITOR=FXD 1UF	28480 28	0160-4084 0M15F301F0300WV1C 0160-4084 0160-4084 0160-4084 0160-4084 0160-4084 0160-4084 0160-4084 0160-2225 0160-2255 0160-2255 0160-2255 0160-2055 0160-2055 0160-2055 0160-2055 0160-2055 0160-2055 0160-2055 0160-2055 0160-2055 0160-2055 0160-2055 0160-2055 0160-2055 0160-2055 0160-2055
A13C47 A13C48 A13C48 A13C49 A13C50 A13C50 A13C51 A13C52 A13C53 A13C53 A13C53 A13C55 A13C55 A13C55 A13C56 A13C56 A13C59 A13C59 A13C61 A13C62 A13C62 A13C64 A13C62 A13C64 A13C64 A13C65 A13C64 A13C66 A13C66 A13C67 A13C66 A13C67 A13C68 A13C7 A13C88 A13C87 A13C88 A13C87 A13C88 A13C87 A13C88 A13C89 A13C80 A13C80 A13C80 A13C81 A13C81 A13C81 A13C81 A13C82 A13C83 A13C83 A13C84 A13C85 A13C84 A13C85 A13C84 A13C85 A13C86 A13C87 A13C88 A13C88 A13C89 A13C89 A13C89 A13C89 A13C89 A13C89 A13C89 A13C89 A13C80 A13	1157 4084 4084 2225 2227 2055 2055 2055 2055 2055 4084 4084 4084 4084 4084 4084 4084 4084 4084 4084 4084 4085 6055	8888 53999 98888 88380 88 99333 33		CAPACITOR=FXD 4700PF +=10x 200 DC POLYE CAPACITOR=FXD .1UF +=20X 50 VDC CER CAPACITOR=FXD .1UF +=20X 50 VDC CER CAPACITOR=FXD .1UF +=20X 50 VDC CER CAPACITOR=FXD .01UF +=5X 300 VDC MICA CAPACITOR=FXD .01UF +80-20X 100 VDC CER CAPACITOR=FXD .1UF +=20X 50 VDC CER CAPACITOR .1UF +	28480 28490 28400 28400	01e0-0157 01e0-4084 01e0-4084 01e0-2225 01e0-2207 01e0-2207 01e0-2205 01e0-2255 01e0-2055 01e0-2055 01e0-2055 01e0-2055 01e0-2055 01e0-2055 01e0-2055 01e0-4084 01e0-4084 1500225x9020A2 1500105x9035A2 01e0-4084
A13C552 A13C53 A13C553 A13C553 A13C554 A13C555 A13C555 A13C556 A13C556 A13C556 A13C60	2207 2055 2055 2055 4084 4084 4084 4084 4084 4084 4084 4	3999 98888 88380 88 99333 33		CAPACITOR=FXD 300PF +-5X 300VDC MICA CAPACITOR=FXD 01UF +80-20X 100VDC CER CAPACITOR=FXD 10UF +-20X 50VDC CER CAPACITOR=FXD 10UF +-5X 50VDC CER CAPACITOR=FXD 10UF +-5X 50VDC CER CAPACITOR=FXD 10UF +-20X 50VDC CER DIDDE=SCHOTTKY 15V DIDDE=SCHOTTKY	28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480	0160-2207 0160-2055 0160-2055 0160-2055 0160-2055 0160-2055 0160-4084 0160-4084 0160-4084 1500225x9020A2 1500105x9035A2 0160-4084 0160-4084
A13C57 A13C59 A13C60 A13C61 A13C62 A13C63 A13C63 A13C65 A13C65 A13C65 A13C65 A13C66 A13C67 A13C67 A13C67 A13C67 A13C67 A13C7 A13C81 A13C82 A13C83 A13C83 A13C83 A13C83 A13C83 A13C83 A13C83 A13C83 A13C83 A13C84 A13C87 A13C83 A13C83 A13C83 A13C84 A13C87 A13C87 A13C87 A13C89 A13C80 A13C89 A13	4084 4084 4084 4084 4084 4084 4084 4084 4084 4084 00535 0050 0050 0050 0050	8 8 8 8 8 8 8 9 9 3 3 3 3 3 3 3 3 3 3 3	2	CAPACITOR=FXD 10F +-20X 50VDC CER CAPACITOR=FXD 10F +-20X 50VDC CER CAPACITOR=FXD 4700 PF +-20X 50VDC CER CAPACITOR=FXD 10F +-20X 50VDC CER CAPACITOR=FXD 10F +-20X 50VDC CER CAPACITOR=FXD 10F +-20X 50VDC TA CAPACITOR=FXD 10F +-20X 50VDC CER DIODE=SCHOTTKY 15V DIODE=SCHOTTKY 15V DIODE=SCHOTTKY	28480 28480 28480 28480 28480 28480 28480 28480 28480	0160-4084 0160-0573 0160-4084 0160-4084 1500225x9020A2 1500105x9035A2 0160-4084 0160-4084
A 13C62 A 13C63 A 13C64 A 13C65 A 13C64 A 13C65 A 13C66 A 13C67 A 13C67 A 13C7	0197 4084 4084 4084 4084 4084 0535 0555 0050 0050 0050 0050 0050	8 8 9 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2	CAPACITOR=FXD 2,2UF+-10% 20VDC TA CAPACITOR=FXD 1UF+-10% 35VDC TA CAPACITOR=FXD 1UF+-20% 50VDC CER CAPACITOR=FXD 100PF+-5% 300VDC MICA CAPACITOR=FXD 1UF+-20% 50VDC CER CAPACITOR=FXD 1UF+-20% 50VDC CER DIODE=SCHOTTKY 15V DIODE=SCHOTTKY	56289 56289 28480 28480 28480 28480	1500225x9020A2 1500105x9035A2 0160-4084 0160-2204
A13C67 A13CR1 A13CR2 A13CR2 A13CR3 A13CR3 A13CR3 A13CR3 A13CR6 A13CR7 A13CR7 A13CR7 A13CR7 A13CR8 A13CR9 A13CR1 A13CR9 A13CR0 A13CR9 A13CR0 A13CR1 A	4084 0535 0535 0050 0050 0050 0050 0050 005	8 9 9 3 3 3 3 3 3 3	5	DIDDE-SCHOTTKY 15V DIODE-SCHOTTKY	28480	
AIBCR2 AIBCR3 AIBCR3 AIBCR3 AIBCR4 AIBCR5 AIBCR6 AIBCR6 AIBCR7 AIBCR7 AIBCR7 AIBCR7 AIBCR8 AIBCR7 AIBCR8 AIBCR9 AIBCR11 AIBCR1	0535 0050 0050 0050 0050 0050 0539	9 3 3 3 3	2	DIODE-SCHOTTKY	1	
A13CR7 A13CR8 A13CR8 A13CR10 A13CR10 A13CR11 A13CR11 A13CR11 A13L1 A13L2 A13L3 A13L3 A13L4 A13L5 A13L4 A13L5 A13L5 A13L4 A13L5 A13L4 A13L5 A13L4 A13L5 A13L4 A13L5 A13L4 A13L5 A13L4 A13L1	00 50 0539	3		DIDDE=SWITCHING 80V 200MA 2NS DO=35 DIDDE=SWITCHING 80V 200MA 2NS DO=35	28480 28480 28480 28480 28480	1901-0535 1901-0535 1901-0050 1901-0050 1901-0050
A13L1 9100-1 A13L2 9140-0 A13L3 9100-2 A13L3 9100-2 A13L4 9140-0 A13L5 9100-1 A13L6 9100-1 A13L6 9100-1 A13L6 9100-1 A13L6 9100-1 A13L1 9100-1 A13L11 9140-0 A13L12 9140-0 A13L13 9100-1 A13L13 9100-1 A13L14 9100-1 A13L15 9100-1 A13L15 9100-1 A13L15 9100-1 A13L15 9100-1 A13L16 9100-1 A13L17 9100-1 A13L17 9100-1 A13L18 9100-1 A13L19 9100-1		3 3	2	DIODE-SWITCHING BOY 200MA 2NS DO-35 DIODE-SWITCHING BOY 200MA 2NS DO-35 DIODE-SCHOTTKY 20V NOT ASSIGNED DIODE-SCHOTTKY 20V	28480 28480 28480 28480	1901-0050 1901-0050 1901-0539 1901-0539
A:\$\frac{1}{2} \\ A:\$\frac{1}{		3		DIODE-SWITCHING BOV 200MA 2NS DO-35	28480	1901-0050
A 13.17 9100-1 A 13.19 9100-1 A 13.10 9140-0 A 13.11 9140-0 A 13.12 9140-0 A 13.13 9100-1 A 13.15 9100-1 A 13.15 9100-1 A 13.16 9100-1 A 13.17 9100-1 A 13.18 9100-1 A 13.19 9140-0	0179 2262 0144	6 1 3 0	i i	COIL-MLD 18UH 10% G=75 ,1550%,375LG=NOM COIL-MLD 22UH 10% G=75 ,1550%,375LG=NOM COIL-MLD 3,9UH 10% G=45 ,0950%,25LG=NOM COIL-MLD 4,7UH 10% G=45 ,0950%,25LG=NOM COIL-MLD 240UH 5% G=65 ,1550%,375LG=NOM	28480 28480 28480 28480 28480	9140-0179 9140-0179 9100-2262 9140-0144 9100-1641
A 13L 12 9140-0 A 13L 13 9100-1 A 13L 14 9100-1 A 13L 15 9100-1 A 13L 16 9100-1 A 13L 17 9100-1 A 13L 18 9100-1 A 13L 19 9140-0	1641 1629 1629	0 4 4 4 0	3	COIL-MLD 240UH 5% Q=65 ,155D%,375LG=NOM COIL-MLD 240UH 5% Q=65 ,155D%,375LG=NOM COIL-MLD 47UH 5% Q=55 ,155D%,375LG=NOM COIL-MLD 47UH 5% Q=55 ,155D%,375LG=NOM COIL-MLD 4,7UH 10% Q=45 ,0950%,25LG=NOM	28480 28480 28480 28480 28480	9100-1641 9100-1641 9100-1629 9100-1629 9140-0144
A13L17 9100-1 A13L18 9100-1 A13L19 9140-0	0318 1624 1641	9 0 0 0	1 1 1	COIL-MLD 113UH 1X G=60 .155DX,375LG=NOM COIL-MLD 33BUH 1X G=65 .155DX,375LG=NOM COIL-MLD 30UH 5X G=65 .155DX,375LG=NOM COIL-MLD 240UH 5X G=65 .155DX,375LG=NOM COIL-MLD 240UH 5X G=65 .155DX,375LG=NOM	28480 28480 28480 28480 28480	9140=0317 9140=0318 9100=1624 9100=1641 9100=1641
ı	1641 1641 0114	0 0 0 4 6	4	COIL-MLD 240UH 5% 0#65 .1550%,375LG-NOM COIL-MLD 240UH 5% 0#65 .1550%,375LG-NOM COIL-MLD 240UH 5% 0#65 .1550%,375LG-NOM COIL-MLD 10UH 10% 0#55 .1550%,375LG-NOM CMOKE-WIDE BAND ZMAX#680 OHM@ 180 MHZ	28480 28480 28480 28480 02114	9100-1641 9100-1641 9100-1641 9140-0114 VK200 20/48
A13L21 9100-1 A13L22 9100-1		6		CHOKE-WIDE BAND ZMAX#680 OHM@ 180 MMZ CHOKE-WIDE BAND ZMAX#680 OHM@ 180 MMZ	02114	VK200 20/48 VK200 20/48
A13Q1 1854-0 A13Q2 1853-0 A13Q3 1854-0 A13Q4 1853-0 A13Q5 1853-0	0281 0546 0018	0 9 1 0 0	3	TRANSISTOR NPN SI TO-18 PD=360MW TRANSISTOR PNP 2N207A SI TO-18 PD=400MW TRANSISTOR NPN SI TO-72 PD=200MW TRANSISTOR PNP SI TO-72 PD=200MW FT=1GM2 TRANSISTOR PNP SI TO-72 PD=200MW FT=1GM2	28480 04713 28480 28480 28480	1854-0404 2N29074 1854-0546 1853-0018 1853-0018
A13G6 1854-0 A13G7 1854-0 A13G8 1855-0 A13G9 1855-0 A13G10 1855-0	0546 0062 0062	1 1 8 8 8	3	TRANSISTOR NPN SI TO-72 PD=200MW TRANSISTOR NPN SI TO-72 PD=200MW TRANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOR J-FET N-CHAN D-MODE SI	28480 28480 28480 28480 28480	1854-0546 1854-0546 1855-0062 1855-0062 1855-0062
A13011 1853-0 A13012 1853-0		9	1	TRANSISTOR PNP 2N29464 SI TO-46 PD#400MW TRANSISTOR PNP 2N29054 SI TO-39 PD#600MW	01295 04713	5054027 5054497

Table 6-3. Replaceable Parts

Reference Designation	Number	C Qt	Description	Mfr Code	Mfr Part Numb
A13R1 A13R2 A13R3 A13R4	0698-0083 0757-0401 0757-0418 0698-0082	8 0 9 7	RESISTOR 1.96K 1% .125W F TC=0+=100 RESISTOR 100 1% .125W F TC=0+=100 RESISTOR 619 1% .125W F TC=0+=100 1 RESISTOR 464 1% .125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-TU-1961-F C4-1/8-TU-101-F C4-1/8-TU-019R-F C4-1/8-TU-4640-F
A13R5 A13R6 A13R7	0757-0401 0757-0420 0757-0401	3	RESISTOR 100 1% .125% F TC=0+=100 RESISTOR 750 1% .125% F TC=0+=100 RESISTOR 100 1% .125% F TC=0+=100	24546 24546 24546	C4-1/8-T0-101-F C4-1/8-T0-751-F
A13R8 A13R9 A13R10	0757-0250 0757-0422 0757-0422	3 5 5	RESISTOR 1K 1% , 125W F TC=0+-100 RESISTOR 909 1% , 125W F TC=0+-100 RESISTOR 909 1% , 125W F TC=0+-100	24546 24546 24546	C4-1/8-10-101-F C4-1/8-T0-1001-F C4-1/8-T0-909R-F C4-1/8-T0-909R-F
A13R11 A13R12 A13R13 A13R14	0698=3440 0698=3440 0757=0416 0757=0416	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	RESISTOR 196 1% .125W F TC=0+=100 RESISTOR 196 1% .125W F TC=0+=100 RESISTOR 511 1% .125W F TC=0+=100	24546 24546 24546	C4-1/8-T0-196R-F C4-1/8-T0-196R-F C4-1/8-T0-511R-F
A13R15 A13R16 A13R17	0757-0442	•	RESISTOR 511 1% 125W F TC=0+=100 RESISTOR 10K 1% 125W F TC=0+=100 RESISTOR 1.33K 1% .05W F TC=0+=100	24546	C4=1/8=T0=511R=F C4=1/8=T0=1002=F C3=1/8=T0=1331=G
A13R16 A13R19 A13R20	0698-7237 0698-7243		RESISTOR 348 1% ,125W F TC=0+-100 RESISTOR 1,1K 1% ,05W F TC=0+-100 RESISTOR 1,96K 1% .05W F TC=0+-100 RESISTOR 1,96K 1% .125W F TC=0+-100	24546 24546 24546 24546	C4-1/8-T0-348R-F C3-1/8-T0-1101-G C3-1/8-T0-1961-G C4-1/8-T0-1961-F
A13R21 A13R22 A13R23	0698-7237 0757-0401	3 8 0	RESISTOR 5.11K 1% .125W F TC=0+=100 RESISTOR 1.1K 1% .05W F TC=0+=100 RESISTOR 100 1% .125W F TC=0+=100	24546 24546 24546	C4-1/8-T0-5111-F C3-1/8-T0-1101-G C4-1/8-T0-101-F
A13R24 A13R25 A13R26	0757-0280 0757-0442 0757-0416	7	RESISTOR 1K 1X .125W F TC=0+=100 RESISTOR 10K 1X ,125W F TC=0+=100 RESISTOR 511 1X .125W F TC=0+=100	24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1002-F
A:3R27 A:3R28 A:3R29 A:3R30	0698=7237 0698=7237 0757=0422	8 8 5	RESISTOR 1,1K 1% .05W F TC=0+-100 RESISTOR 1,1K 1% .05W F TC=0+-100 RESISTOR 909 1% .125W F TC=0+-100 RESISTOR 909 1% .125W F TC=0+-100	24546 24546 24546	C4-1/8-T0-5:1R-F C3-1/8-T0-1:01-G C3-1/8-T0-1:01-G C4-1/8-T0-909R-F
A13R31 A13R32 A13R33	0757-0274 0757-0280	5 3 0	RESISTOR 1.21K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100	24546 24546 24546	C4=1/8=F0=909R=F C4=1/8=T0=1213=F C4=1/8=T0=1001=F
A:3R34 A:3R35	0757-1094 0698-3153	9	RESISTOR 100 1% 125W F TC=0+=100 RESISTOR 1.47K 1% 125W F TC=0+=100 RESISTOR 3.83K 1% 125W F TC=0+=100	24546 24546 24546	C4-1/8-T0-101-F C4-1/8-T0-1471-F C4-1/8-T0-3831-F
A13R36 A13R37 A13R38 A13R39	0698-3446 0698-3446 0757-0438	6 3 3	RESISTOR 2.37% 1% 125% F TC=0+=100 RESISTOR 383 1% 125% F TC=0+=100 RESISTOR 383 1% 125% F TC=0+=100 RESISTOR 5.11% 1% 125% F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-2371-F C4-1/8-T0-383R-F C4-1/8-T0-383R-F
A13R40 A13R41 A13R42	0698-7284	5 3	RESISTOR 100K 1% .05W F TC=0+-100 RESISTOR 100K 1% .05W F TC=0+-100 RESISTOR 100K 1% .05W F TC=0+-100	24546	C4=1/8=T0=5111=F C3=1/8=T0=1003=G C3=1/8=T0=1003=G
A13R43 A13R44 A13R45	0698+7247 0698+3155	1 1	RESISTOR 2.57K 1% .05W F TC=0+-100 RESISTOR 4.64K 1% .125W F TC=0+-100 RESISTOR 909 1% .125W F TC=0+-100	24546 24546 24546	C3=1/8=T0=1003=G C3=1/8=T0=2871=G C4=1/8=T0=4641=F C4=1/8=T0=909R=F
A13R46 A13R47 A13R48 A13R49	0757-0421 0698-3155		RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 825 1% .125W F TC=0+-100 RESISTOR 4.64K 1% .125W F TC=0+-100	24546 24546 24546	C4=1/8=T0=101=F C4=1/8=T0=825R=F C4=1/8=T0=4641=F
A13R50 A13R51 A13R52	0698=3156 (0698=3158 (? .	RESISTOR 8.25K 1% .125W F TC=0+=100 RESISTOR 14.7K 1% .125W F TC=0+=100 RESISTOR 23.7K 1% .125W F TC=0+=100	24546	C4-1/8-T0-8251-F C4-1/8-T0-1472-F C4-1/8-T0-2372-F
A13R53 A13R54 A13R55	0698-3153 0757-0439 0757-0443 0698-3156	:	RESISTOR 3,83K 1X .125W F TC=0+=100 RESISTOR 6,81K 1X .125W F TC=0+=100 RESISTOR 11K 1X .125W F TC=0+=100 RESISTOR 14,7K 1X .125W F TC=0+=100	24546 24546 24546 24546	C4=1/8=T0=3831=F C4=1/8=T0=6811=F C4=1/8=T0=1102=F C4=1/8=T0=1472=F
A13R56 A13R57 A13R58	0757-0439 0757-0442 90757-0442	· [RESISTOR 6.81K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100	24546 24546 24546	C4=1/8=T0=6811=F C4=1/8=T0=1002=F C4=1/8=T0=1002=F
A13R59 A13R60 A13R61	0757-0814 9 0757-0802 5 0757-0279 0		RESISTOR 511 1% 5W F TC=0+=100 RESISTOR 162 1% 5W F TC=0+=100 RESISTOR 3,16K 1% ,125W F TC=0+=100	28480 28480	0757-0814 0757-0802
A13R62 A13R63 A13R64 A13R65	0757-0438 3 0757-0280 3 0757-0280 3 0757-0280 3		RESISTOR 5.11K 1% ,125W F TC=0+-100 RESISTOR 1K 1% ,125W F TC=0+-100	24546 24546 24546 24546	C4-1/8-T0-3101-F C4-1/8-T0-5111-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F
A13R66 A13R67 A13R68	0757=0460 1 0757=0442 9 0757=0442 9	"	RESISTOR 61.9K 1% .125W F TC#0+=100 RESISTOR 10K 1% .125W F TC#0+=100 RESISTOR 10K 1% .125W F TC#0+=100	24546	C4-1/8-T0-1001-F C4-1/8-T0-6192-F C4-1/8-T0-1002-F
A13R69 A13R70 A13R71	0757-0442 9 0757-0442 9 0698-3260 9		RESISTOR 10K 1% 125W F TC=0+-100 RESISTOR 10K 1% 125W F TC=0+-100 RESISTOR 10K 1% 125W F TC=0+-100	24546 24546 24546	C4=1/8=T0=1002=F C4=1/8=T0=1002=F C4=1/8=T0=1002=F
A13R72 A13R73 A13R74 A13R75	0757-0416 7 0757-0442 9 0757-0442 9		RESISTOR 464K 1% .125W F TC=0+=100 RESISTOR 511 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100	28480 24546 24546 24546	0698-3260 C4-1/8-T0-511R-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F
	0757=0442 9		RESISTOR 10K 12 .125W F TC=0+=100	24546	C4-1/8-T0-1002-F

Model 8754A Replaceable Parts

Table 6-3. Replaceable Parts

.

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A13876 A13877 A13877 A13878 A13880 A13881- A13884 A13811- A13751- A13755	0757-0428 0757-0442 0757-0416 2100-0558 0757-0458 0698-7205 0304-0535 0360-0535	1 9 7 9 7 0 0 0	i	RESISTOR 1,62% 1% .125% F TC=0+-100 RESISTOR 10% 1% .125% F TC=0+-100 PESISTOR 511 1% .125% F TC=0+-100 RESISTOR-TRMK 20% 10% C 10P-AUJ 1-TRM RESISTOR 51.1 1% 10.25% F TC=0+-100 RESISTOR 51.1 1% .05% F TC=0+-100 RESISTOR 51.1 1% .05% F TC=0+-100 TERMINAL TEST POINT PCB TERMINAL TEST POINT PCB	24546 24546 24546 24546 24546 24546 00000 00000	C4-1/8-T0-1021-F C4-1/8-T0-1002-F C4-1/8-T0-511N-F 2100-05-8 C4-1/8-T00-56A2-6 C3-1/8-T00-56A2-6 C3-1/8-T00-56A2-6 ONDER BY DESCRIPTION ORDER BY DESCRIPTION
A13U1 A13U2 A13U3 A13U4 A13U5	1820=1973 1810=0204 1820=1308 1810=0204 1820=1308	9 6 4 6 4		IC SW PMOS ANALOG DUAL NETHORK-KES 8-PIN-SIP .1-PIN-SPCG IC RCVR ECL LINE RCVR IPL 2-INP NETHORK-RES 88-PIN-SIP .1-PIN-SPCG IC RCVR ECL LINE RCVR IPL 2-INP	01295 11236 04713 11236 04713	TL604CP 750-81-×1× MC10116L 750-81-×1× MC10116L
413U6 413U7 413U8 413U9 413U10	1820+1383 1810-0203 1810-0204 1820+1308 1820+1344	5 5 6 4 8	2	IC CNTR ECL 8CD PUS-EDUE-THIG NETWORK-RES 8-PIN-SIP .1-PIN-SPCG NETWORK-RES 8-PIN-SIP .1-PIN-SPCG IC RCVR ECL LINE RCVR IPL 2-INP IC PL LOOP 14-DIP-C	04713 11236 11236 04713 04713	MC10138L 750-814470 750-8141K MC10116L MC12040L
A13U11 A13U12 A13U13 A13U14 A13U15	1820-0138 1810-0205 1820-0261 1826-0304 1826-0304	8 7 8 0 0	2	IC 339 COMPARATOR 14-DIP-P NETWORK-RES 8-PIN-SIP .1-PIN-SPCG IC 741 UP AMP TO-99 IC OP AMP TO-99 IC OP AMP TU-99	04713 11236 28480 27014 27014	MLM339P 750-81=M4,7K 1820-3201 LF355M LF355M
A13U16 A13U17	. 1820-1547 1820-1973	3 9		IC MUXH/DATA-SEL CMOS IC Sw pmos analog dual	04713 01295	MC140518CL TL604CP
A13VR1 A13VR2 A13VR3	1902-0025 1902-0041 1902-0025	4 4		DIODE-ZNR 10V 5% DD-7 PD=,4W TC=+,06% DIODE-ZNR 5,11V 5% 00-7 PD=,4W TC=+,009% DIODE-ZNR 10V 5% DD-7 PD=,4W TC=+,06%	28480 28480 28480	1902-0025 1902-0041 1902-0025
A13Y1	0410-0109	1	1	CRYSTAL=QUARTZ 10 MHZ	28480	0410-0109
A1321 A1322 A1323 A1324 A1325	9170+0847 9170+0847 9170+0847 9170+0847 9170+0847	3 3 3		CORE-SMIELDING BEAD CORE-SMIELDING BEAD CORE-SMIELDING BEAD CORE-SMIELDING BEAD CORE-SMIELDING BEAD	28480 28480 28480 28480 28480	9170-0847 9170-0847 9170-0847 9170-0847 9170-0847
				A13 MISCELLANEOUS PARTS		
	5040-6851 5000-9043 1205-0011 1200-0185	9 0 9	1 3 3	BOARD EXTRACTUR, GREEN PIN HEAT SINK TO-5/TO-39-PKG INSULATUR-XSTH NYLON	28480 28480 28480 28480	5040-6851 5000-9043 1205-0011 1200-0185
A14	08754-60014	5	1	PHASE LUCK CONTROL ASSEMBLY	28480	08754+60014
A14C1 A14C2 A14C3 A14C4 A14C5	0100-0573 0100-3879 0100-0575 0100-3879 0100-4084	2 7 4 7 8		CAPACITOR-FXD 4700PF +-20% 100VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .047UF +-20% 50VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480 28480 28480	0160-0573 0160-3879 0160-0575 0160-3879 0160-4084
A14C6 A14C7 A14C8 A14C9 A14C10	0160-4084 0160-4084 0160-4084 0160-3490 0160-2308	8 8 8 5	i 1	CAPACITOR-FXD .1UF +-2UX 50VDC CER CAPACITOR-FXD .1UF +-2UX 50VDC CER CAPACITOR-FXD .1UF +-2UX 50VDC CER CAPACITOR-FXD 1UF +-20X 50VDC CER CAPACITOR-FXD 36PF +-5X 300VOC MICA	28480 28480 28480 28480 28480	0160=4084 0160=4084 0160=4084 0160=3440 0160=2308
A14C11 A14C12 A14C13 A14C14 A14C15	0160-2204 0140-0194 0160-0571 0160-0572 0160-4084	0 1 0 1 8		CAPACITOR-FXD 100PF +-5% 300VDC MICA CAPACITOR-FXD 110PF +-5% 300VDC MICA CAPACITOR-FXD 470PF +-20% 100VDC CER CAPACITOR-FXD 2200PF +-20% 100VDC CER CAPACITOR-FXD ,1UF +-20% 50VDC CER	28480 72136 28480 28480 28480	0160-2204 DM15F111J0300WY1CH 0160-0571 0160-0572 0160-4064
A14C16 A14C17 A14C18 A14C19 A14C20	0160-2055 0160-2055 0160-3456 0160-3456 0160-4084	9 6 6 8		CAPACITOR-FXD .01UF +80-20% 10UVDC CER CAPACITOR-FXD .01UF +80-20% 10UVDC CER CAPACITOR-FXD 1000PF +-10% 1KVDC CER CAPACITOR-FXD 1000PF +-10% 1KVDC CER CAPACITOR-FXD .1UF +-20% 5UVDC CER	28480 28480 28480 28480 28480	0160-2055 0160-2055 0160-3456 0160-3456 0160-4084
A14C21 A14C22 A14C23 A14C24 A14C25	0160-3134 0160-3134 0160-3134 0160-3134 0160-3456	7 7 7 7 6		CAPACITOR-FXD .01UF +-10X 100VDC CER CAPACITOR-FXD .01UF +-10X 100VDC CER CAPACITOR-FXD .01UF +-10X 100VDC CER CAPACITOR-FXD .01UF +-10X 10VVDC CER CAPACITOR-FXD 100VPF +-10X 1KVDC CER	28480 28480 28480 28480 28480	0160=5154 0160=5154 0160=5134 0160=3134 0160=3456
A14C26 A14C27 A14C28 A14C29 A14C3U	0160-3456 0180-2206 0160-2055 0160-0161 0160-4084	64948	1	CAPACITOR-FXD 1000PF +-10% 1KVDC CER CAPACITOR-FXD 60UF+-10% 0VDC TA CAPACITOR-FXD 01UF +80-20% 100VDC CER CAPACITOR-FXD 01UF +-10% 200VDC POLYE CAPACITOR-FXD 1UF +-20% 50VDC CEK	28480 56289 28480 28480 28480	0160=3456 1500806X900682 0160=2055 0160=0161 0160=4084

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A14C31 A14C32 A14C33 A14C34	0160-4299 0160-3456 0160-2055 0160-0197	7 9 8		CAPACITOR-FXD 2200PF +-20% 250VDC CER CAPACITOR-FXD 1000PF +-10% 1KVOC CER CAPACITOR-FXD .01UF +80-20% 100VOC CER CAPACITOR-FXD 2,2UF+-10% 20VDC TA	56289 28480 28480 56289	CU67F251F222MS22-LDH U160-3456 U160-2055 1500225X9020A2
A14C35 A14C36 A14C37 A14C38	0180-0291 9180-0197 0100-2055 0160-2055	8 9		CAPACITOR-FXD 1 UF+-10% 35 VDC TA CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER	56289 56289 26480 28480	1500105×9035A2 1500225×9020A2 0160=2055
A14C39 A14C40 A14C41	0160-2055 0160-2055	9		CAPACITOR=FXD .010F +80=20X 1000UC CER CAPACITOR=FXD .010F +80=20X 1000UC CER CAPACITOR=FXD .010F +80=20X 1000UC CER	28480	0160-2055 0160-2055 0160-2055
A14C42 A14C43 A14C44 A14C45	0160-2055 0160-2055 0160-2055 0160-2055	9 9 9 8	į	CAPACITOR-FXD 01UF +80-201 100VDC CER CAPACITOR-FXD 01UF +80-201 100VDC CER CAPACITOR-FXD 01UF +80-201 100VDC CER CAPACITOR-FXD 2.2UF+=101 20VDC TA	28480 28480 28480 56289	0160-5622465085 0190-5022 0190-5022 0190-5022
A14C46 A14CR1	0160-2055	9	_	CAPACITOR-FXD .01UF +80-20% 100VDC CER	28480	0160=2055
A14CR2 A14CR3 A14CR4 A14CR4	1901-0033 1901-0033 1901-0033 1901-0033 1901-0743	5 5 5	7	DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIUDE-GEN PRP 180V 200MA DO-7 DIODE-PWR RECT 1N4UU4 40UV 1A DU-41	28480 28480 28480 28480 01295	1901-0053 1901-0053 1901-0053 1901-0053 194004
A14CR6 A14CR7 A14CR8	1901-0743 1901-0743 1901-0743	1 1 1		DIODE-PWR RECT 1N4004 400V 1A DU-41 DIODE-PWR RECT 1N4004 400V 1A DU-41 DIODE-PWR RECT 1N4004 400V 1A DU-41	01295 01295 01295	1 N4004 1 N4004 1 N4004
A14DS1 A14DS2 A14DS3	1990=0487 1990=0487 1990=0487	7 7 7	3	LED-VISIBLE LUM-INTBIMCD IFB20MA-MAX LED-VISIBLE LUM-INTBIMCD IFB20MA-MAX LED-VISIBLE LUM-INTBIMCD IFB20MA-MAX	28480 28480 28480	5082-4584 5082-4584 5082-4584
A14J1	1250-0543	8	5	CONNECTOR-RF SM-SNP M PC 50-0HM	28480	1250-0543
A14J2	1250-0543	8		CONNECTOR-RF SM-SNP M PC 50-0HM	28480	1250-0543
A14L1 A14L2 A14L3 A14L4 A14L5	9100-2247 9140-0158 9100-2258 9100-2257 9100-2585	4 6 7 6 3	1 1 1	CUIL-MLD 100NH 10% G=34 .095D%.25LG=NOM CUIL-MLD 10H 10% G=32 .095D%.25LG=NOM COIL-MLD 1.2UH 10% U=32 .095D%.25LG=NOM CUIL-MLD 820NH 10% G=32 .095D%.25LG=NOM CUIL-MLD 10MH 10% G=40 .156D%.375LG=NOM	28480 28480 28480 28480 28480	9100-2247 9140-0158 9100-2255 9100-2257 9100-2585
A14L6 A14L7 A14L8 A14L9 A14L10	9100=1788 9100=1618 9100=1618 9140=0210 9140=0210	1 1 1 1	i	CHOKE-WIDE BAND ZMAX=660 UHM@ 180 MHZ COIL-MLD 5,6UH 10% Q=45 .155Dx,375LG-NOM COIL-MLD 5,6UH 10% Q=45 .155Dx,375LG-NOM COIL-MLD 100UH 5% Q=50 .155DX,375LG-NOM COIL-MLD 100UH 5% Q=50 .155UX,375LG-NOM	02114 28480 28480 28480 28480	VK200 20/48 9100-1618 9100-1618 9140-0210 9140-0210
A14G1 A14G2 A14G3 A14G4 A14G5	1854-0546 1853-0018 1853-0018 1854-0477 1853-0281	1 0 0 7 9		TRANSISTOR NPN SI TO-72 PD=200MM TRANSISTOR PNP SI TO-72 PD=200MM FT=1GH2 TRANSISTOR PNP SI TO-72 PD=200MM FT=1GH2 TRANSISTOR NPN 2N2222A SI TO-18 PD=500MM TRANSISTOR PNP 2N2907A SI TO-18 PD=400MM	28480 28480 28480 07263 04713	1854-0546 1853-0018 1853-0018 2N222A 2N2207A
A14Q6 A14Q7 A14Q8	1854-0477 1855-0413 1854-0019	7 3 3		TRANSISTOR NPN 2N2222A SI TU-18 PD=500Mm TRANSISTOR J-FET P-CHAN D-MODE TO-18 SI TRANSISTOR NPN SI TO-18 PD=360Mm	07263 27014 28480	2N2222A 2N5116 1854-0019
A14R1 A14R2 A14R3 A14R4 A14R5	0698-7214 0698-7210 0698-7209 0698-7196 0757-0278	1 7 4 8 9	1 1	RESISTOR 121 1% .USW F TC=0+=100 RESISTOR 82.5 1% .05W F TC=0+=100 RESISTOR 75 1% .05W F TC=0+=100 RESISTOR 21.5 1% .05W F TC=0+=100 RESISTOR 1.78K 1% .125W F TC=0+=100	24546 24546 24546 24546 24546	C3-1/8-T0-121R-G C3-1/8-T00-82R5-G C3-1/8-T00-77N0-G C3-1/8-T00-21R5-G C4-1/8-T0-1781-F
A14R6 A14R7 A14R8 A14R9 A14R10	0757-0401 0698-7212 0698-8821 0698-7236 0698-7236	0 9 8 7 7	1	RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 100 1% .05W F TC=0+-100 RESISTOR 5.62 1% .125W F TC=0+-100 RESISTOR 1K 1% .05W F TC=0+-100 RESISTOR 1K 1% .05W F TC=0+-100	24546 24546 28480 24546 24546	C4-1/8-T0-101-F C3-1/8-T0-100R-G 0098-8621 C3-1/8-T0-1001-G C3-1/8-T0-1001-G
A14R11 A14R12 A14R13 A14R14 A14R15	0698-7212 0698-7220 2100-3109 0698-7250 0698-7223	9 2 5 2	1 1 3	RESISTOR 100 1% .05W F TC=0+=100 RESISTOR 215 1% .05W F TC=0+=100 RESISTOR=TRMR 2K 10% C SIDE=ADJ 17=TRN RESISTOR 3.63K 1% .05W F TC=0+=100 RESISTOR 287 1% .05W F TC=0+=100	24546 24546 02111 24546 24546	C3-1/8-T0-100H-G C3-1/8-T0-215R-6 43P202 C3-1/8-T0-3851-G C3-1/8-T0-287H-G
A14R16 A14R17 A14R18 A14R19 A14R20	0698-7223 0698-7260 0698-7218 0698-7220 0698-7223	2 9 5 9 2	1 1 1	RESISTOR 287 1% .05W F TC=0+-100 RESISTOR 10K 1% .05W F TC=0+-100 RESISTOR 178 1% .05W F TC=0+-100 RESISTOR 215 1% .05W F TC=0+-100 RESISTOR 287 1% .05W F TC=0+-100 RESISTOR 287 1% .05W F TC=0+-100	24546 24546 24546 24546 24546	C3-1/8-T0-287H-G C4-1/8-T0-1002-F C3-1/8-T0-178H-G C3-1/8-T0-215H-G C3-1/8-T0-287H-G
A14R21 A14R22 A14R23 A14R24 A14R25	0757-0280 0698-3156 0698-3456 0757-0280 0698-3162	3 2 5 3 0	1	RESISTOR 1K 1% .05W F TC=0+-100 RESISTOR 14.7K 1% .125W F TC=0+-100 RESISTOR 287K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 46.4K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1472-F C4-1/8-T0-2873-F C4-1/8-T0-2010-F C4-1/8-T0-4042-F

Table 6-3. Replaceable Parts

			Table 6-3. Replaceable Parts		
Reference Designation	HP Part Number	C Qty	Description	Mfr Code	Mfr Part Number
414P20 414P27 414P28 414P29 414P30	0757-0458 2100-3154 0698-3157 0698-3441 0757-0280	3 7 3 8 3	PESISTOR 5.11K 12 .125N F TC=0+-100 HESISTOR-THMM 1K 10% C SIDE-40J 17-THN RESISTOR 19.0K 12 .125N F TC=0+-100 RESISTOR 215 1% .125N F TC=0+-100 HESISTOR 1K 1% .125N F TC=0+-100	24546 02111 24546 24546 24546	C4=1/8=T0=5111=F 43P102 C4=1/8=T0=1962=F C4=1/8=T0=215H=F C4=1/8=T0=1001=F
A14R 31 A14H32 A14H33 A14H34 A14H35	0698-3441 0757-0465 0757-0442 0757-0280 0698-3157	6 9 3 3	RESISTOR 215 1% .125m F TC=0+-100 RESISTOR 100K 1% .125m F TC=0+-100 RESISTOR 10K 1% .125m F TC=0+-100 RESISTOR 10K 1% .125m F TC=0+-100 RESISTOR 19.oK 1% .125m F TC=0+-100	24546 24546 24546 24546 24546	C4=1/8=T0=215H=F C4=1/8=T0=1003=F C4=1/8=T0=1001=F C4=1/8=T0=1001=F C4=1/8=T0=1962=F
A 1 4 R 3 6 A 1 4 R 3 7 A 1 4 R 3 B A 1 4 R 3 9 A 1 4 R 4 U	0698-3132 0757-0465 0698-8827 0757-0280 0757-0465	4 2	RESISTOR 261 1% .125% / 1C#0+=100 RESISTOR 100% 1% .125% F TC#0+=100 RESISTOR 1% 1% .125% F TC#0+=100 RESISTOR 1% 1% .125% F TC#0+=100 RESISTOR 100% 1% .125% F TC#0+=100	24546 24546 28480 24546 24546	C4-1/8-70-2610-F C4-1/8-10-1003-F 0698-8827 C4-1/8-10-1001-F C4-1/8-10-1003-F
A14R41 A14R42 A14R44 A14R44	0757-0280 0757-0444 0757-0439 0757-0464 0757-0439	3 1 4 5 4	RESISTOR 1K 1% 125W F TC=0+-100 RESISTOR 12.1K 1% 125W F TC=0+-100 RESISTOR 0.81K 1% 125W F TC=0+-100	24546 24546 24546 24546 24546	C#-1/8-10-1001-F C#-1/8-70-1212-F C#-1/8-70-0811-F C#-1/8-70-9092-F C#-1/8-70-6811-F
A14R45 A14R47 A14R48 A14R49 A14R50	0757=0422 2100=3350 0698=3136 0757=0288 0757=0442	5 5 8 1 9	RESISTOR 909 1% .125% F TC=0+-100 PESISTOR-TRMR 200 10% C SIDE-ADJ 1-TRN RESISTOR 17.6% 1% .125% F TC=0+-100 HESISTOR 9.0% 1% .125% F TC=0+-100 HESISTOR 10% 1% .125% F TC=0+-100	24546 28480 24546 19701 24546	C4-1/8-10-909R-F 2100-3350 C4-1/8-10-1782-F M+4C1/8-10-9091-F C4-1/8-10-1002-F
A14R51 A14R52 A14R53 A14R54 A14R55	0698-3157 0698-3152 0757-0280 0757-0447 0757-0280	3 8 3 4 3	RESISTUR 19,6K 12 .125W F TC*0+-100 RESISTUR 3,48K 12 .125W F TC*0+-100 RESISTUR 1K 12 .125W F TC*0+-100 RESISTOR 16,2K 12 .125W F TC*0+-100 RESISTOR 16,2K 12 .125W F TC*0+-100	24546 24546 24546 24546 24546	C4=1/8-TU=1962-F C4=1/8-TU=3481-F C4=1/8-TU=1001-F C4=1/8-TU=1001-F C4=1/8-TU=1001-F
414R56 414R57 414R58 414R59 414R60	0757-0418 0698-3447 0698-3442 0757-0405 0757-0398	9 4 9	RESISTOR 619 1% .125W F TC=0+-100 RESISTOR 422 1% .125W F TC=0+-100 RESISTOR 237 1% .125W F TC=0++100 RESISTOR 162 1% .125W F TC=0+-100 RESISTOR 75 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-b19R-F C4-1/8-T0-422R-F C4-1/8-T0-237R-F C4-1/8-T0-10-2R-F C4-1/8-T0-75R0-F
A 1 4 R 6 1 A 1 4 R 6 2 A 1 4 R 6 3 A 1 4 R 6 4 A 1 4 R 6 5	0757-0276 0757-0397 0757-0442 0757-0442 0757-0442	7 3 9 9 9	RESISTOR 61.9 1% .125W F TC=0+-100 RESISTUR 68.1 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-10-6192-F C4-1/8-T0-68K1-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F
A14R66 A14R67 A14R68 A14R69 A14R70	0698=3136 0757=0428 0757=0442 0757=0442 0757=0442	8 1 9 9 9	RESISTOR 17.8K 1% .125W F TC=0++100 RESISTOR 1.62K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4=1/8=T0=1782=F C4=1/8=T0=1021=F C4=1/8=T0=1002=F C4=1/8=T0=1002=F C4=1/8=T0=1002=F
A14R71 A14R72 A14R73 A14R74 A14R75	0757-0438 0698-0084 0698-0084 0757-0417 0698-3450	3 9 9	RESISTOR 5,11K 1% ,125W F TC=0+-100 RESISTOR 2,15K 1% ,125W F TC=0+-100 RESISTOR 2,15K 1% ,125W F TC=0+-100 RESISTOR 502 1% ,125W F TC=0+-100 RESISTOR 42,2K 1% ,125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-5111-F C4-1/8-T0-2151-F C4-1/8-T0-2151-F C4-1/8-T0-502R-F C4-1/8-T0-4222-F
A14R76 A14R77 A14R78 A14R79 A14R80	0757+0470 0757-0401 2100-3356 0757-0460 0757-0416	3 0 1 1 7	RESISTUR 102K 1% ,125W F TC=0+-100 RESISTUR 100 1% ,125W F TC=0+-100 RESISTUR-178MH 200K 10% C SIDE-ADJ 1-TRN RESISTUR 61,9% 1% ,125W F TC=0+-100 RESISTUR 51,1% ,125W F TC=0+-100	24546 24546 28480 24546 24546	C4-1/8-T0-1623-F C4-1/8-T0-101-F 2100-5356 C4-1/8-T0-6192-F C4-1/8-T0-511R-F
A14R81 A14R82 A14R83 A14R84 A14R85	0757-0416 0757-0416 0757-0442 0757-0442 0757-0442	7 7 9 9	RESISTOR 511 1% .125m F TC=U+=100 RESISTOR 511 1% .125m F TC=U+=100 RESISTOR 10% 1% .125m F TC=U+=100 RESISTOR 10% 1% .125m F TC=U+=100 RESISTOR 10% 1% .125m F TC=U+=100	24546 24546 24546 24546 24546	C4-1/8-T0-511K-F C4-1/8-T0-511K-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F
A14R86 A14R87 A14R88 A14R89 A14R89	0698-3442 0698-3450 0698-3160 0757-0442 0698-3444	9 9 8 9 1	RESISTOR 237 1% 125% F TC=0+-100 RESISTOR 42.2K 1% .125% F TC=0+-100 RESISTOR 31.6K 1% .125% F TC=0+-100 RESISTOR 10K 1% .125% F TC=0+-100 RESISTOR 316 1% .125% F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-237R-F C4-1/8-T0-4222-F C4-1/8-T0-31b2-F C4-1/8-T0-31bR-F C4-1/8-T0-31bR-F
A14R91 A14R92 A14R93 A14R94 A14R95	0757-0442 0757-0442 0757-0401 0757-0442 0757-0442	9 9 0 9	RESISTOR 10% 1% ,125% F IC=0+-100 RESISTOR 10% 1% ,125% F IC=0+-100 RESISTOR 100 1% ,125% F IC=0+-100 RESISTOR 10% 1% ,125% F IC=0+-100 RESISTOR 10% 1% ,125% F IC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-101-F C4-1/8-T0-1002-F C4-1/8-10-1002-F
A14896 A14897 A141P1 A141P2 A141P3 A141P4 A141P5	0757=0442 0757-0317 0360=0535 0360=0535 0360=0535 0360=0535 0360=0535	9 7 0 0 0 0	RESISTOR 10K 1% .125m F TC=0+-100 RESISTOR 1.1K 1% .125M F TC=0+-100 TERMINAL TEST POINT PCB	24546 24546 00000 00000 00000 00000	C4-1/8-T0-1002-F C4-1/8-T0-1101-F ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A14TP6 A14TP7 A14TP8 A14TP9 A14TP10	0360-0535 0360-0535 0360-0535 0360-0535 0360-0535	0000		TERMINAL TEST POINT PCB	00000 00000 00000	ONDER BY DESCRIPTION ONDER BY DESCRIPTION ONDER BY DESCRIPTION ONDER BY DESCRIPTION
A14U1 A14U2 A14U3 A14U4 A14U4	1820-1308 1810-0203 1820-1888 1820-0802 1810-0205	5 5 1 7	1	IC RCVP ECL LINE RCVM TPL 2-INP NETWORK-RES 8-PIN-SIP .1-PIN-SPCG IC PPESCR ECL IC GATE ECL NOR GUAD 2-INP NETWORK-RES 8-PIN-SIP .1-PIN-SPCG	04713 11230 04713 04713 11230	MC10116L 750-61-4470 MC12013L MC10102P 750-81-44,7K
A14U6 A14U7 A14U8 A14U9 A14U10	1820-1851 1826-0138 1826-0138 1820-1446 1820-1200	2 8 8 1 5	1 1 1	IC ENCOR TTL LS IC 339 COMPARATUR 14-DIP-P IC 339 COMPARATOR 14-DIP-P IC SHF-RGTR TTL LS R-S PHL-IN PRL-OUT IC INV TTL LS HEX	34335 04713 04713 01295	AM74LS148N MLM339P MLM339P SM74LS345N SM74LSU5N
A14U11 A14U12 A14U13 A14U14 A14U15	1826-0138 1826-0092 1820-1437 1820-1203 1820-1437	8 3 0 8 0	3 1	IC 339 COMPARATOR 14-DIP-P IC OP AMP TO-99 IC MV TIL LS MONOSTBL DUAL IC GATE TIL LS AND TPL 3-INP IC MV TIL LS MONOSTBL DUAL	04713 28480 01295 01295 01295	MLM339P 1826=0092 SN74LS221N SN74LS221N SN74LS221N
A14U16 A14U17 A14U18 A14U19 A14U20	1820-1197 1820-1202 1826-0497 1820-1437 1820-1201	9 7 2 0 6	3 1	IC GATE TTL LS NAND QUAD 2-INP IC GATE TTL LS NAND TPL 5-INP IC COMPARATUR TO-99 IC MY TTL LS MONOSTBL DUAL IC GATE TTL LS AND QUAD 2-INP	01295 01295 27014 01295 01295	SN74L500N SN74L510N LF311M SN74L5221N SN74L520N
A14U21 A14U22	1820-1415 1820-1199	4	1 1	IC SCHMITT-TRIG TTL LS NAND DUAL 4-INP IC INV TTL LS MEX 1-INP	01295 01295	SN74LS13N SN74LS04N
A14Z1 A14Z2	9170-0847 9170-0847	3		CORE-SMIELDING BEAD CORE-SMIELDING BEAD	28480 28480	9170~0847 9170~0847
	5000 - 9043 5040 - 6849	6	1	A14 MISCELLANEOUS PARTS PINIP.C. BOARD EXTRACTUR EXTRACTOR, P.C. BOARD	28480 28480	5000-9043 5040-6849
A 1 5	08754-60015	٥	1	SHAPER ASSEMBLY (DOES NOT INCLUDE A15A1)	28480	08754-60015
A15C1 A15C2 A15C3 A15C4 A15C5	0160-0174 0180-0197 0160-0174 0180-0197 0180-0291	9 8 9 8 3		CAPACITOR-FXD .47UF +8U-20% 25VDC CER CAPACITOR-FXD 2.2UF**-00% 20VDC TA CAPACITOR-FXD .47UF +8U-20% 25VDC CER CAPACITOR-FXD 2.2UF**-10% 35VDC TA CAPACITOR-FXD 1UF**-10% 35VDC TA	28480 56289 28480 56289 56289	0160-0174 150D225×9020A2 0160-0174 150D225×9020A2 150D105×9035A2
A15C6 A15C7 A15C8 A15C9 A15C10	0180-0197 0160-3456 0160-3456 0160-0174 0160-3456	8 6 6 9 6		CAPACITOR-FXD 2,2UF+-1UX 20VDC TA CAPACITOR-FXD 100UPF +-10X 1KVDC CER CAPACITOR-FXD 1000PF +-10X 1KVDC CER CAPACITOR-FXD .47UF +8U=20X 25VDC CER CAPACITOR-FXD 100UPF +-10X 1KVDC CER	56289 28480 28480 28480 28480	1500225x9020A2 0160=3456 0160=3456 0160=0174 0160=3456
A15C11 A15C12 A15C13 A15C14 A15C15	0180-0291 0180-0197 0180-0197 0160-3456 0160-0174	3 8 8		CAPACITUR-FXD 1UF+-1U% 35VDC TA CAPACITUR-FXD 2,2UF+-1U% 20VDC TA CAPACITUR-FXD 2,2UF+-1U% 20VDC TA CAPACITUR-FXD 1000FF +-1U% 1KVDC CER CAPACITUR-FXD 1000FF +-1U% 1KVDC CER CAPACITUR-FXD 47UF +80-2U% 25VDC CER	56289 56289 56289 28480 28480	1500105X9035A2 1500225X9020A2 1500225X9020A2 0160~3456
A15C16 A15C17 A15C18	0160=3456 0180=0291 0180=0291	3		CAPACITOR-FXD 1000PF +=10% 1KVDC CER CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 1UF+-10% 35VDC TA	28480 56289 56289	0160-3456 1500105X9035A2 1500105X9035A2
A15CR1- A15CR31	1901-0050	3		DIODE-SWITCHING BOV 20UMA 2NS DO-35	28480	1901=0050
A15L1 A15L2 A15L3	9140-0210 9140-0210 9140-0210	1 1 1		CUIL-MLD 100UH 5% Q=50 .155D%.375LG-NOM COIL-MLD 100UH 5% Q=50 .155D%.375LG-NOM COIL-MLD 100UH 5% Q=50 .155D%.375LG-NOM	28480 28480 28480	9140-0210 9140-0210 9140-0210
A1501 A1502 A1503 A1504 A1505	1854-0404 1855-0386 1855-0386 1854-0404 1854-0404	0 9 9 0	4	TRANSISTOR NPN SI TO-18 PD=360MM TRANSISTOR J=FET 2NN392 N=CHAN D=MODE TRANSISTOR J=FET 2NN392 N=CHAN D=MODE TRANSISTOR NPN SI TO-18 PD=360MM TRANSISTOR NPN SI TO-18 PD=360MM	28480 04713 04713 28480 28480	1854-0404 2N4392 2N4392 1854-0404 1854-0404
A15Q6 A15Q7 A15Q8 A15Q9	1853-0038 1853-0038 1854-0234 1854-0234	4 4 4 4	2	TRANSISTOR PNP 31 10-39 PD=1% FT=100MHZ TRANSISTOR PNP 31 70-39 PD=1% FT=100MHZ THANSISTOR NPN 2N3440 31 70-5 PD=1% TRANSISTOR NPN 2N3440 31 70-5 PD=1%	28480 28480 01928 01928	1853-0038 1853-0038 283440 283440
A15R1 A15R2 A15R3 A15R4 A15R5	0698-3132 0757-0442 0698-3447 0757-0460	4 9 4 1		RESISTOR 261 1% .125W F TC=0+-100 NOT ASSIGNED RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 422 1% .125W F TC=0+-100 RESISTOR 61,9K 1% .125W F TC=0+-100	24546 24546 24546 24546	C4-1/8-10-2010-F C4-1/8-10-1002-F C4-1/8-10-022M-F C4-1/8-10-0192-F

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A15H6 A15H7 A15PA A15P9 A15P9	0757-0280 0598-5352 0598-5352 0598-5524 0598-6531	3 8 5		RESISTOR 1K 1% .125w F TC=U+-100 PESISTOR 1K .1% .125w F TC=U+-25 RESISTOR 1K .1% .125w F TC=U+-25 RESISTOR 2K .1% .125w F TC=U+-25 RESISTOR 2K .1% .125w F TC=U+-25	28480 28480 28480 24546	C4=1/8=TU=1001=F US98=5562 US98=5562 US98=5624 US98=5651
A15K11 A15K12 A15K13 A15K14 A15K15	0698=6321 0698=5394 0698=6624 0698=6360 0698=6320	9 4 5 6	1 1	RESISTOR 9.9% .1% .125% F TC±0+-25 RESISTOR 105.5 .1% .125% F TC±0+-25 RESISTOR 26 .1% .125% F TC=0+-25 RESISTOR 10% .1% .125% F TC=0+-25 RESISTOR 5% .1% .125% F TC=0+-25	03888 28480 28480 28480 03888	PME55-1/6-T9-9901-8 0698-5394 0698-6664 0698-650 PME55-1/8-T9-5001-8
A15R16 A15R17 A15R18 A15R19 A15R20	0098-3155 0698-6320 0757-0280 0698-6320 0698-7796	1 5 8 4	1	RESISTOR 4.64K 1% .125W F TC±0+-100 RESISTOR 5K .1% .125W F TC±0+-25 RESISTOR 1K 1% .125W F TC±0+-100 RESISTOR 5K .1% .125W F TC=0+-25 HESISTOR 14.7% .25% F TC*0+-100	24546 03888 24546 03888 19701	C4-1/8-T0-4641-F PME55-1/8-T9-5001-B C4-1/8-T0-1001-F PME55-1/8-T9-5001-B MF4C1/8-T0-1472-C
415H21 415H22 415H23 415H24 415H25	0757-0442 0757-0442 0698-3260 0698-3260 0757-0442	9 9 9		#ESISTOR 10% 1% .125% F TC#0+-100 RESISTOR 10% 1% .125% F TC#0+-100 RESISTOR 404% 1% .125% F TC#0+-100 RESISTOR 404% 1% .125% F TC#0+-100 RESISTOR 10% 1% .125% F TC#0+-100	24546 24546 28480 28480 24546	C4-1/8-10-1002-F C4-1/8-T0-1002-F 0898-3280 0698-3280 C4-1/8-T0-1002-F
415P26 415P27 415P2R 415P29 415P30	0698-3155 0757-0442 0757-0442 0757-0442 0757-0444	1 9 9		RESISTOR 4,64K 1% ,125W F TC#0+=100 RESISTOR 10K 1% ,125W F TC#0+=100 RESISTOR 12,1K 1% ,125W F TC#0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-4041-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1212-F
A15R31 A15R32 A15R33 A15R34 A15R35	0698-3434 0698-3434 0698-3157 0698-8172 0698-6360	9 3 2 6	s	RESISTOR 34.8 1% .125w F TC=0+=100 RESISTOR 34.8 1% .125w F TC=0+=100 RESISTOR 19.6K 1% .125w F TC=0+=100 RESISTOR 4k .25% .125w F TC=0+=50 RESISTOR 10K .1% .1% .125w F TC=0+=25	24546 24546 24546 19701 28480	C4=1/8=10=34M8=F C4=1/8=10=34M8=F C4=1/8=10=1962=F MF4C1/8=12=4001=C 0598=350
A15R36 A15R37 A15R38 A15R39 A15R40	0698-3155 0757-0280 0698-3162 0698-3162 0698-3162	1 5 0 0		RESISTUR 4.64K 1% ,125W F TC#0+=100 MESISTUR 1K 1% ,125W F TC#0+=100 RESISTOR 46.4K 1% ,125W F TC#0+=100 RESISTOR 46.4K 1% ,125W F TC#0+=100 RESISTOR 46.4K 1% ,125W F TC#0+=100	24546 24546 24546 24546 24546	C4=1/8=10=4041=F C4=1/8=10=1001=F C4=1/8=10=4042=F C4=1/8=10=4042=F C4=1/8=10=4042=F
A15F41 A15R42 A15R43 A15R44 A15F45	0698-3157 0698-3157 0698-3157 0698-0083 0757-0440	3 3 3 8 7		RESISTOR 19.6K 1% .125W F TC#0+-100 RESISTOR 7.5K 1% .125W F TC#0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1902-F C4-1/8-T0-1902-F C4-1/8-T0-1902-F C4-1/8-T0-1901-F C4-1/8-T0-7501-F
A15R46 A15R47 A15R48 A15R49 A15R50	0698-7396 0698-7396 0698-3162 2100-3054 2100-3054	0000	s	RESISTOR 1.474* .1% .125% F TC=0+-50 RESISTOR 1.474% .1% .125% F TC=0+-50 RESISTOR 40.4% 1% .125% F TC=0+-100 RESISTOR-TMMR 50% 10% C SIDE-ADJ 17-TRN RESISTOR-TMMR 50% 10% C SIDE-ADJ 17-TRN	19701 19701 24546 02111 02111	Mf4C1/8-T2-1474R-B Mf4C1/8-T2-1474R-B C4-1/8-T0-4642-F 43P503 43P503
A15R51 A15R52 A15R53 A15R54 A15R55	2100-3054 2100-3054 2100-3054 2100-3054 2100-3094	00004	u	RESISTUR-TRMR 50K 10% C SIDE-ADJ 17-TRN RESISTUR-TRMR 50K 10% C SIDE-ADJ 17-TRN RESISTOR-TRMR 50K 10% C SIDE-ADJ 17-TRN RESISTOR-TRMR 50K 10% C SIDE-ADJ 17-TRN RESISTOR-TRMR 100K 10% C SIDE-ADJ 17-TRN	02111 02111 02111 02111 02111	43P503 43P503 43P503 43P503 43P104
A15R56 A15R57 A15R58 A15R59 A15R60	2100-3094 2100-3094 2100-3094 2100-3054 2100-3054	44400		RESISTOR-TRMR 100K 10% C SIDE-ADJ 17-TRN RESISTUR-TRMR 100K 10% C SIDE-ADJ 17-TRN RESISTOR-TRMR 100K 10% C SIDE-ADJ 17-TRN RESISTOR-TRMR 50K 10% C SIDE-ADJ 17-TRN RESISTOR-TRMR 50K 10% C SIDE-ADJ 17-TRN	02111 02111 02111 02111 02111	43P104 43P104 43P104 43P503 43P503
A15R61 A15R62+ A15R63+ A15R64+ A15R65+	2100+3054 0698+3157 0698-3160 0698-3160 0757-0465	6 3 8 6	9 6 17	RESISTOR-TRMR 50K 10% C SIDE-ADJ 17-TKN RESISTOR 19.6K 1% ,125% F TC=0+-100 RESISTOR 31.6K 1% ,125% F TC=0+-100 RESISTOR 31.6K 1% ,125% F TC=0+-100 RESISTOR 100K 1% ,125% F TC=0+-100	02111 24546 24546 24546 24546	43P503 C4=1/8=10=1962=F C4=1/8=10=3102=F C4=1/8=10=3102=F C4=1/8=10=1003=F
A15R66* A15R67 A15R68 A15R69 A15R70	0757-0465 0698-3440 0698-3440 0698-4037 0698-3435	6 7 7 0 0	ş	RESISTOR 100K 1% .125w F TC=0+-100 RESISTUR 196 1% .125w F TC=0+-100 RESISTUR 196 1% .125w F TC=0+-100 RESISTOR 46.4 1% .125w F TC=0+-100 RESISTOR 38.3 1% .125w F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1003-F C4-1/8-T0-196R-F C4-1/8-T0-196R-F C4-1/8-T0-496R-F C4-1/8-10-3683-F
A15R71 A15R72 A15R73 A15R74 A15R75	0757-0394 0757-0394 0698-4037 0757-0394 0757-0394	0 0 0 0		RESISTOR 51.1 1% .125W F TC=0+-100 RESISTOR 51.1 1% .125W F TC=0+-100 RESISTOR 40.4 1% .125W F TC=0+-100 RESISTOR 51.1 1% .125W F TC=0+-100 RESISTOR 51.1 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-51R1-F C4-1/8-T0-51R1-F C4-1/8-T0-40R4-F C4-1/8-T0-51R1-F C4-1/8-T0-51R1-F
A15R76 A15R77 A15R78 A15R79 A15R80	0/57-0401 0757-0394 0757-0394 0757-0394 0757-0394	0000		RESISTOR 100 1% ,125% F TC=0+=100 MESISTOR 51,1 1% ,125% F TC=0+=100 RESISTOR 51,1 1% ,125% F TC=0+=100 RESISTOR 51,1 1% ,125% F TC=0+=100 RESISTOR 51,1 1% ,125% F TC=0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-101-F C4-1/8-T0-51H1-F C4-1/8-10-51H1-F C4-1/8-T0-51H1-F C4-1/8-T0-51H1-F

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A15881 A15882 A15883 A15884+ A15885	0698-3435 0698-6362 0698-6624 0757-0467 0757-0158	0 8 5 8	1	RESISTOR 38,3 1% .125W F TC=0+-100 WESISTOR 1K .1% .125W F TC=0+-25 RESISTOR 2K .1% .125W F TC=0+-25 RESISTOR 121K 1% .125W F TC=0+-100 RESISTOR 619 1% .5W F TC=0+-100	24546 28480 28480 24546 28480	C4-1/8-T0-3d%3-F 0098-0502 0098-0604 C4-1/8-T0-1215-F 0757-0158
A15R86 A15R87 A15R88 A15R89 A15R90	0698-6360 0698-6360 0757-0444 0698-3155 0757-0460	6 1 1		RESISTOR 10% .1% .125% F TC=0+-25 RESISTOR 10% .1% .125% F TC=0+-25 HESISTOR 12.1% 1% .125% F TC=0+-100 RESISTOR 4.64% 1% .125% F TC=0+-100 RESISTOR 61.9% 1% .125% F TC=0+-100	28480 28480 24546 24546 24546	0698-6360 0698-6360 C4-1/8-[0-1212-F C4-1/8-10-4641-F C4-1/8-10-6192-F
A15R91 A15R92 A15R93 A15R94 A15R95	0698-3162 0698-6630 0757-0280 0757-0280 0757-0279	0 3 3 3 0	1	RESISTOR 46.4K % ,125m F TC=0+-100 RESISTOR 26M ,1% ,125m F TC=0+-25 RESISTOR 1K % ,125m F TC=0+-100 RESISTOR 1K % ,125m F TC=0+-100 RESISTOR 3,16K % ,125m F TC=0+-100	24546 28480 24546 24546 24546	C4=1/8=70-4642=F 0598=6050 C4=1/8=70=1001=F C4=1/8=70=3101=F C4=1/8=70=3101=F
A15R96 A15R97 A15R98 A15R99 A15R100	0698-3162 0757-0279 2100-1660 0757-0438 2100-1660	0 0 6 3	2	RESISTOR 46.4K 1% .125W F TC=0+-100 RESISTOR 3.16K 1% .125W F TC=0+-100 RESISTOR=TRM0 10K 5% M SIDE=ADJ 22-TRN RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR-TRM0 10K 5% WW SIDE=ADJ 22-TRN	24546 24546 32997 24546 32997	C4=1/8=70=4042=F C4=1/8=70=3101=F 3057P=1=103 C4=1/8=70=5111=F 3057P=1=103
A15R101 A15R102 A15R103 A15R104 A15R105	0698-3160 0698-3136 0757-0280 0757-0280 0698-6320	8 8 3 8		RESISTOR 31.6K 1% .125W F TC=0+-100 RESISTOR 17.6K 1% .125W F TC=0+-100 RESISTOW 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 5K .1% .125W F TC=0+-25	24546 24546 24546 24546 03888	C4=1/8=T0=3102=F C4=1/8=T0=1702=F C4=1/8=T0=1001=F C4=1/8=T0=1001=F PME55=1/8=T9=5001=8
A15R106 A15R107	0698=6360 0698=3451	6	5	RESISTOR 10K .1% .125W F TC=0+-25 RESISTOR 133K 1% .125W F TC=0+-100	28480 24546	0698=6360 C4=1/8=[0=1335=F
A1581 A157P1-	3101-2199	1	1	SWITCH, SLIDE SPOT	28480	3101-2199
A15U1 A15U1 A15U2 A15U3 A15U4 A15U5	03-0-0535 1826-0092 1826-0261 1826-0092 1810-0215 1810-0215	0 3 8 3 9	4	TERMINAL TEST POINT PCB IC OP AMP TO-99 IC 0P AMP TO-99 IC OP AMP TO-99 NETAORK-RES 8-PIN-SIP .1-PIN-SPCG NETMORK-RES 8-PIN-SIP .1-PIN-SPCG	28480 28480 28480 11236 11236	ORDER BY DESCRIPTION 1820-0092 1820-0292 1820-0292 750-81-475K 750-81-475K
A15U6 A15U7 A15U8 A15U9 A15U10	1810-0215 1810-0215 1826-0371 1820-1545 1826-0229	9 9 1 1 8	5	NETWORK-RES 8-PIN-SIP .1-PIN-SPCG NETWORK-RES 8-PIN-SIP .1-PIN-SPCG IC OP AMP TO-99 IC MUXR/DATA-SEL CMOS TPL IC OP AMP TO-99	11236 11236 27014 01928 06665	750-81-475K 750-81-475K LF256H C040538Y OP-05CJ
A15U11 A15U12 A15U13 A15U14 A15U15	1826-0371 1826-0161 1826-0175 1826-0371 1826-0371	1 7 3 1 1	1 1	IC OP AMP TO-99 IC 324 OP AMP 14-0IP-P IC COMPARATOR 14-0IP-P IC OP AMP TO-99 IC OP AMP TO-99	27014 18324 27014 27014 27014	LF256M LM324-A LM319N LF256M LF256H
A15U16	1826-0371	1		IC OP AMP TO=99	27014	LF256H
A15VR1 A15VR2 A15VR3 A15VR4 A15VR5	1902-0680 1902-0041 1902-3357 1902-3357 1902-3203	7 4 1 1 6	2	DIODE-ZNR 1N827 6.2V 5x DO-7 PD=.25% DIODE-ZNR 5.11V 5x DO-7 PD=.4W TC=009X DIODE-ZNR 56.2V 5x DO-7 PD=.4W TC=+.081X DIODE-ZNR 56.2V 5x DO-7 PD=.4W TC=+.081X DIODE-ZNR 14.7V 5x DO-7 PD=.4W TC=+.057X	24046 28480 28480 28480 28480	1N827 1902+0041 1902-3357 1902-3357 1902-3203
A15XA1	1200-0553	5	1	SOCKET-IC 28-CONT DIP-SLDR A15 MISCELLANEOUS PARTS	28480	1200-0553
	5040-6850 5000-9043 1205-0011 1200-0185	1 6 0 9	1	BDARD EXTRACTOR, CLEAR PIN HEAT SINK TO-5/TO-39-PKG INSULATOR-XSTR NYLON	28480 28480 28480 28480	5040-6850 5000-9043 1205-0011 1200-0185
A15A1	08754-60035	0		RESISTUR ARRAY(MATCHED WITH A7U2 Includes A7u2)	28480	08754-60035
A15A1J1	0360-1933	4	t	CONNECTOR, 28-CONTACT, DIP	28480	0360-1953
A15A1R1 + A15A1R2 + A15A1R3 + A15A1R4 + A15A1R5 +	0698-3162 0698-3162 0698-3162 0698-3162 0698-3162	0 0 0 0	53	RESISTOR 46.4K 1% .125m F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-4642-F C4-1/8-T0-4642-F C4-1/8-T0-4642-F C4-1/8-T0-4642-F C4-1/8-T0-4642-F
A15A1R6* A15A1R7* A15A1R8* A15A1R9* A15A1R10* A15A1R11* A15A1R12*	0698-3162 0698-3162 0698-3162 0698-3162 0698-3162 0698-3162	0 0 0		RESISTOR 46.4K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-4642-F C4-1/8-T0-4642-F C4-1/8-T0-4642-F C4-1/8-T0-4642-F C4-1/8-T0-4642-F C4-1/8-T0-4642-F

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A16	08754-60016	7	1	DC REGULATOR ASSEMBLY	28480	08754-60016
A10C1 A10C2	0180+2141 0180+2205	6	1	CAPACITOR-FXD 3.3UF+-1UX 5UVDC TA CAPACITOR-FXD .33UF+-1UX 35VDC TA	56289 56289	150D335x9050H2 150D334x9035A2
A16C3 A16C4 A16C5	0180-1746 0180-1746	5		NUT ASSIGNED CAPACITOR=FXD 15UF+=10% 20VUC TA CAPACITUR=FXD 15UF+=10% 20VDC TA	56289 56289	1500156x902082 1500156x902082
A16C6 A16C7	0180-1706 0180-0291	7 3		CAPACITOR-FXD 1000F+=20% 25VDC TA CAPACITOR-FXD 10F+=10% 35VDC TA	06001 56289	69F245G1 150D105X9035A2
A16C8 A16C9 A16C10	0180=0291 0180=1746	3		NOT ASSIGNED CAPACITOR=FXD 1UF++10% 35VOC TA CAPACITUR=FXD 15UF+=10% 20VDC TA	56289 56289	1500105x9035A2 1500156x902082
416C11	0180-1706	7 8		CAPACITOR+FXD 100UF++20% 25VDC TA	06001	69F245G7
A10C12 A10C13 A10C14 A10C15	0180-0197 0189-0197 0180-0197 0180-0197	8 8 8		CAPACITOR-FXD 2,2UF+-10X 20VDC TA CAPACITOR-FXD 2,2UF+-10X 20VDC TA CAPACITOR-FXD 2,2UF+-10X 20VDC TA CAPACITOR-FXD 2,2UF+-10X 20VDC TA	56289 56289 56289 56289	1500225x9020A2 1500225x9020A2 1500225x9020A2 1500225x9020A2
A10CR1 A10CR2 A10CR3 A10CR4 A10CR5	1901-0050 1901-0050 1901-0028 1884-0018 1901-0050	3 3 5 5	3 5	DIUDE-SWITCHING 80V 200MA 2NS DU-35 DIODE-SWITCHING 80V 200MA 2NS DU-35 DIODE-PWR RECT 40DV 750MA DU-29 THYRISTOR-SCR 2N4186 VHRM=200 DIUDE-SWITCHING 80V 20UMA 2NS DU-35	28480 28480 28480 04713 28480	1901-0050 1901-0050 1901-0028 2N4186 1901-0050
A10CR6 A10CR7 A10CR8 A10CR9 A10CR10	1901-0050 1901-0050 1901-0028 1884-0018 1884-0018	3 5 5 5		DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-PWR RECT 400V 750MA DO-29 THYRISTOR-SCR 2N4186 VRRM=200 THYRISTOR-SCR 2N4186 VRRM=200	26480 26480 28480 04713 04713	1901-0050 1901-0050 1901-0028 2M4186 2N4186
416CR11 416CR12	1884-0018 1901-0050	5	:	THYRISTOR-SCR 2N4186 VKRM=200 Digde-switching 80v 200ma 2ns Dg-35	04713 28480	2N4186 1901-0050
A16081 A16082 A16083 A16084 A16085	1990-0485 1990-0485 1990-0485 1990-0485 1990-0485	5 5 5 5	9	LED-VISIBLE LUM-INT®BOOUCD IF®30MA-MAX LEC-VISIBLE LUM-INT®BOOUCD IF®30MA-MAX LED-VISIBLE LUM-INT®BOOUCD IF®30MA-MAX LED-VISIBLE LUM-INT®BOOUCD IF®30MA-MAX LED-VISIBLE LUM-INT®BOOUCD IF®30MA-MAX	28480 28480 28480 28480 28480	5082-4984 5082-4984 5082-4984 5082-4984 5082-4984
A160S6	1990-0485	5		LED-VISIBLE LUM-INT=800UCD IF=30MA-MAX	28480	5082=4984
A16F1	2110-0004	1	5	FUSE .250 V FAST-BLU 1.25x.25 UL IEC	28480	2110-0004
A10G1 A10G2 A10G3 A10G4 A10G5	1853-0281 1854-0404 1853-0451 1854-0404 1854-0477	9 0 5 0 7		TRANSISTOR PNP 2N2907A SI TO-18 PD±400Mm TRANSISTOR NPN SI TO-18 PD±360Mm TRANSISTOR PNP 2N3799 SI TO-18 PD±560Mm TRANSISTOR NPN SI TU-18 PD±360Mm TRANSISTOR NPN 2N2222A SI TU-18 PD±500Mm	04713 28480 01295 28480 07263	2N2907A 1854-0404 2N3799 1854-0404 2N2222A
A16G6	1853-0451	5		TRANSISTOR PNP 2N3799 SI TO-18 PD#360MW	01295	2N3799
A16R1 A16R2 A16R3 A16R4 A16R5	0757-0401 0757-0443 0811-1552 0757-0420 0757-0443	0 0 5 0	s	RESISTOR 100 1% .125% F IC=0+-100 RESISTOR 11K 1% .125% F IC=0+-100 RESISTOR .56 5% 2% PM IC=0+-800 RESISTOR 750 1% .125% F IC=0+-100 RESISTOR 11K 1% .125% F IC=0+-100	24546 24546 75042 24546 24546	C4-1/8-T0-101-F C4-1/8-T0-1102-F BMM2-9/10-J C4-1/8-T0-751-F C4-1/8-T0-1102-F
Albro Alor7 Alor8 Alor9 Alor9	0757-0398 0663-0275 0698-0084 0696-5674 2100-3123	4 9 3 0	2 1	RESISTOR 75 1% .125m F TC=0+-100 RESISTOR 2.7 5% .25m FC TC=-400/+500 RESISTOM 2.15K 1% .125m F TC=0+-100 RESISTOR 5.62% 1% .125m F TC=0+-25 RESISTOR-TRMR 500 10% C SIDE-A0J 17-TRN	24546 01121 24546 28480 02111	C4-1/8-10-75H0-F C827G5 C4-1/8-10-2151-F 0698-5674 43P501
A10R11 A10R12 A10R13 A10R14 A10R15	0698-5553 0757-0280 0757-0278 0698-3444 0757-0346	7 3 9 1 2	1	RESISTOR 2,4K 1% .125W F TC=0+-25 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1,78K 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100	28480 24546 24546 24546 24546	0698-5553 C4-1/8-T0-1001-F C4-1/8-T0-1781-F C4-1/8-T0-316R-F C4-1/8-T0-10R0-F
A16R16 A16R17 A16R18 A16R19 A16R20	0698-3444 0757-0416 0757-0317 0698-6322 0683-0275	1 7 7 0 9	:	RESISTOR 316 1% ,125% F TC#0+=100 RESISTOR 511 1% ,125% F TC#0+=100 RESISTOR 1,33k 1% ,125% F TC#0+=100 RESISTOR 4% ,1% ,125% F TC#0+=25 RESISTOR 2,7 5% ,25% FC TC#=400/+500	24546 24546 24546 28480 01121	C4=1/8=T0=316M=F C4=1/8=f0=511M=F C4=1/8=T0=1351=F 0698=6522 C827G5
A10R21 A10R22 A10R23 A10R24 A10R25	0698-6624 0698-3444 0757-0401 0757-0290 0757-0398	5 1 0 5 4		RESISTOR 2K .1% .125% P TC=0+-25 RESISTOR 316 1% .125% P TC=0+-100 RESISTOR 100 1% .125% P TC=0+-100 RESISTUR 0,19% 1% .125% P TC=0+-100 HESISTUR 75 1% .125% P TC=0+-100	28480 24546 24546 19701 24546	0698-6624 C4-1/8-T0-316R-F C4-1/8-T0-101-F MF4C1/8-T0-6191-F C4-1/8-T0-75R0-F
A16R26 A16R27 A16R28 A16R29 A16R30	0757-0438 0757-0401 0757-0419 0757-0280 0757-0416	3 0 0 3 7		RESISTOR 5,11k 1% .125m F TC=0+-100 RESISTOR 100 1% .125m F TC=0+-100 RESISTOR 061 1% .125m F TC=0+-100 RESISTUR 1k 1% .125m F TC=0+-100 RESISTUR 1k 1% .125m F TC=0+-100	24546 24546 24546 24546 24546	C4=1/8=T0=5111=F C4=1/8=T0=101=F C4=1/8=T0=101R=F C4=1/8=T0=1001=F C4=1/8=T0=511R=F

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A10R31 A10R32 A10R33 A10R34 A10R35	0811-1552 0757-0346 0698-3444 0757-0316 0698-3444	0 2 1 6		RESISTOR .56 5% 2W Pr IC=0+-800 RESISTOR 10 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 42,2 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100	75042 24546 24546 24546 24546	84H2=9/16=J C4=1/8=T0=10H0=F C4=1/8=T0=316H=F C4=1/8=T0=42H2=F C4=1/8=T0=316H=F
A10R36 A10R37 A10R38 A10R39 A10R4U	0757-0346 0757-0316 0757-0401 0757-0401 0698-3441	6 0 0 8		MESISTOR 10 1% ,125% F TC=0+-100 RESISTOR 42,2 1% ,125% F TC=0+-100 RESISTOR 100 1% ,125% F TC=0+-100 RESISTOR 100 1% ,125% F TC=0+-100 RESISTOR 215 1% ,125% F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-TU-10HU-F C4-1/8-TU-42H2-F C4-1/8-TU-101-F C4-1/8-TU-101-F C4-1/8-TU-215H-F
A16841 A16842 A16843 A16844 A16845	0698-3441 0698-3441 0757-0346 0757-0280 0757-0280	8 2 3		RESISTOR 215 1% .125% F TC=0+=100 RESISTOR 215 1% .125% F TC=0+=100 RESISTOR 10 1% .125% F TC=0+=100 RESISTOR 1K 1% .125% F TC=0+=100 RESISTOR 1K 1% .125% F TC=0+=100	24546 24546 24546 24546 24546	C4=1/8=T0=215**F C4=1/8=T0=215**F C4=1/8=T0=10*O=F C4=1/8=T0=1001=F C4=1/8=T0=1001=F
416846 416847	0757-0280 0757-0280	3		RESISTOR 1K 1% .125m F ↑C±0+-100 RESISTOR 1K 1% .125m F ↑C±0+-100	24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1001-F
A16TP1 A16TP2 A16TP3 A16TP4 A16TP5	0300-0535 0300-0535 0300-0535 0300-0535 0300-0535	0 0 0		TERMINAL TEST POINT PCB TERMINAL TEST POINT PCB TERMINAL TEST POINT PCB TERMINAL TEST POINT PCB TERMINAL TEST POINT PCB	00000 00000 00000 00000	UNDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION
416TP6 A16TP7	0360-0535 0360-0535	0		TERMINAL TEST POINT PCB TERMINAL TEST POINT PCB	00000	ORDER BY DESCRIPTION URDER BY DESCRIPTION
A16U2	1826-0304 1826-0261	8		IC OP AMP TO-99 IC 741 OP AMP TO-99	27014 28480	LF355H 1826-0261
A16VR1 A16VR2 A16VR3 A16VR4 A16VR5	1902-0680 1902-3252 1902-3203 1902-1291 1902-3171	7 5 6 8 7	1 1 1	DIDDE-ZNR 1N827 6.2V 5% DD-7 PD=.25W DIODE-ZNR 22.6V 2% DD-7 PD=.4W TC=+.073% DIODE-ZNR 14.7V 5% DD-7 PD=.4W TC=+.057% DIODE-ZNR 1N5338B 5.1V 5% PD=5W IRE1UA DIODE-ZNR 11V 5% DD-7 PD=.4W TC=+.062%	24046 28480 28480 04713 28480	1
A16VR6 A16VR7 A16VR8 A16VR9 A16VR10	1902-0048 1902-3110 1902-3005 1902-0064 1902-3110	1 4 6 1 4	1 5 1	DIODE-ZNR 6.01V 5% DD-7 PD=.4W TC=+.043% DIODE-ZNR 5.9V 2% DD-7 PD=.4W TC=+.017% DIODE-ZNR 2.43V 5% DD-7 PD=.4W TC=076% DIODE-ZNR 7.5V 5% DD-7 PD=.4W TC=+.05% DIODE-ZNR 5.9V 2% DD-7 PD=.4W TC=+.017%	28480 28480 28480 28480 28480	1902-0048 1902-3110 1902-33005 1902-3004
A16VR11 A16VR12 A16VR13	1902-3005 1902-0025 1902-3234	6 4 3	1	DIODE-ZNR 2,43V 5% 00-7 PD=,4W TC=-,076% DIODE-ZNR 10V 5% 00-7 PD=,4W TC=+,06% DIODE-ZNR 19,6V 5% 00-7 PD=,4W TC=+,073%	28480 28480 28480	1902-3005 1902-0025 1902-3234
	5040-6846 5060-9043 2110-0269	5	1 18	A16 MISCELLANEOUS PARTS BOARD EXTRACTOR, GRAY PIN FUSEHOLDER-CLIP TYPE.25D-FUSE	28480 28480 28480	5040-6846 5000-9043 2110-0269
A 1 7	08754-60017	8	1	SWEEP GENERATUR ASSEMBLY	28480	08754-60017
A17C1 A17C2 A17C3 A17C4 A17C5	0180-0291 0180-0197 0160-3402	3 8 2	1	CAPACITUR-FXO 1UF+-10% 35VDC TA CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD 1UF +-5% 50VDC MET-POLYC NOT ASSIGNED CAPACITOR-FXD .01UF +80-20% 100VDC CEH	56289 56289 28480 28480	150D105x9035A2 15uD225x9020A2 0160=3402
A17Co A17C7 A17CB A17C9 A17C10	0160-2055 0160-2055 0160-4084 0160-4084 0160-4084	9 8 8 8		CAPACITOR-FXD .01UF +80-20X 100VDC CER CAPACITOR-FXD .01UF +80-20X 100VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER	58480 58480 58480 58480 58480	0160-2055 0160-2055 0160-2055 0160-4084 0160-4084
A17C11 A17C12	0180-0197 0160-3466	8		CAPACITOR=FXD 2.2UF+=10% 20VDC TA CAPACITOR=FXD 100PF +=10% 1KVDC CER	56289 28480	1500225×9020A2 0160-3466
A17CR1 A17CR2 A17CR3 A17CR4 A17CR5	1901-0050 1901-0050 1901-0376 1901-0050	3 6 3	1	NOT ASSIGNED DIDDE-SWITCHING BOV 200MA 2NS DO-35 DIDDE-SWITCHING BOV 200MA 2NS DO-35 DIDDE-SET PRP 3SV 50MA DO-35 DIDDE-SWITCHING BOV 200MA 2NS DO-35	28480 28480 28480 28480	1901-0050 1901-0050 1901-0376 1901-0050
A17CR6 A17CR7	1901=0028 1901=0050	5		DIODE-PWR RECT 400V 750MA DO-29 Diode-switching 80V 200MA 2NS DO-35	28480 28480	1901-0028 1901-0050
A17L1	9140-0114	4		COIL-MLD 10UH 10% Q=55 .155DX.375LG-NOM	28480	9140-0114
A1701 A1702 A1703 A1704 A1705	1853-0451 1853-0451 1854-0404 1854-0404	5 0 0		TRANSISTOR PNP 2N3799 SI TO-18 PD#360Mm TRANSISTOR PNP 2N3799 SI TO-18 PD#360Mm TRANSISTOR NPN SI TO-18 PD#360Mm TRANSISTOR NPN SI TO-18 PD#360Mm NOT ASSIGNED	01295 01295 28480 28480	2N3799 2N3799 1854-0404 1854-0404

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1796 A1707 A1708 A1709 A17010	1854-0404 1854-0474 1855-0386 1855-0386 1854-0079	0 4 9 9	1	THANSISTOR NPN SI TO-18 PD=360MM TRANSISTUR NPN SI PD=310MM FT=100MHZ THANSISTOR J-FET 204392 N-CHAN D-MODE THANSISTOR J-FET 204392 N-CHAN D-MODE TRANSISTOR NPN 203439 SI TO-5 PD=14	28480 26480 04713 04713 01928	1854-0404 1854-0474 2N4592 2N4592 2N3439
A17R1 A17R2 A17R3 A17R4 A17R5	0757-0442 0757-0279 0757-0440 0757-0289 0757-0442	9 9 7 2 9		#ESISTOR 10K 1% .125% F TC#0+-100 #ESISTUR 3,16K 1% .125% F TC#0+-100 #ESISTUR 7,5K 1% .125% F TC#0+-100 #ESISTOR 13,3K 1% .125% F TC#0+-100 #ESISTOR 10K 1% .125% F TC#0+-100	24546 24546 24546 19701 24546	C4-1/8-T0-100<-F C4-1/8-T0-3161-F C4-1/8-T0-7501-F MF4C1/8-T0-1352-F C4-1/8-T0-1002-F
417R6 417R7 417R8 417R8 417R9	0698-3454 0757-0439 0757-0442 0698-0084 0698-3450	3 4 9 9		RESISTOR 215K 1% .125W F TC=0+=1UU RESISTOR 0.81K 1% .125W F TC=0+=1U0 RESISTOR 1UK 1% .125W F TC=0+=1U0 RESISTOR 2.15K 1% .125W F TC=0+=1U0 RESISTOR 42.2K 1% .125W F TC=0+=1UU	24546 24546 24546 24546 24546	C4-1/8-10-2153-F C4-1/8-10-6811-F C4-1/8-10-1002-F C4-1/8-10-2151-F C4-1/8-10-4222-F
A)7R11 A17R12 A17R13 A17R14 A17R15	0757-0442 0757-0442 0757-0280 0757-0279 0757-0465	9 9 3 0 6		RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOM 1K 1% .125W F TC=0+-100 RESISTOR 3.10K 1% .125W F TC=0+-100 RESISTOR 10UK 1% .125W F TC=0+-100	24549 54249 54249 54249	C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1001-F C4-1/8-T0-3161-F C4-1/8-T0-1003-F
A17R16 A17R17 A17R18 A17R19 A17R20	0757-0442 0698-3153 0757-0442 0698-3260 2100-3103	9 9 9 6	ŧ	HESISTOR 10K 1% ,125% F TC#0++10U RESISTOR 3,83K 1% ,125% F TC#0++10U RESISTOR 10K 1% ,125% F TC#0++10U RESISTOR 404K 1% ,125% F TC#0++10U RESISTOR 404K 1% ,125% F TC#0++10O RESISTOR→TRMP 10K 10% C SIOE-40J 17-TRN	24546 24546 24546 28480 02111	C4-1/8-T0-1002-F C4-1/8-TU-3851-F C4-1/8-TU-1002-F 0696-3260 43P103
A17821 A17822 A17823 A17824 A17825	0598-0083 0757-0419 0757-0274 2100-3095 0757-0401	8 0 5 5		RESISTOR 1,96K 1% ,125W F TC=0+-100 RESISTOR 681 1% ,125W F TC=0+-100 RESISTOR 1,21K 1% ,125W F TC=0+-100 RESISTOR-TRMR 200 10% L SIDE-ADJ 17-TRN HESISTOR 100 1% ,125W F TC=0+-100	24546 24546 24546 02111 24546	C4-1/8-[U-1961-F C4-1/8-TU-681K-F C4-1/8-TU-1213-F 43P201 C4-1/8-TU-101-F
A17R26 A17R27 A17R28 A17R29 A17R30	0698-8827 0698-7421 0757-0442 0757-0442 0757-0458	4 2 9 7	5	RESISTOR 3M 1% 125% F TC=0+-100 RESISTOR 40K .25% .125% F TC=0+-100 RESISTOR 10K 1% .125% F TC=0+-100 RESISTOR 10K 1% .125% F TC=0+-100 RESISTOR 51,1K 1% .125% F TC=0+-100	28480 19701 24546 24546 24546	0698-8827 MF4C1/8-T0-4002-C C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-5112-F
A17R31 A17R32 A17R33 A17R34 A17R35	0698-7421 0757-0442 0698-0083 0698-0083 0757-0401	8 8		RESISTOR 40K .25% .125% F TC#0++100 RESISTOR 10K 1% .125% F TC#0++100 RESISTOR 1.96% 1% .125% F TC#0++100 RESISTOR 1.96% 1% .125% F TC#0++100 RESISTOR 100 1% .125% F TC#0++100	19701 24546 24546 24546 24546	MF4C1/8=T0=4002=C C4=1/8=T0=1002=F C4=1/8=T0=1961=F C4=1/8=T0=1961=F C4=1/8=T0=101=F
A17R36 A17R37 A17R38 A17R39 A17R40	0757-0394 0757-0316 0698-6956 0757-0442 0757-0394	0 0 0 0	1	RESISTOR 51.1 1% .125M F TC=0+-100 RESISTOR 42.2 1% .125M F TC=0+-100 RESISTOR 1.837K .1% .125M F TC=0+-50 RESISTOR 10K 1% .125M F TC=0+-100 RESISTOR 51.1 1% .125M F TC=0+-100	24546 24546 28480 24546 24546	C4-1/8-T0-51H1-F C4-1/8-T0-42R2-F U698-6956 C4-1/8-T0-51H1-F C4-1/8-T0-51H1-F
A17R41 A17R42 A17R43 A17R44 A17R45	0757-0442 0695-6624 0757-0394 0757-0442 0757-0394	9 5 0 9	:	RESISTOR 10K 1X .125W F TC=0+=100 RESISTOR 2K .1% .125W F TC=0+=25 KESISTOR 51.1 1% .125W F TC=0+=100 RESISTOK 10K 1% .125W F TC=0+=100 RESISTOR 51.1 1% .125W F TC=0+=100 RESISTOR 51.1 1% .125W F TC=0+=100	24546 28480 24546 24546 24546	C4=1/8=T0=1002=F 0698=6624 C4=1/8=70=5181=F C4=1/8=70=5181=F C4=1/8=70=5181=F
A17RU6 A17RU7 A17RU8 A17RU9 A17RSO	0757=0442 0757=0278 0757=0442 0757=0442 0757=0421	9 9 9 4		RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 1,78K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 825 1% .125W F TC=0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-1781-F C4-1/8-T0-1002-F C4-1/8-T0-8028-F C4-1/8-T0-8258-F
417R51 417R52 417R53 417R54 417R55	0757-0458 0757-0438 0757-0442 0757-0442 0757-0442	7 3 9 9		RESISTOR 51.1K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4=1/8=T0=5112=F C4=1/8=T0=5111=F C4=1/8=T0=1002=F C4=1/8=T0=1002=F C4=1/8=T0=1002=F
417856 417857 417858 417859 417860	0757-0442 0757-0442 0757-0442 0757-0442 0757-0458	9 9 9 9		RESISTOR 10K 1% .125W F IC=0+-100 RESISTOR 51.1K 1% .125W F IC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-5112-F
417H61 417R62 417R63 417R64 417R65	0698=3454 0757=0438 0757=0401 0757=0424 0698=0083	3 3 0 7 8		RESISTOR 215K 1% .125W F TC=U+-100 RESISTOR 5,11M 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 1.1K 1% .125W F TC=0+-100 RESISTOR 1.7K 1% .125W F TC=U+-100 RESISTOR 1.96K 1% .125W F TC=U+-100	24546 24546 24546 24546 24546	C4-1/8-TU-2153-F C4-1/8-TU-2153-F C4-1/8-TU-101-F C4-1/8-TU-1101 C4-1/8-TU-1961-F
A17M60 A17R67 A17R68 A17R69 A17R7U	0757=0280 0757=0280 0757=0442 0757=0442 0757=0442	3 9 9		RESISTOR 1K 1% 125W F TC=0+=100 RESISTOR 1K 1% 125W F TC=0+=100 RESISTOR 10K 1% 125W F TC=0+=100 RESISTOR 10K 1% 125W F TC=0+=100 RESISTOR 10K 1% 125W F TC=0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F

See introduction to this section for ordering information *Indicates factory selected value

6-35

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A17R71 A17R72 A17R73 A17R74 A17R75	0757-0442 0757-0442 0757-0442 0757-0442 0757-0442	9 9 9 9		RESISTOR 10K 1% .125W F fC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	24546 24546 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F
A17R76 A17R77 A17R78 A17R79 A17R80	0757=0442 0757=0438 0757=0438 0757=0438 0757=048	3 3 3		RESISTUR 10K 1% ,125% F TC#0+-100 RESISTUR 5,11K 1% ,125% F TC#0+-100 RESISTOR 5,11K 1% ,125% F TC#0+-100 RESISTOR 5,11K 1% ,125% F TC#0+-100 RESISTOR 5,11K 1% ,125% F TC#0+-100	24546 24546 24546 24546 24546	C4-1/8-TU-1002-F C4-1/8-TU-5111-F C4-1/8-TU-5111-F C4-1/8-TU-5111-F C4-1/8-TU-5101-F
A17R81 A17R82 A17R83 A17R84 A17R85	0757-0438 0757-0438 0757-0442 0698-3444 0698-3444	3 9 1		RESISTOR 5,11K 1% .125W F TC=0+-100 RESISTOR 5,11K 1% .125W F TC=0+-100 RESISTOR 10 K 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-10-5111-F C4-1/8-10-5111-F C4-1/8-10-1012-F C4-1/8-10-316H-F C4-1/8-10-316H-F
A17R86 A17R87 A17R88 A17R89	0698-3444 0698-3444 0698-3444 0698-8827	1 1 1		#ESISTOR 316 1% .125% F TC=0+-100 RESISTOR 316 1% .125% F TC=0+-100 RESISTOR 316 1% .125% F TC=0+-100 RESISTOR 1M 1% .125% F TC=0+-100	24546 24546 24546 28480	C4=1/8=T0=316R=F C4=1/8=T0=316R=F C4=1/8=T0=316R=F 0698=8827
A17TP1 A17TP2 A17TP3 A17TP4 A17TP5	0360-0535 0360-0535 0360-0535 0360-0535	0 0 0 0		TERMINAL TEST POINT PCB	00000 00000 00000 00000	ORDER BY DESCRIPTION
A17TP6 A17TP7 A17TP8	0360=0535 0360=0535 0360=0535	0		TERMINAL TEST POINT PCU TERMINAL TEST POINT PCU TERMINAL TEST POINT PCU	00000	OUDER AA DEZCEIDAION OUDER AA DEZCEIDAION OUDER AA DEZCEIDAION
A17U1 A17U2 A17U3 A17U4 A17U5	1826-0304 1820-1208 1826-0138 1826-1112 1820-1202	0 3 8 8 7		IC OP AMP TO-99 IC GATE TIL LS OR QUAD 2-INP IC 339 COMPARATOR 14-01P-P IC FF TTL LS D-TYPE POS-EDGE-TRIG IC GATE TIL LS NAND TPL 3-INP	27014 01295 04713 01295 01295	LF355M SN74LS32N MLM339P SN74L874N SN74L810N
A17U6 A17U7 A17U8 A17U9 A17U10	1820-1197 1810-0206 1820-1197 1820-1201 1820-1202	9 8 9 6 7	3	IC GATE TIL LS NAND QUAD 2-INP NETWORK-RES 8-PIN-SIP .1-PIN-SPCG IC GATE TIL LS NAND WUAD 2-INP IC GATE TIL LS AND WUAD 2-INP IC GATE TIL LS NAND TPL 5-INP	01295 11236 01295 01295 01295	SN74LS00N 750-81-H10K SN74LS00N SN74LS08N SN74LS10N
A17U11 A17U12 A17U13 A17U14 A17U15	1826-0138 1820-1208 1858-0032 1826-0261 1826-0261	8 3 8 8		IC 339 COMPARATOR 14-DIP-P IC GATE TTL LS OR GUAD 2-INP TRANSISTOR ARRAY IC 741 DP AMP TO-99 IC 741 DP AMP TO-99	04713 01295 01928 28480 26480	MLM339P SN74LS32N CA3146E 1820-0201 1820-0201
A ₁ 7 _V R ₁	1902-3193	3	1	DIODE=ZNR 13.3V 5% DO=7 PD=.4W TC=+.059%	28480	1902-3193
				ALT MISCELLANEOUS PARTS		
	5040-6845 5000-9043	6	1	BUARD EXTRACTOR, WHITE PIN	28480 28480	5040-6845 5000-9043
A18	08754-60018	9	1	DEFLECTION AMPLIFIERS ASSEMBLY	28480	08754-60018
A18C1 A18C2 A18C3 A18C4 A18C5	0160-4298 0160-4084 0160-4084 0160-4084 0160-0197	8888		CAPACITUR-FXD 4700PF +-20% 250VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 2.2UF+-10% 20VDC TA	56289 28480 28480 28480 56289	C067F251M472MS22-CDH 0160-4084 0160-4084 150D225x9020A2
A18C6 A18C7 A18C8 A18C9	0160-4298 0180-0291 0180-0197 0160-4298	6 3 8 6		CAPACITOR-FXD 4700PF +-20% 250VDC CER CAPACITOR-FXD 1UF++10% 35VDC TA CAPACITOR-FXD 2,2UF+-10% 26VDC TA CAPACITOR-FXD 4700PF +-20% 250VDC CER	56289 56289 56289 56289	C067F251H472M522-C0H 150D105X9U35A2 150D225X9020A2 C067F251H472MS22-C0H
A18CR1 A18CR2 A18CR3	1901-0050 1901-0050 1901-0033	3 2	l	DIODE-SWITCHING 80V 200MA 2NS DC-35 DIODE-SWITCHING 80V 200MA 2NS DU-35 DIODE-GEN PRP 180V 200MA DO-7	28480 28480 28480	1901-0050 1901-0050 1901-0055
A18L1 A18L2 A18L3 A18L4	9140-0210 9140-0114 9140-0114 9140-0114	1 4 4		COIL-MLD 100UH 5% U=50 .155D%,875LG-NUM COIL-MLD 10UH 10% G=55 .155D%,375LG-NUM COIL-MLD 10UH 10% G=55 .155D%,375LG-NUM COIL-MLD 10UH 10% G=55 .155D%,375LG-NUM	28480 28480 28480 28480	9140-0210 9140-0114 9140-0114 9140-0114
A18Q1 A18Q2 A18Q3 A18Q4 A18Q5	1854-0404 1854-0404 1854-0404 1853-0451 1854-0232	0 0 5 2		TRANSISTOR NPN SI TO-18 PD=360MM TRANSISTOR NPN SI TU-18 PD=360MM TRANSISTOR NPN SI TO-18 PD=360MM TRANSISTOR PNP SI TO-18 PD=360MM TRANSISTOR PNP 2N3799 SI TO-18 PD=360MM TRANSISTOR NPN SI TU-39 PD=1M FT=15MMZ	28480 28480 26480 01295 28480	1854-0404 1854-0404 1854-0404 2N3799 1854-0252
A18G6 A18G7 A18G8 A18G9 A18G10	1853-0451 1854-0232 1854-0232 1853-0451 1854-0232	5 2 2 5 2		TRANSISTOR PNP 2N3799 SI TU-18 PD#360MW TRANSISTOR NPN SI TO-39 PD#1W FT#15MMZ TRANSISTOR NPN SI TO-39 PD#1W FT#15MMZ TRANSISTOR NPN 2N3799 SI TO-18 PD#360MW TRANSISTOR NPN SI TU-39 PD#1W FT#15MMZ	01295 28480 28480 01295 28480	2N3799 1854-0252 1854-0252 2N3799 1854-0252

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A18011	1853-0451	5		TRANSISTOR PNP 2N3799 SI TU-18 PD=360MW	01295	243799
A1891	0757-0442	9		RESISTOR 10K 1% .125W F TC#0+-100	24546	C4-1/8-10-1002-F
A16R2 A16R3	0757=0442 0698=6360	9		PESISTOR 10K 1% .125H F TC=0+-100	24546	C4-1/8-T0-1002-F
41684	0757-0442	9		RESISTUR 10K .1% .125W F TC=0+-25 RESISTUR 10K 1% .125W F TC=0+-100	28480 24546	0698-6360 C4-1/8-10-1002-F
A1885	0698-6360	6		RESISTOR 10K .1% .125W F TC=0+=25	28480	0698-6360
418R6	0698-6360	6		RESISTOR 10K .1% .125W F TC=0++25	28480	0698-6360
A18R7 A18R8	0698=6360	5 9		RESISTOR 10K .1% .125% F TC=0+-25	28480	0698-6360
418R9	0698-3453 0757-0442	3		PESISTOR 196K 1% .125w F TC=0+=100 RESISTOR 10K 1% .125w F TC=0+=100	24546	C4-1/8-T0-1963-F
A18R10	0698+6360	6		RESISTOR 10K .1% .125W F TC=0+=25	24546 28480	C4-1/8-T0-1002-F 0698-6360
A18811	0/57-0199			RESISTOR 21.5K 1% .125W F TC#0+#100		
418812	0757-0442	3 9		RESISTOR 10K 1% .125% F TC=0+=100	24546	C4-1/8-T0-2152-F C4-1/8-T0-1002-F
A16R13 A16R14	0698-3453	3		RESISTOR 196K 1% _125W F TC=0+-100	24546	C4-1/8-70-1963-F
418R15	0757-0442 0757-0280	3		RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100	24546	C4-1/8-T0-1002-F C4-1/8-T0-1001-F
A18R16	0757 6386	,				
418R17	0757-0280 0698-3460	3		RESISTOR 1K 1X .125W F TC=0+-1U0 RESISTOR 422K 1X .125W F TC=0+-1U0	24546 28480	C4=1/8=T0=1001=F 0698=3460
418R18	0757-0442	9		MESISTUR 10K 1% .125W F TC=0+=100	24546	C4-1/8-T0-1002-F
416R19 418R20	0757=0442 0757=0442	9		RESISTOR 10K 1% .125m F TC=0+-100 RESISTOR 10K 1% .125m F TC=0+-100	24546 24546	C4-1/8-10-1002-F
		1	ł		24540	C4-1/8-T0-1002-F
718855 718851	0757=0442 0757=0438	9	ļ	RESISTOR 10K 1% 125W F TC=0+=100	24546	C4-1/8-T0-1002-F
418P23	0698-6360	3	- 1	RESISTOR 5.11K 1% .125W F TC=0+=100 RESISTOR 10K .1% .125W F TC=0+=25	24546 28480	C4-1/8-TU-5111-F 0698-6360
418R24	0757-0442	9		RESISTOR 10K 1% .125W F TC=0+=100	24546	C4-1/8-T0-1002-F
418825	0757-0428	1		RESISTOR 1.62K 1% .125W F TC=0+-100	24546	C4-1/8-T0-1021-F
418R26	0698-3155	1 7		RESISTOR 4.64K 1% .125W F TC=0+-100	24546	C4-1/8-10-4641-F
18827 18828	0757-0440 0757-0855	7		RESISTOR 7.5K 1% .125w F TC=0+-100	24546	C4-1/8-TU-7501-F
18829	0698-3451	9	"	RESISTOR 68.1K 1% .5W F TC=0+-100 RESISTOR 133K 1% .125W F TC=0+-100	28480 24546	0757-0855 C4-1/8-T0-1333-F
418R3U	0157-0442	9		RESISTOR 10K 1% .125M F TC=0+-100	24546	C4-1/8-T0-1002-F
418R31	0698-3153	9		RESISTOR 3.83K 1% .125w F TC=0++100	24546	C4-1/8-T0-3831-F
16635	2100-3109	8		RESISTUR-TRMR 2K 10% C SIDE-ADJ 17-TRN	02111	43P202
118R33 118R34	0757=0855 0698=3451	0		RESISTOR 68.1K 1% ,5W F TC=0+=100 RESISTOR 133K 1% ,125W F TC=0+=100	28480	0757-0855
18835	0757-0442	9		RESISTOR 10K 1% .125W F TC=0+=100	24546 24546	C4-1/8-T0-1335-F C4-1/8-T0-1002-F
118836	u757=0280	3				
118837	0/57-0280	3		RESISTOR IK 1% .125w F TC=0+=100 RESISTOR IK 1% .125w F TC=0+=100 RESISTOR IK 1% .125w F TC=0+=100 RESISTOR 28.7K 1% .125w F TC=0+=100	24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1001-F
118838 118839	0757-0280	3		RESISTOR 1K 1% .125W F TC=0+=100	24546	C4-1/8-T0-1001-F
115840	0 698-3449 2100 -3 056	8	3	RESISTOR-TRMR 5K 10% C SIDE-ADJ 17-TRN	24546 02111	C4-1/8-Tu-2872-F 43P502
		ا ا				
118841 118842	0757=0289 0757=0280	?		RESISTOR 13.3K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100	19701 24546	MF4C1/8-Tu-1332-F C4-1/8-T0-1001-F
1.8843	0757-0442	3 9	l	RESISTOR 10K 1% .125w F TC=0+=100	24546	C4=1/8=T0=1001=F
118R44 118R45	0698-0084 0757-0442	9	ľ	RESISTOR 10K 1% .125w F TC=0+=100 RESISTOR 2.15K 1% .125w F TC=0+=100	24546	C4-1/8-T0-2151-F
	0131-0442		1	RESISTOR 10K 1% .125W F TC=0+=100	24546	C4-1/8-T0-1002-F
18R46 18R47	0757-0458	7 9	ı	RESISTOR 51.1K 1% .125W F TC=0+=100	24546	C4-1/8-T0-5112-F
18848	0757-0442 0698-0084	9	ŀ	RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 2.15K 1% .125W F TC=0+=100	24546	C4=1/8=T0=1002=F C4=1/8=T0=2151=F
18849	0757-0199	3		RESISTOR 21.5K 1% .125W F TC=0+-100	24546	C4=1/8=70=2152=F
118850	0757-0440	7		RESISTOR 7.5K 1% .125W F TC=0+-100	24546	C4-1/8-T0-7501-F
18R51	0757-0438	3		RESISTOR 5,11K 1% ,125W F TC=0+-100	24546	C4-1/8-T0-5111-F
118R52	0757-0855 0698-3451	8	- 1	RESISTOR 5.11K 1% .125W F TC=0+-100 PESISTOK 68.1K 1% .5W F TC=0+-100	28480	0757-0855
18854	0757=0442	9	l	RESISTOR 133K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100	24546	C4-1/8-T0-1333-F C4-1/8-T0-1002-F
18R55	0698-3153	9	ŀ	RESISTOR 3.83K 1% .125W F TC=0+=100	24546	C4-1/8-10-1002-F
18856	2100-3109	2	İ	RESISTOR-TRMR 2K 10% C SIDE-ADJ 17-TRN	02111	439202
18R57	0757-0855	8		RESISTOR 68.1K 1% .5W F TC=0+-100	28480	0757-0855
18858 18859	0698-3451 0757-0442	0		RESISTOR 133K 1% .125W F TC=0+-100	24546	C4-1/8-T0-1333-F
18R60	0698-3444	ī		RESISTOR 10K 1% .125W F TC#0+=100 RESISTOR 316 1% _125W F TC#0+=100	24546	C4-1/8-TU-1002=F C4-1/8-TU-316R-F
18R61			ļ	i		
18862	0757-0280	3		NOT ASSIGNED RESISTOR 1K 1% .125% F TC=0+=100	24546	C4-1/8-T0-1001-F
18R63 18R64	0698-3449 2100-3056	6		RESISTOR 28.7K 1% ,125W F TC=u+-10u	24546	C4-1/8-T0-2872-F
18865	0757-0289	8		RESISTOR-TRMR 5K 10% C SIDE-ADJ 17-TRN RESISTOR 13.3K 1% .125W F TC=0+-100	02111 19701	43P502 MF4C1/8=T0=1332=F
į.						
18R66 18R67	0698-6360 0757-0279	b U		RESISTOR 10K .1% .125W F TC=0+=25 RESISTOR 3.16K 1% .125W F TC=0+=100	28480 24546	0698-6360 C4-1/8-f0-3161-F
18R68	0757-0317	7	l	RESISTUR 1.33K 1% .125# F TC=0+-100	24546	C4=1/8=10=3161=F C4=1/8=10=1331=F
18R69 18R70	0757-0442 0757-0458	7		RESISTOR 10K 1% .125W F TC=0+=100	24546	C4-1/8-TU-1002-F
				RESISTOR 51.1K 1% .125W F TC=0+=100	24546	C4=1/8=T0=\$112=F
18R71 18R72	0757-0199	3	ŀ	RESISTOR 21.5K 1% .125W F TC=0+=100	24546	C4-1/8-T0-2152-F
18R73	0757-0290 0757-0442	9	[RESISTOR 6.19K 1% .125W F TC=0++100 RESISTOR 10K 1% .125W F TC=0++100	19701	MF4C1/8=T0=6191=F C4=1/8=T0=1002=F
18R74	0698-0084	9	1	RESISTOR 2.15K 1% .125W F TC=0+=100	24546	C4-1/8-T0-2151-F
18R75	0698-3154	Ü	ļ	RESISTOR 4.22K 1% .125W F TC=0++100	24546	C4-1/8-T0-4221-F
			ĺ			

Table 6-3. Replaceable Parts

rt Number	Mfr Part N	Mfr Code	Description	Qty	C D		Reference Designation
51-F 52-F	C4-1/8-TU-5111-F C4-1/8-TU-2151-F C4-1/8-TU-2152-F C4-1/8-TU-3101-F 0698-6360	24546 24546 24546 24546 28480	RESISTON 5,11K 1% ,125W F TC#0+-100 RESISTOR 2,15K 1% ,125W F TC#0+-100 RESISTOR 21,5K 1% ,125W F TC#0+-100 RESISTOR 3,16K 1% ,125W F TC#0+-100 RESISTOR 10K ,1% ,125W F TC#0+-25		3 0 6	0757-0438 0698-0084 0757-0199 0757-0279 0698-6360	A16876 A16877 A16878 A16879 A16880
)02-F	C4-1/8-10-1003-F C4-1/8-10-1002-F C4-1/8-10-5112-F CB6235 CB6831	24546 24546 24546 01121 01121	RESISTOR 100K 1% .125m F TC=0+-100 RESISTOR 10K 1% .125m F TC=0+-100 RESISTOR 51,1K 1% .125m F TC=0+-100 RESISTOR 62K 52 ,25m FC TC=-400/+800 RESISTOR 68K 10% .25m FC TC=-400/+800	1	6 7 5 7	0757-0465 0757-0442 0757-0458 0683-6235 0684-6831	A;8R8; A;8R8Z A;8R83 A;8R84 A;8R85
96R-F 16K-F 16K-F	C4-1/8-[0-3101-F C4-1/8-[0-196R-F C4-1/8-[0-316R-F C4-1/8-[0-316R-F C4-1/8-[0-316R-F	24546 24546 24546 24546 24546	RESISTOR 3.16K 1% .125W F TC=0+-100 RESISTOR 196 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100		0 7 1 1	0757-0279 0698-3440 0698-3444 0698-3444 0698-3444	A18R86 A18R87 A18R88 A18R89 A18R90
	C4=1/8=10=316R=F C4=1/8=Tu=316R=F	24546 24546	RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100		1	0698=3444 0698=3444	A18R91 A18R92
ESCHIPTION	ORDER BY DESCRI ORDER BY DESCRI	00000	TERMINAL TEST POINT PCB TERMINAL TEST POINT PCB TERMINAL TEST POINT PCB		000	0360-0535 0360-0535 0360-0535	A18TP1 A18TP2 A18TP3
	MLM339P 750-81-K10K SN74LS00N SN74LS0UN CD4053BY	04713 11236 01295 01295 01295	IC 339 COMPARATOR 14-DIP-P NETHORK-RES 8-PIN-SIP .1-PIN-SPCG IC GATE TTL LS NAND GUAD 2-INP IC GATE TTL LS NAND GUAD 2-INP IC MUXR/DATA-SEL CMOS [PL		8 9 9	1826=0138 1810=0206 1820=1197 1820=1197 1820=1545	A18U1 A18U2 A18U3 A18U4 A18U5
	C040538Y 1826-0092 1826-0092 1826-0092 1826-0092	01928 28480 28480 28480 28480 28480	IC MUXR/DATA-SEL CMOS TPL IC OP AMP TU-99		1 3 3 3 3	1820=1545 1826=0092 1826=0092 1826=0092 1826=0092	A18U6 A18U7 A18U8 A18U9 A18U10
	1902-0041 1902-3203	28480 28480	DIUDE-ZNR 5.11V 5x DO-7 PD=.4% TC=009x DIODE-ZNR 14.7V 5x DO-7 PD=.4% TC=+.057x		4	1902-0041 1902-3203	A18VR1 A18VR2
	5040 +841	-0.00	A18 MISCELLANEOUS PARTS				
	5040-6843 5000-9043	28480 28480	BOARD EXTRACTOR, BLACK PIN	1	9	5040-6843 5000-9043	
	08754-60019	28480	RECTIFIER ASSEMBLY	1	0	08754-60019	A19
2M822=CDH L4 2	603UH47594W2 C067F251H472M827 39D806F150FL4 663UH47594W2 C067F251H472MS27	84411 56289 56289 84411 56289	CAPACITOR-FXD 4700PF +-20% 250VDC CER	1	3 6 3 6	0170-0060 0160-4298 0180-2213 0170-0060 0160-4298	A19C1 A19C2 A19C3 A19C4 A19C5
L 4	390456F250FL4 0160-0970 0160-2055 0160-0970 0160-2055	56289 28480 28480 28480 28480		1	7 3 9 3 9	0180-1748 0160-0970 0160-2055 0160-0970 0160-2055	A19C6 A19C7 A19C8 A19C9 A19C10
542	0160-2195 0160-2055 1500105X9035A2	28480 28480 56289	CAPACITOR-FXD .22UF ++5% 200VDC PDLYE CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD 1UF+-10% 35VDC TA	1	8 9	0160=2195 0160=2055 0180=0291	A19C11 A19C12 A19C13
	1901-0367 1901-0367	28480 28480	DIQDE-FW BRDG 600V 1A DIODE-FW BRDG 600V 1A NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED	2	5	1901-0367 1901-0367	A19CR1 A19CR2 A19CR3 A19CR4 A19CR5
	2N4186 1901-0662 5082-4984 5082-4984	04713 28480 28480 28480	THYRISTOR-SCR 2N4 86 VHRM=200 NOT ASSIGNED DIODE-PWR RECT 100V 6A LED-VISIBLE LUM-INT880UUCD IF#3UMA-MAX LED-VISIBLE LUM-INT880UUCD IF#3OMA-MAX		3 5 5	1884-0018 1901-0662 1990-0485 1990-0485	A19CR6 A19CR7 A19CR8-19 A19DS1 A19DS2
	313,125 313,125	75915 75915	FUSE .125A 250V SLO-BLU 1.25x.25 UL IEC FUSE .125A 250V SLO-BLU 1.25x.25 UL IEC		0	2110-0318 2110-0318	A19F1 A19F2
	E83335 G86831 E81025 E81025 E82725	01121 01121 01121 01121 01121	RESISTOR 68K 10% 1W CC TC=0+765 RESISTOR 1K 5% 5W CC TC=0+647 RESISTOR 1K 5% 5W CC TC=0+647	5	9	0686-3335 0690-6831 0686-1025 0686-1025 0686-2725	A19R1 A19R2 A19R3 A19R4 A19R5
316R=F 316R=F 316R=F	C4-1/8-T0-516K- C4-1/8-T0-516K- C4-1/8-T0-316K- C4-1/8-T0-316K- C4-1/8-TU-1473-	24546 24546 24546 24546 24546	RESISTOR 316 1% ,125% F IC#0+=100 RESISTOR 316 1% ,125% F IC#0+=100 RESISTOR 316 1% ,125% F TC=0+=100 RESISTOR 316 1% ,125% F TC=0+=100 RESISTOR 147% 1% ,125% F TC=0+=100		1 1 1	0698-3444 0698-3444 0698-3444 0698-3452	A19Rb A19R7 A19R8 A19R9 A19R10
316 316	C4=1/8=T0=316 C4=1/8=T0=316	24546 24546	RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100		1	0698-3444 0698-3444	A19R7 A19R8 A19R9

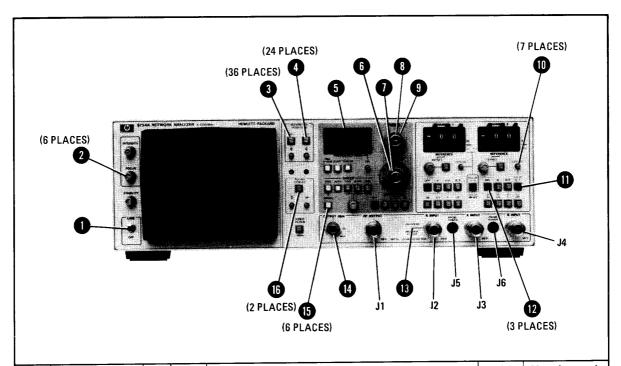
Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A19811 A19812 A19813 A19814 A19815	0698-3452 0757-0346 0757-0420 0647-1001 0687-1001	5 5 6	2	RESISTUR 147K 1% .125M F TC=0++100 RESISTOR 10 1% .125M F TC=0++100 KESISTOR 750 1% .125M F TC=0++100 RESISTOR 10 10% .5% CC TC=0+412 RESISTOR 10 10% .5% CC TC=0+412	24546 24546 24546 01121 01121	C4-1/8-10-1473-F C4-1/8-10-10K0-F C4-1/8-70-751-F E81001 E81001
4191P2 4191P1	0360-0535 0360-0535	0		TERMINAL TEST POINT PCB TERMINAL TEST POINT PCB	00000	ONDER BA DESCHIBITON ONDER BA DESCHIBITON
419U1 419U2 419U3	1820-1211 1810-0206 1820-1197	8 8 9	1	IC GATE TIL LS EXCL-OR WUAD 2-INP NETWORK-RES 8-PIN-SIP ,1-PIN-SPCG IC GATE TIL LS NAND WUAD 2-INP	01295 11236 01295	5N74L986N 750-81-K19K SN74L500N
419VR1	1902-0176	6	5	DIODE=ZNR 47.5V 5% DO=15 PD=1% TC=+.081%	28480	1902-0176
	S110-05P8	U		A19 MISCELLANDOUS PARTS FUSEHOLDER-CLIP TYPE,250-FUSE	28480	2110-0269
450	08754=60020	3	1	MUTHER BOARD	28480	08754*60020
A 20C3 A 20C3 A 20C5	0180-2603 0180-0452 0180-2650 0160-4082 0160-4082	5 6 6	1 1 1 6	CAPACITOR-FXD 7200UF+75-10% 50VDC AL CAPACITOR-FXD .013F+75-10% 25VDC AL CAPACITOR-FXD .022F+75-10% 15VDC AL CAPACITOR-FUND 1000PF 20% 200V CER CAPACITUR-FDTHRU 1000PF 20% 200V CER	28480 28480 00853 28480 28480	0180-2603 0180-0452 5002230015AC24 0160-4082 0160-4082
A20C6 A20C7 A20C9	0160-4082 0160-4082 0160-4082 0160-4082	0000		CAPACITOR-FOTHRU 1000PF 20% 200V CER CAPACITOR-FOTHRU 1000PF 20% 200V CER CAPACITOR-FOTHRU 1000PF 20% 200V CER CAPACITOR-FOTHRU 1000PF 20% 200V CER	28480 28480 28480 28480	0160-4082 0160-4082 0160-4082 0160-4082
750E3 750E5 750F1	0360-1788 0360-1788 0360-1788	7 7 7	11	CUNNECTUR-SGL CONT PIN .045-IN-BSL-SZ SQ CONNECTOR-SGL CONT PIN .045-IN-BSC-SZ SW CUNNECTOR-SGL CONT PIN .045-IN-BSC-SZ SW	28480 28480 28480	0360-1788 0360-1788 0360-1788
A20F1 A20F3 A20F3 A20F5	2110=0083 2110=0083 2110=0012 2110=0083 2110=0001	6 1 6 8	3 1 1	FUSE 2,54 250V FAST-BLU 1,25x,25 UL IEC FUSE 2,54 250V FAST-BLU 1,25x,25 UL IEC FUSE ,54 250V FAST-BLU 1,25x,25 UL IEC FUSE 2,54 250V FAST-BLO 1,25x,25 UL IEC FUSE 14 250V FAST-BLO 1,25x,25 UL IEC	28480 28480 28480 28480 75915	2110-0085 2110-0085 2110-0012 2110-0085 512001
1054 2012 2013 4094 2015	1251-3090 1251-3090 1251-5147 1251-5147 1200-0565	8 0 0	2	CONNECTOR 50-PIN CONNECTOR 50-PIN CONNECTOR 24-PIN M PUST TYPE CONNECTOR 24-PIN M PUST TYPE SUCKET-IC 24-CONT DIP-SLOR	28480 28480 28480 28480 28480	1251-3090 1251-3090 1251-5147 1251-5147 1200-0565
42001 42002	1853=0351 1854=0611	4	1 1	TRANSISTOR PNP 2N6053 SI DARL TO-3 Transistor npn 2n6055 Si Darl To-3	28480 04713	1853-0351 2N6055
A20R1 A20R2 A20R3	0698-3441 0757-0382 0757-0294	6 9	1 1	RESISTUR 215 1% .125W F TC=0+-100 RESISTOR 16.2 1% .125W F TC=0+-100 RESISTUR 17.8 1% .125W F TC=0+-100	24546 19701 19701	C4-1/8-TU-215R-F MF4C1/8-TU-16N2-F MF4C1/8-TU-17R8-F
A 2 0 U 3 A 2 0 U 3 A 2 0 U 3	1826-0123 1826-0181 1820-0430	1 1 1	1 1 1	IC 7912 V RGLTR T0=3 IC V RGLTR T0=3 IC 309 V RGLTR T0=5	04713 27014 07263	MC7912CK LM323K LM309K
A2UW1 A2UW2 A2UW3 A2UW4	08754-20041 08754-20041 08754-20041 08754-20042	4 4 5	3	CABLE, RF Cable, RF Cable, RF Cable, RF	28480 28480 28480 28480	08754-20041 08754-20041 08754-20041 08754-20042
\$50.x94 \$50.x93 \$50.x93 \$50.x92	1251=5176 1251=5176 1251=5176	5 5 5	3	NOT ASSIGNED NOT ASSIGNED CUNNECTUR-PC EDGE 6-CONT/ROM 1=ROM CONNECTOR-PC EDGE 6-CONT/ROM 1=ROM CONNECTOR-PC EDGE 6-CONT/ROM 1=ROM	28480 28480 28480	1251=5176 1251=5176 1251=5176
A20×A6 A20×A7 A20×A8 A20×A9 A20×A10	1251-1365 1251-0472 1251-1365 1251-1365 1251-1365	04000	13	CONNECTOR-PC EDGE 22-CUNT/RUW 2-RUWS CONNECTOR-PC EDGE 6-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 22-CUNT/ROW 2-RUWS CUNNECTOR-PC EDGE 22-CUNT/ROW 2-RUWS CONNECTOR-PC EDGE 22-CUNT/ROW 2-ROWS	26480 28480 28480 28480 28480	1251-1365 1251-0472 1251-1365 1251-1365 1251-1365
A20×A11 A20×A13 A20×A14 A20×A15	1251-1365 1251-1365 1251-1365 1251-1365 1251-1365	0 0 0 0		CUNNECTOR-PC EDGE 22-CUNT/ROW 2-ROWS CONNECTOR-PC EDGE 22-CUNT/ROW 2-ROWS CONNECTOR-PC EDGE 22-CUNT/ROW 2-ROWS CUNNECTOR-PC EDGE 22-CUNT/ROW 2-ROWS CUNNECTOR-PC EDGE 22-CUNT/ROW 2-ROWS	28480 28480 28480 28480 28480	1251=1365 1251=1365 1251=1365 1251=1365 1251=1365
A20xA16 A20xA17 A20xA18 A20xA19	1251+1365 1251+1365 1251+1365 1251+1365	0 0 0 0		CONNECTOR=PC EDGE 22=CUNT/RD# 2=RO#S CONNECTUR=PC EDGE 22=CUNT/RD# 2=RO#S CUNNECTUR=PC EDGE 22=CUNT/RD# 2=RO#S CUNNECTOR=PC EDGE 22=CUNT/RD# 2=RO#S	28480 28480 28480 28480	1251+1365 1251+1365 1251+1365 1251+1365

Table 6-3. Replaceable Parts

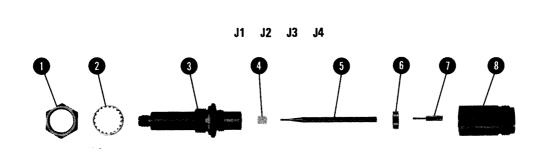
Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
_		\sqcap		AZO MISCELLANEOUS PARTS		
	2110-0269	0		FUSEHOLDER-CLIP TYPE.250-FUSE	28480	2110-0269
	0380-0383	8	6	STANDOFF-RVT-ON .125-IN-LG 6-32THD	00000 28480	ORDER BY DESCRIPTION 0590+0970
	0590-0970	4	10	THREADED INSERT-NUT 6-12 .062-LG STL CONNECTOR-SGL CONT SKT .04-IN-85C-9Z RND	28480	1251-2313
	1251-2313 0360-0353	1 8	10	TERMINAL-SLOR LUG EYLT-MIG FOR-#6-SCR	28480	0360-0353
	7120-4295	6	1	LBL S WARNING AA (HAZARDOUS VOLTAGE)	28480	7120-4295
	0361-0004	0	4	RIVET-SEMITUB OVH .146 DIA .188LG	00000 28480	ORDER BY DESCRIPTION 2190-0007
	2190-0007	5	6	WASHER-LK INTL T NO. 6 .141-IN-ID High voltage power supply assembly	28480	08754-60021
421	08754-60021	4	1	HIGH VOLINGE FOWER SOFFET ROSE-DE.	20400	
42101	0160-0678	e	5	CAPACITUR-FXD .01UF +=20% 6KVDC CAPACITUR-FXD 1UF+=10% 35VDC TA	28480	0160-0678
A21C2	0180-0291	3		CAPACITUR-FXD 1UF+=10% 35VDC TA	56289 56289	150D105x9035A2 150D225x9020A2
A21C3 A21C4	0180-0197 0160-4298	8		CAPACITOR=FXD 2,2UF+=10% 20VDC TA CAPACITOR=FXD 4700PF +=20% 250VDC CER	56289	C067F251H472MS22+CDH
42105	0100-4270			NOT ASSIGNED		· -
A21C6	0180-0232	5	1	CAPACITOR-FXD 10UF+20=15% 100VDC TA	06001	64F294G1
A21C7	0100-0632	•	•	NOT ASSIGNED	1 1	
421C8		1 .		NUT ASSIGNED CAPACITOR=FXD 10PF +=5% 500VDC CER 0+=60	28480	0160+2257
A21C9 A21C10	0100-2257	3	2	CAPACITOR-FXD _047UF +80-20% 100VDC CER	56289	C023F101L473ZS22=CDH
		i	_	•		04.0.70.4
A21C11	0160-3466	8		CAPACITOR=FXD 100PF +=10X 1KVDC CER CAPACITOR=FXD .1UF +=20X 50VDC CER	28480 28480	0160-3466 0160-4084
W51C13	0160-4300	1		CAPACITOR-FXD .047UF +80-2U% 100VDC CER	56289	C023F101L473Z822=CDH
A21C14	0100-0165	8	1	CAPACITOR-FXD .056UF +-10% 200VDC POLYE CAPACITOR-FXD .1UF +-20% 50VDC CER	26480	0160=0165 0160=4064
421015	0160-4084	8			26480	V10V-4V04
A21C16	0955-0410	4	1	CAPACITOR-FXD .15UF +-10% 80VDC POLYE	28480	0160-2290
A21C17	0160-0061	3	1 4	CAPACITOR=FXD 1500PF +=20% 6KVDC CAPACITOR=FXD 4700PF +=20% 6KVDC	28480 56289	0160-0061 184P472060
A21C18 A21C19	0160-0036 0160-0678	8	. "	CAPACITOR=FXD .01UF +=20% 6KVDC	28460	0160-0678
W51C50	0160-0036	5	l	CAPACITOR-FXD 4700PF +-20% 6KVDC	56289	1849472060
A21C21	0160-0036	2		CAPACITOR-FXD 4700PF +=20% 6KVDC	56289	1849472060
A21C22	0180-0291	3		CAPACITOR-FXD 1UF+-10% 35VDC TA	56289	1500105x9035A2
A21C23	0180-0197	8		CAPACITOR-FXD 2.2UF+-10% 20VDC TA	56289 56289	1500225X9020A2 Cub7F251H472M822+CDH
A21C24 A21C25	0160-4298 0160-0036	5		CAPACITOR=FXD 4700PF +=20% 250VDC CER CAPACITUR=FXD 4700PF +=20% 6KVDC	56289	1849472000
	0100-0030				1 1	
A21C26 A21C27	0160-4084	8		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480	0160=4084 0160=4084
				· ·	28480	1901-0050
A21CR1 A21CR2	1901-0050	3		DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-GEN PRP 180V 200MA DO-7	28480	1901-0033
A21CR3	1901-0050	3		DIDDE-SWITCHING BOY 200MA 2NS DO-35	28480	1901-0050
A21CR4	1901-0050	3	ı	DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35	28480 28480	1901=0050 - 1901=0050
A21CR5	1901-0050	3	i	DIDDE-SWITCHING BOY SOUND SWS CO-33	1 -	
A21CR6	1901-0341	5		DIODE-HV RECT 7.5KV 10MA 25UNS	28480	1901-0341 1901-0341
A21CR7 A21CR8	1901-0341 1901-0033	2		DIUDE-HV RECT 7.5KV 10MA 250NS DIODE-GEN PRP 180V 200MA DU-7	28480 28480	1901-0341
ACIUNO	1,701,20033	•	1		1	
121081 A21082	2140-0014 1990-0485	5		LAMP-GLOW 488 135/70VDC 500UA T=2-BULB LED-VISIBLE LUM-INT=800UCD IF=30MA-MAX	28480 28480	2140=0014 5082=4984
		- 1		1		0360-1788
AZIEI	0360-1788 0360-1788	7 7	1	CONNECTOR-SGL CONT PIN .045-IN-89C-8Z SQ CONNECTOR-SGL CONT PIN .045-IN-89C-3Z SQ	28480 28480	0360-1788
421E2 421E3	0360-1788	'7	1	CONNECTOR-SGL CONT PIN .045-IN-88C-82 SQ	28480	0360-1788
A21E4	0360-1788	7	1	CONNECTOR-SGL CONT PIN .045-IN-BSC-8Z SQ	28480	0360-1788
A21E5	0360-1788	7]	CONNECTOR-SGL CONT PIN .045-IN-88C-8Z SQ	28480	0360-1788
A21E6	0360-1788	7		CONNECTOR-SGL CONT PIN .045-IN-BSC-SZ SG	28480	0360=1788
421E7	0360-1788	7	1	CONNECTOR-SGL CONT PIN .045-IN-BSC-SZ SG	28480 28480	0360=1788 0360=1788
421E8	0360-1788	7		CONNECTOR-SGL CONT PIN .045-IN-BSC-SZ SQ		
421F1	2110-0004	1	İ	FUSE .254 250V FAST-BLU 1.25%.25 UL IEC	28480	2110-0004
A21J1	1251-5245	9		CONNECTOR 10-PIN M POST TYPE	28480	1251-5245
42111	1		1	NOT ASSIGNED	1	
45175	9140-0210	1		COIL-MLD 100UH 5% 0=50 .1550x.375LG-NOM	28480	9140-0210
42163	9140-0210	1	1	COIL-MLD 100UH 5% Q=50 .155Dx.375LG=NOM COIL-MLD 1MH 5% Q=60 .19Dx.44LG=NOM	28480 28480	9140-0210
A21L4 A21L5	9100-2503	5		COIL-MLD 220UH 5% Q=38 .280%.914LG-NOM	28480	9100-2503
					28480	9100-1650
A21L6 A21L7	9100-1630	7 7	2	COIL-MLD 51UH 5% Q=55 .155DX.375LG-NOM COIL-MLD 51UH 5% Q=55 .155DX.375LG-NOM	28480	9100-1650
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		384340
A2101 A2102	1854-0311 1853-0037	8		TRANSISTOR NPN 2N4240 SI TO-66 PD#35W TRANSISTOR PNP SI TO-39 PD=1W FT=100MHZ	01928 28480	2N4240 1853=0057
A2103	1854-0022	8		TRANSISTOR NPN SI TO-39 PD=700MH	07263	317843
		1		NOT ASSIGNED	1	ĺ
A21R1 A21R2				NOT ASSIGNED		1
A21R3	0698-3154	0		RESISTOR 4.22K 1% .125M F TC=0+-100	24546	C4-1/8-T0-4221-F C4-1/8-T0-3161-F
A21R4 A21R5	0757=0279 0757=0438	0 3		RESISTOR 3,16K 1% ,125W F TC=0+=100 RESISTOR 5,11K 1% ,125W F TC=0+=100	24546	C4-1/8-10-5111-F
		1				
				1		
	1	ı	1	1	1	I

Table 6-3. Replaceable Parts


Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
42186 42187 42188 42189 421810	0698-3450 0757-0442 0757-0403 0098+3346	20.66	1	\(\text{NOT ASSIGNED}\) \(\text{HESISTOP 42.2K 1X , 125M \to TC=u+=100}\) \(\text{HESISTOR 10K 1X , 125M \to TC=u+=100}\) \(\text{HESISTOR 100 1X , 125M \to TC=u+=100}\) \(\text{HESISTOM 4, 22K 1X , 5M \to TC=u+=100}\)	24546 24546 24546	C4-1/8-1U-4222-F C4-1/8-1U-1UU2-F C4-1/8-1U-1U1-F U-98-334-
421811 421812 421813 421814 421815	0098-3200 0757-0442 0757-0405 0083-1215 0083-0335	59692	1 1 1	RESISTOR 237K 1% .125W F TC=0+-100 RESISTOR 10M 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOW 120 5% .25W FC TC=-400/+500 RESISTOR 3.3 5% .25W FC TC=-400/+500	24546 24546 24546 01121 01121	C4-1/8-10-2373-F C4-1/8-10-1002-F C4-1/8-10-1003-F C81215 C83365
A21R16 A21R17 A21R18 A21R19	0757-0394 0757-0465 0757-0466	0 6 7	1	#ESISTOM 51.1 1% .125w F TC=0+-100 RESISTOM 100K 1% .125w F TC=0+-100 RESISTOM 110K 1% .125w F TC=0+-100 NUT ASSIGNED	24546 24546 24546	C4-1/8-T0-51k1-F C4-1/8-T0-1003-F C4-1/8-T0-1105-F
A 21 R 2 () A 21 R 2 1 A 21 R 2 2 A 21 R 2 3 A 21 R 2 4 A 21 R 2 5	0083-1055 0757-0416 0757-0465 0757-0465 0698-3152 0698-3458	5 7 6 8 7	1	RESISTOR 1M 5% _25% FC TC=-800/+900 RESISTUR 511 1% _125% F TC=0+-100 HESISTOR 100K 1% _125% F TC=0+-100 RESISTUR 100K 1% _125% F TC=0+-100 RESISTUR 3_48K 1% _125% F TC=0+-100 PESISTOR 348K 1% _125% F TC=0+-100	24546 24546 24546 24546 24546 28480	C81055 C4-1/8-T0-511R-F C4-1/8-T0-1003-F C4-1/8-T0-303-F C4-1/8-T0-3481-F 0898-3488
A21R26 A21R27 A21R28 A21R29 A21R30	0698-3438 2100-0569 0698-3449 0698-8427	3 2 6 0	1	NUT ASSIGNED RESISTOR 147 1% ,125% F TC=0+-100 RESISTOR-TAME 1M 20% C TUP-ADJ 1-TRN RESISTOR 28,7% 1% ,125% F TC=0+-100 RESISTOR 28,7% 1% C TC=0+-250	24546 28480 24546 28480	C4=1/8=T0=147k=F 2100=0569 C4=1/8=T0=2872=F 0698=8427
A21R31 A21R32 A21R33 A21R34 A21R35	0086-1055 0083-1035 0086-2225 0098-8018 0086-3355	1 7 9 5	1 1 1 1	RESISTOR 1M 5% .5m CC TC=0+1000 RESISTOW 10m 5% .25m FL TC==4010/+800 RESISTOW 2,2M 5% .5m CC TC=0+647 RESISTOW 30M 1% 3M C TC=0+-100 RESISTOW 3,3M 5% .5m CC TC=0+1000	01121 01121 01121 03888 01121	E01055 Cb1635 E02225 PVC175-3-70-3004-F E03355
A21R36 A21R37 A21R38 A21R39 A21R40	0698-8427 0757-0465	0		RESISTOR 29M 10% 1M C TC=0+-250 RESISTOR 100K 1% 125W F TC=0+-100 NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED	28480 24546	0698-8427 C4-1/8-T0-1003-F
A21R41 A21R43 A21R43 A21R44 A21R44	0757-0280 0757-0401 0066-4725	3 U 8	1	NOT ASSIGNED NOT ASSIGNED RESISTOR 1K 1% .125# F TC=0+=100 RESISTOR 100 1% .125# F TC=0+=100 RESISTOR 4.7K 5% .5# CC TC=0+647	24546 24546 01121	C4-1/8-T0-1001-F C4-1/8-T0-101-F E84725
A21T1	08412-80001	9		TRANSFORMER ASSEMBLY, HIGH VOLTAGE	28480	08412-80001
421 TP1 421 TP2 421 TP3 421 TP4 421 TP5	0360+0535 0360-0535 0360-0535	0 0		NOT ASSIGNED NOT ASSIGNED TERMINAL TEST POINT PCB TERMINAL TEST POINT PCB TERMINAL TEST POINT PCB	00000 00000 00000	ORDER BY DESCRIPTION ORDER BY DESCRIPTION
A21 TP6	0360-0535	0		TERMINAL TEST POINT PCB	00000	ORDER BY DESCRIPTION
421U2 421U2	1826-0167 1826-0304	3	1	IC OP AMP TU=99 IC OP AMP TU=99	01928 27014	C43094AT LF355H
421VR1 421VR3 421VR3	1902-0025 1902-0176 1902-0025	4 0 4		DIODE-ZNR 10V 5% DO-7 PD=,4m TC=+,06% DIODE-ZNR 47,5V 5% DO-15 PD=1m TC=+,081% DIODE-ZNR 10V 5% DO-7 PD=,4m TC=+,06%	28480 28480 28480	1902-0025 1902-0176 1902-0025
	5040-0402			A21 MISCELLANEOUS PARTS		
	5040=0402 5040=0430 2200=0125 2260=0001 1205=0085	7 1 8 5	1 2 2 1	MUUNT, THANSFORMER HOLDER, PLASTIL SCREM-MACH 4-40 1.5-IN-LG PAN-HD-POZI NUT-HEX-DBL-CHAM 4-40-THD .094-IN-THK MEAT SINK TO-66-PKG	28480 28480 00000 28480 28480	5040=0402 5040=0430 Order by description 2260=0001 1205=0085
	2360-0115 0380-0157 0380-0342 2110-0269 1251-3172	4 4 9 0 7	5 5	SCREW-MACH 6-32 ,312-IN-LG PAN-HO-POZI STANDOFF-RYT-ON 1-IN-LG 6-32THD STANDOFF-RYT-ON ,125-IN-LG 6-32THD FUSEHOLDER-CLIP TYPE,250-FUSE CONNECTUR-SGL CONT SKT ,u3-IN-BSC-SZ RND	00000 00000 00000 28480 28480	ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION 2110-269
₹ 25	08754-60022	5	1	FREQUENCY MHZ DISPLAY ASSEMBLY	28480	08754-60022
A 2 2 U 1 A 2 2 U 2 A 2 2 U 3 A 2 2 U 4	1990-0619 1990-0619 1990-0619 1990-0619	7 7 7 7	4	DISPLAY-NUM-SEG 1-CHAR .5-H GA-ARSD-PPHD DISPLAY-NUM-SEG 1-CHAR .5-H GA-ARSD-PPHD DISPLAY-NUM-SEG 1-CHAR .5-H GA-ARSD-PPHD DISPLAY-NUM-SEG 1-CHAR .5-H GA-ARSD-PPHD	28480 28480 28480 28480	5082-7613 5082-7613 5082-7613 5082-7613
A 2 2 m 1	8120-2726	5	1	CABLE ASSY 28AWG 14-CNUCT UL-2771	28480	8120-2726

Model 8754A Replaceable Parts

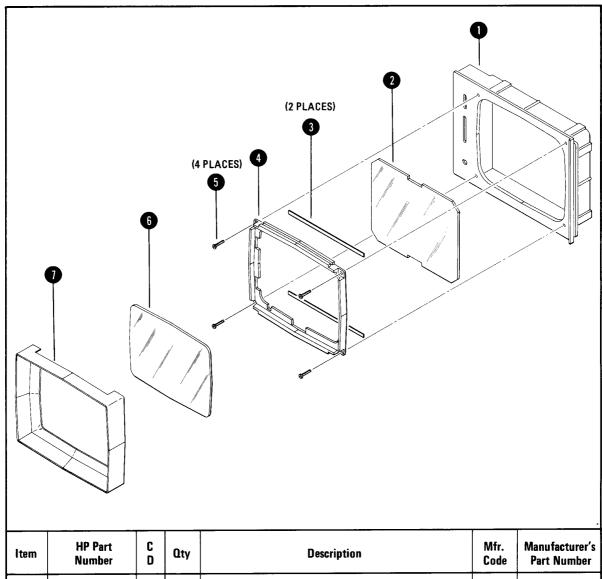
Table 6-3. Replaceable Parts


Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
455XU2 455XU3 455XU3	1200-0693 1200-0693 1200-0693	4 4 4	4	SOCKET-IC 10-CONT DIP DIP-SLOR SUCKET-IC 10-CONT DIP DIP-SLOR SOCKET-IC 10-CONT DIP DIP-SLOR	51167 51167 51167	10-513-11 10-513-11 10-513-11
A22xU4 A, 2Z1	1200-0693 0380-0384	9	5	SOCKET-IC 10-CONT DIP UIP-SLDR STD 1.2SL 6-32	51167	10-513-11
A 2 3	08754-60023	6	1	REAR PANEL	28480	08754-60023
423J1	1250-1163	0	6	CONNECTOR-RF BNC FEM PC 50-0HM	28480	1250+1163
A23J2 A23J3 A23J4 A23J5	1250-1163 1250-1163 1250-1163 1250-1163	0000		CONNECTOR-RF BNC FEM PC 50-0HM CONNECTOR-RF BNC FEM PC 50-0HM CONNECTOR-RF BNC FEM PC 50-0HM CONNECTOR-RF BNC FEM PC 50-0HM	28480 28480 28480 28480	1250-1163 1250-1163 1250-1163 1250-1163
423J6 423J7	1250-1163 1251-2416	0	1	CONNECTOR-RF BNC FLM PC 50-0HM Connector 25-Pin F D Séries	28480 28480	1250=11 03 1251=2410
42391	3101-1596	0	1	SWITCH-SL DPDT-NS MINTH 1A 125VAC PC	28480	3101=1596
423w1	8120=2727	6	1	CABLE ASSY 28AWG 24-CNDCT UL-2771	28480	8120-2727
	1251-3153	4	25	A23 MISCELLANEOUS PARTS CONNECTOR, MALE CONTACT	28480	1251-3153
				CHASSIS PARTS		
θ1	3160-0273	2	1	FAN-TBAX 34-CFM 115V 50/60-HZ 1,496-THK	06534	760=126LF=182=11115
C ₁	0160-4048	4	1	CAPACITOR-FXD .022UF +-20% 250VAC(RMS)	C0633	PME 271 M 522
F1	2110-0083	6		USE 2.5A 250V FAST-BLO 1.25X.25 UL IEC	28480	2110-0083
F1 FL1	2110-0094 0960-0448	9	1 1	FUSE 1.25A 250V FAST-BLO 1.25X.25 UL IEC LINE MODULAR FILTER	28480 05245	2110-0094 F1927
J1	08754-60040	7	4	CONNECTOR ASSEMBLY, TYPE N.RF DUTPUT	28480 28480	08754-60040
13 15	08754-60040 08754-60040	7 7		CONNECTOR ASSEMBLY, TYPE N.RF INPUT CONNECTOR ASSEMBLY, TYPE N.A INPUT	28480	08754-60040 08754-60040
J4 J5	08754-60040 5060-0467	7	a	CONNECTOR ASSEMBLY, TYPE N, B INPUT CONNECTOR, MALE PROBE	28480 28480	06754-60040 5060-0467
J6	5000-0467	١		CONNECTUR, MALE PROBE	28480	5060=0467
J7 J8	1251-2197	4	1	P/D w12, EXT. MARKER INPUT CONNECTOR 24-PIN F D SERIES	28480	1251-2197
L1	01200-66001	9	1	COIL ASSEMBLY, ALIGN	28480	01200-66001
R ₁	2100=3648	4	1	RESISTOR-VAR DUAL 5K-10%-WW/CP	28480	2100=3648
R2	2100-2847	3	1	RESISTOR-VAR CONTROL CC 5M 20% LIN (FOCUS)	28480	2100=2847
R3	2100-2733	6	1	RESISTOR-VAR CONTROL C 50K 20% LIN	32997	3852K-467-5034
R4	2100-2735	8	1	(TRACE ALIGN) RESISTOR-VAR CONTROL C 250K 20% LIN	32997	3852K-AG7-254A
R 5	2100-2661	9	1	(ASTIG) RESISTOR-VAR CONTROL CCP 1K 20% LIN	28480	2100-2661
R6	2100-2756	3	1	(INTENSITY) (RECOMMENDED REPLACEMENT) REBISTOR-VAR CONTROL C 10K 20% LIN (STABILITY)	28480	2100-2756
3 1 3 2	3101-2269 3103-0063	ę	1 1	SWITCH, TOGGLE DPDT, FLAT SWITCH, THERMAL, NC	28480 28480	3101-2269 3103-0063
T1	9100-4065	8	1	TRANSFORMER, POWER 6.3/141	28480	9100-4065
V1	5083-1890	9	1	TUBE, CRT	28480	5083-1890
w1	08754-20032		1	CABLE ASSEMBLY, RF GUTPUT	28480	08754-20032
W2	08754-20031 08754-20029	8	1 1	CABLE ASSEMBLY, R INPUT Cable Assembly, a input	28480 28480	08754-20031 08754-20029
#4 #5	08754-20030 8120-2525		1	CABLE ASSEMBLY, B INPUT CABLE ASSEMBLY, FLAT RIBBON	28480	08754-20030
-		2	S	•	28480	8120=2525
#6 #7	8120-2525 08754-60043	5	2	CABLE ASSEMBLY, FLAT RIBBON CABLE ASSEMBLY, SAMPLER PULSE	28480 28480	8120-2525 08754-60043
w8 w9	08754-60043 08754-60046	3	1	CABLE ASSEMBLY, SAMPLEH PULSE CABLE ASSEMBLY, SAMPLEH PULSE	28480 28480	08754-60043 08754-60046
W10	08754-60047	4	i	CABLE ASSEMBLY, ATTENUATOR RF (RECOMMENDED REPLACEMENT)	28480	08754-60047
W11	08754-60044 08 754-60045	1 2	1	CABLE ASSEMBLY, INT MARKER, RF	28480 28480	08754-60044
W12 W13	08754-60033	8	1	CABLE ASSEMBLY, EXT. MARKER, RF CABLE ASSEMBLY, NORMALIZER INTERCUNNECT	28480	08754-60045 08754-60033
W14 W15	08754-60030	5	١	CABLE ASSEMBLY, HIGH VULTAGE NOT ASSIGNED	28480	08754-60030
W16	08754-60042	9	1	CABLE ASSEMBLY, PRIMARY POWER	28480	08754-60042
,						
		ı I			I	

Model 8754A Replaceable Parts

Item	HP Part Number	C D	Qty	Description	Mfr. Code	Manufacturer's Part Number
0	0590-0836	1	1	NUT-HEX-SGL CHAM 1/4-40-THD .15-IN-THK (PART OF W16)	28480	0590-0836
2	5040-8806 3030-0051 3050-1021	1 9	6 21 6	KNOB, JADE GRAY 5/16-IN SERIES SCREW-SET 4-40 .094-IN-LG SMALL CUP PT DECAL-KNOB	28480 00000 28480	5040-8806 0350-1021
3	0370-0606	7	36	BEZEL, PUSHBUTTON 0.330-IN SQ; JADE GRAY	28480	0370-0606
0	5040-8817	4	24	PUSHBUTTON SQ; JADE GRAY	28480	5040-8817
•	08754-40001	8	1	WINDOW-LED	28480	08754-40001
6	08754-00021	8	1	KNOB; SWEEP WIDTH MHZ	28480	08754-00021
0	0370-3006	7	1	KNOB-RND .625-IN-OD .125-IN-DIA SHAFT (FINE)	28480	0370-3006
8	0370-2981	5	1	KNOB-RND .625-IN-OD .078-IN-DIA SHAFT (CAL)	28480	0370-2981
9	0370-3004	5	1	KNOB-RND .250-ON DIA; JADE GRAY	28480	0370-3004
0	08754-40002		7	KNOB; JADE GRAY (PUSH ON)	28480	08754-40002
0	5040-8819	6	1	PUSHBUTTON SQ; WILLOW GREEN	28480	5040-8819
1	5040-8821	0	3	PUSHBUTTON SQ; OLIVE GRAY	28480	5040-8821
B	1450-0404	4	1	LENS CAP CLR-TL .125-DIA	28480	1450-0404
4	0370-1005	2	1	KNOB-BASE-PTR 3/8 .125-IN-ID (OUTPUT)	28480	0370-1005
(5)	5040-8816	3	6	PUSHBUTTON SQ; MINT GRAY	28480	5040-8816
16	5040-8818	5	2	PUSHBUTTON SQ; LEGEND BLUE	28480	5040-8818

Figure 6-1. Illustrated Parts Breakdown, Front View



Item	HP Part Number	C D	Qty	Description	Mfr. Code	Manufacturer's Part Number
0	2950-0054	8	4	NUT-HEX-DBL-CHAM 1/2-28-THD .125-IN-THK	00000	
2	2190-0068	5	4	WASHER-LK INTL T 1/2 IN .505-IN-ID	04805	1924-02
3	08754-20039	0	4	BODY BULKHEAD	28480	08754-20039
•	08761-2027	4	4	INSULATOR	28480	08761-2027
6	08754-20038	9	4	CONTACT BULKHEAD	28480	08754-20038
6	5040-0306	0	4	INSULATOR	28480	5040-0306
0	1250-0915	8	4	CONTACT-RF CONNECTOR SER APC-N, FEMALE	05879	131-149
8	1250-0914	7	4	CONNECTOR-RF APC-N FEM UNMTD 50-OHM	05879	131-150

Figure 6-2. Type N 50-Ohm Connector Assembly, Exploded View

Model 8754A Replaceable Parts

1

Item	HP Part Number	C D	Qty	Description	Mfr. Code	Manufacturer's Part Number
0	08754-40003	0	1	PANEL – CRT	28480	08754-40003
2	5020-8728	4	1	SAFETY PLATE	28480	5020-8728
3	08754-00029	6	2	FELT PAD	28480	08754-00029
4	08754-20044	7	1	BEZEL	28480	08754-20044
•	2200-0111	2	4	SCREW MACH 4-40 X 0.5 LG PAN HD POZI	00000	
6	5060-0548	4	1	FILTER; CONTRAST, BLUE	28480	5060-0548
0	5040-0508	4	1	LIGHT SHIELD; SHORT	28480	5040-0508

Figure 6-3. Bezel, Exploded View

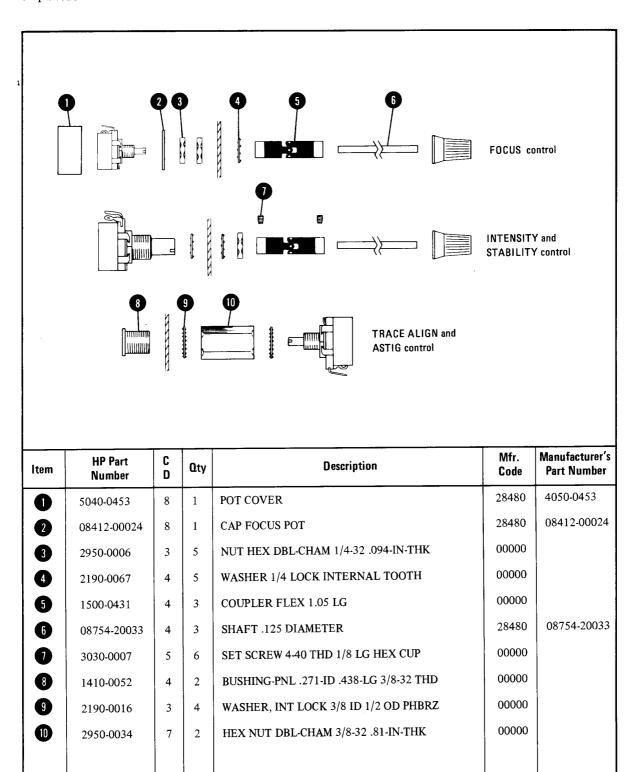
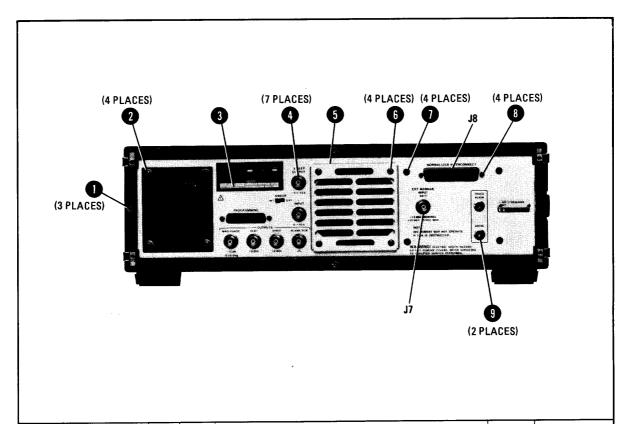



Figure 6-4. Control Assemblies, Exploded View

Model 8754A Replaceable Parts

Item	HP Part Number	C D	Qty	Description	Mfr. Code	Manufacturer's Part Number
0	0570-1171	7	3	SCREW; COVER; 6-32 THD; 0.460-IN-LG	28480	0570-1171
	0510-0043	4	3	RETAINER-RING E-R EXT .141-IN-DIA STL	28480	0510-0043
2	2510-0137	9	4	SCREW-MACH 8-32 THD 2.75-IN-LG PAN-HD-POZI	00000	
	2190-0017	4	4	WASHER-LOCK HLCL NO. 8 .168-IN-ID	00000	:
	3050-0139	6	8	WASHER-FLAT MTLC NO. 8 .172-IN-ID	00000	
	2580-0004	6	4	NUT-HEX-DBL-CHAM 8-32-THD .125-IN-THK	00000	
3	7120-7091	6	1	LABEL, LINE VOLTAGE	28480	7120-7091
4	0590-0012	5	7	NUT, KNURLED RND 15/32-THD .062-IN-THK	28480	0590-0012
6	08505-00135	4	1	HOUSING, FAN	28480	08505-00135
6	2360-0115	4	4	SCREW-MACH 6-32 .312-IN-LG PAN-HD-POZI	00000	1
0	2360-0330	5	4	SCREW-MACH 6-32 .188-IN-LG PAN-HD-POZI	00000	
8	1251-2942	7	4	LOCKPOST-SUBMIN D CONN	28480	1251-2942

Figure 6-5. Illustrated Parts Breakdown, Rear View

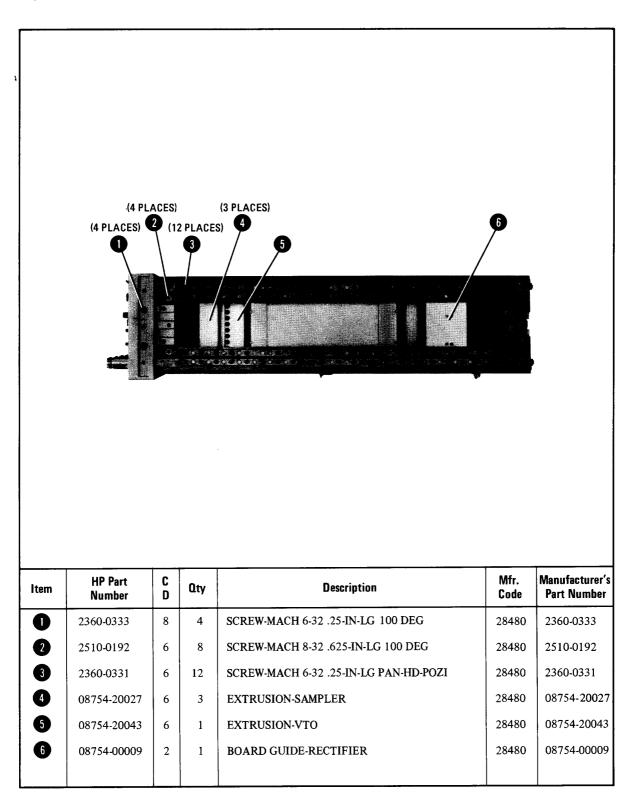
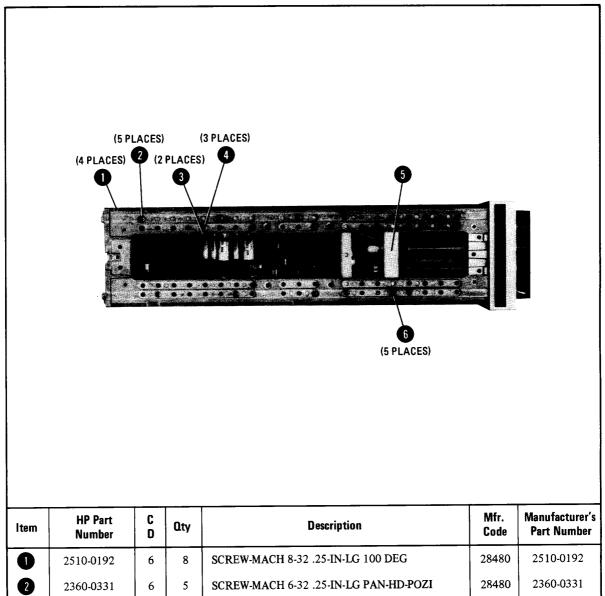



Figure 6-6. Illustrated Parts Breakdown, Right Side View

Model 8754A Replaceable Parts

1

00000 CLAMP-CABLE .312-DIA .375-W NYL 3 1400-0017 0 2 SCREW-MACH 6-32 .5-IN-LG PAN-HD-POZI 00000 4 9 3 2360-0201 00000 3 WASHER-FL MTLC NO. 6 .149-IN-ID 3050-0227 3 WASHER-LK HLCL NO. 6 .141-IN-ID 00000 2190-0006 3 1 2420-0002 00000 NUT-HEX-DBL-CHAM 6-32-THD .109-IN-THK 6 3 28480 08754-00017 5 08754-00017 2 1 **BRACKET-FOCUS POT** 6 00000 SCREW-MACH 6-32 1.75-IN-LG RND-HD-SLT STL 2360-0031 3 5

Figure 6-7. Illustrated Parts Breakdown, Left Side View

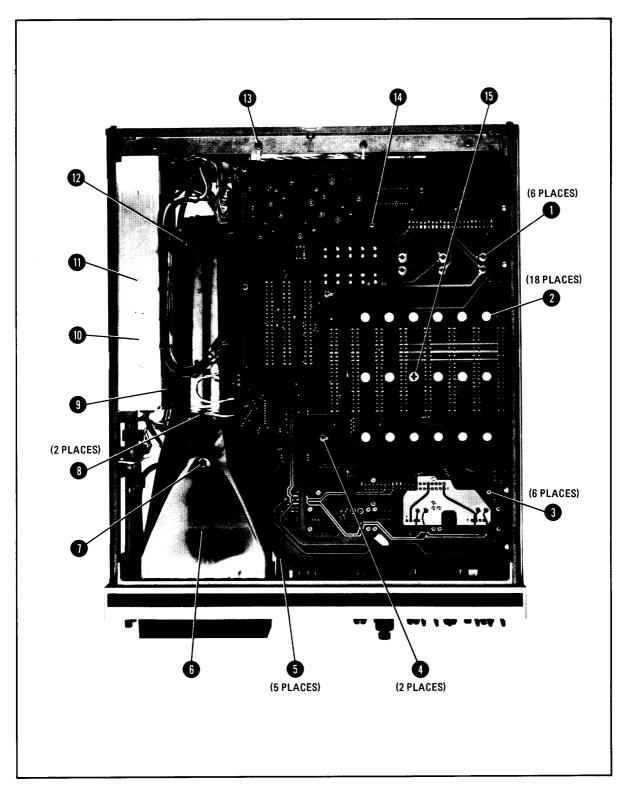


Figure 6-8. Illustrated Parts Breakdown, Top View (1 of 2)

Model 8754A Replaceable Parts

1

Item	HP Part Number	C D	Qty	Description	Mfr. Code	Manufacturer's Part Number
0	2680-0129	8	6	SCREW-MACH 10-32 .312-IN-LG PAN-HD-POZI	00000	
	2190-0011	8	6	WASHER-LK INTL T NO. 10 .195-IN-ID	00000	
2	0361-0655	7	17	RIVET-BLIND DR-PIN RNDH .136 DIA .437 LG	28480	0361-0655
3	0624-0099	1	18	SCREW-TPG 4-40 .375-IN-LG PAN-HD-POZI	00000	
4	0360-0037	7	2	TERMINAL-SLDR LUG FOR NO. 6 SCREW	00000	
	2190-0007	2	2	WASHER-LK INTL T NO. 6 .141-IN-ID	00000	
	2360-0331	6	3	SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI	00000	
	2300-0331	U		BOREW-MACH 0-32 .23-HV-DG FAIVIND FOLK	00000	
9	2360-0330	5	5	SCREW-MACH 6-32 .188-IN LG PAN-HD-POZI	00000	
6	08754-00026	3	1	SHIELD CRT	28480	08754-00026
•	2260-0009	3	2	NUT-HEX-W/LKWR 4-40-THD .094-IN-THK (1 Other Side)	00000	
8	0400-0009	9	1	GROMMET-RND .125-IN-ID .25-IN-GRV-OD	00000	
9	1400-0814	5	2	CLAMP-CABLE .188-DIA .75-WD PVC	00000	-
0	08754-00011	6	1	HIGH VOLTAGE SHIELD	28480	08754-00011
0	0403-0302	1	3	GUIDE-PC BOARD NAT NYL .062-BD-THKNS	28480	0403-0302
1	2360-0207	5		SCREW-MACH 6-32 .875-IN-LG PAN-HD-POZI	00000	
	2190-0006	1	1	WASHER-LK HLCL NO. 6 .141-IN-ID	00000	
	3050-0227	3	1	WASHER-FL MTLC NO. 6 .149-IN-ID	00000	
	2420-0003	7	1	NUT-HEX DBL-CHAM 6-32-THD .094-IN-THK	00000	
ß	2360-0332	7	3	SCREW-MACH 6-32 .312-IN-LG PAN-HD-POZI	00000	
•	0360-0001	5	2	TERMINAL-SLDR LUG FOR NO. 6 SCREW	00000	
	0300-0001		-	TERMINAL-SEDICEOUT OR NO. 0 SCREW	00000	
4	2200-0103	2	1	SCREW-MACH 4-40 .25-IN-LG PAN-HD-POZI	00000	
15	2360-0199	2	1	SCREW-MACH 6-32, 438 PAN-HD-POZI	00000	
	2190-0018	3	1	WASHER-SPLIT LOCK NO. 6	00000	
	3050-0003	1	l î	WASHER-FLAT FIBER	00000	

Figure 6-8 Illustrated Parts Breakdown, Top View (2 of 2)

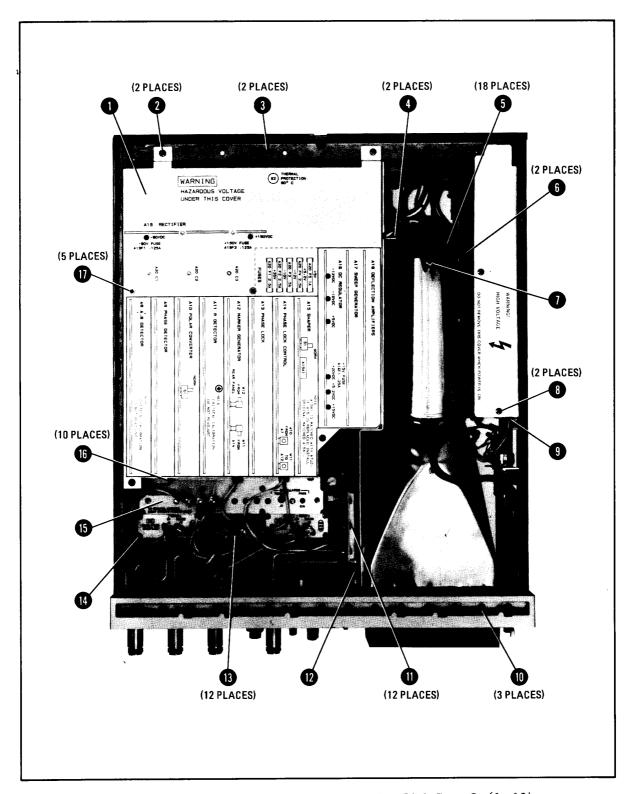


Figure 6-9. Illustrated Parts Breakdown, Bottom View With Cover On (1 of 2)

Item	HP Part Number	C D	Qty	Description	Mfr. Code	Manufacturer's Part Number
0	08754-00045	6	1	COVER, SERVICE	28480	08754-00025
2	2360-0332	7	2	SCREW-MACH 6-32 0.312-IN-LG PAN-HD-POZI	00000	
3	2360-0331	6	2	SCREW-MACH 6-32 0.250-IN-LG PAN-HD-POZI	00000	
4	2200-0111 3050-0105	2 6	2 2	SCREW-MACH 4-40 0.5-IN-LG PAN-HD-POZI WASHER-FL MTLC NO. 4 0.125-IN-ID	00000	
5	01200-44701	0	1	SUPPORT BRACKET, CRT	28480	01200-44701
6	1400-0755	3	2	CLIP-CMPNT 0.25-DIA 0.75-WD PVC	28480	1400-0755
0	2360-0201 3050-0227 2190-0006 2420-0002	9 3 1 6	1 1 1	SCREW-MACH 6-32 0.5-IN-LG PAN-HD-POZI WASHER-LF MTLC NO. 6 0.149-IN-ID WASHER-LK HLCL NO. 6 0.141-IN-ID NUT-HEX-DBL-CHAM 6-32-THD 0.109-IN-THK	00000 00000 00000 00000	
8	2360-0115	4	2	SCREW-MACH 6-32 0.312-IN-LG PAN-HD-POZI	00000	
9	0400-0010	2	1	GROMMET-RND 0.25-IN-ID 0.375-IN-GRV-OD	00000	
10	2360-0333	8	3	SCREW-MACH 6-32 0.25-IN-LG 100 DEG	00000	
•	2200-0103 2200-0107 2200-0111 2200-0113	2 6 2 4	6 1 3 2	SCREW-MACH 4-40 0.25-IN-LG PAN-HD-POZI SCREW-MACH 4-40 0.375-IN-LG PAN-HD-POZI SCREW-MACH 4-40 0.5-IN-LG PAN-HD-POZI SCREW-MACH 4-40 0.625-IN-LG PAN-HD-POZI	00000 00000 00000	
1	08754-00012	7	1	MOUNTING PLATE-SOURCE	28480	08754-00012
B	0520-0127	6	12	SCREW-MACH 2-56 0.188-IN-LG PAN-HD-POZI	00000	
4	0624-0077	5	18	SCREW-TPG 4-40 0.3 12-IN-LG PAN-HD-POZI	00000	
15	08754-00020	7	1	COVER PLATE – VTO	28480	08754-00020
(B)	2360-0331	6	8	SCREW-MACH 6-32 0.25-IN-LG PAN-HD-POZI	28480	2360-0331
•	2360-0190	5	5	SCREW-MACH 6-32 0.188-IN-LG 100 DEG	28480	2360-0190

Figure 6-9. Illustrated Parts Breakdown, Bottom View With Cover On (2 of 2)

Replaceable Parts Model 8754A

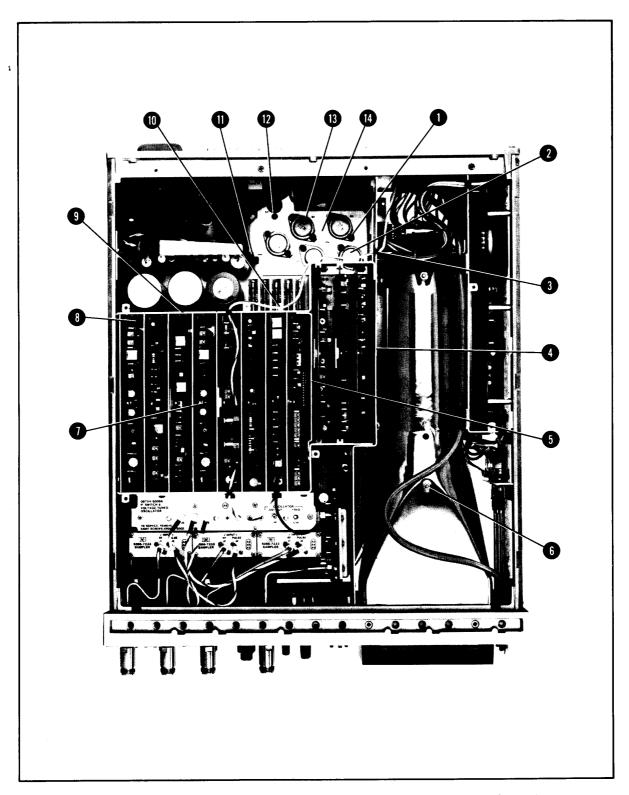


Figure 6-10. Illustrated Parts Breakdown, Bottom View With Cover Off (1 of 2)

Model 8754A Replaceable Parts

ì

Item	HP Part Number	C D	Qty	Description	Mfr. Code	Manufacturer's Part Number
0	2360-0201 2190-0006	9 1	10 10	SCREW-MACH 6-32 .5-IN-LG PAN-HD-POZI WASHER-LK HLCL NO. 6 .141-IN-ID	00000 00000	
2	1400-0814	5	1	CLAMP-CABLE .199-DIA .75-WD PVC	00000	
8	0400-0009	9	1	GROMMET-RND .125-IN-ID .24-IN-GRV-OD	00000	
0	08754-00007	0	1	DIVIDER	28480	08754-00007
6	08754-00013	8	1	SUPPORT BRACKET	28480	08754-00013
6	2260-0009	3	1	NUT HEX-W/LKWR 4-40-THD .094-IN-THK (1 OTHER SIDE)	00000	
0	08754-60054	9	1	STAND OFF (INSULATED)	28480	08754-60045
8	0403-0101	8	16	CARD GUIDES, SNAP IN	28480	0403-0101
9	08754-00028	5	1	ENCLOSURE SHIELD	28480	08754-00028
0	1400-0866	7	1	CLAMP-CALBE .187-IN-DIA .24-IN-LG NYL	00000	
•	5040-0170	6	1	GUIDE-PC-BOARD	28480	5040-0170
1	2360-0330	5	2	SCREW-MACH 6-32 .188-IN-LG PAN-HD-POZI	00000	
13	0340-0503 1200-0043 6040-0239	0 8 9	10 5	INSULATOR-XSTR POLYE INSULATOR-XSTR ALUMINUM THERMAL COMPOUND (8 OZ. JAR) (Place a thin coating on each Insulator, 1200-0043)	00000 00000 28480	6040-0239
•	08754-00018	3		HEAT SINK-XSTR	28480	08754-00018

Figure 6-10. Illustrated Parts Breakdown, Bottom View With Cover Off (2 of 2)

Replaceable Parts Model 8754A

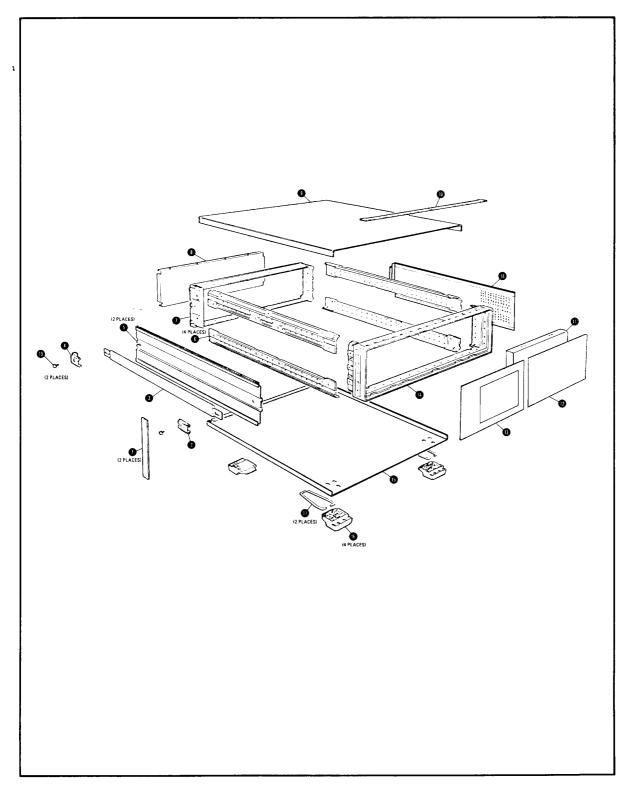


Figure 6-11. Chassis, Exploded View (1 of 2)

Model 8754A Replaceable Parts

ì

Item	HP Part Number	C D	Qty	Description	Mfr. Code	Manufacturer's Part Number
0	5001-0439	8	2	SIDE TRIM FRONT FRAME	28480	5001-0439
2	5040-7219	8	1	FRONT CAP, STRAP HANDLE	28480	5040-7219
3	5060-9804	3	1	STRAP HANDLE ASSEMBLY	28480	5060-9804
4	5040-7220	1	1	REAR CAP, STRAP HANDLE	28480	5040-7220
6	5060-9880	5	1	COVER ASSY SIDE	28480	5060-9880
6	5020-8837	6	4	STRUT CORNER 18"	28480	5020-8837
0	5020-8804	7	1	FRAME REAR	28480	5020-8804
8	08754-00004	7	1	REAR PANEL	28480	08754-00004
9	5060-9835	0	1	COVER TOP 18"	28480	5060-9835
0	5040-7202	9	1	TOP TRIM FRONT FRAME	28480	5040-7202
0	08754-00002	5	1	PANEL FRONT SUB CONTROL	28480	08754-00002
1	08754-00001	4	1	PANEL FRONT DRESS CONTROL	28480	08754-00001
B	08754-00003	6	1	PANEL FRONT DRESS CRT	28480	08754-00003
•	5020-8803	6	1	FRAME FRONT	28480	5020-8803
(5060-9847	4	1	COVER BOTTOM 18"	28480	5060-9847
(5040-7201	8	4	FOOT BOTTOM	28480	5040-7201
0	1460-1345	5	2	TILT STAND	28480	1460-1345
(B)	5061-1909	5	1	COVER SIDE	28480	5061-1909
19	0570-1170	6	4	SCREW, RETAINER, STRAP HANDLE	28480	5070-1170

Figure 6-11. Chassis, Exploded View (2 of 2)

1

SECTION VII MANUAL BACKDATING CHANGES

7-1. INTRODUCTION

- 7-2. This manual has been written for and applies directly to instruments with serial numbers prefixed as indicated on the title page. Earlier versions of the instrument (serial number prefixes lower than the ones indicated on the title page) may be slightly different in design or appearance. The purpose of this section of the manual is to document these differences.
- 7-3. With the information provided in this section, this manual can be corrected so that it applies to any earlier version or configuration

1825A

1812A

- of the instrument. Later versions of the instrument (serial number prefixed higher than the ones indicated on the title page) are documented in a yellow Manual Changes supplement.
- 7-4. To adapt this manual to an earlier instrument, refer to Table 7-1 and make all of the manual backdating changes listed opposite your instrument serial number or serial number prefix. Perform these changes in the alphabetical sequence listed.
- 7-5. For additional important information about serial number coverage, refer to INSTRUMENTS COVERED BY THE MANUAL in Section I.

A and B

A, B, and C

Serial Prefix	Make Manual Changes
1908A	A

Table 7-1. Manual Backdating Changes by Serial Number Prefix

7-6. MANUAL CHANGE INSTRUCTIONS

CHANGE A

Page 5-2, Table 5-1: Delete A7R2 +5 dBm.

Page 5-33, Paragraph 5-16:

Change step i to:

i. Set front-panel OUTPUT dBm control to +5 dBm and check that the power meter indicates +5 ±0.5 dBm. If the meter reading is not within this range, adjust OUTPUT dBm for +5 dBm indicated on the power meter. If the OUTPUT dBm control setting is lower than 5, decrease the value of factory-selected resistor A7R33*; if the control setting is higher than 5, increase the value of the resistor.

NOTE

Changing the value of factory-selected resistor A7R33* changes the linearity of the potentiometer. If the resistor is changed, repeat steps e through i.

CHANGE A (Cont'd)

Page 6-13, Table 6-3:

Change A7C7 to HP Part No. 0160-2204 CD0 CAPACITOR-FXD 100PF ±5% 300VDC MICA 28480 0160-2204.

Change A7C8 to HP Part No. 0160-3533 CD0 CAPACITOR-FXD 470PF ±5% 300V MICA 28480 0160-3533.

Change A7R1 to HP Part No. 0757-0442 CD9 RESISTOR 10K 1% .125W F TC=0 \pm 100 24546 C4-1/8-TO-1002-F.

Delete A7R2.

Change A7R17 to HP Part No. 0757-0814 CD9 RESISTOR 511 1%.5W F TC=0±100 28480 0757-0814.

Page 6-14, Table 6-3:

Change A7R31 to HP Part No. 0757-0405 CD4 RESISTOR 162 1% .125W F TC=0±100 24546 C4-1/8-TO-162R-F.

Change A7R33 to HP Part No. 0698-3153 CD9 RESISTOR 3.83K 1% .125W F TC=0 \pm 100 24546 C4-1/8-TO-3831-F.

Change A7U1 to HP Part No. 1826-0261 CD8 IC741 OP AMP TO-99 28480 1826-0261.

Page 6-16, Table 6-3:

Add to A8 MISCELLANEOUS PARTS 1251-4666 6 CONNECTOR-SGL CONT PIN .03-IN BSC-SZ RND 28480 08754-60009.

Page 6-24, Table 6-3:

Change A13C35 and A13C36 to HP Part No. 0160-0153 CD4 CAPACITOR-FXD 1000 PF ±10% 200VDC POLYE 28480 0160-0153.

Page 6-27, Table 6-27:

Delete A13R81, A13R82, A13R83, and A13R84.

Add A13Z6, A13Z7, A13Z8, A13Z9 HP Part No. 9170-0847 CD3 CORE-SHIELD BEAD. 28480 9170-0847

Page 6-51, Figure 6-8:

Increase Item 2 Qty to 18.

Delete Item 15.

Page 6-53, Figure 6-9:

Change Item 1 to HP Part No. 08754-00025

Decrease Item 17 Qty to 4.

Page 6-55, Figure 6-10:

Delete Item 7.

SERVICE SHEET 6

Page 8-68, Figure 8-26:

Move R66 to left of R48 (vertical).

SERVICE SHEET 7

Page 8-84, Figure 8-37:

Replace with Figure 7-2.

Page 8-87/8-88, Figure 8-39:

Replace ALC Block of Figure 8-39 with Figure 7-3.

CHANGE A (Cont'd)

SERVICE SHEET 11

Page 8-125, Figure 8-62:

Replace with attached Figure 7-4.

Page 8-129/8-130, Figure 8-65:

Replace PHASE/FREQUENCY DETECTOR Block of Figure 8-65 with attached Figure 7-5.

CHANGE B

Page 5-2, Table 5-1:

Delete entry A2R129.

Page 5-61, Paragraph 5-22:

Delete steps u-z and Note.

Page 5-62, Figure 5-34:

Delete Figure 5-34.

Page 6-5, Table 6-3:

Delete A1C4.

Delete A1DS1.

Change A1J4 to HP Part No. 1251-5245 CD9 CONNECTOR 10PIN M POST TYPE 28480 1251-5245. Change A1R29, A1R33, A1R36, A1R47, A1R52, A1R53, and A1R57 to HP Part No. 2100-3741 CD9 RESISTOR-VAR CONTROL C 10K 10% LIN 28480 2100-3741

Page 6-6, Table 6-3:

Delete A1 R66.

Delete A1XDS1.

Under A1 MISCELLANEOUS PARTS:

Add 1990-0486 CD1 LED-VSBL UNLOCKED 1 MCD 28480 1990-0486.

Change 08754-60053 to 08754-60034 CD1 HARNESS PROBE POWER 28480 08754 60034.

Page 6-8, Table 6-3:

Change A2R19 to HP Part No. 2100-3123 CD0 RESISTOR-TRMR 500 10% CSIDE-ADJ 17 TRN 02111 43P501.

Delete A2R20.

Page 6-9, Table 6-3:

Delete A2R129.

Delete A2R130.

Delete A2R131.

Page 6-17, Table 6-3:

Delete A9Q10.

Page 6-19, Table 6-3:

Delete A9R88.

Delete A9R89.

Delete A9VR2.

CHANGE B (Cont'd)

Page 6-23, Table 6-3:

Add A12 Q7 HP Part No. 1854-0404 CD0 TRANSISTOR NPN S1 TO-18 PD 380MW 28480 1854-0404.

Page 6-24, Table 6-3:

Add A12 R63 HP Part No. 0698-3162 CD0 RESISTOR 46.4K 1% .125W F TC=0±100 24546 C4-1/8-TO-4842-F.

Page 6-29, Table 6-3:

Delete A14R97.

Page 6-35, Table 6-3:

Change A17R64 to HP Part No. 0698-0083 CD8 RESISTOR 1.96K 1% .125W F TC=0±100 24546 C4-1/8-TO-1961-F.

Page 6-37, Table 6-3:

Add A19CR3 HP Part No. 1901-0638 CD3 DIODE-FW BRDG 100V 4A 04713 MDA-970-2.

Add A19CR4 HP Part No. 1901-0638 CD3 DIODE-FW BRDG 100V 4A 04713 MDA-970-2.

Add A19CR5 HP Part No. 1901-0638 CD3 DIODE-FW BRDG 100V 4A 04713 MDA-970-2.

Delete A19CR8 through A19CR19.

Page 6-38, Table 6-3:

Change A20J1 and A20J2 to HP Part No. 1251-4737 CD2 CONNECTOR 50 MN M RECTANGULAR 28480 1251-4737.

Page 6-43, Figure 6-1:

Change item 10 HP Part No. to 5040-8823.

SERVICE SHEET 5

Page 8-51/8-52, Figure 8-14:

Replace with attached Figure 7-6.

Page 8-55/8-56, Figure 8-16:

Delete A1R66.

Change A1R64 to 1960 ohms.

SERVICE SHEET 6

Page 8-69, Figure 8-27:

Replace with attached Figure 7-7.

SERVICE SHEET 8

Page 8-93/8-94, Figure 8-43:

Replace with attached Figure 7-8.

Page 8-97/8-98, Figure 8-45:

Replace with attached Figure 7-9

SERVICE SHEET 11

Page 8-126, Figure 8-63:

Delete R97.

Page 8-131/8-132, Figure 8-66:

Delete A14R97.

1

CHANGE B (Cont'd)

SERVICE SHEET 14

Page 8-171, Figure 8-92:

Replace with attached Figure 7-10.

Page 8-177/8-178, Figure 8-95 (2 of 2):

Delete Polar Center Switch Block of Figure 8-95.

SERVICE SHEET 15:

Page 8-184, Figure 8-96:

Replace with attached Figure 7-11.

Page 8-185/8-186, Figure 8-97:

Replace with attached Figure 7-12.

Page 8-189/8-190, Figure 8-99 (1 of 2):

Delete A2R20 and in its place show a connection between A2R19 and A2R21.

Page 8-191/8-192, Figure 8-99 (2 of 2):

Replace with attached Figure 7-16.

SERVICE SHEET 19

Page 8-226, Figure 8-116:

Replace with attached Figure 7-13.

SERVICE SHEET 20

Page 8-237, Figure 8-123/8-124:

Replace with attached Figure 7-14 and 7-15.

Page 8-241/8-242, Figure 8-125 (2 of 2):

Replace with attached Figure 7-17.

CHANGE C

Page 5-2, Table 5-1:

Delete A2R128 -6V ADJ

Page 5-15, Paragraph 5-11:

Change steps d and e to read as follows:

- d. Connect digital voltmeter high input lead to A2TP14 +6V and low input lead to A2TP13 -6V.
- e. Adjust A2R19 +6V for $\pm 12.000 \pm .001$ V.

Page 6-6, Table 6-3:

Delete A1R65.

Page 6-9, Table 6-3:

Delete A2R128.

CHANGE C (Cont'd)

Page 6-11, Table 6-3:

Change A6Q4 through A6Q7 to HP Part No. 1854-0378 CD 7 TRANSISTOR NPN 2N5109 SI TO-39 PD = 800MW, 1092B, 2N5109.

Page 6-41, Table 6-3: Delete A21R43.

SERVICE SHEET 6

Page 8-69, Figure 8-27: Delete A2R128.

SERVICE SHEET 15

Page 8-184, Figure 8-96: Delete A1R65.

Page 8-185, Figure 8-97: Delete A2R128.

Page 8-189/8-190, Figure 8-99, Sheet 1 of 2:

N POWER SUPPLIES: Delete A2R128 -6V ADJ and, in its place, show a connection between A2U14 pin 2, A2R22, and A2R23.

Page 8-191/8-192, Figure 8-99, Sheet 2 of 2:

© CHANNEL 2 SUMMING AMPLIFIER: Change A2S6-L CHANNEL 2 REFERENCE OFFSET pushbutton connections as shown in partial schematic Figure 7-1.

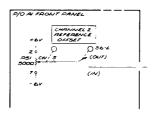


Figure 7-1. Channel 2 Summing Amplifier Partial Schematic

SERVICE SHEET 17

Page 8-205, Figure 8-104: Delete A21R43.

Page 8-209, Figure 8-106:

B ERROR AMPLIFIER: Delete A21R43 and connect A21TP4 to the junction of A21R27 and A21L7.

ì

CHANGE C (Cont'd)

SERVICE SHEET 19

Page 8-226, Figure 116: Delete A1R65.

SERVICE SHEET 20

Page 8-241, Figure 8-125, Sheet 2 of 2:

**Note: Power Supply: Move A16TP3 +20V connection to the cathode of A16VR5 (+20V output to A16P1 3, 25).

**One-10V Power Supply: Move A16TP6 -10V connection to the anode of A16VR6 (-10V output A16P1 9, 21).

put to A16P1 9, 31).

7-7/7-8

ì

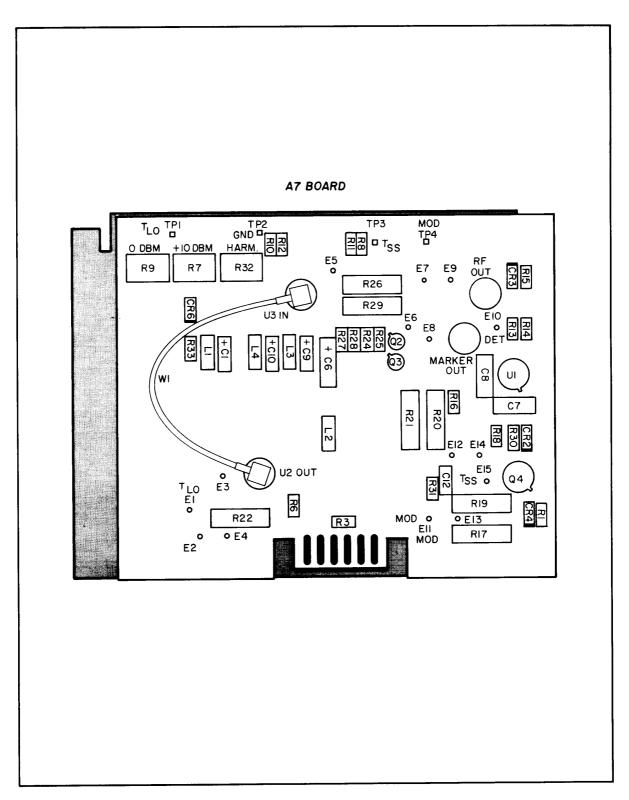


Figure 7-2. Source (A7), Component Locations (CHANGE A)

() ALC

P/O Figure 7-3. Shaper (A15) and Source (A7), Schematic Diagram (CHANGE A)

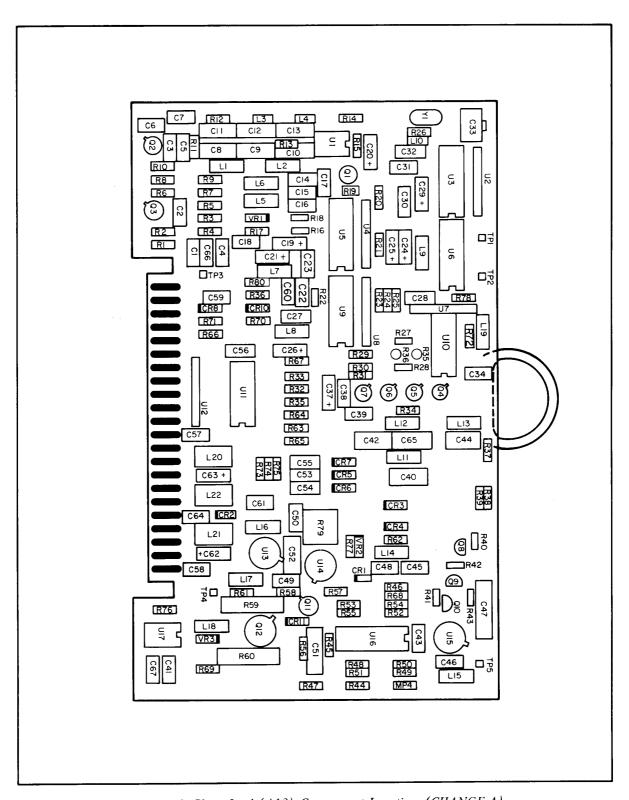
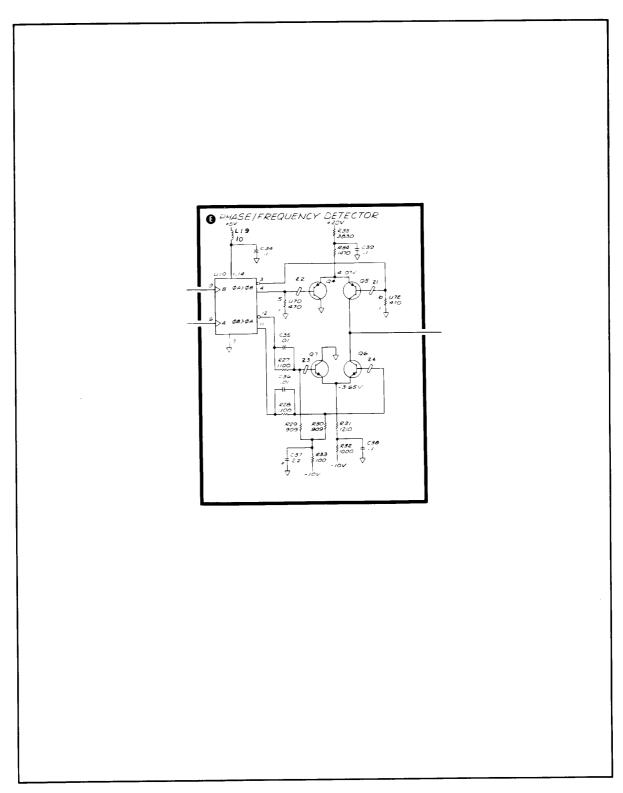



Figure 7-4. Phase Lock (A13), Component Locations (CHANGE A)

P/O Figure 7-5. Phase Lock (A13) Schematic Diagram (CHANGE A)

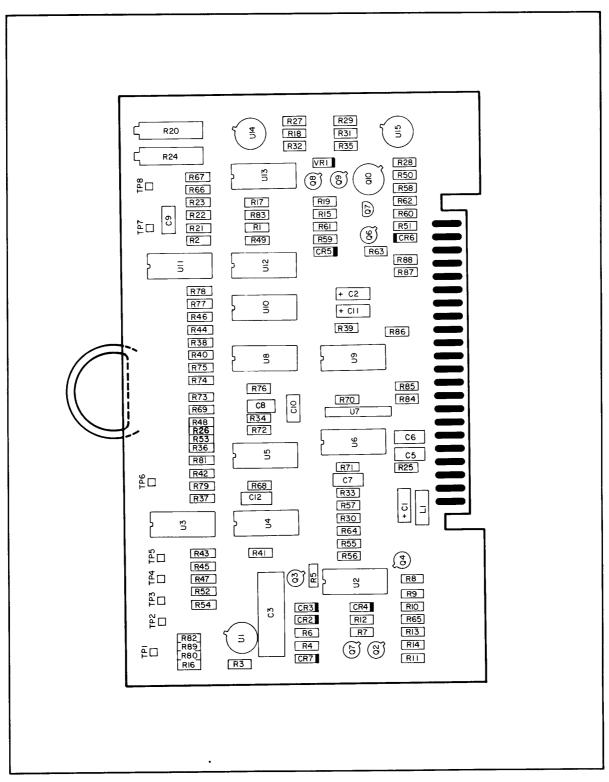


Figure 7-6. Sweep Generator (A17), Component Locations (CHANGE B)

1

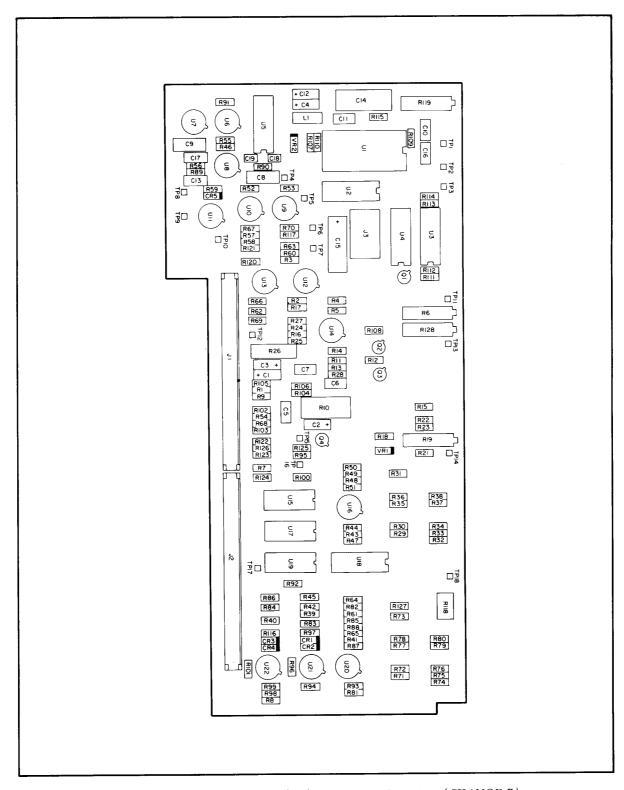


Figure 7-7. Analog Processor (A2), Component Locations (CHANGE B)

7-19/7-20

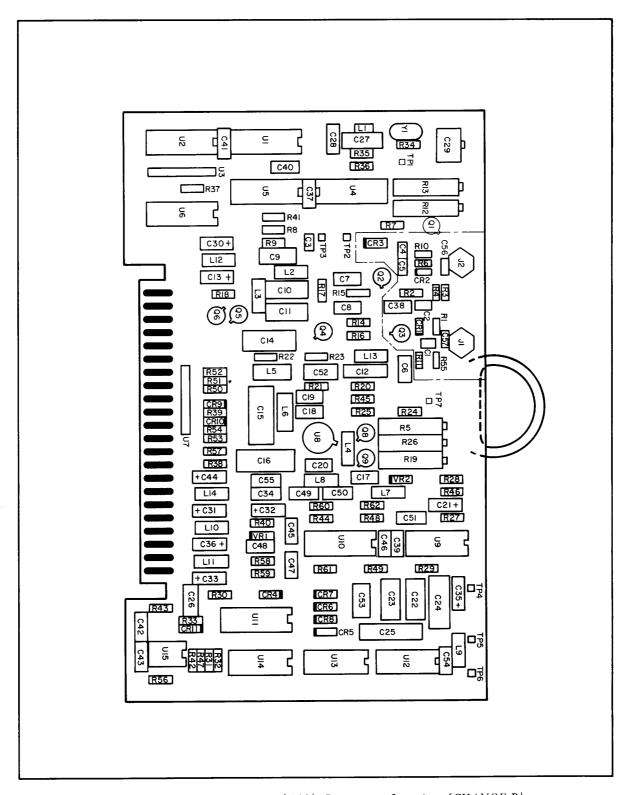
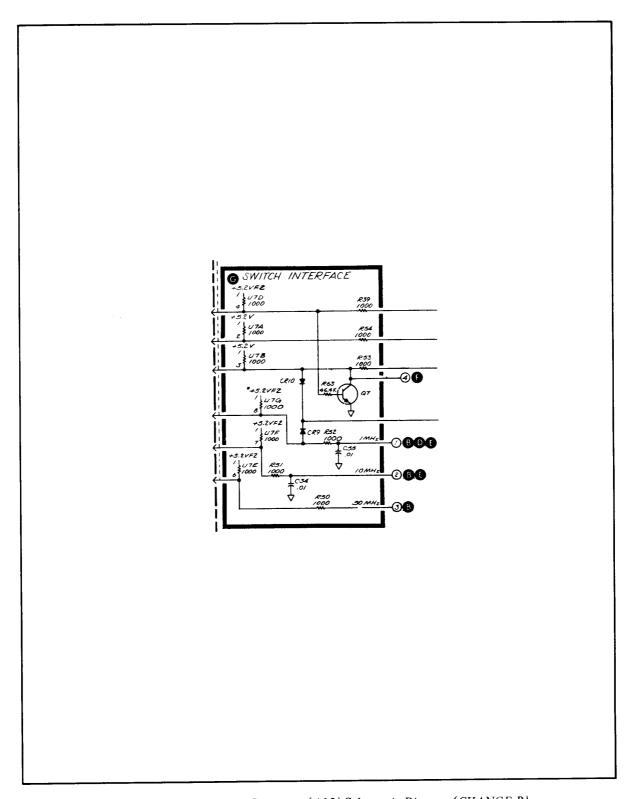



Figure 7-8. Marker Generator (A12), Component Locations (CHANGE B)

P/O Figure 7-9. Marker Generator (A12) Schematic Diagram (CHANGE B)

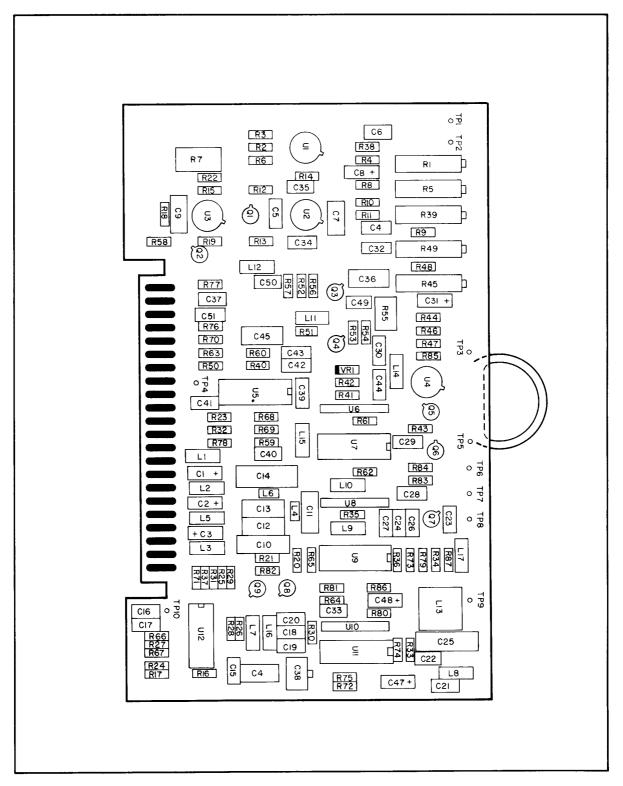


Figure 7-10. Detector (A9), Component Locations

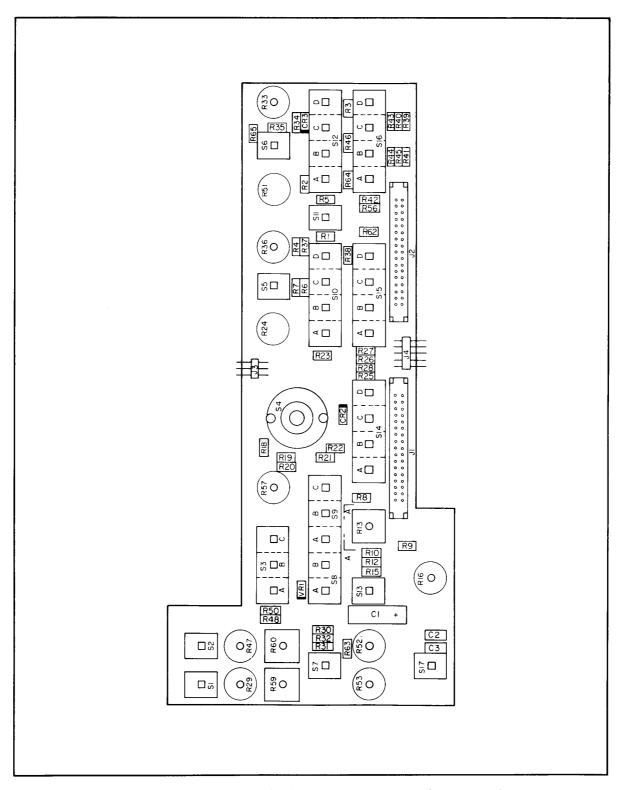


Figure 7-11. Front Panel (A1), Component Locations (CHANGE B)

Service Model 8754A

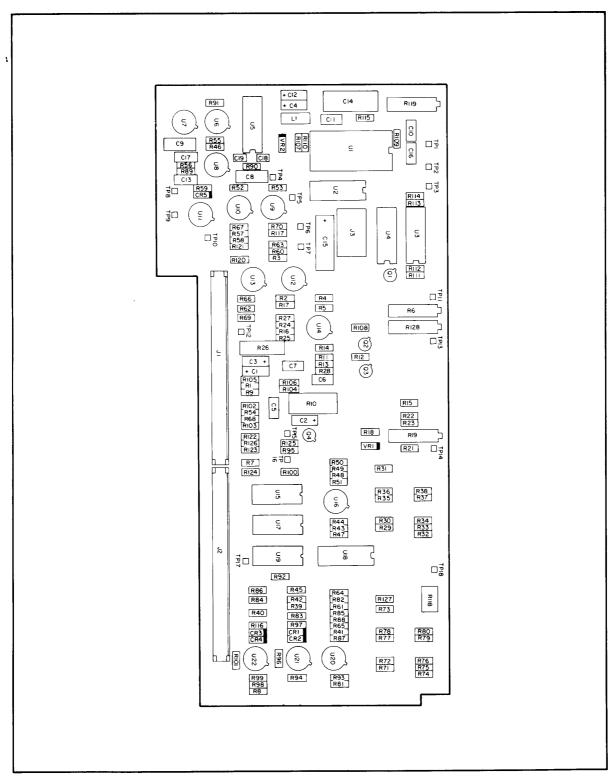


Figure 7-12. Analog Processor (A2), Component Locations (CHANGE B)

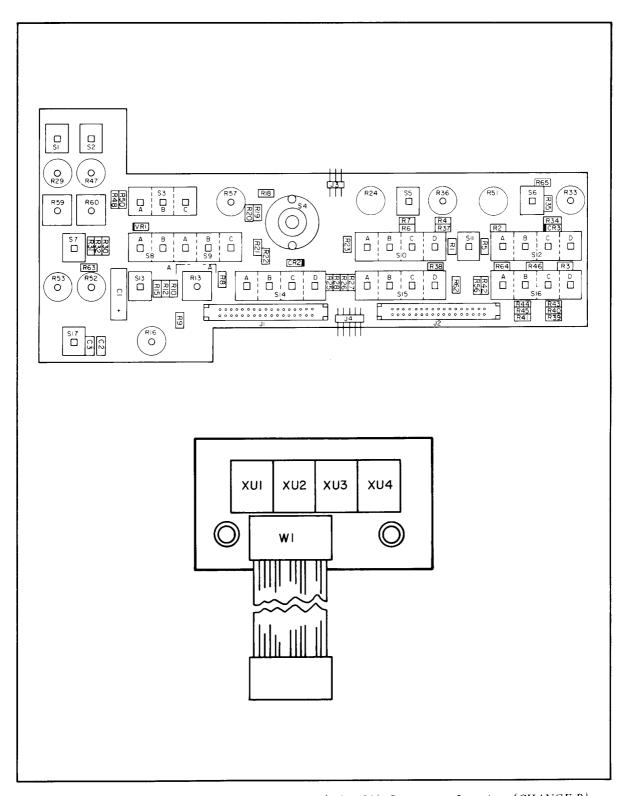


Figure 7-13. Front-Panel Controls and Indicators (A1, A22), Component Locations (CHANGE B)
7-29/7-30

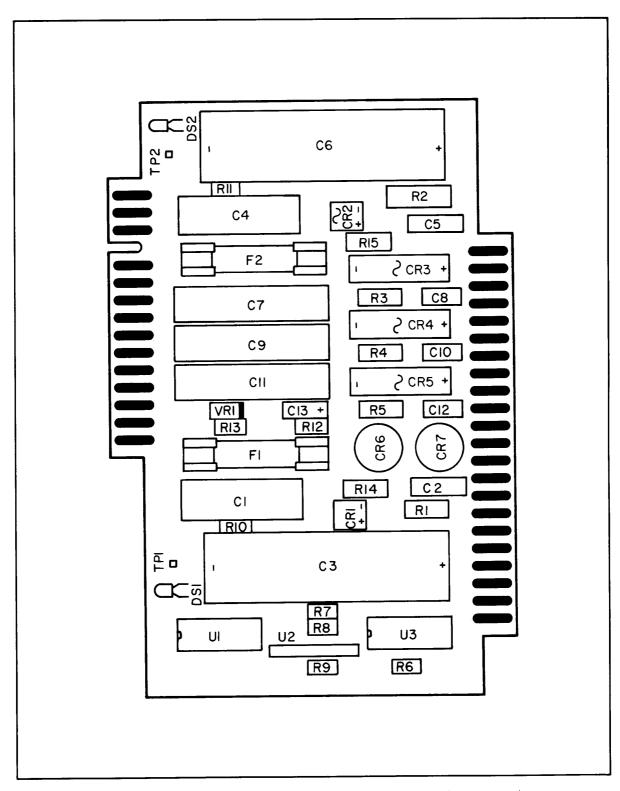


Figure 7-14. Figure Rectifier (A19), Component Locations (CHANGE B)

Service Model 8754A

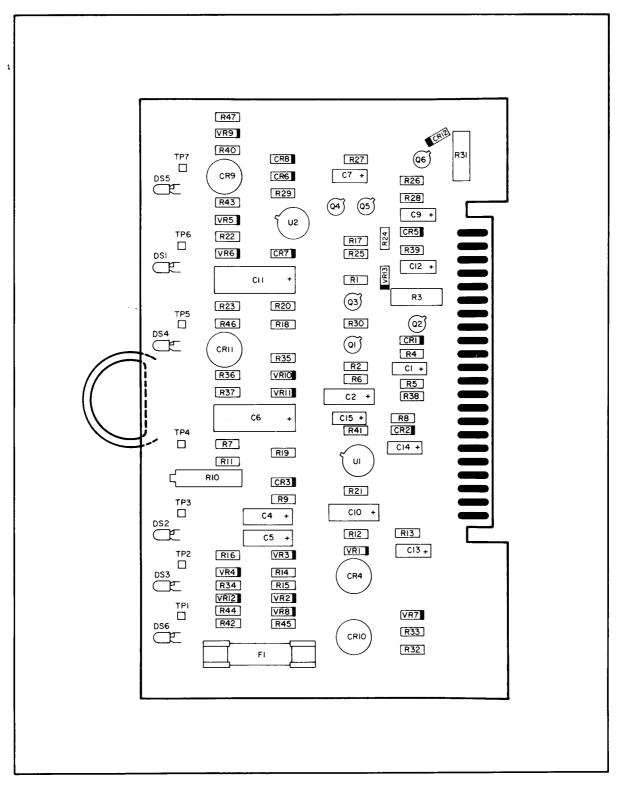
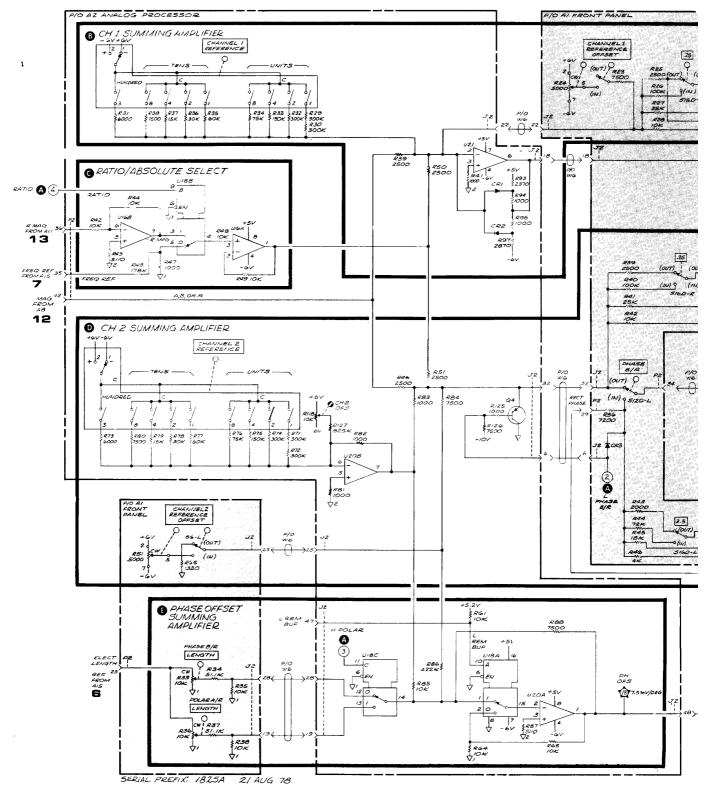
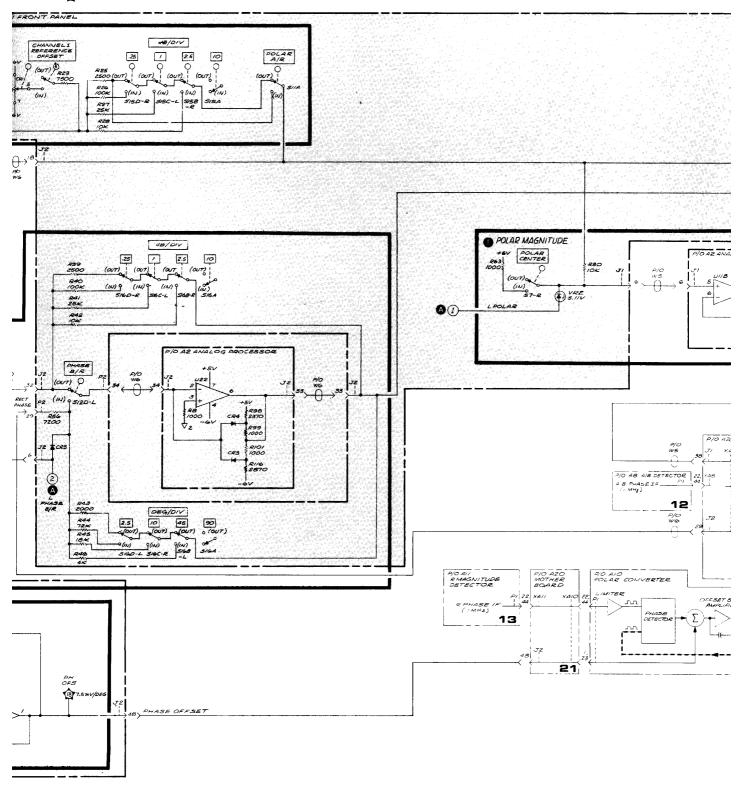
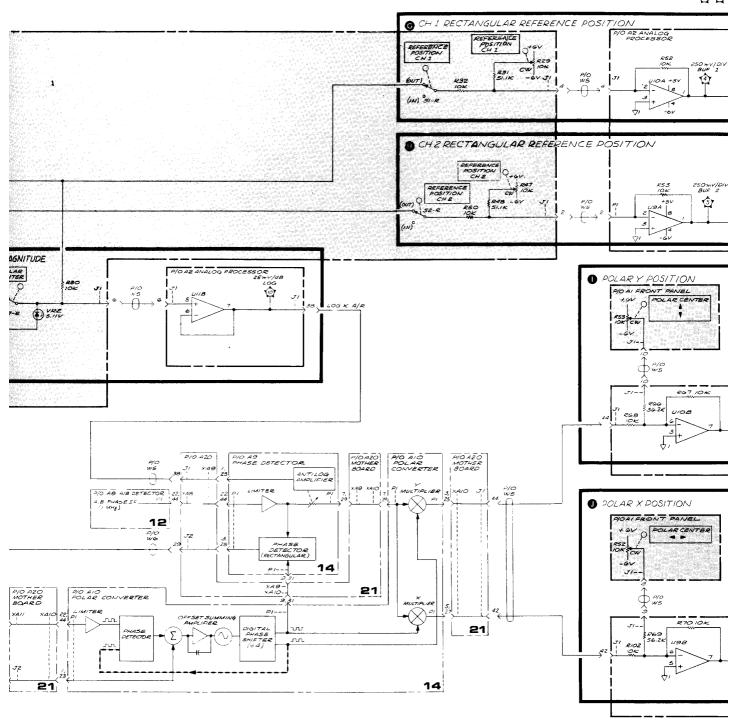





Figure 7-15. DC Regulator (A16), Component Locations

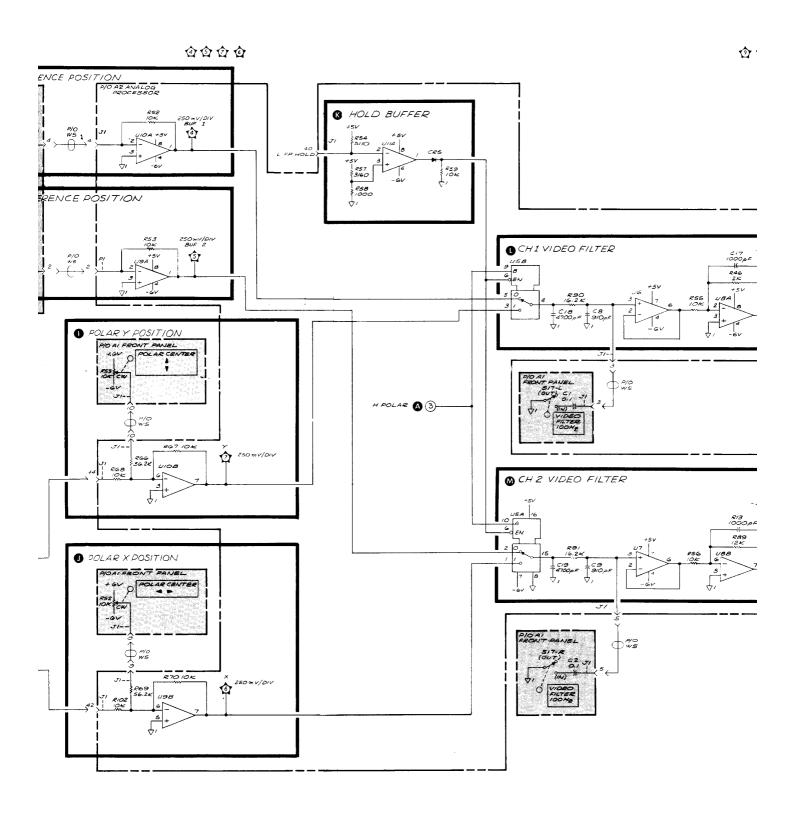


Figure 7-16. Front Panel (A1) and Analog Processor (A2),

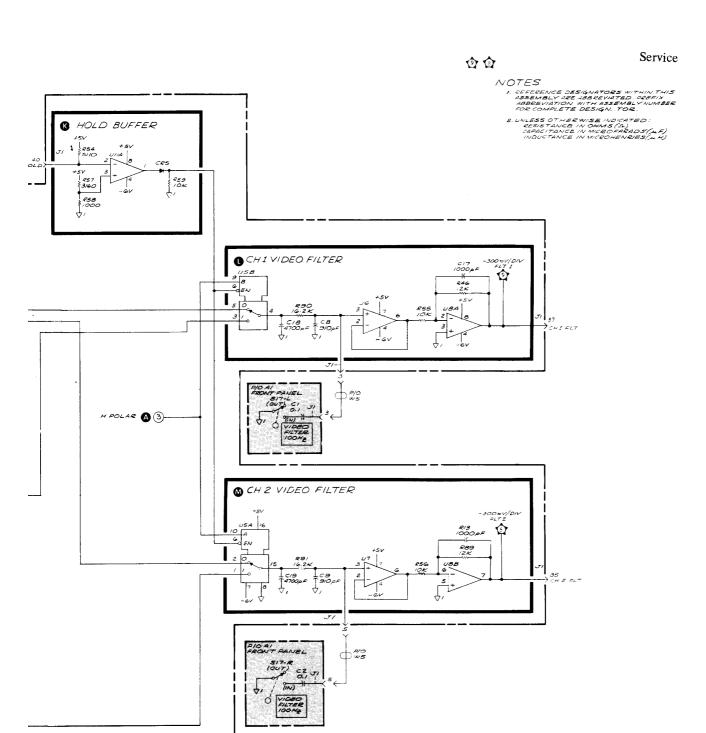
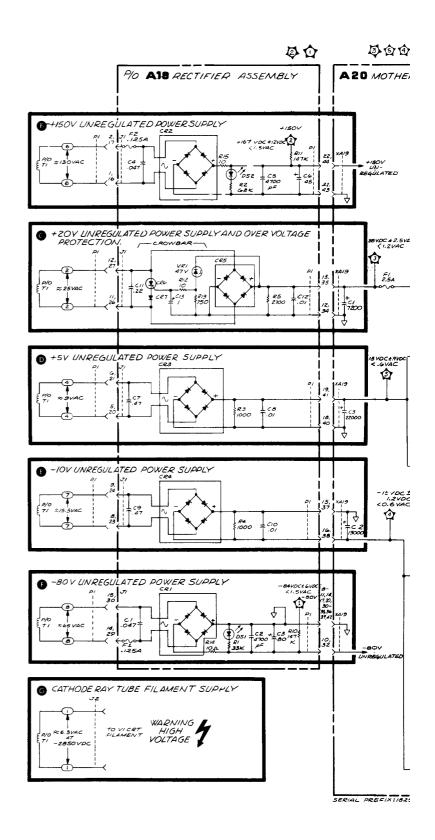


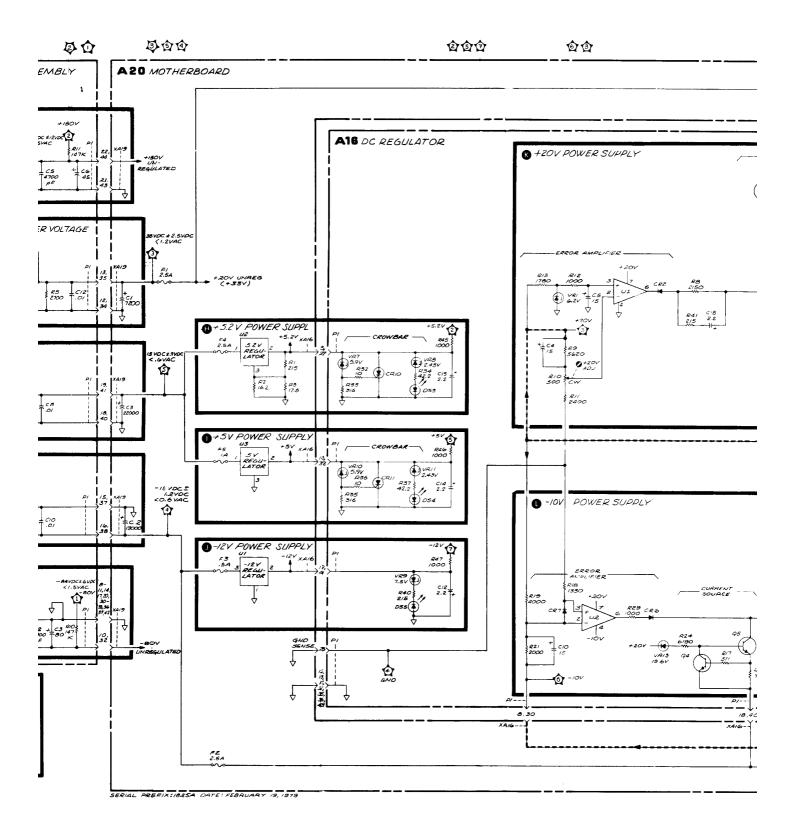
Figure 7-16. Front Panel (A1) and Analog Processor (A2), Schematic Diagram (CHANGE B)
7-33/7-34

A18 DC REGULATOR

-			
PIN NO	SIGNAL	-0/FROM	PUNCTION BLOCK
/	≠ 5. °308€ ₽0%€€	A20 14/6-1	Ø
23	4705 VD 5ENSE	AZO CLO PLANE	00
2	+20/ SEASE	423 X4/5-/4	80
24	+20/ SE N S E	420 X4'5-14	60
3	+20/	A20 X416-3	8
25	+20/	X416-3 A20 X416-25	6
4	15	XA76-25	
26	10		
5	+5.2/	AZO U Z- OUT	•
27	+5.27	A20 UZ-0UT	0
ø	NC		-
28	NC		
-	NC		
29	vc		
9	- C / SE .SE	220 X2 5-15	0
30	- 37 SE⊼SE	420 *4/5-/8	0
Э	-00	120 X=.6-3	0
31	-10V	420 X4:2-31	0
10	+5V	A20 U3-0UT	0
32	+5٧	120 03:007	0
77	NC		
33	∿c		
12	7	A20 615 SLAVE	
34	7	GND PLANE	
-3	▽	420 GND PLANE	
25	∇	GND PLANE	
-4	7	A20 6ND PL4NE 420	
36	∇ -20 / 25	GND PLANE	
:5	+20"/ 254.L. ATOR 501.T20L +202.P56111."	A20 Q2-BA5E 420	8
37	+207 REGUL - ATOR CONTROL	420 Q2- B 45 E 420	8
6	*20 V = 0 25G- ULATEC +20 V (MREG)	A20 E/ AZO	0
38	+20 VUNREG- ULATED	F/	8
1.7	REG +20/	A 20 Q2 - EMITTER A20	8
39	REG + 20 /	AZO OZ-EMITTER AZO	8
18	-10V UNREG ULATED -10V UNREG-	F 2 A 2 0	0
40	ULATED - 12 /	F2 420 UI-OUT	
19	-/2V	UI-OUT 470 UI-OUT	0
20	-127 -107 REGULA TOR CONTROL	420	0
42	TOR CONTROL -IOV REGULA- TOR CONTROL	21-BASE 420 01-BASE	0
21	TOR CONTROL	AZO GIID PLANE	-
43	V	GND PLANE A2O GND PLANE	
22	REGULTED -10V	GND PLANE x 20 QI: EMITTER	0
44	-10V REQULATED -10V	420 QI-EMITTER	Ŏ
_	-107	1 41. EMILIER	

SERIAL PREFIX: 1825A ZI AUG 78


A19 RECTIFIER ASSEMBLY


₽ſ				
P/N 140	S/GNAL	TO/FROM	5000T/0N 5000M	SEE SEE, SE WEET
/	LB	A211-45		40
23	L REZ AB	A2317-10		18
2	L MAS A.F.	4//-42		18
24	H MAS	A2317-19		
3	L B 74 5.5	A6-10,32		18
25	L B REM	A23J7-20	_	
4	L REM BUF	A17P1-20 A2J2-47		18
26	L REM	A23/7-2/		
5	~c			
27	~c			
6	~c			
28	~c			
7	+5.2V	AZOUZ OUT		
2?	+5.2V	A20U2OUT 427	•	
9		420 GNS FLANE 420	9	
<i>30</i>	∇	GND PLANE 480 35.5 PLANE	0	
9		420	Ö	
.0	- 5 0v	01.5 ALANE 420 ×4.9-10	0	ļ
32	-800	×4,9-10 420 ×4:9-32	ĕ	
//	7	14:9:32 420 51.5 FLANE	0	-
وق	∇	A20	Ğ	
/2	+20V UNREG	AZO CI-	•	
34	COMMON +20V LUREG	A 20 C/ -	9	
. 3	COMMOIS + 20 V UN- REGULATED	437 C/ +	9	-
35	+ ZOV UN- REGULATED	480 C1 +	Ğ	
14	⊽	A20 2ND 44ANE	G	-
36	∇	A20	ĕ	
:5	-ICV -MREG COMMON	GNO PLANE	0	
37	-IOUNZES COMMON	A20 C2+	0	
16	-10 V I/N REGLEATED	120 CZ-	G	
38	-/OV JA - REGULITEE	A20 CZ-	G	
77	♥	AZO GNO FLANE	G	
39	▽	AZO GAS ACRINE	G	
18	+5V UNREG COMMON	A20 C3-	0	
40	+5V UNREG	A20 C3-	0	
19	+5/ UN - REGULATED	A20 C3+	0	
47	+5 V UN- REGULATED	A20 C 3+	0	<u> </u>
20	▽	AZO GNO FLANE	0	
42	▽	AZO GNO PLANE	0	
2/	∇′	AZO GNU FLANE	B	
43	∇/	AZO GNO HANE	0	
22	+150V UN- REGULATED	A20 XA/9 - 22 A20 XA/9 - 44	0	
	+150V UN . REGULATED			

A19 RECTIFIE

J1	i	
PIN NO	SIGNAL	TO/FROM
1	30V4C	<i>T1</i>
٠ ن	130 VAC	71
г	130V4C	<i>T1</i>
77	BOVAC	T1
3	~c	
18	NC	
4	~c	
19	~c	
.5	9V4C	71
20	2.40	<i>T1</i>
6	9140	T/
27	9 VAC	<i>F</i> /
7	~c	
22	~c	
8	15.5 VAC	T/
23	15.5 V4C	F/
9	15.5 VAC	F/
2.	15.5VAC	<i>F</i> /
10	~c	
25	~c	
17	25 VAC	E1
26	25140	<i>F1</i>
12	25 VAC	<i>T1</i>
27	25 VAC	<i>T1</i>
/3	~c	
28	NC	
14	65 V4C	<i>F1</i>
29	GSVAC	T/
15	65 VAC	F1
30	GSVAC	T/

1			EILIGTIE
- 1	5/G/VAL	TO/FROM	BLOCK
- 1	.30V4C	<i>F1</i>	6
0	130 VAC	T1	0
2	:30V4C	<i>T1</i>	6
7	30 VAC	<i>T1</i>	0
3	~c		
В	~c		
4	~c		
9	~/C		
5	evac	T/	0
0	3 40	<i>T1</i>	0
6	9VAC	<i>T1</i>	0
2/	9 VAC	<i>F1</i>	0
7	~c		l
22	~C	<u> </u>	_
8	15.5 VAC	<i>T/</i>	9
23	15.5 V4C	FI	0
· .			3
	5.5VAC	F/	-
9	~c		
25	NC. 25 VA C	F.	_
11		El	9
26	25 1/40		
2	25146	F/	0
27	25 VAC	<i>T1</i>	
3			
28 14	NC G5 VAC	T/	_
			6
29	GSVAC	<i>T/</i>	
15	G5 VAC	T/	6
0	GEVAC	7/	0

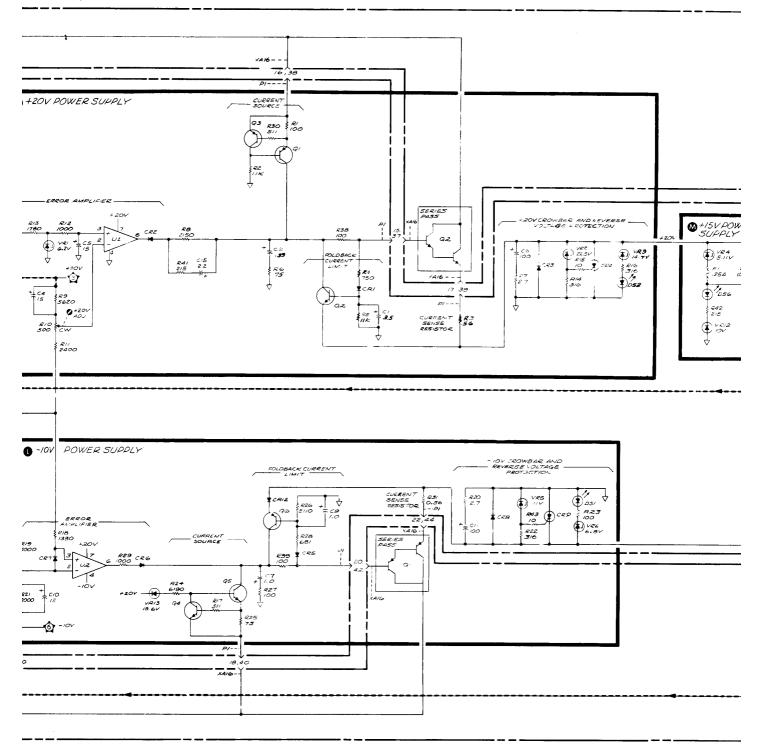


Figure 7-17. Low Voltage

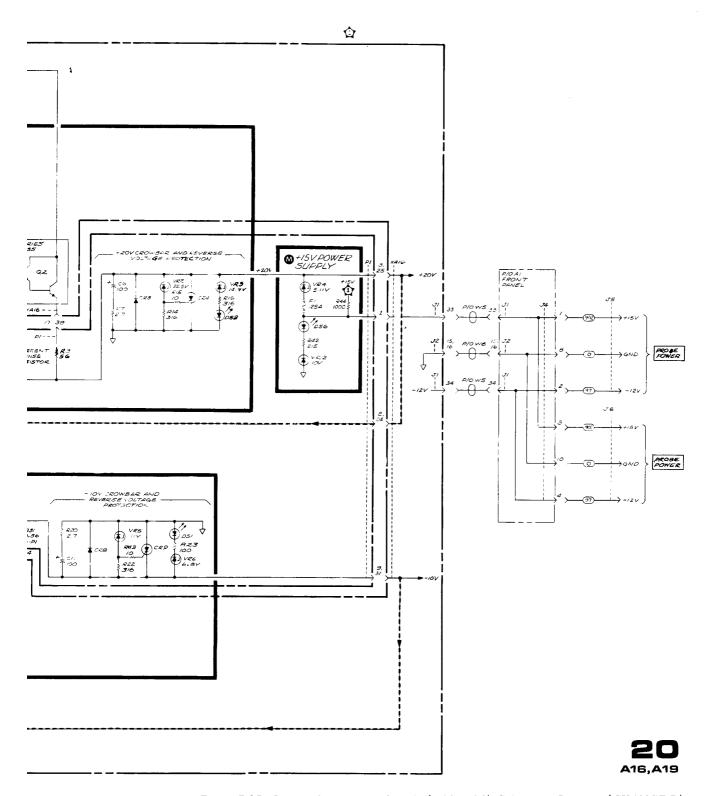


Figure 7-17. Low Voltage Power Supply (A19, A16), Schematic Diagram (CHANGE B)
7-35/7-36

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS

		CE OF ASSEMBLIES TO SERVICE SHEETS
ASSEMBLY	SERVICE SHEET	DESCRIPTION
	5	SWEEP pushbuttons
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch
	7	OUTPUT dBm control
A1 Front Panel	8	MARKERS MHz pushbuttons
	11	·
	I I	UNLOCKED indicator
	12	Absolute R measurement select
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER, and VIDEO FILTER
	16	HORIZONTAL POSN and GAIN controls
	19	All front panel controls
	6	Analog-to-digital converter for FREQUENCY MHz display.
A2 Analog Processor	15	Analog processor, switch control logic, and ±6V power supplies
	16	V RAMP amplifier
A3 B Sampler	9	RF to IF down-conversion
A4 A Sampler	9	RF to IF down-conversion
A5 R Sampler	9	RF to IF down-conversion
A6 VTO and IF Switch	10	Voltage Turned Carillatura
AO VIO and IF Switch	12	Voltage Tuned Oscillator IF Switch
A7 Source	7	RF Source
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector
A9 Phase Detector	14	Phase Detector
A10 Polar Converter	14	Polar Converter
A11 R Detector	13	R INPUT, magnitude detector
A12 Marker Generator	8	Markers
A13 Phase Lock	11	Phase Lock
A14 Phase Lock Control	11	Phase Lock loop control
A15 Shaper	6 7	Sweep width, tuning, frequency reference, and frequency display. Shaping and RF Source drive.
A16 DC Regulator	20	Low Voltage Power Supplies
A17 Sweep Generator	5	Sweep Generator
A18 Deflection Amplifiers	16	Deflection Amplifiers
A19 Rectifier	18	External Interface
	20	Low Voltage Power Supplies
A20 Motherboard	21	Motherboard wiring list
A21 High Voltage Power Supply	17	CRT bias and blanking control
A22 Frequency MHz Display	6	Frequency display
A23 Rear Panel	18	External Interface and Rear Panel (A23)

SECTION VIII SERVICE

8-1. INTRODUCTION

8-2. This section provides instructions for the troubleshooting and repair of the Model 8754A Network Analyzer. See Service Sheets 1–4 for Basic 8754A Troubleshooting. Circuit descriptions and simplified block diagrams are included with the schematic diagrams of the assemblies. Component location illustrations are also contained in this section. Schematic presentations in this manual show electrical circuit operation and are not intended to serve as wiring diagrams. Figure 8-1 presents schematic diagram notes. Figure 8-2 illustrates schematic symbols for digital integrated circuits.

8-3. ASSEMBLY SERVICE SHEETS

8-4. The schematics are arranged by service sheets, with each service sheet covering a functional area of the network analyzer. The service sheet numbers appear in the lower right-hand corner of the schematics (large number above assembly number). The service sheet includes the schematic, the accompanying circuit descriptions, a component-location diagram, a block diagram, and assembly-level troubleshooting. Table 8-1 lists the service sheets and describes their functional breakdown. Table 8-2 is a cross-reference of assemblies to service sheets, provided as an aid in finding the schematic of a particular assembly. This cross-reference is also on the back of each index tab.

8-5. CIRCUIT DESCRIPTIONS

8-6. A detailed circuit description is provided with each service sheet. This places material needed for component-level diagnosis in one location and allows easy correlation between function and specific circuitry.

8-7. TROUBLESHOOTING

WARNING

With the ac power cable connected, the ac line voltage is present at the terminals of power line module FL1 (mounted on rear panel) and at the LINE switch, whether the LINE switch is on or off. With the covers removed, these terminals are exposed. Care must be taken to avoid contact with these terminals.

With the covers removed, terminals are exposed that have voltages capable of causing death. Any maintenance or repair of the opened instrument under voltage should be carried out only by a skilled person who is aware of the hazard involved.

After disconnecting ac line power cord, allow a minimum of 30 seconds for High Voltage Power Supply to discharge before removing High Voltage Power Supply protective cover.

- 8-8. Troubleshooting is generally divided into two maintenance levels in this manual. The first level isolates a trouble to a circuit or assembly. This is done by using block diagrams that provide signal levels to isolate the cause of a malfunction and identify the defective assembly.
- 8-9. The second maintenance level isolates the trouble to the component. Schematic diagrams and circuit descriptions for each assembly aid in troubleshooting to the component level.
- 8-10. When troubleshooting a transistor stage, check for a forward bias condition of the base-emitter junction. If this condition exists, the next step is to remove this forward bias by shorting the base to the emitter and checking to see if the collector voltage rises to the approximate level of the supply. The next check that can be made, if it is known that the transistor is not operating in a saturated condition, is to check for a voltage drop between emitter and collector. These serve only as quick checks but will help in getting started with the problem.

GRAPHIC SYMBOLS USED ON SCHEMATIC AND BLOCK DIAGRAMS **BASIC COMPONENT SYMBOLS** Measurement Point: Used to Resistance is in ohms, inductance R, L, C indicate a convenient point is in microhenries, capacitance is in for measurement. No terminal microfarads, unless otherwise noted. provided for test probe. Indicates wire or cable color Part of. P/O code. Color code same as resistor color code. First number 946 indicates base color, second and Indicates a factory selected third numbers indicate colored component stripes. Panel control. 0 Indicates shielding conductor for cables Screwdriver adjustment. Encloses front panel designation. Indicates a plug-in connection Encloses rear panel designation. Indicates a soldered or mechan-Circuit assembly borderline. ical connection Other assembly borderline. Connection symbol indicating Heavy line with arrows indicates path and direction of main signal. a male connection Heavy dashed line with arrows indicates Connection symbol indicating path and direction of main feedback. a female connection Variable Resistor: CW indicates Earth ground symbol clockwise rotation of shaft moves wiper towards location of CW. Instrument chassis ground. May be accompanied by a number or letter to specify a particular General Purpose Diode ground. Indicates "WARNING: HAZARDOUS VOLTAGE." Breakdown Diode: Zener Test Point: Terminal provided Schottky Diode for test probe connection

Figure 8-1. Schematic Diagram Notes (1 of 2)

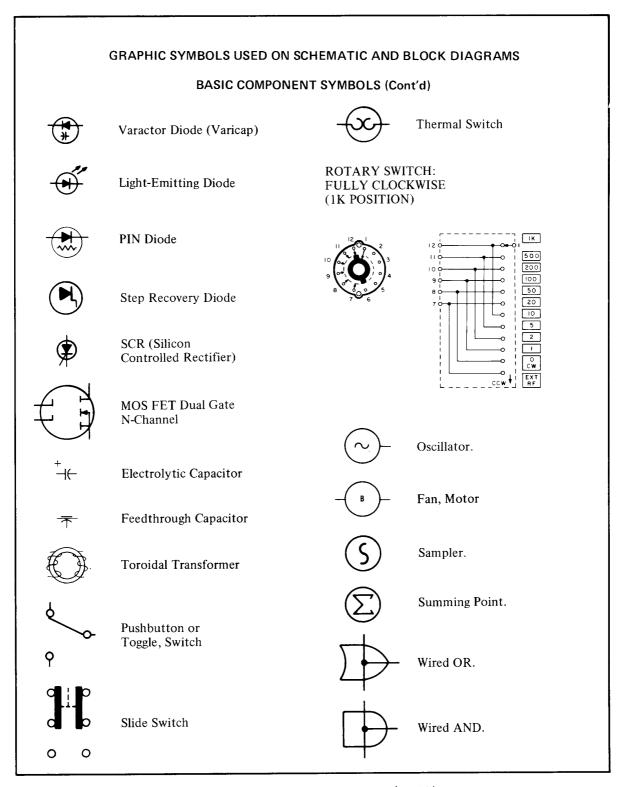


Figure 8-1. Schematic Diagram Notes (2 of 2)

SCHEMATIC SYMBOLS FOR DIGITAL INTEGRATED CIRCUITS

The following is a guide to the symbols used for digital or logic ICs in this manual. The symbology is based upon American National Standard ANSI Y32.14, *Graphic Symbols for Logic Diagrams (Two-State Devices)*, but does not strictly follow the standard. This figure should be consulted for the explanation of digital IC symbols used in Section VIII.

DEFINITIONS

Logic Element: The part or parts of a logic device symbol having a well-defined logic function (OR, AND, FLIP-FLOP, etc.) and one or more outputs. The inputs of a logic element may be data or control inputs; the outputs are data outputs.

Control Block: The part of a logic device symbol to which all logic lines common to a group of logic elements are connected. Lines connected to a control block are control lines.

Function Label: The notation within a logic device symbol that denotes its overall logic function (counter, shift register, multiplexer, etc.).

Line Label: The symbol or abbreviation associated with an output or input line that defines the action of the line.

Indicator Symbol: A symbol associated with an input or output line which defines the active state or special characteristics of the line.

BASIC LOGIC SYMBOLS

Distinctive-Shape Symbols

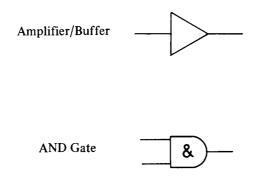


Figure 8-2. Schematic Symbols for Digital Integrated Circuits (1 of 8)

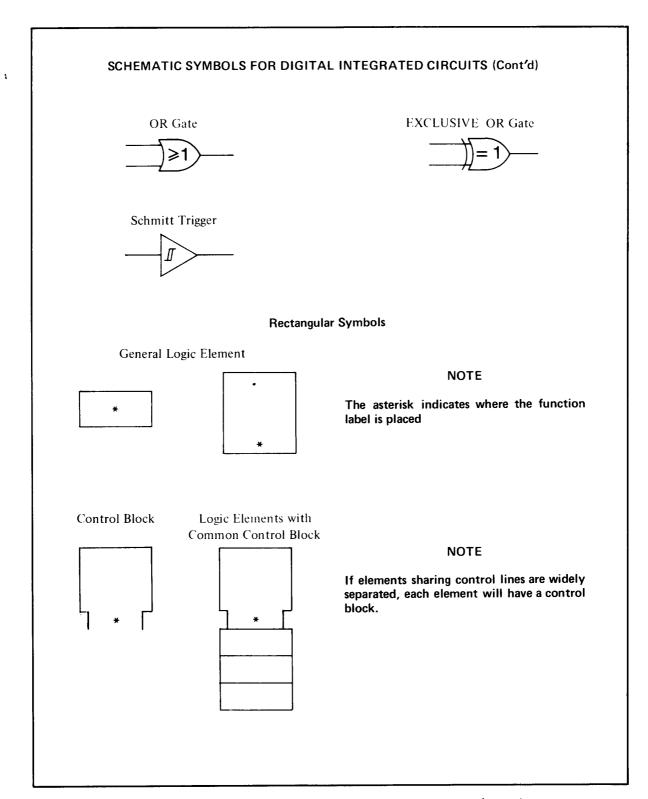


Figure 8-2. Schematic Symbols for Digital Integrated Circuits (2 of 8)

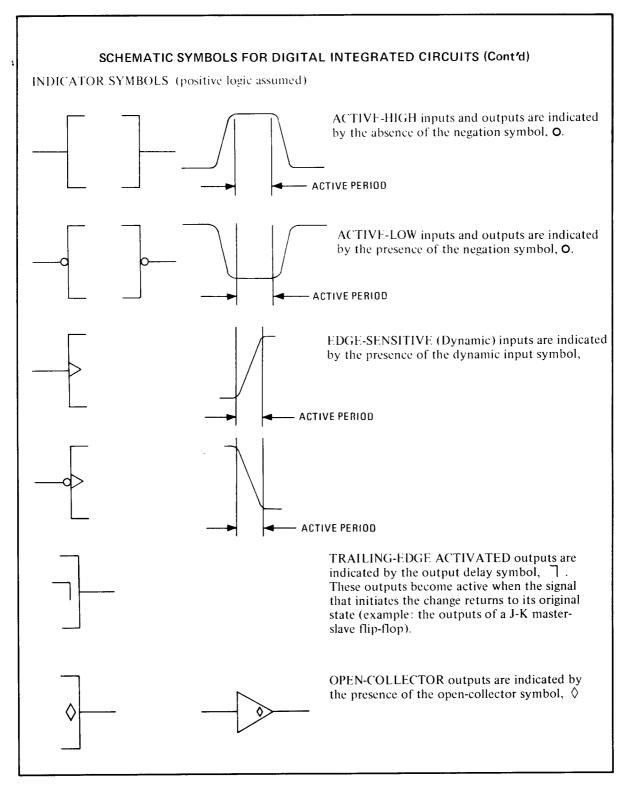


Figure 8-2. Schematic Symbols for Digital Integrated Circuits (3 of 8)

1

SCHEMATIC SYMBOLS FOR DIGITAL INTEGRATED CIRCUITS (Cont'd)

NOTE

The logic negation symbol (O) alone gives no information about the actual voltage levels used in a digital circuit. For this reason the type of logic system (positive or negative) must be specified. In this manual, unless otherwise noted on the schematic, the logic system is positive; that is, the more positive voltage level is the HIGH or 1-state and the less positive level is the LOW or 0-state.

FUNCTION LABELS

Σ	ADDER
\triangleright	AMPLIFIER/BUFFER
1	MONOSTABLE MULTIVIBRATOR (ONE-SHOT)
&	AND GATE
≥1	OR GATE
= 1	EXCLUSIVE OR GATE
Y→ Y	ENCODER, DECODER
XMAX— → Y	PRIORITY ENCODER
_	SCHMITT TRIGGER
CTR	COUNTER
DEMUX	DEMULTIPLEXER
FF	FLIP-FLOP
MUX	MULTIPLEXER
REG	REGISTER
SR	SHIFT REGISTER

Figure 8-2. Schematic Symbols for Digital Integrated Circuits (4 of 8)

SCHEMATIC SYMBOLS FOR DIGITAL INTEGRATED CIRCUITS (Cont'd)

LINE LABELS

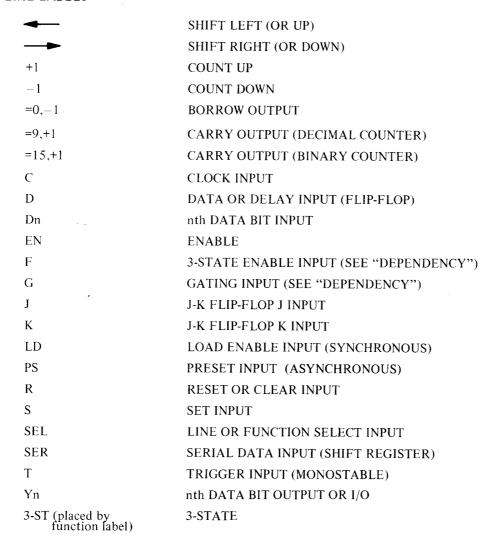
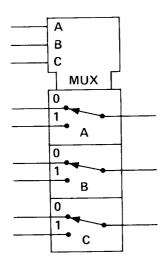



Figure 8-2. Schematic Symbols for Digital Integrated Circuits (5 of 8)

SCHEMATIC SYMBOLS FOR DIGITAL INTEGRATED CIRCUITS (Cont'd)

NOTES

- 1. The suffix or subscript 0 denotes the least significant bit (LSB) of a data or address word.
- 2. Letters may be used to identify a line or logic element without indicating a specific logic function. For example:

1

Triple 2-Channel Multiplexer

Letters are used to relate control inputs to logic elements. The numerals 0 and 1 indicate 0-state and 1-state, respectively, and relate the position of a "switch" to the logic state of the corresponding control line.

DEPENDENCY (G and F)

The dependency of inputs or outputs on an input is indicated with gate symbols or the G line label. Gate symbols are often used when the dependency exists between inputs. Two examples are:

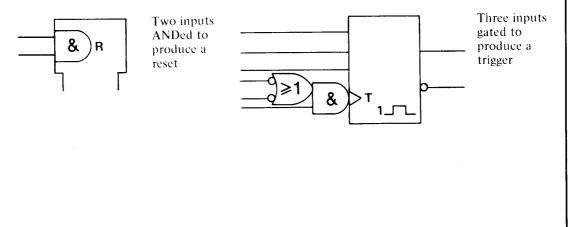
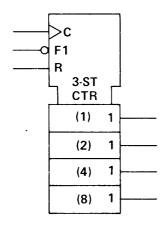
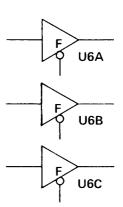


Figure 8-2. Schematic Symbols for Digital Integrated Circuits (6 of 8)

SCHEMATIC SYMBOLS FOR DIGITAL INTEGRATED CIRCUITS (Cont'd) When the G label is used, the gating input is labelled with a G followed by a numeral or letter. The line labels of the gated inputs or outputs are prefixed with the same numeral or letter. Two examples are: 2-Bit Register IC Symbol Equivalent G1 d & S REG FF 18 FF 18 2-to-4-Line Decoder 1 2 2 GJ X→Y X**→**Y J0 & 0 J1 & 1 J2 2 J3 & 3

Figure 8-2. Schematic Symbols for Digital Integrated Circuits (7 of 8)


SCHEMATIC SYMBOLS FOR DIGITAL INTEGRATED CIRCUITS (Cont'd)


The F line label is used to indicate 3-state logic. The 3-state enable input is labelled with an F and numerals or letters are used as with the G label:

Counter with 3-State Outputs

1

3-State Buffers

WEIGHTING OF INPUT AND OUTPUT LINES

The coding of multiplexers, demultiplexers, encoders, and decoders is shown by decimal weighting. An example is the 2-to-4-line decoder shown on the previous page.

WEIGHTING OF FLIP-FLOPS

When the position of a flip-flop in an array is significant (as in counters and shift registers), the flip-flop is labelled with its decimal weight. An example is the "Counter with 3-State Outputs" shown above.

Figure 8-2. Schematic Symbols for Digital Integrated Circuits (8 of 8)

8-11. RECOMMENDED TEST EQUIPMENT

8-12. Test equipment required to maintain the Model 8754A is listed in Section I. If the equipment listed is not available, equipment that meets the minimum specifications shown may be substituted.

8-13. REPAIR

8-14. Module Exchange Program

- 8-15. This instrument may be quickly repaired by replacing a defective module with a restored-exchange module. To support the modular repair concept, Hewlett-Packard has set up a module exchange program.
- 8-16. The procedure for using the module exchange program is given in Figure 8-3. When you locate the defective module, order a replacement module through the nearest Hewlett-Packard sales office. The restored-exchange module will be sent immediately directly from a customer service replacement parts center. When you receive the exchange module, return the defective module in the same special carton in which the exchange module was received. DO NOT return a defective module to Hewlett-Packard until you receive the exchange module.
- 8-17. If you are not going to return the defective module to Hewlett-Packard, or if you are ordering a module for spare parts stock, etc., order a new module using the new module part number listed in Table 6-3.

8-18. The Hewlett-Packard module exchange program allows you to obtain a fully tested and guaranteed restored-exchange module at a reduced price. (The reduced price is contingent upon return of the defective module to Hewlett-Packard.) Assemblies available for module exchange are listed in Table 6-1.

8-19. After-Service Product Safety Checks.

Visually inspect interior of instrument for any signs of abnormal internally generated heat, such as discolored printed circuit boards or components, damaged insulation, or evidence of arcing. Determine and remedy cause of any such condition.

- 8-20. Using a suitable ohmmeter, check resistance from instrument enclosure to ground pin on power cord plug. The reading must be less than one ohm. Flex the power cord while making this measurement to determine whether intermittent discontinuities exist.
- 8-21. Check resistance from instrument enclosure to line and neutral (tied together) with the line switch ON and the power source disconnected. The minimum acceptable resistance is 2 megohms. Replace any component which results in failure to meet this minimum.
- 8-22. Check line fuse to verify that a correctly rated fuse is installed.

Model 8754A

1

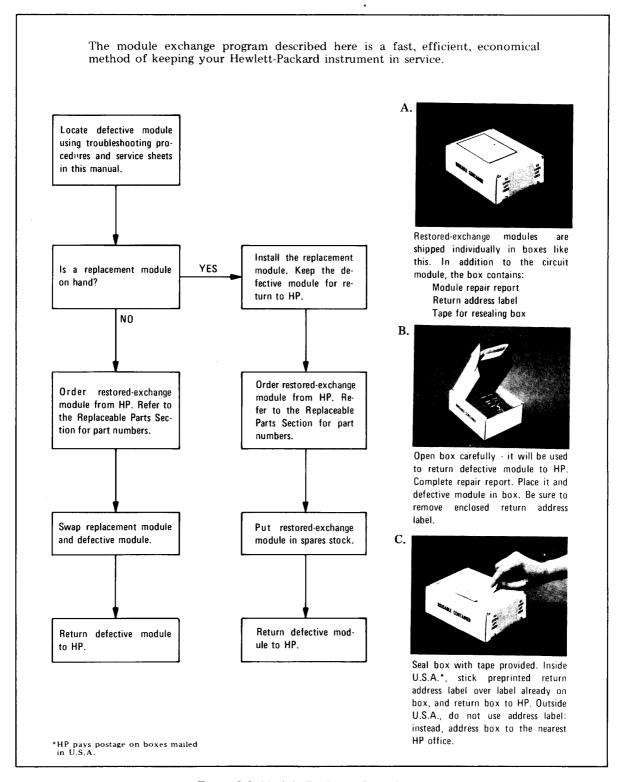


Figure 8-3. Module Exchange Procedure

Table 8-1. Service Sheets (1 of 2)

SERVICE SHEET	DESCRIPTION	
1 Overall Block Diagram	A1 Front Panel A2 Analog Processor	
	A7 Source	
	A12 Marker Generator	
	A15 Shaper	
	A17 Sweep Generator	
	A22 Frequency MHz Display	
3 Receiver Block Diagram	A1 Front Panel	
	A2 Analog Processor	
	A3 B Sampler	
	A4 A Sampler	
	A5 R Sampler	
	A6 VTO and IF Switch	
	A8 A, B Detector A9 Phase Detector	
	A10 Polar Converter	
	A10 Polar Converter A11 R Detector	
	A11 R Detector A13 Phase Lock	
	A14 Phase Lock Control	
	A14 Thase Lock Control	
4 Display Block Diagram	A1 Front Panel	
	A2 Analog Processor	
	A18 Deflection Amplifiers	
	A21 High Voltage Power Supply	
	V1 Cathode Ray Tube	
5 Sweep Generator	A1 Front Panel	
	A17 Sweep Generator	
6 Frequency Reference	Al Front Panel	
and Frequency Display	A2 Analog Processor	
	A15 Shaper	
	A22 Frequency MHz Display	
7 RF Source	A1 Front Panel	
	A7 Source	
	A15 Shaper	
8 Markers	A1 Front Panel	
- ALMANDAY	A12 Marker Generator	
0 0 1	A2 P Complex	
9 Samplers	A3 B Sampler	
	A4 A Sampler	
	A5 R Sampler	
10 Voltage Tuned Oscillator	A6 VTO and IF Switch	
11 Phase Lock	A13 Phase Lock	
	A14 Phase Lock Control	

Table 8-1. Service Sheets (2 of 2)

1

SERVICE SHEET	DESCRIPTION
12 IF Switch and A, B Detector	A6 VTO and IF Switch A8 A, B Detector
13 R Detector	A11 R Detector
14 Phase Detection and Polar Conversion	A9 Phase Detector A10 Polar Converter
15 Analog Processor	A1 Front Panel A2 Analog Processor
16 Deflection Amplifiers	A1 Front Panel A2 Analog Processor A18 Deflection Amplifiers V1 Cathode Ray Tube
17 High Voltage Power Supply	A21 High Voltage Power Supply V1 Cathode Ray Tube
18 External Interface	A19 Rectifier A23 Rear Panel
19 Front Panel Troubleshooting	A1 Front Panel A2 Analog Processor
20 Low Voltage Power Supplies	A16 DC Regulator A19 Rectifier A20 Motherboard
21 Motherboard Wiring List	A20 Motherboard

Table 8-2. Cross Reference of Assemblies to Service Sheets

ASSEMBLY	SERVICE SHEET	DESCRIPTION
	5	SWEEP pushbuttons
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch
	1	· · · · · ·
	7	OUTPUT dBm control
	8	MARKERS MHz pushbuttons
A1 Front Panel	11	UNLOCKED indicator
	12	Absolute R measurement select
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER, and VIDEO FILTER
	40	
	16	HORIZONTAL POSN and GAIN controls
	19	All front panel controls
	6	Analog-to-digital converter for FREQUENCY MHz display.
A2 Analog Processor	15	Analog processor, switch control logic, and ±6V power/supplies
	16	V RAMP amplifier
A3 B Sampler	9	RF to IF down-conversion
A4 A Sampler	9	RF to IF down-conversion
A5 R Sampler	9	RF to IF down-conversion
	1	
A6 VTO and IF Switch	10	Voltage Tuned Oscillator
	12	IF Switch
A7 Source	7	RF Source
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector
A9 Phase Detector	14	Phase Detector
A10 Polar Converter	14	Polar Converter
A11 R Detector	13	R INPUT, magnitude detector
A12 Marker Generator	8	Markers
A13 Phase Lock	11	Phase Lock
A14 Phase Lock Control	11	Phase Lock loop control
	+	
A15 Shaper	6 7	Sweep width, tuning, frequency reference, and frequency display. Shaping and RF Source drive.
A16 DC Regulator	20	Low Voltage Power Supplies
A17 Sweep Generator	5	Sweep Generator
A18 Deflection Amplifiers	16	Deflection Amplifiers
•		
A19 Rectifier	18	External Interface
	20	Low Voltage Power Supplies
A20 Motherboard	21	Motherboard wiring list
A21 High Voltage Power Supply	17	CRT bias and blanking control
A22 Frequency MHz Display	6	Frequency display
A23 Rear Panel	18	External Interface and Rear Panel (A23)

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS

ASSEMBLY	SERVICE SHEET	DESCRIPTION
	5	SWEEP pushbuttons
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch
	7	OUTPUT dBm control
	8	MARKERS MHz pushbuttons
A1 Front Panel	1	· · · · · · · · · · · · · · · · · · ·
A I Front Faner	11	UNLOCKED indicator
	12	Absolute R measurement select
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER, and VIDEO FILTER
	16	HORIZONTAL POSN and GAIN controls
	19	All front panel controls
***	6	Analog-to-digital converter for FREQUENCY MHz display.
A2 Analog Processor	15	Analog processor, switch control logic, and $\pm6 extsf{V}$ power supplies
····	16	V RAMP amplifier
A3 B Sampler	9	RF to IF down-conversion
A4 A Sampler	9	RF to IF down-conversion
A5 R Sampler	9	RF to IF down-conversion
A6 VTO and IF Switch	10	Voltage Tuned Oscillator
AC VIO BIRG II OWITCH	12	
	12	IF Switch
A7 Source	7	RF Source
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector
A9 Phase Detector	14	Phase Detector
A10 Polar Converter	14	Polar Converter
A11 R Detector	13	R INPUT, magnitude detector
A12 Marker Generator	8	Markers
A13 Phase Lock	11	Phase Lock
A14 Phase Lock Control	11	Phase Lock loop control
A1E Shaper	6	Committee and the second secon
A15 Shaper	6 7	Sweep width, tuning, frequency reference, and frequency display. Shaping and RF Source drive.
A16 DC Regulator	20	Low Voltage Power Supplies
A17 Sweep Generator	5	Sweep Generator
A18 Deflection Amplifiers	16	Deflection Amplifiers
A19 Rectifier	18	External Interface
	20	Low Voltage Power Supplies
A20 Motherboard	21	Motherboard wiring list
A21 High Voltage Power Supply	17	CRT bias and blanking control
A22 Frequency MHz Display	6	Frequency display
A23 Rear Panel	18	External Interface and Rear Panel (A23)

SERVICE SHEET 1

OVERALL BLOCK DIAGRAM

The 8754A is divided into three main sections: Source, Receiver, and Display. More detailed block diagrams are in Service Sheets 2 through 4.

Source

1

The Source provides an RF OUTPUT signal in the frequency range 4 to 1300 MHz; the output power is leveled and adjustable from 0 to +10 dBm. The Source also provides a sweep ramp and blanking signal to the Display Section, as well as frequency information and control logic to the Receiver Section for phase lock operation.

The frequency of the RF Source is determined by the Frequency Reference voltage (0 to +13V), which has a tuning sensitivity of 100 MHz/volt. When the voltage is zero, the RF frequency is nominally zero (<10 MHz); when the voltage is +13V, the frequency is nominally 1300 MHz (1290 to 1310 MHz).

This Frequency Reference voltage is derived from the Sweep Generator Sweep Ramp output, and is controlled by the setting of TUNING and SWEEP WIDTH MHz controls. The sweep ramp may be either internally generated or supplied from an external input, depending on the position of the rearpanel INT/EXT SWEEP switch.

The Marker Generator samples the RF OUTPUT and generates a series of amplitude markers (intensity markers if viewing a polar display) every 1, 10, or 50 MHz, as selected.

Receiver

The Receiver provides dc voltages to the Display section which are proportional to the absolute magnitude of, and phase difference between, the three RF inputs: A INPUT, B INPUT, and R INPUT.

The inputs are first down-converted to three 1 MHz IF signals, while maintaining their magnitude and phase relationships. Samplers are

used to mix the A, B, and R inputs with three phase-coherent pulsed outputs from the Voltage Tuned Oscillator, producing three IF outputs. An automatic phase-lock system tunes the Voltage-Tuned Oscillator to maintain a 1 MHz IF at the output of the R input Sampler.

The A,B Magnitude Detector produces a dc voltage proportional to the power level of the A or B input (-25 mV/dB). An IF switch selects the A or B input, and is controlled by either the frontpanel or an external input through the rear-panel PROGRAMMING connector. The R Magnitude Detector produces a dc voltage proportional to the power level of the R input (-25 mV/dB). The magnitude detectors each contain a 2-pole, 1 MHz Bandpass filter with a 20 kHz Bandwidth, so only the 1 MHz component of the sampler outputs is detected.

The Bandpass-filtered IF signals are fed to limiters and a Phase Detector, to produce a dc voltage proportional to the phase difference between the A (or B) signal and the R signal, by -10 mV/degree. These IF signals are also processed to provide a Polar Display.

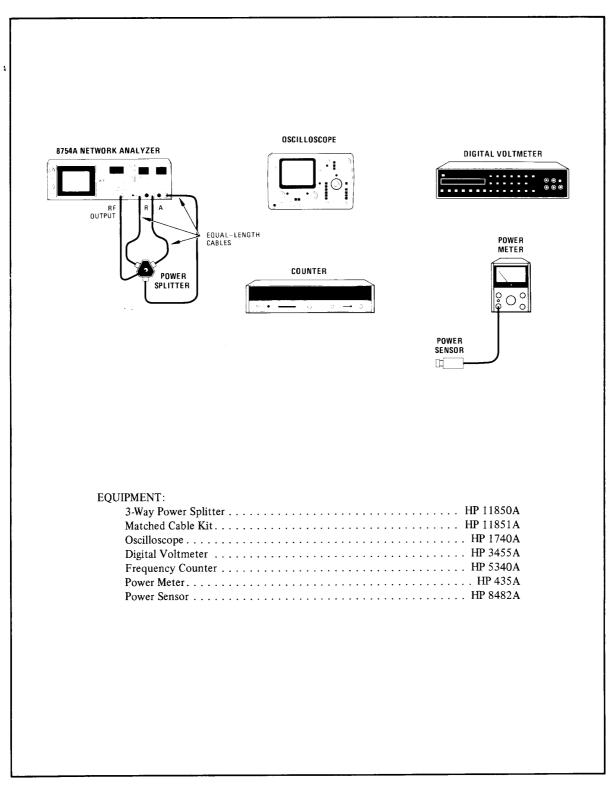
Display

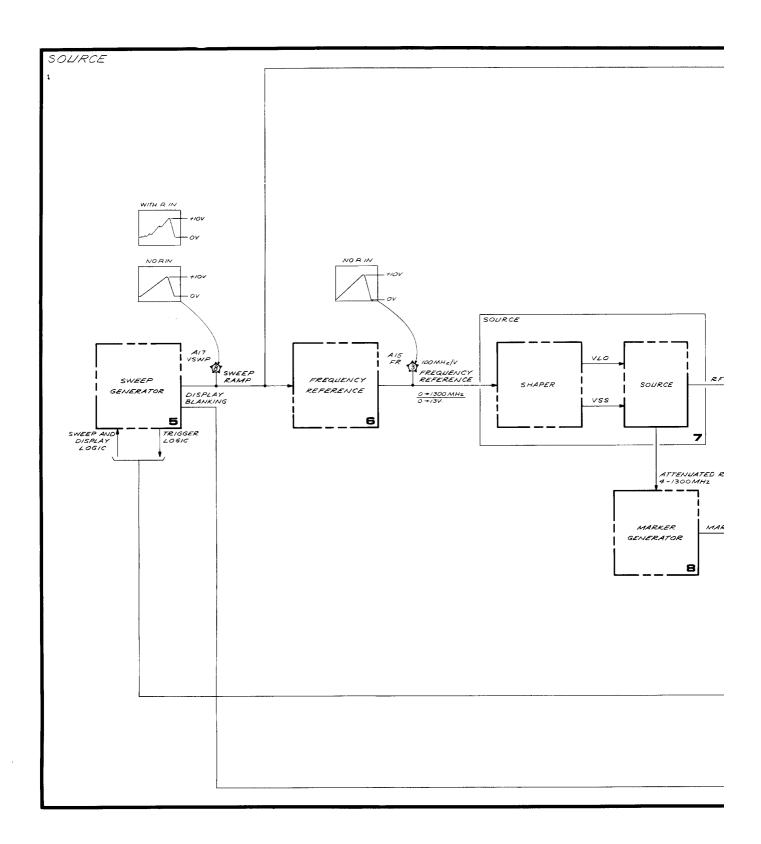
The Display processes the dc voltages from the Receiver, as well as the Sweep, Marker, and Blanking signals from the Source, to provide a CRT display.

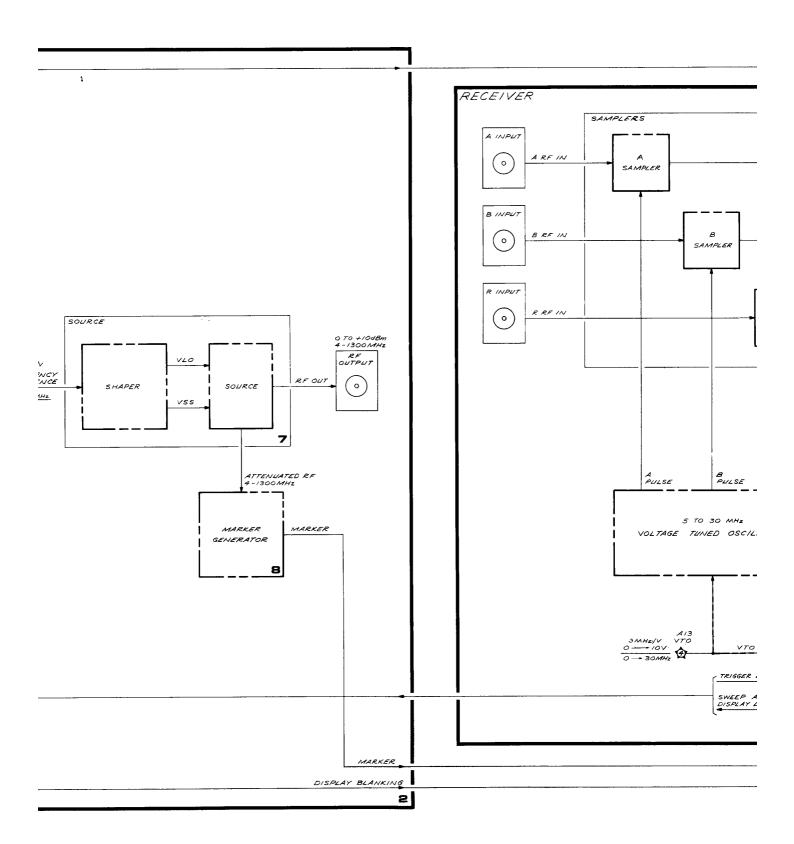
The Analog Processor produces two dc voltages proportional to the CRT trace vertical deflection for Channels 1 and 2 (-300 mV/division). In polar operation, the Channel 2 voltage is used for X deflection.

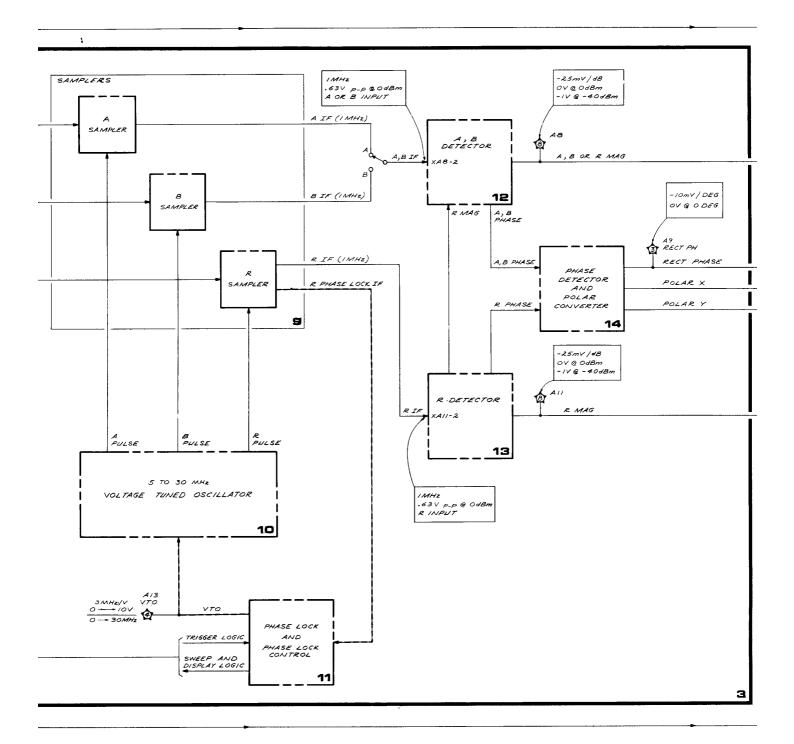
The Deflection Amplifiers provide X and Y CRT deflection, as well as providing the Z axis signal to the High Voltage Power Supply. In Rectangular operation, an alternate-sweep switch selects either the Channel 1 or Channel 2 vertical voltage from the Analog Processor.

The High Voltage Power Supply provides all CRT potentials, as determined by the Z axis input from the Deflection Amplifiers.




Figure 8-4. Troubleshooting Test Setup (1 of 2)


NOTE


Differences in control settings are called out in the Schematic Diagram Notes on each Service Sheet.

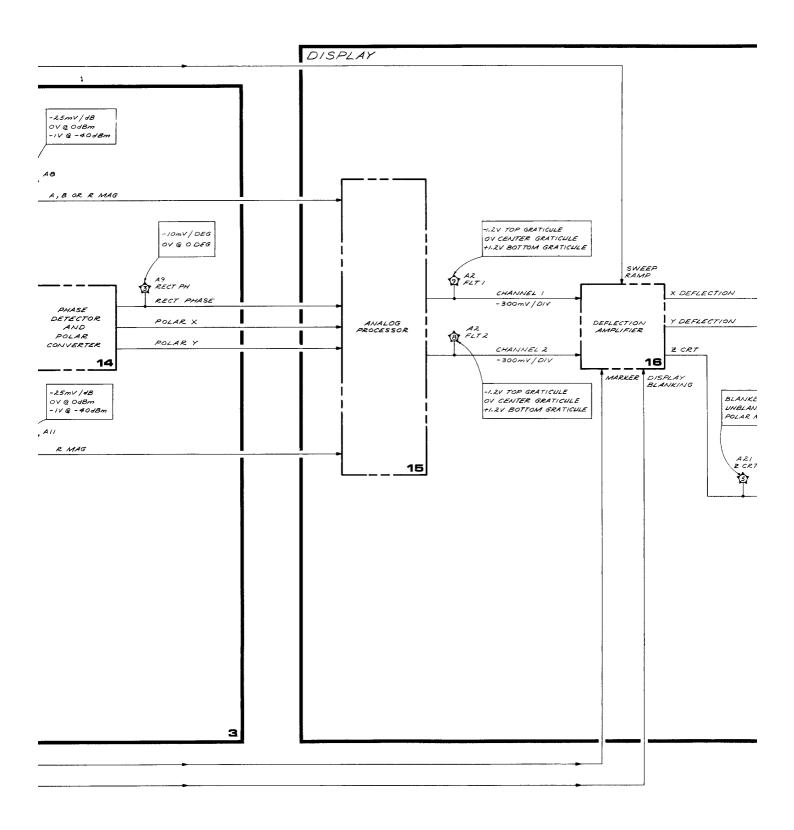

8754A CONTROL SETTINGS:	
Sweep Mode	FULL 4–1300
SWEEP	
SWEEP Vernier	Fully clockwise
TUNING	
SWEEP WIDTH MHz	0 CW
SWEEP WIDTH MHz Vernier	CAL
MARKERS MHz	OFF
OUTPUT dBm	0 dBm
REFERENCE POSITION CH 1	off (out)
REFERENCE POSITION CH 2	off (out)
POLAR CENTER	off (out)
POLAR A/R	off (out)
POLAR A/R LENGTH	fully counterclockwise
VIDEO FILTER	off (out)
CHANNEL 1	
REFERENCE	00
REFERENCE OFFSET button	off (out)
Measurement Select	OFF
Scale	10 dB/DIV
CHANNEL 2	
REFERENCE	00
REFERENCE OFFSET button	
Measurement Select	
Scale	
PHASE B/R LENGTH	

Figure 8-4. Troubleshooting Test Setup (2 of 2)

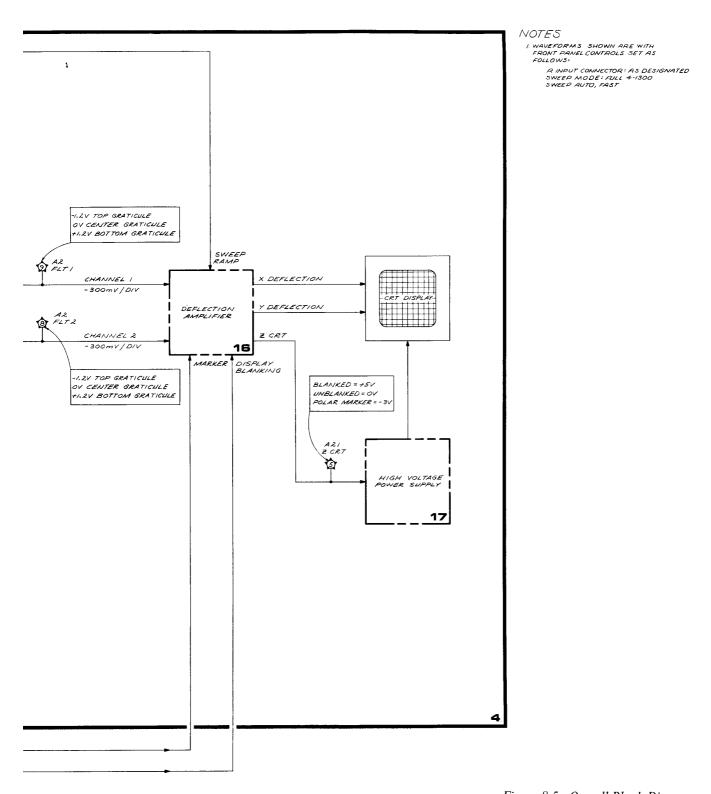


Figure 8-5. Overall Block Diagram 8-21/8-22

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS

ASSEMBLY	SERVICE SHEET	DESCRIPTION
	5	SWEEP pushbuttons
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch
	7	OUTPUT dBm control
A1 Front Panel	8	MARKERS MHz pushbuttons
	11	UNLOCKED indicator
	12	Absolute R measurement select
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER,
		and VIDEO FILTER
	100	
	16	HORIZONTAL POSN and GAIN controls
	19	All front panel controls
	6	Analog-to-digital converter for FREQUENCY MHz display.
A2 Analog Processor	15	Analog processor, switch control logic, and ± 6V power supplies
	16	V RAMP amplifier
A3 B Sampler	9	RF to IF down-conversion
A4 A Sampler	9	RF to IF down-conversion
A5 R Sampler	9	RF to IF down-conversion
A6 VTO and IF Switch	10	Voltage Tuned Oscillator
AO VIO and II diviten	12	IF Switch
	12	IF Switch
A7 Source	7	RF Source
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector
A9 Phase Detector	14	Phase Detector
A10 Polar Converter	14	Polar Converter
A11 R Detector	13	R INPUT, magnitude detector
A12 Marker Generator	8	Markers
A13 Phase Lock	11	Phase Lock
A14 Phase Lock Control	11	Phase Lock loop control
A15 Shaper	6	Sweep width, tuning, frequency reference, and frequency display.
	7	Shaping and RF Source drive.
A16 DC Regulator	20	Low Voltage Power Supplies
A17 Sweep Generator	5	Sweep Generator
A18 Deflection Amplifiers	16	Deflection Amplifiers
A D D G G G G G G G G G G G G G G G G G	10	Denoction Withings
A19 Rectifier	18	External Interface
	20	Low Voltage Power Supplies
A20 Motherboard	21	Motherboard wiring list
A21 High Voltage Power Supply	17	CRT bias and blanking control
A22 Frequency MHz Display	6	Frequency display
A23 Rear Panel	18	External Interface and Rear Panel (A23)

SERVICE SHEET 2

SOURCE BLOCK DIAGRAM

The Source provides an RF signal in the frequency range of 4 MHz to 1300 MHz; the leveled output power level is adjustable from 0 dBm to +10 dBm. The Source also provides a sweep ramp and blanking signal to the Display Section, as well as frequency information and control logic to the Receiver Section for phase lock operation.

Sweep Generator (Service Sheet 5)

The Sweep Generator (A17) produces a 0 to +10V sweep ramp which is used to tune the RF Source, and provide X axis deflection for rectangular (non-polar) measurements.

The Sawtooth Generator provides a -0.7V to +10.7V sawtooth waveform. Basically, it consists of two switch controlled current sources feeding an integrating capacitor. When the FWD (Forward) current source is switched on, the capacitor voltage increases at a rate determined by the magnitude of the current, which is controlled by the front-panel SWEEP vernier. When the RTC (Retrace) current source is switched on instead, the capacitor voltage decreases at a rate determined by the magnitude of the current. The currents are switched on and off by control logic which senses the sawtooth ramp voltage, the trigger inputs, and stop sweep and backstep inputs from the Receiver Section (A14, Phase Lock Control).

The sweep ramp (VSWP) which drives the source and display is dependent on the rear-panel INT /EXT SWEEP switch. In Internal, the sawtooth generator output is diode-clamped to 0 and +10V limits to provide a 0 to +10V waveform. In External, a voltage from a rear-panel SWEEP INPUT connector provides the sweep ramp signal.

Frequency Reference (Service Sheet 6)

The Frequency Reference portion of the Shaper (A15) provides a 0V to +13V FREQ REF signal whose magnitude is directly related to the RF Source frequency in the range 0 to 1300 MHz (100 MHz/volt). The FREQ REF signal is used to:(1) tune the RF Source; and (2) provide the Receiver with an analog representation of the source frequency, which controls the RF/IF phase lock loop

(Service Sheet 11), provides a reference for electrical length compensation in phase measurements, and provides a reference for conversion loss compensation (sampler slope).

The 100 MHz/volt FREQ REF voltage is generated by one of two methods, depending on whether the instrument is in START/CENTER or FULL 4-1300 Sweep Mode.

In START/CENTER mode, the sweep ramp (VSWP) is attenuated by the SWEEP WIDTH MHz Control Network, and summed with the dc voltage from the front-panel TUNING control, to create a ramp output with a peak-to-peak amplitude dependent on SWEEP WIDTH MHz, and a dc offset level (start or center voltage) dependent on TUNING. This dc voltage from the TUNING control is digitized and read out on the front-panel FREQUENCY MHz display. Limiting circuitry senses the FREQ REF output voltage and holds it within the range -0.2 to +13.7V; the CRT is blanked when the FREQ REF voltage is being limited to this range.

In FULL 4-1300 mode, the sweep ramp from A17 (VSWP) is amplified by 1.3 to provide a 0 to +13V ramp. The dc voltage from the TUNING control is compared with the FREQ REF ramp; a zero-volt detector senses when they are coincedent and puts a marker on the CRT display at the frequency proportional to the TUNING voltage.

RF Source (Service Sheet 7)

This circuitry generates an RF signal in the frequency range 4 to 1300 MHz which is proportional to the 0 to +13V FREQ REF voltage by 100 MHz/volt. The RF Source consists of a part of the A15 Shaper assembly (Shaper circuit, and two driver amplifiers), and the A7 Source assembly which consists of the Source and Amplifier microcircuits plus bias and leveling circuitry.

The RF signal is generated by mixing the outputs of two varactor-tuned oscillators located in A7U2. As the FREQ REF voltage increases from 0 to +13V, the SS Oscillator is voltage-tuned from 3.6 GHz to 3.0 GHz and the LO Oscillator is voltage-tuned from 3.6 GHz to 4.3 GHz; this results in a mixer output (difference frequency) of 0 to 1.3 GHz.

The Amplifier/Detector microcircuit amplifies the low-level mixer output by 32 to 36 dB, to provide a maximum output signal of greater than +10 dBm. It also provides a low-level RF signal to the Phase Lock and Marker circuits, and a detected output dc voltage for leveling.

The Leveling Loop senses the detected output, compares it to the voltage from the front-panel OUTPUT dBm control, and feeds back an error voltage to a Modulator located in A7U2. This Modulator varies the SS (Small-Signal) drive to the mixer, and hence, varies the RF output level, to hold it constant.

The A15 Shaper contains a Shaper circuit and two driver amplifiers which convert the FREQ REF voltage (also generated on A15) into two signals which tune the oscillators on the A7 RF Source.

The function of the Shaper is to remove the nonlinear tuning characteristics of the oscillators in the RF Source (A7). The FREQ REF (FR) voltage at TP4 is linear, with a sensitivity of 100 MHz/V throughout the frequency range of 0 to 1300 MHz (0 to +13V). The sensitivity of the oscillators in A7, however, is non-linear; that is, the voltage representation of frequency is not constant throughout the tuning range. The Shaper yields a waveform (FS) at TP5 that compensates for the non-linearity of the oscillator output so that the RF signal out of the mixer is linear over the frequency range of 0 to 1300 MHz.

This FS waveform is fed to two drive amplifiers which provide opposing tuning voltages for the two oscillators.

Notes:

1. The Shaper contains a module of resistors which have been factory-selected for the particular oscillators tuning characteristics.

2. The oscillator tuning voltages corresponding to 3.0, 3.6, and 4.3 GHz vary depending on their characteristics.

3. Due to temperature and other effects, the actual RF frequency may differ as much as 10 MHz from the frequency calculated by the FREQ REF voltage (100 MHz/volt).

Marker Generator (Service Sheet 8)

The Marker Generator provides frequency markers to the CRT display, at 50, 10, or 1 MHz intervals. An external-input marker is also provided.

The low-level output from the RF Source (A7) is attenuated by the Phase Lock Control (A14) to provide a -25 to -35 dBm input signal to the Marker Generator.

A 50 MHz crystal oscillator and programmable divider provide a 1, 10, or 50 MHz square wave, which is shaped into an harmonic-rich pulse and mixed with the RF signal. Whenever the RF frequency is a multiple of the pulse rate, a "zero beat" mixer output is created, which is amplified to drive a digital frequency detector.

The digital frequency detector (discriminator) outputs a high (+5V marker pulse) whenever the mixer output is less than the inverse period of a one-shot. Thus, the one-shot period determines the marker width, and is programmed from the SWEEP WIDTH MHz switch, to provide markers which are narrow for most sweep widths.

An external RF input is applied to a single-diode mixer, where it is mixed with the low-level internal RF signal, to create a "zero beat" when the two frequencies coincide. This zero beat is summed with that of the harmonic markers.

TROUBLESHOOTING HINTS

The following Troubleshooting Hints assume that ac line power is applied to the 8754A and all power supplies are operational. These hints are provided as a troubleshooting aid in locating a problem. Several symptoms are listed with their most probable causes. For these Troubleshooting Hints, it is suggested that the instrument be set up as shown in Figure 8-4.

NOTE

Check that no cables are connected to rear-panel connectors.

Sweep Problems (A17). Symptoms are usually no sweep or display is blanked.

- 1. Check rear-panel SWEEP INT/EXT switch is in INT position.
- 2. Check Sweep Generator output at rear-panel SWEEP OUTPUT connector (-5V to +5V ramp). If sweep ramp is present, then A17 is functioning; refer to Z Axis Blanking troubleshooting hints on Service Sheet 4. If sweep ramp is not present, and returns when R INPUT signal to receiver is disconnected, or when A14 Phase Lock Control is removed, refer to Phase Lock troubleshooting on Service Sheet 3. If sweep ramp is still absent, refer to Service Sheet 5 (A17).

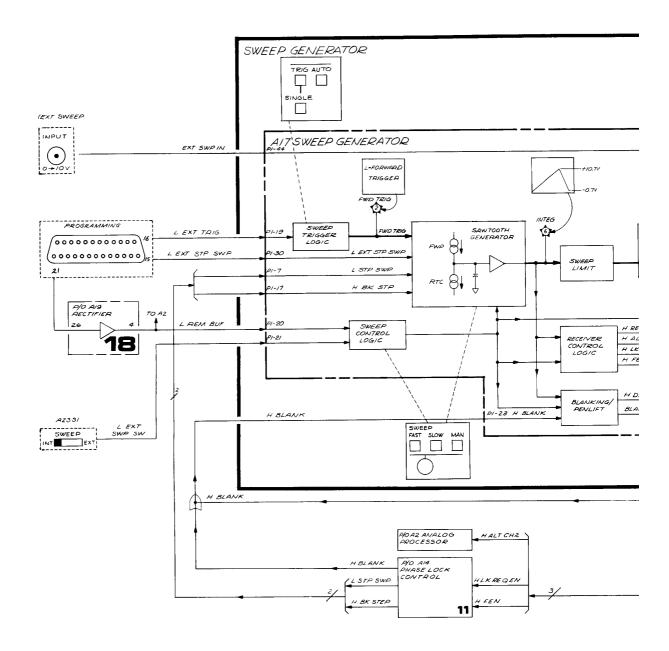
Sweep Width Inaccuracy (A1/A2). If inaccuracy is in START or CENTER sweep mode, but not in FULL 4-1300 sweep mode, check front-panel SWEEP WIDTH MHz switch. Also check that SWEEP WIDTH MHz Vernier is in CAL position (full clockwise). If all sweep widths are inaccurate by the same percentage, suspect Sweep Width Control circuit on A1/A2 Front Panel. If only one sweep width is inaccurate, suspect front-panel SWEEP WIDTH MHz switch. Refer to Service Sheet 6.

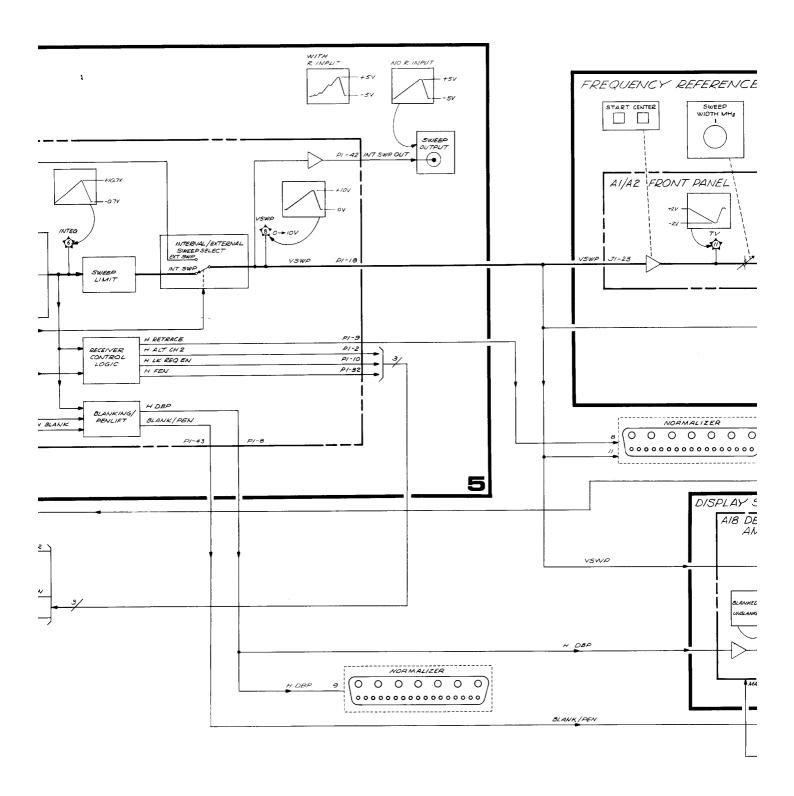
Non-linear Frequency Sweep (A15). 50 MHz markers not evenly spaced over a FULL 4-1300 sweep. Non-linearity may also cause phase lock problems; such as, latch up of back step, noisy trace, blanked display, etc.

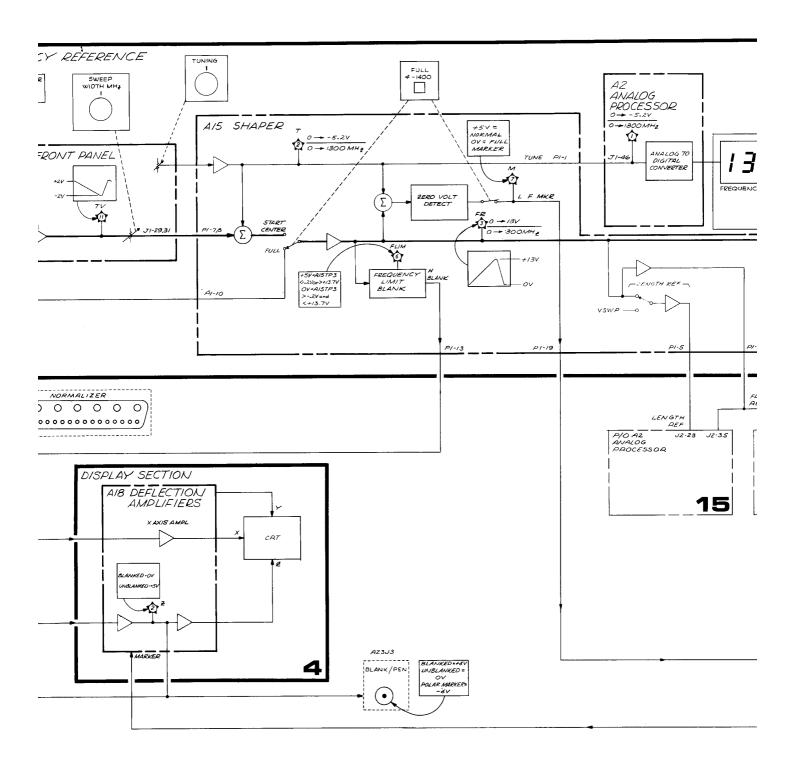
 Check A15 Shaper TEST/NORM switch is in NORM position.

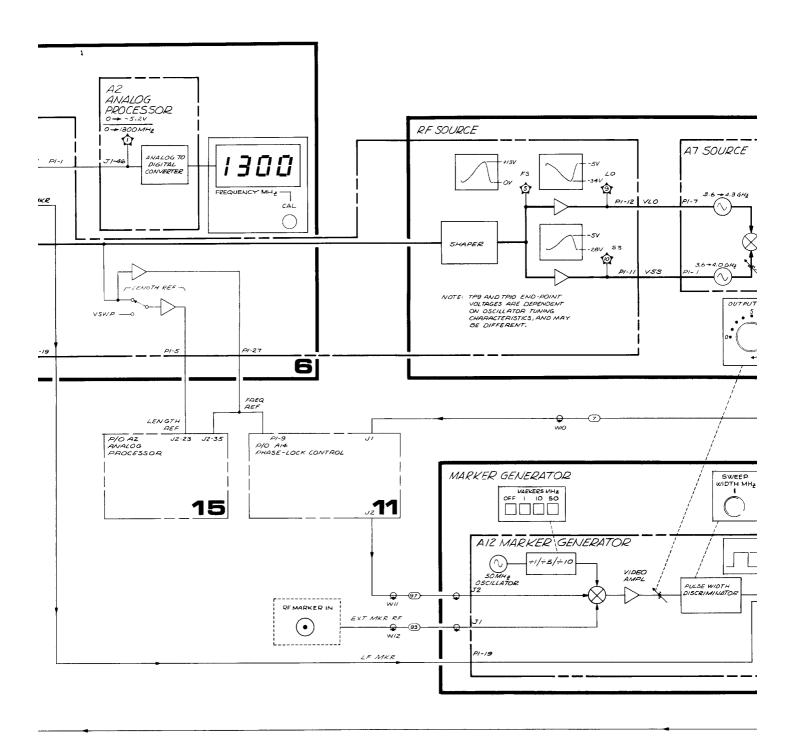
- 2. Check resistor module A15A1 is installed correctly. If module is installed backwards, the CRT display may be partially blanked (See Service Sheet 7).
- 3. Refer to Service Sheet 7.

No Full Marker (A15). If harmonic markers are operational and no full marker is displayed, check for a low full marker pulse at A15TP7. If marker pulse is present the trouble is probably on the Marker Generator.

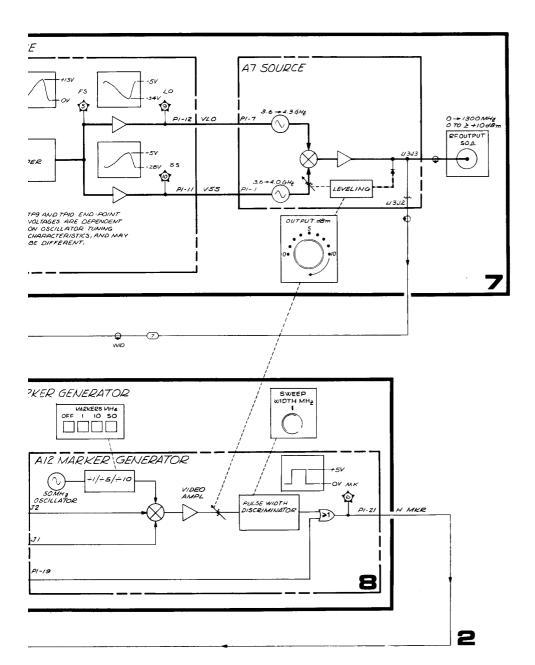

FREQUENCY MHz Display A2/A22). If the full marker is operational, the TUNE voltage from the A15 Shaper is probably correct. The LED display and driver circuits can be checked by grounding A2TP3 and checking for a display of 1888.


RF OUTPUT Power (A7). RF OUTPUT power is low or not present.


- 1. If 8754A serial prefix is 1908A or below, check for cracked or broken diode next to A7U3J3 (semi-rigid coax connection for RF OUTPUT).
- Check W1 (RF OUTPUT) and A7W1 cable connections.
- 3. For instruments with serial number 1825A-00175 and below, check A7 Source mounting bracket is not shorting to A20 Motherboard or excessively bent mounting tabs are causing A7 to not properly mate with the Motherboard connector.
- 4. Disconnect A7W1 and check power at A7U2J1. If power is > -20 dBm, check ALC circuit and Amplifier Detector microcircuit on Service Sheet 7. If power is < -20 dBm, check RF Source microcircuit on Service Sheet 7.


No Harmonic Markers (A12). If full marker is functioning and 8754A is otherwise functioning correctly, check cable connections of W10 (violet) and W11 (white/violet). If cable connections are correct, trouble is probably in the Marker Generator (Service Sheet 12). If phase lock problems at frequencies less than 60 MHz are also occuring, trouble is probably caused by low RF power (<-30 dBm) into A12.

1



NOTES:

I FOR WAVEFORMS SHOWN, SET FRONT PAWEL CONTROLS AS POLLOWS: TUNING, SOOMHE SWEEP MODE: FULL +-1300 SWEEP: AUTO, FAST SWEEP WIDTH MHZ: IK SWEEP WIDTH MHZ: IK SWEEP WIDTH MHZ VERNIER: CAL R INPUT CONNECTOR: NO RE

1

Figure 8-6. RF Source Section Block Diagram 8-27/8-28

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS

ASSEMBLY	SERVICE SHEET	DESCRIPTION
1	5	SWEEP pushbuttons
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch
	7	OUTPUT dBm control
	8	
44.5		MARKERS MHz pushbuttons
A1 Front Panel	11	UNLOCKED indicator
	12	Absolute R measurement select
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER, and VIDEO FILTER
	16	HORIZONTAL POSN and GAIN controls
	19	All front panel controls
	6	Analog-to-digital converter for FREQUENCY MHz display.
A2 Analog Processor	15	Analog processor, switch control logic, and \pm 6V power supplies
	16	V RAMP amplifier
A3 B Sampler	9	RF to IF down-conversion
A4 A Sampler	9	RF to IF down-conversion
A5 R Sampler	9	RF to IF down-conversion
AC VTO and IF C 1991	4-	V. 1
A6 VTO and IF Switch	10	Voltage Tuned Oscillator
	12	IF Switch
A7 Source	7	RF Source
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector
A9 Phase Detector	14	Phase Detector
A10 Polar Converter	14	Polar Converter
A11 R Detector	13	R INPUT, magnitude detector
A12 Marker Generator	8	Markers
A13 Phase Lock	11	Phase Lock
A14 Phase Lock Control	11	Phase Lock loop control
A15 Shaper	6	Sweep width, tuning, frequency reference, and frequency display.
Marie Control	7	Shaping and RF Source drive.
A16 DC Regulator	20	Low Voltage Power Supplies
A17 Sweep Generator	5	Sweep Generator
A18 Deflection Amplifiers	16	Deflection Amplifiers
A19 Rectifier	18	External Interface
	20	Low Voltage Power Supplies
A20 Motherboard	21	Motherboard wiring list
A21 High Voltage Power Supply	17	CRT bias and blanking control
A22 Frequency MHz Display	6	Frequency display
A23 Rear Panel	18	External Interface and Rear Panel (A23)

SERVICE SHEET 3

RECEIVER SECTION BLOCK DIAGRAM

The Receiver provides dc voltages to the Display section which are proportional to the absolute magnitudes of, and phase difference between, the three RF inputs: A INPUT, B INPUT, and R INPUT.

The RF inputs are first down-converted to three 1 MHz IF signals, while maintaining their magnitude and phase relationships. Samplers are used to mix the A, B, and R inputs with three phase-coherent pulse outputs from the Voltage-Tuned Oscillator, producing three IF outputs. An automatic phase lock system tunes the Voltage-Tuned Oscillator to maintain a 1 MHz IF at the output of the R Sampler.

The IF outputs are processed by the A,B and R Magnitude Detectors to provide dc levels proportional to power level in dB. The phase difference between the IF signals is detected, and processed to provide a rectangular as well as polar display.

Voltage-Tuned Oscillator (Service Sheet 10)

This circuitry, which is part of A6 VTO and IF Switch, provides three phase-coherent pulse outputs that drive the A, B, and R input samplers. The pulse repetition rate, or VTO frequency, is proportional to the tuning voltage input from the Phase Lock (A13) by 3 MHz/volt; that is, a 0 to +10V tuning voltage gives a 0 to 30 MHz frequency range. The VTO is normally tuned between 5 and 30 MHz.

The oscillator is a transistor multivibrator type which is tuned by a variable current source. It provides an ECL-compatable output signal which is limited and level-shifted to drive the pulse-generating circuitry and a TEST output.

The pulse-generating circuitry consists of a steprecovery diode which is driven by two differential amplifiers connected in parallel. A pulse of approximately 0.3 nanoseconds duration is created at the VTO repetition rate; this pulse is processed through three diode-isolation networks to provide three pulsed outputs approximately 6V in amplitude.

Note that the pulsed outputs are nominally equal, and can be interchanged for servicing; but their individual characteristics affect sampler alignment and electrical length (phase slope) margin.

Samplers (Service Sheet 9)

The Samplers act as harmonic mixers to downconvert their respective inputs (A3: B, A4: A, A5: R) to a low-frequency IF. They are electrically identical and may be interchanged for servicing, although realignment will be necessary due to Pulse input characteristics, IF Switch differences, etc.

A sampler receives an RF input, which is applied to a diode gate that is switched on and off by a pulse from the A6 VTO. The resultant IF output contains frequencies at the sum and difference of the RF frequency and every harmonic of the pulse repetition rate (VTO frequency).

The sampling process has an inherent low-pass characteristic; the main IF output frequency is the difference between the RF frequency and the closest multiple of the VTO frequency. For example, if the RF frequency is 99 MHz and the VTO is tuned to 10 MHz, then the tenth harmonic (100 MHz) mixes with the RF to produce a 1 MHz output signal.

Note that as the VTO changes frequency, the sampler output frequency changes in proportion to the harmonic number. For example, if the VTO frequency changes 1 kHz, then the tenth harmonic will change 10 kHz, resulting in a 10 kHz change in IF output frequency.

Phase Lock Loop (Service Sheet 11)

The Phase Lock Loop monitors the output of the R INPUT sampler and adjusts the frequency of the VTO to maintain a constant 1 MHz IF. The VTO is "locked" so that one of its harmonics is 1 MHz higher than the RF input frequency.

A13 contains the input filtering and limiting for the R sampler signal, a Frequency/Phase Detector which compares the limited signal to a 1 MHz reference, and two series integrators which drive the VTO. A14 contains a discriminator used to sense RF Source frequency, and the digital logic used to control the A13 analog circuitry, A17 Sweep Generator, and the CRT blanking.

In order to properly phase lock the VTO, A14 sends two signals to A13, which define three sequential operating modes: Pretune, Acquire, and Locked.

Pretune: Pretune is selected when the H SET VTO line is high (sweep stopped, display blanked). In this mode, the VTO tuning voltage is fed back to the input of the First Integrator and compared with a Pretune voltage. This feedback loop drives the VTO to approximately 8 MHz, or the RF frequency divided by 50, whichever is greater.

Acquire. Selected when H SET VTO line is low and H ACQ line is high (sweep stopped, display blanked). In this mode, the VTO is tuned away from its Pretune frequency until the R Sampler IF output is 1 MHz. The R IF signal is amplified and filtered to a 13 MHz bandwidth; the Frequency/Phase Detector compares this signal to a 1 MHz reference and sends an error voltage into the integrators. The integrators then tune the VTO away from the pretuned frequency until one of the VTO harmonics is 1 MHz higher than the R input RF frequency. Note that this mode is selected when A14 Phase Lock Control board is removed.

In general, the loop will lock to the closest harmonic that is not more than 1 MHz lower than the RF frequency. For example, say that the VTO is pretuned to 8 MHz, and the RF frequency is 90 MHz. The eleventh harmonic (at 88 MHz) is 2 MHz lower than the RF, while the twelfth harmonic (at 96 MHz) is 6 MHz higher than the RF; hence the loop tunes the twelfth harmonic of the VTO to be 1 MHz higher than the RF. Thus the VTO is tuned from its 8 MHz pretune frequency to a new frequency:

$$F_{VTO} = (F_{RF} + 1 \text{ MHz})/\text{Harmonic Number}$$

= $(90 + 1)/12 = 7.583 \text{ MHz}$

Due to the characteristic of the Frequency/Phase Detector, the loop will not lock on the opposite side-band, i.e. with the VTO harmonic lower than the RF.

Locked. Selected when H SET VTO line is low and H ACQ line is low. In this mode, the Input filter cutoff frequency is switched to 2.8 MHz to eliminate display "birdies"; an additional integrator is switched in to improve performance, and the RF sweep is allowed to continue.

A level detector on A13 senses when the R INPUT is less than -40 dBm, and lights a front-panel LED, telling the operator to INCREASE R LEVEL. When RF is applied, the light goes off, and the locking sequence (Pretune, Acquire, Locked) is initiated.

The locking sequence is also initiated when:

- The RF sweep starts; trace at left edge of CRT.
- 2. The RF sweeps through 3 MHz.
- The RF has been sweeping and VTO reaches 30 MHz.
- 4. Commanded by rear-panel H RELOCK or L RELOCK input.

An example of Phase Lock Loop operation is as follows: (For this example, the RF Source is set to sweep from 5 MHz to 105 MHz, and this signal is fed into the R input.) At the start of the sweep, the VTO is pretuned and the loop allowed to acquire; the VTO will lock at 6 MHz, on its first harmonic. When the RF sweep continues, the loop constantly adjusts the VTO frequency, making it "track" the RF signal, until the RF frequency reaches 29 MHz and the VTO frequency reaches 30 MHz.

At this point, the sweep is stopped, the display is blanked, and the VTO is pretuned to 8 MHz. Then the loop acquires, and the VTO locks on the closest harmonic that is no more than 1 MHz lower than the RF frequency. The third harmonic (24 MHz) is 5 MHz lower than the RF; the fourth harmonic (32 MHz) is 3 MHz high; hence, the loop adjusts the fourth harmonic of the VTO to 1 MHz higher than the RF frequency (29 MHz). Thus, the VTO frequency is now 7.50 MHz.

The sweep is again allowed to continue until the RF frequency equals 105 MHz, the end of the sweep. The sweep then retraces, and the cycle repeats.

During the Pretune and Acquire modes, the sweep is stopped and the display is blanked. In addition, for frequencies greater than 39 MHz, the sweep ramp (VSWP) is back-stepped approximately 4 percent during the pretune mode. When the sweep resumes during the locked mode, the CRT remains blanked until the sweep voltage reaches the old value. This improves the display appearance at the lock point.

The open-loop gain-bandwidth product, and hence the loop stability, depends on which VTO harmonic the loop locks. To compensate for this, an attenuator is inserted between the two integrators to keep loop bandwidth at 80 to 120 kHz for optimum speed versus stability.

Ideally, this attenuator is proportional to harmonic number, which is $(F_{RF}+1)/F_{VTO}$. Actually, since the VTO frequency is pretuned to a constant value, the loop attenuator need only be controlled by the RF frequency. An Analog-to-Digital Converter (ADC) on A14 senses both the actual RF frequency (RF<100 MHz) and the FREQ REF voltage (RF>100 MHz). It outputs a three bit word to a switched resistor network on A13 which selects one of eight attenuator values.

A,B Magnitude Detector (Service Sheet 12)

The A,B Magnitude Detector (A8) produces a do voltage which is logarithmically proportional to the magnitude of the IF signal from the A Sampler (A4) or the B Sampler (A3). This output voltage has a scale factor of -25 mV/dB and covers an 80 dB dynamic range. An IF switch (located on A6) selects the A or B input.

The IF switch consists of two diode gates which are switched off/on by a TTL logic line from the A19 Rectifier. This logic line is controlled either by the front panel (8754A in local) or by a remote input (8754A in remote) from the rear-panel PRO-GRAMMING connector.

On A8, the IF signal is first filtered by a 2-pole 1 MHz bandpass filter with 20 kHz bandwidth, so that the detectors will respond only to the 1 MHz component of the Sampler's IF output.

The filtered IF signal is then rectified to produce a dc current proportioal to the magnitude of the IF signal. This circuit contains an amplifier and two diodes connected in a negative-feedback loop, with added compensation to improve accuracy at low levels.

The dc current is then applied to a transistor logging amplifier to produce a voltage that, after scaling, has a scale factor of -25 mV/dB. This circuit employs negative feedback around a bipolar transistor whose collector current varies exponentially with emitter-base voltage.

A switch located on A8 selects either the A,B MAG voltage or the corresponding R MAG voltage from A11 for processing by the Analog Processor (A2).

R Magnitude Detector (Service Sheet 13)

The R Magnitude Detector (A11) produces a dc voltage which is logarithmically proportional to the magnitude of the R IF signal from the R Sampler (A5) by -25 mV/dB. This assembly is electrically identical with the A8 A,B Magnitude Detector and may be interchanged for servicing; the R IF signal only requires a 40 dB dynamic range.

The detector first filters the R IF signal to remove all but the desired 1 MHz component; it is then rectified to obtain a dc current which is proportional to the IF level. The logarithm of this current is then scaled to produce a -25 mV/dB dc output voltage.

A switch located on A11 selects either a magnitude ratio signal or a phase signal to provide the rearpanel MAG/PHASE output.

Phase and Polar Detectors (Service Sheet 14)

The Phase Detector (A9) and Polar Converter (A10) assemblies receive the filtered IF signals from the A8 and A11 Magnitude Detectors. They provide a dc voltage (RECT PHASE) corresponding to the phase difference between the R and A,B IF signals, and dc voltages corresponding to the X and Y components of a polar display.

The filtered R IF signal is limited to provide an ECL-compatible square wave over its 40 dB dynamic range. This square wave is then phase shifted by an amount proportional to a dc phase offset voltage from A2, by 7.5 mV/degree. This dc voltage is controlled by the front-panel Phase Reference and Electrical Length controls, and is discussed further in the Display Section (Service Sheet 4).

The filtered A,B IF signal is likewise limited to provide an ECL compatible square wave over its 80 dB dynamic range. The phase of this signal is compared with that of the Phase-shifted R IF signal to generate a dc voltage proportional to their phase difference, by 10 mV/degree over ±180 degrees.

A polar display is a vector representation of magnitude ratio and phase difference. A point on the CRT display is considered a vector, drawn from the origin (center) whose radius is proportional to magnitude, and whose angle is proportional to phase.

The Antilog Amplifier generates a voltage linearly proportional to magnitude ratio, by exponentiating the log signal from the A2 Analog Processor. This voltage drives a voltage-variable attenuator which modulates the peak-to-peak amplitude of the limited A,B IF square wave. This square wave is then filtered to provide a sinusoid

which is phase-coherent with the A,B IF signal, and whose peak-to-peak amplitude is determined by the magnitude ratio of A,B with respect to R.

This sinusoid is applied to one input of two analog multipliers, used to generate a polar display. The other inputs are driven from the Phase-shifted R IF signals.

TROUBLESHOOTING HINTS

The following Troubleshooting Hints assume that ac line power is applied to the 8754A and all power supplies are operational. These hints are provided as a troubleshooting aid in locating a problem. Several symptoms are listed with their most probable causes. For these Troubleshooting Hints, it is suggested that the instrument be set up as shown in Figure 8-4.

NOTE

Check that no cables are connected to rear-panel connectors.

Receiver Phase Lock. A phase lock problem can appear on the CRT display in different forms. The trace could be totally blanked or the sweep stopped (partial sweep or dot on CRT). One or more segments of the trace (i.e. between lock points) could be missing, noisy, or intermittent. The trace could have excessive discontinuities or transients at the lock points.

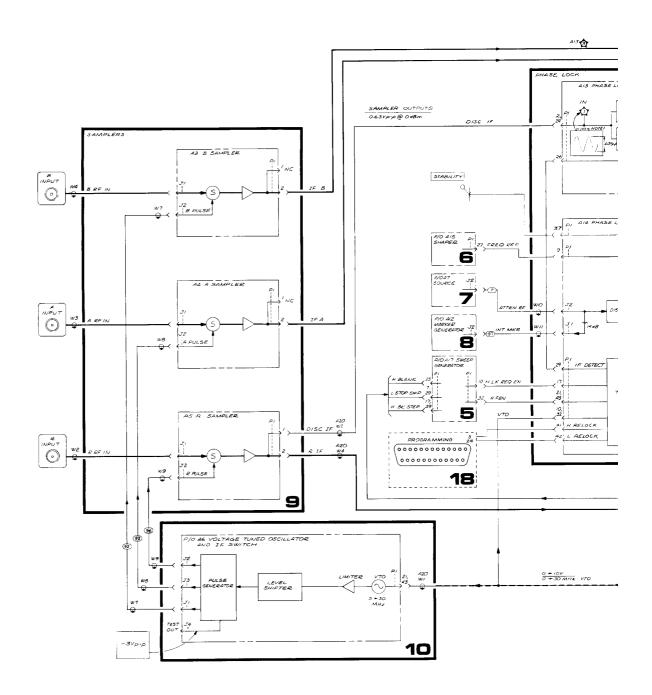
- 1. If display is blanked, monitor rear-panel SWEEP OUT. Check for stop-sweeps and back steps at phase lock acquisition points. If the sweep ramp is normal, the trouble is probably further on in the Receiver or Display sections.
- 2. If sweep is locked up, disconnect RF power at the R INPUT and check if the sweep ramp at rear-panel SWEEP OUT returns. A narrow-band low power point in the R channel input power level may cause multiple back-steps (latch up of sweep), depending on frequency, sweep rate, and depth of power hole. With no R INPUT, the front-panel UNLOCKED indicator should be on; if not, check Peak Detector on A13 or the Reference Channel Power Detector on A14.
- 3. If a trace segment is missing (dropping into the noise level), the phase lock loop gain is not correct. This can be caused by an excessively non-linear RF frequency (see Service Sheet 2), A14 not pretuning VTO or controlling loop gain attenuator on A13, or the loop gain attenuator could be defective.

4. Excessive display discontinuities or transients that occur at the phase lock points are usually caused by the A14 Phase Lock Control. Refer to Service Sheet 11 and check timing of acquisition sequence. Also check operation of L HOLD, H BLANK, L STP SWP, and H BK STEP functions.

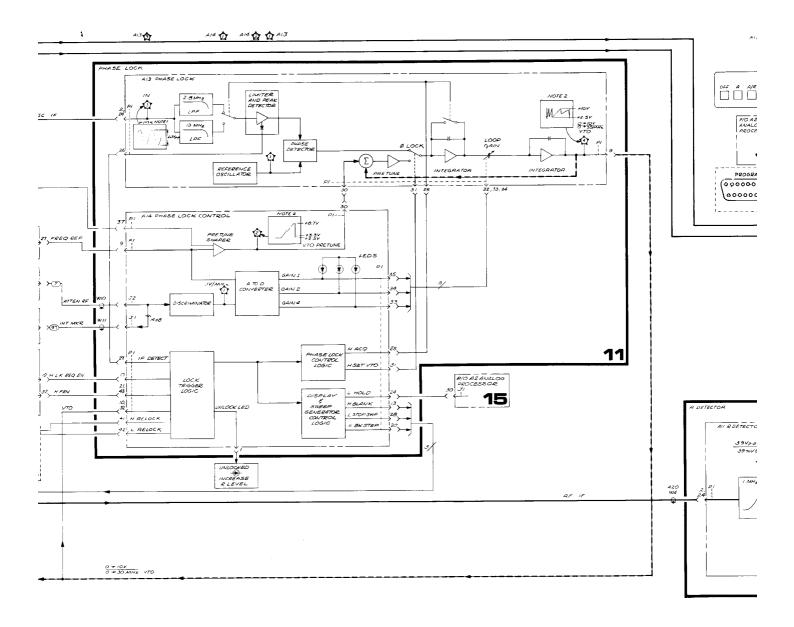
- 5. If no phase lock can be achieved, basic operation of A13 Phase Lock can be checked by removing A14 Phase Lock Control and checking if the instrument will phase lock at low frequencies (<100 Mz) and slow sweep speeds while displaying R. If any trace segment will lock, most of A13 is functional.
- Basic operation of the R Sampler, VTO, IF detection and display sections can be checked by removing both A13 and A14 board assemblies. Display R at 10 dB/DIV and a slow sweep rate. A series of columns or spikes should be displayed on the CRT. These spikes are generated each time a harmonic of the VTO (which is tuned to about 12 MHz with A13 removed) is mixed with the RF to produce a ± 1 MHz IF mixing product. The amplitude of the spikes should correspond to the power level of the RF input. The A and B samplers, A,B Detector, and IF switch can be checked in a similar manner if the RF is connected to the A or B inputs.

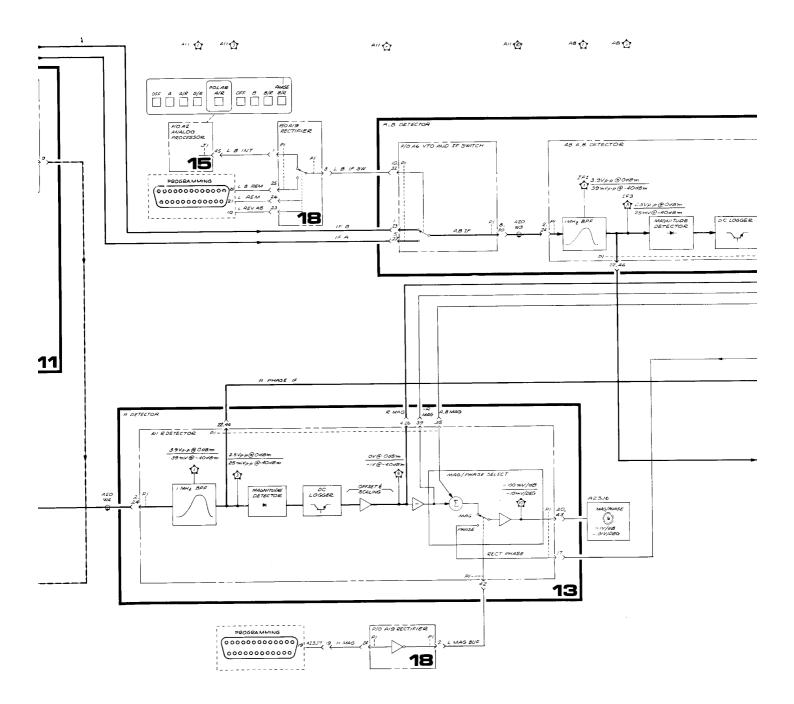
A or B INPUT Display Inaccurate. Indication is the R input is properly displayed, but the A and/or B inputs are missing or incorrect. If either the A or B display is normal, the trouble is before the A8 A,B Detector.

- 1. VTO outputs are interchangeable; check if problem follows a particular output. Return cables to original connections or readjustment is necessary. The long pulse cable (white/blue) must be connected between A6J2 and A5J2 or electrical length problems may result.
- 2. Samplers can be interchanged. Check if problem follows Sampler. Return Samplers to original position or readjustment is necessary.

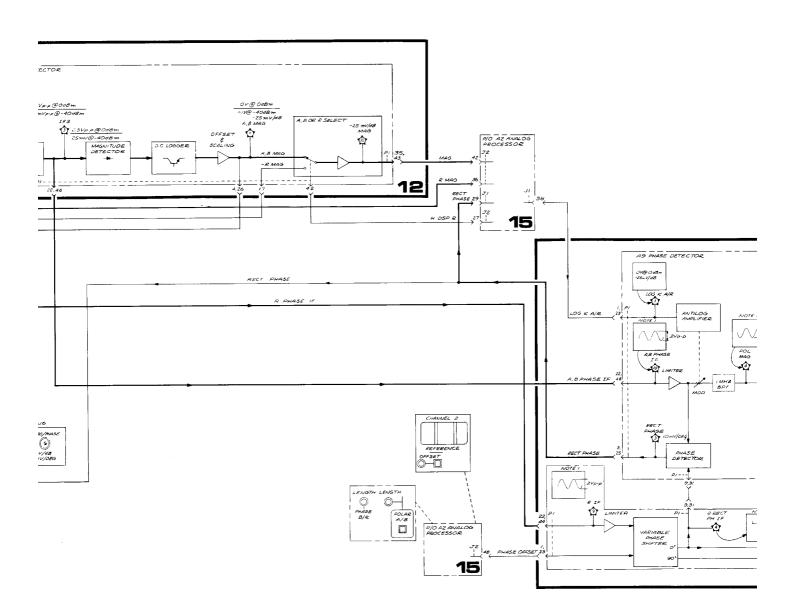

Magnitude Detectors (A8 or A11). If problem occurs for A and B displays, trouble is probably in A8. If trouble is in R display and ratio displays, the trouble is probably in A11. These boards are interchangeable for troubleshooting, but should be returned to their original position after servicing or readjustment is necessary.

POLAR A/R Display. Check that trace can be centered with POLAR CENTER controls when POLAR A/R is selected. If not, check LOG K A/R input to A9. Ensure POLAR CENTER switch is off (out) before proceeding. Adjust POLAR A/R LENGTH control for a dot as the trace display. With equal magnitude A and R inputs, the trace should be near the outer polar circle.


- 1. Check that the CHANNEL 2
 REFERENCE lever switch provides a
 calibrated phase offset. If not, the trouble is probably in the Variable Phase
 Shifter circuit on A10 Polar Converter.
- 2. Check that a positive offset with CHANNEL 1 REFERENCE lever switch offsets trace towards center of display. If not, check LOG K A/R input to A9 Phase Detector.


PHASE B/R Display. If Polar A/R is operational, check Rectangular Phase Detector circuit on A9 by inputting a phase offset with the CHANNEL 2 REFERENCE lever switch and noting offset on the CRT display.

1


.

AB 1

49 **企**企企 A/O 企

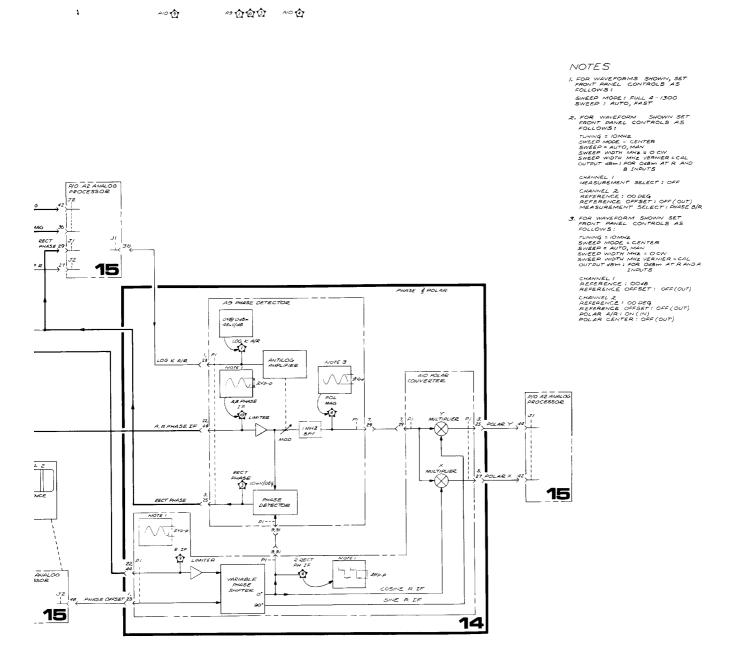


Figure 8-7. Receiver Section Block Diagram 8-35/8-36

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS

ASSEMBLY	SERVICE SHEET	DESCRIPTION
1		
A1 Front Panel	5	SWEEP pushbuttons
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch
	7	OUTPUT dBm control
	8	MARKERS MHz pushbuttons
	11	UNLOCKED indicator
	12	Absolute R measurement select
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER, and VIDEO FILTER
	16	HORIZONTAL POSN and GAIN controls
	19	All front panel controls
A2 Analog Processor	6	Analog-to-digital converter for FREQUENCY MHz display.
	15	Analog processor, switch control logic, and ±6 V power supplies
	16	V RAMP amplifier
A3 B Sampler	9	RF to IF down-conversion
A4 A Sampler	9	RF to IF down-conversion
A5 R Sampler	9	RF to IF down-conversion
ACVTO - JUES :- 1	10	W. Inc. of the Control of the Contro
A6 VTO and IF Switch	10	Voltage Tuned Oscillator
	12	IF Switch
A7 Source	7	RF Source
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector
A9 Phase Detector	14	Phase Detector
A10 Polar Converter	14	Polar Converter
A11 R Detector	13	R INPUT, magnitude detector
A12 Marker Generator	8	Markers
A13 Phase Lock	11	Phase Lock
A14 Phase Lock Control	11	Phase Lock loop control
A15 Shaper	6	Sweep width, tuning, frequency reference, and frequency display.
., .	7	Shaping and RF Source drive.
A16 DC Regulator	20	Low Voltage Power Supplies
A17 Sweep Generator	5	Sweep Generator
A18 Deflection Amplifiers	16	Deflection Amplifiers
A19 Rectifier	10	Everyol Interfere
	18	External Interface
	20	Low Voltage Power Supplies
A20 Motherboard	21	Motherboard wiring list
A21 High Voltage Power Supply	17	CRT bias and blanking control
A22 Frequency MHz Display	6	Frequency display
A23 Rear Panel	18	External Interface and Rear Panel (A23)

SERVICE SHEET 4

1

DISPLAY SECTION BLOCK DIAGRAM

The Display processes the dc voltages from the Receiver, as well as the Sweep, Marker, and Blanking signals from the Source, to provide a CRT display.

Analog Processor (Service Sheet 15)

For rectangular measurements, the Analog Processor (A1 and A2) produces two dc voltages proportional to the CRT trace vertical deflection for Channels 1 and 2 (300 mV/division). The two channels are independent; each contains an input summing amplifier, a vertical position summing amplifier, and an output video filter.

Absolute magnitude is processed by comparing the dc voltage from the A,B Detector with a reference dc voltage determined by the Channel 1 or 2 REFERENCE lever switch; the difference is amplified by the selected scale factor in dB/division. The FREQ REF voltage from the Source is added to compensate for the 2 to 3 dB roll-off of sampler conversion loss at 1300 MHz.

Magnitude Ratio measurements are processed by subtracting the R Detector dc level from the A,B Detector dc level, and then comparing this with a reference dc voltage determined from the Channel 1 or 2 REFERENCE lever switch; the difference is amplified by the selected scale factor in dB/division.

Phase measurements are processed in Channel 2 only. The dc voltage from the Rectangular Phase Detector is amplified by the selected scale factor in degrees/division. The Phase Reference comparison is accomplished by generating a PHASE OFFSET dc voltage proportional to phase shift (7.5 mV/degree) and sending this voltage to A10 Polar Converter where it drives a voltage-variable Phase Shifter in the R IF signal line. The PHASE voltage includes the Channel 2 OFFSET REFERENCE lever switch setting, and a portion of the FREQ REF voltage (from A15 Shaper) attenuated by the front-panel LENGTH controls. Thus, the phase of the R IF signal is made to change proportional to RF frequency, which compensates for electrical length differences between the A, B, and R inputs.

In each channel the summing amplifier output is added to a vertical position level. When the corresponding POSITION switch is open, the CRT displays the vertical position about which the scale factor expansion takes place. An RC network provides video filtering; the series resistor may be momentarily opened by a control line from A14, which "holds" the charge on the filter capacitor. The resultant output, after scaling, is -300 mV/division for each channel.

For Polar measurements, the X and Y outputs from the multipliers on A10 are processed similarly to the Rectangular Summing Amplifier outputs, by adding a position level to each, and providing video filtering. The Y component is considered Channel 1, the X component is considered Channel 2.

Front-panel Measurement Select pushbutton status (OFF, A, B, A/R, POLAR A/R, etc.) is decoded by the Control Logic into digital lines which control the A6 IF Switch, A18 Deflection Amplifiers, and A8 A,B Detector (for displaying absolute R).

Deflection Amplifiers (Service Sheet 16)

The Deflection Amplifiers (A18) provide X and Y CRT deflection, and a Z axis signal to the High Voltage Power Supply.

Vertical deflection is either from the rear-panel NORMALIZER INTERCONNECT input (if L NORM = 0) or from the CH 1 and CH 2 FLT signals from the A2 Analog Processor. If both front-panel display channels are used, an Alternate Sweep switch causes CH 1 FLT to be displayed on one RF sweep and CH 2 FLT to be displayed on the next RF sweep. The vertical signal drives the CRT vertical deflection plates and the rear-panel VERT output connector.

Horizontal deflection is either from the rear-panel NORMALIZER INTERCONNECT input (if L NORM =0), or from the sweep ramp signal from A17 when rectangular measurements are made, or from CH 2 FLT from A2 Analog Processor when POLAR A/R is selected. The horizontal signal drives the CRT horizontal deflection plates and the rear-panel HORIZ output connector.

Z axis (blanking) is either from the rear-panel NORMALIZER INTERCONNECT input (if L NORM = 0), or from the H DBP control line, from A17 Sweep Generator. In Polar mode, a frequency marker is displayed as an intensified spot. The Z axis signal drives the A21 High Voltage Power Supply and a rear-panel Blanking connector.

High Voltage Power Supply (Service Sheet 17)

The High Voltage Power Supply receives the Z axis input from the A18 Deflection Amplifiers and provides all of the bias potentials for the Cathode Ray Tube (CRT).

A cathode potential of -2850 Vdc is produced by using a 60 kHz oscillator which drives a step-up transformer and a rectifier. A small portion of the rectified dc voltage is fed back and compared with the +20 Vdc supply; the error voltage is used to control the oscillator amplitude, regulating the supply.

The grid potential is approximately 50 to 100V more negative than the cathode, depending on the Z axis input and the front-panel INTENSITY control.

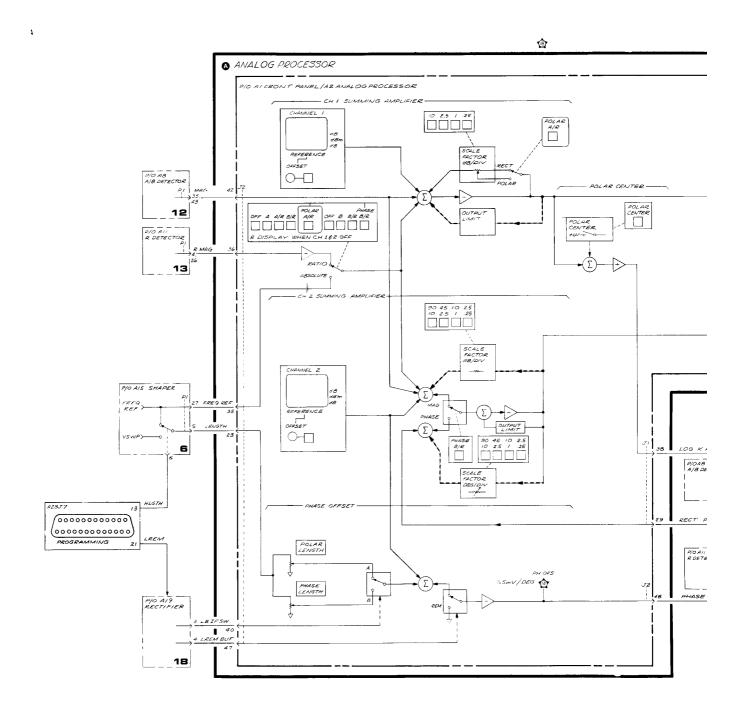
TROUBLESHOOTING HINTS

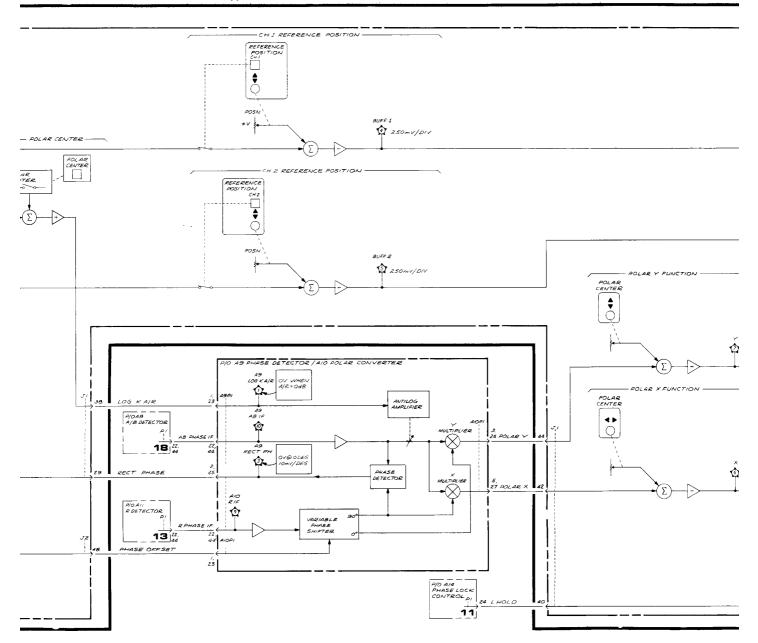
The following Troubleshooting Hints assume that ac line power is applied to the 8754A and all power supplies are operational. These hints are provided as a troubleshooting aid in locating a problem. Several symptoms are listed with their most probable causes. For these Troubleshooting Hints, it is suggested that the instrument be set up as shown in Figure 8-4.

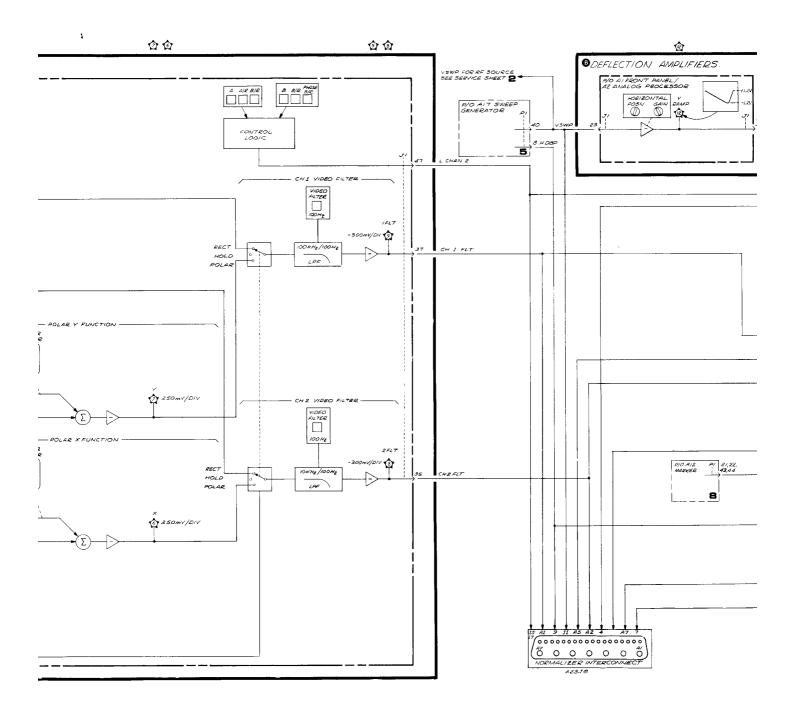
NOTE

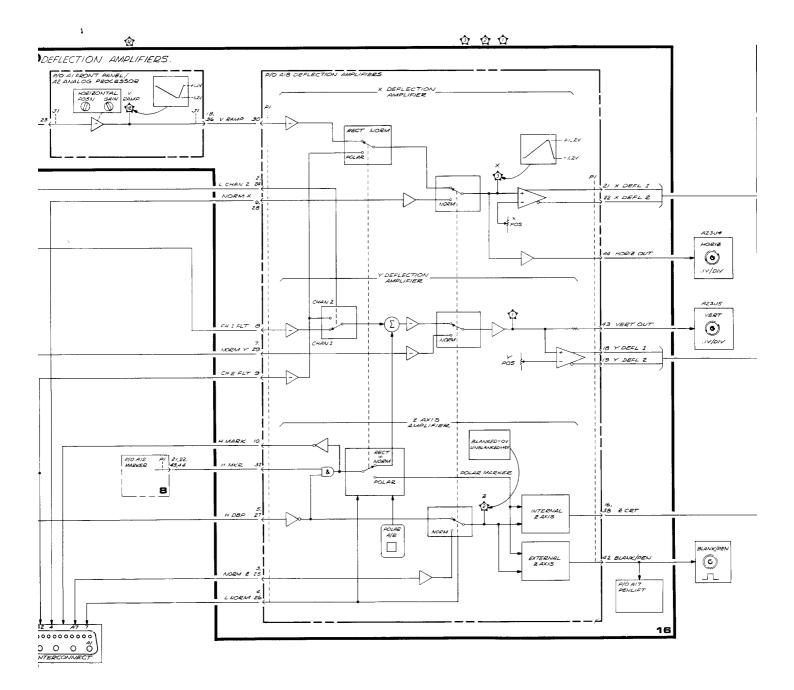
Check that no cables are connected to rear-panel connectors.

Horizontal Deflection (A18). CRT trace is not blanked, but does not sweep, check rear-panel IN-T/EXT SWEEP switch is in INT position. Manually sweep CRT trace and check voltage at rear-panel HORIZ connector and V RAMP at A2TP12.


Vertical Deflection (A18). If amplitude markers can be displayed, the Y Deflection Amplifier is operational. Press REFERENCE POSITION CH1 and CH2 buttons. Check voltages at A2TP8 and A2TP9 (CH 1 FLT and CH 2 FLT). If these voltages can not be offset with REFERENCE POSITION controls, check L HOLD input from A14 Phase Lock Control.


Z Axis Blanking (A18, A21). If any trace can be displayed and the FOCUS and INTENSITY controls are functioning, the A21 High Voltage Power Supply is operational. Check that the rear-panel INT/EXT SWEEP switch is in the INT position. The Z NORM input to A18 is used for blanking when a normalizer is connected. The H DBP input to A18 is controlled by three board assemblies and blanks the CRT trace for the following conditions:


A14: RF frequency <3 MHz and during phase lock acquisition.


A15: RF frequency > 1350 MHz or < -20 MHz.

A17: Sweep retrace blanking.

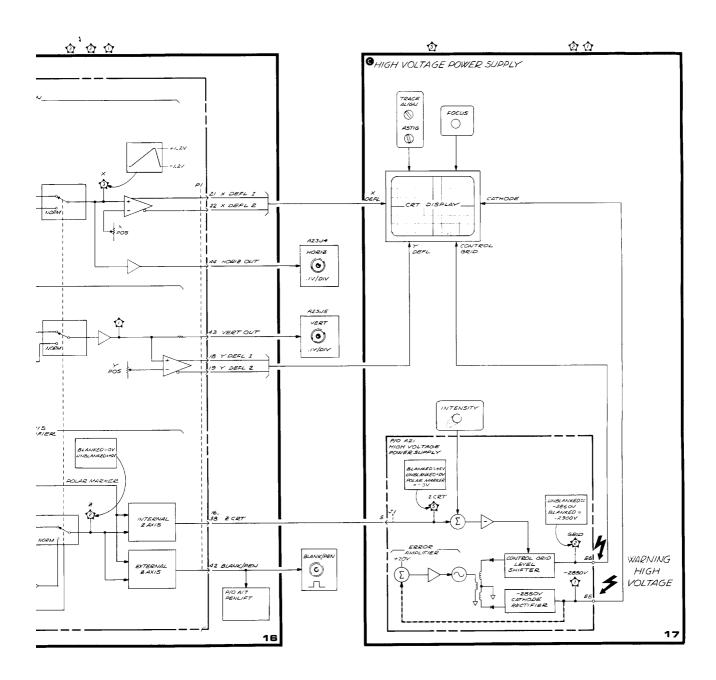


Figure 8-8. Display Section Block Diagram 8-41/8-42

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS

ASSEMBLY	SERVICE SHEET	DESCRIPTION
A1 Front Panel	5	SWEEP pushbuttons
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch
	7	
		OUTPUT dBm control
	8	MARKERS MHz pushbuttons
	11	UNLOCKED indicator
	12	Absolute R measurement select
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER, and VIDEO FILTER
	16	HORIZONTAL POSN and GAIN controls
	19	All front panel controls
A2 Analog Processor	6	Analog-to-digital converter for FREQUENCY MHz display.
	15	Analog processor, switch control logic, and ±6V power supplies
	16	V RAMP amplifier
A3 B Sampler	9	RF to IF down-conversion
A4 A Sampler	9	RF to IF down-conversion
A5 R Sampler	9	RF to IF down-conversion
A6 VTO and IF Switch	10	Voltage Tuned Oscillator
	12	IF Switch
A7 Source	7	RF Source
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector
A9 Phase Detector	14	Phase Detector
A10 Polar Converter	14	Polar Converter
A11 R Detector	13	R INPUT, magnitude detector
A12 Marker Generator	8	Markers
A13 Phase Lock	11	Phase Lock
A14 Phase Lock Control	11	Phase Lock loop control
A15 Shaper	6	Sweep width, tuning, frequency reference, and frequency display.
	7	Shaping and RF Source drive.
A16 DC Regulator	20	Low Voltage Power Supplies
A17 Sweep Generator	5	Sweep Generator
A18 Deflection Amplifiers	16	Deflection Amplifiers
A19 Rectifier	18	External Interface
	20	Low Voltage Power Supplies
A20 Motherboard	21	Motherboard wiring list
A21 High Voltage Power Supply	17	CRT bias and blanking control
A22 Frequency MHz Display	6	Frequency display
A23 Rear Panel	18	External Interface and Rear Panel (A23)

SERVICE SHEET 5

SWEEP GENERATOR (A17), CIRCUIT **DESCRIPTION**

The Sweep Generator (A17) has the following functions:

- To generate a linear ramp which is used to sweep the RF source and the X axis of the CRT display.
- To generate a blanking pulse, which is used to blank the CRT display during retrace and during the settling time of the RF and IF cir-
- To generate a penlift pulse, which is similar to the blanking pulse but also allows for the response time of a plotter or recorder.
- To synchronize operation of the RF Source and Receiver sections of the network analyzer.
- To provide for special operational modes, such as manual sweep, external sweep, and external trigger.

Sawtooth Generator Functions (C)

The output of the Sawtooth Generator is a sawtooth waveform that consists of a trace ramp (-0.7V to + 10.7V) and a retrace ramp (+10.7V)to -0.7V).

The trace ramp is clamped to produce a 0V to +10V VSWP ramp to the Phase Lock Control (A14, Service Sheet 11), to the Shaper (A15, Service Sheet 6), and to the Analog Processor (A2, Service Sheet 16). The VSWP voltage is level-shifted in the Output Buffer circuit to provide a -5V to +5V INT SWP OUT voltage to the rear panel.

The Sawtooth Generator circuit generates two retrace signals: L RET, to the Sweep Trigger Logic, Receiver Control Logic, and Blanking/Penlift circuits; and H RET (a logic high) to the Receiver Control Logic circuit.

The Sawtooth Generator has two inputs from the Sweep Trigger Logic circuit. H FWD TRIG REQ (forward trigger request) triggers a sweep, and L RET REQ (retrace request) initiates a retrace.

The sweep may be stopped by any one of the following signals:

- L EXT STP SWP (external stop sweep) from the rear panel.
- L STP SWP (stop sweep) from the Phase Lock Control (A14, Service Sheet 11).
- L SWP INH (sweep inhibit) from the Sweep Control Logic circuit.

Sweep Trigger Logic Functions (A)

The Sweep Trigger Logic circuit generates two functions:

- H FWD TRIG REQ (forward trigger request), which causes the Sawtooth Generator to start a sweep
- L RET REQ (retrace request), which causes the Sawtooth Generator to start an immediate retrace

The H FWD TRIG REQ function requires that one or more of the following conditions be met:

- The instrument is in automatic sweep (AUTO) mode.
- The instrument is in triggered sweep (TRIG) mode and is externally triggered.
- The instrument is in triggered sweep (TRIG) mode and the front-panel SINGLE pushbutton is pressed.

The L RET REQ function requires that all three of the following conditions be met:

- The instrument is in triggered sweep (TRIG)
- The front-panel SINGLE pushbutton is pressed.
- The L RET (retrace) line from the Sawtooth Generator is high (a retrace is not in progress).

Sweep Control Logic Functions (B)

The Sweep Control Logic circuit generates three i functions:

- L SWP INH (sweep inhibit), which inhibits the sawtooth and allows acquisition of the receiver phase lock.
- L EXT SWP SEL (external sweep select), which controls selection of either an external or an internal sweep.
- H PNLFTR (penlift request), which requests the recorder or plotter to penlift.

Receiver Control Logic Functions

The Receiver Control Logic circuit generates five functions:

- H RETRACE (retrace) to the External Interface (Service Sheet 18).
- H LK REQ EN (phase lock request enable) to the Phase Lock Control (A14, Service Sheet 11), where it enables a phase lock request, inhibits video hold, and initiates a phase lock request.
- H FEN (function enable) to the Phase Lock Control (A14, Service Sheet 11), where it enables a phase lock request and a back step.
- H ALT CH 2 (alternate Channel 2) to the Analog Processor (A2, Service Sheet 15), where it switches the display to Channel 2 when both channels are on.
- L DSP EN (display enable) to the Blanking/Penlift circuit.

Blanking/Penlift Functions (E)

The Blanking/Penlift circuit generates two functions:

- H DBP (display blanking pulse) to the Deflection Amplifiers (A18, Service Sheet 16), to blank the CRT display.
- H PNLFT (penlift) to the Penlift Driver circuit to provide a voltage to the penlift coil of a plotter or recorder.

Sweep Trigger Logic (A)

The Sweep Generator has two modes of operation, automatic and triggered, which are selected at the front panel by the mechanically interlocked pushbuttons AUTO and TRIG to provide inputs to the Sweep Trigger Logic circuit. This circuit also provides for single-sweep (SINGLE) triggering and for an external triggering signal (L EXT TRIG) from the rear panel through P1-19.

H FWD TRIG REQ, when high, allows a trace to be triggered at the completion of retrace. This line is high under any of the following conditions:

- AUTO mode is selected at the front panel (high level)TRIG mode is selected and L EXT TRIG line goes low (high pulses).
- TRIG mode is selected at the front panel and the SINGLE pushbutton is pressed (high pulses).

L RET REQ, when low, allows a retrace to be triggered when a trace is in progress. This line is low only when all of the following conditions are met:

- TRIG mode is selected at the front panel.
- The front-panel SINGLE pushbutton is pressed.
- The L RET line from the Sawtooth Generator circuit is high.

In AUTO sweep operation, the Trace and Retrace ramps are continuous. In triggered sweep operation, the Sawtooth Generator waits for a manual trigger (SINGLE) from the front panel or an external trigger (EXT TRIG) from the rear panel. Also in the triggered mode, if a trace is in progress, a pulse generated by pressing of the SINGLE pushbutton will initiate a retrace, after which the sawtooth generator will then wait for another trigger pulse.

All of the following conditions must be met to initiate a trace:

• The Sweep Trigger Logic circuit must provide either a high trigger level or a high trigger pulse to the Sawtooth Generator.

 The Sweep voltage must be more negative than -0.7V.

 The instrument must not be in either manual or external sweep mode.

When all of the above conditions are met, each of the three inputs to NAND gate U5B in the Sawtooth Generator will be at logic high. Note that U5B pin 4 will be low unless comparator U3A pulls that input high; that is, the sweep voltage goes more negative than -0.7V. The states of the other two inputs to U5B (pins 3 and 5) are determined by the Sweep Control Logic circuit.

AUTO Mode. When the AUTO pushbutton is

pressed, both inputs to U6D are high and the output is low. U5A pin 2 is low, the output is high, and U5B pin 3 in the Sawtooth Generator is high. At the same time, in the Sweep Control Logic circuit, the L REM BUF and L EXT SWP lines are high, placing a high at the output of U9A, while the L MAN SWP is also high, placing a high at the output of U9B and at U5B pin 5 in the Sawtooth Generator. When the sweep voltage goes more negative than -0.7V, the output of comparator U3A goes high. At this point, all three inputs to U5B are high, the output goes low, and the Trace-Retrace flip-flop U4B is reset (pin 13) to initiate a trace. The trace is in progress when the RTRC signal is low, as shown in Figure 8-9, the Sweep Generator timing diagram.

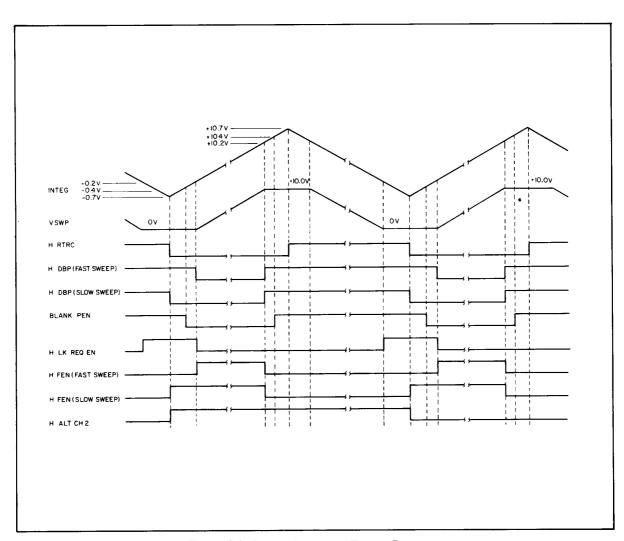


Figure 8-9. Sweep Generator Timing Diagram

TRIG Mode. When the TRIG pushbutton is pressed, the mechanically interlocked AUTO line is grounded, resulting in a high at U5A pin 2 and a low at U5B pin 3 in the Sawtooth Generator. The states of the other two inputs to U5B are as in AUTO mode; therefore, initiation of a trace depends on the states of the L EXT TRIG and L SNGL lines.

The H TRIG line is now high. If there is no external trigger, and if the SINGLE pushbutton is not pressed, all three inputs to U5A are high, U5B pin 3 is low, and no trace is initiated.

If an external trigger (L EXT TRIG) is received, U5A pin 1 goes low, placing a high on U5B pin 3. Since the sweep voltage went more negative than -0.7V at the end of the previous retrace, a new trace is initiated.

When the SINGLE pushbutton is pressed, a negative spike (caused by the discharge and recharge of C6) is coupled to U6B pin 5. The action of the one-shot multivibrator (consisting of the cross-connected two-input NAND gates U6A and U6B) debounces the SINGLE pushbutton and maintains the low input to U6B long enough (approximately $40~\mu s$) to establish a definite logic high at U6B pin 6 (see Figure 8-10). Both inputs to U8B are now high, so U8B pin 6 goes low, resulting in a high at U5A pin 12 and U5B pin 3 in the Sawtooth Generator. Since U5B pin 4 and 5 were already high, U5B pin 6 goes low to initiate a trace.

If the SINGLE pushbutton is pressed while a trace is in progress, a retrace is initiated as follows: When the Trace-Retrace flip-flop U4B was cleared (initiation of the trace in progress), U4B pin 8 was

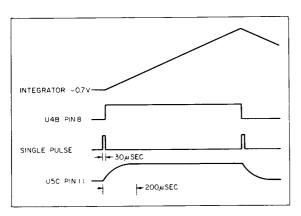


Figure 8-10. SINGLE Mode Timing Diagram

latched high. After 200 μ s, essentially the same constant of R34 and C8, U5C pin 11 goes high, and pin 9 remains high. However, pin 10 is low because the output of U6B remained high for only 40 μ s, the duration of the SINGLE pulse. When the SINGLE pushbutton is pressed again, U5C pin 10 goes high, a low is coupled through AND gate U9D to set the flip-flop, and U4B pin 9 goes high to initiate a retrace. The Sawtooth Generator is now set to initiate a new trace if the SINGLE pushbutton is pressed while a trace is in progress. Thus, traces and retraces are initiated by alternate SINGLE pulses.

Sweep Control Logic B

The Sweep Control Logic circuit generates three functions: L SWP INH, L EXT SWP SEL, and H PNLFTR. These functions are controlled by four input lines: L EXT SWP, L REM BUF, L MAN SWP, and L FAST SWP.

L SWP INH (sweep inhibit), when low, prevents the Sawtooth Generator from starting a sweep and forces H FEN (function enable) and H LK REQ EN (phase lock request enable), from the Receiver Control Logic circuit, to go high. This allows the Phase Lock (A13, Service Sheet 11) in the Receiver to acquire a lock when at least one of the following three control lines is low:

- L EXT SWP to U9A (rear panel INT SWEEP/EXT SWEEP in EXT SWEEP).
- L REM BUF to U9A (contact closure to ground at P1-20, placing the instrument in remote control). See External Interface, Service Sheet 18.
- L MAN SWP to U9B (manual sweep mode selected at the front panel).

L EXT SWP SEL (external sweep select), when low, causes the Internal/External Sweep Select circuit to disconnect the sweep from the Sawtooth Generator and to pass an external sweep to the output buffer. The L EXT SWP SEL line goes low when either the L EXT SWP line is low (contact closure to ground at P1-21) or the L REM BUF line is low (contact closure to ground at P1-20).

H PNLFTR (penlift request), when high, causes the Blanking/Penlift circuit to generate a penlift signal (H PNLFT) to the Penlift Driver circuit. The H PNLFTR line goes high (open) when any input line to the Sweep Control Logic circuit (L EXT SWP, L REM BUF, L MAN SWP, or L FAST SWP) goes low.

The Sweep Control Logic circuit consists of two AND gates and one NAND gate whose switching operations depend on front-panel controls and external signals.

When manual (MAN) mode is not selected and there are no external signals to the Sweep Control Logic circuit, all inputs to AND gates U9A and U9B are at logic high, U5B pin 5 in the Sawtooth Generator is high, and traces are initiated as described in Sweep Trigger Logic.

When MAN is selected, U9B pin 5 is pulled low, U5B pin 5 is low, and the trace is controlled by the front-panel SWEEP vernier A1R13A.

When the FAST pushbutton (which is mechanically interlocked with MAN) is pressed, NAND gate U10C pins 10 and 11 are low, U10C pin 8 is high, and pin 9 of OR gate U12C (in the Blanking/ Penlift circuit) is high, lifting the pen of the plotter or recorder, which will not respond to fast sweep operation. (Refer to the Blanking/Penlift circuit description.)

An external sweep may be provided from the rear panel or from a normalizer. Either L EXT SWP or L REM BUF will pull an input to U9A low, placing a low at U5B pin 3 and disabling the Sawtooth

Sawtooth Generator G

The Sawtooth Generator produces a sawtooth waveform with a linear change in amplitude with respect to time. The waveform, which may be monitored at TP5, consists of a positive-going ramp for sweep trace and a negative-going ramp for sweep retrace (see Figure 8-9). The trace portion of the sawtooth increases from -0.7V to + 10.7V at a rate determined by the front-panel SWEEP vernier and the selection of FAST or SLOW sweep. The retrace portion decreases from +10.7V to -0.7V at a fixed rate determined only by the selection of FAST or SLOW sweep. Comparators monitor the sawtooth signal and provide timing pulses for blanking and control signals that are used throughout the instrument.

AUTO Mode. A simplified schematic of the Sawtooth Generator operating in the AUTO sweep mode is shown in Figure 8-11. The sawtooth waveform is generated by the charging and discharging of the integrating capacitor C3 on the positive input to buffer U1. During trace, C3 is charged by the Trace Current Source; during retrace, C3 is discharged through the Retrace Current Source.

Trace Current Source. R3, CR7, and R4 form a voltage divider that sets the Q1 base voltage at +12.3V and keeps Q1 turned on. When a trace is initiated, the Trace-Retrace flip-flop U4B is reset by a low at pin 13, and the active high output, pin 9, goes low. Since both inputs to NAND gate U6C are normally high, the inputs to OR gate U2D are low and U2D pin 11 goes low, turning off Q3. Current is now available through CR3 and CR4 to charge integrating capacitor C3. As C3 charges, O1 conduction increases to maintain a constant voltage drop across R7 and A1R13B, providing a constant current to charge C3. The charge current is adjusted by the front-panel SWEEP vernier. The positive-going (trace) slope of the sawtooth waveform increases from -0.7V to +10.7V, at which point the output of comparator U11A goes low, setting the flip-flop U4B to initiate a retrace.

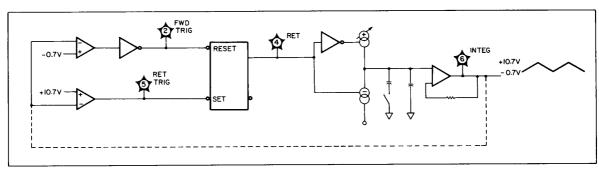


Figure 8-11. Sawtooth Generator, Simplified Schematic

Retrace Current Source. Transistor Q2 controls the switching of the Retrace Current Source. When a retrace trigger sets Trace-Retrace flip-flop U4B, the active high output (pin 9) goes high, turning on Q3 and shunting the Q1 current to ground. The logic high from U4B pin 9 is coupled through OR gate U2C to the emitter of Q2, biasing it into saturation. This pulls the base of Q4 to about +2V, turning the transistor on and providing a discharge path for the integrating capacitor C3. The discharge of C3 generates the negative-going slope of the sawtooth waveform. The signal decreases from +10.7V to -0.7V, at which point the output of comparator U3A goes high, resetting the flip-flop U4B to initiate a trace.

The Retrace Current Source is turned off when the active high output of the flip-flop, U4B pin 9, goes low. Q2 is biased off, and the base of Q4 is pulled to -10V through R10 to turn Q4 off.

Integrator Control. The switching of the Trace and Retrace Current Sources, and thus the charging and discharging of the integrating capacitor C3, is also controlled by the Stop Sweep (L STP SWP or L EXT STP SWP) and Back Step (H BK STEP) lines to the Sawtooth Generator.

If either L STP SWP or L EXT STP SWP goes low, flip-flop U4B is overridden and the Trace Current Source is inhibited to allow stabilization of the Receiver Phase Lock circuitry. The output of NAND gate U6C is normally low and the state of the active high output (pin 9) of the Trace-Retrace flip-flop U4B controls the Trace Current Source through OR gate U2D. If either input to U6C goes low, the high output is coupled through U2D to turn on Q3, shunting the Trace Current Source to ground and stopping the sweep.

The Retrace Current Source may be turned on by H BK STEP to remeasure a portion of the sweep when the Receiver has to change harmonic numbers. When the H BK STEP line goes high, Q2 and Q4 are turned on, and a retrace continues for the duration of the H BK STEP pulse.

The Stop Sweep and Back Step pulses occur simultaneously but have respective durations of 1.2 msec and approximately 70 μ s. Thus, integrating capacitor C3 starts to discharge and the retrace continues for 70 μ s, after which the Re-

trace Current Source is turned off. At the end of 1.2 msec, the Trace Current Source is again allowed to continue charging C3, and the trace is resumed.

Integrator/Buffer. The integrating capacitor C3 is connected to the positive input of buffer amplifier U1. When the Trace Current Source is switched on, the capacitor charges, and the input voltage to the buffer amplifier increases at a linear rate. When the Retrace Current Source is switched on, the capacitor discharges through the current source, and the input voltage to the buffer amplifier decreases at a linear rate. When the frontpanel SLOW pushbutton is pressed, capacitor A1C1 is connected in parallel with C3, increasing the charge and discharge times of C3 and slowing the sweep time by a factor of 100.

Sweep Limit **G**

The Sweep Limit circuit limits the -0.7V to +10.7V output of the Integrator/Buffer to 0V to +10V. (See the VSWP waveform in Figure 8-10.) This is accomplished with a resistive voltage divider and a transistor array connected as diodes.

Transistors U13B and U13C are wired as diodes. U13C is reverse-biased when the Integrator/Buffer goes more negative than -0.2V. The lower limit of 0V is then set by R32.

U13A is connected as two diodes in parallel to set the upper limit of the voltage range at +10V and to provide temperature compensation. HF potentiometer R24 adjusts the upper voltage limit to +10V.

Internal/External Sweep Select

The Internal/External Sweep Select circuit functions as a switch between internal and external sweeps. During normal (internal sweep) operation, comparator U11D biases Q9 on to couple the internal sweep to the Output Buffer. At the same time, the output of comparator U11C biases Q8 off. When the rear-panel INT-EXT SWEEP switch is grounded, Q9 is biased off, Q8 is biased on, and the internal sweep is inhibited while an external sweep from the rear panel may be coupled to the Output Buffer.

Output Buffer

Buffer U14 receives the 0V to +10V sweep voltage from the Sweep Limit circuit to provide the VSWP voltage. LF adjustment R20 sets the lower limit to VSWP to 0V. Operational amplifier U15 functions as a voltage level shifter to provide a -5V to +5V SWP OUT voltage.

The Receiver Control Logic circuit synchronizes operation of the RF Source and Receiver sections of the network analyzer by means of the following output signals:

- H RETRACE (retrace)
- H LK REQ EN (phase lock request enable)
- L DSP EN (display enable)
- H FEN (function enable)
- H ALT CH 2 (alternate Channel 2)

H RETRACE, when high, sends a retrace signal to the normalizer via P1-9 and P1-31. (See External Interface, Service Sheet 18.) The H RETRACE line is high when the Sawtooth Generator is in retrace.

H LK REQ EN, when high, sends a phase lock request enable signal to the Phase Lock Control (A14, Service Sheet 11). The line is high when the sawtooth voltage from the Sweep Generator is more negative than +0.2V or when an L SWP INH (sweep inhibit) signal is received from the Sweep Control Logic circuit.

L DSP EN, when low, allows a display (refer to Blanking/Penlift). The line is low when the sawtooth voltage from the Sawtooth Generator is more positive than -0.2V and less positive than +10.2V, and the Sawtooth Generator is in trace.

H FEN, when high, enables lock request and back step in the Phase Lock Control (A14, Service Sheet 11). The line is high when the L DSP EN line is low or when there is an L SWP INH (sweep inhibit) signal from the Sweep Control Logic circuit. H ALT CH 2, when high, causes Channel 2 information to be displayed. This line changes state on every sweep.

The timing of the signals is shown in Figure 8-10.

When the Trace/Retrace flip-flop U4B in the Sawtooth Generator receives a Retrace trigger, the low at U4B pin 8 is inverted by U8A and the H RETRACE line goes high.

H LK REQ EN sets the Phase Lock Control (A14, Service Sheet 11) for the start of a trace. When the retrace slope of the sawtooth voltage goes more negative than -0.2V (see Figure 8-9), the output of the comparator U3B goes low and U8D pin 11, the H LK REQ EN line, goes high. If L SWP INH (sweep inhibit) from the Sweep Control Logic circuit drives U8D pin 12 low, the H LK REQ EN line goes high.

The H FEN line is high when all inputs to NAND gate U10B are high; that is, when a retrace is not in progress and the trace slope of the sawtooth voltage is less negative than -0.2V but less positive than +10.2V. The H FEN line goes low if these conditions are not met or if one of the following signals is received from the Sweep Control Logic circuit: L MAN, L EXT SWP, or L REM BUF. Figure 8-9 shows the timing of the H FEN signal for both FAST and SLOW sweeps.

The active low output of Channel Select flip-flop U4A (pin 6) is fed back to pin 2, the data input, and the flip-flop is clocked by Retrace pulses from Trace/Retrace flip-flop U4B in the Sawtooth Generator. The H ALT CH 2 line changes states each time a clock pulse is received, causing the sweep to be displayed alternately on Channel 1 and Channel 2 (see Figure 8-9). An L MAN, L EXT SWP, or L REM BUF signal from the Sweep Control Logic circuit clears U4A, and the HALT CH 2 line is pulled low.

Blanking/Penlift (3)

The Blanking/Penlift circuit generates two functions: H DBP (display blanking pulse) and H PNLFT (penlift). H DBP blanks the CRT display, and H PNLFT causes the Penlift Driver circuit to generate a BLANK/PEN pulse, which may be used to blank an external CRT or to lift the pen of a plotter or recorder.

Display Blanking. (See Figure 8-12.) The CRT display is blanked whenever the H DBP line from the Blanking/Penlift circuit goes high. This occurs aunder one or more of the following conditions:

- No sweep inhibit signal is received from the Sweep Control Logic circuit (L SWP INH line is high) and no display enable signal is received from the Receiver Control Logic circuit (L DSP EN line is high)
- A backstep signal (H BK STEP) is received from Phase Lock Control (A14, Service Sheet 11).
- A source blank signal (H BLANK) is received from the Motherboard (A20, Service Sheet 21).
- The L SWP INH line, and therefore U9C pin 9, is normally high. During retrace, U9C pin 10 also goes high, coupling a logic high through U12B to the H DBP line, which goes to the Deflection Amplifiers (A18, Service Sheet 16).
- When the trace is backstepped, a high is coupled through U2A and U12B to the H DBP line.
- A high on the H BLANK line from the Motherboard is coupled through U2A and U12B to the H DBP line.

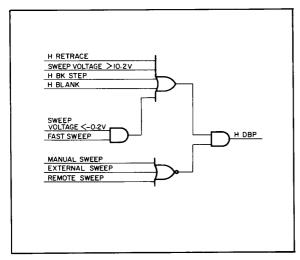


Figure 8-12. Display Blanking Pulse Logic

Penlift. (See the timing diagram, Figure 8-9.) The H PNLFT line to the Penlift Driver circuit is high under one or more of the following conditions, which are illustrated in Figure 8-13:

- The sawtooth voltage from the Sawtooth Generator is more negative than -0.4V
- The sawtooth voltage is more positive than +10.4V.
- A backstep signal (H BK STEP) is received from Phase Lock Control (A14, Service Sheet 11).
- A source blank signal (H BLANK) is received from the Motherboard (A20, Service Sheet 21).
- A retrace signal (L RET) is received from the Sawtooth Generator.
- A penlift request signal (H PNLFTR) is received from the Sweep Control Logic circuit

Penlift Driver **()**

When the H PNLFT line from the Blanking/Penlift circuit goes high, Q6 is turned on and Darlington pair Q7 and Q10 are turned off, deactivating the penlift relay in the plotter or recorder. When H PNLFT goes low, Q6 is turned off and Q7 and Q10 are turned on, grounding the penlift relay and causing the pen to set down.

The collector voltage of about +40V for the Darlington pair is supplied by the plotter or recorder. Diode CR6 turns off to protect the Darlington pair when voltage spikes are produced by the penlift coil of the plotter or recorder.

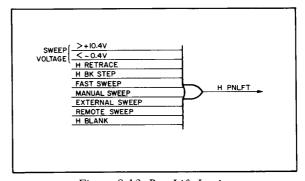


Figure 8-13. Pen Lift Logic

ì

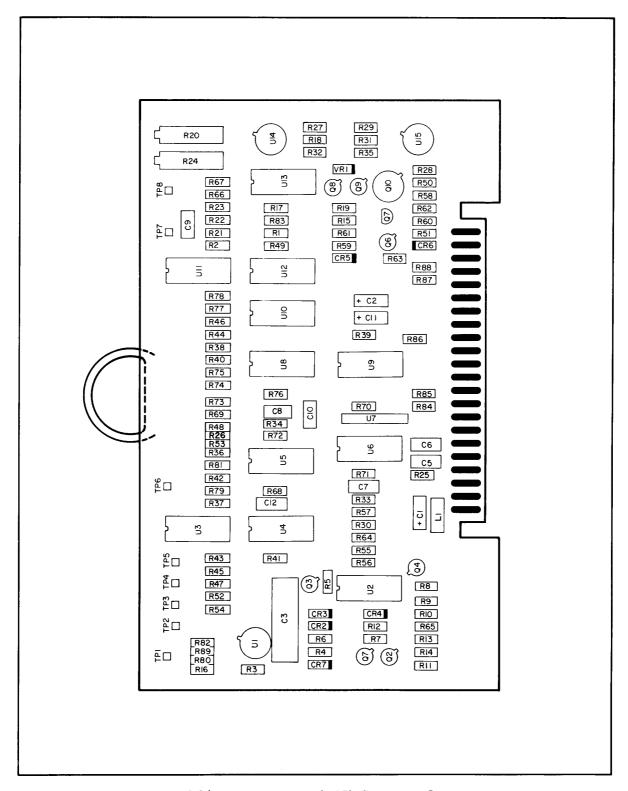
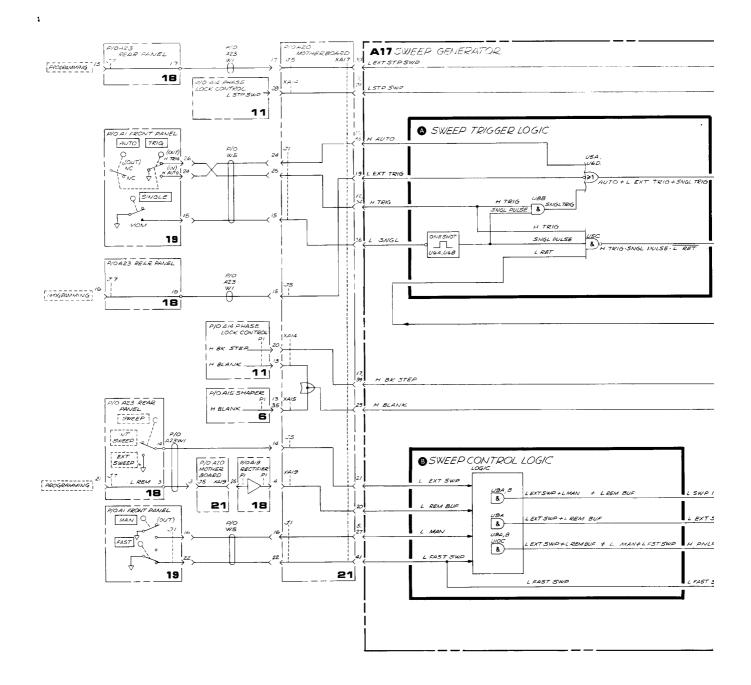



Figure 8-14. Sweep Generator (A17), Component Locations

8-51/8-52

1

/L SWP IN

H PNLFTR

BKSTEP+H SRCE +(L SWTH >+10.4V)+L RET +(L SWTH<-0.4V)

PEN H PALET

HPNLFTR

BLANK/PEN COM

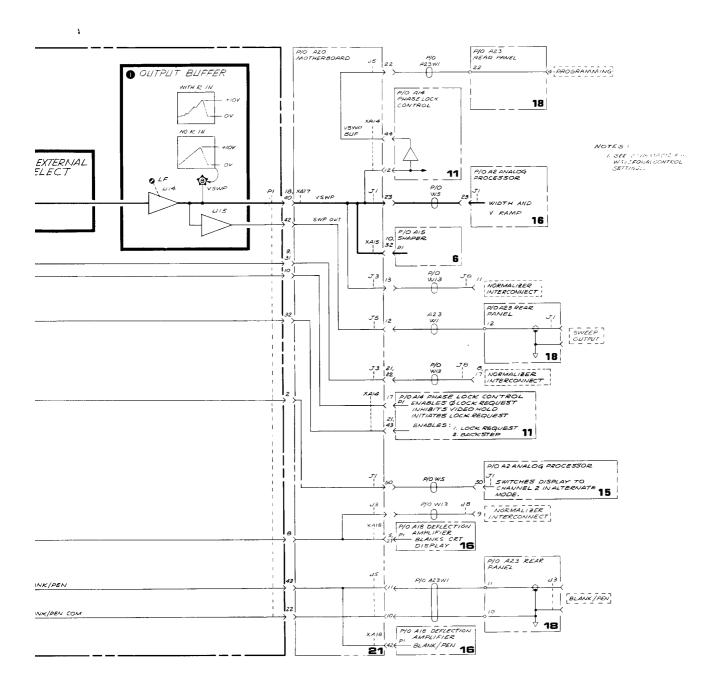
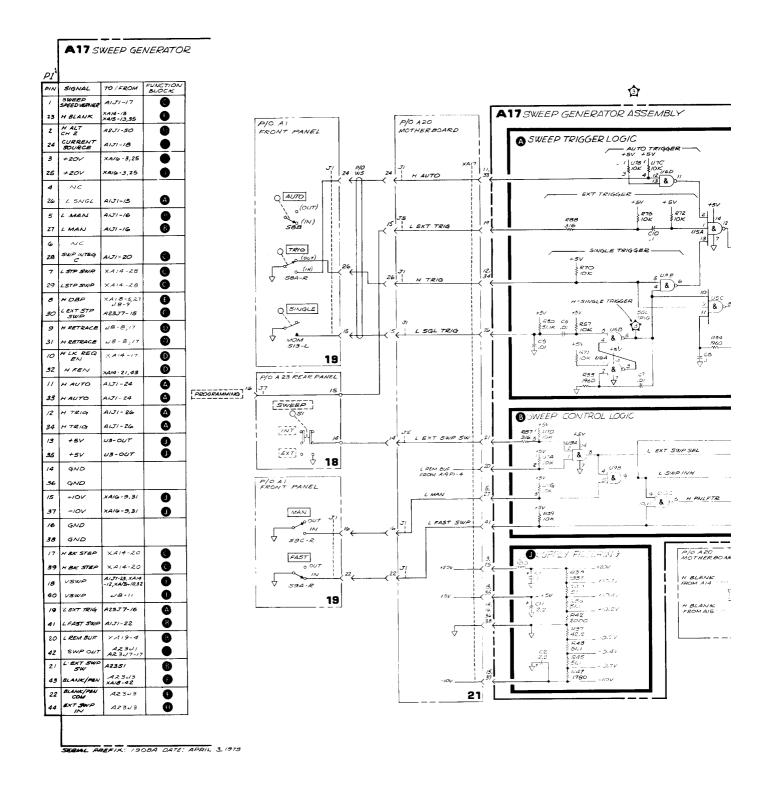
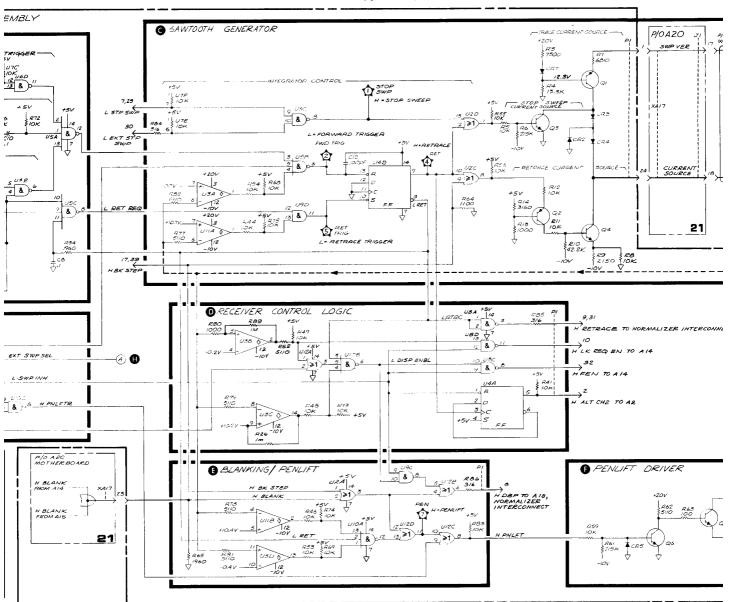
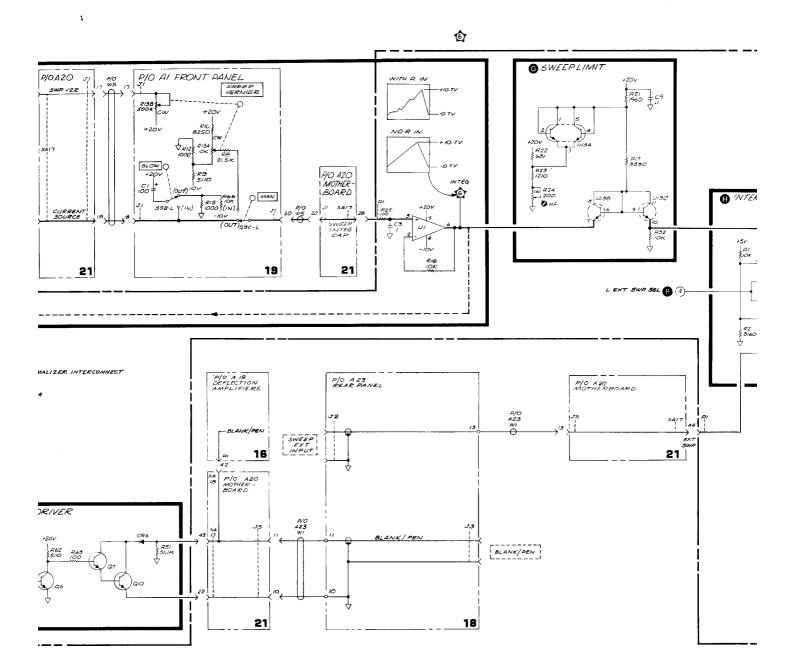





Figure 8-15. Sweep Generator (A17), Block Diagram 8-53/8-54

1

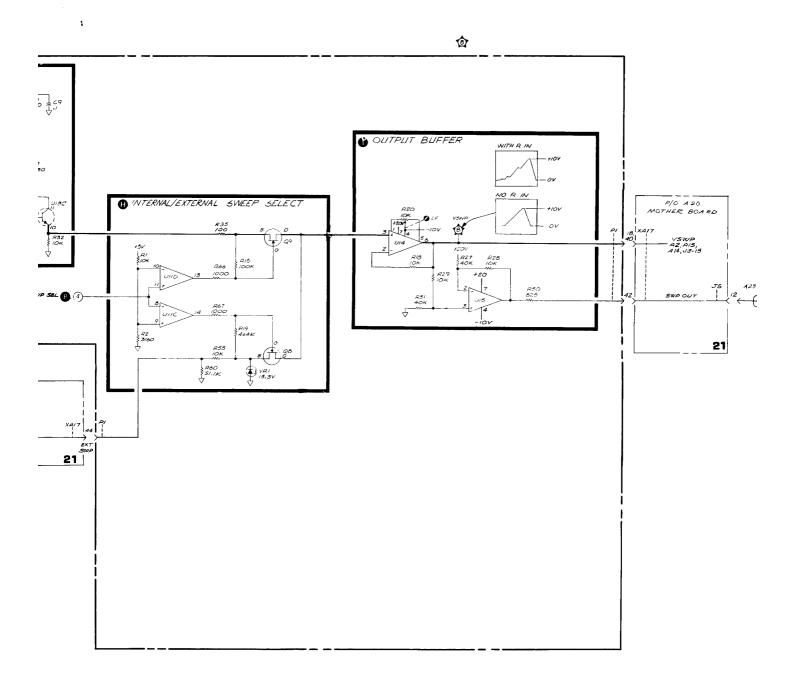


Figure 8-16. \$

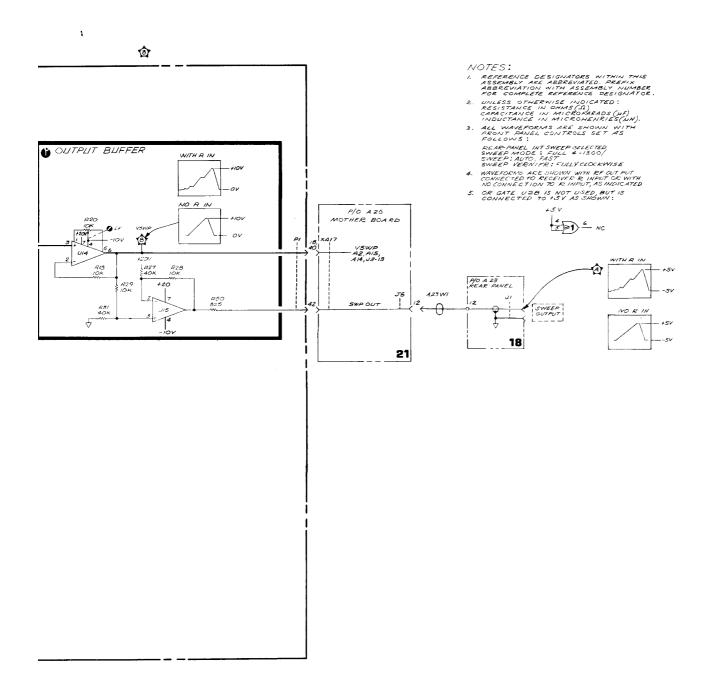


Figure 8-16. Sweep Generator (A17), Schematic Diagram 8-55/8-56

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS

ASSEMBLY	SERVICE	DESCRIPTION	
	SHEET		
	5	SWEEP pushbuttons	
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch	
	7	OUTPUT dBm control	
	8		
	1	MARKERS MHz pushbuttons	
A1 Front Panel	11	UNLOCKED indicator	
	12	Absolute R measurement select	
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER, and VIDEO FILTER	
	16	HORIZONTAL POSN and GAIN controls	
	19	****	
	19	All front panel controls	
	6	Analog-to-digital converter for FREQUENCY MHz display.	
A2 Analog Processor	15	Analog processor, switch control logic, and ±6V power supplies	
	16	V RAMP amplifier	
		v calve amplifier	
A3 B Sampler	9	RF to IF down-conversion	
A4 A Sampler	9	RF to IF down-conversion	
A5 R Sampler	9	RF to IF down-conversion	
AS VITO LIE S. Seek	4.5		
A6 VTO and IF Switch	10	Voltage Tuned Oscillator	
	12	IF Switch	
A7 Source	7	RF Source	
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector	
A9 Phase Detector	14	Phase Detector	
A10 Polar Converter	14	Polar Converter	
A11 R Detector	13	R INPUT, magnitude detector	
A12 Marker Generator	8	Markers	
A13 Phase Lock	11	Phase Lock	
A14 Phase Lock Control	11	Phase Lock loop control	
A45.01			
A15 Shaper	6 7	Sweep width, tuning, frequency reference, and frequency display. Shaping and RF Source drive.	
A16 DC Regulator	20	Low Voltage Power Supplies	
A17 Sweep Generator	5	Sweep Generator	
A18 Deflection Amplifiers	16	Deflection Amplifiers	
440 D	<u> </u>		
A19 Rectifier	18	External Interface	
	20	Low Voltage Power Supplies	
A20 Motherboard	21	Motherboard wiring list	
A21 High Voltage Power Supply	17	CRT bias and blanking control	
A22 Frequency MHz Display	6	Frequency display	
A23 Rear Panel	18	External Interface and Rear Panel (A23)	

SERVICE SHEET 6

FREQUENCY REFERENCE (A15), CIRCUIT DESCRIPTION

The Frequency Reference portion of the Shaper (A15) provides a 0V to +13V FREQ REF signal whose magnitude is directly related to the RF Source frequency in the range 0 to 1300 MHz (100 MHz/volt). The FREQ REF signal is used to:

- tune the RF Source; and
- provide the Receiver with an analog representation of the source frequency, which (1) controls the RF/IF phase lock loop (Service Sheet 11), (2) provides a reference for electrical length compensation in phase measurements, and (3) provides a reference for conversion loss compensation (sampler slope).

The 100 MHz/volt FREQ REF voltage is generated by one of two methods, depending on whether the instrument is in START/CENTER or FULL 4-1300 Sweep Mode. The FREQ REF voltage is derived for these sweep modes as shown in Figure 8-17.

In FULL 4-1300 mode, the sweep ramp from A17 (VSWP) is amplified by A15U8 to create a 0V to +13V ramp. In START/CENTER mode, the

sweep ramp (VSWP) is attenuated by the SWEEP WIDTH MHz Control Network, and summed with the dc voltage from the front-panel TUNING control, to create a ramp output from A15U8 with a peak-to-peak amplitude dependent on SWEEP WIDTH MHz, and a dc offset level (start or center voltage) dependent on TUNING.

Start/Center Tune (A)

Voltages from the coarse TUNING potentiometer R1A and FINE potentiometer R1B are summed through A15U2 to generate the TUNE voltage. The TUNE voltage range of 0V to -5.2V corresponds to the tuning range of 0 to 1300 MHz.

Zener diode A15VR1 provides a -6.2V reference voltage that is shared by TUNING potentiometers R1A and R1B. A15U2 is a differential amplifier with R1B output (FINE) connected to the inverting input and R1A output (TUNING) to the non-inverting input. The amplifier gain through the inverting input is about 0.016 to provide fine tuning control.

Sweep Width Control B

Sweep Width Control is used only for START or CENTER sweep modes. This circuit scales the amplitude of the sweep ramp applied to the Frequency Reference circuit according to the front-panel SWEEP WIDTH MHz switch setting.

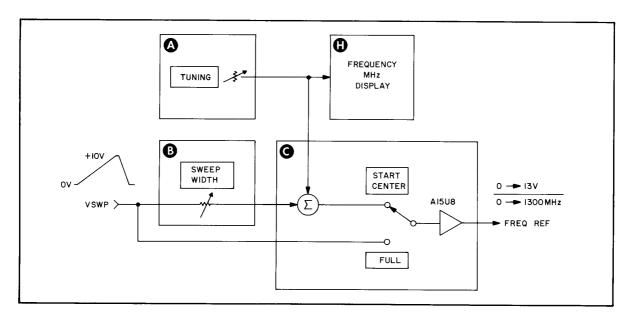


Figure 8-17. Derivation of FREQ REF Voltage.

The sweep ramp (VSWP) from the Sweep Generator (A17, Service Sheet 5) is applied to the inverting input of amplifier A2U12, which has a gain of 0.4 when the SWEEP WIDTH MHz CAL vernier is in the clockwise detent. In START mode, amplifier A2U12 inverts and scales the 0V to +10V sweep ramp input to obtain a 0V to -4V ramp output. In CENTER mode, an offset current is applied through A2R1 and A2R2 to offset the amplifier output to a +2V to -2V ramp.

The gain of A2U12 is determined by feedback resistors A2R4 and A2R6, in parallel with A2R7 and A1R17 (SWEEP WIDTH MHz CAL). When the SWEEP WIDTH MHz CAL control is in the clockwise detent, potentiometer A2R6 is adjusted for an amplifier gain of 0.4; as the vernier is rotated counterclockwise, the gain decreases to approximately 0.062.

The output of A2U12 is applied to the inverting input of Frequency Reference amplifier A15U8 through series resistors A1R18-R22. These resistors are switched in or out by the SWEEP WIDTH MHz switch (A1S4). Refer to Table 8-3.

When 0 CW or EXT RF is selected, no sweep ramp is applied to the Frequency Reference amplifier. When EXT RF is selected, A1CR2 overrides the selection of FULL 4-1300 sweep mode.

Frequency Reference

Start/Center Mode. In START/CENTER mode, the FREQ REF voltage at A15TP3 is the sum of the dc tuning voltage from TUNING A and the sweep ramp from Sweep Width Control.

A simplified schematic is shown in Figure 8-18. When H FULL is low. A15U9 connects A15U8 as an inverting, virtual-ground summing amplifier.

The dc voltage from TUNING A is summed through A15R7 and A15R8 into A15U8, and is also applied to the Digital Panel Meter (G thru K). When the SWEEP WIDTH MHz switch is set to 0 CW, the tuning voltage is the only input to A15U8. Then, if the front-panel TUNING control is adjusted from 0 to 1300 MHz, the tuning voltage decreases from 0V to -5.2V, causing the FREQ REF voltage (A15TP3) to increase from 0V to +13V.

Table 8-3. Resistor Selection and Output Voltage of SWEEP WIDTH MHz Attenuator

SWEEP WIDTH MHz	SERIES RESISTORS SELECTED	SWEEP WIDTH CONTROL OUTPUT (V _{p-p})
1K 500	None (direct connection) R18	4 2
200 100	R18 + R19 R18 + R19 + R20	.8 .4 XA15-8
50 20	R18 + R19 + R20 + R21 R18 + R19 + R20 + R21 + R22	.2 .08
10	None (direct connection)	4 2
2 1	R18 + R19 R18 + R19 + R20	.8 XA15-7
0 CW EXT RF	Open (no connection) Open (no connection)	0 0

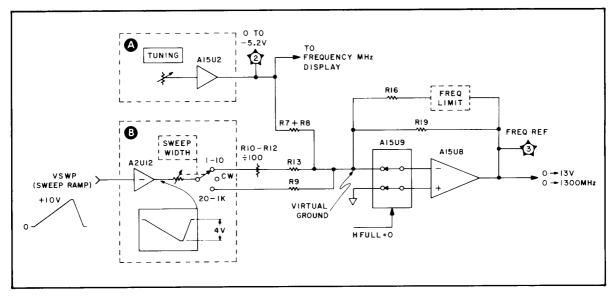


Figure 8-18. Frequency Reference Circuit in START/CENTER Mode, Simplified Schematic

For sweep widths 20 MHz to 1000 MHz, the sweep ramp is summed into A15U8 through A15R9 and the series resistor selected by the SWEEP WIDTH MHz switch. For example, if a 500 MHz sweep width is selected, a 4Vp-p negative-sloped ramp is present at A2TP11. This signal is applied to A15U8 through summing resistors A1R18 and A15R9. The gain of amplifier A15U8 is determined by these summing resistors and feedback resistor A15R19:

1

Gain = Feedback resistance/Summing resistance

= A15R19/(A1R18 + A15R9)

For a 500 MHz sweep width, this results in an amplifier gain of 1.25:

Gain = 5000/(2000 + 2000) = 1.25

Since A15U8 is an inverting amplifier, this results in a positive sloped 5Vp-p ramp at A15TP3 FR $(1.25 \times 4Vp-p = 5Vp-p)$.

For sweep widths from 1 MHz to 10 MHz, the sweep ramp is summed into A15U8 through A15R13, the series resistor selected by the SWEEP WIDTH MHz switch, and a divide by 100 resistive divider (pi attenuator A15R10-R12). For example, if SWEEP WIDTH MHz is set to 5 MHz, the gain of amplifier A15U8 is calculated as follows:

Gain = $A15R19/100 \times (A1R18 + A15R13)$ = 0.0125

Since A15U8 is an inverting amplifier, this results in a positive slope 0.05Vp-p ramp at A15TP3 FR.

Comparators A15U12C and A15U12B clamp the FREQ REF voltage to a range slightly greater than 0V to +13V. If the voltage at A15U12B pin 12 goes more positive than +13.7V, the output goes positive, diode A15CR4 conducts through A15R16, and a positive current is fed into the negative summing junction at A15U12B pin 12 until the inverting and non-inverting inputs to the comparator are equalized at +13.7V. In the same manner, comparator A15U12C acts with diode A15CR3 to equalize the inputs at -0.2V. Diode A15CR7 allows a faster response time for the clamping action. Resistor A15R18 and capacitor A15C8 stabilize the closed loop.

The comparators also drive the Frequency Limit Blank circuit, to blank the CRT when the FREQ REF voltage is out of limits.

FULL 4-1300 Mode. In FULL 4-1300 mode, the VSWP sweep ramp is amplified by 1.3 to generate the 0V to +13V FREQ REF signal. A simplified schematic of the Frequency Reference circuit for the FULL 4-1300 mode is shown in Figure 8-19.

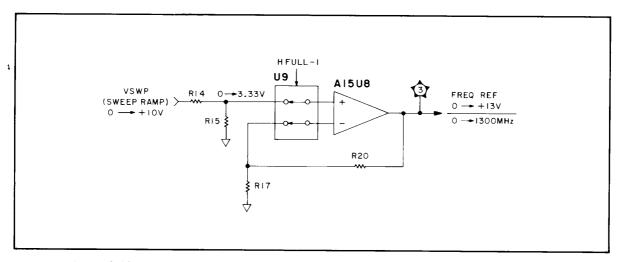


Figure 8-19. Frequency Reference Circuit in Full 4 - 1300 Mode, Simplified Schematic

When H FULL is high (+5V), A15U8 is connected as a non-inverting amplifier. Resistors A15R14 and A15R15 attenuate the VSWP input to a 0V to +3.33V ramp to avoid overloading switch A15U9A. A15U8 then amplifies this ramp by a factor of 3.94 Gain = 1 + (A15R20/A15R17), and the resulting FREQ REF output at A15TP3 FR is a 0V to +13.13V ramp.

Electrical Length Reference D

Amplifier A15U1B provides a reference voltage to the front-panel LENGTH controls to compensate for cable length differences when making a phase measurement. This reference voltage is proportional to either the RF OUTPUT frequency or the CRT trace sweep position. Table 8-4 shows the output of A15U1B for all combinations of control inputs.

Table 8-4. Selection of LENGTH REF Output

L EXT RF	H LGTH	A15U1B Output
Н	L	FREQ REF (.01V/MHz) From ©
x	L	VSWP (1V/div) From A17
L	Н	0 (Ground)
H = High (+5V) $L = Low (0 V)$		

When H LGTH is low, A15CR31 conducts, causing the output of A15U3A to go low, and turn off Field Effect Transistor (FET) A15Q2. The A15U3B output is high, which turns on FET A15Q3, and applies VSWP as the input to buffer amplifier A15U1B.

When H LGTH is high, the A15U3B output is low, and FET A15Q3 is turned off. If L EXT RF is low, A15CR30 conducts, causing A15U3A output to go low and turn off FET A15Q2. With both A15Q2 and A15Q3 turned off, no signal is applied to buffer amplifier A15U1B. If L EXT RF is high, A15U3A output is high, FET A15Q2 is turned on, and the FREQ REF voltage is applied to the input of buffer amplifier A15U1B.

Frequency Limit Blank

The Frequency Limit Blank circuit blanks the CRT if the FREQ REF voltage is outside the operating range of 0V to +13V. If the non-inverting input to comparator A15U12C in the Frequency Reference circuit is more negative than -0.2V, its low output is inverted through A15U12D to place a positive voltage (limited by A15VR2) on the base of A15Q4, turning it on to pull the H BLANK line high. If the non-inverting input to comparator A15U12D is more positive than +13.7V, a high output is coupled through A15U12A to turn on A15Q4.

X = Don't care (high or low)

The H BLANK output is a WIRED OR line that blanks the CRT display when it is driven high (+5V). H BLANK is driven high by A15Q4 when the FREQ REF voltage is out of limits, or by the Phase Lock Control (A14, Service Sheet 11) when the receiver phase lock loop is reacquiring lock.

Frequency Reference Buffer

The Frequency Reference Buffer circuit provides a buffered FREQ REF voltage to the Receiver through non-inverting amplifier A15U1A. The FREQ REF voltage is used by the Analog Processor (A2, Service Sheet 15) to compensate for input sampler frequency response. It is also used by the Phase Lock Control (A14, Service Sheet 11) to determine and set phase lock loop gain.

Full Marker Generator @

The Full Marker Generator circuit functions in the FULL 4-1300 mode to generate a marker pulse at the displayed frequency. The TUNE and FREQ REF voltages are summed at the inputs of two open-collector comparators: the non-inverting input of A15U13A and the inverting input of A15U3B. The summing resistors A15R34 and A15R35 adjust the scale factors of the two input voltage ranges. When the voltage at the summing junction is between -0.018V and +0.014V, the outputs of both comparators are high, turning on A15Q5 and pulling the L F MKR line low to generate a marker on the CRT. If the input

voltage to the comparators is outside the operating "window," A15Q5 is biased off and the marker pulse is inhibited.

When the instrument is in either START or CENTER mode, A15U9B pin 15 is switched to ground, turning off A15Q5 to disable the Full Marker Generator circuit.

DIGITAL PANEL METER (A2,A22), CIRCUIT DESCRIPTION

The Digital Panel Meter (DPM) is essentially a dc digital voltmeter that measures a tuning voltage from the front-panel TUNING control and converts it to a front-panel frequency readout. The DPM circuitry is located on two printed-circuit boards: The Analog Processor (A2) and the Frequency MHz Display (A22).

The purpose of the DPM is to indicate the start or center frequency of the RF source frequency span or the location of the full band marker frequency.

As shown in Figure 8-20, voltages from coarse TUNING potentiometer R1A and FINE potentiometer R1B are summed through A15U2 to generate the TUNE voltage. TUNE is in turn summed with the voltage from the SWEEP WIDTH MHz switch A1S4 to provide the FREQ REF voltage. The FREQ REF voltage range of 0V to +13.0V corresponds to the frequency range 0 to 1300 MHz.

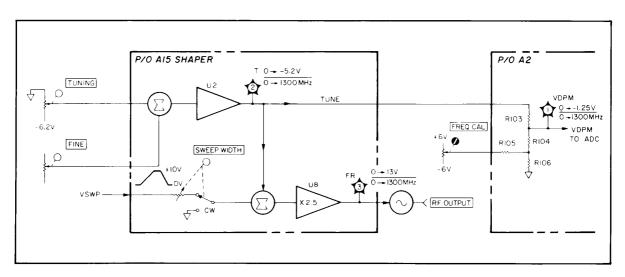


Figure 8-20. Tuning Voltage from A15 Shaper, Simplified Schematic

TUNE also goes to the DPM circuit, where it is attenuated by A2R103 and A2R64 and is summed with the output of FREQ CAL potentiometer A1R57 through A2R105 and A2R106. Adjustment of the FREQ CAL potentiometer compensates the DPM display for drift of the RF Source (A7). The TUNE voltage, after attenuation and correction, becomes the VDPM input to the ADC.

The DPM is divided into two sections. The Analog-to-Digital Converter (ADC) consists of A2U1 and associated circuitry. The Display Section consists of BCD-to-Seven-Segment Decoder/Driver A2U3, Digit Driver A2U2, and numeric displays A22U1 through A22U4.

Analog-to-Digital Converter (H)

A2U1 with its associated circuitry forms a dualramp, 3-1/2-digit Analog-to-Digital Converter (ADC) that converts an analog input voltage to a corresponding 8-4-2-1 BCD output once each measurement (conversion) cycle. The device contains CMOS digital logic providing counters, latches, and multiplexing circuitry as well as CMOS analog circuitry that provides the operational amplifiers and comparators required for a complete ADC.

During each measurement cycle, the offset voltages of the internal amplifiers and comparators are compensated for by the internal circuitry of A2U1.

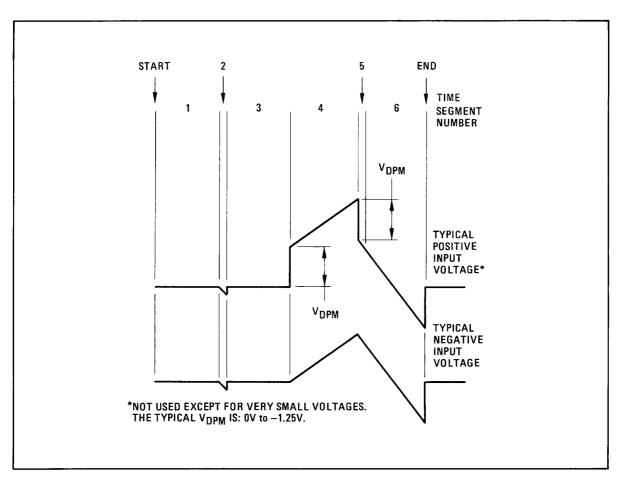


Figure 8-21. Integrator Waveforms

Clock. A2U1 has an internal clock whose frequency is set by A2R107 at about 66 kHz.

Measurement Cycle. The ADC A2U1 performs a ratiometric conversion; that is, the unknown input voltage V_{DPM} is measured as a ratio of the reference voltage V_{REF} . For a V_{DPM} of -1.25V, which corresponds to 1300 MHz, V_{REF} is 1.92V. The reference voltage is adjusted by MTR CAL potentiometer A2R119.

The reference input A2U1 pin 2 also functions as a reset for the ADC. When pin 2 is switched to $V_{\rm EE}$, the system is reset by internal circuitry to the beginning of a measurement cycle.

The entire measurement cycle requires slightly more than 16,000 clock periods (approximately 250 ms). Figure 8-21 shows the integrator waveforms at A2U1 pin 6 for typical positive and negative input voltages, with the cycle divided into six segments as described below.

Segment 1—Offset capacitor A2C11, which compensates for the input offset voltages of the buffer and integrator amplifiers, is charged during this period, and integrator capacitor A2C14 is shorted. This segment requires 4000 clock periods.

Segment 2—The Integrator output decreases to the comparator threshold voltage. At this time a number of counts equivalent to the input offset voltage of the comparator is stored in the offset latches for later use in the auto-zero process. The time for this segment is variable, but less than 800 clock periods.

Segment 3—This segment of the conversion cycle is identical to Segment 1.

Segment 4—This segment is an up-going ramp cycle with the input voltage V_{DPM} as the input to the integrator. Figure 8-22 shows the equivalent configuration of the analog circuitry of A2U1. The actual configuration depends on the polarity of the input voltage during the previous conversion cycle.

Segment 5—This segment is a down-going ramp period with the reference voltage V_{REF} as the input to the integrator. Segment 5 of the conversion

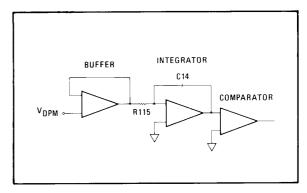


Figure 8-22. Equivalent Analog Circuitry Segment 4.

cycle has a time equal to the number of counts stored in the offset storage latches during Segment 2. As a result, the system zeroes automatically.

Segment 6—This is an extension of Segment 5. The time period for this portion is 4000 clock periods. The results of the conversion cycle are determined in this portion.

End of Conversion. The end-of-conversion (EOC) output at A2U1 pin 14 produces a pulse at the end of each measurement cycle. The pulse width is one-half the period of the system clock, or 7.6 μ s.

Display Update. If a positive edge is received at A2U1 pin 9 prior to the ramp-down cycle, new data will be strobed into the output latches during that conversion cycle. Since pin 9 is wired to the EOC output (pin 14), every conversion is displayed.

Digit Select. The digit select outputs of A2U1 are DS4 through DS1, pins 16 through 19. Each digit select output goes high as the corresponding digit is selected. The most significant digit (the half digit) is turned on immediately after the EOC pulse, followed by the remaining digits in the sequence from the most significant digit (MSD) to the least significant digit (LSD); that is, DS1, DS2, DS3, DS4. A blanking time between digits of two clock periods is included to ensure that the BCD data has settled. Relative timing among digit select outputs and EOC signals is shown in Figure 8-23.

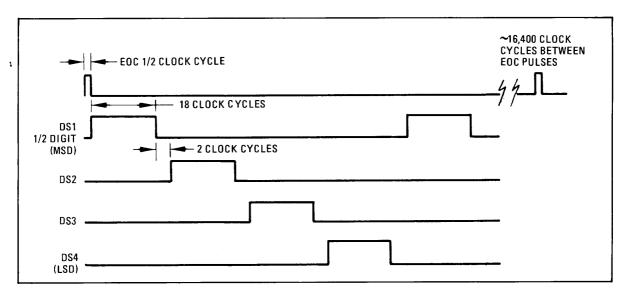


Figure 8-23. Digit Select Timing Diagram

BCD Data Outputs. The multiplexed BCD data outputs of A2U1 are Y_3 , Y_2 , Y_1 , and Y_0 . During the digit-select times DS2 through DS4, the numeric displays A22U2 through A22U4 display the full digits 0 through 9. The most significant digit is displayed on A22U1 during digit-select time DS1. However, only segments b, c, and g of that numeric display are connected, so A22U1 can display only a "1", a minus sign, or a blank. Note that segment g is not lighted by any decoded state of A2U4.

Display Section

The Display Section includes BCD-to-Seven-Segment Decoder/Driver A2U3, resistor package A2U4, Digit Driver A2U2, and numeric displays A22U1 through A22U4.

Segment Driver. At the end of the measurement cycle, the BCD data in outputs Y_0 through Y_3 . of A2U1 is transmitted to Decoder/Driver A2U3 as data inputs D_0 through D_3 . The decoded outputs, A2U3 pins 9 through 15, are connected to the appropriate segment anodes to display the decoded numbers in numeric displays A22U1 through A22U4.

Figure 8-24 shows the pin connections to A2U3, the seven segments of a numeric display, and a truth table. The Latch Enable (HLE), pin 5, is wired to ground (logic low). The Blanking Input (LBI), pin 4, and the Lamp Test (LLT), pin 3, are always at logic high. A2TP2 (LT) may be grounded to test the numeric displays by lighting all seven segments of A22U2 through A22U4 and segments b and c (the numeral 1) of A22U1. The Lamp Test does not test the minus sign, segment g.

The minus sign is displayed on A22U1 only when V_{DPM} is positive, since the voltages corresponding to 0 through 1300 MHz are all negtive. When V DPM is positive, a logic high at Y_2 is applied through emitter-follower A2Q1 to A22U1 pin 3, which is the anode of segment g, and the minus sign is lit.

Digit Driver. Digit Driver A2U2 is a Darlington transistor array that comprises seven Darlington pairs. (Each Darlington pair is shown as an inverter on the schematic, but a schematic of the actual configuration is shown in the schematic notes.)

The digits are selected in sequence, starting with the most significant digit (displayed on A22U1). A logic high on a digit-select output of A2U1 (DS1 through DS4) is inverted through A2U2 to place a low on the segment cathodes, pin 1 or pin 6, of the corresponding numeric display A22U1 through A22U4. (Pins 1 and 6 are connected internally; the schematic indicates the external connections.) Sin-

ce the displays are of the common-cathode type, and the segment anodes corresponding to the decoded numbers receive logic highs from A2U3, the LEDs are lit to display the frequency corresponding to $V_{\rm DPM}$.

Frequency MHz Display. The Frequency MHz Display readout consists of four 7-segment numeric displays, A22U2 through A22U4. A22U1, the most significant digit (MSD), is connected to display only the numeral 1 or the minus sign (which is lit when V_{DPM} goes positive). "Negative" frequencies near zero are displayed to allow calibration of the frequency readout.

Figure 8-25 relates the decoded states of Y_0 through Y_3 to the FREQUENCY MHz readout for Digit Select Times DS1 through DS4. Note that Y_0 through Y_2 might be either high or low during DS1 since the decoded states 0, 3, 4, and 7 are all displayed as "1," as explained in the discussion of MSD codes.

MSD Codes. Only three segments of the MSD display A22U1 are connected. The anodes of segments b and c (the numeral 1) are driven by AU3, while segment g (the minus sign) is driven by A2Q1.

Only three segments of A22U1 are connected because of the limited logic in the Analog-to-Digital Converter, A2U1. As a result, four decoded outputs of Segment Driver A2U3 cause A22U1 to blank, and four decoded outputs cause A22U1 to display the numeral 1.

During digit-select time DS1 (Figure 8-23), when A22U1 is driven, outputs Y_3 through Y_0 of ADC A2U1 might be decoded as any one of eight states. The following states cause A22U1 to be blanked:

Y3	Υ2	Υ1	YO	Decoded State	A22U1 Display
1	0	1	0	10	Blank
1	0	1	1	11	Blank
1	1	1	0	14	Blank
1	1	1	1	15	Blank

Since only segments b and c of A22U1 are connected, the decoded states 0, 3, 4, and 7 all appear as 1 as shown in Figure 8-23:

Υ3	Y ₂	Y ₁	Υ0	Decoded State	A22U1 Display
0	0	0	0	0	1
0	0	1	1	3	1
0	1	0	0	4	1
0	1	1	1	7	1



Figure 8-24. Segment Driver

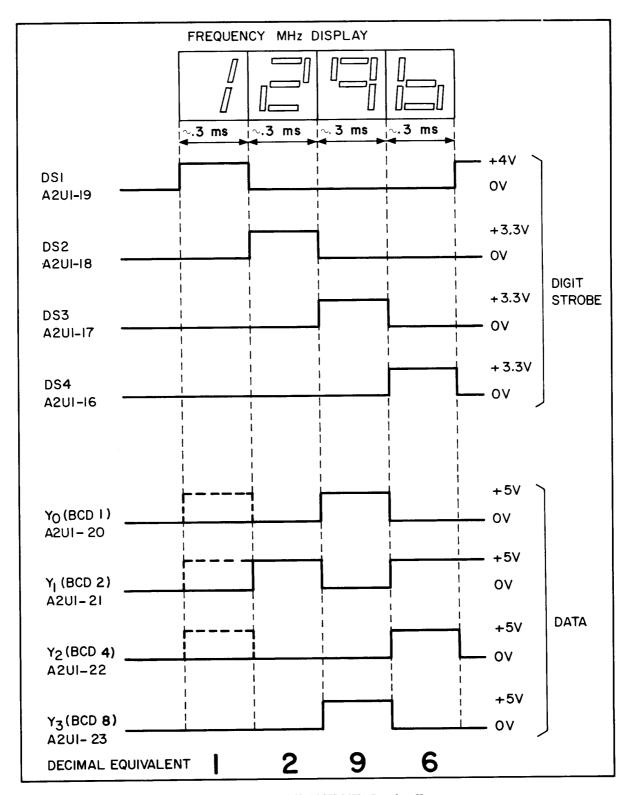


Figure 8-25. FREQUENCY MHz Display Timing

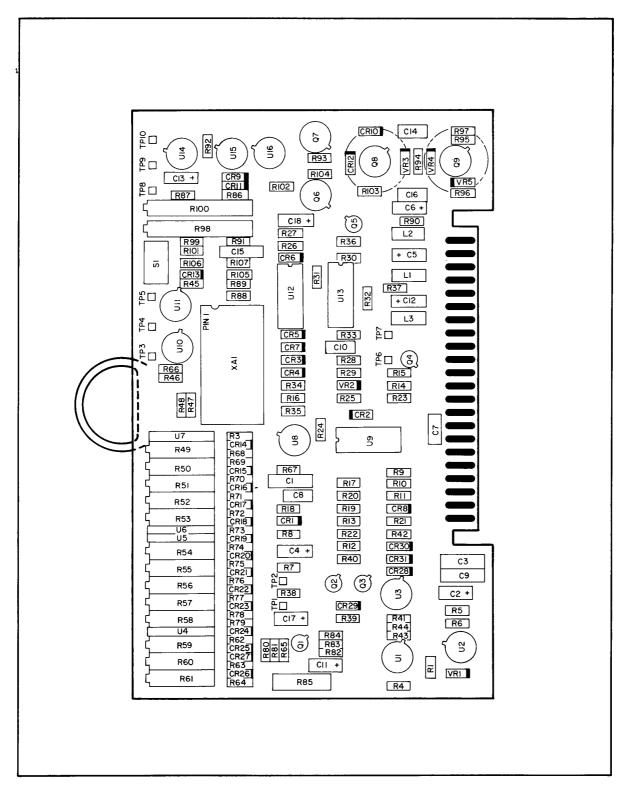


Figure 8-26. Frequency Reference (A15), Component Locations

1

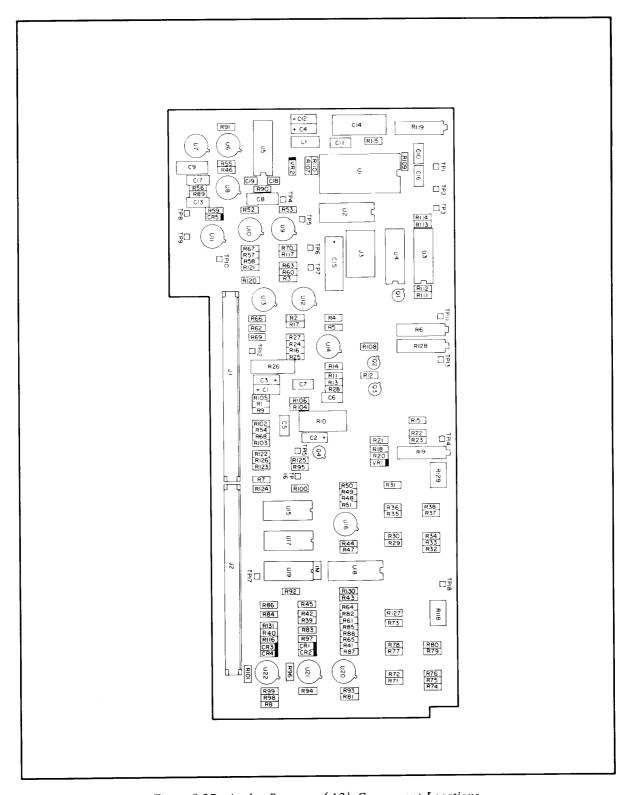


Figure 8-27. Analog Processor (A2), Component Locations

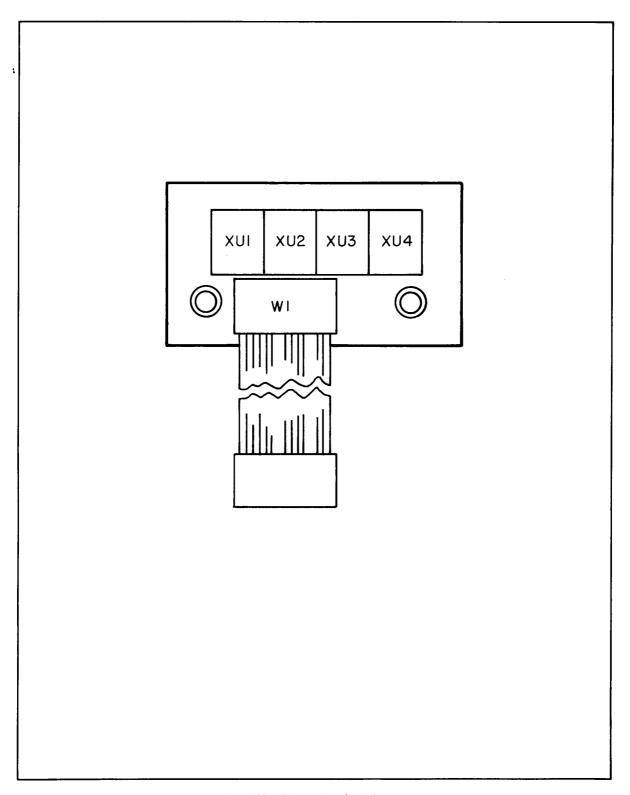
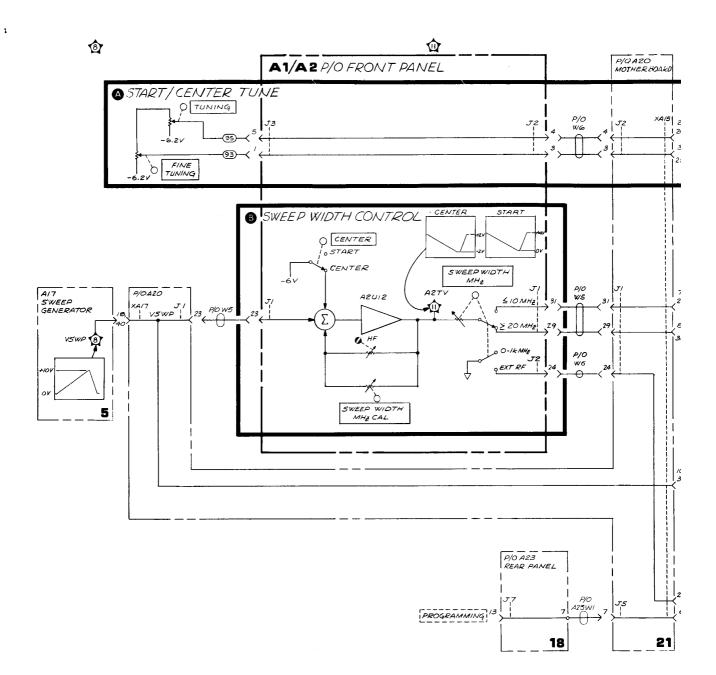
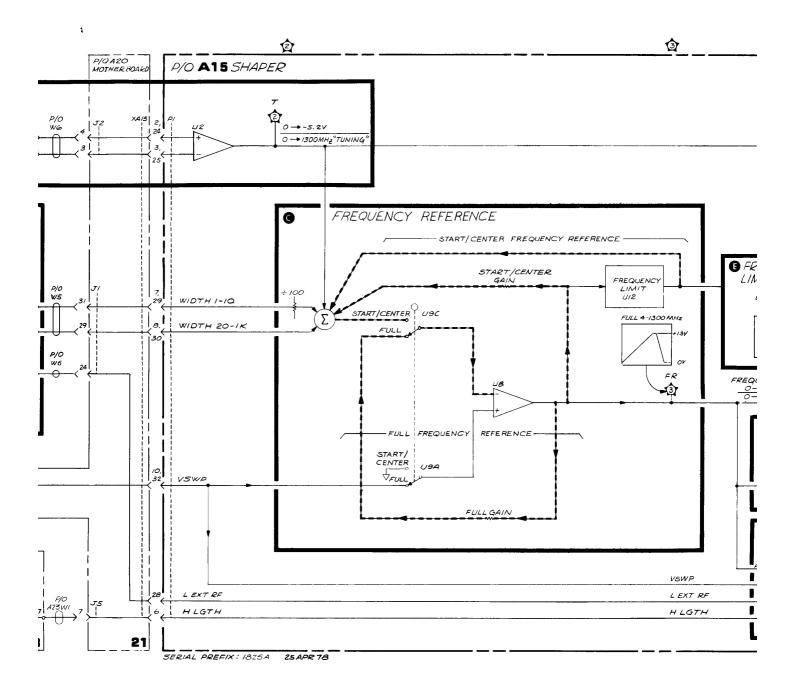
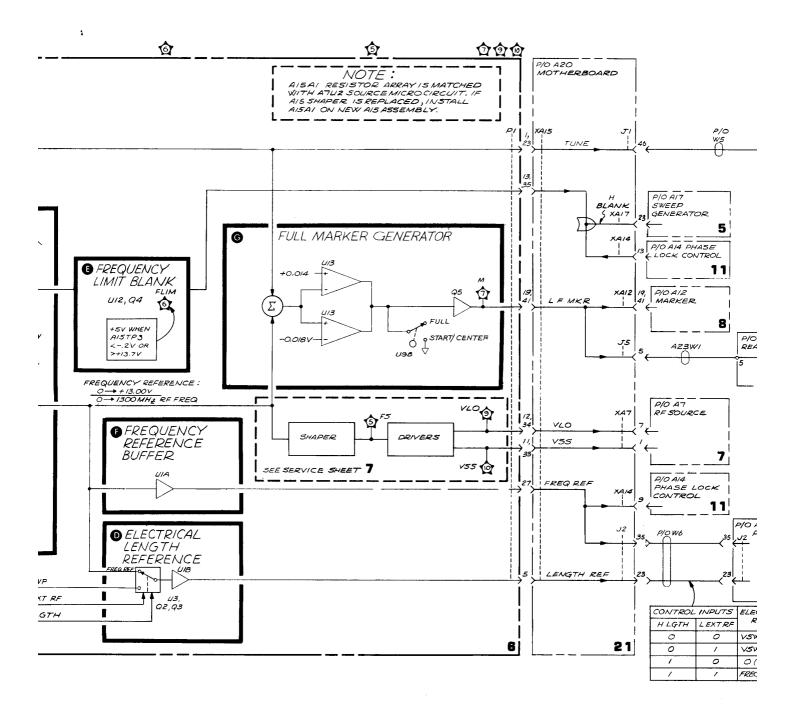
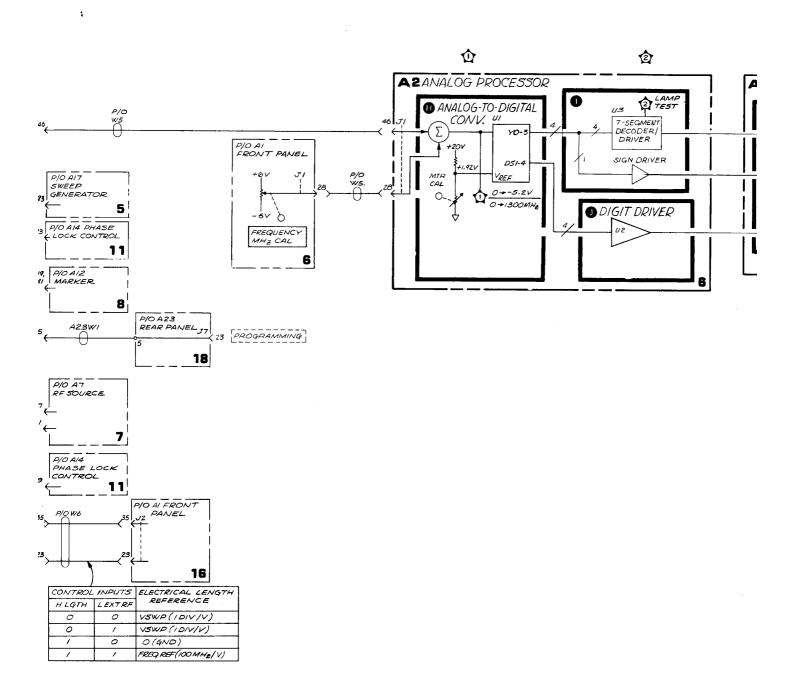
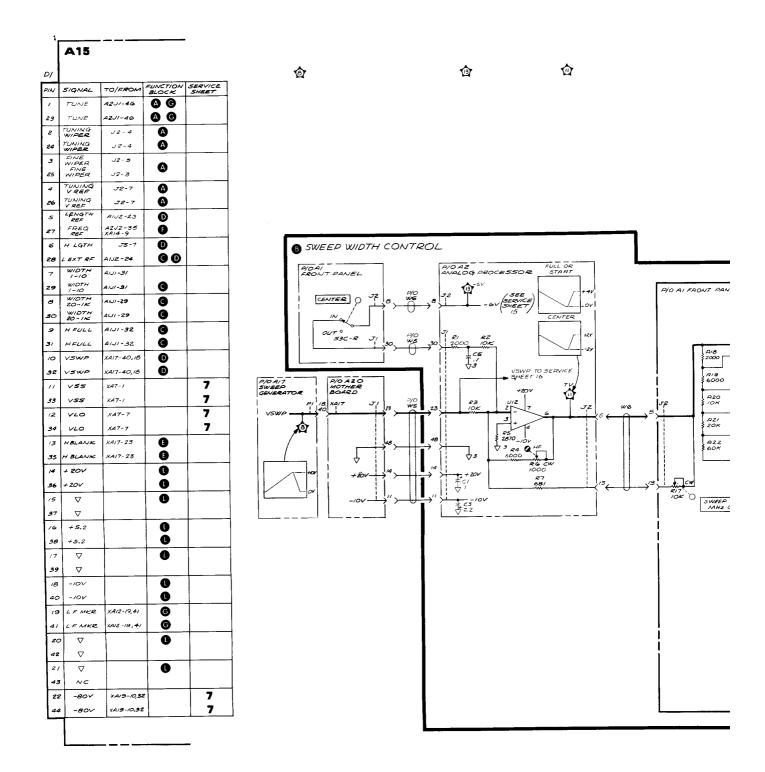
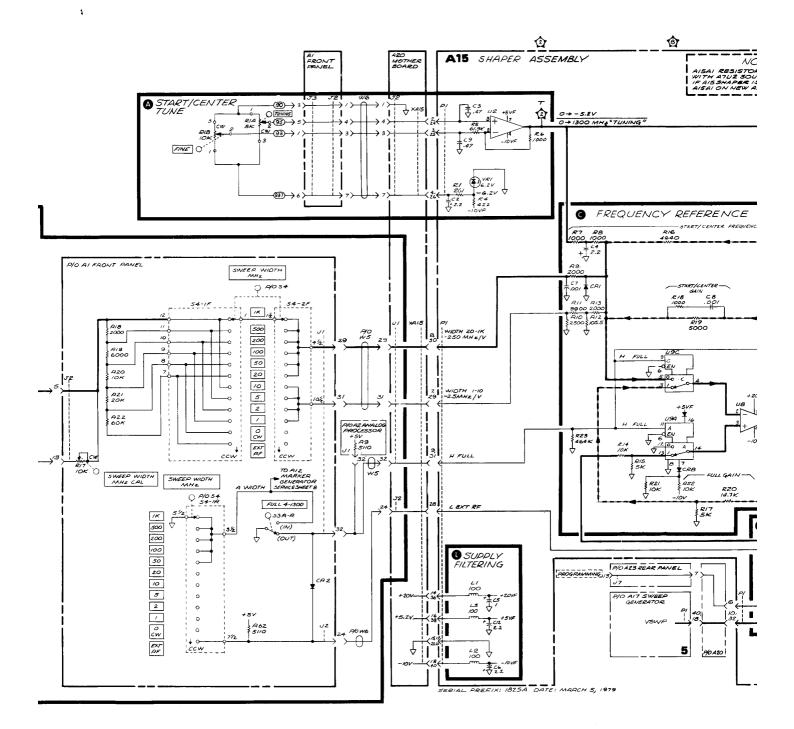





Figure 8-28. FREQUENCY MHz Display (A22), Component Locations

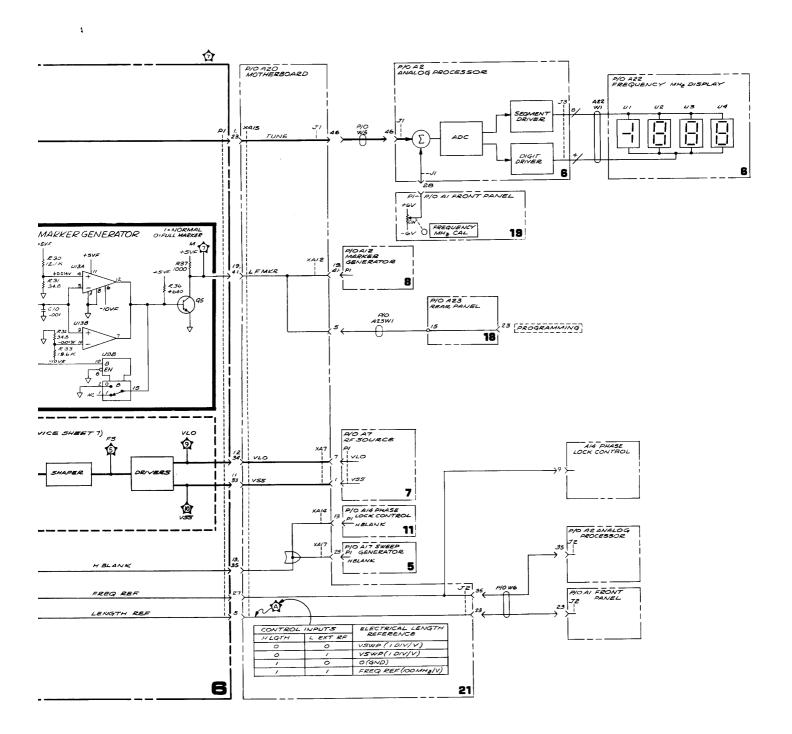
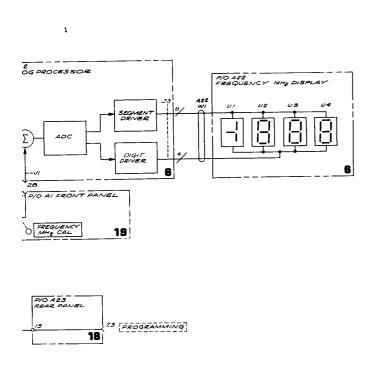
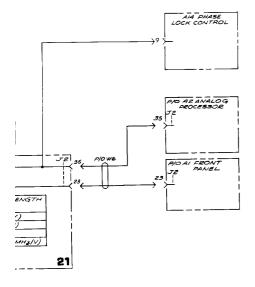
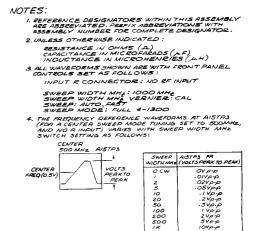



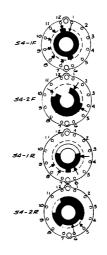

Figure 8-29. Frequency Reference (A15,

1

Figure 8-29. Frequency Reference (A15) and Digital Panel Meter (A2, A22), Block Diagram 8-71/8-72

1

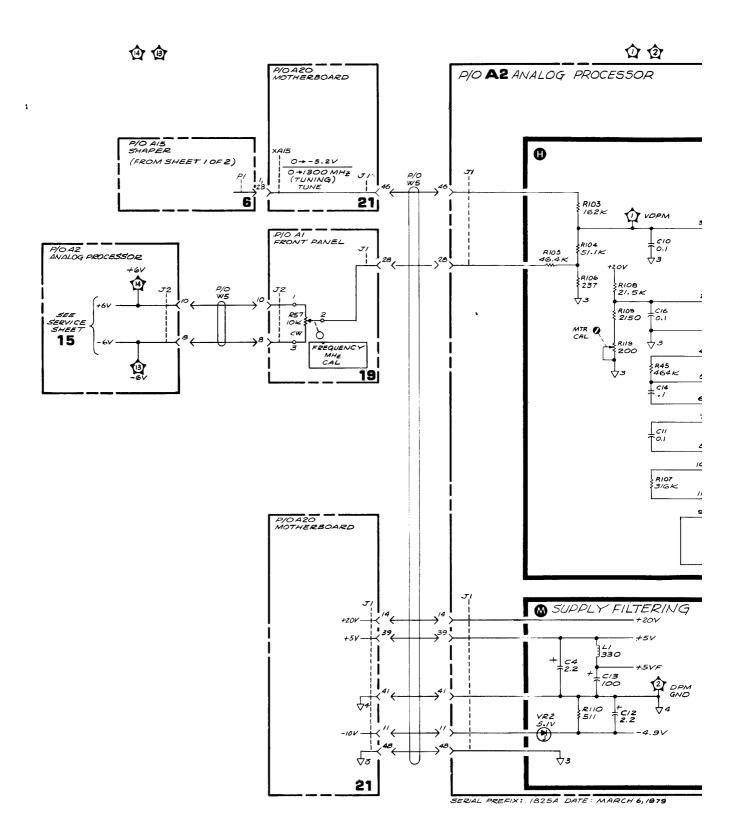





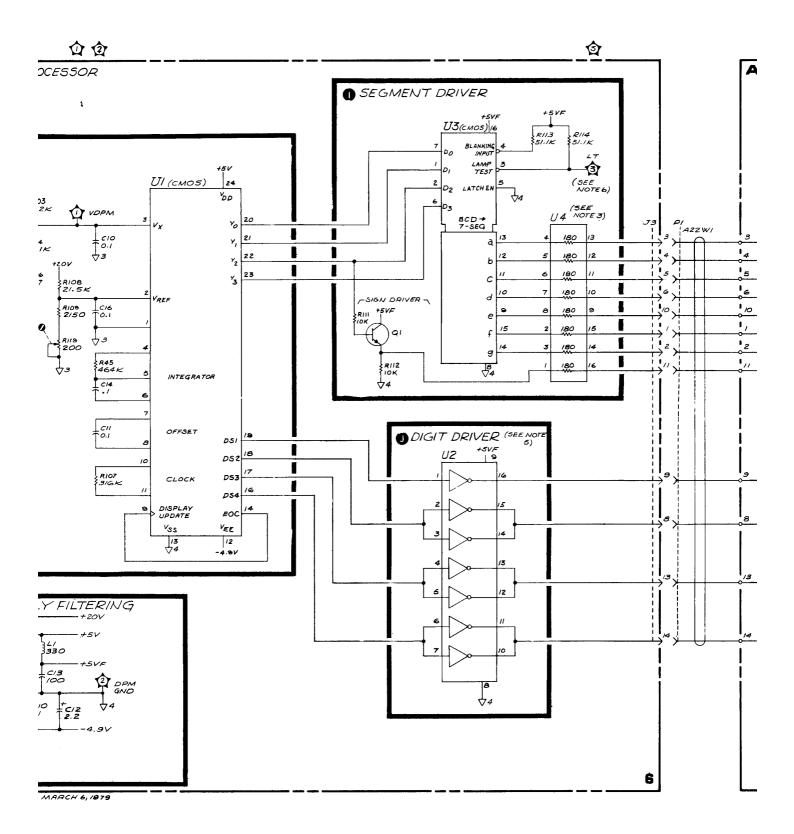

Figure 8-30. Frequency Reference (A15) and Digi

5, SWEEP WIDTH MHZ SWITCH AISA WAFER AND PIN LOCATIONS:

6. SWEEP MODE SWITCH AIS 3 SECTION AND PIN LOCATIONS:

CENTER	START	FULL 4-1300
53C	53B	53A R L
0 14 0	0 ~ 0	0 ~ 0
OCOMO	OCOMO	1 ocomo
00000	00000	00070
REAR VIEW		


Figure 8-30. Frequency Reference (A15) and Digital Panel Meter (A2, A22), Schematic Diagram (1 of 2) 8-73/8-74


J1

SIGNAL	TO/FROM	BLOCK	SERVICE SHEET
HORIZ POSN POS 2	AIJI - I (W5) AIJI - 2 (W5)		16 15
CHI VIDEO FLT POS I	AIJI - 3(W5) AIJI - 4(W5)		15 15
CH2 VIDEO FLT POLAR CNTR	AIJI -5(W5) AIJI -6(W5)		15 15
H DBLR HORIZ GAIN	NOT USED AIJI - 8(W5)		11 16
POLAR CNTR (*) POLAR CNTR	AUI - 9(W5) AUI -10(W5)		15 15
-IOV RF LEVEL	A16A-9,31 A7A1-6,12 A12A1-1,33	0	15 7,8
UNLOCK LED +20V	A14P1-1 A16P1-3,25	W	11
L SNGL L MAN	A17P1-26 A17P1-5,27		5 5
SWEEP SPEED VERNIER CURRENT SOURCE	A17P1-1 A17P1-24		5 5
NC SWEEP INTEG C	A17P1-28		5
L MKR I LFAST SWP	A12PI -8,30 A17PI -41		8 5
VSWP H AUTO	AITPI-18,40 AITPI-11,33	BD	16 5
L MKR 10 H TRIG	AIZPI-9,31 AITPI-12,34		8 5
L MKR 50 FREQ CAL			8
WIDTH 20 - IK CNTR FREQ	1	8	
WIDTH 1-10 H FULL	AISPI -7,29 AISPI -9,31 AIZPI - 7,29	8	
+15VPP -12VPP	A16P1-1 A2OUI-OUT		20 20
CH2 FLT V RAMP	A18P1-35 A18P1-30		15 16
CHI FLT LOG K A/R	A18P1-37 A9P1-1,23		15 15
+5V			15
V4 POLAR X			15
2 LOFF 2	A23U3-6 (W13) AIOPI-3,25		15 15
LE INT	A19P1-1 A15P1-1,23	00	15
7 L CHAN 2	1	_	15
9 LOFF I O HALT CH 2	A23J3-3 (WI3) AITPI-2		15 15
	HORIZ POSN POS 2 CHI VIDEO FLT POS I CHZ VIDEO FLT POS I H DBLR HORIZ GAIN POLAR CNTR -IOV RF LEVEL UMLOCK LED +20V L SNGL L MAN SWEEP SPEED VERNIER CNTR V SWEP H AUTO L MKR IO H TRIG L MKR SO FREQ CAL WIDTH 20 - IK CNTR FREQ WIDTH 10 - IX CNTR FREQ WIDTH 10	HORIZ POSN AIJI-1 (W5) POS 2 AIJI-2 (W5) POS 2 AIJI-2 (W5) CHI VIOEO AIJI-3 (W5) PLT ANII-3 (W5) PLT ANII-3 (W5) PLT ANII-3 (W5) PLT ANII-5 (W5) PLT ANII-6 (W5) POLAR CNTR AIJI-6 (W5) POLAR CNTR AIJI-1 (W5) POLAR CNTR AIJI-1 (W5) POLAR CNTR AIJI-1 (W5) POLAR CNTR FREQ AIJI-1 (W5) POLAR CNTR FREQ AIJI-1 (W5) POLAR CNTR A	HORIZ POSN AIJI-I (WS) POS 2 AIJI-2 (WS) POS 1 AIJI-3 (WS) FLT POS I AIJI-3 (WS) FLT POS I AIJI-3 (WS) POLAR CUTR AIJI-5 (WS) POLAR CUTR AIJI-8 (WS) HOBLR NOT USED HORIZ GAIN AIJI-8 (WS) POLAR CUTR AIJI-8 (WS) POLAR CUTR AIJI-9 (WS) FLT AIPI-6,12 AIPI-6,12 AIPI-6,12 AIPI-6,12 AIPI-1,33 UMLOCK LED A14PI-1 +20V A16PI-3,25 L SNGL A17PI-26 L MAN AIT PI-25 SWEEP SPEED VERINER AITPI-12 CURRENT AITPI-28 C AITPI-28 C AITPI-18 L MKR I A12PI-8,30 L FAST SWP AITPI-18,40 H AUTO AITPI-13,31 L MKR 10 A12PI-13,31 H TRIG AITPI-12,34 L MKR 50 A12PI-10,32 FREQ CAL AIJI-28 (W3) WIDTH A15PI-8,30 B WIDTH A15PI-8,30 B WIDTH A15PI-7,29 H FULL A15PI-1,23 H SV A20U3-OUT CH2 FLT A16PI-35 V RAMP A16PI-1,23 H SV A20U3-OUT CH2 FLT A16PI-12 CH2 FLT A16PI-12 CH3 POLAR X A10PI-1,23 H SV A20U3-OUT CH2 FLT A16PI-12 CH3 POLAR X A10PI-1,23 H SV A20U3-OUT CH2 FLT A16PI-12 CH3 POLAR X A10PI-1,23 H SV A20U3-OUT CH2 FLT A16PI-12 CH3 POLAR X A10PI-1,23 H SV A20U3-OUT CH3 FLT A16PI-12 CH3 POLAR X A10PI-1,23 A L OFF 2 A23/3-6 (W/3) B L OFF I A23/3-3 B L OFF I A

J3

PIN	SIGNAL	TO/FROM	FUNCTION BLOCK
/	SEG F	A22PI-1	0
2	SEGS	A22P1-2	0
3	SEG a	A22P1-3	0
4	SEGL	A22PI-4	0
5	SEG C	A22PI-5	0
6	SEG d	A22PI-G	0
7	NC		
8	L DIG 3	A22PI-8	0
9	LDIG 4	A22PI-9	0
10	SEG e	A22PI-10	0
//	SIGN	A22PI-11	0
/2	NC		
/3	L DIG Z	A22P1-13	0
14	LDIG /	A22PI-14	0

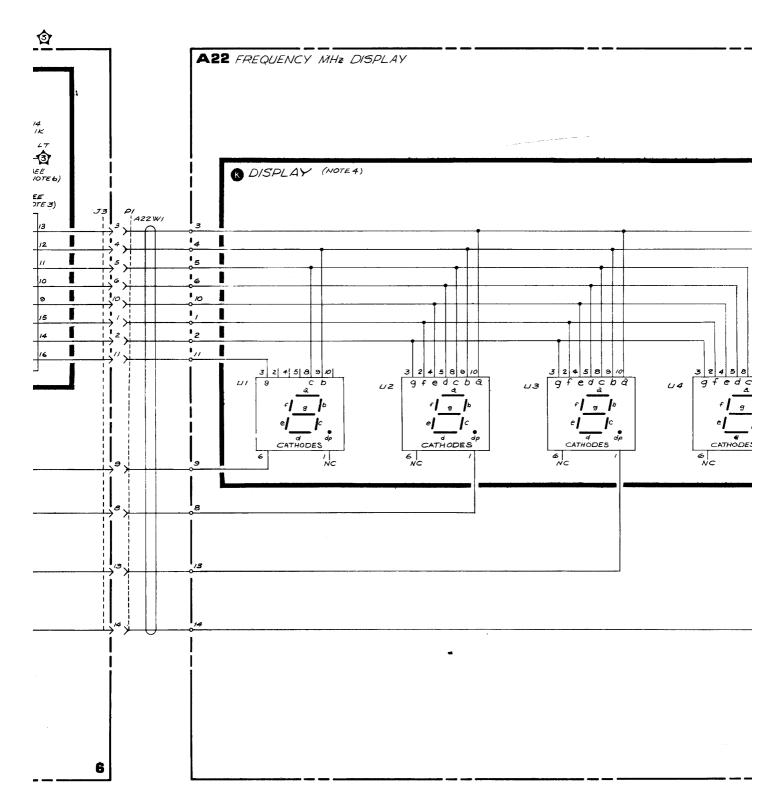


Figure 8-30. Frequency Reference (A15) and D

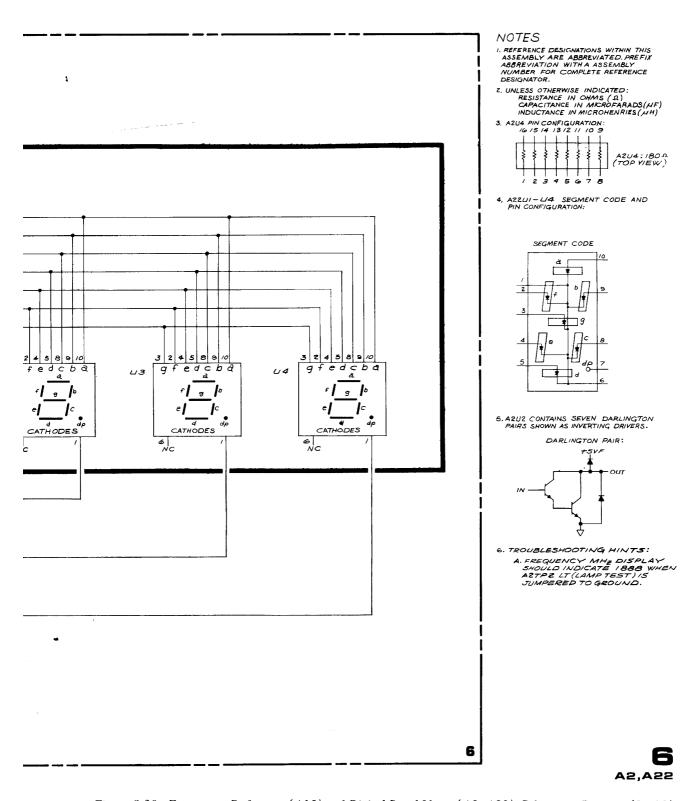


Figure 8-30. Frequency Reference (A15) and Digital Panel Meter (A2, A22), Schematic Diagram (2 of 2) 8-75/8-76

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS

ASSEMBLY	SERVICE SHEET	DESCRIPTION	
1	5	SWEEP pushbuttons	
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch	
	1		
	7	OUTPUT dBm control	
	8	MARKERS MHz pushbuttons	
A1 Front Panel	11	UNLOCKED indicator	
	12	Absolute R measurement select	
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER, and VIDEO FILTER	
	40		
	16	HORIZONTAL POSN and GAIN controls	
	19	All front panel controls	
	6	Analog-to-digital converter for FREQUENCY MHz display.	
A2 Analog Processor	15	Analog processor, switch control logic, and $\pm6 extsf{V}$ power supplies	
	16	V RAMP amplifier	
A3 B Sampler	9	RF to IF down-conversion	
A4 A Sampler	9	RF to IF down-conversion	
A5 R Sampler	9	RF to IF down-conversion	
40.470			
A6 VTO and IF Switch	10	Voltage Tuned Oscillator	
	12	IF Switch	
A7 Source	7	RF Source	
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector	
A9 Phase Detector	14	Phase Detector	
A10 Polar Converter	14	Polar Converter	
A11 R Detector	13	R INPUT, magnitude detector	
A12 Marker Generator	8	Markers	
A13 Phase Lock	11	Phase Lock	
A14 Phase Lock Control	11	Phase Lock loop control	
A15 Shaper	6	Curren wideh suning frances of the state of	
A 12 Susher	7	Sweep width, tuning, frequency reference, and frequency display. Shaping and RF Source drive.	
A16 DC Regulator	20	Low Voltage Power Supplies	
A17 Sweep Generator	5	Sweep Generator	
A18 Deflection Amplifiers	16	Deflection Amplifiers	
A19 Partifier	10	•	
A19 Rectifier	18	External Interface	
	20	Low Voltage Power Supplies	
A20 Motherboard	21	Motherboard wiring list	
A21 High Voltage Power Supply	17	CRT bias and blanking control	
A22 Frequency MHz Display	6	Frequency display	
A23 Rear Panel	18	External Interface and Rear Panel (A23)	

SERVICE SHEET 7

SHAPER (P/O A15) AND RF SOURCE (A7), CIRCUIT DESCRIPTION

This circuit receives as its primary input the FREQ REF voltage from the Frequency Reference circuit (P/O A15, Service Sheet 6). The function of the Shaper and RF Source is to generate a 4 MHz to 1300 MHz RF output that is related to the 0V to +13V FREQ REF voltage by 100 MHz/volt.

The RF signal is generated by mixing the outputs of two varactor-tuned oscillators. As the FREQ REF voltage increases from 0V to +13V, the SS Oscillator is voltage-tuned from 3.6 GHz to 3.0 GHz and the LO Oscillator is voltage-tuned from 3.6 GHz to 4.3 GHz; this results in a mixer output (difference frequency) of 0 to 1.3 GHz.

The A7 RF Source consists of a Source microcircuit (A7U2) that contains the oscillators and mixer, an Amplifier/Detector microcircuit (A7U3) which amplifies the difference frequency, and the Automatic Leveling Control (ALC) circuit on the printed circuit board for leveling the RF output.

The A15 Shaper contains a Shaper circuit and two driver amplifiers which convert the FREQ REF voltage (also generated on A15) into two signals which tune the oscillators on the A7 RF Source.

NOTE

All reference designations in this circuit description, unless otherwise specified, are assumed to have the prefix A15. For example, the designation Q1 is actually A15Q1.

Shaper (A)

The function of the Shaper is to remove non-linear tuning characteristics of the oscillators in the RF Source (A7). The FREQ REF (FR) voltage at TP4 is linear, with a sensitivity of 100 MHz/V throughout the frequency range of 0 to 1300 MHz (0 to +13V). The sensitivity of the oscillators in A7, however, is non-linear; that is, the voltage representation of frequency is not constant throughout the tuning range. The Shaper yields a waveform (FS) at TP5 that compensates for the non-linearity of the oscillator outputs so that the RF signal out of the mixer is linear over the frequency range of 0 to 1300 MHz. Figure 8-31 shows the linear waveform FR and the compensating waveform FS.

In Figure 8-31, note the changing slope of the FS waveform compared to the linear slope of the FR waveform. As the FR voltage at TP4 ramps from 0 to +13V, the slope of the FS waveform (which starts gradually) increases until the FR voltage is approximately +7V; the slope of the FS

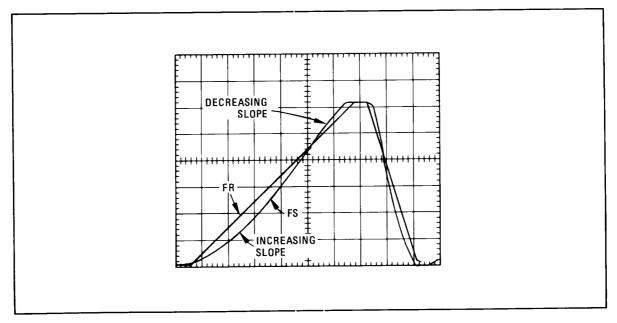


Figure 8-31. FR and FS Waveforms

waveform then gradually decreases until the FR voltage equals +13V. When the FREQ REF (FR) voltage is between 0V and approximately +7V, an increasing-slope shaper is required to linearize the source tuning characteristics, and a decreasing-slope shaper is required when the FR voltage is between approximately +7V and +13V.

Figure 8-32 shows a simplified schematic of the Shaper circuit. R_A and R_B are equivalent resistances which decrease in value as the FREQ REF voltage at TP4 increases; their action is discussed later.

Since the inputs of U10 and U11 draw negligible current, whatever voltage is at FR TP4 is also at the inverting inputs of U10 and U11. The direction of current flow is shown with arrows in Figure 8-32; note that the total current through R45 may be in either direction since it is the difference between the current from R46 and the current into $R_{\rm A}$.

If R_A and R_B are infinite, no current flows through R45 (no voltage drop) and the output at TP5 follows the input at TP4, with a resulting amplifier gain of one.

The effect of R_A is to cause current to flow through R45 in the direction which causes the output of U11 to be larger than V_{FR} . This results in increased FS/FR gain (gain greater than one).

The effect of R_B is to cause current to flow through R47, which causes the output of U10 to be larger than $V_{FR}\,.\,\,$ This causes current to flow through R46 and R45 in the direction which causes the output of U11 to be less than $V_{FR}\,.\,$ This results in decreased FS/FR gain.

Note that R47 and R46 have the same voltage drop. Since they are equal resistances, the current through R_B is equal to the current through R46. When R_A equals R_B , the current from R46 balances the current into R_A , and there is no current flow through (or voltage drop across) R45. This results in a gain of one.

Resistor-diode Network. Figure 8-33 is a simplified schematic illustrating the action of the resistor-diode shaping network. When V_{FR} is less than V_1 , no diodes are conducting; the current through R_0 causes the Shaper gain ($\Delta FS/\Delta FR$) to decrease to a value of less than one.

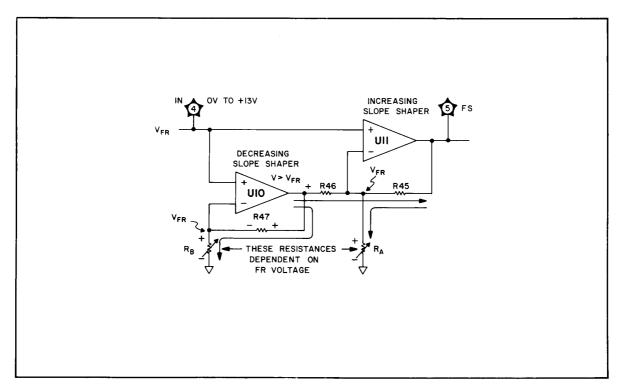


Figure 8-32. Shaper Circuit, Simplified Schematic

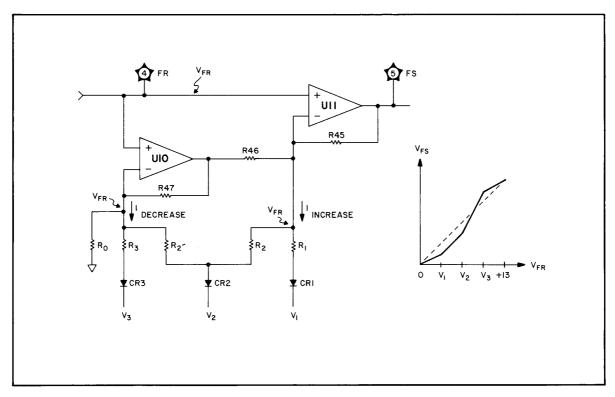


Figure 8-33. Simplified Schematic Showing Resistor-Diode Action

As V_{FR} increases, the anodes of diodes CR1-3 follow the voltage of V_{FR} until V_{FR} is 0.3V greater than V_1 , which causes CR1 to conduct. As V_{FR} continues to increase, the anode of CR1 remains at $(V_1 + 0.3V)$, and a current flows through R_1 . This current causes the Shaper gain to increase, since the total resistance from U11 inverting input to ground is now lower $(R_1$ in parallel with R_0).

As V_{FR} increases to a voltage 0.3V greater than V_2 , CR2 conducts, and currents flow through R_2 and R_2 . Current through R_2 causes the Shaper gain to increase; current flow through R_2 , causes Shaper gain to decrease. If R_2 is smaller than R_2 , more current flows through R_2 and there is a net increase in Shaper gain.

As V_{FR} increases to a voltage 0.3V greater than V_3 , CR3 starts to conduct, and current flows through R_3 ; this causes the Shaper gain to decrease.

Table 8-5 shows the voltage levels at which each diode starts to conduct, and the resistors it connects to increase and decrease Shaper gain.

Breakpoint Voltages. Resistors R69-81 form a resistive string which divides the voltage from Q1 (TP1) to provide the voltage levels at which CR15-27 start to conduct.

Q1 is an emitter follower whose base voltage is determined by R82-84; its emitter voltage is approximately +12.6Vdc, measured at TP1. Approximately 19.5 mA flow from Q1, through R69-81,into CR14 (whose cathode is biased at -0.65V by R67 and R68). CR14 is used for temperature compensation. R85 reduces the power dissipation of Q1 by supplying some of the current into the resistive string (R69-81).

LO Driver B

The Local Oscillator Driver is an inverting amplifier which delivers a voltage ramp to the LO Oscillator in A7U2. As the FS waveform at TP5 increases from 0V to +13V, the LO drive voltage at TP9 changes from approximately -5V to -40V (depending on the particular LO oscillator tuning characteristics). This causes the oscillator to tune from 3.6 GHz to 4.3 GHz.

Diode (A15)	Diode Starts Conduction at V _{FR} Of: (Volts)	Resistors Added To Increase Gain (R _A) (A15)	Resistors Added To Decrease Gain (R _B)* (A15)	Gain Adjusted At V _{FR} Of: (Volts)	
	0		R48 A1R4	+ 0.3	
CR15	+ 0.5	R66		+ 1.0	
CR16	+ 1.2	A1R5		+ 2.0	
CR17	+ 2.2	A1R6		+ 3.0	
CR18	+ 3.2	A1R7		+ 4.0	
CR19	+ 4.2	A1R8		+ 5.0	
CR20	+ 5.2	A1R9		+ 6.0	
CR21	+ 6.2	A1R10	A1R11	+ 8.0	
CR22	+ 8.2	A1R12	A1R13	+ 9.0	
CR23	+ 9.2	· ————————————————————————————————————	A1R14	+10.0	
CR24	+10.2		R59 and R62	+11.0	
CR25	+11.2		R60 and R63	+12.0	
CR26	+12.2		R61 and R64	+13.0	
CR27	+12.9		R65	+13.0	

Table 8-5. Resistor - Diode Network Breakpoint Voltages

* ∥ = Resistors in Parallel

U16, Q6, Q9, and R102 are connected as a virtual-ground negative-feedback amplifier whose output voltage is determined by the sum of currents through R99 and R101. When current flows into the amplifier, the output of U16 increases, causing less current to flow in Q6. This causes more current to flow through R102, since the sum of the Q6 and R102 currents flows into Q9, which is a constant-current source. Current flow through R102 increases until there is no current flow into U16 pin 3; then current flow through R102 is the sum of R99 and R101 currents.

When FS equals 0V, no current flows through R99 and the output voltage is determined by the current flow through A15A1R3, R100, and R101. As FS increases from 0V to +13V, the output voltage goes more negative by an amount determined by R98 and R99.

SS Driver **(**

The Small Signal Oscillator Driver is a non-inverting amplifier which delivers a voltage ramp to the Small Signal Oscillator in A7U2. As the FS waveform at TP5 increases from 0V to +13V, the SS driver voltage at TP10 changes from approximately -40V to -5V (depending on the particular SS oscillator tuning characteristics). This causes the oscillator to tune from 3.6 GHz to 3.0 GHz.

The FS signal is first inverted by U14. As the FS voltage increases from 0V to +13V, the output of U14 decreases from +13V to 0V.

U15, Q7, Q8, and R92 are connected as a virtual-ground negative-feedback amplifier, whose operation is similar to the LO Driver circuit. Its output voltage is determined by the sum of currents through R89 and R91.

When FS equals +13V, the U14 output is 0V, and no current flows through R88 or R89. The amplifier output is determined by the current flow through A15A1R1, R90, and R91 (which set the 3.6 GHz end point). As FS decreases from +13V to 0V, the SS output goes more negative by an amount determined by A15A1R2, R88, and R89 (which set the 3.0 GHz end point).

Note that the SS Oscillator frequency range is set by two factory-selected resistors on A15A1 Resistor Network. After these resistors are selected, the frequency range of the LO Oscillator is adjusted to provide the appropriate 4 to 1300 MHz output range.

NOTE

All reference designations in this circuit description, unless otherwise specified, are assumed to have the prefix A7. For example, the designation Q1 is actually A7Q1.

RF Source **D**

The RF Source microcircuit (A7U2) consists of two oscillators, a modulator, and a mixer. Its function is to provide a low-level output at the difference frequency of the two oscillators in the range of 4 MHz to 1300 MHz.

The LO (Local Oscillator) is tuned by the LO Driver (P/O A15) from 3.6 GHz to 4.3 GHz as the FREQ REF voltage (A15TP3) increases from 0V to +13V. This signal is mixed with the SS (Small Signal) Oscillator output, which is tuned from 3.6 GHz to 3.0 GHz by the SS Driver (P/O A15). A low-level mixer output results at the difference frequency, 4 MHz to 1300 MHz.

The mixer output power level is controlled by a modulator, which attenuates the SS signal input to the mixer. PIN diodes are used as resistors, with their resistance dependent on the current flowing through them. As more current flows from ALC Amplifier A7Q4 into the diodes, less SS signal reaches the mixer, and the mixer output is smaller.

Figure 8-34 is a simplified schematic of one of the varactor oscillators used in the RF Source. A series L-C circuit is formed by the varactor diode and L1; oscillation is maintained due to the loading by Q1, which behaves as a negative resistance. The cathode of the varactor is biased at -0.7V due to its direct connection with the base of Q1. The varactor anode (input) is biased negative, and draws negligible current.

The Amplifier/Detector consists of a microcircuit (A7U3) and some associated biasing circuitry (A7Q2 and A7Q3). Its function is to amplify the low-level mixer output of the RF Source (A7U2) to provide a maximum output signal of greater than + 10 dBm. It also provides a detected output that is used by ALC Amplifier A7U1, and a low-level RF output to the Phase Lock Control (A14, Service Sheet 11).

A7Q2, A7Q3, and associated circuitry provide the bias required for proper operation of the amplifier A7U3Q1 and A7U3Q2, which are in the microcircuit. The operation of the two bias circuits is similar, except that current flow through the two amplifier transistors is different because of different values of the current sense resistors. The biasing of A7U3Q1 is described.

Figure 8-34. Varactor Oscillator, Simplified Schematic

Figure 8-35 shows a simplified schematic and equivalent circuit of Q2, U3Q1, and associated circuitry. Q2 effectively functions as an error amplifier with a reference voltage (V_{REF}) of about +16V at the inverting input (base). The voltage at the non-inverting input of the error amplifier (emitter of Q2) is the difference between +20VF and the voltage drop across R29. When the two inputs to the error amplifier are equal, a constant current is established through U3Q1. This current may be calculated by the equation.

$$I = (+20V - V_{REF})/R29$$

A7L3, A7L4, A7C9, and A7C10 provide power supply decoupling.

The Detector in A7U3 is a half-wave rectifier which delivers a negative voltage to A7U1 that is proportional to the output level.

Automatic Leveling Control

The Automatic Leveling Control (ALC) circuit modulates the output of the Small Signal Oscillator to level the power output over the frequency range. The power output level is established by the OUTPUT dBm control on the front panel.

A reference voltage at the non-inverting input of error amplifier A7U1 is set by the front-panel OUTPUT dBm control. The reference voltage is adjusted by +10 dBm potentiometer A7R7 and 0 dBm potentiometer A7R9.

The detected voltage from A7U3 is fed back through R13 to the inverting input of U1. CR3 is used for temperature compensation; R14-16 supply bias current to CR3 and the detector diode in A7U3.

The output of U1 is applied to emitter follower Q4. As the output of U1 increases, more current flows from Q4, through CR4 and R17 and through the modulator PIN diodes in A7U2. Thus, if the RF output power increases, the detected voltage from U2 decrases below the reference voltage at the A7U1 non-inverting input. This causes the output of U1 to increase, and more current flow through the PIN modulator, which results in a lower output power. This negative feedback results in a constant output power from A7U3.

C7, R30, R31, and C12 provide frequency compensation for the ALC loop. CR2 limits the output of U1 from being excessively negative.

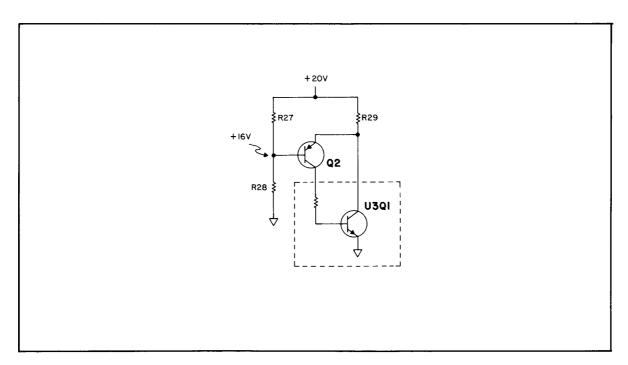


Figure 8-35. A7U3Q1 Bias, Simplified Schematic and Equivalent Circuit

1

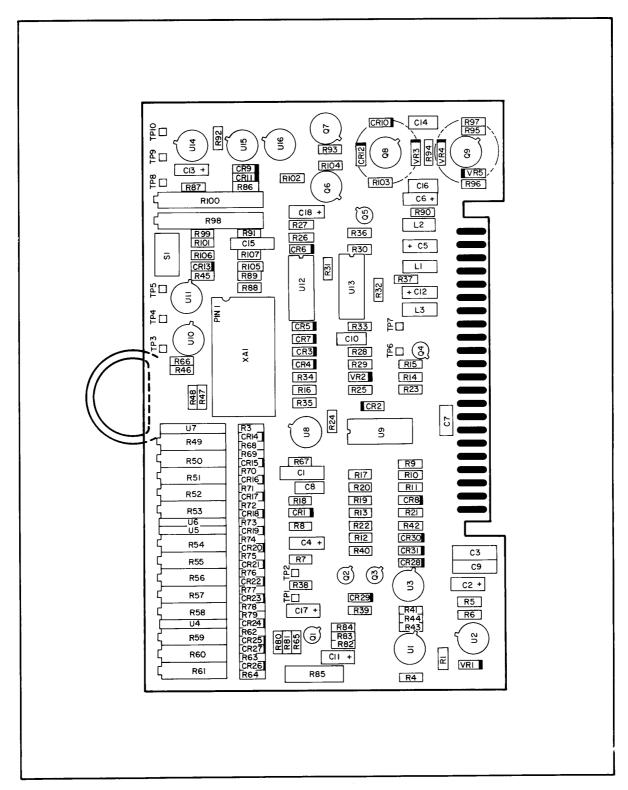


Figure 8-36. Shaper (A15), Component Locations

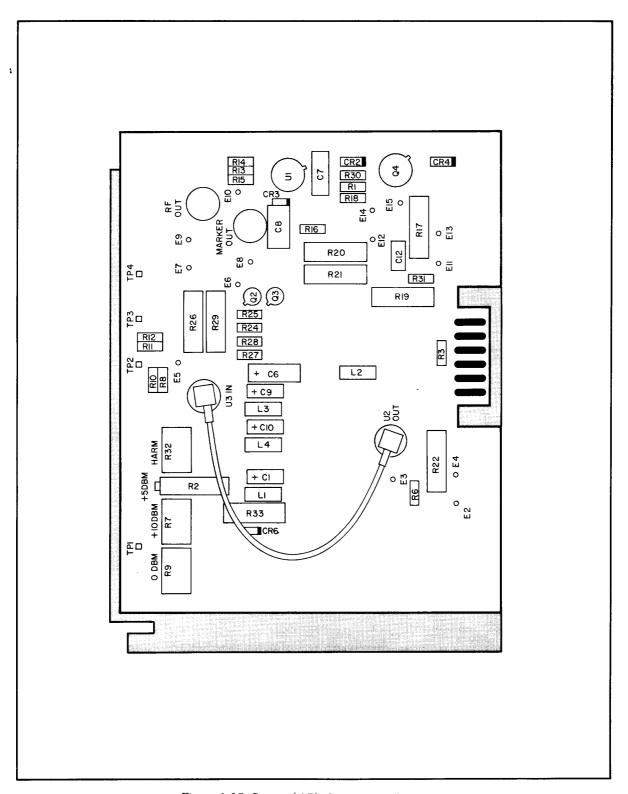
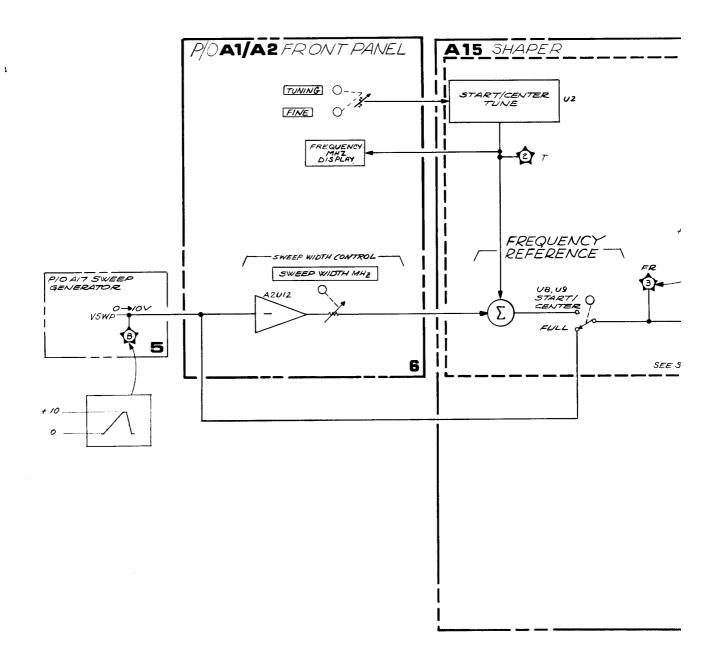
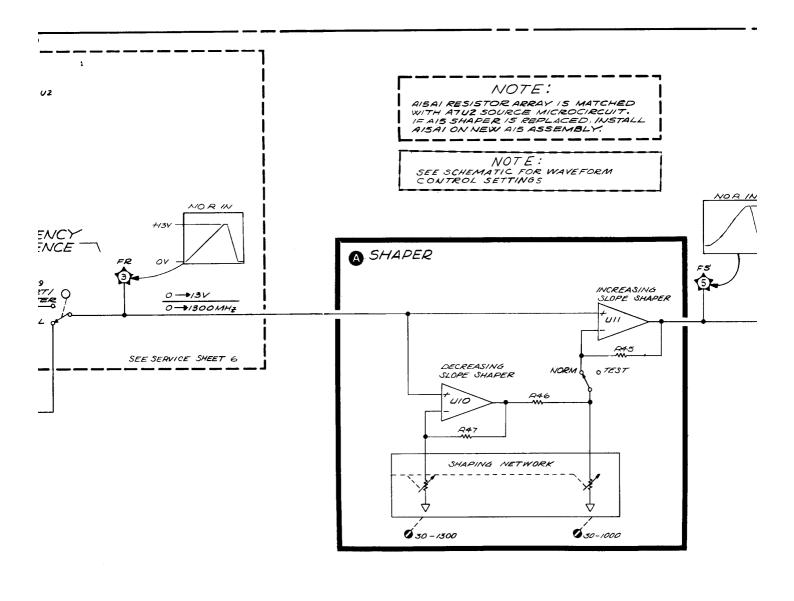
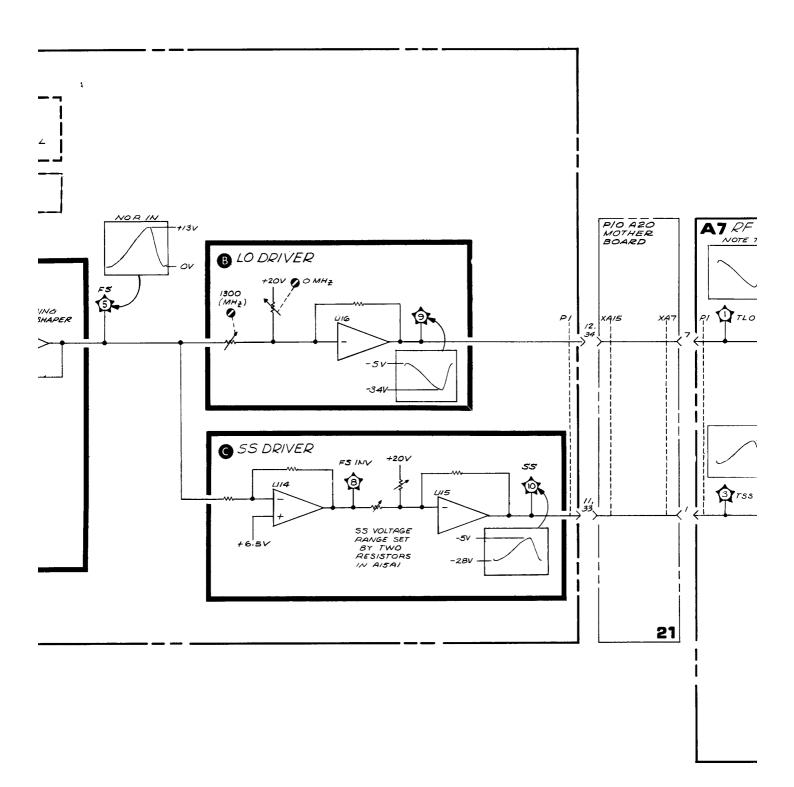
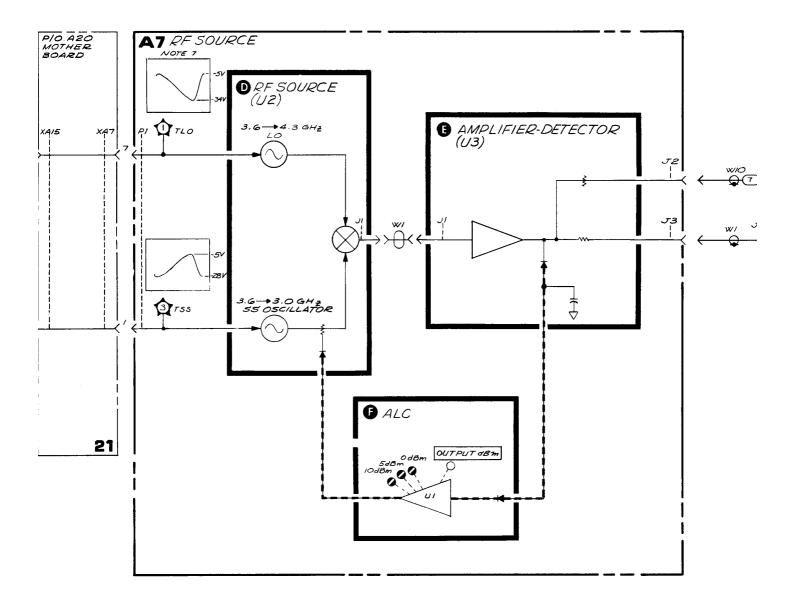






Figure 8-37. Source (A7), Component Locations

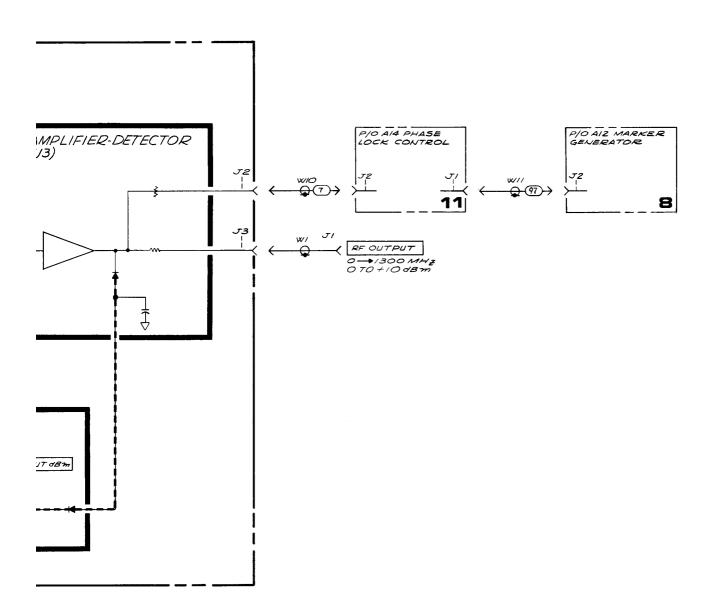
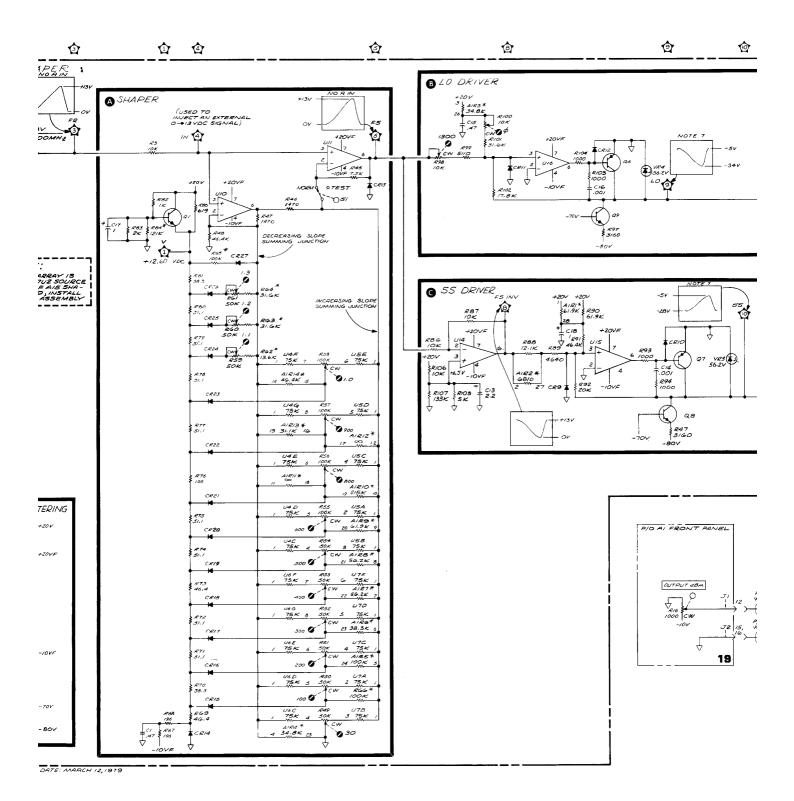
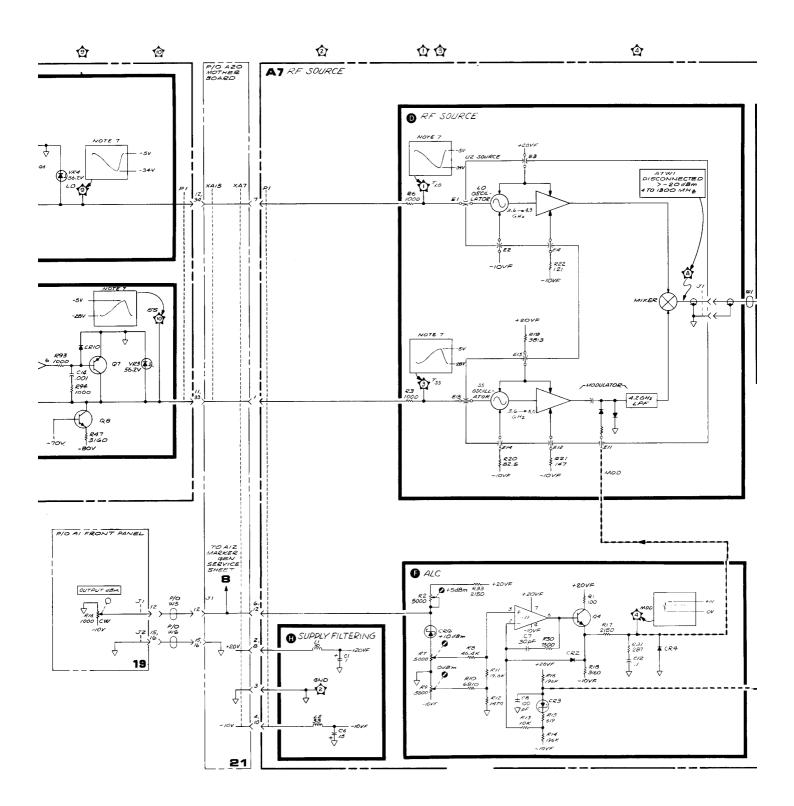




Figure 8-38. Shaper (A15) and Source (A7), Block Diagram 8-85/8-86

	A15			
<i>1</i>		TO/FROM	FUNCTION	SERVICE SHEET
	TUNE	J1-46	BLOCK	6
	TUNE	J1-46		6
	TUNING WIPER	J2- 4		6
7	TUNING WIPER	JZ- 4		6
	FINE WIPER	J2-3		6
		J2-3		6
#	TUNING V REF	J2-7		6
	VREF	J2-7		6
•	7=7	J2-23		6
,	FREQREF	XA14-9 J2-35		6
•	H LGTH	J5-7		6
8		J2-24	ļ	6
7	WIDTH 1-10	J1-31		6
29	7-70	J1-31		6
8	20-77	J1-29		6
30	20-72	J1-29		6
9	H FULL	J1-32		6
3/	H FULL	J/-32		6
0	VSWP	XA 17- 18,40		6
32	VSWP	XA17-18,40		6
//	V55	X47-/	•	
33	V55	XA7-/	•	
12	VL0	X47-7	6	
34	VLO	XA7-7	ß	
3	H BLANK	XA/7-23		6
35	H BLANK	XA/7-23		6
14	+20V		•	
36	+20V		ĕ	
/5	▽		6	
37	▽		•	
16	+5.2V			6
30	+5.2V			6
17	▽		0	
39	▽		6	
18	-10V		6	
40			•	
19	L F MARKER	XA12-19,41		6
41	L F MARKER		l .	6
20	· 🗸		6	
42			•	
21	∀		0	
43	1		_	
22		XA/9- 10,32	•	
44		XA19 - 10,32		
_	1	1	1 4	
	1			
	<u> </u>			

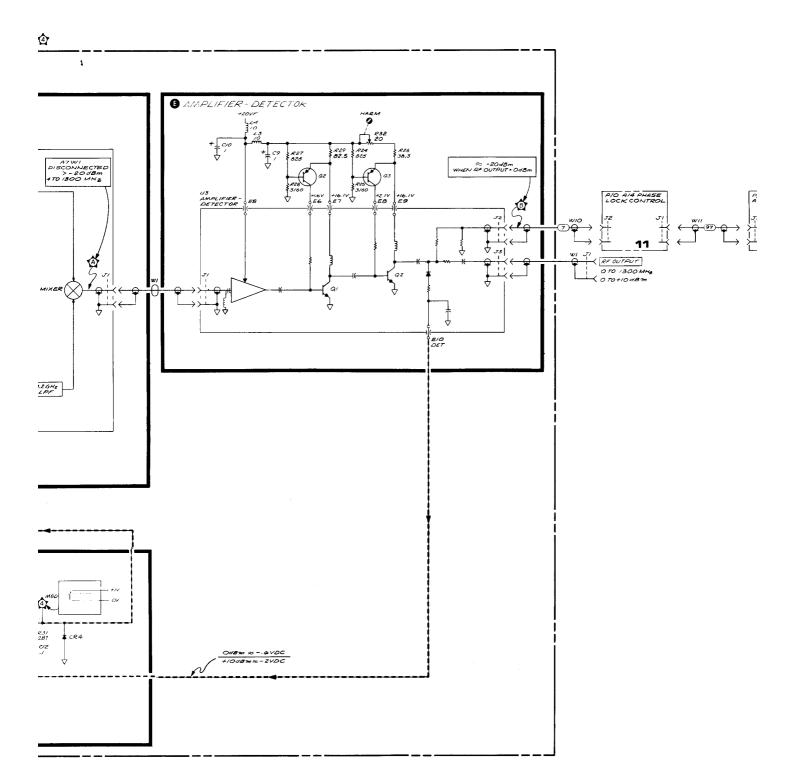


Figure .

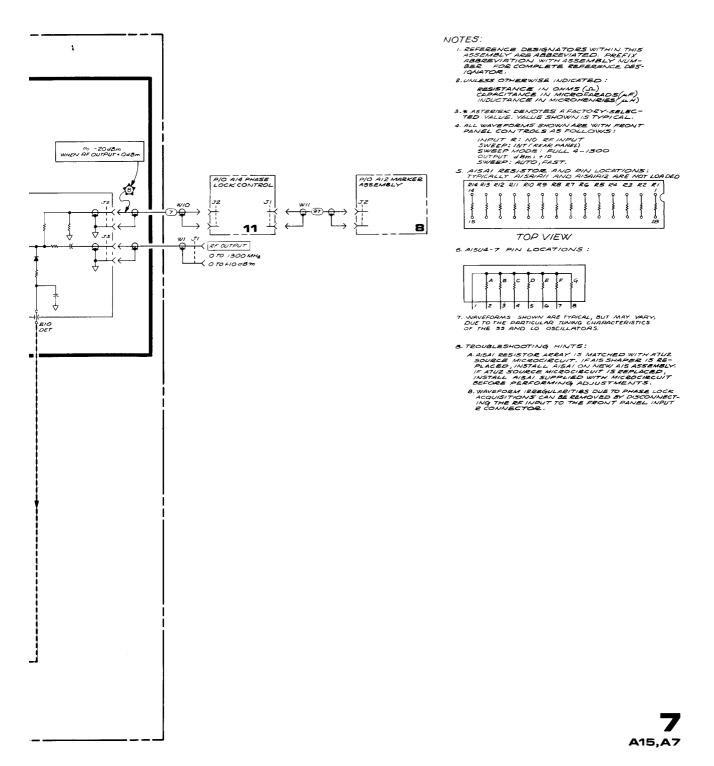


Figure 8-39. Shaper (A15) and Source (A7), Schematic Diagram 8-87/8-88

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS

ASSEMBLY	SERVICE SHEET	DESCRIPTION
	5	SWEEP pushbuttons
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch
	7	OUTPUT dBm control
	8	MARKERS MHz pushbuttons
A1 Front Panel	11	UNLOCKED indicator
	12	Absolute R measurement select
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER and VIDEO FILTER
	16	HORIZONTAL POSN and GAIN controls
	19	All front panel controls
	6	Applies to digital applicator for EDEOLIFAIOV MILE disclar
A2 Analog Processor	15	Analog-to-digital converter for FREQUENCY MHz display.
Az Allalog Flocessor		Analog processor, switch control logic, and ±6V power supplies
	16	V RAMP amplifier
A3 B Sampler	9	RF to IF down-conversion
A4 A Sampler	9	RF to IF down-conversion
A5 R Sampler	9	RF to IF down-conversion
A6 VTO and IF Switch	10	Voltage Tuned Oscillator
	12	IF Switch
A7 Source	7	RF Source
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector
A9 Phase Detector	14	Phase Detector
A10 Polar Converter	14	Polar Converter
A11 R Detector	13	R INPUT, magnitude detector
A12 Marker Generator	8	Markers
A13 Phase Lock	11	Phase Lock
A14 Phase Lock Control	11	Phase Lock loop control
A15 Shaper	6 7	Sweep width, tuning, frequency reference, and frequency display. Shaping and RF Source drive.
A16 DC Regulator	20	Low Voltage Power Supplies
A17 Sweep Generator	5	Sweep Generator
A18 Deflection Amplifiers	16	Deflection Amplifiers
A19 Rectifier	18	Evternal leterface
A 12 Horthilds		External Interface
	20	Low Voltage Power Supplies
A20 Motherboard	21	Motherboard wiring list
A21 High Voltage Power Supply	17	CRT bias and blanking control
A22 Frequency MHz Display	6	Frequency display
A23 Rear Panel	18	External Interface and Rear Panel (A23)

SERVICE SHEET 8

MARKER GENERATOR (A12), CIRCUIT **DESCRIPTION**

The Marker Generator (A12) provides frequency markers at 50-, 10-, or 1-MHz intervals over the instrument frequency range. The RF signal is mixed with harmonics of a crystal-controlled, 50-MHz oscillator to produce the 50-MHz markers. The 10-and 1-MHz markers are produced in the same way, except that the output of the 50-MHz oscillator is first divided by 5 or 50. The H MKR output signal is sent to the Deflection Amplifiers (A18, Service Sheet 16).

The network analyzer has a provision for external markers, in which case a signal from an external oscillator is mixed with the RF signal to produce a marker.

Marker Oscillator B

The Marker Oscillator circuit includes the crystalcontrolled, 50-MHz oscillator, frequency dividers, and a means to select the 50-, 10-, and 1-MHz markers.

50-MHz Oscillator. The 50-MHz Oscillator consists of amplifier U4D and associated circuitry. The frequency-determining network is formed by crystal Y1, tank circuit L1 and C27, and FREQ ADJ capacitor C29. R35 provides a low load impedance to Y1. Amplifier U4C is a buffer stage. R34 and R36 provide the pulldown necessary for emitter-coupled logic (ECL) at the outputs of U4D and U4C.

NOTE

An ECL logical low (0) is about + 3.3V and a high (1) is about + 4.1V. A change in ECL state is represented by a voltage change of about 0.8V.

The signal at TP1 is a 50-MHz square wave whose amplitude varies between +3.3V and +4.1V.

Divide by 5. The ECL counter U1 is connected in a configuration to divide by 5 when the frontpanel MARKERS MHz switch is set to 1 or 10. The input at U1 pin 7 is a 50-MHz square wave, and the output at U1 pin 4 is a 10-MHz square wave. If either 1- or 10-MHz markers are selected, demultiplexer U6A or U6C pulls U1 pin 9 (reset)

low, effectively enabling the counter. When the MARKERS MHz switch is set to OFF or 50, U1 pin 9 is high and the counter does not count.

Divide by 10. When the MARKERS MHz switch is set to 1, ECL counter U2 pin 9 is pulled low, inhibiting the reset. The 10-MHz square wave from U1 pin 4 is the \div 5 clock input at U2 pin 7. The 2-MHz square wave output at U2 pin 2 is fed back to the $\div 2$ clock input at U2 pin 12. The final output at U2 pin 15 is a 1-MHz square wave. When the MARKERS MHz switch is set to OFF, 50, or 10, U2 pin 9 is high and the counter does not count.

Marker Select. Marker Select multiplexer U5 selects the 1-MHz square wave from U2 pin 15, the 10-MHz square wave from U1 pin 4, or the 50-MHz square wave from U4C pin 14 and sends the output at U5 pin 15 to the Harmonic Generator.

Harmonic Generator (A)

The square wave from the Marker Oscillator circuit is applied to non-inverting amplifier U4B and to inverting amplifier U4A, whose outputs are of opposite polarity. This provides a logic level change of 1.6V (twice the normal ECL output) across the step-recovery diode CR3, alternately turning it on and off. When the diode is turned on, however, the reversal of current flow is resisted by the trace inductances. The collapsing inductive field produces negative spikes with a frequency spectrum containing harmonics of the Marker Oscillator frequency.

Internal Marker Sampler and Bias (D)

The sampler diode CR2 produces a zero-frequency beat output each time the RF INPUT frequency equals a harmonic of the Marker Oscillator. This difference frequency is gated through source follower Q2A, Q2B to the Step Gain Amplifier. (The RF Source signal is routed through A14 Phase Lock Control, where it is attenuated, before it is sent to the Marker Generator.)

When either 10- or 50-MHz markers are selected, FET O1 is turned on, and the sampling efficiency is adjusted by BIAS 10, 50 potentiometer R12. When 1-MHz markers are selected, a low at pin 10 of demultiplexer U6B switches +5.2V to the gate of Q1, turning it off and adding BIAS 1 potentiometer R13 to the circuit. This allows independent adjustment of the 1-MHz sampling efficiency.

External Marker Mixer

The operation of the External Marker Mixer cir-'cuit is similar to that of the Internal Marker Sampler. Diode CR1 mixes the RF Source frequency (from A7) with the frequency of the rear-panel EXT RF MKR signal. The difference frequency is gated through source follower Q3A, Q3B to the Step Gain Amplifier. If only the external marker is desired, the front-panel MARKERS MHz switch should be in OFF.

Step-Gain Amplifier (3)

The sampler difference frequencies are passed to amplifier Q5, Q6 through buffer Q4 and a 3.4-MHz low-pass filter. The gain of the amplifiers for the 1-, 10-, and 50-MHz markers is set by GAIN 50 potentiometer R19, GAIN 10 potentiometer R26, and GAIN 1 potentiometer R5. Q7 is turned on, placing R5 in the circuit, when its gate is pulled low by selection of 1-MHz markers. Selection of 10-MHz markers places R26 in the circuit through Q8 in the same manner. (GAIN 50 affects GAIN 10 and GAIN 1.)

Gated Amplifiers

The signal from the Step-Gain Amplifier (a birdie pattern similar to that shown in Figure 8-41) is gated to pass through the 400-kHz low-pass filter when the front-panel SWEEP WIDTH MHz is set to a sweep width of 20 MHz or less and when START or CENTER mode is selected. For

SWEEP WIDTH MHz settings of 50 or greater, or in FULL 4-1300 mode, the 400-kHz low-pass filter is bypassed. VR2 establishes the correct negative supply voltage.

Modulator (1)

The Modulator, which consists of multiplier U10 and associated circuitry, establishes a fairly constant amplitude birdie (BIRDY) signal at TP4 regardless of the RF source power established by the front-panel OUTPUT dBm control.

Figure 8-40. compares the birdie (BIRDY) monitored at TP4 with the PULSE monitored at TP5. A positive voltage at the non-inverting input of the comparator in U9 sets the threshold that must be exceeded at the inverting input to change the logic state at the output. When the amplitude of the birdie signal goes sufficiently positive, the output of the comparator (TP5) goes low, generating a negative-going, square-wave pulse. The amplitude of the birdie signal varies at a frequency-modulated rate corresponding to the changing difference frequency obtained from the Internal Sampler and Bias circuit or from the External Mixer circuit. R29 provides the required amount of hysteresis for noise immunity. The result is a frequency-modulated pulse train in which the pulse width increases as the difference frequency approaches zero. (See Figure 8-41).

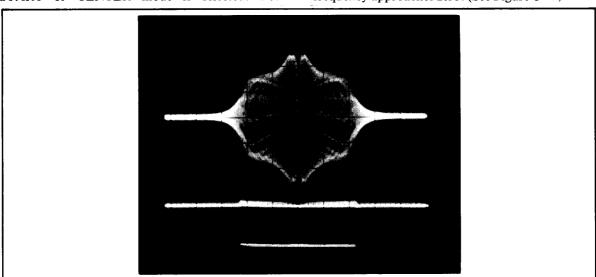


Figure 8-40. BIRDY and PULSE Waveforms

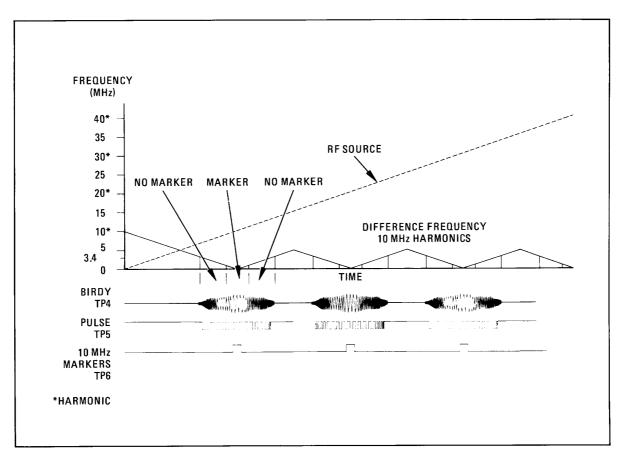
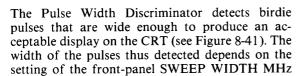



Figure 8-41. Pulse Width Discrimination

Pulse Width Discriminator (K)

switch.

Essentially, the square-wave birdie (PULSE) signal is compared with the output pulse generated by a one-shot multivibrator. The output pulse width is controlled by the three lines from the SWEEP WIDTH MHz switch via the Switch Interface circuit.

One-Shot Multivibrator U12 is triggered on the negative edge of the PULSE signal at pin 1. At this time the output (pin 8) goes high. The output remains high until one of the following events occurs: (1) U12 is reset (low at pin 5), or (2) U12 is "timed out" at the end of a period determined by

the RC time constant of R30 and capacitor C22, C23, C24, C25, or C53, as selected by multiplexer U11 (see table on schematic). When either of these conditions is met, the output pulse is terminated (U12 pin 8 goes low).

As shown in Figure 8-42, a marker is displayed on the CRT when the birdie pulse width is greater than the output pulse of U12.

NAND gate U14D controls the reset of U12. Since U14 pin 13 is high when U12 is triggered, a low at U14D pin 11 can occur, resetting the multivibrator, only if the PULSE signal goes high before the end of the RC time period (see Figure 8-42).

The D input (pin 2) of Marker Flip-Flop U13 is transferred and latched at the output (pin 5) when the clock input (pin 3) transitions from low to high. When U13 pin 5 is low, a marker is displayed on the CRT.

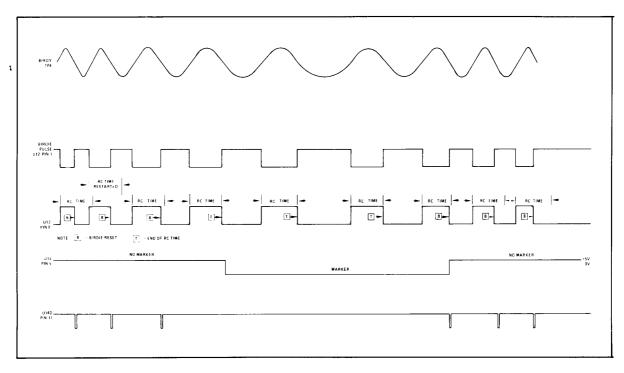


Figure 8-42. Pulse Width Discriminator Timing

Marker Summing (

NAND gate U14C functions as an OR gate that sends a marker signal (H MKR) to A18 Deflection Amplifiers when either pin 10 or pin 11 is low (or when both inputs are low). The positive-going MK signal is monitored at TP6 and (as H MKR) is sent to the Deflection Amplifiers (A18, Service Sheet 16).

When the LF MKR line from the Frequency Reference (A15) goes low, a marker is displayed on the CRT that is centered about the frequency to which the network analyzer is tuned. A marker is generated in A15 only in the FULL 4—1300 mode.

Marker Reset 1

The Marker Reset circuit sets the output of flipflop U13 high (the no-marker state) at regular intervals. A voltage transient could clock an undesired low logic level through the flip-flop, causing a marker to be displayed until the next normal clock pulse. The Marker Reset circuit removes such random markers by a negative pulse to U13 pin 4 at intervals of about 15 ms. Multivibrator U15 free-runs at a frequency of about 68 Hz, generating $10-\mu s$ negative pulses. In the FULL 4—1300 mode, in SWEEP WIDTH MHz settings of 50 through 1000, or in the MARKERS MHz setting of 1, U13 pin 4 (reset) is held low and U15 pin 3 remains high.

C42 charges through R47 and R56 but discharges through R56 only. The duty cycle of U15 is set by the ratio of the two resistors. Therefore, the output at U15 pin 3 is high for about 15 ms and low for 10 μ s. The negative pulse is inverted through U14B and again through U14A to set U13 pin 5 high.

The H MK EN input to U14B (from A14 Phase Lock Control) is high during trace, if RF frequency is greater than 3 MHz, and low during retrace. Thus, U13 pin 5 is held high during the retrace time, and the effect of a transient is nullified throughout retrace.

Switch Interface **G**

The Switch Interface circuit provides inputs to other circuits in the Marker Generator that depend on the front-panel settings. The effect of each switch or control setting is described as part of the pertinent circuit description.

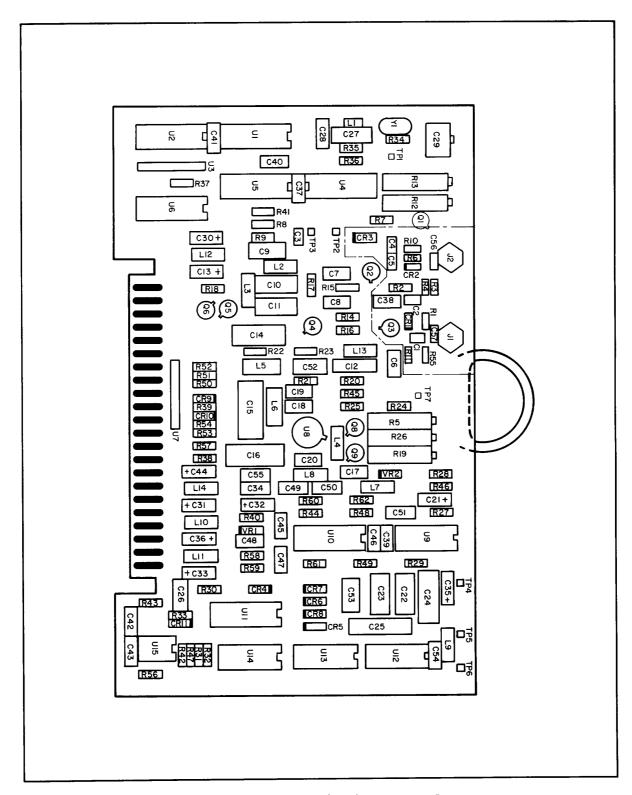
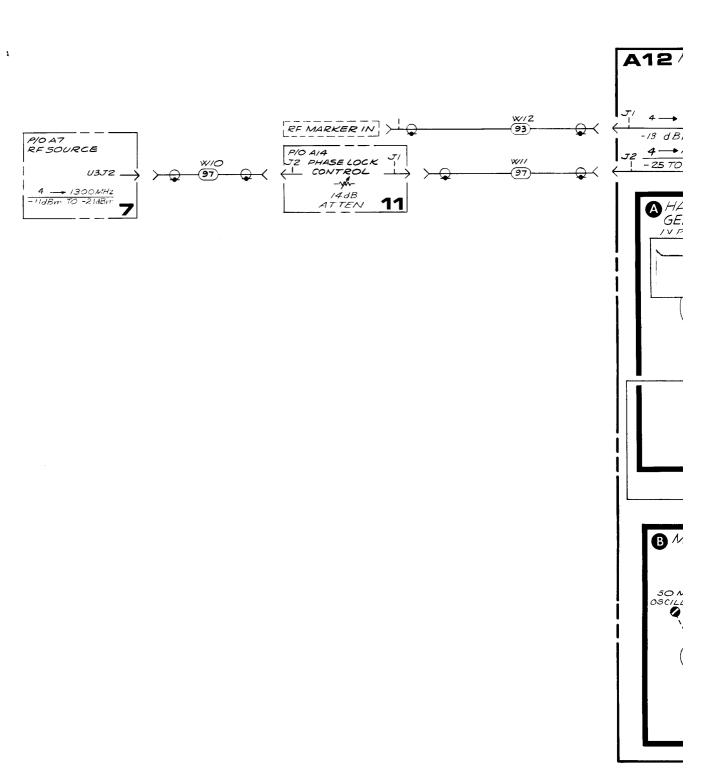
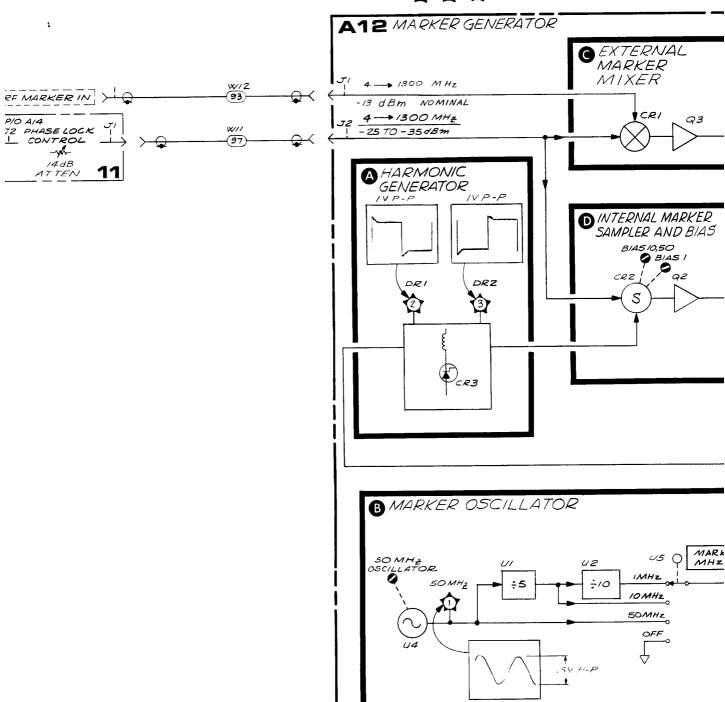
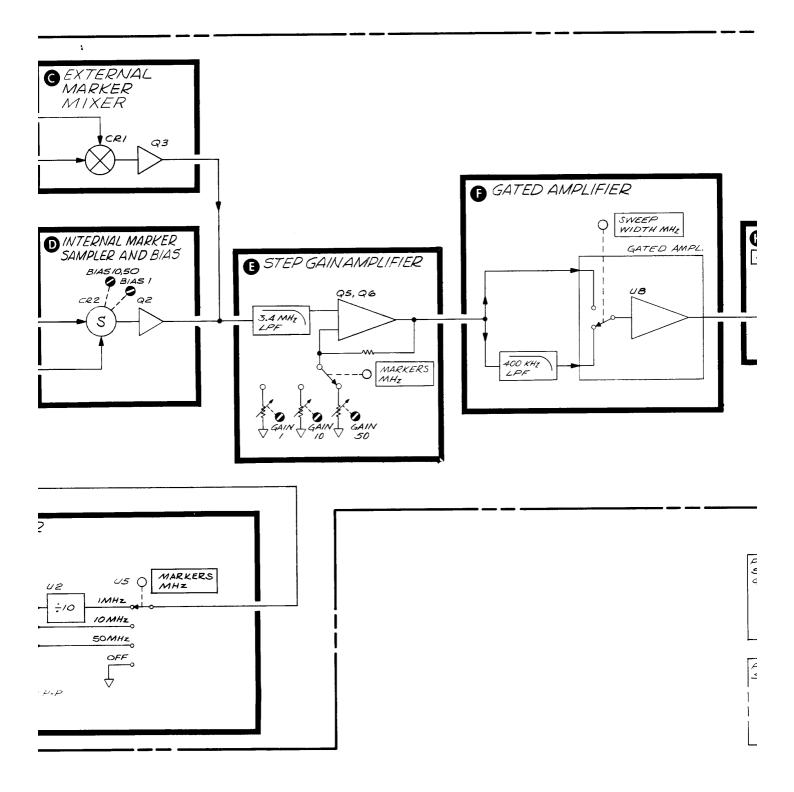




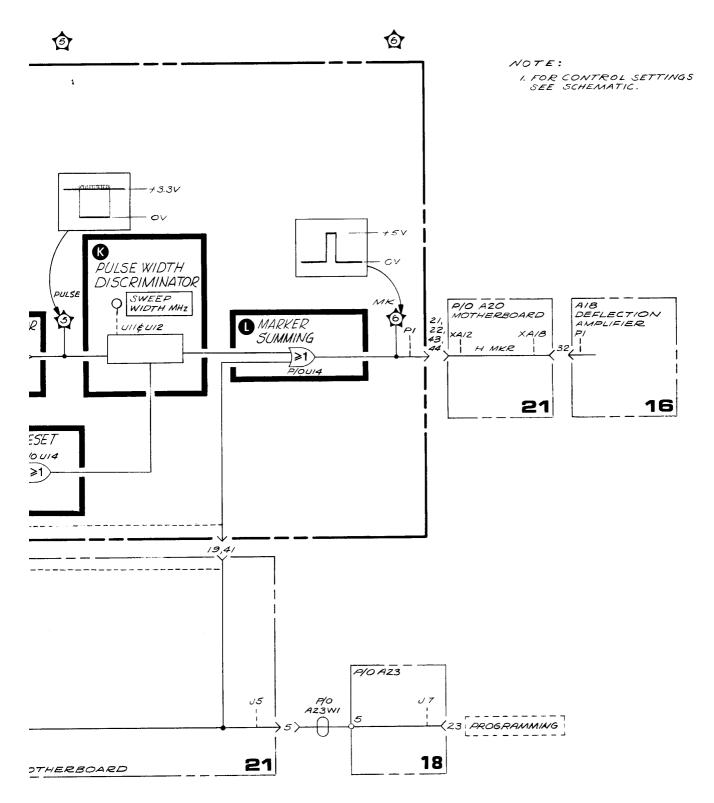
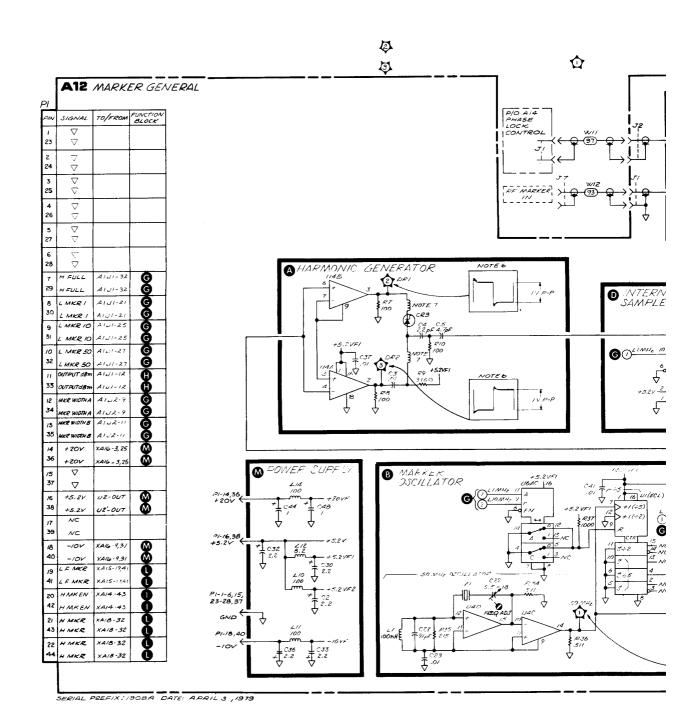
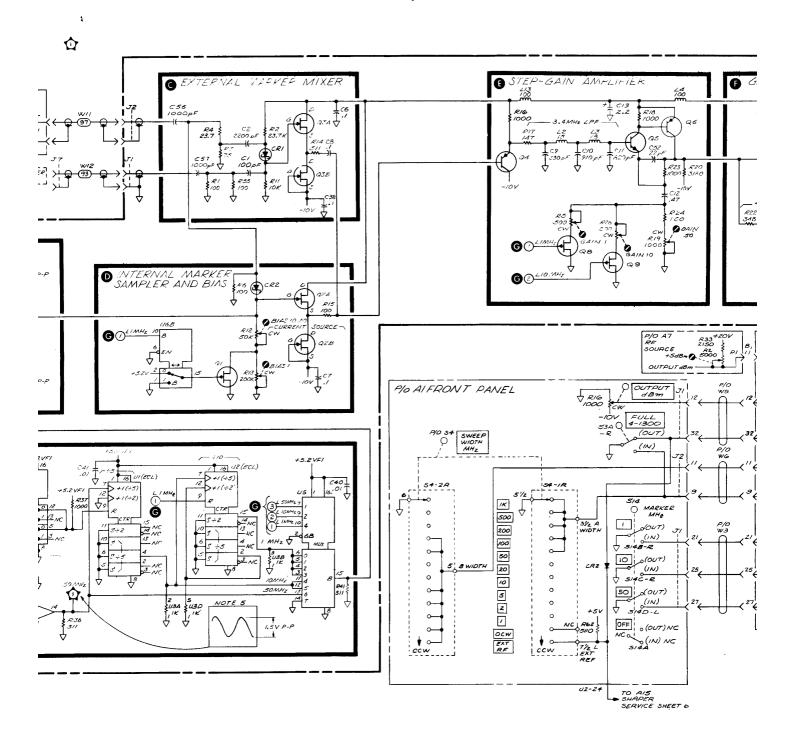
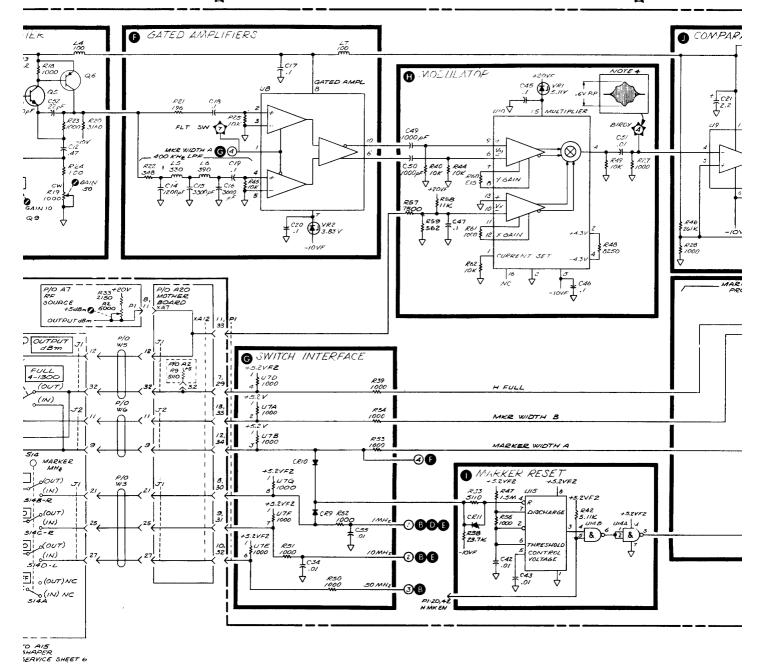
Figure 8-43. Marker Generator (A12), Component Locations

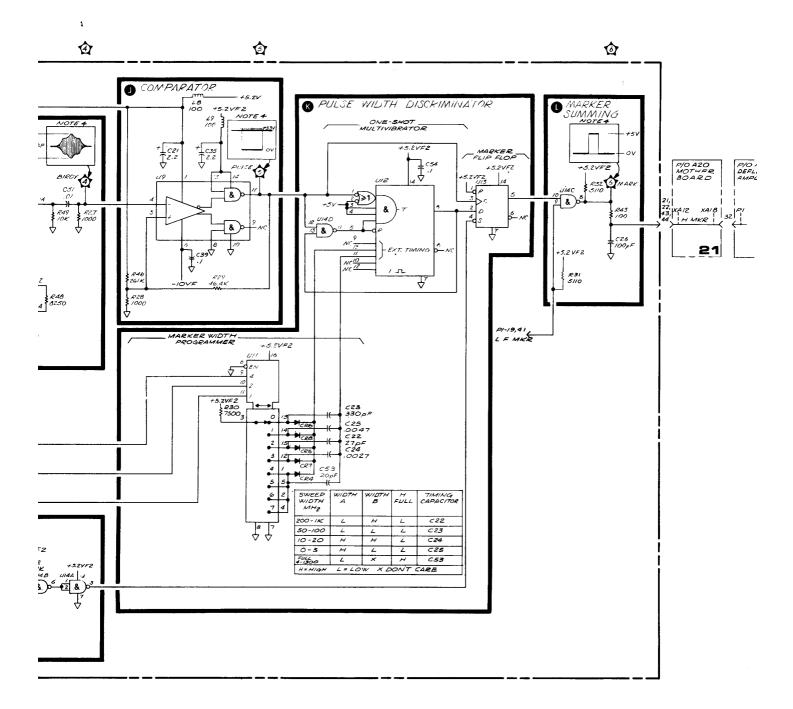


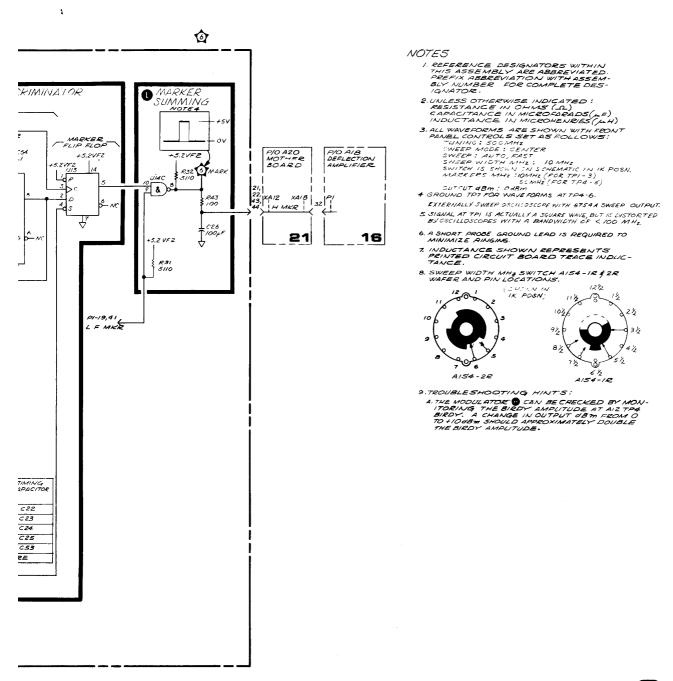
SERIAL PRE

含合金

SERIAL PREFIX: 1825A 16 ALG. 78


Figure 8-44. Marker Generator (A12), Block Diagram 8-95/8-96


1

8 A12

Figure 8-45. Marker Generator (A12), Schematic Diagram 8-97/8-98

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS

ASSEMBLY	SERVICE SHEET	DESCRIPTION
1	5	SWEEP pushbuttons
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch
	7	OUTPUT dBm control
	8	MARKERS MHz pushbuttons
A1 Front Panel	11	UNLOCKED indicator
	12	Absolute R measurement select
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER, and VIDEO FILTER
	16	HORIZONTAL POSN and GAIN controls
	19	All front panel controls
	19	All Holit panel controls
	6	Analog-to-digital converter for FREQUENCY MHz display.
A2 Analog Processor	15	Analog processor, switch control logic, and $\pm6V$ power supplies
	16	V RAMP amplifier
A3 B Sampler	9	RF to IF down-conversion
A4 A Sampler	9	RF to IF down-conversion
A5 R Sampler	9	RF to 1F down-conversion
A6 VTO and IF Switch	10	Voltage Tuned Oscillator
ACTIO and it conton	12	IF Switch
A7 Source	7	RF Source
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector
A9 Phase Detector	14	Phase Detector
A10 Polar Converter	14	Polar Converter
A11 R Detector	13	R INPUT, magnitude detector
A12 Marker Generator	8	Markers
A13 Phase Lock	11	Phase Lock
A14 Phase Lock Control	11	Phase Lock loop control
A15 Shaper	6 7	Sweep width, tuning, frequency reference, and frequency display. Shaping and RF Source drive.
A16 DC Regulator	20	Low Voltage Power Supplies
A17 Sweep Generator	5	Sweep Generator
A18 Deflection Amplifiers	16	Deflection Amplifiers
a discontinuity	-	
A19 Rectifier	18	External Interface
	20	Low Voltage Power Supplies
A20 Motherboard	21	Motherboard wiring list
A21 High Voltage Power Supply	17	CRT bias and blanking control
A22 Frequency MHz Display	6	Frequency display
A23 Rear Panel	18	External Interface and Rear Panel (A23)

SERVICE SHEET 9

SAMPLERS (A3, A4, A5)

The Samplers (A5: R, A4: A, and A3: B) act as frequency converters, to produce three 1 MHz IF signals with the same amplitude and phase relationship as the R, A, and B RF inputs. The Samplers are identical and the following discussion applies to all of them.

The Sampler receives an RF input from the front panel and a repetitive sampling pulse from the Voltage-Tuned Oscillator (A6, Service Sheet 6). The RF input is applied to a diode gate that is switched on and off by the narrow sampling pulse from the VTO. The IF output is obtained by accumulating amplitude samples of the RF input which are taken at progressively later points in

each RF cycle. The time taken to collect enough samples to reconstruct a cycle of the RF input is much longer than the cycle period of the RF. Thus, the RF input is time-stretched to a low frequency waveform.

Figure 8-46 shows the development of an IF frequency for more than one RF Source frequency with the VTO repetition rate held constant. In this example, the VTO is operating at 10 MHz and a 1 MHz IF output is produced for RF frequencies of 9 MHz and 29 MHz. Actually, an IF ouput is produced for each RF frequency that is 1 MHz higher or lower than a multiple of the VTO repetition rate. In general, the relationship between the input and output frequencies of a sampler can be calculated as follows:

$$F_{IF} = F_{RF} \pm N \cdot F_{VTO}$$



Figure 8-46. Developing an IF Output With Sampling

N is a multiple of the VTO repetition rate and can be considered the harmonic number of the VTO. For example, if the VTO frequency is 10 MHz:

- An RF frequency of 9 or 11 MHz mixes with the 10 MHz pulse to produce a 1 MHz IF.
- An RF frequency of 29 or 31 MHz mixes with the third harmonic of the VTO to produce a 1 MHz IF (See Figure 8-46).
- An RF frequency of 499 or 501 MHz mixes with the fiftieth pulse harmonic to produce a 1 MHz IF.

The Sampler IF output is very similar to that produced by a harmonic mixer. The sampler output contains frequencies at the sum and difference of the RF frequency and every harmonic of the sampling pulse rate, but due to an inherent low pass filter characreristic, the predominate IF output is produced by the RF mixing with the closest VTO harmonic. Figure 8-47 shows a spectral representation of the RF and pulse inputs, and the sampler IF output. The power contained in the pulse output is equally divided between every harmonic of its repetition rate, which is also shown as 10 MHz. Each pulse harmonic mixes with the RF signal, shown as 19 MHz, to produce two frequencies (sum and difference) at the sampler output.

Figure 8-47. Frequency Relation Between Sampler Inputs and Output

The sampler output frequencies for the first three pulse harmonics in this example are shown in Figure 8-47. Note that the 20 MHz second harmonic mixes with the 19 MHz RF to produce a 1 MHz IF output. The higher output frequencies are present, but attenuated.

This low-pass characteristic has a theoretical null at every harmonic of the pulse frequency. In practice, some of the 10, 20, 20 MHz pulse harmonics feed through to the output, due to imbalances in the sampler diode switch.

If the RF input contains a small amount of second harmonic, it will mix to produce a small IF signal at 2 MHz. This IF signal will appear on the Sampler output, but will be rejected by IF filters further on in the Receiver.

The Sampler operates for pulse repetition rates of 5 Mz to 30 MHz. A transistor input amplifier and sample and hold circuit are contained in a microcircuit which is mounted on a printed circuit board. The board contains a preamplifier, output amplifier, and biasing circuitry for the diode switch.

NOTE

All reference designations in this circuit description, unless otherwise specified, are assumed to apply to A3, A4, and A5. For example, the designation Q1 applies to A3Q1, A4Q1, and A5Q1.

Input Buffer A

A high-frequency transistor in U1 is connected as a common-base amplifier with unity voltage gain. This stage provides isolation between the diode switch and the RF input. The transistor is biased at approximately 20.7 milliamperes by R26; R4 lowers the power dissipated by the transistor to improve reliability.

Sample and Hold B

This circuit, located in U1, performs the sampling process to provide a low-frequency replica of the RF input. The Sample and Hold circuit consists of a diode switch and a holding capacitor; its operation is illustrated in Figure 8-48.

Each time the switch closes, the capacitor charges to the voltage of the input signal; when the switch opens, the capacitor holds this voltage until the switch closes again. The waveform on the capacitor is a series of voltage steps which approximate a sinusoidal signal at a lower frequency than the RF input.

In Figure 8-48, the RF input frequency is shown slightly less than twice the pulse repetition rate. Thus, Figure 8-48 is the time-domain representation of the same conditions as shown in Figure 8-47 spectrum representation. The timing illustration shows each consecutive sampling pulse occurring progressively sooner on the RF waveform.

The diode switch, in microcircuit U1, is a bridge of four fast-switching hot carrier diodes which are normally reverse biased by the Diode Bias circuit. This reverse bias prevents the RF input from forward biasing the diodes. The RF signal is sampled when a negative-voltage input pulse of very short duration (0.3 nanosecond) is applied to the balun transformer, where it is converted into two equal pulses of opposite polarity. These two pulses drive the diode bridge to momentarily overcome its reverse bias and switch it into conduction. When the diode switch opens, there is no discharge path to drain away the charge, and the voltage remains constant until the next pulse.

Preamplifier **D**

The voltage across the holding capacitor in U1 is the input to the preamplifier (Q2 and Q3) which is connected as a non-inverting feedback amplifier with a voltage gair of two. Q2 is an enhancement mode Field Effect Transistor (FET) with a very high input impedance (limited by R27).

Feedback Amplifier (3

The Preamplifier output is applied to emitter follower Q1, and fed back to the holding capacitor network in U1. The effect of this feedback is to fully charge the holding capacitor between consecutive samples. This is illustrated in Figure 8-49.

During the 0.3 nanosecond time that the sampling pulse forward biases the diode switch, the capacitor network (for this example C_X , C_Y , and C_Z) is charged from the previously sampled voltage, towards the new value of the RF input signal at the instant of sampling. Since the pulse is

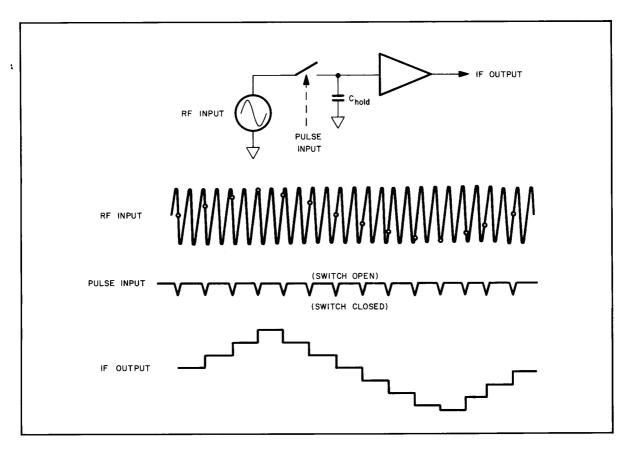


Figure 8-48. Timing Representation of Sampler

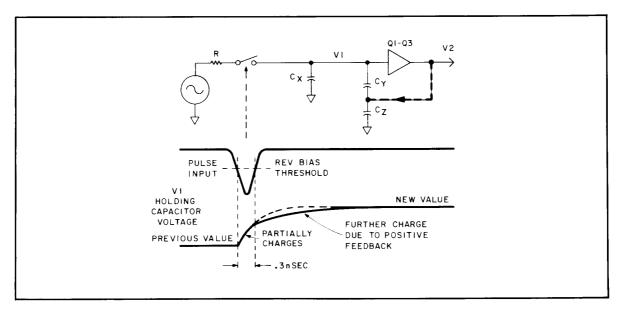


Figure 8-49. Feedback Employed to Boost Charge on Holding Capacitor

of short duration, the voltage changes only a fraction of the final required value. This fraction is a constant, determined by pulse duration, series resistance, and the capacitor network.

Positive feedback is used to complete the charging of the holding capacitor before the next sampling pulse occurs. During a sampling pulse, the amplifier does not have enough time to respond to the new value stored on C_X (due to its limited bandwidth). Gradually its output starts to change; this change is fed back to the amplifier input through a capacitive divider formed by C_X and C_Y . This causes the amplifier output, and therefore C_X , to charge further until a stable output voltage is reached. This final value is reached before the next pulse, and is determined by C_X , C_Y and amplifier gain, which is adjusted by FB potentiometer R11.

If the holding capacitor voltage does not track the input (does not fully charge to the RF input level at the instant of sampling), then more samples are required to accurately reconstruct the RF waveform at the IF frequency. The IF output (amplitude and phase) becomes dependent on how many samples are taken, and therefore, it becomes dependent on the pulse repetition rate. FB potentiometer R11 is adjusted to minimize the dependency of the IF output on the pulse repetition rate, which appears as a trace discontinuity (magnitude or phase) at the phase lock acquisition points when the receiver sweeps a broad frequency range.

Figure 8-50 illustrates why the holding capacitor must be 100 percent charged for the IF output to be independent of the pulse repetition rate. Four examples are given; each illustrates the "ideal" IF signal that the sampler is attempting to reconstruct, and the actual sampler output.



Figure 8-50. Actual Sampler IF Output Compared to Ideal Output

When the pulse repetition rate is high (30 MHz) a very accurate reconstruction is possible since many (30) samples are taken for every IF cycle. If the capacitor only charges to 50 percent of the new voltage on each sample, the peak-to-peak amplitude of the actual sampler output is only slightly reduced from the ideal.

When the pulse repetition rate is low (5 MHz), very few (5) samples are taken for every IF cycle. If the holding capacitor charges 100 percent to the new value every sample, the peak-to-peak amplitude of the actual sampler output is very accurate. If the holding capacitor is only 50 percent charged, it is always trying to "catch up", and never reaches the new value. This results in an IF output that is greatly reduced in peak-to-peak amplitude from the ideal.

Diode Bias G

The reverse biasing of the diode switch is critical for proper sampler operation. This bias must prevent a 0 dBm RF input from forward biasing the diode switch, yet allow the sampling pulse to forward bias the diode switch during a sampling interval.

The pulse waveform that drives the diode switch is shaped similar to one-half of a sinewave. If the diode reverse-bias voltage increases, the pulse must overcome more reverse voltage before the diodes conduct. Thus, sampling time is dependent on the bias level, and sampling time is reduced as the bias level is increased.

Resistors R22-25 form a resistive divider network that delivers two equal voltages of opposite polarity to the diode switch in U1.

Output Amplifier **()**

Q4 and Q5 form a non-inverting adjustable gain amplifier, that is adjusted for overall Sampler unity voltage gain (from RF input to IF output).

R13 and R14 attenuate the input signal and set the Q4 base voltage. Q4 and Q5 are connected in a negative feedback loop. Amplifier gain is adjusted by potentiometer R16.

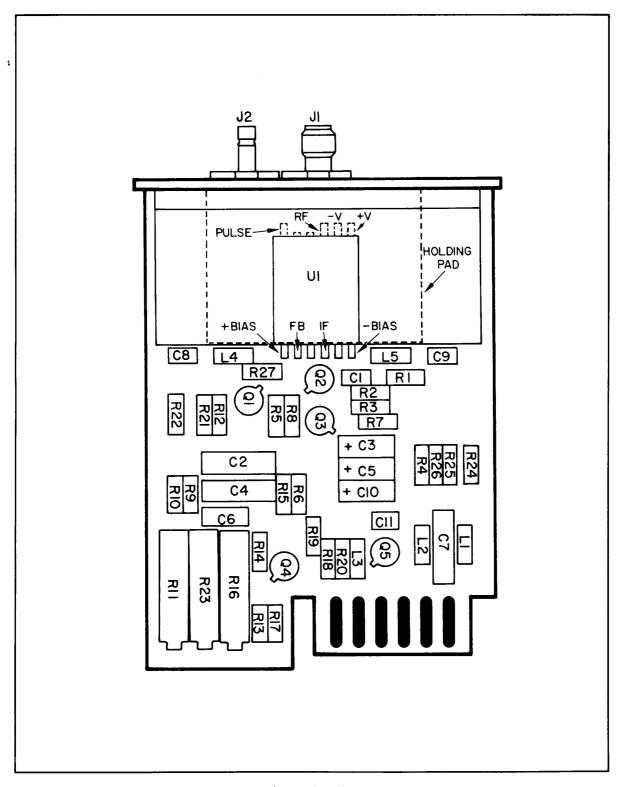
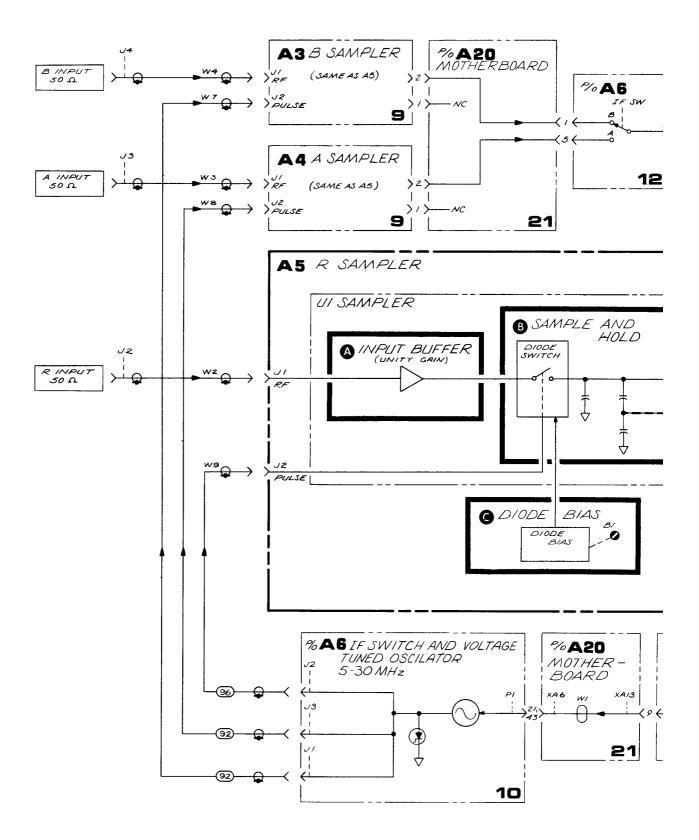
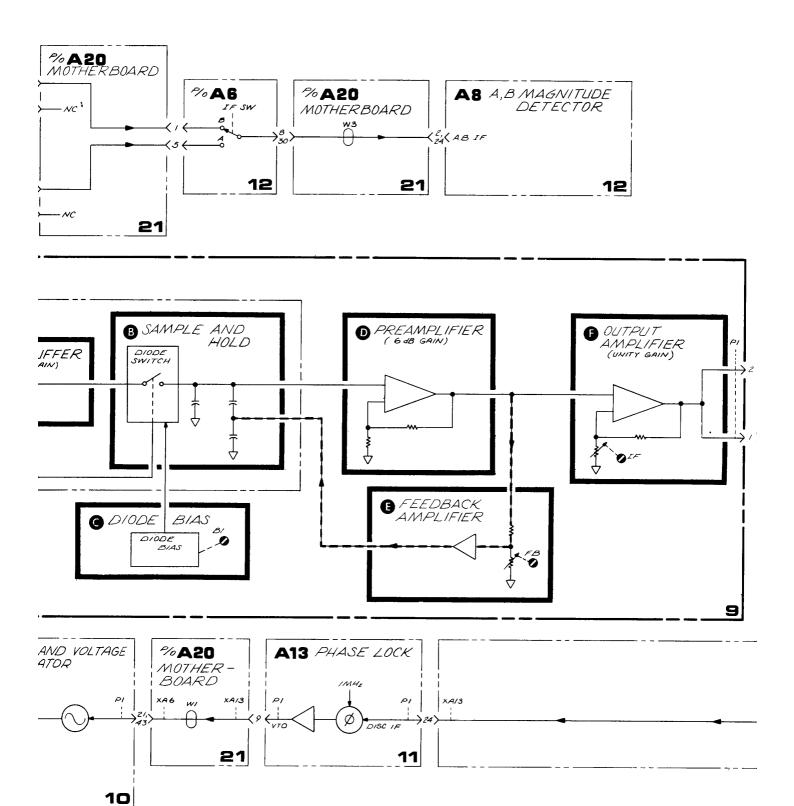
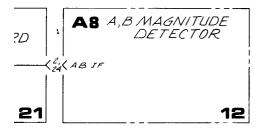





Figure 8-51. Samplers (A3, A4, A5), Component Locations

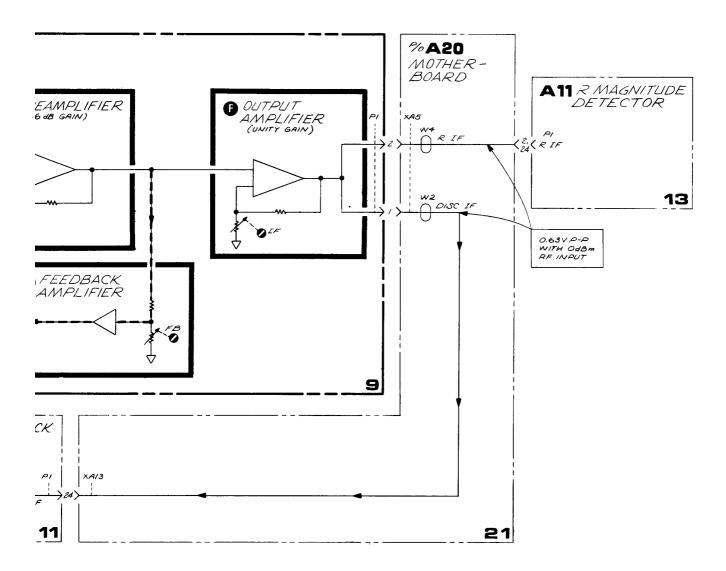
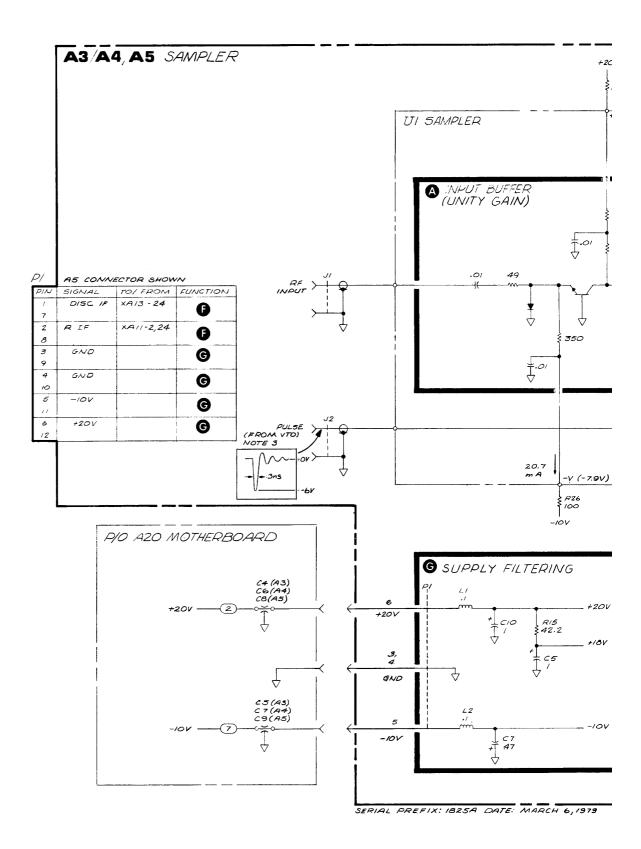
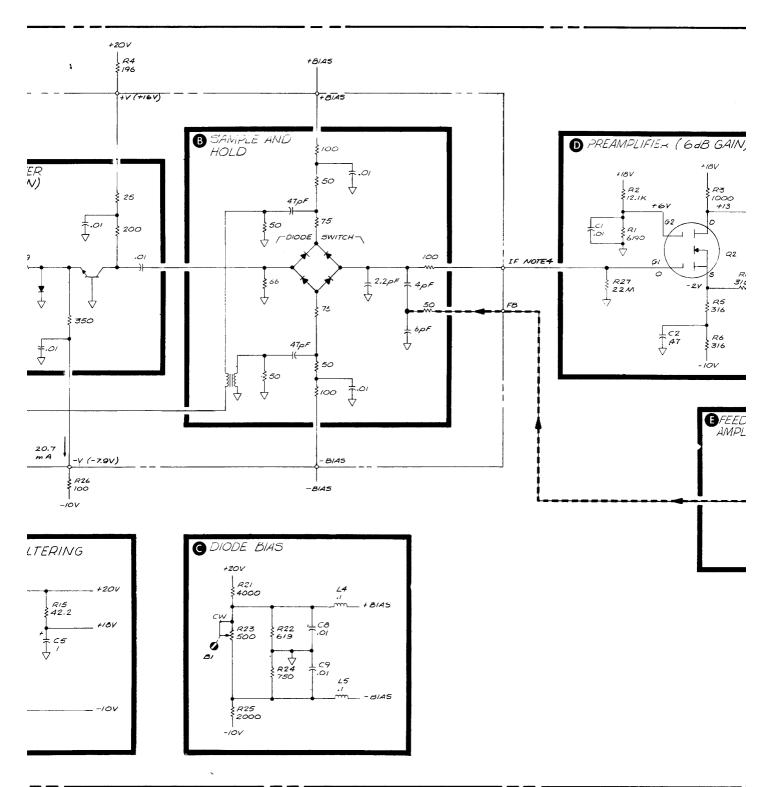
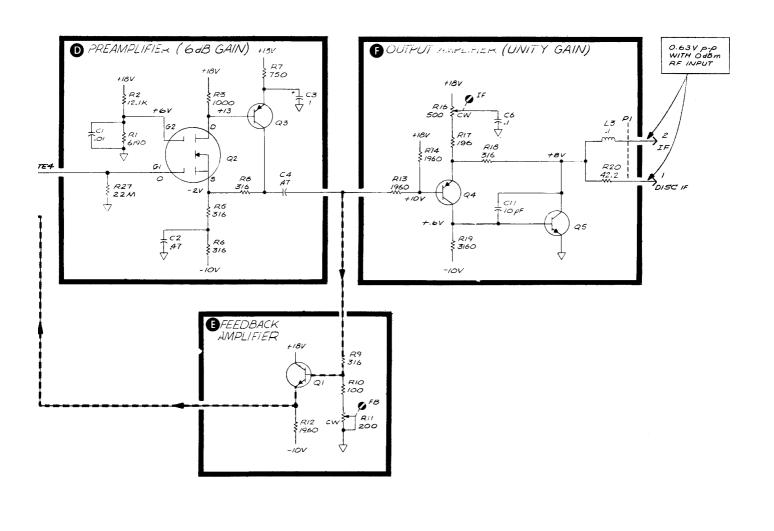
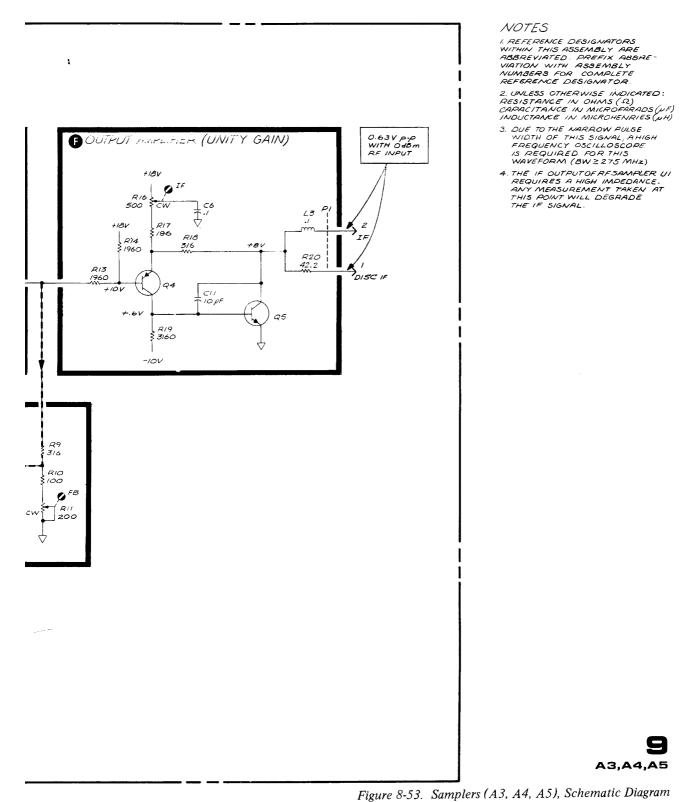



Figure 8-52. Samplers (A3, A4, A5), Block Diagram 8-105/8-106

A3 SAMPLER A3 CONNECTOR SHOWN
SIGNAL TO FROM FUNCTION 0 7 IF B XA6-1 Ø 3 GND (4 10 5 11 BND (-10V (6 +20V (


A4 SAMPLER


PI	A4 CONNE	CTOR SHOW	W
PIN	SIGNAL	TO/FROM	FUN
1			
7			
2	IF A	XA6-5	4
8			
3	BNO		1
9			
4	GNO		•
10			
5	-10 V		4
11			
6	+20V		1
12			•


7/0/

1

1

8-107/8-108

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS

ASSEMBLY	SERVICE SHEET	DESCRIPTION
	5	SWEEP pushbuttons
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch
	7	OUTPUT dBm control
	8	MARKERS MHz pushbuttons
A1 Front Panel	11	UNLOCKED indicator
	12	Absolute R measurement select
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER, and VIDEO FILTER
	16	HORIZONTAL POSN and GAIN controls
	19	All front panel controls
	6	Analog-to-digital converter for FREQUENCY MHz display.
A2 Analog Processor	15 16	Analog processor, switch control logic, and \pm 6V power supplies V RAMP amplifier
A3 B Sampler	9	RF to IF down-conversion
A4 A Sampler	9	RF to IF down-conversion
A5 R Sampler	9	RF to IF down-conversion
A6 VTO and IF Switch	10	Voltage Tuned Oscillator
At VIO and IF Switch	12	IF Switch
A7 Source	7	RF Source
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector
A9 Phase Detector	14	Phase Detector
A10 Polar Converter	14	Polar Converter
A11 R Detector	13	R INPUT, magnitude detector
A12 Marker Generator	8	Markers
A13 Phase Lock	11	Phase Lock
A14 Phase Lock Control	11	Phase Lock loop control
A15 Shaper	6 7	Sweep width, tuning, frequency reference, and frequency display. Shaping and RF Source drive.
A16 DC Regulator	20	Low Voltage Power Supplies
A17 Sweep Generator	5	Sweep Generator
A18 Deflection Amplifiers	16	Deflection Amplifiers
A19 Rectifier	10	External Interface
A 19 Nectiller	18 20	External Interface Low Voltage Power Supplies
40044		
A20 Motherboard	21	Motherboard wiring list
A21 High Voltage Power Supply	17	CRT bias and blanking control
A22 Frequency MHz Display 6		Frequency display
A23 Rear Panel	18	External Interface and Rear Panel (A23)

SERVICE SHEET 10

IF SWITCH AND VOLTAGE-TUNED OSCILLATOR (A6), CIRCUIT DESCRIPTION

The major function of the Voltage-Tuned Oscillator (VTO) is to produce the pulses that drive the R Sampler (A5), the A Sampler (A4), and the B Sampler (A3), all on Service Sheet 9. The pulse repetition rate (or VTO frequency) is proportional to the OV to +10V tune voltage from the Phase Lock (A13, Service Sheet 11).

The function of the IF Switch is to select the output of either the A Sampler (A4) or the B Sampler (A3) as the 1-MHz IF input signal to the A,B Detector (A8, Service Sheet 12). The IF Switch is included in the description of A8.

400-kHz Low-Pass Filter

The 400-kHz Low-Pass filter includes two notch filters: L1/C14, which rejects 2 MHz, and L2/C16, which rejects 1 MHz.

Voltage-Tuned Oscillator B

The function of the Voltage-Tuned Oscillator (VTO) is to deliver an ECL-compatible square wave at a frequency of 0 to 30 MHz, corresponding to VTO tune voltage of 0V to +10V from the Phase Lock (A13).

The VTO is actually a current-tuned oscillator whose operation is controlled by a Current Source. Transistors Q12, Q13, Q14A, and Q14B and their associated circuitry form a regenerative (astable) multivibrator whose two halves are alternately on (active) and off. Q12 and Q14A form one half, and Q13 and Q14B, the other.

The oscillator is primarily tuned by varying the charge current through C19 and C20. As the charge current (from either Q15 or Q16) is increased, less time is required for C19 and C20 to charge to the upper-threshold voltage; the frequency therefore increases.

For the purpose of the circuit description, operation of the oscillator begins with Q12 and Q14A off while Q13 and Q14B are on (active). At the end of one half cycle of operation, Q13 and Q14B are turned off, and Q12 and Q14A become active. Simplified waveforms are shown in Figure 8-54.

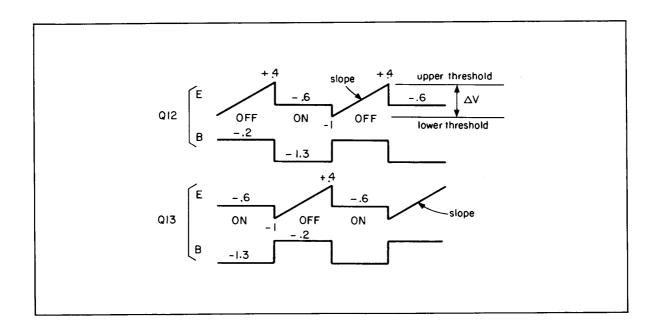


Figure 8-54. VTO Operation at 3 MHz

The voltage at the base of Q12 is high since there is no current through Q14A. Therefore, the entire current through R28 and R29 flows through Q14B, applying a negative voltage to the Q13 base and holding the Q13 emitter at a constant -0.6V.

Since Q12 is turned off, all the current from Q16 in the Current Source is available to charge C20 and FREQ adjustment C19. This current, with the current from Q15, flows into the Q13 emitter, ensuring that Q13 remains on. As shown in Figure 8-54, the voltage at the Q12 emitter increases at a linear rate as the capacitors are charged until the threshold of +0.4V is reached. The rate is proportional to the current from Q16 divided by the capacitance of C19 and C20.

When the Q12 emitter voltage reaches approximately +0.4V (the upper threshold), Q12 starts to conduct, and the Q14A base voltage begins to increase. Current starts to flow through Q14A, which causes the current through Q14B to decrease proportionately, since Q14A and Q14B are connected as a differential pair.

As the current through Q14B decreases, the Q13 base voltage increases until Q13 is turned off. Because of this regenerative action, Q12 and Q14A are now on (active), and Q13 and Q14B are turned off, completing a half cycle of operation.

The second half cycle operation of the VTO is identical, except that the active transistors are reversed and the charge current to C19 and C20 comes from Q15 in the Current Source.

The Current Source includes Q15 and Q16, whose bases are biased at +9.3V by R37, R38, CR11, and CR12. This sets the emitter voltages at +10V. The current flowing into Q15 or Q16 is the difference between the 5-mA current through R25 or R24 and the current through R21 or R22. As the input voltage is tuned from 0V to +10V, the current through R21 or R22 decreases from 5 mA to 0 mA, causing the collectors of Q15 and Q16 to produce outputs of 0 mA to 5 mA.

However, if the oscillator were tuned only by varying the charge current, as described above, the correlation between the tune voltage from A13 and the output frequency of the oscillator would not be linear because of the propagation delays inherent in the transistors. To linearize the frequency, the lower threshold voltage is also varied; this varies the time required for C19 and C20 to charge to the

upper threshold voltage of about +0.4V, assuming the slope remains constant. The lower threshold is set by current in Q14A or Q14B, which is partially supplied through R28, to which the input voltage is applied.

Buffer (

The Buffer circuit isolates the output of the VTO from the loading effects of the Diode Driver and shapes the signal into a fast-rising square wave. The circuit consists of three ECL line receivers, U2A, U2B, and U2C, and associated circuitry.

The Level Shifter circuit provides the apppropriate signal level to the Diode Driver. It consists of a differential pair, Q8 and Q10, operating as a current-mode switch, and associated circuitry.

Q8 and Q10 conduct on alternate half cycles of the input signal so that the approximately 5 mA of current through R39 develops an output voltage across R41 and R40, respectively.

Diode Driver

The function of the Diode Driver is to deliver approximately 360 mA of current to the Pulse Generator. The polarity of the current is switched by alternate half cycles of the input square-wave signal.

The Diode Driver includes two current-mode switches, Q4/Q5 and Q6/Q7, whose inputs and outputs are paralleled. When Q4 and Q6 are off, Q5 and Q7 are on, and approximately -200 mA flows through each collector into T1B. This causes approximately +360 mA to flow into the step recovery diode CR20 in the Pulse Generator.

On the alternate half cycle, Q5 and Q7 are off, and Q4 and Q6 are on. Each collector then supplies approximately -200 mA into T1A. This causes approximately -360 mA to flow into CR20.

Q9 and Q11 are used to establish the proper voltage levels at the bases of transistors Q4 through Q7. The signal used to drive these transistors may be monitored at TEST OUT connector I4.

Pulse Generator

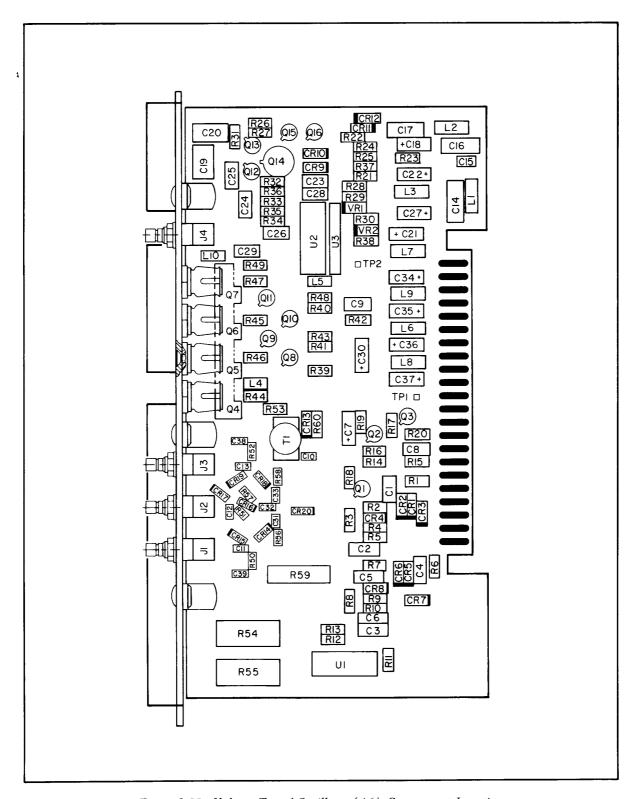
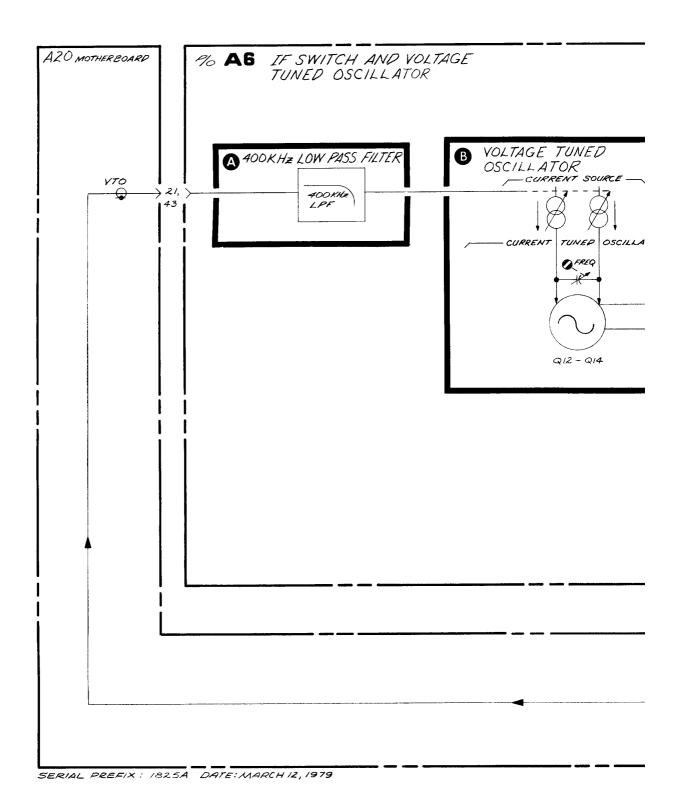
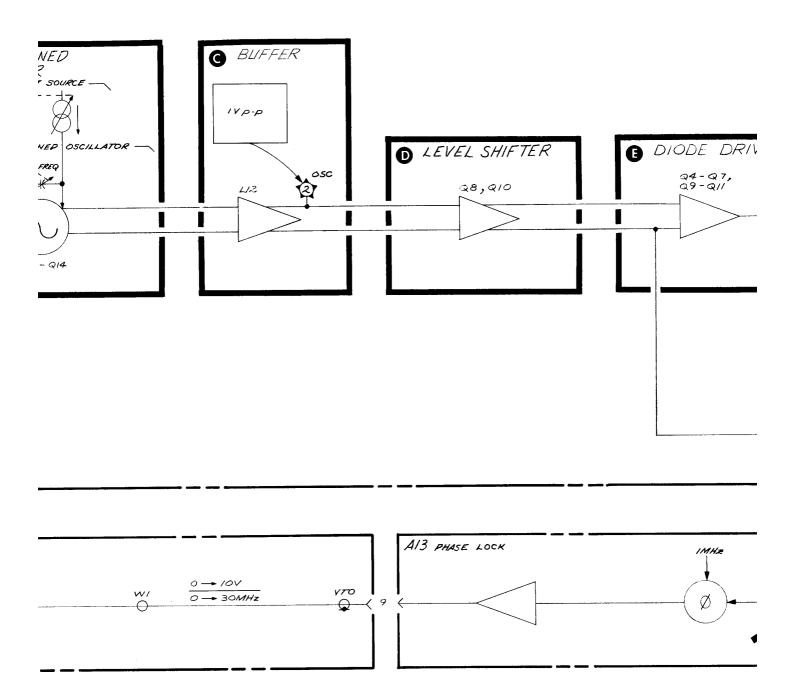
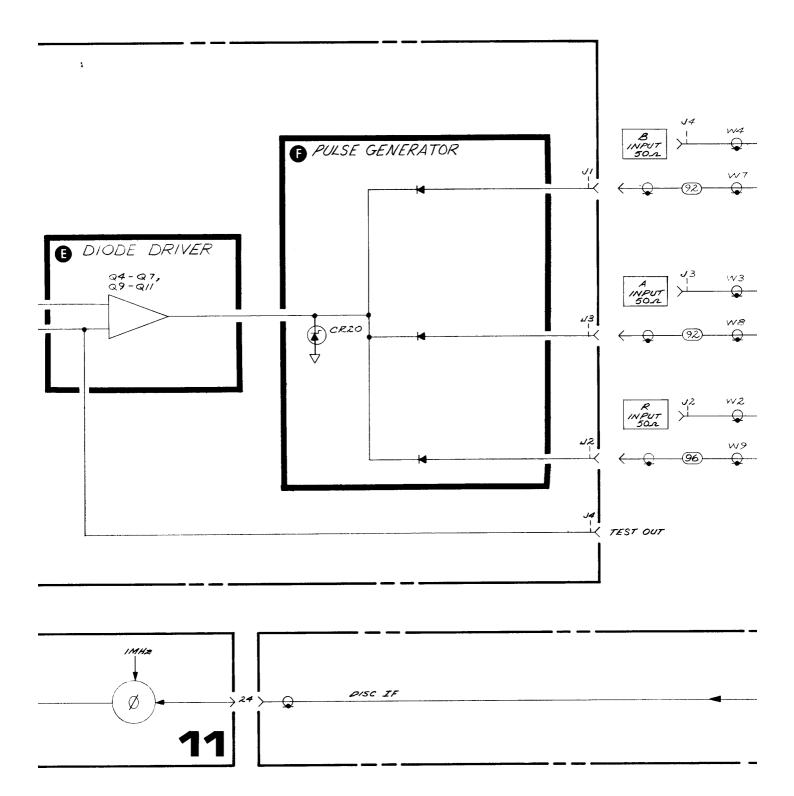
The Pulse Generator converts current from the Diode Driver into pulses to drive the A Sampler (A4), B Sampler (A3), and R Sampler (A5). The pulses (A PULSE, B PULSE, and R PULSE) are generated at the repetition rate of the VTO. The pulse width is approximately 0.3 ns and the pulse amplitude is about -6V.

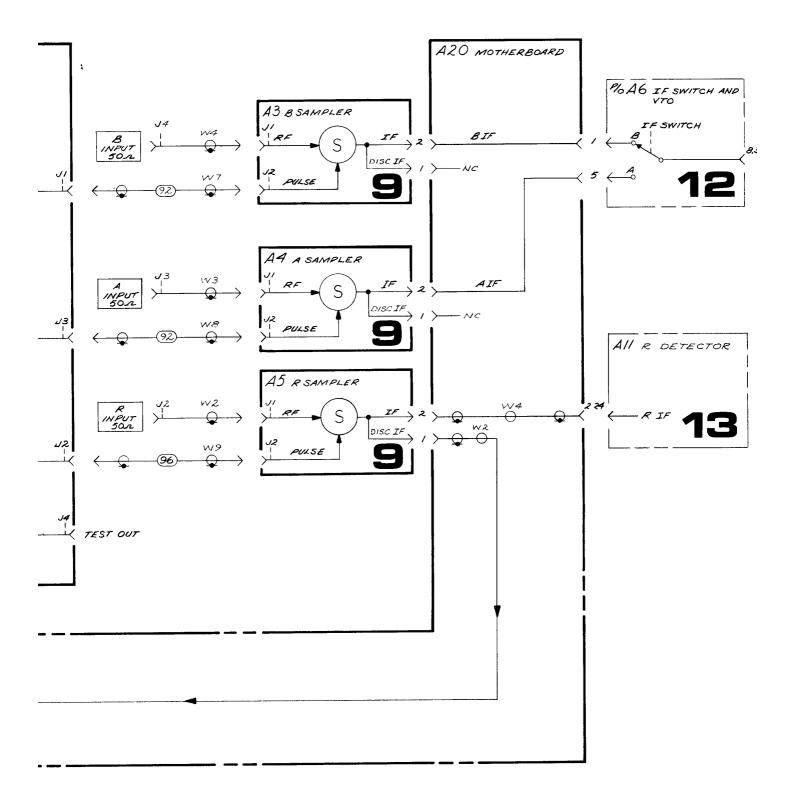
Step recovery diode CR20 accumulates a stored charge as the 360-mA current flows into it from the Diode Driver. On the next half cycle of the square-wave VTO signal, the Diode Driver current changes polarity and current flows out of CR20, reducing the charge stored. CR20 remains on until the charge has been removed, and then it abruptly shuts off. The current, which has been flowing through an inductive trace on the printed-circuit

board, must then flow through C31, C32, and C33, and an output pulse is generated.

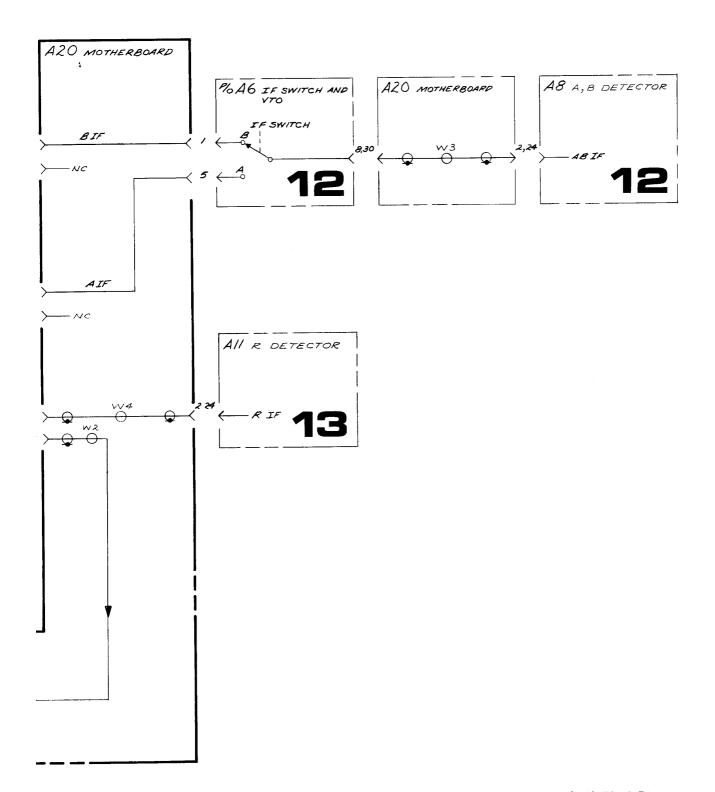
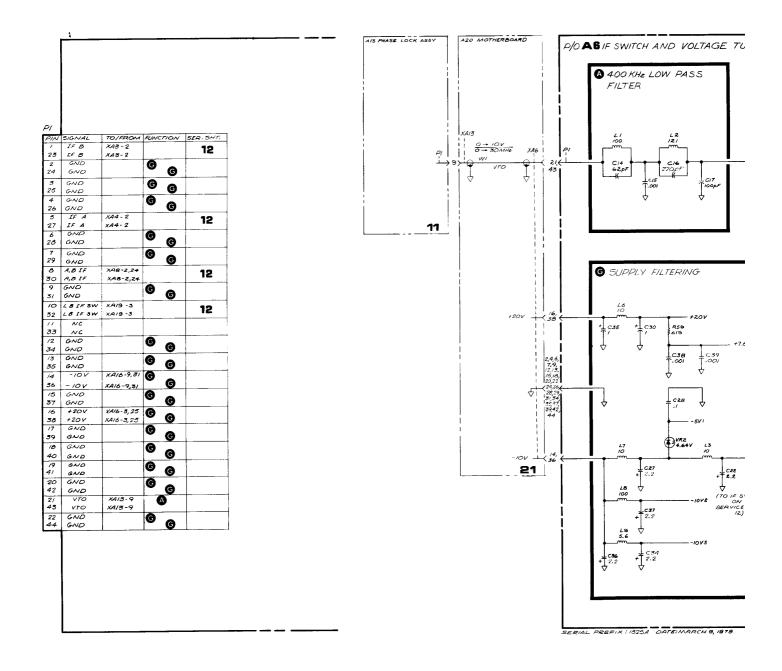
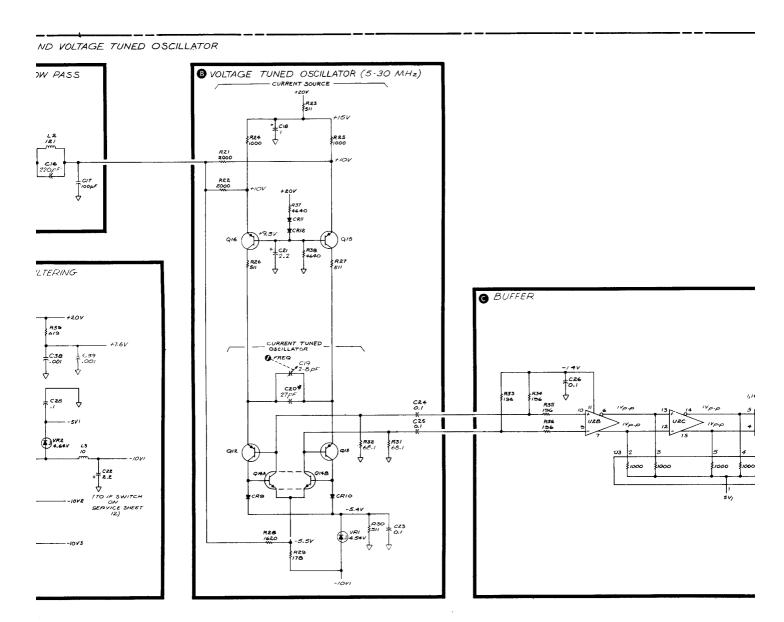
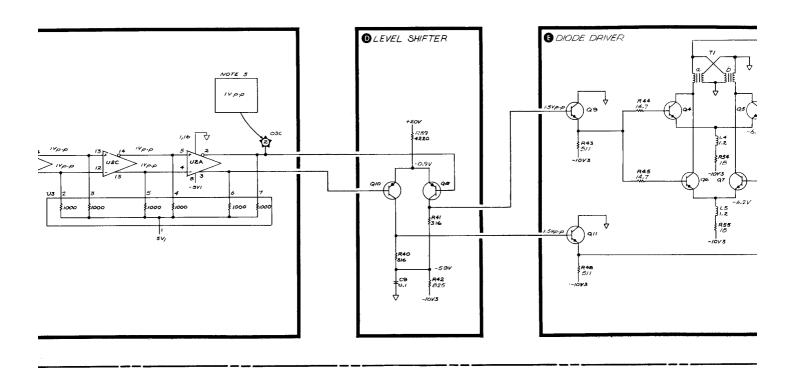
CR13 clamps the input voltage level after CR20 shuts off. C10 helps to maintain the pulse at a constant amplitude for the VTO frequency range of 3 MHz to 30 MHz.

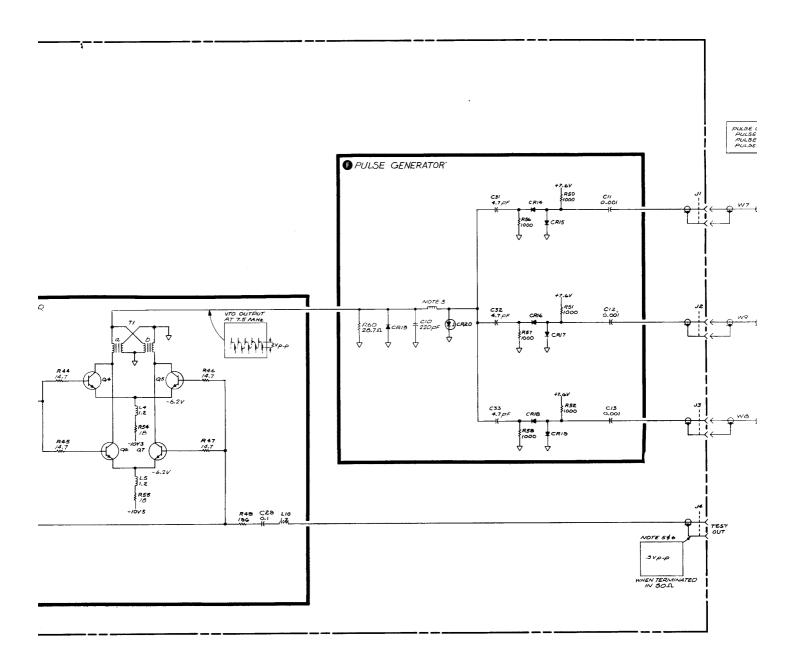
The pulse is coupled to three outputs through diode networks. These networks limit the signal from CR20, allowing only the first large negative pulse to pass. These networks also contribute to RF channel isolation, since they prevent leakage of an RF signal from one sampler through the pulse lines to another sampler. CR15, CR17, and CR19 are normally on and are biased by R50 through R52. CR24, CR16, and CR18 are normally partially off. A pulse turns on CR14, CR16, and CR18 and turns off CR15, CR17, and CR19.


Figure 8-55. Voltage-Tuned Oscillator (A6), Component Locations

1


Figure 8-56. Voltage-Tuned Oscillator (A6), Block Diagram 8-113/8-114

ATE: MARCH 9, 1979

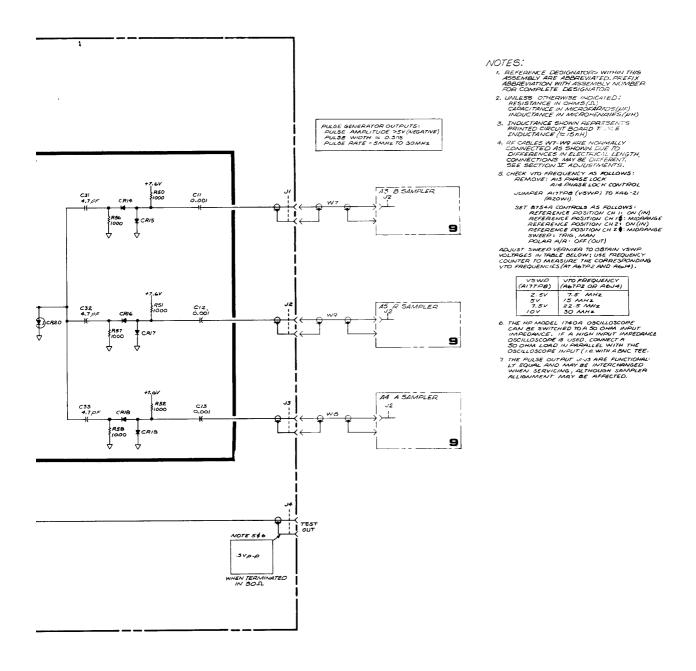


Figure 8-57. Voltage-Tuned Oscillator (A6), Schematic Diagram

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS

ASSEMBLY	SERVICE SHEET	DESCRIPTION
1	5	SWEEP pushbuttons
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch
	7	OUTPUT dBm control
	8	MARKERS MHz pushbuttons
A1 Front Panel	11	UNLOCKED indicator
ATFIOREFAME	12	Absolute R measurement select
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER,
	15	
	1	and VIDEO FILTER
	16	HORIZONTAL POSN and GAIN controls
	19	All front panel controls
	6	Analog-to-digital converter for FREQUENCY MHz display.
A2 Analog Processor	15	Analog processor, switch control logic, and ± 6V power supplies
• • • • • • • • • • • • • • • • • • • •	16	V RAMP amplifier
A3 B Sampler	9	RF to IF down-conversion
A4 A Sampler	9	RF to IF down-conversion
<u> </u>		DE LE L
A5 R Sampler	9	RF to IF down-conversion
A6 VTO and IF Switch	10	Voltage Tuned Oscillator
	12	IF Switch
A7 Source	7	RF Source
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector
A9 Phase Detector	14	Phase Detector
A 10 Polar Converter	14	Polar Converter
A11 R Detector	13	R INPUT, magnitude detector
A12 Marker Generator	8	Markers
A13 Phase Lock	11	Phase Lock
A14 Phase Lock Control	11	Phase Lock loop control
A15 Shaper	6 7	Sweep width, tuning, frequency reference, and frequency display. Shaping and RF Source drive.
A16 DC Regulator	20	Low Voltage Power Supplies
A17 Sweep Generator	5	Sweep Generator
A18 Deflection Amplifiers	16	Deflection Amplifiers
A19 Rectifier	18	External Interface
A 10 Hectiles	20	Low Voltage Power Supplies
A20 Motherboard 21		Motherboard wiring list
A21 High Voltage Power Supply	17	CRT bias and blanking control
A22 Frequency MHz Display	6	Frequency display
A23 Rear Panel 18		External Interface and Rear Panel (A23)

SERVICE SHEET 11 RECEIVER PHASE LOCK

General Description

1

The purpose of the Receiver Phase Lock is to maintain a 1 MHz receiver IF over the full operating frequency range of the RF Source (4 MHz to 1300 MHz).

The Receiver section of the 8754A is a single conversion superhetrodyne system with a 1 MHz IF whose bandwidth is approximately 10 kHz. A Voltage-Tuned Oscillator (VTO), with a tuning range of 5 MHz to 30 MHz, is the local oscillator for the three receiver samplers. The VTO generates very narrow sampling pulses that contain wide-band harmonics. For any RF Source frequency there is at least one VTO harmonic that will mix in the samplers to produce a 1 MHz IF. The Phase Lock Loop monitors the R Sampler output and adjusts the VTO frequency to maintain a constant 1 MHz IF. The VTO is always phase

locked with one of its harmonics 1 MHz higher than the RF input frequency.

Figure 8-58 is a simplified block diagram showing how the Receiver Phase Lock monitors the R Sampler IF and tunes the VTO to maintain phase lock. Note that the VTO can be tuned by either of two closed loops, Phase Lock or Pretune. The Phase Lock Loop tunes the VTO while the Receiver is phase locked. When locked, the R Sampler IF output is passed through a 2.8 MHz low pass filter which is used to eliminate noise and high-order mixing products. The IF is then compared with a fixed 1 MHz signal in the Phase-Frequency Detector. When the IF equals 1 MHz, the Phase-Frequency Detector output is proportional to the phase difference of its two inputs. The phase detector output is integrated, attenuated by a programmable attenuator which is used to set loop gain, then integrated again before being applied to the VTO. This double integration provides a high loop sensitivity to maintain a constant 1 MHz IF during all locked conditions, including fast sweeps.

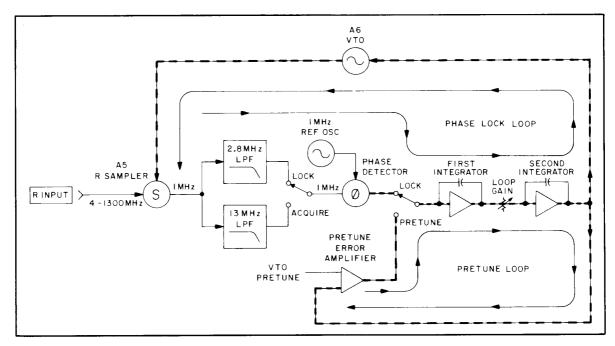


Figure 8-58. Receiver Phase Lock Signal Flow, Simplified Block Diagram

To maintain overall Phase Lock Loop stability, the Phase Lock Loop gain is changed according to which VTO harmonic the Receiver is phase locked. The tuning sensitivity of the VTO for its fundamental frequency (5 MHz to 30 MHz) is 3 MHz/volt. However, when a VTO harmonic is used for phase lock, there is a proportional change in the VTO tuning sensitivity. For example, a 1V tuning voltage change causes the VTO fundamental to change 3 MHz, but causes the 50th harmonic to change 150 MHz. The Phase Lock Loop determines the VTO harmonic number from the RF Source and VTO frequencies.

The RF Source frequency is determined from the FREQ REF voltage from the Shaper (P/O A15, Service Sheet 6). For frequencies below 100 MHz, where the tuning error of the Source is significant, a frequency-to-voltage converter (discriminator) is used to convert the RF Source frequency to a proportional voltage. Both the FREQ REF voltage and Discriminator output go to an Analog-to-Digital Converter (ADC) which programs the loop gain attenuator.

Once locked, the Phase Lock Loop remains locked until either the VTO runs out of tuning range while tracking a swept frequency or the R INPUT power falls too low (approximately -40 dBm). Relock is accomplished by a sequence of events called an Acquisition sequence. This sequence is controlled by A14 Phase Lock Control, and occurs in three sequential intervals: Pretune, Acquire, and Locked.

Pretune. The Pretune interval starts the acquisition sequence, and pretunes the VTO frequency in prepartion for phase lock. The Pretune interval is approximately .3 milliseconds long and is initiated when the H SET VTO and H ACQ lines from A14 go high (+5V). Both the RF and CRT trace sweeps are stopped and the CRT display is blanked. The H SET VTO line activates the Pretune Loop to tune the VTO to a known frequency. The desired pretune frequency is a function of the RF Source frequency as shown in Figure 8-59. This function is generated by the Pretune Shaper, which uses as its inputs the FREQ REF voltage from the Shaper (A15, Service Sheet 6) and the F > 14 MHz control line from the ADC on A14. The VTO Pretune voltage is applied to the Pretune Error Amplifier, where it is compared with the VTO tuning voltage. The error amplifier output is applied to the First Integrator during the Pretune interval to drive the VTO tuning voltage until it is equal to the VTO Pretune voltage. As a result, the VTO

gets pretuned to a known frequency that is a function of the RF Source frequency. If the RF Source frequency is such that phase lock may occur on either of two harmonics, trace jitter may occur. The front-panel STABILITY control varies the Pretune voltage slightly so that phase lock occurs on the same harmonic for each repetitive sweep.

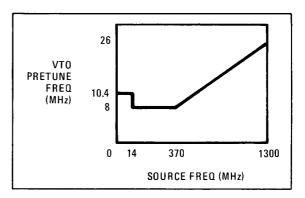


Figure 8-59. VTO Pretune as a Function of Source Frequency

Acquire. The Acquire interval is intiated when the H SET VTO line goes low at the end of a Pretune interval. The Acquire interval lasts about .8 milliseconds and is terminated when the H ACQ line goes low. When the H SET VTO line goes low, the Phase Lock Loop is activated to tune the VTO. The H ACQ line went high during the Pretune interval to select the 13 MHz low pass filter for the R IF input to the Phase Lock Loop. This allows the Phase Lock Loop to respond to IF frequencies as high as 13 MHz, and tune the VTO in the proper direction to return the IF frequency to 1 MHz.

Locked. The Locked interval is selected when the H SET VTO line is low and the H ACQ line is also low. In this mode, the Input Filter cutoff frequency is switched to 2.8 MHz to eliminate display "birdies"; an additional integrator is switched in to improve performance, and the RF and CRT trace sweeps are allowed to continue.

An acquisition sequence is triggered by a lock trigger pulse on the A14 Phase Lock Control. This trigger pulse is inhibited by any of the following conditions.

- Sweep Retrace
- RF Source frequency less than 3 MHz
- R INPUT power less than -40 dBm.
- Rear-panel L RELOCK signal from the PROGRAMMING connector held low (0V).
- Rear-panel H RELOCK signal from PROGRAMMING connector held high (+5V).

A trigger pulse is generated upon removal of all these inhibiting conditions. If none of the inhibiting conditions are present, a trigger pulse is generated if the VTO slews out of range while tracking a sweep, or if lock is lost for some other reason. Figure 8-60 shows typical phase lock timing for a sweep from 5 MHz to 205 MHz.

When the sweep starts after the acquisition interval, a transient is produced as the Phase Lock Loop begins tracking the sweep. Depending on the Source frequency, one of two methods is used to hide this transient from the CRT display. If the Source frequency is greater than 39 MHz, the lock trigger pulse triggers a .1 millisecond backstep pulse. This pulse goes to the Sweep Generator (A17, Service Sheet 5) where it causes the sweep

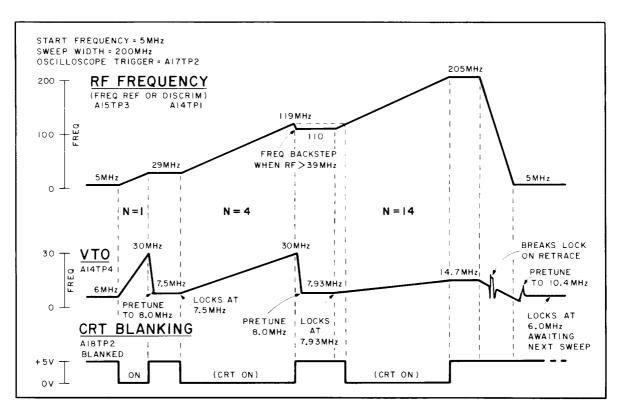


Figure 8-60. Phase Lock Timing for a Sweep of 5 MHz to 205 MHz

ramp (VSWP) to retrace approximately .4V, where it remains until the stop sweep interval has ended. When the sweep starts, the Backstep circuitry keeps the CRT display blanked until the VSWP voltage returns to the level at which the trigger pulse occurred. Thus, the CRT display is blanked during the startup transient, but there is no blank hole in the CRT trace because this segment overlaps the end of the previous portion of the trace.

To eliminate the possibility of backstepping through 0 MHz, backstep pulses are inhibited for Source frequencies below 39 MHz. Since there is no backstep, the startup transient occurs during a portion of the trace that was not previously covered, so blanking is unacceptable. A less objectionable solution is to activate a sample and hold for .2 milliseconds following the start of sweep. This holds a constant value of video information during the startup transient, and results in a short straight line on the CRT display.

PHASE LOCK (A13)

NOTE

All reference designations in this circuit description, unless otherwise specified, are assumed to have the prefix A13. For example, the designation Q1 is actually A13Q1.

Input Buffer and Filters

The 1 MHz IF (DISC IF) from the R Sampler is amplified by Q3 and Q2. This amplifier has 7.2 dB of voltage gain, a high input impedance, and a low output impedance. The amplifier gain is determined by feedback resistors R6-R8. The buffer drives two low pass filters in parallel. Analog switch U1 selects the output of one of the filters, as controlled by the H ACQ input from the Phase Lock Control (A14). The 2.8 MHz LPF is selected when the receiver is phase locked, and the 13 MHz LPF is selected during phase lock acquisition.

Limiters B

U5 and U9 are packages of differential line receivers that are cascaded to form a limiting amplifier. Negative feedback, from U5A through R21 to U5B, keeps U5B biased in the middle of its active region for maximum sensitivity.

The output from U5C is of sufficient amplitude that bias stabilization is not required in the following stage. Positive feedback, from U9A through R25 to U9B, greatly reduces the rise – fall times of the U9A output. This assures clean triggering in the Phase Detector. Hysteresis at the U9B input, resulting from the positive feedback, prevents the amplification and clipping of noise in the absence of an input signal.

Peak Detector (

Reference IF, from the R Sampler, is detected by CR8. CR9 generates forward bias to improve detector sensitivity. The detector output is filtered by C59 and goes to the Reference Level Power Detector on the Phase Lock Control (A14). This signal is used to determine if the front-panel R IN-PUT signal is less than -40 dBm to control the front-panel UNLOCKED indicator and Phase Lock Control acquisition logic.

Reference Oscillator D

The 10 MHz crystal (Y1) and line receiver U3B form a 10 MHz oscillator. U3C and U3A amplify and limit the signal, to drive decade divider U6. The 1 MHz output is the reference signal for the Phase Lock Loop.

Phase/Frequency Detector

The Phase Detector is a digital circuit which outputs pulse trains whose duty cycle is a function of the phase relationship of the input pulses. The "A" input is the Reference Oscillator 1 MHz, and the "B" input is the Reference channel 1 MHz IF from U9.

If the R IF phase lags the reference oscillator phase, U10 pin 11 goes low and U10 pin 12 goes high to turn off Q6. U10 pin 4 outputs a positive pulse train at a 1 MHz rate, and U10 pin 3 outputs an inverted pulse train. This pulses Q5 on, with the pulse width proportional to the phase difference between the two inputs. Thus, the average output current from the collector of Q5 is proportional to the phase angle that "B" lags "A". If "A" lags "B", Q6 provides a negative current proportional to the phase difference. A positive output current is amplified by the integrators and causes the VTO frequency to increase until the phase of the IF catches up with the 1 MHz reference.

If the IF frequency differs from 1 MHz, the output pulse trains are complicated, but the average output current is non-zero and tunes the VTO in the proper direction.

Phase Detector Filter

C40, C42, C44, L11, L12, and L13 form a 3 MHz Low Pass Filter with notches at .5 MHz and 1.5 MHz. The pulses from Q5 and Q6 are filtered to provide a steady dc output to the following stages.

Switch Level Shifter (6), Pretune Switch (1)

Comparator U11C translates its TTL logic input (H SET VTO) to the voltage levels required to drive FET switch Q8. A logic high (+5V) at U11 pin 10 causes the comparator output to go to approximately -10V. This forward biases CR7, and biases the gate of Q8 to approximately -9V, switching Q8 off. A logic low (0V) input to U11C, causes its output to go to +20V, back biasing CR7. The Q8 gate is biased by its source through R40, and the FET switch is turned on. Comparator U11B operation is similar, except that its inputs are switched. Thus, when the H SET VTO line from the Phase Lock Control is high, Q8 is turned off and Q10 is turned on. This opens the connection from the Phase Detector to disable the Phase Lock Loop. Instead, the input to the first integrator is connected to the Pretune Amplifier output (U13), and the Pretune Loop is closed.

Comparator U11A translates the H ACQ input from the Phase Lock Control to drive Q9. Its operation is the same as U11B.

First Integrator

U15 is connected as an integrator. Its output ramps down in response to a positive input, and ramps up in response to a negative input. During the acquisiton interval of a lock sequence, FET switch Q9 is turned on to short across integrator capacitor C47. This converts U15 to a flat gain stage, with gain determined by R43.

Second Integrator 1, Frequency Doubler Switch (K)

The output from the First Integrator passes through programmable attenuator U16, and into the second integrator U14. U16 decodes the three bit binary (4,2,1) Loop Gain input to select one of eight attenuating resistors (R48-55).

The Frequency Doubler circuit is not used, but is connected for possible future use with an external frequency doubler. If the H DBLR input is high, switch U17 connects R47 to ground. This loads R44, doubling its voltage drop to reduce the Loop Gain by 6 dB.

U14, C51, and R56 form an integrator. Q12 buffers the U14 output and provides the high current required to tune the VTO. CR11 is a clamp, preventing the output from going below -0.7V. Similarly, if the output goes above +10.7V, Q11 turns on and its collector current cancels any input current which would otherwise make the output rise higher.

Pretune Error Amplifier

Error Amplifier U13 compares the VTO tuning voltage with the Pretune voltage from the Phase Lock Control. This Pretune Loop forces the VTO voltage to equal the Pretune voltage. If the Pretune Loop is enabled by the H SET VTO input to the Switch Level Shifter, the output of U13 is applied through Q10 to the input of the first integrator, and is used to tune the VTO.

PHASE LOCK CONTROL (A14)

NOTE

All reference designations in this circuit description, unless otherwise specified, are assumed to have the prefix A14. For example, the designation Q1 is actually A14Q1.

Pretune Shaper A

The Pretune Shaper generates the VTO PRETUNE voltage for the VTO as a function of the Source FREQ REF voltage from the Shaper (P/O A15, Service Sheet 6). A voltage of approximately +2.5V is generated at the junction of R45 and R46. This is applied through R49 to the input of voltage follower U12A, which supplies the VTO PRETUNE voltage to the VTO. When the RF Source frequency is less than 14 MHz, the output of U10F is high, forward biasing CR4. This raises the VTO PRETUNE voltage to +3.3V. FREQ REF input from the Shaper (P/O A15, Service Sheet 6) is proportional to RF Source frequency (1V/100 MHz). When the RF Source frequency reaches 370 MHz, the FREQ REF voltage forward biases CR3, and the VTO PRETUNE voltage increases with frequency (reaching +8.7V at 1300 MHz).

Discriminator B

The Source frequency (ATTN RF) is supplied from the RF Source (A7, Service Sheet 7); its power level varies from -10 dBm to -20 dBm, depending on the front-panel OUTPUT dBm control setting. R1 and R2 form a 14 dB attenuator to provide the INT MKR RF to the Marker Generator (A12, Service Sheet 8). Buffer Q1 preserves input impedance match up to 1300 MHz. U1A, U1B, U1C, and U1E are differential line receivers that are cascaded to form a limiting amplifier. Negative feedback through R10 keeps U1B biased in the middle of its active region, for maximum sensitivity. Positive feedback through R12 gives fast switching and prevents amplification of noise when no input signal is present. U1A drives the input of decade divider U3 which divides the RF input frequency by ten. A positive edge at the output of U3 (pin 2) propagates immediately through U4A and U4B to the base of Q3, turning it on. That same positive edge propagates through the 32 nanosecond delay line (L2-4, C10-12) to U4B, and turns Q3 off again. Thus, each positive edge output from U3 produces a 32 nanosecond current pulse at the collector of Q3. C13, C14, and L5 form a filter to smooth the pulsed output of Q3, and provide a pure dc current to flow through R22 and R34 to ground. This current, and therefore the voltage across R34, is proportional to the pulse duty cycle. Since the pulse width is fixed (32 nanoseconds), and the pulse repetition rate is a function of RF input frequency, the output current is proportional to frequency.

The voltage drop across R22 is used to drive the Low Frequency Detector, because its hysteresis precludes the use of a less sensitive signal. That voltage drop would quickly saturate Q3 were it not for CR1 and CR2 which clamp that voltage to a low level. Note that all of the current still flows through R34, so its voltage drop is not affected by the clamp.

Low Frequency Detector

Voltage developed across R22 in the Discriminator feeds comparator U11A, which is set to trip at approximately .5V. This corresponds to an RF Source frequency of 3 MHz. R23 through R25 form a hysteresis loop around U11A. When the frequency is greater than 3 MHz, U11A pin 1 is high. This makes the output of U14C go high if its other two inputs (pins 10 and 11) are also high. The F>3 MHz output goes low if any of the following conditions exist:

- H RELOCK line from the rear panel is high.
- The L RELOCK line from the rear panel is
- The RF Source frequency goes below 3 MHz.

This blanks the CRT display, and when F > 3 MHz goes high again, a lock sequence is initiated. CR5-8, R29, and R31 provide overvoltage protection for the rear panel L RELOCK and H RELOCK inputs.

The Discriminator output voltage is applied to five comparators (U7A, U7B, U8A, U8B, and U8D) that are set to trip at the logarithmic progression of frequencies shown on their outputs. At frequencies greater than 100 MHz, the FREQ REF voltage from the Shaper is used, tripping the last three comparators (U8C, U7C, and U7D). Since the Discriminator does not work above 200 MHz, O4 is turned on to hold the Discriminator output high whenever the F > 109 MHz comparator (U8C) is tripped. The comparator outputs are applied to priority encoder U6, which generates a three bit binary number representitive of the highest comparator tripped. This number is used to program loop gain on the Phase Lock Assembly (A13). To prevent the loop gain from changing during a sweep, the data is latched in U9. The latch is updated during a lock sequence, at the end of the VTO Pretune interval. A high H SET VTO input to U9 pin 9 (F1) switches U9 into an open collector state during the Pretune interval. This allows three pulldown resistors on the Phase Lock Assembly to pull all three lines low and set the proper loop gain for a Pretune interval.

Reference Channel Power Detector

The IF DETECT input from Phase Lock Assembly (A13) is the input to comparator U11C. This comparator trips at approximately +.26V, which corresponds to an R INPUT level of approximately -42 dBm. If the power is greater than this, the comparator output is high. Positive feedback through R40 generates hysteresis, preventing comparator oscillation.

Acquisition Logic

The Acquisition Logic monitors several instrument parameters, and generates, when appropriate, a string of pulses which accomplish a phase lock acquisition. The conditions monitored are:

- VTO frequency
- Source frequency
- R INPUT power
- Sweep status

U21A monitors conditions necessary for a lock attempt. U21 pin 1 is high if the Sweep Generator (A17, Service Sheet 5) is not retracing, U21 pin 2 is high if the R INPUT power is greater than -40 dBm, U21 pin 4 is high if the RF Source frequency is greater than 3 MHz, and U21 pin 5 goes high .1 second after power is turned on. When all four of these inputs go high, the output of U22D also goes high.

The VTO Range Detector (U11B, U11D) monitors the VTO tuning voltage to determine if the VTO is out of its tuning range. The output of U11D goes low if the VTO tuning voltage is greater than +10V, corresponding to a 30 MHz VTO frequency. The output of U11B goes low if the VTO tuning voltage goes below +1.67V, corresponding to a 5.5 MHz VTO frequency. Both U11B and U11D have open collector outputs, which are connected in parallel. This output is high when the VTO is within the 5.5 MHz to 30 MHz frequency range, and is low when the VTO is out of this range. If the RF Source goes below 7 MHz, the F>7 MHz input to U11B goes low to reduce the comparator trip point to 0V. This allows the VTO to follow the RF Source frequency down to 0 MHz.

A lock sequence is triggered by a negative edge on the output of U21B (pin 8). The U21B output goes low if all its inputs are high. The input to U21B pin 12 serves as a "retrigger holdoff", and is low if a lock sequence is in progress. This prevents a lock sequence from being started before another one is finished. Thus, pin 12 is normally high. U21 pin 9 is high if all the conditions monitored by U21A are satisfactory. If the loop is locked, the VTO is in its proper range and the output of the VTO Range Detector (U11B, U11D) is high; since Q8 is biased off, this causes U21B pin 13 to be low. If the VTO goes out of range while tracking a sweep, pin 13 goes high to trigger a relock. If U21B pin 9 is low

when the VTO goes out of range, a lock sequence will not be triggered. However, the negative edge from the VTO comparators will couple through C46 and U20 to trigger the SET VTO TIMER (U19A) and trigger a Pretune interval. At the end of the Pretune interval, the VTO will begin to slew again and try to relock. If the relock attempt is unsuccessful, the above sequence is repeated. This improves the probability of the loop remaining locked under low R INPUT power conditions.

If, while the receiver is phase locked, an external lock request is received (H RELOCK or L RELOCK from the rear panel), or if the R INPUT power sweeps through a brief low power region, U22D pin 8 pulses low, then high again. This should trigger a relock, but cannot if U21B pin 13 is low (as it is if the receiver is phase locked). Therefore, the positive edge from U22D pin 8 is coupled to Q8 to briefly pull U16D pin 12 low. This pulses U21B pin 13 high coincident with U21B pin 9 and a lock sequence is triggered.

The negative edge of the U21B lock trigger output triggers three one shots:

- Backstep Timer (U13B) 50 to 140 microsecond pulse output.
- Set VTO Timer (U19A) Generates the .29 millisecond pulse H SET VTO pulse to time the Pretune interval.
- Acquisition Timer (U15B) Generates the 1.1 millisecond pulse to time the acquisition interval. The acquisition pulse also stops the sweep through its input to U20B pin 4. At the end of the acquistion interval, U15A is triggered which produces a .29 millisecond pulse, extending the stop sweep by this length of time. At the end of the stop sweep interval, U19B is triggered, producing the .22 millisecond L HOLD output to hold the video level. The L HOLD output is also low during the 1.1 millisecond acquisition interval due to the input to U20D pin 12. This eases the display settling time, since the lockup transients are not seen by the Deflection Amplifiers (A18, Service Sheet 16).

Aside from the normal lock sequence, the H SET VTO (Pretune interval) output may be activated by grounding TP8. This is necessary during instrument alignment. Since the H ACQ output must be activated during the Pretune interval, H SET VTO is routed through U22E to U17A pin 1 to activate

the H ACQ output. The R > -40 dBm input to U17A pin 2 activates the H ACQ output whenever the R INPUT power falls below -40 dBm. This also lights the front-panel UNLOCKED lamp. R85 and C30 prevent the UNLOCKED lamp from flickering due to brief low power conditions.

The H BLANK output blanks the CRT display, and is activated by any one of the three inputs to U17C. The CRT display is blanked during a stop sweep, when the RF Source frequency is below 3 MHz, and during the Backstep interval.

Backstep 6

The Backstep circuit briefly retraces the sweep, and blanks the CRT display during this retrace. Figure 8-61 shows a typical Backstep timing sequence. The circuit is disabled if any of the following conditions occur:

- R INPUT power is less than -40 dBm
- SWEEP WIDTH MHz switch set to 0 CW or MANual SWEEP selected.
- At the beginning of a sweep.

Any of these conditions cause the U14A output (pin 12) to go low, disabling one-shot U13B; the low output also forces U17B pin 6 high (unblanked) regardless of the U17B inputs to pins 3 and 5.

During the quiescient state of one-shot U13B, its pin 12 output is high, holding U16A pin 1 high. Since U16A pin 2 is held high by U17B pin 6, the U16A pin 3 output is low. This low output forces the output of U17B to remain high (regardless of U17B inputs on pin 4 and 5), and turns Q7 on. With Q7 turned on, U18A pin 3 is clamped to ground, and C29 charges as the VSWP input increases. A lock trigger pulse fires one-shot U13B (if U14A pin 12 is high), and simultaneously stops the forward sweep. The negative pulse on U13B pin 12 forces U16A pin 3 high, turning Q7 off. The simultaneous positive output on U13B pin 5 (H BK STEP) goes to the Sweep Generator (A17, Service Sheet 5) to cause a short retrace of approximately .4V. Since Q7 is off, the negative going VSWP couples through C29 to the inverting input of U18A, causing its output to go high. Since the three inputs to U17B are now high, its output goes low to blank the CRT display. The low output from U17B holds the U16A output high, even after one-shot U13B has finished its pulse, so the gates

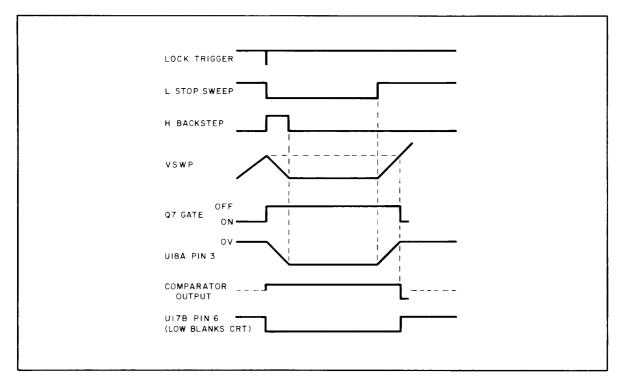


Figure 8-61. Back Step Timing Diagram

remain in this state until comparator U17B changes state. When the sweep starts forward again, U18A pin 3 passes through zero when the VSWP level is the same as when the lock trigger occurred. At that point, U18A pin 7 goes low, forcing the U17B output high (unblanked). Since U13B pin 12 has switched high again, U16A pin 3 goes low to turn on Q7; U17B pin 3 is also held low so that the state of U17B pin 5 is no longer important. (The output of comparator U18A is undefined when Q7 shorts its inputs together.)

If the backstep carries the RF Source frequency below 39 MHz, the F>39 MHz input goes low, terminating the backstep pulse by resetting oneshot U13B.

Buffer U12B supplies a buffered VSWP to the rear panel PROGRAMMING connector (A23J7, Service Sheet 18).

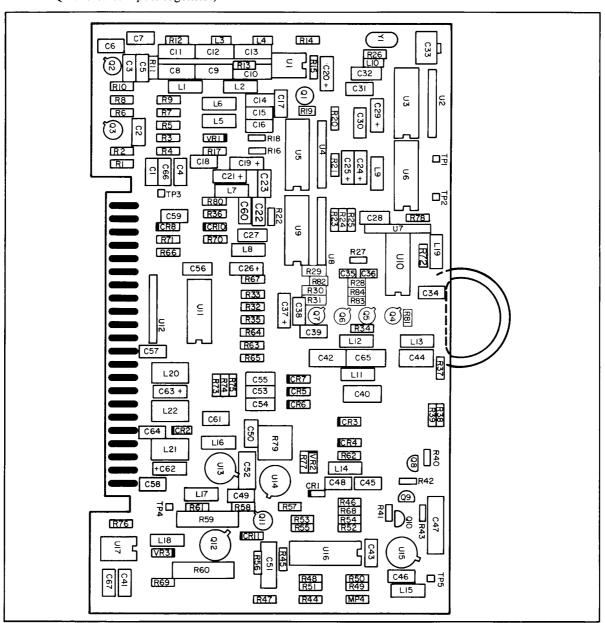


Figure 8-62. Phase Lock (A13), Component Locations

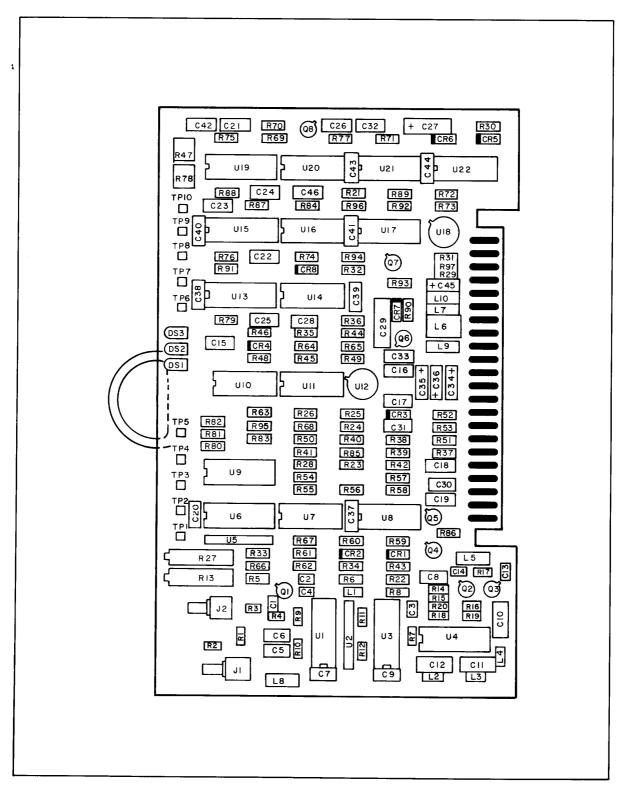
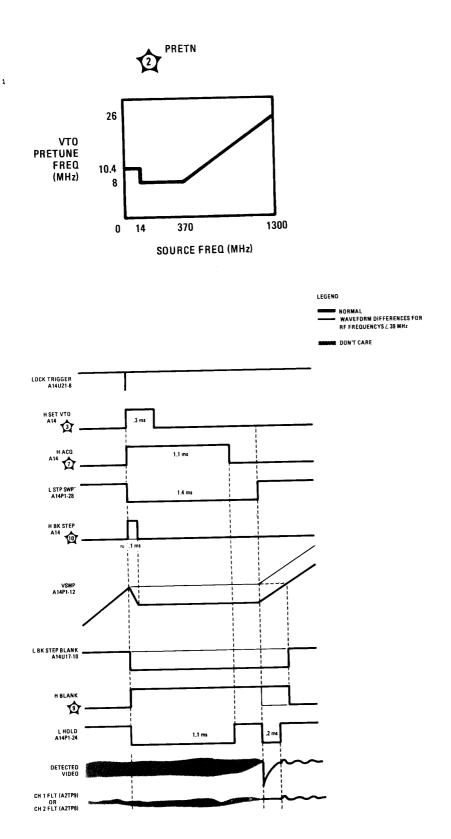
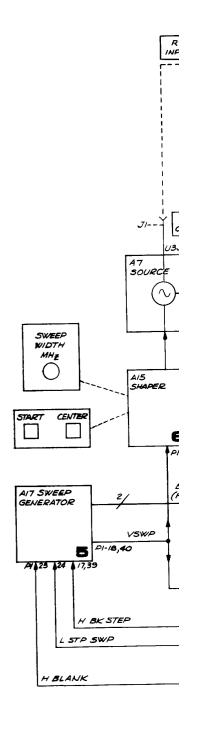
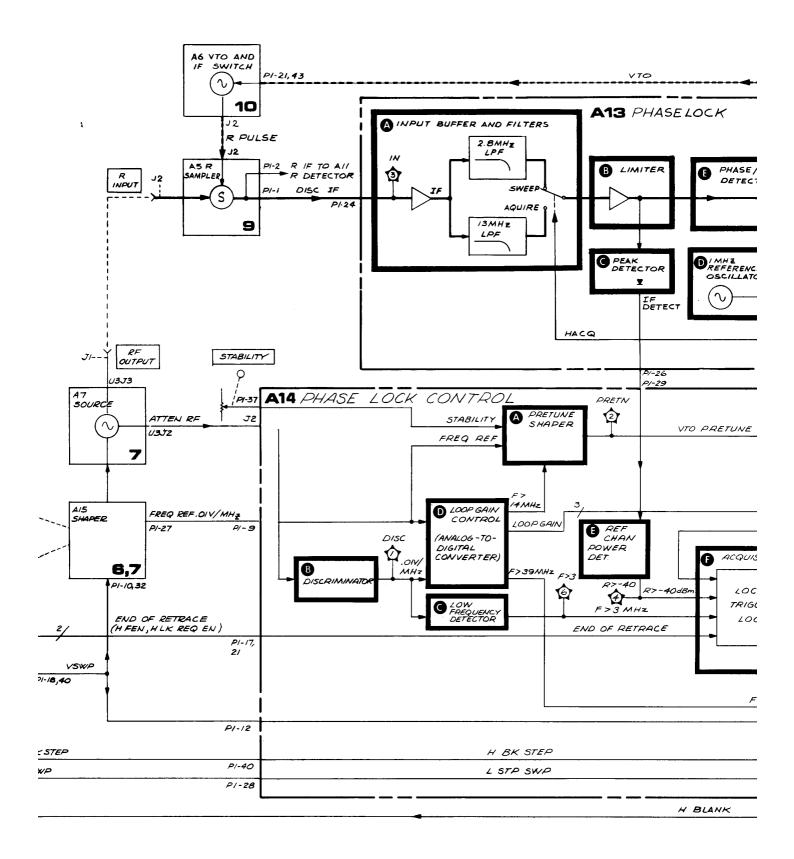





Figure 8-63. Phase Lock Control (A14), Component Locations

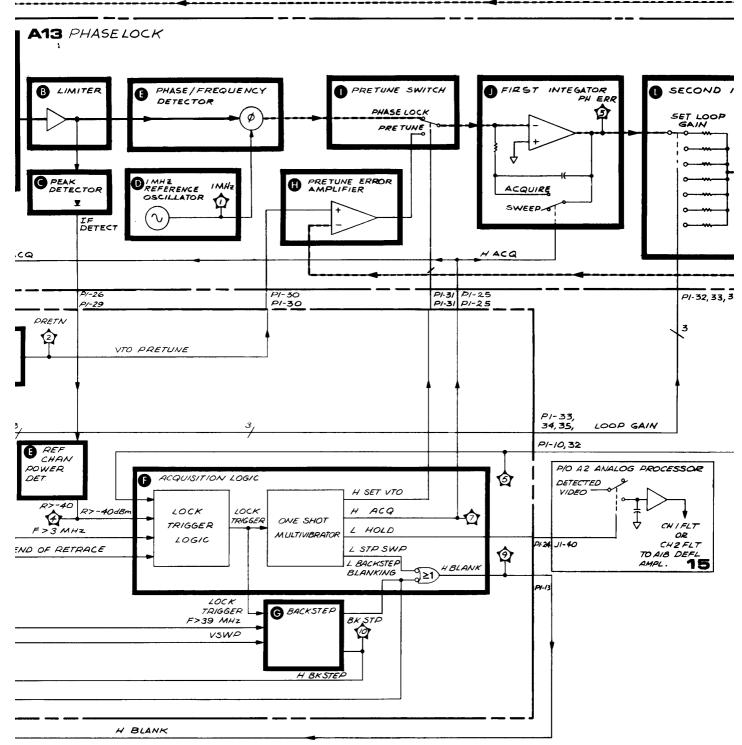
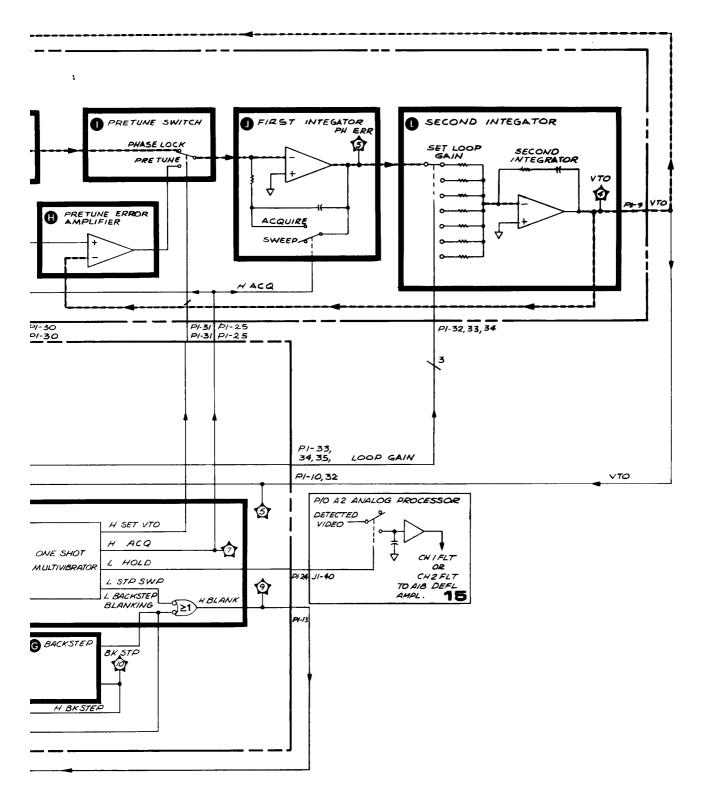
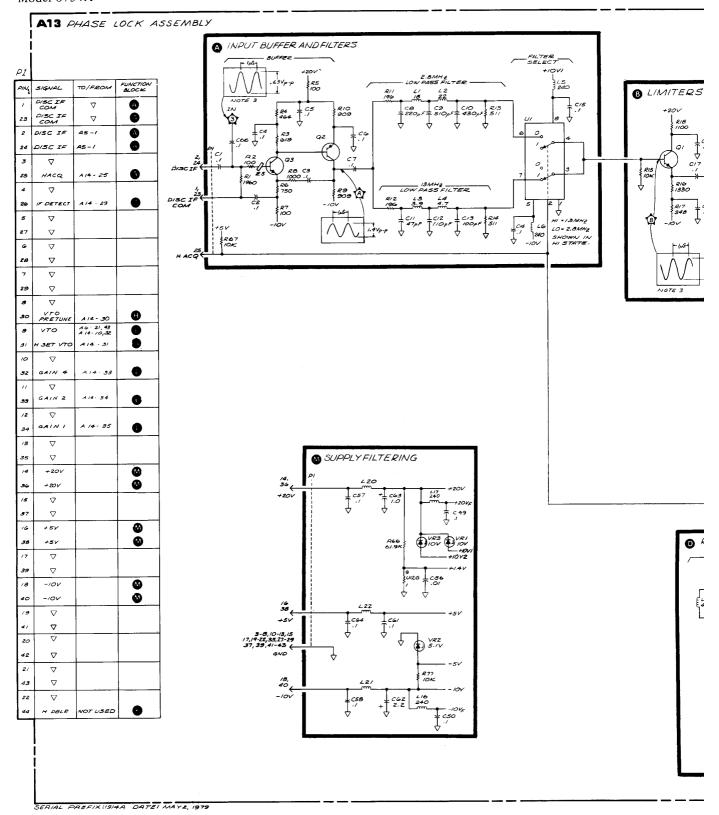
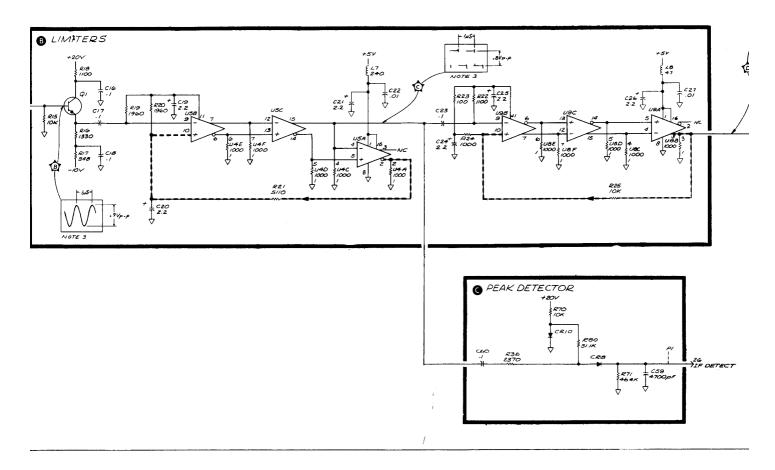
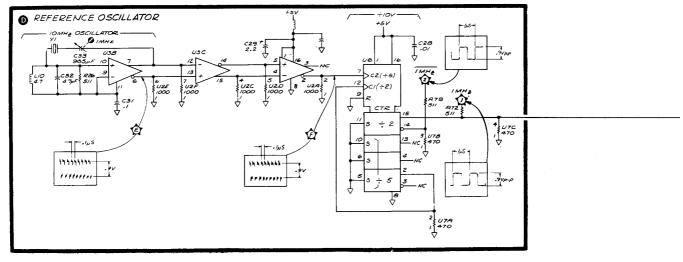
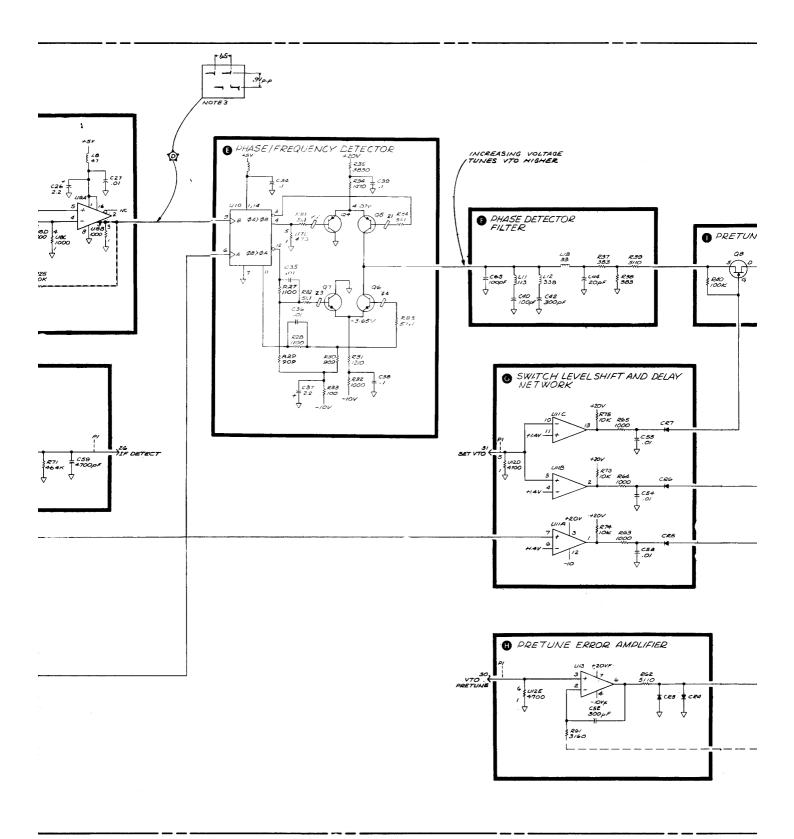
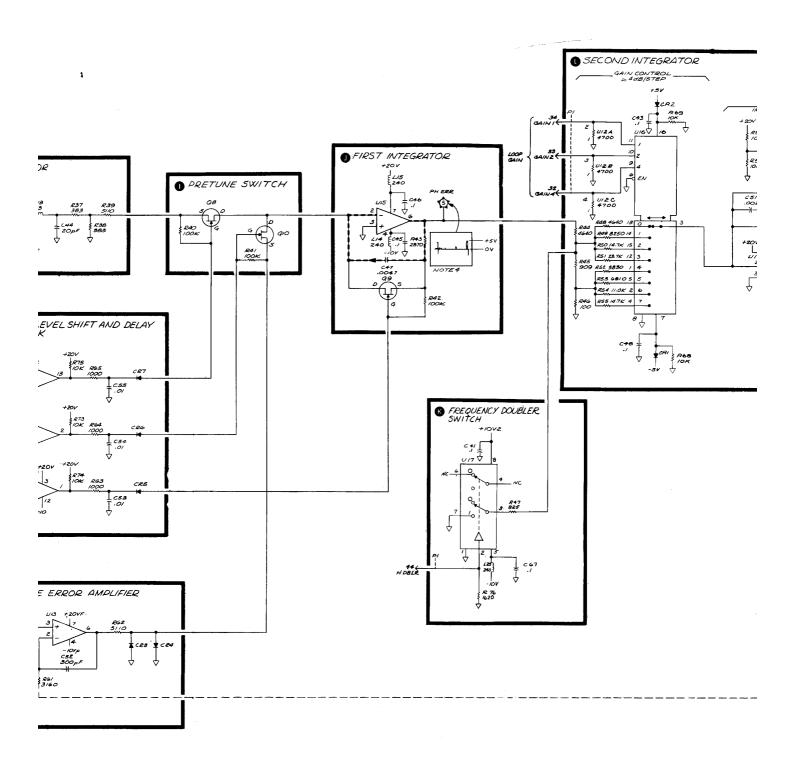


Figure 8-64. Phase Lock (A13) and Phase I


Figure 8-64. Phase Lock (A13) and Phase Lock Control (A14), Block Diagram 8-127/8-128

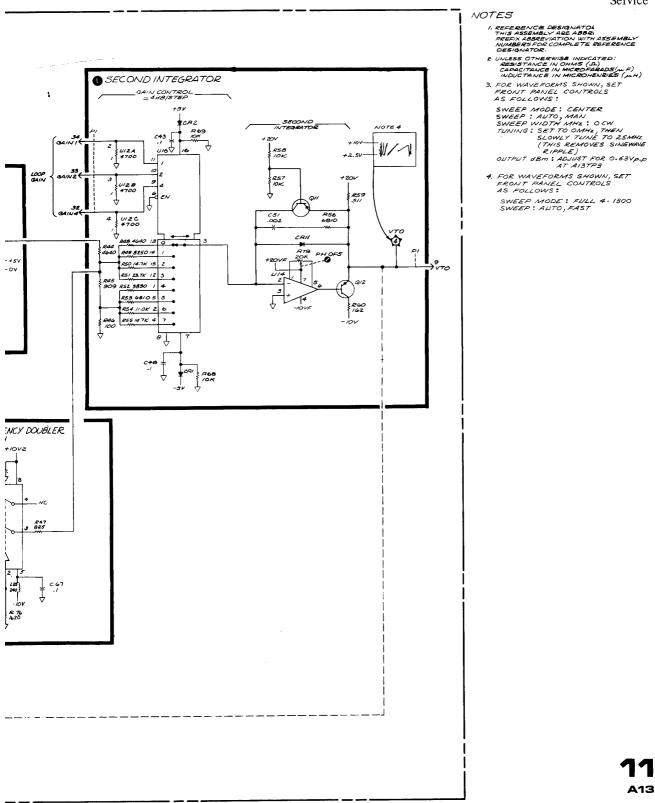
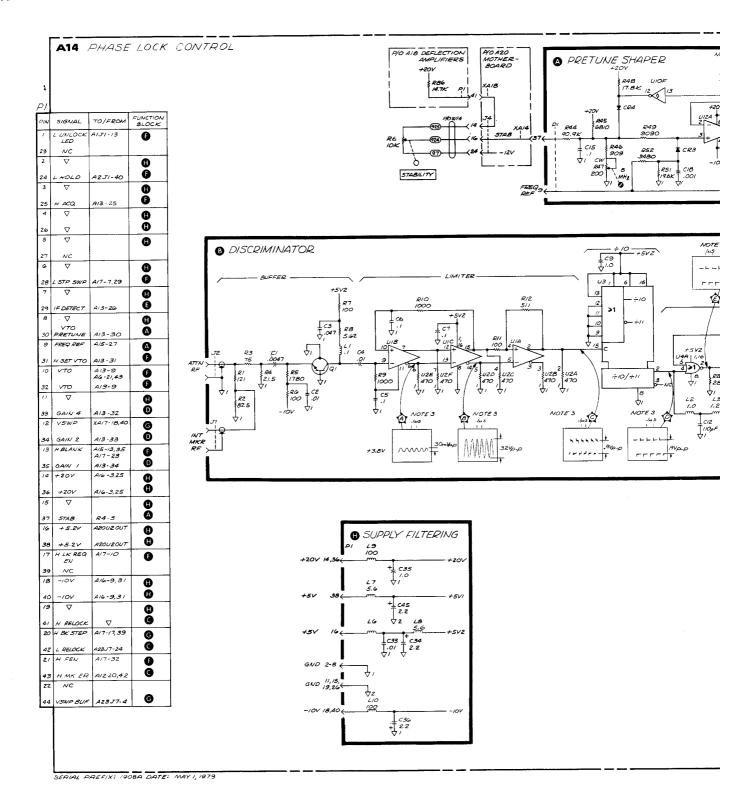
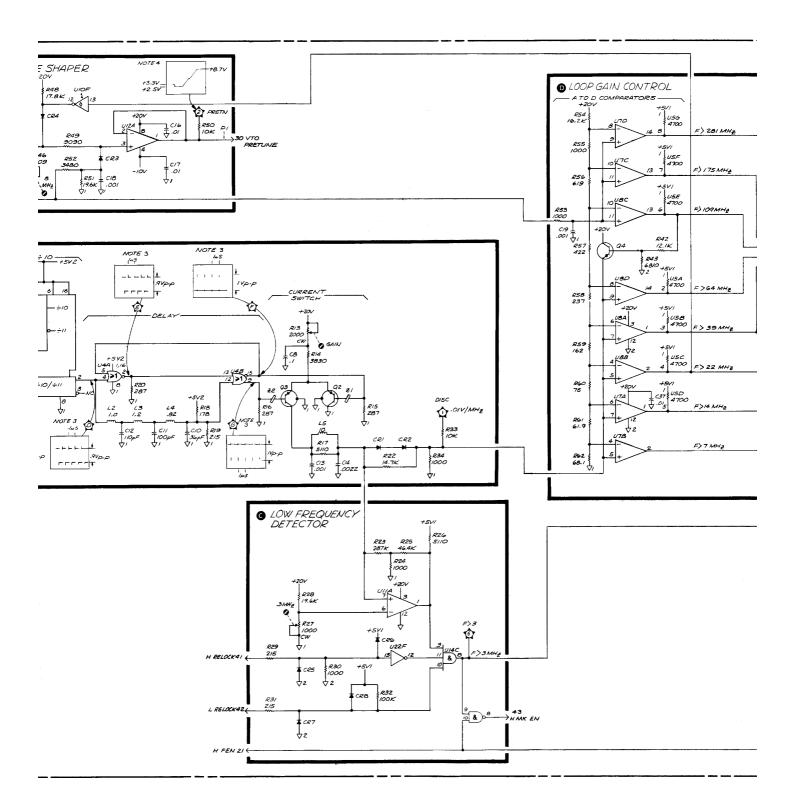
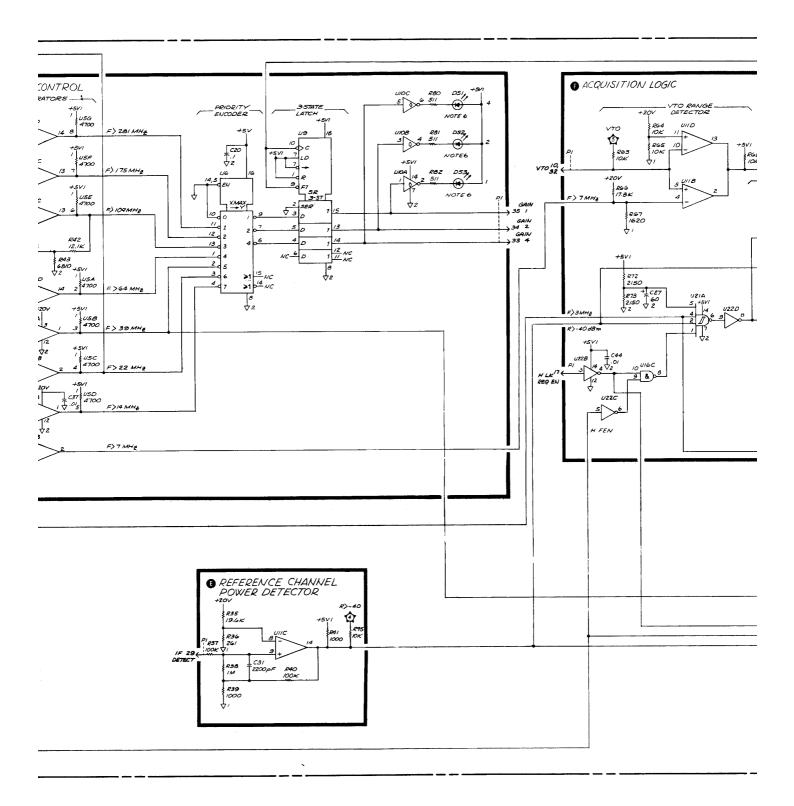
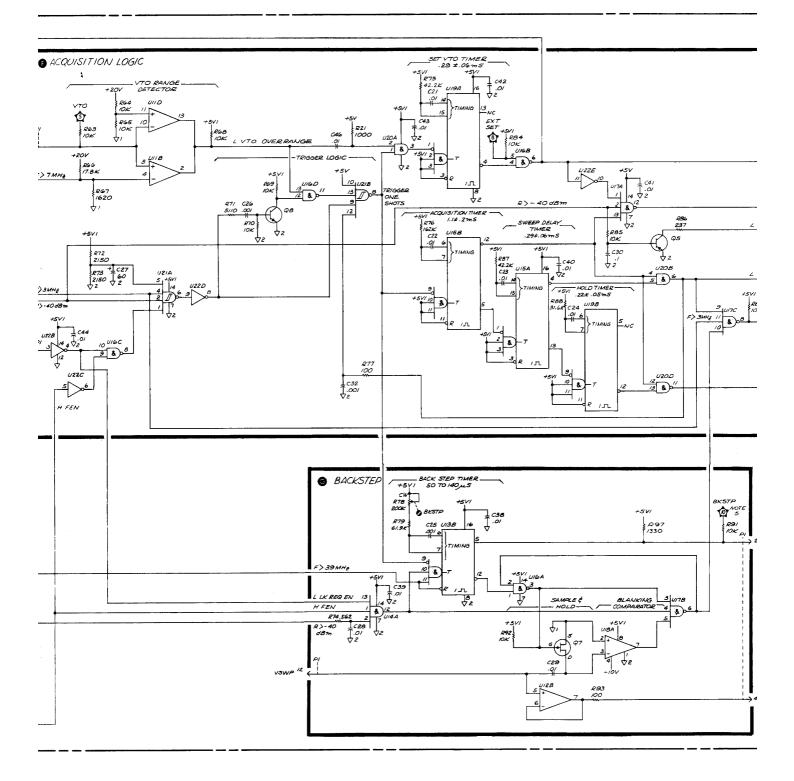






Figure 8-65. Phase Lock (A13), Schematic Diagram 8-129/8-130

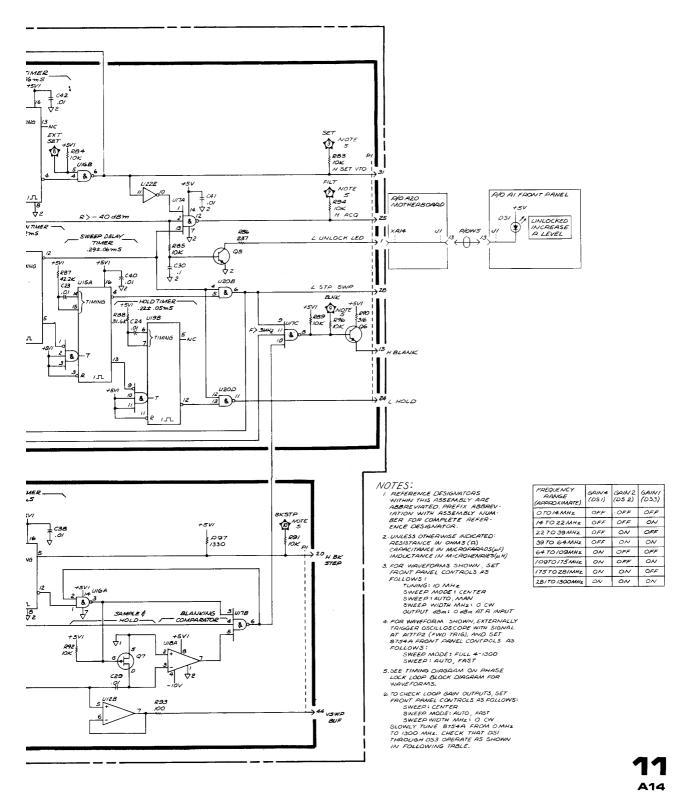


Figure 8-66. Phase Lock Control (A14), Schematic Diagram

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS

ASSEMBLY	SERVICE SHEET	DESCRIPTION
	5	SWEEP pushbuttons
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch
A1 Front Panel		OUTPUT dBm control
	7	
	8	MARKERS MHz pushbuttons
	11	UNLOCKED indicator
	12	Absolute R measurement select
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER, and VIDEO FILTER
	16	HORIZONTAL POSN and GAIN controls
	19	All front panel controls
A2 Analog Processor	6	Analog-to-digital converter for FREQUENCY MHz display.
	15	Analog processor, switch control logic, and $\pm6 extsf{V}$ power supplies
	16	V RAMP amplifier
A3 B Sampler	9	RF to IF down-conversion
A4 A Sampler	9	RF to IF down-conversion
A5 R Sampler	9	RF to IF down-conversion
A01/70 115 C 111	1	M. Kong Z. and One Williams
A6 VTO and IF Switch	10	Voltage Tuned Oscillator
	12	IF Switch
A7 Source	7	RF Source
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector
A9 Phase Detector	14	Phase Detector
A10 Polar Converter	14	Polar Converter
A11 R Detector	13	R INPUT, magnitude detector
A12 Marker Generator	8	Markers
A13 Phase Lock	11	Phase Lock
A14 Phase Lock Control	11	Phase Lock loop control
A15 Shaper	6	Sweep width, tuning, frequency reference, and frequency display.
	7	Shaping and RF Source drive.
A16 DC Regulator	20	Low Voltage Power Supplies
A17 Sweep Generator	5	Sweep Generator
A18 Deflection Amplifiers	16	Deflection Amplifiers
A10 Postifier	10	Everyol Interfere
A19 Rectifier	18	External Interface
	20	Low Voltage Power Supplies
A20 Motherboard	21	Motherboard wiring list
A21 High Voltage Power Supply	17	CRT bias and blanking control
A22 Frequency MHz Display	6	Frequency display
A23 Rear Panel	18	External Interface and Rear Panel (A23)

SERVICE SHEET 12

IF SWITCH (A6) AND A, B DETECTOR (A8), CIRCUIT DESCRIPTION

The function of the IF Switch, which is part of the Voltage-Tuned Oscillator and IF Switch (A6), is to select the output of either the A Sampler (A4, Service Sheet 9) or the B Sampler (A3) as the 1-MHz IF input signal to the A, B Detector (A8). The position of the IF Switch is controlled by the logic circuitry in the Rectifier (A19, Service Sheet 18).

The primary purpose of the A, B Detector is to produce a dc voltage that varies logarithmically with the magnitude of the selected 1-MHz IF input signal (IF A or IF B). It does this by first filtering the input signal to isolate the 1-MHz component from the output spectrum of the sampler. (This processed IF signal is the input to the Phase Detector, A9, Service Sheet 14.) After filtering, the input signal is rectified to obtain a dc current. A dc logger then converts this current to a logarithmically varying voltage (A, B MAG), which represents the absolute magnitude of the A, B IF signal.

A switch selects either the A, B MAG voltage or the corresponding R MAG voltage (R Detector, A11, Service Sheet 13) for processing in the Analog Processor (A2, Service Sheet 15).

IF SWITCH (A6), CIRCUIT DESCRIPTION

The IF Switch (A6) selects the 1-MHz IF signal from either the A Sampler (A4) or the B Sampler (A3) as the input signal to the A, B Magnitude Detector (A8). The input selected depends on the states of the front panel and remote programming lines, which when decoded control the L B IF SW line from the Rectifier (A19, Service Sheet 18). When the L B IF SW line is high (+5V), the signal from the A Sampler is selected; when the line is low (0V), the signal from the B Sampler is selected.

The state of L B IF SW is controlled either by the front panel (8754A in local) or by a remote input (8754A in remote); then that selected state may be inverted by a remote control input, L REV AB.

When the instrument is operated without remote programming input, the front panel L B INT line along controls the position of the IF Switch. Table 8-6 lists the 16 combinations of the front-panel display-select switches that control the

state of the L B INT line from A2. Figure 8-67 illustrates the IF Switch control logic and includes a truth table.

Table 8-6. Front-Panel Control of IF Switch

Selected Display	L B INT
POLAR A/R A only A/R only	HIGH
B/R, Channel 1 only B/R, Channel 2 only B/R, Channels 1 and 2 B/R and PHASE B/R B only PHASE B/R only R (Both OFF switches in)	LOW
A and B A and B/R A and PHASE B/R A/R and B A/R and B/R A/R and PHASE B/R	Alternates between HIGH and LOW on successive sweeps

NOTE

All reference designations in this circuit description, unless otherwise specified, are assumed to have the prefix A6. For example, the designation Q1 is actually A6Q1.

IF Switch (A)

The IF Switch is an electronic switch comprising two sections, one for each input. Each section has two series-shunt-connected diode pairs in series with the signal input. The wired-OR outputs of the two sections form the bias and signal input to the common base amplifier Q1. The voltages at the anode and cathode of each diode (shown on the schematic) are determined by the comparators in U1. When the potential difference at the cathode of any diode is more negative than -0.6V, the diode is biased into conduction.

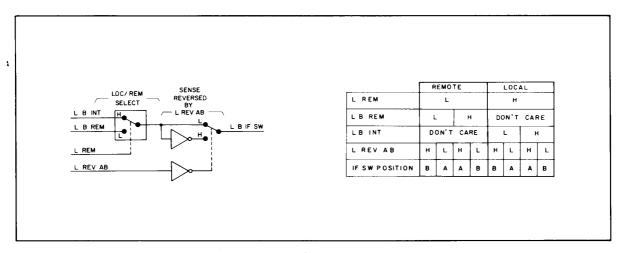


Figure 8-67. IF Switch Control Logic

When the L B IF SW line from A19 is high (+5V), series diodes CR2 and CR4 are turned on and shunt diodes CR1 and CR3 are turned off, providing a current path between the A Sampler and Q1. At this time, there is no input to Q1 from the B Sampler because the series diodes CR6 and CR8 in that path are turned off, while shunt diodes CR5 and CR7 are turned on.

When the L B IF SW line from A19 is low (0V), polarities on all diodes are reversed, providing a current path between the B Sampler and Q1.

Transistors Q2 and Q3 are a complementary feedback pair serving as a Buffer Amplifier whose gain of approximately 6 dB is determined by R16 and R17. The output, monitored at TP1, has an amplitude (at 1 MHz, with RF power applied to the selected input port) of 632 mV peak-to-peak at 0 dBm or 6.32 mV peak-to-peak at -40 dBm.

The diodes in the two sections of the IF Switch are biased by two complementary pairs of parallel-connected, open-collector comparators whose outputs are controlled by the state of the control line L B IF SW.

The single-pole, double-throw action of the two sections is accomplished by turning on the series diodes, completing the signal path from an input to the emitter of the common-base amplifier Q1. At the same time, the shunt diodes are turned off, effectively removing them from the circuit of one section. The shunt diodes of the other section are turned on, shunting the input signal to ground, and the series diodes are turned off, effectively removing them from the circuit.

The schematic is drawn to show Channel 1 selected. The A section shunt diodes CR1 and CR3 are biased off, and the series diodes CR2 and CR4 are biased on; while the B section has its shunt diodes CR5 and CR7 biased on and its series diodes CR6 and CR8 biased off.

The selected section provides, via the output series diode CR4, bias current for Q1 of about 3.9 mA. Because of the impedance of the collector circuit of Q1 versus the input impedance of R1 and series diodes CR2 and CR4, the net gain of the IF Switch is about $-6 \, \mathrm{dB}$.

A, B DETECTOR (A8), CIRCUIT DESCRIPTION

The primary purpose of the A, B Detector is to produce a dc voltage that varies logarithmically with the magnitude of the 1-MHz IF input signal from the IF Switch (A6, Service Sheet 12).

The detector first amplifies and then filters the 1-MHz input signal to provide the necessary 20-kHz IF bandwidth. This processed signal is sent to the Phase Detector (A9, Service Sheet 14) for phase measurements. It is also rectified to obtain a dc current that is proportional to the IF level. The logarithm of this dc current is then scaled and offset to produce a dc voltage that represents the absolute magnitude of the IF signal and varies logarithmically with a linear change in IF magnitude. This signal (A, B MAG) is selected and sent to the Analog Processor (A2, Service Sheet 15) for display processing.

The A, B Detector has three outputs:

1

 A 1-MHz IF signal to the Phase Detector (A9, Service Sheet 14)

- A dc voltage (whose amplitude is −25 mV/dB) to the R Detector (A11, Service Sheet 13)
- A dc voltage (whose amplitude is −25 mV/dB to the Analog Processor (A2, Service Sheet 15)

NOTE

All reference designations in this circuit description, unless otherwise specified, are assumed to have the prefix A8. For example, the designation Q4 is actually A8Q4.

1-MHz Bandpass Filters (B)

The IF bandpass is determined by two parallelresonant LC circuits to provide an overall 3-dB bandwidth of 20 kHz centered at the IF frequency of 1 MHz.

The 1-MHz IF input signal (A, B IF) selected by the IF Switch (A6) is amplified by the feedback pair Q3 and Q4, whose gain is 6.2 or 16 dB as determined by the ratio of R7 to R3. The output (IF 1) monitored at TP1, is 3.9V peak-to-peak with an RF input power level of 0 dBm. IF 1 is filtered by a parallel resonant circuit consisting of C6, C7, and a variable inductor (1 MHz L2), which is tuned for resonance at 1 MHz by adjusting L2 for the phase shift of the 1-MHz signal between TP1 and TP2. The gain through the bandpass filter stage, TP1 to TP2, is 0.8, -2 dB. The bandwidth of this filter is 28 kHz.

The output of the tank circuit is buffered by emitter-follower Q1, whose output (IF 2), monitored at TP2, is about 3.2V peak-to-peak. IF 2 is then filtered by another parallel resonant circuit consisting of C10, C11, 1 MHz TRIM capacitor C12, and a variable inductor, 1 MHz (L3), which also has a bandwidth of 28 kHz. This filter is coarsely tuned by L3 for the phase shift between TP1 and TP3, with fine tuning by C12. The gain from TP2 to TP3 is about 0.8, $-2 \, dB$.

Buffers **G**

The Buffers are two emitter-follower amplifiers, Q2 and Q5, that provide isolation between the signal paths out of the 1-MHz IF signal to the Phase Detector (A9), and A8Q2 drives the Rectifier circuit. The output of the Buffers (IF 3), monitored at TP3, is about 2.45V peak-to-peak at 0 dBm.

Rectifier (3)

The Rectifier converts the 1-MHz input volage to a dc output current. As shown in the equivalent circuit (Figure 8-68), the Rectifier is basically an amplifier and a pair of diodes in the negative feedback loop. Compensation for the rectifier diode capacitance is provided by the negative capacitance circuit. The gain of the amplifier is varied to compensate for the change in rectifier impedance with signal level. Temperature-dependent diode bias is provided to reduce the impedance of the diode at low levels.

At the 1-MHz input frequency, the impedance of capacitors C_A is small compared to that of resistors R_A , so the ac components of I_1 and I_2 combine to form the feedback current I_F , which is 180 degrees out of phase with the input current I_{IN} . Because the amplifier has a large gain, I_F is equal in amplitude to I_{IN} .

The dc component of I_1 is sent to the virtual ground at the input of the DC Logger, while the dc component of I_2 develops a dc voltage to the High Level Compensation circuit of the DC Output Amplifier across resistor R_B in that output line and is returned to the output of the diode bias circuit.

Resistors R_A and capacitors C_B filter out the 1-MHz IF from the dc outputs to the DC logger and to the High Level Compensation circuit.

The input stage to the Rectifier circuit is commonbase amplifier Q6, whose gain is varied by the action of PIN diode CR1 in the collector circuit. Emitter-follower Q7 is a buffer stage that drives the common-emitter complementary pair Q11 and Q12, a unity-gain, inverting amplifier whose output drives the diodes CR2 and CR3.

A parallel-resonant tank circuit at the collectors of Q11 and Q12 consists of L1, L8, 1 MHz TUNE capacitor C45, and the inter-element capacitances of Q11 and Q12. It is tuned to provide high impedance at 1 MHz to improve the performance of the rectifier at low input levels.

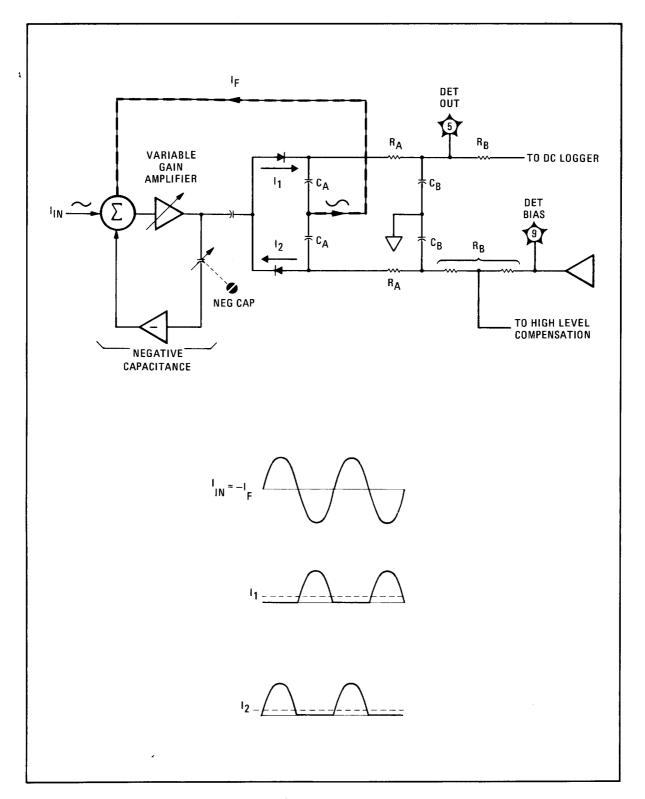


Figure 8-68. A8 Rectifier, Equivalent Circuit

The inductors in the tank circuit also provide a dc bias point for the collectors of Q11 and Q12.

The capacitance of the diodes CR2 and CR3 causes the negative feedback current $I_{\rm F}$ to contain a capacitive as well as a resistive component. This causes a non-linearity in the rectifier output. To compensate for this undesirable effect, C23, NEG CAP capacitor C24, and unity-gain, inverting amplifier Q8, Q9 cause a current to appear at the summing junction (the emitter of Q6) that is 180 degrees out of phase with the capacitive component of $I_{\rm F}$.

Diode CR11 provides a temperature-dependent reference voltage (DET BIAS) for the Diode Bias stage, U4B and associated circuitry. This voltage, measured at TP9, is about +165 mV at ambient temperature and varies at -2 mV/deg C. The Diode Bias Network also applies a slight bias to the rectifier diodes to improve their sensitivity.

DC Logger **(**

The DC Logger produces an output voltage that varies with the log of the input current (-1.9 V at 0 dBm, -0.04 V at -40 dBm, +1.85 V at -80 dBm). It consists of two operational amplifiers, U1 and U2, each of which has a transistor base-emitter junction in its feedback loop and one of which is used as a reference. An equivalent circuit is shown in Figure 8-69.

The basic logging function of the circuit is performed by Q10A, whose base-emitter voltage (V_{be_1}) varies with the log of the input current to U1. However, this basic logging circuit is temperature-dependent, because V_{be_1} also varies with temperature. Therefore, stability is achieved by the addition of Q10B and operational amplifier U2.

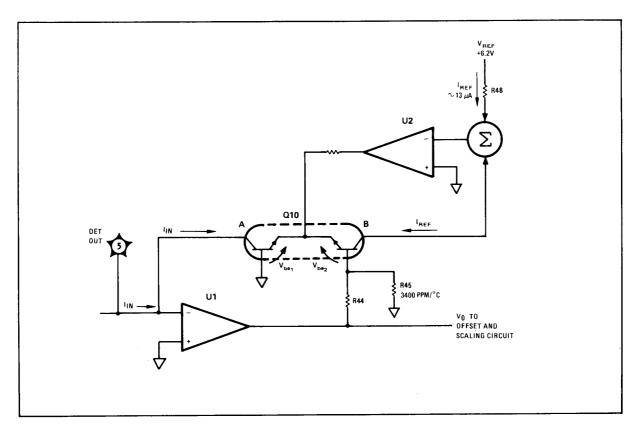


Figure 8-69. A8 DC Logger, Equivalent Circuit

U2 operates to maintain equality between the currents into and out of the summing junction at its inverting input (pin 2). The resulting constant current I_{REF} establishes a reference voltage V_{be_2} that varies only with temperature. Since temperature variations have an equal effect on the two base-emitter voltages, their algebraic sum represents a temperature-stable output voltage V_o that is directly proportional to the log of the input current to U1 pin 2 (1.5 mA to 0.15 mA) over the entire operating range of about 80 dB.

The value of I_{REF} (about $13\mu A$) is determined by the reference voltage (+6.2V) and the value of R48.

R45 compensates for changes in the logging characteristics of Q10A (as distinguished from the variation of V_{be} , as a function of temperature.

Offset and Scaling **G**

The dc output voltage from the DC Logger is inverted by operational amplifier U3B and scaled to a factor of 25 mV/dB by the GAIN adjustment R56. LOG OFS adjustment R50 provides the absolute level calibration. That is, when the equivalent of 0 dBm at the RF input is 632 mV peak-to-peak at the input to the magnitude detector, the output is 0V. The output of the Offset and Scaling circuit is the A, B MAG signal to the Analog Processor (A2).

Clamp. A voltage divider consisting of R91 and R39 establishes a reference of +0.07V, equivalent to >2.7 dBm RF power at the inverting input to operational amplifier U4A. When the voltage at the non-inverting input exceeds +0.07V the output of the op amp is coupled through CR12 to the inverting input of U3B. This limits the output of U4A to prevent expansion on the CRT display when the A, B Detector is overdriven. Diode CR13

keeps op amp U4A in the linear region when it is not functioning as a clamp.

High Level Compensation. The High Level Compensation stage, consisting of CR10, R87, and R54, compensates for linear errors related to the emitter resistance of the logging transistor Q10A, which causes expansion of the DC Logger output at high collector current levels. This occurs when the input to A, B Detector is greater than the equivalent of -10 dBm. A linear signal from the Rectifier output is coupled to the non-inverting input of U3B via CR10 and voltage divider R87, R54. This tends to cancel the error at current levels greater than 0.3 mA (-14 dBm).

Inverter 🖪

Operational amplifier U5A inverts the A, B MAG signal from the Offset and Scaling circuit and sends a - A or - B signal to the A, B or R Select circuit

Detector Gain Amplifier **D**

The purpose of the Detector Gain Amplifier is to control the gain of amplifier Q6 in the Rectifier circuit. This is accomplished by varying the conduction of PIN diode CR1 in the collector circuit of Q6 as a function of the output voltage of the scaling and offset amplifier U3B.

DET GAIN adjustment R58 sets the output of U3A, the bias for the PIN diode via R18, for one diode drop (+0.4V) when the input level is equivalent to -80 dBm or -2V at TP8. As the voltage at TP8 goes positive, the detector gain bias also goes positive, but with a slope of about 30 mV/dB as determined by R61 and R62. When the input level reaches about -64 dBm (-1.6V at TP8), CR5 begins to conduct, placing R60 and R88 in parallel with R61, causing the slope of the U3A output to increase to about 0.2V/dB.

A, B or R Select

The function of the A, B or R Select circuit is to select either the on-board, inverted A, B MAG signal or the -R MAG signal from the R Detector (A11) as the output to the Analog Processor (A2). Signal selection is controlled by the front-panel switch settings. The -R MAG signal is selected when the H DSP R line is high. (Refer to the description of front-panel control logic in Service Sheet 15.)

Analog switch U6 is a unity-gain, inverting amplifier with two switch-selectable summing junc-

tions. The inputs to one summing junction are the inverted A, B MAG signal and the inverted feedback from the amplifier. The inputs to the other summing junction are the -R MAG signal from the R Detector (A11), the offset from R94, and the inverted feedback from the amplifier.

R OFS potentiometer R94 adjusts the absolute value of R when the -R MAG signal from A11 is selected.

Each of the diode pairs CR6, CR7 and CR8, CR9 is used to limit the voltage to analog switch U6 when the summing junction with which it is associated is not selected.

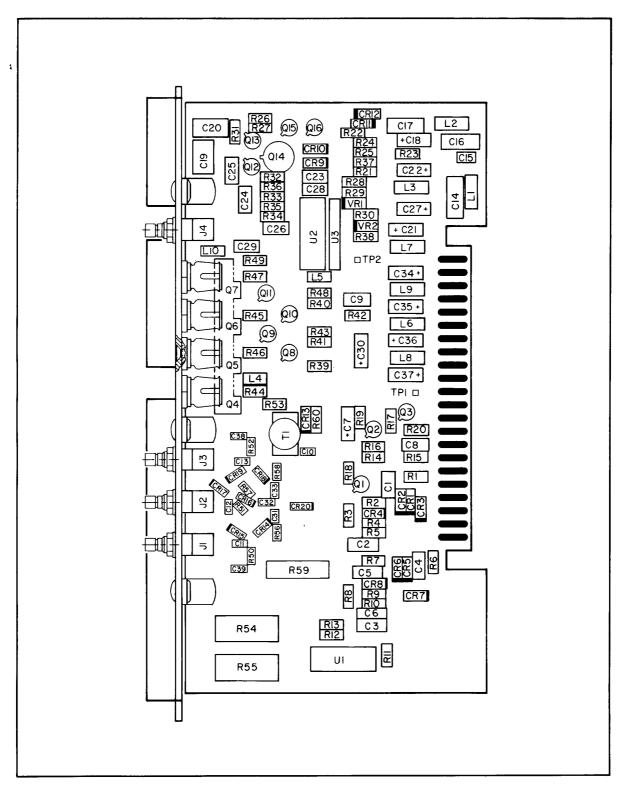
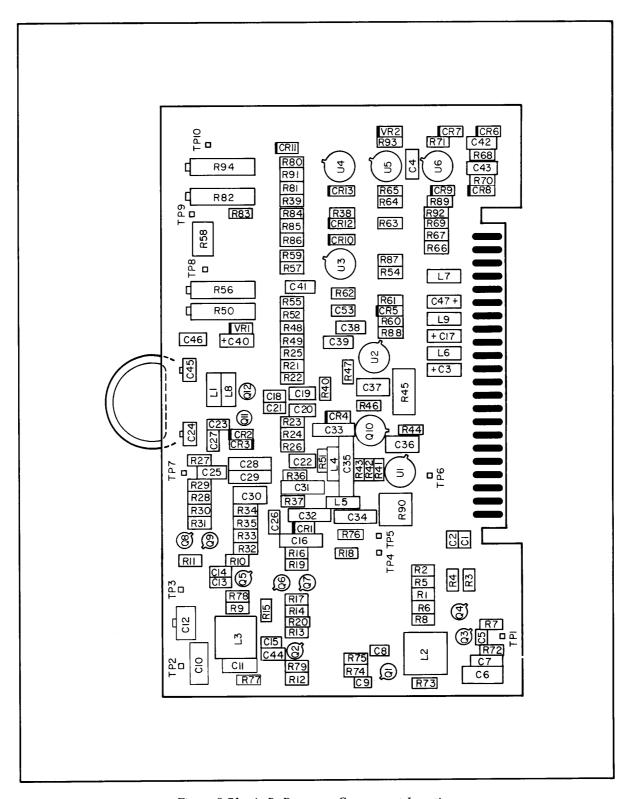
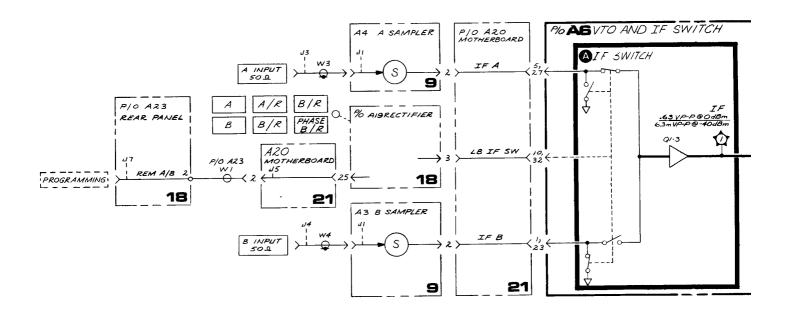
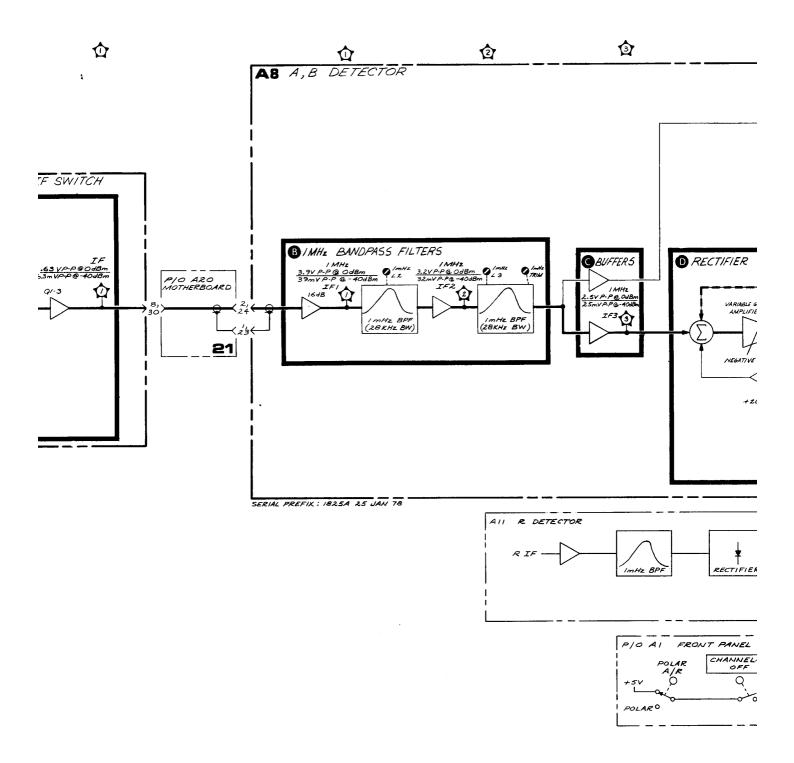
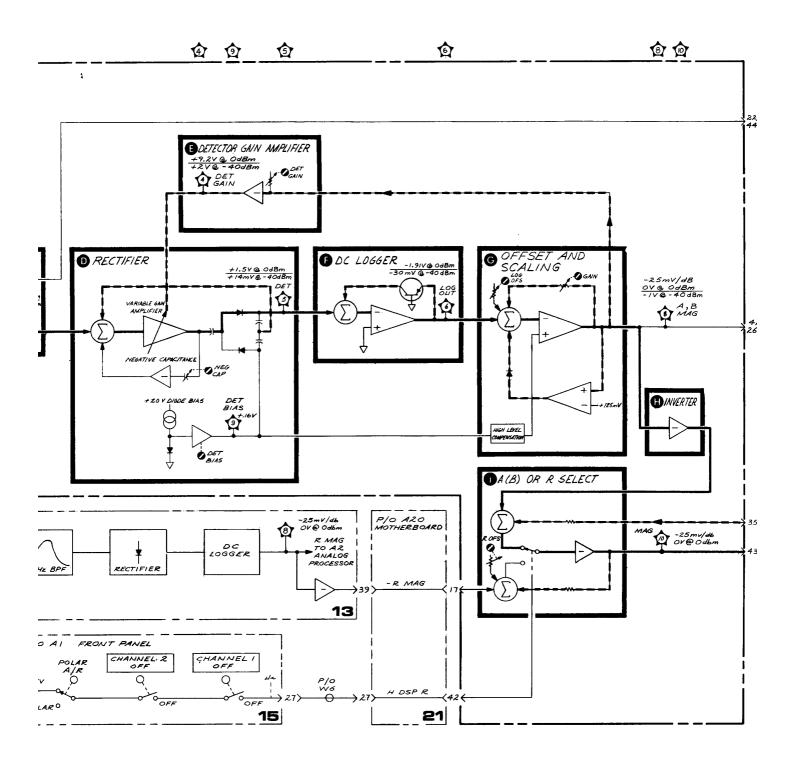
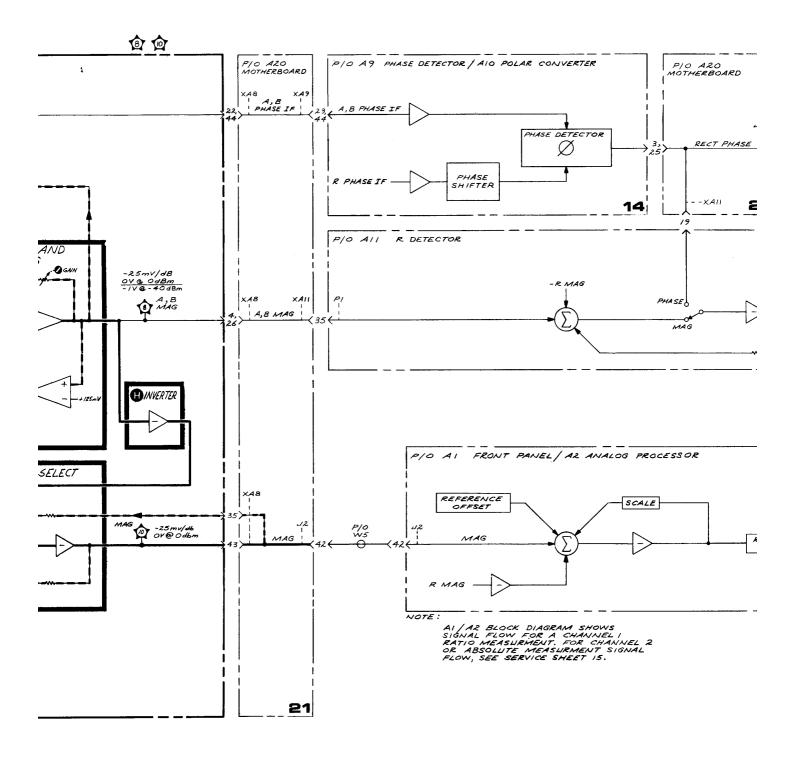
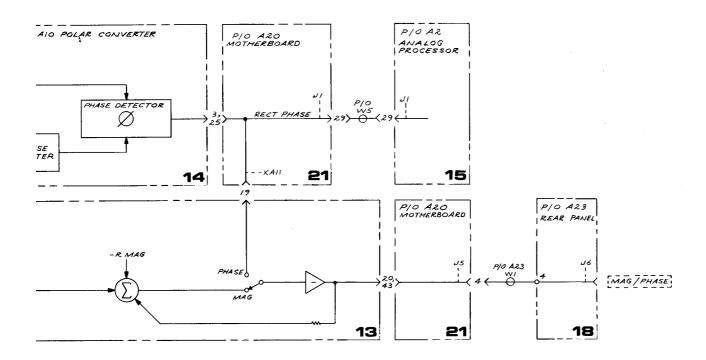


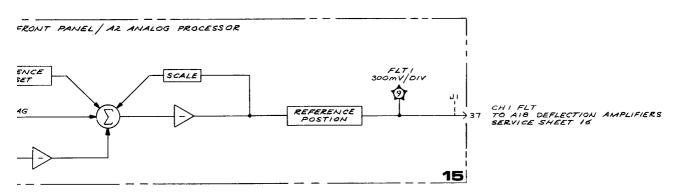
Figure 8-70. IF Switch (A6), Component Locations

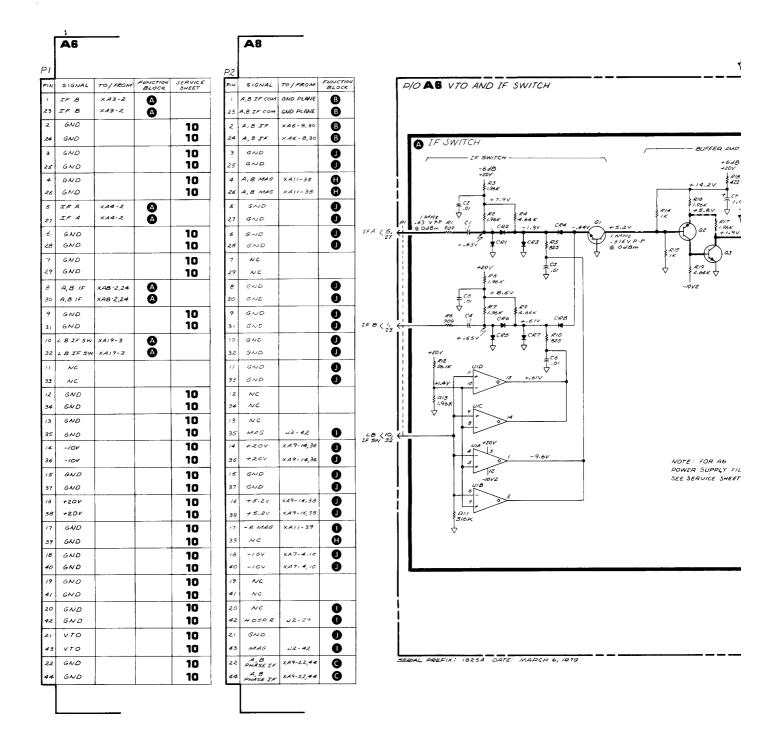
1

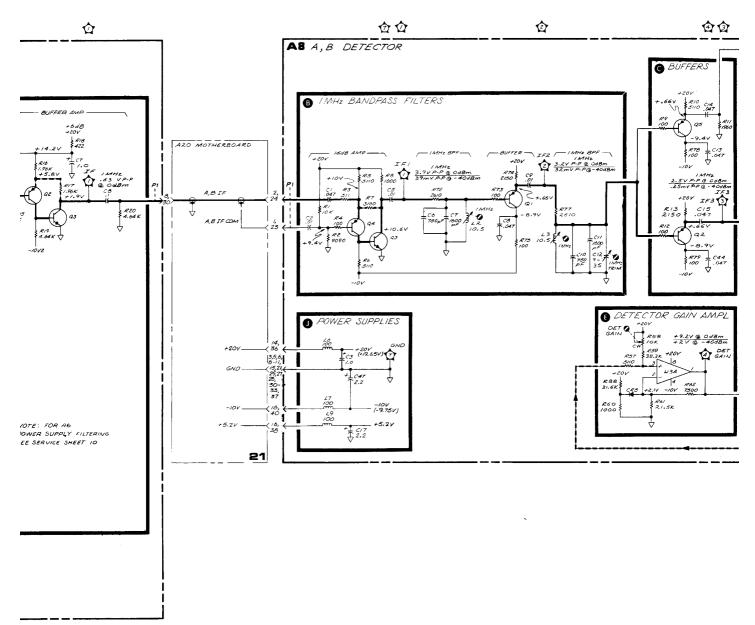






Figure 8-71. A, B, Detector, Component Locations


仚







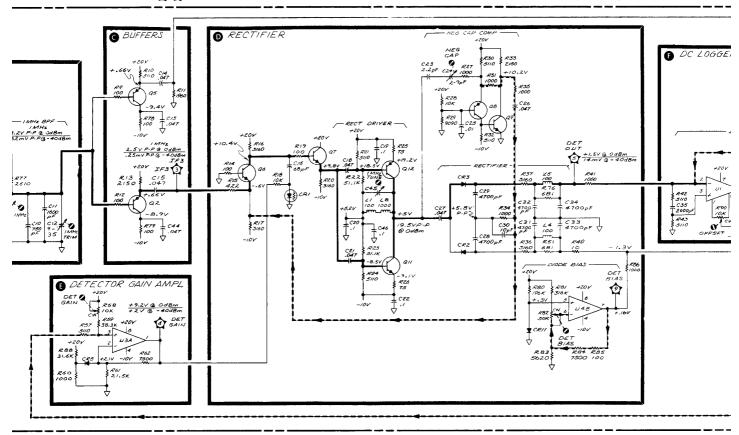

? BLOCK DIAGRAM SHOWS L FLOW FOR A CHANNEL I MEASURMENT. FOR CHANNEL 2 3SOLUTE MEASURMENT SIGNAL SEE SERVICE SHEET 15.

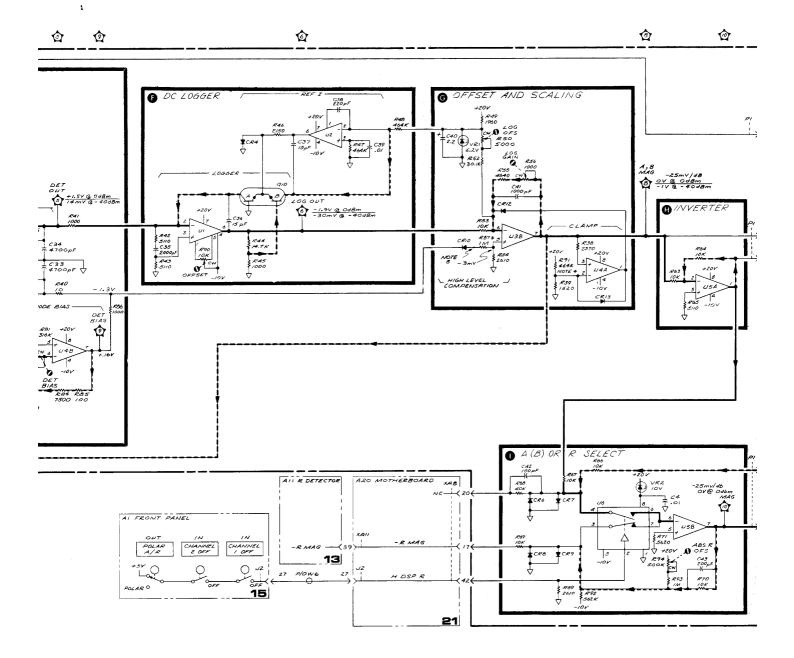
Figure 8-72. IF Switch (A6) and A,B Detector (A8), Block Diagram 8-143/8-144

1

AI FRONT FANEL

OUT

POLAR
A/R


CHANNEL

CHANNEL

A/R

CHANNEL

OF

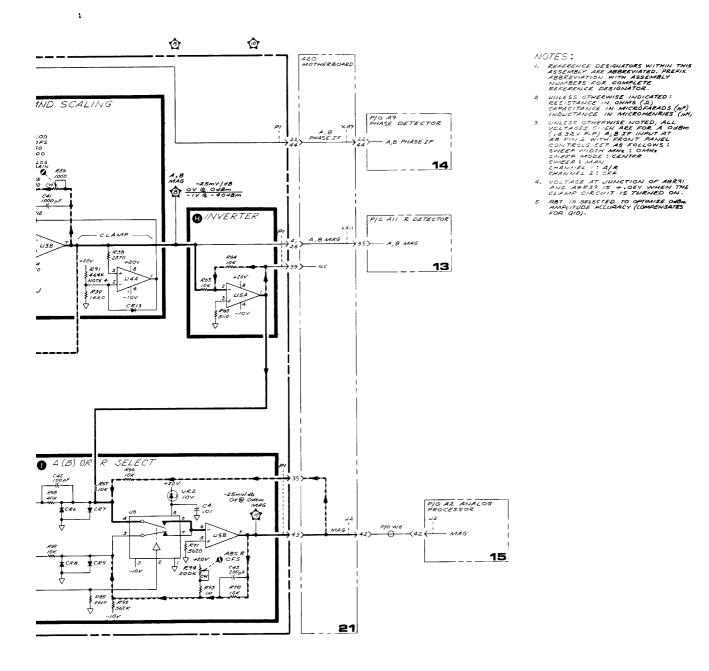


Figure 8-73. IF Switch (A6) and A,B Detector (A8), Schematic Diagram 8-145/8-146

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS

ASSEMBLY	SERVICE SHEET	DESCRIPTION
	5	SWEEP pushbuttons
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch
	i i	
	7	OUTPUT dBm control
A1 Front Panel	8	MARKERS MHz pushbuttons
	11	UNLOCKED indicator
	12	Absolute R measurement select
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER
		and VIDEO FILTER
	16	HORIZONTAL POSN and GAIN controls
	19	All front panel controls
	6	Analog-to-digital converter for FREQUENCY MHz display.
A2 Analog Processor	15	Analog processor, switch control logic, and $\pm6\mathrm{V}$ power supplies
	16	V RAMP amplifier
A3 B Sampler	9,	RF to IF down-conversion
A4 A Sampler	9	RF to IF down-conversion
A5 R Sampler	9	RF to IF down-conversion
40.470	1	
A6 VTO and IF Switch	10	Voltage Tuned Oscillator
	12	IF Switch
A7 Source	7	RF Source
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector
A9 Phase Detector	14	Phase Detector
A10 Polar Converter	14	Polar Converter
A11 R Detector	13	R INPUT, magnitude detector
A12 Marker Generator	8	Markers
A13 Phase Lock	11	Phase Lock
A14 Phase Lock Control	11	Phase Lock loop control
445.01	1 .	
A15 Shaper	6 7	Sweep width, tuning, frequency reference, and frequency display. Shaping and RF Source drive.
A16 DC Regulator	20	Low Voltage Power Supplies
A17 Sweep Generator	5	Sweep Generator
A18 Deflection Amplifiers	16	Deflection Amplifiers
A 10 D	10	F-A
A19 Rectifier	18	External Interface
	20	Low Voltage Power Supplies
A20 Motherboard	21	Motherboard wiring list
A21 High Voltage Power Supply	17	CRT bias and blanking control
A22 Frequency MHz Display	6	Frequency display
A23 Rear Panel	18	External Interface and Rear Panel (A23)

SERVICE SHEET 13

1

R DETECTOR (A11), CIRCUIT DESCRIPTION

The primary purpose of the R Detector (A11) is to produce a dc voltage that varies logarithmically with the magnitude of the 1-MHz R IF input signal from the R Sampler (A5, Service Sheet 9).

The detector first amplifies and then filters the R IF signal to provide the necessary 20-kHz IF bandwidth. This processed signal is sent to the Polar Converter (A10, Service Sheet 14) for phase measurements. It is also rectified to obtain a dc current that is proportional to the IF level. The logarithm of this dc current is then offset and scaled to produce a dc voltage that represents the absolute magnitude of the IF signal and varies logarithmically with a linear change in IF magnitude. This signal (R MAG) is sent to the Analog Processor (A2, Service Sheet 15) for display processing.

The R Detector (A11) has four outputs:

- A 1-MHz IF signal to the Polar Converter (A10, Service Sheet 14)
- A dc voltage (whose amplitude is -25mV/dB) to the A, B Detector (A8, Service Sheet 12)
- A dc voltage (whose amplitude is −25 mV/dB) to the Analog Processor (A2, Service Sheet 15)
- A dc voltage to the rear panel MAG/ PHASE output connector

NOTE

All reference designations in this circuit description, unless otherwise specified, are assumed to have the prefix A11. For example, the designation Q4 is actually A11Q4.

1-MHz Bandpass Filters A

The IF bandpass is determined by two parallelresonant LC circuits to provide an overall 3-dB bandwidth of 20 kHz centered at the IF frequency of 1 MHz.

The 1-MHz IF input signal (R IF) from the R Sampler (A5) is amplified by the feedback pair Q3 and Q4, whose gain is 6.2 or 16 dB as determined by the ratio of R7 to R3. The output (IF 1), monitored at TP1, is 3.9V peak-to-peak with an RF input power level of 0 dBm. IF 1 is filtered by a parallel resonant circuit consisting of C6, C7, and a variable inductor (1 MHz L2), which is tuned for resonance at 1 MHz by adjusting L2 for the phase shift of the 1-MHz signal between TP1 and TP2. The gain through the bandpass filter stage, TP1 to TP2, is 0.8, -2 dB. The bandwidth of this filter is 28 kHz.

The output of the tank circuit is buffered by emitter-follower Q1, whose output (IF 2) monitored at TP2, is about 3.2V peak-to-peak. IF 2 is then filtered by another parallel resonant circuit consisting of C10, C11, 1 MHz TRIM capacitor C12, and a variable inductor, 1 MHz (L3), which also has a bandwidth of 28 kHz. This filter is coarsely tuned by L3 for the phase shift between TP1 and TP3, with fine tuning by C12. The gain from TP2 to TP3 is about 0.8, -2 dB.

Buffers

The Buffers are two emitter-follower amplifiers, Q2 and Q5, that provide isolation between the signal paths out of the 1-MHz Bandpass Filters. O5 supplies the 1-MHz IF signal to the Polar Converter (A10), and Q2 drives the Rectifier circuit. The output of the Buffers (IF 3), monitored at TP3, is about 2.45V peak-to-peak at 0 dBm.

Rectifier

The Rectifier converts the 1-MHz input voltage to a dc output current. As shown in the equivalent circuit Figure 8-74, the Rectifier is basically an amplifier and a pair of diodes in the negative feedback loop. Compensation for the rectifier diode capacitance is provided by the negative capacitance circuit. The gain of the amplifier is varied to compensate for the change in rectifier impedance with signal level. Temperature-dependent diode bias is provided to reduce the impedance of the diode at low levels.

At the 1-MHz input frequency, the impedance of capacitors CA is small compared to that of resistors R_A , so the ac components of I_1 and I_2 combine to form the feedback current I_F, which is 180 degrees out of phase with the input current I_{IN}. Because the amplifier has a large gain, I_F is equal in amplitude to I_{IN}.

The dc component of I₁ is sent to the virtual ground at the input of the DC Logger, while the dc component of I₂ develops a dc voltage to the High Level Compensation stage of the Offset and Scaling circuit across resistor R_B in that output line and is returned to the output of the diode bias circuit.

Resistors R_A and capacitors C_B filter out the 1-MHz IF from the dc outputs to the DC logger and to the High Level Compensation stage of the Offset and Scaling circuit.

The input stage to the Rectifier circuit is commonbase amplifier Q6, whose gain is varied by the action of PIN diode CR1 in the collector circuit. Emitter-follower Q7 is a buffer stage that drives the common-emitter complementary pair Q11 and Q12, a unity-gain, inverting amplifier whose output drives the diodes CR2 and CR3.

A parallel-resonant tank circuit at the collectors of Q11 and Q12 consists of L1, L8, 1 MHz TUNE capacitor C45, and the inter-element capacitances of Q11 and Q12. It is tuned to provide high im-

pedance at 1 MHz to improve the performance of the rectifier at low input levels.

The inductors in the tank circuit also provide a dc bias point for the collectors of Q11 and Q12.

The capacitance of the diodes CR2 and CR3 causes the negative feedback current $I_{\rm F}$ to contain a capacitive as well as a resistive component. This causes a non-linearity in the rectifier output. To compensate for this undesirable effect, C23, NEG CAP capacitor C24, and unity-gain, inverting amplifier Q8, Q9 cause a current to appear at the summing junction (the emitter of Q6) that is 180 degrees out of phase with the capacitive component of $I_{\rm F}$.

Diode CR11 provides a temperature-dependent reference voltage (DET BIAS) for the Diode Bias stage, U4B and associated circuitry. This voltage, measured at TP9, is about +165 mV at ambient temperature and varies at -2 mV/°C. The Diode Bias network also applies a slight bias to the rectifier diodes to improve their sensitivity.

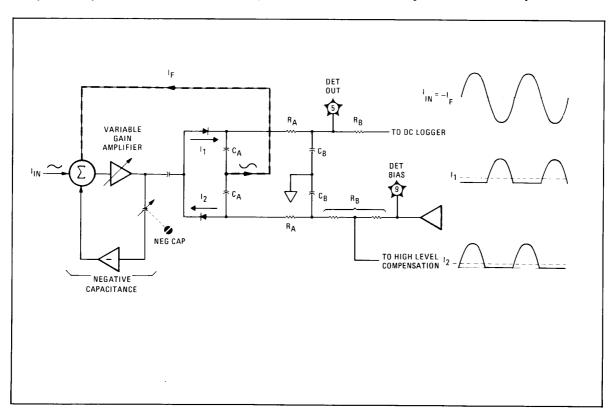


Figure 8-74. A11 Rectifier, Equivalent Circuit

DC Logger (3

The DC Logger produces an output voltage that varies with the log of the input current (-1.9V at 0 dBm, -0.04V at -40 dBm, +1.85V at -80 dBm). It consists of two operational amplifiers, U1 and U2, each of which has a transistor base-emitter junction in its feedback loop and one of which is used as a reference. An equivalent circuit is shown in Figure 8-75.

The basic logging function of the circuit is performed by Q10A, whose base-emitter voltage (V_{be_1}) varies with the log of the input current to U1. However, this basic logging circuit is temperature-dependent, because V_{be_1} also varies with temperature. Therefore, stability is achieved by the addition of Q10B and operational amplifier U2. U2 operates to maintain equality between the currents into and out of the summing junction at its inverting input (pin 2). The resulting constant current I_{REF} establishes a reference voltage V_{be_2} that varies only with temperature. Since tem-

perature variations have an equal effect on the two base-emitter voltages, their algebraic sum represents a temperature-stable output voltage $V_{\rm O}$ that is directly proportional to the log of the input current to U1 pin 2 (1.5 mA to 0.15 mA) over the entire operating range of about 80 dB.

The value of I_{RFF} (about 13 μ A) is determined by the reference voltage (+6.2V) and the value of R48.

R45 compensates for changes in the logging characteristics of Q10A (as distinguished from the variation of V_{be_1}) as a function of temperature.

The dc output voltage from the DC Logger is inverted by operational amplifier U3B and scaled to a factor of 25 mV/dB by the GAIN adjustment R56. LOG OFS adjustment R50 provides the absolute level calibration. That is, when the equivalent of 0 dBm at the RF input is 632 mV

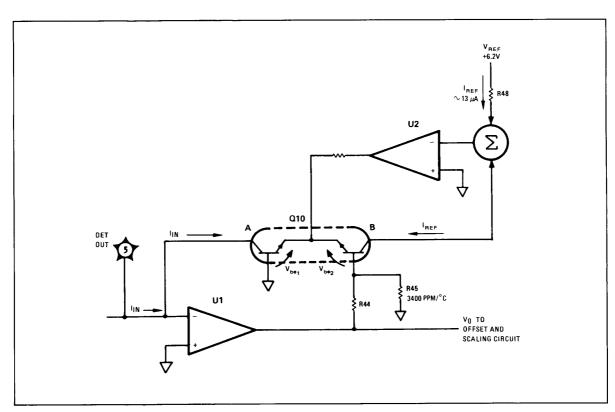


Figure 8-75. A11 DC Logger, Equivalent Circuit

peak-to-peak at the input to the magnitude detector, the output is 0V. The output of the Offset and Scaling circuit is the R MAG signal to the Analog Processor (A2).

Clamp. A voltage divider consisting of R91 and R39 establishes a reference of +0.07V, equivalent to >2.7 dBm RF power at the inverting input to operational amplifier U4A. When the voltage at the non-inverting input exceeds +0.07V the output of the op amp is coupled through CR12 to the inverting input of U3B. This limits the output of U4A to prevent expansion on the CRT display when the R Detector is overdriven. Diode CR13 keeps op amp U4A in the linear region when it is not functioning as a clamp.

High Level Compensation. The High Level Compensation stage, consisting of CR10, R87, and R54, compensates for linear errors related to the emitter resistance of the logging transistor Q10A, which causes expansion of the DC Logger output at high collector current levels. This occurs when the input to the R Detector is greater than the equivalent of -10 dBm. A linear signal from the Rectifier output is coupled to the noninverting input of U3B via CR10 and voltage divider R87, R54. This tends to cancel the error at current levels greater than 0.3 mA (-14 dBm).

Inverter **G**

Operational amplifier U5A inverts the R MAG signal from the Offset and Scaling circuit and sends a - R MAG signal to the Mag/Phase Select circuit.

Detector Gain Amplifier B

The purpose of the Detector Gain Amplifier is to control the gain of amplifier Q6 in the Rectifier circuit. This is accomplished by varying the conduction of PIN diode CR1 in the collector circuit of Q6 as a function of the output voltage of the scaling and offset amplifier U3B.

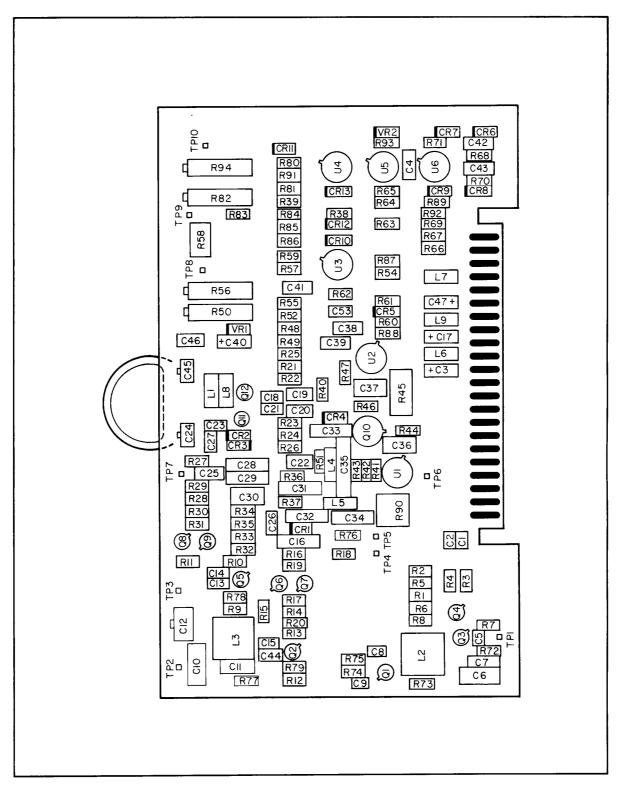
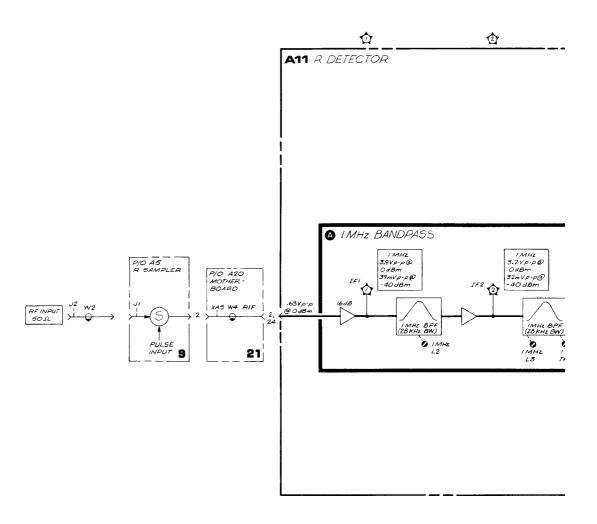
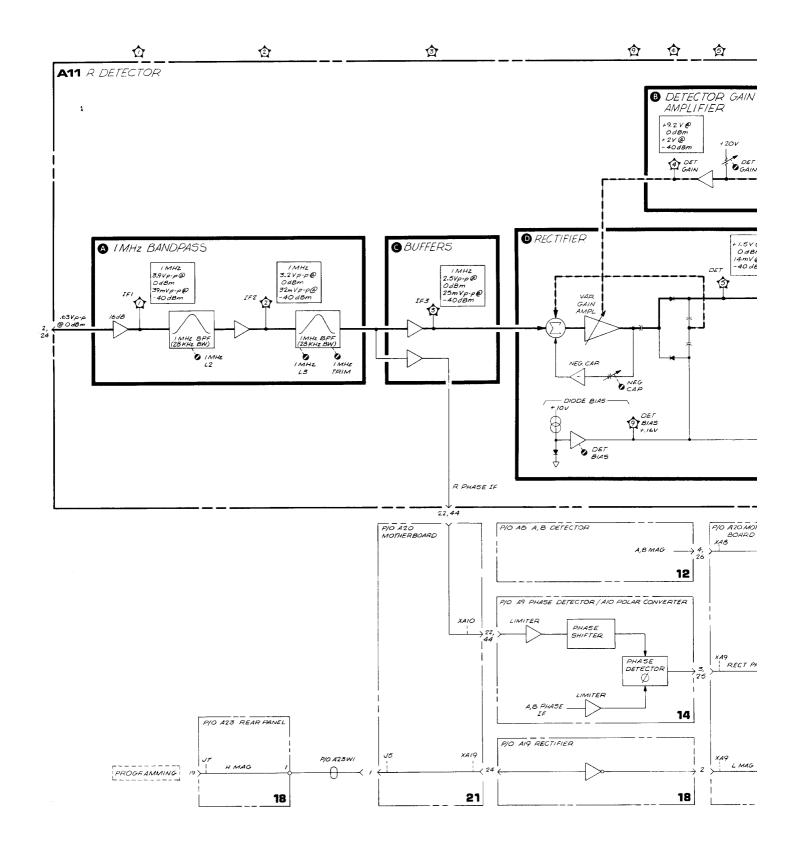
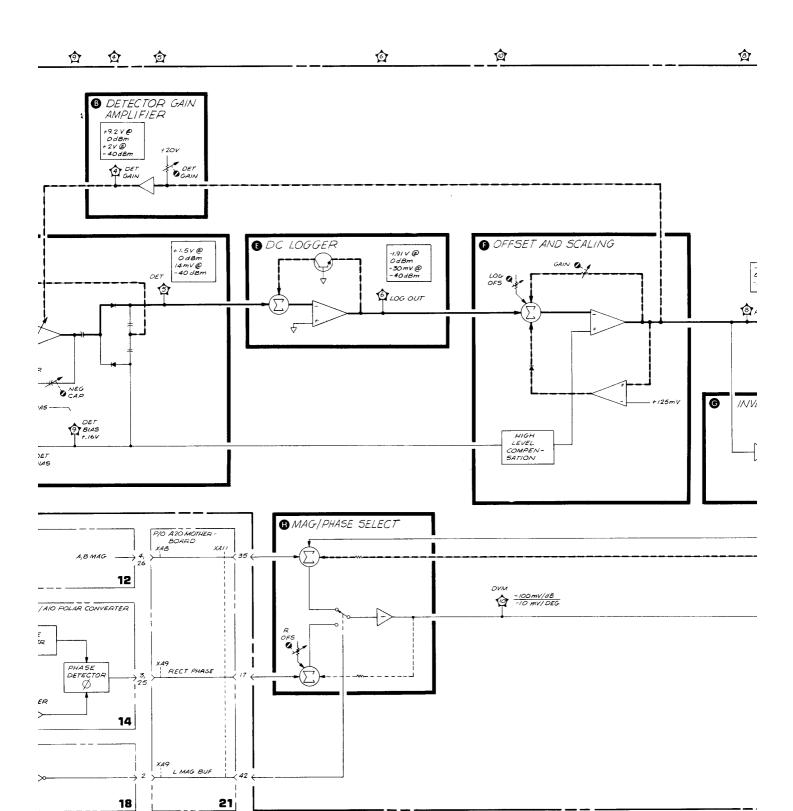
DET GAIN adjustment R58 sets the output of U3A, the bias for the PIN diode via R18, for one diode drop (+0.4V) when the input level is equivalent to -80 dBm or -2V at TP8. As the voltage at TP8 goes positive, the detector gain bias also goes positive, but with a slope of about 30 mV/dB as determined by R61 and R62. When the input level reaches about -64 dBm (-1.6V at TP8), CR5 begins to conduct, placing R60 and R88 in parallel with R61, causing the slope of the U3A output to increase to about 0.2V/dB.

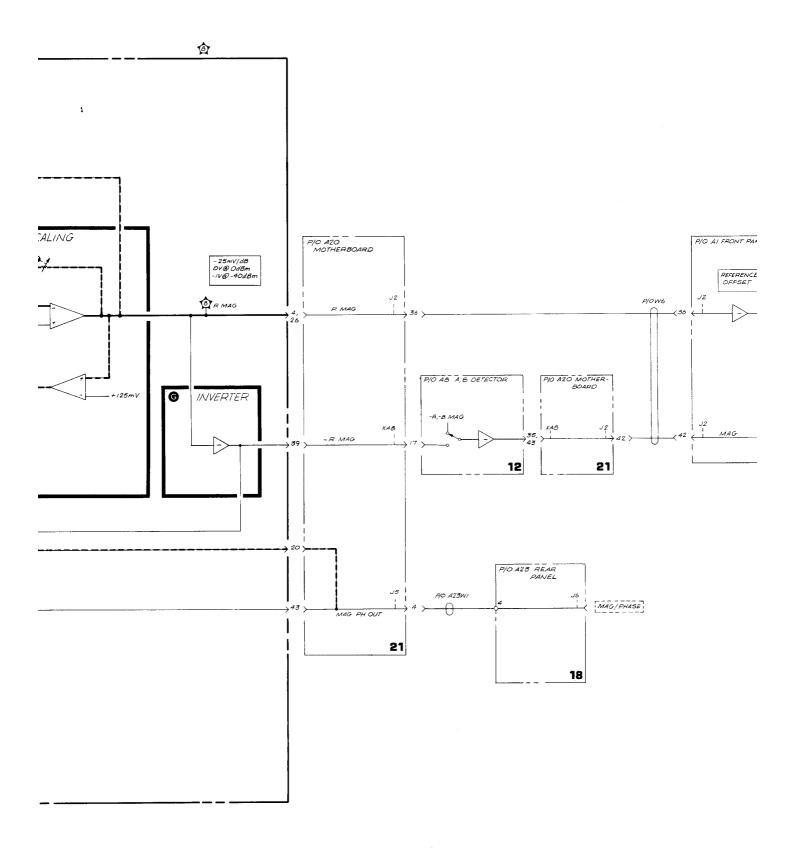
Mag/Phase Select

The function of the Mag/Phase Select circuit is to select either a magnitude or a phase signal to provide the MAG/PH OUT signal to the rearpanel MAG/PHASE connector. WHEN THE L MAG BUF line from the Rectifier (A19, Service Sheet 18) is low, the analog switch U6 selects the sum of the on-board – R MAG signal and the A, B MAG signal from the A, B Detector (A8). When L MAG BUF is high, the RECT PHASE signal from the Phase Detector (A9) is selected, and its offset is adjusted by DVM PH OFS potentiometer R94. Signal selection is controlled by the state of the H MAG line from the rear-panel PROGRAMMING connector.

Analog switch U6 is a unity-gain, inverting amplifier with two switch-selectable summing junctions. The inputs to one summing junction are the on-board — R MAG signal, the A, B, MAG signal from A8, and the inverted feedback from the amplifier. The inputs to the other summing junction are the RECT PHASE signal from A9, the offset from R94, and the inverted feedback from the amplifier.

Each of the diode pairs CR6, CR7 and CR8, CR9 is used to limit the voltage to the analog switch U6 when the summing junction with which it is associated is not selected.


Figure 8-76. R Detector (A11), Component Locations

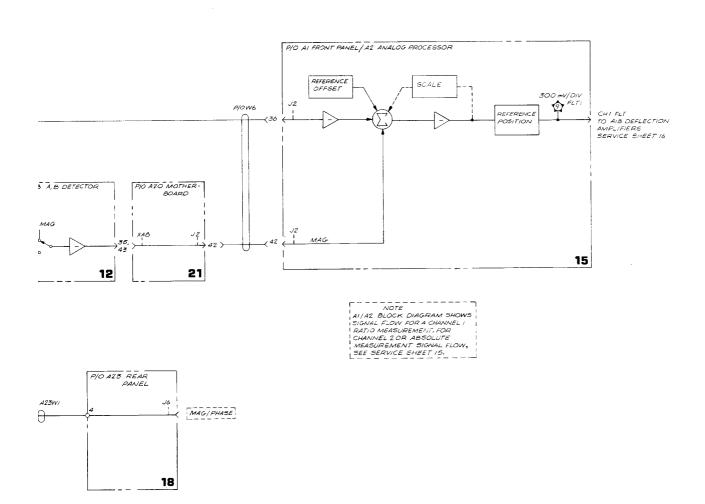
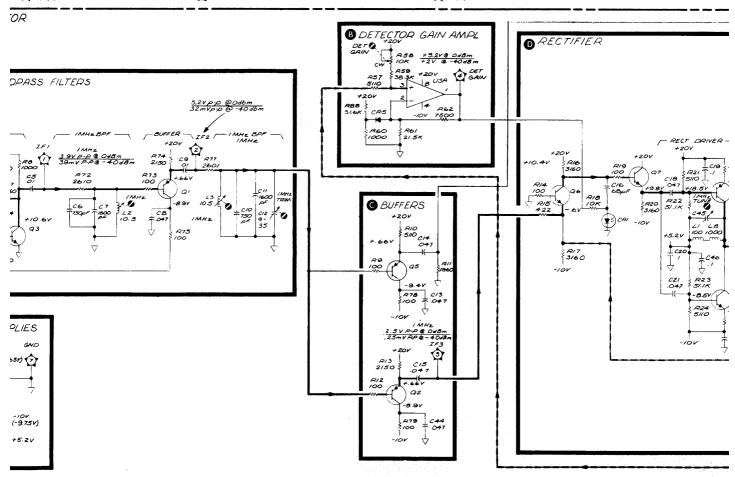
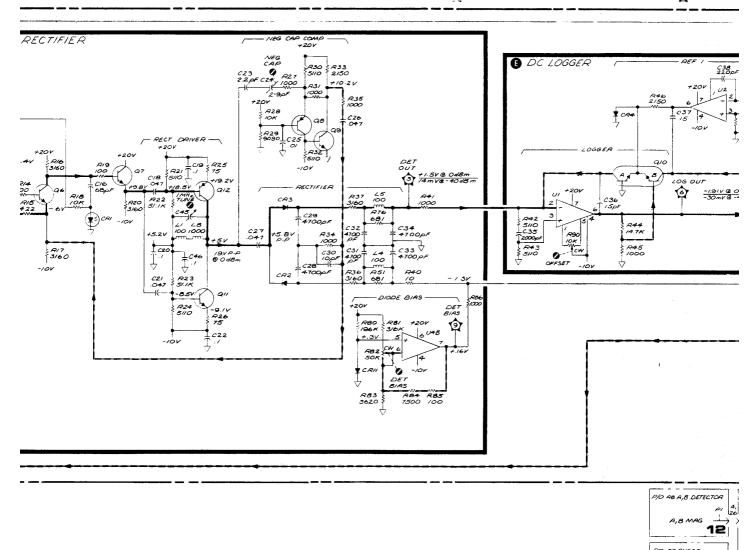
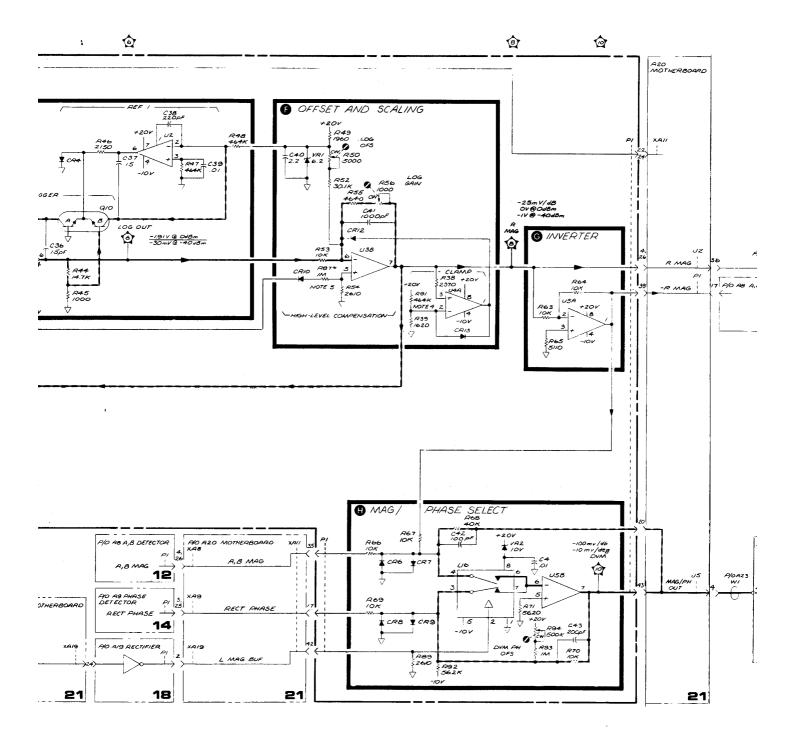




Figure 8-77. R Detector (A11), Block Diagram 8-153/8-154

0/	A11														
~	SIGNAL	TOIFHON	FUNCTION BLOCK									11	D DE	TECTO	
3	R IF COM	♦	0										A DL	12010	<i>/</i> ×
4	R IF R IF	A5 PI-8,30	8								1				
3 .5	♦		0									A	/MHz	BAND	PASS
4	R MAG R MAG	AZJ2-36 AZJ2-36	6	AS R SA	MPLER		P/0 A20	MOTHERE	OARD			_		BAMP—	_
5			0		PI		x.45		X.F	9//	PI	l	+100	R5 5110	RE ()
6	ウナ		0		.63V P.P	 →30 		R IF	+	2.	+ 	<u> </u> 	047	0V 3/60	25
7 ?9		NO CONNECTION NO CONNECTION			9	 }		R IF CO	м	2	. 3 ← 	.01	10K 24 100 100 RZ 909		+10.6V
8	♦		& O & O	L								r94	v	86	¥
9		ONNECTION CONNECTION												-10V	
10 32		NO CONNECTION NO CONNECTION											OOWE	R SUPP)
// 33	ウマ		0					+2°	ov	14	6		46 100		GNO
2 3 4		NO CONNECTION NO CONNECTION						GN		\(\sigma_{25}\)	// 21/			+20V + (*19.6: + (.0)	7
/3 35	A,B MAG	NO CONNECTION A8-4,26	Ð							26 30 33 5	5.		47 /00	2.2	-10V
4	+20V +20V	A16-3,25 A16-3,25	0					→ 5, ž	ov — 2v <u>—</u>	16	5		/00 /00		-9.75V) +5.2V
/5 37	ウ ぐ		0						2	!1		<u>L</u>		<u></u>	
16 38	+5.2V +5.2V	U2 OUT U2 OUT	0				1								
7 39	RECT PHASE -R MAG	A9-3,25 A8PI-/7	0												
18	-10V -10V	A16-9,31 A16-9,31	0												
19		NO CONNECTION NO CONNECTION													
20 42	MAGIPH-OUT	A20U5-4 A19 -2	0												
21	♥ MAGJPH-OUT	A20J5-4	0												
22 44			9												

PIO AZ3 REAR PANEL


18

PROGRAMMING 19

PIO AZO MOTHERBOARD

21

14

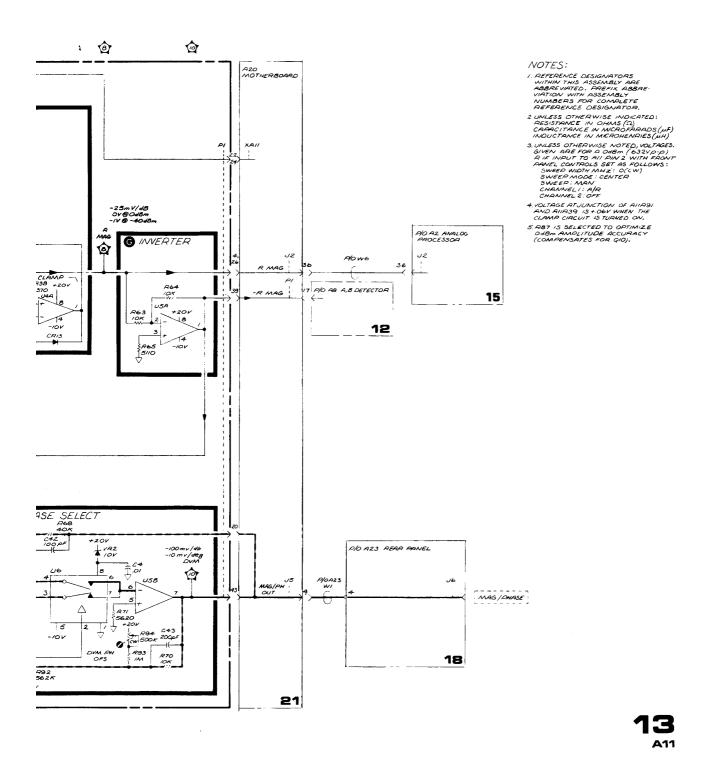


Figure 8-78. R Detector (A11), Schematic Diagram

8-155/8-156

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS

ASSEMBLY	SERVICE SHEET	DESCRIPTION					
1	5	SWEEP pushbuttons					
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch					
	7	OUTPUT dBm control					
	8	MARKERS MHz pushbuttons					
A1 Front Panel	11	UNLOCKED indicator					
	12	Absolute R measurement select					
	15						
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER, and VIDEO FILTER					
	16	HORIZONTAL POSN and GAIN controls					
	1						
	19	All front panel controls					
	6	Analog-to-digital converter for FREQUENCY MHz display.					
A2 Analog Processor	15	Analog processor, switch control logic, and \pm 6V power supplies					
	16	V RAMP amplifier					
A3 B Sampler	9	RF to IF down-conversion					
A4 A Sampler 9		RF to IF down-conversion					
A5 R Sampler	9	RF to IF down-conversion					
A6 VTO and IF Switch	10	Voltage Tuned Oscillator					
AO VIO and IF Switch	12	IF Switch					
	12	1F Switch					
A7 Source	7	RF Source					
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector					
A9 Phase Detector	14	Phase Detector					
A 10 Polar Converter 14		Polar Converter					
11 R Detector 13		R INPUT, magnitude detector					
A12 Marker Generator	8	Markers					
A13 Phase Lock	11	Phase Lock					
A14 Phase Lock Control	11	Phase Lock loop control					
A15 Shaper	6	Sweep width, tuning, frequency reference, and frequency display.					
	7	Shaping and RF Source drive.					
A16 DC Regulator	20	Low Voltage Power Supplies					
A17 Sweep Generator	5	Sweep Generator					
A18 Deflection Amplifiers	16	Deflection Amplifiers					
A19 Rectifier	18	External Interface					
A 12 Hermiter	20	External Interface Low Voltage Power Supplies					
		Low voitage rower supplies					
A20 Motherboard	21	Motherboard wiring list					
A21 High Voltage Power Supply	17	CRT bias and blanking control					
A22 Frequency MHz Display	6	Frequency display					
A23 Rear Panel	18	External Interface and Rear Panel (A23)					

SERVICE SHEET 14 PHASE DETECTOR (A9) AND POLAR CONVERTER (A10), CIRCUIT DESCRIPTION

General Description

1

The 8754A can display the phase difference between the B INPUT and the R INPUT in rectangular format (phase angle versus frequency), or the phase and magnitude differences of the A INPUT and R INPUT in a polar format (phase angle and amplitude as a vector). The Phase Detector (A9) and Polar Converter (A10) work together to provide the dc outputs necessary for a rectangular phase display or a polar display.

The circuitry used to provide the rectangular phase and polar outputs is mixed between the two board assemblies (A9 and A10). Figure 8-79 is a simplified block diagram that shows how the rectangular phase (RECT PHASE) and polar (POLAR X and POLAR Y) outputs are developed.

The A,B PHASE IF and R PHASE IF inputs are amplified and limited to provide square wave signals (LIM A,B IF and LIM R PHASE IF) that are phase related to the IF inputs. The fast rise time of the square wave signals provides an accurate trigger point when making phase comparisions.

The Variable Phase Shifter provides phase offset control from the front-panel, and applies this offset to the R Phase IF. This provides a calibrated phase offset and electrical length compensation when making a phase measurement. The Variable Phase Shifter provides an offset R IF (R RECT PHASE) to the Rectangular Phase Detector for the PHASE B/R measurement, and also supplies the Cosine R IF and Sine R IF outputs to the X and Y Multipliers for the POLAR A/R measurement.

The Rectangular Phase Detector compares the offset R RECT PHASE with the B PHASE IF and produces a dc output (RECT PHASE) that is proportional to the phase difference between the B INPUT and the R INPUT plus front-panel offsets. This output is displayed only when PHASE B/R is selected on the front panel.

For a polar display, the 8754A displays a polar plot of the relative magnitude and phase of the A and R input signals. Instead of displaying magnitude, or phase, versus frequency, the polar display represents magnitude versus phase, where magnitude is the radial distance (M) from the center of the display and phase is the angular rotation (θ) from the horizontal zero degree axis. The magnitude and phase of the polar signal must be resolved into X (horizontal) and Y (vertical) components as shown in Figure 8-80. These X and Y signals are applied to the horizontal and vertical deflection plates producing a dot on the CRT representing the arrowhead of the vector.

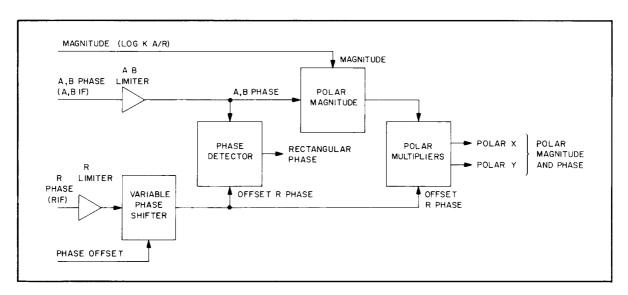


Figure 8-79. Phase Detector (A9) and Polar Converter (A10), Simplified Block Diagram

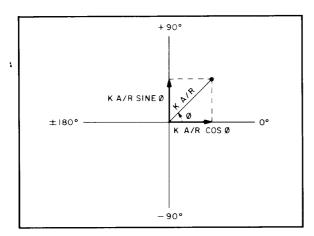


Figure 8-80. Polar Display

Magnitude information for the polar vector is supplied by the Analog Processor (A2, Service Sheet 15) and is used to amplitude modulate the A Phase IF to produce a 1 MHz output that is phase related to the A INPUT, and has an amplitude proportional to the magnitude difference of the A INPUT and R INPUT. This amplitude modulated signal is applied to both the X and Y Multipliers where it is mixed with Cosine R IF to produce the POLAR X output, and mixed with the Sine R IF to produce the POLAR Y output.

The Variable Phase Shifter supplies two pairs of differential signals that are separated by 90 degrees (Sine R IF, and Cosine R IF). Since the Cosine of an angle is equal to the Sine of the angle plus 90 degrees (Cos $\theta = \sin \theta + 90^{\circ}$), the Y Multiplier becomes a Sine detector and the X Multiplier a Cosine detector. The KA/R \angle A signal is common to both multipliers, therefore, the output of the Y Multiplier (POLAR Y) is KA/R Sine θ and the X Multiplier output (POLAR X) is KA/R Cos θ (where θ is the phase difference between the R IF and A,B IF inputs, and K is the Channel 1 offset). The polar outputs are used only for a POLAR A/R measurement.

R Limiter (P/O A10)

The R Limiter circuit provides the necessary gain, limiting, and filtering of the R PHASE IF signal from the R Magnitude Detector (A11, Service Sheet 13) — over the R Channel RF input range of 0 to -40 dBm — to drive the Variable Phase Shifter. The R limiter consists of two basic stages, a Tuned Amplifier and a Limiter.

The Tuned Amplifier is a transistor array connected as a differential amplifier (U18A and U18B) with a 2 mA current source (U18E) in the emitter circuit and two emitter-followers (U18C and U18D) to buffer the tuned collector circuit. L13 and C30 tune the stage to 1 MHz, and R72 sets the bandwidth at 300 kHz. The gain of the stage is 6 dB.

The Limiter consists of three ECL line receivers (U17A, U17B, and U17C) connected differentially. The inputs to the first stage, U17B, are biased at about +3.75V via R88 and R34 from the internal bias supply (pin 11). The output of each line receiver is approximately 0.8V peak-to-peak centered around the bias voltage of +3.75V. Symmetry of the output waveform is set by R BAL potentiometer R30. Negative feedback is used to maintain symmetry, which is averaged by R27 and C52 and summed with the fixed bias voltage at the inverting input to the first stage. The gain of the limiter is about 40 dB.

A,B Limiter (P/O A9)

The A,B Limiter circuit provides the necessary gain, limiting, and filtering of the A,B PHASE IF signal from the A,B Magnitude Detector (A8, Service Sheet 12) — over the A or B channel RF input range of 0 to -80 dBm — to drive the Digital Phase detector in the Rectangular Phase Detector circuit and the modulator in the Polar Converter.

The Tuned amplifier and First Limiter are identical to the corresponding circuits in the R limiter. The additional circuits are a 1 MHz Bandpass Filter with a bandwidth of 200 kHz, a Second Limiter, and a Schmitt Trigger Amplifier.

The 1 MHz Bandpass Filter (L13, C20, and C25) removes the broadband noise component of the preceding limiting stage. The Second Limiter adds 26 dB of limiting, after which the limited signal is used by the Polar Converter for the A INPUT phase information. A Schmitt Trigger with 0.25 mV hysteresis is used to insure fast transition (approximately 3 ns rise and fall times) to clock the Digital Phase Detector.

VARIABLE PHASE SHIFTER @ (D) (F) (G)

Figure 8-81 is a simplified block diagram of the Variable Shifter. The Variable Phase Shifter produces two differential pairs of 1 MHz output signals (Cosine R IF, and Sine R IF) that are

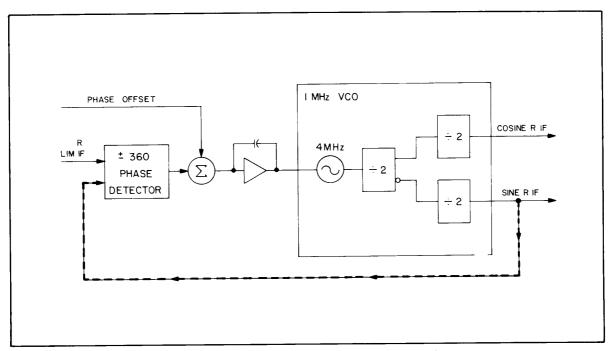


Figure 8-81. Variable Phase Shifter, Simplified Block Diagram

related to both the R LIM (Limiter R IF) signal and the PHASE OFFSET voltage inputs. The Cosine R IF output is referenced to the R LIM IF plus front-panel offset (PHASE OFFSET). The Sine R IF output is displaced 90 degrees from the Cosine R IF output. The ± 360 Phase Detector compares the phase difference between the reference signal (R LIM IF) and the 1 MHz output from the Voltage-Controlled Oscillator (VCO) to generate an error voltage of -4.3 mV/degree. This error voltage is summed with the PHASE OFFSET voltage from the Analog Processor (A2, Service Sheet 15) to generate the tune voltage that phase locks the VCO.

1

The Sine R IF (-90 degree) signal is used to phase lock the VCO. This offsets the ±360 Degree Phase Detector by -90 degrees. An additional -45 degree offset is supplied by an adjustable do offset which is summed with the PHASE OFFSET voltage, to give an actual range of -225 degrees to +495 degrees. This allows the Variable Phase Shifter to cover the ±220 degree range of the front-panel REFERENCE switch and OFFSET vernier plus the +250 degree range of LENGTH compensation (for a total required range of +470 to -220 degrees). PHASE OFFSET potentiometer R15 is adjusted for an accurate IF phase signal (R RECT PHASE) to the Rectangular Phase Detector.

Phase Offset Summing (P/O A10)

The Phase Offset circuit is the controlling element in the VCO phase lock loop of the Variable Phase Shifter. Included in the circuit are an integrator and a test switch to aid in troubleshooting the phase lock loop.

The purpose of the Phase Offset Summing circuit is to control the difference between the phase of the signal from the 1 MHz VCO and the phase of R LIM so that the phase difference is equal to the value set by the PHASE OFFSET voltage from the Analog Processor (A2, Service Sheet 15). This is accomplished by summing the PHASE OFFSET voltage with the negative-feedback voltage from the ± 360 Phase Detector (TP6). The difference is amplified by integrator U9. The output is a correction voltage which is used to tune the 1 MHz VCO to correct for any phase difference.

TEST/INTEG Switch. An aid to diagnosis of a defective phase lock loop is the TEST/INTEG switch S1. When the switch is in TEST, the oscillator tuning comes from TUNE potentiometer R20, so the oscillator can be manually tuned. Simultaneously, the switch bypasses C16 and converts the Integrator to an inverting amplifier.

When S1 is in TEST, the TUNE pot can manually vary the tuning voltage from +4V to +16V, which corresponds to 3.8 MHz to 4.2 MHz at the output of the VCO, U6, or 0.95 MHz to 1.05 MHz at TP4. The mean tuning voltage is approximately +10V. The only requirements for proper operation are that the frequency at TP4 can be tuned to 1.000 ± 0.002 MHz and varied by 100 kHz.

Troubleshooting Note: Basic operation of the Variable Phase Shifter can be checked by setting the TEST/INTEG switch to the TEST position, and tuning the VCO and Phase Shifter with TUNE potentiometer R20. If the 8754A is phase locked (R INPUT connected and front-panel UNLOCK-ED indicator off), and MAN SWEEP is selected, the ±360 Degree Phase Detector output at TP6 should be a ramp whose slope and period is adjusted by the TUNE potentiometer. If the TUNE potentiometer is adjusted for a VCO and Phase Shifter output at TP4 of less than 1 MHz, the ±360 Phase Detector output at TP6 should be a negative ramp of approximately 0V to -1.4V with an adjustable time period and slope. If the TUNE potentiometer is adjusted for a frequency greater than 1 MHz at TP4, the signal at TP6 should be a positive ramp of approximately 0V to +1.4Vamplitude with an adjustable time period and slope.

Search (P/O A10)

When phase lock is lost, the voltage-tuned oscillator (U6) in the 4 MHz VCO circuit must be tuned through 4 MHz (1 MHz after the frequency is divided) to reacquire lock. The need for this is determined by detecting when the VTUNE voltage is out of the range +4V to +16V. This is accomplished by two Limit Detectors, the comparators U11A and U11B. When VTUNE is out of range, a correction current is added to the summing junction to cause the VTUNE to slew towards the other limit. When the loop is locked (VTUNE between +4V and +16V), the output of comparator U11B is high, reverse biasing CR2, and U11A is low, reverse biasing CR1. Thus, the Search circuit is essentially disconnected from the summing junction.

If the VTUNE voltage should exceed its upper limit of +16V, a correction current is generated when comparator U11A goes high, charging C18 through CR1. This causes a current to flow through R16 to the summing junction, forcing VTUNE to decrease.

If VTUNE is too low, a correction current is generated when comparator U11B goes low, charging C18 through CR2. This causes current to flow through R16, forcing VTUNE to increase.

Voltage-Controlled Oscillator (VCO) and Phase Shifter (P/O A10)

The Voltage-Controlled Oscillator (VCO) and Phase Shifter circuit generates two differential 1 MHz signals which are displaced 90 degrees in phase. The frequency and phase of the signals are controlled by the VTUNE voltage of $\pm 4V$ to $\pm 16V$ for a tuning range of ± 200 kHz.

The VCO and Phase Shifter circuit consists of a varactor-tuned, emitter-coupled oscillator U6, whose frequency is 4 MHz, and a 90 degree digital phase shifter made up of three ECL D flip-flops: U5B, U8A, and U8B.

The 4 MHz oscillator consists of emitter-coupled oscillator U6, which is tuned by the 4 MHz parallel resonant combination of L12, C43, and varactor diode CR5. The series combination of L14 and C39 (also resonant at 4 MHz) completes the parallel connection of CR5 across C43. The VCO internal bias voltage is at U6 pin 10, and C53 is a bypass capacitor. C51 bypasses the internal AGC circuitry to ground. The output of the oscillator at U6 pin 3 is 3.8 MHz to 4.2 MHz and 0.8V peak-to-peak.

The 90 Degree Digital Phase Shifter converts the 4 MHz output of U6 to two differential 1 MHz outputs which are displaced 90 degrees in phase (see timing diagram in Figure 8-82). The 4 MHz from U6 pin 3 is divided by 2 through ECL flip-flop U5B, providing complementary 2 MHz outputs at U5B pins 14 and 15. These outputs are divided by 2 through ECL flip-flops U8A and U8B to provide complementary 1 MHz signals (180 degrees out of phase) at U8A pins 2 and 3, and also at U8B pins 14 and 15. The non-inverted outputs of the two flip-flops are 90 degrees out of phase, and the inverted outputs are 90 degrees out of phase. For simplicity, the outputs of the 1 MHz VCO circuit are regarded as two 1 MHz signals displaced 90 degrees in phase.

The inverted output at U5B pin 14 is fed back to the D input, pin 10, so that the flip-flop toggles each time the clock input transitions from low to high. The two outputs of U5B in turn clock the flip-flops U8A and U8B. Since the clock pulses

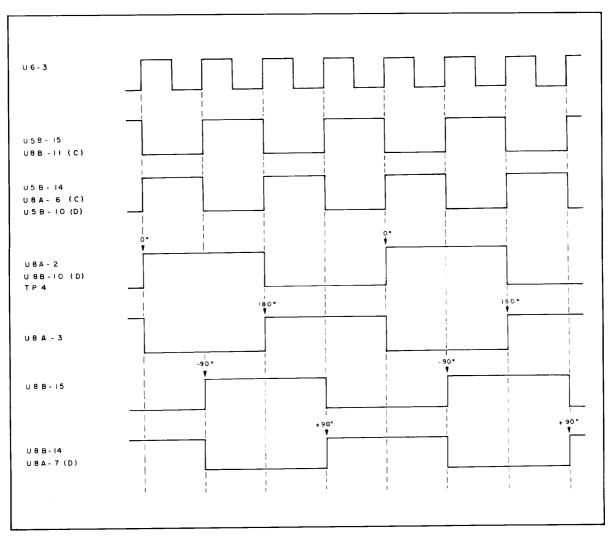


Figure 8-82. 90-Degree Digital Phase Shifter, Timing Diagram

for U8A and U8B are 180 degrees apart at 2 MHz, the outputs of the two flip-flops are 90 degrees apart at 1 MHz. The cross-coupling of U8A and U8B ensures that the U8A output leads the U8B output.

The Digital Phase Shifter has two differential pairs of 1 MHz outputs, Sine R IF and Cosine R IF. Their phase relationships to the R LIM IF input (with no PHASE OFFSET) and signal distribution is as follows:

Cosine R IF:

١

0 degrees – From U8A pin 2 to the X Multiplier circuit of the Polar Converter. As R RECT PHASE, the signal also goes to the

180 degrees – From U8A pin 3 to the X Multiplier on the Polar Converter. The two 1 MHz inputs to the X Multiplier are 180 degrees out of phase.

Sine R IF:

-90 degrees – From U8B pin 15 to the Y Multiplier on the Polar Converter. Also used as feedback to the ± 360 Degree Phase Detector.

Rectangular Phase Detector circuit on the Phase Detector.

+90 degrees – From U8B pin 14 to the Y Multiplier circuit on the Polar Converter. The two 1 MHz inputs to the Y Multiplier are 180 degrees out of phase.

± 360 Degree Phase Detector **(C)** (P/O A10)

The ± 360 Degree Phase Detector circuit generates an output voltage at TP6 that is proportional to the phase difference between R LIM and the -90 degree output (from U8B pin 15) of the 1 MHz VCO. The phase information in the following discussion is given relative to R LIM. The range of the ± 360 Degree Phase Detector is ± 360 degrees corresponding to ± 1.55 V output voltage at TP6.

The ± 360 Degree Phase Detector circuit consists essentially of a Digital Phase Detector, two Pulse Width Modulators, and a Current-to-Voltage Converter.

Digital Phase Detector. The Digital Phase Detector, U14A and U14B, has two outputs. The output at U14A pin 2 (TP10) is active for leading phase, and the output at U14B pin 15 (TP11) is active for lagging phase. The pulse width of the appropriate output is proportional to the difference in phase between the two signals. U14A ad U14B are ECL D flip-flops whose D inputs are tied high, so that when the clock input of either flip-flop

transitions from low to high, the active high output of that flip-flop is set high. Feedback through NOR gate U12 resets the flip-flops when the active high outputs are both set high.

Pulse Width Modulators. There are two Pulse Width Modulators, one for the leading phase and one for the lagging phase. The output of each flipflop, U14A and U14B, differentially drives one of the Pulse Width Modulators, which generates an average current proportional to the variable phase width from the flip-flop.

The Pulse Width Modulator for the leading phase is described. A simplified schematic is shown in Figure 8-83. The Pulse Width Modulator consists of a fixed current source (U15A, Q3, VR1) and a differential Current Switch (Q1A, Q2)

A constant current of 3.1 mA from the drain of Q3 is generated when U15A controlss the conduction of Q3 so as to maintain a fixed voltage drop across R2. This voltage is equal to the reference voltage of +6.2V.

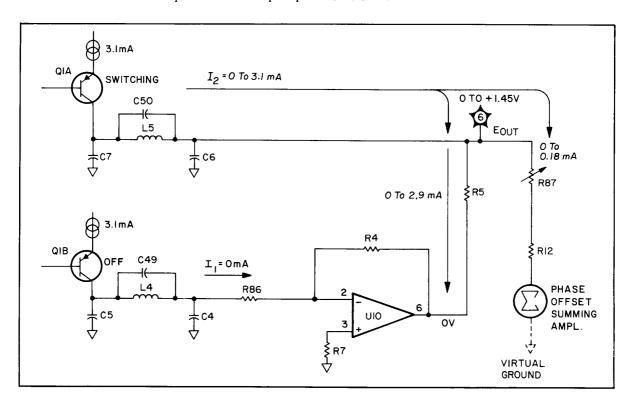


Figure 8-83. Pulse Width Modulator for Leading Phase, Simplified Schematic

The differential Current Switch directs the control current either to ground via Q2 and R9 when U14A is reset or to the output circuit via Q1A when U14A is set. The average current is then equal to the ratio of the set time to the total (set plus reset) time multiplied by the value of the current from the current source. Therefore, the magnitude of the output current (I_2) can vary from 0 (when set time is zero) to +3.1 mA (when reset time is zero).

The Pulse Width Modulator for the lagging phase (Figure 8-84) is the same as that for the leading phase. It shares the same reference voltage and also produces an output current (I_1) of 0 to +3.1 mA

The fundamental frequency component (1 MHz pulse rate) of the currents I_1 and I_2 is filtered out by their respective 1 MHz Notch Filters and then converted to a voltage.

Current-to-Voltage Converter. To understand the current-to voltage conversion, it is helpful to remember that for any given phase relationship, only one of the output currents exists; that is, I_1 for the lagging phase and I_2 for the leading phase.

Consider first the conversion of I₁ (lagging phase) to E_{out}. The current I₁ into the inverting input of operational amplifier U10 must be opposed by the current through R4 from the output (pin 6). The output voltage is then equal to the value I₁ times the resistance of R4. When the input signal from the VCO is lagging almost 360 degrees, Q1B of the Current Switch is on nearly 100 percent and I₁ is about +3.1 mA. Since the value of R4 is 500 ohms, the output of U10 is -1.55V. This voltage is coupled to the Phase Offset Summing Amplifier through R5, with scaling by PHASE CAL potentiometer R87 and R12. Because of the voltage drop across R5, the voltage at TP6 ranges from 0 to -1.45V, which is equal to a current of 0.5 μ A/degree from the summing junction U9 pin 2.

The circuitry associated with I_2 is effectively out of the circuit for dc signals, since the Current Switch Q1A is off when the input phase is lagging. When the input phase leads, the lagging phase

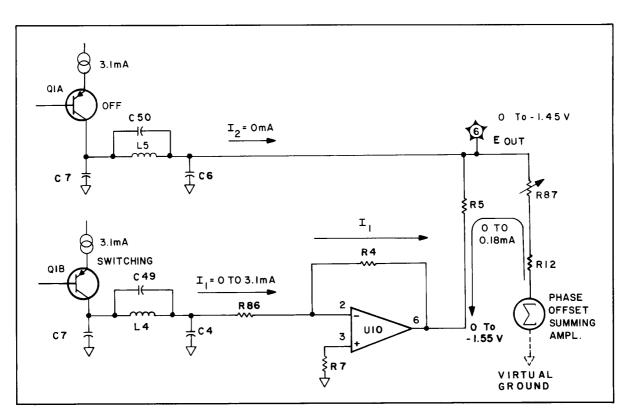


Figure 8-84. Pulse Width Modulator for Lagging Phase, Simplified Schematic

Current Switch stays off. With no current into the negative input of U10, the output of U10 goes to 0V (virtual ground).

In the I_2 -to- E_{out} conversion (leading phase), the voltage developed across R5 (in parallel with the series combination of R12 and R87) is due to current I_2 flowing from Q1A of the Current Switch to ground. This gives a voltage range at TP6 of 0 to +1.45V, which is equivalent to a current of 0.5 μ A/degree into the summing junction.

Rectangular Phase Detector **B** (P/O A9)

Figure 8-85 is a simplified block diagram of the Rectangular Phase Detector. This circuit provides a dc output (RECT PHASE) that is proportional to the phase difference between its inputs, LIM A PHASE IF and R RECT PHASE (which includes front-panel offsets). The Rectangular Phase detector is made up of four main stages:

• ±180 Degree Phase Detector, which converts the phase difference between the B channel IF and the R RECT PHASE output of the Variable Phase Shifter to a pulse whose width is proportional to the phase difference.

- Pulse Width Modulator (consisting of a Current Source and a Current Switch), which converts the pulse width to a proportional current.
- Low Pass Filter, which filters the high-frequency IF components from the output of the Pulse Width Modulator.
- Current-to-Voltage Converter, which converts the current output from the Pulse Width Modulator to a voltage, then scales and offsets this voltage to provide a voltage-to-phase relationship of $\pm 1.8V/\pm 180$ degrees.

A secondary circuit, the Hysteresis Summing stage, prevents the output of the Rectangular Phase Detector from oscillating between the +180- and -180-degree output states when the phase difference between the B and R signals is near 180 degrees.

 \pm 180-Degree Phase Detector. The \pm 180-Degree Phase Detector converts the phase displacement of the rising edges of the two input signals to an output pulse whose width is proportional to the phase difference. The circuit, shown

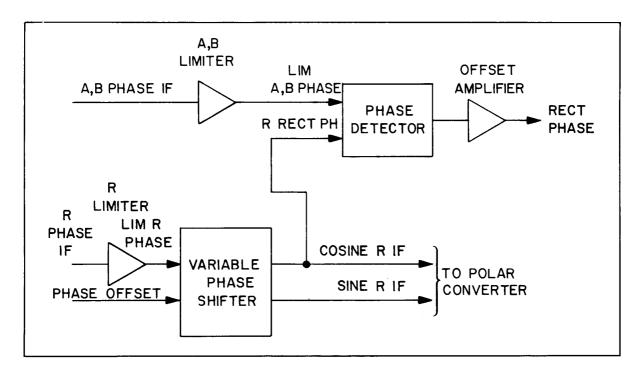


Figure 8-85. Rectangular Phase Detector, Simplified Block Diagram

in Figure 8-86, is made up of two cross-coupled, ECL, D flip-flops (U7B and U7A) whose D inputs are connected high through pull-up resistors R62 and R61. Therefore, whenever a rising edge appears at the clock input, the flip-flop is set. The cross-coupling causes U7A to be cleared whenever U7B is set, and vice versa.

The output pulse of U7A is initiated by the rising edge of R_S (phase shifted R IF) and is terminated via U7B by the rising edge of A/B (see the timing diagram in Figure 8-87). The duration of the output pulse of U7A represents the phase difference between the two signals.

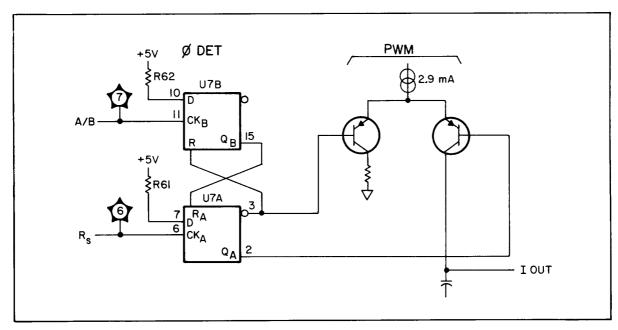


Figure 8-86. ±180-Degree Phase Detector and Pulse Width Modulator, Simplified Schematic

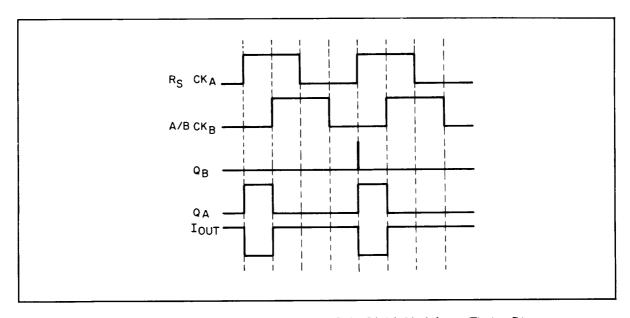


Figure 8-87. ±180-Degree Phase Detector and Pulse Width Modulator, Timing Diagram

The purpose of U7B is to reset U7A whenever the rising edge of A/B occurs. Initially assume that U7A is reset. Then the active low output of U7A is high and the active high output of U7B is low, which leaves the R input of U7A inactive. Then the rising edge of R_S sets U7A. The active low output of U7A goes low, which leaves the R input of U7B inactive, so U7B is free to be set when the rising edge of A/B occurs. On the rising edge of A/B, U7B is set; the active high output of U7B is high, resetting U7A. The active low output of U7A is then high, resetting U7B.

Pulse Width Modulator. The ±180-Degree Phase Detector differentially drives a Pulse Width Modulator that generates an average current proportional to the pulse width out of the Phase Detector. The phase difference is derived by switch ing the 2.9 mA constant current source either to ground via Q7A or to the output circuit via Q7B. The average output current varies from about 0 to 2.9 mA, which corresponds to a 0 to 360 degree phase difference.

Current-to-Voltage Converter. The Pulse Width Modulator output current (0 to 2.9 mA) is converted to a voltage by U4, RECT GAIN potentiometer R42, and R43. To convert the 0 to 360 degree phase information to an output voltage of $\pm 1.8V/\pm 180$ degrees, a negative offset current of 1.44 mA is applied to the summing junction at U4 pin 2. The RECT PHASE signal at U4 pin 1 goes to the Analog Processor (A2, Service Sheet 15) for scaling and display. It also goes to the rear-panel MAG/PHASE connector via the Mag/Phase Output Select Switch on the R Detector (A11, Service Sheet 13). the output of U4 is also fed back to the Hysteresis Summing circuit to provide hysteresis at the ± 180 degree switch points.

Hysteresis Summing. The Hysteresis Summing circuit (Figure 8-88) in the R channel is essentially a ± 4 degree voltage-controlled phase shifter whose phase shift is controlled by the output of the Rectangular Phase Detector to provide ± 4 degrees of hysteresis at the +180 and -180 degree switch points. The R_S is further limited by U5B to provide a symmetrical square wave to the low pass

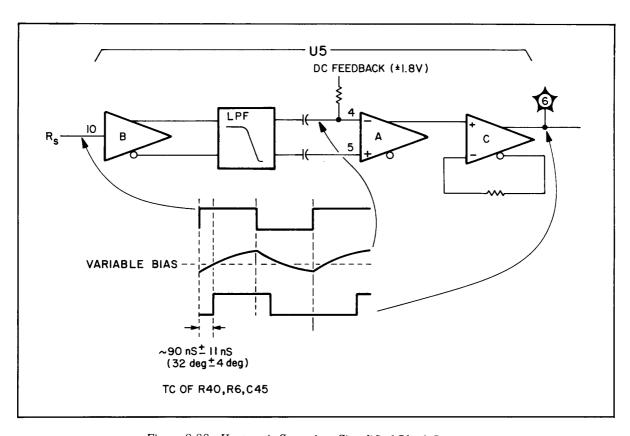


Figure 8-88. Hysteresis Summing, Simplified Block Diagram

filter (C45, R40, and R50). This provides a waveform with slow rise and fall times. This signal is applied to the non-inverting input of U5A, whose bias voltage is controlled by the output of the Rectangular Phase Detector. This ±1.8V signal changes the bias voltage approximately ±40 mV The change in bias changes the time at which the input waveform is equal to the threshold voltage, which is equal to V_{BB} , since the inverting input of U5B is connected to V_{BB} through R69. The slow rise input causes the circuit to have a nominal delay of about 34 degrees. The variable bias voltage changes the delay about ±4 degrees. The output of U5A, which has rather slow rise and fall times, is fed to the Schmitt Trigger, U5C to square up the waveform so that the clock input of the ±180-Degree Phase Detector is driven with a rapid, positive-going edge.

POLAR CONVERTER (1) Through (2)

Figure 8-89 is a simplified block diagram of the Polar Converter circuits. The LOG K A/R input provides polar magnitude (M) information. The K in the mnemonic is a constant that is set by the front-panel CHANNEL 1 REFERENCE switch and OFFSET vernier. By changing the REFERENCE switch setting (and therefore the value of K), the CRT polar display magnitude scale can be changed for use with expanded or compressed Smith Chart overlays. This logarithmic signal (LOG K A/R.) is scaled, offset and antilogged to produce a linear representation of the difference in magnitude of the A channel and R channel inputs.

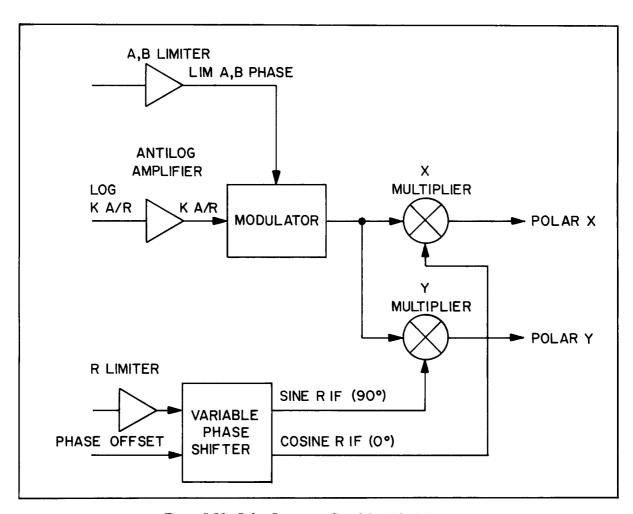


Figure 8-89. Polar Converter, Simplified Block Diagram

The linear K A/R output from the Antilog Amplifier is used to amplitude modulate the LIM A IF signal and develop a 1 MHz POL MAG signal that contains both the KA/R magnitude and A channel phase information. This POL MAG signal is then mixed with the Cosine R IF signal (from the Variable Phase Shifter) in the X Multiplier to produce the POLAR X (M Cos θ) output. The POL MAG signal is also mixed with the Sine R IF signal (from the Variable Phase Shifter) in the Y Multiplier to produce the POLAR Y (M Sine θ) output.

Polar Gain and Offset and Polar Center Switch (P/O A9)

The Polar Gain and Offset circuit offsets and scales the LOG K A/R signal from the Analog Processor (A2, Service Sheet 15) to provide the proper linear output of the Antilog Amplifier. When the LOG K A/R voltage from A2 is zero, the Antilog Amplifier has an output current of about 1.24 mA. This corresponds to the outer circle (unity radius) on the CRT, which indicates that the A and R magnitudes are equal. A change of -6 dB in the LOG K A/R signal changes the output current of the Antilog Amplifier by a factor of 0.5; that is, 0.62 mA. (The change of LOG K A/R is -25 mV/dB.) The gain of amplifier U1 required to produce the correct linear output of the Antilog Amplifier is about 1.75. This gain is set by R4 and POLAR GAIN potentiometer R5 versus R2. The offset when LOG K A/R is zero is about +2.05V, which is set by POLAR OFFSET potentiometer R1 and R38. When the front-panel POLAR CENTER switch is engaged, the output of U1 saturates negative (about -8V) which turns on the Polar Center Switch (A9O10). A9Q10 is turned on, it shorts out the input to the Phase Shifter to effectively turn off the POL MAG signal.

Antilog Amplifier (P/O A9)

The Antilog Amplifier converts the logarithmically scaled LOG K A/R voltage to a linear current. The conversion takes place in Q1B, the antilogging element of the circuit. This is possible because of the exponential relationship between the base-emitter voltage of a transistor and its collector current. The conversion requires a reference transistor, Q1A, in which the collector current is set by the voltage divider R9, R10 in series with R11. The collector current is maintained at $5.8 \,\mu\text{A}$ by U2 for

temperature compensation of the base-emitter voltage. The input network R6, R7 compensates the log to linear scale factor change with temperature.

Linear Offset (P/O A9)

The Linear Offset circuit sets the bias for the Voltage-Controlled Current Source of the Modulator to adjust for maximum operating range of the modulator. The bias is set by the resistor string R14, R8, and POLAR MIN potentiometer R39 between -10V and the virtual ground at U3 pin 2 and by the gain resistor R15. The output current from the Antilog Amplifier is converted to the required control voltage for the Voltage-Controlled Current Source (+5.11V/mA) as set by R15.

Modulator (P/O A9)

The Modulator circuit, consisting of U3, Q2, and Q9, adds linearized magnitude information (K A/R) to the 1 MHz A/B LIM signal, which contains the test channel phase information. This is accomplished by a Voltage-Controlled Current Source and a differential Current Switch. The magnitude of the current is controlled by the K A/R signal (the linearized LOG K A/R signal). The current is switched by the A,B LIM (test channel) signal. The output taken from the collector of Q9 is a 1 MHz signal whose amplitude is about 1.2V peak-to-peak when the A and R magnitudes are equal and there are no front-panel magnitude offsets. This condition corresponds to a display on the unity-gain (outer) circle on the CRT.

The Voltage-Controlled Current Source is made up of U3, Q2, and the resistive divider R19 and R38. U3 controls the conduction of Q2 to maintain a current through R19 and R38 to produce a voltage at the junction of R19 and R38 equal to that set by the non-inverting input of U3B.

1-MHz Bandpass Filter (P/O A9)

The 1-MHz Bandpass Filter reduces the harmonic components of the 1-MHz variable-amplitude square wave from the Modulator circuit to produce a clean 1-MHz signal.

Phase Shifter (P/O A9)

The Phase Shifter provides a means to calibrate the Polar Phase Offset. This is accomplished by

Q4, which provides two outputs 180 degrees out of phase. The two output signals are summed by a reactive component, C36, and a variable resistive component, R54 and POL ZERO potentiometer R55. The resultant is a phase shift which can be adjusted by R55 approximately ±30 degrees to correct for delays in the polar system.

Y Multiplier (P/O A10)

The Y Multiplier converts the 1 MHz KA/R∠A signal from the Phase Shifter circuit of the Phase Detector (A9) and the 1 MHz Sine R IF signal from the Variable Phase Shifter to the POLAR Y vertical deflection signal to the CRT. The output of the Y Multiplier is obtained by converting a differential current to a voltage and then filtering the resulting signal to attenuate the 1 MHz and higher order mixing products. A simplified schematic of the Y Multiplier is shown in Figure 8-90.

Multiplier. The Multiplier stage is essentially an externally-biased balanced modulator, U3, which has two differential voltage input ports and a differential current output port. Circuitry is provided to set the gain between the signal inputs and the external ports and to set the quiescent output current.

The carrier, or switching input, is driven differentially from the Sine R IF output of the Variable

Phase Shifter (reference channel phase information). Resistors R45 through R49 attenuate the 0.9V peak-to-peak square wave signal to about 0.2V peak-to-peak and bias the port to about -2.4V. Amplitude variation in this port will have little effect on the output.

The signal port is operated in the linear mode and is driven single-endedly from the Phase Shifter in the Phase Detector (A9). The signal amplitude is dependent on the ratio of the A/R magnitudes and the phase of the A test channel. Resistors R51 through R55 (including Y NULL potentiometer R52) and R2 attenuate the input signal to provide a 0.28V peak-to-peak sinusoidal waveform at the non-inverting input, U3 pin 1, when the A magnitude is equal to the R magnitude. The resistor network also biases the port to about -5.7V. The non-inverting input is placed at IF ground through C33. Y NULL potentiometer R52 adjusts the differential bias to balance the output of the Multiplier, which minimizes the carrier feedthrough.

The quiescent magnitude of the two output currents from U3 is about 1.1 mA as determined by the bias resistor R58 and the -10V at U3 pin 10. The product of the two complex input signals, magnitude and phase, causes a differential current change in the two outputs of U3.

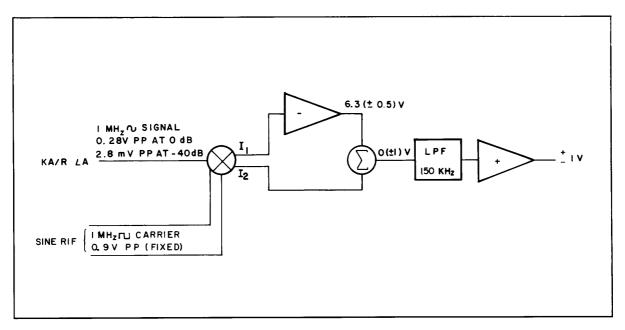


Figure 8-90. Y Multiplier, Simplified Schematic

Current-to-Voltage Converter. The differential output currents from the Multiplier are converted to a voltage. This is accomplished by adding the two voltages in series opposition, which cancels the voltage generated because of the quiescent current of the Multiplier. A simplified schematic of the Current-to-Voltage Converter is shown in Figure 8-91.

The currents I_1 and I_2 into the two Multiplier outputs are equal in the quiescent state; that is, the nosignal condition. I_1 is converted to voltage E_1 by the inverting op amp U1B, whose gain is set by R60. Because of the inverting configuration of U1B, its output at pin 7 moves to a potential that causes a current through R60 into U1B pin 6. This current is equal and opposite to I_1 maintaining the virtual ground at pin 6 as defined by the grounding of U1B pin 5 through R59.

With the conditions shown in Figure 8-90, I_1 is 1.05 mA, and E_1 is +6.3V. I_2 flows through R61, and the voltage drop across the resistor is E_2 . Since E_2 is referenced to E_1 , the two voltages are subtracted. Hence, when $I_1 = I_2$, $E_1 = E_2$, and E_{out} is 0V; that is, 6.3 - 6.3 = 0.

The mixing of the signals produces differential current changes in I_1 and I_2 . When I_1 (and thus E_1) increases, I_2 (and thus E_2) decreases, resulting in a change of E_{out} from 0V. For example, if I_1 increases by 83 μ A, E_1 increases to +6.8V. At the same time, I_2 must have increased by 83 μ A, so E_2 has decreased to -5.8V. Therefore, E_{out} is +1V, since 6.8 - 5.8 = 1.

Low Pass Filter. The Low Pass Filter, which consists of U1A and its associated circuitry, further attenuates the high-frequency components present in the output.

X Multiplier (P/O A10)

The X Multiplier converts the 1-MHz $KA/R \angle A$ signal from the Phase Shifter circuit of the Phase Detector (A9) and the 1 MHz Cosine R IF signal from the Variable Phase Shifter to the POLAR X horizontal deflection signal to the CRT.

The circuitry of the X Multiplier is identical to that of the Y Multiplier except for the addition of GAIN BAL potentiometer R78 in series with R77.

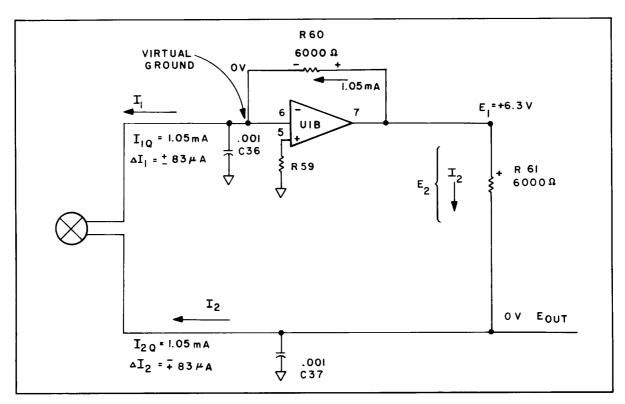


Figure 8-91. Current-to-Voltage Converter, Simplified Schematic

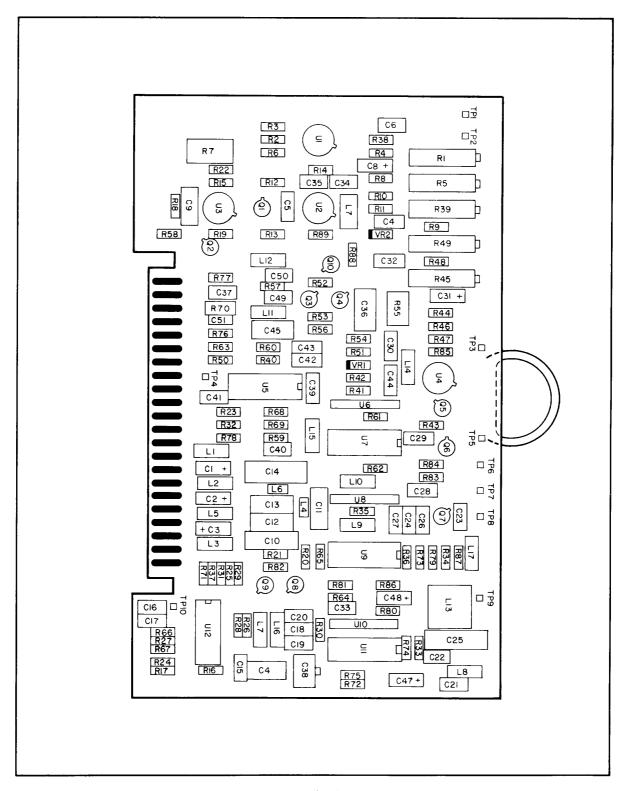


Figure 8-92. Phase Detector (A9), Component Locations

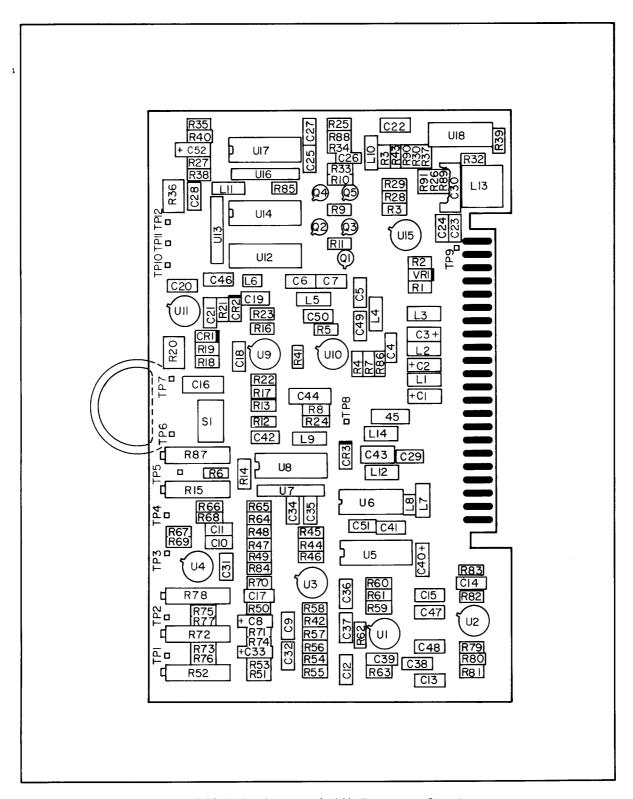
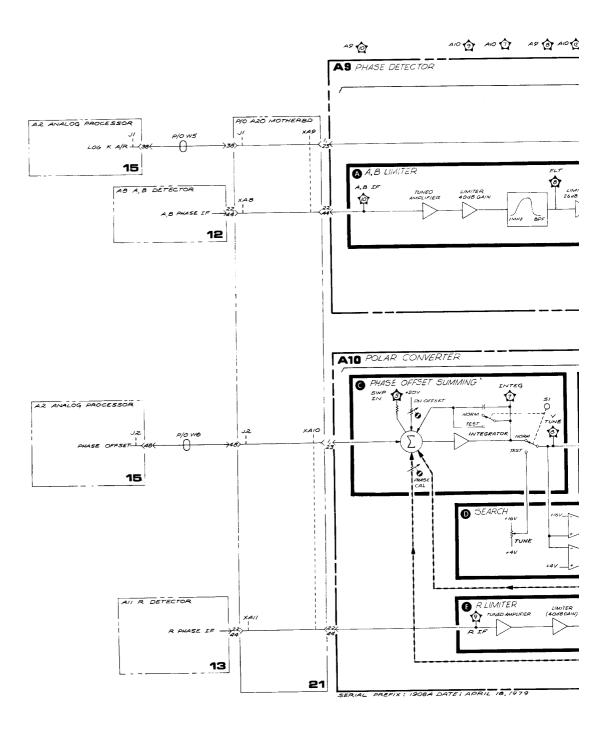
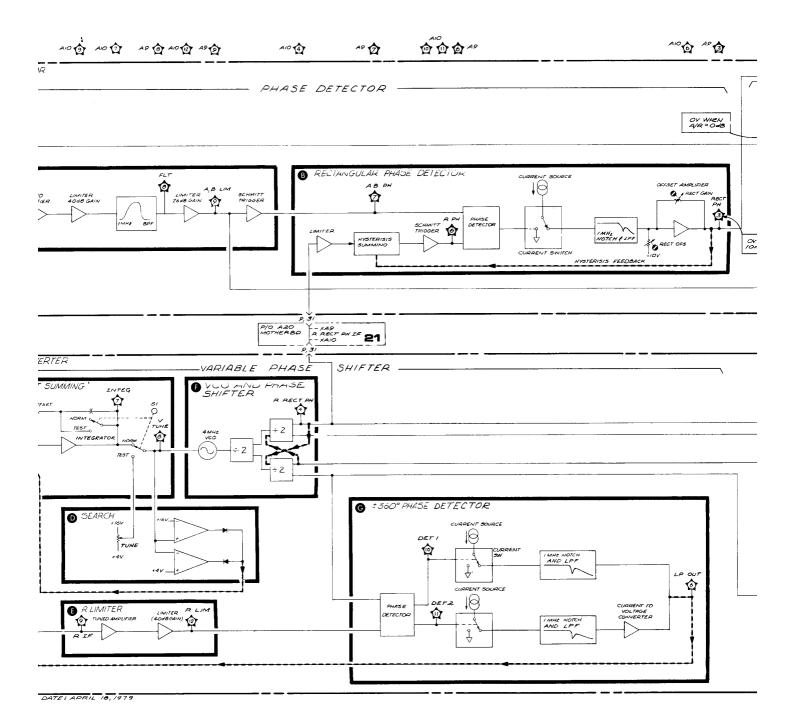
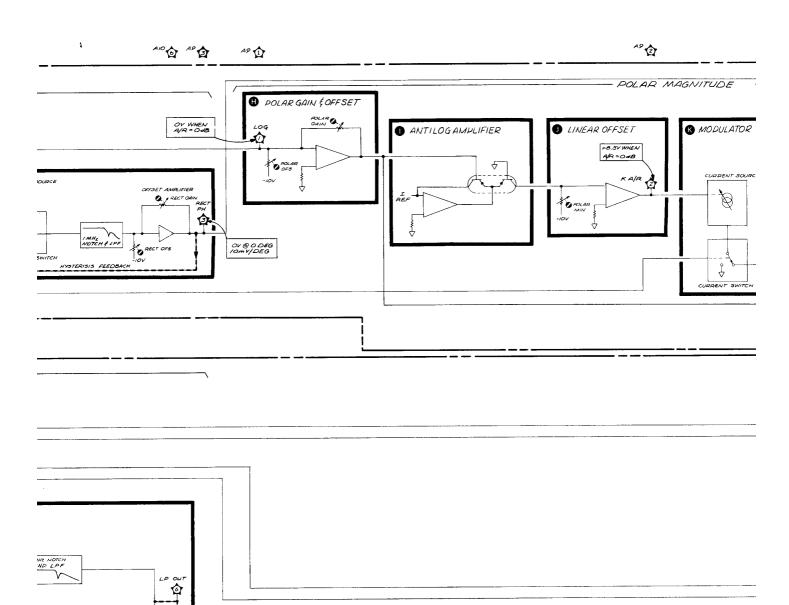





Figure 8-93. Polar Converter (A10), Component Locations

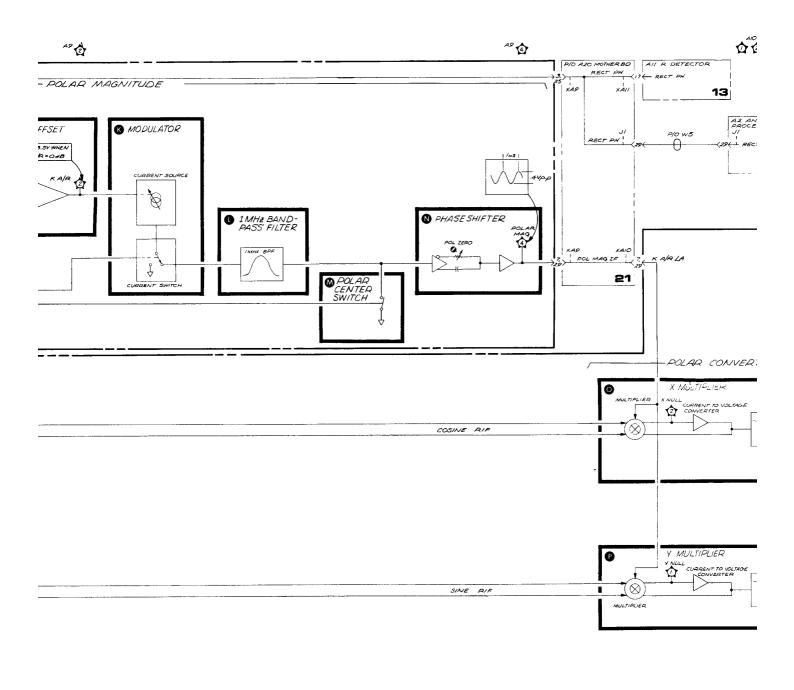


Figure 8-94. Pl

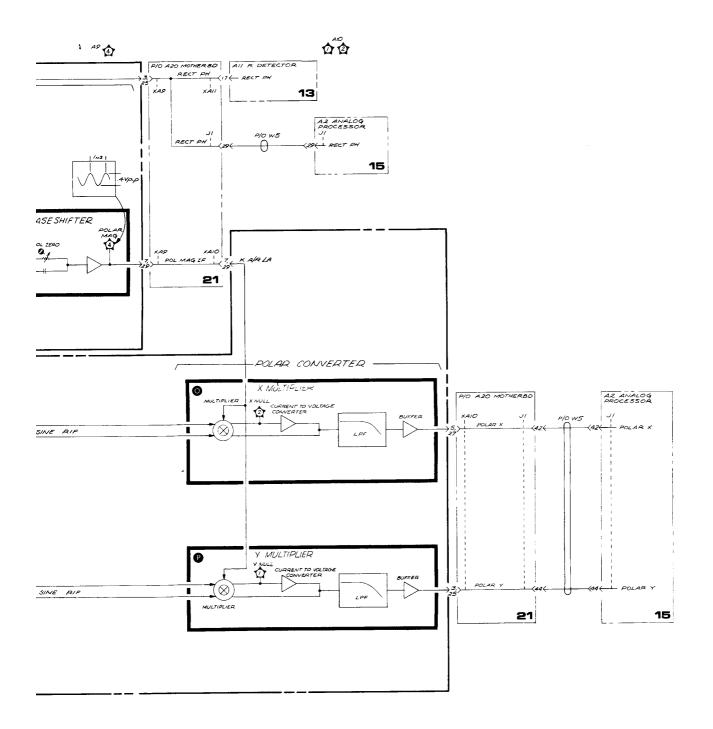
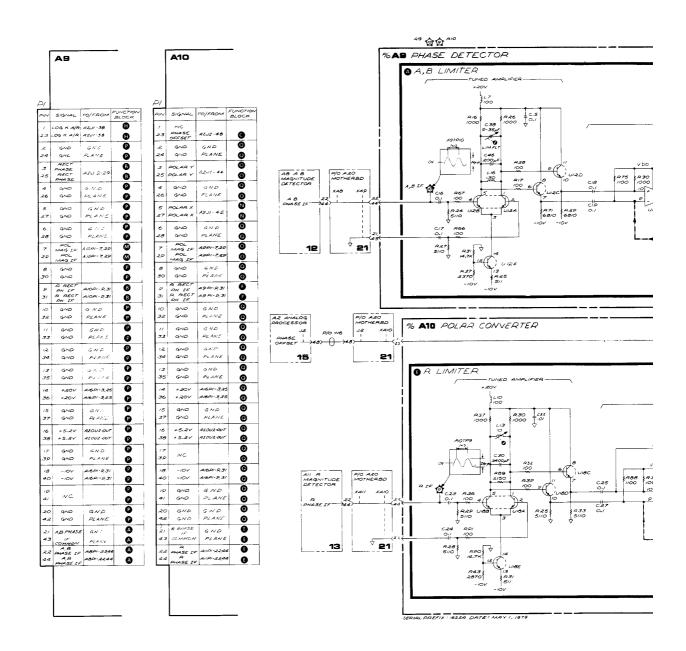
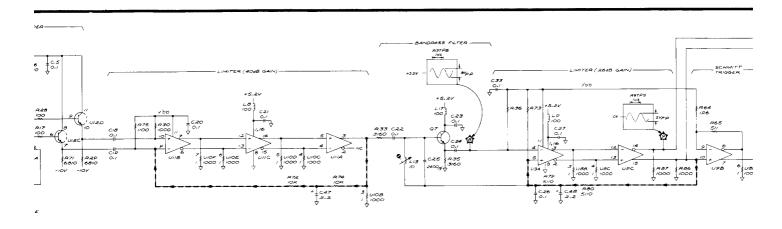
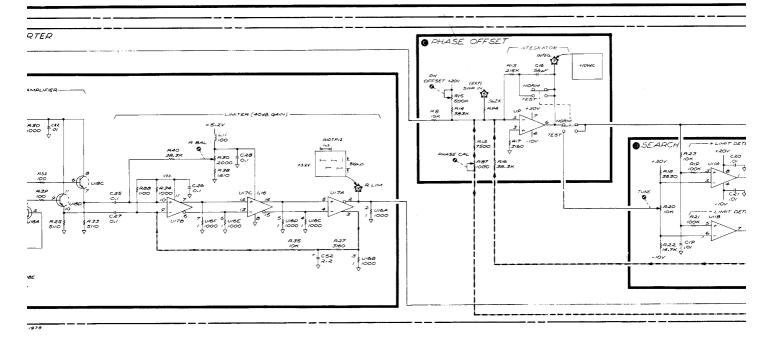
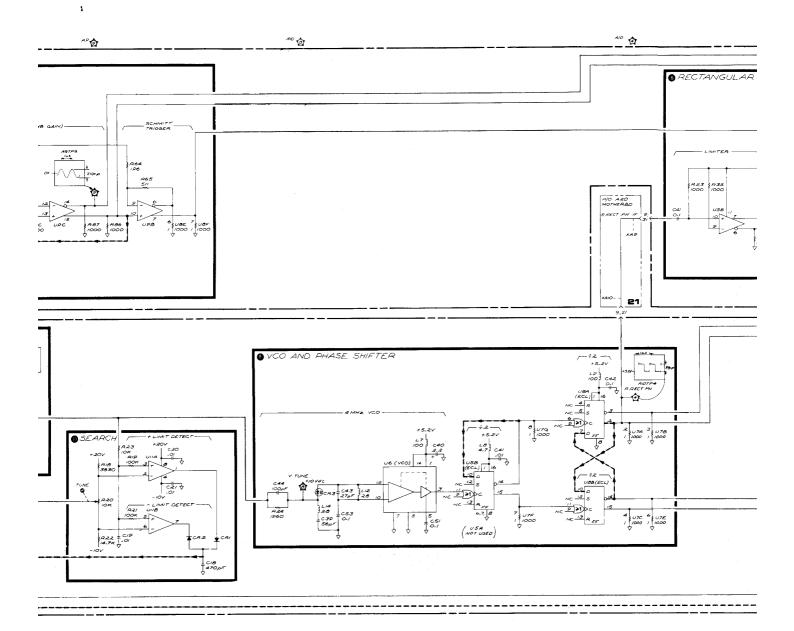






Figure 8-94. Phase Detector (A9) and Polar Converter (A10), Block Diagram 8-173/8-174

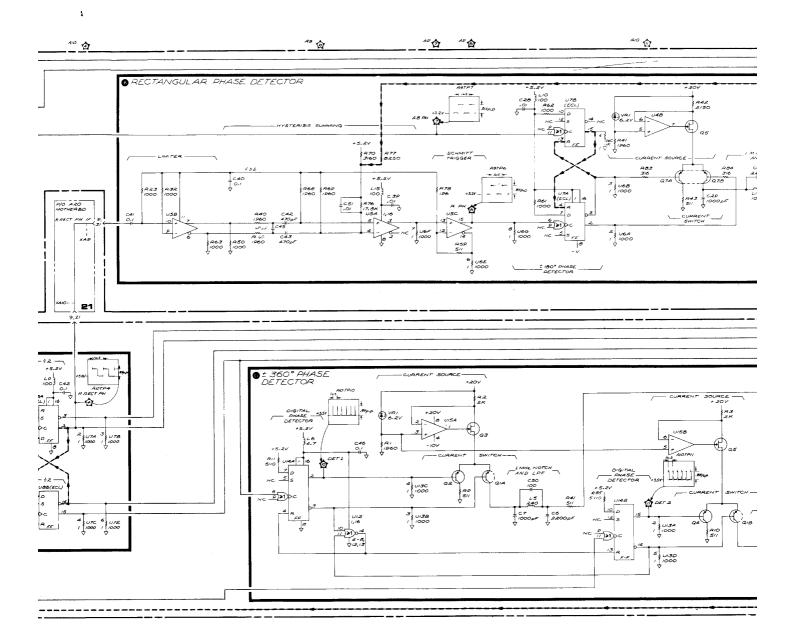
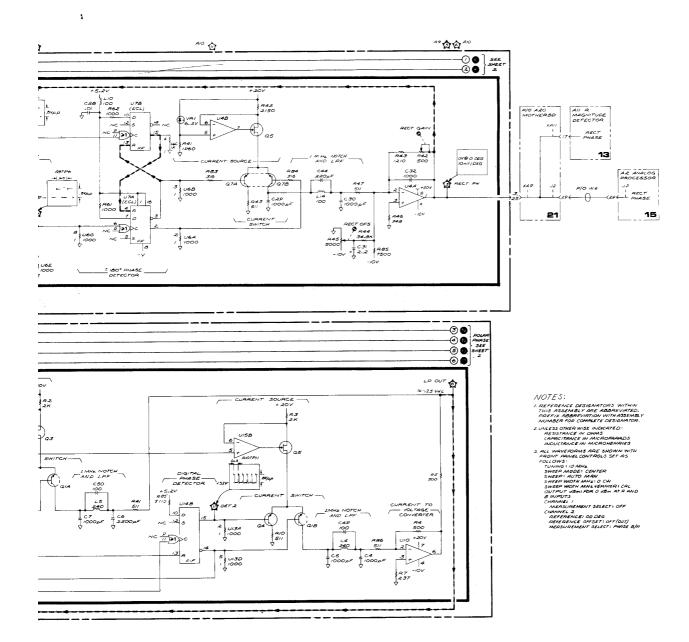
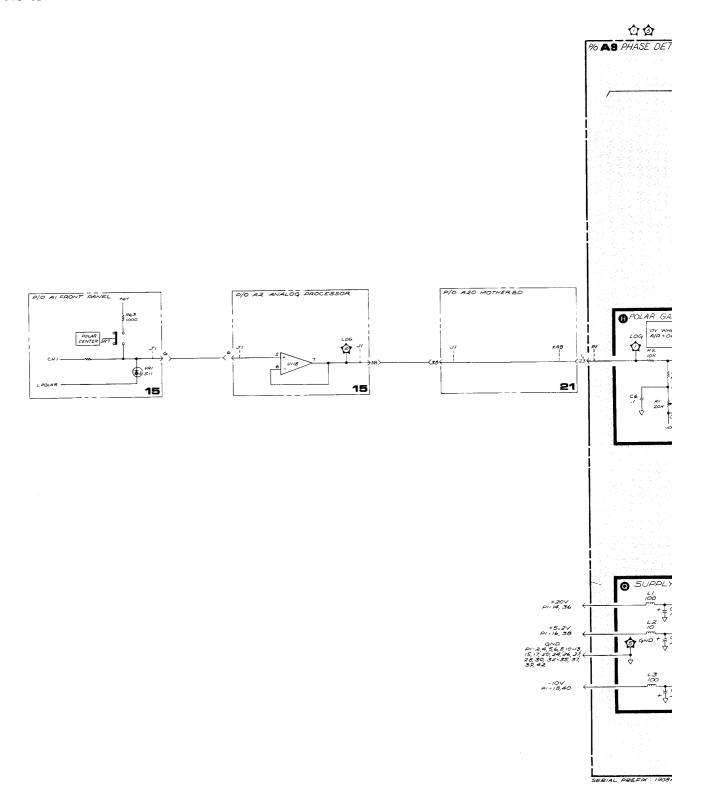
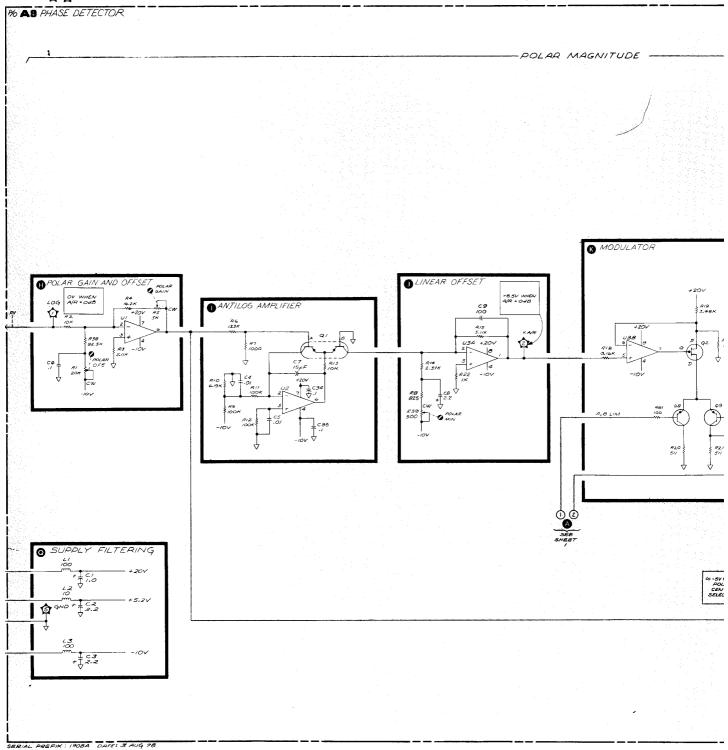




Figure 8-95. Phase Detect



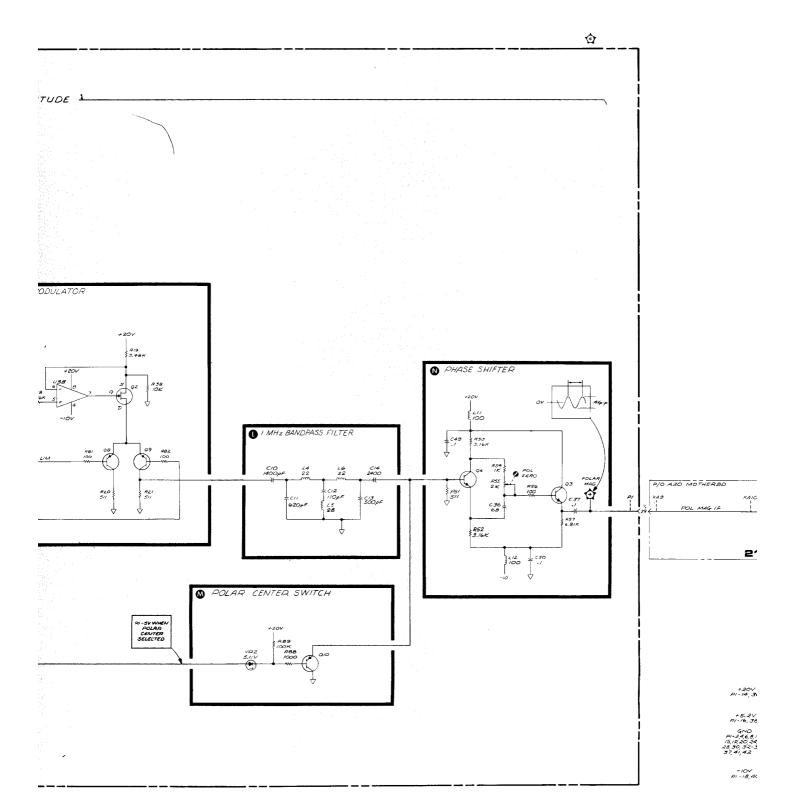

14 210,810

Figure 8-95. Phase Detector (A9) and Polar Converter (A10), Schematic Diagram (1 of 2) 8-175/8-176

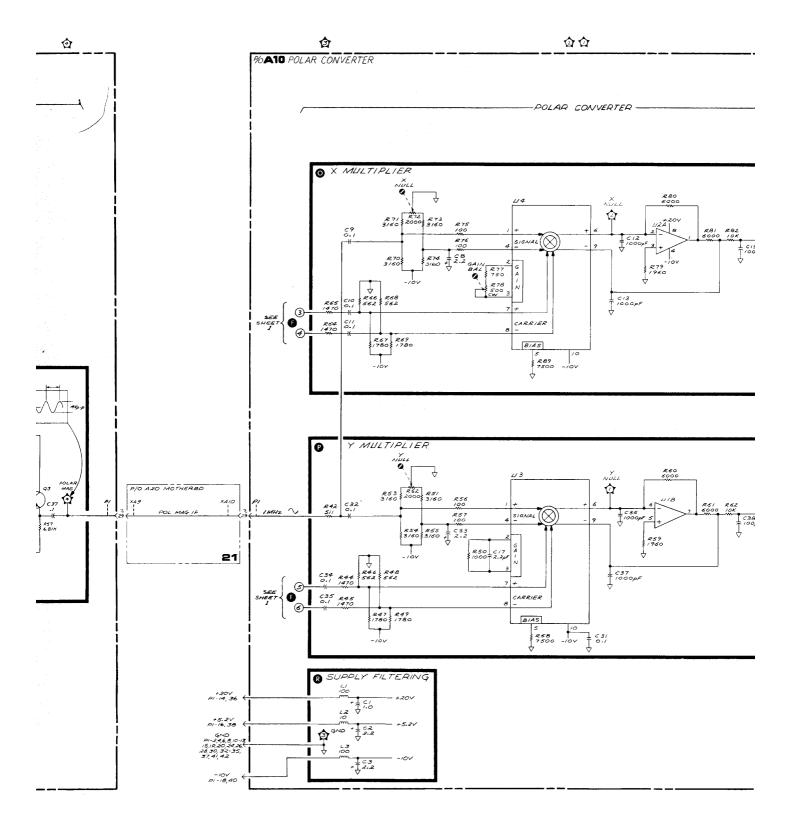


Figure 8-95. Phase Detec

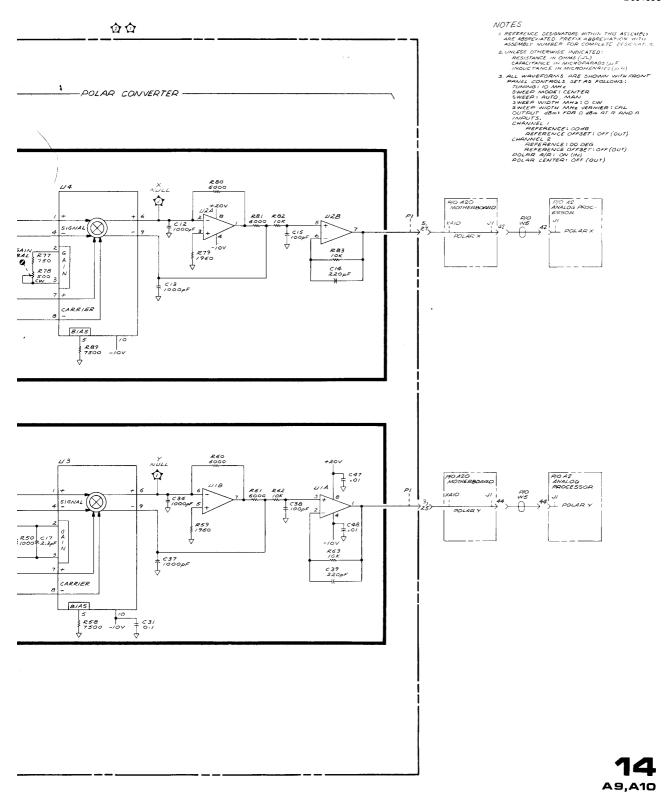


Figure 8-95. Phase Detector (A9) and Polar Converter (A10), Schematic Diagram (2 of 2) 8-177/8-178

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS

ASSEMBLY	SERVICE SHEET	DESCRIPTION	
	5	SWEEP pushbuttons	
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch	
	7	OUTPUT dBm control	
	8	MARKERS MHz pushbuttons	
A1 Front Panel	11	UNLOCKED indicator	
	12	Absolute R measurement select	
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER, and VIDEO FILTER	
	16	HORIZONTAL POSN and GAIN controls	
	19	All front panel controls	
	6	Analog-to-digital converter for FREQUENCY MHz display.	
A2 Analog Processor	15 16	Analog processor, switch control logic, and ±6 V power supplies V RAMP amplifier	
A3 B Sampler	9	RF to IF down-conversion	
A4 A Sampler	9	RF to IF down-conversion	
A5 R Sampler	9	RF to IF down-conversion	
A6 VTO and IF Switch	10	Voltage Tuned Oscillator	
A6 VIO and IF Switch	1	Voltage Tuned Oscillator	
	12	IF Switch	
A7 Source	7	RF Source	
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector	
A9 Phase Detector	14	Phase Detector	
A 10 Polar Converter	14	Polar Converter	
A11 R Detector	13	R INPUT, magnitude detector	
A12 Marker Generator	8	Markers	
A13 Phase Lock	11	Phase Lock	
A14 Phase Lock Control	11	Phase Lock loop control	
A15 Shaper	6	Sweep width, tuning, frequency reference, and frequency display.	
A46 D0 D	7	Shaping and RF Source drive.	
A16 DC Regulator	20	Low Voltage Power Supplies	
A17 Sweep Generator	5	Sweep Generator	
A18 Deflection Amplifiers	16	Deflection Amplifiers	
A19 Rectifier	18	External Interface	
	20	Low Voltage Power Supplies	
A20 Motherboard	21	Motherboard wiring list	
A21 High Voltage Power Supply	17	CRT bias and blanking control	
A22 Frequency MHz Display	6	Frequency display	
A23 Rear Panel	18	External Interface and Rear Panel (A23)	

Model 8754A Service

SERVICE SHEET 15

FRONT-PANEL CONTROL (A1) AND ANALOG PROCESSOR (A2), CIRCUIT DESCRIPTION

The Front-Panel Control (A1) and the Analog Processor (A2) together provide for the display of both absolute magnitude and ratio measurements in either Polar or Rectangular mode. Table 8-7 lists the possible selected displays, either alone or in combination, and Table 8-8 gives the switch positions for each measurement displayed.

NOTE

Descriptions of several front-panel circuits are not included in this circuit description. Refer to the following service sheets for that information: SWEEP, Sweep Generator, Service Sheet 5; FREQUENCY MHz, Digital Panel Meter, Service Sheet 6; TUNING and SWEEP WIDTH MHz, Frequency Reference, Service Sheet 6; OUTPUT dBm, RF Source, Service Sheet 7; MARKERS MHz, Marker Generator, Service Sheet 8, HORIZONTAL POSN and GAIN, Deflection Amplifiers, Service Sheet 16.

The Analog Processor (A2) receives the following input signals:

- H POLAR, L POLAR, and data for RATIO from the Front-Panel Control (A1)
- MAG from the A, B Detector (A8, Service Sheet 12)
- POLAR X and POLAR Y from the Polar Converter (A10, Service Sheet 14)
- R MAG from the R Detector (A11, Service Sheet 13)
- FREQ REF and LENGTH REF from the Frequency Reference (part of A15, Service Sheet 6)
- H ALT CH 2 from the Sweep Generator (A17, Service Sheet 5)

- L REM BUF from the Rectifier (A19, Service Sheet 18)
- L HOLD from the Phase Lock Control (A14, Service Sheet 11)

The Analog Processor (A2) provides the following output signals:

- CH 1 FLT and CH 2 FLT to the Deflection Amplifiers (A18) and to the rear-panel NOR-MALIZER INTERCONNECT.
- L CHAN 2 to the Deflection Amplifiers (A18)
- L OFF 1 and L OFF 2 to the rear-panel NOR-MALIZER INTERCONNECT
- PHASE OFFSET to the Polar Converter (A10)
- LOG K A/R to the Phase Detector (A9)
- L B INT to the Rectifier (A19)

Control Logic

The purpose of the Control Logic circuit is to decode the Front-Panel Control (A1) switch positions, providing the appropriate signal outputs to other circuits of the Analog Processor (A2) and to other assemblies for display of the selected measurement or combination of measurements. The control logic is also affected by the state of the H ALT CH 2 signal from the Sweep Generator (A17). The output signals from the Control Logic circuit and their logic states for each selected display are shown in Table 8-7.

The Logic Control circuit is described for display of A magnitude only. For display of this measurement, the A switch A1S10B is closed (in). The other seven measurement select switches are in the position shown on the schematic. Since the A magnitude is displayed in the Rectangular Mode, the POLAR A/R switch A1S11 is open (out). OR gate A2U17A pin 2 is grounded through switch A1S10B-R, and pin 1 is either high or low, passing a high or low to AND gate A2U15A pin 1. Since the Channel 2 B, B/R, and PHASE B/R switches are all open, pin 2 is low; therefore, the output of the AND gate (pin 3) is also low. NAND

Service Model 8754A

Table 8-7. Control Logic Summary

SELECTED DISPLAY	H ALT CH 21	0	•	H DSP R ²	H POLAR3	L CHAN 2 ⁴	L OFF 1 ⁵	L OFF 2 ⁵	RATIO6	L B
R (Both OFF switches in)	X	+5V	+5V	HIGH	LOW	HIGH	HIGH	LOW	LOW	LOW
A only	N	+51	+5V	LOW	LOW	HIGH	ШСП	LOW	LOW	HIGH
A and B	HIGH	+5\	+5V	LOW	LOW	LOW	HIGH	HIGH	LOW	LOW
	LOW	+5V	±5V	LOW	1 ()//	HIGH	HIGH	HIGH	WOJ	HIGH
A and B R	HIGH	+5V	+5V	LOW	10\	ны	HIGH	ШСП	LOW	ШСН
	10#	+51	+51	WO.1	LOW	LOW	шан	HIGH	HIGH	LOW
A and PHASL B-R	HIGH	+5V	0V	1.OW	LOW	LOW	HIGH	HIGH	HIGH	LOW
	1.OW	+5\	0V	LOW	LOW	HIGH	HIGH	HIGH	LOW	HIGH
A R only	X	+5V	+5V	10%	LOW	HIGH	HIGH	LOW	HIGH	шсн
A R and B	ны	+5 V	+5V	LOW	LOW	10W	HIGH	HIGH	10#	LOW
	1.0%	+5V	+5V	10%	LOW	HIGH	HIGH	HIGH	HIGH	ШСП
A R and B R	HIGH	+5V	+5V	10%	10%	LOW	HIGH	ШСН	HIGH	LOW
	WO.1	+5V	+51	LOW	LOW	HIGH	HIGH	HIGH	ШСН	HIGH
A. R. and PHASL B. R.	HIGH	±5V	θV	LOW	LOW	LOW	HIGH	HIGH	HIGH	LOW
	LOW	+5V	0V	100	LO#	HIGH	HIGH	HIGH	ШСП	HIGH
B.R. Channel I only	N .	+5\	+5V	1.0%	LOW	HIGH	HIGH	10#	HIGH	10%
B.R. Channel 2 only	X	+5V	+51	LOW	10%	LOW	LOW	HIGH	HIGH	LOW
B.R. Channels 1 and 2	HIGH	+5V	+5\	LOW	10#	LOW	HIGH	HIGH	HIGH	LOW
	LOW	+5V	+51/	LOW	1.0\%	HIGH	HIGH	HIGH	HIGH	10#
B R and PHASE B R	HIGH	+5\	0V	LOW	LOW	LOW	HIGH	HIGH	HIGH	LOW
	LOW	+5V	0V	LOW	1.0%	HIGH	HIGH	HIGH	HIGH	10W
B only	X	+5V	+5V	LOW	LOW	LOW	LOW.	HIGH	LOW	LOW
PHASE B-R only	X	+5V	0.	LOW	LOW	LOW	LOW	HIGH	HIGH	LOW
POLAR A R	X	OV	+5V	LOW	HIGH	HIGH	HIGH	LOW	HIGH	HIGH

¹ From Sweep Generator (A17)

gate A2U19A pin 1 is low, and pin 2 is high because of the +5V through switch A1S11-R. The output of the NAND gate is high, so the L CHAN 2 signal to the Deflection Amplifiers (A18) is high, selecting Channel 1. (Refer to the circuit description of A18.)

NAND gate A2U19D pin 12 is low and pin 13 is high, so the high output is applied to OR gate A2U17D pin 12 (pin 13 is low), placing a high on the L OFF 1 line to the NORMALIZER INTERCONNECT and activating Channel 1 in the Normalizer.

AND gate A2U15B pins 4 and 5 are high and low, respectively, so the L OFF 2 line to the Normalizer is low, turning off Channel 2.

OR gate A2U17B pin 4 is high (from A2U19A pin 3) and NAND gate A2U19B pin 5 is low (switch A1S10B-L is open). Therefore, pin 6 is high, so the high at AND gate A2U15C pin 8 is applied to NAND gate A2U19C pin 10. Pin 9 is also high (+5V through POLAR A/R switch A1S11-R), so the RATIO line to the Ratio/Absolute Select circuit is low.

Switch A1S12D-R is open, so +5V is applied to the CH 2 Summing Amplifier circuit, clamping any phase signal that might be present. Switch A1S11-R is open, so +5V is applied to the Polar Center circuit clamping the LOG K A/R signal; the H POLAR line to the Phase Offset circuit and to A18 is low. The H DSP R (R Display) line to A8 is low because of the open OFF switches. (This line is high only when both OFF switches are closed and the POLAR A/R switch is open.)

² To A. B Detector (A. 8.), High only when R is selected.

³ To Phase Offset circuit and to Deflection Amplifiers (AT8). High only when POLAR A R is selected.

⁴ To Deflection Amplifiers (A18). High selects Channel 1: low selects Channel 2.

⁵ To rear-panel NORMALIZER INTERCONNECT.

⁶To A2U18B in Ratio Absolute Select circuit

⁷ To Rectifier (A19). High selects A and low selects B on IF Switch (A6).

[●] To Polar Center and Video Filter circuits. ±5V for all Rectangular displays: 0V only when POLAR A/R is selected

[■] To CH 2 Summing Amplifier circuit. 0V when PHASE B/R is selected.

Model 8754A Service

Table 8-8. Display Switching

		Channel 1			Ch 1, Ch 2		Channel 2	
Switch	А	A/R	B/R	R*	POLAR A/R	В	B/R	PHASE B/R
IF Switch (P/O A6)	A	A	В	Х	A	В	В	В
A, B or R Select (P/O A8)	A,B	A,B	A,B	R	A,B	A,B	A,B	A,B
Ratio/Absolute Select (A2U18A)	Abs.	Ratio	Ratio	Abs.	Ratio	Abs.	Ratio	Ratio
Ch 1 OFFSET (A1S5-L)	Closed (In)	Closed (In)	Closed (In)	Closed (In)	Closed (In)	X	X	X
POLAR A/R (A1S11-L)	Rect (Out)	Rect (Out)	Rect (Out)	Rect (Out)	Polar (In)	Rect (Out)	Rect (Out)	Rect (Out)
REFERENCE POSITION Ch 1 (A1S1-R)	Closed (Out)	Closed (Out)	Closed (Out)	Closed, (Out)	X	Х	X	X
Rect/Hold/Polar Ch 1 (A2U5B)	Rect	Rect	Rect	Rect	Polar	Rect (X)	Rect (X)	Rect (X)
Ch 2 OFFSET (A1S6-L)	X	Х	Х	X	Closed (In)	Closed (In)	Closed (In)	Closed (In)
Rect/Polar Select (A2U18B)	Rect	Rect	Rect	Rect	Polar	Rect	Rect	Rect
PHASE B/R (A1S12D-L)	Mag (Out)	Mag (Out)	Mag (Out)	Mag (Out)	Х	Mag (Out)	Mag (Out)	Phase (In)
REFERENCE POSITION Ch 2 (A1S2-R)	Х	X	Х	X	Х	Closed (Out)	Closed (Out)	Closed (Out)
Rect/Hold/Polar Ch 2 (A2U5A)	Rect (X)	Rect (X)	Rect (X)	Rect (X)	Polar	Rect	Rect	Rect

*Both OFF pushbuttons depressed and POLAR A/R in Rectangular (out).

Note: X means function is not affected by switch position.

Both inputs to AND gate A2U15D are high (+5V through the A switch A1S10B-L and a high from A2U19A pin 3), so a high through OR gate A2U17C places a high on the L B INT line to the Rectifier Board (A19). This eventually selects the A input to the A(B) Detector (A8) via the IF Switch (part of A6). (Refer to the IF Switch descriptions in Service Sheets 12 and 18.)

Ratio/Absolute Select

When the RATIO line to A2U18B pin 9 is high, the R signal from the R Detector (A11) is passed through operational amplifiers A2U16B (inverting) and A2U16A (non-inverting) to the Ch 1 and Ch 2 Summing Amplifiers. When the RATIO line is low, the FREQ REF signal from the FreqService Model 8754A

uency Reference (part of A15) is passed through the non-inverting op amp only. The FREQ REF signal helps to compensate for the slope of the A and B magnitude inputs to the A, B Detector (A8).

Ch 1 Summing Amplifier B

The CHANNEL 1 REFERENCE level is set by lever switch A2S1. The level is in dB/division for A/R and POLAR A/R or in dBm/division for A or R. The CHANNEL 1 REFERENCE, CHANNEL 1 REFERENCE OFFSET (from A1). the output of the Ratio/Absolute Select circuit, and the MAG signal from A8 are summed at the inverting input to op amp A2U21. Display scaling of the Ch 1 Summing Amplifier is determined by the setting of switch A1S15.

When the -R signal is selected by A2U18B and the A magnitude (for example) is represented by MAG, the sum is A-R. Since the signals are logarithmic, this is equivalent to the ratio A/R.

The feedback circuit limits the output of A2U21, which is sent to the Polar Center circuit and to the Ch 1 Rectangular Reference Position circuit. In Polar mode, the gain is set for 10 dB/div by A1S11A.

Ch 2 Summing Amplifier D

The Ch 2 Summing Amplifier circuit is similar to the CH 1 Summing Amplifier circuit with two exceptions. In PHASE B/R operation, switch A1S12D-L disconnects the MAG input to op amp A2U22 and connects the RECT PHASE signal from the Phase Detector (A9). The Control Logic circuit removes +5V from the base of A2Q4, turning it on and providing a path to ground for the MAG signal. This eliminates interaction between the CHANNEL 1 lever switch and CHAN-NEL 2 REFERENCE OFFSET in PHASE B/R.

Phase Offset (3)

The Phase Offset circuit provides not only a calibrated offset but also an electrical length compensation during phase measurements. PHASE B/R LENGTH potentiometer A1R33 and POLAR A/R LENGTH potentiometer A1R36 scale the LENGTH REF signal from the Frequency Reference (part of A15). The signal that is passed through switch A2U18C is determined by the state of the H POLAR line from the Control Logic circuit. The length compensation signal and the Channel 2 Reference Offset signal from A2U20B are summed in A2U20A to provide the PHASE OFFSET signal to the Polar Converter (A10).

When the L REM BUF line from the Rectifier Board (A19) is low, switch A2U18A disconnects the input to A2U20A to disable the output from the Phase Offset circuit.

Polar Magnitude

The Polar Magnitude circuit allows amplitude information to be passed to the Phase Detector (A9, Service Sheet 14) in Polar operation only. Depressing the POLAR CENTER switch turns off the amplitude information by driving amplifier A2U11B into saturation. This causes a dot to be placed in the center of the CRT for proper positioning of the display.

In Rectangular operation, +5V is applied to the zener diode A1VR1 to prevent interaction between the phase offset and the LOG K A/R signal.

In Polar operation the gain of CH 1 Summing Amplifier is set to 10 dB/div by A1S11A. The zener diode is turned off, and A2U11B acts as a buffer to pass the LOG K A/R signal (amplitude information) to the Phase Detector (A9), where the log signal is converted to a linear signal. After processing in the Polar Converter (A10), the dc POLAR X and POLAR Y signals are sent to the POLAR X and Y Position circuits. (Refer to the circuit descriptions of A9 and A10.)

POLAR Y Position

The POLAR Y Position circuit sums the vertical centering information (adjusted by POLAR CENTER potentiometer A1R53) with the POLAR Y signal, applies the summed signal to operational amplifier A2U10B, and sends a Y signal to the Ch 1 Video Filter circuit.

POLAR X Position

The POLAR X Position circuit is identical to the POLAR Y Position circuit. The output signal X is sent to the Ch 2 Video Filter circuit.

When the REFERENCE POSITION CH 1 switch A1S1-R is opened, the reference level may be established by REFERENCE POSITION CH 1 potentiometer A1R29. When the switch is closed

Service Model 8754A

(out), the reference information is summed with the input signal and amplified by A2U10A to produce the BUFF 1 signal to the Ch 1 Video Filter

Ch 2 Rectangular Reference Position

This circuit is identical to the CH 1 Rectangular Reference Position circuit. The output, BUFF 2, is sent to the CH 2 Video Filter circuit.

Hold Buffer (K)

The Hold Buffer circuit normally enables analog switches A2U5A and A2U5B, allowing either Rectangular or Polar information to be passed. During the phase lock loop acquisition sequence, the L FP HOLD line from the Phase Lock Control (A14) goes low. This causes the output of A2U11A to go high, diode A2CR5 is turned on, and new information is not allowed to pass through the switches A2U5A and A2U5B. The signal level at the time the phase lock loop was unlocked is held on the CRT until the loop acquisition sequence is complete.

Ch 1 Video Filter

This circuit provides video filtering and also provides the means to hold a signal during the acquisition sequence. Rect/Hold/Polar switch A2U5B is normally enabled, and the state of the H POLAR line determines the source of the input signal.

Video Filtering is accomplished by A2C8, A2C18, A2R90, A2C17, and A2R46. Rolloff is at about 10 kHz. VIDEO FILTER 100 Hz switch S17-L provides rolloff at about 100 Hz to improve signal definition when the instrument noise level is high; e.g., at low signal levels.

The output signal, CH 1 FLT, is sent to the Deflection Amplifiers (A18).

Ch 2 Video Filter M

The operation of this circuit is identical to that of the Ch 1 Video Filter circuit. The output, CH 2 FLT, is sent to the Deflection Amplifiers (A18).

Service Model 8754A

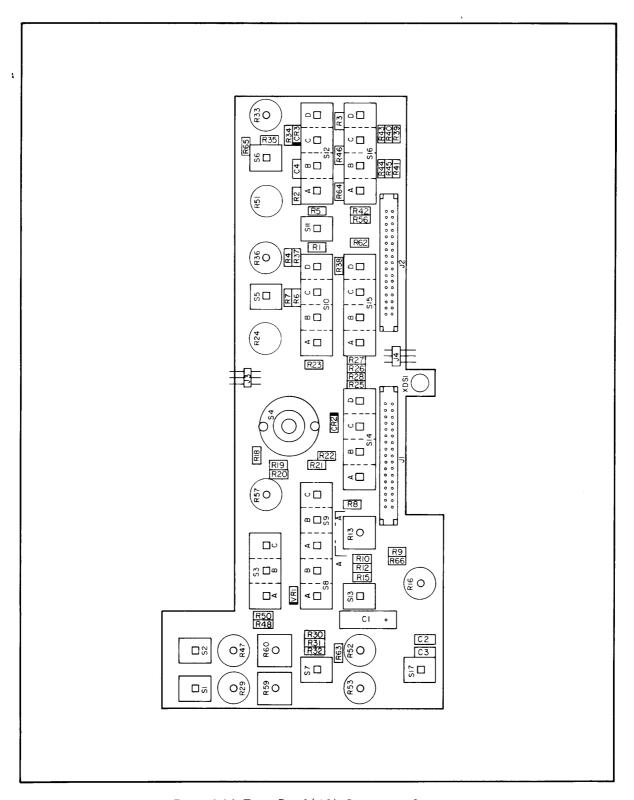


Figure 8-96. Front Panel (A1), Component Locations

Model 8754A Service

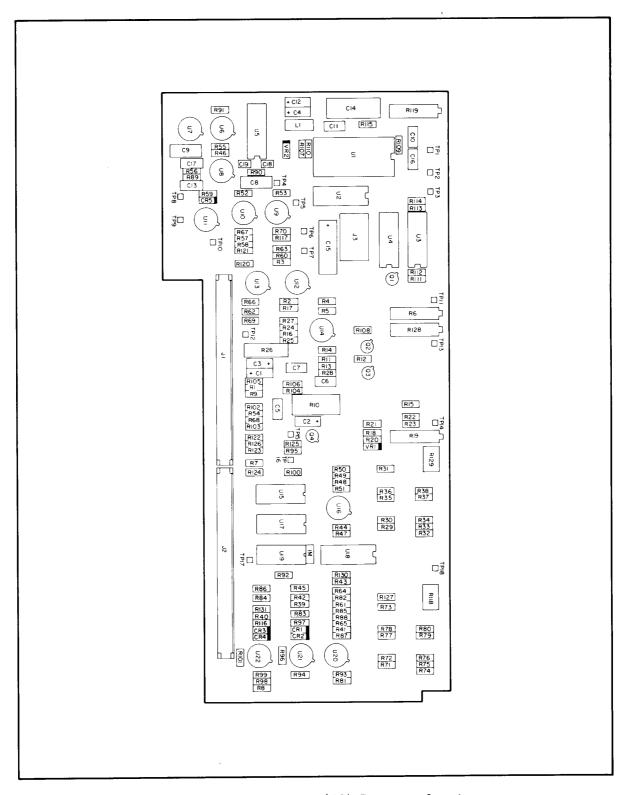
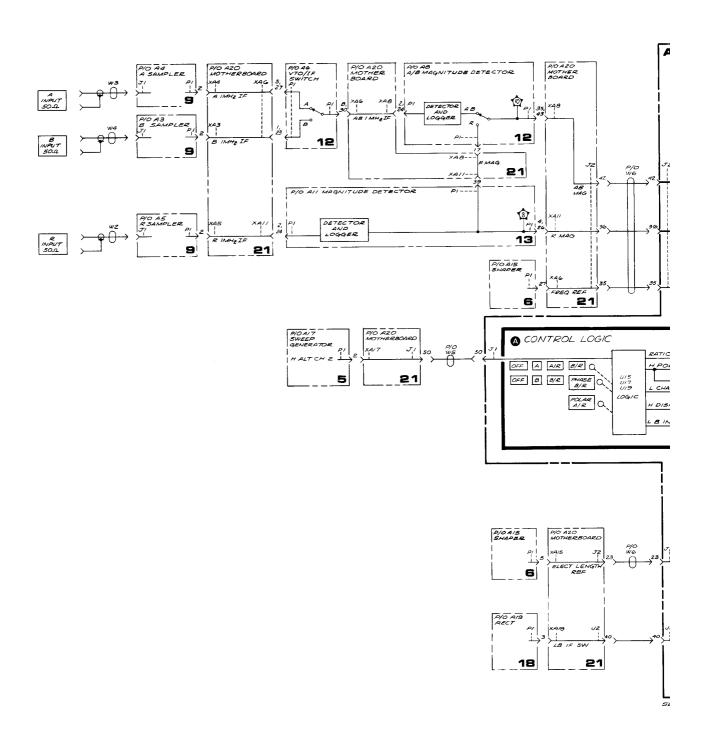
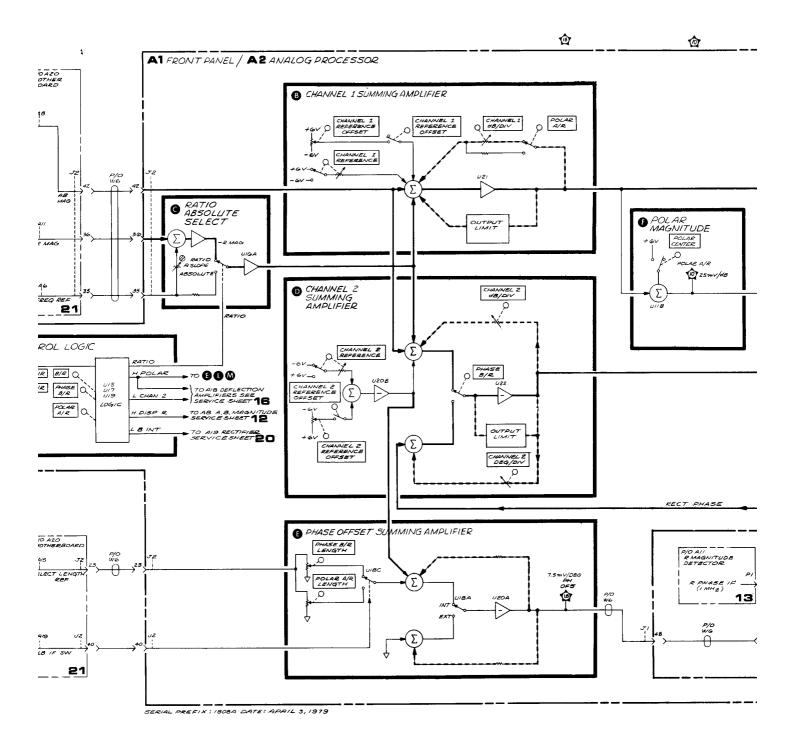
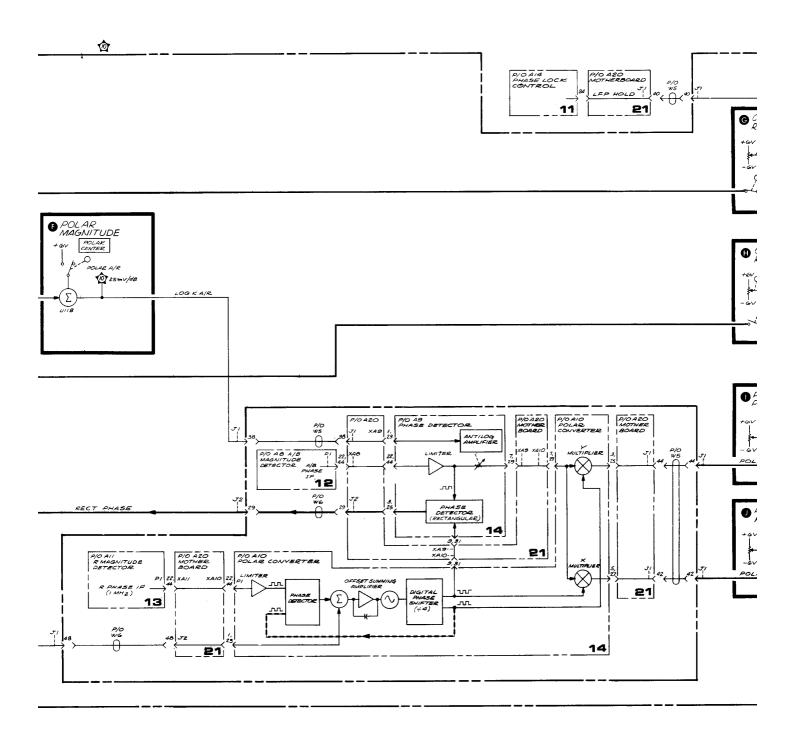





Figure 8-97. Analog Processor (A2), Component Locations

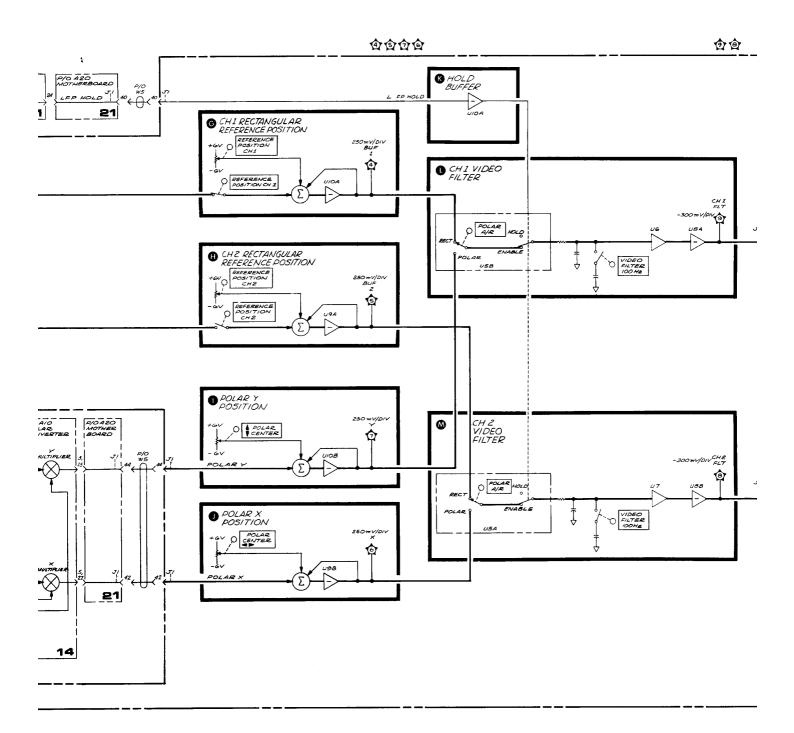


Figure 8-9

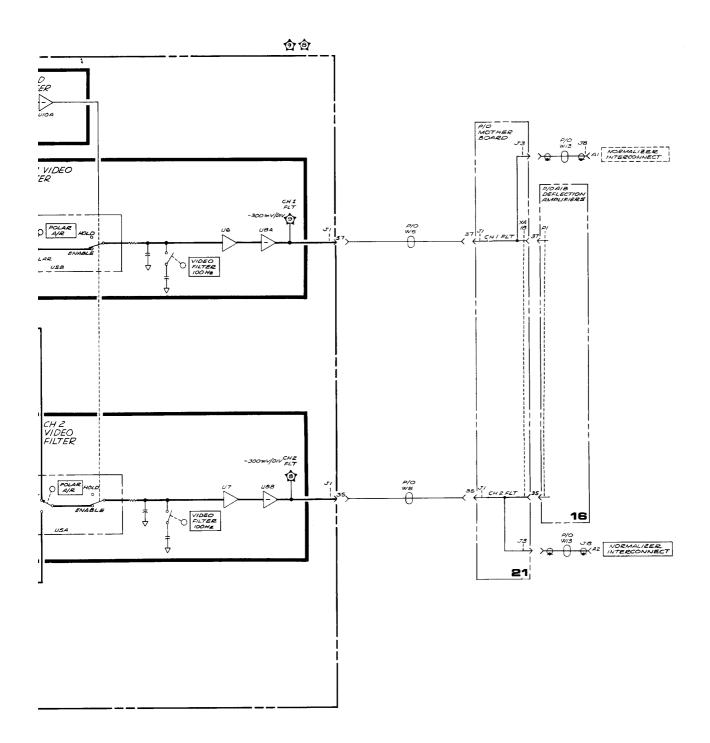


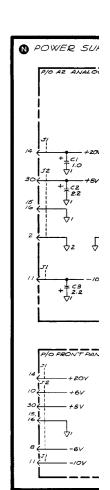
Figure 8-98. Front Panel (A1) and Analog Processor (A2), Block Diagram 8-187/8-188

A1 FRONT PANEL

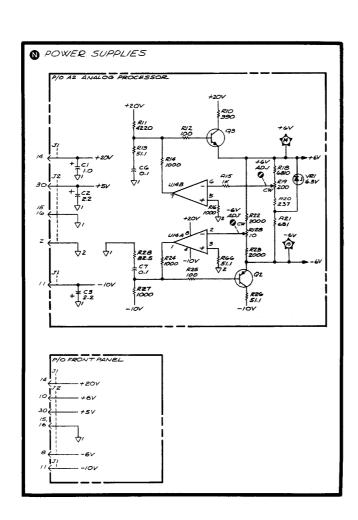
1

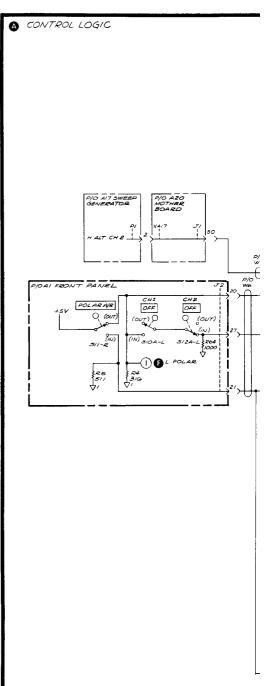
ΤI				
PIN	SIGNAL	TO/FROM	FUNCTION BLOCK	SEE SERVICE SHEET
,	HORIZ POSN	AZJI-I		16
2	POS 2	AZJI-2(W5)	0	
3	CH VIDEO	A2J1-3(W5)	0	
4	POS 1	A2J1-4(W5)	0	
5	CH 2 VIDEO	A2J1-5(W5)	0	
G	POLAR	A2J1-6(W5)	G	
7	H DBLR	A13P1-44		11
в	HORIZ GAIN	A251-8		16
9	POLAR CHTR	AZJ1-9(W5)	0	
10	POLAR CNTR	A2J1-10(W5)	0	
//	-10V	A16P1-9,31	0	
12	OUTPUT 48m	ATPI-6,12 AIZPI-II,35		7,8
/3	L UNLOCK LED	A14-PI-1		11
14	+20V	A16P1-3,25	0	
/5	L SMGL	A/7P/-26		5
16	LMAN	A/7PI-5,27		5
17	SWEEP SPEED VERNIER	AITPI-I		5
18	CURRENT	A17P1-24		5
19	٨c			
20	SWEEP INTEG C	A/7P/-28		5
21	LMKRI	A/2PI-8,30		8
22	L FAST SWP	A17P1-41		5
23	VSWP	A17PI-18,40		5
24	H AUTO	AITPI-11,33		5
25	L MKR 10	A12P1-9,31		8
26	H TRIG	A17P1-12-34		5
27	L MKR 50	A12PI-10.32		8
28	FREQ CAL	A2J1-28		6
29	WIDTH 20-IK	AI5PI-8,30		6
30	CNTR FREQ	A2U1-30		6
31	WIDTH 1-10	A15P1-7,29		6
32	H FULL	A15PI - 9,31 A12PI - 7,29		6,8
33	+15V PP	A16P1-1		20
34	-12 V PP	AZ OUI OUT		20

J2				
PIN	SIGNAL	TO/FROM	FUNCTION BLOCK	SEE SERVICE SHEET
/	\triangledown	TUNING POT (GND PLANE)		6
2	∇_z	GNO PLANE	0	
3	FINE WIPER	A15P1-3,25		6
4	TUNING WIPER	A15P1-2,24		6
5	FREQ WIDTH VOLTAGE	A2J2-5		6
G	LPH B/R	AZJZ-6(W6)	0	
7	TUNING V REF	A15P1-4,26		6
8	-67	A2U2-8	0	
9	MKR WIDTH A	A12P1-12,34		8
10	+6V	A2UZ-10	0	
//	MKR WIDTH B	A12P1-13,35		8
12	HA	A2J2-14(WG)	A	
/3	FREQ WIDTH VERN	AZJ2-13		6
14	H CH I RATIO	AZJ2-14(WG)	Δ	
/5	∇,	GNO PLANE	0	
16	∇,	GNO PLANE	0	
17	L CH 1 ON	A2JZ-17(W6)	Δ	
18	SCALED CH 1	A2JZ-18(WG)	B	
19	POLAR LENGTH	AZJ2-19(WG)	•	
20	L POLAR	AZJZ-20(W6)	Δ	
21	H POLAR	A18PI -I	Δ	
22	CH 1 SUM	AZJZ-22(WG)	ß	
23	LENGTH REF	A15 P1-5	•	
24	LEXT RF	A15P1-28		6
25	CH 2 VERNIER	AZJZ-25(W6)	0	
26	H B ABS	AZJZ-26(WG	A	
27	H DSP R	ABP/-42	Δ	
28	RECT LENGTH	A2J2-ZB(WG)	G	
29	RECT PHASE	A9P/-3,29	0	
30	+50	AZJ1-30		
31	H CH 2 MAG	AZJZ-31(WG)	(4)	
32	CH 2 MAG SUM	A2J2-32		
.53	CH 2 SCALED	A2J2-33(WG)	Ø	
34	CH 2 3UM	AZJZ-34(W6)	0	


NOTE: AIJI AND AIJ2 PINS 1-34 ARE DUPLICATED ON AZUI AND AZUZ. A2 ANALOG PL JI PIN SIGNAL / HORIZ / POSN 2 205 2 3 CH / VIDE FLT 4 POS 1 5 CH 2 VIDE 6 POLAR CNTR 7 (4 DOUBLE B HORIZ GAIN 9 POLAR CN7 10 POLAR CNI // -10V 12 RF LEVEL 13 UNLOCK 14 +20V 15 L SNGL IG L MAN 17 SWEEP SPEE VERNIER 18 CURRENT SOURCE 19 NC 20 SWEEP INTE 22 L FAST SW 23 VSWP 24 H AUTO 25 L MKR 10 26 H TRIG 27 L MKR 50 28 FREQ CAL
29 WIDTH
20-IK 30 CNTR FREC 31 WIOTH 1-10 33 +15VPP 34 -12VPP 35 CH 2 FLT 36 V RAMP 37 CHIFLT 38 LOG K A/K 39 +5∨ 40 L FP HOLL 4/ \\
\tag{4} 42 POLAR > 43 LOFF 2 44 POLAR Y 45 L B INT 46 TUNE 47 L CHAN Z **48** ∇3

49 LOFF 1


OCK	SÉE SERVICE SHEET
	6
0	
	6
	6
	6
D	
	6
0	
	8
0	
	8
a	
	6
A	
0	
0 0 0 0 0 0 0	
A	
B	
0	
A	
Δ	
<u> </u>	
G	
	6
0 0 0 0 0 0	
A	
A	
<u> </u>	
0	
Δ	ļ
D	


A2 A	NA.	LOG PRO	OCESSOR)	
	PIN	SIGNAL	TO/FROM	FUNCTION	SEE SERVICE SHEET
	7	HORIZ POSN	A151-1		16
	2	POS 2	A1 J1- 2 (WS)	•	
	3	CH / VIDEO	AIJ1-3(W5)	0	
	4	PO5 1	A131-4(W5)	©	
	5	CH 2 VIDEO	4/J1-5(W5)	W	
	6	POLAR	A151-G(W5)	G	·
	7	(H DOUBLER)	A1U1 -7		11
	в	HORIZ GAIN	AIJ1-8		16
	9	POLAR OUTR	ALT1-9	0	
	10	POLARCHTE	A/J/-10	Ō	
	//	-10V	A16P1-9,31	0	
	12	RF LEVEL	A7P1-6,12 A12P1-11,33		7,8
	/3	UNLOCK	A14PI-1		11
	14	<i>LED</i> +20V	A16P1-3,25	0	· · · · ·
	15	L SNGL	A17P1 - 26		5
	16	L MAN	A/7P/-5,27		5
	17	SWEEP SPEED	A/7P/-/		5
		CURRENT	A17P1-24		
	18	NC			5
	⊢	SWEEP INTEG	0.70, 20		_
	20	<i>c</i>	A/7/PI-28		5
	2/	L MKR I	A12P1-8,30		8
	22	L FAST SWP	A17PI-41		5
	23	VSWP	A17P1-18,40		6,16
	24	H AUTO	A/7P1-/1,33		5
	25	L MKR 10	A12P1-9.31		8
	26	HTRIG	A17P1-12,34		5
	27	L MKR 50	A12 PI-10,32		8
	28	FREQ CAL	AIJI-28		6
	29	WIDTH 20-1K	AISP1-8,30		6
	30	CNTR FREQ	AIJI - 30		6
	31	WIDTH 1-10	A15P1 - 7,29		6
!	32	H FULL	A15P1-9,31 A12P1-7,29		68
	35	+15VPP	AIG PI-I		20
,	34	-12VPP	AZOUI OUT		20
	35	CH 2 FLT	A/8P/- 9	Ø	
	36	V RAMP	A18P1-30		16
	37	CH I FLT	A/8P/-8	0	
	38	106 K A/R	A9PI-1,23	G	
	39	+5~	AZOUS OUT		6
	40	L FP HOLD	A/4PY-24	0	
	4/	∇4	AZOJI- GND PLANE		6
	42	POLAR X	A1001-5,27	0	
	43	LOFF 2	A2353-G(W3)	Δ	
	44	POLAR Y	AIOPI-3,25	0	
	45	LBINT	A19P1-1 (W5)	ă	
	46	TUNE	AI5PI-1,23		6
	47	L CHAN 2	A18P1-2,24	Δ	-
	48	∇₃	GND PLANE		6
	49	L OFF I	A23.73-3(W/3)	Δ	├
			4,70, 3(10)		

J2	PIN	SIGNAL	TO/FROM	FUNCTION BLOCK	SEE SERVICE SHEET NO:
	/	▽	TUNING POT (GND PLANE)		6
	2	∇²		0	
	3	FINE	A15P1-3,25		6
	4	TUNING WIPER	AISPI - 2,24		6
	5	FREQ WIDTH VOLTAGE	A2U2-5		6
	6	L PH B/R	A1J2-6(W6)	0	
	7	TUNING V REF	A15P1-4,26		6
	8	-@v	AIU2-8	0	
	9	MKR WIDTH	A/2P/-12,34		8
	10	+61	AN2-10	0	
	//	MKR WIDTH	A12PI-13,35		8
	12	HA	AIJZ-12(WG)	a	
	/3	FREQ WIDTH VERN	AUZ-13		6
	14	H CH 1 RATIO	A1J2-14(WG)	4	
	15	∇′	AIJ1-15	0	
	16	∇′	AIJI -16	0	
	17	L CH /	A152-17(WG)	۵	
	18	SCALED CH 1	AIJ2-18(W6)	0	
	19	POLAR LENGTH	A1_T2-19 (WG)	G	
	20	L POLAR	A1J2-20(WG)	A	
	2/	H POLAR	A152-21(WG)	A	
	22	CH / SUM	A2J2-22(WG)	<u> </u>	
	23	LENGTH REF	A15P1-5	g	
	24	L EXT RF	A15P1-28		6
	25	CH 2 VERN	A152-25 (W6)	•	
	26	H B ABS	AIJ2-26(W6)	A	
	27	H DSP R	AIJZ-27(W6)	Δ	
	28	RECT LENGTH	A152-28(WG)	G	
	29	RECT PHASE	A132-29	Ō	
	30	+5V	AZOUS-OUT	0	
	3/	H CH2 MAG	AIJZ-31(WG)	<u> </u>	
	32	CH 2 MAG SUM	AIJ2-32(WG)	Ō	
	33	CH 2 SCALED	A1J8-33(WG)	Ō	
	34	CH Z SUM	AIJ2.34(WG)	0	
	35	FREQ REF	4/5P/-27	Ğ	
	36	R MAG	A/IPI-4,26	G	
	37	NC			
	38	NC			
	39	NC			
	40	LBIFSW	A19P1 - 3	G	
	41	~c			
	42	MAG	ABP/-35,43	80	
	43	NC			
	44	NC			
	45	NC			
	46	NC			
	47	L REM BUF	A19P1-4	•	
	48	PHASE	AIOPI-1,23	•	
	49	OFFSET NC	,	•	
	50	NC			
	تَ	L	L.,	L	

CTION	SEE SERVICE SHEET NO:
222	6
Ø	1
	6
	6
	6
Ø	
	6
0	
•	8
Ø	8
Δ	
•	6
0)
0	
8	
Ā	
B B	
3	
A	
Δ	
<u> </u>	
9	
_	6
<u>D</u>	
<u> </u>	
0	
6	
0	
<u> </u>	
Ō	
Ö	
D	
9	
9	
_	
3	
)O	
ß	
ğ	

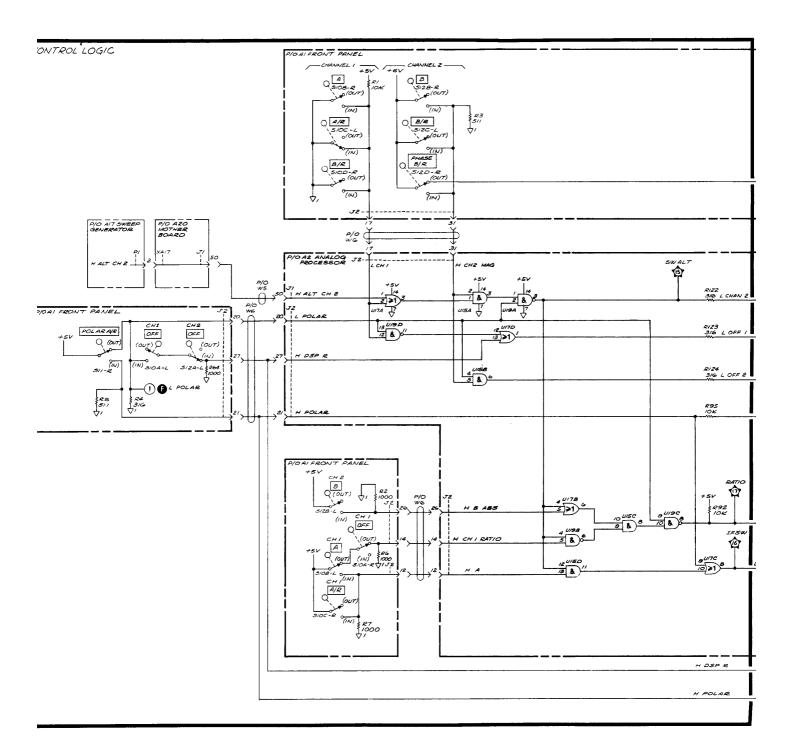


Figure 8-99. Front 1

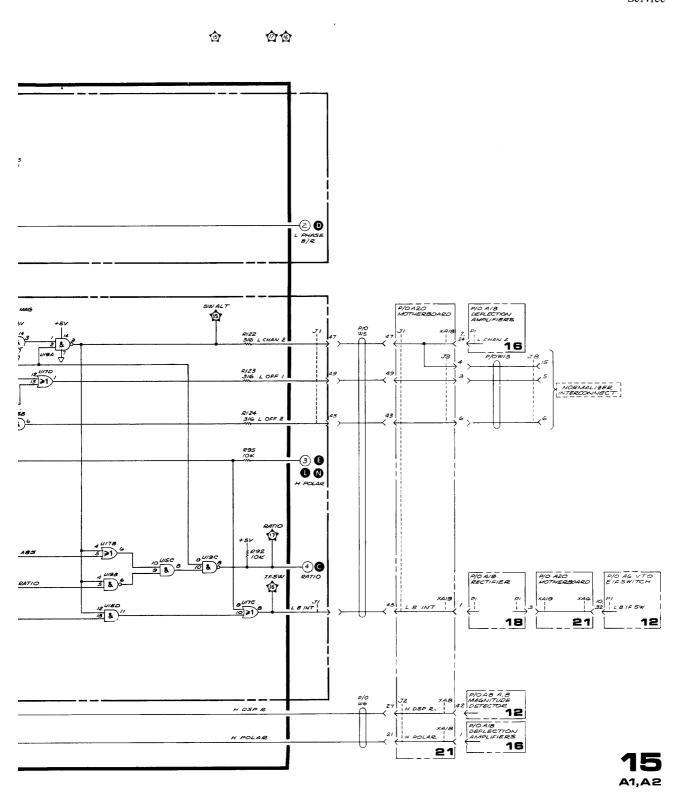
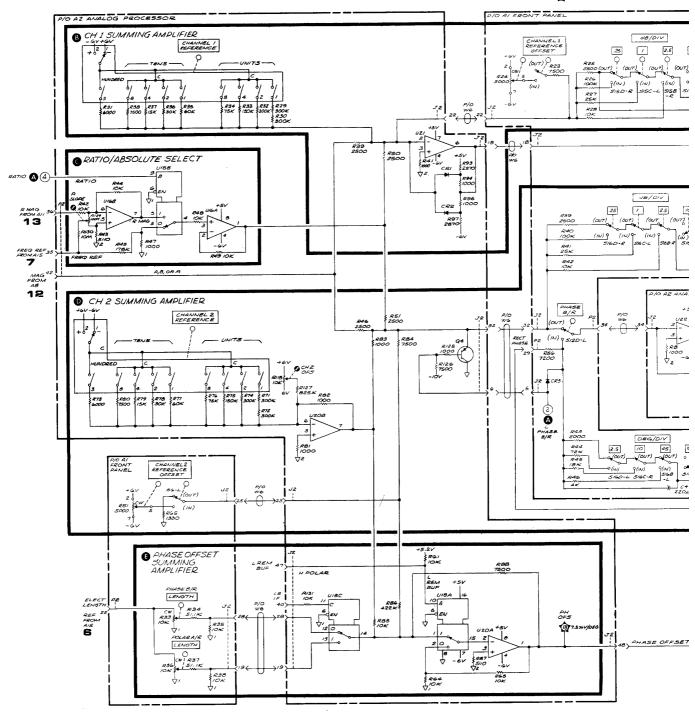
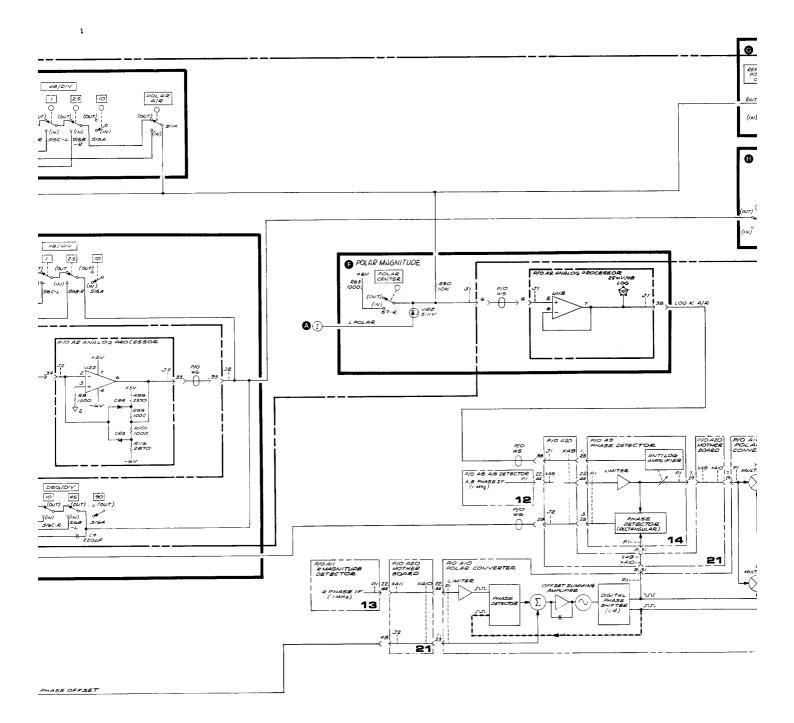




Figure 8-99. Front Panel (A1) and Analog Processor (A2), Schematic Diagram (1 of 2) 8-189/8-190

1

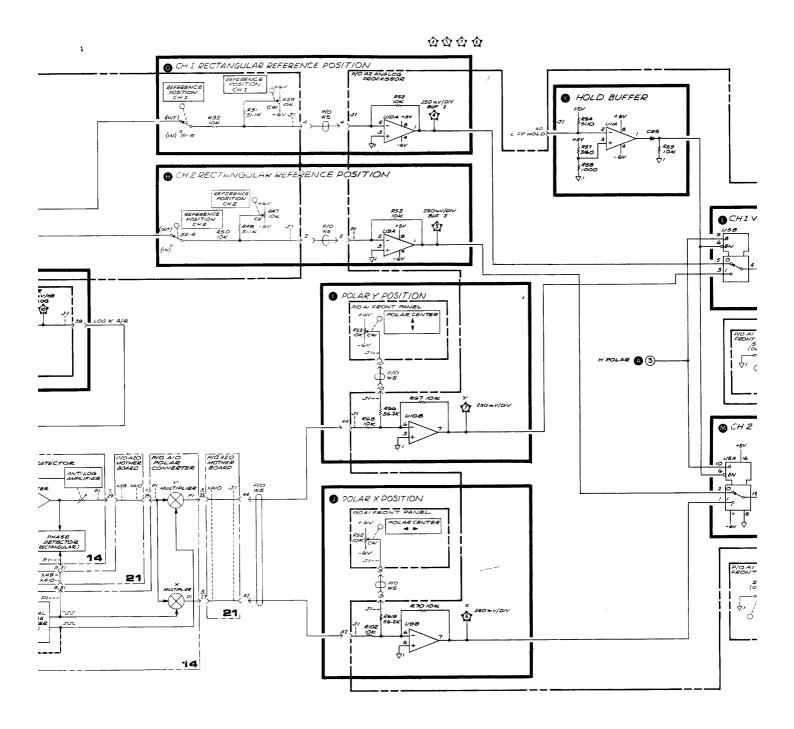


Figure 8-99. Front Par

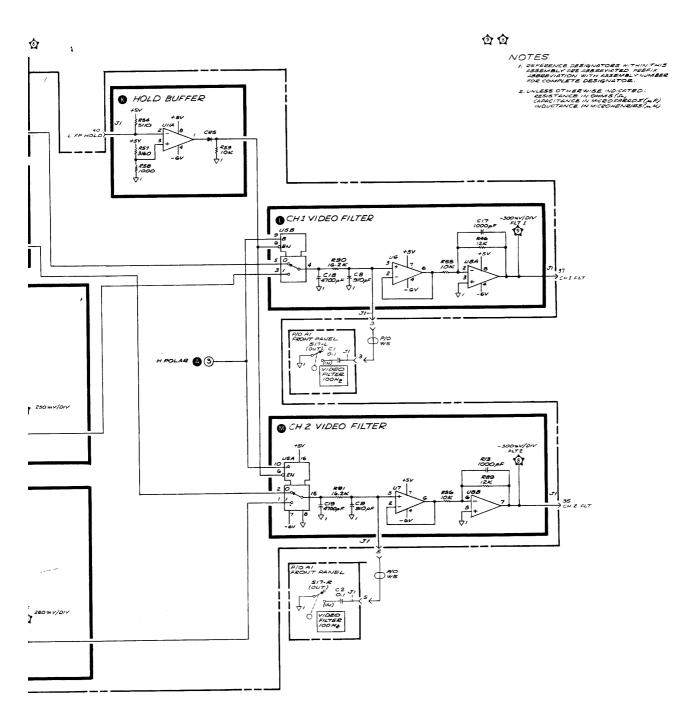


Figure 8-99. Front Panel (A1) and Analog Processor (A2), Schematic Diagram (2 of 2) 8-191/8-192

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS

ASSEMBLY	SERVICE SHEET	DESCRIPTION	
\$	5	SWEEP pushbuttons	
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch	
	7	OUTPUT dBm control	
	8	MARKERS MHz pushbuttons	
A1 Front Panel	11	UNLOCKED indicator	
	12	Absolute R measurement select	
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER,	
		and VIDEO FILTER	
	16	HORIZONTAL POSN and GAIN controls	
	19		
	19	All front panel controls	
	6	Analog-to-digital converter for FREQUENCY MHz display.	
A2 Analog Processor	15	Analog processor, switch control logic, and \pm 6V power supplies	
	16	V RAMP amplifier	
A3 B Sampler	9	RF to IF down-conversion	
A4 A Sampler	9	RF to IF down-conversion	
A5 R Sampler	9	RF to IF down-conversion	
AC VTO LEC 191	10	V I. 7 10 III	
A6 VTO and IF Switch	10	Voltage Tuned Oscillator	
	12	IF Switch	
A7 Source	7	RF Source	
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector	
A9 Phase Detector	14	Phase Detector	
A10 Polar Converter	14	Polar Converter	
A11 R Detector	13	R INPUT, magnitude detector	
A12 Marker Generator	8	Markers	
A13 Phase Lock	11	Phase Lock	
A14 Phase Lock Control	11	Phase Lock loop control	
A15 Shaper	6 7	Sweep width, tuning, frequency reference, and frequency display. Shaping and RF Source drive.	
A16 DC Regulator	20	Low Voltage Power Supplies	
A17 Sweep Generator	5	Sweep Generator	
A18 Deflection Amplifiers	16	Deflection Amplifiers	
A19 Rectifier	18	External Interface	
	20	Low Voltage Power Supplies	
A20 Motherboard	21	Motherboard wiring list	
A21 High Voltage Power Supply	17	CRT bias and blanking control	
A22 Frequency MHz Display	6	Frequency display	
A23 Rear Panel	18	External Interface and Rear Panel (A23)	

Model 8754A Service

SERVICE SHEET 16

DEFLECTION AMPLIFIERS (A18), CIRCUIT DESCRIPTION

WARNING

Because of the hazardous voltages found in this assembly, servicing should be accomplished only by qualified personnel.

The Deflection Amplifiers (A18) provide signal multiplexing for rectangular and polar operation as well as the signals to the CRT that generate the display. A18 also provides interfacing circuits for use of the instrument with a normalizer.

The following output signals are provided by the Deflection Amplifiers:

- The horizontal and vertical deflection signals (X DEFL 1, X DEFL 2, Y DEFL 1, and Y DEFL 2) to the CRT.
- HORIZ OUT to the rear-panel HORIZ connector.
- VERT OUT to the rear-panel VERT connec-
- BLANK/PEN to the rear-panel BLANK/PEN connector.
- Z CRT to the High-Voltage Power Supply (A21, Service Sheet 17).
- H MARK and L POLAR to the rear-panel NORMALIZER INTERCONNECT connector.

The Deflection Amplifiers receive the following input signals:

- H POLAR from the Front-Panel Control (A1, Service Sheet 15).
- L CHAN 2, VRAMP, CH 1 FLT, and CH 2 FLT from the Analog Processor (A2, Service Sheet 15).
- H MKR from the Marker Generator (A12, Service Sheet 8).

- H DBP from the Sweep Generator (A17, Service Sheet 5).
- X NORM, Y NORM, Z NORM, and L NORM from the rear-panel NORMALIZER INTER-CONNECT connector.

The assembly consists of the Switching Logic, the X Deflection Amplifier, the Y Deflection Amplifier, and the Z Axis Amplifier.

The Switching Logic circuit controls the X Deflection Amplifier, the Y Deflection Amplifier, and the Z Axis Amplifier in accordance with the states of the input lines H POLAR, L NORM, L CHAN 2, H MKR, and H DBP. It also generates an L POLAR signal to the rear – panel NORMALIZER INTERCONNECT connector.

The X Deflection Amplifier is controlled by the Switching Logic as well as the VRAMP and X NORM input signals. It provides horizontal deflection voltages to the CRT and to the rear-panel HORIZ output connector.

The Y Deflection Amplifier is controlled by the Switching Logic as well as the CH 2 FLT, CH 1 FLT, and Y NORM input signals. It provides vertical deflection voltages to the CRT and to the rear-panel VERT connector. It also sends an H MARK signal to the rear-panel NORMALIZER INTERCONNECT connector.

The Z Axis Amplifier is controlled by the Switching Logic as well as the Z NORM input signal. It provides a voltage (Z CRT) that controls the intensity of the CRT display (blanked, normal display, and polar marker identification). A BLANK/ PEN (blanking/penlift) signal is also sent to the rear panel BLANK/PEN connector.

Rectangular X Gain and Position (A)

The 0V to +10V VSWP signal from the Sweep Generator (A17, Service Sheet 5) is processed by inverting operational amplifier A2U13 to produce the +1.5V to -1.5V VRAMP signal to the Deflection Amplifiers (A18).

The range of the front-panel screwdriver adjustments, HORIZONTAL GAIN (A1R59) and HORIZONTAL POSN (A1R60), is sufficient to convert an external sweep to a +1.5V to -1.5VVRAMP signal provided the start of the sweep is Service Model 8754A

approximately OV and the end of the sweep is between +6V and +13V.

Switching Logic (A)

The signals to the X Deflection, Y Deflection, and Z Axis Amplifiers and to the NORMALIZER IN-TERCONNECT connector depend on the states of the input lines to the Switching Logic circuit.

When Polar operation is selected by the Front-Panel Control (A1), the H POLAR line from A1 is high. The H POLAR signal is inverted through U4A to send an L POLAR signal to the NORMALIZER INTERCONNECT connector. In the case of the HP 8750A Normalizer, the L POLAR signal, when low, causes the normalizer to be held in its BYPASS mode. When the HP 8750A is in BYPASS, it has no effect on the operation of the network analyzer.

When the H POLAR input to U4C is high, its output depends on the state of the L NORM line from the Normalizer. When the H POLAR input is low, the output of U4C is high, but the A18 board might be in either Rectangular or Normalizer mode, depending on the state of the L NORM line. A18 is in the Rectangular mode only when the H POLAR line is low and the L NORM line is high. The following truth table gives the mode of A18 for all states of the H POLAR and L NORM lines.

H POLAR	L NORM	A18 Mode
Н	Н	Polar
Н	L	Normalizer
L	L	Normalizer
L	Н	Rectangular

As indicated in the truth table, A18 is in the Normalizer mode whenever the L NORM line is low. This is because the L NORM signal is inverted through U3B. The high NORM signal at the output of U3B causes the selection of the X NORM, Y NORM, and Z NORM signals from the Normalizer. The Normalizer Select functions are described later.

When the L CHAN 2 line to U4B from the Analog Processor (A2) goes high, Channel 1 is selected; when L CHAN 2 is low, Channel 2 is selected. If both channels are selected, L CHAN 2 goes high and low on alternate sweeps. (Refer to the description of the Channel Select circuit in the Y Deflection Amplifier.)

The H DBP signal from the Sweep Generator (A17, Service Sheet 5) is inverted through U3A to provide the L DBP signal to U3C pin 10 and to the Z Axis Amplifier.

When the H MKR from the Marker Generator (A12. Service Sheet 8) is high and H DBP is low (U3A pin 3 is high), the low output of U3C is inverted through U3D to provide the H MARK signal to the rear-panel NORMALIZER INTER-CONNECT connector. The low output of U3C is also inverted through U4D to provide the MARK-ER signal to the Y Deflection Amplifier.

X Deflection Amplifier (

The X Deflection Amplifier selects, amplifies, and sends to the CRT the signal that controls horizontal deflection of the display in each mode of operation of the A18 assembly. A horizontal deflection signal is also sent to the rear-panel HORIZ OUT connector. Table 8-9 lists the signal processed by the X Deflection Amplifier for each of the three display modes.

Table 8-9. Signal Selection and Display

Amplifier	Input Signal					
	Rectangular	Polar	Normalizer			
X Deflection	VRAMP	CH 2 FLT	X NORM			
Y Deflection	CH 1 FLT or CH 2 FLT and	CHIFLI				
Z Axis	н двр	H DBP or H MKR	Z NORM			

Rectangular Mode. When the front-panel POLAR A/R switch is open (out), the network analyzer is in the Rectangular mode. The VRAMP signal from the Analog Processor (A2) is inverted through operational amplifier U9A and selected by VRAMP/CH 2 FLT Select switch U6B, because the RECT + NORM line from the Switching Logic circuit is high. Since the NORM line to Normalizer Select switch U5C is low, the inverted VRAMP signal is passed as the X signal to the Amplifier/Driver circuit, whose outputs are the X DEFL 1 and X DEFL 2 signals to the horizontal deflection plates of the CRT. The X signal is also applied to the non-inverting operational amplifier U7A, whose output is the HORIZ OUT signal to the rear-panel HORIZ output connector.

The Amplifier/Driver circuit consists of two differentially connected feedback pairs, Q13/Q11 and Q10/Q9, connected as common-base amplifiers. Q13/Q11 has a high-impedance input and a gain that is determined by R53 and the series combination of R55 and X GAIN potentiometer R56. The gain of Q10/Q9 is determined by R58, R55, and R56. X POS potentiometer adjusts the horizontal position of the CRT display. The gain of the Amplifier/Driver circuit is approximately 25. The X DEFL 1 and X DEFL 2 dc voltages to the horizontal deflection plates of the CRT are both approximately +50V for center screen. The deflection sensitivity of the CRT is approximately 16 volts/cm.

Polar Mode. When the front-panel POLAR A/R switch is depressed, the network analyzer is in the Polar mode. Since the RECT + NORM line from the Switching Logic circuit is low, the CH 2 signal from the Y Deflection Amplifier is passed through VRAMP/CH 2 Select switch U6B. The NORM line to Normalizer Select switch U5C is low, so CH 2 is passed to the Amplifier/Driver circuit and, through the non-inverting operational amplifier U7A, to the rear panel as the HORIZ OUT signal.

Normalizer Mode. The X NORM signal from the rear-panel NORMALIZER INTERCONNECT connector is inverted through operational amplifier U8A and sent to Normalizer Select switch U5C. Since the NORM line to U5C is high, X NORM is passed through the switch to the Amplifier/Driver circuit and, through the non-inverting operational amplifier U7A, to the rear panel as the HORIZ OUT signal.

The Y Deflection Amplifier selects, amplifies, and sends to the CRT the signal that controls vertical deflection of the display in each mode of operation of the A18 assembly. A vertical deflection signal is also sent to the rear-panel VERT OUT connector. Table 8-9 lists the signals processed by the Y Deflection Amplifier for each of the display modes.

Rectangular Mode. CH 2 FLT and CH 1 FLT are applied to operational amplifiers U9B and U10B, respectively. The inverted signal CH 2 and CH 1 are sent to Channel Select switch U6A, where they are selected in accordance with the state of the CH 2 SELECT line from the Switching Logic circuit description.)

The MARKER signal from the Switching Logic circuit is sent through Marker Select switch U6C and summed with either CH 1 or CH 2 at the inverting input to operational amplifier U10A. Since the NORM line to Normalizer Select switch U5A is low, the output of U10A is passed to the inverting operational amplifier U7B. The Y signal from U7B is sent to the Amplifier/Driver stage and also, as VERT OUT, to the rear-panel VERT output connector. The outputs of the Amplifier/Driver stage, whose operation is identical to that of the corresponding circuit in the X Deflection Amplifier, are the Y DEFL 1 and Y DEFL 2 signals to the vertical deflection plates of the CRT.

Polar Mode. In Polar operation of the network analyzer, the only signal affecting the outputs of the Y Deflection Amplifier is CH 1 FLT. CH 2 is never selected by Channel Select switch U6A because the L CHAN 2 line to the Switching Logic circuit is held high in the Polar mode. (Refer to the Analog Processor circuit description.) The processing of the CH 1 signal out of U6A is the same as in the Rectangular mode.

The MARKER signal to Marker Select switch U6C is sent to the Z Axis Amplifier, because the RECT + NORM line to U6C is low, to produce intensity markers.

Normalizer Mode. The Y NORM signal from the rear-panel NORMALIZER INTERCONNECT connector is inverted through the operational amplifier U8B and sent to Normalizer Select

Service Model 8754A

switch U5A. Since the NORM line to U5A is high, Y NORM is passed through the switch to the Amplifier/Driver circuit and to the rear-panel VERT connector as the VERT OUT signal.

Z Axis Amplifier (E)

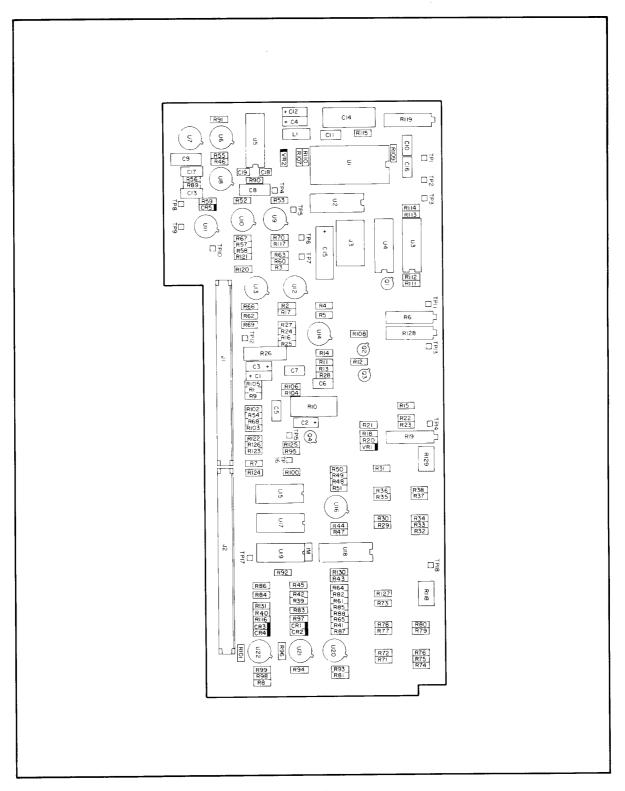
The Z Axis Amplifier selects, amplifies, and sends to the High-Voltage Power Supply (A21, Service Sheet 17) the Z CRT signal, which blanks, unblanks, or intensifies the trace on the CRT, depending on the voltage level. The output of the External Z Axis stage is summed with the PENLIFT signal from the Sweep Generator (A17, Service Sheet 5) and sent to the rear panel as the BLANK/PEN signal. Table 8-6 lists the signals processed by the Z Axis Amplifier for each of the three display modes.

Rectangular Mode. When the H DBP (display blanking pulse) line from the Sweep Generator (A17) is low, the L DBP signal from the Switching Logic circuit is high (+5V). The signal is applied through Normalizer Select switch U5B to open-collector comparator U1B in the Internal Z Axis stage.

When +5V is applied to U1B pin 4, pin 2 is pulled to -10V and -7.3V from voltage divider R48 and R49 is applied to the base of emitter-follower Q2, turning the transistor off. When there is no input from the other open-collector comparator, U1C, the emitter of Q2 is at OV, the unblanking voltage level

When the output of U1B is at OV (H DBP line is high), +7V is applied through R44 to the base of Q2. Since the collector is at +5V, Q2 is saturated, pulling the emitter to +5V, the blanking voltage level. The voltages applied to the Internal Z Axis circuit are also applied to emitter-follower Q1 in the External Z Axis circuit. During unblanking, -7.3V at the base of Q1 places -8.0V at the emitter (assuming a 0.7-volt base-emitter drop). CR3 is reversed-biased, so the unblanking voltage level out is 0V. With +7.0V applied to the base of Q1, the emitter is at +6.3V and the blanking voltage

level is +5.6, producing a signal to the rear-panel BLANK/PEN connector as an external blanking signal.


The effect of the MARKER input signal on the Internal Z Axis and External Z Axis stages is discussed in the Polar Mode description.

Polar Mode. In the Polar mode, the trace is intensified to produce a marker when the MARKER line to the Y Deflection Amplifier is high and the L DBP line to the Z Axis Amplifier is low. (Refer to the description of the Rectangular mode for the operation of the Internal Z Axis and External Z Axis stages when the MARKER line is low.)

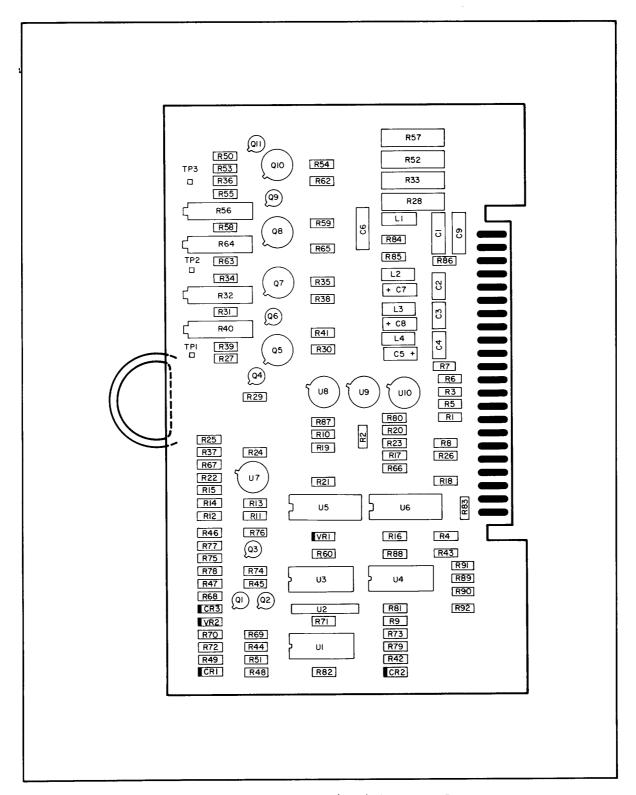
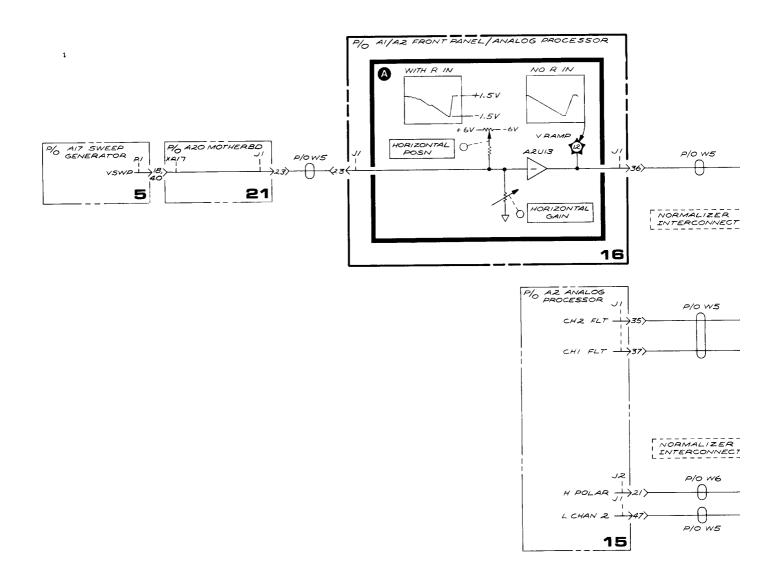
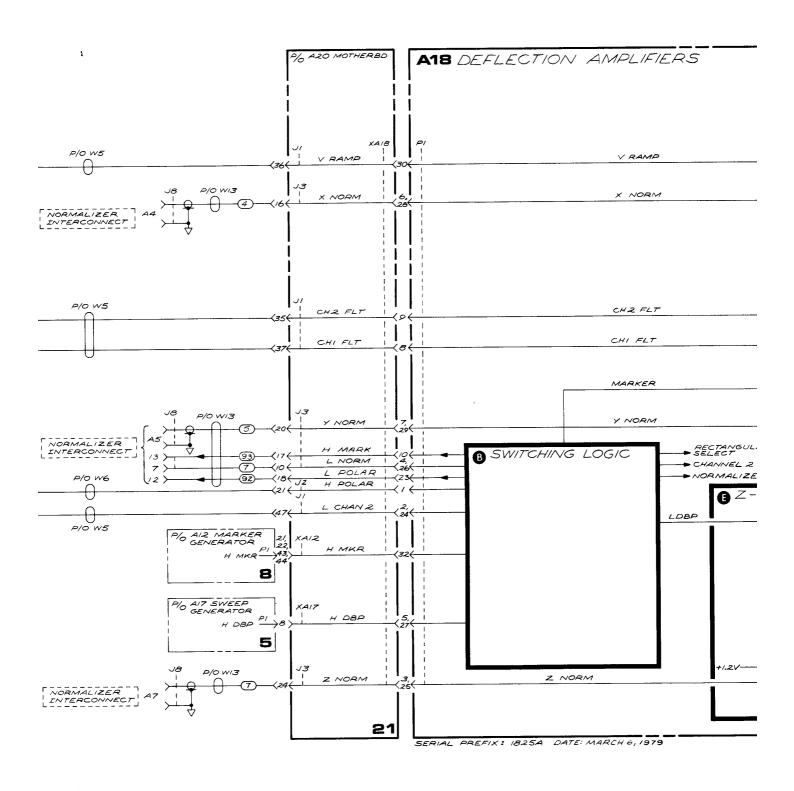
A POLAR MARKER pulse at U1C pin 8 pulls the output of this open-collector comparator to -10V. The potential at the emitter of Q2, which is turned off during unblanking, is -3V because of the loading effect of a resistor in the High Voltage Power Supply (A21, Service Sheet 17). Therefore, the Z CRT line to A21 has three possible states: +5V for blanking, 0V for unblanking, and -3V for marker intensification in the Polar mode.

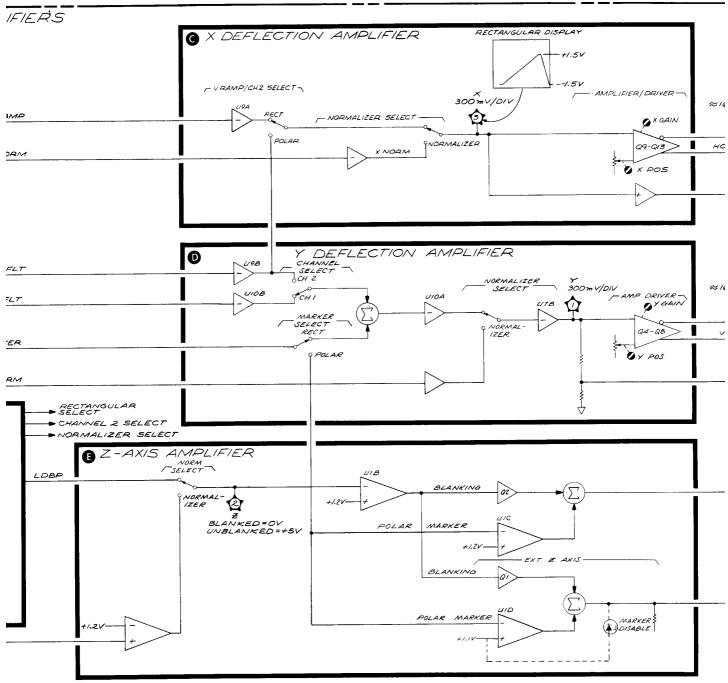
During unblanking and in the absence of the POLAR MARKER pulse, -4.5V is applied to the base of Q3 through voltage divider R75, R76. The emitter is at ground, and Q3 is turned off. When the POLAR MARKER pulse is applied to the open-collector comparator U1D, the emitter of Q3 is pulled low and the transistor is turned on. A voltage divider consisting of R46, R77, and R74 is connected through Q3 to the -10V from U1D, yielding an output of -6.2V at the cathode of CR3. Therefore, the BLANK/PEN line to the rear-panel BLANK/PEN connector has three possible states: +5.6V for blanking, 0V for unblanking, and -6.2V for marker intensification in the Polar mode.

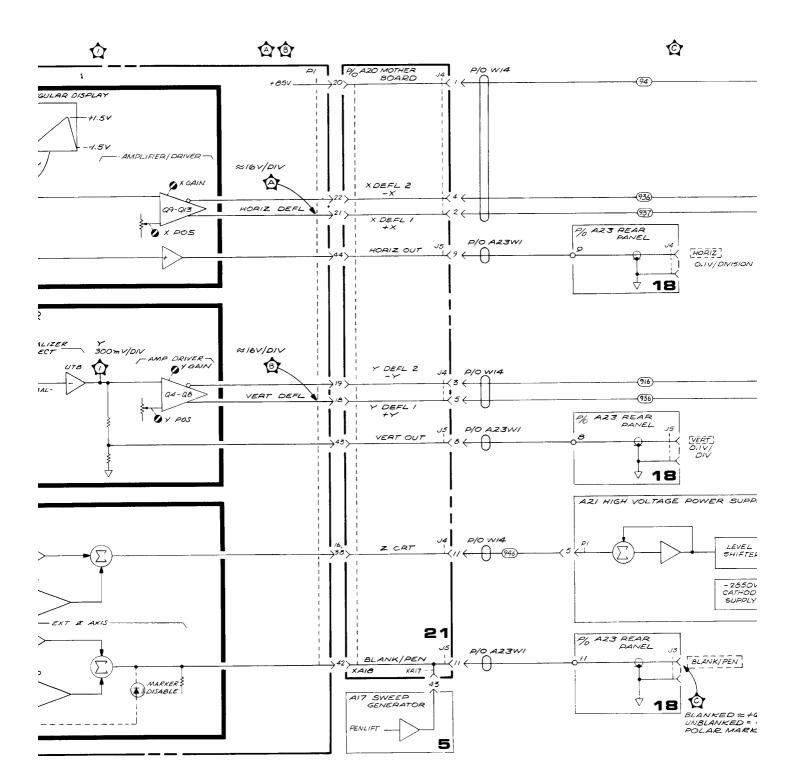
Normalizer Mode. The Z NORM signal is sent through the open-collector comparator U1A and Normalizer Select switch U5B as the Z signal to the open-collector comparator U1B in the Internal Z Axis circuit, which has been described for the Rectangular mode.

8-100. Analog Processor (A2), Component Locations

Service Model 8754A

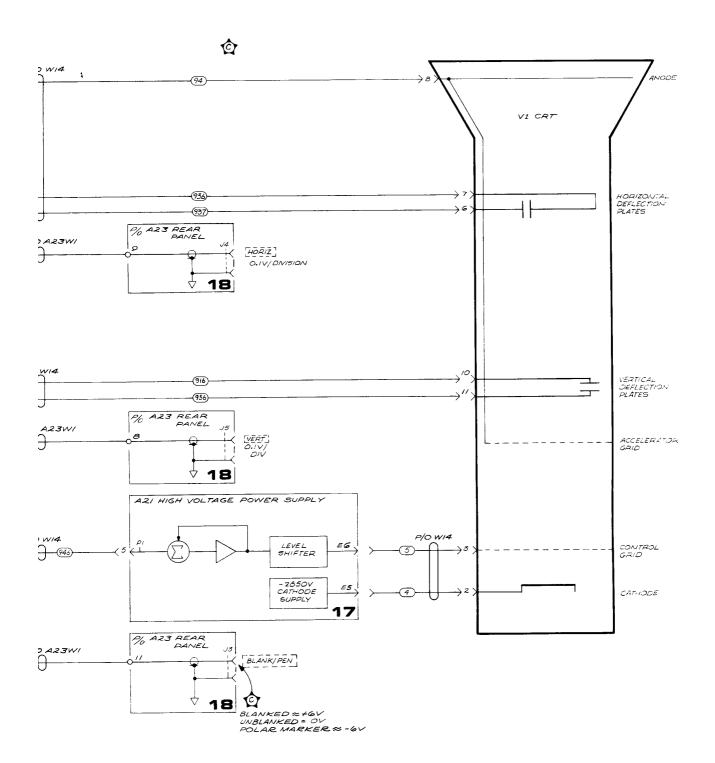
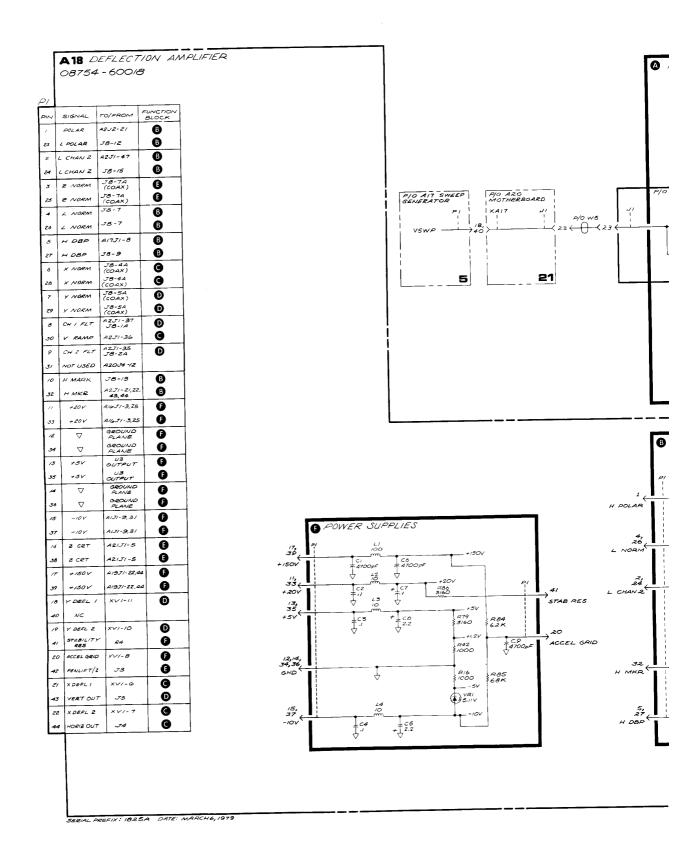
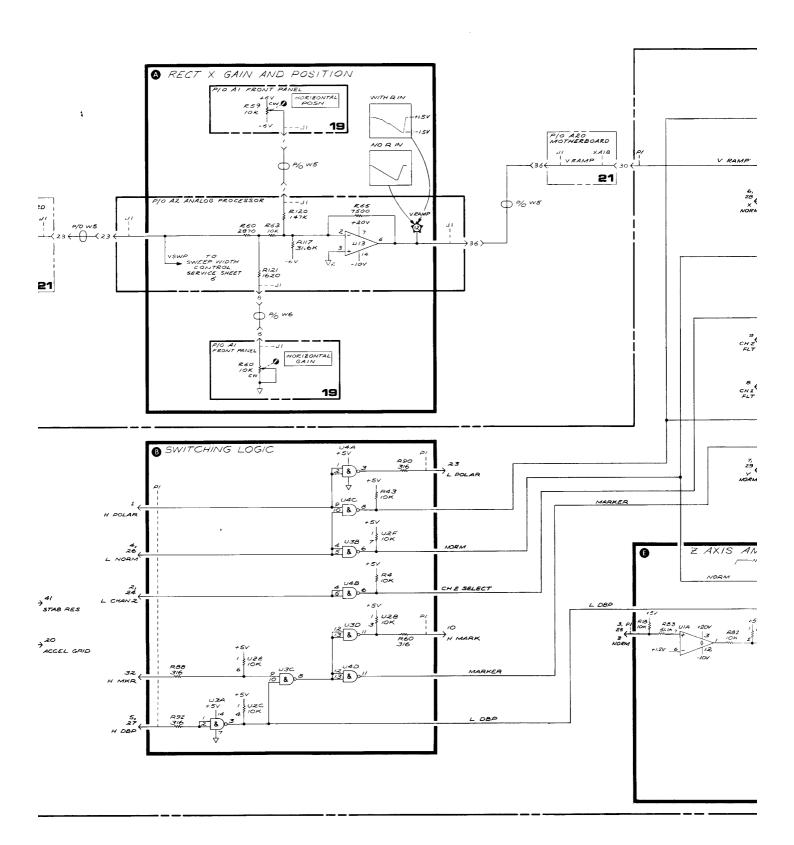
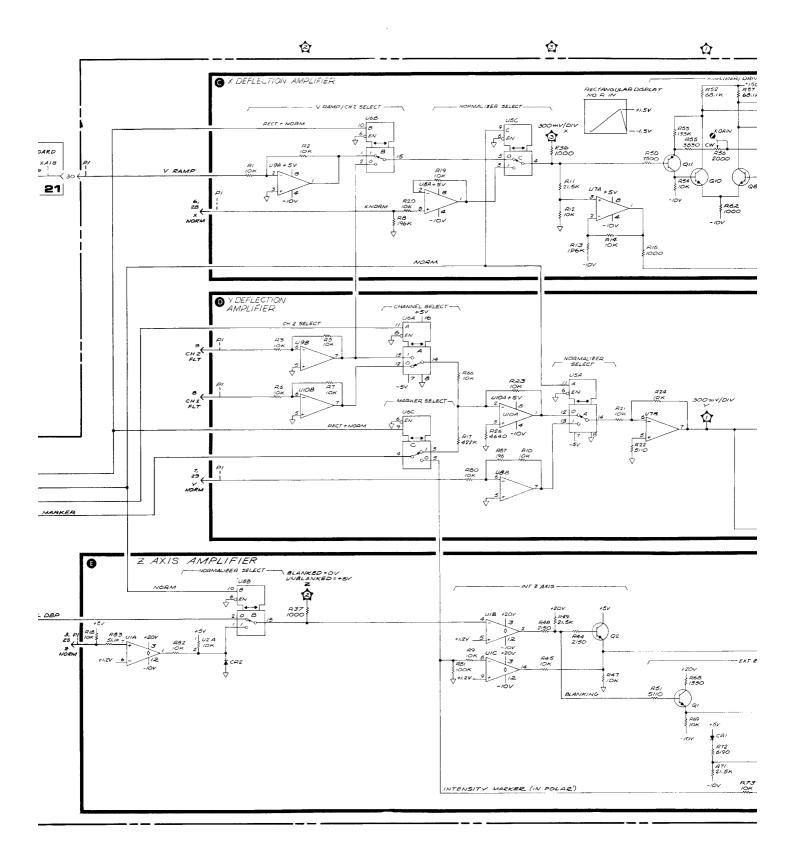




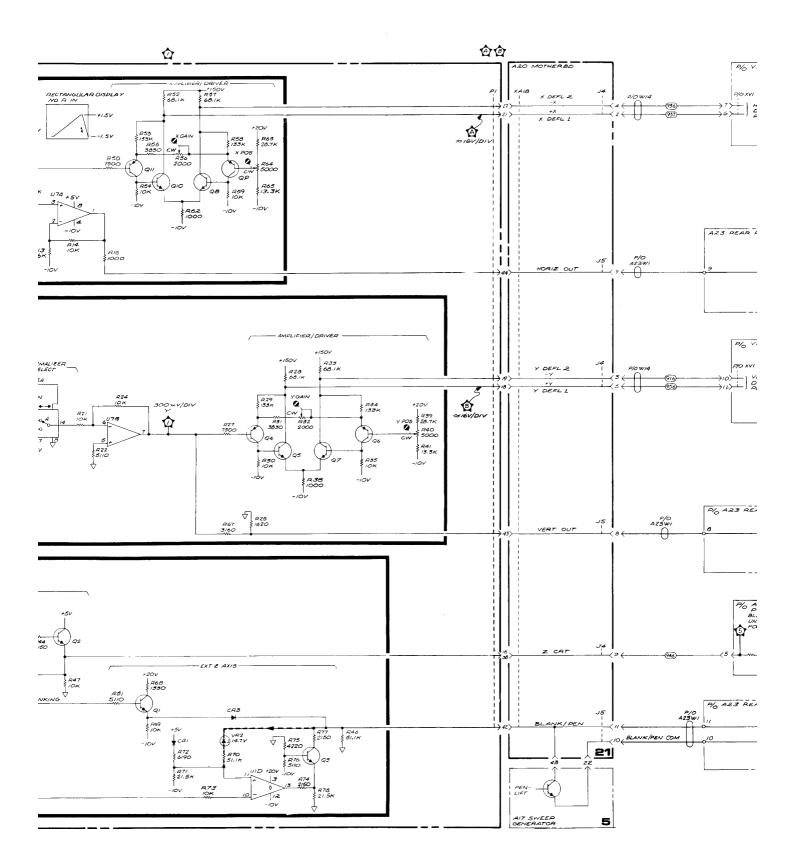

Figure 8-101. Deflection Amplifiers (A18), Component Locations

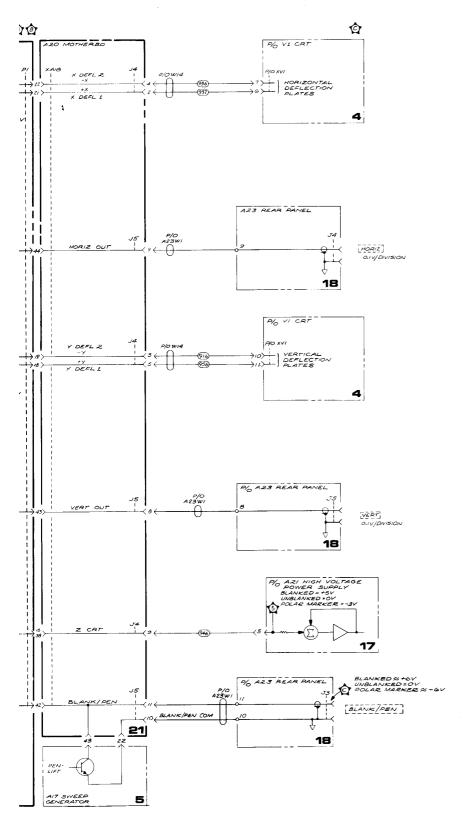


NORMALIZER INTERCONNEC

 \Diamond


Figure 8-102. Deflection Amplifiers (A18), Block Diagram 8-199/8-200


1

NOTES:

WAVEFORMS ARE SHOWN WITH 8754A
POLS SET AS FOLLOWS!
REAR PAWEL INT SWEEP SELECTED
SWEEP MODE: FULL 4-1300
SWEEP AUTO FAST
SWEEP VERNIER: FULLY CLOCKWISE

Figure 8-103. Deflection Amplifiers (A18), Schematic Diagram 8-201/8-202

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS

ASSEMBLY	SERVICE SHEET	DESCRIPTION				
	5	SWEEP pushbuttons				
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch				
	7	OUTPUT dBm control				
	8					
	- 1	MARKERS MHz pushbuttons				
A1 Front Panel	11	UNLOCKED indicator				
	12	Absolute R measurement select				
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER, and VIDEO FILTER				
	16	HORIZONTAL POSN and GAIN controls				
	19	All front panel controls				
-	6	Analog-to-digital converter for FREQUENCY MHz display.				
A2 Analog Processor	15	Analog processor, switch control logic, and \pm 6V power supplies				
	16	V RAMP amplifier				
A3 B Sampler	9	RF to IF down-conversion				
A4 A Sampler	9	RF to IF down-conversion				
A5 R Sampler	9	RF to IF down-conversion				
A6 VTO and IF Switch	10	Voltage Tuned Oscillator				
AC VIC and II CWITCH	1	IF Switch				
	12	IF SWITCH				
A7 Source	7	RF Source				
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector				
A9 Phase Detector	14	Phase Detector				
A10 Polar Converter	14	Polar Converter				
A11 R Detector	13	R INPUT, magnitude detector				
A12 Marker Generator	8	Markers				
A13 Phase Lock	11	Phase Lock				
A14 Phase Lock Control	11	Phase Lock loop control				
A45 CI						
A15 Shaper	6 7	Sweep width, tuning, frequency reference, and frequency display. Shaping and RF Source drive.				
A16 DC Regulator	20	Low Voltage Power Supplies				
A17 Sweep Generator	5	Sweep Generator				
A18 Deflection Amplifiers	16	Deflection Amplifiers				
A19 Rectifier	10	Everyal Interfere				
A 13 Mectitier	18	External Interface				
	20	Low Voltage Power Supplies				
A20 Motherboard	21	Motherboard wiring list				
A21 High Voltage Power Supply	17	CRT bias and blanking control				
A22 Frequency MHz Display	6	Frequency display				
A23 Rear Panel	18	External Interface and Rear Panel (A23)				

SERVICE SHEET 17

HIGH VOLTAGE POWER SUPPLY (A21), CIRCUIT DESCRIPTION

WARNING

The High Voltage Power Supply (A21) operates at voltages of up to – 2900 Vdc and approximately 6000 Vac peak-to-peak. These voltages, if contacted, could cause personal injury or death.

NOTE

All reference designations in this circuit description refer to components of the High Voltage Power Supply (A21) unless chassismounted components are specifically designated or the prefix of another assembly is added. The reference designation T1 refers to A21T1 except where it is identified as the line transformer.

The High Voltage Power Supply (A21) provides the bias potentials for CRT V1. It also converts the blanking and intensity control inputs to voltage levels capable of controlling the beam intensity of the CRT.

The -2850V Rectifier provides a regulated -2850 Vdc, and the CRT anode/accelerator grid voltage is an unregulated +84 Vdc provided by a voltage divider string in the Deflection Amplifiers (A18). These voltages provide a 2934-volt difference between the anode and the cathode to generate the CRT electron beam. The control grid potential provides for retrace blanking and polar marker intensification.

Resolution and alignment of the CRT beam are adjusted by the front-panel FOCUS control and by the rear-panel ASTIG and TRACE ALIGN screwdriver adjustments. The 6.3-Vac filament voltage, provided by the chassis-mounted line transformer T1, is biased at -2850 Vdc to prevent arcing to the cathode.

Horizontal and vertical deflection potentials are provided by the Deflection Amplifiers (A18).

High Voltage Oscillator, −2850V Rectifier, and Error Amplifier **(E) (E)**

The -2850V regulated cathode supply is generated by a high-frequency oscillator that produces an approximately 63-Vac peak-to-peak, 57-kHz voltage whose amplitude is controlled by varying the dc bias of the oscillator. The 63-Vac signal is stepped up by T1 to 5800 Vac peak-to-peak, which is half-wave rectified and filtered to produce the -2850-Vdc cathode potential. Part of this voltage is fed back to the Error Amplifier where it is compared with a positive reference voltage. Any voltage difference is amplified by the Error Amplifier to adjust the oscillator bias current, thereby correcting the oscillator output voltage.

High Voltage Oscillator. The High Voltage Oscillator consists of transistor Q1, operating as a class C amplifier, and the primary winding of T1 (pins 1 to 2), whose capacitance and inductance set the frequency of oscillation at 57 kHz. The T1 primary is the collector load of Q1. The T1 feedback winding (pins 3 to 4), provides the positive feedback necessary to sustain oscillations and couples the dc bias from the Error Amplifier to the base of Q1 to vary the amplitude of oscillations. L7 and C16 are series resonant at the oscillator frequency and provide the ac return path for the feedback current.

- 2850V Rectifier. The 5800 Vac peak-to-peak across the secondary of T1 (pins 5 to 8) is rectified by CR7 and filtered by R32 and C1 to provide the -2850 Vdc cathode potential. This voltage is also fed back to the Error Amplifier to provide regulation.

Error Amplifier. The Error Amplifier regulates the dc level of the CRT cathode voltage by controlling the base bias of Q1 and therefore the oscillation amplitude.

Regulation is provided by feeding back the -2850 Vdc across the feedback resistor R34 and summing it with the +20-Vdc reference from the DC Regulator (A16)) across R17 and R18 to provide an input of 0 Vdc to the amplifer U1. Any deviation from 0 Vdc is amplified by U1 and varies the bias of the oscillator to maintain the cathode potential of the CRT at about -2850 Vdc. The open-loop gain of U1 is set by R20, while R23, R25, and C15 limit the bandwidth of the control loop. The output current of the Error Amplifier is limited by R21.

Service Model 8754A

Z-Axis Amplifier (A)

The Z-Axis Amplifier, consisting of U2, Q2 and Q3, has two external inputs: Z CRT from the Deflection Amplifiers (A18) and INTENSITY from the front-panel INTENSITY control.

The Z CRT input is +5V for blanking, OV for normal intensity, and -3V for polar marker intensification. The 0 to +5V analog INTENSITY signal is used to control trace intensity when the Z CRT voltage is zero.

The Z CRT and INTENSITY signals are summed at the input to amplifier U2. Complementary transistors Q2 and Q3 invert the output of U2 and provide the capability for an increased voltage swing. The output of U2 is fed back to provide a gain of 8.3 for the Z CRT signal and 10 for the INTENSITY signal.

The output of the Z-Axis Amplifier (TP5) is prevented from going more positive than ground by CR2, and the negative voltage swing is limited by the -47V supply. With the front-panel IN-TENSITY control set to midrange, the signal at TP3 is typically -16V (normal intensity), -47V (blanked), or OV (polar marker intensification). This signal is coupled to the control grid of the CRT through the Control Grid Level Shifter.

Control Grid Level Shifter

The Control Grid Level Shifter shifts the output of the Z-Axis Amplifier by -2850 Vdc to create a -2850V to -2897V control grid voltage that is more negative than the cathode voltage. Transformer T1 steps up the output of the High Voltage Oscillator. The 6010 Vac peak-to-peak across the secondary winding of T1 (pins 6 to 7) is rectified by CR6 and filtered by C18. The rectified 2910 Vdc is then applied across the voltage divider R28 through R30. The voltage drop across R30 provides a level shift of -2850 Vdc for the output of the Z-Axis Amplifier and is adjusted by INTEN LIMIT potentiometer R28. The voltage drop across R29 (between TP5 and TP3) is about 1/1000 of the shift voltage, or -2.8 Vdc.

The neon indicator DS1 is a protective device to prevent arcing within the CRT. If the difference of potential between the control grid (TP2) and cathode (TP1) exceeds 135V, the lamp fires and conducts until the difference of potential returns to a safe value. Diode CR8 prevents the control grid from going more positive than the cathode.

Focus (3

The focus voltage is set by a voltage divider network at the cathode. The front-panel FOCUS control provides a focus voltage adjustment of approximately -2215 Vdc to -2600 Vdc.

Astigmatism, Trace Alignment, and Anode/Accelerator Grid Voltages

The rear panel ASTIG adjustment provides an astigmatism control range of -12 Vdc to -150 Vdc. It is adjusted in conjunction with the front-panel FOCUS control for best resolution of the CRT trace.

The rear panel TRACE ALIGN adjustment provides a variable current through the CRT trace alignment coil. Either end of the trace alignment coil may be connected to A20E2 on the Motherboard, while the other end is connected to either A20E1 or A20E3.

The CRT anode/accelerator grid voltage (approximately +84 Vdc) is supplied by a voltage divider network in the Deflection Amplifers (A18).

CRT Filament Supply

WARNING

The 6.3 Vac CRT filament voltage is biased at a potential of - 2850 Vdc. This voltage, if contacted, could cause personal injury or death.

Chassis-mounted line transformer T1 supplies 6.3 Vac to the CRT filament. This winding is connected to the cathode through R37 to prevent arcing from the cathode to the filament.

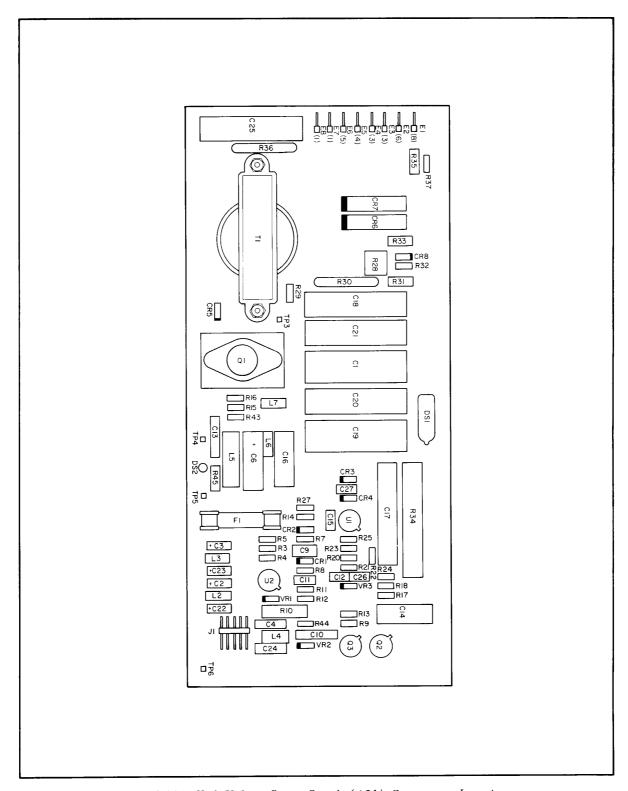
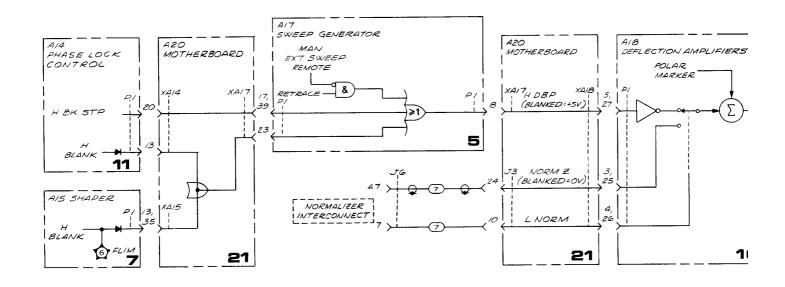
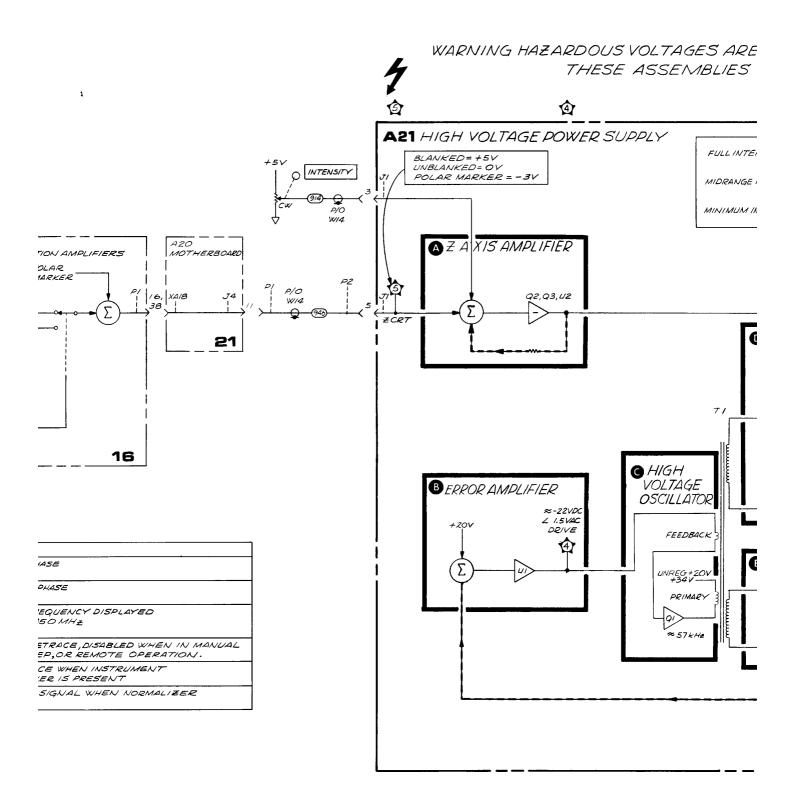




Figure 8-104. High Voltage Power Supply (A21), Component Locations

1

SIGNAL FLOW			DESCRIPTION			
ECRT (COISPL BLANK- PULSE (CRTBLANK- ING AND INTENSITY CONTROL)		BACKSTEP (AI4TP3)	BLANKS CRT DURING PHASE LOCK ACQUISITION.			
	DBP (DISPLAY) BLANKING PULSE)	H BLANK (XA14-13)	BLANKS CRT DURING PHASE LOCK ACQUISITION.			
		FREQUENCY LIMIT BLANK (XAIS-13,35)	BLANKS CRT WHEN FREQUENCY DISP IS <-10MHz OR >1350MHz			
	() ()	RETRACE (AITTP3)	BLANKS CRT DURING RETRACE, DISAB SWEEP, EXTERNAL SWEEP, OR REMOT			
		MARKER UG-5)	INTENSIFIES CRT TRACE WHEN INSTR			
		ORM -3,25)	DISPLAY BLANKING SIGNAL WHEN IS CONNECTED.			

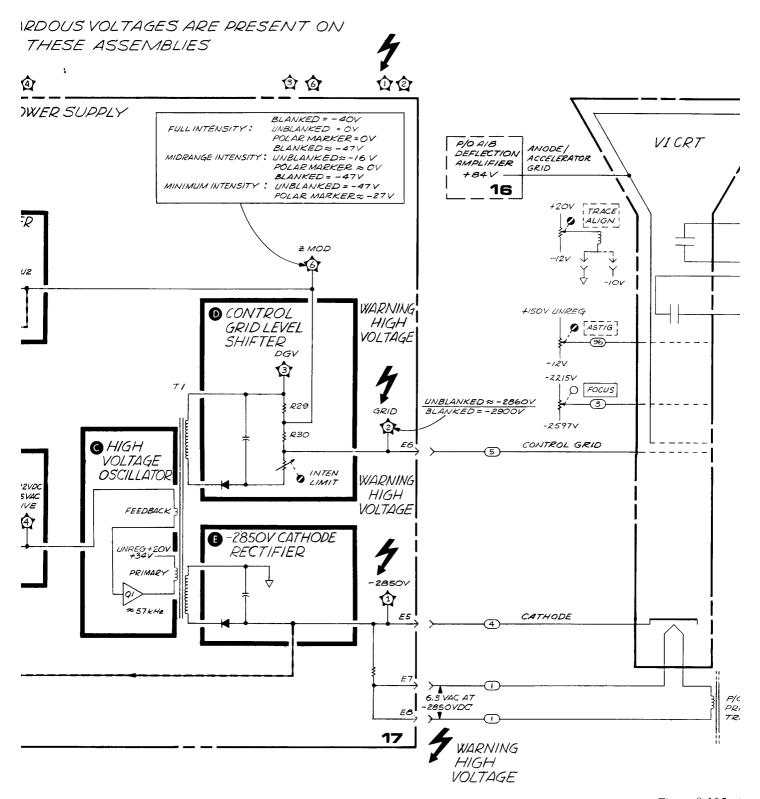
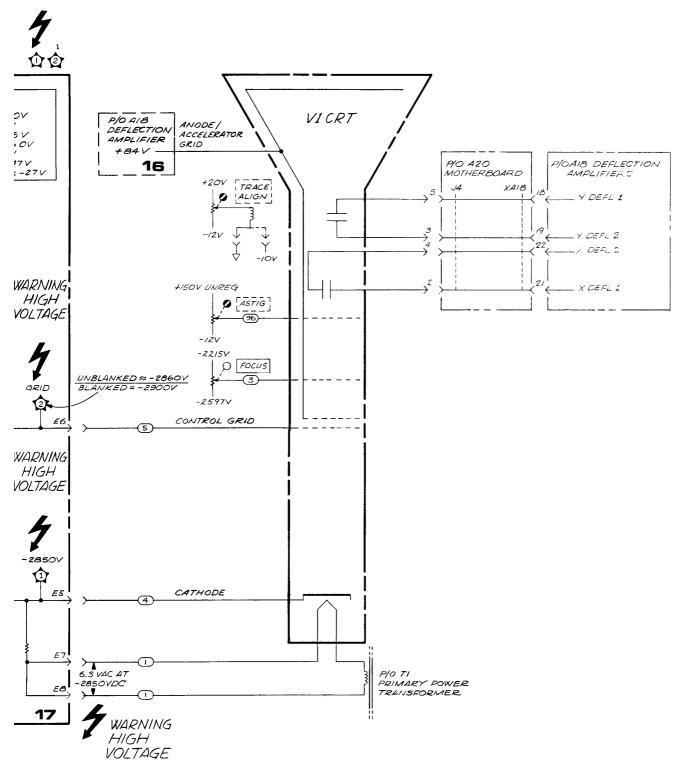
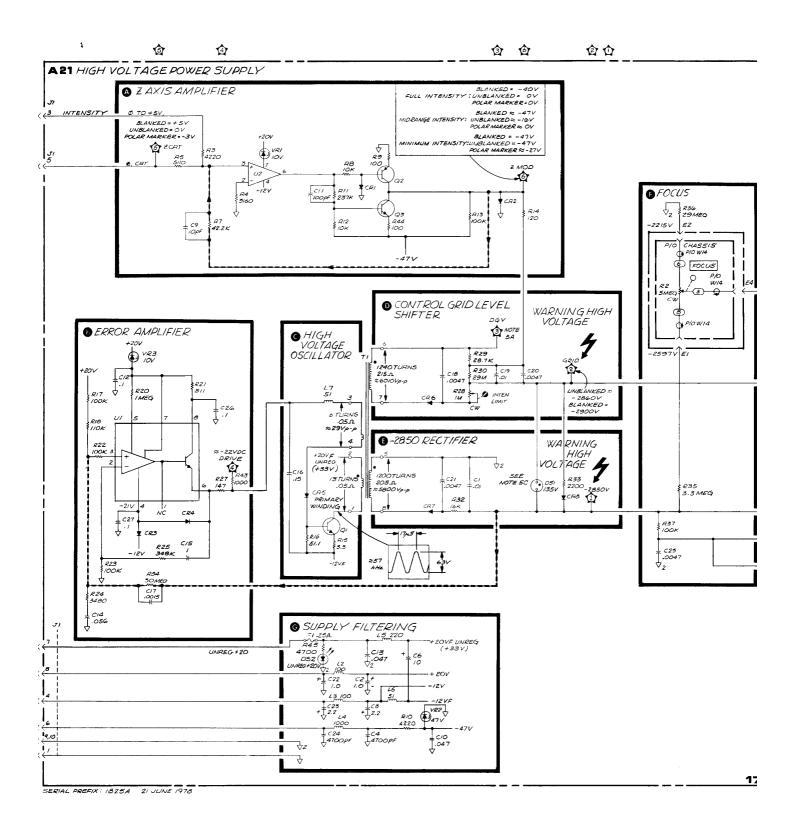
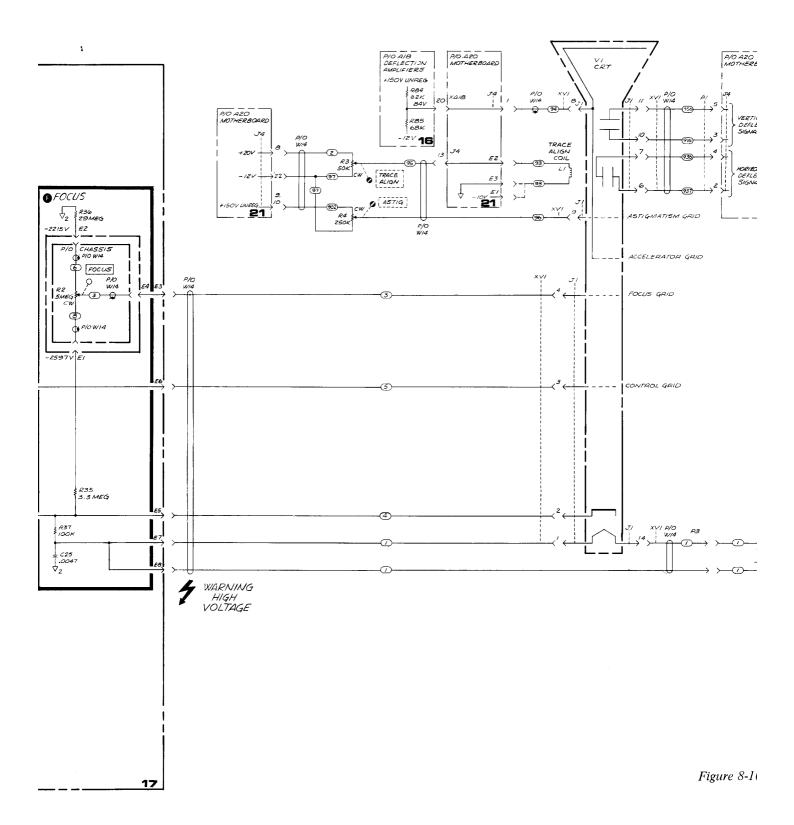
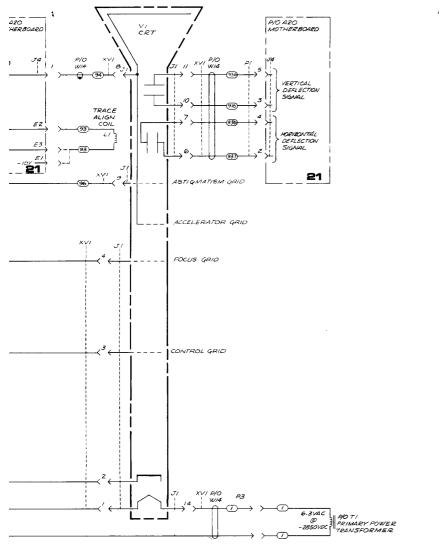


Figure 8-105. 1


Figure 8-105. High Voltage Power Supply (A21), Block Diagram 8-207/8-208

A21 HIGH VOLT A21 P/O A2O MOTHERBOARD PINTENSITY R5 1000 21 P/0 W14 16 PIN FUNCTION BLOCK TO/FROM SIGNAL ∇ 0 A20J4-15 90 B ERROR A 2 NC 3 INTENSITY R1-2 914 A -12V A20J4-24 97) 0 # CRT 5 **(4)** A 20J4 - // 946 6 A20.74-23 907 -80V G + 20V UNREG (+33V) 0 420J4-7 0 9 ∇2 0 A20**54-19** 0 A2054-21 10 $\nabla 2$ +20VUNREG. (+33V) 121,15 121,15 19 21 SERIAL PREFIX: 1825A 21 JUNE 1978 SERIAL PREFIX: 1825A

1

NOTES

- I REFERENCE DESIGNATORS WITHIN THIS ASSEMBLY ARE ABBREVIATED, PREFIX ABBREVIATIONS WITH ASSEMBLY NUM-BER FOR COMPLETE DESIGNATOR.
- 2.UNLESS OTHERWISE INDICATED: RESISTANCE IN OHMS (D.) CAPACITANCE IN MICROHENRIES (N.F.) INDUCTANCE IN MICROHENRIES (N.F.)

3. AZIUI PIN LOCATIONS:

4. A21J1 PIN LOCATIONS (FRONT VIEW): 2 4 6 8 10

(PIN # 2 NOT USED)

- 5. TEOUBLE SHOOTING HINTS:
 A. THE CONTROL GRID VOLTAGE AT
 ARITPE CAN BE INDIRECTLY MEASURED BY MEASURING THE VOLTRGE DROP ACCOSS ARIRED (AUTRS
 TO ARITBS) THE SCALE FACTOR IS
 IV/IKY GRID VOLTAGE.
 - NYINEV GEID VOLTAGE.

 NETHE VOLTAGE DIFFERENCE BETWEEN THE CONTROL GRID (A21TP2)
 AND CATHODE (A21TP) IS GREATE.
 THAN 135 V. NEON LAMP A21 CS1
 CONDUCTS TO MAINTAIN AN BOV
 DIFFERENCE BETWEEN THE TWO
 TUBE ELEMENTS.
 - TUBE ELEMENTS.

 C. RETURN SIDE OF TRACE ALIGN
 COIL IL CAN BE CONNECTED TO
 ETHER GROUND (ARDER) DR-IOV
 (ARDER). CHANGING THE RETURN
 SIDE CONNECTION OFFSETS THE
 PRICE ALIGN POTENTIONETER AR
 ADJUSTMENT RANGE. SEE SECTION 'Y ADJUSTMENTS FOR SELECTING TRACE ALIGN COIL RETURN SIDE CONNECTION.

Figure 8-106. High Voltage Power Supply (A21), Schematic Diagram 8-209/8-210

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS

ASSEMBLY	SERVICE	DESCRIPTION			
	SHEET				
1	5	SWEEP pushbuttons			
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch			
	7	OUTPUT dBm control			
	8	MARKERS MHz pushbuttons			
A1 Front Panel	11	UNLOCKED indicator			
	12	Absolute R measurement select			
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER, and VIDEO FILTER			
	16	HORIZONTAL POSN and GAIN controls			
	19	All front panel controls			
	6	Analog-to-digital converter for FREQUENCY MHz display.			
A2 Analog Processor	15	Analog processor, switch control logic, and $\pm 6V$ power supplies			
	16	V RAMP amplifier			
A3 B Sampler	9	RF to IF down-conversion			
A4 A Sampler	9	RF to IF down-conversion			
A5 R Sampler	9	RF to IF down-conversion			
ACUTO ALEGO:	4.5	V I 7 . 10			
A6 VTO and IF Switch	10	Voltage Tuned Oscillator			
	12	IF Switch			
A7 Source	7	RF Source			
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector			
A9 Phase Detector	14	Phase Detector			
A10 Polar Converter	14	Polar Converter			
A11 R Detector	13	R INPUT, magnitude detector			
A12 Marker Generator	8	Markers			
A13 Phase Lock	11	Phase Lock			
A14 Phase Lock Control	11	Phase Lock loop control			
A15 Shaper	6	Sweep width, tuning, frequency reference, and frequency display.			
	7	Shaping and RF Source drive.			
A16 DC Regulator	20	Low Voltage Power Supplies			
A17 Sweep Generator	5	Sweep Generator			
A18 Deflection Amplifiers	16	Deflection Amplifiers			
A10 Postifier	10	Evanuel Interfere			
A19 Rectifier	18	External Interface			
	20	Low Voltage Power Supplies			
A20 Motherboard	21	Motherboard wiring list			
A21 High Voltage Power Supply	17	CRT bias and blanking control			
A22 Frequency MHz Display	6	Frequency display			
A23 Rear Panel	18	External Interface and Rear Panel (A23)			

SERVICE SHEET 18

EXTERNAL INTERFACE (A23, NORMALIZER INTERCONNECT) CIRCUIT DESCRIPTION

The External Interface includes all signals received from or sent to the rear panel (A23) and the NOR-MALIZER INTERCONNECT connector. Also included are the logic circuits on the Rectifier (A19).

Slide Switch and BNC Connectors

INT/EXT SWEEP Switch. When the switch is set to the EXT position, A17 pin 21 is grounded. This disables the internal sweep circuit, and enables the circuit for an external sweep input. (See Service Sheet 5.)

EXT SWEEP IN. When the external sweep mode is selected, a 0V to +10V input will sweep the RF Source and the CRT Display. (See Service Sheet 5.)

EXT MARKER INPUT. The nominal input signal is a CW frequency (between 4 MHz and 1300 MHz) at a power level of approximately -13 dBm. This signal is mixed with the internal RF Source signal, and when the two frequencies are equal, a marker is generated. (See Service Sheet 8.)

SWEEP OUTPUT. Provides a sweep ramp voltage (-5V to +5V) from the Sweep Generator (A17, Service Sheet 5).

VERT OUT. Vertical out. From Deflection Amplifiers (A18, Service Sheet 16). Provides 0.1V/div vertical deflection signal for use with an external oscilloscope or X-Y recorder.

HORIZ OUT. Horizontal out. From Deflection Amplifiers (A18, Service Sheet 16). Provides 0.1V/div horizontal deflection signal for use with an external oscilloscope or X-Y recorder.

BLANK/PEN. Blanking/penlift. From Sweep Generator (A17, Service Sheet 5) and Deflection Amplifiers (A18, Service Sheet 16). Provides Z axis signals (+6V for blanking or -3V to intensify markers) from A18 for use with external oscilloscope. Also provides a penlift signal from the Sweep Generator (A17, Service Sheet 5) for an X-Y plotter or recorder. The penlift (actually a pen set-down) is enabled only during the slow sweep mode.

MAG/PHASE OUTPUT. From R Detector (A11, Service Sheet 13). Provides a dc voltage proportional to the magnitude ratio (0.1V/dB) or the phase difference (.01V/deg). Either phase or magnitude is selected by the H MAG input to PROGRAMMING connector A23J7. This magnitude or phase information is also applied to A23J7 pins 11 and 22.

PROGRAMMING CONNECTOR (A23J7) INPUTS

For the following signals, a high equals +5V (open), and a low equals 0V (ground).

H MAG. (J7-19) High Magnitude. Selects magnitude ratio or phase difference voltage at A23J6. When high, the output of EXCLUSIVE OR gate A19U1C is low, which causes the R Detector (A11, Service Sheet 13) to output a magnitude ratio voltage to A23J6. When low, A19U1C is high, causing the R Detector to output a phase difference voltage to A23J6.

L RELOCK. (J7-24). To Phase Lock Control (A14, Service Sheet 11). When low, CRT display is blanked; Transition from low to high causes CRT to blank for an additional 1.5 milliseconds (while receiver is reacquiring phase lock).

H RELOCK. (J7-3). Same function as L RELOCK except it is the opposite polarity (normally low).

H LGTH. (J7-13). High length. To Frequency Reference (A15, Service Sheet 6). When high, FREQ REF is selected as the reference for electrical length compensation during phase measurements. When low, VSWP is selected as the reference, allowing greater electrical length compensation on narrow sweep widths.

L EXT STP SWP. (J7-15). Low external stop sweep. To Sweep Generator (A17, Service Sheet 5). When low, stops sweep.

L F MKR. (J7-23). Low full marker. From Shaper (A15, Service Sheet 6) to the Marker Generator (A12, Service Sheet 8). When low, the CRT displays a marker. In FULL 4-1300 sweep mode, the Shaper grounds this line when the swept RF frequency equals the tuning frequency.

L EXT TRIG. (J7-16). Low external sweep trigger to the Sweep Generator (A17, Service Sheet 5). When low, a sweep will be triggered if the frontpanel TRIG button is selected and the Sweep Generator has completed its retrace cycle.

L REM. (J7-21). Low remote enable. When low, the output of EXCLUSIVE OR gate A19U1A is low. This causes –

- The Sweep Generator (A17, Service Sheet 5) to enable the external sweep input mode.
- The Phase Offset/Length circuit on the Analog Processor (A2, Service Sheet 15) to be disabled.
- The selection of the A or B inputs on the IF Switch (P/O A6, Service Sheet 12) to be controlled by the L B REM input from the PROGRAMMING connector A23.17.

IF SWITCH LOGIC (P/O A19).

The position of the IF Switch (A6, Service Sheet 12) is controlled by four lines: L REM, L B INT, L B REM, and L REV AB. Table 8-10 is a truth table

Table 8-10. IF Switch Control Logic

	REMOTE				LOCAL			
L REM	L					Н		
L B REM	L H			DON'T CARE				
L B INT	DON'T CARE			L		Н		
L REV AB	Н	L	Н	L	Н	L	Н	L
L B IF SW	L	Н	Н	L	L	Н	Н	L

that shows the state of the L B IF SW line for each combination of logic states of the four input lines. Figure 8-107 is an equivalent circuit of the IF Switch control logic.

When the instrument is operated with no external connections, the L REM, L B REM, and L REV AB lines are all held high, while the L B INT line alone controls the state of the L B IF SW line, and thus the position of the IF Switch. When L B INT is low, L B IF SW is also low, and test channel B is selected by the IF Switch. Test channel A is selected when L B IF SW is high.

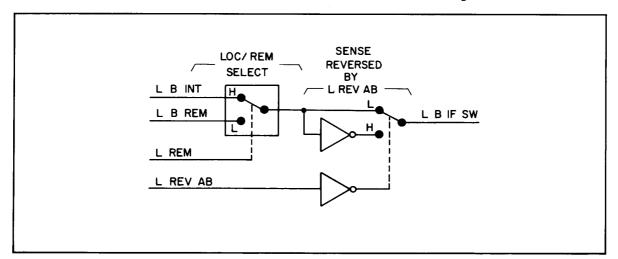


Figure 8-107. IF Switch Control Logic, Equivalent Circuit

As indicated in Table 8-10, the instrument is in the local (internal) mode of operation when L REM is high. When L REM is low, the instrument is in remote operation. In local operation, L B REM has no effect on the IF Switch; in remote operation, L B INT has no effect.

Reverse AB. The L REV AB line is normally high. When the line is pulled low (grounded), the state of the L B IF SW line (as determined by L REM, L B REM, and L B INT) is reversed. The output of the EXCLUSIVE OR gate A19U1B is normally low because both inputs are high. When L REV AB is pulled low, however, pin 13 of EXCLUSIVE OR gate A19U1D goes high. This causes A19U1D to function as an inverter, reversing the state of the L B IF SW line.

NORMALIZER INTERCONNECT Connector (J8) Outputs

- **CH 1 FLT.** Channel 1 filtered. From Analog Processor (A2, Service Sheet 15). Provides a −300 mV/div signal to the normalizer. Also goes to Deflection Amplifiers (A18, Service Sheet 16).
- CH 2 FLT. Channel 2 filtered. From Analog Processor (A2, Service Sheet 15). Provides a -300 mV/div signal to the normalizer. Also goes to Deflection Amplifiers (A18, Service Sheet 16).
- L OFF 1. Low Channel 1 off. From Analog Processor(A2, Service Sheet 15). When low, turns normalizer Channel 1 off. When both Channel 1 and Channel 2 are off, L OFF 1 goes high to enable the normalizer to display the R channel.
- **L OFF 2.** Low Channel 2 off. From Analog Processor (A2, Service Sheet 15). When low, turns normalizer Channel 2 off.
- L CHAN 2. Low Channel 2. From Analog Processor (A2, Service Sheet 15). When low, selects normalizer Channel 2; when high, Channel 1. Also goes to Deflection Amplifiers (A18, Service Sheet 16).

VSWP. Sweep voltage. From Sweep Generator (A17, Service Sheet 5). Provides 0V to +10V sweep voltage to normalizer.

- **H DBP.** High display blanking pulse. From Sweep Generator (A17, Service Sheet 5). When high, provides display blanking pulse to normalizer.
- H RETRACE. High retrace. From Sweep Generator (A17, Service Sheet 5). When high, indicates to normalizer that 8754A is retracing.
- **L POLAR.** Low polar. From Deflection Amplifiers (A18, Service Sheet 16). Indicates to normalizer that 8754A is in Polar mode. Also causes HP 8750A Normalizer to be held in BYPASS.
- **H MARK.** High marker. From Deflection Amplifiers (A18, Service Sheet 16). When high, provides marker signal to normalizer.

NORMALIZER INTERCONNECT Connector (J8) Outputs

- **NORM X.** Normalizer X. To Deflection Amplifiers (A18, Service Sheet 16). When L NORM is low, the NORM X signal from the normalizer is selected to produce the HORIZ OUT output signal and the X information for the display.
- **NORM Y.** Normalizer Y. To Deflection Amplifiers (A18, Service Sheet 16). When L NORM is low, the NORM Y signal from the normalizer is selected to produce the VERT OUT output signal, and the Y information for the display.
- **NORM Z.** Normalizer Z. To Deflection Amplifiers (A18, Service Sheet 16). When L NORM is low, the NORM Z signal from the normalizer is selected to produce the blanking for the diplay.
- **L NORM.** Low normalizer. To Deflection Amplifiers (A18, Service Sheet 16). When low, causes selection of the NORM X, NORM Y, and NORM Z input signals.

Service Model 8754A

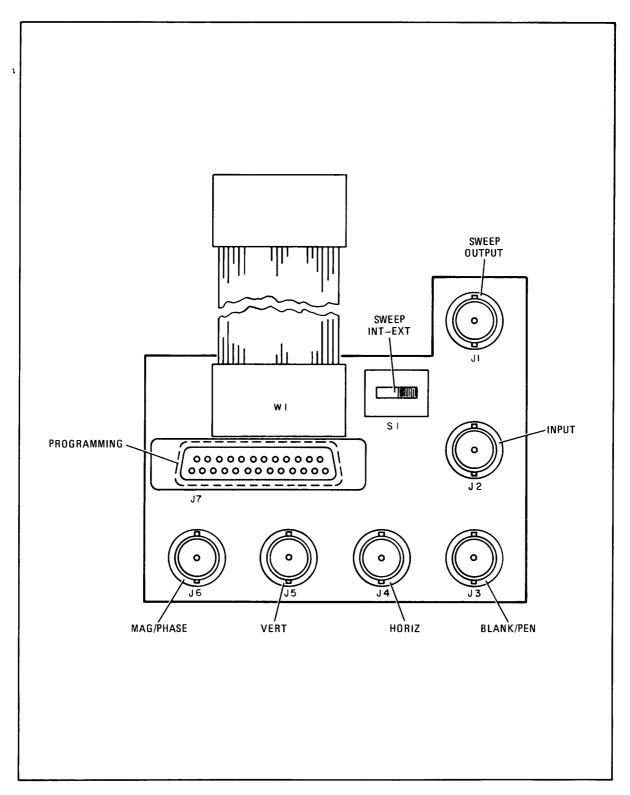


Figure 8-108. External Interface (A23, Rear Panel), Component Locations

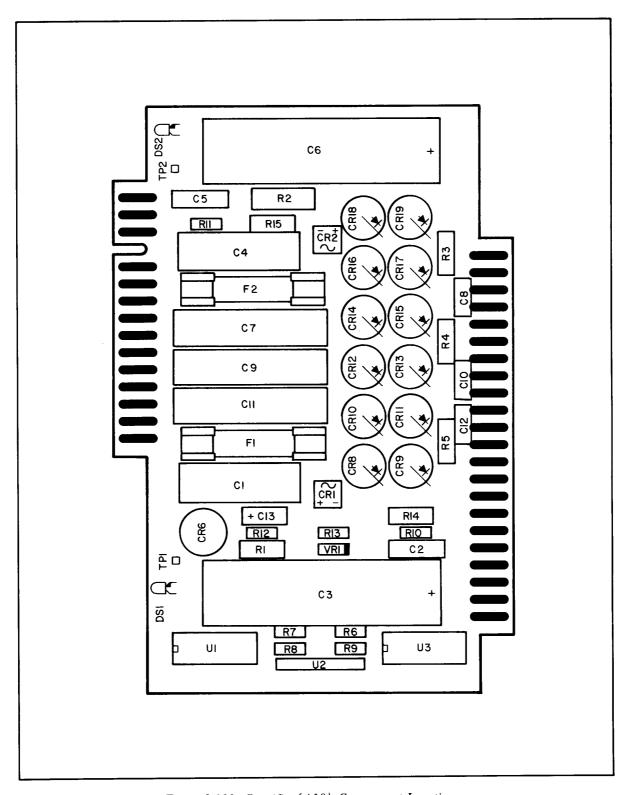
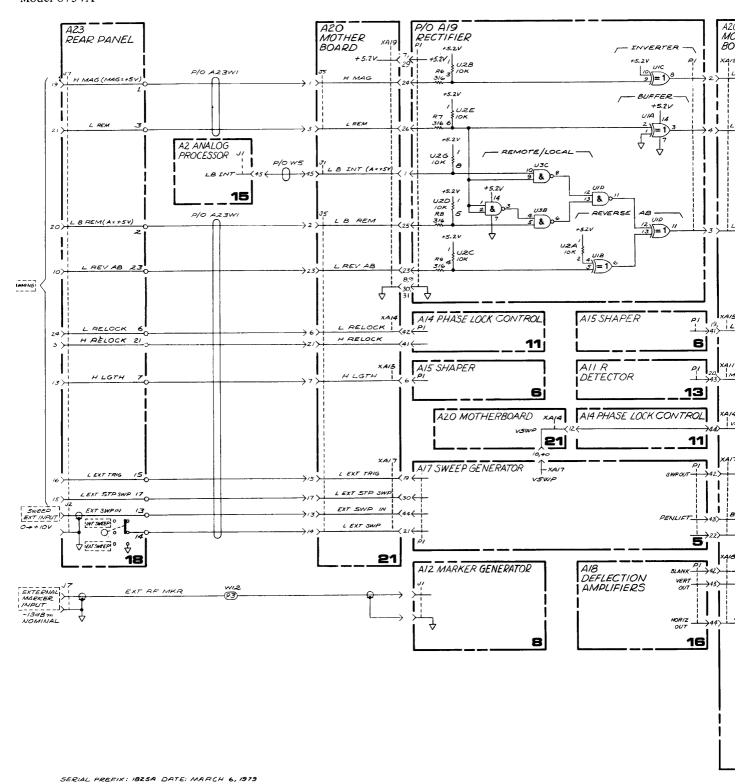
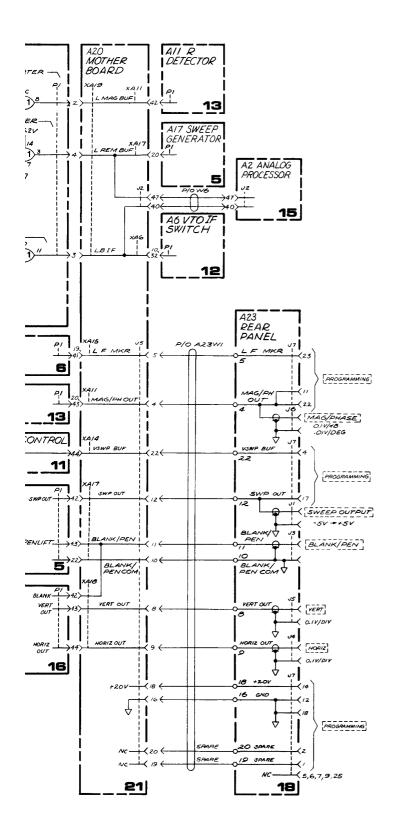
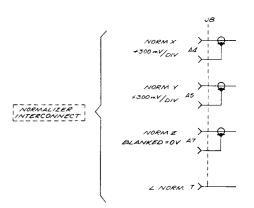





Figure 8-109. Rectifier (A19), Component Locations

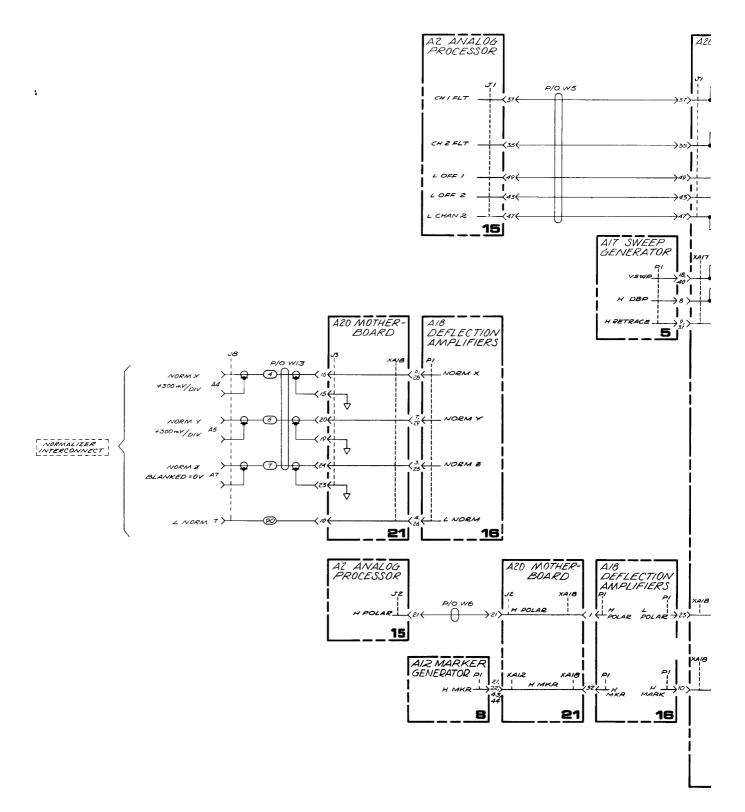


Figure 8-110.

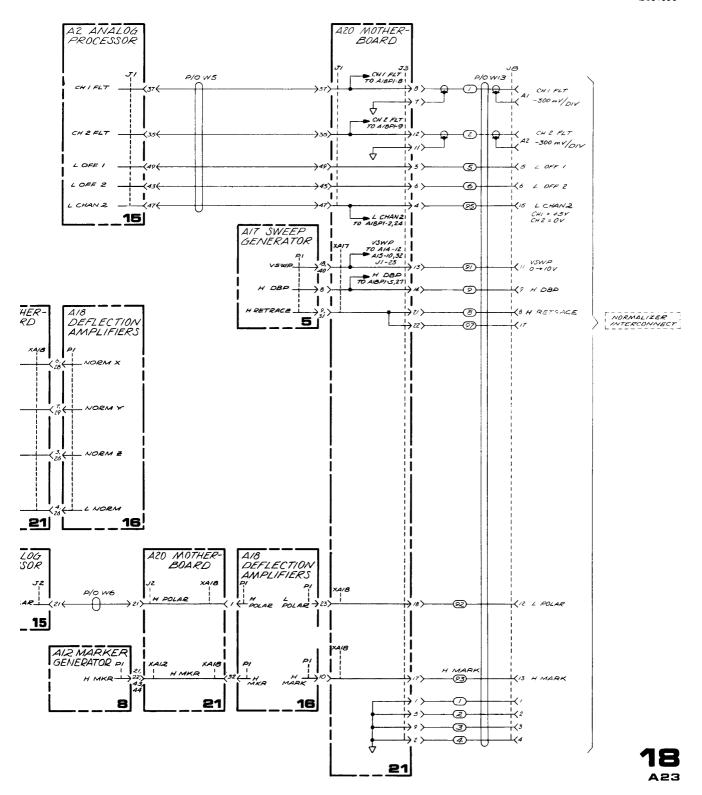


Figure 8-110. External Interface (A23, Rear Panel), Schematic Diagram 8-217/8-218

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS

ASSEMBLY	SERVICE SHEET	DESCRIPTION
1	5	SWEEP pushbuttons
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch
	7	OUTPUT dBm control
	8	MARKERS MHz pushbuttons
A1 Front Panel	11	UNLOCKED indicator
ATT TOTAL CONTROL	12	Absolute R measurement select
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER,
	'5	and VIDEO FILTER
	100	
	16	HORIZONTAL POSN and GAIN controls
	19	All front panel controls
	6	Analog-to-digital converter for FREQUENCY MHz display.
A2 Analog Processor	15	Analog processor, switch control logic, and ±6V power supplies
•	16	V RAMP amplifier
A3 B Sampler	9	RF to IF down-conversion
A4 A Sampler	9	RF to IF down-conversion
A A Compo	 	THE CONTROL OF THE CO
A5 R Sampler	9	RF to IF down-conversion
A6 VTO and IF Switch	10	Voltage Tuned Oscillator
AU VIO and II Switch	12	IF Switch
	12	TF SWITCH
A7 Source	7	RF Source
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector
A9 Phase Detector	14	Phase Detector
A10 Polar Converter	14	Polar Converter
A11 R Detector	13	R INPUT, magnitude detector
A12 Marker Generator	8	Markers
A13 Phase Lock	11	Phase Lock
A14 Phase Lock Control	11	Phase Lock loop control
A15 Shaper	6 7	Sweep width, tuning, frequency reference, and frequency display. Shaping and RF Source drive.
A16 DC Regulator	20	Low Voltage Power Supplies
A17 Sweep Generator	5	Sweep Generator
A18 Deflection Amplifiers	16	Deflection Amplifiers
A19 Rectifier	18	External Interface
2 12 Decition	20	Low Voltage Power Supplies
	20	Low Foliage Former Supplies
A20 Motherboard	21	Motherboard wiring list
A21 High Voltage Power Supply	17	CRT bias and blanking control
A22 Frequency MHz Display	6	Frequency display
A23 Rear Panel	18	External Interface and Rear Panel (A23)

SERVICE SHEET 19

FRONT PANEL DISASSEMBLY PROCEDURES

Removal of Front Panel Assembly From Frame

- 1. Remove top cover.
- 2. Remove top trim strip from front frame using a small, flat-blade screwdriver. (See Figure 8-111.)
- 3. Remove one 6-32 x 1/8 inch flat-head Pozi-Driv screw from top trim strip channel adjacent to REFERENCE POSITION switches.
- 4. Remove trim strip from right side of front frame or (if instrument has Option 907 installed) from right handle. (See Figure 8-111.)
- 5. If instrument has Option 907, remove right handle.
- 6. Remove two 6-32 x 1/8 inch flat-head Pozi-Driv screws from right side of front frame. (See Figure 8-111.)

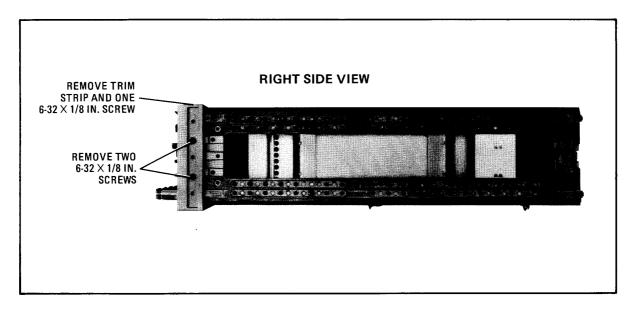


Figure 8-111. Right Side View Showing Front Panel Retaining Hardware

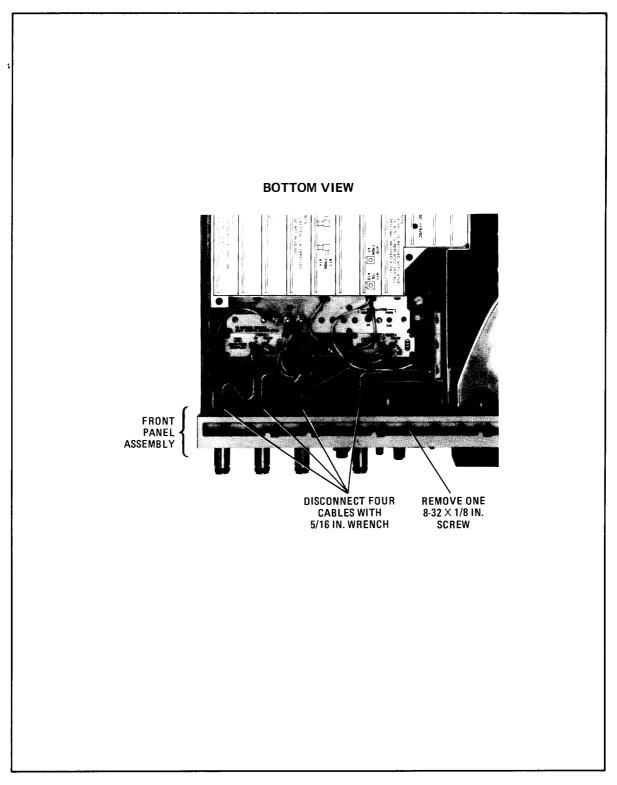


Figure 8-112. Bottom View Showing Disassembly of Front Panel Assembly from Instrument

- 7. Remove bottom cover.
- 8. Remove one 6-32 x 1/8 inch flat-head Pozi-Driv screw from bottom of front frame adjacent to front-panel OUTPUT dBm control. (See Figure 8-112.)
- 9. With 5/16 inch wrench, remove B INPUT, A INPUT, R INPUT, and RF OUTPUT cables from rear side of front-panel connectors. (See Figure 8-112)
- 10. Carefully pull Front Panel assembly forward out of the instrument frame.
- 11. Using connector puller tool (HP Part No. 8710-0580 or 3M Tool No. 3438), disconnect the two front-panel ribbon cables from A20 Motherboard.

Replacement of FREQUENCY MHz Display LED

- 1. Remove the Front Panel Assembly as described in paragraph heading "Removal of Front Panel Assembly from Frame", steps 1 through 10.
- 2. 'Remove two 6-32 x 1/4 inch Pozi-Driv screws securing A22 LED Display to A2 Analog Processor. (See Figure 8-113.)

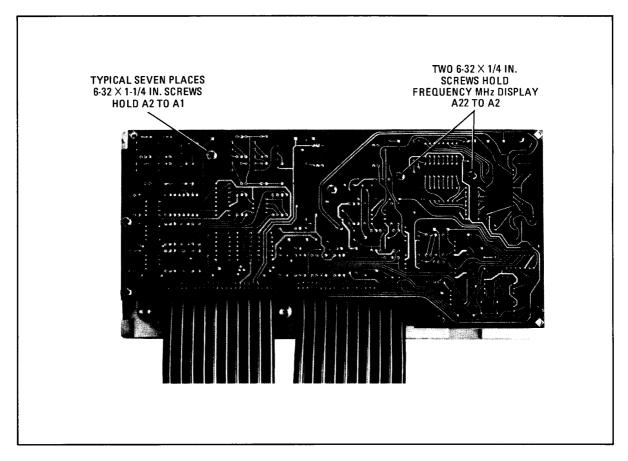


Figure 8-113. Back Side of Front Panel Assembly

- 3. Carefully slide A22 LED Display out from the top. Do not disconnect ribbon cable from A2J3.
- 4. Unplug defective LED and install new LED.
- 5. Slide A22 LED Display back into place and loosely secure with the two screws removed in step 2.
- 6. Align LED Display in the center of front-panel FREQUENCY MHz display window and tighten two screws securing LED display to A2 Analog Processor.

Removal of A2 Analog Processor Assembly From A1 Front Panel

- 1. Remove Front Panel Assembly as described in paragraph heading "Removal of Front Panel Assembly From Frame".
- 2. Remove seven 6-32 x 1-1/4 inch Pozi-Driv screws securing A2 Analog Processor to the Front Panel Board Assembly. (See Figure 8-113.) Do not remove the two screws that secure LED display to A2 Analog Processor.
- 3. Set Channel 1 and 2 REFERENCE switches to +44 position.
- 4. Separate A2 Analog Processor from A1 Front Panel board as shown in Figure 8-114. (A1 and A2 will still be connected by the ribbon cables.)
- 5. Using connector puller tool (HP Part No. 8710-0580 or 3M Tool No. 3438), disconnect the two ribbon cables from A2 Analog Processor.

Removal of A1 Front Panel Board Assembly From Sub-panel

- 1. Remove Front Panel Assembly as described in paragraph heading "Removal of Front Panel Assembly From Frame".
- 2. Remove A2 Analog Processor as described in paragraph heading "Removal of A2 Analog Processor Assembly From A1 Front Panel".
- 3. Remove the following front-panel knobs: SWEEP vernier, SWEEP WIDTH MHz CAL, SWEEP WIDTH MHz, CHANNEL 1 REFERENCE OFFSET vernier, CHANNEL 2 REFERENCE OFFSET vernier, and OUTPUT dBm.
- 4. Unplug probe-power wiring harness from A1J4.
- 5. Remove five 6-32 x 1-1/4 Pozi-Driv screws securing A1 Front Panel to sub-panel. (See Figure 8-114.)
- 6. Carefully remove A1 Front Panel and unplug TUNING potentiometer wiring harness from A1J3. (LED may unplug from LED socket and remain in LED lens in front sub panel.)

Replacement of Front Panel UNLOCKED LED

- 1. Remove front panel assembly from frame as described in paragraph heading "Removal of Front Panel Assembly From Frame".
- 2. Remove A2 Analog Processor from A1 front panel as described in paragraph heading "Removal of A2 Analog Processor Assembly From A1 Front Panel".
- 3. Remove A1 Front Panel Board Assembly from front panel sub-panel as described in paragraph heading "Removal of A1 Front Panel Board Assembly From Sub-panel".

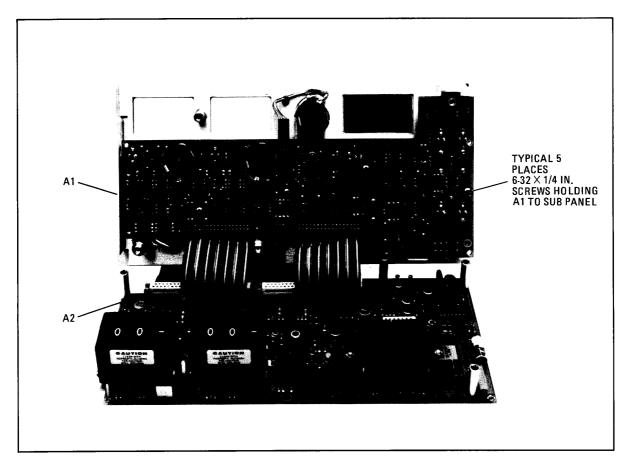


Figure 8-114. Front Panel Assembly With A1 and A2 Separated

- 4. Remove old LED from socket on A1.
- 5. Trim both leads of new LED to 1.5 cm (0.6 inches). (See Figure 8-115.)



Figure 8-115. Identification of Leads on UNLOCKED LED

6. Install new LED in LED socket mounted on A1. Be sure the LED is installed so the white cathode on the new LED matches the position of the cathode on the LED symbol next to LED socket.

- 7. Reassemble A1 to the front panel as instructed in the paragraph heading "Installation of Front Dress Panel to A1 Front Panel Board Assembly", reassemble A2 to A1 as described in the paragraph heading "Installation of A2 Analog Processor to A1 Front Panel Board Assembly".
- 8. Mount front panel assembly into instrument front frame as instructed in the paragraph entitled "Installation of Front Panel Assembly Into Instrument Frame".

Replacement of Front Dress Panel

- 1. Remove front panel assembly from frame as described in paragraph entitled "Removal of Front Panel Assembly From Frame".
- 2. Remove A2 Analog Processor from A1 front panel as described in paragraph heading "Removal of A2 Analog Processor Assembly From A1 Front Panel".
- 3. Remove A1 Front Panel Board Assembly from front panel sub-panel as described in paragraph entitled "Removal of A1 Front Panel Board Assembly From Sub-panel".
- 4. Remove the four front-panel RF connectors.
- 5. Remove TUNING and FINE knobs.
- 6. Remove nut securing TUNING potentiometer.
- 7. Remove front dress panel.
- 8. Install new front dress panel and reassemble front panel as described in paragraphs under major heading "FRONT PANEL ASSEMBLY PROCEDURES".

FRONT PANEL ASSEMBLY PROCEDURES

Installation of Front Dress Panel to A1 Front Panel Board Assembly

- 1. Install 36 bezels and the FREQUENCY MHz display lens into dress panel.
- 2. Install the UNLOCKED light lens into front sub-panel.
- 3. Place dress panel on sub-panel and loosely install four front-panel RF connectors. Make sure panel fits over PROBE POWER connectors.
- 4. Install A1 Front Panel Board Assembly on front panel sub-panel. Install five 6-32 x 1/4 inch Pozi-Driv screws to secure A1 board to front sub-panel. (See Figure 8-114.)
- 5. Install TUNING potentiometer assembly and secure with retaining nut.
- 6. Tighten four front-panel RF connectors.

- 7. Plug tuning potentiometer wiring harness connector into A1J3.
- 8. Plug probe-power wiring harness connector into A1J4.
- 9. Install the following front-panel knobs: SWEEP vernier, SWEEP WIDTH MHz CAL, SWEEP WIDTH MHz, CHANNEL 1 REFERENCE OFFSET vernier, CHANNEL 2 REFERENCE OFFSET vernier, OUTPUT dBm, TUNING, and FINE tune.
- 10. Install A2 Analog Processor Assembly to A1 Front Panel Board Assembly as described in paragraph titled "Installation of A2 Analog Processor to A1 Front Panel Board Assembly".
- 11. Install Front Panel Assembly into instrument frame as instructed in paragraph titled "Installation of Front Panel Assembly Into Instrument Frame".

Installation of A2 Analog Processor to A1 Front Panel Board Assembly

- 1. Position A2 adjacent to A1 Front Panel. Connect the two ribbon cables from A1 into the matching ribbon cable connectors on A2.
- 2. Set Channel 1 and 2 REFERENCE switches to +44 position.
- 3. Mate A1 and A2, then install seven 6-32 x 1-1/4 inch Pozi-Driv screws to secure the two boards together. (See Figure 8-112.)

Installation of Front Panel Assembly Into Instrument Frame

- 1. Connect the two front-panel ribbon cables into the two connectors on A20 Motherboard.
- 2. Carefully mount the front panel assembly in the instrument frame.
- 3. Mate front panel connectors B INPUT, A INPUT, R INPUT, and RF OUTPUT to the corresponding RF cables (Figure 8-112). (It may be necessary to loosen the RF cables on the opposite end.)
- 4. Install one 6-32 x 1/8 inch flat-head Pozi-Driv screw into bottom of front frame adjacent to front-panel OUTPUT dBm control.
- 5. Install two 6-32 x 1/8 inch flat-head Pozi-Driv screws at the right side of front frame. (See Figure 8-111.)
- 6. If instrument has Option 907, install right handle.
- 7. Install trim strip on right side of front frame or (if instrument has Option 907) on right handle.
- 8. Install one 6-32 x 1/8 inch flat-head Pozi-Driv screw into top trim strip channel adjacent to REFERENCE POSITION switches. (See Figure 8-111.)
- 9. Install top trim strip on front frame.
- 10. Install top and bottom covers.

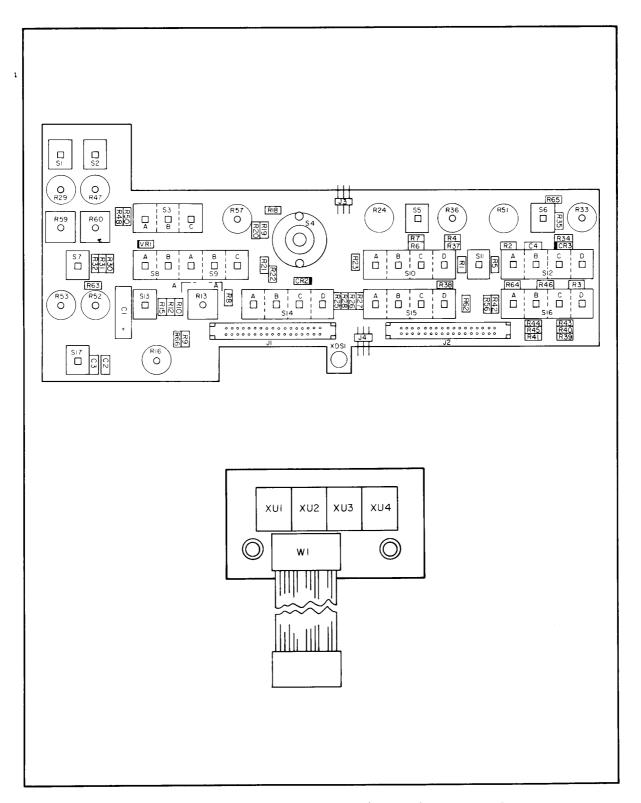
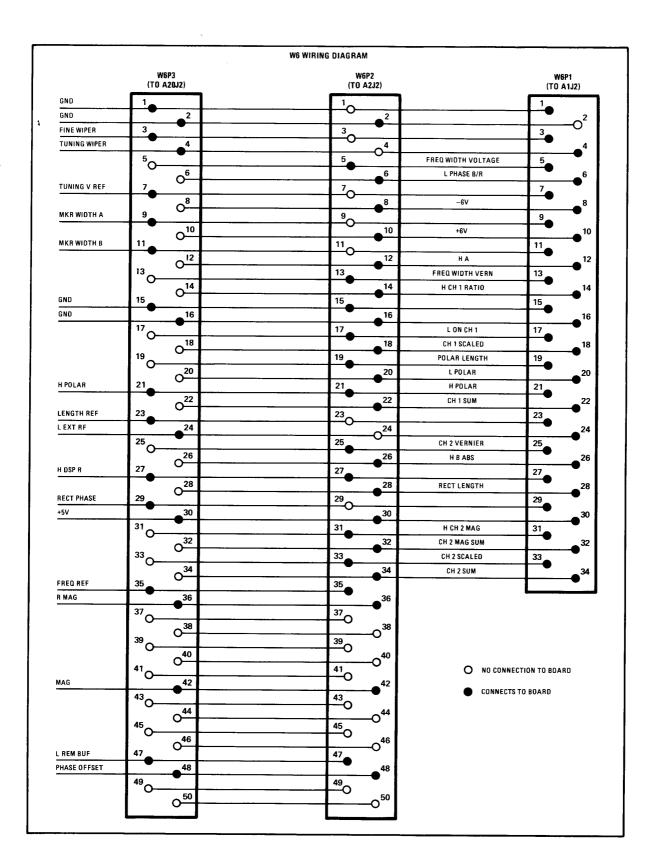



Figure 8-116. Front-Panel Controls and Indicators (A1, A22), Component Locations

H DB

-10\ OUTI L UN +20V L SNI

SWP | L MK L FAS VSWF

WIDT WIDT

H FUI

+15V

-12V

LMK

H TR

L MK

CH 2 I V RAI CH 1 I LOG I +5V L HOL GND POLA L OFF POLA L B IN

TUNE

L CHA

GND

L OFF

HALT

) ? |-

	_	Service
	PRINTED CIRCUIT BOARD PIN LOCATIONS	
A20 MOTHERBOARD	A2 ANALOG PROCESSOR	A1 FRONT PANEL
A2QJ1	A2J1	A1J1
20 01	2● ●1	2● ●1
40 03	4● ●3	4 ● ● 3
60 05	6● ●5	6 ● ● 5
8 ● •7	8● ○7	8 ● 7
100 09	10 • 9	10 ● 9
12 • •11 14 • •13	120 011	12 • 11
14 • 13 16 • •15	14 O O 13	14 • 13 16 • 15
18 • •17	180 017	18 • 17
20 • 019	200 019	20 019
22 • •21	220 021	22 • • 21
24 ● ●23	24○ ●23	24 ● ○23
26 ● ●25	26 0 0 25	26 ● ● 25
28 ○ ●27	28 € ○27	28
30 ○ ●29	30 € ○29	30 ● ● 29
32 ● 31	32 ● ○31	32 ● ●31
34 ● 33	34 0 0 33	34 ● ● 33
36 ● ●35	36 ◆ ● 35	
38 ● 37	38 ● ● 37	
40 ● 39	40 ● 39	
42	42 • 41	
44 43	44 • 43	
46	46	
50 • 49	48	
A20J2	A2J2	A1J1
2 ● ■1	2 • 01	20 •1
4 ● ●3	40 03	4 ● ●3
60 05	6 ● ●5	6 ● ●5
8○ ●7	8● ○7	8 ● 0 7
10 ○ ● 9	10 ● ○9	10 ● ● 9
120 •11	12● 011	12● ●11
14 0 013	14 ● 13	14 ● 13
16 • 15	16 • 15	16 • 15
180 017	18 • 17 20 • 19	18 • 17
20 0 19 22 0 • 21	20	20 • 19 22 • 21
24 • • • 23	240 023	24 • 23
26 0 025	26 • • 25	26 • • 25
28 0 • 27	28 • 27	28 • •27
30 ● 29	30 ● ○29	30
32 0 031	32 • 31	32 ● 31
34 0 0 33	34 ● ● 33	34 ● ●33
36 ● ●35	36 ● ●35	
38 ○ ○37	380 037	
40 〇 〇39	400 039	
42 ● ○41	42● ○41	
44 0 043	440 043	
460 045	460 045	
48 • 47	48	
50 ○ ○49	50 ○ ○49	
 		

6

8

,10

,12

,14

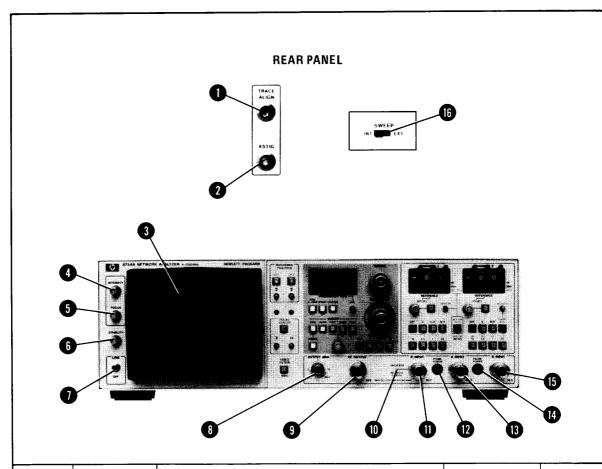
,16

,18

20

22

24


26

28

30

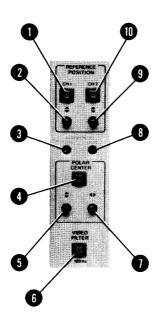

32

Figure 8-117. Front Panel Ribbon Cables, Wiring Diagram 8-227/8-228

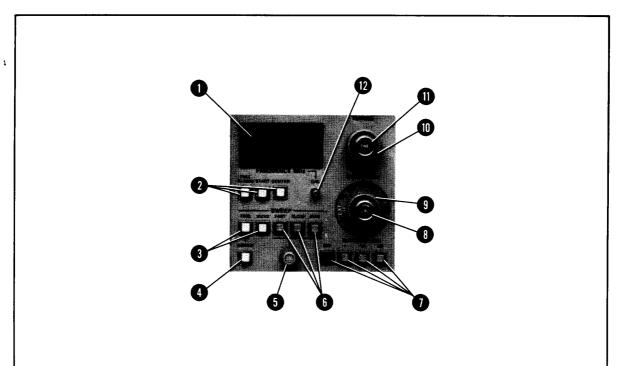

Item	Reference Designation	Description	Instrument Section	Service Sheet
0	R3	TRACE ALIGN Adjustment	Display	17
	R4	ASTIG Adjustment	Display	17
ŏ	V1	Cathode Ray Tube (CRT)	Display	17
ŏ	R5	INTENSITY Control	Display	17
ŏ	R2	FOCUS Control	Display	17 3
Ğ	R6	STABILITY Control	Receiver	11
Ŏ	S1	LINE Power Switch		20
ŏ	A1R16	OUTPUT dBm Control	Source	7,8
ğ	J1	RF OUTPUT Connector	Source	7
Ŏ	A1DS1	UNLOCKED INCREASE R LEVEL	Receiver	11
Ŏ	Ј2	R INPUT Connector	Receiver	9
Ŏ.	J5	PROBE POWER		16
Ğ	J3	A INPUT Connector	Receiver	9
ŏ	J6	PROBE POWER		20
9 6 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	J4	B INPUT Connector	Receiver	9
Ğ	A23S1	INT/EXT SWEEP Switch	Source	5,18

Figure 8-118. Front-Panel Controls and Indicators, Service Sheet Locations (1 of 4)

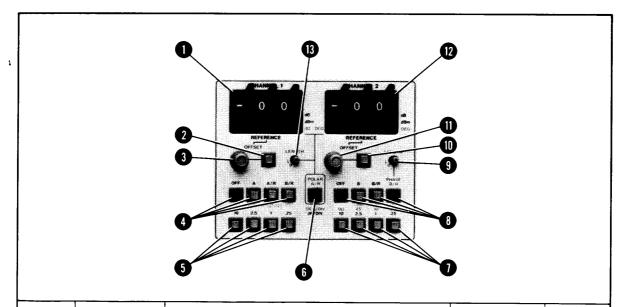

Item	Reference Designation	Description	Instrument Section	Service Sheet
0	A1S1	REFERENCE POSITION CH 1 Switch	Display	15 ©
2	A1R29	REFERENCE POSITION CH1 ♦ Control	Display	15 G
•	A1R59	HORIZONTAL POSITION Adjustment	Display	16 🐼
•	A1S7	POLAR CENTER Switch	Display	15 G
6	A1R53	POLAR CENTER ♦ Control	Display	150
•	A1S17	VIDEO FILTER Switch	Display	150, 0
Ŏ	A1S2	REFERENCE POSITION CH 2 Switch	Display	15 🔁
(8)	A1R60	HORIZONTAL GAIN Adjustment	Display	16 🙆
Ŏ	A1R47	REFERENCE POSITION CH 2 ♦ Control	Display	15 🖨
Ď	A1R52	POLAR CENTER ◆ Control	Display	15 🖸

Figure 8-118. Front-Panel Controls and Indicators, Service Sheet Locations (2 of 4)

Item	Reference Designation	Description	Instrument Section	Service Sheet
0	A22	FREQUENCY MHz Display	Source	6 ®
2	A1S3	Sweep Mode Switch	Source	5
	A1S3A	FULL 4-1300	Source	6 ₿ , 8
	A1S3B	START	Source	6 B
	A1S3C	CENTER	Source	6 B
3	A1S8	SWEEP Trigger	Source	6 B
	A1S8A	TRIG	Source	
_	A1S8B	AUTO	Source	5 5 5
4 5 6	A1S13	SINGLE SWEEP Switch	Source	5
9	A1R13	SWEEP Vernier	Source	5 @
6	A1S9	SWEEP	Source	5
	A1S9A	FAST	Source	5 5
	A1S9B	SLOW	Source	5 🕝
	A1S9C	MAN	Source	5 Ö
0	A1S14	MARKERS MHz	Source	8
	A1S14A	OFF	Source	8
	A1S14B	1	Source	8
	A1S14C	10	Source	8
_	A1S14D	50	Source	8
B	A1R17	SWEEP WIDTH MHz CAL	Source	6 B
9	A1S4	SWEEP WIDTH MHz Switch	Source	6 B , 8
(1)	R1A	TUNING Control	Source	6 A
9999	R1B	FINE TUNING Control	Source	6 A
12	A1R57	FREQUENCY MHz CAL	Source	6

Figure 8-118. Front-Panel Controls and Indicators, Service Sheet Locations (3 of 4)

ltem	Reference Designation	Description	Instrument Section	Service Sheet
0	A2S1	CHANNEL 1 REFERENCE Switch	Display	15 B
003	A1S5	CHANNEL 1 REFERENCE OFFSET Switch	Display	15 B
8	A1R24	CHANNEL 1 REFERENCE OFFSET Control	Display	15 (3)
4	A1S10	Measurement Select Switch	Display	15
	A1S10A	OFF	Display	15 🙆
	A1S10B	A	Display	15 🙆
	A1S10C	A/R	Display	15 A
	A1S10D	B/R	Display	15 A
6	A1S15	Scale Switch	Display	15
-	A1S15A	10 dB/DIV	Display	15 B
	A1S15B	2.5 dB/DIV	Display	15 B
	A1S15C	1 dB/DIV	Display	15 B
	A1S15D	.25 dB/DIV	Display	15 B
6	A1S11	POLAR A/R Switch	Display	15 A , B
0	A1S16	Scale Switch	Display	15
	A1S16A	10 dB/DIV	Display	15 ①
	A1S16B	2.5 dB/DIV	Display	15 ①
	A1S16C	1 dB/DIV	Display	15 🛈
	A1S16D	.25 dB/DIV	Display	15 D
8	A1S12	Measurement Select Switch	Display	15
	A1S12A	OFF	Display	15 A
	A1S12B	В	Display	15 🙆
	A1S12C	B/R	Display	15 🙆
_	A1S12D	PHASE B/R	Display	15 A , D
9	A1R33	PHASE B/R LENGTH Control	Display	15 (3
10	A1S6	CHANNEL 2 REFERENCE OFFSET Switch	Display	15 O
88660	A1R51	CHANNEL 2 REFERENCE OFFSET Control	Display	15 D
1	A2S2	CHANNEL 2 REFERENCE Switch	Display	15 O
B	A1R36	POLAR A/R LENGTH Control	Display	15 (3

Figure 8-118. Front-Panel Controls and Indicators, Service Sheet Locations (4 of 4)

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS

ASSEMBLY	SERVICE SHEET	DESCRIPTION
1	5 6	SWEEP pushbuttons Sweep Mode pushbuttons and SWEEP WIDTH MHz switch
	7	OUTPUT dBm control
	8	MARKERS MHz pushbuttons
A1 Front Panel	11	UNLOCKED indicator
AT FIGHT BIR	12	Absolute R measurement select
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER,
		and VIDEO FILTER
	16 19	HORIZONTAL POSN and GAIN controls All front panel controls
	6	Analog-to-digital converter for FREQUENCY MHz display.
A2 Analog Processor	15 16	Analog processor, switch control logic, and $\pm6V$ power, supplies V RAMP amplifier
A3 B Sampler	9	RF to IF down-conversion
A4 A Sampler	9	RF to IF down-conversion
A5 R Sampler	9	RF to IF down-conversion
AS VTO and IE Suitab	10	Voltage Tourse Ossillaton
A6 VTO and IF Switch	10 12	Voltage Tuned Oscillator IF Switch
A7 Source	7	RF Source
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector
A9 Phase Detector	14	Phase Detector
A10 Polar Converter	14	Polar Converter
A11 R Detector	13	R INPUT, magnitude detector
A12 Marker Generator	8	Markers
A13 Phase Lock	11	Phase Lock
A14 Phase Lock Control	11	Phase Lock loop control
A15 Shaper	6 7	Sweep width, tuning, frequency reference, and frequency display. Shaping and RF Source drive.
A16 DC Regulator	20	Low Voltage Power Supplies
A17 Sweep Generator	5	Sweep Generator
A18 Deflection Amplifiers	16	Deflection Amplifiers
A19 Rectifier	18	External Interface
rate flootillo	20	Low Voltage Power Supplies
A20 Motherboard	21	Motherboard wiring list
A21 High Voltage Power Supply	17	CRT bias and blanking control
A22 Frequency MHz Display	6	Frequency display
A23 Rear Panel	18	External Interface and Rear Panel (A23)

SERVICE SHEET 20

RECTIFIER (A19) AND DC REGULATOR (A16), CIRCUIT DESCRIPTION

The input line voltage is applied to the primary windings of transformer T1 through Power Line Module FL1. The secondary windings of T1 supply five ac voltages to the Rectifier (A19) for conversion to unregulated dc voltages. A sixth secondary winding provides 6.3 Vac, biased at -2850Vdc by the High Voltage Power Supply (A21), for the CRT filament voltage.

The Rectifier (A19) provides the following unregulated dc outputs:

- +150V UNREG for distribution
- +20V UNREG for distribution and development of a regulated +20V. (A +15V supply is developed from the regulated +20V.)
- +5V UNREG for development of +5.2Vand +5V regulated supplies
- -10V UNREG for development of -10Vand -12V regulated supplies
- -80V UNREG for distribution

Regulated supplies are provided by three-terminal regulators mounted on the Motherboard (A20) and by the DC Regulator (A16). The Motherboard (A20) provides the following regulated supplies:

- +5.2V (A20U2)
- +5V (A20U3)
- -12V (A20U1)

The DC Regulator (A16) provides the following regulated supplies:

- +20V
- +15V
- -10V

Primary power overvoltage protection is provided by a crowbar circuit in the +20V Unregulated Power Supply of the Rectifier (A19). If the instrument overheats, a chassis-mounted thermal switch removes primary power from the transformer T1. Overvoltage protection and "power on" LED indicators for all regulated supplies are in the DC Regulator (A16).

NOTE

Logic circuitry for the control of the IF Switch (A6) is included on the printedcircuit board for A19. However, the schematic of this circuitry is included in the External Interface, Service Sheet 18.

Primary Power (A)

Primary power is supplied to the primary of T1 through Power Line Module FL1, which includes a voltage-selector PC board. The voltage-selector board is positioned to provide correct power connections to T1 for operation with line voltages of 100 Vac, 120 Vac, 220 Vac, or 240 Vac. (See Figure 2-1 for correct installation of the voltageselector PC board.) Transformer primary connections for the various input line voltages are shown in Figure 8-119.

If the input line voltage exceeds the selected line voltage by approximately 40 percent, the crowbar circuit in the +20V Unregulated Power Supply of A19 fires to short across the secondary of T1 that provides the unregulated +20V. The resulting excessive current blows fuse F1 in the Power Line Module. Thermal switch S2 senses the temperature of the chassis-mounted heat sink. It opens to shut down primary power if the heat sink temperature exceeds 90°C.

The transformer T1 supplies 120 Vac through the Power Line Module to the fan B1. Suppression of radio frequency interference (RFI) is provided by the LC filter in FL1. The front - panel LINE/OFF switch S1 turns the line power on or off.

RECTIFIER (A19), CIRCUIT DESCRIPTION

NOTE

Whenever unregulated power supply output voltages are given, it is assumed that the actual input line voltage is equal to the voltage indicated on the voltage - selection PC board. Any variation in the input line voltage results in a proportional variation of unregulated power supply output voltages.

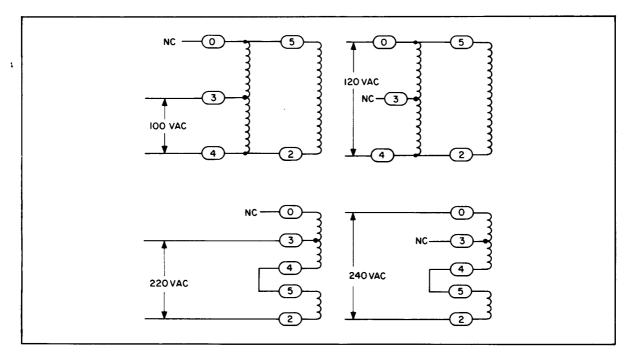


Figure 8-119. Transformer Primary Connections for Selected Line Voltages

The + 150V Unregulated Power Supply (B)

The +150V Unregulated Power Supply has an output of approximately +167V, which is distributed throughout the instrument by the Motherboard (A20).

Full-wave bridge rectifier A19CR2 converts the approximately 130-Vac output from T1 to +167 \pm 12Vdc. Overcurrent protection is provided by fuse A19F2. Capacitor A19C6 filters ac line ripple to approximately 1 Vac peak-to-peak. Capacitor A19C4 suppresses conducted RFI and A19C5 filters switching transients. Resistor A19R2 limits current to the +150V indicator LED A19DS2 and provides a discharge path for A19C6 when the power is turned off.

+ 20V Unregulated Power Supply C

The +20V Unregulated Power Supply has an output of approximately +33 Vdc, which is distributed throughout the instrument by the Motherboard (A20) and is also regulated in the DC Regulator (A16) to provide a regulated +20V. The +20V Unregulated Power Supply also provides primary power overvoltage protection against excessive input line voltage.

Full-wave bridge rectifier A19CR8-11 converts the approximately 25-Vac output from T1 to +33 ± 2.5 Vdc. Overcurrent protection is provided by fuse A20F1. Capacitor A20C1 filters ac line ripple to approximately 1 Vac peak-to-peak. Capacitor A10C11 suppresses conducted RFI, and A19C12 filters switching transients. Bleeder resistor A19R5 provides a discharge path for A20C1 when the power is turned off.

Primary power overvoltage protection is provided by the crowbar circuit across the secondary winding of T1. An overvoltage condition exists if the input line voltage exceeds the selected value by approximately 40 percent; e.g., +120 Vac selected, +220 Vac applied. This excessive line voltage causes the +20V Unregulated Power Supply output to exceed the breakdown voltage of zener diode A19VR1, which then conducts and turns on silicon-controlled rectifier (SCR) A19CR6. This places a short across the secondary of T1 that provides the unregulated +20V, blowing fuse F1 in the Power Line Module.

+ 5V Unregulated Power Supply D

The +5V Unregulated Power Supply has an output of approximately +11 Vdc, which is regulated on the Motherboard (A20) by three-terminal regulators to provide the +5.2V and +5V regulated supply voltages.

Full-wave bridge rectifier A19CR16-19 converts the approximately 10-Vac output from T1 to +11 ± 0.8 Vdc. Capacitor A20C3 filters ac line ripple to approximately 0.5 Vac peak-to-peak. Capacitor A19C7 suppresses conducted RFI, and A19C8 filters switching transients. Bleeder resistor A19R3 provides a discharge path for A20C3 when the power is turned off.

- 80V Unregulated Power Supply

The -80V Unregulated Power Supply has an output of approximately -84 Vdc, which is distributed throughout the instrument by the Motherboard (A20).

Full-wave rectifier A19CR1 converts the approximately 65-Vac output from T1 to -84 ± 6 Vdc. Overcurrent protection is provided by fuse A19F1. Capacitor A19C3 filters ac line ripple to approximately 1 Vac peak-to-peak. Capacitor A19C1 suppresses conducted RFI, and A19C2 filters switching transients. Resistor A19R1 limits current to the -80V indicator LED A19DS1 and provides a discharge path for A19C3 when power is turned off.

6.3 Vac CRT Filament Supply G

WARNING

The 6.3 Vac CRT filament voltage is biased at a potential of -2850 Vdc by the High Voltage Power Supply (A21). This voltage, if contacted, could cause personal injury or death.

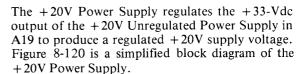
Transformer T1 supplies a 6.3-Vac filament voltage to CRT V1. The filament voltage is biased, to prevent arcing, near the CRT cathode potential by the High Voltage Power Supply (A21).

DC REGULATOR (A16), CIRCUIT **DESCRIPTION**

+ 5.2V Power Supply

The +5.2V Power Supply regulates the +11-Vdcoutput of the +5V Unregulated Power Supply in A19 to produce a regulated +5.2V supply voltage. Regulator A20U2 on the Motherboard is a threeterminal +5V regulator that is referenced 0.2V above ground by resistors A20R1 through A20R3 to produce the regulated +5.2V. Overcurrent protection is provided by fuse A20F4. If regulator A20U2 fails, overvoltage protection is provided by the crowbar circuit in the DC Voltage Regulator (A16). Zener diode A16VR7 conducts if the power supply output is greater than approximately +6.5V. SCR A16CR10 then turns on and shorts the +5.2V supply to ground, blowing fuse A20F4. The +5.2V indicator LED A16DS3 is lit when the power supply output is greater than approximately 4 Vdc.

+ 5V Power Supply


The +5V Power Supply regulates the +11-Vdc output of the +5V Unregulated Power Supply in A19 to produce a regulated +5V supply voltage. Regulator A20U3 on the Motherboard is a threeterminal +5V regulator that is referenced to ground. Overvoltage protection is provided by the crowbar circuit in the DC Regulator (A16). Zener diode A16VR10 conducts if the power supply output is greater than approximately +6.5V. SCR A16CR11 then turns on and shorts the +5.2V supply to ground, blowing fuse A20F5. The +5V indicator LED A16DS4 is lit when the power supply output is greater than approximately 4 Vdc

12V Power Supply

The -12V Power Supply regulates the -18-Vdc output of the -10V Unregulated Power Supply in A19 to produce a regulated -12V supply voltage. Regulator A20U1 on the Motherboard is a threepin - 12V regulator that is referenced to ground. Overcurrent protection is provided by fuse A20F3. The -12V indicator LED A16DS5 is lit when the power supply output is greater than approximately -9 Vdc.

+ 20V Power Supply (A)

Current Source. The current source supplies a constant current large enough to drive a series pass transistor, providing an output voltage greater than +20V. This output voltage is fed back to an error amplifier, where the output voltage is compared with a reference voltage. The error amplifier draws the extra current from the current source to lower the output voltage to a regulated +20V. The

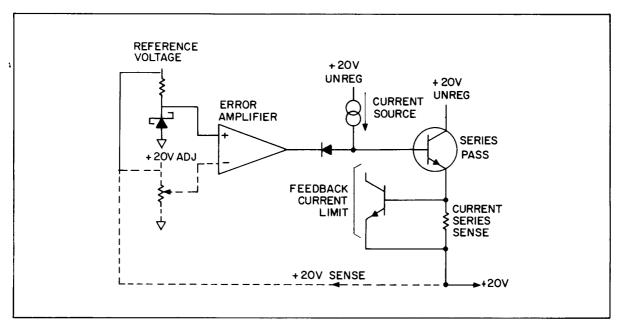


Figure 8-120, +20V Power Supply, Simplified Block Diagram

Foldback Current Limit circuit and the series sense resistor monitor the output current. If the output current is excessive in relation to the output voltage, the Foldback Current Limit circuit draws current from the current source to limit the current output.

Transistors A16Q1 and A16Q3 form a constant current source to drive the series pass transistor A20Q2. Transistor A16Q1 is normally biased on with A16Q3 monitoring the voltage drop across A16R1. If the voltage drop across A16R1 is greater than 0.65V, A16Q3 is biased on. This reduces the base-emitter bias of A16Q1 to maintain a constant current of 6.5 mA through A16R1. The current source drives series pass transistor A20Q2 to provide the supply output voltage, which is fed back to the error amplifier A16U1.

Error Amplifier. Zener diode A16VR1 maintains a +6.2V reference at the positive input to A16U1. The negative input to A16U1 is scaled by the voltage divider consisting of A16R9, +20V ADJ potentiometer A16R10, and A16R11. A16R10 is adjusted so that the reference and the +20V sense inputs to the error amplifier are equal when the power supply output is +20V. If the power supply output is greater than +20V, the error amplifier sinks more current from the current source, which reduces the series pass base drive to maintain a regulated +20V power supply output.

Foldback Current Limit. The Foldback Current Limit circuit is shown in Figure 8-121 with voltages given for a load current of 2A. Current limiting transistor A16Q2, with voltage divider A16R4, A16CR1, and A16R5 on its base, monitors the voltage drop E₁. As the load draws more current, E₁ increases because of the larger voltage drop across current sense resistor A16R3. The voltage drop E₂ is determined by resistor A16R5 and by the magnitude of the voltage drop E₁ in relation to the output voltage. When the load draws approximately 2.4A and the power supply output is +20V, E₂ becomes large enough to turn on the current limiting transistor A16Q2 to draw current from the constant current source. This causes a lower base drive voltage to A20Q2 and results in a lower power supply output voltage. If the load continues to draw excessive current in proportion to the output voltage, current limiting transistor A16Q2 remains turned on, and the power supply is effectively shut down. The current limiting operation can be checked by momentarily grounding the +20V output (A16TP3) to A16TP4 and observing that the +20V indicator A16DS2 turns back on when the ground is removed.

+20V Crowbar and Reverse Voltage Protection. Overvoltage protection is provided by the crowbar circuit consisting of zener diode A16VR2 and SCR A16CR4. If the power supply output is greater than approximately +24V, A16VR2 con-

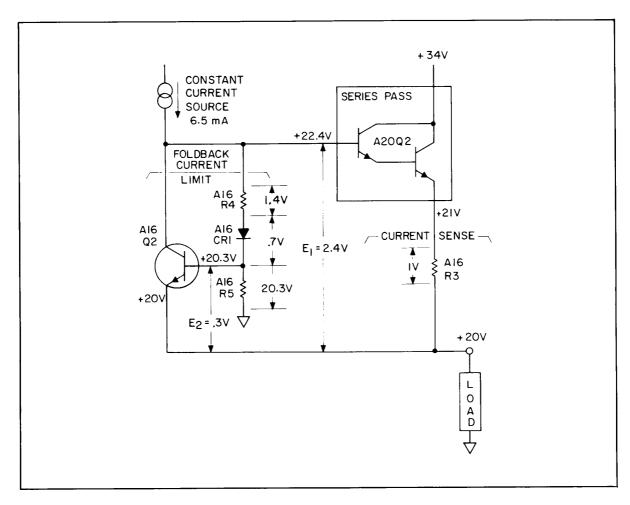


Figure 8-121. Foldback Current Limit, Simplified Schematic

ducts and A26CR4 turns on, shorting the +20V supply to ground and causing the power supply to current limit. Diode A16CR3 is a reverse voltage protection diode that prohibits the supply from being pulled negative. (The crowbar circuit protects against positive overvoltage only.) The +20V indicator LED A16DS3 is lit when the power supply output is greater than approximately +16Vdc.

- 10V Power Supply

1

The -10V Power Supply regulates the -18 Vdc output of the -10V Unregulated Power Supply in A19 to produce a regulated -10V supply voltage. Figure 8-122 is a simplified block diagram of the -10V Power Supply.

Transistors A16Q4 and A16Q5 form a constant current source that drives series pass transistor A20Q1 to provide the power supply output voltage. This voltage is fed back to the negative input of error amplifier A16U2, where it is summed with the regulated +20V power supply output. Summing resistors A16R19 and A16R21 are scaled for a zero input to error amplifier A16U2 when the power supply output is -10V. If the power supply output is more negative than -10V, the error amplifier sources more current from the current source, which reduces the series pass base drive to maintain a regulated -10V power supply output. The operation of the current source is similar to that described for the +20V Power Supply circuit. However, if the +20V supply is not on, the current source is turned off, preventing the -10V supply from turning on.

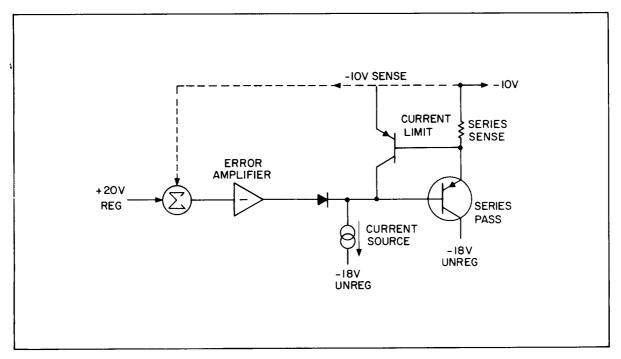


Figure 8-122. -10V Power Supply, Simplified Block Diagram

Current limiting transistor A16Q6 provides overcurrent. Its operation is similar to that of the Foldback Current Limit circuit described for the +20V Power Supply.

Overvoltage protection is provided by the crowbar circuit, which consists of zener diode A16VR5 and SCR A16CR9. When the power supply output is greater than approximately -12V, A16VR5 conducts, and SCR A16CR9 turns on, shorting the -10V supply to ground and causing it to current limit.

Reverse voltage protection is provided by diode A16CR8, which prohibits the supply from being

pulled positive. (The crowbar circuit protects against negative overvoltage only.) The -10V indicator LED A16DS1 is lit when the power supply output is greater than approximately -8 Vdc.

+ 15V Power Supply M

The +15V Power Supply output is derived by dropping the output of the +20V Power Supply across zener diode A16VR4. Overcurrent protection is provided by fuse A16F1. The +15V indicator LED A16DS6 is lit when the power supply output is greater than approximately +11 Vdc.

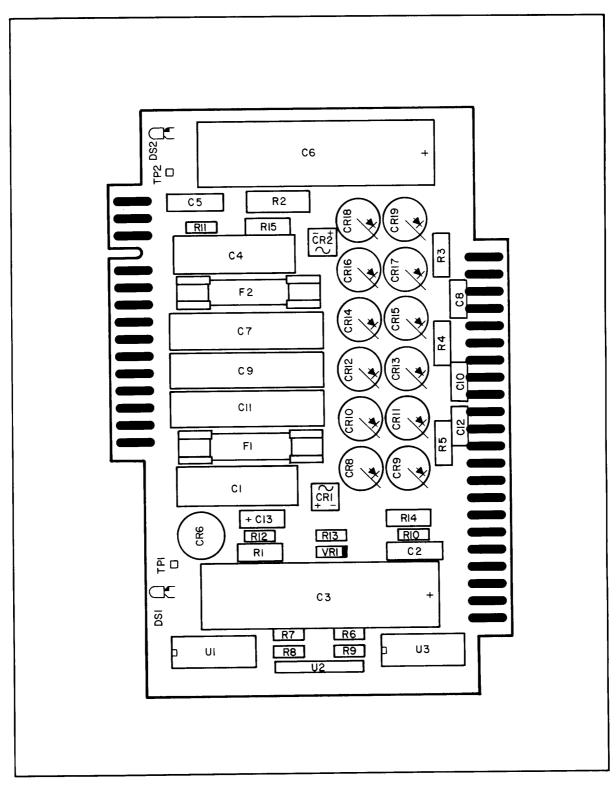


Figure 8-123. Rectifier (A19), Component Locations

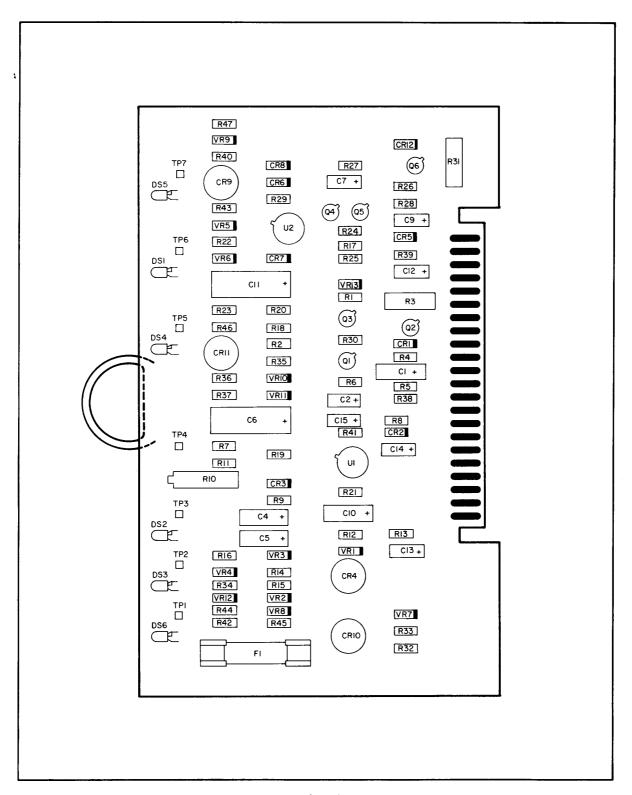


Figure 8-124. DC Regulator (A16), Component Locations

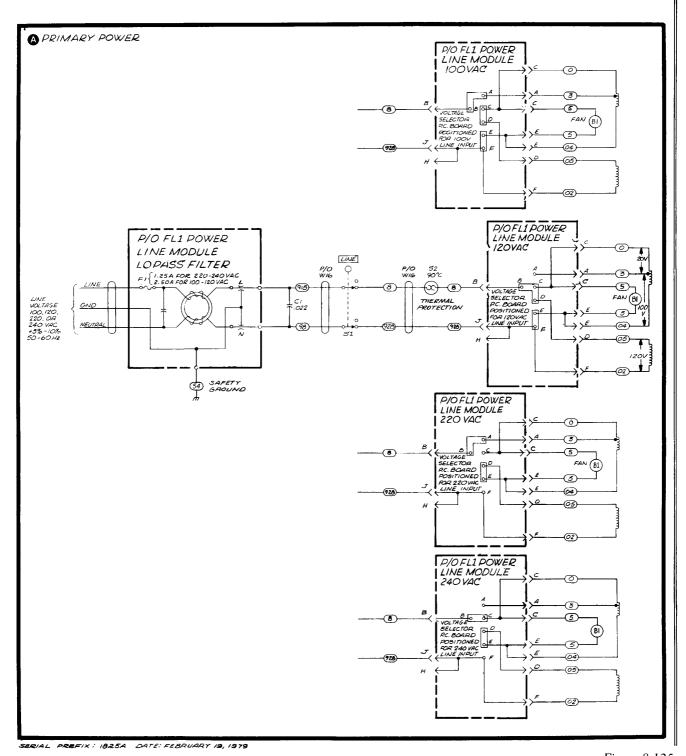


Figure 8-125. Lo

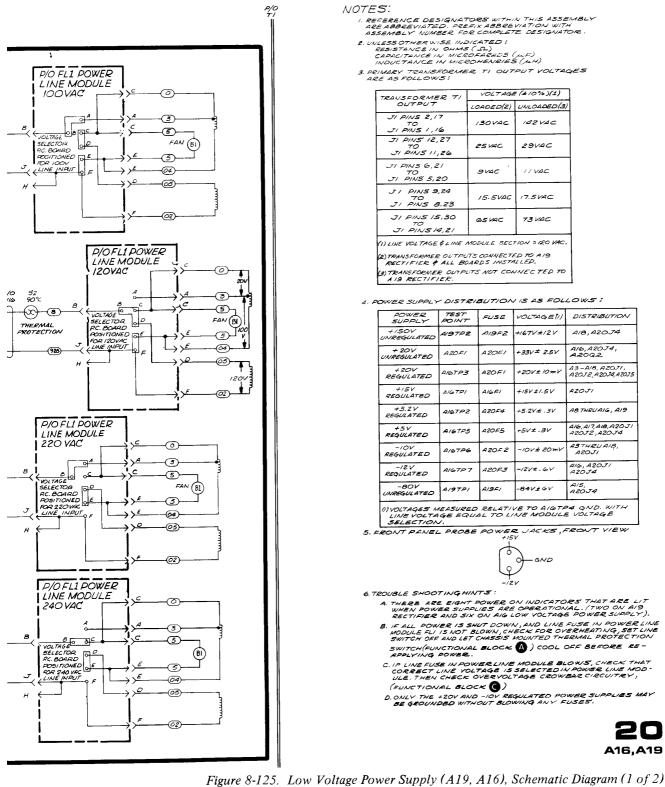
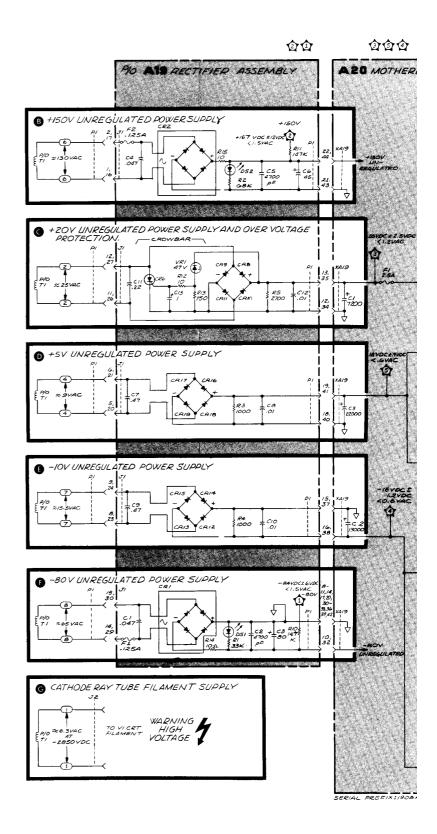
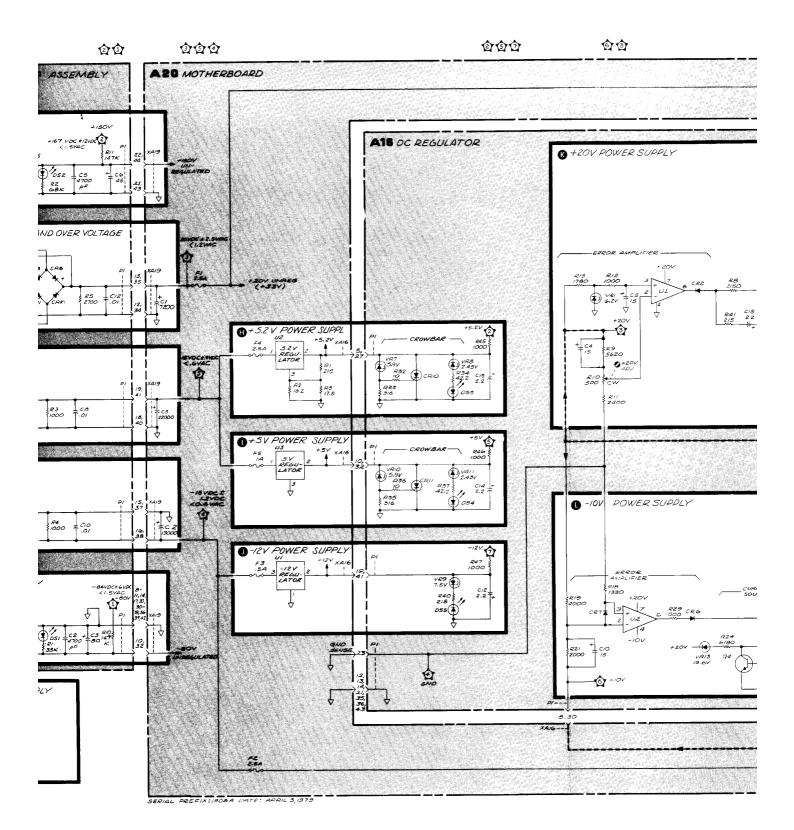


Figure 8-125. Low Voltage Power Supply (A19, A16), Schematic Diagram (1 of 2)


8-239/8-240


				P1			
_		TO /5704:	FUNCTION	PIN	SIGNAL	TO/FROM	EUNCTION BLOCK
	GNAL SV PEOBE	TO / FROM	BLOCK	/0	L B INT	A2J1-45	22307
,	POWER	XA16-1 A20	Ø	23	L REV AB	AZ3J7-10	
	ENSE	GND PLANE	80	23		A//-42	
E	20V NSE	XA15-14	60	1	L MAG BUF	A2317-19	
	+20V EN SE	420 X4/5-/4	80	3	L B IF SW	A6-10.32	
4	200	A20 XA/6-3	Ø			A2317-20	ļ
4	200	A20 XA16-25	Ø	25	L B REM	AI7 PI-20	
	NC			4	L REM BUF	A2J2-47	
ď	NC			26	L REM	A23J7-2/	
+5	. 2V	A20 UZ-OUT	0	5	~c		
+5	.2V	A20 UZ-OUT	•	27	\ \ \		<u> </u>
N	c			6	~c		
٨	IC			28	NC		ļ
٨	/C			7	+5.2	AZOUZ OUT	
N	rc .			29	+5.24	AZOUZOUF	
-/	ov	A20	0	8	∇	AZO GND PLANE	0
5E.	ov	XA/5-/8	Ŏ	30	√ ∨	AZO GND PLANE	•
5EX		XA/5-/8 AZO	0	9	▽	AZO GND PLANE	•
-10		XA/6-9 A20	0	3/	∇	AZO GND PLANE	
+51		XA16-31 A20	0	10	-80V	420 ×4/9-10	G
		U3-OUT	0	32	-80V	A20 X4/9-32	•
+51		U3-0UT	_	11		A 20 GND FLAM	<i>•</i> G
NC				33		AZO GND PL ANI	
~		A20	-	/2	+20V UNREG		9
	▽	GND PLANE		34	+20V UNREG	A 20 CI -	
		GND PLANE	!	/3	+20V UN-	A20 C1 +	
7	∇	GND PLANE	:	33	+20V UN-	A20 C1 +	6
'	$^{\triangledown}$	GND PLANE		-	REGULATED	A20	-
	∇	AZO GND PLANE	=	14	1	GND PLAN	A
	▽	GND PLANE	-	36	-IO V UNEF	GND FLAN	-
TOR	CONTROL			15	COMMON	A20 C 2	•
470R	REGUL - CONTROL		8	3	-ION UN-	A20 C2-	
ULAT		- A20 F/	0	14	REGULATED	>	9
+20V	UNREG	- A20 F1	B	31	B REGULATED	A20	<u> </u>
	+20V	A 20 Q2 - EMITTER	2 6	/	7	GND PLAN	
REG	+20V	AZO QZ-EMITTER		3		GND PLAN	_
	UNREG	420	0	74	COMMON	A20 C3	9
-/01	TED V UNREG TED		0	4	COMMON		1 0
	12 V	A20 UI-OUT	0	7	9 +5V UN- REGULATED	A20 C3+	O O
_	12V	A20 UI-OUT	Ŏ	4	+5 V UN- REGULATED		0
-/01	REGULA	- A20		2	:o \	AZO GNO PLA	VE G
-10	CONTROL V REGULA -	420	À	4	2 0	AZO GND PLAN	B
70E	<i>coimeo</i> c ∇	AZO		2	·/ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	AZO GND PLAN	•
		GND PLAN	1	a	g ∇/	AZO GND FLAN	
RE	∇ GULATE D	GND PLANE		-	22 +150V UN	- A2O	ß
	-IOV GULATED	QI-EMITTE AZO		- 1	+/50V UN REGULATEL	- A20	6
	10V	QI-EMITTE	e O	L	KEGULATEL	- 12	

10	SIGNAL	TO/FROM	BLOCK	SEE SERVICE CHEET
\neg	BINT	AZJ1-45		18
3 4	REVAB	A2317-10		
2	L MAG BUF	A11-42		18
24	H MAG	A2317-19		ļ. <u>. </u>
3 1	B IF SW	A6-10,32		18
25	LBREM	A23J7-20		
4	L REM BUF	A17 P1-20 A2J2-47		18
26	L REM	A23J7-21		
5	~c		!	
27	~c			
6	NC		[
28	~c			L
7	+5.2V	AZOUZ OUT		
29	+5.2V	AZOUZOUT		
8	▽	AZO GND PLANE	0	
30	∇	420 GND PLANE	•	
9	∇	AZO GND PLANE		
3/	▽	A20 GND PLANE		
10	-80V	AZO ×A/9-10	G	ļ
32	-80V	A20 X4/9-32	Ø	
//	∇	A 20 GND PLANE	G	
33	▽	AZO GND PL ANE	. G	
/2	+20V UNREG	A20 C1-	•	
34	+20V UNREG	A 20 CI -	•	
13	+20V UN- REGULATED	A20 C1 +	G	
35	+20V UN- REGULATED	A20 C1 +	9	
14	▽	A20 GND PLAN		İ
36	▽	A20 GND FLAN		
15	COMMON		U	
37	-IOUNREG COMMON	A20 C 2 F	0	
16	-10 V UN- REGULATED		•	
38	-IOV UN- REGULATED		9	
/7	∇	A20 GND PLAN		
39	▽	A20 GND PLAN		
18	+5V UNREG COMMON	A20 C3-	•	
40	+5V UNREG		0	
19	+5V UN- REGULATED	1	O	
41	+5 V UN- REGULATED		0	
20	∇	AZO OND PLAN		
42	▽	AZO GND PLAN		
2./	∇′	GND PLAN		
43		AZO GND FLAN		
22	REGULATED	XA19-22	B	
44	+150V UN REGULATED	- A20 X4/9-44	B	

A19 PIN SIGNAL /30V4 130VA 130 VAK NC NC NC 9VAC 9 VAC 9 VAC /5.5 l 15.5 V 9 /5.5V 15.5V ~c ~C 25 ∨A 25 VA 12 25 VA 25 VA NC 65 V4 65 V 30 65%

SIGNAL TO/FROM 130 VAC TI 130 VAC TI 130 VAC TI 130 VAC TI NC NC NC NC NC NC NC N	B B B
130 VAC T 130 VAC T	B B
130VAC T	B
NC NC NC	
NC NC	
NC NC	
1 1	
~c	1
9VAC TI	0
9 VAC FI	0
9VAC T/	0
9 VAC TI	Ø
NC NC	
· ~c	
15.5 VAC TI	G
15.5 VAC TI	3
15.5 VAC TI	Ø
15.5VAC TI	G
~c	
, vc	
25 VAC TI	•
5 25V4C F1	9
25 VAC F1	G
25 VAC TI	9
, vc	
3 NC	
65 VAC TI	•
GSVAC TI	6
G5VAC TI	0
GSVAC TI	<u> </u>

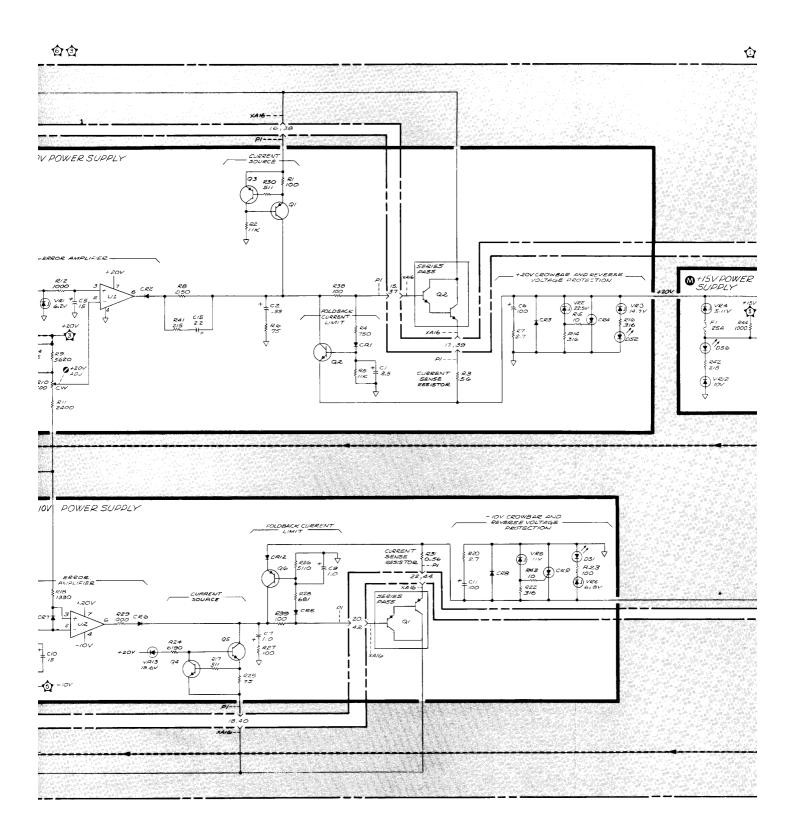


Figure 8-125. Low Vol

Service

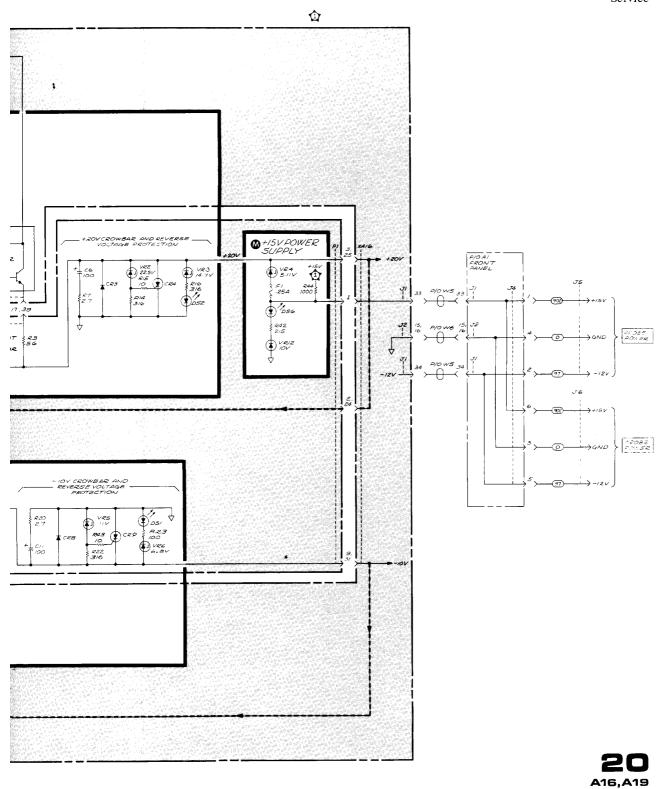


Figure 8-125. Low Voltage Power Supply (A19, A16), Schematic Diagram (2 of 2) 8-241/8-242

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS

ASSEMBLY	SERVICE SHEET	DESCRIPTION
	5	SWEEP pushbuttons
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch
	7	
		OUTPUT dBm control
	8	MARKERS MHz pushbuttons
A1 Front Panel	11	UNLOCKED indicator
	12	Absolute R measurement select
	15	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER and VIDEO FILTER
	16	HORIZONTAL POSN and GAIN controls
	19	All front panel controls
	13	All Holl panel collidos
	6	Analog-to-digital converter for FREQUENCY MHz display.
A2 Analog Processor	15	Analog processor, switch control logic, and ± 6V power supplies
	16	V RAMP amplifier
A3 B Sampler	9	RF to IF down-conversion
A4 A Sampler	9	RF to IF down-conversion
A5 R Sampler	9	RF to IF down-conversion
ACVTO LIE C	10	Valor Tarad Ordinary
A6 VTO and IF Switch	10	Voltage Tuned Oscillator
	12	IF Switch
A7 Source	7	RF Source
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector
A9 Phase Detector	14	Phase Detector
A10 Polar Converter	14	Polar Converter
A11 R Detector	13	R INPUT, magnitude detector
A12 Marker Generator	8	Markers
A13 Phase Lock	11	Phase Lock
A14 Phase Lock Control	11	Phase Lock loop control
	+	
A15 Shaper	6 7	Sweep width, tuning, frequency reference, and frequency display. Shaping and RF Source drive.
A16 DC Regulator	20	Low Voltage Power Supplies
A17 Sweep Generator	5	Sweep Generator
A18 Deflection Amplifiers	16	Deflection Amplifiers
A19 Rectifier	18	External Interface
	20	Low Voltage Power Supplies
A20 Motherboard	21	Motherboard wiring list
A21 High Voltage Power Supply	17	CRT bias and blanking control
A22 Frequency MHz Display	6	Frequency display
A23 Rear Panel	18	External Interface and Rear Panel (A23)

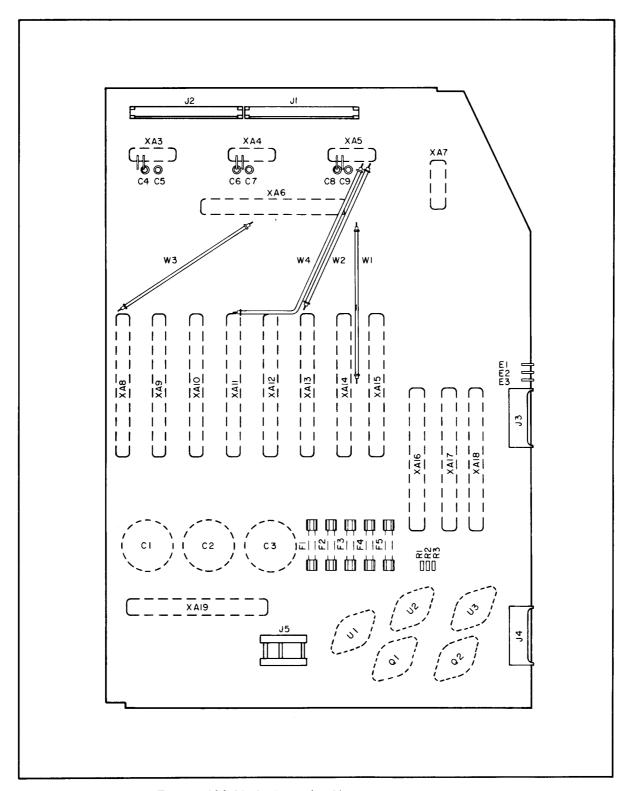


Figure 8-126. Motherboard (A20), Component Locations

		/								
				Pour Par	Second Se	SAMA O SAME S	CARIE	, MO800	42013 4000 42013	WECO.
MN	IEMONIC	SOURCE	DESCRIPTION	()	AI	A2	/ G	A2OJI	A20J2	A3
A,B	ı iF	XA6-8,30	A OR B IMHz F (OdBm RF=.2236 VRMS=.632 V p-p)	†			A20W3			
A,B	IF COM		A,B IF COMMON							
	MAG PHASE IF	XA8-4,26 XA8-22,44	A OR B MAGNITUDE (-25 mV/dB, OV = 0 dBm RF) A OR B IF BANDPASS FILTERED FOR PHASE DETECTOR	 					 	-
ACC	CEL GRID	XAI8-20	ACCELERATOR GRID (+84V)					 	 	
1 ACC		XAI4-25	I= PHASE LOCK ACQUISITION							
	CH2	XA17-2	1 * PROCESS CHANNEL 2, 0 * PROCESS CHANNEL I			JI-50	W5	50		
	PULSE F IN	A6J2 J3	VTO PULSE OUTPUT TO A SAMPLER A PORT RF INPUT	J3			W8			
	EN RF	A7U3J2	ATTENUATED REFOR PHASELOCK CONTROL (RF-21dB)	103			W3	-	 	
TUA I		AlJI-24	I= AUTO SWEEP	1	JI-24		W5	24		
L BIF		XAI9-3	I= SELECT A IF O= SELECT B IF			J2-40	W6			
_ B IN	11	A2JI-45	I=SELECT A IF O= SELECT B IF			JI-45	W 5	45	 	
 										
	STEP	XAI4-20	I BACK STEP SWEEP RAMP							
I BLA		13 XAI5-13,35	I = BLANK DISPLAY(PHASE LOCK ACQ OR FREQ > 1350 MHz)					-		
	NK/PEN XAIT	-43 XAI8-42 XAI7-22	BLANK/PENLIFT OUTPUT TO REAR PANEL BLANK/PENLIFT COMMON	+						
	ULSE	A6JI	V TO PULSE OUTPUT TO B SAMPLER	1		-	W7		 	J2(W7)
T		-		ļ						
BR		A23J7-20	REMOTE OPERATION I= DISPLAY A O= DISPLAY B							
	FIN	J4	B PORT RF INPUT	J4			W4	<u></u>		JI(W4)
	1 FLT 2 FLT	A2JI-37 A2JI-35	CHANNEL I FILTERED TO Y DEFL. AMPL 300 mV / MAJOR DIV CHANNEL 2 FILTERED TO Y DEFL AMPL 300 mV / MAJOR DIV	+		JI-37 JI-35	W5 W5	37 35		
	AN 2	A2JI-47	I = DISPLAY CHANNEL I O= DISPLAY CHANNEL 2	1		JI-47	W5	47		
-				1						ļ
	RRENT SOURCE	XAI7-24	CURRENT SOURCE (SWEEP RAMP)		JI-18		W5	18	1	
H DBL		AIJI-7	NOT USED	.	J1-7		W5	. 7	ļ	
H DBI	C IF	XA17-8 XA5-1	I*DISPLAY BLANKING PULSE R SAMPLER IF TO PHASE LOCK DISCRIMINATOR	+			A20W2		 	
	C IF COM		DISCRIMINATOR IF COMMON				ALOWE			
+				 					 	
1 DSF		AIJ2-27	I= DISPLAY R ABSOLUTE MAGNITUDE		J2-27		W6		27	
	T MKR RF	J7 AIJ2-24	4 TO I300 mHz - I3dBm NOMINAL 0 * EXTERNAL RF SOURCE	+	J2-24	ļ	W6	·	24	
	T STP SWP	A23J7-15	O = STOP SWEEP RAMP (PROGRAMMING INPUT)		VZ-24		""		24	
EXT	T SWP IN	A23J2	EXTERNAL SWEEPIN (0 - +10V)							
FYI	FOUR OU	4076	O-EXTERNAL CWEED FAMILED							
	T SWP SW T TRIG	A2351 A23J7-16	O=EXTERNAL SWEEP ENABLED O=EXTERNAL TRIGGER (PROGRAMMING INPUT)	+					 	
	ST SWP	AlJI-22	O = FAST SWEEP SPEED		JI-22		W5	22	1	
+ FEN	v .	XAI7-32	I= ENABLE FOR PHASE LOCK						Į	
FIN	E WIPER	AIJ2-3	FINE TUNING VOLTAGE	+	J2-3		W6	 	3	
. FM	IKB	XAI5-19,41	O=FULL MARKER	_				-		
	EQ REF	XAI5-19,41	FREQUENCY REFERENCE (IOmV/MHz)	+		J2-35	we	 	35	
1 FUL		AlJ1-32	I= FULL 4-1300 MHz SWEEP MODE		JI-32		W5	32		
GAI		XAI4-35	PHASE LOCK LOOP GAIN CONTROL (BCD I)						ļ	
GA	IN 2	XAI4-34	PHASE LOCK LOOP GAIN CONTROL (BCD 2)	 			,	<u> </u>		
GAI	IN 4	XAI4-33	PHASE LOCK LOOP GAIN CONTROL (BCD 4)							
L HOI		XA14-24	O= HOLD SIGNAL LEVEL OF CHI FLT AND CH2 FLT	+		JI-40	W5	40		
но	RIZ OUT	XAI8-44	HORIZONTAL OUTPUT (.IV/DIV)							
IF A		XA4-2	A SAMPLER IF OUTPUT (IMHz)	ļ						-
IFE	5	XA3-2	B SAMPLER IF OUTPUT (IMHz)	+				 	1	2
1										
	DETECT	XAI3-26	DETECTED R IF	ļ						
	MKR RF NGTH REF	XAI5-5	INTERNAL MARKER RF 4 TO 1300 MHz -25dBm TO -35dBm ELECTRICAL LENGTH REFERENCE	+	J2-23	 	W6	 	23	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	THE THE PERSON IN THE PRESENCE					<u> </u>		L

,									\display \(\text{\display} \)							
W. W.	420.12	8 SAMO.	4 SAMO,	4 SAM.	7 V70 97 1 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	70/m/08	4,805;	S PHASE S	100 A 100 A	A DETE	CCOOP MAPHER GENERA	A) A) A) A) A) A) A) A) A) A) A) A) A) A	100 COT 100 CO	SHAPE		SWEED STATO
الا	A20J2	/ & A3 [/ Q Δ4	Α5	A6	/ ら A7	A8	A9	AIO	All	AI2	AI3	Al4	AI5	Al6	AI7
\exists					8,30 → ○	— COAX —	○ ~ 2,24									
\dashv					-		2,24 -1,23 4,26 22,44			35						
							22,44	22,44								
												25	25			2
\exists			J2 (W8) JI (W3)		J3(W8)											
			JI (W3)			U3J2(WIO)							J2 (WIO)	-	+	
_					10,32											11,33
$\overline{}$															<u> </u>	
\exists															-	
												-	20 13	13,35		17,39 23
					<u> </u>										-	43 22
\exists		J2(W7)			JI(W7)											
\exists						-										
\rightarrow		JI(W4)		-			<u> </u>									
\exists																
\equiv																24
												44			†	
\rightarrow				1-	\$			COAX			9	→ 24				8
					<u> </u>							→ 1,23				
\dashv	27						42									
\exists											JI (WI2)			28		
	24															30
																44
\exists																21
\exists																19
\exists	-												21	3,25		41 32
\exists	3											-		-,		
\exists											19,41			19,41		
\rightarrow	35				<u> </u>						7,29		9	27 9,31		
=												34 33	35 34			
\exists																
\exists												32	33 24			
							<u> </u>		ļ		†					
_		2	2		5,27		-				<u> </u>					
_										<u> </u>	<u> </u>					
\exists											J2(WII)	26	29 JI(WII)			
\exists	23													5		

												,
	7			/ /						/		/ 1
						ASONAL CONTROL OF STREET						/ /
/ ,	SWEED SOLATOR	/ ,	/ ,	MOTHER BURNESS CONNECTIONS	/	/ 5 ³ / ₂ /	/	/ ,	A21JI	43 A 23	Chasse Come	
/	SWEED SILES	AN FOLLOW	₹ છ /	MOTHEROURD Compension	\ /:	Z 40/	10 MOS MO 10 MENTS 16 A CS / NCS	~~/	<i></i>	& & /	w/	\$ /
نم / م	š ' /	20/2	RECYLE IS			F.3 / \$	S \$5/	Æ.	/3		\$ / S	<u>\$</u> /
		§ / ¥	\$ / \$		/.5	& /No		α'	y /3	£ / Q		§ /
/ ζς`	\Z Z	14 3		L X SE	(0) £	10.2	5 / S / S	7/ E		\$ / \$	120	
7	(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(400	/~~	, ~ 0 0	, ~ .				/ 6 6	(
AI6	A17	AI8	A19	A20	A20J3	A20J4	A20J5		AZIJI	A23		
					 		ļ	-				1
			-									1
		20				1		W14			XVI-8	1
	2	-										<u> </u>
			-		ļ		ļ			-		1
	11 22											1
	11,33		3		1							1
 	 		1							<u> </u>		<u> </u>
												}
	17,39	ļ										1
	17,39 23 43 22	42					П	A23WI		J3 J3(COM)		1
	22						10	A23 WI		J3(COM)		}
			25				2	A23WI		J7-20		
		8			8			WI3 WI3			J8-AI	1
		9 2,24			12			WI3	 	-	J8-A2 J8-I5	1
]
	24				İ				ļ			1
	8	5,27			14			WI3			J8-9	1
				GROUND PLANE	<u> </u>				<u> </u>			}
												-
									ļ		1.2	1
								WI2			J7	1
-	30 44				 	-	17	A23WI A23WI	<u> </u>	J7-15 J2	 	1
									1			-
	21		ļ				14	A23WI A23WI	ļ	SI J7-16		1
	19 41						15	AZSWI	<u> </u>	37-16		1
+	32		 				<u> </u>	<u> </u>			<u> </u>	1
		-							1	-		}
‡			†				5	A23WI	!	J7-23		1
									†			1
 	 					<u> </u>		<u> </u>				<u> </u>
ļ												1
												1
	<u> </u>	44					9	A23WI	†	J4		1
+	 				-			<u> </u>				1
]
												21
												. — -
1	1	1	1	I	1	I	1	1	1	1	i] A20

Figure 8-127. Motherboard (A20), Wire List (1 of 4) 8-245/8-246

	_										
		/									
	//										
		,	/								
	. //	/									
	. //			PONT PAR	FRONT CORS	SAMA O SAME S	_ /	′ /	/		,
	/4/			/5	\$ & / S	\$ /	\S		HIBBON CON	8 SAM	\$ /
				/ ₄ Q [*]	\c^-/ \	^დ ` / დ	189/ .	4	We Sold	,6°/ s	₹ ' / .
	/ <u>\$</u> /			\Z :	* /	· / 2)	(K.) (K.) (K.) (K.)	, 1880 1880 1800	\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\te	\$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	8
	5			\&\ \\	7/ æ	\\ \ \ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$ \\ \frac{\dagger}{4}	\&\\&\\&\\\&\\\&\\\&\\\\&\\\\&\\\\\\\\	\&\&		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	7	(
	MNEMONIC	SOURCE	DESCRIPTION		ΑI	A2		A20JI	A20J2	A3	Α4
	LGTH	J5-7	PROGRAMMING INPUT TO SELECT ELECTRICAL LENGTH REF.								
н	LK REQ EN LOG K A/R	XAI7-10 A2JI-38	I= PHASE LOCK REQUEST ENABLE MAGNITUDE INFORMATION IN POLAR MODE				W5	38			
	MAG	XA8-35,43	A,B, or R ABSOLUTE MAGNITUDE (-25mV/dB)			JI-38 J2-42	W6	36	42		
н	MAG	A23J7-19	I=MAGNITUDE O*PHASE(PROGRAMMING INPUT TO SELECT MAG/PH	ASE OUT)							
H	MAG BUF	XAI9-2	I= PHASE O= MAGNITUDE		1						
Ė	MAG / PH OUT	XAII-20,43	MAGNITUDE / PHASE OUTPUT (-100 mV/dB; 10 mV/deg)		!						
뉴	MAN MARK	AIJI-I6 XAI8-IO	0 = MANUAL SWEEP 1 = MARKER (NORMALIZER INTERCONNECT)		JI-16		W5	16			<u> </u>
Н	MKR	XAI2-21,22,43,44	I = DISPLAY MARKER		!						
H		XAI4-43	I=MARKER ENABLE		 						
	AND I	ļ.,,,, ,,			1						
H	MKR I	AIJI - 21 AIJI - 25	O = IMHz MARKERS ENABLED O = IO MHz MARKERS ENABLED		JI-21 JI-25		W5	21			
L	MKR 50	AlJI - 27	0 = 50 MHz MARKERS ENABLED		JI-27		W5	27			
\vdash	MKR WIDTH A	AIJ2-9 AIJ2-11	I = SWEEP WIDTH 0 To 20 MHz I = SWEEP WIDTH 10 To 20 MHz or 200 To IK MHz		J2-9 J2-II		W6		9		
\vdash		1							-		
L	NORM	J8-7	O=NORMALIZED DISPLAY ENABLED								
\vdash	NORM X NORM Y	J8-A4 J8-A5	NORMALIZED X AXIS NORMALIZED Y AXIS		-				-		
\Box	NORM Z OFF I	J8- A7 A2JI-49	NORMALIZED Z AXIS O = CHANNEL OFF					40			
H	OFFI	A201-49	U-CHANNEL TOFF		 	J1-49	W5	49			
\Box											
L	OFF 2	A2JI-43	O= CHANNEL 2 OFF		<u> </u>	J1-43	W5	43			
\vdash	PHASE OFFSET	AIJI-I2 A2J2-48	OUTPUT dBM CONTROL VOLTAGE (0 To -10 V) PHASE OFFSET VOLTAGE (7.5 mV / DEGREE)		JI-12	J2-48	W5 W6	12	48		
H	POLAR	AIJ2-2I	I = POLAR A/R DISPLAY		J2-21	02-40	W6		21		
上	POLAR	XAI8-23	O=POLAR A/R DISPLAY		 						
\vdash	POLAR X	XAIO-5,27	POLAR CONVERTER OUTPUT X AXIS			JI-42	W5	42			_
	POLAR Y	XAIO-3,25	POLAR CONVERTER OUTPUT Y AXIS		!	JI-44	W5	44			
\vdash	POL MAG IF RECT PHASE	XA9-7,29 XA9-3,25	POLAR MAGNITUDE IF (IMHz) RECTANGULAR PHASE (-IOmV/deg)		J2- 29		W6		29		
	RELOCK	A23J7-24	O=REACQUIRE PHASE LOCK (PROGRAMMING INPUT)								
Н	RELOCK	A23J7-3	I=REACQUIRE PHASE LOCK (PROGRAMMING INPUT		<u> </u>						
	DEM	A07 17 01	O. DEMOTE (DOCCDAMMING MICHELL)								
L	REM BUF	A23J7-2I XAI9-4	O=REMOTE (PROGRAMMING INPUT) O=REMOTE			J2-47	w6		47		
н	RETRACE	XAI7-9,3I	1= SWEEP RETRACE								
Ľ	REV AB	A23J7-10 XA5-2	O= REVERSE A and B R SAMPLER IF OUTPUT (I MHz)				A20 W4				
H	R IF COM	XAII-4,26	R IF COMMON R MAGNITUDE (-25 mV/dB, OV = OdBm RF)			J2-36	w6		16		
	-R MAG	XAI1-39	INVERTED R MAGNITUDE (25mV/dB)			02-30			36		
H	R PHASE IF R PULSE	XAII-22,44 A6J2	R IF BANDPASS FILTERED FOR PHASE DETECTOR VTO PULSE OUTPUT TO R SAMPLER		-		W9				
	R RECT PH IF	XAIO-9,31	R RECTANGULAR PHASE IF (IMHz)								
H	R RF IN RF OUT	J2 A7U3J3	R PORT RF INPUT SOURCE RF OUTPUT (4 To 1300 MHz, 0 To +10 dBm)	J2 JI			W2 WI				
Ŧ	SET VTO	XAI4-3I	I= SET VTO FREQUENCY FOR PHASE LOCK ACQUISITION	V1							
۴	SNGL STAB	AlJI-15 R6-3	O= TRIGGER SINGLE SWEEP STABILITY CONTROL VOLTAGE FOR PHASE LOCK		JI-15		W 5	15			
	STAB RES	XAI8-41	STABILITY RESISTOR REFERENCE								
H	STP SWP SWP OUT	XAI4-28 XAI7-42	O=STOP SWEEP RAMP SWEEP RAMP OUTPUT (-5V To +5V)								
\Box	J 501	nati-76				.	†				
ш			<u> </u>		L	L	11	l		L	L

/ •/	/ æ /	/ & /	/ ,e /	/ _>/	/	ASE PHASE OF		/ &/	/ & /	/ &/	\ \&_!	/ & /	/	\\ \delta \\ \delta \\ \	
SALL.	A SAM.	A5	17 000 A1	SO SOS	4,80F	13 / 38 M	10 PO PETECOLO POPULATION POPULAT	A DETE	CCOOP WAPKER GENER	PHASE ASE		OF THE STATES		SWEED SHEED	AMP, CTON
A3	A4	A5	A6	A7	A8	A9	AIO	All	AI2	AI3	Al4	AI5	Al6	A17	AIB
						İ					17	6		10	
					35,43	1,23									
								42 20,43							
									21.22.43.44					5,27	10 32
									21,22,43,44 20,42		43				
									8,30 9,31						
									9,31 10,32 12,34 13,35						
									10,00						
															4,26 6,28
															7,29 3,25
-															
				6, 12					11,33						
				0,12			1,23								1
					-									<u> </u>	23
							5,27		!	-					
<u> </u>						7,29 3,25	3,25 7,29	17							
									 		42				
														9,31	
		2 -	- Q		COAX -		P	► 2,24 ► 1,23							
					17		22,44	4,26 39 22,44							
		J2(W9)	J2(W9)			9,31	9,31								-
		JI (WZ)		U3J3						31	31				
											37			26	41
											28			7,29 42	
<u> </u>		1	<u></u>												<u> </u>

						/_						$\overline{///}$
,	SWEED SOLATOR	SIV OF FCTION	\ \$&/	MOTHERBOARD Comecifications	ر ا	4 20 14 15 15 15 15 15 15 15 15 15 15 15 15 15	ENTS /	/ WE!	A21JI	30 00 00 00 00 00 00 00 00 00 00 00 00 0	Jane C.	S. Marie Mar
	OLA JONES OF A TOP	THE CONTRACTOR OF THE PARTY OF	PECTIE S	MOTHEROUS (Miscelling)	\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		0 10 10 10 10 10 10 10 10 10 10 10 10 10	184 J		TAN AND THE PROPERTY OF THE PAR	CHASSISSISSISSISSISSISSISSISSISSISSISSISSI	\$
AI6	AI7	AIB	A19	A20	A20J3	A20J4	A20J5		A2IJI	A23		, ·
	10						7	A23WI		J7-13		
								402141		17.10		
+			24				•	A23WI		J7-19		
			2					407		16 17 11 65		
	5,27	10			17		4	A23WI WI3		J6,J7-11,22	J8-13	
		32										
+												
					+				-	<u> </u>		
		4,26 6,28			10			WI3 WI3			J8-7 J8-A4	
		7,29 3,25			20 24 3			WI3 WI3 WI3			J8-A5 J8-A7 J8-5	
+					-			WIS			V8-3	
					6			WI3			J8-6	
		1										
		23			18			WI3			J8-12	
							<u> </u>		†			
							6 21	A23WI A23WI	ļ	J7-24 J7-3		
						<u> </u>	21	A23WI		J7-3		
-	20		26				3	A23WI		J7-2I		
	9,31		23		21,22		23	WI3 A23WI		J7-I0	J8-8,17	
				GROUND PLANE								
		<u> </u>			<u> </u>	 						
	26					16		WI4			R6-3	
	7,29	41	-		+	14	12	WI4 A23WI		JI, J7-17	R6-1	21
	42						15	72011				A20

Figure 8-127. Motherboard (A20), Wire List (2 of 4) 8-247/8-248

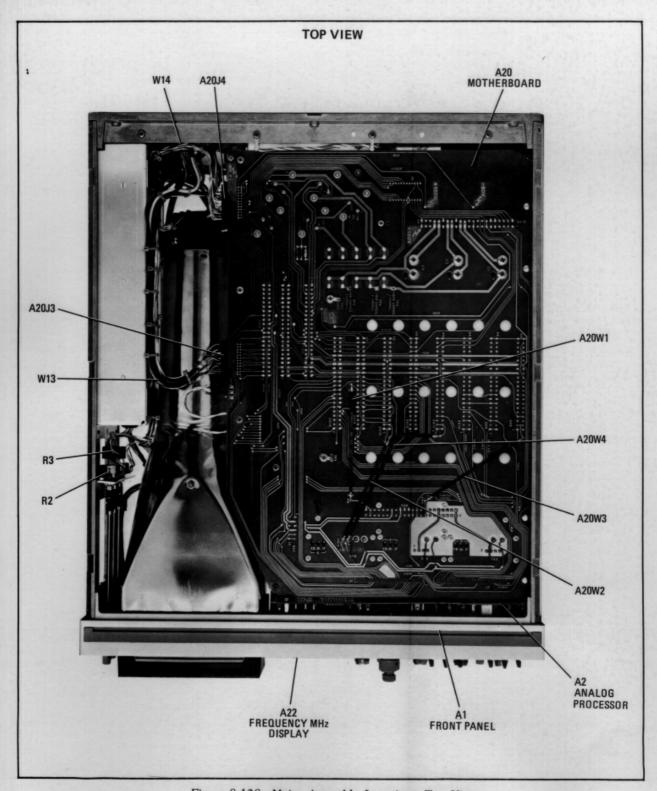
	_				· · · · · · · · · · · · · · · · · · ·	7		,	,		
		7									/
		/	/								
	, //			/	/	/ /	/	/ ,	/ /	/ ,	/
				FROM PANE	CO CO CO CO CO CO CO CO CO CO CO CO CO C	AMA O O O O O O O O O O O O O O O O O O	æ/		PIBBON CON	B SAW	æ
				\Q\(\frac{1}{2}\)	20/	Ø / C	్డ్రు/	/_	<i>Q</i> /_	Q/,	<i>y</i> /
	[5]			/ <u>\$</u>	<i>ني \</i> نو	· / 3,	<i>₩/ ५</i>	<u>,</u> /5	&/ \$\overline{\sqrt{2}}.		٤ /
	<i>\(\begin{align*} \text{2} \\ </i>			\& \&	`/ &	1 3 6	24 / SES	W W W W W W W W W W W W W W W W W W W	A B B ON CO	·/ ~	/
/\$	<i>*</i> /	/ (/	/ 4° G	/ 4		/ G	/ 4 6	/ & G	/ 40	/ 8
1	MNEMONIC	SOURCE	DESCRIPTION		ΑI	A2		A20JI	A20J2	A3	Α4
	SWEEP SPEED VERM		SWEEP SPEED CONTROL CURRENT		JI-17		W5	17			
H	TRACE ALIGN ADJ	AIJI-20 R3-3	INPUT VOLTAGE TO SWEEP INTEGRATOR CAPACITOR TRACE ALIGNMENT CONTROL VOLTAGE		JI- 20		W5	20			
H	TRIG TUNE	AIJI - 26	I= SWEEP TRIGGER LED DISPLAY VOLTAGE (O TO - 5.2V → O TO 1300 MHz)		JI-26	JI-46	W5 W5	26 46			
	TUNE	XAI5-1,23	LED DISPLAT VOLIAGE (U TU - 3.2V - U TO 1300 MHZ)			01-40	***3	40			
	TUNING V REF	XAI5-4,26	TUNING VOLTAGE REFERENCE (-6.2V)		J2-7		W6		7		
	TUNING WIPER	AlJ2-4	TUNING VOLTAGE		J2- 4		W6	13	4		
H	VERT OUT	XAI4-I XAI8-43	O= R INPUT <-40 dBm (LIGHTS UNLOCK INDICATOR) VERTICAL OUTPUT (.IV/DIV)		J1-13		W5	13			
日											
	VLO	XAI5-12,34	DRIVE VOLTAGE FOR 3.6 -4.3 GHz OSCILLATOR								
\vdash	V RAMP VSS	A2JI-36 XAI5-II,33	VOLTAGE RAMP (+1.5V → -1.5V) DRIVE VOLTAGE FOR 4.3 → 3.6 GHz OSCILLATOR			JI - 36	W5	36	ļ		
	VSWP	XAI7-18,40	VOLTAGE SWEEP RAMP (OV -++IOV)			JI-23	W 5	23			
Н	VSWP BUF	XAI4-44	VOLTAGE SWEEP RAMP BUFFERED (0-+10V)								
	VTO	XAI3-9	VOLTAGE TUNED OSCILLATOR (O TO+IOV-+O TO 30 MHz)				A20WI				
	VTO COM		VOLTAGE TUNED OSCILLATOR COMMON (GROUND PLANE)				ALUMI				
Н	VTO PRETUNE WIDTH I - 10	XAI4-30 AIJ1-31	PHASE LOCK ACQUISITION VTO PRETUNE VOLTAGE SWEEP WIDTH RAMP I TO IOMHz (-400 mV/MHz)		JI-3I		W5	31			
	WIDTH 20-IK	AiJ1-29	SWEEP WIDTH RAMP 20 TO IK MHz (-4 mV/MHz)		JI-29		W5	29			
\vdash											
	X DEFL 1 X DEFL 2	XAI8-21 XAI8-22	X AXIS DEFLECTION VOLTAGE (≈+20V TO+100V) X AXIS DEFLECTION VOLTAGE (≈+100V TO+20V)						 	 	
	Y DEFL 1	XA18-18	Y AXIS DEFLECTION VOLTAGE (≈+27V TO+9IV)					!			
-	Y DEFL 2 Z CRT	XAI8-19 XAI8-16,38	Y AXIS DEFLECTION VOLTAGE (≈+91V TO+27V) Z AXIS BLANKING & INTENSITY CONTROL (+5V=BLANK,-3V=!N*	ENSITY)				-	İ		<u> </u>
	+5V	A20U3-OUT	+5V REGULATED		JI - 39	JI-39,J2-30	W5,W6	39	30		
\vdash	+5V UNREG +5V UNREG COM	XAI9-19,41	+5V UNREGULATED +5V UNREGULATED COMMON						-		
	+5V UNREG FSD	A20F5	+5V UNREGULATED FUSED								
\vdash	+5.2V +5.2V COM	A20U2-OUT A20U2-CASE	+5.2V REGULATED +5.2V COMMON								
	·									<u> </u>	
	+5.2V UNREG FSD		+5.2V UNREGULATED FUSED								
\vdash	- IOV - IOV REG	XAI6-9,3I	- IOV REGULATED - IOV REGULATOR	-	JI-II	JI-11	W5			5(C5)	5(C7
	- IOV REG CNTRL		DRIVE TO SERIES REGULATOR								
	-IOV SENSE		SENSE POINT FOR -IOV REFERENCE			†					
	-IOV UNREG	XAI9-16,38	-IOV UNREGULATED					 			
	- IOV UNREG COM		-IOV UNREGULATED COMMON								
\vdash	-IOV UNREG FSD	A20F2 A20UI-OUT	-IOV UNREGULATED FUSED -I2V PROBE POWER		J1-34		W5	34			
	- I2V UNREG FSD	A20F3	- 12V UNREGULATED FUSED			1					+
								İ			
F	+15V PP +20V	XAI6-I XAI6-3,25	+15V PROBE POWER +20V REGULATED		JI-33 JI-14	JI-14	W5 W5	33 14	-	6(C4)	6(C6)
	+20V REG	0,20	+20V REGULATOR								
\vdash	+ 20V REG CNTRL + 20V SENSE		DRIVE TO SERIES REGULATOR SENSE POINT FOR +20V REFERENCE					<u> </u>			
F											-
						†		†	ļ		
-						 		-			+
								<u> </u>	<u> </u>	<u></u>	土 二

							Q -	\do.							Q /
PIBBON CO.	SALL SALL	A SAME	A SAW	77 A6	#21mg	4,8 OF.	40123 SAH A9	19 PA 100	R OF TE	AOLOS ASA ASA ASA ASA ASA ASA ASA ASA ASA A	PHASE OF	20 /35 /35 /35 /35 /35 /35 /35 /35 /35 /35	SHAPE SHAPE		SWEED SOULATOR
A2OJ2	A3	Δ4	A5	А6	A7	A8	A9	AIO	Ali	AI2	AI3	Al4	AI5	AI6	AI7
															28
													1,23		12,34
7													4,26 2,24		
4												1	2,27		
					7								12,34		
												10	11,33		19.40
+			-									12 44	10,32		18,40
				21,43							9	10,32			
											30	30	7, 29 8, 30		
													8,30	-	
30														10,32	13,35
														10,02	10,00
		-				16,38	16,38	16,38	16,38	16,38	16,38	16,38	16,38	5,27	
	5(C5)	5(C7)	5(C9)	14,36	4,10	18,40	18,40	18,40	18,40	18,40	18,40	18,40	18,40	9,31 22,44	15,37
													18	20,42 8,30	
		-													
														18,40 19,41	
	6(C4)	6(C6)	6(C8)	16,38	2,8	14,36	14,36	14,36	14,36	14,36	14,36	14,36	14,36	l 3,25	3,25
													14	17,39 15,37 2,24	
														,	

											
1/	SWEED SULATOR	\ \&\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/ * &/			CACO MALLER CACO MECTER SOLO SOLO SOLO SOLO SOLO SOLO SOLO SOLO		/NE		45 A 23	Chassis Come:
	OCA JOS ALLA OCA J	AMS COLOR	RECYE.	MOTHERO APO Come colone ous	2 8 K	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10 MENTS 110 10 MENTS 115	A 186.	AZIJI	E A A	N Siss of the sisser of the si
Al6	AI7	AI8	A19	A20	A20J3	A20J4	A20J5		A2IJI	A23	
	1 28										
	12,34			E2		13					R3-3,LI
		43					8	A23WI		J5	
		. 30									
	18,40	. 30			13			WI3			J8-II
							22	A23WI		J7-4	
		21				2		WI4 WI4			XVI-6 XVI-7 XVI-II
		18				5 3		WI4 WI4 WI4	5		XVI-10
		16,38				- ''		WIT			
10,32	13,35	13,35	19,41	U3-OUT C3+,F4,F5 C3-,GROUND PLANE		6		WI4			R5-2
5,27			7,29	F5, U3 - IN RI, U2-OUT							
0,61			.,	RI, R2,R3, U2 CASE							
0.71	JE 77	15		F4, U2-IN							
9,31 22,44 20,42	15,37	15,37		EI, C5, C7, C9 QI-E QI-B							
8,30											
			16,38	C2-,F2,F3 C2+,GROUND PLANE							
18,40 19,41				F2, Q1-C U1-OUT		20,22,24		WI4	4		R3-1, R4-2
				F3,UI-IN							
3,25	3,25	11,33		C4, C6, C8		7,8	18	WI4/A23WI	8	J7-14	R3-2
17,39 15,37	, -			Q2-E Q2-B							
2,24		-									
		<u> </u>					İ			İ	

Figure 8-127. Motherboard (A20), Wire List (3 of 4) 8-249/8-250

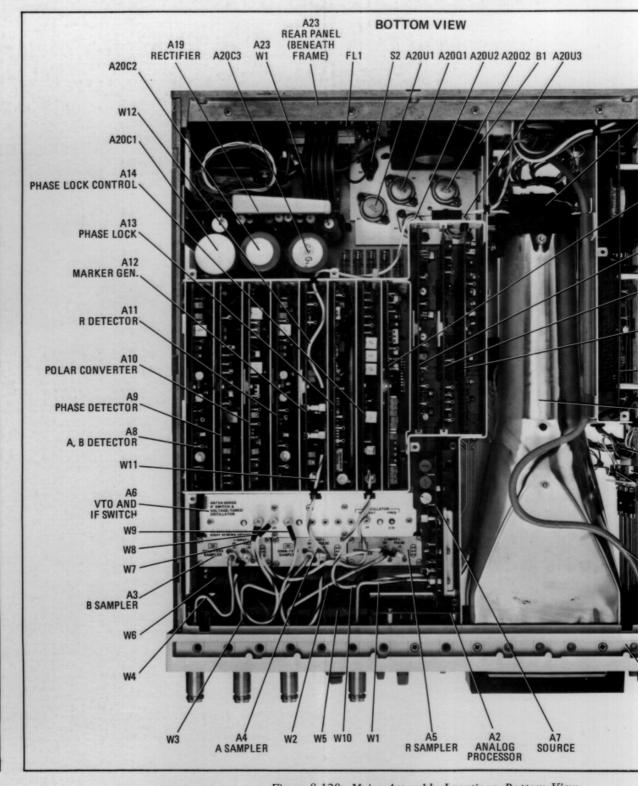
		7									
		/									_
				PONT PAIN	AL FROM: VICTORS	JAMES O	CABLE 100 F. SOP	A20JI	\$ \$\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	A3	
/				\R \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Z d	5/8				,
	MNEMONIC	SOURCE	DESCRIPTION		AI	A2		A2OJI	A20J2	A3	A
Е	+20V UNREG +20V UNREG COM	XAI9-13,35	+ 20V UNREGULATED + 20V UNREGULATED COMMON								=
	+20V UNREG FSD -80V	A20FI XAI9-I0,32	+20V UNREGULATED FUSED -80V UNREGULATED SUPPLY		-						
	+150V	XAI9-22,44	+ ISOV UNREGULATED SUPPLY								
	GND		GROUND PLANE	-		JI-41,48	W5	41.40			<u> </u>
	GND GND		GROUND PLANE		J2-1,15,16	J2-2,15,16	W6	41,48	1,2 15,16	3,4	3,
	GND GND		GROUND PLANE GROUND PLANE								
	JIV		GROUND PLANE								
	GND SENSE										_
	GNU SENSE										+-
				-							
L											=
F											
上											
											
\vdash											_
E											
F											
F								-			
E											
\vdash			·								
H											
Е											=
П											
H											
Ħ											
H											
H								-			
								L			


							<u> </u>	1							Q - /
420.15 480.00 420.15	B SAM.	4 SAME	A5 A5	7 7 0 0 0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40/mg A7	4,80%	PHASE S	AC ON A SOLO OF THE COLOR OF TH	A DETT	MANKED SCYOP	PHOSE OF		SHAPE SHAPE		SWEED SOLATOR
A20J2	A3	Α4	Д5	A6	Ar	A8	A9	AIO	All	AI2	AI3	Al4	AIS	AI6	AI7
1,2	3,4	3,4	3,4	2-4,6,7,9	3,9	3,5,6	2, 4-6,8	2,4,6,8	3,5,6	1-6,15,17	2-8,10-13,15	2-5.7.8	22,44	12-14,21	14,16
15,16				11-13,15 17-20,22 24-26,28,29 31,33-35,37, 39-42,44		8-II,I5,2I 25,27,28 30-33,37	10-13,15,17	2,4,6,8 IO-13,15,17 19-21,24,26 28,30,32-35 39,41-43	8-II,15,2I 25,27,28	23-28,37 39	2-8,10-13,15 17,19-22 27-29,35,37 39,41-43	11,15,19 26,41	37,39,42	34-36 43	36,38
														23	
					1 100 44 70										

/	',	404	& /s	\$ & /	O O O O O O O O O O O O O O O O O O O		MAC LEG	0 5/ 10 10 10 10 10 10 10 10 10 10 10 10 10 1	<u> </u>	//	\$ 8 m	<u> </u>	£ /
S SHAPES	Al6	AOLA JOS SMEE AIT	AN FOLLOR	A19 13,35	A20	A20J3	AZOJA AZOJA BOSA	0	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A2IJI	A23	CANOSIS COMO	
20	16,38 12-14,21 34-36	14,16 36,38	17,39 12,14 34,36	12,34 10,32 22,44 8,9,11,14	CI+,FI CI- GROUND PLANE FI Q2-C E3,R2,R3,U3-CASE UI- COM	1,2,5,7,9 11,15,19 23	18 23 9,10 15,17 19,21	16	WI4 WI4 WI4 WI3,WI4 A23WI	7 6	J7-12,18	R4- R5- ,J8- ,2,3,4	
	23			17,20,21,30 31,33,36 39,42,43	GROUND PLANE	23							
													2

Figure 8-127. Motherboard (A20), Wire List (4 of 4) 8-251/8-252

CROSS REFERENCE OF ASSEMBLIES TO SERVICE SHEETS


ASSEMBLY	SERVICE SHEET	DESCRIPTION
	5	SWEEP pushbuttons
	6	Sweep Mode pushbuttons and SWEEP WIDTH MHz switch
	7	OUTPUT dBm control
	8	MARKERS MHz pushbuttons
A1 Front Panel	11 1	UNLOCKED indicator
AT TORCE AND	12	Absolute R measurement select
	15	
	'5	CHANNEL 1, CHANNEL 2, REFERENCE POSITION, POLAR CENTER,
		and VIDEO FILTER
	16	HORIZONTAL POSN and GAIN controls
	19	All front panel controls
_	6	Analog-to-digital converter for FREQUENCY MHz display.
A2 Analog Processor	15	Analog processor, switch control logic, and \pm 6V power supplies
	16	V RAMP amplifier
A3 B Sampler	9	RF to IF down-conversion
A4 A Sampler	9	RF to IF down-conversion
A5 R Sampler	9	RF to IF down-conversion
A6 VTO and IF Switch	10	Voltage Tuned Oscillator
At VIO and IP Switch		
	12	IF Switch
A7 Source	7	RF Source
A8 A,B Detector	12	A INPUT AND B INPUT, magnitude detector
A9 Phase Detector	14	Phase Detector
A10 Polar Converter	14	Polar Converter
A11 R Detector	13	R INPUT, magnitude detector
A12 Marker Generator	8	Markers
A13 Phase Lock	11	Phase Lock
A14 Phase Lock Control	11	Phase Lock loop control
A15 Shaper	6	Sweep width, tuning, frequency reference, and frequency display.
	7	Shaping and RF Source drive.
A16 DC Regulator	20	Low Voltage Power Supplies
A17 Sweep Generator	5	Sweep Generator
A18 Deflection Amplifiers	16	Deflection Amplifiers
A19 Rectifier	18	External Interface
	20	Low Voltage Power Supplies
A20 Motherboard	21	Motherboard wiring list
A21 High Voltage Power Supply	17	CRT bias and blanking control
A22 Frequency MHz Display	6	Frequency display
A23 Rear Panel	18	External Interface and Rear Panel (A23)

PHASE

PO

Figure 8-128. Major Assembly Locations, Top View

_ A20W1

- A20W4

A20W3

A20W2

A2 ANALOG PROCESSOR

Figure 8-129. Major Assembly Locations, Bottom View

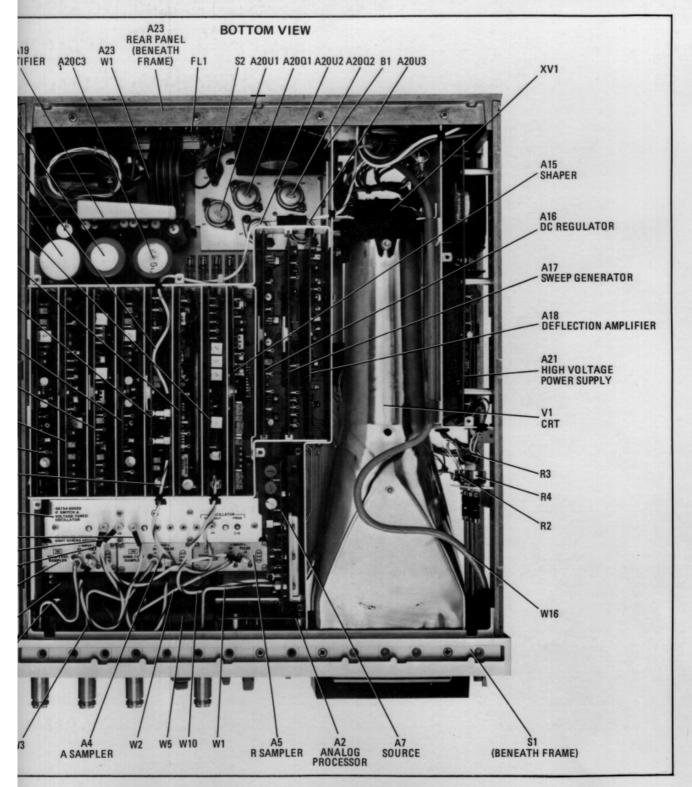


Figure 8-129. Major Assembly Locations, Bottom View