Hewlett-Packard to Agilent Technologies Transition

This documentation supports a product that previously shipped under the HewlettPackard company brand name. The brand name has now been changed to Agilent Technologies. The two products are functionally identical, only our name has changed. The document still includes references to Hewlett-Packard products, some of which have been transitioned to Agilent Technologies.

Transition de Hewlett-Packard vers Agilent Technologies

La présente documentation se réfère à un produit qui était auparavant livré sous la marque Hewlett-Packard. Cette marque a été remplacée par Agilent Technologies. D'un point de vue fonctionnel, les deux produits sont identiques et seuls leurs noms les différencient. La documentation comprend toujours des références aux produits Hewlett-Packard, même si certains possèdent déjà l'appelation Agilent Technologies.

Umbenennung Hewlett-Packard in Agilent Technologies
Diese Dokumentation gehört zu einem Produkt, das früher unter dem Markennamen Hewlett-Packard ausgeliefert wurde. Der Markenname lautet in der Zwischenzeit Agilent Technologies. Die Funktionalität der beiden Produkte ist identisch, nur der Name hat sich geändert. Im Dokument wird zum Teil immer noch auf Hewlett-Packard verwiesen. An anderer Stelle wurde die Marke in Agilent Technologies umbenannt.

Hewlett-Packard e la transizione ad Agilent Technologies
La presente documentazione è fornita a supporto di un prodotto che in precedenza veniva commercializzato con il marchio Hewlett-Packard. Tale marchio è stato traformato in Agilent Technologies. I due prodotti sono identici dal punto di vista funzionale; il cambiamento ha riguardato soltanto il nome della società. Nella documentazione sono ancora presenti riferimenti ai prodotti Hewlett-Packard, alcuni dei quali tuttavia sono passati sotto il marchio Agilent Technologies.

Transición de Hewlett-Packard a Agilent Technologies

Esta documentación proporciona información técnica sobre un producto que anteriormente se distribuía bajo el nombre de marca de la compañía Hewlett-Packard. Dicho nombre de marca ha cambiado ahora a Agilent Technologies. Los dos productos son funcionalmente idénticos, sólo ha cambiado nuestro nombre. Este documento aún incluye referencias a productos de Hewlett-Packard, algunos de los cuales han pasado a Agilent Technologies.

Изменение торговой марки Hewlett－Packard на Agilent Technologies
Эта документация относится к продукту，которьй ранее поставлялся под торговой маркой Hewlett－Packard．Teneps торговая марка изменена на Agilent Technologies，при этом функциональные возможности продукта не изменились．В документе могут встречаться ссылки на продукты Hewlett－Packard，однако некоторые из них теперь являюттся продуктами Agilent Technologies．

Hewlett－Packard가 Agilent Technologies로 변경되었습니다．
본 설명서의 내용은 Hewlett－Packard 회사 이름으로 출시된 기존의 제품에도 적용됩니다．상표명이 Agilent Technologies로 변경되었습니다．제품명만 변경된 것일뿐 기능적인 면에서는 이전과 동일합니다．설명서에는 Hewlett－ Packard 제품에 적용되는 참조사항이 포함되어 있으며，일부 제품명은 Agilent Technologies로 변경되어 있습니다．

Hewlett－PackardからAgilent Technologiesへの移行
この文書は，以前にHewlett－Packardの商標名で出荷された製品をサポートするものです。 その商標名は現在，Agilent Technologiesに変更されています。2つの商標の製品は機能的に同じですが，当社の商標のみが変更されました。この文書にはHewlett－Packard製品 に関する参照事項がまだ含まれていますが，その一部はAgilent Technologiesに移行され ています。

关于惠普公司更名为安捷伦科技公司的事宜

此文档支持先前以惠普公司（Hewlett－Packard）商标名称交付的产品。此商标名称现已更名为安捷伦科技公司（Agilent Technologies）。两个商标名称的产品在功能上完全相同，只是更改了名称。文档中仍然会提到惠普产品，但其中一些产品名称已改为安捷伦科技公司。

關於惠普公司更名爲安捷倫科技事宜
本資料支持先前以惠普公司（Hewlett－Packard）品牌交付的產品，而該品牌現已改名爲安捷倫科技（Agilent Technologies）。兩個品牌的產品功能相同，僅名稱更換而已。本資料仍含有惠普公司產品參數，但其中的一些產品名稱已改爲安捷倫科技。

HP 8901A MODULATION ANALYZER Service Manual

SERIAL NUMBERS

This manual provides complete information for instruments with serial-number prefixes: 1836A to 2916A and all major change that occur to your instrument.
rev.06NOV92

For additional important information about serial numbers, refer to "INSTRUMENTS COVERED BY THIS MANUAL" in section 1.

Fourth Edition

This material may be reproduced by or for the U.S. Government pursuant to the Copyright License under the clause at DFARS 52.227-7013 (APR 1988).

Copyright(C)HEWLETT-PACKARD COMPANY 1989
EAST 24001 MISSION AVENUE, TAF C-34, SPOKANE, WASHINGTON, U.S.A. 99220

Service Manual HP Pat 08901-90136

Other Documents Avaliatle:

Operation and Cellbration Manual HP Part 08901-90135
microfiche Operation and Calibration Manual HP Part 08901-90137
Wicrofiche Service Manual HP Part 09901-90138

CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY

This Hewlett-Packard instrument product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Hewlett-Packard Company will at its option, either repair or replace products which prove to be defective.
For warranty service or repair, this product must be returned to a service facility designated by HP. Buyer shall prepay shipping charges to HP and HP shall pay shipping charges to return the product to the Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will execute its programming instructions when properly installed on that instrument. HP does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.
NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

[^0]
SAFETY CONSIDERATIONS

CENERAL

This product and related documentation must be reviewed for familiarization with safety markings and instructions before operation.
This product is a Safety Class I instrument (provided with a protective earth terminal).

BEFORE APPLYING POWER

Verify that the product is set to match the available line voltage and the correct fuse is installed.

SAFETY EARTH GROUND

An uninterruptible safety earth ground must be provided from the main power source to the product input wiring terminals, power cord, or supplied power cord set.

SAFETY SYMBOLS

Instruction manual symbol: the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual (refer to Table of Contents.)

4
Indicates hazardous voltages.

Indicates earth (ground) terminal.

WARNing

The WARNING sign denotes a hazard. It calls attention to a procedure, practice, or the like, which, if not correctly performed or adhered to, could result in personal injury. Do not proceed beyond a WARNING sign until the indicated conditions are fully understood and met.

CAUTION

The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product. Do not proceed beyond a CAUTION sign until the indicated conditions are fully understood and met.

WAPINING

Any interruption of the protective (grounding) conductor (inside or outside the instrument) or disconnecting the protective earth terminal will cause a potential shock hazard that could resulting personal injury. (Grounding one conductor of a two conductor outlet is not sufficient protection).

Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

If this instrument is to be energized via an autotransformer (for voltage reduction) make sure the common terminal is connected to the earth terminal of the power source.

Servicing instructions are for use by service trained personnel only. To woid dangerous electric shock, do not perform any servicing unless qualified to do so.

Adjustments described in the manual are performed with power supplied to the instrument while protective covers are removed. Energy awailable at may points may, if contacted, result in personal injury.

Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source os supply.

For continued protection against fire hazard, replace the line fuse(s) only with 250 V fuse(s) of the same current rating and type (for example, normal blow, time delay, etc.) Do not use repaired fuses or short circuited fuseholders.

This instrument was constructed in an ESD (electro-static discharge) protected environment. This is because most of the semi-conductor devices used in this instrument are susceptible to damage by static discharge.
Depending on the magnitude of the charge, device substrates can be punctured or destroyed by contact or mere proximity of a static charge. The results can cause degradation of device performance, early failure, or immediate destruction.

These charges are generated in numerous ways such as simple contact, separation of materials, and normal motions of persons working with static sensitive devices.

When handling or servicing equipment containing static sensitive devices, adequate precautions must be taken to prevent device damage or destruction.

Only those who are thoroughly familiar with industry accepted techniques for handling static sensitive devices should attempt to service circuitry with these devices.
In all instances, measures must be taken to prevent static charge build-up on work surfaces and persons handling the devices.

TABLE OF CONTENTS

Section 6
 Replaceable Parts

Introduction 6-1
Abbreviations 6-1
Replaceable Parts List 6-1
Factory Selected Parts (*) 6-1
Parts List Backdating 6-1
Parts List Updating (Manual Changes Supplement) 6-1
Ordering Information 6-1
Recommended Spares List 6-2
Spare Parts Kit 6-2
Section 7
Manual Changes
Introduction 7-1
Manual Changes 7-1
Manual Change Instructions 7-5
Adding An Insulator Behind the Front-Panel Assembly 7-12
Improvements to the LO Frequency Doubler 7-12
Improvement of Flatness of the 3 kHz Low Pass Filter 7-12
Improvement of AM Flatness at 50 kHz 7-12
Improvement in Tuning to a Signal at 1200 MHz 7-12
FM Accuracy Improvement 7-12
Improvement in Flatness of the 15 kHz Low-Pass Filter 7-12
Recommended Replacement for A3U7, U8, U10, and U11 7-12
Improvement in Accuracy of Modulation
Measurements at 20 Hz Rates 7-12
Adding an Insulator to the Bottom Cover 7-13
Intermittent Connectors 7-13
Improving Drift of the Peak Detector in the Voltmeter 7-13
Cabinet Parts Color Change 7-13
Changes to Section 8 7-13
Section 8 Service
Introduction 8-1
Service Sheets 8-1
Block Diagrams 8-1
Schematics 8-1
Additional Service Sheets 8-1
Safety Considerations 8-1
Before Applying Power 8-1
Safety 8-2
Recommended Test Equipment and Accessories 8-2
Service Tools, Aids and Information 8-2
Service Support Kit 8-2
Pozidriv Screwdrivers 8-2
Tuning Tools 8-2
Heat Staking Tool 8-2
Silver Solder 8-3
Assembly Locations 8-3
Parts and Cable Locations 8-5
Test Points and Adjustment Locations 8-6
Service Aids on Printed Circuit Boards 8-6
Other Service Documents 8-7
Troubleshooting 8-7
Operating Errors 8-7
Operation Out of Specification 8-7
Catastrophic Failures 8-7
Special Functions 8-7
General 8-7
Direct Control Special Functions (Prefix 0) 8-8
Direct Control Special Function Code Format 8-8
Direct Control Special Function Applications 8-9
Service Special Functions (Prefix 40-99) 8-11
Error Messages 8-15
General 8-15
Service Errors (E30-E89) 8-16
Power-up Checks 8-17
Controller Test LEDs and Test Points 8-17
Signature Analysis 8-18
Disassembly Procedures 8-18
Repair 8-18
Factory-Selected Components(*) 8-18
Manual Backdating 8-18
Manual Updating (Manual Changes Supplement) 8-18
Etched Circuits (Printed Circuit Boards) 8-18
MOS and CMOS Integrated Circuit Replacement 8-19
Front-Panel Switch Replacement 8-19
Retrofitting Options 8-19
Schematic Symbology 8-19
Logic Symbology 8-19
Basic Logic Symbols (Gates) and Qualifiers 8-19
Indicator Symbols 8-19
Contiguous Blocks 8-19
Dependency Notation 8-19
Common Control Block 8-23
Complex Device Symbology 8-23
Shift Register 8-24
And-Or Selector 8-24
Up/Down Counter 8-24
Quad D-Type Latch 8-24
Logic Device Theory 8-25
Schmitt Tigger 8-25
ECL-to-TTL Translator 8-25
One-Shot Multivibrator 8-25
D-Type Flip-Flop (Edge-Triggered) 8-25
Four-Bit Register (Level-Triggered 8-26
Presettable Counter 8-26
Three-Bit Binary One-of-Eight Decoder 8-27
Analog Multiplezer 8-27
Digital-to-Analog Converter 8-27
Seven-Segment Decoder/Driver/Latch (Coder) 8-27
Analog Switch 8-28
Read Only Memory (ROM) 8-28
Static Random Access Memory (RAM) 8-28
Linear Device Theory 8-28
Operational Amplifiers 8-28
Comparators 8-29
Schematic Diagram Notes 8-29
Principles of Operation 8-37
Overall Instrument-Service Sheet BD1 8-37
General 8-37
RF Input 8-37
Mizer and IF 8-37
AM Demodulator 8-37
FM Demodulator 8-37
Audio Circuits 8-38
Voltmeter 8-38
Local Oscillator 8-38
Counter 8-40
Calibrators (Option 010) 8-40
Power Supplies 8-40
Controller and Remote Interface 8-40
Instrument Software Supervisor Flowchart 8-41
RF and Power Supply Sections - Service Sheets BD2 8-42
General 8-42
RF Input Assembly (A15) 8-42
Input Mirer Assembly (A17) 8-42
IF Amplifier Assembly (A18) 8-43
Local Oscillator 8-43
High Frequency VCO Assembly (A24) 8-43
Low Divider Assembly (A19) 8-43
Low Frequency VCXO and Filter Assemblies (A22 and A21) 8-43
Sampler Assembly (A23) 8-43
LO Control Assembly (A20) 8-44
Power Supply Assemblies (A10 and A26) 8-44
Audio Section - Service Sheet BD3 8-44
General 8-44
AM Demodulator Assembly (A6) 8-44
FM Demodulator Assembly (A4) 8-45
Audio Filter Assembly A2) 8-45
Audio De-emphasis and Output Assembly (A3) 8-45
Voltmeter Assembly (A5) 8-46
FM Calibrator Assembly (Option 010, A51) 8-46
FM Calibrator Assembly (Option 010, A50) 8-46
Digital and Front Panel Sections-Service
Sheet BD4 8-47
General 8-47
Counter Assembly (A11) 8-47
Controller (A13) 8-47
Instrument Bus 8-48
Keyboard and Display Assembly (A1) 8-49
Remote Interface Assembly (A14) 8-50
RF Input (A15)-Service Sheet 1 8-51
General 8-51
5.25 MHz High-Pass Filter 8-51
Input Attenuator 8-51
RF Level Detector 8-51
Detector Amplifier 8-51
Overpower Detector 8-52
Relay Drivers 8-52
Input Mixer (A17)-Service Sheet 2 8-52
General 8-52
LO Amplifier 8-52
Mixer 8-52
IF Filters 8-52
IF Amplifier (A18)-Service Sheet 2 8-52
General 8-53
IF Input Amplifier 8-53
Inverting Amplifier 8-53
IF Output Amplifier 8-53
AM Demodulator (A6)-Service Sheet 3 8-53
General 8-53
2.5 MHz Low-Pass Filter and AM IF Buffer 8-53
Voltage-Variable Amplifier 8-53
AM and Level Detector 8-55
AM Output Buffer 8-55
Level Amplifier and Carrier Filter 8-56
BW Control and Level Comparison Amplifier and Inverting Amplifier 8-56
ALC Reference 8-56
Control Current Source 8-56
AM Demodulator (A6)-Service Sheet 4 8-56
General 8-56
FM IF Buffer 8-56
IF Detector Buffer 8-56
IF Level Detector 8-56
IF Present Detector 8-56
IF Present Latch 8-56
Select Decoder and Data Latch 8-57
FM Demodulator (A4)-Service Sheet 5 8-57
General 8-57
IF Limiters 8-57
Counter IF Buffer 8-57
FM Demodulator (A4)-Service Sheet 6 8-57
General 8-57
FM Discriminator (Simplified) 8-57
Upper Clamp, Lower Clamp Regulator, and
Upper Clamp Buffer 8-57
Precision Limiter and Charge-Count Discriminator 8-58
FM Output Amplifier 8-58
Squelch Circuits 8-59
Audio Filters (A2)-Service Sheet 7 8-59
General 8-59
260 kHz Low-Pass Filters and 20 dB Attenuator 1 8-59
Amplifier 1 8-59
15 kHz and $>20 \mathrm{kHz}$ Low-Pass Filters 8-59
Amplifiers 2 and 3 and 20 dB Attenuator 2 8-59
Audio De-emphasis and Output (A3)-Service Sheet 8 8-59
General 8-59
300 Hz and 50 Hz High-Pass Filters and High-Pass Filter Switching 8-60
3 kHz Low-Pass Filter, Low-Pass Filter
Switching, and 300 kHz Pole 8-60
De-emphasis Networks and Phase Modulation Integrator 8-60
Output Amplifier 8-60
Absolute Peak Detector 8-60
Audio Overvoltage Detector 8-61
Digital Circuits 8-61
Voltmeter (A5)-Service Sheet 9 8-61
General 8-63
Peak Detector Circuits 8-63
Average Detector 8-62
Voltmeter(A5)-Service Sheet 9 8-61
General 8-63
Input Selectors and Input Clamps 8-63
Voltage-to-Time Converter 8-64
Parity Check 8-64
LO Divider (A19)-Service Sheet 11 8-64
General 8-64
Input Buffer and Doubler Circuits 8-64
Divider Circuits 8-65
Divider and Gate Decoders 8-65
Sampler (A23)-Service Sheet 12 8-65
General 8-65
Sampler 8-65
HF VCO Tune Integrator and Amplifier and Bandwidth Loop Switching 8-67
No-HF-VCO and Out-of-Lock Detectors 8-68
Power Supply Decoupling 8-69
Low Frequency VCXO (A22)-Service Sheet 13 8-69
General 8-69
9.26 and 11.26 MHz Crystal Oscillators 8-69
Double Balanced Mixer 8-70
2 MHz Low-Pass Filter and Output Amplifier 8-70
Low Frequency VCXO Filter (A21)-Service Sheet 13 8-70
LO Control (A20)-Service Sheet 14 8-70
General 8-70
Digital-to-Analog Converters 8-70
LF VCXO Tune Amplifier and Filter 8-70
DAC Control Amplifier 8-71
Track Loop Amplifier 8-71
Sweep Up and Sweep Down Current Sources 8-71
Power Supply Decoupling 8-71
LO Control (A20)-Service Sheet 15 8-71
Counter (A11)-Service Sheet 16 8-72
General 8-72
10 MHz Time Base Reference Oscillator and ECL-to-TTL Level Translator 8-72
External Time Base Buffer and Time Base
Select Switch 8-72
Time Base Dividers 8-72
Counter (A11)-Service Sheet 17 8-72
General 8-72
Stage 1 8-72
Input Selector and Stages 2, 3, and 4 8-73
Counter Output Gating 8-73
Voltmeter Gate 8-73
Signature Analyzer Initialization 8-73
Select Decoder, Data Latch, and Oven
Warm Readback Circuit 8-74
Controller (A13)-Service Sheets 18 and 19 8-74
General 8-74
Microprocessor 8-74
Memory 8-74
TEST LEDs and Test Pints 8-75
Select and Data Buffers 8-75
Enable Decoder 8-75
Power On Reset 8-75
Keyboard (A1)-Service Sheet 20 8-75
General 8-75
Keystroke Detector 8-75
Key Scanners and Front-PanelKeys 8-76
Display (A1)-Service Sheet 21 8-76
Remote Interface (A14)-Service Sheet 22 8-76
General 8-76
HP-IB I/O Circuits 8-77
Handshake Logic Circuits 8-77
Interface Control Circuits 8-79
How the Remote Interface Handshakes with the HP-IB 8-79
Remote Enable Flip-Flop 8-79
Serial Poll Enable Flip-Flop 8-80
Other Control Lines 8-80
Address Readback Circuits 8-80
Peripheral Input/Output 8-80
P/O Controller 8-80
Select Decoder 8-80
Power Supply Regulators (A10)-Service Sheet 23 8-81
General 8-81
+15V Supply 8-81
Power Supply Regulators (A10)-Service Sheet 24 8-81
General 8-81
+40V Supply 8-81
+5 V Supply 8-81
FM Calibrator (Option 010, A51)-Service Sheet 28 8-82
General 8-82
10.1 MHz VCO and Output Amplifier 8-82
Trapezoid Generation Circuits 8-82
-10V Regulator 8-83
Select Decoder and Data Latch 8-83
AM Calibrator (Option 010, A50)-Service Sheet 29 8-83
General 8-83
Input and Modulator Circuits 8-83
Amplifier/Detector 8-83
10 kHz Modulation Oscillator and Modulator Drive Circuits 8-83
Power Supply Decoupling 8-84
Select Decoder and Data Latch 8-84

Section 6
 REPLACEABLE PARTS

6-1. INTRODUCTION TO THIS SECTION

This section contains information for ordering parts. Table 6-1 lists reference designations, and Table 6-2 lists abbreviations that are used in the Replaceable Parts List. Table 6-3 lists all replaceable parts in the instrument. Table 6-4 contains the names and addresses that correspond to the manufacturer's code numbers listed in Table 6-3. Also included in this section are photographs and drawings to aid in identifying and ordering chassis mounted parts and mechanical parts.

6-2. REFERENCE DESIGNATIONS AND ABBREVIATIONS USED IN THIS MANUAL

Table 6-1 lists the reference designation letters for electrical parts in the instrument. The letter designations found in Table 6-1 are coupled with numeric designations to provide a unique reference designation for each part in the instrument. For example A17R1 is the reference designation of a particular resistor R1 on assembly A17.
Table 6-2 lists abbreviations used in the parts list and on schematics.

6-3. MECHANICAL AND CHȦSSIS PART LOCATIONS AND REFERENCE DESIGNATIONS

Most mechanical parts are identified in Figures 6-1 to 6-5. These figures are located at the end of this section. Major mechanical parts have reference designations that begin with the letters MP. To find the part number and description of a mechanical part, find the part in one of the photographs or drawings, and then look up the reference designation in Table 6-3. Mechanical hardware not shown in the figures, such as screws, are listed under the part which they attach. For example, the screws that attach the fan (B1) to the rear panel are listed under B1.

6-4. RECOMMENDED SPARES LIST

Stocking spare parts for an instrument is often done to ensure quick return to service after a malfunction occurs. Hewlett-Packard has prepared a "Recommended Spares" list for this instrument. The contents of the list are based on failure reports and repair data. Quantities given are for one year of parts support. You can request a complimentary copy of the "Recommended Spares" list from your nearest Hewlett-Packard office.
When stocking parts to support more than one instrument or to support a variety of Hewlett-Packard instruments, it may be more economical to work from one consolidated list rather than simply adding together stocking quantities from the individual instrument lists. Hewlett-Packard will prepare consolidated "Recommended Spares" lists for any number or combination of instruments. Contact your nearest Hewlett-Packard office for details.

6-5. REPLACEABLE PARTS LIST

Table 6-3 is a list of replaceable parts and is organized as follows:
a. Electrical assemblies and their components with reference designations in alphanumeric order.
b. Chassis-Mounted parts with reference designations in alphanumeric order.
c. Mechanical parts with reference designations in alphanumeric order.

Ordering Parts.

Instrument Serial Numbers.

Attached to the rear of the instrument is a serial-number plate. The first four digits and the letter are the instrument serial-number prefix. The last five digits (serial-number suffix) are unique to each instrument. When parts in the instrument are changed, the serial-number prefix of the instrument may also change. This means that sometimes a part will be listed more than once in the the replaceable parts list along with a serial-number prefix or range of serial-number prefixes. Find the serial-number prefix on the serial plate of your instrument and order the part listed under the corresponding prefix in the table. If no serial prefix information is listed, the part is compatible in instruments of all serial numbers.

NOTE

It is possible that some assemblies in your instrument have been updated (through service or retrofitting) to reflect changes made to instruments with serial-number prefixes later than that shown on your instrument serialnumber tag. Be sure to note the board number of the assembly being repaired or replaced when ordering parts for your instrument.

How to Order

To order a part in the Replaceable Parts List, call or write the nearest Hewlett-Packard Sales Office. Have the following information ready to speed the ordering process:

1. The Hewlett-Packard part number with the check digit. (The check digit will ensure accurate and timely processing of your order.)
2. The quantity required.
3. An approved purchase order number. (Sometimes required.)

NOTE
Within the USA, it is better to order directly from the HP Support Materials Organization, Roseville, California. Ask your nearest HP office for information and forms for the "Direct Order System".

Replaceable Parts List Updating (Manual Updates)

A "MANUAL UPDATES" packet is shipped with the manual, when necessary, to provide the most current information available at the time of shipment. These packets consist of replacement and addition pages which should be incorporated into the manual to bring it up to date.

Hewlett-Packard offers a Documentation Update Service that will provide you with further updates as they become available. If you operate or service instruments of different serial prefixes, we strongly recommend that you join this service immediately to ensure that you manual is kept current. For more information, refer to the Documentation Update Service reply card included in this manal, or call: Learning Products Department (509) 921-4001, or write:

Hewlett-Packard Company Learning Products Department
24001 E. Mission - TAF C-34
Spokane, WA 99220

Table 6-1. Reference Designations
REFERENCE DESIGNATIONS

Table 6-2. Abbreviations (1 of 2)

ABBREVIATIONS			
A........... ampors acaternating current	COEF $\ldots \ldots \ldots$..........erficient COM $\ldots \ldots$. common	EDP electronic data	
ACCEss mocossory	compcomposition	ELECT electroytic	kHz kiloherz
AD A...........eiliog-to-digital	CONN comme	ENT oxtornal	
AFFC......... audio troquency	${ }_{\text {CPI }}^{\text {CRT }}$...........cadmium plate	FETfarad	\$1................. Pound
$\begin{aligned} & \text { ABComatric gain } \\ & \text { control } \end{aligned}$	$\begin{aligned} & \text { CTL omplementary } \\ & \text { CW continuous wele } \end{aligned}$		LED cipitumeminting diode
AL aluminum	Cw m clock		
AM C.......	D/ digital-to-enalog	FREQ trequency	
	$\mathrm{dB} \ldots \ldots \ldots \ldots \ldots$ decibe dBm $\ldots \ldots \ldots$ decibel referred	FXD $\ldots \ldots \ldots \ldots \ldots \ldots$ fixed $\boldsymbol{g}, \ldots \ldots \ldots \ldots \ldots \ldots$ gram GE $\ldots \ldots \ldots \ldots$ gormanium	LIN tinear taper (used in parts list) LK WASH lock washar
	dc........... dircet current		LO Bow; bocal oscillator
	deg degree (temperature	GL $\ldots \ldots \ldots \ldots \ldots$ glass GRD $\ldots \ldots \ldots \ldots$ grounded) H	LOG loganthmic taper 109 parts list)
	ancoio		LPF low pass fither
$\begin{aligned} & \text { BAL belance } \\ & \text { BCD binary codod } \\ & \text { docimal } \end{aligned}$.ingiogre)	HEX ……....... hetersagynal	mer (distances)
	${ }^{\circ} \mathrm{F}$................ dogrogreo Kolvin		maxtitiampere
BD board BECU berylium copper BFO.. \qquad \qquad ocectlator beat trequercy	DEPC copositod carbon	HF high trequency	Mmegohm
			MEG meg (109) (used in parts list)
	DPDT double-pole.	Hz $\ldots \ldots \ldots$.....................tz IC IC	MFR manutacturer
		If insidide diumetar	MHz meganertz
		IF intermediate IMPG trequency impregnated	
	DVM digital voltmoter ECL eminter coupled EMF electromotive torce		
NOTE			
	All abbrevintions in the per	lat will be in upper-case.	

Thble 6-2. Abbreviations (2 of 2)

Table 6-3. Replaceable Parts

Reference	MP Part	\mathbf{C}	Cy.	Description
Desigration	Mumber	\mathbf{D}		Mfr. Min. Part Number

A1

19834 200 2443A						
A1	00901 -00034	8	1	KEYBOARD AND DISPLAY ASSEMBLY EECEST OPTIO OTO-DOES NOT MCL AIWI	28480	06801-60034
A1	0e801-6001	\bigcirc	1	KCEYEOARD ANO DISPLAY ASSEMBLY GOPT. 010 ONLY. DOES NOT WCL A1W1	29480	08901-60001
2447A and above						
AI	08301-60275	0	1	KEYBOARD AND DISPLAY ASSEMBLY (EXCEPT OPTION O1O)DOES NOT WCL AIW1	28460	08901-60275
A1	$00001-60251$	3	1	KEYBOARD ANO DISFLAY ASSEMBLY (OPT. OIO ONEY) DOES NOT WCL AIWI	28480	08s01-60261
Alct	0180-0209	7	5	CAPACTIORFXD SEUF+ 10% 10VDC TA	56289	1500338×001082
2933A to 34A4						
AIC2	0160-2055	9	71	CAPACTIOR-XD .01UF + +0-20\% 100VDC CER	09969	D0106NWB302Y5Vioszioov
AIC3	01802055	9		CAPMCTIOR-XD .01UF +e0-20\% 100VDC CER	09089	D0105NWB302Y5V1032100V
AIC4	0160-2055	9		CAPACTION-XD .01UF +60-20\% 100VDC CER	09969	D0108NWE302Y5Vi03zi00V
2477 and chove						
AIC2	0160-4632	4		CAPACTORFXD .01LF + 10% 100VDC CER	28480	0160-4332
AIC3	0160-4832	4	3	CAPACTTORFXO . D1LF +-10\% 100VDC CER	28480	0160-4832
AICH	0100-4032	4	3	CAPACTTORFXD .01LF +-10\% 100VDC CER	28480	0160-4832
A1C5	0100-2291	5	1	CAPACTIORFXD .18UF + 10% 80VOC POLYE	19701	70801MV184PK800ax
1933A 50 2643A						
AJCS	0160-2055	0		CAPACTIOP-FXD .01UF + $00-20 \%$ 100VVC CER	09969	DD106NWE302Y5V1032100V
AIC7	0160-2055	2		CAPACTIOR-XD .01UF +e0-20\% 100VVC CER	09969	D0108NWE302Y5V1032100V
AlCs	0160-2055	9		CAPACITOR-XD .01UF +80-20\% 100VDC CER	09969	DDIOENWE302Y5V1032100V
A1C9	0160-2055	9		CAPMCTORF- XD $^{\text {.01UF }}+\mathbf{8 0 - 2 0 \% ~ 1 0 0 V O C ~ C E R ~}$	09969	D0103NWB302Y5V1032100V
A1C10	0160-2055	-		CAPACTIOR-XD .01UF +60-20\% 100VOC CER	09969	DD109NWE302Y5V1032100V
AICII	0160-2055	9		CAPACTIOR + XD . $011 \mathrm{LF}+800-20 \%$ 100VDC CER	09899	DD10ENWESO2YSV1032100V
AJC12	0160-2055	9		CAPACTOR-FXD . 01 UF + +60-20\% 100VDC CER	09869	DD106NWE302Y5V1032100V
AIC13	0160-2055	9		CAPACTIORFXO .OTLF +	09869	DD106NWE302Y5V1032100V
2447A and above						
AICS	0160-4832	4	3	CAPMCTIORFXD .OTUF + -10\% 100VDC CER	29460	0160-4832
AIC7	0160-4832	4	3	CAPACTIORFXD .01UF +10\% 100VDC CER	28480	0160-4832
AICS	0160-4332	4	3	CAPACTIOR-FXD .OIUF $+10 \%$ 100VDC CER	28480	0160-4832
A1C9	0160-4832	4	3	CAPACITOAFXD .01LF + -10\% 100VDC CER	28480	0160-4832
AICIO	0160-4832	4	3	CAPMOTTORFXD .01UF + 10% 100VDC CER	28400	0160-4832
AlC11	0160-4832	4	3	CAPACTTOR-FXD .01LF + -10\% 100VDC CER	28480	0160-4832
A1CI2	0160-4832	4	3	CAPACTORFFXD .01LF + 10% 100VDC CER	24480	0160-4832
A1C33	0160-4832	4	3	CAPACTIORFXD .OTUF $+10 \%$ 100VDC CER	28480	0160-4832
2933A to 2443A						
AICI4	0160-2055	9		CAPACTIORFXO . OTLF +80-20\% 100VDC CER	00969	D0108NWE302Y5V1032100V
A1C15	0160-2055	9		CAPMCTIORFXD .01LF +60-20\% 100VDC CER	09869	DD106NWE302Y5V1032100V
AlCi6	0160-2055	9		CAPACITORFXD .01UF +80-20\% 100VDC CER	03969	D010enwese2Y5V1032100V
${ }^{17 C 17}$	0160-2055	9		CAPACTTOR-FXD .OIVF +80-20\% 100VDC CER	09969	DDIOONWB302Y5vi03z100V
AICI8	0160-2055	9		CAPACTORFXO .01UF +80-20\% 100VDC CER	08969	DD108NWE302Y5V1032100V
AlC19	0160-2055	9		CAPACTTORFXO .01UF +80-20\% 100VDC CER	00969	D010ENWE302Y5vi03z100V
Aiceo	0160-2055	9		CAPACTIOR-FXD .01UF +60-20\% 100VDC CER	09068	D010ENWE302Y5V1032100V
A1C21	0160-2055	9		CAPACTIORFXD . O1LF $+80-20 \%$ 100VDC CER	09869	Dotoenw
AIC22	0160-2055	9		CAPACTTORFXO .01UF $+80-20 \%$ 100VDC CER	09808	D010enwa302Y5V1032100V
A1C23	0160-2055	9		CAPACTIOR-PD . O1LF +80-20\% 100VDC CER	09969	DD10enwescersviczzio0v
2478 and above						

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Min. Code	Mitr. Part Number
A1CR1 \triangle	1901-1098	1	4	DIOOE-SWTCTMNG INA150 50V 200 Ma ANS	80171	INa150
A1CR2 \triangle	1901-1098	1	4	DNODE-SWITCHMNG 1N4150 50V 200MA ANS	¢N171	1N4150
AICR3 \triangle	1901-1098	1	4	DOODESWITCHMNG 1 M 15050 V 200 MA ANS	ON171	1Nat50
AICR4 \triangle	1801-1098	1	4	DODESWTCHMG 1NE 15050 V 200 MA ans	0×171	$1 \mathrm{Na150}$
AIDS ${ }^{\text {a }}$	1890.0547	0	33	LED-LANP LMMNT -2MCD F=-20MA-MAX EVR 5 5V	28480	5082-4684. SEL N
Alds2 4	$1090-0547$	0		LED-AMP LUM-ATT EMMCD F=20MA-MAX BVR $=5 \mathrm{VV}$	28480	5092-4684. SEL N
Aldss \triangle	1890-0547	0			28480	5032-468, SEL. N
A10S4 \triangle	19900547	0			28480	5032-4684, SEL N
19334 to 2201A						
AIDSS ${ }^{\text {a }}$	198000547	0		LEP-LAMP UM-WTTE2NCD H-20MA-MAX BVR $=5 \mathrm{~V}$	28480	5082-4684, SEL N
22124 and above						
AIDS5				MOT ASSICNED		
A10s6 ${ }^{\text {A }}$	1880-0547	0			28480	S082-4604, SEL N
A10S7 4	1990-0547	0			28400	$5082-4684$. SEL N
Aldse 4	1890.0547	0		LEP-UNP UMWT	28480	5082-4684, SEL N
A1059 4	1980.0547	0	24		28480	5082468 , SEL IN
Alosio ${ }^{\text {a }}$	1990-0547	0			28480	5082-4684, SEL N
A10S11 ${ }^{\text {a }}$	1890-0547	0			28480	5082-4684, SEL N
A10S12 ${ }^{\text {a }}$	1990-0547	0			28480	6082-4684, SEL IV
A10S13 4	1980-0547	0			28480	5032-4684, SEL IN
Alosid \triangle	1980-0547	0			28480	5002-468, SEL N
A1DS15 ${ }^{\text {- }}$	1990-0547	0			28480	5092-4684, SEL N
Aldsi6 A	1990.0547	0		LED-LAMP LUAWTT $=2 M C D$ FF $=20 M \mathrm{M}-\mathrm{MAX}$ EVR $=5 \mathrm{~V}$	28480	5082-4684, SEL IN
Alosit ${ }^{\text {a }}$	1990-0547	0			28480	5082-4684, SEL N
Aldisi8 ${ }^{\text {a }}$	18900547	0			28480	5002-4684, SEL IV
A1DS49 \triangle	19000547	0			28480	5082-4684, SEL N
Alds20 ${ }^{\text {a }}$	18000547	0		LPD-LAMP UMANT $=2 N C D$ FF=20MA-WAX BVR $=5 \mathrm{~V}$	28480	5082-4684, SEL N
A1Ds21 ${ }^{\text {a }}$	1980-0547	0			28480	5002-4684, SEL N
A1Ds22 4	19900547	0			28480	5082-4684, SEL N
Aldses ${ }^{\text {a }}$	19900547	0		LED-LANP UM-WNT $=2 M C D$ FF $=20 \mathrm{MA}$-MAX 8 VR $=5 \mathrm{~V}$	28480	5082-4884, SEL N
Alds24 \triangle	18900547	0			28480	5082-4684, SEL N
A1DS25 ${ }^{\text {a }}$	1990-0547	0			28480	5082-4684, SEL. NV
A1DS26 ${ }^{\text {a }}$	$1890-0547$	0		LED-LAMP UM-WT $=2$ MCD FF=2OMA-MAX BVR $=5 \mathrm{~V}$	29400	5082-4684, SEL N
A1ds27 ${ }^{\text {a }}$	1890-0547	0			28480	5092-4684, SEL N
A1ds28 Δ	1890-0547	0			28480	5082-4684, SEL N
Alds29 A	1980.0547	0		LED-LAWP UMANT $=2 M C D$ F= $=20 \mathrm{MA}-\mathrm{MaX} B V R=5 \mathrm{~V}$	28480	5082-4684. SEL IV
Alds30 ${ }^{\text {a }}$	1980-0547	0			28480	5082-4684, SEL IV
A1DS31 ${ }^{\text {a }}$	1980.0547	0			28480	5082-4684. SEL IV
Aldss2 ${ }^{\text {a }}$	1980-0547	0			28480	5082-4684. SEL IV
A1DS33 4	1980-0547	0			28480	5082-46e4. SEL IV
Alds34 ${ }^{\text {a }}$	1990-0547	0			28480	5082-4684. SEL IV
A1J1	12515169	6	4	COMUPOST TYPE .156-PN-SPCE 6-CONT	28480	1251-5169
	1251-4460	8	7	CLP-CABLE PLUG RTNG-DUAL MLINE 16 CONT	06776	RC-74
A132	1200-0507	9	10	SOCNETHC 16-CONT DP-SLDR	06776	CNC-1638-53-630
	1251-4460	8		CLP-CABLE PUGG RTNG-DUAL MLINE 16-CONT	06776	RC.74

Table 6-3. Replaceable Parts

Reference Designation	MP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Mitr. Code	Mifr. Part Number
A1MPI	$5041-0368$	8	5	KEY CAP, FULL, DARK, LED	29480	5041-0386
A1MP2	5041-0306	8		MEY CAP, FULL, DARK, LED	28460	5041-0396
AIMP3	5041.0887	8	1	KEY CAP, FULL, GREY, LED	28480	5041-0287
Almpa	8041-0319	7	7	KEY CAP, HALF, GREY, LED	28480	5041-0319
Almpes	5041-0836	3	1	KEY CAP, ${ }^{\text {¢ }}$	28400	5041-0836
A1mep	5041-0832	-	1	KEEY CAP,4*	28480	5041-0032
A1MP7	5041-0838	5	1	KEY CAP.'0	20480	5041-0838
Almpr	5041-0386	8		KEY CAP, FUL, DARK, LED	28480	5041-0385
A1MP9	5011-0319	7		KEY CAP, HALF, GREY, LED	20480	5041-0319
ATMPIO	5041-0747	5	2	KEY CAPFULL, ARROW	28480	5041-0747
A1mpl1	5041-1671	6	1	KEY CAP, FLCL MHE	28480	5041-1671
A1MP12	5041.0319	7		MEY CAP, HALF, GREY, LED	28480	5041-0319
A1MP13	5041-0837	4	1	KEY CAP, FuL, ${ }^{\text {c }}$	29400	5041-0837
A1MPP4	5041-0033	0	1	KEY CAP, FULL ${ }^{\circ}$	23460	5041-0833
A1MP15	6011-0029	4	1	KEY CAP,FUL, ${ }^{\text {-1 }}$	28480	5041-0829
AIMP16	5041-0386	8		KEY CAP, FUL, DARK, LED	28480	5041-0396
A1MP17	5041 -0252	7	11	KEY CAP. QUARTER. LED	28400	5041-0252
A1MP18	5041-0839	6	1	KEY CAP, FUL, DECMAL	28480	5041-0839
A1MP19	5041-0747	5		KEY CAP, FUL, ARRROW	28480	5041-0747
A1mp20	5041-0319	7		KEY CAP, MALF, GREY, LED	28480	5041-0319
A1MP21	5041-0319	7		KEY CAP, MALF, GREY, LED	28480	5041-0319
A1mpe2	6041-0034	1	1	KEY CAP, FUL ${ }^{\text {Co }}$	28480	5041-0834
A1MPP23	5041-0830	7	1	KEY CAP, FULL, ${ }^{2}$	28480	5041-0830
A1MP24	5041-0386	8		KEY CAP. FULL OARK, LED	28480	5041-0386
A1MP25	5041-0508	6	1	KEY CAP, HALF, GREEN	28460	5041-0508
ATMP26	5041-1672	7	1	KEY CAP, FULL, CLEAR	28480	5041-1672
A1MPP27	5041-0319	7		KEY CAP, HALF, GREY, LED	28480	5041-0319
Aimpres	5041-0319	7		KEY CAP, HALF, GREY, LED	28480	5041.0319
A1mplis	5041-0835	2	1	KEY CAP, PULL, 7	28480	5041-0835
A1Mmp30	5041-0831	8	1	KEY CAP, FULLer	29480	5041-0831
A1mpe31	5041-0252	7		KEY CAP, OUARTER, LED	26480	5041-0252
Ainmps2	5041-0252	7		KEY CAP, QUARTER, LED	28480	5041-0252
A1MP33	5041-0252	7		KEY CAP, OUARTER, LED	28400	5041-0252
A1MP34	$5041-0252$	7		KEY CAP, OUARTER, LED	28480	5011-0252
A1MP35	5041-0252	7		KEY CAP, OUARTER, LED	28480	5041-0252
A1mpes	5041-0252	7		KEY CAP, OUARTER, LED	29480	5041-0252
A1MP37	5011-1685	8	1	KEY CAP, QUARTER, LCL*	28480	5041-1665
A1mp38	5041-0252	7		KEY CAP, OUARTER, LED	28480	5041-0252
A1MP39	5041-0252	7		KEY CAP, QUARTER, LED	28480	5041-0252
A1MP40	5041-0252	7		KEY CAP, OUARTER, LED	28480	5041-0252
A1MP41	5041-0252	7		KEY CAP, OUARTER, LED	28460	5041-0252
A1R1	1810-0208	0	2	METWORK-RES E-SLP 68.OK OHM $\times 7$	C1433	750-81
A1R2	1810-0205	7	2	NETWORK-RES E-SIP 4.7K OTM $\times 7$	C1433	75081
A1R3	1810-0205	7		NETWORK-RES 8-SP 4.7 K OWM $\times 7$	C1433	$750-81$
AlRa	1810-0207	9	1	METWORK-RES B-SP 22.0 K OHW $\times 7$	C1433	$750-1$
A1R5	0757-0199	3	14	RESISTOR 21.5K $+1 \%$.125W TF TC=0+100	12488	CT4-1/R-T0-2152-f

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Mfr. Code	Mifr. Part Number
A1R6				not assicned		
A1R7				MOT ASSIENED		
AlRa	1810.0208	0		NETWORK-RES 8-SIP E8.OK OHM $\times 7$	C1433	$750-81$
A1R9	0090-0092	7	23	RESISTOA $464+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-4640-F
Alrio	0980-3453	2	2	RESSTOR 196K +1\% .125W TF TC=0+100	12498	CT4-1/8-TO-1963-F
A1R11	0757-047	4	2	RESISTOR 16.2K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/0-T0-1622-F
AlR12	0000-3444	8	18	RESISTOR $215+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-70-215R-F
A1R13	0epe-3411	8		PESISTOR 215 +1\% .125W TF TC=0+100	12488	CT4-1/8-T0-215R-F
AlR14	0090-3441	8		RESISTOR $215+1 \%$, 125W TF TC=0+100	12498	CT4-1/0-T0-215R-F
A1R15	Depe-3441	8		RESSTOR $215+1 \%$, 125W TF TC= $0+100$	12498	CT4-1/8-T0-215R-F
A1R16	000e-3441	8		RESESTOR $215+1 \%$. 125 W TF TC=0 -100	12498	CT4-1/8-T0-215R-F
AlR17	0epers41	8		RESESTOR $215+1 \% .125 W$ TF TC=0+100	12488	CT4-1/8-T0-215R-F
Ath18	0800-3441	8		RESTSTOR $215+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-215R +
AlR19	0688-3441	8		RESISTOR $215+1 \%$.125W TF TC=0+100	12498	CT4-1/8-T0-215R-F
A1R20 ${ }^{\text {a }}$	1810-0229	5	5	NETWORK-RES \&-SIP 330 OHM X 7	28400	1810.0289
1933A to 2201A						
A1R21 ${ }^{\text {a }}$	$0800-3445$	2	3	RESISTOR 348 +-1\% .125W TF TC=0+100	12498	CT4-1/8-T0348R-F
22121 and above						
Alf21				NOT ASSICNED		
A1r22 ${ }^{\text {a }}$	1610-0229	5	5	NETWORK-RES 8-SIP 330 OHM $\times 7$	28480	1810-0229
A1prs \triangle	1810-0229	5	5	NETWORK-RES B-SIP 330 OHM $\times 7$	28480	1810-0229
A1R24 \triangle	0850-3445	2	3	RESISTOR $348+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-348R-F
AIR25 ${ }^{\text {- }}$	0098-3445	2	3	RESISTOR $348+\mathbf{1 \%}$. 125 W TF TC $=0+$-100	12498	CT4-1/8-T0-348R-F
A1R26 ${ }^{\text {a }}$	1810-0229	5	5	NETWORK-RES 8-SIP 330 OHM $\times 7$	28480	1810-0229
A1R27 \triangle	1810-0229	5	5	NETWORKRES 8-SPP 330 OHM $\times 7$	28480	1810-0229
1933A to 2443A						
AlROS-R35				NOT ASSIGNED		
2447A and above						
A1P28	1810-0402	6	8	NETWORK-RES 16-DIP330.0 OHM $\times 8$	28480	1810.0402
A1R29	18100402	6	8	METWORK-RES 16-DP330.0 OHM $\times 8$	28480	1810-0402
AlR30	1810-0402	6	8	NETWORK-RES 16 -DIP 330.0 OHM $\times 8$	28480	1810-0402
AlR31	1810-0402	6	8	NETWORK-RES 16-DIP330.0 OHM $\times 8$	28480	1810-0402
A1R32	18100402	6	8	NETWORK-RES 16-DIP 330.0 OHM $\times 8$	28480	1810-0402
AlR33	18100402	6	8	NETWORKKRES 16-DP3330.0 OHM $\times 8$	28460	1810-0402
AlR34	1810-0402	6	8	NETWORK-RES 16 -DP33 30.0 OHM X 8	28480	1810-0402
AlR35	1810-0402	8	8	NETWORK-RES 16-DIP330.0 OHM $\times 8$	28460	1810-0402
A1S1	5060-8436	7	41	PUSHEUTTON SWITCH. PC MOUNT	28480	5060-9436
A152	5060-9436	7		PUSHBUTTON SWITCH, PC MOUNT	28460	5050-9436
A153	5060-9436	7		PUSHEUTTON SWITCH, PC MOUNT	28480	5060-9436
A1S4	5060-9436	7		PUSHBUTTON SWITCH, PC MOUNT	28480	5060-9436
A155	$5080-8436$	7		PUSHEUTTON SWITCH, PC MOUNT	28480	5060-9436
A156	50609436	7		PUSHBUTTON SWITCH. PC MOUNT	28480	5060-9436
A157	5050-9436	7		PUSHEUTTON SWITCH, PC MOUNT	28480	5060-9436
A158	5050-9436	7		PUSHEUTTON SWITCH, PC MOUNT	28480	5050-9436
A159	50609436	7		PUSHEUTTON SWTTCH, PC MOUNT	28480	5060-9436
A1510	5080-9438	7		PUSHEUTTON SWITCH, PC MOUNT	28480	5060-9436

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C	Cty.	Description	Mitr. Code	Mitr. Part Number
Aisil	5050-0436	7		PUSHEUITON SWITCH, PC MOUNT	28400	5060-9436
${ }^{1512}$	5050-9436	7		PLSHEUTTON SWITCH, PC MOUNT	28480	5060-9436
Alsi3	5000.0436	7		PUSHBUTTON SWITCH, PC MOUNT	28460	5060-9436
Ais14	$5050-9438$	7		PUSHEUTION SWITCH, PC MOUNT	28480	5060-8436
A1S15	5060.9436	7		PUSHBUTTON SWITCH, PC MROUNT	28400	5060-9436
A1S16	50800406	7		PUSHBUTTON SWITCH, PC MOUNT	28480	5060-9436
A1517	5050-9436	7		PUSFBUTTON SWITCH, PC MOUNT	28480	5050-9436
A1518	5050-9436	7		PUSHBUITON SWITCH, PC MOUNT	28480	5050-9436
${ }^{\text {A }} 1518$	5060-9436	7		PUSHBUTTON SWITCH, PC MOUNT	28480	5060-9436
A1520	5060-9436	7		PUSFEUTTON SWITCH, PC MOUNT	28480	5060-9436
A1521	50808435	7		PUSHEUTTON SWITCH, PC MOUNT	28480	5060-9436
A1s22	5060-9436	7		PUSHEUTTON SWITCH. PC MOUNT	28480	5060-9436
A1523	$5060-9436$	7		PUSHEUTTON SWITCH, PC MOUNT	28480	5080-9436
A1s24	8030-9438	7		PLSHBUTTON SWITCH, PC MOUNT	28460	5050-9436
A1525	50609456	7		PUSHBUTTON SWITCH, PC MOUNT	28480	5050-9436
A1596	5800.9436	7		PUSHEUTTON SWITCH. PC MOUNT	28480	5060-9436
A1527	5080-9436	7		PUSHEUTTTON SWITCH, PC MOUNT	28480	5080-9436
A1528	$5060-936$	7		PUSHEUTTON SWITCH, PC MOUNT	28400	5050-9436
A1529	$5060-9436$	7		PUSHEUTTON SWITCH, PC MOUNT	28480	5050-9436
A 3530	50609436	7		PUSHEUTTION SWITCH, PC MOUNT	28480	5060-9436
A1531	5060-9436	7		PUSHBUTTON SWTTCH, PC MOUNT	28480	5060-9436
A1532	5060-9436	7		PUSHEUTTON SWITCH, PC MOUNT	28480	5050-9436
A1533	5080-9436	7		PLSHBUTTON SWITCH, PC MOUNT	28480	5060-9436
A1534	$5060-936$	7		PUSHEUTTON SWITCH, PC MOUNT	28480	5050-9436
A1535	50609436	7		PUSHEUSTTON SWITCH, PC MOUNT	28480	5060-9436
A1536	5060-9436	7		PUSMEUTTON SWTTCH, PC MOUNT	28480	5060-9436
A1537	5060-9436	7		PUSHEUTTON SWITCH, PC MOUNT	28480	5060-9436
A1538	5060-9436	7		PUSHEUTTON SWITCH, PC MOUNT	28480	5050-9436
A1539	5080-9436	7		PUSHEUTTON SWITCH, PC MOUNT	28460	5050-9436
A1540	5060-9436	7		PUSHEUTTON SWTTCH, PC MOUNT	28480	50508436
A1S41	5080.9436	7		PUSHBUTTON SWTTCH, PC MOUNT	28480	5080-9436
A1TP9	1251-0600	0	83	COWECTOASEL CONT PMN 1.14-MABSC-SZ SO	12360	24-155-1010-01-03-00
AltP2	1251-0600	0		COWNECTOR-SCL CONT PW 1.14 -ma-BSC-SZ SO	12360	94-155-1010-01-03-00
A1TP3	1251-0800	0		COWECTOR-SEL CONT PIN 1.14-MM-BSC-SZ SO	12360	24-155-101001-03-00
Altpa	1251.0600	0		CONWECTORSGL CONT PN $1.14 \mathrm{MAM-BSC} 2 \mathrm{SO}$	12380	94-155-1010-01-03-00
AITPS	1251-0800	0		COMNECTOR-SEL CONT PW 1.14 MM MSCSE SO	12360	94-155-101001-03-00
1933A to 2433A						
A1UL-U8		7	8	DLSPLAYAUMESEG 1-CHAR .43H	28480	5092-7751
	12000000	8	8	SOCKETHC 14CONT DP DIPSUDR	06776	$1 \mathrm{CN} 143-52$
2447 and above						
AIUI	$1090-0574$	3		DSPLAYAMMSEG 1-CHAR .43-H	29480	1990-0574
	12000008	8		SOCKETHC 14-CONT OP DIP-SLDA	06776	1 CN -143-52
AIU2	1990-0574	3		DSPLAY AMMESEG 1-CHAR .43-H	28480	1890-0574
	12000003	8		SOCKETHC 14-CONT DPP DP-SLDR	06776	$120 \times 143-52$
AIU3	1900-0574	3		OUSPLAY HMASEE 1-CHAR .43-H	28460	1990-0574
	12000003	8		SOCKETHC 14CONT DIP DP-SLDR	05776	1CNH43-52
AlU4	19000574	3		DISPLAYAMMESEG 1-CHAR A3-H	23460	1990-0574
	12000003	8		SOCKETHC 14CONT DIP DPPSLDR	08776	16n+143-52
AIUS	1930-0574	3		DSPPAYMLMSEE 1-CHAR .43-1	28460	1990-0574
	1200-0603	8		SOCXETCC 14CONT DPP DP-SLDA	05776	1CN+143-52
AlU6	1890-0574	3		DSPLAYHUMEEE 1-CHAR . 43 H	28480	1990-0574
	1200-0003	8		SOCKETHC 14CONT DPP DP-SLDA	00776	$1 \mathrm{CN} 143-52$
AIU7	$1090-6574$	3		CSSPLAYHMMSEG 1-CHAR .43H	28480	1890.0574
	12000800	8		SOCXETHC 14-CONT DP DP-SIDA	06776	$1 \mathrm{CN}+143-52$
A1U8	1990-0574	3		DISPLAYHMMSEG 1-CHUR .43H	28480	$1980-0574$
	1200-0803	8		SOCXET+C 14CONT DPP DPPSLDR	05776	$1 \mathrm{CN}+143-52$

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	\mathbf{C}	Cly.	Description	Mir. Code	Mifr. Part Number
A1u9	1820-0839	4	2	IC FF TIL D-TYPE POSEDCE-THG CLEAR	01295	EN74175N
Alvio	1820-1361	0	8	IC DCOR TIL BCD-TO-7-SEG 4-TO.7-INE	07263	9374PC
Alvil	1820-1361	9		IC DCDR TTL BCD-TO-7-SEG 4-TO-7-LNE	07263	9374PC
Alu12	1820-1361	9		\triangle DCDA TIL 8CD-T0-7-SEG 4-TO-7LIEE	07263	9374PC
Alu13	1820-1361	9		C DCDR TTL BCD-TO-7-SEC 4-TO-7-LNE	07263	9374PC
Alvis	1820-1361	9		IC DCOR TIL BCD-TO-7-SEG 4TO-74NE	07263	8374PC
Alu15	1820-1361	9		1C DCDR TIL BCD-T0.7-SEG 4-TO-74NE	07263	8374PC
A1016	1820-1361	9		IC DCDR TIL BCD-T0-7-SEG 4-TO.7-LNE	07263	9374PC
Alvit	1820-1361	9		IC DCOR TTL BCD-T0-7SEG 4-T0.7-LINE	07263	9374PC
Alvis	1820-0339	4		$1 C$ FF TIL D-TYPE POS-EDGE-TRIG CLEAR	01295	SN74175N
Alu19	1820-1411	0	20	IC LCH TIL LS D.TYPE 4-BT	01295	SN74LSTSN
Alueo	1820-1411	0		IC LCH TIL LS D-TYPE 4-ET	01295	SN74LS75N
A1421	1820-1144	6	1	IC CATE TTL LS AOR CUAD 2HPP	01295	SNTALSOZN
A1ve2	1820-1198	0	10	CC GATE TIL LS NAND CUAD 2-AP	01295	SN74LSOSN
Alves	1820-1198	0		IC GATE TTL LS MND OUAD 2-ANP	01295	SN74LSOSN
Alues	1620-1216	3	13	C DCOR TTL LS 3-TO-LNE 3-NP	01295	SN74LS138N
A1L25	1820-1216	3		IC DCDR TIL LS 3-TO-LINE 3-NP	01295	SNT4LS138N
A1426	1820-1199	1	7	IC MV TTL LS HEX 1-mp	01295	SNTALSOAN
A1U27	1820-1287	8	2	CC BFR TTLLS MAND OUAD 2HNP	01295	SNTALS37N
Aluzs	1820-1189	1		IC NV TIL LS HEX I-WNP	01295	SN74LSOAN
Alu29	1820-1411	0		K LCH TIL LS D-TYPE 4-ETT	01295	SN74L575N
Aluso	1820-1411	0		IC LCH TTL LS D-TYPE 4-8T	01295	SNT4LS75N
Aluas	1820-1411	0		C LCH TTL LS D-TYPE 4-8T	01295	SN74LS75N
A1432	1820-1411	0		IC LCH TTL LS D-TYPE 4-EIT	01295	SNT4LS75N
A1433	1820-1411	0		X LCH TLL LS D-TYPE 4-BT	01295	SN74LS75N
Alust	1820-1481	0		CCLCH TLL LS D-TYPE 4-BT	01295	SN74LS75N
Alues	1850-1411	0		C LCH TIL LS D-TVPE 4BM	01295	SN74LS75N
A1435	1820-1199	1		IC MNTIL LS HEX 1HNP	01295	SN74LSOMN
A1437	1820-1216	3		IC DCDR TIL LS 3-TO-BLANE 3-NP	01295	SNT4LST38N
A1438	1820-1427	8	1	KC DCDR TTL LS 2-TO-HME DUAL 2-HMP	01295	SN74LSISEN
A1439	1826-0412	1	2	IC COMPARATOR PRCN DUAL B-DPPP PKG	27014	LM393N
	8450.047	6		Wire 24AWG BK 300V PVC 7×32800	28480	8150-0477
	0362-0277	1	2	CONNECTOR-SGL CONT SKT 1.14-MM-BSC-SZ	27264	02-05-5216
1933A to 2483A						
A1U40-U48				NOT ASSIENED		
2887A and above						
AlU40	0090180074	8	1	PPOCRRAMAMED ROM	28480	$00501-40074$
AlU4	1820-2757	9		IC FF TIL ALS D-TYPE POS-EDEE-TRIG OCTL	01295	SN74LS574N
AIU42	1820-2757	9		IC FF TIL ALS D-TYPE POSEDGE-TRIG OCTL	01295	SN74LS574N
AlU43	1820-2757	9		IC FF TIL ALS D-TYPE POS-EDGE-TRIG OCTL	01295	SN74LS574N
AIU4	1820-2757	9		IC FF TTL ALS D-TYPE POS-EDGE-TRXS OCTL	01295	SN74LS574N
A1U45	1820-2757	9		IC FF TIL ALS D-TYPE POS-EDEE-TRIG OCTL	01295	SNV4LS574N
A1U46	1820-2757	9		IC FF TTL ALS D-TYPE POSEDCE-TRUG OCTL	01295	SN74LS57AN
AlU47	1820-2757	9		1 CFF TIL ALS D-TYPE POSEDEE-TRIG OCTL	01295	SNT4LS574N
Alues	1820-2757	9		IC FF TTL ALS D-TYFE POS-EDEE-TRIG OCTL	01295	SN74LS57AN

Table 6-3. Replaceable Parts

Reference Designation	hP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Mifr. Code	Mfr. Part Number
A2						
A2	00001-80008	8	1	ALDIO FLIER ASSEMBLY	28480	00001-80008
A2C1	0180-1746	5	23	CAPACTIOR+XD 15UF+10\% 2OVDC TA	58289	1500156×902032
A2C2	0780-1746	5		CAPACTTOR-FXD 15UF+10\% 20VDC TA	56289	1500156×902082
A2C3	0160-4650	4	2	CAPACTTOR+XD 1360PF + +1\% 500VDC MMCA	29480	0160-4650
A2C4	0160-4650	4		CAPACTTOR + XO 1380PF $+1 \%$ 500VDC MACA	29480	D160-4650
A2C5	0160-2055	8		CAPACTIOR+XD . O1UF + $+0.20 \%$ 100VDC CER	08969	D0108NWE302Y5VI03Z100V
A2C6	0160-2055	9		CAPACTOR-XD . OIUF $+80-20 \%$ 100VDC CER	09969	DO106NWB302Y5V1032100V
A2C7	0160-4648	0	2	CAPACTIOR + XD 1650PF + 1% 500VDC MACA	28480	0160-4648
A2C8	0160-4648	0		CAPACTTOR- CXD $^{\text {1650PF }+1 \% ~ 500 V D C ~ M M C A ~}$	28480	0160-4648
A2Cs	0160-0134	1	4	CAPACTTOR + XD 220PF $+5 \% 300 \mathrm{VDC} \mathrm{MMCA}$	29460	0160-0134
A2C10	0160-4649	1	1	CAPACTOR-XD 214PF +1\% 500VDC MMCA	28460	0160-4649
02612	0140-0200	0	1	CAPACTIOR+XD 300PF +-8\% 300VDC MCA	26480	0840-0200
220613	0180-2206	4	10	CAPACTIOR-XD SOUFF- 10% EVOC TA	56289	1500608×900682
A2C14 ${ }^{\text {a }}$	01603539	6	1	CAPACTTOR-FXD 820PF +-5\% 100VOC MMCA	28480	01603539
A2C15	0180-2206	4		CAPACTOR-XD 600F+10\% 6VDC TA	56239	1500606×900682
A2C16	0180-2206	4		CAPACTOP-XD 60UF+ 10% EVDC TA	56289	1500606x900682
${ }^{2} \mathbf{C C 1 7}$	0140-0194	1	1	CAPACTOR-FXD 110PF +5\% 300VDC MMCA	28480	0140-0194
$22 \mathrm{CT8}$				NOT ASSIGNED		
A2C19	0180-2055	9		CAPACTORF-XD . 01 UF +80-20\% 100VDC CER	09969	DD106NWB302Y5V103z100V
A2C20	0180-2141	6	2	CAPACTIOA+XD 3 3 3 F $+10 \%$ 50VDC TA	56289	1500335×805082
A2C21	0160-4084	8	37	CAPACTIOR+XD . TUF + 20% 50VDC CER	09969	RPE122-139X7R104M50V
A2CO2				NOT ASSIGIED		
A2C23	0160-2055	9		CAPACTIORFXD OILF +80-20\% 100VDC CER	09969	DDIOGNWB302Y5Vi032100V
28204				NOT ASSIGNED		-
A2C25	0180-1714	7	1	CAPACTTOR F (XD 3SOUF+ 10% 6VDC TA	56289	1500337×800652
A2C26	0160-4849	3	1	CAPACTOR - XD 9100PF $+1 \%$ 100VOC	8411	HEW-517
120627	0160-2302	9	3	CAPACTIOA + OD 4000PF + $1 \% 100 \mathrm{VDC}$ MICA	28480	0160-2302
A2C28				NOT ASSICNED		
A2C29 ${ }^{\text {a }}$	0150-6606	4	1.	CAP-FXD 0.02UF + 1\% POLY WET	28480	0160-6606
A2C30	0140-0154	3	1	CAPACTOP ${ }^{\text {CXD }} 1300 \mathrm{PF}+5 \% 500 \mathrm{VDC}$ IECA	29480	0140-0154
A2CSI	0160-4759	4	1	CAPACTIOA+XD 6800PF $+1 \% 200 \mathrm{VDC}$	04411	HEW-592
19334 to 1935A						
A2C32	01600945	2	1	CAPACTIOR+XO 910PF +-5\% 100VDC MICA	28480	01600945
A2C33	01603539	6	2	CAPACTTOR + KD P20PF $+5 \% 100 \mathrm{VOC}$ MICA	28460	0180-3539
20091 and above						
12 C 32	$0100-3538$	5	1	CAPACTIOR + XD 750PF +5\% 100VDC MUCA	20480	01603538
$12 \mathrm{Cl3}$	01603536	3	1	CAPACTTOR FXD 620PF +5\% 100VDC MACA	28480	0160.3536
22034	0140-0198	5	4	CAPACTOR-FXD 200PF +-5\% 300VDC MICA	28480	0140-0198
A2c35				MOT ASSUENED		
A2C36	0180-2055	9		CAPACTTOR-FXD .01UF +80-20\% 100VDC CER	09969	D0106NWE302Y5V1032100V
12037	0160-2055	9		CAPACITOR-FXD .OIUF +00-20\% 100VDC CER	09960	DD108NWE302Y5V103z100V

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	\mathbf{C}	Cty.	Description	Mifr. Code	Mifr. Part Number
A2C38 ${ }^{\text {a }}$	0180-3068	6	1	CAPACTTOP-FXD 1500PF + 5% 300VDC MMCA	28480	0160-3068
A2CR1	1907-0040	1	38	DIODESWITCHMG 30V 50MA 2NS DO-35	9N171	INA148
A2CR2	1901-0040	1		DNODE-SWITCHMS SOV 50MA 2NS DO-35	9N871	1N4148
A211	1250-1220	0	26	COMMECTORRF SMC M PC 50-OHM	06877	82SmC-50-03/111
	2150-0124	4	32	WHSHER-LK WTL T NO. $10.195-\mathrm{NH}$-1D	16179	500222
	2050-0078	9	32	MUTHEX-DBL-CHAM 10-32-THD .067-HHTTHK	28480	2950-0078
2212	1250-1220	0		CONNECTOR-RF SNC M PC 50-0tM	06877	82SMC-50-0-3/111
	2190-0124	4		WHSHER-LK WTL T NO. $10.195-W H D$	16179	500222
	2950-0078	9		MUTHEX-DBL-CHM 10-32-THD .087-HNTTKK	28480	2950-0078
A211	91400137	1	6	WDUCTOR RF-CHMML 1MH + -5\%	91637	Ma6-1000u(5\%
1212	9140-0137	1		MDUCTOR PF-CHMLD 1 MH $+5 \%$	91637	Ma6-1000ur 5\%
${ }^{1} 213$	91400293	0	2	WDUCTOR PF-CHMMD SOSUH +-2\%	24226	19nmeosc-1
Aras	91400293	0		WDUCTOR RF-CHMLD EOGUH + 2%	24226	18MP03G-1
A2LS	0100-1653	4	1	MDUCTOR PF-CHMLD 910UH +-5\%	24226	tem913J
A246	9140-0291	8	1	MDUCTOR PF-CHMLD 82UHH +-2\%	32159	6.02739
A217	9100-1645	4	1	WDUCTOR RF-CHMMD 390UH +-5\%	91837	W-6 390UH 5\%
A218	9140-0292	9	1	MDUCTOR PF-CHMLD 375UH +2\%	24226	1813373G-1
A219	9140-0280	5	1	MOUCTOR 13MH +-2\% 25D-NX.7LG-W	06560	10247-46
1933A to 1935A						
A2L10	9100-1654	5	1	MSUCTOR RF-CHMMD 1.1MH +-5\%	32159	911000M-5\%
2009A and above						
A2L10	9100-1660	3	1	WDUCTOR RF-CHMLD 2 MH +5\% 20x.57LG.	28480	9100-1660
A2Cl1	9140-0281	6	1	MOUCTOR 16MH + 2% 250-ANX.7LGW	23480	9140-0281
1933A to 1935A						
A2L12	$8140-0137$	1		WOUCTOR RF-CHMLD 1MH +-5\%	91637	M66-1000uH 5\%
A2L13	91400137	1		MDUCTOR RF-CHMED 1MH +5\%	91637	M6-1000uH 5\%
A2L14	9100-1850	1	1	WDUCTOR RF-CHMLD $680 \mathrm{HH}+5 \%$	91637	m-5 600UH 5\%
2009A and above						
A2L12	9100-1654	5	1	NDUCTOR RF-CHMMD 1.1NH $+5 \%$	32159	9110004-5\%
A2L13	9100-1651	2		WDUCTOA RF-CHMED $750 \mathrm{UH}+5 \% .20 \times 57 \mathrm{LG}$.	28480	9100-1651
A2L14	9100-1848	7		NDUCTOR RF-CHMMD $560 \mathrm{UH}+5 \%$.20X.45LG.	28480	9100-1648
ARMP1	06901-00022	8	,	COVER, AUOIO FULER (NCLUDES EXTRACTOR)	28480	00901-00022
	2960-0113	2	28	SCPEW-MACH 6-32 $25-\mathrm{NLLG}$ PANHDPOZ	00000	ORDER EY DESCRIPTION
A2MP2	06801-00014	8	1	DNIDER. ENCLOSED SHELUD	28480	00901-00014
A2MP3	06801-00015	9	1	COVER, ENCLOSED SHIELD	28480	00901-00015
A2MP4	$06801-00050$	2	1	SPACER, \#1 (FOR L2, 3, 5)	28480	00901.00050
A2MP5	$06001-00051$	3	1	SPACER, \#2 (FOR L4, 6, 8)	28480	08901-00051
A2MP6	00s01-00052	4	1	SPACER, \#3 (FOR L10, 12-14)	28480	00901-00052
A2MiP7	08501-00053	5	1	SPACER, *4 (FOR LS, 11)	28480	08901-00053
A2MP8	5021-0817	8	6	P.C. BOARD EXTRACTOR	28480	5021-0817

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cly.	Description	Mifr. Code	Mtr. Part Number
N2014	18540830	6	1	TRANSISTOR-DUAL MPN PD=500MW X -ND LMEP4-OS	28480	1854-0030
A209	1254-0071	7	20	TRANSISTOR MPN SI TO-92 PD=300wW	24687	CP4071
A203	1853-0007	7	24	TRANSSTOR PAP 2NR251 SI TO-18 PD=380MW	04713	2×15251
A204	1054047	7	18	TRANSISTOR NPN 2nPPP2A SI T0-18 PD $=500 \mathrm{WW}$	04713	$2 \mathrm{ar222a}$
A205	1854-0071	7		TRANSSTIOR NPN SI TO92 PD=300NW	24687	CP4071
1206	1853-0012	4	5	TRANSISTOR PNP ZNESOMA SI TO-39 PD 000 NW	0.473	2N2904A
1207	1854-0013	7	6	TRAWSESTOR NPN 2NERT8A SI TO-5 PD=800WW	07253	2N02184
1333A 400 2121A						
ARR1	0757-0442	-	50	RESSTOR 10K $+1 \% .1207 \mathrm{TF}$ TC $=0+100$	12498	C74-1/8-70-1002-F
A282	0757-0442	9		RESSTOR HOK 4 -1\%.125w TF TCmot-100	12498	CT4-1/8-70-1002-F
2cesi and above						
AR21	0757-0290	5		RESTSTOR 6.1\%K +1\% .12SW F TC=0 100	10701	MF4 CT/R-TO-6191F
A2R2	$0757-0290$	5		MESISTOR 6.19K $+1 \%$. 126W F TC=0 -100	19707	MF4 C1/B-TO-6191f
A2R3	0e09-0140	0	2	PESISTOR $524+0.1 \%$.1W TF TC=0+15	09464	P91/10
ARP4	0009-0139	7	2	RESISTOR 680 +0.1\% .1W TF TC=0+15	00464	PR1/10
A2R5	0000-8556	6	2	HESISTOR 1.02K +-0.1\% .12SW TF TC $=0+10$	00464	PR1/8
1933A to 2051A						
A2R6	2100-0552	3	4	RESISTOR-TRMA 50 10\% TKF STEEADS 1-TRN	28480	2100-0552
s052A AND ABOVE						
ARR6	2100-3052	4	1	RESSTOR-TRMA 50 10\% C SDE-ADJ 17-TRN	28400	2100-3052
A2R7	00090140	0		RESISTOR $524+0.1 \%$.1W IF TC=0+-15	00464	PR1/10
A2R8	$0699-0144$	4	3	RESSTOR 10K $+0.01 \%$. 1 W TF TC $=0+5$	00464	PP1/10
A2R9	0689-0145	5	4	RESISTOR 1.117aK +-0.01\% .1W TF TC=0+5	09464	PR1/10
A2810	0000-3451	0	2	RESISTOR 138K +-1\% .125W TF TC=0+100	12498	CT4-1/8-T0-1333-F
A2R11	0e9e-7219	6	4	RESISTOR 196 +-1\%.OSW TF TC $=0+100$	12498	C3-1/R-T0-196RF
A2R12	00987244	7	4	PESISTOR 2.15K +-1\% .05W TF TC=0+100	12498	C3-1/8-T0-2151F
A2813	0008-724	7		RESASTOR 2.15K +1\% O5W TF TC=0 $=100$	12498	C3-1/2-T0-2151F
A2R14	0090-7244	7		RESSTOR 2.15K +1\% OSW TF TC=0+100	12488	C3-1/8-T0-2151F
A2R15	0006-7244	7		RESSTOR 2.15K +1\% .05W TF TC $=0+100$	12488	C3-1/2-T0-2151F
22816	0000-3457	6	1	RESSSTOR 316K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4
ARP17	0008-7260	7	19	RESISTOR 10K $+1 \% .05 W$ TF TC $=0+100$	12498	C3-1/8-10-1002F
A2818				MOT ASSIGNED		
A2819	0090-623	0	1	FESASTOR $8.25+1 \% .125 W$ TF TC $=0+100$	12498	1040
A2R20	0ece-3451	0		RESSTOR 133K $+1 \%$. 125 W TF TC $=0+100$	12498	CT-1/8-70-1333-7
A2F21				NOT ASSIGNED		
arri2	0seersti4	1	2	PESSSTOR 1K $+0.1 \%$.1W TF TC $=0+5$	09464	PR1/10
N2P23	06990176	2	1	RESSTOR $415+0.1 \%$.1W TF TC= $0+15$	00464	PR1/10
A2824	0898.344	1	6	RESISTOR $316+-1 \%$.125W TF TC=0 0 -100	12498	CT4-1/8-10-316P-F
A2R25				NOT ASSIENED		
22R26	0757.0280	3	74	RESSSTOR 1K + -1\% . 125 W TF TCm0 0 -100	12498	CT4-1/R-TO-1001-F
A2827	0008-475	8	3	RESISTOR 1.799K +-0.1\% . TW TF TC $=0+-5$	09464	PR1/10
A2R23	$0888-3430$	5	9	RESISTOR $21.5+-1 \%$. 125 W TF TC=0 +100	De439	MK2
ARR29	0757-02s0	3		RESSSTOR 1K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-1001-F
a2R3S	069e8556	6		RESISTOR 1.62K $+0.1 \% .125 \mathrm{~W}$ TF TC $=0+10$	00464	PR1/8

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cly.	Description	Mtr. Code	Mfr. Part Number
A2R31	0699-0161	5	1	RESISTOR $580+0.1 \%$. 1 W TF TC $=0+15$	09464	PR1/10
A2R32	0699-0143	3	2	RESISTOR $825+0.1 \%$. IW TF TC $=0+15$	09464	PR1/10
A2R33	0757-0394	0	13	RESISTOR $51.1+1 \%$.125W TF TC=0+100	12498	CT4-1/8-T0-51R1F
a2R34	$0757-0180$	2	1	RESISTOR 31.6 +-1\% .125W TF TC $=0+100$	D9439	WM2
ARR3S	0757-0260	3		RESSTTOA 1K +1\% .125W TF TC=0+100	12498	CT4-1/8-T0-1001F
A2R36	0698-8475	8		RESISTOR $8.799 \mathrm{~K}+-0.1 \%$.1W TF TC=0+5	09464	PR1/10
A2R37	0e89-0144	4		RESISTOR 10K $+0.01 \%$. 1 W TF TC $=0+-5$	09464	PR1/10
A2R38	00090145	5		RESISTOR 1.1174K $+0.01 \%$.1W TF TC $=0+5$	09464	PR1/10
A2R39	0757-0400	9	4	PESISTOR $90.9+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-90R9-F
A2R40	2100-0552	3		RESISTOR-TRMR 50 10\% TIF SIDE-ADI 1-TRN	28480	2100-0552
A2P41	0909-0159	1	1	RESISTOR $860+0.1 \%$. 1 W TF TC $=0+15$	09464	PR1/10
A2P42	0600-8475	8		RESISTOR 1.799\% +-0.1\% .1W TF TC=0+5	09464	PR1/10
A2R43	0e98-3434	9	2	RESISTOR 34.8 +-1\% .125W TF TC $=0+100$	De439	MMK2
A2RM	2100-0552	3		RESISTOR-TRMR 5010% TKF SDE-ADI 1-TRN	28480	2100-0552
A2R45	0609-0160	4	1	RESISTOR $940+0.1 \%$. 1 W TF TC $=0+15$	09464	PR1/10
A2R46	060e-3136	8	3	RESISTOR 47.8K + 1\% .125W TF TC=0+100	12489	CT4-1/8-T0-1782-
A2RA7	C098-3243	8	2	PESISTOA 178K +1\% .125W TF TC $=0+100$	12498	CT-1/G-T0-1783-7
A2R48	0698-6414	1		RESISTOR 1K $+0.1 \%$.1W TF TC $=0+5$	09464	PR1/10
A2R49	08890144	4		RESISTOR 10K + +0.01\% . IW TF TC=0 $0+5$	09464	PR1/10
A2R50	0757-0280	3		RESISTOR 1K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-1001F
1933A 10 2589A						
A2R51	0757-0399	5	2	RESISTOR $82.5+1 \% .125 W$ TF TC=0+100	12498	CT4-1/8-T0-82R5-F
2705A and above						
A2R51	0757-0401	0	1	PESISTOR $100+1 \% .125 W$ TF TC=0 0 -100	12498	CT4-1/8-T0-100R-F
A2RT1	0637-0027	6	2	THERMUSTOR DISC 30-0tM TC=3.9\%/C-DEG	83186	13 E30
A2RT2	08390011	2	1	THERMASTOR DSCC 100-OHM TC=-3.8\%/C-DEG	83186	21 E23
A2RT3	0837-0027	6		THERMISTOA DISC 30-OtM TC=-3.9\%/C-DEG	83186	13 E30
AETP1	1251-0600	0		COMNECTORSEL CONT PIN 1.14-MM-BSC-SZ SO	12360	94-155-1010-01-03-00
A2TP2	1251-0600			COWNECTOP-SEL CONT PIN 1.14-MM-BSCSZ SO	12360	94-155-1010.01-03-00
A2TP3	1251-0600	0		CONWECTOR-SGL CONT PW 1.14-MM-BSC-SZ SO	12360	94-155-101001-03-00
A2TP4	1251-0600	0		CONNECTOA-SGL CONT PIN 1.14-MM-BSCSZ SO	12360	94-155-1010-01-03-00
A2U1	1826-0582	6	7	ANVLOG SWITCH 4 SPST 16 -CBRZISDR	27014	LF13201D
A2U2	1826-0582	6		ANALOG SWTTCH 4 SPST 16 -CBRZISDA	27014	LF13201D
A2U3	1826-0413	2	5	IC OP AMP LOW-BIASHHMPD 8-TO-99 PKG	34371	H02-2605-5
A2U4	1826-0582	6		AUALOG SWITCH 4 SPST 16 -CERZ/SDR	27014	LF132010
A2U5	1826-0109	3	1	IC OP AMP WE 8-TO-99 PKG	34374	Ha2-2625-5 (SELECTED)
A2W1	00901-20096	8	1	CABLE SEMI RUCHD (AM MPUT)	28480	00901-20096
AEW2	08901-20095	7	1	CABLE, SENM RIGID (FM INPUT)	28480	08901-20095

Table 6-3. Replaceable Parts

Reference				
Designation	HP Part	\mathbf{C}	Oty.	Description

A3

A3	0090160009	7	1	AUDIO DEEEMPHUSIS AND OUTPUT ASSEMBLY	28480	00001-60009
A3C7	0180-0058	0	7	CAPACTTOR-XOD 50UF+75-10\% 25 VDCO AL	56289	$3005066025 C C 2$
$\mathrm{A}_{3} \mathrm{Cl}_{2}$	0180-0058	0		CAPACTOR-FXD 50UF+75-10\% 25 VDC AL	56289	3005086025CC2
19834 50 2251A						
Ascs	0180-2205	4		CAPACTTOR+XD EOUF+-10\% EVDC TA	56209	1500606x9006B2
23024 and above						
$\mathrm{A}_{3} \mathrm{CS}_{3}$	0180-2929	8	6	CAPACTIORFXO E8JF + 10% 10VDC TA	28480	0180-2929
1933A 20 2565A						
Asce	0160-3058	2	2	CAPACTTOR-FXD .OSUV + 2% 200VDC	34411	HEW-249
2518 A and above						
AsCe	0160.5840	1	2	CAPACTTOR-XX 00SUF+1\% 200VDC	28480	0160.5340
ascs	0160-4613	-	2	CAPACITORFXD .IUF +i\% 50VDC POLYSTY	27735	PSO
1933A to 2505A						
A5C6	01603858	2		CAPACTIORFXD .039UF +-2\% 200VDC	84411	HEW-249
25184 and above						
A3C5	0160-5340	1	2	CAPACTIORFXD.034F + - 1% 200VDC	28480	0160.5340
A3C7	0160-4613	9		CAPACTTOAFXD .1LF + $\mathbf{1 \%}$ 50VDC POLYSTY	27735	PSO
Ascs	0160-2055	9		CAPACTIOR-FXD . OIVF + $00-20 \% 100 \mathrm{VDC} \mathrm{CER}$	08969	D0106NWB302Y5V1032100V
${ }^{43} \mathbf{C 8}$	0160-2055	9		CAPACTIOP-FXD .01UF +60-20\% 100VDC CER	09969	D010ENWE302Y5V1032100V
A3C10	01603879	7	71	CAPACTIOR-FXO .01VF +-20\% 100VDC CER	09969	RPEE121-105X7R103M100V
Ascil	01603879	7		CAPACTIOR-XOD . 014 L + 20% 100VOC CER	09969	RPE121-105X7R103M100V
${ }^{\text {A3C12 }}$	0160-3879	7		CAPACTIOR-FXO .01UF +-20\% 100VOC CER	09859	RPE121-105X7R103M100V
${ }^{\text {ascl3 }}$	01603879	7		CAPACTOR-FXD D1LF +-20\% 100VDC CER	08989	RPE121-105X7R103M100V
${ }^{43 C 14}$	$0160-3879$	7		CAPACTTOR-FXD .01UF +-20\% 100VDC CER	09969	RPE121-105X7R103M100V
a3cis	0160-2055	9		CAPACTORFXD .OTLF +e0-20\% 100 VDC CER	09869	
${ }^{43 C 16}$	0160.3879	7		CAPACTTOR-FXD .OIUF + $20 \% 100 \mathrm{VDC}$ CER	08969	RPE121-105X7R103M100V
${ }_{43 C 17}$	0160-2055	9		CAPACTIORFXD .OILF + $00-20 \%$ 100VDC CER	09869	DO108NWE302Y5V103Z100V
${ }^{\text {ascris }}$	0160-3879	7		CAPACTOR-XXD .01VF +-20\% 100VDC CER	09869	RPE121-105X7R103M100V
${ }^{\text {ascis }}$	07603879	7		CAPACTIOR-XXD .01LF $+20 \%$ 100VOC CER	09969	RPE121-105X7R103M100N
A3Czo	0160-3879	7		CAPACTTOR-XXD .01UF +-20\% 100VDC CER	09969	RPE121-105X7R103M100V
A3C21	01603879	7		CAPACTTOR-XX . O1U + -20\% 100VOC CER	00969	RPE121-105×7R103M100V
A3c22	$0160-3879$	7		CAPACTOR-FXD .01UF +-20\% 100VDC CER	09969	RPE 121-105X7R103M100V
${ }^{43023}$	$0160-3879$	7		CAPACTIOR+XD .01UF +-20\% 100VDC CER	09069	RPE121-105X7R103M1100V
Asces4	0180-6606	4	1	CAP-FXD 0.OEUF + 1% POLY-MET	28480	0160-6606
a3czs	0160-4317	0	1	CAPACTTOR-FXD 1200PF + 1\% 100VDC MMCA	28480	0160-4317
A3C23	0140.0213	5	2	CAPACTTOR-XD 2000PF $+1 \% 300 V D C$ MMCA	28480	$0140-0213$
A3C27	01603879	7		CAPACTTOP-XD . OtUF +-20\% 100VDC CER	09969	RPE121-105X7R103M100V
A3c20	0180.3879	7		CAPACTTOR + XD . $014 \mathrm{LF}+200 \% 100 \mathrm{VDC} \mathrm{CER}$	09969	RPE121-105X7R103M100V
Asces	$0160-3879$	7		CAPACTIOR-XXD O1LF + -20\% 100VDC CEA	09969	RPE121-105X7R103M100V
A3C30	0160-3879	7		CAPACTTORFXD DIVF $+20 \% 100 \mathrm{VDC} \mathrm{CER}$	09969	RPE121-105X7R103M100V

Table 6-3. Replaceable Parts

Reference Designation	MP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cly.	Description	Mifr. Code	Mifr. Part Number
A3C31	$0160-3879$	7		CAPACTOR-XXD .01UF +-20\% 100VDC CER	09969	RPE121-105X7R103M100V
A3C32	0160-3879	7		CAPACTIORFXD .01UF + 20% 100VDC CER	09969	RPE121-105X7R103M100V
A3C33	$0140-0213$	5		CAPACTOR-FXD 2000PF + -1\% 300VDC MICA	28480	$0140-0213$
A3C24 ${ }^{\text {a }}$	0160-6606	4	1	CAP-FXD 0.02VF +-1\% POLY MET	28490	0160.6606
A3C35				MOT ASSIGNED		
${ }^{\text {A3C36 }}$	01400186	3		CAPACTIOR-FXO 150PF + $5 \% 300 \mathrm{VDC}$ MMCA	28480	0140-0196
A3C37	0160-4084	8		CAPACTIOR+XO . ILF + 20% SOVDC CER	08969	RPE122-139x7R104M50V
A3C38				NOT ASSIGNED		
A3C39	0160-3879	7		CAPACTOR-FXO .ORUF + 20% 100VDC CER	09369	RPE121-105X7R103M100V
AsC40	0180-3879	7		CAPACTORFXD .01UF +-20\% 100VDC CER	09969	RPE121-105X7R103M100V
ascat	0100-3879	7		CAPACTIOR-XXD O1LF $+20 \%$ 100VOC CER	00969	PRE121-105X7R103M100V
A3C42	0160-2204	0	6	CAPACTOR-FXD 100PF + 5% SOOVDC MICA	20480	0160-2204
A3C43	0160-2201	7	2	CAPACTTOR + W00 51PF $+5 \%$ 300VDC MICA	28480	0160-2201
A3C4	01800291	3	6	CAPACTOR-FXD TUF+10\% 35VDC TA	56289	1500105×9035A2
A3C45				NOT ASSIENED		
a3c46				NOT ASSIENED		
1933A 20 2505A						
A3C47	0160-3185	4	1	CAPACTIOR $+\times$ OD .0A7UF +-2\% 50VDC POLYE	84411	HEW-163
A3C48	0160-2302	9		CAPACTIORFXD 4000PF +1\% 100VDC MICA	28480	0160-2302
2518A and above						
${ }^{4} 347$	0160-5340	1	2	CAPACTTORFXD .OSUF $+1 \% 200 \mathrm{VDC}$	29480	0160-5340
A3C48	0160-4217	9		CAPACTORFXD 3900PF + 1\% MACA	28480	$0160-4217$
1933A to 2251A						
A3C49	0160-4957	8	2	CAPACTIORFXD . O1UF +2\% 100VDC	84811	X1263uw
2502 A and above						
A3C49	0160-5201	3	2	CAPACTIOR-XXD .OIUF + 1\% 100VDC	28480	0160-5201
Asc50	01603879	7		CAPACTIOR + DD .OILF + 20% 100VDC CER	09969	RPE121-105X7R103M100V
A3C51	01803879	7		CAPACTIOR-XXD .01UF + 20\% 100VDC CER	09969	RPE121-105X7R103M100V
19334 to 2051A						
23024 and ebove						
A3C52	0160-5201	3	2	CAPACTIOR-XXD .OIVF +-1\% 100VDC	28480	0160-5201
1933A to 2505A						
A3CS3	0160-2302	9		CAPACTTORFXD 4000PF + 1\% 100VDC MICA	29480	0160-2302
2518A and above						
A3C53	0160-4217	9		CAPACTTOR-XD 3900PF + $\mathbf{1 \%}$ MEA	28480	0160-4217
A3C54				NOT ASSGENED		
A3C55	0160-3879	7		CAPACTIOR-FXD .01VF + 20% 100VDC CER	09969	APE121-105X7R103M100V
Ascse	0180-3879	7		CAPACTOR-PXD .01UF $+20 \%$ 100VDC CER	09969	RPE121-105×7P103M100V
A3C57	0160-3879	7		CAPACTOR-PXD .01UF + 20% 100VOC CER	09969	RPE121-105X7R103M100V
A3C58	$0180-0116$	1	2		56299	1500885×903582
A3C59	0160-3879	7		CAPACTOR + XD . O1VF $+20 \%$ 100VDC CER	09969	RPEE121-105X7R103M100V
A3C60	0160-3879	7		CAPACTIOR-FXD . 01 LIF +-20\% 100VDC CER	09969	RPE121-105X7R103M100V
A3C6\%	$0160-3879$	7		CAPACTOR-FXD .OTUF +-20\% 100VDC CER	09969	RPE121-105X7R103M100V
13652	0100-3879	7		CAPACTIOR-XXD .01LF +-20\% 100VDC CER	09969	PRE121-105X7A103M100V
A3C63				NOT ASSIGNED		
A3C84	0180-0228	6	5	CAPACTTOA-XD 22UF+10\% 15VDC TA	56200	1500228×501582
A3C65	01800288	6		CAPACTTOR- XO $^{\text {22UF+ }}$ (10\% 15VDC TA	56299	1500226x9015B2

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & C \\ & 0 \end{aligned}$	Cty.	Description	Mitr. Code	Mifr. Part Number
A3C66				NOT ASSIGMED		
43067				NOT ASSTENED		
A3C88	0180-0058	0		CAPACTTOR $+\times \mathrm{OC} 50 \mathrm{~F}+75-10 \%$ 25VDC AL	58209	$3005066025 C C 2$
A3C89	0180-0058	0		CAPACTTOR + XD SOUF $+75-10 \% 25 V D C A L$	56289	3005069025CC2
A3C70	01600134	1		CAPACTORFXD 220PF +6\% scovoc Mica	29480	0180-0134
A3C74				MOT ASSIGNED		
A3C72	0180-0116	1		CAPACTIOR-XD 6.8UF-10\% 35VDC TA	58289	1500695x503532
A3C73	0160-2055	9		CAPACTTOR-XXD .OTLF +00-20\% 100VDC CER	00969	D010enWE302Y5V10032100V
A3C74	0160-2055	9		CAPACTOR $-X$ OD .01UF $+80-20 \%$ 100VDC CER	09398	DD10ENWE302Y5V1037100V
A3C75	01803879	7		CAPACTOR + XD O1UF $+20 \%$ 100VDC CER	09969	RPE121-105X7R103M100V
${ }^{43 C 76}$	01800197	8	52	CAPACTIOR-YXD 2:2UF+10\% 20VOC TA	56289	1500225×502042
ASCT7	01800197	8		CAPACTIOPFXD 2.2UF+10\% 2OVDC TA	56289	1500225×902042
A3CR1	1501-0040	1		DIODE-SWTTCHENG SOV 50MA 2NS DO-3S	9 9171	1NH148
ASCR2	1901.0040	1			9N174	1N4148
A3CR3S	1901-1098	1		DNOOE-SWITCHMG INM150 50V 200MA ANS	9N171	1N4YSO
ASCPA	1901.0040	1		DICOESSWITCHNG 30V SOMA 2NS DO.3S	9NT71	194148
A3CPS	1901-0040	1		DNOOE-SWITAMNG SOV 50MA 2NS DO-35	QN171	1N4148
A3CR6	1901-0040	1		DVODESWTTCHING 30V S0m	9N471	1N6T48
A3CR7	1901-0040	1		DIODESWITCHMG 30V 50MA 2NS DO-35	9N171	1 N 148
A3CR8				MOT ASSIENED		
A3CRGS	1901-1098	1		DIOOESWITCHNG INH150 50V 200MA ANS	9N171	1NH150
A3L1	91400137	1		MOUCTOR RF-CHMLD 1NH +-5\%	91637	M6-1000uH 5\%
A3L2	9100-1633	0	1	WOUCTOR RF-CHMLD E8UH +-5\%	91637	m-4 E8UH 5\%
A3L3	91400137	1		MOUCTOR RF-CHMLD 1NHH +-5\%	91637	mes-1000uH 5\%
A3MP1	00001-00021	7	1	COVER, AUDIO DEEMPHMSIS	20480	00901-00021
	2360-0113	2		SCREW-MUCH 6-32 25-WHE PANHDPOZI	00000	ORDER EY DESCRIPTION
A3Map2	6021-0817	6		P.C. BOARD EXTRNCTOR	28480	5021-0817
A301	18540477	7		TRANSISTOR NPN 2N2222A S1 TO-18 PD=500MW	04713	2N2022A
1933A to 2238A						
A3R1	0606-7062	7	1	RESISTOR 19.6K $+0.5 \%$.125W TF TC=0+50	12498	NCSS
22994 to 2505A						
AsR1	0ese-7353	9	1	RESSTOR 19K +1\% .125W F TC $=0+100$	28480	0898-7353
25181 and above						
$A 3 R I$	0680-0042	0	1	REESISTOR $25 K+$ - $1 \% .125 W$ F TC=04-50	28400	0698-6042
A3R2	0698-5091	8	1	RESSTOR 45K + -1\% .125W TF TC=0 0 -100	12498	CT4-1/8-T0-4502-F
A3R3	0757-0349	5	1	RESSTOR 22.6K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/R-T0-2262-F
1933A to 2038A						
A3R4	06890027	2	1	RESISTOR 9.474K $+0.25 \% .125 W$ TF	12498	NC55
2239A to $2505 A$ A3k4	0680-6343	5	1	AESSTOR $9 \mathrm{~W}+\mathrm{t}$.1\% .125W F TC $=0+-25$	28460	0630-6343
25184 and above A3R4	0ese-8191	5	1		19701	5033R-1/Q-T9-1252-B
A3R5 A3P6	0757-0200	3		RESISTOR 1K +1\% .125W TF TC=0+100 NOT ASSIGNED	12498	CT4-1/6-70-1001-5

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Oty.	Description	Mir. Code	Mif. Part Number
A3R7	0698-0005	0	7	RESISTOR 2.61K +1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-2611-F
A3R8	0860-3159	5	2	RESISTOR 26.1K +1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-2612-F
A3R9	0088-3161	9	2	RESISTOR 38.3K + 1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-3832-F
A3R10				NOT ASSIGNED		
A3R11	0757-0441	8	6	RESISTOR 8.25K +-1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-8251-F
A3R12	0757.0441	8		RESISTOR 8.25K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-3/Q-T0-8251-F
A3P13	0757-0438	3	20	RESSTSTOR 5.11K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-5111-F
A3R14	$0757-044$	8		RESISTOR 8.25K +-1\% .125W TF TC=0+100	12498	CT4-1/8-T0-8251-F
A3P15				NOT ASSIGNED		
A3R16	0757-0442	9		RESISTOR 10K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-1002-F
A3R17	0757.0465	6	23	PESISTOR 100K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-1003-F
A3R18	0757-0438	3		RESISTOR 5.11K + $1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-T0.5111-f
A3R19	0757.0442	\bigcirc		PESSSTOR 10K + 1\% .125W TF TCanoti00	12498	CT4-1/8-70-1002-F
A3R20	0757-0438	3		RESISTOR 5.11K +-1\% .125W TF TC=0+100	12498	CT41/R-T0-5111-F
A3R21	0683-2265	1	5	RESISTOR 22M +-5\% 25W CC TC=000/+1200	01121	C82265
A3R22	0757-0279	0	16	FESTSTOR 3.16K + 1%.125W TF TC=0 0 -100	12498	CT4-1/Q-T0-3161-F
A3R23	0757-0438	3		RESISTOR 5.11K +-1\% . 225 W TF TC $=0+100$	12498	CT4-1/8-T0.5111-F
A3P24				MOT ASSTENED		
A3R25	0757-0442	8		RESUSTOR 10K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-1002-F
A3R26	0686-7236	7	25	PESSSTOR 1K $+1 \%$. O5W TF TC $=0+100$	12498	C3-1/8-T0-1001F
A3R27	21003273	1	2	RESISTOR-TRMR 2K 10\% TKF SDE-ADI 1-TRN	28480	2100-3273
A3R28	0808-3156	2	5	PESTSTOR 14.7K +1\% .12SW TF TC $=0+100$	12498	CT4-1/8-T0-1472-F
1933A ± 0 2505A						
A3R29	0808-9046	9	1	RESISTOR 16K $+0.1 \%$. $125 W$ FF TC $=0+25$	19701	5033R-1/8-79-1602-B
25181 and above						
A3R29	0808-692	0	1	RESSTTOR 25K +-1\% .125W F TC=0 0 - 50	28480	0600-6942
A3R30	0epe-7264	1	6	RESISTOR 14.7K $+1 \%$. 05 W TF TC $=0+100$	12498	C3-1/8-T0-1472-
A3P31	0690-8191	5	1	RESISTOR 12.5K $+0.1 \%$. 125 W FF TC $=0+25$	19701	5033R-1/8-T9-1252-B
A3F32	0ese-7643	0	2	RESISTOR 6.25K $+0.1 \%$. 125 W FF TC $=0+25$	19701	5033R-1/8-79-6251-B
A3P33	0699-0069	2	1	RESISTOR 2.15M + 1%. 125 W TF TC $=0+100$	19707	5033R
A3834	0850-8642	1	1	RESISTOR $56.2 \mathrm{~K}+0.1 \%$. 125 W FF TC $=0+-25$	12498	NE55
A3R35	060e-8731	9	12	RESISTOR 4.8K $+0.1 \%$, 1W TF TC $=0+15$	09464	PR1/10
1533A to 2505A						
A3R36	09086614	3	1	RESISTOR 7.SK +-0.1\% .12SW FF TC=0 $=\mathbf{- 2 5}$	12498	NES5
25184 and above						
A3R36	0680-9307	5	1	RESSTTOR 7.4K +-25\% 25W F TC=0+50	28480	0880-8307
A3P37	0696-7643	0		RESISTOA 6.25K + -0.1\% .12SW FF TC $=0+25$	19701	5033R-1/8-79-6251-B
A3F388	0080-8731	9		RESISTOR 4.8K $+0.1 \%$.1W TF TC $=0+15$	09464	PR1/10
A3R39	0608-7251	6	4	RESISTOR 4.22K $+1 \% .05 W$ TF TC $=0+100$	12498	C3-1/8-70-4221F
A3P40	0680.7224	3	2	PESISTOR 316 +-1\% .O5W TF TC=0+100	12498	C3-1/8-T0-316R-F
ASPA1	$0688-3157$	3	8	RESISTOR 19.6K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-1962-F
A3P42				NOT ASSIGNED		
A3843	0686-8731	9		RESISTOR 4.8K + -0.1\% .TW TF TC=0+-15	00464	PR1/10
A3P44	009e-9731	9		RESISTOR 4.8K $+-0.1 \%$ IW IF TC $=0+15$	09464	PR1/10
A3P45	065e-8731	9		RESISTOR 48K $+0.1 \%$. 1 W TF TC $=0+15$	09464	PR1/10
A3P46	0858-8731	0		RESISTOR 4.EK $+0.1 \%$. 1 W TF TC $=0+15$	09464	PR1/10

Table 63. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Oty.	Description	Mir. Code	Mfr. Part Number
A3R47	0098-8731	9		RESISTOR 4.8K + -0.14 .IW TF TC = 0+-15	09464	PR1/10
A3R48	0757-1094	θ	8	RESISTOR 1.47K +.10\%.125W TF TC $=0+-100$	12498	CT4-1/8-T0-1471-F
1933A to 2052A						
A3R49	0698-3455	4	1	RESISTOR 261K +-196 .125W TF TC $=0+-100$	12488	CT4-1/8-T0-2613-F
2105A ard above						
A3R49	0098-3159	5	2	RESISTOR 26.1K +-1\% .125W TF TC $=0+-100$	12498	CT4-18-T0-2612-5
A3850	0098-8731	9		RESISTOR 4.8K $+-0.1 \%$.1W TF TC $=0+-15$	09464	PR1/10
A3R51 ${ }^{\text {a }}$	0608-6414	1		RESISTOR TK $+0.196 .1 W$ TF TC $=0+5$	28480	0698-6414
A3R52	0757-0280	3		RESISTOR 1K +-14\% .325W TF TC $=0+-100$	12488	CT4-1/8-T0.1001-F
A3F53	0757-1094	9		PESISTOP 1.47K +-146.125W TF TC $=0+-100$	12498	CT4-1/8-T0.1471F
A3R54	0098-3444	1		RESISTCR $316+-140.125 W$ TF TC $=0+-100$	12498	CTL-188-T0-316RF
A3R55 ${ }^{\text {a }}$	0608-84 14	1		RESSTOR $1 \mathrm{~K}+\boldsymbol{0 . 1 0 \%}$.1W TF TC $=0+15$	28480	0098.6414
A3R56	0757-0280	3		PESISTOR 1K +-140.12SW TF TC $=0+-100$	12498	CTL-1/8-T0-1001F
A3PS7	0757-0439	4	5	FESISTOR 6.81K +-14\% .125W TF TC= $0+-100$	12498	CT4-18-T0-6811-F
A3A58				NOT ASSIGNED		
A3P59	0757-0409	0	40	FESISTOR $100+-196.125 W$ TF TC $=0+-100$	12498	CT4-1/8-TO.101-F
A3R60	0757-0401	0		FESISTOR $100+-196.125 W$ TF TC $=0+-100$	12498	CT4-1/8-TO-101-F
A3RE1	0757-0442	9		RESISTOR 10K +-1\% .125W TF TC $=0+-100$	12498	CT4-1/8-T0-1002F
A3R62	0757.0462	9		RESISTOR 10K +-146.125W TF TC = 0+-100	12498	CT4-1/8-T0-1002-F
A3R63	0757-0280	3		RESISTOR $1 \mathrm{~K}+-10.125 W$ TF TC $=0+-100$	12498	CT4-1/8-T0-1001-F
A3R64	0757-0280	3		RESISTOR IK +-10.125 W TF TC $=0+-100$	12498	CT4-1/8-T0-100:-F
A3P65	0698-7272	1	2	RESISTOR 31.6K +-1\% .05W TF TC $=0+-100$	12498	C3-1/8-T0.3162-F
A3TP1	1251.0600	0		CONNECTOR-SGL CONT PIN 1.14MM-BSC-SZ SQ	12360	94-155-1010-01-03-00
A3TP2	1251-0600	0		CONNECTORSGL CONT PIN 1.14-MM-BSC-S2 SO	12360	94-155-1010-01-03-00
A3TP3	1251-0600	0		COMNECTORSGL CONT PIN 1.14MM-RSC.SZ SO	12360	94-155-1010-01.03-00
A3TP4	1251-0600	0		CONNECTOR-SGL CONT PIN 1.14 MM -BSC-SZ 50	12360	94-155-1010-01.03.00
A3TP5	1251-0600	0		CONNECTOR-SGL. CONT PIN 1.14-MM-BSC-SZ SO	12360	94-155-1010-01-03-00
A3U1	1826-0413	2		IC OP AMP LOW-BLASHHMPD 8-TO99 PKG	34371	HA2-2605-5
A3U2	1826-0413	2		IC OP AMP LOW-BIAS-HHMPD 8-TO.99 PKG	34371	HA2-2605-5
A3U3	1826-0413	2		IC OP AMP LON-BLASHHMPD B-TO.99 PKG	34371	H42-2605-5
1933A to 2313A						
$\mathrm{A}_{3} \mathrm{U}_{4}{ }^{\text {a }}$	1826-0522	3	2	K OP AMP LOW-BUASHGHHMPD QUAD 14-DIP-P	01295	TLO74CN
2324A and above						
A3U4A	1826-0753	3	2	IC OP AMP LON-BLAS-MGHHMPD CUAD 14-DIP-C	28480	1826-0753
A3U5	1826-0371	1	2	IC OP AMP LOWHASHHMPD 8-TO-99 PKG	27014	LF256H
A3U6	1826-0059	2	5	IC OP AMP GP 8-TO.99 PKG	27014	LM2O1AH
1933A ta 2052A						
A3U7				IF ABUT FAILS, REPLACE IT WTH THE PART NUM SERIAL PREFXES 2105A AND ABOVE. ALSO REP	UII, AN	
A3U8				IF A3UB FAILS, REPLACE IT WTH THE PART NUM		
				SERIAL PREFIXES 2105A AND ABOVE. ALSO REP	U1, AND	
$2105 A$ and above						
A3U7	1826-0783	9	4	IC OP AMP LOW-NIISE 8-DIPC PKG	52063	XRS534ACN
A3U8	1826-0783	9	4	SC OP AMP LOW-NOISE 8-DIP.C PKG	52063	XR5534ACN

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts

A4

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Mifr. Code	Mifr. Part Number
A MC26	0180-1746	5		CAPACTTOR-XD 15UF+10\% 20VOC TA	56209	1500156×902082
1933A to 2024A						
A4C27	0760-2254	2	3	CAPACTIOR $¢ \times X D$ 20PF $+6 \% 500 \mathrm{VDC}$ CER $0+30$	09535	301-000-6060-200
24264 and above						
A4C27	0180-5699	3	3	CAPACTIOR $+X D$ 2OPF $+5 \%$ 100VDC CER $0+30$	28400	0160-5699
A 4 C28	0180-2284	2		CAPACTOR-FXD 20PF $+5 \% 500 \mathrm{VOC}$ CER 0+-30	09535	301-000-C060-200
A4C29	0160.0162	5	1	CAPACTIOR-XD .O22UF + 10% 200VOC POLYE	19701	70001H1223PK201AX
A ACSO	0180-0153	4	2	CAPACTIOR+XD 1000PF +10\% 200VDC POLYE	19701	T0801AM102PK201AX
1933A to 2424A						
	0860-2307	4	1	CAPACTIORFXD 47PF +-5\% 300VDC MICA	28480	0160-2307
A4CS2	$0160-353$	0	1	CAPACTOR-XD 470PF + 5\% 300VDC MEA	28400	01603533
A4C33	0140.022	6	1	CAPACTIOR-XD 240PF + $1 \% 300 \mathrm{VDC} \mathrm{MICA}$	28460	0140-0222
24261 and above						
A4C31	0380-4805	1	1	CAPACTTOR + XD 47PF + 5% 100VDC MACA	28480	0160-4805
A4C32	0700-4808	4	1	CAPACTOR FXD 470PF +5\% 100VDC CER	28480	0160-4608
A4C33	0860-5401	3	1	CAPACTOR-FXD 240PF +5\% 100VDC CER	28400	0160-5491
Anc34				NOT ASSIGNED		
1933A to 2024A						
A4C35	0160-2241	5	1	CAPACTIOR-PXD 2.2PF +25PF 500VDC CER	09535	301-000-C010-229C
242614 and aboce						
A4C35	0100-4799	2	1	CAPACTTORFXD 2.2PF +2SPF 100VDC CER	28480	0160-4799C
Anc36	0180-1746	5		CAPACTOR + XD 15UF+-10\% 20VDC TA	56289	1500156×902082
A4C37	0180-0197	8		CAPACTORFXD 22UF+-10\% 20VDC TA	56288	$1500225 \times 9020 \mathrm{~A} 2$
1933A to 2424A						
A4C38	0180-2204	0		CAPACTOR- \times (D 100PF +-5\% 300VDC MACA	28480	0160-2204
2426 and above						
A4C38	0180-4801	7		CAPACTOR-FXD 100PF +5\% 100VDC CER	23480	0160-4801
A4C39 AnCHO	01603501	2	3	CAPACTTOR-FXD AUF + 10% SOVDC METPOLYC MOT ASSICNED	84411	HEW-249
AMCA1	$0180-0197$	8		CAPACTIOR-XXD 2.2UF+-10\% 20VDC TA	58289	$1500225 \times 9020 \mathrm{~A} 2$
1933A to 2424A						
A4C42	0160.0134	1		CAPACTTOP-XD 2ROPF + 5% 300VDC MICA	28480	01600134
A4C43	0160-2257	3	2	CAPACTOR-FXD 10PF + -5\% 500VDC CER $0+60$	09535	$301-000-604-1000$
AACH	0180-2249	3	3	CAPMCTOR-FXD 4.7PF + 25PF SOOVDC CER	09535	301-000-COH0-479C
A4C45	$0160-3536$	3	2	CAPACTIOR-XD 620PF + $5 \% 100 \mathrm{VDC}$ MICA	28480	01603536
A4C46	0180-2055	9		CAPACTIOR-FXD . $01 \mathrm{LF}+80-20 \%$ 100VDC CER	09969	D0106NWB302Y5V103z100V
A4C17	0180-3456	6	5	CAPACTOPFXD 1000PF + 10% 1KVDC CER	06383	CKA5XE3A102K H
2426 and above						
A1C42	0780-4812	0		CAPACTTOR-XXD 220PF $+5 \% 100 \mathrm{VDC}$	28480	0160-4612
A4C43	0180-4791	4	2	CAPACTTOR-FXD 10PF $+5 \%$ 100VDC CER $0+30$	28480	01604791
A4CA	01804795	8		CAPACTIOR-XDD 4.7PF + 5 SPF 100VDC CER	28480	0160-4795
A4C45	0160-5719	8		CAPACTIOAFXD 620PF $+5 \%$ 100VDC CER	28400	0160-5719
A4C46	0780-4832	4		CAPACTTOR-XXD .01UF +-10\% 100VDC CER	28480	0160-4832
A ACA7	0160-4932	2		CAPACTOP-XO 1000PF + -5\% 100VDC CER	28400	0160-4922
MAC48	0180-0197	8		CAPACTIOR+XD 2.2UF+-10\% 20VDC TA	56289	1500225x902002

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cly.	Description	Mfr. Code	Mifr. Part Number
A401	1854-0210	6	4	TRANSISTOR NPN 2NE222 SI TO-18 PD=500MW	04713	2N2222
A 402	1854-0071	7		TRANSISTOR NPN SI TO-92 PD=300NW	2 M 627	CP4071
A 403	1853-0020	4	29	TRANSISTOR PANP SI PD= $=300 \mathrm{MW}$ FT $=150 \mathrm{WHZ}$	2M627	X
A404	1853-0020	4		TRANSISTOR PNP SI PD $=3000 \mathrm{WW}$ FT $=150 \mathrm{MHZ}$	2M627	X122BCP20-1
4405	1854-0071	7		TRANSISTOR NPN S1 TO-92 PD=300MW	20627	CP4071
4406	1853-0007	7		TRANSISTOR PAP 2NE251 S1 TO-18 PD=360MW	06713	2N3251
4097	1853-0020	4		TRANSISTOR PNW SI PD=300MW FT $=150 \mathrm{MHZ}$	2 M 827	ХА22BCP20-1
A 408	1853-0020	4		TRUWSISTOR PNP SI PD= $=300 \mathrm{WW}$ FT $=150 \mathrm{MHZ}$	2M627	X4223CP20-1
A 409	1854-0071	7		TRANSISTOR MPN SI TO-92 PD=300MW	200627	CP4071
44010	1853-0020	4		TRANSSTOR PIN SI PD $=300 \mathrm{NW}$ FT $=150 \mathrm{MHZ}$	2 M 627	xazzecpio-1
M011	1858-0032	8	4	TRANSISTOR ARRAY 14-PN PLSTC DIP	27014	LM3146
$4 \mathrm{CO12}$	1853-0007	7		TRANSISTOR PNP 2NE251 SI TO-18 PD=360MW	04713	2 N 3251
A 4013	1853-0007	7		TRANSISTOR PNP 2N3251 SI TO-18 PD=360MW	04713	203251
A4014	1854-0210	6		TRANSISTOR NPN 2 N2222 SS TO-18 PDO $=500 \mathrm{MW}$	04713	2 2 2222
44015	1854.0210	6		TRANSISTOR NPN 2 N 2202 SI TO-18 PD $=500 \mathrm{WW}$	04713	2 N 2232
$4 \mathrm{CO16}$	1854-0071	7		TRAWSISTOR NPN SI TO-92 PD=300NW	2 N 627	CP4071
A 2017	1853-0007	7		TRANSISTOR PNP 2N325t SI TO-18 PD=360MW	04713	2N3251
A $1018{ }^{\text {a }}$	1854-0030	6		TRANSISTOR-DUAL NPW PD $=500 \mathrm{MW}$	27014	LM394
M 419	1858-0032	8		TRANSISTOR ARRAY 14-IN PLSTC DIP	27014	LM3146
A 4020	1854-0071	7		TRANSISTOR NPN SI TO-92 PD $=300 \mathrm{NW}$	2 N 627	CP4071
H021	1855-0020	8	5	TRAUSISTOR HFET N-CHNN D-MIDE TO-18 SI	04713	SFE793
44022	1855-0049	1	2	TRANSISTORNFET DUAL N-CHAN D-MODE SI	28480	1855-0049
1933A to 2421A						
A4Q23	1054-0013	7		TRANSISTOA NPN 2N2218A SI TO-5 PD=800MW	07263	2422184
2426A and above						
A4Q23	18540637	1		TRANSISTOR NPN 2NE219A SI TO-5 PD=800NW	07263	2N2219A
	1200-0173	5		MSULATOR-XSTR DAP-GL.	28480	1200-0173
44024	1854-0071	7		TRANSISTOR NPN SI TO-92 PD=300NW	$2 \mathrm{M627}$	CP4071
A 4025	$1853-0007$	7		TRANSISTOR PNP 2N3251 Si TO-18 PD=360NW	04713	2N3251
1933A to 2421A						
A4Q26	18540013	7		TRAWSISTOR NPN 2NE218A SI TO-5 PD=800NW	07263	2N2218A
2428A and above						
A4026	18540637	1		TRANSISTOR NPN 2N2219A SI TO-5 PD=800MW	07263	2N2219A
	12000173	5		WSULATOR-XSTR DAP-GL	28480	1200-0173
A 1027	1854-0071	7		TRANSISTOR NPN SI TO-92 PD=300MW	2 M 627	CP4071
1933A to 2121A						
A4Q28	1854-0013	7		TRANSISTOR APN 2NP218A SI TO-5 PD=800NW	07263	202218A
24264 and above						
A4928	1854-0637	1		TRANSISTOR MPN 2NE219A SI TO-5 PD=800MW	07263	2 n 2219 A
	12000173	5		MSULATOR-XSTR DAP-GL	28480	1200-0173
	1205-0361	3		HEAT SIMK SGL TO-5/TO-39-CS	28480	1205-0361
A4029	18540071	7		TRAWSISTOR NPPN SI TO-92 PD=300MNW	$2 \mathrm{NG527}$	CP4071
A 4030	1858-0032	8		TRANSISTOR ARRAY 14-IN PLSTC DIP	27014	LM3146
A4031	18540071	7		TRANSISTOR NPN SI TO-92 PD=3000 WW	$2 \mathrm{M627}$	CP4071

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	City.	Deseription	Mitr. Code	Mfr. Part Number
M 1032	1853-0020	4		TRUNSISTOR PNAP SI PD $=3000 \sim N$ FT $=150 \mathrm{MH} \mathrm{H}$	20.627	xazzecpan-1
1933A to 2t21A						
A4933	18540013	7		TRANSISTOR NPN 2N2218A SI TO-S PD=000MW	07263	2N2218A
24264 and above						
14933	18540537	1		TRANSISTOR NPN 2NE2IEA SI TO-S PD=600MW	07263	2 c 28190
	12000173	5		MSULATOR-XSTR DAP.GL	28460	1200-0173
	1205-0361	3		HEAT SNK SGL TO-5/TO-39-CS	28400	1205-0361
nass	18540071	7		TPANSESTOR MPN SI TO-92 PD=800NW	2 M 527	CP4071
1933A to 2421A						
A4935				NOT ASSICNED		
24264 and above						
A4935	1853-0080	8	5	TRANSISTOR JFET NCHAN DMNODE TO-18 SI	04713	SFE783
MR1	0757-0401	0		RESUSTOR $100+-1 \%$.125W TF TC-0+-100	12498	CT-1/8-T0-101-F
ARR2	0epersas0	5		RESISTOR 21.5 +1\% . 125 W TF TC $=0+100$	Deas9	M ${ }^{\text {c } 2}$
A4R3	0698-3155	1	21	RESSSTOR 4.64K +1\% .125W TF TC $=0+100$	12488	CT41/R-T0-4641-F
AMR4	0757-4279	0		FESESTOR 3.16K +-1\% .12SW TF TC=0+100	12498	CT41/8-T0-3161F
ARS	0757-0279	0		RESTSTOR 3.16K +-1\% .125W TF TC=0+100	12498	CT4-1/8-T0-3161-F
ARR6	0757-1094	9		FESISTOR 1.47K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/R-T0-1471-F
AAR7	0757.0230	3		RESISTOR 1K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-1001F
AARA	0690-3155	1		RESTSTOR 4.64K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/R-T0-4641F
AHR9	0757-0280	3		RESISTOR 1K +1\% .125W TF TC $=0+100$	12498	CT4-1/0-T0-1001-F
MR10	0757-0230	3		PESISTOR 1K $+1 \% .125 W$ TF TC $=0+100$	12408	CT4-1/8-T0-1001F
MAR11	0757-0230	3		FESISTOR 1K $+1 \% .125 W$ TF $\mathrm{TC}=0+100$	12488	CT4-1/9-TO-1001F
AAR12	C006-9155	1		RESISTOR 4.64K +1\% .125W TF TC=04-100	12498	CT4-1/8-T0-4681F
ARR13	0698-0062	7		RESISTOR 464 +-1\% .125W TF TC $=0+100$	12498	CT4-1/6-T0-4640-F
MR14	0838-0082	7		RESASTOR 464 +1\% .125W TF TC=0+100	12498	CT41/R-70-4640-F
ARR15	0680-3155	1		RESISTOR 4.64K + -1\% . 125 W TF TC $=0+100$	12488	CT4-1/8-T0-4641-F
AMR16	0epersis5	1		RESISTOR 4.64K +1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-4641-F
MAR17	0757-0280	3		RESISTOR 1K $+1 \%$. 125 W TF TC $=0+100$	12488	CT4-1/B-T0-1001F
MR18	0757-0279	0		RESISTOR 3.16K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-3161F
A 419	0757.0280	3		RESISTOR 1K +-1\% .125W TF TC=0+100	12488	CT4-1/8-T0-1001-F
AnR20	0757-0280	3		RESISTOR 1K + 1\% .t25W TF TC $=0+100$	12498	CT4-1/8-T0-1001F
Mar21	0757-0280	3		RESISTOR TK + 1\% .125W TF TC=0+100	12498	CT4-1/2-70-1001F
Mar22	06se-3155	1		RESISTOR 4.64K -1%. 125 W TF TC $=0+100$	12498	CT-1/8-T0-4641F
AMR23	0688-3155	1		RESISTOR 4.64K +-1\% .125W TF TC=0+100	12498	CT41/R-T0-4641F
A4R24	0600-0062	7		RESISTOR 464 +1\% .325W TF TC $=0+100$	12488	CT4-1/R-T0-4640-F
MARSS	0088-3155	1		RESISTOR 4.6aK $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/R-T0-4641F
AMR26	0698-3155	1		RESISTOR 4.64K +1\% .125W TF TC=04-100	12498	CT41/R-T0-4641F
Mar27	0757-0200	3		RESISTOR IK + 1\% .125W TF TC $=0+100$	12498	CT4-1/Q-T0-1001-
anpras	0757-0279	0		RESISTOR 3.16K +1\% .125W TF TC=0+100	12498	CT-1/8-T0-3161F
Mar29	0757-9230	3		RESISTOR $1 \mathrm{~K}+-1 \%$. 125 W TF TC $=0+100$	12488	CT4-1/8-70-1003.F
anfis	0757-0280	3		RESISTOR IK + -1\%. $125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-1001-5
AMR31	0757-0280	3		PESISTOR 1K + 4%. 125 W TF TC $=0+100$	12498	CT4-1/8-70-1001F
A4R32	0608-3155	1		RESISTO $4.64 \mathrm{~K}+1 \%$, 125W TF TC $=0+100$	12498	CT4-1/8-70-4641F
AMP33	0609-3155	1		RESISTOR 4.EAK + 1\% .125W TF TC=0+100	12498	CT4-1/8-T0-464if
AnR34	0698-3155	1		PEESISTOR 4.64K +1\% .125W TF TC=0+-100	12498	CT4-1/8-T0-464iF
A/P335	0757-0290	3		RESISTOR 1K +-1\% . 125 W TF T $C=0+100$	12498	CT4-1/8-T0-1001F

Table 6-3. Replaceable Parts

Reference Designation	AP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cly.	Description	Mifr. Code	Mifr. Part Number
AMP36	0090-3155	1		RESISTOR 4.64K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/Q-T0-4641-F
A4R37	0757-0199	3		RESISTOR 21.5K $+-1 \%$.125W TF TC $=0+100$	12488	CT4-1/8-T0-2152-F
A4R38	0698-0084	9	7	RESISTOR 215K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-2151+
A4R39	0757-0465	6		RESISTOR 100K + 1\% . 125 W TF TC $=0+100$	12498	CT4-1/日-T0-1003-F
AMP40	0757-0465	6		RESISTOR 100K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/Q-T0-1003-F
Marat	0757-0230	3		RESISTOR 1K +1\% .125W TF TC=0+100	12498	CT4-1/G-70-1001-
AMP42	0698-0082	7		RESSTOR 464 $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-70-4640F
AMR43				not assigied		
AMA44				MOT ASSIENED		
AAPA5	$0757-0442$	9		RESSTOR 10K +-1\% .125W TF TC $=0+100$	12498	CT4-1/8-TO-1002-F
and46	008e-3160	8	3	RESISTOR 31.8K +-1\% .125W TF TC $=0+100$	12498	CT4-1/8-70-3162-F
Mar47	0757-0401	0		RESISTOR 100 $+1 \% .125 \mathrm{~W}$ IF TC $=0+100$	12498	CT4-1/8-TO-101F
AP448	0757-0403	2	5	RESISTOR 121 +1\% .125W TF TC $=0+100$	12498	CT4-1/8-TO-121R-F
AMP49	0650-8833	2	1	RESISTOR 10K + -0.1\% .125W TF TC $=0+10$	09464	PR1/8
AMR50	2100-3273	1		RESISTOR-TRMR 2K 10\% TKF SIDE-ADJ 1-TRN	28480	2100-3273
Marsis	0096-3904	8	1	PESISTOR 14.7K +0.1\% .1W TF TC $=0+10$	19701	502371/8-T13-1472-
A4R52	0757-0442	0		RESSTSTOR 10K $+1 \% .125 W$ TF YC $=0+100$	12498	CT4-1/8-T0-1002-f
MAR53	0757-0442	9		RESISTOR 10K + -1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-1002-F
ARRS4	$0890-3441$	8		RESISTOA $215+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-215R-F
AMR55	0757.0442	9		RESISTOR 10K +1\% .125W TF TC $=0+100$	12498	CT4-1/8-70-1002-F
ARR56	00983430	5		RESISTOR 21.5 +1\% .125W TF TC=0+100	De439	M M 2
ARR57	0608-3430	5		RESSSTOR $21.5+1 \%$.125W TF TC $=0+100$	D8439	M ME2
MAR59	0690-3441	8		RESSTOR $215+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-70-215R-F
M4R59	0680-0094	9		RESISTOR 2.15K $+1 \%$.125W TF TC $=0+100$	12498	CT41/R-T0-2151F
AR660	0757-0400	0		RESISTOR $90.9+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-90R9-F
A4R61	0757-0199	3		RESISTOR 21.5K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-2152F
A4R62	0690-3441	8		RESISTOR $215+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-TO-215R-F
Anf63	0757-0346	2	13	RESYSTOR $10+-1 \% .125 \mathrm{~W}$ TF TC $=0+100$	D8439	MK2
Aar64	0698-3441	8		RESISTOR $215+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-215R-F
AMR65	0898341	8		RESISTOR 215 +-1\% .125W TF TC=04-100	12498	CT4-1/8-T0-215R-F
ARR66	0690-3430	5		RESISTOR $21.5+\mathbf{1 \%} .125$ W TF TC $=0+100$	D8439	MK2
AMR67	0757-0442	9		RESISTOR 10K $+1 \%$.125W TF TC=0 $=100$	12498	CT4-1/8-70-1002-F
AMR68	0757-0346	2		RESISTOR $10+1 \% .125 W$ TF TC $=0+100$	De439	MK2
A4R69	0698-8731	9		RESISTOR 4.8K $+0.1 \%$.1W TF TC $=0+15$	09464	PA1/10
Mar70	0757-0280	3		RESISTOR 1K +-1\% .125W TF TC=0+100	12498	CT4-1/8-T0-1001-F
ACR71	$0698-8731$	9		RESISTOR 4.8K +-0.1\% .IW TF TC $=0+-15$	09464	PR1/10
A4R72	0090-3155	1		RESISTOR 4.64K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-70-4641F
ARR73	0757-0280	3		RESISTOR 1K +-1\% .125W TF TC=04-100	12498	CT4-1/8-70-1001-F
AAR74	0680-0084	9		RESISTOR 2.15K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/6-T0-215if
AMR75	069e-8821	8	2	RESISTOR 5.62 +1\% .125W TF TC $=0+100$	12498	LOAD
MaR76	0757.0280	3		RESISTOR $4 \mathrm{~K}+1 \% .125 W$ TF TC $=0+100$	12498	CT41/8-T0-1001F
AMR77	0690-0082	7		RESISTOR 464 + 1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-4640-F
A4R78	0630-0034	9		RESISTOR 2.15K + -1\% .125W TF TC $=0+100$	12498	CT4-1/R-T0-2151+
A4R79	0757-0280	3		RESISTOR 1K +-1\%. 225 W TF TC $=0+100$	12498	CT4-1/8-T0-1001-F

Table 6-3. Replaceable Parts

Reference Deaignation	MP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Qty.	Description	Mfr. Code	Mifr. Part Number
12834 to 2121A						
A4R80	0757.0401	0		PESSSTOA $100+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-101-
A4R8I	0757-0401	0		AESSTOR 100 +i\% , 125W TF TCump-100	12498	CT4-1/8-T0-101-F
20261 and above						
AlRso	0808-3432	7		RESESTOR $26.1+1 \%$. 125W F TCu0	28480	0900-3432
AARSI	00063432	7		RESISTOR 28.1 $+1 \%$.125W F TC $=0+100$	28460	0000-3432
Marte	000e3180	8		RESESTOR 31.EK +1\% .12EW TF TC=0 +100	12490	CT418-T0-3162F
Mars3	0ese-0094	9		RESSTOR 215K +1\% .125W TF TC $=0+100$	1249	CT4-18-T0-2151-F
Marbs	0757.0442	9		RESESTOR 10K + -1\% .125W TF TC $=0+100$	12490	CT4-1/8-70-1002f
Ahres	21003852	7	1	RESESTOP-TRAN IK 10\% TKF SIDE-ADJ 1-TRN	28480	$2100-3352$
APP86	00083454	3	3	RESISTOR 215K +-1\% .125W IF TC $=0+100$	12498	CT4-1/8-T0-2153-F
Map87	0000-0003	8	13	FRESSTOR 1.85K +-1\% .125W TF TC=0+100	12498	CT4-1/6-TO-1961F
M/R88	0757.0465	6		RESSTOR 100K +-1\%.125W TF TC=0+100	12498	CT4-1/0-T0-1003-F
A 4 P89	0757-9278	0		PESSTOR 3.16K $+1 \%$.125W TF TC=0 $\mathbf{1 0 0}$	12498	CT4-1/8-T0-3161F
MPRSO	0757-0200	3		RESSTOR 1K $+1 \% .125 W$ TF TC=00+100	12490	CT-1/b-T0-1001-F
MP91	0080-0082	7		RESSSTOR 464 + 1\% .125w TF TC=0+100	12498	CT4-1/E-70-4640-F
AMR92	0757-0279	0		RESISTOR 3.16K $+1 \%$. 125 W TF TC $=0+100$	12.98	CT4-1/8-T0-3161-F
A4P93	$0096-8519$	7	3	RESESTOA 2.1K $+-0.5 \%$, WW TF TC $=0+-5$	09464	PR1/10
Ahria	0757-0200	3		RESISTOR IK $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-1001-F
A4R95	0600-8731	9		RESESTOR 4.8K $+0.1 \%$.1W TF TC $=0+-15$	09464	PR1/10
A4896	0757-0280	3		RESSTOR $1 \mathrm{~K}+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-1001F
AMR97	00043438	3	6	RESSTOR $147+1 \%$.125W TF TC=0+-100	12498	CT4-1/8-T0-147AF
A4898	0757-0395	1	2	RESSSTOA $56.2+1 \%$, 125W TF TC $=0+100$	12488	CT4-1/8-T0-56R2-F
A4P99	0899-0139	7		RESSTOR $660+-0.1 \%$.1W TF TC $=0+15$	09464	PR1/10
ACR100	0698-3155	1		RESISTO 4.64K +-1\% .125W TF TC=0+100	12498	CT4-1/8-70-4641F
AnPIOT	0090-8027	4	10	RESISTOR 1M + 1\% .125W TF TC $=0+-100$	12498	CT4-1/8-T0-1004-F
acrice	0757-0280	3		RESSTOR $1 K+1 \%$. 125W TF TC=0+100	12498	CT4-1/8-T0-1001-F
AMPIOS	0093-3180	8		FRESSTIOR 31.6K $+-1 \%$. 125 W TF TC $=00+100$	12498	CT4-1/8-T0-3162F
anR104	0757-0442	9		RESISTOR 10K +1\% .125W TF TC $=0+100$	12488	CT4-1/8-T0-1002F
15334 to 2121A						
AMR105				NOT ASSIGNED		
A1R106				NOT ASSIGMED		
2486A and above						
A4R105	0680-3155	1		RESSTOR 4.80K +-1\% . 125 W TF TCmp+-100	12498	CT4-1/8-70-6641F
A4RIOG	060-3465	3	1	RESISTOR $383+1 \% .125 W$ F TC=0+100	12498	CT4-1/8-T0-3838-F
ACTPT	1251-0800	0		COMWECTORSEL CONT PWN 1.14MMAOSC-S2 50	12360	94-155-1010-01-03-00
AMTP2	1251.0600	0		COMNECTOR-SEL CONT PWN 1.14 MM-BSC-SZ SO	12360	94-155-1010-01-03-00
ATPS	1251.0600	0		CONWECTOR-SEL CONT PWN 1.14-MMESC-S2 SO	12360	24-155-1010-01-03-00
AMTP4	1251-0600	0		CONWECTOR-SGL CONT PMN 1.14-MM-BSC-SZ 50	12360	94-155-1010-01-03-00
MTPS	1251-0600	0		CONWECTOR-SEL CONT PNN 1.14MM-BSC-SZ 50	12860	94-155-1010-01-03-00
ATP6	1251-0600	0		COMMECTOR-SGL CONT PAN 1.14MMHESC-SZ SO	12360	94-155-1010-01-03-00
AMVR1	1902-0680	7	4	DICDE-ZNR INE27 6.2V 5\% DO-7 PD=.4W	04713	1N327

Table 6-3. Replaceable Parts

Reference	HP Part	\mathbf{C}	Oty.	Description	Mtr.	Mitr. Part Number
Designation	Number	\mathbf{D}		Code		

A5 08901-60010 - SERIAL PREFIX 1933A TO 2545A

05	$00801-60010$	0	1	VOLTMETER ASSEMBLY	23480	0090160010
A5CT	0180-3746	5		CAPACTIOR-XXD 15UF+-10\% 20VDC TA	56289	1500156x902082
1933A to 2251A						
A5C2	0180-2206	4		CAPACTORFXD EOUF+10\% EVDC TA	56209	1500606×900682
2302A to 2545A						
A5C2	0180-2929	8	6	CAPACTIOP-XD E8UF + $\mathbf{1 0 \%}$ 10VDC TA	29480	0180-2929
ASCO	0180-1746	5		CAPACTIOR+XD 15UF+-10\% 20VDC TA	58289	1500156×902082
1833A to 2251A						
A5C4	0180-2206	4		CAPACTTOA+XD 6CUF+-10\% EVDC TA	56289	1500606×900682
A5C5	0180-2206	4		CAPACTTOR-XD 60UF+-10\% 6VDC TA	56289	1500606×900682
23024 to 2545A						
A5C4	0180-2929	8	6	CAPACTIORFXD 68UF + 10% 10VDC TA	28480	0180-2929
A5C5	0180-2929	8	6	CAPACTIORFXD E8UF + 10\% 10VDC TA	28480	0180-2929
A5C6	0180-1746	5		CAPACTIOR+XXD 15UF+10\% 20VDC TA	58289	1500156x902082
ASC7	0180-0197	8		CAPACTTOR-XXD 2.2UF+-10\% 20VDC TA	56289	1500225×902042
1933A to 2142A						
A5C8	0160-2199	2	9	CAPACTTOR-XD SOPF +5\% 300VOC MACA	28480	0160-2199
A5C9	0140-0196	3		CAPACTTOR+XD 150PF +-5\% 300VDC MRCA	28480	0140-0196
2201A to 2545A						
A5C8	0160-2202	0	1	CAPACTOR-FXD 75PF +5\% 300VDC	28480	0160-2202
A5C9				NOT ASSIGNED		
A5C10	0180-0374	3	5	CAPACTIOR + XD 10VF+10\% 20VDC TA	56289	1500106×902082
1933A mo 2142A						
A5Cl1	0160-2201	7			28480	0160-2201
2201A to 2545A						
A5CII				MOT ASSIGNED		
${ }^{45 C 12}$	0160-3879	7		CAPACTIOR-FXD .01UF +-20\% 100VDC CER	09969	RPE121-105X7R103M100V
${ }^{\text {ASCl3 }}$	0160-3879	7		CAPACTTOR + XD . O1UF + -20\% 100VDC CER	09969	RPE121-105X7R103M100V
${ }^{\text {ASC14 }}$	0180-1746	5		CAPACTIOR-XD 15UF+ 10% 20VDC TA	56289	1500156×902082
A5C15	0180-0094	4		CAPACTTORFXD 100UF+75-10\% 25VDC AL	58289	300107c025002
${ }^{45 C 16}$	0160-4094	8		CAPACTIOR-FXD .1UF +-20\% 50VDC CER	08969	RPE122-130X7R104M5OV
${ }^{45 C 17}$	0180,0374	3		CAPACTIOR-XD 10UF+10\% 20VOC TA	56289	1500106×902082
ASC18	01603876	4	7	CAPACTTORFXD 47PF +20\% 200VDC CER	08969	RPE121-105X7R470M200V
ASC19	0160-3451	1	1	CAPACTTOR-XXD .01LF $+60-20 \%$ 100VDC CER	09969	D0106NWE305Y5V1032100V
A5C20	0180-1704	5	1	CAPACTTOR-XD 47UF+-10\% 6VDC TA	56289	1500476x900682
A5C21	01800374	3		CAPACTIOR-FXD 10UF+10\% 20VDC TA	56289	1500106×902082
A5C22	0180-0374	3		CAPACTOR-FXD 104F+10\% 20VDC TA	56289	1500106x902032
A5C23	0160-3501	2		CAPACTTOR-XD ALF + -10\% 50VOC MET.POLYC	84419	HEWW-249
A5C24	0160.0970	3	1	CAPACTIOR + XD . 47 UF + $+10 \%$ BOVDC POLYE	19701	703DIHV474PK800AX
A5C2S	01600575	4	5	CAPACTOA + XD .04TUF $+20 \%$ SOVDC CER	12474	SR205C473ma
A5C28	01600575	4		CAPACTTOR+XD . O47UF +-20\% 50VDC CER	12474	SP20sci73mMa
A5C27	01600575	4		CAPACTTOAFXD .047UF $+20 \%$ 50VDC CER	12474	SR205C473mun
A5C28	0160-0575	4		CAPACTTORFXD .047VF +-20\% SOVDC CER	12474	SR205C473mM

Table 6-3. Replaceable Parts

08901-60010 - SERIAL PREFIX 1933A TO 2545A

$1833 A$ to $2251 A$ A5C29	0160-2206	4		CAPACTIORFXD ECUF+10\% GVDC TA	56299	1500606x900682
23024 to 2545A						
A5C29	0780-2929	8	6	CAPACTTOR-XD G8UF + 10% 10VDC TA	28480	0180-2929
25c30	0160-4997	6	1	CAPACTOORFXD .1UF + 1% 100VDC POLYSTY	84811	Hew-451
ascel	0180-2199	2		CAPACTIORFXD 30PF $+5 \%$ s00VDC MACA	28480	0160-2199
ASC32	0860-3879	7		CAPACTTOR-XD . O1UF +20\% 100VDC CER	09969	RPE121-105X7R103M100V
A5C33	01603879	7		CAPACTIOR+XD .OIUF +-20\% 100VOC CER	09969	RPE121-105X7R103M100V
ASC34	0180-0197	8		CAPACTTOR-XD 2:2UF+10\% 20VDC TA	56289	1500225×902042
ASCR1	1901.0000	1		CNODESWTCHENG SOV SOMA 2 NSS DO-35	90171	1 M 148
ASCR2 ${ }^{\text {a }}$	1501-1098	1		DCOOESWITCHWVG INA150 50V 200 MA ANS	20171	1NC150
A5CR3A	1801-1098	1		DHODE-SWITCHNG INA150 50V 200MA ANS	90171	1NE150
${ }_{\text {ASCRA }}{ }^{\text {a }}$	1901-1098	1		DCOOE-SWITCHMNG 1Na150 50V 200 MA ans	ON171	INE150
A5CR5	1901-0040	1		DIODESWITCHEVG 3OV 50MA 2NS DO-35	EN171	1N4148
ASCP6	1501-0518	8		DIODE-SCHOTIKY SM SHG	12403	5082-2800
ASCR7	1901-0518	8		DVODE-SCHOTTKY SM SVG	12403	5082-2800
ASCR8	1501.9040	1		DWOOE-SWITCHMVG 30V 50Mn 2n's DO-35	9N171	$1 \mathrm{NH148}$
A5CR9	1501-0040	1		DIODESWITCHWVG SOV 50MM 2NS DO-35	9N171	1N4148
ASCR10	1901.0040	1		DICDESWTTCHMVG SOV 50MA 2NS DO-35	9N171	1 Mal48
ASCR114	1901-1098	1		DLODE-SWTTCIENG 1NH150 50V 200MA ANS	9N171	1N4150
ASCR12	1906-0074	1	2	OICDE-ARRAY 50V HOOMA	07263	FSA3157P
ASCR13	1906-0074	1		DCODE-ARRAY 50 V 400 MA	07263	FSA3157P
ASCR14	1501-0040	1		DNODESWITCHMVG 30V 50MA 2NS DO-35	2N171	1914148
ASCR154	1901-0860	7		DIODE-GEN PPPP 125MA DO-35	28480	1901-0880
ASCR16	1901-0040	1		DIODESWTCHANG SOV SOMA 2NS DO-35	2N171	1MM148
A50S1	19800325	2		LED-LANP LMANT =800UCD FF=Somathax	28480	50824403
0541	91400210	1	4	NDUCTOR RF-CHMML $100 \mathrm{UH}+5 \%$	91637	mal 100UH 5\%
A5mpl	04901-00019	3	1	COVER-VOLTMETER (MCULDES EXTRACTOR)	28400	08901.00019
	23500113	2		SCREW-MACH G-32 25 WHLE PANHD-POZ1	00000	ORDER EY DESCRIPTION
ASMP2	5021-0817	8		P.C. BOURD EXTRACTOR	28460	5021-0817
ASOT	1853-0020	4		TPMNSISTOR PNP SI PD $=500 \mathrm{NW}$ FTT $=150 \mathrm{MHZ}$	$2 \mathrm{mb27}$	XA228CP20-1
asce	18540071	7		TRANSESTOR NPN SI TO-92 PD=300MW	$2 \mathrm{M627}$	CP4071
1503	18640477	7		TRANSISTOR MPN 2NP222A SI TO-18 PD $=500 \mathrm{NW}$	04713	2 n 2322 A
A504	1263-0020	4		TRANSSTOP PAP Si PD= 300WW $\mathrm{FT}=150 \mathrm{MHZ}$	2 M 627	X
ASOS	1853-0020	4		TRANSISTOR PNP SI PD $=300 \mathrm{WW}$ FT $=150 \mathrm{MHZ}$	$2 \mathrm{M627}$	x ${ }^{\text {az2BCP20-1 }}$
0506	1853-0020	4		TRANSISTOR PAP SI PD=300MW FTE150NMTZ	2 M 527	x ${ }^{\text {22SCP20-1 }}$
${ }^{1507}$	1854-0071	7		TRANSISTOR NPN 51 TO-92 PD=300MW	2 M 827	CP4071
A508	$1835-0114$	4	1	TRANSISTOR JFET 2N4393 N-CHAN D-NODE	17856	2214393
${ }^{1509}$	1853-0020	4		TRANSISTOR PNW SI PD $=3000 \mathrm{WW}$ FT $=150 \mathrm{MHZ}$	2 M 627	xarzecpeo-1
A5010	18540071	7		TRANSISTOR NPN S1 TO. 22 PD=300MW	2×687	CP4071

Reference	HP Part
Desigmation	\mathbf{C}
\mathbf{D}	Oty

Description Mir. Code

Mfr. Part Number
Designation Number D
aty.

A5
08901-60010 - SERIAL PREFIX 1933A TO 2545A

A5R1	0757.0279	0		PRESESTOR 3.18K +-1\% .125W TF TC=0+-100	12498	CT4-1/8-T0-3161F
ASR2	0757-0e00	3		RESASTOR $1 \mathrm{~K}+1 \% .125 W$ TF TC=0 +100	12498	CT4-1/8-T0-1001F
ASA3	0757-1094	0		RESSSTOR 1.A7K +1\% .12SW TF TC=0 100	12498	CT4-1/8-T0-1471F
ASRA	0308-0082	7		RESASTOR $464+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-4640-
ASR5	18100126	1	3	NETWORK-RES 14DIP 10.0K ONMM $\times 13$	11236	760-1-R10K
Aspr6	0757-0442	0		RESASTOR 10K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-70-1002-F
ASR7	21003358	3	3	RESSISTOR-TRMR IM 20\% TKF SIDEADN 1-TRN	28480	21003358
ASR8	cene-8549	7		PESSSTOR 2.1K + -0.5\% .1W TF TC=0+5	09464	PR1/10
1933A to 2142A						
A5R9	0683-2285	1		REESSTOR 22M +5\% 25W CC TC=-900/+1200	01121	C82265
2201A to 2447A						
A5R9	0093-1565	2		PESESTOR 15M +5\% 25W FC	28480	0683-1565
2450A to 2545A						
A5R9	0epo-0073	8		PESESTOR 10M +1\% .125W F TC=0+150	28480	0699-0073
ASR10	0800-3132	4		RESISTOR $261+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-2610-F
A5Rit	0757-0290	3		RESTSTOR 1K + $\mathbf{1 \%}$.125W TF TC $=0+100$	12498	CT4-1/8-T0-1001F
A5R12	0680-959	7		PESESTOR 2.1K +-0.5\% .1W TF TC=0+5	09464	PR1/10
${ }^{25 R 13}$	$0808-0083$	8		RESISTOR 1.98K + 1\% .125W TF TC=0+100	12498	CT4-1/8-T0-1961F
A5R14	0757-0461	2	1	RESISTOR 68.1K +-1\% . 125 W TF TC $=0+100$	12498	CT4-1/8-T0-6812-F
A5R15	0757-0346	2		FESISTOR $10+1 \%$.125W TF TCm $=0+100$	D8439	M M 22
ASR16	0757-0496	7	40	RESUSTOR 511 +1\% .125W TF TC=0 $=100$	12498	CT4-1/8-T0-511R-F
ASRy7	0757-0280	3		RESSTOR 1K +1\% .125W TF TC=0-100	12498	CT4-1/8-T0-1001-F
A5R18	0757-0462	9		RESASTOR 10K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-1002F
A5R19	06083154	0	8	RESISTOR 4.22K $+1 \% .125 W$ TF TC=0 0 -100	12498	CT4-1/8-T0-4221F
ASR20	0757.0442	9		RESSTOR 10K $+\mathbf{1 \%}$.125W TF TC $=0+100$	12498	CT4-1/8-T0-1002-F
A5R21	0757-0428	1	3	RESHTOR 1.62K +1\% .125W TF TC=0+100	12498	CT4-1/8-T0-1621F
ASR22	0757-0288	1	2	RESISTOR 9.05K +1\% .125W TF TC=0+100	19701	503sR-1/8-T0-9091F
ASR23	008-8731	9		RESISTOR 4.8K + -0.1\% .1W TF TC $=0+15$	09464	PR1/10
1933A to 2142A						
A5R24	0683-2285	1		RESISTOR 2\%M +5\% 25W CC TC-000/+1200	01121	C32265
2801A 10 2447A						
ASR24	0683-1565	2		RESISTOR 15M +-5\% 25W FC	28480	0683-1565
2450A to 2545A						
A5R24	$0099-0073$	6		RESISTOR 100 + $\mathbf{+ 1 \%}$. 125 W F TCm0+150	28480	0899-0073
A5R25	0757-0401	0		RESESTOR $100+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-101-F
A5R26	0757-0442	9		RESISTOR 10K +1\% .125W TF TC=0+100	12498	CT4-1/R-T0-1002-F
1933A 702009 A						
A5R27	0757-0280	3		RESISTOR TK + 1\% .125W TF TC $=0+100$	12498	CT4-1/R-T0-1001F
2012A to 2545A A5R27				NOT ASSIENED		

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \text { C } \\ & 0 \end{aligned}$	Chy.	Description	Mitr. Code	Mfr. Part Number
A5		08901-60010- SERIAL PREFIX 1933A TO 2545A				
A5R28	08003154	0		PESHTOR 4.22K + $4 \% .120 \%$ TF TC=0+100	12498	CT4-1/8-T0-4221F
ASPET	$2100-3358$	3		RESISTOR-TRMP 1M 20\% TIF STE-ADN 1 -TRN	28480	$2100-3258$
A5P30	$0757-0416$	7		RESSTOR 511 +-1\% .125W TF TCu0+100	12498	CTA-1/8-T0-511R-F
A5R31	De9e-3150	6	2	PESSSTOR 237K +-1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-2371-
A5R32	0009022	9	1	RESSTOR 10.5K $+0.1 \%$.1W TF TC=0+15	00464	PR1/10
A5R33	$0757-042$	9		RESISTOR 10K +1\% .125W TF TC=0+100	12498	CT4-1/8-T0-1002-F
A5R34	$0757-0442$	9		RESISTOR 10K $+-1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-1002f
A5R35	21003851	6	2	RESESTOR-TRMM 500 10\% TTF SIDEADS 1-TRN	28480	21003351
A5R236	0757-0458	7	3	RESESTOR 51.1K $+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12496	CT4-1/8-70-5112.F
A5P37	$0600-0033$	8		REESSTOR 1.90K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-1961F
A5R38	0757-0439	4		RESISTOR 6.81K +-1\% .125W TF TCm0 100	12498	CT4-1/8-70-6811F
A5R39	$0088-3430$	5		RESSSTOR 21.5 +1\% .125W TF TCm0+100	De439	mic2
A5P40	0757-0280	3		RESESTOR IK + -1\% .125W TF TC=0+100	12498	CTA-1/R-T0-1001F
A5Pa4	0757-0416	7		RESISTOR 511 +-1\% .125W TF TC=0+100	12498	CT4-18-T0-511RF
A5942	0757-0416	7		RESISTOR $511+1 \% .125 W$ TF TC $=0+100$	12498	CT-1/8-T0-511R-F
A5943	0ese-629	5	1	FESSSTOR $100 \mathrm{M}+10 \% .25 \mathrm{~W}$ CC	01121	C81071
A5PM4	0757.0442	9		RESISTOR 10K $+1 \%$.125W TF TC= $0+100$	12498	CT4-1/8-T0-1002F
A5P45	0757-0465	6		RESSSTOR 100K +1\%.125W TF TC=0+100	12498	CT4-1/8-T0-1003-F
A5P46	0757-0279	0		RESHSTOR 3.16K $+1 \%$. 125 W TF TC $=0+100$	12488	CT4-1/8-T0-3161-F
ASP47	0757-0458	7		PESSSTOR 51.1K $+1 \% .125 W$ TF TC=0 $0+100$	12498	CT4-1/8-T0-5112F
A5f48	0683-1055	5	1	RESISTOR 1M +-5\% 25W CF TC $=0.600$	19701	(CR-25) 1-4-5P-1M
1933A to 2032A						
A5R49	2100-3358	3		RESSSTOR-TRAMR 1M 20\% TKF STDE-ADS 1-TRN	28480	2100-3358
2051A to 2545A						
A5R50	0757-0080	3		RESISTOR 1K + 1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-1001-F
A5R51	0757-0230	3		RESSSTOR 1K $+1 \% .125 W$ TF TC=0 $0+100$	12498	CT4-1/8-T0-1001F
A5R52	$0757-0416$	7		RESISTOR $511+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/2-T0.511R-F
A5R53	$0757-0280$	3		RESISTOR $1 \mathrm{~K}+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-T0.1001F
ASR54	069e-003	8		RESISTOR 1.28K $+1 \%$.125W TF TCmot-100	12498	CT4-1/2-T0-196i-F
ASR55	1810-0037	3	2	METWOPKKRES 16-DIP 1.0K OHM $\times 8$	11236	7613R1K
A5R56	00883157	3		RESTSTOR 19.6K + -1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-1962F
${ }^{4} 5857$	0e80-3157	3		RESSSTOR 19.6K $+1 \%$. 125 W TF T $\mathrm{C}=0+100$	12498	CT4-1/8-T0-1962-F
ASR58	1810-0037	3		NETWORK-RES 16-DPP 1.0K OHM $X 8$	11236	761-3R1K
1933 TO 2003 A (0750						
ASR59	0757-0465	6		RESISTOR 100K + 1\% .12SW TF TC=0+100	12498	CT4-1/8-T0-1003-5
20124 to 2545A						
A5R59	0096-6360	6		RESSTOR 10K +-1\% . 125 W TF TC $=0+25$	28480	0690-6360
A5R60	0757-042	9		RESISTOR 10K +1\% .125W TF TC=0+100	12408	CT4-1/8-T0-1002-F
A5961	0757-0463	4	2	PESSSTOR 82.5K + 1%. 125 W TF TC $=0+100$	12498	CT-1/R-T0-8252-F
ASP62	0757.0467	8	4	RESISTOR 121K +-1\% .125W TF TC=0+100	12408	CT4-1/8-10-1213F

Table 6-3. Replaceable Parts

Reference Designation	HP Part	\mathbf{C}	Oty.	Description	Mirf.

A5

08901-60010 - SERIAL PREFIX 1933A TO 2545A

2985A 702009 A A5863	0090-3159	5		RESSTOR 26.1K +-1\% .125W TF TC $=0+100$	12488	CT4-1/0-T0-2612-F
20124 to 2021A						
A5R63	$0083-6631$	4		RESISTOR $2.5 \mathrm{~K}+\mathrm{t}$.1\% .125W TF TC $=0+-25$	28480	0690-6631
2026A to 2545A						
A5R85*	0757-0276	7	2	RESSTOR $61.9+1 \% .125 W$ F TC $=0+100$	12498	CT4-1/8-T0-61R9F
A5R84	cese-9158	2		RESSSTOR 14.7K +-1\% .125W TF TC $=0+100$	12498	CT4-1/6-T0-1472F
A5R65	06ee-3243	8		RESISTOA 178K + 1\% .125W TF TC $=0+100$	12498	CT4-1/6-T0-1783-F
A5R66	0680-8827	4		RESISTOR 1M +-1\%.125W TF TC $=0+100$	12498	CT4
A5R67	0757-0467	8		RESISTOR 121K $+1 \%$, 125W TF TC $=0+100$	12498	CT4-1/G-T0-1213-F
A5P68	0757-0421	4	11	RESSTOR $825+1 \%$.125W TF TC $=0+100$	12498	CT4-1/0-T0-825R-F
A5R69	0757.0416	7		RESISTOR $511+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-511R-F
ASR70	0680-3443	0	3	RESESTOR 287 +i\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-287R-F
A5R71	068e-3414	8		RESISTOR 215 +1\% .125W TF TC=0+100	12498	CT4-1/8-T0-215R-F
A5R72	0757-0419	0	2	RESISTOR $681+1 \%$.125W TF TCw0+100	12498	CT4-1/8-T0-681R-F
1933A co 2021A						
A5R73	Dese-3157	3		RESSTOR 19.6K +1\% .125W TF TC=0+-100	12498	CT4-1/R-T0-1962-F
2026A 10 2545A						
A5R73	0757-0419	0		RESISTOR 681 + 1\% .125W F TC=0+100	12498	CT4-1/8-T0.681R-F
ASR74	0757-0416	7		RESISTOR $511+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-511R-F
19334 to 2021A						
A5R75	0757-0442	0		RESISTOR 10K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-1002-F
2026A to 2545A						
A5R75	0757-0405	4		RESISTOR $162+1 \% .125 W$ F TC $=0+100$	12498	CT4-1/8-T0-162R-F
ASR76	2100-3103	6	1	RESISTOR-TRMM 10K 10\% TIF SIDE-AD	73138	EPPR10K
A5R77	0699-0239	8	1	RESISTOR S9K + -0.1\% .1W TF TC $=0+15$	09464	PR1/10
A5R78	0757-0280	3		RESISTOR 1K $+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-70-1001F
A5R79	0757-0280	3		RESISTOR 1K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/R-T0-1001-F
A5R80	0757-0416	7		RESISTOR 511 +-1\% .125W TF TC=0+-100	12498	CT4-1/8-TO-511R-F
A5R81	0757-0465	6		RESISTOR 100K $+\mathbf{1 \%}$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-1003-F
A5R82	0757-0346	2		RESISTOR $10+1 \% .125 W$ TF TC $=0+100$	D8439	MK2
A5R83	0757-0280	3		RESISTOR 1K +-1\% .125W TF TC=0+100	12498	CT4-1/8-T0-1003-F
1333A to 2092A						
A5RSH				NOT ASSIGNED		
A5R85				NOT ASSIENED		
2051A to 2545A						
A5R84	0757-0401	0		RESISTOR $100+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-101-7
A5R85	0808-3452	1		RESISTOR 147K + $1 \% .125 W$ F TC $=0+100$	24546	CT4-1/8-TO-1473F
ASTP1	1251-0600	0		CONNECTORSEL CONT PN 1.14-AM-ESC-SZ SO	12360	94-155-1010-01-03-00
ASTP2	1251.0600	0		COWNECTOR-SCL CONT PNM 1.14-mM-ESCSZ SQ	12360	94-155-1010-01-03-00
A5IP3	1251-0600	0		CONWECTOR-SEL CONT PN 1.14-MM-BSC-SZ SO	12360	94-155-1010-01-03-00
A5TP4	1251-0600	0		CONWECTOR-SEL CONT PN 1.14-mM-BSC-SZ SO	12360	94-155-1010-01-03-00
A5TP5	1251-0600	0		CONWECTOR-SCL CONT PN 1.14-MM-BSC-SZ SO	12360	94-155-1010.01-03-00

Table 6-3. Replaceable Parts

Reference Designation	MP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Oty.	Description	Mitr. Code	Mir. Part Number
AS			08901-60010-SERIAL PREFX 1933A TO 2545A			
ASTPG	1251-0600	0		COWNECTOR-SEL CONT PW 1.14MM-SSC-S2 SO	12380	94-155-101001-03-00
0.5187	1251-0600	0		CONAECTOR-SEL CONT PW 1.14 MMMESC-SZ SO	12380	94-155-1010-01-03-00
ASTP8	1251-0600	0		CONWECTOR-SGL CONT PN 1.14MMESCSZ SO	12360	94-155-1010-01-03-00
19384 to 21384						
A5U1	1826-0574	8	1	IC OP AMP LOW-DRIFT 8-TO-99 PKG	07263	UATIALHC
2142A to 2515a						
ASUI	1826-0471	2	1	IC OP AMP LOW-DRIFT TO-99 PKG	20460	1826-0471
19334 to 21424						
15 UZ	18280059	2		CC OP AMP GP 8-TO.09 PKG	27014	LMzOIAH
22014 to 2545A						
ALU_{2}	1026-0571	1		COP ANP TO-99 PKG	28480	1826-0371
${ }^{2} 543$	1228-0098	9	3	C COMPARATOR PRCN 8-TO-99 PKC	27014	LM211H
ASU4	1828-0069	2		IC OP ANP GP \&-TO-99 PKG	27014	LMEOTAN
1933A to 2032A						
ASUS	1828-0371	1		C OP AMP LOW-EUSHMMPD 8-TO-99 PKG	27014	LF256\%
20514 50 2545A						
ASUS	1826-0266	3		IC OP ANP LOW DRIFT TO-99 PKG	06665	OP-05EJ
9546	1820-0098	9		C. COMPARATOA PRCN E-TO-99 PKG	27014	LM211H
1957	TE2s-0380	0	1	$1 C$ TMMER TTL MONO/ASTBL	18324	NES55N
ASUB	1820-1195	7		IC FFTTL LS D-TVPE POS-EDGE-TRIG COM	01295	SNT4LSIT5N
${ }^{4} 519$	1820-1211	8	1	CC EATE TIL LS EXCl-OR OUAD 2-NP	01295	SNT4LSESAN
ASU10s	1820-1547	3	1	C MULTPLCF 8-CHAN-ANL. 16-DIP.C PKG	04713	MC14051
ASU114	1820-15A7	3	1	C. MULTIPLXR 8-CHAN-ANL 16-DP-C PKG	04713	MC14051
ASU12 ${ }^{\text {a }}$	1820-1547	3	1	C M M	04713	MC14051
ascils	1820-1411	0		$1 C$ LCHTLL LS D-TYPE 4-RTT	01295	SN74LS75N
ASUS4	1820-1188	0		IC GATE TIL LS MAND OUAD 2-NWP	01295	SNTALSOSN
ASU15	1820-1216	3		CC DCDA TTL LS 3-TOP-LINE 3-NP	01295	SNTHLSI38N
25VR1	1902-0041	4		OCOEEZNR 5.11V 5\% DO-35 PD=.4W	07263	1N751A
ASVA2				HOT ASSIGNED		
ASVR3	19023024	9	1	DIOOE-ZNR 2.87V 5\% DO.7 PD=,4W TC=-.07\%	28460	1902.3024
ASVRA	1802-0680	7		DCOOE-ZNR TNE27 6.2V 5\% DO.7 PD=.4W	0.713	1 N
ASVA5	15023082	9	1	DOOE-ZNR 4.64V 5\% D0-35 POx.aW	28480	1902-3092
J9334 7020094						
ASVRG				MOT ASSIGNED		
20124 to 25454						
ASVR6	1902-0946	8	1	DOODE-ZNR 3.3V 5\% DO.35 PD=.4W TCen.039\%	28480	1902-0946

Table 6-3. Replaceable Parts

Reference	HP Part	\mathbf{C}	Cty.	Description	Mfr.
Designation	Number	\mathbf{D}	Mfr. Part Number		

Table 6-3. Replaceable Parts

Reference Designation	HP Part number	C	Cos.	Description	Mfr. Code	Mitr. Part Number

08901-60293 - SERIAL PREFIX 2606A AND ABOVE

ASCPA6	1901.0040	1			28480	1901.0040
ASCR7	180100040	1		DIODE-SWITCHVN 30V 50mA 2 2us DO-35	28480	1901-0040
ASCR8	1901-0518	6		DIODE-SM SIG SCHOTTKY	28480	1901-0518
ASCR9	1901-0040	1		DIODE-SWITCHUVG SOV SOMAA 2NS 0035	28400	1901.0040
ASCR10	1901-0040	1		DIODE-SWTCCHNG SOV 50MA 2NS DO-35	28480	1801-0040
A5CR11	1901-1098	1		DIOOESWITCHNG 1N4150 50V $2001 / \mathrm{NA}$ ANS	${ }^{\text {ON171 }}$	1N4150
A5CR12	1801.0040	1		DIODESWTTCHNG 30V 50MM 2NS DO-35	28480	1901-0040
ASCR13	1901-6040	1		DIODESWITCHMGG 3OV 50MA 2NS DO-35	29480	1901-0040
A5CR14	1901-0880	7	9	DCODE-GEN PRP 12SMA DO-35	28480	1901-0830
ASCR15	1901-1098	1		CIOOE-SWTCOHNG 1N4150 50V 200MA ANS	${ }^{\text {W N17 }} 1$	1Na150
ASCR16	1501-1098	1		DIODESWITCHNG IMA150 50V 200MA ANS	eviti	104450
A5L1	0140.9210	1	8	WDUCTOR AF-CHHMLD 100UH 5\% .1600X.385LG	28480	0140-0210
ASMP1	$00401-00019$	3	1	COVEA VOLT MTR	28480	09901-00019
	2190-0008	3		WASHER-LK EXT T MO. 6.141 m-HD	28480	2180-0008
	2380-0113	2		SCREW-MACH 6-32 $25-\mathrm{NH}$ LS PANHD-POZI	00000	ORDER BY DESCAIPTION
0501	1654-0810	2	7	TRANSISTOR NPN SI PD $=625 \mathrm{NW}$ FTT $=200 \mathrm{MH}$	28480	1854-0810
A502	1853-0000	4		TRANSISTOR PANP SI PD=300MW FTT 150 NH HZ	28480	1853-0020
A503	18540077	7		TRANSISTOR NPN 2TE222A SI TO-18 PDum00wW	04713	2422224
A504	1853-0020	4		TRANSISTOR PNP SI PD $=300 \mathrm{WW} \mathrm{FT}=150 \mathrm{MH} \mathrm{H}$	28480	1853-0020
A505	1855-0414	4	2	TRUNSISTOR HFET 2NM393 N-CHAN DHODE	04713	2 N 4393
0506	1853-0020	4		TRANSISTOR PNTP SI PD=300MW FT=150NHZ	28460	1853-0020
A507	1854-0810	2		TAUNSISTOR NPN SI PD=625MW FTT 200 MHZ	28480	1854-0810
ASR1	18100125	1	1	METWORK-RES 14-DIPIO.OK OHM X 13	11236	760-1-R10K
ASR2	$2100-3358$	3	2	RESISTOR-TRMR IM 20\% C SIDE-AOU 1-TRN	28480	2100-3358
A5R3	06se-8549	7		RESISTOR 2.1K 5\% .JW F TC=0+-5	28480	0090-8549
ASRA	$0809-0073$	8		RESSSTOR 10M 1\%.125W F TC $=0+150$	20480	08990073
ASR5	0757-0288	1	3	RESISTOR 9.09K 1\% .125W F TCasor-100	19701	MF4C1/8-70-0091F
ASR6	0680-9549	7		RESISTOR 2.1K .5\% .1W F TC=04-5	28480	0090-8549
ASA7	0757-0280	3		RESISTOR 1K 1\% .125W F TCmot-100	24546	C-1/8-T0-1001-f
ASR8	0698-8731	9		RESISTOR 4.8K .1\% .IW F TC $=0+15$	23460	0390-8731
ASR9	0757-0442	9		RESISTOR 10K 1\% .125W F TC=0+100	24546	C4-1/6-T0-1002-F
ASR10	0757.016	7		RESISTOR 511 1\% .125W F TCub +100	24546	C-1/8-T0-511RF
A5R11	0757-0401	0		RESESTOR 100 1\% .125w F TC=0+-100	24546	C4-1/8-T0-101-f
ASR12	0757-0442	9		PESISTOR 10K 1\% .125W F TC $=0+100$	24546	C-1/8-T0-1002-F
A5R13	0698.3154	0	12	RESISTOR 4.22K 1\% .125W F TC=0+-100	24546	C4-1/8-10-4221f
ASR14	0690-3132	4	11	PESESTOR 261 1\% .125W F TC $=0+100$	24546	C+1/8-10-2610F
A5A15	0699-0073	8		RESUSTOR 10M 1\% .125W F TC=0+150	28480	0809-0073
A5R16	0757-0416	7		RESISTOR 511 1\% .125w F TC $=0+100$	24546	C-1/8T0-511R-5
A5R17	0006-0063	8		RESISTOR 1.88K 1\% .125W F TC=0 $0+100$	24546	C4-1/6-T0-1961F
ASA18	2100-3858	3		RESSTOR-TRM	28480	21003358
ASR19	0757.0461	2		RESISTOR 68.1K 1\% .125W F TCm0 +100	24545	C4,1/6-70-6812-
A5R20	060e3150	6	7	RESISTOR 2.37K 1\% .125W F TCumorico	24546	C4-1/8-T0-2371-F

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Oty.	Description	$\begin{aligned} & \text { Mifr. } \\ & \text { Code } \end{aligned}$	Mfr. Part Number
A5		08901-60293- SERIAL PREFIX 2606A AND ABOVE				
ASR21	0757-0346	2		RESISTOR 10 1\% .125W F TComo-100	24546	C4-1/2-TO-10ROF
A5R22	00090222	9	1	RESSTOR 10.5K . 1%. 1 W F TC $=0+15$	28480	0689-0222
ASP23	$2100-3351$	6	1	RESISTOR-TRM 500 10\% C STOE-AOI 1-TRN	29480	2100-3351
A5R24	0757-1094	9		RESISTOR 1.47K 3%.125W F TCm0+100	24546	C4-1/B-70-1471F
A5R2S	0757-0442	9		RESESTOR 10K 1\% .125W F TC $=0+100$	24546	C4-1/8-70-1002-
A5R26	0757-0439	4		PESESTOR 6.81K 1\% . 125 W F TC $=0+100$	24546	C41/8-10-6811F
ASR27	$0757-0442$	8		RESESTOR 10K 1\% .125W F TC $=0+100$	24546	C-1/8-70-1002-F
A5R28	$0757-0416$	7		RESISTOR 5111%.125W F TC $=0+100$	24546	CA-1/8-T0-511RF
asp29	$0757-0458$	7	8	RESTSTOR 51.1K 1\% .125W F TC $=0+100$	24546	C4-1/8-70-5112f
A5R30	08883430	5		RESUSTOR 21.5 1\% .125W F TC=0+100	03888	PMES5-1/8-T0-21R5-F
ASR31	$0757-0280$	3		RESLSTOR 1K 1\% .125W F TC=0+100	24546	C4-1/8-T0-1001-F
ASR32	0757.0416	7		RESISTOR 5111 1\%.125W F TC $=0+100$	24546	C4-1/Q-T0-511RF
A5R33	089-6286	5	1	RESISTOR 100M 10\% .25W FC TC- $-000 /+1200$	01121	CB1071
ASR34	0757-0442	9		PESISTOR 10K 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-1002-
ASR35	0757-0465	6		RESISTOR 100K 1\% .125W F TC=0 0 -100	24546	C4-1/8-70-1003-F
A5R36	0757.0279	0		RESISTOR 3.18K 1\% .125W F TC $=0+100$	24546	C4-1/8-T03161-F
A5R37	$0757-0458$	7		RESISTOR 51.1K 1\%, 125W F TC $=0+100$	24546	C4-1/8-T0-5112-
A5R38	21003353	8	1	RESISTOR-TRMR 20K 10\% C SIDE-ADU 1-TRN	28480	2100-3353
A5R39	08963454	3		RESASTOR 215K 1\% .125W F TC=0 $=100$	24546	C4-1/8-2153-5
ASP40	0757-0401	0		RESISTOR 100 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-101-F
ASR41	$0098-8827$	4		RESISTOR 1M 1\% .125W F TC $=0-100$	28480	0098-8827
ASP42	0757-0280	3		RESISTOR 1K 1\% .125W F TC=0+100	24546	C4-1/8-T0-1001-f
A5P43	0757-0416	7		RESISTOR 511 1\% .125W F TC=0 0 -100	24546	C4-1/8-T0-511R-F
ASR44	$0757-0420$	3	9	RESISTOR 750 1\% . 125 W F TC $=0+100$	24546	C4-1/8-70-751-F
ASPR45	06903152	8	7	RESESTOR 3.48K 1\% .125w F TC $=0+100$	24546	C4-1/8-703481-
ASP46	$0096-6350$	8	3	RESISTOR 10K .1\% . 125 W F TC $=0+25$	28480	0690-6360
ASP47	$0008-0084$	9		RESISTOR 2.15K 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-2151-F
A5R48	0098-8360	6		RESISTOR 10K .1\% .125W F TC $=0+25$	28480	0698-6360
ASR49	06890847	4	3	PESISTOR 1.96K . 1%. 125 W F TC= $=0+50$	28480	0699-0847
A5R50	0899044	4		RESISTOR 1.96K . 1%.125W F TC=0+50	28430	0699-0847
ASPR51	0757.042	9		RESISTOR 10K 1\% .125W F TC=0+100	24546	C4-1/8-T0-1002-F
A5P52	08806631	4	1	RESISTOR 2.5K .1\% .125W F TC=0+-25	28480	0698-6631
A5R53	0757-0462	9		RESISTOR TOK 1\% .125W F TCanot-100	24546	C4-7/8-70-1002-F
A5R54	0690-3156	2		RESUSTOR 14.7K 1\% .125W F TC $=0+100$	24546	C4-1/8-T0.1472-F
A5R55	0650-6362	8	1	RESISTOR 1K.1\% .125W F TC $=0+25$	28480	0698-6362
A5R56	0899047	4		RESSSTOR 1.96K . 1%. 125 W F TC= $=0+50$	28480	0689-0847
ASP57	0757-0467	8	3	PESSSTOR 121K 1\% .125W F TC $=0+100$	24546	C4-1/8-10-1213-F
ASP58	0757-0463	4	3	RESISTOR 82.5K 1\% .125W F TC $=0+100$	24546	C-1/8-T08252-
A5R59	089-3157	3		RESISTOA 19.6K 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-1962-F
A5R60	06963157	3		PESESTOR 19.6K 1\% .125W F TC=0 $0+100$	24546	C4-1/8-70-1962F
A5R61	0690-3157	3		PESISTOR 19.6K 1\% .125W F TC=0 0 -100	24546	C4-1/8-70-1962-F
A5R62	0757-0467	8		RESSSTOR 121K $1 \% .125 W$ F TC $=0+100$	24546	C+1/8-T0-1213-F
A5863	0698-3243	8		PESISTOR 178K 1\% .125W F TC $=0+100$	24546	C4-1/8-70-1783-F
A5P64	068-8827	4		RESNTOR 1M 1\% .125W F TC $=0+100$	28480	06se-8827
A5R65	0757-0420	3		RESISTOR 750 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-751-F

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cly.	Dascription	Mir. Code	Mir. Part Number
A5			08901-60293-SERIAL PREFIX 2606A AND ABOVE			
ASPA66	0757-0416	7		RESISTOR 511 1\%.125W F TC $=0+100$	24546	C-1/8-T0-511AF
A5867	$0757-0416$	7		PESSSTOR 511 1\% .125W F TC=0 ${ }^{\text {a }}$-100	20546	C4-1/R-T0-511R-F
A5P68	0680-3443	0	5	PESSSTOR 287 1\%. 125 W F TC $=0+100$	24546	C4-1/8-T0-287R-F
ASR69	0686-3419	8		PESSISTOR 215 1\%.125W F TC=0+100	24546	C+1/8-70-215A-
Asp70	$0757-0419$	0	T	RESISTOR 881 1\%.125W F TC $=0+100$	24546	C4-1/8-T0681R-F
A5R71	0757-0405	4	4	PESISTOR 162 1\%. 125 W F TC $=00+100$	24546	C4-1/8-70-162R-F
A5R72	0757-0419	0		RESSTOR 881 1\%. 125 W F TC $=0+100$	24546	CL-1/R-T0681R-F
A5873	2100.3103	5	1	RESSTSTOR-TRIMR 10K 10\% C SLEEAN 17-TRN	02111	43 P 103
A5R74	0699-0299	8	1	RESISTOR 59K . 1%. 7 W F TC=0+-15	20480	0609-0239
A5P75	0757-0260	3		RESISTOR 1K 1\% .125W F TCuat 100	24546	C4-1/8-70-1001 F
ASR76	0757-0280	3		RESSSTOR 1K 1\% .125W F TCu0 100	24545	C4-1/2-70-1001 F
A5877	0757-0280	3		PESSTOR 1K 1\% .12SW F TC $=0+100$	24546	C4-1/8-70-1001F
ASP78	$0757-0416$	7		RESESTOR 611 14.125W F TCu0+100	24.46	CL-1/6-70-611a-
A5R79	0757-0465	6		RESISTOR 100K 1\% .12SW F TC $=0+100$	24546	C4-1/8-70-1003-F
A5P80	0757-0346	2		RESSTSTOR 10 1\%.125W F TC=0+100	24546	C4-1/8-70-10ROF
A5R81	0757-0280	3		RESISTOR 1K 1\% .125W F TCu0 100	24546	C4-1/8-70-1001F
ASTP1	1251-0600	0		CONAECTOR-SEL CONT PW 1.14-MM-ESC-SZ SO	23480	1251.0600
ASTP2	1251-0600	0		CONNECTOR-SCL CONT PW 1.14AMABSC-S2 SO	20480	1251-0600
A5TP3	1251-0600	0		CONNECTOR-SGL CONT PPN 1.14-MA-BSC-SZ SQ	28460	1251.0600
ASTP4	1251-0600	0		COWNECTOR-SEL CONT PWN 1.14MM-SSCSZ SQ	28480	1251.0800
ASTP5	1251-0600	0		CONNECTOR-SEL CONT PAN 1.14MM-BSC-SZ SQ	28480	1251-0600
ASTP6	1251-0600	0		CONNECTOR-SGL CONT PAN 1.14MM-ESCSZ SQ	28480	1251-0600
ASTP7	1251-0600	0		CONMECTOR-SES CONT PWN 1.14mM-ESC-SZ SO	28480	1251-0600
A5TP8	1251-0600	0		CONWECTORSEL CONT PWN 1.14MMESC-S2 SQ	28480	1251-0600
A5N1	1823-0471	2	2	CC OP ANP LOW-DAIFT TO-99 PKG	26480	1826-0474
A5U2				NOT ASSIENED		
A543	1826-0371	1		C OP ANP LOW-EUSHSHMPD TO99 PKG	27014	LF253H
2514	1826-0098	9	3	$1 \mathrm{CCOMPARATOR} \mathrm{PRCN} \mathrm{TO-99} \mathrm{PKG}$	27014	U6211H
A5us	1826-0098	9		IC COMPAPATOR PRCN TO-89 PKG	27014	LM2IIH
A 506	1828-0059	2		IC OP ANP GP TO-99 PKC	01295	LMEOTAL
25061 to 20284						
A5U7	1826-0783	9		IC OP AMP LOW-NOLSE 8-DPPC PKG	52063	XRS534ACN
2629A and above ASU7				NOT ASSIGNED		

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	\mathbf{C}	aty.	Description	Mrr	Mer. Part Number
A5		08901-60293 - SERIAL PREFIX 2606A AND ABOVE				
asue	18250871 18260180	1	2		${ }^{27014} \mathbf{0 1 2 9 5}$	${ }_{\text {LeSSSSP }}$
${ }^{\text {asulo }}$	1223600505	4	3	C M M	17es6	Desosek
ASU11	18260005	4			17956	dasoee
${ }^{\text {asul2 }}$	182000505	4			17856	Dos50eb
${ }^{2} 5013$	$1280 \cdot 1195$	7		1 CFF TI LS D-TPE POSEDEE-TRIG COM	01295	SNTMLST35N
15014	182001211	8	1	IC GATE TIL LSEXCL-DR OUND 2-ANP	01295	SNTULSESN
${ }^{\text {asuls }}$	1820.1411	0	13	1 CLCH Th LS D-TPE 4 ST	01295	SNT4L575N
${ }^{\text {a }}$ U16	1820-1198				01295	SNTUSO
${ }^{15} 517$	1823603871	1			27014	
A5U18	$1820-1216$	3		IC DCDA TLL LS 3TO\&LINE SHP	01295	SNTLLSI3EN
Asval	1902-0946			DIODE-ZNA 3.3 V 5\% DO.35 PDO. 4 WW TC=. 039%	29480	1902-0946
Asva	19023082	\%	1	DIOOE-2NE $4.6 \mathrm{WV} 5 \times$ DO.35 PDe. 4 W	28480	1002-3002
asve3		9	1	DCOOE-2NA 287 T 5\% DO.7 PD=.4W TC=.07\%	28480	1902.3024
asva	1902.0880	7			24046	1 Ne27
25061002623						
				NOT ASSTANED		
W1	81590005	6		RESSTOR Z IFO OHMS 22 ANG LEAD DM	23480	8150-0005

Table 6-3. Replaceable Parts

Reference	HP Part	\mathbf{C}		
Designation	Number	\mathbf{D}	Description	Mtr.\quad Whtr. Part Number

08901-60114 - SERIAL PREFIX 1933A TO 2308A

96	cesot-60114	5	1	AM DEMODULATOR ASSEMBLY	28480	0880160114
ABCT	0180.0058	0		CAPMCTOR- X SO SOVF+75-10\% 2SVDC AL	86289	$3005086025 c 92$
A6C2	0180-0058	0		CAPACTOR-XD 50lli+75-10\% 25VDC AL	56209	$3005066025 C 02$
${ }^{\text {a }}$ CS3	0180-4636	8	1	CAPACTIOR-XDD 25sef $+1 \%$ 100VOC MMCA	28480	0160-4636
AGCA	0160-2660	2	1	CAPACTTOR-XD 20PF + 2% 500VDC CER $0+30$	09535	301-000-0060-2006
AGCS	0160-4635	5	1	CAPACTTOR-XXD 212PF + 1\% 100VDC MICA	28480	0160-4635
ABC6	0160-2249	3		CAPACTTOR-TXD 4.7PF + -2SPF SOOVDC CER	09535	301-000-COH0-479C
ABC7	0100-2150	5	1	CAPACTTORFXO S3PF + 5\% 3c0VDC MICA	20480	0160-2150
A6C8	0121-0105	4	2	CAPMCTIOR-V TRMP-CER 9355 FF 200 V PC.MTG	52763	304324 9/35PF NE50
ascs	0160-0574	3	3	CAPACTIORFXD	06383	FD12X7R2A223M
A6C10				NOT ASSMENED		
ascil	01800197	8		CAPACTTORFXO 2:2UF+10\% 2OVDC TA	56289	1500225x9020a2
asci2				MOT ASSIGNED		
ascis				NOT ASSICNED		
a6C14	01800197	8		CAPACTTOPFXD 2.20F+10\% 20VDC TA	55209	1500225x9020~12
M6C15	0180-2618	2	5	CAPACTTOA+XD 33UF+10\% 10VDC TA	12344	T355F336k010AS
a6C16	0160-2199	2		CAPACTTOR-XX 30PF +-6\% 300VDC MACA	28480	0160-2199
${ }^{\text {a }}$ C77 7	0160-4034	8		CAPACTIORFXD .IUF + 20% SOVDC CER	09969	RPE122-139X7R104M5OV
A6C18	0170-0040	0	1	CAPACTIOR-XXD OATVF +10\% 2DOVDC POLYE	19701	70801+P473PK201AX
ABC19	0160-0302	5	1	CNPACTOR $+X D$. 018 UF + $10 \% 200 \mathrm{VDC}$ POLYE	19701	70801HH183PK201AX
A6C20	01602249	3		CAPACTORFXD 4.7PF + 2SPF 500VDC CER	00535	301-000-CO40-479C
M6C21	0160-0155	6	1	CAPACTIORFXD 3300PF + 10% 200VDC POLYE	19701	70801AC332PK201aX
96022	$0180-1746$	5		CAPACTOR + XD 15UF+-10\% 20VDC TA	56289	1500156x9080e2
A6C23	0160-2199	2		CAPACTOR + XD 30PF $+5 \% 300 \mathrm{VDC}$ MMCA	28480	0180-2199
M6C24	0180-1746	5		CAPACTIOR-FXD 15UF+-10\% 20VDC TA	56289	1500156x902082
A6C2S	0180-0228	6		CAPACTOR-FXD 22F+10\% 15VDC TA	58289	1500226×901582
A6C26	0160-0299	9	1	CAPACTOR-FXD 1800PF + 10\% 200VDC POLVE	19701	709D1AC182PK201AX
A6C27				NOT ASSICNED		
A6C28	0160-2189	2		CAPMCTOR-XD 30PF + 5% 300VDC MACA	28480	0160-2199
A6C29	0160-2199	2		CAPACTIORFXD 30PF +5\% 300VDC MICA	28480	0160-2199
A 6830	0160.1743	2	1	CAPACTIOR-FXD .IVF+ 10% 35VDC TA	56289	1500104×903512
A6C31	01603501	2		CAPACTTOR-FXD AUF + 30% SOVDC METPOLYC	44811	Mew-249
A6C32	01800197	8		CAPACTIORFXD 2.21F-10\% 20VDC TA	56269	1500225x902042
A 6 C33				NOT ASSMENED		
A6C34	01800197	8		CAPACTTOR-XD 2:2UF+10\% 20VDC TA	56289	1500225x902002
A6C35				MOT ASSIGNED		
A6036	0100-0228	6		CAPACTTON-XD 22UF+ 10% 15VDCTA	56289	1500226x901582
A 6837	0160-4231	3	1	CAPMCTIOR-XD $220 \mathrm{~F}+10 \% 50 \mathrm{VDC}$	84811	HEW 249
A6C38	0160-1746	5		CAPACTOR FXD 15UF+10\% 20VDC TA	56289	1500156×902082
A6C39	01800197	8		CAPACTTORFXD 2.2UF+-10\% 20VDC TA	56289	1500225x902042
AECSO	01803539	6		CAPMCTIORTXD EROPF +5\% 100VOC MACA	28480	0160-3539
abcel	0180-1746	5		CAPACTTORFXCD 15UF+-10\% 20VDC TA	56289	1500156x902032
ACCA	0160-2199	2		CAPACTTORFXD 30PF +-5\% 300VDC MMCA	28480	0160-2199
aschs ${ }^{-1}$	$0160-2208$	4	1	CAPACTTOR-XD $350 \mathrm{PF}+5 \% 300 \mathrm{VDC}$ MACA	28480	0160-2208
ASCA	0180-1746	5		CAPACTIORFXO 15UF+-10\% 20VOC TA	56289	1500156×902082
A8C45	0180-1748	5		CAPACTIOP-XD 15UF+-10\% 20VDC TA	56289	1500156x902082

Reference	HP Part	\mathbf{C}	Oty.	Description
Designation	Number	\mathbf{D}	Mifr.	Mitr. Part Mumber

A6

08901-60114 - SERIAL PREFIX 1933A TO 2308A

${ }^{\text {a6C46 }}$	0160-4084	8		CAPACTTOPFXD . IUF +20\% 5OVDC CER	09969	RPE $122-139 \times 7$ R104M50V
A6C47	0100-2206	4		CAPACTTORFXD BOLF+10\% GVDC TA	56289	
accas				HOT ASSIGNED		
abcas				NOT ASSICNED		
A6C50	01003456	6		CNPACTIORFXO 1000PF + 10% 1KVDC CER	08383	CXA5XE3A102\% ${ }^{\text {a }}$
1933A to 2238A						
A6CSI	01603536	3		CAPMCTIORAFXD EZOPF $+5 \%$ 100VDC MICA	28480	01603536
2239A to 2508A						
A6C51	0180.3535	2		CAPACTTOR-XXD 580PF $+6 \%$ 300VDC MACA	28480	0160-3535
ascis	$0180-2513$	7	1	CAPACTTOR $\times \times \mathrm{O}$ ЗОOUF+10\% EVDC TA	56299	$1520397 \times 900682-\mathrm{DB}$
${ }^{\text {afc53 }}$	0180-1746	5		CAPACTIORFXD 15UF+10\% 20VDC TA	56299	1500156x902032
A6CSA	0160-3459	-	13	CAPACTOPRXD .D2UF +20\% 100VDC CER	09369	DD141NWE302z5V203m100V
A6C554	0180-5469	5	1	CNPACTTOA+XD IUF + 10% 50VDC MPE	24880	0180-5469
ABC56	0160-4004	8		CAPACTTOPFXD. IUF +20\% 50VDC CER	09969	RPE122-139x7R104M50V
A6C57	0160-3159	9			09869	D0111NWE302z5V203M100V
Abcse	0160-3535	2	3	CAPACTTOR + XD 560PF $+5 \% 300 \mathrm{VDC}$ MICA	29490	0160-3535
A6C59	01603535	2		CAPACTOR + XD 560PF $+5 \% 300 \mathrm{VDC} \mathrm{MICA}$	29480	01603535
ABCSO	0180-2207	3	1	CAPACTIOR + XD S 300PF $+5 \%$ 300VDC mich	28480	$0150-2207$
A6C61	01800197	8		CAPACTIOR-XD $2.2 \mathrm{LF}+10 \%$ 20VDC TA	56299	1500225×5020012
A6C62	0180-1746	5		CAPACTTORFXO 15UF+10\% 20VDC TA	56289	1500156x902082
a6c63	0160-0134	1		CAPACTOP-XD 2ZOPF $+5 \% 300 \mathrm{VDC} \mathrm{M}$ MCA	28480	0180.0134
AGCSA	0180-2204	0		CAPACTTOR $+\times \mathrm{D}$ 100PF $+5 \% 300 \mathrm{DDC} \mathrm{MICA}$	24880	0160-2204
A6C65	01800376	5	2	CAPACTOR + XD . 4 TVF+ $+10 \%$ 35VDC TA	5629	1500474×903512
A6C65	01803456	6		CAPACTTOR $+\times$ OD 1000PF $+10 \%$ 12VDC CER	06383	CX45XE3A102K+
${ }^{\text {A6C657 }}$	01600166	9	1	CAPACTIOR +XD . $0684 \mathrm{C}+10 \%$ 200VDC POLYE	19701	70801MP683PK201AX
${ }^{\text {afc6s }}$	0160-2252	0	1	CAPMCTIOR + XD 16PF $+5 \% 500 V D C$ CER $0+30$	08535	301-000-0060-1601
Asc6s	0180-1746	5		CAPACTTOR $+\times \mathrm{O}$ 15UF+ $+10 \% 20 \mathrm{VDC} \mathrm{TA}$	56289	1500156×902082
A6C70	0160-4509	2	1	CAPACTTOR + XD . O33VF $+5 \%$ 50VDC	8411	HEW-246
agchi						
AGCR1 $^{\triangle}$	1801-1098	1		DCODESWTTCHNG 1 MW150 50 V 200 MM ANS	SN171	$1 \mathrm{Na150}$
AGCR2 ${ }^{\text {a }}$	1901-1098	1		DIODESWTTCHMG 1 WA150 50 V 200 MA ANS	SN171	1 Wals0
${ }_{\text {afCras }}{ }^{\text {a }}$	1901-1098	1		DIODESWTTCWMG INM150 50V 200 MA ANS	OW171	1 Wh150
AGCRA				7777777 NOT ASSIGNED 7777777 (
$\mathrm{AGCPR}^{\triangle}$	1501-1098	1		DIODESWITCHNGG 1 M 15050 V 200 MA ans	50171	1 M 150
A6CP5 ${ }^{\text {a }}$	1901-1098	1		DIODESWTTCHNG 1 IN150 50 V 200 MO ANS	8 9171	1 14150
${ }^{\text {A6CPA }}{ }^{8}$	1907-1098	1		DIOOESWWTCHNGG 1 Na150 50 V 200 MA ANS	9N171	1 N 150
A6CR7 ${ }^{\text {a }}$	1501-1098	1		OLODESWITCHWG 1 NE150 50 V 200 MA ANS	20171	INA150
AGCR8 ${ }^{\text {a }}$	1901-1098	1		DIODESWITCHWGG 1 NA150 $50 V \mathrm{I} 200 \mathrm{MA}$ ANS	20171	INA150
afcras	1901-0539	3	3	DIODESCHOTTKY SM SIG	28480	1501-0539
A6CR10	1901-0599	3		DIODE-SCHOTTKY SM SIG	24880	1501-0539
ABCR11				not assiened		
A6CR12				NOT ASSIGNED		
ascris	1901-0518	8		OLODE-SCHOTTKY SM SIG	12403	5082-2800
A6CR14	1901-0518	8		DIDDE-SCHOTTKY SM SIG	12403	5082-2800
A6CR15	08901-50024	8	2	DIODE, MATCHED	28480	08901-80024

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \text { C } \\ & \mathbf{D} \end{aligned}$	Oty.	Description	Mfr. Code	Mfr. Part Mamber
A6			08901-60114-SERIAL PREFIX 1933A TO 2308A			
A8CR16	00001 -00024	-		DICOE, MATCHED	20460	09901-40024
AECR17	1001-0518	8		DIODE-SCHOTTKY SM SIG	12403	5082-2800
ABCR18 ${ }^{\text {a }}$	1801-1098	1		DIODE-SWTTCHE	20171	1N4150
MECR19 ${ }^{\text {a }}$	1901-1098	1		DIODE-SWITCHNG 1NG150 50V 2000MA ANS	ON171	1NA150
AGCR20	$1801-0518$	8		DVOOE-SCHOTTKY SM SIG	12403	5032-2000
A6CR21	1901-0539	3		DIODE-SCHOTHKY SM SIG	28480	1501-0539
asosi	1800-0325	2			28400	5082-403
A6J1		0		CONAECTOPRF SMC M PC 50-OHM	06877	
	$2190-0124$	4		WHSHER-LK MTL T MO. 10 . 195-WHID	16179	500222
	2050-0078	9		MUT+EX-DRL-CHAM 1032-THD .067-HHTHK	28400	2050-0078
A612		0		COMNECTOP-RF SMC M PC 50-07M	06877	22suc-5003/111
	2180-0124	4		WASHERLLX WTL T MO. 10 .195-NHD	16179	500222
	2950-0078	9		MIT +EX-DEL-CH4M 10s2-TTD .067-HWTHK	20480	2950-0078
A63	1250-1220	0		CONWECTORAFF SMC M PC 50-OMM	06877	2asme-50-03/111
	21900124	4		WASHERHK INTL T MO. 10.195 NHD	16179	500222
	2950-0078	0		MUTHEX-DEL-CHAM 10-S2-THD .067-HFTHK	28480	2950-0078
A6M	1250-1220	0		COMNECTORARF SMC M PC 50-01m	06877	82smc-50-03/111
	21900124	4			16179	500222
	2050-0078	9		MUT+HEX-DEL-CHAM 10-32-THO .067-N-THK	28480	29500078
A6L1	9100-1635	2	2	MDUCTOR RF-CHEMLD 91UH +-5\%	91637	M-4 91UH 5\%
M6L2	9100-1695	2		WOUCTOR PF-CHMLLD 91UH +-5\%	91637	Ma-4 91u\% 5\%
A6L3	91400271	4	1	MDUCTOR RF-CHMLD 13.3UH + 2\%	32159	8-02738
AGL4	$9140-0272$	5	1	MOUCTOR RF-CHHED $32 \mathrm{LH}+2 \%$	24226	15N322G-1
A6L5	9140-0273	6	1	MOUCTOR RF-CHHMLD $47.6 U H+2 \%$	24226	15MM72G-1
AGLS	9100-1686	9	2	MOUCTOR RF-CHEMLD 3.6MH + 5 S\%	32159	9360004-5\%
A6L7	$9100-1652$	3		NOUCTOR PF.CH-MLD $820 \mathrm{HH}+-5 \%$	91637	m-6 82OHH 5\%
A680. ${ }^{\text {a }}$	9100-1633	0	1	WDUCTOR RF-CHMMD 68UH +-5\% .166DX385LG	28480	0100-1633
M6LP	9100-1666	9		WOUCTOR RF-CHMRD 3.EMWH +-5\%	32159	8380004-5\%
AGL10	9140-0131	5	4	ROUCTOR RECHHMD 10MH +-5\%	91637	m+10 100001H 5\%
AgMP1	00801-00018	2	1	COVER. AM DEMODULATOR	28480	00001-00018
	$2880-0113$	2		SCREWHMCH 6.32 25-NHE PANHDPOZI	00000	ORDER EY DESCRIPTION
ABMp2	5021-0817	8		P.C. BONRD EXTRACTOR	28480	5021-0817
A601	1853-0007	7		TRUNSISTOR PNP 2NB2SI SI TO-18 PD=360NW	04713	2×3251
A6CO2	1255-0020	8		TPANSISTOR لFET N-CHAN D-MOOE TO-18 SI	04713	SFE793
A603	1854-0071	7		TRANSISTOR MPN SI TO-92 PD=300NW	201627	CP4071
A604	1854-0477	7		TRANSLSTOR NPN 2N2222A SI TO-18 PD=500MN	04713	2N2222A
A605	1854-0071	7		TRANSISTOR MPN SI TO-92 PD= 300 MW	24 M 27	CP4071
A606	1855-0265	3		TRUNSISTOR LFET NCHAN DHOOE TO-18 SI	28480	1855-0265
A607				NOT ASSIGNED		
A 608	1854-0071	7		THANSETOR NPN SI TO-92 PD=300NW	214627	CP4071
4609	1854-0071	7		TRUNSTSTOR NPN SI TO-92 PD=300 MW	201627	CP4071
16010	1853-0020	4		TRANSSTOR PNP SI PD=500NW FT=150MHZ	$24 \mathrm{MS27}$	$\times 1228 C P 20-1$

Table 6-3. Replaceable Parts

A6O14	1853-0007	7		TRANSISTOR PNP 2×3251 S1 TO-18 PO=360WN	04713	2×3251
A6012	18540215	1	2	TRNUSSTTOR NPN S1 TO-82 PD=350NW	06713	2 N 3904
${ }^{\text {A6013 }}$	18550007	7		TRANSISTOR PNP $2 N 3251$ S1 TO-18 PD=360MW	04713	2 233251
16014	18540013	7		TRANSISTOR NPN 2NE218A SI TO-5 PD=800NW	07263	2 N 2218 A
${ }^{\text {aborb }}$	18540204	0	5	TRANSISTOR MPN SI TO-78 PD $=360 \mathrm{WW}$	28480	18540404
ab016	1854-0071	7		TRANSISTOR NPN SI TOA2 PD=300wn	24627	CP4071
26017 ${ }^{\text {a }}$	1855-0597	4	1	TRANSSTOR دFET P-CHAN DMODE TO.92 SI	28480	1855-0597
agoit	$1853-0020$	4		TRUNSISTOR PAP SI PD=300MW FT=150MHZ	20627	x $2228 \mathrm{CP} 20-1$
A6019	1854047	7		TRANSISTOR NPN 2NE222A SI TO. 18 PD= 500 WW	04713	2 arzzzan
A6020	18530007	7		TRASSSTOR PAP 2NE251 SI TO-18 PD=Scomw	04713	2×3251
18021	18540071	7		TRANSSSTOR NPN S1 TO-22 PD=300w	2 m 627	CP4071
A6022	$1853-0007$	7		TRANSISTOR PAP 2 N3251 S4 TO-18 PD=360MW	04713	2×3251
A6023	1853.0007	7		TRANSISTOR PAP 2NE351 S1 TO- 18 PDE3800NW	04713	2 N3251
A6024	1853-0007	7		TRANSISTOR PNP $2 N S 251$ Si TO-18 PDuSSOMW	06713	2×3251
A6025	1855-0020	8		TPMSSTOR دFET NCHUN DMODE TO-18 SI	00713	SFE793
A602\%	18540215	1		TRANSISTOR MPN SI TO-92 PD=350MW	04713	2×3904
A6027	1853.0020	4		TRAWSISTOR PAP SI PD=300WW FT=150MHZ	24627	X1228CP20-1
A6028	$1853-0020$	4		TRUNSSTOR PAP SIPD $=300 \mathrm{NW}$ FT $=150 \mathrm{WH} \mathbf{I Z}$	2 M 627	$\times 1228 \mathrm{CPP}^{20-1}$
A6029	1854047	7			04713	2 N 2282 A
A6030	18540071	7		TRANSSTOR NPN SI TO--82 PD=300NW	$2 \mathrm{M627}$	CP4071
A6031	$1053-0080$	4		TRUSISTOR PAP EI PD $=300 \mathrm{WW}$ FT $=150 \mathrm{WHZ}$	246527	X1228CP20-1
A6n 1	0757-1108	6	1	PESSSTOR $300+1 \% .125 W$ TF TC=0 +100	12498	CT41/8-T0-301-
AGR2	0696-3157	3		RESSISTOR 19.6K $+1 \% .125 \mathrm{~W}$ TF $T C=0+100$	12498	CT4-1/8-T0-1962-F
A6R3	06893446	3	5	RESSTOR 383 +1\% . 125 W TF TC $=0+100$	12498	CT4-1/8-10-383F-F
A ${ }^{\text {cfa }}$	0698-344	4	4	RESSTOR 422 +1\%.125W TF T $C=0+100$	12498	CT4-1/8-T0-622RF
AGR5	0757-0401	0		RESSSTOR $100+1 \% .125 W$ TF TC $=0+100$	12498	CTA-1/8-Ta-101F
	0757-0290	3		RESISTOR $1 K+1 \%$. 125 W TF T $C=0+100$	12498	CT4-1/8-T0-1001F
agh	0757-0230	3		RESISTOR 1K $+1 \% .125 W$ TF T $C=0+100$	12498	CT4-1/8-T0-1001F
A6Rerit2				NOT ASSIGNED		
${ }^{\text {AfR }} 13$	$0757-0418$	9	2	RESISTOR $619+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-6199+
A6R14	0698-3226	7	1	RESISTOR 6.49K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-6491F
A6R15	0890-0093	8		RESSTSOR 1.96K +1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-1961F
A6R16	0898-0093	8		RESSTOR 1.96K +1\% .125W $T F T C=0+-800$	12498	CT4.1/8-T0-1561F
A6R17	0757-0438	3		RESSSTOR 5.11K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/R-T0-5111F
A6Rib	0757-0437	2	1	RESISTOR 4.75K +1\% .225W TF TC $=0+100$	12498	CT4-1/8-T0-4751-
A6R19				MOT ASSIGNED		
A6P20	0757-0456	7		RESSTOR $51.1 \mathrm{~K}+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-T0-5112F
A6R21	0757-0438	3		RESSSTOR 5.11K $+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-T0-5111-
A6R22	0757-0290	3		RESSTOR $1 \mathrm{~K}+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CTA-1/8-T0-1001-F
A6R23	$0698-8827$	4		RESSTOR 1M +-1\% .125W TF TC=0+100	12498	CT4
A6F24	0898-3154	0		RESISTOR 4.22K $+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-TO-4221F
A6R25	0757-0290	5	4	RESSSTOR 6.19K $+1 \% .125 W$ TF TC=0+100	19701	5033P-1/8-T0.6191F
A6R26	0757-0438	3		RESISTOR 5.11K $+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/-T0-5111-
A6R27	$0757-0462$	3	2	RESSSTOR 75K $+1 \% .125 \mathrm{~W}$ T T $C=0+100$	12498	CT4-1/8-70-7502F
A6R28	0757-0442	9		RESSTOR 10K $+1 \%$. 125 W TF $\mathrm{TC}=0+100$	12498	CT4-1/8-T0-1002-F
A6P29	06se-344	3		RESSSTOR $383+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-383 -7

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \text { C } \\ & \mathbf{D} \end{aligned}$	Oty.	Description	Mfr. Code	Mfr. Part Number
A6			08901-60114-SERLAL PREFIX 1933A TO 2308A			
A6R30	0757-0465	6		RESSTOR 100K $+1 \%$. 125 W TF TC $=0+100$	\$2498	CT4-1/R-T0-1003-F
A6R31	0898-3158	4	3	AESISTOR 23.7K $\leftarrow 1 \%$.125W TF TC=0 $=100$	12498	CT4-1/8-70-2372-F
A6R32	0098-3157	3		RESISTOR 19.8K $+1 \%$.125W TF TC $=0+100$	12498	CT41/8-T0-1962-
A6R33	0757-0401	0		RESISTOR $100+1 \% .125 W$ TF TC $=0+100$	12498	CT-1/8-T0-101-F
A6R34	0608-3439	4	3	RESISTOR 178 +-1\% .125W TF TC=0 0 - 100	12498	CT4-1/8-T0-178R-F
A6R35	$0757-0280$	3		RESASTOR $1 K+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-1001-7
AGR36	$0008-340$	7	5	RESSTOR $196+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/R-T0-196R-F
A6R37	0757-0465	6		RESSSTOR 100K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-1003-7
A6R38	0757.0438	3		RESTSTOR 5.11K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/2-T0-5111-F
A6R39	0757.0443	0	2	REESISTOR 11K +1\% .125W TF TCeot-100	12498	CT-1/R-T0-1102-F
aberat				MOT ASSICNED		
AGPA1	0808344	1		RESSSTOR $316+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/B-T0-316R.F
AGP42	$0757-0338$	2	3	RESESTOR 1K +1\% 25W TF TC $=0+100$	12498	MA5-1/4-TO.1001-F
AGR43				NOT ASSICNED		
AGR44	0757-0442	9		RESISTOR 10K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-1002-F
AGR45	0757-0465	6		PESISTOR 100K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-1003-5
AGR46	0757.0416	7		RESASTOR 511 +-1\% .125W TF TCm0+100	12498	CT-1/8-T0-511R-F
MER47				NOT ASSIENED		
A6R48	0757.0465	6		RESTSTOR 100K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-1003-F
AGRA9	0757-0401	0		RESISTOR $100+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/6-70-101F
A6R50	08983152	8	4	RESESTOR 3.403 + 1%.125W TF TC=0+100	12498	CT4-1/8-T0-3481F
MER51	0ene-4488	5	1	RESSTOR 26.7K +1 1\% .125W TF TC $=0+100$	12498	CT4-1/0-T0-2672-F
A6R52	0757-0438	3		RESISTOR 5.11K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/0-T0-5111F
AGR53	0757-0465	6		RESSSTOR 100K $+1 \% .125 W$ TF TCmo $=100$	12498	CT4-1/2-TO-1003-F
A6R54	068e-4472	7	1	RESESTOR 7.60\% +1\% .125W TF TCumor-100	12498	CT4-1/8-T0-7681-F
aspas	0757-0431	6	1	RESSSTOR 2.43K +-1\% .125W TF TC=0+100	12498	CT4-1/8-70-2431-F
A6R56	0757-0401	0		RESISTOR $100+1 \%$.125W TF TC $=0+100$	12498	CT-1/8-T0-101F
A6R57	0680-3155	1		RESISTOR 4.64K +1\% .125W TF TC $=0+100$	12498	CT4-1/6-T0-4641F
A6R58	068e-3432	7	2	RESSTOR $26.1+1 \% .125 W$ TF TC $=0+100$	De439	MKK2
A6R59				MOT ASSICMED		
agrso	00990148	8	2	RESSTIOR 31.6K $+0.1 \%$.1W TF TC $=0+15$	09464	PR1/10
a6R61	0757-0200	7	2	RESISTOR $5.62 \mathrm{~K}+11 \% .125 W$ TF TC $=0+100$	12498	CT4-1/B-T0-5621F
A6P62	0757-0416	7		RESESTOR $511+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-511R-F
A6P63	0757-9279	0		PESESTOR 3.16K $+1 \%$.125W TF TC=0+100	12498	CT4-1/日-T0-3161-F
AGR64	0757-0401	0		RESISTOR $100+1 \% .125 W$ TF TC $=0+100$	12498	CT41/R-TO-101F
A6R65	2100-3207	1	1	RESASTOR-TRMA 5K 10\% TKF SIDE-ADJ 1-TRN	20480	2100-3207
ambe6	0800-4955	9	1	HESSTCA 13.5K +0.1\% .1W TF TCu0 0 -10	09464	PR1/10
A6R67	0090-0082	7		RESSSTOR 464 +1\% , 125W TF TC $=0+100$	12498	CT4-1/8-T0-4640-F
A6R68	0757-0419	0		RESUTOR $681+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-681R-F
MGR6S	00900149	9	1	RESSTOR 28.7K +-0.1\% .1W TF TC $=0+15$	09464	PR1/10
A6870	00883407	4		PEESISTOM $422+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/2-70-422R-F
MGR71	0757-0346	2		AESISTOR $10+1 \% .125 W$ TF TCexot-100	D8439	Mak2
A6R72	0690-0096	5	2		09464	PA1/10
A6R73	0080-4454	5	3	RESESTOR $523+1 \%$.125W TF TC=0+100	12498	CT4-1/8-T0-523R-F
A6P74	0809-4454	5		RESISTOR $523+1 \%$.125W TF TC $=0+100$	12498	CT4-1/2-T0-523PF

Table 6-3. Replaceable Parts

Reforence Designation	hP Part Number	Cty.	Description	Mfr. code	Mifr. Part Number
A6					

ABR75	0609-0096	5		RESESTOR 12K $+0.1 \%$.1W TF TC $=0+10$	00464	P91/10
ABR76	0898-4454	5		RESISTOR $523+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-523R-F
A6R77	0757-0444	1	1	RESISTOR 12.1K +1\% .125W TF TC $=0+100$	12498	CT4/1/8-TO-1212F
A6R78	0757-0443	0		RESISTOR 11K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-1102F
ABR79	0609-0148	8		RLESISTOR 31.EK +-0.1\% .1W TF TC=0+15	09464	PR1/10
A6R80	0000-0082	7		RESSSTOR 464 +1\%.125W TF TC $=0+100$	12498	CT4-1/8-T0-4640F
A6R81	060-4626	3	1	RESSSTOR 1.47K +1\% 25W TF TC=0+100	12498	M ${ }^{\text {c-1/4-TO-1471F }}$
M6R82	05Pe-3441	8		RESISTOR $215+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-215R-f
ABR83-R86				NOT ASSIGNED		
A6R87	0757-0442	9		RESISTOR 10K +1\% .125W TF TCmot-100	12498	CT4-1/8-T0-1002-F
A6F88	06090143	3		RESISTOR $225+0.1 \%$.1W TF TC=00-15	09464	PR1/10
abras	0757.0400	9		RESISTOR $90.9+1 \%$. 125 W TF TC=0+100	12498	CT4-1/8-T0-00R9F
A6R90	0757-0447	4		RESHSTOR 16.2K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-1622-f
AER91	0757-0442	9		REESISTOR 10K +1\% .125W TF TC=0+100	12498	CT4-1/6-70-1002.f
A6F92	0757-0417	0	1	RESISTOR $562+1 \%$. 125 W TF TC $=0+100$	12490	CT4-1/8-T0-562A-F
A6f93	06003442	9	1	RESISTOR 237 +1\% .125W TF TC=0+100	12498	CT4-1/8-T0-237R-F
A6P94	0757.0338	2		RESISTOR $1 \mathrm{~K}+1 \% .25 \mathrm{~W}$ TF TC=0+-100	12498	N45-1/4-TO-1001F
A6R95	0757-0384	0		RESISTOR $51.1+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-51R1F
A6R96	069e-979	7	1	RESISTOR 11.6K $+1 \%$.125W IF TC=0+100	12498	CT4
A6R97	060e3153	9	3	RESUSTOR 3.83K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-3831-F
A6R98	0757-0440	7	4	RESSSTOR 7.5K + 1\% .125W TF TCu00+100	12488	CT4-1/8-T0-7501f
A6R99	0757.0401	0		RESISTOR $100+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-101-F
A6R100	069e3132	4		RESISTOR $261+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/2-T0-2610F
A6R101	0757-1094	9		RESISTOR 1.47K $+1 \%$.125W TF TCmo $=100$	12498	CT4-1/8-T0-1471F
A6R102	0690-3433	8	1	PESSTOR $28.7+1 \%$.125W TF TC $=0+100$	D8439	WK2
AGR103	0698-3152	8		RESISTOR 3.49K $+1 \%$. 125 W TF TC=0 $0+100$	12498	CT4-4/8-T0-3481F
A6RTO4	06983454	3		RESISTOR 215K $+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-T0-2153F
A6R105	0757-0199	3		RESISTOR 21.5K $+1 \% .125 \mathrm{~W}$ TF TC=0 $0+100$	12498	CT4-1/8-TO-2152F
A6R106				NOT ASSIENED		
AER107	0757-0198	3		RESSTOR 21.5K +1\% .125W TF TC=0 0 - 100	12498	CT-1/8-T0-2152-F
AER108	0757-0199	3		RESISTOR 21.5K + 1\% .125W TF TC=0-100	12498	CT4-1/8-T0-2152F
A6R109	0098-8825	2	1	RESHSTOR 681K +1\% .125W TF TC $=0+100$	12498	CT4
AGR110	0757.0416	7		RESISTOA $511+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-511RF
A6R111				NOT ASSIGNED		
A6R112	0690-8827	4		RESISTOR 1M +-1\%.125W TF TC $=0+100$	12498	CTA
A6R113	0683-2265	1		RESNSTOR 22M + -5\% 25W CC TC $=900 /+1200$	01121	C82265
AERT14	0757.0280	3		RESISTOR $1 \mathrm{~K}+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-1001-
A6R115	0757.0442	9		RESISTOR 10K +-1\% .125W TF TC=0+100	12498	CT4-1/8-T0-1002-F
A6R116	1901-0050	3		NOT ASSIENED	8N171	1N4150
A6R117	$0757-0438$	3		RESISTOR 5.11K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-5111f
AER118	00093152	8		AESISTOR 3.40K +-1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-3481f
M6R119	$0757-0465$	6		RESISTOR 100K + -1\% .125W TF TCmat-100	12498	CT4-1/B-T0-1003F
AGR120	0757-0317	7	2	PESISTOR 1.33K +-1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-1331-
A6R121	0757.0442	9		RESISTOR 10K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-1002F
AsR122	0epes3155	1		RESISTOR 4.64K $+1 \%$.125W IF TC $=0+100$	12498	CT4-1/8-T0-4641F

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	\mathbf{C}	Cuy	Description	Mitr. Code	Mir. Part Number
A6			08901-60114- SERIAL PREFIX 1933A TO 2308A			
M6R123	0757-0346	2		RESSSTOR $10+1 \% .125 W$ TF TC-0+100	Dease	max2
AER124	068e-3440	7		RESISTOR 196 $+1 \%$.125W TF TC $=0+100$	12498	CTA-1/R-TO-196R-F
AGR125	0683-2265	1		RESISTOR 2ZM +5\% 25W CC TC $=900 /+1200$	01121	C82265
AER126	0690-3440	7		RESISTOR $196+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/0-TO-196R-F
A6R127				not assicned		
A6R128	0757-0401	0		RESSSTOR $100+1 \% .125 W$ TF TC= $0+100$	12498	CT-1/8-TO-101-
A6TP1	1251-0800	0		COWNECTOR-SEL CONT PWN 1.14-MA-ESC-SZ SQ	12360	8-155-1010-01-03-00
A6TP2	1251-0600	0		CONWECTORESEL CONT PWN 1.14MMASCSSZ SO	12360	24-155-1010-01-03-00
A6U1	1226-0035	4	2	IC OP AMP LOW-DRIFT O-TO-99 PKG	27014	Lmbosat
AGU2A	1826-0989	7		IC OP AMP CP 8-DIP-C PKG LME307J	20460	1826-0909
A6U3	$1826-0035$	4		IC OP AMP LOW-DAITT 8-TO-99 PKG	27014	LImsoban
Abua ${ }^{\text {a }}$	00901-80075	9	1	OPTO ISOLATOR LED P	28480	0090180075
AEU5	1626-0059	2		$1 C^{\prime}$ OP AMP CP E-TO-99 PKG	27014	LMEOTAH
A6U6	1826-0102	6	1	CC OP AMP LOW-EHASH-MPD 8-TO-99 PKG	27014	LM312H
AGUT ${ }^{\text {a }}$	1826-0065	0	1	IC COMPAAATOR PRCN 8-DIP-C PKG LM311N	28480	1826-0065
A6U8	1820-1411	0		IC LCH TL LS D-TYPE 4-BIT	01295	SN74S75N
Abus	1820-1216	3		IC DCOR TTL LS 3-TO-SLNE 3-NPP	01295	SN74LS138N
A6U10	1820-1197	9	4	CC CATE TIL LS NANO CUAD 2-NP	01295	SN74LSOON
A6VR1				NOT ASSIGNED		
A6VR2	1902-0072	1	1	DIODE-ZNR $7.87 \mathrm{~V} 2 \%$ D0.35 PD=.4W	28480	1902-0072
AGVR3	1902-0580	7		DIODE-ZNR INRe27 6.2V 5\% DO-7 PD=.4W	04713	1 N827
AEVRA	1902-3059	0	1	DCODE-ZNR 3.63V 5\% D0.35 PD=.4W	28480	1502-3059

| Reference
 Designation | HP Part | \mathbf{C} | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Dty. | Description | Mfr. | Mitr. Part Number |

A6

SERIAL PREFIX 2309A AND ABOVE

2309A 20 2312A						
16	00801-80240	8	1	AM DEMOOULATOR ASSEMBLY	28480	$00901-60240$
23134 and aboce						
A6	$06001-60246$	4	1	AM DEMCOULATOR ASSEMBLY	28480	00901-60246
A6CT	0180-0058	0		CAPACTTORFXD 50UF+75-10\% 25VDC AL	56289	$3005066025 C C 2$
16002	01600058	0		CAPACTTORFXD 50UF+75-10\% 25VDC AL.	56869	300506G025CC2
A6C3	0160-4696	6	1	CAPACTTOR-FXD 255PF + 1\% 100VDC MACA	28480	0160-4636
mect	$0160-2660$	2	1	CAPACTOP-FXD 20PF $+2 \%$ 500VDC CER $0+30$	28460	0160-2660
A6C5	0160-4635	5	1	CAPACTTOR-XDD 212PF +1\% 100VDC MICA	28480	0160-4635
9606	01604795	8		CAPMCITOR-XD 4.7PF +-SPF 100VDC CER	28480	01604795
AEC7	0160-4607	3		CAPACTIOR-XD 33PF + 5% 100VDC CER $0+30$	28480	0160-4807
A6C8	0121-0105	4	2	CAPACTTOR-V TRMR-CER 835PF 200 V PCMTG	52763	304324 9/35PF N650
A6Cs	0180-4833	5	7	CAPACTTOR-XXD .CREUF + $10 \% 100 \mathrm{VDC} \mathrm{CER}$	28480	0160-4833
A6C10				MOT ASSIGNED		
A6C11	0180-0197	8		CAPACTORFXD 2.2UF+-10\% 20VDC TA	56289	1500225x9020A2
A6C12				NOT ASSIGNED		
ascli3				MOT ASSIGNED		
a6C14	0160-4832	4		CAPACTTOR-FXD .01LF +-10\% 100VDC CER	28480	0160-4832
${ }^{\text {a6C15 }}$	0180-4835	7	8	CAPMCTTOR-FXD. $14 F+10 \%$ SOVDC CER	28480	0160-4835
a6C16	0160-4812	0		CAPACTIOR-FXD 220PF +-5\% 100VDC CER	28480	0160-4812
A6C17	0160-4832	4		CAPACTIORFXD . 010 F $+10 \%$ 100VOC CER	28480	0160-4832
A6C18	0160-4822	2		CAPACTIORFXD 1000PF +5\% 100VDC CER	28480	0160-4822
A6C19	0160-4822	2		CAPACTTORFXD 1000PF +5\% 100VDC CER	28480	0160-4822
A6C20	0160-4035	7		CAPACTTORFXD . $14 F+10 \%$ 5OVDC CER	28480	0160-4835
A6C21	0160-4833	5		CAPACTTOR-FXD .OR2UF +10\% 100VOC CER	28480	0160-4833
A6C22	0160-4833	5		CAPACTTOF- OD $^{\text {.022UF }+10 \% ~ 100 V O C ~ C E R ~}$	28480	0160-4833
A6C23	0160-4812	0		CAPACTOA-FXO 220PF +5\% 100VDC CER	28480	0160-4812
A8C24	$0180-0197$	8		CAPACTOA- OX $^{2} 2.2 \mathrm{VF}+10 \%$ 20VDC TA	56289	1500225x902002
A6C25	0180-1746	5		CAPACTTORFXD 15UF+-10\% 20VDC TA	56209	1500156x902082
46026	0160-4832	4		CAPACTIOR-XD . O1LF +-10\% 100VDC CER	28480	0160-4832
A6C27				NOT ASSIGNED		
A6C28				NOT ASSIGEDD		
A6C29	0160-4807	3		CAPACTOR-FXO 33PF +-5\% 100VDC CER 0+30	28480	0160-4807
A6C30	0160-4835	7		CAPACTOR-FXO .1UF $+10 \%$ 50VDC CER	28460	0160-4835
A6C31	01603501	2		CAPACTIOR-XD AUF +-10\% 50VDC METPPOLYC	28480	0160-3501
A6C32	0180-0197	8		CAPACTIOR-FXD 220F+-10\% 2OVDC TA	56289	1500225x902042
A6C33				NOT ASSIGNED		
A6C34	0780-0197	8		CAPACTOP-XDD 2.2UF-10\% 20VDC TA	56289	1500225x9020A2
a6C35				NOT ASSIGNED		
A6C36	0180-0228	6		CAPACTIOR-XXD 22UF+-10\% 15VDC TA	56289	1500226x901582
A6C37	0160-5528	7	1	CAPACTOR $+\times \mathrm{O}$ 22UF $+5 \% 100 \mathrm{VDC}$	28480	0160-5528
A6C38	0180.1746	5		CAPACTIOR-FXD 15UF+10\% 20VDC TA	56289	1500156×502082
A6C39	01800197	8		CAPACTIORFXD 22UF+40\% 20VDC TA	56249	1500225x9020A2
n6C40	0160-3539	6	1	CAPACTOR-FXD 820PF $+5 \%$ 100VDC MICA	28480	01603539

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts

| Reference
 Designation | HP Part
 Number. | \mathbf{C} | Dty. | Description |
| :--- | :--- | :--- | :--- | :--- | | Mfr. |
| :---: |
| Code |\quad Mtr. Part Number

A6

SERIAL PREFIX 2309A AND ABOVE

MECRI-CRA				NOT ASSIGNED		
A6CR5	1901-1098	1		DIOCESWITCHMGG INA150 50V 200MA 4NS	9N871	1N4150
AGCR6	1901-1098	1		DLOOE-SWITCHNG 1 N 15050 V 200 MA ans	9N171	1N4150
AGCR7	1501-1008	1		DICOE-SWITCHMG 1N4150 50V 200MA 4NS	9 N 171	1 W 150
AGCR8	1901-1098	1		DIODESWITCHMNG 1NM150 50V 200mA 4NS	9N171	1NA150
A6CR9	1901-0539	3	3	DIODE-SM SIG SCHOTTKY	28480	1901-0539
AECRIO	1901-0599	3		DIODESM SIG SCHOTTKY	28480	1801.0539
A6CR11				NOT ASSIENED		
M6CR12				NOT ASSKGNED		
A6CR13	1901-0518	8		DHODESM SIG SCHOTTKY	28480	1801-0518
A6CR14	1001-0518	8		DIODE-SM SIG SCHOTTKY	28480	1801-0518
ASCRI5	$08901-00024$	8	2	DET DNODESMATCH	28480	08901-80024
a6CR16	00901-80024	8		DET DIODES MATCH	28480	08901-80024
AGCR17	1901-0518	8		DIODESM SIG SCHOTTKY	28400	1901-0518
A6CR18	1901-1098	1		DIODE-SWTCHING 1NA150 50V 200MA ANS	9N171	1N4150
A6CR19	1901-1098	1		DICDESWITCHNNG 1NA 150 50V 200MA ANS	9N171	1Na150
A6CR2O	1901-0518	8		DIODE-SM SLG SCHOTTKY	28480	1901-0518
AECR21	1901-0539	3		DIODE-SM SIG SCHOTTKY	28480	1901-0539
2309A to 2312A						
A6CR22				NOT ASSIGNED		
2313A and above						
A6CR22	1901-0518	8		DHODE-SM SIG SCHOTTKY	28480	1901-0518
A611	1250-1220	0		CONAECTOR-RF SMC M PC 50-0HM	28480	1250-1220
	2190-0124	4		WHSHER-LK PNTL T NO. 10.195 -N-LD	28480	2190-0124
	2950-0078	9		MUTHEX-DBL-CHAM 10-32-THO .067-1N-THK	28480	2950-0078
A6, 2	1250-1220	0		CONAECTOR-RF SMC M PC 50-OHM	28480	1250-1220
	$2100-0124$	4		WHSHER-LK WIL T NO. 10 .195-1NHD	28480	2190-0124
	2050-0078	9		MUTHEX-DEL-CHAM 10-32-THD .067-HN-THK	28480	2850-0078
A6/3	1250-1220	0		CONNECTOR-RF SMC M PC 50-OHM	28480	1250-1220
	2190-0124	4		WASHER-LK MTL T NO. $10.195-1 / H D$	28480	21900124
	2950-0078	9		MUTHEX-DBL_CHAM 10-32-THD .067-H-THK	28480	2950-0078
A6, ${ }^{\text {a }}$	1250-1220	0		CONHECTOR-RF SMC M PC 50-OHM	28480	1250-1220
	$2100-0124$	4		WHSHER-LK WNTL T NO. 10.195 -1N-HD	28480	2190-0124
	2950-0078	9		MUTHEX-DBL-CHAN 10-32-THD .067-HN-THK	29480	2950-0078
AELT	$9140-0210$	1		MOUCTOR RF-CHMMLD 100UH 5\% .1660X.385LG	28480	9140-0210
A6L2	9140-0210	1		NOUCTOR RF-CHWHLD 100UH 5\% .1660X.385LG	28480	9140-0210
A6L3	$9140-0271$	4	1	MDUCTOR RF-CHWMLD 13.3UH 2\%	28480	$9140-0271$
A6L4	91400272	5	1	MDUCTOR RF-CHEMD 32UH 2\% .1660x.385LG	28480	9140-0272
A6L5	9140-0273		1	MOUCTOR RF-CHWLD 47.6UH 2%	28480	9140-0273
A6L6				MOT ASSIGNED		
A6L7	9100-1652	3	1	WOUCTOR RF-CHMLD E2OUH 5\% .20x.45LG	28480	9100-1652
A6L8*	9100-1633	8	1	MOUCTOR RF-CHHLL 27 HH 5\% .1660x.385L6	28480	9100-1633

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Mtr. Code	Mfr. Part Number
A6	SERIAL PREFIX 2309A AND ABOVE					
A6L9	9100-1666	9	1	WOUCTOR RF-CHELD $3.6 \mathrm{WWH} 5 \% .230 \times .57 \mathrm{LG}$	28480	0100.1666
A6L10	9140-0131	5	4	NDUCTOR PF-CHHED 10MH 5\% 250X.75LE	28480	9140-0131
A6MP1	00501-00018	2	1	COVER AM DEMOD	28480	08901-00018
	2860-0113	2		SCREW-MACH 6-32 25-WHL PANHD-POZI	00000	ORDER BY DESCRIPTION
${ }^{4601}$	1853-0007	7		TRNNSESTOR PNP 2NSESI SI TO-18 PD=360MW	04713	2 N 3251
A602	1858-0010	2	1	TRANSISTOR ARRAY 14PIN PLSTC DIP	04713	MPC2905
A893				NOT ASSICNED		
A604	1853-0007	7		TRANSISTOR PAP 2N3251 SI TO-18 PD=360MW	04713	2N3251
${ }^{\text {a }}$ 605	18540404	0	13	TRANSISTOR NPN SI TO-18 PD=360WW	28480	1854-0404
25034 to 2426A ${ }^{\text {2 }}$						
AGQ6	1855-0420	2	5	TRANSISTOR JFET 2N4391 N-CHAN DAMODE	01295	244391
24824 and above						
A696	1855-0265	3		TRANSISTOR $\$-FET NCHAN D-MODE TO-18 SI & & \hline 4607 & 1855-0421 & 3 & 1 & TRANSISTOR JFET 2NS114 P-CHAN D-MCOE & 17956 & 2NS194 \hline A608 & 18540404 & 0 & & TRANSISTOA NPN SI TO-18 PD=360MW & 28480 & 18540404 \hline A609 & 8854-0404 & 0 & & TRANSISTOR NPW SI TO-18 PD=360MW & 28480 & 1854-0404 \hline 96010 & 1853-0261 & 9 & 13 & TRANSESTOR PNP 2NESO7A ST TO-18 PD=400wn & 04713 & 2N2907A \hline 46011 & 1853-0007 & 7 & & TRANSISTOR PNP 2N3251 SI TO-18 PD=360MW & 04713 & 2N3251 \hline 46012 & 1854-0215 & 1 & 1 & TRANSESTOR NPN SI PD=350MW FT $=300 \mathrm{MHZ}$	04713	2×3904
A6013	1853-0007	7		TRANSISTOR PNP 2N3251 SI TO-18 PD=360NW	04713	2 N 2551
A6014	1854-0837	1		TRANSISTOR MPN 2N2219A SI TO-5 PO=800MW	01295	2N2219A
A5015	1854-0404	0		TRANSISTOR NPW SI TO-18 PD=360MW	28480	1854-0404
${ }^{\text {A6016 }}$	1854-0404	0		TRANSISTOR NPN SI TO-18 PD=360NW	28480	1854-0404
2309A to 2312A						
A6Q17	1855-0082	2	1	TRANSISTOA JFET P-CHAN D-MODE SI	28480	1855-0082
23134 and abue 10550597 - 180450						
A6Q17	1855-0597	4	1	TRANSISTOR JFET P.CHUN DMODE T0-92 SI	28480	1855-0597
	1853-0281	9		TRAWSISTOA PNP 2N2907A S1 TO-18 PD=400MW	04713	242907a
A6019	18540677	7		TRANSISTOR NPN 2NE222A SI TO-18 PD=500NW	04713	2N2222A
A6020	1853-0007	7		TRANSISTOR PAP 2N3251 SI TO-18 PD=360MW	04713	2 N 3251
AGOI	1854-0404	0		TRANSISTOR NPN SI TO-18 PD=3E0NW	28480	1854-0404
46022-028				NOT ASSIGNED		
A6029	1854-0677	7		TRNWSISTOR MPN 2NE222A SI TO-18 PD=5001W	04713	2npz23a
46030	18540404	0		TRANSISTOA NPN SI TO-18 PD=360NW	28480	18540404
A6031	1853-0281	9		TRANSISTOR PNP 2N2S07A SS TO-18 PD=-400w	04713	2n2907a
asen	0757-1108	6	1	RESESTOR 300 1\% .125W F TC=0+100	24546	C.1/R-T0-301-F
A6R2	$0686-3157$	3		RESISTOR 19.6K 1\% .125W F TC=0 100	24546	C4-1/8-T0-1962F
A6R3	0epe-3446	3		RESISTOR 383 1\% .125W F TC $=0+100$	24546	C4-1/8-70383R +
A6R4	06883467	4	6	RESESTOR 422 $3 \% .125 W$ F TC=0+100	24546	C4-1/8-T0-422R-F
A6R5	0757-0401	0		RESESTOR 100 1\% .125W F TCu0+100	24546	C4-1/8-70-101F

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	\mathbf{C}	Cly.	Description	Mitr. Code	Mfr. Part Numb
A6		SERIAL PREFIX 2309A AND ABOVE				
A6R6	0757-0280	3		RESISTOR 1K 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-1001F
AGR7	0757-0280	3		RESISTOR 1K 1\% .125W F TC $=0+100$	24546	CA-1/8-T0-1001F
A6R8	0757.0441	8		RESASTOR 8.25K 1\% .125W F TC=0+100	24546	C4-1/8-T0-8251F
A6R9	0757-0442	9		RESISTOR 10K 1\% . 125 W F TC $=0+100$	24546	C4-1/8-T0-1002-F
A6R10	0757-0280	3		RESSTOR 1K 1\% .125W F TC $=0+100$	24546	C4-1/8-70-1001f
A6R11				MOT ASSIENED		
A6R12				NOT ASSIGNED		
AGR13	069-3160	8		RESISTOR 31.6K 1\% .125W F TCa0 0 -100	24546	C4-1/8-T03162F
A6R14	0757-0458	7		RESISTOR 51.1K 1\% .125W F TC=0+100	24546	C4-1/8-T0-5112f
A6R15	0757-0458	7		RESISTOR 51.1K 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-5112.F
A6R16	0757-0442	9		RESISTO $10 \mathrm{~K} 1 \%$.125W F TC $=0+100$	24546	C4-1/8-T0-1002F
A6R17	$0757-0438$	3		PESISTOA 5.11K 1\% .125W F TC=0+100	24546	C4-1/8-T0-5111F
MER18	0757-0438	3		RESSSTOR 5.11K 1\% .12SW F TC $=0+100$	24546	C41/8-T0.5111.f
AGR19	090e-3445	2	8	RESISTOR 348 1\% .125W F TC=0+100	24546	CL-1/8-T0-348R-f
agr20	0757-0441	8		RESSTTOR 825K 1\% .125W F TC $=0+100$	24546	C4-1/2-T0-8251F
A6R21	0757-0462	9		RESISTOR 10K 1\%.125W F TC=0+-100	24546	C4-1/8-T0-1002-F
A6R22	C880-3150	6		PESSSTOR 2.37K 4\% .125W F TC=0+100	24546	C41/8-50-2371-F
A6R23	0757-0465	6		RESISTOR 100K 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-1003F
A6P24	0757-0465	6		RESSTOR 100K 1\% .125W F TC=0+100	24546	C. $-1 / 8-\mathrm{T} 0-1003-7$
A6R2S	0698-3445	2		RESISTOR 348 1\% .125W F TC $=0+100$	24546	C41/R-T0-348R-F
AER26	0757-0438	3		RESISTOR 5.11K 1\% .125W F TCu $0+100$	24546	C4-1/6-T0-5111.F
A6R27	0757-0465	6		RESISTOR 100K 1\% .125W F TCu0 +100	24546	C4-1/8-T0-1003-F
AER28	0757-0458	7		RESUSTOR 51.1K 1\% .125W F TC $=0+100$	24546	C4-1/G-T0-5112-f
A6R29	0757-0458	7		RESISTOR 51.1K 1\% .125W F TC $=0+100$	24546	C4-1/Q-T0-5112F
A6R30	0590-3444	1		RESISTOR $3161 \% .125 W$ F TC $=0+100$	24546	CL-1/8-T0-316R-F
A6R31	0600-3157	3		RESISTOR 19.6K 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-1962-F
AGR32	0606-3157	3		RESSSTOR 19.6K 1\% .125W F TC=0+100	24546	C4-1/8-70-1962-F
AGR33	0757-0418	7		RESISTOR 511 1\%.125W F TC $=0+100$	24546	C-1/R-T0-511RF
A6R34	0680-3154	0		RESISTOR 4.22K 1\% .125W F TC=0+100	24546	C 4 -1/8-70-4221F
A6R35	0757-0338	2	4	RESSTOR TK 1\% 25W F TC=0+100	24546	C5-1/4-TO-1001-F
A6R36	0757-0401	0		RESISTOR 100 1\% .12SW F TC $=0+100$	24546	C4-1/8-T0-101f
A6R37	0757-0442	9		RESISTOR 10K 1\%.125W F TCe0 0 -100	24546	C4.1/8-T0-1002.F
A6R38	0757-0438	3		PESISTOR 5.11K 1\% .125W F TC $=0+100$	24546	C4-1/R-T0-5111F
A6R39	0757-0443	0	3	RESISTOR 11K 1\% .125W F TC $=0+100$	24546	C4-1/8-70-1102-F
A6P40				NOT ASSIGNED		
A6R41	06903444	1		RESISTOR 316 1\% .125W F TC $=0+100$	24546	CS-1/8-70-316R-F
AGR12	0757-0338	2		RESISTOR 1K 1\% 25W F TC $=0+100$	24546	C5-1/4-T0-1001F
A6R43				MOT ASSIENED		
AGR44	0757-0442	9		RESISTOR 10K 1\%.125W F TC=0+100	24546	C4-1/8-70-1002-F
A6R45				NOT ASSGGED		
A6P46	0757-0496	7			24546	C4-1/8-T0-511R-F
A6R47				NOT ASSGGED		
AGP48				NOT ASSIGNED		
AGR49	0757-0401	0		RESISTOR 100 1\% .125W F TC $=0+100$	24546	C4-1/8-70-101-7
agrso	0698-3152	8		RESISTOR 3.43K 1\% .125W F TC $=0+100$	24546	C4-1/8-T0.3481-F

Table 6-3. Replaceable Parts

Raference Deaignation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Mifr. Code	Mitr. Part Number
A6	SERIAL PREFIX 2309A AND ABOVE					
AER51	0008-4488	5	1	RESISTOR 26.7K 1\% .125W F TC=0+100	24546	C4-1/2-T0-2672-F
20094 no 2312A						
A6R52	0757-0438	3		REESSTOR 5.11K 1\% .125W F TC=0+100	24546	C4-1/8-T0-5111F
23134 and above						
A6R52	cene-3152	8		RESISTOR 3.48K 1\% .125w F TC=0+100	20546	C+1/8-T03481F
A6R53				NOT ASSNENED		
AER54	0008-4772	7	1	RESSSTOR 7.EAK 1\% .125W F TC=0+100	24546	C4.1/8-T0.7681F
AGR55	0600-3150	6		RESSTOR 237K 1\% .125W F TC=0+100	24546	C41/R-T0-2371F
A6R56	0757.0401	0		RESISTOR 100 T\% .125W F TCu-0+100	29546	C41/8-70-101-5
A6R57	0757.0438	3		RESSTOR 5.11K 1\% .125W F TC $=0+100$	24546	CA-1/8-T0.5111.F
AER59	060-3432	7		RESISTOR 26.1 1\%.125W F TC $=0+100$	0688	PNE55-1/8-T0-26R1f
AGR59				NOT ASSICNED		
ABPTSO	0609-0148	8	2	RESISTOR 31.EK . 1%.1W F TC $=0+15$	28480	00990148
AER61	0757-0200	7	5	RESSTOR 5.62K 1\%, 125W F TC $\rightarrow 0+100$	24546	C4-1/8-T0-5621F
AGR62	0757-0416	7		RESISTOR 511 1\% .125W F TCm0+100	24546	C4.1/8-T0.511R-F
AGRE3	0600-3152	8		RESSTOR 3.4AK 1\% .125W F TC $=0+100$	24546	C4-1/8-70-3481F
AGRGA	0757-0401	0		RESISTOR 100 1\% .125W F TC=0+100	24546	C4-1/8-70-101-F
A6R65	2100-3207	1	2	RESSTCAR-TRUR SK 10\% C SIDE-ADI 1-TRN	28480	21003207
a6abs	0600-9055	9	1	RESISTOR 13.5K . 1%, 1 W F TC=0+-10	20480	06800355
a6R67	08pe-0082	7		RESISTOR 464 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-4640-F
A6R88	0757-0419	0		RESASTOR 681 1\%. 125 W F TC $=0+100$	24546	C41/8-T0-681A-F
A6R69	0609-0149	9	1	PESSITOR 28.7K .1\% .1W F TC=0+15	28480	0698-0149
A AFP70	0800-3447	4		RESISTOR 422 1\% .125W F TCa $=0+100$	24546	C4-1/8-T0-422P-F
acrit	0757-0946	2		RESISTOR 10 1\% .125W F TCu00-100	24546	C4-1/8-TO-10RO-
AGR72	069-0096	5	2	RESISTOR 12K .1\% .1W F TC=0+10	28480	06990096
A6R73	0690-4454	5	3	PESTSTOR 523 1\% , 125W F TCm0+100	24546	C4-1/6-T0-523R-F
A6R74	0600-4454	5		RESISTOR 528 1\%.125W F TC=0+100	24546	C4-1/8-70-523R-F
2209A to 2312A						
A6R75	0099-0096	5		RESESTOR 12K .1\% .IW F TComor-10	28480	0690-0096
23134 and adove ${ }^{\text {2 }}$						
A6R75	0096-8191	5		RESSTOR 12.5K .1\% .125W F TC=0+25	19701	MF-4C1/R-TO-1252-8
asR76	0080-4454	5		RESISTOR 523 1\% . 225 W F TC $=0+100$	24546	C4-1/8-T0-523A-F
A6R77	0757-044	1	4	RESISTOR 12.1K 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-1212-F
AGR78	0757-0443	0		RESISTOR 11K 1\% .125W F TC $=0+100$	24546	C4-1/8-70-1102F
AGR79	0699-0148	8		RESSTOR 31.6K . 1%. 1 W F TC $=0+15$	28480	0699-0148
AGR80	0808-0082	7		RESESTOR 464 1\%.12SW F TC=04-100	24546	C4-1/8-70-4640-F
M6R81	0600-4626	3	1	RESISTOR 1.47K 1\%.25W F TC=0+100	24546	C5-1/4-T0-1471-F
acars	0890-3440	7	7	RESSTTOR 196 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-198P-F
MERE3-RE6				NOT ASSIENED		

Table 6-3. Replaceable Parts

| Referonce | HP Part | C |
| :--- | :--- | :--- | :--- |
| Designation | Number | D |

SERIAL PREFIX 2309A AND ABOVE

A6pb7	0757-042	9		RESSTOR 10K 1\%. 125 W F TC=0+100	24546	C41/8-T0-1002F
A6f8B	0099-0143	3		PESSTSTOR 825.1%. IW F TC $=0+15$	28480	08990143
${ }^{\text {abres }}$	0757-0401	0		RESISTOR $1001 \% .125 \mathrm{~W} F$ TC $=0+100$	24546	C4-1/8-T0-101F
A6A90	0757-047	4		RESISTOR 16.2K 1\%. 125 F F TC $=0+100$	24546	C4-1/8-10.1622f
A6F91	0757.042	9		RESISTOR 10K 1\%. 125 FW F TC $=0+100$	24546	C4-1/B-T0-1002F
A6A92	0090-0082	7		RESSTOP 464 1\% .125W F TC $=0+100$	24546	C 4 1/8-T0-640F
A6p93	00803440	7		RESISTOR $1961 \% .125 \mathrm{~W}$ F TC $=0+100$	24546	C4-1/-T0-196RF
A6P94	0757-0338	2		RESSSTOR TK 1\% .25W F TC=0+100	24546	CS-1/4-T0-1001f
Abass	0757-0394	0		RESSTOR $51.11 \% .125 \mathrm{~W}$ F TCmot-100	24546	C4-1/-T0-51R1F
A6A96	0090-9979	7	1	RESSSTOR 11.6K 1\%. 125 W F TC $=0+100$	28480	0690-8979
A6R97	00893153	9	7	RESISTOR 3.83K 1\%.125W F TC=0+100	24546	C41/-T03831F
A6n98	0757.040	7	6	RESISTOR 7.5K 1\%. 125 SW F TC=0+100	24546	C4-1/0-T0.7501F
ABR99	0757-0401	0		RESSTOR 100 1\%.125W F TC=0 $=100$	24546	C4.1/8-T0.101F
AGRT00	0698-3132	4		RESSTOR 261 1\%.125W F TC $=0+100$	24546	C $+1 /$ /-T0-2610-F
A6R101	0757.1094	0		RESSTOR 1.47K 1\%. 125 W F TC=0 0 -100	24546	C-1/-T0-1471F
A6R102	00983432	7		RESISTOR $26.11 \% .125 W \mathrm{~F}$ T $C=0+100$	03838	PMES5-1/8-T0-26R1-F
aspics	00983152	8		RESISTOR 3.48K 1\%. 125W F TC $=0+100$	24546	C 4 1/8-T0-3481-F
Aspios	00983454	3		RESISTOR 215K 1\% . 125 W F $\mathrm{T}=0 \mathrm{~m}+100$	24546	C4-1/R-T0-2153F
ABA105	0757-0199	3		RESISTOR 21.5K 1\%.12SW F TC $=0+100$	24546	C-1/8-T0-2152-F
AbR106				NOT ASSIGNED		
A6R107	0757-0199	3		RESISTOR 21.5K 1\% .12SW F TCon+100	24546	C41/8-T0.2152F
A6R108	0757-0199	3		RESISTOR 21.5K 1\%. 125W F TCmot-100	24546	C41/8-T0.-2152F
AsR109	05988825	2	1	RESSISTOR 691K 1\%.125W F TC $=0+100$	28480	0698-8825
${ }^{\text {AGRR110 }}$ A6R11	0757-0416	7		RESISTOR 511 1\% .125W F TC $=0+100$ not Assicied	24546	C-1/8-TO-511R-F
AGR112	$0098-6827$	4		RESISTOR IM 1\%. 125 W F TC $=0+100$	28480	0690-8827
A6R113	0683-2265	1		RESISTOR 22M 5\%.25W FC TC $=900 /+1200$	01121	C82265
A6R114	0757-0280	3		RESSTSOR 1K 1\%. 125 W F TC $=0+100$	24546	C-1/8-T0-1001.f
A6R115	0757.0442	9		RESISTOR 10K 1\% .125W F TC=0+100	24546	C4-1/R-T0-1002F
A6R116				NOT ASSICNED		
A6R117	0757.0438	3		RESISTOR 5.11K 1\% .125W F TC=0+100	24546	C4-1/R-T0.5111F
A6R118	060e-3152	8		RESISTOR 3.48X 1\% .125W F TC $=0+100$	24546	C4-1/-T03481F
A6R119	0757.0465	6		RESSTSTOR 100K 1\% .125W F TC=0 +100	24546	C4,1/8-T0.1003F
A6R120	$0757-0317$	7	2	RESISTOR 1.33K 1\%. 125 W F T $\mathrm{C}=0+100$	24546	C+1/8-T0-1331F
AbR121	0757.042	9		RESSTOR 10K 1\% .125W F TC=0+100	24546	C4-1/8-T0-1002F
A6R122	0757-0438	3		RESISTOR 5.11K 1\% .22SW F TC $=0+100$	24546	C41/8-T0-5111f
A6R123				NOT ASSIGNED		
A6R124	009e-340	7		RESSSTOR 19614.125 F F TC $=0+100$	24546	C41/8-T0-196R-F
A6R125	08832235	1		RESISTOR 229 5\% 25W FC TC= $900 /+1200$	01121	C82265
A6R126	069e-340	7		RESISTOR 196 1\% .125W F TC $=0+100$	24546	C+1/8-T0-196F-F
A6R127				NOT ASSIGNED		
A6R128	0757-0401	0		RESISTOR 100 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-101-F
A6R129	08983454	3		RESISTOR 215K 1\%. 125 W F TC $=0+100$	24546	C+1/8-T0-2153

Table 6-3. Replaceable Parts

Reterence Designation	HP Part Number	C	Oty.	Description	Mir. Code	Mir. Part Number
A7-A9						

A10

Ato	00901-40115	6	1	POWER SUPPLY REGULATORS ASSEMBLY	28480	00601-60115
A10c1	0160-3879	7		CAPMCTTOR-PX . $01 \mathrm{UF}+20 \%$ 100VDC CER	0989	RPE121-105X7R100M100V
A1002	$0100-3879$	7		CAPACTTOR-XX .01UF $+20 \%$ 100VDC CER	08069	RPE121-105X7R100M100V
A1003				MOT ASSICNED		
A1004	018002618	2		CAPMCTTOR-FXD 33UF+-10\% 10VOC TA	12344	T355F336k0104S
A10cs	0180-2617	1	10	CAPACTORFXO 6.8UF+10\% 35VDC TA	12344	T355F685k035AS
A1006				MOT ASSICNED		
A10c7	0180-2820	6	17	CAPMETTORFXD 2.2UF+-10\% SOVDC TA	12344	T3553225\%050AS
A10C8	0180-2620	6		CAPACTTOR+XD 2.2UF+-10\% 50VDC TA	12044	T355E225K050AS
1983A to 2506A						
A10C9	0180-2617	1		CAPACTTOR-XD 6.8UF+-10\% 35VDC TA	12344	T355F6e5k035AS
A10C10	$0180-2617$	1		CAPACTIOR-FXD 6.8UF+10\% 35VDC TA	12344	T355F685<03545
26074 and above						
A1009	0180-0491	5	1	CAPACTTOR-FXO 10UF+-20\% 25VDC TA	12344	T355E106M025AS
A10C10	0180.0481	5	1	CAPACTIORFXD 10UF+-20\% 25VOC TA	12344	T355E106MT25AS
A10C11	0480-2e54	8	1	CAPACTORFXD 68UF+10\% 100VDC TA	56289	1090686×910072
A10C12	01800491	5	1	CAPACTTOR+XD 10UF+20\% 25VDC TA	12844	TJSEE103M025AS
A10C13	$0180-2617$	1		CAPACTOR-FXD 6.8UF+10\% 35VDC TA	12344	T355F685K035AS
A10014 ${ }^{\text {A }}$	0180-3701	6		CAPACTIOR-FXD 22UF 75VDC 7A	28480	$0180-3701$
A10C15	$0180-2620$	6		CAPACTIOR+XD 2.2UF+-10\% 50VDC TA	12844	T35se225k0504S
A10C16	$0180-2620$	6		CAPACTOR-FXD 22UF+10\% 50VDC TA	12344	T355E225K0504S
A10C17	0160-3535	2		CAPACTTORFXD 560PF +-5\% 300VDC MMCA	28480	0160-3535
A10C18	$0180-0939$	4	2	CAPACTTOR-FXD 430PF $+5 \%$ 300VDC MICA	28480	0160-0939
A10C19	0180-2618	2		CAPACTIORFXD 330F $+10 \% 10 \mathrm{VDC}$ TA	12344	T355F336k010AS
A10C20	0180-2618	2		CAPACTTORFXD 33UF+-10\% 10VDC TA	12344	T355F3eck010AS
1933 t to 2606A						
A10C21	0160-0573	2	3	CAPACTOR-FXD 4700PF + -20\% 100VDC CER	06383	FD12X7R2M72M
A10C22	0160-0573	2		CAPACTTORFXD 4700PF +-20\% 100VDC CER	06383	FD12X7R2M72M
26074 and above						
A10C21	$0180-0574$	3	2	CAPACTIORFXD .022UF + 20% 100VDC CER	28400	0960-0574
A10C22	$0160-0574$	3	2	CAPACTIOR-XD .022UF + 20% 100VDC CER	28480	01600574
A10CR1	1901-0040	1		DICOESWTTCANG $30 V$ 50MA ENS DO-35	9N171	1N4148
A10CR2	1801-0040	1		DIODESWITCHING 30V 50MA 2NS DO-35	8N171	1 M 1418
A10CR3	1801-0081	0	1	DIODE-SWITCHING 50V 75MA 10NS	9N171	1N4148
A10CP4	1901-0040	1		DIODE-5WTCHING 30V 50MA 2NS DO-35	8N171	1NH148
AIOCR5	1801-4040	1		DFDE-SWITCHNG 30V SOMA 2NS DO-35	9N171	1N4148
A10CR6	1801-0159	3	8	DIOCEPMW RECT 400V 750MA DO-41	28480	1901-0159
A10C87	1901-0159	3		DIOOEPWWR RECT S00V 750MA DO-41	28480	1901-0159
A10CR8	1901-0159	3		DIODE-PWR RECT 400V 750MA DO-41	28460	1901-0159
A10CRgA	1901-1098	1		DIODE-SWTTCHNG INA150 50V 200 MA 4NS	9N171	1N4150
A10CR10	1901-0159	3		DIODEPWR RECT 400V 750MA 00-41	28480	1901-0159

Table 6-3. Replaceable Parts

Reference Designation	MP Part Nember	$\begin{aligned} & \mathbf{C} \\ & \mathbf{0} \end{aligned}$	Cty.	Description	Mifr. Code	Mrr. Part Number
Alocris ${ }^{\text {a }}$	1901-1098	1		DIODE-SWITCHNG 1 NE150 50V 200MA 4NS	9N171	$12 \mathrm{H150}$
A10CR12 ${ }^{\text {a }}$	1801-1098	1		DIODE-SWTCHNGG 1NA150 50V 20cm ans	9N171	INal50
Al0CR13 ${ }^{\text {a }}$	1901-1093	1		DIODE-SWTTCHWG 1 M 15050 V 200MA ANS	20171	1 N 1150
A10CR14	1901-0159	3		DIODE-PWR RECT 400V 750MA DO-41	28480	1901.0159
A10CR15 ${ }^{\text {a }}$	1901-1008	1		DNODESWTTCHME 1 HR150 50V 200MA ANS	20171	1 N 150
A10CR16 ${ }^{\text {a }}$	1901-1098	1			9×171	IN4150
${ }^{\text {A10CR17 }}$	1901-0159	3		DYODE-PWR RECT 400 V 750 MA DO-41	28480	1901-0159
A10CR18	1901-0159	3		DIODE-PWR RECT AOOV 750MA DO-41	28400	1901-0159
A100S 1	1990-0485	5	5	LED-LAMP LMA-NT $=2$ MCD IF=30MM-MAX BVR $=5 \mathrm{~V}$	28480	HLMP.1503
A100s2	1980-0485	5			23480	HLMP-1503
A10053	1990-0485	5		LEDLAMP UMGHTT $=24 \mathrm{CD}$ IF $=30 \mathrm{MH}+\mathrm{Hax}$ BVR $=5 \mathrm{~V}$	28460	HEMP-1503
A100S4	1990-0485	5		LED-LAMP UMHNT $=2 N C D$ \# $=30 \mathrm{Ma}-\mathrm{MaX}$ BVR $=5 \mathrm{~V}$	28480	HLMP-1503
Al00s5	1990-0485	5			28480	HLMP-1503
A10F1	21100006	9	1	FUSE (NCH) 84 T2SV NTD FE UL	75915	312008
A10F2	$2110-0083$	6	3	FUSE (NVCH) 2.54250 V NTD FE UL.	11870	04.025
A10FS	2110-0011	0	1	FUSE (NCH) .062A 250 V NTD FE LIL	18428	ACC 1/16
A10F4	$2110-0083$	6		FUSE (NVCH) 2.54 S 50 V NTT FE UL	11870	04.025
A10F5	21100003	6		FUSE (NVCH) 2.5A 250V NTD FE UL	11870	04.025
1933A to 2542A						
A 10MPI	0880-0510	1	2	STANDOFF-RVT-ON .75-NHLLS 6-32-THD	28480	0380-0310
2543 A and above						
AlOMP1	$5001-0178$	2	2	ANCLE ERACKET	28480	5001-0178
	2190-0007	2		WASHER-LOCK NTL T NO.6 .141-1D	00000	ORDEA BY DESCRIPTION
	2360-0191	6		SCREW-HNCH 6-32 .188 PNPD	00000	ORDER BY DESCRIPTION
A10MP2	21100269	0	10	FUHRR-CIP-TYP	91506	6000-32CN
1933A co 2303A						
A1001	1884-0012	9	3	THYRASTOR-SCR 2N3528 TO-8 VARM=200	28480	1884-0012
23084 to 2916A						
A1001	1894-0244	9	3	THYRISTOR-SCR VRRM $=400$	28480	18840244
	1205-0361	3	3	HEAT SNKK SCL TO-5/TO-39-CS	28480	1205-0361
2925 and above						
A1001	1834-0345	1	3	THYRISTOR-SCR VRRA $=400$	28480	1884-0345
	1205-0361	3	3	HEAT SINK SGE TO-5/TO-39-CS	28480	1205-0361
A1002	1884-0005	0	1	THYRUSTORSSCR VRRM $=50$	04713	MCRAGAP-2
	2190-0006	1	18	WHSHERHK HLCL NO. 6.141-INHD	28480	2190-0006
	20600119	8	2	SCREW-MACH 632 , A38-WHLG PANHDPPOZI	00000	ORDER BY DESCRIPTION
	24200002	6	3	MUT+HEX-DEL-CHAN 632-THD . 109 -HW-THK	28480	24200002
11003	18840073	2	1	THYPUSTOR-SCR VRRM $=100$	9×171	CDIO31
	3050-0016	8	1	WMSHERFFL MTLC NO. 6.147-HHD	28480	3050-0016
A1004	1854-0071	7		TRANSISTOR NPN SI TO-92 PD=300NW	24627	CP4071
1933A to 29034						
A1095	18840012	9		THYRUSTOR-SCR 2 NSE28 TO-8 VRAM 200	28480	1884-0012
2308 to 2916A						
A1009	18840244	9	3	THYRISTOR-SCR VRRM $=400$	28480	1884-0244
	1205-0361	3	3	HEAT SANK SCL TO-5/TO-30-CS	28480	1205-0361
$2925 A$ and above						
11085	1884-0345	1	3	THYPUSTOR-SCR VRRM $=400$	28480	1804-0345
	1205-0361	3	3	HEAT SHMK SCL TO-5/TO-39-CS	28480	1205-0361

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Oty.	Description	Mtr. Code	Mifr. Part Number
A1006	1853-0007	7		TRANSISTOR PNP 2 N3251 SI TO-18 PD $=360 \mathrm{NW}$	04713	2N3251
1933A to 2009A						
A1097	18540477	7		TRANSISTOR NPN 2NE222A SI TO-18 PD=500NW	04713	2N2223A
2912A and above						
A1008	18540477	7		TRANSISTOR NPN 2N2222A SI TO-18 PO=500wW	006713	$2 \times 2222 A$
1933A to 2009A						
A1099	1854047	7		TRANSISTOR NPN 2NO222A S1 TO-18 PD=500MW	04713	2N2222A
2912A and above						
A 1099	18540811	3		TRANSISTOR NPN SI PD=625MW FT $=100 \mathrm{MHZ}$	28480	1854-0811
A10010	1853-0020	4		TRANSISTOR PNP SI PD=S00MW FT=150MHZ	2M627	Xaz2ecpro-1
1333A to 2303A						
Al0Q11	1884-0012	9		THYPISTOR-SCR 2N3528 TO-8 VRRM $=200$	28480	1884-0012
2308A to 2916A						
A10911	1884-924	9	3	THYRISTOR-SCA VRRM=400	28480	1884-0244
	1205-0361	3	3	HEAT SNWK SGL TO-5/TO-39-CS	28480	1205-0361
2925 A and above						
AlOQII	1884-0345	1	3	THYRUSTOR-SCR VRAM $=400$	28480	1884-0345
	1205-0361	3	3	HEAT SINK SGL TO-5/T0-39-CS	28480	1205-0361
A10012	1854-3477	7		TRAWSISTOR NPN 2NI222A SI TO-18 PDO 500 MW	0×713	2 2 2222 A
$A 10013$	1853-0281	9	10	TRANSISTOR PNP 2N2907A Si TO-18 PD=400MW	06713	2N2907A
A10014	1854-0474	4	3	TRANSISTOR NPN SI PD $=310 \mathrm{WW}$ FT $=100 \mathrm{MHZ}$	0×713	2 N 5551
A10015	1853-0038	4	2	TRANSISTOR PAP SI TO-39 PD=1W FT $=100 \mathrm{NHZ}$	28480	1253-0038
	1205-0095	0	1	HEAT SINK SGL TO-5/TO-39-CS	30161	32258
A10016	1854-0474	4		TRANSISTOR NPN SI POL $=310 \mathrm{MW}$ FT $=100 \mathrm{MHZ}$	04713	2N5551
A10017	18540474	4		TRANSISTOR NPN SI PD=310MW FT $=100 \mathrm{MHZ}$	04713	2 N 5551
A10018	1853-0281	9		TRANSISTOR PNP 2N2907A S1 TO-18 PD $=400 \mathrm{MW}$	04713	2N2907A
A10019	1853-0007	7		TRANSISTOR PNP 2N3251 SI TO-18 PD=360WW	04713	2N3251
A10020	1853-0007	7		TRANSISTOR PNP 2N325! Si T0-18 PD=360MW	04713	$2 \mathrm{NS251}$
A10021	1854-0477	7		TRANSISTOR NPN 2NR222A SI TO-18 PD=500NW	04713	2N2222A
A10R1	0757-0442	9		RESISTOR 10K +-1\% .125W TF TC=0+100	12498	CT4-1/8-T0-1002-F
A10R2	0688.7260	7		RESISTOR 10K +-1\% .OSW TF TC=0+-100	12498	C3-1/8-70-1002-F
1933A 20 2518A						
AIOR3	0757-0416	7		RESISTOR $511+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-511R-F
2521A and above						
AlOR3	0030-3447	4		RESISTOR $422+1 \% .125 W$ F TC $=0+100$	12498	CT4-1/8-T0-422R-F
A10R4	0757-042	9		RESISTOR 10K + 1\% .12SW TF TC $=0+100$	12498	CT4-1/8-T0-1002-F
A10R5	$0757-0442$	9		RESISTOR 10K $+1{ }^{\text {c }}$, 125W TF TC $=0+100$	12498	CT4-1/8-T0-1002-F
AICR6	0757-0416	7		RESISTOR $511+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-511R.f
1933A to 2521A						
A10R7	0811-1552	0	1	RESASTOR $56+5 \%$ 2W PW TC $=0+800$	11502	SPH
2521A and above						
A10R7	0811-1662	3		RESISTOR . 47 +5\% 2W PW TC=0+-800	28480	0811-1662

Table 6-3. Replaceable Parts

Reference Designation	hP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Oty.	Description	Mitr. Code	Mifr. Part Number
A10R8	0811-1866	7	1	RESISTOR I $+5 \%$ 2W PWI TC $=0+800$	11502	SPH
Alors	0757-0280	3		RESISTOR 1K +1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-1001F
A10R10	0757-0280	3		RESISTOR 1K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-1001F
A10R19	0757-0274	5	4	RESISTOR 1.21K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-TO-1211-F
A10812	0757-0440	7		RESISTOR 7.5K + 1\% .125W TF TC=0+100	12438	CT4-1/8-T0-7501-F
A10R13	0908-3152	8		RESISTOR 3.48K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-3481F
A10R14	0688-3161	-		RESISTOR 38.3K $+1 \%$.125W TF TC=0+-100	12498	CT4-1/8-T0-3832F
19334 to 2009A						
AlOR15	0757-0442	9		RESISTOR 10K +1\% .125W TF TC=0+100	12498	CT4-1/8-T0-1002-F
2912A and above						
AlOR15	0757-0280	3		RESISTOR 1K + 1\% .12SW F TC=0+100	12498	CT4-1/8-T0-1001F
A10R16	0608-3154	0		RESISTOR 422K +-1\% .12SW TF TCm0 $=100$	12498	CT4-1/8-TO-4221F
1933A to 2009A						
A10R17	0757-0428	1		RESSSTOR 1.62K + -1\% .125W TF TC=00+100	12498	CT4-1/8-T0-1621-F
2012 A and above A10R17	0757-0421	4		RESISTOR E25 +1\% .125W F TC=0+100	12498	CT4-1/8-T0-825A-F
A10R18	0757-040	7		RESISTOR 7.5K +-1\% .125W TF TC=0+100	12498	CT4-1/8-T0-7501-7
19334 20 2009A						
A10R19	0ens-0085	0		PESSSTOR 2.61K + 1\% .125W TF TCa $=0+100$	12498	CT4-1/8-T0-2611-F
2912A and above						
A10RI9	0757-0424	7		RESSSTOR 1.1K +-1\% .125W F TC $=0+100$	12498	CT4-1/8-70-1101F
A10R20	0688-7246	9	1	RESISTOR 2.61K + -1\% .OSW TF TC $=0+100$	12498	C3-1/8-T0-2611F
A10R21	0698-0085	0		RESISTOR 2.61K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-2611-F
A10月22	0698-3156	2		RESISTOR 14.7K + 1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-1472-F
A10R23	0898-3154	0		RESISTOR 4.22K $+\mathbf{1 \%}$. 125 W TF TC $=0+100$	12498	CT4-1/Q-TO-4221F
Al0R24	2100-3351	6		RESISTOR-TRMP 500 10\% TKF SIDE-ADI 1-TRN	28480	2100-3351
A10R25	0690-3151	7	7	RESISTOR 2.87K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-2871-F
A10n26	0688-7264	1		RESSSTOR 14.7K $-1 \% .05 W$ TF TC $=0+100$	12498	C3-1/8-70-1472F
A10R27	0698-3156	2		RESISTOR 14.7K +-1\% .125W TF TC $=0+100$	12498	CT4-1/8-TO-1472F
A10R28				NOT ASSIGNED		
Al0riz9				NOT ASSIGNED		
A10R30	0757.0401	0		RESISTOR $100+1 \% .125 W$ TF TC=0+100	12498	CT4-1/-T0-101F
A10R31	0757-0401	0		RESASTOR $100+\mathbf{4 \%} .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-TO-101F
A10932	0689-7294	5	4	RESISTOR 100K +-1\% . OSW TF TC $=0+100$	12498	C3-1/8-70-1003-F
A10R33	0098-3624	9	1	RESISTOR $150+5 \%$ 2W MO TCm0 0 -200	12498	FP. 69
Al0R34	0757-0290	5		RESISTOR 6.19K +1\% .125W TF TC $=0+100$	19701	5033R-1/8-T0-6191-F
A10935	0680-7251	6		RESSTOR 4.22K $+1 \% .05 W$ TF TC=0 +100	12498	C3-1/8-T0-4221F
A10R36	0650-7253	8	4	RESSTOR 5.11K $+1 \% .05 W$ TF TC $=0+100$	12498	C3-1/8-T0-5111F
A10R37	0757-0442	9		RESSSTOR 10K $+1 \% .125 W$ TF $T C=0+100$	12498	CT4-1/8-T0-1002-F
A10R38	0398-7236	7		RESISTOR 1K +1\% . OSW TF TC $=0+100$	12498	C3-1/8-10-1001-5
A10R39	0680-7266	3	1	RESISTOR 17.8K $+1 \%$. $05 W$ TF TC $=0+100$	12498	C3-1/8-T0-1782F
A10840	$0757-0442$	8		RESISTOR 10K $+1 \% .125 W$ TF $T C=0+100$	12498	CT4-1/8-T0-1002-F
Al0R41	0757-0416	7		RESISTOA $511+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-511R-F
A10842	0ese-7219	6		RESSTOR 196 +1\%.OSW TF TC $=0+100$	12498	C3-1/R-TO-1969-5
A10P43	0600-7219	6		RESISTOR $195+1 \%$.OSW TF TC=0 +100	12498	C3-1/6-T0-196R-5
AlOR44	0757-0280	3		RESSTOR $1 \mathrm{~K}+1 \% .125 \mathrm{~W}$ TF T $\mathrm{C}=0+100$	12498	CT4-1/0-T0-1001-
A10745	0757-0280	3		RESISTOR $1 \mathrm{~K}+1 \%$. 125 W TF TC=0 + - 100	12498	CT4-1/0-T0-1001-F
A10R46	0688-7272	1		RESSTOR 31.EX $+1 \%$. $05 W$ TF TCux $0+100$	12498	C3-1/0-70-3162-f

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Mifr. Code	Mfr. Part Number
A10847	0757-0280	3		RESISTOR $1 \mathrm{~K}+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-1001F
A10R48	0757-0280	3		RESISTOR 1K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/E-T0-1001-F
A10849	0757-0816	\%	1	RESISTOR $881+1 \% .5 W$ TF TC= $0+100$	K0479	H2
A10850	0epe-3136	t		RESISTOR 17.EK + $\mathbf{1 \%}$.12SW TF TC $=0+100$	12498	CT4-1/8-T0-1782-F
A10R51	0698-6205	8	1	RESISTOR 9.65K $+1 \%$. $125 W$ TF TC $=0+50$	12498	NC4-1/8-T2.9651-F
A10R52	0698-7216	3	3	PESSTSTOR 147 +1\% .05W TF TC=0+100	12498	C-1/8-T0.147AF
A10R53	0698-7264	1		AESISTOR 14.7K +1\% .05W TF TC=0+100	12498	C3-1/8-T0-1472F
A10R54	0690-7264	1		RESISTOR 14.7K $+1 \%$. 0 WW TF TC $=0+100$	12498	C3-1/8-70-1472-
A10955	0698-7240	3	2	RESISTOR 1.47K $+1 \%$. $05 W$ TF TC=0+-100	12498	C3-1/8-T0-1471F
A10R56	0850.3453	2		RESISTOR 196K $+1 \% .125 W$ TF TC $=0+100$	12488	CT4-1/8-T0-1963F
A10857	0757-0467	8		RESTSTOR 121K +-1\% .125W TF TC=0+-100	12498	CT4-1/8-T0-1213-F
A 10858	81100180	0	1	RIBBON-PES . 157 -OHM/FT .0253x.0625	98253	NEUTROLOY
A10859	0811-1659	8	1	RESISTOR $27+5 \%$ 2W PWI TC $=0+-800$	11502	SPH
A10860	0757-0290	5		RESISTOR 6.19K $+1 \%$. 125 W TF TC $=0+100$	19701	5033R-1/6-T0-6191-F
A10261	009e-7264	1		PESISTOR 14.7K +-1\% .05W TF TC $=0+100$	12498	C3-1/8-70-1472F
A10762	$0757-0438$	3		RESASTOR 5.11K +-1\% .125W TF TC $=0+100$	12498	CT4-1/B-T0.5111F
A10R63				NOT ASSIGNED		
A10864				NOT ASSIGNED		
Alorges	0757-0401	0		PESSTOR $100+1 \%$.125W TF TC $=0+100$	12498	CT4-1/Q-TO-101F
A10R66	0757-0401	0		RESISTOR $100+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0.101-F
A10R67-R69				NOT ASSIGNED		
A10R67	0600-7215	2		RESISTO $133+1 \%$.OSW TF TC=0 0 -100	12498	CT4-1/8-TO-133A-F
A10R68	$0888-7215$	2		RESISTOA 133 +1\% .OSW TF TC=0 100	12498	CT4-1/8-TO-133A-F
A10R69	0698-7204	9		RESISTOR $46.4+1 \%$. OSW TF TC $=0+100$	12498	CT4-1/8-TO-46R4F
A107P1	1251-0600	0		CONNECTORSGL CONT PIN 1.14-MMAESC-SZ SO	12360	94-155-1010-01-03-00
A10TP2	1251-0600	0		COWNECTOR-SGL CONT PN 1.14 Mm-BSC-SZ SO	12360	94-155-1010-01-03-00
A10TP3	1251-0600	0		CONWECTOR-SGL CONT PW 1.14-MMESC-SZ SO	12360	94-155-1010-01-03-00
A10TP4	1251.0600	0		CONWECTOR-SCL CONT PWN 1.14-MM-ESC-SZ SO	12360	94-155-1010-01-03-00
A107P5	12510600	0		COWNECTOR-SGL CONT PW 1.14-MMEBSCSZ SO	12360	94-155-1010-01-03-00
A107P6	1251.0600	0		CONAECTORSEL CONT PW 1.14MMM-BSC-SZ SO	12360	94-155-1010-01-03-00
A10TP7	1251-0600	0		CONWECTOR-SGL CONT PIN 1.14-MM-ESC-SZ SO	12360	94-155-1010-01-03-00
A101P9 ${ }^{\text {a }}$	1251-0600	0		CONNECTOR-SGL CONT PW 1.14-MM-BSC-SZ SO	12360	94-155-1010-01-03-00
A1041	$1826-0161$	7	2	KC OP AMP GP CUAD 14-DPPP PKG	27014	LME324N
A10VR	1902-0680	7		DICOE-ZNR 1NBE7 6.2V 5\% DO.7 PD=.4W	04713	1 M 827
A10VR2	1802-0184	6	2	DIODE-ZNR 16.2V 5\% DO-35 PO=.4W	28480	1902-0184
A10VR3	1902-0184	6		DIODE-2NR 16.2V 5\% DO-35 PD=.4W	28480	1902-0144
Alovad	1802.3182	0	3	DIODE-ZNR 12.1V 5\% D0-35 PD=.4W	28480	1902-3182
A10VRS	1902-3182	0		DIODE-ZNR 12.1V 5\% DO-35 PDx.4W	28480	1902-3182
A10VR6	1902-3333	3	1	DIODE-ZNR 46.4V 5\% DO-35 PD=.4W	28480	1902-3333
A10VR7	1902.3301	5	1	DIODE-ZNR 34.8V 5\% DO-35 PD=.4W	28480	1902-3301
A10VR8	1902-3104	6	2	DIODE-ZNR 5.62V 5\% DO-35 PD=.4W	28480	1902-3104
A10VR9	1902-3104	6		DIODE-ZNR 5.62V 5\% DO-35 PD=.4W	28480	1902-3104
AlOVR10 ${ }^{\text {a }}$	1802-0943	5	2	DIODE-ZNR 2.37V 5\% DO-7 PD=0.4W $\mathrm{TC}=-.074 \%$	28480	1802-0943
A10VR114	1902-0943	5	2	DLODE-ZNR 2.37V 5\% D0-7 PD $=0.4 \mathrm{~W}$ TC=-074\%	28480	1902.0943

Reference Dealgnation	HPP Part	\mathbf{C}	Oty
\mathbf{D}	Otyber	Description	Mar

Mir. Code

Mfr. Part Number

A11

2034 20 2018A		
All	4000140009	-
1.11	00001-6018	8
2sesta and abow		
AII	00001-40es	0
A11	$00001-00291$	-
A1sci	0160-2055	\bigcirc
Alice	0780-0229	7
A11c3	0140-2056	0
Alica	0180-2055	-
A11c5	0100.2055	
A1966	0160-2055	*
A1sC7	0980.0197	8
Allce	0180-0197	8
Alice	0180-0197	8
Allcio	0460-2055	-
Allcil	0180-2055	-
AllCi2	01802055	-
AllC13	01602055	0
A11C14	0121.0105	4
Al1C15	01600161	4
AlıC16	01802055	0
Al1C17	0100.0572	1
Al1C18	0180-2055	0
Allcis	0160-2055	0
A11020	01803874	2
A11021	0100-2055	-
A11022	01800197	8
A11c23	0100-2055	-
Allces	0160.0570	9
A11ces	01603878	7
A11c26	01400188	5
A11027	01603875	3
A11czs	01400198	5
A11Cz9	01000939	4
Al1030	01002056	-
Al1CR1	1801.0170	7
A11CR2	1901.0179	7
Al1CR3	1801.0535	9
Al1CR4	1001.0535	9
A11CFS	1801-0535	9
As1CR6	1801-0535	0

COUNTER ASsembly excert ormow 002)	22400	0000140093
COUNTER ASSEMBLY (OPTION OO2 ORLY)	28480	06001-0018
COUNTER ASSEMBLY (EXCEPT OPTION 0CZ)	28400	00801-40202
COUNTER ASSEMELY (OPTHON OC2 ONLY)	28460	00001-00291
OAPACTTORFXD DILF + 80200 TOOVDC CER	00000	DDIoemWREOZYEV103zioov
CAPACTOPRXD 33LF + -10\% 10VDC TA	5083	IE0De3excouch
CAPACTTOPFXD .01LF +8020\% 100VDC CER	0000	D010enwbsoz'svic3zioov
CAPMCTTOP + XD . $01 \mathrm{LF}+802041$ 100VDC CER	000e	DoroenWB302Y5V103Z100V
CAPACTICRFXD . OILF + 80200\% 100VDC CER	00900	DOtown ${ }^{\text {asezY5V1032100V }}$
CAPACTTORFXD . OILF $+8020 \%$ reOVDC CER	peneo	DDSoumbeozysvioszicov
CAPACTOR-XD 2.2UF+-10\% 20VDC TA	5638	150peesxe020a2
CAPACTTORFXD 2.2UF+ $10 \% 20 \mathrm{VDC} \mathrm{TA}$	5020	$1500235 \times 0020 \mathrm{~A} 2$
CAPACTIOR CXD $^{224 F+-10 \% ~ 20 V D C ~ T A ~}$	6eselo	1500205×002042
CAPACTTCRFXD .01UF $+8020 \% 100 \mathrm{VDC}$ CER	00960	DD10enW13302Y5V103Z100V
CAPACTTORFXD .01UF + 80-20\% 100VDC CER	009e0	D0109wnasozY5V103ZicoV
CAPACTTORFXD .01UF $+8020 \% 100 \mathrm{VDC}$ CER	00900	D0100wNes02YEV1032100V
CAPACTTORFXD .01UF +802041 100VDC CER	00900	DD100w WB302Y5V103Z100V
CAPACTOR-V TPMARCER 0.35 PF 200 V PCATTG	E2763	504324 ORSPF NOSO
CAPACTIORFXD DILF +-104 200VDC PCLYE	28701	70abicciosPr201AX
CAPACTTORFXD . O1LF + 80-20\% 100VDC CER	00900	DD100MWE302Y5V1032100V
CAPACTTORFXD Z200PF $+209 \% 100 \mathrm{VDC}$ CER	06383	FDIEKTREAZEM
CAPACTTOR-FXD .01LF +80-20\% 100VDC CER	00960	DD10emWe302Y5V103Z100V
CAPACTTORFXD . $014 \mathrm{LF}+8020 \% 100 \mathrm{VDC} \mathrm{CER}$	0009	DD10ewWB302Y5V103Z100V
CAPACTTORFXD 10PF + .5PF 200VDC CER	00080	PPE121-105C0G300D200V
CAPACTTORFXD .01LF + 80-20\% 100VDC CER	0090	DD100wNE302Y5V1032100V
CAPACTTOPFXD 22UF+.10\% 20VDC TA	50280	15002es59020A2
CAPACITORFXD .OTLF + 80-20\% 100VDC CER	0096	
CAPACTORFXD 220PF + 200% 100VDC CER	0000\%	RPE121-105×7R221M100V
CAPACTTORFXD .01UF + 20\% 100VDC CER	00900	FPE121-405X7A103M100V
CAPACTIORFXX 200PF + 50 300VDC MICA	20480	0140-0188
CAPACTTOR-XD 22PF $+590200 \mathrm{VDC} \mathrm{CER} 0+30$	0996	FPE121-105C0CS20, 200 V
CAPACTTORFXD 200PF + 5% 300VDC MICA	28480	0140-0198
CAPACTTORFXD A30PF + 540 300VDC MACA	28480	0560-0939
CAPACTTORFXD .01UF + 80-20\% 100VOC CER	09980	DD106NWB302Y5V1032i00V
DIODESWITCHMS $15 V$ 50MA $750 P \mathrm{~S}$ DO. 7	07263	FDT7
DIODE-SWTCHHNG 15V 50MA 750 PS DO7	07203	FD77
DIODE-SCHOTTKY SM SKG	29480	1201.0535
DIODE-SCHOTTKY SM SIG	28480	1901-0535
DICDESCHOTTK SM SK	28480	1001.0535
DIODE-SCHOTTKY SM StG	20480	1501-0535

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Qty.	Description	Mtr. Code	Mfr. Part Number
A13DS 1	1990-0647	1	1	LEDLAMP LUMANT - 12MCD IF= 20MAMAX	28480	5082-4558
Al131	1250-1220	0		COMWECTOR-RF SMC M PC EO-OHM	06877	82SMC-50-0.3/111
	2190-0124	4		WASt ERHK INTL T NO. $10.195-1 \mathrm{HD}$	16178	500228
	2050-0078	9		MUTHEX-DEL-CHAM 10-32-TTHD . 067 HNTTHK	28480	2050-0078
A11.52	1250-1220	0		COMNECTOR-RF SUC M PC 50-OHM	06877	82SMC-50-0-3/111
	2190-0124	4		WASHERHK INTL. T NO. 10.195 -INHD	16179	500222
	2050-0078	9		MUTHEX-DEL-CHAM 10-32-THD . 067 - NHTHK	28480	2950-0078
A1123	1250-1220	0		COMNECTOPRFF SUC M PC 50-OHM	06877	82SMC-50-0-3/111
	2190-0124	4		WASHERLK INTL T NO. $10.105-1$ NHD	18179	500222
	2950-0078	0		MUTHEX-DEL-CHAM 10.32-THD .087-H/THK	28480	2050-0078
A1134	1250-1220	0		COMNECTOR-RF SUC M PC 50-OHM	06877	82SMC-50-03/117
	$2100-0124$	4		WASHERHK INTL T NO. 10.195 - ${ }^{\text {INHD }}$	16179	
	2050-0078	9		NUTHEX-DBL-CHAM 10-32-THD . O67-AN-THK	28480	2050-0078
A1 135	1250-1220	0		CONAECTOR-RF SUC M PC 50-OHM	06877	82Suc-50-0.3/111
	2190-0124	4		WASHER-LK INIL T NO. $10.195-1 / H D$	16179	500222
	2950-0078	9		MUTHEX-DBL-CHAM 10-32-THD . 067 TN-THK	28480	2950-0078
A1136	1250-1220	0		CONAECTOR-RF SMC M PC 50-OHM	06877	82SMC-50-0.3/111
	2190-0124	4		WASHERLLK INTL T NO. 10.195 -HHD	16179	500222
	2950-0078	9		NUTHEX-DBL-CHAM 10-32-THD .067-IN-THK	28480	2950-0078
A1141				NOT ASSIGNED		
A11L2	9100-2248	5	1	INOUCTOR PF-CHMELD 120NH +-10\%	91637	M-2.12UH 10\%
1933A 20 2618A						
A11MP1	$08901-00033$	1	1	COVER, COUNTER ASSEMBLY	28480	08901-00033
	2560-0113	2		SCREW-MACH \&S2 25INLG PANHD-POZ	00000	ORDER BY DESCRIFTION
2623 A and above						
A11MPI	$08901-00180$	9	1	COVER, COUNTER ASSEMBLY	28480	$08901-00180$
	$2360-0113$	2		SCREW-MACH 6-32.25-INLG PANHD-POZ	00000	ORDER BY DESCRIPTION
A11MP2	5021-0817	8		P.C. BOARD EXTRACTOR	28480	5021-0817
A17MP3	08901-00063	7	1	LABEL (EXCEPT OPTICN 002)	28480	08901-00063
A1101	1853-0540	3	2	TRANSISTOR PNP SI TO-82 PD $=625 \mathrm{NW}$	04713	1853-0540
A1102	$1853-0540$	3		TRANSISTOR PNP SI TO-92 PD-625MW	04713	1853-0540
Alics	1853-0020	4		TRANSISTOR PNP SI PD = 300MW FT = 150MHZ	2 M 627	XAZ2BCP20-1
A1104	1853-0020	4		TRANSISTOR PNP Si PD = 300NW FT = 150MHZ	2 M 627	XA22BCP20-1
A1105	1854-0074	7		TRANSISTOR NPN SI TOe2 PD $=300 \mathrm{NW}$	2M627	CP4071
A11R1	0757.0442	9		PESISTOR 10K +-1\% .125W TF TC $=0+-100$	12498	CT4-1/8-T0-9002-F
A11P2	0757.0442	9		RESISTOR 10K $+-190.125 W$ TF TC $=0+-100$	12498	CT4-1/8-T0-1002-F
A11fa	0698-8812	7	1	RESISTOR $1+-1 \%$.125W TF TC $=0+-100$	12498	LO4D
A11P4	0698-8816	1	1	PESISTOR $2.15+-1 \%$.12SW TF TC $=0+-100$	12498	L04D
A11R5	0757-0346	2		RESISTOR $10+-1 \% .125 W$ TF TC $=0+-100$	D8439	MK2
A1186	0757.0416	7		RESISTOR 511 +-190.125W TF TC $=0+-100$	12498	CT4-1/8-T0.511RF
A11R7	0757-0442	9		RESISTOR 10K +-190.125W TF TC $=0+-100$	12498	CT4-1/8-T0-1002-F
A11R8	0757.0463	4		RESISTOR 82.5K +-146.125W TF TC $=0+-100$	12498	CT4-188-T0-8252-F
Altrs	$0757-0416$	7		RESISTOR $511+-140.125 W$ TF TC $=0+-100$	12498	CTL-1/8-T0-511RFF
AliRio	0757.0465	6		RESISTOR 100K + -1\% .125W TF TCa $0+-100$	12498	CT4-1/8-T0-1003-F

Table 6-3. Replaceable Parts

Reference Designetion	HP Part Number	$\underset{\mathbf{D}}{\mathbf{C}}$	Cty.	Description	Mifr. Code	Mifr. Part Number
A11R11	$0757-0994$	0		RESISTOR $51.1+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-51R1F
Al1R12	1810-0204	6	1	NETWORK-RES 8-SIP 1.0K OHM $\times 7$	C1433	$750-81$
Al1R13	0757-0397	3	14	RESISTOR 68.1 +i\% .125W TF TC=0+100	12498	CT4-1/8-T0-68Rif
Al1R14	$0757-0280$	3		RESESTOR 1K +1\% .125W TF TC=0 $=100$	12458	CT4-1/E-TG-1001-F
A11R15	008-3445	2	5	RESSSTOR 348 +1\% .125W IF TC $=0+100$	12498	CT4-1/8-T034日R-F
A11R16 ${ }^{\text {S }}$	0757-0280	3		RESISTOR 1K $+1 \% .125 W$ TF TC=0+100	12498	CT4-1/B-T0-1001-F
A11R17	0757-0200	3		RESISTOR 1K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-1001-F
Al1R18	0757-0280	3		RESISTOR 1K +-1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-1001-F
A11R19	0698-3153	9		RESISTOR 3.83K $+1 \%$. 125 W TF T $\mathrm{C}=0+100$	12498	CT4-1/8-T0-3831-F
A11R20	$0757-0438$	3		RESISTOR 5.11K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-5111f
Al1R21	$0757-0416$	7		RESASTOR $511+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-511R-F
Al1R2\%	0757.0416	7		RESESTOR $511+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-511R-F
A11R23	0757-0388	4	2	RESSSTOR $75+1 \% .125 W$ TF TC $=0+100$	D8439	M M 2
AllR24	0757-0280	3		RESSSTOR 1K 4 -1\% .125W TF TC=0+100	12498	CT4-1/8-10-1001f
A11R25	$0757-0987$	3		RESTSTOR 68.1 +1\% .12SW TF TC=0+100	12498	CT4-1/8-T0-6881F
A11R26	$0757-0438$	3		RESISTOR 5.11K +-1\% .125W TF TCu0+-100	12498	CT4-1/8-T0-5111F
A11R27	0080-3629	2	4	RESISTOR $19.6+1 \%$.125W TF TC $=0+100$	2 M 627	CRE14 OR CRE2S
A11R28	$0698-3445$	2		RESISTOR $348+1 \%$. $125 W$ TF TC $=0+100$	12438	CT4-1/8-T0348P-F
Al1R29	$0698-3445$	2		RESSSTOR 348 $+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-T0-348P-F
A11R30	0757.0424	7	1	RESISTOR 1.1K + -1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0.1101-f
A11R31	0757.1000	7	1	RESSSTOR 51.1+1\% .5W TF TC=0 0 -100	K8479	H2
A11R32	0757-0438	3		PESISTOR 5.11K +1\% .125W TF TC=0+100	12498	CT4-1/8-T0-5111+
A11R33	0696-3432	7		RESISTOR $26.1+1 \%$, 125W TF TC=0+100	D8439	MK2
A11R34	0757-0401	0		RESISTOR $100+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-101-
A11R35	0757-0401	0		RESISTOR $100+1 \% .125 W$ TF TC $=0+100$	12488	CT-1/8-T0-101F
A11836	0757-0280	3		RESISTOR $1 \mathrm{~K}+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-1001-F
A11R37	18100206	8	3	METWORK-RES \&-SIP 10.OK OHM $\times 7$	C1433	750-81
A1tr38	0757-0465	6		RESISTOR 100K $+-1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-1003-F
A11R39	0757-0280	3		PESISTOR 1K +1\% .125W TF TC=0+100	12498	CT4-1/8-T0-1001-F
A11TP1	1251-0600	0		COMNECTOR-SGL CONT PWN 1.14MN-BSC-SZ SO	12360	94-155-1010-01-03-00
A11TP2	1251-0600	0		CONNECTOR-SEL CONT PAN 1.14-MM-BSC-SZ SO	12360	94-155-1010-01-03-00
A11TP3	1251-0600	0		COMNECTORSGL CONT PN 1.14-MM-BSC-SZ SO	12360	94-155-1010-01-03-00
A11TP4	1251-0600	0		COMNECTOR-SCL CONT PNW 1.14 MM -BSC-SZ SO	12360	94-155-1010-01-03-00
A11TP5	1251-0600	0		CONWECTOR-SEL CONT PW 1.14MM-BSCSZ SO	12360	94-155-1010-01-03-00
A117P6	1251-0800	0		COMNECTOR-SEL CONT PAN 1.14-MM-BSC-SZ SO	12360	94-155-1010-01-03-00
A11TP7	1251-0800	0		COMNECTOR-SEL CONT PAN 1.14-ma-BC-S2 SO	12360	94-155-1010-01-03-00
Allut	1820-0817	8	4	IC FF ECL D-M/S DUAL	04713	MC10131P
Alluz	1820-0003	2	1	\triangle GATE ECL ORAMOR TPL	04713	MC10105P
A1143	1820-1425	6	2	IC SCHANTT-TAIG TIL LS MAND OUAD 2-ANP	01295	SN74LS132N
Allus	1820-1416	5	2	IC SCHMTT-TRIG TIL LS INV HEX 1-HNP	01295	SNT4LSIAN
A1145	1820-1193	5	4	IC CNTR TILLLS BN ASYMCHRO	01295	SNT4LSt97N

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C	Oty.	Description	Mifr. Code	Mifr. Part Number
${ }^{\text {alius }}$	1820.0693	8	2	C FF TIL S D-TYPE POS-EDEE-TRIG	01295	SN74S74N
Al1u7	1820-1217	4	1	CC MUXR/DATASEL TTL LS 8-TO-1-LINE	01295	SN74LST51N
A1148	1820-1251	6	2	K CNTR TIL LS DECD ASYNCHRO	01295	SN74LS196N
Allug	1820-1193	5		IC CNIR TIL LS BM ASYNCHRO	01295	SN74LS197N
Al1U10	1820-1251	6		IC CNTR TTL LS DECD ASYNCHRO	01295	SN74LS196N
A11U11	1820-1193	5		IC CNTR TIL LS BN ASYNCHRO	01295	SN74LS197N
A11012	1820-1199	1		KC WVTIL LS MEX 1HNP	01295	SN74LSOAN
A11U13	$1820-1411$	0		IC LCH TIL LS D-TYPE 4-ET	01295	SN74LS75N
A11U14	1820-1198	0		IC GATE TTL LS NAND OUAD 2-NP	01295	SNTALSO3N
	1200-0638	7	2	SOCKETAC 14-CONT DP DPPSLDR	01295	C8714-01
A11U5	1820-1188	0		IC GATE TIL LS NAND OUAD 2-NP	01295	SN74LSO3N
	$1200-0638$	7		SOCKETHC 14-CONT DP DPPSLDR	01295	C8714-01
A1IU16	1820-0693	8		IC FFTIL S D-TYPE POS-EDGE-TRIG	01295	SN74S74N
A11017	1820-1240	3	1	$1 C$ DCDR TIL S 3-TO-LINE 3-NNP	01295	SN74S138N
A11U18	1820-1197	9		IC GATE TIL LS NANO OUAD 2-INP	01295	SN74LSCON
A11U19	1820-1193	5		CC CNTA TTL LS BN ASYNCHRO	01295	SN74LS197N
A11420	1820-1197	9		IC GATE TIL LS NAND OUAD 2-ANP	01295	SNTALSOON
A11121	1820-0723	5	1	ICWIERFACE RCVR LNE RCVR DUAL	01295	SN75107AN
Aliyt	0.10 .0423	2	1	CRYSTAL-OUARTZ 10.000 MHZ HC-35/UHLDR	28480	0410-0423

Table 6-3. Replaceable Parts

Reference	HP Part Number
Desionetio	Number

A12

NOT ASSIENED

A13

A13	00001-60031	5	1	CONTROLIER ASSEMBLY	28480	0090160031
A13C1	0180-2055	9		CAPACTOR-XD . O1VF +80-20\% 100VDC CER	0936	DD106NWB302Y5V103z100V
A13C2	0160-2055	9		CAPACTOR-FXD .01UF +80-20\% 100VDC CER	09969	DD106NWE302Y5V103Z100V
Alsces	0180-0197	8		CAPACTOA-fXD 2.2UF+-10\% 20VDC TA	58289	1500225×502012
Aisca	$0180-0197$	0		CAPACTOP-FXD 2.2UF+-10\% 20VDC TA	5626	1500225×902042
A13C5				MOT ASSIGNED		
A13C6	0180-2055	9		CAPACTOR-FXD .OTUF +80-20\% 300VDC CER	09969	DD10ENWB302Y5V103z100V
${ }^{\text {A13C7 }}$	0180-2055	9		CAPACTIOR-XX .AIUF +80-20\% 100VOC CER	00969	DD10ENWB302Y5V103z100V
Al3cs	0160-2055	9		CAPACTOR-FXD .01UF +80-20\% 100VDC CER	09969	
A13C9	0180-0229	7		CAPACTIOR-FXD 33UF+-10\% 10VDC TA	56289	1500336×901032
1933 to 2618A						
Al3C10	$0140-0196$	3		CAPACTIOR-XD 150PF +-5\% 300VDC MHCA	28480	0140-0196
A3CLI	0140-0196	3		CAPACTTOF-FXD 150PF +-5\% 300VDC MICA	28480	0140-0196
2623 A and above						
AlsClo				MOT ASSIGNED		
A13C11				NOT ASSIGNED		
A13C12	0180-2141	6		CAPACTTOR-FXO 330F+ 10% SOVDC TA	56289	1500335×905082
A43C13	0180.0228	6		CAPACTIOR-EXD 22UF+-10\% 15VDC TA	56289	1500226×101592
${ }^{\text {Al3C14 }}$	0180-0197	8		CAPACTIOR+XDD 2.2UF+10\% 20VDC TA	56209	1500225×502012
A13C15	01800197	8		CAPMCTTDR-XD 22UF+10\% 20VOC TA	56289	1500225×902012
A13C16	01800197	8		CAPACTIOR + XD 2.2UF+-10\% 20VDC TA	56289	1500225×102012
A13C17	01800197	8		CAPACTOR-FXD 2.2UF+10\% 2OVDC TA	56289	1500225×502012
A13C18	0180-0197	8		CAPACTIOR $+X D$ 2 $2.2 \mathrm{UF}+10 \% 20 \mathrm{VDC} \mathrm{TA}$	56289	1500225×502042
A13C19	0180-0197	8		CAPMCTTOR-XD 2.2UF+10\% 20VDC TA	56289	1500225×902042
A13CR1	1901-0159	3		DOODEPWR RECT 400V 750MA1 00-41	28480	1901-0159
A13CR2 ${ }^{\text {a }}$	1501-1098	1		DIODE-SWTCHING 1N4150 50V 200MA ANS	28480	1901-1098
A13CR3 ${ }^{\text {a }}$	1501-1098	1		DIODE-SWITCHING 1 Na150 50V 200ma dns	28480	1901-1098
A13CR4	1501-0159	3		DICOE-PWR RECT 400V 750MA DO-41	28480	1901-0159
A130S1	1990-0524	3	5	LED-AMP UMANT = TMCD WF=2OMA-MAX EVR $=5 \mathrm{~V}$	28480	5082-4550
A13052	1980-0524	3			28480	5082-4550
A130s3	19900524	3			28480	5082-4550
A130S4	19900524	3		LED-AMP UMA-WNT $=1$ MCCD IF $=20 \mathrm{MA-MAX}$ BVA $=5 \mathrm{~V}$	28480	5082-4550
A13)P1	1150-0005	0		RESISTOR-TERO OHMS 22 AWG LEAD DMA	11502	YZO 1/4
1933A 10 2518A						
A33LI	9140-0238	3	1	MDUCTOR PF-CHHMD 82UH +-5\%	91637	M-4 82\% ${ }^{\text {5\% }}$
2623 A and above						
AI3LI				NOT ASSIGNED		
A13MP1	4040.0749	4	2		28480	4040-0749
	1480-0073	6	4		72062	99-012-062-0250
Al3MP2	4040.0751	8	1	EXTR-PC 80 ORN FOLYC .062-N-BD-THKNS	28480	4040.0751
	1480-0073	6		PINROLL .O62-NHDA 25 N-LG BE-CU	72962	99-012-062-0250

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cly.	Description	Mfr. Code	Mifr. Part Number
${ }^{1} 1301$	1853-0451	5	1	TRANSISTOR PAP 2NE3769 Si TO-18 PD=360MW	28480	1853-0451
A13R1	0038-7236	7		RESISTOR 1K +-1\% .OSW TF TC=0 $\mathbf{+ 1 0 0}$	12498	C3-1/8-70-1001F
A13R2	0098-7236	7		RESISTOR $15+1 \% .05 W$ TF TC=0+-100	12498	C31/8-T0-1001f
A13R3	1810.0126	1		NETWORKRES 14-0P 10.0K OHM $\times 13$	11236	760-1-R10K
A13R4	0757-0401	0		RESISTOR 100 +1\% .125W TF TC $=0+100$	12498	CT4-1/8-TO-1017
A13R5	0098-7264	1		RESISTOR 14.7K +1\% .05W TF TC=0 0 -100	12498	C3-1/8-T0-1472-F
A13R6	0608.7227	6	5	RESISTOR 422 +1\% .O5W TF TC= $0+100$	12498	C3-1/R-TO-422R-F
A13R7	0098.7236	7		RESISTOR IK +1\% .OSW TF TC $=00+100$	12498	C3-1/8-T0-1001F
A13R8	0098-7260	7		RESISTOR 10K $+14 \% .05 \mathrm{~W}$ TF TC=0 0 -100	12498	C3-1/R-70-1002F
A13R9	1810-0229	5	1	METWORK-RIES B-SP 350.0 OHM $\times 7$	C1433	750-81
A13R10				NOT ASSICNED		
A13R11	1810-0126	1		NETWORKKRES 14-DIP 10.0K OTHM $\times 13$	11236	780-1-7100
A13TP1	1251.0600	0		CONNECTOR-SGL CONT PIN 1.14-MM-BSC-S2 SO	12360	94-155-1010-01-03-00
A13TP2	1251.0600	0		CONNECTOR-SCL CONT PW 1.14-MM-BSCSZ 50	12360	94-155-101001-03-00
A13TP3	1251-0600	0		CONNECTOR-SGL CONT PNN 1.14-MM-BSC-SZ SO	12360	94-155-1010-01-03-00
A13TP4	1251-0600	0		CONNECTOR-SCL CONT PMN 1.14-MM-ESC-SZ SO	12360	94-155-1010-01-03-00
A13TP5	1251.0600	0		CONNECTOR-SCL CONT PW 1.14-MM-ESC-SZ SO	12360	94-155-1010-01-03-00
A131P6	1251.0600	0		CONNECTOR-SGL CONT PW 1.14-MM-BSC-SZ SO	12360	94-155-1010-01-03-00
A137P7	1251-0600	0		CONNECTOR-SGL CONT PN 1.14-MW-BSC-SZ SO	12360	94-155-1010-01-03-00
A13TP8	1251-0600	0		COMNECTOR-SGL CONT PNN 1.14-MMESCSZ SO	12360	94-155-1010.01-03-00
A13TP9	1251-0600	0		COMNECTOR-SGL CONT PW 1.14 MMM-ESC-SZ SO	12360	94-155-1010-01-03-00
A13TP10	1251-0600	0		CONNECTOR-SGL CONT PW 1.14MM-ESCSZ SO	12360	94-155-1010-01-03-00
A137P11	1251.0600	0		CONNECTOR-SGL CONT PNN 1.14-MM-ESC-SZ SQ	12360	94-155-1010-01-03-00
A13U1	1820-1425	6		IC SCHMATT-TRIG TTL LS NAND QUAD 2HNP	01295	SN74LST32N
A1342	1820-1199	1		IC MV TIL LS HEX 1-WMP	01295	SNT4LSOAN
1233A to 2201A						
A13U3				UA A13U3, tals, order pert tisted for seriel prefices 2212A and above. You must also order A13U4. A13U9, and A14U14.		
$\mathrm{Al}^{13} 4$				B A13u4, talls, order pert listed tor serial profixes 2212A and above. You must atso order A13U3, A13U9, and A14U14.		
2212A and above						
A13U3	00801-80040	8	1	ROM \#1	28480	00s01-00040
A13U4	00901-80041	9	1	ROM \#2	28480	00901-800:1
	1200-0541	1		SOCKET-HC 24-CONT DIP DIP-SLDR	01295	c8724-01
A1305	08901-80011	3	1	ROM 3	28460	00801-80011
	1200-0541	1		SOCKETHC 24CONT DIP DIP-SLDR	01295	C872-01
A1346	08501-80012	4	1	ROM \#4	28480	08801-80012
	1200-0541	1		SOCKET-HC 24-CONT DIP DIP-SLDR	01295	C8724-01
A1347	08901-80013	5	1	ROM * 5	28480	06901-80013
	1200-0541	1		SOCKET-HC 24-CONT DIP DIP.SLDR	01295	C8724-01
A1348	1818-0926	5	1	ROM \% 6	28480	1818-0926
	[0901-80014	6	1	ROM \%6 (alternate)	28480	08901-80014
	$1200-0541$	1		SOCKETHC 24-CONT DIP DPP.SLDR	01295	C8724-01

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & C \\ & \mathbf{D} \end{aligned}$	Oty.	Description	Mfr. Code	Mifr. Part Number
1933A to 2201A						
Al3U9				U A13u9, falls, order pert listed for serted prefices 2212A and above. You must aso order A13U3, A1344, and A14U14.		
22124 and above						
A13U9	08901-80039	5	1	ROM ${ }^{\text {\% } 7}$	28480	08901-80039
	$00801-80015$	7	1	ROM *7 (ALTERMATE)	28480	$08901-80015$
	1200-0541	1		SOCKETHC 24-CONT DIP DIP.SLDR	01295	C8724-01
A13U10	00501-00025	9	1	ROM 18	28480	08801-80025
	1200-0541	1		SOCKETHC 24-CONT DIP DPSSLOA	01295	C8724-01
A13411	1820-2027	6	1	MC, MCROPROCESSOR,STATIC MEM. WTERFACE	50088	mesess
	1200-0654	7	3	SOCKET-HC 40-CONT DPP DPP.SLDR	01295	C8740-01
A13412	1820-1216	3		IC DCDR TTL LS 3-TO-LINE 3HP	01295	SN74LS13EN
A13013	1820-1216	3	1	YC DCDR TTL LS 3-TOPLNE 3-NP	01295	SN74LST3 ${ }^{\text {N }}$
A13U14	1820-1928	4		1C. MUCROPROCESSOR,CENTRAL PROC. UNT	50088	M ${ }^{\text {c3ason-3 }}$
	12000654	7		SOCKETHC 4-CONT DIP DPP-SLDR	01295	C8740-01
A13U15	1818-0197	2	1	IC MENOS 1024 (1K) STAT RAM 400-NS 3-S	34395	AMP1L11B6C
	1200-0539	7	1	SOCKETHC 18-CONT DPP DIPSLDA	01295	C8718-01
A13416	1820-0174	0	1	CO WV TIL HEX	01295	SNT4OEN
A13U17	1820-1216	3		MC DCDA TIL LS S-TO-AME 3-NP	01295	SN74LS138N
A13U18	1820-1287	8		IC BFA TTL LS MAND OUAD 2-NTP	01295	SN74LS37N
A13U19	1826-0275	4	1	IC V RELTR-XXPOS 11.5/12.5V TO-92 PKG	04713	MC78L12ACP
	$8159-0005$	0	8	RESISTOR-ZERO OTMWS 22 ANG LEAD DU	11502	YZO 1/4

Reference	HP Part	C	Oty.
Designation	Number	D	

Description

Mfr.
Code

Mfr. Part Number

A14

1933A to 2421A						
A14	08901-60015	5	1	REMOTE INTERFACE ASSEMBLY	28480	08901-50015
2424A and above						
A14	08901-60257	7	1	REMOTE INTEPFACE ASSEMELY	28480	08901-60257
A14C1	0180-0229	7		CAPACTOPFXD 33UF+-10\% 10VDC TA	56289	1500336×901082
A14C2	01800197	8		CAPACTTORFXD 2.2UF+-109\% 20VOC TA	56289	1500225×9020A2
A14C3	0160-2055	9		CAPACTTORFXD .01UF +80-20\% 100VDC CER	09969	DD108MWE302Y5V1032100V
A14C4	0160-2055	9		CAPACITORFXD .01UF + 80-20\% 100VDC CER	09969	DD106NWE302Y5V1032100V
A14C5	0160-2055	9		CAPACITOR-PXD .01LF +80-20\% 100VDC CER	09969	DD106NWB302Y5V1032100V
A14C6	0160-2055	9		CAPACITORFXD .01UF + 80-20\% 100VDC CER	09969	DD106NWB302Y5V1032100V
A14C7	0160-2055	9		CAPACTTORPXD .01UF +80-2096 100VDC CER	09969	DD108NWB302Y5V1032100V
A14C8	0160-2055	9		CAPACTTORFXD .0TUF +80-20\% 100VDC CER	09969	DD106NWE302Y5V103Z100V
A14C9	0160-2055	9		CAPACITOR-FXD .01UF +80-2046 100VDC CER	09969	DD106NWE302Y5V103Z100V
A14C10	0160-2055	9		CAPACITOR-FXD .01UF + 80-20\% 100VDC CER	09969	DD106NWB302Y5V1032100V
A14C11	0160-2055	8		CAPACTTOR-FXD .01UF +80-2040 100VDC CER	09969	DDi06NWB302Y5V1032100V
A14C12	0160-0574	3		CAPACTTOR-FXD .022UF + 20\% 100VDC CER	06383	FD12X7R2A223M
A14C13	0160-2055	9		CAPACITDR-FXD .01UF +80-2090 100VDC CER	09969	DD106MWB302Y5V103Z100V
A14C14	0160-2055	9		CAPACITORFXD .01UF + 80-2046 100VDC CER	09969	DD106NWB302Y5V1032100V
A14C15	0160-2055	9		CAPACTTOR-FXD .01UF + 80-20\% 100VDC CER	09969	DD106NWB302Y5V103Z100V
A14C:6	0160-2055	9		CAPACITOR-FXD .01UF +80-2096 100VOC CER	09969	DD106NWE302Y5V103Z100V
A14C17	0140.0196	3		CAPACITOR-FXD 150PF + 590 300VDC MICA	28480	0140-0196
A14C18	0160-0574	3		CAPACITOP-FXD .022UF +-20\% 100VDC CER	06383	FD12X7R2A223M
A14CR1	1901-0518	8		DIODESCHOTTKY SM SIG	12403	5082-2800
A1411	1200-0507	9		SOCKETHC 16-CONT DIPSLDR	06776	ICN-163B-53-630
	1251-4460	8		CLIP-CABLE PLUG RTNG-DUAL INUNE 16 CONT	06776	PC.74
A14MP1	4040-0749	4		EXTR-PC BD BRN POLYC . O62-NN-ED-THKNS	28480	4040.0749
	1480.0073	6		PINFROLL . 062 -NN-DIA 25 -NLLG BE-CU	72962	99-012-062-0250
A14MP2	4040.0752	θ	1	EXTR-PC BD YEL POLYC . 062 HN-BD-THKNS	28480	4040.0752
	1480-0073	6		PINAROL .062-NNDIA .25-INLG BE-CU	72962	99.012-062-0250
1933A 20 2421A						
MP6				NOT ASSIGNED		
MP7				not assigned		
2424A and above						
MP6	0363-0205	7		CONNECTOR FINGER	28480	0353-0205
MP7	0363-0205	7		CONNECTOR FINGER	28480	0353-0205
A14R1	0698,3438	3		RESISTOR 147 +-146.125W TF TC $=0+-100$	12498	CT4-1/8-TO-147R.F
A14R2	06983444	1		RESISTOR $316+-190.125 W$ TF TC $=0+-100$	12498	CT4-1/8-T0-316R-F
A14R3	1810-0206	8		NETWOPK-RES 8-SIP 10.0K OHM X 7	C1433	750-81
A14R4	1810-0206	8		NETWORK-RES 8.SIP 10.0K OHM $\times 7$	C1433	750-81
2424A to 2950A						
A14R5	0757-0280	3		RESISTOR $1 \mathrm{~K}+\mathrm{-1} \mathrm{\%} .125 \mathrm{~W}$ TF TC $=0+-100$	12498	CT4-1/8-T0-1001-F
3022A and above						
A14R5	0698-0084	9		RESISTOR 2.15K +-1\% .125W TF TC $=0+-100$	28480	0698-0084

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\underset{\mathbf{D}}{\mathbf{C}}$	Cisy.	Description	Mfr. Code	Mfr. Part Number
A14R6	$0757-0416$	7		PESISTOR $511+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-TQ-517R-F
A14R7	1810-0136	3	1	NETWCRK-RES 10-STP MLLT-VALUE	01121	4105003
A14R8	0690-0083	8		RESISTOR 1.86K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-TO-1961.F
A14R9	0098-7224	3		RESSSTOR $316+1 \%$. $05 W$ TF TC $=0+100$	12498	CT3-1/8-T0-316A-F
J939A 20 2421A						
Al4RIO				NOT ASSIGAED		
2424 A and above						
A14RIO ${ }^{\text {a }}$	0600-7280	7		RESSSTOR 10K + -1\% .0SW F TC $=0+100$	12498	CT3-1/6-TO-1002-F
A14S1	3101-1973	7	1		11236	11P-1028
	1200-0485	2	1	SOCKETHC 14-CONT DAP DPPSLDR	51167	14-820-60
A14TP1	1251-0600	0		CONWECTOR-SCL CONT PAN 1.14MMA-BSC-SZ SO	12360	04-155-1010-01-03-00
A14TP2	1251-0600	0		CONNECTOR-SCL CONT PHN 1.14-MMABSC-SZ SO	12360	94-155-1010-01-03-00
A14TP3	1251-0600	0		CONNECTOR-SCL CONT PMN 1.14 Hm -ESC-SZ SQ	12360	94-155-1010.01-03-00
A14TP4	1251-0600	0		COMMECTOR-SCL CONT PIN 1.14-MM-BSC-SZ SO	12360	94-155-1010-01-03-00
A14TP5	1251-0600	0		CONNECTOR-SGL CONT PN1 1.14MEN-BSC-S2 SQ	12360	94-155-1010-01-03-00
A14TP6	1251.0500	0		CONNECTOR-SEL CONT PMN 1.14-MM-BSC-SZ SO	12360	94-155-1010-01-03-00
A14TP7	1251-0500	0		CONNECTOA-SGL CONT PIN 1.14-MM-BSCSE SO	12360	94-155-1010-01-03-00
A14TP8	1251-0600	0		COWNECTOA-SGL CONT PW 1.14MMA-BSC-SZ SO	12360	94-155-1010-01-03-00
A14TP9	1251-0500	0		CONNECTOR-SEL CONT PNN 1.14-MM-BSC-SZ SO	12360	94-155-1010-01-03-00
A14U1	1820-1689	4	2	C-WIERFACE XCVA WSTRUMENT BUS IEEE	01295	MC3446N
${ }^{1} 14 \mathrm{U} 2$	1820-1188	0		C GATE TIL LS NAND OUAD 2HAP	01295	SN74LSO3N
${ }^{1} 14143$	1820-1112	8		IC FF TTL LS D-TYPE POSEDGE-TRIG	01295	SN74LS74AN
A14U4	1820-1416	5		IC SCHmITT-TRIG TIL LS INV HEX 1-INP	01295	SN74LSTAN
A14U5	1820-1689	4		IC-NTERFACE XCVR INSTRUMENT BUS TEEE	01295	MC3446N
A14us	1820-1198	0		IC GATE TIL LS NAND OUAD 2-HNP	01295	SNT4LSOSN
A14U7	1800-1905	7	1	IC GATE TTL LS NOR DUAL S-NP	18324	74LS260N
1933A to 2421A						
A14U8	18200706	4	1	IC COMPTR TIL MAGTO 5-BR	07263	9324PC
24248 and above						
A14U8	1820-2740	0	1	IC COMPTR TTL MAGTD 2+NP 8-8T	28480	1820-2740
A14u9	1820-1198	0		IC GATE TIL LS NAND OUAD 2-ANP	01295	SN74LSO3N
A14U10	$1820-1198$	0		IC GATE TIL LS NAND OUAD 2-HNP	01295	SN74LS03N
A14U11	1820-1216	3		IC DCOR TIL LS 3-TO-GLINE 3-NP	01295	SN74LS138N
A14U12	1820-0621	2	1	IC BFR TTL NAND OUAD 2-NP	01295	SN7438N
	1200-0552	4	1	SOCKET-CC 40-CONT DPPSLDR	06775	1CN-406-E-S4-630
A14U13	$\begin{aligned} & 1820-2100 \\ & 1200-0654 \end{aligned}$	6 7	1	IC-PERIPHERAL INPUT/OUTPUT (PIO) SOCKET-HC 4O-CONT DIP DAP-SLDA	$\begin{aligned} & 50008 \\ & 01295 \end{aligned}$	$3861 / \mathrm{MKK} 50005 \mathrm{~N}$ C8740-01

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\underset{\mathbf{D}}{\mathbf{C}}$	Cty.	Description	Mfr. Code	Mifr. Part Number
1896a 7022014						
A14U14				II A14UI4 tals, order pert lleted for seriel prifices 2212A and above. You must atso order A1313, A13U4, and A13U9.		
$2212 A$ and above						
A14U14	1818-1364	7	1	ROM \#11	29480	1818-1364
	1200-0541	1		SOCKETHC 24-CONT DPP DPPSLDR	01295	c8724-01
A14U15	1820-1112	8		IC FF TIL LS D-TYPE POS-EDGE-TRIG	01295	SN74LS74AN
A14U16	$1820-1112$	8		IC FF TIL LS D-TYPE POS-EDCE-TRIG	01295	SN74LS74AN
A14U17	$08901-60004$	4	1	PROM, PROGRANMED	28480	00901-80004
Alavis	1820-1216	3		C DCOR TTL LS 3-TO-LINE 3-HNP	01295	SNTALSISEN
A14U19	18200054	5	1	$1 C$ GATE TIL MAND OUAD 2-NP	01295	SN7400w
A14420	1820-1199	1		CC NV TIL LS MEX 1 HMP	01295	SNTALSOAN
A14U21	1820-1200	5	3	CONV TIL LS HEX	01295	SN74LSOSN
A14U22	1820-1200	5		ICNV TTLLS HEX	01295	SN74LSOSN
A14VRI	19023182	0		DIODE-2NR 12.1V 5\% D0.35 PD=.4W	28480	1902-3182

Table 63. Replaceable Parts

Reference Designation	HP Part				
Number	C	Qty.	Description	Mfr.	Mfr. Part Number

A15

1933A to 2801A						
A15	08901-60116	7	1	RF InPUT ASSEMBLY	28480	08901-60116
2212A to 2412A						
A15	08901-60183	8	1	PF INPUT ASSEMBLY	28480	08901-60183
2421A and above						
A 16	08901-60256	6	1	RF INPUT ASSEMBLY	28480	08901-60256
1933A to 2412A						
A15AT1-AT3				NOT ASSIGNED		
2421A and above						
A15ATI	0699-1289	0		20 DB ATTENUATOR	28480	0699-1289
A15AT2	0699-1288	9		10 DE ATTENUATOR	28480	0699-1288
A15AT3	0699-1289	0		20 DB ATTENUATOR	28480	0699-1289
1933A to 2542A						
A15C1	$0160-3879$	7		CAPACTTORFXD .01UF + 2098100 VDC CER	09969	RPE121-105X7R103M100V
2543 and above						
A15C1	0160-4832	4	6	CAPACTTOR-FXD .01UF +-1046 100VDC CER	28480	0160-4832
1933A to 2201A						
A15C2	0160.4741	4	2	CAPACTTOR-FXD .22UF + 10% 50VDC CER	06383	PK22X7R1+224K-T
2212A and above						
A16C2 ${ }^{\text {A }}$	$0160-6222$	0	2	CAPACITOR-PKD .1UF +-20\% 50VDC CER	28480	0160-6222
1933A to 2542A						
A16C3	0160-0576	5	2	CAPACTTOR-FXD .1UF +-20\% 50VDC CER	28480	0160-0576
2643A and above						
A16C3	0160-4835	7	2	CAPACITOR-PXD .IUF +-10\% 100VDC CER	28480	0160-4835
1933A 20 2251A						
A16C4	0180-2206	4		CAPACITOA-FXD GOUF +-1040 EVDC TA	56289	150D606X9006B2
2302A and above						
A16C4	0180-2929	8	6	CAPACTTOR-FXD 68UF +-10\% 10VDC TA	28480	0180-2929
1933A to 2542A						
AI6C5	0160.0576	5	2	CAPACTTOR-PXD .1UF +-2046 50VDC CER	28480	0160-0576
Al6C6	0160-3878	6	47	CAPACITOR-FXD 1000PF +2040 100VDC CER	09969	RPE121-105×7R102M100V
2543A and above						
A16C5	0160-4835	7	2	CAPACITOR-FXD .1UF +-10\% 100VDC CER	28480	0160-4835
AlbC6	0160-4822	7	6	CAPACITOR-FXD 1000PF $+5 \%$ 100VDC CER	28480	0160-4822
A15C7	0180-0197	8		CAPACTTOR-FXD 2.2UF+-10\% 20VDC TA	56289	1500225)9020A2
A15C8	0180-0197	8		CAPACITOR-PXD $2.2 \mathrm{UF}+-10 \%$ 20VDC TA	56289	1500225x9020A2
1933A to 2542A						
A15C9	0160-3879	7		CAPACITOR-FXD .01UF + 2096 100VDC CEA	09969	RPE121-105X7R103M100V
2543A and above						
A15C9	0160-4832	4		CAPACTTOR-PXD .01UF +-1090 100VDC CER	28480	0160-4832

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Mitr. Code	Mifr. Part Number
1933A to 22014						
A15C10	0180-4741	4		CAPACTTOAFXD 22UF +-10\% 50VDC CER	06383	FK22X7A1H224K-T
2212A to 2542A						
A15C10	0180-3878	8		CAPACTTOAFXD 1000PF +-20\% 100VDC CER	09969	RPE121-105X7R102M100V
2543A and abock						
A15C10	0160-4822	2		CAPACTORFXD 1000PF $+5 \%$ 100VDC CER	28480	0160-4822
1933A to 2542A						
A15C11	0160-3878	6		CAPACTTORFXD 1000PF +-20\% 100VDC CER	09969	RPE121-105x7R102M100V
A15C11	0160-4822	2		CAPACTTOR-XD 1000PF -5\% 100VDC CER	28480	0180-4822
1933A 20 2201A						
A15C12	0160-4654	8	1	CAPACTOR-FXO 530PF +-5\% 50VDC CER 0+-30	06383	FDI2C0G14531J
22124 and above						
	0160-4502	2	1	CAPACTTORFXD 390PF $+5 \%$ 100VDC CER $0+30$	28480	01604502
19334 to 20514						
A15C13	0160.0571	0	8	CAPACTORFXD 470PF +20\% 100VDC CER	06383	FD11X7R2A471M
2302A to 2412A						
2421A and above						
A15C13	0160-4062	2	1	CAPACTOR-FXD 470PF $+10 \%$ 50VDC CER	28480	0160-4062
1933A to 2201A						
A15C14	0160-4031	5	1	CAPACTTOR-XOL 330PF +-5\% 100VDC CER	09969	RPE121-105C0G331J100V
22124 and above						
A15C14	0160-4678	5	1	CAPACTIOR + XD 470PF +5\% 100VDC CER	28480	0160-4678
1933 to 2542A						
A15C15	0160.3879	7		CAPACTIOR-XX .01UF +20\% 100VDC CER	09969	RPE121-105X7R103M100V
2543 A and above						
A15C15	0160-4832	4		CAPACTIORFXO .OTUF + 10% 100VDC CER	28480	0160-4832
1933A 20 2201A						
A15C16	0160-4889	1	1	CAPACTTORFXD CER 1800PF	28480	0160-4889
2212A to 2542A						
A15C16	0160-3878	6		CAPACTIOR-FXD 1000PF +-20\% 100VDC CER	09969	RPE 121-105X7R102M100V
2543A and above						
A15C16	0160-4822	2		CAPACTTOR-FXD 1000PF $+5 \%$ 100VDC CER	28480	0160-4822
1933A co 2542A						
AlSCl^{7}	0160-3878	6		CAPACTIOR-FXD 1000PF +-20\% 100VDC CER	09969	RPE121-105X7R102M100V
A15C18	0160-3879	7		CAPACTOR-XD . O1UF +-20\% 100VDC CER	09969	RPE121-105X7R103M100V
A15C19	0160-3878	6		CAPACTTOR-XXD 1000PF +20\% 100VDC CER	09969	RPE 121-105X7R102M100V
A15C20	$0160-3879$	7		CAPACTTOAFXD . $014 \mathrm{LF}+20 \%$ 100VDC CER	09969	RPE121-105X7R103M100V
2543 A and above						
A15C17	0160-4822	2		CAPACTTOR-FXD 1000PF +5\% 100VDC CER	28480	0160-4822
A15C18	0160-4832	4		CAPACTIOR-XD .01UF +10\% 100VDC CER	28480	0160-4832
A15C19	0160-4822	2		CAPACTTOR-FXD 1000PF +5\% 100VDC CER	28480	0160-4822
A15C20	0160-4832	4		CAPACTTORFXD .OIUF +10\% 100VDC CER	28480	0160-4832

Table 63. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \text { C } \\ & \mathbf{D} \end{aligned}$	Qty.	Description	Mfr. Code	Mfr. Part Number
A15C21	0180-0058	0		CAPACTTOR-FXD 50UF+75-20\% 25VDC AL	56289	30D5066025CC2
A15C22	0180-0197	8		CAPACTIOR-FXD 2.2UF+-10\% 20VOC TA	56289	150D225×9020A2
1933A to 2542A						
A15C23	0160-3878	6		CAPACTTOR-PXD 1000PF $+20 \%$ 100VDC CER	09969	RPE121-105X7R102M100V
A15C24	$0160-3879$	7		CAPACTTORFXD .01UF +-20\% 100VDC CER	09969	RPE121-105X7R103M100V
2543A and cbove						
A15C23	0160-4822	2		CAPACTTOR-FXD 1000PF + 5\% 100VDC CER	28480	0160-4822
A15C24	0160-4832	4		CAPACTTOR-FXD .OILF +-10\% 100VDC CER	28480	0160-4832
A15C25	0160-492	2	1	CAPACTTOFFXD 18PF $+5 \% 200 \mathrm{VDC} \mathrm{CER} 0+30$	09969	RPE121-105C0G1801200V
1933A to 2642A						
A15C26	$0160-3877$	5	9	CAPACTTOR-PXD 100PF + -20\% 200VDC CER	0996	RPE121-105X7R101M200V
2543A and above						
A.15C26	0160-4801	7	1	CAPACTTORFXD 100PF + -6\% 100VDC CER	28480	0160-4801
A15C27	0180-2205	3	1	CAPACTTORFXD $33 \mathrm{UF}+-10 \%$ 35VDC TA	56269	1500334X9035A2
1933A 20 2201A						
A15C28				NOT ASSIGNED		
2212A and above						
A15C28 ${ }^{\text {- }}$	0160-6222	0	2	CAPACITOR-FXD .1UF + -2096 50VDC CER	28480	0160-6222
1933A to 2412A						
A15C29				NOT ASSIGNED		
2421A and above						
A15C29	0160-4616	2	2	CAPACITOAFXD 560PF + 50 200VDC CER	28480	0160-4616
A15CR:	1901-0518	8		DIODESCHOTTKY SM SIG	12403	5082-2800
	4330-0145	8		INSULATOR-BEAD GLASS	28480	4330-0145
				SEE R10* FACTORY SELECTION PROCEDURE IN SECTION 5		
A15CR2				NOT ASSIGNED		
A15CR3	$1901-0518$	8		DIODE-SCHOTTKY SM SIG	12403	5082-2800
A15CR4	1901-1098	1		DICOE-SWITCHING INA 150 50V 200MA 4NS	9N171	IN4150
A15CR5				NOT ASSIGNED		
A15CR6				NOT ASSIGNED		
A15CR7	1901-0518	8		DICDE-SCHOTTKY SM SIG	12403	5082-2800
A15CR8	1909-0518	8		DIODESCHOTTKY SM SIG	12403	5082-2800
A15J1	1250-1220	0		CONNECTOR-AF SMC M PC 50-OHM NUT-HEX-DBLLCHAM 10-32-THD . 067 -IN.THK WASHERLK INTL T NO. 10.195 HNHD CONNECTOR-RF SMC M PC 50 -OHM NUT-HEX-DBL-CHAM 10.32-THD . O67-IN-THK WASHER-LK INTL T NO. 10 . 195 -INHD	06877	82SMC-50-0.3/111
	2950-0078	9			28480	2950-0078
	2190-0124	4			16179	500222
A15,12	1250-1220	0			06877	82SMC-50-0-3/119
	2950.0078	9			28480	2950-0078
	2190-0124	4			16179	500222

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & C \\ & D \end{aligned}$	Qty.	Description	Mfr. Code	Mtr. Part Number
19334 to 22014						
A15K1	0490-1073	8	1	RELAYPREED 1A 250 MA TEOVAC 4.5VDC-COR	15636	R2974-1
2212A to 2542A						
A15K1	0090-1185	3	1	RELAYREED 1A 500MA 100VDC SVOC-COL	28480	0490-1185
2543 A and above ${ }^{\text {2 }}$						
AISKI	04s0-1452	7	1	RELAY-REED 1A SOOMA 100VDC SVdC-COL	28480	0490-1452
A15k2	0490-1158	0	4	ReLay zc svocicon 1a zevoc	11532	712Y-1A22
	3050-0737	0			00000	ORDEA EY DESCRIPTION
A15K3	0490-1158	0		PELAY 2C 5VDC-COM 1A 28 VDC	11532	712Y-1A22
	3050-0737	0		WASHERFL MM 1/4 2540NHD.4ENOD	00000	ORDEA EY DESCRIPTION
A15K4	0400-1158	0		Relay ze 5Vdc-coul 1a z8VDC	11532	712Y-1A22
	5050-0737	0		WHSHERFL MM 1/4 254WHD .4N-OD	00000	ORDEA BY DESCRIPTION
A15ks	0490-1158	0		RELAY 2C SVDC-COR 1A zevoc	11532	712Y-1A22
	8050-0737			WUSHERFL MM 1/4 254 -WHD .4HN-OD	00000	ORDER EY DESCRIPTION
1933A to 2201A						
A15L1	9140-0333	9	1	MDUCTOR RF-CHMMLD 9TONH $+\mathbf{5 \%}$	91637	M-2.91LH 5\%
A15L2	9140-0143	9	1	MDUCTOR RF-CHMED $3.34 H+10 \%$	91637	M-2 3.3UH 10\%
A15L3	9100-2260	1	1	WOUCTOR RF-CHHML $1.8 U H+10 \%$	91637	M-2 1.8UH 10\%
A15LA				NOT ASSIGNED		
22124 and above						
A15L1	9100-2257	6	1	WDUCTOR RF-CHMMD $8200 \mathrm{NH}+10 \% .1050 \times .26 \mathrm{LG}$	28480	9100-2257
A15L2	9100-2261	2	1	NDUCTOR AF-CHMED $2.70 \mathrm{HH}+10 \% .1050 \times .26 \mathrm{LG}$	28480	9100-2261
A15L3	9140-0142	8	1	MDUCTOR RF-CHMLD $2.2 \mathrm{UH}+10 \% .105 \mathrm{D} \times .26 \mathrm{LG}$	28460	9140-0142
A15L4	9100-2258	7	1	NDUCTOR RF-CHMELD $1.2 \mathrm{UH}+\mathbf{- 1 0 \%} .1050 \times 26 \mathrm{LG}$	28480	9100-2258
A15MP1	00901-00032	0	1	COVER, RF MPIT (INCUUDES P.C. EXTRACTOR)	28480	00901-00032
	2360-0113	2		SCREW-MACH 6-32 25 HN-L PANHD-POZI	00000	ORDER EY DESCRIPTION
Δ	3050-0018	8		WUSHERFL. MTLC NO.6 .147-INHD	00600	ORDER BY DESCRIPTION
A15MP2	$8160-9280$	6		RFI STRIP-FMGEERS BE-CU ZINC PLATED	30017	97-500-zC
A15MP3	08901-00054	6	1	SUPPORT, SHELD	28480	08901-00054
A15MP4 ${ }^{\text {a }}$	5001-5539	9	13	STRAP. GROUND	28460	5001-5539
A15MP5	00301-20082	2	8	P.C. BOARD EXTPACTOR	28480	08901-20082
A15MP6	3050-0623	7			00000	ORDER EY DESCRIPTION
A1501	1853-0281	8		TRANSISTOR PNP 2N2S07A SI TO-18 PD=400NW	04713	2N2907A
A1502	1853-0281	9		TRANSISTOR PNP 2NE907A SI TO-18 PD=400NW	04713	2N2907A
${ }^{1503}$				NOT ASSICNED		
A1504				NOT ASSIENED		
A1505				NOT ASSIGNED		
A1506	1853-0281	9		TRANSISTOR PNP 2N2907A SI TO-18 PD=400wW	04713	2N2907A
${ }^{11507}$	1853-0281	9		TRANSISTOR PAP 2NESO7A SI TO-18 PD=400w	04713	2N2907A
A1508	1253-0281	9		TRANSISTOR PAP 2NESO7A SI TO-18 PD=400NW	04713	2N2907A
A1509	1853-0020	4		TMANSISTOR PNP SI PD $=500 \mathrm{WW}$ FT $=150 \mathrm{MHZ}$	24.1027	Xurzscpro-1
A15010	1853-0020	4		TRANSISTOR PNP SI PD $=300 \mathrm{NWW}$ FT $=150 \mathrm{MHZ}$	2M627	X $2228 \mathrm{CP20-1}$
A15011	1854-0071	7		TRANSISTOR NPN SI TO-92 PD $=300 \mathrm{MW}$	2M627	CP4071

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Mfr. Code	Mifr. Part Number
A15R1	0898-7209	4	14	RESISTOR $75+1 \% .05 W$ TF TC $=0+100$	12498	C-1/8-T0-75R0-F
A15R2	0757-0421	4		RESISTOR $825+1 \% .125 W$ TF TC $=0+100$	12458	CT4-1/8-TO-125R-F
A15R3	0698.7195	7	4	RESISTOR $19.6+1 \% .05 W$ TF TC $=0+100$	12498	C2-1/8-T0-1976-F
A15R4	0698-7195	7		RESSTOR $19.6+-1 \%$. O5W TF TC $=0+100$	12498	C2-1/8-70-19P6-F
A15R5	0757-0199	3		RESISTOR 21.5K +-1\% .125W TF TC=0+100	12498	CT4-1/8-T0-2152-F
A15R6	0698-0083	8		RESISTOR 1.96K +-1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0.1961-F
A15RT	0698.7209	4		RESSTIOR $75+1 \% .05 W$ TF TC $=0+100$	12498	C3-1/8-T0-75ROF
A1588	0757-0421	4		RESISTOR $825+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-TO-825A-F
A15R9	0757-0199	3		RESISTOR 21.5K $+1 \% .125 W$ TF TC=0 $=100$	12498	CT-1/8-TO-2152F
1933A to 2201A						
A15R10	0080-7207	2		RESSSTOR 61.9 1\% .05W F TC=0+100	24546	C3-1/0-T0.61R9-5
22124 to 2412A						
A15R10	0000-7205	9		RESSSTOR 51.1 1\% OSW F TC=0+100	24546	C3-1/8-TO-51RI-F
2121 A and above						
Al5R10*S	0609-0252	5	1	PESSSTOR 52.8 +5\% .2W TF TCmon-100	12498	C3-1/2-TO-52R8-F
	1600-0265	4	1	NICKEL-DISK . 15 N . OIN ASTM F-15	28480	1600-0265
${ }^{\text {A15R11 }}$	0098-7209	4		REESSTOR $75+1 \%$.OSW TF TC=0+100	12498	C3-1/2-T0.75R0F
A15R12	0757-0421	4		RESISTOR 825 + $1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/G-TO-82SRF
A15R13	0757-0199	3		RESISTOR $21.5 K+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-2152-F
A15R14	0757-0394	0		RESISTOR $51.1+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-TO-51R1-F
1933A to 2012A						
A15R15	0699-0136	4	2		28480	0699-0136
2421A and above						
A15R15				MOT ASSIGNED		
1933A to 2201A						
AISR16				NOT ASSKGNED		
2212A and above						
Al5R16	0757-0394	0		RESISTOR $51.1+\mathbf{1 \%} .125 W$ TF TC=0 -100	12498	CT4-1/8-T0-51R1F
A15R17	0757-0199	3		RESISTOR 21.5K + 1\% .125W TF TC=0+100	12498	CT4-1/8-T0-2152F
A15R18				HOT ASSIENED		
1933A to 2412A						
AlSR19	C6990136	4			28480	0689-0136
Al5R20	0689-0132	0	2	RESISTOR $248+1 \% .25 \mathrm{~W}$ F TC $=0+100$	28480	0699-0132
AlSR21	06990133	1	3	RESISTOR 61.9 +1\% .25W F TC $=0+100$	28480	$0609-0133$
2421A and above						
AlSR19				NOT ASSIGNED		
AlsR20				NOT ASSEGED		
A15R21				MOT ASSIGNED		
A15R22	$0698-7209$	4		RESESTOR $75+1 \%$.05W TF TC=0 $0+100$	12498	C-1/8-TO-75RO-F
A15R23	0757-0421	4		RESISTOR $825+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/G-TO-825R-F
A15R24	0699-0071	6	3	RESISTOR 4.64M +1\% .125W TF TC $=0+100$	18701	50338
A15R25	0757-0199	3		RESISTOR 21.5K +1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-2152-F

Table 6-3. Replaceable Parts

Reference Deaignation	AP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cts.	Description	Mifr. Code	Mitr. Part Number
A15R26	0099-0071	6		RESISTOR 4.64M + $1 \% .125 \mathrm{~W}$ TF TC=0 $\mathbf{1 0 0}$	19701	50338
1933A to 2412A						
A15R27	06990137	5	1		29480	06990137
2121A and above						
A15R27				NOT ASSIENED		
A15R28	0757-0401	0		RESISTOR $100+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/B-TO-101-F
1933A to 2412A						
Al5Re9	0099-0135	3	3	PESISTOR 71.2 +-1\% 25W TF TC $=0+100$	11502	HFC65
A15R30	00090134	2	1	RESISTOR 96.3 +-1\% .25W F TC=0+100	28480	0699-0134
2421A and above						
A15129				MOT ASSIGNED		
Al5R30				MOT ASSIGNED		
A15R31	009e-7209	4		PESISTOR $75+1 \%$. OSW TF TC= 0 + 100	12498	C3-1/8-T0-75R0-F
A15R32	0757-0421	4		RESISTOA $825+1 \%$. 125 W TF TC=0+100	12498	CT4-1/0-TO-625P-F
A15R33	0690-3443			RESISTOR $287+1 \% .125 W$ TF TC=0 $=100$	12498	CT4-1/8-T0-287R-F
A15R34	0698-7212	9	3	RESISTOR $100+1 \%$. OSW TF TC $=0+100$	12498	C3-1/8-T0-100RF
A15R35	0757-0199	3		RESISTOR 21.5K $+1 \% .125 W$ TF TCas $0+100$	12498	CT4-1/B-70-2152-F
${ }^{\text {A15R36 }}$	0898-8827	4		RESISTOR 1M + 1\% .125W TF TC $=0+100$	12498	CTA
A15R37	06983452	1	1	RESISTOR 147K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-TO-1473-F
1933A 20 2412A						
A15R38	0699-0133	1		RESISTOR 61.1 +-1\% 25W F TC $=0+100$	28480	0699-0133
2121 A and above						
A15R38				NOT ASSIGNED		
A15R39	0698-3266	5	1	RESISTOR 237K +1\% .125W TF TC=0+100	12498	CT4-1/8-70-2373-F
1933A to 2412A						
A15R40	06990132	0		RESISTOR 248 + 1\% .25W F TC=0	28480	0699-0132
2121A and above						
A15R40				NOT ASSIGNED		
A15R41	06990071	6		RESUSTOR 4.64M $+1 \% .125 W$ TF TC $=0+100$	19701	5033R
A15R42	21003054	6	1	RESISTOR-TRMA 50K 10\% TKF SIDE-ADJ	73138	89PR50K
A15R43	089e-0083	8		RESISTOR 1.96K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-1961-F
A15R44	0698-0004	9		RESISTOR 2.15K $+1 \% .125 W$ TF TC $=0+-100$	12498	CT-1/8-T0-2151F
1933A to 2112A						
A15R45	0093-0133	1		RESISTOR $61.1+1 \% .25 W$ F TC $=0+100$	28480	0699-0133
2621A and above						
A15R45				NOT ASSIENED		
1933A to 2201A						
Al5R46				NOT ASSIGNED		
A15R47	0757-0401	0		RESISTOR $100+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-101-F
22124 and above						
Al5R46	0688.7242	5		RESISTOR 1.78K 1\% .05W F TC=0 -100	28480	0696-7242
A15R87*	0698-3442	9		RESISTOR $237+1 \%$. 125 W F TC $=0+100$	24546	CT3-1/8-TO-237A-F

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Mifr. Code	Mifr. Pant Number
A1sf48	0698-7209	4		RESISTOR $75+1 \%$. OSW TF TC= $0+100$	12498	C3-1/8-T0-75ROF
A15R49	0093-0092	7		RESISTOR 454 +-1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-4640-
A15R50	0888-0082	7		RESISTOR 464 $+1 \% .125 W$ TF TC $=0+100$	12498	CT41/8-T0-4640-F
A15R51	$0038-0082$	7		RESSTOR A64 +1\% .125w TF TCmoti00	12498	CT41/Q-T0-4640-F
A15R52	0690-0082	7		RESISTOR 464 +1\% .125W TF TC $=0+100$	12498	CT41/8-T0-4640-F
A15R53	0757-0416	7		RESSTOR $511+1 \% .125 W$ TF TC $=0+100$	12498	CT41/8-T0-511R-F
A15R54	0690-3454	3		RESISTOR 215K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-70-2153-F
A15R55	0890-0082	7		RESSTOR $464+1 \% .125 W$ IF TC $=0+100$	12498	CT41/8-T0-4640F
A15R56	0757-0465	8		RESISTOR 100K $+\mathbf{3} \%$. $225 W$ TF TC $=0+100$	12498	CT4-1/0-70-1003-F
A15R57	0757-0279	0		RESSTIOR 3.16K + 1\% .125W TF TC=0+100	12498	CT-1/R-T0-3161F
A15R58	$0757-0428$	1		RESISTOR 1.52K +1\% .125W TF TC $=0+100$	12498	CT-1/0-T0-1621-F
A15R59	$0757-0462$	0		RESISTOR 10K +1\% .125W IF TC $=0+100$	12498	CT4-1/8-TO-1002-F
A15R60	00083460	1	1	PESSSTOR 422K +i\% .125W TF TCm0 0 -100	12498	CT4
A15R61	$0757-042$	9		RESSTOR 10K $+1 \% .125 \mathrm{~W}$ TF TC=0 -100	12498	CT4-1/8-T0-1002-F
1933A to 22014						
A15R52				NOT ASSICNED		
2212A to 2542A						
A15R62	0698-7212	9	3	RESISTOR 100 + $1 \% .05 W$ TF TC $=0+100$	12498	C3-1/8-TO-100R-F
2543 A and above						
A15R62				NOT ASSIGNED		
A15TP1	1251-0600	0		CONWECTOR-SGL CONT PIN 1.14-MM-ESC-S2 SO	12360	24-155-101001-03-00
A15U1	1826-0013	8	3	IC OP AMP LOW-NOISE 8-TO-99 PKG		
A15U2	1826-0098	9		IC COMPARATOR PRCN 8-TO-99 PKG	27014	LMR11H
A1543 ${ }^{\text {A }}$	1826-0141	3	1	C COMPARATOR GP DUAL 14-DP-C.PKG LM319	27014	LM319]
1333A to 2542A						
A15W1				NOT ASSIGNED		
2543A and obove						
A15W1	8150-4819	4	1	WRE JUMPER	28480	8150-4819

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Mitr. Code	Mfr. Part Number
A16				MOT ASSIGMED		
A17			08901-60002-SERIAL PREFIX 1933A TO 2607 A			
417	cesor-60002	0	1	MPUT MOXER ASSEMBLY	28480	08901-60002
A17C1	0160-3879	7		CAPACTIOR +XD . OIUF +-20\% 100VDC CER	00969	RPE121-105X7R103M100V
A17C2	$0160-4084$	6		CAPMCTTOR-XD . IUF +-20\% 50VDC CER	09969	RPEE122-139x7R104M50V
A17c3	$0150-3873$	1	5	CAPACITOR+XD 4.7PF +-.5PF 200VDC CER	09969	RPE121-105COGAR70200V
A17Ca	$0180-3879$	7		CAPACTIOR-FXD .OTUF + 20% 100VDC CER	09969	APE127-106X7R103M100V
A17C5	0160-3879	7		CAPACTTORFXD .OTUF + 20% 100VOC CER	09969	RPE121-105X7R10sM100V
A17C6	0160.3879	7		CAPACTIOR \times XD . O1UF + 20% 100VDC CER	09969	PPE121-105X7R103M100V
A17C7	0180-3879	7		CAPACTIOR-XXD .01UF + 20% 100VDC CER	09969	RPE121-105X7R103M100V
A17C8	01800197	6		CAPACTIOR + XD 2.2UF+10\% 20VDC TA	56289	1500225xS02012
A17C9	$0180-3879$	7		CAPACTIOR-FXD .01UF +-20\% 100VOC CER	09969	RPE121-105X7R103M100V
A17C10	0160-3879	7		CAPACTIOR FXD . 01 UF +-20\% 100VDC CER	09969	RPE 121-105x7R103M100V
A17C11	0160-4004	8		CAPACTTOR + XD . IUF + 20% 50VDC CER	09869	RPE122-139X7R104M50V
A17C12	0160-4084	8		CAPACTIOR-FXD .1UF + 20% 50VDC CER	09969	RPEE122-139X7R1O4M50V
A17C13	0180-4497	7	1	CAPACTTOR + XD 82PF +-5\% 200VDC CER $0+30$	09969	PPE121-105C06820 200 V
A17C14	0180-4652	6	1	CAPACTOR-FXD 960PF + 1% 500VDC MICA	00953	ROM19F961FSC
A17C15	01804647	9	1	CAPACTIOR $+X D$ 15APF + 1% 500VDC MICA	28480	0160-4647
${ }^{1} 17 \mathrm{Cl6}$	0160-4084	8		CAPACTIOR-XD . $14 \mathrm{~F}+20 \%$ 50VDC CER	00969	RPE122-139x7R104M50V
A17C17	0160-4646	8	1	CAPACTIOR-FXD 44APF $+1 \%$ S00VDC MICA	28480	0160-4646
A17C38	0160-4084	8		CAPACTIOR-FXD .1UF + 20% 50VDC CER	09969	RPE122-139×7R104M50V
A17C19	0160-4387	4	2	CAPACTTOR-FXD 47PF $+5 \%$ 200VOC CER $0+30$	09969	RPE121-105COG4701200V
A17c20	0160-4641	3	1	CAPACTTOR-FXD 3520PF + 1% 50VDC	84611	HEW-745
A17C21	0160-4094	8		CAPACTIOR + XD . $14 \mathrm{UF}+20 \%$ 50VDC CER	09969	RPE122-139X7R104M50V
A17C22	0160-4651	5	1	CAPACTIOR-FXD 817PF + 1% 500VDC MACA	00853	RDM19F(817F5S
A17c23	0160-4084	8		CAPACTIOR $+\times$ OD . 14 F + 20% 50VDC CER	09969	RPE122-139X7R104M50V
A17C24	0180-0376	5		CAPACITOR + XD . 47 T F+ 10% 35VDC TA	56289	1500474×5035A2
A17C25	0160-4387	4		CAPACTIOR + XD 47PF +5\% 200VDC CER $0+30$	09969	RPE121-105COG4701200V
A17C26	0160-4094	8		CAPACTIOR-FXD . IUF + 20% 50VDC CER	09969	RPE122-139x7R104M50V
A17C27	08901-00064	8	1	CAPACTIOR STRAP	28480	08901-00064
A17CR1 ${ }^{\text {a }}$	1901-1098	1		DIODESWITCHMG 1N4150 50V 200mA ANS	9N171	1 M 4150
A17CR2 ${ }^{\text {a }}$	1901-1098	1		DCODESWTTCHENG 1M4150 50V 200mM 4 NS	SN171	1N4T50
Al7CR3 ${ }^{\text {a }}$	1901-1098	1		DIODESWITCHNGG 1 ML 15050 V 200 MA ans	9N171	3N4150
A17CRa ${ }^{\text {a }}$	1901-1098	1		DIODESWITCHNGG 1 Ne150 50 V 200MA ANS	9N471	INA150
A17CRS \triangle	1901-1098	1		DIODESWHTCHMG 1 IN150 50V 200MA ANS	9N171	1N4150
A17CR6 ${ }^{\text {a }}$	1901-1098	1		DIODE-SWITCHMNG 1 TM150 50 V 200 MA ANS	9×171	inkiso
A170S1	1930-0524	3			28480	5082-4550

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & C \\ & D \end{aligned}$	Cty.	Description	Mfr. Code	Mifr. Part Number
$A 17$			08901-60002 - SERIAL PREFIX 1933A TO 2607A			
A1751	1250-1220	0		CONWECTORAF SMC M PC 50-OHM	06877	82Suc-50-0-3/111
	2950-0078	9		MUTHEX-DEL-CHAM 10-32-THO .067-HN-THK	28480	2950-0078
	21500124	4		WASFER-LK NTL T NO. 10.195 NHID	16179	500222
A1782	1250-1220	0		CONAECTORAF SMC M PC 50-01M	06877	s2sinc-50-0-3/111
	2050-0078	0		MUT-HEX-OBL-CHAM 10-S2-THD .067-HT-THK	28480	2950-0078
	21900124	4		WHSHERHK WNL T NO. 10.195-NND	16179	500222
A17.3	1250.1220	0		COMNECTORAF SMC M PC 50-014M	06877	gesmac-50-0-3/111
	$2050-0078$	9		MUTHEX-DBL-CHAM 1032-THO .067-HN-THK	28480	2950-0078
	21900124	4		WASHER-LK INTL T MO. 10.195 -AHD	16179	500222
A1721	9100-3922	4	21	RF CHOKE	28480	9100-3922
A172	9100-3922	4		RF CHOKE	28480	9100-3922
A172	9100-3922	4		RF CHOKE	28480	91003922
A17L4	$9100-3922$	4		RF CHOKE	28480	9100-3922
Al7LS	9100-4434	5	1	WOUCTOR 240UH + 2%. $1650-\mathrm{N} \times 385$ LG-N	28480	9100-4434
A176	91400302	2	1	MOUCTOR RF-CHMRD $21.9 U H+-2 \%$	32159	6-02741
A1727	91400131	5		NDUCTOR RFF-CHMLD $100 \mathrm{MH}+\mathbf{5 \%}$	91637	Wh-10 10000UH 5\%
A17LS	00901-80002	2	1	NDUCTOR, VARLABLE	28480	09901-80002
2110A to 2607A						
A17L8	9140-0840	3	1	MLDUCTOR, VARIABLE	28480	9140-0840
A17L9	9140-0131	5		WDUCTOR PF-CH-MLD 10MH +5\%	91637	melo 10000UH 5\%
A17L10	8100-1626	1	1	MOUCTOR RF-CHMLD 36UH +-5\%	91637	mh- 36uH 5\%
1933 A 100 2350A						
A17LII	08501-40001	1	1	MOUCTOR, VARUABLE	28480	00501-80001
2410A 10 2607A						
A17L11	97400041	4	1	MDUCTOR, VARIABIE	28480	91400841
${ }^{\text {A }} 1712$	9140-0303	3	1	MOUCTOR RF-CHMMLD 89.3UH +-2\%	32159	6.02742
A17213	91400131	5		NDUCTOR PF-CHMMD 10MH +5\%	91637	M-10 10000UH 5\%
A17MP9	00901-00030	8	1	COVER, WPIT MUXER	28480	00301-00030
				(NUCUDES P.C. EXTRACTOR)		
	${ }^{286000113}$	2		SCREW-MACH 6-32 25-NNLS PAN-HD-POZI	00000 28480	ORDER EY DESCRIPTION Ces01-20082
A17MP2 A17MP3	80901-20082	2		P.C. BONRD EXTRUCTOR RFI STRP-FINGERS BE-CU ZINC PLATED	28480 30817	-0901-20082
A17MP4	5001-0173	7		STRAP, GROUAD	28480	5001-0173
A1701	18530281	9		TRANSISTOR PNP 2NE907A SI TO-18 PD=400NW	04713	292907A
A1702	$1853-0281$	9		TPANSISTOR PAP 2NE907A 51 TO-18 PD=400MW	04713	2 C 2907 A
A1703	1853-0281	9		TRANSISTOR PNP 2NR907A SI TO-18 PD=400NW	04713	2N2907A
A1704	1854-0632	6	1	TRWNSISTOR NPN SI PD $=180 \mathrm{WW}$ FTEAGHZ	25403	BFR91
A1705	1853-0020	4		TFANSISTOR PNP SI PD $=300 \mathrm{MW}$ FT $=150 \mathrm{MHZ}$	2 M 627	X ${ }^{\text {a289CP20-1 }}$
A1706	1854-0720	3	1	TRANSISTOR MPN SI PD $=5000 \mathrm{WW}$ FTHE4GHZ	28460	1854-0720
A1707	1853-0020	4		TRANSISTOR PAW ST PD-30COW FT $=150 \mathrm{MHZ}$	246827	XA22BCP20-1
A1708	1854-0071	7		THANSISTOR MPN SI TO-92 PO=300MW	294627	CP4071
A17R1	0757-042	9		RESISTOR 10K +-1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-1002-
A17R2	0157-0200	7		RESSSTOA 5.62K $+1 \%$. $225 W$ TF TC $=0+100$	12498	CT4-1/8-T0-5621-
A17R3	0757-0346	2		RESISTOR $10+1 \%$. $125 W$ TF TC $=0+100$	D8439	MK2
A17R4	0698-8821	8		RESISTOR $5.62+1 \% .125 W$ TF TC $=0+-100$	12498	1040
A17R5	0757-0280	3		RESSTOR $1 \mathrm{~K}+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-1001-F

Table 6-3. Replaceable Parts

Reference Designation	MP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Mifr. Code	Mifr. Part Number
A17		08901-60002-SERAA PREFIX 1933A TO 2607A				
Ai7R6	0090-0087	2	1	PESISTOR $316+1 \%$,25W TF TC $=0+100$	12498	NA5-1/4-TO-3160-F
A17R7	0089-0085	0		RESISTOR 2.61K +1\% .12SW IF TC $=0+100$	12498	CT4-1/8-T0-2611F
A17R8	0699-0135	3		RESISTOR $71.2+1 \%$,25W TF TC $=0+100$	11502	HFCES
A17R9	0009-0135	3		RESSTOR $71.2+1 \%$, 25W TF TC=0+100	11502	HFC65
A17R10	cese-7204	9	3	RESISTOR 46.4 +-1\% .OSW TF TC $=0+100$	12498	C3-1/R-TO-46R4-F
A17R11	0090-7220	9	2	RESISTOR $215+1 \% .05 W$ TF TC $=0+100$	12498	C3-1/8-T0-215R-F
A17R12	$0688-7204$	9		RESISTOR $46.4+1 \% .05 W$ TF TC=0+100	12498	C3-1/6-T0-46R4-7
A17R13	$0757-0467$	8		RESISTOR 121K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-1213F
A17R14	0686-3157	3		RESISTOR 19.6K + 1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-1962F
A17R15	0757-0280	3		RESISTOR 1K +-1\% .125W TF TC $=0+100$	12498	CT4-1/8-70-1001F
A17R16	0090-0992	4	1	RESISTOR $34.8+1 \% .125 W$ ITN TC $=0+100$	11502	HFC. 55
A87R17	0757.0439	4		RESISTOR 6.81K +1\% .125W IF TC $=0+100$	12498	CT4-1/8-T0.6811-f
A17A18	$0757-0441$	8		RESISTOR 8.25K + 1\% . 125 W TF TC $=0+100$	12498	CT4-1/8-T0-8251F
A17R19	0090-7204	9		RESISTOR 46.4 +-1\%.05W TF TC $=0+100$	12498	C3-1/8-TO-46R4-F
A17R20	0757-0799	9	1	RESISTOR $121+1 \%$. 5 W TF TC $=0+100$	K8479	H2
A17R21	0690-0085	0		RESISTOR 2.61K +1\% .125W TF TC $=0+100$	12498	CT4-1/R-T0-2611F
A17R22	0690-7205	0	6	RESISTOR 51.1+1\% .05W TF TC $=0+100$	12498	CS-1/B-TO-SIR1-F
A17R23	0698-7205	0		RESISTOR $51.1+1 \%$.05W TF TC $=0+100$	12498	C3-1/R-TO-51R1F
A17R24	0898-7216	3		RESISTOR $147+1 \%$.O5W TF TC $=0+100$	12498	C3-1/B-T0-147R-F
A17R25	06983154	0		RESISTOR 4.20K + 1\% .125W TF TC=0+100	12498	CT4-1/6-TO-4221-F
A17R26	0757-0438	3		RESISTOR 5.11K $+1 \%$.125W TF TC=0 -100	12498	CT4-1/8-T0-5111F
A17R27	0698-7205	0		RESISTOR $51.1+1 \%$.O5W TF TC $=0+-100$	12498	C3-1/B-TO-51R1f
A17R28	0757-0278	9	3	RESISTOR 1.78K $+1 \%$.125W TF TCm0 $=100$	12498	CT4-1/8-10-1781F
A17R29	0757-0278	9		RESISTOR 1.78K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-10-1781-F
A17R30	0757-0401	0		RESISTOR $100+1 \% .125 W$ TF TC $=0+-100$	12498	CT4-1/8-TO-101F
A17R31	0757.0401	0		RESISTOR $100+1 \% .125 W$ TF TC $=0+100$	12498	CT-1/R-TO-101-f
A17R32	0757-0346	2		RESISTOR $10+1 \% .125 W$ TF TC $=0+100$	D8439	M 22
A17R33	0757-0403	2		RESISTOR $121+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-TO-121R-f
A17R34	0757-0465	6		RESISTOR 100K $+1 \% .125 W$ TF TC $=0+100$	12488	CT4-1/8-T0-1003-5
A17R35	0757-0401	0		RESISTOR $100+1 \% .125 W$ TF TC= $0+100$	12498	CT4-1/8-TO-101F
A17R36	0757-0401	0		RESISTOR $100+\mathbf{1 \%} .125 W$ TF TC $=0+100$	12498	CT-1/8-TO-101F
A17R37	0757-0465	6		RESISTOR 100K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/9-T0-1003F
A17R38	0757-0403	2		RESSTOR $121+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-TO.121R.F
A17R39	0757-0401	0		RESISTOR $100+-1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-TO-101F
A17R40	0757-0403	2		RESISTOR $121+1 \%$. $125 W$ TF TC $=0+100$	12498	CT4-1/8-TO-121R-F
A17R41	0757-0465	6		RESISTOR 100K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/Q-T0-1003-F
A17R42	0757-0401	0		RESISTOR $100+i \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-101F
A17T1 ${ }^{\text {A }}$	00501-60031	7	1	Trawsformer encapsulated	28460	06901-80031
A17U1	$06901-67001$	3	1	MEXER CIRCUIT	28480	00801.57001
	0340-0850	0	2	MSULATOR-XSTR TFE	13103	717-158T
	1251-1556	7	18	CONNECTOR-SGL CONT SKT .OS-IN-BSC-SZ RND	98291	006-4844-00-0-990
A17u2	1826-0412	1		IC COMPARATOR PRCN DUAL 8-DIP-P PKG	27014	LM393N

Reference	MP Part	\mathbf{C}	Qty.	Description	Mfr.
Designation	Number	\mathbf{D}	Mfr. Part Number		

147	08902-50104	4	1	BNPUT MIXER ASSEMBLY	28480	08902-80104
A17C1	01603879	7	8	CAPACTTOR-FXD .01UF +-20\% 100VDC CER	28480	0160.3879
A17C2	01603879	7		CAPACITORFXO .01UF +-20\% 100VDC CER	29480	$0160-3879$
A17C3	$0160-3873$	1	1	CAPACTTOR-FXD 4.7PF +-.5PF 200VDC CER	28480	0160-3873
Al7C4	0160-3879	7		CAPACTTOR-XD . $01 \mathrm{UF}+-204100 \mathrm{VDC} \mathrm{CER}$	28480	0160.3879
A17C5	$0160-3879$	7		CAPACITORFXD .01UF + -20\% 100VDC CER	28480	0160.3879
A17C6	0160-3879	7		CAPACTTORFXD . DIUF + 20\% 100VDC CER	28480	0160.3879
A17C7	0160.3879	7		CAPACTTORFXD .01UF + -20\% 100VDC CER	28480	0160.3879
A17c8	01800197	8	2	CAPACTTOR-FXD 2-2UF+-10\% 20VDC TA	56289	1500225x9020A2
A17C9	01603879	7		CAPACTTOR-FXD .01UF +204 100VDC CER	28480	0160-3879
A17C10	0160-3879	7		CAPACTIOR-XXD .01UF +-20\% 100VDC CER	28480	0160-3879
A17Cis	0160-5469	5	5	CAPACITOR-FXD IUF + 10% 50VDC CER	28480	0160.5469
A17C12	01604835	7	5	CAPACITOP-FXD .1UF +-104 50VDC CER	28480	0160-4835
A17C13	$0150-4812$	0	9	CAPACITORFXD 220PF + 50 100VDC CER	28480	0160-4812
A17C14	0150-4652	6	1	CAPACITOR-FXD 960PF +.14 500VDC MICA	00853	RDM19F961F5C
A17C15	0160-4647	9	1	CAPACITOR-FXD 154PF +-1\% 500VDC MICA	28480	01604647
A17096	0180.2929	8	1	CAPACITOR-FXD G8UF + 104 SOVDC TA	28480	0180-2929
A17C17	0160-4646	8	9	CAPACITOP-FXD 4AAPF +-140 S00VDC MICA	28480	01604646
A17Ci8	$0160-4835$	7		CAPACITOR-FXD . $1 \mathrm{UF}+\mathrm{-100} \mathrm{\%} 50 \mathrm{VOC}$ CER	28480	01604835
A17C19	0160.4814	2	1	CAPACITOR-FXD 150PF + $54 \% 100 \mathrm{VDC} \mathrm{CER}$	28480	0160.4814
A17C20	0160-4641	3	1	CAPACTTORFXD 3520PF +.146 50VDC	28480	0160-464
A17C21	0160-4835	7		CAPACITOR-FXD .1UF +-104 50VDC CER	28480	0160.4835
A17C22	0160-4651	5		CAPACTTOR.FXD 817PF +-19 500VDC MICA	00853	RDM 19F(8iT)F5C
A17C23	0160-0576	5	2	CAPACITOR.FXD .1UF $+.20 \%$ 50VDC CER	28480	0160-0576
A17C24	0160-4535	4		CAPACITOR-FXD 1UF +-10\% SOVDC CER	28480	0160-4535
A17C25	$0160-4801$	7	1	CAPACITOR-FXD 100PF + .5\% 100VDC CER	28480	01604801
A17c26	0160-0576	5		CAPACTIOR-FXD .1UF +-20\% 50VDC CER	28480	0160.0576
A17C27	08901-00064	8	1	STRAPICAPACITOR	28480	08909-00064
A17C28	$0160-4512$	7	2	CAPACITOR FXD 120PF + 5\% 200VDC CER	28480	0160-4512
A17C29	0160-5469	5		CAPACITOR-FXD IUF $+.10 \%$ SOVDC CER	28480	0160-5469
A17C30	0160-4535	4		CAPACITORFXD 1UF +-10\% 50VDC CER	28480	01604535
A17C31	0160-4835	7		CAPACITOR-FXD .IUF +-10\% 50VDC CER	28480	0160-8335
A17c32	0160-4822	2	1	CAPACTTOR-FXD 1000PF $+59 \% 100 \mathrm{VDC} \mathrm{CER}$	28480	$0160-4822$
A17C33	0180-0197	8		CAPACITOR-FXD 2.2UF $+10 \%$ 20VDC TA	56289	1500225x9020A2
A17C34	0160.4835	7		CAPACITOR-FXD .1UF +-10\% 50VDC CER	28480	01604835
A17C35	0160-4512	7		CAPACTTORFXD 120PF + 54200 VDC CER	28480	01604512
A17036	0160.4535	4		CAPACITOA.FXD IUF +-10\% 50VDC CER	28480	01604535
A17CR, ${ }^{2}$	1901-0179	7		DIODE-SWTTCHING 15 S SOMA 750PS DO.7	28480	1901.0179
A17CR2 ${ }^{\text {a }}$	1901-0179	7		DIODE-SWITCHNG I5V 50MA 750PS DO.7	28480	1901.0179
A17CR3	1901-1098	1		DIODESWITCHING INA 15050 V 200MA ANS	9N171	1NaC150
AlTCRA	1901-1098	1		DIODESWTTCHING 1NG 150 50V 200MA 4NS	9N171	INAISO
A17CR5	1901-1098	1		DIODESWITCHING INA 150 50V 200MA 4NS	9N171	1Na150

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Qty.	Description	Mfr. Code	Mir. Part Number
A17		08901-60104-SERIAL PREFIX 2609A AND ABOVE				
A17CR6	1901-0518	8	2	DIODE-SM SIG SCHOTTKY	28480	1901-0518
A17CR7	1901-0518	8		DIODE-SM SIG SCHOTTKY	28480	1901-0518
A17CR8	1901-1098	1		DIODE-SWITCHNG 1N4 150 50V 200MA 4NS	9N171	1N4150
A17CR9	1801-1098	1		DIODE-SWITCHING 1N4150 50V 200MA 4NS	9N171	1N4150
A170s:	1990-0524	3	1	LED-LAMP LUM-NT = 1MCD IF = 20MA MAX BVR = 5V	28480	5082-4550
A17E1	9170-0847	3	1	CORE-SHIELDING BEAD	02114	56-590-65/38 PARYLENE
A17J1	1250-1425	7	2	CONNECTOR-RF SMC M SGL HOLE-RR $50-O H M$	28480	1250-1425
A17.J2	1250-1220	0	2	CONNECTORAF SMC M PC 50-OHM	28480	1250-1220
	2180-0124	4	2	WASHEPHK INTL T NO. $10.195-\mathrm{NH}$-1D	28480	2180-0124
	2950-0078	9	2	NUTHEX-DBL-CHAM 10-32-THD .067-IN-THK	28480	2950-0078
A17.J3	1250-1220	0		CONNECTOR-RF SMC M PC $50-\mathrm{OHM}$	28480	1250-1220
	2190-0124	4		WASHER-UK INTL T NO. 10.195 -1NHD	28480	2190-0124
	2950-0078	9		NUTHEX-DBL-CHAM 1032-THD .067-INTHK	28480	2950-0078
A17.34	1250-1425	7		CONNECTOR-RF SMC M SGL HOLE.AR 50-OHM	28480	1250-1425
A17L:	8100-3922	4	4	INDUCTOR-FIXED 120-1300 HZ	28480	9100-3922
A17L2	9100-3922	4		INDUCTOR-FIXED 120-1300 HZ	28480	9100-3922
A17L3	$8100 \cdot 3922$	4		INDUCTOR-FIXED 120.1300 HZ	28480	9100-3922
A17L4	$8100-3922$	4		INDUCTORFIXED 120-1300 HZ	28480	9100.3922
A17L5	9100-4434	5	1	INDUCTOR 240UH 29\% .165DX. 385LF Q $=65$	28480	9100-4434
A17L6	$9100-3313$	7	1	INDUCTOR PF-CH-MLD 22UH 5\% .166DX.385LG	28480	$8100-3313$
A17L7	9100-1625	0	1	INDUCTOR RF.CH-MLD 33UH 5\% .166DX.385LG	28480	9100-1625
A17L8	9140-0840	3	1	COIL-VAR 18UH-56.3UH O= 20 PC-MTG	28480	9140-0840
A17L10	9100-1626	1	1	INDUCTOR RF-CHMMLD 36UH 5\% .166DX.385LG	28480	9100-1626
A17L11	9140-0841	4	1	COIL-VAR 6.1UH-19.1 $\mathrm{UH} \mathrm{O}=20$ PC-MTG	28480	9140.0841
A17L12	9140-0303	3	2	INDUCTOR RF-CHAMLD 89.3UH 2%	28480	9140-0303
A17 14	9140-0454	5	1	INDUCTOR RF-CHMLD 18UH 5\% . 166 DX .385 LG	28480	9140-0454
A17MP9	08902-00026	3	1	COVER-MIXER	28480	08902-00026
	2360-0113	2	1	SCREW-MACH 6-32.25-INLG PANHD-POZI	00000	ORDER BY DESCRIPTION
A17MP2 ${ }^{\text {A }}$	5001-5539	9	13	STRAP, GROUND	28480	5001.5539
A17MP3	0363-0159	0	1	RFI STRIP-FINGERS BE-CU ZINC PLATED	28480	0363-0159
A1701	1853-0281	9	4	TRANSISTOR PNP 2N2907A SI TO-18 PD $=400 \mathrm{NW}$	04713	2N2907A
A1708	1853-0314	9	2	TRANSISTOR PNP 2NL205A SI TO.39 PD $=$ S00MW	04713	2N2905A
A1703	1854-0404	0	1	TRANSISTOR NPN SI TO-18 PD $=360 \mathrm{MW}$	28480	1854-0404
A1704	1854-1032	2	1	TRANSISTOR NPN SI PD $=2.5 \mathrm{~W}$	04713	MRF581
A1705	1853-0020	4	2	TRANSISTOR PNP SI PD $=300 \mathrm{MW} \mathrm{FT}=150 \mathrm{MHZ}$	28480	1853-0020
A1706	1854-1032	2	1	TRANSISTOR NPN SI PD $=2.5 \mathrm{~W}$	04713	1854-1032

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Qty.	Description	Mir. Code	Mifr. Part Number
A17		08901-60104 - SERIAL PREFIX 2609A AND ABOVE				
A1707	1853-0020	4		TPANSISTOR PNP SI PD $=300 \mathrm{MW}$ FT $=150 \mathrm{MHZ}$	28480	1853-0020
A1708	1853-0281	9		TRANSISTOR PNP 2N2907A SI TO-18 PD $=400 \mathrm{NW}$	04713	2N2907A
A1709	1853-0281	9		TRANSISTOR PNP 2N2907A SI TO. 18 PD $=400 \mathrm{MN}$	04713	2N2907A
A17010	1853-0314	9		TRANSISTOR PNP 2NL2905A SI TO39 PD $=600 \mathrm{NW}$	04713	2N2905A
A17011	1854-0610	0	1	TRANLSISTOR NPN SI TO-46 FT $=800 \mathrm{MHZ}$	28480	1854-0610
A17012	1858-0008	8	1	TRANSISTOR ARRAY 14-PIN PLSTC OIP	04713	M $\mathrm{HO} \mathbf{0 6 0 0 1}$
A17Q13	1853-0281	9		TFANSISTOR PNP 2NL2907A S1 TO-18 PD $=400 \mathrm{MW}$	04713	2N2907A
A17R1	$0757-0442$	9	;	RESISTOR 10K 1\% .12SW FTC $=0+-100$	24546	C4-1/8.T0-1002F
A17R2	0757.0200	7	1	RESISTOR 5.62K 1\% .125W F TC $=0+100$	24546	C4-18.T0-5621.F
A17R3	0698-3154	0	5	RESISTOR 4.22K 1%.125W F TC $=0+100$	24546	C4-1/8-T0-4221-F
A17R4	0698-8821	8	3	RESISTOR 5.62 1\%.125W F TC $=0+\cdots 100$	28480	0698-8821
A17R5	0698-8821	8		RESISTOR 5.62 1\% .125W F TC $=0+100$	28480	0698-8821
A17R6	0698-9087	2	1	RESISTOR $316196.25 \mathrm{WFTC}=0+-100$	24546	C5-1/4-T0.3160.F
A17R7	0698.0085	0	2	RESISTOR 2.61K 196.125W FTC $=0+-100$	24546	C4-188-T0-2611F
A17R8	0699-0135	3	2	RESISTOR 71.2 1\% .25W FTC $=0+-100$	28480	0699-0135
A17R9	0699-0135	3		RESISTOR 71.2 19\%.25W F TC $=0+-100$	28480	0699-0135
A17R10	0698.7204	9	3	RESISTOR 46.4 1\% .O5W F TC $=0+100$	24546	C3-1/8-TO-46R4.F
A17R11	0698.7220	9	1	RESISTOR 21519.05 W F TC $=0+100$	24546	C3-1/8-TO-215R-F
A17R12	0698.7204	9		RESISTOR 46.4 140.05W F TC = 0 + 100	24546	C3-1/8-T046R4-F
A17R13	0757-0421	4	1	RESISTOR 825 1\% .125W FTC $=0+100$	24546	C4-1/8-T0-825R-F
A17R14	06983154	0		RESISTOR 4.22K 140.125W F TC $=0+-100$	24546	C4.18.70-4221F
A17R15	0757.0422	5	2	RESISTOR 909 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-909R-F
A17R16	0699-0392	4	1	RESISTOR 34.8 1\% .125W F TC = 0 + -100	28480	0698-0392
A17A17	0757.0439	4	1	RESISTOR $6.81 \mathrm{~K} 1 \%$.125W F TC $=0+-100$	24546	C4-1/8.T0-6811-F
A17R18	0757.0441	8	1	RESISTOR 8.25K 1\% .125W F TC $=0+-100$	24546	C4-1/8-T0-8251-F
A17R19	0698.7204	9		RESISTOR 46.4 1\% .05W F TC $=0+-100$	24546	C3-1/8-TO-46R4.F
A17R20	0757.0799	9	1	RESISTOA 121 1\% .5W F TC $=0+-100$	28480	0757-0799
A17R21	0698-0085	0		RESISTOR 2.61K 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-2691-F
A17R22	0698.7205	0	3	RESISTOR 51.1 1\% . O5W F TC $=0+-100$	24546	C3-1/8-TO-51RyF
A17R23	0698.7205	0		RESISTOR 51.1 1\% .OSW F TC $=0+-100$	24546	C3-1/8-T0.51R1.F
A17R24	0698.7223	2	1	RESISTOR 287 1\% .05W TF TC $=0+100$	24546	C3-1/8-T0.287R-F
A17R25	0698-3154	0		RESISTOR 4.22K $1 \% .125 \mathrm{~W}$ F TC $=0+-100$	24546	CA-1/8-T0-4221-F
A17R26	0757-0274	5	1	RESISTOR 1.21K 1\% .125W F TC=0+-100	24546	C4-1/8-TO-1211-F
A17R27	0698-7205	0		RESISTOR 51.1 1\% .05W FTC $=0+100$	24546	C3-1/8-TO-51R1F
A17R28	0757-0278	9	3	RESISTOR 1.78K 1\% .125W F TC $=0+-100$	24546	C4-1/8-T0-1781F
A17R29	0757-0294	9	2	RESISTOR 17.8 1\% .125W F TC $=0+100$	19701	MF4C1/8-T0-17R8-F
A17P30	0698-344	8	1	PESISTOR 215 1\% .125W F TC $=0+-100$	24546	C4.1/8-T0-215R-F
A17R31	06983431	6	1	RESISTOR 23.7 1\%.125W F TC $=0+-100$	03888	PME55-1/8-T0-23R7-F
A17R32	0757.0418	9	3	RESISTOR 619 1\%.125W F TC $=0+100$	24546	C4-1/8-T0-619RF
A17R33	0698-3443	0	3	RESISTOR 287 1\%.125W F TC $=0+100$	24546	C4-1/8-T0-287R.F
A17R34	06983443	0		RESISTOR 287 1\%.125W FTC $=0+100$	24546	C4-1/8-T0-287R-F
A17R95	06983154	0		RESISTOR 4.22K 1\% .125W F TC $=0+-100$	24546	C4-1/8-T0-4221-F

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Oty.	Description	Mif. Code	Mtr. Part Number
A17		08901-60104-SERIAL PREFIX 2609A AND ABOVE				
A17R36	0757-0294	9		RESISTOR 17.8 1\% .125W F TC = 0 + -100	19701	MF4C1/8-T0.17RE-F
A17R37	0757-0394	0	2	PESISTOR 51.1 1\% .125W FTC = 0+-100	24546	C4.1/8.T0.51R1-F
A17R38	0757-0180	2	1	RESISTOR 31.6 190.125W F TC $=0+-100$	28480	0757.0180
A17R39	0757-0394	0		PESISTOR 51.1 14. .125W F TC $=0+-100$	24546	C4-1/8-T0.51R1.F
Aiprac	0757-0418	9		RESISTOR 619 140.I25W FTC $=0+100$	24546	C4-1/8-T0-619R-F
A17RA1	0698,3443	0		RESISTOR 287 196.125W F TC $=0+100$	24546	C4-1/8-T0-287R-F
A17R42	0757-0401	0	2	RESISTOR 100 940.125W F TC $=0+100$	24546	C4-1/8-T0.101F
A17R43	0757-0401	0		RESISTOR 100 1\% .125W F TC $=0+.100$	24546	C4.18-T0-101-F
A17R44	0757-0418	9		PESISTOR 619 14\%.125W F TC $=0+100$	24546	C4-1/8-T0.619R-F
A17RA5	0698-4037	0	2	PESISTOR 46.4 1\% , 125W F TC $=0+.100$	24546	C4.18-70-46R4.F
A17R46	0698.8821	8		RESISTOR $5.62190 .125 W$ F TC $=0+-100$	28480	$0698-8821$
A17RA7	0698-4037	0		RESISTOR 46.4 1\% .125W F TC $=0+100$	24546	CA-1/8-T0-68A-F
Al7R48	0698-3438	3	1	RESISTOR 147 106.125W F TC $=0+100$	24546	C4.18.70.147R.F
A17Ra9	0757-0422	5		RESISTOR 909 1\% . 125W F TC $=0+-100$	24546	C4.1/8.TO.909R.F
A17R50	0698-3154	0		RESISTOR 4.22K 190.125W F TC $=0+-100$	24546	C4.1/8-T0-4221-F
Aitit	0890180031	7	1	XFME TORDI4.OTRN	28480	0890180031
A17U:	08901.67001	3	1	MIXER CIRCUIT	28480	08901.67001
\triangle -	0340.1098	0	1	INSULATORHC B-NITRIDE	28480	0340.1098
	1251-1556	7	12	CONNECTOR-SGL CONT SKT . 018 -IN-BSC-SZ	28480	1251-1556

Reference	HP Part	C			
Designation	Number	D	Oty.	Description	Mfr.

A18

A18	08901-60004	2	1	If AMPUFEER ASSEMBLY	28480	08901-60004
A18Ci	0180-0094	4		CAPACTTORFXD 100UF+75-10\% 25VDC AL	56289	30D107G025002
A18c2	0180-0094	4		CAPACTTORFXD 100UF+75-10\% 25VDC AL	56289	30D107G025DD2
A18C3	01603459	9		CAPACTTOR-FXD .O2UF +-2040 100VDC CER	09969	DD111NWE302Z5V203M100V
A18C4	0180-2620	6		CAPACTIOR-XXD $22.2 \mathrm{UF}+$-10\% 50VDC TA	12344	T355E225K050AS
A18C5	$0180-2619$	3	1	CAPACTTOR-XD $224 \mathrm{UF}+-1096$ 15VDC TA	12344	T355F226K016AS
A18C6	0160-0156	7	1	CAPACITORFXD 3900PF + 10\% 200VDC POLYE	19701	708D1CC392FK201AX
A18C7	0160-2257	3		CAPACTTORFXD 10PF + 5\% 500VDC CER $0+-60$	09535	301.000-C0H-100D
A18C8	0140-0198	5		CAPACITORFXD 200PF + 5\% 300VDC M	28480	0140-0198
A18c9	0180-2620	6		CAPACITORFXD 2.2UF+-10\% 50VDC TA	12344	T355E225K050AS
Al8Cio	$0160-2242$	6	2	CAPACTTOR-FXD 24PF +-25PF 500VDC CER	09535	301-000-NPC0-249C
Al8C17	0180-2620	6		CAPACTTORFXD 22UF+-10\% 50VDC TA	12344	T355E225K050As
A18C12	0180-2620	6		CAPACTIOR + XD 2.2UF+-10\% 50VDC TA	12344	T355E225K050AS
A18C13 ${ }^{\triangle}$	0160-6623	5		CAPACTTORFXD .1UF +-20\% 50VDC CER	28480	0160-8623
A18C14	0160-2265	4	,	CAPACTHORFXD 24PF + 540 500VDC CER $0+30$	09535	$301.000-6060-240 J$
A18C15	0160.2199	2		CAPACTTORFXD 30PF + $59 \% 300 \mathrm{VDC} \mathrm{MICA}$	28480	0160-2199
A18C16	0160-2205	1	1	CAPACTTORFXD 120PF + 5\% 300VDC MICA	28480	0160-2205
A18C17	0180-1746	5		CAPACTTORFXD 15UF+-109 20VDC TA	56289	150D156×902082
A18C18	0160-2242	6		CAPACTTORFXD 2.4PF + -25PF 500VDC CER	09535	301.000-NP00-249C
A18C19	$0180-0197$	8		CAPACTTORFXO $2.2 \mathrm{UF}+1.10 \%$ 20VDC TA	56289	150022599020A2
A18C20	0180.2620	6		CAPACTIORFXD $2.2 \mathrm{UF}+-10 \% 50 \mathrm{VDC} \mathrm{TA}$	12344	T355E225K050AS
A18C21	0160-2265	3	1	CAPACTTOPFXD 22PF $+5 \% 500 \mathrm{VDC} \mathrm{CER} 0+30$	09535	301-000-COG0-220J
A1BCR1 ${ }^{\text {a }}$	1901-1098	1		DIODESWITCHANG 1N4 150 SOV 200MA ANS	9N171	1NA 150
A18CF2 ${ }^{\text {a }}$	1901-1098	1		DIODESWITCHNG 1 N4150 50V 200MA ANS	9N171	INA150
A18CR3 ${ }^{\text {a }}$	1901-1098	1		DIODESWITCHNG 1N4 150 50V 200MA 4NS	9N171	1N4150
A18CR4 ${ }^{\text {a }}$	1901-0880	7		DHODE-GEN PRP 125MA DO-35	28480	1901.0880
A18CR5 ${ }^{\text {a }}$	1901-0880	7		DHODE-GEN PPP 125 MA DO35	28480	1901.0880
A18CR6 ${ }^{\text {a }}$	1901-0518	8	2	DIODESM SIG SCHOTTK	28480	1901-0518
A18CR7 ${ }^{\text {a }}$	1901-0518	8	2	DIODESM SIG SCHOTTKY	28480	1901.0518
1933A to 2439A						
A18E1 2443 and above NOT ASSIGNED						
AISE]	9170.0029	3	1	CORE SHEHDING BEAD (ADDED TO BASE OF OT)	28480	9170.0029
A1851	1250-1205	1	6	CONINECTOR-RF SMC M SGLHOLERA 50-OHM	16179	5064.5008-09
	2950-0078	9		NUT-HEX-DEL-CHAM 10-32-THD .067-NTTHK	28480	2950-0078
	2190-0124	4		WASHER-LK INTL T NO. 10 .195-1N-1D	16179	500222
A1832	1250-1205	1		CONAECTOR-RF SMC M SGL-HOLEAR 50-OHM	16179	5064-5008-09
	2950-0078	9		NUTHEX-DBL-CHAM 10-32-THD .067-IN-THE	28480	2950.0078
	2190-0124	4		WASHER-LK INTL T NO. $10.195-1$ NHD	16179	500222
A18L1	9100.1628	3	1	INDUCTOR RF-CH-MLD $43 \mathrm{UH}+\mathbf{5 9 \%}$	91637	IM-4 43UH 5\%
A18L2	9140-0237	2	1	INDUCTOR RF-CHMED 200UH + 5 -5\%	91637	IM.4 200UH 5\%

Table 6-3. Replaceable Parts

Reference Designation	HP Part Nember	$\begin{aligned} & C \\ & D \end{aligned}$	Oty.	Description	Mir. Code	Mifr. Part Number
A189MP1	08901-00029	5	1	COVER, F AMPLIFIER	28480	08901-00029
	2060-0113	2		SCREW-MACH 6-32.25-MHLS PANHO-POZI	00000	ORDER EY DESCRIPTION
A18MP2	08901-20082	2		P.C. BOARD EXTRACTOR	28480	00901-20082
A1801	1854-0071	7		TRANSISTOR RPN SI TO-92 PD=300NW	2M627	CP4071
A1802	18540071	7		TRWUSISTOR NPN SI TO-92 PD=300MW	$2 \mathrm{M627}$	CP4071
A1803	1853-0018	0	1	TRANSISTOR PNWP SI TO-72 PD= 200 mW FT $=1 \mathrm{CHZ}$	28480	1853-0018
1933A 1002912 A						
A1894	1854-0345	8	1	TRANSESTOR NPN 2NS5179 SI TO-72 $\mathrm{PO}=200 \mathrm{WW}$	04713	2N5179
22274 and above						
A1894	1854-0477	7	1	TRANSISTOR NPN 2NE222A SI TO-18 PD=500MW	04713	202223A
A1805	1053-0007	7		TRANSISTOR PNP 2NESES SI TO-18 PD=360MW	04713	2 N 3251
A1806	1853-0007	7		TRANSISTOR PNP 2N3251 SI TO-18 PD=360MW	04713	2N3251
A1807	1854-0610	0	5	TRANSISTOR NPN SI TO-46 FT=800NHEZ	28480	1854-0610
A18R1	0698-3429	2		RESISTOR 19.6 +1\% .125W TF TC $=0+100$	29627	CRB14 OR CRB25
A18R2	0698-3429	2		RESISTOR $19.6+1 \%$. 125 W TF TC $=0+100$	$2 \mathrm{M627}$	CRB14 OR CRB25
A18R3	0757-0438	3		RESISTOR 5.11K $+1 \%$. 125 W TF TC $=0+-100$	12498	CT4-1/8-T0-5111F
A18R4	0698-3155	1		RESISTOR 4.64K $+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-T0-4641F
A18R5	0757-0278	9		RESISTOA 1.78K $+1 \% .125 \mathrm{~W}$ TF $\mathrm{TC}=0+100$	12498	CT4-1/8-T0-1781-f
A18R6	0698-3453	9		RESSSTOA 3.83K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-3831-
A18R7	0690-3434	-		RESISTOR 34.8 $+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	D6439	MK2
A18R8	0757-0418	9		RESISTOR $619+1 \%, 125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/R-T0.619R-F
A18R9	0757-0416	7		RESISTOR $511+1 \%$.125W TF TC=0 $=100$	12498	CT4-1/8-T0-511R-F
A18R10	0757-0416	7		RESISTOA $511+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/R-T0-511R-F
A18R11	0598-3438	3		RESISTOR 147 +1\% .125W TF TC=0 $\mathbf{+ 1 0 0}$	12498	CT4-1/8-T0-147R-f
A18R12	0757-0438	3		RESISTOA 5.11K $+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-T0-5111F
A18R13	0606-0083	8		RESSSTOR $1.96 \mathrm{~K}+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT-1/8-TO-1961F
A18R14	0757-0338	2		RESISTOR 1K +1\% -25W TF TC $=0+100$	12498	M 45 -1/4-TO-1001F
A18R15	06903429	2		RESISTOR 19.6 +-1\% .125W TF TC=0+100	$2 \mathrm{m627}$	CRB14 OR CRB25
A18A16	0688-3446	3		RESISTOR 383 + 1\% . 125 W TF TC $=0+100$	12498	CT4-1/8-T0-383R-F
A18R17	$0838-3446$	3		RESISTOR 383+1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-383R-F
A18R18	0609-3445	2		RESISTOA 348 +1\% .125W TF TC=0+100	12498	CT4-1/8-T0-348R-F
A18819	2100.0552	3		RESSISTOP-TRIMR 5010% TKF SIDE-AD 1-TRN	28480	2100-0552
A18R20	0698-3150	6		RESISTOR $2.37 \mathrm{~K}+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-T0-2371F
A18R21	0698.344	1		RESISTOR 316 +1\% .125W TF TC=0+100	12498	CT4-1/0-T0-316R-F
A18822	0600-3440	7		RESISTOR $196+1 \% .125 W$ TF TC=0 ${ }^{\text {+ }} 100$	12498	CT4-1/8-TO-196R-F
1933A 0022514						
A18R23	2100-3350	5	1	RESISTOR-TRMA 200 10\% TKF SIDE-ADJ 1-TRN	28480	21003350
A18R24	0757-0416	7		RESISTOR $511+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/R-T0-511R-F
23024 and aboue						
Al8R23	2100-3851	6	1	RESISTOR-TRMA 500 10\% C SIDE-ADS 1-TRN	28480	2100-3351
A18R24	0680346	3		RESISTOR $383+1 \% .125 W$ TF TC=0 0 -100	12498	CT4-1/8-T0-3838.F

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Mfr. Code	Mifr. Part Number
A18R25	0757-0402	1	7	RESISTOR $110+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-70-111-F
Albr26	0757-0395	1		RESISTOR $56.2+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-56R2-F
A18R27	0757-0402	1		RESISTOR $110+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-111-F
A18R28	0698-3151	7		RESISTOR 287K $+1 \% .125 W$ TF $\mathrm{TC}=0+100$	12498	CT4-1/8-T0-2871-f
A18R29	$0698-3447$	4		RESISTOR 422 + 7\% .125W TF TC=0+100	12498	CT4-1/Q-T0-422R-F
A18R30	0757-0401	0		RESISTOR $100+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/6-TO-101-f
A18R31	0757-0422	5	7	RESISTOR $909+1 \% .125 W$ TF TC $=0+100$	12498	C74-1/Q-70-909R-F
A18pas2	08983431	6	1	RESISTOR $23.7+1 \% .125 W$ TF TC $=0+100$	D8439	M ${ }^{\text {c } 21}$
A18R33	0757-0401	0		RESISTOR $100+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT-1/6-T0-101-F

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Oty.	Description	Mir. Code	Mfr. Part Number
A19				1. PREF	1 A	

1933A to 2617A						
119	00801-50024	6	1	LO DMIDER ASSEMBLY	28480	08901-60024
25184 to 2751A						
A19	0800150274	8	1	LO DIVIER ASSEmaly	28680	$08901-60274$
A19C1	0180-0570	9		CNPACTOP-XO 220PF +20\% 100VDC CER	09969	RPE121-105XTR221M100V
A19C2	0160-3878	6		CAPACTOR \times XO 1000 PF + 20% 100VDC CER	09969	RPEE121-105X7R102M100V
A19C3	01603878	6		CAPACTORA-XO 1000PF +20\% 100VDC CER	09369	RPE121-105X7R102M100V
A19C4	0160-3878	6		CAPACTOOA-XD 10009F + 20\% 100VDC CER	09969	RPE 121-105×7R102M100V
A19C5	01603878	8		CAPACTIORFXO 1000PF +20\% 100VDC CER	09969	RPE121-105X7R102M100V
${ }^{\text {A }} 1906$	01603878	6		CAPACTOR-XX 1000PF +20\% 100VDC CER	09969	RPE121-105X7R102M100V
${ }^{\text {A19C7 }}$	01803878	6		CAPACTIOR $\times \times 0$ 10009F $+20 \%$ 100VDC CER	09969	RPE 121-105×7R102M100V
A19C8	0160-3878	6		CAPACTTORFXD 1000PF + 20\% 100VDC CER	09969	RPE121-105X7R102M100V
A19C9	0160-3878	6		CAPNCTORPXO $1000 \mathrm{PF}+20 \%$ 100VDC CER	09969	RPE121-105X7R102M100V
A19C10	0180-0197	8		CAPACTOR + XD $2.2 \mathrm{VF}+\mathbf{1 0 \%} 20 \mathrm{VDC} \mathrm{TA}$	56289	1500205×502012
A19C11	01603878	6		CAPACTTOR $\times \times \mathrm{O}$ 1000 PF $+20 \%$ 100VDC CER	09969	RPE121-105×7R102M100V
A19C12	0180-0197	8		CAPACTOR + XO $2.2 \mathrm{LFF}+10 \%$ 20VDC TA	56289	1500225×902012
A19C13	0160-3878	6		CAPACTIOR $+\times \mathrm{O}$ 1000PF + $+20 \%$ 100VOC CER	09969	RPE 121-105×7R102M100V
A19C14	$0160-3879$	7		CAPACTTOR $+\times 0.01 \mathrm{UF}+20 \%$ 100VOC CER	09969	RPE121-105X7R103M100V
A19C15	01603878	6		CAPACTTOR-FXD 1000PF + 20\% 100VDC CER	09969	RPE121-105X7R102M100V
A19C16	$0160-0572$	1		CAPACITOR $\times 20$ 2200PF $+20 \%$ 100VOC CER	06383	FO12x7R2A222M
1933A 102617A						
A19C17	01603878	6		CAPACTTOR-FXD 1000PF + 20% 100VDC CER	09969	RPE121-105X7R102M100V
26318 to 2751A						
A19CI7	0160-0576	5	2	CAPACTIOR+XD . IUF +20\% 50VOC CER	09969	RPE121-105x7R104M5OV
A19618	$0160-3879$	7		CAPACTTORAXD .OIUF + 20% 100VDC CER	09969	RPE121-105×7R103M100V
A19C19	0160-0572	1		CAPACTIOR-XXD 2200PF +20\% 100VDC CER	06383	FD12x7R2A222M
A19C20	0160-0572	1		CNPACTIOR+XD 2200PF +20\% 100VDC CER	06383	FDI2X7R2A2ZzM
A19C21	0160-4084	8		CAPACTIOR+XO . IUF +20\% SOVDC CER	09969	RPE122-139x7R104M5OV
A19C22	0160-4034	0		CAPACTTOR+XD. $14 \mathrm{UF}+20 \%$ 50VDC CER	09969	RPE122-139x7R104M5OV
A19C23	0160-409	8		CAPACTTOR-XX .1UF +-20\% 50VDC CER	09969	RPE122-139x7R104M5OV
A19C24	0180-4094	8		CAPACTOA-XD. $14 \mathrm{~F}+20 \%$ SOVDC CER	09969	RPE122-139x7R104M50V
A19C25	01603879	7		CAPACTOR-FXD .OTUF +20\% 100VDC CER	09969	RPE121-105X7R103M100V
A19C26	0160-4004	8		CAPACTTOR-XXD .1UF +20\% 5OVDC CER	09969	APE122-139x7R104M50V
A19C27	$0160-3979$	7		CAPACTOR +XD .01UF +20\% 100VOC CER	09969	RPE 121-105X7R103M100V
${ }^{19} 9198$	0160-0572	1		CAPACTTOR + XD 2200PF $+20 \% 100 \mathrm{VDC}$ CER	08383	FDI2X7R2A222M
${ }^{\text {A19C29 }}$	0160-0690	4	2	CAPACTIOR $+\times$ D $1 P \mathrm{FF}+$-SPF 100VDC CER	06383	FDi2Cogralirio
A19C30	01603879	7		CAPACTIOR-XXD .OIUF +20\% 100VDC CER	09969	RPE121-105X7R103M100V
${ }^{19} 9$ c31	0160-0572	1		CAPMCTOR+XD 2200PF + 20% 100VDC CER	06383	FD12X7R2A202M
A19C32	0160-3877	5		CAPACTOOR + XD 100PF $+20 \%$ 200VDC CER	09969	RPE121-105X7R101M200V
A19C33	01603877	5		CAPACTIOR $+\times \mathrm{XD}$ 100PF $+20 \%$ 200VDC CER	09969	RPE121-105×7R101M200V
A19C34	01603879	7		CNACMCTOR $\times X \mathrm{XD}$. $01 \mathrm{UF}+20 \%$ 100VDC CER	09969	RPE121-105×7R103M100V
A19C35	01603877	5		CAPACTTOR \times XD 100PF $+20 \%$ 200VDC CER	09969	RPE121-105X7R101M200V

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts

Reference	HP Part	\mathbf{C}
Designation	Number	Cty.
D		

Description Mfr.
Mfr. Part Number

A19
SERIAL PREFIX 1933A TO 2751A

A19CR1	1901-0033	2	10	DIODE-GEN PRP 180V 200MA DO.35	9 N171	1NEA5
1933A to 24104						
AlSCR2	0122-0072	8	4		28460	0122-0072
A19CR3	0122-0072	6			28480	$0122-0072$
A19CR4	0122-0072	6			28480	0122.0072
AISCR5	0122-0072	6			28480	0122-0072
2412A to 2751A						
A19CR2	0122-0161	4	4	DIODE-WV 22PF 7\%	29480	0122.0161
A19CRS	0122-0161	4	4	DIODE-VVC 2.2PF 7\%	28460	0122.0161
Al9CR4	$0122-0161$	4	4	DODE-VVC 2.2PF 7\%	28480	$0122-0161$
AISCR5	0122.0161	4	4	DIODE-VVC 2.2PF 7\%	28460	$0122-0161$
A19CR6	1801-0033	2		DIODE-GEN PRP 180V $200 \mathrm{MA} \mathrm{DO-35}$	9×171	TNG45
A19CR7	1901-1097	0	2	DIODEPPN	28480	1901-1097
A19CR8	1901-1097	0		DIODEPIN	28480	1901-1097
A19CR9	1801-0639	4	1	DIODEPTN	28480	50823080
A19CR10	1901-0033	2		DHODE-GEN PRP 180V 200MA DO-35	9N171	1N645
A19E1	9170-0029	3	5	CORE-SHELING BEAD	78488	57-3452
A19E2	9170-0029	3		CORESHEIDING BEAD	78488	57-3452
A1911	1250.1200	0		CONANECTOR-AF SMC M PC 50-OHM	06877	82SMC-50-0-3/111
	21900124	4		WUSHERLK WTL T NO. 10.195 -NHD	16179	500222
	29500078	8		MUTHEX-DEL-CHAM 10-32-THD .067-IN-THK	28480	2950-0078
A19,2	1250-1220	0		CONNECTOR-RF SMC M PC 50-0HM	06877	82smc-50-0-3/111
	2190-0124	4		WHSHER-LK INTL T NO. $10.195-1 N-1 D$	16179	500202
	29500078	9		NUT-HEX-DEL-CHAM 10-32-THD .067-IN-THK	28480	2950-0078
A1933	1250-1220	0		CONNECTOR-RF SMC M PC 50-OHM	06877	82smc-50-0-3/111
	2190-0124	4		WHSHERHK ENTL T NO. 10.195 HNHD	16179	500222
	2950-0078	9		MUTHEX-DBL-CHAM 10-32-THD .067-NTTHK	28480	2950-0078
A19P91	8159-0005	0		RESISTOR-ZERO OTHS 22 ANG LEAD DUA	11502	YZO 1/4
A19.192	8159-0005	0		RESISTOR-ZERO OHMS 22 ANG LEAD DA	11502	Y20 1/4
AT9P3				NOT ASSIGAED		
ATSUP4	8159-0005	0		RESISTOR-ZERO OHMS 22 ANG LEAD DUA	11502	YZO 1/4
A1921	9100-3922	4		RF CHOKE	28480	9100-3922
A1912	$9100-3922$	4		RF CHOKE	28480	9100-3922
A1943	9100-3922	4		RF CHOKE	28480	9100-3922
A1944	91003922	4		PF CHOKE	28480	9100-3922
A1915	9135-0068	6	2	WDUCTOR, .033 UH	24226	$10 \mathrm{M} 033 \mathrm{X}-1$
A19L6	9135-0073	3	3	MDUCTOR, .051 UH	24226	$10.1051 \mathrm{X}-1$
A19L7	9135-0068	6		MOUCTOR, .033 UH	24226	$10 \mathrm{M033x}$-1
A19L8	9135-0073	3		NDUCTOR, 051 LH	24226	10 mosix - 1
A1949				PART OF ETCHED CIRCUIT BOARD		
A19L10	9100-3922	4		RF CHOKE	28480	$9100-3922$

Reference Designation	HP Part Number	Cty.	Description	Mtr. Code	Mitr. Part Number

SERIAL PREFIX 1933A TO 2751A

${ }^{\text {AlgL }} 11$	9100-3922	4		RF CHOKE	28480	9100-3922
A19L12	91003982	4		PF CHOKE	28480	9100-3922
Aislis	9140-9210	1		MDUCTOR PF-CHEML 100UH +-5\%	91637	M-4 100UH 5\%
A19L14	9135-0073	3		MDUCTOR, . 051 UH	24226	109051X-1
A10L15				PART OF ETCHED CIRCUIT BOARD		
I8334 to 26174						
AI9MPI	00001-00028	4	1	CONER, LO DNVOER	28480	08501-00028
				(MCLUDES P.C. EXTRACTOR)		
	$2060-0113$	2		SCREW-HNCH 632.25 -1/ 6 PANHDPOZI	00000	ORDER AY DESCRIPTION
28184 to 2751a						
A19MP1	00301-90166	1	1	COVER, LO DMDER	28480	08801-00166
				(MCLUDES P.C. EXTRACTOR)		
	2060-0113	2		SCREW-MMCH 6-32 25-WHL PANHDPOZ	00000	ORICER BY DESCRIPIION
A1991P2	08352-00039	7	1	SHELD. CRICUTT. LaREE	28400	00862-00039
A19MP3	00662-00041	1	1	SHEED, COMPONENT, LARGE	29480	0ees2-00041
A19MP4	$5001-0173$	7		STPAP. GROUND	28400	5001-0173
A18MP5	$00901-20082$	2		P.C. BCARD EXTRACTOR	28480	00901-20082
A1901	1854-0477	7		TRANSISTOR NPN 2NP222A SI TO-18 PD=500NW	04713	2nezera
A1902	1853-0020	4		TRANSISTOR PNP SI PD=300MW FT= 150 MHZ	2 M 627	X1228CP20-1
${ }^{1} 1903$	1853-0020	4		TRANSISTOR PNP SI PD $=300 \mathrm{WW}$ FT $=150 \mathrm{MH}$ -	20.627	
A1904	1859-0032	8		TTANSISTOR ARRAY 14-PW PLSTC DIP	27014	143146
A19R1	0ese-7296	7		RESISTOR 1K +-1\% .OSW IF TC $=0+100$	12498	C3-1/Q-70-1001F
A19R2	0sce-7227	6		FESSSTOR $422+i \% .05 W$ TF TC=0+100	12498	C3-1/8-T0-422R-5
Alprs	0690-7227	6		RESISTOR $422+1 \%$. OSW TF TC $=0+100$	12498	C3-1/2-T0-422RF
A1984	0080-7227	6		RESISTOR 422 + 1\% .OSW TF TC $=0+100$	12498	C3-1/R-T0-422R.F
A19ps	0690-7227	6		PESISTOR 422 +-1\% .OSW TF TC $=0+100$	12498	C3-1/8-TO-422RF
A19ab	0698-7232	3	4	RESISTOR 681 + 1\% .OSW IF TC $=0+100$	12498	C3-1/8-T0-681RF
A1987	0690-7232	3		RESISTOR 681 $+1 \%$. 05 W TF TC $=0+100$	12498	C3-1/8-T0-681RF
A19R8	0098-7232	3		RESISTOR 6A1 +1\% .OSW TF TC $=0+100$	12498	C3-1/8-T0-681R-F
A19R9	089e-7232	3		RESISTOR $601+1 \%$, OSW TF TC $=0+100$	12498	C2-1/8-T0-681R-F
A19R10	0690-3437	2	1	PESISTOR $133+1 \%$.125W TF TC $=0+100$	12498	CT4-1/R-T0-133R-F
A19R19	0757-0402	1		RESISTOR $110+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-TO-111F
A19R12	0757-0422	5		RESISTOR $909+1 \%$.125W TF TCm0+100	12498	CT4-1/8-T0-909R-F
A19R13	0757-0422	5		RESISTOR $909+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-909R-F
A19n14	0757-0422	5		RESISTOR $909+1 \%$.125W TF TC=0+100	12458	CT4-1/8-T0-809R-F
A19R15	0757-0422	5		RESISTOR $909+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/6-TO-909R-F
19334 to 2517A						
Al9R16	0008-7209	4		RESISTOR $75+1 \% .05 W$ TF TC $=0+100$	12498	C3-1/8-TO-75ROF
A18R17	0808-7238	8	1	RESISTOR 1.21K +-1\% .05W TF TC=0+-100	12498	C3-1/8-T0-1211F
20184 to 2751A						
A19R16	0757-0280	3		RESTSTOR 1K +1\% .125W TF TC=0+100	12498	CT4-4/8-T0.1001-F
A19R17	0096-3151	7		RESISTOR 2.87K $+1 \%$.125W TF TC $=0+100$	12098	CT4-1/8-T0-2877+

Table 6-3. Replaceable Parts

A19R45	0757-0397	3		RESISTOR 68.1 + 1\% .120W TF TC=0+100	12498	CT4-1/8-T0-68P1-F
A19R46	0098-7299	8		RESISTOR $511+1 \% .05 \mathrm{~W}$ TF TC $=0+100$	12498	CS-1/8-TO-511R-F
A19R47	0757-0416	7		RESSTOR $511+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-511R-F
A19R48	0757-0346	2		RESISTOR $10+1 \% .125 W$ TF TC $=0+100$	D8439	MK2
A19R49	0757-0416	7		RESSTOR $511+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-511R-F
A19R50	0757-0416	7		RESISTOR 511 +1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-511R-F
Al9R51	0757-0397	3		RESISTOR 68.1 + 1\% .125W TF TC=0+100	12498	CT4-1/8-T0-68P1-F
A19R52	0757-0316	6	1	RESSSTOA $42.2+1 \% .125 W$ TF TC $=0+100$	D8439	MK2
A19R53	0757-0397	3		RESSTOR 68.1 $+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-T0-68R1-F
Al9R54	0757-0416	7		RESSTOR 511 +1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-511R+
A19R55	$0757-0416$	7		RESISTOR $511+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-T0-511R-F
A19R56	$0757-0416$	7		RESISTOR $511+-1 \%$.125W TF TC $=0+100$	12498	CT41/8-T0-511R-F
A19R57	0698-3132	4		RESISTOR $261+\mathbf{1 \%}$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-2610-F
A19R58	0690-3132	4		RESISTOR $261+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-2610-F
A19R59	0008-3132	4		RESISTOR $261+1 \%$. 225 W TF T $C=0+100$	12498	CT4-1/8-T0-2610-F
A19R60	0757-042	9		RESSTOR 10K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-1002-F
A19R61	0757-0422	5		RESSTOR $909+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-903R-f
A19R62	0038-3158	4		RESSTOA $23.7 \mathrm{~K}+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-2372-
A19R63 ${ }^{\text {a }}$	0757-0398	4		RESISTOR $75+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-75R.F
Alspg	0757-0416	7		RESISTOR $511+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-511R-F
A19R65				NOT ASSIGNED		
A19R66	0757-0465	6		RESISTOR 100K $+\mathbf{1 \%}$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-1003-7
A19R67	$0757-0397$	3		RESISTOR 68.1 + -1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-68R1-
A19R68	0757-0397	3		RESISTO $68.1+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-68R1-F
A19P69	0998-3447	4		RESISTOR 422 +1\% .125W TF TC=0+100	12498	CT4-1/8-T0-422R-F
A19r70	0757-0397	3		RESISTOR 68.1 + $1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-68R1-F
A19R71	0899-0083	8		RESSTOR 1.96K +1\% .125W TF TC $=0+100$	12498	CT4-1/8-TO-1961F
A19R72- ${ }^{\text {a }}$	0757-0422	5	11	RESISTOA S09 1\% .125W F TC=0+-100	24546	C4-1/R-T0-509R-F
A19R73				NOT ASSIGNED		
A19R74*	0757.0422	5	11	RESISTOR 909 1\% .125W F TC $=0+100$	24546	C-1/8-T0-909R-7
A19R75 ${ }^{\text {a }}$	0757.0416	7		RESISTOR 511 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-511R-F
Al9R76	0680-3438	3		RESISTOR $147+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/B-T0-147RF
A19R77	0698-3438	3		PESSTOR $147+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-147R.F
A19R78	0688-3438	3		RESISTOR $147+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-TO-147RF
A19R79	0757-0726	2	1	RESISTOR $511+1 \% .25 W$ TF TC $=0+100$	12498	NAS-1/4-TO-511R-F
A19R80	$0688-3441$	8		RESSTOR 215 +1\% .125W TF TC=0+100	12498	CT4-1/8-T0-215R-F
A19R81	Dese-3447	8		RESSTOR $215+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-215R-F
A19R82	$0098-3441$	8		RESISTOR $215+1 \%$, 125W TF TC $=0+100$	12498	CT4-1/8-T0-215R-F
Ai9Re3	$0757-0446$	7		RESISTOR $511+1 \% .125 W$ TF TC=0+100	12498	CT4-1/8-T0-511RF
Algres	0757-0416	7		RESISTOR $511+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-TO-511R-F
A19R85	0757-0997	3		RESISTOR $68.1+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-68R1-F

Table 6-3. Replaceable Parts

| Reference
 Designation | HP Part
 Number | $\underset{D}{C}$ Cy. | Description | Mfr.
 Code |
| :--- | :---: | :---: | :---: | :---: | :---: |
| A19 Mir. Part Number | | | | |

1933A 10 2S46A						
A19R86	0080-7209	4		RESSSTOR 75 -1\% .OSW TF TC=0+100	12498	C3-1/R-TO-75R0-F
2350A 2027514						
A19R86	0096-7205	0		RESISTOR $51.1+1 \% .05 W$ TF TC $=0+100$	12498	CO-1/R-TO-51R1F
1933A to 2617A						
A19R87	0096-7209	4		RESISTOR $75+1 \%$. $05 W$ TF TC=0+100	12498	C3-1/8-70-75P0-5
25184 to 2751A						
A19R21	0090-7205	0		RESISTOR $51.1+1 \%$. $05 W$ TF TC $=0+100$	12498	C3-1/8-TO-51R1-F
A19pas	0ese-7230	7		PESISTOR 1K + 1%.OSW TF TC $=0+100$	12498	C3-1/8-70-1001F
A19R89	0757-0200	3		RESISTOR IK $+\mathbf{1 \%}$. 125 W TF $\mathrm{TC}=0+100$	12498	CT4-1/8-T0-1001. ${ }^{\text {F }}$
A19490	Cupe-7236	7		PESISTOR 1K + 1\% . O5W TF TC $=0+100$	12498	C3-1/8-70.1001F
A19R91	06se-7247	0	2	RESISTOR 2.87K +-1\% . OSW TF TC $=0+100$	12498	C3-1/8-70-2871F
A19R92	068e3151	7		PEESSTOR $2.87 \mathrm{~K}+1 \%$. 125 W TF TC=0+100	12498	CT4-1/8-T0-2871F
A19R93	0690-7247	0		RESISTOR 2.87K +1\% . O5W TF TC $=0+100$	12498	C3-1/8-70-2871.f
A19R94	0850-7208	3	1	RUESISTOR 68.1-1\% .OSW TF TC=0+-100	12498	C3-1/8-TO-68R1-F
A19R95	0598-7229	8		RESISTOR $511+1 \%$.O5W TF TC=0 0 -100	12498	C3-1/8-TO-511R-F
A19R96	0757-0397	3		RESISTOR 68.1 $+1 \% .125 W$ TF TC $=0+-100$	12498	CT4-1/8-T0-68R1F
A19R97	0757-0416	7		RESISTOR $511+1 \%$, 125W TF TC $=0+100$	12498	CT4-1/8-T0-511R-F
A19R98	0698-7229	8		RESISTOR $511+1 \% .05 W$ TF TC $=0+100$	12458	C3-1/8-TO-511R-F
A19R99	0690-3439	4		RESISTOR $178+\mathbf{1 \%} .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-T0-1789-F
A19R100	0757-0397	3		RESISTOR $68.1+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-68R1F
A19R101	0757-0397	3		RESISTOR 68.1 +-1\% .12SW TF TC $=0+100$	12498	CT4-1/0-T0-68R1-F
A19R102	0690-3439	4		RESSSTOA $178+1 \% .125 W$ TF TCm0 $=100$	12498	CT4-1/8-T0-178R-F
Al9R103	0698-3132	4		RESISTOR $261+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/6-T0-2610-F
A1sR104	0757-0442	9		RESISTOR 10K $+\mathbf{1 \%}$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-1002-F
A19R105	0757-0442	9		RESASTOR 10K + $\mathbf{1 \%}$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-1002-F
A19R106	0638-7209	4		RESISTOR $75+1 \%$. 05 W TF TC=0+100	12498	C3-1/8-T0.75R0-F
A19R107	0757-0397	3		RESISTOR $68.1+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-68R1-F
A19R108	0680-7209	4		RESESTOR $75+-1 \%$. $05 W$ TF TC=0 $0+100$	12498	C3-1/8-TO-75PO-F
A19R109	0688-7229	8		RESASTOR $511+1 \%$. OSW TF TC $=0+100$	12498	C2-1/8-TO-511R-F
A19Rt10	0688-7236	7		PESISTOR 1K +-1\% .05W TF TC $=0+1100$	12498	C3-1/8-70-1001-f
1933A to 2617A						
A19R111-R116				NOT ASSIENED		
2618A to 2751A						
Al9RIII	0688-3132	4		RESESTOR $261+1 \% .125 W$ TF TCe0 0 -100	12498	CT4-1/8-70-2610-F
A19R112	0680-7205	0		RESISTOR $51.1+1 \%$.05W TF TC $=0+100$	12498	C3-1/8-T0-51R1f
Al9R113	0680-3132	4		PESISTOR 261 +-1\% .125W TF TCm0 $=100$	12998	CT4-1/8-T0-2610F
Al9R114	0680-3132	4		RESESTOR $261+1 \% .125 W$ TF TC=0+-100	12498	CT4-1/6-T0-2610-F
A19R115	0600-3132	4		REStSTOR $261+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-2610-F
A19R116	0398-3132	4		RESISTOR $261+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-2610F
A197P1	1251-0600	0		CONNECTOR-SCL CONT PIN 1.14MM-BSC-SZ SQ	12360	94-155-1010-01-03-00
A197P2	1251-0600	0		COMNECTOR-SCL CONT PW 1.14-MM-BSC-SZ SO	12360	94-155-1010-01-03-00

Table 6-3. Replaceable Parts

A19
SERIAL PREFIX 1933A TO 2751A

Alsu1	1820-1225	4	1	C FFF ECL DM/S DUAL	04713	Mc10231p
A19u2	1826-0372	2	6	CC, A251 LMMIER	28480	1251-0100
${ }^{\text {Al9us }}$	1826-0013	8		IC OP AMP LOW-NOISE 8-TO-99 PKG	24355	ADT41CH
Al9u4	00901-67002	4	1	FREQUENCY DOUBLER	28480	$00901-67002$
	03400950	0		MSULATOR-XSTA TFE	13103	717-158T
	1251-1556	7		CONNECTOR-SGL CONT SKT OT-NBSCSSZ AND	8829	006-404400-990
A19U5	1826-0372	2		IC, A2SI LMMTER	28480	A251-0100
A19U6	18200817	8		ICFFECL DM/S DUAL	04713	MC10131P
1933A 20 2667A						
A19U7	1820-1900	0	2	$\boldsymbol{1 8 , 8 1 9 6}$	23480	B1964-0100
A19U8	1820-1940	0		1C. ${ }^{196}$	28480	B196A-0100
26184 2027614						
A19U7	1820-3485	2		IC PRESCR ECL MC12090	28480	1820-3485
A19U8	1820-3405	2		$1 C$ PRESCA ECL MCi2090	28480	1820-3485
Alsus	1820-0796	2	1	IC GATE ECL NOR OUAD 2-ANP	04713	MC1662L
A19uto	1826-0372	2		IC. A251 LMETER	28480	A251-0100
Atgusi	1826-0372	2		IC. A251 LMMTER	28480	A251-0100
A19U12	1820-0817	8		IC FFECL DM/S DUAL	04713	MC10731P
A19U13	1820-1400	7	2	IC GATE ECL AND OUAD 2-HNP	04713	MC10104P
A19414	1820-1400	7		IC Gate ecle and ound 2-MP	04713	MC10304P
A19U15	1820-0828	1	2	IC DCDR ECL EIN 3-TO-S-LINE HMP	04713	MC10162P
A19436	1820-0802	1	2	IC GATE ECL NOR OUAD 2-NTP	04713	MC10102P
A19U17	1820.0017	8		IC FF ECL DM/S DUNL	04713	MC10731P
A19418	18200928	1		IC DCOR ECL BIN 3-TO-ALNE 3MP	04713	MC10162P
A19U19	1220-0802	1		IC GATE ECL NOR OUAD 2-HNP	04713	MC10102P
A19420	1820-3052	5	1	IC XLIR ECL ECL-TO-TTL OUAD 2-NP	0473	MC10125L
AlgVris	1902-0943	5		DIODE-ZNP 2.3TV 5\% DO.7 PD=0.4W TC=.074\%	28480	1902-0943
A19var	1902-0049	2	3	DIOOE-ZNR 6.19V 5% 00.35 PD=.4W	28480	1902-0049
A19VR3	1902-0049	2		DIOOE-ZNR 6.19V 5\% DO35 PD=.4W	28480	1902-0049
AlgVas	1902-0049	2		DIODE-ZNR 6.19V 5\% D0.35 PD=.4W	28480	1502-0049

Table 6-3. Replaceable Parts

Reference	HP Part	\mathbf{C}	Oty.	Description	Mtr.	Mtr. Part Number
Designation	Number	\mathbf{D}		Code		

A19	00902-60126	0	1	LO DVIDER ASSEMBLY	28480	08902-60126
A19C8	01600570	9		CAPACTTOR-XD 220PF +-20\% 100VDC CER	20932	S024EM100RD221M
A1902	0180-3878	6		CAPACTIOR+XO $1000 \mathrm{PF}+20 \% 100 \mathrm{VDC} \mathrm{CER}$	28480	$0160-3878$
A1903	0160-3878	6		CAPACTIORFXD 1000PF + 20\% 100VOC CER	28480	01603878
A19C4	$0160-3878$	8		CAPACTTOR-FXD 1000PF +20\% 100VOC CER	28480	0160-3878
A19C5	0160-3878	6		CAPACTTOR-FXD 1000PF $+20 \% 100 \mathrm{VDC} \mathrm{CER}$	28480	0160-3878
${ }^{19} 196$	0180-3878	6		CAPACTIOR-FXD 1000PF +20\% 100VOC CER	28480	0180.3878
A19C7	0160-3878	6		CAPACTTOR-XD 1000PF $+20 \%$ 100VDC CER	28480	0160-3878
A19C8	0160-3878	6		CAPACTTOR-XD 1000PF + 20\% 100VDC CER	28480	$0160-3878$
A19C9	$0160-3878$	6		CAPACTTOR-XD 1000PF + 20% 100VDC CER	28480	0160-3878
A19C10	0180-0197	8		CAPACTTOR-XD 2.2UF+10\% 20VDC TA	56299	$1500225 \times 9020 \mathrm{A2}$
A19C11	0160-4822	2		CAPACTIORFXD 1000PF + 20% 100VDC CER	28480	0160-4822
A19C12	01800197	8		CAPACTIOR-FXD 2.2UF+-10\% 20VDC TA	56289	1500225×902042
A19C13	0160-4822	2		CAPACTTORFXD 1000PF + 20\% 100VOC CER	28480	0160-4822
A19C14	0160-4832	4		CAPACTTOR-PXD . $01 \mathrm{UF}+20 \%$ 100VDC CER	28480	0160-4832
A19C15	0160-3878	6		CAPACTTOR-FXD 1000PF +-20\% 100VDC CER	28480	0160-3878
A19C16	0160-4830	2		CAPACTTOAFXD 2200PF +-20\% 100VDC CEA	28480	0160-4830
A19C17	0160-4822	2		CAPACTOR-XXD 1000PF + 5\% 100VDC CER	28480	0160-4822
A19C18	0160-4832	4		CAPACTIOR-XXD .OIUF + 20% 100VDC CER	28480	0160-4832
A19C19				NOT ASSIGNED		
A19C20				NOT ASSIENED		
A19C21	0160-4835	7		CAPACTTOR-XXD .IUF + 20% 50VDC CER	28480	0160-4835
A19622	0160-4935	7		CAPACTOR-FXD . $1 \mathrm{UF}+200$ 50VDC CER	28480	0160-4835
A19623	0160-4635	7		CAPACTTOR-XXD . ILF +-20\% 50VDC CER	28480	0180-4835
A19C24	0160-4835	7		CAPACTIOR + XD . IUF $+20 \%$ 50VDC CER	28480	0160-4835
A19C25	0160-4832	4		CAPACTIOR-XXD .OILF +-20\% 100VDC CER	28480	0160-4832
A19C26	0160-4835	7		CAPACTTOR-FXD .IUF + 20% 50VDC CER	28480	0160-4835
A19C27	0160-4832	4		CAPACTIOR+XD . OTUF + 20% 100VDC CER	28480	0160-4932
A19C28				NOT ASSIGNED		
A19629	0160-0690	4	2	CAPACTTOR-FXD 1PF +.SPF 100VDC CER	28480	0160-0880
A19C30	0160-4832	4		CAPACTOR FXO . 01 UF + 20% 100VDC CER	28480	0160-4832
A19031	0160-0572	1		CAPACTTOR-FXD 2200PF + 20% 100VDC CER	28480	01600572
A19C32	$0160-3877$	5		CAPACTIOR-XXD 100PF + 20% 200VDC CER	28480	0160-3877
A19C33	$0160-3877$	5		CAPACTTOR-XD 100PF $+20 \%$ 200VDC CER	28480	$0160-3877$
A19C34	$0160-3879$	7		CAPACTOP-FXD . O1UF +-20\% 100VDC CER	28480	0160-3879
A19C35	01603877	5		CAPACTTOR-FXD 100PF $+20 \% 200 \mathrm{VDC}$ CER	28480	0160-3877
A19053	$0160-3877$	5		CAPACTIOR-FXD 100PF +-20\% 200VDC CER	28480	0160.3877
A19C37	0160-0577	0	7	CAPACTIOR + XD 470PF + 20% 100VDC CER	28480	$0160-0571$
A19C38	0160-4389	6		CAPACTOR-XXD 100PF +-5PF ZOOVDC CER	28480	0160-4389
A19C39	0160-4830	2		CAPACTIOR $+\times 1$ 2200PF $+10 \% 100 \mathrm{VDC}$ CER	28480	0160-4830
A19C40	0160-4830	2		CAPACTTOR+XD 2200PF $+20 \%$ 100VDC CER	28480	0160-4830
Alscat	0160-4830	2		CAPACTTOR-XD 2200PF $+20 \%$ 100VDC CER	28480	0160-4830
A19C42	0160.0572	1		CAPACTTOR-FXD 2200PF + 20% 100VDC CER	28480	01600572
A19043*	0160-4491	1	1	CAPACTTOR-XD 8.2PF +5\% 200VDC CER	28480	$0160-4991$

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\underset{\mathbf{D}}{\mathbf{C}}$	Ciy.	Description	Mitr. Code	Mir. Part Number
A19			089	- SERIA	ND	OVE

A19C44	$0160-3568$	1	2	CAPACTOPR+XD $2.7 \mathrm{PF}+5 \%$ 200VOC CER	51642	100-100-NPO-279
A19C15	0160-4034	8		CAPMCTIOR-XD . IUF +20\% 50 VDC CER	28480	0160-4084
A19C46	$0160-2568$	1		CAPACTTOR $+\times \mathrm{D} 2.27 \mathrm{PF}+5 \% 200 \mathrm{DDC}$ CER	51642	100-100-NPO-279
A19C47	0160-4822	2		CAPACTOR + XD 1000PF +20\% 100VDC CER	28480	0160-4822
A19C48	0160-4822	2		CAPACTIOR+XD 1000FF +20\% 100VDC CER	28480	0160-4822
A19C49	0180-0590	4		CAPACTIOR-XXD 1PF + SPF 100VDC CER	28480	01600890
A19C50	0160-4822	2		CAPACTOA + XD 1000PF +20\% 100VDC CER	28480	0180-4822
A19C51	0160-482	2		CAPACTOR $+\times$ O $1000 \mathrm{PF}+20 \%$ 100VDC CER	28480	0160-4822
A19C52	0180-4035	7		CAPACTTOR + XD . $14 \mathrm{~F}+20 \%$ SOVDC CER	29480	0160-4835
A19C53	0160-4094	8		CAPACTOR-PXD. IUF +-20\% 5OVDC CER	29400	0160-4094
${ }^{\text {A19CS4 }}$	0160-4822	2		CAPACTORFXX 1000PF +20\% 100VDC CER	29480	0180-4022
A19C55	0180-4835	7		CAPACTOR + XD . $14 \mathrm{~F}+20 \%$ 50VDC CER	28480	0160-4835
A19C56	0160.0571	0		CAFACTIOA+XD 470PF +20\% 100VDC CER	23480	0180.0571
A19C57	0160-4822	2		CAPACTIOR+XD 1000PF $+20 \% 100 \mathrm{VDC}$ CER	26480	0160-4822
A19C58	0160-4094	8		CAPACTTOR+XD. 14 F + 20% SOVDC CEA	28480	0160-4084
A19C59	01800571	0		CAPACTOR + XD 470FF +20\% 100VDC CER	23480	0180.0571
A19660	0160-4835	7		CAPACTOR $+\times \mathrm{O}$. IUF $+20 \%$ SOVDC CER	29880	0160-4835
A19061	0160-4835	7		CAPACTTOR-XD . $14 \mathrm{~F}+20 \%$ 50VDC CER	28480	0160-4835
A19C62	0180-1746	5		CAPACTTOR $+\times \mathrm{D}$ 15UF+10\% 20VDC TA	56299	1500156x902082
A19C63	$0160-3877$	5		CAPACTTOR $+X D$ 100PF $+20 \%$ 200VDC CER	28480	$0180-3877$
A19C64	0180-3878	6		CAPMCTORFXXD 1000PF +20\% 100VDC CER	28480	0180-3878
A19C65	01800576	5		CAPMCTIOR-XD .1UF + 10\% 100VDC CER	28480	0160-0576
A19066				MOT ASSIGNED		
A19667	0160.0576	5		CAPACTOR-XX .1UF + 20% 50VDC CER	28480	0160-0576
A19cs8				MOT ASSIGNED		
A19069				NOT Assigned		
A19C70				MOT ASSIGNED		
A19CR1	1901-0033	2	8	DICDE-GEN PRP 180V 200M 00.7	28400	1901-0033
A18CR2	$0122-0161$	4		DIODE-WC 2.2PR 7\% BVR 3 30V	23480	0122-0161
A19CR3	$0122-0161$	4		DIODE-WC 2.2PR 7\% BVR $=30 \mathrm{~V}$	29480	0122-0161
A19CR4	$0122-0161$	4		DIODE-WVC 22PR 7\% BVR=30V	24480	$0122-0161$
A19CR5	$0122-0161$	4		DCODE-WC 22PR 7\% 日VR $=30 \mathrm{~V}$	28480	0122-0161
A19C86	1901-0033	2		DICOEGEN PRP 180V 200 MA DO 7	28480	1801-0033
A19C87	1901-1097	0	2	DIOOEPW	24450	1901-1097
Alscri	1901-1097	0		DIODEPEN	28480	1801-1097
A19C89	1901-0639	4	1	OLODEPIN	28480	5082-3090
A19CR10	1501-0033	2		DIODE-GEN PAP 180V zomu do-7	28480	1901-0033
Al9E1	9170-0029	3	11	CORESHHELDMG gead	20480	9170-0029
A19E2	9170-0029	3		CORESSHELDWG BEAD	28480	9170-0029
A1911	1250-1425	7		COMNECTOP-AF SMC M PC 50-0HM	28480	1250-1425
	21900124	4		WUSHERHK NTL T MO. 10.195 INHD	28480	2190-0124
	29500078	9		MUTHEX-DBL-CHAM 1033-THD .O57-NT-THK	28480	2950-0078
A1912	1250-1425	7		CONNECTORAF SMC M PC $50-0$ HM	29480	1250-1425
	2190-0124	4		WASHERHK NTL T MO. 10.195-NHD	28480	2190-0124
	23500078	9		MUTHEX-DBL-CHAM 10-32-THD .O57-NTHE	28480	2950-0078

Table 6-3. Replaceable Parts

Reference	HP Part	\mathbf{C}		
Designation	Number	Cty	Description	Mir.

08902-60126 - SERIAL PREFIX 2911A AND ABOVE

A1933	1250-1425	7		CONAECTOR-RF SMC M PC 50-OHM	28480	1250-1425
	2190-0124	4		WHSHER-LK WTL T NO. $10.195-1 / H D$	28480	2150-0124
	2950-0078	9		MUT+HEX-DBL-CHAM 1032-THD .067-N_THK	28480	2950-0078
A19L1	9100-3922	4		MOUCTORFDECD $120-1300 \mathrm{HZ}$	28480	9100-3922
A19L2	9100-3922	4		MOUCTORFIXED 120-1300 HZ	28480	9100-3922
A19L3	9100-3922	4		WOUCTORFDEED 120-1300 HZ	28480	9100-3922
AtgLa	9100-3922	4		MOUCTOR-FIXED 120-1300 HZ	28480	9100-3922
AlgL 5	9135-0088	6	2	WDUCTOR RF-CHEML 33NH 6\% . $1020 \times 28 L G$	28480	9135-0068
A18L6	9135-0073	3	3	MDUCTOR RF-CHMRD 51NH 6\% .1020x.26LG	28480	9135-0073
A18L7	9135-0068	6		NOUCTOR PF-CHEND 33NH 6\% .1020X.26LS	28480	9135-0068
A19L8	9135-0073	3		WDUCTOR RF-CHMLD 51NH 6\% .1020X.26LG	28480	9135-0073
A19L9				PART OF ETCHED CIRCUIT BOARD		
A19LIO	9100-3922	4		MDUCTORFIXED 120-1300 HZ	28480	9100-3922
A19L11	9100-3922	4		WDUCTOR-FDEED 120-1300 HZ	28480	9100-3922
A19L12	$9100-3922$	4		WDUCTOR FUEED 120-1300 HZ	28480	9100-3922
A19L13	9140-0210	1		WDUCTOR RF-CHM ${ }^{\text {M }}$ 100UH 5\% .168DX.385LG	28480	81400210
A19L14	9135-0073	3		MDUCTOR RF-CHMLD $51 N \mathrm{NH} 6 \% .1020 \times .26 L G$	28480	9135-0073
A19L15				PART OF ETCHED CIRCUIT BOARD		
A18MP1	08901-00166	1	1	COVER LO DIVIDER	28480	08901-00166
	2360-0113	2		SCREW-MACH 6-32 25-N-LG PANHD-POZI	00000	ORDER BY DESCRIPTION
A1sMP2 ${ }^{\text {a }}$	5001-5539	9		GROUND STPAP	28480	5001-5539
A19mp3 ${ }^{\text {a }}$	5001-5539	9		GROUND STRAP	28480	5001-5599
A19MP4	06662-00041	1	1	SHELD COMPONENT	28480	06662-00041
A19MP5	08562-00039	7	1	SHEELD COMPONENT	28480	08662.00039
A1901	1254-0477	7		TRANSISTOA NPN 2NE222A SL TO-18 PD=500MW	04713	2n2222a
A1902	1853-0020	4		TRAWSISTOR PNP SI PD $=300 \mathrm{NW}$ FT $=150 \mathrm{MHZ}$	28480	1853-0020
A1903	1853-0020	4		TRANSISTOR PNP SI PD $-300 \mathrm{MWW} \mathrm{FT}=150 \mathrm{MHZ}$	28480	1853-0020
A1904	1858-0032	8		TRANSISTOR ARRAY 14-PWN PLSTC DIP	34585	CA3146E
A19R1	0630-7236	7		RESISTOR 1K 1\% .OSW F TC=0+-100	24546	C3-1/8-T0-1001F
A19R2	0698-7227	6	9	RESISTOR 422 1\% .05W F TC $=0+100$	24546	C3-1/R-T0-422RF
A19R3	0698-7227	6		RESISTOR 422 1\% .OSW F TC $=0+100$	24546	C3-1/8-T0-422R-F
A19R4	0680-7227	6		RESISTOR 422 1\% .05W F TC $=0+100$	24546	C3-1/8-T0-422R-5
A19R5	0680-7227	6		RESISTOR 422 1\% .05W F TC $=0+100$	24546	C3-1/8-T0-422R-F
A1996	0098-7232	3		RESISTOR 681 1\%.05W F TC $=0+100$	24546	C3-1/R-TO-681R-F
A19R7	0938-7232	3		RESISTOR 681 1\% .05W F TC $=0+100$	24546	C3-1/8-T0-681R-F
A19p8	0600-7232	3		RESISTOR 681 1\% .05W F TC=0+100	24546	C3-1/8-T0-681RF
A1989	0690-7232	3		RESISTOR 681 1\% .05W F TC $=0+100$	24546	C2-1/8-T0-681RF
Algrio	C090-3437	2	1	RESISTOA 133 1\% .12SW F TC $=0+100$	24546	C4-1/8-T0-133R-F
A19R12	0757-0422	5		RESISTOR 909 1\% .I25W F TCw0	24546	CW-1/2-T0-S09R-F
A19R13	$0757-0422$	5		RESISTOR 909 1\% .125W F TC=0+100	24546	C4-1/8-T0-909R-F
A19R14	$0757-0422$	5		RESSSTOR 909 1\% .125W F TC=0+-100	24546	C4-1/8-70-909R-F
A19R15	$0757-0422$	5		RESISTOR 909 1\% .12WW F TC $=0+$-100	24546	C41/6-T0-909R-F
A19R16	0757-0280	3		RESSTOR 1K 1\% .5W .125W F TC $=0+100$	28480	0757-0280

Table 6-3. Replaceable Parts

Reference				
Designation	HP Part	\mathbf{C}		
Number	Oty.	Description	\quad	Mfr.
:---	\quad Mfr. Part Number			

A19R17	00es-3151	7		RESISTOR 2.87K 1\% .125W F TC $=0+100$	24546	0690-3151
A19R18	0698-3132	4		RESISTOR 261 1\% .12SW F TC $=0+100$	24546	C4-1/8-T0-2610F
A19R19	0689-7201	6	1	RESISTOR 34.8 1\%.CSW F TC $=0+100$	24546	C3-1/8-TO-34R8-F
A19R20	0757-0280	3		RESISTOR 1K 1\% .125W F TC=0+100	24546	C4-1/8-T0-1001F
A19R21	0098-7205	0		RESISTOR 51.1 1\% .0SW F TCOO+100	24546	C-1/2-51.1R-F
A19R22	0757-0440	7		RESISTOR 7.5K 1\% .125W F TC=0 $0+100$	24546	C4-1/8-60-7501F
A19R23	0757.0289	2		RESISTOR 13.3K 1\% .125W F TC $=0+100$	19701	MFAC1/8-T0-1332F
A19R24	0757-0442	9		RESISTOR 10K 1\%.125W F TC $=0+100$	24546	CA-1/8-70-1002-F
A19P25	0808-3158	4		RESESTOR 23.7K 1\% .125W F TC=0+100	24546	C4-1/8-T0-2372F
A19R26	1810-0203	5	3	NETWORK-RES 8-SNP470.0 OWM $\times 7$	01121	209471
A19R27	0698-3132	4		RESISTOR 261 1\% .125w F TC $=0+100$	24546	C4-1/8-TO-2610-F
A19R28	1810-0203	5		NETWORK-RES 8-STP470.0 OHM $\times 7$	01121	208447
A19R29	1810.0203	5		METWORK-RES 8-StP470.0 OHM $\times 7$	01121	2084471
A19R30	0757-0394	0		RESISTOR 51.1 1\%.125W F TCa0 $0+100$	24546	C4-1/8-TO-51R1-F
A19R31	0698-7260	7		RESISTOR 10K 1\% .05W F TC=0+100	24546	C3-1/8-T0-1002F
A19R32	0698-7260	7		RESHSTOR 10K 1\%.05W F TC $=0+100$	24546	C2-1/8-10-1002-F
A19233	0757-0420 ${ }^{\text {a }}$	3		RESISTOR 750 1\% .125W F TC=0+100	24546	C-1/8-T0.751-F
Alsfas ${ }^{\text {a }}$	0757.0420	3		RESUSTOR $7501 \% .125 \mathrm{WF}$ TC $=0+100$	24546	C3-1/8-T0-751-F
A19R35	0698-7195	7	2	RESISTOR 19.6 1\%.05W F TC=0+100	24546	C3-1/8-TO-19R6-F
A19a36	0757-0276	7		RESSSTOR 61.9 1\% .125W F TC=0+100	24546	C41/8-T0-8192F
A19R37	0757-0394	0		RESISTOR 51.1 1\%.125W F TC $+0+100$	24546	C4-1/8-T0-51R1-F
A19R38	0757-0394	0		RESISTOR 51.1 1\% .125W F TC=0+100	24546	0757-0394
A19R39	0757-0276	7		RESISTOR 61.9 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-6192-F
A19R40	0757-0416	7		RESISTOR 511 1\%.125W F TC $=0+100$	24546	0757-0416
Al9Ral	$2100-2413$	9	1	RESISTOR-TRMR 20010% C SLDE-ADJ 1-TRN	30983	ET50×201
A19R42	0757-0416	7		RESISTOR 511 1\% .125W F TC $=0+100$	24546	CL-1/8-T0.511R.F
A19R43	0757-0416	7		RESISTOR 511 1\% .125W F TC=0+100	24546	C4-1/R-TO-511R+
A19R44	0757-0397	3		RESISTOR 68.1 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-68R1F
A19pas	0757-0397	3		RESISTOR $68.11 \% .125 \mathrm{~W}$ F TC $=0+100$	24546	C4-1/8-T0-68R1F
A19R46	0757.0416	7		RESISTOR 511 1\% .125W F TC $=0+100$	24516	C4-1/R-TO-511R-5
A19847	0757.0416	7		RESISTOR 511 1\% . 125 W F TC $=0+100$	24546	C4-1/8-to-511RF
A19R48	0757-0346	2		RESISTOR 10 1\% .125W F TC=0+100	24546	0757-0346
A19R49	$0757-0416$	7		RESISTOR 511 1\% .125W F TC=0+-100	24546	C4-1/8-T0-511R-F
A19R50	0757-0416	7		RESISTOR 5111 1\% .125W F TC=0+100	24546	C4-1/8-T0-511R-F
A19R54	0757-0397	3		RESISTOR 68.1 1\%.125W F TC=0+-100	24546	C4-1/2-T0-68R1F
A19R52	0757-0397	3		RESISTOR 68.1 1\% .125W F TCanot-100	24546	C4-1/8-70-68R1F
A19R53	0757-0697	3		RESISTOR 68.1 1\% .125W F TC=0+100	24546	C4-1/R-TO-68R1F
Al9ast	0757-0416	7		RESSTOR 511 1\% .125W F TC=0+100	24546	C4-1/8-T0-511R-F
A19R155	0757-0416	7		RESISTOR 5111 1\% .125W F TC $=0+100$	24546	C4-1/R-T0.511R-F
A19R56	0757.0416	7		RESASTOR 511 1\% .125W F TComo-100	24546	C4-1/8-TO.511R.F
A19R57	06983132	4		RESISTOR 261 1\% .125W F TC=0+100	24546	C+1/Q-T0-2610-F
A19R58	00083132	4		RESISTOR 261 1\% .125W F TC=0+100	24546	C4-1/0-T0-2610F
A19R59	0098-3132	4		RESSTOR 261 1\% .125W F TC $=0+100$	24546	C4-1/6-T0-2610-F
A19R60	0757-042	9		RESISTOR 10K 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-1002-F
A19A61	0757-0422	5		RESISTOR 909 1\% .125W F TC=0+-100	24546	C4-1/8-T0-SOMR-F
A19R62	06083158	4		RESESTOR 23.7K 1\% .125W F TCumor-100	24546	C4-1/8-T0-2372F
A19R63	0757-0098	4	3	RESISTOR 75 1\% .125W F TC $=0+100$	24546	C\&-1/8-T0-75R0-F

Table 6-3. Replaceable Parts

Reference	HP Part	\mathbf{C}	Ony.	Description	Mfr.
Designation	Number	\mathbf{D}	Mfr. Part Number		

A19

08902-60126 - SERIAL PREFIX 2911A AND ABOVE

Algrich	0757-0¢16	7		RESISTOR 511 1\% .125W F TC=0+-100	24546	C-1/R-T0-511R-F
A19P65				NOT ASSMENED		
A19R66	0757-0465	6		RESSTOR 100K 1\% .125W F TC $=0+100$	24546	C41/8-70-1003-F
A19R67	0757-0397	3		RESISTOA 68.1 1\% .125W F TC $=0+100$	24546	C4-1/8-T0.68R1F
A19R68	0757-0397	3		RESISTOR 68.1 1\% .125W F TC $=0+100$	24546	C4-1/8-70-68R1F
A19869	08083447	4		RESASTOR 422 1\% .125W F TCOO-100	24546	C-1/8-70-422a-
A19R70	0757.0397	3		PESSTOR 68.1 1\% . 12 WW F TC $=0+100$	24546	C41/R-T0.68R1F
A19R71	0880-0033	8		RESISTOR 1.93K 1\% .125W F TC=0 0 +100	24546	C4-1/8-T0-1961F
A19R72	0757-0422	5	11	RESSTOR 909 1\% . 125W F TC=0+100	24546	C4-1/8-T0-909R-F
A19a73				HOT ASSICNED		
A19R74*	0757-0422	5		PESISTOR 909 1\% .125W F TCu0+-100	24546	C4-1/8-70-909R-F
A19R75	$0757-0416$	7		RESISTOR 5111 1\% .125W F TC $=0+100$	24546	C+1/8-70-511R-F
A19R76	0698-3438	3		RESISTOR 147 1\% .125W F TC $=0+100$	24546	C. $1 / 8-\mathrm{TO}-14 \mathrm{P}$ -
A19R77	0698-3438	3		PESSSTOR 147 1\% .125W F TC=0+100	24546	C+1/8-T0-147A-F
A19R78	$0638-3438$	3		FESISTOR 147 1\%.125W F TC $=0+100$	24546	C4-1/8-T0-147R-F
A19R79	0757-0726	2	1	PESISTOR 541 1\% 25W F TC $=0+100$	24546	CS-1/4-TO-511R-F
A19R80	$0838-3441$	8		RESUSTOR 215 1\% .125W F TC=0+100	24546	C4-1/8-70-215R-F
A19a81	00963441	8		RESSSTOR 215 1\% .125W F TC=0+100	24546	C41/8-T0-215R-F
A19R82	$0680-341$	8		RESISTOR 215 1\% .12SW F TC $=0+100$	24546	C+1/B-T0-215R.F
A19R83	0757-0416	7		RESISTOR 511 1\% .125W F TC $=0+100$	24546	C41/R-T0-511R-F
Alspra	0757-0416	7		RESISTOR 511 1\% .12SW F TC=0 $\mathbf{1}$-100	24545	C4-1/8-70-511R-F
A19R85	0757-0397	3		RESSTOR 68.1 1\% .125W F TC=0+100	24546	C+1/8-T0-68R1-F
A19R86	0757-0394	0		RESISTOR 51.11%. 125 W F TC=0 $0+100$	24546	C4-1/8-T0-51R1-F
A19R87	0757-0394	0		RESISTOR 51.1 1\% .125W F TC=0+100	24546	C41/8-TO-51R1+
A19R88	0698-7236	7		RESISTOR 1K 1\% .OSW F TC=0 0 -100	24546	C3-1/8-70-1001F
A19R89	0757-0280	3		PESSTOR 1K 1\% .125W F TC $=0+100$	24546	C4-1/8-70-1001-F
A19R90	0090-7236	7		RESISTOR 1K 1\% .05W F TC=0 0 -100	24545	C0-1/8-70-1001-F
A19R91	0609-7247	0	5	RESISTOR 2.87K 1\% .OSW F TC $=0+100$	24546	C-1/8-T0-2871F
A19R92	0690-3151	7		PESISTOR 2.87K 1\% .125W F TC $=0+100$	24546	C41/2-70-2871F
A19R93	$0608-7247$	0		RESISTOR 2.87K 1\% .05W F TC $=0+100$	24546	C8-1/8-T0-2871F
A19R94	0090-7208	3	1	RESISTOR 68.1 1\% .05W F TC $=0+100$	24546	C3-1/8-TO68R1+
A19R995	0690-7229	8		RESESTOR 511 1\% .OSW F TC=0 0 -100	24546	C3-1/8-TO-511RF
A19R96	0757-0397	3		RESISTOA E8.1 1\% .125W F TC=0+100	24546	C-1/8-T0-6817
A19997	0757-0416	7		RESSTOR 511 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-511R-F
A19R98	0898-7229	8		RESSSTOR 511 1\% .05W F TC $=0+100$	24546	C3-1/8-TO-511RF
A19R99	0690-3439	4	4	RESISTOR 178 1\% .125W F TC=0+100	24546	C4-1/8-T0-178R-f
A19R100	0757-0397	3		RESISTOR 68.1 1\% .125W F TC=0+100	24546	C4-1/8-T0-68R1-
A19R101	0757-0397	3		RESISTOR 68.1 1\% .125W F TC=0+100	24546	CA1/8-T0-68R1-F
A19R102	08983439	4		RESISTOR 178 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-178R+
A19R103	0698-3132	4		RESISTOR 261 1\% .125W F TC $=0+100$	24546	C41/8-T0-2610-F
Al9R104	0757-0442	9		RESISTOR 10K 1\% .125W F TC $=0+100$	24546	C4.1/8-T0-1002.F

Table 6-3. Replaceable Parts

Reference	HP Part	Cty.	Description	Mfr. Code	Mfr. Part Number

08902-60126 - SERIAL PREFIX 2911A AND ABOVE

A19R105	0757-0442	9		RESISTOR 10K 1\%.125W F TC $=0+100$	24546	C4-1/8-70-1002-F
A19R106	0098-7209	4		RESISTOR $751 \% .05 W$ F TC $=0+100$	24546	C3-1/8-70-75ROF
A19R107	0757-0397	3		RESESTOR 68.1 1\% .125W F TCu0 0 +100	24546	C4-1/2-T0.68R1F
A19R108	0680-7209	4		RESISTOR 75 1\% . OSW F TC $=0+100$	24546	C3-1/8-70-75R0-F
A18R109	0680-7229	8		RESISTOR $5111 \% .05 W$ F TC $=0+100$	24546	C3-1/8-TO-511R-F
A19R310	09pe-7236	7		RESISTOR 1K 1\%.05W F TC $=0+100$	24546	C3-1/8-70-1001F
AIOR111	0690-3132	4		RESISTOR $2611 \% .125 W \mathrm{~F}$ TC $=0+100$	28480	06e83132
A18RT12	$0689-7205$	0		RESISTOR 51.1 1\% .05W F TC=0+100	24546	C3-1/8-TO-51R1F
A19R113	0608-3132	4		AESISTOR 261 1\%. 126 W F TC=0+100	24546	C4-1/8-T0-2610F
A18R114	0680-3132	4		FESISTOR 261 1\% .126W F TC $=0+100$	24546	C4-1/Q-T0-2610F
A19R115	00983132	4		RESISTOR 261 1\% .126W F TC $=0+100$	24546	C4-1/8-T0-2610F
A19R116	069e-3132	4		RESISTOR 261 1\%. 126 W F TC $=0+100$	24546	C4-1/8-T0-2610-F
A197P1	1251-0600	0		CONMECTOR-SGL CONT PM 1.14-MM-BSCSZ SO	28480	1251.0600
A197P2	1251-0800	0		CONNECTOR-SGL CONT PWN 1.14-MM-BSC-SZ SO	28480	1251-0600
AISU4	1820-1225	4	1	IC FF ECL D-M/S DUAL	04713	MCT0231P
A19U2	1225-0372	2	6	IC MESC 8-DPPP PKG	28480	1826-0372
A1943	1826-0013	8	2	1C OP AMP LOW-HOISE TO-99 PKG	06665	SSS741C
A1944	06901-67002	4	1	FREQUENCY DUBLER	28480	0090167002
	0340.1008	0		MSLLATORFIC B-NITRIDE	28480	0340-1098
	1251-1556	7		CONECTOR-SEL CONT SKT .018-WNESC-SZ	28480	1251-1556
A19U5	$1826-0372$	2		IC MISC 8-OPP-P PKG	28480	1826-0372
A1946	1820-0017	8		IC FF ECL D-M/S DUAL	04713	MC10131P
A18U7	1820-1940	0	2	IC CNTA ECL BN SYNCHRO POSEDGE-TRIG	28480	1820-1940
A18U8	1820-1940	0		IC CNIR ECL BN SYNCHRO POSEDGE-TRIG	28480	1820-1940
A19Us	1820-0796	2	1	IC GATE ECL. NOR OUAD 2-NNP	04713	MC16621
A18U10	1825-0372	2		CC MASC 8-DIP-P PKG	28480	1826-0372
A19U11	$1826-0372$	2		IC MISC 8-DIP-P PKG	28480	1826-0372
A19U12	1820-0817	8		IC FF ECL DM/ DUAL	04713	MC10131P
A19U13	1820-1400	7	2	CC GATE ECL AND CUAD 2-ANP	04713	Mctiol04P
A19U14	1880-1400	7		IC GATE ECL AND OUAD 2-NP	00713	MC10104P
A19U15	18200828	1	2	CC DCOR ECL BN 3-TO-P-LNE 3HNP	04713	MC10162P
A19U96	1820-0002	1	2	IC GATE ECL NOR CUAD 2-WP	04713	MC10102P
A19U17	18200817	8		IC FF ECL D-M/S DUAL	04713	MC10131P
A19U18	1820-0828	1		CC DCOR ECL Bin 3-TO-GLINE 3HP	04713	MC10162P
A19U19	1820-0802	1		IC GATE ECL NOR OUAD 2-ANP	04713	MC10102P
A19420	1820-1052	5	1	IC XLTR ECL ECL-TO-TTL OUAD 2-NP	04713	MC10125L
A20U21	1820-1225	4		IC FF ECL D-M/S DUAL	04713	MC10816P
A19VR1	1902-0943	5		DIODE-ZNR 2.4V 5\% DO-35 PD=.4W TC=-037\%	28460	1902-0943
A19VR2	1902-0049	2	3	DIODE-ZNR 6.19V 5\% DO-35 PD=.4W	28480	1802-0049
A19VR3	1902-0049	2		DIOOE-ZNR 6.19V 5\% DO-35 PO=.4W	28480	1802-0049
Al9VR4	1902-0049	2		DIOOE-ZNM 6.19V 5\% DO-35 PO=.4W	28480	1902-0049
Alswr	8159-0005	0		RESISTOR-ZERO OHMS 22 AIVG LEAD DUA	28460	81590005
A19W2	8159-0005	0		RESISTOR-ZERO OHMS 22 AWG LEAD DA	23480	8159-0005
Al9w3				MOT ASSIGNED		

Table 6-3. Replaceable Parts

Reference	HP Part						
Designation	\mathbf{C}	Number	\mathbf{D}	Dty	Description		Mtr.
:---:							
Code	\quad Mifr. Part Number						

A20	08901-60023- SERIAL PREFIX 1933A TO 2616A					
A20	02901-60023	5	1	10 CONTROL ASSEMSLY	28480	00901-60023
A20C1	01603878	6		CAPACTIOR XXD 1000PF $+20 \%$ 100VDC CER	09969	RPE121-105×7R102M100V
A20062	0160-3878	6		CAPACTOR-XXD 1000PF + 20% 100VDC CER	09969	RPE121-105×7R102M100V
A20C\%	$0180-0374$	3		CAPACTIOR-FXD 10UF+-10\% 20VDC TA	56289	1500106×502032
A200C4	0260-3878	6		CAPACTTOAFXO 1000PF +-20\% 100VDC CER	09969	RPE127-105x7R102M100V
A20C5	0180-2853	7	2	CAPACTOR-FXD 10UF+20\% 100 VDC TA	56289	1090106x0100C2
A20068	0180-0490	,	1	CAPACTIOR-TXD E8UF+-10\% GVDC TA	12384	T355c6egk006as
A20C7	0160-2204	0		CAPACTOR 5×1	28480	0160-2204
A20c8	$0160-3879$	7		CAPACTIOR-FXD .01UF +20\% 100VDC CER	09569	RPE121-105X7R103M100V
A20069	$0160-2204$,		CAPACTIOR-FXD 100PF $+5 \%$ 300VDC MACA	28480	0160-2204
A20C10	0160-3879	7		CAPACTIOR-FXD .OTLF +20\% 100VDC CER	09969	RPE121-105X7R103M100V
a200611	01603879	7		CAPACTIOR-FXD .01UF +20\% 100VDC CER	00989	RPE121-105X7R103M100V
A20C12	0180-2199	2		CAPACTOR-XDD 30PF +-5\% 300VDC MICA	28480	0160-2199
${ }^{\text {A20C13 }}$	0180-2620	6		CAPACTTOR-XDD 22UF+-10\% 50VDC TA	12344	T355E225K050ns
A20C14	01600153	4		CAPACTOR-FXD 1000PF + 10\% 200VDC POLYE	19701	70801MA102PKZ01AX
A20C15	0160-3879	7		CAPACTIOR-FXD .O1UF +20\% 100VDC CER	08969	RPE121-105X7R103M100V
A20C16	01603879	7		CAPACTOR-FXD .01UF + 20% 100VDC CER	09969	APE121-105×7R103M100V
A20C17	01600161	4		CAPACTIOR+XD . $01 \mathrm{LF}+30 \%$ 200VDC POLYE	19701	708D1CC103PK201AX
A20C18	0180-2853	7		CAPACTIOA $X X D$ 10UF+20\% 100VDC TA	56209	1090106x0100C2
A20C19	01603879	7		CAPACTOR.FXD .01UF +20\% 100VDC CER	09969	RPE121-105X7R103M100V
A20c20	0160-3879	7		CAPACTOR-FXD .OTUF +20\% 100VDC CER	09969	RPE121-105X7R103M100V
A20C21	0160-3879	7		CAPACTIOR-XD .OTUF + $200 \% 100 \mathrm{VDC} \mathrm{CER}$	09969	RPE121-105X7R103M100V
A20c22	0160-3878	6		CAPACTOR-XD 1000PF $+20 \%$ 100VDC CER	09969	RPE121-105X7R102M100V
120053	0160-3878	6		CAPACITOR-TXD 1000PF + 20% 100VDC CER	09969	RPE121-105X7R102M100V
A20CR1	1901-0040	1		DIODE-SWTCHING 30V 50 MA 2 NSS DO-35	9N171	1Na148
A20CR2	1901-0040	1		DIODE-SWITCHING 30V 50MA 2 NS DO-35	9×171	104148
A20CR3	1901-0050	3		DIODE-SWTTCHINS SOV 200m 2 2NS DO-35	9N171	1N4150
A20CR4	1901-0050	3		DIOOE-SWITCHING 80V 200mA 2NS DO-35	9×171	1N4150
AZOCR5	1901-0040	1		DNODE-SWTCHHNG 30V 50MA 2 NS DO-35	9N171	1NK148
A20CR6	1901-0040	1		DIODESWTTCHMGG 30V 501M 2 NS DO-35	9×171	1N4148
A20CR7	1901-0040	1		DIOOESWTCHING 30V 50MA 2NS DO-35	9×171	1N4148
Az0CR8	1901-0040	1		DOODE-SWTCTHiNG 30V 50M4 2 NS DO-35	9N171	1N4148
A20CR9	1901-0040	1		DIODE-SWITCHWG 30V 50 mM 2 NS DO-35	9N171	1 N 148
A20CR10	1901-6040	1		DIODE-SWTTCHNG 30V 50MA 2NS DO-35	\$N171	twatus
A20CR11	1901-0040	1		DHOOE-SWTTCHNG 30V 50mA 2NS DO-35	9N171	1N4148
A20CR12	1901-0040	1		DHODE-SWTCHING SOV 50MA 2NS DO-35	9×171	1N4148
a20CR13	1901-0040	1		DOODE-SWITCHNG 30V 50mA 2NS DO-35	9×171	1 M 148
A20CR14	1901-0040	1		DODE-SWTCHMVG 30V 50 MM 2NS DO-35	9N171	1N4148
A20CR15	1901-0040	1		DIODESWTTCHENG 30V 50MA 2 NS DO-35	9×171	1244148
A20CR16	1901-0040	1		DIODE-SWTCHMNG SOV 50MA 2NS DO-35	9×171	1 1N148
A20CR17	1901.0518	8		DHODE-SCHOTTKY SM SVG	12403	5092-2800
A20CR18	1901-0518	8		DHODESCHOTTKY SM SGG	12403	5082-2800
A20CR19	$1901-0518$	8		DIODESCHOTTKY SM SIG	12403	5082-2800
A20CR20	1901-0040	1		DIODE-SWTCHANG SOV 50MA 2NS DO-35	SN171	1N4148

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cly.	Description	Mfr. Code	Mifr. Part Number
A20		08901-60023-SERIAL PREFIX 1933A TO 2616A				
a20Cras	1901-0040	1		DIOOESSWTTCHNG 30V SOMM 2 INS DO-35	2N171	1N4148
A20CR22	1901-0040	1		DIOOE-SWITCHNG 30V SOMA 2NS DO-35	9N171	$1 \mathrm{NH148}$
A20CR23	1901-0040	1		OLOOE-SWTTCHNG 30V 50MA 2NS DO.35	9×171	$1 \mathrm{NH148}$
A20CR24	1901-0518	8		DIOOE-SCHOTTKY SM SIG	12403	5082-2800
A20CPES	1901-0040	1		DIODE-SWITCHNG 30V SOMA 2NS DO. 35	9 N 171	$1 \mathrm{Ma148}$
A20Craz	1901-0518	8		DHODESCHOTTKY SM SIG	12403	5082-2000
1933A to 2312A						
A20E1				MOT ASSIGNED		
23244 to 2616A						
A20E1	81590005	0		RESASTOR-ZERO OMMS 22 ANG LEAD DIA	11502	YZO 1/4
A203P1	81590005	0		PESISTOR-ZERO OHMS 22 ANG LEAD DA	11502	YZO 1/4
AZO1P2	81500005	0		RESISTOR-ZERO OHMS 22 ANG LEAO DUA	11502	Y20 1/4
A20MP1	00s01-00027	3	2	COVER. LO CONTROL (INCUDESS P.C. EXTRACTOR)	28480	00901-00027
	$2360-0113$	2		SCREW-MACH 6-32 25 -NWLE PAN-HD-POZI	00000	ORDER EY DESCRIPTION
A20MP2	08901-20082	2		P.C. BOARD EXTRACTOR	28480	06901-20082
20001	18540477	7		TRANSSTOP NPN 2NPZO2A SI TO-18 PD=500MW	04713	2nezera
12002	1253-0034	0	3	TRANSISTOR PNP SI TO-18 PD=360NW	28480	1853-0034
12003	16540477	7		TRANSISTOR NPN 2NR2e2A SI TO-18 PD=500NW	04713	2N2232A
12004	1853-0034	0		TRANSISTOR PNP SI TO-18 PD=360MW	28480	1853-0034
A2005	18540247	9	6	THANSISTOA NPN SI TO-39 PD=1W FT =800MHZ	28480	1854-0247
	1200-0173	5	13	MSULATOR-XSTR DAP-EL	13103	7717-86 DAP
A2006	18540477	7		TRANSISTOR NPN 2NI2222A S1 TO-18 PD=500MW	04713	2n2222A
A2007	1853-0034	0		TRANSISTOA PMP SI TO-18 PDm360MW	28480	1853-0034
A2008	1854-0023	9	4	TRANSISTOR NPN SII TO-18 PD=360NW	28480	1854-0023
22009	18540023	9		TRANSISTOP NPW SII TO-18 PD=360NW	28480	1654-0023
A20010	1855-0273	3	2	TRUNSESTOR JFET P-CHAN D.MODE TO-92 51	28480	1855-0273
A20011	1855-0273	3			28480	1855-0273
A20012	1854.0023	9		TRANSISTOR MPN SI TO-18 PD=360WW	28480	1854-0023
A20013	1855-0091	3	4	TRANSISTOR JFET N-CHAN D-MODE S:	26480	1855-0031
220014	18540404	0		TRANSISTOA MPN SI TO-18 PD=360WW	28450	1854-0404
A20015	18540404	0		TRANSISTOR NPN SI TO-18 PD=350MW	28400	1854-0404
A20016	1854-0071	7		TRANSISTOR NPN SI TO-92 PD $=300 \mathrm{WW}$	2 M 227	CP4071
120017				NOT ASSIGNED		
A20018	1855-0091	3		TRANSISTOR HFET N-CHAN DMODE SI	22480	1855-0091
220019	1853-0020	4	4		2 M627	X4228CP20-1
A20020	18540022	8		TRANSISTOR NPN S! TO-39 PD=700NW	07283	S17843
	12000173	5		MLSULTOR-XSTR DAP-GL	13103	7717-85 DAP
A20021	1853-0020	4		TRANSISTOR PNP SI PD=300MW FT $=150 \mathrm{MH}$ [Z	2 M 627	xazesecp20-1
A20022	1854-0022	8		TRANSISTOR NPN SI TO-39 PD $=700 \mathrm{MW}$	07263	517843
	1200-0173	5		MSULATOR-XSTR DAP-GL	13103	7717-86 DAP
A20023	$\begin{aligned} & 1853-0012 \\ & 1200-0173 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$		TRANSISTOR PNP 2NESOHA SI TO-39 PD= $=000 \mathrm{WN}$ MSLLATOR-XSTR DAP-GL	$\begin{aligned} & 04713 \\ & 13103 \end{aligned}$	$\begin{aligned} & \text { 2N2904A } \\ & 717-06 \text { DAP } \end{aligned}$

Table 6-3. Replaceable Parts

Reference	HP Part	\mathbf{C}			
Designation	Number	Dity	Description	Mhr.	Mtr. Part Number

1933A to 2521A						
1200924	1853-0012	4		TRAWSSTTOR PNP 2NESOUA SI TO-39 PO-600w	04713	2N2904A
	12000173	5		MSULATOR-XSTR DAP-EL	13103	7717.86 DAP
A200925	$1853-0012$	4		TRUNSISTOR PNP 2NE904A SI TO-39 PD $=600 \mathrm{NW}$	04713	2 N 2904 A
	1200-0173	5		WSLLATOR-XSTR DAP-GL	13103	7717-86 DAP
2512A to 2616A						
A20024	1853-0594	7		TRUNSISTOR DUWL PNP 2N38008 TO-78	28480	1853-0594
A20925				NOT ASSIGAED		
A20026	18540028	8		TRANSISTOR NPN SI T0-39 PD=700NW	07263	S17843
	12000173	5		WSULATOR-XSTR DAP-GL	13103	717-96 DAP
A20027	18540022	8		TRANSISTOR NPN SI TO-39 PD=700MW	07263	S17843
	1200-0173	5		WSULATOR-XSTR DAP-GL	38103	717-66 DAP
A20R1*	$0098-7276$	5	2	RESISTOR 46.4K +1\% .05W TF TC=0+100	12498	C3-1/6-T0-4642F
A20R2*	0698-7276	5		PESESTOR 46.4K $+1 \%$. 05 W TF TC $=0+100$	12498	C3-1/B-T0-4612-F
A20R3	069e-7248	1	1	PESSISTOR 3.16K +-1\% .OSW TF TC=0+100	12498	C3-1/8-T0-3161-F
A20R4	0757-0279	0		PESISTOR 3.16K $+1 \%$. $125 W$ IF TC $=0+100$	12498	CT4-1/8-T0-3161-F
azors	0808-7260	7		RESISTOR 10K $+1 \% .05 W$ TF TC $=0+100$	12498	C3-1/8-T0-1002-F
az0a6	0698-7258	3	2	PESSISTOR 8.25K + 1\% . O5W TF TC $=0+100$	12498	C3-1/8-70-8251F
a2087	0088-7270	9	1	RESISTOR 26.1K +1\% .05W TF TC $=0+100$	12498	C6-1/6-70-2512-F
A2078	0630-7236	7		RESISTOR $1 \mathrm{~K}+1 \%$. 05 W TF TC $=0+100$	12498	C3-1/8-T0-1001F
A2089	0ese-7212	9		RESESTOR $100+1 \% .05 W$ TF TC= $00+100$	12498	C3-1/8-70-100R-F
A20R10	0757-0465	6		RESISTOR 100K $+1 \%$.125W TF $\mathrm{TC}=0+100$	12498	CT4-1/8-T0-1003-F
A20R11	0688 -7260	7		RESSSTOR 10K $+1 \%$. $05 W$ TF TC $=0+100$	12498	C3-1/8-70-1002-F
A20R12	0690-7260	7		RESISTOR 10K $+1 \%$.05W TF TC $=0+100$	12498	C3-1/8-T0-1002-F
A20R13	0080-72s0	7		PESESTOR 10K $+1 \% .05 W$ TF TC $=0+100$	12498	C3-1/8-70-1002F
A20R14	0898-7279	8	1	RESISTOR 61.8K $+1 \% .05 W$ TF TC $=0+100$	12498	C3-1/8-T06192-F
A20R15	0690-7260	7		RESISTOR 10K +1\% .OSW TF TC=0+100	12498	C3-1/8-T0-1002-F
A20R16				NOT ASSIGNED		
A20R17	0038-7236	7		RESESTOR $1 \mathrm{~K}+\mathbf{1 \%} .05 \mathrm{~W}$ TF TC $=0+100$	12498	6-1/8-70-1001-F
A20R18	0698-7236	7		RESISTOR 1K $+1 \%$. OSW TF TC $=0+100$	12498	C3-1/8-T0-1001.F
A20119	0698-7287	4	1	RSSISTOR 19.6K $+1 \%$.05W TF TC $=0+100$	12498	C3-1/8-T0-1962.F
A20R20	0688-7259	4	3	RESISTOR 9.00K $+1 \%$. $05 W$ TF TC $=0+100$	12498	C3-1/8-T0-9091-F
A20R21	0898-7251	6		RESISTOR 4.22K $+1 \%$. 05 W TF TC $=0+100$	12498	C3-1/2-T0-4221F
A20R22	0608-7240	3		RESISTOR 1.47K $+1 \%$. $05 W$ TF TC $=0+100$	12498	C3.1/8-T0-1471-F
A20R23	0698-7220	8		RESSSTOR $215+1 \% .05 W$ TF TC $=0+100$	12498	C3-1/8-T0-215R-F
A20R24	$0757-0470$	3	1	RESISTOR 162K +-1\% .125W TF TC $=0+100$	12498	CT41/Q-70-7623-F
a20R25	0608-7282	3	1	RESISTOR 82.5K +-1\% .05W TF TC $=00+100$	12498	C3-1/8-T0-8252-F
A20R26	0098-7274	3	1	RESISTOR 38.3K + -1\% .05W TF TC $=0+100$	12498	C3-1/8-T0-3832-F
A20R27	0e98-7261	8	1	RESISTOR 11K $+1 \%$.0SW TF TC=0 $0+100$	12498	c3-1/8-T0-1102-F

Reference	HP Part	\mathbf{C}	Caty.	Description	Mitr.
Designation	Number	\mathbf{D}	Mitr. Part Number		

A20R28	0698.7253	8		RESISTOR 5.11K +1\% .OSW TF TC=0+100	12498	C3-1/0-70-5111F
A20829	0030-7216	3		RESSTOR $147+1 \%$.05W TF TC $=0+100$	12498	C3-1/G-TO-147R-F
A20月30	0030-7251	6		RESISTOR 4.22K +-1\% .OSW TF TC=0+100	12498	C3-1/8-T0-4221F
A20R31	0896-7259	4		RESISTOR 9.09K $+1 \% .05 \mathrm{~W}$ TF TC $=0+100$	12498	C3-1/8-ro-6091F
A20R33	0898-7284	5		RESISTOR 100K +-1\% .OSW TF TCO $=0+100$	12498	C-1/8-T0-1003-F
A20R33	0098-7236	7		RESISTOR 1K + 1\% .05W TF TC=0+100	12498	C-1/9-70-1001-F
A20734	0080-7236	7		RESISTOR 1K +-1\% .05W TF TC=0+100	12498	C3-1/8-T0.1001F
A20R33	0e08-7236	7		PESSSTOR 1K $+1 \%$.OSW TF TC $=0+100$	12498	C3-1/8-T0-1001F
A20n36	0000-7236	7		RESISTOR $1 \mathrm{~K}+1 \%$. OSW TF TC $=0+100$	12496	C3-1/0-10-1001F
A20R37	0008-7288	8	3	RESISTOR 147K $+1 \%$ OSW TF TC $=0+-100$	12498	C3-1/0-T0.1473-F
A20R38	0098-7236	7		RESISTOR 1K +-1\%.05W TF TC $=0+100$	12488	C3-1/8-70-1001-F
A20R39	0088-724	5		RESSTOR 100K $+1 \%$ OSW TF TC $=0+100$	12498	C3-1/8-70-1003F
A20R40	0690-7243	6	1	RESETTOR 1.96K + 1%. 05 W TF TC=0 $=0+100$	12498	C3-1/8-10-1961F
A20R41	0080-7260	7		RESISTOR 10K $+1 \%$ - 1% SW TF TC $=0+100$	12498	C3-1/8-70-1002F
AEOR42	0690-7250	7		RESISTOR 10K + 1\% .OSW TF TC=0 0 -100	12498	C-1/R-70-1002F
A20R43	0757-0279	0		RESESTOR 3.16K + 1\% .125W TF TC=0 $\mathbf{1 0 0}$	12498	CT4-1/8-T0-3161-F
A20R44	0098-7250	7		RESISTOR 10K + 1\% .OSW TF TC=0+100	12498	C3-1/8-70-1002-F
A20R45	0830-7288	9		RESESTOR 147K $+1 \%$.05W TF TC $=0+100$	12498	C3-1/8-70-1473-F
A20R46	0698-7275	4	1	RESSSTOR 42.2K +i\% .05W TF TC $=0+100$	12498	C3-1/8-T0-4202-5
A20R47	$0757-0460$	1	1	RESISTOR 61.9X +-1\% .125W TF TC=0+100	12498	CT4-1/8-T0-6192-F
AROP48	0098-7260	7		RESISTOR 10K + 1\% .OSW TF TC=0 $=100$	12498	C3-1/8-70-1002F
A20R49	0690-7253	8		RESISTOR 5.11K +1\% .05W TF TC $=0+100$	12498	C-1/2-T0-5111F
A20R50	0757-0290	5		RESISTOA 6.19K +-1\% .125W TF TC= $0+100$	19701	5033R-1/8-T0.6191-F
AzOR51	0898-7260	7		RESESTOA 10K $+1 \%$. OSW TF TC $=0+100$	12498	C3-1/8-T0-1002.F
A20R52	0588-7258	3		RESISTOA 8.25K $+1 \% .05 \mathrm{~W}$ IF TC $=0+100$	12498	C3-1/8-70-8251F
A20R53	0039-7253	8		RESISTOA 5.11K +1\% .0SW IF TC $=0+100$	12498	C-1/8-T0-5111F
A20A54				NOT ASSIGNED		
A20R55				NOT ASSIGNED		
A20R56	0898-7236	7		RESNTOR 1K +1\% O5W TF TC $=0+100$	12498	CS-1/8-T0-1001-F
A20R57	0757-0462	3		RESISTOR 75K + 1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-7502-F
A20A58	0757-0199	3		RESISTOR 21.5K +1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-2152-F
A20R59	0808-7236	7		RESISTOR 1K +1\% . 0 WW TF TC= $0+100$	12498	c3-1/8-70-1001F
A20R60	0698-7259	4		RESISTOR 9.09K $+1 \%$. 05 W TF TCm $=0+100$	12488	C3-1/2-T0-9091F
A20861	0698-7236	7		RESSTIOR IK $+-1 \%$.05W TF TC $=0+100$	12498	c3-1/8-T0.1001F
A20R62	0688-6744	4	1	RESISTOR $2 \times+0.05 \%$.1W TF TC $=0+15$	09464	PR1/10
A20R63	0690-7204	5		RESISTOR 100K $+1 \%$. 05 W TF TC $=0+100$	12408	C3-1/8-10-1003-F
A20R64	0757.0401	0		RESISTOR $100+\mathbf{1 \%}$. 125 W TF TC $=0+100$	12458	CT-1/8-TO-101F
A20R65	06890381	1	2	RESISTOR 40K $+0.1 \%$, W W TF TC $=0+15$	09464	PR1/10
A20966	0699-0381	1		RESISTOR 40K $+-0.1 \%$. 1 W TF TC $=0+15$	09464	PR1/10
A20R67	0757-0401	0		RESISTOR $100+1 \% .125 W$ TF TC $=0+100$	12498	CT-1/8-TO-101-F
A20R68	06990118	2	1	RESISTOR 20K +-0.1\% .1W TF TC=0+-5	09464	PR1/10
A20R69	0680-3444	1		RESISTOR $316+1 \%$. 125 SW TF TC $=0+100$	12498	CT4-1/8-T0-316R-F
A20A70	0690-7260	7		RESISTOR 10K $+1 \%$.OSW TF TC $=0+100$	12498	CS-1/8-T0-1002F
A20R71	0698-7236	7		RESUSTOR 1K $+1 \%$.OSW TF TC $=0+100$	12498	C3-1/8-70-1001F
A20R72	0608-7257	2	1	RESISTOR 7.5K + $\mathbf{1 \%}$. OSW TF TC $=0+100$	12498	C3-1/6-70-7501F

Reference Designation	HP Part Number	\mathbf{C}		
\mathbf{D}			Cty. \quad Description \quad	Mitr.
:---:				

08901-60023 - SERIAL PREFIX 1933A TO 2616A

120873	0090-7250	7		RESISTOR 10K $+1 \%$. 05 W TF TC $=0+100$	12498	C3-1/R-T0.1002F
A20874	0757-0158	4	1	RESSTOR $619+1 \% .5 W$ TF TC $=0+100$	K8479	
120875	0890-7236	7		RESSTSTOR $1 \mathrm{~K}+1 \%$. 0 SW TF TC $=0+100$	12498	C3-1/8-T0-1001F
A20R76	0090-7250	7		RESSSTOR 10K $+1 \% .05 \mathrm{~W}$ TF T $C=0+100$	12498	C31/-T0.1002F
A20R77	ccee-7218	5	1	RESSTOR 178 $+1 \% .05 \mathrm{~W}$ TF TC $=0+100$	12408	C0-1/Q-T0-178F-
120978	0008-7250	7		RESSTOR 10K $+1 \%$. OSW TF TC $=0+100$	12498	C3-1/8-T0-1002F
A20R79	0098-7236	7		RESISTOR $1 K+1 \% .05 \mathrm{~W}$ TF $T C=0+100$	12498	C3-1/8-70-1001F
A20R80	0098-7296	7	1	RESISTOR 121K $+1 \% .05 \mathrm{~W}$ TF $T C=0+100$	12498	C-1/8-T0-1213F
A20R81	0757-0280	3		RESSTOA 1K $+1 \% .125 W$ TF TC $=0+100$	12498	CTL.1/-T0-1001f
A20882	0757-0279	0		RESISTOR 3.16K + 1\% . 125 W TF $T C=0+100$	12498	CT4-1/1-T0-3161-
A20883	0698-7288	9		RESISTOP 147K +1\% .OSW TF TC=0+100	12498	C3-1/8-T0.1473F
azors	0698-7232	9	1	RESSTOR $12.1 \mathrm{~K}+1 \%$. .SW TF TC $=0+100$	12498	C-1/A-T0-1212-
A20TP1	1251-0800	0		CONNECTOR-SEL CONT PN 1.14 MMM-BSC-SZ SO	12360	94-155-1010-01-03-00
A201P2	1251-0800	0		COWNECTOR-SEL CONT PW 1.14MM-ESC-SZ SQ	12360	94-155-107001-03-00
A20tP3	1251-0600	0		CONMECTOR-SSL CONT PWN 1.14 MM-ESCSZ 50	12360	94-155-1010-01-03-00
A201P4	1251-0600	0		CONMECTOR-SEL CONT PN T.14-MM-BSC-SZ SO	12360	94-155-1010-01-03-00
22041	1825-0013	8		IC OP AMP LOW-WOISE 8-TO-99 PKG	24355	AD74ich
n20U24	1820-1547	3		IC MUITPLEXER \&-CHNL-ANL 16-DP-C PKG	04713	MC14051
A2013	1820-1198	0		CC GATE TLL LS MAND OUAD 2-NP	01295	SNTALSO3N
A2004	$1826-0217$	4	1	$1 C^{\prime}$ OP ANP GP DUAL 8-TO-99 PKG	07933	RC1558H
A20U5	3826-0161	7		IC OP AMP GP OUAD 14DIPP PKG	27014	LM324N
A2006	1820-1200	5		cin mithls hex	01295	SNT4LSOSN
A2017	1820-1411	0		IC LCH TIL LS D-TYPE 4BT	01295	SN74S75N
A2048	1820-1199	1		ICINV TIL LS HEX 1-ANP	01295	SNTALSOAN
A2049	1820-1216	3		IC DCDA TIL LS 3-TO-LINE 3HPP	01295	SN74LS138N
A20U10	1826-0188	8	2	D/A Q-BT 16CERDIP BPLR	04713	MC1408L-8
A20119	1820-1216	3		IC DCOR TIL LS 3-TOQLINE 3-NP	01295	SNT4LSI3EN
120012	1826-0188	8		D/A 8-ETT 16-CERDP BPLR	04713	MC1408L-8
A20U13	1990-0643	7		OPTOHSOLATOR LEDPCNDCT F=AOMA-MAX	03911	Cums500
${ }^{2} 20114$	1990-0643	7		OPTO-SOLATOR LEDPCNDCT F=COMA-MAX	03911	Cum650
A20U15	1820-195	7		IC FF TIL LS D-TVPE POSEDGE-TRIG COM	01295	SN74LS175N
220U16	1820-1411	0		IC LCH THL LS D-TMPE 4BIT	01295	SNT4LST5N
220U17	1820-1411	0		IC LCH TIL LS O-TYPE 4-EIT	01295	SN74L575N
A20118	1820-1411	0		IC LCH TIL LS D-TMPE 4BT	01295	SN74LS75N
200119	1820-1411	0		IC LCH TLL LS D-TYPE 4-8IT	01295	SN74LS75N
a20uz	1820-1411	0		IC LCH TLL LS D-TYPE 4BT	01295	SN74L575N
azouzi	1820-1411	0		CCLCH TLL LS D-TYPE 4-AT	01295	SN74LS75N
A20123	1820-1411	0		IC LCH TIL LS D-TYPE 4-BIT	01295	SN74LS75
a20uz3	1820-1197	9		IC GATE TTL LS NUND OUAD 2-NNP	01295	SNTALSOON
a20VR1	1502-0041	4		DIODE-2NR 5.11V 5\%.4W	07263	1N751A
A20VR2	1902-004	4		DIOOE-2NR 5.11V 5\%.4W	07263	1N751A
A20VR3	1902-0064	1	3	DIOOE-ZNR 7.5V 5\% DO.35 PD=.4W TC=+.05\%	28480	1902-0064
A20VP4	1902-0064	1		DIODE-ZNR 7.5V 5% D0.35 PD=.4W TC $=+.05 \%$	28480	1902-0064
A20VA 5	1802-0064	1		DIOOE-2NR 7.5V 5\% DO-35 PD=.4W TC $=+.05 \%$	28480	1902-0064

Table 6-3. Replaceable Parts

A20	0080760835	1	1	10 CONTROL ASSEMBLY	28480	06901-60285
A20CT	0160-4835	7	3	CAPACTIOR + XD . IUF + IOX SOVDC CER	28480	0160-4835
A20062	0160-4835	7		CAPACTIORFXD .1UF + 10% SOVDC CER	28480	0160-4835
A2003	0180-1746	5	2	CAPACTTOA-XD 15UF+10\% 20VOC TA	56299	1500156×902082
A20ca	0160-4835	7		CAPACTIOR+XO . 1 LF + 10% 50VDC CER	28480	0160-4835
A20065	0180-1746	5		CAPACTIORFXD 15UF+-10\% 20VDC TA	56289	1500156x902032
A2006	01800269	5	1		56289	3001056150892
A20067	0160-4801	7	2	CAPACTTOR+XD 100PF +5\% 100VDC CER	28460	0160-4601
A20c8	0180-4832	4	6	CAPACTTORFXD OIUF + 10% 100VDC CER	28480	0160-4832
A2009	0160-4801	7		CAPACTIORFXD 100PF +-5\% 100VDC CER	28480	0160-4801
A20C10	0160-4832	4		CAPACTTOR-TXD .01UF + 10% 100VDC CER	28480	0160-4832
A20C11	0180-4832	4		CAPACTTOR-FXD . O1VF + 10% 100VDC CER	28480	0160-4832
A20C12	0160-4807	3	1	CAPACTIOR-FXD 33PF +-5\% 100VDC CER $0+30$	28480	0160-4807
A20C13	01800197	8	1	CAPACTIORFXD $2.2 \mathrm{VF}+10 \%$ 20VDC TA	56289	150022599020A2
A20C14	0160-4814	2	1	CAPACTIOR-XXD 150PF + 5% 100VDC CER	28480	0160-4814
A20C15	0160-4832	4		CAPACTIOR-FXD .D1UF + $\mathbf{1 0 \%}$ 100VDC CER	28480	0160-4832
A20C16	0160-4832	4		CAPACTIOR-XD MUF + 10% 100VDC CER	28480	0160-4832
A20C17	01600161	4	1	CAPACTTORFXD O1UF $+10 \%$ 200VDC POLYE	28480	0160-0161
A20C18	0160-3324	7	1	CAPACTIORFXD IUF +5\% 100VDC METPFOLYC	28480	0160-3324
A20C19	0160-4832	4		CAPACTOR FXD OILF $+10 \%$ 100VDC CER	28480	0160-4832
A20C20	0180-1997	8	1	CAPACTOR-FXO 20UF+50-10\% 150VDC AL	28480	0180-1897
020021	0160-4832	4		CAPACTIOR-FXD . $014 \mathrm{~L}+10 \%$ 100VOC CER	28480	0160-4832
A20C22	0160-4822	2	2	CAPMCTTOR + XD 1000PF $+5 \%$ 100VDC CER	28480	0160-4822
A20C23	0160-4822	2		CAPACTTOR-XD 1000PF +5\% 100VOC CER	28480	0150-4822
A20C24	0160-4832	4		CAPACTIOR-FXD .O1LF + 10% 100VDC CER	28480	0160-4632
A20CR1	1901-1085	6	2	DIODE-SM SIG SCHOTTKY	28480	1907-1085
A20CR2	1901-1085	6		DIODE-SM SIG SCHOTTKY	28480	1501-1085
A20CR3				NOT ASSIGNED		
A20CRA				NOT ASSIENED		
A20CRS	1901-1098	1		DKODE-SWTCHMVG 1 MA150 50V 200MA ANS	9N171	1N4150
azocat	1901-1098	1		DICOE-SWITCHMNG 1 MA150 50V 200MA ANS	${ }^{\text {2N171 }}$	1M4150
A20CR 7	1901-1098	1		DCOOESWITCHANG 1ME150 50V 200MA SNS	ON174	1 1N4150
A20CA8	1901-1098	1		DIOOESWITCHNG 1 N 150500 V 200MA ANS	9N171	$1 \mathrm{Ma150}$
A20CRS	1901-1098	1		DIODE-SWITCHNG 1NA150 50V 200NA ANS	9N174	1Na150
A20CR10	1901-0518	8	6	OLODESM SIG SCHOTTKY	28480	1801-0518
A20CP11	1901-0518	8		DNODESM SGG SCHOTTKY	28480	1901-0518
A20CP12	1901-1098	1	0	COOESWTCHENG 1M 150 S0V 200MA $4 N S$	SN171	INA150
A20CR13	1801-1098	1	D	YODESWITCHMNG $1 \mathrm{~N} / 15050 \mathrm{~V} 200 \mathrm{MA}$ ANS	9N171	1Na150
A20CR14	1901-1098	1	D	TOOESWITCHMNG 1 NB 15050 V 200 MA ans	9N171	ING150
A20CP15	1801-1098	1		DCOESWITCHMGG 1N4150 50V 200MA ANS	SN171	1N4150
A20CP16	1801-1098	1		DICDE-SWITCHMS 1 1K150 50 V 200 Ma ans	8N171	1N4150
A20CR17	1501-0518	8		DIODESM SIG SCHOTIKY	28480	1901-0518
A20CR18	1801-0518	8		DCOOESM SGG SCHOTTKY	28460	1901-0518
A20CR19	1501-0518	8		DIODE-SM SGG SCHOTIKY	28480	$1501-0518$
A20CR20	1501-1098	1		DIODESWITCHANG 1NM150 50V 200MA ANS	¢N171	IMA150

Table 6-3. Replaceable Parts

Reference	MP Part	\mathbf{C}	Oty.	Description	Mfr.
Designation	Number	\mathbf{D}	Mfr. Part Number		

A20
08901-60285 SERIAL PREFIX 2617A AND ABOVE

a 200821	1901-0518	8			28480	1901.0518
A20CR22	1901-1098	1		DCOEESWITCHANG INA 15050 V 200 MA INS	9N171	1NH150
A20CR23				NOT ASSIGNED		
A20CR24	1801-0518	8		DIODESM SIG SCHOTTKY	28480	1901-0518
A20CR25	1501-1098	1		DIODE-SWITCHNG 1 H4150 50V 200MA 4NS	9N171	1N4150
a20051				NOT ASSIGNED		
A200s2				MOT ASSIGNED		
A20053	19900717	6	2	LED-LANP LMWHT m 800UCD FF=30MA-MAX	28480	HLMP-1501
a200S4	1900-0717	6		LED-LANP UMHWT =800UCD FFESOMA-MAX	28480	HLMP-1501
A20, 1	9100-3922	4	3	MOUCTOAFIXED 120-1300 HZ	28480	91003922
A20.2	91003922	4		WDUCTOR FIXED 120-1300 HZ	28480	91003922
12043	9100-3922	4		MDUCTORFIXED 120-1300 HZ	28480	91003922
A2OMP1	$08901-00104$	7	1	CVA LO CONT BD	28480	00901-00104
	2360-0113	2	2	SCREW-MACH 632.25 -NLG PANHD-POZI	00000	ORDER BY DESCRIPTION
12001	1854-0477	7	5	TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW	04713	2N2222A
A2002	1253-0034	0	3	TRANSISTOR PNP St TO-18 PD=360NW	28480	1253-0034
A2003	$1854-047$	7		TRANSISTOR MPN 2NRPP2A SIT TO-18 PD $=500 \mathrm{NW}$	04713	2N2222A
A2003	1853-0034	0		TRANSISTOR PNP SI TO-18 PD=360MW	28480	1853-0034
a2005	1854-0378	7	1	TRANSISTOR NPN 2N5109 SI TO-39 PD=800NW	34.585	2N5109
22006	1854-0477	7		TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW	04713	2N2222A
- 22007	1853-0034	0		TRANSISTOR PNP SI TO-18 PD-360MW	28480	1853-0034
A2008-011				NOT ASSIGNED		
A20012	1854-0813	5	3	TRAWSISTOR NPN 2N3501S Si TO-39 PD=1W	28480	1854-0813
120013	1853-0462	8	2	TRANSISTOR PNP 2N3635 SI T0-39 PD=1W	28480	1853-0462
A20014				NOT ASSKANED		
A20015				NOT ASSIGAED		
A20016	1854-0477	7		TRANSISTOR NPN 2AN222A SI TO-18 PD=500MW	04713	2N2222A
A20017				NOT ASSIGNED		
A20018 NOT ASSIGNED						
A20019	1853-0594	7		TRANSESTOR-DUNL PAP 2N38808 TO-78	28480	1853-0594
A20020	18540474	4	3	TRANSSTOR NPN SI PD=310NW FT=100MHZ	04713	2N5551
A20021	1854-0474	4		TRANSSTOR MPN SI PD $=310 \mathrm{MW}$ FT $=100 \mathrm{MHZ}$	04713	2N5551
120022	1854-0813	5	3	TRANSISTOA NPN 2NS501S Si TO-39 PD=1W	28480	1854-0813
A20023	1853-0462	8	2	TRANSISTOR PAP 2N3635 SI TO-39 PD=1W	28480	1853-0462
A20024	1853-0594	7		TRANSISTOR-DUAL PNP 2N3808 TO. 78	28480	1853-0594
A20025				NOT ASSKMED		
A20026	18540813	5	3	TRANSISTOR NPN 2N3501S S1 TO-39 PD=1W	28480	18540813
A20027	1854-0474	4		TRANSSTOR NPN SI PD $=310 \mathrm{WW}$ FT $=100 \mathrm{MH} \mathrm{Z}$	04713	2N5551
A20028	1854-0477	7		TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW	04713	2N2222A
A20R1	$2100-3161$	6	1	RESISTOR-TRMR 20K 10\% C SIDE-ADJ 17-TRN	02111	43 P 203
A20R2	0757-0463	4	1	RESSTOR 82.5K 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-8252-F
A20a3	0008-7284	5	2	RESESTOR 100K 1\%.OSW F TC $=0+100$	24546	C3-1/8-T0-1003-F
A20p4	0ese-7284	5		RESISTOR 100K 1\% .OSW F TC $=0+100$	24546	C3-1/8-10-1003-F
A20A5	069e-7260	7	4	RESISTOR 10K 1\% .OSW F TC=0 $0+100$	24546	C3-1/2-T0-1002F

Table 6-3. Replaceable Parts

Reference	HP Part	\mathbf{C}	Oty.	Description	Mrr.
Designation	Mumber	\mathbf{D}		Mtr. Part Mumber	

Table 6-3. Replaceable Parts

Reference	HP Part	\mathbf{C}			
Designation	Number	\mathbf{D}	Ciy.	Description	Mtr.

A20 08901-60285 SERIAL PREFIX 2617 A AND ABOVE

A20R55				NOT ASSIGNED		
A20P51	0896-7261	8	1	RESISTOR 13K 1\% .OSW F TC=0 0 -100	24546	C3-1/8-70-1102-f
A20R52	069e-7258	3	1	PESISTOR 8.25K 1\% .05W F TC=0+100	24546	C3-1/8-T0-8251-F
A20P53				NOT ASSIGNED		
A20R54				NOT ASSIGNED		
A20R55				NOT ASSIGNED		
a20R56	0098-7236	7	7	RESISTOR 1K 1\%.05W F TC $=0+100$	24546	C3-1/8-T0-1001-F
2617 A anly						
A20R57	0757-0123	3		RESISTOR 34.8K 1\% .12SW F TCx+1-100	28480	0757-0123
26188 and above						
A20R57	0698-3162	0		RESISTOR 46.4K 1\% .125W F TC= $=$-100	24546	C4-1/8-T0-4542F
A20R58	0757-0199	3	1	RESISTOR 21.5K 1\% .125W F TC $=0+100$	24546	C4-1/8-70-2152-F
A20R59	0098.7236	7		RESSTSTOR 1K 1\%.05W F TC $=0+100$	24546	C3-1/8-T0-1001f
A20P50	0690-7259	4		RESISTOR 9.09K 1\% .OSW F TC $=0+100$	24546	C-1/8-T0-5091-F
A20R61	0688.7236	7		RESISTOR 1K 1\%.O5W F TC $=0+100$	24546	C3-1/8-T0-1001F
A20R60-R69				NOT ASSIGNED		
A20R70	0608-7236	7		RESISTOR 1K 1\%.OSW F TC $=0+100$	24546	C3-1/8-TO-1001-F
A20R71	0698-3439	4	1	RESISTOR 178 1\% .125W F TC $=0+100$	24546	C\&-1/8-TO-178R-F
A20R72	0698-7236	7		RESISTOR 1K 1\%.OSW F TC $=0+100$	24546	C3-1/8-T0-1001.f
A20R73	0098-0082	7	1	RESISTOR 464 1\% .125W F TC $=0+100$	24546	C4-1/0-T0-4640F
A20R74	0698-3154	0		RESISTOR 4.22K 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-4221F
A20R75	0698-7236	7		RESISTOR 1K 1\% .05W F TC=0 $\mathbf{0}$-100	21546	C3-1/8-T0-1001-F
A20R76	0698-7236	7		RESISTOR 1K 1\%.OSW F TC $=0+100$	24546	C3-1/2-T0-1001.F
A20R71	0698-7286	7		RESISTOR 121K 1\% .OSW F TC $=0+100$	24546	C3-1/8-T0-1213-5
A20R78	0699-0069	2	1	RESISTOR 2.15M 1\% .125W F TC=0+100	28480	0699-0069
A20R79				NOT ASSIGNED		
A20R80				NOT ASSIGNED		
A20R81				NOT ASSIGNED		
A20R82	0658-7248	1		RESISTOR 3.16K 1\% .O5W F TC=0+100	24546	C3-1/8-T0-3161F
A201P1	1251-0600	0	4	CONNECTOR-SEL CONT PIN 1.14-MM-ESC-SZ SC	28480	1251-0600
A201P2	1251-0600	0		CONWECTOR-SGL CONT PW 1.14-MM-ESC-SZ SO	28480	1251-0600
A201P3	1251-0800	0		CONNECTOR-SCL CONT PW 1.14-MM-BSCSZ SO	28480	1251.0600
A20TP4	1251-0600	0		CONHECTOR-SGL CONT PWN 1.14-MM-BSC-SZ SO	28480	1251-0800
n20U1	1826-0969 ${ }^{\text {4 }}$	7	4	C OP AMP GP 8-DPPC PKG	27014	LM307J
A20U2	1826-0605	4	1	IC MULTPLXR 8-CHAN-ANLG 16-DHP.C PKG	17856	DCs5088K
a2013	1820-1198	0	1	IC GATE TTL LS NAND CUAD 2-NMP	01295	SN74LSO3N
a 2204	1826-0328 ${ }^{\text {D }}$	8	1	IC OP AMP GP DUAL 8-DIP PKG RV45580E	28480	1826-0328
A2OU5	1826-0716	8	1	IC OP AMP LOW-AOISE DUAL 8-DIP-C PKG	18324	NES532AFE

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Caty.	Description	Mifr. Code	Mitr. Part N
A20			08901-60285 SERIAL PREFIX 2617A AND ABOVE			
A2OUS	1820-1199	1	2	IC NVV TLL LS HEX TANP	01295	SN74LS04N
12047	1820.1195	7	3	IC FF TIL LS D-TYPE POSEDCE-TRIG COM	01295	SN74LSi75N
A20us	1820-1199	1		IC WV TIL LS HEX I-NP	01295	SN74LS04N
A20U9	1820.1216	3	2	KC DCDR TIL. LS STO-QLINE 3-NP	01295	SN74LSI38N
A20U10	1826-0188	8	2	IC CONV 8-8-D/A 16-OIP-C PKG	04713	MC1408L-8
AzOUI1	1820.1216	3		IC DCOR TTL LS 3-TO-PLME 3-NP	01295	SNT4LS138N
A20U12	1826-0188	8		IC CONV 8-E-D/A 16-DiP-C PKG	04713	MC1408L-8
A20U13				MOT ASSICNED		
n20U14	1826-0606	5	2	IC SWITCH ANLG OUAD 16-DIP.C PKG	17856	OG201BK
A20115	1820.1195	7		IC FF TIL LS D-TYPE POS-EDGE-TRIG COM	01295	SNT4LSI75N
A20U16	1820-141t	0	7	IC LCH TLL LS D.TYPE 4-BT	01295	SN74LS75N
A20117	1820.1411	0		CC LCH TTL LS D-TYPE 4-BT	01295	SN74LS75N
A20U18	1820-1411	0		IC LCH TLL LS D-TYPE 4-Br	01295	SN74LS75N
A20U19	$1820-1411$	0		IC LCH TIL LS D-TYPE 4-BIT	01295	SN74LS75N
A20u20	$1820-1411$	0		IC LCH TTL LS D-TYPE 4-EIT	01295	SN74LS75N
a20u21	$1820-1411$	0		IC LCH TIL LS D-TYPE 4-BT	01295	SN74LS75N
A20U22	$1820-1411$	0		IC LCH TIL LS D-TYPE 4-8IT	01295	SN74LS75N
A20U23	1826-0606	5		IC SWITCH ANLE OUAD 16-DPP-C PKG	17856	DC2018K
A20VR1	1902-0955	9	1	DIODE-ZNR 7.5V 5\% DO-35 PD=.4W TC $=+.062 \%$	28480	1902-0955
A2OW1	8159-0005	0	1	RESISTOR-ZERO OHMS 22 ANG LEAD DIA	28480	8159-0005

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Mifr. Code	Mfr. Pant Number
A21						
A21	0090160025	7	1	LOW FREOUENCY VCXO FLLTER ASSEMBLY	28480	08901-60025
A21C1	0160-2028	6	3	CAPACTIOR-XD 2700 PF $+5 \% 500 V D C$ MICA	28480	0160-2028
N21C2	0160-2534	8	2	CAPACTIOR + XD 300PF + $1 \% 300 \mathrm{VDC}$ MACA	28480	0160-2534
N21c3	0180-2028	6		CAPACTIORFXD $2700 \mathrm{PF}+5 \% 500 \mathrm{VDC} \mathrm{MMCA}$	28480	0160-2028
A2ICA	0160-2028	6		CAPACTOR-XD $2700 \mathrm{PF}+5 \% 500 \mathrm{VDC} \mathrm{MICA}$	28480	0160-2028
azics	0160-2534	9		CAPACTTOAFXO 300PF $+1 \% 300 \mathrm{VDC}$ MUCA	28480	0160-2534
A2TJ1 ${ }^{\text {a }}$	1250-1425	7		CONWECTOR-RF SMC M SELHOLERR 50-OHM	28460	1250.1425
	$2190-0124$	4		WASHER-LK WTL T NO. 10.195 -NMD	16179	500222
	$2950-0078$	9		MUT-HEX-DEL-CHAM 10-32-THD .067-NW-THK	28480	$2950-0078$
N21.12 ${ }^{\text {a }}$	1250-1425	7		CONNECTOR-RF SMC M SCLHOLEFRR 50-OHM	28480	1250-1425
	2190-0124	4		WASHER-LK WTL T NO. 10.195-NHD	16179	500222
	29500078	9		MUT-HEX-DEL-CHAM 10.32-THD .067-HFTHK	28480	2950-0078
A21MP1	00801-00025	1	1	COVER, LF VCXO FLTER (NCLUDES P.C. BOARD EXTRACTOR)	28480	00901.00025
	2360-0113	2		SCREW-HACH 6-32.25-NLLG PANHD-POZI	00000	ORDER BY DESCRIPTION
A21MP2	$06901-00044$	4	1	GASKET, VCXO FLTER ASSEMBLY	28480	$08901-000 \mathrm{M} 4$
A21MP3 ${ }^{\text {a }}$	5001-5539	9		STRAP, GROUND	28480	5001-5539
A21MP4	06901-20082	2		P.C. BOARD EXTRACTOR	28480	08901-20082

Table 6-3. Replaceable Parts

A22

222	00901-80007	5	1	LOW FREOUENCY VCXO ASSEMBLY	28480	08901-60007
02261	0180-0094	4		CAPACTIORFXD 1000F+75-10\% 2SVDC AL	58289	3001076025002
02202	01800197	8		CAPACTIORFXD 2:2VF+-10\% 20VDC TA	56209	1500225x902042
A2203	0160-3459	9		CAPACTOAP ${ }^{\text {POD }}$.02UF $+20 \%$ 100VDC CER	09969	D0111NWB30225V203M100V
A22C4	01800197	8		CAPACTOPFXD 22UF+10\% 20VOC TA	56289	1500225x9020a2
nazes	0160.3459	0		CAPACTTORFXD . OELF + $20 \% 100 \mathrm{VDC}$ CER	08969	D0111NWE30225V203M100V
a2206	$0160-3459$	9		CAPACTTOR-XO .ORUF $+20 \%$ 100VDC CER	08969	DO111NWB30225V203M100V
$422 \mathrm{C7}$	$0160-3459$	9		CAPACTTOR + XD . ORUF $+20 \%$ tOOVDC CER	09969	D0111NWE30275V203M100V
A22C8	0180-0197	8		CAPACTTORFXO 22VF+10\% 20VDC TA	56898	1500225×902042
12209	01800197	8		CAPACTOR- $\times 0$ 22VF+ 10% 20VDC TA	56889	1500225x902012
A22C10	0160.3459	9		CAPACTIORFXD .OEUF + 20% 100VDC CER	08989	D0111NWB30225V203M100V
A22C11	0160-3459	9		CAPACTORFXO .OEUF + 20% 1COVDC CER	09969	D0111 1WWB30225V203M100V
A22C12	0160-3456	6		CAPACTIOR-PXD 1000PF + 10\% 1KVDC CER	06383	CX45XE3A102K-H
A22C13	0160-3456	6		CAPACTIOR-FXD 1000PF + -10\% 1KVDC CER	06383	CK15XE3A102K H
A22C14	0180-3459	9		CAPACTTORFXD .OZUF + $20 \% 100 \mathrm{VDC} \mathrm{CER}$	09969	D0111NWB30225V2034M100V
A22C15	0160-4678	6	1	CAPACTIOR-XXD 560PF + 1% 100VDC MICA	28480	0160-4678
222C16	0160-6679	7	1	CAPACTTORFXD 270PF $+1 \% 300 \mathrm{VOC}$ MMCA	28480	0160-4679
a22cil	0160-4456	8	1	CAPACTTORFXD 750PF + $1 \% 300 \mathrm{VDC} \mathrm{MICA}$	28480	0160-4456
A22C18	0160-2328	9	1	CAPACTTOR-FOD 200PF $+1 \% 300 \mathrm{VDC}$ M	28480	0160-2328
A22C19	$0160-3459$	9		CAPACTIOR+XD .02UF +-20\% 100VOC CER	09969	DD111MWB30225V203M100V
A28C20	0180-0197	8		CAPACTIOR-FXD 2.2UF+10\% 20VDC TA	56289	1500225x9020^2
A22C21	0160-2032	2	1		28480	0160.2032
A22022	0160-2030	0	1	CAPACTIOR-XXD 1200PF + -5\% 500VDC MICA	28480	0160-2030
A28c23	01603459	9		CAPACTTOP- + XD A2UF +-20\% 100VDC CER	09969	D0111NWB302z5V203M100V
A22cea	01600197	8		CAPACTIOR-FXO 22UF+10\% 20VDC TA	56289	1500225x9020A2
022 C 25	01603459	8		CAPACTTOR-FXD .ORUF +-20\% 100VOC CER	09969	DO111NWE30225V203M100V
A22C26	0180-0197	8		CAPACTOR-XOD 2.2UF+-10\% 20VDC TA	56209	1500225×102012
A22c27	01800197	8		CAPACTIOR + XO 2:2UF+ 10% 20VOC TA	56289	1500225x9020^2
A22c28	0160-4680	0	1	CAPACTTOAFXO 4000PF + -5\% 100VDC MACA	28480	0160-4680
A22CR1	1901-0535	9		DIODE-SCHOTTKY SM SIG	28460	1901-0535
A22CR2	1901-0179	7		DHODESWITCHMNG 15V 50MA 750PS DO-7	07263	FDIT7
A22CR3	1901-0535	9		DIODE-SCHOTTKY SM SIG	28480	1901-0535
A22CR4	1901-0179	7		DIODESWITCHENG 15V SOMA 750PS DO-7	07263	FOT77
A22CR5	1901-0535	9		DIODE-SCHOTTKY SM SIG	28480	1901-0535
A22CR6	1901-0179	7		DLODE-SWITCHNG 15V 50MA 750PS DO-7	07263	FD777
A22CR7	1901-0535	9		DIODE-SCHOTTKY SM SIG	28480	1901-0535
a2cris	1501-0179	7		DHODESWITCHENG 15V 50MA 750PS DO.7	07263	F0777
apzcag ${ }^{\text {a }}$	0122-0167	0	4	DIODE-WVC 5.05PF 10\% C3/C25-MIN $=5$	28480	0122-0167
A22CR10 ${ }^{\text {a }}$	0122-0167	0	4	DIODE-WV 5.05PF 10% C3/CES-MAN=5	28480	$0122-0167$
aracrila	$0122-0167$	0	4	DIODE-WVC 5.OSPF 10% C3/C25-MIN $=5$	28480	0122-0167
A22CR12 ${ }^{\text {a }}$	0122.0167	0	4	DIODE-WV 5.05PF 10\% C3/C25-M1N $=5$	28480	0122.0167
A22CR13	1901-0179	7		DIODE-SWTTHENG 15V 50MA 750PS D0.7	07263	FOT7
A22CR14	1901-0179	7		DIODESWITCHNG $15 V$ SOMA 750PS DO.7	07263	FOT7
A2PCR15	1907-0179	7		DICDE-SWITCHMG 15V 50MA 750PS DO-7	07263	FOT77

Table 6-3. Replaceable Parts

Reference Designation	HP Pert Number	$\begin{aligned} & C \\ & D \end{aligned}$	Cly.	Description	Mifr. Code	Mfr. Part Number
A22CR16	1901-0179	7		DICOESWITCHANG 15V 50Ma 750PS DO-7	07263	FDTIT
A2RE1	9170-0029	3		CORESHELOMGGEAD	78488	57.3452
N20E2	8170-0028	3		CORE-SHELDNG BEAD	78488	57,3452
0231	1250-9220	0		COMMECTOPAFF SMC M PC 50-HM	0687	82SMC-50-0-3/111
	2190-0124	4		WASHER-LK ENTL T NO. 10.195 IN-ID	16179	500222
	29500078	9		MUTHEX-DBL-CHAM 10.32-THD .067-HN-THK	28480	2950-0078
02221	9140.0112	2		MOUCTOR RF-CHEMLD $4.7 \mathrm{TH}+$-10\%	91637	M-4.7.7H 10\%
$\mathrm{NzOL2}$	9100-1616	9	3	MOUCTOR RF-C'HEMLD $1.5 \mathrm{UH}+$ +10\%	91637	un-4 1.5U4 10\%
A2213	9140-0325	8	1	MOUCTOR RF-CHHMD 10UH +-2\%	06560	004414-0126
A2214	9140-0112	2		NOUCTOR AF-CHHML $4.7 \mathrm{THH}+10 \%$	91637	M-4 4.7UH 10\%
A2205	9100-1615	8	1	MDUCTOR RF-CHHNL 1.21H + 10%	91637	W-4 1.2UH 10\%
N2016	9140-0324	8	1	COMLFXD,MLD 6.8 UH 2\%	06560	004414-0106
12217	9100-1616	9		MDUCTOR RF-CHHML 1.5 UH + 10%	91637	M-8 1.5UH 10\%
A22LB	9140-0180	4	1	NDUCTOR RF-CHMMLD 2.7 UH + 10%	91637	m-4 2.7UH 10\%
A2219	9100-1616	9		MDUCTOR RF-CHMED 1.5UH + 10%	91637	m-4 1.5UH 10\%
A2210	91400112	2		WOUCTOR RF-CHMED $4.7 \mathrm{TH}+10 \%$	91637	m-4 4.7UH 10\%
A22MPI	00901-00026	2	1	COVER. LF VCXO	28480	00901-00026
	2360-0113	2		SCREW-HACH 6-32 25-MNLG PANHD-POZI	00000	ORDER BY DESCRIPTION
A22MP2	08901-20082	2		P.C. BOARD EXTRACTOR	28480	08901-20082
A2zmp3 ${ }^{\text {a }}$	5001.5539	9		STRAP, GROUND	28480	5001-5539
12201	1854-0477	7		THANSISTOR NPW 2NEE22A SI TO-18 PO-500NW	04713	2×22024
12202	1853-0012	4		TRANSISTOR PNP 2N2904A SI TO-39 PD=600MW	04713	2N2904A
	1200-0173	5		MSULATOR-XSTR DAP-GL	13103	717-86 DAP
22203	1854-0610	0		TRANSESTOR MPN SI TO-46 FT=800MHZ	28480	1854-0610
12204	18540610	0		TRANSISTOR NPN SI TO-46 FT $=800 \mathrm{WHZ}$	28480	1854-0610
A2205	1854-0247	9		TRANSISTOR NPN SI TO-39 PD $=1 \mathrm{~W}$ FT $=800 \mathrm{MHZ}$	28480	1854-0247
A2206	1854-0247	9		TRANSISTOR NPN SI TO-39 PD=1W FT=800MHZ	28480	1854-0247
A2207	1854-0610	0		TRANSISTOR NPN SI TO-46 FT=800MHZ	28480	1854-0610
A2208	1854-0610	0		TRANSISTOR NPN SI TO-46 FT $=600 \mathrm{MHZ}$	28480	1854-0610
12209	1853-0001	1	1	TRANSISTOR PNP SI TO-39 PD=600NW	28480	1853-0001
	1200-0173	5		MSULATOR-XSTR DAP-GL	13103	717-86 DAP
A22R1	0757-0401	0		RESESTOR $100+1 \%$, 12SW TF TC $=0+100$	12498	CT4-1/8-10-301-F
A22R2	0757-9409	0		RESISTOR $100+-1 \%$.125W TF TC $=0+-100$	12498	CT4-1/8-T0-101.F
A22R3	0757-0422	5		RESISTOR $909+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-909R-F
A22R4	0757-0260	3		RESISTOR 1K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-1001F
azzas	0030-3155	1		RESISTOR 4.6aK +1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-4641+
A22R6	0757-0439	4		RESISTOR 6.81K $+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT-1/B-TO-6811-F
N22R7	0898-3430	5		PESISTOR 21.5 +1\% .125W TF TC $=0+100$	D8439	MK2
A22R8	0698-3155	1		RESTSTOR 4.64K +-1\% .125W TF TC=0 0 -100	12498	C74-1/8-T0-4641-F
a22as	0757-0439	4		RESISTOR 6.81K +1\% .125W TF TC=0+100	12498	CT4-1/8-T0-6811-
A22R10	0690-3430	5		RESISTOR $21.5+1 \%$.125W TF TC=0 $=100$	D8439	MK2
A22R11	0600-0082	7		RESISTOR $464+1 \%$.125W TF TC=0+100	12498	CT41/8-T0-4640F
A23R12	068e-0082	7		RESSSTOA $464+1 \% .125 W$ TF TC $=0+100$	12498	CT4.1/8-T0-4640-F
A22813	088e-0082	7		RESISTOR 464 + 4%, 125W TF TC $=0+100$	12498	CT4-1/8-T0-4640F
az2al4	0680-0082	7		REESISTOR 464 +1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-4640-F
a22R15	0698-8004	9	4	RESISTOR 200K + -0.1\% .1W TF TC=0+15	09464	PR1/10

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Qity.	Description	$\begin{aligned} & \text { Mifr. } \\ & \text { Code } \end{aligned}$	Mfr. Part Mumber
A28P16	08808004	9		RESSSTOR 200K $+0.1 \%$.1W TF TC=0+15	09468	PR1/10
A22R17	0690-3445	2		RESISTOR $348+1 \%$.125W TF TC $=0+100$	12498	CTL-1/8-TO-348RF
A22R18	0757-0398	4		RESSTOA $75+1 \% .125 W$ TF TC $=0+100$	D8439	MK2
A22R19	0638-0082	7		RESSTOR $464+1 \% .125 W$ TF TC=0 $0+100$	12498	CT41/Q-T0-4640F
A 22 R 20	0698-0082	7		RESESTOA 464 +1\% .125W TF TC=0+100	12498	CT-1/8-T0-4640F
azzril	0609-8004	8		RESSTOP 200K +0.1\% .1W TF TC=0 0 -15	09464	PR1/10
A22R22	0698-8004	9		RESSSTOR 200K $+0.1 \%$. 1 W TF TC $=0+15$	09464	PR1/10
netres	0757-0400	9		PESISTOR $90.9+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-70-9089-F
AESR24	0006-0082	7		RESISTOR 464 +-1\% , 125W TF TC $=0+100$	12488	CT4-1/R-T0-4640-F
A2ER2S	0698-3430	5		RESISTOR $21.5+1 \%$. 125 W TF TC=0 +100	D8439	NMK2
n22az6	0757-0394	0		RESISTOR $51.1+1 \%$.125W TF TC=0+100	12498	CT4-1/8-T0-51R1-F
A22R27	060-3435	0	1	PESISTOR 38.3 +-1\% .125W TF TC=0 0 -100	D8439	M MK2
A22R28	0757-0421	4		RESISTOR $825+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-T0-825R-F
A22829	0757-0394	0		RESISTOR $51.1+1 \%$. 125 W TF TC=0 0 -100	12498	CT4-1/8-70-51R1-F
A22aso	0ese-3156	2		RESISTOR 14.7K +1\% .125W TF TC $=0+100$	12498	CT4-1/0-T0-1472-f
A2PR31	$0698-348$	3		RESISTOR 303 +-1\% .125W IF TC=0+100	12498	CT41/8-T0-383R-F
A22832	0757-0438	3		RESUSTOR 5.11K +1\% .125W TF TC=0+100	12498	CT4-1/6-T0-5111f
A22R33	0757-0403	2		RESSTTOR 121 $+1 \%$.12SW TF TC $=0+100$	12498	CT4-1/R-TO-121R-F
A22R34	0757-034	2		PESISTOR $10+1 \%$.125W TF TC $=0+100$	D8439	WM2
A22A35	0757-0401	0		PESISTOR $100+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0.101F
A22as6	0757-0346	2		PESISTOR $10+1 \%$.125W TF TC $=0+100$	D8439	NK2
A22937	0757-0399	5		PESESTOR 82.5 +1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-82R5-F
A22R38	0757-0289	2		RESISTOR 13.3K $+1 \%$, 125W TF TC $=0+100$	19703	50338-1/2-70-1332-
A22R39	0757-0438	3		RESISTOR 5.11K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/R-TO-5111+
A22T1	0368060369	0	2	TRANSFORMER, RF S-PW	29480	00660-60369
A22T2	0866060369	0		TRANSFORMER, RF 5-PW	28480	08680-60369
A221P1	1251-0800	0		CONHECTOR-SEL CONT PAN 1.14-MMABSCSE SO	12360	26-155-1010-01-03-00
A22TP2	1251-0600	0		CONNECTOR-SEL CONT PN 1.14-MAM-BSC-SZ SO	12360	94-155-1010,01-03-00
1939A to 2606A						
A2YYt	0410-1184	1	1	CAYSTAL 9.26 MHZ	28460	0410-8181
	1200-0758	2	2	SOCKET-XTAL 2-CONT HC-25/U DPP.SLDR	91506	8004-1617
	0361.0026	6	2	PRET	28480	0061-0026
A22Y2	$0410-1182$	2	1	CRYSTAL 11.26 MHZ	28480	0410-1182
	1200-0758	2		SOCKET-XTAL 2-CONT HC-25/U DP.SLDR	91506	60041617
	0061.0026	6		RIVET	28480	0381-0026
2507A and above						
A22Y1	0410-1615	6	1	CAYSTAL, 9.26 MHR	28480	0410-1615
	1400-0973	7	2	CLP CMPNT . 1390 .154 DIA STL	28480	1400-0973
12242	0410-1616	7	1	CRYSTAL, 11.26 MHZ	28480	0410-1616
	14000973	7	2	CLP CNPNT . 1380 . 154 DUA STL	28480	1400-0973

Table 6-3. Replaceable Parts

Reference	HP Part	\mathbf{C}	Cty.	Description	Mir.
Designation	Number	\mathbf{D}		Code	Mifr. Part Number

A23

1933A to 2543A						
A23	00901-60022	4	1	SAMPIER ASSEMBLY	28480	00901-60022
2545A and above						
${ }^{123}$	00901-60144	1	1	SAMPLER ASSEMBLY	28480	00901-60144
A23C1	0160-3878	6		CAPACTTORFXD 1000PF + 20% 100VDC CER	09969	RPEE121-105X7R102M100V
A3SC2	0160-3878	6		CAPACTTORFXD 1000PF $+20 \%$ 100VDC CER	09969	PPE121-105×7R102M100V
A23C3	01603878	6		CAPACTTOR-FXD 1000PF + 20% 100VDC CER	09969	FPE121-105X7R102M100V
A23C4	0160-0571	0		CAPACTOR-XD 470PF +-20\% 100VDC CER	06383	FDI1X7R2A471M
A23CS	0160-3878	6		CAPACTTORFXD 1000PF + $20 \% 100 \mathrm{VDC}$ CER	09969	RPE121-105X7R102M100V
A23C6	0180-2817	1		CAPACTOR-XXD 6.8UF+10\% 35VDC TA	12344	T355F605K035AS
A23C7	0160-4034	8		CAPACTOR-XD .1UF +20\% 50VDC CER	00969	RPE122-139X7R104M50V
A23C8	0160-4084	8		CAPACTOR-FXD .1UF +-20\% 50VDC CER	09969	RPE122-139x7R104M50V
A23C9	0160-4034	8		CAPACTOR-XD .1LF $+20 \%$ 50VDC CER	09969	RPE122-139X7R104M50V
A23C10	0160-6034	8		CAPACTOR-XD .IUF +-20\% SOVDC CER	09969	RPE122-139x7R104M50V
A23C11	0180-2618	2		CAPACTIOR + XD 33UF+ 10% 10VDC TA	12344	T355F336kOIOAS
A23C12	$0180-2617$	1		CAPACTIOR-XD 6.8UF+-10\% 35VDC TA	12344	T355F685k035AS
A23C13	0180-2617	1		CAPACTOR +XD 68.UF+ $10 \% 35 \mathrm{VDC} \mathrm{TA}$	12344	T355F685k035AS
A23C14	0160-4084	8		CAPACTTOR + XD .1UF +-20\% 50VDC CER	09969	RPE122-139x7R104M50V
A23C15	0180-2617	1		CAPACTIOR- X OD 6.EUF+-10\% 35VDC TA	12344	T355F685K035AS
${ }^{\text {A3C16 }}$	0160-0570	9		CAPACTOR-FXO 220PF + 20\% 100VDC CER	09969	RPE121-105×7R221M100V
${ }^{23} 23{ }^{\text {c }} 17$	0160-3877	5		CAPACTOA-FXO 100PF +-20\% 200VDC CER	09969	RPE121-105X7R101M200V
A23C18	0160-3876	4		CAPACTOR $+X 0$ 47PF +20\% 200VDC CER	09969	RPEE121-105X7R470M200V
A23C19	$0160-3876$	4		CAPACTOR-FXD 47PF +-20\% 200VDC CER	09969	RPE121-105X7R470M200V
A23C20	0160-3873	1		CAPACTTOA+XD 4.7PF +.5PF 200VDC CER	09969	RPE121-105C0G4R7D200V
423 C 21	0160-3876	4		CAPACTIOR-FXO 47PF +-20\% 200VDC CER	09969	RPE121-105X7R4700N200V
A23C22	$0160-3876$	4		CAPACTOR $+X 0$ 47PF $+20 \%$ 200VDC CER	09969	RPE121-105x7R470M 200 V
A23C23	$0160-3873$	1		CAPACTORT-XD 4.7PF +.5PF 200VDC CER	09969	RPE121-105C0G4R70200V
A23C24	0160-4084	8		CAPACTTOR-FXD .1UF $+-20 \%$ 50VDC CER	09969	RPEE122-139X7R104M50V
A23C25	0160-3873	1		CAPACTTOR-FXD 4.7PF +.5PF 200VDC CER	09969	RPE121-105C0G4R7D200V
A23C26	$0160-3875$	3		CAPACTIOR+XD 22PF +5\% 20VVCC CER 0+30	09969	RPE121-105C0G2201200V
A23C27	0180-1745	4	1	CAPACTOR-FXD 1.5UF+-10\% 20VDC TA	56289	1500155×902042
A23C28	016038875	3		CAPACTOR-XD 22PF +-5\% 200VDC CER $0+30$	09969	RPE121-105C0G2201200V
A23C29	01800291	3		CAPACTTOR-FXD 1UF+ $10 \% 35 \mathrm{VDC}$ TA	56289	1500105x9035A2
1933A to 2543A						
A23C30	0160-2264	2		CAPACTTOR-XD 20PF $+5 \%$ 500VDC CER O+30	00535	301-600-C060-2001
2545A						
A23C30	0160-5699	3		CAPACTIOR-XD 20PF +5\% 100VDC CER 0+30	28480	0160-5699
A23C31	0180-0291	3		CAPACTTOR + XD 1UF+ $10 \% 35 \mathrm{VDC} \mathrm{TA}$	56289	1500105x9035A2
A23C32	0180-2617	1		CAPACTOR + XD 6.8UF+-10\% 35VDC TA	12344	T355F6e5k035AS
A23C33	0180-0197	8		CAPACTOR-XD 2.2UF+10\% 20VDC TA	56289	$1500225 \times 9020 \mathrm{A2}$
A23C34	0180.0291	3		CAPACTTOR-XD 1UF+-10\% 35VDC TA	56889	1500105x9035A2
${ }^{\text {A23C35 }}$	0180-0197	8		CAPACTTOR-FXD 22UF+10\% 20VDC TA	56289	1500225×902042

Table 6-3. Replaceable Parts

Reference Designation	hP Part Number	C	Cty.	Description	Mifr. Code	Mifr. Part Number
A23C36	0180-2817	1		CAPACTTOR-PXD 6.8UF+ 10% 35VDC TA	12344	T355F685K035AS
223C37	0160-4653	7	1	CAPACTIOR +XD . 1 LF + 5% 100VDC MET POLYP	84411	HEW-505
123038	01800291	3		CAPACTTOR + XD 1UF+ $+10 \%$ 35VDC TA	56289	1500105×503512
A23C39	01800291	3		CAPACTTOR-FXD 1UF+-10\% 35VDC TA	56289	1500105X5035A2
A23C40	01603879	7		CAPACTIOR-XD . O1UF + 20% 100VDC CER	0096	RPE121-105×7R103M100V
A23C4	01603879	7		CAPACTIOR-FXD DIUF +-20\% 100VDC CER	08909	RPE121-105X7R103M100V
A23C42	01603877	5		CAPACTOR + XD 100PF + $200 \% 200 \mathrm{VDC} \mathrm{CER}$	09969	RPE121-105X7R101M200V
${ }^{23513}$	$0160-0571$	0		CAPACTTOR-XD 470PF $+20 \%$ 100VOC CER	06383	FD1IX7R2A471M
A23C4	$0160-0571$	0		CAPACITOR+XO 470PF + 20% 100VDC CER	06383	FDIIX7R2A471M
1933A to 2026A						
$123 \mathrm{C45}$				NOT ASSIGNED		
2031 A and aboue						
A23C45 $^{\text {- }}$	0160-490	0		CAPACTOR-FXD 1.8PF +25PF 200VDC CER	28480	0160-490
A23CR1	1901-0033	2		DNOOE-CEN PAP 180 V 200M ${ }^{\text {d }}$ D-35	9×171	1N645
A23CR2	1901-0033	2		DIODE-CEN PRP 180V 200 MA D0-35	0N171	$1 \mathrm{NG45}$
A23CR3	1901-0189	9	1	DIODESTEP RECOVERY	20480	OSRD-4653
A23CR4	1901-0518	8		DIODE-SCHOTTKY SM SIG	12408	5082-2800
A23CR5	1901-0518	8		DIODE-SCHOTTKY SM SKG	12403	5082-2800
A23CP6	1906-0096	9	1	DIODE, MATCHED	28480	1906-0098
A23CR10	1901-0033	2		DIODE-GEN PRP 180V $200 \mathrm{MA} \mathrm{DO-35}$	9N171	1N645
NESCR11	1901-0033	2		DIODE-EEN PRP 180V $200 \mathrm{MA} \mathrm{DO-35}$	9N171	1N645
A23CR12	1901-0033	2		DIODE-GEN PRP 180 V 200MA DO-35	9N171	1N645
A23CR13	1801-0033	2		DIODE-GEN PRP 160V 200MA DO-35	9N171	1N645
A23CR14	1901-0033	2		DIODE-GEN PRP 180V 200MA DO-35	9 W171	$1 \mathrm{MG45}$
Az3CR15	1901-0518	8		DIODE-SCHOTTKY SM SIG	12403	5082-2800
A23051	1990-0326	3	2	LED-LAMP LUMANT $=3004 C D$ OF=50MA-MAX	28480	5082-4444
A23052	1990-0326	3		LED-LAMP UMHNTT $=300$ UCD IF=SOMA MAX	28480	5082-444
ARSE1	9170-0029	3		CORE-SHELDMG BEAD	78488	57-3452
A2301	1250-1220	0		CONNECTOR-RF SMC M PC 50-OHM	06877	82SMC-50-03/111
	2150-0124	4		WHSHERHLK NTL T NO. $10.195-1 / H D$	16179	500222
	2950-0078	9		MUTHEX-DEL-CHAN 10-32-THD .057-AN-THK	28480	2950-0078
A2312	1250-1220	0		CONNECTOR-RF SMC M PC 50-OHM	06877	E2SNC-50-0.3/111
	2190-0124	4		WHSHERHK WTL T MO. 10.195 HHLD	16179	500222
	2950-0078	9		NUTHEX-DEL-CHAM 10-32-THD .057-W-THK	28480	2950-0078
A28JP9	8159-0005	0		RESUSTOR-ZERO OHMS 2\% ANG LEAD DA	11502	Y20 1/4
${ }^{123 L 1}$	9100-3922	4		RF CHOKE	28480	9100-3922
A2312	9100-3922	4		RF CHOKE	28480	8100-3922
12313	8100-3922	4		RF CHOKE	28480	9100-3922
A2314	9100-3922	4		RF CHOKE	28480	9100-3922
A23L5	81400210	1		EOUCTOR RF-CHEMLD 100UH +5\%	91637	W-4 100UH 5\%
A23L6	9140-0210	1		WDUCTOR RF-CHMMLD 100UH +5\%	91637	M-4 100UH 5\%
A23L7				PART OF ETCHED CIRCUTT BOARD		
A23L8				PART OF ETCHED CHRCUTT BOARD		
A2319				PART OF ETCHED CRCUIT BONRD		
A23L 10	9100-2250	9	2	MOUCTOR PF-CHMED 180NH + 10%	81637	M-2.18UH 10\%

Table 6-3. Replaceable Parts

Reference Designation	1HP Part Number	$\underset{\mathbf{D}}{\mathbf{C}}$	Cty.	Description	Mifr. Code	Mir. Part Number
A234.11	9100-2250	9		MSUCTOR PF-CHMLD 180NH + 10%	91637	m-2.2.18UH 10\%
A23L12				PART OF ETCHED CIRCUIT BOARD		
N23L13				PART OF ETCHED CIRCUIT BOARD		
A23L14	9140.0144	0	2	WDUCTOR PFF-CH-MLD $4.7 \mathrm{UHH}+-10 \%$	91637	M-2 4.7Un 10\%
A23L15	9140-0144	0		MDUCTOR RF-CHSHLD 4.7UH +-10\%	91637	en-2 4.7UH 10\%
N23L16	91003922	4		PF CHOKE	28480	9100-3922
A23MP1	00901-00024	0	1	COVER, SAMPLER (NCLLOES P.C. EXTRACTOR)	28480	00901-00024
	2360-0113	2		SCREWHMCH 6-32 25-NLG PANHDPOEI	00000	ORDER BY DESCRIPTION
R23M1P2	06901-20062	2		P.C. BOARD EXTRACTOR	28480	08901-20082
A23MP3 ${ }^{\text {a }}$	5001-5539	9		STRAP, GROUND	28480	5001-5539
12301	1854-0247	9		TRANSISTOR NPN SI TO-39 PD=1W FTm800MHZ	28480	1854-0247
02302	1854-0247	9		TRANSISTOR NPN SI TO-59 PD=1W FT=800MHZ	28480	1854-0247
12803	1854-0023	9		TRANSISTOR MPN SI TO-18 PD=360MM	28480	1854-0023
	1200-0173	5		MSLLATOA-XSTR DAP-EL	13103	7717-66 DAP
22304	1853-0007	7		TRANSISTOR PNP 2NSES1 SI TO-18 PO=5600W	04713	2 N 3251
A2305	1854-0210	6		TRANSISTOR NPN 2NR222 SI TO-18 PD=500wW	04713	2×2222
1333A 20 2026A						
12396	1853-0007	7		TRANSISTOR PNP 2N3251 SI TO-18 PD=3604W	04713	2N3251
2031 A and aboveA2396						
	1853-0281	9		TRANSISTOR PNP 2NR907A SI TO-18 PD=400MW	04713	2N2097A
A2307	1205-0037	0	1	HEAT SINK TO-18-CS	98978	TXBF-019-025B
	$1853-0038$	4		TRANSISTOA PNIP S! TO-39 PD=1W FT=100M HH	28480	1853-0038
	1200-0173	5		MSULATOR-XSTR DAP-GL.	13103	7717-86 DAP
12308	1853-0020	4		TRANSISTOR PMP SI PD=300NW FT=1500 HHZ	$2 \mathrm{M627}$	X1z2ecpeori
A2309	1855-0099	1		TRANSISTOR-WFET DUAL N-CHUN D-MODE SI	28480	1855-0049
A23010	1853-0020	4		TRANSISTOA PNP SI PD=SCOMW FT $=150 \mathrm{MH}$ [Z	2 M 627	XA22BCP20-1
7933A 1002543 A						
A23911	1855-0097	3		TRANSISTOR JFET NCHAN D-MODE SI	28480	1855-0091
123912	1855-0091	3		TRANSISTOR JFET N-CHW D-MODE SI	28480	1855-0091
25454 and above						
A23Q11	1855-0420	2		TRANSISTOR ل-FET 2N4391 N-CHAN DMODE SI	28480	1855-0420
A23Q12	1855-0420	2		TRANSISTOR JFET 2N4391 N-CHAN D-MODE SI	28480	1855-0420
A2381	0757-0288	1		RESISTOR 9.09K $+\mathbf{1 \%}$. 125 W TF TC=0+100	19701	50338-1/8-70.9091-F
az3R2	0757-0.416	7		RESASTOR $511+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-511R-F
233R3	0ese-3154	0		RESISTOR 4.22K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-422:F
A2384	0757-1094	9		RESISTOR 1.47K $+1 \%$. 125 W TF TC $=0+-100$	12498	CT4-1/8-T0-1471-F
Az3R5	0757-0405	4	3	RESISTOR 162 +-1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-162P-F
a23R6	0757-0421	4		RESISTOR 825 +-1\% .125W TF TC=0+100	12458	CT4-1/8-T0-825A-F

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cly.	Description	Mfr. Code	Mifr. Part Number
A23R7	0757.0442	9			12498	CTL-1/R-T0-1002-F
A23R8	0epesi40	7		RESISTOR $106+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/R-T0-196R-F
A23R9	0757-0346	2		RESISTOR $10+1 \% .125 W$ TF TC $=0+100$	D8439	ak2
223a 10	0757-0405	4		RESISTOR $162+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-362P-F
A23R11	0757-0230	3		RESISTOR 1K +1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-1001-F
A23R12	0757-1094	8		RESISTOR 1.47K $+1 \% .125 W$ TF TC $=0+100$	12498	CT41/8-T0-1471.f
A23813	0757-0442	9		RESISTOR 10K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-1002-f
-23R14	0696-3136	8		RESSSTOR 17.8K $+1 \%, 125 \mathrm{~W}$ TF TC $000+100$	12488	CT-1/8-T0-1782-F
AE3A15	cese-3154	0		RESSSTOR 4.22K +1\% .125W TF TC $=0+100$	12498	CT4-1/8-TO-4221.F
A23R16	06083631	8	1	RESISTOR $350+5 \% 2 \mathrm{~W}$ MO TC $=0+200$	12498	FP. 69
A2xal 7	cemese99	5	1	RESSSTOR 133 +-1\% .5W TF TC $=0+100$	K8479	H2
A23R18	0757-0465	6		RESSTOR 100K $+1 \% .125 W$ TF TC $=0+100$	12498	CT-1/R-T0-1003-F
N23R19	0757-0394	0		RESISTOR $51.1+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/2-T0-51A1F
A23R20	0757-0394	0		RESISTOR $51.1+1 \% .125 W$ TF TC $=0+100$	12498	CTL-1/R-TO-51R1F
A23R21	0757-0441	8		RESSTOR 8.25K +1\% .125W TF TC=0+100	12498	CT4-1/8-70-8251F
A23822	0090-8827	4		RESISTOR 1M + -1\% .125W TF TC-04-100	12498	CT4
A23823	0698-7205	0		RESISTOR $51.1+1 \%$. 05 W TF TC $=0+100$	12498	C2-1/0-TO-STRIf
A23R24	0757-0441	8		RESISTOR 8.25K $+1 \%$. 125 W TF TC $=0+100$	12498	C7-1/8.T0-8251-F
A23R25	0609-8827	4		RESSSTOR IM +1\% .125W TF TC $=0+100$	12498	CTA
A23R26	0690-6827	4		RESISTOR 1M $+1 \% .125 W$ TF TC $=0+100$	12498	CT4
A23R27	0757-0280	3		RESISTOR $3 K+1 \%^{\text {a }}$.12SW TF TC $=0+100$	12498	CT4-1/8-T0-1001 f
A23R23	0757-0280	3		RESSTOR TK $+1 \%$, 125W TF TC $=0+100$	12498	CT4/88-T0-1001F
A23R29	0757-0438	3		RESISTOR 5.11K $+1 \%$. 125 W TF TC $=0+100$	12498	CTA1/8-Ta.5119-F
A23R30	0688-3151	7		RESSTOR 287K +1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-2871-F
A23R31	0698-3151	7		RESUSTOR 2.87K $+1 \%$.125W TF TC $=0 \leqslant 100$	12498	CT4-1/8-TO-2871-F
A23R32	0757-0442	9		RESISTOR 10K $+1 \times .125 \mathrm{~W}$ TF $\mathrm{TC}=0+100$	12498	CT4/8-T0-1002-F
A23R33	2100-2633	5	1	RESSSTOR-TRMP 1K 10\% TKF SIDE-ADS 1-TRN	73138	E2PARIK
A23R34	0757-0289	2		RESISTOR 13.3K $+\mathbf{1 \%}$. 125 W TF TC $=0+100$	19701	5033R-1/8-T0-1332-F
A23R35	0757-0394	0		RESISTOR 51.1 +-1\% .125W TF TC=0+-100	12498	CTL-1/8-T0-51R1F
A23R36	0098-7212	9		RESISTOR $100+1 \%$. $05 W$ TF TC $=0+100$	12498	C3-1/8-TO-100R-F
A23R37		0				
A23 ${ }^{\text {a }}$ 38	0757-0209	2		RESISTOR 13.3K $+1 \%$.125W TF TC $=0+100$	19701	5033 ${ }^{\text {-1/8-T0-1332-F }}$
A23R39	0757-0280	3		RESISTOR IK $+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-T0-1007-F
A23R40	06983162	0	1	RESISTOR 46.4K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/R-T0-4642F
A23R41	0757-1094	θ		RESISTOR 1.47K $+1 \%$.125W TF TC $=0+100$	12488	CT4-1/8-T0-1471-F
023842	0757-0401	0		RESSTTOA $100-1 \% .125 W$ TF TC $=0+-100$	12498	CT4-1/8-TO-101F
123R43	0757-0420	3	1	RESISTOR $750+1 \% .125 W$ TF TC=00+-100	12498	CT4-1/8-T0-751F
A23f44	0757-0394	0		RESISTOR $51.1+1 \%$. 125 W TF TC=0 $0+100$	12498	CT4-1/8-T0-51R1-F
A23A45	0757-0465	6		RESSTOR 100K $+1 \%$.125W TF TC $=0+100$	12498	C74-1/R-T0-1003-F
A23R46	0680-3260	9	3	RESISTOR 46AK $+1 \%$.125W TF TC $=0+100$	12498	CT4
A23847	06803260	9		RESISTOR 4GAK +1\% .125W TF TC $=0+300$	12498	CT4
A23P48	0757-0274	5		RESISTOR 1.21K +1\% .125W TF TC $=0+100$	12498	CT4-1/R-TO-1211-F
123P49	0698-3260	9		RESSTOR 46aK $+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4
A23P50	0757.0394	0		RESSTOR $51.1+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/R-70-5181-F
AESR51	0757-0274	5		RESSSTOR 1.21K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/R-TO-1211-F

Table 6-3. Replaceable Parts

Reference Designation	hP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty	Description	Mir. Code	Mifr. Part Number
A23R52	$0757-0421$	4		RESESTOR $825+1 \% .125 W$ TF TC=0+100	12498	CT4-1/8-TO-625RF
A23R53	0757.0879	0		RESISTOR 3.16K $+\mathbf{1 \%}$.125W TF TC=0 0 -100	12498	CT4/1/R-T0-3161F
A23P54	21002521	0	1	RESISTOR-TRMP 2K 10\% TKF SDE-AOS 1-TRN	73138	82PAR2K
A23as5*	07570416	7		RESISTOR $511+1 \%$.125W TF TC $00+100$	12488	CTA-1/B-T0-511R-F
A23R56	0757-0442	9		RESISTOR 10K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-50-1002-F
A23R57	0757-0394	0		RESISTOR 51.1 -1\% .125W IT TC=0+100	12498	CT4-1/8-T0-51R1F
A23s488	0696-0082	7		PESISTOR 464 $+1 \%$.125W TF TC $=0+100$	12488	CT4-1/8-T0-4640F
A23P59	0757-0379	1	1	RESISTOR $12.1+1 \%$. $125 W$ TF TC $=0+100$	19701	5033R-1/8-T0-12R1F
A23R60	0098.341	8		RESISTOR 215 +1\% .125W IF TCm0+-100	12488	CT4-1/R-T0-215R-F
A23R61	0757-0416	7		RESISTOR 511 $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-511R-F
A23R62	0757-0416	7		RESISTOR $511+3 \% .12 S W$ TF TC $=0+300$	12498	CT4-1/8-T0-511R-F
A23P63	0757-0200	3		RESISTOR $1 \mathrm{~K}+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/Q-T0-1001-F
A23T14	00901-50042	0	1	SAMPLER TRANSFORMER	28480	08501.60042
A2STP1	1251-0600	0		CONHECTOR-SGL CONT PIN 1.14MM-ESC-SZ SO	12360	94-155-1010.01-03-00
22341	1826-0138	8	1	CC COMPARATOR GP QUAD 14-DPPP PKG	27014	LM339N
A23U2	1826-0413	2		IC OP AMP LOW-ELASHMMPD 8-TO-99 PKG	34371	HA2-2605-5
A23VR1	1902-0041	4		DHODE-ZNR 5.11V 5\% DO-35 PD=.4W	07263	1N751A
A23VR2	1902-0041	4		DVODE-2NH 5.11V 5\% DO-35 PD=.4W	07263	1N751A
A23VR3	1902-0041	4		DODEE-2NR 5.11V 5\% DO.35 PD=.4W	07263	1N751A
A23VR4	1902-0554	4	2	DCODE-ZNR 10V 5\% PD=1W MP=10UA	28480	1902-0554
A23VR5	1802-0554	4		DNODE-2NR 10V 5\% PD=1W 1 R $=10 \mathrm{UA}$	28480	1902-0554

Table 63. Replaceable Parts

Reference	HP Part	\mathbf{C}	Qty	Description	Mfr.	Mfr. Part Number
Designation	Number	\mathbf{D}		Code		

A24

124	08901-60021	3	1	HMGH FAEQUENCY VCO ASSEMBLY	28480	08901-60021
A24C1	0160-0571	0		CAPACTTOR-XXD 470PF + 200% 100VDC CER	06383	FDIIX7REA47IM
A24C2	0160.3877	5		CAPACTTORFXD 100PF + 200% 200VDC CER	09969	RPE121-105X7R101M200V
A24C3				NOT ASSIGNED		
A24C4	0160-3878	6		CAPACTTOR-FXD 1000PF + 20\% 100VDC CER	09969	RPE121-105X7R102M100V
A24C5	0160-3878	6		CAPACTTORFXD 1000PF + 200% 100VDC CER	09969	RPE121-105X7R102M100V
A24C6	0160-0575	4		CAPACTTORFXD .047VF + 20% 50VDC CER	12474	SP205C473MAA
A24C7	0180-1746	5		CAPACTIORFXD 15UF+-10\% 20VDC TA	56289	150D156X902082
A24C8	0180-1746	5		CAPACTIORFXD 15UF+-10\% 20VDC TA	56289	150D156X902082
A24C9	0160-0573	2		CAPACITOR-FXD 4700PF + 20% 100VDC CER	06383	FD12X7R2A472M
A24C10 ${ }^{\text {a }}$	0160.3531	8	1	CAPACTTORFXD 330PF $+5 \% 300 \mathrm{VDC}$	28480	0160.3531
A24C11	0180-0229			CAPACTOR-XD 33UF+-109 10VDC TA	56289	1500336×901082
$\mathrm{A}^{24 C 12}{ }^{\text {a }}$	0160-5951	0	1	CAPACTHOR-XD 390PF + 5\% 50VDC CER $0+30$	28480	0160-5951
A24C13	0160.3879	7		CAPACTTOR-XXD .01UF + 20\% 100VDC CER	09969	RPE121-105X7R103M100V
A24C14	0160.5034	0	1	CAPACITOR-XX 120PF +-2\% 50VDC CER $0+30$	95275	VJobosal21GH
$\mathrm{A}_{24 \mathrm{C} 15}$	$0160 \cdot 3878$	6		CAPACITOF-FXD 1000PF +-20\% 100VDC CER	09969	RPE121-105X7R102M100V
A24C16				NOT ASSIGNED		
1933A to 2309A						
A24C17	0160-4519	4	1	CAPACTTORFXD 9.1PF +-.5PF 200VDC CER	09969	RPE121-105COG9R1D200V
2312A and above						
A24C17	0160-4304	5	1	CAPACTTOR-XD 10PF +-100\% 100VDC CER	28480	0160-4304
A24C18	$0160-4103$	2	1	CAPACTIORFXD 220PF + 50 100VDC CER	06383	FDi2COG2A22 1J
A24C19	0160-3878	6		CAPACTTOR-FXD 1000PF + $20 \% 100 \mathrm{VDC} \mathrm{CER}$	09969	FPPE121-105X7R102M100V
A24C20	0160.3878	6		CAPACTOR-PXD 1000PF $+20 \% 100 \mathrm{VDC} \mathrm{CER}$	09969	RPE121-105X7R102M100V
A24C21	$0160-3878$			CAPACITOR-FXD 1000PF +.204 100VDC CER	09959	RPE121-105X7R102M100V
A24C23	0160-3878	6		CAPACTTOR-XD 1000PF + 20\% 100VDC CER	09969	RPE121-105X7R102M100V
A24C23	01603878	6		CAPACTTOR-FXD 1000PF $+20 \%$ 100VDC CER	09969	RPE121-105X7R102M100V
A24C24	$0160-3878$	-		CAPACTIOR-FXD 1000PF $+20 \%$ 100VDC CER	09969	RPE121-105×7R102M100V
A24C25	$0180-3878$	6		CAPACTTOR-XXD 1000PF + 20% 100VDC CER	09969	PRE121-105X7R102M100V
A24C26	$0160-3878$	6		CAPACITOR-FXD 1000PF $+20 \%$ 100VDC CER	09969	PPE121-105X7R102M100V
A24C27	0160-3878	6		CAPACTOR-XD 1000PF $+20 \%$ 100VDC CER	09969	RPE121-105X7R102M100V
A24C28	$0160-3878$	6		CAPACITOR $+\times$ D 1000PF $+20 \%$ 100VDC CER	09969	RPE121-105X7R102M100V
A24C29	0160-3878	6		CAPACTTOR-XD 1000PF + $200 \% 100 \mathrm{VDC} \mathrm{CER}$	09969	PPE121-105X7R102M100V
A24C30				NOT ASSIGNED		
A24C31	0160-3876	4		CAPACTTOR-FXD 47PF +-20\% 200VDC CER	09969	RPEE121-105X7P470M200V
A24C32	$0160-3875$	3		CAPACITOR-PXD 22PF + 50 200VDC CER $0+30$	09969	RPE121-105COG220J200V
A24C33	01603876	4		CAPACTTOR FXD 47PF +-20\% 200VDC CER	09969	RPEE121-105×7R470M200V
A24C34	0160-3879	7		CAPACTTOR-FXD .01UF +-20\% 100VDC CER	09969	RPE121-105X7R103M100V
A24C35	$0160-3879$	7		CAPACTTOR-FXD .01UF +-20\% 100VDC CER	09969	PPE121-105X7R103M100V
A24C36	0160-3879	7		CAPACTTOR-FXD .01UF +-20\% 100VDC CER	09960	RPE121-105×7R103M100V
$\mathrm{A}_{24 \mathrm{CR}}{ }^{\triangle}$	1901.0880	7		DHODE-GEN PRP 125MA DO-35	28480	1901-0880
A24CR2 ${ }^{\text {A }}$	1901-0880	7		DHODE-GEN PRP 125MA DO35	28480	1901-0880

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \text { C } \end{aligned}$	Oty.	Description	Mif. Code	Mitr. Part Number
1933A to 2410A						
A24CR3 ${ }^{4}$	0122-0326	3		DIODE-WC 43PF 5\%	28480	0122-0326
A24CR4 ${ }^{\text {a }}$	0122-0326	3		DNODE.WC 43PF 5\%	28480	0122-0326
2412A and above						
A24CR3 ${ }^{\text {a }}$	0122.0173	8		DIODE-WC 13.5PF 7\% C3/C25-MAN-5	28480	$0122-0173$
A24CR4 ${ }^{\text {a }}$	0122-0173	8		DIODE-WC 13.5PF 7\% CW/CES-MNN-5	28480	0122-0173
A24CR5 ${ }^{\text {a }}$	1901-0880	7		DIOOE-GEN PAP 125MA DO-35	28480	1901-0880
A24CR6 ${ }^{\text {a }}$	1901-0980	7		DIODE-GEN PRPP 12SMA DO-35	28480	1901-0880
A2414	1250-1425	7		CONNECTOR-RF SMC M SGL HOLE-RR 50-OHM	28480	1250-1425
	2190-0124	4		WHSHER-LK WTL T NO. 10.195 NHD	16179	500222
	2050-0078	9		MUT+EEX-DEL-CHAM 1032-THD .067-H2-THK	28480	2950-0078
(24124	1250-1425	7		CONNECTOR-FF SMC M Sci Hole-RR 50-OHM	28480	1250-1425
		4		WASHERHK INTL T NO. $10.195-\mathrm{NHD}$	16179	
	2950-0078	9		MUTHEX-DBL-CHAM 10-32-THD .067-NKTHK	28480	2950-0078
224L1	9100-3922	4		RF CHOKE	28480	9100-3922
${ }^{24} 42$	9100-3922	4		RF CHOKE	28480	9100-3922
A24L3	9100-3922	4		RF CHOKE	28480	9100-3922
A24L4	8100-3922	4		RF CHOKE	28480	9100-3922
A24L5	9100-3922	4		AF CHOKE	28480	9100-3922
A2466	9100-2251	0	2	WOUCTOR PF.CH-MLD $220 \mathrm{NH}+10 \%$	91637	M-2.22UH 10\%
A24L7	08901-00068	2	1	MOUCTOR	28480	08901.00068
A24L8	9100-2251	0			91637	M-2.2.22UH 10\%
A24,9				PART OF ETCHED CIRCUT BOARD		
A24L10				PART OF ETCHED CIRCUIT BOARD		
A24MP1	08901-00023	9	1	COVER, HF VCO	28480	08901-00023
	2560-0113	2		SCREW-MHCH 6-32 25-MNLS PANHD-POZI	00000	ORDER BY DESCRIPTION
A2AMP2	08901-00043	3	1	GASKET, LO OSC. BOARD(USED WITH MP1)	28480	08901-00043
A24mp3				NOT ASSIGNED		
A24MP4	06862-00038	6	1	SHEDD, CHRCUT, SMALL	28480	08682-00038
A24MP5	06662-00040	0	1	SHIELD, COMPONENT, SMALL	28480	08662-00040
A2AMP6 ${ }^{\text {a }}$	5001-5539	9		STRAP, GROUND	28480	5001-5539
12401	1854-0247	9		TRANSISTOR NPN SI TO-39 PD $=1 \mathrm{~W}$ FT $=800 \mathrm{MHZ}$	28480	1854-0247
	03400834	0	1	MSULATOR-XSTR POLYI	13103	43-05-1
02402	1855-0020	8		TRANSISTOR JFET N-CHAN D-MODE TO-18 SI	04713	SFE793
12403	1855-0020	8		TRANSISTOR $\mathcal{H} E$ ET N-CHAN D-MODE TO-18 SI	04713	SfE793
A2404	1853-0007	7		TPANSISTOR PNP 2N3251 SI TO-18 PD=360NW	04713	2N3251
A2405	1853-0007	7		TRANSISTOR PNP 2N3251 SI TO-18 PD=360MW	04713	2N3251
A2406	1854-0404	0		TRANSISTOR NPN SI TO-18 PD=360NW	28480	1854-0404
A2407	18540404	0		TRUNSISTOR NPPN SI TO-18 PD=360NW	28480	1854-0404
A2408	1853-0007	7		TRUNSISTOR PNPP 2N3251 SI TO-18 PD=360NW	04713	2 N 3251
A24R1	0698-7236	7		RESISTOR $1 K+1 \% .05 W$ TF TC=0+100	12498	C3-1/8-70-1001-F
A24R2	0757-0280	3		RESISTOR 1K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-TO-1001-F
A24R3	0698-3499	6	1	PESISTOR 28.7K $+1 \%$.125W TF $T C=0+100$	12498	CT4-1/8-T0-2872-F
A24R4	0757-0199	3		RESISTOR 21.5K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-2152-f
A24R5	0757-0416	7		RESISTOR $511+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-511R-F
A24R6	0757-0274	5		RESISTOR 1.21K +1\% .125W TF TC $=0+100$	12498	CT4-1/8-TO-1211-F

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & C \\ & D \end{aligned}$	04.	Description	Mfr. Code	Mitr. Part Number
A24n7	0608-3157	3		RESSTOR 19.6K $+1 \%$. 125 W TF TC=0+100	12498	CT4-1/6-T0-1962-F
A24RB	0757.0402	1		RESISTOR $110+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/R-T0.111F
A24R9	0757.0442	0		PESSSTOR 10K $+1 \%$. 125W TF TC $=0+100$	12498	CT4-1/6-T0-1002F
N24R10	009e3155	1		RESSTOR $4.64 \mathrm{~K}+1 \%$, 122W TF TC $=0+100$	12498	CT4-1/R-T0-4641-F
A24R11	0000-3151	7		RESSSTOR 2.87K $+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/R-T0-2871F
A24R12	0757-0401	0		RESISTOR $100+5 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-TO-101F
A24R13	$0757-9401$	0		RESSSTOR 100 +1\% .125W TF TC $=0+100$	12498	CT4-1/6-T0-101F
A24814	0757.0405	4		AESISTOR $162+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-162R-5
A24R15	0890-8627	4		RESISTOR 1M +1\%.12SW TF TC=0+100	12498	CT4
N24R16				NOT ASSIGNED		
A24817	0680-0083	8		RESISTOR 1.98K $+1 \%$. 125 W IF TC $=0+100$	12498	CTA-1/8-TO-1961F
A24R18	$0688-0083$	6		RESUSTOR 193K $+1 \%$. 122 W TF TC=0 $=100$	12498	CT4-1/8-T0-1961F
A24R19	0038-3405	4	1	RESISTOR $422+1 \% .5 W$ TF TC $=0+100$	K8479	
A24R20	0698.7195	7		RESISTOR $19.6+1 \%$. 05 W TF TC $=0+100$	12498	C3.1/8T0.19R6-F
A24R21	0757-0402	1		RESISTOR $110+1 \% .125 W$ TF TComotio	12498	CT4-1/8-T0-111-F
A24822	0757-0402	1		RESISTOR $110+1 \% .125 W$ TF TC $=0+100$	12498	CT-1/8-T0-111F
A24R23	0698.7219	6		RESISTOR 196 +-1\%.05W TF TC $=0+100$	12498	C3-1/Q-TO.196RF
A24R24	0698-7206	1		RESISTOR $56.2+1 \% .05 W$ TF TC $=0+100$	12498	C3-1/8-TO-56R2F
A24R25	0690-7222	1	1	RESISTOR $251+1 \% .05 W$ TF TC $=0+100$	12498	C3-1/8-10-261RF
A24R26	0698-8827	4		RESISTOR 1M $+1 \% .125 W$ TF TC $=0+100$	12498	CT4
A24R27	0680-7199	1	1	RESISTOA $28.7+3 \% .05 W$ TF TC $=0+100$	12498	C-1/8-TO-28R7-
A24TP1	1251-0800	0		CONWECTOA-SCL CONT PNN 1.14 Mal-ESC-SZ SQ	12360	94-155-1010-01-03-00
A24TP2	1251-0600	0		CONWECTOR-SEL CONT PIN 1.14-MAMESC-S2 SO	12360	94-155-1010-01-03-00
A24TP3	1251-0300	0		COWEECTOR-SGL CONT PAN 1.14MAN-ESC-SZ SQ	12360	94-155-1010-01-03-00
224U1	1826-0372	2		C, A251 LMMTER	28480	1251-0100
224U2	$1826-0372$	2		1C, A251 UMTIER	28480	2251-0100
$\mathrm{N}_{2413}{ }^{\text {a }}$	1826-1796	6	1	IC OP AMP HSLEW-RATE DUAL 8-DAP-P PKG	04713	MC34082P

Table 6-3. Replaceable Parts

A25

1933A to 2012A A25	08801-60026	8	1	AUDHO MOTHER BOARD ASSEMBLY	28480	00901-60026
2021A $002509 A$						
125	00901-60120	3	1	AUOHO MOTHER BOARD ASSEMBLY	28680	06901-60120
2516 A and above A25	$00801-60236$	2	1	AUDHO MOTHER BOARD ASSEMBLY	28480	0980)-50236
18364 20 2609A						
${ }^{\text {A25C1 }}$	0160-2055	9		CAPACTTOR-XD D OIUF $+00-20 \% 100 \mathrm{VDC}$ CER	09969	D0106NW3302Y5V1032100V
A25C2	01603468	8	1	CAPACTOR $+\times$ O $100 \mathrm{PF}+10 \% 1$ 1VDC CER	06383	CX15XE3A101KH
2516 A and abave						
$\mathrm{ALSSCL}^{\text {a }}$	0160-4832	4		CAPACTIOR-FXD .OIUF + 10% 100VDC CER	28480	0160-4832
${ }^{125 C 5} 2^{\text {a }}$	0160-4801	7	1	CAPACTIOR+XD 100PF +5\% 1KVDC CER	28480	0:60-4801
A2S11	12500036	2	1	CONNECTOARAF SMC M PC 50-OHM	16179	5064-5006-09
A2S512	1200-0507	9		SOCKET-C 16 -CONT DP-SLDR	06776	ICN-1630-53-930
A253	12000507	9		SOCKETHC 16-CONT DP-SLPR	06776	ICN-1638-53-630
A254	1251-5149	6		CONNHPOST TYPE. 156-PINSPCE 6-CONT	28480	1251-5169
12515	1251-5643	1	1	CONWPOST TYPE. 156 PWWSPCG 4 CONT	28480	1251.5643
A25R1	00983443	0		RESISTOR $287+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-TO-287R-f
A25R2	0086-0084	9		RESSETOR 2.15K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/b-ro-2151f
A25x7 ${ }^{\text {8 }}$	1251-1365	6		COMNECTOR-CC EDGE 22-CONT/ROW 2-ROWS	28480	1251-1365
225x8 ${ }^{\text {a }}$	1251-1365	6		CONNECTOR-AC EDGE 22.CONT/ROW 2-ROWS	28480	1251-1365
n25x9 ${ }^{\text {a }}$	1251-1365	6		CONMECTOR-PC EDGE 22-CONT/ROW 2HOWS	28480	1251-1365
A2Sxai				Mot assicned		
$\mathrm{N}_{25 \times 12}{ }^{\text {a }}$	1251-2035	9		COWWECTOR-PC EDGE 15-CONT/ROW 2-HOWS	28480	1251-2035
А25×03 ${ }^{\text {a }}$	1251-2035	9		COMNECTOR-PC EDGE 15-CONT/AOW 2-ROWS	28480	1251-2035
A25x44	1251-2035	9		COMNECTOR-PC EDGE 15-CONT/ROW 2-ROWS	28480	1251-2035
A25xas ${ }^{\text {S }}$	1253-1365	6		COMWECTOA-PC EDGE 22-CONT/ROW 2-ROWS	28480	1251-1365
${ }^{\text {a } 25 \times 46 \triangle}$	1251-2035	9		CONMECTOR-PC EDGE 15-CONT/ROW 2ROWS	28480	1251-2035

Table 6-3. Replaceable Parts

Reference	HP Part	\mathbf{C}	Oty.	Description	Mfr.
Designation	Mtr. Part Number				

A26

1939 to 2705A						
126	00901-60020	2	1	POWER SUPPLY MOTHER BOARD ASSEMBLY	28480	$00901-60020$
2751A and above						
A26	ces01-60294	2	1	POWER SUPPLY MOTMER BOARD ASSEMBLY	28480	08901-60294
A2SC1	0180-2851	5	1	CAPACTIOR-XD .03F+75-10\% 25VDC AL	19701	3186EE303U025BHA2
	2190-0034	5	8	WASHER-LK HLCL NO. 10.194 HHD	28480	2190-0034
	2600-0099	1	8	SCREW-MHCH 10332 S75-WLG PANHDPOZI	00000	ORDER EY DESCRIPTION
A26C2 ${ }^{\text {a }}$	0180-2990	3	1	CAPACTTORFXD 75001F + $75-10 \%$ 20VDC AL	28480	0180-2990
	2180-0034	5		WASHER-LK HLCL NO. 10.194 H-ID	28480	2190-0034
	2680-0099	1		SCREW-MACH 10-32 S75-WHE PANHD-POZI	00000	ORDER BY DESCAIPTION
A26C3	0180-2058	2	1	CAPACTOR-FXD .01F+75-10\% 4OVDC AL	19701	31868F103\%040вНАЗ
	2180-0034	5		WHSHERLK HLCL NO. 10.194 WHD	28480	2190-0034
	2800-0099	1		SCREW-MACH 10-32 .375-WLL PANHD-POZI	00000	ORDER BY DESCRIPTION
n2SCA	0180-0677	9	1	CAPACTIOR-XD 58000F+75-10\% 4OVDC AL	19701	$3186 B C 582 \cup 0408412$
	2180-0034	5		WHSHER-LK HLCL NO. 10.19 -INHD	28480	2190-0034
	2880-0099	1		SCREW-MACH 10-32 S75-HHLS PANHDPOZI	00000	ORDER EY DESCRIPTION
N2SC5	0160-3968	5	1	CAPACTTOR-FXD .47VF + $\mathbf{1 0 \%}$ 250VAC (RMSS) (OPTION OO4 ONLY)	C0633	PME 271 M 647
A26CR1	1801-0800	5	8	DIODE-PWR RECT 100V 1.5A	28480	1901-0200
A26CR2	1901-0200	5		DNODEPWR RECT 100V 1.5A	28480	1901-0200
	1205-0213	4	2	HEAT SINK SCL TO-5/TO-39-CS	13103	20288
A26CR3	1801-0200	5		DIDDE-PW PRECT 100V 1.5A	28480	1901-0200
	1205-0213	4		HEAT SINK SGL T0-5/T0-39-CS	13103	22238
A26CR4	1901-0200	5		DIODEPWR RECT 100V 1.5A	28480	1901-0200
A2SCRSA	1801-1098	1		DIODE-SWITCHENGG 1NA150 50V 200MA ANS	9N171	INA150
A26CR6	1901-0200	5		DIODEPWR RECT 100V 1.5A	28480	1901-0200
a26CR7	1901-0200	5		OLODE-PWR RECT 100V 1.5A	28480	1901-9200
A26CR8	1901-0200	5		DIODE-PWR RECT 100V 1.5A	28480	1901-0200
A26CRS	1801-0200	5		DKODEPWR RECT 100V 1.5A	28480	1901-0200
A2511	1251.3412	8	1	CONNPOST TYPE .156-PN-SPCG 6-CONT	28480	$1251-3412$
A2612	1251-5169	6		CONNPOST TYPE. 156 -PPN-SPCE 6-CONT	28480	1251-5169
A2613	1251-5169	6		CONW-POST TYPE.156-PNW-SPCG 6-CONT	28480	1251-5169
A26,4	1251-5635	1	1	CONNPOST TYPE .156-PIN-SPCG 12-CONT	28480	1251-5635
A2615A	1251-5636	2	2	CONNECTOR, 11-PW, MALE	28480	1251-5636
A26458	1251-5636	2		CONNECTOR, 11-PW, MALE	28480	1251-5636
12866	12514966	9	2	CONN-POST TYPE .156-PN-SPCG 8-CONT	28480	1251-4966
1933A 10 2705A						
A26K1	0480-0618	5	1	RELAY 2C 24VOC-COLL 5A 115VAC	77342	R40-E0161-1
27514 and above						
A26K1	0450-1647	2	1	relay	28480	0490-1647

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	Cty.	Description	Mif. Code	Mfr. Part Number
A26MP1				NOT ASSIGNED		
A26MP2				NOT ASSIGNED		
A26mp3	08901-20049	1	1	SHELD. HIGH VOLTAGE	28480	08901-20049
Δ	0361-0207	5	1	RIVET-BUND DA-PIN RNDH .12501A	02768	201-080551-00-0108
Δ	2360-0199	4	1	SCREWHMCH 6-32.430-NHLG PANHDPOOZI	00000	ORDER BY DESCRIPTION
Δ	3050-0003	3	1	WASHER-FL NM NO. 6.141 -INHD . 375 -NHOD	73734	1471
Δ	3050-0227	3	1	WASHERTL MTLC NO.6 .149-1N-LD	00000	ORDER BY DESCRIPTION
A26MP4	7120-4163	7	1	Label, MARNINGHAZARDOUS VOLTAGE	28480	7120-4163
A2601	1884-0250	7	1	THYRISTOR-TRIAC TO-220AB	04713	T25008
Δ	2200-0141	9	1	SCREW-MACH 4-40.312-NHG PANHD-POZI	00000	ORDER BY DESCRIPTION
Δ	2190-0004	9	1	WASHERHK ENTL T NO. 4.115-N-ID	00000	ORDER BY DESCRIPTION
A26R1	0757-0401	0		RESISTOR $100+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-TO-101-F
A26R2	0757-0280	3		RESISTOR IK + $1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-1001-f
A26R3	0757-0280	3		RESISTOR $1 \mathrm{~K}+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-T0-1001-F
A26R4	0698-0085	0		RESISTOR 2.61K $+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-T0-2611F
A26R5	0698-0085	0		RESISTOR 2.61K $+1 \%$. 125 W TF TC $=0+100$	12498	CT41/8-T0-2611-F
A26VR1		1	2	DIODE-ZNP 68.1V 5\% DO-7 PD $=.4 \mathrm{~W}$ TC $=+.079 \%$	29480	1902-3381
A26VR2	1902-3381	1		DIODE-ZNR 68.1V 5\% DO-7 PD=.4W TC $=+.079 \%$	28480	1902-3381
A26×A10 ${ }^{\text {a }}$	1251-1365	6		CONNECTOR-PC EDGE 22-CONT/ROW 2-ROWS	28480	1251-1365

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Mifr. Code	Mfr. Part Numb
A27						
A27	$00801-60030$	4	1	DIGTAL MOTHER BOARD ASSEMBLY	28480	08901.60030
227J1	1200-0507	9		SOCXETHC 16-CONT DP-SLDR	06776	1CN-1638-53-630
A2751	$1251-460$	8		COPPCABLE PLUG RTNG-DUAL RMNE 16 CONT	06776	RC-74
A2752	1200-0507	9		SOCKET-C 16-CONT DP-SLDR	06776	ICN-1630-S3-G30
227, 2	1251-460	8		CUP-CABLE PLUG RTNG-DUAL WLINE 16 CONT	06776	RC-74
A2753	12000507	0		SOCKETHC IG-CONT OP-SLOR	08776	ICN-1838-S5-630
A27.3	1251-460	8		CLP-CABLE PLUG FTNG-DUAL MLNE 16 CONT	06776	RC-74
A27MP1	0500-0970	4	4	THREADED MSERTAUT 6-32 O62NHLS STL.	46384	16F2-932-2
A27x12A ${ }^{4}$	1251-1365	6		COMNECTOR-PC EDEE 22-CONT/ROW 2-ROWS	28480	1251-1365
A27x128 ${ }^{\text {a }}$	1251-2095	9		CONNECTOR-PC EDEE 15-CONT/ROW 2HOWS	28480	1251-2035
A27xA114	1251-1365	6		COMECTOR-PC EDEE 22-CONT/ROW 2-ROWS	26400	1251-1365
a27Xa13a ${ }^{\text {a }}$	1251-1365	6		CONWECTOA-PC EDGE 22-CONT/ROW 2HOWS	28480	1251-1365
A27XA138 ${ }^{\text {a }}$	1251-2035	9		COMWECTOR-PC EDGE 15-CONT/ROW 2-ROWS	28480	1251-2035
artxaisa ${ }^{\text {a }}$	1251-1365	6		COMNECTOR-PC EDEE 2R-CONT/ROW 2-ROWS	28480	1251-1365
A27xalas	1251-2035	9		CONMECTOR-PC EDGE 15-CONT/ROW 2-ROWS	28480	1251-2035

Table 6-3. Replaceable Parts

Reference Designation	HP Part Nember	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Oty.	Description	Mifr. Code	Mifr. Part Numb
A28						
1933A to 2126A						
A28	00801-60027	9	1	RF MOTHER BOARD ASSEMBLY	28480	06901-60027
21284 and aboce						
A28	00901-60139	4	1	RF MOTHER BOARD ASSEMBLY	28480	00901-60139
A281	1251-4966	9		CONNPOST TYPE .156PM-SPCS A-CONT	28480	1251-4966
N2812	1200-0507	9		SOCKETHC 16-CONT DIP-SLDA	06776	ICN-1638-53-630
A2913	1200-0507	9		SOCKETHC 16-CONT DIPSLDR	06776	ICN-1638-S3-630
289x16 ${ }^{\mathbf{S}}$	1251-0472	4		COMNECTOA-PC EDGE 6-CONT/ROW 2-ROWS	28480	1251-0472
A28×A1-A28×A14				NOT ASSIGNED		
A28×A15 ${ }^{\text {a }}$	1251-2005	9		COWNECTOR-PC EDSE 15-CONT/ROW 2-ROWS	28480	1251-2035
~28×177 ${ }^{\text {a }}$	1251-0472	4		CONNECTOR+PC EDGE 6-CONT/ROW 2-ROWS	28480	1251-0472
A28xa18 ${ }^{\text {a }}$	1251-0472	4		CONRECTOR-PC EDGE E-CONT/ROW 2HOWS	28480	1251-0472
Az8xat9	1251-2035	8		CONAECTIOR-PC EDEE 15-CONT/ROW 2-ROWS	28480	1251-2035
A28xazos	1251-1365	6		CONNECTOP-PC EDGE 22-CONT/ROW 2-ROWS	28480	1251-1365
A28xa21 ${ }^{\text {a }}$	1251-0.472	4		CONNECTOR-PC EDGE 6-CONT/ROW 2-ROWS	28480	1251-0472
A28xa22 ${ }^{\text {a }}$	1251-0472	4		CONNECTOR-PC EDGE 6-CONT/ROW 2-ROWS	28480	1251-0472
A28×A23 ${ }^{\text {a }}$	1251-0472	4		COMNECTOR-PC EDGE 6-CONT/ROW 2-ROWS	28480	1251-0472
A28×A24 ${ }^{\text {a }}$	1251-0472	4		CONNECTOR-PC EDGE 6-CONT/ROW 2ROWS	28480	1251-0472

Table 6-3. Replaceable Parts

Reference	HP Part	\mathbf{C}			
Designation	Number	\mathbf{D}	Oty.	Description	Mfr.

A29						
A29	00901.60088	8	1	germes reculator heat sink assembly	28480	00901-60068
A29mpl	1400-0017	0	1	CLMP-CA .312-DIA .375-WD NYL	28520	3310 RED
A2Smpl	00901-20033	3	1	HEAT SINX (NCULDES SOCKETS FOR O1-Q4)	28480	08901-20033
	0400-0227	3	4	GROMMET-RND 375-HWD .5W-GRV-OD	01538	522
	2360-0203	1	14	SCREW-MACH 6-32 .625-HHLG PANHDPOZI	00000	ORDER BY DESCRIPTION
	2190-0006	1		MASHERHK HLCL NO. 6.141 HND	28480	2150-0006
A2901	18540669	9	1	TRANSISTOR NPN 2N6057 SI TO-3 PD=150W	04713	2N6057
\triangle	0340-0833	9	4	WSLLATOR-XSTR POLYE	28480	0340-0833
Δ	0340.1119	6	4	WELLATOF-XSTR ORG POLYM (COVER)	28480	0340-1119
Δ	5001-5501	5		TRANS SPACER (TO-3)	28480	5001-5501
	2390-0203	1		SCREW-MACH 6-32 . $525-\mathrm{NL}$ G PANHD-POZI WHSHERHK HECL NO. 6.141 HNHD	00000	ORDEA BY DESCRIPTION 2190-0006
	2190-0006	1			28480	
20902	1853-0351	4	2	THANSISTOR PNP 2NGO53 SI DAPL TO-3	04713	2×6053
\triangle	00400833	9	4	WSULATOR-XSTR POLYE	28480	03400833
Δ	0340-1119	6	4	WSULATOR-XSTR ORG POLYM (COVER)	28480	0340-1119
	0340-0875	9		WSULATOR-XSTR THRM-CNDCT	55285	7403-09FR-05
	2360-0203	1		SCREW-MACH 6-32.625-NHL PAN-HDPOZI	00000	ORDER BY DESCRIPTION
	2190-0006	1		WASHER-LK HLCL NO. 6.141-NHD	28480	2190-0006
12903	18540611	1	1	TRANSISTOR NPN 2NGO55 SI DARL TO-3	04713	$2 \mathrm{NGOS5}$
Δ	0340-0933	9	4	WSULATOA-XSTR POLYE	28480	0340-0833
Δ	0340-1119	6	4	WSULTOR-XSTR ORG POLYM (COVER)	28480	0340-1119
	03400875	9		MSULATOR-XSTR THPM-CNDCT	55285	7403-09FR-05
	2360-0203	1		SCREW-MACH 6-32 .625-NWLG PANHD-POZI	00000	ORDER BY DESCRIPTION
	2360-0207	5	1	SCREW-MACH 6-32 .875-N-LG PAN-HDPOZIWASHER-LK PLLCL NO. $6.141+\mathrm{NHD}$	00000	ORDER BY DESCRIPTION21900006
	2190-0006	1			28480	
	5050-0227	3	1	WASHERFL MTLC NO. 6 .149-1N-ID NUT HEX-DBL-CHAM G32-THD . 109 -N-THK	60120	ANP60C-6
	2420-0002	6			28480	2420-0002
$\begin{aligned} & \text { A2904 } \\ & \Delta \end{aligned}$	1853-0351	4		TRANSISTOR PNP 2 NGO53 SI DARL TO.3 NSULATOR-XSTR POLYE	$\begin{aligned} & 04713 \\ & 28480 \end{aligned}$	$\begin{aligned} & \text { 2N6053 } \\ & 0340-0833 \end{aligned}$
	0340-0833	9	4			
Δ	0340-1119	6	4	WSULATOR-XSTA ORG POLYM (COVER)	28480	0340-1119
	03400875	9		NSULATOR-XSTA THPM-CNDCT SCREW-MACH 6.32. 625 -NHE PANHD-POZI WUSHER-LK HLCL NO. 6.141 -NHD	55285 00000 28480	7403-09FR-05 ORDER BY DESCRIPTION 2180-0005
	2360-0203	1				
	2180-0006	1				
n29W1				NOT SEPARATEIY REPLACEABLE		
	1251-3279	5	1	CONW-POST TYPE .156-PINSPCG 12-CONT	28480	12513279
	1251-4283	3	8	CONTACT-CONN U/W-POST-TYPE FEM CRP	27264	00-56-0106
	1400-0249	0	2	CABLE TE .062-.625-DMA .091-WD NYL	16956	06-665/GRAY
	0400-0011	3	1	GROMMETTRND .375-NWD .5-N-GRV-OD	83330	2175

Table 6-3. Replaceable Parts

Reference Designation	MP Part Number	$\begin{aligned} & \mathbf{C} \\ & 0 \end{aligned}$	Cty.	Description	Mir. Code	Mifr. Part Number
A30						
A30	0960-0443	1	1	LNE POWER MODULE	05245	F20580
1933A to 2128A						
A3OCI 2133 A and above						
A307B1A				NOT SEPARATELY REPLACEABLE		
A31						
431	00801-60012	2	1	REMOTE WTERFACE CONNECTOR BOARD ASSY	28400	08501-60012
A3151	1200-0507	9		SOCKET+C 16-CONT DPPSLDA	06776	1CN-1638-53-630
	1251-460	8		CLPP-CABLE PUG RTNG-DUAL MLINE 16 CONT	06776	RC-74
A31J2	1251-3283	1	1	COMNPRECT MMCRORBN 24-CKT 24-CONT	28480	1251-3203
1933A 20 2244A						
A31MP1	0380-0643	3	2	STANDOFFHEX 255-AHLE 6-32-THD	28480	0380-0643
	2190-0017	4	2		28480	2190-0017
A31MP1	0380-0644	4	2	STANOOFF-HEX . 327 -HWLE 6-32-THD	28480	0380-0644
	2190-0034	5	2	WUSHER-LK HLCL NO. $10.194-\mathrm{NH}$	28480	2190-0034
A31MP2	1530-1098	4	2	Machined partebrs ClEVIS	28480	3530-1098
	$2150-0019$	6	2	WASHER-LK HLCL NO. 4 . 115-HHD	28480	2190-0019
	22000109	8	2	SCREW-AHCH 4-40.438-NNLG PAN-HD-POZI	00000	ORDER BY DESCRIPTION
	2260-0002	6	2	MSTHEX-DBL-CHAM 4-40-THD .062-NN-THK	00000	ORDER BY DESCRIPTION

A32-A49
NOT ASSIGNED

Table 6-3. Replaceable Parts

Reference	HP Part	\boldsymbol{C}	Oty.	Description	Mtr.	Mitr. Part Number
Designation	Number	\mathbf{D}		Code		

A50

1933A to 2227A						
A50	08301-60074	4	1	AM CALIBRATOR ASSEMBLY (OPTHON 010 ONLY	28480	08501-60014
2229A and above						
A50	00901-60209	9	1	AM CALBRATOR ASSEMBLY (OPTION O10 ONLY	28480	0as01-60209
A50C1	01603459	9	24	CAPACTIORFXD .02UF + 20% 100VDC CER	09869	D0111NWE30225V203M100V
A50C2	01800058	0	2	CAPACTTOR+XD 50UF+75-10\% 25VDC AL	56289	300506G025CC2
A50C3	01800058	0		CAPACHTOR-FXD 501F+75-10\% 25VDC AL	56289	$3005069025 C C 2$
A50CA	$0180-2617$	1	1	CAPACTTOR-XXD 6.8UF+ $10 \% 35 V D C$ TA	12344	T355F685K035AS
A50CS	$0180-3459$	9		CAPACTIOR-XXD .OEUF +-20\% 100VDC CER	09969	DD111NWE30225V203M100V
A50C6	0180-2619	3	6	CAPACTIOR- \times XD 22UF+-10\% 15VDC TA	12344	T355F226k016AS
45007	01603459	9		CAPACTORFXD .OZUF +20\% 100VDC CER	09869	D0111NWE30225V203M100V
A50C8	0160-3459	9		CAPACTTOAFXD .OEUF + -20\% 100VDC CER	09969	D0111NWE30225V203M100V
A50C9	0160.0207	9	1	CAPACTTOA-FXD . O1UF +-5\% 200VDC PCLYE	19701	70801CC103PJ201ax
A50C10	0180-2619	3		CAPACITOR + XD 22UF+ 10% 15VDC TA	12344	T355F22Ek016AS
A50C11	0180-2620	6	8	CAPACTTOR-FXD 2.2UF+-10\% 50VDC TA	12344	T355E225k050AS
A50C12	0160-3459	9		CAPACTORFXD .O2UF +-20\% 100VDC CER	09969	DD111NWB30225V203M100V
A50C13	01603459	9		CAPACTIDR-FXD .O2UF +-20\% 100VDC CER	09969	DD111NWE30225V203M100V
A50C14	0180-2619	3		CAPACTIOR-FXD 22UF+-10\% 15VDC TA	12344	T355F226K016AS
A50C15	0180-2619	3		CAPACTOR-FXO 22UF+50\% 15VDC TA	12344	T355F226k015as
A50C16	0160-2199	2	5	CAPACTTOR-FXD 30PF $+5 \% 300 \mathrm{VDC}$ MICA	28480	0160-2199
A50C17	0160-3459	9		CAPACTTORFXD .O2UF + $20 \% 100 \mathrm{VOC}$ CER	09969	DD111NWB30225V203M100V
A50C18	$0160-3459$	9		CAPACTIOR-FXD .OEUF + 20% 100VDC CER	09969	D0111NWB30225V203M100V
A50C19	0160-3459	9		CAPACTIORFXD .OPUF $+20 \%$ 100VDC CER	09969	D0111NWB30225v203M100V
A50C20	0160-3459	9		CAPACTIOR-FXD .ORUF +20\% 100VDC CER	09869	DD111NWB30225v203M100V
A50C21				MOT ASSIGNED		
A50C22	0160-3454	4	1		06383	CX45XE3A221K+1
A50C23	01603459	9		CAPMCTTOR-FXD .02UF + 20% 100VDC CER	09969	DO111NWE30225V203M100V
A50C24	0160-3459	9		CAPACTTOR-FXO .02UF +-20\% 100VDC CER	09969	D0111NWB30225v203m100V
A50C25	01603459	9		CAPACTTOR-FXD .02UF +-20\% 100VDC CER	09969	DO141NWB30225V203M100V
A50C26	01603459	9		CAPACTTOR+XD.OEUF + 20% 100VDC CER	09969	DO111NWB30225V203M100V
A50C27	0180-2620	6		CAPACTOR-FXD 2.2UF+-10\% 50VDC TA	12344	T355E225K0504S
A50C28	0160-3691	1	1	CAPACTTOR-XD 75PF $+1 \% 100 \mathrm{VDC} \mathrm{MICA}$	28480	0160-3691
A50C29	0160-2619	3		CAPACTOR-FXD 22UF+10\% 15VDC TA	12344	T355F226K016AS
A50c30	0160-2199	2		CAPACTIOR-XXD 30PF +-5\% 300VDC MUCA	28480	0160-2199
A50c31	0160.3659	9		CAPACTIOR-FXD ORUF +-20\% 100VDC CER	09969	D0111NWB30225V203M100V
150C32	$0160-3459$	9		CAPACTOR-XXD .ORUF + 20% 100VDC CER	09969	D0111NWB30225V203M100V
A50c33	0160-3459	9		CAPACTTOR-FXD .02UF +-20\% 100VDC CER	09969	DD111NWE30225V203M100V
A50c34	0160-2474	4	1	CAPACITOR-FXD .022UF +5\% 200VDC POLYE	19704	703D1HH223PJ201AX
A50C35	0180-2620	6		CAPACITOR FXD 2.2UF+10\% SOVDC TA	1234	T355E225K050AS
A50c36	01603459	9		CAPACTTOR-XXD .O2UF +-20\% 100VDC CER	09969	D0111NWB30225V203M100V
A50C37	0180-2620	6		CAPACTOR-FXD 2.2UF+10\% 5OVDC TA	12344	T355E225K0504S
A50c38	0160-3459	9		CAPACTTOR + XD .CZUF + 20% 100VDC CER	09969	DO111NWB30225V203M100V
A50c39	0780-2619	3		CAPACTTOR-FXD 22UF+10\% 15VDC TA	12344	T355F226K016AS
A50C40	01603459	9		CAPACTIOR-XXD .O2UF + 20% 100VDC CER	03859	DOIIINWB30225V203M100V
A50C41	0180-2620	6		CAPACTTOR-XXD 2.2UF+10\% SOVDC TA	12344	T355E225k050AS
A50C42	0160-2199	2		CAPACTTOR-XXD 30PF +-5\% 300VDC MLCA	28480	0160-2199
A50C43	0180.2620	6		CAPACTIOR- \times OD 2.2VF+ 10% SOVDC TA	12344	T355E2PSK050AS
A50C34	0160.0127	2	1	CAPACTTOA-XXD 1UF +-20\% 50VDC CER	09969	RPE113-14925U105M50V
A50C45	0160-4084	8	1	CAPACTIOR-PXD .14F +20\% 50VDC CER	09869	RPE122-139X7R104M50V

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cly.	Description	Mfr. Code	Mifr. Pan Number
250C46	01603459	0		CAPACTTORFXD .OELF +-20\% 100 NDC CER	00969	DD111mWE30225V203M100V
A50C4 7	0160-0153	4	1	CAPACTOR-XD 1000PF + 10% 200VDC POLYE	19701	708D1AA102PK201AX
A50C48	01603459	8		CAPACTOA-PXD .02UF + 20% 100VDC CER	09969	DD111NWB30275V203M100V
A50C49	0160-2199	2		CAPACTTOR-XD 30PF +5\% 300VOC MACA	29480	0160-2199
A50C50	0160-2199	2		CAPACTTOR-XD 30PF $+5 \%$ 300VDC MACA	28480	0160-2199
asocs	0180-2620	6		CAPACTIOR-XXD 2.2UF+10\% 50VDC TA	12344	T35seraskosons
A50c52	01603459	9		CAPACTIORFXD .02UF $+20 \%$ 100VDC CER	09969	D0111NWB30275V203M100V
A50C53	0180-2620	6		CAPACTOR-FXD 2.2UF+10\% 50VDC TA	12344	T355E225k0504S
A50C54	01603459	9		CAPACTTORFXD .OV1F + -20\% 100VDC CER	00969	DO111NWB3C2z5V203M100V
A50CR1	1801-0179	7	8	DIODESWITCHANG 15V 50MA 750PS DO-7	07263	FD777
A50CR2	18010179	7		DVODESWITCHNG 15V 50MA 750PS D0-7	07263	FD777
A50CR3	1801-0179	7		DIODESWITCHNG 15 V 50 MA 750PS DO.7	07263	FD77
A50CRA	1901-0179	7		DIODESWITCHMNG 15V 50MA 750PS DO-7	07263	FD77
A50CRS	1901-0179	7		DIOOE-SWTTCHNG 15V 50MA 750PS DO-7	07263	FD77
A50CR6	$1501-0179$	7		DUOOESWITCHNG 15V 50MA 750PS D0-7	07263	FD777
A50CR7	1801-0179	7		DLOOESWITCHNG 15 V 50MA 750PS D0.7	07263	FD777
ASOCR8	1501-0179	7		DNOEESWITCHENG 15V 50MA 750pS DO-7	07263	FDT77
A50CR9 ${ }^{\text {a }}$	1901-1098	1		DIODE-SWTTCHANG INA150 50V 200m/ 4NS	ON171	1Ma150
A50CR10 ${ }^{\text {A }}$	1901-1098	1		DIODESWITCHMNG INA150 50V 200MA ANS	9N171	1M4150
A50CR11	1901-0535	9	1	DIODE-SCHOTTKY SM SYG	28480	1901-0535
ASOCR12 ${ }^{\text {A }}$	1901-1098	1		DIODESWITCHENG IM4150 50V 200MA ANS	9N171	1M4150
A50E1	91700047	3	2	CORESHELDMG BEAD	02114	56-590-65/3B PARYIENE C
ASOE2	9170084	3		CORE-SHELDANG BEAD	02114	56-590-65/3B PARYLENE C
A501s	1250-1220	0	2			82Sinc-50-0-3/111
	21900124	4	2	WASHERHK WTL T MO. $10.195-1{ }^{\text {P }}$-1D	16179	500222
	2950-0078	9	2	MUT-HEX-DEL-CHAM 10-32-THD .067-IN-THK	28480	2950-0078
A5012	1250-1220	0		CONWECTOR-RF SMC M PC 50-OHM	06877	82SNC-50-0-3/111
	2190-0124	4		WUSHERLCK WTL T NO. $10.195-1 / H D$	16179	500222
	29500078	9		MUT HEX-DEL-CHAM 10-32-THD .067-m-THK	28480	2950-0078
250,1	9100-1635	2	4	NDUCTOR PF-CHMED 91UH +5\%		
45012	9100-1635	2		NOUCTOR RF-CHMEO 91UH +5\%	91637	M-4 91UH 5\%
A50,3	9100-1635	2		MDUCTOR RF-CHMED $814 \mathrm{H}+5 \%$	91637	M-4 91uH 5\%
A504	9100-1635	2		MOUCTOR RF-CHMED $91 \mathrm{UH}+5 \%$	91637	M-4 91LH 5\%
A50LS	9100-1637	4	2	WDUCTOR RF-CHEMLD 120UH +-5\%	91637	m-4 120UH 5\%
A5016	9100-1637	4		MOUCTOR RF-CHENLD 12OUH + 5\%	91637	M-4 120uH 5\%
A50C7	91003913	3	1	MOUCTOR AF-CHMMD 3.3UH +-5\%	91637	m-4 3.3UH 5\%
A5018	9140-0179	1	1	WDUCTOR RF-CHTMED 22UH + $+10 \%$	91637	m-4224 5\%
A50MP1	$08901-00017$	1	1	COVER, AM CALERATOR	28480	00901-00017
				(MCUUDES P.C. EXTRACTOR)		
	2360-0113	2	2	SCPEW-MACH 6-32 25-NHES PAN-HD-POZ	00000	ORDER EY DESCRIPTION
A50MP2	5021-0817	8	1	P.C. BOARD EXTRACTOR	28480	5021-0817
A5001	1858-0032	8	1	TRANSISTOR ARRAY 14-PM PLSTC DAP	27014	LMS146
A5002	18540345	8	4	TRANSISTOR NPN 2 N5179 S1 TO-72 PD=200NW	04713	2N6179
45003	18540345	8		TRANSSTOR NPN 2 N5179 SI TO-72 PD=200MW	04713	245179
25004	18640345	8		TRANSISTOR NPN 2 N5178 S1 TO-72 PD=200WW	0.413	2NS179

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Mfr. Code	Mifr. Part Number
1933A to 2227A						
A5095	1854-0845	8		TRANSISTOR NPN 2 N5179 SI TO-72 PD=200MW	04713	2N5179
22294 and above						
A5095	1854-0475	5		TRANSISTOR DUAL NPN PD=750MW	28480	1854-0475
19006	1854-0019	3	2	TRANSISTOR NPN SI TO-18 PD=360MW	28480	1854-0019
15007	1854-0019	3		TRANSISTOR NPN SI TO-18 PD=360MW	28480	1854-0019
15008	1854-0071	7	10	TRANSISTOR NPN SI TO-92 PD=300MW	2 M 27	CP4071
1933A 002133 A						
A50Q9	1854-0071	7		THANSISTOR NPN SI TO-92 PD=300NW	$2 \mathrm{M627}$	CP4071
2134A 102227 A						
$\begin{array}{lllll}\text { A5099 } \\ \text { 2509A and above } & 1854-0811 & 3\end{array}$						
A5099	1854-0071	7		TRANSISTOR NPN SI TO-82 PD=300NW	2M627	CP4071
250010	1854-0071	7		TRAWSISTOR NPN SI TO-92 PD=300wW	2M627	CP4071
150011	1851-0071	7		TPANSESTOR NPN SI TO-92 PD $=300 \mathrm{WW}$	$2 \mathrm{M627}$	CP4071
250012	1854-0071	7		TRANSISTOR NPN SI TO-92 PO $=300 \mathrm{NW}$	$2 \mathrm{M627}$	CP4071
A50013	1854-0071	7		TRANSISTOR NPN SI TO-92 PD $=300 \mathrm{WW}$	2M627	CP4071
A50014	1853-0020	4	2	TRANSISTOR PNP SI PD=300NW FTx 150 MH HZ	2M627	XA22BCP20-1
A50015	1854-0071	7		TRANSISTOR NPN SI TO-92 PD=300MW	2M627	CP4071
A50016	1853-0034	0	2	TRANSISTOR PNP SI TO-18 PD=360NW	28480	1853-0034
250017	1854-0477	7	2	TRANSISTOR NPN 2NE222A SI TO-18 PD=500NW	04713	2N2222A
A50018	1854-0071	7		TRANSISTCR NPN SI TO-92 PD=300MW	2M627	CP4071
A50019	1853-0034	0		TRANSISTOR PNP SI TO-18 PD $=360 \mathrm{MW}$	28480	1853-0034
A50020	1854-0477	7		TRANSISTOR NPN 2N2222A SI TO-18 PD $=500 \mathrm{NW}$	04713	2N2222A
A50021	1854-0071	7		TRANSISTOR NPN SI TO-92 PD=300NW	2M627	CP4071
A50022	4853-0020	4		TRANSISTOR PNP SI PD $=300 \mathrm{NW}$ FT $=150 \mathrm{MHR}$	$2 \mathrm{M627}$	X $2288 \mathrm{CP} 20-1$
A50023	1854-0074	7		TRANSISTOR APN SI TO-92 PD=300NW	2M627	CP4071
ASOR1	0757.0346	2	1	RESISTOR $10+1 \% .125 W$ TF TC $=0+100$	D8439	M 12
A50R2	$0757-0416$	7	4	RESISTOR $511+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-T0-511R ${ }^{\text {F }}$
A50R3	0757-0401	0	7	RESISTOR $100+1 \%$. 125 W TF TC $=0+100$	12498	CT-1/8-T0-101-F
ASOR4	0698-344	1	5	RESISTOR $316+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/Q-T0-316R-f
A50R5	0757-0438	3	11	RESISTOR $5.11 \mathrm{~K}+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-511T-F
ASORE	0680-0063	8	5	RESISTOR 1.96K + 1\% .125W TF TC=0 $\mathbf{+ 1 0 0}$	12498	CT4-1/8-T0-1961.f
A50R7	0898-3152	8	1	RESISTOR 3.48K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-3481-F
ASOP8	0698-5466	1	1	RESISTOR 5.7K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-TQ-5701.F
A50R9	0698-3153	9	2	RESISTOR 3.83K $+1 \%$.125W TF TC $=0+-100$	12498	CT4-1/8-T0-3831-F
A50R10	0898-3150	6	1	RESISTOR 2.37K $+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-T0-2371F
A50R11	0757-0438	3		RESISTOR 5.11K $+1 \%$.125W TF TC=0 0 -100	12498	CT4-1/8-T0-5111-F
ASOR12	0698-3132	4	1	RESISTOR $261+1 \% .125 W$ TF TC $=0+100$	12498	CT-1/Q-TO-2610-F
A50R13	$0698-0084$	9	4	RESISTOR 2.15K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-2151-F
A50R14	$0757-0280$	3	9	RESISTOR $1 \mathrm{~K}+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/Q-T0-1001-F
ASOR15	069e-0064	9		RESISTOR 2.15K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-2151-f
A50R16	00903441	8	1	RESISTOR $215+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/Q-TO-215R-F
25017	0098-0044	9		RESISTOR 2.15K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/Q-T0-2151-F
A50R18	0680-3158	4	2	RESISTOR 23.7K +-1\% .125W TF TC=0 +100	12498	CT4-1/8-T0-2372-
A50n19	0906-3158	4		RESISTOR 23.7K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/Q-T0-2372-F
A50R20	0830-439	6	2	PESISTOR 3.24K +1\%.125W TF TC $=0+100$	12498	CT4-1/8-T0-324.f

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \text { C } \\ & \mathbf{D} \end{aligned}$	Cis.	Description	Mfr. Code	Mifr. Part Number
A50R21	0698-4439	6		RESASTOR 3.24K + 1\% .12SW Tf TCan $0+100$	12498	CT4-1/8-70-3241F
A50R22	$0757-0462$	9	5	RESISTOM 10K $+1 \% .125 W$ TF TC $=0+100$	12488	CT4-1/B-T0-1002-F
A50R23	$0757-044$	4	1	RESSSTOR 16.2K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/G-T0-1622-F
A50R24	0757-0280	3		RESISTOR $1 \mathrm{~K}+1 \%$. 125 W TF $T C=0+100$	12498	CT4-1/8-T0-1001-F
A50P25	$0080-0083$	8		RESSSTOA 1.96K + 1\% .125W TF TC $=0+100$	12498	CT4-1/B-TO-1961-F
A50R26	0688-0083	8		RESSSTOR 1.96K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/B-TO-1961-F
A50R27	0808-0083	8		RESISTOR 1.96K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-TO-1961-F
A50R28	$0688-0083$	8		RESSTOR 1.96K +-1\% .125W TF TC $=0+100$	12498	CT4-1/8-TO-1961-F
A50R29	$0757-0465$	6	3	PESISTOR 100K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/G-T0-1003-F
A50R30	0688-3431	6	2	RESISTOR $23.7+1 \% .125 W$ TF TC $=0+100$	D8439	MK2
ASOR31	00983438	3	2	PESISTOR $147+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-TO-147R-F
A50R32	0698-3444			RESSSTOR $316+1 \% .125 W$ TF TCE0+100	12498	CT-1/8-T0-316R-F
A50R33	$0038-3431$	6		RESISTOR $23.7+-1 \%$.12SW TF TC $=0+-100$	D8439	M 0^{2}
ASOR34	0090-3438	3		RESSSTOR $147+1 \%, 125 W$ TF TC=0 $0+100$	12498	CT4-1/8-TO-147R-F
A 50835	0930-344	1		RESESTOR 316 +-1\% . 225 W TF TC=0+100	12498	CT4-1/B-T0-316R-F
A50R36	0608-0085	0	3	RESSTOR 2.81K +-1\% .125W IF TC $=0+100$	12498	CT4-1/R-T0-2611-5
A50R37	0757-0465	6		RESISTOR 100K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/Q-T0-1003-F
A50R38	0690-0084	9		RESISTOR 215K $+1 \%$.125W TF TC= $0+100$	12498	CT4-1/8-T0-2151-F
A50R39	2100-3207	1	1	RESISTOR-TRMR SK 10\% TIF SIDE-AD 1-TRN	28480	2100-3207
A50R40	0757-0279	0	2	RESISTOR 3.16K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-3161-F
ASOR41	0757-0465	6		RESISTOR 100K + 1%.125W TF TC $=0+100$	12498	CT4-1/8-T0-1003-F
A50R42	0757-0401	0		RESISTOR $100+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-101F
A50R43	0757-0401	0		RESISTOR $100+1 \%$. $125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-101F
A50R4	0757-0421	4	2	RESISTOR $825+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-TO-825R-F
A50R45	2100-3349	2	1	RESISTOR-TRMR 10010% TIF SIDE-ADI I-TRN	28480	2100-3349
ASOR46	0098-3442	9	3	RESISTOR $237+1 \% .125 W$ TF TC=0+100	12498	CT4-1/8-T0-237R-F
A50847	0698-3447	4	1	RESISTOR $422+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/E-T0-422RF
A50R48	0757-0401	0		RESISTOR $100+1 \%$. $125 W$ TF TC $=0+100$	12488	CT4-1/0-T0-101F
ASOR49	0757.0401	0		RESISTOR $100+1 \% .125 W$ TF TC $=0+100$	12498	CT-1/8-TO-101-F
A50R50	0757-0438	3		RESISTOR 5.11K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-5111F
ASOR51	0757-0394	0	4	RESISTOR $51.1+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-51R1-
A50R52	0757-0394	0		RESISTOR $51.1+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-51R1-F
A50R53	0757-0438	3		RESSTOR 5.11K +-1\% .125W TF TC=0+100	12498	CT4-1/B-T0-5111-F
A50754	0757-0419	0	3	RESISTOR $681+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-TO-681R-F
A50R55	0757-0438	3		RESISTOR 5.11K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-5111F
A50R56	0698-0085	0		RESISTOR 2.61K $+1 \% .125 W$ TF TC= $0+100$	12498	CT4-1/B-T0-2611-F
A50R57	0757-0419	0		RESISTOR $681+1 \% .12 S W$ TF TC $=0+100$	12498	CT4-1/8-T0-681R-F
A50R58	0757-0438	3		RESISTOR 5.11K +1\% .125W TF TC=0+100	12498	CT4-1/8-T0-5111F
A50R59	0898-0085	0		RESUSTOR 2.61K +-1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-2611F
A50R60	0898-3153	9		RESISTOR 3.83K +1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-3831-F
A50961	0757-0394	0		RESSTOR $51.1+1 \%$.125W TF TC $=0+100$	12498	CT4-1/E-T0-51R1-F
A50R62	0757-0394	0		RESISTOR $51.1+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/0-TO-51R1F
A50R63	0757-040	7	3	RESISTOR 7.5K + $\mathbf{1 \%}$. 125 W TF TC=0+-100	12498	CT4-1/8-T0-7501F
A50R64	0757-0440	7		RESISTOR 7.5K + 1%. 125 W IF T $\mathrm{C}=00+100$	12498	CT4-1/8-T0-7501-F
A50R65	0757-0446	7		RESISTOR $511+1 \%$.125W TF TC=0 $=0+100$	12498	CT4-1/8-T0-511R-F

Table 6-3. Replaceable Parts

Referance Designation	hP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Mtr. Code	Wifr. Part Number
A50R66	0090-4190	6	1	RESISTOR 50 +-0.25\% . 125W TF TC $=0+100$	12498	NAM
A50R67	0600-3488	3	1	RESISTOR 442 $+1 \%$.125W IF TC $=0+100$	12498	CT4-1/8-70-422R-F
ASORG8	$0757-0428$	1	1	RESISTOR 1.62K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-1621-F
A50R69	$0898-6235$	4	1	PESISTOR 96.25 +-0.5\% .125W TF TC $=0+100$	12498	NAT
A50R70	$0757-0439$	4	1	RESISTOR 6.81K $+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12488	CT4-1/8-T0.6811F
A50871	0890-7982	0	1	RESISTOR $71.16+0.1 \%-25 W$ TF TC $=0+50$	19701	5043R-1/4-T2-71R16-B
A50R72	0757-0280	3		RESISTOR $1 \mathrm{~K}+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-T0-1001F
A50R73	$0757-0419$	0		RESISTOR $681+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-681RF
A50R74	06983445	2	1	RESISTOR 348 + -1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-348R-F
A50R75	$0757-0401$	0		RESISTOR $100+1 \%$. 125 W TF TC $=0+100$	12498	CT41/8-TO-101-F
A50R76	0757-0416	7		RESISTOR $511+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/R-TO-511R-F
A50R77	0598.7961	0	1	REESISTOR $96.25+0.1 \%$. $25 W$ TF TC $=0+50$	19701	5043R-1/4-T2-96R25-B
A50R78	0757-0424	7	1	RESSTOR 1.1K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-1101F
A50R79	0698-3442	9		RESISTOR $2377+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-237R-F
A50R80	$0757-0401$	0		RESISTIOR $100+\boldsymbol{1 \%} .125 W$ TF TC $=0+100$	12498	CT4-1/G-TO-101-
250881	0038-3442	9		RESSSTOR $237+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-237R-F
A50R82	$0757-0442$	9		RESISTOR 10K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1\%-T0-1002F
A50R83	$0757-0438$	3		RESUSTOR 5.11K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-5111-F
a 40 R 84	$0757-0440$	7		RESISTOR 7.5K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-70-7501-F
A50R85	0757-0438	3		RESISTOR 5.11K $+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-T0-5117-F
A50R86	0757-0438	3		RESISTOR 5.11K + 1%. 125 SW TF TC $=0+100$	12498	CT-1/8-70-511if
A50R87	$0757-0200$	7	1	RESISTOR 5.62K +-1\%. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-5621-F
A50R88	0698-3444	1		RESISTOR $316+1 \%$. 125 W TF TC= $=0+-100$	12498	CT4-1/8-T0-316R-F
A50R89	0698-3444	1		RESISTOR $316+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-316R-F
1333A 20 2227A						
A50R90	$0757-0280$	3			12498	CT4-1/8-T0-1001-F
22294 and above						
A50RS0	0690-3441	8	1	RESISTOR $215+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-215R-F
A50R91	0757-0402	1	1	RESISTOR $110+1 \%$. $125 W$ TF TC $=0+100$	12498	CT4-1/8-70-111F
A50R92	$0757-0416$	7		RESISTOR $511+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-511R-F
$250 \mathrm{P93}$	0757-0280	3		RESISTOR 1K + 1\% .125W TF TC $=0+100$	12498	CT4-1/8-10-1001-7
A50R94	0757-0279	0		RESISTOR 3.16K $+1 \%$. 125 W TF TC $=0+-100$	12498	CT4-1/8-T0-3161-F
A50R95	0757-0421	4		RESISTOR $825+1 \% .125 W$ TF TC $=0+-100$	12498	CT4-1/2-TO-825A-F
A50R96	0638-6343	5	1	RESISTOR 9K + -0.1\% . 125 W FF TC $=0+25$	12498	NESS
A50R97	0757-0442	9		RESISTOR 10K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-1002-F
A50R98	$0898-3491$	8	1	RESISTOR 1K $+0.1 \%$. 125 W TF TC $=0+-50$	12498	NC55
A50R99	Oene-3449	6	1	RESISTOR 28.7K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-2872-F
A508100	$0757-0280$	3		RESISTOR 1K +-1\% .125W TF TC=0 ${ }^{\text {- }} 100$	12498	CT4-1/8-T0-1001-F
A50R101	0698-4158	6	1	RESISTOR 100K $+0.1 \%$. 125 W TF TC $=0+-50$	12498	NC55
A50R102	$0757-0438$	3		RESISTOR 5.11K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-5111-F
ascrios	0757-0280	3		RESISTOA $1 \mathrm{~K}+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-1001F
A50R104	0757 -0438	3		RESISTOR $5.11 \mathrm{~K}+1 \%$. 125 W TF TC= $=0+100$	12498	CT4-1/8-T0-5111-F
A50R105	0757-0280	3		RESISTOR IK + 1\% . 125 W TF TC $=0+100$	12498	CT4-1/8-T0-1001-F
A50R106	$0757-0280$	3		RESISTOR TK + 1\% .125W TF TC $=0+100$	12498	CT4-1/8-70-1001-F
AS0R107	0757-0442	9		RESISTOR 10K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-TO-1002-F
A50R108	0757-0442	9		RESISTOR 10K + -i\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-1002-F
1933A m 2227A						
A50R109				NOT ASSIGNED		
2229A and above						
A50R109	0008-3441	8	1	RESISTOR $215+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-215R-F

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cly.	Description	Mifr. Code	Mfr. Part Number
A507P1	1251-0800	0	3	CONNECTOR-SEL CONT PAN 1.14-MMASC-SZ 50	12360	24-155-101001-03-00
A501P2	1251-0600	0		CONNECTOR-SCL CONT PIN 1.14-MMBSCSZ SO	12360	94-155-1010-01-03-00
A50TP3	1251-0600	0		CONMECTOR-SGL CONT PAN 1.14-MM-ESC-SZ 50	12360	94-155-101001-03-00
A50U1	1826-0059	2	5	\triangle OP ANP GP E-TO-9 PKG	27014	LeVzolah
A5042	1826-0059	2		1C OP AMP GP 8-TO.99 PKK	27014	LMEO1AH
A5043	1826-0059	2		1C OP AMP GP \&-TO-99 PKG	27014	LM201ANH
A5044	1826-0059	2		IC OP ANP GP 8-TO-99 PKG	27014	LMEDIAH
ASOUS	1826-0059	2		$1 C^{\prime}$ OP ANP GP 8-TO-99 PKG	27014	LMEDIAH
A50us	1826-0180	0	1	MC TMMER TTL MONO/ASTBL	18324	NES55N
A 5017	1820-1963	7	1	IC FF CNOS D-TYPE POS-EDGE-TRKG DUAL	04713	MC140138CP
A5018	1826-0138	8	1	IC COMPARATOR GP OUAD 14-DP-P PKG	27014	LM339N
A50v9	1820-1411	0	1	AC LCH TIL LS D-TYPE 4-RT	01295	8N74LS75N
A50U10	1820-1216	3	1	IC DCDR TIL LS 3-TO-GLE 3-NP	01295	SN74LS138N
A50VA1	1902-0680	7	1	DKOOE-ZNR $9 \mathrm{MB27} 6.2 \mathrm{~V} 5 \% \mathrm{DO} 7 \mathrm{PO}=.4 \mathrm{~W}$	04713	1 Maz7
ASOVR2	19023050	0	1	DIOOE-2NR 3.83V 5\% DO-35 PDw.4W	28460	1902-3059
ASOVR3	1902-3104	6	1	DIOCE-ZNR 5.62V 5\% DO-35 PD=.4W	29480	1902-3104

Table 6-3. Replaceable Parts

Reference	HP Part	\mathbf{C}	Oty.	Description	Mr.	Mumber
Designation	\mathbf{D}		Code	Mart Number		

A51

051	00901-60013	3	1	FM CALIBRATOR ASSEMELY (OPTION 010 ONLY)	28480	08901-60013
astci	0160-3459	9	10	CAPACTIOAFFD .02UF + 20% 100VDC CER	09969	DD111NWB30275V203M100V
A51C2	0160-3459	9		CAPACTTORFXD .02UF + 20% 100VDC CER	09969	D0111NWB30225V203M100V
A51C3	01603459	9		CAPACTTOR-FXD .02UF +-20\% 100VDC CER	09969	DO111NWB302Z5V203M100V
ASICA	$0160-3459$	9		CAPACTTOR-FXD .02UF +-20\% 100VDC CER	09969	ODI11NWB30225v203M100V
A51C5	0180-2206	4	2	CAPACTTOR-XXD 60UF+-10\% SVDC TA	56289	150D606x900682
A51C6	0160-2199	2	3	CAPACTTOR-XD 30PF +-5\% 300VDC MACA	28480	0160-2199
A51C7	0160-3459	9		CAPACTTOR-FXD .02UF +-20\% 100VDC CER	09969	D0111NWE30225v203M100V
A51C8	0160-3459	9		CAPACTIOA-FXD .02UF + $20 \% 100 \mathrm{VDC}$ CER	09969	D0111NWE30225V203M100V
A51C9	0160-2199	2		CAPACTTOR-FXD 30PF $+5 \%$ 300VDC MICA	28480	0160-2199
1933A to 2201A						
A5IC10	0140-0196	3	1	CAPACTTOR-FXD 150PF +-5\% 300VDC MICA	28480	0140-0196
2212A and above						
A51CIO				NOT ASSIGNED		
${ }^{4} 51 \mathrm{Cl1}$	0160-2207	3	1	CAPACITOR-FXD 300PF +-5\% 300VDC MICA	28480	0160-2207
A51C12	0160-2199	2		CAPACTTOR-FXD 30PF + 5% 300VDC MICA	28480	0160-2199
A51C13	0180-2206	4		CAPACTTOR-FXD 60UF+-10\% 6VDC TA	56289	1500606X900682
A51C14	0160-4040	6	1	CAPACTIOR-FXD 1000PF +-5\% 100VDC CER	09969	RPE124-105C06102-100V
A51C15	0180-0228	6	1	CAPACTOR-5D 22UF+10\% 15VDC TA	56289	1500226x901582
$251 C 16$	0140-0205	5	1	CAPACTTOR-FXD 62PF +-5\% 300VDC MICA	28480	0140-0205
A51C17	0160-3535	2	1	CAPACTTOR-FXD 560PF +-5\% 300VDC MICA	28480	0160-3535
A51C18	0160-0574	3	2	CAPACITOA-FXD .ORZUF +-20\% 100VDC CER	06383	FD12X7R2A223M
A51C19	0180-0197	8	1	CAPACTOR-FXD 2.2UF+10\% 20VDC TA	56289	1500225×9020A2
A51C20	0121-0436	4	1	CAPACTTOR-V TRIMR-AIR 2.6-23.5PF 350V	74970	189-0509-125
$251 \mathrm{C21}$	$0160-0574$	3		CAPACTTOR-FXD .O22UF +-20\% 100VDC CER	06383	FD12x7R2A223M
$451 \mathrm{C22}$	0160-3459	9		CAPACTTOR-XD .O2UF + 20% 100VDC CER	09969	DD111NWB30275V203M100V
A51C23	01603459	9		CAPACTTOR-XD .02UF +-20\% 100VDC CER	09869	D01114WE30225V203M100V
A51C24	0160-3459	9		CAPACTTOR-FXD .02UF +-20\% 100VDC CER	09969	DD111NWE30225V203M100V
A51C25	0160-3459	9		CAPACTTOR-FXD .02UF +-20\% 100VDC CER	09969	DD111NWB30225V203M100V
ASTCA1 ${ }^{\text {a }}$	1901-1098	1	5	DKODESWITCHING 1NA150 50V 200 MA ANS	9 9171	1NeT150
A51CR2 ${ }^{\text {S }}$	1901-1098	1	5	DIODE-SWITCHING 1NA150 50 V 200MA ANS	9 9N171	INASI50
1933A to 2410A						
A5ICR3 ${ }^{\triangle}$	0122-0173	8	3	DICDE-VVC 29PF 10\% C3/C25-M1N $=530 \mathrm{~V}$	28480	0122-0173
2412A and above						
A51CR3 ${ }^{\text {a }}$	0122-0162	5		DICOE-VVC 29PF 10\%	28480	0122-0162
A51CR8 ${ }^{\text {A }}$	1903-1098	1	5	DIODESWITCHING 1NA150 50V 200MA ANS	9N171	1NaS150
1933A Lo 2410A						
A51CR5 ${ }^{\text {- }}$	0122-0173	8	3	DIODE-VVC 29PF 10\% C3/C25-M1N $=530 \mathrm{~V}$	28480	0122-0173
A5iCR6 ${ }^{\text {a }}$	0122-0173	8	3	DIODE-VVC 29PF 10% C3/C25-MUN $=530 \mathrm{~V}$	28480	0122-0173
24124 and above						
A5ICRS ${ }^{\text {a }}$	0122-0162	5		DHODE-WVC 29PF 10\%	28480	0122-0162
A51CR6 ${ }^{\text {® }}$	0122-0162	5		DIODE-VVC 29PF 10\%	29480	0122-0162

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Oty.	Description	Mifr. Code	Mrr. Part Number
ASICA7 ${ }^{\text {a }}$	1901-1098	1	5	DIODESWITCHING 1N4150 50V 200MA 4NS	9×171	TNa150
A5ICR8 \triangle	1901-1098	1	5	DHODE-SWITCHING 1N4150 50V 200MA ANS	9N171	1N4150
ASIE1	91700847	3	2	CORESHIELDING BEAD	02114	56-590-65/3B PARYLENE C
A51E2	9170-0847	3		CORESHMELONG BEAD	02114	56-590-65/3B PARYLENE C
A51s1	1250-1220	0	2	CONTECTOR-RF SMC M PC 50-OHM	06877	82SMC-50-0-3/111
	2190-0124	4	2	WASHER-LK ETL T NO. $10.195-1 N H D$	16179	500222
	2950-0078	9	2	NUTHEX-DEL-CHAM 10.32-THD .067-NATHK	28480	2950-0078
A5132	1250-1220	0		COWNECTOR-RF SMC M PC 50-OHM	06877	82SMC-50-0-3/111
	21900124	4		WASHER-LK INTL T NO. 10.195 -INHD	16179	500222
	2950-0078	9		NUTHEX-DBL-CMAM 10-32-TH0 .067-HNTHK	20480	2950-0078
45151	9100-1635	2	5	WOUCTOR RF-CHMED 91UH +-5\%	81637	MAC 91UH 5\%
A51L2	9100-1635	2		MOUCTOR RF-CH-MLD 91UH +-5\%	81637	M-4 91uH 5\%
45113	9100-1635	2		WOUCTOR RF-CHMMLD $914 \mathrm{H}+$ +5\%	91637	M-4 91UH 5\%
A5IL4	9100-1635	2		MDUCTOR RF-CH-MLD 91UH +-5\%	91637	UM-4 91UH 5\%
M51L5	9100-1635	2		WDUCTOR RF-CHMLD $91 \mathrm{UH}+\mathbf{5 \%}$	91637	M-4 91UH 5\%
A51L6	$8140-0310$	2	1	MDUCTOR RF-CHMRD 390NH +-5\%	91637	M-2.39UH 5\%
A51L7	9140-0309	9	1	WUDUCTOR RF-CHHMLD 1.8UH +-5\%	91637	M-2 1.8UH 5\%
A51MP1	00901-00040	0	1	COVER-FM CALPRATORYINCL PC EXTRACTOR)	28480	08901-00040
	23600113	2	2	SCREW-MACH 6-32 .25-IN-L PAN-HD-POZI	00000	ORDER BY DESCRIPTION
A51MP2	5021-0817	8	1	P.C. BOMRD EXTRACTOR	28480	5021-0817
A5101	1853-0034	0	3	TRANSISTOR PNP SI TO-18 PO=360MW	28480	1853-0034
A5102	18540071	7	4	TRANSISTOR NPN SI TO-92 PD=300NW	2 N 627	CP4071
A5103	1853-0007	7	4	TRANSISTOR PNP 2 N3251 SI TO-18 PD $=360 \mathrm{WW}$	04713	2N3251
A5104	1853-0007	7		TRANSISTOA PNP 2N3251 Si TO-18 PD=360MW	04713	2N3251
45105	1853-0036	0		TRANSISTOR PNP SI TO-18 PD $=360 \mathrm{MW}$	28480	1853-0034
A5106	1853-0034	0		TRANSISTOR PNP SI TO-18 PO $=360 \mathrm{MW}$	28480	1853-0034
A5107	1854-0247	9	1	TRANSISTOR NPN SI TO-39 PD $=1 \mathrm{~W}$ FT $=800 \mathrm{MHZ}$	28480	1854-0247
	12000173	5	1	NSULATOR-XSTR DAP-GL	13103	7717-86 DAP
45108	1854-0071	7		TRANSISTOR NPN SI TO-92 PD $=300 \mathrm{MW}$	2M627	CP4071
1933A to 2542A						
A5199	1854-0475	5	1	TRUNSISTOR-DUAL NPN PD $=750 \mathrm{MW}$	28480	1054-0475
2543A and above						
A5109	1854-0295	7	1	TRANSISTOR-DUAL NPN PD=400MW	28480	1854-0295
A51010	1854-0071	7		TRANSISTOR NPN SI TO-92 PD=300MW	$2 \mathrm{M627}$	CP4071
A51011	1854-0071	7		TRANSISTOR NPN SI TO-92 PD $=300 \mathrm{MW}$	$2 \mathrm{M627}$	CP4071
A51012	1853-0007	7		TRANSISTOR PNP 2N3251 S1 TO-18 PD=360MW	04713	2N3251
A51013	1853-0007	7		TRANSISTOR PNP 2N3251 SI TO-18 PD=360MW	04713	2N3251
A51R1	0757-0401	0	2	RESISTOR $100+-1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0.101F
A51R2	0757.0443	0	1	RESISTOR 11K $+1 \% .125 W$ TF TCm0 0 -100	12498	CT4-1/8-T0-1102-F
A51R3	0698-3154	0	3	RESISTOR 4.22K $+-1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-TO-4221F
A51R4	0698-3153	9	2	RESISTOR 3.83K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-3831-F
A51R5	0757-0442	9	4	RESISTOR 10K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-1002-
ASIR6	08983447	4	1	AESSTOR $422+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-822A-F

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Oty.	Description	Mtr. Code	Mitr. Part Number
05197	0898-6502	8	3	RESISTOR 3.32K +0.25\% .125W TF TC $=0+50$	12498	NC55
A51R8	0698-6502	8		RESISTOR 3.32K +-0.25\% .125W TF TC=04-50	12498	NCS5
A51R9	0757-0442	9		RESISTOR 10K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/B-T0-1002-F
A51R10	0698-3153	9		RESSSTOR 3.83K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-3831-F
A51R11	0698-0068	5	2	RESISTOR 4.99K $+0.25 \% .125 \mathrm{~W}$ TF $\mathrm{TC}=0+25$	19701	5033R-1/8-T9-4991-C
A51R12	2100-3309	2	1	RESISTOR-TRMR 10010% TKF SIDE-ADJ 1-TRN	28480	2100-3349
A51R13	0690-8068	5		RESISTOR 4.99K $+0.25 \%$.125W TF TC $=0+25$	19701	5033ค-1/8-T9-4991-C
A51R14	0690-8024	3	1	RESISTOR 3.09K $+0.25 \%$.125W TF TC $=0+50$	19701	5033R-1/8-T2-3091-C
A51R15	0698-3155	1	2	RESISTOR 4.6ak $+1 \% .125 \mathrm{~W}$ TF TC $=0+-100$	12498	CT4-1/8-T0-4641F
AS1R16	0757-0442	9		RESISTOR 10K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-1002-F
251R17	0898-3155	1		RESISTOR 4.64K $+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-4641F
A51R18	0757.042	9		RESISTOR 10K +1\% .125W TF TC $=0+100$	12498	CT4-1/8-T0-1002-F
A51R19	0757-0464	5		RESISTOR 90.9K +-1\% .125W TF TC $=0+100$	12498	CT+1/8-T0-0092-F
A51R20	0757.0416	7	2	RESSTOR $511+1 \% .125 W$ TF TC=0 $=100$	12498	CT4-1/R-T0.511R-F
A51R21	0696-7815	8	1	RESSTOR 2.87K $+0.5 \%$. 125 W TF TC $=0+50$	19701	5033A-1/8-T2-2871-D
A51R22	$0698-7839$	6	1	RESISTOR $222+0.5 \%$. 125 W TF TC $=0+50$	19701	5033R-1/8-T2-222R-D
A51R23	$0898-5439$	8	2	RESISTOR IK $+0.25 \% .125 W$ TF TC $=0+50$	12498	NC55
AS1R24. ${ }^{\text {a }}$	06983159	5	1	RESISTOR $26.1 \mathrm{~K}+1 \%$. 125 W TF TC $=0+-100$	24546	CT4-1/8-T0-2612-F
AS1R25				MOT ASSIGNED		
A51R26	0696-5439	8		RESISTOR 1K + 0.25%. 125 W TF TC $=0+50$	12498	NC5S
A51R27	0698-6502	8		RESISTOR 3.32K $+0.25 \% .125 \mathrm{~W}$ TF TC $=0+.50$	12498	NC55
A51R28	0658-3440	7	1	RESISTOR $196+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-TO-196R-F
ASTR29	0696-3154	0		RESISTOR 4.22K $+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-T0-4221-F
A51R30	06983157	3	1	RESISTOR 19.6K $+1 \%$. 125 W TF TC $=0+-100$	12498	CT4-1/8-T0-1962-F
A51R31	0698-0085	0	1	RESISTOR $2.61 \mathrm{~K}+1 \% .125 W$ TF TC $=0+100$	12498	CT-1/8-70-2611F
A51R32- ${ }^{\text {a }}$	0757-0443	0	1	RESISTOR 9.09K +-1\% .O5W TF TC=0+100	24546	CT3-1/8-T0-9091-F
A51R33	0757-0447	4	1	RESISTOR 16.2K $+1 \%$.125W TF TC= $0+100$	12498	CT4-1/8-10-1622-F
AStr34	0698-3154	0		RESISTOR 4.22K $+1 \% .125 \mathrm{~W}$ TF TC $=0+100$	12498	CT4-1/8-T0-4221-F
A51R35	0757-0401	0		RESISTOR $100+-1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/6-70-101-F
A51R36	0757-041	8	1	RESISTOR 8.25K $+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-8251-F
A51R37	0698-7205	0	1	RESISTOR $51.1+1 \%$.O5W TF TC=0+100	12498	C-1/R-TO-51R1-F
A51R38	0696-7212	9	3	RESISTOR $100+1 \%$.OSW TF TC $=0+100$	12498	C-1/6-TO-100R-F
AS1R39	0757-0420	3	2	RESISTOR $750+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-751-F
A51R40	0698-7212	9		RESISTOR $100+-1 \% .05 W$ TF TC $=0+100$	12498	C3-1/8-T0-100R-F
A51R41	0757-0416	7		RESISTOR $511+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-511R-F
A51R42	0757-0420	3		RESISTOR $750+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-751-F
A51R43	0698-3132	4	1	RESISTOR $261+1 \%$. 125 W TF TC $=0+100$	12498	CT4-1/8-T0-2610-F
AS1R44	0696-7212	9		RESISTOR $100+1 \%$.05W TF TC=0 $0+100$	12498	C3-1/8-T0-100R-F
AS1R45	0757-0438	3	2	RESSTOR 5.11K $+1 \%$.125W TF TC $=0+100$	12498	CT4-1/8-T0-5111-F
ASTR46	0757-0438	3		RESISTOR $5.11 \mathrm{~K}+1 \% .125 W$ TF TC $=0+100$	12498	CT4-1/8-T0-5111-F
AS1TP1	1251-0600	0	3	CONWECTOR-SGL CONT PAN 1.14-MMA-BSC-SZ SO	12360	94-155-1010-01-03-00
A51TP2	1251-0600	0		CONNECTOR-SGL CONT PIN $1.14-M M-B S C-S Z ~ S O ~$	12360	94-155-1010-01-03-00
ASITP3	1251-0600	0		CONNECTOR-SGL CONT PNN 1.14-MM-BSC-SZ SO	12360	94-155-1010-01-03-00
nsiut	1826-0059	2	4	IC OP AMP GP 8-TO-99 PKG	27014	Lmpdiah
AStu2	1826-0059	2		IC OP AMP GP 8-TO-99 PKG	27014	LM201AH
A5143	1826-0059	2		IC OP AMP GP 8-TO-99 PKG	27014	LMROIAH

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Mifr. Code	Mifr. Part Number
1933A to 2201A						
$\mathrm{ASIU4}^{\text {d }}$	1826-0059	2		IC OP AMP GP 8-TO-99 PKG	27014	LMROTAH
2212A and above						
$\mathrm{ASIU4}_{4}$	1826-0371	1		IC OP AMP LOW-EUASH-MMPD TO-99 PKG	27014	LF256H
A51u5	1820-1963	7	1	IC FF CMOS D-TYPE POSEDGE-TRIG DUAL	04713	MC140138CP
A51us	1826-0138	8	1	IC COMPARATOR GP OUAD 14-DIP-P PKG	27014	LM339N
A51u7	1820-1216	3	1	IC DCDR TTL LS 3-TO-LINE 3-NP	01295	SN74LS138N
asius	$1820-1411$	0	1	IC LCH TR LS D-TYPE 4BT	01295	SN74LS75N
ASIUP	1820-0723	5	1	ICHITERFACE RCVR LINE RCVR DUAL	01295	SN75107AN
ASIVRI	1902-3059	0	3	DIODE-ZNR 3.83V 5\% DO-35 PD=.4W	29480	1902-3059
A5IVR2	1902-0680	7	1	DIODE-ZNR 1N827 6.2V 5\% DO-7 PO=.4W	04713	1 N 827
A5ivaz	1902-3104	6	2	DIODE-ZNR 5.62V 5\% DO. $35 \mathrm{PD}=.4 \mathrm{~W}$	28480	1902-3104
A5ivRa	1502-3104	6		DIODE-ZNR 5.62V 5\% D0-35 PD=.4W	28480	1902-3104
ASIVR5	1902-3059	0		DLODE-2NP 3.83V 5\% DO.35 PD=.4W	28480	1902-3059
A5IVR6	1502-3059	0		DKODE-ZNR 3.83V 5\% 00-35 PD $=.4 \mathrm{~W}$	28480	1902-3059

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Oty.	Description	Wfr. Code	Mifr. Part Number
				MISCELLANEOUS ELECTRICAL PARTS		
B4*	ce901-60306	7	1	FAN ASSEMBLY. 115 V -50/60 HZ (EXCEPT OPTION OOK, NCLUDES PARTS LSSTED BELOW)	28480	00901-60306
	00801-80065	7	1	FAN ONLY (NO HARDWARE)	28480	08901-90065
	3180-0300	6		FWEERGUARD	28480	3160-0300
	00801-00046	?	1	FAN COVER	28480	06901-00046
	86701-00017	3		SHEEDING DISK	28480	$86701-00017$
	1520-0067	4	2	SHOCK MOUNT	61957	WELIAUT E-632
	2360-0220	2	,	SCREWHMCH G-32 2.25-NHLG PANHD-POZI (B1 TO MP16)	00000	ORDER BY DESCRIPTION
	0560-1009	2		teraminal soider ug	28480	0860-1099
	2510-0099	2		SCREW-MACH 8-32 2SHHLG PANHDPOZI (FOR SOLDER WG)	28480	2510-0099
	3050.0027	3	4	WUSHER-FL MTLC NO. 6.149 HND	80120	ANDSOC-6
B1 ${ }^{\text {a }}$	00501-60307	0	1	FAN ASSEMELY, 115V-48/400 HZ (OPTION DOL ORLY, NCLUDES PARTS LSTED BELOW)	28480	$00901-60307$
	08501-80060	2	1	FAN ONLY (NO HAROWARE)	28480	00901-80060
	3160-0300	6		Fingerguard	28480	3160-0300
	86701.00017	3		SHIELDNG DISK	28480	85701-00017
	$08901-00046$?	1	FAN COVER	28480	00901-00046
	86701-00017	3		SHAELDING DISK	28480	86701-00017
	1520-0067	4	2	SHOCK MOUNT	61957	WELL NUT E-632
	2360-0221	3	1	SCREW-MACH 632 2.5-HLLG PANHDPOZI (B1 TO MP16)	00000	ORDER BY DESCRIPTION
	2380-0220	2	3	SCAEW-MACH 6-32 2.25-INLG PANHDPPOZI (B1 TO MP16)	00000	ORDER BY DESCRIPTION
	3050-0227	3	4	WASHEAFL MTLC NO, 6.149-NHD	80120	ANS60C-6
F1	2110-0002	8	1	FUSE (NCH) 24 250V NTD FE UL	75915	312002
F1	$2110-0001$	8	1	FUSE (INCH) IA 250V NTD FE UL	75975	312001
1933A to 2119A						
J ${ }^{\text {d }}$				(NPUT) NSA, P/O W\%		
21264 and above						
J1	1250-1772	7		ADAPTER-CONX STR F-N FSMMA (MPPU)	28480	1250-1772
	0590-0505	1		MUT-KNRLDR 5/8-24-THD .125-INTHK	28480	0590-0505
$\sqrt{2}$				(MODULATION OUTPUT) NSA, P/O W19		
13				(CALBRATION OUTPUT) NSA, P/O W32. OPTION 010 ONLY		
4				(MOOULATTON OUTPUT) NSR. P/O W38, OPTION OOT ONLY		
$J 5$				(FF OUTPU) NSR. P/O W9		
1933 to 2119A						
J6				(LO OUTPUT) NSR, P/O WB, OPTION 003 ONLY		
J7				(LO NPUT) NSR, P/O W4, OPTION 003 ONLY		
2126A and above						
$J 6$	1250-1772	7		ADAPTER-COAX STR F-N F-SMA (INPUT)	28480	1250-1772
$J 7$	1250-1772	7		ADAPTERCONX STR F-N F-SMA (NPPUT)	28480	1250-1772
$\begin{aligned} & 18 \\ & 18 \end{aligned}$				(TMME BASE OUTPUT) NSR, P/O W15. OPTION 002 ONLY (TMME BASE WPUT) NSR. P/O WIB		

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	\mathbf{C}	Oty.	Description	Mitr. Code	Mfr. Part Number
1933A to 2119A						
J10				(ANPUT) NSR, P/O W36. OPTION OOT ONLY		
21261 and above						
J10	1250-1772	7		ADAPIER-COAX STR F-N F-SMA (NPUT)	28480	1250-172
$J 11$				(CALIBPATION OUTPUT) NSR, P/O W37 OPTION 010+001 ONLY (OPTIONS 001/010 ONLY		
J 12	1250-0083	1	3	CONNECTOR-AF BNC FEM SGLHOLE-FR 50-OHM (AM OUTPU')	24931	28JR130-1
$J 13$	1250-0083	1		CONNECTOR-RF BNC FEM SGL-HOLE-FR S0-OHM	24931	28JR130-1
J14	1250-0083	1		CONWECTOR-PF ENC FEM SEL-HOLE-FR 50-OHM	24931	28JR130-1
St	3101-1655	2	1	SWITCH, TOCCLE, SPOT (ON/STBY)	09353	7101-JICO/7602-12 JADE
	0520-0129	8	2	SCREW-MMCH 2-56 .312-NNLG PANHD-POZI	00000	ORDER BY DESCRIPTION
T1离	9100-4052	3	1	TRANSFORMEA ASSEMBLY	28480	9100-4052
				PARTS \& COVER LSTED BELOW)		
Δ	$06901-00244$	0	1	Spacer	28480	00901-00140
	7100-1283	4	1	TRANSFORMER COVER	28480	7100-1283
	2680-0131	2	4	SCREW-MACH 10.32 2.25-WLG PANHD-POZI	00000	ORDER BY DESCRIPTION
	2190-0034	5	6	WASHER-LK HLCL. NO. 10.194NHD	28480	2190-0034
	3050-0225	2	2	WASHERFL MTLC NO. 10 203-NHD	80120	AN960C10L
	2190-0034	5		WASHER-LX HLCL NO. $10.194-1 N-1 D$	28480	21900034
	2740-0002	4	2	MUTHEX-DEL-CHAM 10-32 2A-THD	00000	ORdER EY DESCRIPTION
	1400-0249	0	6	CABLE TEE .062.625-DU .091-WD NYL	16956	08-465/GRAY
	0090-0007	4	2	TUBNGFFIEX , 162-1D PVC . 02 -WALL	28480	0890-0007
	1520-0067	4	2	SHOCK MOUNT (FOR FAN N REAR PANEL)	61957	WELL-NUT E-632
	0890-0007	4		TUBINGFLEX .162-1D PVC .02-Wall	28480	0890-0007
	1520-0067	4		SHOCK MOUNT (FOR FAN WN REAR PANEL)	61957	WELLNUT E-632
	2190-0016	3	3	WHSHERHK WNL T 3 /B N 377 HHHD	28480	2190-0016
	29500001	8	3	MUTHEX-DBL-CHAM 3/8-32-THD .094-AN-THK	00000	ORDER BY DESCRIPTION
	21800016	3		WASHER-LK WTL T 3 /B IN 377-NHD	28480	2190-0016
	29500001	8		NUT-HEX-DBL-CHAM 3/8-32-THO .094-IN-THK	00000	ORDER EY DESCRIPTION
	2180-0016	3		WMSHER-LK WTL T 3 /8 IN 377-NHDD	28480	2190-0016
	2950.0001	8		NUT-EEX-DBL-CHAM 3/8-32-THD .094N-THK	00000	ORDER EY DESCRIPTION
	2180-0045	8	8	WASHER-LK HLCL NO. 2 . O88-HNHD	76854	1501-009
1933A to 2119A						
WI	08901-60041	7	1	CABLE ASSEMBLY J1 TO A1SII	28480	08901-60041
	$08901-60118$	9	1	CABLE ASSEMBRLY J1 TO A15J1, EXCEPT OPTION 001	28480	08901-60118
w)	cosol-6018					
W2	08901-60061	1	1	CABLE ASSEMBLY A15J2 TO A17.12	28480	08901-60061
w3	08901-60060	0	1	CABLE ASSEMBLY A17St TO A1812	28480	08901-60060
1933A to 2119A						
W4	00901-60062	2	1	CABLE ASSEMBLY 77 TO A17 33	28480	08901-60062
2126A and above				CABLE ASSEMBLY JT TO A17.33. OPTION 003 ONLY	28480	60901-60158
W5	08901-60043	9	1	Cable ASSEmbly atalt TO AGI2	28480	00901-60043
w6	08901.60053	1	1	CABLE ASSEMBLY A6, 1 TO A2J1	28480	08901-60053
w7	00901-50054	2	1	CABLE ASSEMBLY AGU3 TO AdJI	28480	0090160054

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Mfr. Code	Mifr. Part Number
1933A to 2119A						
W8	08901 -60048	4	1	CABLE ASSEMBLY A18J3 TO J6	28480	08901-60048
2126A and aboue						
W8	00901-60167	8	1	CABLE ASSEMBLY J6 TO A1913, OPTION 003 ONLY	28480	08901-60167
W9	Desor-60044	0	1	CABLE ASSEMBLY AGM4 TO 15	28480	00901-60044
W10	0es01-60056	4	1	CABLE ASSEMBLY AM3 TO A2J2	23460	$08901-60056$
W11	08901-60059	7	1	CABLE ASSEMBELY A2411 TO A19J2	28480	08901.60059
W12	00901-60063	3	1	CABLE ASSEMELY AR231 TO A21J1	28480	00901-60063
W13	08801-60057	5	1	CABLE ASSEMELY A21d2 TO A2311	28480	08901-60057
W74	08901-60055	3	1	CABLE ASSEMBLY A132 TO Alld3	28460	0890160055
W15 ${ }^{\Delta}$	08901-60163	4	1	CABLE ASSEMBLY A 1 IJS TO $\mathrm{J10}$ (OPTION O02)	28480	06901-60163
W16	$00501-60051$	8	1	CABLE ASSEMBLY A19J1 TO A11J1	28480	08901-60051
W17	$08901-60058$	6	1	CABLE ASSEMBLY A2412 TO A2312	28480	08901.60058
W18	00901-60042	8	1	CABLE ASSEMELY 49 TO A1136	28480	08901-60042
W19	08901-60049	5	1	CABLE ASSEMBLY A25J1 TO 32	28480	0890160049
wzo	00901-60065	5	1	CABLE ASSEMBLY A1J2 TO A27J3	28480	0890160065
W21	06901-60086	6	2	CABLE ASSEMELY A2833 TO A27J1	28480	08901-60066
W22	00901-60066	6		CABLE ASSEMBLY A2513 TO A2812	28480	08901-60066
W23	08901-60067	7	1	CABLE ASSEMBLY A2512 TO A27J2	28480	08901.60067
W24	08901-60073	5	1	WIRING HARNESS A26,1 TO A1Jt	28480	08901-60073
W2S	08501-60070	2	1	WRING HARNESS AZEI7 TO A28,1	28480	08901-60070
W26				NOT ASSIGNED		
W27 ${ }^{\text {4 }}$	00301-60296	4	1	CABLE ASSEMBLY AZGU3 TO ARTJM MOLEX	28480	08901-60296
W28	08901-60071	3	1	CAELE ASSEMBLY A2612 TO A2544 MOLEX	28480	0890160071
W29	08901-60075	7	1	CABLE ASSEMBLY A25J5 TO 312.13 .14	28480	06901-60075
W30	08501-60077	9	1	CABLE ASSEMBLY A14J1 TO A31J1	28480	08901-60077
W34	00901-80169	0	1	CABLE ASSEMBLY Y1 TO A11M (OPTION OO2)	28480	08901.60169
W32	00301-60050	8	1	CABLE ASSEMBLY A5OJ2 TO J3 IOPTION 010 ONLY; EXCEPT OPTION OO1)	28480	08901-60050
W33	08901-20083	3	1	CABLE, SEMM-RIGID J6 TO $\sqrt{7}$	28480	08901-20083
W34	00901-60064	4	1	CABLE ASSEMBLY A51J2 TO A11J2	28480	08501-60064
W35	00901-60076	8	1	CABLE ASSEMELY A51J1 TO A5011	28480	08901-60076
1533A to 2119A						
W36	00901-60045	1	1	CABLE ASSEMBLY J10 TO A15J1	28480	0890160045
2126 A and aboue						
W36	0090160118	9	1	CABLE ASSEMBLY 31 TO A15N1, OPTION 001 ONLY	28480	00901.60118
W37	08901-60046	2	1	CABLE ASSEMBLY A5O22 TO J11 (OPTTON 001/010 ONLY)	28480	08901-60046
W38	$08901-60047$	3	1	CABLE ASSEMBLY A2SI1 TO 14	29480	08901-60047
W39	08901-60078	0	1	CABLE ASSEMELY A1913 TO A1743	28480	08909-60078
W40	8120-1378	1	1	CABLE ASSEMBLY MAINS POWER	11383	PS-204-625
Yt	0060-0529	4	1	CRYSTAL OSCULATOR, HMSTABULEER	28480	0960-0529
Δ	2360-0205	3	2	SCREW-MACH 6-32 .75-NN-LG PANHD-POZI	00000	ORDER BY DESCRIPTION
	2360-0205	3	2	SCREW-MACH 6-32 .750-N-LS PAN-HD-POZI	00000	ORDER BY DESCRIPTION
	2190-0006		4	WhSHER-LK HLCL NO. 6.141 -1N-ID	28480	2190-0006
	3050-0227	3	4	WUSHERFFL MTLC NO. 6.149 NHD	80120	AN960C6

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Mfr. Code	Mifr. Part Number
MISCELLANEOUS MECHANICAL PARTS						
1933A to 25184						
MPI	5020-8805	8	1	FRAME, FRONT	28480	5020-8805
	2350-0114	3	8	SCREW-MACH 6-32 25-INLE 82 DEG	00000	ORDER BY DESCRIPTION
MP2	5020-8836	5	4	CORNER STRUTS 15°	28480	5020-8836
	2510-0192	6	16	SCREW-MACH 8-32 .2-NN-L 100 DEG	28480	2510-0192
2521A and above $\quad 10$						
MPJ	5021-5805	4	1	FRAME, FPONT	28480	5021-5805
	2360-0114	3	8	SCREW-MACH 6-32 25-HNLG 82 DEG	00000	ORDER EY DESCRIPTION
MP2	5021-5836	1	4	CORNER STRUTS 15	28480	5021-5836
	0515-1331	5	16	SCREW-METAIC SPECUALTY M4 $\times 0.7$ THD: 7MM	28480	0515-1331
1933A 2029114						
$M_{M P 3} \dagger$				SEE SECTION 7		
MP4 \dagger				SEE SECTION 7		
29164 and above 50119802 ,						
MP3	5011-8802	9	1	TOP TRMM, FRONT FRAME	28480	5041-8802
MP4	5062-3703	3	2	STRAP HANDLE	28480	5062-3703
1933A to 2911A						
MP5-MP8 \dagger				SEE SECTION 7		
MP5	5062-3734	0	1	COVER. TOP	28480	5062.3734
MP6	5062.3746	4	1	COVER, BOTTOM	28480	5062-3746
MP7	08901-00204	2	1	COVER, LEFT SIDE	28480	08901-00204
MP8	00901-00203	7	1	COVER, RIGHT SIDE	28480	08901-00203
1933A to 2911A						
MP9-MPI2 \dagger				SEE SECTION 7		
29164 and above						
MP9				STRAP. HANDLE, CAP-FRONT	28480	5041-8819
	$2680-0118$	5	3	SCREW-MACH 10-32 .5-1N-LG 82 DEG	00000	ORDER BY DESCRIPTION
MP10	5041-8820	1	2	STRAP.HANDLE,CAP.REAR	28480	5041-8820
	0515-1239	2		SCREW-MACH M 5×0.8 12MM-LG	28480	0515-1239
MP1]	5041-8801	8	4	FOOT	28480	5041-8801
MP12	5001-0540	2	2	TRIM, SIDE	28480	5001-0540
MP13	1460-1345	5	2	TLT STAND SST	28480	1460-1345
1933A to 2911A						
MP14 \dagger				SEE SECTION 7		
MP14				FRONT PANEL (EXCEPT OPTION 001 AND/OR 010)		
MPI4	00901-00198	9	1	FRRONT PANEL (OPTION 001 ONLY)	28480	08901-00198
MP14	08901-00196	7	1	FRONT PANEL (OPTION 010 ONLY)	28480	08901-00196
MP14	00901-00199	0	1	FRONT PANEL (OPTKON 001 WTTH 010 ONLY	28480	00901-00199
MP15	00901-00002	4	1	SUEPANEL, FRONT	28480	06901-00002
	5040-6928	4	3	STAIP DIVIDER	28480	5040-6928
	22000145	2	3	SCREW-MACH 4-40 .430-NULG PANHD-POZI	00000	ORIER EY DESCRIPTION
	2190-0003	8	10	WASHER-LK HLCL NO. $4.115-1 N-10$	28480	2190-0003
	3050-0105	6	10	WHSHER-FL MTLC NO. 4 .125-NHD	28480	3050-0105

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cly.	Description	Mir. Code	Mfr. Part Number
1833A to 2342A PMEL REAR 3 28480 00901-00001						
MP16 25214 and aboue						
MP16	08801-20273	3	1	PANEL PEAR	28480	08901-20273
1933A to 2609A						
$M_{\text {P17 }}$	00801-00005	3	1	SCREW-MACH 6-32 25-NN-LE 82 DEG SCREW-MACH 6-32.312-INLG PANHD-POZI (MP17 TO MP16, A26, A27)	00000	ORDER GY DESCRIPTION ORIER BY OESCRIPTION
	2880-0195	0	33		00000	
	2180-0006	1	39	WASHERLK HLCL NO. 6.141 IN-10 (MP17 TO MP16, A26, A27)	28480	2150-0006
2616 A and aboue MPI7			1	STRUT. CENTER SCREWHACH 6-32.25-NHLG 82 DEG SCREW-MACH G-32 .312-NHLG PAN+HPOOZI (MP17 TO MP16. A26, A27) WMSHERHKK HLCL NO. 6.141-NHDD	28480	08901-00157 ORDEA BY DESCRIPTION ORDER BY DESCRIPTION
	$00501-00167$	2			00000	
	2360-0114					
	2560-0195	0	33			
	2190-0006	1	39		28480	2190-0006
Scrowe for MP17 Commer Strut		3	237	SCREW-TPG 4-20 .5-N-LG PANHO-POZZ STL	28480	
1933A to 2229A	0624-0281					
2238 A to 2450A	0624-0100	5	237	SCREW-TPG 4-40 .5-W-LG PANHD-POZ STL	$\begin{aligned} & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 0624-0100 \\ & 0624-0653 \end{aligned}$
2505 A and above	0624-0653	3	237	SCREW 440X1/2 TAPTITE T-10 PNTX		
1933A to 2911/						
MPIE \dagger				SEE SECTION 7		
29164 and above MP18	5041-8821	2	4	STANDOFF, REAR PANEL	28480	5041-8821
Scrows for Mris Ruar Pamel Stendofts						
1933A to 2518A	2360-0197	2	4	SCREW-MACH 6-32 375 -NLLG PANHID-POZISCREW-MACH M 3.5×0.6 8MM-LG PANHD	$\begin{aligned} & 000000 \\ & 28480 \end{aligned}$	ORDEA BY DESCRIPTION$0515-1232$
2521A and above	0515-1232	5				
1933A to 2609AMP19			1	BRACKET SUPPORT, AUDIO SECTION SCREW-MACH 6-32 312-AN-LG PANHD-POZI WMSMER-LK HLCL NO. 6.141 -INHD	28480 10000 28480	09901-00008 ORDER BY DESCRIPTION 2190-0006
	23600195	0				
	2190-0006	1				
2516A and above MPI9			1	BRACKET SUPPORT, AUDIO SECTION SCREW-WICH 6-32 .312-NHLG PANHDPOZI WASHER-LK HLCL NO. 6 . 141 HNHD	$\begin{aligned} & 28480 \\ & 00000 \\ & 28480 \end{aligned}$	00901-00168 ORDER EY DESCRIPTION $2190-0006$
	$2860-0195$	0				
	2190-0006	1				
Serewa for MPP19 Auclio Saction Bracket				SCREW-TPG 4-20.5-IN-LG PAN-HD-POZI STL	$\begin{aligned} & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 0624-0281 \\ & 0624-0100 \end{aligned}$
1933A is 2229A	0624-0281	3				
2238A and above	0624-0100	5		SCREW-TPG 4-40 .5-N-LG PANHDPOZI STL		
MP20	06901-00009	1	1	BRACKET SUPPORT. POWER SUPPLY SCREW-MACH 6-32 312-NHLG PANHID-POZI WASHER-LK HLCL NO. $6.141-\operatorname{NH}$ HD SCREW-MACH 6-32. 312 -INLG PANHD-POZI WASHERHK HLCL NO. $6.141-1 N H D$	28480	08901-00009 order by description 2190-0005 OPDER BY DESCRIPTION 2190-0006
	2361-0195	0			00000	
	2190-0006	1			28480	
	23600195	0			00000	
	2190-0006	1			28480	
MP21	$08901-00047$	7	1	ERACKET SUPPORT, DHGTAL SCREW-MACH 6-32 . 312 -NWLG PANHO-POZI WASHER-LK HLCL NO. 6.141-INHD CLAMP-CABLE .15-DIA .62-WD NYL	28480	08901-00047 ORDER BY DESCRIPTION 2190-0006 B511-28-00-9909
	2360-0195	0			00000	
	2190-0006	1			28480	
	1400-0510	8	2		02768	

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cly.	Description	Mif. Code	Mir. Part Number
19334 2026184						
MP23	00901-00035	3	1	GASKET, RFI (BETWEEN MPSO, 51 AND A2T)	28480	08901-00035
MP24	00901-00011	5	1	GUDE, PC, DIGTTAL	28480	08901-00011
	2360-0193	8	4	SCREW-MACH 6-32 .2S-IN-LG PAN-HD-POZI	00000	ORDER BY DESCRIPTION
	2190-0006	1		WMSHEP-LK HLCL NO. 6.141 -NHLD	28480	2190-0006
2623A and above						
MP23				NOT ASSIGNED		
MP24	00901-00174	1	1	CUMDE, PC, DIGITAL	28480	00901-00174
	2360-0193	8	4	SCREW-MACH 6-32 .25-MNLG PANHO-POZI	00000	ORDEA BY DESCRIPTION
	2190-0006	1		WUSHER-LK HLCL NO. 6.141 -WHD	28480	2190-0006
MP25	06901-80007	7	4	SHOCK MOUNT (RF SECTION)	28480	08901-80007
MP26	7120-7204	3	1	OPERATING NFORMMATION PULL-OUT CARD	28480	7120-7204
1933A to 2911A						
MP27 \dagger				SEE SECTION 7		
2916 A and above						
MP27	5062-4032	3	1	MFORMATKON TPAY	28480	5062-4032
MP28	00901-00046	6	1	COVER, FAN	28480	188901-00046
	0400-0011	3	4	CROMMET-RND . 375 -IN-ID . 5 -N-GRV-OD	83330	2175
	1520-0067	4	4	SHOCK MOUNT . 4 -EFF-HGT .31-OD (MP28, 33, B1 TO MP16)	61957	WEL-NUT E-532
	2360-0220	2	3	SCREW-MACH 6-32 2.25-NLLG PAN-HD-POZI (MP28, 33, B1 TO MP16)	00000	ORDER BY DESCRIPTION
	2360-0221	3	1	SCREW-MACH 6-32 2.5-WHLG PANHO-POZI (MP28. 33, B1 TO MP16)	00000	ORDER BY DESCRIPTION
	3050.0227	3	7	WASHERFL MTLC NO. 6 . 149-INHD (MP28, 33. B1 TO MP16)	80120	AN960C-6
	0360-0001	5	1	TERMMLALSLOR LUG LK-MTG FOR-*6-SCR	79963	523.144
	2190-0006	1		WASHER-LK HLCL NO. 6.141 HMD	28480	2190-0006
	2420-0002	6	1	NUT-HEX-D8L-CHAM 6-32-TTO . 109 -N-THK	28480	2420-0002
	2190-0006	1		WASHER-LK HLCL NO. 6.141 HNHD	28480	2190-0006
MP29	00901-20028	6	1	WPE DUCT	28480	08901-20028
	2360-0195	0		SCREW-MACH 6-32 312-HNLG PANHD-POZI	00000	ORDER EY DESCRIPTION
	30500227	3		WASHER-FL MTLC NO. 6.149 HHID	80120	AN960C-6
	2190-9006	1		WASHER-LK HLCL NO. 6.141 -NHID	28480	2190-0006
MP30	08901-20029	7	1	WIRE DUCT COVER	28480	08501-20029
MP314	09901-00140	1	1	WIRE DUCT SUPPORT,(REAR)	28480	08901-00140
Δ	0as01-00214	0	1	SPACER	29480	08901-00140
MP32 ${ }^{\text {a }}$	81600072	4			10565	10-04-1687-1215
				RFI SEALING (FOR MPI)		
MP33	3160-0249	2	1	WIPE FINGER GUARD (FOR B1)	12330	055013
MP34	1600-0692	1	3	RETANING CLP (HOLD FRONT WNDOW)	28480	1600-0692
MP35	2360-0203	1	4	SCREW-MACH 6-32 .625-HNLG PAN-HD-POZI	00000	ORDER BY DESCRIPTION
	2190-0006	1		WUSHERLLK HLCL MO. 6.141 -IN-D	28480	2190-0006
1933A to 2126A						
MP36	00901-00007	9	1	SUPPORT BRACKET,SHOCK MOUNT. FRONT	28480	08901-00007
	2360-0195	0		SCREW-MACH 6-32 .312-HNLG PANHOPOZI	00000	ORDER BY DESCRIPTION
	2190-0006	1		WASHER-LK HLCL NO. 6.141 HNHD	28480	2150-0006
MP37	00901-00010	4	1	SUPPORT ERACKET,SHOCK MOUNT, REAR	28480	08901-00010
	2360-0195	0		SCREW-MACH 6-32 .312-WHL PANHD-POZI	00000	ORDER BY DESCRIPTION
	2190-0006	1		WUSHER-LK HLCL NO. 6.141 -NHD	28480	2190-0006
MP38	08901-00048	8	1	GASKET, EXTRUSION.RF SECTION	28480	08501-00048
2128 and above						
MP36	00901-00086	4	1	SUPPORT BRACKET, SHOCK MOUNT, FRONT	28480	08901-00006
	2360-0195	0		SCREW-MACH 6-32 312-NLG PANHDPOZI	00000	ORDER BY DESCRIPTION
	2190-0006	1		WUSHER-LK HLCL NO. 6.141 HNHD	28480	2190-0006
MP37	09501-00087	5	1	SUPPORT BRACKET, SHOCK MOUNT, REAR	28480	00901-00087
	2360-0195	0		SCREW-MACH 6-32 .312-ANLG PANHD-POZI	00000	ORDEA EY DESCRIPTION
	2190-0006	1		WUSHER-LK HLCL MO. 6.141 HNHO	28480	2190-0006
MP38	00901-00095	5	1	GASKET, EXTRUSION, RF SECTION	28480	68901-00095

Table 6-3. Replaceable Parts

Reference Designation	HiP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Mtr. Code	Mir. Part Number
MP39	08901-00006	8	1	SCREEN, RFI (FOR MP15)	29480	08901-00006
MP40 ${ }^{\text {a }}$	00901-20182	3	1	FRONT WNDOW PANEL	28480	08901-20182
	00901-20181	2	1	WINDOW FOR FRONT PANEL.	28480	08901-20181
MPP4 \triangle				PART NO LONGER SEPARATELY REPLACEABLE		
MP42 ${ }^{\text {a }}$				PART NO LONGER SEPARATELY REPLACEAELE		
MP43 ${ }^{\text {a }}$				PART NO LONGER SEPARATELY REPLACEABLE		
MP44 ${ }^{\text {a }}$				NOT ASSIENED		
MP45 ${ }^{\text {a }}$				PART NO LONGER SEPARATELY REPLACEABLE		
MP46 ${ }^{\text {a }}$				PART NO LONGER SEPARATELY REPLACEABLE		
MP47	00801-20050	4	1	SHELD (SUPPORTS A1)	28480	00901-20050
	2190-0003	8		WHSHER-LK HLCL NO. 4.115 -HHD	28480	2180-0003
	3050-0105	6		WASHER-FL MTLC NO. $4.125-1 N+D$	28480	30500105
1933A to 2126A						
MP48	00901-20041	3	1	EXTRUSION ASSEMBLY, RF SECTION	28480	08901-20041
2128A 20 2609A						
MP48	00901-20158	3	1	EXTRUSION ASSEMBLY, RF SECTION	28480	08501-20158
2616A and above						
MP48					28480	08901-20276
	0403-0005	1	3	SHOCK MOUNT (ON BACK OF A28 BOARD)	70485	1059-26012
	0460-1027	9		TAPE-VNYL (ON MP2 NEAR RF SECTION)	76381	4508
Serews for MP40 RF Section Extrision						
1933A to 2229A	0624-0281	3		SCREW-TPG 4-20 .5-HNLG PAN-HD-POZI STL	28480	0624-0281
$2238 A \text { co 2450A }$	0624-0100	5		SCREW-TPG 4-40.5-HWLG PANHD-POZI STL	28480	0624-0100
2505A and above	0624-0653	3	237	SCREW $440 \times 1 / 2$ TAPTITE T-10 PNTX	28480	0624-0653
MP49				NOT ASSKGNED		
1933A to 2618A						
MP50 ${ }^{\text {a }}$	00901-20043	5	1	EXTPUSION (FOR COUNTER ASSEMELY)	28480	08901-20043
2623 A and above						
MP50	00901-20275	5	1	EXTRUSION (FOR COUNTER ASSEMELY)	28480	08901-20275
	08901-20028	6	1	HOLE PUG . 500 DIA. (FOR MOUNTING SCREW)	28480	06901-20028
Serswe for MPSO Counter Section Extruaton						
J933A to 2229A	0624.0281	3		SCREW-TPG 4-20 .5-WLG PANHD-POZI STL.	28480	0624-0281
2238A co 2450A	0624-0100	5		SCREW-TPG 4-40 .5-WHLG PAN-H0-POZI STL	28480	0624-0100
2505 A and above	0624-0653	3	237	SCREW 440K1/2 TAPTITE T-10 PNTX	28480	0524-0653
MpSt	00901-20093	5	1	EXTRUSION ENDPLATE (FOR COUNTER ASSY	28480	06901-20093
MPS2	6960-0002	4	3	PLUG-HOLE TRHD FOR 5-DHOLE STL (H1 EXCEPT OPT. 001;18 EXCEPT OPT. 002 J 11 EXCEPT OPT. 001/010)	71785	SS-48152-Ki110
MPS3	69600010	4	1	PLUG-HOLE TRHD FOR .625-DHOLE STL (6.7 EXCEPT OPT. 003; 110 EXCEPT	71785	SS-48172-K1110
J933A to 2609A						
MP54	08901-20039	9	7	EXTRUSION, PUNCHED (FOR AUDIO SECTION)	28480	0es01-20039
2616A and obove MP54	08901-20277	7	7	EXIRUSION, PUNCHED (FOR AUDIO SECTION)	28480	08901-20277
Serews for Mipsh Autho Section Extrusion						
1933A 100 2229A	06240281	3		SCREW-TPG 4-20 .5-NLG PANHDPOZI STL	28480	0624-0281
2238A 20 2450A	06240100	5		SCREW-TPG 4-40 .5-NLG PANHDPOZI STL	28480	0624-0100
25051 and above	0624-0653	3	237	SCREW 440X1/2 TAPTITE T-10 PNTX	28480	0624.0653

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Cty.	Description	Mfr. Code	Mifr. Part Number
1933A to 2609A						
MP55	00901-20048	0	1	EXTRUSIONLUNPUNCHED (FOR AUDIO SECTION)	28480	08901-20048
MP56	08901-20038	8	1	EXTRUSION ENDPLATEFFOR AUDIO SECTION)	28480	08901-20038
2616A and above						
MP5S				NOT ASSIGNED		
MP56				NOT ASSIGNED		
1933A to 2229A						
MP57	0624-0281	3		SCREW-TPG 4-20 .5NHLG PANHO-POZI STL	28480	0624-0281
2238A to 2450A						
MP57	0624-0100	5		SCREW-TPG 4-40.5-NLLG PANHO-POZI STL	28480	0624-0100
25051 and above						
MP57	0624-0653	3	237	SCREW 440x1/2 TAPTITE T-10 PNTX	28480	0624-0653
2616 A and above						
MP57				NOT ASSIGNED	.	
MP58	7120-1254	1	1	MAMEPLATE .312-NHDD -54-WHLG ABS	28480	7120-1254
	0510-0043	4	2	RETANER-ANG ER EXT .141-WLDIA STL	54963	1500-14-20
	0570-1171	7	2	SCREW-SPCL 6-32 A68-MHLG UNCT 100	00000	ORDER BY DESCRIPTION
	0510-0043	4		RETAMERARING ER EXT .141+W-DIA STL.	54963	1500-14-Z0
	0570-1171	7		SCREW-SPCL 6-32 .460-NWLO UNCT 100	00000	ORDER EY DESCAIPTION
	0380-4003	9	1	SPACER-RND .125-WHLG . $18-\mathrm{NHD}$	28480	0380-0003
	2200-0091	7	7	SCREW-MACH 4-40 .562-N-W PANHO-POZI	00000	ORDER BY DESCPIPTION
	08501-00067	1	1	MSULATOR	28480	08901-00067
	0400-0227	3	2	CROMMET-RND .375-H-HD .5-IN-GRV-OD	01538	522
	0400-0227	3		GROMMET-RND . 375 -WHD .5-N-GRV-OD	01538	522
MP59	0590-0505	1	1	NUT-KNRLD-R 5/R-24-THD .125-N-THK	00000	ORDER BY DESCRIPTION
MP60S	0590-4251	6	1	NUT-SPCLY 15/32-32-THD .1-NH-THK .562-WD	28480	0590-7251
	2190-0068	5	1	WASHER-LK INTL T $1 / 2$ IN . $505-\mathbb{N H}$-1D	78189	1924-02
MP61	2950-0035	8	1	NUT-HEX-DBL-CHAM 15/32-32-THD	00000	ORDER BY DESCRIPTION
	21900102	8	1	W/ASHER-LK INTL T 15/32 ${ }^{\text {N }}$. 472 -NN-ID	78189	1922-01
MP62	08901-00065	9	2	BRACKET, RETAINUNG (A13,A14)	28480	08901-00065
	2190-0006 5	2	3		28480	2190-0006 5
	2060-0195	0		SCREW-MACH 6-32 S12-NHELG PANHD-POZI	00000	ORDER BY DESCRIPTION
MP63	0460-1025	7	1	STICKY TAPE	28480	0460-1025
MP64	08901-00069	4	1	MSULATOR-BOTTOM COVER, LOCATED UNDER RF SECTION	28480	08901-00069
MP65 ${ }^{\text {S }}$	08901-00148	9	2	RF SECTION BLANK COVER	28480	08901-00148
1933A to 2423A						
MPG6				NOT ASSIGNED		
2439A and above						
MP66	00901-00157	0	1	AUDIO SECTION BLANK COVER	28480	08901-00157
1933A to 2450A						
MP67				NOT ASSIGNED		
25054 and above						
MP67	8710-1637	6	1	TORX Br, T-10	28480	8710-1637
	1400-0510	8	2	CLAMP-CABLE . 15 -DIA .62-WD NYL	02768	8511-28-00-9909

Table 6-3. Replaceable Parts

Table 6-4. Code List of Manufacturers (1 of 2)

Mfr. Code	Manufacturer Name	Address	Zip Code
C0633	RIFA AB	STOCKHOLM, SW	S-163
C1433	AB ELEKTRONIKGMBH	SALZBURG, AU	A-501
D8439	ROEDERSTEIN/RESISTA GMBH	LANDSHUT, GM	8300
K1935	JERMYN INDUSTRIES LTD	KENT SEVENOAKS, EG	
K8479	HOLSWORTHY ELECTRONICS LTD	HOLSWORTHY, EG	
00000	ANY SATISFACTORY SUPPLIER		
00853	SANGAMO WESTON INC	NORCROSS, GA US	30071
01121	ALLEN-BRADLEY CO INC	EL PASO, TX US	79935
01295	TEXAS INSTRUMENTS INC	DALLAS, TX US	75265
01538	SMALL PARTS INC	COSTA MESA, CA	92626
02114	FERROXCUBE CORP	SAUGERTIES, NY US	12477
02768	ITW FASTEX	DES PLAINES, IL US	60016
03911	CLAIREX CORP	MT VERNON, NY US	10550
04713	MOTOROLA INC	ROSELLE, IL US	60195
05245	CORCOM INC	LIBERTYVILLE, IL US	60048
06383	PANDUIT CORP	TINLEY PARK, IL US	60477
06560	JEFFERS ELECTRONICS INC	NOGALES, AZ US	85621
06776	ROBINSON NUGENT INC	NEW ALBANY, IN US	47150
06877	UNITRON INSTRUMENTS INC	WOODBURY, NY	11797
07263	FAIRCHILD SEMICONDUCTOR CORP	CUPERTINO, CA US	95014
07933	RAYTHEON CO SEMICONDUCTOR DIV HQ	MOUNTAIN VIEW. CA	94040
09353	C \& K COMPONENTS INC	NEWTON, MA US	02158
09464	DRYCO MFG CO INC	CHICAGO, IL	60612
09535	JOHNSON MATTHEY AND MALLORY LTD	TORONTO, CN	
09969	DALE ELECTRONICS INC	YANKTON, SD US	57078
11236	CTS CORP	ELKHART, IN US	46514
11383	AMETEK/ALUMINUM EXTRUSION	LOS ANGELES, CA	90065
11502	JRC INC	BOONE, NC US	28607
11532	TELEDYNE INDUSTRIES INC	LOS ANGELES, CA US	90067
11870	MELABS INC	PALO ALTO, CA	94304
12330	MONTROSE PRODUCTS CO	AUBURN, MA US	01501
12344	TALLY CORP	KENT, WA	98031
12360	ALBANY PROD CO DIV OF PHEUMO DYN	NORWALK, CT	06850
12403	CANFIELD H O CO OF Indiana inc The	SEYMOUR, IN	47274
12474	BEL-RAY CO INC	FARMINGDALE, NJ	07727
12498	CRYSTALONICS, DIV TELEDYNE	CAMBRIDGE, MA	02140
13103	THERMALLOY INC	DALLAS. TX US	75234
15636	ELEC-TROL INC	SAUGUS, CA US	91350
16179	M/A-COM INC	BURLINGTON, MA US	01803
16428	COOPER INDUSTRIES INC	HOUSTON, TX US	77210
16956	DENNISON MFG CO	FRAMINGHAM, MA US	01701
17856	SILICONIX INC	SANTA CLARA, CA US	95054
18324	SIGNETICS CORP	SUNNYVALE, CA US	94086
18565	CHOMERICS INC	WOBURN, MA	01801

Table 6-4. Code List of Manufacturers (2 of 2)

Mfr. Code	Manufacturer Name	Address	Zip Code
19701	MEPCO/CENTRALAB INC	RIVIERA, FL US	33404
2M627	ROHM CORP	IRVINE, CA US	92713
24226	GOWANDA ELECTRONICS CORP	GOWANDA, NY US	14070
24355	ANALOG DEVICES INC	NORWOOD, MA US	02062
24931	SPECIALTY CONNECTOR CO	FRANKLIN, IN US	46131
25403	NV PHILIPS ELCOMA	EINDHOVEN, NE	02876
27014	NATIONAL SEMICONDUCTOR CORP	SANTA CLARA, CA US	95052
27264	MOLEX INC	LISLE, IL US	60532
27735	F-DYNE ELECTRONICS CO	BRIDGEPORT, CT	06605
28480	HEWLETT-PACKARD CO CORPORATE HQ	PALO ALTO, CA	94304
30817	INSTRUMENT SPECIALTIES CO INC	DEL WATER GAP, PA	07424
32159	WEST-CAP ARIZONA	SAN FERNANDO, CA US	91340
34335	ADVANCED MICRO DEVICES INC	SUNNYVALE, CA US	94086
34371	HARRIS CORP	MELBOURNE, FL US	32901
46384	PENN ENGINEERING \& MFG CORP	DOYLESTOWN, PA US	18901
50088	MOSTEK CORP	CARROLLTON, TX US	75006
51167	ARIES ELECTRONICS INC	FRENCHTOWN, NJ US	08825
52763	STETTNER \& CO	LAUF, GM	D-856
54963	ANDERTON DARBY INC	CLIFTON, NJ	07015
55285	BERGQUIST CO	MINNEAPOLIS, MN	55420
56289	SPRAGUE ELECTRIC CO	LEXINGTON, MA US	02173
61957	USM CORP	BOSTON, MA	02107
70485	ATLANTIC INDIA RUBBER WORKS INC	CHICAGO. IL	60607
71785	TRW INC	CLEVELAND, OH US	44124
72962	ELASTIC STOP NUT DIVOF HARVARD	UNION, NJ US	07083
73138	BECKMAN INDUSTRIAL CORP	FULLERTON, CA US	92635
73734	FEDERAL SCREW PRODUCTS CO	Chicago, il	60618
74970	EF JOHNSON CO	WASECA, MN US	56093
75915	LTTELFUSE INC	DES PLAINES, IL US	60016
76381	3M CO	ST PAUL, MN US	55144
76854	OAK SWITCH SYSTEMS INC	CRYSTAL LAKE, IL US	60014
77342	POTTER \& BRUMFIELD INC	PRINCETON, IN US	47671
78189	ILLINOIS TOOL WORKS INC SHAKEPROOF	ELGIN, IL	60126
78488	STACKPOLE CARBON CO	ST MARYS, PA	15857
79963	ZIERICK MFG CO	MT KISCO, NY	10549
80120	SCHNITZER ALLOY PRODUCTS CO	ELIZABETH, NJ	07206
83186	VICTORY ENGINEERING CORP	SPRINGFIELD, NJ US	07081
83330	KULKA-SMITH INC	MANASQUAN, NJ US	08736
84411	AMERICAN SHIZUKI CORP	CANOGA PARK, CA US	91304
98253	MOLECU WIRE CORP	FARMINGDALE, NJ	07727
9 9171	UNITRODE CORP	LEXINGTON, MA US	02173
91506	AUGAT INC	MANSFIELD, MA US	02048
91637	DALE ELECTRONICS INC	COLUMBUS, NE US	68601
95275	VITRAMON INC	MONROE, CT US	06468
98291	SEALECTRO CORP	TRUMBULL, CT US	06611
98978	INTL ELECTRONIC RESEARCH CORP	BURBANK, CA US	91502

Figure 6-1. Parts and Cable Identification (Top View)

Figure 6-2. Cabinet Parts

Figure 6-3. Parts Identification (Front View)

Figure 6-4. Parts Identification (Rear View)

Figure 6-5. Parts Cable Identication (Bottom View)

Section 7 MANUAL CHANGES

7-1. INTRODUCTION

This section contains manual change instructions for backdating this manual for HP Model 8901A Modulation Analyzers that have serial number prefixes that are lower than 1933A. This section also contains instrument modification suggestions and procedures that are recommended to improve the performance and reliability of your instrument. At the end of this section you will find instructions for updating pages 8-1 to 8-86 of this manual.

7-2. MANUAL CHANGES

Backdating

To adapt this manual to your instrument, refer to table 7-1 and make all of the manual changes listed opposite your instrument's serial number or prefix. The manual changes are listed in serial number sequence and should be made in the sequence listed. For example, Change A should be made after Change B; Change B should be made after Change C; etc. table 7-2 is a summary of changes by component.

Table 7-1. Manual Changes by Serial Number

Serial Prefix or Number	Make Manual Changes
$1836 A$	$I, H, G, F, E, D, C, B, A$
$1901 A$	I, H, G, F, E, D, C, B
$1903 A$	I, H, G, F, E, D, C
$1905 A$	I, H, G, F, E, D
$1911 A$	I, H, G, F, E
$1915 A, 1916 A$	I, H, G, F
$1918 A, 1921 A$	I, H, G
$1922 A$	I, H
$1925 A$	I

Updating

If your instrument's serial number or prefix is not listed on the title page of this manual or in table 7-1, it may be documented in a Manual Update Packet.

Table 7.2. Summary of Changes by Component (1 of 3)

Table 7-2. Summary of Changes by Component (2 of 3)

Change	A14	A15	A17	A18	A19	A20	A21	A22	A23	A24
A					$\begin{aligned} & \mathrm{C} 44^{*}, \mathrm{C} 46^{*}, \\ & \mathrm{C} 60^{*}, \mathrm{C} 61^{*} \\ & \mathrm{C} 63^{*}, \mathrm{E} 1^{*} \\ & \mathrm{E} 2 *, \\ & \text { L8** } \end{aligned}$					
B										$\begin{aligned} & \mathrm{C} 12, \mathrm{C} 14, \\ & \mathrm{C} 18, \mathrm{R5}^{*}, \\ & \mathrm{R14*} \end{aligned}$
C										
D										$\begin{aligned} & \text { L7, R2, R3, } \\ & \text { R4, R7 } \end{aligned}$
E										
F										
G										
H										
1										

- Instrument modification recommended, see paragraph 7-4.

Table 7.2. Summary of Changes by Component (3 of 3)

Change	A25	A26	A27	A28	A29	A30	A31	A50	A51	No Prefix
A	R2									MP15*
B										
C										
D										
E										
F										
G										
H										
1										
	trument	ation	mende	parag						

MANUAL CHANGES

7-3. MANUAL CHANGE INSTRUCTIONS

NOTE
See paragraphs 7-4 through 7-7 for recommended instrument mudifications

Change a

Page 6-7, Table 6-2:
Change A2C12 to 0160-2209 CD5 CAPACITOR-FXD 360 PF $\pm 5 \% 300$ VDC MICA.
Pages 6-10 and 6-11, Table 6-2:
Make the following changes to the A3 Assembly listings:
Change RI to 0698-6883 CD8 RESISTOR 19.3K . $5 \% .125 \mathrm{~W}$ F TC=0 $=50$.
Change R4 to 0757-0288 CD1 RESISTOR 9.09K 1\% .125W F TC $=0 \pm 100$.
Change R7 to 0698-3179 CD9 RESISTOR 2.55K 1\% .125W F TC=0 ± 100.
Change R8 to 0757-0123 CD3 RESISTOR 34.8K 1\% .125W F TC $=0 \pm 100$.
Change R9 to 0757-0123 CD3 RESISTOR 34.8 K 1\% .125W F TC=0 ± 100
Page 6-16, Table 6-2:
Change A5R72 to 0698-3446 CD3 RESISTOR 383 1\% .125W F TC=0 ± 100.
Page 6-26, Table 6-2:
Delete A13TP10 and A13TP11.
Page 6-33, Table 6-2:
Make the following changes to the A19 Assembly listings:
Change C44 to 0160-3872 CD0 CAPACITOR-FXD 2.2 PF $\pm .25$ PF 200 VDC CER.
Change C46 to 0160-3873 CD1 CAPACITOR-FXD 4.7 PF $\pm .5$ PF 200 VDC CER.
Change C60 and C61 to 0160-4084 CD8 CAPACITOR-FXD . 1 UF $\pm 20 \% 50$ VDC CER.
Delete C63.
Delete E1 and E2.
Change L8 to 9100-3922 CD4 RF CHOKE.
Page 6-45, Table 6-2:
Change A25R2 to 0757-0280 CD3 RESISTOR 1K 1\% .125W F TC $=0 \pm 100$.
Page 6-58, Table 6-2:
Under MP15, delete the following: 2200-0145 CD2 SCREW-MACH 4-40 .438-IN-LG PAN-HD, POZI 0380-0003 CD9 SCREW-RND .125-IN-LG .18-IN-ID 08901-00067 CD1 KEYBOARD AND DISPLAY BOARD INSULATOR.

Service Sheet 7 (schematic):
Change C 12 to 360 pF .
Service Sheet 8 (schematic):
Make the following changes:
Change R1 to $19.3 \mathrm{k} \Omega$.
Change R4 to 9090Ω. Change R7 to $2.55 \mathrm{k} \Omega$. Change R8 and R9 to $34.8 \mathrm{k} \Omega$. Change A25R2 to $1 \mathrm{k} \Omega$.

CHANGE A (Cont'd)

Service Sheet 10 (schematic):
Change A5R72 to 383 .
Service Sheet 11 (schematic):
Change C44 to 2.2 pF .
Change C46 to 4.7 pF .
Delete C63 (from U3 pin 4 to ground).
Delete inductive beads E1 and E2. Change L8 by deleting the $0.051 \mu \mathrm{H}$ value callout.
Service Sheet 18 (schematic):
Delete TP10 (labeled "WRT") from the line labeled "WRITE(H) at A13U14, pin 2.
Delete TP11 (labeled "ADR 15") from the line labeled "A15 (H)."
NOTE
See paragraphs 7.8 and 7.9 for recommended instrument modifications.

Change b

Page 6-8, Table 6-2:
Change A2R10 and R20 to 0698-3453 CD2 RESISTOR 196K 1\% .125W F TC=0 ± 100.
Page 6-19, Table 6-2:
Change A6R14 to 0757-0439 CD4 RESISTOR 6.81K $1 \% .125 \mathrm{~W}$ F TC=0 ± 100.

Page 6-43, Table 6-2:
Make the following changes to the A24 listings:
Change C12 to 0160-3878 CD6 CAPACITOR-FXD 1000 PF $\pm 20 \% 100$ VDC CER.
Change C14 to 0160-4389 CD6 CAPACITOR-FXD 100 PF ± 5 PF 200 VDC CER.
Change C18 to 0160-3878 CD6 CAPACITOR-FXD 1000 PF $\pm 20 \% 100$ VDC CER.
Page 6-44, Table 6-2:
Change A24R5 to 0698-0084 CD9 RESISTOR 2.15K 1\% .125W F TC=0 $=100$.
Change A24R14 to 0757-0280 CD3 RESISTOR 1K 1\% .125W F TC=0 ± 100.
Service Sheet 3 (schematic):
Change A6R14 to 6810ת.
Service Sheet 7 (schematic):
Change A2R10 and R20 to $196 \mathrm{k} \Omega$.
Service Sheet 12 (schematic):
Make the following changes to the A24 High Frequency VCO Assembly:
Change C12 to 1000 pF .
Change C14 to 100 pF .
Change C18 to 1000 pF.
Change R5 to 2150Ω.
Change R14 to 1000Ω.
CHANGE C
NOTE
See paragraphs 7-10 and 7-11 for recommended instrument modifications.

CHANGE C (Cont'd)

Page 6-7, Table 6-2:
Delete A2C38.
Page 6-8, Table 6-2:
Change A2R39 to 0757-0401 CD0 RESISTOR 1001%. 125 W F TC $=0 \pm 100$.
Change A2R51 to 0698-3434 CD9 RESISTOR $34.81 \% .125 \mathrm{~W}$ F TC= $=0 \pm 100$.
Page 6-17, Table 6-2:
Change A6 to 08901-60011 CD1 with the same description.
Page 6-21, Table 6-2:
Change A10 to 08901-60019 CD9 with the same description.
Service Sheet 3 (component locations):
Replace Figure 8-72 with Figure 7-1.
Service Sheet 3 (schematic):
Change the A6 assembly part number to 08901-60011.
Service Sheet 4 (component locations):
Replace Figure 8-74 with Figure 7-2.
Service Sheet 4 (schematic):
Change the A6 assembly part number to 08901-60011.
Service Sheet 7 (schematic):
Delete A2C38 1500 pF in parallel with A2C29.
Change A2R39 to 100Ω.
Change A2R51 to 34.8Ω.
Service Sheet 23 (schematic):
Change the A10 assembly part number to 08901-60019.
Service Sheet 24 (schematic):
Change the A10 assembly part number to 08901-60019.

CHANGED

Page 6-44, Table 6-2:
Make the following changes to the A24 assembly listings:
Change L7 to 08901-00057 CD9 with the same descripton.
Change R2 to 0757-0442 CD9 RESISTOR 10K 1%. 125 W F TC $=0 \pm 100$.
Change R3 to 0757-0123 CD3 RESISTOR $34.8 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC $=0 \pm 100$.
Change R4 to 0757-0447 CD4 RESISTOR $16.2 \mathrm{~K} 1 \%$. 125 W F TC $=0 \pm 100$.
Change R7 to 0698-3158 CD4 RESISTOR $23.7 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC $=0 \pm 100$.
Service Sheet 12 (Troubleshooting):
Under (13). Tune Voltage Filter and Switch Check Step 7, change voltage limits to 170 and 210 mVrms .
Service Sheet 12 (schematic):
Make the following changes to the A24 assembly listings:
Change R2 to $10 \mathrm{k} \Omega$.
Change R3 to $34.8 \mathrm{k} \Omega$.
Change R4 to $16.2 \mathrm{k} \Omega$.
Change R7 to $23.7 \mathrm{k} \Omega$.
Change the voltage limits at TP2 to -6.4 to -5.5 VDC.

CHANGE E

NOTE

See paragraph 7-12 for recommended instrument modification.
Page 6-9. Table 6-2:
Change A3C64 and C65 to $0180-0197 \mathrm{CD} 8$ CAPACITOR-FXD $2.2 \mathrm{UF} \pm 10 \% 20 \mathrm{VDCT}$ TA.

Figure 7-1. P/O A6 AM Demodulator Assembly Component Locations (ALC Loopl (P/0 Change C)

CHANGE E (Cont'd)

Page 6-19, Table 6-2:
Change A6R31 to 0757.0459 CD8 RESISTOR $56.2 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC $=0 \pm 100$.
Change A6R32 to 0698-3159 CD5 RESISTOR $26.1 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC $=0 \pm 100$.
Change A6R39 to 0757-0444 CD1 RESISTOR $12.1 \mathrm{~K} 1 \%$. 125 W F TC=0 0 ± 100.

Figure 7-2. P/O A6 AM Demodulator Assembly Component Locations (Control) (P/O Change C)

CHANGE E (Cont'd)

Service Sheet 3 (schematic): Change A6R31 to $56.2 \mathrm{k} \Omega$. Change A6R32 to $26.1 \mathrm{k} \Omega$. Change A6R39 to $12.1 \mathrm{k} \Omega$.

Service Sheet 8 (schematic):
Change A3C64 and C65 to $2.2 \mu \mathrm{~F}$.

CHANGE F

NOTE
See paragraph 7-13 for recommended instrument modification.
Page 6-10, Table 6-2:
Change A3R32 to 0757-0424 CD7 RESISTOR 1.1K 1%.125W F TC $=0 \pm 100$.
Change A3R34 to 0757-0442 CD9 RESISTOR 10K 1%. 125 W F TC $=0 \pm 100$.
Service Sheet 8 (schematic):
Change A3R32 to 1100Ω.
Change A3R34 to $10 \mathrm{k} \Omega$.

CHANGE G

NOTE
See paragraph 7-14 and 7-15 for recommended instrument modifications.
Page 6-16, Table 6-2:
Change A5R49 to 2100-3353 CD8 RESISTOR-TRMR 20K 10\% C SIDE-ADJ-TRM.
Service Sheet 9 (schematic):
Change A5R49 to 20k Ω.

CHANGE H
Page 6-7, Table 6-2:
Change A2C12 to $0140-0200$ CD0 CAPACITOR-FXD 390 PF $\pm 5 \% 300$ VDC MICA.
Service Sheet 7 (schematic):
Change A2C12 to 390 pF .

CHANGEI

Page 6-26, Table 6-2:
Change the first part number for A13U3 to 08901-80029 with the same description.
Service Sheet BD4 (Troubleshooting):
Under step 7 of $\sqrt{3}$ Controller Kernel Check, replace the table with the following:

MANUAL CHANGES

CHANGE I (Cont'd)

With A14 Plugged In		With A14 Not Plugged In	
Test Point	Slgnature	Test Point	Signature
DATA 0	0C02	DATA 0	A51P
DATA 1	7C7C	DATA 1	9922
DATA 2	807C	DATA 2	2P82
DATA 3	3690	DATA 3	A1PU
DATA 4	1PU9	DATA 4	F10F
DATA 5	A035	DATA 5	2H94
DATA 6	6906	DATA 6	261A
DATA 7	7CUP	DATA 7	60FU

Valid software date 124.1979. Valid ROM part numbers:

ROM	Part No.	ROM	Part No.
1	$08901-80029$		6
2	$08901-80030$	7	$1818-0926$ or 08901-80014
3	$1818-0920$ or 08901-80011		8
4	$1818-0921$ or 08901-80012		$1818-0923$ or 08901-80015 $08901-80025$
5	$1818-0922$ or 08901-80013		18

Service Sheet 18 (Troubleshooting):

Under step 3 of $\sqrt{2}$ Memory Select Decoders and ROM Check, replace the table with the following:

ROM	Start/Stop		Signature on CONTROL BUS data Test Point							
	IC	Pin	0	1	2	3	4	5	6	7
1	A13U12	15	F5P8	659H	37FH	9C81	42U8	HU27	P0CC	0440
2	A13U12	14	1CU9	H04A	4FPF	11F5	7127	9436	3198	221C
3	A13U12	13	FUUH	4071	P1U9	86A5	89HC	HC04	UP6U	P675
4	A13U12	12	PF63	CH3C	H738	FFU3	5085	P57A	69FU	HF09
5	A13U12	11	H5C4	U937	86CP	A58F	A136	FC40	9834	A624
6	Al3U12	10	0959	U952	FHUF	P0U9	65UU	29UP	CP7H	A0U8
7	A13U12	9	U80C	1A8H	C898	76AA	UC8A	588A	F71A	8627
8	A13U12	7	U451	U20U	P807	HC50	0967	CPU1	84C6	H63A
11	A14U18	9	0147	PFC8	2U9A	4019	9UF0	39H3	F064	6A59

Valid ROM Part Numbers:

ROM	Part Number	ROM	Part Number	ROM	Part Number
1	$08901-80029$	4	$1818-0921$ or $08901-80012$	7	$1818-0923$ or $08901-80015$
2	$08901-80030$	5	$1818-0922$ or $08901-80013$	8	$1818-0925$ or $08901-80025$
3	$1818-0920$ or $08901-80011$	6	$1818-0926$ or $08901-80014$	11	$1818-0924$ or $08901-80023$

7-4. Adding an Insulator Behind the FrontPanel Assembly

On instruments with serial prefix 1836A and below, an insulator should be added behind the front-panel assembly to prevent the clipped-off component leads of the Keyboard from puncturing the insulation of the cables that dangle behind it.

Remove the front-panel assembly from the mainframe. Remove the four lower, innermost screws that secure the Keyboard to the front panel. See Service Sheet A. Place the insulator (HP 0890100067) over the center of the Keyboard and secure it with four longer screws ($4-40 \times 0.438$ inch, HP 2200-0145), the existing washers, and four 0.18 ID $x 0.125$ inch spacers (HP 0380-0003). The spacers are to hold the insulator away from the Keyboard.

7-5. Improvements to the LO Frequency Doubler

On instruments with serial prefix 1836A and below, if a problem exists on the LO Frequency Doubler with flatness, oscillation, or excessive $1 / 2$ subharmonic level, try the following changes (see Service Sheet 11).

If the Frequency Doubler is not flat enough, change A19C44 and C46 to 2.7 pF (HP 0160-3568). If the doubler oscillates, change A19L8 to HP $9135-0073$ and add two ferrite beads (HP 91700029) on the lead not soldered to ground. If the level of the $1 / 2$ subharmonic of the doubler is excessive, change A19C60 and C61 to components with narrower lead spacing (HP 0160-0576) and add A19C63 (HP 0160-3877) to decouple the -15V supply.

7-6. Improvement of Flatness of the $\mathbf{3} \mathbf{~ k H z}$ Low-Pass Filter

On instruments with serial prefix 1836A and below, if flatness of the 3 kHz Low-Pass Filter is out of tolerance, try changing A3R1 to $19.6 \mathrm{k} \Omega$ (HP 0698-7062), A3R4 to $9.474 \mathrm{k} \Omega$ (HP 0699-0027), A3R7 to $2.61 \mathrm{k} \Omega$ (HP 0698-0085), A3R8 to $26.1 \mathrm{k} \Omega$ (HP 0698-3159), and A3R9 to $38.3 \mathrm{k} \Omega$ (HP 06983161). See Service Sheet 8.

7-7. Improvement of AM Flatness at $50 \mathbf{k H z}$

On instruments with serial prefix 1836A and below, if AM flatness is out of tolerance at 50 kHz , change A2C12 to 390 pF (HP 0140-0200). See Service Sheet 7.

7-8. Improvement in Tuning to a Signal at 1200 MHz

On instruments with serial prefix 1901A and below, if the instrument fails to automatically tune to a signal at 1200 MHz , the problem may be that the Tune Voltage Filter for the HF VCO is not switching off fast enough when tuning is initiated. Change A24R5 to 511Ω (HP 0757-0416) and A24R14 to 162Ω (HP 0757-0405). See Service Sheet 12.

7-9. FM Accuracy Improvement

On instruments with serial prefix 1901A and below, change A2R10 and R20 to $133 \mathrm{k} \Omega$ (HP 0698 3451) to improve FM accuracy. See Service Sheet 7.

7-10. Improvement in Flatness of the $15 \mathbf{k H z}$ Low-Pass Filter

On instruments with serial prefix 1903A and below, if the 15 kHz Low-Pass Filter peaks out of tolerance or has a 3 dB cutoff frequency that is out of tolerance, change A2R39 to $90.9 \mathrm{k} \Omega$ (HP 0757. 0400) and A2R51 to $82.5 \mathrm{k} \Omega$ (HP 0757-0399) and add a 1500 pF capacitor A2C38 (HP 0160-2222) in parallel with C29. See Service Sheet 7.

7-11. Recommended Replacement for A3U7, U8, U10, and U11

On instruments with serial prefix 1903A and below, the recommended replacement for A3U7, U8, U10, and U11 is HP 1826-0662. See Service Sheet 8.

7-12. Improvement in Accuracy of Modulation Measurements at 20 Hz Rates

On instruments with serial prefix 1911A and below, if modulation measurements at rates of

INSTRUMENT MODIFICATIONS

20 Hz are inaccurate, change A3C64 and C65 to 22μ F (HP 0180-0228). See Service Sheet 8.

7-13. Adding an Insulator to the Bottom Cover

On instruments with serial prefix 1915A and below, it is highly recommended that an insulator (HP 08901-00069) be added to the inside of the bottom cover directly below the RF Section. The insulator will prevent shorting of the shockmounted RF Section to the cover when the instrument is given a hard shock or if the RF Section is inadvertently pressed down during servicing. Simply peel the back off the insulator and press the insulator into place.

7-14. Intermittent Connectors

On instruments with serial prefix 1918A and below, a potential intermittency may exist with
some of the printed circuit board edge connectors. The problem will be especially apparent in assemblies plugged into housings when the covers are not secured with screws or when the assembly is extended and tilting forward or backward. Contact can sometimes be improved by beveling the edge of the circuit board under the connector fingers with a file. Be careful not to file the fingers that contact the connector. If necessary, replace the connectors with the parts listed in the table below.

7-15. Improving Drift of the Peak Detector in the Voltmeter

On instruments with serial prefix 1921A and below, if the Peak Detector in the Voltmeter drifts or is out of tolerance when serviced, change A5R49 to a $1 \mathrm{M} \Omega$ (HP $2100-3358$) and perform the Voltmeter Offset and Sensitivity Adjustments. See Service Sheet 9.

Mother Board	Connectior Designation	Number of Contacts	Recommended HP Part Number
A25	X7, X8, X9, XA5	2×22	$1251-6050$
A25	XA2, XA3, XA4, XA6	2×15	$1251-6052$
A26	XA10	2×22	$1251-6050$
A27	X12A, XA11, XA13A, XA14A	2×22	$1251-6050$
A27	X12B, XA13B, XA14B	2×15	$1251-6052$
A28	X16, XA18, XA21, XA22,	2×6	$1251-6051$
	XA23, XA24	2×15	$1251-6052$
A28	XA15, XA19	2×22	$1251-6050$
A28	XA20		

7-16. CABINET PARTS COLOR CHANGE

Serial prefix 2912A changes the color of the instrument covers and accessories. The old color cover and accessories are no longer availiable. If your instrument has serial prefixes 2911A and below, and you must replace one of these parts, we recommend that you order the full set of covers and accessories. Affected cabinet parts are MP3-12, MP14, MP18, and MP27, (see Table 6-3).

7-17. CHANGES TO SECTION 8

Page 8-6, Table 8-2.
Replace table 8-2 with the following table.
Table 8-2. Assembly and Service Sheet Cross Reference Index

Assembly	Service Sheet	Block Diagram	Principles of Operation Page Number	Parts List Page Number
A1 Keyboard and Display	20,21	BD4	8-75	6-6
A2 Audio Filters	7	BD3	8-59	6-13
A3 Audio Deemphasis and Output	8	BD3	8-59	6-17
A4 FM Demodulator	5.6	BD3	8-57	6-23
A5 Voltmeter	9, 10	BD3	8-61	6-31
A6 AM Demodulator	3, 4	BD3	$8-53$	6-41
A10 Power Supply Regulators	23, 24	BD2	8-81	6-56
A11 Counter	16, 17	BD4	8-72	6-61
A13 Controller	18	BD4	8-74	6-65
A14 Remote Interface	22	BD4	$8-76$	6-68
A15 RF input	1	BD2	8-51	6-71
A17 Input Mixer	2	BD2	8-52	6-78
A18 IF Amplifier	2	BD2	8-52	6-85
A19 LO Divider	11	BD2	8-64	6-88
A20 LO Control	14, 15	BD2	8-70	6-102
A21 Low frequency VCXO Fitter	13	BD2	$8-70$	6-112
A22 Low Frequency VCXO	13	BD2	8-69	6-113
A23 Sampler	12	BD2	8-65	6-116
A24 High Frequency VCO	12	BD2	8-69	6-121
A25 Audio Motherboard	25		N/A	6-124
A26 Power Supply Motherboard	23, 24	BD2	N/A	6-125
A27 Digital Motherboard	26	BD2	N/A	6-127
A28 RF Motherboard	27		N/A	6-128
A29 Series Regulator Heat Sink	23, 24	BD2	N/A	6-129
A30 Line Power Module	23	BD2	N/A	6-130
A31 Remote Interface Connector	22	BD4	8-76	6-130
A50 AM Calibrator	29	BD3	8-83	6-131
A51 FM Calibrator	28	BD3	8-82	6-137

Page 8-9, figure 8-4.

Change U1A, U1B, and U1C to U12A, U12B, and U12C respectively. Change U7A and U7B to U14A and U14B respectively.

Page 8-9, paragraph 8-27.

In example \#1, change U1A, U1B, and U1C to U12A, U12B, and U12C respectively. Change U7A and U7B to U14A and U14B respectively.

Page 8-11, paragraph 8-28.

Under 50.N Display Internal Voltages, change " $\mathrm{N}=4$ " to " +15 V Supply. The display should read between 2.8500 and 3.1500. See Service Sheet 10."

Page 8-14, table 8-5.

Change HP 9625A program line 3 to red 714, A.
Page 8-16, paragraph 8-31.
In E75, second line, change 3.0 to 30.

Page 8-50.

In the bottom line of the right-hand column, change "input bytes" to "input bits."
Under Remote Interface Assembly (A14), second sentence, change "Handshake Control Logic" to "Interface Control Logic."

Page 8-53, paragraph 8-72.

Replace paragraph 8-72 with the following:

8-72. AM Demodulator (A6) Service Sheet 3

General. AM is demodulated by rectifying the IF signal and by forcing the average of the IF signal to be a constant level by means of an automatic level control (ALC) loop. The rectified IF, after filtering the IF carrier, accurately represents the carrier average plus its AM envelope. In fact, the \% AM equals the level of the ac component divided by the level of the dc component times 100%. Since the averge carrier level is forced to be constant, the \% AM is proportional to the level of the ac component alone. The demodulation process is illustrated in figure 8-45.
2.5 MHz Low Pass Fitter and AM IF Buffer. The 2.5 MHz Low-Pass Filter determines the IF frequency response when using the 1.5 MHz IF or when the input signal is not downconverted. The filter has six poles and is designed for best flatness up to 2.5 MHz . At 2.5 MHz the flatness can be fine adjusted with C8 (IF FLATNESS) for minimum incidental AM. The filtered IF is routed to the AM IF Buffer and an FM IF Buffer (see Service Sheet 4) where it is further routed to the FM Demodulator, IF Level and IF Present Detectors, and the rear-panel IF OUTPUT.

Voltage Variable Amplifier. The Voltage-Variable Amplifier adjusts its gain in response to the dc output from the AM and Level Detector. The amplifier is, then, the "leveler" of the ALC loop and, as shown in figure 8-44, it is an ac-coupled, variable-gain, non-inverting operational amplifier.

Figure 8-44. Simplified Diagram of the Voltage-Variable Amplifier

The gain of the Voltage-Variable Amplifier is computed with the following equation:

$$
\frac{R b}{R a+R b} \times \frac{R c}{R c+R d}
$$

Ra is $\mathrm{R} 10 . \mathrm{Rb}$ is the parallel combination of R 16 and the resistance of the channel of FET Q7, which predominates. Rc is the parallel combination of R37, R22, R21, and the resistance of Q6, which predominates. Rd is R34.

The R-Setting (that is, Resistance-Setting) Circuit adjusts the input attenuation and feedback division ratio of the Voltage-Variable Amplifier in proportion to the output voltage of U2. The output of U2, in turn, is proportional to the amplitude error of the IF signal.

Figure 8-45. AM Demodulation Process (as shown in old paragraph 8-72)

The variable resistors (FETs Q6 and Q7), which set the gain of the Voltage-Variable Amplifier, are controlled by two matched current sources Q2C and Q2D, and two local feedback amplifiers U4A and U4B. U4A drives n-channel FET Q6 in such a way as to hold the dc voltage at the drain of Q 6 at the same potential as the reference voltage at the inverting input of U4A. The reference voltage, determined by the voltage divider R23 and R25, is approximately +50 mV . If the current from the collector of Q2D changes, the voltage at the drain of Q6 changes proportionally. The change is sensed by U4A. U4A drives Q6 which changes the channel resistance and brings the drain voltage back to +50 mV . The operation of Q2C, Q7, and U4B is similar to Q2D, Q6, and U4A except that Q7 is a p-channel FET and U4A is referenced to -50 mV . Another difference is that Q2C must supply the current to R13 as well as to Q7. Thus the FETs work in opposition-the resistance of Q6 decreases when Q7 increases (resulting in an increase in gain of the Voltage-Variable Amplifier).
To clarify the action of the R-Setting Circuit, suppose that a change in IF level (in this case a decrease) causes the output of U 2 to decrease. The reduction in voltage at the bases of transistors Q2C and Q2D causes an increase in their collector currents. As the drain voltage of Q6 rises, U4A responds by increasing the gate voltage of Q6 (that is, making it less negative) which reduces the resistance of the FET"s channel and brings the drain voltage back to a nominal +50 mV . At the same time, as the drain voltage of Q 7 rises (that is, becomes less negative), U4B responds by increasing the gate voltage of Q7 (making it more positive) which increases the resistance of the FET's channel and brings the drain voltage back to a nominal -50 mV .

The reduction in channel resistance of Q6 reduces the negative feedback around the amplifier formed by Q4 and Q5 and increases its gain. The increase in channel resistance of Q7 decreases the attenuation of the voltage divider between the output of Q8 and the base of Q5. Thus the gain of the overall Voltage-Variable Amplifier is increased which is the desired effect since in this example, the IF level was too low.
The Voltage-Variable Amplifier is designed to operate over a gain ranging from unity (0 dB) to at least 16 (24 dB). Q4 and Q5 provide the forward gain of the amplifier with well-defined performance at 1.5 MHz . Two RC networks, R14 and C16 and R28 and C23, aid in canceling distortion created in the FET channels by the IF frequency. The networks inject a small amount of IF signal into the gates of the FETs. C17 and C21 set the response time of the local feedback amplifiers U4B and U4A.
Q21 and Q20 form a unity-gain, IF buffer amplifier which drives the AM and Level Detector. Q31 improves the symmetry of the overdrive characteristics of the buffer amplifier. This improvement is needed because the ALC loop initially receives signals when its ALC gain is maximum (the no-signal condition).
AM and Level Detector. The AM and Level Detector rectifies the IF carrier. Q13 to Q16, CR9 and CR10, and associated components form a precision, active, half-wave rectifier. A simplified diagram of the rectifier is shown in figure 8-46. The circuit is essentially an inverting operational amplifier with two parallel feedback paths. Each path conducts current in a different direction as determined by CR9 and CR10. The path through CR9 can produce only negative voltages at the output to the Level Amplifier and Carrier Filter. This feedback path contains the network R73, R74, C43, and L8 which acts as a constant resistance (equal
to R73) between CR9 and the amplifier's inverting (-) input, but low-pass filters the IF going to the AM Output Buffer.

Figure 8-46. Simplified Diogram of AM and Level Detector (as shown old paragraph 8-72)

The emitter of Q13 is the amplifier's common-base inverting input. The base of Q13 is the ac grounded, non-inverting input of the amplifier. Q13 is followed by a cascade stage (a common-emitter transistor driving a common-base transistor) Q15 and Q14. R58 and C40 frequency compensate the amplifier. Q16 is a +13.8 V regulator and RF decoupling circuit. CR6 and CR7 protect the amplifier in the event of unusual conditions at the input.
AM Output Buffer. Q17, Q18, and Q19 form a unity-gain buffer amplifier which interfaces the demodulated AM with the rear-panel AM OUTPUT jack and the audio circuits. R87 and C50 further filter the IF carrier. R88 and C51 form the first two elements of a complex 260 kHz Low-Pass Filter (see Service Sheet 7).
Level Amplifier and Carrier Fiter. U3 and associated components form an inverting amplifier and IF carrier and AM ripple filter. Note that the non-inverting (+) input of U3 connects through R75 to the inverting input (namely, the emitter of Q13) of the AM and Level Detector which is its "virtual" ground. Thus the two amplifiers have a common signal-ground reference.
BW Control and Level Comparison Amplifier. The dc output of U3 represents the IF carrier's average level. This output is compared against a stable reference voltage. Differences between the two voltages are amplified by U1 to alter the drive voltage (through U2) to the bases of Q2C and Q2D of the R-Setting Circuit. U1 adds more filtering to the detected IF and determines the response time of the ALC loop to variations in IF level (that is, it determines the ALC bandwidth). U5B permits selection of the 0.1 dB bandwidth of either 20 Hz when open or 200 Hz when closed. When U5B is closed, the time constant of the integrator U1 is the product of R55 and C31. When U5B is open, the time constant is the product of R51+R54+R55 and C31; C36 adds even more filtering.
ALC Reference. The very stable voltage reference for the ALC loop is supplied by the voltagereference diode VR3. VR3 is biased on by a regulated current source formed by Q1, VR4, and associated components. The reference output is divided by R69, R65, and R66. Fine adjustment of the ALC Reference is via R65 (ALC REF).
Resistor Drive Amplifier. U2 amplifies (with a gain of 1.1) and inverts the output of U1. Switch U5A is normally closed, and U5C is normally open. U2, then normally drives the bases of Q2C and Q2D of the R-Setting Circuit. The output of U2 works against the +15 V supply through R26, R31, R32, and Q2A, which is wired as a diode to temperature compensate the base-emitter voltages of Q2C and Q2D.
Q2B produces a voltage at its collector that is proportional to the control currents of Q2C and Q2D. This voltage is monitored by the Voltmeter to check that the ALC loop is operating within its proper range. The automatic leveling can be defeated, if desired, by opening U5A and closing U5C (user Special Function 6.2). The bases of Q2C and Q2D are then biased by voltage divider R26, Q2A, and R27.

Page 8-71.

Under Power Supply Decoupling, change Q5 to C5.

Page 8-76, paragraph 8-73.

Replace paragraph 8-91 with the following:
The keyboard and Display Assembly contains the front-panel displays, annunciators, key lights, and the decoders and latches that control them. Lighting of a display is accomplished by straight-forward decoding of the Instrument Bus. For example, to display the digit 3 in display U2, the controller issues esd=613 to the Instrument Bus. Output 1G of Select Decoder, U24, goes low (uniquely) and enables latch U42. The data code ($\mathrm{d}=3$) is decoded by ROM, U40, which is programmed to be a seven-segment decoder that is always enabled. In this example, U40 places lows on lines a, b, c, d, g, and highs on lines e and f. U40 drives U42 which lights the appropriate segments of U2. (A "low" lights the corresponding segment.) In this example, a 3 is displayed. The segment information is latched in U42 when a different e, s, or es code is issued to the instrument bus. For a discussion of lthe Instrument Bus, see Instrument Bus, page 8-48.

Page 8-88

In figure 8-59, note that there is now a cover over the empty circuit-board slot in the RF section. The reference designator for this cover is MP65.

SECTION VIII SERVICE

8-1. INTRODUCTION

This section contains information for troubleshooting and repairing the Modulation Analyzer. Included are troubleshooting tests, schematic and block diagrams, and principles of operation (as outlined below):

SERVICE SHEETS

Block Diagrams
Schematics
Additional Service Sheets
SAFETY CONSIDERATIONS
Before Applying Power
Safety
RECOMMENDED TEST EQUIPMENT AND ACCESSORIES
SERVICE TOOLS, AIDS AND
INFORMATION
Service Support Kit
Service Tools
Assembly Locations
Parts and Cable Locations
Test Point and Adjustment Locations
Service Aids on Printed Circuit Boards
Other Service Documents
TROUBLESHOOTING
General
Troubleshooting Strategy
Levels of Troubleshooting
SPECIAL FUNCTIONS
Direct Control Special Functions
Service Special Functions
ERROR MESSAGES
Service Errors
POWER-UP CHECKS
SIGNATURE ANALYSIS
DISASSEMBLY PROCEDURE
REPAIR
RETROFITTING OPTIONS
BASIC LOGIC SYMBOLOGY
PRINCIPLES OF OPERATION
SERVICE SHEETS
Block Diagrams
Schematics
Assembly and Disassembly Service Sheets
Service Special Functions and Error Message Summary
Summary of Direct Control Special Functions

8-2. SERVICE SHEETS

The foldout pages in the last part of this section are block diagrams (BD1, 2, 3 and 4) and service sheets (1 to 29 and A to D).

8-3. Block Diagrams

Block Diagram 1 (BD1) is an overall block diagram that breaks the instrument into functional sections. It serves as an index to the other block diagrams and as a starting point for troubleshooting (refer to TROUBLESHOOTING, page 8-7). The other block diagrams (BD2, BD3, and BD4) are, respectively, of the RF, Audio, and Digital Sections of the instrument. The power supply is included with the RF Section on BD2. These block diagrams break the sections into physical assemblies and serve as an index to the schematic Service Sheets. Included with the block diagrams are troubleshooting checks and assembly location photographs.

8-4. Schematics

Service Sheets 1 through 29 consist of assembly schematic diagrams, component locator photographs, troubleshooting checks and hints, and when necessary, mnemonic tables. Symbols used on the schematic diagrams are defined on pages 8-19 through 8-36.

8-5. Additional Service Sheets

Service Sheets A and B contain disassembly procedures and exploded views of the front and rear panel assemblies. Service Sheet C contains a summary of Service Special Functions and Error Messages. Service Sheet D contains a summary of Direct Control Special Functions.

8-6. SAFETY CONSIDERATIONS

8-7. Before Applying Power

Verify that the instrument is set to match the available line voltage and that the correct fuse is installed. An uninterrupted safety earth ground must be provided from the main power source to the instrument input wiring terminals, power cord, or supplied power cord set.

8-8. Saiety

Pay attention to WARNINGS and CAUTIONS. They must be followed for your protection and to avoid damage to the equipment.

WARNINGS

Maintenance described herein is performed with power supplied to the instrument and with the protective covers removed. Such maintenance should be performed only by service-trained personnel who are aware of the hazards involved (for example, fire and electrical shock). Where maintenance can be performed without power supplied, the power should be removed.

Any interruption of the protective (grounding) conductor (inside or outside the instrument) or disconnection of the protective earth terminal will create a potential shock hazard that could result in personal injury. Grounding one conductor of a two conductor outlet is not sufficient. Whenever it is likely that the protection has been impaired, the instrument must be made inoperative (i.e., secured against unintended operation).

If this instrument is to be energized via an autotransformer, make sure that the autotransformer's common terminal is connected to the earth terminal of the power source.

Capacitors inside the instrument can still be charged even if the instrument is disconnected from its source of supply.

Make sure that only 250 volt fuses with the required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement. Do not use repaired fuses or short-circuited fuseholders. To do so could create a shock or fire hazard.

CAUTIONS

Do not unplug any boards in the Modula. tion Analyzer unless the instrument is unplugged or switched to standby. Some
boards contain devices which can be damaged if the board is removed when the power is on. Use conductive foam when removing MOS devices from sockets. Use care when unplugging ICs from high-grip sockets.

8-9. RECOMMENDED TEST EQUIPMENT AND ACCESSORIES

Test equipment and test accessories required to maintain the Modulation Analyzer are listed in Tables 1-3 through 1-5. Equipment other than that listed may be used if it meets the listed critical specifications.

8-10. SERVICE TOOLS, AIDS AND INFORMATION

8-11. Service Support Kit

The HP 08901-60089 Service Support Kit contains extender boards, extender cables, and other items needed for servicing the Modulation Analyzer. The extender boards have a height that matches the assembly extrusions and, for 12 pin connectors, improves mechanical stability of the extender assembly. The kit also contains a special Digital Test/Extender Board (HP 08901-60081) which facilitates troubleshooting of the Controller and Remote Interface Assemblies (see Figure 8-1).

8-12. Pozidriv Screwdrivers

Many screws in the Modulation Analyzer appear to be Phillip's types, but are not. To avoid damage to the screw slots, Pozidriv screwdrivers should be used. HP $8710-0899$ is the No. 1 Pozidriv. HP $8710-0900$ is the No. 2 Pozidriv.

8-13. Tuning Tools

For adjustments requiring non-metallic tuning tools, use the HP 8710-0033 blade tuning tool or the HP 8710-1010 (JFD Model No. 5284) hex tuning tool. For other adjustments an ordinary small screwdriver or suitable tool is sufficient. No matter which tool is used, never force any adjustment control. This is especially critical when adjusting variable inductors or capacitors.

8-14. Heat Staking Tool

The front panel pushbutton switches and the plastic divider on the front sub-panel have small plastic pins protruding from the back. These tabs fit

Figure 8-1. Assemblies on Extender Boards
through holes in the front-panel printed circuit board (A1 Assembly) and are melted down to hold the switch in place. This process is known as heat staking. The heat staking tool is a standard soldering iron with a special tip attached (see Figure 8-2).

Figure 8-2. Heat Staking Tip
Refer to Table 8-1 for specifications and recom-
mended equipment. See the front panel disassembly procedure at the rear of this manual (page 8 -154) for the heat staking procedure.

8-15. Silver Solder

Silver solder must be used whenever soldering mono-block capacitors (small, leadless capacitors) to the A24 High Frequency VCO Assembly printed circuit board. This restriction is due to the lower temperature requirements of the capacitors. A small amount of silver solder is first applied to the printed circuit board at the mono-block connection points. The capacitor is then laid down on the board with its silvered ends touching the pre-soldered printed circuit traces. Just enough heat must then be applied to the solder to make it melt and adhere to the ends of the block.

8-16. Assembly Locations

Assemblies in the Modulation Analyzer are numbered sequentially, front to back, left to right, top to bottom (see Figure 8-3 and Table 8-2). AI is part of the front panel assembly of the instrument.

Figure 8.3. Assembly Locations

Table 8-1. Etched Circuit Soldering Equipment

Item	Use	Specification	Item Recommended	HP Part No.
Soldering Tool	Soldering, Heat Staking	Wattage: 35W Tip Temp.: $390^{\circ}-440^{\circ} \mathrm{C}$ ($735^{\circ} 825^{\circ} \mathrm{F}$)	Ungar No. 135 Ungar Division Eldon Ind. Corp. Compton, CA 90220	8690-0167
Soldering Tip	Soldering, Unsoldering	-Shape: Chisel	- Ungar PLI13	8690-0007
Soldering Tip	Heat Staking	Shape: Cupped	HP 5020-8160 or modified Ungar PLIll (See figure 8-2)	5020-8160
DeSoldering Aid	To remove molten solder from connection	Suction Device	Soldapullt by Edsyn Co., Van Nuys, CA 91406	8690-0060
Rosin (flux) Solvent	To remove excess flux from soldered area before application of protective coating	Must not dissolve etched circuit base board	Freon	8500-0232
Solder	Component replacement; Circuit Board repair wiring	Rosin (flux) core, high tin content (63/37 tin/lead), 18 gauge (SWG) 0.048 in. diameter preferred.		8090-0607
Silver Solder	Mono-block replacement	Rosin (flux) core, silver saturated tin/lead alloy 0.031 in . diameter.	X25 Rosin Core DIVCO 233 Division Lead Co. Summit, IL 60501	8090-0022

\bullet For working on circuit boards; for general purpose work, use No. 555 Handle ($8690-0261$) and No. 4037 Heating Unit 471/2-561/2 W (HP $8690-0006$); tip temperature of $850^{\circ}-900^{\circ} \mathrm{F}$; and Ungar No. PLI13 $1 / \mathrm{s}^{\prime \prime}$ chisel tip.

A2 through A6 are the first five assemblies in the Audio Section. X7, X8, and X9, at the rear of the Audio Section, are vacant parallel-wired motherboard edge connectors intended for optional A50-Series assemblies. A51, the FM Calibrator Assembly, should always be placed in X8 for ventilation purposes. The other option assemblies can be plugged into X 7 or X 9 .

A10 is the Power Supply Regulator Assembly. A26 is the Power Supply Mother Board Assembly. A30, below the transformer (T1), is the Line Power Module. A29 is the Heat Sink Assembly. A31 is the Remote Interface Connector Assembly.

The Digital Section is composed of A11, A13, and A14 and contains an extra parallel-wired slot (X12) into which optional A70-Series assemblies can be inserted. A27 is the Digital Mother Board Assembly.

The RF Section is composed of assemblies A15 and A17 through A24. X16 is a vacant slot intended for optional A80-Series assemblies.

8-17. Parts and Cable Locations

The locations of individual components mounted on printed circuit boards or other assemblies are shown adjacent to the schematic diagram on the appropriate Service Sheet. The part reference designator is the assembly designator plus the part designator. For example, A6R9 is R9 on the A6 assembly. For specific component descriptions and ordering information, refer to Table 6-2, Replaceable Parts, in Section VI. Chassis and frame parts, as well as mechanical parts and cables, are identified on Figures 6-1 through 6-5. In addition, several of the alphabetical service sheets in this section contain illustrated parts breakdowns that locate many mechanical parts and cables.

Table 8-2. Assembly and Service Sheet Cross Reference Index

Assembly	Schematic Service Sheet No.	Block Diagram	Principles of Operation Page No.	Parts List Page No.
A1 Keyboard and Display	20, 21	BD 4	8.75	6-4
A2 Audio Filters	7	BD 3	8-59	6 -7
A3 Audio De-Emphasis and Output	8	BD 3	8.59	6-9
A4 FM Demodulator	5, 6	BD 3	8.57	6-11
A5 Voltmeter	9, 10	BD 3	8-61	6-15
A6 AM Demodulator	3, 4	BD 3	8 -53	6-17
A10 Power Supply Regulators	23, 24	BD 2	8-81	6-21
All Counter	16, 17	BD 4	8.72	6-23
A13 Controller	18	BD 4	8.74	6.25
A14 Remote Interface	22	BD 4	8.76	6-27
A15 RF Input	1	BD 2	8.51	6-28
A17 Input Mixer	2	BD 2	8.52	6-30
A18 IF Amplifier	2	BD 2	8 -52	6.31
A19 LO Divider	11	BD 2	8 8-64	6-33
A20 LO Control	14, 15	BD 2	8.70	6-36
A21 Low Frequency VCXO Filter	13	BD 2	8.70	6-39
A22 Low Frequency VCXO	13	BD 2	$8-69$	6-39
A23 Sampler	12	BD 2	8 865	6-41
A24 High Frequency VCO	12	BD 2	8 8-69	6-44
A25 Audio Motherboard	25		N/A	6-45
A26 Power Supply Motherboard	23, 24	BD 2	N/A	6-45
A27 Digital Motherboard	26	BD 2	N/A	6-46
A28 RF Motherboard	27		N/A	6-47
A29 Series Regulator Heat Sink	23, 24	BD 2	N/A	6-47
A30 Line Power Module	23	BD 2	N/A	6-47
A31 Remote Interface Connector	22	BD 4	8.76	6-47
A50 AM Calibrator	29	BD 3	8.83	6-49
A51 FM Calibrator	28	BD 3	8-82	6-53

Major mechanical parts have reference designations that begin with the letters MP. Other mechanical parts, such as screws, are listed in the replaceable parts list below the part to which they fasten. To find the part number and description of a mechanical part, find the part in one of the figures in Section VI or Section VIII. The part in the figure will be labelled with its reference designator. Look up that reference designator in the Table of Replaceable Parts. If the part is a fastener, such as a screw, nut, or washer, look to the figure for the part to which it fastens. Then, look up the fastened part in the parts list. Just below it you will see the part numbers and description of the desired hardware.

Illustrated parts breakdowns of chassis and frame parts, as well as mechanical parts and cables, can be identified on Figures 6-1 through 6-5. Parts break-
downs of the front and rear panels are located on service sheets at the rear of this manual (see pages $8-155$ and 8-157).

8-18. Test Points and Adjustment Locations

Most test points and adjustments are indicated on the top covers of the individual assemblies. Test points and adjustments can also be found on the component locator photograph adjacent to the particular assembly's schematic.

8-19. Service Aids on Printed Circuit Boards

Service aids on printed circuit boards include test points, indicator lights, transistor and integrated circuit and relay designations, adjustment names, .and assembly part numbers. Of particular importance are the four test LEDs and associated test points on the A13 Controller Assembly. These are
used with the Modulation Analyzer's power-up test routine to aid in troubleshooting the Controller Assembly.

8-20. Other Service Documents

Service Notes, Manual Change Supplements, and other service literature are available through Hewlett-Packard. For further information, contact your nearest Hewlett-Packard office.

8-21. TROUBLESHOOTING

Instrument problems usually fall into three general categories: operator errors, operation out of specification, and catastrophic failures. The troubleshooting strategy is different for each category.

8-22. Operator Errors

Apparent failures sometimes result from using the instrument outside of its specified range. Usually, the instrument can sense the condition and will display an error message. At other times it cannot, such as when it attempts to tune to a signal with more than 400 kHz FM deviation. Consult the specification table (Table 1-1) and the Detailed Operating Instructions in the Operating Manual for additional information.

8-23. Operation Out of Specification

The specifications are listed in Table 1-1. Performance tests that can be used to verify the specifications are found in Section IV. If instrument performance is only slightly out of limits, it can sometimes be corrected by an adjustment. The procedures for all adjustments are in Section V. References listed for each adjustment indicate which service sheet to consult when the adjustment procedure fails. In general, however, it is good practice to perform the troubleshooting checks for Service Sheet BD1 first since they take only a few minutes and reveal much information.

8-24. Catastrophic Failures

Nearly any catastrophic failure will cause the instrument to appear to fail to tune and lead one to conclude that the LO is defective. This is very often an erroneous conclusion. The tuning routine utilizes nearly every circuit in the instrument, and thus a failure in any one of these circuits results in the instrument appearing to not tune properly. The RF LEVEL measurement is not a tuned measurement and will often work when no other measurement will.
Begin troubleshooting at Service Sheet BD1. The simple procedures there will quickly show if the LO
is at fault and will differentiate between a control (digital) problem and a hardware (analog) problem. The checks then give cross-references to the detailed block diagrams (Service Sheets BD2 to BD4) or to a schematic.
The troubleshooting information found on all service sheets consists of a series of performance checks. The purpose of the checks is not to identify which circuit or component has failed but rather to verify whether or not the assembly or circuit is operating correctly. Information on the possible cause of failure is given in the form of hints whenever they can be given reliably. The limits given in the troubleshooting checks are rather loose to facilitate the use of general-purpose equipment (usually an oscilloscope). If a slightly-out-oftolerance condition is suspected, the test can usually be run more rigorously paying greater attention to measurement accuracy.
Troubleshooting on the block diagram level normally utilizes User and Service Special Functions, that on the schematic level normally utilizes Direct Control Special Functions. Direct Control Special Functions will require some study of their operation before using them for the first time.

8-25. SPECIAL FUNCTIONS

8-26. General

Special Functions extend user control of the instrument beyond that normally available from the front panel. They are intended for the user who has a thorough understanding of the instrument and the service technician who needs arbitrary control of the instrument functions. During normal use, the Modulation Analyzer safeguards itself against invalid measurements. Safeguards come in the form of automatic tuning and ranging, overpower protection, squelch, MODULATION OUTPUT blanking, and error messages. When Special Functions are used, some of these safeguards are removed, depending on the Special Function selected, and thus there is a degree of risk that the measurement may be invalid. However, there is no risk of damage to the instrument.
To enter a Special Function, enter the Special Function code (usually a prefix, decimal, and suffix), then press the SPCL key. The Special Function code will appear on the display as it is being entered. If a mistake is made during entry of the Special Function code, press the CLEAR key and start over. When a Special Function is entered, the light in the SPCL key will usually go on (if it is not already on). The readout on the display will depend on the Special Function entered. The readout may be a
measured quantity, an instrument setting, a special code, or,-in some cases, the display is unaltered. Special Functions can be entered from the HP-IB by issuing the Special Function code followed by the code SP.
The Special Functions are grouped by prefix range as follows:

0: Direct Control Special Functions. These functions are used for service. They halt the functioning of the Controller and configure the instrument hardware as dictated by the suffix. All software safeguards are relinquished.
1-39: User Special Functions. These functions are used during normal instrument operation when a special configuration, measurement, or information is required. Many of the instrument safeguards remain implemented. More information on UserSpecial Functions can be found under Special Functions in the Detailed Operating Instructions in the Operating Manual and on the Operator's Information pull-out card.
40-99: Service Special Functions. These functions are used to assist in troubleshooting an instrument fault. The functions available are quite diverse and include special internal measurements, software control, and special service tests and configurations. Safeguards are generally relinquished.
8-27. Direct Control Special Functions (Prefix 0) Communication between the instrument's Controller and its hardware is via the Instrument Bus. During normal instrument operation, the Instrument Bus carries measurement results, status
information, and commands (which control hardware). The Direct Control Special Functions halt the bus activity and send out commands as determined by the code suffix. One command is sent for each Special Function entry. A summary of the Direct Control Special Functions and codes is contained in Service Sheet D.

Direct Control Special Function Code Format. The Direct Control Special Function code is in the form $0 . e s d$, where 0 is the prefix (which may be omitted) and esd represents a three-digit hexadecimal number. The significance of esd (which stands for enable, select, and data) is discussed in the Principles of Operation for Service Sheet BD4. Specific Direct Control codes are used in the Troubleshooting section of the individual service sheets.

As the Direct Control code is entered, the code will appear on the display. Pressing the SPCL key initiates the Special Function. The display will then be in the form rrrr.wwww, where each digit represents a binary bit (0 or 1). The rrrr is the d (data) read back from the Instrument Bus. The wwww is the d (data) written to the bus. Thus rrrr and wwww are normally the binary form of the hexadecimal value for d. Exceptions to this are Special Functions 0.5sd and $0.6 s d$, which control the display itself.

Since the display has a limited set of alphabetic characters, the hexadecimal characters A, B, C, D, E, and F are displayed on entry as - E, H, L, P, and blank, respectively, and they are entered from the keyboard as Shift 0, Shift 1, Shift 2, etc., or from the HP-IB as X0, X1, X2, etc. Table 8-3 summarizes the hexadecimal entry and readback for Direct Control Special Functions.

Table 8.3. Hexadecimal Information for Direct Control Special Functions

Hexadecimai Character	Decimal Equivalent	Binary Equivalent	Keystroke Entry	HP-IB Code Entry	Display On Entry
0	0	0000	0	0	0
1	1	0001	1	1	1
2	2	0010	2	2	2
3	3	0011	3	3	3
4	4	0100	4	4	4
5	5	0101	5	5	5
6	6	0110	6	6	6
7	7	0111	7	7	7
8	8	1000	8	8	8
9	9	1001		9	9
A	10	1010	S(Shift) 0	X0	9
B	11	1011	S(Shift 1	X1	E
C	12	1100	S(Shift)2	X2	H
D	13	1101	S(Shift) 3	X3	L
E	14	1110	S(Shift) 4	X4	P
F	15	1111	S(Shift) 5	X5	(blank)

Direct Control Special Function Applications. Direct Control Special Functions are most often used to provide manual control of various switches or digital-to-analog devices in the hardware. The following examples illustrate how to use Direct Control Special Functions:

Example \#1

In the path of the demodulated audio signal is a set of selectable, active high-pass filters which are located on the A3 Audio Deemphasis and Output Assembly. A simplified diagram of the filters is shown in Figure 8-4. The filters and through path are selected by analog switches U1A, U1B, and U1C. Table 8-4, which is associated with the troubleshooting of the filters, lists the Direct Control Special Functions normally used to control the switches.

Table 8-4. Audio High.Pass Filter and FM Pre-Display De-Emphasis Direct Control Special Functions

Check	Direct Control Special Function	
	Pre-Display On	Pre-Display Off
Thru Path	0.141	0.149
50 Hz HPF	0.142	0.14 A
300 Hz HPF	0.144	0.14 C

To insert the 50 Hz High-Pass Filter, key in 0.142 SPCL or .142 SPCL. The display will show 0010.0010 , indicating that the Controller received d = 2 from the keyboard (or HP-IB), issued it to the Instrument Bus, and read it back. If circuitry on the assembly is working properly, switch UlA will close and the audio signal will pass through the 50 Hz High-Pass Filter.

Notice that the display no longer shows a measurement result. No annunciators are lighted (except REMOTE and ADDRESSED, if the Special Function is entered via HP-IB) and only the SPCL key is lighted. If any key other than a number key, S (Shift) key, or the LCL key is pressed, the instrument hardware will revert back to the measurement mode it was in before the Direct Control Special Function was entered. Thus, in this example, unless the 50 Hz HighPass Filter had been previously selected with the front-panel key, it would be removed from the audio path, when any other key is pressed. (However, note that there are some Service Special Functions that will maintain the requested configurations even if another key is pressed.)

Table 8-4 indicates that 0.14 A will also select the 50 Hz High-Pass Filter. Any Special Function of the form 0.14 d also controls the predisplay filter on/off switches U7A and U7B. For pre-display on (0.142), U7A is closed. For predisplay off (0.14 A), U7B is closed. As it turns out, 0.14 d codes other than those shown in the table will also affect the high-pass filters. For example, 0.147 will close U1A, U1B, and U1C, simultaneously (with U7A also closed). This fact is ascertained from the service sheet schematic.

Example \#2

A second example from the A3 assembly illustrates data readback when using the Direct Control Special Function. One of the means of detecting an overrange of the audio circuits is by the Audio Overvoltage Detector. The detector is on the audio input line before any active (and

Figure 84. Example Showing High-Pass Filter Switching.

Figure 8-5. Example Showing Audio Overvoliage Detector Readback
hence, distortable) filters (See Figure 8-5). The audio input line is the same as in the previous example. The Audio Overvoltage Detector senses the peak signal level on the line and U9 compares it against a reference. If the detected level rises above the reference, the output of U9 goes low and resets flip-flop U19D. Other flipflops (not shown) are also reset and open the audio path ahead of the detector (without intervention of the Controller). U21D and U21C, when enabled, invert the output of U19D twice. The output of U21C is across the leastsignificant bit of the readback data line of the Instrument Bus. In the normal measurement cycle, the Controller reads the status of the Audio Overvoltage Detector (by enabling U21D and reading the output of U21C) and displays an error if U9 has tripped.
At this point in the discussion, a more detailed description of the Instrument Bus data lines is needed. Data (d) is read out from the I/O port of the Controller to the Instrument Bus through buffers (TTL inverters). However, data is read back to the I/O port directly, bypassing the buffers. An I/O port outputs a low by actively pulling the line to ground. It outputs a high by allowing the output to be passively pulled up by an external pull-up resistor. When a Controller I/O port inputs data from other circuits of the Modulation Analyzer, these circuits must operate against the passive pull-up resistor.
Readback devices that are read out to the data lines, such as U21C, are similarly configured. U21C has an open-collector TTL output. When not outputting data, its output device is off, pulling it to a high-impedance (inactive) state. When it outputs data, a low is produced by switching the output device to ground. A high is produced by switching the device off and allow-
ing the output to be passively pulled-up. The readback lines are low true (i.e., $r=1$ when the line is low).
When U21D is disabled (enable is high), its output is low. Therefore, U21C is high (inactive) and has no effect on the data line. U21D is enabled by Direct Control Special Function 0.15 d . The value of d is arbitrary to enable U21D, but the least-significant bit must be 0 (i.e., d must be even) to switch off the output device of the I/O data port.

To clarify this concept, suppose that U19D has not been reset. If Direct Control Special Function 0.152 is entered, the display will show 0010.0010 . (0.15 d also controls FM squelch. Using 0.152 deactivates squelch.) The second four digits are 0010 because $d=2$ was received by the Controller from the keyboard and issued to the Instrument Bus. The set flip flop (U19D) puts a high on the input of U21D and an inactive high on the leastsignificant data line. This is read by the Controller as $\mathrm{r}=0$ and thus is the same as the bit issued. The other three data readback lines are unaffected by the readback command and remain 001 . Therefore, the d read back is 0010 .
If U19D is reset, U21D puts a low, on the least-significant data bit ($r=1$), and the data read back is 0011 . The display is therefore 0011.0010. (Note that rrrr is different from wwww.) If d is keyed in as a hexadecimal F, the display is 1111.1111 regardless of the state of U21D. This is because all output devices on the data I/O port of the Controller are on (logical 1).

One final note, after a Direct Control Special Function is entered, it is periodically issued to the Instrument Bus. If a fault causes rrrr to indicate a malfunction, the display will begin to read correctly as soon as the fault is removed.

8-28. Service Special Functions (Prefix 40-99)

The Service Special Functions are used to perform a variety of tasks related to service. The functions are cataloged below. A suffix N indicates that a parameter other than 0 may be required to complete the Special Function Code. See Table 8-3 for entry of hexadecimal suffixes.
40.0 Controller Reset. Initializes the Controller to its power-up state. Because this function affects the HP-IB hardware, it is unavailable from the interface bus (causes error E24).
41.0 Controller Clear. Initializes the Controller to its power-up state but bypasses the operational checks. Leaves HP-IB hardware unaffected but clears any service request message (SRQ) being issued by the Modulation Analyzer, sets the service request condition to its power-up state, and clears all bits in the status byte.
42.0 Display Software Date. Displays the date of the software in the form
<day of year>.<year>.
43.N Service Error Display Control. Service Errors are errors 70 to 89 . Refer to page 8-16.
$\mathrm{N}=0 \quad$ Disables display of Service Errors.
$\mathrm{N}=1 \quad$ Enables display of Service Errors.
46.N Count Internal Signals. The Counter counts the internal signal selected by N for 100 ms and displays the count. This is equivalent to measuring the frequency of the signal with 10 Hz resolution for most signals.
$\mathrm{N}=1 \quad$ Intermediate Frequency. See Service Sheet 5.
N=2 Voltageto-Time Converter. 10000 counts equal one volt, but includes a 0.6 V offset. See Service Sheet 10 or Special Function 49.N.
N=3 FM Calibrator. See Service Sheet 28.
N=4 High Frequency VCO Divided by 8. This is the 40 to 80 MHz signal which is proportional to the LO frequency. See Service Sheet 11.
$\mathrm{N}=8 \quad$ Selected Time Base Reference. The display should read 1000000 ± 1. See Service Sheet 16.
$\mathrm{N}=9 \quad$ External Time Base Reference. The display should read 1000000 ± 1 when an external reference is connected. See Service Sheet 16.
$\mathrm{N}=\mathrm{A}$ Internal Time Base Reference. The display should read 1000000 ± 1 when no external reference is connected. See Service Sheet 16.
$\mathrm{N}=\mathrm{B} \quad$ Spare.
49.N Display Internal Voltages. The Voltmeter measures and displays the internal voltage (in volts) selected by N.
$\mathrm{N}=0 \quad$ Ground. See Service Sheet 10.
N=1 RF Level Ground. SeeServiceSheet 1.
$\mathrm{N}=2 \quad \mathrm{RF}$ Level/2.96. See Service Sheets 1 and 10.
N=3 RF Level. See Service Sheet 1.
N=4 X10 AM Calibrator Level. See Service Sheet 29.
N=5 X1 AM Calibrator Level. See Service Sheet 29.
N=6 Audio Range Detector. See Service Sheet 8.
N=8 Ground. See Service Sheet 10.
$\mathrm{N}=9 \quad$ Average Detector. See Service Sheet 9.
$\mathrm{N}=\mathrm{A}$ Peak Detector. See Service Sheet 9.
N=B Average IF Level. See Service Sheet 3.
$\mathrm{N}=\mathrm{D} \quad$ IF Level. See Service Sheet 4.
$\mathrm{N}=\mathrm{E} \quad$ ALC Current. See Service Sheet 3.

NOTE

The suffix can also be two digits, $X Y$. The difference 49.X SPCL-49.YSPCL is then displayed. For example, 49.3 SPCL or 49.30 SPCL gives a display of the RF level with respect to ground. 49.31 SPCL gives a display of the RF level with respect to $R F$ level ground.
50.N Display Internal Voltages. The Voltmeter measures and displays the internal voltage (in volts) selected by N. See also the previous note.
$\mathrm{N}=0 \quad$ Ground. See Service Sheet 10.
$\mathrm{N}=1 \quad-15 \mathrm{~V}$ Supply. The display should read between 2.7200 and 3.0000 . See Service Sheet 10.
$\mathrm{N}=2 \quad-5 \mathrm{~V}$ Supply. The display should read between 2.8400 and 3.1400. SeeService Sheet 10.
$\mathrm{N}=3 \quad+5 \mathrm{~V}$ Supply. The display should read between 2.8800 and 3.1900. SeeService Sheet 10.
$\mathrm{N}=4 \quad+15 \mathrm{~V}$ Supply. The display should read between 3.0400 and 3.1700. See Service Sheet 10.
$\mathrm{N}=5 \quad+40 \mathrm{~V}$ Supply. The display should read between 2.9800 and 3.2900 . See Service Sheet 14.
52.N Read Only Memory Verification. The Controller displays the checksum of the read only memory (ROM) specified by N. When specifying a ROM, use $N=1$ through 8 or 11. The 11 is a two digit entry of 11 , not the keystroke
entry S(Shift)1 for the hexadecimal value B. The Display is in the form <actual checksum>.<expected checksum>. An initial zero (or zeros) before the decimal will be blanked. Thus, for example, 24.024 would be correct but 24.124 would be incorrect. See Service Sheets 19 and 22.
54.N Local Oscillator Test. The Controller sequences the local oscillator (LO) through a series of test specified by N and returns an error code corresponding to the test that failed. For $N=1$ to $N=5$, four tests each are performed. If any tests fail, the test numbers appear on the display in the positions indicated. All leading zeros in the display are blanked. For example, in the sequence defined by $N=1$, a simultaneous time base (Test 2) and HF VCO or Divider (Test 4) failure will result in the display 20004 (three leading zeros blanked). The tests are continuously sequenced, and the display will change as the fault is corrected. The tests are most easily visualized by referring to Figures 8-38 and 8-39.
$\mathrm{N}=0 \quad$ Performs all tests in the sequence listed for $N=1$ through $N=5$ (below). Displays the number of the first test that failed. If no test fails, a zero is displayed.

NOTE

If the display is not zero, it is important that all other tests be checked (54.1 through 54.5). Some LO faults cause more than one test to fail. For example, a failure of the HF VCO $\div 8$ output will result in failures of

$$
\begin{aligned}
& N=1, \text { Test } 4 \\
& N=2, \text { Tests } 5,6, \text { and } 7 \\
& N=3, \text { Tests } 9 \text { and } 10 \\
& N=5 \text {, Tests } 17 \text { and } 18 .
\end{aligned}
$$

This is because a frequency measurement of the LO is made in these particular tests.
$\mathrm{N}=1$ Test 1 Undefined.
$\mathrm{N}=1 \quad$ Test $2 \quad$ Time Base Test (see Service Sheets 16 and 17).
Tests the 6.25 kHz TTL time base signal to determine if it toggles within a reasonable length of time. The Controller looks at U14D's output for $260 \mu \mathrm{~s}$. At least one transition (high-to-low or low-to-high) of the clock should occur during this time. If no
clock transition occurs, 2 will be displayed in digit position 3. However, if a transition is detected, a second (verification) check is made by the Controller.
$\mathrm{N}=1$ Test 3 Counter Test (see Service Sheet 17).
Counts the selected Time Base, which should be exactly 1000000 . If the result is not 10000000,3 will be displayed in digit position 6.
$\mathrm{N}=1$ Test 4 HF VCO and Divider Output (see Service Sheets 11 and 12).

Connects the DAC output to the HF VCO and counts the Local Oscillator frequency to determine if it is within certain limits. The Controller turns off the Sweep-Up and Sweep-Down Current Sources and LF VCXO tune filter, allowing the HF VCO to free run. The Controller then outputs the approximate center frequency code to the tuning DAC and checks if the HF VCO output is between 250 and 800 MHz . If the frequency is not within these limits, 4 will be displayed in digit position 8.
$\mathrm{N}=2 \quad$ Test $5 \quad$ HF VCO Top of Range Test (see Service Sheet 12).
Tests the DAC's ability to drive the HF VCO to the top of its frequency range. The DAC is programmed to output the highest tune voltage. If the HF VCO does not tune to between 655 and $800 \mathrm{MHz}, 5$ will be displayed in digit position 2.
Test 6 HF VCO Bottom of Range Test (see Service Sheet 12).
Tests the DAC's ability to drive the HF VCO to the bottom of its frequency range. The DAC is programmed by the Controller to output the lowest tune voltage. If the HF VCO does not tune to between 280 and $310 \mathrm{MHz}, 6$ will be displayed in digit position 4.

NOTE

Test 6 is not always conclusive. The test may not always detect a failure of the VCO to tune to the bottom of the band. If the VCO does fail to tune to the bottom of its band, the instrument will not tune to certain frequencies in the track mode.

$\mathrm{N}=2$	Test 7 HF VCO Mid-Range Test (see Service Sheet 12).
	Tests the DAC's ability to contr
	HF VCO near the center
	frequency range. The DAC is pro grammed by the Controller to output
	a tune voltage near the center of the
	range. If the HF VCO does not tune to
	between 454 and $575 \mathrm{MHz}, 7$ will be
	displayed in digit position 6.
$\mathrm{N}=2$	Test 8 Undefined.
$\mathrm{N}=3$	Test 9 Gain Test For Most Signifi-
	cant DAC (see Service Sheet 14).
	Tests the gain of the most significant
	DAC. The Controller sends a hex
	decimal 55 to the most significant
	DAC (MSDAC) and a hexadecimal
	AA to the least significant DAC
	(LSDAC). The Controller then counts
	the frequency of the HF VCO. The
	MSDAC is then changed to AA. The
	Controller again counts the frequency
	of the HFVCO and then computes the
	difference between the first and
	second frequencies. This difference
	should fall between 139 and 285 MHz
	If it does not, 9 will be displayed in
	digit position 2.
$\mathrm{N}=3$	Test 10 Gain Test For Least Sig
	t DAC (see Servi

Tests the gain of the least significant DAC. The Controller sends a hexadecimal AA to the most significant DAC (MSDAC) and a hexadecimal 55 to the least significant DAC (LSDAC). The Controller then counts the frequency of the HF VCO. The LSDAC is then changed to AA. The Controller again counts the output of the HF VCO and then computes the difference between the first and second frequencies. This difference should fall between 1.95 and 4.5 MHz . If it does not, 10 will be displayed in digit positions 3 and 4.
$\mathrm{N}=3$ Test 11 Undefined.
$\mathrm{N}=3$ Test 12 Undefined.
N=4 Test 13 Phase Lock Loop Acquisition (see Service Sheets 12 and 14).

Tests the HF VCO's ability to lock to the LF VCXO. The Controller turns
off the Sweep Current Sources and the LF VCXO tune filter. It then programs the DAC to output a tune voltage which causes the HF VCO to operate near the center of its frequency range. The Controller rapidly switches the DAC output to the LF VCXO (with the DAC still programmed to midrange). The sampler loop is then closed and the output of the HF VCO is counted. If the HF VCO is operating properly, it will drift until it locks to a harmonic of the LF VCXO (via the sampler). If the HF VCO frequency moves more than 2 MHz , it has failed to lock to a harmonic of the LF VCXO, and 13 will be displayed in digit positions 1 and 2.
$\mathrm{N}=4$ Test 14 Phase Lock Loop Stability (see Service Sheet 14).

Tests the ability of the HF VCO to follow step changes in the LF VCXO. The Controller sends the DAC a code which forces the LF VCXO to the bottom of its frequency range. The frequency of the HF VCO is counted. The DAC is then instructed to quickly slew the LF VCXO to the top of its frequency range and then back down to the bottom again. When the DAC output voltage reaches minimum, the HF VCO is again counted. The frequency change of the HF VCO should be less than 100 kHz . If it is not, 14 will be displayed in digit positions 3 and 4.
$\mathrm{N}=4$ Test 15 Undefined.
$\mathrm{N}=4$ Test 16 Undefined.
$\mathrm{N}=5 \quad$ Test 17 LF VCXO Range Test (see Service Sheets 13 and 14).
Tests to see if the DAC moves the LF VCXO within the proper frequency limits. Since the LF VCXO frequency can not be measured directly, an indirect process is used. The Controller sends a hexadecimal 00 to the DAC, which drives the LF VCXO to its minimum frequency. This frequency change causes a proportional change in the HF VCO frequency, which is measured by the Counter. The Controller then sends a hexadecimal FF to the DAC, driving the LF VCXO to its highest frequency. The HF VCO
output is again counted. The difference between the highest and lowest frequencies from the HF VCO should be between 2.95 and 5.5 MHz . If the frequency difference does not fall within this range, 17 will be displayed in digit positions 1 and 2.
$\begin{array}{lll}\mathrm{N}=5 \quad \text { Test } 18 & \text { Gain of LFVCXO Drive (see } \\ \text { Service Sheets } 13 \text { and 14). }\end{array}$ Tests the gain of the LF VCXO. This is the hardest test in this series for the instrument to pass. The Controller sends a hexadecimal 55 to the most significant DAC (MSDAC) and a hexadecimal AA to the least significant DAC (LSDAC) and then counts the frequency of the HF VCO. The Controller then changes the MSDAC to a hexadecimal AA and the LSDAC to a hexadecimal 55 , and again counts the frequency of the HF VCO. The difference between the first and second frequencies should be within the range of 1.05 to 2.4 MHz . If it is not, 18 will be displayed in digit positions 3 and 4.

$$
\begin{array}{lll}
\mathrm{N}=5 & \text { Test } 19 & \text { Undefined. } \\
\mathrm{N}=5 & \text { Test } 20 & \text { Undefined. }
\end{array}
$$

55.0 Sweep Doubler Band. Sweeps the LO slowly back and forth across the doubler band. See Service Sheet 11.
56.0 Sweep Bands 4 through 8. Sweeps the LO slowly and sequentially across bands 4 through 8 . See Service Sheet 11.
57.0 Sweep Bands DBLR through 3. Sweeps the LO slowly and sequentially across bands DBLR through 3. See Service Sheet 11.
60.0 Key Scan. The keyboard is scanned and a key code is displayed and output to the HP-IB. The key codes are shown in Figure 8-6.
To use the Key Scan Special Function, remove the instrument top cover. Key in 60.0SPCL then jumper A13TP3 (INT) to A13TP1 (GND) on the A13 Controller Assembly. Press the front-panel keys and observe the display. If two or more keys are pressed simultaneously, the display shows the code corresponding to the first one found in its normal scan. See Service Sheet 20.
Two simple programs for displaying the key codes on a computing controller are shown in Table 8-5. Removal of the top and bottom covers is unnecessary. The Modulation Analyzer is assumed to have HP-IB address 14.

Table 8-5. Key Scan Programs

HP 9825A	HP 9835A/9845A
0: fxd 0	10 FIXED 0
1: remt 714;110 7	20 PEMOTE 714
2: wrt 714, "6u.sp"	30 LOCAL LOCKOUT 7
3: red 714	40 CUTPUT 714 ;"60.SP"
4: dsp A_{i} jnp-1	50 ENTEE 714;
5: end	60 DISP A
	$\begin{aligned} & 70 \text { GO'rC } 50 \\ & 80 \text { END } \end{aligned}$

61.N Display HP-IB Status. Displays the status of the HP-IB lines selected by N. The display is in binary. See Service Sheet 22 for troubleshooting and a complete list of HP-IB mnemonics.

Figure 8-6. Key Codes for Key Scan
(Service Special Function 60.0)

NOTE

Information within brackets appears on the Modulation Analyzer's display.

N=0 <Addressed to Talk>. <Addressed to Listen>. This function reads back and displays the present state of the Talk and Listen Address flip-flops (A14U16A and B). For example, if the display shows 1.0, the Modulation Analyzer is addressed to talk (and unaddressed to listen). This means the Talk Address flip-flop is set (and the Listen Address flip-flop is reset).
$\mathrm{N}=1$ <DAV>.<RFD>.<DAC>. This function reads back and displays the present state of the three bus handshake lines. <DAV > reflects the state of the Data Valid bus handshake line as being driven by the Modulation Analyzer ($1=$ being driven; $0=$ not being driven). Thus, when in Listen Only, this display will always show 0 for <DAV>. The <RFD> and <DAC> always track the bus lines Ready For Data and Data Accepted. For example, 1 for <RFD> means line Ready For Data is true (high).
$\mathrm{N}=2$ <ATN>.<REN>. This function reads back and displays the present state of the ATN (Attention) bus control line and the state of the Remote Enable Flip-Flop. A 1 for either <ATN> or $<$ REN $>$ indicates ATN is true (low at the bus) or that the Remote Enable Flip-Flop is set.
$\mathrm{N}=3$ <SPM>.<SRQ>. This function reads back and displays the state of the Serial-Poll flip-flop and the state of the SRQ bus-control line as being driven by the Modulation Analyzer. A 1 for either <SPM> or <SRQ> indicates the Modulation Analyzer is in serial-poll mode (SPM) or that it is presently driving the SRQ bus control line.
$\mathrm{N}=4 \quad$ PIO Port A. This function inputs and displays (without modifying) the data at PIO port A (A14U13). Leading zeros are blanked. The following table interprets the display.

PIO Port A

A14 Pin No.	2	37	36	31	30	25	24	19
Display Digit	1	2	3	4	5	6	7	6
Mne- monic	108	107	106	105	104	103	102	101
$1=$ True								

$\mathrm{N}=5 \quad$ PIO Port B . This function is similar to the function above except PIO port B is displayed. The display is interpreted as shown in table below.

PIO Port B

A14 Pin No.	1	38	35	32	29	26	23	20
Display Digit	1	2	3	4	5	6	7	8
Mne- monic	ATN	ARD	AAD	SRQ	RNL	ATT	ATL	SIVV
$1=$ True								

8-29. ERROR MESSAGES

8-30. General

The instrument generates error messages to indicate operating problems, incorrect keyboard entries, or service-related problems. The error message is cleared when the error condition is removed.

The Error Messages are grouped by error code as follows:

E01 through E19 and E90 through E99. These are Operating Errors which indicate that not all conditions have been met to assure a calibrated measurement. Operating Errors can usually be cleared by readjustment of the front-panel controls. The Error Disable Special Function (8.N) can be used to selectively disable certain error messages. More information on Operating Errors and error message disabling can be found under Error Message Summary and Error Disable in the Detailed Operating Instructions in the Operating Manual and on the Operating Information pull-out card.

E20 through E29. These are Entry Errors which indicate that an invalid key sequence or keyboard entry has been made. These errors require that a new keyboard entry or function selection be made. More Information on Entry Errors can be found under Error Message Summary in the Detailed Operating Instructions in the Operating Manual and on the Operating Information pull-out card.

E30 through E89. These are Service Errors which provide additional service-related information and are discussed below.

8-31. Service Errors (E30-E89)

Service Errors are not normally displayed. When a servicerelated problem is suspected, enable the Service Errors by keying in 43.1 SPCL. Service Errors can be disabled by keying in 43.0SPCL or by pressing AUTOMATIC OPERATION. Not all Service Errors are an indication of a problem but may be a normal occurrence depending upon the circumstances.

E70 Phase Lock Loop Step-Down. The LO phase lock loop has stepped to a lower harmonic of the LF VCXO in an attempt to tune the LO to the required frequency. Stepping down once is occasionally necessary during normal tuning. See Service Sheet BD2 and Service Special Function 54.N on page 8-12.

E71 Phase Lock Loop Step-Up. This error message is the same as E70 except that the loop has stepped to a higher harmonic.

E72 Audio Overioad. The Audio Overvoltage Detector has tripped. This may have been due to the nature of the audio signal (e.g., a highfrequency audio signal which overrides the circuits preceeding a low-pass filter) or due to a problem in the audio circuits. See Service Sheet BD3.

E74 FM Calibrator Overdeviation. The frequency deviation of the FM Calibrator is greater than 38 kHz . See Service Sheet 28.

E75 FM Calibrator Underdeviation. The frequency deviation of the FM Calibrator is less than 3.0 kHz . See Service Sheet 28.

E76 AM Calibrator Modulators Unequal. The difference between the x10 AM Cal signal for the two channels is greater than 0.6 V . See Service Sheet 29.

E77 AM Calibrator Channel B Out of Range. The AM Cal level from Channel B is not within the range of +1.8 to +2.2 V . An unterminated CALIBRATION OUTPUT will cause this error. See Service Sheet 29.

E78 Key Not Found. A key closure was not found after a keyboard interrupt (except when a keyboard entry is in progress). See Service Sheet 20.

E79 Audio Autorange Rangeback. The audio autorange routine has found the audio signal level is too high, has changed to a less sensitive range, and has immediately found the signal is too low. The routine does not then range back, but instead displays error E79 and remains on the low-sensitivity range for the rest of the measurement cycle. The error signifies that the routine would normally have ranged back but did not actually do it. This may have been due to the nature of the audio signal (e.g., the voice signal) or due to a problem in the audio gain stages or detection circuits. See Service Sheet 8.

Audio Settling Timeout. First-time measurement results are not output to the display until the measurement result has settled or until one second has elapsed, whichever is first. Settling is determined by comparing successive measurements. This error message indicates that a one-second timeout has occured. This may be due to the nature of the signal or an instability in the audio circuits. See Service Sheet BD3.

E81 LO Tuning Adjusted to Center Signal in IF Passband. This error message only occurs in automatic tuning, low-noise lock. If the signal in the IF drifts out of the acceptable IF passband limits (see the Spectrum Diagram in Tuning Figure in the Operating Manual) but is still present in the total IF passband such that the IF level is still acceptable, the LO frequency will be adjusted to center the signal in the IF passband. When this occurs, error 81 will be displayed. In certain situations it is possible to trick the Controller into making this tuning adjustment when the signal is properly tuned; e.g., when the IF signal has an excessively high AM depth ($>99 \%$ at normal RF signal levels) which cannot be accurately counted during the trough. Also note that if tuning adjustments are necessary three times
in a row (without any intervening measurement), then the full auto-tuning sequence will be initiated, searching the entire input spectrum for a signal.

E89
Software Error. Perform the Read Only Memory Verification. See Service Special Function 52 N on page 811 .

8-32. POWER-UP CHECKS

When the Modulation Analyzer is first turned on (or if 40.0SPCL is entered), the instrument goes through a series of operational checks. If a check fails, an error code is displayed for two seconds on the four internal TEST LEDs on the A13 Controller Assembly. The sequence then continues on to the next check.

Except for the check of the front-panel LED annunciators, noindication of the power-up sequence or its results is given on the front-panel display. The principal advantage to using the Power-Up Checks is that the keyboard and display need not be operational.

To use the Power-Up Checks, remove the top cover (refer to Removal of Top and Bottom Covers, page 8-155),remove any jumpers that may be on the four TEST test points (A, B, C, and D) on the A13 Controller Assembly, remove any signal at the INPUT, and switch the line to STBY for five seconds (to discharge the supplies) and back to ON. Observe the four TEST LEDs on the top of the Controller Assembly as the instrument powers up. The LEDs should light in the following sequence:

1. Indeterminate for about $1 / 4$ second.
2()()(1) for about $1 / 4$ second.
2. ()$(4)()()$ for about $1 / 4$ second.
3. (8)(4)(2)(1) for about 10 seconds.
4. ()()(1), with (1) blinking indefinitely until a key is pressed.

The Power-Up Checks proper begin at step 2 and are carried out in the following order:

1. Front Panel Annunciator Check. All front-panel LEDs and display segments and decimal points are lighted and remain so throughout the tests that follow and for a few seconds afterwards. Failure of one or more LEDs or display segments tolight indicates that the respective components or drive circuits have failed. See Service Sheet 21.
2. Read Only Memory Check. The checksum of each
of the read only memories (ROMs) is read and compared against a stored reference (stored in ROM 1). This is similar to issuing a series of $52 . \mathrm{N}$ SPCL commands (see Service Special Functions on page 8-11). When a wrong checksum is found, the four TEST LEDs blink for one second with the binary code of the ROM number. For example, if ROM 5 is faulty, the TEST LEDs will blink ($)(4)(1)(1)$ (i.e., 0101 , a binary 5). The check then continues on to the next ROM. See Service Sheets BD4, 19 , and 22 . If no faulty ROM is found, a steady ()$(x)(1)$ appears for about $1 / 4$ second.
3. Random Access Memory Check. Data is stored into and retrieved from the random access memory (RAM). If the data read back differs from the data entered, error code ($x)(2)$) is output to the TEST LEDs for two seconds. See Service Sheet 18.
4. Instrument Bus Parity Check. A parity check of the data lines of the Instrument Bus is made. A failure is indicated by ()()$(2)(1)$ on the TEST LEDs for two seconds. See Service Sheets BD4, 10 , and 18.
5. Local Oscillator Check. The Local Oscillator (LO) is given a series of tests similar to issuing the 54.0 SPCL command (see Service Special Functions on page 811). During the test, ()(4) () () is output to the TEST LEDs for about $1 / 4$ second. A failure is indicated by outputting the same code for an additional two seconds. See Service Sheet BD2.
6. Keyboard Checks. The keyboard is scanned to see if any keys are down. If a key is down, error code ()$(4)()(1)$ is output to the TEST LEDs for two seconds. See Service Sheets BD4 and 20.

8-33. CONTROLLER TEST LEDS AND TEST POINTS

Near the top edge of the A13 Controller Assembly are located four test points and four associated LED annunciators labeled TEST which are used primarily for troubleshooting the instrument. The LED annunciators are labeled (from left to right) $8,4,2$, and 1 and are associated with test points A, B, C, and D respectively.
The label on the annunciators is sometimes used to represent a binary weighting. They function in the following ways:

1. At instrument power-up the TEST annunciators light in a certain sequence that indicates proper functioning of several vital areas of the instrument. A failure in any of the areas is indicated on the annunciators. For details see Power-Up Checks.
2. After power-up, annunciator 1 toggles once for each measurement cycle.
3. After power-up, annunciator 2 toggles once for each keyboard interrupt (i.e., each time a key is pressed).
4. After power-up, annunciator 4 toggles once for each HP-IB interrupt.
Grounding of certain of the TEST test points alters instrument operation in the following ways.
5. Grounding test point B causes some of the power-up sequence to be bypassed and thus shortens the turn-on time of the instrument. The power-up checks are now invalid.
6. Grounding test point C initiates the Counter signature analysis troubleshooting routine. See Service Sheet 17.
7. Grounding test point D initiates the Keyboard signature analysis troubleshooting routine. The signature analyzer's start and stop leads are then connected to test point A and the probe is connected to test point B. See Service Sheet 20.
Whenever a test point is grounded, the associated annunciator is extinguished.

8-34. SIGNATURE ANALYSIS

Signature analysis is a simple method of verifying the operation of digital circuitry. When properly used, signature analysis can detect extremely subtle hardware faults. Signatures must identically match those given in the signature tables. If everything is working correctly, signatures will all match exactly. If they don't match, by even one digit, something is wrong.
The Counter, Controller, and Keyboard and Display Assemblies are designed for troubleshooting with signature analysis. Signature analysis is a method of digital signal tracing using test routines programmed in the Modulation Analyzer's ROM. With the Modulation Analyzer's Controller executing the signature analysis routine, the signature analyzer's test probe is used to check nodes in the circuit under test. The signature analyzer converts the signals at the node into a four digit "signature", which it displays. This signature is then compared to the signature in the troubleshooting checks adjacent to the appropriate schematic. These two signatures must be identical.
Signature analysis can be speeded up if the following considerations are kept in mind:

1. Make sure that every step is performed as described in the set-up procedure. That is, make sure that the clock, start, and stop connections and triggering are correct.
2. Double-check that the signatures are being taken at the correct node.
3. Make sure that the signature analyzer probe is making good contact with the pin being checked. Oxidation on pins can cause invalid signatures due to poor contacts.
4. When you think that you have found a bad signature, double check to make sure.
5. When checking a node, check that the unstablesignature indicator is not blinking.

8-35. DISASSEMBLY PROCEDURES

Procedures for removal of the top, bottom, and side covers, and the front and rear panels of the instrument and the illustrated parts breakdowns (IPBs) are contained in Service Sheets A and B.

8-36. REPAIR

8-37. Factory-Selected Components (*)

Some component values are selected at the time of final checkout at the factory (See Table 5-1). These values are selected to provide optimum compatability with associated components. These components are identified on individual schematics and the parts list by an asterisk (*).

8-38. Manual Backdating (\dagger)

A dagger (\dagger) by an item of service information means that information is different for Modulation Analyzers with serial number prefixes lower than the one that this manual applies to directly. Table 7-1 lists the backdating changes by serial number prefix. The backdating changes are contained in Section VII. Recommended modifications are also contained in Section VII.

8-39. Manual Updating (Manual Changes Supplement)

Production changes to Modulation Analyzers made after the publication date of this manual are indicated by a change in the serial number prefix. Changes to this manual's information are recorded by a serial number prefix on the Manual Changes supplement. Errors are also noted in the ERRATA portion of the Manual Changes supplement.
Keep this manual up to date by periodically requesting the latest, complimentary supplement from your Hewlett-Packard office.

8-40. Etched Circuits (Printed Circuit Boards)

The etched circuit boards in the Modulation Analyzer have plated-through holes which make a solderable path through to both sides of the insulating material. Soldering can be done from either side of the board with equally good results. When soldering to any circuit board, keep in mind the following recommendations:

1. Avoid unnecessary component substitution. Substitution can result in damage to the circuit board and/or adjacent components.
2. Do not use a high-power soldering iron on etched circuit boards. Excessive heat may lift a conductor or damage the board.
3. Use a suction device or wooden toothpick to remove solder from component mounting holes. DO NOT USE A SHARP METAL OBJECT SUCH AS AN AWL OR TWIST DRILL FOR THIS PURPOSE. SHARP OBJECTS MAY DAMAGE THE PLATED-THROUGH CONDUCTOR.

8-41. MOS and CMOS Integrated Circuit Replacement

MOS and CMOS integrated circuits are used in this instrument. They are prone to damage from both static and transients and must be handled carefully. When working on the Modulation Analyzer, keep in mind the following recommendations to avoid damaging these sensitive components.

1. Do not remove any board unless the Modulation Analyzer has been turned off or unplugged.
2. When removing a socketed MOS or CMOS device from an assembly, be careful not to damage it. High-grip sockets are used throughout the instrument. Avoid removing devices from these sockets with pullers. Instead, use a small screwdriver to pry the device up from one end, slowly pulling it up one row of pins at a time.
3. Once a MOS or CMOS device has been removed from an assembly, immediately stick it into a pad of conductive foam or other suitable holding medium.
4. When replacing a MOS or CMOS device, ground the foam on which it resides to the instrument before removing it. If a device requires soldering, make sure that the assembly is lying on a sheet of conductive foam, and that the foam and soldering iron tip are grounded to the assembly. Apply as little heat as possible.
5. Before turning the instrument off, remove any large ac sources which may be driving MOS switches.

8-42. Front-Panel Switch Replacement

If it becomes necessary to replace a front panel switch, refer to the switch replacement procedure in Service Sheet A.

8-43. RETROFITTING OPTIONS

The Operating Manual lists the optional equipment available for use with the Modulation Analyzer. Read the descriptions following each listed option
before ordering, since some options cannot be used if others are already in place.

8-44. SCHEMATIC SYMBOLOGY

The following pages summarize the symbology used in presenting many of the devices found in the Modulation Analyzer.

8-45. Logic Symbology

The logic symbols used in this manual are based on the American National Standard Institute (ANSI) Y32.14-1973, "Graphic Symbols for Logic Diagrams (Two State Devices)". A summary of this symbology is provided to aid in interpreting these symbols.
Basic Logic Symbols (Gates) and Qualifiers. This section includes a brief description of the basic logic symbols used on the service sheets (see Figure 8.7), a summary of indicator symbols (see Figure 8-8), a discussion of contiguous blocks, control blocks, and dependency notation, and a summary of symbology for some of the more complex devices.
Qualifiers are that portion of a device symbol that denotes the logic function. For example, " $\&$ " denotes the AND function. See Figure 8.7 for a summary of the basic logic symbols and their qualifiers.
Power supply and ground connections are not shown on the symbols. This information is tabulated on the right margins of the service sheets.
Indicator Symbols. Indicator symbols identify the active state of a device's input or output, as shown in Figure 8-8.
Contiguous Blocks. Two symbols may share a common boundary parallel or perpendicular to the direction of signal flow. Note that in the examples shown in Figure 8-9, there is generally no logic connection across a horizontal line, but there is always an implied logic connection across a vertical line. Notable exceptions to this rule are the horizontal lines beneath control blocks and between sections of shift registers and counters (dividers).
Dependency Notation. Dependency Notation simplifies symbols for complex integrated circuit elements by defining the interdependencies of inputs or outputs without actually showing all the elements and interconnections involved (see Figures 8-10 through 8-12). The following examples use the letter A for address, C for control, G for AND, V for OR, and F for free dependencies. The dependent input or output is labeled with a number that is either prefixed (e.g., 1 X) or subscripted (e.g., X_{1}). They both mean the same thing. Note that many times a controlled line may already be labeled with a number that indicates input or output weighting (for example, in a coder). In this case, the controlling or gating input will be labeled with a letter (see Figure 8-11).

Figure 8-7. Basic Logic Symbols and Qualifiers

Figure 8-8. Indicator 8ýmbols

Figure 8-9. Contiguous Blocks

Figure 8-10. ANO Dependency Notation

Figure 8-11. Address Dependency Notation: Coder Example Using Alpha Characters (Letters)

When a V input is active, the output will be in its active state. With the V input inactive, the device functions as if the V input doesn't exist.

When an F input is active, the output is enabled to function normally. When an F input is inactive, the output becomes a high impedance, effectively removing that device from the circuit.
The 3-STATE label is sometimes used with the free dependency notation.

Figure 8-12. OR and Free Dependency Notation

Figure 8-13. Common Control Block

Figure 8-14. Quad D.Type Latch (Individual)

Common Control Block. The Control block is used in conjunction with an array of related symbols in order to group common logic lines. Figure $8-13$ shows how the Control block is usually represented. Figure 8 -14 shows a quad D-type flip-flop with reset. This can be redrawn as shown in Figure 8-15. Note that the more complex representation shown in Figure $8-14$ can be used when the flip-flops are functionally scattered around the schematic (i.e., not used as a quad unit).

Figure 8-15. Quad D-Type Latch (Combined)
Complex Device Symbology. Figures 8-16 through 8 -19 show how the basic symbols can be combined to illustrate behavior of fairly complex devices.

Shift Register. The Shift Register Control Block is used to show common inputs to a bidirectional shift register. Notice that " -m " means shift the contents to the right or down by " m " units. And " $-m$ " means
shift the contents to the left or up by " m " units. Note: If $m=1$, it may be omitted. Inputs " a " and " b " are each single IC pins that have two functions. Input "a" enables one of the inputs to the top D-type flip-flop (1D) and also shifts the register contents down " m " units. Input " b " enables one of the inputs to the bottom flip-flop (2D), and also shifts the register contents up " m " units. Input " c " loads all

Figure 8-16. Shift Register

Figure 8-17. AND-OR Selector
four flip-flops in parallel (3D). Input " d " is a common reset. The output delay indicator is used because these are master-slave flip-flops.

AND-OR Selector. The Selector Control Block is used to simplify the AND portion of a quad ANDOR select gate. When G1 is high, the data presented at the " 1 " inputs will be gated through. When G2 is high, the data presented at the " 2 " inputs will be gated through.

Up/Down Counter. The Counter Control Block is used to show common inputs to a Presettable Decade Up/Down Counter. Notice that " +m " means count up (increment the count) by " m "; " -m " means count down by " m ". Note: if $m=1$, it may be omitted. Since the D-type flip-flops are master-slave, the output delay indicator is used. The " $=9,+1$ " and " $=0,-1$ " notation defines when the carry and borrow outputs are generated. They also define it as a decade counter; a binary counter would have the carry indicated with " $=15,+1$ ". Flip-flop weighting is indicated in parenthesis. Input "C1" allows all four "D1" flip-flops to be preset in parallel.

Figure 8-18. Up/Down Counter
Quad D-Type Latch. The Register control block is used to illustrate a quad D-type latch. There is a common active-low reset (R), and a common edgetriggered control input (C). Since there is only one dependency relationship, the controlling input is not numbered and the controlled functions (D) are subscripted with a C.

Figure 8-19. Quad D-Type Latch

8-46. LOGIC DEVICE THEORY

8-47. Schmitt Trigger

A typical Schmitt trigger is shown in Figure 8-20. Some Schmitt triggers have complimentary outputs. When the input signal increases in voltage, the device changes state as the input surpasses a voltage reference called the upper trip point. When the input signal is decreasing in voltage, the device changes back to its original state as the input voltage passes a voltage reference called the lower trip point.

Figure 8-20. Schmitt Trigger

8-48. ECL-to-TTL Translator

This particular level translator is used to interface ECL family logicto TTLfamily logic. The translator shown in Figure 8-21 is essentially a comparator and a voltage reference. Comparator biasing sets the output level limits, the reference voltage source sets the input point. The X_{s} on the input and output lines indicate that the signals at those pins are analog in nature.

Figure 8-21. ECL-to-TTL Translator

8-49. One-Shot Multivibrator

The one-shot or monostable multivibrator, when triggered, produces a pulse of pre-programmed length. The length of the pulse is determined by the external resistor (R) and capacitor (C). Sec Figure 8-22.

Figure 8-22. One-Shot Multivibrator

8-50. D-Type Flip-Flop (Edge-Triggered)

D-type flip-flops are used for temporary storage of one bit of binary data. the DC input is stored and transferred to the output at X when the control input (C) gives a low-to-high transition. Y is the complement of X (i.e., $Y=\bar{X}$). The S and R inputs set (S) and reset (R) the outputs independent of the control input status. Only one of these inputs is normally active at
a time. If both are active, then X and Y are either both high or both low, depending on the particular device used. See Figure 8-23.

Figure 8-23. 0-Type Flip-Flop (Edge-Triggered)

8-51. Four-Bit Register (Level-Triggered)

A four-bit register is used for temporarily storing four bits of binary data. Data at the D_{1} inputs are stored when clocked by the C_{1} control input. Data at the D_{2} inputs are stored when clocked by the C_{2} control input. The outputs follow the inputs as long as the control inputs remain high. When the control inputs are low, the data that was present at the D inputs (when the control inputs when low) are retained (latched) at the outputs until the control inputs go high again. See Figure 8-24.

Figure 8-24. Four-Bit Register [Level-Triggered]

8-52. Presettable Counter

Presettable counters consist of four D flip-flops which are internally connected to provide a divide-by-two and a divide-by-five counter for a BCD counter or a divide-by-two and a divide-by-eight for a hexadecimal counter. The outputs of these devices
can be preset to any state by placing a low on the load/count (C) input and applying the desired data to the D inputs. As long as the load/count input is low, the outputs will follow the Dinputs. When the load/count input is set high the outputs are latched to the preset values, and the output will advance one count with each low-to-high transition of the clock. The reset (R) function is asynchronous. See Figure 8-25.

Figure 8-25. Presettable Counter

Figure 8-26. Three-Bit Binary One-ol-Eight Decoder

8-53. Three-Bit Binary One-of-Eight Decoder

This device selects an output line (1 -of-8) corresponding to the value of the binary input. For example, to make the 5G output go low, a binary 101 must be presented to the select inputs. For the output to reflect the weighted binary input, all three lines to the control section must be active. See Figure 8-26.

8-54. Analog Multiplexer

This device is the electronic version of a single-pole-eight-throw (SP8T) switch. The binary code at the select inputs determines which analog input (1-of-8) will be routed to the output. The output is enabled by the Finput. See Figure 8-27.

Figure 8-27. Analog .Multiplexer

8-55. Digital-to-Analog Converter

The analog output of the digital-to-analog converter is a current which is proportional to the binaryweight of the input multiplied by [VREF(+) $\left.V_{R E F}(-)\right] / R$. In other words, the output current is proportional to the maximum possible current through R divided by the binary value at the digital input. The analog output is thus attenuated by any value between 0 and 255. See Figure 8-28.

8-56. Seven-Segment Decoder/Driver/Latch (Coder)

The seven-segment decoder converts a four-bit binary code to drive a variable number of the " a " through " g " output lines, which in turn drive the
individual segments of a seven-segment common cathode display. Internal circuitry drives the individual LED elements of the display and limits the current flowing through them. This device latches the coded input when C 1 is low. The output lines are enabled when V_{2} is high or any flip-flop is high. See Figure 8-29.

Figure 8-28. Digital-to-Analog Converter

Figure 8-29. Seven Segment Decoder/Driver/Latch (Coder)

8-57. Analog Switch

The analog switch is a bi-directional device, as is indicated by the double-ended arrow. The F1 input is the gate. Fl indicates the input and output (labeled with " 1 's") are dependent on this input. See Figure 8-30.

Figure 8.30. Analog Switch

8-58. Read Only Memory (ROM)

This device has an eight-bit word length. Locations in memory (32 total) are addressed by the five-bit binary code at the Address Input. The G input must be low to enable the outputs. The outputs are opencollector. See Figure 8-31.

Figure 8.31. Read Only Memory (ROM)

8-59. Static Random Access Memory (RAM)

This device is a 256 word static memory. Each word is four bits in length and is addressed via the address lines. Both of the inputs to G 1 must be low to enable the device. The G2 input must be low to write into memory and the G3 input must be high to read from memory. F4, when low, enables the output; F4, when high, disables the output. See Figure 8-32.

8-60. LINEAR DEVICE THEORY

8-61. Operational Amplifiers

The source of gain in an operational amplifier can be characterized as an ideal, differential voltage amplifier having low output impedance, high input impedance, and very high differential gain. The output of an operational amplifier is proportional to the difference in the voltages applied to the two input terminals. In use, the amplifier output drives the input voltage difference close to zero through a feedback path.

Figure 8.32. Static Random Access Memory (RAM)

When troubleshooting an operational amplifier circuit, measure the voltages at the two inputs; the difference between these voltages should be less than 10 mV . (Note: This troubleshooting procedure will not work for operational amplifiers which are configured as comparators.) A difference voltage much greater than 10 mV indicates trouble in the amplifier or its external circuitry. Usually, this difference will be several volts and one of the inputs will be very close to one of the supply voltages (e.g., +15 V or -15 V).
Next, check the amplifier's output voltage. It will probably also be close to one of the supply voltages (e.g., ground, +15 V , or -15 V). Check to see that the output conforms to the inputs. For example, if the inverting input is more positive than the noninverting input, the output should be negative; if the non-inverting input is more positive than the inverting input, the output should be positive. If the output conforms to the inputs, check the amplifier's external circuitry. If the amplifier's output does not conform to its inputs, it is probably defective.
Figures 8-33, 8-34, and $8-35$ show typical operational amplifier configurations. Figure $8-33$ shows a noninverting buffer amplifier with a gain of 1. Figure 8 -34 is a non-inverting amplifier with gain determined by R1 and R2. Figure $8-35$ is an inverting amplifier with a gain determined by R1 and R2.

Figure 8-33. Non-Inverting Amplifier (Gain =1)

Figure 8-34. Non-Inverting Amplifier (Gain $=1+\mathrm{h}_{1} / \mathrm{R}_{2}$)

Figure 8-35. Inverting Amplifier (Gain $=-\mathrm{R}_{1} / \mathrm{R}_{2}$)

8-62. Comparators

Comparators are used as level sense amplifiers, switch drivers, pulse height discriminators, and voltage comparators. A voltage reference is connected to one of the amplifier's outputs as shown in Figures $8-36$ and $8-37$. When the input signal voltage crosses the reference, the output goes positive; the output remains positive until the signal re-crosses the reference.

Figure 8-36. Non-Inverting Comparator

Figure 8-37. Inverting Comparator

8-63. SCHEMATIC DIAGRAM NOTES

Table 8-6 summarizes the symbology used in presenting many of the devices used in the Modulation Analyzer.

Table 8-6. Schematic Diagram Notes (1 of 7)

SCHEMATIC DIAGRAM NOTES

$*$
t

[----
\qquad

- - - - -

\$ CW

\pm
d

AXI2

Asterisk denotes a factory-selected value. Value shown is typical.
Dagger indicates circuit change. See Section VII.
Tool-aided adjustment. O Manual control.
Encloses front-panel designation.
Encloses rear-panel designation.
Circuit assembly borderline.
Other assembly borderline.
Heavy line with arrows indicates path and direction of main signal.

Heavy dashed line with arrows indicates path and direction of main feedback.

Indicates stripline (i.e., RF transmission line above ground).
Wiper moves toward cw with clockwise rotation of control (as viewed from shaft or knob).

Numbered Test Point
 measurement aid provided.

Encloses wire or cable color code. Code used is the same as the resistor color code. First number identifies the base color, second number identifies the wider stripe, and the third number identifies the narrower stripe, e.g., 97 denotes white base, yellow wide stripe, violet narrow stripe.

A direct conducting connection to earth, or a conducting connection to a structure that has a similar function (e.g., the frame of an air, sea, or land vehicle).

A conducting connection to a chassis or frame.
Common connections. All like-designation points are connected.

Letters = off-page connection, e.g., AX .
Number $=$ Service Sheet number for off-page connection, e.g., 12.

Number (only) $=$ on-page connection.

Table 8-6. Schematic Diagram Notes (2 of 7)

SCHEMATIC DIAGRAM NOTES

Indicates an opto-isolator of a LED and a photoresistor packaged together. The resistance of the photoresistor is a function of the current flowing through the LED.

IELI Identification of logic families as shown (in this case, ECL).
Indicates multiple paths represented by only one line. Letters or names identify individual paths. Numbers indicate number of paths represented by the line.

Coaxial or shielded cable.

Relay. Contact moves in direction of arrow when energized.

Indicates a pushbutton switch with a momentary (ON) position.

Indicates a PIN diode.

Indicates a step-recovery diode (typically used as comb generator).

Indicates a Schottky (hot-carrier) diode.

Multiple transistors in a single package-physical location of the pins is shown in package outline on schematic.

DIGITAL SYMBOLOGY REFERENCE INFORMATION

Input and Output Indicators (Cont'd)

3-STATE	Threestate Output-Indicates outputs that can have a high impedance idisconnect) state in addition to the normal binary logic states.
	Combinational Logic Symbols and Functions
\&	AND-All inputs must be active for the output to be active.
≥ 1	$\mathrm{OR}-$ One or more inputs being active will cause the output to be active.
$\geq m$	Logic Threshold-m or more inputs being active will cause the output to be active (replace m with a number).
$=1$	EXCLUSIVE OR-Output will be active when one (and only one) input is active.
$=\mathrm{m}$	m and only m-Output will be active when m (and only m) inputs are active (replace m with a number).
$=$	Logic Identity-Output will be active only when all or none of the inputs are active (i.e., when all inputs are identical, output will be active).
	Amplifier-The output will be active only when the input is active can be used with polarity or logic indicator at input or output to signify inversion).
X / Y	Signal Level Converter-Input level(s) are different than output levelis).
	Bilateral Switch-Binary controlled switch which acts as an on/off switch to analog or binary signals flowing in both directions. Dependency notation should be used to indicate affecting/affected inputs and outputs. Note: amplifier symbol (with dependency notation) should be read to indicate unilateral switching.
$X-Y$	Coder-Input code (X) is converted to output code (Y) per weighted values or a table.
(Functional Labels)	The following labels are to be used as necessary to ensure rapid identification of device function.
MUX	Multiplexer-The output is dependent only on the selected input.
DEMUX	Demultiplexer-Only the selected output is a function of the input.
CPU	Central Processing Unit
PIO	Peripheral Input/Output
SMI	Static Memory Interface

Table 8-6. Schematic Diagram Notes (5 of 7)

DIGITAL SYMBOLOGY REFERENCE INFORMATION

Sequential Logic Functions

1Ω Monostable-Single shot multivibrator. Output becomes active when the input becomes active. Output remains active (even if the input becomes inactive) for a period of time that is characteristic of the device and/or circuit.

Oscillator-The output is a uniform repetitive signal which alternates between the high and low state values. If an input is shown, then the output will be active if and only if the input is in the active state.

Flip-Flop-Binary element with two stable states, set and reset. When the flip-flop is set, its outputs will be in their active states. When the flip-flop is reset, its outputs will be in their inactive states.

Toggle Input-When active, causes the flip-flop to change states.
Set Input-When active, causes the flip-flop to set.
Reset Input-When active, causes the flip-flop to reset.
J Input-Analogous to set input.
K Input-Analogous to reset input.
D Data Input-Always enabled by another input (generally a C input-see Dependency Notation). When the D input is dependency-enabled, a high level at D will set the flip-flop; a low level will reset the flip-flop. Note: strictly speaking, D inputs have no active or inactive states-they are just enabled or disabled.
$+\mathrm{m} \quad$ Count-Up Input-When active, increments the contents (count) of a counter by " m " counts (m is replaced with a number).

Count-Down Input-When active, decrements the contents (count) of a counter by " m " counts (m is replaced with a number).
-m Shift Right (Down) Input-When active, causes the contents of a shift register to shift to the right or down " m " places (m is replaced with a number).
-m Shift Left (Up) Input-When active, causes the contents of a shift register to shift to the left or up " m " places (m is replaced with a number).

NOTE

For the four functions shown above, if m is one, it is omitted.
(Functional Labels)
mCNTR

The following functional labels are to be used as necessary in symbol build-ups to ensure rapid identification of device function.

Counter-Array of flip-flops connected to form a counter with modules m (m is replaced with a number that indicates the number of states: 5 CNTR, 10 CNTR, etc.).

DIGITAL SYMBOLOGY REFERENCE INFORMATION

Sequential Logic Functions (Cont'd)

REG
SREG

Register-Array of unconnected flip-flops that form a simple register or latch.
Shift Register-Array of flip-flops that form a register with internal connections that permit shifting the contents from flip-flop to flip-flop.

Read Only Memory-Addressable memory with read-out capability only.
Random Access Memory-Addressable memory with read-in and read-out capability.

Dependency Notation

Address Dependency-Binary affecting inputs of affected outputs. The m prefix is replaced with a number that differentiates between several address inputs, indicates dependency, or indicates demultiplexing and multiplexing of address inputs and outputs. The m suffix indicates the number of cells that can be addressed.

Gate (AND) Dependency-Binary affecting input with an AND relationship to those inputs or outputs labeled with the same identifier. The m is replaced with a number or letter (the identifier).

Control Dependency-Binary affecting input used where more than a simple AND relationship exists between the C input and the affected inputs and outputs (used only with D-type flip-flops).

OR Dependency-Binary affecting input with an OR relationship to those inputs or outputs labeled with the same identifier. The m is replaced with a number or the letter (the identifier).

Free Dependency-Binary affecting input acting as a connect switch when active and a disconnect when inactive. Used to control the 3-state behavior of a 3 -state device.

NOTE

The identifier (m) is omitted if it is one-that is, when there is only one dependency relationship of that kind in a particular device. When this is done, the dependency indicator itself (G, C, F, or V) is used to prefix or suffix the affected (dependent) input or output.

Miscellaneous

Schmitt Trigger-Input characterized by hysterisis; one threshold for positive going signals and a second threshold for negative going signals.

Table 8-6. Schematic Diagram Notes (7 of 7)

DIGITAL SYMBOLOGY REFERENCE INFORMATION

Miscellaneous (Cont'd)

Active Active State-A binary physical or logical state that corresponds to the true state of an input, an output, or a function. The opposite of the inactive state.

Enable Enabled Condition-A logical state that occurs when dependency conditions are satisfied. Although not explicitly stated in the definitions listed above, functions are assumed to be enabled when their behavior is described. A convenient way to think of it is as follows:
A function becomes active when:

- it is enabled (dependency conditions-if any-are satisfied)
- and its external stimulus (e.g., voltage level) enters the active state.

8-64. PRINCIPLES OF OPERATION

The discussions that follow cover the principles of operation of the Modulation Analyzer. Each discussion is based on and referenced to a Service Sheet. For an introductory discussion of overall instrument theory of operation, see Principles of Operation for Simplified Block Diagram in the Operating Manual.

8-65. Overall Instrument-Service Sheet BD1

General. The Modulation Analyzer is physically divided into five functional sections. Service Sheets BD2 through BD4 break the operation of the instrument along similar lines as listed in Table 8-7.

Table 8-7. Instrument Block Diagram and Functional Section Breakdown

Service Sheet	Functional Section	Circuits
BD2	RF	RF Input, Input Mixer, IF, Local Oscillator
BD2	Power Supply	Power Supplies, Fan
BD3	Audio	Demodulators, Audio Circuits, Voltmeter, Calibrators
BD4	Digital	Controller, Instrument Bus, Counter, Remote Interface
BD4	Front Panel	Keyboard and Display

RF Input. The Modulation Analyzer measures RF signals in the frequency range from 150 kHz to 1300 MHz and power levels of -25 to +30 dBm into its 50 Ω input. The voltage, sensed at the input by the RF Level Detector, is used to help set the proper input attenuation and, if the input exceeds $1 W$, to trip the Overpower Protection relay. When MEASUREMENT is set to RF LEVEL, the Voltmeter reads the output from the RF Level Detector. The Controller converts the output from the Voltmeter into power in watts.

The 5.25 MHz High-Pass Filter is manually selectable. Since the IF will generally respond to signals 2.5 MHz and below, the filter eliminates any low frequencies which may be present on the input. For signals in the range of 150 kHz to 10 MHz , the filter should be switched out.
The Input Attenuator is set to provide the Input Mixer with an optimum input level. The attenuator pads are set by the Controller which receives signal level information from the RF and IF level detectors (via the Voltmeter).

Mixer and IF. The Input Mixer down-converts the RF input to the IF. The frequency of the IF is normally the LO frequency minus the signal frequency.
The IF is centered at 1.5 MHz for input signals in the range 10 to 1300 MHz . (However, an IF of 455 kHz can be manually selected.) For signals between 2.5 and 10 MHz , the IF is 455 kHz . Below 2.5 MHz , the signal is passed directly into the IF without being down converted (unless the 455 kHz IF is manually selected).
The IF is amplified by a low-noise, 33 dB IF Amplifier. The 2.5 MHz Low-Pass Filter following the amplifier determines the IF frequency response when the 1.5 MHz IF is selected. The 455 kHz Bandpass filter preceeding the amplifier determines the response of the IF when the 455 kHz IF is selected.

AM Demodulator. The AM Demodulator is an ALC loop with a relatively slow response time. The IF signal is amplified and detected by the AM and Level Detector. The dc component of the detected signal is compared to a stable, dc reference. If the dc voltage is different from the reference, the difference is amplified by the ALC Feedback Amplifier which drives the Voltage-Variable Amplifier to force the detected voltage to equal the reference.
The AM, which is riding on the IF carrier, is too fast for the ALC loop to respond to and produces an ac voltage in the detector which is proportional to the AM. After demodulation and filtering by the 260 kHz Low-Pass Filter, the signal is processed by the Audio Circuits. The unfiltered AM from the detector, along with its dc component, is sent to the rearpanel AM OUTPUT jack.
The filtered IF signal is buffered and sent to the rear-panel IF OUTPUT jack and FM Demodulator. It is also detected by the IF Detectors which sense for the presence of IF during an automatic signal search (the IF Present and Stop Sweep lines) and output the IF level to the Voltmeter (the IF Level line) to help set the input attenuation and to make a TUNED RF LEVEL measurement.

FM Demodulator. The FM Demodulator consists of IF Limiters and an FM Discriminator (frequency-to-voltage converter). The limiters provide 66 dB of gain with limiting to reduce the effects of AM and noise on FM measurements. The signal from the limiters also drives a Counter input when IF frequency is measured. The FM Discriminator produces a voltage linearly proportional to the IF frequency. The FM variations in the IF frequency appear as an ac component on the output. The ac
component is amplified then filtered by the 260 kHz Low-Pass Filter and processed by the Audio Circuits. The output from the FM discriminator (with both ac and de components) is also sent to the rear-panel FM OUTPUT jack, and the filtered dc component is used to ture the LO in the tracktune mode.

Audio Circuits. Before the audio signal is measured or sent to the MODULATION OUTPUT jack it is processed by various filters, amplifiers, and attenuators. For FM, the audio may also be de-emphasized. For ΦM the signal is integrated. Factors which control the audio processing are measurement mode, selected features, audio level, input frequency, and selected special functions. Table 8-8 summarizes the types of signal processing.

Tabie 8-8. Types of Audio Signal Processing

Type of Processing	Range of Processing
High-Pass Filters	$<20 \mathrm{~Hz}$ (through path)
	50 Hz
	300 Hz
Low-Pass Filters	3 kHz
	15 kHz
	$>20 \mathrm{kHz}$ (low ringing)
	$>200 \mathrm{kHz}$ (260 kHz LPF)
FM De-emphasis	$25 \mu \mathrm{~s}$
Networks	$50 \mu \mathrm{~s}$
	$75 \mu \mathrm{~s}$
	$750 \mu \mathrm{~s}$
	None
FM De-emphasis	Pre-display On
	Pre-display Off
Selection	Inverting
	Non-inverting
Relative Gain Steps	0 dB
	20 dB
	40 dB

The Audio Range Detectors are used to determine the audio gain (the Audio Range line) and to sense audio overloading (the Audio Overload line).

Voltmeter. The demodulated signal is detected by both the Average Detector and the Peak Detector. The output from the Peak Detector is always present at the rear-panel RECORDER OUTPUT jack. The detector outputs are two of several Voltmeter inputs switched by the Input Selector. The Voltmeter consists of a Voltage-to-Time Converter whose output is applied to the Counter. The Voltage-to-Time

Converter produces a Stop-Count Pulse with a duration interval between pulses proportional to the dc input voltage. The pulse gates the Counter which counts the 10 MHz time base reference. The count accumulated during the gate interval is proportional to the input voltage. Other inputs into the Voltmeter include: RFlevel, IF level, average IF level (normally equal to the ALC reference), audio range level, AM calibrator level, and various service-related voltages not shown.

Local Oscillator. The heart of the LO is a 320 to 650 MHz High-Frequency Voltage-Controlled Oscillator (HF VCO). After passing through the programmable LO Divider, the HF VCO signal becomes the LO drive to the Input Mixer. The LO Divider is programmed to divide the HF VCO by powers of two from 2^{-1} to 2^{8}, (i.e., from a times 2 to a divide by 256). Thus the LO can tune from 1300 MHz to 1.24 MHz in ten octave ranges. A fixed divide-by-eight output from the LO Dividers is the LO (HF VCO $\div 8$) input to the Counter.
There are three tuning modes:

1. manual tuning-low noise,
2. automatic signal seeking and tuning-low noise, and
3. automatic tracking of a moving signal.

Consider the sequence followed for manual tuning. When a frequency is entered from the Keyboard, the LO is configured as in Figure 8-38. The Digital-ToAnalog Converter (DAC) is connected to the HF

Figure 8-38. LO Configuration: DAC to HF VCO

VCO tune input as shown. Knowing the desired frequency, the Controller computes the octave number (n) for the LO Divider and sets the DAC to its midrange. Then an iterative sequence of counting the LO and adjusting the DAC is carried out until the LO is near the correct frequency.

Next, the LO is configured as a phase lock loop as shown in Figure 8-39. The DAC is now connected to the tune input of a highly stable, Low-Frequency Voltage-Controlled Crystal Oscillator (LF VCXO). The LF VCXO drives the Sampler at a nominal (but tunable) 2 MHz rate. The other input to the Sampler is the HF VCO. The Sampler drives the HF VCO tune line through the Tune Integrator and Amplifier. The HF VCO is thus phase locked to a harmonic of the LF VCXO which greatly improves its noise and frequency stability.

Figure 8.39. LO Configuration: DAC to LF VCXO
Before closing the phase lock loop, the DAC is set near the low end of its range. When the loop is first locked, the LO frequency is slightly low, but after an iterative sequence of counting the HF VCO and tuning the LF VCXO by the DAC, the LO is brought to within 500 Hz of the desired frequency. During the process of fine tuning the LO, the DAC may reach the end of its tuning range. If this happens, the Controller will break the lock loop, set the DAC to the other end of its range, and lock will be reestablished to a different harmonic of the LF VCXO.

The automatic tune mode is similar to the manual tune mode except the LO is first swept from the top to the bottom of each octave range by the Sweep Current Source. See Figure 8-40. If the LO sweeps past a signal at the INPUT, the down-converted signal appears in the IF and is detected by the IF Detectors. The signal on the Stop Sweep line immediately turns off the Sweep Current Source. With no input to the Tune Integrator and Amplifier, the HF VCO will remain approximately tuned to the input signal, and the frequency of the LO (and thus the input) can be determined by the Controller. Once the signal has been found after a sweep of all octaves, it is found four more times by sweeping just the octave where it was first found and two octaves above it. This is necessary in case the signal has AM which was in a deep trough when the fundamental of the LO passed through and was out of the trough when the strong third harmonic of the LO passed through.

Figure 8-40. LO Configuration: HF VCO Sweep
Having now found an input signal, the Controller manipulates the LO through a series of tuning sequences to search for the fundamental of the input that was found. Once the fundamental of the input signal is identified, the LO is tuned to approximately 1.5 MHz above that signal. The Counter then accurately counts the LO and the IF and thus determines the frequency of the input signal. (Signal frequency $=$ LO frequency - intermediate frequency.)

At this point the LO is configured as in Figure 8-40, and the tuning continues as in the manual tune mode using the computed input frequency in place of a keyboard-entered frequency.
In the track mode the LO is configured as in Figure 8-41. Here a dc voltage from the FM Demodulator is fed back to the HF VCO tune line. This forms a frequency lock loop. If the frequency of the input signal changes, the HF VCO is tuned to follow it. The gain of the loop depends on the octave number of the LO Divider. This gain variation is compensated for by adjusting the gain of the Track Loop Amplifier in the tune line.

Figure 8-41. LO Configuration: Track
Counter. Operation of the Counter is conventional. The input signal to the Counter is gated by a Time Base pulse which has an accurately known period. While the Counter is gated, the Counter increments one count for each input cycle. When the Time Base disables the Counter, the accumulated count is transferred to storage registers (in this case, the Controller), and the Counter is cleared. When the Time Base again gates the Counter, the count sequence repeats. The stored count is then processed by the Controller (it is multiplied by an appropriate scale factor) and transferred to the display or used internally by the Controller. The Controller itself also forms the final stages of the Counter and keeps
track of the number of Time Base pulses that occur while the Counter is gated.

The Time Base is derived from a 10 MHz reference. The reference can be either internal or external. Switching to external is done automatically when an external reference is applied to the rear-panel TIME BASE 10 MHz INPUT jack. The 10 MHz reference is divided by 1600 by the Time Base Divider to become the Counter gate. A 2 MHz output (from a divide-by-five) is used as the Controller clock.
The Input Selector selects one of several possible inputs to the Counter. In the case of the input from the Voltmeter, the output from the Voltage-to-Time Converter gates the 10 MHz reference which is counted by the Counter, while a Ramp Gate pulse from the Counter periodically resets the Voltage-toTime Converter.

Calibrators (Option 010). The FM Calibrator consists of a 10.1 MHz VCO which toggles between two frequencies at a 10 kHz rate. During each measurement cycle, the VCO switches to the upper frequency and is measured by the Counter. It then switches to the lower frequency and is again counted. The Controller then computes the deviation (one-half the difference of the two frequencies). The FM Source is then allowed to toggle. When the CALIBRATION OUTPUT is connected to the INPUT, the FM calibration factor is displayed.

The AM Calibrator receives its input from the output of the 10.1 MHz VCO of the FM Calibrator which is not toggled during AM calibration. This signal is limited and applied to the Amplitude Modulator. The modulator toggles at a 10 kHz rate between a nominal level and twice that level. This produces 33\% AM.
To enhance the accuracy of the calibrator, measurements are made on the output of the modulator with the Amplifier/Detector on a static basis, and the AM depth is computed. As with the FM Calibrator, the AM Calibrator output, when measured by the instrument, displays the AM calibration factor.

Power Supplies. The instrument is run from five regulated supplies: $+40 \mathrm{~V},+15 \mathrm{~V},-15 \mathrm{~V},+5 \mathrm{~V}$, and -5 V . The +15 V supply continues to power the highstability time base reference (Option 002) when the instrument LINE is switched to STBY.

Controller and Remote Interface. The Controller plays a key role in governing the instrument operation. The Microprocessor in the Controller outputs information to configure the instrument, reads back and processes measurement results, reads back vital
status information to prevent invalid measurements, and services interrupts from the Keyboard or Remote Interface. Information from the Input/ Output (I/O) port of the Microprocessor is carried to the rest of the instrument by the Instrument Bus. Typically, the data on the Instrument Bus are decoded and latched at the various assemblies, then the decoded information is distributed to the appropriate circuit.
Information within the Controller itself is handled by three main buses: the ROM Control Bus (which coordinates the various devices which make up the Controller), the Address Bus (which addresses the ROM and RAM), and the Data Bus (which carries information to or from the ROM and RAM). Since the Remote Interface contains some Controller devices, these buses are also distributed to it.

The Remote Interface receives inputs from the external interface bus (HP-IB), processes the information, and interrupts the Controller in a manner similar to the Keyboard. It also processes the measurement information and outputs it on the HP-IB if requested. The Remote Interface is designed to make operation from an external computing controller as similar as possible to operation from the front panel.

Instrument Software Supervisor Flowchart. The instrument's software is structured in a form called the supervisor. It is a loop that is continuously traversed, with measurements made near the end, after checks for proper frequency tuning, proper RF and IF level, and correct audio range. Arithmetic manipulation (e.g., for the ratio function) follows the measurement, and the program then loops back up to display.
The frequency, level, and audio blocks verify that the instrument is adjusted to make an accurate measurement. A measurement is not made until all of the tests are passed in immediate succession. If a test is not passed, corrective action is taken. The decision after that block then forces the program back to the top of the supervisor, bypassing the measurement for that loop.
The software interface with the hardware makes use of two concepts called software state and hardware state. The software is located in 22 bytes of RAM and totally describes the state of the instrument. On power-up, the initialization procedure loads the software state from ROM. Keyboard and HP-IB entry routines modify only the software state and do not effect the hardware immediately. The setup block in the supervisor is where the hardware state is made to conform with the software state.

Setup is not the only place where hardware is affected; the frequency tuning, leveling, audio ranging, and measurement blocks manipulate the hardware as well.
In a normal stable measurement cycle, the program takes the measurement display branch at the top of the supervisor and so avoids the time overhead associated with the setup block. However, if the program loops back before taking a measurement, or if an error condition exists, the nonmeasurement display branch will be traversed, thus lighting an appropriate display and going through the setup block.
The Keyboard and HP-IB interrupt the flow around the loop, forcing the Microprocessor to execute a short program and then return to the loop as shown in the diagram. Since the supervisor can be interrupted at any point but always returns to a single location, Keyboard and HP-IB interrupts must abort the current measurement and start a new measurement cycle.
The Keyboard and HP-IB can be thought of as a medium through which the user requests a certain instrument setup. It is important to note that the actual instrument setup is guaranteed to conform to the Keyboard request only at the moment a measurement is taken. The Controller may change the instrument hardware at other times to optimize its tuning, leveling, and ranging functions. For example, in troubleshooting, 3.1 SPCL may be keyed in to check if the 455 kHz IF filter is being selected properly. If there is no RF input signal and the instrument is trying to auto-tune, it would be discovered that both IF filters are being used. The proper test would have been to use a Direct Control Special Function (0.031 SPCL).
The microprocessor-based Controller interacts closely with the hardware of the instrument. Many circuits are used by the Controller for different functions at different times. Thus, a specific failure in one circuit can show up as a collection of symptoms that superficially seem unrelated. For example, a failure of the squelch detector in the FM Demodulator can result in frequency errors when tuning to an RF signal with large amounts of AM. The appearance of several symptoms can often be used to advantage as they provide many avenues to pursue when tracking down a problem.
A clearline is drawn between special functions used for service (i.e., Direct Control Special Functions and Service Special Functions) and normal instrument operation. When these special functions are used, normal instrument functions are suspended. When the special function mode is left to resume
normal measurements, all effects of these special functions on hardware are lost. As an example, a Direct Control Special Function can be used to activate a particular Input Attenuator to check its operation. But once normal measurements are resumed, the attenuator setting will revert back to what it was before the Direct Control Special Function was invoked.

8-66. RF and Power Supply SectionsService Sheet BD2

General. The RF Section contains the RF Input, IF Amplifier, and Local Oscillator (LO). The entire section is shock mounted to minimize microphonics on the LO and well shielded to minimize RF leakage.
RF Input Assembly (A15). The RF Input Assembly is the instrument's front end. It receives the RF input signal and attenuates it to an optimum level for the Input Mixer.
The RF level is sensed by the RF Level Detector. The output of the detector is buffered by the Detector Amplifier and applied to the Voltmeter. The Controller uses the RF Level Detector when automatically setting the RF Attenuator and when making RF LEVEL measurements. The RF Level Detector senses the peak of the RF voltage including AM envelope peaks.
The Overpower Detector compares the detected RF level with a reference. If the RF level (with AM envelope) exceeds IW, the Overpower Protection relay is de-activated (opened) and latched. Pressing any key will reset the relay.
If the instrument is tuned to a frequency greater than 10 MHz , the 5.25 MHz High-Pass Filter can be switched in to eliminate low-frequency signals on the input which can pass directly into the IF. Special Function 3 controls the selection of the 5.25 MHz High-Pass Filter (as well as the IF filter).
The Input Attenuator consists of one 10 dB pad and two 20 dB pads for a range of 0 to 50 dB . The RF path is switched between the thru-lines and attenuator pads by RF relays as determined by the Controller. Table 8-9 lists the pads which are switched in on the attenuation ranges.

Table 8-9. Attenuator Pad Selection

Attenuation	Pads Selected
0 dB	Thru-Line
10 dB	10 dB
20 dB	20 dB No. 1
30 dB	$10 \mathrm{~dB} \& 20 \mathrm{~dB}$ No. 1
40 dB	Both 20 dB
50 dB	All

Table 8-10 lists the attenuation selected for various measurement conditions and approximate RF input signal levels.

Table B-10. Signal Level vs. Attenuation

Input Signal Level (dBm)		Input Attenuation* (dB)	
$\begin{gathered} 0.15- \\ 650 \mathrm{MHz} \end{gathered}$	$\begin{gathered} 650 \\ 1300 \mathrm{MHz} \end{gathered}$	FM \& Φ M Demodulation	AM Demodulation
-25 to - 16	-20 to -13	0	0
-16 to -6	-13 to -3	0	10
-6 to 4	-3 to 7	10	20
4 to 14	7 to 17	20	30
14 to 24	17 to 27	30	40
24 to 30	27 to 30	40	50
-Input Attenuation for RFLEVEL measurement is 50 dB and overrides Special Functions 1.1 to 1.5.			

Input Mixer Assembly (A17). The Input Mixer Assembly converts the input RF signal to the IF. Part of the IF filtering is included in this assembly. The LO is tuned so that the LO frequency minus the signal frequency is the IF. The LO can also be manually tuned so the IF responds to the image, i.e., when the signal frequency minus $L O$ frequency equals the IF. In this case the phase of the FM is inverted.

The Input Mixer has two modes of operation: it down converts the input signal to the 1.5 MHz or 455 kHz IF; or, for signals below 2.5 MHz , it passes the signal directly into the IF. The frequency range of the Input Mixer (for down conversion) is 2.5 to 1300 MHz . (Down conversion can be extended below 2.5 MHz with the 455 kHz IF and manual tuning.) The normal operating signal level is less than -16 dBm for $A M$ and -6 dBm for $F M$ and ΦM. The downconverted input signal is not used during RF LEVEL measurements.

The LO signal for the Input Mixer comes from the LO Dividers through the LO Amplifier.
The IF frequency response is determined by the IF Filters and IF Amplifier. The 455 kHz Bandpass Filter determines the response of the 455 kHz IF and is switched in automatically for input signals in the range of 2.5 to 10 MHz . The frequency response of the 1.5 MHz IF is determined by RF input blocking capacitors (not shown), the 4 MHz Low-Pass Filter, and (principally) the 2.5 MHz Low-Pass Filter (in the A6 AM Demodulator Assembly). The 4 MHz LowPass Filter is switched in when the 1.5 MHz IF is selected. When the IF filter selection is automatic, the 1.5 MHz IF is selected for signals in the range of

10 to 1300 MHz or 150 kHz to 2.5 MHz . Special Function 3 controls the IF frequency (as well as the 5.25 MHz High-Pass Filter in the RF Input Assembly).

IF Amplifier Assembly (A18). The IF Amplifier increases the signal from the Input Mixer to a level suitable to drive the AM and FM Demodulators. The IF strip is designed for low noise, linear phase shift vs. frequency (i.e., constant group delay) to minimize FM distortion, and flat frequency response to minimize incidental AM (i.e., AM occurring as the result of FM).

Local Oscillator. The Local Oscillator consists of the LO Divider Assembly (A19), LO Control Assembly (A20), Low Frequency VCXO Filter Assembly (A21), Low Frequency VCXO Assembly (A22), Sampler Assembly (A23), and High Frequency VCO Assembly (A24). The overall operation and different tuning modes of the LO are described in Service Sheet BD1. Special Function 4 controls LO tuning.

High Frequency VCO Assembly (A24). The High Frequency VCO has a nominal frequency range of 320 to 650 MHz . The output is buffered by two Output Buffer Amplifiers. One output drives the LO Divider, the other the Sampler. The tune input to the HF VCO has a switchable lead-lag network (Tune Voltage Filter) to reduce phase noise. The network is switched out while seeking a signal and is switched in when tuned.

LO Divider Assembly (A19). The signal from the HF VCO, after passing through the LO Divider Assembly, is the LO drive to the Input Mixer. The LO Divider Assembly has one Doubler stage (640 to 1300 MHz LO range), one thru-path (320 to 640 MHz range), and eight LO Dividers (1.25 to 325 MHz ranges). Each divider is a high-speed divide by two. The Divider Output Gates enable and cascade the appropriate dividers for the range selected. The first three dividers are always enabled. The 40 to 81.25 MHz output of the third divider is the LO (HF $\mathrm{VCO} \div 8$) input to the Counter.
To prevent mistuning on the doubler range, which can result from spurious LO signals, the input to the Doubler is filtered by a tunable Doubler Input Filter. The filter primarily suppresses the third harmonic of the HF VCO which becomes the $3 / 2$ harmonic of the doubled signal. The Doubler High-Pass Filter following the Doubler suppresses the fundamental feedthrough (the $1 / 2$ harmonic).

Low Frequency VCXO and Fitter Assemblies (A22 and A21). The Low Frequency VCXO is a highly stable, tunable reference oscillator to which the HF VCO is locked in the low-noise tune modes. It consists of two tunable crystal oscillators (nominally 9.26 and 11.26 MHz) mixed together to produce a 2 MHz output. The two oscillators can each be tuned in opposition approximately 6.25 kHz for a total tuning range of 2 $\mathrm{MHz} \pm 6.25 \mathrm{kHz}$. This tuning scheme allows a broad tuning range while retaining the high stability of the individual oscillators. The 2 MHz Low-Pass Filter and 2 MHz Bandpass Filter (A21) reject unwanted mixing products which appear as spurious AM and FM residual tones. Careful selection of the crystal frequencies minimizes the output of spurious mixing products.

Sampler Assembly (A23). The Sampler is the phase detector of the phase lock loop. The tunable 2 MHz signal from the LF VCXO drives the Sampling Bridge through the 2 MHz Limiter and Impulse Generator. The output of the Impulse Generator is a train of extremely short-duration pulses with the repetition rate of the 2 MHz signal. The pulses momentarily turn on the diodes (i.e., close the switch) of the Sampling Bridge and pass the signal from the HF VCO. The output from the Sampling Bridge is thus the HF VCO sampled at a 2 MHz rate. If the two signals are harmonically coherent, the output will be a dc voltage with a level determined by the phase and amplitude of the HF VCO. The action of the phase lock loop tunes the HF VCO to drive the voltage to zero. If the relationship is not strictly harmonic (i.e., phase lock is broken), the output is a beat note with a frequency equal to the difference between the HF VCO and the nearest harmonic of the LF VCXO. The output of the Sampling Bridge, which is the phase error voltage, is smoothed and buffered by the Sampler Amplifier.

The tune voltage for the HF VCO is supplied by the HF VCO Tune Integrator and Amplifier. The Tune Integrator has several sources of input: the Sampler Amplifier, the Track Loop Amplifier, the Sweep Up Current Source, the Sweep Down Current Source, and the DAC Control Amplifier. Only one input is active at a time. If one of the current sources is active, the Tune Integrator sweeps the HF VCO. If the input is one of the amplifier outputs, the Tune Integrator is configured as part of a feedback loop receiving its input from the FM Demodulator.
The grounding switch at the input of the Tune Integrator is open only when the Sampler Amplifier is connected to its input. When the amplifier is not connected, the switch is closed to keep signals at the Sampler Amplifier output from coupling into
the Tune Integrator. The Out-of-Lock Detector at the Sampler Amplifier output senses the presence of ripple and lights the OUT OF LOCK annunciator to indicate lock has broken. A BW Control line also lights the annunciator when the Tune Voltage Filter has not been turned on. This line also controls the bandwidth of the Tune Integrator. The bandwidth is narrowed in the low-noise phase lock and track modes (i.e., always when tuned).
The No-HF-VCO Detector lights the NO HF VCO annunciator if the amplitude of the signal from the HF VCO is too low. The 700 MHz Low-Pass Filter in the Sampling Bridge input line filters out harmonics of the HF VCO to assure proper sampler gain.

LO Control Assembly (A20). The LO Control Assembly contains the digital decoders and latches for the entire RF Section and the low-frequency analog circuits that control and tune the LO.
The Digital-to-Analog Converters (DACs) drive either the LF VCXO (through the LF VCXO Amplifier) or the HF VCO (through the DAC Control and HF VCO Tune Integrator and Amplifier). The DAC outputs a current that is proportional to the weighting of the bits of its digital input. The amplifiers following the DAC convert the current into a tune voltage.
The LF VCXO Tune Voltage Filter filters the tune line to the LF VCXO to reduce phase noise in the low-noise phase lock mode. This is necessary because the tune input is outside of the phase lock loop.
The Sweep Down Current Source sweeps the HF VCO when the LO searches for the input signal. The Sweep Up Current Source is the retrace for the sweep.
The Track Loop Amplifier is used only in the track mode. Its input is the dc output from the FM Demodulator which is proportional to the IF center frequency. If the input signal changes frequency, the HF VCO is tuned via the Track Loop Amplifier and Tune Integrator to keep the IF at a nominal 1.5 MHz. (Track tuning is not permitted with the 455 $\mathbf{k H z}$ IF.) Thus the track mode is the only tuning mode where the LO "locks" on to the input signal (i.e., a frequency lock loop is formed).

The Track Loop Amplifier has a different gain for each LO range. This compensates for the change in LO tuning sensitivity caused by the LO Dividers.

Power Supply Assemblies (A10 and A26). The five regulated supplies are: $+15 \mathrm{~V},-15 \mathrm{~V},+40 \mathrm{~V},+5 \mathrm{~V}$, and -.5 V . Each supply has its own secondary winding on the Line Transformer and its own full-wave rectifier. The latter four supplies are referenced from
the +15 V supply. Each supply is a series regulator type. When theinstrument is switched to STBY, the +15 V supply remains on and supplies current only to the high-stability time base reference oscillator (Option 002). In STBY the other supplies become referenced to 0 V and thereby shut themselves off. The supply switching is via the ON/STBY Relay. The fan is also switched by the relay.

8-67. Audio Section-Service Sheet BD3

General. The Audio Section contains the AM and FM Demodulators, Audio Circuits (including amplifiers, filters, attenuators, switches, FM de-mphasis, etc.), Voltmeter, and AM and FM Calibrators (Option 010).

AM Demodulator Assembly (A6). The down-converted signal from the IF Amplifier is filtered by a 2.5 MHz Low-Pass Filter. The FM IF Buffer drives the FM Demodulator and rear-panel IF OUTPUT jack. The AM IF Buffer drives the AM Demodulator.

The AM is demodulated by means of a precision, half-wave rectifier in an automatic leveling control (ALC) circuit. The buffered IF signal is amplified by a Voltage-Variable Amplifier then rectified (detected) by the AM and Level Detector. The detected signal, after carrier filtering, represents the carrier level (dc component) plus AM (ac component). The ac component accurately represents the AM only if the dc component is known or set to a known level. The detected signal is filtered and amplified by the Level Amplifier and Carrier Filter. It is then compared to a constant ALC Reference by the BW Control and Level Comparison Amplifier. The output of this amplifier is the carrier level error. The error voltage is amplified by the Resistor Drive Amplifier which sets the variableresistor input to the Voltage-Variable Amplifier. The resistor adjusts the IF level to cause the dc component of the carrier to equal the ALC Reference.

The amount of filtering in the comparison amplifier determines the minimum AM rate which can be accurately demodulated. An ALC Bandwidth Control line sets the ALC loop for a fast or slow response. The feedback loop may also be defeated by the ALC Defeat line. Special Function 6 controls the ALC loop.

The second output of the AM and Level Detector is buffered by the AM Output Buffer. One output of the buffer is fed to the rear-panel AM OUTPUT jack. The other output is fed to the audio circuits for filtering and audio processing.

The output of the FM IF Buffer is detected by two detectors. The IF Level Detector output is read by the Voltmeter. It is used by the automatic tuning routine and for making TUNED RF LEVEL measurements. The IF Present Detector is used to stop the LO sweep during a signal search (independent of the Controller).
The Voltmeter also receives IF level information from the output of the Level Amplifier and Carrier Filter which is used for IF LEVEL measurements. The voltage from the Resistor Drive Amplifier is an indication of the ALC current driving the input resistor circuit. It is used for setting the Input Attenuator when the ALC is on. (When the ALC is off, the Input Attenuator is set using the IF Level Detector for FM or the level on the Average IF Level line for AM.)

FM Demodulator (A4). The signal from the FM IF Buffer drives the FM IF Limiters. The limiters strip AM and noise off the IF to minimize demodulation of AM by the FM Demodulator (known as incidental FM). The three stages each have a gain of 22 dB . The output of the limiters is a square wave which drives a Precision Limiter. This limiter clamps the upper and lower levels of the squarewave to highly stable references required by the Charge-Count Discriminator. For each cycle of the IF signal, the discriminator passes a fixed quantity of charge through the feedback resistor of an amplifier. The voltage developed at the amplifier's output is proportional to the amount of charge delivered per unit of time. Fluctuations in IF frequency (FM) produce fluctuations in the output of the discriminator. The demodulated FM passes through the FM Output Amplifier and on to the audio circuits for further filtering and audio processing.
The Squelch Switch grounds the output of the discriminator whenever the IF level detected by the Squelch Detector is insufficient. This attenuates the large noisy output that would then result and speeds up recovery of the audio circuits from tuning induced transients. The Controller also activates squelch during tuning, measurement of RF LEVEL, and during part of the AM and FM Calibrator sequence.
The signal from the FM IF Limiter also drives the Counter via the Counter IF Buffer.

Audio Filter Assembly (A2). The residual IF carrier on the demodulated AM or FM is filtered out by the 260 kHz Low-Pass Filter in each path. These filters determine the audio bandwidth when LP FILTER is set to $>200 \mathrm{kHz}$ (except when the 455 kHz IF is selected). 20 dB Attenuator 1 partly sets the audio gain in FM and $\boldsymbol{\Phi} \mathbf{M}$.

The demodulated signal then passes through Amplifier 1 which has a gain of 8.9 dB . When selected, the 15 kHz or $>20 \mathrm{kHz}$ Low-Pass Filters further filter the signal. The 15 kHz is automatically selected for the 455 kHz IF. (The $>20 \mathrm{kHz}$ Low-Pass Filter can als, be selected.) The 6 dB Attenuator in the thru path matches the 6 dB loss through the other two filters. Amplifier 2 has 13.7 dB of gain. 20 dB Attenuator:) gives further audio range control. Amplifier 3 has 20 dB of gain. The three amplifiers distribute the audio gain for optimum noise and distortion. Special Function 2 controls the overall audio gain. Table $8-11$ lists the modulation ranges and the associated attenuation.

Table 8-11. Attenuation vs. Modulation Range

Modulation Range			20 dB Attenuator	
AM Depth [\%]	FM Deviation (kHz)*	ΦM Deviation (radians)	1	2
40	4	4	out	out
100	40	40	out	in
100	400	400	in	in
*With $750 \mu \mathrm{~s}$ FM DE-EMPHASIS and PRE-DISPIAY selected the FM ranges are 0.4 .4 . and 40 kHz .				

Audio De-emphasis and Output Assembly (A3). The Audio De-mphasis and Output Assembly contains further audio filtering, FM deemphasis, a $\Phi \mathrm{M}$ integrator, audio output amplifiers, and two audio level detectors.
The 50 and 300 Hz High-Pass and 3 kHz Low-Pass Filters are active filters selected by the front panel. The four FM de-emphasis networks are single-pole low-pass filters with time constants of $750,75,50$, and $25 \mu \mathrm{~s}$. The 750μ s network is an active filter with 20 dB of gain.
The Phase Modulation Integrator converts the FM input into an equivalent $\Phi \mathrm{M}$. This is because the instantaneous phase deviation is the integral of the instantaneous frequency deviation.
The front-panel MODULATION OUTPUT is driven by an inverting Output Amplifier. The output is always affected by audio filtering and FM deemphasis when selected. The output to the Voltmeter is through the Inverting/Non-Inverting Amplifier. The amplifier has a gain of -1 when PEAK + is selected and, for FM and $\Phi \mathrm{M}$, the input signal is down converted by the Input Mixer; otherwise, the gain is +1 . The input to the amplifier can be selected to include (PRE-DISPLAY) or exclude FM de-emphasis.

The Absolute Peak Detector, Audio Overvoltage Detector, and the Voltmeter together sense the audio signal level for determining the audio range. The Audio Overvoltage Detector compares the audio voltage to a reference. If the audio level is too large, the audio gain is reset to minimum. The detector is quick acting and sets a status flag which can be read by the Controller. The output of the Absolute Peak Detector (which detects the greater of the positive and negative peaks) is read by the Voltmeter. If either peak or the displayed measurement exceeds the limits set by the Controller, and if automatic ranging has been selected, the audio gain is reduced. The display normally predominates unless the signal is filtered out by one of the filters on the assembly..The Absolute Peak Detector thus prevents the active circuits ahead of the filters from being overdriven.

Voltmeter Assembly (A5). The Voltmeter consists of an average detector, a peak detector, and a voltage-to-time converter.
The average detector consists of a precision HalfWave Rectifier and a Summer and Filter. The summer amplifier adds the input signal, weighted by a factor of one, to the inverted and half-wave rectified input, weighted by a factor of two. The resultant sum is a full-wave rectified output. After filtering, the output dc voltage is equal to the signal's rectified average.
The Peak Detector captures the positive ac peak. A sampling switch at the output of the detector controls the transfer of the output to the Voltage-to-Time Converter and the discharging of the detector. Special Function 5 controls the discharge rate.
The InputSelector selects one of many dc inputs into the Voltageto-Time Converter. The output of the selector is a reference input into a Comparator. The Comparator's other input is a constant ramp. The ramp is initiated by the Counter. As the ramp rises, the Counter counts its time base reference (10 MHz). When the ramp voltage equals the level of the other input, the Comparator signals the Counter to stop counting. The accumulated count represents the dc voltage. Ground is measured separately and subtracted from the Voltmeter measurement. Special Functions 49 and 50 allow direct access and display of the Voltmeter readings.

FM Calibrator Assembly (Option 010, A51). The heart of the FM Calibrator is a 10.1 MHz VCO. A 10 kHz trapezoidal wave is applied to the tune line of the VCO which generates FM. During the CALIBRA. TION measurement, the VCO input is switched to the upper frequency, $f U$, and the frequency is
measured by the Counter. Then the VCO input is switched to the lower frequency, $f L$, and the frequency is again measured. The Controller calculates the peak deviation as

$$
\mathrm{FM}=\frac{f U-f L}{2}
$$

A measurement of residual FM is also made on the unmodulated VCO and entered into the calculation of the FM calibration factor. The FM signal is then measured, and the calibration factor is calculated and shown on the display. The sensitivity of the VCO and tune voltage are designed to give approximately 34 kHz peak deviation.
To prevent ringing of the demodulated signal in the audio circuits, the modulation signal is given a slow risetime by the Trapezoid Generator-a soft limiter which receives its input from the Triangle Generator. The Triangle Generator and Mode Control comparator together form a relaxation oscillator. The output from the Mode Control comparator switches between a positive and negative output current.
The integrator generates a negative or positive ramp depending on its input. When the output reaches the Mode Control reference, the comparator output switches sense to initiate a ramp in the opposite direction.

Special Function 12 controls the FM Calibrator and permits its use with another HP 8901A.

AM Calibrator Assembly (Option 010, A50). The input to the AM Calibrator is the unmodulated 10.1 MHz from the FM Calibrator. The signal passes through a Limiter and is applied to two similar Modulators (A and B) through two Amplifiers (A and B). Modulator B is then switched on and off by the 10 kHz Modulation Oscillator through Current Source B. The outputs from the two Modulators are then summed in the Summing Amplifier, and the summed signal appears (after attenuation) at the CALIBRATION OUTPUT jack. If both signal paths are identical, the output from the calibrator is periodically toggling between a specific RF level and twice that level. This produces 33.33% AM.
Because the two paths may differ slightly, accuracy of the AM Calibrator is enhanced by detecting and measuring the levels from the Modulators statically during an initial calibration sequence. First, the voltage from the detector is measured with only Modulator B on via the XI DC Amplifier (V_{B}). It is also measured via the X10 DC Amplifier ($V_{10 B}$). Then Modulator B is switched off and Modulator A
on. The level is now measured via the $\times 10 \mathrm{DC}$ Amplifier ($V_{10 A}$). AM is then calculated by the formula

$$
\% \mathrm{AM}=\frac{100 \%}{3-\left(\frac{2}{10}\right)\left(\frac{V_{10 A}-V_{10 B}}{V_{B}}\right)}
$$

A measurement of residual AM is also made on the unmodulated RF and entered into the calculation of the AM calibration factor. The AM signal is then measured and the calibration factor is calculated and shown on the display.
To prevent ringing of the demodulated signal in the audio circuits, the modulation squarewave is given a slow risetime by the Current Sources. Special Function 13 controls the AM Calibrator and permits its use with another HP 8901A.

8-68. Digital and Front Panel SectionsService Sheet BD4

General. The Digital Section contains the Counter, Controller, and Remote Interface. The Front Panel Section contains the Keyboard and Display.

Counter Assembly (A11). The Counter consists of a 10 MHz Reference Oscillator, Time Base Divider, Input Selector, four counter stages, and counter control circuits. The input to Stages 2 through 4 is selected by the InputSelector switch. When the LO frequency is counted, Counter Stage 1 is enabled and fed into Stage 2. The input to Stage 1 is the High Frequency VCO signal divided by eight. When the Voltmeter input is selected, the Selected Time Base Reference (10 MHz), gated by the Voltmeter Gate, is the input to Stage 2. Other inputs which can be selected are IF, FM Calibrator, and Internal and External Time Base (useful as a Counter self-check).
The Counter counts in binary. Stage 1 is a divide-byeight. Stages 2 through 4 are divide-by-sixteens. More stages of counting are contained in the microprocessor. In addition, the microprocessor also counts the number of Time Base periods.
At the end of a count sequence, the Time Base disables the Counter via the Counter Gate Control. The Counter Transfer Logic then transfers the count of the individual stages in parallel to the Controller via the Counter Output \& Time Base Gating. First, the output from Stage 4 is transferred. Then the output from Stage 3 is loaded into Stage 4, and the output from Stage 4 is again transferred. This process is again repeated with Stage 2 loading into Stage 4 via Stage 3 and transferring. Finally, Stage

1 is loaded into Stage 4 via Stages 2 and 3 and transferred. (The output from Stage 1 is used only when counting the LO frequency.)
To make a voltage measurement, the Voltage-toTime Converter generates a pulse whose time interval is proportional to its dc input voltage. During this time interval, the Counter counts its time base reference. The count thus accumulated is proportional to the input voltage. The count is initiated when the Counter enables its Input Selector and the Voltage-to-Time Converter (via the Ramp Gate). The Voltage-to-Time Converter then closes the Voltmeter Gate (via the Stop Count line) and the Selected Time Base Reference passes into Counter Stage 2. When the time interval ends, the Voltmeter Gate is opened. Some time later, the Controller disables the Counter and transfers the accumulated count to the Controller.

The time base reference is either the standard 10 MHz Reference Oscillator, the Option 00210 MHz High Stability Crystal Oscillator, or an external input from the rear-panel TIME BASE 10 MHz INPUT jack. For Option 002, the crystal from the 10 MHz Reference Oscillator is removed and the oscillator's circuitry is driven by the High Stability Oscillator. In either case, when an external reference is applied, a detector senses the signal and throws the Time Base Select Switch to the external position. This is done in such a way as to minimize the interruption of the reference since (after dividing by five) it is also the Controller clock.
The Time Base Divider divides the 10 MHz reference by 1600 . The 6.25 kHz Time Base signal controls the enable period of the Counter and hence determines the Counter accuracy.

Controlier (A13). The Controller consists of a microprocessor, read-only memory (ROM), random-access memory (RAM), a memory select decoder, and input/output interface circuitry. The microprocessor is divided into two devices-the Central Processing Unit (CPU) and a Static Memory Interface (SMI). A third device, a Peripheral Input/Output (PIO), is also included when the microprocessor interfaces with the Remote Interface Assembly.
The Controller's program is stored in ROM. To retrieve information from ROM, the SMI, under control of the CPU, outputs the appropriate address on the Address Bus. Five of the sixteen address bits are decoded by the Memory Select Decoder to enable one of the ROM devices. Eleven other address bits address the individual ROMs. The enabled ROM then outputs eight bits of data onto the Data Bus from the location corresponding to the input
address. Information in ROM may be either a program instruction or data. In a similar manner temporary information is written to or read from the RAM. The RAM, however, is addressed by only eight of the eleven address bits, and inputs or outputs only four data bits.

The CPU interprets bytes from the ROM as data or instructions depending on the context of the pro gram. If the byte is an instruction, the outcome depends on the nature of the instruction. A simple instruction (such as add or shift) is executed immediately and the instruction in the next address fetched. More complex instructions fetch additional data or instructions from following addresses and, in the case of jumps and subroutine calls, cause program execution to move to another location in memory.

When a front-panel key is pressed, an interrupt is generated. The interrupt causes program execution to jump to a specified address location where the interrupt service subroutine is located. The subroutine interrogates the Keyboard to determine which key was pressed and then takes the appropriate action. HP-IB codes and commands interrupt the Microprocessor in a similar way.

The CPU communicates with the SMI and PIO through the ROM Control (ROMC) lines and the Data Bus. The CPU does data manipulation (arithmetic and logic computations) and contains the clocking and control circuitry. The clock is normally derived from the Counter's time base reference; however, if the clock fails (to an open circuit) or if the Counter Assembly is unplugged, a clock internal to the CPU will continue to generate clock pulses. The SMI interfaces with the external ROMs and RAM.

The CPU also contains the bidirectional input/output (I/O) ports for communicating with the instrument hardware. This is done via the Instrument Bus discussed in the next paragraph. Four of the I/O bits, however, are reserved for servicing of the Controller. Four LEDs driven from the port indicate errors encountered during power-up verification tests, measurement cycles, and Keyboard and HP-IB interrupts. Four test points on the port can be used to initiate troubleshooting routines which use signature analysis. See TEST LEDs and Test Points, page 817.

Instrument Bus. Figure $8-42$ shows a typical hookup on the Instrument Bus. The Instrument Bus lines are broken down into three groups: enable (e), select (s), and data (d). The enable code (e0 to e3) comes from I/O lines 10 through 13 of the CPU (A13U14).

Three of the lines are decoded by the Enable Code Decoder (A13U17) to activate one of eight unique enable lines ($e=0$ to $e=7$). The fourth line enables the decoder itself. The enable lines run to various instrument sections. Typically, each line is dedicated to a specific section or operational function; e.g., enable line $e=1$ controls audio-related functions in the Audio Section.

The select (s 0 to s 3) and data codes (d 0 to d 3) come from I/O lines 00 to 07. The eight lines run in parallel to all sections of the instrument where they are decoded on the assemblies. (In the RF Section one assembly, the A20 LO Control Assembly, decodes the Instrument Bus for the entire section.) Up to 16 data codes for each of the 16 select codes are possible for each active enable line. The select code typically selects a functional category on an assembly and the data code selects the specific function or configuration. On a given assembly the select codes are decoded only while the corresponding enable line is active. The data codes are in turn decoded and latched only when triggered by the decoded select line. The latched data drive the digital-to-analog devices which control the instrument hardware.

On the schematic diagrams the lines leaving the I/O ports of the CPU are labeled with a mnemonic such as $\mathbf{s} 2(\mathrm{~L})$ for I / O line 02 . The " s " indicates a select code, " 2 " indicates that it is the third least-significant bit of the un-decoded select code, and "(L)" indicates that the line is true (1) when the logic level is low. All bit position numbering begins with 0 . The select codes go out on the Instrument Bus through Select Buffers which are simple inverters. Thus s2(L) goes out on the bus as $\mathbf{s} 2(\mathrm{H})$. Decoded codes are labeled as $e=1(\mathrm{~L})$ for example. The " e " indicates an enable code, " $=$ " indicates decoding, " 1 " indicates a decoded hexadecimal 1 (binary 0001), and "(L)" indicates the logic level corresponding to a true. The mnemonice $=1$ corresponds to e3e2ele $0=0001$. Data codes are also buffered. However, unbuffered data lines are also connected to the Instrument Bus for reading back data to the I/O ports.

The example of Figure $8-42$ will be used to illustrate how the 50 Hz High-Pass Filter is selected. The filter (not shown) is activated when the output line of the High-Pass Filter Control (A3U16) labeled 50 Hz HPF(L) goes low. Register U16 is simply a latch; it does not decode the data. To activate the 50 Hz HighPass Filter, the CPU sends out the binary enable code 0001 (hexadecimal 1), select code 0100 (hexadecimal 4), and data code 0010 (hexadecimal 2). The Enable Decoder activates the line $e=1(L)$. The decoder was enabled because e3(H) was low. Since $s 3(H)$ is low, and since $e=1(L)$ is also low, the Select

Figure 8-42. Example Showing Instrument Bus Hookup

Decoder (A3U20) is enabled. The three leastsignificant bits of the select code are decoded and activate the $s=4(\mathrm{~L})$ line out of the decoder. This line clocks the data into the High-Pass Filter Control latch. Since the $\mathrm{d} 1(\mathrm{H})$ line is high, the $50 \mathrm{~Hz} \mathrm{HPF}(\mathrm{L})$ line goes low. This selects the 50 Hz High-Pass Filter.

There is a direct relationship betwen the codes output on the Instrument Bus and the Direct Control Special Functions discussed on page 8-8. If the enable, select, and data codes are combined into a hexadecimal number "esd", this becomes the Direct Control suffix. In the example here it is 142 , corresponding to Direct Control code 0.142 discussed in the example there. Instrument control can be visualized as a series of Direct Control Special Functions issued under program control.

The example above decoded only three of the four select code bits and used the data bits directly or inverted them). Notice that if the code esd $=147$ were issued, the thru path (No HPF), 50 Hz High-Pass Filter, 300 Hz High-Pass Filter, and De-mphasis Pre-Display switches would all be activated. On some assemblies the data codes may be decoded and select codes above 7 may be used. On other assemblies certain select codes are used to enable readback devices which read back status or measurement data onto the unbuffered data lines. This is discussed in more detail in connection with Special Functions, page 88.

Keyboard and Display Assembly (A1). The Keyboard and Display Assembly is both an input peripheral and an output peripheral to the Controller. The pressing of a key is sensed by the

Keystroke Detector. The detector interrupts the Microprocessor which then enters an interrupt service routine. The routine causes the key rows and columns to be scanned sequentially via the Key Row and Column Scanner to ascertain which key is down. This is accomplished by driving the rows in sequence with the select decoder and reading the state of the columns with the data readback lines. If no key closure is found (due, perhaps, to key bounce), the scan repeats. If no key closure is found after 50 ms , the Microprocessor leaves this routine and begins making a new measurement.
Lighting of the key and annunciator lights and display digits and decimal points is by a straightforward decoding of the Instrument Bus. Note that the lights in the keys do not light as a direct result of a key closure, but rather the Microprocessor, having recognized a key closure, sends the command out on the Instrument Bus to light the key light.

Remote Interface Assembly (A14). The Remote Interface Assembly interfaces the Controller with the Hewlett-Packard Interface Bus (HP-IB). It performs necessary handshake operations, interprets the HP-IB control lines, and is both an input and output peripheral to the Controller.
As an input peripheral, it accepts a byte from the HP-IB data lines under control of the bus handshake lines. It then interprets the data byte and the bus control lines to see if the byte is an address (talk or listen), a command, or a data byte. When a byte is processed, one of three things happens: (1) the byte is ignored, (2) the byte is processed in hardware (e.g., some bus commands), or (3) the byte causes a Microprocessor interrupt (e.g., codes received while addressed to listen). The Microprocessor treats an HP-IB interrupt as it would an interrupt from the Keyboard. However, the HP-IB interrupt service routine first checks whether or not the byte is a command (e.g., Device Clear), address, or data (e.g., "M1"). If it is an address or command, the byte is processed. If it is data, the routine first checks whether or not the instrument is in remote. If it is, the incoming byte is processed as program code. If not, the byte is ignored. After processing a byte, the Microprocessor tells the Remote Interface what to do next (e.g., input another byte, set a status latch, or prepare to output a byte).
As an output peripheral, the Remote Interface takes a byte of status or measurement data from the Microprocessor and processes it over the HP-IB. It does this only after determining that the Modulation Analyzer has been addressed to talk. The require service message (SRQ) is also output via the Remote Interface.

The Remote Interface Assembly consists of Handshake Logic, HP-IB Input/Output Transceivers, Interface Control Logic, Address Decoder, part of the Microprocessor, and Instrument Bus interface circuits.
The Handshake Logic controls the asynchronous transfer of bytes over the HP-IB. It does this without interruption of the Microprocessor whenever the byte is data but the Modulation Analyzer is not addressed to listen or whenever the byte is not an interrupting bus command. It also provides the means for the Microprocessor to complete the handshake if the byte is an interrupting type.
When the Modulation Analyzer is accepting bytes, the Handshake Logic monitors the Microprocessor and HP-IB and signals the HP-IB talker or bus controller when the Modulation Analyzer is ready to receive, tells the Microprocessor when valid data is on the HP-IB, and tells the HP-IB talker when the Microprocessor has accepted the data. When the Modulation Analyzer is outputting data or status bytes, the Handshake Logic tells the Microprocessor when the HP-IB listener is ready to receive, provides the Microprocessor with logic to tell the listener when data is valid, and tells the Microprocessor when the listener has accepted data.
The HP-IB Input/Output Transceivers act as HP-IB buffers and send/receive switches. They are controlled by the Interface Control Logic.
The Interface Control Logic together with the Address Decoder determines the talk or listen status of the interface and whether or not the Microprocessor should be interrupted. The ROM in the Handshake Control Logic is addressed by two of the HP-IB data lines, the Address Decoder, and one of the HP-IB control lines (Attention, ATN). The ROM contains the control information for the Interface Control Logic and the Microprocessor.
If the Modulation Analyzer's listen address is recognized by the Address Decoder, the Microprocessor attempts to set the Remote Enable Flip-Flop. If the HP-IB Remote Enable (REN) control line is true, the flip-flop is set (if not already set), and the Microprocessor sets a status bit in memory. Each time the Microprocessor performs any remote-dependent operation, it checks both the status bit and the flipflop output (Remote Enable Latch, RNL). Both must be set for the instrument to remain in remote. If REN goes false at any time, the Remote Enable Flip-Flop is cleared, and the instrument is no longer in remote.
The Address Decoder compares the address set by the Address Switches with the five least significant input bytes to determine if the instrument is being
addressed. The Interface Control Logic looks at the output of the Address Decoder and the next two input bits to determine if it is a talk or listen address and if the instrument should respond to it. The result of this determination modifies the address to the ROM in the Interface Control Logic.
The Address Readback Gates output the address from the Address Switches onto the Instrument Bus data lines when Special Function 21 (HP-IB Address) is selected. This is how the Controller reads the HP-IB address. (See HP-IB Address in the Detailed Operating Instructions in the Operating Manual.)
The portion of the Microprocessor that directly handles the HP-IB input/output resides on the Remote Interface Assembly. This includes the ROM (not to be confused with the ROM in the Interface Control Logic) that contains the HP-IB routines of the instrument software, a Memory Select Decoder (to enable the ROM when needed), and a Peripheral Input/Output (PIO). The PIO is a device that routes the HP-IB data to and from the CPU and the HP-IB, provides a communication link between the CPU and the Remote Interface hardware, and provides the means for interrupting the CPU. One of the two, eight-bit PIO output ports connects to the HP-IB data lines and the other to the handshake and control logic.

NOTE

For purposes of troubleshooting the Controller, the Remote Interface Assembly may be unplugged. Provision has been made to allow the instrument to work with only the loss of the HP-IB and LIMIT functions.

Although the Remote Interface Assembly receives data and operating information from the PIO, it is primarily through the Instrument Bus that it is controlled. (Commands such as SRQ that need rapid processing come from the PIO). A Select Decoder decodes the select lines when enabled by code $\mathrm{e}=4$. The decoded select lines enable or disable parts of the Remote Interface Assembly.

8-69. RF Input (A15)-Service Sheet 1

General. The RF Input Assembly contains the Input Attenuator, Overpower Protection, RF Level and Overpower Detector, and 5.25 MHz High-Pass Filter. Together, these circuits provide a suitable input signal for the Input Mixer (see Service Sheet 2).
5.25 MHz High-Pass Filter. The 5.25 MHz HighPass Filter must be switched in by entering user Special Function 3.3 or 3.4 SPCL. Its function is to prevent the IF from responding to low-frequency, spurious signals which may be present along with a higher frequency input signal. The filter is a diplexer type which presents a 50Ω termination to all frequencies present at its output (whether above or below the cutoff frequency). An example of such a signal is the IF itself. The 50Ω termination improves the RF flatness of the Input Mixer over the wide range of input frequencies. The filter is switched in by relay K2 via driver transistor Q2.

Input Attenuator. The Input Attenuator is composed of two 20 dB pads and one 10 dB pad for a range of 0 to 50 dB in 10 dB steps. Each pad is a resistive pi network. The first shunt arm of 20 dB No. 1 has two resistors (R15 and R19) in parallel to handle the brunt of high-level RF power. The pads are switched in by relays K3, K4, and K5 driven by transistors Q6, Q7, and Q8 respectively.

RF Level Detector. The RF Level Detector (CRI and CR2) senses the positive peak of the input signal. The detected dc voltage is used to initially set the Input Attenuator, to give an indication of RF level when the RF LEVEL measurement mode is selected, and to de-activate the Overpower Protection relay. Because the detector can introduce a slight amount of clipping on the input signal, it is switched slightly off after the instrument is tuned to the input signal except when measuring RF level. The detector is shut off when Q10 is on.

Detector Amplifier. U1 and U2 form a unity-gain amplifier and peak detector with offset. U2 detects the peaks of the signal from the RF Level Detector when AM is present on the signal. Whenever the voltage at the non-inverting (+) input of U2 exceeds that of the inverting input (-), the output transistor of U2 (see Note 2 on the schematic) turns on and charges C22 from its emitter until the voltage across C22 equals the input voltage at the inverting input plus the constant drop across CR7, R34, CR8, and R42. U1 is simply a unity-gain buffer amplifier. When the input voltage drops, the output of U2 shuts off, and C22 remains charged to its previous level. R39 and R41 slowly discharge C22 when the input signal level is lowered or removed. CR7 and CR8 are biased on by R26 which acts as a current source. CR7 and CR8 are hot carrier diodes whose offset voltage tracks that of CR1 and CR3 with temperature. Fine adjustment of the offset is made with R42 which is set for zero output from Ul when no input signal is present.

Overpower Detector. The Overpower Detector amplifier U3 senses when the output from the RF Level Detector and voltage divider R36, R54, and R37 exceeds +2.7 V (set by R43, R44, and hysteresis resistor R 56) which corresponds to 1 W of input power. The output of U3A then goes low and deactivates the Overpower Protection relay K1 via the LO Control circuits (see Service Sheet 15). K1 remains de-activated until reset by the operator pressing any front-panel key.
The OVERPOWER(L) output line from U3A is also an input line from the LO Control circuit which performs two other functions. First, the line is used to discharge the storage capacitor C22 of the Detector Amplifier between RF LEVEL measurements. Second, the line is used to turn off the RF Level Detector when RF LEVEL is not being measured after the instrument is tuned. To accomplish these two tasks, a quasi-low is put on the line by the LO Control circuits. The low does not trip the overpower circuit but is low enough to set the Detector Amplifier Discharge comparator U3B low which discharges C22. It also turns off the RF Level Detector by turning on Q11, Q9, and Q10. In this state the RF Level Detector can still sense an overpower condition and trip the Overpower Protection.

Relay Drivers. The drivers for the five relays are similar. A TTL low at the base of a driver transistor (Q1, Q2, Q6, Q7, or Q8) turns the transistor on and energizes the relay. The relay contacts move in the direction of the arrow. The capacitors across the relay coils suppress the flyback voltage when the coil is de-energized and improve switching speed. Control of the relays is via the LO Control circuits (see Service Sheet 15).

8-70. Input Mixer (A17)-Service Sheet 2

General. The Input Mixer Assembly down-converts the input signal to an intermediate frequency (IF). For input signals above 2.5 MHz , the IF is equal to the LO frequency minus the signal frequency. The IF is normally 1.5 MHz for frequencies above 10 MHz and 455 kHz for frequencies between 2.5 and 10 MHz . Below 2.5 MHz the input signal passes directly through the Mixer into the IF Amplifier without down-conversion. The Input Mixer Assembly contains the Mixer, LO Amplifier, and two IF filters (a 455 kHz Bandpass Filter and a 4 MHz Low-Pass Filter). The 4 MHz Low-Pass Filter is followed by a 2.5 MHz Low-Pass Filter in the AM Demodulator Assembly which determines the frequency response of the 1.5 MHz IF (see Service Sheet 3). For principles of operation of the IF Amplifier (A18), see Paragraph 8-71, this page.

LO Amplifier. The input to the LO Amplifier is a 1.25 to 1301.5 MHz signal which comes from the LO Divider Assembly (see Service Sheet 11). The amplifier has a gain of approximately 10 dB and drives the L port of the Mixer (U 1) at about +10 dBm . The amplifier has two stages, Q4 and Q6, which are actively biased by Q5 and Q7 respectively. Using Q4 and Q5 to illustrate the biasing, notice that for dc levels the emitter of Q5 is connected directly to the collector of Q4-L3 is an RF choke. The base of Q5 is fixed at the voltage determined by voltage divider R1 and R2. The emitter of Q5 is normally a junction drop above this. The collector of Q5 is the source of dc base current for Q4. Changes in the collector voltage of Q4 alter the collector current of Q5 which regulates the collector voltage of Q4.
The gain of each stage is inversely proportional to the total emitter resistance and directly proportional to the collector load. C3 increases the gain slightly at high frequencies.

Mixer. Mixer U 1 is a single-balanced type (i.e., signals at the L port are balanced out at the R and I ports but signals at the R port are not balanced at the I port). This permits low-frequency input signals to pass into the IF without down-conversion. The LO signal is coupled into the Mixer by U1T2. IF is coupled out from the center tap of the same transformer. U1C1 is the first element of the IF filters that follow. U1T1 optimizes the impedance seen by the IF Amplifier. The Input Pad before the Mixer's R port improves the flatness over the wide range of input frequencies by presenting a constant impedance to the IF at the R port. The Limiter adds protection to the Mixer.

IF Filters. The 455 kHz Bandpass Filter has seven poles and a 3 dB bandwidth of 200 kHz . L8 is adjusted for best passband flatness to minimize incidental AM (AM generated in the IF as the result of FM). L11 is adjusted primarily for best phase linearity vs. frequency in order to minimize FM distortion generated in the IF. The filter is switched in by Q3 and Q1 which forward-bias CR3 and CR6 when the output of U2B goes low. This also turns on DS1.
The 4 MHz Low-Pass Filter has three poles. It is switched in by Q2 which forward-biases CR4 and CR5 when U2A goes low. Control of the filters is via the LO Control Assembly (see Service Sheet 15).

8-71. IF Amplifier (A18)-Service Sheet 2

General. The signal from the Input Mixer, whether down-converted or not, is amplified by the IF Amplifier. The amplifier is a low-noise type with 33 dB of gain and a phase compensation network to
reduce FM distortion. The IF Amplifier has three stages. For principles of operation of the Input Mixer (A17), see page 8-52.
IF Input Amplifier. The first stage, Q7 and Q5, is low noise and has 20 dB of gain. An active input impedance, the result of feeding signal back to the input through R6, generates a lower source noise than would be generated by a strictly passive resistance. The input impedance is essentially equal to R6 divided by the amplifier gain. The gain is approximately R9 divided by R7.
Inverting Amplifier. The second stage is a unity-gain amplifier with a phase-shift characteristic that can be adjusted to compensate for phase shifts generated in the 1.5 MHz IF system. This compensation improves FM distortion. The IF shape can also be adjusted to minimize incidental AM.
A simplified diagram of this stage is shown in Figure 8-43. Q1 is shown as an amplifier with a gain of $-1, Q 2$ with a gain of +1 . The voltage gain for the circuit is

$$
\frac{V 2}{V 1}=\frac{(R-j X)}{(R+j X)}
$$

which has a constant magnitude (+1) and a variable phase shift. The impedance jX is formed by $\mathrm{L} 1, \mathrm{~L} 2$, C 15 , and C16. R is formed by the combination of R17, R23, and R24. R is fine adjusted by R23 for optimum phase shift (minimum FM distortion) at 1.5 MHz . R19 fine adjusts the gain of Q1 for best flatness (minimum incidental AM) at 1.5 MHz .

Figure 8-43. Simplified Diagram of Phase Compensation Amplifier
IF Output Amplifier. The third stage is a 13 dB amplifier which drives the AM Demodulator. Its gain is approximately one plus R29 divided by R27.

8-72. AM Demodulator (A6)- Service Sheet 3

General. AM is demodulated by rectifying the IF signal and by forcing the average of the IF signal to be a constant level by means of an automatic level control (ALC) loop. The rectified IF, after filtering the IF carrier, accurately represents the carrier average plus its AM envelope. In fact, the \% AM equals the level of the ac component divided by the level of the dc component times 100%. Since the average carrier level is forced to be constant, the $\%$ AM is proportional to the level of the ac component alone. The demodulation process is illustrated in Figure 8-45.
2.5 MHz Low-Pass Filter and AM IF Buffer. The 2.5 MHz Low-Pass Filter determines the IF frequency response when using the 1.5 MHz IF or when the input signal is not down-converted. The filter has six poles and is designed for best flatness up to 2.5 MHz . At 2.5 MHz the flatness can be fine adjusted with C8 for minimum incidental AM. The filtered IF is routed to the AM IF Buffer and an FM IF Buffer (see Service Sheet 4) where it is further routed to the FM Demodulator, IF Level and IF Present Detectors, and the rear-panel IF OUTPUT.
Voltage-Variable Amplifier. The Voltage-Variable Amplifier adjusts its gain in response to the dc output from the AM and Level Detector. Thus it is the "leveler" of the ALC loop. In its most basic form it is a variable-gain, inverting operational amplifier as shown in Figure 8-44.

Figure 8-44. Simplified Diagram of the Voltage-Variable Amplifier
The gain of the Voltage-Variable Amplifier is $-\mathrm{Rb} / \mathrm{Ra}$ and it is ac coupled. Ra is the photoresistor of the opto-isolator U4. Rb is R24.
The R-Setting (that is, Resistance-Setting) Loop is a feedback circuit which adjusts the input resistance of the Voltage-Variable Amplifier in proportion to the collector current of Q23 (the Control Current Source). This current, in turn, is proportional to the amplitude error of the IF signal.

Figure 8-45. AM Demodulation Process

Comparison Amplifier U5 senses the difference in the voltage drop between R14 and the photoresistor of U4 in series with R22. The voltage drop across R14 is fixed. The voltage across the photoresistor and R22 depends on the collector current of Q23 and the resistance of the photoresistor. The difference in the two voltage drops is amplified by U5 which drives the LED of U4 via current source Q6. This varjes the resistance of the photoresistor in such a manner as to reduce the voltage drop difference to zero. (The higher the current through the LED, the lower the resistance of the photoresistor.)

To clarify the action of the R-Setting Loop, suppose that a condition of too high an IF level causes the collector current of Q23 to decrease. The voltage at the inverting $(-)$ input of U5 drops and lowers the collector current of Q6. The LED of U4 glows less brightly and the resistance of the photoresistor increases. This results in two effects: the voltage at the inverting input of U5 rises to the level present at the non-inverting $(+)$ input, and the gain of the Voltage-Variable Amplifier decreases. Thus the IF level is reduced.

The Voltage-Variable Amplifier is designed to operate over a gain range of at least 16:1 (24 dB) with a maximum gain of $4(12 \mathrm{~dB})$. Q4 and Q5 provide the forward gain of the amplifier. The transistors are in cascode (a common-emitter transistor driving a common-base transistor) for well-defined performance at 1.5 MHz . C 23 and R 29 frequency compensate the amplifier. C20 prevents high-frequency peaking of the amplifier.
Q21 and Q20 form a unity-gain, buffer amplifier which drives the AM and Level Detector. Q31 improves the symmetry of the overdrive character-
istics of the buffer amplifier. This is needed because the ALC loop initially receives signals when its ALC gain is maximum (the no-signal condition).

AM and Level Detector. The AM and Level Detector rectifies the IF carrier. Q13 to Q16, CR9 and CR10, and associated components form a precision, active, half-wave rectifier. A simplified diagram of the rectifier is shown in Figure 8-46. The circuit is essentially an inverting operational amplifier with two parallel feedback paths which each conduct current in a different direction as determined by CR9 and CR10. The path through CR9 can produce only negative voltages at the output to the Level Amplifier and Carrier Filter. This feedback path contains the network R73, R74, C43, and L8 which acts as a constant resistance (equal to R73) between CR9 and the amplifier's inverting (-) input, but low-pass filters the IF going to the AM Output Buffer.

The emitter of Q13 is the amplifier's common-base inverting input. The base of Q13 is the ac grounded, non-inverting input of the amplifier. Q13 is followed by a cascode stage Q15 and Q14. R58 and C40 frequency compensate the amplifier. Q16 is a +13.8 V regulator and RF decoupling circuit. CR6 and CR7 protect the amplifier in the event of unusual conditions at the input.

AM Output Buffer. Q17, Q18, and Q19 form a unitygain buffer amplifier which interfaces the demodulated AM with the rear-panel AM OUTPUT and the audio circuits. R87 and C50 further filter the IF carrier. R88 and C51 form the first two elements of a complex 260 kHz Low-Pass Filter (see Service Sheet 7).

Figure 8-46. Simplified Diagram of AM and Level Detector

Level Amplifier and Carrier Filter. U3 and associated components form an inverting amplifier and IF carrier and AM ripple filter. Note that the non-inverting (+) input of U3 connects through R75 to the inverting input (namely, the emitter of Q13) of the AM and Level Detector which is its "virtual" ground. Thus the two amplifiers have a common signal-ground reference.

BW Control and Level Comparison Amplifier and Inverting Amplifier. The dc output of U3 represents the IF carrier level. This output is compared against a stable reference voltage. Any difference between the voltages is amplified by U1 and U2 and alters the current from the Control Current Source. U1 adds additional filtering to the detected IF and determines the response time of the ALC loop to variations in IF level (i.e., it determines the ALC bandwidth). Q2 permits selection of the 0.1 dB bandwidth of either 20 Hz when off or 200 Hz when on. When Q2 is on, the time constant of the integrator U1 is the product of R55 and C31. When Q2 is off, the time constant is the product of R51 + R54 + R55 and C31; C36 adds additional filtering. Q2 is switched by Q27 and Q3.

ALC Reference. The very stable voltage reference for the ALC loop is supplied by the voltagereference diode VR3. VR3 is biased on by a regulated current source formed by Q1, VR4, and associated components. The reference output is divided by R69, R65, and R66. Fine adjustment of the ALC Reference is via R65.

Control Current Source. Q23 generates a current which adjusts the input resistance and, hence the gain, of the VoltageVariable Amplifier. This is done via the R-Setting Loop.
Switches Q26 and Q28 are normally off and Q25 is normally on. Thus the output of U2 establishes the base voltage of Q23 and its emitter current. The collector of Q23 is a constant (load-invariant) current source. The output of U2 works against the +15 V supply through R26, R31, R32, and Q24 which is wired as a diode to temperature compensate the base voltage of Q23.
Q22 produces a voltage at its collector that is proportional to the control current of Q23. This voltage can be monitored by the Voltmeter. The automatic leveling can be defeated, if desired, by switching off Q25 (user Special Function 6.2). The base of Q23 is then biased by R26, Q24, and R27. The combination of R123 and C17 forms a noise filter.

8-73. AM Demodulator (A6)- Service Sheet 4

General. The filtered IF signal is buffered and detected by two peak detectors. The output of the IF Level Detector is measured by the Voltmeter for use in determining the setting of the Input Attenuator and for the TUNED RF LEVEL measurement. The output of the IF Present Detector is used in the automatic tuning mode to sense the presence of an IF signal as the LO is swept through its ranges. Its output stops the LO sweep, bypassing the Controller, but can also be read by the Controller as needed.

FM IF Buffer. Q9 is an emitter-follower amplifier which drives the input to the FM Demodulator and the IF Detector Amplifier. Q10 is an emitter-follower amplifier which drives the rear-panel IF OUTPUT jack. Q10 receives its input from the output of Q9 which is divided down by R92 and R93.

IF Detector Buffer. Q11 and Q12 and associated components form an active 50 kHz high-pass filter with approximately 16 dB of passband gain. It suppresses a phantom signal that can appear in the IF as the result of the LO sweep even when no input signal is present.

IF Level Detector. CR15 detects the positive peaks of the IF signal. The detected peak is stored on C65. Q29 is a momentary switch to quickly discharge C65 upon request from the Controller. C70 charges C65 to a slightly negative value after being discharged by Q29. U6 and associated components form a unity-gain amplifier. A dc offset is generated by CR16 that thermally compensates CR15. The output is attenuated by R117 and R118 to make it compatible with the Voltmeter.

IF Present Detector. CR14 detects the negative peaks of the IF signal. The detected peak is stored on C63. The value of C63 is small enough to allow rapid charging. U7 compares the output of the detector with a reference at its inverting (-) input. The reference is established by the +15 V and -15 V supplies, R104, R105, R109, and CR13 which thermally compensates CR14. When an IF signal is sensed, the output of U7 goes to a TTL low. R112 provides hysteresis.

IF Present Latch. U10C and U10D form a set-reset flip-flop. When the IF Present Detector senses an IF signal, the flip-flop is set; that is, the output of U10C goes low and U10D goes high. This condition remains until the Controller resets the flip-flop by
momentarily causing a low on pin 9 of U8. Readback of the IF Present Latch is via Q30. Q30 is enabled when the Controller, via U9, places a low on the emitter. CR17 prevents Q30 from becoming an active transistor in the inverted mode (i.e., the roles of collector and emitter are reversed) when the emitter is high and the collector is low. (For a discussion of the readback operation, see Direct Control Special Functions, page 8-8).

Select Decoder and Data Latch. See the general discussion under Instrument Bus, page 8-48.

8-74. FM Demodulator (A4) - Service Sheet 5

General. The IF signal to be FM demodulated is first passed through three amplifier/limiter stages to remove amplitude fluctuations. A buffer amplifier is also provided to drive the Counter and to isolate the demodulator from the digital noise on the line to the Counter.

IF Limiters. The three limiter stages are nearly identical, non-saturating differential amplifiers. Stage 2 is discussed here in detail. The low-level differential gain is about 22 dB and is stabilized by the negativefeedback resistors R14 and R22. The feedback resistors also extend the small-signal bandwidth so that the small-signal delay is equal to the largesignal delay. C10 compensates for phase changes with level. The high-signal, output level is determined by the current from current source Q19E being switched back and forth between differential transistors Q19A and Q19B. This switching develops an output voltage across load resistors R19 and R21. Emitter-followers Q19D and Q19C drive the next stage. Stage 3 drives the FM discriminator with its differential outputs and the Counter IF Buffer with one of its emitters.

Counter IF Buffer. Transistors Q2 and Q1 amplify and limit the IF signal to TTL levels. DC feedback through R40 and R39 sets the operating point. This amplifier also performs an isolating function.

8-75. FM Demodulator (A4) - Service Sheet 6

General. The IF signal is FM demodulated by a "charge-count" discriminator. Operation is similar to a "pulse-count" discriminator except that it is pulses of constant charge that are formed directly and averaged instead of voltage or current pulses of constant amplitude and width (that is, duration). For each cycle of IF signal, a large, amplitude-stable
square wave charges and discharges a small capacitor. Steering diodes on the other side of the capacitor direct the negative discharge pulses to the inverting input of an operational amplifier which also partially smooths the charge pulses. In actual operation, two capacitors are charged and discharged on opposite phases of the IF signal. This doubles the sensitivity of the discriminator and doubles the frequency of the charge pulses.
The discriminator output is lightly filtered and is utilized in three places. A dc coupled signal goes to the rear-panel FM OUTPUT jack. Another dc coupled signal is fed back to the LO tune input to form an automatic frequency control loop when in the track-tune mode. The main, ac coupled signal goes to the FM Output Amplifier and is then processed by the audio circuits. A Squelch Switch at the input to the FM Output Amplifier cuts off the FM output when the IF signal level is too low for good noise performance.
FM Discriminator (Simplified). Figure 8-47 shows a simplified schematic of the FM discriminator. The differential IF inputs from the IF Limiters alternately cause the collectors of Q12 and Q13 to clamp to one diode drop above a +6 V reference and one diode drop below a - 10 V reference. The two collectors move out of phase with each other. Thus the left end of C27 swings $16 \mathrm{~V}_{\mathrm{pp}}$ plus two diode drops. Diodes CR10 and CR12 clamp the right end of C27 to within one diode drop of -10 V . Thus C27 is alternately charged to 16 V and discharged to 0 V . A fixed amount of charge flows through CR12 from the inverting (-)input of the operational amplifier each time the collector of Q12 drops from +6 V to -10 V , namely, once per cycle of the IF signal. The value of the charge is CV, where C is the value of C27 and $\mathrm{V}=16 \mathrm{~V}$. The average current flowing through CR12 is CVf, where f is the IF signal frequency. The operational amplifier forces this current to flow through R69 and R71, thus producing a voltage which is directly proportional to capacitance, voltage, resistance, and frequency. Since the first three quantities are held constant, the discriminator output is a linear function of frequency.
Exactly the same behavior happens in connection with C28, but 180 degrees out of phase, with the result that the discriminator output voltage is doubled and the ripple frequency is doubled (twice the IF). C31 and C33 smooth the ripple as do R85, R87, and C42. The high-frequency response of the entire FM system is adjusted with R85.

Upper Clamp, Lower Clamp Regulator, and Upper Clamp Buffer. Refer now to the schematic diagram of Service Sheet 6. The Upper and Lower Clamp

Figure 8-47. Simplified Schematic Diagram of FM Discriminator
voltages (nominally +6 V and -10 V) must be very stable and quiet since they directly affect FM demodulator sensitivity and noise. The basic reference is a temperature-stable reference diode VR1. The reference is fed from current source Q8, which itself is temperature stable because its base-emitter junction and its reference (LED DS1) have similar thermal behavior. The Upper Clamp voltage is taken directly from VR1 through emitter-followers Q9 and Q10 whose thermal variations cancel. The Lower Clamp voltage is referenced to VR1 with the Lower Clamp Regulator composed of comparison transistors Q4 and Q3 and pass transistor Q5, and is adjustable with R50. This adjustment changes the sensitivity of the demodulator and is used to calibrate the FM system. C24 and C25 reduce noise.

Precision Limiter and Charge-Count Discriminator. The three current sources (shown in Figure 8-47) are temperature-compensated and consist of transistors Q6, Q14, and Q15, and voltage references (LEDs) DS1 and DS2. Q7 and C26 filter the -15V supply. RL networks R64 and L1 and R65 and L2 speed up shutoff of charge steering diodes CR10 and CR11 by means of a controlled amount of overshoot, which improves linearity. R66 and C29 improve linearity by introducing a small frequency-dependent voltage in series with charge steering diodes CR10 and CR11.

The discriminator amplifier, a discrete operational amplifier, consists of amplifier transistors Q18, Q17,
and Q28 and current-source transistors Q29, Q34, and Q33. Q34 and Q33 comprise a conventional two-transistor current source in which negative feedback causes the voltage drop across the emitter resistor (R81) of Q33 to equal the base-mitter voltage of Q34. The voltage that is thus established at the base of Q33 (two junction drops above the -15 V supply) is also used as the reference for three other current source transistors (Q29, Q27, and Q26). R75 is added to reduce the sensitivity of the latter three current sources to power supply ripple.
R69 and R71 are the feedback resistors mentioned above and, in combination with C31 and C33, form a bridged-T network in the feedback path of the discriminator operational amplifier, producing the complex pole pair of a three-pole, low-pass filter. The third pole is produced later in the signal chain (see Service Sheet 8). The bridged-T network also produces a real-axis zero which is cancelled by the pole introduced by R85, R87, and C42. C35 and RC network R68 and C32, frequency-compensate the amplifier.

FM Output Amplifier. The FM Output Amplifier is an FET input, non-inverting amplifier with a voltage gain of 3.3 that is determined by feedback resistors R95 and R93. C43 and C44 are compensation elements. R97 and R99 establish the output impedance of the amplifier in order to properly drive the 260 kHz Low-Pass Filter which is at the amplifier's output (see Service Sheet 7). C45 is the first element of that filter.

Squelch Circults. The squelch circuits short the signal path to ground by means of FET switch Q21 when the IF signal is too weak for proper operation of the instrument. Q21 is controlled by the Squelch Detector at the output of the IF Limiters and by the Controller through Squelch Switch Drive transistors Q32 and Q31. Q21 is a low-impedance short when its gate-to-source voltage is zero (Q32 and Q31 off).

8-76. Audio Filters (A2)-Service Sheet 7

General. The Audio Filter Assembly contains some of the circuits that process the audio signal: low-pass filters, attenuators, and amplifiers. The inductors of all filters are carefully oriented and shielded to minimize mutual coupling and pickup of stray power line fields.

260 kHz Low-Pass Filters and 20 dB Attenuator 1. The two 260 kHz Low-Pass Filters remove any IF carrier remaining on the demodulated AM or FM. Both are seven-pole, Butterworth filters with a nominal 3 dB cutoff frequency of 260 kHz . The filters determine the high-frequency response of the audio system when LP FILTER is set to ALL OFF. For each filter the first shunt capacitor is on the previous assembly (see Service Sheets 3 and 6). Filter switching is via U1. An additional range of FM is provided by 20 dB Attenuator 1 (R8 and R9) at the output of its 260 kHz Low-Pass Filter. R5 and C12 form a real-axis zero to equalize for a real-axis pole found later in the audio chain (seeService Sheet 8) when in AM only. In FM the pole is utilized in determining the overall frequency response. C11 is a dc blocking capacitor. R6 permits adjustment of the AM sensitivity.

Amplifier 1. Amplifier 1 is a low-noise, high slewrate, non-inverting amplifier with a gain of 2.8 . It must pass 200 kHz signals with minimum loss of fidelity. Amplifier transistors Q1, Q3, Q6, and Q7 and current source transistors Q2, Q5, and Q4 form a discrete operational amplifier. The overall amplifier gain is determined by feedback resistors and is equal to $1+$ (R27/R22). The bases of differential pair Q1A and Q1B are respectively the non-inverting and inverting inputs of the amplifier. Q4 and Q5 comprise a conventional two-transistor current source in which negative feedback causes the voltage drop across the emitter resistor (R24) of Q4 to equal the base-mitter voltage of Q5. The voltage that is thus established at the base of Q4 (two junction drops above the -15 V supply) is also used as a reference for current source transistor Q2. Complementary transistors Q6 and Q7 provide the current necessary to drive the output load at high
modulation rates or levels. R11 and C14 frequency compensate the amplifier.

15 kHz and $>20 \mathrm{kHz}$ Low-Pass Filters. The 15 kHz Low-Pass Filter is selected when LP FILTER is set to 15 kHz or when the 455 kHz IF is being used (unless overridden). It is also switched in whenever the 3 kHz Low-Pass Filter (see Service Sheet 8) is selected to improve stopband rejection. The filter is a five-pole, Butterworth filter with a 3 dB frequency of 15 kHz .

The $\mathbf{> 2 0} \mathbf{k H z}$ Low-Pass Filter has nine-poles and approximates a Bessel response to minimize overshoot. The 3 dB frequency is approximately 110 kHz .

The filters are switched by U2 and U4D. Since each filter has a 6 dB loss in the passband, the 6 dB Attenuator is inserted into the through path. Thermistors RT2 and RT3 compensate for thermal changes in the resistance of the filter inductors (and hence the insertion loss). The passband gain of the filters is adjusted by means of R40 and R44. When the 15 kHz Low-Pass Filter is selected, the outputs of the 6 dB Attenuator and $>20 \mathrm{kHz}$ Low-Pass Filter are grounded to minimize leakage through the output switches.

Amplifiers 2 and 3 and 20 dB Attenuator 2. Amplifier 2 is non-inverting and has a gain of 4.84. Thermistor RT1 compensates for thermal changes in the resistance of the filter inductors of the 260 kHz Low-Pass Filters.

Two of the audio gain ranges are determined by 20 dB Attenuator 2 and the through path as set by the Audio Gain Selectors U4C and U4B.

Amplifier 3 is non-inverting and has a gain of 10 overall (including the attenuation due to R46 and R47). R47, R48, and the amplifier load (on Service Sheet 8) are grounded in such a way as to minimize the effect of ground loops.

8-77. Audio De-emphasis and Output (A3) Service Sheet 8

General. The Audio De-emphasis and Output Assembly contains some of the circuits that process the audio signal-high- and low-pass filters, amplifiers, and an integrator for phase de-modulation. It also contains the Instrument Bus decoding logic for it and the Audio Filter Assembly and the FM Demodulator Assembly.

300 Hz and 50 Hz High-Pass Filters and High-Pass Filter Switching. The 300 Hz and 50 Hz High-Pass Filters are active, two-pole, Butterworth filters with unity passband gain. Selection of the filter outputs or the through line is via U12A, U12B, and U12C. The 50 Hz High-Pass Filter is automatically selected when measuring $\Phi \mathrm{M}$.

3 kHz Low-Pass Filter, Low-Pass Filter Switching, and 300 kHz Pole. The 3 kHz Low-Pass Filter is an active, five-pole, Butterworth filter with unity passband gain. U4A is a unity-gain input buffer to the filter; R7 and C24 at its output form a real-axis pole. The R8, R9, C25, C26 and U4D form a pair of complex poles, and R11, R12, C33, C34, and U4C form another pair. Selection of the filter output or the through line is via U13A and U12D. R18 and C42 form a real-axis pole at 300 kHz that completes the filter for the Charge-Count Discriminator in the FM Demodulator (see Service Sheet 6). U3 is a unity-gain buffer amplifier.

De-emphasis Networks and Phase Modulation Integrator. The de-emphasis networks can be selected only in FM. They are simple single-pole low-pass filters with 3 dB frequencies as follows:

Time Constant $(\mu \mathrm{s})$	3 dB Frequency $[\mathrm{Hz})$
25	6366
50	3183
75	2122
750	212.2

The $750 \mu \mathrm{~s}$ de-emphasis network is followed by an amplifier (U9A, R32, and R34) with a gain of 10. The gain is needed because $750 \mu \mathrm{~s}$ FM de-emphasis is normally used in situations where more resolution is desired because of low levels of deviation and noise.

The Phase Modulation Integrator, U9B, converts the voltage from the FM Demodulator, which is proportional to frequency deviation, into a voltage proportional to phase deviation. Mathematically, the instantaneous phase deviation is equal to the time integral of the instantaneous frequency deviation (see Modulation Basics in the Operating Manual). VR2 and VR3 limit the integrator output for large inputs and low frequencies. The integrator sensitivity is adjusted using R27.

Switching of the de-emphasis networks and Phase Modulation Integrator is via the switches at their outputs. U14A and U14B select the input to the amplifiers that drive the Voltmeter, whether the
input is before or after the deemphasis. When deemphasis is used, the de-mphasized signal is always present at the MODULATION OUTPUT jack.

Output Amplifiers. U10, U8, and associated resistors form two, closely matched amplifiers with a gain of two. Ull inverts the output of $U 10$ and drives the MODULATION OUTPUT jack through 600』 impedance (R54 and A25R1). U7 either inverts or does not invert the output of U8 depending on its configuration determined by the states of U14C and U14D. When U14C is active, the amplifier is noninverting. When U14D is active, the amplifier is inverting.

Absolute Peak Detector. The input level to the assembly is sensed by the Absolute Peak Detector to determine if audio ranging is necessary. Range sensing is normally done by the Peak Detector (see Service Sheet 9). However, large signals of stopband frequency at the input to an active filter may go undetected by the Peak Detector and overdrive the filter. The Absolute Peak Detector and the Peak Detector are both read by the Voltmeter to determine the proper setting of audio gain.

The Absolute Peak Detector consists of an inverting, negative-peak detector (U6) and a non-inverting, positive-peak detector (U5) driving a common hold capacitor C44. The voltage across C44, then, is never negative. When the input voltage is negative, CR4 is off. The action of U5 is to turn on CR2 and reverse bias CR6 because the voltage across C44 is positive and the output of $U 5$ is at least one junction drop more negative than the negative input voltage. Ignoring those components that have no effect, the detector can be simplified as shown in Figure 8-48. The circuit shown is a conventional inverting, negative-peak detector.

When the input voltage is positive, CR2 is off. The action of U6 is to turn on CR4 and reverse bias CR5 because the voltage across C44 is positive and the output of U6 is one junction drop below ground. Ignoring those components that have no effect, the detector can be simplified as shown in Figure 8-49. The circuit shown is a conventional non-inverting, positive-peak detector.

CR1 and CR7 are protection diodes. The hold capacitor can be discharged by switching on Q1 via U15D at the request of the Controller. The detector's output goes to the Voltmeter.

Figure 8-48. The Absolute Peak Detector Shown as an Inverting. Negative-Peak Detector

Figure 8-49. The Absolute Peak Detector Shown as a Non-Inverting. Positive-Peak Detector

Audio Overvoltage Detector. The Audio Overvoltage Detector is a positive-peak detector followed by a comparator. If the peak input level should exceed +3.6 V , U9D goes low and resets register U19. This opens up the audio path from the 260 kHz Low-Pass Filters via the Modulation Selectors (see Service Sheet 7). The status of the detector is read by the Controller via gates U21D and U21C.

Digital Circuits. Some of the digital circuits on this assembly also control circuits on the FM Demodulator and Audio Filter Assemblies (see Service Sheet 6 and 7). For a general discussion of instrument control, see Instrument Bus, page 8-48.
The FM SQUELCH (L) line going to the FM Demodulator is both an input and an output line. FM is squelched when either the Squelch Detector (see Service Sheet 6) senses a low IF level or when the Controller requests squelch. In the former case the line goes low and resets flip-flop U22B. The status of squelch can then be read by the Controller via gates U21B and U21C. The Controller can reset squelch by clocking a low into U22B which pulls the FM SQUELCH (L) line low. (For a discussion of the readback operation, see Direct Control Special Functions, page 8-8).

8-78. Voltmeter (A5)-Service Sheet 9

General. The Voltmeter Assembly contains two ac-to-dc converters: the Peak Detector and the Average Detector. The input to the detectors is the output of the audio system and is a voltage proportional to AM depth, frequency deviation, or phase deviation.

Peak Detector Circuits. The peak-detecting circuitry consists of the Peak Detector, the Sample and-Hold Switch, and the Buffer Amplifier. U3 and Q1 comprise a high-gain comparison amplifier. The inverting (-) input of U3 is the non-inverting input of the overall comparator. If the inverting input of U3 is equal to or more positive than the voltage at the non-inverting (+) input, the output drives the collector of Q1 to follow the inverting input of U3. In doing this Q1 must charge C23. When the inverting input of U3 lowers, the output of U3 goes high and shuts off Q1. Since C 23 has no path to rapidly discharge, it remains at its previous potential which was the peak value of the input voltage.

Q8 is a Sample-and-Hold Switch which is periodically switched on (every 100 ms) to transfer the voltage
across C 23 on to C24. U5 is a high-impedance, unitygain buffer amplifier which minimizes bleeding of C 24 when Q 8 is off (in its hold mode). Astable multivibrator U7 controls the switching of Q8. Q8 is switched on by Q9 when the output of U7 goes low. The transfer frequency is determined primarily by R14 and C7. The transfer time is determined by C7 and either R13 (when Q10 is off) or R13 in parallel with R10 (when Q10 is on). Also, when U7 goes high, Q3 is momentarily turned on to rapidly discharge C23 (at this time Q8 is off). Thus, C23 must be recharged by the Peak Detector after each charge transfer cycle.

The result of the sample-and-hold sequence is to control the response time of the peak-detector circuit and to make it respond equally well to an increasing or decreasing input level. This is illustrated in Figure 8-50 where the response to a step increase and decrease in input level is shown.

Figure 8-50. Action of the Peak Detector Sample-and-Hold Filter
Normally, Q10 is off and the charge-transfer time is long enough for C 23 to be charged completely. This gives the fastest response time. To slow down the peak-detector response, Q10 is switched on (by issuing 5.1 SPCL). R10 then is switched in parallel with R13 which shortens the time U7 is low. (See schematic Note 4 for timing information.) R46 now prevents C23 from charging completely in one sample period. This slows down the response time and smooths the output for a noisy signal. When DETECTOR is set to PEAK HOLD, U7 is reset to switch Q8 into a permanent sample (on) mode. The voltage across C24 is then equal to the peak of the peaks. (In this mode the Controller also digitally holds the peak of the peaks read by the Voltmeter.)

Offset resistor R49 for U5 is adjusted under a nosignal condition to produce an output equal to the typical peak-detected noise level.

Average Detector. The Average Detector consists of the Half-Wave Rectifier followed by the Summer and Filter. The voltages and currents in the detector, for a sine wave input, are shown in Figure 8-51. The input voltage produces a current in R22. This current

OUTPUT VOLTAGE AT TPA
Figure 8-51. Waveforms in the Average Detector
is summed with the current in R23, also produced by the input voltage, which has been half-wave rectified and inverted. Since R23 is approximately half the value of R22 (and has a very stable resistance), the half-wave current is weighted by a factor of two when summed. The sum current, then, is proportional to the full-waverectified input voltage. After filtering, the sum current produces a dc voltage equal to the "absolute" average value of the input voltage. (The "actual" average of a sine wave is, of course, always zero.)
U2 and Q7 form an inverting amplifier with two feedback paths (one for each direction of current flow). For a positive input voltage, current flows through R8, R12, and CR6. Since the values of R8 and R12 are equal, the output of R12 is opposite and equal to the input voltage. For a negative input voltage, the current flows through R8 and CR7. Since no current flows through R12 (because CR6 is shut off), the output from R12 is zero. Q4 is a constant current source. Q7 is a common-base stage; its collector is a current source whose output current is determined by the output of U 2 . For a positive input voltage, Q7 must sink the current from Q4 and the load current through CR6. For a negative input voltage, Q7 sinks only the portion of the current from Q4 that does not flow through CR7. The effect of Q7 and Q3 is to enhance the ability of the circuit to rectify small input voltages by increasing the forward gain of the amplifier.
U1 sums the current in R22 and R23. The sum current flows through the feedback resistors R32 and R35 and filter capacitor C17 to produce a negative dc voltage proportional to the sum current. R37, C20, R38, and C21 add further filtering. The Average Detector has two offset adjustments. R29 is adjusted under a no-signal condition so that the detector output is zero with the Half-Wave Rectifier R7 adjusted to shut it off. R7 is then adjusted for a detector output equal to one half of the least significant digit normally displayed. (This compensates for the fact that this undisplayed digit is dropped and not rounded off.)

8-79. Voltmeter (A5)-Service Sheet 10

General. The Voltmeter Assembly contains the Input Clamps, Input Selectors, the Voltage-to-Time Converter portion of a digital dc voltmeter, and a Parity Check circuit.

Input Selectors and Input Clamps. Multiplexers U10, U11, and U12 form a 24 pole, singlethrow switch. The individual multiplexers are enabled by a low on the F input. U10 or U11 is enabled when the
code esd $=1 \mathrm{C} 0$ is issued on the Instrument Bus. After that, a code of the form esd=1Fd is issued to select a given input line. If $\mathrm{d} 3=1$, U 11 is enabled. If $\mathrm{d} 3=0$, U10 is enabled. The code esd=1C0 need not be re-issued to change the switching of U10 or U11. U1? is enabled when the code esd=1C4 is issued. After that, a code of the form esd $=1 \mathrm{Fd}$ is issued to select a given input line ($\mathrm{d} 3=0$ is not allowed here, for it would also enable U11). The selecting of U11 or U10 and U12 is via register U13B and exclusive-OR gate U9D. On the significance of the Instrument Bus codes, see Instrument Bus, page 8-48. Most analog inputs to the multiplexers are protected by two clamp diodes and a series resistor.

Voltage-to-Time Converter. The dc voltage at the Voltmeter input is converted to a pulse, with a duration proportional to the magnitude of the voltage, by the Voltageto-Time Converter. The pulse length is then measured by the Counter (see Service Sheet 17), digitally processed by the Controller, and displayed. The converter consists of the Comparator, Ramp Generator, and Voltage Reference.
The Voltage Reference supplies a voltage of known temperature stability to the input to the Ramp Generator. The basic reference is a temperaturestable reference diode VR4. The reference is fed from current source Q2, which itself is temperature stable because its base-emitter junction and its reference VR3 have similar thermal behavior. The negative reference supplies current to the inverting (-) input of U4 through R76 and R77. CR14, R71 and R72 add a slight temperature coefficient to the current to cancel the effect of the temperature coefficient of C30. The Voltmeter sensitivity is adjusted by means of R76.
U4 (with C30) integrates the negative input current to produce an increasing ramp. The ramp is generated only when Q6 is off (when the Ramp Gate (H) line is high). This is initiated by the Controller. When on, Q6 supplies a positive current to the inverting input of U 4 which overrides the current from the reference and turns on CR15. The output of U4 is thus clamped one junction drop below ground. Since the ramp begins at a rather imprecise voltage, each voltage measurement includes a measurement of ground which is then subtracted out.
The ramp begins when the Ramp Gate (H) line goes high. The output of comparator U6 at this time is low because the positive (or zero) voltage at its inverting (-) input is higher than the voltage at its non-inverting (+) input. The Counter now begins clocking the duration of the ramp. When the ramp reaches the voltage at the inverting input, the output of U6 goes high and inhibits the clocking of
the Counter. R79 and R81 add a small amount of hysteresis to the Comparator to assure a complete transition of the output once it begins to change.

Parity Check. The Parity Check circuit allows the Controller to test the integrity of the data lines of the Instrument Bus. To check parity, the Controller sends out the sixteen codes (esd=1F0 to esd=1FF). For each code, the output of exclusive-OR gate U9C is read back by the Controller. The output of U9C is low when $\mathrm{d} 0+\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3$ is even, or high when it is odd. On the significance of the Instrument Bus codes, see Instrument Bus, page 8-48. Parity is checked only during instrument power up (see Power Up Checks, page 8-17).

Digital Circuits. For a general discussion of instrument control, see Instrument Bus, page 8-48. For a discussion of the readback operation, see Direct Control Special Functions, page 8-8.

8-80. LO Divider (A19)-Service Sheet 11

General. The LO Divider Assembly converts the nominal 320 to 650 MHz signal from the High Frequency VCO to the appropriate range required to down-convert an $R F$ input signal to the IF frequency. The circuits consist of one frequency doubler, one through path, and eight binary dividers (i.e., divide-by-two's) for a total of ten ranges. The first two dividers and a separate third divider are always enabled to provide a 40 to 81.25 MHz signal for the Counter. Figure 8-52 shows the divider scheme.

Input Buffer and Doubler Circuits. U2 is a nonsaturating, high-frequency limiter which interfaces the High-Frequency VCO with the dividers and Frequency Doubler. The non-inverted output drives the first divider (U8). When in Band 0, the inverted output (the DIV Oline) drives the LO output jack (J3) via U10, U5, and CR9. The inverted output also drives the Frequency Doubler through the Doubler Input Filter.

Figure 8-52. LO Divider Scheme (Shown for Band 5)

The Doubler Input Filter is a five-pole, tuneable, low-pass filter which removes the odd-ordered harmonics of the High Frequency VCO input to maximize the signal output and minimize subharmonics which could cause spurious IF responses. The filter is tuned by varactor diodes CR2 to CR5 which are driven by the same voltage that tunes the High Frequency VCO (see Service Sheet 12). The tune voltage is filtered by R1 and C1, attenuated by R1, R20, R22, and R23, then offset and buffered by U3.
The Frequency Doubler (U4) is an active, full-wave rectifier. The input transformer (U4T1) produces two out-of-phase signals in its secondary windings which drive the two inputs of differential amplifier (U4Q1 and Q2). The two differential output amplifiers (U4Q3 and Q4) conduct current flowing only in one direction; their outputs are wired-OR and produce a train of negative, full-wave rectified pulses. R41 can be adjusted to improve the balance (i.e., minimize the fundamental and odd-harmonic feedthrough) and minimize the possibility of the $1 / 2$ and $3 / 2$ harmonics of the doubled signal causing an IF response.
The Doubler Output Gate and High-Pass Filter aids in further eliminating the $1 / 2$ harmonic of the doubled signal. PIN diodes CR7, CR8, and CR9 switch the signal either from the doubler or the dividers to the LO output jack. For the Band Doubler, CR7 and CR8 are on and CR9 is off.

Divider Circuits. The first two dividers (U8 and U7) are EECL devices; all others are ECL. Signal routing is done via gates, switchable limiters (e.g., U10 and U11), and PIN diodes. Except for Bands Doubler (Dblr), 0 , and 1 , the divider following the output divider is turned off to eliminate subharmonics which would be generated by leaving all dividers on. In the case of Band 2, U1A only is disabled. (This is not apparent in Figure 8-52.) Figure 8. 52 does show that on Band 5 , for example (where the output is taken from Divider 5, U6B), U8, U7, U1A, U6A, and U6B are all enabled and U12A is disabled (by setting it). The output of U6B is routed to the LO output jack via U13A, U14B, U9B, U11, U5, and CR9.

Divider and Gate Decoders. Band enabling and signal routing is controlled by the Divider-Disable/ Gate-Enable Decoder (U15 and U18). The decoder simply demultiplexes the esd $=00 \mathrm{~d}$ code generated by the Instrument Bus and latched by the LO Control circuitry (see Service Sheet 15). The d is unique for each band. Further decoding for the added switching complexity that arises on the
higher-frequency bands is accomplished by the GateEnable Decoders and Divider Output and Doubler Gate Drive circuits. For a general discussion of instrument control, see Instrument Bus, page 8-48.

8-81. Sampler (A23)-Service Sheet 12

General. The Sampler Assembly contains the Sampler and the HF VCO Tune Integrator and Amplifier. The assembly's output tunes the HF VCO and the Doubler Input Filter (see Service Sheet 11). Except for the track tune mode, the Sampler is used to phase lock the HF VCO to a tuneable, low-noise reference oscillator (the Low Frequency VCXO) when the LO has been tuned to the proper frequency. The Sampler is the phase detector of the phase lock loop. For principles of operation of the High Frequency VCO (A24), see page 8-69.

Sampler. The Sampler consists of the 2 MHz Limiter Amplifier, Impulse Generator, Sampling Bridge, and Sampler Amplifier. The Sampling Bridge is driven from the LF VCXO through the Impulse Generator. Once each cycle of the LF VCXO, the Impulse Generator produces a pulse which turns on the diodes of the Sampling Bridge for about 1 ns . At that time the signal from the HF VCO is sampled, and the sampled voltage is stored on a capacitor. If the HF VCO is frequency-coherent with a harmonic of the LF VCXO, the HF VCO will be sampled at the same point each time, and the output from the Sampling Bridge will be a dc voltage equal to the signal amplitude at the sample point. If the two signals are not frequency coherent, the output from the Sampling Bridge will be a sine wave with a frequency equal to the difference between the HF VCO and the nearest harmonic of the LF VCXO. This is illustrated in Figure 8-53.
The nominal 2 MHz signal from the LF VCXO is first squared by the 2 MHz Limiter Amplifier. The limiter keeps the drive level to the Impulse Generator constant to keep the sample time of the Sampling Bridge constant. The limiter consists of Q1 and Q2-a non-saturating, differential amplifier.
The limiter drives switch Q6. When Q6 is off (i.e., when Q2 is off), step-recovery diode CR3 is forward biased by R16, L7 and L8. When Q6 goes on, it quickly reverse biases CR3. CR3 then begins to conduct current in the reverse direction until the minority carriers, which had accumulated near the diode junction when forward biased, have been removed. The diode current then snaps off. Since this same current is flowing in L7 and L8, a large pair of impulses (or flyback voltages) are produced when the current ceases. C16 is a high-frequency ac

Figure 8.53. Sampler Operation
short. L7, L8, R19, R20, and the capacitance of CR3 form a carefully damped parallel resonant circuit to control the ringing of the impulses. $\mathrm{C} 18, \mathrm{~L} 10$, and C21 and C19, L11, and C22 form two high-pass filters to pass the impulse pair but filter out any lowfrequency 2 MHz signal. Tl is a balun which forces the impulse currents going to the Sampling Bridge to be opposite and equal to maintain balance in the bridge.
The Sampling Bridge consists of four matched, hot carrier diodes (CR6 to CR9). Normally, the diodes are reverse biased at approximately 4 V (through R27 and R28). When a sample pulse occurs, the current impulses from T1 simultaneously forward
bias all four diodes. This momentarily closes the signal path from the HF VCO to the gate of Q9B and charges C 25 to the level of the waveform at that instant. The 700 MHz Low-Pass Filter removes the third harmonic of the HF VCO which influences the gain of the phase lock loop by altering the slope of the waveform at the zero crossing.
The Sampler Amplifier is a dc to 5 MHz follower with feedback to automatically maintain a reverse bias of 4 V on the Sampling Bridge diodes regardless of the output from the bridge itself. A simplified schematic of the Sampler Amplifier is shown in Figure 8-54. Zener diodes VR2 and VR3 (represented as batteries in Figure 8-54), produce the bias refer-

Figure 8-54. Simplified Schematic of Sampler Amplifier
ence which is divided by R51, R54, R55, and R48. The junction of VR2 and VR3 is driven from the output of the unity-gain amplifier whose input is the output from the Sampling Bridge. Thus, as the level of the sampled voltage moves, the top and bottom of the Sampling Bridge move along with it, but the bias across the bridge is unchanged. The bias across the bridge is adjusted by R54.

Because of the short duration of the sampling pulse and the finite drive impedance of the HF VCO, the capacitance at the input to the Sampler Assembly normally fails to charge completely to the level of the HF VCO in one sample. (The input capacitance is the parallel combination of the stray capacitance and C25. C26 and C28 together are much larger than C25 and can be considered an ac short.) During the sample period, however, a voltage develops across C25 and thus across the differential input of the follower amplifier. This large differential error causes the output of the amplifier to rapidly discharge C25 to zero and, in doing so, it continues to charge the stray capacitance (and C26 and C28). The additional charging created by C 25 thus compensates for the inefficiency of the Sampling Bridge. R54 adjusts the sampling efficiency (by altering the bias across the bridge diodes) to match the sampling compensation and produce the optimum frequency response. R33 is adjusted to produce an output of zero volts when the phase error is zero.

HF VCO Tune Integrator and Amplifier and Bandwidth Loop Switching. The HF VCO Tune Integrator and Amplifier tunes the HF VCO and the Doubler Input Filter. It is configured in one of four different ways depending on the LO tune mode and the state of the mode. For a detailed discussion of the tuning modes, see Service Sheet BD1.

When the LO is configured with the DAC connected to the HF VCO, Q11 is off. (Q12 is on, but this is of little consequence here.I The HF VCO Tune Integrator and Amplifier and the DAC-to-VCO Loop Amplifier (A20U4B) of Service Sheet 14 form a unity-gain feedback amplifier. See Figure 8-55.

When the LO is configured as a phase lock loop, with the DAC connected to the LF VCXO, Q11 is on. While phase lock is being acquired and while tuning the LF VCXO, Q12 is on to provide a wide (fast) tuning bandwidth. Initially, the LF VCXO is low in -frequency. R46 produces a small current which causes the HF VCO to drift down into lock. After the HF VCO is locked and tuned, Q12 is turned off to narrow the bandwidth of the loop. The configuration is shown in Figure 8-56.

When the LO is configured for HF VCO sweep, Q11 is off. (Q12 is on, but this is of little consequence here.) The input to the HF VCO Tune Integrator and Amplifier is the Sweep Up and Sweep Down Current

Figure 8-55. Simplified Schematic of LO Configuration: DAC to HF VCO

Figure 8-56. Simplified Schematic of LO Configuration: DAC to LF VCXO [DAC Connection Not Shown]

Sources (see Service Sheet 14). The current is inte grated and produces a voltage ramp down (for sweep down) or up (for sweep up) at the output of U2.

When the LO is configured for track tuning, Q11 and Q12 are off. The input to the HF VCO Tune Integrator and Amplifier is the Track Loop Amplifier (see Service Sheet 14). The configuration forms a frequency lock loop with a do voltage (proportional to the IF frequency) from the FM Demodulator tuning the HF VCO.

Q10 shorts the output of the Sampler Amplifier when not connected to U2. Since the Sampler is always on, Q10 prevents any beat frequency from leaking into U2 and frequency modulating the HF VCO.

No-HF-VCO and Out-of-Lock Detectors. CR15 peak detects the RF signal from the HF VCO. If the detected level goes below the reference set by CR4 at the inverting input of U1A, the output of U1A goes low and turns on the NO HF VCO annunciator (DS1).

CR5 will peak detect an ac beat frequency on the output of the Sampler Amplifier. The beat frequency represents an out-of-lock condition. If the detected level exceeds the reference at the non-inverting input of U1B, the output of U1B goes low and turns on the OUT OFLOCK annunciator (DS2). When the Narrow Band control line is high (i.e., not narrow band), the high output of U1C causes DS2 to light. The phase lock loop is not considered to be locked in its final state until the narrow band filter has been switched in.

Power Supply Decoupling. Q5 multiplies the effect of Cl 2 to assist in decoupling RF on the +15 V supply. Q7 and Q8 multiply the effect of C13 to assist in decoupling the -15 V supply.

8-82. High Frequency VCO (A24)Service Sheet 12

General. The High Frequency Voltage Controlled Oscillator (VCO) is tuneable over the minimum range 320 to 650 MHz . It drives the LO Divider which produces the LO signal and the highfrequency input to the Sampler when the LO is locked to the LF VCXO. For principles of operation of the Sampler (A23), see page 8-65.

High Frequency VCO and Output Buffer Amplifiers. The High Frequency VCO is a negativeresistance oscillator. At the frequency of operation, the inductor (L9) in the base of Q1, together with the collector-base capacitance of Q1, creates a negative resistance at the emitter port which is in parallel with a parallel-resonant Tank Circuit (L7 and the capacitance of the series-connected varactor diodes CR3 and CR4). The negative resistance cancels the losses in the Tank Circuit and sets up RF oscillations at the tank circuit's resonant frequency.

Varactor diodes CR3 and CR4 permit voltage tuning of the oscillator. Increasing the reverse bias on CR3 and CR4, decreases the junction capacitance and increases the resonant frequency. L6 and L8 are RF chokes.
U1 and U2 are limiter amplifiers that buffer the HF VCO output and drive the LO Divider and Sampler respectively.

Tune Voltage Filter and Filter Switch. The Tune Voltage Filter is switched in when the LO is tuned to the RF input signal and the HF VCO has been locked to the LF VCXO. It is also switched in the track-tune mode. The filter prevents noise in the tuning circuits from frequency modulating the HF VCO. It must be switched gently so as to not perturb the tune voltage.
The filter is out when current source Q4 is on (which switches Q2 and Q3 on). The input voltage is sensed by follower amplifier U3B which drives the varactor diodes through switch Q3. R3 has no filtering effect.
To switch the filter in, Q2 and Q3 are switched off by Q4 (which is now off). U3B has no effect, but it has pre-charged C10 to the present dc level. The filter is formed by R3, R17, and C10 in a lead-lag configuration. C9, which is charged by Q4, controls the turn on rate so that the filter switches in slowly without causing phase lock to break. C31, C32, and C33 are RF decoupling capacitors.

VCO Tune Voltage Clamp. The VCO Tune Voltage Clamp prevents the tune voltage from forward biasing the varactor diodes (CR3 and CR4) whose anodes are biased at approximately -7.5 Vdc . The clamp reference is supplied by follower amplifier U3A which is referenced approximately one diode junction drop (CR6) above the varactor anode voltage. Clamp diode CR2 comes on when the tune voltage drops one junction drop below the output of U3A. If U3B were in the tune circuit, U3A would be supplying current to its output also. CR1 limits the current into the output of U3B by creating a current mirror-the current through CR1 and R2 is "mirrored" in CR2 and R3 since U3B is a voltage follower. CR5 sharpens the turn on characteristic of CR2. CR5 begins to conduct slightly when CR2 begins to conduct. The feedback action of U3A then causes its output to go more positive, which turns CR2 on harder.

Power Supply Decoupling. Q7 and Q8 multiply the effect of C7 and C8 respectively to assist in decoupling the +15 and -15 V supplies.

8-83. Low Frequency VCXO (A22)Service Sheet 13

General. The output of the Low Frequency VCXO Assembly is a tuneable, but frequency-stable, 2 MHz signal used as a reference to stabilize the HF VCO. The 2 MHz signal is obtained by mixing the output of two higher frequency, voltage controlled crystal oscillators (VCXOs), one at a nominal 9.26 MHz , the other at 11.26 MHz . The oscillators tune in opposite directions. The resultant difference fre quency from the mixer is a 2 MHz signal with a tuning range of $\pm 6.25 \mathrm{kHz}$. This tuning scheme permits a wide tuning range (at least for a crystal oscillator) and yet retains the high stability inherent in a crystal source. On the other hand, great care must be taken to filter out spurious mixing products which can result in residual FM tones if they appear on the LO .
9.26 and 11.26 MHz Crystal Oscillators. The two crystal oscillators are similar in design. The 9.26 MHz oscillator will be discussed here in detail. L2, C 15 , and C 16 shift the phase at the collector of Q8 by 180°. The divider formed by R17 and the resistance of CR1 and CR5 routes the in-phase signal (positive feedback) to the base of Q8 to reinforce oscillation. L1 is an RF choke which biases the collector of Q8. The emitter of Q8 contains the crystal (Y1) and a tuneable, series resonant LC circuit (L3, CR9, and CR11). The high Q circuit in the emitter of Q8
resonates near the resonant frequency of its collector .circuit. Since the gain of Q8 is highest and the phase shift of the emitter is zero when the emitter circuit goes series resonant, the emitter resonator determines the frequency of oscillation. Varactor diodes CR9 and CR11 are in ac parallel and dc series. Changing the reverse bias on the diodes tunes the oscillator. Increasing the reverse bias, increases the frequency. The varactor diodes (CR10 and CR12) in the emitter circuit of Q7 tune the 11.26 MHz oscillator in the direction opposite to 9.26 MHz oscillator.

The amplitude of the oscillators is stabilized in a manner that prevents the transistor from either saturating or cutting off at any time during the cycle of oscillation to maintain optimum Q and noise. The positive and negative peaks of each cycle are limited by passive diodes-CR6 limits the positive peak at the collector of Q8, CR2 limits the negative peak. In addition when the diodes conduct, C10 and C6 are charged to the value of the positive and negative peak respectively. The peak-to-peak voltage across the two capacitors then slowly leaks off through CR5 and CR1. The leakage current determines the resistance of the diodes and, hence, the amount of positive feedback to the base of Q8. The action of the peak-to-peak detector is to stabilize the amplitude of oscillation and maintain it at a level that is optimum for good noise performance.

Double Balanced Mixer. The output of the 9.26 MHz Crystal Oscillator is amplified and limited by Q5 and Q6 and drives the L (or high-level) port of the Double Balanced Mixer. Tl provides a de return for the collectors of Q5 and Q6 and a return for the X (or broadband) port of the mixer. The output of the 11.26 MHz Crystal Oscillator drives the R (or low-level) port of the mixer through amplifier Q4. Both amplifiers minimize loading of the respective oscillators. The High-Frequency Termination (C21, L7, and R29) maintains a constant 50Ω impedance at frequencies where the 2 MHz Low-Pass Filter appears as a high impedance and provides a place for high-frequency spurious signals to dissipate.

2 MHz Low-Pass Filter and Output Amplifier. The 2 MHz Low-Pass Filter is one of two filters that eliminate spurious mixing products from the LF VCXO. The other filter is in a separate housing (A21 Low Frequency VCXO Filter Assembly). The Output Amplifier isolates the two filters. It is a low-noise amplifier with an active input impedance created by the feedback resistor R31.

8-84. Low Frequency VCXO Filter (A21)Service Sheet 13

The Low Frequency VCXO Filter is a 2 MHz bandpass filter. In conjunction with the 2 MHz Low-Pass Filter on the A22 Low Frequency VCXO Assembly, the filter eliminates spurious mixing products on the LF VCXO. This filter is in an isolated compartment to minimize pickup from the other assembly. The first two elements of the filter are at the output of the other assembly (A22L10 and C28).

8-85. LO Control (A20)-Service Sheet 14

General. The LO Control Assembly contains various circuits related to the tuning of the LO. The circuits include: the Digital-to-Analog Converters with associated amplifiers, the Sweep Up and Sweep Down Current Sources, and the Track Loop Amplifier. The interaction of these circuits to accomplish tuning of the LO is most easily understood by referring to the discussion for Service Sheet BD1.

Digital-to-Analog Converters. The Digital-to-Analog Converters (DACs) tune the HF VCO and the LF VCXO. U10 and U12 convert the binary code on the inputs to an output current with a magnitude proportional to the weight of the bits. Conventional current flows in the direction indicated by the arrow in the current source of the DAC symbol. The DACs are referenced from a common Voltage Reference (Q9) through current-setting resistors R17 and R33 which have the same value. U19 and U12 thus produce equal outputs for equal digital inputs. R29, R30 and R31 form a current divider which attenuates the current from U12 before being summed with the current from U10. The weighting given to the current from U12 by the attenuator is such that a change in the most significant bit (input 128) has the same effect as a change in the second least significant bit (input 2) of U10. Thus the outputs of the two DACs overlap by two bits.
The summed currents from the converter are routed either through switch Q18 into the LF VCXO Tune Amplifier or through switch Q13 into the DAC Control Amplifier (which tunes the HF VCO). Normally, the voltage at the output of the DACs is near ground potential but is clamped by CR8 and CR11 if an abnormal condition occurs (such as both Q18 and Q13 off).

LF VCXO Tune Amplifier and Filter. Transistors Q19 to Q25 form a transresistance amplifier which converts the negative input current from the DACs (through switch Q18) into a positive voltage which
tunes the LF VCXO. Its output range is 0 to +40 V . The in put stage is the differential pair Q19 and Q21. Q20 is an intermediate stage. Complementary pair Q22 and Q23 is the output driver stage. Q25 is a current source which very slightly biases on Q22 and Q23 with the voltage drop across CR20. The current in Q25 is approximately equal to the current flowing in Q24 (which is a current mirror to Q25). Q24 is connected as a diode. C14 is for frequency compensation.
The tune voltage to the LF VCXO is filtered by a 0.7 Hz low-pass filter. The filter reduces the phase noise caused by the tuning circuits and determines the response time of the LO when locked. The filter is normally not switched in until lock has been acquired. The filter consists of R68 and C18. C18 is switched in by opto-isolator switch U14. When C18 is not in, it is being pre-charged through R62 and opto-isolator switch U13 to the level present on the output node of R68. This prevents a transient on the tune voltage which would cause a frequency error with a long settling time when C 18 is switched in. R64, R65, R66, and R67 simulate the bias condition of the varactor diodes which tune the LF VCXO (see Service Sheet 13), but the components are scaled down by a factor of ten because R 62 is one-tenth the resistance of R 68 .

DAC Control Amplifier. The DAC Control Amplifier is used during the preliminary tuning of the LO when the DAC tunes the HF VCO. During that time, both Q13 and Q11 are switched on and the DAC Control Amplifier is configured as part of a feedback loop (see Figure 8-54). The DAC Control Amplifier consists of transresistance amplifier (Current-toVoltage Converter) U4A and comparison amplifier (DAC-to-VCO Loop Amplifier) U4B. The negative current from the DACs generates a positive voltage at the output of U4A. In addition R46 adds a nega.tive offset to center the output range about 0 V .

Track Loop Amplifier. The Track Loop Amplifier is used principally in the track tune mode. It receives a dc voltage from the FM Demodulator which is proportional to the IF frequency. The voltage is buffered by U1 and attenuated by the resistor (R19 through R26) selected by demultiplexor U2. The variable attenuation compensates for the difference in LO tuning sensitivity caused by the different bands of the LO Divider. The Track Loop Amplifier couples onto the tune line via switch Q10.

Sweep Up and Sweep Down Current Sources. In the automatic signal seeking tune mode, the LO is swept down over each band. The Sweep Down

Current Source supplies a current that is integrated by the HF VCO Tune Integrator and Amplifier (see Service Sheet 12) to produce a voltage ramp which tunes the HF VCO. The Sweep Up Current Source produces a quick retrace ramp.

The Sweep Down Current Source is designed to produce a constant current which can be stopped abruptly when an IF response is produced. The Stop Sweep signal comes from the IF Present Detector (see Service Sheet 4). The current source (Q7) is biased from divider R52 and R53 through buffer Q6 which also thermally compensates the base-emitter junction of Q7. When sweeping, Q4 is off. When Q4 goes on, it diverts the emitter current of Q7 and shuts Q7 off. Q5 is normally off, but when Q4 is switched on, it too is switched on momentarily by the pulse of current through C12. Q5 then discharges the capacitance on the tune line.
To retrace the sweep, Q1 is switched on. This essentially connects R 77 to the -15 V supply and discharges the integrating capacitor on the HF VCO Tune Integrator and Amplifier.

Power Supply Decoupling. Q26 and Q27 multiply the effect of Q5 to assist in decoupling the +40 V supply.

8-86. LO Control (A20)-Service Sheet 15

The LO Control Assembly contains the Instrument Bus decoders and latches for the entire RF Section. The enable code for the section is $e=1$. For a general discussion of the operation and decoding of the Instrument Bus, see Instrument Bus, page 8-48. The Overpower Protect Status is read back on the Instrument Bus via Q16. CR26 prevents Q16 from becoming an active transistor in an inverted mode (i.e., the roles of collector and emitter are reversed) when the emitter is high and the collector is low. For a discussion of the readback operation, see Direct Control Special Functions, page 8-8. An overpower condition resets register U15 which opens the Overpower Relay (see Service Sheet 1), since the Overpower line goes high, and switches in maximum input attenuation. This is done without intervention of the Controller. Since the Overpower Detector follows the Overpower Relay, the overpower condition is removed immediately after U15 is reset. U15 remains reset until the Instrument Bus sends out the code esd $=0.04 \mathrm{~d}$, where data bit $\mathrm{d} 3=0$ (i.e., $\mathrm{d} 3(\mathrm{H})$ is low) provided that the overpower condition does not reset U15 again. U23A permits the Instrument Bus to either close the Overpower Relay or leave it in its present state, but not to open the relay.

8-87. Counter (A11)-Service Sheet 16

General. The Counter Assembly contains the 10 $\mathbf{M H z}$ Time Base Reference Oscillator (except for Option 002), the Time Base Select Switch, and the Time Base Dividers. The circuits provide a 2 MHz signal for the Controller clock, a 6.25 kHz signal for the Counter time base, and (for Option 002 only) a 10 $\mathbf{M H z}$ external time base output.

10 MHz Time Base Reference Oscillator and ECL-to-TTL-Level Translator. Except for instruments with Option 002, the clock and time base signals are derived from the 10 MHz Time Base Reference Oscillator. The ECL complementary OR gate (U2A) is used as the active device for the oscillator. The OR output of U2A is fed back to one input through the 10 MHz crystal (Y 1). R12D holds the other input low. The circuit oscillates at the frequency at which the phase shift through the feedback path is zero (namely, the series resonant frequency of Y1) to produce positive feedback. The resonant frequency can be adjusted slightly with C14. C17 and L2 form a parallel resonant circuit in the negative-feedback path which biases the input in the active region and prevents oscillation at harmonics of the crystal. C15 supplies a return path for ac currents; it is chosen to provide a low reactance under all operating conditions.
For instruments with Option 002, Y 1 is not present and U2A acts as a buffer for the 10 MHz signal which comes from the high-stability reference oscillator (see Service Sheet 23).

The time base reference is buffered by U2B and converted to logic levels which are compatible with TTL by Q4 and Q3. For instruments with Option 002, the output from Q3 is available at the rear-panel TIME BASE 10 MHz OUTPUT jack.

External Time Base Buffer and Time Base Select Switch. The Time Base Select Switch senses when a reference signal has been applied to the rear-panel TIME BASE 10 MHz INPUT jack and switches the reference over. The external reference is buffered and converted into sharp-transition, TTL-compatible pulses by the External Time Base Buffer. CR1 and CR2 are input protection diodes. R20 normally pulls the input to U4F high. When an external reference is present, C26 is discharged through CR3 by the lows present at the output of U4A. The result is that output of U4F goes high and the output of U4E goes low; DS1 turns on; and the output of U3B goes high (which shuts off the input from the internal reference). U3C and U3D are now enabled to gate the external reference.

When the output of U4E goes low, U3B is immediately disabled; at the same time, when the output of U4F goes high, CR4 and C28 delay the enabling of U3D. This prevents the possibility of the last internal reference pulse and the first external pulse from triggering U10A in rapid succession, which could cause the Controller to false trigger (the Controller receives its clock from U10A). CR5 and C29 perform a similar task when the reference is switched from external to internal. R10 increases the sensitivity of $U 21$ when the reference switches to external to assure that U21 will continue to trigger even though the input level should drop slightly. This provides hysteresis to the external level sensing circuits.

Time Base Dividers. U10A divides the selected (i.e., internal or external) 10 MHz reference by 5 . The 2 MHz , buffered by U4B, is used as the clock to the Controller. U9, U8, and U10B divide the 2 MHz signal by 320 . The 6.25 kHz output is the time base for the Counter.

8-88. Counter (A11)-Service Sheet 17 NOTE

The following discussions require understanding of the operation of the Instrument Bus (see Instrument Bus, page 8-48) and of Instrument Bus readback (see Direct Control Special Functions, page 8-8).

General. The Counter Assembly contains the first four counter stages, the Input Selector, gating circuits, and Count Transfer Logic. The final counter stages are in the Controller itself. Normally, the Counter counts the frequency of the input, but in the case of the Voltmeter it counts the 10 MHz Selected Time Base Reference as gated under control of the Voltmeter. When an input frequency is being counted, the Controller, as synchronized by the Time Base, enables and disables the counter stages. The duration of the count (i.e., the number of Time Base cycles per count cycle) depends on the input and resolution selected.

Stage 1. Stage 1 is the input stage to the Counter when counting the HF VCO $\div 8$ input; its output drives input 0 of the Input Selector (U7). When any other input is selected, the Input Selector routes it directly to Stage 2. Stage 1 consists of an ECL Divideby-Two stage (U1A) followed by a TTL Divide-by-Four stage (U6A and U6B). In each case, divide-by-two functions are created by feeding the active-low (reset) output from a D-type flip-flop back
to the D input. The ECL-to-TTL Level Translator (Q1 and Q2) shifts the logic level from U1A to make it compatible with the requirements of U6A. The outputs from U1A (via Q2), U6A, and U6B are fed to the D inputs of U5A for readback by the Controller at the end of a count sequence.
The Controller enables and disables the input to U1A by Counter Gate Control No. 1 flip-flop (U1B). To enable U1A, the Controller waits until the Time Base(L) line goes low and then issues and holds esd $=363$ on the Instrument Bus. The D input of U1B (which had been high) now goes low. When the Time Base(L) line (which had been high) goes low, the low at the D input of U1B is clocked into the activehigh output and enables U1A. This synchronizes the enabling of U1A with the Time Base. If the HF VCO $\div 8$ input is also high, it too must go low before U1B is clocked. The RC circuit (R23 and C27) at the output of U1B delays the enable input to U1A to insure that U1A will not be clocked until the next negative transition of the $\mathrm{HF} \mathrm{VCO} \div 8$ input.
To disable the count, the Controller issues esd=360 or 362 to the Instrument Bus. The D input to U1B now goes high. When the Time Base (L) input goes low, U1A is disabled in the manner described above for its enabling. Note that several cycles of the Time Base may have occurred during the count sequence, but that the Controller knows that Time Base(L) is high when it issues esd $=360$ to the Instrument Bus. After disabling the count, the Controller reads the count then issues esd $=370$ to reset Stage 1 and set U1B.

Input Selector and Stages 2, 3, and 4. The Input Selector (U7) multiplexes the input into Stage 2 of the Counter under direction of the Controller. It is also the enable and disable gate (via the G8input) to Stage 2. To enable Stage 2, the Controller issues esd=362 or 363 to the Instrument Bus. This puts a low on the D input of U16B. When the Time Base(H) line (which had been low) goes high, it clocks the active-high output of U16B to a low and enables the selected input of U7. The enabling of Stage 2 is thus synchronized with the Time Base.
To disable Stage 2, the Controller issues esd $=360$ to the Instrument Bus. The D input of U16B now goes high. When the Time Base (H) input goes high, U7 is disabled. Note that several cycles of the Time Base may have occurred during the count sequence, but that the Controller knows that Time Base (H) is low when it issues esd= 360 to the Instrument Bus. After disabling the count, the Controller reads the count then issues esd=370 to reset Stages 2, 3, and 4.
During the actual count, Counter Output Gate U14B is enabled and output 4 (the Counter Carry Output)
of Stage 4 (U19A) is read onto the Controller via line $\mathrm{d} 2(\mathrm{~L})$ of the Instrument bus. Similarly, the Time Base is read by the Controller via U14D and line $d 3(L)$.

Counter Output Gating. To read back the outputs of the counter stages after completion of a count sequence, the Controller issues esd=350 to the Instrument Bus. The output of U14C (which had been low) goes high and enables Counter Output Gates U15A, U15B, U15C, and U15D. The outputs of Stage 4 are inverted and placed on the readback data lines of the Instrument Bus. Next, the Controller issues esd $=340$ to the Instrument Bus. U20A goes high and U12C low. This causes Stage 4 to be loaded with the output of Stage 3 and also enables the Counter Output Gates since the output of U14C is high. The output of Stage 3 is thus placed on the Instrument Bus through Stage 4. In a similar manner the Controller issues esd=330 and esd=320 to copy the outputs of Stages 2 and 1 into the subsequent stages and onto the Instrument Bus.

Voltmeter Gate. The Voltmeter Gate routes the (10 MHz) Selected Time Base (TB) Reference into the Input Selector. The signal, however, is gated by the StopCount output from the Voltmeter's Comparator (see Service Sheet 10). The sequence is as follows: The Controller issues esd=362 to the Instrument Bus. After that, when the Time Base(H) line goes high, the active-low output of U16B goes high and initiates a ramp in the Voltmeter's Ramp Generator. At this time U7 is also enabled, and the 10 MHz Selected Time Base Reference is counted. After a period of time dependent upon the input voltage into the Comparator, the Stop Count line (which was low) goes high. This high causes U20C to block the input into U7 and stop the count. Some time later, the Controller issues esd $=360$ to the Instrument Bus and begins the process of reading back the count and clearing the counter stages.

Signature Analyzer Initialization. The Signature Analyzer (SA) Initialization circuit forces the Counter (including the Time Base) into a known, initial state when the Counter signature analysis routine is invoked. The Controller then exercises the counter circuitry in a repeatable sequence which produces a repetitive data pattern at each circuit node. The pattern is read by a signature analyzer which produces a signature unique to each data pattern. If the pattern agrees with that documented for the node, the circuits responsible for generating the pattern can be assumed to be working properly.

Select Decoder, Data Latch, and Oven Warm Readback. Circuit. For a general discussion of operation and decoding of the Instrument Bus, see Instrument Bus, page 8-48. The Oven Warm Readback Circuit allows the status of the Option 002 high-stability crystal oscillator to be read back by the Controller. It is called by Special Function 15. Q5 is enabled when a low is put on its emitter. It then acts as an inverter. Schottky diode CR6 prevents Q5 from becoming an active transistor in the inverted mode (i.e., the roles of collector and emitter are reversed) when the emitter is high and the collector is low. For a discussion of the readback operation, see Direct Control Special Functions, page 8-8.

8-89. Controller (A13)-Service Sheets 18 and 19

General. The Controller Assembly controls the entire automated portion of the operation of the instrument. The Controller consists of a microprocessor, ROMs, a RAM, and input/output circuits. The microprocessor, RAM, and I/O circuits are shown on Service Sheet 18, the ROMs on Service Sheets 19 and 22. For a general discussion of how
the Controller and the Instrument Bus control the operations of the instrument, see page 8-8.
Microprocessor. The microprocessor is divided into two ICs, the Central Processing Unit (CPU) and the Static Memory Interface (SMI). In addition a third IC, the Peripheral Input/Output (PIO) located on the Remote Interface Assembly (Service Sheet 22), is considered a part of the microprocessor. The PIO is used when it is necessary to interface the CPU with the HP-IB. The CPU (U14) is an eight-bit parallel processor. LC network $\mathrm{L1}, \mathrm{C} 10$, and C 11 determines the frequency of the CPU's internal clock. It is normally overridden by the 2 MHz signal on the Clock line from the Counter. If the Counter Assembly is removed, the internal clock takes over to keep the Controller functioning. The CPU inputs and outputs are described in Table 8-12.
The SMI provides most of the interface logic needed to address up to 65536 bytes of memory in the microprocessor system. In response to control signals from the CPU, the SMI generates the address and control signals needed by the memory devices. The SMI inputs and outputs are described in Table 8-13.

Table 8-12. Inputs and Outputs of the CPU (U14)

Pin Name	Description	Type
I/O00 thru I/O07	I/O Port Zero	Input/Output
I/O10 thru I/O17	I/O Port One	Input/Output
DB0 thru DB7	Data Bus Lines	Bi-directional (3-state)
ROMC0 thru ROMC4	Control Lines	Output
Φ WRITE	Clock Lines	Output
EXT RES	External Reset	Input
INT REQ	Interrupt Request	Input
ICB	Interrupt Control Bit	Output
RC	RC Network	Input
XTLX	Crystal Clock Line	Output
XTLY	External Clock Line	Input

Table 8-13. Inputs and Outputs of the SMI (U11)

Pin Name	Description	Type
DB0 thru DB7	Data Bus Lines	Bi-directional (3-state)
ADDR0 thru ADDR15	Address Lines	Output
ROMC0 thru ROMC4	Control Lines	Input
\$, WRITE	Clock Lines	Input
INT REQ	Interrupt Request	Output
PRI IN	Priority In Line	Input
RAM WRITE	Write Line	Output
EXT INT	External Interrupt	Input
REGDR	Line	Register Drive Line
CPU READ	Input/Output	

The PIO provides most of the interface logic needed to interface the CPU with the HP-IB. The PIO is described in Service Sheet 22.

Memory. The instrument's memory consists of nine 2048-bit ROMs (1 through 8 and 11), a RAM, and some small memory capability within the CPU itself. Eight of the ROMs (U3 through U10) are on the Controller Assembly. These ROMs are addressed as 1 through 8. The ninth ROM is located on the Remote Interface Assembly (A14) and is addressed as a decimal 11 (not hexadecimal as is the case with some special functions). The RAM is the CPU External Register (U15) and is a 256 -address, 4 -bit scratch pad memory used to read and write 4 bits (DB0-DB3) to and from the CPU. The Memory Decoders (U12 and U13) control which memory IC on the Controller Assembly is enabled. In addition, there is a Memory Select Decoder (A14U18) on the Remote Interface Assembly that is used to enable ROM 11 .
To illustrate how a ROM address is accessed for data, assume that the CPU wants to read information from address 255 of ROM 3 (U5). First, the CPU places the necessary information on the ROM Control (ROMC) and the data lines of the Control Bus. The SMI decodes this information from the CPU and outputs the required address information on lines $\mathrm{A} 0(\mathrm{H})$ through $\mathrm{A} 15(\mathrm{H})$ and then sets CPU $\operatorname{READ}(H)$ high. When the CPU READ (H) input to Schmitt trigger U1A goes high, the output goes low, and the output of U1B goes high. Note that the MEMORY DISABLE(L) line is held high because the input at the edge connector (shown on Service Sheet 19) is normally not connected.

Note that this is a read operation and the RAM WRITE(L) line from the SMI is high. Lines A14(H) and $\mathrm{A} 15(\mathrm{H})$ are low thus enabling U12. The $\mathrm{A} 11(\mathrm{H})$ and $\mathrm{A} 12(\mathrm{H})$ lines are high, and the $\mathrm{A} 13(\mathrm{H})$ line is low, therefore, the ROM $3(\mathrm{~L})$ output line is low. On Service Sheet 19 the ROM 3(L) line is low and ROM 3 (U5) is enabled because the other two inputs to the AND portion of the control block are always enabled.
Since $A 0(H)$ through $A 7(H)$ are high and $A 8(H)$ through $\mathrm{A} 10(\mathrm{H})$ are low, the data at address 255 is read out of the ROM. The 8 bits of information are placed on lines DBO(H) through DB7(H). This information is then read into the CPU (U14).
The RAM read and write functions are similar to the ROM function. The CPU READ(H) and RAM WRITE(L) lines are used to determine which function of the CPU External Register (U15) is activated. The U13 demultiplexer is used to enable U15. Note that by changing the position of the jumper between

U13 and U15 to the position between U12 and U15, U15 could be enabled with the ROM $8(\mathrm{~L})$ line. As it is, RAM resides in the address space of what would be ROM 16 .

TEST LEDs and Test Points. The TEST LEDs DS1 through DS4 are controlled by the CPU as described on page 8-17. The test points (TP4 through TP7) are used to modify the power-up routine as described on page 8-17 and are also used when performing signature analysis.

Select and Data Buffers. TheSelect and Data Buffers (U16 and U18) invert and buffer the I/O 00 through I/O 07 input/output lines from the CPU to the Instrument Bus. For a general discussion of the Instrument Bus, see page $8-48$. In addition data lines $\mathrm{d} 0(\mathrm{~L})$ through $\mathrm{d} 3(\mathrm{~L})$ are input to the CPU from the Instrument Bus.

Enable Decoder. The Enable Decoder (U17) decodes the $e(H)$ through $3(H)$ lines from the CPU into the eight individual enable lines $e=0(\mathrm{~L})$ through $\mathrm{e}=7 \mathrm{~L} \mathrm{~L}$. These are distributed throughout the instrument to enable the desired select decoder.

Power On Reset. The Power On Reset circuit (Q1 and U1C) is used to apply a momentary low on the EXT RES line of the CPU when power is applied to the instrument. When EXT RES is pulled low and then released, a program originating at memory address 0 is executed.

8-90. Keyboard (A1)-Service Sheet 20 NOTE

The following discussion requires understanding of the operation of the Instrument Bus (see Instrument Bus, page 8-48) and of Instrument Bus readback (see Direct Control Special Functions, page 8-8).

General. The Keyboard and Display Assembly interrupts the Controller when a key has been pressed and provides the circuitry that enables the Controller to determine which key was pressed.

Keystroke Detector. The Keystroke Detector pulses the External Interrupt line low when a key is pressed. When no key is down (i.e., key switches S1 through S41 open), the inverting (-) input to U39A is pulled low by R8B and R8C. The outputs of the Key Row Scanner U38 are normally in the high or
off state (the outputs are open-collector). The noninverting (+) input of U39A is biased at approximately +1.4 V . Thus for the condition when no key is pressed, the output of U39A is high, the output of U39B is low, and the output of U21A is high (i.e., no interrupt, see Service Sheet 18).

Pressing any key (e.g., the \% key S20) pulls the inverting input of U39A above +1.4 V (via R4E and R2F for the \% key). This causes U21A to go low and creates a Controller interrupt. U39A has an opencollector output. When U39A goes low, C5 is rapidly discharged to produce a low on the input to U39B. However, when U39A goes high, C5 can only charge via R10. This action holds the input to U39B low for at least 50 ms regardless of key bounce. R11 adds hysteresis to U39B to improve noise immunity and shorten the transition time of the input to U21A.

Key Scanners and Front-Panel Keys. When the Controller receives an interrupt, it immediately initiates a key scan routine. The scan must identify the pressed key before the key has been released even in the presence of key bounce. Consider the example of pressing the \% key (S20). The scan begins by the Controller issuing esd $=7 \mathrm{~F} 0$ to the Instrument Bus. This puts an active low on pin 4 of demultiplexor U38. More specifically, $e=7$ and $s=F$. Both 1 and 2 inputs are high since $\mathrm{s} 0=1$ and $\mathrm{s} 1=1$. A 3 is demultiplexed. $e=7(\mathrm{~L})$ is low and enables inputs G 4 and G 5 . The 4 input is enabled since $s 2=1$; the 5 input is disabled since $s 2=1$. Thus only the 3 output of the lower half of the demultiplexor (U38) enabled by input 4 is low.
The same Instrument Bus code enables the readback gates of U22 but not U23. More specifically, s3=1. Thus, the input to U21D is high. The two inputs to U21B are low. The NAND gates of U22 are enabled and function as inverters. U21C is low and the outputs of the NAND gates of U23 are high, i.e., off. The Controller reads back the data (d) lines and scans the data giving priority to the highest number decoded. Since all columns are held high by pull-up resistors, the Controller reads $\mathrm{d}=\mathrm{F}$. The \% key has no effect because the output at pin 7 of U38 is off at this time.

The Controller next issues esd=7E0. Pin 5 of U38 is now low. U22 is still enabled and U23 is still disabled. $d=F$ is read back. The sequence then continues with the issuance of esd=7D0 and 7C0 with the result that $d=F$ is read back each time until esd $=7 \mathrm{C} 0$ when $\mathrm{d}=\mathrm{B}$ will be read back; i.e., $\mathrm{d} 2=0$ ($\mathrm{d} 2(\mathrm{~L}$) is high). The Controller has now learned that the \% key was pressed.

If no key had been found in the first four columns, the sequence continues until the issuance of esd $=770$. With this code, the $33(\mathrm{H})$ input to U21C and U21D goes low, and U22 is disabled, and U23 is enabled. The Controller now starts reading the data lines from U23 to determine if one of the keys in the second four columns is closed.

If no key was found (i.e., $\mathrm{d}=\mathrm{F}$ always) due to key bounce, the scan repeats until 50 ms have elapsed and then the instrument reverts back to its previous mode of operation. Whether the key was found or not, the measurement cycle that was interrupted is aborted and a new software cycle is initiated.

8-91. Display (A1)-Service Sheet 21

The Keyboard and Display Assembly contains the front-panel displays, annunciators, and key lights and the decoders and latches that control them. Lighting of a display is accomplished by straightforward decoding of the Instrument Bus. For example, to display the digit 3 in display U2, the Controller issues esd=613 to the Instrument Bus. Output 1G of Select Decoder U24 goes low (uniquely) and enables the seven-segment coder U11. U11 decodes the data coded $=3$ and puts lows on segmentcontrol lines a, b, c, d, and g. The corresponding segments of U2 light to display a " 3 ". The segment information is latched in U11 when a different e, s, or es code is issued to the Instrument Bus. For a discussion of the Instrument Bus, see Instrument Bus, page 8-48.

8-92. Remote Interface (A14)-Service Sheet 22

General. The Remote Interface Assembly interfaces the Controller with the HP-IB. It performs the necessary handshake operation, interprets the HP-IB control lines, and is both an input and output peripheral to the Controller. The Remote Interface Assembly consists of three basic elements: the HP-IB I/O, the Handshake Logic, and the Interface Control circuits. In addition, other miscellaneous circuits are used on the assembly. The operation of the three basic elements is explained first. Then, a detailed explanation of how the bus controller (e.g., a computing controller) addresses the instrument to talk or to listen is presented. The miscellaneous circuits are then briefly discussed. Table 8 -14 lists and identifies the mnemonics used in the Remote Interface and should be referred to while reading the principles of operation.

Figure 8-14. Mnemonics for Remote Interiace

Mnemonic	Signal Name
AAD	Acceptor Accepted Data
ACD	Accepted Data
ADS	Addressed
AFC	Address Flip-Flop Clock
ARD	Accepted Received Data
ATL	Addressed to Listen
ATN	Attention
ATT	Addressed to Talk
AVD	Accept Valid Data
CLF	Clear Listen Flip-Flop
CTF	Clear Talk Flip-Flop
DAR	Disable ROM
DAV	Data Valid
DIO1	Data Input/ Output 1
DIO8	Data Input/Output 8
DFC	Data Accepted Flip-Flop Clock
EAH	Enable Acceptor Handshake
EIC	Enable Interface Control
ENR	Enable ROM
EOI	End Or Identify
ICP	Interrupt CPU
IFC	Interface Clear
LAD	Listener Accepted Data
LRD	Listener Ready for Data
NDAC	Not Data Accepted
NRFD	Not Ready for Data
RAS	Read Address Selector
RAT	Read Addressing Type
RDR	Reset DAC/RFD
REN	Remote Enable
RFC	REN Flip-Flop Clock
RFL	REN FlipFlop Latched
RSL	Read Switch Lower
RSU	Read Switch Upper
RTR	Ready to Receive
RVD	Receive Valid Data
SDA	Set Data Accepted
SDV	Set Data Valid
SLF	Set Listen Flip-Flop
SRQ	Service Request
STF	Set Talk Flip-Flop
UUA	Universal Unlisten Address

HP-IB I/O Circuits. The HP-IB I/O circuits provide bidirectional interface between the Remote Interface assembly and the HP-IB. The circuit consists of U1, U2, U5, and U6. When the TALK(L) line is low, the interface is configured to send data to the HP-IB. In this state, U2 and U6 are disabled, and since they are open collector devices, they are essentially out of the circuit. U1 and U5 provide a direct path from the Peripheral Input/Output (U13) to the HP-IB. When the $\operatorname{TALK}(\mathrm{L})$ line is high, the Remote Interface is configured to receive data from the HP-IB. In this mode, U2 and U6 are enabled, and the path through Ul and U5 is reversed. This allows data from the HP-IB to be applied to the Peripheral Input/Output (U13), the Address Decoder (U8), and the Interface Control ROM (U17). Depending upon the function
being performed, this data is either sent to the Controller or used to decode the talk or listen address.

Handshake Logic Circuits. Information is communicated over the HP-IB by means of handshakes between instruments. It is assumed in this discussion that you are familiar with the use of the DAV, NDAC, and NRFD signals as they are used on the HP-IB. The instrument can operate as either a talker or a listener when so directed by the bus controller. The primary control circuits in the Handshake Logic are the DAC Flip-Flop (U15B) and gates U12A, U12B, and U19B.

When the instrument is a listener, the ATLL lline is low, and the high output from U19B enables U1ㄹA and U12B. This condition is also true when ATNiL_, goes low and is discussed in detail later. In either case, the DAC Flip-Flop (U15B) controls the handshake. If U15B is set, the RTR(L) line from the reset output is low, and the NRFD (L) line from U12B is high indicating that the instrument is ready to receive data. The $\mathrm{ACD}(\mathrm{L})$ line from the active-high output of U15B is high, and (since the other input to U12A is also high), the NDAC(L) line is low. When the bus controller sees all of the required NRFI) L_{1} lines high (more than one instrument can be addressed to listen), it sets DAV(L) low. When DAV(L) goes low (indicating the data on the HP-IB is valid, the Interface Control ROM either sets EXT INT low or resets U15B by setting SDA(L)low, depending on whether or not the CPU must be interrupted. ISee Table 8-15 for a complete list of the Interface Control ROM input and output signals.) If the CPU is interrupted, it will reset U15B using the DCFiL, line. In either case, $A C D(L)$ goes low and the NDAC(L) line from U12A goes high. When the bus controller sees all of NDAC(L) lines go high, it sets $\mathrm{DAV}(\mathrm{L})$ high. The $\mathrm{DAV}(\mathrm{L})$ signal is applied through gates U4B, U20B, and U21B to set the DAC FlipFlop (U15B). Gates U20B and U21B are used to slow down the handshake and prevent a possible race condition. When the DAC Flip-Flop is set, the instrument is returned to a ready-for-data condition.
When the instrument is a talker, the output from U19B is low because both the ATL(L) and the ATN(L) lines are high. The low output from U19B disables U12A and U12B. This prevents the DAC Flip-Flop from driving the NDAC(L) and NRFD L_{L}) HP-IB lines. The Controller (A13) now reads the NDAC(L) line through U4C and U21C and the NRFD(L) line through U4D and U21D. Both of these signals are routed to the Controller through the Peripheral Input/Output (U13). The DAVIL) signal is driven by the Controller through U13 and U12C

Table 8-15. Inputs and Outputs of Interface Control ROM

Address						Data								Remarks**
Binary Bit Value					$\begin{aligned} & H \\ & \mathbf{e} \\ & \mathbf{x} \end{aligned}$	Bit								
16	8	4	2	1		7	6	5	4	3	2	1	0	
Pin Number									Pin 1	mber				
14	13	12	11	10		9	7	6	5	4	3	2	1	
L	L	L	L	L	00	H	*	H	H	H	H	*	L	SCG so AHS only.
L	L	L	L	H	01	H		L	H	H	H			OTA so CTF and AHS.
L	L	L	H	L	02	H	*	H	H	H	H		L	OLA so AHS only.
L	L	L	H	H	03	L	*	H	H	H	H		H	UBC so INT only.
L	L	H	L	L	04	H		H	H	H	H			SCG so AHS only.
L	L	H	L	H	05	H		L	H	H	H		L	UNT so CTF and AHS.
L	L	H	H	1	06	H	*	H	H	L	H		L	UNL so CIF and AHS.
L	L	H	H	H	07	H		H	H	H	H		L	NRC so AHS only.
L	H	L	L	L	08	H		H	H	H	H		L	SCG so AHS only.
L	H	L	L	H	09	H		H	L	L	H		L	MTA so STF, CLF, and AHS.
L	H	L	H	L	0A	L		L	H	H	L		H	MLA so SLF, CTF, and INT.
L	H	L	H	H	OB	L		H	H	H	H		H	UBC so INT only.
L	H	H	L	1	${ }^{0} \mathrm{C}$	H		H	H	H	H		L	SCG so AHS only.
L	H	H	L	H	OD	H		L	H	H	H		L	UNT so CTF and AHS.
L	H	H	H	L	OE	H		H	H	L	H		L	UNL so CLF and AHS.
L	H	H	H	H	OF	H		H	H	H	H		L	NRC so AHS only.
H	L	L	L	L	10	L		H	H	H	H		H	DATA so INT only.
H	L	L	L	H	11	L		H	H	H	H			DATA so INT only.
H	L	L	H	L	12	L		H	H	H	H			DATA so INT only.
H	L	L	H	H	13	H		H	H	H	H		L	CDATA so AHS only.
H	L	H	L	L	14	L		H	H	H	H			DATA so INT only.
H	L	H	L	H	15	L		H	H	H	H		H	DATA so INT only.
H	L	H	H	L	16	L		H	H	H	H		H	DATA so INT only.
H	L	H	H	H	17	H		H	H	H	H		L	CDATA so AHS only.
H	H	L	L	L	18	L		H	H	H	H		H	DATA so INT only.
H	H	L	L	H	19	L		H	H	H	H		H	DATA so INT only.
H	H	L	H	L	1A	L	*	H	H	H	H			DATA so INT only.
H	H	L	H	H	1B	H		H	H	H	H			CDATA so AHS only.
H	H	H	L	L	${ }^{1} \mathrm{C}$	L		H	H	H	H		H	DATA so INT only.
H	H	H	L	H	1D	L	*	H	H	H	H			DATA so INT only.
H	H	H	H	L	1E	L		H	H	H	H			DATA so INT only.
H	H	H	H	H	IF	H	*	H	H	H	H		L	CDATA so AHS only.

* Don't care condition.
** The outputs are active low. The functions of each output are:
Bit 7: INT, interrupts CPU.
Bit 6: Don't Care (NC).
Bit 5: CTF, clear Talk Flip-Flop.
Bit 4: STF, set Talk Flip-Flop.
Bit 3: CLF, clear Listen Flip-Flop.
Bit 2: SLF, set Listen Flip-Flop.
Bit 1: Don't care (NC).
Bit 0: AHS, automatic handshake.

Mnemonics used:
CDATA: DATA from Control group.
DATA: DATA (interface responds).
MLA: My Listen Address.
MTA: My Talk Address.
NRC: Non-Recognized Command.
OLA: Other Listen Address.
OTA: Other Talk Address.
SCG: Secondary Group Command.
UBC: Universal Bus Command.
UNL: Un-Listen.
UNT: Un-Talk.
by the SDV(H) line. U21C is enabled by U20A when the TALK(L) line is low. In the talker mode, the handshaking is entirely controlled by the instrument's firmware and Controller.

Interface Control Circuits. The primary control element in the Interface Control circuits is the Interface Control ROM (U17). U17 is enabled when all the following conditions are satisfied:

1. $\operatorname{RTR}(\mathrm{L})$ is low. This indicates the instrument is ready to receive data or commands.
2. EAH(L) is low. This enables an acceptor handshake. It is decoded from the ATL and ATN lines by U20D. Therefore, if the instrument is addressed to listen or if attention is true, the gate is enabled.
3. U19C pin 8 is low. This indicates that the Controller (A13) has enabled the interface to receive data. This state is latched by the flip-flop consisting of U19C and U19D. This flip-flop is also used to disable the Interface Control ROM (U17) when the Remote Interface is preparing to talk. U17 is disabled so that its control circuits do not respond to the data that the instrument itself is sending.
4. $\operatorname{AVD}(\mathrm{L})$ is low. This indicates that the bus controller is asserting that the data on the HP-IB is valid by putting $\operatorname{DAV}(\mathrm{L})$ low.
When all of these conditions are true, U17 is enabled by setting the EIC(L) line from U20C low. The outputs of U17 are then dependent upon the decoded address line inputs. Depending upon the selected output, the Interface Control ROM will set or clear the appropriate flip-flops, complete a handshake, or interrupt the Controller. The 32 possible states of the output lines are listed and defined in Table 8-15.

How the Remote Interface Handshakes with the HP-IB. The Remote Interface circuits control the asynchronous transfer of bytes over the HP-IB. The following three conditions require that the instrument complete the handshake requirements:

1. When it is a bystander.
2. When the ATN(L) line is low (true). For example, when the bus controller is addressing the instrument to set it to the talk or listen modes. There are also universal commands that can be sent when ATN(L) is low.
3. When it is already addressed to talk or listen.

The instrument handshakes as a bystander whenever ATN(L) is high and it is not addressed to listen. Actually, this handshake is not an interchange of information because under these conditions the instrument never pulls the NRFD(L) and NDAC(L) output lines low. These lines are held high because

ATL(L) and the ATN(L) inputs to U19B remain high. ATL(L) remains high because the instrument is not currently addressed to listen. ATN(L) remains high because it is high at the HP-IB and the signal is applied through two inverters (U4E and U21A) to the input of U19B. The resulting low output is applied to U12A and U12B and the NRFD(L) and NDAC(L) lines are always high. In this mode, the Modulation Analyzer is essentially "off the bus". Note that the DAC Flip-Flop (U15B) is also applied to these gates and depending upon its output state would also hold one of the gate outputs high if ATN were true or ATL were true.
When the bus controller wants to address the instrument to talk, ATN (L) is set low. The output of U19B goes high and the status of the NRFD(L) line (U12B) and the status of the NDAC(L) line are controlled by the DAC Flip-Flop (U15B). (The DAC Flip-Flop is already set by DAV(L) being high through U4B, U20B, and U21B). This causes the RTR(L) line from the DAC Flip-Flop to set NRFD(L) high. The bus controller has already placed the instrument's talk address on the bus and it now pulls $\operatorname{DAV}(\mathrm{L})$ low indicating that it is valid data.
Since the instrument is not yet addressed to talk, the TALK(L) input to the HP-IB I/O circuits (U1, U5, U2, and U6) is high. The talk address on lines DIO1(L) through DIO5(L) is applied through U1 and U5 to the Address Decoder comparator U8. U8 compares the incoming address with the setting of the first five address switches (S 1). If they are the instrument's correct address, the $\mathrm{M}=\mathrm{N}$ output of U8 goes high. The data on DIO7(L) and DIO6(L) is applied to the Interface Control ROM (U17) to determine whether the instrument is being addressed to talk or to listen. If it is being addressed to talk DIO7(L) is low and DIO6(L) is high (i.e., 10). If it is being addressed to listen, DIO7(L) is high and DIO6(L) is low (i.e., 01). These two bits are the only difference between the DIO inputs from the bus controller to the instrument when it is being set to talk or listen.
The EIC(L) from U20C is low to enable U17 and the other inputs to the address lines of U17 select the memory locations that will set output pin 5 to low. The STF(L) line sets the Talk flip-flop U16A. At the same time, the SDA(L) output at pin 1 of U17 is low and resets the DAC Flip-Flop (U15B). The low output from pin 9 of U15B is applied to U12A and the $\mathrm{NDAC}(\mathrm{L})$ line goes high, indicating that the handshake is complete. Note that the CPU did not need to be interrupted.

Remote Enable Flip-Flop. When the instrument is addressed to listen, the CPU is interrupted and must
determine whether or not it has been enabled to the remote mode (or whether it is already in the remote mode). The Controller does this by attempting to set the Remote Enable Flip-Flop (U15A). If the REN(L) line on the HP-IB is low (true), it is inverted by U4F and the reset input to U15A pin 1 is high. In this case U15A can be set by the Controller. Conversely, if REN (L) is high, the reset input is low and U15A is held reset. The Controller checks the set output of U15A RNL(H) through inverter U22A and the Peripheral Input/Output (U13). If the instrument receives its listen address and if the output of U15A is high, it enters remote mode and lights the REMOTE annunciator on the front panel.

Serial Poll Enable Flip-Flop. When the Controller recognizes the SPE (Serial Poll Enable) bus command, the CPU is interrupted and attempts to set the Serial Poll Flip-Flop (U3B). IFC(L) from the HP-IB is applied through U4A and U22D to the reset input of U3B. If IFC(L) is high the Serial Poll Flip-Flop can be set; if it is low, U3B is held reset. If U3B is set, the instrument enters the serial poll mode, and this information is read back via the Instrument Bus to the Controller through U9D. When the instrument is subsequently addressed to talk, it again reads back the output of U3B to determine what information to output to the HP-IB: measurement results or the status byte. If it is still in the serial poll mode, the status byte is output. When the SPD (Serial Poll Disable) bus command is received, the Controller resets U3B.

Other Control Lines. The remaining HP-IB control lines to the instrument are EOI(L), SRQ(L), and $\operatorname{IFC}(\mathrm{L}) . \mathrm{EOI}(\mathrm{L})$ is not used by the instrument and is terminated in R7N and R7P.SRQ(L) is output to the HP-IB under Controller direction through U13. IFC(L) is used to clear all talkers and listeners off the HP-IB. IFC(L) is buffered into four lines. At the output of U4A, after CR1, one line is applied to the Address Comparator (U8) to disable it. This keeps
the Interface Control ROM (U17) from affecting either the Talk or Listen Flip-Flop while IFC is true. Two additional lines (from U21E and U21F) clear the Talk and Listen Flip-Flops (U16A and U16B). The fourth line (from U22D) clears the Serial Poll Flip-Flop.
Address Readback Circuit. When so directed by the operator, the Controller sequentially reads back the status of the Address Switches (SIA through SIE) and the talk-only and listen-only switches (S1G and S1F). This information is processed through gates U9 and U10 under control of the RSU(L) and RSL(L) lines from the Select Decoder (U11). The Controller's internal RAM is also read for service request (SRQ) status. The front-panel display shows not only the HP-IB address and the talk-only or listen-only status but also whether or not it is issuing a Service Request (SRQ). (See Special Function 21.0 in the Detailed Operating Information section of the Operating Manual.)
Peripheral Input/Output. The Peripheral Input/ Output (U13) provides the required I/O interface between the Controller and the HP-IB. Refer to Table 8-16 for a description of inputs and outputs of U13.

P/O Controller. The P/O (part of) Controller circuit consists of Memory Select Decoder (U18) and ROM 11 (U14). This circuit is part of the Controller firmware and contains the HP-IB and limit programs. The instrument will operate with the Remote Interface Assembly removed. However, the HP-IB and limit capabilities are lost when ROM 11 is not present. The instrument will indicate this condition by displaying a check sum error after power up or upon interrogation. For an explanation of how the Controller ROMs are decoded, refer to Service Sheet 18.

Select Decoder. For a general discussion of instrument control, see Instrument Bus, page 8-48.

Table 8-16. Inputs and Outputs of the PIO (U13)

Pin Name	Description	Type
I/O A0 thru I/O A7	I/O Port A	Input/Output
I/O B0 thru I/O B7	I/O Port B	Input/Output
DB0 through DB7	Data Bus Lines	Bi-directional (3-state)
ROMC0 through		
ROMC4	Control Lines	Input
\$, WRITE	Clock Lines	Input
EXT INT	External Interrupt	Input
PRI IN	Priority In	Input
PRI OUT	Priority Out	Output
INT REQ	Interrupt Request	Output
DBDR	Data Bus Drive	Output

8-93. Power Supply Regulators (A10)Service Sheet 23

General. The Power Supply Regulators Assembly (A10) and the Power Supply Mother Board Assembly (A26) contain the circuitry for the +15 and -15 V supplies. The two supplies are nearly exact comple ments (i.e., all polarities reversed, NPN transistors interchanged for PNP, etc.) except that the -15 V supply is referenced from the +15 V supply (via R26 and R27) and is not adjustable. Also, the +15 V supply remains on when the instrument is in standby and its output is switched to drive only the high-stability crystal reference oscillator in Option 002 . Only the +15 V supply will be discussed.
+15 V Supply. The +15 V supply is a series-type regulator. A29Q2 is the series-pass transistor which is configured as a Darlington pair. The series-pass transistor is suppled from a full-wave rectifier (chassis part T1 and A26CR7 and CR8) and filter capacitor A26C3. The Input Over-Voltage Protection circuit (or crowbar), consisting of triac A26Q1, reference diodes A26VR1 and VR2, and A26R1, protects the instrument against improper line selection. The reference diodes cause the triac to fire (i.e., short-circuit) when the secondary voltage exceeds approximately 70 V of either polarity. The shorted secondary then causes the line fuse to blow.
The output of the supply is divided down by R23, R24, and R25 and compared to the voltage across a reference diode (VR1) by the differential amplifier Q7 and Q9. Q8 is an intermediate stage that drives the series-pass regulator. CR1 and CR4 protect the base-emitter junctions of Q7 and Q9. C4 filters the noise from the reference diode.
Q12 senses the voltage drop across R7. If the voltage is too large (because of too much output current), Q12 biases on Q13 which reduces the base-to-emitter drive of the series-pass transistor. The supply voltage drops to zero and the output current drops (or folds back) to a safe level. C1 prevents the supply from oscillating when it has folded back.
Q10 switches the supply sense line from the output side of relay A26K1 to the input side when the relay opens. The relay is energized by the unregulated +15 V supply through the ON/STBY switch (chassis part S1 on Service Sheet 20). VR2 and Q1 form an Over-Voltage Protection circuit for the +15 V supply. Should the output of the supply exceed approximately $+16 \mathrm{~V}, \mathrm{VR} 2$ conducts and fires SCR Q1 which shorts the supply. The supply then folds back. CR6 protects the supply should the output connect to a negative-polarity supply. VR4 conducts and lights LED DSI when the supply is at approximately the right voltage.

8-94. Power Supply Regulators (A10)Service Sheet 24

General. The Power Supply Regulators Assembly (A10) and the Power Supply Mother Board Assembly (126) contain the circuitry for the $+40,+5$, and -51 supplies. The +5 and -5 V supplies are nearly exact complements (i.e., all polarities reversed, NPN transistors interchanged for PNP, etc.). Both supplies are referenced from the +15 V supply and are not adjustable. Only the +40 and the +5 V supplies will be discussed.
+40 V Supply. The +40 V supply is a series-type regulator. Q15 is the series-pass transistor. The series-pass transistor is supplied from a half-wave rectifier (chassis part T1 on Service Sheet 23 and CR8) and filter capacitor C11. The output of the supply is divided down by R39 and R40 and compared to the +15 V supply by the differential amplifier Q16 and Q17.Q14 is an intermediate stage that drives the series-pass regulator. CR9 and CR10 protect the base-emitter junctions of Q16 and Q17. C12 filters the noise from the +15 V supply. R38 and CR11 bring up the supply when the instrument is turned on.

VR6 and Q3 form an Over-Voltage Protection circuit for the +40 V supply. Should the output of the supply exceed approximately +47 V, VR3 conducts and fires SCR Q3 which shorts the supply and blows F3. CR14 protects the supply should the output connect to a negative-polarity supply. VR7 conducts and switches on Q4 to light LED I)S3 when the supply is at approximately the right voltage.
+5 V Supply. The +5 V supply is a series-type regulator. A29Q1 is the series-pass transistor which is configured as a Darlington pair. The series-pass transistor is supplied from a full-wave rectifier (chassis part T1 and A26CR2 and CR3 on Service Sheet 23) and filter capacitor A26C1 on Service Sheet 23 . The output of the supply is compared to the voltage of the +15 V supply divided down by R50 and R51) by the Comparison Amplifier (UlC) which drives the series-pass regulator.

Over-Current Protection amplifier U1D senses the voltage drop across R58. If the voltage is too large (because of too much output current), the output of U1D goes low which reduces the baseto-emitter drive of the series-pass transistor. The supply voltage drops to zero and the output current drops cor folds back) to a safe level. CR12 and CR15 prevent U1D from having an effect on the supply when the output current is at a normal level. Cl frequency compensates the supply.

VR8 and Q2 form an Over-Voltage Protection circuit for the +5 V supply. Should the output of the supply exceed approximately +5.6 V , VR2 conducts and fires SCR Q2 which shorts the supply. The supply then folds back. CR17 protects the supply should the output connect to a negative-polarity supply. VR10 conducts and lights LED DS4 when the supply is at approximately the right voltage.

8-95. FM Calibrator (Option 010, A51)Service Sheet 28

General. The FM Calibrator provides a 10.1 MHz signal with an amount of FM which can be determined by the Controller. It also is the source of RF for the AM Calibrator (see Service Sheet 29).
10.1 MHz VCO and Output Amplifier. The 10.1 MHz VoltageControlled Oscillator (VCO) is Colpitts type. Q7 provides the gain necessary for oscillation. The tank circuit is composed of the series combination of C16 and C17 in parallel with CR3, CR5, CR6, C20, and L7 in series with L6. Varactor diodes CR3, CR5, and CR6 tune the oscillator approximately 68 kHz peak-to-peak. Q8 is a temperature-compensated current source for the emitter of Q7. Q2 provides a regulated, positive supply for the oscillator and the varactor cathodes; it has a thermal characteristic which compensates for the frequency drift caused by the varactor diodes. C18 and C19 assure that the supply has a low ac impedance. Current source Q4 provides a stable reference voltage across R32 for the base of Q2.
The output from the oscillator, taken from the inductive divider L6 and L7, is buffered by differential pair Q6 and Q1 and drives the AM Calibrator. The base of Q1 is referenced to the output of the Oscillator Collector Supply. Q3 is a constant-current source for the emitters of Q1 and Q6. Q5 is a common-base isolation amplifier which drives the Counter Buffer (U9).

Trapezoid Generation Circuits. The trapezoid generation circuits create a 10 kHz trapezoidal waveform with rounded corners that drives the varactor diodes of the 10.1 MHz VCO. The waveform must rise and fall to full value with a transition time that causes no ringing when the FM signal is demodulated by the FM Demodulator and fed through the audio circuits which have been set for maximum bandwidth. In generating the trapezoidal waveform, a triangle wave is first generated then limited.
Several points in the triangle generation circuits require stable reference voltages. The basic reference is a temperature-stable reference diode VR2. The
reference is fed from current source Q13, which itself is temperature stable because its base-emitter junction and its reference (VR1) have similar thermal behavior. The output of the Voltage Reference (taken with respect to the -15 V (F) supply) is divided by two by R7 and R8 and converted into a constant current by Current Source U2 and Q11 and by U1 and Q10.

U1 produces a constant voltage across R14 which then generates a constant current. This current also flows through R11, R12, and R13 to produce a constant, but adjustable, voltage at the noninverting (+) input of U3. U3 is a voltage follower which provides the reference (approximately -5 $V d c)$ to the non-inverting input of $U 4$.

The Triangle Generator is an integrator configured as a relaxation oscillator. U4 and C 11 form the integrator. When the activehigh output of U5A is high (i.e., 0 V), the 5 V developed across R 19 produces a constant current which, being integrated, produces a negative-slope ramp at the output of U4. Conversely, when the output of U5A goes low (i.e., -10 V), the 5 V of opposite polarity developed across R19 produces a positive-slope ramp at the output of U4.

The output of U 4 is compared with two references; viz., ground by U6B and -10 V by U6A. When the negative-slope ramp reaches -10 V , U6A switches from low to high and resets (the formerly set) U5A. The ramp now slopes positively and U6A releases its reset on U5A. When the positive-slope ramp reaches 0V, U6B switches from low to high and sets U5A. The ramp now slopes negatively and U6B releases its set on U5A. Thus, a triangle wave is generated at the output of U4. If the non-inverting input of U6C or U6D is high, the effect of U6B or U6A is overridden and U5A is held either with a set or a reset. U4 falls or rises until CR7 and VR3 or CR8 and VR4 come on and clamp the output of U 4 at approximately -10 or 0 V .

The triangle wave from U 4 is attenuated by a factor of 14 by R21 and R22 and then amplified and limited by the Trapezoid Generator. The Trapezoid Generator is a differential pair, Q9A and Q9B, which has a gain of 1.3 (i.e., one-half the ratio of R27 to the sum of R26 and the emitter resistance of Q9A) when both Q9A and Q9B are active. The triangle's positive-going slope turns on Q9B fully, which turns off Q9A. The resulting $0 V$ on the collector of Q9A tunes the VCO to the low end of its range. The negative-going slope turns Q9B off, which allows all of the current from Q11 to flow through Q9A. This produces a negative voltage limit at the collector of Q9A. The resulting -0.33 V tunes the VCO to the
upper end of its range. The large emitter resistors (R23 and R26) round the waveform as the limits of the output voltage are reached.
-10V Regulator. The -10V Regulator drops the level of the -15 V supply and is the negative supply for U5A.

Select Decoder and Data Latch. For a general discussion of instrument control, see Instrument Bus, page 8-48.

8-96. AM Calibrator (Option 010, A50)Service Sheet 29

General. The AM Calibrator provides a 10.1 MHz signal with an amount of AM which can be determined by the Controller. The output of the calibrator appears at the CALIBRATION OUTPUT jack.

Input and Modulator Circuits. The source of RF for the AM Calibrator is a 10.1 MHz signal from the FM Calibrator (see Service Sheet 28). This signal is amplified and limited by differential pair Q1B and Q1D. C8 provides an ac short for the emitters of Q1B and Q1D. The emitter current, which is switched back and forth between Q1B and Q1D, is supplied by current source Q1A.
The limited RF signal is split into two nearly identical paths containing the two modulators. The outputs from the modulators are then summed together to produce the modulated signal. Using the path through Modulator A as an example, the RF signal is amplified by Q2 which switches CR1 and CR3 on and off at the RF rate. The node between the cathodes of CR3 and CR5 is supplied with a current from the A Current Source (Q11). When the output from Q2 switches CR1 and CR3 on, the current from the A Current Source is routed through CR1 and CR3. No current flows through CR5 and CR7, and thus, no voltage is developed at the emitter of Q4. When the output from Q2 switches CR1 and CR3 off, the current from the A Current Source flows through CR5 and CR7 and develops a voltage at the emitter of Q4. The voltage level depends on the magnitude of the current and the impedance at the anode of CR7. An RF square wave with a stable amplitude thus appears at the emitter of Q4.
When the AM Calibrator is producing AM, the A Current Source is held on and the B Current Source is switched on and off at a 10 kHz rate. The RF signal at the emitter of Q5 is thus a 10.1 MHz signal chopped at a 10 kHz rate. The signals from the two modulators are converted to currents by the common-base stages Q4 and Q5. Since the collectors
of Q4 and Q5 share a common load (R66), the two collector currents are summed together, and an AM signal with a nominal modulation index of $1 / 3$ is developed at the calibrator output. Before being applied to the CALIBRATION OUTPUT jack, the signal is bandpass-filtered by L7 and C28 and attenuated by the 10 dB Output Attenuator.

Amplifier/Detector. The method for accurately determining the AM depth requires accurate measurement of the relative levels from Modulator A alone and B alone. The Detector converts the RF signal into a dc voltage which can be measured by the instrument's internal Voltmeter.

Q20 and Q19 amplify the summed RF signal by 22 dB . The gain of the stage is $1+(\mathrm{R} 78 / \mathrm{R} 75)$. Q17 converts the signal from Q19 to a current which drives the common-base amplifier Q16 into the active region during positive half-cycles and off during negative half-cycles. The current from Q16 develops a voltage across R95 which is a halfwaverectified RF signal. CR11 is switched on and off out of phase with Q16. The detected signal is filtered by R97 and C45 and buffered by voltage follower U2. The output of U2 is the AM Calibration voltage measured by the Voltmeter. The detected signal is also amplified, inverted, and offset by the X10 DC Amplifier. The X10 amplification enhances the resolution of the calibrator in discerning the difference in levels between the outputs of Mudulator A and B. The gain of U 3 is $-[\mathrm{R} 101 /(\mathrm{R} 96+\mathrm{R} 98)]=$ -10 Q18 generates a current which, flowing through R101, generates an offset of about +22 V . This offset, when added to the amplified and inverted input, produces a dc voltage at the output of U3 (X10 AM Calibration) which is within the measurement range of the internal Voltmeter. R105, C52, R106, and C54 filter the outputs from the detector amplifiers.

10 kHz Modulation Oscillator and Modulator Drive Circuits. A 10 kHz square wave is generated by a 20 kHz astable multivibrator whose output is divided by 2. The 20 kHz Modulation Oscillator (U6) is a timer circuit wired for astable operation. The Divide by-2 circuit (U7A) is a D-type flip-flop with the active-low output driving the D input which creates a divide-by-two function. A resistive divider (R37, R39, and R41) is placed across the two outputs of U7A. The voltage at the adjustable center tap of the divider is a square wave whose amplitude and phase sense vary with the position of the tap and the symmetry (duty cycle) of the output from U7A. The output from the divider is fed back to the timing control input of U6 through voltage follower U5.

The voltage at the timing control of U6 determines the period of the output of U6. The half-frequency square wave, applied to timing control input, lengthens or shortens every other cycle from U6 and thus alters the symmetry of the output from the Divide-by-2.
The output from U7A switches the B Current Source on and off. The basic reference for the B Current Source is a temperature-stable reference diode VR1. The reference is fed from current source Q 14 , which itself is temperature stable because its base-mitter junction and its reference VR2 have similar thermal behavior. The output of the reference (taken with respect to the $-15 \mathrm{~V}(\mathrm{~F})$ supply) is divided by two by R63 and R64 and converted into a constant current source by U4 and Q10. The 10 kHz signal driving the base of Q8 alternately switches the current from Q10 between Q7 and Q6.
The current from Q6 drives Modulator B through Q9. The current waveform, however, is modified (by U1 and its associated components) to give it a slower rise and fall time. When Q6 is off, there is no charge on C34 and no current flows through R81. When Q6 switches on, a constant current begins to charge C34. Ul senses this voltage and turns on Q9 to cause an equal voltage to develop across R81 (since the
voltage across the inputs of U1 must always be zero). C34 charges exponentially until all the current from Q6 flows through Q9 and into Modulator B. The converse situation occurs when Q6 switches off.
The A Current Source is switched under command of the Controller. The current for the A Current Source originates in current source Q13. The reference for Q13 is also VR1. Q15, wired as a diode, thermally matches the base-emitter junction of Q13 to stablize it. R45 adjusts the current supplied to Modulator A so that the detected voltage from Modulator A can be set to the same value as that from Modulator B.

Power Supply Decoupling. Q22 and Q21 drop the level of the -15 V supply to -10 and -5 V respectively. They are the supplies for U6, U7A, and some of the bias references. Q23 multiplies the effect of C3 to assist in decoupling audio (e.g., line frequencies) on the +15 V supply.

Select Decoder and Data Latch. For a general discussion of instrument control, see Instrument Bus, page 8-48. U8A, U8C, and U8D shift the logic levels from TTL register U9 to levels compatible with the particular devices being driven.

SERVICE SHEET BD1 - OVERALL BLOCK DIAGRAM

OTHER REFERENCES

- Principles of Operation Page 8-37

TROUBLESHOOTING

General

The troubleshooting checks that follow are a starting place for locating an instrument fault. They are easy to perform and give much key information in a short amount of time. In most instances they can differentiate between an instrument hardware failure and a Controller or software problem. The comments associated with each procedure summarize the information known as a result of passing or failing the check. The checks should be done in order.

V1) Line Check
Procedure: Remove instrument top cover (three screws) and switch LINE to ON.

Normal Indications:

1. The fan runs indicating power is present on the power transformer secondaries.
2. The five green LEDs on the A10 Power Supply Regulators Assembly are lighted indicating that the supplies are nominally operating.

If Indication Abnormal:

1. Check rear-panel line fuse and line voltage selector. Check Mains wiring. See Service Sheet 23.
2. Check individual regulators. See Service Sheet BD2.

$\sqrt{ } 2$ Power-Up Checks

Procedure: If there are any jumpers on the TEST test points on the A13 Controller Assembly, remove them. Switch LINE to STBY for five seconds and back to ON. Note the sequencing of the four TEST LEDs on the top of the Controller Assembly as the instrument powers up.

Normal Indication: The four TEST LEDs light in the following sequence:

1. Indeterminate for about $1 / 4$ second.
2. ()()()(1) for about $1 /$ second. This indicates the start of the power-up routines and the run of the Read Only Memory Check.
3. () (4) () () for about $1 /$ second. This indicates the run of the Local Oscillator Check.
4. (8) (4) (2)(1) for about 10 seconds. This indicates that all power-up checks passed and that a visual front-panel check is in progress (see $r \cdot 3$ below).
5. ()()() (1), with (1) blinking indefinitely until a key is pressed. The behavior of the LED (1) is also affected by the presence of an input signal.

Any other sequence indicates a failure of the check. Passing this check indicates that the Controller is functioning properly and that there is no catastrophic failure in the following circuits:

> Read Only Memory
> Random Access Memory
> Instrument Bus
> Local Oscillator (except for level)
> Keyboard (only that no key is down).

If Indication Abnormal: If the TEST LEDs come on and remain in the random state of step 1 above, check the Controller Kernel. See Service Sheet BD4. If other indications appear in or after step 2 above, consult Power-Up Checks, page 8-17, which discusses the individual checks, documents the error indications, and cross references to the service sheets.

$\sqrt{ } 3$ Front-Panel LED Check

Procedure: Disconnect all connections to INPUT. Switch LINE to STBY and back to ON.

Normal Indication: After less than one second, all front-panel LEDs and display segments and decimal points should light for about 10 seconds, then the display blanks for one second then shows ".." with the MHz annunciator and FREQ key light on. This indicates that the Controller is able to output to the front-panel LED and display latches which are all operative.

SERVICE SHEET BD1 (Cont'd)

If indication Abnormal: If one or more LEDs or display segments fail, check the respective components and drive circuits. See Service Sheet 21. Also check the CPU I/O port. See Service Sheet BD4.

$\sqrt{ } 4$ Measurement Error Check

Procedure: Key in 43.1 SPCL. This enables Service Errors. Make the measurement in which the fault appears.

Normal Indications: As the Special Function code is entered, 43.1 should appear in the display. This indicates that the Controller responds to keyboard interrupts. After pressing the SPCL key, measurements should proceed as normal.

If Indication Abnormal: If the keys have no effect, check the keyboard interrupt. See Service Sheet 20. If the keystrokes produce an erroneous display, check the Keyboard. See Service Sheet BD4. If the measurement is improper or error messages appear in the display, consult the error message tables (see Error Messages in the Detailed Operating Instructions of the Operating Manual and Error Messages, page 8-15, or consult the block diagram service sheet that documents the section of the instrument that appears to have the fault (see Service Sheets BD2 through BD4).

NOTE

For problems that are exclusive to the HP-IB, see Service Sheet BD4.

SERVICE SHEET BD2 - RF AND POWER SUPPLY SECTION other references				
- Overall Block Diagram - Principles of Operatio				
troubleshooting General				
caution				
 malfunctions, or damage to the instrument.				
Equipment				
OscilloscopePower Suply				
Signal Generator................. HP 86640				
$\sqrt{ } 1$ Input Attenuator and Filter Check Set signal generator to 5.25 MHz CW at -33 dBm . Connect its RE the Mudulation Analyzert INPUT				
2. Connect ac coupled oscilloscope to A15J2 (RF OUT). Switch the input impedance of the oscilloscope to 5012 or terminate the input in son using a tec.				
3. Key in 41.0 SPCL . to initialize the instrument. Key in the Special Functions to set the input attenuationj) and set the signallevel as isted below. For cach setting, the 5.25 MHz sign appear within the limits indicated. If out of limits, see Service Shee				
Seatal			Oscilloscope Display Limits (mypol	
			Mrinum	Maximum
12, SPPCL	10	${ }_{23} 3$	12	17
		13	12	${ }_{17}^{17}$
(1.tspct			${ }^{12}$	
	(10		12,	

service shet bio (corta)

(v2) Overpower Protection Check
 display should show Error
check he he Overpower
aretection.

(3) PF Deector Chec

Ampror
(4) Local Osillator Tuning Check

(v5) Local Osclllator Level Check

nот
The wepep can be hatted by pressing the SPCL Rey. If the

SERVICE SHEET BD2 (Contr)

 note

(v6) Track Mode Check
note

2. Connect high.impedance, de coupied ossillascope to the rear-
panel FM OUTPUT.

 4. Adjust the osecilloscope tovertieally center the trace. Adjust he

 Diseriminator. IIp niter
Track
Loop Amplifier.
(v7) Input Mixer and IF Check $\begin{gathered}\text { NOTE } \\ \text { N }\end{gathered}$

SERVICE SHEET bot (Conida)
3. Keyin 41.0 SPCLL toinititilize che instrumen. Key in 1.3 SPCL to
 Cok input Mixer, f Filters, and $1 F$ Amplififers.

(vil) Power Supply Check

 ime and observe the five power supply LEDs. An extinguished

 ally regulator
4. $=$: $=\mathrm{BD} 1$

${ }_{8} 88$

CHANGES

All serial prefixes	On Figure 8-59: - MP65 - A cover has been added to the empty circuit board slot in the RF section. This cover has been assigned reference designator MP65.
2212A and above	On the BD2 schematic: - A15 - In the upper left portion of the block diagram, replace the A15 input assembly schematic (block 1) with the figure, P/O Figure 8-61. RF and Power Supply Sections Block Diagram (2212A and above), on page 8-88.3.

Reserved for future changes.

mannawn wim

 , ansminn

sump
 mand

wimpunwe.

 mox 5

5

 Rind Mix

 odel

 Nolinve
翌

68АONTO'aa

SヨONVHO
Service

				Lown					
					mosme	amem	\%		
m mins				mmummem					
Lix	mome smom	${ }^{\text {Limatem }}$							
\%									

CHANGES

| 2212A and above | In the troubleshooting:
 Check 3 - In $\sqrt{\sqrt{3}})$ Controller Kernel Check, replace the signature analysis
 and part number tables with those found on page 8-92.3. |
| :--- | :--- | :--- |

Reserved for future changes.

Signatures for $\sqrt{3}$ Controller Kernel Check, step 7

With A14 Plugged In		With A14 Not Plugged In	
Test Point	Signature	Test Point	Signature
DATA 0	9AUP	DATA 0	A50A
DATA 1	907U	DATA 1	7PH4
DATA 2	15F9	DATA 2	1756
DATA 3	H5FA	DATA 3	08FP
DATA 4	H2P8	DATA 4	H73C
DATA 5	A2C1	DATA 5	4C7P
DATA 6	AO86	DATA 6	01U1
DATA 7	04C2	DATA 7	7097

ROM Part Numbers

ROM Number	Part Number
1	$08901-80040$
2	$08901-80041$
3	$08901-80011$
4	$08901-80012$
5	$08901-80013$
6	$1818-0926$ or 08901-80014
7	$08901-80039$ or $08901-80015$
8	$08901-80025$
11	$1818-1364$

Mode 8901 A

SERVICE SHEET 1 - RF INPUT (A15)

other references

-nciples of Opera

General
 General

froceduref for checking the RF Input Assembly are given below.
 addition, any points outride the laheled area that must be check
re also identifed. Fixed signals are also slown on the schema
 and its in
ments.

v1 Input Attenuator Check
Set the signal generator to 11 MHz CW at +13 dBm . Connectits RF output to the input of an ac coupled oscilloscope. Switch th input impedance
$50 n$ using a tee.
Fine adjust the signal generator's level for an oscilloscope dis playors
Recomnect the signal generator's output to the Mudulation An
yzer's INPUT. (The input cable, W1 or W36, should be connected lyzer's INPUT. (The input cable. W1 or W36, should be connected
A152 with an extender cable.) Reconnect the oscilloscope to Ad5J
(RF OUT)
4. Key in 41.0 SPCL to initialize the instrument. Key in the Direct
Control Special Functions and check the signals indicated below.

SERVICE SHEET 1 (Conld)

Hint: If the oscilloscope display reads low for all ahove eonditions,
check the 5.25 MHz Hight Pass Filter, Overpower Protection, and input cable (W1 or W36).
(v2) 5.25 MHz High-Pass Filter Check

1. Set the signal generator to 5.25 MHz CW at +3 dBm . Connect its
RF output to the input of an ac coupled oscilloscope. Switch the
 son uaing a tee.
2. Fine adjust the signal generator's level for an uscilloscope dis.
play of 1 Vpp .
3. Reconnect the signal generator's output to the Modulation Ana-
lyzer's INPUT. Connect the input cable W1 or W36 to A151 lyzer's INPUT. (Connect the input cable, W1 or W36. to Alsj1 1 with
an extender cable.) Reconnect the oscill 4. Key in 41.0 SPCL and 0.047 SPCL to initialize the instrument 4. Key in 41.0 SPCL and 0.047 SPCL to initialize the instrument
and deet the attenuato to the hhr path Key in the Direct Control
Special Functions and check the signala indicated below.

Cheosk	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|r\|r\|lll} \hline \text { Spucial } \\ \text { Funclian } \end{array}$	Level [TTL) at		$\begin{gathered} \text { Oscillosocope } \\ \text { Display } \\ \text { (Vppol) } \end{gathered}$
		A28xa15 fin 28	Q2.6	
Thru Path	${ }^{0.024}$	$\stackrel{\text { L }}{\text { L }}$	H	${ }^{0.76610 .00}$
5.25 MHz HPF	0.02 C	н		

Hint. It the oscilloscope display reads low for both above conditions,
check the Inout Attenuator, Overpower Protection, and input cable check the In
(W1 or W36).
(v3) Ovarpower Protection Check

1. Set the eignal generato to 11 MHz CW at +13 dBm . Connect it
RF output to the Modulation Analyzer's INPUT.
2. Connect an ac coupled oscilloscope to A15J2 RFOUT, Switch
the input impedance of the oscilloscope to 50 Dor terminate Lhe input in 50 in using a tee.

ERVICE SHEET 1 (Cont'd)
Key in 41.0 SPCL to initialize the instrument. Key in 1.1 SPCL
to set the input attenuation to 0 dB. Check the signals indicated tolow for the thru path only.
best

Creck	Level (TTL) at		OscillascopeDisplayDill [Wpp]
	A28xA15 Pin 17	01.6	
Thru Path	1	$\stackrel{\text { H }}{\text { L }}$	2.75 ${ }_{0} 0.00$

Hint: If the oscilloseope display reada low, check the Input Attenu
tor, $\overline{2.25} \mathrm{MHz}$ High Pass Filter, and input cable (W1 or W36).
4. Remove signal generator from INPUT. Set power supply to 20
Vdc. Touch the +20 V lead to the Modulation Analyzer's INPUT (the Te. Touch the 2 20V lead to the
Reconnect the signal generator. Check the signals indicared in
he table under step 3 for the condition of overpower. The del the table under step
6. Repeat ttep 3 to check the recovery from the overpower condition.

NOTE
If step 4 is repeated, it is usually necessary to first dis.
charge the input dc bucking capacitor by connection charge the input de blucking capacitior by connectink a
SOn termination to the INPUT. Disehurge it also after completing this check.

$\sqrt{ } 4$ Overpower Detector Check

. Key in 41.0 SPCL to initialize the instrument
2. Connect a high-impedance, dc coupled oscilloscope or a dc volt-
meter to A28XAI5 pin 21 . The node should he a TTL high.
 Madiation Analyer'rs INPUT the minus side ehould be at ground
The node should show a momentary low. The dispiay should als
show E06.

NOTE

If steps 1 to 3 are to be repeated it is necessary to first
discharge the inputd de blocking capacitor by connecting a Itscharget he ipu a chocking capacitor yy connecting a
500 termination to the INPUT. Discharge it also after completing this chech.

v Detector Amplifier Check

C. Set he eignal generator to 11 MHz CW at +13 dBm . Connect ita

SERVICE SHEET 1 (Conrid)
2. Key in 41.0 SPCL to initialize the instrument.
3. Key in 0.024 SPCL and 49.31 SPCL to turn the the output of the Detector Amplifier. Chen o the output of the Detector Amplifier. Change
the level of the signal generator as indicated below and note the digalay. Alternatively, measure
1 ITP1 (RF DET) with a dc voltmeter

	Diapay Umith	Voltago Limits at A15TP) (Vdc)
$\begin{gathered} +13 \\ +3 \\ +3 \\ 0 \text { ff } \end{gathered}$	$\begin{gathered} 1.05 \text { to } 1.25 \\ -0.27 \text { to } 0.33 \\ -0.003 \text { to }+0.003 \end{gathered}$	1.05 to 1.25 0.27 to 0.213 0.008 to +0.008

Hint: If the off condition above if slighty out of
limit, perform the KF Detector offeet Adjustment.
(V6) RF Level Detector Olfset Chec
Remove the cable (W1 or W3b) from A15J
2. Measure the dc voltage at the junction of CR4 The inputimpedance of the voltmeter must be at east 10 Mn .)
3. Measure the de voltage at pin 2 of U2. It
hould be 50 to 70 mV more negative than the hould be 50 to 70 mV more negative than the
. Key in 0.020 SPCL to turn the detector off.
5. Measure the de voltage at the junction of CR 4
and $\mathrm{CH13}$. It should be between +8.5 and +10.0

$\sqrt{7}$ Detector Amplifier Discharge Check Set the signal generatur to 11 MHz CW at +13 Analyzer's CNPUT. (Connect the input cable, W1 or W36, to AlSJ1 with an extender cable.)
2. Key in 41.0 SPCL to initialize the instrument.
3. Kee in 0.020 SPCL to turn the detector off. Key in 49.31 SPCL to connect the internal voltmeter to hould read between -0.0200 and 0.0200
4. Kees in 0.024 SPCL to turn the detector on. Key
in 49.31 SPC. The display should read between in 49.31 SPCL. The
1.0000 and 1.3000 .
5. Set the signal generator for $50 \% \mathrm{AM}$ at a 20 Hz rate. The display show
from its average value
Press RF LEVEL. Switch the signal generaor's AM off, then turn the RF off and note the
Modulation Analyzer's display as the reading decreases. The reading should decrease to leess
han $0.010-0.0$ watts by the second reading after he RF is switched off.

viven Check

1. Perform the SWR partion of the RF Level Per
formance Test.

CHANGES

All serial prefixes	On the A15 schematic: - CR4 - Reverse the polarity of the diode symbol for CR4. - R10 - Change the value of R10 to 52.8 ohms.
2128A and above	On the A28 schematic: - 08901-60139 - Change the part number of A28 RF Motherboard Assembly to
2212A and above	On the A15 schematic: - $\frac{08901-60183 \text { - Use the new schematic foldout with revision date }}{\text { rev.01NOV89. }}$
2212A to 2412A	On the A15 component locator: - 08901-60183 - Use the new component locations, Figure 8-67. A15 RF Input Assembly Component Locations (2212A to 2412A), on page 8-94.3.
2302A and above	On the A15 schematic: - C4 - Change the value of C 4 to $68 \mu \mathrm{~F}$.
2421A and above	On the A15 schematic: - 08901-60256 - On the schemtic foldout with revision rev.01NOV89 change the part number of the A15 schematic to 08901-60256. - R10 - Change the value of R10 to 61.59 ohms and remove the asterisk (${ }^{*}$). - C29 - Add a capacitor C29 at the junction ot R46 and the anode of CR4. - AT1, AT2, AT3, R15, R19, R20, R21 - Delete R15, R19, R20, and R21; replace with AT1. Delete R27, R29, and R30; replace with AT2. Delete R38, R40, and R41; replace with AT3.

CHANGES

2424A and above	On the A15 component locator: - 08901-60256 - Use the new component locations, Figure 8-67. A15 RF Input Assembly Component Locations (2424A and above), on page 8-94.4.
2543A and above	On the A15 schematic: - W1-On the line between K1 and Q1 (between the nodes of C6 and R49) insert wire jumper, W1. - R62, L5 - Delete R62 and L5. - U3A - Change pin 1 to pin 12; pin 3 to pin 4; pin 4 to pin 5; pins 2, 5, 7 to pins 3, 6, 8; pin 10 to pin 11. - U3B - Change pin 6 to pin 7; pin 8 to pin 9; pin 9 to pin 10. Pins 1, 2, 13, and 14 are not connected.

Figure 8-67. A15 RF Input Assembly Component Locations (2424A and above)

CHANGES

All serial prefixes	On the A17 schematic: - L5 - Change the value of L 5 to $240 \mu \mathrm{H}$.
2128A and above	On the A28 schematic: - 08901-60139 - Change the part number of A28 RF Motherboard Assembly to
2227A and above	On the A18 schematic: Q4 - Under IF OUTPUT AMPLIFIER GAIN 13 dB , delete the transistor ground connection. In the table of Transistor and Ingrated Circuit Part Numbers, change Q4 to 1854-0477.
2302A and above	On the A18 schematic: - R23, R24 - Under INVERTING AMPLIFIER, change the value of R23 to 500 ohms and R24 to 383 ohms.
2443A and above	On the A18 schematic: Q7 - Add a ferrite bead, E1, to the base of Q9.
2609A and above	On the A17 component locator: - 08901-60104 - Use the new component locator, Figure 8-69. A17 Input Mixer Assembly Component Locations (2609A and above), on page 8-96.3. On the A17, A18, and A28 schematics: - 08901-60104, 08901-60004, and 08901-60139 - Use the new schematic foldout with revision date, rev.01NOV89.

Reserved for future changes.

Figure 8-69. A17 Input Mixer Assembly Component Locations (2609A and above)

SERVICE SHEET 3 - AM DEMODULATOR - ALE LOO

- her minces
- ALC Reference Adjustment .. Pe 5-13

troubleshooting

General
Procedures for checking the AM Demodulator Assembly are given below. The circuits to check are marked on the schematic diag a hexagon with a check mark and a number inside, egg., $\frac{3}{3}$. addition, any paints outside the labeled circuit area that must be
 sembly and

CAUTION
Tighten SMC connectors to o.. $N \cdot m$ (5 in. ib). Hand tight ming of connectors is in sufficient. Hand tightened con.
Rectors can word loose and cause reduced performance, malfunctions, or damage to the instrument

Equipment

(vi) $\mathbf{2 . 5} \mathbf{~ M H z}$ Low-Pass Filter and IF Buffer Amplifiers Check 1. Set the signal generator to 1.5 MHz CW at -7 dBm . Connect it o AbS (IF IN)
2. Connect an ac coupled oscilloscope to AGJ3 (IF OUTN) (A6B3i shown on Service Sheet 4.) Switch the input impedance of the
oscilloscope to 50 on or terminate the input in 50 n using a tee. The waveformorthe 1.5 MHz signal should be sinusoidal with an amply
dude of 300 to $360 \mathrm{~m} \mathrm{~V}_{\mathrm{p}}$ de of 300 to $360 \mathrm{~m} V_{\mathrm{pp}}$.

Hint: If the signal is faulty, trace the signal from A6J1 through Q9
(See Service Sheet 4 for the schematic.)
3. Connect the oscilloscope to A6J4 (IF OUT), (A6J4 is shown on
Service Sheet 4.) The waveform should be sinusoidal with an amplinude of 50 to 60 mV pp

SERVICE SHEET 3 (Contd)

Hint: If the signal is faulty, check Q10 (see Service Sheet 4 for the
4. Connect a high impedance, ac coupled oscilloscope to the emit
ter of Q8. The oscilloscope should have a lowed. divider probe. The waveform should be sinusoidal with an ample
tide of 180 to 200 mV .
. If necessary, fine adjuthe signal generator level for an oscillo cope display of 200 mV pp.
6. Set che signal generator to 3 MHz . The waveform should have
an amplitude of 120 to 160 mV an amplitude of 120 to 160 mV pp.
Hint: The 3 dB frequency of the 2.5 MHz Low -Pass Filter is approx
(2) Voltage-Varlable Ampiltier Check

1. Set the signal generator to 1.5 MHz CW at -7 dBm . Connect its R output to AbD (IF IN).
2. Connect a high-impedance, ac coupled oscilloscope to the emit. ter of Q8. The oscill otoscope should have a low-capacitance $10: 1$
divider probe. Adjust the signal generator level for a waveform of 200 mV pp.
3. Key in 0.0D0 SPCL to switch the ALC of
4. Measure the collector of $Q 26$ with a dc voltm ctr. The voltage
should be between -15 and -13 Vdc . Hint: Q26 and Q28 should be on. Q25 should be off
5. Measure the collector of Q22 with a dc voltmeter. The voltage
should be between +1.65 and +1.69 adc. should be between +1.65 and +1.69 Ydc .
6. Connect the oscilloscope (with divider probe) to the collector of
Q4. The waveform of the 1.5 MHz signal should be sinusoidal with 24 The waveform between 400 to 600 mV pp.
Hint: Pin 2 of U5 should be between -0.60 and -0.55 Vde . To test the action of the Voltage Variable Amplifier, short the collector of 46 to
its emitter. The waveform should be 6 Qp or more and may be is emitter. The waveform should be be 6 po more and may be
distorted (the resistor of U4 is at minimum resistance and the
Voltage-Variable Voltage-Variable Amplifier is at maximum gain). Remove the short
and then short pins 1 and 4 of U4. The amplitude should drop into and then short ping 1 and 4 of U4. The amplitude should drop int
the noise (the LED of Ut is off, resistance is maximum, and gain is
minimum).

CAUTION
Inadvertently connecting pin 1 of 144 to pin 2 or 3 may

SERVICE SHEET 3 (Contd)

If necessary, fine adjust the signal generator level for a wave
8. Connect the oscilloscope to the collector of Q20. The waveform
v 3 AM and Level Detector and Level Amplifier and Carrier
1.5 MHz CW at 0 dBm . Connect its RF output to AGJ2 (IF IN).
2. Key in 0.0 DO SPCL to switch the ALC off
3. Connect a high-impedance, ac coupled oscilloscope to the collec. tor of Q20. The oscilloscope should have a low -capacitance $10: 1$
divider probe. Adjust the signal generator level for a waveform of divider
$1 V_{\text {pp. }}$.
Hint: If th
fir Check.
Connect the oscilloscope to the anode of CR9. The waveform hit of a negative, half wave rectified sine wave with an ample-eno-conduction voltage is normal.
5. Connect the oscilloscope to the cathode of CR10. The waveform
should be a positive, half -wave rectified fine wave with an ampliuse between 2.3 to 2.7 Y Pp. Some distortion of the waveform is normal. 6. Measure the de voltage between the emitter of Q13 and the gate
of Q17. Multiply that voltage by 2.63. Now measure the do voltage t TP2 (DEMOD CARR LVL) which should be within $\pm 7 \%$ of the voltage (ignoring the polarity).
(4) ALC Reference, BW Control and Level Comparison AmpII-
\qquad
This test assumes that the (13) AM and Level Detector
and Level A amplifier and Carrier Filter Check above gives and LeverAmph.

1. Measure pin 3 of U1 with a ad voltmeter. The voltage should be
between 2.095 and 2.105 Vdc . Record the voltage for future reference
Hint: If the voltage is only slightly out of limits and if the AM
Demodulator is only slightly in error, perform the ALC Reference Adjustment.

SERVICE SHEET 3 (Contd)
2. Set the signal generator for $1.5 \mathrm{MH}_{3} \mathrm{CW}$ at
dBms. Connect its RF output to $\mathrm{A} . \mathrm{s}_{2} 2(\mathrm{IF} \mathrm{IN})$.
3. Key in 0.0 D 2 SPCL to switch the ALC off and 4. Connect a high-impedance, de coupled oscillo 5. Connect the de voltmeter to TP2 (DEMOD 6. Slowly vary the signal generator level such
that the voltage at TP2 varies between +2.0 and Chat
+2.2 Vc. When the voltage at TP2 approach e
+2.2 Vdc ,
 drift to a level that is between -15 and -12 Vdc .
When the voltage at tP 2 approahene +3.0 Vdc . the

7. Adjust the signal generator level until the vol.
age at pin 6 of Ul holds steady at 0 Vac. The cage as pin 6 of Ul holds steady at 0 Vdc . The
voltage at $T P 2$ should be within $\pm 20 \mathrm{mV}$ of the voltage measured in step 1 .
8. Key in 0.0 ODO SPCL to set the ALC response time 6. The drift rate should he about ten tim step 6 . The drift rate should be bout ten times
slower It should take about 8 seconds for the level slower. It should take about 8 seconds for the level
at TP2 to drift from the negative to the positive extreme when the signal level ii rapidly switched

Hint: Q27 and Q3 should be on. Q2 should be off.
The collector of Q3 should be between -15 and -14 The
Vie.
9. Set the oscilloscope to view two channels. coupled with a divider probe) to pin 6 of U 2. Stet coupled with a divider probe to pin 6 of U2. Strict same rance. Check that the or reference is the
same for both channels. Repeat step 6 and very
 of U should be lar
10. Key in OOD1 SPCL to close the ALC loop with slow $A L C$ resp
level to 0 dEm.
11. Measure the de voltage at the collector of Q2 Hint: on.
12. Measure the dc voltage at TP? with voltmeter. The voltage solthould equal the voltage $\pm 20 \mathrm{mv}$
Hint: Checks (9) to (0) above and this check up
to step 9 verify all the circuits which demodulate
 the AM without the ALC loop being closed, Step
10 above closes the loup. If the loop is working 10 above closes the loup.
properly, the voltage eat TP2 should equal the ALC
Reference present at pin 3 of U1. The 1.5 MH Reference present at pin 3 of U1. The 1.5 MH
signal at the collector of $Q 4$ should be between 900 signal 1100 m
$\mathrm{~m} P \mathrm{pp}$.
13. Set the signal generator level to -17 dP Measure TP2 with a d dyerator veleterer. The voltage -17 dBm
should equal the voltage of step 1 within $\pm 20 \mathrm{mV}$

Hint This verifies the dina mic range of the ALC Hint This verifies the e dynamic range of the ALC
loop. If the range i is ind equate, the fault probably

Loop
5) AM Output Buffer Check

This check a ssumesthat all checks above Miss check assumes that anchecksabove
give positive results in other words , the
AM Demodulator is known to work).

1. Set the signal generator to 1.5 MHz at 0 dBm .
Set up 0% AM at a a kHz rate. Connect its RF
output to A6J 2 (IF IN).
2. Key in 41.0 SPCL to initialize the instrument 3. Connect a high-impedance, ac coupled oscillo 3. Connect a high-1mpedance, ac coupled oscillo
scope to the gate of Q17. Note the amplitude of the 4. Connect the oscilloscope to the collector of
Q19. The amplitude should be the same within

CHANGES

All serial prefixes	On the A6 schematic: - C46, C51, L8 - Add an asterisk (${ }^{*}$) to C46, C51, and L8 to indicate factory selected components. - Q17, U2, U4 - On the new SS3 foldout rev.01NOV89, in the Table of Transistor and Integrated Circuit Part Numbers, change Q17 to 1855-0597, U2 to 1826-0989, and U4 to 1990-0643. In the Troubleshooting: - OTHER REFERENCES - Under Other References, in the fourth line from the top, change 1.5 MHz to 455 kHz , and change "Page $5-18^{\prime \prime}$ to "Page $5-24$." - Check 4 - In $\overline{\sqrt{4}}$, ALC Reference and Level Comparison Amplifier, Inverting Amplifier, and Control Current Source Check, step 8, replace the last sentence with the following. It should take about 8 seconds for the level at pin 6 of U1 to drift from the negative to the positive extreme when the signal level is rapidly switched from +1 to +3 V dc at TP2. In step 12, Hint, delete the word "present" from the sentence, "Reference present at pin 3 of U1." Change "input bytes" to "input bits."
2021A to 2609A	On the A25 schematic: 08901-60120 - Change the A25 assembly part number to 08901-60120.
2239A to 2308A	On the A6 schematic: C51 - Change the value of C51 to 560 pF .
2244A to 2308A	On the A6 schematic: - $\mathbf{U 4}$ - In the Table of Transistor and Integrated Circuit Part Numbers, change U4 to 1990-0643.

CHANGES

2309A and above	On the A6 component locator: 08901-60240 - Use the new component locator, Figure 8-72. P/O A6 AM Demodulator Assembly Component Locations (ALC Loop) (2309A and above), on page 8-98.5. On the A6 schematic: 08901-60240 - Use the schematic foldout with revision date rev.01NOV89. In the A6 Troubleshooting: Check 2 - In ($\sqrt{2}$ Voltage Variable Amplifier Check, delete the caution message. Replace steps 1 through 8 with the new ($\sqrt{2}$ Voltage Variable Amplifier Check on page 8-98.6 to 8-98.7. Check 4 - In ($\sqrt{4}$ ALC Reference BW Control and Level Comparison Amplifier, Inverting Amplifier, and Control Current Source Check, in step 8, Hint, delete the sentence "Q27 and Q3 should be on." Change Q2 to U5B. Replace the sentence, "The collector of Q3 should be between -15 and -14 V dc ," with "Pin 8 of U5B should be a TTL high." In step 11, change the phrase, "the collector of Q26" to "Pin 3 of U5A." Change +5 V dc" to +12 V dc. Delete the existing hint, and add the following: "Hint: U5A should be on with a TTL low at pin 1. U5C should be off." In the last sentence of step 13, Hint, delete "U4 or" and change the "Loop" to "Circuit."

CHANGES

2313A and above	On the A6 schematic: - 08901-60246 - On the schematic foldout with revision date rev.01NOV89, change the part number of the A6 AM Demodulator Assembly to 08901-60246. - CR22 - Add CR22 (use a schottkey diode symbol) parallel to R79; anode to ground 1, cathode to U3 pin 3.
2342A and above	On the A6 schematic: - C51 - On the new SS3 foldout rev.01NOV89, change the value of C51 to 560 pF .
2432A and above	On the A6 schematic: - Q6 - On the new SS3 foldout rev.01NOV89, in the Table of Transistor and Integrated Circuit Part Numbers, change Q6 to 1855-0265.
2616A and above	On the A25 schematic: - 08901-60286 - Change the A25 assembly part number to 08901-60286.

Reserved for future changes.

Figure 8-72. P/O A6 AM Demodulator Assembly Component Locations (ALC Loop) (2309A and above)

</2> Voltage Variable Amplifier Check (P/O CHANGE 28)

1. Set the signal generator to 1.5 MHz CW at -7 dBm . Connect its RF output to A6J2 (IF IN).
2. Connect a high-impedance, ac coupled oscilloscope to the emitter of Q8. The oscilloscope should have a low-capacitance 10:1 divider probe. Adjust the signal generator level for a waveform of 200 mVpp .
3. Key in 0.000 SPCL to switch the ALC off.
4. Measure pin 11 of U5C with a dc voltmeter. The voltage should be between -15 and -13 Vdc.

Hint: U5C should be on. U5A should be off. Pin 9 of U5C should be a TTL low.
5. Measure pin 7 (the collector) of $Q 2 B$ with a dc voltmeter. The voltage should be between +1.66 and +1.69 Vdc .
6. Connect the oscilloscope (with divider probe) to the collector of Q4. The waveform of the 1.5 MHz signal should be sinusoidal with an amplitude between 400 and 600 mVpp .

Hint: If this step fails, check the R-Setting Circuits as follows:
a. Measure the drains of Q6 and Q7 with a dc voltmeter. The voltages should be within the limits shown in the schematic.

Hint: The voltage at pins 2 and 6 of $U 4$ should be within the limits shown in the schematic. The polarity at the output of U4A (pin 1) should conform to the polarity of its differential inputs. (For example, if pin 3 is more positive than pin 2, pin 1 should be positive and may be as high as +15V.) Similarly for U4B.
b. Connect the oscilloscope (with divider probe) to the base of Q5 and observe the ac waveform on the oscilloscope. Momentarily ground pin 8 (the collector) of Q2C and observe the waveform. Then momentarily place a lk ohm resistor in parallel with R8 and observe the waveform. The amplitude of the waveform should be as follows:

</2> (cont'd)

c. Connect the oscilloscope to the collector of Q4 and observe the ac waveform on the oscilloscope. Momentarily ground pin 14 (the collector) of Q2D and observe the ac waveform on the oscilloscope. Momentarily place a lk ohm resistor in parallel with R20 and observe the waveform. The amplitude of the waveform should be as follows:

Hint: Check the bias of Q4 and Q5.
7. If necessary, fine adjust the signal generator level for a waveform of 500 mVpp .
8. Connect the oscilloscope to the collector of Q20. The waveform should be sinusoidal with an amplitude between 450 and 550 mVpp .

Figure 8-72. P/O A6 AM Demodulator Assembly Component Locations (ALC Loop)

SERVICE SHEET 4 - AM DEMODULATOR - CONTROL (P/O A6)
 other feferences

- Block Diagram .Service Sheet BD3
- Parts List

Page 6-17

- Direct Control Special Functions

Page 8-8

- Principles of Operation

Page 8-56

TROUBLESHOOTING

General

Pracedures for checking the AM Demodulator Assembly are given below. The circuits to check are marked on the schematic diagram by a hexagon with a check mark and a number inside, e.g., (3). In addition, any points outside the labeled circuit area that must be checked are also identified. Fixed signals also are shown on the schematic inside a hexagon, e.g., -1.9 to $^{2}+2.1 \mathrm{Vdc}$. Extend the board assembly and its input and output cables where necessary to make measurements.

CAUTION

Tighten SMC connectors to $0.6 \mathrm{~N} \cdot \mathrm{~m}$ (5 in. lb). Hand tightening of connectors is insufficient. Hand tightened connectars can wark loose and cause reduced performance, malfunctions, or damage to the instrument.

Equipment

Oscilloscope . HP 1740A
Signal Generator HP 8640B
Voltmeter .HP 3455A

v FM IF Buffer Check

1. See 2.5 MHz Low-Pass Filter and IF Buffer Amplifiers Check on Service Sheet 3 .

, 2 IF Detectors and IF Present Latch Check

1. Set the signal generator to 1.5 MHz CW at 0 dBm . Connect its RF output to A6J2 (IF IN). (A6J2 is shown on Service Sheet 3.)
2. Key in 41.0 SPCL to initialize the instrument. Press RF LEVEL to halt automatic tuning
3. Connect an ac coupled, high-impedance oscilloscope to the emitter of Q9. The oscilloscope should have a low-capacitance 10:1 divider probe. Adjust the signal generator level for a waveform of 1 Vpp.

Hint: If the level is unadjustable, see the 2.5 MHz Low-Pass Filter and IF Buffer Amplifiers Check on Service Sheet 3.

SERVICE SHEET 4 (Cont'd)

4. Connect the oscilloscope to the collector of Q11. The 1.5 MHz waveform should be sinusoidal with an amplitude between 6.0 and $7.2 \mathrm{~V} p \mathrm{p}$. A small amount of distortion is normal.
5. If necessary, adjust the signal generator level for a waveform of $6 \mathrm{~V} p \mathrm{p}$. Measure the voltage at pin 2 of A25XA6 with a de voltmeter. The voltage should be between +1.1 and +1.3 Vdc
6. Connect the voltmeter to pin 7 of U7. The voltmeter should read a TTL low.
7. Slowly decrease the signal generator level until the voltmeter reading jumps to a TTL high. The amplitude of the waveform should be between 800 and 1000 mVpp when the voltmeter level switches.
8. Slowly increase the signal generator level until the voltmeter reading jumps to a TTL low. The amplitude of the waveform should be between 1000 and 1200 mVpp .
9. Key in 0.0 F 0 SPCL and 0.0 E 0 SPCL to disable resetting of the IF Present Latch to enable readback of it. The display should read 0001.0000 .
10. Reduce the signal generator level until the voltmeter reads a TTL high. The display should read 0000.0000 .
11. Key in 0.0 F 1 SPCL and 0.0 E 0 SPCL to reset the IF Present Latch and enable readback of it. The display should read 0000.0000 .
12. Increase the signal generator level until the voltmeter reads a TTL low. The display should read 0001.0000 .
13. Reduce the signal generator level until the voltmeter reads a TTL high. The display should remain 0001.0000 .
14. Connect the oscilloscope to the collector of Q29. Adjust the signal generator level for approx imately +2 Vdc on the oscilloscope display.
15. Key in 0.0 F 0 to momentarily activate Q29. The voltage on the oscilloscope should momentarily discharge to OV then recharge to its previous level within a few milliseconds.

v3 Select Decoder and Data Latch Check

1. Key in the Direct Control Special Functions indicated below. For each setting, check the pins indicated on U9 with a high-impedance, dc coupled oscilloscope.

Direct Control Special Function	Level [TTL) at U9 Pin		
	7	9	10
0.0D0	H	H	*
0.0 E 0	H	*	H
0.0F0	*	H	H
ng TTL pulsea,			

2. Key in the Direct Control Special Functions indicated below. For each setting, check the pins indicated on U8.

Direct Control Special Functinn	Level (TTL) at U8 Pin	
	I	14
0.0D0	H	H
0.0 D 3		

3. Key in the Direct Control Special Functions indicated below. For each setting, check the pins indicated on U8.

Direct Control Special Function	Level (TTL) at UP Pin	
	B	9
0.0 FO	H	L
0.0 F 3		

CHANGES

All serial prefixes	On the A6 schematic: - U7 - In the Table of Transistor and Integrated Circuit Part Numbers, change
2021A to 2609A $1826-0065$.	

Reserved for future changes.

Pin Check for U8B ($\sqrt{ } 3$) Select Decoder and Data Latch Check

Direct Control Special Function	TLL Level at U8 pin 16
0.0D0	L
0.0D3	H

Figure 8-74. P/O A6 AM Demodulator Assembly Component Locations (Control) (2309A and above)

P/O A6 ASSEMBLY

Figure 8-74. P/O A6 AM Demodulator Assembly Component Locations (Control)

SERVICE SHEET 5 - FM LIMITERS (P/O A4)

OTHER REFERENCES

- Block Diagram Service Sheet BD3
- Parts List Page 6-11
- Principles of Operation Page 8-57

TROUBLESHOOTING

General

Procedures for checking the FM Demodulator Assembly are given below. The circuits to check are marked on the schematic diagram by a hexagon with a check mark and a number inside, e.g., $\sqrt{3}$. In addition, any points outside the labeled circuit area that must be checked are also identified. Fixed signals are also shown on the schematic inside a hexagon, e.g., +1.9 to +2.1 Vdc . Extend the board assembly and its input and output cables where necessary to make measurements.

CAUTION
Tighten SMC connectors to $0.6 \mathrm{~N} \cdot \mathrm{~m}$ (5 in. lb). Hand tightening of connectors is insufficient. Hand tightened connectors can work loose and cause reduced performance, malfunctions, or damage to the instrument.

Equipment

Oscilloscope..................... . HP 1740A
Signal Generator HP 8640B
Voltmeter . HP 3455A

$\sqrt{ } 1$ IF Limiters and Counter IF Buffer Check

1. Set the signal generator to 1.5 MHz CW at -60 dBm . Connect its RF output to A4J1 (IF IN) with a 50Ω termination in parallel with it.
2. Connect oscilloscope to A4TP2 (DISC IN). The oscilloscope input should have a low-capacitance 10:1 divider probe. The waveform of the 1.5 MHz signal should be sinusoidal with an amplitude of 0.17 to 0.34 Vpp and an offset of +9.6 to +10.0 Vdc.

Hint: Each limiter has a gain of 22 dB .
3. Increase the signal generator level to 0 dBm . The waveform shoud be a square wave with an amplitude of 0.9 to 1.1 Vpp and an offset of +9.6 to +10.0 Vdc.
4. Check A4J2 (IF OUT). The waveform should be slightly asymmetrical "square wave" with an amplitude of 3 to 4 Vpp .

CHANGES

2021A to 2609A	On the A25 schematic: - 08901-60120 - Change the A25 assembly part number to 08901-60120.
2426A and above	On the A4 schematic: - 08901-60184 - Change the part number of the A4 FM Demodulator Assembly to 08901-60184.
2616A and above	On the A25 schematic: - 08901-60286 - Change the A25 assembly part number to 08901-60286.

Figure 8-76. P/O A4 FM Demodulator Assembly Component Locations (FM Limiters)

SERYICE SHEET 6 - FM DISCRIMINATOR (P/O A4) OTHER REFERENCES

- Block Diagram Service Sheet BD3
- FM Sensitivity Adjustment Page 5-15 or 5-16
- FM Flatness Adjustment. Page 5-17
- Parts List Page 6-11
- Parts List Page 6-11
Direct Control Special Functions Page 8-8
- Principles of Operation Page 8-57

TROUBLESHOOTING

General

Procedures for checking the FM Demodulator Assembly are given below. The circuits to check are marked on the schematic diagram by a hexagon with a check mark and a number inside, e.g., $\sqrt{ } 3\rangle$. In addition, any points outside the labeled circuit area that must be checked are also identified. Fixed signals are also shown on the schematic inside a hexagon, e.g., +1.9 to +2.1 Vdc . Extend the board assembly and its input and output cables where necessary to make measurements.

CAUTION

Tighten SMC connectors to $0.6 \mathrm{~N} \cdot \mathrm{~m}$ (5 in. lb). Hand tightening of connectors is insufficient. Hand tightened connectors can work loose and cause reduced performance, malfunctions, or damage to the instrument

Equipment

Oscilloscope
HP 1740A
Signal Generator
HP 8640B
Voltmeter .
HP 3455A
(v1) Squelch Detector Check

NOTE

This check assumes that the IF Limiters and Counter IF Buffer Check on Service Sheet 5 gives positive results.

1. Set the signal generator to 1.5 MHz CW at -51 dBm . Connect its RF output to A4J1 (IF IN) with a 50Ω) termination in parallel with it. (A4J1 is shown on Service Sheet 5 .)
2. Check the gate (can) of Q21 with a dc voltmeter. The voltage should be -0.1 to +0.1 Vdc (i.e., squelched).
3. Key in 0.152 SPCL to unsquelch. The voltage should not change.
(It is still squelched by the lack of adequate signal.)
4. Increase the signal generator's level to -45 dBm . The gate of Q 21 should be -15 to -14 Vdc (i.e., unsquelched).

SERVICE SHEET 6 (Cont'd)

5. Key in 0.150 SPCL to squelch. The gate of Q21 should be -0.1 to +0.1 Vdc

v2 Precision Limiter Check

NOTE
This check assumes that the IF Limiters and Counter IF Buffer Check on Service Sheet 5 gives positive results.

1. Set the signal generator to 1.5 MHz CW at 0 dBm . Connect its RF output to A 4 J\rfloor (IF IN) with a 50Ω termination in parallel with it. (A4Jl is shown on Service Sheet 5 .)
2. Check the collectors (cans) of Q12, Q13, Q14, and Q15 with an oscilloscope. The oscilloscope input should have a low-capacitance $10: 1$ divider probe. The 1.5 MHz waveform should be a trapezoidal wave with an amplitude of 15 to 19 Vpp .

v3 Charge-Count Discriminator Check NOTE
 This check assumes that the $\langle 2$ Precision Limiter Check gives positive

 results.1. Set the signal generator to 1.5 MHz CW at 0 dBm . Connect its RF output to A4J1 (IF IN) with a 50 s termination in parallel with it. (A4Jl is shown on Service Sheet 5.)
2. Check A4TP3 (DISC OUT) with an oscilloscope. The oscilloscope input should have a lowcapacitance l0:1 divider probe. The waveform
should be a 3 MHz i.e., a doubled 1.5 MHz) triangle wave with an amplitude of 3 to 4 Vpp and an of fset of -1 to +1 Vdc . The triangle may be slightly asymmetric'sl and adjacent cycles may be uneven.
3. Check A4TP4 (- INPUT) and A4TP6 (- IN. PUT) with an oscilloscope. The offset voltages should be the same within $\pm 10 \mathrm{mVdc}$. In addition, A4TP6 will have a superimposed 3 MHz "square wave" with an amplitude of 25 to 40 mV pp . The square wave may be asymmetrical and adjacent cycles may be uneven
4. Decrease the signal generator frequency to 500 kHz . Check A4TP3 again. The offset level should be -7 to -5 Vdc .

$\sqrt{ } 4$ FM Output Amplifier Check NOTE

This check assumes that the ChargeCount Discriminator Check gives posi tive results.

1. Set the signal generator to 1.5 MHz CW at 0 dBm. Connect its RF output to A4J (IF IN) with a 50Ω termination in parallel with it. (A4JI is shown on Service Sheet 5 .)
2. Key in 0.152 SPCL to unsquelch. Check A4TP5 (FM OUT) with an oscilloscope. The waveform should be a 3 MHz (i.e., a doubled 1.5 MHz) sine wave with an amplitude of 0.4 to 0.8 Vpp and an offset of -1.9 to -1.3 Vdc . The waveform will be distorted and adjacent cycles may not be even.
3. Key in 0.150 SPCL to squelch. The ac compo nent of the signal should decrease markedly.

Hint: Pin 10 of A25XA4 should be a TTL low.

CHANGES

2021A to 2609A	On the A25 schematic: 08901-60120 - Change the A25 assembly part number to 08901-60120.
2426A and above	On the A4 schematic: - A4 - In the upper left corner of the schematic, change the part number of the A4 FM Demodulator Assembly to 08901-60184. - R80, R81 - In the CHARGE-COUNT DISCRIMINATOR, change the value of R80 and R81 to 26.1 ohms. - C50, C51, R105 - In the lower, right corner of the schematic, add C51 (2200 pF) to ground to the right of and in parallel with C50. Add R105 (4.64 k) between C50 and C51. - Q35, R106 - On the CHARGE-COUNT DISCRIMINATOR output path, to the right of C39, add Q35 (and N-channel FET). Connect Q35's drain between C39 and R86 through a new resistor R106 (215 ohms), connect its gate to the gate of Q21, and connect its source to ground. - Q23, Q26, Q28, Q33 - In the table of Transistor and Integrated Circuit Part Numbers, change Q23, Q26, Q28, Q33 to 1854-0637.
2543A and above	On the schematic: - Q18 - In the table of Transistor and Integrated Circuit Part Numbers, change Q18 to 1854-0830.
2616A and above	On the A25 schematic: - 08901-60286 - Change the A25 assembly part number to 08901-60286.

Figure 8-78. P/O A4 FM Demodulator Assembly Component Locations (FM Discriminator)

Figura 8-79. FM Diseriminator Schematic Diagram

SERVICE SHEET 7 - AUDIO FILTER (A2)
other references

(v1) 260 kHz Low-Pass FIlters and Modulation Selectors Check 1. Disconnect the cables from A2J1 (AM IN) and A2J2 (FM IN) Extend the A2 Audio Filter Assembly. Jumper a lead between chassis ground and the cover of the A2 assemply.
2. Construct the following input load fin the AM input. The 775 n
resistor can be constructed from a 2150 resistor in parallel with a 2. Construct the following input load firs the AM input. The 775 n
resistor can be constructed from 2150 n resistor in parallel with a
1210 resistor.

SERVICE SHEET 7 (Conl'd)

3. Set the audio synthesizer to 1 kHz at +13 dBm . Connect its 50 n
output to the input of the load. Connect the output of the load output to the input of the load. Connect the output of the loa
directly to A2IJ (AM IN). An intervening cable will add too mue
capacitance capacitance to the load.
4. Key in 0.120 SPCL and 0.111 SPCL to select low audio gain and
5. Connect a high.impedance, ac coupled oscilloscope to the inpu of the load. The oscilloscope should have a low-capacitance $10: 1$
divider probe. Adjust the synthesizer level for a waveform of 5 Vpp. 6. Connect the oscilloscope to pin 3 of U1A. The 1 kHz waveform should have an amplitude between 450 and 500 mV pp. Hint: Pin 1 of U1A should he a TTL low. If for any reason the signal into the Audio Overvoltage Detector is too high, the Modulation
Selectors will he latched open (see Service Sheet 8). 7. If necessary, adjust th , synthesizer level for a waveform of 50 mV Vp. Increase the syntl esizer frequency to 50 kHz . The 50 kH
waveform should have an amplitude between 500 and 530 mV pp. 8. Increase the synthesier frequency until the waveform ampli-
tude is $35 \mathrm{~m} V$ pp. The synthesizer frequency should be between 240 and 280 kH
6. Increase the synthesizer frequency to 1.5 MHz . The waveform
should drop into the noise. should drop into the noise.
7. Construct the following input load for the FM input. The 760 n resistor can be constructell from a 909Ω resistor in parallel with
4640Ω resistor.

8. Set the synthesizer to 1 kHz . Connect its 50 n output to the
input of the load. Connect the output of the load directly to $A 2 / 2$
(FM IN)
9. Key in 0.118 SPCL to select high-gain $F M$.

SERVICE SHEET 7 (Cont'd)

13. Connect the oscilloscope to the input of the load. Adjust the
synthesizer for a waveform of 5 Vpp .
14. Connect the oscilloscope to pin 14 of U1D. The 1 kHz waveform

Hint: Pin 16 of UID should be low
15. Adjust the level for a waveform of 2 V pp. Increase the synthes. izer frequency to 150 kHz . The 150 kH
amplitude between 1.95 and 2.05 V .
16. Increase the synthesizer frequency until the waveform ampli
tude is 1.4 V . tude is 1.4 Opp. The synthesizer frequency should be between 240 17. Increase the synthesizer frequency to 1.5 MHz . The waveform 17. Increase the synthesize
should drop into the noise.
18. Set the synthesizer frequency to 1 kHz
19. Key in 0.112 SPCL to select low-gain FM. The wavefurm
should have an amplitude between 195 and $205 \mathrm{~m} V \mathrm{Vp}$.

Hint: Pin 9 nf UIC should be a TTL low.
V2) Ampllifers 1, 2, and 3, 15 kHz and $>20 \mathrm{kHz}$ Low-Pass NOTE
NOLecto
 ters anc
results.

1. Disconnect the cables from A 2 J 1 (AM IN) and A 2 J 2 (FM IN). Extend the A2 Audio Filter Assembly. Jumper
chassis ground and the cover of the A2 assembly.
2. Construct the input load for the FM input as described in step 10
of the
(10 260 kHz Low-Pass Filters and Modulation Selectors
3. Set the audio synthesizer to 1 kHz at +10 dBm . Connect its 50 n output to the input of the load. Conncet the output of the load
directly to AN2 FM IN) An intervening cable will add too muyt directly to A2J2 (FM IN)
capacitance to the load.
4. Key in 0.120 SPCL and 0.118 SPCL to select low audio gain and Gran.
5. Connect a hish-impedance, ac coupled oscilloscope to the bas
of Q1A. Adjust the synthesizer level for a waveform of 1.5 V pp.

SERVICE SHEET 7 (Cont'o) Hint: If for any reason the signal into the Audio Selectors will latch open (see Severice Sodulation
6. Connect the oacilloscope to A2TP2 (AMPL 1 amplitude between 4.1 and 4.3 Vpp .
${ }_{4}^{7} \mathrm{Vp}$
8. Key in 0.139 SPCL to select the 6 dB Attenua1 kHz wavet the oscilloscope to pin 14 of U40). The 1 kHz waveform should have an amplitude be-
tween 1.9 and 2.1 Vpp . tween 1.0 and 2.1
9. Key in 0.13 C SPCL to select the 15 kHz Low Pass Filter. The waveform sho
tude between 1.9 and $2.1 V_{p p}$.
Hint: Pin 16 of U4D and pins 8 and 16 of U 2 should he a TTL low.
10. Increase the synthesize frequency to 10 kHz . The waveform should have an amplitude between .9 and 2.1 Vpp .
11. Increase the synthesizer frequency until the waveform amplitude is 1.4 Vpp . The synthes
frequency should be between 14 and 16 kHz .
12. Increase the synthesizer frequency to 150
kHz . The waveform should drop into the noise.
13. Set the synthesizer frequency to 1 kHz . Key n0.13A to select the $>20 \mathrm{kHz} \mathrm{H}$ Low. Pass Filter. The
kHz waveform should have an amplitude beween 1.9 and 2.1 Vpp .
Hint: Pin 9 of U2C should be a TTL low.
4. Increase the synthesizer frequency to 10 kHz . he waveform should have an amplitude between 9 and 2.1 Vpp .
15. Increase the synthesizer frequency until the frequency should be between 100 and 120 kHz .
16. Increase the aynthesizer frequency to 450
17. Key in 0.139 SPCL to get all filters off. Set the synthesizer frequency to 1 kHz . If necessary adjust
$2 V_{\text {pp. }}$
18. Connect the oscilloscope to A2TP3 (AMPL2 mplitude hetween 9.5 aveform should have an名
19. Adjust the aynthesizer level for a waveform

Connect the oscilloscope to A2TP4 (AMPL3 UT). The 1 kHz waveform should have an amplide between 9.9 and 10.1 V pp.
Hint: Pin 8 of U4B should be a TTL low
21. Reduce the synthesizer level by exactly 20
22. Key in 0.121 SPCL to set audio gain to high. 9.9 and 10.1 Vpp.

Hint: Pin 9 of U4C should be a TTL low
3. Increase the eynthesizer frequency until the waveform mpplitude is i.1. Vpp The .he snnthesizer
frequency should be between 240 and 280 kHz .

CHANGES

All Serial Prefixes	On the A2 schematic: - L5 - In 260 KHZ LOW-PASS FILTER, change the value of L5 to $910 \mu \mathrm{H}$. - C14 - Under AMPLIFIER I, change C14 to 820 pF . - $\overline{\text { Q1 }}$ - In the table of Transistor and Integrated Circuit Part Numbers, change $\overline{Q 1}$ to 1854-0830.
2009A and above	On the A2 schematic: - C32, C33, L10, L12, L13, L14 - Under > 20 KHZ LOW-PASS FILTER, change the value of C32 to $750 \mathrm{pF}, \mathrm{C} 33$ to $620 \mathrm{pF}, \mathrm{L} 10$ to $2 \mathrm{mH}, \mathrm{L} 12$ to $1.1 \mathrm{nH}, \mathrm{L} 13$ to $750 \mu \mathrm{H}$, and L 14 to $560 \mu \mathrm{H}$.
2021A to 2609A	On the A25 schematic: - 08901-60120 - Change the A25 assembly part number to 08901-60120.
2705A and above	On the A2 schematic: - $\frac{\text { R51 }}{\text { ohms. }}$ Under 15 KHZ LOW-PASS FILTER, change the value of R51 to 100
2616A and above	On the A25 schematic: - 08901-60286 - Change the A25 assembly part number to 08901-60286.

Figure 80. Az audiof fitere Asembly Compenent Lostions

(a3)	8. Increase the synthesizer frequency to 1 kHz . Key in 0.142 SPCL select the 50 Hz High-Pass Filter. The waveform should be between 1.95 and 2.05 Vpp .					
es Diagran						
Parsenit						
	9. Decrease the synthesizer frequency to 50 Hz . The wavefor 10. Key in 0.141 SPCL and 0.139 SPCL to select no high- or low					
troubleshooting						
dures for checking th	Hint: Pin 16 of U 12 D should be a TTI low 12. Key in 0.134 SPCL to select the 3 kHz Low-Pass Filter. Th Hint: Pin hould be a TTL low.					
that must be checked are also identified. Fixed sign						
caution	13. Increase the evyntesizizf frequency to 3 ktz . The waveform					
Modulation Analyzer is to be turned off, discon udio synthesizer first to prevent damage to the hes by the large signal present.	v2 De-emphasis and Oulput Amplitiers Check Unplug the A2 Audio Filter Assembly 2. Set the audio synthesizer to 1 kHz at +4 dBm . Connect ite 50					
High-pa	4. Connect a high (FLTR OUT). Adjust the synthesizer level for a waveform of 2 Vpp Hint: If the level is faulty, see and Filter Switching Check v1) High-Pass and Low-Pass Filter					
, F						
the andio syntesizer						
	Amplifier should be +2 fullowed by -1 6. Key in the Direct Control Special Functions indicated below. For each setting, set the synthesizer frequency as indicated. Th					
Connecta high.impedance, dc coupped osecilosecope to						
	cantal			wal (IT).		
				U1316	(138	
		${ }^{2122}$		L		
. Dearease the synthesieicer freuence to 300 Hz . The waveform						

 4.V.
4ive Pe Pin 9 of U14c should be a TTL Low.

(13) Dopectors Check

 Hint: Iow.giong TTI. pulseses should appear at pinil 16 of U15D

Hint Pin 11 of UYID should be
should appear at pin 10 of U2CIC.
should appear at at in thoor tharc.
 13. Connect hhe osilisocose to oin 120 of U90. The voltages should be
beeween betwen +3.4 nund +3.8 sdo

sumamempacm:

$=\frac{2}{2}$

 "-

-

5

= $=-{ }^{-2 m}$ | |
| :--- | :--- | :--- | :--- |

5 Unplus the $A 4$ FM Demodulutor A Asemb

CHANGES

All serial prefixes	On the A3 component locator: - C12, C14, C4, C6, L2, L3 - Change L2 to L3 and L3 to L2. Change C12 to C14 and C14 to C12. Change C4 to C6 and C6 to C4. On the A3 schematic: - U23, U13A, U12D - Change the following Signal names: U23 pin 15 to 3 kHz LPF(L), U23 pin 14 to $3 \mathrm{kHz} \operatorname{LPF}(H)$, U13A pin 1 to 3 kHz LPF(L), U12D pin 16 to 3 kHz LPF(H).
2021A to 2609A	On the A25 schematic: - 08901-60120 - Change the A25 assembly part number to 08901-60120.
2105A and above	On the A3 schematic: - R49 - Change the value of R49 to 26.1 k . - U7, U8, U10, U11 - In the Table of Transistor and Integrated Circuit Part Numbers, change U7, U8, U10, and U11 to 1826-0783.
2239A and above	On the A3 schematic: - R1, R4 - Change the value of R1 to 19 k . Change the value of R4 to 9 k .
2518A and above	On the A3 schematic: - C4, C6, C47, C48, C53 - Change the value of C4, C6, and C47 to $0.03 \mu \mathrm{~F}$. Change C48 and C53 to 3900 pF . - R1, R29, R4, R36. Change the value of R1 and R29 to 25 k . Change the value of R4 to 12.5 k . Change the value of R 36 to 7.4 k .
2324A and above	On the A3 schematic: - U4, U9 - In the Table of Transistor and Integrated Circuit Part Numbers, change U4 and U9 to 1826-0753.

CHANGES

2616A and above	On the A25 schematic: Errata O8901-60286 - Change the A25 assembly part number to 08901-60286.
	On the A3 schematic: - R51, R55 - Under INVERTING/ NON-INVERTING AMPLIFIER, change the valus and R55 to 1 k.

SERVICE SHEET 9 - VOLTMETER - AUDIO DETECTORS (P/O A5)
 HER REFERENCES

- Block Diagram

Voltmeter Offset and Sensitivity Adjustmen
Parts List

- Parts List

Direct Control Special Functions
Principles of Operation Shet BD3
\ldots. Page $5-10$
Page $6-15$ Principles of Operation Page . Page $8-61$

troubleshooting

General

Procedures for checking the Voltmeter Assembly are given below. The circuits to check are marked on the schematic diagram by a hexagon with a check mark and a number inside, e.g., (v3). In
addition, any points outside the labeled circuit area that must be addition, any points outside the labeled circuit area that must be schematic inside a hexagon, e.g., +1.9 to +2.1 V dcc . Extend the board assembly where necessary to make measurements.

CAUTION

CMOS circuits can be damaged by static charges and circuit transients. Do not remove this assembly from the instrument while power is applied. Discharge the board replacement device, and soldering iron to the same potential. (Use the conductive foam pad provided in the Service Accessory Kit HP 08901.60089.)

Equipment

Voltmeter..
HP
HP
1710
HP ${ }_{3}$ H55A

(1)Sample and Hold Drive Check

1. Key in 49.0 SPCL to set up the Voltmeter to measure ground.
2. Key in the Direct Control Special Functions indicated below For each setting, check the points indicated with a high-impedance. de coupled oscilloscope. For each setting, the oscilloscope should read as indicated.

SERVICE SHEET 9 (Cont'd)

v Peak Detector Check

. Unplug the A3 Audio De-Emphasis and Output Assembly
2. Set the audio source to 1 kHz at 0.7 V rms. Connect its output to pin 9 of A25XA5.
3. Connect an ac voltmeter also to pin 9 of A25XA5. Adjust the level of the source to 707.1 mVrm

SERVICE SHEET 9 (Conto

Key in 0.1E0 SPCL to set the peak detector discharge mode to hold.
5. Connect the voltmeter to A5TP7 (PK DET CAP). Set the voltmeter to measure dc. The voltmeter should read between +990 and +1010 mVdc of the level of step 3 could not be set exactly
.414 times the reading of step $3 \pm 1 \%$. .414 times the reading of step $3 \pm 1 \%$.
. Connect the voltmeter to A5TP6 (PK DET UUT). The voltmeter should read within $\pm 1 \%$ of the reading in step 5

Iint: The collector of $Q 9$ should be between +14 and +15 Vdc . Q8 should be on. If the reading is only slightly in error, perform the Voltmeter Of et and Sensitivity Adjustments. In normal opera tion the Peak Detector should be accurate to $\pm 0.1 \%$ 1 mV from 20 Hz to 200 kHz and to 4 Vpk . When must be less than -70 dB .

Key in 0.1 E 1 sPCL to set the peak detector ischarge mode to fast
8. Connect a high-impedance, dc coupled oscillogcope to Ā̈TP7. The waveform should be as follows:

Hint: If the waveform is faulty, see (vi) Sample and Hold Drive Check.

Average Detector Check
Unplug the A3Audio De-emphasis andOutput Assembly.
2 Set the audio source to 1 kHz at 0.7 Vrms. Connect its output to pin 9 of A25XA5.
3. Connect an ac voltmeter also to pin 9 of A25XA5. Adjust the level of the source to 707.1 mVrms as read by the voltmeter
4. Connect a high-impedance, dc coupled oscilloscope to A5TP5 (RECT OUT). The waveform should be as follows:

5. Increase the source frequency to 100 kHz (or preferrably 150 kHz) without altering the amplitude. The waveform should appear as in step 4 of the negative peak should be unchanged.

- Dearease the source frequery 1 kHz

6. Decrease the source frequency to 1 kHz .
7. Connect a dc voltmeter to A5TP4 (AVG OUT). mVdr.

Hint: If the reading is only slightly in error or if the Average Detector is known to be inaccurate at low levels, perform the Voltmeter Offset and Sensitivity Adjustments. In normal operation the Average Detector should be accurate to $\pm 0.1 \% \pm 1$
mV from 20 Hz to 200 kHz and to 2.83 Vrms . When testing the detector, the distortion of the source must be less than -70 dB .

CHANGES

All serial prefixes	On the A5 schematic: - U1 - In the Table of Transistor and Integrated Circuit Part Numbers, change $\overline{\mathrm{A} 5} \mathrm{U} 1$ to 1826-1048. On the A5 Component Locator: - CR10, CR11 - Change CR10 to CR11 and CR11 to CR10. - R7, R29 - Change R7 to R29 and R29 to R7.
1933A to 2545A	On the A5 schematic: - U2, U3, U5 - If A5U2, U3, or U5 are replaced, change the part number of A5R85 as written under serial prefix 2227A.
2012A to 2545A	On the A5 schematic: - R27 - Change R27 to VR6, a 3.3V zener diode with the cathode connected to the +15 V supply.
2021A to 2609A	On the A25 schematic: - 08901-60120 - Change the A25 assembly part number to 08901-60120.
2051A and above	On the A5 Component Locator: - R84, R85 - Use the partial component locator on page 8-110.5. On the A5 schematic: - R84, R85 - Use the partial schematic, P/O Figure 8-85. A5 Voltmeter Schematic Diagram (2051A and above), on page 8-110.5.
2052A and above	On the A5 schematic: - U5 - In the Table Transistor and Integrated Circuit Part Numbers, change the part number of U5 to 1826-0266.
2142A and above	On the A5 schematic: - U1 - In the table of Transistor and Integrated Circuit Part Numbers, change $\overline{\mathrm{U} 1}$ to 1826-0471.

CHANGES

2201A and above	On the A5 schematic: - C8 - Under HALF-WAVE RECTIFIER change the value of C8 to 75pF. - C9, C11, U2 - Under HALF-WAVE RECTIFIER delete C9 and C11 and their connection to U2. Change U2 pin 1 output to NC. - Notes - In the table of Transistor and Integrated Circuit Part Numbers, change U2 to 1826-0371.
2201A to 2447A	On the A5 schematic: - R9 - Under HALF-WAVE RECTIFIER change the value of R9 to 15 M ohms. - R24 - Under SUMMER AND FILTER change the value of R24 to 15M ohm.
2227A and above 2227A to 2545A	On the A5 schematic: - U4 - On the Table of Transistor and Integrated Circuit Part Numbers, change the part number of U4 to 1826-0371. On the A5 schematic: - R85 - On the partial schematic on page 8-110.5, locate R85 under BUFFER AMPLIFIER and change its value to 147 k ohms.
2302A and above	On the A5 schematic: - C2, C4, C5 - In the lower left corner of the schematic, change the value of C2, $\overline{\mathrm{C}} 4$, and C 5 to $68 \mu \mathrm{~F}$.
2450A and above	On the A5 schematic: - R9 - Under HALF-WAVE RECTIFIER change the value of R9 to 10 M ohms. - $\overline{\text { R24 }}$ - Under SUMMER AND FILTER change the value of R24 to 10 M ohms.
2606A and above	On the A5 schematic: - 08901-60293 - Change the A5 Voltmeter Assembly to 08901-60293.
2629A and above	On the A5 schematic: - Service Sheet 9 - Use the new SS9 schematic foldout on page with the revision date of rev.01NOV89. - A5 Component Locator - Use the new A5 Component Locator, Figure 8-84. A5 Component Locator (2629A and above), on page 8-110.6.

CHANGES

| 2616A and above On the A25 schematic: |
| :--- | :--- |
| - 08901-60286 - Change the A25 assembly part number to 08901-60286. |

Reserved for future changes

Figure 8-84. A5 Component Locator (2051A to 2623A)

CHANGES

All serial prefixes	On the A5 schematic: CR13J - Change the voltage values next to CR13J to " +2.85 to $+3.13 \mathrm{~V} \mathrm{dc"}$.
1933A to 2545A	On the A5 schematic: - U10, U11, U12 - In the Table of Transistor and Integrated Circuit Part Numbers, change U10, U11 and U12 to 1820-1547.
2012A and above	On the A5 schematic: - R59, R63 - On the schematic, change the value of R59 to 10 k ohms, and R63 to 2.5 k ohms.
2021A to 2609A	On the A25 schematic: - 08901-60120 - Change the part number of the A25 Audio Motherboard Assembly to 08901-60120.
2026A and above	On the A5 schematic: - R73, R75 - Under RAMP GENERATOR, change the value of R73 to 681 ohms and R75 to 162 ohms.
2302A and above	On the A5 schematic: - C29 - Under VOLTAGE REFERENCE change the value of C29 to 68 uF .
2606A and above	On the A5 schematic: - $\frac{08901-60293}{08901-60293}$ - Change the part number of the A5 Voltmeter Assembly to
2629A and above	On the A5 component locator: - A5 Component Locator - Use the new A5 Component Locator, Figure 8-87. A5 Component Locator (2629A and above), on page 8-112.3. On the A5 schematic: - Service Sheet 10 - Use the new SS10 schematic foldout on page with the revision date of rev.10NOV89.

CHANGES

2616A and above	On the A25 schematic: - 08901-60286 - Change the part number of the A25 Audio Motherboard Assembly to 08901-60286.

CHANGES

1933A to 2751A	On the A19 schematic: - C43, R63, R72, R74 - Change the value of C43 to 8.2 pF , and add an asterisk $\left(^{*}\right)$ to indicate a factory selected component. Change the value of R63 to 75 ohms, and R72 and R74 to 909 ohms. Add asterisks (*) to R63, R72 and R74 to indicate factory selected components.
2128A and above	On the A28 schematic: - $\frac{08901-60139 \text { - Change the part number of A28 RF Motherboard Assembly to }}{\mathbf{0 8 9 0 1 - 6 0 1 3 9 .}}$
2350A to 2751A	On the A19 schematic: - $\frac{\text { C38, R86 }}{51.1 \text { ohms. }}$. Change the value of C38 to 100 pF . Change the value of R86 to
2350A to 2617A	On the A19 schematic: - R21, R27 - Change the value of R21 to 121 ohms, and R27 to 51.1 ohms.
2618A to 2751A	On the A19 component locator: - 08901-20274 - Use the new component locator, A19 LO Divider Assembly Component Locations (2618A to 2751A), on page 8-114.3. On the A19 schematic: - 08901-60274 - Change the part number of the A19 LO Divider Assembly to 08901-60274. Use the schematic partials, P/0 A19 LO Divider Assembly (2618A to 2751A), on pages 8-114.4 and 8-114.5. - R21, R27, R87 - Change the value of R21 and R87 to 51.1 ohms, and R27 to 261 ohms. - U7, U8 - In the Table of Transistor and Integrated Circuit Part Numbers, change U7 and U8 to 1820-3485.

CHANGES

2911A and above	On the A19 component locator: 08902-60126 - Use the new component locators and component coordinates for SS11A and SS11B, A19 LO Divider Assembly Component Locations (2911A and above), on page 8-114.6 through 8-114.9 On the A19 schematic: - 08902-60126 - Use the new schematic foldouts SS11A and SS11B with revision date rev.01NOV89. - NOTES - Use the schematic foldout NOTES from service sheet 11, and add note 9 as follows: OUT_DIS_H means OUTPUT DISABLE (H) DBLR/OUT_L means BAND DOUBLER OR OUTPUT DISABLE (L) DBLR/OUT_H means BAND DOUBLER OR OUTPUT DISABLE (H) O/DBLR/OUT means BAND 0 OR DOUBLER OR OUTPUT DISABLE (H) 0_2_Of_DBL means BAND 0-2 OR BAND DOUBLER (H).

Model 8901 A

 roubleshooting

Seneral
Procedurese

Cautions

Equipment

(1) High Frequency vco and Output Buter Ampliliers Checi

 (13) Tune Vollage Filler and
 2. Key in the Direct Control Special Functions indicated belown

 \qquad

SERVICE SHEET 12 (contod
Key in 0.0 eb SPCl.
4. Connect an ac volteteer to A24TP (TUNE)

 ${ }^{\text {Com }}$ io dijust the audio source level for a voltmeter reading of 1. Key in o.pa spct. 10 oremove the filter. The volteteter should (44) Sampler Check

 7. Connect adc coupled osillososope to AzzTPI ISAMP AMPI..)

(v5) Bandwiduh and Loop Swichng HH VCO Tune

SERVICE SHEET 12 (Conta)
Presesulumamatco

.. Kes in the Direct Cortrol Special Functions indicated below.

(6) No-HFF.vco Delector and Out-ot-Lock Detector Check
 2. Redice the signal level to $-10 \mathrm{dBm} . \mathrm{A} 2$ 23nSs should b e on.
 Key in 0.0F8 SPCL. Az2DSS2 should be off.

Serice Model 8901 A

CHANGES

All Serial Prefixes	On the A24 schematic: - R7 - Under VCO-TUNE VOLTAGE CLAMP, change the voltage connection for R7 to -15 V (F1). On the A23 schematic: - R55 - Add an asterisk (${ }^{*}$) to R55 to indicate a factory selected component.
2031A and above	On the A23 schematic: - C45 - Add C45, 1.8 pF , between the CR8/CR9 junction and ground - Q6. In the Table of Transistor and Integrated Circuit Part Numbers, change $\overline{Q 6}$ to 1853-0281.
2128A and above	On the A28 schematic: - $\frac{08901-60139}{08901-60139}$ - Change the part number of A28 RF Motherboard Assembly to
2312A and above	On the A24 schematic: - C17 - Under HIGH FREQUENCY VCO, change the value of C17 to 10 pF .
2324A and above	On the A24 schematic: - U3 - In the Table of Transistor and Integrated Circuit Part Numbers, change A24U3 to 1826-0785.
2545A and above	On the A23 component locator: - 08901-60144 - Use the new component locator, Figure 8-67. A23 Sampler Assembly Component Locations (2545A and above), on page 8-116.3. On the A23 schematic: - 08901-60144 - Change the part number of the A23 Sampler Assembly to 08901-60144. - Q11, Q12 - In the Table of Transistor and Integrated Circuit Part Numbers, change A23Q11 and Q12 to 1855-0420.

Reserved for future changes.

Figure 8-67. A23 Sampler Assembly Component Locations (2545A and above)

ervice

施
\qquad

SERVICE SHEET 13 - LOW FREQUENCY VCXO AND FILTER (A21, A22)

other references

: Block Diagram
 Service Sheet BD 2
.. Page $6-39 \& 6-41$
troubleshooting
General
Procedures for checking the Low Frequency VCxO and Filter Assemblies are given below. The circuits to check are marked on the
schematic diagram by a hexagon with a check mark and a number ingide, e.g., (V). In addition, any points outside the labeled circuil rea that must be checked are also identified. Fixed signals are albo shown on the schematic inside a hexagon, e.g., $, 7+1.96+2,1$ vde.
Extend the board assembly CAUTION
Tighten SMC connectors to $0.6 \mathrm{~N} \cdot \mathrm{~m}(5$ in. 1 b$)$. Hand tight. ening of connectors is insufficieient. Hand tightened con. nectors can work loose and cause reduced
malfunctions, or damage to the instrument.

Equipment

v1 Low Frequency vCxO General Check

1. Connect a de voltmeter to A20TP3 (LF VCXO TUNE). (A20TP3
is shown on service Sheet 14).
2. Connect a highimpedance, ac coupled oscilloscope to A22J1 (LF
3. Key in 0.01 SPCL to connect the DAC to the LF VCXO
4. Key in the Direct Control Special Functions indicated below. For each setting, note the reading on the voltmeter and the wave form level on the oscilloscope. The waveform should be sinusoidal
with a period of approximately 500 ns. The readings should be with h period of approximatel.
within the limits shown below.

SERVICE SHEET 13 (Cont'd)

$\begin{gathered} \hline \text { Direct Control } \\ \text { Specifil } \\ \text { Funclions } \end{gathered}$	Limils	
	Voltmeter (Vac)	Osthlliscope (Vppl
$0.080,0.090$ 0.0 A 0 , and 0.0 BO 0 $0.08 \mathrm{~F}, 0.09 \mathrm{~F}$ 0.0 AF , and 0.0 BF	0 $+00+2$ $+370+40$	0.36 to 0.52 0.36 to 0.52

scope. Key in the Direct Control Special Functions indicated below.
For each setting, observe the frequency which should be as shown For each
below.

Direct Contral Special Funclions	Frequency Limits (Mhz)
$0.08 \mathrm{~F}, 0.09 \mathrm{~F}, 0.0 \mathrm{AF}, 0.0 \mathrm{BF}$ $0.080,0.090,0.0 \mathrm{~A} 0,0.0 \mathrm{~B} 0$	2.0063 or higher 1.9937 or lower

Hint: If the signal at A22J1 is not correct, but the tuning voltage is,
perform the ($\sqrt{\sqrt{2}} 9.26$ and 11.26 MHz Xtal Oscillators and Double Berform the $\left(\sqrt{y^{2}}\right) 9.26$ anced
(12) 9.26 and 11.25 MHz Xtal Oscillators and Double

NOTE
This check assumes that the VCXO tune line works prop
erly. See step 4 of the $(\sqrt[11]{ })$ Lou Frequency VCXO General
Check.

Connect a counter (in the signal generator) to A22TP2
2. Key in 0.01 B SPCL to connect the DAC to the LF VCXO
3. Key in the following Direct Control Special Functions. For each
setting, note the counter reading.

Diract Conirol Spacal Functions	Frequency Limis (MHz)
$0.080,0.090,0.0 \mathrm{~A} 0,0.0 \mathrm{~B} 0$ $0.08 \mathrm{~F}, 0.09 \mathrm{~F}, 0.0 \mathrm{AF}, 0.0 \mathrm{BF}$	9.2628 or higher 9.2572 or lower

SERVICE SHEET 13 (Cont'd)

5. Key in the following Direct Control Special Functions. For each

Direct Control Special functions	Frequancy Limut (MHz]
$0.08 \mathrm{~F}, 0.09 \mathrm{~F}, 0.0 \mathrm{AF}, 0.0 \mathrm{BF}$ $0.080,0.090,0.0 \mathrm{~A} 0,0.0 \mathrm{~B} 0$	11.2637 or higher 11.2563 or lower

Hint: With A22Y1 unplugged the voltage at A22TP1 should be 0.6 to
0.8 Vpp (sinusoidal) as measured with a high-impedance ac coupled ${ }^{0} \mathrm{osc} 1 \mathrm{Ilosco}$
3) Low Frequency vCxO Filter Check NOT
This check assumes that the (vi) Low Frequency VCXO
Connect a high-impedance, ac coupled oscilloscope either in with OOUT) with W 13 connecting to A23 gnal should be sinusoidal with an amplitude of 0.5 to 1.0 V pp and period of approximately 500 ns .

CHANGES

All serial prefixes	On the A22 schematic: - CR2, CR4, CR6, CR8 - Change the symbols for CR2, CR4, CR6 and CR8 to standard diode symbols. These are not Schottkey diodes.
2128A and above	On the A28 schematic: - 08901-60139 - Change the part number of A28 RF Motherboard Assembly to $08901-60139$.

ERVICE SHEET 14 - LO CONTROL - ANALOG CIRCUIT
other references
: Block Diagram

- Pirect Control Special Functions

Service Sheet RD Sheet BD 2
Page 6.36
Page 8.8
Page Page 8.70

roubleshooting

Equipmen
Audio Suuree
Multimeter Multimeter
Oscilloscope

HP 339A $H P$ 3455A

1) Sweep Down and Sweep Up Current Sources Check
1. Key in 0.01 F SPCL to open the LO loops.
2. Key in the Direct Control Special Functions indicated below. For 2. Key in the Direct Control Special Function
each setting, check the pins indicated wis.
highimpedance, dc coupled oscilioscope.

Dreat Control Funclion	Voltras Lumis (Vdel at		
	บ3¢-8	บ38. ${ }^{\text {d }}$	A28xa20.32
$\begin{aligned} & 0.0 \mathrm{FE} \\ & 0.0 \mathrm{~F} \end{aligned}$	$\begin{gathered} +4.5 \text { to to. } 5.4 \\ 0 \text { to }+0.8 \end{gathered}$	$\begin{gathered} 0 \text { to }+0.8 \\ +1.2 \text { to }+1.6 \end{gathered}$	$\begin{aligned} & +1.8 \mathrm{tot}+2.3 \\ & -12 \mathrm{to} .11 \end{aligned}$

Oirect ControlSpacial Functio	Conatition of Base Emilter Junction of				
	04	07	${ }_{5} 5$	01	02
$\begin{aligned} & 0.0 \mathrm{FE} \\ & 0.0 \mathrm{FE} 2 \end{aligned}$	Off On	$\begin{aligned} & o_{n} \\ & \text { off } \end{aligned}$	Off Off	$\begin{aligned} & \text { off } \\ & \text { On } \end{aligned}$	$\begin{aligned} & \text { off } \\ & \text { on } \end{aligned}$

Hint: For this check Q10 and Q11 must be off. The voltaye at the
3. Press Automatic operation
4. Check the voltage at the collector of Q5 with a high-impedance
dc coupled oscilloscope. The waveform should be a square wave de coupled oscilloscope. The waveform should be a square wav
with a a amplitude of approximately 1.6 pp and a period of approx imately 2.8 ms, but more importantly, observe the falling edge. S

(v2) Digitial-lo-Analog Converters and DAC Control

 Key in 0.0 FFF SPCL to inhibit LO sweep. Key in 0.01 E SPCL each setting, me
a de voltmeter.

Direct Control Spetial Functions	Vollage Limits (Vdc)
$0.080,0.090,0.0 \mathrm{AO}, 0.0 \mathrm{BO}$ $0.08 \mathrm{~F}, 0.09 \mathrm{~F}, 0.0 \mathrm{AF}, 0.0 \mathrm{BF}$	$\begin{gathered} 10 \text { to }-8 \\ -9 t+12 \end{gathered}$

Hint: For this check Q18 must be off and Q13 on. The gate of Q18
should be between -15.4 and 11 Vdc. The gate of Q13 should b should be between -15.4 and
between -0.1 and +0.02 Vdc.

Hint: If pin 6 of U4B is correct but $T P 4$ is not, check the component Service Sheet 12.) A20Q11 must be on

SERVICE SHEET 14 (Cont'd

Hint: To rest U4A independent of the DAC, key in 0.013 SPCL to open switch Q13, then connect a $10 \mathrm{k} \cap$ resistor between the +15 V

Hint: Since the output of the DAC is a current source, it is difficult to transeconductance amplifier). 3. Key in 55.0 SPCL to cause the LO to Lweep slowly back and forth
across its range. The voltage at TT4 should sweep slowly between across its range. The vilt
the limits given in step 2 .
$\sqrt{3}$ LF VCXO Tune Amplifier and LF VCXO Tune Filler Check NOTE
This check assumes that the (1a) Digital-to-Analog Con-
verter and DAC Control Amplitier Check gives positive verter
results.

1. Key in the Direct Control Special Functions indicated below. For
each setting, measure the dc resistance indicated

Diract ControlSpacial Function	Hesistance [1] Belwen	
	${ }_{2} 13$ Ping 283	014 Plns 283
$\begin{aligned} & 0.0 \mathrm{FA} A \\ & 0.0 \mathrm{~F} \end{aligned}$	$\begin{gathered} <600 \\ \gg 10000 \end{gathered}$	$\begin{aligned} & >10000 \\ & <6000 \end{aligned}$

Hint: When U13 is low resistance, the voltage across R69.9 should be
between 3 and 7 Vdc; when high, the voltage should be between 0 and 50 mVdc . When U14 is low resistance, the voltage across R7 should be between 11 and 14 Vdc ; when high, the voltage should be between 0 and 50 mVdc .
2. Connect a de voltmeter to A2OTP3 (LF VCXO TUNE).
3. Key in 0.01 B SPCL to connect the DAC to the LF VCXO
4. Key in the Direct Control Special Functions indicated below. For
each setting, note the reading on the voltmeter

Diraci Conirol Special Functions	
$0.1180,0.090,0.0 \mathrm{~A} 0,0.0 \mathrm{BO}$ $0.08 \mathrm{~F}, 0.09 \mathrm{~F}, 0.0 \mathrm{AF}, 0.0 \mathrm{BF}$	$\begin{gathered} 0 \text { to }+2 \\ -8750+40 \end{gathered}$

Hint: For this check, Q18 must be on and Q13 off. The gate of Q18 should be between -0.0.2 and
between -15.4 and -14.0 Vdc .

SERVICE SHEET 14 (Cont'd)

(V4) Track Loop Amplifier Check rack loo 2. Check pin 14 uf USD with a dc voltmeter. The
voltage should be between -15.4 and -11 Vdc. 3. Check Q10. The gate.to-source voltage should
be between -0.02 and 0 Vdc. 4. Turn the instrument to STBY. Unplug A4 FM
Demodulator Assembly. Turn the instrument Demodulator
back to ON .
5. Key in 0.0 OF SPCL to inhibit LO sweep. Key in
0.01D SPCL. .
6. Set the audio source (in the distortion meat surement set) to 1 kHz k at 0.5 V V rms. Connect it
output to pin 3 of 282 A 20 . output to pin 3 of A28XA20.
7. Connect a high.impedance, ac coupled oscillo
scope to pin 3 of Az8XA20.
8. Fine adjust the audio saurce level for 2 V pp a
read on the oscilloscope.
9. Connect the oscilloscope to the source of FE
Q10. 10. Key in the Direct Control Special Function indicated below. For each setting the oscillosco should read as indicated.

aireat Sontrol Spectal Function	Voltage Limits mVppl
0.004	600 to 880
0.005	300 to 440
0.006	150 to 220
${ }_{0}^{0.0007}$	75 to 110 38 to 58 88
0.009	19 to 28
0.00 A	10 to 14

CHANGES

All Serial Prefixes	On the A20 schematic: - U1, U4 - In the table of Transistor and Integrated Circuit Part Numbers, change the part number of U1 to 1826-0989, and U4 to 1826-0328.
1933A to 2616A	On the A20 schematic: - U13, U14 - In the table of Transistor and Integrated Circuit Part Numbers, change the part number of U13 and U14 to 1990-0643.
2128A and above	On the A28 schematic: - 08901-60139 - Change the part number of A28 RF Motherboard Assembly to 08901-60139.
2324A and above	On the A20 schematic: - E1, 09 - In the VOLTAGE REFERENCE, add a ferrite bead, E1, to the base
2542A to 2616A	On the A20 component locator: - Q24, Q25 - Change Q24 to Q24A. Change Q25 to Q24B. (Q24 is a dual package PNP transistor.) On the A20 schematic: Q24, ©25 - Under the LF VCXO TUNE AMPLIFIER, change Q24 to Q24A, and Q25 to Q24B. Number the pins of Q24A as follows: collector is pin 1, base is pin 2, emitter is pin 3. Number the pins of Q24B as follows: collector is pin 7, base is pin 6, emitter is pin 5. Under NOTES draw a top-view pinout of A20Q24 as follows: starting to the left of the tab and proceeding counterclockwise, number the pins $1,2,3,4,5$, 6, 7. In the table of Transistor and Integrated Circuit Part Numbers, delete Q25, and change Q24 to 1853-0594.

CHANGES

2617A and above	On the A20 component locator: - 08901-60285 - Use the new component locator, Figure 8-96. A20 LO Control Assembly Component Locations (2617A and above), on page 8-120.3. On the A20 schematic: - 08901-60285 - Use the new schematic foldout with revision date, rev.01NOV89.

Figure 8-96. A20 LO Control Assembly Component Locations (2617A and above)

Figure 8-96. P/O A20 LO Control Assembly Component Locations (Analog Circuits)

SERVICE SHEET 15 - LO CONTROL - DIGITAL CIRCUITS (P/O A20)

OTHER REFERENCES

- Block Diagram Service Sheet BD2
- Parts List
\qquad Page 6-36
- Direct Control Special Functions Page 8-8
- Principles of Operation Page 8-71

TROUBLESHOOTING

General

Procedures for checking the LO Control Assembly are given below. The circuits to check are marked on the schematic diagram by a hexagon with a check mark and a number inside, e.g., $\sqrt{3}$. In addition, any points outside the labeled circuit area that must be checked are also identified. Fixed signals also are shown on the schematic inside a hexagon, e.g., $\langle+1.9$ to $+2.1 \mathrm{Vdc}\rangle$. Extend the board assembly where necessary to make measurements.

CAUTION

CMOS circuits can be damaged by static charges and circuit transients. Do not remove this assembly from the instrument while power is applied. Discharge the board, replacement device, and soldering iron to the same potential. (Use the conductive foam pad provided in the Service Accessory Kit HP 08901-60089.)

Equipment

Oscilloscope
HP 1740A
Voltmeter. .HP 3455A

(v1) Decoders and Latches General Check

1. Key in the Direct Control Special Functions indicated below. For each setting, check the pins indicated with a dc voltmeter or a high-impedance, dc coupled oscilloscope. The Direct Control Special Functions are in the form 0.0sd. "s" is given in the table. Key in 0.0 s 0 SPCL first; a TTL low should be on the pins. Then key in 0.0 sF ; a TTL high should be on the pins. Furthermore, the pins should remain at their last state when any other IC is being addressed by the Direct Control Special Function.

Example: Key in 0.000 SPCL. Pins 16, 15, 10, and 9 of U19 should all read a TTL low. Key in 0.00F SPCL. The pins should all be high. Key in 0.010 SPCL. The same pins should remain high.

SERVICE SHEET 15 (Cont'd)

Direct Cantrol Special Function	If	Pins to Check
0.00 d	U 17	$16,15,10,9$
0.01 d	U 18	$16,15,10,9$
0.02 d	U 16	10,9
0.03 d	U 16	16,15
0.08 d	U 19	$16,15,10,9$
0.09 d	U 20	$16,15,10,9$
0.0 Ad	U 21	$16,15,10,9$
0.0 Bd	U 22	$16,15,10,9$
0.0 Fd	U 7	$15,10,9$

2. Key in 0.010 SPCL. Check pin 7 of U5B. It should be between +12 and +15 Vdc .
3. Key in 0.018 SPCL. Pin 7 of U5B should now be between -15 and -12 Vdc .

$\sqrt{ } 2$ Overpower and Attenuators Control Latch Check

1. Check that pin 1 of U15 is not a TTL low.
2. Key in 0.040 SPCL. Check pins 3 and 6 of U15 with a dc voltmeter or a high-impedance, dc
coupled oscilloscope. The pins should be TTL high. Pin 14 of U15 should be a TTL low.
3. Key in 0.04 F SPCL. Check pins 3,6 , and 14 of U15. The pins should all be TTL low.
4. Momentarily short pin 1 of U1̄̄ to ground. Creck pins 3,6 , and 11 of U15. The pins should all go TTL high while pin 1 is grounded but return low when the short on pin I has been removed. (U15 does not remain reset because pin 9 is constantly being pulsed.)
5. Key in 0.050 SPCL to enable the Overpower Protect Status read-back transistor Q16. Check the collector of Q16 with a high-impedance, dc coupled oscilloscope. The collector of Q16 should be a steady high. The display should show 0000.0000 .
6. Momentarily short pin 1 of U15. The waveform at the collector of Q16 should be a train of short, low-going TTL pulses with a period of approximately 7 ms . The pulses should remain unchanged when pin 1 is ungrounded. Also, the display should go from 0000.0000 to 0001.0000 when pin 1 of U15 is grounded and remain 0001.0000 when pin 1 is ungrounded.

CHANGES

Reserved for future changes.

Figure 8-98. A20 LO Control Assembly Component Locations (2617A and above)

Figure 8-98. P/O A20 LO Control Assembly Component Locations
(Digital Circuits)

Figure 8-89. L0 Control - Oigital Circuliz Schamatic Diagram

SERVICE SHEET 16 - COUNTER - TIME BASE CIRCUITS (P/O A11)

OTHER REFERENCES

- Block Diagram Service Sheet BD4

8 Parts List . Page 6-23

- Direct Control Special Functions Page 8.8
- Principles of Operation Page 8-72

TROUBLESHOOTING

General

Procedures for checking the Counter Assembly are given below. The circuits to check are marked on the schematic diagram by a hexagon with a check mark and a number inside, e.g., (3). In addition, any points outside the labeled circuit area that must be checked are also identified. Fixed signals are also shown on the schematic inside a hexagon, e.g., +1.9 to -2.1 Vdc . Extend the board assembly where necessary to make measurements.

CAUTION

Tighten SMC connectors to $0.6 \mathrm{~N} \cdot \mathrm{~m}(5 \mathrm{in} . \mathrm{lb})$. Hand tight. ening of connectors is insufficient. Hand tightened connectors can work loose and cause reduced performance, malfunctions, or damage to the instrument.

Equipment

Oscilloscope HP 1740A
Signal Generator HP 8640B10 MHz Time Base Reference Oscillator and ECL-to-TTL Translator Check

1. Connect a high-impedance, dc coupled oscilloscope to U2A pin 3. The waveform should be an ECL square wave with a period of 100 ns.

Hint: If the instrument has Option 002 (the high-stability internal reference oscillator), the input to AllJ4 (10 MHz IN) should be a non-sinusoidal waveform of approximately 1 Vppand 100 ns period. If the frequency of the time base reference is only slightly off, per form the Internal Reference Frequency Adjustment.
2. Connect the oscilloscope to the collector of Q4 and then Q3. The waveform in each case should be a TTL "square" wave with a period of 100 ns .
(2) External Time Base Buffer and Time Base Select Switch Check

NOTE

This check assumes that the 10 MHz Time Base Reference Oscillator and ECL-to-TTL Translator Check gives positive results.

SERVICE SHEET 16 (Cont'd)

1. Set the signal generator to 10 MHz CW at +13 dBm . Connect its RF output to A11J6 (EXT 10 MHz IN) or to the rear-panel 99 (TIME BASE 10 MHz INPUT).
2. Measure the following points with a high-impedance, de coupled oscillascope with the signal generator output both on and off:

Signal Gensrator Dutput	Signal Condition (TTL)						OS1		
	U21-4	U4A-2	U4E-10	U30-11	U3B-6	U3C-8			
On	(1)	(1)	L	(1)	H	(1)	On		
Off	H	H	H	H	(2)	(2)	Off		(1) Square wave at signal generator's frequency.
:---									
(2) Square wave at internal time base reference frequency.									

Time Base Dividers Check

 NOTEThis check assumes that the ($\sqrt{2}$ External Time Base Buffer and Time Base Select Switch Check gives positive results.

1. Check the following points with a high-impedance, dc coupled oscilloscope (all waveforms are TTL pulses):

IC	Pin	Mominal Period ($\mu \mathbf{s}$)
U10A	2	0.5
U10A	12	0.5
U4B	4	0.5
U9A	12	4
U9B	5	8
U8A	12	40
U8B	5	80
U10B	5	160
U20B	6	160

CHANGES

All serial prefixes	On the A11 schematic: - A11 - Use the partial schematic, P/O Figure 8-101. Counter - Timebase Ciruits Schematic Diagram, on page 8-124.3.
2623A and above	On the A11 schematic: - 08901-60292 - Change the part number of the the A11 Counter Assembly (standard) to 08901-60290. Change the part number of the A11 Counter Assembly (option 002) to 08901-60291.

Reserved for future changes.

P/O Figure 8-101. Counter - Timebase Ciruits Schematic Diagram

VICE	SERVICE SHEET 17 (COnt 6)		da	robe:
Block Diagram Serice		Ounctiluen	Leaten	Stanure
	Hint: Pins 1 and 4 of U6A should be 'JTL high. The waveform at pin 5 of U6A sho mately 50 ns .	$\begin{aligned} & \text { dovitit } \\ & \text { dot } \\ & \text { datL) } \end{aligned}$		
твоив		d3L)	${ }^{\text {Allubib pin }}$	
${ }^{\text {coib }}$		Hint If fiol	ty the ${ }^{\text {dee }}$	
	8. Remove the jumper foom pin 10 of UIB.		der	ys; eee
	9. Key in 0.363 SPCL to enable Stage l. Connect the oscilloscope to pin to of U1B. The waveform should be low-going ECL pulses with a period of approximately 7 ms .	I/O Port Check step 7. If no si service sheet.	restauts,	ere
asembly wher necesaraty to make meastement.		7. Remove A13	Uls foom the	
[caution]	piementit (ither may be hish).		Caution	
 malfunctions, or damage to the instrument.	(v2) Stages 2, 3, and 4, Count Transter Logic,			lifetime is ution when the socket or
Equipment Oacilloscope				alyear prob
ture AnalyzerPP 5004A	results and Time Base Dividers are operative (see Service Sheet	Dancriven	Latalon	somutur
(v1) Stage 1 Check				
1. Disconnect all cables from the All Counter Assembly. For Option 002 only, connect W31 (yellow) back to A11J5 (INT 10 MHz IN) using an extender cable.	1. Remove the three ribbon cables (W20, W21, and W23) that con- nect to the rear of the A27 Digital Mother Board Assembly.W23is on the bottom of the mother board.	(eat		
3. Jumper pin 10 of U1B to A11TP1 (GND) to enable stage 1 4. Key in 0.314 SPCL to assure SA Initialization is disabled.			m is with the oints with th	
	4. Disconnect all cables from the A11 Counter Assembly. Jumper A11J1 ($\div 8 \mathrm{IN}$) to A11J5 (INT 10 MHz OUT). For Option 002 only, connect W31 (yellow) back to A11J4 (10 MHz IN) using an extender cable.			
Hint: Pins 4, 5, and 6 of U1A should be ECL low. Pin 11 of U1B definitions on the service sheet schematic for the ECL levels used in the instrument.	5. Jumper A13TP6 (TEST C) to A1sTP1 (GND) on the A13 Controller Assembly. Momentarily ground			

$\operatorname{cox}_{5}=$
(13) Input Selector and Votmelet Gate Crock

CHANGES

All serial prefixes	In the Troubleshooting Section: - - In $\sqrt{\sqrt{1}}$ Stage 1 Check, step 1, change A11J5 to A11J4. - - In ($\sqrt{2}$ Stage 2, 3, and 4, Count Transfer Logic, and Counter Gate Control Check, step 7, change A13U14 to A11U14. On the A11 schematic: - R16 - Change the value of R16 to 1 k ohm.
2623A and above	On the A11 schematic: - 08901-60292 - Change the part number of the the A11 Counter Assembly (standard) to 08901-60290. Change the part number of the A11 Counter Assembly (option 002) to 08901-60291.

Model 8901 A

SERTO A13) SHEET 18 - CONTROLLER - MICROPROCESSOR
other references
,
nature
Principles of Operation Page 8 P74
thoubleshootin
General
Procedures for checking the Controller Assembly are given below The circuits to check are marked on the achematic diagram by a hexagon with a check mark and a number inside, e.s., (J3). In addition, any points outside the labeled circuit area that must be checked are also identified. Fixed signals are also shown on the schematic inside a hexagon, e.g., +1.9 to $^{+2.1} \mathrm{Vdc}$. Extend the board
CAUTIONS
MOS and CMOS ICs can be damaged by static charges and circait transients. Do not remove this assembly from the instrument while power is applied. Discharge the conductive foam pad provided in the Service Accessors Kit HP 0890I-60089.) When unplugging ICs, place the board on a conductive pad. When the IC is unplugged
Several ICs on this assembly are held in high.grip sockets. Both the socket and the device can be damaged if an attempt is made to remove the device with an 1 C exlraction tool. The recommenaed procedure is to firs slide the tip between the IC and the socket and slowly pry up the IC one pin at a time.
If the Modulation Analyzer powers up correctly, it is a strong indication that the Controller circuits ate
Haill b comppite even uhe frirt phase ofthe powerup
Because of the close interrelationstip of the circuit
re
For example, almost any maliunction will prevent the Modn.
Lation Analyzer from tuning properly.
In addition, keep the following points in mind when troubleshooting the Controller

SERVICE SHEET 18 (Contral

(12) Memory Select Decoders and Rom Check note
This chroct is a continumatian of the Controtler Kerrel
Check of Sevvice Sheet BDA.

 Assemb.
to 0 .

NOTES
HP IB cable W3o weed wut be co
AI3 and A4d may be misested into any of the three apen
siots in the Digital Section.
2. Short A19TP2 (KESETT to A13TP1 (GND). Switeh the ROMC
 connect he signature analyzer clock to wRT, start and stop th
ADDRESS 15 , and ground to GND. See the sibnature analyzer

$\substack{\text { Seletetad } \\ \text { RoM }}$		Slaraure
${ }_{7}^{6}$	$\begin{aligned} & 15 \\ & 14 \\ & 13 \\ & 13 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \\ & 7 \end{aligned}$	
Smateed Ram	Pino 1131313	signaure
R.am	7	${ }^{\text {ab2u }}$
Suleceod am	Pinonatulis	slenaur
1.	9	Анз9

SERVICE SHEET 18 (Contd)

note

	Slar/siop									
	${ }^{16}$	Pin	0	1	2	3	4	5	6	
		15								
	${ }^{\text {Al3U12 }}$	12				1125				
	A13012			${ }_{\text {chic }}^{\text {cin }}$	${ }_{\text {Press }}$	${ }_{\text {pros }}$	${ }^{\text {spag }}$	${ }_{\text {prsa }}$		\%res
		${ }_{10}^{10}$	Hest		$\underset{\substack{\text { sicic } \\ \text { RHur }}}{ }$	$\substack{\text { ABF } \\ \text { pous } \\ \hline}$	${ }^{\text {ATSGU }}$	$\xrightarrow{\text { Fratio }}$	${ }^{\text {copra }}$	
	А13,	$\stackrel{3}{7}$	Sise	${ }^{1} 1258$	${ }_{\text {coser }}^{\text {cisa }}$	tean		${ }^{\text {cosed }}$	fric	

пom kumber	Parthumber
${ }_{2}$	
${ }_{3}^{2}$	(0anal
4	
5	
$\stackrel{6}{7}$	
8	

int A fulty ignature indicates a fauty ROM.
$\sqrt{3})_{\text {Enable Decoder Check }}$

1. Keyithe Direct Control Speiall Functionsi

SERVICE SHEET 18 (Conrd)

CHANGES

2212A and above	In the SS18 troubleshooting: - Check 2 - In $\sqrt{2}$ Memory Select Decoders and ROM Check, replace the signature analysis and part number tables with those found on page 8-128.3.
2623A and above	On the A13 component locator: C10, C11, L1 - Delete C10, C11, and L1. On the A13 schematic: C10, C11, L1 - Delete C10, C11, and L1.

Reserved for future changes.

Signatures for Memory Select Decoders and ROM Check, step 3

ROM	Start/Stop		Signature on CONTROL BUS DATA Test Point							
	IC	Pin	0	1	2	3	4	5	6	7
1	A13U12	15	IPU9	4HOC	U93P	76PU	3919	P64P	167F	4119
2	A13U12	14	4P82	4P18	9427	22C5	18AH	A678	A075	025A
3	A13U12	13	FUUH	4071	P1U9	86A5	89HC	HC04	UP6U	P675
4	A13U12	12	PF63	CHC3	H738	FFU3	5085	P57A	69FU	HF09
5	A13U12	11	H5C4	4937	86CP	A58F	A136	FC40	9834	A624
6	A13U12	10	0959	U952	FHUF	POU9	65UU	29UP	CP7H	AOU8
7	A13U12	9	2CA4	1A8H	C898	76AA	UC8A	588A	F71A	8627
8	A13U12	7	U451	U20U	P807	HC50	0967	CPU1	84C6	H63A
11	A14U18	9	3378	673F	3250	AFC9	5A23	PC30	5475	9FU9

ROM Part Numbers

ROM Number	Part Number
1	$08901-80040$
2	$08901-80041$
3	$08901-80011$
4	$08901-80012$
5	$08901-80013$
6	$1818-0926$ or $08901-80014$
7	$08901-80039$ or $08901-80015$
8	$08901-80025$
11	$1818-1364$

SERVICE SHEET 19 - CONTROLLER - ROMS (P/O A13)

OTHER REFERENCES

- Block Diagram Service Sheet BD4
- Parts List Page 6-25
- Direct Control Special Functions Page 8-8
- Signature Analysis Page 8-18
- Principles of Operation Page 8-74

TROUBLESHOOTING

Procedures for checking the ROMs are given in the Memory Select Decoders and ROM Check on Service Sheet 18.

CHANGES

All serial prefixes	On the A13 schematic: - U5, U6, U7 - In the Table of Transistor and Integrated Circuit Part Numbers, change U5 to 08901-80011, U6 to 08901-80012, and U7 to 08901-80013.

SERVICESHEET 20-KEYBOARD ANDDISPLAY - KEYBOARD CIRCUITS (P/O A1)

 OTHER REFERENCES

- Principles of Operation

thoualeshooting

General
rocedures for checking the Keyboard and Display Assembly are
iven below. The circuits or points to check are marked on the schematic diagram by a hexagon with a check are mark and and an onber side, e.g, (GI). In addition, any points outside the labeled circu rea that must be checked are identified. Fixed signals are also
hown on the schematic inside a hexagon, e.g., $+1,9$ to +2, ydo
 he keyboard.
Equipmen
Oscilloscope......
Signature Analyzer
Signature
Voltmeter

HP
$H P 54004$

1) Keystroke Detector Check

Press any key and observe TEST LED (2) on the A13 Controlle Assembsy. Enech time the key is pressed the LED Lhe should Congrile, i.e
hange state. If it does, the Controller is being properly interrupted.
2. Remove the ribbon cable W2O

Cle the following voltage

$\begin{array}{\|l\|l\|} \text { Kys } \\ \text { nave } \end{array}$	Yollage Limils wetien on Alu3g Pln				
	?	5	${ }^{6}$	7	
None	-0.01 to +0.01	0.6 to 1.1 3.0104 .3	$4.5 \text { to } 5.5$	0 to 0.5 4.0 to 5.5	$\stackrel{\text { H }}{\text { L }}$

Hint: Any key should give the same voltage readings. The voltage a
U39 pin 2 will be higher than the condition of one key down if more than pin 2 will be high
than one key is down.
4. Connect a high-impedance, de coupled oscilloscope io U21 pin U39 pin 2 . Press then release any key. The dot on the oscilloscop hould move as follows
final position after release o
position momentarily after release o--- o position

SERVICE SHEET 20 (Conl'd)
Hint: The dot should dwell at the intermediale position (2) moment-NOTE
This check assumes proper operation of the following
keys: Shitt, SPCL, decimal, and all numeric. Otherwish keys
use
(3) $)$ below which
 (1) above.

1. From the Truubleshouling Table fir $)$ deternuine the row of
the key to bechecked and enter the Direct Contrul Special Function Che key to be checked and enter the Direct Contrull Special Function

Disable keyboard interrupts by shorting A13TP1 (GND) to
3. Pressing any key in the appropriate row of the table should give he digplay shown. (No key downy gives the display 1111.0000 . Press.
ing a key not in the giver row sives this display also. ing a key not in the given row gives his display als

To repeat step p above it is first necessary to remove the
Jomper on herent

(3) Front-Panel Keys and Scanners Check - Using Signature Analysis

1. Ground A13TP7 (TEST D) on the A13 Controller Assembly
2. Connect signature analyzcr start and stop to Al3TP4: TEST A
3. Connect signature analyzer ctack to A13TP11(WRT). Set clock

4et Modulation Analyzer's ink swich to stivy and bach to ON. Disegegard Front Panel Display readouts.
5. Connect the signature analyzer's probe to A13TP5 (TEST B)
6. Press the front-panel keys and note the signature. The signa-
wures are documented in Figure 8.108 .

Hint: Pressing keys simultaneously alters the signatures. If no meaningful results can be obtained, cuntinue on with step 7 .

SERVICE SHEET 20 (Conl'd)

Connect the signature analyzer's probe to the points indicated
in the table below and check the signatures. (Nu keys should be in the ta

Pin	U21	U22	${ }^{2} 2$	${ }^{38}$	Pin
1	-	v005	24 P	geau	1
2	-	${ }_{24}{ }^{483}$	1381	${ }_{4767}$	${ }^{2}$
3		F767	F767	1999	${ }^{3}$
4	${ }^{\text {U }}$	${ }^{24} 4$	${ }^{24 \mathrm{P}}{ }^{194}$	amo	4
5	${ }_{\text {8PR }}{ }^{\text {P7 }}$	${ }_{4} 4005$	${ }^{1381}$	0	5 5 6
${ }_{7}^{6}$			F767 01000	0000 0000	${ }_{7}^{6}$
8	AA4P	1767	F767	oono	8
9	F767	${ }^{24} \mathrm{~Pa}$	24 P 3	0010	9
10	1381	ขubs	1381	мопо	10
11	AA4P	${ }^{7} 767$	F767	0000	${ }^{11}$
12	AAIP	24 P 3	$24 \mathrm{P3}$	0000	12
113	${ }_{\text {8PAH }}^{\text {8P3 }}$	v005	${ }_{2}^{1381}$	${ }_{\text {FTH7 }}$	${ }^{13}$
${ }_{1}^{14}$	${ }^{24} 43$	$24 \mathrm{P3}$	${ }^{24 P 3}$	${ }^{\text {F767 }}$	$\stackrel{14}{15}$
16	-	-	-		15 16

SHEET 20 (Cont'd)

$\begin{gathered} \text { Girese Connaral } \\ \text { Supecil } \\ \text { funclion } \end{gathered}$	Display ve. Key Pressad			
	011.0000	101.0000	11010000	1110.000
0.750	(N/A)	LCL	$\rightarrow 20 \mathrm{kHz}$	15 kHz
0.760	${ }^{3} \mathrm{kHz}$	300 Hz	${ }_{50} \mathrm{~Hz}$	$750 \sim$
0.770	${ }^{75}{ }^{\text {res }}$	${ }_{50}{ }^{\text {es }}$	25.ss	Hem.disp
${ }^{0.780}$	${ }_{\text {RFP }}^{\text {RFEVEL }}$	${ }_{\text {¢ }}^{\text {¢ }}$ / ${ }^{\text {dibrator }}$	${ }_{8}^{\text {FM }}$	
${ }_{0} \mathbf{7} 70$	Clear	- (decimal point)	$\underbrace{}_{\mathrm{kH}_{2} \text { Sthit }}$	${ }_{\text {SRCL }}^{\text {PREQ }}$
${ }^{0.78 \mathrm{P}}$	(N/A)	kH_{2}	$\mathrm{MHz}^{\text {a }}$	(N / A)
0.760	${ }^{\text {d }}$		avg	feak hold
0.700	${ }_{7}^{\text {PEAK- }}$	PEAK +	9	
- 0.7 FE	${ }_{3}^{7}$	的	5	4 0

$\stackrel{\text { 哭 }}{\square}$	yo kerfensssa ofua		
	$\square^{x 98} \square^{\mathrm{man}} \square^{\mathrm{mm}} \square^{\mathrm{km}}$		($)$ (o)

Figure 8-100. Signatures tor the Front-Panel Keys and Scanners Check

CHANGES

2447A and above	On the A1 component locator: - 08901-60261 - Use the new component locator, Figure 8-109. P/O A1 Keyboard and Display Assembly Component Locations (Keyboard Circuits) (2447A and above), on page 8-132.3.

Reserved for future changes.

Figure 8-109. P/O A1 Keyboard and Display Assembly Component Locations (Keyboard Circuits) (2447A and above)

Figure 8-109. P/0 A1 Keyboard and Display Assembly Component Locations (Keyboard Circuits)

L	［ts\％ 0
9	8 2000
g	ftec
F	8 cc 0
8	10900
8	8090
I	toge
ubio fuipazasd jo saqunN	

tuiod praicap parssopay uo

$748{ }^{\text {¢ }} \mathrm{S} \mathrm{S} \mathrm{H}$	－3มd	taso
	T3＾\T ${ }^{\text {d }}$	6890
	W 4	＋ 890
14 SIT 5 S Y	Wd	8.990
	W\％	1390
248\％7 1 ¢\％	（7）Tys s	zaso
	gp	1990
	4	8990
24^{2}	0．4	1990
248：7 ${ }^{\text {cay }}$	［10\％YVEd	saso
	－wvad	1090
	－หどすd	2090
	sroer	－4900
	${ }_{50} \mathrm{sc}_{2}$	4890
${ }^{2} \mathrm{Y}^{3} \mathrm{rI} \mathrm{I}^{\mathrm{Ka}} \mathrm{Y}$	sios	ta90
	sr g 8	8990
		1790
	2 Hy 5 T	1690
	${ }^{\text {TH }}$ ¢ $¢$	8690
	${ }^{2} \mathrm{H} 008$	569\％
	${ }^{2} \mathrm{H}$ O¢	8690
74397% 令		1892
	2011	Houllury lelpais

74 ตึ！ 1 रəข	nolswertivo 10dS	$\begin{array}{r} 1990 \\ 8990 \end{array}$
	casscyucav	20：0
solepuntuy	gLowas	8LS 0
zoperpunauy	LILIIT	ace 0
dongepounury	тэу	เع9：0
	${ }^{2} \mathrm{HN}$	ces 0
морер！ииииу	s7em	LZE0
sone！junumy	suptpex	zze 0
2028punury	${ }^{2} \mathrm{H} 4$	＋6\％ 0
	\％	989\％
	ग1！ 1	ualaund lepards ј01）

 BLON

Vecte dH

juewd！nb3
sasey पzoq ui

F－9 ${ }^{\text {asm }}$

sヨวNヨษヨコヨy 女ヨu

CHANGES

All serial prefixes	On the A1 schematic: - R20, R22, R23, R26, R27 - Change the value of R20, R22, R23, R26, and R27 to 330 ohms. - R21, R24, R25 - Change the value of R21, R24, and R25 to 348 ohms.
2212A and above	On the A1 schematic: - DS5, R21 - Delete DS5 and R21 and their connection to +5 V .
2447A and above	On the A1 component locator: - 08901-60261 - Use the new component locator, Figure 8-111. P/O A1 Keyboard and Display Assembly Component Locations (Decoder and Display Circuits) (2447A and above), on page 8-134.3. On the A1 schematic: - 08901-60261 - Use the new schematic foldout with revision date rev.01NOV89.

Reserved for future changes.

Figure 8-111. P/O A1 Keyboard and Display Assembly
Component Locations (Decoder and Display Circuits) (2447A and above)

SERVICE SHEET 22 - remote interface hp-ib (A14) other references

roubleshooting

General
Procedures for checking the Remote Interface Assembly are given
elow. The circuits to check are marked on the schematio di
 addition, any woints outside the labeled circuit area that must be hecked are also identified. Fixed signals are also shown on the

CAUTIONS

MOS and CMOS ICs can be damaged by statio charges
and circuit transients. Do not remove this assembly from and circuit transients. Do not remove thid assembly fro
the instrument while power is applied. Discharge the the instrument while power is applied. Discharge the
buard and replacement IC to the same potential. Use the board and replacement IC to the same potential. (Sue te te
conductiv foum pad provided in the Service Accessory
 hourd on a conductive pad.
insert it into the foum also.
Several ICs on this assembly are held in hight.grip
sockets. Bath the socket and the device can be damaged if
 extraction tool. The recommended procedure is to fir
ground the tip of a small blade-type screvurriuer, the slide the eito betwen a the II cand the socket and slowly pry
up the IC one pin at t time.
The following checks use the HP.IB Functional Checks in the Oper-
ting Manual as a basis for troubleshooting the Remote Interface Assembly. It is assumed in the following procedures that the failure was detected during the functional checks. Therefore, it is only ecessary to perform the troubleshooting procedures starting with the equivalent functional check in which the failure occurred. Dur-
nig the procedures, the 6.1 S Serive Special Functions (see page
8-14) are also used to help locate the failure.

When using the troubleshooting flowcharts, it is inportant that the sociated notes be read. These notes help clarify the steps that are lagged. The troubleshooting procedures assume that the bus con
roller and the bus cuntroller's $\mathrm{HP}-\mathrm{IB}$ interface are aperating proprrly. This means that it is assumed that the required inputs are
rest form all of the HPIB Functional Checks after any repair to the emote Interface Assembly.

SERvice Sheet 22 (Gonit
When using the flow charts, referi to the Remote Interface Assembly principles ur oferal
Refer to replacement inf a probable defective part does not correct the Remo
Interface problem check any related circuits that are connccted Interface problem, check any related circuits that are conncected to The fauty area. For example, some bus controiltra simultaneousl
function as both talker and listener. As a result, they may mask failure of the Remoter Interfacechandshaking cappobilities. Thask cal
happen when either the RRFD or NDAC output driver on the thu happen when either the NRFD or NDAC output driver on the bus
fails in a high atate. This is a very subtle problem. The quickest way to determine if thisis is happening is to monitor the driver output
white activating both output levels of the individual driveru.

Equipment

Digital Test/Exxender BoardHP (89901-60081

(v1) Address Recognillon Check

1. Perform the steps shown in the Address Recognition Trouble

(v2) Remole and Local Messages and the LCL Key Check

 1. Perform the steps shown in the Remote and Local Messages anthe LCL Key Troubleshovting Flowchart (see Figure $8 \cdot 115$).
(v3) Sending the Data Message Chec

1. Perform the steps shown in the Sending the Data Message

(v4) Receiving the Data Message Check

1. Perform the Receiving the Data Message portion of the HP-IB
Functional Checks refer to the Operating Manual:.

Hint: Most of the circuits that are used in this check were used in previous checks. Check the inputs and outputs of gates U 2 and U 6.1 they are good, the probem could be U.3, the Controlle
Sheet 18), or the annunciators (see Service Sheet 21).
(v5) Local Lockout and Clear Lockout/Set Local

1. Perform the Local Lockout and Clear Lockout/Set Local Mes sapes portion
ing Manuail.
Hint: Most of the circuits that are used in this check were used in previous checks. If the instrument fails this cleck, the problem is Keyboard circuits (see Service Sheet 20)

SERVICE SHEET 22 (Gont

(v6) Clear Message Check

1. Perform the Clear Message portion of the HP.IB Functional

Hint The circuits that are used in this check were used in previous checks. If a problem occurss during the Clear Meessage Checkecr repeat
the previous checks starting at (i1) Addreas Recognition Check. (v) Abort Message Check

1. Ferform the steps shown in the Abort Message Troubleshooting

Hint: Most of the circuits that are used in this check were used in
previous checks. The flowchart is primarily used to check the IFC previous checks. The flowchart is primarily used to check the IFC
(v) Status Byte Message Check

1. Pertiorm the Status Byte Message portion of the HP.IB Func Hat
Hint: Most of the circuits that are used in this check were used in previous checks. The most important difference is that the Con trouter must recounize that the Serial P
the status byte when addressed to talk.
(v9) Require Service Message Check
2. Perform the Require Service Message portion of the HP-IB
Functional Checks (refer to the Operating Manual)

Hint: Most of the circuits that are used in this check were used in previsus checks. The most important difference is that the Con previcus checks. The most important difference 18 that the Con.
troller must drive the SRQ L) line low. It does this through gate
U12D and he Po (U13). Repeat the check and monitor the input Und output of U12D
(v10) Trigger Message and Clear Key Triggering 1. Perform the Trigger Message and Clear Key Triggering portion
of the IIPIB Functional Checks (refer to the Operating Manual).
(v11) Memory Select Decoders and ROM 11 Check

1. Perform the Memory Select Decoders and ROM Check on Ser
vice Sheet 18 .
(12) Select Decoder and Address Switches Check
2. Key in the Direct Control Special Functions indicated below. For
each setting, check the pins on Ull indicated.
seyboard and Display - Decoder and
P/OA1
SERVICE SHEET

SERVICE SHEET 22 (Cont'd)

2. Key in 0.450 SPCL to readback part of SL. The
display should be of the form abcd 0000 where a-1 if SID is open;
$b=1$ if SIC is open; $\mathrm{b}=1$ if BlC is open;
$=-1$ if $S 18$ is open;
$d-1$ if SIA is open.
3. Key in 0.460 SPCL to read back the rest of SI and U.3.000 where
$a=1$ if U3B is set
$b=1$ if SIG is ope
$b=1$ if S SiG is ipen
$c=1$ if $S I F$ is open
$d=1$ i $S I E$ is open.

Start with the talker waiting for the listener to release NRFD (not ready for date) indicating it is read. When the listener is ready. NRFD gees high falkee. The talker then places valid data on DIO1 through
DIO甘 and sets DAV (ddata valid llow truel. NRFD then goes low (true) and the talker waits for the listener to indicate it has accepted the data or The talker sets DAV high (false) and again waits for the listener to release NRFD
INOTE that if ATN is true, all instruments on the bus must handshake rekardless of whether they are
talkers listeners or bystanders. Reing in remote arl local has nothing to do with handshaking. If ATN is talkers, listeners. or SHanders. Being in remote or local has nothing to do with handshaking. If ATN is false, they only handshake if addressed.

 notes

 4. Xequatik "dant tare

 6. Displatry SPi.iB addreses set on the Addreses

CHANGES

2424A and above	On the A14 Schematic: - 08901-60257. In the upper left portion of the schematic, change the part number of the A14 schematic to 08901-60257. U8, U22F . Use the schematic partial, P/O Figure 8-120. Remote Interface Assembly (2424A and above), on page 8-138.3. In the table of INTEGRATED CIRCUT PART NUMBERS, change the part number of A14U8 to 1820-2740. Change the U8 entries in the table of DIGITAL INTEGRATED CIRCUTT VOLTAGE AND GROUND CONNECTIONS as follows: +5V, pin 20; ground, pin 10.
3022A and above On the A14 Schematic:	
- R5 - Under INTERFACE CONTROL, change the value of R5 to 2150Ω.	

 inta 60002 . Connect its 6 600ss noutput to the high and low pronks of a

he mor
1 Yop.

Set the instruments line voltage selector to the proper seting
(v2) Full Wave Rectillers Check
If there are any jumpery un the TEST test points on the A13
Controller Assembly. remove them.
 INE to STBY then hack to ON to reset the instrument While al
ontpanel LEDSs a are ighted check the averame dc coltage and a

PIn to Cheek Dn A2BXA10	Avarage Vollage Limlts (Vdc)	Maximam AC Ripple [Vpp]
		1
$\underset{\substack{21 \\ 180 \text { or } 43 \\ 40}}{ }$		1
220 or 44	${ }_{-1350-7}$	1.5

Hint: An open rectifier diode will result tin excescsive eippie at the lin
 $\underset{\substack{\text { improperer } \\ \text { regulitor. }}}{\text { lin }}$
(3) + +15V Regulator Check

Hint: If AOODS $1+1+15 V$ is off with LINE set toON, but on with LINE

SERVICE SHEET 23 (Cont'd)

CHANGES

All serial prefixes	On the A10 component locator: - C22 - Find R6 and R2. Parallel with R6 and perpendicular to R2, there is a small unmarked capacitor. Label this capacitor C22. On the A26 component locator: - CR6, CR7, CR9, VR1, VR2 - Change the following reference designators: CR6 to CR7 CR7 to CR9 CR9 to CR6 VR1 to VR2 VR2 to VR1 On the A26 schematic: - J5A - On the top left side of the schematic, change J5A pin 7 to pin 8; change the color code of this line from 0 to 04 . Connect this same line to " E " on the A30 LINE POWER ASSEMBLY. Change J5A pin 8 to pin 7; change the color code of this line from 04 to 0. Connect this same line to "C" on the A30 LINE POWER ASSEMBLY. - B1 - Use the schematic partial on page 8-140.3. This partial shows the correct wiring for safely grounding the fan (B1).
2012A and above	On the A10 schematic: - R15, R17, R19 - Change the value of R15 to $1 \mathbf{k}, \mathrm{R} 17$ to 825 ohms, and R19 to 1.1 k. - Q7, Q9 - In the table of Transistor and Integrated Circuit Part Numbers, change Q7 and Q9 to 1854-0811.
2133A and above	On the A30 schematic: - C1 - Add C1, 0.1 $\mu \mathrm{F}$, between lines " L " and " N ."
2212A and above	On the A26 schematic: - C5 - In the upper left portion of the schematic, add the following note to C5: $\overline{\mathrm{C} 5}$ is inserted for Option 004 instruments only.
2308A to 2916A	On the A10 schematic: - Q1, Q5 - In the Table of Transistor and Integrated Circuit Part Numbers, change Q1 and Q5 to 1884-0244.

CHANGES

2518A and above	On the A10 schematic: - R3, R7 - Change the value of R3 to 422 ohms. Change the value of R7 to 0.47 ohms.
2607A and above	On the A10 schematic: - C21, C22, C9, C10 - Change the value of C21 and C22 to $0.022 \mu \mathrm{~F}$. Change the value of C 9 and C 10 to $10 \mu \mathrm{~F}$.
2751A and above	On the A26 schematic: - 08901-60294 - Change the part number of the A26 schematic to 08901-60294. - K1-A26 is shown in two places on this service sheet, to the left of the A10 schematic, and to the right of the A10 schematic. On the left-hand schematic, locate P/O K1 (STANDBY RELAY). Number the switch pivot junction dot " 2 " and the dot to its left " 13 ." Number the junction dot connected to the anode of CR5 "4" and the dot connected to the cathode of CR5 "5." On the right-hand schematic, locate P/O K1. Number the switch pivot junction dot "7," the ground junction dot " 11 ," and the third junction dot " 12 ."
2925A and above	On the A10 schematic: - Q1, 05 - In the Table of Transistor and Integrated Circuit Part Numbers, change Q1, Q5 to 1884-0345. - R67, R68 - Add R67 (133 ohms) between the junction of VR2 anode and Q1 gate, and ground. Add R68 (133 ohms) between the junction of VR3 anode and Q5 gate, and the -15 V supply.

Fan Grounding Schematic Diagram (All serial prefixes)

SERVICE SHEET $24-+5 \mathrm{~V},-5 \mathrm{~V}$, AND +4OV POWER

 SUPPLIES (A10)
OTHER REFERENCES

- Block Diagram

Service Sheet BD 2

- Power Supply Adjustment Page 5-4

TROUBLESHOOTING

General

Procedures for checking the $+5 \mathrm{~V},-5 \mathrm{~V}$, and +40 V Power Supplies are Piven below. The circuits or points to check are marked on the schematic diagram by a hexagon with a check mark and a number inside, e.E., (3). In addition, any points outside the labeled circuit area that must be checked are also identified. Fixed signals are also shown on the schematic inside a hexagon, e.g. $+1.9 \mathrm{ta}+2.2 \mathrm{Vdc}$ Extend the A10 Power Supply Regulators Assembly where necessary to make measurements. This will require removal of the left

Most often a dead power supply is the result of a short on its uutput which originates on one of the other assemblies. Follow the (v) Power Supply Check on Service Sheet BD2 to isolate a short to an assembly.

```
Equipment
    Oscilloseope ........................... 1740A
    Volmeter ....................HP 3455A
```


+5V Regulator Check 1. Measure the voltages indicated below with a dc voitmeter. The
voltages given are for normally loaded, unloaded (all other assemblies disconnected), and short-circuit conditions.

Polnt to Measurs on A10 or A20Xalo	Typleal Yollege (VGC)		
	Hornal	Unloaded	Short
TP5	+5.3	+5.3	0.0
Pin 6. 28	+5.3	+5.3	+0.1
U1D Pin 14	+13.7	+13.7	-9.6

Hint: If the above voltages in a column are correct, the supply is working normally under the condition stated

ERVICE SHEET 24 (Cont'd)

v2) 5 V Regulator Check

Measure the voltages indicated below with a dc voltmeter. The oltages given are for normally loaded, unloaded (all other assem blies disconnected), and short circuit conditions.

Poind to thaasure on 1010 or A2bxalo	Tyaical Vollage (Vda)		
	Norma\|	Unlonded	Sthor1
'TP4	-5.2	-5.2	0.0
Pin 17, 39	-5.5	-5.2	-0.3
U1B Pin 7	-15.0	-15.0	+9.6

Hint: If the above voltages in a column are correet, the supply is working normally under the condition stated
v 3 +40V Regulator Check
. Measure the voltages indicated below with a dc voltmeter. The oltages given are for normally loaded, unluaded the RF Section disconnected), and ahort-circuit conditions

Point to Measure an A 10	Typlaal Volage \|VGGI		
	Mormat	Unloadad	Shart
TP6	+41	+41	0
Cathode CR8	+68	+66	+68

Hint: If the above voltages in a column are correct, the supply is working normally under the condition stated. Line ripple at the ing.

Figure 8-125. P/O A10 Power Supply Regulators Aspmbly Companent Lacations +40 V and $\pm 5 \mathrm{~V}$ Regulatots)

CHANGES

P/O A29 ASSEMBLY

PIN 1

(MP1 UNDER SCREW ON OPPOSITE SIDE OF HEAT SINK)

Figure 8-126. P/O A29 Series Regulator Heat Assembly Component Locations (+40 V and $\pm 5 \mathrm{~V}$ Regulators)

CHANGES

All serial prefixes	On the A25 schematic: - C1, C2 - Change the value of C 1 to $0.01 \mu \mathrm{~F}$ and C 2 to 100 pF .
2021A to 2609A	On the A25 schematic: - 08901-60120 - Change the part number of the A25 Audio Motherboard Assembly to 08901-60120.
2021A and above	On the A25 schematic: - XA5, X7, X8, X9 - Add a line connecting XA5 pin 28, STOP COUNT (H), to X 7 pin 8, X8 pin 8, and X9 pin 8. These pins are currently labeled NC. Label the pins, STOP COUNT (H). -. $\mathrm{J2}, \mathrm{X} 7, \mathrm{X8}, \mathrm{X} 9$ - Add a line connecting J2 pin 7, e=2(L), to X7 pin 30, X8 pin 30 , and $\mathrm{X9}$ pin 30 . These pins are currently labeled NC. Label the pins, $\mathrm{e}=2(\mathrm{~L})$. e. W23 - Use the schematic partial, P/O Figure 8-129. Audio Motherboard Schematic Diagram (2021A and above), on page 8-144.3.
2616A and above	On the A25 schematic: - 08901-60286 - Change the part number of the A25 Audio Motherboard Assembly to 08901-60286.

Reserved for future changes.

P/O Figure 8-129. Audio Motherboard Schematic Diagram (2021A and above)

A25 ASSEMBLY

($\mathrm{J} 1, \mathrm{~J} 2, \mathrm{~J} 4, \mathrm{~J} 5$ ARE ON UNDERSIDE)

Figure 8-128. A25 Audio Motherboard Assembly Component Locations

Figure 8-130. A27 Digital Motherboard Assembly Component Locations

CHANGES

2128 A and above	On the A28 schematic: - 08901-60139 - Change the part number of A28 RF Motherboard Assembly to

	SS27
rev.01NOV89	$8-148.1$

GERVICE SHEET 28 - FM CALIBRATOR (OPTION 010, A51) other references

- Block Diagram
\therefore PMrts List
\qquad Parts List ...
rol Special Funct
roubleshooting
General
rocedures for checking the FM Calibrator Assembly are given rocedures for checting the FM Calibrator Assembly are given
below The circuits o oceck are marked on the schematic diagram by a hexagnon with a check mark and anumber inside, eg.g. (3 . In
ddition, any points outside the labeled eircuit arta that must be addition, any points sutside the labeled circulu areat that must be
 CAUTION
 ning of connectors is insuifficient. Hand fithterned con-
nectors can work loose and cause reduced performance. malifunctions, or dumage to the instrument
Equipment

(11) Trapezoid Generation Circuits and Mode Control Cneck Measure pin 3 of Ul with a dc voilmeter The voltage should be

2. Measure the collector of 910 with a de voltmeter. The voiltage
should be between -10.6 and $9.6 \mathrm{Vdc}$.
. Measure pin 6 of U 3 with a de voltmeter. The voltage should he

3. Key in the Direect Control Special Functions indicated below. For
each setting check the points indicated with a hight 1 impedance, dc each setting check the
coupled oscililoscope.

SERVICE SHEET 28 (Cont'd)

ERVICE SHEET 28 (Cont'a)
(2) $\begin{aligned} & 10.1 \mathrm{MHz} \text { vCO, Output Amplifier, and } \\ & \text { Counter Bulfer Checks }\end{aligned}$ 1. Comnex an ac coupled oscilloscope to A51J1
110 MHz OLT Switch the input of the oscillo. 10 MHz OL Swith the input of the os cillo. see.
Key in 0.191 SFCl wo set the VCO frequency
olow The uscilloscope waveform should be as

 profer The w
xiluare wave
if necessary to make the connection.

Key in 0.191 . SPCL then 46.3 SPCL to set 7
he internal. counter. The display should read etween Loogoverl and 1011000.

Hint: If the display is grossly in error but the perion of the display is is is srossly in error but the
display is only sligher, the counter If the display is only sighenyly in ercor, performer the the
Calibratur Adjustments. The voltage at A5ITP2 Calibratur Adjustments. The voltage at A511P2
TRAPEZOID OUTT, should be between - 10 and 0 ${ }^{m V d c}$.
6. Key in 0.192 SPCL then 46.3 SPCL to set the
frequency tu high and read it. The disploy sh ond requeney Lu high and read it. The display should
read 60000 to 7600 higher than in step 5 . Hint: The voltage at $\overline{\text { It }}$ TPP2 should be between Reinstall A51 and secure it with its screen Reconnect the cablest t A 51 . Reconnect any other assemblies in their normal contiiguration.
nect CALIBRATION OUTPUT to INPUT.
8. Key in 12.1 SPCL to measure the residual FM
or hhe FM Calibrator. The display should read 110 kHz or less.

3) Select Decoder and Data Latch Check Key in 0.190 SPCL.
2. Check pin 1 of U7 with a high impedance, dc
coupled oscilloscope. The waveform hound below going TTL pulses with period of approximately 7
3. Check pins 11115 , and 16 of U8. Pins 15 and 16 should be TLL low, pin in should be the comple
ment of the waveform in step 2 .

Key in 0.193 SPCL . Pins 15 and 16 of U8
hould be TTL hight.

CHANGES

All Serial Prefixes	On the A51 schematic: - C18, C19 - In the OSCILLATOR COLLECTOR SUPPLY, change the reference designator C18 to C19, and change C19 to C18. - R24 - Add an asterisk (${ }^{*}$) to R24 to indicate a factory selected component.
2021A to 2609A	On the A25 schematic: - 08901-60120 - Change the A25 assembly part number to 08901-60120.
2212A and above	On the A51 schematic: - $\frac{\text { C10 }}{{ }^{4} \mathrm{NC} \text { ". In the TRIANGLE GENERATOR, delete C10, and label pin } 1 \text { of U4 }}$
2227A and above	On the A51 schematic: - U4 - In the table of Transistor and Integrated Circuit Part Numbers, change U4 to 1826-0371.
2543A and above	On the A51 schematic: - Q9 - In the table of Transistor and Integrated Circuit Part Numbers, change $\overline{\text { Q9 }}$ to 1854-0295.
2616A and above	On the A25 schematic: - 08901-60286 - Change the A25 assembly part number to 08901-60286.

ervice sheet 29 - am Calibrator soption 010, a50

other references

 - Driect Controi Speciail Functions
 . Service Sheet BD3 Page $5 \cdot 21$ Pape 8.49 Page 8.8 Page 8.83

thoubleshooting
General
Procedures for checking the AM Calibrator A Asembly are given
beluw. The circuits to ochcck are marked on the schematic diagram

 caurion

Equipment

(1) Modulation Source Circuits Check

1. Measure the emitter of $\mathbf{1 2 5}$. with a dc voltmeter. The voltage

SERVICE SHEET 29 (Contid)
int For all settings above, pin y of U6 should be as follows:

K. Kyin the Direct Control Special Functions indicated below. F.
cact setting, check the peims
ndicated

	Voluge Ivel \|Yect 1 a	
	USA Pin 2	Cr95 callote
${ }^{0.188}$	-9.90-9.4	

(2) RF and Detector Circults Che

 (100 mVpp.
Cimnera the sacilloscope to the collector of QID (pin ti . The
 Key in 0.183 SPCIT to tourn both modulators off. The waveform
 excrucing the eninging an
mplitude within 88 mV .

SERVICE SHEET 29 (Con'd)

 (3) Selact Decoder and Data Latch Check
Key in 0.180 SPCL. Check pin lof U8B with

 maximum between +4 and 26 V a minimum be
tween -9 ond -IV , and p perioco of opproximately
2. Key in the Direte Control Special Functions
indicated below. For each setting, check the pins Sindicyted beleow. For each setting, check the pins
on U9 indicaled.

$\begin{aligned} & \text { Diract Cantrol } \\ & \text { Special } \\ & \text { Einctinn } \end{aligned}$	Leve iftua		
	16	15	11
0.180	${ }_{\text {L }}$	L	н

 Hint: None of the following stea
perly with both modulators on.
 2.5 Vpp .
 should be as follows:

Sone of the following ster will should be as tollows

CHANGES

2021A to 2609A	On the A25 schematic: - 08901-60120 - Change the A25 assembly part number to 08901-60120.
2134A and above	On the A50 schematic: - $\mathbf{Q 9}$ - In the Table of Transistor and Integrated Circuit Part Numbers, change Q9 to 1854-0811.
2229A and above	On the A50 component locator: - 08901-60209 - Use the new component locator, Figure 8-136. A50 AM Calibrator Assembly Component Locations (Option 010) (2229A and above), on page 8-152.3. On the A50 schematic: - 08901-60209 - Change the part number of the A50 AM Calibrator Assembly to 08901-60209. Use the schematic partial, P/O Service Sheet 29 - A50 AM Calibrator Assembly Schematic Diagram (Option 010) (2229A and above), on page 8-152.4 - Q2, Q3, Q4, Q5 - Change Q2 to Q3, Q3 to Q4, Q4 to Q5A, Q5 to Q5B. - $\mathbf{Q 5 , 0 9}$ - In the Table of Transistor and Integrated Circuit Part Numbers, change Q9 to 1854-0071; change Q5 to 1854-0475. - R90 - Change the value of R90 to 215 ohms.
2616A and above	On the A25 schematic: - 08901-60286 - Change the A25 assembly part number to 08901-60286.

Reserved for future changes.

Figure 8-136. A50 AM Calibrator Assembly
Component Locations (Option 010) (2229A and above)

P/O Figure 8-137. A50 AM Calibrator Schematic Diagram (Option 010) (2229A and above)

Mocel s901A

SERVICE SHEETA
GENERAL
general removal procedures

1. Remove the two top plastic stand dffs ont
ing the Poxidriv screws from each standoff.
2. Uncrew the Prididiv screw wathe middle of the rear edgg of the
top cover. This sis a captive screw and will cause the top coverto push
top cover. Thisis a cappii
away from the frame.
3. Lift the top cover off the instrument.

Bottom Cover Removal
Turn the instrument upside down.
2. Remove the wo top plazkics stand doffs on the
3. Unscrew the Poxidiviv screw at the middle of the rear edge of the
bot
bott tom cover. This is cappit
to puah away from the frame.
4. Lift the bottom cover off he instrument.
side Cover Removal

1. Remove the two ocrews holding tach s.ide panel. strap handie in
2. Remove the strap handle caps and the strap handes.
3. Slide the eide panel towards the rear of the instrument and then

Information Card Tray Removal

1. Turn the instrument upside dow
2. Remvev two plasticstand offs from oneside of the bottom cover
3. Rotate the information card tray away from the remaining two
front-panel disassembly procedure
Front-Panel Assembly Removal
4. Remove the information card tray
5. Pry up the trim strip on the top of the instrument just above the
front panel with a small serewdriver.
6. Remove the three screws in the channel covered by the trim
strin.
7. Remove the two outside screws and the center screw from the
botem channel.

SERYICE SHEET A (Conta)
6. To completely separate the front panel from the instrument.

Separatilon of the AA Keyboard and Display Assembly from the
Front-Press Panel and Sibut-Panel Front-Dross Panel and Subl-Panel

1. Remove hhe fort pane asemuly from the instrument (refer to
Frontrianel Assembly Removal Procedure)

 3. Remove thesixi remaninings screws (26) and wasters which fasten
the Al asembly

to the sub-panel. ${ }^{\text {4. Disconnect the front panel LINE switch (9) jumpers at the AI }}$ 5. Separate the A_{1} assembly from the frontdress panel and Separallon ot the Front-Dress Panel and Display Window from | Separallon of |
| :--- |
| the Sub-Panel |

1. Remove the frontpanel assemby from the instrument (refer to
Front Panel A Asembly
Removal Procedure. 2. To rem ove the front dieplay window (4), remove the threeretain-

 have to be
switch 9 ($)$.
REPLACEMENT OF PUSHBUTTONSWITCHES ANO ANNUN
CIATOR LEDS CRLTAR LEDS
Key Cap Replacement

 Watch the angular pooition of the key cap as you snap it in p
since eight different positions for instalalation are possible.
Key Cap LED Replacement

SERVICE SHEET A (Conid)

 be repiaced withour having t tear ous
cape following precedure

1. Remove the pushbutton key cap trefert to Key Cap Replacement
Procure).

-

 of the swich stem with a pair of f mall tweezers.
3. Inserta new LFD (ane with long leadss. Make sure the polarityi
right. Pull the leads through the circuit buard and solder. 4. Clip off the excess LED lead length on the cirecuit side of the
keyboard.

SERYICE SHEET A (Cont(d)
instrument powerer on, test the swaye. Snaph function the key rap. With the ${ }^{\text {ins.D }}$ werks

1. Remove the pushbutuon key cap. You will have trpull hard. Use
your free hand to hoid the boari down as you pult
. Loceedure).
2. Renove the swith by chipping away the meleded plastic tabs at
he irruit of the keyboard which hoid he switch in place.
 ond ut tited and that there is no excess solder around the leads.
 heat takking oupunted
Be8t 1 ean be ordereid,

mes, however, are

*

CAUTIONS 6. To assure proper switch assembly, verify that

 f not enough heat isanpplied, the plas stic
will tend to stick to to tie tio of the eron

Figure 8-49. Typical Assembly Ior Heat Slaking Derasilian

CHANGES

Item Number	Raference Designator	Description
1	MP60	Knurled Nut (Opt. 010 only)
2	MP13	Front Dress Panel
3	MP58	HP Logo
4	MP40	Front Display Window
5	P:OMP15	Divider Strip
6	MP34	Front Panel Display RFI Shield
7	M15	Front Sub-Panel
8	MP34	Retaining Clip
9	S1	Front Panel LINE Switch
10	See MP60	Star Washer
11	Sees Sl	Lock Washer
12	See S1	Machine Screw
13	W32	Calibration Output Cable Assembly (Opt. 010 only except in combination with Option 001)
14	A 1	Keyboard and Display Assembly
15	MP47	A1 Support Shield
16	See MP47	Washer
17	See MP47	Lock Washer
18	See MP47	Machine Screw
19	W20	Cable
20	W24	Cable
21	See MP15	Keyboard and Display Insulator
22	See MP15	Machine Screw
23	See MP15	Lock Washer
24	See MP15	Washer
25	See MP15	Spacer
26	See MP15	Machine Sorew
27	See MP15	Lock Washer
28	See MP15	Washer
29	W19	Cable Assembly (BNC to SMC jacks)
30	See MP60	Star Washer
31	W1	Cable Assembly (Type N to SMC jacks)
32	See MP59	Star Washer
33	MP59	Knurled Nut (except Opt. 001)
34	MP60	Knurled Nut (except Opt. 001)

Figure 8-141. Front Panel Illustrated Parts Breakdown

SERVICE SHEET B

REAR-PANEL DISASSEMBLY PROCEDURE

In order to remove the Power Transformer (T 1), the Line Power Module (A30), or the Remote Interface Connector Assembly (A31). the rear-panel assembly must be separated from the instrument.

Rear-Panel Removal

1. Remove the top and bottom covers and the side panels of the instrument (refer to General Removal Procedures, Service Sheet A).
2. Unplug the fan plug (6), heat sink wiring harness plug (30), and transformer plug (28) from the Power Supply Motherboard (A26).
3. Remove the four pan-head screws (21) which hold the support bracket (for the LO Section) in place.
4. Remove the top left and bottom left machine screws (50) and lock washers at the power transformer cover (51). These two screws secure the wire duct support (24).
5. Remove the two machine screws at each of the four corners of the rear panel (where it connects to the corner struts).
6. The rear panel can now be pulled a short distance away from the instrument.
7. The rear panel, in most cases, can be worked on without being completely disconnected from the instrument. However, if it becomes necessary to remove the rear panel, this can be accomplished by unplugging the DIP plug at A31 J 1 (not shown) on the underneath side of the Remote Interface Connector Assembly (22) and by disconnecting the input/output jacks at either the jacks themselves or at the assemblies to which their cables lead

Fan Assembly (B1) Removal

1. Remove the top and bottom covers of the instrument (refer to General Rernoval Procedures, Service Sheet A).
2. Unplug the fan power supply plug (6) at A26J5B on the Power Supply Motherboard.
3. To remove the fan ground wire (not shown) and its solder lug, remove hex nut (20) and lock washer from the fan-cover machine screw (54) and pull off the solder lug (17). Slide the fan cable insulating grommet (4) out of the holding groove in the rear panel.
4. Remove the four machine screws located at the four corners of the fan cover. Pull the fan assembly away from the instrument. Notice the rubber shock mounts (15) through which the machine screws are fit. These dampen fan vibrations. When re-installing the fan assembly, tighten the hex nuts (20) down so the end of each machine screw is visible.

SERVICE SHEET B (Cont'd)

Heat Sink Assembly (A29) Removal

1. Remove the top and bottom covers of the instrument (refer to General Removal Procedures, Service Sheet A)
2. Unplug the heat sink wiring harness connec tor (30) at A26J4 on the Power Supply Mother. board.
3. Remove the four machine screws (41) and lock washers which hold the heat sink in place (these are located at the four corners of the heat sink
4. Pull the heat sink assembly (39) a short distance away from the back of the instrument.
5. Slide the grommet (32) out of the rectangular slot on the rear panel located just hehind the heat sink).
6. Feed the connector (30) through the rectangular slot and remove the heat sink assembly from the instrument.

Transformer (T1) Removal

1. Remove the rear panel of the instrument (refer to Rear-Panel Removal Procedure).
2. Unscrew the top right and bottom right screws at the transformer cover (51). The transformer is
now mechanically disconnected from the rear panel. however, it is still electrically connected (hard wiredit to the line power module (31).
3. To completely disconnect the transformer from the instrument, unsolder the wires cunnect ing it to the line power module.

Line Power Module (A30) Removal

1. Remoze the rear panel of the instrument (refer to Rear-Panel Removal Procedure).
2. Unsolder the line power module (31) from the power transformer (23).
3. To remove the line power module, push in the tabs on the sides of the module and push it out through the rear panel.

Remote Interface Connector Assembly (A31)

Removal

1. Remove the instrument rear panel (refer to Rear-Panel Removal Procedure),
2. Unplug the connector cable at A3IJ1 (not shown) from the bottom side of the Remote Interface Connector Assembly (22).
3. Unscrew the standoffs : 8 ; on either side of the remote interface connector and push the interface assembly through the rear panel.

CHANGES

All serial prefixes	In the parts table: - Item 54, Item 56 - Change item 54 description to Machine Screw (6-32 X 2.50). Change item 56 description to Machine Screw (6-32 X 2.25). - Item 58 - Add item 58, reference designator - MP28, description - star washer. In the Illustrated parts breakdown: - Item 58 - Show a star washer between item 2 (Fan Cover) and item 3 (Fan Assembly) and in line with item 54 (Machine Screw). Designate this washer item 58.

$\begin{gathered} \text { Henm } \\ \text { Number } \end{gathered}$	Ralerence Dasignalor	Descriplian
1	MP33	Wire Finger Guard
2	MP2 ${ }^{\text {P }}$	Fan Cover
3	B1	Fan Assembly
4	$\mathrm{P} / 0 \mathrm{Bi}$	Grommet
5	P\%R1	Plastic Tubing
6	Pfobi	${ }^{\text {3.Pin Plug }}$
7	MPs8	Plug except Opt. 001-J10, Input 50n)
8	P/0a31	Standoff
9	J_{12}	BNC Connector
10	MP5	Plug iexcept Opt. 001/010, Calibration Output)
11	P ¢ $\mathrm{A}^{\text {3 }}$	Lock Washer
12	See MPa7	Machine Screw
13	See MP37	Lock Washer
14	Ste MP28	Shock Mount
15	See MP28	Shock Mount
16	See 112	Star Wagher
17	See MP28	Solder Terminal Lug
18	See J12	Hex Nut
19	See MP28	Lock Washer Hex Nut
20	$\mathrm{Secm}_{\mathrm{MPa7}}$	Hex Nut
21 22	$\underset{\text { MP37 }}{\text { M }}$	
23	TI	Power Transformer
24	MP31	Wire Dact Support
25	See T1	Wesher
${ }^{26}$	See T1	Lock Washer
${ }^{27}$	See T1	Hex Nut
28	P/o Tl	8.Pin Connectur
${ }^{29}$	MP16	Rear Panel
${ }^{30}$	P/OA29W1	12-Pin Comnector
31	${ }_{\text {a }}^{\text {A }}$	Line Power Module
32	P/O A29W1	${ }_{\text {Cox }}^{\substack{\text { Grommet } \\ \text { Hex Nut }}}$
33 34	${ }_{\text {Sec Azeq3 }}$	Hex Nut
${ }_{35}$		Wusher
${ }^{36}$	Aу0'tbi	Line Power Cord
${ }^{37}$	A29MP1	Cable Clamp
${ }^{36}$	F_{1}	1 Amp Fuse (120 Vac) 2 Amp Fuse (220 Vac
${ }^{39}$	A29MP2	Heat Sink Includes sockets for Q1-Q4)
${ }^{40}$	See A29MP2	Lock Wesher
${ }^{41}$	See A29MP2	Machine Screw (6.32 x .625)
${ }^{42}$	See A29Q3	Heat Conducting Insulator
43 44		2N6055 NPN Power Transistor Lock Washer
${ }_{45}^{14}$	See A29¢3	Machine Screw (6-32 . .625)
11	See A99QJ	Luck Washet
47	See A 2983	Machine Screw (6-32 x.625)

$1110 \mathrm{~m}$ Number	Relerance Designator	Iascriplon
${ }^{48}$	See Az993	Insulatur Cover
49	See T1	Lock Wa.sher
50	See T1	Machine Screw (10.32 $\times 2.25$)
51	See T1	Transformer Cover
52	See T1	Machine Screw (10-32 $\times 2.25$)
${ }^{53}$	See T1	Lock Washer
54	MP28	Machine Screw (6.32×2.25)
${ }^{56}$	MP28	Washer
56 57	${ }_{\substack{\text { See MP28 } \\ \text { MP28 }}}$	$\underset{\text { Machine Screw (6.32 } \times 2.50 \text {) }}{\substack{\text { a }}}$
57	MP28	Washer

CHANGES

All serial prefixes	Service Special Functions: - 46.N. Under 46.N Count Internal Signals, change " $\mathrm{N}=2 \mathrm{FM}$ Calibrator" to "N=3 FM Calibrator."	

SERVICE SHEET C

SERVICE SPECIAL FUNCTIONS
40.0 Controller Reset
41.0 Contruller Clear
42.0 Display Software Date
43.N Service Error Display Control

N=0 Disable Display of Service Errors
$\mathrm{N}=1$ Enable Display of Service Errors
46.N Count Internal Signals
$\mathrm{N}=1$ Intermediate Frequency
$\mathrm{N}=2$ Voltage-to-Time Converter
$\mathrm{N}=2 \mathrm{FM}$ Calibrator
$\mathrm{N}=4 \mathrm{HFVCO}+8$
$\mathrm{N}=8$ Selected Time Base Reference
$\mathrm{N}=9$ External Time Base Reference $\mathrm{N}=\mathrm{A}$ Internal Time Base Reference $\mathrm{N}=\mathrm{B}$ (Spare)
49.N Display Internal Voltages (49.XY $=49 . \mathrm{X}-49 . \mathrm{Y}$) $\mathrm{N}=0$ Ground
$\mathrm{N}=1$ RF Level Ground
$\mathrm{N}-2 \mathrm{RF}$ Level/2.96
$\mathrm{N}=3$ RF Level
$N=4 \mathrm{X} 10 \mathrm{AM}$ Calibrator Level
$\mathrm{N}=5 \mathrm{X} 1$ AM Calibrator Level
$\mathrm{N}=6$ Audio Range
$\mathrm{N}=8$ Ground
$\mathrm{N}=9$ Average Detector
N=A Peak Detector
$\mathrm{N}=\mathrm{B}$ Average IF Level
$\mathrm{N}=\mathrm{D}$ IF Level
$\mathrm{N}=\mathrm{E}$ AIC Current
$50 . \mathrm{N}$ Display Internal Voltages $(50 . \mathrm{XY}=50 . \mathrm{X} .50 \mathrm{Y})$ $\mathrm{N}=0$ Ground
$\mathrm{N}-1$-15V Supply
$\mathrm{N}=2-5 \mathrm{~V}$ Supply
$\mathrm{N}=3+$ V Supply
$\underset{\mathrm{N}=4+15 \mathrm{~V} \text { Supply }}{\mathrm{N}=5+40 \mathrm{~V} \text { Supply }}$
52.N Read Only Memory Verification ($\mathrm{N}=\mathrm{ROM}$ Number 1.8,11<Actual Checksum> <Expected Checksum

SERVICE SHEET C (Cont'd)

54.N Local Oscillator Test

N=0 Performs all tests below - displays number of first test failed

N	$\begin{aligned} & \text { Test } \\ & \text { Na. } \end{aligned}$	$\begin{gathered} \text { Display } \\ \text { Digitsts } \end{gathered}$	Test
1	01	$1 \& 2$	(Undefined)
1	02	$3 \& 4$	Time Base
1	03	5\&6	Counter
1	04	7\&8	HF VCO and Divider Output
2	05	1\&2	HF VCO Tuned to Top of Range
2	06	$3 \& 4$	HF VCO Tuned to Bottom of Range
2	07	5\&6	HF VCO Tuned to Mid-Range
2	08	$7 \& 8$	(Undefinea)
3	09	$1 \& 2$	Gain of Most Significant DAC
3	10	3\&4	Gain of Least Significant DAC
3	11	$5 \& 6$	(Undefined)
3	12	7\& \%	:Undefined
4	13	$1 \& 2$	Phase Lock Loop Acquisition
4	14	$3 \& 4$	Phase Lock Loop Stability
4	15	$5 \& 6$	'Undefinedi
4	16	$7 \& 8$	(Undefined)
5	17	$1 \& 2$	Tune LF VCXO with DAC
5	18	3\&4	Gain of LF VCXO Drive
5	19	5\&6	(Endefined)
5	20	7\&8	(Undefined)

55.0 Sweep Doubler Band
56.0 Sweep Bands 4 through 8
57.0 Sweep Bands DBLR through 3
60.0 Key Scan (Jumper A1STP1 to A13TP3) (See Figure8-143 for key scan codes.)
61.N Display HP-IB Status
$\mathrm{N}=0$) <Addressed to Talk>. <Addressed to Listen> True=
$\mathrm{N}=1<\mathrm{DAV}>. \angle \mathrm{RFD}><\mathrm{DAC}>$ (True $=1$)
$\mathrm{N}=2<$ ATN $><$ REN $>$ (True $=1)$
$\mathrm{N}=2<\mathrm{ATN}>,<\mathrm{REN}>$ (True $=1$
$\mathrm{~N}=3<\mathrm{SPM}><\mathrm{SRQ}>$ (True $=1)$
N=4 PIO Port A (True=1)

Display Digit	1	2	3	4	5	6	7	8
Mnemonic	108	107	106	105	104	108	102	101

$\mathrm{N}=5$ PIO Port B (True=1)

Display Digit	1	2	3	4	5	6	7	8
Mnemonic	ATN	ARD	AAD	SRQ	RNL	ATT	ATL	SDV

ERROR MESSAGE SUMMARY

The error messages are grouped by error code as follows
a. E01 through E19 and E90 through E99 are Operating Errors Refer to the Operating Manual for additional information.
b. E20 through E29 are Entry Errors. Refer to the Operating Manual for additional information.
c. E30 through E89 are Service Errors. Refer to page 8.15 for additional information.

NOTE

Not all of the auailable error message numbers are used

Operating Errors (E01 through E19 and E90 through E99)

E01 - Signal out of IF Range.
E02 - Input circuits underdriven
E04 - Audio circuits overdriven
E05 - FM squelched.
E06 - Input power protect relay open.
E07-Display overrange.
E08-Calibrator signal not at input (Option 010 only). E09 - Option not installed.
E10 - Input frequency out of range.
B12 - Calculaten value out of range
. 002 only)
E96 - No input signal sensed by instrument (HP-IB only

Entry Errors (E20 through E29)

E20 - Entered value out of range.
E21 - Invalid key sequence.
E22 - Invalid Special Function prefix
E23 - Invalid Special Function suffix
E24 - Invalid HP.IB code.

Service Errors (E30 Thraugh E89)

E70 - Phase lock loop step-down.
E71 - Phase lock loop step-up.
E72 - Audio overload.
E74 - FM Calibrator overdeviation.
E75 - FM Calibrator under deviation.
E76 - AM Calibrator modulators unequal
E77 - AM Calibrator channel B out of range.
E78-Key not found.
E80 A dio autange rangeback
B1
E81 - LO tuning adjusted to center signal in IF bandpass. E89 - Software error

Direct Control Special Function Readtack Sumtinary

Direct Control Special Function	Display vs. Key Pressed (No Key Pressed = \$111.0000]			
	0111.0000	1011.0000	1101.0000	1110.0000
$\begin{aligned} & 0.750 \\ & 0.760 \\ & 0.770 \\ & 0.780 \\ & 0.790 \\ & 0.7 \mathrm{~A} 0 \\ & 0.7 \mathrm{~B} 0 \\ & 0.7 \mathrm{C} 0 \\ & 0.7 \mathrm{O} 0 \\ & 0.7 \mathrm{E} 0 \\ & 0.7 \mathrm{~F} 0 \end{aligned}$	```(N/A) 3 kHz 75 \mus RF LEVEL AUTO OPER CLEAR (N/A) dB PEAK- 7 3```	```LCL 300 Hz 50 \mus M CALIBRATOR . (decimal point) kHz । % PEAK- 6 2```	```20 kHz 50 Hz 25 \mus FM S (Shift) kHz . MHz AVG 9 5 1```	$\begin{aligned} & 15 \mathrm{kHz} \\ & 750 \mu \mathrm{~s} \\ & \text { PRE-DISP } \\ & \text { AM } \\ & \text { FREQ } \\ & \text { SPCL } \\ & \text { (N/A) } \\ & \text { PEAK HOLD } \\ & 8 \\ & 4 \\ & 0 \end{aligned}$

Function Readtack	Diract Contral	Service Sheet	Meaning of Readback
Overpower Protect	0.050	15	$d 0=1$ if relay tripped
IF Present	0.0 E 0	4	$d 0=1$ if IF present
FM Squelch	0.170	8	$\mathrm{d} 0=1$ if squelched
Audio Overvoltage	0.150	8	$d 0=1$ if overvoltage
Parity	0.1 Fd then 0.1 D 0	20	$d 0=0$ if $\mathrm{d} 0+\mathrm{d} 1+\mathrm{d} 2+\mathrm{dS}$ is even $\mathrm{d} 0=1$ if $\mathrm{d} 0+\mathrm{d} 1+\mathrm{d} 2+\mathrm{d} 3$ is odd
Time Base Oven	0.300	17	$d 0=0$ if cold
Time Base	0.360	17	d3 \times state of time base
Counter Carry	0.360	17	d2=1 if earry
Counter Stage 4	0.350	17	d=output
Counter Stage 3	0.340	17	d=output
Counter Stage 2	0.380	17	$d=$ output
Counter Stage 1	0.320	17	d=output
HP-IB Address	0.450	22	$\mathrm{d}=$ complement of most significant bits
HP-IB Address	0.460	22	$d 0=$ complement of least significant bits $\mathrm{dl}=0$ if talk only $\mathrm{d} 2=0$ is listen only $\mathrm{d} 3=1$ if serial poll FF set

Moiel s901

IRECT CONTfOL SPEGIAL FUNCTION READOUT SUMMAR

	Retiond		Kenture		
。	。	nowo	。	，	－
\％	2	com	${ }_{2}^{1}$	${ }_{2}$	2
3	3	\％or1	3	3	1
\％	：	coin	：	：	${ }_{5}^{4}$
：	8	010	6	${ }_{6}$	6
\％	\％		8	？	：
\％	，	199\％	9	，	，
${ }_{\text {A }}^{\text {B }}$	${ }^{10}$	$\underset{\substack{1010 \\ 1010}}{1010}$		${ }^{1}$	－
${ }_{\text {c }}^{\text {B }}$	12	cin		${ }_{\text {x }}$	${ }_{\text {e }}^{\text {e }}$
－	13	1101	s_{5} Shitit 3	，	，
$\stackrel{{ }_{F}^{*}}{\text { F }}$	11 15	${ }_{1111}^{1119}$	（sistis	${ }_{\substack{x_{1} \\ \mathrm{x}_{5}}}$	

（1）

Fumior	${ }^{\text {sin }}$
为	\％oin
	迷
	cisid

Figure 8-143. Key Scan Codes

[^0]: ASSISTANCE
 Product maintenance agreements and other customer assistance agreements are auailable for Hewlett-Packard products.

 For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

