Keysight Technologies N1810/1 /2 Coaxial Switches
High Performance Electromechanical Switches for Microwave and RF Manufacturing Test Systems

Introduction

Key Features

- High repeatability: < 0.03 dB guaranteed up to 40 GHz and <0.08 at 67 GHz up to 5 million cycles
- High isolation: > 120 dB at 4 GHz and $>70 \mathrm{~dB}$ at 67 GHz
- Low SWR: < 1.10 at 4 GHz and <1.90 at 67 GHz
- Low-insertion loss: < 0.27 dB at 4 GHz and < 1.12 at 67 GHz
- Long life: Guaranteed 5 million cycles , 10 million cycles typical

Key Applications

- Radar and satellite testing
- Wireless W-HDMI device testing
- Microwave backhaul applications

DC to 4 GHz
DC to 20 GHz
DC to 26.5 GHz
DC to 40 GHz
DC to 50 GHz
DC to 67 GHz

In today's fast moving technical industries, test engineers need components they can count on. Keysight Technologies, Inc. offers a line of latching coaxial switches that combine legendary reliability with the widest range of performance options available today.

Reduce downtime

Keysight Technologies is the world leader in innovating and developing microwave accessories for communications and aerospace applications. Our innovative design and strict adherence to quality process control ensure that each switch is guaranteed to perform within warranted specifications for its entire lifetime. With fewer breakdowns and less need to recalibrate, your test system moves quicker with less downtime, creating more throughput and revenue.

Raise your standards

All Keysight switches offer excellent repeatability and long life - up to five times the lifecycles of the competition. Add to this aggressive specs for isolation, SWR, and insertion loss, and you have a switch that impresses even the most demanding engineer with its precision and durability.

Increase flexibility

For test systems that require extra functionality or increased performance, the N181x family of switches has a solution that fits your need. The options include:

- Reduced SWR
- Increased isolation
- Standard or TTL drive
- 5, 15, 24 volt drive
- Position indicators

Increase productivity

When you buy your switches from Keysight, you notice a difference. Your test platforms run smoother, longer and faster, while yielding more viable and valuable measurements.

Description

N1810UL

Unterminated latching

The Keysight N1810UL is a singlepole double-throw switch available in the frequency range from DC to 67 GHz . In precision measurements and monitoring applications where insertion loss repeatability is crucial, these switches operate in excess of 5 million cycles with better than 0.03 dB of insertion loss repeatability at $25^{\circ} \mathrm{C}$.

N1810TL

Terminated latching

The Keysight N1810TL is a single-pole double-throw switch available in the frequency range from DC to 67 GHz . The unused port is terminated 50 ohms, making it ideal for applications where port matching is required.

N1811TL

Terminated latching

The N1811TL is a terminated bypass switch available in the frequency range from DC to 67 GHz . The switch's internal load can terminate the device under test when in the bypass mode (up to 1 watt). Because of its compact design, it is ideal for drop-in, drop-out applications.

N1812UL

Unterminated latching
The N1812UL is a versatile, unterminated 5 -port switch available in the frequency range from DC to 67 GHz. In transfer switch applications, the fifth port can be terminated externally with a high-power termination. It can also be utilized for signal path reversal or as a calibration port.

Technology

Operation

Keysight switches are designed with a rectangular coaxial structure similar to edge-line. This transmission line structure provides for movement of the edge-line center conductor between two fixed, continuous ground planes. The main advantage of this innovation is that the moving contacts can be easily activated, yet maintain high-isolation and lowinsertion loss.

The RF contact configuration is designed for controlled wiping action. Since the outer conductor is not part of the switching function, repeatability and life are improved. The switching action occurs typically within 15 milliseconds, after which permanent magnets latch the contacts to retain the new switch position.

All switches are "break before make", the switched ports are not connected to each other. This prevents damage to sensitive circuits and enhances test simplicity.

Driving

There are two positions for the N181x family of switches. Standard switching is accomplished by applying the supply voltage to pin $5(+V)$ and grounding either pin $4(\mathrm{~A})$ or pin $3(B)$ to actuate the mechanism to the desired state. See page 5, pinout diagram.

Warning minimum switch spacing is 6.0 mm (0.25 inch).

The N181x comes with current interrupt, the drive current is automatically disconnected after the switch is fully latched (15 ms).

Note: Prior to current interrupts becoming standard on the N181x, Option 403 current interrupt was available for ordering.

Option 401 drives the switch with TTL/5V CMOS compatible logic, which controls the DC power supply to drive the switch.

Option 402 provides electronic indication of switch state. The circuitry consists of two independent commons, which can be connected to outputs corresponding to either position A or B. Because the commons are electrically isolated from each other as well as the drive circuit, this option allows two position signals to be obtained.

Specifications

Specifications describe the instrument's warranted performance. Supplemental and typical characteristics are intended to provide information useful in applying the instrument by giving typical, but not warranted performance parameters.

General

Maximum power rating
Into interal termination 1 W CW, 7 VDC, 50 W pk, 10 us max pulse duration, not to exceed 1 W average
Into thru path
Hot switching $\quad 2 \mathrm{~W}$ CW, 10 VDC, 100 W pk, 10 us max pulse duration, not to exceed 2 W average
Cold switching
150 W CW at $3 \mathrm{GHz}, 25^{\circ} \mathrm{C}$
120 W CW at $4.2 \mathrm{GHz}, 25^{\circ} \mathrm{C}$
Coil voltage
5, 15, 24 VDC
Connector \quad SMA (f), 2.4 mm (f), 2.92 mm (f) and 1.85 mm (f)

Standard performance specifications - N1810/1/2 Series (Frequency Options 004/020/026)

Isolation (dB) $=90-\left(\frac{30}{26.5}\right) \mathrm{F}$, where F is specified in GHz

	$\begin{aligned} & \text { DC } \\ & 90 \end{aligned}$	$\begin{gathered} 4 \mathrm{GHz} \\ 85 \\ \hline \end{gathered}$	$\begin{gathered} 12.4 \mathrm{GHz} \\ 76 \end{gathered}$	$\begin{gathered} \mathbf{2 0} \mathbf{~ G H z} \\ 67 \\ \hline \end{gathered}$	$\begin{gathered} 26.5 \mathrm{GHz} \\ 60 \end{gathered}$
Insertion loss (dB) $=0.35+\left(\frac{.45}{26.5}\right) \mathrm{F}$, where F is specified in GHz					
	$\begin{gathered} \text { DC } \\ 0.35 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{4 ~ G H z} \\ 0.42 \\ \hline \end{gathered}$	$\begin{gathered} 12.4 \mathrm{GHz} \\ 0.56 \\ \hline \end{gathered}$	$\begin{gathered} 20 \mathrm{GHz} \\ 0.69 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 6 . 5} \mathbf{~ G H z} \\ 0.80 \\ \hline \end{gathered}$
SWR		DC-4 GHz	4-12.4 GHz	12.4-20 GHz	20-26.5 GHz
		1.15	1.25	1.30	1.60

Standard performance specifications - N1810/1/2 Series (Frequency Options: 040/050/067)

Isolation (dB) $=100-\left(\frac{30}{26.5}\right)$ F, where F is specified in GHz (Formula Does not apply when $\mathrm{F}>26.5 \mathrm{GHz}$)

DC	$\mathbf{4} \mathbf{G H z}$	$\mathbf{1 2 . 4 ~ G H z}$	$\mathbf{2 0 ~ G H z}$	$\mathbf{2 6 . 5} \mathbf{~ G H z}$	$\mathbf{4 0} \mathbf{~ G H z}$	$\mathbf{5 0} \mathbf{~ G H z}$	$\mathbf{6 7 ~ G H z}$
100	95	85	77	70	70	70	70

Insertion loss								
Frequency		$\left.\frac{0.45}{26.5}\right) \mathrm{F}$,	F is spec	GHz (DC	GHz)			
Frequency		$\left.\frac{0.80}{50}\right) \mathrm{F}$,	F is spe	GHz (DC	GHz)			
Frequency 0		$\left(\frac{0.45}{26.5}\right)$	F is s	GHz	6.5 GHz)			
	0.59	$\left(\frac{0.53}{67}\right) \mathrm{F}$	re F is sp	in GHz (2	67 GHz)			
	DC	4 GHz	12.4 GHz	20 GHz	26.5 GHz	40 GHz	50 GHz	67 GHz
Option 040	0.35	0.41	0.56	0.68	0.80	1.02	-	-
Option 050	0.20	0.26	0.40	0.52	0.62	0.84	1.00	-
Option 067	0.35	0.41	0.56	0.68	0.80	0.91	0.99	1.12
SWR	DC	4 GHz	12.4 GHz	20 GHz	26.5 GHz	40 GHz	50 GHz	67 GHz
Option 040	1.15	1.15	1.25	1.40	1.60	1.80	-	-
Option 050	1.15	1.15	1.25	1.50	1.60	1.80	1.80	-
Option 067	1.15	1.15	1.25	1.30	1.70	1.90	1.90	1.90

Specifications (continued)

Optional high-performance specifications - N1810/1/2 Series (not applicable for Frequency Options 040/050/067)

Isolation $(\mathbf{d B})=125-\left(\frac{35}{26.5}\right) \mathrm{F}$, where F is specified in GHz

	Option 301 ${ }^{1}$	$\begin{gathered} \text { DC } \\ 125 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{4} \text { GHz } \\ 120 \end{gathered}$	$\begin{gathered} \text { 12.4 GHz } \\ 109 \\ \hline \end{gathered}$	$\begin{gathered} 20 \text { GHz } \\ 99 \end{gathered}$	$\begin{gathered} 26.5 \mathrm{GHz} \\ 90 \\ \hline \end{gathered}$
	Option 302	$\begin{aligned} & \text { DC } \\ & 0.2 \end{aligned}$	$\begin{gathered} 4 \text { GHz } \\ 0.27 \end{gathered}$	$\begin{gathered} 12.4 \mathrm{GHz} \\ 0.41 \end{gathered}$	$\begin{gathered} 20 \mathrm{GHz} \\ 0.53 \end{gathered}$	$\begin{gathered} 26.5 \mathrm{GHz} \\ 0.65 \end{gathered}$
SWR			DC-4 GHz	4-12.4 GHz	12.4-20 GHz	20-26.5 GHz
Option 302			1.10	1.20	1.23	1.45

1. Option 301:

Environmental: Storage and cycling temperature: -55 C to +65 C
Environmental: Operating temperature: - 25 C to +65 C

N1810UL

Switch drive specifications N1810UL

Option	Parameter	Conditions	Min	Nominal	Max	Units
105	Supply voltage		4.5	5	7.0	V
	Supply current	Supply voltage $=5 \mathrm{~V}$		300		mA
115^{1}	Supply voltage		12.0	15	20.0	V
	Supply current	Supply voltage $=15 \mathrm{~V}$		125		mA
124^{2}	Supply voltage		20.0	24	32.0	V
	Supply current	Supply voltage $=24 \mathrm{~V}$		75		mA.

TTL drive specifications

Option	Parameter	Conditions	Min	Nominal	Max	Units
401	High level input		3.0		12.0	V
	Low level input		0.0		1.0	V
	Max input current	Input voltage $=12.0 \mathrm{~V}$			1.0	mA
		Input voltage $=3.85 \mathrm{~V}$		0.25	0.5	mA

Driving the switch* STD drive connect GND to ground	TTL drive connect GND to ground	RF state	INDICATOR state		
A	B	A	B		
GND	OPEN	Hi	Lo	"A"	"A"
OPEN	GND	Lo	Hi	"B"	"B"
GND	GND	Hi	Hi	Switching disabled ** Switch remains at previous state	NA
OPEN	OPEN	Lo	Lo	NA	

[^0]

DRIVE

Pin out diagram

1. Option 115: Characteristic life: 5 million cycles minimum, except 1 million cycles minimum when driven at voltages 18-20 VDC.
2. Option 124: Characteristic life: 5 million cycles minimum, except 1 million cycles minimum when driven at voltages 28-32 VDC.

N1810TL

RF Circuits

INDICATOR STATE "A"

INDICATOR STATE "B"

Switch drive specifications N1810TL, N1811TL, N1812UL

Option	Parameter	Conditions	Min	Nominal	Max
Units					
105	Supply voltage		4.5	5	7.0
	Supply current	Supply voltage $=5 \mathrm{~V}$		600	
115^{1}	Supply voltage		12.0	15	20.0
	Supply current	Supply voltage $=15 \mathrm{~V}$		250	
124^{2}	Supply voltage		20.0	24	32.0
	Supply current	Supply voltage $=24 \mathrm{~V}$		150	
					VA.

TTL drive specifications					
Option	Parameter	Conditions	Min	Nominal	Max
Units					
401	High level input		3.0		12.0
	Low level input		0.0		1.0
	Max input current	Input voltage $=12.0 \mathrm{~V}$			1.0
		Input voltage $=3.85 \mathrm{~V}$		0.25	0.5
				mA	

Driving the switch* STD drive connect GND to grond	TTL drive connect GND to ground		RF state	INDICATOR state	
A	B	A	B		
GND	OPEN	Hi	Lo	"A"	"A"
OPEN	GND	Lo	Hi	"B"	"B"
GND	GND	Hi	Hi	Switching disabled "*	NA
OPEN	OPEN	Lo	Lo	Switch remains at previous state	NA

GND: +V - Vsupply (see switch drive specification table, this page)
OPEN* +V to $+\mathrm{v}-1.5$ volts
$\mathrm{Hi} \quad 3.0 \mathrm{~V}$ to 12.0 V
Lo $\quad 0.0 \mathrm{~V}$ to 1.0 V Warning drive level below - .25 V will damage TTL drive circuit!

* WARNING! Use adapter cable 11764-60011 with 87130A switch driver
** WARNING! Driving both select lines will disable switch (see troubleshoot guide) WARNING! Minimum switch spacing 6.0 mm (0.25 inch)

1. Option 115: Characteristic life: 5 million cycles minimum, except 1 million cycles minimum when driven at voltages 18-20 VDC.
2. Option 124: Characteristic life: 5 million cycles minimum, except 1 million cycles minimum when driven at voltages 28-32 VDC.

INDICATORS

Pin out diagram

N1811TL

RF Circuits
P1811TL

INDICATOR STATE "A"

indicator state "B"

Switch drive specifications N1810TL, N1811TL, N1812UL

Option	Parameter	Conditions	Min	Nominal	Max	Units
105	Supply voltage		4.5	5	7.0	V
	Supply current	Supply voltage $=5 \mathrm{~V}$		600		mA
115^{1}	Supply voltage		12.0	15	20.0	V
	Supply current	Supply voltage $=15 \mathrm{~V}$		250		mA
124^{2}	Supply voltage		20.0	24	32.0	V
	Supply current	Supply voltage $=24 \mathrm{~V}$		150		mA.

TTL Drive specifications

Option	Parameter	Conditions	Min	Nominal	Max	Units
401	High level input		3.0		12.0	V
	Low level input		0.0		1.0	V
	Max input current	Input voltage $=12.0 \mathrm{~V}$			1.0	mA
		Input voltage $=3.85 \mathrm{~V}$		0.25	0.5	mA

Driving the switch* STD drive connect GND to ground	TTL drive connect GND to ground	RF state	INDICATOR state		
A		B	A	B	
GND	OPEN	Hi	Lo	"A"	"A"
OPEN	GND	Lo	Hi	"B"	"B"
GND	GND	Hi	Hi	Switching disabled ** Switch remains at previous state	NA
OPEN	OPEN	Lo	Lo	NA	

GND: $\quad+V-V s u p p l y$ (see switch drive specification table, this page)
OPEN* +V to $+\mathrm{v}-1.5$ volts
Hi $\quad 3.0 \mathrm{~V}$ to 12.0 V
Lo $\quad 0.0 \mathrm{~V}$ to 1.0 V Warning drive level below -.25 V will damage TTL drive circuit!

* WARNING! Use adapter cable 11764-60011 with 87130A switch driver
** WARNING! Driving both select lines will disable switch (see troubleshoot guide) WARNING! Minimum switch spacing 6.0 mm (0.25 inch)

1. Option 115: Characteristic life: 5 million cycles minimum, except 1 million cycles minimum when driven at voltages 18-20 VDC.
2. Option 124: Characteristic life: 5 million cycles minimum, except 1 million cycles minimum when driven at voltages 28-32 VDC.

N1812UL

RF Circuits

INDICATOR STATE "A"

INDICATOR STATE "B"

Switch drive specifications N1810TL, N1811TL, N1812UL

Option	Parameter	Conditions	Min	Nominal	Max	Units
105	Supply voltage		4.5	5	7.0	V
	Supply current	Supply voltage $=5 \mathrm{~V}$		600		mA
115^{1}	Supply voltage		12.0	15	20.0	V
	Supply current	Supply voltage $=15 \mathrm{~V}$		250		mA
124^{2}	Supply voltage		20.0	24	32.0	V
	Supply current	Supply voltage $=24 \mathrm{~V}$		150		mA.

TTL drive specifications

Option	Parameter	Conditions	Min	Nominal	Max	Units
401	High level input		3.0		12.0	V
	Low level input		0.0		1.0	V
	Max input current	Input voltage $=12.0 \mathrm{~V}$			1.0	mA
		Input voltage $=3.85 \mathrm{~V}$		0.25	0.5	mA

Driving the switch* STD drive connect GND to ground	TTL drive connect GND to ground	RF state	INDICATOR state		
A	B	A	B		
GND	OPEN	Hi	Lo	"A"	"A"
OPEN	GND	Lo	Hi	"B"	"B"
GND	GND	Hi	Hi	Switching disabled **	NA
OPEN	OPEN	Lo	Lo	Switch remains at previous state	NA

GND: $\quad+V-V s u p p l y$ (see switch drive specification table, this page)
OPEN* +V to $+\mathrm{v}-1.5$ volts
Hi $\quad 3.0 \mathrm{~V}$ to 12.0 V
Lo $\quad 0.0 \mathrm{~V}$ to 1.0 V Warning drive level below -.25 V will damage TTL drive circuit!

* WARNING! Use adapter cable 11764-60011 with 87130A switch driver
** WARNING! Driving both select lines will disable switch (see troubleshoot guide) WARNING! Minimum switch spacing 6.0 mm (0.25 inch)

1. Option 115: Characteristic life: 5 million cycles minimum, except 1 million cycles minimum when driven at voltages 18-20 VDC
2. Option 124: Characteristic life: 5 million cycles minimum, except 1 million cycles minimum when driven at voltages 28-32 VDC.

Supplemental Characteristics

General operating characteristics - N181x series

Switching speed	Repeatability	Life 1,2	Impedance
$<15 \mathrm{~ms}$	0.03 dB at 40 GHz	>5 million cycles	50 ohms
	0.05 dB at 50 GHz		
	0.08 dB at 67 GHz		

MAX incident CW power (cold switching) vs. frequency

Reference conditions

- Cold switching only (NO hot switching)
- Ambient temperature of $75^{\circ} \mathrm{C}$ or less ${ }^{3}$
- Sea level (0.88 derating at 15,000 ft.)
- Load VSWR < 1.2 (see graph for derating above 1.2 VSWR)

1. Option 115: Characteristic life: 5 million cycles minimum, except 1 million cycles minimum when driven at voltages 18-20 VDC.
2. Option 124: Characteristic life: 5 million cycles minimum, except 1 million cycles minimum when driven at voltages 28-32 VDC.
3. Option 301:

Environmental: Storage and cycling temperature: -55 C to +65 C
Environmental: Operating temperature: -25 C to +65 C

Environmental

The switch is designed to fully comply with Keysight Technologies' product operating environment specifications. The following summarizes the environmental specifications for these products (Class B1).

Temperature ${ }^{1}$

```
Operating: - 25 to +75 ' C
Storage: }\quad-55\mathrm{ to +85 '}\textrm{C
Cycling: - }55\mathrm{ to +85 }\textrm{C},10\mathrm{ cycles per MIL-STD 202F, 170D, Condition A
(modified)
Vibration
```

 Operating: \(7 \mathrm{~g}, 5-2000 \mathrm{~Hz}\) at \(0.25 \mathrm{in} . \mathrm{p}-\mathrm{p}\)
 Survival: \(\quad 20 \mathrm{~g}, 20-2000 \mathrm{~Hz}\) at 0.06 in . p-p, \(4 \mathrm{~min} /\) cycle, 4 cycles/axis
 Random: \(\quad 2.41 \mathrm{~g}\) (rms.) \(10 \mathrm{~min} /\) axis
 Shock: Half sine: 500 g at \(0.5 \mathrm{~ms}, 3\) drops/direction, 18 total
 Operating: 50 g at \(6 \mathrm{~ms}, 6\) directions
 Humidity
Operating: 15 to 95% relative humidity
Storage: $\quad 65^{\circ} \mathrm{C}, 95 \%$ RH, 10 days, MIL-STD 202F, Method 106E

Altitude

Operating: $\quad 15,000$ feet / 4.6 km
Storage: $\quad 50,000$ feet / 15.3 km, MIL-STD 202F, Method 105C, Condition B

Troubleshoot guide			
		Allowable range	
Probable cause	Test	Low value High value	Remedy
Not connected to supply		See drive specifications	Connect +V to power supply
Supply not turned on			Turn on power supply
Supply voltage less than minimum	Measure voltage from control pin to $+V$	See drive specifications	
Supply current low	Measure current draw with drive pin selected	See drive specifications	Increase drive voltage or reduce drive line resistance
OPEN state voltage too low	Measure voltage from control pin to $+V$	(+V-1.5) volts	+V volts
Select lines not at ground (STD DRIVE)	Measure voltage from drive select pin to ground		Eliminate ground loops and lead high resistance
TTL "LOW" voltage too high	Measure voltage from ground pin to TTL drive pin	See drive specifications	Connect ground pin to ground
TTL "LOW" voltage < 0.0 volts	Measure voltage from ground pin to TTL drive pin	See drive specifications	Eliminate ground loops
TTL GND pin not grounded			Connect GND pin to ground
Driving switch with 87130A			Use adapter cable 11764-60011

1. Option 301:

Environmental: Storage and cycling temperature: -55 C to +65 C
Environmental: Operating temperature: - 25 C to +65 C

Ordering Information

Required: Specify one model number, one frequency range, one coil voltage, and one DC connector type (must select one of each)
Optional: Specify RF performance enhancements and drive options (may select any, all, or none)

(1) Select a model to fit your application. (Required)

N1810UL - Unterminated latching 3-port
N1810TL - Terminated latching 3-port
N1811TL - Terminated latching 4-port
N1812UL - Unterminated latching 5-port
(2) Select a frequency range. (Required)

004 - DC to 4 GHz
020 - DC to 20 GHz
026 - DC to 26.5 GHz
040 - DC to 40 GHz
050 - DC to 50 GHz
067 - DC to 67 GHz
(3) Select a coil voltage level. (Required)

105* - 5 volts
115-15 volts
$124-24$ volts
(4) Select a DC connector type. (Required)

201 - "D" subminiature 9 pin female
202 - Solder lugs
(5) Select RF performance enhancements. (Optional)

301 - Increased isolation
302 - Reduced standing wave ratio and insertion loss
UK6 - Calibration certificate with test data
(6) Select drive options. (Optional)

401 - TTL/CMOS compatible 5 v drive
402 - Position indicators

Ordering example

For an unterminated 5 port switch, operating up to 20 GHz , with 15 volt coils, D-sub connector, high isolation, and TTL, the order should look as follows: N1812UL Option 020115201 301401.

Switch units beginning with the serial numbers listed below or higher have current interrupt built-in as a default.

- N1810UL-MY07244672
- N1810TL-MY07247927
- N1811TL-MY07244660
- N1812UL-MY07240668

Related Literature

Keysight Technologies Bench and System Switching Products
Literature Number 5989-9872EN
Keysight RF and Microwave Switch Selection Guide
Literature Number 5989-6031EN
Keysight 11713B/C Attenuator/ Switch Drivers Configuration Guide Literature Number 5989-7277EN

Application Notes:

Power Handling Capability of Electromechanical Switches Literature Number 5989-6032EN

How Operating Life and Repeatability of Keysight's Electromechanical Switches Minimize System Uncertainty
Literature Number 5989-6085EN

myKeysight

myKeysight

DEKRA Celtified
1S0 9001:2008
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.
www.keysight.com/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2008
Quality Management System
Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.
www.keysight.com/find/switches
www.keysight.com/find/mta

This information is subject to change without notice.
© Keysight Technologies, 2013-2014
Published in USA, August 23, 2014
5968-9653E
www.keysight.com

[^0]: GND: +V - Vsupply (see switch drive specification table, this page)
 OPEN* +V to $+\mathrm{v}-1.5$ volts
 $\mathrm{Hi} \quad 3.0 \mathrm{~V}$ to 12.0 V
 Lo $\quad 0.0 \mathrm{~V}$ to 1.0 V Warning drive level below -.25 V will damage TTL drive circuit!

 * WARNING! Use adapter cable 11764-60011 with 87130A switch driver
 ** WARNING! Driving both select lines will disable switch WARNING! Minimum switch spacing 6.0 mm (0.25 inch)

