Keysight Technologies HMMC-5027 2 to 26.5 GHz Medium Power Amplifier

IGG7-8002 Data Sheet

Description

The HMMC-5027 is a broadband GaAs MMIC traveling wave amplifier designed for medium output power and moderate gain over the full 2 to 26.5 GHz frequency range. Seven MES-FET cascode stages provide a flat gain response, making the HMMC-5027 an ideal wideband power block. Optical lithography is used to produce gate lengths of \approx 0.5 µm. The HMMC-5027 incorporates advanced MBE technology, Ti-Pt-Au gate metallization, silicon nitride passivation, and polyimide for scratch protection.

Chip size	2980 × 770 μm (117.3 × 30.3 mils)
Chip size tolerance	± 10 μm (± 0.4 mils)
Chip thickness	127 ± 15 μm (5 ± 0.6 mils)

75 × 75 μm (2.95 × 2.95 mils), or larger

Absolute Maximum Ratings¹

Pad dimensions

Symbol	Parameters/conditions	Min	Max	Units	
V _{DD}	Positive drain voltage		8.0	Volts	
I _{DD}	Total drain current		300	mA	
V _{G1}	First gate voltage	-5	0	Volts	
I _{G1}	First gate current	-1	+1	mA	
V _{G2}	Second gate voltage	-2.5	+5	Volts	
I _{G2}	Second gate current	-25		mA	
P _{DC}	DC power dissipation		2.4	Watts	
P _{in}	CW input power		23	dBm	
T _{ch}	Operating channel temp.		+150	°C	
T _{case}	Operating case temp.	-55		°C	
T _{stg}	Storage temperature	-65	+165	°C	
T _{max}	Maximum assembly temp. (for 60 seconds maximum)		300	٥C	

1. Operation in excess of any one of these conditions may result in permanent damage to this device. $T_A = 25 \text{ °C}$ except for T_{ch} , T_{sto} , and T_{max} .

Features

- Wide-frequency range: 2 to 26.5 GHz
- Moderate gain:
 7 dB
- Gain flatness:
 ± 1 dB
- Return loss:
 Input: –13 dB, Output: –11 dB
- Low-frequency operation capability:
 < 2 GHz
- Gain control:
 30 dB dynamic range
- Moderate power: 20 GHz: P_{-1 dB}: 22 dBm P_{sat}: 24 dBm
 - 26.5 GHz: P_{-1 dB} : 19 dBm P_{sat} : 21 dBm

DC Specifications/Physical Properties¹

Symbol	Parameters/conditions	Min	Тур	Max	Units
IDSS	Saturated drain current (V_{DD} = 8.0 V, V_{G1} = 0.0 V, V_{G2} = open circuit)	200	300	500	mA
V _p	First gate pinch-off voltage (V_{DD} = 8.0 V, I_{DD} = 30 mA, V_{G2} = open circuit)	-2.2	-1.3	-0.5	volts
V_{G2}	Second gate self-bias voltage (V_{DD} = 8.0 V, V_{G1} = 0.0 V)	1.8 (0.27 × V _{DD})			volts
IDSOFF (V _{G1})	First gate pinch-off current (V_{DD} = 8.0 V, V_{G1} = -3.5 V, V_{G2} = open circuit)		7		mA
IDSOFF (V_{G2})	Second gate pinch-off current (V_{DD} = 5.0 V, V_{G1} = 0.0 V, V_{G2} = -3.5 V)		10		mA
$\theta_{\text{ch-bs}}$	Thermal resistance (T _{backside} = 25 °C)		28		°C/W

1. Measured in wafer form with $T_{chuck} = 25 \text{ °C.}$ (except θ_{ch-bs}).

RF Specifications¹

(V_{_{DD}} = 8.0 V, I_{_{DD}}(Q) = 250 mA or I_{_{DSS}}, Z_{_{in}} = Z_ $_{_{0}}$ = 50 $\Omega)$

Symbol	Parameters/conditions	Min	Тур	Max	Units
BW	Guaranteed bandwidth2	2		26.5	GHz
S21	Small signal gain	6	7		dB
ΔS21	Small signal gain flatness		±0.8		dB
RLin	Input return loss		-13	-10	dB
RLout	Output return loss		-11	-10	dB
S12	Reverse isolation		-28	-25	dB
P–1 dB	Output power at 1 dB gain compression	16.5	19		dBm
Psat	Saturated output power	18.5	21		dBm
H2	Second harm. (2 < fo < 20), [Po(fo) = 21 dBm or P–1 dB, whichever is less]		-21	-18	dBc
H3	Third harm. (2 < fo < 20), [Po(fo) = 21 dBm or P-1 dB, whichever is less]		-32	-18	dBc
NF	Noise figure		11		dB

 Small-signal data measured in wafer form with Tchuck = 25 °C. Large-signal data measured on individual devices mounted in an 83040 Series Modular Microcircuit Package @ TA = 25 °C.

2. Performance may be extended to lower frequencies through the use of appropriate off-chip circuitry. Upper corner frequency -30 GHz.

Applications

The HMMC-5027 series of traveling wave amplifiers are designed for use as general purpose wideband power stages in communication systems and microwave instrumentation. They are ideally suited for broadband applications requiring a flat gain response and excellent port matches over a 2 to 26.5 GHz frequency range. Dynamic gain control and low-frequency extension capabilities are designed into these devices.

Biasing and Operation

These amplifiers are biased with a single positive drain supply (V_{DD}) and a single negative gate supply (V_{G1}) . The recommended bias conditions for the HMMC-5027 are $V_{DD} = 8.0$ V, $I_{DD} = 250$ mA or I_{DSS} , whichever is less. To achieve this drain current level, V_{G1} is typically biased between 0 V and -0.6 V. No other bias supplies or connections to the device are required for 2 to 26.5 GHz operation. The gate voltage (V_{G1}) *MUST* be applied prior to the drain voltage (V_{DD}) during power up and removed after the drain voltage during power down. See Figure 3 for assembly information.

The HMMC-5027 is a DC coupled amplifier. External coupling capacitors are needed on RF_{IN} and RF_{OUT} ports. The drain bias pad is connected to RF and must be decoupled to the lowest operating frequency.

The auxiliary gate and drain contacts are provided when performance below 1 GHz is required. Connect external capacitors to ground to maintain input and output VSWR at low frequencies (see Additional References). Do not apply bias to these pads.

The second gate (V_{G2}) can be used to obtain 30 dB (typical) dynamic gain control. For normal operation, no external bias is required on this contact and its selfbias potential is between +1.5 and +2.5 volts. Applying an external bias between its open circuit potential and -2.5 volts will adjust the gain while maintaining a good input/output port match.

Assembly Techniques

GaAs MMICs are ESD sensitive. ESD preventive measures must be employed in all aspects of storage, handling, and assembly.

MMIC ESD precautions, handling considerations, die attach and bonding methods are critical factors in successful GaAs MMIC performance and reliability.

GaAs MMIC ESD, Die Attach and Bonding Guidelines – Application Note, 5991–3484EN provides basic information on these subjects.

Additional References:

TC700/702 Traveling Wave Amplifier Environmental Data - Technical Overview, 5991-3553EN

GaAs MMIC TWA Users Guide - Application Note, 5991-3545EN

Figure 2. Bond pad locations

Notes All dimensions in microns. Rectangular Pad Dim: 75 x 75 μm Octagonal Pad Dim.: 90 μm dia. All other dimensions: ±5 μm (unless otherwise noted).

Figure 3. Assembly diagram (for 2.0 to 26.5 GHz operation)

Figure 4. Typical gain and reverse isolation vs. frequency

Figure 5. Typical input and output return loss vs. frequency

Typical S-Parameters¹

(T_{chuck} = 25 °C, V_{DD} = 8.0 V, I_{DD} = 250 mA or I_{DSS}, whichever is less, Z_in = Z_{out} = 50 Ω)

Freq.	S11			S12			S21			S22		
(GHz)	dB	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang
2.0	-18.7	0.116	-139.5	-57.7	0.0013	-165.2	8.7	2.717	116.6	-13.0	0.223	173.5
3.0	-20.1	0.099	-159.0	-54.9	0.0018	144.2	8.4	2.635	94.8	-13.0	0.224	150.0
4.0	-21.5	0.084	-175.7	-52.0	0.0025	154.0	8.3	2.612	72.0	-13.5	0.212	127.1
5.0	-24.6	0.059	167.8	-49.9	0.0032	111.3	8.4	2.634	48.2	-14.0	0.200	101.6
6.0	-32.0	0.025	167.4	-48.2	0.0039	91.3	8.6	2.699	23.3	-15.3	0.171	71.7
7.0	-30.8	0.029	-94.8	-46.9	0.0045	74.9	8.8	2.763	-3.5	-16.9	0.143	39.5
8.0	-22.7	0.073	-103.2	-45.5	0.0053	21.0	8.8	2.768	-30.9	-18.4	0.120	- 2.2
9.0	-18.9	0.114	-121.5	-45.2	0.0055	10.3	8.8	2.744	-58.9	-21.3	0.086	-46.9
10.0	-17.2	0.137	-142.6	-44.7	0.0058	-15.5	8.5	2.673	-85.9	-18.9	0.114	-90.7
11.0	-17.4	0.135	-163.9	-43.5	0.0067	-33.4	8.3	2.608	-112.5	-17.9	0.127	-129.6
12.0	-19.3	0.108	175.6	-41.5	0.0084	-45.4	8.2	2.564	-138.5	-18.2	0.123	-162.6
13.0	-25.6	0.052	170.3	-40.6	0.0093	-75.8	8.2	2.578	-164.9	-19.3	0.108	163.4
14.0	-27.0	0.045	-113.0	-38.6	0.0118	-95.9	8.3	2.610	167.1	-22.1	0.078	126.5
15.0	-19.2	0.109	-111.0	-37.8	0.0129	-124.7	8.3	2.605	138.4	-31.2	0.028	56.7
16.0	-15.6	0.167	-127.9	-37.1	0.0139	-149.1	8.2	2.574	108.8	-23.5	0.067	-33.3
17.0	-14.3	0.193	-148.4	-36.3	0.0153	-174.5	8.0	2.510	79.7	-18.1	0.124	-80.7
18.0	-14.8	0.182	-166.6	-35.8	0.0163	164.1	7.8	2.444	50.9	-15.2	0.174	-115.2
19.0	-17.1	0.140	-179.3	-34.7	0.0185	141.5	7.7	2.418	22.1	-13.7	0.207	-147.6
20.0	-21.4	0.086	-166.2	-32.9	0.0227	112.6	7.8	2.466	-7.5	-13.9	0.202	177.9
21.0	-18.4	0.121	-129.5	-31.6	0.0262	80.7	8.1	2.527	-39.9	-16.8	0.145	136.7
22.0	-13.8	0.205	-137.2	-30.9	0.0285	42.7	8.0	2.512	-74.0	-25.3	0.054	66.9
23.0	-12.1	0.247	-152.7	-30.6	0.0296	13.3	7.6	2.395	-108.4	-19.8	0.102	-56.2
24.0	-12.3	0.244	-169.8	-30.3	0.0304	-15.5	7.4	2.344	-142.5	-13.7	0.207	-103.5
25.0	-14.7	0.184	-175.8	-29.7	0.0329	-44.9	7.3	2.315	-175.6	-11.3	0.272	-136.7
26.0	-16.7	0.146	-149.3	-28.5	0.0375	-78.1	7.9	2.469	148.1	-11.7	0.259	-171.3
26.5	-14.1	0.197	-141.6	-28.0	0.0399	-98.5	8.0	2.503	126.9	-13.0	0.223	172.3

1. Data obtained from on-wafer measurements.

Figure 6. Typical small-signal gain vs. temperature

Figure 8. Typical 1 dB gain compression and saturated output power vs. frequency

Figure 10. Typical noise figure performance

Figure 7. Typical gain vs. second gate control voltage

Figure 9. Typical second and third harmonics vs. fundamental frequency at Pout = +21 dBm

Notes

All data measured on individual devices mounted in an 83040 Series Modular Microcircuit Package @ TA = 25 °C (except where noted).

This data sheet contains a variety of typical and guaranteed performance data. The information supplied should not be interpreted as a complete list of circuit specifications. Customers considering the use of this, or other Keysight Technologies Inc. TCA GaAs ICs, for their design should obtain the current production specifications from Keysight TCA Marketing. In this data sheet the term typical refers to the 50th percentile performance. For additional information contact Keysight TCA Marketing at 707-577-4482.

myKeysight

myKeysight

www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.

Three-Year Warranty

www.keysight.com/find/ThreeYearWarranty

Keysight's commitment to superior product quality and lower total cost of ownership. The only test and measurement company with three-year warranty standard on all instruments, worldwide.

W

Keysight Assurance Plans www.keysight.com/find/AssurancePlans

Up to five years of protection and no budgetary surprises to ensure your instruments are operating to specification so you can rely on accurate measurements.

www.keysight.com/quality Keysight Technologies, Inc.

DEKRA Certified ISO 9001:2008 Quality Management System

Keysight Channel Partners

www.keysight.com/find/channelpartners

Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

www.keysight.com/find/mmic

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	55 11 3351 7010
Mexico	001 800 254 2440
United States	(800) 829 4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 6375 8100

Europe & Middle East

Austria	0800 001122
Belgium	0800 58580
Finland	0800 523252
France	0805 980333
Germany	0800 6270999
Ireland	1800 832700
Israel	1 809 343051
Italy	800 599100
Luxembourg	+32 800 58580
Netherlands	0800 0233200
Russia	8800 5009286
Spain	0800 000154
Sweden	0200 882255
Switzerland	0800 805353
	Opt. 1 (DE)
	Opt. 2 (FR)
	Opt. 3 (IT)

United Kingdom

For other unlisted countries: www.keysight.com/find/contactus (BP-07-10-14)

0800 0260637

This information is subject to change without notice. © Keysight Technologies, 2013 - 2014 Published in USA, August 3, 2014 5989-6208EN www.keysight.com