
Keysight Technologies
RS-232 Troubleshooting

Application Note

Figure 2

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

Bit
0

Computer

Receive

Transmit

Ground

Remote device

Transmit

Receive

Ground

Figure 1

 Output Input

0 (mark) +5 to +3 to

 +15 volts DC +15 volts DC

1 (space) –5 to –3 to

 –15 volts DC –15 volts DC

2

Introduction

In the course of dealing with personal computers, you may use the RS-232 serial interface. This

application note will describe RS-232 at a basic level, with an orientation towards Windows-based

instrument programming.

1. An Overview of RS-232

The irst question that needs to be addressed is: what precisely is a “serial” interface?

Consider a computer connected to an instrument or other “remote” device. One of the simplest
possible communications schemes is shown in Figure 1.

Each device sends data bits coded as electrical pulses, with a “0” corresponding to a low voltage and a “1” a
high voltage, to the other over a dedicated line, using a shared ground line. Using separate lines to transmit

and receive data allows both devices to send data simultaneously without interference, at least in principle.

For example, to send a byte to the remote device, the computer would have to send as shown in Figure 2.

There are a wide variety of serial communications schemes. The most popular is RS-232, which is in fact

so universal that it is often simply referred to as “serial.” RS-232 deines various mechanical and electrical
specs for serial communications.

RS-232 deines legal voltage levels as follows:

The terms “mark” and “space” are ancient nomenclature for a “0” and “1” that are still in occasional use.

RS-232 also deines a transmission format for sending data over a serial link. Suppose you want to send a
byte (or, more generally, a “word”) of data over a serial connection from your computer to a remote device.

Now further suppose that several bits —or all of them, for that matter, have the same value. How can the

remote device tell which bit is which? Where does one bit start and the other end?

3

* Note that a serial connection can be

“half-duplex”—meaning that the computer

can talk to the remote, or the remote can

talk to the controller, but they can’t both

talk to each other at the same time—as

opposed to “full-duplex,” in which they

both can talk at the same time.

The only way possible way under this

scheme is for both the computer and

the remote device to agree on how

long each bit remains on the line. For

example, let’s say each bit stays on

the line for 1/9600 of a second. Then

the remote device can count from the

middle of each bit time to the middle

of the next bit time and be reason-

ably sure that it had obtained a valid

value of each bit.

Of course, the timing on the

computer may not be perfectly

matched to the timing on the remote

device, but since there’s only 8 bits

being sent at a time, there won’t be

time to get out of step.

In serial communications, the

inverse bit time is called the “baud

rate”. Baud rates can be any value

in principle, but in practice and by

custom the baud rate is usually set

to certain values: 19,200, 9600, 4800,

2400, 1200, 600, 300, or 110 baud.

Baud rate is sometimes thought of as

being the same as the bit transmis-

sion rate of the serial link, but that’s

not precisely true, since there is no

guarantee that words will be sent in a

continuous stream.

Furthermore, in practice there’s

some additional overhead. Just

sending 8 bits in this fashion works

fine, until you ask the question: what

happens if the first bits are 0, not 1?

How can the remote figure out where

the byte starts?

The answer is that it can’t, so to

prevent this problem, an extra bit

that is always set to 1 is tacked on

in front of the other serial bits. This

initial bit is called a “start bit.”

The simplest conversation protocol

possible is for the remote device to

act as a slave to the computer*: the

computer sends a command; the

remote device makes a response.

The advantage of this is that the

computer is completely in control

of the communications. The remote

device cannot send anything when

the computer is not ready for it,

and communications will not be

confused.

The subtle question here is: how does

the remote device know when it has

received a command and not merely

part of one?

Remote commands could be defined

either as binary codes or as ASCII

strings, but binary codes tend to

be inconvenient, so ASCII strings

are more common. These ASCII-

based commands ideally should

have natural-language syntax—like

“MEASURE,” “STATUS,” and so on.

Since these commands may have

various options or defaults, their

length may be ambiguous, so to allow

the remote device to determine

where the command ends, “end-of-

line terminator,” or simply “termi-

nator,” characters are tacked on to

the end.

The most common terminator is

line-feed (LF—ASCII code 10), or

carriage-return line-feed (CR-LF—

ASCII code 13 and 10)—though some

devices use just a CR or even a NULL

(ASCII 0) character:

MEASURE:VOLTS<LF>

The data bits are also, by convention,

followed by “stop bits” that are set to

1, and indicate the end of the word.

There can be 1, 1.5, or 2 stop bits.

The computer and the remote device

have to agree on how many stop bits

are sent. Using more stop bits gives

a device a little more time to process

words as they are sent in. The

number of stop bits can vary, but the

number of start bits is always 1.

So under RS-232 words of data are

sent with 1 start bit, and 1 or more

stop bits. The data words don’t have

to be 8 bits; they can be 5, 6, 7, or 8

bits, though these days really only 7

or 8 bits are used.

Words can also be sent with an

optional “parity” bit. This is an extra

bit that can be tacked on behind the

data bits as an error check—either

to make the total number of “1” bits

even or to make the number of “1”

bits odd.

Parity is not a very useful form of

error checking, and while it can be

used in nearly all serial communi-

cations systems, it usually isn’t. You

can also specify that the parity bit

always be set to 1 or 0.

Okay, that nails down the funda-

mental RS-232 parameters—baud

rate, stop bits, word size, and

parity. You’ll need to specify these

parameters to configure your serial

communications.

Now that we understand how to

speak, the next step is to consider

what to say—that is, how conversa-

tions are conducted over serial.

There really aren’t any fixed rules,

but some general ideas can be

presented. Let’s go back to our

simple serial system and consider

how such a conversation might take

place. See Figure 1.

4

The remote device could send back

a response either in a fixed-length

binary format (which is fast, but hard

to read and interpret)—or encoded as

ASCII. If more than one data item is

returned as ASCII, the items could be

separated with commas, and the full

string terminated with a LF:

32,45,1,128,512,64<LF>

Once you understand how a conver-

sation is performed over RS-232,

the next problem is to make sure it

is reliable—that is, that one side is

listening attentively while the other

is talking, and that no information

is lost. It is easy to lose data in

RS-232 communications because, as

defined so far, one side can talk away

and never realize that everything

it is sending is being lost because

the other side can’t keep up, or is

otherwise distracted.

For example, suppose the computer

sends a command to the remote

device, but the remote device

responds so fast the computer

isn’t ready to read the response. If

the RS-232 implementation on the

computer has “buffering”—that is,

it can store up a block of data even

when the computer isn’t ready to

read it—this isn’t such a problem, but

a buffer can overflow if the computer

never attends to it, and not all

computer RS-232 implementations

have buffering.

In the absence of buffering, the

simplest way to avoid an “input

overflow” is for the remote device to

wait a short period of time before

responding. Some remote devices

have a DIP switch or jumper settings

to allow you to specify a particular

delay time. Similarly, if the remote

device responds with multiple lines

of response data, you may be able to

select a similar delay between each

line to give the computer a chance to

receive them all.

A related scheme to allow reliable

transfer of multiple lines of ASCII is

known as “prompting.” Every time

the computer receives a line of ASCII

from the remote device, the computer

sends a “prompt” string (say, a CR)

back to the remote device to tell it to

send another line.

More generally, the computer should

have some means of telling the remote

device to be quiet for a while until

the computer has received the data

and is ready for more.

In RS-232, this capability is known

as “handshaking” or “flow control.”

Given a three-wire serial system as

we have defined it so far, there is a

scheme known as “XON-XOFF” flow

control that is often used in RS-232

communications.

In this scheme, the remote device

sends data until the computer starts

to get too full. The computer then

sends a character to tell the remote

to be quiet—an XOFF (“transmit off”)

character, usually defined as DC3

(ASCII code 19)‚ and the remote

device stops sending. When the

computer wants more data, it sends

a character to tell the remote device

to start sending again—an XON

(“transmit on”) character, usually

defined as DC1 (ASCII code 17)—and

the remote device starts sending

again.

The problem with XON-XOFF flow

control is that its resolution is

“grainy.” It can’t be used to control

the data flow on a word-by-word

basis, it can only control data flow in

terms of blocks of data, and generally

implies some level of buffering (as

well as full-duplex communications).

There is an alternative. As defined

so far, our serial link only uses three

wires: transmit, receive and ground.

However, RS-232 defines a large

number of “control lines” beyond

those three lines that can be used for

flow control.

These control lines were originally

defined for interfacing to an external

modem, which is of no concern in

this document, and so a detailed

discussion of the actual meanings of

these lines is not particularly useful.

They can simply be seen as a set of

output control lines and input status

lines.

See Figure 3 for the PC’s 9-pin

RS-232 pinout.

These control lines can be used to

implement flow control schemes.

For example, the RTS line on the

computer could be wired to the

CTS on the remote device (and the

reverse). When the computer wants

to receive data, it sets RTS, and when

it wants to stop receiving data, it

clears RTS; the remote device checks

the status of its CTS input on a word-

by-word basis to see if it should send

or not.

This is known as “RTS-CTS flow

control.” The DTR and DSR lines are

also used for the same purpose. The

other control lines may be used as

auxiliary controls.

The 9-pin connector used on a

PC is only one of a number of

connector formats. There is also a

25-pin format, and in principle the

connector could be of either gender—

the PC connector is a male—with a

wide variety of wiring schemes.

RxD 2

TxD 3

DTR 4

RTS 7

DSR 6

CTS 8

DCD/RLSD 1

Ground 5

Receive data

Transmit data

Data terminal ready

Request to send

Data set ready

Clear to send

Data carrier detect/
released line signal detect

Ground

Figure 3

5

A further confusing factor is that

a connector may be a DTE (“data

terminal equipment”) or DCE (“data

communications equipment”)

connection, a holdover from RS-232’s

definitions for use with modems.

On a DTE device, connections mean

what they seem to mean: “transmit

data” is an output, while “receive

data” is an input—the PC connector

is a DTE. On a DCE device, all

the meanings of the connections

are reversed!—“transmit data” is

an input and “receive data” is an

output.

The variation in connector and cable

wiring was a particular problem

in the past, and made figuring out

what cable to use extremely difficult,

leading to a description of RS-232

as the “bunch of wires” interface.

However, the predominance of

the PC has made its 9-pin format

something of a standard, and most

modern RS-232 equipment is easy

to cable up. Trying to figure out the

cabling can be a nasty problem with

older equipment, however.

2. RS-232—
Real-World Issues

You should now have a grasp of the

basic concepts of RS-232 operation:

– Baud rate, word size, start bits,

stop bits, and parity.

– Command and data formats.

– Half- and full- duplex, buffering,

flow control, control lines, DCE

and DTE.

– Connection schemes.

Given this knowledge, the ideal

RS-232 instrument should have the

following characteristics:

– The ability to select from a reason-

able set of baud rates, word sizes,

stop bits, and parity options via a

DIP switch, jumper, or front-panel

options.

– English-like commands in ASCII

format, using a CR-LF or LF

terminator.

– ASCII data formats using comma

separators, using a CR-LF or LF

terminator.

– Buffering.

– The capability to select turnaround

delays, or XON-OFF, RTS-CTS,

DTR-DSR, or no flow control via a

DIP switch, jumper, or front-panel

options.

– A PC-compatible pinout for

predictability.

RS-232 has become easier to deal

with in recent years, due to the influ-

ence of the personal computer. Most

devices will use a PC-compatible

connection and will default to 9600

baud, 1 stop, no parity.

This makes life much simpler, but the

other items remain unpredictable,

and for older RS-232 instruments

all bets are off. The problem is that

a serial interface is very cheap and

easy to implement. The result is that

a serial instrument can operate in

any way the designers like. A serial

instrument may have:

– A fixed baud rate.

– A binary command set and data

formats.

– Any sort of terminator character.

– No, or very limited, provisions for

flow control.

– A 9- or 25-pin connector in either

gender, using a virtually arbitrary

wiring scheme, and defined as DTE

or DCE (though as mentioned this

isn’t such a problem any more).

– Peculiar dependencies on the logic

state of RS-232 control pins you

may not have control over in your

programming language.

Confronted with such difficulties,

you may need to be resourceful to get

the remote device to work. You can

compare it to opening a combination

lock: if you don’t know all the right

ways to turn the knob, you won’t

get in.

A few final comments:

– A PC normally has two 9-pin

RS-232 ports, designated as COM1

and COM2. Under normal circum-

stances, two more RS-232 ports

can be added into a PC as COM3

and COM4.

Serial “multiplexer” cards are also

available that offer a large number

of serial ports—with the catch that

the computer can only use one at a

time. In reality, this isn’t much of a

catch, since a single-CPU machine

can only do one thing at a time, and

6

some of the serial multiplexer cards

have buffer RAM that allows them to

accumulate inputs while the CPU is

off doing other things, so nothing is

lost.

– If you wish to link two PCs

together over serial you will need

what is called a “null modem” cable

—basically a DTE-DTE connection

with wiring that reverses the

connections.

– When you are playing with RS-232,

you will sometimes hear about

a BREAK. Executing a BREAK

puts the RS-232 line in a “space”

(zero) mode for “longer than a

single RS-232 data frame,” possibly

something like ten serial frames. It

clears the line so the remote device

can sync up again.

– Some RS-232 instruments assume

they are connected to a computer

terminal, and have protocols that

are very difficult to handle. For

example, they may send a response

string, followed by a terminator,

followed by a prompt (like “≥”), or

even send complete display screens

that assume a particular type of

computer terminal, such as DEC

VT100.

Even worse is an RS-232 instrument

that performs “remote echo”—that

is, every time the instrument gets a

character, it echoes it back.

– Most of the low-level RS-232

protocols—setting up start and stop

bits, handling flow control, and so

on—are handled by a chip known as

a “UART,” for “universal asynchro-

nous receive transmit.” You’ll see

this term mentioned occasionally

in serial documentation.

– There are variations on RS-232,

such as RS-423, RS-485, and partic-

ularly RS-422. There is also an

antique scheme known as “current

loop” that dates from the era of

teletype terminals.

From the user’s point of view they

are similar to RS-232, except they

use different output devices. In some

cases they allow longer and (in prin-

ciple) faster connections. RS-485 also

allows communication with multiple

devices on the same bidirectional

connection.

– There are lots of higher-level

communications protocols that

can be used on serial—Kermit,

XMODEM, UMODEM, and others—

that provide for data integrity and

reliable communications; discus-

sion of these protocols is beyond

the scope of this document, but

they are mentioned here for the

sake of completeness.

– If you are trying to interface an

RS-232 instrument to a PC, the

best thing to start with is Keysight

Technologies, Inc. Connection

Expert and its Interactive IO utility

to see if you can establish commu-

nications at all.

The first thing you need to do after

that is ensure that your cable is

actually the right one. Vendors can

often recommend a cable, but in the

worst case you may have to actually

do some wiring on your own.

Then you can start tinkering with

communications parameters to see

what you can get to work. Note that

you should turn off all handshaking

at first. You’ll probably get errors, but

at least you can determine if you are

talking to the device.

– People who spend time working

with a variety of RS-232 devices

usually acquire a set of tools to

make the task easier. Any RS-232

troubleshooter will usually have a

set of “sex-changers” (or “gender-

benders”) to allow connection of

two male or two female connectors,

and 9-to-25-pin connectors.

– Some devices that have multiple

interfaces have to be configured

to communicate over RS-232. For

instance, the Keysight 34401 DMM

can be set from the front panel

to work as RS-232 or GPIB; if you

have it set to GPIB, it doesn’t work

very well with RS-232. (The 34401

is kind enough to announce on its

display on power up whether it is

set to RS-232 or GPIB.)

Please do not underestimate RS-232

programming problems. For some

reason the topic seems to give

newcomers to the issue a false

impression of simplicity. It can be

quite simple in some cases—when the

remote device is well-behaved and

well-documented and you are using

reasonable controlling software—

but if you are performing serial

interfacing, you best be prepared

for a struggle.

3. Troubleshooting
RS-232 Problems

If you’re having trouble getting an

RS-232 connection to an instrument

to work, you will need to work

through methodical troubleshooting

steps:

– First, make sure you have the right

RS-232 cable with the right wiring

connected to your device.

– Second, make sure that nothing

else , like a printer, mouse, or other

applications program, is using the

RS-232 port. Try selecting the port

with a terminal emulator if you are

having troubles.

– Third, ensure that both the instru-

ment and your program have the

same serial settings—baud rate,

word size, stop bits, parity, hand-

shaking, and so on. Conventional

settings are 9600 baud, 8 bits, 1

stop, no parity Handshaking mode

varies, but buffering is common

these days, so “no handshaking”

is a good place to start.

– Fourth, make sure that you

understand the command set of

the device and its data formats.

You will not in general be able

to communicate with an RS-232

device by guesswork. Unfortunately,

some RS-232 manuals are extremely

cryptic and obscure.

If the device is compatible with

the 488.2 common-command

subset (this is often the case if the

device has both RS-232 and GPIB

interfaces), then you can assume

that it does support a small set of

standard commands. Try sending

a “*RST;*CLS” to see if it clears the

device, and try to query it for its ID

string with an “*IDN?” query.

If this doesn’t get you anywhere,

some troubleshooting steps are in

order.

Try using a terminal emulator to see

if you can send simple commands

or otherwise communicate with the

instrument. This is a very useful and

highly recommended step if you are

having problems.

If it seems that you can communicate

between the terminal emulator and

the instrument then it is likely that

there is some misunderstanding of

command and data formats. If the

manuals seem ambiguous on the

command and data formats, then

you may have to do some probing.

If you don’t seem to be able to read

back data, you might try reading

back data one byte at a time, and

display both its ASCII code value

and the corresponding character.

7

myKeysight

www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.

www.axiestandard.org

AdvancedTCA® Extensions for Instrumentation and Test (AXIe) is an
open standard that extends the AdvancedTCA for general purpose and

semiconductor test. Keysight is a founding member of the AXIe consortium.

ATCA®, AdvancedTCA®, and the ATCA logo are registered US trademarks of
the PCI Industrial Computer Manufacturers Group.

www.lxistandard.org

LAN eXtensions for Instruments puts the power of Ethernet and the

Web inside your test systems. Keysight is a founding member of the LXI

consortium.

www.pxisa.org

PCI eXtensions for Instrumentation (PXI) modular instrumentation delivers a
rugged, PC-based high-performance measurement and automation system.

Three-Year Warranty

www.keysight.com/find/ThreeYearWarranty

Keysight’s commitment to superior product quality and lower total cost
of ownership. The only test and measurement company with three-year

warranty standard on all instruments, worldwide.

Keysight Assurance Plans

www.keysight.com/find/AssurancePlans

Up to five years of protection and no budgetary surprises to ensure your

instruments are operating to specification so you can rely on accurate

measurements.

www.keysight.com/quality

Keysight Technologies, Inc.

DEKRA Certified ISO 9001:2008
Quality Management System

Keysight Channel Partners

www.keysight.com/find/channelpartners

Get the best of both worlds: Keysight’s measurement expertise and product
breadth, combined with channel partner convenience.

Windows is a U.S. registered trademark of Microsoft Corporation.

For more information on Keysight

Technologies’ products, applications or

services, please contact your local Keysight

office. The complete list is available at:
www.keysight.com/find/contactus

Americas

Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Paciic
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East

Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5009286
Spain 0800 000154
Sweden 0200 882255
Switzerland 0800 805353

Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)

United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus
(BP-07-10-14)

08 | Keysight | RS-232 Troubleshooting - Application Note

This information is subject to change without notice.
© Keysight Technologies, 2007-2014
Published in USA, July 31, 2014
5989-6580EN
www.keysight.com

www.keysight.com/find/mykeysight
www.axiestandard.org
www.lxistandard.org
www.pxisa.org
www.keysight.com/find/ThreeYearWarranty
www.keysight.com/find/AssurancePlans
www.keysight.com/quality
www.keysight.com/find/channelpartners
www.keysight.com/find/contactus
www.keysight.com/find/contactus
www.keysight.com

