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Abstract—The Guide to the Expression 
of Uncertainty in Measurement 
(GUM) has been widely adopted in 
the different fields of the industry 
and science. This guide established 
general rules for evaluating and 
expressing uncertainty in the 
measurements. In this paper we will 
give an overview on how to use it for 
uncorrelated input quantities. We will 
also introduce correlated magnitudes 
and correlation types due to the 
important issue in the evaluation 
of measurement uncertainty as 
a consequence of the correlation 
between quantities. We will identify 
situations not included into the 
GUM, when the measurand can be 
expressed as a function of quantities 
with common sources. So the issue 
appears when we use the typical 
Welch-Satterthwaite formula used 
to calculate the effective number 
of degrees of freedom when the 
measurement errors are not with finite 
degrees of freedom and uncorrelated. 
We will introduce a generalization 
of the Welch-Satterthwaite formula 
for correlated components with finite 
degrees of freedom.

This paper will also include other 
methods for computing confidence 
limits and expanded uncertainties 
such as using Convolution based on 
mathematical methods or evaluating 
the measurement uncertainty based 
on the propagation of distributions 
using Monte Carlo simulation.
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The degree of correlation between     and     is characterized by the 
estimated correlation coefficient.

The expanded uncertainty of measurement is obtained by multiplying 
the standard uncertainty of the output estimate by a coverage factor 
k  which is chose on the basis of the desired level of confidence to be 
associated with the internal defined by: 

When a Normal distribution can be attributed to the measurand, and the 
standard uncertainty associated with the output estimate has sufficient 
reliability, the standard coverage factor            shall be used.

The assumption is that the combined error follows a normal (infinite 
degrees of freedom) or   -Student distribution (finite degrees of freedom) 
results from the Central Limit Theorem.

This theorem demonstrates that the combined error distribution con-
verges toward the normal distribution as the number of constituent 
errors increases, regardless of their underlying distributions (Figure 1).

Figure 1. Combined error distribution
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This paper will also include other 
methods for computing confidence 
limits and expanded uncertainties 
such as using Convolution based on 
mathematical methods or evaluating 
the measurement uncertainty based 
on the propagation of distributions 
using Monte Carlo simulation.

Introduction 
In general a measurement is not measured directly, but is determined 
from n other quantities through a functional relationship: 
 
In cases where the input quantities are independent, the combined 
standard uncertainty is the positive square root of the combined variance 
which is given by: 
 
Mutual dependences in the knowledge about the input quantities can be 
expressed as a covariance or a correlation coefficient and can be used 
during the propagation.
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A first approach to determine the expanded uncertainty for a confi-
dence level is to use a coverage factor of a normal distribution, k :

If the number of random readings is small, so the value of the  Au
can be not correct, and the distribution of the random component is 
better to represent it by a t -Student distribution, but now we could 
overvalue the uncertainty, especially if the number of measurements 
is small and the  Au and  Bu values are similar in size

So the best way to solve this problem is using the approach of the 
Welch Satterwaite formula. 

If a Normal distribution can be assumed, but the standard uncertainty 
associated with the output estimate is with insufficient reliability and 
it is not possible to increase the number of repeated measurements, 
we will use the Welch Satterthwaite formula. In such a case, the reli-
ability of the standard uncertainty assigned to the output estimate is 
determined by its effective degrees of freedom.

Considering a direct measurement of 
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Degrees of 
Freedom

Fraction p in percent
68.27 5 90 95 95.45 5 99 99.73 5

1 1.84 6.31 12.71 13.97 63.66 235.80

2 1.32 2.92 4.30 4.53 9.92 19.21
3 1.20 2.35 3.18 3.31 5.84 9.22
4 1.14 2.13 2.78 2.87 4.60 6.62
5 1.11 2.02 2.57 2.65 4.03 5.51
10 1.05 1.81 2.23 2.28 3.17 3.96
20 1.03 1.72 2.09 2.13 2.85 3.42
30 1.02 1.70 2.04 2.09 2.75 3.27
40 1.01 1.68 2.02 2.06 2.70 3.20
50 1.01 1.68 2.01 2.05 2.68 3.16
100 1.005 1.660 1.984 2.025 2.626 3.077
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independent measurement 
errors, the distribution may be approximated by a t -distribution 
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3. A normal distribution cannot be justified
In cases where the assumption of a normal distribution cannot be justified 
and it is not possible to apply the Central Limit Theorem, we may find 
situations where one of the uncertainty contributions in the budget can 
be identified as a dominant term or situations when two of the uncertainty 
contributions in the budget can be identified as dominant terms.

Knowing the distribution density 
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0.0 1.65 0.0 1.41 0.0 1.41 0.0 1.65

0.4 1.79 0.4 1.71 0.4 1.73 0.2 1.71

0.8 1.92 0.8 1.89 0.8 1.88 0.4 1.82

1.0 1.95 1.0 1.93 2.0 1.86 0.6 1.89

1.4 1.98 1.4 1.97 6.0 1.70 0.8 1.92

� 2.00 � 2.00 � 1.65 1 1.93

N: Normal, R: Rectangular, U: U-Shaped

3.2 Cases where two of the uncertainty contributions in the 
budget can be identified as dominant terms.

This will involve evaluation of the coverage factor of a stated coverage 
probability for the convolved distributions.

So depending on the distribution types which are convolved, the cover-
age factor for a coverage probability of 95.45 % may be obtained from 
the following Table 1 depending of the stated ratio:

Table 1. If two distributions are convolved, the Coverage Factor k  is 
obtained from the following table

4. Distribution for Combined error using 
convolution
In case where two or more errors are statistically independent, the 
distribution for the combined errors can be obtained by convolution. This 
method can be applied for direct measurements where the measurement 
process errors are statistically independent, so no error correlations.
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Table 1. If two distributions are convolved, the Coverage Factor k  is obtained 
from the following table

4. Distribution for Combined error using 
convolution
In case where two or more errors are statistically independent, the distribution 
for the combined errors can be obtained by convolution. This method can be 
applied for direct measurements where the measurement process errors are 
statistically independent, so no error correlations.
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4.1 Convolving two Rectangular Distributions:

If dominant contributions arise from Rectangular Distributions of values, 
the distribution resulting from convolving then gives a symmetrical 
Trapezoidal Distribution (Figure 3).
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Knowing that the coverage probability is: 

And the coverage factor 

So, the coverage factor will be:

Finally, the coverage factor for a coverage probability of 95 % appropri-
ate to a trapezoidal distribution with an edge parameter of β  < 0.95 is 
calculated from the relation:

 can change from 1.645 to 1.93 depending of    . (Table 2 and Figure 4)

Edge Parameter (β ) Coverage Factor (k)
0 1.927

0.1 1.895

0.2 1.8756

0.3 1.8457

0.4 1.8082

0.5 1.706

0.6 1.7246

0.7 1.6862

0.8 1.656

0.9 1.645

Table 2. Edge Parameter vs. Coverage Factor
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Figure 5. If two Gaussian distributions are convolved, the result is other 
Gaussian distribution.

4.2 Convolving two Gaussians Distributions

The combined error distribution takes on a Gaussian (Figure 5).
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5. Welch-Satterthwaite formula for correlated 
components
The implementation of the GUM exhibits an issue related to the effective 
degrees of freedom when the measurand is expressible as a function of 
intermediate quantities that depend on one or more shared inputs. The 
apparent issue is found in the fact that a linear correlation coefficient of 
zero does not imply statistical independence. Therefore, the variables 
cannot be independent
unless they are normal, and both degrees of freedom are infinite. It is not 
specifically associated with the use of the Welch-Satterthwaite formula. 
It arises from loose and incomplete usage of statistical principles.

We will extend the method described in the GUM to be applicable with 
correlated components of uncertainty with finite degrees freedom. For 
this kind of condition, we can use as a generalization of the Welch-
Satterthwaite formula the expression proposed by Howard Castrup .

So, considering now two measurement errors 1e  and 2e  with uncertain-
ties 1u  and 2u  respectively, and whose correlation coefficient is 12 r  , 
then the variance of the total error is given by:

Using the addition rule, we have

Working a bit with the cross-product and covariance terms we achieve 
the following expression:

Knowing that                            and using the before expression for  n  

measurement errors where two or more are correlated, so the final 
expression to calculate the Effective Degrees of Freedom for correlated 
components will be:

If all the correlation coefficients are zero, this equation simplifies to the 
Welch-Satterthwaite formula.

2 2 2
1 2 12 1 22  Cu u u u ur= + +
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5. Welch-Satterthwaite formula for correlated 
components
The implementation of the GUM exhibits an issue related to the effective 
degrees of freedom when the measurand is expressible as a function of interme-
diate quantities that depend on one or more shared inputs. The apparent issue 
is found in the fact that a linear correlation coefficient of zero does not imply 
statistical independence. Therefore, the variables cannot be independent
unless they are normal, and both degrees of freedom are infinite. It is not spe-
cifically associated with the use of the Welch-Satterthwaite formula. It arises 
from loose and incomplete usage of statistical principles.

We will extend the method described in the GUM to be applicable with cor-
related components of uncertainty with finite degrees freedom. For this kind of 
condition, we can use as a generalization of the Welch-Satterthwaite formula 
the expression proposed by Howard Castrup [ ]2 .
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6. Propagation of distributions using Monte 
Carlo simulation
When the model is non-linear or when the probability density function 
(PDF) for the output quantity departs appreciable from a Gaussian 
distribution or a scaled and shifted t-student distribution we will also 
introduce as alternative the Monte Carlo Method (MCM). This method 
deals with the propagation of probability distribution of the input quanti-
ties of a mathematical method of measurements.

MCM provides a method to obtain an appropriate numerical representa-
tion of the output quantity Y  by means of its distribution function G , 
given a measurement model equation. G is obtained by sampling of the 
PDF of the input quantities ix and applying the model of measurement 
to obtain sampled values for the output quantity Y . Expectation values, 
variance and coverage intervals of Y  can be extracted from G .

The accuracy of the resulting G  increases with the number of trials. 
An adaptative Monte Carlo procedure can be used instead of using a 
fixed number of trials to guarantee that the results achieve a required 
tolerance. This procedure involves carrying out an increasing number 
of Monte Carlo trials until mean, variance and coverage interval have 
stabilized. A numerical result can be considered stabilized if twice the 
standard deviation associated with it is less than the numerical tolerance 
associated with the standard uncertainty u y)( .

7. Learning Objectives
This paper described the method used to estimate the measurement 
uncertainty in accordance with the principles given in the GUM for 
uncorrelated input quantities, including cases where it is not possible 
to apply the Central Limit Theorem. This paper has also extended the 
method to be applicable with correlated components of uncertainty with 
finite degree of freedom using a
generalization of the Welch-Satterthwaite formula.

Another possibility was finally introduced when all the quantities are 
correlated and normally distributed. The Monte Carlo Method is a useful 
tool, to calculate uncertainties when the conditions required applying the 
GUM are not met, and to validate and gain confidence with the results 
obtained with GUM.
The last introduced method can handle correlations as long as all 
quantities which are correlated are distributed normally or are totally 
correlated. In practice this can be an important limitation in case the 
distribution of the correlated quantities differs significantly from normal. 
Often it is not possible to specify the joint PDF for the input variables or 
the joint PDF may not be in a form that is easy to numerically simulate.
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