
Keysight Technologies
Surviving State Disruptions
Caused by Test: A Case Study

Kenneth P. Parker, Keysight Technologies
Shuichi Kameyama1, Fujitsu Limited
David Dubberke, Intel Corporation
1. Also with Ehime University, Matsuyama, Ehime, Japan.

2

1 Disclaimer

The practice of initializing a board or system for testing purposes is not an exact
science, but rather, pursued empirically and with an increasing risk of undesired
side effects. It has been suspected that Boundary-Scan testing can cause such
side effects. This paper provides a case study of such a board where a detailed
root-cause analysis was performed. Some issues are identified that justify add-
ing features to IEEE 1149.1 that will facilitate safe, fast and effective initializa-
tion of a board or system, to get it ready for testing and to leave it in a safe state
upon completion of testing.

There is a Working Group for IEEE 1149.1 that is revising the standard and could
implement some of the ideas presented in this paper (see [IEEEWG]). The con-
tent of this paper may not reflect the group’s final thinking and results. Opinions
stated throughout this paper are those of the authors.

Copyright © [2011] IEEE. Reprinted from IEEE Paper 5.2
First presented at ITC Week, International Test Conference, September 18-23, 2011

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in
any way imply IEEE endorsement of any of Keysight Technologie’s products or services. Internal or
personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to: pubs-permissions at ieee dot org.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

A paper [Park10], presented at the 2010 IEEE International Test Conference
described the effects of the “Lobotomy” problem [Park03] which is a side-
effect of using the IEEE 1149.1 test standard [IEEE01], [IEEE03] for testing a
complex printed circuit board (PCB). This (perhaps overly colorful) term refers
to the fact that Boundary-Scan testing starts with silicon devices in “normal”
mode of operation. Then, all the Boundary-Scan devices are switched to
“test” mode where the I/O pins are suddenly under the control of internal test
register(s), with no synchronization with the activities that were in operation
on the PCB. This can be disruptive of the board’s normal function, and the
function of system logic inside each IC that is participating in the test. The
term “lobotomy” refers to the radical medical practice of surgically discon-
necting the frontal lobe of a person’s brain, which produces stark, irreversible
cognitive and personality changes in its recipients. On a PCB, Boundary-Scan
tests disconnect device I/O pins from their internal intelligence suddenly and
without any warning. A problem could exist when the Boundary-Scan test
completes and the device TAP controllers proceed to the Test-Logic-Reset
state where I/O pins are reconnected to the internal device logic. It can be
difficult to predict the outcome of the devices switching from “normal” mode
to “test” mode and back to “normal” mode. The purpose of the [Park10] paper
was to analyze what features could be added to IEEE Std 1149.1 that could be
used to control unpredictable side-effects of passing to and from the
test mode.

This paper describes an actual case of a board that was reported by Fujitsu to
have some unexpected side-effects that occurred during, and after, Boundary-
Scan testing. Engineers at Fujitsu did detailed research of what was actually
happening, which is described here. Then, the current thinking of the IEEE
1149.1 Working Group is examined to see how it would help solve
these problems.

2 Introduction

Abstract

3

3 A Case Study A board designed by Fujitsu, containing several devices with Boundary-Scan,
was giving trouble to test engineers. The board is a personal computer mother
Board and uses a device referred to as the “PCH” (Platform Control Hub)
[Intel10]. See Figure 1 and its block diagram in Figure 2.

The PCH collects a number of functional responsibilities that are needed for
implementing major systems into a single device. The PCH contains numer-
ous I/O interfaces (LAN, PCIe, SATA, USB etc), and supports the “Advanced
Configuration and Power Interface” (ACPI) [Intel] which is an open standard
specification for device configuration and power management. The ACPI is a
combination of hardware and firmware that manages “Power States”, “Device
States”, “Processor States” and “Performance States”. The PCH controls some
of the onboard voltage regulators by turning them on or off, to support the differ-
ent power states defined within the ACPI specification. Terms such as “Sleep”,
“Suspend” and “Hibernation” are associated with the system feature set.

Figure 1. A Fujitsu board that was analyzed.

4

3 A Case Study
(continued)

The PCH and other intelligent devices are actively involved in real-time power
management. Fail-safe checks and watchdog functions are active to keep volt-
ages within intended limits during normal operation.

Figure 2. Block diagram of the board.

As seen in Figure 2, the PCH and the power control processor work together to
support the different powered states by controlling which voltage regulators are
on or off that feed other board logic. During test, the PCH outputs need to be
properly conditioned so the voltage regulation remains stable. But, what hap-
pens when a test is completed and the PCH is no longer in test mode?

Today’s devices are busily managing their own internal power consumption.
They can turn major sections of circuitry on and off as needed. This can trans-
late into higher and lower power current requirements over time.

Test engineers may not be aware of all the complex power functions, and,
the board may not be a complete system during testing. For example, DRAM
modules may not be present during testing, which means the PCH and/or other
major devices may not be able to execute certain code functions. Add to this the
“lobotimization” of the system circuitry inside these devices during Boundary-
Scan test, and there are reasons to suspect side effects could occur.

5

The board in question for this case study had the situation where active power
management features can be interfered with by Boundary-Scan testing. The
Fujitsu board test engineers had a test strategy based on powering up the board
without all of the DIMM modules in place. In place of the memory modules, they
inserted “Test Jig” devices, which would complete the Boundary-Scan circuit
between the jig and the board, to gain coverage of the DIMM sockets. Then a
Fujitsu-designed Boundary-Scan tester would be used to test the interconnect
circuitry for manufacturing defects. The test was segmented into two phases
(which are greatly simplified in this discussion); each would start and end in the
Test-Logic-Reset TAP state, and each would use PRELOAD to set up pin data in
boundary registers before switching to EXTEST. The first test checked intercon-
nections between the ICs with Boundary Scan. The second test exercised the
GPU/VRAM interface with EXTEST, while the other ICs were “normal”. But
in some cases, the second test failed to execute properly. It was determined
that some of the on-board power voltage regulators would turn off between
the executions of EXTEST in the two Boundary-Scan tests. It was not easy to
understand why this was happening, so laboratory analysis was needed.

Fujitsu engineers, with guidance from Intel, worked to discover what was hap-
pening. As long as the PCH had EXTEST control of the I/O through the boundary
register, the power rails would remain on. When the PCH boundary register was
no longer in control of the I/O by transitioning to the Test-Logic-Reset state
or executing the PRELOAD instruction, the power rails could turn off. During
the Boundary-Scan test, board and signal conditions had been met to trigger a
watchdog timer running in the PCH to perform a warm reset that would power-
cycle the voltage regulators under PCH control. This happened in parallel with
the interval between the completion of the first Boundary-Scan test, and the
start of the second Boundary-Scan test devoted to testing the GPU and VRAM.
This second test was thus interrupted by a power cycle which would confuse
it. The Boundary-Scan test controller, running from its own power supply, would
not be aware of this event and would not be able to make sense of the errone-
ous results that were received.

Two solutions were developed to resolve this behavior. First, they could load one
of the memory DIMMs with real memory, so that the PCH would behave differ-
ently and not decide to cycle the power. In this case, the watchdog condition
was not triggered. A second method was to reverse the order of execution of
the two tests. This tested the GPU/VRAM portion first without disturbing the
PCH. Then the main interconnect test (including the PCH) was executed. After
completion of the tests in this order, a power cycle was tolerable.

Needless to say, understanding this problem required skilled investigation, and
this subverts a value proposition of Boundary-Scan, that boards should be test-
able without detailed knowledge of their system function.

So, what could be done to solve this problem? This type of question is currently
under review of the IEEE 1149.1 Working Group since the 1149.1 standard has
not been updated since 2001. The next sections introduce some concepts that
provide a “toolset” that test engineers can use to engineer a dependable, safe
state for board testing to use both between and after multiple tests are run.

3 A Case Study
(continued)

6

4 Initializing ICs for
Testing

There have been some major changes in ICs since 2001. Many of these changes
have been driven by device complexity. There are many devices available with
“programmable” features, which include programmable I/O behavior. For exam-
ple, an I/O pin can be given a “family” personality so that it appears to be a 3.0
volt pin, or, maybe a 1.8 volt pin, or maybe one of several others. High-speed
I/O pins may be given protocols to follow, such as PCI Express, or SATA. Their
differential voltage swings may be tuned (selected) to full, or lesser swings such
as 75% or 52.7%. Their operating frequency may also be selectable, say between
100 and 125 MHz. These selections may apply to disjoint sets of pins, which
implies configuration memory behind these groups of pins.

Boundary-Scan testing does not require frequencies or I/O protocols to be
selected. The I/O should be divorced from these properties so that I/O pins will
behave in the very simple ways that the 1149.x family of standards requires.
Device I/O electrical characteristics (for logic levels and AC/DC coupled sig-
nals) must match connected devices, so that the devices can transmit/receive
data between each other successfully. The electrical characteristic configuration
must be accomplished before Boundary-Scan testing switches pins from normal
mode to test mode, or, tests may fail due to electrical incompatibility rather than
because of manufacturing defects on the board.

Complex devices also manage their internal power consumption. They can liter-
ally turn on/off various internal subsystems. This helps with systematic goals
such as enhancing battery life or reducing heat buildup. The second goal may be
important for testing, since many boards may not have their thermal solutions
in place when they enter the manufacturing test stage, as they can be mechani-
cally bulky and incompatible with test fixtures. But Boundary-Scan test will
require that power be applied to the board, so we do not want to have excessive
heat generation during this time. Thus, it would be desirable for devices to have
accessible shutdown modes where heat-generating subsystems are held in a
“safe and cool” state [Park10] for the duration of testing. The feature would
effectively alert a device that testing is about to commence and for that time the
device should be quiescent.

The 1149.1 Working Group has devised two new instructions to support this,
named INIT_SETUP and INIT_RUN, which were described in [Park10]. The
INIT_SETUP instruction gives access to an INIT_DATA register, which contains
the data needed to select I/O pin family specification data for voltage levels,
communication protocols, pin frequencies and so on. One important type of data
would be the parameters needed for 1149.6 Test Receivers [IEEE03], so they can
be adjusted to properly detect signals from upstream ICs that may themselves
have selectable protocols. Note the INIT_SETUP instruction is non-invasive; it
does not interfere with normal IC operation.

7

4 Initializing ICs for
Testing (continued)

The INIT_RUN instruction is used to drive internal state machines at the TCK
frequency, to set up internal requirements for the test, or more generally, to shut
off certain functionality that may be generating noise interference or dissipat-
ing heat. This can get the IC into a “safe and cool” mode so that testing can
proceed without concern for compromised cooling often seen during testing.
INIT_RUN is invasive to IC function, and the I/O pins behave as if CLAMP is
in effect. This means a suitable I/O state must be in place (using PRELOAD)
before this instruction is executed.

The Working Group has encountered examples of ICs where the amount of data
needed in the INIT_DATA register would be many hundreds, even thousands
of bits long. A given instance of such an IC may need a download of bits very
specific to that IC’s location on a board. Other ICs of that same type may need
their own, customized downloads as well. This data may consist of numerous,
relatively short fields of data that select I/O voltage levels per pin, for example.
Thus, new BSDL (see [IEEE01], Annex B) constructs are being developed to
describe such fields within a longer register and give them meaningful names.
Similarly, data patterns that would be loaded into these fields will also be given
mnemonic names. Then, a register field like “PLL-A” might be assigned a bit pat-
tern with the name “PLLOff”, meaning a phase-lock loop A is turned off, as part
of the test setup. Similarly, a given I/O interface may be programmed to “SATA”
voltage levels since these are compatible with the voltage levels expected on
the neighboring IC those pins are connected to.

An implication of this is each instance of an IC that contains an INIT_DATA
register may need a unique “side file” of initialization data. The Working Group
envisions GUI-based tools that assist the test engineer with setting up each
side file. These tools would work using meaningful register names and data
mnemonics, and hide the details of which bit locations get loaded with what
bit patterns. IC suppliers could also supply default side files used as a starting
point, such that the test engineer would just make adjustments to its content
for the context that IC was found in on the board.

8

5 Test-mode
Persistence

In [Park10], the concept of a “Ready-for-Test” modal state was introduced. This
modal state would be set up by the INITIALIZE process (the use of INIT_SETUP
and INIT_RUN instructions) and the resultant set up state would be “persistent”
even when the chained TAPs were sent to the Test-Logic-Reset (TLR) state. That
meant several Boundary-Scan tests, each devised to be “stand-alone” could
be run in any order once the chained devices were initialized by INIT_SETUP
and INIT_RUN. The fact that the internal device logic had been decoupled
from the I/O pins would no longer be of concern since the I/O pins would not
be reconnected to their internal logic at random points of time between tests.
The Ready-for-Test modal state was a place to “park” the chained device TAPs
between tests. There is also an assumption here that the I/O states used during
a test are consistent and safe; that is, they are not setting up problematic condi-
tions such as bus driver fights.

The 1149.1 Working Group has since this time developed a new (and optional)
mode of Boundary-Scan operation that adopts some of the Ready-for-Test con-
cept. It is the idea of “Test-mode Persistence”.

Boundary-Scan tests put chained device I/Os into test mode (typically after
using PRELOAD to set up test states) where their I/Os are completely under
control of the Boundary register content. They do this with instructions like
EXTEST or CLAMP. But when the chained TAPs pass through the TLR state,
these instructions are replaced with BYPASS (or IDCODE) which are not test
mode instructions. The I/O pins then revert to being connected to the internal
device logic, which were lobotomized by entering test mode. The results of this
reconnection are unpredictable. Note that when several independent Boundary
Scan tests are run sequentially, each may use its own PRELOAD sequence to
set up for the use of EXTEST, and while this is being done, the I/Os are also
reconnected to system logic.

The CLAMP_HOLD instruction is envisioned to eliminate this reconnection of
I/O pins at TLR and when non-test instructions are loaded. This is to say, the
I/O pins would remain under control of the Boundary register content (test
mode) even if the Instruction register was loaded with BYPASS or IDCODE upon
entering the TLR state. This was at first a problematical behavior in the Working
Group’s thinking since for over 20 years, the non-test instructions were “nor-
mal” mode instructions that did not control the I/O pins. The question was how
to implement this new behavior. For example, one could imagine the TAP state
diagram as having new states. But this was considered too radical a change. So,
a different approach was taken, that of an optional parallel state diagram called
the Test Persistence Controller (TPC). This retains the standard 16-state TAP
diagram, but the TPC governs how particular non-test instructions behave, by
giving them a bimodal definition.

The TPC has two states, called Test-mode Persistence On and Test-mode
Persistence Off (see Figure 3). Two new instructions2 are used to toggle
between the On/Off states; the CLAMP_HOLD instruction and the CLAMP_
RELEASE instruction.3

2. These names may change up until the release of a new 1149.1 standard.
3. The working group has also considered a third arc from the On to the Off state called the

“BYPASS Escape” arc, used as a fail-safe mechanism. This detail is omitted from this discussion
for simplicity.

9

5 Test-mode Persis-
tence (continued)

Figure 3. The Test Persistence Controller state diagram.

Note that passing through the TLR TAP state does not cause a change in the
TPC state. On assertion of the TRST* pin, or when an On-Chip POR (Power-On
Reset, if present) is active, the TPC will move to the Off state.

To achieve Test-mode Persistence at the I/O pins, we need to first look at how
a typical output pin is controlled by a Boundary register cell. An example is the
classic “BC_1” data cell shown in Figure 4. (Its output is sent to a pad driver.)
Common to all such Boundary register cells is a “Mode” signal derived in the
TAP from instruction decoding. (The Mode signal value is shown in the table in
the figure versus instruction.) When Mode=0, then the output pin is connected
to the Boundary register cell input, which would come from the device’s system
logic. When Mode=1, then the output pin state is controlled by the current
content of the Update flip-flop (R2), and thus the I/O is disconnected from the
system logic.

Figure 4. Boundary Register Cell BC_1 from Figure 11-30 of [IEEE01].

10

Similar cells of the control-and-observe type may be used for input pins. There,
the Mode line determines if the system logic is connected (or not) to device
input pins. Note that when an instruction that has Mode=1 is replaced by
an instruction with Mode=0, the data to/from the Boundary register will be
switched out and the I/O pins are reconnected to the internal device logic. This
automatically happens whenever the TAP passes through the TLR state, as this
loads the Instruction register with BYPASS (or IDCODE). However, the concept
of Testmode Persistence requires that this mode change does not occur, when
persistence is “On”. The Mode signal must be modified to support “persistence
on”. (See the CH-Mode signal in Figure 6.)

The 1149.1 standard also defines output pin enable control cells. These can
also be classic “BC_1” designs. But, at the option of the device designer, such
control cells can be set (or reset) to the state that disables the driver, when the
TAP passes the TLR state.

An example of such a design is shown in Figure 5, where Reset* is used to
set (or reset) the Update flip-flop (R2). The Reset* signal is generated in the
TAP and is asserted at the TLR state. Normally, such an action may be justi-
fied if at the end of a test (where the TAP goes to the TLR state) the device
designer would like drivers to be automatically disabled. However, the concept
of Testmode Persistence requires that this driver disabling does not occur. The
Reset* signal must be modified to support “persistence on”. (See CH-ControlR
Reset* in Figure 6.)

Figure 5. Boundary Register Cell with pre-settable Update Flip-Flop (ControlR).

5 Test-mode Persis-
tence (continued)

11

The Test-mode Persistence controller has two states, so it can be implemented
with a single flip-flop.4 A possible implementation is shown in Figure 6.

The TPC can be located in the TAP where its input signals are readily available.
It generates the two modified Mode and Reset* signals, for distribution to the
Boundary register. Note that with this change, the number of signals distributed
across the IC is unchanged.

1. 4 If a device designer is concerned about “single-event upset” (SEU) errors that could lock a
device into test mode, the design can be modified to contain multiple, redundant flip-flops that
are “voted” on to determine if persistence is on/off.

Figure 6. An implementation of the Test-mode Persistence Controller.

5 Test-mode Persis-
tence (continued)

12

The TPC memory flip-flop CH-1 is cleared (Off) at power up or when TRST* is
asserted. It loads a ‘1’ (On) when CLAMP_HOLD is the updated instruction.
Once set, only an assertion of TRST* or the loading of CLAMP_RELEASE
can clear this bit. Also notice that since the normal Mode line generated by
the TAP in response to the currently loaded instruction only changes in the
Update-IR TAP state, changes in the TPC state are not observable until either
CLAMP_HOLD or CLAMP_RELEASE are displaced by another instruction, since
both of these instructions specify Mode to be ‘1’.

All the standard instructions generate a Mode signal, and effectively, this is
overridden to ‘1’ when Test-mode Persistence is implemented and turned on.
This generates new I/O pin behavior which is summarized in Table 1 at the end
of this paper.

The main goal of Test-mode Persistence is to maintain the last driven states of
the I/O when a test completes, so that either the board stays in that quiescent
state until power down, or, some new test that is to begin sometime later will
start from that state. Today, when multiple tests are run in sequence, there is a
gap of time between the end of one (where the TAP went to the TLR state) and
the point in the following test where test mode is re-entered, typically after a
PRELOAD sequence. During this time the device I/Os are connected to loboto-
mized device logic, with unknown results that are difficult to predict.

This indeed was the root cause for trouble experienced by the test case at
Fujitsu. If (at a minimum) the PCH chip had a Test-mode Persistence Controller,
the CLAMP_HOLD instruction could be used to freeze the signal pins that
control the power regulation in a stable state. This state would be maintained
after the first test completed and the next test was getting ready to run. For the
case observed at Fujitsu, maintaining static states on the PCH would prevent
the autonomous cycling of the power subsystem.

5 Test-mode Persis-
tence (continued)

13

6 TAP-based IC Reset The IC_RESET instruction, termed “RESTORE” in [Park10], is a “TAP-based”
method for asserting the Master Reset function pin on a device. This pin could
be otherwise blocked by an instruction (like EXTEST) or by the Test-mode
Persistence mode being set to “On”.

The Working Group has also decided to address the reality that many ICs
contain Intellectual Property (IP) that may come from different sources. For
example, a piece of IP that performs on-chip memory BIST might be included
in several places in an IC’s design. Such an IP block might have its own reset
signal. Thus, IC_RESET is envisioned (at this writing) to address a Reset-Select
register. This register can be used to enable and toggle any reset function that
comes from a device input pin, or those utilized internally by IP blocks.

The goal is to allow individual control of external or internal reset functions,
using only the TAP pins. This can be used to ensure that on-chip subsystems
are reset during testing activities, or, they can be blocked from being reset by
test related signaling. This gives test engineers another tool to suppress unpre-
dictable behaviors that result from testing, or, the completion of testing.

14

7 Conclusions The “lobotomy problem” that occurs when Boundary-Scan testing completes
can disrupt board behavior. This disruption can lead to events that can disrupt
subsequent test activities. This was demonstrated by Fujitsu engineers who did
a painstaking root-cause analysis of a complicated board that would sometimes
exhibit strange behavior during subsequent Boundary-Scan testing. It was
proven that earlier Boundary-Scan testing created conditions in the power
conditioning circuitry that would interfere with later testing.

New Boundary-Scan instructions, INIT_SETUP, INIT_RUN, CLAMP_HOLD,
CLAMP_RELEASE and IC_RESET that are being studied by the IEEE 1149.1
Working Group [IEEEWG] can provide the tools needed to remove these types of
problems. The case given here shows how this can be done.

To summarize, if a suite of Boundary Scan tests is created for a board that
contains ICs that have this new Test-mode Persistence capability, then test
generation software has several options:

 – At the end of the first test, load the CLAMP_HOLD instruction. This freezes
the last EXTEST pattern in place on the I/Os. But, this test should always be
run first when the system is in “normal” mode, such as after power-up. The
clamping behavior persists through all the remaining tests, although each
may complete with a different clamped pattern on the outputs;

 – or, at the end of each test, load CLAMP_HOLD after the last EXTEST pattern
is completed. This freezes the last EXTEST pattern state in place. Tests in the
suite can then be run in any order, or some may be deleted at will.

 – The last test in the test suite can load the CLAMP_RELEASE instruction. This
releases the I/Os of all devices that were in the persistent state. This may be
acceptable if the resultant state is safe, or, a re-boot of board function is the
predictable result;

 – or, a specifically engineered routine using the CLAMP_RELEASE and
IC_RESET instructions can be appended to the end of the suite of tests.
This routine effectively re-boots the board. The test engineer will need to
investigate which IC is “the master” with respect to re-booting and target
that device with IC_RESET;

 – or, cycle the power to cause a general re-boot. Power cycling is guaranteed
to remove the persistence of test mode and should invoke the appropriate re-
boot behavior designed into the board. Power cycling, however, can be time
consuming, which may cause a throughput concern.

15

9 References [IEEE01] “IEEE Standard Test Access Port and Boundary-Scan Architecture”,
IEEE Std 1149.1-2001

[IEEE03] “IEEE Standard for Boundary-Scan Testing of Advanced Digital
Networks”, IEEE Std 1149.6-2003

[IEEEWG] IEEE 1149.1 Working Group website which contains meeting minutes
and a private draft area: http://grouper.ieee.org/groups/1149/1/

[Intel10] “Intel® 5 Series Chipset and Intel® 3400 Series Chipset”, Intel
Corporation Document Number: 322169-003, June 2010

[Intel] http://www.intel.com/technology/iapc/acpi/
[Park03] “The Boundary-Scan Handbook”, 3rd Edition, Parker, K. P., Kluwer

Academic Publishers (now Springer), Boston, MA, 2003
[Park10] Parker, K. P., “Surviving State Disruptions Caused by Test: The

‘Lobotomy Problem’”, Proc. IEEE International Test Conference,
paper 19.2, Austin Tx, Nov 2010

8 Acknowledgement The authors would like to thank James Grealish at Intel for his help in explaining
the silicon in question. Fujitsu engineers Masayuki Baba and Manabu Keyaki
were instrumental in performing the root-cause analysis of the interactions
uncovered in this case study. Finally, the 1149.1 Working Group has worked
diligently for over a year on these questions. We believe these new tools will be
important contributions to realizing safe and effective Boundary Scan tests, into
the future.

http://grouper.ieee.org/groups/1149/1
http://www.intel.com/technology/iapc/acpi/

This information is subject to change without notice.
© Keysight Technologies, 2011 - 2014
Published in USA, August 1, 2014
5990-9430EN
www.keysight.com

For more information on Keysight
Technologies’ products, applications or
services, please contact your local Keysight
office. The complete list is available at:
www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5009286
Spain 0800 000154
Sweden 0200 882255
Switzerland 0800 805353

Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)

United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus
(BP-07-10-14)

16 | Keysight | Surviving State Disruptions Caused by Test: Case Study

myKeysight

www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

Three-Year Warranty

www.keysight.com/find/ThreeYearWarranty
Keysight’s commitment to superior product quality and lower total cost
of ownership. The only test and measurement company with three-year
warranty standard on all instruments, worldwide.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to five years of protection and no budgetary surprises to ensure your
instruments are operating to specification so you can rely on accurate
measurements.

www.keysight.com/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2008
Quality Management System

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product
breadth, combined with channel partner convenience.

www.keysight.com/find/limitedaccess

www.keysight.com
www.keysight.com/find/contactus
www.keysight.com/find/contactus
www.keysight.com/find/mykeysight
www.keysight.com/find/ThreeYearWarranty
www.keysight.com/find/AssurancePlans
www.keysight.com/quality
www.keysight.com/find/channelpartners
www.keysight.com/find/limitedaccess

