

Agilent

N4982A Clock Recovery Unit Data Sheet

For 100GbE, Fiberchannel, Infiniband, and 40G or SONET/SDH Applications

- · Low jitter output clock
- Low power dissipation
- Precision connectors
- Excellent signal quality
- Single low voltage DC supply

N4982A-R19 19 to 26 Gb/s , and 39.8 to 44.0 Gb/s

N4982A-R25 25.3 to 32 Gb/s

N4982A-R28 27.9 to 36 Gb/s

Agilent Technologies

N4982A Clock Recovery Units

Description

The N4982A series of clock recovery units (CRU) cover data rates from 19 to 36 Gb/s and 39.8 to 44 Gb/s with three different model options. The CRU modules utilize silicon germanium (SiGe) technology and offer both small size, and low power consumption.

Applications

The N4982A CRU modules can be used to extract a low jitter clock for 40G and 100G applications such as IEEE 802.3, OIF/CEI 25/28G, 32G Fiberchannel, 25G Infiniband, etc. The CRU's have sufficient bandwidth to operate both at common base rates, e.g. 25.78125 Gb/s, as well as in applications that require added bandwidth for forward error correction (FEC), e.g. 27.95, 30.9375 Gb/s. Broadband test systems will benefit from the low power dissipation, precision connectors and excellent signal quality.

Specifications at 33 deg C Case Temperature

Table 1					
Parameter	Model-Option Number			Units	
	N4982	A-R19	N4982A-R25	N4982A-R28	
Data Input					
Bit rate	19.0 to 26.0	39.8 to 44.0	25.3 to 32.0	27.9 to 36.0	Gb/s
Amplitude	100 to 1400	150 to 1400	50 to 1400	50 to 1400	mV p-p
Reference Clock Input					
Туре	Half-rate	Quarter-rate	Quarter-rate	Quarter-rate	
Frequency	9.5 to 13.0	9.95 to 11.0	6.325 to 8.0	6.975 to 9.0	GHz
Amplitude	200 to 1400		50 to 1400	50 to 1400	mV p-p
Clock Output					
Туре	Full-rate	Half-rate	Half-rate	Half-rate	
Frequency	19.0 to 26.0	19.9 to 22.0	12.65 to 16.0	13.95 to 18.0	GHz
Amplitude (typical)	>150		>320	>150	mV p-p
Jitter RMS (nominal)	0.5		0.5	0.5	ps
DC Supply					
Voltage	-3.6 V dc		-3.3 V dc	-3.3 V dc	V
Current (nominal)	270		220	220	mA

Absolute Maximum Ratings

Table 2

Parameter	Value
Supply Voltage (VEE)	-3.8 V
Control voltage applied to SELV and LOCk	Max: +0.05 V Min: VEE - 0.05 V
Ref input power (REF)	+10 dBm
DC input voltage to DIN, REF and CKO	+/- 1 V
Operating Temperature	0 to +70 deg C
Storage Temperature	-50 to +125 dec C

Performance data N4982A-R19

Figure 1. Phase noise of CKO at 25.78125 GHz locked to 2e31, 25.78125 Gb/s data

Figure 2. 25.78125 GHz clock output Locked to 2e31, 25.78125 Gb/s data

Performance data N4982A-R25

Figure 4. Phase noise of CKO at 13.975 GHz Locked to 2 e15, 27.95 Gb/s data

Figure 5. 13.975 GHz clock output Locked to 2 e15, 27.95 Gb/s data

Performance data N4982A-R28

🤆 Eile 🛛 Control Setup Measure Calibrate Utilities Help 07 Nov 2008 17:14 scilloscope Mode (Acq Limit Test) Waveforms: 300 Rise Time lime **a** Fall Time Amplitude RRMS LRMS -/-Jitter RMS -/-Jitter p-p 됀 Pasure user defined <u>current</u> V p-p(:) 491.75 mV ty cycle(:) 53.5 % tter p-p(:) 3.111 ps tter PMS(:) 401 fo naximum 494 73 mV std dev minimum nean Period Setup & Info Duty cy Jitter 50.7 % 1.778 ps ſs ̈́ps More (1 of 2) MC28R36M, SN12847, n3V3_221mA, LockData, 28G_PRBS16 1 2 Precision Timebase... Reference: 14.00000 GHz 100 mW/div -100.0 mV 4.0 mV/div 11.0 mV Time:20.0 ps/div Delay:24.0132 ns Trig: Free Run C Patte Lock 3)

Figure 8. 14.0 GHz clock output Locked to 2e15, 28.0 Gb/s data

N4982A functional block diagram

Figure 10. Functional block diagram

Pin description (see Figure 11 below)

Table 3

Name	Pin	Description	Note	Connector
LOCK	1	Reference input selector	Internal PLL reference selector between input data and reference clock	SMB
SELV	2	Frequency range selector	Selects between two VCOs for lower/upper band	SMB
СКО	5	Clock output	AC-coupled, single ended output	2.92 mm
VEE	6	Negative supply voltage	Center pin -3.3 or -3.6 V, shield/case is ground	SMB
REF	7	Reference clock input	AC coupled input	2.92 mm
DIN	9	Data input	AC-coupled, single ended input	2.92 mm
NC	3, 4, 8	No connect		

LOCK logic

Table 4

Parameters	State	Min	Тур	Max
Low (default)	Reference clock	_	–3.3 V	-
High	Data	-	0 V	-

SELV logic

Table 5

Model-Option Number	Data rate range	SELV state	SELV voltage
N4982A-R19	19.0 to 22.2 Gb/s	Low (default)	VEE (-3.6 V)
	39.8 to 44.0 Gb/s	Low (default)	VEE (-3.6 V)
	22.2 to 26.0 Gb/	High	0 V
N4982A-R25	25.3 to 30.0 Gb/s	High	0 V
	27.5 to 32.0 Gb/s	Low (default)	VEE (-3.3 V)
N4982A-R28	27.9 to 32.0 Gb/s	Low (default)	VEE (-3.3 V)
	32.0 to 36.0 Gb/s	High	0 V

Figure 11. Module outline

N4982A application note

Clock recovery

The N4982A clock recovery unit has two phase locked loops with separate inputs—the REF input for training the loop to the right frequency, and the Data (DIN) input for phase locking the loop to the actual data. Refer to the block diagram. The CRU requires a ½ or ¼ rate clock for training the PLL. Once the loop is trained, the input can be switched over to the data input by setting the LOCK pin (pin 1) High (0V).

Clock recovery setup procedure

- 1. Connect both data and reference inputs to the device. For example, with the N4982A-R19 if data rate is 25 Gb/s, then reference clock is 12.5 GHz (sine or square). Make sure that the LOCK pin (pin 1) is set to Low (VEE) or left open (it defaults to logic state Low).
- 2. Select the appropriate VCO frequency band by connecting SELV either VEE or 0V. For example, with the N4982A-R19 if the data rate is 25 Gb/s, then connect SELV to 0 V to enable the 22.2 to 26.0 GHz VCO band.
- 3. Monitor the output frequency to see if the loop has locked to the desired frequency. For this example, the loop is locked if CKO is 25 GHz.
- 4. Once the loop is locked (i.e. trained), switch the LOCK pin to High, or 0 V, to lock onto the data input.

Packaging information

Figure 12. All measurements in inches (mm)

www.agilent.com www.agilent.com/find/N4982A

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

Agilent Channel Partners

www.agilent.com/find/channelpartners Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.

www.agilent.com/find/ThreeYearWarranty Agilent's combination of product reliability and three-year warranty coverage is another way we help you achieve your business goals: increased confidence in uptime, reduced cost of ownership and greater convenience.

www.agilent.com/find/AdvantageServices Accurate measurements throughout the life of your instruments.

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at: www.agilent.com/find/contactus

Americas

(877) 894 4414
(11) 4197 3600
01800 5064 800
(800) 829 4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 375 8100

Europe & Middle East

Belgium	32 (0) 2 404 93 40
Denmark	45 45 80 12 15
Finland	358 (0) 10 855 2100
France	0825 010 700*
	*0.125 €/minute
Germany	49 (0) 7031 464 6333
Ireland	1890 924 204
Israel	972-3-9288-504/544
Italy	39 02 92 60 8484
Netherlands	31 (0) 20 547 2111
Spain	34 (91) 631 3300
Sweden	0200-88 22 55
United Kingdom	44 (0) 118 927 6201

For other unlisted countries: www.agilent.com/find/contactus (BP2-19-13)

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2013 Published in USA, August 12, 2013 5991-0701EN

Agilent Technologies