Keysight Technologies Capture Highest DDR3/4 and LPDDR3/4 Data Rates Using Advanced Probe Settings on Logic Analyzers

Technical Overview

02 | Keysight | Capture Highest DDR3/4 and LPDDR3/4 Data Rates Using Advanced Probe Settings on Logic Analyzers - Technical Overview

Purpose of Advanced Probe Settings Mode

Keysight Technologies, Inc. logic analyzer module inputs are optimized to provide a flat input bandwidth from DC to the specified limit when used with Keysight probes designed with specific tip resistor capacitor networks.

Occasionally, probing techniques involve additional tip isolation resistors to interface to the system under test. System interfaces using additional tip isolation resistors, such as DDR BGA (Ball Grid Array) interposers, can provide additional high-frequency attenuation on the sampled signals to the logic analyzer. This additional attenuation can result in smaller data valid windows observed on the logic analyzer at DDR/LPDDR data rates over 1333 Mb/s. To compensate for this additional attenuation, Keysight has included a mode referred to as APS (Advanced Probe Settings) that peaks the edges of the input signals to the logic analyzer. This peaking can improve the capture window of signals to the logic analyzer.

As an example: Evaluation has shown larger data valid windows to the logic analyzer when using the APS mode with DDR BGA interposers at speeds of DDR3-1333 Mb/s and higher. The eye openings presented to the user from the sample positions window are enlarged (compared to eye openings without APS enabled). Larger eye openings allow the user to set sample positions for State mode capture for data rates up to DDR3 2400 Mb/s 1.

Depending on probing methods, APS mode may apply for DDR3/4 or LPDDR3/4 data rates over 1333 Mb/s. Keysight recommends that DDR3 Eyefinder/Eyescan be run with APS mode enabled and disabled to determine the best setting for individual target systems.

	Data rate with APS enabled	Without APS enabled
U4154A	2400 Mb/s 1	1333 Mb/s ¹
16962A	1600 Mb/s ¹	1333 Mb/s 1

1. Maximum data rates subject to signal integrity variations in the system under test.

Advantage of Advanced Probe Settings Mode

Advanced Probe Settings (APS) mode on Keysight logic analyzers enables significantly higher DDR3/4 and LPDDR3/4 data rate captures from BGA probing.

Example: Using W3633A (x4 and x8) or W3631A (x16) DDR3 BGA probes and with either the U4154A or 16962A logic analyzers, APS mode enables data rate captures up to the rates shown below.

DDR3 data rate with APS enabled

- U4154A: DDR3 2400 Mb/s 1
- 16962A: DDR3 1600 Mb/s 1

03 | Keysight | Capture Highest DDR3/4 and LPDDR3/4 Data Rates Using Advanced Probe Settings on Logic Analyzers - Technical Overview

Enabling APS Mode

APS mode is enabled in the Options menu and then applied to the input signals from the Buses/Signals menu.

Follow these steps:

- To enable APS mode in your logic analyzer configuration, use the pulldown Edit button and select Options, as shown in Figure 1.
- 2. Check the "Enabled Advanced Probe Settings (APS) box, click OK on the Options window, as shown in Figure 1.

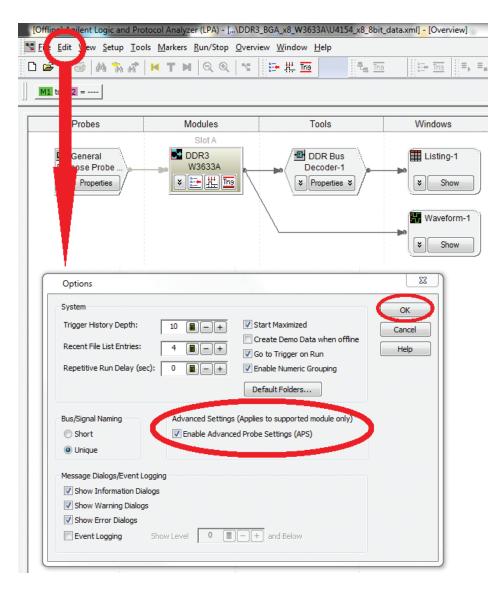


Figure 1. The Edit/Options window, with Enable Probe Settings (APS) selected

3. Click on the Buses/Signals icon to display to the Buses/Signals window, as shown in Figure 2.

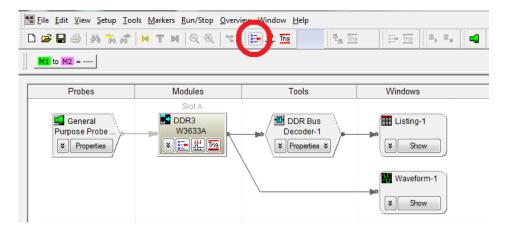


Figure 2. Buses/Signals icon

4. In the Buses/Signals window select APS, as shown in Figure 3. This will open up the Advanced Probe Settings window.

			1								Slo	fΔ	Po	d	2											50	t,	A F	0	11					
								т	hre						- 880	m	v			T				Th	res						80	m\	1		
Bus/Signal Name	Channels	Width			Master Clock												Master Clock																		
bus/signal warne	Assigned	width																						Τ											
			1	0																														1	
CK0	Clks[C1]	1	1	-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	•	15	14	13 1	2	1 1	0 9	8	1		5	5	4	3 2	1	0
	Pod A2[0,1,	16	-			1			-		6	-			10						+	+	+	╀	+	+	+	+	+	+	+	+	-		_
	Pod A2[0,1, Pod A2[0,1,	16	-		0				<u> </u>						10	_			_	_	-	+	+	+	+	+	+	╀	+	+	+	+	-		-
	Pod A2[0,1, Pod A2[4,6,	10	-		<u> </u>								8		10	10		13	14	15	+	+	+	+	+	+	+	+	+	+	+	+	-		_
RAS#	Pod A2[4,6, Pod A1[13]	1	-		ľ	Ľ	-	•	ŀ	•	•	ŕ	P	3		-	-	-	+	+	+	+	/	+	+	+	+	+	+	+	+	+	-		-
CAS#	Pod A1[13] Pod A1[11]	1	-		⊢		-		-	-	-			_	_	-	_	-	+	+	+	-	4	١.	,	+	+	╀	+	+	+	+	-		_
WE#	Pod A1[11] Pod A1[9]	1	-		⊢		-		-		-			_		-	-	+	+	+	+	+	+	ľ	-	J	,	+	+	+	+	+	-		-
	Pod A1[9] Pod A1[13,1	3	-		⊢				-		-			_		-	_	-	+	+	-	+	/		,	J	_	+	+	+	+	+	-		_
	Pod A1[13,1 Pod A1[2], C	2	-		⊢		-		⊢	-	-		\vdash			-	-	+	+	+	+	-	-	ľ	+	Ň	+	+	+	+	+	+	1		_
CKE0	Clks[C2]	1	-		⊢		-		⊢	-	-					-	-	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+'	$\left \right $	_
	Clks[C2], Po	12	-	\square	⊢		-		\vdash	-	-					-	-	+	+	+	10			+	5	+	7	+	+	3	+	+	-	\vdash	2
CS#	Pod A1[7,8]	2	+	\square	⊢	-	-		⊢	-	-	-		_	-	-	-	+	+	+	-	-	+	÷	+	+	-		-	+	+	+	-	\square	-
<u></u> 00	1 ou Aili 'ol	-	4		_				_							_				_				_				Ш	<u> </u>	_	_	_			_

Figure 3. Buses and Signals window

5. As shown in Figure 4, in the Advanced Probe Settings window, select all modules in the configuration connected to probing that may benefit from enabling APS. Then select "OK".

APS can be disabled from this window or from the Edit Options Window. It must be enabled in both windows.

Advanced Probe Settings	
For trained operators only!	
The Advanced Probe Settings dialog allows changing low level settin probing system for this module. The effect of a change may not be and could reduce, as well as improve, the performance of the probing in your application. These settings are provided for use by probing s developers only.	obvious, g system
Click Cancel now to continue using the current settings.	
Click checkboxes to enable (checked) or disable (unchecked) Peaking for group or channel: Module Slot A P Pod 1 P Pod 2 P Pod 3 P Pod 3 P Pod 4 P Pod 5M P Pod 5S P Pod 7 P Pod 8	or that
Default OK Cancel	

Figure 4. Advanced Probe Settings window. APS can be disabled from this window or from the Edit Options Window. It must be enabled in both windows.

myKeysight

myKeysight

www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.

www.keysight.com/quality Keysight Technologies, Inc.

DEKRA Certified ISO 9001:2008 Quality Management System

Keysight Channel Partners

www.keysight.com/find/channelpartners

Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	55 11 3351 7010
Mexico	001 800 254 2440
United States	(800) 829 4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 6375 8100

Europe & Middle East

Austria	0800 001122
Belgium	0800 58580
Finland	0800 523252
France	0805 980333
Germany	0800 6270999
Ireland	1800 832700
Israel	1 809 343051
Italy	800 599100
Luxembourg	+32 800 58580
Netherlands	0800 0233200
Russia	8800 5009286
Spain	0800 000154
Sweden	0200 882255
Switzerland	0800 805353
	Opt. 1 (DE)
	Opt. 2 (FR)
	Opt. 3 (IT)
United Kingdom	0800 0260637

For other unlisted countries: www.keysight.com/find/contactus

(BP-07-10-14)

This information is subject to change without notice. © Keysight Technologies, 2012 - 2014 Published in USA, August 2, 2014 5991-0799EN www.keysight.com