
1  Abstract

One key reason for performing a calibration is to assess a device as either in- or out-of-
tolerance. Common calibration test scenarios compare a device parameter against that of 
a measurement standard by way of a measurement process. If the difference between the 
device parameter and the measurement standard is greater than the specified tolerance, the 
device is deemed out-of-tolerance. However, errors in the measurement process bring about 
the possibility of an incorrect assessment. An incorrect assessment may result in devices 
incorrectly declared as in-tolerance (false-accept) or incorrectly declared as out-of-tolerance 
(false-reject).

The risk of making an incorrect in- or out-of-tolerance assessment can be determined by 
evaluating probability density functions that incorporate a device’s parameter population and 
the measurement error. This paper provides an intuitive explanation of these probability density 
functions drawing on Monte Carlo simulation to demonstrate the relationship between a 
device’s true value and the corresponding measured value.
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In manufacturing facilities throughout the world, test engineers design measurement 
procedures for manufacturing purposes. It is common for test engineers to rely 
on the specifications of measuring equipment to assess the accuracy of the 
measurement procedures. This creates a dependency between the measuring 
equipment specifications and the quality of the manufacturing process. To maintain 
manufacturing process quality, the measuring equipment requires periodic calibration.

For the above scenario, one of the primary purposes of calibration is to verify that 
the measuring equipment performs at a level consistent with the equipment’s 
specifications. In other words, is the measuring equipment in- or out-of-tolerance?

Frequently, calibration involves comparing a device parameter (that is, a parameter 
of the measuring equipment) against that of a measurement standard. For example, 
assume we wish to calibrate an RF power source with a power meter. The purpose 
of the calibration is to assess the RF power source error (the difference between the 
indicated power and the true power supplied by the source) and determine if it is 
less than a specified tolerance. If it were possible to use a perfect power meter and 
a perfect measuring procedure, determining the RF power source’s error is simply a 
matter of noting the difference between the power meter’s reading and the indicated 
value of the RF power source. However, since a real-world power meter is not perfect, 
knowing the exact RF power source error is not possible. Our lack of knowledge 
about the exact error is what gives rise to the possibility of declaring a device as 
in-tolerance when it is actually out-of-tolerance (false-accept) or, declaring a device 
as out-of-tolerance when it is actually in-tolerance (false-reject).
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3  Device Error

From our example, the RF power source error is the value that we wish to 
compare against the tolerance limit. The RF power source displays the power 
level it purports to output. The RF power source error is the difference between 
the purported output power level and the actual true value [7] of the power. 
Expressed mathematically,

 edut = ndut – t            Equation (1)

where:

 edut = RF power source error, which is the device under test error
 ndut = nominal, or displayed RF power level
 t = true power level

To calibrate the RF power source, the power meter measures the true output 
power from the RF power source. However, the measured power indicated by 
the power meter differs from the true value because of measurement error. 
That is,

 istd = t + estd            Equation (2)

where:

 istd = power indicated by the power meter
 t = true power level
 estd = power meter measurement error

Combining Equations (1) and (2) yields:

 ndut – istd = edut – estd           Equation (3)

The left hand side of Equation (3) represents the observed calibration result. 
That is, the observed calibration result is the difference between the device 
under test, as displayed by our RF power source, and the calibration standard as 
indicated by our power meter. Representing the observed calibration result as y, 
we can rewrite Equation (3) as

 y = edut – estd            Equation (4)

where:

 y = observed calibration result

Equation (4) relates the actual device under test error, edut, and the measure-
ment error, estd, to the observed calibration result, y. A device is in-tolerance if 
edut is less than the tolerance limit. That is, for a tolerance limit, L, a device is 
in-tolerance if:

 –L ≤ edut ≤ L

At the time of calibration, however, the precise value of estd is unknown. 
Consequently, it is not possible to determine the precise value of edut. What is 
known is the observed calibration result, y. Fortunately, if estd is small relative 
to edut, the observed calibration result, y, is a reasonable approximation to edut. 
Therefore, a device is declared in-tolerance if:

 –L ≤ y ≤ L
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4  Random Variables, Tolerance Testing and Risk

Because at the time of calibration the precise value of the device under test 
error and the measurement error are unknown, it is necessary to represent edut 
and estd as statistical quantities. Particularly, edut and estd are random variables 
each characterized by a distribution. Assuming that the device under test 
belongs to a population, the distribution for edut represents the different error 
values for each device in that population. The distribution for the measurement 
error, estd, is the measurement uncertainty of the measurement process.

Tolerance testing involves using the observed result of the calibration to 
assess a device as either in- or out-of-tolerance. However, the actual in- or 
out-of-tolerance status of a device depends upon the actual value of the device 
under test error. Therefore, there is a chance that the observed result of the 
calibration leads to an incorrect assessment of the device as being either in- or 
out-of-tolerance. Risk is the probability of making an incorrect assessment.
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5  Monte Carlo Simulation

We can use Monte Carlo methods to simulate the result of calibrating devices 
using calibration standards that include errors. As such, Monte Carlo simulation 
provides a way to visualize the relationship between the device under test error, 
edut, and the calibration result, y, when treating the variables in Equation (4) as 
random variables. Monte Carlo simulation is also useful for identifying incorrect 
in- or out-of-tolerance assessments as well as determining the risk of making an 
incorrect assessment.

The Monte Carlo simulation operates as follows. Assuming a distribution for the 
population to which our device under test belongs, we can draw from it a large 
number of random samples. Each sample represents a value of the error, edut, for 
a device under test. For each of these random samples, we can draw another 
random sample from a distribution representing the measurement error, estd, and 
subtract it from the sample for the device under test error to give a value for the 
calibration result, y.

y

edut

Figure 1. Simulation of observed calibration results versus the device 
under test error.

The benefit of a Monte Carlo simulation is that values for edut and the cor-
responding values for y exist, unlike real-world calibrations where edut is 
unknowable. Figure 1 shows values for y plotted against the values for edut and 
illustrates graphically that y and edut are highly correlated. This is necessary in 
order to approximate a value for edut using a value for y.
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5  Monte Carlo Simulation (continued)

Adding tolerance limits to the plot of y values versus edut values defines several 
different regions.

Figure 2. Tolerance limits defining false-accept and false reject regions.

y
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false-accept false-accept

The vertical lines in Figure 2 represent two-sided symmetrical tolerance 
limits about the device under test error, edut. Points between the vertical lines 
represent in-tolerance devices; points outside represent out-of-tolerance 
devices. The horizontal lines represent two-sided symmetrical tolerance limits 
about the calibration result, y. Points between these lines represent devices 
observed as in-tolerance while points outside represent devices observed as 
out-of-tolerance.

Points in the center region of Figure 2 represent devices that are both truly 
in-tolerance (–L ≤ edut ≤ L) as well as observed in-tolerance (–L ≤ y ≤ L). 
Similarly, points in the outer corners of Figure 2 represent devices that are both 
truly out-of-tolerance and observed out-of-tolerance. For these two cases, the 
observed calibration result leads to a correct assessment of a device’s actual 
in- or out-of-tolerance status.

Figure 2 also shows points representing devices observed in-tolerance when, 
in fact, the device is actually out-of-tolerance. These points lie in the regions 
labeled false-accept. Additionally, Figure 2 shows points representing devices 
observed as out-of-tolerance when the device’s true status is in-tolerance. 
These points lie in the regions labeled false-reject. Points in the false-accept 
and false-reject regions represent devices for which the observed calibration 
result leads to an incorrect in- or out-of-tolerance assessment.

Risk is the probability of a point lying in either the false-accept regions or the 
false-reject regions. With our Monte Carlo simulation, determining risk involves 
counting the number of points in a particular region and dividing the count by 
the number of points in the population, or a subset of the population. The divi-
sor, in this case, depends upon the type of risk.

false-reject
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6  Types of False-Accept Risk

Different types of false-accept risk exist depending on various views individuals 
take regarding risk. This section explores three different view cases.

6.1 Case A

Case A defines risk as the unconditional probability of observing a device 
parameter as intolerance when it is actually out-of-tolerance. Case A risk is a 
quality metric for a calibration laboratory. It describes the likelihood of any given 
device leaving the calibration laboratory as out-of-tolerance.

Considering our Monte Carlo simulation, Case A risk is the probability of 
randomly choosing a point in the false-accept regions from the entire popula-
tion. Determining this risk is a matter of counting the points in the false-accept 
regions and dividing by the total number of points in the population.

6.2 Case B

Case B defines risk as the conditional probability that a device parameter is 
out-of-tolerance given an in-tolerance observation. Calibration laboratories only 
put observed in-tolerance devices into service. Case B describes the risk of an 
observed in-tolerance device that is unknowingly out-of-tolerance. For calibra-
tion laboratory management, this risk defines the beginning-of-period measure-
ment reliability for managed calibration equipment.

Determining this risk from our Monte Carlo simulation entails counting the 
points in the false-accept regions and dividing by the number of points where 
the calibration result is within the tolerance limits (–L ≤ y ≤ L).

6.3 Case C

Case C defines risk as the conditional probability that a device parameter is 
out-of-tolerance given a particular observed calibration result. Since a calibra-
tion result is particular to a given device, Case C defines risk specific to that 
device.

For our Monte Carlo simulation, the region of interest is very narrow horizontal 
slice centered on the given calibration result. Risk, in this case, is the number of 
out-of-tolerance points divided by the total number of points in this narrow slice.
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7  Joint Probability Density Function

Monte Carlo simulation is useful for visualizing how risk is determined, but a 
more practical method of determining risk is necessary. This more practical 
method is available using a joint probability density function appropriate for 
our calibration scenario. As stated earlier, we wish to treat the variables in 
Equation (4) as random variables that follow a distribution. We could choose 
from any number of possible distributions, but based upon the Principle of 
Maximum Entropy [6], our Monte Carlo simulation assumed that the device 
population and the measurement error follow Gaussian distributions1.

The probability density function assumed for the device population is

          (edut)2                    
           2σ0

2

 p0(edut) =      1      e           Equation (5)
                    √2πσ0

where:

 σ0 = standard deviation of the population distribution

Recalling that the calibration result is the difference between the device under 
test error and the measurement error, the probability density function assumed 
for measurement error is a Gaussian distribution centered about a value for edut. 
The probability, as a function of y, given a value for edut is,

                (y – edut)2
                              
                   2σm

2

 pm(y – edut) =     1      e           Equation (6)
                         √2πσm

where:

 σm = standard deviation of the measurement error (standard uncertainty)

1. With better knowledge about the population or the measurement uncertainty, we could choose 
different distributions or retain the Gaussian distributions, but choose those distributions whose 
mean value is non-zero.
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7  Joint Probability Density Function (continued)

Figure 3 illustrates how the device population distribution and the measurement 
error distribution relate to our Monte Carlo simulation. (It is necessary, however, 
to imagine the measurement error distribution sliding diagonally across the plot 
for various values of edut.) Given the Gaussian assumptions, most points occur 
near the center of the plot as indicated by the point coloring. The point coloring 
indicates density with the light coloring representing high point density; dark 
coloring, low point density2.

The product of Equations (5) and (6) is the joint probability density function, 
which defines probability density over a two-dimensional surface area.

               (edut)2      (y – edut)2
                                           
                2σ0

2         2σm
2

 p(edut , y) = p0(edut) pm(y – edut) =     1    e	 		•		    1     e       Equation (7)
                                                     √2πσ0               √2πσm

The total probability for a given two-dimensional rectangular area or region is 
found by integrating the joint probability density function over the region. That 
is, the probability for a given region is,

 PR = ∫∫ p0(edut) pm(y – edut)dA
            R

where R defines a particular region on our calibration result versus device under 
test error plot. We can determine false-accept risk by integrating the joint prob-
ability density function over the false-accept regions of our plot.

y

edut

   (y–edut)2                 
     2σm

2     1      e
√2πσm

   (edut)2             
     2σ0

2     1      e
√2πσ0

Figure 3. Distribution assumptions for device under test error and measurement error.

2. For the point coloring, the method to determine density was to draw a grid, count the number of 
points in each grid square and divide by the grid square area.
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8  Determining False-Accept Risk (Case A)

For two-sided tolerance limits, two false-accept regions exist (see Figure 4). 
Case A false-accept risk is found by integrating Equation (7) over the false-
accept regions indicated by the dashed arrows in Figure 4.

Figure 4. False-accept regions for Case A risk.
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Specifically,

 PFA+ = ∫∫ p0(edut) pm(y – edut)dA
              FA+

where FA+ is the region:

 L ≤ edut ≤ ∞ and –L ≤ y ≤ L

and

 PFA– = ∫∫ p0(edut) pm(y – edut)dA
              FA–

where FA– is the region:

 –∞ ≤ edut ≤ –L and –L ≤ y ≤ L

The total risk is the sum of the probability for each of the two false-accept risk 
regions.

 PCase A = PFA+ + PFA–           Equation (8)
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9  Determining False-Accept Risk (Case B)

For Case A risk, integrating Equation (7) provides the unconditional probability 
for a given region. Case B risk, in contrast, is a conditional probability of false-
accept. That is, rather than the probability relative to the entire population, 
Case B risk is the probability of false-accept given an observed in-tolerance 
calibration result (–L ≤ y ≤ L). Conditional probability, in this case, is the (uncon-
ditional) probability of a region divided by the (unconditional) probability for a 
region representing the condition. Case B risk is the unconditional probability of 
false-accept divided by the unconditional probability of an observed in-tolerance 
calibration result.

Figure 5. Observed in-tolerance region for Case B risk.
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observed in-tolerance

As illustrated in Figure 5, the probability of an observed in-tolerance calibration 
result is,

 PInTol = ∫∫ p0(edut) pm(y – edut)dA        Equation (9)
              InTol

where InTol is the region:

 –∞ ≤ edut ≤ ∞ and –L ≤ y ≤ L

The unconditional false-accept risk is given by PCase A. Case B risk is,

 PCase B =  
PCase A          Equation (10)

      PInTol
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10  Determining False-Accept Risk (Case C)

Case C risk is the conditional probability of false-accept given an observed 
calibration result. It is useful to think of Case C as similar to Case B. Case B 
only involved values in the region of (–L ≤ y ≤ L). This region contains the false-
accepts regions and defines the region applied to Equation (9). For Case C risk, 
this region is infinitely narrow about the observed calibration result. Figure 6 
represents this infinitely narrow region as a line cutting horizontally through our 
calibration result versus device under test error plot.

Figure 6. False-accept regions for Case C risk.
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Case C risk is the probability of false-accept, now defined as infinitely narrow 
horizontal regions positioned at the observed calibration result, divided by the 
probability of obtaining the observed calibration result. Integrating Equation (7) 
gives all of these probabilities. Once again, two false-accept regions exist. A 
region exists above the tolerance limit (L ≤ edut ≤ ∞) and below the tolerance 
limit (–∞ ≤ edut ≤ –L). Specifically for Case C, a known calibration result exists; 
therefore, y is constant.

Integrating Equation (7) over the regions indicated by the dashed arrows in 
Figure 6, assuming a constant value for y, gives,

               ∞
 P'

FA+ = ∫ p0(edut) pm(y – edut)dedut
               L

               –L

 P'
FA– = ∫ p0(edut) pm(y – edut)dedut

              –∞
           ∞
 Py = ∫ p0(edut) pm(y – edut)dedut
          –∞

For Case C, risk is a function of the calibration result.

 P(y)Case C = 
P'

FA+ + P'
FA–         Equation (11)

               Py
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11  Reducing False-Accept Risk

Using a device that is unknowingly out-of-tolerance has financial consequences. 
Therefore, minimizing false-accept risk (as well as false-reject risk) is an objec-
tive for metrologists.

y
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false-accept false-accept

false-reject
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false-accept false-accept

false-reject

edut–L L

false-reject

false-accept false-accept

false-reject

false-reject

false-accept false-accept

false-reject

TL

–TL

L

–L

Figure 7. Reducing false-accept risk.

Reduce σ0

Reduce σmσ0 / σm = 4

Guard-band

Figure 7 illustrates three methods for reducing false-accept risk. Each method 
involves reducing the number of points in the false-accept regions. The upper 
left corner of Figure 7 represents the reference case. Each of the three remain 
quadrants represent reduced false-accept probability from the reference.
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11  Reducing False-Accept Risk (continued)

11.1 Reduce σm

Reducing the standard deviation of estd is to reduce the measurement error. As 
measurement error lessens, the correlation between the calibration result, y, 
and the device under test error, edut, improves, making y a better approximation 
to edut. Likewise, reducing σm improves the Test Uncertainty Ratio (TUR) [8].

Represented graphically in the upper right corner of Figure 7, as measurement 
error lessens, calibration results in the false-accept region move vertically to be 
out-of-tolerance. As well, calibration results in the false-reject region move to 
be in-tolerance. The net result is fewer false-accept and false-reject points.

11.2 Reduce σ0

Reducing the standard deviation of edut is to reduce the spread of the device 
population distribution. This is possible for a calibration laboratory that man-
ages an inventory of devices. If we assume a device experiences random drift 
(or other mechanisms that cause a device parameter value to change semi-
permanently), then the distribution representing the device population tends to 
spread over time. Managing an inventory of devices with a calibration process 
that adjusts (or repairs) devices limits the spread of the population3. It is pos-
sible, therefore, to control σ0 by selecting appropriate adjustment limits or by 
adjusting calibration intervals.

The lower left corner of Figure 7 illustrates the effect of reducing the spread of 
edut. As edut narrows, false-accept points move horizontally to be in-tolerance, 
while false-reject points move to be out-of-tolerance. Once again, the net result 
is fewer false-accept and false-reject points.

3. Managing devices in this way is generally part of a program to set and manage measurement 
reliability targets [8] [9].
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11  Reducing False-Accept Risk (continued)

11.3 Guard-band

Instances arise where reducing false-accept risk is necessary and yet, reduc-
ing or further reducing estd and edut is not practical. Applying a guard-band can 
reduce false-accept risk, but at the expense of increased false-reject risk.

Guard-banding is to create test limits for the calibration result more restrictive 
than the tolerance limits. The lower right corner of Figure 7 illustrates this 
situation where the test limits (indicated as TL and –TL) are narrower than the 
tolerance limits.

Guard-banding changes the in- or out-of-tolerance decision point. As test limits 
becomes more restrictive, more points once considered in-tolerance are now 
considered out-of-tolerance. The result is fewer false-accept points but more 
false-reject points.

It is possible set test limits with sufficient guard-band to achieve desired 
maximum allowable levels of false-accept risk. Because the test limit is different 
from the tolerance limit, our risk calculations require integration over a modified 
region. Namely, the unconditional probability for the false-accept region above 
the tolerance limit is, (as a function of the test limit, TL),

 P(TL) = ∫∫ p0(edut) pm(y – edut)dA        Equation (12)
                GBR

where GBR is the guard-banded region,

 L ≤ edut ≤ ∞ and –TL ≤ y ≤ TL

For Case A and B risk, it is necessary to find a value for TL such that the false-
accept risk in no greater than the maximum allowable risk.

 P(TL)FA+ + P(TL)FA– ≤ Riskmax        (Case A)

 
P(TL)FA+ + P(TL)FA– ≤ Riskmax        (Case B)

         P(TL)InTol

The guard-band is the difference between the test limit that results in the maxi-
mum allowable risk and the tolerance.

For Case C risk, it is necessary to find the calibration result for which the false-
accept risk is no greater than the maximum allowable risk.

 P(y)Case C ≤ Riskmax         (Case C)

For Case C, the difference between the tolerance limit and the calibration result 
that gives the maximum allowable risk is the guard-band.
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12  Conclusion

Monte Carlo simulation is very useful for visualizing and understanding the 
subject of measurement risk. This paper presented three similar views of risk. 
Each depends upon two independent a priori probability distributions: the device 
under test population and the measurement error distribution. The device 
under test population, which, by applying the Principle of Maximum Entropy 
(PME), we determine using equation (5). Referring to the methods of the GUM 
[10], accounting for all known offset error and continuing with the PME, we 
determine the measurement error distribution using equation (6). Relying on the 
GUM, the PME and the joint probability density function provides a very good 
methodology for determining risk that is appropriate for the purposes of publica-
tion and regulation.

For other applications, in addition to publication and regulation, our methodol-
ogy requires careful understanding of underlying assumptions. For instance, as 
shown in [5], the computed risk is sensitive to offset of either the device under 
test population or the measurement error distribution, which we have assumed 
to be negligible. Nevertheless, the method for determining risk using a joint 
probability density function is rigorous. The calculated risk value, however, is 
only as good as the assumptions for both distributions. If desired, we can con-
struct joint probability density functions using distributions that more accurately 
reflect our knowledge of the device under test population and the measurement 
error.

Furthermore, we may wish to consider the following:
 – Offset error, at times, is unavoidable. This is especially true for devices 
that operate over a range of settings or conditions. It is simply not possible 
to adjust all parameters for all conditions to nominal simultaneously. Equa-
tions (5) and (6) are easily adjusted to account for offset.

 – Observed calibration history is useful for estimating device under test 
distributions. However, care is necessary to ensure the observed data is 
homogeneous, as indicated in [9]. Several factors that lead to observed 
multi-mode (i.e., non-homogeneous) distributions relate to device manu-
facture/model/option, device calibration interval, test station at which 
the device is tested, as well as functioning devices versus nonfunctioning 
(broken) devices.

 – The random variables edut and estd from equation (4) are not static over 
time and therefore, sampling issues need consideration (see [1]).

 – We can extend the joint probability density function to included a weight-
ing function allowing the determination of cost associated with false-
accept.

 CostR = ∫∫ p0(edut) pm(y – edut) w(edut , y)dA
                  R

We can choose a weighting function that assigns higher cost values to devices 
significantly out-of-tolerance compared to devices just out-of-tolerance. Such a 
costing model requires a clear understanding of the device under test distribu-
tion, the measurement error and the weighting function.
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13  Example

Computing risk depends on the tolerance limits, a value for the measurement 
error standard uncertainty, σm, and an estimate of the device under test popula-
tion standard deviation, σ0. For the purposes of the following example, an 
estimate4 for σ0 is,

 σ0 =       L                Equation (13)
        F–1 (1+p)       2

where F–1 is the inverse normal function, and p is the in-tolerance probability 
which is based on the observed history for a population of devices.

In this example, the tolerance limits for the output power accuracy of an RF 
power source are ± 0.9 dB. A power meter with a 95% expanded uncertainty 
of ± 0.274 dB is used to calibrate the RF power source. From the calibration 
history, we will assume that the in-tolerance probability is 80%. We wish to 
establish guard-bands to limit the false-accept risk to 2%.

From the above,

 L = 0.9

 σm = 0.274 = 0.14
          1.96

 p = 0.8

 σ0 =       0.9       = 0.7
        F–1 (1+0.8)        2

With values for L, σ0, σm, we can use Equations (8) and (10) to determine Case A 
and B false-accept risk.

              ∞  0.9

 PFA+ = ∫  ∫ p(edut) p(y – edut)dydedut
             0.9  –0.9

            –0.9  0.9

 PFA– = ∫  ∫ p(edut) p(y – edut)dydedut
            –∞  –0.9

 PCase A = PFA+ + PFA– = 2.370%

               ∞  0.9

 PInTol = ∫  ∫ p(edut) p(y – edut)dydedut
             –∞  –0.9

 PCase B =  
PCase A = 2.996%

      PInTol

4. The use of Equation (13) is by convention. Case C risk and guard-band can be computed using 
the software tool RiskGuard [2] [3] provided by Integrated Sciences Group, which estimates σ0 
using Equation (13). Similar methods for estimating σ0 are found in [4].
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13  Example (continued)

This example does not provide a calibration result. For that reason, Case C risk 
is not determined.

Both the Case A and Case B false-accept risks are greater than the desired 
2%. The goal is to find a test limit, employing Equation (12), that achieves the 
desired false-accept risk. Doing so is an iterative process for which a numerical 
solver5 is most efficient.

 TLCase A = 0.881 dB
 TLCase B = 0.853 dB

The guard-band in these cases is the difference between the test limit and the 
tolerance limit.

 GBCase A = 0.9 − 0.881 = 0.019 dB
 GBCase B = 0.9 − 0.853 = 0.047 dB

To determine Case C guard-band, it is necessary to find the calibration result, y, 
using Equation (11), that achieves the desired false-accept risk. Doing so is once 
again an iterative process best executed using a numerical solver.

 yCase C = 0.643 dB
 GBCase C = 0.9 − 0.643 = 0.257 dB

Table 1 summarizes the example.

5. For this example, the fsolve function from the MATLAB® Optimization Toolbox was used.

Table 1 Example Summary.

Case A Case B Case C

Unconditional Probability  
of False-Accept

Probability of False-Accept 
Given Observed In-Tolerance

Probability of False-Accept 
Given a Measured Value

Probability of False-Accept 2.370 % 2.996 % NA

2% Risk Guard-band 0.019 dB 0.047 dB 0.257 dB
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