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Abstract 

Jitter amplification in clock channels is analyzed analytically in terms of signal transfer 

function or channel S-parameters. The periodicity of the clock pattern eliminates the 

inter-symbol-interference jitter so jitter at the channel output is entirely induced by input 

jitter. A phase modulation (PM) approach is employed to derive the jitter transfer 

function and amplification factors for sinusoidal jitter (SJ), duty-cycle-distortion (DCD) 

and random jitter (RJ). Results demonstrate that jitter amplification is the consequence of 

smaller attenuation at the jitter lower sideband (LSB) than at the fundamental, which is at 

a higher frequency than the LSB. Scaling equations of DCD and RJ amplifications with 

channel loss is obtained by employing an exponential loss model. It is shown that jitter is 

amplified by lossy channels at any frequency below Nyquist and the effect grows 

exponentially with jitter frequency and data rate. Amplification factors of SJ, DCD and 

RJ are also derived within the square wave representation of clock signals, and the results 

are shown to recover those using the PM approach when high order harmonics are 

neglected. The theory is verified by simulations. 
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1. Introduction 

 

High speed interconnect performance is increasingly influenced by jitter as data rate 

advances. The amount of jitter is modulated by channel dispersion as signals propagate in 

the system. It is observed in both measurements and simulations that jitter can be 

amplified by a lossy channel even when the channel is linear, passive and noiseless [1]-

[5]. The effect happens to different jitter types including sinusoidal jitter (SJ), duty-cycle-

distortion (DCD) and random jitter (RJ). In particular, DCD and RJ amplifications in 

clock signals are found to scale uniquely with channel loss [2], indicating that loss is 

responsible for the effect. 

 

The mechanism of jitter amplification in clock channels is explained theoretically in [5]. 

It is demonstrated that jitter amplification is the consequence of smaller attenuation at the 

jitter lower sideband (LSB) than at the signal carrier, which is at a higher frequency 

compared to the jitter LSB. Such attenuation difference amplifies the phase modulation 

(PM), which is equivalent to jitter, in the channel output signal, leading to jitter 

amplification. The scaling of DCD and RJ amplifications with channel loss is derived 

using an exponential loss model. Jitter is found to be amplified by lossy channels at any 

frequency below Nyquist, and the effect grows exponentially with jitter frequency and 

data rate. 

 

In this paper jitter amplification in clock channels is analyzed analytically using the 

techniques developed in [5]. The advantage of using clock signals is that the periodicity 

of the 1010 clock pattern eliminates the inter-symbol-interference (ISI) jitter so jitter at 

the channel output is entirely induced by input jitter. Two approaches are employed in the 

study. In the first approach, the repeated 1010 clock pattern is approximated by a 

sinusoidal wave with frequency at half of the clock data rate and with phase modulation 

that represents jitter. Jitter transfer functions and amplification factors of SJ, DCD and RJ 

are derived in terms of signal transfer function or channel S-parameters. Scaling 

equations of DCD and RJ amplifications with channel loss are obtained. In the second 

approach, a more realistic square wave representation is used to model the clock signal 

with rise and fall edges being shifted by jitter. It is shown that the square wave 

formulation yields the same results as the sinusoidal formulation does when high order 

harmonics are ignored. Theoretical predictions are confirmed by numerical Monte Carlo 

channel simulations running one million bits. 

 

 

2. Jitter Transfer Function and Amplification 

 

2.1 Sinusoidal Jitter 

 



In lossy channels high order harmonics are heavily attenuated and the 1010 clock pattern 

can be approximated by a sinusoidal wave with frequency at one half of the data rate. 

Jitter in the input clock signal, vin, can be represented by phase modulation as 
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where 0 is the fundamental frequency of the clock signal, 0 a constant phase offset, and 

 the phase modulation that represents jitter. When  is small, Eq. 1 can be linearized as 
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Consider a sinusoidal jitter at frequency . 
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Substitution of Eq. 3 into Eq. 2 yields 
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Eq. 4 shows that the PM spectrum is shifted by the carrier and split into the lower 

sideband at 0-, the upper sideband at 0+, and their complex conjugates.  

 

Assume the signal transfer function of the channel is H(). The output signal, vout, is 

given by 
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where + and - are defined as 
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Notice that +=-
*
. For small  Eq. 5 can be rewritten as 
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where Re+ and Im+ denote real and imaginary parts of +, respectively. The phase 

modulation in the output signal is given by the Re+ term in Eq. 7 as 
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where  is the phase of [H(+0)/H(0)+H(-0)/H(-0)]. Equation 8 shows that a SJ is 

induced in the output by the input SJ. The jitter transfer function, defined as the 

amplitude ratio between output and input SJ, is obtained as 
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Equation 9 describes the relation between jitter amplification and channel dispersion. In a 

lossy channel, as illustrated in Fig. 1, H() decays with  frequency exponentially. The 



lower sideband of PM at 0- is attenuated less than the carrier is, producing a gain in 

the output PM that leads to jitter amplification. Equation 9 demonstrates that the 

amplification, dominated by the -0 term, arises primarily from the attenuation 

difference between the LSB and the fundamental. Equalizations that compensate high 

frequency loss reduce the amplification effect. 

 

             
 

                             Figure 1. Mechanism of jitter amplification in lossy channels. 
 

It should be pointed out that the input SJ also induces an amplitude modulation in the 

output signal, which is given by the Im+ term in Eq. 7 as 
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where  is the phase of [H(+0)/H(0)-H(-0)/H(-0)]. This amplitude modulation is 

a sinusoidal at frequency  and causes eye height impairment at the channel output. 

 

2.2 Duty-cycle-distortion 

 

When input jitter is absent, the ideal input transition time   
   of the n-th bit is determined 

by zero-crossing of vin expressed in Eq. 1 with =0 as 

 

                                                
1

00

00

)1()sin(

0)cos(





nin

n

in

n

t

t




                                                 (11) 



 
0 0 

Frequency  
0 

Carrier  

LSB  

USB 

|H()| (dB) 



 

in which the second equation ensures that even bits are logic 1. With input DCD the 

transition time is shifted from   
   by 

 

                                         )sin()1( 00

1    in

n

nin

n t                                           (12) 

 

where  is half the peak-to-peak DCD. As a result, all even bits are longer (when  > 0) 

than all odd bits. Equation 12 indicates that DCD is equivalent to a SJ at frequency 0, 

and the equivalent PM is 
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The jitter amplification factor for DCD is thus given by Eq. 9 at =0 as 
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The mechanism of DCD amplification can be understood intuitively in terms of the DC 

shift introduced by input DCD [1]. Note that at =0 the LSB becomes a DC component. 

Substituting Eq. 13 into Eq. 2 yields 
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The input DC shift produced by DCD is A0 /2. The output signal is 
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The output DC shift is H(0)A0 /2. Eq. 17 shows that the output signal is composed of 

fundamental and DC components if the second harmonic is ignored in lossy channels. As 

illustrated in Fig. 2, the DC shift causes all logic 1 bits in the 1010 pattern to be longer 

(when  > 0) than all logic 0 bits at vout=0, leading to DCD in the output. The zero-

crossing time shift from the ideal crossing time given by     
         (  )  (  
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can be calculated from the DC term and the fundamental slew rate at   
   , which is 

(  )   (  )    , as 
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Equation 18 gives the same DCD amplification factor as Eq. 15 does when the H(20) 

term is ignored. Note that in most channels H(0) is around 0dB. Equation 18 and Fig. 2 

show that the higher the loss at the fundamental, the larger the output DCD. 

 

      
 

                                            Figure 2. Mechanism of DCD amplification. 

 

2.3 Random Jitter 

 

RJ in the input signal is assumed to be white noise, and its averaged power is given by 

the integration of the power spectral density (PSD) within the jitter Nyquist frequency, 

which equals 0. 
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where C is the constant input RJ PSD. The output RJ power is given by the jitter transfer 

function and C as 

 

                             
2

0

2 )(2)(
0




SJout FdCt                                               (20) 

 

The RJ amplification factor, defined as the RMS ratio between output and input RJ, is 
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When impedance mismatch in the channel is negligible, H() in Eqs. 9, 15 and 21 can be 

replaced by channel forward S-parameters. 

 

 

3. Equivalence between Sinusoidal and Square Wave 

Representations 

 

While all discussions so far are based on the sinusoidal wave representation of the clock 

signal, it can be shown that same results can be obtained using the square wave 

representation.  

 

3.1 Sinusoidal Jitter 

 

In Fig.3 the input clock signal is represented by a 1010 square wave whose n-th transition 

time is at      
  , where T is the unit interval and   

   the input jitter at the n-th bit. 

Note that 0T= since 0 is half of the data rate. As discussed in [3], [4] and [5], the 

output signal of a linear channel can be calculated by linear superposition as 
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where R(t) is the channel step response. 
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                                          Figure 3. Square wave representation of clock signal 

 

When the input jitter is zero, there is no jitter in the output due to the periodicity of the 

clock pattern. For a given delay td, vout crosses the same value at t = nT+td for any integer 

n. With the presence of input jitter, jitter induced in vout can be measured by the crossing 

time shift, which is determined by 

 

)()(

)()()(

mTtnTRlTtnTR

mTtnTRlTtnTRtnTv

d

oddm

d

evenl

in

m

out

nd

oddm

in

l

out

nd

evenl

out

ndout















     (23) 

 

where 
out

n  is the shift of the n-th crossing. For small jitter, linearization of Eq. 23 yields 
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where h(t) = dR(t)/dt is the channel impulse response, and its Fourier transform (FT) is 

the transfer function H() used in previous sections. 

 

Consider a sinusoidal input jitter at frequency , 
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Substitution of Eq. 25 into Eq. 24 yields 
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in which identity (-1)
m 

= exp(-j0mT) is used. )(
~

H is the discrete-time Fourier 

transform (DTFT) of series h(mT+) defined as 

 

                                         
m

mTjmThH )exp()()(
~

                                     (27) 

 

The relation between DTFT and FT is [6] 
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By utilizing Eq. 28, Eq. 26 can be written in terms of H() as 
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Here identity exp(jk0nT) = (-1)
n
 for odd integer k is used. Notice that the first term in 

Eq. 29 is the complex conjugate of the second. Thus, 
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Equation 30 shows that a SJ is induced at the channel output by the input SJ and the jitter 

transfer function is 
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In lossy channels, high order harmonics can be neglected, and Eq. 31 can be 

approximated as 
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By choosing td to be the phase delay of H at 0, the phase of H(0) is cancelled by 

exp(j0td). As a result,  (  )    (     ) and  (   )    (      ) are both real and 

equal to each other. Eq. 32 then becomes 
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Equation 33 is identical to Eq. 9. As expected, the square wave formulation converges to 

the sinusoidal wave formulation when high order harmonics are ignored. 

 

Equation 33 also establishes the equivalence of DCD and RJ amplification results between 

sinusoidal and square wave representations. Nevertheless, derivations for DCD and RJ 

directly from the square wave formulation are provided in the following two sections. 

 

3.2 Duty-cycle-distortion 

 

Substituting Eq. 12 into Eq. 24 yields 

 

                                     



























oddk

d

evenl

d

n

tdnT

tdnT

m

d

m

m

d

out

n

tjkkH

tjllH

H

H

mTtnTh

mTtnTh

)exp()(

)exp()(

)1(

)(
~

)0(
~

)()1(

)(

00

00

1

0









                                    (34) 

 

where td is the phase delay of H at 0 as in the SJ discussion above. The DCD 

amplification factor is given by Eq. 34 as 
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After neglecting high order harmonics, both Eq. 35 and Eq. 15, which is derived from the 

sinusoidal wave representation, converge to 
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3.3 Random Jitter 

 



As pointed out in section 2.3, RJ is uncorrelated white noise, and  
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where    
   is the input RJ RMS. Substituting Eq. 37 into Eq. 24 leads to  
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where the Parseval’s theorem [6] is applied to the numerator. Note that the integration 

range in Eq. 38 can be shifted from [-0, 0] to [0, 20] due to the periodicity of DTFT. 

As a result, the RJ amplification factor can be expressed, after a variable change from  

to -0, as   
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where td is the phase delay of H at 0 as in previous discussions. After neglecting high 

order harmonics, Eq. 39 recovers Eq. 21 as shown below. 
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4. Scaling of DCD and RJ Amplifications with Channel 

Loss 

 

The scaling of DCD and RJ amplifications with channel loss observed in [2] can be 

derived using an approximate loss model described by 
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where k is the loss constant and td the channel delay. Substitution of Eq. 41 into Eq. 9 

yields the amplification factor for SJ below the jitter Nyquist frequency 0 as  
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It can be easily shown that    ( )    and jitter is amplified by lossy channels at any 

frequency below 0. Equation 42 also indicates that FSJ grows exponentially with jitter 

frequency.  

 

DCD and RJ amplifications within the loss model are given by substituting Eq. 41 into 

Eq. 15 and Eq. 21, respectively.  
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FDCD and FRJ are shown to increase exponentially with data rate. Scaling of FDCD and FRJ 

is obtained by rewriting Eq. 43 and Eq. 44 as 
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where D(0) = 20log10|H(0)| denotes the channel loss in dB at the fundamental 

frequency. 

 

 

5. Comparison between Theory and Simulation 

 



A set of four single-ended channels terminated with 50 Ohm are used in the study. Their 

S-parameters are generated from EM simulations. The Svensson-Dermer model [7] is 

employed to model the substrate loss. Simulated insertion loss and return loss are plotted 

in Fig. 4 and listed in Table 1. The clock signal transmitted into the channel is 

represented by the 1010 square wave as shown in Fig. 3. SJ, DCD and white noise 

Gaussian RJ are applied at the transitions. The channel output signal is calculated with 

Eq. 22 using step responses characterized by SPICE transient simulations. One million 

bits are run in each simulation. 

 

S(2,1) 5GHz 10GHz 

channel 1 -14.89 dB -29.96 dB 

channel 2 -18.71 dB -37.74 dB 

channel 3 -22.57 dB -45.64 dB 

channel 4 -26.47 dB -53.67 dB 

 

                                              Table 1. Channel insertion loss at 5 and 10 GHz. 

 

 



 
 

                                           Figure 4. Channel insertion loss and return loss.  

 

5.1 Sinusoidal Jitter 

 

A SJ with 5 ps amplitude is added to the input clock signal. Output eye diagrams of 

channel 2 at 10 Gbps data rate with SJ frequencies of 0.5, 2 and 3 GHz are shown in Fig. 

5. Output jitter probability density functions measured at 0 V are plotted in Fig. 6. They 

exhibit the characteristic shape of the SJ distribution described by  
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where  is the SJ amplitude. The output SJ amplitude can be measured from locations of 

the two peaks in the PDF. As shown in Fig. 6, the output SJ amplitude at 0.5 GHz is the 

same as the input. At 2 and 3 GHz, output amplitudes are about 1.4 and 2 times larger 

than the input, respectively. As predicted by Eq. 42, the output SJ amplification grows 

with SJ frequency. In Fig. 5, amplitude noise is found to be induced by the input SJ as 

predicted by Eq. 10. 

 

 
 

Figure 5. Output eye diagrams of channel 2 at 10Gbps data rate. Input SJ amplitude is 5ps. SJ frequency is 

(a) 0.5GHz, (b) 2GHz, and (c) 3GHz. 
 

        
 

Figure 6. Output jitter distributions of channel 2 at 10Gbps data rate. Input SJ amplitude is 5ps. SJ 

frequencies are 0.5GHz, 2GHz, and 3GHz. 
 

Simulated SJ amplification factors as functions of SJ frequency in channels 1 and 2 at 10 

and 20 Gbps data rates are plotted in Fig. 7. Two sets of theoretical results, calculated 

using Eq. 9 based on S(2,1) and using Eq. 42 based on the approximate loss model 

described in Eq. 41, are also shown in the plot. Loss constants in the loss models are 

extracted from slopes of insertion loss. Figure 7 shows that simulation results are in good 

agreement with theoretical predictions. The discrepancy between results given by Eq. 9 



and Eq. 42 is found to be minor, indicating that the loss model is a reasonable 

approximation in these channels. Comparison of results in channel 2 between 10 and 20 

Gbps suggests that FSJ is insensitive to data rate in lossy channels, as predicted by Eq. 42. 

The amplification factor is found to be greater than or equal to one at any SJ frequency 

and grow exponentially with it. 

 

          
 

Figure 7. SJ amplification factors obtained from simulations and theoretical calculations with Eq. 9 and Eq. 

42. 

 

5.2 Duty-cycle-distortion 

 

Output eye diagrams of channels 1, 2 and 3 at 10 Gbps data rate with 5% UI input peak-

to-peak DCD are plotted in Fig. 8. The eye center is shifted upward by DCD as predicted 

by Eq. 17. Figure 8 shows that as the loss increases from channel 1 to channel 3, the 

fundamental amplitude decreases, and the output DCD increases. Simulated DCD 

amplification factors as functions of data rate in channels 1 and 2 are plotted in Fig. 9. 

The results are in agreement with both sets of theoretical values calculated using Eq. 15 

and Eq. 43 respectively. Amplification factors are found to be greater than or equal to one 

at all data rates and grow exponentially with data rate, as predicted by Eq. 43 in lossy 

channels. 

 

The output DC term in Eq. 17 can be rewritten in terms of input peak-to-peak DCD in UI 

as 
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where V0=A/4 is the input square wave amplitude and equals 5V in this case. H(0) is 0 

dB for all channels. In Fig.10, simulated DC shifts in channel 1 at 10 and 20 Gbps data 

rates as functions of input peak-to-peak DCD are found to agree with Eq. 48. 

 

       
 

Figure 8. Output eye diagrams of channels 1, 2 and 3 at 10Gbps data rate with 5% UI input peak-to-peak 

DCD. 
 



       
 

Figure 9. DCD amplification factors obtained from simulations and theoretical calculations with Eq. 15 and 

Eq. 43. 

 

        
 

Figure 10. DCD induced DC shift in channel 1 output signal obtained from simulations and theoretical 

calculations with Eq. 48. 

 

5.3 Random Jitter 

 



Figure 11 shows output eye diagrams of channel 1 at 8, 12 and 16 Gbps data rates with 

1ps input Gaussian RJ. Output jitter probability density functions measured at 0 V, 

plotted in Fig. 12, manifest Gaussian characteristics. The output RJ RMS increases with 

data rate. Simulated RJ amplification factors as functions of data rate in channels 1 and 2 

are plotted in Fig. 13. Results are consistent with both sets of theoretical values given by 

Eq. 21 and Eq. 44 respectively. 

 

 
 

Figure 11. Output eye diagrams of channel 1 with 1ps input RJ at data rates of (a) 8G, (b) 12G, and (c) 

16G. 

 

          
 

  Figure 12. Output jitter distributions of channel 1with 1ps input RJ at data rates of 8, 12 and 16 Gbps. 
 



         
 

Figure 13. RJ amplification factors obtained from simulations and theoretical calculations with Eq. 21 and 

Eq. 44. 

 

5.4 Scaling of DCD and RJ Amplifications with Channel Loss 

 

Figure 14 shows the scaling of FDCD and FRJ with channel insertion loss at the 

fundamental frequency in all channels at different data rates. The theoretical scaling is 

given by Eq. 45 for DCD and Eq. 46 for RJ. Agreement is found between simulation and 

theory in all cases. The scaling curves are also consistent with simulation results reported 

in [2]. 

 



        
 

Figure 14. DCD and RJ amplification scaling with insertion loss obtained from simulations and theoretical 

calculations with Eq. 45 and Eq. 46. The insertion loss is measured at the fundamental frequency. 

 

 

6. Summary 

 

In this paper clock channel jitter amplification factors in terms of transfer function or S-

parameters are derived. Amplification is shown to result from the smaller loss at the jitter 

LSB than at the fundamental. The amplification scaling with channel loss is obtained by 

using an approximate loss model. In this model the amplification is found to occur at any 

jitter frequency. The theory is confirmed by simulation data. 
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