operating and programmin PACKARD
8175A
Option 002

This manual applies directly to all 8175A's which have option 002 installed

HI:WLETT-PACKARD GMBH 1986 HERRENBERGER STR. 130, D-7030 BOEBLINGEN FEDERAL REPUBLIC OF GERMANY

hp) HEWLETT
 PACKARD

CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the ime of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other Internafional Standards Organization members.

WARRANTY

This Hewlett-Packard product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective.

HP warrants that its software and firmware designated by $H P$ for use with an instrumen will execute its programming instructions when properly installed on that instrument HP does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error free.
For products returned to HP for warranty service, Buyer shall prepay shipping charges to $H P$ and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country.

imitation of warranty

The foregoing warranty shall not apply to defects resulting from improper or inadequate The foregoing warranty shall not apply to defects resulting from improper or inadequate ar misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED HP SPECIFICALLY DISCLAIMS HE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTI. CULAR PURPOSE.

XCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR AN THER LEGAL THEORY

ASSISTANCE

Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

SAFETY SUMMARY

ne following general safety precautions must be observed during all phases of operation, service, and repair of this instrumen . Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of des manufacture, and intended use of the instrument. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements.

GENERAL - This is a Safety Class i instrument (provided with terminal for protective earthing) and has been manufactured and tested according to international safety standards

OPERATION - BEFORE APPLYING POWER comply with the installation section. Additionally, the following shall be observed

Do not ren

Before the in all protective earthent is switched on, cords, auto-transformers and extension nected to it should be connected to a protec tive earth via a ground socket. Any interuption of the protective earth grounding culd result in serious personal infury. could result in serious personal injury. en impared the iosta must be ma and nenter anst any
--
Make sure that only fuses with the required
ated current and of the specified type
normal blow, time delay, etc.) are used for eplacement. The use of repaired fuses and the voided

Adjustments described in the manual are pe formed with power supplied to the instrument while protective covers are removed. Energy available at many points may, if contacted, result in personal injury
Any adjustment, maintenance, and repair of th opened instrument under voltage should be avoided as much as possible, and when inevitable should be carried out only by a skilled person who is aware of the hazard involved. Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation is present. Do not replac

Do not operate the instrument in the presence electricat instres or fumes. Operation of any constitutes a definite safety hazard.
Do not install substitute parts or perform any unauthorized modification to the instrument.

Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.
To prevent CRT imolosion, avoid rough han ling or jarring of the instrument. Handling of the CRT shall be done only by qualified maintenance personnel using approved safety mask and gloves.

SAFETY SYMBOLS

The apparatus will be marked with this
I symbol when it is necessary for the user to efer to the instruction manual in order protect the apparatus against damage.

```
Indicates dangerous voltages.
```

$\frac{1}{-}$ Earth terminal

WARNING The WARNING sign denotes hazard. It calls attention to a procedure, practice or the like, which if not correctly performed or achered to, could result in injury or lass of life Do not proceed beyond a WARNING sign until the indicated conditions are fully understood and met.
CAUTION The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, or the like, whic if not correctiy performed or adhered to, could result in damage to or destruc tion of part or all of the equipment. Do not proceed beyond a CAUTION sign until the indicated conditions are fully understood and met.

Figure 1-1. 8175A Option 002 and Minimum Supplied Accessories

NOTE: Refer to the last paragraph of the Introduction to this manual for more details concerning accessories.

CHAPTER 1

GENERAL INFORMATION

Introduction

This Operating and Programming Manual contains only the additional* information required to install, perate and test option 002 - the Dual Arbitrary Waveform Generator - of the Hewlett-Packard Mod 8175 A . (Service related information is located in the corresponding sections of the complete manual set).

NOTE: Regarding operation of the 8175A, irrespective of which options are installed, many operationa procedures are common to both the standard (Parallel and Serial D.G.) and option 002 configurations. The procedures concerned are defined in chapter 3, section 3A of this manual and explained in the standard 8175A Op. and Prog. manual. In some cases, such procedures etc. are also explained in this manual. This is usually the case where only a few lines of test are required. It minimises the need for epeated cross referencing to the standard Op. and Prog. manual

Use of abreviation "Arb.
Throughout this manual the abreviation "Arb." is often used to refer to the Arbitrary Waveform Generaor configuration.
igure 1-1 shows the mainframe 8175A option 002 and minimum accessories as supplied with any 8175A. Note that externally an 8175A with option 002 installed is identical to a standard 8175A.) Apart fro he power cord and fuse, any other accessories supplied will depend on the particular options ordered with the instrument. Details of these, together with illustrations of all available accessories are included in the standard 8175A Op. and Prog. manual.

MANUAL CONTENTS

The contents of this manual are as follows
Chapter 1 covers instrument identification, description, options, accessories, specifications and othe basic information.
Chapter 2 provides installation instructions for the 8175A and its accessories. It also includes information about initial inspection and damage claims, preparation for use, packaging, storage and shipment
Chapter 3 is sub-divided into several sections, the purpose of the chapter is to familiarize you with operation of the 8175A Arb. Manual operation of the 8175A Arbitrary Waveform Generator is explained with the aid of a "Getting Started" section which includes worked examples. "Getting Started" is designed to help you learn the basics of Arb. operation as quickly as possible. Comprehensive descrip Thi Ar. HP IB Main Dislas, the (The additional HP-IB commands remte (or programmale) operation 8175A is descibed in the standard 8175A O and manual).

Chapter 4 details performance testing of only the Arb. option of the 8175A, not the complete 8175A (Performance tests for the standard 8175 A are given in the standard Op. and Prog. manual).

SPECIFICATIONS

Instrument specifications for the Arb. option are listed in Table 1-2. These specifications are the perforInstrument specifications for Arb. option are listed in Table 1-2. These specifications are

SAFETY CONSIDERATIONS

The Model 8175A is a Safety Class 1 instrument (instrument with an exposed metal chassis that is direct ly connected to earth via the power supply cable)

Before operation, the instrument and manual, including the red safety page, should be reviewed for safety markings and instructions. These must then be followed to ensure safe operation and to maintain the instrument in a safe condition.

INSTRUMENTS COVERED BY THE MANUAL

Attached to the rear of the instrument is a serial number plate (Figure 1-3). The first four digits of the serial number only change when there is a significant change to the instrument. The last five digits ar assigned to instruments sequentially. The contents of this manual apply directly to the instrument seria number quoted on the title page (or to all instruments if stated).
For instruments with higher serial numbers, refer to the Manual Change sheets supplied with this manual In addition to change information, the Manual Change sheets may contain information for correcting any errors in the manual.

Hemeter - Packaro omb

2536G 00062

Figure 1-3. Serial Number Plate
To keep this manual as up-to-date and accurate as possible, Hewlett-Packard recommends that you peri odically request the latest Manual Change supplement. The supplement for this manual is identified by a print date and part number, both of which appear on the title page. Complimentary copies of the supplement are available from Hewlett-Packard.

DESCRIPTION

The Arbitrary Waveform Generator is an option for the 8175A. It enhances the standard instrument' features by providing:

Programmable arbitrary waveforms output as:
2 independent but synchronous analog signals with
10 bit amplitude resolution and
a sample update rate of up to 50 MHz
Programmable peak to peak output voltages and separately programmable offset voltages

Simultaneous analog and digital signals
either 1 analog arbitrary plus 14 independent digital signals or
2 analog arbitrary plus their 10 bit equivalents

OPTIONS

The Arbitrary Waveform Generator is itself an option (option 002) of the 8175A. Refer to the standard 8175A O and P analm Generator is itself an option (option 002) of the 81

ACCESSORIES SUPPLIED

Apart from the minimum accessories of power cord and fuse, any other accessories supplied will depend on the particular options ordered with the instrument. Details of these, together with illustrations of all available accessories are included in the standard 8175A O and P manual. Referring to Figure $1-1$ of this manual the accessories are:

Fuses (one fitted and one supplied):
4 A fuse ($\mathrm{F} 4 \mathrm{~A}, 250 \mathrm{~V}$) for 230 V operation $2110-0055$
8 A fuse (F $8 \mathrm{~A}, 125 \mathrm{~V}$) for 115 V operation 2110-0036
Power Cable (see Figure 2-2)

ACCESSORIES AVAILABLE

Refer to the standard 8175 A 0 and P manual.

RECOMMENDED TEST EQUIPMENT

Table 1-1 lists the equipment required to maintain option 002 of the 8175A. Alternative equipment may be substituted provided that it meets or exceeds the critical specifications listed in the table.

Table 1-1. Recommended Test Equipment for option 002

INSTRUMENT	REQUIRED CHARACTERISTICS	RECOMMENDED MODELS	USE*
Oscilloscope	275 MHz Bandwidth	HP 1725A/1722B	P,A,T
Probe	1:1 36 pF	HP 10021A	P,A,T
DVM	$0.1 \vee$ Range, $>10 \mathrm{M} \Omega$	HP 3456A/3455A	P,A,T
Counter	50 MHz START/STOP T. Int. A to B	HP 5335A/5345A	P,A,T
Time Marker	2 ns		P
Controller	HP 200 Series Basic Compatible HP-IB Interface	HP 9816/9836	P,A

[^0]| $\begin{array}{\|l\|} \hline \text { OPTION 002, DUAL ARBITRARY } \\ \text { WAVEFORM GENERATOR } \end{array}$ | | | | | Accuracy (Output A and Output B):
 Amplitude Accuracy: $\pm 4 \% \pm 4$ LSB) | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Option can be retrofitted at HP service office. | | | | | Offset Accuracy:
 $\pm 1 \%$ of programmed value | | | |
| NUMBER OF OUTPUTS (Output A and Output B on front panel, can be separately disabled): | | | | | $\pm 4 \%$ of (programmed High Level of P-P Output Voltage
 + programmed Low Level of P-P Output Voltage) $\div 2$ | | | |
| NUMBER OF BITS: | | | | | | | | |
| NUMBER OF DATA POINTS:Horizontal: | | | | | into 500 hm | | | |
| Horizontal: Vertical: | 1000 points with additional 24 points override, 800 points for 16 V P-P Output Voltage Range, 640 points for 32 V P-P Output Voltage Range. | | | | $\pm 10 \mathrm{mV}$ for 0.2 V to V P-P Output Voltage Range
 or $\pm 25 \mathrm{mV}$ for 2 V to 5 V P-P Output Voltage Range
 or $\pm 50 \mathrm{mV}$ for 10 V to 16 V P-P Output Voltage Range | | | |
| DIFFERENTIAL NON-LINEARITY: $\leqq 1$ LSB (monotonic) | | | | | into $\geqq 50 \mathrm{kOhm}$ | | | |
| OUTPUT IMPEDANCE: 5 | | | | $50 \mathrm{hm} \pm 5 \%$ | $\begin{aligned} & \pm 20 \mathrm{mV} \text { for } 0.5 \mathrm{~V} \text { to } 2 \mathrm{~V} \text { P-P Output Voltage Range } \\ & \pm 50 \mathrm{mV} \text { for } 5 \mathrm{VV} \text { to } 10 \mathrm{~V} \text { P-P Output Voltage Range } \\ & \pm 100 \mathrm{mV} \text { for } 20 \mathrm{~V} \text { to } 32 \mathrm{~V} \text { P-P Output Voltage Range } \end{aligned}$ | | | |
| OUTPUT LEVELS | | | | | | | | |
| Level Window defines the maximum output signal range for the sum of Offset and P-P Output Voltage. | | | | | 1) Amplitude is programmed High Level - programmed Low Level. | | | |
| O hm | | | | | 2) If programmed High and Low Level of P-P Output Voltage are identical in magnitude but opposite in sign, this error will be zero. | | | |
| Level Window | P-P Output Voltage | | Offset | | TIMING (for Output A and B) | | | |
| | | | | | | |
| | Range | Res. | | | | | Range | Res. |
| $\pm 0.8 \mathrm{~V}$ | 0.2 V | 0.2 mV | $\pm 0.8 \mathrm{~V}$ | 0.5 mV | The Data Point Duration is 20 ns to 9.99 s (for more information see "TIMING in PARALLEL mode." specs. in 8175 A | | | |
| $\pm 0.8 \mathrm{~V}$ | 0.5 V | 0.5 mV | $\pm 0.8 \mathrm{~V}$ | 0.5 mV | | | | |
| $\pm 0.8 \mathrm{~V}$ | 1 V | 1 mV | $\pm 0.8 \mathrm{~V}$ | 1 mV | TRIGGER OUTPUT CHARACTERISTI | | | |
| | 2 V | 2 mV | $\pm 8 \mathrm{~V}$ | 5 mV | NUMBER OF TRIGGER OUTPUT CHANNELS:
 (Trigger Output A on front panel, Trigger Output B on rear panel, can be commonly disabled) | | | |
| $\pm 8 \mathrm{~V}$ | 5 V | 5 mV | $\pm 8 \mathrm{~V}$ | 5 mV | | | | |
| $\pm 8 \mathrm{~V}$ | 10 V | 10 mV | $\pm 8 \mathrm{~V}$ | 10 mV | | | | |
| $\pm 8 \mathrm{~V}$ | 16 V | 20 mV | $\pm 8 \mathrm{~V}$ | 20 mV | TRIGGER OUT | IMPEDANCE: | 50 Ohm | |
| | | | | | TRIGGER OUTPUT LEVELS: | | | |
| 1 Impedance $\geqq 50 \mathrm{kOhm}$ | | | | | | | | |
| | | | | | | Load Impedance 50 Ohm | Load Imped $\geq 50 \mathrm{kOhm}$ | |
| Level Window | P-P Output Voltage | | Offset | | TTL Low Level:
 TTL High Level: | | $\begin{aligned} & \leqq 0.2 \mathrm{~V} \\ & \geqq 4.8 \mathrm{~V} \end{aligned}$ | |
| | Range | Res. | Range | Res. | | $\leqq 0.3 \mathrm{~V}$ | | |
| $\pm 1.6 \mathrm{~V}$ | 0.5 V | 0.5 mV | $\pm 1.6 \mathrm{~V}$ | 0.5 mV | | $\geqq 2.4 \mathrm{~V}$ | | |
| $\pm 1.6 \mathrm{~V}$ | 1 V | 1 mV | $\pm 1.6 \mathrm{~V}$ | 1 mV | $\begin{array}{ll} \text { ECL Low Level: } & \leqq-1.6 \mathrm{~V} \\ \text { ECL High Level: } & \geqq-0.9 \mathrm{~V} \end{array}$ | | | |
| $\pm 1.6 \mathrm{~V}$ | 2 V | 2 mV | $\pm 1.6 \mathrm{~V}$ | 2 mV | | | | | | |
| ± 16 | 5 V | 5 mV | $\pm 16 \mathrm{~V}$ | 5 mV | Trigger Pulse Width: The trigger can be set for each individual data point to High Level or Low Level. The trigger width depends on the programmed Data Point Duration. | | | |
| $\pm 16 \mathrm{~V}$ | 10 V | 10 mV | $\pm 16 \mathrm{~V}$ | 10 mV | | | | | | |
| $\pm 16 \mathrm{~V}$ | 20 V | 20 mV | $\pm 16 \mathrm{~V}$ | 20 mV | | | | | | |
| $\pm 16 \mathrm{~V}$ | 32 V | 50 mV | $\pm 16 \mathrm{~V}$ | 50 mV | | | | | | |

Supplementary Specifications (these describe typical non-warranted performance).

$\begin{aligned} & \text { OPTION 002, DUAL ARBITRARY } \\ & \text { WAVEFORM GENERATOR } \end{aligned}$	
REPEATABILITY: Factor 4 better than accuracy.	Pulse Performan
WAVEFORM CHARACTERISTICS (Output A and OutputB, at maximum P-P Output Voltage for all ranges into 50 Ohm)	Rise/Fall Time (10% to 90% of P-P Output Voltage): <16ns Settling Time (from 10% of P-P. Output Voltage to $\pm 5 \%$ of final value): $\leqq 20$ ns
	DELAYS
Sinewave from $20 \mathrm{~Hz} \ldots 500 \mathrm{kHz}$, characterized by 100 Datapoints:	Trigger A to Channel A: $<20 \mathrm{~ns}$
Harmonic signals: \quad from 20 Hz to 50 kHz : $\leqq-51 \mathrm{dBc}$	Trigger B to Channel B: $<20 \mathrm{~ns}$ Channel A to Channel B: $<5 \mathrm{~ns}$
into account) from $>50 \mathrm{kHz}$ to 500 kHz : $\leq-46 \mathrm{dBc}$	Digital outputs to channel A and B: $<15 \mathrm{~ns}$
Amplitude flatness: (reference is 1 kHz at 2 V P-P Output Voltage)$\quad \pm 3 \%[\pm 0.26 \mathrm{~dB}]$	RESPONSE TIMES (Refer to 8175A supplementary specs, TRISTATE ON/OFF function does not apply to OUTPUTs A and B and TRIG OUTPUTs.)
Triangle at 1 kHz , characterized by 1000 datapoints:	
Integral nonlinearity between 10% and 90% of P-P Output Voltage (data point at steady state): ≤ 10 LSB	

CHAPTER 2

INSTALLATION

WARNING

The instrument weighs 17.5 kg (38.8 lbs). Care must be exercised when lifting to avoid personal injury

INTRODUCTION

This section provides installation instructions for the 8175A option 002 and its accessories. It also includes information about initial inspection and damage claims, preparation for use, packaging, storage and shipment.

INITIAL INSPECTION

Inspect the shipping container for damage. If the container or cushioning is damaged, it should be kept until the contents of the shipment have been checked for completeness, and the instrument has been verified mechanically and electrically. The contents of the shipment should be as shown in Figure 1-1 plus any accessories that were ordered with the instrument. Procedures for checking the electrical operation are given in Chapter 4. If the contents are incomplete, mechanical damage or defect is apparent, or if an instrument does not pass the operator's checks, notify the nearest Hewlett Packard Office. Keep the shipping materials for carriers inspection. The HP office will arrange for repair or re placement without waiting for settlement.

PREPARATION FOR USE

WARNING

To avoid hazardous electrical shock, do not perform electrical tests when there are signs of shipping darmage to any portion of the outer enclosure (covers, pancels, connectors etc.).

Power Requirements

The instrument requires a power source of $115 / 230 \mathrm{~V} \mathrm{rms} \mathrm{(+10} \mathrm{\%-22} \mathrm{\%)} \mathrm{at} \mathrm{a} \mathrm{frequency} \mathrm{of} 48-66 \mathrm{~Hz}$ single phase. The maximum power consumption is 630 VA

Line Voltage Selection

CAUTION

BEFORE SWITCHING ON THE INSTRUMENT, make sure that it is set to the local line voltage.
Figure 2-1 provides information for line voltage and fuse selection

VOLTAGE:	230 V	115 V	230 V
FUSE:	4 A	8 A	\square

Figure 2-1 Switch settings for Line Voltages

Power Cable

In accordance with international safety standards, this instrument is equipped with a three-wire power cable. When connected to an appropriate a.c. power receptacle, this cable grounds the instrument cabinet. The type of power cable shipped with each instrument depends upon the country of destination. Refer to Figure 2-2 to identify the types available and their Option numbers.

WARNING

To avoid the possibility of injury or death, the following precautions must he followed before the instrument is switched on.
a) If this instrument is to be energized via an auttotransformer for voltage reduction, ensure that the common terminal is connected to the grounded pole of the power source.
b) The power cable plug shall only be inserted into a socket outlet provided with a protective ground contact. The protective action must not be negated by the use of an extension cord without a protective conductor.
c) Before switching on the instrument, the protective ground terminal of the instrument must he connected instrument chassis and the front panel and the ground pin of the power cable is zero Ohms.

The following work should be done by a qualified electrician and all local electrical codes must be strictly observed.
f the plug on the cable does not fit the power outlet, or the cable is to be attached to a terminal block, cut the cable at the plug end and re-wire it. The color coding used in the cable will depend on the cable supplied (see Figure 2-2).

If a new plug is to be connected, it should meet local safety requirements and include the following eatures:

Adequate load-carrying capacity (see table of specifications in Section 1).

Ground connection.

Cable clamp.

Figure 2-2. Mains Plug Contact Configuration for HP Option Numbers

* In the U.S.A. a 230 volt mains might not include a neutral connector. In this case it is a recommended that the blue connector of the standard power cord be connected to the terminal normal ly used for the neutral (line 1).
** Plug option 905 is frequently used for interconnecting system components and peripherals.

HP-IB Connector

The rear panel HP-IB connector (Fig 2-3), is compatible with the connector on Cable Assemblies 10833A B, C and D. If a cable is to be locally manufactured, use connector male, HP part number 1251-0293.

HP-IB Logic Levels

The 8175A HP-IB lines use standard TTL logic, the levels being as follows:
True $=$ Low $=$ digital ground or 0 V dc to 0.4 V dc,
False $=\mathrm{High}=$ open or 2.5 V dc to 5 V dc.
All HP-1B lines have LOW assertion states. High states are held at 3.0 V d.c. by pull-ups within the in strument. When a line functions as an input, approximately 3.2 mA of current is required to pull it low strument. When a line functions as an input, approximately 3.2 mA of current is required to pull it low
through a closure to digital ground. When a line functions as an output, it will sink up to 48 mA in the low state and approximately 0.6 mA in the high state

CAUTION

NOTE: Isolation, the HP-IB line screens are not isolated from ground.

Figure 2-3. HB-IB Connector

Operating Environment

The operating temperature limits are 0 degrees C to +55 degrees C . The specifications also apply over this range.

RACK MOUNTING

Refer to the standard 8175A O and P manual.

CLAIMS FOR DAMAGE

If physical damage is evident or if the instrument does not meet specification when received, notify the carrier and the nearest Hewlett-Packard Sales/ Service Office. The Sales/Service Office will arrange for repair or replacement of the unit without waiting for settlement of the claim against the carrier.

Storage and Shipment

The instrument can be stored or shipped at temperatures between minus 40 deg C and plus 65 deg C The instrument should be protected from temperature extremes which may cause condensation within it

If the instrument is to be shipped to a Hewlett-Packard Sales/Service Office, attach a tag showing owner, return address, model number and full serial number and the type of service required. The origina shipping carton and packing material may be re-usable. However the Hewlett-Packard Sales/Servic Office will also provide information and recommendations on materials to be used if the original pack ing is no longer available or re-usable. General instructions for re-packing are as follows:

1. Wrap instrument in heavy paper or plastic
2. Use strong shipping container. A double wall carton made of 350 -pound test material is adequate.
3. Use enough shock-absorbing material (3 to 4 inch layer) around all sides of the instrument to provide a firm cushion and prevent movement inside container. Protect control panel with cardboard.
4. Seal shipping container securely
5. Mark shipping container FRAGILE to encourage careful handling
6. In any correspondence, refer to instrument by model number and serial number.

FRONT PANEL DETAILS continued
Model 8175A
(11) DON'T CARE. In a text field enters a space in lieu of a character or. (CNTRL Page [Input] Trig. Word Ass. pattern setting menu) an " X " in lieu of a 1 or 0 .
(12) Alphanumeric keyboard for data and text entry. (13) BNC Connector for external Start/Stop control
(14) ROLL keys, enable data, waveform and module displays to be moved: left, right. up or down depending on the display. They also provide a vernier increment/decrement function for certain numeric settings. Arrows in the upper right hand corner of the display indicate which ROLL keys are currently operational.
(15) CLEAR ENTRY, sets a default (Standard Setting) value in the field. ABORT enables Edit functions to be cancelled (if EXEC not yet pressed) and also enables a Calculator RUN to be aborted.
(16) EXEC executes functions and clock calibration. UPDATE enables new settings/data/conditions etc. to be delivered to the outputs.
(17) BNC connector for Arb. OUTPUT A trigger signal.
(18) 19 BNC connectors for Arb. output signals.

REAR PANEL CONNECTORS (Note: rear cover plate removed in this view)
(1) Fuse $4 \mathrm{~A} / 230 \mathrm{~V}$ or $8 \mathrm{~A} / 115 \mathrm{~V}$
(2) Power line voltage receptacle
(3) Line voltage selector sliding switch, to be set to local line voltage.
(4) HP-IB interface connector.
(5) Switch for setting HP-IB address and mode.
6) Connector for interfacing a second 8175 A (for master-slave operation).
(7) Connector for Trigger POD.
(8) Connector for Flag output POD
(9) Connector for Output POD 0 .
(10) Connector for Output POD 1
(11) Connector for Output POD 2.
(12) BNC connector for an external reference clock signal (1 MHz TTL)
(13) BNC connector for inputting an external System clock signal.
(14) BNC connector for Arb. OUTPUT B trigger signal.

CHAPTER 3

OPERATING

3A

Introduction

The operating and programming information in this manual applies only to the 8175A Arbitrary Waveform Generator (option 002). Operation in the other two configurations and for option 001 of the orm Generator (option 002). Operation in the other two configurations and

NOTE: In this manual the abbreviation "Arb." is of ten used to refer to the Arbitrary Waveform Generator.

NEVER USED AN 8175A BEFORE? START HERE

f this is the first time that you have used an 8175A (irrespective of which options are fitted), do not proceed any further before reading at least Chapter 3, sections 3 A and 3 B of the standard 8175A Operating and Programming Manual. Check out also section 3E of the same manual, it explains the various Edit capabilities of the 8175A and how to use them. Most of them also apply to the Arb. configuration. Once you have mastered the basics of standard 8175A operation, the Arb. will present no difficulties.

Note that depending on whether you have specified Option D04 (delete standard pod configuration) for our 8175A, it is possible that you only intend using it as an Arbitrary Waveform Generator. However, any operating points and features apply to all three configurations and as such are not separately escribed in this manual. Therefore whatever the case, you should still start by learning the basics as described in the standard 8175A Operating and Programming manual.

USED AN 8175A BEFORE? START HERE

f you have used an 8175A before, you will be able to quickly learn the additional operating principles elated to Arb. use. Most of the standard 8175A's operating principles also apply to the Arb. configurafion. In the same way as for the standard 8175A, you can start using the Arb. without understanding all aspects of all menus. It is sufficient to understand the basics.

OPERATING INFORMATION OVERVIEW

The operating information is presented under the following headings:
3A. Introduction
3B. Getting started
3C. More about using the Calculator
3D. Disc Storage/Recall of Calculator Modules
3E. The Menu Map
3F. The Edit Capabilities and How to use Them
3G. Master Slave
3H. Programming Information

3A-1
 PPECIAL OPERATING POINTS

DO NOT apply power to an 8175A until you have read (and, as necessary, confirmed) the following points.

CAUTION

a) Read safety summary at front of this manual
b) To avoid instrument damage, ensure that the voltage selector switch is set correctly for the local line voltage. If it is necessary to change the setting at any time, the instrument must be switched off and the power cable disconnected

TO AVOID POSSIBLE DUT DAMAGE!

The Arb. output levels are: 16 V pp into 50 Ohm and 32 V pp into open, therefore ensure that you se the correct output load value (setting on the Output Page, Level... menu).

\triangle

MAXIMUM ALLOWABLE VOLTAGES AT INPUTS AND OUTPUTS

OUTPUT A, B and TRIG OUTPUTS

Do not apply an external voltage or electrostatic discharge (ESD) to any output marked with an 10 .
EXT REF: Maximum allowable input voltage: $+/-20 \mathrm{~V}$
EXT INPUT: Maximum allowable input voltage: $+/-20 \mathrm{~V}$
Refer to the Specifications (Table 1-2) in the standard 8175A Operating and Programming manual for the maximum allowable external voltages which can be applied to POD inputs and outputs.

CONTROLS, CONNECTORS AND DISPLAY

A brief explanation of the function of the 8.175A controls, connectors and display is given in Figure 3-1 Take time to read through it before continuing with the following paragraphs. Refer to it later necessary.

PODS - IDENTIFICATION AND CONNECTION/DISCONNECTION

NOTE: This is only of significance if your 8175A includes the standard pod set and, in connection with your digital output requirements, you need to connect/disconnect particular PODs.

If you need to connect/disconnect or change any of the PODs, take special note of the rear view of the 8175A. The connection points of all PODs can easily be identified from the connector cover plate and or by referring to Figure 3-1 (Rear Panel Connectors). Note that the two types of Data and/or Fla output PODs (TTL/CMOS and ECL) and the Trigger POD, have identifying legends on their bodies. Sel adhesive labels are supplied with the output PODs, these enable you to label them as appropriate.

Connection/disconnection of PODs:
First, switch off the 8175A.
Unscrew the securing screws identified on the cover plate and remove the plate.
Carefully unplug/plug in (as appropriate) the required POD connectors.
Install the cover plate back in position, taking care to route the POD cables through their corresponding grommets in the plate. Secure the plate firmly with its screws.

3B

Getting Started

INTRODUCTION

Since you are now reading this section it is assumed that you have read section 3A, and know the basic principles of operating a standard 8175A. If however you have skipped 3 A and do not know the basics, hen please go back and learn them! It will not take very long and will really help you to quickly learn how to use the Arb.

With almost any instrument or system, the best way to learn how to use it is to start practicing as soon as possible. This applies especially to the Arb. option of the 8175A since, in many cases more than one method of setting the same value is possible. Also, the quickest way to understand the significance and use of some of the waveform setting up procedures (especially those related to the Data [Waveform] Setup) is by trying them out.

Having read this, please don't now rush off and "blindly" try to work out everything yourself and refer back to the manual only as a last resort when you get into difficulties. If you take the time to first work through the examples included here, it could save you a lot of time later on

NOTE: In the following pages the abbreviation "Arb." is used to refer to the Arbitrary Waveform Generator.

The contents of section 3B are listed under the following headings:

3B-1	Power Up and Initial Conditions
3B-2	Setting up Arbitrary Waveforms - The Different Methods
3B-3	Setting up Waveforms - What are the Steps?
3B-4	Some Basic Points and Terminology Explained
3B-5	How to set up Waveforms - Using the Calculator
3B-6	How to set up Waveforms - by Interpolation
3B-7	How to set up Waveforms - by Graphical Editing
3B-8	How to set up Waveforms - by Numeric Entry

Once you have mastered the basics, the reference section (identified by the blue registers) will provide any additional information concerning menu explanations and editing etc.
"Hands on" use of the Arb. via worked examples is not started until section 3B-5. Although the section are structured as "self contained" learning modules, it is recommended that you work through them in the order shown above.

3B-1

POWER-UP AND INITIAL CONDITIONS
Have you read the points in section 3A-1? Ok, then press the LINE switch. Do not press any other front panel keys. You will hear the cooling fans start up and the LEDs adjacent to the front panel BNC "Self Test will illuminate. During power-up, an automatic self test routine is performed. The message dere it will detected, it whesthe On completion of the power-up sequence, the LEDs will go off (this is in fact their "outputs disabled status) and the System Page [Configuration] menu will be displayed. This is illustrated in Figure 3B-1 The message "Power-Up Complete" will be briefly displayed on the top line.

Initial Configuration

The configuration at power up is always the same as when last switched off (provided no boards have been removed in between!). The position of the bright bar (inverse video) in the center of the display area indicates the current configuration. It is also shown in (), adjacent to every Page name, at the top left hand side of the display. The 8175A automatically recalls the complete parameter and data set which was current at switch off, whenever power is re-enabled. All outputs (PODs and Arb.) are auto matically disabled at power up.

STATUS INDICATORS Explanation

1. "D" here means all POD* outputs are disabled (see standard manual sect. 3B-5, point 7).
2. A "U" here means an update is necessary (see standard manual, sect. 3B-5, point 6)
3. A[] in this location means the 8175 A is active (e.g. after START, see standard manual, sect. 3B-5, point 8)
4. Arrows displayed here mean that ROLL (or VERNIER if a ppropriate) action, via the keys indicated is possible
*Arb. outputs "off" status is indicated by thei front panel LEDs being off.

Figure 3B-1. Example of Power up Display and Status Indicators (manual operation) Explanation.
Select Arbitrary-Configuration (if not already active) and note the shortform specifications shown in the lower part of the display area. Note, depending on what data was previously set up in the 8175A it is lower part of the display area. Note, depending on what data was previously set up in the 8175A, it is possible that when Arb. configuration is selected, a warning message relating to Data Limitation or Off
set Modified will be displayed. Do not worry! Explanations are given in section 3B-4, but at present do not concern yourself with the reasons. Simply recall the Standard Settings as explained in section 3B-5 select Arb. configuration and continue from here.

3B-2

SETTING UP ARBITRARY WAVEFORMS - THE DIFFERENT METHODS

The Arb. provides four basic methods of setting up and/or editing waveforms. These are as follows: METHOD

APPLICABLE PAGE/MENU

Data [Pattern/level] Setup menu

Data [Waveform] Setup menu.

Data [Waveform] Setup menu
(1) NUMERIC ENTRY of voltage level/base code and duration values.
(2) GRAPHICAL ENTRY of data point levels and durations.
(3) INTERPOLATION of user set Characteristic Points. (Interpol. capability accessed via FCTN key).
(4) CALCULATOR

Set up and run the mathematical expression
which represents the required waveform

Although in theory any of these methods can be used to set up a waveform, in practice the "best" or most practical method to use will depend on the type and complexity of the waveform concerned. Modification of an existing waveform can of ten be done much quicker via a different method than that used to set up the original. Once you have learned the basics of Arb. operation, you will be able to decide for yourself which is the best method to use.

At this point however it is worth noting that method (3), which is based on Interpolation and (4) based on the Arb's Calculator, will usually be the fastest and most practical for setting up waveforms from scratch unless only step functions are required. For such cases (1) is of ten the quickest method. Generally (1) and (2) are more suitable for editing existing waveforms. If you need to set up a waveform which ncludes a mixture of simple and complex trigonometrical (Sine, Cosine etc.) and step functions etc., then combination of methods will of ten be the fastest solution.

Which Method should I use?

To help you decide which is the best method to use, here are a few guidelines:
For Simple and complex waveforms, based on standard functions for which the mathematical expression(s) is already known or can easily be defined (including sine, cosine, tan based waveforms etc.), use the:

Data [Calculator] Page

Standard Function Based Waveforms*
If you know (or can easily derive) the mathematical expression(s) for the waveform, the Calculator is a very good and quick method to use. In principle it involves entering the algorithm(s) for the waveform directly via hard and softkeys into the 8175 A , setting the Parameter conditions and running the resulting "program"
*NOTE: The Calculator module to produce the type of waveform shown here (Line Ripple) is given in section 3C of this manual

For Step functions use any method

Step Functions

The [Pattern/Level] Setup menu enables levels and variable durations of step functions to be set up ver quickly. However, the [Waveform] Setup menu (either normal or Interpolation) offers the advantag that you can see* the waveform "taking shape" on the display. The [Calculator] can also be used, but since a separate algorithm has to be keyed in for each and every level/duration combination, it is not recommended
*You will not see the differences between variable durations on the [Waveform] menu. Reasons etc. are explained in section 3B-7

For Extremely complex waveforms which are not easily mathematically definable, graphical construction is usually the best solution, therefore use the: Data [Waveform] Setup.

Non-specific Complex Waveforn

For such waveforms, which would maybe require hundreds of algorithms to represent them mathemati cally, the quickest solution is often to "draw" the waveform directly on the screen by means of the Graphic editing capabilities. This can be done with or without the aid of the Interpolation feature Remember also that there may be specific parts of the waveform (step functions etc.) which can be done by one of the other methods.

3B-3

SETTING UP A WAVEFORM - WHAT ARE THE STEPS

Irrespective of which method you decide to use, there are some basic steps involved in setting up and outputting an arbitrary waveform. These, together with the Pages/menus concerned are as follows:

STEPS IN SETTING UP AN ARBITRARY WAVEFORM:

1. Select Arb. configuration.
2. Decide on best method(s) for setting up the waveform.
3. For the required Arb outputs set:

Output impedanc Amplitude Range ffset value

 Output ModeSYSTEM
[Configuration]
DATA
[Calculator]
[Waveform] Setup
[Pattern/Level] Setup
OUTPUT
Level [ARB A]/[ARB B]

PAGE/[menu] TO ACCESS
PRGM
[Module]
CNTRL
[Clock]

OUTPUT Level [ARB A]/[ARB B]
8. Do an "Update".

SHIFT + UPDATE
9. Press "START".

From this you will see that setting up a waveform involves only the first four steps. To output it, the teps (5 to 9) are in principle the same as for the Parallel and Serial configurations of the 8175A. Therefore, at present you need concentrate only on steps 1 to 4

Now take a few minutes to check out the Pages/menus referred to above.
IF YOU WANT TO START "HANDS ON" RIGHT NOW
Before reading any further, it is worth mentioning that section 3B-4 which follows, is in effect a glossary of various points and terminology related to Arb. operation. As such, as well as providing a good general verview of Arb. related points, it will also serve as a useful reference source. It is recommended that you read through it before actually starting to operate the Arb., but this is not essential. If you are already quite familiar with the standard 8175A and have had no problem understanding any of the Arb. menu terms etc. encountered so far then, proceed directly to 3B-5
If however you are unsure as to the meaning of some of the menu settings you have already seen or, imply want an overview of the A to D principles etc. as applied to the 8175 A Arb., then continue with 3B-4.

3B-4
 SOME BASIC POINTS AND TERMINOLOGY EXPLAINED

The following explanations are designed to clarify some of the basic points and terminology associate with 8175 A Arb. use. It is intended only as an overview and should be sufficient to answer any ques tions you will have while working through the Getting Started explanations. The information is present ed under the following headings:

First, some General Points about the Arb.
Some Menu Settings Explained
Points related to Config. changes (ARB to PAR/SER etc)
Points related to Outputting

FIRST, SOME GENERAL POINTS ABOUT THE ARB

What are the differences between Serial/Parallel and Arb. configurations?
In the 8175A's data generator modes, at each address a data pattern (or stream of bits for Serial D.G.) can be set for subsequent outputting. For each pattern, although a different duration value can be set amplitude is a fixed (user set) value. The big difference with the Arb. is that it enables, at each addres instead of a data pattern, an amplitude level to be set. For the 8175A Arb. each amplitude level is based on the analog equivalent of a 10 bit binary word. The words are derived from the data which you set in the 10 channels allocated to each Arb. output (see paragraph after next). Since a 10 bit word is used 10 bit amplitude resolution is achieved. The duration value at each address can be either fixed or variable By assigning appropriate level and, if required, duration values over the required time interval, an arbi trary waveform can be systematically built up.

The Calculator - What is it?

In case you are unsure as to what the Calculator is (it is fully explained later in sections 3B-5 and 3C of this manual) here is a short explanation:
The Calculator is a special capability of the Arb. which basically enables you to write and run "programs" to set up waveforms. You do not need a separate technical computer since everything can be done directly via the 8175A's keyboard. A comprehensive selection of standard statements and mathematica functions is available directly via softkeys (instead of every character having to be typed) therefore programs" can be very quickly written.

NOTE: In Arb. configuration, recall of Standard Settings will result in any existing Calculator modules being destroyed! This is not the case in Par. and Ser. configurations.

Which data chanmels are allocated to each Arb. output?
As mentioned previously, for each Arb. output 10 normal data channels are used. To identify which these are, simply access the Data [Format] Allocation menu. Asterisks (*) identify the channels concerned including those allocated to the trigger (TRG) channels. Just in case you are wondering what channels and 3 of POD 0 are used for, they are reserved for Characteristic Point (CP) information. This is related to the Interpolation capability of the Arb. and is discussed elsewhere in this manual. Note that, unlike in Parallel configuration, all the Data Formats are all fixed. If [fixed] Duration is selected, then you set the value here. If [variable] selected, then the value(s) have to be set on one of the other Data Page menus. For either type of duration the default value is $0.02 \mu \mathrm{~s}$.

How do I input the level values?

This depends on the particular method you wish to use to set up the waveform. As described in 3B-2, there are four basic methods of setting up waveforms. Numeric, graphic and interpolation method enable individual level values to be input in voltage terms (the Calculator method differs completely from the others and will not be considered here). Depending on the menu concerned, level values can also be input in their equivalent "code" form. These include decimal, binary etc. Only one method allows all possibilities. This is numeric entry via the Data [Pattern/Level] Setup menu.

Access the menu and note the details. Each individual level value can be input (and displayed) either as he required voltage or in one of several base codes. Currently the Amplitude values at each Address are displayed in voltage terms. Note also that the Amplitude Ranges cannot be changed on this menu (see next paragraph). The required base code is user set in the field below the data column header --- ARB A --- etc.). The code can at any time be changed. In the following paragraph a display example is included which illustrates how the binary (BIN) base code relates to actual voltage values.

SOME MENU SETTINGS EXPLAINED

Amplitude Ranges and Resolution

Press the OUTPUT key and display the "Level [ARB A] into [50 Ohm] menu". This is where settings including the Amplitude Range for Arb. A are made. Regarding the resolution of each Ampl. Range note the following:
For the current range of $[200 \mathrm{mV}]$, a 10 bit amplitude resolution means that:
the resolution is 200 mV$) / 1024$ (since 2 to power $10=1024$).
However, instead of having a resolution of $1 / 1024$ (which is not very practical), a factor of $1 / 1000$ is used for all except two ranges*. In addition, for all (except the same two) an additional override of 24 steps of the resolution value is provided. This therefore extends the usable range to 1024 (0 to 1023) discrete values.

* The resolution/step count figures for the different ranges are as follows:

Range	Resolution/Steps	Available Step Window
$200 \mathrm{mV}-10 \mathrm{~V}, 20 \mathrm{~V}$,	$1 / 1000,1023$ steps	0 to 1023
16 V	$1 / 800,800$ steps	112 to 912
32 V	$1 / 640,640$ steps	192 to 832

To illustrate these points, consider the 200 mV range, it allows 1023 incremental steps of 0.2 mV
To illustrate these points, consider the 200 mV range, it allows 1023 incremen
Nere (Note that 1024 actual values are available, corresponding to: binary 0000000000 (the smallest) and 1023 therefore equate to:

Maximum value (Upper Limit) of +102.2 mV equates to Mid range value of 0.0 V equates to:

111111111 (dec. 1023 steps) 1000000000 (dec. 512 steps) 0000000000 (dec. 0 steps)

From this you can also see that one more step is available in the negative direction (512) than the positive (511) one. For the 16 and 32 V ranges, an equal number of steps (400 or 320 respectively) apply in ach direction. In any range, an attempt to set a value which exceeds the allowable step count (and hence the binary data limit) in either direction, will result in: "ERROR Data out of Limit" being displayed.

NOTE: Output load setting can influence range availability. For example, the 20 and 32 V ranges are available only if the output load is set to [open]. However, the 200 mV and 16 V ranges are available only if [50 Ohm] output load is set. Full details are given in the OUTPUT Page description in the Quick Reference section.

The following display example will help to clarify some of the points concerning Range/Resolution. At each Address the level values for both Arb. outputs are identical but displayed in two different forms. Note how the step resolution of 0.2 mV is represented in binary terms by one bit.

Different Representation of Identical Values

EVEL and Peak Values Explained

In case you have difficulty understanding the "Level" and "Peak" terms, the following explanations will help. Refer also to the included figure. The sinewave shown is 100 mV P to P, with +100 mV offset applied. Note the difference between the "REL" and "ABS" levels of the example Data Point.
[REL. LEVEL] (Data [Pattern/Level] Setup menu)
The displayed value is the output level referenced (or relative) to the applied offse
[ABS. LEVEL] (Data [Pattern/Level] Setup menu)
The displayed value is the actual output level (i.e. Relative Level plus offset).

Level Upper and Lower Peaks are the max/min values (including offset) currently set. Note that the peak values are also influenced by the Output Mode. Refer to the Output Page menu description: Out put Mode, for more information

Some Level Terms Explained

Upper and Lower Limits (Data [Pattern/Level] Setup menu)

For both limits the values depend basically on the current Amplitude Range. In addition, Offset may or For both limits the values depend basically on the current Amplitude Ra
may not be included in the displayed value. This is explained as follows:

When [REL. LEVEL] data format is active, then U and L (Upper and Lower) Limits show the maximum/minimum values without of fset which can be set within the currently active Amplitude Range.

When [ABS. LEVEL] data format is active, then U and L Limits show the maximum/minimum values including of fset, which can be set within the currently active Amplitude Range.

NOTE. When level values are displayed (or set up) in an alpha-numeric codes the displayed value is based on the [REL LEVEL] equivalent

POINTS RELATED TO CONFIG. CHANGES (ARB--> PAR--> SER--> ..)

Outputs - Arb. Automatic Disablin

The Arb. outputs are automatically disabled whenever the Generator configuration is changed. This can be done in several ways including: via the System Page [Configuration] menu, recall of internally or xternally stored "complete" instrument settings to the ACTUAL (display) settings, HP-IB command etc emember that when [internal] storage is used, settings are automatically returned to the ACTUAL (display) settings. Theref ore "recall" of any internally stored settings will result in the Arb. outputs bein disabled. For [external] storage the destination can be set to hardware (output stage).

Outputs PODs - Automatic Disabling

Whenever the 8175A configuration is changed to Arb. from either Parallel D.G. or Serial D.G, the POD will be automatically disabled.

Displayed Message: WARNING Data Limitation ...
If when you select Arb. configuration such a warning is displayed relating to ARB A, ARB B or Both, it simply means that data has been set up when the 8175A was configured as a Parallel or Serial D.G which exceeds the allowable limits of the current Amplitude Range(s) for the corresponding Arb chan nels. It will disappear when the corresponding data or Amplitude Range is set to an allowable value.

Displayed Message: WARNINGOffset Modified when is based on a similar reason to the previous one. This is as follows: In any Amplitude Range, allowable
Offset Limits are limited by the current Upper and Lower Level Peaks of the waveform. In normal Arb. Offset Limits are limited by the current Upper and Lower Level Peaks of the wavef orm. In normal Arb prevented. Also, an "ERROR out of Limit" message relating to Data or Offset would be displayed. prevented. Also, an "ERROR out or Litains, data within the "Arb. channel groups" can obviously be changed. After such changes, if Arb. configuration is then reselected, it is possible that the new data when combined with the existing Offset value, will be "out of limits". In such cases, the offset concerned will be reduced to zero. To illustrate this, consider the following example:

A waveform is set up in Arb. configuration for ARB A using the 200 mV Amplitude Range. Leve Upper and Lower Peaks for the waveform are:
$+7-40 \mathrm{mV}$ (or BIN:1011001000 and 0111111000) respectively.
For these Peak values the Offset Limit will be $+/-760 \mathrm{mV}$ (since the allowable Level Window $=+/-0.8 \mathrm{~V}$ If the Offset is now set to +760 mV the level Window is "filled". This means that in Arb. configuration, an attempt to set a level value > +40 mV will not be allowed. However, if you now switch to Parallel o Serial configuration and change the data bits in those channels "belonging" to ARB A to say
BIN:I111111111
this would equate in Arb. configuration to +102.2 mV . Therefore, on switching back to Arb. configura tion, an error will be detected. It will be automatically corrected by changing the Offset to zero.

POINTS RELATED TO OUTPUTTIING

VERY IMPORTANT: Output Load Setting

Before setting up (and definitely before outputting) an Arb. signal always ensure that the load setting of the 8175A (either "open" or " 50 Ohm ") is correctly set. It not only affects which Amplitude Ranges are available/operative but, more important, could result in the output voltage being up to twice the pro grammed value if incorrectly set! More about this is explained in the Output Page menu description.
Outputs - POD and Arb. Global Disable
A global disable of all outputs (Pod, Flag and Arb.) can be done via the DISABLE key on the 8175A front panel. A "D" will then be displayed in the top right hand corner of the screen. However, note that unless a global disable his been done "D" can also indicate that just the Ourput Pods are disabled (if previously done via the Output Page).

Arb. Outputs - Enabled Status Indication
The Arb. outputs, including TRIG OUTPUT for Arb. A, which are available at the 8175 A front pane are provided with LEDs. These, when "on" indicate that the corresponding output is active (enabled) Note that Arb. outputs and triggers can be enabled only via the Output Page (ARB) ARB A/ARB B menus.

3B-5

HOW TO SET UP WAVEFORMS - USING THE CALCULATOR

As mentioned in section 3B-2, there are two methods by which waveforms can be set up very quickly. These are the Calculator and Interpolation methods. We will start with the Calculator. While this section explains all the basics about the Calculator, subjects such as module syntax limitations/restrictions etc. are explained in section 3C. It also explains the meanings of less obvious sof theys etc., and includes some more worked examples

What is the Calculator and What can it do?

The Calculator is a special capability of the Arb. that enables you to write and run "programs" to set up complex mathematically definable waveforms. Instead of having to do this via a technical computer, you can do it directly via the 8175A keyboard. A comprehensive selection of standard statements and mathematical functions is available directly via sof tkeys (instead of every character having to be typed). o "programs" can be very quickly written.

The following example will teach you all the basics of Calculator use. This includes Editing (setting up the function), setting the Parameters and, finally Running the module. This is the process that does the ctual calculation and transfers the new amplitude and timing values to memory and hence to the Pat tern and Waveform Setups. The example will show to set up and run a simple sinusoidal waveform.

RECALLING STANDARD SETTINGS ETC

Before setting up any waveform data via the 8175A Arb. it is best to do a "Recall Standard Settings" Before setting up any wavef orm data via the 8175A Arb. it is best to do a "Recall Standard Settings"
sequence. This then ensures that you will begin with all data set to zero (binary, not 0 V) and parameter sequence. This then ensures that you will begin with all data set to

NOTE: In Arb. configuration whenever the Standard Settings are recalled any existing Calculator In Arb. configuration whenever the Standard Settings are recalled any existing Calculator
modules are destroyed! (This is not the case in Par. and Ser. configurations.) Therefore to modules are destroyed! (This is not the case in Par. and Ser. configurations.) Theref ore to
clear the Calculator module memory as well, Arb. configuration must first be selected before doing the recall.

Press SYSTEM to select the System Page.
Press NEXT[] until the [Configuration] menu is displayed
Press CURSOR \downarrow or ROLL keys to select Arbitrary-Generator configuration.
Press NEXT[] until the [Storage] menu is displayed.
If necessary, CURSOR \rightarrow and NEXTI] to select [internal]
CURSOR \downarrow and NEXT[] until [recall] Standard Settings.
Press EXEC. The message "Transfer in Process" will be displayed, followed by the original one (Press EXEC...) when the transfer is completed.

Reselect Arbitrary-Generator configuration.

NOTE: ERROR MESSAGES
It is quite likely that when practicing with the Calculator you will accidentally attempt an illegal (nonallowed) action. Do not worry! An error message or warning will be displayed to tell that something is rong. In

Example 1: Using the Calculator

This example will explain the basics of Calculator use by showing how to set up a simple sinusoida waveform. Although a complex waveform could have been used, setting up this one is very easy but wil still teach you all the basics of Calculator use. Section 3C includes the Calculator functions for some more complex warms. The following procedure for a sine wave can, with a litle modification, b
 are numbered for easy identification. Since this is the first example in the manual, fairly detailed exfroce tural steps included. The examples in section 3C do Ot include so much explanation.

The sine wave is to be as follows:
Frequency 10 kHz Amplitude 5 V peak to peak
To be output from OUTPUT A into a 50 Ohm load

Waveform for Example I

DERIVING THE MATHEMATICAL FUNCTION

As already mentioned, using the Calculator involves setting up the mathematical expression(s)* that represents the waveform. In practice the first step would be to derive this for the waveform. For our example it is done as follows:
*NOTE: Complex waveforms may comprise one or more mathematical functions
A sinusoidal waveform can be expressed as:

$$
y=\sin (w t)=\sin (2 . \text { Pi.f. } \mathrm{t})=\sin (2 \text {.Pi.f. } T x)
$$

where $T x$ is the instantaneous time. A frequency of 10 kHz means that the period is $100 \mu \mathrm{~s}$.
Within any amplitude range, waveform accuracy depends on the combination of max./min. level value and the number of data points (discrete level values) used. We will use 1000 data points for one cycl which means that 1000 steps (sequential Address/level values) must be calculated. (1024 steps are available but 1000 is an easier number to work with!)

So, for our waveform, since the period is $100 \mu \mathrm{~s}$ and we want 1000 steps, the timing window (the duration that the waveform will be calculated for) must be set to $100 \mu \mathrm{~s}$ and each incremental step of $\mathrm{T} x$ must therefore be $0.1 \mu \mathrm{~s}$.
Therefore T_{x} will have values of: $0,0.1,0.2,0.3 \ldots99 .9 \mu \mathrm{~s}$.

Calculator functions are always set up as one or more modules each of which consists of a Header and an Algorithmic part. For our example these will be as follows:

The Header defines the required time window of: \quad FOR $100 \mu \mathrm{~s}$ and the (incremental) step duration of: STEP $0.1 \mu \mathrm{~s}$

The number of steps is the time window FOR.. divided by the step duration STEP
The Algorithmic part is the mathematical expression for the waveform. For our example the complete module to be input is
HEADER:
ALGORITHM:
FOR 100 US STEP 0.1 US

A Header can begin with a label if wished to identify where the module begins in the overall pattern setup. Up to 50 labels are settable, each of which can consist of up to five alphanumeric characters. The first character must be must be an alpha type.

PRE-SEITINGS:

As previously mentioned, whichever method you use to set up a waveform, there are certain initial settings which have to be made before data can be calculated and set. Although you can input a module irrespective of these, it cannot be Run (since this causes the data to be calculated and set) without eg., Amplitude Max. and Min Levels being set. For the example the following pre-settings need to be made. Although they could be set immediately prior to the Run command, if you set them now it will save you some steps later. (The exact reasons are explained in section 3C but you do not need to know then at present).

DURATION

Access the Data [Format] Allocation menu and set the Duration to [variable].

MPLITUDE RANGE

Press the OUTPUT key. On the Level [ARB A] into [50 Ohm] menu, position the cursor in the Amplitude Range field (press CURSOR \uparrow) and set the range to 5 V . Note how the Level Upper and Lower Peak and Offset Limit values change to reflect the new Amplitude Range.

HOW TO ACCESS THE CALCULATOR

Press the DATA followed by the NEXTI] keys until the Data [Calculator] Page is displayed.
Note the initial details of the menu. The Status of the menu reads: "Awaiting Command". As soon as you press one of the three softkeys, the status will change to reflect the activity concerned or awaited. As you work through the example note how the status report changes. "Step Algorithm of the Waveform" are just headings for the working area of the display

By the way, from now on until you want to exit from the Calculator, your 8175A is softkey driven. You cannot exit from the Calculator by simply pressing a corresponding MAIN DISPLAY key!

HOW TO EXIT FROM THE CALCULATOR

To exit from the Calculator once you are in any soft-key level is a little different from exiting from ther menus. Note the following points:

Exiting is done via the NEXT[]/PREV[] keys. It is possible only when the flashing cursor lies in the

 inverse video [Calculator] field in the top right hand corner of the screen.To display this field, you must first exit from the currently active softkey layer.
You cannot exit if an error condition exists, therefore in such cases either
make whatever corrections are necessary, or
make whatever corrections are necessary, or
Abort (via a Calculator sof they), this will leave the module in its original pre-edited state) or
Delete the module.
When any of these three conditions has been satisfied, then you can exit.
To continue, the initial layer of three softkeys give access to the three "actions" involved in using the Calculator. These, in their logical sequence are:

Editing
 Parameter setting
 Running the module

Briefly, the meaning of these is:

Edit This enables you to edit a module. Note that even initially setting up a module is still considered to be an "editing" action. The Edit key lets you access several further layers of sidered to be an "editing" action. The Edit key lets you access

Param This gives access to the "Parameter Setup menu". You set all parameters (Amplitude Level etc.) related to running the module here.

Run This starts the calculating process. The resulting amplitude and timing values will be transferred to the Data [Pattern/Level] Setup.

CALCULATING - THE ACTUAL STEPS INVOLVED

The first step is to edit (set up) the module. This involves simply typing it in which is simple enough but, before starting, take special note of the blanks (spaces), parentheses () and the multiplying symbols (*) required in the Header and algorithm.

HEADER:
 FOR 100 US STEP 0.1 US (SIN(2*PI*10000*Tx))

Blanks (these are only applicable to the Header) between numeric values and their units e.g., 100 and US, are not essential but may be included for clarity. In all other cases they are essential. If you happen to are not essential but may be included for clarity. In all other cases they are essential. If y

1. Press Edit. All softkeys related to module creation and/or editing are available via Insert. Note how the normal "flashing" cursor has disappeared. Press Insert. There are now six layers of module softkeys a vailable via the Etc, softkey. Before continuing, check them out and note how related functions and statements are grouped together on the same layers.

Typing in the Module:

The Header \quad Type in the Header text via the appropriate soft and alpha-numeric keys. Remember to enter "FOR" and "STEP" via sof tkeys. As you enter each character etc. the cursor will auto-advance one space. For Blanks use the front panel "DON'T CARE" key.

If you enter an incorrect character or statement, move the cursor (via the CURSOR \rightarrow or \leftarrow key) back to the position, enter the correct character and use Delete to delete the false one. (You can also do the delete first and then make the correction if you wish.)
The Recover softkey enables you to recover the last deleted character or statement etc. if you deleted the wrong thing.

After entering the last " S " of the Header line, press $\mathrm{Cr} / \mathrm{If}$ and a new blank line will be displayed*

*NOTE: Use CR/If to initiate new lines!

Do not fill a line with blanks to complete it and initiate a new one! Although it will result in a new line being produced, since each blank is treated as a character, internal storage allocated for Calculator modules will be unnecessarily used up! Section 3C explains how much memory is allocated for the Calculator.

The Algorithm

3. Type in the Algorithm using the same procedure as for the Header

Compilation and/or Error Detection

Compilation and/or Error Detection Press End edit. The module will be compiled (Note how the Status briefly changes to indicate this If a syntax error is discovered, an appropriate error message will be displayed. In addition, its location within the module will be indicated by the cursor
If no error exists and the display details are as shown in the figure below, procede to step (5).

Figure 3B-2. Display Details after End edit

(The error messages are generally self-explanatory, but are in any case, listed together with explanations the end of section 3 C)

The Calculator Status will change to "Inserting". Make the necessary correction(s) and press End_ins followed by End_edit. If you have made more than one mistake then another error message will be displayed and End edit will not be allowed. Only when all errors have been corrected will it be allowed.

Parameter setting:

5. Press Param. The first setting field defines which Arb. output (and hence which data channels) the function is to be calculated for. Since we want it in Arb. A, leave it as the default setting. The Amplitude Range of 5 V as previously set will be displayed. Now set the required Max. and Min Levels to + and -2.500 V respectively. These will then be the amplitude values which will be assig ned to the maximum and minimum data values calculated from the module. Note that the maxi"Cal all Calculat the calculated data (patterns) will start. The menu details should be as shown below.

Running the Module

End-para
6. Press End_para.
7. Press Run. This starts the calculating process. The Status will indicate the current phase of calculation. Until calculation is completed, the following message will be displayed

RUNNING To Stop Press Abor

On completion of Run, the new level and duration values will be assigned to the addresses. In the same way as for Edit, if an error is detected an appropriate message will be displayed. Refer to the end of section 3C for explanations.
8. Access the Data [Waveform] Setup menu (remember to use NEXT[]/PREV[] to exit) the Calculator The menu details will be as shown in Figure 3B-3

Figure 3B-3. [Waveform] Setup menu Details

Outputting the Waveform
 To output the waveform (from OUTPUT A front panel connector) the following additional steps are

 necessary:PAGE/[menu] etc.
9. Set a Program Module to run from 0 to 999*
0. Set the cycling mode to [Auto Cycle].

1. Set the ARB A Output to "enabled".
2. Do an "Update".
3. Press "START".

PRGM
Module]
CNTRL
[Clock]
OUTPUT
Level [ARB A]
SHIFT + EXEC

The last value calculated for the waveform is at Address 999.

OME FURTHER PRACTICE

As you can see, using the Calculator is actually quite easy. If you want to practice a bit more (before eating your own modules) then edit the existing module as described in the following paragraphs and note the changes which occur on the displayed waveform. Some more module examples together with the resulting waveform displays are given in section 3C.

Editing the Frequency:

First, press Edit and then Insert
Change the frequency to 100 kHz , leave all other values unchanged.
Press End_ins and End_edit.
Press Run. 10 complete cycles will now be produced in the time window. This is because the time window, given by the FOR time of $100 \mu \mathrm{~s}$, equates to 10 periods of the new frequency.

diting the STEP value:

Now change the frequency back to 10 kHz and the STEP value to $0.2 \mu \mathrm{~s}$.
This means that within the unchanged time window of $100 \mu \mathrm{~s}$, only 500 new steps will be calculated.
Press RUN. The "new" module will overwrite the first 500 addresses of the previous one. Therefore, Press RUN. The "new" module will overwrite the first 500 addresses of the previous one. Theref ore, a the original 100 kHz waveform at the next 500 addresses will be the result.

Explanation of why Different Duration Values Not Always Obvious
Note that the total duration of the new waveform from Address 0000 to 1000 is $150 \mu \mathrm{~s}(100+50)$. From the 8175 A waveform display it may not at first be obvious because different duration values etween data points cannot be graphically displayed. Therefore, irrespective of duration values, identical umbers of data points always occupy the same length of display. In other words, 50 data points each of duration $0.1 \mu \mathrm{~s}$ will occupy exactly the same display length as 50 of duration 1.0 us.

So for this example although the first 100 kHz cycle extends over 500 data points and is $100 \mu \mathrm{~s}$ long, the second half, of five 100 kHz cycles is only $50 \mu \mathrm{~s}$ long but, because it also extends over 500 data points, it occupies the same display length. If viewed on an oscilloscope, the second part (the five 100 kHz cycles) would be "compressed" to its correct length relative to the first part of 50%.

How to Measure Waveform Durations:

You can measure the duration of the previously edited waveform (and therebye learn how to use another Arb. menu feature) with the "Delta o to x " feature of the [Waveform] Setup menu. This enables the duration between the addresses where the 0 and x graphical editing cursors are currently positioned to be measured. It is done as follows:

On the Data [Waveform] Set, move the cursor into the "Delta o to x " field and press NEXIt] to activate it for $\langle->$ measurements. Check that the Editing Cursor is still the x one and that the o cursor is still at Address 0000 .
Move the cursor into the Address field and set a value of 1000 .
The x Editing cursor will move along the graphics display area to address 1000 and the time duration between it and the o cursor will be displayed. Section 3B-7 includes more information about using this feature.

What next?

While setting up the module, maybe you noticed some sof tkeys and/or menu settings whose meanings you did not understand. Do not worry, they are all explained together with limitations/restrictions etc. in Section 3C. Depending on whether you now want to learn more about the Calculator, or first want to check out the graphical capabilities of the Arb., either move on to section 3C or 3B-6 respectively.

3B-6
 HOW TO SET UP WAVEFORMS - BY INTERPOLATION

Interpolation is actually one of the graphic methods of setting up a waveform. Therefore this section begins by explaining a few general points related to graphical editing

Whereas, on the [Pattern/Level] Setup menu, the pattern parameters at each address are displayed in numeric form, on the [Waveform] menu graphical representation is used. A numeric setting/display field also provided. Basically, the [Waveform] Setup menu enables either existing waveforms (including trigger data) to be displayed and/or edited, or new ones to be set up.

Waveforms can be graphically set up and/or edited either by:
"drawing" directly on the display via the graphic editing features or, setting, then interpolating between, specified characteristic points or, entering level and duration values in the corresponding data entry/setting fields
A combination of any of these methods can also be used.

NOTE:
The following general points apply to the [Waveform] menu:
Graphical editing (including Interpolation) is not allowed if the Display Window is active
When graphical editing is possible, a waveform selection field with the header "Edit" will be displayed.
Level values can be set up and/or edited either numerically or graphically,
Duration values can only be numerically set up and/or edited
ariable Duration values are not graphically displayable.
rigger points can only be graphically set up and/or edited
A "zoom" type feature for the graphical display is provided by the Display Window. This enables a ection instead of the complete waveform to be displayed, therefore providing a "magnification" factor. You can therefore "zoom" in on a specific part of a waveform to edit it

NTERPOLATION - WHEN AND HOW TO USE IT

Theoretically, the simplest way of setting up a waveform on the [Waveform] Setup menu is to select ppropriate addresses, and then assign specific level/pattern values to them. This can be done either via he numeric setting fields or on the graphical display area. In either case, it is very laborious and time onsuming. However, in some cases it is the only possibility. If you only want to edit an existing waveorm then it is of ten a practical method. If it is possible, a much simpler and quicker method is to interpolate the waveform.

This section concentrates initially on how to set up a waveform by using the Arb's Interpolation capability. It is followed by some basic aspects of editing. The next section (3B-7) will show you how to use the other editing features

Waveforms which are very complicated to describe mathematically can of ten be easily created by using the Interpolation capability. (Simple waveforms e.g., sine, triangular, sawtooth etc. can also be produced by interpolation, if wished). The procedure involves first setting the characteristics points (CPs) of the waveform and then interpolating between them. In case you do not know what CPs are, the easiest way o explain them is graphically. The figures relating to the next paragraph do this.
The Interpolation capability is accessible only when the Data [Waveform] Setup menu is displayed. All eatures of the menu are described in the appropriate Menu Map section.

Linear Interpolation, Natural and Periodic Splines

The interpolation can be either Linear, Natural Spline or Periodic Spline. In the same way as for $\mathrm{CPs}_{\mathrm{s}}$, the meaning of each of these can best be explained graphically. Therefore, refer to the following fig, ures. They show how, from the same set of CPs, three different waveforms can be interpolated. The CPs are identified by the vertical lines projecting down from beneath the waveforms. They are in effect
 be clearly identified and the other two are at Addresses 0 and 1023.

A special point about Periodic Splines is that they have the same slope at start and finish of the chosen A spe interval. This is of special significance when waveforms are to be output in Auto Cycle mode and time interval. This is of special significance when waveforms are to be output in Auto Cycle mode and slopes, the level values at the start and finish CPs must be identical.

Linear Interpolation

Natural Spline Interpolation

Periodic Spline Interpolation

Example 2. Using the Interpolation Capability:

To enable you to compare this method of setting waveforms with the Calculator, and also to keep the example simple, the same waveform as for Example (1) will be set up as ARB B, it is shown below.

Waveform to be set as Example 2
Interpolation is an edit capability which applies only to the Data [Waveform] Setup menu. It is accessed via the SHIFT + PRGM keys. Once accessed, the Characteristic Points (CPs) can be set and/or removed by one of the following basic methods:
by setting values numerically and then using the INSERT/DELETE keys, or
by setting values graphically and then using the $1 / 0$ keys
A combination of the two methods can also be used.

[^1]
PRE-SETUINGS

DURATION

Access the Data [Format] Allocation menu and set the Duration to [fixed] and $100 \mu \mathrm{~s}$.

AMPLITUDE RANGE

On the range to 5 V . Note how the Level Upper and Lower Peak and Offset Limit values change to reflect the new Amplitude Range.

Access the Data [Pattern/Level] Setup menu and set all level values to 0.000 mV . This is done easily via the edit function "MODIFY". When you access MODIFY, simply use the default level values ++000 mV). The reason for setting all levels at 0.000 mV is only that it makes the graphics cursor movement for the example easier to follow! You will understand why when you start to use the Data [Waveform] Setup menu. Continue as follows:

Access the Data [Waveform] Setup menu and note the details. Two types of cursors are provided: tex and graphics. At present only the normal (text) one will be obvious. Two graphics cursors are available, only one of them can be active at any time. Disregard the Display Window, and Delta o to x setting fields at present.

HOW TO ACCESS THE INTERPOLATION CAPABILITY

Press the SHIFT (blue) and PRGM keys. Note the new menu details. The Interpolation capability is now active, the default interpolation is linear (lin.). Some new fields will have appeared and the Edit one is replaced by two new ones. One of these is the Channel one. Since the waveform is to be set up as ARB A, change it via the NEXT[] key

HOW TO EXIT FROM INTERPOLATION

Exiting from Interpolation can be done either by pressing ABORT, or any MAIN DISPLAY key (includ ing DATA).

INTERPOLATING - THE STEPS INVOLVED

1 After accessing Interpolation, change the setting of the first field (currently displaying [lin. Interpolation] by pressing PREV[] until [remove CPs] is displayed. Set the "from" and "to" fields to 0 and 1023 respectively. Press EXEC*.
*NOTE: [remove CPs] is included here only to ensure that you start with a "clean" CP status. You do not have to do it each time Interpolation is to be done. More about why it may be necessary is explained under the explanation of [remove CPs], in the Data [Waveform] Setup menu description (blue registers)
2. Move the cursor back into the first field and press NEXT[] until [nat. Spline] is displayed. (Periodic could also be used for this example but it makes no difference.)

To produce one complete cycle of the sinewave, only four characteristic points (CPs) need to be set. The address and level values for them are as shown in the following figure.

Figure 3B-4. Characteristic Points (CPs) to be set.

Setting the CPs:

For each CP, first an Address then its corresponding Level ([ABS LVL]) value must be set. Each level value must then be defined as a C.P. CPS can be set and defined graphically but, as previously stated, for this example we will do it numerically. The CPs will therefore be defined via the SHIFT and SYSTEM .e., INSERT keys. (The DELETE key enables individual CPs. to be removed.)
For the numerical method, the actual setting field in which the cursor lies when INSERT/DELETE is done is unimportant, as long as it is one of the upper right hand "parameter values" group eg., Address, Label etc.
3. The first CP is to be Address 0000 and 0.000 V level, so set the values (they may already exist) and do an INSERT (press SHIFT + SYSTEM).
4. Set the other CPs in the same way. Their Address/Level values are:
$\left.\begin{array}{ccc} & 250 & 750 \\ + & 2.500 \mathrm{~V} & -2.500 \mathrm{~V}\end{array}\right) 0.000 \mathrm{~V}$

Note that as you set the different Address values, the currently active cursor (the " x " one) will step-move across the graphical display area. The actual graphics cursor part - the cross (+) - will move to each CP co-ordinate as you set them. Note also, because you previously set all levels to 0.0 V , as the various addresses are accessed, the cursor always starts from the 0.0 V level. Since this runs through the middle of the graphics display area, it is therefore easier to track the cursor movements compared to if all levels had been set to -102.4 mV .
5. Now that you have set all CPs, to interpolate between them you need to set the required "from" and "to" addresses. Set these to 0 and 1000 respectively. (Note that in practice you could have set and "to" addresses. Set these to 0 and 1000
these directly after doing the [remove CPs])
6. Press EXEC. The message "WAIT Interpolation in Execution" will be briefly displayed, then the waveform will appear. If you have done everything correctly it will be as shown in Figure 3B-5. If your result looks different or an error message is displayed, then try again!

Figure 3B-5. Sinewave from Natural Spline Interpolation
SOME FURTHER PRACTICE
The next few paragraphs explain how to do some basic graphical editing and also how to set up CPs graphically.

Linear Interpolation
First, leave all settings exactly as they were on completion of the previous example, now do a [linear Interpolation]. This shows you how simple it is to construct triangular waveforms etc.

Editing of CPs, and using Fast Search
This exercise involves changing the level values of the existing CPs at Addresses 250 and 500 to +2.0 V and -2.0 V respectively. You will see how to use the "fast CP search" feature to access them. This is special capability which applies only in Interpolation mode. Briefly it is as follows: In Interpolation mode, the horizontal ROLL \leftarrow and \rightarrow keys (SHIFT ROLL \uparrow or \downarrow) enable the Edit Cursor to be stepped from CP to CP. A "fast C. search" can be done with the text cursor positioned anywhere on the menu.

1. Move the (text) cursor into the value part of the level setting field (you will see the reason in a moment).
2. Press SHIFT and ROLL \uparrow, this does a "fast CP search" which you can stop when the graphics cursor gets to Address 250
3. The text cursor is already positioned in the level field so just change the value to +2.0 V . (Note that since a CP is already defined at the address, it does not need to be redefined)
4. SHIFT ROLL \uparrow to Address 750 and change the level to -2.0 V .
5. Press EXEC to do a linear Interpolation. A new triangular waveform with P-P voltage of 4.0 V will be created. As you will now understand, this is a very quick way of editing CPs.

Combining two types of Interpolation
Leave all settings as they are and do a [nat Spline] Interpolation.
Leave all settings as they are and do a [nat Spline
Change the Interpolation to [lin. Interpolation].
Change the Interpolation to [lin. Interpolation].
Set the "from" and "to" field address values to 250 and 750 respectively
Press EXEC.

Editing/Setting CPs graphicall

It is worth noting that due to certain graphical display area limitations (explained in 3B-7), graphical
 editing/setting of CPs is of ten far slower than the numerical method. However, since it can

Procedure:

1. Move the cursor into the CP [on] field.
2. To save time, first do a "fast CP search" to move the cursor to Address 250 , then use the SHIFT CURSOR \rightarrow and normal CURSOR 4 and \rightarrow keys to get to 306
3. Set the level value by pressing the ROLL \uparrow and \downarrow keys as appropriate until a value of +1.85 V is displayed in the level field
4. Do not move the cursor, now define the level as a CP by pressing the front panel 1 key. (CPs are graphically deleted by positioning the cursor and then pressing the 0 key.) If you now press the CURSOR \leftarrow or \rightarrow key, note how the cursor returns to the waveform
5. Press EXEC to do a linear Interpolation. The figure below shows the resulting waveform if all editing previously described is done. The cursor has been moved to Address 308.

NOTE: CURSOR Fast and Slow Movement
As you have just seen, "fast moving" the cursor steps it 20 addresses at a time, normal movement steps 2 addresses. So how can each and every address be accessed? Similarly, for level setting, what if a level etting of say 1.86 V had been required? For both problems there are solutions but even so, you prob-列 now understand why numeric setting of CPs is far easier! As for the message "Only Alternate Ad dresses Displ." , its significance and answers to the other two questions are given in section 3B-7.

Switching off the Grid and CP markers

If you wish to delete the Grid markings do it as follows
Move the (text) cursor into the Grid [on] field and press NEXT[], the Grid will then be switched [off]
The CP indicators can also be switched off if you wish, as follows
Move the cursor into the field directly beneath the CP header.
Change the setting to [off]
Note that even when CPs are not indicated, new ones can still be set and existing ones edited exactly as efore

3B-7

HOW TO SET UP WAVEFORMS - BY GRAPHICAL EDITING

First, What does Editing mean?

Strictly speaking, whenever you set a new level and/or duration value you are in effect "editing" an existing value. Therefore, any values assigned via the [Waveform] menu, must also "edit" an existing waveform. Any waveform, irrespective of how originally set up, can later be edited on the [Waveform] menu. As you have just seen (from the previous example), setting values numerically is very easy. Pure graphical editing, done via cursor movement commands etc, is also straightforward.

Rather than just explaining how to change a few values etc. (which could be done very quickly), this section explains how to use the graphical editing capabilities of the [Waveform] Setup menu. It also explains how to set up trigger points. The waveform derived from Example 2 in section 3B-6, is used to illustrate certain points in the following paragraphs. Therefore it will help to have it available. More detailed explanations of the various settings and capabilities are given in the Menu map.

BASIC PRINCIPLES OF GRAPHICAL EDITING

Level values can be edited "numerically" by positioning the text cursor in the appropriate setting field and then entering the new value via the front panel keys. Graphical editing enables the same result to be achieved by "redrawing" the waveform as required. Basically this involves simply positioning the active graphics (Editing) Cursor via the CURSOR $+\rightarrow$ keys at the data point to be edited, and then "shifting" the point up or down to the new level via the ROLL $\uparrow+$ keys. Trigger points can be graphically set via the 0 and 1 keys. They can only be set/deleted when the trigger channel concerned is displayed

The most important point to note is that, for any type of graphical editing to be possible, the text cursor must be positioned in the Edit field.

The CURSOR \leftarrow and \rightarrow keys enable horizontal movement of the graphics cursor. This enables addresses to be accessed. The cursor can be moved at "normal speed" or, when SHIFT is used, fast.
The ROLL \uparrow and \downarrow keys enable vertical movement of the graphics cursor. Since data points are then shifted, their levels will be edited (changed in value). Vertical cursor movement can also be at "normal speed" or, when SHIFT is used, fast.
As you have probably already seen, it is not always possible (in 100% Display Window) to graphically access each address, or to precisely edit levels as required. The reasons and solutions are provided in the next paragraphs.
A Display Window feature is available which enables certain limitations of the graphical display area (discussed later) to be overcome. It basically enables a specific section, instead of the complete waveform to be displayed over the complete display area. Therefore, very precise editing can be done. It can also be considered as providing a "zoom" capability

GRAPHICAL DISPLAY AREA LIMITATIONS AND RESTRICIIONS

"Alternate Addresses Displayed", What does this mean"?

You have probably already seen this message, here is the explanation. When a 100% Display Window (default) is being used, only half of the available addresses can be currently accessed via the Editing (default) is being used, only half of the available addresses can be currently accessed via the Editing
Cursor . The message is in effect just a reminder of this fact. The reasons behind this limitation are as follows.

The graphics display area is 512 pixels wide, therefore in 100% Horizontal Display Window, only 512 addresses can be defined on the screen. For the full address count of 1024 to be accommodated, an address pair has to be accommodated in each pixel column. An address pair is eg. 0001 and 0002 . There fore, each single step of the Editing Cursor actually "covers" two addresses.

The addresses which can currently (in 100% Window) be accessed by the Editing Cursor are determined as follows: If the address currently displayed in the numeric setting field is an "odd" one (ie., ending with $1,3,5$.etc.) then only odd addresses can be accessed. If an "even" address (ie., one ending with $0,2,4$..etc.) is displayed then only even ones can be accessed. Therefore one way to enable each and every address to be accessed, is to change the Address field content from odd to even or vice-versa as necessary. This is obviously not a very practical solution! There is actually a much better way which involves using the Display Window feature. This is explained later.

How can I Graphically Access all Addresses?
You cannot display all 1024 addresses simultaneously, therefore it is not possible to have immediate access to each and every address. But, from doing the previous examples you know that a complete waveform can be displayed. This is in fact often the main reason for using a 100% Display Window. Graphical editing of a waveform normally requires that a number of odd and even addresses be accessed sequentially. The easiest way to do this is to display only 50% (or 25%) of the waveform on the complete display area at any time. Then you can access each of 512 addresses. The Display Window feature enables this to be done. Its operation is explained later. You can either select the part of the waveform to be displayed, or simply scroll it horizontally via the cursor.

What about Level Values.

In the vertical direction (level setting one), only 256 pixels are available. Depending on the current Display Window, Amplitude Range (and hence resolution/step count) each pixel may therefore have to represent up to 4 level values.

An example of this for the 200 mV Amplitude Range and 100% Vertical Display Window
At Address 0010 , level values: $0.0,0.2,0.4$, and 0.6 mV are all represented by one pixel.
Graphical editing of level values therefore has obvious limitations. Note, however, although in 100% Window, only alternate addresses are shown, depending on their values, each individual level can in fact be displayed. They will appear one above the other according to their respective values. As an example, for the waveform of Example 2, the following address pair have the levels shown:
$80 \quad 0.925 \mathrm{~V}$
$81 \quad 0.94 \mathrm{~V}$
When they are numerically accessed, the cursor will remain fixed horizontally as you access each address but will move vertically to each level.

The easiest way to understand this is to first graphically step the cursor to an address pair (eg., 80/81) Now numerically access each individual address of the pair and note how the cursor moves to each leve value.
In the same way as for Addresses, the Display Window feature enables this limitation to be overcome Its operation is explained later. You can either select a specific part of the waveform to be displayed, or simply scroll it horizontally via the cursor.

SPECIAL POINTS TO NOTE

Graphical editing is not possible if the Display Window is active.
When graphical editing is possible, a waveform selection field with the header "Edit" will be displayed One or more waveforms plus their trigger patterns can be simultaneously displayed/edited.

Level values can be set up and/or edited either numerically or graphically.
Duration values can only be numerically set up and/or edited
Variable Duration values are not graphically displayable
Trigger points can be graphically but not numerically set up and/or edited on the [Waveform] menu.

HOW TO ACIUALLY USE THE GRAPHICAL EDITING FEATURES

When reading through the following paragraphs, try out the various settings etc. referred to. As menioned earlier, the waveform from Example 2 is used here to illustrate certain edit features. If you still have it then refer to it whilst reading the following paragraphs.

Display Window and Hor./Vert.
This enables a specific section of either the A or B Arb. waveforms to be displayed. Whatever perentage values are set apply to both Arb. waveforms. Waveforms and trigger points cannot be edited when Display Window is on.

Set Display Window to: [B on] via the NEXTI] key
If you still have the waveform from Example 2, it will now be displayed. The details will be as shown in the following figure.

Display Window On

Note the menu details. In the top right hand side of the graphics display area, a $1 / 4$ scale version of the waveform is displayed. Assume that you want to graphically edit some levels near the top of the positive half cycle. Also, you want to access addresses sequentially e.g., 230, 231, 232 etc.

Move the cursor into the Hor. field and press NEXIT] to set 50%.
Move the cursor in the Vert. field and set 25%.
You have now defined the size of the window to be used. However in practice the part of the waveorm that you wish to edit might not currently be within the window. This means that if you switched back to Edit mode, it could take quite a time to position the Editing Cursor (E. Cursor) at the required data points. In the Display Window mode, the window can be quickly positioned with respect to the waveform. This can be done in several ways including: by setting an Address, calling up a Label, interchanging the active Editing Cursors or, by scrolling via the ROLL $\uparrow \downarrow \rightarrow \leftarrow$ keys.

> Set the Address to 0250 (if not already set). The window will move (assuming that Edit cursor was not previously positioned at 0250).

How to Position the Window - by Scrolling:

Move the (text) cursor into the Displ field. Now just practice scrolling by pressing the ROLL $\uparrow \downarrow \rightarrow \downarrow$ keys and note the different way in which the window moves. By noting the changes in the $1 / 4$ display area, you will see how vertical scrolling is possible only as long as the active E. Cursor remains within the chosen Display Window. The E. Cursor stays at its origina address for wical soling. Horizontal scrolling however enables the window, together with the E. Cursor, to be moved win address range. Therefore the displayed address will change.

Remember that for editing purposes, you can access any data point of the waveform. The window only defines "how much" of the waveform can be displayed at any time.

By scrolling the window you should be able to produce a display similar to the one below. The window does not have to be in exactly the same vertical position as shown. The main thing is that you understand how to scroll it!

Result of Scrolling the Window

HOW TO EDIT

You cannot do any editing in Display Window mode, you first need to switch it off
CURSOR to Display Window and set it to [off]. Then go to the Edit field and select [ARB B].
For the various steps done, the display should now look like that shown next.

Window Size Defined and Display Window Off

The waveform can only be edited with the active Editing Cursor. Here are some details about what this means and also a few more points to note

Editing Cursor

Two Editing Cursors (E. Cursors) are user selectable, an "x" and " 0 " one. At any particular time only one of them can be set as the active one. The active cursor always appears as a large + on the graphics display area. The inactive one is represented by a small + . The default active Editing Cursor is the "x" one.
The values displayed in the Address, Label, Level and Duration fields relate directly to the data point currently addressed by the active E. Cursor. This also means that, whenever the displayed Address or Label is changed, the active E. Cursor will "fast move" along the waveform to its new position. The active E. Cursor cannot be moved outside the current Display Window

The CURSOR and ROLL $\uparrow \downarrow \rightarrow \leftarrow$ keys enable the active E. Cursor to be positioned at any point on the graphics display area. Note that for Display Window of $<100 \%$ (Hor. or Vert.), when the cursor reaches the limit of its travel the window will be scrolled. Try this by moving the E Cursor to the far right of the display area

Label
This field has two functions, either:
(a) Labels (previously entered on the [Pattern/Level] Setup menu) corresponding to particular addresses will be displayed when the corresponding address is displayed.
(b) Labels can be accessed (via the NEXT[]/PREV keys) and therefore the corresponding addresses will be displayed.

Duration

The type of duration cannot be changed on this menu (see Data [Format] Allocation menu). If duration is set to variable, then each value can be set as required. Note that, if the clock source is external the units will be expressed in Cycles.

Explanation of why Different Duration Values are Not Always Obvious
On the 8175A [Waveform] Setup display, different duration values between data points cannot be graphically displayed. Therefore, irrespective of duration values, identical numbers of data points always occupy the same horizontal length of display. In other words, 50 data points each of duration $0.1 \mu \mathrm{~s}$ will occupy exactly the same display length as 50 of duration $1.0 \mu \mathrm{~s}$.

Delta 0 to x

This enables either the duration or level difference between two points on a waveform to be displayed. The points are identified by the position of the two Editing Cursors. Horizontal or vertical measurement is selected via the NEXT[]/PREV[] keys. In Display Window mode it is disabled. Whenever more than one arbitrary waveform is displayed, only duration differences can be displayed

How to Measure Waveform Durations or Level Differences:

Move the cursor into the "Delta o to x " field and press NEXT[] to select the measurement mode required horizontal or vertical).
Then position the active and inactive Editing Cursors at the addresses concerned. The time or level difference as appropriate will then be displayed.

3B-8

HOW TO SET UP WAVEFORMS - BY NUMERIC ENTRY

What is Numeric Entry?

The term "numeric entry" as used here, refers to setting up levels, trigger data and duration on the Data [Pattern/Level] Setup menu. As you already know, numeric setting fields are also available on the [Waveform] Setup menu, but they are not considered here. Numeric entry is very simple, but there are some points to note, they are described in the following paragraphs.

WHEN SHOULD IT BE USED?

In principle it can be used for almost any type of waveforms, however in general, it is not practical to set up a complete, complex waveform on the [Pattern/Level] Setup menu. Exceptions to this are step and staircase functions etc. Such waveforms, whether they are just part, or a complete waveform, can be very quickly set up. Spikes etc. can also be quickly set. The menu is provided with a powerful set of edit capabilities. These are described in section 3F and enable such actions as: copying, moving and exchanging segments of level/trigger data, within and between Arb. channels**. These capabilities mean that waveforms can of ten be set up very quickly. It is therefore recommended that you familiarize yourself with the editing capabilities. before getting too involved with numeric entry.

The [Pattern/Level] Setup menu is furlly described in the corresponding Menu Map section (3E-2). Refer to it for specific information concerning the various setting fields etc.

THE PRINCIPLES OF NUMERIC ENTRY

The principles of numeric entry are described below. Please do not immediately be deterred by the large number of steps shown! In practice, it is very unlikely that all of them will be required. The sequence is in no way mandatory, you can change it as you wish according to the situation. This will become obvious with practice.
I. If the current Amplitude Range, Offset, Duration type, Used Format Allocation and level entry codes are as required, then go straight to step 6. If any of these settings need to be changed, then proceed as follows:
2. Set the required Amplitude Range and Offset as applicable (both on the Output Page menu).
3. Set the Duration type ([fixed] or [variable]) on the Data [Format] Allocation menu. Note that if Duration is to be fixed, you can also set type and value after setting the level/trigger values. If Duration type is to be variable, by setting it now you can save unnecessary work after.
4. If necessary, display just those Arb./trigger channels required*. Do this by selecting the appropriate Used Format Allocation.
5. Set the level entry code, this is done via the setting field directly under the ARB A and ARB B Set the level entry code, this is done via the setting field directly under the ARB A and ARB B
headers. Each Arb. can be set to a different entry code. Whatever the code(s) set, they will be headers. Each Arb. can be set to a different entry code. Whatever the code(s) set, they will be
assigned to the current Used Format Allocation and recalled whenever the same Format is assigned.
6. Select the Address required in the inverse video field. This can be done either via the ROLL \uparrow or \downarrow keys or, by simply moving the cursor into the Address field and changing the current address to the required one.
7. Move the cursor to the level, TRG and/or Duration settings and change the values as required.

NOTES

*Displaying Specific Channels
While there is nothing against displaying all Arb. and trigger channels, remember that you can select specific ones to be displayed via the Used Format Allocation field. This point is also of significance when using the edit capabilities, since they apply only to those Arb. and trigger channels currently displayed.
**Production of Phase shifted signals
This can be done very easily via the COPY: [ARB A $>$ ARB B] (or vice versa) edit functions. The princi ple is illustrated in the figure below and is basically as follows (it assumes that the Duration is set to [fixed]?:

1. Set up the signal in one Arb. channel as a reference eg. ARB A and note the addresses used. These will be the limits for phase shifting and for the Segment to be set on the Program Page. Note also the number of addresses which equate to the required phase shift (x Addresses)
2. Now copy the signal into the other Arb, channel, note that this will involve copying the signal in two separate copy actions

The minimum resolution of the phase shift will be $360^{\circ} /$ number of addresses used. Eg., if 1000 addresses are used the minimimum resolution will be $360^{\circ} / 1000=0.36^{\circ}$.

Production of Phase Shifted Signals

CURSOR Fast/Slow Movements
When it is in the Address or level/trigger setting fields, the cursor can be "fast moved" between fields via the SHIFT plus CURSOR $\rightarrow+$ keys.

$3 C$

More about the Calculator

This section explains additional points about using the Calculator, and provides general information. It is assumed that you have already worked through section 3B-5 and know the basics of using the Calculator. assumed that you have arready worked forg sechon

3C-1	Some General Points Explained
3C-2	Module Syntax
3C-3	Softkey Explanations
3C-4	Restrictions and Limitations to be Observed
3C-5	Some more Worked Examples
3C-6	Error and Warning Messages Explained

Note that the worked examples included here are shown as the module and the resulting waveform. Apart from an example involving the Conmbine feature, detailed step by step procedures etc. as given in ection 3B-5 are not included. These examples are designed to show you some more of the Calculator possibilities. They will also give you some more general practice in using the Calculator so do try them!.

3C-1

SOME GENERAL POINTS EXPLAINED

How much Memory is Available for the Calculator Modules?
750 bytes are reserved in the 8175A memory for Calculator use. Each ASCII character (including spaces) equires one byte. Keywords such as: For, Step etc., and functions e.g.. Sin, Cos etc. also require only one byte each. Note that each line of a Calculator module can be up to 50 characters long. Therefore, always use $\mathrm{Cr} / \mathrm{If}$ to end a line and initiate a new one. Spaces will just waste memory space

Duration - Why variable is recommended

When using the Calculator, ensure that the Duration (Data [Format] Allocation) menu is set to [variable]. If not done, it is almost certain that problems will arise when attempting to output the function. The eason is that, irrespective of the Duration type, the Calculator will assume that the "STEP value" (given in the header of each module) is the required duration (i.e. the time that each amplitude level is to be active). If Duration is set to [variable], the chosen STEP value will be assigned at each address. However if Duration is set to [fixed] the actual fixed values will be used instead of the calculated ones.

Frequency/Time Window Relationship
Note that if the Time Window value is less than the period of the waveform, an incomplete waveform (less than one cycle) will be produced. Eg, a 50 Hz sine wave requires a Time Window of 20 ms or more.

Step Resolution

Do not set a Step duration which is outside the 8175A's timing (20 ns to 9.99 s) and/or resolution (10 ns) capabilities.

Graphical Display of Durations

If your waveform requires that several modules, each with different time windows and step values etc. be calculated, the resulting graphical display will usually be different from that seen on an oscilloscope. The reason is simply that although different duration values can be set (and will be numerically dis-解 from one another. Therefore the $100: 1$ duration difference will not be graphically obvious.

Combine - what does it mean?

This is a feature of the Calculator which enables an existing waveform to be combined with anothe "Calculator derived" one. It is accessed via the Combine field of the Calculator Parameter Setup menu It is useful in cases where for example, a waveform which is very difficult to describe mathematically and has therefore been set up graphically, needs to have noise added to it. The noise waveform can be set via the Calculator and then combined (add, subtract. multiply or divide are possible) with the original wavef orm. The signals can be combined in a ratio of between $+/-60 \mathrm{~dB}$. An example illustrating the use of Combine is included in $3 \mathrm{C}-5$ of this section.

3C-2
 MODULE SYNTAX

Module statement syntax is similar to that required by normal computer program statements. It is shown by the followng syntax diagrams. All items enclosed by a rounded envelope are available directly via the corresponding softkeys. Words enclosed by a rectangular box are names of items used in the statement. Refer to 3C-3 for sof they explanations.

3C-3 SOFTKEY EXPLANATIONS

The Edit softkeys which are available via Insert are distributed over six layers as shown below. Each successive layer is accessed via the Etc softkey of the current layer. The layer hierarchy is as shown.

Some sof tkeys have already been explained in section 3B-5 of Getting Started. The others are either self explanatory or explained below. Simple examples are included in some cases to illustrate how to use them.

SOFT KE		MEANING
Neg sign	-	Assigns a negative (-) sign.
Sqr	SQR	Square function. Eg: $\operatorname{SQR}(3)=3^{2}=9$
Sqrt	SQRT	Square root function. Eg: $\operatorname{SQRT}(9)=\sqrt{9}=3$
Pwr	**	Raise to power function $\left(\mathrm{Y}^{\star}\right)$ Eg: $10^{* * 4}=10^{4}=10000,10^{* *}(-3)=10^{-3}=0.001$ (Note: 10000 could also be expressed as: 1 E 4 where $\mathrm{E} 4=10^{4}$)
Exp	EXP	$\mathrm{e}^{x}(\mathrm{e}$ to power x$) . \operatorname{Eg}: \operatorname{EXP}(2)=\mathrm{e}^{2}$
Ln	LN	Natural logs (base e).
Log	LOG	Normal logs (base 10).
Abs	ABS	Modulus of value. $\mathrm{Eg}: \mathrm{ABS}(+5)=5, \mathrm{ABS}(-7)=7$
Chs	CHS	Change sign from + to - or vice-versa.
Atan	ATAN	Arctan. Eg: $\operatorname{ATAN}(1)=45^{\circ}$
Int	INT	Integer part of a number. Eg: $\operatorname{INT}(10.93)=10$
Fract	FRACT	Fractional part of a number. Eg: $\operatorname{FRACT}(10.93)=0.93$
Rnd	RND	Random function (see examples later in this section).

RESTRICTIONS AND LIMITATIONS TO BE OBSERVED

For certain expressions/functions restrictions and/or limitations exist. These are as stated below.

Function/expression	Restriction/Limitation
+	None
+	None
*	None
/	None
Sqrt	None
Abs	None
Chs	None
Atan	None
Int	None
Fract	None
Rnd	None
Ln	value >0
Log	value >0
Exp	-43.5 < exponent < 43.5
Pwr	$\begin{aligned} A^{X}= & e^{X_{*} *} \operatorname{Ln} A \\ & A>0(\text { see Ln }) \end{aligned}$
	$-43.5<x * \operatorname{Ln}$ A <43.5 (see Exp)
Sin	-32768 * Pi < argument < 32767 * Pi
Cos	-32768 * Pi < argument < 32768 * Pi
Tan	-32768 * Pi < argument < 32768 * Pi

3C－5

SOME MORE WORKED EXAMPLES

The following examples show some more aspects of using the Calculator．It is assumed that by now you know the basics，therefore apart from in Example 4，no step by step instructions are given．The example are as follows：

Example 1．Line Ripple A
Example 2．Line Ripple
Example 3．Amplitude Modulation
Example 4．Sine wave with Noise－Use of Combine
NOTE：For all these examples，the following settings apply throughout．All other settings are default ones unless otherwise stated．

Amplitude Range：$\quad 5 \mathrm{~V}$
Max．／Min．Levels：＋／－ 2.5 V
Example 1：Line Ripple A
The first half of the algorithm defines a 50 Hz sine wave，the second defines a 500 Hz one．The two are added together

0 FOR $20 M G$ STEF $20 U S$
1 （SIN（2＊PI＊5日＊Tx））＋（SIN（2＊PI＊S日月＊T＊））

This has the same algorithm as Example 1, but the time window and step duration values-have been doubled to enable two complete cycles to be produced
$>\square$ FOR 4 OMS STEF $401 J 5 \downarrow$
$1((\operatorname{SIH}(2 * \mathrm{PI} * 50 * T \times))+(\operatorname{SIN}(2 * \mathrm{PI} * 500 * T \times)))$

Example 3: Amplitude Modulation
If you look closely at the module required for this example, it is actually identical to the one for Example I except that the two sine functions are multiplied.
$>$ FOR ZQMS STEP 2QUS \downarrow
$1(5 \mathrm{SN}(2 * \mathrm{PI} * 5 \mathrm{G} * \mathrm{~T} \times)) *(5 \mathrm{IN}(2 * \mathrm{PI} * 500 * T \times)))$

Example 4. Sine wave with Noise - Use of Combine

This example shows the basics of using the Combine feature. The requirement is to produce a "noisy" sine wave, the noise will be derived via the Random Function feature (Rnd) and the two functions will be combined in the ratio: sine:noise $=10: 1$.

When using Combine, the original waveform is termed the "Actual". For this example it will therefore be the sine wave. The function to be combined is termed the: "Function". However, as you will later see from the Combine related setting fields, the ratio of "Actual" to "Function" can be interchanged as wished.

Procedure:

1. First, set up and run the sine wave. The module required is shown below.
```
FOR 2OMS STEP 2OUS &
> 1 (SIN(2*PI*5G*TX))
```

2. Set up (but do not yet run) the noise function, it is given by the following module. Note that the original sine wave module must be deleted (you can actually use it as the basis of this one)
```
0 FOR 20MS STEF 20UG !
> 1 (PND)
```

3. Press Param, set Combine to $[\mathrm{On}]$ and Actual : Function $=[+] 20 \mathrm{~dB}$

This means a combine ratio of $10: 1$) The menu settings should now be as follows. An importan point to note in connection with Combine, is that the Level settings on this menu will apply to th final resulting combined waveform. Their significance for the noise function is in effect only temporary

Parameter Setup Menu for Example 4
4. Press End_para, then Run. If you have done everything correctly, the resulting waveform will be as shown.

Combined Sine and Noise Waveform

Some more Practice with Combine
 The best way to understand what you can do with Combine, is to checkout the four combining methods The best way to understand what you can do with Combine, is to checkout the four combining method

 you wish.This method involves combining existing ramps with a sine wave. By first just overlaying the two waveforms, and then successively combining them as $A+F$ with different $d B$ loadings, you will see the different results.

The first step is, (MODIFY) durations [variable] over the complete address range to I μ,
Set up a ramp (use Interpolation!) between say -100 and +100 mV and addresses 0 to 128 . address range (you can do this with just three COPY Address action!!). Confirm by checking out the [Waveform] menu that you have 8 ramps.
Set up a 20 kHz sine wave (period $50 \mu \mathrm{~s}$) one complete cycle over 50 steps of $1 \mu \mathrm{~s}$.
Now try out the various Combine possibilities. Just overlay the sine wave (Combine off) on the first ramp to begin with. Then do some combined functions on the other ramps, this will make it easier to understand the different results. For the same reason, "do each" Combine at the same relative address o each ramp.
$\ulcorner\ulcorner\ulcorner\ulcorner\sqcap \sqcap \square \exists \exists \mathbb{I}$

3C-6
 ERROR AND WARNING MESSAGES EXPLAINED

If, when using the Calculator you attempt an illegal (non-allowed) action or have not completed the previous setting correctly, an error message will generally be displayed. Note that "illegal" can also mean hat you have attempted a setting etc. which is in conflict with another existing one. Apart from displaying any error or warning messages, the current status will always be displayed. The following list details all Calculator related messages in alphabetical order and grouped according to their type

1. General Messages

2. Edit
3. Param
4. Run
5. Status
6. General Messages

These messages are not related to any specific edit type action etc.

USE MAIN DISPLAY KEYS	Displayed when the Calculator Page is accessed and disappears temporarily when the Calculator is in Run mode or an error is detected.
ERROR Command ignored	Displayed if an illegal action attempted (eg., pressing a currently inactive or inappropriate key).
ERROR Fix Problem First	Displayed if an error has been detected and the user tries to leave the current field without correcting it.
ERROR Numeric entry required	Displayed if only a numeric key entry is allowed and another type was pressed.
ERROR Use [NEXT][PREV] Keys	Displayed if the cursor is in a field requiring a PREV[]/NEXT[] entry and some other key is pressed.
WARNING Check Parameter	Displayed on accessing the Calculator if current Max./Min. Levels on Parameter Setup are identical. This can mean that no values have yet been set, or that the levels have been auto-set to zero due to a conflict setting on another menu eg., a new Amplitude Range. Refer also to the Run related message: "ERROR Check Parameter".

2. Edit related messages

All the following messages are related to either the Insert, Delete, Abort or End_edit functions as indicated.

Insert

ERROR No more INSERT's allowed
Displayed if the function memory is full and the user attempts to insert another statement.

ERROR Nothing to Delete Displayed if Delete pressed and there is nothing to delete.
ERROR Nothing to Recover Displayed if Recover pressed and there is nothing to recover

Delete

ERROR Nothing to Delete
ERROR Nothing to Recover

Displayed if Delete pressed and there is nothing to delete.
Displayed if Recover is pressed and there is nothing to recover.

Abort

There are no error messages related to the Abort function.

End edit

In all the following cases, compilation (initiated by End_edit) will be aborted if an error is detected. The statement causing the error will be highlighted in inverse video
ERROR Arithmetic overflow Displayed if an arithmetic overflow occurs
ERROR Arithmetic underflow Displayed if an arithmetic underflow ocurs
ERROR Argument out of range Displayed if an argument is out of range. E.g.. Sqrt (-1)
ERROR Blank missing $\quad \begin{aligned} & \text { Displayed if key words (statements) and timing values are not } \\ & \text { separated by blanks. }\end{aligned}$
ERROR Clock Source must be unique
Displayed if the clock sources for elapsed timing and duration are different.
ERROR Duplicate Label Displayed if the edited function includes at least two identica labels.

ERROR Exponent Expected
Displayed if an Exponent is expected.
ERROR Elapsed Timing Expected
Displayed if Elapsed Timing is expected but no value exists.
ERROR Function too complex Displayed if it is not possible to compile the complete function because there is an internal memory overflow.

ERROR For Statement Expected Displayed if a For statement is expected but is missing or if algorithm is incorrectly closed.

Displayed if an algorithm includes an illegal character.
Displayed if the unit is not allowed.
Displayed if a timing value starts with a point instead of a digit.

Displayed if a left parenthesis is expected but is missing.
ERROR Max. Data Labels Used Displayed if the edited function includes more than 50 labels.
ERROR Only 7 Digits Allowed Displayed if the mantissa of a numerical value consists of more than 7 digits.

ERROR Only 2 Digits Allowed	Displayed if the exponent of a numeric value consists of more than 2 digits.
ERROR Only 1 Point Allowed	Displayed if the mantissa of a numerical value consists of more than 1 point.
ERROR Part of Function missing	
	Displayed if the Header of a function is incomplete.
ERROR Right Parenthesis Expected	
ERROR Step Statement expected	Displayed if a Step statement is expected but is missing.
ERROR Step Duration Expected	Displayed if the Step Duration is expected but is missing.
ERROR Simple Factor Expected	Displayed if a simple factor is expected.
ERROR Steps > 1024	Displayed if the number of steps determined by the Calculator is greater than 1024.
ERROR Timing Conflict	Displayed if the step count derived from the two timing values is not an integer.
ERROR Unit expected	Displayed if a Timing Unit is expected but a statement or non-unit type character follows.
ERROR Zero divide	Displayed if a zero divide occurs.
WARNING Steps > 1024	Displayed if, sum of current "from Address" value (Param. setup), plus the number of steps calculated exceeds 1024. This will be only a warning because the start address can be changed before pressing RUN.
One of the following messages can occur if the resolution of the Step Duration is incorrect. They are all self explanatory.	
ERROR Value is too low	
ERROR Value is too large ERROR Resolution 10 ns	
ERROR Resolution 100 us ERROR Resolution 10 ms	
ERROR Resolution 1 cycle	
ERROR Resolution 0.1 kcycle	
ERROR Resolution 10 kcycle	

3. Parameter related messages

ERROR Fix Problem First Displayed if an error condition exists and End_para is pressed.

ERROR Value out of Range
WARNING Missing Labe

Self explanatory.
Displayed if label selection for address attempted and no labels exist.

4. Run related messages

In all the following cases RUN will be aborted if an error is detected
ERROR Arithmetic overflow Displayed if an arithmetic overflow occurs.
ERROR Arithmetic underflow Displayed if an arithmetic underflow occurs.

ERROR Argument out of Range	Displayed if a function includes a wrong argument. E.g., the square root of -1.
ERROR Check Parameter	Displayed if "RUN" is pressed and there is a conflict caused by offset, levels and/or load. Another cause could be if no difference

ERROR Dynamic missing

ERROR Memory Exceeds

ERROR No Function available
ERROR Stack overflow

ERROR Timing Conflict

ERROR Zero divide
RUNNING To Stop press ABORT Displayed while calculating. The message remains until RUN completed or an error detected

WARNING Durations Modified Displayed if, as a result of calculation, any duration values have been changed. This is because the new (calculated) durations will apply to both Arb. channels

WARNING Set Durations Variable
Displayed if Duration setting (Data [Format] Allocation menu) is [fixed]. Calculated durations will not be possible until Duration is changed to [variable].

5. Status messages

The following messages indicate the current Calculator status:

Awaiting Command	Displayed when Calculator initially accessed or Edit, Param or Run completed.
Editing	Displayed when Edit mode is active.
Inserting	Displayed when Insert mode is active. Deleting Displayed when Delete mode is active. Compiling pass 1 of 2 Compiling pass 2 of 2
Parameter Setup	Displayed when End_edit pressed and hence the compiler is Calculating Pass* x of \mathbf{n}
	Displayed when Parameter Setup Page accessed.

NOTES
Run related messages
"ERROR Arithmetic overflow/underflow" - if either of these messages is displayed, the cause will probably be an "internal calculation sequence" error. To correct it, even though the algorithm concerned is almost certainly ok, you will need to change the order of its argument parameters.

Status related line the Pass status is displayed as a two disit running value. The first digit (ruse) is the current status and the second is the total number of passes to be completed.
F
C

3D

How to Store and Recall Calculator Modules

This section explains how to store/load Calculator Modules (waveform functions) to/from micro disc via an HP $9121 \mathrm{~S} / \mathrm{D}$ or $9122 \mathrm{~S} / \mathrm{D}$ Flexible Disc Drive. Connection and use of such disc drives is fully explained in the standard 8175A Operating and Programming Manual. Therefore, this section only provides the information specifically related to storing/loading Calculator Modules. Note that Calculator Modules can also be stored by an external controller, the HP-IB commands involved are listed in the Programming section of this manual.

The information is presented under the following headings. If you already know the basics of how to connect up and use a disc drive, and have a (LIF) formatted disc installed, then go straight to 3D-3.

| 3D-1 |
| :--- | | Storage Basics |
| :--- |
| 3D-2 |
| Connecting The Disc Drive |
| Setting the 8175A as the Controller |
| Inputting the Disc Drive Address to the 8175A |

3D-3	Using the Disc Drive
How to format a Disc	

3D-4	How To Store A Calculator Function
3D-5	How To Load (recall) a Calculator Function 3D-6
Notes on Error Messages	
3D-1	

Although the 8175A's internal storage (LOC1 and/or LOC2) can be used in the normal manner for Arb. waveforms etc., including those produced via a Calculator module (function), actual Calculator functions cannot be stored in either of the user specifiable internal locations. They are of course auto-stored, like all other settings, whenever the 8175A is switched off. They can also be stored on an external disc in the ame way as any other settings etc. The main difference is that they canot be stored in the same file as other settings.

NOTE: File Type "all"
Calculator functions are stored using a different internal routine from settings and data etc. They are Calculator functions are stored using a different internal routine from settings and data etc. They are File Type on the storage menu is set to "all", the current Calculator function will not be stored as part of the set. Therefore, whenever you wish to store a Calculator function, remember that it must be done as specific "Store" action.

The main difference concerning storage/loading of Calculator functions is that they can only be stored from, and/or loaded to, the actual (current) 8175A settings. (Other types of settings can be stored/loaded from/to current or internal storage locations.) Automatically, whenever Calculator functions are stored or loaded the location is defined as "ACT" (actual). Therefore only the file name and type (plus descrip tion if wished) need to be given when storing a new file. Loading is even simpler since it requires only the name.

3D-2
 CONNECTING THE DISC DRIVE

1. Connect a power cord to the disc drive but do not switch on.
2. Connect an HP-IB cable from the signal generator HP-IB output to the disc drive HP-IB connector.
3. Set the HP-IB address switches on the rear panel of the disc drive to the desired operating address. More than one disc drive may be connected to the HP-IB, however, each must have unique address
 ensure that it has its own addresses (do not set to Listen Always/Only or you will print out everything that appears on the bus!)
4. Apply power to the disc drive. When power is applied the disc drive will go through an initialization sequence which causes the indicator lamps to momentarily light.
5. Install one or two (as appropriate) flexible discs into the disc drive by pressing the disc all the way into the disc drive unit.

SETTING THE 8175A AS THE HP-IB CONTROLLER

To be able to control the disc drive from the 8175A, the 8175A must be set as the HP-IB controller. Do this as follows:

On the (rear panel mounted) HP-IB System switch set switch element 8 to 0 . Refer to the figure below. The 8175A checks the status of this switch only during the power on sequence, so you may need to switch the 8175A off and on again.

HP-IB Switch Settings

Check via the [Peripherals] menu of the System Page that the following status is displayed: System Controller: $\mathbf{8 1 7 5 A}$ is controller

INPUTTING THE DISC DRIVE ADDRESS TO THE 8175A

You have to manually input the disc drive address and the identifying number of the specific disc unit to be used to the 8175A. Do this as follows:

Access the System Page [Peripherals] menu, set the Address and Unit values in their respective fields. Note that if either of the dual type disc drives (D) is used, the 8175A can be addressed to only one of the disc units at a time

3D-3

USING THE DISC DRIVE

This section is intended only as a quick "Getting Started" explanation of how to use the disc drive. It escribes the basic steps necessary to get you started. Detailed descriptions of the [Storage] [external] menu and how to Load, Store, Find, Delete and Format, are given in the standard 8175A Op. and Prog. manual.
Once you have completed all steps of "Connecting the Disc Drive", the procedure for storing Calculator unctions is as follows:
Access the SYSTEM Page [Storage] menu and select [external] via the NEXI[]/PREV[] keys. The 8175A will search for the disc and then display the [Storage] [external] menu.

HOW TO FORMAT A DISC

If you are starting with a new disc (or a previously used but not LIF formatted one), it must first be formatted to LIF format. Do this as follows:

Position the cursor in the Operation field and select [Format disc].
Press EXEC and move the cursor into the new setting field which will be displayed.
resput a "Y" to confirm. The disc will then be formatted
(This simply indicates that the 8175 A formatted the disc.) You can now store a file on the disc. This is described in the next paragraph

3D-4

HOW TO STORE A CALCULATOR FUNCTION

If the disc has not already been formatted (LIF format), refer to the previous sub-section, otherwise proceed as follows:
On the [Storage] [external] menu make the following settings
set Operation
set File Name
set File Type
setore
set Description (optional, up to 26 characters)

Then, to store the function:
Press EXEC, the 8175A will first check the disc, then store the function. When storage is the 8175A will first check the disc, then store the function. When storage is completed, the file information will be displayed under the appropriate File
directory headings. If the message "No LIF directory" is displayed, then refordirectory headings. If the message "No LiF directory" is displayed, then reformat the disc. (It means either, in the case of a new disc that it was not correct non-LIF format).

3D-5
 HOW TO LOAD A CALCULATOR FUNCTION

1. Access the [Storage] [external] menu. The directory of the files will be displayed. If more files exist than can be displayed, the ROLL keys enable all available ones to be checked out.
2. Move the cursor into the Operation field and press the NEXT]]/PREV[] keys until [Load] is displayed. Enter the file name in the field and press EXEC. This accesses the file on the disc. Then press EXEC again to actually load the file into the 8175A. Note that, for "calc files no "to destination" can be user set. It is automatically set as "ACT".

3D-6
 NOTES ON ERROR MESSAGES

Generally the meaning of any error messages/warnings which are displayed during Disc Drive operation will be obvious. However there are two different messages relating to whether the disc drive is actually correctly connected or not. These are as follows:

ERROR no disc drive present

This means that either the disc drive is not properly connected or, it is not connected at all but, some other instrument is connected to the 8175A via the HP-IB eg., a printer.
ERROR operation time out
This means that neither the disc drive nor any other instrument is connected to the HP-IB.

The Menu Map

INTRODUCTION

This section describes only those menus which relate specifically to Arb. configuration. This means menus which either do not exist in the standard 8175A or, for Arb. configuration, differ significantly from the standa 815 A ones. This includes the menus of the OUIPUT following points concerning the other menus (which are all described in the standard O and P manual):

The TIMING page menus are disabled whenever Arb. configuration is selected and the SYSTEM, CNTRL, and PRGM menus are configuration independent. This means that Irrespective of whether CNTRL, and PRGM menus are configuration independent. This means that Irrespective of whether way.

OVERVIEW OF MENUS DESCRIBED HERE

Brief details of the menus described in this manual are as follows:
OUTPUT Page, Level [ARB A]/[ARB B] into [50 Ohm]/[open] menus. These are "new" and relate purely to Arb. operation.

DATA Page, [Format] Allocation menu. Minor differences.
DATA Page, [Pattern/Level] Setup menu. Although this has several points in common with the Data [Pattern] Setup Page of the standard 8175A, it is treated as a new menu and therefore completely explained.

DATA Page, [Waveform] Setup menu. This menu, although similar in some respects to the corresponding tandard (Parallel D.G.) one, includes a host of additional features and capabilities related to curve setting/editing/display. An example of this is the Interpolation capability.

DATA Page, [Calculator] menu. This is a totally "new" menu with a completely different operating concept from any other. Therefore only brief menu settings explanations etc. are included here since it is fully documented in sections 3B and 3C of this manual.

NTRODUCTION TO USING THE ARB.MENUS

Whichever configuration is selected, the menus of the 8175A are all accessed via the six MAIN DISLAYS keys on the front panel. Each key accesses the corresponding Page, each Page comprises one or more menus. Once you have learned which menus "belong" to each Page, operation of the 8175A is very easy.

Unless otherwise mentioned, all figures showing menu contents are the Standard Settings or "default" conditions. (Note that normally, whenever any Page is accessed, the first menu displayed will be the last one displayed on the previous access.)

When working with the Data Page menus, section 3F of this manual which covers the Edit capabilities is of special significance.
$\ulcorner\ulcorner\ulcorner\ulcorner\sqcap \sqcap \square \exists \square \exists \rrbracket$

3E-1

OUTPUT (Output Page) Menu

This section describes the Aib. related OU'TPUT (Output Page) menus and how to use them. The default menu ([POD] Output Levels) has no significance in connection with Arb. use unless you need to generate analog and digital signals simultaneously, and/or need flag outputs. In such cases, refer to the appropriate Menu Map sections in the standard O and P manual.

The other two menus are identical to each other in terms of use and setting fields etc. and therefore only ne of them is described. It is the one for Arb. OUTPUT A. Regarding the menu layout, note how it is divided into five distinct sections each for a particular type of setting etc. Four of these contain setting ields and the fifth is a pure display field (Level Upper Peak...). A figure illustrating several different settings is included at the end of the menu description. It will help to clarify the meaning of many of the terms used.

IMPORTANT NOTE: Output Load Setting

Ensure that the output load setting on this memu matches the actual output load, if not damage to the DUT may occirr! Refer to the "Level..into" explanation below.

THE MENUS AND HOW TO USE THEN

DISPLAY CONTROL FIELDS SETTINGS EXPLANATION

Level....into	The first field, currently displaying [ARB A], determines the particular* Arb. output whose various settings are to be changed/ displayed. *Trigger Control settings (at bottom of menu) apply to both Arb. outputs. The second field enables one of two output loads - 50 Ohm or open - to be defined. Open means a load resistance $>50 \mathrm{kOhm}$. The Arb. output signal level is adjusted to match whichever load is selected so ensure that you set the load correctly! To explain the possible consequences: If the menu setting is "into [50 Ohm]" but the actual load is say $>50 \mathrm{kOhm}$, it is possible that the voltage across the load could be double the expected value! Amplitude Range availability (see next paragraph) is dependent on the load setting.
Level Parameter ARB A:	The fields in this section enable output voltage range and applied offset to be set. Refer to Table 3E-1 towards the end of the menu description for specific values.
Amplitude Range:	Each Amplitude Range provides a range of voltage values for level setting. The maximum difference waveform level values for any range cannot exceed the Range value*. Upper and Lower Limits within any Range (without offset) equate to $+/-50 \%$ of the Range value. Eg., 200 mV enables nominal* level values of between -100 and +100 mv to be set.

For all except the 16 and 32 V Ranges an over-ride of 24 resoluion steps is provided. Therefore the actual Range values are extended. Re there is a corresponding Level Window, output level plus offset level must "fit" into the Window
As an example, the Level Window for the 200 mV Range is $+/-800$ mV . For each output load seven different Amplitude Ranges are vailable. Not all ranges are available for each output load. See Table $3 \mathrm{E}-1$.

Output Page (ARB) menu
ERROR and WARNING conditions explanation

* An Amplitude Range change to a higher range may result in an 'ERROR Offset out of Limit" and/or "WARNING Data Limitation" type message being displayed. This simply means that the new level and/or offset values (derived from the previous "step equivalent" values of the previous ones) are outside the Leve Window. An example of when the warning would occur is as

Assume that in the 10 V Amp. Range. Peak Levels of $+/-5.00 \mathrm{~V}$ (equivalent to 0012 and 1012 steps) currently exist. Then the 16 V Range is selected. Since the allowable step window is now only有
a similar way if the "old" Offset walue exceeds the Lim "ERROR Offset out of Limit." will be displayed.

Level Upper Peak: Level Lower Peak:

These are the maximum (Upper)/minimum (Lower) signal output evels including offset, which are currently set. Because currentl Il output levels are identical $(-102.4 \mathrm{mV})$, both Peak Levels are also identical.
Offset: \quad This field is for setting the required of fset voltage. It must be within the "Offset Limit" applicable to the current Amplitude Range.
Eg.. this is currently: $+/-697.5 \mathrm{mV}$
Values can be set numerically or via the VERNIER keys. For each Amplitude Range a corresponding offset range also applies. Since the sum of output + offset levels combined must fit within the Level Window, output and offset are interdepender that changing one of them can affect the other.
Therefore current max/min level values determine the Offset Limits. Refer to the figure at the end of the menu description to, clarify this if necessary.
This is the max $/$ min value of offset which can currently be set in the Offset field. It is dependent on both the Level Window of the Amplitude Range and the current max/min level values set.

Output Control ARB A:

Output:

Output Mode: When set to [complement] the Arb. output signal will be inverted When set to [complement] the Arb. output signal will be inverted
to produce a "mirror" image. The displayed Level Upper and Lower Peak values may change depending on their values. Note that the fact that a signal can be "complemented" is also a limiting factor for output levels as soon as applied offset exceeds a certain value. (Refer to fige points.) both these points.)

Trigger Control ARB A and ARB B:

Settings made in these fields are common to both ARB A and B outputs. Refer also to the Output Control ARB A explanation.

Trigger Outputs
 Trigger Level:

Common enable/disable control.
Either TTL or ECL fixed high levels can be selected.

Table 3E-I. Amplitude Range/Offset/Level Window Details
The resolution/step count figures for the different ranges are as follows:

$\begin{aligned} & \text { Range } \\ & 0.2 \mathrm{~V} \rightarrow 10 \mathrm{~V}, 20 \\ & 16 \mathrm{~V} \\ & 32 \mathrm{~V} \end{aligned}$		Resolution, Steps 1/1000. 1023 steps 1/800. 800 steps 1/640. 640 steps		Available Step 0 to 1023 112 to 912 192 to 832
Load impedance: 50 ohm				
Amplitude Range	Step Resolution	Level Window	Range	offset Resolution
0.2 V	0.2 mv	+/. 0.8 V	+/. 0.8	0.5 mv
0.5 V	0.5 mv 1 1 mV	$\begin{array}{lll}+1 . & 0.8 \mathrm{~V} \\ +1 . & 0.8\end{array}$	$\begin{array}{ll}+/ 1 & 0.8 \\ +/- & 0.8\end{array}$	0.5 mV 1 mV
2 V	2 mv	+\%. 88 V	+\%. 8	5 mv
5 V	5 mv	+/. 8 V	+/. 8	5 mv
10 V	10 mV 20	+1. +1.	+1. +1.	10 mV 20 mV

Amplitude Range	Step Resolution	Levet Window	offset	
			Range	Resolutio
0.5 V	0.5 mv	+/. 1.6 V	+/. 1.6 V	0.5 mv
1 V	1 mv	+/-1.6 V	+/-1.6 V	1 mv
2 V	2 mv	+/. 1.6 V	+/. 1.6 V	2 mv
5 V	5 mv	+\%. 16 V	+/. 16 V	5 mV
10 V	10 mV	+\%. 16 V	+/. 16 V	10 mv
20 V	20 mV	+\%. 16 V	+/. 16 V	
32 V	50 mV	+/. 16	+/. 16	50 mV

EXPLANATION OF SOME TERMS ETC.

Figure 3E-1. Example to Illustrate some Terminology
1 Shows a waveform set up in Arb. output A, it has a current maximum level (Level Upper Peak) of +80.0 mV and Level L.P. of -100 mV . It is set up in the Amplitude Range [200 mV] which has a Level Window of $+/-0.8 \mathrm{~V}$. The offset is currently 0.0 mV and limited to $+/-700 \mathrm{mV}$ due to the Level Window and Level L.P. values. The waveform could actually be shifted to any position (within the offset limits) within the Level Window. The corresponding Output Page (ARB) menu settings for the stated conditions will be as follows:

Amplitude Range:	$[200 \mathrm{mV}]$	Level Upper Peak: +80.0 mV Level Iower Peak: -100.0 mV
Offset:	$[+] 000.0 \mathrm{mV}$	Offset Limit: $+/-700.0 \mathrm{mV}$

Output Mode:
 [normal]

2 Shows same waveform but now with an offset of +700.0 mV applied. Note how the menu displayed Level Peak values have changed.
Amplitude Range:
[200 mV]
Level Upper Peak: +780.0 mV
Offset:
[+] 700.0 mV Level Lower Peak: +600.0 mV

Output Mode: [normal]

3 Shows same conditions as for (2) except that the Output Mode is now set to [complement]. Note how the Level Peak values have changed again. This also shows how although the "normal" waveform of (2) was within the window, a negative value exceeding -100 mV is not possible since when complemented" it would be outside the Level Window.
Amplitude Range:
[200 mV]
Offset:
[+] 700.0 mV

Level Upper Peak: +800.0 m У Level Lower Peak: $+620.0 \mathrm{~m} V$ Offset Limit: $+/-700.0 \mathrm{mV}$

3E-2

DATA (Data Page) Menus

This section describes the DATA (Data Page) menus and how to use them. The four menus enable you to set up, edit and display signal levels, duration and trigger data. The [Pattern] and [Waveform] menus are for setting up and displaying level data etc. The [Calculator] menu (actually classified as a Page) enables waveforms to be set up in terms of their equivalent mathematical functions. The [Format] menu enables the Duration type to be selected and values (if [fixed] type) to be set. Since data formats are fixed in Arb. configuration, they are only "displayed" settings on this menu.

The Calculator menu is described in sections 3B-5 and 3C of this menu, therefore it is only briefly referred to here.

A powerful set of editing capabilities is provided for the Data Page [Pattern/Level] Setup menu. Section 3F explains them and their use. For the [Waveform] Setup menu an interpolation edit capability is provided. It is fully described in section 3B-6, therefore caly some additicial points to note are included here.

THE MENUS AND HOW TO USE THEN

Data [Format] Allocation menu

dISPLAY CONTROL FIELDS SEITINGS EXPLANATION

Duration:

Period:

Duration is the time that any signal/trigger level will remain at the output. Either [fixed] or [variable] can be set.
[fixed] means that each discrete signal/trigger level will be active for a fixed (identical) time. Therefore a constant rate as set in the "Period" field will apply.
[variable] means that each signal level can have a different duration value. When [variable] is set, the Period entry field is deleted from the display. Signal level duration values must then be input on either the [Pattern] or [Waveform] menus.

Note that whenever Duration is changed from [fixed] to [variable] or vice-versa, the values will always revert to their last variable or fixed setting as appropriate

The Period setting field is available only if Duration has been The Period setting field is available only if Duration has been defined as [fixed]. She type of setting which can be made here
depends upon the System Clock source. (System Clock is set on the Control Page [Clock] menu.)
If the internal clock source is used, Period is input as a numeric value plus a units setting. An example of this is: $\mathbf{0 . 0 2}$ [us], which is the default value.

Data [Format] Allocation menu
When an external clock source is used, the Period (duration) is expressed as:
$\mathrm{m} \times$ the period of the clock. cycles [Cyc] The defoult (fixed timing mode) is [Cyc] This means that the signal level duration will equal the clock signal period
Example for System Clock [external..]
If external clock frequency is 10 Mhz (period $=0.1 \mathrm{us}$) and you want a duration of 2 us, the Period setting must be: $20[\mathrm{Cyc}] .(20 \times 0.1 \mathrm{us})$

Data Format

These are only display fields, none of the settings can be changed It shows which channels are allocated to each Arb, and trigger Channels 1 and 3 of Pod 0 are reserved for Characteristic Point (CP) information. For more information, refer to the [Waveform] Setup menu, Interpolation related settings explanation.

Data [Pattern/Level] Setup menu

On this menu, discrete signal levels and trigger data can be set up and edited. If the duration is [variable], duration values can also be set. Data Formats, as shown on the [Format] Allocation menu, can be assigned here. They determine which Arb. signal and/or trigger data will be displayed. Data can be set up and displayed in voltage terms or equivalent code form. The possible codes are: binary, octal, hexadecimal or decimal.

DISPLAY CONTROL FIELDS

SETTINGS EXPLANATION

Used Format Allocation: This field indicates the assigned Data Format Label. Any of the formats, available from the [Format Allocation] menu can be used. formats, available from the [Format Allocation] menu can be used. The formats can be stepped through, in the order shown on the [Format mel, by pling the NEXI]/PRE keys. For each Terms. Thes codes) will be recalled as patt of the for Any Iit (in) will aply dit ation display currently displayed.

Data [Pattern/Level] Setup menu

ARB A:Amplitude Range:

Upper and Lower Limits

This shows the Amplitude Range selected (on the Output Page, see Table $3 \mathrm{E}-1$), if of fset also set, it may also be displayed depending on the whether REL or ABS LEVEL used (see below).

For both limits the values depend basically on the current Amplitude Range. In addition, offset may or may not be included in the displayed value. This is explained as follows:

When [REL. LEVEL] data format is active, then U and L (Upper and Lower) Limits show the maximum/minimum values without offset which can be set within the currently active Amplitude Range. Any applied of fset will be separately displayed.
When [ABS. LEVEL] data format is active, then U and L Limits show the maximum/minimum values including offset, which can be set within the currently active Amplitude Range.

[ABS. LEVEL] [ABS. LEVEL]

Address

Name:

These fields are for assigning the level entry (and display) base/' code for the two Arb. channels. It can be set (via the NEXTI]/ PREV keys) to either: ABS. LEVEL, REL. LEVEL, BIN. OCR,DEC or HEX. Whenever a Format is assigned, the codes as assigned previously will be recaled. Note that. the selected code determines wich alphanime Note also the next paragraph.

[REL. LEVEL]

The displayed value is the output level referenced (or relative) to the applied offset.

ABS, LEVEL]

The displayed value is the actual output level (i.e. Relative Level plus offset).

NOTE: When level values are displayed (or set up) in an alphnumeric code, the displayed value is based on the [REL. LEVEL] equivalent.

Up to 1024 discrete ARB A, ARB B (and their related TRG) level values can be assigned. Each such group is assigned to a specific address. There are two methods of accessing an address, they are

1) Either, ROLL the display up or down until the required address lies in the inverse video field.
or,
2) (usually the quickest method) move the cursor into the address field, then change the current value to the required one

The field under this heading is for assigning and/or displaying a name or label. Up to 50 can be assigned. Names/Labels can be rom to 5 alphanumeric characters long, the first character mus he position of characters within the field is significant. The Name A.... is not the same asA
Labels are of particular help, in enabling existing level/trigger dat blocks to be easily accessed after INSERTion or DELETion of new ones. This is because a label remains assigned to its patten even though the pattern has a new address. This is of specia significance for the PRGM Page and data cycling.

For each Arb. signal (as indicated by the corresponding ARB and ARB B display headers), a level entry/display field is displayed inverse video). To edit a level, access the reguired Address, move the cursor to the re alphanumeric keys.
Comprehensive data editing capabilities are provided. These en ble level and/or trigger data to be moved, copied exchanged etc. By using these. levels can often be very quickly set up. Section 3F explains all of them.

For each Arb. signal, a trigger channel entry/display field is provided. Trigger data can be set up in the corresponding channels via the 0 and 1 keys.

Duration:

At each Address, the duration applies to the corresponding Arb. A, B and trigger values. In [fixed] duration mode, the duration value cannot be changed on this menu. It is for reference purposes only. In [variable] mode, the duration of each level group can be set here. For either duration mode, if the System Clock is externally sourced, duration values will be expressed in "Cyc" (cycles). Refer to the [Format] Allocation menu - Duration explanation, for more information.

Data [Waveform] Setup menu

This menu provides an alternative method of setting up. editing and displaying waveforms. In addition to normal graphical editing capabilities, it also has an interpolation capability. The use of this is fully described in section 3B-6 of this manual, so it is not repeated here. However some points of interest elating to the capability are included at the end of the menu description. The use of all the other graphical editing capabilities which are described in the following pages, is explained in section 3B-7 of this manual. Refer to section 3F for information about using INSERT and DELETE on this menu

DISPLAY CONTROL FIELDS

Display Window
This enables a specific section of either the Arb. A or B waveforms to be displayed Waveforms and trigger points cannot be edited when Display Window is on. It is enabled via the NEXT[]/ PREV[] keys. When enabled, the complete graphics display area is displayed in reduced (1/4 of main area) form as an overlay in the top right hand corner of the graphical display area. Within this rectangular area, a window of the complete waveform can be defined. It can be defined in size and position as described in the following:

Data [Waveform] Setup menu
Hor. and Vert.
These setting fields appear as soon as Display Window is enabled. They enable frame size of the window to be defined. The window dimensions are expressed as percentages of the horizontal (Address) and vertical (level) axes. The window can be positioned either by setting an Address, calling up a Label, interchanging the active Editing Cursors or, via the ROLL $\uparrow \downarrow \rightarrow+$ keys. For this last method which is done as follows, the (text) cursor must be positioned in the Displ field.

Positioning the Window by Scrolling
Scrolling (or moving the window horizontally and/or vertically) is possible as long as the active Editing Cursor remains within the chosen Display Window. It is done via the ROLL $\uparrow \downarrow$ and SHIFT keys as appropriate.

Horizontal Scrolling

The active Editing Cursor always remains stationary with respect to the main graphics display area. Therefore, as the window is horizontally scrolled and the waveform "moves" left or right, the Address where the Editing Cursor lies will change. The inactive cursor stays "fixed" at its last Address and therefore moves with the waveform. This means that during scrolling, it may disappear from the window.

Vertical Scrolling

In vertical scrolling both Editing Cursors remain at their current Addresses. Since, by definition the active Editing Cursor must remain within the Display Window, vertical scrolling is limited by the window vertical dimension.

Two Editing Cursors (E. Cursors) are user selectable, an "x" and " o ". At any particular time only one of them can be set as the active one. The active E. Cursor is used to graphically edit a waveform (Its other use for quickly locating CPs during Interpolation will not be discussed here)
The active cursor is shown as a large + on the graphics display area. The inactive one is represented by a small + . The default active Editing Cursor is the x one. Whenever both waveforms are simultaneously displayed, the x cursor is automatically assigned to ARB A and the 0 one to ARB B.

The values displayed in the Address, Label, Level and Duration fields relate directly to the current position of the active E. Cursor. This also means that, whenever the displayed Address or Label is changed, the active E. Cursor will "fast move" along the waveform to its new position. The active E. Cursor cannot be moved outside the current Display Window.

The CURSOR $\uparrow \rightarrow$ and ROLL $\uparrow \downarrow$ keys, with or without SHIFT (for fast move), enable the active E. Cursor to be positioned at any point on the graphics display area*. Note that for Display Window of $<100 \%$ (Hor. or Vert.), when the cursor reaches the limit of its travel the window will be scrolled.

* The CLEAR ENTRY key enables the E. Cursor to be "fast positioned" at $0.0 \mathrm{~V}([$ REL LVL] $) /(\mathrm{DEC} 512)$ at any Address.

This is a lattice of horizontal and vertical dividing lines on the graphics display area. It is useful for identif ying specific parts of a waveform when editing etc. It can be switched off if not required.

This enables either the duration or level difference between two points on a waveform to displayed. The points are identified by the position of the two Editing Cursors. Horizontal or vertical measurement is selected via the NEXTIJ/PREVI] keys. In Display Window mode it is disabled. Whenever more than one arbitrar waveform is displayed, only duration differences can be displayed

uration

This displays the particular address where the currently active Editing Cursor is positioned. It therefore follows, that whenever the address value is changed (eg. via the numeric keys), the Editing Cursor will also change its position.

This field has two functions, either:
(a) Labels (previously entered on the [Pattern/Level] Setup menu) corresponding to particular addresses will be displayed when the corresponding address is displayed
(b) Lables can be accessed and therefore the corresponding addresses will be displayed.
When this field is displayed, waveform and/or trigger point editing is allowed. Select the particular waveform/trigger combination required via the NEXT[I/PREV[D keys.

Levels can be input/displayed either in voltage or decimal units. In both cases the limiting values depend on the Amplitude Range (set on Output Page, refer also to Table 3E-1). Note that changing from "ABS LVL" to "REL LVL" and vice-versa, can cause the position of the horizontal marker line on the graphics display to alter.
Horizontal Marker Line on Graphics Display
For [ABS LVL] it identifies the zero volt level. For [REL LVL] the line identifies the applied offset voltage. In both cases whether or not the line can actually be seen on the graphics dis play area at any time, depends on the applied off set, the Display Window and its corrent position. [DEC] level base, the line deleted

The type of duration cannot be changed on this menu (see Data [Format] Allocation menu). If duration is [fixed], then the value Frormat] Allocation menu). If duration is [fixed]. then the value the clock source is external, the units will be expressed in Cycles.

Different Duration Values are Not Always Obvious
Irrespective of duration values, identical numbers of data point always occupy the same length of display. In other words, 50 dat oints each of duration 0.1 us will occupy exactly the same display ength as 50 of duration 10 us.

Data [Calculator] Page

Although this is termed a Page, it is in effect one of the Data Page menus. The capabilities, menu setings etc. and their use are fully described in sections $3 \mathrm{~B}-5$ and 3 C of this manual. Refer to those sections for more information. There is only one actual "menu" available: Parameter. It is shown below.

Data Calculator Page, Parameter "menu"

SOME POINTS RELATED TO INTERPOLATION

The Interpolation capability is accessed via the SHIFT and FCTN keys. The menu details when it is accessed are as shown below.

Data [Waveform] Setup menu - Interpolation Accessed.
The setting fields and their use etc. are described in sections 3B-6. The following points concerning "CPs" should be noted.
remove CPs] - Why is it neccessary?
When a waveform is to be created by interpolation, CPs have to be defined at particular addresses. The remove CPs] function enables prevously set CPs to be deleted. Even if you have not previously allocated any CPs, some may exist! This is explained as follows.
For each Arb. output one channel is reserved for CP data. These channels are 1 and 3 of POD 0 for ARB A and ARB B respectively. At each address where a CP is defined, a " 1 " is automatically set in the appropriate channel. You do not need to concern yourself with this process. In fact, in Arb. configuraion you cannot access the channels. However, in Parallel config. they can be accessed and will quite possibly be used. Therefore "CPs" may exist even though not directly set.
such "CPs" do exist, you may get a surprise later when using the Interpolation capability of [Waveorm] menu! (particularly when CP set to [on], reason will be obvious from previous explanation.) It is therefore recommended that before starting to set CPs, you first use [remove CPs] to ensure that only the ones you want are used

Note that if not required for CPs, you can obviously access and use the two channels (Parallel config.) for say, trigger signals if you wish.

The Edit Capabilities and How to use Them

general information

This section explains only those edit capabilities which relate directly to the Arb. configuration of the 8175A.
The 8175A Arb. is provided with a powerful set of editing functions (capabilities). Many of them are used in the same way as the corresponding standard 8175A ones. They are accessed via the blue SHIFT and MAIN DISPLAY keys. Most of the Arb. edit functions relate only to the [Pattern/level] Setup menu f the Data Page. However an interpolation edit function is provided for [Waverm] Setup mithou special point to note, is her ber whe to UPDATE an UPDATE command has been given.

The interpolation edit function, is explained in section 3B of this manual and is therefore only briefly described here.

3F-1

OVERVIEW
y using the edit capabilities, the following can be achieved:
Single level (in voltage or code form) and duration values, can be inserted, or deleted. Segments of signals can be moved, copied or stored within each Arb. channel or between channels. The same applies for interchanging between channels. Segments of Level and duration values can also be modified. The interpolating between them.

The main" functions available are:
INSERT DELETE COPY MOVE MODIFY SPLINE (FCTN)

From the Data edit functions "COPY and MOVE", further sub-functions are available. Some of these which enable copy/exchange between the two Arb. channels) are available only if both Arb. channels are displayed. The sub-functions are accessed via the NEXT[]/PREV[] keys and are as follows
COPY
\downarrow
COPY Address
STORE
ARB A > ARB B
ARB B > ARB A

MOVE
MOVE Addres
ARB A <> ARB B

COPY, MOVE and MODIFY apply only to the Data [Pattern] Setup menu. Access to them is cursor position independent. This means that they can be accessed (and implemented) with the cursor in any osition within the menu. For all of them, unlike INSERT and DELETE, entry fields are provided below the pattern display. These fields, which appear immediately after selection of the particular edit mode, are for entry of the appropriate address/level values etc.

3F-2

BASIC PRINCIPLES OF EDITING

General

There are some basic points which you should note relating to use of the functions, these are as follows:
. Any edit function result will apply only to those Arb. data and trigger channels displayed by the currently used Format Allocation.
2. All except, INSERT and DELETE, provide one or more fields for address, data and/or value entry.
3. INSERT and DELETE are initiated as soon as their corresponding keys are pressed (no "EXEC" is necessary).
4. INSERT and DELETE, can be accessed only when the cursor is positioned within a suitable field or display area. These are described later in the corresponding explanation
5. All editing functions, except INSERT and DELETE, require that the EXEC key be pressed (after data and/or address entry etc.) to initiate the change(s).
6. For all editing functions, the change(s) will only become available for outputting after an UPDATE is done. The letter: "U" will be displayed on the 8175 A screen to remind you to do this.

How to Cancel an Edit Function

The Edit functions COPY, MOVE, MODIFY and SPLINE can be cancelled (even if some, or all of the fields have been filled) in four different ways. Note that not all possibilities apply to all menus. The four methods are described below. In each case, after cancelling, the current menu status will be tained. dit functions can be cancelled by
pressing Abort (SHIFT + CLEAR ENTRY)
pressing any MAIN DISPLAY ke
changing the displayed Format
changing the data entry code (HEX BIN etc)
The following pages provide explanations of how to use all the Arb. related Edit functions. For all except INSERT and DELETE "Before and After" display examples are used to simplify the explanations

3F-3
 INSERT/DELETE

These functions can be used, on the [Waveform] and [Pattern/Level] Setup menus. As the names suggest, they provide an "insert or delete" capability. What can be inserted or deleted on any menu and, how to do it, is described in the following paragraphs. Note however the following points:

INSERT and DELETE, can be accessed only when the cursor is positioned within a suitable field or display area. These are menu dependent and are as follows:
[Pattern] menu - anywhere in the (inverse video) required Address/data row
[Waveform] menu - only in the Edit field.
Note the following point, it has a special significance for the Program Page: Use of either function will result in existing data pattern/Address or Label relationships being changed. Therefore, you must ensure that any Program Segments which include such Addresses or Labels are changed as necessary.

The use and effect of INSERT and DELETE on the two menus is as follows

Data [Pattern/Level] Setup menu.

INSERT and DELETE enable either new lines of level and trigger data or, just trigger data, to be inserted/deleted. In either case, simply position the cursor in the appropriate Address row and press the required key. The inserted line will be a copy of the line where the insert was done.

Remember that INSERT and DELETE will apply only to those Arb. level and trigger channels as currently displayed (according to the Used Format Allocation). This means that you can for example insert just trigger data if required.

Data [Waveform] Setup menu

On this menu, INSERT and DELETE enable level and trigger data to be inserted and deleted. The cursor must first be positioned in the Edit field. In the same way as for the [Pattern/Level] Setup menu, only those Arb. and trigger channels currently displayed will be affected.

3F-4
 COPY

COPY comprises the four edit sub-functions: [COPY Address] [STORE] [ARB A > ARB B] and [ARB B ARB A]. They apply only to the Data [Pattern/Level] menu. Access to them is cursor position independent. This means that they can be accessed (and implemented) with the cursor in any position within the menu.

Note that for all these edit functions
COPY performs a pattern copy, therefore when the [ARB A > ARB B] etc, functions are used, only the "step value" of patterns will be copied. Levels from different Amplitude Ranges will be converted to the corresponding value in the destination range.

EXEC must be pressed, once the fields have been filled, to initiate the edit changes. In addition, UPDATE must be pressed to transfer the new conditions to the outputs.

COPY: [COPY Address]

This edit function enables blocks of level and/or trigger data defined by "from" and "to" addresses, to be copied to a position defined by a destination "->" address. Note the following points regarding the use of COPY Address:

1. The data block to be copied will be defined by the addresses set in the "from" and "to" fields. Addresses can be defined by either the actual location number or a label
2. The destination address (or label) will be set in the " $->$ " field. It must be outside the data block defining addresses.
3. Data at and after the destination address will not be overwritten. It will be "shifted forward" when COPY is EXECuted. Note also (4):
4. If the destination address is before the "from" one, the block of source data will also be "shifted forward" when COPY is EXECuted.
5. Duration values will be copied along with the data.
6. Labels will not be copied

Example: COPY Address

This example shows how to copy a data block, defined by addresses 8 and 11 , to destination address 13 .

COPY Address: Before EXEC
After EXEC

COPY: [STORE]

This edit function enables blocks of level and/or trigger data, def ined by "from" and "to" addresses, to be copied to a position defined by a destination " \rightarrow " address. It is similar in many respects to the [COPY Address] function, but existing data will be overwritten. Note the following points regarding the use of STORE:

1. The data block to be copied (STORED) will be defined by the addresses set in the "from" and "to" fields. Addresses can be defined by either the actual location number or a label
2. The destination address (or label) will be set in the " \rightarrow " field. It must be outside the block defining addresses.
3. Data at, and after the destination address will be overwritten.
4. If the destination address is < the start (from) one, it will also be over written. Also, note that even in this case the block of source data will not be "shifted forward".
5. Duration values will be copied along with the data.
6. Labels will not be copied.

Example: STORE

This example shows how to STORE a data block defined by the addresses 4 and 6 The destination address is defined as 8 . Note how after EXEC, the original data at addresses 0008 to 0010 , is overwritten by the source data.

STORE: Before EXEC

After EXEC

COPY: [ARB A > ARB B
This edit function enables segments (data blocks) of source data to be copied from one Arb. channel to another. The segment can extend over the compete memory depth. Note the following points

1. The function can be accessed only if both Arb. channel groups are displayed
2. The NEXT[]/PREV[] keys enable the Arb. channels for the copy to be interchanged.
3. The data block to be copied will be defined by the addresses set in the "from" and "to" fields. Addresses can be defined by either the actual location number or a label.
4. The destination address (or label) will be set in the " $->$ " field. It must be outside the block defining addresses.
5. Data at and after the destination address will be overwritten.

Example: ARB A > ARB B
This example shows how to copy a segment from Arb, A to Arb. B The segment is defined by addresses and 10 , the destination address in Arb. B is 11 .

Data [Pattern/Level] Shed formet Hillocation [DIJAL.:]			
	Tress MSme $\quad \underline{\text { CPEL }}$		Tura
	amas	LABS. LVEEL	
	\%		(100 108
\% 190	\%011		${ }^{160}$
		[$+1 \times 1200$	\% 1100
\int_{3}		9.181	${ }^{198}$
		3.1ain	(100
	\%		

ARB A > ARB B:Before EXEC
After EXEC

3F-5
 MOVE

MOVE comprises the two edit sub-functions: [MOVE Address] and [ARB A <> ARB B]. They apply only to the Data [Pattern/Level] Setup menu. Access to them is cursor position independent. This means that they can be accessed (and implemented) with the cursor in any position within the menu.

Note that for both these edit functions

MOVE performs a pattern move, therefore when the [ARB A $>$ ARB B] function is used, only the "step value" of patterns will be copied. Levels from different Amplitude Ranges will be converted to the corresponding value in the destination range.

EXEC must be pressed, once the fields have been filled, to initiate the edit changes. In addition, UPDATE must be pressed to transfer the new conditions to the outputs.

MOVE: [MOVE Address]
This edit function enables a data segment to be moved from its current location within an Arb. channel to a new one within the same one. Locations "vacated" when the block is moved will be filled as the other patterns move back or forwards as appropriate. Note the following points regarding the use of MOVE Address:

The segment to be moved will be defined by the addresses set in the "from" and "to" fields. Addresses can be defined by either the actual location number or a label.
2. The destination address (or label) will be set in the " \rightarrow " field. It must lie outside the data block defining addresses.
3. The function will not result in any data being destroyed. If the destination address > the "to" one, the following applies
All data from address "to" +1 , up to the last new line to be occupied by the block, will "move" back to occupy the "empty addresses"
If the destination address is < the "from" one, then it (destination address) plus all addresses up to "from-1" will move forward to occupy the vacated ones.
4. Duration values will be moved along with the data.

MOVE: [ARB A <> ARB B]
 This edit function enables segments of data to be exchanged between Arb. channels. The channels can

 extend over the compete memory depth. Note the following points:1. The function can be accessed only if both Arb. channels are displayed.
2. The segment to be exchanged will be identified by the "from" and "to" address settings.

Example: Move Address
This example illustrates the effect of moving the segment defined by addresses 14 and 16 to destination address 18. Note how, after EXEC, the original data from addresses 0017 to 0020 has shifted back to occupy the vacated locations.

MOVE Address: Before EXEC
After EXEC

Example: ARB A<> ARB B
This example shows the effect of exchanging Arb. channel data between addresses 9 and 13 .

3F-6
 MODIFY

Modify enables segments of level (with or without duration) data to be set as required. The Arb. channel roup(s) which can be modified depend on the current "Used Format Allocation". Duration can only be modified if set to [variable]. Note the following points:
. Trigger and duration values can be left unmodified if wished. This is done by leaving their respective setting fields blank (they will contain dots).
2. Trigger values are set via the 0 and 1 keys
3. If they are to be modified, duration values must first be set to the default value ($0.02 \mu \mathrm{~s}$) via the NEXT[]/PREV[] keys. Then numeric values can be set. Use the NEXT[]/PREV[] keys to set the units.

Example: MODIFY

This example illustrates the effect of modif ying level data of Arb. A between addresses 0 and 3. The levels are to be modified to 0.000 V , trigger data is to be left unchanged. Note that no duration modifying field is available, this is because duration is currently set to [fixed].

MODIFY: Before EXEC

3F-7
 SPLINE

This function is accessed via the FCTN key. It applies only to the [Waveform] Setup menu and provides n interpolation capability. It is significantly different from the other edit capabilities in use and is described in detail in section 3B of this manual. It includes worked examples etc. Therefore refer to that section for more information.
F
C

3G

Parallel: Master Slave operation

In the same way as for the standard 8175 A , two Arb. configured instruments be operated in a "MasterSlave" mode. This then doubles the available Arb. channels to 4. Synchronization is achieved by using Slave mode. This then doubles the available Arb. channels to 4. Synchronization is achieved by using e observed when operating two 8175A's in parallel irrespective of the configuration. These are described in the following paragraphs.

NOTE: It is recommended that both instruments are switched off whenever interconnecting, disconnecting them and/or setting the HP-IB switch conditions etc.

3G-1

GENERAL PRECONDITIONS AND ASSIGNMENT OF MASTER/SLAVE
First, one 8175A must be designated as the "Master" and the other as the "Slave". This is done by setting switch element 7 of the HP-IB System switch to 1 (Master) or 0 (Slave) as required. On both instruments, switch element 6 must be set to 0 i.e., normal self test. For HP-IB operation, each 8175A must have a switch element 6 must be set to 0 i.e.., normal self test. For HP-IB operation, each will only take their Master and Slave status when the switch status is read in at power-up. Then, the one designated as "Slave" will include the word (Slave) at the top of each menu, adjacent to the configuration indicator.

NOTE: If the interconnecting cable is disconnected at only one end, correct operation of the still connected instrument cannot be guaranteed. (Reflections back up the cable may occur.) Therefore, if not needed for parallel operation, disconnect it completely

3G-2
RESTRICTIONS ON SETTINGS AND FUNCTIONS

General Restrictions

On each instrument, for true parallel operation, almost all settings (except for data, Flag outputs and Clock related ones), on corresponding Master/Slave menus, should be the same. However, it is possible that for a particular application, you will need to set certain settings differently. Details of those which can differ, their significance and general restrictions are as follows

In parallel operation, the Master 8175A behaves almost exactly as if in single instrument configuration. The only restrictions for the Master, concern Single Step operation. These, together with related Slave restrictions are as follows.

Address Single Step is possible for the Master but not recommended since, for the Slave 8175A it is nhibited.
Program Single Step is possible for both under certain limitations, these are:
In Single Cycle mode, Program Single Step control is disabled from the Slave. It is allowed from the Master which, will automatically control the Slave

In Auto Cycle mode, it is disabled from the Slave and not recommended from the Master since the Slave is not synchronously controllable.
All other restrictions apply only to the Slave 8175A. START, STOP. CONTINUE etc are all controllable only from the Master. Details of the Slave restrictions are as follows:

Slave 8175A Restrictions

CNTRL Page - [Clock] menu

Mode: Auto or Single Cycle are selectable but not sychron or asychron. These are only Master settable.

Trigger POD:
It will be disabled for trigger functions but still operative for Flag outputs. External input is disabled.

START and/or STOP.
Controllable only from Master, therefore no Trigger control possible.
Trigger POD [asychronous]
This is only significant for Flag outputting.
Trigger POD Threshold TTL:
As above
Valid Trigger Word Duration: [20 ns] As above

System Clock: [internal];
The System Clock is always derived from the Master. Both external clock sources are dis the Systed. Clock calibration cannot be done from the Slave.

Clock: All functions are available.
CNTRL Page - [Flag] Assignment menu
All Flag capabilities are available.
PRGM Page - [trigger Event] Assignment menu
Address and Program Single-Step from:
This is disabled for the Slave
 \section*{3H-1
 \section*{3H-1
 GENERAL INFORMATION}

The same principles apply for remote control of an Arb. configured 8175A as for the other two configurations. Basic programming information and examples etc. are given in the standard 8175A Op and Progr. manual. This section provides only the additional HP-IB commands applicable to the Arb configuration.

NOTE: Setting the 8175A to be Remotely Controlled
Whenever the 8175A is to be remotely controlled over the HP-IB, it must be set to be "HP-IB CONTROLLED". Once this is done, HP-IB control can only be achieved via an external controller (technical computer). If you do accidently have both the 8175A and an external controller simultaneously conigured as the HP-IB controller strange things will happen! You will probably have to switch of the 175A then set the switch (as mentioned in next paragraph) correctly etc.

For the 8175 A to be "HP-IB CONTROLLED", element 8 of the switch on the instrument rear panel must be set to 1 . The lower part of the switch element must be pressed in flush with the main switch body. Refer to the figure below.

Switch setting for HP-IB Control of the 8175A

3H-2
 OF ARB. HP-IB COMMANDS

The following list details only those additional (to standard 8175A) HP-IB commands applicable to the Arb configuration of the 8175 A . Most of the additional commands are Output and Data Page based

Arb. related Commands of the SYSTEM Page

Description/Requirement
 COMMAND DETAILS

muem data AILS:
ref.
Arbitrary Waveform Generator config.
GEN 2
MPORTAN' NOTE: Internal Storage Capabilities
If the PRE command (Preset to Standard Settings) is sent when the 8175A is configured as an Arb., any Calculator modules will be deleted! In either of the other two configurations, Calculator modules will not be deleted by sending the PRE command.

Arb. related Commands of the OUTPUT Page

Description/Requirement	COMMAND DETAILS:		Comments mnem	
		data	Unit	ref.

Comments:

General: For Cl to $\mathrm{C} 5, \mathrm{CHN}$ means Arb. channel. $\mathrm{O}=\mathrm{Arb}$. $\mathrm{A}, \mathrm{I}=$ Arb. B .
Cl : Load value (N): $\mathrm{O}=50 \mathrm{Ohm}, \mathrm{I}=$ high resist (open)
C2: Amplitude Range:

Load = 50 Ohm: Ranges:	$0: 200$	mV
	$1: 500$	mV
	$2: 1$	V
	$3: 2$	V
	$4: 5$	V
	$5: 10$	V
	$6: 16$	V
	$0: 500$	mV
	$1: 1$	V
	$2: 2$	V
	$3: 5$	V
	$4: 10$	V
	$5: 20$	V
	$6: 32$	V

C3: Level value consists of sign, value and unit. No sign will mean positive assigned, Value must be within range selected. If hardware unable to resolve value, then last digit will be rounded to enable within range selected. If hardw

C4: Disable $=0$, Enable $=1$
C5: Normal $=0$, Complement $=1$.

Arb. related Commands of the DATA Page

Description/Requirement	COMMAND DETAILS:		Comments	
	mnem	data	Unit	ref.

Comments:

Calculator:

The calculator cannot be remotely activated or controlled. If the calculator is active and an HP-IB command is sent, the effect depends on the Calculator status.

Status: Calculating
The calculation will be continued until completed and then Data Page menu 0 ([Format] Allocation) will be accessed.

VERY IMPORTANT POINT

Status: Editing:
The Calculator module(s) will be destroyed!
Then the Data Page menu 0 ([Format] Allocation) will be accessed.
For any other Status:
For any other Status:
Data Page menu 0 ([Format] Allocation) will be accessed.
Cl: $\mathrm{CHN}=$ Arb. channel, $0=$ Arb. $\mathrm{A}, 1=$ Arb. B .
Name:
(DUAL) : both Arbs. and both triggers
(ARB A): Arb. A and trigger A
(ARB A): Arb. A and trigger A
$\begin{array}{ll}\text { (TRG B) : } & \text { Arb. B a } \\ \text { trigger A }\end{array}$
(TRG B): : trigger B
C2: Base:
0 : abs. leve
$1:$ rel. level
2 : binary (10 sig. digits)
3 : octal (4 sig. digits)
4 : decimal (4 sig. digits)
5 : hex (3 sig. digits)
For base = 0/1:
Value consists of sign, value and unit. No sign will mean positive assigned. The value must be within range actually selected. If, the hardware unable to resolve value, the last siginificant digit will be rounded. Unit can be mV and V .

For base $=2 / 3 / 4 / 5$
See comments in brackets given for base types above.

QUERY MESSAGES

These commands are a subset of "HP Common Instrument Capabilities"

Description/Requirement	COMMAND DETAILS: mnem		data	Unit

Comments

C1: Format returned to controller is of form: " $+/-x x . x \times x \times V^{\prime}$
C 2 : The format returned to the controller depends on the base actually selected:
Base: 0 : abs. level
0 : abs. level
1 : rel. level
Base $=0 / 1$
Base $=2$:
xxxxxxxxxxB
Base $=3$:
xxxx0
Base = 4:
xxxxD
Base $=5$:
xxxH

2 : binary (10 sig. digits)
3 : octal (4 sig. digits)
4 : decimal (4 sig. digits)
5 : hex (3 sig. digits)

Value consists of sign, value and unit. No sign means positive one. Units is V

C3: The format returned to the controller will be as follows: " $+/-\mathrm{xx} . \mathrm{xxxx} \mathrm{V}^{\prime \prime}$

LEARN STRING COMMANDS

Description/Requirement	COMMAND DETAILS:		Comments	
	mnem	data	Unit	ref.
Return Calculator module to Controller				
Accept Calculator module from Controller	CLC	0	-	Cl
		0	-	Cl

Comments

A point to be noted when using any learn string commands is that, 10240 bytes are allocated for internal storage of complete hardware and software data and settings etc. A total of 795 bytes are separately allocated for the Calculator. For both cases, an additional 4 bytes are required for string identification and length etc.
Cl Note that Calculator modules can only be returned to/accepted from the "actual" location (0)

CHAPTER 4

PERFORMANCE TEST

FOR OPTION 002

4-1 INTRODUCTION

4-2 The test procedures given here are for testing the electrical performance of only option 002 (Dual Arbitrary Waveform Generator) of the HP 8175A using the instrument specifications of Table 1-2 performance standards. Test procedures for the standard 8175 A are given in the standard Operating and Programming manual. Access to the interior of the instrument is not necessary for any of the followin tests.

4-3 EQUIPMENT REQUIRED
-4 Equipment necessary for performance testing is listed in Table 1-I, Recommended Test Equipment Alternative test equipment may be substituted for recommended models, provided that it satisfies the critical specification given in the table.

4-5 TEST RECORD

4-6 A tabulated Test Record listing all of the tested specifications and their acceptable limits is provided at the end of the procedures. Test results recorded at incoming inspection will provide a reference for periodic calibration, troubleshooting and after-repair testing.

4-7 PERFORMANCE TEST

4-8 During any performance test, all shields and connecting hardware must be in place. All tests are designed to verify the published specifications. It is recommended that tests be performed in the sequence given, and that all data be recorded on the lest record provided at the end of the test procedures
4-9 Each test is arranged in the order that its specification appears in Table 1-2. Note that the instrumen should be given a 30 minute warm-up period before the commencement of any of the following test.

Note:

1. The following tests start at 4-22 since the last test for the standard 8175A is 4-21
2. For many of the following tests screen display figures of the 8175 A are shown to illustrate the Fettings to be made. Ensure that in such cises your 8175 A seltings are identical to these of the creen displays given.

4-22

Specifications:
Number of outputs:
(Output A and Output B on front panel, can be separately disabled)
Number of bits: 10
Number of data points:
Horizontal: $\quad 1024$ points
Vertical: $\quad 1000$ points with additional 24 points override except for: 800 points for 16 V P-P Output Voltage. 040 points for 32 V P-P Output Voltage.

Differential Non-Linearity: $\quad=<1$ L.SB (monotonic)
Output Impedance: $\quad 50 \mathrm{Ohm}+,-5 \%$
Output levels, see following table:; for Output Voltage and Oifset values.
P-P Output Voltage (Peak to Peak Ouppur Voltage) is the output level with offset $=0$. Level window defines the maximum output signal range for the sum of Offset and P-P Output Voltage.
Table 4-1.

Load Impedance: 50 oh

Level Window	p.P Output Range	Voltage Res.	offset Range	Res.
+/. 0.8 V	0.2 V	0.2 mv	+/. 0.8 v	0.5 mv
+/-0.8 V	0.5 V	0.5 mV	$+1.0 .8 \mathrm{~V}$	0.5 mV
+/-0.8 V	1 V	1 mv	+1.0.8 V	1 mv
+/-8 $\mathrm{V}^{\text {d }}$	2 V	2 miv	+1. 8 V	5 mv
+1. 8 V	5 V	5 mv	$+1.88$	5 mv
+/. 8 V	10 V	10 mV	+/. 8	10 mV
+/. 8 V	16 v	20 mv	+1	20 mv

Load Impedance $>=50$ kohin

Level Window	P-P Output Range	Voltage Res.	offset Range	Res.
+/. 1.6 V	0.5 V	0.5 mV	+/. 1.6 V	0.5 mv
+\%. 1.6 V	1 V	1 mv	+1. 1.6 V	1 mV
+1. 1.6 V	2 V	2 mv	+1. 1.6 V	2 mv
+/-16 V	5 V	5 mV	+\%. 16 V	5 mV
+/. 16 V	10 V	10 mv	+/. 16 V	10 mV
+1. 16 V	20 V	20 mV	+/. 16 V	20 mV
+/-16 V	32 v	50 mV	+\%. 16 V	50 mV

Equipment: $\quad 8175 \mathrm{~A}$ OPT 002, IDVM, 10503A, 50 Ohm Feedthrough ($+/-1 \%$), BNC-Banana
4-22A DATA POINTS
Test Setup:

Procedure:

Note:
Where display details are given, ensure that all seltings on your 8175A, are as shown.
8175A: Recall Standard Settings
SYSTEM $>$ NEXT $=[$ Storage $]>$ CURSOR $\downarrow=[$ STORE $]>$ NEXT $=[$ recall $]$ Standard Settings $>$ EXEC
Set up configurations A and B (in Parallel Configuration) as shown below:

[Format:3]
 $\left.\frac{[\text { flixed }}{0.18[L s]}\right]$
 NㅡN

Set up data, using INCREMENT, as shown (blue $>$ PRGM $=$ Function).

A INCREMENT in steps of I: Betore EXEC
 After EXEC

Repeat same procedure (setting up data) for Used Format Allocation [B] to produce following display:

B INCREMENT in steps of I: After EXEC
SYSTEM $>$ CURSOR $\downarrow=$ Arbitrary-Generator $(A R B)>$
CNTRL $>$ CURSOR $\downarrow=[$ Single Cycle $]>$ NEXT $=[$ Auto Cycle \mid

Set the following menus to read as shown:

Trigger Setup

Press: blue $>$ EXEC $=$ UPDATE $>$ START

Waveform Page after EXEC:

1. Measure with scope connected to Output A or B for a linearly increasing signal as shown below

Trigger: Ext.
Scope setting
Time/Div 10 us

4-22B AMPLITUDE/OFFSET

Test Setup

Procedure:

8175A:
On Data Page (ARB) Data [Format]Allocation change Period to $2[\mathrm{~ms}$]
For addresses 0 to 511 and 512 to 1023, use MODIFY to set un the two level values'as shown:

MODIFY before EXEC
After EXEC

MODIFY before EXEC
Alter ENEC
At Addresses 0000 and 0512 only, change [TR(; A] to 0 UPDATE > START

On Output Pages [ARB A]/[ARB B] ensure that the Orfsel is set to 0.000 V .

AMPLITUDE measurements:

Set DVMI: VDC. Auto Range off. Trigger ext

1. With 8175 A connected as shown in Test Setup, measure the output by summing the DVM readings as follows. e.g.
pos. measured value (+) 100 mV

+ neg. measured value
$=$ amplitude $=200 \mathrm{mV}$

On Output Page [ARB A): change the Amplitude Ranges via NEXTII key from 200 mV to 10 V in normal/complement mode and measure the Amplitude values according to the following table:

Table 4-2.

Amplitude Range	abs level	Amplitude	
		Low Limit	High Limit
200 mv	+/. 100 mv	191.2 mV	208.8 mV
500 mV	+/. 250 mV	478 mV	522 mv
1 v	+\%. 500 mV	956 mV	1.044 V
2 V	$+/$. $+\%$ +1 2.5 V	1.912 V 4.780 v	2.088 V
${ }^{5} 5 \mathrm{~V}$	$+1.2 .5{ }^{+1}$	4.730 V 9.560 V	5.220 V 10.440 V

2. Disconnect the 50 Ohm Feedthrough and change on Output Page:

Level [ARB A] into [open]
Change Amplitude Ranges and measure the Amplitude values according to the following table:
Table 4-3.

Amplitude Range	ABS LEVEL	Ampli fude	
		Low limi	High limit
500 mv	+/. 250 mv	478 mV	522 mv
1 v	+/. 500 mV		1044 mV
2 V	+/. 1 V	1.912 V	2.088 V
5 V	+/. 2.5 V	4.780 V	5.220 V
10 V	+1. 5 V	9.560 V	${ }^{10.440 ~ V}$
20 V	+/. 10 V	19.120 V	20.880 V

3. Repeat steps 1 and 2 for Output B.
4. In same way as for procedure at 4-22B, use MODIFY to set up the following level values:
+8 V for Address 0-511
-8 V for Address 512-1023
On Output Page [ARB B], change the load to [50 Ohm] and the Amplitude Range to [16 V] With 50 Ohm Feedthrough connected measure for

Ampl. Range	Abs. Level	Amplitude	
	$+/-8 \mathrm{~V}$	Low Limit	High Limit
16 V			

Make the same load and Amplitude Range changes for [ARB A] and measure the Amplitude
5. Change the load to: into [open].

Amplitude Range to [32 V].
Use MODIFY on Data [Pattern/Level] Setup Page (as for step 4 previousley) to set the following levels:

$$
\begin{aligned}
& +16 \mathrm{~V} \text { for Address } 0-511 \\
& -16 \mathrm{~V} \text { for Address } 512-1023
\end{aligned}
$$

Disconnect the 50 Ohm Feedthrough and measure the Amplitude:

Ampl. Range	Als. Level	DVM Reading	
		Low Limit	High Limit
32 V	$+/-16 \mathrm{~V}$	30.52 V	33.48 V

Make the same load and Amplitude Range changes for [ARB B] and measure the Amplitude

OFFSET measurements:

6. On Data [Pattern/Level] Setup Page, for both Output channels [DUAL] MODIFY the levels to 000V from Address 0-1023

Reconnect the 50 Ohm Feedthrough to Output A
7. On Output Page (ARB)

Change level [ARB A] into [50 Olm].
Change Amplitude Range to: [IV]
$\begin{array}{ll}\text { Set Offset to } & +799 \mathrm{mV}, \\ \text { DVM Reading } & +799 \mathrm{mV}+/-18 \mathrm{mV} .\end{array}$

Use Roll \uparrow as VERNIER to change the Offset to +800 mV DVM Reading $+800 \mathrm{mV}+/-18 \mathrm{mV}$
8. Change Amplitude Range to [500 mV] / [200 mV

DVM Reading $+800 \mathrm{mV}+/-18 \mathrm{mV}$
Repeat for Amplitude Range $=[200 \mathrm{mV}]$

Change Offset to +799.5 m
DVM Reading $+799,5 \mathrm{mV}+/-18 \mathrm{mV}$.
9. Repeat steps 7 and 8 for a neg. Offset $(-800 \mathrm{mV})$.
10. Repeat steps 6 to 9 for OUTPUT B [ARB B].
11. Change Amplitude Range to: $[2 \mathrm{~V}] /[5 \mathrm{~V}]$

Set Off set to - 7.995 V
DVM Reading - $7.995 \mathrm{~V}+/-105 \mathrm{mV}$
Repeat for Amplitude Range $=[5 \mathrm{~V}]$
With Rollt as VERNIER change the Offsel to -8.00 V
DVM Reading $-8.000 \mathrm{~V}+/-105 \mathrm{mV}$.
12. Amplitude Range change to: [10V]

DVM Reading $-8.00 \mathrm{~V}+/-130 \mathrm{mV}$
Change Offset to -7.99 V
DVM Reading $-7.99 \mathrm{~V}+/-130 \mathrm{mV}$.
13. Change to Amplitude Range: $[16 \mathrm{~V}]$

DVM Reading $-8.00 \mathrm{~V}+/-130 \mathrm{mV}$
Change Offset to -7.98 V
DVM Reading $-7.98 \mathrm{~V}+/-129.8 \mathrm{mV}$.
14. Repeat steps 11 to 13 for a pos. Off set $(+8 \mathrm{~V})$.
15. Repeat steps 11 to 14 for OUTPUT A [ARB A].
16. Disconnect the 50 Ohm Feedthrough Change Level [ARB A] into [open].
Change Amplitude Range and Offset as shown in table below.
Measure against given Accuracy.
Table 4-4.

17. Repeat step 16 for OUTPUT B [ARB B]

4-23 OUTPUT TIMING

4-23A DATA POINT DURATION OUTPU' A/OUTPUT B WITH INTERNAL CLOCK

Specification:

Range Resolution Accuracy

20 ns - 9.99 us
10 ns
$\pm 0.05 \%$ of prog. duration
± 2.5 ns (asynchron startable)
10 us - 999 us
$1 \mathrm{~ms}-99.9 \mathrm{~m}$
$100 \mathrm{~ms}-9.99 \mathrm{~s}$
1 us
100 us
100 us
$10 \mathrm{~ms} \quad \pm 0.5 \%$ of prog. duration
± 2.5 ns (synchr. startable, Clock Calibration)
$\pm 3 \%$ of prog. duration
± 2.5 ns (synchr. startable, no Clock calibration)
Equipment: 8175A Opt. 002, Counter, Time Mark Generator, Oscilloscope
Test Setup:

Procedure:

8175A: Recall Standard Settings
SYSTEM $>$ NEXT $=[$ Storage $]>$ CURSOR $\downarrow=[$ store $]>$ NEXT $=[$ recall $]$ Standard Settings $>$ EXEC
SYSTEM $>$ NEXT $=[$ Configuration $]>$ CURSOR $\downarrow=$ Arbitrary-Generator $(A R B)$
CNTRL $=[$ Clock $]>$ CURSOR $\downarrow=$ Mode [Single Cycle $]>$ NEXT $=[$ Auto-Cycle $]$
On OUTPUT Page (ARB) level [ARB A] and [ARB B] Amplitude Range change to: [5V].
Change Outputs and Trigger Outputs to lenabled].

Data Page Set up
On Program Page (ARB) [Module] Assignment change the "to" Label or Address 1023 to 1.
blue > EXEC = UPDATE > START

Counter settings:

Trigger Level A and B 1.2V
Time A \rightarrow B
Auto Trigger OFF

Gate Mode Min
 Channel $A /$ and $B \backslash, Z=50$ Ohm, COM A Statistics Mean

1. Using the time mark generator, check the oscilloscope time base accuracy in the 0.05 usec/Div $\times 10$ Range. Note error and take timebase error into account.
Connect Output A to oscilloscope and check for 20 ns .
Connect Output A to the A input of counter
Program counter time fet so (t - noted error) is displayed EG. OFFSET $>(\mathrm{CHS})>x x>\mathrm{EFX}>\mathrm{CHS}>9>$ ENTER
2. Measure Data Point Duration of Output A and Output B in Mode: [Auto-Cycle] [asynchron] startable arpainst Table 4-5.

Set 8175A
Data Page (ARB)
Data [Format] Allocation
After each new Period Setting press STOP > UPDATE > START
Table 4-5.

3. Same test setup as before.

Measure Data Point Duration in Mode:
Auto-Cycle] [synchron] startable. (See Table 4-6)
Set 8175A:
CNTRL $>$ CURSOR $\rightarrow 2 \mathrm{X}>$ NEXT $=[$ Alto-Cycle] [synchron] startable $>$ DATA $=$ Period

[^2]After each new Period Setting press stop > update > start
Table 4-6.

4. Same test setup as before

Meastre Data Point Duration in Mode
Auto-Cycle] [synchron] startable with [Clock Calibration). (See Table 4-7), Set 8175A:
CNTRL $=$ [Auto-Cycle] [synchron] startable $>$
DATA $=$ Period >0.1 (after the first Period setting) $>$ sTOP $>$ UPDATE $>$
CNTRL $>$ CURSOR \rightarrow [Clock calibration] $>$ EXEC $>$ START
After each new Period Setting press stop > UPDATE > START
Table 4-7.

Period	Counter Reading	
	low limit	high limit
0.10 us	97.0 ns	103.0 ns
${ }^{1} 9.00$ us	992.5 ns 8.7275 us	1.0075 us 9.2725 us
100 us	99.5 us	100.5 us
900 us	873 us	927 us
	$\begin{array}{lll}9.95 & \text { ms } \\ 995 & \text { ms }\end{array}$	10.05 ms 1.005 s

5. Repeat steps 1 to 4 for OUTPUT B.

4-23B TRIGGER PULSE WIDTH WITH INTERNAL CLOCK

Same as for Data Point Duration

Equipment

Same as for Data Point Duration
Test setup:
Same as for Data Point Duration

Procedure:

Measure Trigger A and Trigger B in the same way as for steps 1 to 4 of Data Point Duration 4-14

4-24 TRIGGER OUTPUT CHARACTERISTICS

Specifications:
Number of Outputs: 2 (Trigger Output A at Front Panel and Trigger Output B at Rear Panel)
Trigger Output Levels:

TTL	Load impedance 50 Ohm	$>=50 \mathrm{KOhm}$
Low Level	$<=0.3 \mathrm{~V}$	$<=0.2 \mathrm{~V}$
High Level	$>=2.4 \mathrm{~V}$	$>=4.8 \mathrm{~V}$
ECL		
Low Level	$<-1.6 \mathrm{~V}$	not specified
High Level	$>-0.9 \mathrm{~V}$	

Low Leve
Equipment: $\quad 8175 \mathrm{~A}$ Opt. 002, BNC Cable 10503A, 50 Ohm Feedthrough, Oscilloscope
Test Setup:

Procedure

8175A: Recall Standard Setting
SYSTEM $>$ NEXT $=[$ Storage $]>$ CURSOR $\downarrow=[$ store $]>$ NEXT $=[$ recall $]$ Standard Settings $>$ EXE
SYSTEM $>$ NEXT $=[$ Conliguration $]>$ CURSOR $\downarrow=$ Arbitrary-Generator $(A R B)$
CNTRL $=[$ Clock $]>$ CURSOR $\downarrow=$ Mode $[$ Single Cycle $]>$ NEXT $=[$ Auto-Cycle $]$
On Data Page (ARB) Data [Format] Allocation change Period to: 2 [ms]

For Addresses 0 to 511 and 512 to 1023 , use MODIFY as shown to set up the following two level values:

MODIFY before EXEC
After EXEC

MODIFY before EXEC After EXEC
Change ARB A [ABS LEVEL] at Address 0000 and 0512 to 0.000 V
UPDATE > START

Using test setup:

1. Connect either the Trigger Output A or B to the DVM and measure the Trigger signal against the Table below.

Trigger Level ECL
Low
High Level
$<=-1.6 \mathrm{~V}$

Trigger Level TTL
Low Level

$$
\begin{aligned}
& <=0.3 \mathrm{~V} \\
& >=2.4 \mathrm{~V}
\end{aligned}
$$

2. Connect the trigger outputs without the 50 Ohm Feedthrough to the DVM and measure the signals.

TTL
Low Level $<=0.2 \mathrm{~V}$
High Level $\quad>=4.8 \mathrm{~V}$

4-18

PERFORMANCE TEST RECORD FOR OP'IION 002

Hewlett Packard Model 8175A	Test Performed By
Digital Signal Generator	Date
Serial Number	Reference Temperature

Test	Title	Low Limit		Actual Reading		High Limit	
Number				measured	corrected		
Step 1	AMPLITUDE COMPLEMENT						
	Amplitude into 50 Ohm OUTPUT A						
	200 mV	191,2	mV			208.	mV
	500 mV	478	mV			522	mV
	1 V	956	mV			1.04	V
	2 V	1.912	V			2.08	V
	5 V	4.780	V			5.22	V
	10 V	9.560	V			10.4	V
Step 3	OUTPUT B						
	200 mV	191.2	mV			208.	mV
	500 mV		mV			522	mV
	1 V		mV			1.04	V
	2 V	1.912	V			2.08	V
	5 V	4.780	V			5.22	V
	10 V	9.560	V			10.4	V
Step 2	Amplitude into open OUTPUT A						
	500 mV	478	mV			522	mV
	1 V	956	mV			104	mV
	2 V	1.912	V			2.08	V
	5 V	4.780	V			5.22	V
	10 V	9.560	V			10.4	V
	20 V	19.12	V			20.8	V
Step 3	OUTPUT B						
	500 mV	478	mV			522	mV
	1 V	956	mV			1044	mV
	2 V	1.912	V			2.08	V
	5 V	4.780	V			5.22	V
	10 V	9.560	V			10.4	V
	20 V	19.12	V			20.8	V

PERFORMANCE TEST RECORD FOR OPTION 002

Hewlett Packard Model 8175A Digital Signal Generator Serial Number

Test Performed By Date
Reference Temperature

PERFORMANCE TEST RECORD FOR OPTION 002

Hewlett Packard Model 8175A Digital Signal Generator Serial Number

Test Performed By
Test
Date
Reference Temperature

Test	Title			Low	Actual Reading		High	
Number				Limit	measured	corrected		
4-22B	OFFSET							
Step 6	OUTPUT A into 50 Ohm							
Step 7	[1V]	+799.0	mV	+781.0 mV			+817.0	mV
		+800.0	mV	+782.0 mV			+818.0	mV
Step 8	[500 mV]	+800.0	mV	+782.0 mV			+818.0	mV
		+799.5		+781.5 mV			+817.5	mV
	[200 mV]	+799.5	mV	+781.5 mV			+817.5	mV
		+800.0	mV	+782.0 mV			+818.0	mV
Step 9	[200mV]	-800.0	mV	+782.0 mV			-818.0	mV
		-799.5	mV	+781.5 mV			-817.5	mV
	[500 mV]	-799.5	mV	$-781.5 \mathrm{mV}$			-817.5	mV
		-800.0	mV	$-782.0 \mathrm{mV}$			-818.0	mV
	[1V]	-800.0	mV	-782.0 mV			-818.0	mV
		-799.0	mV	$-781.0 \mathrm{mV}$			-817.0	mV
Step 10	OUTPUT B into 50 Ohm							
Step 7	[IV]	+799.0	mV	+781.0 mV			+817.0	mV
		+800.0	mV	+782.0 mV			+818.0	mV
Step 8	[500 mV]	+800.0	mV	+782.0 mV			+818.0	mV
		+799.5	mV	+781.5 mV			+817.5	mV
	[200 mV]	+799.5	mV	+781.5 mV			+817.5	mV
		+800.0	mV	+782.0 mV			+818.0	mV
Step 9	[200mV]	-800.0	mV	+782.0 mV			-818.0	mV
		-799.5	mV	+781.5 mV			-817.5	mV
	[500 mV]	-799.5	mV	$-781.5 \mathrm{mV}$			-817.5	mV
		-800.0	mV	$-782.0 \mathrm{mV}$			-818.0	mV
	[IV]	-800.0	mV	$-782.0 \mathrm{mV}$			-818.0	mV
		-799.0	mV	$-781.0 \mathrm{mV}$			-817.0	mV

PERFORMANCE TEST RECORD FOR OPTION 002

Hewlett Packard Model 8175A Digital Signal Generator Serial Number

Test Performed By Date
Reference Temperature

Test Number	Title			Low Limit	Actual Reading		High Limit	
Step 11	OUTPUT B into 50 Ohm							
	[2V]	-7.995	V	$-7.890 \mathrm{~V}$			-8.100	
		-8.000	V	-7.895 V			-8.105	V
	[5V]	-8.000	V	$-7.895 \mathrm{~V}$			-8.105	V
		-7.995	V	$-7.890 \mathrm{~V}$			-8.100	V
Step 12	[10V]	-8.00	V	$-7.870 \mathrm{~V}$			-8.130	V
		-7.99	V	$-7.860 \mathrm{~V}$			-8.120	V
Step 13	[16V]	-8.00	V	$-7.870 \mathrm{~V}$			-8.130	v
		-7.98	V	$-7.850 \mathrm{~V}$			-8.110	v
Step 14	[16V]	+7.98	v	$+7.850 \mathrm{~V}$			+8.110	v
		+8.00	V	+7.870 V			+8.130	V
	[10V]	+8.00	V	+7.870 V			+8.130	V
		+7.99	V	+7.860 V			+8.120	V
	[5V]	+7.995	V	+7.850 V			+8.100	V
		+8.000	V	+7.895 V			+8.105	V
	[2V]	+8.000	V	+7.895 V			+8.105	V
		+7.995	V	$+7.850 \mathrm{~V}$			+8.100	V

PERFORMANCE TEST RECORD FOR OPTION 002

Hewlett Packard Model 8175A Digital Signal Generator Serial Number

Test Performed By Date

Reference Temperatur

Test Number	Title			Low Limit	Actual Reading		High Limit	
Step 11	OUTPUT A into 50 Ohm							
	[2V]	-7.995 -8.000	V	-7.890 V -7.895 V			-8.100 -8.105	v
	[5V]	-8.000 -7.995	V	-7.895 V -7.890 V			-8.105 -8.100	V
Step 12	[10V]	-8.00	v	$-7.870 \mathrm{~V}$			-8.130	V
		-7.99	V	$-7.860 \mathrm{~V}$			-8.120	V
Step 13	[16V]	-8.00	V	$-7.870 \mathrm{~V}$			-8.130	V
		-7.98	V	-7.850 V			-8.110	V
Step 14	[16V]	+7.98	V	+7.850 V			+8.110	V
		+8.00	V	+7.870 V			+8.130	V
	[10V]	+8.00	V	+7.870 V			+8.130	V
		+7.99	V	+7.860 V			+8.120	V
	[5V]	+7.995	V	+7.850 V			+8.100	V
		+8.000	V	+7.895 V			+8.105	V
	[2V]	+8.000	V	+7.895 V			+8.105	V
		+7.995	V	+7.850 V			+8.100	V

PERFORMANCE TEST RECORD FOR OPTION 002

Hewlett Packard Model 8175A

 Digital Signal Generator Serial NumberTest Performed By Date
Reference Temperature

$\begin{array}{\|l\|} \hline \text { Test } \\ \text { Number } \end{array}$	Title			Low Limit	Actual Reading		High Limit	
Step 16	OUTPUT A into open							
	[500 mV]	+1.6	V	+1.564			+1.636	v
		-1.6		-1.564			-1.636	V
	[IV]	-1.6	V	-1.564			-1.636	v
			V	+1.564			+1.636	V
	[2V]	+1.6	V	+1.564			+1.636	v
		-1.6	V	-1.564			-1.636	V
	[5V]	-16	V	-15.790			-16.210	v
			v	+15.790			+16.21	V
	[10V]	+16	V	+15.790			+16.21	v
			V	-15.790			-16.210	V
	[20V]	-16	V	-15.740			-16.260	v
			V	+15.740			+16.26	v
	[32V]	+16	v	+15.740			+16.26	v
			V	-15.740			-16.260	V
Step 17	OUTPUT B into open							
	[500 mV]	+1.6	V	+1.564			+1.636	V
			V	-1.564			-1.636	V
	[1V]	-1.6	V	-1.564			-1.636	v
			V	+1.564			+1.636	v
	[2V]	+1.6	V	+1.564			+1.636	v
		-1.6	V	-1.564			-1.636	v
	[5V]	-16	v	-15.790			-16.210	v
			V	+15.790			+16.21	V
	[10V]	+16	V	+15.790			+16.21	V
			V	-15.790			-16.210	v
	[20V]	-16	v	-15.740			-16.260	v
			V	+15.740			+16.26	V
	[32V]		v	+15.740			+16.26	V
		-16	V	-15.740			-16.260	V

PERFORMANCE TEST RECORD FOR OPTION 002
Hewlett Packard Model 8175A
Digital Signal Generator
Serial Number

Test Performed By
Date
Reference Temperature

PERFORMANCE TEST RECORD FOR OPTION 002

Hewlett Packard Model 8175A	Test Performed By
Digital Signal Generator	Date
Serial Number	Reference Temperature

PERFORMANCE TEST RECORD FOR OPTION 002

Hewlett Packard Model 8175A Digital Signal Generator
Serial Number

Test Performed By
Date
Reference Temperature

Test Number	Title		Low Limit	Actual Reading measured		corrected

PERFORMANCE TEST RECORD FOR OPTION 002

Hewlett Packard Model 8175A Digital Signal Generator Serial Number

Test Performed By
Reference Temperature

PERFORMANCE TEST RECORD FOR OPTION 002

Hewlett Packard Model 8175A Digital Signal Generator Serial Number

Test Performed By Date

Reference Temperature

Test Number	Title		Actual Reading		High Limit
		Limit	measured	corrected	
4-24	TRIGGER OUTPUT CHARACTERISTICS				
Step 1	Trigger A into 50 Ohm				
	ECL				
	Low level <--1.6V		Y/N	Y/N	
	High Level $>=-0.9 \mathrm{~V}$		Y/N	Y/N	
	TTL				
	Low level $<=0.3 \mathrm{~V}$		Y/N	Y/N	
	High levle> $=2.4 \mathrm{~V}$		Y/N	Y/N	
Step 1	Trigger B into 50 Ohm				
	ECL				
	Low level < $=-1.6 \mathrm{~V}$		Y/N	Y/N	
	High Level>=-0.9V		Y/N	Y/N	
	TTL				
	Low level < $=0.3 \mathrm{~V}$		Y/N	Y/N	
	High levle> $=2.4 \mathrm{~V}$		Y/N	Y / N	
Step 2	Trigger A into open				
	TTL				
	Low level $<=0.2 \mathrm{~V}$		Y/N	Y/N	
	High level $>=4.8 \mathrm{~V}$		Y/N	Y / N	
	Trigger B into open				
	TTL				
	Low level $<=0.2 \mathrm{~V}$		Y / N	Y / N	
	High level> $=4.8 \mathrm{~V}$		Y/N	Y / N	

SALES \& SUPPORT OFFICES

Product Line Sales/Support KeyKey Product Line			Brisbane, Queensland	Weil Pharmacy
			Office	P.0. B $8 \times \times 648$
Key Product Line A Analytical			Hewlet-Packard Austraia LId.	manama
CM Components			${ }_{10} 10$ Payne Road	Tel: 25612
Compuler Sysiems			THE GAP, Queensiand 4061	Telex 8850 WAEL BN
E Electronic Instrumenls a measuremen S Systems			Tel: 61-7.-30-4133	E.M
			Telex: 42133	2ayani Computer Systems
			Cable: HEWPARO Brisone	218 Shaik Mubarak Building
- Sales only tor specific product line			A.C.CM.E.M.P	Government Avenue
-. Support only tor specific producel lie			Canberra, Australia	
IMPORTANT:These symbols designate general product line capability. They do not insure sales or supporl availability for all products within a line, at all locations. Contact your local sales office for			Capital Territory	Tel 276278
information regarding locations where HP support is available for specific products.			Office	Telex: 9015 plans bn
HEADQUARTERS OFFICES If there is no sales office listed for your area, contact one of these			Thyne Streel. Fern Hill Paik	BELGIUM
			BRUCE, A.C.T. 2617	
ASIA UNITED KINGDOM ANGOLA			P.O. Box 257.	Blvd dela Woluwe, 100
				Woluwedal
Hewelt-Packard Asia LId.	Hewelt-Packard LId.	Telectra Angola LDA		${ }^{8}$-1200 Brussels
47F, 26 Harbour Rd.,	Nine Mile Ride	Empresa Teçica de Equipamentos		Tel (02) $232 \cdot 2 \cdot 761-31-11$
Wanchai. Hong kong	wокпNснаm	16 rue Cons. Julio de Viliema	Cable:HE	Telex: 23949 hevpac
G.P.O. Box 8663. Hong Kong	Berschire, AG 113L	LUANDA		A.C.CM,.,., P
Tel 5.8833083	Tel: 0344773100	Tel: 35515.35516	Melbourne, Victoria	bermuda
Telex: 76793 HPA HX	Telex: 888805/848881/1/849912	Telex: 3134	Office	Applied Compuler Technologies
Cable: HPASIALL To	UNITED STATES OF	E.P	Hewelt-Packard Australia Lid	Allanic House Evilding
CANADA Hewett-Packard (Canada) Lid. 6877 Goreway Drive misSISSAUGA, Ontario L4V 1M8 Tel: (416) 678 -9430 Telex: 069.8644	AMERICA	ARGENTINA	3 31-4 Joseeph Streel	P.O. Box HM 2091
	Customer Intormation Center	Hewelt.-Packard Argentina S.A.		Par-La-Ville foad
	(800) 752.0900	Monianeses $2140 / 50$		HAMM TTON 5
	6:00 AM to 5PM Pacilic Time		Telex: $31-024$	Tel: 295.1616 Telex: 380 369/ACT BA
	EASTERN USA	Telex: 22796 HEW PAC-AA	Cable: HEWPARD Melburne	
EASTERN EUROPE Hewell. Pacakard Ges.m.b.h. Lieilgasse 1	Hemelt-Packard C_{0}.	A.C.E.P.	A.C.CM.E.M.P	BOLIVIA
		Biotron S.A.C.M.e.1	Perth, Western Australia	Arellano Lida
	Tel: (301) 988.6370	Avv. Paso Colon 221, Pis	Office	Av. 22 de Octubre 212125
	MIDWESTERN USA	Tel $541.333^{\text {a }}$-909	Heewiel-Packart Austraia	Casilla 1383
	Hewlel-Packard Co.	${ }_{\text {col }}$	Herrsman fusmess Park	
Tel: 2222 2500-0 ${ }^{\text {a }}$	${ }^{\text {Hemelli-packarc }} 50$.		CLAREMONT, W.A. 6010	Tel: 368541
Telex: 134425 HEPA	Holumg Meaiows, II 60008	Telex: 17595 BIINAR		M
NORTHERN EUROPE	Tel: (12) 255-9800	Laboratoricio Rodriguez	Cabie: HEWPARD Perth	BRAZIL
V. D. Hooplaan 241	SOUTHERN USA	Corswant S.R.L.	C.CM.E.P	Hewell1-Packard do Brasil S
	Hewell:-Packard Co.	Misiones. 1156 - 1	Sydney, New South	Alameda Rio Negro. 750.1 A
N-L-118 LN 15 AMStelveenThe Netherands	2000 South Park Place	Benal. Oeste	Wales Office	${ }_{0} 6400$ Baruei SP
	atlanta, Ga 30339		Hewelt-Packard Austraial Lid.	Tel: (011)/421.1311
	Tel: (4044) 955 -1500	Tel: 25-3956, 252-4991	17 -23 Talavera Road	Telex: (011) 13151 HPBR BR
Telex: 18919 honer	WESTERN USA	Intermaco S.R.L.	P.O. Box 308	Cable: HEWPACK Sao Paulo
SOUTH EAST EUROPE	Hewlet-Packard C .	Florida 537771	NORTH HYOE, .S.S.W. 2113	
Hewlett-Packard S.A. World Trade Center	5161 Lankershim Blvd.	Gaieria Jardin - Local 28	Tel. $61-2.2888$-4444	Hewelt.Packard do Bras
	worth Holurwood, CA9 91601	1005 BuENOS ARES	Celex Cabe HEWPARO Sydney	Praia de Boalago 228-181
(10) Avenue Louis.Casai	Tel: (818) 505-5600	Te: $393-477 / 1928$	Cable HEWPARD Sydney	${ }^{6}$ 6. ANO.CONJ. 601
	OTHER	Telex. 22796 HEW PAC-AR	А.С.см.E.M.	
	INTERNATIONAL	P (Calculators)	AUSTRIA	
	AREAS	Argentina Esanco S.A.L.	Hewelli.Packard Ges.m.b.h.	
Mal Address:	Hewellt-Packard Co .	A/ASCO 2328	Verkuutsuero Graz	Telex: 219005 PPBR BR
	Inerconinenenal Headquarters	1416 BUENOS ARES	Grotlennolstrasse 94	Cable: HEWPACK R Rio de
P.O. Box $\mathrm{CH}-1217$ Meyrin 1	3495 Deer Creek Road	Tel: 541.1.58-1981.541.59-2767	${ }_{\text {a }} \mathrm{A}$-8052 GRAZ	Van Den C Cientilica Lida.
	Palo alto, CA 94304	Telex: 22796 HEW PAC-AR	Telex: 312335	
MIDDLE EAST AND CENTRAL AFRICA		All Computers S.A	C.E	Todos os Santos
	Cable: HEWPACK	Mortaneseses $2140 / 505$ Piso	Hewelt.PPackard Ges.m.m.i.	20771 RIO DE JJANEROO, RJ
	ALGERIA	1428 duekos AIRES	Lielogasse 1	Telex:33487 EGL8 ${ }^{\text {a }}$
Hewlett-Packard S.A. Middle East/Central Alrica Sales H.Q	Hewelt-Packard Tradin	Tel: 781-4030140393/783-4886	P.0. 80×72	
	Bureau de Liaison Alger	Telex: 181488 Ocme	A. 1222 V1ENNA	Anamedic.e. Lida.
lele	Villa des Lions			Rua vergueio. 360
	9. Hai Galloul	AUSTRALIA	A.C.C.E.M.,	04012 SAOPAULO,
GENEVA		Adelaide, South	BAHRAIN	Tel: 0111 1757-1106
Swizerand	Telex: 63343 dion dz	Australia Office	Green Salon	
		153 Greenhill Road	P.o. Box 557	Dataronix Electronica L
		PARKSIDE, S.A. 5063	Telal 255503-250950	Av. Pacaembu 746-C11
		Tel: 61--272-5911		SAOPaULO, SP
		Telex: 82536		Tel: (118) 260111

BRUNEI	Hewlet-Packard (Canada) Lid.	China Hewell.Packard Co. Lid.	CYPRUS	Interational Engineering Associales
Kompuler Wisman Sdn Bhd	6877 Goreway Orive	P.O. $80 \times 9610, \mathrm{Bejiling}$	Telerexa Lid.	6 El Gamea Streel
G6, Chandrawasen Cmplx,	mississauga, Onlatio Lav ime	4th floor, 2nd Waich Factor Main	P.0. 80×1152	
Jalan Tulong	Tel: (41616787.9430	Stuang Yu Shou, Bei San Huan Road	Valentine House	Calio
P.O. Box 1297 .	Telex:069.83644	Hai Dian District	8 Slassandrou St.	Tel: 71-21.68134-80-940
banoar serigegawan	А.С.СМ.,.,., P	belug	micosia	Telex: 938301EA UN
negara buun dafussalam	Hewell-Packard (Canada) LId.	Tel: 33-1947 33-7426	Tel: 45628.62698	Cable: INTEGASSO
Tel: 67-2-2000-70/26711	2670 Queensiew Or.	Telex: 22601 CTSHP CN	Telex: 5445 lix cy	E
C.E.,	ortawa, Onlario К28 вк1	Cable: 1920 Bejing	E,M. ${ }^{\text {P }}$	Sakco Enterpises
CAMEROON	Tel: (613) 820.6883	А.С.СМ. ${ }^{\text {, M, P. }}$	denmark	70 Mossadak Street
	A.C.CM, E. M, P. ${ }^{\text {P }}$	China Hewlel.Packard Co. Lid.	Hewell.-Packard A/s	Dokki, Giza
B.P. 23	Hewelt-Packard (Canada) LId.	CHP Shanghai Pranch	Kongevejen 25	${ }^{\text {CAROO }}$
douala	3790 Vicloria Paik Ave.	${ }^{23}$ 23/F Shanghai Union Suilding	DK-3460 BiRKEROD	Tel: 706400,701087
Tel: 420153	wILIOWOALE, Onario M2H Зh7	100 Yan An Ro. East	Tel: 45-02-81.6640	Telex: 9337
Telex: 5351	Tel: [416)/999-2550	Shang-hal	Telex: 37409 hpas dk	c
C.P	C.E	Tel: 265550	A.C.CM.E.M.P	s.s.c. Medical
CANADA	Quebec	Telex 335771 CHPSEC Cable 3416 Shanghai	Hewell-Packard A/S	${ }^{4} 0$ Geererat IIArab Streel
Alberta	Hewell-Packard (Canada) LId.	A.C.CM.E.M.P.		${ }_{\text {M }}$ Morandessin
Hewlell-Pacarard (Canada) Lto. 3030 3 d Avenue NE .	17500 Trans Canada Highway South Senice Road	COLOMBIA	OK.-8240 Alsskov, Aathus	Tel: $083884,8059988,810263$
Calcast, Albera T2A GT7	KIRKLLANO, पuebece H9J 2×8	Instumentacion	Telex: 37409 hpas dk	Telex: 20503 SSC UN
Tel (403) 235 s -3100	Tel: (514) 697-4232	H. A. Langebaek 8 Kier S.A.	C.E	${ }^{*}$
A.C.CM.E. M. P.	Telex: 058-21521	Carerera 4A No. 52A-26	dominican republic	EL SALVADOR
Hewell-Packard (Canada) LId.		Aparalado Aereo 6287 Bocota 1.0 .2	Microprog S.A.	IPESA de EIS Savador S.A.
${ }^{11120-178819}$ Street	Hewelt-Packard (Canada) LId.	Tel: 212 -1466	Juan Tomis Meiray Coles No. 60	${ }^{29}$ A Avenida Norte 1223
EDMONTON, Albera 7551 P2	1150 ve Cliaire Fonlaine	Telex: 44400 ISST CO	Arroy Hondo	$\xrightarrow{\text { SAN Salvaduo }}$ Teli 9-01-503-26-958
Tel: (403) 486-6666	OUEEEC CITY, Quebec G1R 564	Cable: AARIIS Bogota	Santo domingo	
${ }^{\text {A.C.CM, E.M.P }}$	Tel: (418) 648.0726	CM.E.M		$\begin{aligned} & \text { Telex: } 3012 \\ & \text { A.C.CM.E.P } \end{aligned}$
$\underset{\text { British Columbia }}{\text { Hewetl Packard (Canada) }}$	Hewelt-Packard (Canadal Lid	Netromedicas Lida.	Telex. 4510 arenat ${ }^{\text {a }}$	ETHIOPIA
10691 Shellbricige Way		Cale 123 No. 98.31	ECUADOR	Seric-Ethiopia
RICHmoNo,	SASKATOON, Saskatchewan S7L GM7		CYEDE Cia. Lida.	P.O. 80×2764
British Columbia V6x 2 W8	Tel: 306$)^{242-3702}$		Avenida Eloy Allaro 1749	Adols ababa
Tel: (604) $270-2277$	c	Teiex 43415 HEGAS CO	y Belica	Tel: 185114
Telex: 610.922-5059	Chile	A	Casilla 6423 CC	Telex: 21150
A.C.CM.E.M.P.	ASC LIda.		аито	c.p
Hewelt-Packard (Canada) Lid.	Austria 2041	${ }_{\text {Compunundo }}^{\text {Avenida } 15}$ \#107-80	Tel: 9-011-593-2-450975	FINLAND
	santiago	Rocota D.E.	Telex: 39322548 CYEDE ED	Hewlet-Packard Finland
VICTORAA, British Columbia v8z 3L1	Tel: 223-5946, 223-6148	Tel: 57-214-4458	E.P	Field Oy
Tel: (604) 381.6616	Telex: $392 \cdot 3019192 \mathrm{ASC}$ CK	Telex 39645466 MARCO	Medtronics	Niltylanpolk 10
c	C. ${ }^{\text {P }}$		Valladolic 524 Madrid	00622 HELSIMKI
Manitoba	Jorge Calcagniy Cia	Carvail. S.A.	P.0.9171, 0ulo	Tei: (90) 757 -1011
Hewelt-Packard (Canada) LId.	Av. Italia 634 Saniliago	Calle 29 Norte No. 68 -40	Tel: -2-238.951	Telex: 122022 Field SF
1825 Instier Plvd.	Casilla 16475	Apartado Aeree 46	Telex. 2298 ECUAME ED	
WwNIPGG, Maniloba R2X 1R3	SANTAGO9	Call	A	Hewlen-Packard Oy
Tel: (204) 694-277	Tele 9.011-562-222-0222	Tel 9.011 .57 -. 6.618888	Hosplatar S.A.	Piispankalliontie 17
A.C.CM, E.M.P.	Teex: 392440283 JCYCL Cz	Telex: 39655650 CuJCL CO	Robles 625	02200 Espoo
New Brunswick	CM, E, M	C.,.E.	Casilla 3590	Tel: 90 , 887.21
Heweler-Packard (Canada) LId.	Meloloab S A .	CONGO		A, C.E. M. P
${ }^{814}$ Main Street	Monilas 454 of. 206	Seric-Congo		
MONCTON, New Brunswick E1C 1E6		${ }^{\text {B. P. } 2105}$	Cable: HoSplitalaf-Quto	Heweltu-Packard france
${ }_{C}$	Telex: 340866 METLAB CK			2.1. Mercure B
Nova Scotia	A	Telex: 562	Ecuador Overseas Agencies C.A.	Rue Bertheot
Hewlel-Packard (Canada) Lİ.	Olympia (Chie) Lida	costa rica	C.O.e Box 1296 Guayaquil	
Suite 111	Av. .odrigo de Araya 1045	Cienitica Costaricense S A .	аutio	Tel $33-42 \cdot 59-4102$
900 Windmill foad	Casili 2 266 -V	Avenida 2, Calle 5	Tel: 30602	Telex: 410770 F
DAATMOUTH, Nova S	SANTIAGO21	San Pedro de Monles de Oca	Telex: 3361 PGGGYE ED	${ }_{\text {A.C.E., M }}$
Tei: 902 2) 469.7820 C.CME M.	Tel: 22.55044	Aparado 10159	M	Hewelt-Packard fran
Ontario	Cable: Olympiachile Santiagochile	SAN JoSE ${ }_{\text {Tel } 9.011-506-243-820}$	EgYpt	64. Rue Marchand Sallant
Hewell-Packard (Canada) LId.	C. P	Telex : 3032366 GAlGUR CR	Sakro Enereprises	F.61000 ALENCON
3325 N . Service Rd. Unit wo 3	CHINA, People's	СМ.,.M	P.O. Box 259	
BunLIMgTon, Onatiol LTN 362	Republic of	0. Fischel P. Y. Cia S S.A.		
CM.	China Hewett-Packard Co. Lid.	Aparlados 434-10174	Telex: 54333	Batimen Levilan
Hewell-Packard (Canada) LId.		Tel: 3 3-72.44	c	2585 , rouve de Grasse
${ }^{5} 52 \mathrm{Nembol}$ Streel	HONG KOMG	Telex: 2379		
LONDON, Onlario NEE 235	Tel: 5.833083	Cable: OFFR		Tel: 933 74.49-19
Tel: (519) 686.9188	Telex: 76793 HPA HX			c
A.C.CM, E. M. P.	Cable: HP ASIA LTD			

SALES \& SUPPORT OFFICES 3

FRANCE (Coni'd)	Hewell.Packerd france	Hewelt-Packard france	Hewleli-Packard 6 mb	Hewell-Packard 6 mbH
Hewell-Packard france	3, Rue Granam Bell	4. Rue Thomas-Mann	Vertindungssilele Bonn	Vertriesszentum Ratingen
28 fue dela 1 Republique	BP5149	Boite Postale 56	Friedrich-Eber-Allee 26	Serineer Strasse 111
Boite Postale 503	57074 MeTz Cedex	67033 STAASBOURG Cedex	5300 BONM	D-4030 RATIMGEN 4
25026 EESANGON CEDEX, FRAACE	Tel: 887 7 $36-13.31$	Tel: 188) 28.56-46	Tel: (02288) 234001	Postlach 3112
Tel: (81) $83-16-22$	Telex: 860602 F	Telex: 890141 F	Telex: 8869421	Tel: (02102) 494.0
Telex: 361157	C.E	C,E.M.P.	Hewell-Packard 6 mb	Telex. 589070 h prad
C, E'	Hewelt-Packard france	Hewelt-Packard France	Vertriessentun Südwest	A,C,E,M,
Hewelt-Packard france	Miniparc-2IAST	Le Péripole III	Schickarcstrasse 2	Hewlet.-Packard GmbH
2 A kergaradec	Chemin du Vieux Chene	3. Chemin du Pigeonnier de la Cépieiere	D.7030 BÖLLIMGEN	Vetriebszentum Muchen
Rue Fernand forest	38220 MEYLAN (Grenolbe)	${ }^{31081} 1$ TouLLousE Cedex	Postlach 1227	Eschenestrasse 5
F-29239 GOUEESNOU	Tel: (76) $90.38-40$	Tel: 33-6i-40-1112	Tel: (07031) 645.0	0.8028 TUUFKIRCHEN
Tel: 988 / 41-87-90	980124 HP Grenobe	Telex: 531639 F	Telex: 72655743 hep	Tel: 49-99.61-2070
E	c	A., Е, M, P.	A.C.CM.E.M. ${ }^{\text {P }}$	Telex: 0524985 hpmen
Hewlet-Packard France	Hewelt-Packard France	Hewett.Packard france	Hewelt-Packard $\mathrm{mmbH}^{\text {a }}$	А.С.с.E.E.M.P
Chemin des Mouilles	Bureau vert du Bois Brian	Les Cardouines	Zenerabereich Mkig	Hewelt.-Packard
Boite Possale 162	Cheman dela Garde	Batimen 82	Hereneberger Strasse 130	Geschintssiele
69131 Eculur Cedex (Lyon)	- CP 212212	${ }^{\text {Roule des oines }}$	D-7030 B08LIMGEN	Emmisalee
Tel: 33-78-33-8125	44085 Nantes Cedex	Parct dactivite de Valbonne	Tel: (07031) 14-0	7517 WALDOBRONN 2
Telex: 310617 F	Tel: $400150.32-22$	Sophia Antioolis	Telex: 7265739 hep	
${ }_{\text {A, , , , , , , P* }}$	Telex. 710835		Hewlelt.Pagakard GmbH	Telex: 782 838 hepk
Hewell:-Packard france	Hewelel-Packard france	c	Geschintssille	A.C.E
Pare d'activies du Bois Briard 2Avenue du Lac		Hewelel-Packard france		GREAT BRITAIN
F.91040 EVMY Cedex	45000 ORLEANS	9, hue Paudin ${ }_{\text {den }}$	Tel: (0231) 45001	See United Kingdom
Tel: 3311/6077 9660	Tel: 3-3.38.62-2031		Telex: 822858 hepdod	Greece
Telex: 692315F	E.P.	C.:. ${ }^{\text {rem }}$-15-42-7616	A.C.E	Hewlell-Packard A.E.
c	Hewlett-Packard france	Hewelt-Packard france	Hewlelt-Packard gmb	178. Kilissisis Avenue
Hewelt-Packerd france	Zone Industriele de Courraboul	Carolor	Reparalurzentum frankur	
Application Cenier	Averue des Tropiques	zaC de Bois Briand	Berner Strass 117	Halandti-ATHENS
5. avenue Raymond Chanas	91947 Les UlIS Cedex (00rsay)	57640 V Vig (Merz)	6000 frankrunt/MAl/ 60	Greece ${ }_{\text {Tel } 30116473360.301116726090}$
38320 EYYENS (Gereoble)	Telex 6 600048F	Tel: 8 8)7712	Telex: 413249 h phtm	
Teil ${ }_{\text {Telex: }}$	A.C.CM, E, M. P.	c	Hewell-Packard GmbH	А.СССММ-.Е., ${ }^{\text {P }}$
c	Hewell-Packard france	Parce diaclivitied des Pres	Vertriebszentum Nord	Kostas Karaynis S.A.
Hewelt-Packerd france	15. Avenue de Le'Aminal.Bruix	1. Aue Papin Cedex	Kapstattring 5	8,0 miriou Streel
Rue Fermand. Fores	75782 PAARIS Cedee 16	59658 vileneuve D		ATHENS 133
2.A. Kergaradec		Tel: 3-20-91-4125	Tel: 99-40-6.6.804-0	Tel: 323030303,32373771
29239 gouessou	Telex: 613663 F	Telex: 160124 F	Telex: 21.63033 h phh d	Telex: 215962 RKAR GA
Tel: 988 /4-87-90	C. P°	с.,., M, ${ }^{\text {P }}$	А.,Се.е., ${ }^{\text {P }}$	A.C.CM, E
Hewelt-Packard france	Hewelt-Packard france	Hewell-Packard france	Hewelt-Packard GmbH	1 Impexin
Parc Club des Taneries	242 Ter. Ave J Mermoz	Parc d'acivivies Paris.-Nord 11	Geschintssile	
Batiment 84	${ }^{6} 64000$ PAU	Boite Postale 60020		${ }_{1}^{209525 \text { Mesogion }}$
4. Rue dela a Faisanderi	Tel: 33-59.80-3802	95971 Roissy Chares de Gaulle	Tel: 051115 F706-0 ${ }^{\text {P/ }}$	Tel: 6774481/2
67381 LIICOLSHEIM	Telex: 5 503655F	VILIEPITE	Te:(05115706-0	Telebex 216886
	${ }_{\text {c. }} \mathrm{E}^{\text {Hewlet-Packard france }}$			p
Telex: 890141F	6. Place Sainte Croix	C.E., M. P.	Hewell-Packard GmbH	Hari Company
C, \cdot P $M^{M} \cdot P^{\prime} \cdot$	86000 PoITIERS	GABON	Geschàhtsselle	38, Minalakopoulou
Hewelt-Packard france	Tel: 33-4.9.4-4-2707	Sho Gabon	Rosslaver Weg 2.4	Tel: 2336071
Centre dialatares Paris-Nord Batiment Ampere	C.E.	P.O. Box 89		Telex: 218767
	Hewelt-Packard france	Leibevilie	Telex: 0662105 hpmmm	
Boite Possale 300	47, Aue de Chativesie	Telex: 5230	A.C.E	
${ }^{93153}$ LE BLAMC-MESNLL	51100 REIMS	german federal	Hewelt-Packard GmbH	18507 PraAEUS
Tel: (1) 865 -44-52	Tel: 3-26-88-6919	German federal	Geschinhsssille	Tel: 8827049
Telex: 211032 F	C. P^{*}	REPUBLIC	Messerschnilstras	Tex: 241441
C.E.M	Hewetr-Packard france	Hewell-Packard Gmbr	0.7910 HEUULM	左
Hewlet-Packard france	Parc d'activités de la Poterie	Ventriessientrum Milte Hewelt.Packard-Strasse	Tel: 49-0731-70-73-0	GUATEMALA
Parc dactiviés Cadèra	Rue Louis Keraute-Botmel	Hewell-Packar-S-Stasse	Telex:0712816 HP UL	guatemala
Quartier Jean-Mermoz	35000 RENNES	D.6380 Bad	A.C.E. ${ }^{\text {P }}$	IPEEAD DE GUATEMALA
Averue du Presiden UF Kennedy	Te: 33-99.51-4244	Teliex: 4120844 h hobhg	Hewlelt-Packard GmbH	
33700 MERIGNAC (Bordeau)	Telex. 740912 l	T.C.C.E., P.	Geschathssille	
Tel: 3 T.56-34.0084	${ }^{\text {A }}$ Heweelel.P.Packard france	Hewelt-Packard GmbH		9.011-502-2-316627
с.E.,	${ }^{98}$ Averue de Brelage	Geschinitsstele	Tel: 09111 5205.0	Telex: 30555765 P1PESA
	76100 ROUEN	Keilstrasse 2.4	Telex: 06238800 hpobg	A.C.CM.E.M.P
	Tel: 33-35.63.5766	D-1000 EERLIL 30	C.CM.E.M,	
	Telex: 770035			
		А.С., ., . ${ }^{\text {P }}$		

HONG KONG	${ }^{\text {Blue Star Lid. }}$	iras	Hewiet-Packard lla	Yokogay
Hewett-Packard Hong Kong, Lto.	7 Hare Streel	Hewelt-Packard Trading S.A.	Via G. divivtorio 9	Meij-Seimei lidg. 6 FF
G.P.P. Box 795	P. O . 8 O $\times 506$	Serice Operation	$1-20063$ CERNUSCO SUL	3.1 Motochiba-Cho
5 5th Floor, Sun Hung Kai Cenire	Calcuta 700001	AI Mansoor Cily 98/3/7	maviglo	CHIBA, 280
$30 \mathrm{Harbour} \mathrm{foad}$,	Tel: 230131, 230132	вAGHDAD	(Miano)	Tel: (0472) 257701
hong kong	Telex: 031-61120 ESNF IN	Tel: 51-49-73	Tel: (02) 923691	C,E
Te: 852-5-832-3211	Cable: BLUESTAR	Telex: 21-455 HEPAIRAA IK	Telex : 334632	Yokogawa-Hewelt-Packard LId.
Telex: 66678 HEWPA HX	A,M, С, ¢,	c	A, C.CM, E, M. P	Yasuda-Seime ilirssima Bldg.
Cable: HEWPACK HONG KONG	Blue Star Lid.	IRELAND	Hewelt-Packard lulaina S.p.A.	6-11. Hon-doti. Naka-ku
E.C., P	133 Kodambakkam High Road	Hewellt-Packard Ireland Lid.	Via Nuova Rivollana 95	HIROSHILIA, , 30
CEt Lid.	madas 600034	Temple House, Temple Road	20090 LIMTOT(Milano)	Tel: (082) 241.0611
10it Floor, Hua Asia Blig.	Tel: 472056, 470238	Blackrock, Co. UUBLIM	Tel: 02-92761	Yokogawa-Hewelt-Packard LId.
64.66 Gluccester Road	Telex: 041-379	Te: $88 / 333199$	Hewell-Packard llaliana S.p.A.	Towa Building
Hong kong	Cable: BLUESTAF	Telex: 30439	Via Nuova San Rocco a	2.2 .3 Kaigan-dori, Chuo-ku
Tel: (5) 20092	A.M	C.E., P	Capodimonte, 62/A	K08E, 650
Telex: 85148 CET HX	Blue Star Lld.	Hewelt-Packard LId.	1.801311 Mapol	Tel: (078) 392-4791
CM	${ }_{13}$ Communily Center	75 Eeltas RA, Carricklergus	Tel: 081174133544	C, E
Schmidt 8 Co. (Hong Kong) LId.	New Friends Colony	Bellast t T3888PH	Telex: 710698	Yokogawa-Hewell.Packard LId.
18in Floor, Great Eagle Centre	NEW DELH 110065	motithern reeland	${ }^{\text {a }}$ "C.C., M	Kumagyay Asani 82 Ildg.
23 Harbour Road. Wanchai	Tel: 682547	Tel: 09600.6 67333	Heweltt-Packard llaliana S.p.A.	3.4 Tsukuba
HONG KONG	Telex:031-2463	Telex: 747626	Via Oraio 16	kumagara, Satama 360
Tel 5.8.330222	Cable BLUEFROST	,	80122 HAPOLI	Tel: (0485) 24-6563
Telex: 74766 SCHMC HX	A.C.'.CM, E.M		Tel: (081) 7611444	C.CM, E
A,M	Blue Star Lid.	Eldan Electronic Instrument LId.	Telex: 710698	Yokogawa-Hewelt-Packard LId.
ICELAND	$15 / 16 \mathrm{CWelesesley} \mathrm{Rd}$.	P. P . 80×1270	Heweltt-Packard llaliana S.p.A.	Asati Shinuun Daichi S Seimei Ildg.
Hewelt-Packard Iceland	PUNE 411011	JERUSALEM 91000	Via Pellizo 15	${ }^{4.7 .7 \text { Hanabala-cho }}$
Hoeldabakka 9	Tel: 22775	16.0 haliav St.	35128 Padova	кимамото, 860
112 RevYJJavik	Cable: blue star	JERUSALEM 94467	Tel: 39-49-664-888	Tel: 96-354-7311
Tel: 35-1-1.67-1000	A	Tel: 533221.553242	Telex: 430315	C, E
Telex: 37409	B Blue Star Lid.	Telex: 25231 AB/PAKROIL	A.C.,., M	Yokogawa-Hewelt.-Packard LIC.
A.C.CM.E.M.P	2.2.-47/108 Bolarum Ad	A.M	Hewellt-Packard lialiana S.p.A.	Stin-Kyout Center Eldg.
INDIA	SECUNOERABAD 5000003	Compulation and Measurement	Viale C. Pavese 340	614, Higashi-Stiokoji-cho
Compuler products are sold through	Tel 72057.72058	Systems (CMS) Lid.	${ }^{1}$-00144 ROMA EUA	Kırasuma-Nishitu
Blue Slar Lto.All compuler repairs	Telex 0.155-459	11 Masad Streel	Tel 39.655.48-31	KYYot, 600
and maintenance service is done	Cable: BLUEFROST	67060	Telex: 610514	Tel: 075-343-0921
through Compuler Maintenance Corp.	A.C.E	TE-AVIV	A., е, M, P.	C,E
Blue Star Lid.	Blue Slar Lid.	Tel. 388388	HeweltI-Packard lialiana S.p.A.	Yokogawa-Hewelt.-Packard Lid.
B. D. Patel House	T.C. 71603 Poornima	Telex: 33569 Moill ll	Via di Casellina $57 / \mathrm{C}$	Mito Misui ildg.
Near Sardar Patel Colony	Marutuukkuzh	C.CM.E.P	500518 SCANOICCI-FIEENZE	1.4-73. Sanno-maru
анМЕЕдaad 380014	TRIVANORUM 695013	Italy	Tel: 39-55-753863	mito, lbaraki 310
Tel: 003531.408532	Tel: 65799.65820	Hewelt-Packard llailiana S.PA	C.E.M	Tel: (0222) 25-7470
Telex: 0121-234	Telex: 0884.259	Traversa 99C	Hewlelt-Packard Italiana S.p.A.	C.CM.E
Cable: BLUE FROST		Via Giulio Pertoni. 19	Corso Svizera. 185	Yokogawa-Hewell-Packard LId.
A.C.CM.E	E	${ }^{1.70124 ~ B A R I ~}$	1-10144 TORIMO	Meij-Seime Kokubu Blidg.
Blue Slar Lid.	Compuler Maintenance Corporation	Tel (080) 41-07-44	Tel: 39-11-74-4044	7.8 Kokubun, 1 Chome, Sendai
$400 / 4$ Lavele Road		C.M	Telex: 221079	MIVACI,, 980
bangal ore 560001	${ }^{115}$ Satoinin Dever Road	Hewelt-Packard llaiana S.p.A.	$A^{*} \cdot, \cdot, E$	Tel: (0222) 25-1011
Tel: 57881.867780		Via Emilia, 51/C	IVORY COAST	C.E
Telex: 0845-430 BLEIIN	Tel: $310.10184 .345-774$	${ }_{1}$ 140011 Bolocha Anzola Dell Emilia	S.ITT.E.L.	Yokogawa-Hewelt-Packard LId.
Cable: Bluestar	Telex:031-2960	Tel 39-051-731061	Socieile lvorienne de	Gonda Bldg. 2 F
A.C.'.CM.E		Telex: 511650	Telecommunications	${ }^{1-2-10}$ Gonda Okya-Shi
Blue Slar Lid.	INDONESIA	C.E.M	Bd. Giscard d'Estaing	Okaya-Shi
Band Box House	BERCA Indonesia P.T.	Hewelt-Packard llalian S.p. A.	Carelour Marcory	nagano, 394
Prabhadevi	P. $0.8 .80 \times 496 / \mathrm{Jkt}$.	Via Princioe Nicola $436 / \mathrm{C}$	zone 4.A.	Tet: (0266) 230851
вомвау 400025	J. Abdul Muis 62	1.95126 catanla	Boile postale 2580	C.E
Tel: 4933101.4933222	Jakarta	Te: 10955) 37-10.87	ABIDANA 01	Yokogawa-Hewelt-Packard LId.
Telex: 011-7051	Tel: 21-373009	Telex: 970291	Tel: 353600	Nagoya Kokusi Center Builiding
Cable: BLUESTAR	Telex: 4677888 BERSALLIA	c	Telex: 43175	1.47-1.1. Nagono. Nakamura-ku
A.M	Cable: EERSAL JAKARTA	Hewett-Packard llaiana S S.PA.		nagoya, AlCH ASO
Blue Star Lld.	P	Viag. di vilutorio 10	S.1.T.].	Tel: (052) 571-5171
Sanas	BERCA A Indonesia P.T.	20094 CORSICO (MMiano)	Immeuble "Le General"	C.CM, E.M
$414 / 2$ Vir Savarkar Marg	P. 0.80×2 297/Jkl	Tel 39-02-400851	Av. du General de Gaule	Yokogawa-Hewlet-Packard LId.
Prabhadevi	Antara Bldg., 12th Floor			Sai-Kyo-Ren Buiding
BomBar 400025		Viale Erigata Bisagno 2		1.2 Doie-cho
Tel: 222.6155	Jakaft-PUSAT	16129 GENOVA	$\xrightarrow{\text { Tele } 321227}$ Telex: 22149	Oomila-Shi Saltama 330
Teexe: $011 / 7.71193$ BSSS IN	Tel: 11.300417	Tel: 39-10.541141	${ }_{\text {Telex }} \mathbf{2} 22149$	Te: (0888) 45-0031
Cable: FROSTBLUE	Telex. 466788 BERSALIA	Telex: 215238		
A.CM.E.M	A., С, , , , P		JAPAN	
${ }_{\text {Blue Star Lid. }}$	BERCA A Indonesia P.T.		Yokogawar-Hewlet-Packard LId.	
Kalyan. 19 V siswwas Colony			1522-1.0nna ${ }^{\text {a }}$	
Akapuri, BORODA, 390005	SURABAYA	Tef: (001) 68-37-07	ATSUGI, Kanagawa 243	
	${ }_{\text {Telex }}^{\text {Tei } 31146 \text { 日ersal SB }}$	Telex: 215238	Tel:(0462) 25-0031	
Cable: tuve Star	Cable: EERSAL-SURABAYA	C.E		

SALES \& SUPPORT OFFICES

JAPAN (Coni'd)	Jordan	lebanon	Hewlet.1-Packard de Mexico.	MOROCCO
Yokogawa-Hewell-Packard Ltd.	Scientific and Medical Supplies C .	Compuler Inlormaion Sysiems S.A.L.	S.A. de C.V.	Elabissement Hubert Dolbeau \& Fils
Chuo Bldg., 5-4-2.2 Nishi-Nakajima	P.O. B0x 1387	Chammas buiding	Condominio Kaderey	81 ve Karachi
$4-20$ Nistinakaiira, 5 Chome,	AMMAN	P.O. Box 11.62740	Circuito del Mezon No. 186 Desp .6	B.P. 11133
Yodogawa.ku	Tel: 24907 , 39907	BERUT	COL DEELPRADO -76030 Oro.	CASABLANCA
OSAKA, 532	Telex: 21456 SABCO Jo	Tel: 894073	Tel: 463-6.02-71	Tel: 3041 -82, 3068-38
Tel: (06) 304.6021	C.,.,., P	Telex: 42309 chacis le	P	x: 23051.128822
Telex. YHPOSA 523.3624	KENYA	C.E,M, ${ }^{\text {P }}$	Hewelt-Packard de Mexico.	E
с.CM, E, M. P*	ADCOM Lİ, Inc.. Kenya	LIBERIA	S.A. de C.V.	
Yokogawa-Hewlel-Packard LId.	P. P . 8 Bx 30070	Unichemicals nc.	Monti Morelos No. 299	2, vee Agadir
1-27-15. Y Yabe	NAROOE	P. 0.80×4509	Fraccionamiento Loma Bonita 45060	Boite Postale 156
SAGAMHARAA Kenagawa, 229	Tel: 31955	montovia	guadalajara, Jalisco	CASABLIANCAO1
Tel:0427 59-1311	Telex: 22639	Tel: 224282	Tel: 36-31-48.00	Tel: 272093, 272095
Yokogawa-Hewett-Packard LId.	E,M	Telex: 4509	Telex: 06841186 ECOME	Telex: 23739
Hamamisu MoloshtiraCho Daichi	KOREA	E		
Seimei Ildg 219-21, Moloshiro-Cho	Samsung Hewlet-Packard Co. Lid.	LUXEMBOURG	Microcompuladoras	Sema-Maroc
Hamamatus-shi	Dongbang Yeoeuido Ouilding	Hewelt-Packard Belium S. A, /V.V.	Monti Pelvoux 115	Depp. Seric 6. ,rue Lapebie
SHIZUOKA, 430	12.166 h Floors	Blvd de la Woluwe, 100	LOS LOMAS, Mexico, D.F.	6.rue tapeole
Tel: 05534) 561771	36-1 Yeeevido-Dong	Woluwedal	Tel: 520.9127	casablanca
C,E	Youngdeungpo-Ku	${ }_{8}^{\text {B.1200 }}$ Werussels	P	Tel: 2609880
Yokogaw-Hewetl-Packard Lt.	${ }_{\text {SEOUL }}$ Tel $78.4666,784-2665$	Te: (02) 762-32-00	Microcompuladoras Hewelt-Packard.	
Shinijuk Daich Shisemei Bldg.	Tel: 784-4666, 784.2666	Telex: $23-944$ paloben	S.A. de C.V.	
${ }^{\text {2-7.7.1. } \text { Nishi Shin uku }}$	Telex. 2516 6 SAMSAN K	A.C.CM, E,M.P	Monte Pelvoux No. 115	NETHERLANDS
Shinjuku-ku,TOKYO 163		MADAGASCAR	Lomas de Chapulepec, 11000	${ }_{\text {Hemen }}^{\text {Hewell.Packara Nederland }}$
с.E., M	Youngwa Building	Technique el Precision	mexico, D.F.	NL-1187 X A AMSTELVE
Yokogawa Hewelt-Packard Lid.	547 Shinsa Dong, Kangnam-Ku	12. vee de Nice	${ }_{p}{ }^{\text {a }}$	P.0. 80×667
9.1., Takakura-ch	SEOUL 135	P.0. Box 1227	Hewell. Packard de Mexico.	NL-1180 AR AI
Hachioi.shi, Tokro, 192	Tel: 546-7771	101 ANTAMANARIVO		Tel: (020) 547 -6911
Te: 81-426-42-1231	Telex: K23457 GINSCO	Tel: 22090		Telex: 13216 HEPA NL
C, E	A	Telex: 22255	Momas de Charuulepec	A.C.CM, E,M, P
Yokogawa-Hewet-Packard LId.	Dongbang Healthcare	P	11000 Mexico, D.F.	Hewelet-Packard Nederland B .
3-29-21 Takaido-Higashi, 3 Chome	Products CoL . Ltid.	MALAYSIA	Tel: 5-40-6-62-28, 72-66, 50-25	Bongerd 22
Suginami-ku TokYo 168	Suite 301 Medical Supply Cenler	Hewlel.-Packard Saes (Malaysia)	Telex: 17-74-507 HEWPACK MEX	
Tet: $0313331-6111$	Po-gu, SEOUL	Sdn. Bhd.	A.C,CM, E, M, P	31-22
	764-1111.741-1	9th floor	Hewelt.Packard De Mexico (Polanco)	
C.CM, E.P. ${ }^{\text {P }}$	Teiex K25706 TKB60	Chung Khiaw Bank Building	Avenida Ejercito Nacional 4579	Telex: 2126 Hepac
Yokogawa Hokustin Electric Corraratio	Cable: TKEEEPKO	46. Jalan Rajai Laut	$2^{\text {day }}$ erer piso	
Corporation	M	50736 KUALA LUMPUR,	Colonia Grana	Heweli.Packarad Nedererand B.V.
Stinijuk-NS Pldy 10 F		Tel: 03 -298655	mexico d. .	
4.1 Nishi.SShinuiuk 2-Chome	KUWAIT	Telex: 31011 HPSM MA	Tel: 25 -4433	P.0. 80×2342
Shiniuku-ku	Al-Knalidiy Trading 8 Contracing	A., С.,.,.p.	P	NL 5600 CHEEINOHOVEN
TokY0, 163	P.O. Box 330	Protel Engineering	Hewelt.Packard de Mexico.	Tel: 3-40-30-32-6911
Tel: 03 (1)399-1859	SAFAT ${ }_{\text {Tel } 424910.41726}$	P.0.80x 1917		
Telex: 227584	Tel:424900.441726	Lol 6624. Section 64	Czada. del Valle	
A ${ }^{\text {a }}$	Teiex: 22481/ AREGK	23/4 Pending Road	409 Ote. 4th Piso	NEW ZEALAND
Yokogawa Hokustin Eleertic Corp. 9.32 Nokacho 2 Chome	E,M,A	Kucching. SAAAWAK Tel 3629	Colonia del Valle	
Musashtino-shi TokKo, 180	Guir computing syslems	Telex: 70904 Promal MA	Garcia Nuevo Leo	P.0. 80×26 26-189
TokYo, 180	P.O. Sox 25125	Cable Proteleng	66220 MOWTERREY, Nuevo León	Espom, AuCkLand
Tet: (0422) 54-1111	Safat	A.E.M	Tele 8-7.78-42-40	Tel: 64.9.687-159
Telex: 02822-42. YEW MTK J A		malta	Telex: 388410 HPMY	Cable: HEWPAK Auckland
		Philp Toledo Lid		c.one.p
Yokogawa-Hewlel-Packard LIT. Meili-simei	Photo 8 Cine Equipment	Kikikikara P. O. 80×11	Intogratcas y Sistemas	Hewet.P.Packard (N.2.) LIo.
Mulsi.Seimel Unomiy Odori Buiding	P.O. Box 270	Notabie fo	del Noreste. SAA Rio Ornoco 1171 Oriente	WELIMGToN
1.5 Odori. 2 Chome	SAFAT	Tel: 44747.45566 .491525	Despacho 2001	P.0. Box 9443
UTSUNOMYYA, Tochigi 320	Tel: 2445111	Telex: Media MW 649	Colonia Del Valle	Courtenay Place, WELLIMGTON 3
Te: (0286) 3 3-1153	Telex: 22247 MATINT KT	EM, P Media Mo49	моNтERREY	Tel: 64-4.887-199
C.E	Cable: MATIN KUWAIT		Tel: 599.4415.57-.837	Cable: HEWPACK Wellinglon
Yokogaw-Hewetr-Packard LId.	P	MAURITIUS	Telex: 483164	C.CM.E.P
Yasuda Seime Nishiguchi Bldg.	W.J. Towell Compuler Services	Blanche Birger Co. Llid.	A.E	Northrop instrumenis 8 Systems Lto.
$30-4$ Sturya.cho. 3 Chome	P.O. Box 5897	18. Jues Koenig Streel	Hewlel-Packa	369 Khyee Pass for
Kanagawa-ku, YOKOHAMA 221	Safat	Pontiouls	S.A. de c.v.	P.O. 8088602
Tel: (045) 31-12125	Tel: 2462640/1	Tel: 20828	Elvd Independencia No. 2000 Ote.	aUCKLAND
C.CM.E	Telex: 30336 TOWEL KT	Telex: 4296	Col. Estrela	Tel 794.091
	c		TORREON, COAH.	Telex: 60605
		mexico	Tel: 171-18-21-99	A.M
		Hewell.Packard de Mexico.	P	
		S.A. de C.V.		
		Rio Nio No. 4049 Desp. 12 Fracc. Cordoba		
		${ }^{\text {JuARECL }}$ (${ }^{\text {a }}$		
		${ }_{\rho}^{\text {Tel: 161-3-15-62 }}$		

Northrop Instruments 8 Sysiems Lid.	Mushko 8 Company LId.	PUERTO RICO	SINGAPORE	Hewlet.-Packard Espanolo, S.A.
110 Mandeville SS.	Oosman Chambers	Hewett-Packard Puerto Rico	Hewlet-Packard Singapoore (Sales)	Avda. S. Francisco Javier, S
P.0. 80×8388	Abdullah Haroon Road	101 Mưoz Rivera Av	Ple. Lld.	Plana 10. Edilicio Sevilla 2
CHRISTCHURCH	KARACH10302	Esu. Calle Ochoa	1150 Depot Road	E.SEVILI 5 5, SPAIM
Tel: 488-873	Tel: 524131,524132	HATO AEY, Puerto Rico 00918	SIIGAPORE, 0410	Tel: $54 / 644454$
Telex: 4203	Telex: 2894 MUSKO PK	Tel: 1809) 744.7800	Tel: 4731788	Telex: 72933
A,M	Cable: COOPERATOR Karachi	A,C,CM, M, E, P.	Telex: 34209 HPSGSO RS	A.C,M, P
Northrop instruments 8 Systems Lid.	A, , , P.	Qatar	Cable: HEWPACK, Singapor	Hewelt.P.Pckarde sparanola, S.A.
Slurde House	PANAMA	Compuler Arabia		
${ }^{85-8878 \text { Ghurnee Street }}$	Electronico Balboa, S.A.	P.0. Box 2750	Oynamar Interational Lİ.	E.-66004 VALENCIA
P.O. Box 2406 WELLIMGTON	${ }_{\text {ceale }}$ Cale Samuel Lewis, Ed. Ala	DOHA	Unit 5 5.111 lock 6	Tel: 34.6 .36611354
Te: 850 -091	Aparado 4929		Kolam Ayer Industria Estate SIIGAPORE 1334	Telex: 63435
Telex: N2 3380	panama city	p	Tel: $747-6188$	Hewelt-Packard Espanola S S.A.
A,M	Tel: 9.0011 .507 .636613	Nasser Trading \& Contracting	Telex: 26883 RS	Av. de Uugazarte, 8
nigeria	Telex:366 3883 ELECTRON PG	P. 0.8 Box 1563 (CM	Las ArenasGGuecho
Elimeo Nigetia LId.		DOHA	SOUTH AFRICA	E-48930 UIZCAYA
45 Saka Tirubu St.	PERU	Tel: 222170	Hewelt-Packard So Atrica (PIY, LId.	vizcaya
Victoria Island	Cia Electro Medica S S. .	Telex: 4439 NASSER OH	P.O. Box 120	Tel: 34-423-63 06
Lagos	Los Flamencos 145, Olc. 301/2	M	Howard Place, CAPE PRovince	Telex: 33032
Tel: 61-98-94	San Isidro	SAUDI ARABIA	7450 South Alica	SWEDEN
Telex: 20-117	Casilla 1030	Modern Elecronics Esablishment	Tel: $271211155-7954$	Hewell.Packard Sverige AB
	LIMA 1	Hewell.-Packard Division	Telex:57-20006	Ôtra Tulgatan 3
NORTHERN IRELAND See United Kingdom	Tel: 9-011-51-4-4.414325, 41-3705	P.0. 80×281	A.C.CM, E.M.P	S.20011 malmo
See United Kingdom	Telex: 39425257 PE PB SIS	Thuobah	Hewell.Packard So Atrica (Pyy,	Box6132
NORWAY	См, е., ${ }^{\text {P }}$	AL-kнНвAA 31952	2 nd Floor Juniper Hous	Tel: 46-40-702-70
Hewelt.-Packard Norg	SAMS S.A.	Tex:	92 Vurport Dive Dunaan 0667	Telex: (854) 17886 (via Spanga
Folke Bernadothes vei	Arenida Repubica de Panama 3534	Cable: ELECTA AL-KHOBAR	Tel: 27-31-28.41	
P.0. Box 35558	San Isidro. LIMA	C, E, M	Telex: 6.22954	
N-5033 FYLLINGSDALEN (Bergen)	Tel: $9-011-511-4-229332 / 413984 /$ 413226	Modern Electronics Esablishment	Telex. 0.22954	Hewlet-Packard Sverige AB Elementvagen 16
Telex: 76621 hpna	Telex: 39420450 Pe LIBERTAD	Hewelt-Packard Division	Hewelt-Packard So Aftica Plyy. Lid.	S-7022 7 ORE日RO
C.E.M	${ }_{\text {A.C. }}$.	P.O. Box 1228	Shop 6 Linlon Acrade	Tel: 49-019-10-4820
Hewell-Pach	PHILIPPINES		511 Cape Road	Telex: (854) 17886 (via Spanga otice)
Ositernalen		Tel: 6449628	Linlon Grange	c
P.0. 8 80 34		Telex: 402712 FARNAS SJ	Tel: 2714113001201	Hewlel.-Packard Sverige AB
N-1345 OESTERAAS	2nd Foor, Electra House	Cable: ELECTA JEDDAH	Telex 24-2916	Skalholtsgalan 9 , Kisla
Tel: 47-2.17-1800		A.C.CM, E, M, P	${ }_{c}$	P.O. 8 80 19
ACCMEMP	Legaspi Village, Makai	Modern Electronics Esablishment		S-16393 SPAMGA
Hewelt-Packard Norge A/S	Merro MANLA	Hewelt.-Packard Division	Founlain Center	Telex: (854)17886
Boohmergt 42	Tel: 815-38-10 (up 10 16)	P.O.BOx 22015 RIVAOH 11495	Kakoen Str.	Telelax: (0) /752781
Box 2470	Telex: 63274 ONLINE PN	Tel: 491-97 15, 491.6387	Morumen Park Ext 2	A.C.CM, E,M, P
N.5037 SoLhemsvik	A.C, , , M, P		PRETORIA 0105	Hewlelt.Packard Sverige AB
Tel: 0477/5/290090	PORTUGAL	C.E.M		80×266
OMAN	Mundinter Inecrambio	Abdul Ghani El Aiou Corp.	${ }_{\text {C, }}^{\text {ceex }}$	Topasgatan 1A
Khimili Ramdas	Mundial de Comércio S.A.f.L.	. Box		5.42123 Vastra-Frolunda
P.0. 80×19	Av. Antonio Augusto Agviar	RIIAOH		(Gothenburg)
muscatisultanate of oman	Aparado 2761	Tel: 4041717		Tel: 46-031-1-89-1000
Tel: 795901	LISBON	Telex: 200932 EL AJOU	Tel: 27.1 -1-802-5111. 27-11-802-5125	Telex: (854) 17886 (via Spá
${ }_{P}^{\text {Telex: } 34898}$	Tel: (19) $53-21-31,53-2$	P		office)
P	Telex: 16691 munter p	SCOTLAND	Cable: HEWPACK Johannesurg	
Sunail S Sud Bahwan	M	See United Kingdom	A.C.CM.E.M.P	SUDAN
	Soquimica	senegal	SPAIN	Medilerranean Engineering
Tel: 734 201-3	Av. da Liberdade, 220-2	Societe Hussein Ayad 8 Cie.	Heweltt-Packard Española, S. S.	\& Trading Co. Lid.
Teexe: 5274 BahWan MB	${ }^{1298}$ LIsB0A Codex	76.Averue Georges Pompidou	Calle Entenaa, 321	P.o. Box 1025
E	Telex: 13316 SABASA		E. - AaCcelona 29	Tel: 41184
Imbac LLC	A	Tel 32339		Telex: 24052
	Telectra-Empresa Teencica de	Cable: AYAO-Dakar		c.p
Of OMAM	Equipmentos Eliectricos S.A.A.L.		Hewellt-Packard Española, S.A.	SWITZERLAND
Tel: 70-77-27.70-77-23	Rua Rodrig da Fonsecal 103	1, Ave Prasent	Calle San Vicente S/N	Hewlet-Packard (Schweiz) AG
Telex: 3865 Tawos On	p.0. Box 2531		Editicio Albial 1.78	Clarastrasse 12
A.C.M	LIsbow 1	DAKar	48001 BILBao	CH-4058 日ASEL
PAKISTAN	Tel: (19) 66-60-72	215	Tel: $41 / 2388306$	Tel: 41-6.-33-5920
Mushko 8 Company Lid.		Teexx 587	A.C.E.M	A.C, E.P.
House No. 16, Streel No. 16	CM.E	P	Hewelt-Packard Espanoiola, S.A.	Hewelt.Packard (Schweiz) AG
Sector F-6/3	c.p.c.s.1	Systeme Serice Conseil (SSC)	Cra. N.V.I. Mm. 16.400	7, rue du Bois-du-
ISLAMABAD	Rua de Costa Cabral 575	4, Avenue du Parachois	Las Rozas	Case postale $365-1366$
Tel: 824545	4200 Poato	dakaretolle	E.MADRID	CH-1277 MEYRIN 1
Telex: 54001 Muski Pk	Tel: 499174/495173	Tel: 21996	Tel: (1) 63.00 .11	Tel: (0041) 22-83-11-11
ble: FEEMUS Isamabad	Telex: 26054	Telex: 577	Telex: 23515 HPE	Telex:27333 HPAG IH
A.E.P.	c. ${ }^{\text {P }}$	c. ${ }^{\text {P }}$	C.M	A.C,CM, , , , P

SALES \& SUPPORT OFFICES
Arranged alphabetically by country

SWITZERLAND (Cont'd)	TOGO	Saniva Biligisyar S Sistemleri A.S.	Hewell-Packard L	UNITED STATES
Hewelt-Packard (Schweiz) AG	Sociele Atricaine De Promolion	Buyukdere Caddesi 103/6	The Quadrangle	Hewlet-Packard Co .
Allmend 2	Immeuble Sageb	Gayellepe	${ }^{106-118}$ Station Road	Cusiomer inlormation Center
CH-9967 WIOEM	Rue d'Alakpame	IStanbul	REDHILL, Surey PH1 1 PS	Tel: [800) $752-0900$
Tel: 41-57-31-2111	P.O. Box 4150	Tel: 1673180	Tel: 44-737.-666-55	Hours: 6:00 AM 10 5:00 PM
Telex: 59393 h pag ch	LOME	Telex: 26345 SAN TR	Telex: 947234	Pacific Time
Cable:HPAG CH	${ }_{\text {Tel }}$ 21.62.888	c.p	C.E, ${ }^{\text {P }}$	Alabama
A,C,CM, E,M, P	Telex: 5357	Best lnc.	Hewlet-Packard LId.	Hewell-Packard Co .
Hewlet-Packard (Schweiz) AG		Esenenepe, Gazeleciler Silesi	Avon House 435 Statlord	2100 Riverchase Center
Schwamendingenstrasse 10	TRINIDAD \& TOBAGO	Keskin Kalem	Shirley, soulivul, Wesi Millands	Building 100 - Suite 118
${ }^{\text {CH.8050 ZUAICH }}$	Caribbean Telecoms Llo.	Sokak $6 / 3$, Gayyellepe	890 48 L	BIRMMIIGAMM, AL 35244
Tel: 41-1-315-8.8181	Corner McAlisiter Streel 8 8	Istanbul	Tel: 44-21-74-8800	Tel: (205) 988.0547
Telex: 8235337 HPAG	Eastern Main Road, Lavenilie	Te: 1721328.1733	Telex: 339105	A.c,M, P.
c. P		Telex: 42490	C.E.P.	Hewelt-Packard Co .
SYRIA	${ }_{\text {Tei }}$ 624-4213	A	Hewlet-Packard LId.	420 Wynn Dive
General Electronic Inc.	Telex: 22561 CAATEL wg	UNITED ARAB	Heathside Park Road	HLWTSVILLE, AL 358
Nuri Basha Ahnal Ebn Kays Street	Cable: CAATEL, PORT Of SPAIN	EMIRATES	Cheadie Heath, Slockporl	Tel: [205) $830-2000$
P.0. Box 5781	CM, E, M, P	Emilac lid.	SK3 ORB, United Kingdom	C.CM, E, M.
damascus	Compuler and Controls Lid.		Tel:44.061-1-288-0828	Alaska
Tel: 33-24.87	P.0. Box 51	${ }_{\text {SHARJJH }}$	Telex: 688068	Hewell.Packard Co
Telex: 44.19 .888 Cable LIECTROO	1 Taylor Street	Tel: 591181	A., C., M, P	4000 Old Seward Highw
Cable: ELECTROB	OF-SPAIM	Telex: 68136 Emitac em	Hewlet-Packard LId.	Suite 101
E			Harmon House	ANCHORAG
Middle Eass Electronics	Telex: 38722798 COMCON WG	E.C.M, P,A	No. 16 Gerge Streel	Tel: 9077) 563.8855
P.0.80x 2308	LOOGO AGENCY 1264			C,,
Rumaneh	A.P	Emilactio.	Tel: 8957202020	Arizona
damascus	Feral Assoc	P.0. Box 2711	Telex: 893134/5	Hewelt.Pack
Tel: 334592	8 Filigeralal Lane	ABU DHasl	C.CM.E.M.P	8080 Pointe Parkway West
Telex. 411771 Mees	POATT-OF-SPAIM	Tel: 820419.20	Hewelt-Packard	PHOENX, AZ 85044
M	Te: 62.368684 .68 .39255	Cable: Emitach abuohabl	King Streer Lane	Tel: (602) 273-600
TAIWAN	Telex: 22 2432 FERALCO	Enilac Lid.	Winnersh wokinghan	A.,.CM.E.,.,
Hewelt-Pack	M	P.O. Box 8391	Tel: 44/734/784774	Hewelt-Packard Co .
THM OHice		DUBAI,	ex: 8471	0 Easi Britannia dr .
${ }^{2}$ 2, Huan Nan Road	TUNISIA	el: 377591	A.C.E.,. ${ }^{\text {P }}$	c. Suile 124
CHUNGLI, Taoyuan	Tunisie Electronique S.A.R.L.	Emilac Lid.		TUCSON, A2 85706
el: (034) 929.666	31 Avenue de la Liberte	P.0. Box 473	NORTHERNIRELAND	Tel: $(602) 573-7400$
c	TUNIS	ras al khamah	Hemelt-packard Ireano Lid.	с.е.м. ${ }^{\text {. }}$
Hewlelt.Packard Taiwan Lid.	Tel: 280-144	Tel: 28133.212770	${ }_{75} 5$ Bellast Road. Caraicickererus	California
Kaohsiung Ottice		UNITED KINGDOM	Со. Алтпм в втз8 8PM	
KAOHSUUMG	944.Av. Uleururtha Mutuelevevile	ENGLAND	Tel: 0960067733	99 South hill r .
Tel: (07) 2412318	1002 TUNIS-EEVVEDERE	Hewlelf-Packard LId.	C.E	BRIISANE, CA 94005
c. E	Tel: 280144	Miller House	Cardia Services Company	Tel: (41515]330-2500
Hewell-Packard Taiwan LId.	Telex: 13238	The Ring, Backnelu	${ }^{\text {95a }}$ Finaghy Road Soulh	c
Floor. Hewell.Packard Suiliding	C.E., P	Berks RG12 1XN	BELFAST, ET10 OBY	Hewelt.Packard CO.
337 Fu Hsing North Road	Corema S.A.	Tel: 44/344/1/24-898	Tel: 023 23-625666	1907 North Gateeway 日
TAIPEI	1 leer. Av. de Carthage	Telex: 888733		FRRESNO, CA 93327
Tel: (02) 712.0404	TUNIS	E	scotland	Te: (209) 252-9652
Telex: 2443 HEWPACK	Tel: 255.821	Hewell.Packard Lid		C.M
Cable:HEWPACK Tipei	Telex: 12319 Cabam tn	Elstree House. Esstree Way	Hewell-Packard Lld.	Hewell-Packard Co.
А. С.СМ.,.,.,		BOREHAMWOOD, Herts WD6 15G	College Milto North	1421 1. Mannatan AV.
lng Lih Trading Co.	TURKEY	Te: 012075000	EAST KILBRIDE, 674 SNU	Tel 71414 (99.6.6720
3 3rd Floor. No. 7. 7. Sect	E.M.	Telex: 8952716	Te: 041-33-6232	Telf(T14)99966700
Jen Aif orod	Medina Eldem Sokak No. $41 / 6$ Yenisehic	C.E	Telex. 79615	
TAPE 100		Hewell:-Packard LTO.	C.E	Hewell.-Packard C
Tel: 02 I394.8191	Tel 319175	Oakield house. Oaktield Grove	Hewell-Packard	7008 Holisisere Ave.
Telex: 22894 SANKWANG	${ }_{\text {Telex } 42321 \text { KTX TR }}$	Ciltor naistol Avoo SS8 28N	SOUTH OUEENSEERRY	GOLETA, CA 93117
	Cable EMATRADE ANKARA	Tel: 44-272-7368806	EН30 9т6	Te: 8805 (685-6100
THAILAND	-	Telex	Tel: 0313311188	C.E
Unimesa Co. Lid	Texnim Company Lid	C.EP	Telex: 72682 HPSOFGG	${ }^{\text {Hewelterfacarard }} \mathrm{C} 0$.
30 Palpong Ave.. Suriwong	Iran Caddest ${ }^{\text {a }}$. 7	Hewell-Packard LId.	C.CM.E.M.	2525 Grand Averue CoNG BEACH CA 90815
	Karakidere	9 bidewell Place		Tel: 21314498 -1111
	ankara	London ECav bes		
Telex: 844339 Simmonco TH	Tel: 275800	Tel: 44-01-593.6665		Hewlel Packera a_{0}
${ }_{\text {Ci.C.E.M }}$ Cable UNMESA Bangkok	Telex: 42155	teex 298		${ }_{5} 551$ West Mancleser
A.C.E.M	C.E	C. P		5651 Wess Manchesserer Ave. Los AnGELIES CA 90045
5/5-6 Dejo Road	Kurr 8 Kurl A.S. Milhatpase Cadesi	Hewell-Packard Lid.		Tel: [12] [377.8000
bangkok	Kal 4 Kizila	Ponteract Road		Hewiel.-Packard C .
Tel: 234-8670. 234-8671	ankaba	NOBMAATON, West Yorkshire WF6 IRN		3155 Porter Dive
Telex. 87699-BEOUPPT TH	Tel: 318875/6/7/7	Tel: 44/924/895566		Palo Alto, CA 943
Cable: BUSIQUIPT Bangkok	Telex 62490 M ESA TR	Telex: 557335		Tel: [415) 85-8000
	A	c.p		c.E

lett-Packard C .	Hewell-Packard C_{0}.	lowa	Minnesota	eewlel-Pack
5725 W. Las Posilias Blvd.	4700 Bayou live.	Hewelt-Packard C o.	Hewelt-Packard C_{0}.	15 Myers Corner Rd.
Pleasanton, CA 94566	Builing 5	$407022 n d$ Av. SW	2025 W. Larpenterif Ave.	Hollowtrook Park, Suite 20
Tel: (415) /40-0282	PENSACOLA, FL 32503	CEDAR RAPIOS, IA 52404	ST. PAUL, MN 55113	WAPPMGERS FALLS, NY 12590
c	Tel: (904) 477-8422	Tel: [199) $390-4250$	Tel: (612) 644-1100	Tel: (914) 298.9125
Hewelt-Packard C_{0}.	A.C,M	C., ¢, M	A.C.CM, E,M	CM,E
4244 So. Markel Courl, Suile A	Hemelt-Packard Co .	Hemelt-Packard C_{0}.	Missouri	Hewetr-Packard Co .
SACRAMENTO, CA 95834	5550 W . Idewild, 1150	4201 Corporate Dr.	Hewell-Packard $C 0$.	2975 Westchester Ave
Tel: (916) $929-7222$	TAMPA, FLI 33614	WEST DES MOINES, IA 50265	1001 E . 101 st T Terrace Suile 120	PUBCHASE, NY 1057
$A^{\prime}, \mathbf{C , E , M}$	Tel: (8131) $888 \cdot 3282$	Tel: (515) 224-1435	KANSAS CITY, MO $64131-3368$	Tel: (914) 935.6300
Hewelt-Packard Co .	C.E.M, P		Tel: (1616) 941-0411	C.CM, E
9606 Aero Dive	Georgia	Kansas	A,C,CM,E,M	Hewelt-Packard Co .
SAN DiEGO, CA 92123	Hewelt.-Packard O_{0}.	Hewelt-Packard Co .	Hewelt-Packard CO .	3 Crossways Park West
Tel: (619) 279.3200	2015 Sout Park Place	Noorth Rock Susiness Park	133001 Hollenberg Divive	Woodebur, NY 11797
с.СМ, E, M	athenta, ga 30339	${ }^{3450} \mathrm{~N}$. Pock Rd.	BRIOGETON, MO 633044	Tel: (516) 688-7800
Hewelt-Packard Co .	Tel: 4044 (1955-1500	Suite 300	Tel: [1314] 344.5100	A.C.CM, E, M
3003 Scotl Boulevard	A.C.CM, E,M, P. ${ }^{\text {P }}$		A,C,E,M	North Carolina
santa clara, CA 95054	Hewelt-Packard Co .	C, E		Hewelt.Packard Co.
Tel: (408) 988 -7000	3607 Parkway Lane	Kentucky	${ }^{\text {Hewell.Packard }}$	305 Greg Son Dr.
Telex: 910.338-0586	Suite 300	Hewelt-Packard Co .	1020 Nectos	CAAY, NC 27511
A, C,CM, E	HORCROSS, GA 30092	305 N . Hurstbourne Lane.		Tel: (199194677.6600
Hewelt.-Packard Co .	Tel: (404) 488 -1894	Suite 100	C.E.M	C.CM, E, M. P•
2150 W. Hillcrest D .	C.E.P.	LoulsviLE, KY 40223	New Jersey	Hewell-Packard C_{0}.
Thousand oaks, CA 91320 (8855) 373-7000	Hawaii	Tel: (502) $426-100$ A.C.M	Hewell.ferackerd CO .	9401 Arrow Point Blvd Suite 100
C.CM, E	${ }_{\text {Hementer Packard }}$ O.	Louisiana	120 W. Cenlur Hoad	ChaRLOTEE, NC 28217
Colorado	1001 Bishoo St.	Hewelt-Packard C O.	Tel: 20111265.5000	Tel: (704) 527-9780
Hewlet.-Packard Co .	Suile 2400	160 James Drive East	A.C.CM, E, M	
2945 Center Green Cour South	HoNoLlut, H1 96813	ST. ROSE, LA 70087		Hewlell-Packard Co .
Suite A	Tel: 8088) $566-1555$	P.0. Box 1449	20 New England Av. West	5605 Roanne Way
BOULDER, CO80301	A.C, E., M	KENMER, LA 70063	PISCATAMAY, NJ 08854	GREESBORO, NC 27420
Tel: 1303 /499-6655	Idaho	Tel: 5 (50)4647-4100	Tel: (201) 562 -6100	Te:\| 19.19885 [-1800
A, C, E	Hewett-Packard C_{0}.		A.C.CM, E	
Hewlel-Packard Co .	11309 Chinden Blvd.	Maryland	New Mexico	Ohio
24 Inverness Place. East	B015E, ID 83714	Hewelt.-Packard Co .	Hewell-Packard Co.	Hemelel.Packard co.
ENGLEWOOD, CO 80112	Tel: (208) 323-2700	${ }^{3701}$	7801 Jetererson $\mathrm{N} . \mathrm{E}$.	2715 . Aringion ho
Tel: 3031649.5000	c	- BaLtimone, M. 21227	alluoueraue, NM 87109	
A.C.CM, E, M	Illinois	Telex: 710-862-1943	Tel: 505) 823 -6100	C.E
Connecticut	Hewelt-Packard C_{0}.	A.C.CM, E, M	C.E,M	Hewell.Packard Co .
Hewlet.-Packard C .	2205 E. Empire SI.	Hewelt1-Packard Co .	Hewell-Packard $\mathrm{Co}^{\text {. }}$	4501 Erskine fooad
500 Syvan Av.	P.O. Box 1607	2 Choke Cherry foad	1362 -C Trinity P .	
日RIIGGEPRT, CT 06606	HLOOMNGGON, LL 61702 -1607	ROCKYILE, MD 20850	LOS ALAMOS, NM 87544	Tel: $[513$) $991-9870$
Tel: (203) 371.6454	Tel: 3099 662-9411	Tel: (301) 948.6370	Tel: [505) $652 \cdot 6700$	C.M
C.E	А.С.е., ${ }^{\text {- }}$	A.C.CM, E.M		Hewelt-Packard Co .
Hewelt-Packard Co .	Hewlett-Packard Co	Massachusetts	New York	
		Hewlet.-Packard Co .	${ }^{\text {Hewlet-Packara }}$ co.	CLEVELAND, OH 44136
Wallimgoro , CT 06492	Te: (1312) 930.0010	1775 Minuleman Road	5 Compuler Divive Sourh	Tel: : 2161 / 243 -7300
Tel: (203) 265-7801		ANDOVER, MA 11810	ALEANY, NY 1205	A.C.CM.,.M
$\stackrel{\text { A.C.CM, , M }}{ }$	Hewelt-Packard Co.			Hewlell-Packard C .
Hewlet Packard C O	${ }^{12000 ~ E a s t ~ D i e n h ~ R o a d ~}$	Hewell-Packard Co .	Hewelt.-Packard Co_{0}.	${ }^{\text {908 }}$ O8S Springboro Pike
2901 N.W. 62nd Street	NAPERYILE, [1/ 60566	29 Butinglon Mall Rd	9600 Main Streel	Tel: 51513 / 33-2223
FORT LAUDERDALE, EL 3330	c		Clatel	A.C.CM.E. M
Tel: (305) 973 -2600	Hewetr-Packard Co.			Hewlet-Packard Co .
с.,.,., P-	5201 Tolview Orive			One Mariilime Plaza, 5
Hewelt.-Packard C_{0}.	${ }_{\text {S }}$ Roul	$\underset{\text { Michigan }}{\text { Hewlet-Packard Co. }}$	Heweltl-Packard ${ }^{\text {a }}$ O. 200 Cross keys Otice Park	720 Water Sireet
68800 South Poin Par	Tel: (312) 255-9800	${ }_{4326}$ Cescreade	FARPoont, NY 14450	TOLEDO, OH 43364
Suite 301	Telex: 910-687-1066	GRANO PAPIDS.M14 49506	Tel: (7161/233-9950	Tel: (4499) 24-2200
JACKSOWVILE, FL 32216	A.C.CM.E.M	Tee: (616) 957-1970	A.C.CME.M	c
Tel: (904) [636-9955	Indiana	C.M	Hewell-Packard C_{0}	Hewelt.packard Co
C. $\mathrm{M}^{*} \cdot$	Hewelt-Packard $\mathrm{Co}^{\text {a }}$	Hemelt-Packard C .		675 Brooksedge Elvod.
Hewlet.Packard C .	11911 N. Meridian St.	${ }_{39550}$ Orchard	LIVERPOOL, NY 13088	WESTEPVILE, OH 43081
255 East Drive, Suile B	CARMEL, $\mathrm{N}_{\text {W } 46032}$	Novi, M1 48850	Tel: 31515 /45-1820	Tel: [614) $891-3344$
MELBOURNE, FL 32901	Te: 3177) 84-4-400	Tel: [131) 349.9200	A.C.CM.E.M	c.CM, ${ }^{\text {- }}$
Tel (305) 729-0704	A.C.CM, E, M	A.C.,., M	Hewell-Packard Co.	Oklahoma
CM,	Hewlet-Packard C .	Hewelt-Packard Co .	No. 1 Pennsylvania Plaza	Hewlet.-Packard C .
Hewlet-Packard Co .	111E. Ludwig Road	$560 \mathrm{Kirss} \mathrm{Rd}$.	551 h Floor	3525 N.W. 566 h St.
6177 Lake Ellenor Prive	Suite 108	Suite 101	341 ll Sleel 8 7ln Avenue	Suile C-100
ORLANDO, FL 32809	F. WAYME, IN 46825	TROY, M148084	mantatan ny 10119	OKLLAHOMA CIITY, OK 731
Tel: 1305) 859.2900	Tel: [1919 482-4233	Te: : 313] 362.5180	Tet: (212) 971.0800	Tel: 1405) 946 -9490
А.,.CM, E., P.	C.E	c	с.M ${ }^{\text {. }}$	C.E. $\cdot \mathrm{M}$

SALES \& SUPPORT OFFICES
Arranged alphabetically by country

$\square \square \mathbb{T}$

[^0]: * P=Performance Test $\mathrm{A}=$ Adjust $\mathrm{T}=$ Troubleshooting

[^1]: In almost all cases the numerical method is the quickest way of setting up CPs. This example explain how it is done. Graphical setting of CPs is explained at the end of the example under "Some Further Practice".

[^2]: Set 8175A:
 CNTRL $>$ cURSOR $\rightarrow 2 \mathrm{X}>$ NEXT $=$ [Auto-Cycle] [synchron] startable $>$ DATA $=$ Period

