10 Steps to Determine 3G/4G IP Data Throughput

Michael Lawton Wireless Product Planning Engineer

Marv Wagner Wireless Applications Engineer

Agenda

- Introduction
- 10 Steps to Data Throughput Testing building up complexity
- Case studies "peeling back the onion"
- Summary

Technology Drivers for Wireless Networks

Mbps

WCDMA

RSHSDRA

RoHSPA*

Data

JH.

Voice

EDGE

120

100

80

60

40

20

0

GPRS

- Higher speed,
- Lower latency
- All IP
- Convergence (Radio Access and Core Networks)
- -LTE and IMS
- Interworking

E2E IP Throughput Testing is a key performance test which aligns with these technology drivers

It's All About More Data, Faster!

- Mobile penetration continues to grow: > 5 billion subscribers worldwide – more than 70% penetration*
- Mobile data traffic is growing exponentially caused by growing number of mobile devices such as tablets and smartphones accessing high-bandwidth applications.
- More spectrum is being made available
- In addition to subscriber growth, there is parallel growth in cellular peak data rates

Global mobile network traffic growth, 2008-2014

Anticipate ____Accelerate ____Achieve

Traditional Data Channel Testing Methods

Physical layer testing

- Benefits: Verifies coding and basic performance of L1
- Issues: Does not include higher layers, signaling, or apps

Standards-based testing

- Benefits: Industry standard, repeatable, required for conformance
- Issues: Does not include apps, limited configs tested, ideal conditions
 Often does not match real user experience

Traditional Data Channel Testing Methods

Field testing

- Benefits: Real world conditions, can include apps
- Issues: Not repeatable, often requires travel, difficult to troubleshoot and time consuming

Proprietary test systems

- Benefits: Repeatable test scenarios, in house 24x7 access
- Issues: Requires large investment \$\$ and time plus dedicated staff

E2E IP as a Measurement

- Benefits
 - A simple measurement to make yielding quick results
 - Tests a key performance parameter vs a headline theoretical limit
 - Is a stress test that tests the complete phone
 - Excellent at finding if you have a problem
- Issues
 - Not so good at isolating what your problem is!
 - Sometimes finds problems with the test and not the phone

Agenda

Introduction

- 10 Steps to Data Throughput Testing building up complexity
- Case studies "peeling back the onion"
- Summary

E2E IP ... 10 Step Plan, building up complexity

- 1. Will my device connect?
- 2. Do I have a good quality transmitter?
- 3. Do I have a good quality receiver?
- 4. Can I achieve max E2E tput under ideal conditions with UDP
- 5. What about with TCP and simultaneous UL/DL?
- 6. What happens if I try real application?
- 7. What happens under non-ideal conditions?
- 8. Is it robust?
- 9. Does it work closed loop?
- 10. How good is my battery life?

Step 1: Will my device connect?

Anticipate ____Accelerate ____Achieve

🔆 Agi

Anticipate ____Accelerate ____Achieve

2. Do I have a good quality Transmitter? RF test

- High data throughput testing relies on good quality UL transmissions
- Look for the following:-
 - Ensure you have appropriate power and attenuation settings
 - High EVM for high order modulation schemes
 - High EVM at the band edge
 - Spurs both in band and out of band
 - Linearity issues/ spectral growth
 - Switching transients, LO settling time
 - Repeat tests with any "other" radio's active

3GPP Tx Measurements

Test case Number	3GPP 36.521 Test Case Description						
6.2.2	UE Maximum Output Power						
6.2.3	Maximum Power Reduction (MPR)						
6.2.4	Additional Maximum Power Reduction (A-MPR)						
6.2.5	onfigured UE transmitted Output Power						
6.3.2	Minimum Output Power						
6.3.3	Transmit OFF Power (Covered by 6.3.4.1)						
6.3.4.1	General ON/OFF time mask						
6.3.4.2.1	PRACH time mask						
6.3.4.2.2	SRS time mask						
6.3.5.1	Power Control Absolute power tolerance						
6.3.5.2	Power Control Relative power tolerance						
6.3.5.3	Aggregate power control tolerance						
6.5.1	Frequency error						
6.5.2.1	Error Vector Magnitude (EVM)						
6.5.2.1 A	PUSCH-EVM with exclusion period						
6.5.2.2	Carrier leakage						
6.5.2.3	In-band emissions for non allocated RB						
6.5.2.4	EVM Equalizer spectrum flatness						
6.6.1	Occupied bandwidth						
6.6.2.1	Spectrum Emission Mask						
6.6.2.2	Additional Spectrum Emission Mask						
6.6.2.3	Adjacent Channel Leakage power Ratio						
6.6.3.1	Transmitter Spurious emissions						
6.6.3.2	Spurious emission band UE co-existence						
6.6.3.3	Additional spurious emissions						
6.7	Transmit intermodulation						

UL RF Measurements

Constellation

Channel Power

ACLR

Sub-carrier flatness

EVM vs symbol

Anticipate ____Accelerate ____Achieve

3. Do I have a good quality receiver?

- High Data throughput testing relies on good a quality receiver
- Look for the following:-
 - sensitivity for different modulation schemes
 - Max input level performance
 - susceptibility to interference (simultaneous UL/DL, other radios, spurs from digital board, ...)

FREQ.	2.655000	1888 G	12		U	FREQ. 2.	535000000 CHz			INT	10M		DTCH Test
AMP.		-80 d	MO	D RF	1	BIIEN.	18 dB						
PH IP a		400 U	MU MC		2	PH 1 1 (2.1 Yr	8 0.0			ERR			т
							Shift						
	Base Stat	ion Emu	lator	nform	ation			Status	5			<u>On</u>	
enario File	Name	March_Ba	nd7_MIN	10_20MH	IZ_TM3								Manual Trans
							REG IDLE		CON	H_L.	3		
H Bandwidt	h	20 MHz							DEI	ı			
		001							NLL				
NC .		011											D
Message	L1/L2 Status	ER/Thro	oughput	Inform	ation						4 Þ		Paramete
PER(%) ER							DTCH Information Re	sult					
100.0							Send Packet Count - 128	1560 (N	Aavimun	. 10000	000)		
90.0			_	-			Packet Size : 576 Pac	et Test	ted · 129	948	000,		
80.0			_		-		-	ver res	.eu . 125	540			
70.0		UL Feedback Information]											
60.0		RF1 (ACK/NACK/LOSS) :											
50.0		64922 / 0 / 52											
40.0						RF2 (ACK/NACK/LOSS) :							
30.0							64922 / 0 / 52						
20.0							Total (ACK/NACK/LOSS)	:					
10.0							129844 / 0 / 104						
0.0 57						67 Time(sec)	PHR :						
Mbps Throu	ighput						0						
.00.00				_	-		[ER & Throughput]						
90.00			-	-	-		ER (RF1/RF2)(%):						
80.00							0.08 (0.08 / 0.08)						
70.00			-	-			Throughput (RF1/RF2)(M	lbps):					
60.00			-				98.06 (49.03 / 49.03)						
50.00					-		[(D) Throughout]						
40.00					-		UL Inroughputj	lhese) .					
30.00							Naximum inroughput(iv	ops):			_		
20.00							90.//						
10.00							Average mroughput(IVID	ps):			_		
0.00 57						67 Time(sec)	37.40						

3. Do I have a good quality receiver?

👶 E6621A								_ = X
	<u>FREQ.</u> 2.5	3500000 <u>0</u> GHz		RF1	INT	10M		DTCH Test
		те ср И НВ	DM	RMT	EPC	TTCN		Test
			OVF	0.0	ERR	CAL		Test
		Shift	VT	UEE	SINGLE	HOLD		
Base Station Emulator Information			Status				<u>On</u>	Off
Scenario File Name March_Band7_MIMO_20MHZ_TM3								Manual Transfer
				CON		3		
CH Bandwidth 20 MHz				DEL				
MCC 001				NLL				
Message L1/L2 Status ER/Throughput Information						4 ۵		Parameter 🕨
PER(%) ER	Ъ	DTCH Information Re	sult					
100.0		Send Packet Count • 128	1560 (M	aximum	• 10000	000)		
90.0		Packet Size : 576 Pack	ket Teste	-d • 129	948	,		
80.0					540			
70.0		UL Feedback Informa	tion]					
60.0		RF1 (ACK/NACK/LOSS) :						
50.0		64922 / 0 / 52						
40.0		RF2 (ACK/NACK/LOSS) :						
20.0		64922 / 0 / 52						
10.0		Total (ACK/NACK/LOSS)	:					
0.0		129844 / 0 / 104						
57	67 Time(sec)	PHR :						
Mbps Throughput		0						
100.00	——————————————————————————————————————	[ER & Throughput]						
90.00	1	ER (RF1/RF2)(%):						
80.00		0.08 (0.08 / 0.08)						
70.00		Throughput (RF1/RF2)(M	1bps):					
60.00		98.06 (49.03 / 49.03)						
50.00		[DL Throughout]						
40.00		Maximum Throughput/M	(hns) ·					
30.00		98 77						
10.00		Average Throughout (Mb	ns):					
	· · · · · · · · · · · · · · · · · · ·	97.45						
57	67 Time(sec)							
10:20:42 PM SEP 08, 2010 Trig: Int1 20 MHz Ready								

Anticipate

Rx Measurements

Section 7	Receiver Characteristics				Requires SS	Requires SA
7.3	Reference sensitivity level	Supported	Yes	Yes		
7.4	Maximum input level	Supported	Yes	Yes		
7.5	Adjacent Channel Selectivity (ACS)	Supported	Yes	Yes	Y	
7.6.1	In-band blocking	Supported	Yes	Yes	Y	
7.6.2	Out-of-band blocking	Supported	Yes	Yes	Y	
7.6.3	Narrow band blocking	Supported	Yes	Yes	Y	
7.7	Spurious response	Supported	Yes	Yes	Y	
7.8.1	Wideband intermodulation	Supported	Yes	Yes	Y x 2	
7.9	Spurious emissions	Supported	Yes	Yes		Y

4. Can I achieve max E2E Tput under ideal conditions with UDP?

- iperf used to provide UDP data stream and measure received throughput
- No IP level ACKs required
- Measure results vs modulation/coding scheme
- Fluctuating BLER may indicate RF issues
- Sudden loss of data may indicate memory loss issues

Anticipate ____Accelerate ____Achieve

DL Data Throughput for TD LTE (20MHz channel, 2x2 MIMO, UL/DL config 5, special subframe config 6)

Anticipate ____Accelerate ____Achieve

Measurement Technique: UDP vs FTP (TCP) UDP FTP

- + Unacknowledged
- + removes flow control complexity
- + removes higher layer acks
- + Less susceptible latency

- + Simulates real-world file transfers
- + Transferred files can be viewed and/or compared

- Not the full story for file transfers
- Not suitable for used in shared networks
- Adds flow control complexity
- Add higher layer acks and retransmissions
- TCP Control algorithms sensitive to multiple parameters
- Test system configuration can affect results

5. Can I achieve max E2E tput under ideal conditions with TCP?

- TCP adds higher layer support for error detection, re-transmissions, congestion control and flow control
- TCP flow control algorithms interpret "lost" packets as congestion
- Careful consideration of parameters such as window size, number of parallel process, segment size etc. need to be considered

TCP "Flapping"

The same file FTP'd 10 times.

9 times rate is flat and consistent.

1 time there is a TCP slow-start as the flow control algorithm responds to an error – this is known as a TCP "flap"

Data Throughput

6. What happens if I try a real application? ... (Voice, video, ftp ...)

7. What happens under non-ideal conditions?

8. Is it robust? ...

C:\Windows\system32\cmd.exe	
C:\Users\Server\Desktop\iPerf>iy w20m	perf -c 192.168.1.51 -u -i1 -12900 -t600 -b102m -
Client connecting to 192.168.1.5 Sending 2900 byte datagrams UDP buffer size: 20.0 MByte	1, UDP port 5001
[128] local 192.168.1.230 port 4 [ID] Interval Transfer [128] 0.0- 1.0 sec 12.0 MBytes [128] 1.0- 2.0 sec 12.2 MBytes [128] 2.0- 3.0 sec 12.0 MBytes [128] 2.0- 3.0 sec 12.0 MBytes [128] 1.0- 2.0 sec 12.0 MBytes [128] 2.0- 3.0 sec 12.0 MBytes [128] 1.0- 2.0 sec 12.2 MBytes [128] 1.0- 2.0 sec 12.2 MBytes [128] 2.0- 3.0 sec 12.2 MBytes [128] 3.0- 4.0 sec 12.2 MBytes	9174 connected with 192.168.1.51 port 5001 Bandwidth 100 Mbits/sec 102 Mbits/sec 100 Mbits/sec 100 Mbits/sec 102 Mbits/sec 100 Mbits/sec 102 Mbits/sec 102 Mbits/sec 102 Mbits/sec 102 Mbits/sec 102 Mbits/sec 102 Mbits/sec 102 Mbits/sec 102 Mbits/sec 102 Mbits/sec

- E2E IP tests PHY, MAC, PDCP, and IP layers all working together at full rate
- Check processor can handle multiple real time activities add SMS and voice calls during E2E IP
- Check there are no memory overflow/leakage issues

Anticipate ____Accelerate ____Achieve

9. Does it work closed loop?

- BLER/Tput Testing
- Supports Test Mode and E2E Testing

10. How good is my battery life?

8960: •2G/3G BS emulation

Anticipate ____Accelerate ____Achieve

Agenda

- Introduction
- 10 Steps to Data Throughput Testing building up complexity
- Case studies "peeling back the onion"
- Summary

Automated Measurements Give Repeatable 21Mbps Results!

Device Performance: MIPS Matter!

This comparison was made with a very early Cat 8 HSDPA phone. When the MAC-d block size is smaller, the device doesn't have the MIPS to sustain the high rate.

Cat14 (21Mbps) Devices – Better the second time around

Dual-Carrier HSDPA (42Mbps) – Diversity Matters!

Throughput for Rx Power = -20dBm to -85dBm

Dual-Carrier HSDPA (42Mbps) – Diversity Matters!

Throughput for Rx Power = -20dBm to -85dBm

Not All HSDPA Cat 6 Devices Have the Same Throughput

Data Throughput vs Channel and RF Input Level - Cat 6 device #1

Received Power (dBm)

Not All HSDPA Cat 6 Devices Have the Same Throughput

Not All HSDPA Cat 6 Devices Have the Same Throughput

Data Throughput Across Input Power Level

Data Throughput Across Input Power Level

Data Throughput Across Channels and RF Input Levels

Data Throughput Across Channels and RF Input Levels

Agenda

- Introduction
- 10 Steps to Data Throughput Testing building up complexity
- Case studies "peeling back the onion"
- Summary

Summary

- E2E IP Data throughput is a very useful measurement which stress tests the device against a key specification
- The measurement is good for finding problems
- Troubleshooting the problem requires you to peel back the onion
- We have looked at examples of E2E IP issues found testing 3G/4G commercial UEs

