Keysight Technologies E4982A LCR Meter

1 MHz to 3 GHz

Data Sheet

Definitions

Specification (spec.):

Warranted performance. Specifications include guardbands to account for the expected statistical performance distribution, measurement uncertainties, and changes in performance due to environmental conditions. Supplemental information is intended to provide information that is helpful for using the instrument but that is not guaranteed by the product warranty.

Typical (typ.):

Describes performance that will be met by a minimum of 80% of all products. It is not guaranteed by the product warranty.

Supplemental performance data (SPD):

Represents the value of a parameter that is most likely to occur; the expected mean or average. It is not guaranteed by the product warranty.

General characteristics:

A general, descriptive term that does not imply a level of performance.

Basic Measurement Characteristic

Measurement parameters	
Impedance parameters	Z , Y , Ls, Lp, Cs, Cp, Rs, Rp, X, G, B, D, Q, Øz [°], Øz [rad], Øy [°], Øy [rad], User defined parameter (A maximum of four parameters can be displayed at one time.)
Measurement range	
Impedance parameters	140 m Ω to 4.8 k Ω (Frequency = 1 MHz, Averaging factor = 8, Measurement time mode = 3, Oscillator level = 1 dBm, Measurement uncertainty $\leq \pm$ 10%, Calibration is performed within 23 °C \pm 5 °C, Measurement is performed within \pm 5 °C from the calibration temperature)

Source Characteristics

Frequency	
Range	1 MHz to 3 GHz
Resolution	100 kHz
Uncertainty	± 10 ppm (23 °C ± 5 °C) ± 20 ppm (5 °C to 40 °C)
Oscillator level	
Cable Length = 1m:	
Power range (When 50 Ω LOAD is connected to test port)	-40 dBm to 1dBm
Current range (When SHORT is connected to test port)	0.0894 mArms to 10 mArms
Voltage range (When OPEN is connected to test port)	4.47 mVrms to 502 mVrms
Uncertainty (When 50 Ω LOAD is connected to test port)	(23 °C ± 5 °C) ± 2 dB (frequency ≤ 1 GHz) ± 3 dB (frequency > 1 GHz)
	(5 °C to 40 °C) ± 4 dB (frequency ≤ 1 GHz) ± 5 dB (frequency > 1 GHz)
Resolution	0.1 dB (When the unit is set at mV or mA, the entered value is rounded to 0.1 dB resolution.)
Cable Length = 2m (When option 00	2 is used):
Power range	Subtract the following attenuation from the power (setting value) at 1 m cable length: Attenuation [dB] = $0.42 \sqrt{f}$ (f: Frequency [GHz])
Uncertainty (When 50 Ω LOAD is connected to test port)	(23 °C ± 5 °C) ± 3 dB (frequency ≤ 1 GHz) ± 4 dB (frequency > 1 GHz)
	(5 °C to 40 °C) ± 5 dB (frequency ≤ 1 GHz) ± 6 dB (frequency > 1 GHz)
Resolution	0.1 dB (When the unit is set at mV or mA, the entered value is rounded to 0.1 dB resolution.)
Output impedance	
Output impedance	50 $\mathbf{\Omega}$ (nominal)

Measurement Accuracy

Condition for definition of accuracy:

- 23 °C ± 5 °C
- 7-mm connector of 3.5-mm-7-mm adapter connected to 3.5-mm terminal of test heads

Measurement uncertainty

When OPEN/SHORT/LOAD calibration is performed:

Z , Y	$\pm (E_a + E_b) [\%]$
$\Delta heta$	$\pm \frac{\left(E_{a} + E_{b}\right)}{100} [rad]$
L, C, X, B	$\pm \left(E_{a} + E_{b} \right) \times \sqrt{(1 + D_{x}^{2})} \ \left[\%\right]$
R, G	$\pm \left(E_{a} + E_{b} \right) \times \sqrt{(1 + \mathbf{Q}_{x}^{2})} \ \left[\%\right]$
ΔD	
at $\left D_{x} \operatorname{tan} \left(\frac{E_{a} + E_{b}}{100} \right) \right < 1$	$\pm \frac{\left(1 + D_x^2\right) \tan\left(\frac{E_b + E_b}{100}\right)}{1 \pm D_x \tan\left(\frac{E_b + E_b}{100}\right)}$
Especially, at $D_x \le 0.1$	$\pm \frac{E_a + E_b}{100}$
Δ0	
at $\left \mathbf{Q}_{x} \operatorname{tan} \left(\frac{\mathbf{E}_{a} + \mathbf{E}_{b}}{100} \right) \right < 1$	$\pm \frac{\left(1 + Q_x^2\right) \tan\left(\frac{E_b + E_b}{100}\right)}{1 \pm Q_x \tan\left(\frac{E_b + E_b}{100}\right)}$
Especially, at $\frac{10}{E_a + E_b} \ge 0_x \ge 10$	$\pm \ \mathbf{Q}_{x}^{2} \ \frac{\mathbf{E}_{a} + \mathbf{E}_{b}}{100}$

Measurement uncertainty

When OPEN/SHORT/LOAD/Low Loss capacitance calibration is performed (SPD):

When of EN/Shortf/ LOAD/ Low Loss capacitance candidate	in is performed (SFD).
Z , Y	$\pm \left(E_{a} + E_{b} \right) \left[\% \right]$
$\Delta heta$	$\pm \frac{E_{c}}{100}$ [rad]
L, C, X, B	$\pm \sqrt{\left(E_{a} + E_{b}\right)^{2} + \left(E_{c}D_{x}\right)^{2}} [\%]$
R, G	$\pm \sqrt{\left(E_{a} + E_{b}\right)^{2} + \left(E_{c}Q_{x}\right)^{2}} [\%]$
ΔD	
at $\left D_x \tan \left(\frac{E_c}{100} \right) \right < 1$	$\pm \frac{\left(1 + D_x^2\right) \tan\left(\frac{E_c}{100}\right)}{1 \ m D_x \tan\left(\frac{E_c}{100}\right)}$
Especially, at $D_x \le 0.1$	$\pm \frac{E_c}{100}$
Δ 0	
at $\left \Omega_x \right $ tan $\left(\frac{E_c}{100} \right) \right < 1$	$\pm \frac{\left(1 + \Omega_x^2\right) \tan \left(\frac{E_c}{100}\right)}{1 \pm \Omega_x \tan \left(\frac{E_c}{100}\right)}$
Especially, at $\frac{10}{E_c} \ge 0_x \ge 10$	$\pm \Omega_x^2 \frac{E_c}{100}$

Definition of each parameter

Dx =	Measurement value of D						
= xÇ	Measurement value of Q						
Ea =	Within 23 ± 5 °C from the calibration temperature. Measurement accuracy applies when the calibration is performed at 23 ± 5 °C. When the calibration is performed beyond 23 ± 5 °C, the measurement accuracy decreases to half that described.						
	Measurement Time:	Oscillator level = 1 dBm	± 0.54 % @ 1 MHz ≤ frequency ≤ 100 MHz				
	Mode 1		± 0.62 % @ 100 MHz < frequency ≤ 500 MHz ± 0.92 % @ 500 MHz < frequency ≤ 1 GHz				
			± 2.05 % @ 1 GHz < frequency ≤ 1.8 GHz				
			± 4.42 % @ 1.8 GHz < frequency ≤ 3 GHz				
		–20 dBm ≤ Oscillator level < 1 dBm	± 0.66 % @ 1 MHz ≤ frequency ≤ 100 MHz				
			± 0.74 % @ 100 MHz < frequency ≤ 500 MHz				
			± 1.11 % @ 500 MHz < frequency ≤ 1 GHz				
			± 2.36 % @1 GHz < frequency ≤ 1.8 GHz				
			± 4.81 % @ 1.8 GHz < frequency ≤ 3 GHz				
		-33 dBm ≤ Oscillator level < -20 dBm	± 1.13 % @ 1 MHz ≤ frequency ≤ 100 MHz				
			± 1.22 % @ 100 MHz < frequency ≤ 500 MHz				
			± 1.84 % @ 500 MHz < frequency ≤ 1GHz				
			± 3.54 % @1 GHz < frequency ≤ 1.8 GHz				
			± 6.35 % @ 1.8 GHz < frequency ≤ 3 GHz				
		Oscillator level < -33 dBm	± 2.08 % @ 1 MHz ≤ frequency ≤ 100 MHz				
			± 2.26 % @ 100 MHz < frequency ≤ 500 MHz				
			± 2.27 % @ 500 MHz < frequency ≤ 1 GHz				
			± 4.34 % @ 1 GHz < frequency ≤ 1.8 GHz				
			± 7.60 % @ 1.8 GHz < frequency ≤ 3 GHz				
	Mode 2	Oscillator level = 1 dBm	± 0.52 % @ 1 MHz ≤ frequency ≤ 100 MHz				
			± 0.59 % @ 100 MHz < frequency ≤ 500 MHz				
			± 0.89 % @ 500 MHz < frequency ≤ 1 GHz				
			± 1.99 % @ 1 GHz < frequency ≤ 1.8 GHz				
			± 4.34 % @ 1.8 GHz < frequency ≤ 3 GHz				
		–20 dBm ≤ Oscillator level < 1 dBm	± 0.58 % @ 1 MHz ≤ frequency ≤ 100 MHz				
			± 0.66 % @ 100 MHz < frequency ≤ 500 MHz				
			± 0.98 % @ 500 MHz < frequency ≤ 1 GHz				
			± 2.14 % @ 1 GHz < frequency ≤ 1.8 GHz				
			± 4.54 % @ 1.8 GHz < frequency ≤ 3 GHz				
		–33 dBm ≤ Oscillator level < –20 dBm	± 0.81 % @ 1 MHz ≤ frequency ≤ 100 MHz				
			± 0.90 % @ 100 MHz < frequency ≤ 500 MHz				
			± 1.35 % @ 500 MHz < frequency ≤ 1 GHz				
			± 2.74 % @ 1 GHz < frequency ≤ 1.8 GHz				
			± 5.31 % @ 1.8 GHz < frequency ≤ 3 GHz				
		Oscillator level < -33 dBm	± 1.30 % @ 1 MHz ≤ frequency ≤ 100 MHz				
			± 1.44 % @ 100 MHz < frequency ≤ 500 MHz				
			± 1.44 % @ 500 MHz < frequency ≤ 1 GHz				
			± 2.92 % @ 1GHz < frequency ≤ 1.8 GHz				
			± 5.59 % @ 1.8 GHz < frequency ≤ 3 GHz				

Ea =	Mode 3	Oscillator level = 1 dBm	± 0.51 % @ 1 MHz ≤ frequency ≤ 100 MHz
			± 0.59 % @ 100 MHz < frequency ≤ 500 MHz
			± 0.87 % @ 500 MHz < frequency ≤ 1 GHz
			± 1.97 % @ 1 GHz < frequency ≤ 1.8 GHz
			± 4.32 % @ 1.8 GHz < frequency ≤ 3 GHz
		–20 dBm ≤ Oscillator level < 1 dBm	± 0.55 % @ 1MHz ≤ frequency ≤ 100 MHz
			± 0.63 % @ 100MHz < frequency ≤ 500 MHz
			± 0.94 % @ 500MHz < frequency ≤ 1 GHz
			± 2.08 % @ 1GHz < frequency ≤ 1.8 GHz
			± 4.46 % @ 1.8GHz < frequency ≤ 3 GHz
		–33 dBm ≤ Oscillator level < –20 dBm	± 0.65 % @ 1MHz ≤ frequency ≤ 100 MHz
			± 0.80 % @ 100MHz < frequency ≤ 500 MHz
			± 1.20 % @ 500MHz < frequency ≤ 1 GHz
			± 2.50 % @ 1GHz < frequency ≤ 1.8 GHz
			± 5.00 % @ 1.8GHz < frequency ≤ 3 GHz
		Oscillator level < –33 dBm	± 1.00 % @ 1MHz ≤ frequency ≤ 100 MHz
			± 1.20 % @ 100MHz < frequency ≤ 500 MHz
			± 1.20 % @ 500MHz < frequency ≤ 1 GHz
			± 2.50 % @ 1GHz < frequency ≤ 1.8 GHz
Eb =	(Zs	- 7.) 100 [0/]	± 5.00 % @ 1.8GHz < frequency ≤ 3 GHz
ib =	$\pm \left(\frac{Zs}{ Zx } + Y\right)$ $\pm \left(0.06 + \frac{C}{2}\right)$)	
с	$\pm \left(0.06 + \frac{0}{2}\right)$ Within 23 ± 5 °C from	/ (F : Frequencies of the calibration temperature. Measurement accurre accurre accurre accurre beyond 23 ± 5 °C, the m	± 5.00 % @ 1.8GHz < frequency ≤ 3 GHz Measurement value of Z) Hency [MHz]) racy applies when the calibration is performed at
с	± (0.06 + - Within 23 ± 5 °C from 23 ± 5 °C. When the compared to the second	/ (F : Frequencies of the calibration temperature. Measurement accurre accurre accurre accurre beyond 23 ± 5 °C, the m	± 5.00 % @ 1.8GHz < frequency ≤ 3 GHz Measurement value of Z) Hency [MHz]) racy applies when the calibration is performed at
С	$\pm \left(0.06 + \frac{0}{2} \right)$ Within 23 ± 5 °C from 23 ± 5 °C. When the or scribed. (F: Frequency	/ (F : Frequencies of the calibration temperature. Measurement accuration is performed beyond 23 ± 5 °C, the m [MHz])	± 5.00 % @ 1.8GHz < frequency ≤ 3 GHz Measurement value of Z) Hency [MHz]) racy applies when the calibration is performed at easurement accuracy decreases to half that de-
с	$\pm \left(0.06 + \frac{0}{2}\right)$ Within 23 ± 5 °C from 23 ± 5 °C. When the or scribed. (F: Frequency Measurement Time	/ (F : Frequencies of the calibration temperature. Measurement accure calibration is performed beyond 23 ± 5 °C, the m ([MHz]) Oscillator level = 1 dBm, Average factor ≥ 8	$\pm 5.00 \%$ @ 1.8GHz < frequency ≤ 3 GHz Measurement value of Z) mency [MHz]) racy applies when the calibration is performed at easurement accuracy decreases to half that de- $\pm (14 + 0.5 \times F) [mΩ]$
с	$\pm \left(0.06 + \frac{0}{2}\right)$ Within 23 ± 5 °C from 23 ± 5 °C. When the or scribed. (F: Frequency Measurement Time	/ D.08×F 1000) [%] (F : Frequent the calibration temperature. Measurement accues calibration is performed beyond 23 ± 5 °C, the m '[MHz]) Oscillator level = 1 dBm, Average factor ≥ 8 Oscillator level = 1 dBm, Average factor < 8 -20 dBm ≤ Oscillator level < 1 dBm, Average	$\pm 5.00 \%$ @ 1.8GHz < frequency ≤ 3 GHz Measurement value of Z) mency [MHz]) racy applies when the calibration is performed at easurement accuracy decreases to half that de- $\pm (14 + 0.5 \times F) [mΩ]$ $\pm (19 + 0.5 \times F) [mΩ]$
	$\pm \left(0.06 + \frac{0}{2}\right)$ Within 23 ± 5 °C from 23 ± 5 °C. When the or scribed. (F: Frequency Measurement Time	$ \begin{array}{l} (F: Frequence of the calibration temperature. Measurement accurred beyond 23 \pm 5 °C, the m temperature is performed beyond 23$	± 5.00 % @ 1.8GHz < frequency ≤ 3 GHz Measurement value of Z) mency [MHz]) racy applies when the calibration is performed at easurement accuracy decreases to half that de- ± (14 + 0.5 × F) [mΩ] ± (19 + 0.5 × F) [mΩ] ± (20 + 0.5 × F) [mΩ]
c	$\pm \left(0.06 + \frac{0}{2}\right)$ Within 23 ± 5 °C from 23 ± 5 °C. When the or scribed. (F: Frequency Measurement Time) (F: Frequence) the calibration temperature. Measurement accurs calibration is performed beyond 23 ± 5 °C, the m (MHz]) Oscillator level = 1 dBm, Average factor ≥ 8 Oscillator level = 1 dBm, Average factor < 8 $-20 dBm \leq Oscillator level < 1 dBm, Average factor \geq 8-20 dBm \leq Oscillator level < 1 dBm, Average factor < 8-33 dBm \leq Oscillator level < -20 dBm, Aver-$	± 5.00 % @ 1.8GHz < frequency ≤ 3 GHz Measurement value of Z) Hency [MHz]) racy applies when the calibration is performed at easurement accuracy decreases to half that de- ± (14 + 0.5 × F) [mΩ] ± (19 + 0.5 × F) [mΩ] ± (20 + 0.5 × F) [mΩ] ± (37 + 0.5 × F) [mΩ]

Definition of each parameter (continued)

Definition of each parameter (continued)

Zs =	Mode 2	Oscillator level= 1 dBm, Average factor ≥ 8	± (13 + 0.5 × F) [m Ω]		
		Oscillator level= 1 dBm, Average factor < 8	± (15 + 0.5 × F) [m Ω]		
		-20 dBm \leq Oscillator level < 1 dBm, Average factor \geq 8	± (16 + 0.5 × F) [mΩ]		
		-20 dBm \leq Oscillator level < 1 dBm, Average factor < 8	± (24 + 0.5 × F) [mΩ]		
		-33 dBm ≤ Oscillator level< -20 dBm, Aver- age factor ≥ 8	±(24+0.5×F) [m Ω]		
		-33 dBm ≤ Oscillator level < -20 dBm, Aver- age factor < 8	± (64 + 0.5 × F) [mΩ]		
		Oscillator level < –33 dBm	± (133 + 0.5 × F) [mΩ]		
	Mode 3	Oscillator level = 1 dBm, Average factor ≥ 8	± (12 + 0.5 × F) [m Ω]		
		Oscillator level = 1 dBm, Average factor < 8	$\pm (14 + 0.5 \times F) [m\Omega]$		
		-20 dBm ≤ Oscillator level < 1 dBm, Average factor ≥ 8	± (15 + 0.5 × F) [mΩ]		
		-20 dBm ≤ Oscillator level < 1 dBm, Average factor < 8	± (20 + 0.5 × F) [m Ω]		
		-33 dBm ≤ Oscillator level < -20 dBm, Aver- age factor ≥ 8	± (20 + 0.5 × F) [mΩ]		
		-33 dBm ≤ Oscillator level < -20 dBm, Aver- age factor < 8	± (50 + 0.5 × F) [mΩ]		
		Oscillator level < –33 dBm	$\pm (100 + 0.5 \times F) [m\Omega]$		
			racy applies when the calibration is performed at		
	23 ± 5 °C. When the c scribed. (F: Frequency	alibration is performed beyond 23 ± 5 °C, the m [MHz])	easurement accuracy decreases to half that de-		
	23 ± 5 °C. When the c	alibration is performed beyond 23 ± 5 °C, the m [MHz]) Oscillator level = 1 dBm, Average factor ≥ 8	easurement accuracy decreases to half that de- ± (22 + 0.15 × F) [μS]		
	23 ± 5 °C. When the c scribed. (F: Frequency Measurement Time:	alibration is performed beyond 23 ± 5 °C, the m [MHz])	easurement accuracy decreases to half that de-		
	23 ± 5 °C. When the c scribed. (F: Frequency Measurement Time:	alibration is performed beyond 23 ± 5 °C, the me [MHz]) Oscillator level = 1 dBm, Average factor ≥ 8 Oscillator level = 1 dBm, Average factor < 8 -20 dBm ≤ Oscillator level < 1 dBm, Average	easurement accuracy decreases to half that de- $\pm (22 + 0.15 \times F) [\mu S]$ $\pm (28 + 0.15 \times F) [\mu S]$		
	23 ± 5 °C. When the c scribed. (F: Frequency Measurement Time:	alibration is performed beyond 23 ± 5 °C, the me [MHz]) Oscillator level = 1 dBm, Average factor ≥ 8 Oscillator level = 1 dBm, Average factor < 8 -20 dBm ≤ Oscillator level < 1 dBm, Average factor ≥ 8 -20 dBm ≤ Oscillator level < 1 dBm, Average	easurement accuracy decreases to half that de- ± (22 + 0.15 × F) [μS] ± (28 + 0.15 × F) [μS] ± (30 + 0.15 × F) [μS]		
	23 ± 5 °C. When the c scribed. (F: Frequency Measurement Time:	alibration is performed beyond 23 ± 5 °C, the me [MHz]) Oscillator level = 1 dBm, Average factor ≥ 8 Oscillator level = 1 dBm, Average factor < 8 -20 dBm ≤ Oscillator level < 1 dBm, Average factor ≥ 8 -20 dBm ≤ Oscillator level < 1 dBm, Average factor < 8 -33 dBm ≤ Oscillator level < -20 dBm, Aver-	easurement accuracy decreases to half that de- ± (22 + 0.15 × F) [μS] ± (28 + 0.15 × F) [μS] ± (30 + 0.15 × F) [μS] ± (53 + 0.15 × F) [μS]		
	23 ± 5 °C. When the c scribed. (F: Frequency Measurement Time:	alibration is performed beyond 23 ± 5 °C, the m [MHz]) Oscillator level = 1 dBm, Average factor ≥ 8 Oscillator level = 1 dBm, Average factor < 8 -20 dBm \le Oscillator level < 1 dBm, Average factor ≥ 8 -20 dBm \le Oscillator level < 1 dBm, Average factor < 8 -33 dBm \le Oscillator level < -20 dBm, Average factor ≥ 8 -33 dBm \le Oscillator level < -20 dBm, Average factor ≥ 8	easurement accuracy decreases to half that de- $\pm (22 + 0.15 \times F) [\mu S]$ $\pm (28 + 0.15 \times F) [\mu S]$ $\pm (30 + 0.15 \times F) [\mu S]$ $\pm (53 + 0.15 \times F) [\mu S]$ $\pm (52 + 0.15 \times F) [\mu S]$		
	23 ± 5 °C. When the c scribed. (F: Frequency Measurement Time:	alibration is performed beyond 23 ± 5 °C, the ma [MHz]) Oscillator level = 1 dBm, Average factor ≥ 8 Oscillator level = 1 dBm, Average factor < 8 -20 dBm \le Oscillator level < 1 dBm, Average factor ≥ 8 -20 dBm \le Oscillator level < 1 dBm, Average factor < 8 -33 dBm \le Oscillator level < -20 dBm, Average factor ≥ 8 -33 dBm \le Oscillator level < -20 dBm, Average age factor ≥ 8	easurement accuracy decreases to half that de- $\pm (22 + 0.15 \times F) [\mu S]$ $\pm (28 + 0.15 \times F) [\mu S]$ $\pm (30 + 0.15 \times F) [\mu S]$ $\pm (53 + 0.15 \times F) [\mu S]$ $\pm (52 + 0.15 \times F) [\mu S]$ $\pm (110 + 0.15 \times F) [\mu S]$		
	23 ± 5 °C. When the c scribed. (F: Frequency Measurement Time: Mode 1	alibration is performed beyond 23 ± 5 °C, the ma [MHz]) Oscillator level = 1 dBm, Average factor ≥ 8 Oscillator level = 1 dBm, Average factor < 8 -20 dBm \le Oscillator level < 1 dBm, Average factor ≥ 8 -20 dBm \le Oscillator level < 1 dBm, Average factor < 8 -33 dBm \le Oscillator level < -20 dBm, Aver- age factor ≥ 8 -33 dBm \le Oscillator level < -20 dBm, Aver- age factor ≥ 8 -33 dBm \le Oscillator level < -20 dBm, Aver- age factor < 8 Oscillator level < -33 dBm	easurement accuracy decreases to half that de- $\pm (22 + 0.15 \times F) [\mu S]$ $\pm (28 + 0.15 \times F) [\mu S]$ $\pm (30 + 0.15 \times F) [\mu S]$ $\pm (53 + 0.15 \times F) [\mu S]$ $\pm (52 + 0.15 \times F) [\mu S]$ $\pm (110 + 0.15 \times F) [\mu S]$ $\pm (247 + 0.15 \times F) [\mu S]$		
	23 ± 5 °C. When the c scribed. (F: Frequency Measurement Time: Mode 1	alibration is performed beyond 23 ± 5 °C, the ma [MHz]) Oscillator level = 1 dBm, Average factor ≥ 8 Oscillator level = 1 dBm, Average factor < 8 -20 dBm \le Oscillator level < 1 dBm, Average factor ≥ 8 -20 dBm \le Oscillator level < 1 dBm, Average factor < 8 -33 dBm \le Oscillator level < -20 dBm, Average factor ≥ 8 -33 dBm \le Oscillator level < -20 dBm, Average factor ≥ 8 -33 dBm \le Oscillator level < -20 dBm, Average factor < 8 Oscillator level < -30 dBm Oscillator level < -33 dBm	easurement accuracy decreases to half that de- $\pm (22 + 0.15 \times F) [\mu S]$ $\pm (28 + 0.15 \times F) [\mu S]$ $\pm (30 + 0.15 \times F) [\mu S]$ $\pm (53 + 0.15 \times F) [\mu S]$ $\pm (52 + 0.15 \times F) [\mu S]$ $\pm (110 + 0.15 \times F) [\mu S]$ $\pm (247 + 0.15 \times F) [\mu S]$ $\pm (20 + 0.15 \times F) [\mu S]$		
	23 ± 5 °C. When the c scribed. (F: Frequency Measurement Time: Mode 1	alibration is performed beyond 23 ± 5 °C, the me[MHz])Oscillator level = 1 dBm, Average factor ≥ 8 Oscillator level = 1 dBm, Average factor < 8 -20 dBm \leq Oscillator level < 1 dBm, Averagefactor ≥ 8 -20 dBm \leq Oscillator level < 1 dBm, Averagefactor < 8 -33 dBm \leq Oscillator level < -20 dBm, Averagefactor ≥ 8 -33 dBm \leq Oscillator level < -20 dBm, Averagegafactor ≥ 8 -33 dBm \leq Oscillator level < -20 dBm, Averagegafactor < 8 Oscillator level < -33 dBmOscillator level < -33 dBmOscillator level $= 1$ dBm, Average factor ≥ 8 Oscillator level $= 1$ dBm, Average factor < 8 -20 dBm \leq Oscillator level < 1 dBm, Average	easurement accuracy decreases to half that de- $\pm (22 + 0.15 \times F) [\mu S]$ $\pm (28 + 0.15 \times F) [\mu S]$ $\pm (30 + 0.15 \times F) [\mu S]$ $\pm (53 + 0.15 \times F) [\mu S]$ $\pm (52 + 0.15 \times F) [\mu S]$ $\pm (110 + 0.15 \times F) [\mu S]$ $\pm (247 + 0.15 \times F) [\mu S]$ $\pm (20 + 0.15 \times F) [\mu S]$ $\pm (20 + 0.15 \times F) [\mu S]$		
	23 ± 5 °C. When the c scribed. (F: Frequency Measurement Time: Mode 1	alibration is performed beyond 23 ± 5 °C, the ma [MHz]) Oscillator level = 1 dBm, Average factor ≥ 8 Oscillator level = 1 dBm, Average factor ≤ 8 -20 dBm \le Oscillator level < 1 dBm, Average factor ≥ 8 -20 dBm \le Oscillator level < 1 dBm, Average factor < 8 -33 dBm \le Oscillator level < -20 dBm, Average factor ≥ 8 -33 dBm \le Oscillator level < -20 dBm, Average factor ≥ 8 Oscillator level < -33 dBm Oscillator level < -20 dBm, Average factor < 8 Oscillator level < -33 dBm Oscillator level < -33 dBm Oscillator level < 1 dBm, Average factor ≥ 8 -20 dBm \le Oscillator level < 1 dBm, Average factor ≥ 8 -20 dBm \le Oscillator level < 1 dBm, Average	easurement accuracy decreases to half that de- $\pm (22 + 0.15 \times F) [\mu S]$ $\pm (28 + 0.15 \times F) [\mu S]$ $\pm (30 + 0.15 \times F) [\mu S]$ $\pm (53 + 0.15 \times F) [\mu S]$ $\pm (52 + 0.15 \times F) [\mu S]$ $\pm (110 + 0.15 \times F) [\mu S]$ $\pm (247 + 0.15 \times F) [\mu S]$ $\pm (20 + 0.15 \times F) [\mu S]$ $\pm (23 + 0.15 \times F) [\mu S]$ $\pm (24 + 0.15 \times F) [\mu S]$		
	23 ± 5 °C. When the c scribed. (F: Frequency Measurement Time: Mode 1	alibration is performed beyond 23 ± 5 °C, the ma [MHz]) Oscillator level = 1 dBm, Average factor ≥ 8 Oscillator level = 1 dBm, Average factor ≤ 8 -20 dBm \le Oscillator level < 1 dBm, Average factor ≥ 8 -20 dBm \le Oscillator level < 1 dBm, Average factor < 8 -33 dBm \le Oscillator level < -20 dBm, Average factor ≥ 8 -33 dBm \le Oscillator level < -20 dBm, Average factor ≥ 8 Oscillator level < -33 dBm Oscillator level < -33 dBm Oscillator level < -33 dBm Oscillator level < 1 dBm, Average factor ≥ 8 Oscillator level $= 1$ dBm, Average factor ≤ 8 -20 dBm \le Oscillator level < 1 dBm, Average factor ≥ 8 -20 dBm \le Oscillator level < 1 dBm, Average factor ≥ 8 -20 dBm \le Oscillator level < 1 dBm, Average factor < 8 -33 dBm \le Oscillator level < -20 dBm, Average factor < 8 -33 dBm \le Oscillator level < -20 dBm, Average	easurement accuracy decreases to half that de- $\pm (22 + 0.15 \times F) [\mu S]$ $\pm (28 + 0.15 \times F) [\mu S]$ $\pm (30 + 0.15 \times F) [\mu S]$ $\pm (53 + 0.15 \times F) [\mu S]$ $\pm (52 + 0.15 \times F) [\mu S]$ $\pm (110 + 0.15 \times F) [\mu S]$ $\pm (247 + 0.15 \times F) [\mu S]$ $\pm (20 + 0.15 \times F) [\mu S]$ $\pm (23 + 0.15 \times F) [\mu S]$ $\pm (24 + 0.15 \times F) [\mu S]$ $\pm (35 + 0.15 \times F) [\mu S]$		

Definition of each parameter (continued)

Yo =	Mode 3	Oscillator level = 1 dBm, Average factor ≥ 8	± (19 + 0.15 × F) [μS]
		Oscillator level = 1 dBm, Average factor < 8	± (22 + 0.15 × F) [μS]
		-20 dBm ≤ Oscillator level < 1 dBm, Average factor ≥ 8	± (22 + 0.15 × F) [μS]
		-20 dBm ≤ Oscillator level < 1 dBm, Average factor < 8	± (30 + 0.15 × F) [μS]
		-33 dBm ≤ Oscillator level < -20 dBm, Aver- age factor ≥ 8	± (30 + 0.15 × F) [μS]
		-33 dBm ≤ Oscillator level < -20 dBm, Aver- age factor < 8	± (50 + 0.15 × F) [μS]
		Oscillator level < -33 dBm	± (100 + 0.15 × F) [μS]

Measurement error may exceed the specifications described above at 90 MHz due to the E4982A's spurious characteristics.

Examples of Calculated Impedance Measurement Accuracy

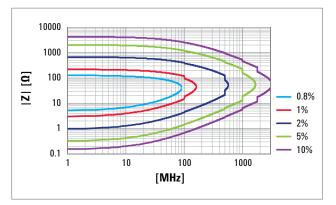


Figure 1. Measurement Speed: Mode 3, Oscillator Level = 1 dBm, Averaging Factor < 8, Temperature Deviation \leq 5 °C

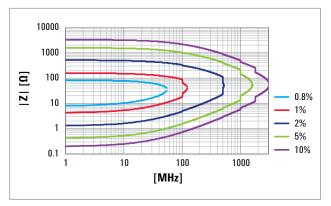


Figure 3. Measurement Time: Mode 1, Oscillator Level = 1 dBm, Averaging Factor < 8, Temperature Deviation $\leq 5 \text{ °C}$

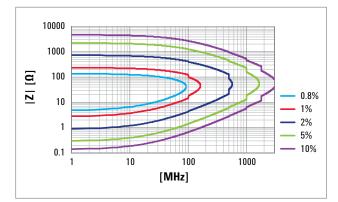


Figure 5. Measurement Time: Mode 2, Oscillator Level = 1 dBm, Averaging Factor \geq 8, Temperature Deviation \leq 5 °C

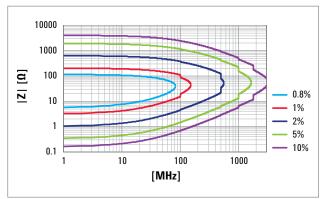


Figure 2. Measurement Time: Mode 2, Oscillator Level = 1 dBm, Averaging Factor < 8, Temperature Deviation ≤ 5 °C

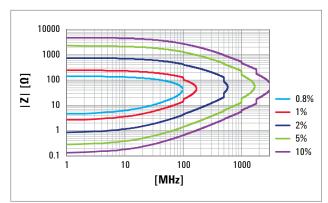


Figure 4. Measurement Time: Mode 3, Oscillator Level = 1 dBm, Averaging Factor \geq 8, Temperature Deviation \leq 5 °C

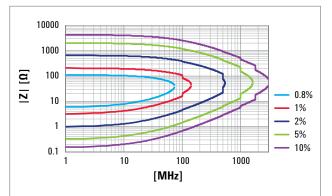


Figure 6. Measurement Time: Mode 1, Oscillator Level = 1 dBm, Averaging Factor \ge 8, Temperature Deviation \le 5 °C

Timing Chart and Measurement Time (SPD)

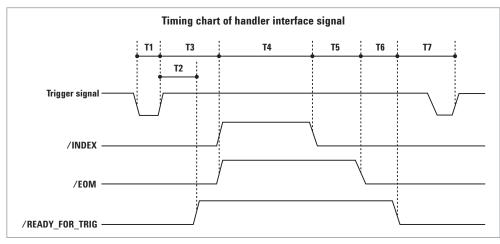


Figure 7.

		Test condition			Timing											
	Test condition			Mode 1 (1 MHz) Mode 1		e 1 (100 MHz) Mode 2		2		Mode 3						
		Screen Setting	Rdc meas.	Comparator	Min.	Median	Max.	Min.	Median	Max.	Min.	Median	Max.	Min.	Median	Max.
T1	Trigger pulse width	-	Off	Off	2μs	_	_	2μs	—	-	2μs	_	_	2μs	_	_
T2	Trigger re- sponse time of Ready_ for_Trig	_	Off	Off	_	24 µs	29 µs	-	24 µs	29 μs	_	24 µs	29 µs	_	24 µs	29 µs
Τ3	Trigger response time (INDEX, EOM)	_	Off	Off	-	24 μs, 31 μs	29 μs, 37 μs	_	24 μs, 31 μs	29 μs, 37 μs	_	24 μs, 31 μs	29 μs, 37 μs	_	24 μs, 31 μs	29 μs, 37 μs
T4	Measure- ment time	1 point meas	Off	Off	_	1.6 ms	1.6 ms	_	0.9 ms	0.9 ms	_	2.1 ms	2.1 ms	_	3.7 ms	3.7 ms
	(INDEX)	(Pre- set)	On	Off	_	4.5 ms	4.5 ms	_	3.8 ms	3.8 ms	_	5.0 ms	5.0 ms	_	6.6 ms	6.6 ms
T4 +	Measure- ment data	1 point meas	Off	Off	_	1.7ms	1.9 ms	_	1.0 ms	1.0 ms	_	2.2 ms	2.4ms	_	3.8 ms	3.8 ms
Τ5	calculation time (EOM)	(Pre- set)	Off	On	_	2.1 ms	2.2 ms	_	1.4 ms	1.6 ms	_	2.6 ms	2.7 ms	_	4.2 ms	4.2 ms
T4 +			Off	Off	_	2.2 ms	2.3 ms	_	1.5 ms	1.7 ms	_	2.7 ms	3.0 ms	_	4.3 ms	4.5 ms
T5 +	Ready_for_	1 point meas.	Off	On	_	2.6 ms	2.6 ms	_	1.9 ms	2.0 ms	_	3.1 ms	3.3 ms	_	3.3 ms	4.8 ms
T6	Trig setting time	Ls-Q meas.	On	Off	_	5.5 ms	5.7ms	_	4.8 ms	4.9 ms	_	6.0 ms	6.1 ms	_	6.1 ms	7.7 ms
			On	On	-	5.9 ms	6.0 ms	_	5.2 ms	5.3 ms	_	6.4 ms	6.6 ms	-	8.0 ms	8.1 ms
Τ7	Trigger wait time	-	-	-	0	-	_	0	-	_	0	-	-	0	-	_

Condition: Display Off or :DISP:UPD OFF, Trigger delay=0, Point delay=0

Test condition for Measurement Time

The measurement time of E4982A is scattered to some extent by an overhead of the internal operation system and other conditions, so it is difficult to define the specification of handler interface timing. Thus, for your reference, we provide "SPD" data on it in table by defining the following test condition.

Median: Median value of running one minute of measurement data Max.: Maximum value of running one minute of measurement data

NOTE

- The instrument's operating system sometimes suffers interruptions during measurement, and we sometimes observe an extremely large overhead in handler interface timings. The table excludes such special cases, thus you can sometimes see timing over the maximum value data shown in the table. If you make a handshake using the READY_FOR_TRIGGER signal of the handler interface, your test system can continue to work correctly regardless of such an irregular measurement time drift.
- 2. If your system communicates with external devices, you will see longer timing results than those on the table.
- 3. In the case of using a bus trigger in the GPIB/LAN/USB system instead of the handler interface, you should measure the test cycle time for yourself, because the system performance depends heavily on the system parameters. Of course, you will see much longer test cycle times from your system software overhead.

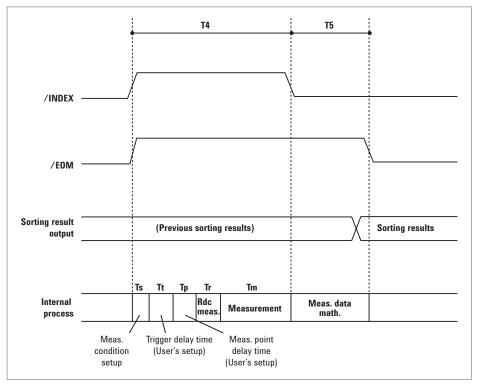


Figure 8. Measurement time T4 for single point measurement

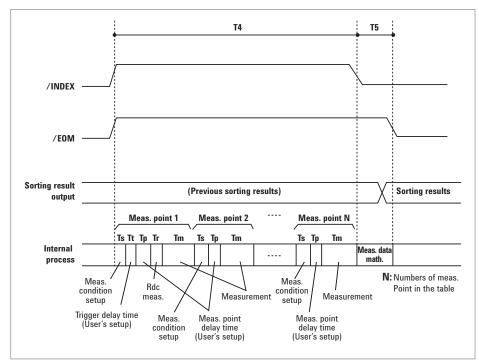


Figure 9. Measurement time T4 for list measurement

Data transfer time (Typical)

Data transfer format	Number of measurement	Required time for FETCh? command (ms)					
Data transfer format	points	GPIB	USB	LAN (Socket)			
	1	0.5	0.5	0.3			
ASCII	2	0.8	0.5	0.3			
	3	1.2	0.5	0.3			
	1	0.7	1.3	0.3			
Binary	2	0.8	1.3	0.3			
	3	0.9	1.3	0.3			

Host computer: DELL PRECISION 390 Intel Core2Duo 6300 1.86 GHz/RAM: 2GB GPIB I/F: Keysight Technologies, Inc. PCI GPIB E2078A/82350A IO Lib: Keysight IO Libraries Suite 16.1.14931.0

E4982A Setting: Frequency: OSC Level: Average: Display:	100 MHz 0 dBm 1 Off
List Measurement Measurement Parameter: Measurement Signal Level Monitor: Comparator: Rdc Measurement:	Ls-Q (Parameters No.3 and 4: Off) Off Off Off

Measurement Support Functions

Error correction function

Available calibration and compensation

OPEN/SHORT/LOAD calibration	Connect OPEN, SHORT, and LOAD standards to the desired reference plane and measure each kind of calibration data. The reference plane is called calibration reference plane.
Low-Loss capacitor calibration	Connect the dedicated standard (Low-Loss capacitor) to the calibration reference plane and measure the calibration data.
Port extension compensation (Fixture selection)	When a device is connected to the terminal that is extended from the calibration reference plane, set the electrical length between the calibration plane and the device contact. Select a model number of the registered test fixtures in the E4982A's softkey menu or enter the electrical length for user's test fixture.
OPEN/SHORT compensation	When a device is connected to the terminal that is extended from the calibration reference plane, make OPEN and/or SHORT states at the device contact and measure each kind of compensation date.
Calibration/compensation	data measurement point
Data measurement points	Same as measurement points which are set in the measurement point setup display. (Changing the frequency, oscillator level, or measurement speed settings after the calibration or compensation makes the calibration and compensation data invalid.)
DC resistance (Rdc) measure	urement
Measurement range	0.1 Ω to 100 Ω
Measurement resolution	1 m Ω
Test Signal Level	1 mA (maximum)
Error correction	OPEN/SHORT/LOAD Calibration, OPEN/SHORT Compensation. (Changing the frequency or oscil- lator level settings after the calibration or compensation makes the calibration and compensatior data invalid.)
Measurement uncertainty (SPD)	$\pm \left[1 + \left(\frac{0.05}{\text{Rdut}} + \frac{\text{Rdut}}{10000}\right) \times 100\right] \left[\%\right] \text{ Rdut : DC resistance measurement value } \left[\Omega\right]$
	(At averaging factor=128, within \pm 5 °C from the calibration temperature. Measurement accuracy applies when the calibration is performed at 23 °C \pm 5 °C. When the calibration is performed beyond 23 °C \pm 5 °C, the measurement accuracy decreases to half that described.)
Trigger function	
Trigger mode	Internal, External (external trigger input connector or handler interface), Bus (GPIB, USB or LAN), Manual (front key)
Measurement time	
Time	Mode 1 (Short), Mode 2 (Mid), Mode 3 (Long)
Averaging function	
Setting range	1 to 100 (integer)
List measurement function	l
Number of measurement points	201 points for each table (maximum)
Number of tables	8 tables

Test signal level monitor function

Uncertainty of monitor value (SPD)

$$\pm \left[30 + \left(10^{\frac{A}{20}} - 1 \right) \times 100 + B \right] [\%]$$

A: Uncertainty of oscillator level [dB], B: Uncertainty of impedance measurement [%]

Front panel

Ports	Type N (3 ea.) connected to tes	t head
Display	Type/size	10.4 inch TFT color LCD
	Resolution	XGA (1024 × 768) ¹
USB	Universal serial bus jack, Type A configuration; female; provides connection to mo key board, printer or USB stick memory.	

¹ Valid pixels are 99.99% and more. Below 0.01% of fixed points of black, blue, green or red are not regarded as failure.

Measurement terminal (at test head)

Connector type	3.5-mm (female) connector
	(can be converted to 7-mm connector using the 3.5 mm-7 mm adapter)

Rear panel

External reference signal input connector

Frequency	10 MHz ± 10 ppm (Typ.)	
Level	0 dBm ± 3 dB (Typ.)	
Input impedance	50 Ω (nominal)	
Connector type	BNC (female)	

Internal reference signal output connector

0	1
Frequency	10 MHz ± 10 ppm (Typ.)
Uncertainty of frequency	Same as frequency uncertainty described in "Source Characteristics".
Level	0 dBm ± 3 dB into 50 $\mathbf{\Omega}$ (Typ.)
Input impedance	50 $\mathbf{\Omega}$ (nominal)
Connector type	BNC (female)

External trigger signal input connector

HICH threshold voltage: 21 V
HIGH threshold voltage: 2.1 V
Input level range: 0 to +5 V
≥ 2usec (SPD). See the following figure for definition of Tp
Positive or negative (Selective)
BNC (female)

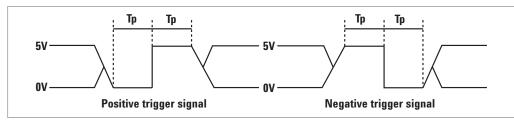


Figure 10. Definition of pulse width (Tp)

Interface

Video output	15-pin mini D-Sub; female; drives VGA compatible monitors
LAN	10/100/1000 Base T Ethernet, 8-pin configuration; auto selects between the two data rates
USB (USBTMC) interface port	Universal serial bus jack, Type B configuration (4 contacts inline); female; provides connection to an external PC; compatible with USBTMC-USB488 and USB 2.0.LA USB Test and Measurement Class (TMC) interface that communicates over USB, complying with the IEEE 488.1 and IEEE 488.2 standards.
USB host port	Universal serial bus jack, Type A configuration; female; provides connection to mouse, key board, printer or USB stick memory.
GPIB	24-pin D-Sub (Type D-24), female; compatible with IEEE-488. IEEE-488 interface specification is designed to be used in environment where electrical noise is relatively low. LAN or USBTMC interface is recommended to use at the higher electrical noise environment.

Handler interface

Connector type	36-pin centronics, female	
Signal type	Negative logic, opto-isolated, open collector output	
Output signal	BIN sort result (BIN 1 to BIN 13, OUT_OF_GOOD_BINS)	
	DC resistance pass/fail (DCR_OUT_OF_RANGE)	
	Overload (OVLD)	
	Alarm (ALARM)	
	End of analog measurement (INDEX)	
	End of measurement (EOM)	
	Ready for trigger (READY_FOR_TRIG)	
Input signal	Eternal trigger (EXT_TRIG)	
	Key lock (KEY_LOCK)	
Pin location	See the following figure. Refer to Help for the definition of each pin.	

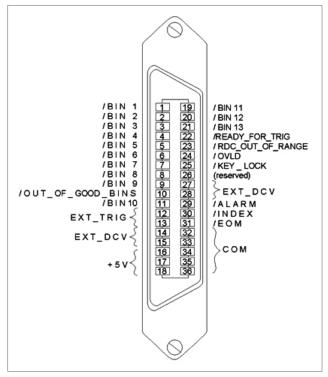


Figure 11. Pin assignment

Line power

Frequency	47 to 63 Hz
Voltage	90-264 VAC (Vpeak > 120 V)
VA max	300 VA max.

EMC, safety, environment and compliance

EMC

	European Council Directive 2004/108/EC
(IEC 61326-1:2005
	EN 61326-1:2006
ISM 1-A	CISPR 11:2003+A1:2004
	EN 55011:2007
	Group 1, Class A
	IEC 61000-4-2:1995 +A2:2000
	EN 61000-4-2:1995 +A2:2001
	4 kV CD / 8 kV AD
	IEC 61000-4-3:2006
	EN 61000-4-3:2006
	1-3 V/m, 80-1000 MHz/1.4 GHz - 2.7 GHz, 80% AM
	IEC 61000-4-4:2004
	EN 61000-4-4:2004
	1 kV power/0.5 kV signal lines
	IEC 61000-4-5:2005
	EN 61000-4-5:2006
	0.5 kV line-line/1 kV line-ground
	IEC 61000-4-6:2003 + A1:2004+ A2:2006
	EN 61000-4-6:2007
	3 V, 0.15-80 MHz, 80% AM
	IEC 61000-4-11:2004
	EN 61000-4-11:2004
	0.5-300 cycle, 0%/70%
	NOTE-1:
	When tested at 3 V/m according to EN61000-4-3:2007, the measurement accuracy will be
	within specifications over the full immunity test frequency range except when the analyzer
	frequency is identical to the transmitted interference signal test frequency.
	NOTE-2:
	When tested at 3 V according to EN61000-4-6:2007, the measurement accuracy will be within
	specifications over the full immunity test frequency range except when the analyzer frequenc
	is identical to the transmitted interference signal test frequency.
ICES/NMB-001	ICES-001:2006 Group 1, Class A
•	AS/NZS CISPR11:2004
U N10149	Group 1, Class A
W10149	· · ·

Safety	
CE ISM 1-A	European Council Directive 2006/95/EC IEC 61010-1:2001 / EN 61010-1:2001 Measurement Category I Pollution Degree 2 Indoor Use
LR95111C	CAN/CSA C22.2 No. 61010-1-04 Measurement Category I Pollution Degree 2 Indoor Use
Environment	
X	This product complies with the WEEE Directive (2002/96/EC) marking requirements. The affixed label indicates that you must not discard this electrical/electronic product in domestic household waste.
∕⊷∕	Product Category: With reference to the equipment types in the WEEE Directive Annex I, this product is classed as a "Monitoring and Control instrumentation" product. Do not dispose in domestic household waste.
	To return unwanted products, contact your local Keysight office, or see http://www.keysight.com/environment/product/ for more information.
Compliance	
L/XI	Class C

Analyzer Environmental Specifications and Dimensions

Operating environment

Operating environment	
Temperature	+5 °C to +40 °C
Error-corrected temperature range	23 °C (± 5 °C) with < 5 °C deviation from calibration temperature
Humidity	20% to 80% at wet bulb temperature < +29 °C (non-condensation)
Altitude	0 to 2,000 m (0 to 6,561 feet)
Vibration	0.21 G maximum, 5 Hz to 500 Hz
Non-operating environme Temperature	ent -10 °C to +60 °C
Humidity	20% to 90% at wet bulb temperature < 40 °C (non-condensation)
Altitude	0 to 4,572 m (0 to 15,000 feet)
Vibration	2.1 G maximum, 5 Hz to 500 Hz
Dimensions, weight	
Weight	Main unit: 13 kg, test head: 250 g with plate

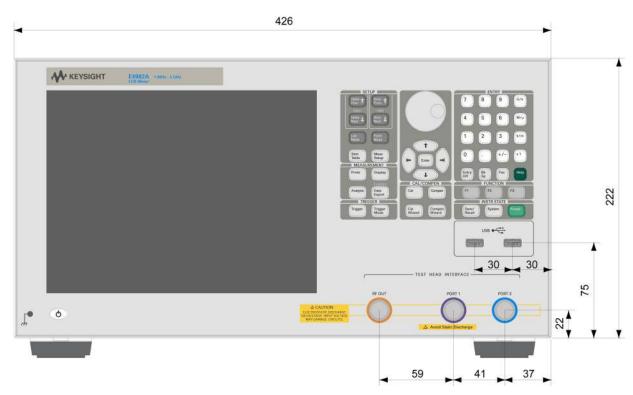


Figure 12. Front view

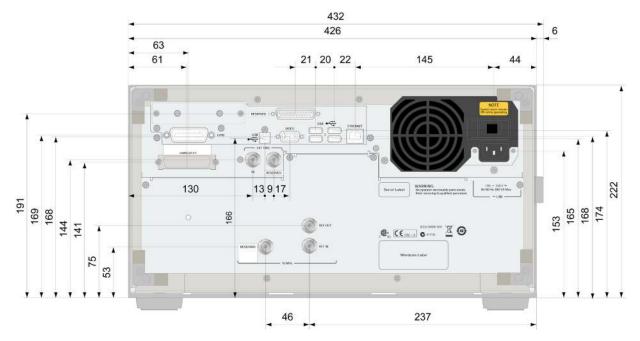


Figure 13. Rear view

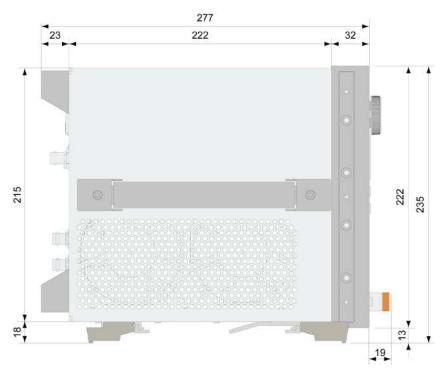
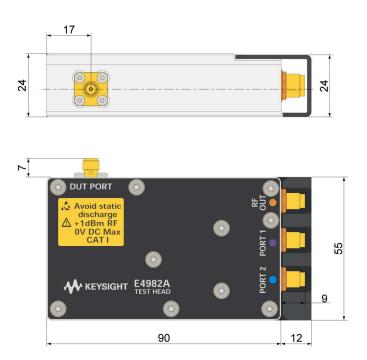



Figure 14. Side view

4-M4 Effective Depth 5.5

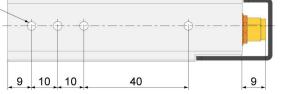


Figure 15. Test head

myKeysight

myKeysight

www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.

www.lxistandard.org

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Keysight is a founding member of the LXI consortium.

Keysight Assurance Plans www.keysight.com/find/AssurancePlans

Up to five years of protection and no budgetary surprises to ensure your instruments are operating to specification so you can rely on accurate measurements.

www.keysight.com/go/quality

Keysight Technologies, Inc. DEKRA Certified ISO 9001:2008 Quality Management System

Keysight Channel Partners

www.keysight.com/find/channelpartners

Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	55 11 3351 7010
Mexico	001 800 254 2440
United States	(800) 829 4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 6375 8100

Europe & Middle East

Austria	0800 001122
Belgium	0800 58580
Finland	0800 523252
France	0805 980333
Germany	0800 6270999
Ireland	1800 832700
Israel	1 809 343051
Italy	800 599100
Luxembourg	+32 800 58580
Netherlands	0800 0233200
Russia	8800 5009286
Spain	800 000154
Sweden	0200 882255
Switzerland	0800 805353
	Opt. 1 (DE)
	Opt. 2 (FR)
	Opt. 3 (IT)
United Kingdom	0800 0260637

For other unlisted countries: www.keysight.com/find/contactus (BP-09-23-14)

This information is subject to change without notice. © Keysight Technologies, 2012 - 2014 Published in USA, December 5, 2014 5990-9882EN www.keysight.com