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Abstract—Clock channel jitter amplification factor in terms of 

transfer function or S-parameters is derived. Amplification is 

shown to arise from smaller attenuation in jitter lower sideband 

than in the fundamental. Amplification scaling with loss is 

obtained analytically. 

Index Terms—jitter, amplification, loss. 

I.  INTRODUCTION 

High speed interconnect performance is increasingly 
influenced by jitter as data rate advances. The amount of jitter 
is modulated by channel dispersion as signals propagate in the 
system. It is observed in both measurements and simulations 
that jitter can be amplified by a lossy channel even when the 
channel is linear, passive and noiseless [1]-[4]. The mechanism 
of jitter amplification is discussed in terms of channel 
impulse/step response in [2]-[4]. In particular, duty-cycle-
distortion (DCD) and random jitter (RJ) amplifications in clock 
signals are shown to scale uniquely with channel loss [2], 
indicating that loss is responsible for the effect. 

In this paper jitter amplification in clock channels is 
analyzed analytically in frequency domain. The advantage of 
using clock signals is that the periodicity of the 1010 clock 
pattern eliminates the inter-symbol-interference (ISI) jitter so 
jitter at the channel output is entirely induced by input jitter. A 
phase modulation (PM) approach is employed to derive the 
jitter transfer function and amplification factors in terms of 
signal transfer function or channel S-parameters for sinusoidal 
jitter (SJ), DCD and RJ. Results show that jitter amplification is 
the consequence of smaller attenuation in the jitter lower 
sideband (LSB) than in the fundamental. The scaling of DCD 
and RJ amplifications with channel loss is explained by using 
an approximate loss model. It is shown that jitter is amplified 
by lossy channels at any frequency below Nyquist and the 
effect grows exponentially with jitter frequency and data rate. 
The theory is verified by simulation results. 

II. JITTER TRANSFER FUNCTION AND AMPLIFICATION 

In lossy channels high order harmonics are heavily 
attenuated and the 1010 clock pattern can be approximated by a 
sinusoidal wave with frequency at one half of the data rate. 
Jitter in the input clock signal, vin, can be represented by phase 
modulation as 
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where 0 is the fundamental frequency of the clock signal, 0 a 

constant phase offset, and  the phase modulation that 

represents jitter. When  is small Eq. 1 can be linearized. 
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Consider a sinusoidal jitter at frequency . 
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Substitution of Eq. 3 into Eq. 2 yields 
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Assume the signal transfer function of the channel is H(). The 
output signal, vout, is given by 
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where + and - are defined as 
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Notice that +=-
*
. For small  Eq. 5 can be rewritten as 
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where Re+ and Im+ denote real and imaginary parts of +, 
respectively. Phase modulation in the output signal is given by 

the Re+ term in Eq. 7 as 
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where  is the phase of [H(+0)/H(0)+H(-0)/H(-0)]. 
Equation 8 shows that a SJ is induced in the output by the input 
SJ. The jitter transfer function, defined as the ratio of amplitude 
between output and input SJ, is obtained as 
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Equation 9 describes the relation between jitter amplification 

and channel dispersion. In a lossy channel, H() decays with  

frequency exponentially. The lower sideband of PM at -0 is 
attenuated less than the carrier is, producing a gain in the 
output PM that leads to jitter amplification. Equation 9 

demonstrates that the amplification, dominated by the -0 
term, arises primarily from the attenuation difference between 
the LSB and the fundamental. Equalizations that compensate 
high frequency loss reduce the amplification effect. 

It is worth pointing out that input jitter also causes 
amplitude modulation in the output signal, as shown by the 

Im+ term in Eq. 7, resulting in eye height impairment. 

Amplification factors of DCD and RJ can be derived from 

Eq. 9.  DCD is equivalent to SJ at frequency 0 and the 
amplification factor is given by Eq. 9 as 
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Note that the LSB of PM becomes a DC offset when the 

modulation frequency equals 0. Equation 10 shows that DCD 
amplification is caused by the attenuation difference between 
the DC component introduced by DCD and the fundamental in 
lossy channels, as pointed out in [1]. 

RJ in the input signal is assumed to be white noise and its 
averaged power is provided by the integration of the power 
spectral density (PSD) within the jitter Nyquist frequency, 

which equals 0. 

 

0

2 2)(
0

0





CCdt  

                                     (11) 

 

where C is the constant input RJ PSD. The output RJ power is 
given by the jitter transfer function and C as 
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The RJ amplification factor, defined as the RMS ratio between 
output and input RJ, is 
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When impedance mismatch in the channel is negligible, 

H() in Eqs. 9, 10 and 13 can be replaced by the channel 
forward S-parameter. 

It can be shown that Eq. 9 is equivalent to the jitter transfer 
function expressed in terms of impulse response presented in 
[3] and [4]. As discussed in [3] and [4], the input clock signal 
can be represented by a 1010 square wave. The output signal is 
calculated by linear superposition as 
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where R(t) is the channel step response, T the unit interval of 

the clock signal, and 
in

n the input jitter at the n-th bit. When 
the input jitter is zero, there is no jitter in the output due to the 
periodicity of the clock pattern. For a given delay td, vout 
crosses the same value at t = nT+td for any integer n. With the 
presence of input jitter, induced jitter in vout can be measured 
by the crossing time shift. The output jitter at the n-th crossing 
is obtained by linearizing Eq. 14 at nT+td as 
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where h = dR/dt, which is the channel impulse response. For SJ 

at frequency  with amplitude , 
in

m = cos(mT) and Eq. 15 
becomes 
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in which identity (-1)
m 

= exp(-j0mT) is applied and )(
~

H is 

the  discrete-time-Fourier-transform (DTFT) of h(t+). With 
the use of the relation between DTFT and Fourier transform 

Eq. 16 is rewritten in terms of H() as 
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where identity exp(jk0nT) = (-1)
n
 for odd integer k is used. 

Notice that the first term in Eq. 17 is the complex conjugate of 
the second term. Thus, 
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where  is the phase of the coefficient of exp(jnT) in Eq. 17. 
The jitter transfer function in the square wave representation is 
obtained as 
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For lossy channels high order harmonics in Eq. 19 can be 
ignored. Moreover, by choosing td to be the phase delay of H at 

0, H(0)exp(j0td) and H(-0)exp(-j0td) in the denominator 
are both real and equal to each other. Thus, 
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Equation 20 is identical to Eq. 9. As expected, the square wave 

formulation converges to the sinusoidal wave formulation 

when high order harmonics are neglected. 

III. SCALING OF DCD AND RJ AMPLIFICATIONS 

The scaling of DCD and RJ amplifications with channel 
loss observed in [2] can be derived using an approximate loss 
model described by 
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where k is the loss constant and td the channel delay. 
Substitution of Eq. 21 into Eq. 9 yields the amplification factor 

for SJ below the jitter Nyquist frequency 0 as  
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It can be easily shown that 1)( SJF  and jitter is amplified by 

lossy channels at any frequency below 0. Equation 22 also 
indicates that FSJ grows exponentially with jitter frequency.  

DCD and RJ amplifications within the loss model are given 
by substituting Eq. 21 into Eq. 10 and Eq. 13, respectively.  
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FDCD and FRJ are shown to increase exponentially with data 
rate. Scaling of FDCD and FRJ is obtained by rewriting Eqs. 23 
and 24 as 
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where D(0) = 20log10|H(0)| denotes the channel loss in dB at 
the fundamental frequency. 

IV. COMPARISON BETWEEN THEORY AND SIMULATION 

A set of four single-ended channels terminated with 50 
Ohm are used in the study. Their S-parameters are generated 
from EM simulations. The Svensson-Dermer model [5] is 
employed to model the substrate loss. Simulated insertion loss 
is plotted in Fig. 1. The clock signal transmitted into the 
channel is represented by 1010 square wave. SJ, DCD and 
white noise Gaussian RJ are applied at transitions. The channel 
output signal is calculated using Eq. 14 with step responses 
characterized by SPICE transient simulations. One million bits 
are run in each simulation. 

 

 
                          Figure 1. Channel insertion loss. 

 

Simulated SJ amplification factors as functions of SJ 
frequency in channels 1 and 2 at 10 Gbps and 20 Gbps are 
plotted in Fig. 2. Two sets of theoretical results calculated 
using Eq. 9 based on S(2,1) and Eq. 22 based on the 



approximate loss model described in Eq. 21 are also shown in 
the plot. Loss constants are extracted from slopes of insertion 
loss. Figure 2 shows that simulation results are in good 
agreement with theoretical predictions. Discrepancy between 
results given by Eq. 9 and Eq. 22 is small, indicating that the 
loss model is a reasonable approximation in these channels. 
Comparison of results in channel 2 at 10 Gbps and 20 Gbps 
suggests that FSJ is insensitive to data rate in lossy channels, as 
predicted by Eq. 22. The amplification factor is found to be 
greater than or equal to one at any SJ frequency and grow 
exponentially with it. 

 

 
Figure 2. SJ amplification factors obtained from simulations and 
theoretical calculations with Eq. 9 and Eq. 22. 

 

DCD and RJ amplification factors in channels 1 and 2 as 
functions of data rate are plotted in Fig. 3 and Fig. 4, 
respectively. For DCD, theoretical results are calculated using 
Eq. 10 and Eq. 23. For RJ, Eq. 13 and Eq. 24 are used. Figure 5 
shows the scaling of FDCD and FRJ with channel insertion loss at 
the fundamental frequency in all channels at different data 
rates. The theoretical scaling is given by Eq. 25 for DCD and 
Eq. 26 for RJ. Agreement is found between simulation and 
theory in all cases. The scaling results are consistent with those 
reported in [2]. 
 

 
Figure 3. DCD amplification factors obtained from simulations and 
theoretical calculations with Eq. 10 and Eq. 23. 

 
Figure 4. RJ amplification factors obtained from simulations and 
theoretical calculations with Eq. 13 and Eq. 24. 
 

 
Figure 5. DCD and RJ amplification scaling with insertion loss 
obtained from simulations and theoretical calculations with Eq. 25 and 
Eq. 26. The insertion loss is at the fundamental frequency. 

V. SUMMARY 

In this paper clock channel jitter amplification factors in 
terms of transfer function or S-parameters are derived. 
Amplification is shown to result from the smaller loss in the 
jitter LSB than in the fundamental. The amplification scaling 
with channel loss is obtained by using an approximate loss 
model. In this model the amplification is found to occur at any 
jitter frequency. The theory is confirmed by simulation data. 
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