Installation, Verification, and Operation Manual

11974 Series Preselected Millimeter Mixers

Agilent Technologies

Manufacturing Part Number: 11974-90010
Supersedes April 1999

Printed in USA

September 2001
© Copyright 1992, 1999, 2001 Agilent Technologies, Inc.

Notice

The information contained in this document is subject to change without notice.
Agilent Technol ogies makes no warranty of any kind with regard to this material, including but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Certification

Agilent Technologies certifies that this product met its published specifications at the time of shipment from the factory. Agilent Technol ogies further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology, to the extent allowed by the Institute's calibration facility, and to the calibration facilities of other International Standards Organization members.

Warranty

This Agilent Technologies instrument product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Agilent Technologies will, at its option, either repair or replace products which prove to be defective.
For warranty service or repair, this product must be returned to a service facility designated by Agilent Technologies. Buyer shall prepay shipping charges to Agilent Technol ogies and Agilent Technologies shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to Agilent Technologies from another country.
Agilent Technol ogies warrants that its software and firmware designated by Agilent Technologies for use with an instrument will execute its programming instructions when properly installed on that instrument. Agilent Technologies does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error-free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. AGILENT TECHNOLOGIES SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. AGILENT TECHNOLOGIES SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

Assistance

Product maintenance agreements and other customer assistance agreements are available for Agilent Technologies products.

For any assistance, contact your nearest Agilent Technol ogies Sales and Service Office listed on page 49.

This guide uses the following conventions:

Front-Panel Key This represents a key physically located on the instrument.
Softkey This indicates a "softkey," a key whose label is determined by the instrument firmware.
Screen Text This indicates text displayed on the spectrum analyzer screen.

Contents

1. General Information
I ntroduction 12
What You'll Find in this Chapter 13
11974 Series Preselected Millimeter Mixers Overview 14
Options Available 15
Accessories Supplied 15
Serial Numbers Covered by This Manual 16
Calibration Cycle 17
Specifications and Characteristics 18
2. Installation
What You'll Find in This Chapter 32
Spectrum Analyzer Compatibility 33
Initial Inspection 36
Preparing the 11974 for Use 37
Power Requirements 38
Setting the Line-Voltage Selector Switch 38
Checking the Fuse 39
Power Cable 40
Electrostatic Discharge Information 43
Reducing ESD Damage 44
Static-Safe Accessories 45
Returning Equipment for Service 46
Sales and Service Offices 48
3. Operation
What You'll Learn in this Chapter 52
11974Q Front-Panel Features 53
11974Q Rear-Panel Features 54
11974-60028 Front-Panel Features 55
Operating Precautions 56
Maximum RF Input Level 56
Maximum LO Input Level 56
Electrostatic Discharge 56
Operating Hints 57
Preventing Erroneous Preselector Peaking During Spur Searches 57
Remote Location of an 11974 57
Dynamic Range Optimization 5958Operation Using an 8566B Spectrum Analyzer
Preliminary Operation 6060
Operation Operation 63
General Descriptions of 8566B External-Mixing Functions 64
Operation Using an 71000 Series Spectrum Analyzer with an 70907B, 70909A, or 70910A 65
Preliminary Operation 65
Operation 68
General Descriptions of 71000 Series Spectrum Analyzer External-Mixing Functions 70

Contents

Conversion Loss Versus Frequency Correction 71
Using 8563A, 8561B, 8560A, or 8560 E-Series Spectrum Analyzers 74
Preliminary Operation 74
Operation 77
General Description of External-Mixing Functions 79
Operation Using 8561A/62A/62B Spectrum Analyzers 83
Preliminary Operation 83
Operation 85
General Description of 8561A/62A/62B External-Mixing Functions 87
4. Performance Tests
Introduction 90
Test Record Summary 91
Performance Test Procedures 92
Frequency Tracking Calibration with an 8566B Spectrum Analyzer 99

1. Conversion Loss 101
Description 101
Procedure 101
2. Image Rejection Test 106
Description 106
Procedure 106
3. Multiple Response Rejection Test 110
Description 110
Procedure 110
4. Displayed Average Noise Level 118
Description 118
Procedure 118
5. 3 dB Bandwidth 122
Description 122
Procedure 122
6. Safety and Regulatory Information
Safety Symbols. 138
General Safety Considerations 139
Declaration of Conformity 142
Figure 1-1 . 11974 Series with 11974-60028 Power Supply 14
Figure 1-2 . Typical Serial Number Label 16
Figure 1-3 . 11974A Minimum System Dynamic Range 27
Figure 1-4 . 11974Q Minimum System Dynamic Range 28
Figure 1-5 . 11974U Minimum System Dynamic Range 29
Figure 1-6 . 11974V Minimum System Dynamic Range 30
Figure 2-1 . Voltage Selection Switch and Line Fuse Locations 39
Figure 2-2 . Static-Safe Workstation 43
Figure 2-3 . Packaging Materials for 11974 Series 47
Figure 2-4 . Packaging Materials for 11974-60028 Power Supply 48
Figure 3-1 . 11974Q Front Panel 53
Figure 3-2 . 11974Q Rear Panel 54
Figure 3-3 . 11974-60028 Front Panel 55
Figure 3-4 . Setup Configuration for Remote Location of an 11974 58
Figure 3-5 . 11974 Connections Using an 8566B 61
Figure 3-6 . 11974 Connections to the 71000 Series Spectrum Analyzer 65
Figure 3-7 . 11974 Connections Using an 8563A, 8561B, 8560A, or $8560 \mathrm{E}-$ Series Spectrum Analyzers 74
Figure 3-8 . 11974 Connections Using an 8561A/62A/62B 83
Figure 4-1 . Performance Tests Setup 98

Tables

Table 1-1. 11974 Specifications 19
Table 1-2 . 11974 Characteristics 23
Table 2-1 . 11974 Compatibility with Spectrum Analyzers 33
Table 2-2 . Operating Power Requirements 38
Table 2-3. . Power Cables 41
Table 2-4 . Static-Safe Accessories 45
Table 2-5. . Contacting Agilent 49
Table 3-1 . RF Input Port Flange Types 53
Table 3-2 . External Mixing Bands and Associated Mixing Harmonics 70
Table 3-3 . Flatness Points and Conversion Losses for Frequencies above 18 GHz 80
Table 3-4 . Minimum Sweep Time. 87
Table 3-5 . Flatness Points and Conversion Losses for Frequencies above 18 GHz 88
Table 4-1 . Recommended Test Equipment for 11974A 93
Table 4-2 . Recommended Test Equipment for 11974Q 94
Table 4-3 . Recommended Test Equipment for 11974U 95
Table 4-4 . Recommended Test Equipment for 11974V 96
Table 4-5 . Recommended Accessories for All Bands 97
Table 4-6 . Performance Test Record Summary (1 of 2) for 11974A, Q, U, and V 126
Table 4-6 . Performance Test Record Summary (2 of 2) for 11974A 127
Table 4-6 . Performance Test Record Summary (2 of 2) for 11974Q 128
Table 4-6 . Performance Test Record Summary (2 of 2) for 11974U 129
Table 4-6 . Performance Test Record Summary (2 of 2) for 11974V 130
Table 4-7 . Conversion Loss Test Data (1 of 3) 131
Table 4-7. Conversion Loss Test Data (2 of 3) 132
Table 4-7. Conversion Loss Test Data (3 of 3) 133
Table 4-8 . Image Rejection Test Data 134
Table 4-9. Multiple Response Rejection Test Data 135
Table 4-10 . Displayed Average Noise Level Data 136
Table 4-11. 3 dB Bandwidth Data 136

1 General Information

Introduction

The 11974 Series Presel ected Millimeter Mixers Installation, Verification, and Operation Manual describes how to configure an 11974 in a system, what to do to verify its performance, and how to operate an 11974.

This manual contains the following chapters:

- Chapter 1, "General Information," provides a quick overview of the 11974 Series Preselected Millimeter Mixer and all operating specifications and characteristics tables.
- Chapter 2, "I nstallation," describes power requirements, spectrum-analyzer compatibility, installation requirements, packaging information, and the Agilent Technologies Sales and Service Office listing.
- Chapter 3, "Operation," describes operating precautions, operating hints, and complete operating procedures with the most commonly-used spectrum analyzers.
- Chapter 4, "Performance Tests," provides the tests to verify the electrical performance of the 11974 Series mixers.
- Chapter 5, "Safety and Regulatory Information," provides safety warnings and cautions, explanations of the various symbols appearing on the instrument, regulatory compliance information.

What You'll Find in this Chapter

This chapter introduces you to the 11974 Series Preselected Millimeter Mixers and provides other general information regarding the 11974 Series. This chapter contains the following topics:

- "11974 Series Preselected Millimeter Mixers Overview" on page 14.
- "Accessories Supplied" on page 15.
- "Specifications and Characteristics" on page 18.
- "Calibration Cycle" on page 17.

11974 Series Preselected Millimeter Mixers Overview

The 11974 Series Preselected Millimeter Mixers are preselected RF front-end sections used to extend the frequency range of the Agilent Technol ogies high performance, portable, and modular spectrum analyzers. The 11974 Series are fully calibrated, system compatible, and cover a frequency range from 26.5 to 75 GHz in four waveguide bands A, Q, U, and V. Control of the 11974 is provided by the host spectrum analyzer's sweep ramp and first local-oscillator output. The 11974 is packaged as an external module with flexible cables to the spectrum analyzer in order to facilitate connection to the waveguide device under test.

The tracking preselector of the 11974, based on barium hexa-ferrite technol ogy, eliminates the image and multiple harmonic responses that clutter the spectrum display. The tracking preselector in front of the harmonic mixer eliminates the need for the time-consuming process of signal identification.
A stand-alone power supply provides the tuning current for the filter. The included accessory kit contains the cables and tools necessary to make connections to the host spectrum analyzer.

Figure 1-1 11974 Series with 11974-60028 Power Supply

Options Available

Input I solator (Option 001)

Abstract

This option provides an 11974 Series Preselected Millimeter Mixer that has been calibrated with an isolator attached to the RF input. The addition of the isol ator improves input match, reducing measurement uncertainties and protects the device under test (DUT) from off-resonant reflections from the input tracking filter.

Accessories Supplied

The following is a list of all accessories, and their part numbers, supplied at shipment.

Accessory Description	Part Number
Ball Driver, 3/32 inch	$8710-1539$
Wrench, 5/16 inch	$8710-0510$
Alignment Tool	$8710-0630$
Four Standard \#4-40 Screws for A band	$3030-0221$
Captive Screws for Q, U, and V bands, 4 each	$1390-0671$
3 Cables with SMA (m) Connectors (1.0 m)	$5061-5458$
1 Cable with BNC (m) Connectors (24 inches)	$8120-1839$
1 Cable with BNC (m) Connectors (48 inches)	$8120-2582$
1 Adapter with BNC (f) Connectors	$1250-0080$
1 Stand for the 11974	$83556-60010$
Other related accessories available from Agilent Technol ogies are:	
Accessory Description	Part Number
Waveguide with 2.4 mm coax adapters	$281 C$
Attenuators for R, Q, and U bands only	$382 A$
20/50 dB Fixed Attenuators	$373 D / G$
3 dB, 6 dB, and 10 dB Fixed Attenuators for Q and U bands only	$370 A / B / C$
Waveguide bends, twists, and straight sections	800 Series
Waveguide isolators for R, Q, U, and V bands	$365 A$ Series
Rack mounting flange for power supply	$5062-3957$

Serial Numbers Covered by This Manual

This manual applies to 11974 Series Preselected Millimeter Mixers with the serial number prefixes 3001A and above.

Agilent Technol ogies makes frequent improvements to its products to enhance their performance, usability, or reliability. Agilent Technol ogies service personnel have access to complete records of design changes to each type of equipment, based on the equipment's serial number. Whenever you contact Agilent Technologies about your 11974, have the complete serial number available to ensure that you are obtaining the most complete and accurate information possible.
The serial number label is attached to the rear of the 11974. The serial number has two parts: the prefix (the first four numbers and a letter), and the suffix (the last five numbers). See Figure 1-2.

The first four numbers of the prefix are a code identifying the date of the last major design change incorporated in your unit. The letter identifies the country in which the unit was manufactured. The five-digit suffix is a sequential number and is different for each unit. Whenever you list the serial number or refer to it in obtaining information about your 11974, be sure to use the complete number, including the full prefix and the suffix.

Figure 1-2 Typical Serial Number Label

Calibration Cycle

Use the performance tests in Chapter 4 every 12 months to check the unit against the specifications listed in Table 1-1 on page 19.

Specifications and Characteristics

Table 1-1 lists the specifications for the 11974 Series Preselected Millimeter Mixers. Unless stated otherwise, all specifications describe the warranted performance of the 11974 under the following conditions:

- Five minute warm-up for ambient conditions.
- Ambient temperature $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
- One year calibration cycle.
- Environmental requirements met.
- Connections to the host spectrum analyzer are made with one length of coax cable, part number 5061-5458.
- The 11974 is used with one of the following spectrum analyzers:
- 8566B with 11975A Amplifier
- 8560 Series Portable Spectrum Analyzers

71000C with 70907B External Mixer Interface Module.
Characteristics provide useful, but nonwarranted, information in the form of typical, nominal, or approximate values for band performance. Refer to Table 1-2 on page 23 for a list of band characteristics.

Table 1-1 11974 Specifications

Table 1-1 11974 Specifications (Continued)

Conversion Loss		
RF tolF port (includes 1 m IF cable, part number 5061-5458) $\begin{aligned} & \text { 11974A } \\ & 11974 \mathrm{Q} \\ & 11974 \mathrm{U} \\ & 11974 \mathrm{~V} \end{aligned}$	44 dB max. 46 dB max. 43 dB max. 57 dB max.	
RF Input Match (across full waveguide band) Option 001 only $\begin{aligned} & \text { 11974A, Q, U } \\ & \text { 11974V } \end{aligned}$	$\begin{aligned} & <1.6: 1 \\ & <2.3: 1 \end{aligned}$	
Conversion Loss Chart Accuracy 20C to 30C: RSS of calibration equipment errors (Add 0.7 dB if used with 8560 Series Portable Spectrum Analyzers.) 0C to 55C: RSS of calibration equipment errors plus worst-case temperature effects of 11974 (Add 0.7 dB if used with 8560 Series Portable Spectrum Analyzers.) 11974A 11974Q 11974 U 11974V	$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ $\pm 2.3 \mathrm{~dB}$ max. $\pm 2.3 \mathrm{~dB}$ max. $\pm 2.6 \mathrm{~dB}$ max. $\pm 4.5 \mathrm{~dB}$ max.	$\mathbf{2 0}^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ $\pm 1.0 \mathrm{~dB}$ max. $\pm 1.0 \mathrm{~dB}$ max. $\pm 1.1 \mathrm{~dB}$ max. $\pm 2.0 \mathrm{~dB}$ max.
```I mage Rejection (Image positioned \(2 \times \mathrm{f}_{\mathrm{IF}}\) above tuned response) H ost Spectrum Analyzers: 8566B/11975A 71000C/70907B 11974A 11974Q 11974 U 11974V ( 50 to 67 GHz ) 11974V ( 67 to 75 GHz )```	$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$   -54 dBc max.   -50 dBc max.   -50 dBc max.   -50 dBc max.   -40 dBc max.	$\mathbf{2 0}^{\circ} \mathrm{C}$ to $\mathbf{3 0}^{\circ} \mathrm{C}$   -59 dBc max.   -55 dBc max.   -55 dBc max.   -55 dBc max.   -45 dBc max.
H ost Spectrum Analyzers: 8560 Series Portable Spectrum Analyzers ```11974A 11974Q 11974U 11974V (50 to 67 GHz) 11974V (67 to 75 GHz)```	-50 dBc max.   -45 dBc max.   -45 dBc max.   -45 dBc max.   -35 dBc max.	-55 dBc max.   -50 dBc max.   -50 dBc max.   -50 dBc max.   -40 dBc max.

## Table 1-1 11974 Specifications (Continued)

Multiple Response ${ }^{\text {a }}$	
(Due to in-range applied signals mixing with LO   harmonics other than order $N$ )	
$11974 \mathrm{~A}(\mathrm{~N}=8)$	-63 dBc max.
$11974 \mathrm{Q}(\mathrm{N}=10)$	-60 dBc max.
$11974 \mathrm{U}(\mathrm{N}=10)$	-60 dBc max.
$11974 \mathrm{~V}(\mathrm{~N}=14)$ (applied signal: 50 to 67 GHz$)$	-60 dBc max.
$11974 \mathrm{~V}(\mathrm{~N}=14)$ (applied signal: 67 to 75 GHz$)$	-55 dBc max.

a. Multiple response displayed frequency, $\mathrm{f}^{\prime}{ }_{R F}$, due to input signal $\mathrm{f}_{\mathrm{RF}}$.

$$
\mathrm{f}_{\mathrm{RF}}^{\prime}=\left(\frac{\mathrm{N}}{\mathrm{~N}^{\prime}}\right) \mathrm{f}_{\mathrm{RF}}+\mathrm{f}_{\mathrm{IF}}\left(\frac{\mathrm{~N}^{\prime} \pm \mathrm{N}}{\mathrm{~N}^{\prime}}\right)
$$

where:

$$
\mathrm{N}=\text { Band Harmonic number }
$$

$\mathrm{N}^{\prime}=$ Unwanted Harmonic
$=\ldots \mathrm{N}-2, \mathrm{~N}-1, \mathrm{~N}+1, \mathrm{~N}+2, \ldots$
$f_{I F}=321.4 \mathrm{MHz}$ for 8566B and 71000C Spectrum Analyzers
$=310.7$ MHz for 8560 Series Portable Spectrum Analyzers

Table 1-1 11974 Specifications (Continued)

GE NE RAL SPE CIFICATIONS	
E nvironmental Specifications	Type tested to MIL-T-28800C, Class 5   environmental conditions as listed below:
Temperature	$-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Non-operating	$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Operating	$95 \% \pm 5 \%$ up to $+30^{\circ} \mathrm{C}$
Relative Humidity	
Altitude	$<12,195 \mathrm{~m}(<40,000$ feet)
Non-operating	$<3,048 \mathrm{~m}(<10,000$ feet)
Operating	2 g
Maximum Vibration Level	30 g
5 Hz to 55 Hz	
Maximum Shock	Meets radiated and conducted emissions   of MIL-STD-461B, Part 7, methods CE 03
Electromagnetic Compatibility	(Air Force) and RE02, FTZ 26/527/79

Table 1-2 11974 Characteristics

Note: These are not specifications. Characteristics provide useful, but nonwarranted information about instrument performance.	
FREQUENCY	
Center Frequency Accuracy   Residual FM   Span Accuracy	Using Table 1-1, "11974 Specifications," for the spectrum analyzer being used, evaluate these characteristics with reference to the harmonic numbers listed below.
AMPLITUDE MEASUREMENT RANGE	
Frequency Response (uncorrected)   (With respect to mean value of Conversion Loss chart) $\begin{aligned} & \text { 11974A } \\ & 11974 \mathrm{Q} \\ & 11974 \mathrm{U} \\ & 11974 \mathrm{~V} \end{aligned}$	$\pm 4.5 \mathrm{~dB}$ max. $\pm 4.0 \mathrm{~dB}$ max. $\pm 4.0 \mathrm{~dB}$ max. $\pm 4.0 \mathrm{~dB}$ max.
1 dB Gain Compression   (RF Input for 1 dB increase in conversion loss)   11974A   11974Q   11974 U   11974 V	+6 dBm min. 0 dBm min. 0 dBm min. +3 dBm min.
Third Order Intercept (TOI)   (For two signals spaced less than 200 MHz apart)   11974A   11974Q   11974 U   11974 V	+13 dBm min.   +13 dBm min.   +13 dBm min.   +13 dBm min.

Table 1-2 11974 Characteristics (Continued)

AMPLITUDE MEASUREMENT RANGE (continued)		
IF Subharmonic Response   Intercept (2nd Order)   (Response at $\mathrm{f}_{\mathrm{IF}} / 2$ above input signal) $\begin{aligned} \mathrm{f}_{\mathrm{IF}} / 2 & =160.7 \mathrm{MHz}(8566 \mathrm{~B}, 71000 \mathrm{C}) \\ & =155.35 \mathrm{MHz} \text { (8560 Series } \\ & \text { Portable Spectrum } \\ & \text { Analyzer) } \\ 11974 \mathrm{~A} & \\ 11974 \mathrm{Q} & \\ 11974 \mathrm{U} & \\ 11974 \mathrm{~V} & \end{aligned}$	+45 dBm min. +45 dBm min. +45 dBm min. +30 dBm min.	
Dynamic Range   Refer to Figure 1-3 on page 27, Figure 1-4 on page 28, Figure 1-5 on page 29, and Figure 1-6 on page 30.		
INPUTS AND OUTPUTS		
RF Input   Waveguide Size, F lange Type $\begin{aligned} & \text { 11974A } \\ & 11974 \mathrm{Q} \\ & 11974 \mathrm{U} \\ & 11974 \mathrm{~V} \end{aligned}$   Maximum RF Input Level   (CW, Peak, or Average)   Match (at peak of preselector)	$\begin{array}{r} \text { Size } \\ \text { WR-28 } \\ \text { WR-22 } \\ \text { WR-19 } \\ \text { WR-15 } \\ +25 \mathrm{dBm} \\ <3.0: 1 \end{array}$	Flange   UG 599/U   UG 383/U   UG 383/U-M   UG 385/U
LO Input   Connector Type   Frequency Range $\begin{aligned} & \text { 11974A } \\ & 11974 \mathrm{Q} \\ & 11974 \mathrm{U} \\ & 11974 \mathrm{~V} \end{aligned}$   Optimal LO Input Level Match	SMA (f)   3.3 GHz to 5.0 GHz   3.3 GHz to 5.0 GHz   4.0 GHz to 6.0 GHz   3.5 GHz to 5.3 GHz   +14.5 dBm to 16 dBm   $<2.0: 1$ (50 $\Omega$ )	

Table 1-2 11974 Characteristics (Continued)

INPUTS AND OUTPUTS (continued)	
IF Output   Connector Type   Match   Bandwidth   (Total 11974 BW limited by preselector.)	SMA (f)   $<1.6: 1$ ( $50 \Omega$ )   Nominal $>100 \mathrm{MHz}$   Typical $>150 \mathrm{MHz}$
Tune + Span Input   Connector Type   Sensitivity (Spectrum Analyzer Type) (PSEL PK DAC at mid-value)   8566B/11975A   8560 Series Portable Spectrum Analyzer   71000/70907B   Input Impedance	BNC (f) $\begin{aligned} & -2 \mathrm{~V} / \mathrm{GHz} \times \mathrm{f}_{\mathrm{LO}}-0.32 \mathrm{~V} \\ & +1.5 \mathrm{~V} / \mathrm{GHz} \times \mathrm{f}_{\mathrm{LO}}-0.21 \mathrm{~V} \\ & +1.5 \mathrm{~V} / \mathrm{GHz} \times \mathrm{f}_{\mathrm{LO}} \mathrm{~V} \\ & 20 \mathrm{k} \Omega \mathrm{~min} . \end{aligned}$
Power Supply (11974-60028)   Output   Input   Power Consumption	$\begin{aligned} & +50 \mathrm{~V}, 0.6 \mathrm{~A} \\ & \pm 15 \mathrm{~V}, 0.2 \mathrm{~A} \\ & 100 / 110 / 220 / 240 \mathrm{~V} \mathrm{ac} \\ & 47 \mathrm{~Hz} \text { to } 63 \mathrm{~Hz} \\ & 130 \mathrm{VA} \text { max. } \end{aligned}$

## GENERAL CHARACTERISTICS

## Weight

11974 Series
11974-60028 Preselector Power Supply

## Size

11974 Series
11974-60028 Preselector Power Supply
14.3 kg ( 6.5 lb )
26.2 kg (11.9 lb)

Length $(A) \times$ Width $(B) \times$ Height $(C)$
$210.2 \mathrm{~mm} \times 84.7 \mathrm{~mm} \times 101.5 \mathrm{~mm}$
$346.1 \mathrm{~mm} \times 212.7 \mathrm{~mm} \times 133.4 \mathrm{~mm}$


Figure 1-3 11974A Minimum System Dynamic Range

	Displayed Average Noise Floor
- - - - - - - - - -	Second Order IF
	Subharmonic Distortion
	Image \& Multiple Response*
	Third Order Intermod
	( $\leq 200 \mathrm{MHz} \mathrm{Signal} \mathrm{Separation)}$



Figure 1-4 11974Q Minimum System Dynamic Range

	Displayed Average Noise Floor
- - - - - - - - - -	Second Order IF
	Subharmonic Distortion
	Image \& Multiple Response*
-	Third Order Intermod
	( $\leq 200 \mathrm{MHz}$ Signal Separation)



Figure 1-5 11974U Minimum System Dynamic Range

	Displayed Average Noise Floor
- - - - - - - - - -	Second Order IF
	Subharmonic Distortion
	Image \& Multiple Response*
	Third Order Intermod
	( $\leq 200 \mathrm{MHz}$ Signal Separation)



Figure 1-6 11974V Minimum System Dynamic Range

	Displayed Average Noise Floor
- - - - - - - - - -	Second Order IF
	Subharmonic Distortion
	Image \& Multiple Response*
- - -	Third Order Intermod
	( $\leq 200 \mathrm{MHz}$ Signal Separation)



## 2 Installation

## What You'll Find in This Chapter

This chapter describes how to set up an 11974 Series Preselected Millimeter Mixer for operation. This chapter contains the following topics.

## "Spectrum Analyzer Compatibility" on page 33

"Initial Inspection" on page 36
"Preparing the 11974 for Use" on page 37
"Power Requirements" on page 38
"Setting the Line-Voltage Selector Switch" on page 38
"Electrostatic Discharge Information" on page 43
"Returning Equipment for Service" on page 46

## Spectrum Analyzer Compatibility

The 11974 Series mixers are compatible with the spectrum analyzers listed in the following table.
Table 2-1 11974 Compatibility with Spectrum Analyzers

71000 MODULAR SPECTRUM ANALYZER WITH   70907 EXTERNAL MIXER INTERFACE MODULE		
Model	S/N Prefix	
70907A	all	Compatibility
70907 B	all	Fully compatible ${ }^{\text {(3) }}$

Table 2-1 11974 Compatibility with Spectrum Analyzers (Continued)

R\&D BENCH HIGH PERFORMANCE SPECTRUM ANALYZER WITH 11975A LO AMPLIFIER		
Model	S/N Prefix	Compatibility
8566A	$<2007 A^{(6)}$	No upgrade kit available
8566A	$\geq 2007{ }^{(6)}$	8566AB Conversion Kit previously installed:   1) Firmware Date $<89.10 .10$   8566B-K74 Upgrade Kit required ${ }^{(7)}$   2) Firmware Date $\geq 89.10 .10$   8566B-K 75 U pgrade Kit required ${ }^{(8)}$   8566AB Conversion Kit Not previously   installed: (two kits required)   8566AB Conversion Kit   8566B-K 75 U pgrade Kit ${ }^{(8)}$
8566B	<2948A ${ }^{(6)}$	8566B-K 74 U pgrade Kit required ${ }^{(7)}$
8566B	$\geq 2948$ A ${ }^{(6)}$	Fully compatible

(1) Retrofit kit contains materials and instructions for hardware modifications and an operating procedure update for the 11974.
(2) Mixer bias capability is converted to preselector peak, resulting in activation of a preselector peaking with the BIAS PEAK function. Sweep times must be manually controlled in wide spans to avoid over sweeping the preselector.
(3) 70900 Local Oscillator firmware/hardware requirements:

## Firmware Date Code LO Upgrade Kit Required (YYMMDD)

850730 70907B-Option 098
860203 (Firmware and CPU board)
861015 70907B-Option 099
870501 (Firmware on RAM/ROM card)
880314
880901
890606 Fully compatible, no kit required
(4) Retrofit kit contains firmware update and new operation manual.
(5) Operation with 11974s will require entry of a frequency offset. Preselector peaking is performed manually with a screwdriver adjustment. Sweep times must be manually controlled in wide spans to avoid over sweeping the preselector.
(6) The serial number prefix on the 8566A/B refers to the RF section.
(7) Retrofit kit contains materials and instructions for hardware modifications and new firmware.
(8) Retrofit kit contains materials and instructions for hardware modifications.

## Initial Inspection

Inspect the shipping container upon receipt. Retain it and the cushioning materials. If the container or cushioning material is damaged, verify that the contents are complete and that the unit functions correctly both mechanically and electrically.

If the contents are incomplete or the 11974 fails the performance tests in Chapter 4, "Performance Tests," on page 89, notify one of the Agilent Technologies Sales and Service Offices listed on page 49. Show any container or cushioning materials damages to the carrier. The Agilent Technologies Sales and Service Office will arrange for repair or replacement without waiting for a claim settlement.
The shipping container and cushioning materials are shown in Figure 2-3 on page 47 and Figure 2-4 on page 48. Instructions for repackaging the 11974 are included under "Returning Equipment for Service" on page 46.

WARNING	To prevent electrical shock, disconnect the 11674 Series equipment   from mains before cleaning. Use a dry cloth or one slightly   dampened with water to clean the external case parts. Do not   attempt to clean internally.

## Preparing the $\mathbf{1 1 9 7 4}$ for Use

When installing equipment, ensure that the 11974-60028 Power Supply ac power switch and the power cord are easily accessible to allow for disconnecting the equipment from the mains power supply. The power switch will remove power from the 11974, but the power must be disconnected to remove the 11974-60028 from the mains power supply.

Position the equipment to protect it from moisture because the instrument case does not protect against the ingress of water. (The case will protect against finger access to hazardous parts within the enclosure.)

## WARNING The front panel LINE switch disconnects the mains circuits from the mains supply after the EMC filters and before other parts of the instrument.

CAUTION Ventilation Requirements: When installing the product in a cabinet, the air flow into and out of the product must not be restricted. The ambient temperature (outside the cabinet) must be less than the maximum operating temperature of the product by $4{ }^{\circ} \mathrm{C}$ for every 100 watts dissipated in the cabinet. If the total power dissipated in the cabinet is greater than 800 watts, then forced convection must be used.

The 11974 must be properly connected to one of the compatible spectrum analyzers listed in Table 2-1 on page 33. Use the next four sections of this chapter to:

- Select the appropriate power source.
- Set the line-voltage selector switch correctly.
- Check the fuse.
- Select the appropriate power cable.

After preparing the 11974 for use, refer to Chapter 3, for complete operation procedures for the most commonly-used compatible spectrum analyzers. These procedures include configuration setups listing all connections and giving step-by-step procedures describing how to operate an 11974.

> | CAUTION | Before this instrument is switched on, make sure that: |
| :--- | :--- |
|  | •the line voltage selector is set to the voltage of the mains supply; |
|  | •the correct fuse is installed; |
|  | •the supply voltage is in the specified range. |

## Power Requirements

The power requirements for the 11974 are listed below.
Table 2-2 Operating Power Requirements

Line Input	Power Requirements	
	$\mathbf{1 0 0 / 1 2 0}$ V ac Operation	$\mathbf{2 2 0} / \mathbf{2 4 0}$ V ac Operation
Line Voltage	100 V to $120 \mathrm{~V}, \pm 10 \%$	220 V to $240 \mathrm{~V}, \pm 10 \%$
Line Current	1 A rms max.	$0.5 \mathrm{~A} \mathrm{rms} \mathrm{max}$.
Line Frequency	47 Hz to 66 Hz	47 Hz to 66 Hz

WARNING This is a Safety Class I product (provided with a protective earthing ground incorporated in the power cord). The mains plug shall only be inserted in a socket outlet provided with a protective earth contact. Any interruption of the protective conductor, inside or outside the instrument, is likely to make the instrument dangerous. Intentional interruption is prohibited.

## Setting the Line-Voltage Selector Switch

The 11974-60028 Preselector Power Supply contains the voltage-selector switch for the 11974. Set the power supply's rear-panel voltage-selector switch to the line-voltage range (100, 120, 220, or 240 V ) corresponding to the available ac voltage. Refer to Figure 2-1 on page 39.

Figure 2-1 Voltage Selection Switch and Line F use Locations


## Checking the Fuse

The type of ac-line input fuse depends on the input-line voltage. Use the following fuses:

$\mathbf{1 0 0}$ V to 120 V Operation:	1 A 250 V UL/CSA (TIME DELAY) (part number 2110-0674) (for   use in the United States)
$\mathbf{2 2 0}$ V to 240 V Operation:	0.5 A 250 V IEC (TIME DELAY) (part number 2110-0458)   (for use in other countries)

The line fuse is housed in a small container located inside the rear-panel power-connector module of the 11974-60028 Preselector Power Supply. When replacing a fuse, be sure that the arrows on the container match the direction of the arrows on the power-connector door. Refer to Figure 2-1 on page 39.

## Power Cable

The 11974-60028 Preselector Power Supply is equipped with a three-wire power cable, in accordance with international safety standards. When connected to an appropriate power-source outlet, this cable grounds the instrument cabinet.

WARNING Failure to ground the instrument properly can result in personal injury. Before turning on the preselector power supply, you must connect its protective earth terminals to the protective conductor of the main power cable. Insert the main power-cable plug only into a socket outlet that has a protective earth contact. Do not defeat the earth-grounding protection by using an extension cable, power cable, or auto transformer. Make sure its common terminal is connected to the protective earth contact of the power source socket.

[^0]Table 2-3. Power Cables

Plug Type ${ }^{\text {a }}$	Cable Part Number	$\underset{\text { Pescription }}{\text { Plug }}$	Length cm (in.)	Cable Color	For Use in Country
$250 \mathrm{C}$	$8120-8705$ 8120-8709	Straight BS 1363A $90^{\circ}$	$\begin{aligned} & 229(90) \\ & 229(90) \end{aligned}$	Mint Gray   Mint Gray	Option 900   United Kingdom, Hong Kong, Cyprus, Nigeria, Singapore, Zimbabwe
$250 \mathrm{C}$	8120-1369 8120-0696	Straight AS 3112 $90^{\circ}$	$\begin{aligned} & 210(79) \\ & 200(78) \end{aligned}$	Gray   Gray	Option 901   Argentina, Australia, New Zealand, Mainland China
	8120-1378 8120-1521	Straight   NEMA 5-15P   $90^{\circ}$	$\begin{aligned} & 203(80) \\ & 203(80) \end{aligned}$	J ade Gray   J ade Gray	Option 903   United States, Canada, Brazil, Colombia, Mexico, Philippines, Saudi Arabia, Taiwan
	8120-4753 8120-4754	Straight   NEMA 5-15P   $90^{\circ}$	$\begin{aligned} & 229(90) \\ & 229(90) \end{aligned}$	Gray   Gray	Option 918   J apan
	8120-1689 8120-1692	Straight CEE 7NII $90^{\circ}$	$\begin{aligned} & \hline 200(78) \\ & 200(78) \end{aligned}$	Mint Gray   Mint Gray	Option 902   Continental Europe, Central African Republic, United Arab Republic
$230 v\left\langle\begin{array}{ll} O & O \\ O_{N} & O \end{array}\right\rangle$	$8120-2104$ 8120-2296	Straight SEV Type 12 $90^{\circ}$	$\begin{aligned} & \hline 200(78) \\ & 200(78) \end{aligned}$	Gray   Gray	Option 906   Switzerland

Table 2-3. Power Cables (Continued)

Plug Type ${ }^{\text {a }}$	Cable Part Number	Plug ${ }^{\text {b }}$   Description	Length cm (in.)	Cable Color	For Use in Country
	$\begin{aligned} & 8120-2956 \\ & 8120-2957 \end{aligned}$	Straight   SR 107-2-D $90^{\circ}$	$\begin{aligned} & 200(78) \\ & 200(78) \end{aligned}$	Gray   Gray	Option 912   Denmark
	$8120-4211$ 8120-4600	Straight IEC 83-B1 $90^{\circ}$	$\begin{aligned} & 200(78) \\ & 200(78) \end{aligned}$	Mint Gray   Mint Gray	Option 917   South Africa, India
$250 v\left(\begin{array}{cc} \square & \\ 0 & \\ v^{E} & b \end{array}\right.$	$8120-5182$ 8120-5181	Straight   SI 32 $90^{\circ}$	$\begin{aligned} & \hline 200(78) \\ & 200(78) \end{aligned}$	J ade Gray   J ade Gray	Option 919   Israel

a. $\mathrm{E}=$ earth ground, $\mathrm{L}=$ line, and $\mathrm{N}=$ neutral.
b. Plug identifier numbers describe the plug only. The part number is for the complete cable assembly.

## Electrostatic Discharge Information

Electrostatic discharge (ESD) can damage or destroy electronic components. Therefore, all work performed on assemblies consisting of electronic components should be done at a static-safe workstation.

Figure 2-2 shows an example of a static-safe workstation. Two types of ESD protection are shown: (a) conductive table mat and wrist strap combination, and (b) conductive floor mat and heel strap combination. The two types must be used together to ensure adequate ESD protection. Refer to Table 2-4 on page 45 for a list of static-safe accessories and their part numbers.

## Figure 2-2 Static-Safe Workstation



## Reducing ESD Damage

The following are suggestions that may help reduce the amount of ESD damage that can occur during testing and servicing instruments.

## PC Board Assemblies and Electronic Components

- Handle these items at a static-safe workstation.
- Store or transport these items in static-shielding containers.

CAUTION Do not use erasers to clean the edge-connector contacts. Erasers generate static electricity and degrade the electrical quality of the contacts by removing the thin gold plating.

Do not use paper of any kind to dean the edge-connector contacts. Paper or lint particles left on the contact surface can cause intermittent electrical connections.

Do not touch the edge-connector contacts or trace surfaces with bare hands. Always handle board assemblies by the edges.

PC board assembly edge-connector contacts may be cleaned by using a lint-free doth with a solution of 80 percent electronics-grade isopropyl alcohol and 20 percent dei onized water. This procedure should be performed at a static-safe workstation.

WARNING	Isopropyl alcohol is extremely flammable, causes irritation, may cause eye damage, and is harmful if swallowed or inhaled. It may be harmful if absorbed through the skin. Keep away from heat, sparks, and flame. Avoid contact with eyes, skin, clothing. Avoid breathing vapor. Keep in tightly closed container. Use with adequate ventilation. Wash thoroughly after handling. In case of fire, use alcohol foam, dry chemical, or carbon dioxide: water may be ineffective. In case of spill, soak up with sand or earth. Flush spill area with water.
	Disposal Instructions: Dispose in accordance with all applicable federal, state, and local environmental regulations.

## Test Equipment

- Before connecting any coaxial cable to an instrument connector for the first time each day, momentarily short together the center and outer conductors of the cable.
- Before touching the center pin of any connector and before removing any assembly from the instrument, ensure proper use of a grounded, resistor-isolated, wrist strap.
- To prevent buildup of static charge, ensure that all instruments are properly earth-grounded.


## Static-Safe Accessories

Table 2-4 Static-Safe Accessories

Part Number	Description
$9300-0797$	Set includes: 3M static control mat $0.6 \mathrm{~m} \times 1.2 \mathrm{~m}(2 \mathrm{ft} \times 4 \mathrm{ft})$ and 4.6 cm ( 15 ft )   ground wire. (The wrist-strap and wrist-strap cord are not indluded. They must   be ordered separately.)
$9300-0980$	Wrist-strap cord 1.5 m (5 ft)
$9300-1383$	Wrist-strap, col or black, stainless steel, without cord, has four adjustable links   and a 7 mm post-type connection.
$9300-1169$	ESD heel-strap (reusable 6 to 12 months).

## Returning Equipment for Service

Repackaging equipment requires original shipping containers and materials or their equivalents. Agilent Technologies offices can provide packaging materials identical to the original. Figure 2-3 on page 47 and Figure 2-4 on page 48 identify the original packaging materials and their part numbers. When ordering packaging materials, it is necessary to order the proper number of foam inserts.

CAUTION Packaging materials not specified can result in instrument damage. Never use styrene pellets to package electronic equipment. The pellets do not adequately cushion the equipment, do not prevent all equipment movement, and can generate static electricity.

Use the following procedure to prepare equipment for shipment:

1. Fill out a blue repair card (located at the end of this chapter) and attach it to the equipment. Send a copy of any noted error messages or other hel pful performance data. If a blue repair card is not available, include at least the following information:
a. Type of service required
b. Description of the problem and whether it is constant or intermittent
c. Name and telephone number of technical contact person
d. Return address
e. Model number of returned equipment
f. Full serial number of returned equipment
g. List of any accessories returned with equipment
2. To help prevent damage during transit, pack the equipment in the appropriate packaging materials as shown in Figure 2-3 on page 47 and Figure 2-4 on page 48. Original shipping materials or equivalents are best; however, compliance with the following instructions will result in acceptable packaging.
a. Wrap equipment in anti-static plastic to reduce the possibility of ESD damage.
b. For equipment that weighs less than 54 kg ( 120 lb ), use a double-walled, corrugated cardboard carton of 159 kg ( 350 lb ) test strength. The carton must be both large enough and strong enough to accommodate the equipment. Allow at least three to four inches on all sides of the equipment for packing material.
c. Surround the equipment with 3 to 4 inches of packing material to protect the equipment and to prevent movement in the carton. If packing foam is not available, the best alternative is S.D.-240 Air Cap ${ }^{\text {TM }}$ from Sealed Air Corporation, Commerce, California 90001. Air Cap is plastic sheeting filled with 1-1/4 inch air bubbles. Use pink anti-static Air Cap. Wrapping the equipment several times in this material should provide sufficient protection and also prevent movement in the carton.
3. Seal the shipping container securely with strong nyl on adhesive tape.
4. Mark the shipping container "FRAGILE, HANDLE WITH CARE" to ensure careful handling.
5. Retain copies of all shipping papers.

Figure 2-3 Packaging Materials for 11974 Series


Item	Qty	Part Number	Description
1	1	$9211-5594$	Corrugated Outer Carton
2	1	$5180-7865$	Foam Pads (set)
3	1	$5180-7885$	Corrugated Pad

Figure 2-4 Packaging Materials for 11974-60028 Power Supply


Item	Qty	Part Number	Description
1	1	$9211-4893$	Corrugated Outer Carton
2	1	$5180-7809$	Foam Pads (set)
3	1	$9220-4421$	Corrugated Sleeve

## Sales and Service Offices

Agilent Technol ogies Sales and Service Offices provide worldwide support for Agilent Technologies products. To obtain servicing information or to order replacement parts, contact the nearest office listed on page 49.
In any correspondence, always provide essential information, which includes model numbers, serial numbers, or assembly part numbers.

## Table 2-5. Contacting Agilent

Online assistance: www.agilent.com/find/assist

United States (tel) 18004524844	Latin America (tel) (305) 2697500 (fax) (305) 2697599	Canada   (tel) 18778944414   (fax) (905) 282-6495	Europe   (te) (+31) 205472323   (fax) (+31) 205472390
New Zealand   (tel) 0800738378   (fax) (+64) 44958950	J apan   (tel) (+81) 426567832   (fax) (+81) 426567840	Australia   (tel) 1800629485   (fax) (+61) 392105947	Singapore   (tel) 18003758100   (fax) (65) 8360252
Malaysia   (tel) 1800828848   (fax) 1800801664	Philippines   (tel) (632) 8426802   (tel) (PLDT subscriber only):   180016510170   (fax) (632) 8426809   (fax) (PLDT subscriber only):   180016510288	Thailand (tel) outside Bangkok: (088) 226008 (tel) within Bangkok: (662) 6613999 (fax) (66) 16613714	Hong Kong   (te) 800930871   (fax) (852) 25069233
Taiwan   (tel ) 0800-047-866   (fax) (886) 225456723	People's Republic of China   (tel) (preferred):   800-810-0189   (tel) (alternate):   10800-650-0021   (fax) 10800-650-0121	India   (tel) 1-600-11-2929   (fax) 000-800-650-1101	

## 3 Operation

## What You'll Learn in this Chapter

This chapter introduces you to basic preselected external-mixing functions available using an 11974 Series Preselected Millimeter Mixer. After a brief discussion of operating precautions and hints, operation procedures using the most commonly-used "host" spectrum analyzers are described. This chapter contains the following topics:

- "11974Q Front-Panel Features" on page 53
- "11974Q Rear-Panel Features" on page 54
- "Operating Precautions" on page 56
"Maximum RF Input Level" on page 56
"Maximum LO Input Level" on page 56
"Electrostatic Discharge" on page 56
- "Operating Hints" on page 57
"Preventing Erroneous Preselector Peaking During Spur Searches" on page 57
"Remote Location of an 11974" on page 57
"" on page 58
"Dynamic Range Optimization" on page 59
- Preliminary Operation for E ach Spectrum Analyzer

Compatibility Reference lists all compatible spectrum analyzers with the 11974 Series and defines any requirements necessary.
Equipment Connection lists all input and output connections for operation.
Frequency Tracking Calibration mates the 11974 Series to the spectrum analyzer. This part of the preliminary operation aligns the frequency of the 11974 tracking filter to the tuned frequency of the spectrum analyzer.

NOTE Once the Frequency Tracking Calibration has been performed on a designated setup (that is, a specific 11974 band matched to a specific spectrum analyzer), and as long as the equipment remains connected, this calibration procedure only needs to be performed occasionally to keep the setup matched properly.

Operation for Each Spectrum Analyzer
Band Selection describes how to select the desired millimeter band for operation.
Amplitude Calibration allows you to enter in conversion-loss values for your specific operating frequency. Each 11974 band is individually characterized and labeled at the factory with a calibration chart of its conversion loss versus frequency.
Preselector Peaking quickly maximizes the amplitude accuracy of a signal of interest.

## 11974Q Front-Panel Features

Figure 3-1 11974Q Front Panel


The front panel of an 11974 Series mixer consists of an RF input port flange and two flange damps. The following table lists the RF input port flange types.
Table 3-1 RF Input Port F lange Types

Model	Size	Flange Type
$11974 \mathrm{~A}^{\mathrm{a}}$	WR-28	UG599/U
$11974 \mathrm{Q}^{\mathrm{a}}$	WR-22	UG383U
$11974 \mathrm{U}^{\mathrm{a}}$	WR-19	UG383/U-M
$11974 \mathrm{~V}^{\mathrm{a}}$	WR-15	UG385U

a. Refer to Table 1-2 for the ratings of these input and output connectors.

## 11974Q Rear-Panel Features

Figure 3-2 11974Q Rear Panel


POWER SUPPLY
INSTRUMENT
SELECT
IF OUT

TUNE IN

LO IN

33 GHz SET

50 GHz SET
receives power from the 11974-60028 Preselector Power Supply. ${ }^{\text {a }}$
switches allow the 11974 to properly scale the tune ramp of the specified spectrum analyzer.
requires an SMA type cable and supplies the IF INPUT for the spectrum analyzer. ${ }^{\text {a }}$
requires a BNC type cable and receives the TUNE + SPAN sweep output from the spectrum analyzer. ${ }^{\text {a }}$
requires an SMA type cable and receives the first LO output from the spectrum analyzer. ${ }^{\text {a }}$
is the low-end of the band adjustment for mating the 11974 to the spectrum analyzer. This adjustment frequency directly corresponds to the low-end frequency of each band.
is the high-end of the band adjustment for mating the 11974 to the spectrum analyzer. This adjustment frequency directly corresponds to the high-end frequency of each band.

LED SET are the LEDs used to adjust the low-end and high-end of each band so that the 11974 is mated properly to the spectrum analyzer.
a. Refer to Table 1-2 for the ratings of these input and output connectors.

## 11974-60028 Front-Panel Features

Figure 3-3 11974-60028 Front Panel

yg35_1

OUTPUT PRESELECTOR POWER
LINE
provides power for the 11974 Preselector RF Mixer.
switch applies power to the OUTPUT PRESELECTOR POWER jack.

## Operating Precautions

CAUTION To avoid damaging your 11974 and to assure accurate measurements, be sure to follow the recommendations in this section.

## Maximum RF Input Level

The maximum RF input level, as stated in Table 1-2 on page 23, is +25 dBm CW, Peak, or Average. However, since the 1 dB compression point at the RF input is between 0 and +6 dBm depending on the band, meaningful measurements will end long before the damage level is reached. Therefore, for amplitude accuracy and protection against damage, limit the input power to the 1 dB compression point level.

## Maximum LO Input Level

The maximum LO input level is +18 dBm . Care should be taken when using the 11975A Microwave Amplifier as an LO booster for the 8566B Spectrum Analyzer or when using the 11975A for remote-location connections with the 11974 Series.

CAUTION When using an 11975A Amplifier with an 11974, the rear-panel ALC switch must be set to the ON position and the OUTPUT POWER LEVEL set to the stop at +16 dBm before connecting the amplifier. If the ALC switch is left in the OFF position, the amplifier output power is high enough to destroy the mixer diodes.

## Electrostatic Discharge

CAUTION When configuring the 11974 with a spectrum analyzer, al ways connect the SMA cables to the spectrum analyzer BEF ORE connecting them to the 11974. This will minimize the danger of electrostatic discharge damaging the 11974.

## Operating Hints

The following operating hints are provided for your convenience.

## Preventing Erroneous Preselector Peaking During Spur Searches

When performing spurious response tests on a device under test (DUT), the spectrum to be measured typically contains both large and small signals. If the spurs are smaller than -60 to -65 dBc , they may be confused with the image or multiple response of the large signal. In this type of test, activate the preselector-peak routine only on the larger signals. This will avoid attempting to peak on small unwanted 11974 responses of the large signals which can result in amplitude errors. Another way to avoid this potential problem is to calculate the frequency of the image or multiple response and avoid measurements at these precise frequencies.
The frequency of the image response can be found in Table 1-1 on page 19, and the frequencies of the multiple responses can be found in Table 1-2 on page 23.
Listed below are the symptoms of errors caused by peaking on image or multiple responses:

- Large amplitude errors for the large signals after peaking on a suspected small DUT spur which is actually an unwanted 11974 response,
- Preselector peak DAC numbers consistently at or near one extreme of range (due to peaking on an image response of a large signal),

DAC Number After Peaking 0 255

63 with message "Peak Not Found" displayed

Spectrum Analyzer
71000C with 70907B
8560 Series Portable
8566B

- Random DAC numbers over a wide range when peaking is repeated (due to peaking on a multiple response of a large signal).


## Remote Location of an 11974

In cases where the device-under-test (DUT) is farther away than the 1 meter LO and IF cables can accommodate, place the 11974 close to the DUT, but place the host spectrum analyzer the desired distance away. In order to preserve the excellent amplitude accuracy of the 11974 , the +14.5 to 16 dBm LO power must be supplied even though the LO cables may become quite long.
To supply the LO power, insert an 11975A Amplifier at the 11974 location. (Refer to Figure 3-4 on page 58.) To provide the proper input power level for the 11975A Amplifier, a coax attenuator is also required at the input of the 11975A such that the sum of the loss of the extended LO cable and the attenuator value add up to a range of $9-11 \mathrm{~dB}$ at 6 GHz . Set the OUTPUT POWER LEVEL on the 11975A for +16 dBm . The extra IF cable loss at

321 MHz should be added to the conversion loss value of the 11974. Perform the Frequency Tracking Calibration procedure after connection of all cables.

Figure 3-4 Setup Configuration for Remote Location of an 11974


[^1]

HP 71000C SPECTRUM ANALYZER
WITH HP 70907B


## RF Port Voltage Standing Wave Ratio (VSWR) Effects

As with most bandpass filters, the magnetically tunable Barrium-Ferrite bandpass filter of the 11974 is reflective out of its passband. In addition, the 11974 does not have a programmable RF port attenuator to improve the VSWR in band or out of band. This may cause measurement errors when testing VSWR sensitive DUTs outside of their operating frequency range. One measurement example in which VSWR effects should be minimized is when searching for spurious signals in an oscillator. To improve the accuracy of the measurement, use an 365 Series waveguide isolator (included in Option 001) or an attenuator at the RF port of the 11974 to reduce this particular VSWR effect.

## Dynamic Range Optimization

An attenuator at the RF port of the 11974 can be used to set the RF input power level for maximum dynamic range, approximately -30 dBm , as shown in Figure 1-3 on page 27, Figure 1-4 on page 28, Figure 1-5 on page 29, and Figure 1-6 on page 30.

## Operation Using an 8566B Spectrum Analyzer

## Preliminary Operation

## Compatibility Reference

Refer to Chapter 2, "Installation," on page 31 for information relating to retrofit requirements for 8566A and older 8566B Spectrum Analyzers.

## Equipment Connection

Connect the equipment as shown in Figure 3-5 on page 61 and use the following checklist to verify the connections.

- 11974 LO IN to 11975A OUTPUT (SMA cable, 5061-5458)
- 11974 IF OUT to 8566B IF INPUT (SMA cable, 5061-5458)
- 11974 TUNE IN to 8566B SWEEP + TUNE OUT (BNC cable, 8120-1839; BNC f-f adapter, 1250-0080; BNC cable, 8120-2582)
- 11974 POWER SUPPLY to 11974-60028 PRESELECTOR POWER
- 8566B 1ST LO OUTPUT to 11975A INPUT (SMA cable, 5061-5458)

CAUTION When you are using an 11975A Amplifier with an 11974, you must set the amplifier rear-panel ALC switch to ON before you connect the amplifier into the test setup. If the ALC switch is left in the OFF position, the amplifier output power is high enough to destroy the mixer diodes.

Set the 11975A output power to +16 dBm and verify that the amplifier's front-panel unleveled indicator is not lit.

Figure 3-5 11974 Connections Using an 8566B


## Frequency Tracking Calibration

Use this procedure to align the frequency of the 11974 tracking filter to the tuned frequency of the 8566B. FoOllow this procedure anytime the 11974 is connected to a different spectrum analyzer. Periodically check the calibration.

1. Set the 11974 rear-panel switches 8566B and LEDS to the ON position, and the other two switches to the OFF position, to properly scale the tune ramp of the analyzer.
2. Set the spectrum analyzer to the appropriate millimeter band by using the following key sequence for the appropriate mixer:
for an 11974A: SHIFT $\Uparrow \Uparrow$
for an 11974Q: SHIFT $\uparrow \Uparrow \Uparrow$
for an 11974U: SHIFT $\Uparrow \Uparrow \Uparrow \Uparrow$
for an 11974V: SHIFT $\Uparrow \Uparrow \Uparrow \Uparrow \Uparrow$
3. On the spectrum analyzer, set the preselector DAC to 32 (the center of its $0-63$ range) by pressing SHIFT, GHz, 32 , and $\mathbf{H z}$.
4. Set the spectrum analyzer to a frequency span of 0 Hz by pressing FREQUENCY, SPAN, 0 , and Hz .

NOTE Due to the repetitive nature of this procedure, it may be hel pful to save the center-frequency settings as indicated in steps 5 and 7 in unused state registers.
5. Set the spectrum analyzer center frequency to the low end of the band by pressing CENTER FREQUENCY and entering the corresponding value for the mixer listed below, then save this setting in an unused register.
for an 11974A: 26.5 GHz
for an 11974Q: 33.0 GHz
for an 11974U: 40.0 GHz
for an 11974V: 50.0 GHz
6. On the rear panel of the 11974, adjust the corresponding potentiometer for the mixer listed below until one or both of the green LEDs are lit.

- for an 11974A: "26.5 GHz SET"
- for an 11974Q: "33.0 GHz SET"
- for an 11974U: "40.0 GHz SET"
- for an 11974V: "50.0 GHz SET"

7. Change the spectrum analyzer center frequency to the high end of the band as indicated below; then save this setting in an unused register:

- for an 11974A: 40 GHz
- for an 11974Q: 50 GHz
- for an 11974U: 60 GHz
- for an 11974V: 75 GHz

8. On the rear-panel of the 11974, adjust the corresponding potentiometer for the mixer listed below until one or both of the green LEDs are lit.

- for an 11974A: "40 GHz SET"
- for an 11974Q: "50 GHz SET"
- for an 11974U: "60 GHz SET"
- for an 11974V: " 75 GHz SET"

9. Repeat step 5 through step 8 until green lights are lit at both frequencies without any additional adjustments.

## Operation

## Band Selection

1. If necessary, mate the 11974 to the spectrum analyzer being used for preselected external mixing by using the Frequency Tracking Calibration procedure above.
2. Set the spectrum analyzer to the appropriate millimeter band by using the key sequence listed below:
for an 11974A: SHIFT $\Uparrow \Uparrow$
for an 11974Q: SHIFT $\Uparrow \Uparrow \Uparrow$
for an 11974U: SHIFT $\Uparrow \Uparrow \Uparrow \Uparrow$
for an 11974V: SHIFT $\Uparrow \Uparrow \Uparrow \Uparrow \Uparrow$

## NOTE The above band selection key sequence must be used to enter the external mixing band of operation. Do not enter in the center frequency of the band directly.

## Amplitude Calibration

The 8566B uses a single-point conversion-loss factor per band. The conversion-loss number is saved with an instrument preset, when the band is exited, and with the SAVE and RECALL functions.

Enter the conversion loss at the desired frequency from either the calibration label on the bottom of the 11974 or the supplied calibration sheet using the following key sequence.

- SHIFT, 5 , and MHz
- Enter the conversion loss value of the desired frequency, then terminate the entry with dB.


## Preselector Peaking

1. Place the active marker on the desired signal to be peaked using PEAK SEARCH or MARKER NORMAL.

TIP	To complete the preselector-peaking routine more quickly, place the signal at   center screen and reduce the frequency span until the sweep time is   approximately 200 ms .

2. Peak the desired signal by pressing PRESEL PEAK.

## General Descriptions of 8566B External-Mixing Functions

SHIFT, $\uparrow$ selects the first millimeter frequency "lettered" band, K-band ( $18-26.5 \mathrm{GHz}$ ). (Note: K-band is not available in the 11974 Series.) Each succeeding press of the $\Uparrow$ key advances to the next lettered band. For example, A band can be displayed by pressing SHIFT $\Uparrow \Uparrow$. The lettered bands are paired with harmonic numbers. Due to some overlap between bands, always enter the millimeter band by using the SHIFT $\Uparrow$ keys to select the lettered band. Do not enter in the center frequency of the band directly.

SHIFT, GHz

SHIFT, 5, MHz

SHIFT, 2, MHz

SHIFT, 1, MHz
calls the preselector-peak DAC number to the active function. The DAC provides a vernier offset to the TUNE +SPAN to account for slight preselector mistracking with time, temperature, and so on. For the 0 to 63 DAC number range, the frequency range is approximately n times 46 MHz , where n is the harmonic number. The DAC number is saved with instrument preset (IP), but it is not saved using the SAVE/RECALL function or with a learn string.
calls CONVERSION LOSS to the active function. This is a singlepoint amplitude correction for each millimeter band, and each band's conversion loss is saved with IP, when the band is exited, and with the SAVE/RECALL functions.
calls the FULBAND number to the active function. This is an alternative function to SHIFT, $\Uparrow$, $\uparrow$ in which each millimeter lettered band can be entered by a FULBAND number. For example, A band is equivalent to FULBAND 7, Q band is equivalent to FULBAND 8, and so on.
displays the MHz key menu on the display screen for reference purposes.

## Operation Using an 71000 Series Spectrum Analyzer with an 70907B, 70909A, or 70910A

## Preliminary Operation

NOTE This section provides information for the 70907B, however the operation of the 70909A and 70910A is similar. Minor differences may be noted, but the necessary deviations from these exact instructions will be obvious.

## Compatibility Reference

Refer to Chapter 2, "I nstallation," on page 31 for information relating to 71000 Series Modular Spectrum Analyzer System compatibility with the 11974 Series.

## Equipment Connection

Connect the equipment as shown in Figure 3-6 and use the following checklist to verify the connections.

- 11974 LO IN to 70907B LO OUTPUT (SMA cable, 5061-5458)
- 11974 IF OUT to 70907B IF INPUT (SMA cable, 5061-5458)
- 11974 TUNE IN to 70907B PRESEL TUNE/SPAN (BNC cable, 8120-1839)
- 11974 POWER SUPPLY to 11974-60028

Figure 3-6 11974 Connections to the 71000 Series Spectrum Analyzer HP 71000 SERIES


## Frequency Tracking Calibration

Use this procedure to align the frequency of the 11974 tracking filter to the tuned frequency of the spectrum analyzer. Follow this procedure whenever the 11974 is connected to a different spectrum analyzer. Periodically check the calibration.

1. Set the 11974 rear-panel switches 70907B (this switch also applies to the 70909 and 70910A) and LEDS to the ON position, and the other two switches to the OF F position, to properly scale the tune ramp of the spectrum analyzer.
2. When the 71000 is set up with multiple active input ports available, configure the analyzer for a preselected external mixer by using the following key sequence:

## MENU

## State

select input
IN "n" EM "Model Number" ${ }^{1}$

NOTE If the State key is not available when you press MENU, skip configuration step 2.
3. Select the frequency band of operation by using the following key sequence:

State
ext mixer
fulband KAQUVE
Press the softkey for the appropriate frequency band. (INSTR PRESET will reset this to the default active input, see INSTR PRESET on page 71.)
4. Initialize the preselector-peak DAC to the center of its range by pressing State, pre-select, PRESEL DAC, and 128, then terminate the entry with the ENTER softkey.
5. Set the analyzer to zero span by pressing Freq and SPAN and entering 0 Hz .

NOTE Due to the repetitive nature of this procedure, it may be hel pful to save the center-frequency settings in unused state registers after performing step a and step c.

1. "Model Number" will be either 70907A, 70909A, or 70910A; " n " is a number indicating the order in which the input devices were found by the input device search.
2. To adjust the tracking between the 71000 and the 11974 , perform the following steps:
a. Set the spectrum analyzer center frequency by pressing Freq and CENTER and entering the corresponding start frequency value for the mixer listed below, then save this setting in an unused register.
for an 11974A: 26.5 GHz
for an 11974Q: 33.0 GHz
for an 11974U: 40.0 GHz
for an 11974V: 50.0 GHz
b. On the rear-panel of the 11974, adjust the corresponding potentiometer for the mixer listed bel ow until one or both of the green LEDs are lit.
for an 11974A: "26.5 GHz SET"
for an 11974Q: "33.0 GHz SET"
for an 11974U: "40.0 GHz SET"
for an 11974V: "50.0 GHz SET"
c. Change the spectrum analyzer center frequency to the stop frequency value indicated below, then save this setting in an unused register:
for an 11974A: 40 GHz
for an 11974Q: 50 GHz
for an 11974U: 60 GHz
for an 11974V: 75 GHz
d. On the rear-panel of the 11974, adjust the corresponding potentiometer for the mixer listed bel ow until one or both of the green LEDs are lit.
for an 11974A: "40 GHz SET"
for an 11974Q: "50 GHz SET"
for an 11974U: "60 GHz SET"
for an 11974V: " 75 GHz SET"
e. Repeat step a through step $d$ until green lights are lit at both frequencies without additional adjustments.

## Operation

## Band Selection

1. If necessary, mate the 11974 to the spectrum analyzer being used for preselected external mixing by using the procedure "Frequency Tracking Calibration" on page 66.
2. Use the following key sequence to enter the external mixing mode and to select the desired band of operation.

MENU
State
ext mixer
fulband KAQUVE
Press the softkey for the desired band.

NOTE	The above band selection key sequence must be used to enter the external   mixing band of operation. Do not enter in the center frequency of the band   directly.

## Amplitude Calibration for a Single Frequency

Enter the conversion loss at the desired frequency from either the calibration label on the bottom of the 11974 or the supplied calibration sheet by using the following key sequence.

## State

ext mixer
CONV LOSS
Enter the conversion loss value of the desired frequency, then terminate the entry with dB.

> NOTE The above procedure is a single-point conversion-loss correction. For an alternative procedure, available by remote programming only, refer to "Conversion Loss Versus Frequency Correction" on page 71.

## Preselector Peaking

1. Place the active marker on the desired signal to be peaked.

Hint: To complete the preselector-peaking routine more quickly, place the signal at center screen and reduce the frequency span until the sweep time is approximately 100 ms .
2. Peak the desired signal by using the following key sequence.

## State

pre-select
PRESEL PEAK

## General Descriptions of $\mathbf{7 1 0 0 0}$ Series Spectrum Analyzer External-Mixing Functions

ext mixer
fulband KAQUVE and fulband WFDGYJ
allows access to the following softkey functions that control the measurement range when an external mixer extends the spectrum-analyzer frequency range. The ext mixer softkey can be found under the State firmkey.

fulband KAQUVE	PRESEL PEAK
fulband WFDGYJ	PRESEL DAC
CONV LOSS	

specify the frequency range for measurements made with external mixers. Twelve frequency bands are available. Table 3-2 lists the start and stop frequencies of each band and also shows which local-oscillator harmonic $(N)$ is used for the mixing process. Once a band is selected, the frequency range is locked and the spectrum analyzer tunes with the local-oscillator harmonic for that band only. (Selecting a new band presets the instrument in that band.)

Table 3-2 External Mixing Bands and Associated Mixing Harmonics

Band	Harmonic Number (N)	Frequency Range (GHz)
K	$6-$	18.0 to 26.5
A	$8+$	26.5 to 40.0
Q	$10+$	33.0 to 50.0
U	$10+$	40.0 to 60.0
V	$14+$	50.0 to 75.0
E	$16+$	60.0 to 90.0
W	$18+$	75.0 to 110.0
F	$24+$	90.0 to 140.0
D	$30+$	110.0 to 170.0
G	$36+$	140.0 to 220.0
Y	$42+$	170.0 to 260.0
J	$50+$	220.0 to 330.0


CONV LOSS	(conversion loss) offsets the reference level to compensate for amplitude losses at the active input port. If necessary, use select input to activate the desired input port before specifying its conversion-loss offset.
	To clear the offset, enter a conversion loss of zero.
	After instrument preset, a default value of 30 dB is activated automatically for the input port of the external-mixer-interface module.
PRESEL PEAK	(preselector peak) adjusts the tracking of the preselector filter to yield maximum amplitude accuracy at the active marker position. If a marker is not present, PRESEL PEAK places a marker at the highest signal level.
	Whenever a measurement is made, the current preselector DAC value corresponding to the selected measurement range determines the preselector tracking. Press PRESEL PEAK to repeak the preselector and store a new value in the preselector DAC. When measuring frequency spans greater than 0 Hz , the analyzer must be swept several times to peak the preselector. Thus, the analyzer requires several minutes to peak the preselector when measuring with slow sweep times. To execute the peaking function quickly, change the span to either 0 Hz or such that the sweep time is approximately 100 ms , before pressing PRESEL PEAK.
PRESEL DAC	(preselector DAC) enters a value into the preselector DAC for the frequency range corresponding to the frequency at the marker. If a marker is not present, PRESEL DAC places a marker at the center of the display.
pre-select	allows access to the preselector functions when a preselector module is in the system. The pre-select softkey can be accessed by pressing State.
preset input	sets which active input port will be selected when the INSTR PRESET is pressed. The preset input softkey can be accessed by pressing State, then MORE.
INSTR PRESET	resets to the preset input and to the lowest full frequency range available. (For an external mixer, this is band A.) This is a front panel hardkey.

## Conversion Loss Versus Frequency Correction

The 71000 Series Spectrum Analyzers with the 70907B External Mixer Interface Module installed has the amplitude-correction function (AMPCOR) available by remote programming.
Use AMPCOR to compensate for the 11974 frequency-dependent conversion-loss variations. Up to 200 pairs of frequency-amplitude correction points can be entered, depending on the amount of available internal memory. The frequency values entered must be in increasing order, or an error condition results. Whenever AMPCOR is on, the correction values are added to all measurement results.

The values of the correction points are applied across the active measurement range. Between points, the correction values are interpolated. When measuring at frequencies outside the first and last correction points, these values are used as the correction value.

When AMPCOR is executed, the frequency pairs are stored in internal memory. The remote commands DISPOSE ALL, FORMAT, PERASE, and DISPOSE AMP COR erase the amplitude-correction pairs from memory.

NOTE	DISPOSE ALL, FORMAT, and PERASE erases much more then the amplitude-correction pairs from memory. Do not use these commands without referring to the programmer's manual for the 70000 and 70900B to determine their effect on instrument programming.

Because AMPCOR adjusts IF gain and attenuation, AMPCOR should be used with care when measuring signals near the compression level that are also at a frequency that is corrected by the AMPCOR command.

To use AMPCOR for the 11974 conversion loss correction, first set the single-point conversion-loss function to zero with the following command:

```
OUTPUT 718; "CNVLOSS ODB;"
```

Then build the AMPCOR table with frequency conversion loss pairs. The following example program line shows three pairs of frequency conversion-loss values for a typical 11974V.

```
OUTPUT 718; "AMPCOR 50GHZ, 49.6DB, 51GHZ, 49.1DB, 52GHZ,48.6DB;"
```

The conversion loss corrections are activated by the AMPCOR ON command; use AMPCOR OFF to deactivate the function. (Be sure to manually enter a single-point conversion-loss value if AMPCOR has been used.)

To print out an existing AMPCOR table, use the program listed below.

```
10 DIM A$(1:20)[30]
20 OUTPUT 718;"CNVLOSS 0DB;"
30 OUTPUT 718;"AMPCOR 50GHZ, 46.1DB, 52GHZ, 46.7DB, 53GHZ,47.2DB;"
40 !
50 OUTPUT 718;"AMPCOR?;"
60 ENTER 718 USING "%,K";A$(*)
70 !
80 FOR I=1 TO 10
90 PRINT "Point ";I,A$(I)
100 NEXT I
110 END
```

Line 30: Generates an AM PCOR table.
Line 60: $\quad$ \% specifies that an EOI terminates the entire statement. K specifies that an $L_{F}$ terminates the individual string entry.

Returned values are in the format where the frequency in Hz is listed first, followed by the conversion loss in dB. See the following example.

```
Point 1 50.00000000E+9,46.1
Point 2 52.00000000E+9,46.7
Point 3 53.00000000E+9,47.2
Point 4
Point 5
Point 6
Point 7
Point 8
Point 9
Point 10
```

Returned values are 0,0 when AMPCOR is set to OF F.
To dispose of an AMPCOR table, use the following command:
OUTPUT 718; "DISPOSE AMP COR;"

NOTE Be sure that there is a space between AMP and cor when using the DISPOSE command.

For further information, consult the 70900B Local-Oscillator-Controlled M odules Programming Manual, part number 70900-90137.

# Using 8563A, 8561B, 8560A, or 8560 E-Series Spectrum Analyzers 

NOTE External mixing cannot be performed on instruments with Option 002.

## Preliminary Operation

## Compatibility Reference

Refer to Chapter 1, "General Information," on page 11 for information relating to retrofit requirements for 8561B and 8560A Spectrum Analyzers.

## Equipment Connections

Connect the equipment as shown in Figure 3-7 on page 74 and use the following checklist to verify the connections.

- 11974 LO IN to the analyzer 1ST LO OUTPUT (SMA, 5061-5458)
- 11974 IF OUT to the analyzer IF INPUT (SMA, 5061-5458)
- 11974 TUNE IN to the analyzer J 8, LO SWP| 0.5V/GHz OUTPUT (BNC, 8120-1839; BNC f-f adapter, 1250-0080; BNC, 8120-2582)
- 11974 POWER SUPPLY to 11974-60028 PRESELECTOR POWER

Figure 3-7 11974 Connections Using an 8563A, 8561B, 8560A, or 8560E-Series Spectrum Analyzers
HP 8563E
SPECTRUM ANALYZER


## Frequency Tracking Calibration

Use this procedure to align the frequency of the 11974 tracking filter to the tuned frequency of the spectrum analyzer Follow this procedure anytime the 11974 is connected to a different spectrum analyzer. Periodically check the calibration.

1. Set the 11974 rear-panel switches " $8563 / 61 / 60$ " and "LEDS" to the ON position, and the other two switches to the OFF position, in order for the 11974 to properly scale the tune ramp of the spectrum analyzer.
2. Configure the analyzer for a preselected external mixer by pressing CONFIG and setting EXT MXR PRE UNPR to PRE.
3. Set the LO tuning sensitivity as follows:

For the 8564E or 8565E, press AUX CTRL, REAR PANEL, and setting V/GHz . 25 . 50 to .50

For all other analyzers, press AUX CTRL, REAR PANEL, and $.5 \mathrm{~V} / \mathrm{GHz}$ (FAV)
4. Enter the full-band selection mode by using the following key sequence:

## AUX CTRL

## EXTERNAL MIXER

FULL BAND
Use the $\Uparrow$ or $\Downarrow$ key until the desired band is reached.
5. Set the spectrum analyzer to zero span by pressing SPAN, ZERO SPAN.
6. Set the spectrum analyzer center frequency by pressing FREQUENCY, CENTER FREQ and entering the corresponding value for the mixer listed below:
for an 11974A: 26.5 GHz
for an 11974Q: 33.0 GHz
for an 11974U: 40.0 GHz
for an 11974V: 50.0 GHz
7. Initialize the preselector-peak DAC at the start of the band by using the following key sequence:

## AUX CTRL

EXTERNAL MIXER
PRESEL PEAK
PRESEL MAN ADJ
128 Hz
8. Set the spectrum analyzer center frequency by pressing FREQUENCY, CENTER FREQ and entering the corresponding value for the mixer listed below:
for an 11974A: 40 GHz
for an 11974Q: 50 GHz
for an 11974U: 60 GHz
for an 11974V: 75 GHz
9. Initialize the preselector-peak DAC at the end of the band by using the following key sequence:

AUX CTRL
EXTERNAL MIXER
PRESEL PEAK
PRESEL MAN ADJ
128 Hz

NOTE Due to the repetitive nature of this procedure, it may be hel pful to save the center-frequency settings in unused state registers as indicated in step 9 and step 11.
10.Set the spectrum analyzer center frequency by pressing FREQUENCY, CENTER FREQ and entering the corresponding value for the mixer listed below, then save this setting in an unused register.
for an 11974A: 26.5 GHz
for an 11974Q: 33.0 GHz
for an 11974U: 40.0 GHz
for an 11974V: 50.0 GHz
11.On the rear-panel of the 11974, adjust the corresponding potentiometer for the mixer listed below until one or both of the green LEDs are lit.
for an 11974A: "26.5 GHz SET"
for an 11974Q: "33.0 GHz SET"
for an 11974U : "40.0 GHz SET"
for an 11974V: "50.0 GHz SET"
12. Change the spectrum analyzer center frequency to the value indicated below, then save this setting in an unused register:
for an 11974A: 40 GHz
for an 11974Q: 50 GHz
for an 11974U: 60 GHz
for an 11974V: 75 GHz
13.On the rear-panel of the 11974, adjust the corresponding potentiometer for the mixer listed below until one or both of the green LEDs are lit.
for an 11974A: "40 GHz SET"
for an 11974Q: "50 GHz SET"
for an 11974U: "60 GHz SET"
for an 11974V: " 75 GHz SET"
14.Repeat step 10 through step 13 until green lights are lit at both frequencies without any additional adjustments.

## Operation

## Band Selection

1. If necessary, configure the analyzer for a preselected external mixer by pressing CONFIG and setting EXT MXR PRE UNPR to PRE.
2. Set the LO tuning sensitivity as follows:

For the 8564E or 8565G, press AUX CTRL, REAR PANEL, and setting V/GHz . $\mathbf{2 5}$. 50 to. 50

For all other analyzers, press AUX CTRL, REAR PANEL, and . $5 \mathrm{~V} / \mathrm{GHz}$ (FAV)
3. If necessary, mate the 11974 to the spectrum analyzer being used for preselected external mixing by using the Frequency Tracking Calibration procedure above.
4. Use the following key sequence to enter the external mixing mode and to select the desired band of operation.

AUX CTRL
EXTERNAL MIXER
FULL BAND
Use the $\Uparrow$ or $\Downarrow$ key until the desired band is reached.

NOTE	The above band-sel ection key sequence must be used to enter the external   mixing band of operation. Do not enter in the center frequency of the band   directly.

## Amplitude Calibration

Enter the conversion loss table at the preset frequencies from either the calibration label on the bottom of the 11974 or the supplied calibration sheet by using the following key sequence. (Note: the analyzer automatically interpolates between the preset frequencies.)

## AUX CTRL

## EXTERNAL MIXER

## AMPTD CORRECT

## CNV LOSS VS FREQ

Enter the conversion loss value of the indicated preset frequency, then terminate the entry with dB.

Advance to the next preset frequency by pressing $\Uparrow$ and enter the conversion loss of the indicated frequency. Continue until the highest frequency is reached, then use the $\Uparrow$ and $\Downarrow$ keys to scan through the frequencies to verify or edit the conversion-loss values entered.

NOTE For V band, it may be necessary to first use the following key sequence to initialize the average of the conversion loss versus frequency table near the values for this band.

- AUX CTRL
- EXTERNAL MIXER
- AMPTD CORRECT
- AVERAGE CNV LOSS
- Enter in 47 and terminate with dB.


## Preselector Peaking

1. Access the preselector-peak functions by pressing the following keys:

AUX CTRL
EXTERNAL MIXER
PRESEL PEAK
2. Place the active marker on the desired signal to be peaked.
3. Peak the desired signal by pressing PRESEL AUTO PK.

## General Description of External-Mixing Functions

CONFIG,
EXT MXR PRE UNPR
selects either preselected external mixing mode or unpreselected external mixing mode. This softkey sets the external mixer configuration used by the softkey menu found under the EXTERNAL MIXER softkey under AUX CTRL.

If the preselected external mixer mode is selected, rear-panel output J 8 of the analyzer is automatically switched to provide an output of $1.5 \mathrm{~V} / \mathrm{GHz}$ of the LO frequency, when $0.5 \mathrm{~V} / \mathrm{GHz}$ (FAV) is selected. The 1.5 V/GHz of the LO frequency definition is required for the 11974 Series preselected external mixers.

NOTE	There are two different types of external mixers available, preselected and
unpreselected. The EXT MXR PRE UNPR softkey function applies only to the	
selection of the type of external mixer to be used. It does not switch the analyzer from	
internal to external mixing.	

EXTERNAL MIXER
accesses a menu of functions that allow you to extend the frequency range using external mixers. These functions are described below.

NOTE No external mixing capabilities are available with an 8560A/E Option 002. Resolution bandwidths less than or equal to 100 Hz are not available with external mixers.

FULL BAND

AMPTD CORRECT

AVERAGE CNV LOSS
allows you to select a commonly-used frequency band above 18 GHz . These bands are shown in Table 3-3 on page 80. Use the step keys or the knob to select a desired frequency band; the selected band appears in the active function block. Activating FULL BAND also activates the harmonic-lock function.
displays a menu of functions that set conversion losses and flatness data.
displays the mean conversion loss for the current harmonic and allows you to enter new conversion loss data. In a full frequency band (such as A band), the mean conversion loss is defined as the minimum loss plus the maximum loss for that band divided by two. To change the maximum and minimum values, use the CNV LOSS VS FREQ softkey. Any change to the average conversion loss also affects the flatness data, which is described below.
The default conversion loss value for each band is 30 dB .

## CNV LOSS VS FREQ

displays the stored conversion loss for a specific frequency in the current band. This allows amplitude correction to be entered to compensate for changes in conversion loss with frequency. To enter a new value, use the data keys. To change the displayed frequency, use the step keys. Any changes to the data also affect the mean conversion loss stored under AVERAGE CNV LOSs. Table 3-3 on page 80 shows the number of flatness points for each band and the default flatness values. To view the correction, connect a 310.7 MHz signal of a known amplitude (approximately -30 dBm ) to the IF input and set the analyzer to sweep the associated band.

Table 3-3 Flatness Points and Conversion Losses for Frequencies above $18 \mathbf{~ G H z}$

Frequency   Band	Frequency Range (GHz)	Number of   Flatness Points	Point   Spacing	Default Conversion   Loss
K	18.0 to 26.5	6	2 GHz	30 dB
A	26.5 to 40.0	8	2 GHz	30 dB
Q	33.0 to 50.0	7	3 GHz	30 dB
U	40.0 to 60.0	6	4 GHz	30 dB
V	50.0 to 75.0	6	5 GHz	30 dB
E	60.0 to 90.0	7	5 GHz	30 dB
W	75.0 to 110.0	8	5 GHz	30 dB
F	90.0 to 140.0	6	10 GHz	30 dB
D	110.0 to 170.0	7	10 GHz	30 dB
G	140.0 to 220.0	9	10 GHz	30 dB
Y	170.0 to 260.0	7	15 GHz	30 dB
J	220.0 to 325.0	8	15 GHz	30 dB

PRESEL PEAK
(available only with preselected external mixing) displays the preselected external mixer softkey menu, which is described below. This softkey menu is only available when the EXT MXR PRE UNPR softkey under CONFIG is set to "preselected" mode.

NOTE The PRESEL PEAK softkey and its lower-level softkeys are only for use with preselected external mixers. The preselected configuration must initially be set up using the EXT MXR PRE UNPR softkey under CONFIG.

PRESEL AUTO PK	automatically peaks the preselector of the external mixer on a   desired signal on a trace. Set the trace to clear-write mode, place a   marker on the desired point, then press PRESEL AUTO PK. The   peaking routine zooms to zero span, peaks the preselector tracking,   then returns to the original span. To read the new preselector   peaking number, press PRESEL MAN ADJ.   The PRESEL AUTO PK softkey appears under three different   menus-AMPLITUDE, INTERNAL MIXER, and EXTERNAL MIXER. This   PRESEL AUTO PK softkey is only available for use with preselected   external mixing. Refer to the PRESE AUTO PK softkey under   AMPLITUDE or the INTERNAL MIXER menu of functions for use with   internal mixers.   allows the user to adjust the external preselector tracking. Pressing   PRESEL MAN ADJ causes the preselector tracking number that
applies tothe marker frequency to be displayed in the active function	
block. If no marker is active, pressing PRESEL MAN ADJ	
automatically activates a marker at the peak.	
When the tracking number is displayed in the active function block,	
it can be changed using the data keys, the step keys, or the knob.	
This tracking number ranges from 0 to 255. It is initialized to 128	
when entering the external mixer mode of operation or whenever the	
band number is changed. Changing the tracking number affects the	
data in the current data table, which may be a previously saved user	
data table. The resulting value, after changing this function, is only	
valid for the current band. To save this data, use the SAVE PRSEL PK	


MARKER NORMAL u	activates a single marker and places it at the center of the trace. This   softkey is also annotated as MARKER DELTA, if delta-marker mode   has been previously activated by the MARKER DELTA softkey under   the MKR menus.
If one marker is already on, no operation takes place. If two markers	
are on (as in MARKER DELTA mode), pressing MARKER DELTA deletes	
the anchor marker and makes the active one the new, single marker.	
The marker reads the amplitude and the frequency (or relative time,	
when the frequency span equals 0 Hz), and displays these values in	
the active function block and in the upper-right corner of the display.	
To move the marker, use either the knob, the step keys, or the data	
keys.	
The marker reads data from the currently active trace. (An active	
trace is one in either the clear-write or max-hold mode; this may be	
either trace A or trace B.) If both traces are active, or if both traces	
are in view mode, the marker reads data from trace A.	

## Operation Using 8561A/62A/62B Spectrum Analyzers

## Preliminary Operation

NOTE For compatibility using an 8561A/62A/62B Spectrum Analyzer as a host to the 11974, the appropriate Option K74 retrofit kit must be installed.

## Equipment Connections

Connect the equipment as shown in Figure 3-8 on page 83 and use the following checklist to verify the connections.

- 11974 LO IN to the analyzer 1ST LO OUTPUT (SMA, 5061-5458)
- 11974 IF OUT to the analyzer IF INPUT (SMA, 5061-5458)
- 11974 TUNE IN to the analyzer J 11, PSEL TUNE (BNC, 8120-1839; BNC f-f adapter, 1250-0080; BNC, 8120-2582)
- 11974 POWER SUPPLY to 11974-60028 PRESELECTOR POWER

Figure 3-8 11974 Connections Using an 8561A/62A/62B


## Frequency Tracking Calibration

Use this procedure to align the frequency of the 11974 tracking filter to the tuned frequency of the spectrum analyzer. Follow this procedure anytime that the 11974 is connected to a different spectrum analyzer. Periodically check the calibration.

1. Set the 11974 rear-panel switches $8563 / 61 / 60$ and LEDS to the ON position, and the other two switches to the OF F position, in order for the 11974 to properly scale the tune ramp of the spectrum analyzer.
2. Enter the full-band selection mode by using the following key sequence:

EXT
FULL BAND
Use the $\Uparrow$ or $\Downarrow$ key until the desired band is reached.
3. Apply a frequency offset of 621.4 MHz by using the following key sequence:

FREQUENCY
OFFSET
Enter 621.4 and terminate with MHz. (An F should appear at the left side of the display screen to indicate that an offset is applied.)
4. Set the spectrum analyzer to zero span by pressing SPAN ZERO SPAN.
NOTE Due to the repetitive nature of this procedure, it may be helpful to save the
center-frequency settings in unused state registers as indicated in step 5 and
step 7 .
5. Set the spectrum analyzer center frequency by pressing FREQUENCY CENTER FREQ and entering the corresponding value for the mixer listed below, then save this setting in an unused register.
for an 11974A: 26.5 GHz
for an 11974Q: 33.0 GHz
for an 11974U: 40.0 GHz
for an 11974V: 50.0 GHz
6. On the rear-panel of the 11974, adjust the corresponding potentiometer for the mixer listed below until one or both of the green LEDs are lit.
for an 11974A: "26.5 GHz SET"
for an 11974Q: "33.0 GHz SET"
for an 11974U: "40.0 GHz SET"
for an 11974V: "50.0 GHz SET"
7. Change the spectrum analyzer center frequency to the value indicated below, then save this setting in an unused register:
for an 11974A: 40 GHz
for an 11974Q: 50 GHz
for an 11974U: 60 GHz
for an 11974V: 75 GHz
8. On the rear-panel of the 11974, adjust the corresponding potentiometer for the mixer listed below until one or both of the green LEDs are lit.
for an 11974A: " 40 GHz SET"
for an 11974Q: "50 GHz SET"
for an 11974U: "60 GHz SET"
for an 11974V: " 75 GHz SET"
9. Repeat step 5 through step 8 until green lights are lit at both frequencies without any additional adjustments.

## Operation

## Band Selection

1. If necessary, mate the 11974 to the spectrum analyzer being used for preselected external mixing by using the Frequency Tracking Calibration procedure above.
2. Use the following key sequence to enter the external mixing mode and to select the desired band of operation.

EXT
FULL BAND
Use the $\Uparrow$ or $\Downarrow$ key until the desired band is reached.

NOTE The above band-selection key sequence must be used to enter the external mixing band of operation. Do not enter in the center frequency of the band directly.
3. Apply a frequency offset of 621.4 MHz by using the following key sequence:

FREQUENCY
OFFSET
Enter 621.4 and terminate with MHz. (An F should appear at the left side of the display screen to indicate that an offset is applied.)

## Amplitude Calibration

Enter the conversion loss table at the preset frequencies from either the calibration label on the bottom of the 11974 or the supplied calibration sheet, by using the following key sequence. (Note: the analyzer automatically interpolates between the preset frequencies.)

## EXT

## AMPTD CORRECT

## CNV LOSS VS FREQ

Enter the conversion loss value of the indicated preset frequency, then terminate the entry with dB.
Advance to the next preset frequency by pressing $\Uparrow$ and enter the conversion loss of the indicated frequency. Continue until the highest frequency is reached, then use the $\Uparrow$ and $\Downarrow$ keys to scan through the frequencies to verify or edit the conversion-loss values entered.

NOTE For V band, it may be necessary to first use the following key sequence to initialize the average of the conversion loss versus frequency table near the values for this band.

- EXT
- AMPTD CORRECT
- AVERAGE CNV LOSS
- Enter 47 and terminate with dB.


## Preselector Peaking

There is no PRESEL AUTO PK or PRESEL MAN ADJ softkey function for the 8561A/62A/62B, when in the external mixing mode. Therefore, to maximize the amplitude of the desired signal, use an adjustment tool to vary the corresponding low-frequency potentiometer located on the rear panel. The low-frequency potentiometer for mixer bands are listed below:
for an 11974A: "26.5 GHz SET"
for an 11974Q: "33.0 GHz SET"
for an 11974U: "40.0 GHz SET"
for an 11974V: "50.0 GHz SET"

## Sweep Time Considerations

For optimum amplitude accuracy, the sweep rate must be less than $40 \mathrm{MHz} / \mathrm{ms}$, according to the table below.
Table 3-4 Minimum Sweep Time

Frequency Span (GHz)	Minimum Sweep Time (ms)
25	625
20	500
17	425
15	375
13.5	338
10	250
5	125
$<2$	50

## General Description of 8561A/62A/62B External-Mixing Functions

FULL BAND	allows you to select a commonly-used frequency band above 18 GHz   These bands are shown in Table 3-5 on page 88 . Use the step keys or   the knob to select a desired frequency band; the selected band   appears in the active function block. Activating FULL BAND also   activates the harmonic-lock function.
AMPTD CORRECT	displays a menu of functions that set conversion losses and flatness   data.   displays the mean conversion loss for the current harmonic and   allows you to enter new conversion loss data. In a full frequency band   (such as A band), the mean conversion loss is defined as the   minimum loss plus the maximum loss for that band divided by two.   To change the maximum and minimum values, use the   CNV Loss vs FREQ softkey. Any change to the average conversion   loss also affects the flatness data, which is described below.
The default conversion loss value for each band is 30 dB.	

Table 3-5 Flatness Points and Conversion Losses for Frequencies above $\mathbf{1 8} \mathbf{~ G H z}$

Frequency   Band	Frequency Range (GHz)	Number of   Flatness Points	Point   Spacing	Default Conversion   Loss
K	18.0 to 26.5	6	2 GHz	30 dB
A	26.5 to 40.0	8	2 GHz	30 dB
Q	33.0 to 50.0	7	3 GHz	30 dB
U	40.0 to 60.0	6	4 GHz	30 dB
V	50.0 to 75.0	6	5 GHz	30 dB
E	60.0 to 90.0	7	5 GHz	30 dB
W	75.0 to 110.0	8	5 GHz	30 dB
F	90.0 to 140.0	6	10 GHz	30 dB
D	110.0 to 170.0	7	10 GHz	30 dB
G	140.0 to 220.0	9	10 GHz	30 dB
Y	170.0 to 260.0	7	15 GHz	30 dB
J	220.0 to 325.0	8	15 GHz	30 dB

## MARKER NORMAL

PEAK SEARCH
activates a single marker and places it at the center of the trace. This softkey is also annotated as MARKER DELTA, if delta-marker mode has been previously activated by the MARKER DELTA softkey under the Marker menus.

If one marker is already on, no operation takes place. If two markers are on (as in MARKER DELTA mode), pressing MARKER DELTA deletes the anchor marker and makes the active one the new, single marker. The marker reads the amplitude and the frequency (or relative time, when the frequency span equals 0 Hz ), and displays these values in the active function block and in the upper-right corner of the display. To move the marker, use either the knob, the step keys, or the data keys.

The marker reads data from the currently active trace. (An active trace is one that is in either the clear-write or max-hold mode; this may be either trace A or trace B.) If both traces are active, or if both traces are in view mode, the marker reads data from trace A.
places a marker on the highest point on a trace. The frequency and amplitude of the marker are displayed in the upper-right corner of the screen; PEAK SEARCH does not alter the active function.

## 4 Performance Tests

## Introduction

This section contains instructions for testing the performance of the 11974 Series Preselected Millimeter Mixers. Performance tests are used to check the mixers at incoming inspection and for periodic evaluation. The tests verify the specifications listed for the 11974 Series in Table 1-1 on page 19.

Test equipment required for the performance tests is listed in the following tables:
11974A-Table 4-1 on page 93,
11974Q-Table 4-2 on page 94,
11974U -Table 4-3 on page 95,
11974V—Table 4-4 on page 96.
You may use test instruments other than those listed, provided their performance equals or exceeds the critical specifications in these tables.

## Test Record Summary

The performance test record summary (Table 4-6 on page 126), which is used for recording and summarizing the performance test data, at the end of this chapter. The test record summary includes the measurement uncertainty for each band, calculated as the root sum square of the error terms. A test record summary has been provided for each band, therefore use the appropriate pages in Table 4-6 for your band.

Data tables (Table 4-7 on page 131, Table 4-8 on page 134, Table 4-9 on page 135, Table 4-10 on page 136, and Table 4-11 on page 136) immediately follow the performance test record summary. Make copies of these tables and use them as worksheets when performing the tests. The data tables can then be used to summarize the results for the performance test record summary.

## Performance Test Procedures

Each performance test is contained in a single paragraph. All specifications for the parameters being measured are described in Table 1-1 on page 19. This is followed by a general description of the test and any special instructions or problem areas. Appropriate test setup illustrations are included in this section and are referenced in the test procedures.

## NOTE <br> The performance test procedures must be performed in the order that they appear.

"1. Conversion Loss" on page 101
"2. Image Rejection Test" on page 106
"3. Multiple Response Rejection Test" on page 110
"4. Displayed Average Noise Level" on page 118
" 5.3 dB Bandwidth" on page 122

Table 4-1 Recommended Test Equipment for 11974A

Instrument	Critical Specifications	Recommended Model
Spectrum Analyzer	LO and IF ranges compatible with 11974A SWEEP +TUNE voltage compatible with 11974A.	8566B   w/serial prefix 2948 or later
Synthesized Sweeper	Frequency: 13.25 to 20 GHz   External leveling capability   Subharmonics and multiples thereof: $<-25 \mathrm{dBc}$	$8340 \mathrm{~B}^{\text {a }}$
Amplifier	Frequency Range: 3 to 5 GHz Output Level: +16 dBm leveled	11975A
Amplifier	15 dB gain from 13.25 to 20 GHz   Compatible with mm-wave source module   Non-harmonic spurious: <-50 dBc	8349B
Power M eter	Compatible with thermistor mount	432A
Thermistor Mount	SWR: <2.0 from 26.5 to 40 GHz	R486A
Power Sensor	SWR: <1.2 at 5 GHz	8481A
Power M eter	Compatible with power sensor	436A
Directional Coupler	Coupling: 10 dB   Directivity: $>40 \mathrm{~dB}$   Primary line SWR: 1.04   Auxiliary arm SWR: 1.05	R752CS
Isolator	Insertion Loss: $<1.5 \mathrm{~dB}$   Isolation: >25 dB   SWR: <1.4	R365A
Millimeter-Wave Source M odule	Output power: +2 dBm leveled   Output SWR: <2.0   Harmonically related spurious signals: $<-20 \mathrm{dBc}$	83554A
Waveguide Straights	5 cm minimum   SWR: <1.016	R896B

a. If an 8340 A is used, the $1.0 \mathrm{~V} / \mathrm{GHz}$ output will have to be modified to a $0.5 \mathrm{~V} / \mathrm{GHz}$ output for proper display accuracy, leveling flatness, and harmonic suppression. Provided with your mm -wave source module is a set of modification instructions. This modification procedure will enable you to properly convert your 8340 A to a $0.5 \mathrm{~V} / \mathrm{GHz}$ output.

Table 4-2 Recommended Test Equipment for $11974 Q$

Instrument	Critical Specifications	Recommended   Model
Spectrum Analyzer	LO and IF ranges compatible with 11974Q   SWEEP +TUNE voltage compatible with 11974Q.	8566B   w/serial prefix 2948 or later
Synthesized Sweeper	Frequency: 11 to 17 GHz   External leveling capability   Subharmonics and multiples thereof: $<-25 \mathrm{dBc}$	$8340 B^{\text {a }}$
Amplifier	Frequency Range: 3 to 5 GHz   Output level: +16 dBm leveled	11975A
Amplifier	15 dB gain from 11 to 17 GHz   Compatible with mm-wave source module   Non-harmonic spurious: <-50 dBc	8349B
Power M eter	Compatible with thermistor mount	432A
Thermistor Mount	SWR: $<2.0$ from 33 to 50 GHz	Hughes 45772H-1100
Power Sensor	SWR: <1.2 at 5 GHz	8481A
Power Meter	Compatible with power sensor	436A
Directional Coupler	Coupling: 10 dB   Directivity: $>40 \mathrm{~dB}$   Primary line SWR: <1.05   Auxiliary arm SWR: <1.1	Q752C
Isolator	Insertion Loss: $<1.6 \mathrm{~dB}$   I solation: >25 dB   SWR: <1.4	Q365A
Millimeter-Wave Source M odule	Output power: +2 dBm leveled   Output SWR: <2.0   Harmonically related spurious signals: $<-20 \mathrm{dBc}$	83555A
Waveguide Straights	5 cm minimum SWR: <1.016	Q896B

a. If an 8340 A is used, the $1.0 \mathrm{~V} / \mathrm{GHz}$ output will have to be modified to a $0.5 \mathrm{~V} / \mathrm{GHz}$ output for proper display accuracy, leveling flatness, and harmonic suppression. Provided with your mm-wave source module is a set of modification instructions. This modification procedure will enable you to properly convert your 8340 A to a $0.5 \mathrm{~V} / \mathrm{GHz}$ output.

Table 4-3 Recommended Test Equipment for 11974 U

Instrument	Critical Specifications	Recommended   Model
Spectrum Analyzer	LO and IF ranges compatible with 11974 U SWEEP +TUNE voltage compatible with 11974U.	8566B   w/serial prefix 2948 or later
Synthesized Sweeper	Frequency: 13 to 20 GHz   External leveling capability   Subharmonics and multiples thereof: $<-25 \mathrm{dBc}$	8340B ${ }^{\text {a }}$
Amplifier	Frequency Range: 4 to 6 GHz Output Level: +16 dBm leveled	11975A
Amplifier	15 dB gain from 13 to 20 GHz   Compatible with mm-wave source module   Non-harmonic spurious: $<-50 \mathrm{dBc}$	8349B
Power M eter	Compatible with thermistor mount	432A
Thermistor mount	SWR: $<2.0$ from 40 to 60 GHz	Hughes 45773H-1100
Power Sensor	SWR: <1.2 at 5 GHz	8481A
Power M eter	Compatible with power sensor	436A
Directional Coupler	Coupling: 10 dB   Directivity: >39 dB   Primary line SWR: 1.06   Auxiliary arm SWR: 1.1	U752C
Isolator	Insertion Loss: $<1.8 \mathrm{~dB}$   Isolation: >25 dB   SWR: <1.4	U365A
Millimeter-Wave Source Module	Output power: +2 dBm leveled   Output SWR: <2.0   Harmonically related spurious signals: $<-20 \mathrm{dBc}$	83556A
Waveguide Straights	5 cm minimum SWR: <1.016	U896B

a. If an 8340 A is used, the $1.0 \mathrm{~V} / \mathrm{GHz}$ output will have to be modified to a $0.5 \mathrm{~V} / \mathrm{GHz}$ output for proper display accuracy, leveling flatness, and harmonic suppression. Provided with your mm -wave source module is a set of modification instructions. This modification procedure will enable you to properly convert your 8340 A to a $0.5 \mathrm{~V} / \mathrm{GHz}$ output.

Table 4-4 Recommended Test Equipment for 11974V

Instrument	Critical Specifications	Recommended   Model
Spectrum Analyzer	LO and IF ranges compatible with 11974 V   SWEEP +TUNE voltage compatible with 11974V.	8566B   w/serial prefix 2948 or later
Synthesized Sweeper	Frequency: 12.5 to 19 GHz   External leveling capability   Subharmonics and multiples thereof: $<-25 \mathrm{dBc}$	$\begin{aligned} & \text { 8341B } \\ & \text { Option } 003 \end{aligned}$
Amplifier	Frequency Range: 4 to 6 GHz Output level: +16 dBm leveled	11975A
Amplifier	15 dB gain from 13 to 20 GHz   Compatible with mm-wave source module   Non-harmonic spurious: <-50 dBc	8349B
Power M eter	Compatible with thermistor mount	432A
Thermistor Mount	SWR: $<2.0$ from 50 to 75 GHz	Hughes 45774H-1100
Power Sensor	SWR: $<1.2$ at 5 GHz	8481A
Power Meter	Compatible with power sensor	436A
Directional Coupler	Coupling: 10 dB   Directivity: >36 dB   Primary line SWR: 1.08   Auxiliary arm SWR: 1.14	V752C
Isolator	Insertion Loss: <2.0 dB   Isolation: >25 dB   SWR: <1.5	V365A
Millimeter-Wave Source M odule	Output power: +2 dBm leveled   Output SWR: <2.0   Harmonically related spurious signals: $<-20 \mathrm{dBc}$	83557A
Waveguide Straights	5 cm minimum SWR: <1.02	V896B

Table 4-5 Recommended Accessories for All Bands

Accessory	Critical Specifications	Recommended   Model
Adapter (1 required)	SMA (f) to Type N (f)	$1250-1772$
Adapter (1 required)	Type N (m) to APC 3.5 (f)	$1250-1744$
Cables (3 required)	Connectors: SMA (m)	$5061-5458$
Cable (1 required)	Connectors: APC 3.5 (m)	11500 E
Cables (5 required)	Connectors: BNC (m)	10503 A

## Performance Test Procedures

Figure 4-1 Performance Tests Setup


* For proper display accuracy, leveling flatness, and harmonic suppression, the
$1.0 \mathrm{~V} / \mathrm{GHz}$ output on your HP 8340 B will have to be modified for a $0.5 \mathrm{~V} / \mathrm{GHz}$ output.
Provided with your m-wave source module is a set of modification instructions
This modification procedure will apply to your source, enabling you to properly convert
your instrument to $0.5 \mathrm{~V} / \mathrm{GHz}$ output operation.


## Frequency Tracking Calibration with an 8566B Spectrum Analyzer

NOTE In order for the 8566B to be compatible with the 11974 Series Preselected Millimeter Mixer, it must have a serial prefix of 2948 or later. If not, retrofit kit 8566B K 74 must be installed before using an 8566B for the testing of the 11974.

1. Connect the IF OUT of the 11974 to the IF INPUT of the spectrum analyzer, the spectrum analyzer 1ST LO OUTPUT to the INPUT of the 11975A Amplifier, and the 11975A Amplifier OUTPUT to the LO IN of the 11974.

CAUTION When you are using an 11975A Amplifier with an 11974, you must set the amplifier rear-panel ALC switch to ON before you connect the amplifier to the test setup. If the ALC switch is left in the OFF position, the amplifier output power is high enough to destroy the mixer diodes.
2. Connect the SWEEP + TUNE OUT of the spectrum analyzer to the TUNE IN of the 11974.
3. Set the 11974 rear-panel switches 8566 B and LEDS to the ON position, and the 8563A/61B/60A and 70907B switches to the OFF position, for the 11974 to properly scale the tune ramp of the analyzer.
4. Set the spectrum analyzer to the correct millimeter band using the following key sequence for the appropriate mixer:
for an 11974A: SHIFT $\Uparrow \Uparrow$
for an 11974Q: SHIFT $\Uparrow \Uparrow \Uparrow$
for an 11974U: SHIFT $\Uparrow \Uparrow \Uparrow \Uparrow$
for an 11974V: SHIFT $\Uparrow \Uparrow \Uparrow \Uparrow \Uparrow$
5. On the spectrum analyzer, set the preselector DAC to 32 (the center of its 0-63 range) by pressing SHIFT GHz 32 Hz .
6. Set the spectrum analyzer to a frequency span of 0 Hz by pressing FREQUENCY SPAN 0 Hz .

NOTE Due to the repetitive nature of this procedure, it may be hel pful to save the center-frequency settings as indicated in step 7 and step 9 in unused state registers.
7. Set the spectrum analyzer center frequency to the low end of the band by pressing CENTER FREQUENCY and entering the corresponding value for the mixer listed below. Save this setting in an unused register.
for an 11974A: 26.5 GHz
for an 11974Q: 33.0 GHz
for an 11974U: 40.0 GHz
for an 11974V: 50.0 GHz
8. On the rear panel of the 11974, adjust the corresponding potentiometer for the mixer listed below, until one or both of the green LEDs are lit.
for an 11974A: "26.5 GHz Set"
for an 11974Q: "33.0 GHz Set"
for an 11974U: "40.0 GHz Set"
for an 11974V: "50.0 GHz Set"
9. Change the spectrum analyzer center frequency to the high end of the band as indicated below, then save this setting in an unused register:
for an 11974A: 40 GHz
for an 11974Q: 50 GHz
for an 11974U: 60 GHz
for an 11974V: 75 GHz
10.On the rear panel of the 11974, adjust the corresponding potentiometer for the mixer listed below, until one or both of the green LEDs are lit.
for an 11974A: "40 GHz Set"
for an 11974Q: "50 GHz Set"
for an 11974U : "60 GHz Set"
for an 11974V: " 75 GHz Set"
11.Repeat step 7 through step 10 until the green LEDs are lit at both frequencies without additional adjustments.

NOTE	Upon completion of this adjustment procedure, and before taking data, use   the spectrum analyzer preselector-peak function to peak the 11974 filter on   signals to be measured.

## 1. Conversion Loss

## Description

The conversion loss is checked at a nominal local-oscillator power level. A known input power is applied to the input of the 11974. The IF output power is measured on an 8566B Spectrum Analyzer. From the measurements, the conversion loss is calculated. The calibration factors versus frequency of the millimeter-wave power-meter sensor and the coupling factors versus frequency of the coupler are needed in this measurement.

## Procedure

1. Connect an SMA cable from the 1ST LO OUTPUT of the spectrum analyzer to the INPUT of the 11975A Amplifier. Connect a second SMA cable to the OUTPUT of the amplifier.
2. Connect the 8481A Power Sensor to the power-meter sensor cable, then zero and calibrate the 436A Power M eter.
3. Set the spectrum analyzer controls as follows:

SHIFT $\Uparrow \Uparrow \Uparrow \Uparrow$ (selects U Band)
FREQUENCY SPAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 Hz
CENTER FREQUENCY (sets the LO frequency to 5.0 GHz) . . . . . . . 50.3 GHz

CAUTION When you are using an 11975A Amplifier with an 11974, you must set the amplifier rear-panel ALC switch to ON before you connect the amplifier to the test setup. If the ALC switch is left in the OFF position, the amplifier output power is high enough to destroy the mixer diodes.
4. On the 11975A Amplifier, set the rear-panel ALC switch to ON. Connect the 8481A Power Sensor to the free end of the cable installed on the OUTPUT connector of the amplifier listed in step 1. Set the 436A Power-Meter Cal Factor \% to the appropriate value for a frequency of 5 GHz .
5. Adjust the amplifier OUTPUT POWER LEVEL for a reading of $+15.2 \mathrm{dBm} \pm 0.1 \mathrm{dBm}$ on the power meter.
6. Set the 432A Power Meter Cal Factor \% to 100 percent.
7. Connect the equipment as shown in Figure 4-1 on page 98.

## CAUTION Turn off the ac power on the 8349B Amplifier prior to connecting or disconnecting the source module interface cable. <br> Turn off the ac power on the 11974-60028 Preselector Power Supply when either connecting or disconnecting the 11974 from it. <br> On the 11974 rear panel, set the instrument select switches to the appropriate settings before applying power to the 11974.

8. Turn off the RF power on the synthesized sweeper and zero the 432A Power Meter.
9. Enter the appropriate millimeter-wave source module frequency multiplication factor into the synthesized sweeper by pressing SHIFT START FREQ and then press the following keys (on the synthesized sweeper) for the appropriate band listed below:
for an 11974A: $\mathbf{2 ~ H z ~}$
for an 11974Q: 3 Hz
for an 11974U: 3 Hz
for an 11974V: 4 Hz
10.Set the synthesized sweeper for a CW signal at the frequency listed below:
for an 11974A: 26.5 GHz
for an 11974Q: 33.0 GHz
for an 11974U: 40.0 GHz
for an 11974V: 50.0 GHz
11.Set the synthesized sweeper frequency step to 500 MHz by pressing SHIFT CF 500 MHz .
12.Activate external leveling on the synthesized sweeper by pressing XTAL.
13.Adjust the output power of the synthesized sweeper for a reading of approximately 0 dBm on the 8349B display.
14.Set the spectrum analyzer to the appropriate millimeter band by using the appropriate key sequence listed below:
for an 11974A: SHIFT $\Uparrow \Uparrow$
for an 11974Q: SHIFT $\Uparrow \Uparrow \Uparrow$
for an 11974U : SHIFT $\Uparrow \Uparrow \Uparrow \Uparrow$
for an 11974V: SHIFT $\Uparrow \Uparrow \Uparrow \Uparrow \Uparrow$
15.Set the spectrum analyzer controls as follows:

SHIFT, 5, MHz, 0, and dB (sets external mixer conversion loss to 0 dB )
FREQUENCY SPAN ........................................................ 5 MHz
ENTER dB/DIV..................................................................... 5 dB
CF STEP SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 MHz
16.Set the reference level of the spectrum analyzer by pressing REFERENCE LEVEL and entering the corresponding value for the appropriate band listed below:
for an 11974A: -40 dBm
for an 11974Q: -40 dBm
for an 11974U: -40 dBm
for an 11974V: -55 dBm
17.Set the center frequency of the spectrum analyzer by pressing CENTER FREQUENCY and entering the corresponding value for the appropriate band listed below:
for an 11974A: 26.5 GHz
for an 11974Q: 33 GHz
for an 11974U: 40 GHz
for an 11974V: 50 GHz
18.On the spectrum analyzer, press MARKER PEAK SEARCH and PRESEL PEAK.
19. Record the following values in Table 4-7 on page 131.
Marker Frequency
Marker Amplitude
Power M eter Reading
Cal Factor \% or Correction Factor (dB)
Directional Coupler Coupling Factor
NOTE For the purpose of this measurement, the directional coupler coupling factor is defined as the ratio of the power at the output flange to the power at the coupled flange.
20.Calculate the conversion loss (CL) of the 11974 with the equations given below.

If the power meter calibration factor is given in \% or decimal form, for example, $93 \%$ or 0.93 , then:

$$
C L=\text { Power Meter Reading }-10 \times \log \text { (Cal Factor) }- \text { SA Marker Amplitude - Coupling Factor }
$$

If the power meter correction factor is given in dB, then:
CL =Pwr Mtr Reading + Pwr Mtr Correction Factor - SA Marker Amplitude - Coupling Factor
For Example:

Power Meter Reading $=$	-0.03 dBm
Cal Factor $=$	$94.8 \%$
or	
Correction Factor $=$   Spectrum Analyzer Reading $=$	-4.23 dB
Coupling Factor $=$	8.93 dB

then:
Conversion Loss $=(-0.03)-10 \times \log (.948)-(-44.78 \mathrm{dBm})-8.93 \mathrm{~dB}=36.05 \mathrm{~dB}$ or

Conversion Loss $=(-0.03)+(0.23 \mathrm{~dB})-(-44.78 \mathrm{dBm})-8.93 \mathrm{~dB}=36.05 \mathrm{~dB}$.
Record the conversion Ioss in Table 4-7 on page 131.

NOTE The conversion loss indicated on the 11974 calibration label includes the loss in the IF cable. If another cable other than the specified cable is used, then the loss in that cable must be compensated for when making amplitude measurements.
21.Increase the frequency of the synthesized sweeper 500 MHz by pressing $\mathbf{C W} \Uparrow$.
22.Turn off the RF power on the synthesized sweeper by pressing RF and zero the 432A Power Meter, then turn the synthesized sweeper RF power back on again.
23.On the spectrum analyzer, press CENTER FREQUENCY $\Uparrow$ to increase the spectrum analyzer frequency.
24.On the spectrum analyzer, press MARKER PEAK SEARCH and PRESEL PEAK.
25. Repeat step 19 through step 24 until data has been recorded for the appropriate maximum frequency listed below:
for an 11974A: 40 GHz
for an 11974Q: 50 GHz
for an 11974U: 60 GHz
for an 11974V: 75 GHz
26. Record the Maximum Conversion Loss in Table 4-7 on page 131.

## 2. Image Rejection Test

## Description

The image rejection is checked at an LO power level of +15.2 dBm . A known input power is applied to the input of the mixer. The IF output power is measured on an 8566B Spectrum Analyzer at the input signal frequency and at the image response frequency. From the measurements, the image rejection is determined. The image response appears on the spectrum analyzer at a frequency of two times the IF frequency higher than the actual signal frequency. In the case of the 8566 B , the image response appears 642.8 MHz above the actual frequency of the signal.

## Procedure

1. Connect an SMA cable from the 1ST LO OUTPUT of the spectrum analyzer to the INPUT of the 11975A Amplifier. Connect a second SMA cable to the OUTPUT of the amplifier.
2. Connect the 8481A Power Sensor to the power meter sensor cable, then zero and calibrate the 436A Power Meter.
3. Set the spectrum analyzer controls as follows:

SHIFT $\Uparrow \Uparrow \Uparrow \Uparrow$ (selects U Band)
FREQUENCY SPAN ............................................................ . . 0 Hz
CENTER FREQUENCY (sets LO frequency to 5.0 GHz) . . . . . . . . . 50.3 GHz

CAUTION When you are using an 11975A Amplifier with an 11974, you must set the amplifier rear-panel ALC switch to ON before you connect the amplifier to the test setup. If the ALC switch is left in the OFF position, the amplifier output power is high enough to destroy the mixer diodes.
4. On the 11975A Amplifier, set the rear-panel ALC switch to ON, then connect the 8481A Power Sensor to the free end of the cable installed on the OUTPUT connector of the amplifier. Set the 436A Power Meter Cal Factor \% to the appropriate value for a frequency of 5 GHz .
5. Adjust the amplifier OUTPUT POWER LEVEL for a reading of $+15.2 \mathrm{dBm} \pm 0.1 \mathrm{dBm}$ on the power meter.
6. Connect the equipment as shown in Figure 4-1 on page 98.
CAUTION Turn off the ac power on the 8349B prior to connecting or disconnecting the source module interface cable.
Turn off the ac power on the 11974-60028 Preselector Power Supply prior to connecting or disconnecting the 11974.
On the 11974 rear panel, set the instrument select switches to the appropriate settings before applying power to it.
7. Enter the appropriate millimeter-wave source module frequency multiplication factor into the synthesized sweeper by pressing SHIFT and START FREQ and entering the corresponding value for the band listed below:
for an 11974A: 2 Hz
for an 11974Q: 3 Hz
for an 11974U: 3 Hz
for an 11974V: 4 Hz
8. Set the synthesized sweeper for a CW signal at the frequency listed below:
for an 11974A: 26.5 GHz
for an 11974Q: 33.0 GHz
for an 11974U: 40.0 GHz
for an 11974V: 50.0 GHz
9. Set the synthesized sweeper frequency step to 500 MHz by pressing SHIFT, CF, 500, and MHz.
10.Activate external leveling on the synthesized sweeper by pressing XTAL.
11.Adjust the output power of the synthesized sweeper for a reading of approximately 0 dBm on the 8349B display.
12.Set the spectrum analyzer to the appropriate millimeter band using the following keys:
for an 11974A: SHIFT $\Uparrow \Uparrow$
for an 11974Q: SHIFT $\Uparrow \Uparrow \Uparrow$
for an 11974U: SHIFT $\Uparrow \Uparrow \Uparrow \Uparrow$
for an 11974V: SHIFT $\Uparrow \Uparrow \Uparrow \Uparrow \Uparrow$
13.Set the spectrum analyzer controls as follows:
SHIFT, 5, MHz, $\mathbf{0}$, and dB (sets external mixer conversion loss to 0 dB )
FREQUENCY SPAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 kHz
ENTER dB/DIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 dB
CF STEP SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642.8 MHz
14.Set the spectrum analyzer reference level by pressing REFERENCE LEVEL and entering the corresponding value for the band listed below:
for an 11974A: -40 dBm
for an 11974Q: -40 dBm
for an 11974U : -40 dBm
for an 11974V: -55 dBm
15.Set the spectrum analyzer center frequency by pressing CENTER FREQUENCY and entering the corresponding value for the band listed below:
for an 11974A: 26.5 GHz
for an 11974Q: 33 GHz
for an 11974U: 40 GHz
for an 11974V: 50 GHz
16.On the spectrum analyzer, press the following keys:

MARKER NORMAL
PEAK SEARCH
PRESEL PEAK
17.When the preselector-peak routine is complete, press PEAK SEARCH.
18.Record the marker frequency in Table 4-8 on page 134.
19.On the spectrum analyzer, press MARKER $\Delta$.
20.On the spectrum analyzer, press CENTER FREQUENCY and use the $\Uparrow$ key to tune to the image response. Press PEAK SEARCH to place the delta marker at the top of the image response. The absolute value of the delta marker amplitude is the I mage Rejection.

NOTE If the signal is buried in the noise floor, reduce the video bandwidth to 100 Hz to help identify the signal. At some frequencies, however, instrument performance is so good that an image response may not be visible.
21. Record the Image Rejection in Table 4-8 on page 134.
22.On the synthesized sweeper, press CW and $\Uparrow$ to increase the frequency of the synthesized sweeper 500 MHz higher.
23.On the spectrum analyzer, set the CENTER FREQUENCY to match the output frequency of the signal source.
24.Repeat step 16 through step 23 until data has been recorded for the appropriate maximum frequency listed below:
for an 11974A: 40 GHz
for an 11974Q: 50 GHz
for an 11974U: 60 GHz
for an 11974V: 75 GHz
25. Record the Minimum I mage Rejection value in Table 4-8 on page 134.

NOTE For the 11974V, record the Minimum Image Rejection in each portion of the band.

## 3. Multiple Response Rejection Test

## Description

The multiple response rejection is checked at an LO power level of +15.2 dBm . A known input power is applied to the input of the mixer. The IF output power is measured on an 8566B Spectrum Analyzer at the input signal frequency and at the multiple response frequencies. From the measurements, the multiple response rejection is determined. For each mixer, the spectrum analyzer/mixer combination is calibrated in frequency and amplitude for mixing with a certain harmonic of the local oscillator. Multiple responses are a result of the RF input's mixing with a harmonic of the local oscillator other than the harmonic that the spectrum analyzer is calibrated for. The multiple responses appear on the spectrum analyzer at frequencies described by the following equation:

$$
\mathrm{f}_{\mathrm{RF}}^{\prime}=\mathrm{f}_{\mathrm{RF}}\left(\frac{\mathrm{n}}{\mathrm{n}^{\prime}}\right)+\mathrm{f}_{\mathrm{IF}}\left(\frac{\mathrm{n}^{\prime} \pm \mathrm{n}}{\mathrm{n}^{\prime}}\right) \mathrm{GHz}
$$

where n represents the harmonic number for calibrated operation, as listed below.
for an 11974A: 8
for an 11974Q: 10
for an 11974U: 10
for an 11974V: 14
and $n^{\prime}=$ Harmonic number producing unwanted multiple responses. The harmonics that produce the highest level multiple responses tend to be $\mathrm{n}^{\prime}=\mathrm{n}+2$ and $\mathrm{n}^{\prime}=\mathrm{n}-2$. For example, for the 11974 U , these would be $n^{\prime}=8$ and $n^{\prime}=12$. This test measures the rejection of multiple responses caused by $\mathrm{n}^{\prime}=\mathrm{n}-2$ and $\mathrm{n}^{\prime}=\mathrm{n}+2$ for signals at the lowest, middle, and highest frequencies of each band.

## Procedure

1. Connect an SMA cable from the 1ST LO OUTPUT of the spectrum analyzer to the INPUT of the 11975A Amplifier. Connect a second SMA cable to the OUTPUT of the amplifier.
2. Connect the 8481A Power Sensor to the 436A Power Meter sensor cable, then zero and calibrate the 436A Power Meter.
3. Set the spectrum analyzer controls as follows:
```
SHIFT \(\Uparrow \Uparrow \Uparrow \Uparrow\) (selects U Band)
FREQUENCY SPAN 0 Hz
```

CENTER FREQUENCY (sets LO frequency to 5.0 GHz) . . . . . . . . . 50.3 GHz

## CAUTION When you are using an 11975A Amplifier with an 11974, you must set the amplifier rear-panel ALC switch to ON before you connect the amplifier to the test setup. If the ALC switch is left in the OFF position, the amplifier output power is high enough to destroy the mixer diodes.

4. On the 11975A Amplifier, set the rear-panel ALC switch to ON, then connect the 8481A Power Sensor to the free end of the cable installed on the OUTPUT connector of the amplifier. Set the 436A Power Meter Cal Factor \% to the appropriate value for a frequency of 5 GHz .
5. Adjust the amplifier OUTPUT POWER LEVEL for a reading of $+15.2 \mathrm{dBm} \pm 0.1 \mathrm{dBm}$ on the power meter.
6. Connect the equipment as shown in Figure 4-1 on page 98.

CAUTION Turn off the ac power on the 8349B prior to connecting or disconnecting the source module interface cable.

Turn off the ac power on the 11974-60028 Preselector Power Supply prior to connecting or disconnecting the 11974.

On the 11974 rear panel, set the instrument select switches to the appropriate settings before applying power to the 11974.
7. Enter the appropriate millimeter-wave source module frequency multiplication factor into the synthesized sweeper by pressing SHIFT and START FREQ and entering the corresponding value for the band listed below:
for an 11974A: 2 Hz
for an 11974Q: $\mathbf{3} \mathbf{~ H z}$
for an 11974U: 3 Hz
for an 11974V: 4 Hz
8. Set the synthesized sweeper for a CW signal at the frequency listed below:
for an 11974A: 26.5 GHz
for an 11974Q: 33.0 GHz
for an 11974U: 40.0 GHz
for an 11974V: 50.0 GHz
9. Activate external leveling on the synthesized sweeper by pressing XTAL.
10.Adjust the output power of the synthesized sweeper for a reading of approximately 0 dBm on the 8349B display.
11. Set the spectrum analyzer to the appropriate millimeter band by using the following key sequence:
for an 11974A: SHIFT $\Uparrow \Uparrow$
for an 11974Q: SHIFT $\Uparrow \Uparrow \Uparrow$
for an 11974U: SHIFT $\Uparrow \Uparrow \Uparrow \Uparrow$
for an 11974V: SHIFT $\Uparrow \Uparrow \Uparrow \Uparrow \Uparrow$
12.Set the spectrum analyzer controls as follows:

SHIFT, 5, MHz, $\mathbf{0}$, and dB (sets external mixer conversion loss to 0 dB )
FREQUENCY SPAN
50 kHz
ENTER dB/DIV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 dB
13.Set the spectrum analyzer reference level by pressing REFERENCE LEVEL and entering the corresponding value for the band listed below:
for an 11974A: -40 dBm
for an 11974Q: -40 dBm
for an 11974U: -40 dBm
for an 11974V: -55 dBm
14.Set the spectrum analyzer center frequency by pressing CENTER FREQUENCY and entering the corresponding value for the band listed below:
for an 11974A: 26.5 GHz
for an 11974Q: 33 GHz
for an 11974U: 40 GHz
for an 11974V: 50 GHz
15.Oon the spectrum analyzer, press the following keys:

MARKER NORMAL
PEAK SEARCH
PRESEL PEAK
16.When the preselector-peak routine is complete, press PEAK SEARCH.
17. Record the marker frequency in Table 4-9 on page 135 as Signal Frequency \#l.
18.On the spectrum analyzer, press MARKER $\Delta$.
19.On the spectrum analyzer, press CENTER FREQUENCY and tune to a multiple response by entering the frequency value for the corresponding band listed below:
for an 11974A: 35.226200 GHz ( $\mathrm{n}^{\prime}=6+$ )
for an 11974Q: 41.169650 GHz ( $\mathrm{n}^{\prime}=8+$ )
for an 11974U: 49.919650 GHz ( $\mathrm{n}^{\prime}=8+$ )
for an 11974V: 58.279767 GHz ( $\mathrm{n}^{\prime}=12+$ )
20.Record the above frequency in Table 4-9 on page 135 as Multiple Response F requency \#l. Press PEAK SEARCH to place the delta marker at the top of the multiple response. The absolute value of the delta marker amplitude is the multiple response rejection.

NOTE	If the signal is buried in the noise floor, reduce the video bandwidth to 100 Hz   to help identify the signal. At some frequencies, however, instrument   performance is so good that an image response may not be visible.

21.Record the multiple response rejection in Table 4-9 on page 135 as Multiple Response Rejection \#l.
22.On the spectrum analyzer, press CENTER FREQUENCY and tune to the next multiple response by entering the frequency value for the corresponding band listed below:
for an 11974A: 36.083269 GHz ( $\mathrm{n}^{\prime}=6$-)
for an 11974Q: 41.973150 GHz ( $\mathrm{n}^{\prime}=8-$ )
for an 11974U: 50.723150 GHz ( $\mathrm{n}^{\prime}=8-$ )
for an 11974V: 59.029700 GHz ( $\mathrm{n}^{\prime}=12-$ )
23. Record the above frequency in Table 4-9 on page 135 as Multiple Response F requency \#2. Press PEAK SEARCH to place the delta marker at the top of the multiple response. The absolute value of the delta marker amplitude is the multiple response rejection.
24.Record the multiple response rejection in Table 4-9 on page 135 as Multiple Response Rejection \#2.
25.Set the synthesized sweeper for a CW signal at the frequency listed below for the corresponding band:
for an 11974A: 33.25 GHz
for an 11974Q: 41.50 GHz
for an 11974U: 50.00 GHz
for an 11974V: 62.50 GHz
26.On the spectrum analyzer, press CENTER FREQUENCY and tune to the frequency listed below for the corresponding band:
for an 11974A: 33.25 GHz
for an 11974Q: 41.50 GHz
for an 11974U: 50.00 GHz
for an 11974V: 62.50 GHz
27.On the spectrum analyzer, press the following keys:

MARKER NORMAL
PEAK SEARCH
PRESEL PEAK
28.When the preselector-peak routine is complete, press PEAK SEARCH.
29.Record the marker frequency in Table 4-9 on page 135 as Signal Frequency \#2.
30.On the spectrum analyzer, press MARKER $\Delta$.
31.On the spectrum analyzer, press CENTER FREQUENCY and tune to a multiple response by entering the frequency value for the corresponding band listed below:
for an 11974A: $26.664280 \mathrm{GHz}\left(\mathrm{n}^{\prime}=10+\right)$
for an 11974Q: 34.636900 GHz ( $\mathrm{n}^{\prime}=12+$ )
for an 11974U: 41.720233 GHz ( $n^{\prime}=12+$ )
for an 11974V: $65.665175 \mathrm{GHz}\left(\mathrm{n}^{\prime}=16+\right.$ )
32.Record the above frequency in Table 4-9 on page 135 as Multiple Response Frequency \#3. Press PEAK SEARCH to place the delta marker at the top of the multiple response. The absolute value of the delta marker amplitude is the multiple response rejection.
33. Record the multiple response rejection in Table 4-9 on page 135 as Multiple Response Rejection \#3.
34.On the spectrum analyzer, press CENTER FREQUENCY and tune to the next multiple response by entering the frequency value for the corresponding band listed below:
for an 11974A: 27.178520 GHz ( $\mathrm{n}^{\prime}=10-$ )
for an 11974Q: 35.172567 GHz ( $\mathrm{n}^{\prime}=12-$ )
for an 11974U: $42.255900 \mathrm{GHz}\left(\mathrm{n}^{\prime}=12-\right)$
for an 11974V: $55.290125 \mathrm{GHz}\left(\mathrm{n}^{\prime}=16-\right)$
35. Record the above frequency in Table 4-9 on page 135 as Multiple Response Frequency \#4. Press PEAK SEARCH to place the delta marker at the top of the multiple response. The absolute value of the delta marker amplitude is the multiple response rejection.
36. Record the multiple response rejection in Table 4-9 on page 135 as Multiple Response Rejection \#4.
37.On the spectrum analyzer, press CENTER FREQUENCY and tune to the next multiple response by entering the frequency value for the corresponding band listed below:
for an 11974A: Response not in band. Skip to step 40.
for an 11974Q: Response not in band. Skip to step 40.
for an 11974U: Response not in band. Skip to step 40.
for an 11974V: $72.863100 \mathrm{GHz}\left(\mathrm{n}^{\prime}=12+\right)$
38. Record the above frequency in Table 4-9 on page 135 as Multiple Response Frequency \#5. Press PEAK SEARCH to place the delta marker at the top of the multiple response. The absolute value of the delta marker amplitude is the multiple response rejection.
39.Record the multiple response rejection in Table 4-9 on page 135 as Multiple Response Rejection \#5.
40.On the spectrum analyzer, press CENTER FREQUENCY and tune to the next multiple response by entering the frequency value for the corresponding mixer listed below:
for an 11974A: Response not in band. Skip to step 43.
for an 11974Q: Response not in band. Skip to step 43.
for an 11974U: Response not in band. Skip to step 43.
for an 11974V: 73.613033 GHz ( $\mathrm{n}^{\prime}=12-$ )
41.Record the above frequency in Table 4-9 on page 135 as Multiple Response F requency \#6. Press PEAK SEARCH to place the delta marker at the top of the multiple response. The absolute value of the delta marker amplitude is the multiple response rejection.
42. Record the multiple response rejection in Table 4-9 on page 135 as Multiple Response Rejection \#6.
43.Set the synthesized sweeper for a CW signal at the frequency listed below for the corresponding band:
for an 11974A: 40.00 GHz
for an 11974Q: 50.00 GHz
for an 11974U: 60.00 GHz
for an 11974V: 75.00 GHz
44.On the spectrum analyzer, press CENTER FREQUENCY and tune to the frequency for the corresponding band listed below:
for an 11974A: 40.00 GHz
for an 11974Q: 50.00 GHz
for an 11974U: 60.00 GHz
for an 11974V: 75.00 GHz
45.On the spectrum analyzer, press the following keys:

MARKER NORMAL
PEAK SEARCH
PRESEL PEAK
46.When the preselector-peak routine is complete, press PEAK SEARCH.
47.Record the marker frequency in Table 4-9 on page 135 as Signal Frequency \#3.
48.On the spectrum analyzer, press MARKER $\Delta$.
49.On the spectrum analyzer, press CENTER FREQUENCY and tune to a multiple response by entering the frequency value for the corresponding band listed below:
for an 11974A: $32.064280 \mathrm{GHz}\left(\mathrm{n}^{\prime}=10+\right)$
for an 11974Q: 41.720233 GHz ( $\mathrm{n}^{\prime}=12+$ )
for an 11974U: $50.053567 \mathrm{GHz}\left(\mathrm{n}^{\prime}=12+\right)$
for an 11974V: $65.665175 \mathrm{GHz}\left(\mathrm{n}^{\prime}=16+\right.$ )
50.Record the above frequency in Table 4-9 on page 135 as Multiple Response Frequency \#7. Press PEAK SEARCH to place the delta marker at the top of the multiple response. The absolute value of the delta marker amplitude is the multiple response rejection.
51.Record the multiple response rejection in Table 4-9 on page 135 as Multiple Response Rejection \#7.
52.On the spectrum analyzer, press CENTER FREQUENCY and tune to the next multiple response by entering the frequency value for the corresponding band listed below:
for an 11974A: $32.578520 \mathrm{GHz}\left(\mathrm{n}^{\prime}=10-\right)$
for an 11974Q: 42.255900 GHz ( $\mathrm{n}^{\prime}=12-$ )
for an 11974U: $50.589233 \mathrm{GHz}\left(\mathrm{n}^{\prime}=12-\right)$
for an 11974V: 66.227625 GHz ( $\mathrm{n}^{\prime}=16$ )
53. Record the above frequency in Table 4-9 on page 135 as Multiple Response Frequency \#8. Press PEAK SEARCH to place the delta marker at the top of the multiple response. The absolute value of the delta marker amplitude is the multiple response rejection.
54. Record the multiple response rejection in Table 4-9 on page 135 as Multiple Response Rejection \#8.
55. Record the Minimum Multiple Response Rejection in Table 4-9 on page 135.

NOTE For the 11974V, record the Minimum Multiple Response Rejection for signal frequencies in each portion of the band.

## 4. Displayed Average Noise Level

## Description

The displayed average noise level is checked at three frequencies with an LO power level of +15.2 dBm . The RF source is turned off and, at each frequency, the conversion loss measured in the Conversion Loss Test is entered into the spectrum analyzer. The spectrum analyzer is put in zero span and the average noise level is measured. The displayed average noise level is measured at the lowest and highest frequency in the band, as well as the frequency at which the mixer has the maximum conversion loss.

## Procedure

1. Connect an SMA cable from the 1ST LO OUTPUT of the spectrum analyzer to the INPUT of the 11975A Amplifier. Connect a second SMA cable to the OUTPUT of the amplifier.
2. Connect the 8481A Power Sensor to the 436A Power Meter sensor cable, then zero and calibrate the 436A Power Meter.
3. Set the spectrum analyzer controls as follows:

SHIFT $\Uparrow \Uparrow \Uparrow \Uparrow$ (selects U Band)
FREQUENCY SPAN .............................................................. . 0 Hz
CENTER FREQUENCY (sets the LO frequency to 5.0 GHz) . . . . . . 50.3 GHz

CAUTION When you are using an 11975 Amplifier with an 11974, you must set the amplifier rear-panel ALC switch to ON before you connect the amplifier to the test setup. If the ALC switch is left in the OFF position, the amplifier output power is high enough to destroy the mixer diodes.
4. On the 11975A Amplifier, set the rear-panel ALC switch to ON, then connect the 8481A Power Sensor to the free end of the cable installed on the OUTPUT connector of the amplifier. Set the 436A Power Meter Cal Factor \% to the appropriate value for a frequency of 5 GHz .
5. Adjust the amplifier OUTPUT POWER LEVEL for a reading of $+15.2 \mathrm{dBm} \pm 0.1 \mathrm{dBm}$ on the power meter.
6. Connect the equipment as shown in Figure 4-1 on page 98. Turn off the 8349B Amplifier and the RF power on the synthesized sweeper. They will remain off for this entire test.
CAUTION Turn off the ac power on the 11974-60028 Preselector Power Supply prior to connecting or disconnecting it from the 11974.
On the 11974 rear panel, set the instrument select switches to the appropriate settings before applying power to the 11974.
7. Set the spectrum analyzer to the appropriate millimeter band by using the following controls:
for an 11974A: SHIFT $\Uparrow \Uparrow$
for an 11974Q: SHIFT $\Uparrow \Uparrow \Uparrow$
for an 11974U: SHIFT $\Uparrow \Uparrow \Uparrow \Uparrow$
for an 11974V: SHIFT $\Uparrow \Uparrow \Uparrow \Uparrow \Uparrow$
8. Set the spectrum analyzer controls as follows:
FREQUENCY SPAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 Hz
RES BW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Hz
VIDEO BW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Hz
ENTER dB/DIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 dB
9. Set the spectrum analyzer center frequency by pressing CENTER FREQUENCY and entering the corresponding frequency value for the band listed below:
for an 11974A: 26.5 GHz
for an 11974Q: 33 GHz
for an 11974U: 40 GHz
for an 11974V: 50 GHz
10.Set the conversion loss to the value recorded for this frequency in Table 4-7 on page 131 by pressing SHIFT, 5 , and MHz, and entering the conversion loss value from Table 4-7 on page 131. Press dB to terminate the entry. Record this value in Table 4-10 on page 136.
11.Set the spectrum analyzer reference level by pressing REFERENCE LEVEL and entering the corresponding value for the band listed below:
for an 11974A: -80 dBm
for an 11974Q: -80 dBm
for an 11974U: -80 dBm
for an 11974V: -80 dBm
12.On the spectrum analyzer, press SHIFT, VIDEO BW, 10, and $\mathbf{H z}$ to activate the video average function to average 10 traces.
13.After the video average counter reaches 10, press MARKER NORMAL and
PEAKSEARCH. The marker amplitude is the displayed average noise level.

## 4. Displayed Average Noise Level

14. Record the following in Table 4-10 on page 136.

Center Frequency
Displayed Average Noise Level (Marker Amplitude)
15.On the spectrum analyzer, press SHIFT and SWEEP TIME to turn off the video average function.
16.On the spectrum analyzer, press CENTER FREQUENCY and enter the corresponding value for the band listed below:
for an 11974A: 40 GHz
for an 11974Q: 50 GHz
for an 11974U: 60 GHz
for an 11974V: 75 GHz
17. Set the conversion loss to the value recorded for this frequency in Table 4-7 on page 131. Press SHIFT, 5, and MHz, then enter the conversion loss value from Table 4-7 on page 131. Press dB to terminate the entry. Record this value in Table 4-10 on page 136.
18.On the spectrum analyzer, press SHIFT, VIDEO BW, 10 , and Hz to activate the video average function to average 10 traces.
19.After the video average counter reaches 10, press MARKER NORMAL and PEAK SEARCH. The marker amplitude is the displayed average noise level.
20.Record the following in Table 4-10 on page 136.

Center Frequency
Displayed Average Noise Level (Marker Amplitude)
21.On the spectrum analyzer, press SHIFT SWEEP TIME to turn off the video average function.
22.On the spectrum analyzer, press CENTER FREQUENCY and enter the frequency corresponding to the maximum conversion loss measured in Table 4-7 on page 131.
23. Set the conversion loss to the value recorded for this frequency in Table 4-7 on page 131. Press SHIFT 5 MHz, then enter the conversion loss value from Table 4-7 on page 131. Press dB to terminate the entry. Record this value in Table 4-10 on page 136.
24.On the spectrum analyzer, press SHIFT, VIDEO BW, 10, and $\mathbf{H z}$ to activate the video average function to average 10 traces.
25.After the video average counter reaches 10, press MARKER NORMAL and PEAK SEARCH. The marker amplitude is the displayed average noise level.
26. Record the following in Table 4-10 on page 136.

Center Frequency
Displayed Average Noise Level (Marker Amplitude)

## 27.On the spectrum analyzer, press SHIFTand SWEEP TIME to turn off the video average

 function.28. Record the Maximum Displayed Average Noise Level in Table 4-10 on page 136.

## 5. 3 dB Bandwidth

## Description

The preselector peak digital-to-analog converter (DAC) is used to tune the center frequency of the presel ector filter until the input signal is 3 dB down on the skirts of the filter. The 3 dB bandwidth is calculated from the DAC values.

## Procedure

1. Connect an SMA cable from the 1ST LO OUTPUT of the spectrum analyzer to the INPUT of the 11975A Amplifier. Connect a second SMA cable to the OUTPUT of the amplifier.
2. Connect the 8481A Power Sensor to the power-meter sensor cable, then zero and calibrate the 436A Power Meter.
3. Set the spectrum analyzer controls as follows:

SHIFT $\Uparrow \Uparrow \Uparrow \Uparrow$ (selects U Band)
FREQUENCY SPAN
0 Hz
CENTER FREQUENCY (sets the LO frequency to 5.0 GHz) . . . . . . 50.3 GHz

CAUTION	When you are using an 11975A Amplifier with an 11974, you must set the
amplifier rear-panel ALC switch to ON before you connect the amplifier to the	
test setup. If the ALC switch is left in the OFF position, the amplifier output	
power is high enough to destroy the mixer diodes.	

4. On the 11975A Amplifier, set the rear-panel ALC switch to ON, then connect the 8481A Power Sensor to the free end of the cable installed on the OUTPUT connector of the amplifier. Set the 436A Power Meter Cal Factor \% to the appropriate value for a frequency of 5 GHz .
5. Adjust the amplifier OUTPUT POWER LEVEL for a reading of $+15.2 \mathrm{dBm} \pm 0.1 \mathrm{dBm}$ on the power meter.
6. Connect the equipment as shown in Figure 4-1 on page 98.

CAUTION Turn off the ac power on the 8349B Amplifier prior to connecting or disconnecting the source module interface cable.

Turn off the ac power on the 11974-60028 Preselector Power Supply prior to connecting or disconnecting it from the 11974.

On the 11974 rear panel, set the instrument select switches to the appropriate settings before applying power to the 11974.
7. Enter the appropriate millimeter-wave source module frequency multiplication factor into the synthesized sweeper by pressing SHIFT and START FREQ. Press the following keys (on the synthesized sweeper) for the appropriate band:
for an 11974A: 2 Hz
for an 11974Q: 3 Hz
for an 11974U: 3 Hz
for an 11974V: 4 Hz
8. Set the synthesized sweeper for a CW signal at the frequency listed below:
for an 11974A: 26.5 GHz
for an 11974Q: 33.0 GHz
for an 11974U: 40.0 GHz
for an 11974V: 50.0 GHz
9. Activate external leveling on the synthesized sweeper by pressing XTAL.
10.Adjust the output power of the synthesized sweeper for a reading of approximately 0 dBm on the 8349B display.
11.Set the spectrum analyzer to the appropriate millimeter band by using the following key sequence for the appropriate band:
for an 11974A: SHIFT $\Uparrow \Uparrow$
for an 11974Q: SHIFT $\Uparrow \Uparrow \Uparrow$
for an 11974U: SHIFT $\Uparrow \Uparrow \Uparrow \Uparrow$
for an 11974V: SHIFT $\Uparrow \Uparrow \Uparrow \Uparrow \Uparrow$
12.Set the spectrum analyzer controls as follows:

SHIFT, 5, MHz, 0, and dB (sets external mixer conversion loss to 0 dB )
FREQUENCY SPAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 MHz
ENTER dB/DIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 dB
13.Set the reference level of the spectrum analyzer by pressing REFERENCE LEVEL and entering the corresponding value for the band listed below:
for an 11974A: -40 dBm
for an 11974Q: -40 dBm
for an 11974U: -40 dBm
for an 11974V: - 55 dBm
14.Set the center frequency of the spectrum analyzer by pressing CENTER FREQUENCY and entering the corresponding value for the band listed below:
for an 11974A: 26.5 GHz
for an 11974Q: 33 GHz
for an 11974U: 40 GHz
for an 11974V: 50 GHz
15.On the spectrum analyzer, press the following keys:

## MARKER NORMAL

PEAK SEARCH
PRESEL PEAK
16.When the preselector-peak routine is complete, press MARKER PEAK SEARCH and $\Delta$.
17.On the spectrum analyzer, press SHIFT and GHz to activate the preselector DAC number.
18.On the spectrum analyzer, use the $\Downarrow$ key to reduce the DAC number by one step at a time until the delta-marker amplitude is less than or equal to -3.0 dB .
19.Record the Center Frequency and the preselector Low DAC number in Table 4-11 on page 136.
20.On the spectrum analyzer, use the $\Uparrow$ key to tune to the other side of the filter by increasing the DAC number until the delta marker amplitude goes back to 0 . Continue to increase the DAC number until the delta-marker amplitude is less than or equal to -3.0 dB .
21.Record the presel ector DAC number in Table 4-11 on page 136 under High DAC Number.
22.Calculate the 3 dB bandwidth at this frequency using the following equation:

$$
\frac{\text { High DAC number }- \text { Low DAC number }-1}{63} \times 46 \times \mathrm{n}(\mathrm{MHz})
$$

where n represents the harmonic number listed below:
11974A: 8
11974Q: 10
11974U: 10
11974V: 14

NOTE The above equation applies only when the spectrum analyzer is an 8566B. When using an 8563A or 71000C spectrum analyzer, use the following equation:

$$
\frac{\text { High DAC number }- \text { Low DAC number }-1}{255} \times 65 \times \mathrm{n}(\mathrm{MHz})
$$

23.Set the synthesized sweeper for a CW signal at the frequency listed below:
for an 11974A: 33.25 GHz
for an 11974Q: 41.5 GHz
for an 11974U: 50 GHz
for an 11974V: 62.5 GHz
24.Set the center frequency of the spectrum analyzer by pressing CENTER FREQUENCY, then entering the corresponding value for the band listed below:
for an 11974A: 33.25 GHz
for an 11974Q: 41.5 GHz
for an 11974U: 50 GHz
for an 11974V: 62.5 GHz
25.Repeat step 15 through step 22 for this center frequency and record the results in Table 4-11 on page 136.
26.Set the synthesized sweeper for a CW signal at the frequency listed below:
for an 11974A: 40 GHz
for an 11974Q: 50 GHz
for an 11974U: 60 GHz
for an 11974V: 75 GHz
27.Set the center frequency of the spectrum analyzer by pressing CENTER FREQUENCY, then entering the corresponding value for the band listed below:
for an 11974A: 40 GHz
for an 11974Q: 50 GHz
for an 11974U: 60 GHz
for an 11974V: 75 GHz
28.Repeat step 15 through step 22 for this center frequency and record the results in Table 4-11 on page 136.
29.Record the Minimum 3 dB Bandwidth in Table 4-11 on page 136.

Table 4-6 Performance Test Record Summary (1 of 2) for 11974A, Q, U, and V


Special Notes:

Table 4-6 Performance Test Record Summary (2 of 2) for 11974A

Model	11974A
	Report No.
Serial No.	
	Date


a. This level only applies to an 8566B or an 71000C spectrum analyzer. When using any other spectrum analyzer, refer to Table 1-1, "11974 Specifications," on page 19.

Table 4-6 Performance Test Record Summary (2 of 2) for $11974 Q$

Model	Report No.
Serial No. $\quad$ Date	


Test   No.	Test Description	Results			Measurement   Uncertainty
		Min.	Measured	Max.	
1.	Conversion Loss			46 dB	$\pm 1.5 \mathrm{~dB}$
	26. Maximum Conversion				
	Loss				
2.	I mage Rejection Test	$55 \mathrm{~dB}^{\text {a }}$			$\pm 1.6 \mathrm{~dB}$
	25. Minimum Image Rejection		-		
3.	Multiple Response Rejection Test	60 dB			$\pm 1.6 \mathrm{~dB}$
	55. Minimum Multiple				
	Response   Rejection				
4.	Displayed Average Noise Level			$-106 \mathrm{dBm}^{\text {a }}$	$\pm 2.0 \mathrm{~dB}$
	28. Maximum Displayed				
	Average Noise Level				
5.	3 dB Bandwidth	100 MHz			$\pm 13 \mathrm{MHz}$
	29. Minimum 3 dB Bandwidth				

a. This level only applies to an 8566B or an 71000C spectrum analyzer. When using any other spectrum analyzer, refer to Table 1-1, "11974 Specifications," on page 19.

Table 4-6 Performance Test Record Summary (2 of 2) for 11974U

Model $\mathbf{1 1 9 7 4 U}$	Report No.
Serial No.	Date


Test   No.	Test Description	Results			Measurement   Uncertainty
		Min.	Measured	Max.	
1.	Conversion Loss			43 dB	$\pm 1.6 \mathrm{~dB}$
	26. Maximum Conversion				
	Loss				
2.	Image Rejection Test	$55 \mathrm{~dB}^{\text {a }}$			$\pm 1.6 \mathrm{~dB}$
	25. Minimum Image Rejection				
3.	Multiple Response Rejection Test	60 dB			$\pm 1.6 \mathrm{~dB}$
	55. Minimum Multiple				
	Response   Rejection				
4.	Displayed Average Noise Level			$-109 \mathrm{dBm}{ }^{\text {a }}$	$\pm 2.1 \mathrm{~dB}$
	28. Maximum Displayed				
	Average Noise Level				
5.	3 dB Bandwidth	100 MHz			$\pm 13 \mathrm{MHz}$
	29. Minimum 3 dB Bandwidth				

a. This level only applies to an 8566B or an 71000C spectrum analyzer. When using any other spectrum analyzer, refer to Table 1-1, "11974 Specifications," on page 19.

Table 4-6 Performance Test Record Summary (2 of 2) for 11974V

Model $\mathbf{1 1 9 7 4 V}$	Report No.
Serial No. $\quad$ Date	


Test   No.	Test Description	Results			Measurement   Uncertainty
		Min.	Measured	Max.	
1.	Conversion Loss   26. Maximum Conversion   Loss			46 dB	$\pm 1.5 \mathrm{~dB}$
2.	Image Rejection Test   25. Minimum Image Rejection $\text { (50 to } 67 \text { GHz) }$   ( 67 to 75 GHz )	$\begin{aligned} & 55 \mathrm{~dB}^{\mathrm{a}} \\ & 45 \mathrm{~dB}^{\mathrm{a}} \end{aligned}$	-		$\begin{aligned} & \pm 1.7 \mathrm{~dB} \\ & \pm 1.7 \mathrm{~dB} \end{aligned}$
3.	Multiple Response Rejection Test   55. Minimum Multiple   Response Rejection $\begin{aligned} & (50 \text { to } 67 \mathrm{GHz}) \\ & (67 \text { to } 75 \mathrm{GHz}) \end{aligned}$	$\begin{gathered} 60 \mathrm{~dB} \\ 55 \mathrm{~dB} \end{gathered}$			$\begin{aligned} & \pm 1.7 \mathrm{~dB} \\ & \pm 1.7 \mathrm{~dB} \end{aligned}$
4.	Displayed Average Noise Level   28. Maximum Displayed   Average Noise Level   3 dB Bandwidth   29. Minimum 3 dB Bandwidth	$100 \mathrm{MHz}$		$-94 \mathrm{dBm}{ }^{\text {a }}$	$\pm 2.1 \mathrm{~dB}$ $\pm 15 \mathrm{MHz}$

a. This level only applies to an 8566B or an 71000C spectrum analyzer. When using any other spectrum analyzer, refer to Table 1-1, "11974 Specifications," on page 19.

Table 4-7 Conversion Loss Test Data (1 of 3)

Model	Report No. __
Serial No. $\quad$	Date $\ldots$



Table 4-7 Conversion Loss Test Data (2 of 3)

Model	Report No. $\quad 1$
Serial No. $\quad$	Date


Marker Frequency GHz	$\begin{gathered} \text { Marker } \\ \text { Amplitude } \\ \text { dBm } \end{gathered}$	Power Meter Readings dBm	Power Sensor Cal Factor $\%$ or dB	Directional Coupler Coupling Factor dB	$\begin{gathered} \text { Conversion } \\ \text { Loss } \\ \text { dB } \end{gathered}$

Table 4-7 Conversion Loss Test Data (3 of 3)

Model	Report No. __
Serial No.	Date


Marker Frequency GHz	Marker Amplitude dBm	Power Meter Readings dBm	Power Sensor Cal Factor \% or dB	Directional Coupler Coupling Factor dB	Conversion Loss dB

Maximum Conversion Loss $=$
dB

Table 4-8 I mage Rejection Test Data

Model	Report No. $\quad$
Serial No. $\quad$	Date


Marker   Frequency $\mathbf{G H z}$	Image Rejection dB	Marker Frequency $\mathbf{G H z}$	Image Rejection dB	Marker Frequency $\mathbf{G H z}$	Image Rejection dB

[^2]Table 4-9 Multiple Response Rejection Test Data

Model	Report No.
Serial No. $\quad$ Date	


Signal Frequency   GHz	Multiple Response Frequency GHz	Multiple Response Rejection dB
\#1	\#1 $\qquad$   \#2 $\qquad$	
\#2	\#3 $\qquad$   \#4 $\qquad$   \#5 $\qquad$   \#6 $\qquad$	
\#3	\#7 $\qquad$   \#8 $\qquad$	

Minimum Multiple Response Rejection $=\ldots$ dB

11974V (applied signal: 67 to 75 GHz ):
Minimum Multiple Response Rejection = dB

Model	Report No.
Serial No.	Date

Table 4-10 Displayed Average Noise Level Data

Conversion Loss Value from   Table 4-7   dB	Center Frequency   GHz	Displayed Average Noise Level
$\square$	$\square$	

Table 4-11 3 dB Bandwidth Data

Center Frequency   (GHz)	Low DAC Number	High DAC Number	3 dB Bandwidth   (MHz)
	-	-	
	$\square$		

5 Safety and Regulatory Information

## Safety Symbols

The following safety notes are used throughout this manual. Familiarize yourself with each of the notes and it's meaning before operating this instrument.

WARNING	Warning denotes a hazard. It calls attention to a procedure which, if   not correctly performed or adhered to, could result in injury or loss   of life. Do not proceed beyond a warning note until the indicated   conditions are fully understood and met.

CAUTION Caution denotes a hazard. It calls attention to a procedure that, if not correctly performed or adhered to, could result in damage to or destruction of the instrument. Do not proceed beyond a caution sign until the indicated conditions are fully understood and met.

The CE mark is a registered trademark of the European Community. (If accompanied by a year, it is when the design was proven.)

The CSA mark is a registered trademark of the Canadian Standards Association.

ISM1-A This is a symbol of an Industrial Scientific and Medical Group 1 Class A product.

N279
This C-Tick mark is a registered trademark of the Australian Spectrum Management Agency.

This symbol indicates that the input power required is AC.

This symbol is used to mark the ON position of the power line switch.

This symbol is used to mark the OFF position of the power line switch.

## General Safety Considerations

WARNING	Before this instrument is switched on, make sure it has been properly   grounded through the protective conductor of the ac power cable to   a socket outlet provided with protective earth contact. Any   interruption of the protective (grounding) conductor, inside or
	outside the instrument, or disconnection of the protective earth
terminal can result in personal injury.	

WARNING For continued protection against fire hazard, replace fuse only with same type and ratings, (type 1A/120V or 0.5A/240V). The use of other fuses or materials is prohibited.

WARNING No operator serviceable parts inside. Refer servicing to qualified personnel. To prevent electrical shock, do not remove covers.

WARNING	Servicing instructions are for use by qualified personal only. To   avoid electrical shock, do not perform any service unless you are   qualified to do so.


WARNING	The opening of covers or removal of parts is likely to expose   dangerous voltages. Disconnect the product from all voltage sources   while it is being opened.

WARNING The power cord is connected to internal capacitors that may remain live for 5 seconds after disconnecting the plug from its power supply.

WARNING There are many points inside the instrument which can, if contacted, cause personal injury. Be extremely careful. Any adjustments or service procedures that require operation of the instrument with the protective covers removed should be performed only by trained service personnel. This product conforms to Enclosure Protection Standard IP 20 according to IE C-529, and protects against finger access to hazardous parts within the enclosure.

WARNING | If this product is not used as specified, the protection provided by |
| :--- |
| the equipment could be impaired. This product must be used in a |
| normal condition (in which all means for protection are intact) only. |

WARNING This is a Safety Class I product (provided with a protective earthing ground incorporated in the power cord). The mains plug shall only be inserted in a socket outlet provided with a protective earth contact. Any interruption of the protective conductor, inside or outside the instrument, is likely to make the instrument dangerous. Intentional interruption is prohibited.

## WARNING This product presents a significant risk of electrical shock if operated when wet. This product conforms to Enclosure Protection Standard IP 20 according to IEC-529, and therefore, it does not protect against the admittance of water into the interior of the product.

## WARNING To prevent electrical shock, disconnect the $\mathbf{1 1 9 7 4}$ Series equipment from mains before cleaning. Use a dry cloth or one slightly dampened with water to clean the external case parts. Do not attempt to clean internally.

WARNING Isopropyl alcohol is extremely flammable, causes irritation, may cause eye damage, and is harmful if swallowed or inhaled. It may be harmful if absorbed through the skin. Keep away from heat, sparks, and flame. Avoid contact with eyes, skin, clothing. Avoid breathing vapor. Keep in tightly closed container. Use with adequate ventilation. Wash thoroughly after handling. In case of fire, use alcohol foam, dry chemical, or carbon dioxide: water may be ineffective. In case of spill, soak up with sand or earth. Flush spill area with water.

Disposal Instructions: Dispose in accordance with all applicable federal, state, and local environmental regulations.

| CAUTION $\quad$This product has been designed and tested in accordance with IEC <br> Publication 1010, Safety Requirements for Electronic Measuring Apparatus, <br> and has been supplied in a safe condition. The instruction documentation <br> contains information and warnings which must be followed by the user to <br> ensure safe operation and to maintain the product in a safe condition. |
| :--- | :--- |


CAUTION	This product is designed for use in Installation Category II and Pollution   Degree 2 per IEC-1010 and IEC-664 respectively.
CAUTION	Beforethis instrument is switched on, make sure its primary power circuitry   has been adapted to the voltage of the ac power source. Failure to set the ac   power input to the correct voltage could cause damage to the instrument   when the ac power cable is plugged in.

CAUTION Always use the three-prong AC power cord supplied with this product. Failure to ensure adequate earth grounding by not using this cord may cause product damage.

CAUTION Before switching on this instrument, make sure that the line voltage selector switch is set to the voltage of the power supply and the correct fuse is installed.

CAUTION Ventilation Requirements: When installing the product in a cabinet, the convection into and out of the product must not be restricted. The ambient temperature (outside the cabinet) must be less than the maximum operating temperature of the product by $4^{\circ} \mathrm{C}$ for every 100 watts dissipated in the cabinet. If the total power dissipated in the cabinet is greater than 800 watts, then forced convection must be used.

## Compliance with German Noise Requirements

This is to declare that this instrument is in conformance with the German Regulation on Noise Declaration for Machines (Laermangabe nach der Maschinenlaermrerordnung -3.GSGV Deutschland.)

Acoustic Noise Emission/Geraeuschemission	
LpA $<70 \mathrm{~dB}$	LpA $<70 \mathrm{~dB}$
Operator position	am Arbeitsplatz
Normal position	normaler Betrieb
per ISO 7779	nach DIN 45635 t.19

## Declaration of Conformity

## DECLARATION OF CONFORMITY

According to ISO/IEC Guide 22 and EN 45014

Manuf acturer's Name:
Manuf acturer's Address:

Product Name:
Model Number:

Product Options:

Hewlett-Packard Co.
1400 Fountaingrove Parkway Santa Rosa, CA 95403-1799 USA

Declares that the product:
Preselected Millimeter Mixer
HP 11974A, HP 11974Q, HP 11974U, HP 11974V

This declaration covers all options of the above product.

Conforms to the following product specifications:
Safety: IEC 61010-1:1990 / EN 61010-1:1993
CAN/CSA-C22.2 No. 1010.1-92
EMC: CISPR 11:1990/EN 55011:1991 Group 1, Class A
IEC 801-2:1984/EN 50082-1:1992 4 kV CD, 8 kV AD
IEC 801-3:1984/EN 50082-1:1992 $3 \mathrm{~V} / \mathrm{m}, 27-500 \mathrm{MHz}$
IEC 801-4:1988/EN 50082-1:1992 0.5 kV sig. lines, 1 kV power lines
IEC 1000-3-2:1995/EN 61000-3-2:1995
IEC 1000-3-3:1994/EN 61000-3-3:1995

Supplementary Information:
The product herewith complies with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC and carries the CE-marking accordingly.


Santa Rosa, CA, USA 12 Mar. 1999

## Greg Pfeiffer/Quality Engineering Manager

European Contact: Your local Hewlett-Packard Sales and Service Office or Hewlett-Packard GmbH Department HQTRE, Herreneberger Strasse 130, D71034 Boblingen, Germany (FAX +49-7031-14-3143)

## A

accessories, 15
AMPCOR command, 71
amplitude calibration
using an HP 71000C, 68, 78
using an HP 8561A/62A/62B, 86
using an HP 8566B, 63
amplitude correction, 80, 87
AMPTD CORRECT softkey, 79, 87
AVERAGE CNV LOSS softkey, 79, 87

## B

band selection
using an HP 71000C, 68, 77
using an HP 8561A/62A/62B, 85

## C

calibration, 17
characteristic tables, 23
characteristics, 18
checking the fuse, 39
CNV LOSS VS F REQ softkey, 80, 87
compatibility, 33
CONV LOSS softkey, 71
conversion loss, 71, 79, 80, 87, 88
frequency bands, 80, 88
conversion loss versus frequency correction, 71
conversion-loss correction, 72

## D

declaration of conformity, 142 description of
HP 11974, 14

## E

electrostatic discharge, 43
ESD damage, 44
ext mixer softkey, 70
EXT MXR PRE UNPR softkey, 79, 80
external mixer
preselected, 79
unpreselected, 79, 87
EXTERNAL MIXER softkey, 79
external mixing bands, 70
external mixing functions
HP 71000C, 70
HP 8563A/E, 79
HP 8566B, 64

## F

flatness, 79, 80, 87
flatness points, 80, 88
frequency conversion loss, 80, 88
frequency correction, 71
frequency tracking calibration using an HP 8561A/62A/62B, 84
using an HP 8563A/E, HP
8561B/E or HP 8560A/E, 75
using an HP 8566B, 61, 99
fulband KAQUVE softkey, 70
fulband WFDGYJ softkey, 70
FULL BAND softkey, 79, 87

## H

harmonic lock, 79, 87
HP 11974
accessories, 15
front-panel features, 53, 55
power requirements, 38
rear-panel features, 54
remote location, 57
serial numbers, 16
HP 11974 Overview, 14
HP 8561A/62A/62B sweep time considerations, 87

## I

image responses, 57
initial inspection, 36
installation, 31

## L

line fuse, 39
line-voltage selector switch, 38

## M

MARKER NORMAL softkey, 82, 88
minimum system dynamic range
HP 11974A, 27
HP 11974Q, 28
HP 11974U, 29
HP 11974V, 30
multiple responses, 57

## N

NEXT PEAK softkey, 82

## 0

operating hints, 57
dynamic range optimization, 59 multiple responses, 57 preselector-peak routine, 57
preventing erroneous
preselector peaking, 57
RF port VSWR effects, 59
spurious response tests, 57
operating precautions, 56
amplitude accuracy, 56
electrostatic discharge, 56
maximum LO input level, 56
maximum RF input level, 56
operation
using an HP 71000C, 65, 73
using an HP 8561A/62A/62B, 83, 87
using an HP 8563A/E, HP
8561B/E, or HP 8560A/E, 74, 83
using an HP 8566B, 60, 64

## P

PEAK SEARCH softkey, 82, 88
performance test setup, 98
performance tests, 89
3 dB bandwidth, 122
displayed average noise level, 118
image rejection, 106
multiple response rejection, 110
power cable, 40
power requirements, 38
preparation for use, 37
PRESEL AUTO PK softkey, 81
PRESEL DAC softkey, 71
PRESEL MAN ADJ softkey, 81
PRESEL On Off softkey, 71
PRESEL PEAK softkey, 71, 80
pre-select softkey, 71
preselected external mixing, 79
preselector DAC, 71
preselector peak, 71
preselector peaking using an HP 71000C, 69, 78 using an HP 8561A/62A/62B, 86
using an HP 8566B, 63
preselector-peak routine, 57

## R

reducing ESD damage, 44

## S

sales and service offices, 48
service, 46
foam inserts, 46
repackaging, 46
repair tags, 46
return to factory, 46
specification tables, 18

## Index

specifications, 18
spectrum analyzer compatibility, 33
spurious response tests, 57
static-safe workstation, 43
U
unpreselected external mixing,
79, 87


[^0]:    Various power cables are available to connect the spectrum analyzer to the types of ac power outlets unique to specific geographic areas. The cable appropriate for the area to which the spectrum analyzer is originally shipped is included with the unit. You can order additional ac power cables for use in different areas. The following table lists the available ac power cables, illustrates the plug configurations, and identifies the geographic area in which each cable is appropriate.

[^1]:    $*_{\text {CABLE }}$ LOSS + ATtENUATOR $=9-11 \mathrm{~dB}$ AT 6 GHz

[^2]:    Minimum Image Rejection $=$ dB

    ## 11974V (67-75 GHz):

    Minimum Image Rejection = dB

