Programming Reference

HP 1652B/HP 1653B Logic Analyzers

K ackars

©Copyright Hewlett-Packard Company 1989

Mannal Number 01652-90903 Printed in the U.S.A. December 1989

Product
Warranty

Limitation of Warranty

This Hewlett-Packard product has a warranty against defects in material
and workmanship for a period of three years from date of shipment.
During warranty period, Hewlett-Packard Company will, at its option,
either repair or replace products that prove to be defective.

For warranty service or repair, this product must be returned to a service
facility designated by Hewlett-Packard. However, warranty service for
products installed by Hewlett-Packard and certain other products
designated by Hewlett-Packard will be performed at the Buyer’s facility at
no charge within the Hewlett-Packard service travel arca. Outside
Hewlett-Packard service travel areas, warranty service will be performed
at the Buyer’s facility only upon Hewlett-Packard’s prior agrecment and
the Buyer shall pay Hewlett-Packard’s round trip travel expenses.

For products returned to Hewlett-Packard for warranty service, the Buyer
shall prepay shipping charges to Hewlett-Packard and Hewlett-Packard
shall pay shipping charges to return the product to the Buyer. However,
the Buyer shall pay all shipping charges, duties, and taxes for products
returned to Hewiett-Packard from another country,

Hewlett-Packard warrants that its software and firmware designated by
Hewlett-Packard for use with an instrument will execute its programming
instructions when properly installed on that instrument. Hewlett-Packard
does not warrant that the operation of the instrument software, or
firmware will be uninterrupted or error free,

The foregoing warranty shall not apply to defects resulting from improper
or inadequate maintenance by the Buyer, Buyer-supplied software or
interfacing, unauthorized modification or misuse, operation outside of the
environmental specifications for the product, or improper site preparation
or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED.
HEWLETT-PACKARD SPECIFICALLY DISCLAIMS THE
IMPLIED WARRANTIES OR MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

Exclusive Remedies

Assistance

Certification

Safety

THE REMEDIES PROVIDED HEREIN ARE THE BUYER’S SOLE
AND EXCLUSIVE REMEDIES. HEWLETT-PACKARD SHALL
NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER
BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL
THEQORY.

Product maintenance agreements and other customer assistance
agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and
Service Office.

Hewlett-Packard Company certifies that this product met its published

“specifications at the time of shipment from the factory. Hewlett-Packard

further certifies that its calibration measurements are traceable to the
United States National Bureau of Standards, to the extent allowed by the
Bureaw's calibration facility, and to the calibration facilities of other
International Standards Organization members.

This product has been designed and tested according to International
Safety Requirements. To ensure safe operation and to keep the product
safe, the information, cautions, and warnings in this manual must be
heeded.

Printing History
L]

New editions are complete revisions of the manual, Update packages,
which are issued between editions, contain additional and replacement
pages to be merged into the mannal by the customer. The dates on the
title page change only when a new edition or a new update is published.
No information is incorporated into a reprinting unless it appears as a
prior update; the edition does not change when an update is incorporated.

A software code may be printed before the date; this indicates the version
level of the software product at the time of the manual or update was

. issued. Many product updates and fixes do not require mannal changes

and, conversely, manual corrections may be done without accompanying
product changes. Therefore, do not expect a one to one correspondence
between product updates and manual updates.

Edition 1 December 1989 01652-90503

List of Effective Pages |
L]

The List of Effective Pages gives the data of the current edition and of any
pages changed in updates to that edition, Within the manual, any page
changed since the last edition will have the date the changes were made
printed on the bottom of the page. If an update is incorporated when a
new edition of the manual is printed, the change dates are removed from
the bottom of the pages and the new edition date is listed in Printing
History and on the title page.

Pages Effective Date

All December 1989

Contents

Chapter 1

HP 1652B/16538
Programming Heference

Introduction to Programming an Instrument

Introductioncocviiiiiiiiiiiin rre e 11
About ThisManualot iiiiiiiiiiiiiaainnes B 11
Programming SYIIaK ..v.ieveevenennrniarionicosrensses P 12
Talking tothe Instrimentovuvinivriiraniiniianisanss 12
Instriuction SYBIAX oo v vrinriaiiiivsioi s isiiiiiasaianns 1-2
OQuipwt Command iieats R 1-3
Device Addressc.ooiiiniieien i iie i 1-3
Instructonsovveiiennanss et e 1-3
Instruction Headerooivuniiniiniiiiiiiiiiiiiiainnns 1-3
White Space........... O 14
Instruction Parametersvvuvenrevinnnsns e 1-4
Header Types ...oooiiiiiino it iiin e 14
Combining Commands from the Same Subsystem 1-5
Duplicate Keywordsooviniiiiiiiiniiiiiianiiiniinnes 1-5
QueryUSage ...ooviiriiiiiirit it iiiiiaiieasesiiaeenss 16
Program Header Optionscoivvinininiiiunrnnennns 1.7
Parameter Syntax Ralesoovvuiiiiiiiiiiiiiiniiiiinna 1-7
Instruction Terminatorccvvvvnens et 19
Selecting Multiple Subsystems ..., 1-9
Progranuning an Instroment ... oiiiiiiiieiiia Cevanaas 1-10
Initializationcoviitvii i e 1-10
Exsmple Program Ce s 1-11
Program GVEIVIEWoeviniit it raiaeiaiiriarieaans 1-11
Receiving Information from the Instrument 111
Response Header Oplionsiviviiviiniiiiiinniinnan,s 1-12
Response Data Formafsc.cvviiniiiiinninnianenes 1-13
String Variablesc.... P 1-14
NumericBaseuu..ns ceaans e 1-15
Numeric Variables ..ot 1-15
Definite-Length Block Response Dataovvecveiinninnnnns 1-16
Mutltiple Queriesovinr s . 1-17
InsStriament SEALES «.vvuvuuues v eensrranincnnnrasanssnares 1-17
Contents - 1

Chapter 2 Programming Over HP-IB _
IntrodUCHOR .. vvsisiinanireirnsirannnisenecnernoirnrenranes 2-1
Interface Capabilitiescooitt ittt 2-1
Command and DataConceptscoviiriiriiiinnareanisas 21
Addressing ...oooiiiiin it it e 2-1
Communicating ()ver the HP-IB Bus (HP 9000 Series 200/300
Controller) e e b et ettt eee ot e e aan ey 22
Local, Remote, and Local Lockout 2-2
BusCommandsvviviiiiiriinarirannaarairintaiiaraans 2-3
Device Clearvvuvivieiiananoeraraecnsonrirassressenas 2-3
Group Execute Trigger (GET)oooviviniiviiiininiiniae. 2-3
Interface Clear{(IFC)c.covvnn.ts et 2-3
R
Chapter 3 Programming Over RS-232C
Introduction ...l iiinan, e 31
Interface Operationcovuiiiaenn.., e 31
L7 N N 32
Minirnum Three-Wire Interface with Software Protocol 32
Extended Interface with Hardware Handshake 33
Cable Example . .o.ouiviiiininiivirisiensaiinstasisinseaess 3-4
Configuring the Instrument Interfacecoioe.., 35
Interface Capabilitiesccviriiiiiiiii ity 3-5
Protocol ...vvrienircrarvarnnsrornsaanonsossanercasreennns 3-5
DataBits ..ovvnvniniiiiiiiiisiseranrisetiacasasiinnoneanns 3-6
Communicating Over the RS-232C Bus {HP 9000 Series 200/300
Controller) Crereeneene f v r e araeatraenans 36
Lockont Command ... onuecoresrorunnenrsoraseronnenasenenss 3-7
T
Chapter 4 Programming and Documentation Conventions
511 3411 T) S P 4-1
TruncationRule e e eriaens 4-1
Infinity Representationcovirirrioninirrnenearerninss. 4-2
Sequential and Overlapped Commandsc0cveinnes. 4-2
Response Generationviiueieseiaurossnnesiasnansirnrans 4.2
Syntax DIagramso.uuininenrenrreernverasasscerenanns 4-2
Notation Conventions and Definitionsoooven.. 4-3
The Command TTEE L. ..0uuiiiierureierinnorreiierararnooeenns 4-4
Contents - 2 HP 16528/16538

Programming Reference

Command TYpes ..o it i it cnaes 4-4

Tree Traversal Rulesoooniiiiiiiiiiiiiiiiiiinannn, 4-4
Examples . .ooriiiiiiii it i o 45
Command Set Organization oot eviietraiiaiininn.. 4-10
Subsystems e cerees 4-10
Program Examplesoooiiiiiiiiiiiiiiiiiiiinn U 4-11
L)
Chapter 5 Common Commands
ItrodBetion ... i e e 51
R 1 5. e 53
ESE i e e Ceraneian 5-4
B =) 2 S DN 56
R 1. [5-8
B0) <L 5-9
RET i e 5-10
B 2 5-11
B 1 - 2N 5-13
B 772 (O 5-15
I
Chapter 6 System Commands
Introductioncovieii i i i 6-1
ARMBIC . .vii ittt i 6-4
DATA i i i i e e e, 6-5
Logic Analyzer BlockData e 8
Section Header Descriptioncooviivinianan Ceeeen 6-8
SectionDataoiiiiiiiiiii i v eraiaaes 6-8
Data Preamble Description e 6-8
Acquisition Data Descriptionoovviiiiiiieenaa., 611
Oscilloscope Block Data . ..o o oo evniisniirarincairinsnes 6-18
Oscilloscope Data Sectionvuvevirrinivrssriranisionnnnas 6-18
Section Header Descriptiono.covveviviiiiininn.., 6-18
SectionDataoiiiiiii i e 6-18
Oscilloscope Display Data Section e 6-19
13 N 6-20
ERRor........... i ia e 6-21
HEAD T (i i i 6-22
KEY i i e e 6-23
0 6-25
010 6-26
HP 1652B/1653B Contents - 3

Programming Reference

MESEccoviivinnnnns reieiesisiiseeiresiaiiea, 6-29
MESR ... TN < !

R A O R vieee. 6239

Chapter 7 MMEMory Subsystem
Introduction . ..veevnoirusvarsreansvassionnrsronssrasassorssodol

AUToload eaiieeas Cneees NPT PR -
CATAIOE - vt ettt et et et 7-5
DOWNiload e be e saarareerneeeenaraans NP)

PURGEcvenn.. eenaenens ettt 7-12

L K 2 5 1
UPLoad ...t iirniencnaennnennraaas. 118

A
Chapter 8

DLISt Subsystem

Introduction e taieausassesiacenaeriniatenoncana PR . 5 |

Contents - 4

5] 9 1 I 82
| I . .85

HP 1652B/16538
Programming Reference

Chapter 9 WLISt Subsystem
Introductioncovvviiinnnrenvan. feeeean v erereeaeanas 9.1
R I 1 R O g9-2
O T alE ..ttt erenanrerasesresrsanncnsareastorss 9.3
XOTate ...vvivneeinricnrnnnrrcrrransnnns R R, * 2% 3
L0 I 1 1 9-5
b4 1. 1= A AR %6
R
Chapter 10 MACHine Subsystem
f Y6013 11 vt n 0+ SRR PR 10-1
MACHInecccviunns s eaaaaa, rvreanaa, 10-3
ARM e e ea et aarinaas 16-4
ASSIZR . ot e e 10-5
AUTOSCAIE .. ittt in st ettt iiaerenimtinnrrreaes 16-6
NAME ittt rereeiararnreresnarenarearsansann 10-7
A 4 2 = 10-8
I
Chapter 11 SFORmat Subsystem
Introduction A Ciereeaas 11-1
SPORMAL vttt iinitirenerenarraneecetennsorairnanns 11-3
L0l 1 N 11-4
CPERIOA .. ieiinineirnrivnnanrirearsncennns Shesamera 11-3
T 2 T 11-6
Y - R 11-8
REMOVE ...viviirirnrrranenssnsrnsnsanss beemeatenees 11-9
S AV it i a e st e, 11-10
THReshold ..ot it ieciieannens 1i-11
]
Chapter 12 STRace Subsystem
IMtroduUCtion ... iens i e 12-1
ST R ACE .ottt it i iies ettt asariiasaananas 12-4
BRANCh ... it it et asi e 12-5
) 0 1 12-8
PRESIOrE ...viviivniinanainens i eeaeaeiaaciaas 12-10
RANGE .. iiiiiiinieiirrrinrrriasaessantonsernnnns 12-12

HP 16528/1653B
Programming Reference

Contents -5

SEOUBNCE .. eivvsrrnrnerrnnrecrosarossrtnanirennnns 12-16
STORe0vunne. et aeeetenae e 12-17
7 X 12-1%
TERM it i i r i e 1221

I

Chapter 13 SLISt Subsystem

Introduction, fr e aa e e e e e 13-1

103 I £ 13-5
L0) 51 13-6
DATA b et n et e eee e e e, 13-8
LINE ..ieiriiiiniiininnsanans et ae e 13-9
MMODE ...t it et .. 1310
L@ N = ¢ U 13-11
OSEarch ...ttt ieainanenins 13-13
L0 A I ¢ 13-14
L 7 X 13-15
RUNTH b vt et e i aaana 13-16
TAVerage ...oiiiiiiiiiiiiiii it 13-18
TMAXIUBT ..ottt ieaiatsorerarransasons .. 1319
TMINIBI Lot iuiii e iinrrienrieranenenss 13-20
VRIUNS ittt iiiirrcinereneariroaransatsnasssnsns 1321
XOTag A, 13-22
KPATIEIT ot iiier s vaenrtaoaresesannsarsesreeeannss 13.23
X8Earch ..ot e nrareeaaerraares 13.25
b 6 ¢ 13-26
X AG ..t i srnrnarrrnansarresaranrnennreessens 13.27

R

Chapter 14 SWAVeform Subsystem

introduction ceeaas e ettt e e nraaree e, 141

SWAVeformt iy 14-3
ACCumulateot i i i, 144
| 14-5
e R N 14-6
RANGE .ttt it ts e iaarastannannns 14-7
REMOVE Lottt e et e e 14-8

Contents - 6 HP 1652B/16538

Programming Reference

Chapter 15 SCHart Subsystem
LB J T T T S 15-1
SCHAM ... i i it ittt S 15-3
ACCumulate P feresananes eaeesens 15-4
2 1 € AN 15-5
T2 €T 15-7
T ——
Chapter 16 COMPare Subsystem
| §:TE 71175 1 1+ RN Ay S R 16-1
B 86 - 2 A 16-3
CMASK i et it 16-4
COPY ..vevvnvnnnn B vree 1625
DA A i e e e e 16-6
B 1 5 16-8
RANGE ittt it ittt st s et st st er i irsaesaans 16-9
B | 16-10
]
Chapter 17 TFORmat Subsystem
Introduction . .o it i e i et 17-1
TFORMAt ...t iiincernasraranararnsssannnes 172
7 -7 17-3
REMOVE .ottt iaa s ettt iiiasnissasaaensias 17-5
THResholdcooeenn.... e berraeiieenan. 176
S
Chapter 18 TTRace Subsystem
Introduction et aeiaas b e s 18-1
TTRACE . ieurniiiionrieitiant s e nirnnerrearinanranns 18-3
AMODE .ttt 184
DURation f e e a e ta e arar e arraae 18-5
BDGE i i e e 18-6
GLITCh v i e s i e i e 18-8
| N U -+ 1 S 189
HP 1652B/1653B Contents - 7

Programming Reference

Chapter 19 TWAVeform Subsystem
215 goe1F ot o) < A . 19-1

TWAVelorm ... i r et crar e 19-5
ACCHMUAIE ...ttt it ianncrarraaninsrannoreess 19-6
| 5] ¥ 1 O 19-7
13T A 198
MMODecoovvnven, asaerreeay Cretatariresaans 1.9
OCONGIHON . .vviirrernrerrrraareinesesnansencsosens 19-10
OPATIern ..ovovvnvnnnnns e medctraanea e 19-11
OSEarch ..ottt i ie it e e 19-13
0) 1, - 18-14
RANGE ittt ettt iviavrriaansicrarasinnnnes 19-15
REMOVE vt iiiiiaterectennnnnieasninnseerrannnnes 19-16
RUNTI L oottt a i st virrsvsvrsesnunnssns 19-17
L o AT N 19-19
TAVEragevvvriinvriiineiiiinieinacnianenrenan. 19-20
TMAXimum Ceeme sk we e bt aer s 19-21
TMINIMUI oot iiiesernnenanreecronannerscrens 19-22
VRUNS ittt i eiieeinnnannes Wearanrresreans 19-23
KCONGIOD . .vrvrrrnrrnreerrnrrersosrnssnssrenanes 15-24
KOTIHE ot venirtriosnuvsnecnnareeaesncarronrscenans 19.25
B o 1 < 19-26
B ¥ « 19-28
XTIMe ..oviiiiiiiiiiainnneeneenns Cenereraneea ey 19-26

L]

Chapter 20 SYMBol Subsystem

3T Egvs LT 3T (R N 20-1

SYMBol f e e ee et aea s 20-3
BASE i e e ety 20-4
L O 20-5
L 20-6
REMOVE Lttt it arrs vt earasrennnes 20-7
B2 3 T 20-8

Contents - § HP 1852B/16538

Programming Reference

Chapter 21 SCOPe Subsystem
Introdoction0..., Ceveraaes e, e 21-1
o L0) R 213
ARM oo et 21-4
AUTO05CAIE ., iitt i e anrcanarrrornrnreseanan 215
SMODE .. it e i i e, ...21-6
|
Chapter 22 . CHANnel Subsystem
Introduction e aes v et erres N5
CHANnel e aa et vee 22-3
COUPRBE ... riiiia e iinr v crevaaeenrnranans 22-4
OFFSelcuuss e vees 22-5
PROBe B, O 226
RANGE ..t it etiis it ciaeroesrasseneesssirnarsnsannes 2-7
S
Chapter 23 TRIGger Subsystem
Introductioncoviviiiiiie i ia e aas LT 231
The Edge
TriggerMode .. .ooiiiiii e . 231
The Immediate Trigger Modeoooiiviiiiiann, e 231
TRIGger e e e 23.3
) SA TS -1 O eerariieaes 23-4
MODE . iiiiiiiiiiiioniristsiirsedivariassaians 23-5
SLOPe et e i aa et raases 23-6
SOURce ..ovvnnnnnes e e e aaans 23-7
O
Chapter 24 ACQuire Subsystem
Introducon .. .ovviiiiiininriiii et iieiinanaas Cereiaens 2441
Acquisition Type Normalo i eiiiianness 24-2
Acquisition Type Average iy 24-2
ACQuIre ...covvvnenvnns. e aeaeaeranane, fereeas 24-3
[0 18 | S 24-4
b 4 7 = 24-5
HP 1652B/1653B Contents - 9

Programming Reference

Chapter 25 TIMebase Subsystem
Tntroductonoiiiiiii it iee e e e ienn 25-1
TIMEDASE Lo veeii vt e e aaea s e aaaaaana 252
DELAY e et b esaa et s et 25-3
MODE ... ittt isreresnrarsanercnnsorrasnscnaens 254
RANGE .. it iin s i iiinnenrnannocsanesncnssananna 25-6
SR
Chapter 26 WAVeform Subsystem
Introductioncovvuveeerinnanas i etnerereeasaraaena 26-1
Waveform
Recordcoviiiiinncransnesnensasianeds Cerersacraeesaas 26-3
Data Acquisition TYPES ...uvveinrrneninninienaiarainn, e 26-3
Normal Modeovvrrirririrrrsrrraerarasreroncsneesars 26-3
AverageMode . ..o 26-3
Format for Data Transfer e eiisserranrraeeae 26-4
BYTEFOIMal ... i vniiuccunnrvcnrnasssnnrisnsantsonossens 26-4
WORDFormatot iiiiernrninnnens e .. 26-5
ASCIIFOrMAatcovevosravaranssernavssnnerrssarnenses 26-5
Data COMVEISION «..vurererreiaeirnnteacnanasursarasenesnnns 266
Conversion from Data Value to Voltage 0.0 26-6
Conversion from Data ValuetoTimeoooviveiinininnnnn. 26-6
Conversion from Data Value to Trigger Point 26-6
R o ¥y 26-7
COUNL o tnessosioesrrasecocinssasasesnnsnnsonneins 26-8
LT 7 N 26-9
FORMAL ...ivureeivterirannsoconsrsnanennnrenaonnnss 26-10
POINtscvvvivvinnnn. riereiniaaaaeeeesas A 26-11
PREAmble e rereneaesratreeaaa e ereaearees 26-12
RECOrd .. vvvirivorinrarirerrvsrarosanannrsosrarsss 26-13
SOURCE ..oivviirvnennnnnns e ey 26-14
TYPE o iiiiiiiiinrarictrnrannnornnnns Sereerraeanny 26-15
RN I 26-16
KINCIrementc.ocviuneeonrnnneennressrarenannas 26-17
XORIGIR +v e eanriineenennn, s 26-18
P A S T T R 26-19
R0 13 8 10017 /| A O 26-20
YORIGID «vvveereee it et eteceeeaseeeneenanenaanis 26-21
YREFEIBIOE 1ot etvtnriienunrerovnonasnsoronesannses 26-22

Contents - 10

HP 1652B/1653B
Programming Reference

Chapter 27 MEASure Subsystem
Introduction ettt . 27-1
Frequencycoonniiiiiiiiir i e e e 272
| T Yo S Cererereariees RN 272
Peak-to-Peakovieveiennvann A, 27-2
Positive Pulse Widthttt i ieen e 272
Negative Pulse Widthooo . e 27-2
RISEEIME © . ivvinntreeimrar st enaarrrtarernnaseennnnasas 272
271 1471 A P 27-2
Preshoot and Overshoot e reererrrrae 27-2
Preshoot bbb e raaeariae et n e 272
L T A 27-2
MEASUrecccveiiiivinninnns. e ereiiarereraaeas 27-4
ALL C et et etaeara e eraeaireaanan 27-5
FALLTIDE . vv v iarerirenriransrtiovinnensenrannsas 276
FREQUEDCY .. 0vvvevnnrieeirenrirassonsrsansssanannnan 27
NWEDE o iir et ereen vt erriisrannnnn 27-8
OVERShOOL ... oiiiii i it eanness fereeanas 279
PERiod N 27-10
PRESHOOL ©vvivarnnersrnnnnntrsonsroriontossnsrsens 27-11
PWIDth............. ettt e e ..27-12
RISETImeE .ottt erararsnnasonunssrones 27-13
R 8 18] D .27-14
VAMPhtudeiii i iiiiniinrieeaes et reraee 27-15
VBASE i iiiiiiii i it e e e iy 21-16
7. 7. G U 27-17
VMIN e e e, 27-18
Y/ 2 27-19
A% 1 6) e et aeserarearan 27-20
A
Appendix A Message Communication and System Functions
EU+E 001 11 Toc 0 LR P A-l
o 20 s ol) - A A-2
Functional Blementsrurirrernrnrorerarsrecrnenens A-2
Protocol OVEIVIEWciviriii it iiier i entsiaransnes A-3
Protocol Operation . .o v v iir it ia e it reiearianaranrsns A-3
Protocol EXceptionsooii it iiiiiia sy A-4
Syntax DHABTAMS . .vvrteerrsrereeenariaareantseasiesanenan A-5
HP 1652B/1853B Contenis - 11

Programming Reference

A OVEIVIEW ..ot iiiiinrcviesnaressassnorvrasnraarannnnss A5

Device Listening SYntaxoovvinvrrarrrnseaascriraneaeas A-8
Device Talking Syntaxoviiiiiiiiiiiieininaaiaines A-21
Common Commands.........oooveviened,s r s A-27
L
Appendix B Status Reporting
Introduction . v irrerenaisontiieiisesisaiiiaraniaaacaans B-1
Event Status Register e sarara s B-3
Service Request Enable Registerc.cviereiiiiiinenens B-3
Bi Definitionsouoiin i it B-3
KeyFeatiresiuviiiuninieriernronisnsacessscranssas B4
Serial Poll ..., .ooviiiiiininiins, e treaeenese e saas B-6
Using Serial Poll (HP-IB)iiiiii i iiiiiiianes B-6
ST
Appendix C Error Messages
Device Dependent Errors P C-1
Command Errors..........ocvvunne et eeateieataaanerereeenn C-2
Execution BITOMS «oovvisiiinrennnenntniaranncnenssrinaranins C3
Internal Errors ...ooouinen, ettt C4
QueryBrrors ...ovvvvenerivnvrannas e ettt re e C-5
]
Index
Contents - 12 HP 1652B/16538

Programming Reference

Introduction to 1
Programming an Instrument '

introduction This chapter introduces you to the basics of remote programming. The
programming instructions explained in this book conform to the
IEEE 488.2 Standard Digital Interface for Programmable
Instrumentation. These programming instructions provide a means of
remotely controlling the HP 1652B/53B. There are three general
categories of use. You can:

« Set up the instrument and start measurements
» Retrieve setup information and measurement results
o Send measurement data to the instrument

The instructions listed in this manual give you access to the measurements
and front panel features of the HP 1652B/53B. The complexity of your
programs and the tasks they accomplish are limited only by your
imagination. This programming reference is designed to provide a
concise description of each instruction.

I
About This This manual is organized in 27 chapters. Chapter 1 is divided into two
Manual sections. The first section (pages 2 through 9) concentrates on program

syntax, and the sccond section (pages 10 through 17) discusses
programming an instrument. Read either chapter 2, "Programming Over
HP-IB," or chapter 3, "Programming Over RS8-232C" for information
concerning the physical connection between the HP 1652B/53B and your
controller. Chapter 4, "Programming and Documentation Conventions,”
gives an overview of all instructions and also explains the notation
conventions used in our syntax definitions and examples. The remaining
chapters 5 through 27 are used to explain each group of instructions.

HP 165283/1653B introduction o Programming an Instrument
Programming Reference i-1

Programming
Syntax

Talking to the
instrument

instruction Syntax

In general, computers acting as controllers communicate with the
instrument by sending and receiving messages over a remote interface,
such as HP-IB or RS-232C. Instructions for programming the HP

1652B/53B will normally appear as ASCII character strings embedded

inside the output statements of a “host” language available on your
controller. The host language’s input statements are used to read in
responses from the HP 1652B/53B.

For example, HP 9000 Series 200/300 BASIC uses the OUTPUT
statement for sending commands and queries to the HP 1652B/53B. After
a query is sent, the response is usually read in using the ENTER
statement. All programming examples in this manual are presented in
BASIC. The following BASIC statement sends a command which canses
the HP 1652B/53B’s machine 1 to be a state analyzer:

OUTPUT XXX;":MACHINEL:TYPE STATE™ <tarminator:

Each part of the above statement is explained in the following pages.

To program the instrument remotely, you must have an understanding of
the command format and structure expected by the instrument, The IEEE
488.2 syntax rules povern how individnal elements such as headers,
separators, parameters and terminators may be grouped together to form
complete instructions. Syntax definitions are also given to show how
query responses will be formatted. Figure 1-1 shows the main syntactical
parts of a typical program statement,

INSTRUCTION
I

CUTPUT XXX;" {SYSTEM:MENU DISPLAY et

CUTPUT COMMAND !
BEVICE ADDRESS
INSTRUCTION HEADER
WHITE SPACE
INSTRUCTION PARAMETERS

Figure 1-1. Program Message Syntax

Introduction to Programming an instrument HP 1852B/1653B

1-2

Programming Retference

Output Command

Device Address

Instructions

instruction Header

HP 1652B/1653B
Programming Reference

‘The output command is entirely dependant on the language you choose to
use. Throughout this manual HP 900(Series 200/300 BASIC 4.0 is used in
the prograroming examples. People using another langoage will need Lo
find the equivalents of BASIC commands like QUTPUT, ENTER and
CLEAR in order to convert the examples. The instructions for the

HP 1652B/53B are always shown between the double-quotes.

The location where the device address must be specified is also dependent
on the host language which you are using. In some languages, this could
be specified outside the output command. In BASIC, this is always
specified after the keyword OUTPUT. The examples in this manual use a
generic address of XXX, When writing programs, the number you use
will depend on the cable you use in addition to the actual address. If you
are using an HP-IB, see chapter 2. RS-232C users should refer to

chapter 3, "Programming Over RS-232C." ‘

Instructions (both commands and queries) normally appear as a string
embedded in a statement of your host tanguage, such as BASIC, Pascal or
C. The only time a parameter is not meant to be expressed as a string is
when the instruction’s syntax definition specifies «<block data>. There
are only five instructions which use block data.

Instructions are composed of two main parts: The header, which specifies
the command or query to be sent; and the parameters, which provide
additional data needed to clarify the meaning of the instruction.

The instruction header is one or more keywords separated by colons (:).
The command tree in figure 4-1 illustrates how all the keywords can be
joined together to form a complete header (see chapter-4, "Programming
and Documentation Conventions”).

The example io figure 1-1 shows a command. Queries are indicated by
adding a question mark (7} to the end of the header. Many instructions
can be used as either commands or queries, depending on whether or not
you have included the question mark. The command and query forms of
an instruction usually have different parameters. Many queries do not use
any parameters.

When you look up a query in this programming reference, you'll find 2
paragraph labeled "Returned Format® under the one labeled "Query
Syntax." The syntax definition by "Returned format" will always show the
instruction header in square brackets, ke [8YSTem:MENU]. What this

Introduction to Programming an Instrument
1-3

really means is that the text between the brackets is optional, but it’s also a
quick way to see what the header looks like.

White Space White space is used to separate the instruction header from the
imstruction parameters. If the instruction does not use any parameters,
you do not need to include any white space. White space is defined as one
or more spaces. ASCI defines a space to be character 32 (in decimal).
Tabs can be used only if your controller first converts them to space
characters before sending the string to the instrument.

instruction Parameters Instruction parameters are used to clarify the meaning of the command or
‘ query. They provide necessary data, such as whether a function should be
on or off, which waveform is to be displayed, or which pattern is to be
looked for. Each instruction’s syntax definition shows the parameters, as
well as the values they accept. This chapter’s "Parameter Syntax Rules”
section has all of the general rules about acceptable values,

‘When there is more than one parameter they are separated by
commas (,). You are allowed to add spaces around the commas.

Header Types There are three types of headers: Simple Command; Compound
Command; and Common Command.

Simple Command Header. Simple command headers contain a single
keyword, START and STOP are examples of simple command headers
typically used in this instrument. The syntax is:

< function > <terminator>

When parameters (indicated by < data>) must be inchuded with the
simple command header (for example, :RMODE SINGLE) the syntax is:

<function > <white space > < data > <terminator >

Compoeond Command Header. Compound command headers are a
combination of two or more program keywords, The first keyword selects
the subsystem, and the last keyword selects the function within that
subsystem. Sometimes you may need to list more than one subsystem
before being allowed 10 specify the function. The keywords within the
compound header are separated by colons. For example:

To execute a single function within a subsystem, use the following:

Introduction to Programming an Instrument HP 1652B/1653B
1-4 Programming Reference

Combining
Commands from the
Same Subsystem

Duplicate Keywords

HP 1652B/1653B
Programming Reference

: < gubsystem »: < function > <white space > <data > <terminator >

(For example :SYSTEM:LONGFORM ON)

To traverse down a level of a subsystem to execute a subsystem within that
subsystern:

1< sitbsystem > : < subsystern > : <funstion > < white space > < data> <terminator >

{For example :MMEMORY:LOAD:CONFIG "FILE_ ")

Common Command Header. Common command headers control IEEE
488.2 functions within the instrument (such as clear status, etc.). Their
syntax is:

* < command header > <terminator>
No space or separator is allowed between the asterisk and the command
header. *CLS is an example of a common command header.

To execute more than one function within the same subsystem a
semi-colon (;) is used to separate the functions:

1< subsystem > | < function » <white space > <data>;
<function > <white space > <data> <termninator>

(For example :SYSTEM:LONGFORM ON;HEADER ON)

Identical function keywords can be used for more than one subsystem,
For example, the function keyword MMODE may be used to specify the
marker mode in the subsystem for state listing or the timing waveforms:

:SLIST:MMODE PATTERN - sets the marker mode to pattern in the state
Listing,

TTWAVEFORM:MMODE TIME - sets the marker mode to time in the timing
waveforms.

SLIST and TWAVEFORM are subsystem selectors and determine which
marker mode is being modified.

introduction to Programming an instrument
1-5

Query Usage Command headers immediately followed by a question mark (9) are
queries. After receiving a query, the instrument interrogates the
requested function and places the response in its output queue. The
outpui message remains in the queue until it is read or another command
isissued. When read, the message is transmitted across the bus to the
designated listener (typically a controller). For example, the logic
analyzer query :MACHINEL.TWAVEFORM:RANGE? places the
current seconds per division full scale range for machine 1 in the cutput
queue. In BASIC, the input statement

ENTER XXX; Range
passes the value across the bus to the controller and places it in the
variable Range.

Query commands are used to find out how the instrument is currently
configured. They are also used to get results of measurements made by
the instrument. For example, the command

---------------- :MACHINELTWAVEFORM:XOTIME?

instructs the instrument to place the X to O time in the output queue.

%! The output queue must be read before the next program message is sent.

Note For example, when you send the query TWAVEFORM:XOTIME? you
must follow that with an input statement, In BASIC, this is usaally done
with an ENTER statement.

Sending another command before reading the result of the query will
cause the output buffer to be cleared and the current response to be lost.
This will also generate a "QUERY UNTERMINATED" error in the
€ITOT quene.

Introduction to Programming an Instrument HP 1652B/1653B
16 Programming Reference

Program Header Program headers can be sent using any combination of uppercase or
Options lowercase ASCII characters. Instrument responses, however, are always
returned in uppercase.

Both program command and query headers may be sent in either
longform {complete spelling), shortform (abbreviated spelling), or any
combination of longform and shortform. Either of the following examples
turns on the headers and longform.

QUTPUT XX¥;":SYSTEM:HEADER ON:LONGFORM ON” - iongform
QUTPUT XXX;":SYST:HEAD ON;LOKG ON" - shortform

Programs wrilten in longform are easily read and are almost
self-documenting. The shortform syntax conserves the amount of
controller memory needed for program storage and reduces the amount
of /O activity.

ﬁ The rules for shortform syntax are shown in chapter 4 "Programming and
Note Documentation Conventions.” ‘

Parameter Syntax There are three main types of data which are used in parameters. They
Rules are numeric, string, and keyword. A fourth type, block data, is used only
for five instructions: the DATA and SETup instructions in the SYSTem
subsystem (see chapter 6); the CATalog, UPLoad, and DOWNIoad
instructions in the MMEMory subsyster (see chapter 7). These syntax
rules also show how data may be formatted when sent back from the
HP 1652B/53B as a response.

The parameter list always follows the instruction header and is separated
from it by white space. When more than one parameter is used, they are
separated by commas. You are allowed to include one or more spaces
around the commas, but it is not mandatory.

HP 16528/1653B Infroduction to Programming an instrument
Programming Reference 1-7

Numeric data. For numeric data, you have the option of using
exponential notation or using suffixes to indicate which unit is being used.
Tables A-1 and A-2 in appendix A list all available suffixes. Do not
combine an exponent with a unit. The following numbers are all equal:
28 = 0.28E2 = 280e-1 = 28000m = 0.028K.

The base of a number is shown with a prefix. The available bases are
binary (#B), octal (#Q), hexadecimal (#H) and decimal {default). For
example, #B11100 = #Q34 = #H1C = 28, You may not specifya
base in conjunction with either exponents or unit suffives, Additionally,
negative numbers must be expressed in decimal.

When a syntax definition specifies that a number is an integer, that means
that the number should be whole. Any fractional part would be ignored,
truncating the number, Numeric parameters which accept fractional
values are called real numbers.

All numbers are expected to be strings of ASCII characters. Thus, when
sending the number 9, you would send a byte representing the ASCII code
for the character "9" (which is 57, or 0011 1001 in binary). A three-digit
number Iike 102 would take up three bytes (ASCII codes 49, 48 and 50),
This is taken care of automatically when you include the entire instruction
in a string,

String data. String data may be delimited with either single (*) or double
(") quotes. String parameters representing labels are case-sensitive. For
instance, the labels "Bus A" and "bus a" are unique and should not be used
indiscriminately. Also pay attention to the presence of spaces, since they
act as legal characters just like any other. So the labels "In" and " In" are
also two separate labels.

Keyword data. In many cases a parameter must be a keyword. The
available keywords are always included with the instruction’s syntax
definition. When sending commands, either the longform or shortform (if
one exists) may be used. Upper-case and lower-case letters may be mixed
frecly. When receiving responses, upper-case letters will be used
exclusively. The use of longform or shortform in a response depends on
the setting you last specified via the SYSTem:LONGform command (see
chapter).

introduction to Programming an Instrument HP 1652B/1653B
1-8 Programming Reference

tnstruction Terminator

1
Note %

Selecting Multiple
Subsystems

Note @

HP 1852B/1653B
Programming Reference

An instruction is executed after the instruction terminator is received.
The terminator is the NL {New Line} character, The NL character is an
ASCI! linefeed character {decimal 10).

The NL (New Line) terminator has the same function as an EOS (End Of
String) and EOT (End Of Text) terminator.

You can send multiple program commands and program queries for
different subsystems on the same line by separating each command with a
semicolon. The colon following the semicolon enables you to enter a new
subsystem. For example:

< instruction header > <data > ;: <instruction headsr > < data > <terminator >

{MACHINE1:ASSIGNZ;: SYSTEM:HEADERS ON

Multiple commands may be any combination of simple, compound and
common commands,

introduction to Programming an Instrument
1-9

Programming
an Instrument

Initialization To make sure the bus and all appropriate interfaces are in a known state,
begin every program with an initialization statement. BASIC provides a
CLEAR command which clears the interface buffer. If you're using
HP-1B, CLEAR will aiso reset the HF 1652B/53B’s parser. The parser is
the program which reads in the instructions which you send it,

After clearing the interface, load a predefined configuration file from the
disk to preset the instrument to a known state. For example:

CUTPUT XXX ;™ :MMEMORY:LOAD:CONFIG "DEFAULT '™
This BASIC statement would load the configuration file "DEFAULT "

(if it exists) into the HP 1652B/53B. Refer to the chapter "MMEMory
Subsystem” for more information on the LOAD command,

%’ Refer to your controlier manual and programming language reference
Note marnnal for information on initializing the interface.

introduction to Programming an instrument HP 1652B/1653B
1-10 Programming Reference

Example Prograrm This program demonstrates the basic command structure used to program

the HP 1652B/53E.

10 CLEAR XXX Tinitialize instrument interface
20 QUTPUT XXX;":SYSTEM:HEADER ON" ITurn headers on
30 QUTPUT XXX;":SYSTEM:LONGFORM ON" Turn Tongform on
40 QUTPUT XXX;™:MMEM:LOAD:CONFI& "TEST E'” fload configuration file
50 OUTPUT XXX;™":MENU FORMAT,:" t5elect Format meny for machine 1
60 ODUTPUT XXX;":RMODE SINGLE" tSelect run mode
70 OUTPUT XXX;™:START” IRun the measurement

Program Overview Line 10 initializes the instrument interface to a known state
Lines 20 and 30 turn the headers and longform on.
Line 40 loads the configuration file "TEST _E” from the disc drive.
Line 50 displays the Format menu for machine 1.
Lines 60 and 70 tell the analyzer to run the measurement configured by
the file "TEST_E" one time.

Receiving Information After receiving a query (command header followed by a question mark),
from the instrument the instrument interrogates the requested function and places the answer

in its output queuve. The answer remains in the output queue until it is
read or another command is issued, When read, the message is
transmitted across the bus to the designated listener (typically a
controller). The input statement for receiving a response message from
an instrument’s output queuve typically has two parameters;the device
address and a format specification for bandling the response message.
For example, to read the result of the query command
SYSTEM:LONGFORM? you could execute the BASIC statement:

- ENTER X0X; Setting

where XXX represents the address of your device. This would enter the
current setting for the longform command in the numeric variable Serting,

HP 1652B/1653B introduction to Programming an Instrument
Programming Reference 1-11

Note ﬁ

Hesponse Header
Options

All results for queries sent in a program message must be read before
another program message is sent, For example, when you send the query
:MACHINE1:ASSIGN?, you must follow that query with an input
statement. In BASIC, this is usually done with an ENTER statement,

The format specification for handling the response messages is dependent
on both the controller and the programming language,

The format of the returned ASCII string depends on the current settings
of the SYSTEM HEADER and LONGFORM commands. The general
format is;

<instruction header > < space > <data > <tarminator >

The header identifies the data that follows (the parameters) and is
controlied by issuing a :SYSTEM:HEADER ON/OFF command. If the
state of the header command is OFF, only the data is returned by the

query.

The format of the header is controlled by the :SYSTEM:LONGFORM
ON/OFF command. If longform is OFF, the header will be in its
shortform and the header will vary in length depending on the particular
query. The separator between the header and the data always consists of
one space. '

The foliowing examples show some possible responses for a
‘MACHINEL:SFORMAT:THRESHOLD?2? query:

s with HEADER OFF;
<data> <ieminator>

s with HEADER ON and LONGFORM OFF;
MACHT:SFORTHR2 < spagce> <data> <terminator>

+ with HEADER ON and LONGFORM ON:
‘MACHINE1: SFORMAT: THRESHOLD2 <space > <data> <terminator >

Introduction to Programming an Instrument HP 1652B/16538

1-12

Programming Reference

@ A command or query may be sent in either longform or shortform, or in

Note any combination of fongform and shortform. The HEADER and
LONGFORM commands only control the format of the retumed data
and have no effect on the way commands are sent. :

Refer to the chapter "System Commands” for information on turning the
HEADER and LONGFORM commands on and off.

Response Data Both numbers and strings are returned as a series of ASCII characters, as
Formats described in the following sections, Keywords in the data are returned in
the same format as the header, as specified by the LONGform command.

Like the headers, the keywords will always be in upper-case.

The following are possible responses to the "MACHINE1: TFORMAT;:
LAB?’ADDR’" query.

MACHINEL: TFORMAT.LABEL "ADDR *,19,POSITIVE <terminator > (Header on;
Lengform on)

MACHT: TFOR:LAB "ADDR *.19,POS <terminator > (Header on; Longform off)
"ADDR *,19,POSITIVE <terminators> {Header off; Longform on)

*ADDR 19,POS<terminator> (Header off; Longform off)

@ Refer to the individual commands i this manual for information on the
Note format (alpha or numeric) of the data returned from each query.

HP 1652B/1653B Introduction to Prograrnming an instrument
Programming Reference 1-13

String Variables Since there are so many ways to code numbers, the HP 1652B/53B
handles almost all data as ASCII strings. Depending on your host
language, you may be able to use other types when reading in responses.

Sometimes it is helpfid to uss string variables in place of constants to send.
instructions to the HP 1652B/53B, The example below combines variables
and constants in order to make it easier to switch from MACHINE1 to

MACHINE?2. In BASIC, the & operator is used for string concatenation,

10 LET Hachine$ = ":MACHINE2" !Send all instructions to machine 2

20 QUTPUT XXX; Machine$ & ":TYPE STATE" IMake machine a state analyzer
30 | Assign all labels to be positive

40 DUTPUT XXX; Machinel & ":SFORMAT:LABEL 'CHAN 17, POS”

50 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL 'CHAN 27, POS”

B0 DUTPUT XXX; Machine$ & ":SFORMAT:LABEL 'OUT', POS"

88 END

If you want to observe the headers for queries, you must bring the
returned data into a string variable. Reading queries into string variables
requires little attention to formatting. For example:

ENTER XXX:Result$

places the output of the query in the string variable ResultS,

In the language used for this bock (HP BASIC 4.0), string variables are
Note case sensitive and must be expressed exactly the same each time they are
used.

The output of the instrument may be numeric or character data
depending on what is queried. Refer to the specific commands for the
formats and types of data returned from queries.

introduction to Programming an instrument HP 1652R/16538
1-14 Programming Reference

Numeric Base

Numeric Variables

HP 1652B/1653B
Programming Reference

The following example shows logic analyzer data being returned to a
string variable with headers off:

10 OUTPUT XXX;":SYSTEM:HEADER OFF"

20 BIM Rang${30]

30 QUTPUT XXX;":MACHINEL: TWAVEFORM:RANGET"
40 ENTER XXX;Rang$

50 PRINT Rang}

60 END

After running this program, the controller displays:
~+ 1.00000E-05

Most numeric data will be returned in the same base as shown on screen.
When the prefix #B precedes the returned data, the value is in the binary
base. Likewise, #Q is the octal base and #H is the hexadecimal base. If
no prefix precedes the returned numeric data, then the value is in the
decimal base,

i your host language can convert from ASCII to a numeric format, then
you can use pumeric variables. Turning off the response headers will help
you avoid accidently trying to convert the header into a number,

The following example shows logic analyzer data being returned to a
numeric variable. » _ -

10 QUTPUT XXX:":SYSTEM:HEADER OFF"

20 QUTPUT XXX;":MACHINEL: TWAVEFDRM:RANGET"
30 ENTER XXX;Rang

40 PRINT Rang

50 ERD

This time the format of the number (such as whether or not exponential
notation is used) is dependant upon your host language. In BASIC, the
output would look like:

LE-5

Introduction to Programming an Instrument
115

Definite-Length Block Definite-length block response data allows any type of device-dependent
Response Data data to be transmitted over the system interface as a series of 8-bit binary
data bytes. This is particularly useful for sending large quantities of data®
or 8-bit extended ASCII codes. The syntax is a pound sign (#) followed
by a non-zero digit representing the number of digits in the decimal
integer. After the non-zero digit is the decimal integer that states the
pumber of 8-bit data bytes being sent. This is followed by the actual data,

For example, for transmitting 80 bytes of data, the syntax would be:

NUMBER OF DIGITS
THAT FOLLOW

ACTUAL DATA

P e NS

#500000080<eighty bytles of data><terminator>
Ny p——

NUMBER OF BYTES

TO BE TRANSMITTED 155B8/81.22

Figure 1-2. Definite-length Block Response Data

The "8" states the number of digits that follow, and "00000080" states the
number of bytes to be transmitted.

%{ Indefinite-length block data is not supported on the HE1652B/53B.
Note

Introduction to Programming an instrument HP 1652B/16538
1-16 Programming Reference

Muttiple Querles You can send multiple queries to the instrument within a single program
message, but you must also read them back within a single program
message. This can be accomplished by either reading them back into a
string variable or into multiple numeric variables. For example, you could
read the result of the guery :SYSTEM:HEADER7;LONGFORM? into
the string variable Results$ with the command:

ENTER XXX; Results$

When you read the result of multiple gueries into string variables, each
response is separated by a semicolon. For example, the response of the
query :SYSTEM:HEADER?:LONGFORM? with HEADER and
LONGFORM on would be:

:BYSTEM:HEADER 1::SYSTEM:LONGFORM 1

If you do not need to see the headers when the numeric values are
returned, then you could use following program message to read the query
SYSTEM:HEADERS?,LONGFORMY into multiple numeric variables;

ENTER XXX: Resultl, Result2

% ‘When you are receiving nameric data into numeric variables, the headers
Note should be turned off. Otherwise the headers may canse misinterpretation
of retureed data.

instrument Status Status registers track the current status of the instrument. By checking the
instrument status, you can find out whether an operation has been
completed, whether the instrument is receiving triggers, and more.
Appendix B, "Status Reporting,” explains how to check the status of the
instrument.

HP 1652B/1653B introduction to Programming an instrument
Programming Reference 1-17

Programming Over HP-IB 2

Introduction This section describes the interface functions and some general concepts
of the HP-IB. In general, these functions are defined by IEEE 488.1
{HP-IB bus standard). They deal with general bus management issues, as
well as messages which can be sent over the bus as bus commands.

]

Interface The interface capabilities of the HP 1652B/53B, as defined by IEEE 488.1

capabi]iﬁes are SH1, AH1, T5, TEG, L3, LEQ, SR1, RL1, PP0, DC1, DT, CU, and E2.

L

Command and
Data Concepts

Addressing

HP 1652B/1653B
Programming Reference

The HP-IB has two modes of operation: command mode and data mode.

- The bus is in command mode when the ATN line is true. The command

mode is used to send talk and lister addresses and various bus commands,
such as a group execute trigger {(GET). The bus is in the data mode when
the ATN line is false. The data mede is used to convey device-dependent
messages across the bus. These device-dependent messages include all of
the instrument commands and responses found in chapters 5 through 27
of this manual.

By using the front-pane! I/0 and SELECT keys, the HP-IB interface can
be placed in either talk only mode "Printer connected to HP-IB" or
addressed talk/listen mode "Controller connected to HP-IB" (see "I/O
Port Configuration” in Chapter 5 of the HP 1652B/HP 1653B Front-Fanel
Reference manual. Talk only mode must be vsed when you want the
instraument to talk directly to a printer without the aid of a controller.
Addressed talk/listen mode is used when the instrument will operate in
conjunction with a controlier, When the instrument is in the addressed
talk/iisten mode, the following is true:

» Each device on the HP-IB resides at a particular address ranging
from 0 to 30.

¢ The active controller specifies which devices will talk, and which
will listen.

s An instrument, therefore, may be talk addressed, listen addressed,
or unaddressed by the controller.

Programming Over HP-IB
2-1

Communicating
Over the HP-IB
Bus (HP 9000
Series 200/300
Controller) -

l.ocal, Remote,
and Local
Lockout

Programming Over HP-IB

2.2

If the controller addresses the instrument to talk, it will remain configured
to talk until it receives an intetface clear message (IFC), another
instrument’s talk address (OTA), its own listen address (MLA}, or a
universal untalk (UNT) command.

If the controlier addresses the instrument to listen, it will remain
configured to listen until it receives an interface clear message (IFC) its
own talk address (MTA), or a universal unlisten (UNL) command.

Since HP-IB can address multiple devices through the same interface
card, the device address passed with the program message must include
not only the correct instrument address, but also the correct interface
code.

Interface Select Cede {Selects Interface}. Each interface card has its own
interface select code. This code is used by the controller to direct
commands and communications to the proper interface. The default is
always "7" for HP-IB controllers.

Instrument Address (Selects Instrument). Each instrument on the
HP-1B port must have a unique instrument address between decimal 0
and 30. The device address passed with the program message must
include not only the correct instrument address, but also the correct
interface select code.

DEVICE ADDRESS = (iterface Select Code) X 100 + (Instrument Address)
For example, if the instrument address for the HP 1652B/53B is 4 and the

interface select code is 7, when the program message is passed, the
routine performs its function on the instrument at device address 704,

The local, remote, and remote with local lockout modes may be used for
various degrees of front-panel control while a program is running. The
instrement will accept and execute bus commands while in local mode,
and the front panel will also be entirely active. If the HP 1652B/53B is in
remote mode, the instriument will go from remote to local with any front
pane! activity, Inremote with local lockout mode, all controls (except the
power switch) are entirely locked out. Local control can only be restored
by the controller.

HP 1652B/16538
Programming Reference

% Cycling the power will also restore local control, but this will also reset
Note certain HP-IB states.

The instrument is placed in remote mode by setting the REN (Remote
Enable} bus controtf line true, and then addressing the instrument to
listen. The instrument can be placed in local lockout mode by sending the
local lockout (LLO) command (see SYSTem:LOCKout in chapter 6).
The instrument can be returned to local mode by either setting the REN
line false, or sending the instrument the go to local (GTL) command.

Bus Commands The following commands are IEEE 488.1 bus commands (ATN true).
IEEE 48R.2 defines many of the actions which are taken when these
commands are received by an instrument.

Device Clear The device clear {DCL) or selected device clear (8DC) commands clear
the input and output buffers, reset the parser, clear any pending
commands, and clear the Request-OPC flag.

Group Execute The group execute trigger command will cause the same action as the
Trigger (GET) START command for Group Run: the instrument will acquire data for
the active waveform and listing display(s).

Interface Clear (IFC) This command halts all bus activity. This includes unaddressing all
listeners and the talker, disabling serial poll on all devices, and returning
control to the system controller.

HP 1652B8/1653B Programming Over HP-IB
Programming Reference 2.3

Programming Over RS-232C 3

Introduction

Interface
Operation

HP 1652B/1653B
Programming Reference

This section describes the interface functions and some general concepts
of the RS-232C. The RS-232C interface on this instrument is
Hewleti-Packard’s implementation of ELA Recommended Standard
RS-232C, “Interface Between Data Terminal Equipment and Data
Communications Equipment Employing Serial Binary Data Interchange."
With this interface, data is sent one bit at a time and characters are not
synchronized with preceding or subsequent data characters. Each
character is sent as a complete entity without relationship to other events.

The HP 1652B/53B can be programmed with a controller over RS-232C
using either a minimum three-wire or extended hardwire interface, The
operation and exact connections for these interfaces are described in
more detail in the following sections. When you are programming an

HP 1652B/53B over RS-232C with a controller, you are normally
operating directly batween two DTE (Data Terminal Equipment) devices
as compared to operating between a DTE device and a DCE (Data
Communications Equipment) device.

When operating directly between two DTE devices, certain
considerations must be taken into account. For three-wire operation,
XON/XOFF must be used to handle protocol between the devices. For
extended hardwire operation, protocol may be handled either with
XON/XOFF or by manipulating the CTS and RTS lines of the R8-232C
link. For both three-wire and extended bardwire operation, the DCD and
DSR inputs to the HP 1652B/53B must remain high for proper operation.

With extended hardwire operation, a high on the CTS input allows the HP
1652B/53B to send data and a low on this line disables the HP 1652B/53B
data transmission. Likewise, a high on the RTS line allows the controlier
to send data and a low on this line signals a request for the controller to
disable data transmission. Since three-wire operation has no control over
the CTS input, internal pull-up resistors in the HP 1652B/53B assure that
this line remains high for proper three-wire operation.

Programming Over RS-232C
3-1

Cables

Minimum
Three-Wire
Interface with
Software
Protocol

Note ﬁ

Selecting a cable for the R5-232C interface is dependent on your specific
application. The following paragraphs describe which lines of the

HP 1652B/53B are used to control the operation of the RS-232C relative
to the HP 1652B/53B. To locate the proper cable for your application,
refer to the reference manual for your controller, This manual should
address the exact method your controller uses to operate over the
RS-232C bus.

With a three-wire interface, the software (as compared to interface
hardware) controls the data flow between the HP 1652B/53B and the
controller. This provides a much simpler connection between devices
since you can ignore hardware handshake requirements. The

HP 1652B/53B uses the following connections on its RS8-232C interface for
three-wire communication:

» Pin7 SGND (Signal Ground)
e Pin2 TD (Transmit Data from HP 1652B/53B)
s Pin3 RD (Receive Data into HP 1652B/53B)

The TD (Transmit Data) line from the HP 1652B/53B must connect to the
RD (Receive Data) line on the controller. Likewise, the RD line from the
HP 1652B/53B must connect to the TD line on the controller, Internal
pull-up resistors in the HP 1652B/53B assure the DCD, DSR, and CTS
lines remain high when you are using a three-wire interface,

The three-wire interface provides no hardware means to control data flow

-between the controller and the HP 1652B/53B. XON/OFF protocol is the

only means to control this data flow,

Programming Over RS-232C HP 1652B/1653B

3-2

Programming Reference

Extended With the extended interface , both the software and the hardware can
Interface with control the data flow between the HP 1652B/53B and the controHer. This
Hardware allows you to have more control of data flow between devices, The

HP 1652B/53B uses the following connections on its RS-232C interface for
Handshake extended interface communication:

e« Pin 7 SGND (Signal Ground)
s Pin2 TD (Transmit Data from HP 1652B/53B)
e Pin3 RD {Receive Data into HP 1652B/53B)

The additional lines you use depends on your controller’s implementation
of the extended hardwire interface,

¢ Pind RTS (Request To Send} is an output from the
HP 1652B/538 which can be used to control incoming data flow.

o Pin5 CTS (Clear To Send) is an input to the HF 1652B/53B
which controls data flow from the HP 1652B/53B.

¢ Pin6 DSR (Data Set Ready) is an input to the HP 1652B/53B
which controls data flow from the HP 1652B/53B within two bytes.

¢ Pin8 DCD (Data Carrier Detect) is aninput to the HP
1652B/53B which controls data flow from the HF 1652B/53B within
two bytes,

s Pin20 DTR {Data Terminal Ready) is an output from the
HP 1652B/53B which is enabled as long as the HP 1652B/53B is
turned on, :

The TD (Transmit Data) fine from the HP 1652B/53B must connect to the
R (Receive Data) fine on the controller. Likewise, the RD line from the
HP 1652B/53B must connect to the TD lHne on the controller.

HP 1652B/1853B Programming Over RS-232C
Programming Reference 3-3

Cable Example

Note #

The RTS (Request To Send), is an output from the HP 1652B/53B which
can be used to control incoming data flow. A true on the RTS line allows
the controiler to send data and a false on this line signals a request for the
controller to disable data transmission,

The CTS (Clear To Send), DSR (Data Set Ready), and DCD (Data
Carrier Detect) lines are inputs to the HP 1652B/53B which control data
flow from the HP 1652B/53B (Pin 2). Internal pull-up resistors in the

HP 1652B/53B assure the DCD and DSR lines remain high when they are
not connected. If DCD or DSR are connected to the controller, the
controlier must keep these lines and the CTS line high to enable the

HP 1652B/53B to send data to the controller, A low on any one of these
lines will disable the HP 1652B/53B data transmission. Dropping the CTS
line low during data transmission will stop HP 1652B/53B data
transmission immediately. Dropping either the DSR or DCD line low
during data transmission will stop HP 1652B/53B data transmission, but as
many as two additional bytes may be transmitted from the HP 1652B/53B.

Figure 3-1is an example of how to connect the HP 1652B/538B to the
HP 98628A Interface card of an HP 9000 series 200/300 controller. For
more information on cabling, refer to the reference manual for your
specific controller.

Since this example does not have the correct connections for hardware
handshake, XON/XOFF protocol must be used when connecting the
HP 1652B/53B as shown in figure 3-1

He 8520/538
REAR PANEL

HP 9BEZAA
|~ INTERFACE CARD

il

(MeLESTOMALE bEE GPT pae
(FEMALE~TD-FEUALE) otesamas
Figure 3-1. Cable Example
Programming Over R$-232C HP 1652B/1653B

3-4

Programming Reference

Configuring the
Instrument
Interface

interface
Capabilities

Protocol

HP 1652B/16538
Programming Reference

The front-panel I/0 menz key alfows you access to the RS-232C
Configuration menu where the RS-232C interface is configured.

If you are not familiar with how to configure the RS-232C interface, refer
to the HP 1652B/53B Front-panel Reference manual,

The baud rate, stop bits, parity, protocol, and data bits must be configured
exactly the same for both the controlier and the HP 1652B/53B to
properly communicate over the RS-232C bus. The HP 1652B/53B
RS-232C interface capabilities are listed below:

Baud Rate; 110, 300, 600, 1200, 2400, 4800, 9600, or 192 k
Stop Bits: 1, 1.5, 0r 2

Parity: None, Odd, or Even

Protocol: None or XON/XOFF

Data Bits: 8

* " & 8 0

NONE. With a threc-wire interface, selecting NONE for the protocol
does not aflow the sending or receiving device to control data fiow. No
control over the data flow increases the possibility of missing data or
transferring incomplete data.

With an extended hardwire interface, selecting NONE allows a hardware
handshake to occur. With hardware handshake, hardware signals control
data flow.

XON/XOFF, XON/XOFF stands for Transmit On/Transmit Off. With
this mode the receiver (controller or HP 1652B/53B) controls data flow
and can request that the sender (HP 1652B/53B or controller) stop data
flow. By sending XOFF (ASCI 19} over its transmit data line, the
receiver requests that the sender disables data transmission, A
subsequent XON (ASCII 17) allows the sending device to resume data
transoission.

Programming Over R8-232C
3-5

Data Bits Data bits are the number of bits sent and received per character that

i
Note %

Communicating

represent the binary code of that character. Characters consist of either 7
or 8 bits, depending on the application. The HP 1652B/53B supports 8 bit
only.

8 Bit Mode. Information is nsually stored in bytes (8 bits at a time). With
8-bit mode, you can send and receive data just as it is stored, without the
need to convert the data.

The controller and the HP 1652B/53B must be in the same bit mode to
properly commuricate over the RS-232C. This means that both the
controfler and the HP 1652B/53B must have the capability to send and
receive 8 bit data.

For more information on the RS-232C interface, refer to the

HP 1652B/HP 1653B Front-Panel Reference Manual. For information on
RS-232C voltage levels and connector pinouts, refer to the HP 7652B/538
Service Manual. :

Each RS-232C interface card has its own interface select code. This code

Over the. is used by the controller to direct commands and communications to the
proper interface by specifying the correct interface code for the device
Rs‘zszc Bus address. _
(HPQOOO Generally, the interf: 1 d b decimal value b]
' encrally, the imterface select code can be any decim ue petween
Series 200/ 300 and 31, except for those interface codes which are reserved by the
Controller) controller for internal peripherals and other internal interfaces. This
value can be selected through switches on the interface card. For more
information, refer to the reference manual for your interface card or
controller.
For example, if your RS-232C interface select code is 9, the device
address required to communicate over the RS-232C bus is 9.
Programming Over RS-232C HP 1652B/1653B
36 Programming Reference

Lockout To lockout the front panel controls use the $YSTem command L.OCKout.

Command When this function is on, all controls (except the power switch) are
entirely locked out. Local control can only be restored by sending the
command :LOCKout OFF. For more information on this command see
the chapter "System Commands” in this manual.

@ Cycling the power will also restore local control, but this will also reset
Note certain RS-232C states.

HP 1652B/1653B Programming Over RS-232C
Programming Reference 3.7

Programming and 4
Documentation Conventions -
L]

introduction This section covers the programming conventions used in programming
the instrument, as well as the documentations conventions used in this
manual. This chapter also contains a detailed description of the command
tree and command tree traversal.

L]

Truncation Rule

|
Note

HP 1652B/1653B

Pfrogramming Reference

The trancation rule for the keywords used in beaders and parameters is:

If the longform has four or fewer characters, there Is no change in the
shortform. When the longform has more than four characters the
shortform is just the first four characters, unless the fourth character is
a vowel. In that case only the first three characters are used.

There are some commands that do not conform (o the truncation rule by
design. These will be noted in their respective description pages.

Some examples of how the truncation rule is applied to various commands
are shown in table 4-1.

Longform Shortform
OFF OFF
DATA DATA
START STAR
LONGFORM LONG
DELAY bEL
ACCUMULATE ACC

Table 4-1. Keyword Truncation

Programming and Documentation Conventions
4-1

Infinity The representation of infinity is 9.9E + 37 for real numbers and 32767 for

Representation integers. This is also the value returned when a measurement cannot be
made.

]

Sequential and

IEEE 488.2 makes the distinction between sequential and overlapped

commands. Sequential commands finish their task before the execution of

Ove r'app ed the next command starts, Overlapped commands rur concurrently, and

Commands therefore the command following an overlapped command may be started
before the overlapped command is completed. The overlapped commands
for the HP 1652B/53B are STARt, STOP, and AUT oscale,

.

Response ' IEEE 488.2 defines two times at which query responses may be buffered.

Generation The first is when the query is parsed by the instrument and the second is
when the controller addresses the instrument to talk so that it may read
the response. The HP 1652B/53B will buffer responses to a query when it
is parsed.

L

Syntax Diag rams At the beginning of each of the following chapters are syntax diagrams

showing the proper syntax for sach command. All characters contained in
a circle or oblong are literals, and must be entered exactly as shown.
Words and phrases contained in rectangles are names of items used with
the command and are described in the accompanying text of each
command. Each line can only be entered from one direction as indicated
by the arrow on the entry line. Any combination of commands and
arguments that can be generated by following the lines in the proper
direction is syntactically correct. An argument is optional if there is a
path around it. When there is a rectangle which contains the word
"space,” & white space character must be entered. White space is optional
in many other places.

Programming and Documentation Conventions HP 18528/1653B

4-2

Programming Reference

Notation The folowing conventions are used in this manual when describing
Conventions and programming rules and examples:
Definitions < > Angular brackets enclose words or characters that are used

to symbolize a program code parameter or a bus command.

n= "is defined as." For example, A 1= B indicates that A
can be replaced by B in any statement containing A .

*or"; indicates a choice of one element from a list. For
example, A | B indicates A or B, but not both.

An ellipsis (trailing dots) is used to indicate that the
preceding element may be repeated one or more times,

] Square brackets indicate that the enclosed items are optional.

{} When several items are enclosed by braces and separated
by |s, one, and only one of these elements must be selected, :

XXX Three Xs after an ENTER or QUTPUT statement
represent the device address required by your controller,

In addition, the following definition is used:

<NL> == Linefeed (ASCH decimal 10},

HP 165213/1653B Programming and Documentation Conventions
Programming Relerence 4-3

The Command
Tree

Command Types

Tree Traversal Rules

The command tree (figure 4-1) shows all commands in the HP 1652B/53B
logic analyzers and the relationship of the commands to each other.
Parameters are not shown in this figure. The command tree allows you to
see what the HP 1652B/53B’s parser expects to receive. All legal headers
can be created by traversing down the tree, adding keywords until the end
of a branch has been reached,

As shown in chapier 1's "Header Types” section, there are three types of
headers. Each header has a corresponding command type. This section
shows how they relate to the command tree.

System Commands. The system commands reside at the top level of the
command tree. These commands are always parsable if they occur at the
beginning of a program message, or are preceded by a colon. START and
STOP arc examples of system commands,

Subsystem Commands. Subsystem commands are grouped together
under a common node of the tree, such as the MMEMORY commands.

Common Commands. Common commands are independent of the tree,
and do not affect the position of the parser within the tree. *CLS and
*RST are examples of common commands.

Command headers arc created by traversing down the command tree. For
each group of keywords not separated by a branch, one keyword must be
selected. As shown on the tree, branches are always preceded by colons.
Do not add spaces around the colons. The following two rules apply to
traversing the tree:

A leading colon (the first character of a header) or a <terminator >
places the parser at the root of the command tree.

Executing a subsystem command places you in that subsystem (until a
leading colon or a <terminator > is found). The parser will stay at the
colon above the keyword where the last header terminated. Any
command below that point can be sent within the current program
message without sending the keywords(s) which appear above them,

Programming and Documentation Conventions HP 1652B/1653B

4-4

Programming Reference

Examples

Example 1

Example 2

Example 3

HP 1652B/1653B8
Programming Reference

'The following examples are written using HP BASIC 4.0 on a HP 9000
Series 200/300 Controller, The quoted string is placed on the bus,
followed by a carriage return and linefeed (CRLF).

The three Xs (XXX) shown in this manual after an ENTER or QOUTPUT
statement represents the device address required by your controller.

QUTPUT X0 SYSTEM:HEADER ON;LONGFORM ON*

In example 1, the colon between SYSTEM and HEADER is necessary
since SYSTEM:HEADER is a compound command, The semicolon
between the HEADER command and the LONGFORM command is the
required < program message unit separator >. The LONGFORM
command does not need SYSTEM preceding it, since the
SYSTEM:HEADER command sets the parser to the SYSTEM node in
the tree.

OUTPUT X004 MMEMORY!INITIALIZE; STORE 'FILE__','FILE DESCRIPTION™

or

QOUTPUT XX MMEMORY:INITIALIZE"
QUTPUT X00G MMEMORY:STORE 'FILE _",'FILE DESCRIPTION™

In the first line of example 2, the "subsystem selector” is implied for the
STORE command in the compound command. The STORE command
must be in the same program message as the INITIALIZE command,
since the < program message terminator > will place the parser back at
the root of the command tree.

A second way to send these commands is by placing "MMEMORY?"
before the STORE command as shown in the fourth line of example 2.

QUTPUT X00C : MMEM: CATALDG?,: SYSTEM:PRINT ALL"
In example 3, the leading colon before SYSTEM teils the parser to go

back to the root of the command tree. The parser can then see the
SYSTEM:PRINT command.

Programming and Documentation Conventions
45

i T i i ! i
PPOWer RMODe STARt STOP MMEM: MACHine{T[E}:

l \ T
DL{St: WL%St: SYSFem:
COLumn XSTote ARMBnc
AUToload LDAD: SToRe - LINE OSTote DATA
CATO‘DQ | . 1 ' OTIMe Dse
e CONF i g CONF i g XTiMe ERRor
CoPY
ASSemb ter HEADer
DOWNIood KEY
INITiglize I LER
PACK ARM -
PURGe ASSign LOCKout
REName AUToscale LONGform
UPLoad NANE MENY
TYPE MESE
ME SR
PRINt
SETup
I]] i T i
SFOTmct: STﬁcce: SL?St: TFO?MGtZ TTﬁcce: TWAVﬁform:
CLOCk BRANChH COLumn LABe! AMODe ACCumu fote
CPERiod FIND DATA REMove DURation GELay
LABe | PREStore LINE THReshold EDGE INSert
MASTer RANGe MMCDe GLITeh MMGDe
REMave RESTart QOPATtern PATTarn OCONdition
SLAVe SEQuence (OSEarch OPATtern
THReshold STORe OSTate O3k arch
TAG CTAG O7IMe
TERM RUNT 1 | RANGe
TAVer age REMove
TMAX § tmum RUNTI |
TMIN imum SPERIod
Cres08s2 VRUNS TAVerage
X0Tag TMAX imum
Cormmon XPATtern TMINi mum
Commands X$Earch VRUNs
WOLS XSTote XCONd i tion
<ESE XTAG XOT ime
+ESR XPATtern
J J f | X8Earch
= 10N COMPare: SCHort: SWAVeform: SYMBOL:
SOPC i ! | | XT IMe
*RST CMASK ACCumulote ACCumulicte BASE
*SRE cory HAX 8 DELay PaTTern
518 DATA VAXis INSert RANGe
¥ TST FIND RANGe REMove
WAL RANGe REMove WIDTh
RUNT i !

Figure 4-1. HP 1652B/53B Command Tree

Programming and Documentation Conventions

4.6

HP 1652B/1653B
Programming Reference

-

SCCPe:
1
AUToscale
SMODe
T T T T 1
CHA?net: TRZ?ger: ACO?ire: IIM%base: WAVﬁform: MEA?ure:
COUFPting LEV{IE | COUNE DELay COUNt ALL
OFFSet MODE TYPE MODE DATA FALLtime
PROBe SLOPe RANGe FORMat FREQuency
RANGe SOURce POINtSs NWID Lk
PREamb i e CVERshoot
RECord PER od
SOURce PREShoot
TYPE PWIDth
VALid RISetime
XINCremert SCOURce
XORigin VAMP | i tude
XREFerence VBASe
YINCrement VMAX
YORigin VMIN
01850881 YREFerence VPP
VTOP

Figure 4-1. HP 16852B/63B Command Tree (continued)

HP 1652B/1653B
Programming Reference

Programming and Documentation Conventions

4.7

Table 4-2. Alphabetic Command Cross-Reference

Command Where used Command Where nsed

ACCumulate SCHart, SWAVeform, GLITch TTRace
TWAVeform HAXis SCHart

ALL MEASure HEADer System

AMODe T*Race INITialize MMEMory

ARM MACHine INSert SWAVeform, TWAVeform

ARMBnc System KEY System

ASSign MACHine L.ARel SFORmat, TFORmat

AUToload MMEMory LER System

AUToscale MACHine, $COPe LEVel TRIGger

BASE SYMBol LINE DLISt, SLISt

BRANCch STRace LOAD MMEMory

CATalog MMEMory LOCKout System

CLOCKk SFORmat LONGform System

CMASk COMPare MASTer SFORmat

COLumn DLISt, SLISt MENU System

COPY COMPare, MMEMory MESE System

COUNt ACQuire, WAVeform MESR System

COUPling- CHANnel MMODe SLISt

CPERiod SFORmat MODE TIMebase, TRIGger

DATA COMPare, SLISt, System, NAME MACHine
‘WAVEform NWIDth MEASure

DELay SWAVeform, TIMebase, OCONdition TWAVeform
TWAVeform OFFSet CHANRel

DOWNload MMEMory OPATtern SLISt

DSP System MMODe TWAVeform

DURation TTRace OPATtern TWAVeform

EDGE TTRace OSEarch SLISt, TWAVeform

ERRor System OSTate SLISt, WLISt

FALLtime MEASure OTAG SLISt

FIND COMPare, STRace OTIMe TWAVeform, WLISt

FORMat WAVeform OVERshoot MEASure

FREQuency MEASure PACK MMEMory

Programming and Documentation Conventions

4.8

HP 1652B/1653B
Programming Reference

Table 4-2. Aiphabetic Command Cross-Reference (continued)

Command !

Command Where used Whers used
PATTem SYMBol, TRace STORe MMEMory, STRace
PERiod MEASure TAG STRace
POINts WAVeform TAVerage SLISt, TWAVeform
PPOWer System TERM STRace
PREamble WAVeform THReshold SFORmat, TFORmat
PREShoot MEASure T™MAXimum SLISt, TWAVeform
PREStore STRace TMINimum SLISt, TWAVeform
PRINt System TYPE ACQuire, MACHine,
PROBe CHANnel WAVeform
PURGe MMEMory UPLoad MMEMory
PWIDth MEASure VALid WAVeform
RANGe CHANnel, COMPare, VAMPlitude MEASure
STRace, SWAVeform, VAXis SCHart
SYMBol, TIMebase, VBASe MEASure
TWAVeform VMAX MEASure
RECord WAVeform VMIN MEASure
REMove SFORmat, SWA Veform, VPP MEASure
Symbol, TFORmat, VRUNs SLISt, TWAVeform
TWAVeform VTCP MEASure
REName MMEMaory WIDTh SYMBol
RESTart STRace XCONdition TWAVeform
RiISetime MEASure XINCrement WAVeform
RMODe System XORigin WAVeform
RUNTil COMPare, SLISt, XOTag SLISt
WAVeform XOTime TWAVeform
SEQuence STRace XPATtern SLISt, TWAVeform
SETup System XREFerence WAVeform
SLAVe SFORmat XSEarch SLISt, TWAVeform
81.0Pe TRIGger XSTate SLISt, WLISt
SMODe SCOFe XTAG SLISt
SOURce MEASure, TRIGger, XTiMe TWAVeform, WLISt
WAVeform YINCrement WAVeform
SPERiod TWAVeform YORigin WAVeform
STARt System YREFerence WAVeform
STOP System

HP 1652B/1653B
Programming Reference

Programming and Documentation Conventions

4-9

Command Set
Organization

Subsystems

The command set for the HP 1652B/53B logic analyzer is divided into 24
separate groups: common commands, system commands and 22 sets of
subsystem commands. Each of the 24 groups of commands is described in
the following chapters, Each of the chapters contain a brief description of
the subsystem, a set of syntax diagrams for those commands, and finally,
the commands for that subsystem in alphabetical order. The commands
are shown in the longform and shortform using upper and lowercase
letters. As an example AUToload indicates that the longform of the
command is AUTOLOAD and the shortform of the command is AUT.
Each of the commands contain a description of the command and its
arguments, the command syntax, and a programming example.

There are 19 subsystems in this instrument. In the command tree (figure
4.1} they are shown as branches, with the node above showing the name of
the subsystern, Only one subsystem may be selected at a time. At power
on, the command parser is set to the root of the command tree, and
therefore no subsystem is selected. The 22 subsystems in the

HP 1652B/53B are:

e SYSTem - controls some basic functions of the mstrument,
MMEMory - provides access to the internal disk drive,

DLISt - allows access to the dual listing function of two state
analyzers.

WLISE - allows access to the mixed (timing/state) functions,
MACHine - provides access to analyzer functions and subsystems.
SFORmat - allows access to the state format functions.

STRace - allows access to the state trace functions.

SLISt - allows access to the state listing functions,

SWAVeform - allows access to the state waveforms functions.
SCHart - allows access to the state chart functions,

COMPare - allows access to the compare functions.

TFORmat - allows access to the timing format functions,

TTRace - allows access to the timing trace functions.
TWAVeform - allows access to the timing waveforms functions.
SYMBol - allows aceess to the symbol specification functions.
SCOPe - provides access to oscilloscope functions and subsystems.
CHANRel - provides access to the vertical axis of the oscilloscope
TRIGger - allows control of the trigger conditions

ACQuire - allows control of how the oscilloscope data is acquired.

e ® & & & ¢ & & & T ¢ & & 0 88

Programming and Documentation Conventions HP 1652B/16538

4-10

Programming Reference

e TIMebase - allows control of the timebase (horizontal axis) of the
oscilloscope.

© WAVeform - allows access to data transfer commands,

¢ MEASure - allows you to control automated measurements.

]
Pr ogram The program examples given for each command in the following chapters
Examples and appendices were written on an HP 9000 Series 200/300 controller

using the HP BASIC 40 language. The programs always assume a generic
address for the HP 1652/53B of XXX.

In the following examples, special attention should be paid to the ways in
which the command and/or query can be sent. Keywords can be sent
using either the longform or shortform (if one exists for that word). With
the exception of some string parameters, the parser is not case-sensitive.
Upper-case (capital) and lower-case (small) letters may be mixed freely.
System commands like HEADer and LONGform allow you to dictate
what forms the responses take, but have no affect on how you must
structure your commands and queries.

The following commands all set Timing Waveform Delay to 100 ms.
o keywords in longform, numbers using the decimal format,

QUTPUT XXX;":MACHINEL: TWAVEFORM:DELAY .17

. keyworﬂs in shortform, numbers using an exponential format. -

QUTPYT XXX;":MACHI : TWAV:DEL 1E-1"

o keywords in shortform using lower-case letters, numbers using a
suffix,

CUTPUT X¥X;":machl:twav:del 100ms"

%‘ In these examples, the colon shown as the first character of the command
Note is optional on the HP 1652B/53B.

The space between DELay and the argument is required.

HP 1652B/16538 Programming and Documentation Conventions
Programming Reference 411

Common Commands 5
[

introduction The common commands are defined by the IEEE 483.2 standard, These
commands will be common to all instruments that comply with this
standard.

The common commands control some of the basic instrument functions,
such as instrument identification and reset, how status is read and cleared,
and how commands and queries are received and processed by the
instrument.

Common commands can be received and processed by the HP 1652B/53B
whether they are sent over the bus by themselves or as partof a
multiple-command string. If an instrument subsystem has been selected
and a common command is received by the instrument, the instrument will
remain in the selected subsystem. For example, if the instruction

“:MMEMORY:INITIALIZE; *CLS; STORE "FILE__ " DESCRIFTION"

is received by the instrument, the instrument will initialize the disk and
store the file; and clear the status information. This would not be the case
if some other type of command were received within the program
message. For éxample, the program message

“MMEMORY:INITIALIZE;: SYSTEM:HEADERS ON:MMEMORY
:STORE 'FILE_ ','DESCRIPTION"

would initialize the disk, turn headers on, then store the file. In this
cxample :MMEMORY must be sent again in order to reenter the
mmemory subsystem and store the file,

HP 1852B/1653B Common Commands
Programming Reference 61

Each status register has an associated status enable (mask) register. By
setting the bits in the mask value you can select the status information you
wish to use. Any status bits that have not been masked (enabled in the
enable register) will not be used to report status summary information to
bits in other status registers.

Refer to appendix B, "Status Reporting,” for a complete discussion of how
to read the status registers and how to use the status information available
from this instrument.

Refer to figure 5-1 for the common commands syntax diagram.

f—-®= 1

[|

w
'l
]
o
o
Lged
1
3
&
n
~
¥y

CHEE0EM

mask = An integer, 0 through 255, This number is the sum of ail the bits in
the mask corresponding to conditions that are enabled. Refer to the
*ESE and *SRE commands for bit definitions in the enable regist

Figure 5-1. Common Commands Syntax Diagram

Common Commands HP 1652B/16538
52 Programming Reference

*CLS

R
*CLS (Clear Status) command

The *CLS common command clears the status data structurss, mcluding
the device defined error queue. If the *CLS command immediately
follows a < terminator >, the output quene and the MAV (Message
Available) bit will be cleared.

Command Syntax: »*CLS

Example: OUTPUT XXX;"*CLs"

|"! Refer to appendix B, "Status Reporting,” for a complete discussion of
Note w status,

HP 1652B/16538 Common Commands
Programming Reference 53

*ESE

*ESE

Note !ﬁ

Command Syntax:

where:

< mask>»

Example:

Common Commands
5-4

(Event Status Enable) command/query

The *ESE command sets the Standard Event Status Enable Register bits.
The Standard Event Status Enable Register contains a mask value for the
bits to be enabled in the Standard Event Status Register. A one in the
Standard Event Status Enable Register will enable the corresponding bit
in the Standard Event Status Register. A zero will disable the bit, Refer
to table 4-1 for information ahout the Standard Event Status Enable
Register bits, bit weights, and what each bit masks,

The *ESE query returns the current contents of the enable register,

Refer to appendix B, "Status Reporting,” for a complete discussion of
status,

*ESE <mask>

1= integer from 0 1o 255

QUTPUT XXX;"*ESE 32"

In this example, the *ESE 32 command will enable CME (Command
Error), bit 5 of the Standard Event Status Enable Register. Therefore,
when a command error occurs, the event summary bit (ESB) in the Status
Byte Register will also be set.

HP 1852B/1653B
Programming Reference

*ESE

Query Syntax: *ESE?
Returned Format: <mask> <NL>

Example: 10 DIM Event$ [100]
20 QUTPUT XXX;**ESE?”
30 ENTER XXX;Event$
40 PRINT Event$
50 END

Table 5-1. Standard Event Status Enable Register

Bit Weight Enables

7 128 PON - Power On

6 64 URQ - User Request

5 32 CME - Command Error

4 16 EXE - Execution Error

3 8 DDE - Device Dependent Error
2 4 QYE - Query Error

1 2 RQC - Reguest Control

0 1 OPC - Operation Complete

High - enables the ESR bit

HP 1652B/16538 Common Commants
Programming Reference 5-5

*ESR

*ESR

Note ﬁ

Query Syntax:
Reiurned Format:

‘where:

< gtatus >

Example:

Commion Commands
5-6

(Event Status Register) query

The *ESR query returns the contents of the Standard Event Status
Register. Reading the register clears the Standard Event Status Repister,

The bits in this register must be set by sending the *ESE command before
sending the *ESR guery (see "*ESE command/query" on page 5-4).

*ESR?

<status > <NL>

i integer from 0 {0 288

10 DIM Esr_event$[106]
20 QUTPUT XXX,"™ESRT"
30 ENTER XXX;Esr_event$
40 PRINT Esr_event$

50 END

With the example, if a command error has occurred the variable
"Esr_event” will have bit § (the CME bit) set.

Table 4-2 shows the Standard Event Status Register. The table shows
each bit in the Standard Event Status Register, and the bit weight. When
you read Standard Event Status Register, the value returned is the total bit
weights of all bits that are high at the time you read the byte,

HP 1652B/16538
Programming Reference

*ESR

Table 5-2. The Standard Event Status Register.

BIT BIT BIT CONDITION
WEIGHT NAME
7 128 PON | 0 = Register read - not in power up mode
1 = Powerup
6 64 URQ | 0 = userrequest - not used - always zero
5 32 CME | 0 = nocommand errors
1 = acommand error has been detected
4 16 EXE | 0t = noexecution errors
1 = an execution error has been detected
3 8 DDE | 0 = nodevice dependent ermrors
1 = a device dependent error has been detected
2 4 QYE | 0 = no query errors
1 = a query error has been detected
1 2 RQC | 0 = request control - NOT used - always 0
0 1 OPC | 0= operation is not complete
1 = operation is complete
0 = False = Low
1 = TFrue = High

HP 1652B/16538
Programming Reference

Common Commands

5-7

*IDN

*IDN

Query Syntax:
Returmed Format:

where;

< revision code >

Example:

Common Commands
5-8

(ldentification Number) query

The *IDN? query allows the instrument to identify itself, It returns the
string:

"HEWLETT-PACKARD, 16528, 0,REY <revision code>"
An *IDN? query roust be the last query in a message. Any queries after
the *IDN? in the program message will be ignored.

*IDNT

HEWLETT-PACKARD, 16528,0,REV <revision code >

1= four-digit code representing ROM revision

10 DIM td${i00]

20 QUTPUT XXX;"*IDN?"
30 ENTER XXX;1d$

40 PRINT Id$

50 END

HP 1652B/1653B
Programming Reference

*OPC

Command Syntax:
Example:

Query Syntax:
Returned Format:

* Example:

HP 16528/1853B

Programming Reference

*OPC

(Operation Complete) command/query

The *OPC command will cause the instrument to set the operation
compiete bit in the Standard Event Status Register when all pending
device operations have finished. The commands which affect this bit are
the Overlapped Commands. An Overlapped Command is 2 command

. that allows execution of subsequent commands while the device

operations initiated by the Overlapped Command are still in progress.
The overlapped commands for the HP 1652B/53B are:

STAR
STOP
AUToscale

The *OPC query places an ASCII 1" in the output queue when all
pending device operations have been completed.

*OPC

BUTPUT XXX;"*0PC”
*OPC?

1<NL>

10 DIM Status$[1003
20 QUTPUT XXX;"*0PCT™
30 ENTER XXX;Status$
40 PRINT Status$

50 END

Common Commands
' 5.9

*RST
I
*RST (Reset) command

The *RST command (488.2) sets the HP 1652B/53B to the power-up
default settings as if no autoload file was present,

Command Syntax: *RST

Example: OUTPLT XXX:"*RST"

Commen Commands HP 18528/1653B
5-10 Programming Reference

*SRE

]
Note %

Command Syntax;:

where:

<mask >

Example:

HP 1652B/1653B

Programming Reference

*SRE

(Service Request Enable) command/query

The *SRE command sets the Service Reqguest Enable Register bits. The
Service Request Enable Register contains a mask value for the bits to be
enabled in the Status Byte Register. A one in the Service Request Enable
Register will enable the corresponding bit in the Status Byte Register. A
zero will disable the bit. Refer to table 5-3 for the bits in the Service
Request Enable Register and what they mask.

The *SRE query returns the current value.

Refer to appendix B, "Status Reporting," for 2 complete discussion of
status.

*SRE < mask >

w = integer from Qo 285
OUTPUT XAX;"*SRE 18"

This example forces the MAV bit high (see table 3-3).

Common Commands
511

*SRE

Query Syntax:
Returned Format:

where:

<mask>

Example:

*SRE?

<mask> <NL>»

w sum of all bits that are set - 0 through 285

10 BIM Sre_value$[100]
20 OUTPUT XXX;“*SRET"
30 ENTER XXX;Sre_valuel
40 PRINT Sre_value$

50 END

“fable 5-3. HP 1852B/53B Service Request Enable Register

Bit Weight Enables
15-8 not nsed
7 128 not used
6 64 MSS - Master Summary Status
5 32 ESB - Event Status
4 16 MAYV - Message Available
3 8 not used
2 4 not used
1 2 LCL - Local
0 1 MSB - Module Summary
Common Commands

5-12

HFP 1652B/1653B
Programming Reference

- *STB

R
*STB (Status Byte) query

The *STB query returns the current value of the instrument’s status byte.
The MSS (Master Summary Status) bit and not RQS (Request Service)
bit is reported on bit 6. The MSS indicates whether or not the device has
at least one reason for requesting service, Refer to table 5-4 for the

- meaning of the bits in the status byte,

gu:‘ Refer to appendix B, "Status Reporting,” for a complete discussion of
Note status.

Query Syntax: +*s78?
Returned Format. <value> <Ni.>

where:

<value> 1= integer from 0 1o 255

Example: 10 DI¥ Stb_value$ {150
20 OUTPUT XXX;"*$TB7"
30 ENTFR XXX;3tb value$
40 PRINT Stb_value$
50 END

HP 1652B/1653B Common Commands
Programming Reference 5-13

*$TB

Table 5-4. The Status Byte Register

BIT BIT BIT CONDITION
WEIGHT NAME
7 128 - { = not used
6 o4 MS3S (t = instrument has no reason for service
1 = instrument is requesting service
5 32 ESB { = no event status conditions have occurred
1 = an enabled event status condition has occured
4 16 MAYV © = no cutput messages are ready
1 = an output message is ready
3 8 not used
2 4 - not used
1 2 LCL 0 = a remote-to-local transition has not occurred
1 = a remote-to-local transition has occurred
0 i MSB 0 = HP 1652B/1653B has activity to report
1 = no activity to report

0 = False = Low
1 = True = High

Common Commands HP 1652B/1653B
5-14 Programming Reference

*WAI

*WAI

{(Walit) command

The *WAI command causes the device to wait until the completion of all
overlapped commands before executing any further commands or queries.
An overlapped command is a2 command that allows execution of
subsequent commands while the device operations initiated by the

- gverlapped command are still in progress. The overlapped commands for

Command Syntax:

Example:

HP 16528/1653B
Programming Reference

the HP 1652B/53B are:

STARL
STOP
AlToscale

WAl

DUTPUT XXX;"*WAI"

Common Commands
515

System Commands 6

Introduction

HP 1652B/1653B
Programming Reference

System commands control the basic operation of the instrument including
formatting query responses and enabling reading and writing to the
advisory line of the instrument’s display, They can be called at anytime.
The HP 1652B/53B System commands are:

ARMBnc
DATA

DSP (display)
ERRor
HEADer
KEY

LER (Local Event Register)
LOCKout
LONGform
MENLUS
MESE
MESR
PRINt
SETup

L 3 BN BN BN BN R NE BN B BN R B N

In addition to the system commands, there is are three run control
commands and a preprocessor power supply condition query. These
commands are:

PPOWer
RMODe
STARt
STOP

The run control commands can be called at anytime and also control the
basic operation of the logic analyzer. These commands are at the same
level in the command tree as SYSTem; therefore they are not preceded by
the ;:SYSTem header.

System Commands
61

System Commands
62

"! BYSTem “—-O-CARMBncH space : mach_num I

G

ARMBnc?

W space }—-b-] biock dote in # formot

DATA?

—b@—b{ spacs]—-—bl message_string 1

Lol ERROT? }

-—(}EADei)ﬁ—i%spucef —/bFF§§>

¥

femnl MEAD @Y ?)

m*—<:::)ww4{ space Fmﬂ{ keymceaeg

LER?

()

—-><LOCKcu ?H spoce ’—E/\LFIQ:}J
(o)

et | OCKOUL?

PIBHOSOR ‘L

Figure 6-1. System Commands Syntax Diagram

HP 1652B/1653B
Programming Reference

Y ! PR

—b(LONGform)—-h{ space ’—E%La}j -
(onit)

e LONGform? -
—D(MESE)——P-E space M encbie_mosk ; -

—-lv{/PRINt\ space 5CReen -
ALL

-ﬁ{SETupH space M blork gate in ® format : -
ol SETup? }

—bC;RMOOeH space SINGEe} i

(BTARY o

= STOP A
D16305 1 ¢

value = jnteger from G to 255.

menu = integer. Refer to the individual programming manuais for each module and the systern for
specific menu number definitions.

enable_value = integer from 0io 255.

index = jrteger from Oto 5.

block_data = data in IEEE 488.2 format.

string = string of up to 60 alpharumeric characters.

Figure 6-1. System Commands Syntax Diagram (continued)

HP 1652B/1853B Systemn Commands
Programming Referance 6-3

ARMBnc

ARMBnc

Command Syntax:‘
Example:

Query Syntax:
Returned Format:

Example:

System Commands
64

command/query

The ARMBnc command selects the source that will generate the arm out
signal that will appear on tke rear panel BNC labelled External Trigger

Qut.

The ARMBnc query returns the source currently selected,

:SYSTerm:ARMBnc {MACHine{1|2}|SCOPe | NONE}

QB??UT XXX " SYSTEM: ARMENC MACHINEL™
:8YSTem:ARMBnc?
[8Y8Tem:ARMBNe] '{MACHineU 12}|SCOPe |NONE} < NL>

10 DIM Mode$ [100]

20 QUTPUT XXX;" :ARMBNCT™
30 ENTER XXX, Hode$

40 PRINT Mode$

50 END

HP 1652B/1653B

Programming Reference

DATA

DATA command/query

The DATA command allows you to send and receive acquired data to and
from a controler in block form. This helps saving block data for:

¢ Re-loading to the logic analyzer
Processing data later
Processing data in the controller.

The format and length of block data depends on the instruction being
used and the configuration of the instrument. This section describes each
part of the block data as it will appear when used by the DATA
instruction. The beginning byte number, the length in bytes, and a short
description is given for each part of the block data. This is intended to be
used primarily for processing of data in the controller.

@ Do not change the block data in the controller if you intend to send the

Note block data back into the logic analyzer for later processing. Changes
made to the block data in the controller could have unpredictable results
when sent back to the logic analyer.

The SYSTem:DATA query retures the block data.

% The data sent by the SYSTem:DATA query reflects the configuration of

Note the machines when the Iast run was performed. Any changes made since
then through either front-panel operations or programming commands do
not affect the stored confipuration.

HP 1652B/1653B System Commands
Programming Reference 8-5

DATA

For the DATA instruction, block data consists of either 14506 bytes
containing logic analyzer only information or 26794 bytes containing both
logic analyzer and oscilioscope information. This information is captured
by the acquisition systems. The information for the logic analyzer will be
in one of four formats depending on the type of data captured. The logic
analyzer format is described in the "Acquisition Data Description” section
in "Logic Analyzer Block Data." The oscilloscope format is described in
the "Acquisition Data Description” section in "Oscilloscope Block Data.”
Since no parameter checking is performed, out-of-range values could
cause instrument lockup; therefore, care should be taken when
transferring the data string into the HP 1652B/53B.

The <block data> parameter can be broken down into a
<block length specifier > and a variable number of < section>s.

The <block length specifier > always takes the form #8DDDDDDDD.
Each D represents a digit (ASCII characters "0" through "9"). The value of
the eight digits represents the total length of the block {all sections). For
example, if the total length of the block is 14522 bytes, the block length
specifier would be "#800014522",

Each <section > consists of a <section header> and <section data>.
The <section data> format varies for each section and may be any
length. For this instruction, the <section data> section is composed of a
data preamble section and an acquisition data section.

System Commands HP 1652B/1653B
&6-6 Programming Reference

DATA

Command Syntax:
Exampie:

where:

<block data >

< block length specifier >
<lengih>»

< gection >

< saction header>
<saction data>

1
Note '

Query Syntax:
Returned Format:

HP-IB Example:

HP 1652B/1653B
Programming Refergnce

:SYSTem:DATA < block data>

QUTPUT XXX;™:SYSTEM:DATA" <hiock datax

= <block length specifier > < section>..,

= #B<length >

= the total length of all sections in byte format {must be represented with & digits)
1= <sgaction header> <section data>

= 16 bytes, described in the following "Section Header” sections

1= format depends on the type of data

The total length of a section is 16 {for the section header) plus the length
of the section data. So when calculating the value for <length>, don’t
forget to include the length of the section headers.

:8YSTem:DATA?
[:SYSTermDATA] <block data> <NL>

10 DIM Nem$[2], Block$[32000% t allocate enough memery for block data
20 OUTPUT XXX:™:SYSTEM:HEAD OFF"

30 OUTPUT XXX;":5YSTEM:DATAT" ! send data query

40 ENTER XXX USING "#,2A";Num$ tread in #8

50 ENTER XXX USING "#,807;Blocklength! read in hlock length

B0 ENTER XXX USING “£":Block§ ! read in data

70 END

System Commands
&7

DATA

Logic Analyzer The logic analyzer block data is described in the following sections, The

Block Data oscilloscope block data is appended at the end of the logic analyzer block
data when the oscilloscope is on and has acquired and stored waveform
data. The oscilloscope block data is described in "Oscilloscope Block
Data" Iater in this section.

Section Header The section header uses bytes 1 through 16 (this manual begins counting
Description at 1; there is no byte 0). The 16 bytes of the section header are as follows:

1 10 bytes - section name, such as "DATA " (six trailing spaces)
11 1 byte - reserved
12 1 bytes - module ID (31 for HP 1552B/53B)

18 4 bytes - length (14506 for the logic analyzer only and 26794 for both the
logic analvzer and oscilloscope).

Section Data For the SYSTem:DATA command, the < section data> parameter
consists of two parts: the data preamble and the acquisition data. These
are described in the following two sections.

Data Preamble The block data is organized as 160 bytes of preamble information,
Description followed by 1024 14-byte groups of information, followed by 10 reserved
bytes. The preamble gives information for each analyzer describing the
amount and type of data captured, where the trace point occurred in the
data, which pods are assigned to which analyzer, and other information,

Each 14-byte group is made up of two bytes {16 bits) of status for
Analyzer 1, two bytes of status for Analyzer 2, then five sets of two bytes of
information for each of the five 16-bit pods of the HP 1652B. In the

HP 16538, the status and format for the sets of bytes are the same, but the
data in pot valid on pods 3, 4, and 5,

System Commands HP 1652B/1653B
6-8 Programming Reference

DATA

i
Note %

17

19

1
Note '

21

22

HP 1652B/1653B
Programming Reference

One analyzer’s information is independent of the other analyzer’s
information. In other words, on any given ling, one analyzer may contair
data information for a timing machine, while the other analyzer may
contain count information for a state machine with time tags enabled. The
status bytes for each analyzer describe what the information for that line
contains, Therefore, when describing the different formats that data may
contain below, keep in mind that this format pertains only to those pods
that are assigned to the analyzer of the specified type. The other analyzer’s
data is TOTALLY independent and conforms to its own format.

The preamble (bytes 17 through 176) consists of the following 160 bytes:
2 bytes - Instrument ID (always 1652 for HP 1652B and HP 1653B)

2 bytes - Revision Code

The values stored in the preamble represent the captured data currentiy
stored in this structure and not what the current configuration of the
analyzer is. For example, the mode of the data (bytes 21 and 99) may be
STATE with tagging, while the current setup of the analyzer is TIMING.

The next 78 bytes are for Analyzer 1 Data Information.

1 byte - Machine data mode, one of the following values: -
0 = off
1 = state data {with either time or state tags)
2 = state data {without tags)
3 = glitch timing data
4 = transitional timing data

1 byte - List of pods in this analyzer, where a 1 indicates that the
corresponding pod is assigned to this analyzer.

bit& bit 7 bit 6 bit 5 bit 4 bit 3 bit2 bit 1
unused umused Podl Pod2 Pod3 Podd4 Pod5S unused

System Commands
6-8

DATA

System Commands
610

24
25

35

36

a7

47

51

52

53

1 byte - Master chip in this analyzer - When several chips are grouped
together in a single analyzer, one chip is designated as a master chip. This
byte identifies the master chip. A value of 4 represents POD 1, 3 for POD
2,2 for POD 3, 1 for POD 4, and 0 for POD 5.

1 byte - Reserved

10 bytes - Number of rows of valid data for this analyzer - Indicates the
number of rows of valid data for each of the five pods. Two bytes are used
to store each pod value, with the first 2 bytes used to hold POD 5 value,
the next 2 for POD 4 value, and so on.

1 byte - Trace point seen in this analyzer - Was a trace point seen {(value
= 1} or forced (value = ()

1 byte - Reserved

10 bytes - Trace point location for this analyzer - Indicates the row
number in which the trace point was found for each of the five pods. Two
bytes are used to store each pod value, with the first 2 bytes used to hold
POD 5 value, the next 2 for POD 4 value, and so on.

4 bytes - Time from arm to trigger for this analyzer - The number of 40 ns
ticks that have taken place from the arm of this machine to the trigger of
this machine. A value of -1 (all 32 bits set to 1) indicates counter overflow,

1 byte - Armer of this analyzer - Indicates what armed this analyzer (1 =
RUN, 2 = BNC, 3 = other analyzer, 4 = SCOPE)

1 byte - Devices armed by this analyzer - Bitmap of devices armed by this
machine

Lit8 hit 7 hit 6 bit 3 bit 4 bit3 bit2 bit 1
unused unused unused unused SCOPE BNC out Mach.2 Mach.]

A 1in a given bit position implies that this analyzer arms that device,
while a 0 means the device is not armed by this analyzer.

4 bytes - Sample period for this analyzer (timing only) - Sample period at
whick data was acquired. Value represents the number of nanoseconds
between samples.

HP 1652B/1653B
Programming Reference

DATA

57

61

62

€9

B9

Acquisition Data
Description

HP 1852B/1653B
Programming Reference

4 bytes - Delay for this analyzer (timing only) - Delay at which data was
acquired. Value represents the amount of delay in nanoseconds.

1 byte - Time tags on {state with tagging only) - In state tagging mode, was
the data captured with time tags (value = 1) or state tags (value = 0).

1 byte - Reserved

5 bytes - Demaultiplexing (state only) - For each of the five pods (first byte
is POD 5, fifth byte is POD 1) in a state machine, describes multiplexing
of each of the five pods. (0 = NO DEMUX, 1 = TRUE DEMUX, 2 =
MIXED CLOCKS).

1 byte - Reserved

20 bytes - Trace point adjustment for pods - Each pod uses 4 bytes to
show the mmuber of nanoseconds that are to be subtracted from the trace
point described above to get the actuval trace point value. The first 4 bytes
are for Pod 3, the next four are for Pod 4, and so on.

10 bytes - Reserved

The next 78 bytes are for Analyzer 2 Data Information. They are
organized in the same manner as Analyzer 1 above, but they occupy bytes
99 through 176

The acquisition data section consists of 14336 bytes (1024 14-byte groups),
appearing in bytes 177 through 14512, The last ten bytes (14513 through
14522) are reserved. The data contained in the data section will appear in
one of four forms depending on the mode in which it was acquired (as
indicated in byte 21 for machine 1 and byte 99 for machine 2). The four
modes are:

State Data (without tags)

State Data (with either time or state taps)
Glitch Timing Data

s Transitional Timing Data

The following four sections describe the four data modes that may be
encountered. Each section describes the Status bytes {(shown under the
Machine 1 and Machine 2 headings), and the Information bytes (shown
under the Pod 5 through Pod 1 headings).

LR 2N

System Commands
611

DATA

State Data
{(without tags)

177
161
205

714499

State Data (with either

fime or state tags)

System Commands

6-12

Status Bytes. In normal state mode, only the least significant bit (bit 1) is
used. When bit 1is set, this means that there has been a sequence level
transition,

Information Bytes. In state acquisition with no tags, data is obtained from
the target system with each clock and checked with the trace specification,
If the state matches this specification, the data is stored, and is placed into
the memory.

Machi hi P Pod 1*
Status Status Data Data Data Data Data
Status Status Data Data Data Data Data
Status Status Data Data Data Data Data
Status Status Data Data Data Data Data

*The headings are not a part of the returned data,
Status Bytes. In statc tagging mode, the tags indicate whether a given row
of the data is a data line, a count (tag) line, or a prestore line.

Bit 2 is the Data vs, Count bit. Bit 3 is the Prestore vs. Tag bit. The two
bits together show what the corresponding Information bytes represent.

Bi i Information
0 ¢ Acquisition Data
¢ 1 Count
i 0 Prestore Data
i 1 Invalid

I Bit 2is clear, the information contains either actual acquisition data as
obtained from the target system (if Bit 3 is clear), or prestore data (if Bit 3
is set). If Bit 2 is set and Bit 3 is clear, this row’s bytes for the pods
assigned to this machine contain tags. 1f Bit 2 and Bit 3 are set, the
corresponding Information bytes are invalid and should be ignored. Bit 1
1s used only when Bit 2 is clear, Whenever there has been a sequence level
transition Bit 1 will be set, and otherwise will be clear,

HP 1652B/1653B
Programming Reference

DATA

HP 1652B/1653B
Programming Reference

Information Bytes. In the State acquisition mode with tags, data is
obtained from the target system with each clock and checked with the
trace specification. If the state does not match the trace specification, it is
checked against the prestore qualifier. If it matches the prestore qualifier,
then it is placed in the prestore buffer. If the state does not match either
the sequencer qualifier or the prestore qualifier, it is discarded.

The type of information in the bytes labeled Data depends on the Prestore
vs. Tags bit. When the Data bytes are used for prestore information, the

- following Count bytes (in the same column) should be ignored. When the

Data bytes are used for tags, the Count bytes are formatted as
floating-point numbers in the following fashion:

EEEEE MMMMMMMMMMM

The five most-significant bits (EEEEE) store the exponent, and the eleven
least-significant bits (MMMMMMMMMMM) store the mantissa. The
actual value for Count is given by the equation:

Count = (2048 + mantissa) x 2Pt _ 2048

Since the counts are relative counts from one state to the one previous, the
count for the first state in the data structure is invalid,

I time tagging is on, the count value represents the number of 40
nanosecond ticks that have elapsed between the two stored states. In the
case of state tagging, the count represents the number of qualified states
that were encountered between the stored states,

If a state matches the sequencer qualifiers, the prestore buffer is checked.
If there are any states in the prestore buffer at this time, these prestore
states are first placed in memory, along with a dummy count row. After
this check, the qualified state is placed in memory, followed by the count
row which specified how many states (or 40 ns ticks) have clapsed since
the last stored state. If this is the first stored state in memory, then the
count information that is stored should be discarded.

System Commands
613

DATA

177
181
205
219

14485
14489

Glitch Timing Data

System Commands

6-14

Status Status Data Data Data Data Data
Status Status @ ® @ ® ®

Status Status Data Data Data Data Data
Status Statns Count Count Count Count Count
Status Status Data Data Data Data Data
Status Status Count Count Count Count Count

*The headings are not a part of the returned data.

® = Invalid data

Status Bytes. In glitch timing mode, the status bytes indicate whether a
given row in the data contains actual acquisition data information or glitch
information.

Bit 115 the Prata vs. Glitch bit, If Bit 1 is set, this row of information
contains glitch information. If Bit 1 isclear, then this row contains actual
acquisition data as obtained from the target system.

Information Bytes. In the Glitch timing mode, the target system is
sampled at every sample period. The data is then stored in memory and
the glitch detectors are checked. If a glitch has been detected between the
previous sample and the current sample, the corresponding glitch bits are
set. The glitch information is then stored. I this is the first stored sample
in memory, then the glitch information stored should be discarded.

HP 16528/16538
Programming Reference

177
191
205
219

14485
14486

Transitional Timing Data

HP 1652B/1653B

Prograraming Reference

achine | achipe Pod Pog ;

Status Status Data Data Dala Data Data
Status Status @ @ ® ® ®
Status Status Pata Data Data Data Data
Status Status Gliteck Glitch GHich Glitch Glitch
Status Status Data Data Data Data Data
Status - Status Glitch Glitch Glitch Glitch GEtch

*The headings are not a part of the returned data.
® = Invalid data

Status Bytes. In transifional timing mode, the status bytes indicate
whether a given row in the data contains acquisition information or
transition count information.

e 10.0 bite 87 hits 65 bite 43 bits 2
Pod5 Pod4 Pod3 Pod2 Podl

Each pod uses two bits to show what is being represented in the
corresponding Information bytes. Bits 10, 8, 6, 4 and 2 are set when the
appropiate pod’s Information bytes represent acquisition data, When that
bit is clear, the next bit shows if the Information bytes represent ihe first
word of a count. Together there are three possible combinations:

10 - This pod's Information bytes contain acquisition data as obtained from
the target system.

01 - This pod’s Information bytes contain the first word of a count.

00 - This pod’s Information bytes contain part of a count other than the
first word,

System Commands
615

DATA

Note %

Note @

System Commands
6-16

Information Bytes., In the Transitional timing mode the logic analyzer
performs the following steps to obtain the information bytes:

1. Four samples of data are taken at 10 nanosecond intervals. The data is
stored and the value of the last sample is retained.

2. Four more samples of data are taken. If any of these four samples differ
from the last sample of the step 1, then these four samples are stored
and the last value is once again retained,

3. Hf ail four samples of step 2 are the same as the last sample taken in step
1, then no data is stored, Instead, a counter is incremented. This
process will continue until a group of four samples is found which
differs from the retained sample. At this time, the count will be stored
in the memory, the counters reset, the current data stored, and the last
sample of the four once again retained for comparison.

The stored count indicates the number of 40 ns intervals that have elapsed
between the old data and the new data. '

The rows of the acquisition data may, therefore, be either four rows of
data followed by four more rows of data, or four rows of data followed by
four rows of count. Rows of count will always be foHowed by four rows of
data except for the last row, which may be cither data or count.

This process is performed on a pod-by-pod basis. The individual status
bits will indicate what each pod is doing,

HP 1652B/16538
Programming Reference

DATA

Example:
177
1H
205
219
233
247
261
275
289
303
317
331
345
259
373
387

14487
14471
14485
14489

HP 1652B/1653B
Programming Reference

The following table is just an example. The meaning of the Information

bytes (Data or Count) depends upon the corresponding Status bytes,

Machi Machine 2 Pod5 Pod4 Pod3d Pod2 Podl®

Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status

Status
Status
Status
Status

Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status
Status

Status
Status
Statns
Status

Data
Data
Data
Data
Data
Data
Data
Data
Count
Count
Count
Count
Data
Data
Data
Data

Data

Data
Data
Data

Data
Data
Data
Data
Count
Connt
Count
Count
Data
Data
Data
Data
Data
Data
Data
Data

Data
Data
Data
Data

Data
Data
Data
Data
Count
Count
Count
Count
Data
Data
Data
Data
Count
Count
Count
Count

Data
Data
Data
Data

*The headings are not a part of the returned data.

Data
Data
Data
Data
Data
Data
Data
Data
Count
Count
Count
Count
Data
Data
Data
Data

Data
Data
Data
Data

Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data

Data

" Data

Data
Data

System Commands

6-17

DATA

Oscllloscope
Block Data

Oscilioscopé
...... Data Section

Section Header
Description

14523
14533
14534
14535
Section Data

System Commands

6-18

The oscilloscope block data is described in the following sections. This
data is appended to the logic analyzer block data and is present only when
the oscilloscope is on and waveform data has been acquired and stored,

The oscilloscope data contains both a section header and section data
similar to the logic analyzer for both of its sections. The oscilloscope block
data sections are Oscilloscope Data and Oscilloscope Display Data.

¢ Oscilloscope Data - the raw data captured on the last acquisition.

® Oscilloscope Display Data - the segment of data displayed after
each acquisition.

The oscilloscope data and oscilloscope display data sections are sent only
when the oscilloscope is on and there is waveform data stored in the
oscilloscope memory .

The Oscilloscope Data section contains the raw data the oscilloscope
acquired on the last acquisition.

The oscilloscope data < section header > used bytes 14523 through 14539,
The 16 bytes of the section header are as follows:

10 bytes - Section name, "SCOPEDAT * (two trailing spaces)
1 byte - Reserved (always 0)

1 byte - Unused

4 bytes - Length of oscilloscope data

The oscilloscope raw data < section data> contains the initially acquired
data. Each data unit is contained in a byte. The lower six bits contain the
data, while the upper two bits are not used and as a result, each data unit
can represent a value from 0 to 63. The total number of bytes is this
section is 4096 with the first 2048 bytes for channel 1 and the remaining
2048 bytes for channel 2,

HP 1652B/16538
Programming Reference

DATA

14539
16587

Oscilloscope
Display Data
Section

]
Note %

186835
22731

HP 1652B/1653B
Programming Reference

2048 bytes - raw oscilloscope data for channel 1.

2048 bytes - raw oscilloscope data for channel! 1.

The display data section <section data> contains the initial data
displayed after an acquisition. Each data unit is represented by a 16 bit
value which is gencrated by taking the raw oscilloscope data and shifting it
the the left by 8 bits.

Changing the seconds-per-division after the oscilloscope has stopped will
change the data displayed on the screen but it will not change the display
data in this section.

4096 bytes - Displayed oscilloscope data for channel 1
4096 bytes - Displayed oscilloscope data for channel 2

System Commands
6-19

DSP
IO

DSP {Display) command

The DSP command writes the specified quoted string to a device
dependent portion of the instrument display.

Command Syntax: :SYSTem:DSP <sting >

where:

<giing> 1= string of up to &0 aiphanumeric characters

Examples: OQUTPUT XXX;“:SYSTEM:0SP 'The message goes here'™

System Commands HP 1852B/16538
620 Programming Reference

ERRor

Query Syntax:
Returned Format:

Example:

HP 1652B/1653B
Programming Reference

ERRor

query

The ERRor query returns the oldest error number from the error queue.
A complete list of error numbers for the HP 1652B/53B is shown in
appendix C, "Error Messages.” If no errors are present in the error queue,
a zero is returned.

BYSTem:ERRor?
[:8YSTerm:ERRor] <efror number> <NL>

10 QUTPUT XXX;":SYSTEM:ERRORT™
20 ENTER XXX;Err_num

30 PRINT Err_num

40 END '

Systemn Commands
6-21

HEADer

‘HEADer

Command Syntax:
Exampie:

Query Command:
Heturned Format:

Example:

i
Note '@

System Commands
622

command/guery

The HEADER command tells the instrument whether or not to output a
header for query responses. When HEADer is set to ON, guery
responses will include the command header.

The HEADer query returns the current state of the HEADer command.

:8YSTem:HEADer {{ON|1}|{OFF|0}}
DUTPUT XXX, :SYSTEM:HEADER ON"
:8YSTermn:HEADer?

[:8YSTern:HEADer] {1 go}mu‘

10 DIM Mode$ [10C]

20 QUTPUT XXX;":SYSTEM:HEADERT"
30 ENTER XXX;Mode$

40 PRINT Mode$

50 END

Headers should be turned off when returning values to numeric variables.

HP 1652B/1653B
Programming Reference

KEY

1
Note .'Jb

Command Syntax:

where:

<key_code>

Example:

HP 1652B/1653B
Programming Reterence

KEY

command/query

The KEY command allows you to simulate pressing a specified
front-panel key. Key commands may be sent over the bus in any order
that is legal from the front panel. Be sure the instrument is in a desired
setup before executing the KEY command. Key codes range from 0 to 36
with 99 representing no key (returned at power-up). See table 6-1 for key
codes.

The external KEY buffer is only two keys deep; therefore, attempting to
send KEY commands too rapidly will cause a KEY buffer overflow error
to be displayed on the HP 1652B/53B screen.

The KEY query returns the key code for the last front- panel key pressed
or the last simulated key press over the bus.

:8YSTem:KEY <key_code>

= integer from 010 36

DUTPUT XXX;":SYSTEM:KEY 24"

System Commands
623

KEY

Guery Syntax:

Returned Format:

:8YSTem:KEY?

[:8YSTem:KEY] <key code> <NL>

Example: 10 DIM Key$[100]

20 OUTPUT XXX:":SYSTEM:KEY?"

30 ENTER XXX; KEY$

40 PRINT KEY$

50 END

Table 6-1. Key codes
Key Value HP 1652B/53B Key Value HP1652B/53B
Key Key

0 RUN 19 D
1 STOP 20 E
2 unused 21 F
3 SELECT 2 unpsed
4 CHS 23 unused
5 Don’t Care 24 Knob left
6] 25 Knob right
7 1 26 L/R Roll
8 2 27 U/D Roll
g 3 28 unused
10 4 29 unused
11 5 30 unused
12] 31 "
13 7 32 Clear Entry
14 8 33 FORMAT/CHAN
15 9 34 TRACE/TRIG
16 A 35 DISPLAY
17 B 36 1/0
18 c 2% Power Up

System Commands
6-24

HP 1652B/1653B
Programming Reference

LER

Query Syntax:
Returned Format:

Example:

HP 1652B/1653B
Programming Reference

LER

{LCL Event Register) query

The LER query allows the LCL (local) Event Register to be read. After
the LCL Event Register is read, it is cleared. A one indicates a
remote-to-local transition has taken place. A zero indicates a
remote-to-local transition has not taken place.

:8YSTem:LER?
[:8YSTem:LER} {O|1}<NL>

1D DIM Event${100]

20 OUTPUOT XXX;':SYSTEM:LER?"
30 ENTER XXX;Event$

40 PRINT Event$

50 END

System Commands
8-25

LOCKout

L.OCKout

Command Syntax:
Example:

Guery Syntax:
Returned Format:

Example:

System Commands
6-26

command/query

The LOCKout command locks out or restores front-panel operation.
When this function is on, all controls (except the power switch) are
entirely locked out.

The LOCKout query returns the current status of the LOCKout command.

:8YSTem:LOCKout {{ON|1}}{OFF|0}}
QUTPUT XXX, ™:SYSTEM:LOCKOUT ON"
:8Y8Ternm:LOCKout?
[:8Y8Tern:LOCKout] {0i1}< NL;

10 DIM Status$[100}

20 QUTPUT XXX;":SYSTEM:LOCKOUT?"
30 ENTER XXX;Status§

40 PRINT Status$

50 END

HP 1652B/18538B
Programming Reference

LONGform

Command Syntax:
Exarmnple:

Query Syntax:
Returned Format:

Example:

HP 1652B/1653B

Programming Reference

LONGform

command/query

The LONGform command sets the longform variable which tells the
instrument how to format query responses. If the LONGform command
is set to OFF, command headers and alpha arguments are sent from the
instrument in the abbreviated form, If the LONGform command is set to
ON, the whole word will be sent to the controller,

This command has no affect on the inpnt data messages to the instrument.
Headers and arguments may be input in either the longform or shortform
regardless of how the LONGform command is set.

The query returns the status of the LONGform command.

SYSTerm: LONGiorm {{ON |1} |{OFF|0}}
QUTPUT XXX:":SYSTEM:LONGFCRM ON™
:8YSTem:LONGiorm?

[:8YSTem: LONGlorm] {110} <NL>

10 DIM Mode${100)

20 DUTPUT XXX;":3YSTEM:LONGFORMZ
30 ENTER XXX;Moded

40 PRINT Moded

50 ERD

System Commands
6-27

MENU

MENU command/query

The MENU command puts a menu on the display,
The MENU query returns the current menu selection.
Command Syntax: :SYSTem:MENU <menu_type >, <mach_num>
where:
<menu_type> = {SCONfig{FORMat|GHANnel | TRACe |TRIGger | DISFiay | WAVeform | SWAVeform |

. COMPare | SCHart | SLISt}
<mach_num> o= {0§j1]2]3}

¢ = rnixed mode
1 1= analyzer
2 = analyrer 2
3 = ogtilloscope

Example: DUTPUT XXX;"SYSTEM;MENU FORMAT, 1"
Query Syntax: :SYSTem:MENU?
Returned Format: [:8vSTem:MENU] <menu_type >, <mach_num >

Example: 10 DI# Response$f100)
20 QUTPUT XXX;":SYSTEM:MENU?Z®
30 ENTER XXX;Response$
40 PRINT Response$
50 END

System Commands HP 1652B/1653B
6-28 Programming Reference

MESE

Command Syntax:

where:

< gnable mask >

Example:

HP 1652B/1653B
Programming Reference

MESE

command/query

The MESE command sets the Module Event Status Enable Register bits.
The MESE register contains a mask value for the bits enabled in the
MESR register. A one in the MESE will enable the corresponding bit in
the MESR, a zero will disable the bit.

The MESE query returns the eurrent setting,

Refer to table 6-2 for information about the Module Bvent Status Enable
register bits, bit weights, and what each bit masks for the logic analyzer.

:BYSTem:MESE <enable_masgk>

1= integer from O {0 255

OQUTPUT XXX;7:SYSTEM:MESE 1™

System Commands
529

MESE

Query Syntax:
Returned Format:

Exampile:

System Commands
6-30

:8Y8Tem: MESE?

[:8YSTem:MESE] <enable_mask> <NL>

10 GUTPUT XXX;":SYSTEM:MESE?"

20 ENTER XXX: Mes
30 PRINT Mes

40 END
Table 6-2. Module Event Status Enable Register
Module Event Status Enable Register
(A"1" enables the MESR bit)
Bit Weight | Enables
7 128 Not used
6 64 Not used
5 32 Not used
4 16 Not used
3 8 Not used
2 4 Not used
1 2 RNT - Run until satisified
0 1 MC - Measurement complete

HP 1652B/1653B
Programming Reference

MESR

i
Note %

Guery Syntax:
Returned Format:

where:

< status >

Exampile:

HP 1652B/1653B
Programming Reference

MESR

query

The MESR query returas the contents of the Module Event Status
register.

Reading the register clears the Module Event Status Register.

Table 6-3 shows each bit in Module Event Status Register and their bit
weights for the logic analyzer. When you read the MESR, the value
returned is the total bit weights of all bits that are set at the time the
register is read.

:8YS8Tern: MESR?

[:5Y8Tern:MESR] «<status> <NL>

i = integer from O to 258

10 DUTRYUT XXX;™:SYSTem:MESR?™
20 ENTER XXX, Mer

30 PRINT Mer

40 ERD

System Commands
6-31

MESR

Table 6-3. Module Event Status Register

Module Event Status Register
Bit Weight Condition
7 128 Not used
6 64 Not used
5 32 Not used
4 16 Not used
3 8 Not used
2 4 Not used
1 2 1 = Run until satisified
0 = Run until not satisified
Y 1 1 = Measurement complete
{0 = Measurement not completd

- System Commands HP 1852B/1653B
6-32 Programming Reference

PPOWer

Query Syntax:

Returned Format:

Example:

HP 1652B/1653B
Programming Reference

PPOWer

query

The PPOWer {preprocessor power) query returns the current status of
the HP 1652B/53B’s high-current limit circuit. If it is functioning property,
11is returned. If the current draw is too high, 0 is returned until the
problem is corrected and the circuit automatically resets.

PPOWer?

[:PPOWer] {0 | 1}

10 DIM Response$ [16]

20 DUTPUT XXX;":PPOWERT"
30 ENTER XXX; Response}
40 PRINT Responsaf

50 END

System Commands
633

PRINt

PRINt command

The PRINt command initiates a print of the screen or print all over the
RS-232C bus. The PRINt parameters SCReen or ALL specify how the
screen data is sent to the controller. PRINt SCReen transfers the data to
the controller in a printer specific graphics format. PRINt ALL transfers
the data in a raster format for the following menus:

& State and Timing Format menus
¢ Diskmenu

e State and Timing Symbol menus
& State Listing menu

e State Trace

State Compare

Command Syntax: :8YSTeru:PRINt {SCReenjALL}

Example: OUTPUT XXX;":SYSTEM:PRINT SCREEN"

System Commands HP 1652B/16538
6-34 Programming Reference

RMODe

RMODe command/query

The RMODe command is a run control command that specifies the run
mode for logic analyzer and oscilloscope. 1t is at the same level in the
conumnand tree as SYSTem; therefore, it is not preceded by :SYSTem.

The query returns the current setting.

%I After specifying the run mode, use the STARt command to start the
Note acquisition.

Command Syntax: :RMODe {[SINGleiREPetitive}
Example: OUTPUT XXX;":RMDDE SINGLE"
Query Syntax: :RMODe?
Returned Format: [RMODe] {SINGie|REPetitive} <NL>

Example: 10 DIM Mode$[100)
20 QUTPUT XXX;™:RMODE?"
30 ENTER XXX;Mode$
40 PRINT Mode$
50 END

HP 1652B/1653B System Commands
Programming Reference 6-35

SETup

SETup

System Commands
6-36

command/query

The SYStem:SETup command configures the logic analyzer module as
defined by the block data sent by the controller.

The §YStem:SETup query returns a block of data that contains the

current configuration to the controller,

There are three data sections which are always returned and a fourth
header when the oscilloscope is on and has acquired and stored waveform
data. These are the strings which would be included in the section header:

L B BB BN N)

“CONFIG "
“i850 R3232"
“1850 DISP "
Y1650 DISP2”
“SCOPECNF -

Additionally, the following scctions may also be included, depending on
what’s loaded:

¢ & 005 0 e

“SYMBOLS A T
“SYMBOLS B
“SPA DATA A
“8PA DATA B
“INVASM A ¢
"INVASH B 7
"COMPARE

HP 1652B/16538B
Programming Reference

SETup

Command syntax:

where:

< block date >

<«block length specifier >
<jength >

<section >

< section header >

< section data >

Note !ﬁ

Example:
Query Syntax:
Returned Format:

HPB Example:

HP 1652B/1653B
Programming Reference

:SYStem: SETup < block data >

e <block length specifier > <section> ..,
= #g<length>
= {he total length of all sections in byte format (must be represented with 8 digits)
i= <saction header> <section data >
== 16 bytes in the following format:
10 bytes for the section name
1 byte reserved
1 byte for the mocule ID code (31 for the logic analyzer)
4 bytes for the length of the section data in bytes
1= format depends on the type of data

The total length of a section is 16 {for the section header) plus the length
of the section data. So when calculating the value for <length >, don’t
forget to include the length of the section headers,

OUTPUT XXX USING "#,K";":SYSTEM:SETUP < biock data>
:8YStemn:SETup?
[:SYStem:SETup] <block data> <NL>

10 DI¥ Block§[32000] tallocate encugh memory for block data
20 DIM Specifier$[2]

30 OUTPUT XXX;“:SYSTEM:HEAD OFF"

40 DUTPUT XXX;™:SYSTEM:SETUP?™ I send setup guery

50 ENTER XXX USING “#,2A";Specifisr§! read in #8

B0 ENTER XXX USING “#,80";Blocklength! read in block length

70 ENTER XXX USING "-K™;Block$! read ir data

80 END

System Commands
6-37

STARt

STARt

ol
Note '

Command Syntax:

Example:

System Commands
6-38

command

The STARt command is a run control command that starts the logic
analyzer running in the specified run mode {see RMODe). The STARt
command is on the same level in the command tree as SYSTem; therefore,
it is not preceded by :5YSTem.

The STARt command is an Overlapped Command. An Overlapped
Command is a command that allows execution of subsequent commands
while the device operations initiated by the Overlapped Command are still

in progress.

:STARt

QUTPUT XXX;":START"

HP 1652B/1653B
Programming Reference

STOP

STOP command

The STOP command is a run control command that stops the logic
analyzer. The STOP command is on the same level in the command tree
as SYSTem; therefore, it is not preceded by :SYSTem.

||:| The STOP command is an Overlapped Command. An Overlapped
Note w# Command is a command that allows execution of subsequent commands
while the device operations initiated by the Overlapped Command are still
in progress,

Command Syntax: :STOP

Example: OUTRPUT X" STOP"

HP 1652B/1653B System Commands
Programming Reference 6-39

MMEMory Subsystem 7

Introduction MMEMory subsystem: commands provide access to the disk drive. The
MMEMory subsystem commands are:

AUToload
CATalog
COPY
DOWNIoad
INITialize
LOAD
PACK
PURGe
REName
STORe
UPLoad

ﬁ If you are not going 1o store information to the configuration disk, or if the

Note disk you are using contains information you need, it is advisable to write
protect your disk. This will protect the contents of the disk from
accidental damage due to incorrect commands, ete.

HP 1652B/186538 MMEMory Subsystem
Programming Reference 7-1

o ~—1
L{AGTO !DadM spote

aute file

-l AUTG10ag? } e
le{ CATQlOG? } -
°’<DGWN|OOdH space H name r

Sy g S v -
ol INITiglize ; >

CONF g

N-@—b(IASSembler)—b{ spoce }-—-b-[ia_ncme

PURGe - Space l-——a-] name ; ".

STORe rr'J: space nome
CONF |g

\-»GJPLocd?H spoce M nome , -

Q1650502

Figure 7-1. MMEMory Subsystem Commands Syntax Diagram

MMEMory Subsystem HP 1652B/1653B
7-2 Programming Reference

auto_file = string of up to 10 alphanumeric characters representing a valid file name.
name = string of up to 10 alphanumeric characters representing a valid file name.
description = string of up to 32 alphanumeric characters.

type = integer, refer to table 7-1.

block_data = data in IEEE 488.2 # format.

ia_name = sming of up to 10 alphanumeric characters representing a valid file name.
new_name = string of up to 10 alphanumeric characters representing a valid file name

Figure 7-1. MMEMory Subsystem Commands Syntax Diagram {continued)

ﬁ Refer to "Disk Operations” in chapter 5 of the HFP 1652B/538 Logic
Note Analyzers Reference manual for a description of a valid file name.

HP 1652B/16538 MMEMory Subsystem

Programming Reference

7-3

AUToload

AUToload

Command Syntax:

whers:

<auto_file>

Examples:

Query Command:
Returned Format:

Example:

MMEMory Subsystem
74

command/query

The AUToload command controls the autoload feature which designates
a configuration file to be loaded automatically the next time the
instrument is turned on, The OFF parameter (or 0) disables the autoload
feature. When a string parameter is specified it represents the desired
antoload file.

The AUToload query returns { if the autoload feature is disabled. If the
autoload feature is enabled, the query returns a string parameter that
specifies the current autoload file.

"MMEMory:AUTeload {{OFF|0} | <auto_file>}

1= string of up to 10 aiphanumeric characters

QUTPUT XXX;":MMEMORY :AUTOLOAD OFF"
QUTPUT XXX;":MMEMORY :AUTDLOAD "FILED""
QUTPUT XXX;™:MMEMORY :AUTGLOAD 'FILEZ'"

TMMEMery:AUToload?
[MMEMory:AUToload] {0} <auto files } <NL>

10 DI¥ Auto_status§[100]

20 QUTPUT XXX;™:MMEMORY:AUTOLDAD?"
30 ENTER XXX;Auto_statusd

40 PRINT Auto_status§

50 END

HF 1852B/16538
Programming Reference

CATalog

Query Syntax:
Returned Format:

where:

< block size >
< block data>

Example:

HP 1652B/1653B
Programming Reference

CATalog

query

The CATalog query returns the directory of the disk in block data format.
The directory consists of a S1-character string for each file on the disk.
Each file entry is formatted as follows:

*NNNNNNNNNN TTTTTTT CDDDDDRDRDODDDODDDDDDDDDDDDDRDDDE”

where N is the filename, T is the file type (2 number), and D is the file
description.

‘MMEMory:CATalog?

[MMEMory:CATalog)] <block size > <block data>>

= #8dddddddd (#8 followed by an sight-digh number}
nm= [<filename > <file type> <file description>)...

10 DiM Fite$[51]
20 DIM Specifier§[Z]
30 DUTPUT XXX;":SYSTEM:HEAD OFF"

40 DUTPUT XXX:™ :MMEMORY : CATALOG?" isend catalog query

50 ENTER XXX USING “#,ZA";Specifierf !read in #8

B0 ENTER XXX USING "#,8D":Length iread in length

70 FOR I=1 TO Length STEP 51 ‘read and print each file

B0 ENTER XXX USING “#,51A";Filed

8¢ PRINT File}

100 NEXT !

110 ENTER X¥X USING "A";Specifier$ tread in final line feed
120 ERD

MMEMory Subsystem
-5

COPY

COPY command

The COPY command copies the contents of a file to a new file, The two
<name> parameters are the filenames. The first parameter specifies the
source file. The second specifies the destination file. An erroris
generated if the source file doesn’t exist, if the destination file already
exists, or any other disc error is detected.

Command Syntax: :MMEMory:COPY <name>,<name>

where:

<name> .= string of up to 10 alphanumeric characters representing a valid file name
Example: To copy the contents of "FILE1" to "FILE2";

GUTPUT XXX, ":MMEMORY:COPY "FILEL",'FILE2'™

MMEMory Subsystem HP 1652B8/1653B
7-6 Programming Reference

DOWNIoad

Command Syntax:

where:

<name >

< description >
< fypa >

<block_data>

Example:

DOWNIoad

command

The DOWNIload command downloads a file to the disk. The <name >
parameter specifies the filename, the <description> parameter specifies
the file description, and the <block_data> contains the contents of the
file to be downloaded.

Table 7-1 hists the fle types for the <type> parameter.

MMEMory:DOWNIoad <name>,<description>, <type>, <block_data >

i+ = string of up 1o 10 alphanumeric characters representing a vaiid file name
= string of up to 32 alphanumeric characters

= integer (see Table 7-1)

1= contents of file in block data format

QUTPUT XXX;™:MMEMORY :DOWNLOAD "SETUP_';’FILE CREATED FROM SETUP
QUERY' ,-16127,#800000643..."

Table 7-1. File Types

Kile File Type
HP 1652/3 SYSTEM -16383
165213 CONFIG -16096
AUTOLCAD TYPE -15615
INVERSE ASSEMBLER -15614
TEXT TYFE -15610

HP 1652B/1653B
Programming Reference

MMEMory Subsystem
7-7

INITialize

P T
iNITialize command

The INTTialize command formats the disk.

|u:| Once executed, the initialize command formats the specified disk,
Note permanently erasing all existing information from the disk. After that,
there is no way to retrieve the original information.

Command Syntax: :MMEMory:INITialize

Example: QUTPUT XXX;":MMEMORY: INITIALIZE"

MMEMory Subsystem HP 1652B/1653B
7-8 Programming Reference

LOAD

Note ‘g

Command Syntax:

where:

<name>

Examples:

HP 1652B/16538

Programming Reference

LOAD

[:CONFig] command

The LOAD command loads a file from the disk into the analyzer. The
[:CONfig] specifier is optional and has no effect on the command. The
<name > parameter specifies the filename that will be loaded into the

logic analyzer.

Any previous setups and data in the instrument are replaced by the
contents of the configuration file.

‘MMEMory:LOAR[:CONlig] <name>

o= string of up to 10 alphanumeric characters representing a valid file name

DUTPUT XXX;":MMEMORY:LOAD:CONFI6 'FILE_ '
QUTPUT XXX;™:MMEMORY:LDAD 'FILE_'"
QUTPUT XXX;":MMEM:LOAD:CONFIG 'FILE A'™

MMEMory Subsystem
7-9

LOAD

LOAD

i
Note %

Command Syntax:

where:

<lA_name >

Examples:

MMEMory Subsysiem
7-10

[:IASSembler] command

This variation of the LOAD command allows inverse assembler files to be
loaded into analyzer 1 or analyzer 2 of the HP 16352B8/1653B. The

< 1A name> parameter specifies the inverse assembler filename. The
parameter after the <IA_name > parameter specifies into which
machine the inverse assembler is loaded.

Inverse assembler files should only be loaded into the state analyzer. I an
inverse assembler file is loaded into the timing analyzer no error will be
generated; bowever, it will not be accessible,

‘MMEMory.LOAD:IASSembler <IA name>,.{1|2}

1= siring of up to 10 alphanumeric characters representing & valid file name

QUTPUT XXX;":MMEMORY:LCAD: IASSEMBLER 'I6B0ZO_IP',1"
QUTPUT XXX;7:MMEM:LOAD:1ASS '168020_19'1"

HP 1652B/16853B
Programming Reference

PACK

I
PACK command

The PACK command packs the files on a disk in the disk drive.

Command Syntax: :MMEMoryPACK

Example: 0UTPUT XXX;":MMEMORY : BACK™

HP 1652B/1653B MMEMory Subsystem
Programming Reference 7-11

PURGe

[
PURGe comman

The PURGe command deletes a file from the disk. The <name>
parameter specifies the filename to be deleted,

%’ Once executed, the purge command permanently erases all the existing
Note information from the specified file. After that, there is no way to retrieve
the original information.

Command Syntax: :MMEMory:PURGe <name:>

where:

<name> = string of up to 10 alphanumeric characters representing & valid file name

Examples: OUTPUT XXX;* :MMEMORY :PURGE 'FILE1""

MMEMory Subsystem HP 1852B/1653
712 Programming Referenc

REName

Note #

Command Syntax:

where:

<name >
<new_name >

Examples:

HP 1652B/1653B
Programming Reference

REName

command

The REName command renames a file on the disk. The <name >

parameter specifies the filename to be changed and the <new_name >
parameter specifies the new filename.

You cannot rename file to an already existing filename.

MMEMory:REName <name >, <new_name >

1= gtring of up 10 10 alphanumeric characters represerting & valid file name
1= string of up 10 10 alphanumenic characters representing & valid file narne

OUTPUT XXX;":MMEMORY :RENAME "OLDFILE', "NEWFILE®™

MMEMory Subsystem
7-13

STORe

A
STORe [:CONFig] command

The STORe command stores a configuration onto a disk. The :CONFig]
specifier is optional and has no effect on the command, The <name>
parameter specifies the file to be stored to the disk. The < description>
parameter specifies the file description.

Command Syntax: :MMEMory:STORe [:CONfig]<names>,<description>

where;

<name> = stting of up to 10 aiphanumeric characters representing a valid file name
<description> = string of up to 32 aiphanumeric characters

Example: DUTPUT XXX;":MMEM:STORE "DEFAULTS', *DEFAULT SETUPS’*

MMEMory Subsystem HP 1652B/16538
7-14 Programming Reference

UPLoad

Query Syntax:

where:

<fiame >

Retumed Format:

Exampie:

HP 1652B/1653B

Programming Reference

UPLoad

query

The UPLoad query uploads a file. The <name > parameter specifies the
file to be uploaded from the disk. The contents of the file are sent out of
the instrament in block data form.

MMEMory:UPLDad? <name >

1= string of up to 10 alphanumeric characters representing & valid file name

:MMEMory:UPLoad] <block data> <NL>

10 DIM 8lock$ {32000} lallocate enough memory for block data
20 DIM Specifierd (2]

30 QUTPUT XXX;“:SYSTEM HEAD OFF"

40 DUTPUT XXX;":MMEMORY:UPLGAD? 'FILEL'™ !send upload query

50 ENTER XXX USING "#, 2A";Specifier$ Iread in #8
60 ENTER XXX USING "#,80":Length ‘reacd in block length
70 ENTER XXX USING "~K";Block$ I'read in file
80 END
MMEMory Subsystem

7-15

DLISt Subsystem 8

Introduction The DLISt (dual list) subsystem contains the commands in the dual state
listing menu. These commands are:

¢ COLumn
s LINE

(D -
@ R S S S ey

1 [:
—{Cctumn'?)—-bi spoce M cct-numi -
-OCE.INEH spoce H fine numemid_screen .

e LINE? }
BIB5CE05

col_num = integerfrom I 10 8

label_name = & string of up to 6 alphanumeric characters

base = {BINary| HEXacecirnal| OCTal | DECimal |ASCii|SYMBol}
mach_num = {12}

line_num_mid_screen = integer from -1023 10 + 1023

Figure 8-1. DLISt Subsystern Syntax Diagram

HP 1652B/1653B DLISt Subsystem
Programming Reference 81

DLISt

DLISt selector

The DLISt selector (dual list) is used as part of a compound header to
access those settings normally found in the Dual State Listing menu, The
dual list displays data when two state analyzers are run simultaneously.

Command Syntax: :DLISt

Example: QuTRYT XXX;":DLIST:LINE 0,1"

DLISt Subsystem HP 1652B/1653B
8.2

Programming Reference

COLumn

Command Syntax:

where:

<ool_num>
<label_name >
<base>

< mach_hum >

Exarnple:

HP 1652B/1653B

Programming Reference

COLumn

command/query

The COLumn command allows you to configure the state analyzer list
display by assigning a label name and base to one of eight vertical columns
in the menu. The machine number parameter is required since the same
label name can occur in both state machines at once. A column number
of 1 refers to the left-most column. When a label is assigned to a columm

it replaces the original label in that column. The label originally in the
specified column is placed in the column the specified label is moved from,

When "TAGS" is the label name, the TAGS column is assumed and the
next parameter must specify RELative or ABSolute. The machine
rumber should be 1.

The COLumm guery returns the column number, label name, and base for
the specified colums.

:DLISECOLumn <eol_num > {"TAGS" {RELative |ABSolute} |
<label_name >, <base>}, <mach_num:>

= {1]2|3145|6(718} ‘

s= @ string of up to § alphanumeric characters

1= {BiNary|HEXadecimal [OCTal | DECimal | ASCil | 8YMBol}
n= {1]2}

DUTPUT XXX;™:DLIST:COLUMK 4, 'DATA” HEXADECIMAL,1"

DLISt Subsystem
8-3

COLumn

Query Syntax: :DLIStCOLumn? <ool_num>
Returned Format: [:DLIStCOLumn} <col_num>, <label_name >, <base > ,<mach_num> <NL>

Example: 16 pim c1${100]
20 QUTPUT XXX;™:DLIST:COLUMK? 4"
30 ENTER XXX:C1§
40 PRINT C1$
50 £KD

DLiSt Subsystem HP 1652B/1653B
8-4 Programming Reference

LINE

LINE command/query

The LINE command allows you to scroll the state analyzer listing
vertically. The command specifies the state line number relative to the

trigger that the specified analyzer will highlight at center screen.

The LINE query returns the line number for the state currently in the box
at center screen and the machine number to which it belongs.

Command Syntax: :DUStLINE <line_num_mid_screen>, <mach_num>

where:
<line_num_mid_screen> 1= integer from -1023 to + 1023
<mach_num> = {1]2}

Example: QUTPUT XXX;":DLIST:LINE 511,17

Query Syntax: DUSELINE?
Returned Format: [DLISGLINE] <line_num_mid_screen >, <mach_num:> <NL>

Example: 10 DIM Ln${100]
20 QUTPUT XiX;":DLIST:LINE?"
30 ENTER XXX:Ln$
40 PRINT Ln$
50 END

HP 1652B/16538 DLISt Subsystem
Programming Heference 8-5

WLISt Subsystem 9

Introduction Two commands in the WLISt subsystem control the X and O marker
placement on the waveforms portion of the Timing/State mixed mode
display. These commands are XTIMe and OTIMe. The XSTate and
OSTate queries return what states the X and O markers are on. Since the
markers can only be placed on the timing waveforms, the queries return
what state (state acquisition memory location) the marked pattern is
stored in.

@ In order to have mixed mode, one machine must be 2 timing analyzer and
Note the other mast be a state analyzer with time tagging on (use
MACHine < N >:8TRace:TAG TIME).

g
|

O .

XS57ole?

—-'-(OTEMe}—--—I spoce]r-—i-l iime_value g

OTIMe?

~—>(XTIMe}——-—[space E—-’-{ time_value %

XTIMe? /
16590/6%05

i

:

:

time_value == reql number

Figure 9-1. WLISt Subsystem Syntax Diagram

HP 1652B/1653B WLISt Subsystemn
Programming Reference 9-1

WLISt

WLISt - selector

The WLISt (Waveforms/listing) sefector is used as a part of a compound
header to access the settings normally found in the Mixed Mode menu.
Since the WLISt command is a root level command, it will always appear
as the first clement of a compound header,

ﬁ The WLISt Subsystem is only available when one state analyzer (with time
Note tagging on} and one timing analyzer are specified.

Command Syntax: :wLiSt

Example: OUTPUT XXX;":WLIST:XTIME 40.06-6"

WLISt Subsystem HP 1652B/18538
92 Programming Reference

OSTate

OSTate query

The OSTate query returns the state where the O Marker is positioned. If
data is not valid, the query returns 32767,

Query Syntax: :wLIStOSTate?
Returned Format: WLISt:OSTate] <state_num > <NL>

where;

<gtate_num> 1= integer

Example: 10 DIM Sc$[100]
20 OUTPUT XXX;":WLIST:DSTATE?"
30 ENTER XXX;:S08
40 PRINT 508
50 END

HP 1652B/1653B WLISt Subsystem
Programming Reference 8-3

XSTate

XSTate

Query Syntax:
Example:
Returned Format:

where:

<state_num >

Example:

WLISE Subsystem
8-4

query

The XSTate query returns the state where the X Marker is positioned. If
data is not valid, the query returns 32767,

‘WLISHEKSTate?
QUTPUT XXX, ™:MLIST:XSTATEY

[[WLISt:XSTate] <state num> <NL>

= integer

10 DIM S$x§[100]

20 OUTPUT XXX;™:WLIST:XSTATE?"
30 ENTER XXX;Sx$

40 PRINT Sx$

50 END

HP 1652B/1653B
Programming Reference

OTiMe

Command Syntax:

where:

<time_value >

Example:
Query Syntax:
Returned Format:

Example:

HP 1652B/1653B

Programming Reference

OTIMe

command/query

The OTIMe command positions the O Marker on the timing waveforms in
the mixed mode display. If the data is not valid, the command performs
no action,

The OTIMe query returns the O Marker position in time. If data is not
valid, the query returns 9.9E37.

WLISEOTIMe <time_value >

3= real number

GUTPUT XXX,":WLIST:QTIME 40.0e-8"
WLIBEOTiMe?

[WLIStOTiMe] <time valuze> <NL>

10 DI¥ To$ 1001

20 QUTPUT XXX;™:WLIST:CTIME?T"
30 ENTER XNX;To$

40 PRINT To$

50 END

WLISt Subsystem
9.5

XTIMe

XTiMe

Command Syntax:

.. where:

<time value >

Example:
Query Syntax:
Returned Format:

Example:

WLISt Subsystem
8-6

command/query

The XTIMe command positions the X Marker on the timing waveforms in
the mixed mode display. ¥f the data is not valid, the command performs
no action.

The XTIMe query returns the X Marker position in time. If data is not
valid, the query returns 9.9E37.

IWLISEXTIMe <time_value >

= real numbsr

QUTPUT XXX, " :WLIST:XTIME 40.0£-67
WLIStXTIMe?
[WLIStXTIMe] <time value> <NL>

10 DI¥ Tx$[100]

20 QUTPUT XXX;":WLIST:XTIME?”
30 ENTER XXX;Tx$

40 PRIKT Tx$

50 END

HP 1652B/1653B
Programming Reference

10

MACHIne Subsystem
0 S
Introduction The MACHine subsystem contains the commands available for the
State/Timing Configuration menu. These commands are:

s ARM

» ASSign '

¢ AUToscale (Timing Analyzer only)

s NAME

s TYPE

There are actually two MACHine subsystems: MACHirel and

MACHine2. Unless noted, they are identical. In the syntax definitions
you will see MACHine{1|2} anytime the subject is applicable to both

subsystems.

Additionally, the following subsystems are a part of the MACHine

subsystem, Each is explained in a separate chapter.

SFORmat subsystem
STRace subsystem
SLISt subsystem
SWAVeform subsystem
SCHart subsystem
COMPare subsystem
TFORmat subsystem
TTRace subsystem
TWAVeform subsystem
SYMBol subsystem

L N IR BN BN BE BN BN BN BN

HP 1652B/1653B
Programming Reference

(chapter 11)
(chapter 12}
(chapter 13)
(chapter 14)
(chapter 15)
(chapter 16)
(chapter 17)
(chapter 18)
(chapter 19)
(chapter 20}

MACHine Subsystem

10-1

— -~
YE) WG A S0 e S prverg N proormoon SRR

! ASSIGN? Jo -

P AlUToscatie -

sacce 5——-.{ muchine.uname j______,,,

1]

arm_source = {RUN | MACHine {1 | 2}}

pod_list = {NONE | <pod_num> [, <pod num>]..}
pod num = {7 |2 |3] 4|5}

machine_name = string of up to 10 alphanumeric characters

Figure 10-1. Machine Subsystem Syntax Diagram

MACHine Subsystern HP 1652B/1653B
i0-2 Programming Relerence

MACHIne

Command Syntax:

where:

<N>

Example:

HP 1652B/1653B
Programming Reference

MACHine

selector

The MACHine <N > selector specifies which of the two analyzers
(machines) available in the HP 1652B/53B the commands or queries
following will refer to. Since the MACHine < N> command is a root
level command, it will normally appear as the first element of a compound
header.

MACHIne <N >

u= {1]2} @ihe aumber of the machine)

DUTPHT XXX; ":MACHINEL:NAME 'DRAMTEST'™

MACHine Subsystern
10-3

ARM

ARM

Command Syntax:

where:

<arm_source >

Example:
Query Syntax:
Returned Format:

Exampie:

MACHine Subsystem
10-4

command/query

The ARM command specifies the arming source of the specified analyzer
{machine).

The ARM query returns the source that the current analyzer (machine)
will be armed by.

:MACHIne{1]2}:ABM <arm_source >

s= {RUNIMACHIne{1]2} iBNC|SCOPe}
DUTPUT XXX;":BACHINEL :ARM MACHINEZ™
‘MACHine {112}:ARM?

[:MACHIne {1|2}:ARM] <arm_source > <NL>»

10 DiM String® [100]

20 QUYPUT X00¢ ““MACHINET:ARM?"
30 ENTER XXX String$

40 PRINT String$

80 END

HP 1652B/1653B
Programming Reference

ASSign

Command Syntax:

where:

< pad_fist>
<pod # >

Example:
Query Syntax:.
Returned Format:

Example:

HP 16528/1653B

Programming Relerence

ASSign

command/query

"The ASSign command assigns pods to a particular analyzer (machine).

The ASSign query returns which pods are assigned to the current analyzer
(machine).

{MACHine{1]2}:ASSign <pod_Jist>

s= [NONE] <pod #>[, <pod #>].}
u= {1{2|3|4i5}

OUTPUT XXX;":MACHINE1:ASSIGN 5, 2, 1"
:MACHIne {1]2}:ASSign?
[:MACHINE {1]|2}:A88ign] <pod_list> <NL>

10 DIK String$ [100]

20 DUTPUT XXX;":MACHINEL1:ASSIGNZ"
30 EKTER XXX;Stringd

40 PRINT Strimg$

50 EKD

MACHine Subsystem
10-5

AUToscale
[

AUToscale command

The AUToscale command causes the current analyzer (machine) to
autoscale if the current machine is a timing analyzer, If the corrent
machine is not a timing analyzer, the AUToscale command is ignored,

AUToscale is an Overlapped Command. Overlapped Commands allow
execution of subsequent commands while the logic analyzer operations
initiated by the Overlapped Command are still in progress. Command
overlapping can be avoided by using the *OPC and *WA! commands in
conjunction with AUToscale (see chapter 5, "Common Commands,")

%' When the AUToscale command is issued, existing timing analyzer
Note configurations are erased and the other analyzer is turned off.

Command Syntax: :MACHIne{12}:AUToscale

Example: OUTPUT XXX;™:MACHINE?:AUTOSCALE"

MACHine Subsystem HP 1852B/1653B
10-6 Programming Reference

NAME

Command Syntax:

where:

<machine_name >

Example:
Query Syntax:
Returned Format:

Example:

HP 1652B/1653B

Programming Reference

NAME

command/query

The NAME command allows you to assign a name of up to 10 characters
to a particular analyzer (machine) for easier identification.

The NAME query returns the current analyzer name as an ASCII string.

:MACHIne{1]2}:NAME <machine_nams >

u= string of up to 10 aiphanumeric ¢characters

QUTPUT XXX;":MACHINEL:NAME ‘DRAMTEST™™
‘MACHIne{1]2}:NAME?
[MACHne{1]2}:NAME] < maching name > <NL>

10 DIM String$ [100]

20 DUTPUT XXX;™:MACHINE]:RAMET"
30 ENTER XXX:Stringd

40 PRINT String$

50 END

MACHIne Subsystem
10-7

TYPE

TYPE

§
Note %

Command Syntax:

where:

<analyzer type >
Example:

Query Syntax:
Returned Format:

Example:

MACHine Subsystem
10-8

command/query

The TYPE command specifies what type a specified analyzer (machine)
will be. The analyzer types are state or timing. The TYPE command also
allows you to turn off a particular machine.

Only one of the two analyzers can be specified as a timing analyzer at one
time.

The TYPE query returns the current analyzer type for the specified
analyzer,

MACHIne{1]2}1:TYPE <analyzer type >

t= {OFFISTATe [TIMing}

QUTPUT XXX;":MACHINELI:TYPE STATE"
tMACHIne{t {2} TYPE?

[:MACHine{1|2};TYPE] <analyzer type> <NL>

10 BIM String$ [100]

20 QUTPUT XXX;":MACHINEL:TYPE?"
30 ENTER XXX;String$

40 PRINT String$

50 END

HP 1652B/1653B
Programming Reference

SFORmat Subsystem 11
0

introduction The SFORmat subsystem contains the commands available for the State
Format menu in the HP 1652B/53B logic analvzer. These commands are:

CLOCK
CPERiod
LABel
MASTer
REMove
SLAVe
THReshold

—O —

¥

e

a & & & ¢ & &

—{ CLOCK<N>? }
CPER ' oc 1] space | LT -

a{ CPER i 007 } Tt
—-—(LABeM spoce H name pod.spacificotion }
BE——
-—-'G.Aae!? space H nome ; o
V 18510814 J

Figure 11-1. 5FORmat Suhsystem Syntax Diagram

HP 1852B/1653B SFORmat Subsystem
Programming Reference 11-1

ez N e Wy ies

—-(MASTer 7wl space fa clock_id -
name

o SLAVe ml space F-a clock=i0 [)) clock spec i

b SLAVE? el space |l clock_id } -

——-(THResha td<N>)—-{ space m -
(e

vaiue |

= THResho | g<ND? ;
16510807

1 4

<N> ={I]|2|3|4]5}

GT = Greater Than 60 ns

LT = Less Than 60 ns

name = string of up to 6 alphanumeric characters

polarity = {POSitive | NEGative}

pod_specification = formar (integer from 0 to 65535} for a pod {pods are assigned in decreasing order)
clock id = {J | K| L | M| N}

clock_spec = {OFF | RiSing | FALLing | BOTH | LOW | HIGH}

value = voltage (real number) -9.9to +9.9

Figure 11-1. SFORmat Subsystem Syntax Diagram (continued)

SFORmat Subsystem HP 1652B/1653B
112 Programming Reference

SFORmat

Command Syntax:

Example:

HP 1652B/1853B
Programming Reference

SFORmat

selector

The SFORmat {State Format) selector is used as a part of a compound
header to access the settings in the State Format meny, It ahways follows
the MACHine selector because it selects a branch directly below the
MACHine level in the command tree.

:MACHine{1|2}: SFORmat

QUTPUT XXX;™:MACHINEZ:SFORMAT:MASTER J, RISING™

SFORmat Subsystem
11-3

CLOCKk

CLOCKk command/query

The CLOCk command selects the clocking mode for a given pod when the
pod is assigned to the state analyzer. When the NORMal option is
specified, the pod will sample all 16 channels on the master clock. When
the MIXed option is specified, the upper 8 bits will be sampled by the
master clock and the lower 8 bits will be sampled by the slave clock.

When the DEMultiplex option is specified, the lower 8 bits will be
sampled on the slave clock and then sampled again on the master clock.
The master clock always foliows the slave clock when both are used.

The CLOCk query returns the current clocking mode for a given pod.

Command Syntax: :MACHine{1]2}:SFORmat:CLOCK<N> <clock_mode >

where:
<N> = Pod {1|2|3}4|5}
<clock mode> o= {NORMal | MiXed | DEMultiplex}

Example: OUTPUT XXX;™:MACHINEL: SFORMAT :CLOCKZ NORMAL™
Query Syntax: :MACHIne{1]|2}:5FORmat: CLOCKk<N > 7

Returmned Format: [;MACHine{1|2}:SFORmatCLOCK<N>] <clock_mode> <NL>

Example: 10 DIM String$ [100]
20 OUTPUT XXX; “:MACHIREL:SFORMAT:CLOCK2?"
30 ENTER XXX; String$
40 PRINT String$
50 EXD

SFORmat Subsystem HP 1652B/16538
11-4 Programming Reference

CPERiod

Commangd Syntax;

wherg:

GT
LT

Example:
Query Syntax:

Returned Format:

Example:

HP 1652B/16538
Programming Reference

CPERiod

command/query

The CPERiod command aliows you to set the state analyzer for input
clock periods of greater than or less than 60 ns. Either LT or GT canbe
specified. LT signifies a state input clock period of less than 60 ns, and
GT signifies a period of greater than 60 s,

Because count tagging requires a minimum clock period of 60 ns, the
CPERiod and TAG commands are interrelated (the TAG command is in
the STRace subsystem}. When the clock pericd is set to Less Than, count
tagging is turned off. When count tagging is set to either state or time, the
clock period is aulomatically set to Greater Than. -

The CPERiod query returns the curreat setting of clock period.

'MACHine{1]2}:SFORmat.CPERiod {LT|GT}

1= greater than 60 ns
1= less than 60 ns

QUTPUT XXX;":MACHINEZ: SFORMAT :CPERIOD GT"
:MACHine{12}:5FORmat:CPERiod?

[:MACHine {1|2}:SFORmat:CPERIod} {GT|LT}<NL>

10 DI# String$ [100]

20 QUTPUT XXX:":MACHINEZ:SFORMAT:CPERIOD?
30 ENTER XXX; String$

40 PRINT String$

50 END

SFORmat Subsystem
11-5

LABel

LABel command/query

The LABel command allows you to specify polarity and assign channels to
new or existing labels. If the specified label name does not match an
existing label name, a new label will be created.

The order of the pod-specification parameters is significant. The first one
listed will match the highest-numbered pod assigned to the machine
you're using. Each pod specification after that is assigned to the
next-highest-numbered pod. This way they match the left-to-right
descending order of the pods you see on the Format display, Not
including enough pod specifications results in the lowest-numbered
pod(s) being assigned a value of zero (all channels excluded). If you
include more pod specifications than there are pods for that machine, the
extra opes will be immored. However, an error is reported anytime more
than five pod specifications are listed,

The polarity can be specified at any point after the Iabel name.

Since pods contain 16 channels, the format value for a pod must be
between 0 and 65535 (2'%-1). When giving the pod assignment in binary
{(base 2), each bit will correspond to a single channel. A "1"in a bit
position means the associated channel in that pod is assigned to that pod
and bit. A "0" in a bit position means the associated channel in that pod is
excluded from the label. For example, assigning #B1111001100 is
equivalent to entering "......***¥,.**." through the front-panel user
interface.

A label can not have a total of more than 32 channels assigned to it.

The LABel query returns the current specification for the selected (by
name) label. If the label does not exist, nothing is returned. The polarity
is always returned as the first parameter. Numbers are always returned in
decimal format.

SFORmat Subsystem HP 1652B/1653B
11-6 Programming Reterence

LABel

Command Syntax: :MACHine{1}2}:SFORmat:LABe! <name>], {<polarity> | <assignment>}...

where:

<pame> = string of up to 6 alphanumeric characters
<polarity> 1= {POSitive | NEGative}
<assignment> ::= format {integer from O to 65535) for a pod (pods are assigned In decreasing order)

Examples: OUTPUT XXX;":MACHINEZ:SFORMAT:LABEL 'STAT', POSITIVE, 65535,127,40312"
DUTPUT XXX;":MACHINEZ :SFORMAT:LABEL 'SIG 1°, &4, 1Z, 0, 20, NEGATIVE"
QUTPUT XXX:":MACHINE1:SFORMAT:LABEL 'ADDR', NEG, #B003111601010:010"

Query Syntax: :MACHine{1}2}:SFORmat:LABei? <name >
Returned Format: [:MACHine{1}2}:SFORmatLABel] <name>,<polarity>[, <assignment>]...<NL>

Example: 10 DIM String$[100]
20 QUTPUT XXX:":MACHINEZ:SFORMAT:LABEL? 'DATA'™

30 ENTER XXX String$
40 PRINT String$
50 END

HP 1882B/1653B SFORmat Subsystem
Programming Reference 11-7

MASTer

MASTer

]
Note %

Command Syntax:

where:

= clock id>
<clock spec>

Example:
Query Syntax:
Returned Format:

Exampla:

SFORmat Subsystem
11-8

command/query

The MASTer clock command allows you to specify 2 master clock for a
given machine. The master clock is used in all clocking modes (Normal,
Mixed, and Demultiplexed). Each command deals with only one clock
(J,K.L,M,N); therefore, a complete clock specification requires five

. commands, one for each clock. Edge specifications (RISing, FALLing, or

BOTH) are ORed. Level specifications (LOW or HIGH) are ANDed.

At least one clock edge must be specified.

The MASTer query returns the clock specification for the specified clock.

‘MACHIne{1[2}:.SFORmat:MASTer <clock_id >, <clock_spec>

2= {JIKILIM|N}
ue {OFF|RISing |FALLIng | BOTH | LOW|HIGH)

OUTPUT XXX;* :HACHINEZ : SFORMAT :MASTER J, RISING”
{MACHIne{1}2}:5FORmat: MASTer? <clock_id >
[[MACHine{1|2}1:8FORmat:MASTer] <clock ld>,<clock_spec> < NL >

10 DIM String$[100]

20 DUTPUT XXX;":MACHINEZ:SFORMAT:MASTERT<clock _id>"
30 ENTER XXX String$

40 PRINT String$

50 END

HP 1652B/1653B
Programming Reference

REMove

REMove command

The REMove command allows you to delete all Iabels or any one label for
a given machine.

Command Syntax: :MACHine{1|2}:SFORmat:REMove {<name> |ALL}

where:

<name> = string of up to & alphanumeric characters

Examples: CUTPUT XXX;":MACHINEZ:SFORMAT :REMOVE ‘A"
GUTPUT XXX; ' :MACHINEZ: SFORMAT :REMOVE ALL"

HP 1652B/1653B SFORmat Subsystem
11-§

Programming Reference

SLAVe

SLAVe

i
Note %

Command Syntax

where:

<elock_id>
<clock spec>

Exampie:
Query Syntax:
Returmed Format:

Exampie:

SFORmat Subsystern
11-10

command/query

The SLAVe clock command allows you to specify a slave clock for a given
machine. The slave clock is only used in the Mixed and Demultiplexed
clocking modes. Each command deals with only one clock (JK,L,M,N};
therefore, a complete clock specification requires five commands, one for

.each clock. Edge specifications (RISing, FALLing, or BOTH) are ORed.

Level specifications (LOW or HIGH) are ANDed.

The slave clock must have at least one edge specified.

The SLAVe query returns the clock specification for the specified clock.

:MACHIne{1]2}:SFORmat:8LAVe <uclock id >, < clock_spec>

e {JIKILIMIN}
= {OFF|RiSing [FALLing | BOTH | LOW/|HIGH}

GUTPUT XXX;":MACHINEZ:SFORMAT:SLAVE J, RISING"
IMACHIne{1|2}: SFORmat:SLAVe? < clock id>
[:MACHine{1{2}:SFORm=aSLAVe] =<clock id>, <clook specs> <MNL>

1G DI¥ String$ (100}

20 DUTPUT XXX;":MACHINEZ:SFORMAT:SLAVET <clock_id>"
30 ENTER XXX String$

40 PRINT String$

50 END

HP 1652B/16538
Programming Reference

THReshold

Note &9

Command Syntax:

where.

<N>
<vajue >
7L

ECL

Exampie:
Query Syntax:
Returned Format:

Example:

HF 1652B8/16538
Programming Reference

THReshold

command/query

The THReshold command allows you to set the voltage threshold for a
giver: pod to ECL, TTL, or a specific voltage from -9.9Vto +9.5Vin 0.1
volt increments.

On the HP 1652B, the pod thresholds of pods 1,2 and 3 can be set
independently. The pod thresholds of pods 4 and 5 are slaved together;
therefore, when you set the threshold on either pod 4 or 5, both thresholds
will be changed to the specified value. On the HP 1653B, pods 1 and 2 can
be set independently.

The THReshold query returns the current threshold for a given pod.

:MACHIne{t |2}:8FORmat: THReshold <N»> {TTL|ECL] <value>}

1= pad number 11]2(3[415}

1= voltage {real number) -8.810 +8.8
1= dafault value of + 1.6V

1= gdetault value of -1.3V

DUTPUT XXX;" :MACHINEL:SFORMAT : THRESHOLDL 4.0"
:MACHine{1|2}:SFORmat: THReshold <N>?

[:MACHine{12}:SFORmat:THReshold <N>] <vaiue> <NL>

10 DIM Value$ [100]

20 OUTPUT XXX;":MACHINEL:SFORMAT : THRESHOLDAT™
30 ENTER XXX;Value$

40 PRINT Value$

50 END

SFORmat Subsystem
11-14

STRace Subsystem 12

Introduction The STRace subsystem contains the commands available for the State
Trace menu in the HP 1652B/53B logic analyzer. The STRace subsystem
commands are:

o BRANch
» FIND
¢ PREStore
s RANGe
o RESTart
s SEQuence
s STORe
s TAG
« TERM
r i,/ -
1
0 -D{BRANchﬁbH space E—*E bronch_quaiifier }——-o@-@
Lode! BRANCHCNST } -
= FTND<EN>? -
-ﬁ(PREStore}-—{ spoce OFF -
prestore_quaiifier }—J
PREStore?
—-{ RANGe }am space] abe!_nome
i
‘ O
4

Figure 12-1. STRace Subsystem Syntax Diagram

HP 1652B/1653B STRace Subsystem
Programming Reference 12-1

Y f

——G&STW tH spoce OFF o

~ PERLevel
L—b’ restart.qualifier 1-/

4! RESTart? } -
—I-(SiQu&nceH spoce !—-.-f numof_levels . ° lev_of trig

[~{ SECQuence? } e
—b@ORe<N>}——>{ space }—-[siore_guolifier E -
—s{ STORe<N>? } —
el moce ol -

stote_taog_qualifier

~>{T£’RP-D—>| space }—D—Lterm..'d f-b-@-—n tabei_nome pottern
~w{ TERM?)—->l space l——h’ tarm.id }-—-b-{ }—bl fabe ! _nome
“""“““-‘*‘—-—E B510/8X05

Figure 12-1. $TRace Subsystem Syntax Diagram (continued)

STRace Subsystem HP 1652B/16538B
12.2 Programming Reference

branch_qualifier = <qgualifier>
to_lev_num = integer from 1 to trigger level when <N > is less than or equal to the trigger level, or
from (trigger level + 1) fo <num_of levels> when <N > is greater than the trigger level
proceed_gualifier = <gualifier>
eccurrence = number from 1to 65535
prestore_qual = <gualifier>
label_name = string of up to 6 alphanumeric characters
start_pattern = "{#B{0|I}... |
#0Q{0]112|3{4|5|6|7}... |
#H{0|112]|314|5|6|7|819|4|BIC|D|EIF}... |
{o[1]2]3]4|5]6|7|819}... }"
stop_pattern = "{#B{0/1}... |
#0{0|112|314|5|67}... |
#H{0[112]314|5|6|7|8|9|4|B|C|DI|E|F}... |
{0111213|4|5{6{7|8i%9}... }'
restart_qualifier = <qualifier>
nuin_of_levels = integer from 2 to 8 when ARM is RUN or from 2to 7 otherwise
lev_of_trig = integer from 1to {number of existing sequence levels - 1)
store_qualifier = <qualifier>
state_tag_qualifier = <qualifier>
term_id = {A|B{C|D|E|F|G|H}
pattern = "{#B{0]1|X}... |
#0{0|1|2]314|5]6|7|X}. .. |
#H{0|1|2]|3]4|5|6]7|8|9i4|B|C|D|E|F|X}... |
{011|12|3|4|5|6]7/8/9}... }"
qualifier = { ANYState | NOSTuate | <any_term> | (expressionl{{AND|OR} <expression2>]) |
{expression2{ [AND[OR} <epressionl>]) }
any term = { <or_terml> | <and_termi> | <or_tem2> | and_term2}
expressionl = { <or_tenl>[OR <or termi1>].. | <and_terml> [AND <and_terml>]..}
expression2 = { <or_term2> [OR <or_term2>[... | <and_term2> [AND <and_term2>]...}
or_terml = {A4|B{C|D|INRange | OUTRange}
and terml = {NOTA|NOTB|NOTC|NOTD |INRange|OUTRange}
or_term2 = {E|F|G|H}
and_term2 = {NOTE|NOTF|NOTG|NOTH}

Figure 12-1, STRace Subsystem Syntax Diagram (continued)

HP 1652B/1653B STRace Subsystem
Programming Reference 12-3

STRace
[

STRace selector

The STRace (State Trace) selector is used as a part of a compound
header to access the settings found in the State Trace menu, It always
follows the MACHline selector because it selects a branch directly below
the MACHine level in the command tree.

Command Syntax: :MACHine{1]2}:8TRace

Example: OUTPUT XXX;":MACHINEL:STRACE:TAS TIME™

STRace Subsystem HP 1652B/16538
12-4 Programming Reference

BRANch

Note %

1
Note %

HP 1652B/1653B
Programming Reference

BRANch

command/query

The BRANch command defines the branch qualifier for a given sequence
ievel. When this branch qualifier is matched, it will cause the sequencer
to jump to the specified sequence level.

"RESTART PERLEVEL" must have been invoked for this command to
have an effect (see RESTart command).

The terms used by the branch qualifier (A through H) are defined by the
TERM command. The meaning of INRange and OUTRange is
determined by the RANGe command.

Within the limitations shown by the syntax definitions, complex
expressions may be formed using the AND and OR operators.
Expressions are limited to what you could manually enter through the
front panel. Regarding parentheses, the syntax definitions on the next
page show only the required ones, Additional parentheses are allowed as
long as the meaning of the expression is not changed. For example, the
following two statements are both correct and have the same meaning,
Notice that the conventional rules for precedence are not followed.

OUTPLT XXX;™:MACHINEL:STRACE:BRANCHL (C OR D AND F OR &), 1"
QUTPUT XX, " :MACHINEL :STRACE:BRANCH: ({C OR D) AND (F OR B)), 1"

Figure 12-2 shows a complex expression as seen on the Format display.

Branching across the trigger level is not allowed. Therefore, the values for
<N> and <to_level num> must both be either on or before the trigger
level, or they must both be after the trigger level . The trigger level is
determined through the SEQuence command,

The BRANch query returns the current branch qualifier specification for
a given sequence level,

STRace Subsystem
12-5

BRANch

Command Syntax:

where;

<N>
<o _fevel number>

<pumber_of_leveis>
<branch gualifier>

<any_term:>
<expressiont >
<expression2 >
<er_term1 >
<and_term1>
<Oor_term2>
<and_term2:

Exampies:

Query Syntax

Returned Format:

Example: k

STRace Subsystem
12-6

:MACHine{1]2}:STRace:BRANCh < N> < branch_qualifier >, <to_level_number>

2= aninteger from 110 <number_of levals>

:1= integer from 1 1o trigger level, when <N > is less than or equaf to the trigger level
or from (trigger level + 1) 1o <number_of_levels >, when <N> is greater than the
rigger lovel

1= integer from 2 to the number of existing ssquence ievels {maximum 8)

1= { ANYState | NOSTate | <any_term > |
{< expression1 > [{AND]OR} <expression2>1) |
{<expression2 > [{AND{OR} <expressiont>]}}

n= {<or_term1> | <and_termi> | <or_term2> | <and_term2>}

e {<or_termi > {OR <or term1>1.. | <and_term1> [AND <and_termt>1..}

n= {<or_term2>{OR <or_term2>]... | <and_term2 > [AND <and_term2>1..}

= {AlB|C|D|INRange|CUTRange}

= {NOTAINOTB I NOTCINOTD|INRange | OUTRange}

w= {EiF|GIH}

2= {NOTEINOTF|NOTG|NOTH}

OUTPUT XXX;™ :MACHINEL:STRACE :BRANCHL ANYSTATE, 3¢
QUTPUT XXX;":MACHINE2 :STRACE:BRANCHZ A, 7"
DUTPUT XOOX;™ :MACHINEL :STRACE:BRANCH3 ({A OR B) OR NOTG), t®

{MACHIne{12}:STRace:BRANch <N > 7

[:MACHIne{1}2}:8TRace:BRANch < N> Jebranch_qualifier >, <to_level_num> <NL>»

10 DIM String$[100]

20 QUTPUT XXX;":MACHINEL:STRACE :BRANCH3?™
30 ENTER XXX;String$

40 PRINT String$

50 END

HP 1652B/1653B
Programming Reference

BRANch

1
Note 4P

HP 1852B/16538
Programming Reference

FIACHINE T = Stats Trsce Specificelion
Trece mude [Eihgie]

Nemn s | gad o meg by

[Fuly Quatifier Specification T
janghes

eI

auntl

|1 i

eslore

o]

Figure 12-2. Complex qualifier

Figure 12-2 is a front panel representation of the complex qualifier
(a Or b) And (e And =h). The following example would be used to
specify this complex qualifier.

QUTPUT XXX;":MACHINEL:STRACE:BRANCHE ((A OR B} AND [NOTE AND NOTH}), 2¢

Terms A through D and RANGE must be grouped together and terms
E through H must be grouped together. In the first level, terms from
one group may not be mixed with terms from the other. For example, the
expression ((A OR INRANGE) AND (C OR H)) is not allowed because
the term C cannot be specified in the E through H group.

Keep in mind that, at the first level, the operator you use determines
which terms are available. When AND is chosen, only the NOT terms
may be used. Either AND or OR may be used at the second level to join
the two groups together. It is acceptable for a group to consist of a single
term. Thus, an expression like (B AND G) is legal, since the two
operands are both simple terms from separate groups.

STRace Subsystem
12-7

FIND

FIND command/query

The FIND command defines the proceed gualifier for a given sequence
level, The gualifier tells the state analyzer when to proceed to the next
sequence level. When this proceed qualifier is matched the specified
number of times, the sequencer will proceed to the next sequence level,
The state that causes the sequencer to switch levels is antomatically stored
in memory whether it matches the associated store qualifier or not. In the
sequence level where the trigger is specified, the FIND command
specifies the trigger qualifier (see SEQuence command).

The terms A through H are defined by the TERM command. The
meaning of INRange and OUTRange is determined by the RANGe
command. Expressions are limited to what you conld manually enter
through the Format menu. Regarding parentheses, the syntax definitions
below show only the required ones. Additional parentheses are allowed
as long as the meaning of the expression is not changed. See figure 6-2 for
a detailed example.

The FIND query returns the current proceed qualifier specification for a
given sequence level,

Command Syntax: :MACHine{1]2}:STRace:FIND<N> <proceed_gualifier> , < occurrence >

whoere;

<N> 1= integer from 1 to the number of existing sequence levels {maximum 8)
<occurrence > = integer from 1 to 65535
<procend qualifier> n= { ANYState | NOSTate | <any_ferm> |
(<expressiont > [{AND{OR} <expression2>1} |
(< expression2> [{AND{OR] <expressioni>1 }
<any term> = {<or termi> | <and_terml> | <or_term2> | <and term2>}

<expressioni> = {<or termi>[OR <or_term1>].. | <and termi>{AND <and_term1>1]..}
<expression2> = {<or_term2>[OR <or term2>]... | <and lerm2>[AND <and_term2>1..}
<or termi> o= {A|BICID{INRange |OUTRange}
«<and termi> = {NGTA|NOTBINOTC|NOTD|INRange | OUTRange}
<or_term2> = {E{F|G|H}
<and_term2> = {NOTE|NOTFiNOTE|NOTH}
STRace Subsystem HP 1852B/1653B
12-8 : Prograrnming Reference

FIND

Exampiles:

Query Syntax:
Returned Format:

Example:

HP 1652B/16538
Programming Reference

QUTPUT XXX, ":MACHINEL:STRACE:FINDL ANYSTATE, 1"
QUTPUT XXX;":MACHINEL:STRACE:FINDZ A, 512¥
SUTPYT XXX;":MACHINEL :STRACE:FIND3 ((NOTA AND WOTB} OR 8), 1"

‘MACHIne{1}2}:STRace:FIND4?
[IMACHIne{1|2}:8TRace:FIND<N>] <proceed_gualifier >, < occurrence > <NL >

10 DIM String$[100]

20 DUTPUT XXX;" :MACHINEL:STRACE :FIND<N>?"
30 ENTER XXX;String$

40 PRINT String$

50 END

STRace Subsystem
12-9

PREStore
S

PREStore command/query

The PREStore command turns the prestore feature on and off. It also
defines the qualifier required to prestore only selected states. The terms
A through H are defined by the TERM command. The meaning of
INRange and OUTRange is determined by the RANGe command.

Expressions are limited to what you could manually enter through the
Format menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed.

A detailed example is provided in figure 12-2,
The PREStore query returns the current prestore specification,

Command Syntax: :MACHIne/1]2}:STRace:PREStore {OFF | <prestore_qualifier> }

where:

<ptestore_qualifier> 1= { ANYState | NOSTate | <any_term> |
' {<expression1 > [{AND|OR} <expression2>1} |
{<expression2 > [{AND|OR} <expressioni>}}}
<any term> o= {<ortermi> | <and_termi> | <or_term2> | <and term2>}
<expressioni> = {<or term1>[OR <or term1>1.. | <and termt>[AND <and termi>1..}
<expression2> = {<or_term2>[OR <or_term2>1.. | <and_term2>{AND <and_term2>1..}
<or_termi1> = {A|B]C{D|INRange|OLUTRange}
<and_termi> = {NOTA[NOTB[NOTC|NOTD|INRange | OUTRange)}
<pr term2> = {EIF|GIH}
<and term2> u= {NOTEINOTFINOTG[NOTH}

STRace Subsystem HP 1652B/16853B
12-10 Programming Reference

PREStore

Examples; OUTPUT XXX.™:MACHINEL:STRACE:PRESTORE DFF™
OUTPUT XXX;™:MACHINEL:STRACE:PRESTORE ANYSTATE™
OUTPUT XXX;":MACHINEL:STRACE:PRESTORE (E}"
OUTPUT XXX;"™:MACHINEL:STRACE:PRESTORE (A OR B OR D OR F OR W)

Query Syntax: :MACHine{1]2}:STRace:PREStore?
Retumed Format: [:MACHine{1]2}:$TRace:PREStare] {OFF! <prestore_qualifier>} <Ni, >

Example: 10 DIM String${100]
20 QUTPUT XXX;":MACHINEL:STRACE :PRESTORE?"
30 ENTER XXX;String$
40 PRINT String$
50 END

HP 1652B/1653B STRace Subsystem
Programming Reference 12-11

RANGe

RANGe ' command/query

The RANGe command allows you to specify a range recognizer term in
the specified machine. Since a range can only be defined across one label
and, since a label must contain 32 or less bits, the value of the start pattern
or stop pattern will be between (2%9)-1and 0.

ﬁ Since a label can only be defined across a maximum of two pods, a range
Note term is only available across a single label; therefore, the end points of the
range cannot be split between labels.

When these values are expressed in binary, they represent the bit values
for the label at one of the range recognizers’ end points. Don’t cares are
not allowed in the end point pattern specifications, Since only one range
recognizer exists, it is always used by the first state machine defired,

The RANGe query returns the range recognizer end point specifications
for the range.

ﬁ When two state analyzers are on, the RANGe term is not available in the
Note second state analyzer assigned and there are only 4 pattern recognizers

per analyzer.

STRace Subsystem HP 1652B8/1653B
12-12 Programming Reference

RANGe

Command Syntax:

where:

<tlabel_nama>
<start_pattern>

< stop_pattern >

Examples:

Query Syntax:

Returned Format:

Example:

HP 1852B/16538

Programming Reference

MACHIne{1|2}:STRace:RANGE <labei_name >,<start pattern>,<stop_pattern >

2= gtring of up to 6 aiphanumeric characters

e EB{O}. .}
#Q{0|1]2|314]518]7} ... |
#H{0|1|213{4]|5|6|71819]|AIBIC|DIE|F}... |
{0f1}2|3]4|5|6|7|8]8} ...}

s #B{DIY ..
#Q{D|1|2|3|4}58i7}... |
#H{0{1]2|3[415i6|7|819}A|B|CIDIE|F} ... |
{Cc{1i2]|3(4i5|6|7IB19}...)

QUTPUT XXX;":MACHINEL:STRACE:RANGE 'DATA’, 'l27', 288" ™
DUTPUT XXX;":MACHINE1:STRACE:RANGE "ABC®, '#B00001111’, '#HCF*

:MACHIne{1]2}:8TRace: RANGe?

[:MACHIne{1|2}:STRAce:RANGe]
<labe!_name > <start_patiern>, <stop pattern > <NL>

10 DIM String$f100] :

20 QUTPUT XXX;™:MACHINEL:STRACE :RANGE?"
30 ENTER XXX;String$

4G PRINT String$

50 END

STRace Subsystem
12-13

RESTart

RESTart

Command Syntax:

whete:

<restart_qualifier >

<any_term>
<expressiont>
< @xpression2>
<or_termt>
<and_termi>
<o _term2>
=<and_term2>

Examples:

S$TRace Subsystem
12-14 :

command/query

The RESTart command selects the type of restart to be enabled during
the trace sequence, It also defines the global restart qualifier that restarts
the sequence in global restart mode. The qualifier may be a single term or
a complex expression. The terms A through H are defined by the TERM
command. The meaning of INRange and OUTRange is determined by
the RANGe command.

Expressions are limited to what you could manually enter through the
Format menu, Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed.

A detailed example is provided in fignre 12-2.
The RESTart guery returns the current restart specification.

:MACHine{1|2}:5TRace:RESTart {OFF | PEFLevel | <restart_qualifiers}

= { ANYState | NOSTate | <any term> |
{<expressioni > [{AND|OR} <expression2>]) |
{<expression2> [{AND|OR} <expression1>]} }
= {<or term1> | <and_termi> | <or_term2> | <and_term2>}
n= {<or_termi > [OR <or_termi> . | <and_termt > [AND <and_term1:>1.}
u= {<or term2>[OR <or_term2>].. | <and_term2> [AND <and_term2> ..}
= {A}B[{Ci{D]iNRange | OUTRange}
= {NOTAINOTBNOTC|NOTD INRange | OUTRange}
= {E}FiG[H}
s {NOTE|NOTFINOTG |NOTH}

QUTPUT XXX;":MACHINEL:STRACE:RESTART OFF™

QUTPUT XXX;™:MACHINE1:STRACE:RESTART PERLEVEL”

QUTPUY XXX;":MACHINE]:STRACE:RESTART {NOTA AND NGTS AND INRANGE}™
QUTPUT XXX;™:MACHINEL1:STRACE:RESTARY {B OR {(NOTE AND NOTF})"

HP 1652B/1653B
Programming Reference

RESTart

Query Syntax: :MACHine{1|2}:8TRace:RESTart?

Retumed Format: [:MACHine{1|2}:STRace:RESTart] {OFF | PERLevel | <restart gualifier>}<NL>

Example: 16 DIM String3[100]
20 OUTPUT XXX;":MACHINEL:STRACE:RESTART?"

30 ENTER XXX;String$
40 PRINT Stringd
S0 END

HP 1652B/1653B STRace Subsystem
12-18

Programming Relerence

SEQuence

SEQuence

Command Syntax:

where:

<numbesr_of leveis>
<level_of trigger>

Example:

Query Syntax:

Returned Format:

Example:

STRace Subsystem
12-16

command/query

The SEQuence command redefines the state analyzer trace sequence.
First, it deletes the current frace sequence. Then i inserts the number of
levels specified, with defanlt settings, and assigns the triggeriobe at a
specified sequence level. The number of levels can be between 2 and 8
when the analyzer is armed by the RUN key. When armed by the BNC or
the other machine, a level is used by the arm in; therefore, only seven
levels are available in the sequence.

The SEQuence query refurns the current sequence specification.

:MACHine{t]2}:8TRace:8EQuence < humber‘nfu_levels >, <level_of trigger>

1= integer from 2 t¢ 8 when ARM is RUN or from 2 to 7 otherwise
= integer from 11c (number of existing sequence levels - 1}

CUTPUT XXX;":MACHINEZ:STRACE:SEQUENCE 4,3"
‘MACHIne{1{2}:8TRace: SEQuenca?

[:MACHine{1|2}:8TRace:SEQuence]
<number_of levels>, <level of trigger> <NL>

10 DIK String$[100]

20 OUTPUT XXX;":MACHINEI:STRACE :SEQUENCE?™
30 ENTER XXX;String$

40 PRINT S$tring$

56 END

HP 1652B/1653B
Programming Reference

STORe

Command Syntax:

where:

<N>
<stors_qualifler »

<gny term:>

< expression! >
< @xpiessionz >
<or_termi >
«<and_ termi>
<ef term2>
<and term2 >

HP 1652B/1653B

Programming Reference

STORe

command/query

The STORe command defines the store qualifier for a given sequence
level. Any data matching the STORe qualifier will actually be stored in
memory as part of the current trace data. The qualifier may be 2 single
term or a complex expression. The terms A through H are defined by the
TERM command. The meaning of INRange and OUTRange is
determined by the RANGe command.

Expressions are limited to what you could manually enter through the
Format menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not chanped,

A detailed example is provided in figure 12.2.

The STORe query returns the current store qualifier specification for a
given sequence level <N >,

:MACHne{1]2}:8THace:STORe <N> < store_gualifier >

= aninteger from 1 to the number of existing sequence levels (maximum 8}
1= { ANYState | NOSTate | <any_term > |
{«<expressiont > [{AND |OR} <expression2>1]j |
{<expression2> [[AND |OR} <expressicni>}}
ue= {<or_termi> | <and_term1> | <or term2> | <and ferm2>}
n= {<or_term1>{0OR <or_termt>1.. | <and_termi>[AND <and_termi1>1.}
= {<or term2> [OR <or term2>1.. | <and term2> [AND <and term2>]..}
= {A}B{C|D|INRange {OUTRange}
1= {NOTA|NOTB|NOTC|NOTD|{INRange | OUTRange}
e [E{F|GH}
= {NOTEINOTF|NOTGINGTH}

STRace Subsystem
12.17

STORe

Examples: QUTPUT XXX;":MACHINEL:STRACE:STORE1 ANYSTATE"
DUTPUT XXX:":MACHINEL:STRACE:STORE2 QUTRANGE"
QUTPUT XXX;":MACHINE1:STRACE:STORE3 (NOTC AND NOTD AND NOTH)™

Query Syntax: :MACHIne{1/2}:5TRace:STORe <N>7
Returned Format: [:MACHine{1}2}:$TRace:STORe <N>] <store_qualifier> <NL>

Example: 10 DIM String$[100]
20 OUTPUT XXX;":MACHINE 1:STRACE:STORE4T"
30 ENTER XXX;String$
40 PRINT String$
50 END

STRace Subsystem HP 16528/16538
12-18 Programming Reference

TAG

TAG ' command/query

The TAG command selects the type of count tagging (state or time) to be
performed during data acquisition. State tagging is indicated when the
parameter is the state tag qualifier, which will be counted in the qualified
state mode. The qualifier may be a single term or a complex expression.
The terms A through H are defined by the TERM command. The terms
INRange and OUTRange are defined by the RANGe command.

Expressions are limited to what you could manually enter through the
Format menn. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed. A detailed example is provided
in figure 12-2.

Because count tagging requires 2 minimum clock pertod of 60 ns, the
CPERiod and TAG commands are interrelated (the CPERiod command
is in the SFORmat subsystem). When the clock period is set to Less
Than, count tagging is turned off. When count tagging is set to either state
or time, the clock period is automatically set to Greater Than,

The TAG query returns the corrent count tag specification.

Command Symtax: :MACHine{1|2}:STRace:TAG {OFF | TIME | «<state_tag_qgualifiers}

where:
<State_tag_qualifier> = { ANYState | NOSTate | <any_term> |
{<expressiont > [{AND|OR} <exprassion2:>]} |
{<expression2> [{AND|OR} <expression1=>]}}
<any_term> = {<or temi> | <and term1> | <or_term2> | <and_term2>}
<expression1> = {<or_term1>[OR <or_term1>].. | <and_term?1>{AND <and_termi=>]..}
<expression2> = {<or term2>[OR <or term2>].. | <and_term2 > JAND <and_term2> ...}
<por_termi> = {A|B|C}D}INRange | CUTRange}

<and_term1> o= {NOTA|NOTB[NOTC|NOTD|INRange | OUTRange)}
<or_tarm2> u= {E|F|G|H}
<gnd_term2> = {NOTE|NOTF|NOTG|NOTH}

HP 1852B/1653B STRace Subsystem
Programming Relerence 12-19

TAG

Examples: OUTPUT XxX;":MACHINEL:STRACE :TAG OFF"
QUTPUT XXX;":MACHINEL:STRACE: TAG TIME"
QUTPUT XXX;":MACHINEL:STRACE:TAG [INRANGE OR NOTF)"
QUTPUT XXX;*:MACHINEL:STRACE:TAG ({INRANGE OR A} AND E)"

Query Symtax: :MACHine{1|2} :5TRace:TAG?
Returned Format: [:MACHine{1}2}:STRace:TAG] {OFF|TIME| <state_tag_qualifier>} <NL>

Example: 10 DIM String$[100]
20 CUTPUT XXX:":MACHINEL:STRACE:TAG?"
30 ENTER XXX;String$
4D PRINT Strings
50 EKD

STRace Subsystem HP 1652B/16538
12-20 Programming Reference

TERM

TERM command/query

The TERM command allows you to a specify a pattern recognizer term in
the specified machine. Each command deals with only one label in the
given term; therefore, a complete specification could require several
commands. Since a label can contain 32 or less bits, the range of the
pattern value will be between 2%2. 1 and 0. When the value of a pattern is
expressed in binary, it represents the bit values for the label inside the
pattern recognizer term. Since the pattern parameter may contain don't
cares and be represented in several bases, it is handled as a string of
characters rather than a number.

When a single state machine is on, all eight terms (A through H) are
available in that machine. When two state machines are on, terms A
through D are used by the first state machine defined, and terms E
through H are used by the second state machine defined.

The TERM query returns the specification of the term specified by term
identification and label name.

Command Syntax: :MACHine{1|2}:STRace:TERM <term_id >, <label_name >, <patiemn >

where:

<term_ld> = {AIB|CIDIEIFIG|H}
<label_name> = string of up to 6 alphanumeric characters
<pattern> = {FB{OJYIX] .. |
#Q{0(112|3]4|5|6]7iX} ... |
#H{0{1|2]314]5!6|7|8|9IAIB|C|DEIFIX}... |
{0}1]2{3]4|5i8|7|8(8}... }"

Example: OUTPUT XXX;“:MACHINEL:STRACE:TERM A, 'DATA','255° "
OUTPUT XXX;":MACHINEL:STRACE:TERM B, "ABC", '#BXXXX1101" "

HP 1652B/1653B STRace Subsystem
Programming Reference 1221

TERM

Query Syntax: :MACHine{1{2}:5TRace:TERM? <term_id >, <iabel name>

Returned Format: [MACHine{1|2}:STRAce: TERM] <term_id >, <label_name>,<paftern> <NL>

Example: 10 DIM String$[100]
20 OUTPUT XXX;":MACHINE1:STRACE:TERM? B, 'DATA' "

30 ENTER XXX;String$
40 PRINT String$
50 END

HP 1652B/1653B

STRace Subsystem
Programming Reference

12-22

SLISt Subsystem 13
L

introduction The SLISt subsystem contains the commands available for the State
Listing menu in the HP 1652B/53B logic analyzer. These commands are:

COLumn
DATA
LINE
MMODe
OPATtern
OSEarch
OS8Tate
OTAG
RUNTH
TAVerage
TMAXimum
TMINimum
VRUNs
X0Tag
XPATtern
XSEarch
XSTate
XTAG

* 8 8 8 B 8 & "8 O ¢ Q0 O S & 8 O S

HP 1652B/1653B SLIST Subsystem
Programming Reference 13-1

Y, P
m o ‘—-P{COLumnH spoce H calﬂauml—bw—@——v
%COLumn?H space M colohum } o
—-—(DATA?}—DJ_ space [—-i-{ i ine..number} . b -

space I—D-{ ! inewnum.mid_screeni
WMODe oFF
(i)

m———
—*(OPATiern)———-PI space H labe | _name Wﬂfffj—h
—-(OPATtern'?H spoce H labe | _nome E L
—b(GSEerch}-ﬁ{ spoce]—.-I:occurrence |

g OSE0F R } o

o O5Tete? } L
Y 0HE0S10 A

"Figure 13-1. SLISt Subsystem Syntax Disgram

SLIST Subsystem HP 1652B/1653B
132 Programming Reference

—-—-@—Pi spoce T ime_ vulue} -
stote.ve! ueg—’
—»(RUNT%Q—V{ spoce f—-‘vf runuenty stpeci -
—am{ RUNT {7 } -
o TMAX i mum? } -
—e{ TMINimum? e
—{ X0Tog?) -
—FCXPATternH space lr—’-{ labe! _nome fabel_paliern —————i~
—b{XPATLer n?H gapace }—bi labei_name i L
—ﬁ(XSEurch)—ﬁi space H accyrrence

priel XEEdreh? k
pemed WETate? } ; o

spoce | i ';]I time.voiue }
18510/5%05

Figure 13-1. SLISt Subsystem Syntax Diagram {continued)

HP 1652B/1653B SLIST Subsystem
Programming Relerence 13-3

module_num = {I|2]|3{4]5}

mach_num = {7]2}

col_mum = {I|2|3|4}5|6]|7|8}

line_number = integer from -1023 to + 1023

label_name = a string of up to 6 alphanumeric characters

base = {BINary | HEXadecimal|OCTal|DE Cimal | ASCii [SYMBol | IASSembler} for labels or
{ABSolute | RELative} for tags

line_num_mid_screen = integer from -1023 to + 1023

label_pattern = "{#B{0|1|X}... |
#0{011]2{3|4|5]6|7\X}... |
#H{0}1|2|3|4]|516|718|9|4|B|C|D|EIF|X}... |
{0|1|12|3]4|516|71819}... }"

oeccurrence = integer from -1023 to + 1023

time_valoe = real number

state value = real number

run_until_spec = {OFF|LT, <value> |GT, <value > |INRange, <value>, <value> |
OUTRange, <value>, <value>}

value = real number

Figure 13-1. SLISt Subsystem Syntax Diagram (continued)

SLIST Subsystem HFP 1652B/1653B
13-4 Programming Reference

SLISt

Command Syntax:

Example:

HP 1652B/1653B
Programming Reference

SLISt

selector

The SLISt selector is used as part of a compound header to access those
settings normally found in the State Listing menu. It always follows the
MACH.ipe selector because it selects a branch directly below the
MACHine level in the command tree.

:MACHine{1}2}:5LISt

QUTPUT XXX;":MACHINEL:SLIST:LINE 256"

SLIST Subsystem
13-5

COLumn

COLumn

Command Syntax:

where:

<gol_num>
<labei_name >
<base>

1
Note W

Examples:

SLIST Subsystem
13-6

command/query

The COLums command allows you to configure the state analyzer

list display by assigning a labe! name and base 1o one of the eight vertical
columns in the menu. A column number of 1 refers to the left most
column. When a label is assigned to a column it replaces the original label
in that column. - The label originally in the specified column is placed in
the column the specified label is moved from.

When the label name is "TAGS," the TAGS column is assumed and the
next parameter must specify RELative or ABSolute.

The COLumn query returns the column number, label name, and base for
the specified column.

:MACHine{112}:SLISt:COLumn <col_num >, <label_name >, <base>

u= {1|2{3|4i5|6}7]8}

= a'string of up to 6 aiphanumeric characters

i {BINary i HEXadecimal | OCTal | DECimal | ASCHi | SYMBol {ASSembler} for jabals
or

1= {ABSoclute | RELative} for tags

A label for tags must be assigned in order to use ABSolute or RELative
state tagging,

QUTPUT XXX;":MACHINEL1:SLIST:COLUMN 4,2, MACHINEL, "A' HEX"
QUTPUT XXX;":MACHINEL:SLIST:COLUMN 1,2,MACHINEL, "TAGS", ABSOLUTE"™

HP 1652B/1653B
Programming Reference

COLumn

Query Syntax: :MACHine{1[2}:SLISt:COLumA? <ool_num>
Returned Format: [MACHine[1]2}:8Li8:C0Lumn] <col_num >, <label_name>,<base><NL>

Example: 10 oIM 01100
20 QUTPUT XXX:":MACHINEL:SLIST:COLUMNT 47

30 ENTER XXX;C1%
40 PRINT C1%
50 END

HP 1652B/1653B SLIST Subsystem
Programming Reference 13-7

DATA

DATA

Query Syntax:

Returned Format:

where:

<line_number>
<iabe_name>
<pattern_string >

Example:

SLIST Subsystem
13-8

query

The DATA query returns the value at a specified line number for a given

label. The format will be the same as the one shown in the Listing display
except for ASCIL, Syrmbols, or Inverse Assembly which will be returped in
HEX.

{MACHIne{1]2}:SLISLDATA? . <line_number >, <label_name>

[:MACHIns{1]|2}:81I1St:DATA]
<line_number >, <label_name>, <pattern_string> <NL>

L= integer from ~1023 to +1023

i1 = string of up 10 6 alphanumeric characters

o {EB{0ITIX) L.
#Q{0]1{2|5314]516]71X} ... |
#H{0|1]2{3]415{6]7{8{9]|A|B|C|DIEIF|X}.. . |
{0{1]2{3]4]5|6]7i8i%}...)

10 DIM Sd$7100]

20 QUTPUT XXX;™:MACHINEL:SLIST:DATA? 512, °RAS’™
30 ENTER XXX;Sd$

40 PRINT Sd$

50 END

HP 1652B/1653B
Programming Reference

LINE

LINE command/query

The LINE command allows you to scroll the state analyzer listing
vertically. The command specifies the state line number relative to the
trigger that the analyzer will be highlighted at center screen.

The LINE query returns the line number for the state currently in the
box at center screen.

Command Syntax: :MACHine{1}2}:SLStLINE <line_num_mid_screen >

where:

<line_nurn_mid_screen> = integer from -1023 t0 +1023

Example: QUTPUT XXX;":MACHINEL:SLIST:LINE 0"
Query Syntax: :MACHine{1}2}:SLISELINE?
Returned Format: [[MACHine{1|2}:SLISELINE] <line_num_mid_screen> <NL>

Example: 10 0I¥ Ln$f100]
20 QUTPUT XXX;":MACHINE]:SLIST:LINE?"
30 ENTER XXX;Ln$§
40 PRINT Ln$
B0 END

HP 1852B/1653B SLIST Subsystem
Programming Heference 139

MMODe

MMODe

Command Syntax:

‘where:

< marker_mode >

Example:
Query Syntax:

Returned Format:

Example:

SLIST Subsystem
1310

command/query

The MMODe command (Marker Mode) selects the mode controlling the
marker movement and the display of marker readouts. When PATTern is
selected, the markers will be placed on patterns. When STATe is selected
and state tagging is on, the markers move on qualified states counted
between normally stored states. When TIME is selected and time tagging
is enabled, the markers move on time between stored states, When
MSTats is selected and time tagging is on, the markers are placed on

‘patterns, but the readouts will be time statistics.

The MMODe query returns the current marker mode selected.

:MACHIns{1 !2}:SUSt:MMObe <marker_mode >

= {OFF|PATTem | STATe| TIME|MSTate}

OUTPUT XXX;"™:MACHINE1:SLIST :MMODE TIME™
'MACHIne{1}2}:SLISLMMODs?
[:MACHIne{1]2}:SLISEMMODe] < marker_mode> <hL>

10 DIM ¥n$1100]

20 QUTPUT XXX;™:MACHINEZ:SLIST:MMODE?"
30 ENTER XXX;Mn3

40 PRINT Mn$

50 END

HP 1652B/1653B
Programming Reference

OPATtern

P
OPATtern command/query

The OPATtern command allows you to construct a pattern recognizer
term for the O Marker which is then used with the OSEarch criteria when
moving the marker on patterns. Since this command deals with only one
label at a time, a complete specification could require several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base
is used, the value must be between 0 and 2°“ - 1, since a label may not have
more than 32 bits, Beeause the <label pattern> parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

The OPATtern query returns the pattern specification for a given Iabel
name,

Command Syntax: :MACHine{1|2}:SLIS:OPATtern <label_name >, <label_pattern>

where:

<label_name:> = siring of up to 6 alphanumerio characters
<iabel pattern> = "{#B{0{1{X}...]
#0Q{0|1|2]3]4{5{6{TIX} ... |
#H{0|1|2[314|5|6]7|8{9|A|B|CID|EIFIX}. .. |
{0j1]2|3}4|5i6|7|818} ... }"

Examples: QUTPUT XXX;":MACHINE1:SLIST:CPATTERN 'DATA', 255" "
OUTPUT XXX;":MACHINEL:SLIST:OPATTERN 'ABC', '#BXXXX1101" *

HP 1652B/1653B SLIST Subsystem
Frogramming Relerence 13-11

OPATiern

Query Syntax:
Returned Format:

Example:

SLIST Subsystern
13-12

:MACHine{1[2}:8LI51:0PATtern? <iabel name>
EMACHIne{1{2}:SLIStOPATtermn] <labe!_name >, <iabel pattern> <NL>

10 DIM Cpi[100]

20 CUTPUT XXX;":MACHINE1:SLIST:OPATTERN? 'A'"
30 ENTER XXX;0p$

40 PRINT Op$

50 END

HP 1652B/1653B
Programming Reference

OSEarch

Command Syntax:

where:

<oteurrence >
<ofigin >

Example:
Query Synlax:
Returned Format:

Example:

HP 1652B/1653B
Programming Reference

OSEarch

command/query

The OSEarch command defines the search criteria for the O marker,
which is then used with associated OPATtern recognizer

specification when moving the markers on patteras, The origin parameter
tells the marker to begin a search with the trigger, the start of data, or with
the X marker. The actual occurrence the marker searches for is
determined by the occurrence parameter of the OPATtern

recognizer specification, relative to the origin. An occurrence of ¢ places
the marker on the selected origin. With a negative occurrence, the marker
searches before the origin. With a positive occurrence, the marker
searches after the origin.

The OSEarch query returns the search criteria for the O marker,

:MACHine{1|2}1:SLISt:0SEarch < ocsurrence >, <origin>

= integer from -1023 t0 4+ 1023
u= {TRIGger|STARt | XMARker}

DUTPUT XXX;":MACHINEL1:SiIST:OSEARCH +10,TRIGGER"
‘MACHIne{1]2}:SLISt:OSEarch?
[:MACHine {1]2}:SLIStOSEarch] <ocourrence >, <ofigin> <NL>

10 DIM Cs$[100]

20 DUTPUT XXX;":MACHINEL:SLIST:DSEARCH?™
30 ENTER XXX;0s§

40 PRINT Os$

50 END

SLIST Subsystem
13-13

OS?ate

OSTate

Query Symtax:
Retumed Format:

where:

<state num>

Example:

SLIST Subsystem
13-14

query

The OSTate query returns the lne number in the listing where the O
marker resides (-1023 to +1023). If data is not valid , the query returns
32767.

:MACHIne{1]2}:SLISLOSTate?

MACHIne{1]2}:5LISt0STate] <state num> <NL>

= an integer from -1023 to -+ 1023, or 32787

10 DIM Ds$[100]

20 OUTPUT XXX;™:MACHINEL:SLIST:0STATE?"
30 ENTER XXX:0s$

40 PRINT 0s$

50 EKD

HP 1652B/16538
Programming Reference

OTAG

Command Syntax:

where:

<time_value >
<state_vaiue >

Example:
Query Syntax:
Returned Format:

Example:

HP 1652B/16538
Programming Reference

OTAG

command/query

The OTAG command specifies the tag value on which the O Marker
should be placed. The tag value is time when time tagging is on or states
when state tagging is on. H the data is not valid tagged data, no action is

performed.

The OTAG query returns the O Marker position in time when time
tagging is on or in states when state tagging is on, regardless of whether
the marker was positioned in time or through a pattern search. If data is
not valid, the query returns 9.9E37 for time tagging, 32767 for state
tagging.

(MACHIne {1]2}:8LISLOTAG {<time_value > | <state_value>}

+= real number
1= integer

:OUTPUT XXX;":MACHI&E}. :SLIST:0TAG 40.0E-8"
MACHIne{1|2}:8LISt OTAG?
[:MACHIne{1{2}:SLIStOTAG] {<time_vaiue>| <stats_value>}<Ni>

10 DM Ot$T100]

20 BUTPUT XXX;":MACHINEL:SLIST:0TAG?"
30 ENTER XXX;0t$

40 PRINT Ot

50 END

SLIST Subsystem
13-15

RUNTiI

RUNTIl

Note @

SLIST Subsystem

13-16

command/query

The RUNTiI (run until) command allows you te define a stop condition
when the trace mode is repetitive. Specifying OFF causes the analyzer to
make runs until either the display’s STOP field is touched or the STOP
command is issued.

There are four conditions based on the time between the X and O
markers. Using this difference in the condition is effective only when time
tags have been turned on (see the TAG command in the $STRace
subsystem). These four conditions are as follows:

The difference is less than (I.T) some value.

The difference is greater than (GT) some value.,
The difference is inside some range (INRange).
The difference is ontside some range (OUTRange).

© & & ®

End points for the INRange and OUTRange should be at least 40 ns apart
since this is the minimum time resolution of the time tag counter.

There are two conditions which are based on a comparison of the
acquired state data and the compare data image. You can run until one of
the following conditions is true:

e Compare Equal (EQUal) - Every channel of every label has the
same value.

» Compare not equal (NEQual) - Any channel of any label has a
different value.

The RUNTIl query returns the current stop criteria.

The RUNTI] instruction (for state analysis) is available in both the SLISt
and COMPare subsystems.

HP 1652B/1653B
Programming Reference

RUNTII

Command Syntax: :MACHine{1}2}:SLISLRUNTIl <run_until_spec>

where:
<pun_until_spec> = {OFFILT, <value> [GT, < value > {iINRangs, <value >, <value>

|OUTRange, <wvalue >, < value > | EQUal [NEQual}
<value> = real number from 10E-8to +9ES

Example: QUTPUT XXX:":MACKINEL:SLIST:RUNTIL GT,800.0£-8"
Query Syntax: :MACHine{1|2}:SLISLRUNTII?
Returned Format: [:MACHine{1]2}:SLISLRUNTI] <run_until_spec> <NL>

Examnple: 16 DI Ru$ [100]
20 OUTPUT XXX;":MACHINE1:SLIST:RUNTIL?"
30 ENTER XXX;Ru$
40 PRINT Ru$
50 END

HP 1652B/1653B SLIST Subsystem
Programming Reference 13-17

TAVerage
IR

TAVerage query

The TAVerage query returns the value of the average time between the X
and O Markers, If the number of valid runs is zero, the query returns
9.9E37. Valid runs are those where the pattern search for both the X and
O markers was successful, resulting in valid delta-time measurements.

Query Syntax: :MACHine{1]2}:5LISt:TAVerage?
Retumed Format: [:MACHine{1|2):SLISt TAVerage] <time_value > <NL>

where:

<time value> = real number

Example: 10 DIM Tv§{100]
20 OUTPYT 1006 MACHINE1:SLIST: TAVERAGE?
30 ENTER X004 Tv
40 PRINT Tv$
80 END

SLIST Subsystem HP 1652B/1653R
13-18 ‘ Programming Reference

TMAXImum

Query Syntax:
Returned Format;

where:

<time_value >

Example:

HP 1652B/1653B
Programming Reference

TMAXimum

query

The TMAXimum query returas the value of the maximum time between
the X and O Markers. If data is not valid, the query returns 9$.9E37.

MACHIne {1]2}:SUSL TMAXImuUm?

[MACHIne{1]2}:SLISETMAXImum)] <time_vaiue > <NL>

;= real number

10 DIM Tx${100]

20 OUTPUT XXX;":MACHINEL:SLIST:TMAKIMUM?"
30 ENTER XXX:Tx$

40 PRINT Tx$

50 END

SLIST Subsystem
13-18

TMINimum

TMINimum

Query Syntax:

Returned Format:

where:

< tirme_value >

Example:

SLIST Subsystem
13-20

query

The TMINimum query returns the value of the minimum time between
the X and O Markers. If data is not vaid, the query returns 9.9E37.

:MACHIne{1]2}:SLISt TMINimum?

[:MACHiIne{1|2}:8LISLTMINImum] <time_value> <NL>

1= real number

10 DIM Tm§ [100]

20 OUTPUT XXX;™:MACHINEL :SLIST: TMINIHUM?"
30 ENTER XXX;Tm$

40 PRINT Tm$

50 END

HP 1652B/16538
Programming Reference

VRUNs

VRUNSs query

The VRUNs query returns the number of valid runs and total number of
runs made. Valid runs are those where the pattern search for both the X
and O markers was successful resuiting in valid delta time measurements.

Query Syntax: :MACHine{1|2}:SLIStVRLUNs?

Retumned Format: [:MACHine{1}21:SLISLVRUNS] <valid_runs>, <total_runs> <NL>

where:
<valid runs> = zero or positive integer
<fotal_funs> 1= zero of positive integer

Example: 10 DIM vr§[i00]
20 OUTPUT XXX;":MACHINEL:SLIST:VRUNS?"
30 ENTER XXX;Vr$
40 PRINT Vr$
50 END

HP 1652B/1653B SLIST Subsystem
Programming Refergnce 13-21

XOTag

XOTag query

The XOTag query returns the time from the X to O markers when the
marker mode is time or number of states from the X to O markers when
the marker mode is state. If there is no data in the time mode the query
returns 9.9E37. If there is no data in the state mode, the query returns
32767. ‘

Query Syntax: :MACHIne{1|2}:SLISEXOTag?
Returned Format: [:MACHine{1]2}:SLISEXOTag] {<XO time> | <XO states> } <NL>

where:

<XO fime> = real number
«X0 states> = integer

Example: 10 DI Xot${100]
20 OUTPUT XXX;":MACHINEL1:SLIST:XOTAG?"
30 ENTER XXX;Xot$
40 PRINT Xot$
50 £KD

SLIST Subsystem HP 1652B/16538
13-22 : Programming Reference

XPATtern

Command Syntax:

where:

<label_name >
<label_pattern >

Examples:

HP 16528/1653B

Programming Reference

XPATtern

command/query

The XPATtern command allows you to construct a pattern recognizer
term for the X Marker which is then used with the XSEarch criteria when
moving the marker on patterns. Since this command deals with only one
label at a time, a complete specification could require several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recogpizer term, In whatever base
is used, the value must be between 0 and 2 ? . 1, since a label may not have
more than 32 bits, Because the <label_pattern> parameter may contain
don’t cares, it is handied as a string of characters rather than a number.

The XPATtern query returns the pattern specification for a given label
name.

IMACHiIne{1{2}:SLISUXPATIern <label_name >, <label pattemn>

o= string of up fo 6 alphanumaeric characters

= {#B{OJ1IX}.. . |
#0{0|1]2]3|4|6{6|7i1X} ... |
#H{0[1]213|4i5/6|7|8i19|AIB|C|DIEIFIX}... |
{o11121314|51817]818} ... I

QUTPUT XXX;":MACHINEL:SLIST:XPATTERN 'DATA','2B5" "
QUTPUT XXX;* :MACHINEL:SLIST:XPATTERN ‘ABC”, '#BXXXXil01" ™

SLIST Subsystem
13-23

XPATtern

Query Syntax: :MACHine{1|2}:SLIStXPATtern? <iabel_name>
Returned Formal: [:MACHine{1|2}:SLISLXPATtern] <labs!_name>,<label_pattern> <NL >

Example: 10 0IN Xp$[100]
20 OUTPUT XXX;":MACHINEL :SLIST:XPATTERN? 'A"™
30 ENTER XXX:Xp$
40 PRINT Xp$
50 END

SLIST Subsystem HP 1652B/16538
13-24 Programming Reference

XSEarch

Command Syntax:

where:

< OECUITSNGs >
< onginz>

Example:
Query Syntax;
Returned Format:

Example:

HP 1652B/1653B

Programming Reference

XSEarch

command/query

The XSEarch command defines the search criteria for the X Marker,
which is then with associated XPATtern recognizer specification when
moving the markers on patterns. The origin parameter tells the Marker
to begin a search with the trigger or with the start of data. The
occurrence parameter determines which occurrence of the XPATtern
recognizer specification, relative to the origin, the marker actually
searches for. An occurrence of 0 places a marker on the selected origin.

The XSEarch query returns the search criteria for the X marker.

:MACHIne{1]2}:8LISLXSEarch < ocourrence >, <origin >

o= [nteger from -1023 to +1023
u= {TRIGger| STAR}

OUTPUT XXX;":MACHINEL:SLIST:XSEARCH +11, TRIGBER"™
‘MACHIna{1|2}:SLIS:XSEarch?
[[MACHme{1|2}:SLIStXSEarch] <orsurrenca >, <origin> <NL>

10 DIM xs$f1007

20 QUTPUT XOX;":MACHINEL:SLISY:XSEARCHT"
30 ENTER XXX:Xs$

A PRINT Xs$

&0 END

SLIST Subsystem
13-25

XSTate

XSTate

Query Syntax;
Returned Format:

whare:

< gtate num >

Example:

SLIST Subsystem
13-26

query

The XSTate query returns the line number in the listing where the X
marker resides (-1023 to +1023). If data is not valid, the query returns
32767,

:MACHine{1{2}:SLISt XSTate?

EMACHIne{1{2}:SLIStXSTate] <state_num> <NL>

1= an integer from -1023 to + 1023, or 32767

10 DIM Xs$[100]

20 QUTPUT XXX;":MACHINEZ :SLIST:XSTATE?"
30 ENTER XXX;Xs$

40 PRINT Xs$

80 END

HP 1652B/16538
Programming Reference

XTAG

Command Syntax:

where:

<time_vaiue >
<gtate_valua >

Example:
Query Syntax:
Returned Format:

Example:

HP 1652B/16538
Frogramming Reference

XTAG

command/query

The XTAG command specifies the tag value on which the X Marker
should be placed. The tag value is time when time tagging is on or states
when state tagging is on. If the data is not valid tagged data, no action is
performed.

The XTAG query returns the X Marker position in time when time
tagging is on or in states when state tagging is on, regardless of whether
the marker was positioned in time or through a pattern search. If data is
ot valid tagged data, the query returns 9.9E37 for time tagging, 32767 for

state tagging.
:MACHIne{1|21:SLISLXTAG { <time_value> | <state_value>}

= real number
= integer

TQUTPUT XXX, :MACHINEL:SLIST:XTAS 40.0E-6
:MACHine{1]2}:5LISt:XTAG?
[IMACHine{1[2}:SLISt:XTAG] {<time_value> | <state_value>}<NL>

18 DIM Xt§{100]

20 QUTPUT XXX, " :MACHINEL :SEIST XTAG?”
30 ENTER XXX;Xt$

40 PRINT Xt$

50 £ND

SLIST Subsystem
13-27

SWAVeform Subsystem ‘ 14
W

Introduction The commands in the State Waveform subsystem allow you to configure
the display so that you can view state data as waveforms on up to 24
channels identified by label name and bit number. The five commands are
analogous to their counterparts in the Timing Waveform subsystem.
However, in this subsystem the x-axis is restricted to representing only
samples (states), regardless of whether time tagping isonoroff. Asa
result, the only commands which can be used for scaling are DELay and
RANge. .

The way to manipulate the X and O markers on the Waveform display is
through the State Listing (SLISt) subsystem. Using the marker commands
from the SLISt subsystem will affect the markers on the Waveform display.

The commands in the SWAVeform subsystem are:

ACCumulate
DElLay
INSert
RANGe
REMove

s e » & 0

HP 1652B/16538 | SWAVeform Subsystem
Programming Reference 14-1

;e
ACCtimy IMPOCG ON -

—#m{ ACCumuigte? — o

@ numher_of_sampies
@) o _,
L_number,of-somp Ees—i‘h—v—w—-—-

RANGe?

e

number_of samples = integer from -1023 to + 1024
label name = String of up to 6 alphanumeric characters
bit id = {OVERIay| < bit_num >}

bit_num = integer representing a label bit from 0 to 31

Figure 14-1. SWAVetorm Subsystem Syntax Diagram

SWAVeform Subsystem HP 1852B/16538
14-2 Programming Reference

------- SWAVeform

Command Syntax:

Example:

HP 1852B/1653B
Programming Reference

SWAVeform

selector

The SWAVeform (State Waveform) selector is used as part of a
compound header to access the settings in the State Waveform menu. It
always follows the MACHine selector because it selects a branch du-ectly
below the MACHine level in the command tree.

:MACHiIna{1]2}:SWAVeform

DUTPUT XXX;" :MACHINEZ:SWAVEFORM:RANGE 40"

SWAVeiorm Subsystem
14-3

ACCumulate
A

ACCumulate command/query

The ACCumulate command allows you to control whether the waveform
display gets erased between individual runs or whether subsequent
waveforms are allowed to be displayed over the previous waveforms.

The ACCumulate query returns the current setting. The query always
shows the setting as the character "0" (off) or "1" (on).

Command Syntax: :MACHine{1|2}:SWAVeform:ACCumulate {{ON | 1} | {OFF | O}}
Example: QUTPUT XXX;":MACHINEL:SWAVEFORM: ACCUMULATE ON“
Query Syntax: MACHIne{1|2}:SWAVeform:ACCumulate?
Returned Format: [MACHIne{1{2}:SWAVeform:ACCumulate] {0 | 1}<NL>

Example: 10 DIM String$[100)
20 DUTPUT XXX;":MACHINEL:SWAVEFORM: ACCUMULATE?"
30 ENTER XXX; String§
40 PRINT String$
50 £ND

SWAVeform Subsystem HP 1652B/1653B
14-4 Programming Reference

DELay

DELay command/query

The DELay command allows you to specify the number of samples
between the timing trigger and the horizontal center of the screen for the
waveform display. The allowed number of samples is from -1023 to
+1024.

The DELay query returns the current sample offset value.

Command Syntax: MACHine{1|2}:SWAVeform:DELay <number_of samples>

where:

<number_of samples> = integer from -102310 +1024
Examnple: 0uTPUT XXX;":MACHINEZ: SWAVEFORM: DELAY 1277
Query Syntax: MACHine{1|2}:SWAVeform:DELay?
Returned Format: [MACHine{1|2}:SWAVeform:DELay] <number_of samples> <NL>

Example: 10 DIM String$[100]
20 QUTPUT XXX;*:MACHINEL:SWAVEFDRM:DELAYT"
30 ENTER XXX;String}
40 PRINT 5tring$
50 END

HP 1652B/1653B SWAVetorm Subsystem
Programming Reference 14-5

INSert

INSert

Command Syntax:

where:
<label name >

<bit_id>
<bit num>

Examples:

SWAVetorm Subsystem

14-8

command

The INSert command allows you to add waveforms to the state waveform
display. Waveforms arc added from top to bottom on the screen, When
24 waveforms are present, inserting additional waveforms replaces the last
waveform. Bit numbers are zero based, so a label with 8 bits is referenced
as bits 0-7. Specifying OVERIay causes a composite waveform display of
all bits or channels for the specified label.

MACHine{1]2}:SWAVetorm:INSert <label_name>,<bit_id>

= siring of up 1o & alphanumeric characters
{OVERIay| <bit_num>}
s= Integer representing & iabel bit from 0 to 31

b

QUTPUT XXX;":MACHINE]:SWAVEFORM: INSERT 'WAVE', 18
QUTPUT XXX;":MACHINEI:SWAVEFORM:INSERT 'ABC’, OVERLAY®
QUTPUT XXX;™:MACH] :SWAV: INSERT "PODL", #B1601"

HP 1652B/16538
Programming Reference

RANGe

Command Syntax:

where:

<pumber_of_samples >
Example:

Query Syntax:

Returned Format:

Example:

HP 1652B/1653B

Programming Raference

RANGe

command/query

The RANGe command allows you to specify the number of samples
across the screen on the State Waveform display. 1t is equivalent to ten
times the states per division setting (st/Div) on the front panel. A number
berween 10 and 10240 may be entered.

The RANGe query returns the current range value,

MACHIne{1]2):5WAVeform:RANGe <number_of_samples>

me integer from 10 to 10240

OUTPUT XXX;":MACHINEZ: SWAVEFORM:RANGE 80"
MACHIne{1|2}: SWAVeform:RANGe?

[MACHIna{f{2}:SWAVeform:RANGe] <number of samples> <NL>

10 DIM String$f100]

20 QUTFUT XXX;":MACHINEZ:SWAVEFORM:RANGE?"
30 ENTER XXX; String$

40 PRIKT String$

5C END

SWAVeform Subsystem
14-7

REMove
R

REMove command

The REMove command allows you to clear the waveform display before
building a new display.

Command Syntax: :MACHine{1}2}:SWAVeform:REMove

Example: OUTPUT XXX;™:MACHINEL:SWAVEFORM: REMOVE"

SWAVeform Subsystem HP 1652B/16538
14-8 : Programming Reference

SCHart Subsystem 15

Introduction The State Chart subsystem provides the commands necessary for
programming the HP 1652B/53B’s Chart display. The commands allow
you to build charts of label activity, using data normally found in the
Listing display. The chart’s y-axis is used to show data values for the label
of your choice. The x-axis can be used in two different ways. In one, the
x-axis represents states (shown as rows in the State Listing display). In the
other, the x-axis represents the data values for another label. When states
are plotted along the x-axis, X and O markers are available. Since the
State Chart display is simply an alternative way of locking at the data in
the State Listing, the X and O markers can be manipulated through the
SLISt subsystem. In fact, because the programming commands do not
force the menus to switch, you can position the markers in the SLISt
subsystem and see the effects in the State Chart display.

The commands in the SCHart subsystem are:

e ACCumaulate
e HAX:s
o VAXis

HP 16528B/1653B SCHart Subsystem
Programming Reference 15-1

2% ' ~

o m’-(ACCumu t che)———b{ spoce o=l ON -

ol ACCuMmuicte? o
e

= {obel_high_votlue

e VAXis Jotm| 390 | | b |_name el , } (1 boml mighoveive
“ee{ YAXTS?) -
1510823

state_low_value = infeger from 1023 to + 1024

state high value = integer from <state_low value> to + 1024

label_name = g stringofup to 6 aiphanumenc characters

label_low_value = string from 0t0 2°° - 1 (#HFFFFFFFF :
label high value = string from < label low_vaiue > 2.1 {(#HFFFFFFFF;}
low_value = string from 0to 22 - 1 (#HFFFFFFFF)

high_value = string from < low value> to 2% -] (#HFFFFFFFF)

Figure 15-1. SCHart Subsystem Syntax Diagram

SCHart Subsystem HP 1652B/16538
152 Programming Reference

SCHart

Command Syntax:

Example:

HP 1652B/1653B
Programming Reference

SCHart

selector

The SCHart selector is used as part of a compound header to access the
settings found in the State Chart menu. It always foliows the MACHine
selector because it selects a branch below the MACHine level in the
command tree.

{MACHIng{1|2}:8CHan

OUTPUT XXX;":MACHINZ1:SCHART:VAXIS "A', '0", '8'"

SCHart Subsystemn
15-3

ACCumulate
A

ACCumulate command/query

The ACCumulate command allows you to control whether the chart
display gets erased between each individual run or whether subsequent
waveforms are allowed to be displayed over the previous waveforms.

The ACCumulate query returns the current setting. The query always
shows the setting as the character 0" (off) or "1" (on).

Command Syntax: MACHine{1}2}:SCHart:ACCumulate {{ON | 1} | {OFF | 0}}
Example: OUTPUT XXX;*:MACHINEL:SCHART :ACCUMULATE OFF"
Guery Syntax: MACHins{1|2}:SCHar:ACCurmulate?
Returned Format: [MACHIne{1}2}:SCHart:ACCurnulate] {0 | 1} <NL>

Example: 10 0IM String$[100]
20 GUTPUT XXX;™:MACHINEL:SCHART : ACCUMULATE?"
30 ENTER XXX; String}
40 PRINT String$
50 END

SCHart Subsystem HP 16528/1653B
15-4 Programming Reference

HAXis

HAXis command/query

The HAXis command allows you to select whether states or a label's
values will be plotted on the horizontal axis of the chart, The axis is scaled
by specifying the high and low values.

ﬁ The shortform for STATES is STA. This is an intentional deviation from
Note the normal trunctation rules.

The HAXis query returns the current horizontal axis iabel assignment and
scaling,

Command Syntax: MACHIne{1]2}:SCHart:HAXis {STATES. <state_low_vaiue >, <state_high vaiue> |
<iabgl_name>,<label low_value >, <labei_high_value>}

where:

<state_low_value> = integer from -1023 to 1024
<gtate_high_value> integer from <state_low_value > 0 +1024
<label_name > a string of up t¢ & alphanumeric characters
<label_ow_vaiue > string from O to 2°%.1 (#HFFFFFFFF)
<label_high_value> = siring from <label_fow_value> 1o 2%, (#HFFFFFFFF)

Examples: OUTPUT XXX;":MACHINEL:SCHART:HAXIS STATES, -100, 100"
QUTPUT XXX;":MACHINEY :SCHART:HAXIS TDATA', '1007, '§11°7

HP 1652B/16538 SCHart Subsystem
Programming Reference 15-5

HAXis

Query Syntax:

Returned Format:

Example:

SCHart Subsystem
15-6

MACHine{1]2}:SCHart: HAXis?

[MACHine{1|2}:SCHart:HAXis] {STATES, <state_low_value >, <state_high_vaiue > |
<label_name >, <label_low value >, <iabel_high_value >}

10 DIM String$[106]

20 QUTPUT XXX;":MACHINEL:SCHART:HAXIS?"

30 ENTER XXX; Stringd
40 PRINT String$
50 END

HP 1652B/1653B
Programming Reference

VAXis

Command Syntax:

where:

<iabel_name>
<low_value >
<high_value>

Exampies:

Query Syntax:
Returned Format:

Example:

HF 1652B/1653B

Programming Refergnce

VAXis

command/query

The VAXis command allows you to choose which label will be plotted on
the vertical axis of the chart and scale the vertical axis by specifying the
high value and low value.

The VAXis query returns the current vertical axis label assignment and
scaling,

MACHIne{1}2}:SCHartVAXis <label_name >, <low_value>,<high_value >

= g siring of up to 6 alphanumeric characters
= string from O to 221 (#HFFFFFFFF)
=2 = string from <low_value> to 2%.1 (#HFFFFFFFF)

QUTPUT XXX, " :MACHINEZ ;SCHART:VAXIS "SuUM1', '0', '8g8'"
QUTPUT XXX:":MACHINE] :SCHART:VAXIS ‘BUS', "#HOOFF®, '#HO500'"

MACHIne{1]2}:SCHart:VAXis?
[MACHine{1|2}:8CHart:VAXis] <iabei name>,<low_value>,<high_value> <NL>

10 DIM String${100]

20 QUTPUT XXX;":MACHINE :SCHART:VAXIS?"
30 ENTER XXX; String$

40 FRINT String$

50 END

SCHart Subsystem
15-7

COMPare Subsystem 16
0D

Introduction Commands in the state COMPare subsystem provide the abilitytodoa
bit-by-bit comparison between the acquired state data listing and 2
compare data image. The commands are:

COFY
DATA
CMASk
RANGe
RUNTil
FIND

HP 1652B/16538B COMPare Subsystem
Programming Reference 16-1

)= p—
WCMPore : --b(CMASk}«-o-% spoce }-mﬁf igbei.nome }-—b@@ -
_-Cms;(a—.-; space }———-hi |aba | _name i e

o (@7 st] Tome o | Timenon | e e pators o
| SOOI SO — |
Iing_num data.potiers fur

N
—&(BhTA?H space ’——-b{ igabel _noms i—-—ﬁ@—b‘M
——(FI&D?M spoce }—-—-—-—-—l differance occocurrence E
R G) S CLITD S ey o

FULL
[l RANGE? } o
RUNT i | space ¥QUso 'j

~{ RUNT I 17 } progsvert

label_name = string of up to 6 characters

care_spec = siring of characters "{*|.}.."

* = care

. = don’t care

Hine_num = integer from ~1023 to + 1023

data_pattern = "{#B{0|1|X}... |
#0{0|1|2]|314|516}7|X}...]
#H{0|1|2|314|516|7|8{92|4|BIC|P|E|FiX}... |
{0|112]3|4|5|6]7|8]9}...}"

difference_occurence = Integer from 1to 1024

start_line = integer from ~1023 to + 1023

stop_line = integer from <start line> to + 1623

Figure 16-1. COMPare Subsystem Syntax Diagram

COMPare Subsystem HP 1652B/1653B
16-2 Programming Reference

COMPare

Commangd Syntax:

Example:

HP 16528/1653B
Programming Reference

COMPare

selector

The COMPare selector is used as part of a compound header to access
the settings found in the Compare menu. It always follows the MACHine
selector because it selects a branch directly below the MACHine level in
the command tree.

‘MACHine{1|2}:COMPare

DUTPUT XXX;™:MACHINEL:COMPARE :FIRD? 818"

COMPare Subsystem
16-3

CMASK
CMASKk

Command Syntax:

where:

<label_name:>

<care_spec >
u

Example:
Query Syntax:
Returned Format:

Example:

COMPare Subsystem
16-4

command/query

The CMASk {(Compare Mask) command allows you to set the bits in the
channel mask for a given fabel in the compare Tisting image to "compares”
or "don’t compares."

The CMASk query returns the state of the bits in the channel mask for a
given label in the compare listing image.

MACHIne{1{2}.COMPare:CMASk < label_name >, <care_spec>

1= & slring of up to & alphanumeric charsoters

1= string of characters *{*}.}..." {32 characters maximum)
= care

t= don't care

DUTPUT XXX;":MACHINEZ :COMPARE :CMASK "STAT', °% *% dxee

MACHIne{1[2}:COMPars:CMASK? <label_name:
[MACHIne{1|2}:COMPare:CMASK] <label_name >, <care_spec> < NL>

10 DIM String$[100]

20 QUTPUT XXX;":MACHINEZ:COMPARE :CHMASK? *PODS'™
30 ENTER XXX; String$

40 PRINT String$

50 END

HP 1652B/1653B
Programming Reference

COPY

COPY command

The COPY command copies the current acquired State Listing for the
specified machine into the Compare Listing template. It does not affect
the compare range or channel mask settings.

Command Syntax: MACHine{1|2}:COMPare:COPY

Example: OUTPUT XXX;":MACHINE2:COMPARE : COPY™

HP 1652B/1653B COMPare Subsystem
Programming Reference 165

DATA

DATA command/query

The DATA command allows you to edit the compare listing image for a
given label and state row. When DATA is sent to an instrument where no
compare image is defined (such as at power-up) all other data in the
image is set to don’t cares.

Not specifying the <label name> parameter allows you to write data
patterns to more than one label for the given line number, The first
pattern is placed in the left-most label, with the following patterns being
placed in a left-to-right fashion (as seen on the Compare display).
Specifying more patteras than there are labels simply results in the extra
patterns being ignored.

Because don't cares (Xs) are allowed in the data pattern, it must always
be expressed as a string. You may still nse different bases, though don’t
cares cannot be used in a decimal number,

The DATA query returns the value of the compare listing image for a
given label and state row.

Command Syntax: MACHine{1(2}:COMPare:DATA { <labs!_name>,<line_num >, <data_pattern> |
<line_num> , <data_pattern>>[, <data_pattern=>1].. }

where:
<label_name> = asting of up 8 alphanumeric characters
<line_sum> = Integer from ~1023 1o + 1023

<data_pattern> = FB{O|1X}... |
#O{O[1[2}81415|8[71X} ... |
#H{0|1]2|314|5|6{7|8|S|AIB|CIDIE|FIX} ... |
{0|1|213|4iBl6[7(818} ...}

Examples: 0UTPUT XXX;":MACHINEZ:COMPARE:DATA "CLOCK', 42, "#BO11X101X°"
DUTPUT XXX.":MACHINE2 :COMPARE:DATA "QUT3", 0, *#HFF40™™
OUTPUT XXX;":MACHINEL:COMPARE:DATA 129, '#BXX8D', '#B1101', '"#B1OXX"™
QUTPUT XXX;":MACHZ:COMPARE:DATA -511, "4°, '647, 18", 256, 'B', 'ig""

COMPare Subsystem HP 16528/1653B
16-6 Programming Reference

DATA

Query Syntax:

Returned Format:

Example:

HP 1652B/1853B
Programming Reference

MACHIne{1|25:COMPare:DATA? <iabel_name >, <line_num>

[MACHIne{1|2}:COMPare:DATA]
<label_name >, <iine_num:>, <data_pattern:> <NL>

10 DIM Label${B], Respanse$ [80]

15 PRINT "This program shows the values for a signal’s Compare listing”
20 INPUT “£nter signal label: ", Label$

25 QUTPUT XXX;™:SYSTEM:HEADER OFF" {Turn headers off (from responses)
30 QUTPUT XXX ;" :MACHINEZ :COMPARE :RANGE?"

35 ENTER XXX; First, Last Read in the range’s end-points
40 PRINT "LINE #", “VALUE of "; Label§ ,
45 FOR State = First TO Last 1Print compare value for each state

50 QUTPUT XXX;":MACHZ:COMPARE:DATA? " & Label$ & "'," & VAL$(State)
55 ENTER XXX; Responsed

60 PRINT State, Response$

85 NEXT State

70 END

COMPare Subsystem
16-7

FIND

FIND query

The FIND query is used to get the Ene number of a specified difference
occurence (first, second, third, etc) within the current compare range, as
dictated by the RANGe command (see RANGe). A difference is counted
for each line where at least one of the current labels has a discrepancy
between its acquired state data listing and its compare data image.

Invoking the FIND query updates both the Listing and Compare displays
s0 that the line number returned is in the center of the screen.

Query Syntax: MACHine{1|2}:COMPare:FIND? < diitierence_ocourrence >
Returned Format: [MACHine{1|2}:COMPare:FIND] < ditference_occurrence>, <line_number> <NL

where:

«<difierence_ococurrence> = integer from 010 1024
<ling_number> 1= integer from ~1023to +1025

Example: 10 DIM String$[100]
20 OUTPUT XXX;™:MACHINEZ :COMPARE :FIND? 26"
30 ENTER XXX; String$
40 PRINT String$
50 END

COMPare Subsystem HP 1652B/1853B
16-8 Programming Reference

RANGe

Command Syntax:

whaere:

<start fine >
<stop_ling>

Examples:

Query Syntax:

Returned Format:

Example:

HP 1652B/1653B

Programming Reference

RANGe

command/query

The RANGe command allows you to define the boundaries for the
comparisor. The range entered must be a subset of the lines in the
aquisition memory.

The RANGe query returns the current boundaries for the comparison.

MACHine{1]{2};COMPare:RANGe {FULL | PARTial, <start_line>, <siop _line>}

= jnteger from -1023 to + 1023
= integer from <start_line > to + 1023

OUTPUT XXX;":MACHINEZ :COMPARE :RANGE PARTIAL, ~Bli, 512"
QUTPUT XXX:":MACHINE2:COMPARE :RANGE FULL"

MACHiIne{1|2}:COMPare:RANGe?

[MACHIne{1|2}:COMPare:RANGe] {FULL | PARTIa!, <start line>,
<stop_line>}<NL>

10 DIM String$[100] ‘

20 QUTPUT XXX;":MACHINE4:COMPARE :RANGE?"

30 ENTER XXX; String$

40 REM See if substring "FULL" occurs in response string:

80 PRINT "Range is ™;

B0 IF POS{String$,"FULL™} > O THEN PRINT "Full" ELSE PRINT “Partial”
70 END

COMPare Subsystem
16-9

RUNTiIl

RUNTII

1
Note %

COMPare Subsystem
16-10

command/query

The RUNTil (run until) command allows you to define a stop condition
when the trace mode is repetitive. Specifying OFF causes the analyzer to
make runs until either the display’s STOP field is touched or the STOP
command is issued.

There are four conditions based on the time between the X and O
markers. Using this difference in the condition is effective only when time
tags have been turned on (see the TAG command in the STRace
subsystem}. These four conditions are as follows:

The difference is less than (LT) some value.

The difference is greater than (GT) some valae.
The difference is inside some range (INRange).
The difference is outside some range (OUTRange).

¢ ¢ & @

End points for the INRange and OUTRange should be at least 49 ns apart.

There are two conditions which are based on a comparison of the
acquired state data and the compare data image. You can run until one of
the following conditions is true:

s Compare equal (EQUal) - Every channel of every label has the
same value,

¢ Compare not equal (NEQual) - Any chanmel of any label has a
different value .

The RUNTI query refurns the current stop criteria for the comparison
when running in repetitive trace mode.

The RUNTi instruction (for state analysis) is available in both the SLISt
and COMParc subsystems.

HP 1652B/16538B
Programming Reference

RUNTIl

Command Syntax: MACHine{12}:COMPare:RUNTIl {OFF|LT, <value> |GT,<value > |
INRange, <value >, <value> |OUTRange, <value >, <value > | EQUat I NEQual}

Example: OUTPUT XxX;":MACHINEZ:COMPARE :RUNTIL EQUAL™
Query Syntax: MACHine{1]2}:COMPare:RUNTII?

Returmned Formatl: [MACHine({1]2}:COMPare:RUNTit] {OFF |LT, <value > |GT, <value > |
INRange. <valus >, <value > |OUTRange, < vaiue >, <value > |EQUal INEQual} <NL>

Example: 10 DIM String$[:00]
70 QUTPUT XKX;™:MACHINEZ :COMPARE :RUNTIL?"
30 ENTER XXX; String$
40 PRINT String$
50 END

HF 1852B/1653B COMPare Subsystem
Programming Reference 16-11

TFORmat Subsystem 17

P00 —

Introduction The TFORmat subsystem contains the commands available for the Timing
Format menu in the HP 1652B/53B logic analyzer. These commands are:

e LABel
¢ REMovwe
» THReshold

TP ORmot o pot spacification
H |

-*(LAB&I?—D{ spacs H name {

-—-&(Rimve spoce I—tgs_j

r——h(THResnoid(Na-o{ spoce 1L y

THResho L &>
163 10/5007

<N> ={1]2|31]4]|5}
name = string of up to 6 alphanumeric characters

polarity = {POSitive | NEGative}
pod_specification = format (integer from 0 to 65535) for a pod (pods are assigned in decreasing order)

value = voltage (real number) -9.9{0 +92.9

Figure 17-1. TFORmat Subsystem Syntax Diagram

HP 1652B/1653B TFORmat Subsystem
171

Programming Reference

TFORmat
I

TFORmat selector

The TFORmat selector is used as part of a compound header to access
those settings normally found in the Timing Format menu. It always
iollows the MACHine selector because it selects a branch directly below
the MACHine level in the language tree.

Commangd Syntax: :MACHine{1|2}:TFORmat

Example: OUTPUT XXX:":MACHINEL:TFORMAT :L ABEL?"

TFORmat Subsystem HP 1652B/16538
172 Programming Reference

LABel

LABel command/query

The LABel command allows you to specify polarity and assign channels to
new or existing labels. If the specified label name does not match an
existing label name, a new label will be created.

The order of the pod-specification parameters is significant. The first one
listed will match the highest-numbered pod assigned to the machine
you’re using. Each pod specification after that is assigned to the
next-highest-numbered pod. This way they match the lefi-to-right
descending order of the pods you see on the Format display. Not
including enough pod specifications results in the lowest-numbered
pod(s) being assigned a value of zero {all channels excluded). If you
include more pod specifications than there are pods for that machine, the
extra ones will be ignored. However, an error is reported anytime more
than five pod specifications are listed.

The polarity can be specified at any point after the label name,

Since pods contain 16 channels, the format value for a pod must be
between 0 and 65535 (2!°-1). When giving the pod assignment in binary
(base 2}, each bit will correspond to a single channel. A"1"in a bit
position means the associated channel in that pod is assigned to that pod
and bit, A "0”in a bit position means the associated channel in that pod is
excluded from the label. For example, assigning #B1111001100 is
equivalent to entering "......**** . **.." through the front-panel user
interface.

A label can not have a total of more than 32 channels assigned to it.

The LABel query returns the current specification for the selected (by
name) label. If the label does not exist, nothing is returned. Numbers are
always returned in decimal format.

HP 1652B/1653B TFORmat Subsystem
Programming Reference 17-3

LABe!

Command Syntax: :MACHine{1|2}:TFORmat:LABel <name> [, { <polarity> | <assignment>}]...

where;

<name> = string of up to 6 alphanumeric characters
<pdlarity> = {POSitive | NEGative}
<assignment> = format {integer from 0 to 65535) for & pod (pods are assigned in decreasing order)

Examples: OUTPUT XXX;":MACHINEZ: TFORMAT :LABEL 'DATA’, POS, 68535, 127, 40312"
QUTPUT XXX:":MACHINEZ: TFORMAT:LABEL 'STAT®, 1, 8098, POSITIVE®
DUTPUT XXX;":MACHINEL: TFORMAT :LABEL 'ADDR', KEGATIVE, #B11:i10010:101010"

Query Symtax: :MACHine{1|2}:TFORmat:LABel? <name>
Returned Format: [:MACHine{1{2}:TFORmat:LABel] <name> [, <assignment> ..., < polarity> < NL>

Example: 10 DI¥ String$[100]
20 OUTPUT XXX;™:MACHINE2 :TFORMAT:LABEL? "DATA'™™
30 ENTER XXX String$
40 PRINT String$
50 END

TFORmat Subsystem HP 1852B/1653B
17-4 Programming Reference

REMove

Command Syntax:

where:

<pame>

Exampies:

HP 1652B/1653B
Programming Reference

REMove

command

The REMove command allows you to delete all labels or any one label
specified by name for a given machine.,

:MACHIne{1|2}1:TFORmat:REMove {<name > JALL}

== string of up to 6 ziphanumeric characters

QUTPUT XXX " :MACHINEL: TFORMAT:REMOVE “A™
DUTPUT XXX, :MACHINEL: TFORMAT :REMOVE ALL"

TFORmat Subsystem
17-8

THReshold

THReshold

Note lﬁ

Command Syntax:

where:

< N>

< valud >
TTL

ECL

Example:
Query Syntax:

Returned Format:

Exampie:

TFORmat Subsystem
17-6

command/query

The THReshold command allows you o set the voltage threshold for 2
given pod to ECL, TTL or a specific voltage from -9.9V to +9.5Vin 0.1
volt increments.

On the HP 1652B, the pod thresholds of pods 1, 2, and 3 can be set
independently. The pod thresholds of pods 4 and 5 are slaved together;
therefore, when you set the threshold on pod 4 or 5, both thresholds will
be changed to the specified value. On the HP 16538, both pods 1 and 2
can be set independently.

The THReshold query returns the current threshold for a given pod.

‘MACHine{1]2} TEQRmat: THReshold <N > {TTL {ECL| <value>}

= pod number {1]2]3}4|5}

2= voltage [real numbar) 8.8t +8.9
= default value of + 1.8V

= default value of -1.3V

OUTPUT XX ":MACHINE1: TFORMAT: THRESHOLD1 4.0°
:MACHine{1}2}:TFORmat: THReshold <N> ?

EMACHIne {112} TFORmat: THReshold <N>1 <value> <NL>

10 DI¥ Value$ [1007

20 DUTPUT XXX;™:MACHINEL:TFORMAT: THRESHOLD2?™
30 ENTER XX¥;Value$

40 PRINT Value$

50 END

HP 1652B/1653B
Programming Reference

TTRace Subsystem 18
0

introduction The TTRace subsystem contains the commands available for the Timing
Trace menu in the HP 1652B/53B logic analyzer, These commands are:

AMODe
DURation
EDGE
GLITch
PATTern

> & & &

HP 1652B/16538 TTRace Subsystem
Programming Reference 18-1

T

—-I-(AMODeH spoce GL ITch

TRANsitiongl
b AMODe? } o=

—-’(DURution)—b[space o -

Lo DifRGtion?
space }—-bl lobe ! _name I——@—@——-—-—-—b
—#{ EDGE?)i space |-em iabel_name | -
—*{GLITCID—--{ space i—-’! tabe |._name ° -

-*(GLETCh?)——-’{:poce H ighel _name Il 2
—ﬁ(PATTem}—vb-I spoce H label_ name }—b@W

\b(PATTem?)—b-i space H fabe | _nams E -

1B310/5K08

4 NN NS
)

GT = greater than

LT = [ess than

duration_value = real number

label_name = string of up to 6 alphanumeric characters

edge_spec = string of characters "{R |F|T|X}.."

R = rising edge

F = falling edge

T = toggling or either edge

X = don’t care or ignore this channel

glitch_spec = string of characters "{*.}..."

* = seqrch for a glitch on this channel

. = ignore this channel

pattere_spec = “{#B{0|1|X}... |
#0Q{01112]3]4|516}7X}... |

#H{0|1|2|3]4|5167|8|9|4|B|C|D|E|F|X}...

{0|1]2]|3{4|5|6}7|8|9}... }"

Figure 18-1. TTRace Subsystern Syniax Diagram

TTRace Subsystem
18-2

HP 1652B/16538
Programming Reference

TTRace

Command Syntax:

Example:

HP 1652B/1653B
Programming Reference

TTRace

selector

The TTRace selector is used as part of a compound header to access the
settings found in the Timing Trace menu. It always follows the MACHine
selector because it selects a branch directly below the MACHine level in
the language tree.

‘MACHiIne{1|2}:TTRace

DUTPUT XXX;":MACHINEL:TTRACE:GLITCH 'ABC', *... """

TTRace Subsystem
18-3

AMODe

AMODe

Command Syntax:
where:
<aoquisiﬁcnﬁmode>
Example:

Query Syntax:
Returned Format:

Example;

TTRace Subsystem
18-4

command/query

The AMODe command allows you to select the acguisition mode used for
a particular timing trace. The acquisition modes available are
TRANsitional and GLITch.

The AMODe query returns the current acquisition mode.

:MACHine{1}2}:TTRace:AMODe <acguisition_mode >

= {GLITeh | TRANsitional}

DUTPUT XXX; ":MACHINEL:TTRACE: AMODE GLITCHY
iMACHIne1: TTRace: AMODe?

[:MACHine 1 :T?‘Raoa:f\MODe} {GLITCH | TRANSITIONAL}

10 DIM ¥${100]

20 QUTPUT XXX; ":MACHINEL:TTRACE : AMODET"
30 ENTER XXX;M$

40 PRINT M$

50 END

HP 16528/1653B
Programming Reference

DURation

Command Syntax:

where:

&T
LT
<duration_vaiue >

Exampie:
Guery Syntax:
Returned Format:

Example:

HP 1652B/1653B
Programming Reference

DURation

command/query

The DURation command allows you to specify the duration qualifier to be
used with the pattern recognizer term in generating the timing trigger.
The duration value can be specified in 10 ns increments within the

foliowing ranges:

e Greater than (GT) qualification - 30 ns to 10 ms

o Less than (LT) qualification - 40 ns to 10 ms.
The DURation query returns the current pattern duration qualifier
specification.

‘MACHIne{1]2}:TTRace: DURation {GT|LT}, <duration_value >

1= greater than
= lessthan
1= real number

OUTPUT XXX; ":MACHINEI:TTRACE:DURATION GT, 40.0E~8"
:MACHIne{1]|2}:TTRace:DURation?
[iMACHIne{1[2}:TTRace:DURation] {GT|LY}. <duration_value» <NL>

10 biM D3[100]

20 QUTPUT XXX; ":MACHINEL:TYTRACE:DURATION?
30 ENTER XXX;D§

40 PRINT D%

50 END

TTRace Subsystem
18-6

EDGE

EDGE command/query

The EDGE command allows you to specify the edge recognizer term for
the timing analyzer trigger on a per label basis. Each command deals with
only one label in the given edge specification; therefore, a complete
specification could require several commands. The edge specification uses
the characters R, F, T, X to indicate the edges or don’t cares as follows:

R = rising edge

F = falling edge

T = toggling or either edge

X = don't care or ignore the channel

The position of these characters in the string corresponds with the
position of the channels within the label. All channels without "X” are
ORed together to form the edge trigger specification.

The EDGE query returns the edge specification for the specified label.

Command Syntax: - :MACHine{1]2}:TTRave:EDGE <label_name >, <edge_spec>

where:

<label_name> = siring or up to 6 alphanumeric characters
<edge_spec> &= ghing of characters "{R|F[T|X}..

Example: OUTPUT XXX; “:MACHINE1:TTRACE:EDGE ‘POD1’, 'XXXXKXR'"

TTRace Subsystem HP 1652B/1653B
18-6 Programming Reference

EDGE

Query Syntax:
Returned Format:

Example:

HP 1652B/1653B
Programming Reference

:MACHine{1|2}:TTRace: EDGE? «label_name >
[MACHIne{1|2}:TTRace:] <label_name >, <edge_spec> <Ni.>

10 DIM E$[100]

20 QUTPUT XXX; ":MACHINEL:TTRACE;EDGE? 'PODL'"
30 ENTER XXX;E$

40 PRINT E$

56 END

TTRace Subsystem

187

GLIiTch

GLITch

Command Syntax:

where:

<label_name >
<giitch_spsc>

Example:
Query Syntax:
Returned Format;

Example:

TTRace Subsystem
18-8

command/query

The GLITch command allows you to specify the glitch recognizer term for
the timing analyzer trigger on a per label basis. Each command deals with
only one label in a given glitch specification, and, therefore a complete
specification could require several commands. The glitch specification
uses the characters "*" and "." as foliows;

"*" (asterisk) = search for a glitch on this channel
"" (period) = ignore this channe}

The position of these characters in the string corresponds with the
position of the channels within the label. All channels with the **" are
ORed together to form the glitch trigger specification,

The GLITch query returns the glitch specification for the specified label.

(MACHIne{1|2}:TTRace:GLITch <label_name >, <glitch_spec>

= string of up fo 6 alphanumeric characters
1= string of characters *{*|.}.."

DUTPUT XXX; ":MACHIREL:TYRACE:GLITCH *PODL’, "™ i
iMAGHIne1: TTRace:GLITch? «label_name>
[:MACHine 1. TTRace:GLITch] <label_name:>,<glitch_spec> <NL>

10 DIM G$[160]

20 QUTPUT XXX; ":MACHINEI:TTRACE:GLITCH? 'PODI*™
30 ENTER XXX;G$

40 PRINT G$

50 END

HP 1652B/1652B
Programmming Reference

PATTern

Command Syntax:

where:;

<label_name >
< pattern_speu

Example:

HP 1652B/1653B

Programming Reference

PATTern

command/query

The PATTern command allows you to construct a pattern recognizer term
for the timing analyzer trigger on a per label basis. Each command deals
with only one label in the given pattern; therefore, a complete timing trace
specification could require several commands. Since a label can contain
up to 32 bits, the range of the pattern value will be between 0 and (2*H-1.
The value may be expressed in binary (#B), octal (#Q), bexadecimal
{#H) or decimal {default). When the value of a pattern is expressed in
binary, it represents the bit values for the Iabel inside the pattern
recognizet term. Since a pattern value can contain don’t cares, the
pattern specification parameter is handled as a string of characters
instead of a number.

The PATTern query refurns the pattern specification for the specified
label in the base previously defined for the label.

{MACHine{t |2}:TTRace:PATTern <iabel_nams >, <pattern_spec >

= gtring of up to 6 alphanumeric characters

= {#B{0|1{X}... |
#Q{0it]j213]415]617iX} ... |
#H{0]1]2|3}4|5i6|7|8]9A|B|CIDIEIF|X} ... |
{0[112{3}4]|s|B|7|8I8}...}"

QUTPUT XXX; ™:MACHINE1:TTRACE:PATTERN 'DATA’, '255'"

TTRace Subsystem
18-8

PATTern

Query Syntax: :MACHine{1]|2}:TTRace:PATTem? <label_nsme>
Returned Format: [:MACHine{1}2}:TTRace:PATTern] <labsl_name>,<pattern_spec> <NL>

Example: 10 DM p§[100]
20 QUTPUT XXX: ":MACHINEZ:TTRACE:PATTERN? 'DATA""
30 ENTER XXX;P$
40 PRINT P$
50 END

TTRace Subsystem HP 16528/1653B
18-10 Programming Reference

TWAVeform Subsystem 19

Introduction The TWA Veform subsystem contains the commands available for the
Timing Waveforms menu in the HP 1652B/53B. These commands ate:

ACCumulate
DELay
INSert
MMODe
OCONdition
OPATtern
QO8Earch
OTIMe -
RANGe
REMove
RUNTI!
SPERiod
TAVerage
TMAXimum
TMINimum
VRUNs
XCONdition
XOTime
XPATtern
XSEarch
XTIMe

* & & & 58 S 5 S 8 LSS e NS PO S B

HP 1652B/1653B TWAVeform Subsystem
Programming Reference 19-1

TWAVeform Subsystem

18-2

;
¥
- o —O-QCCumucheH spoce

I~e{ ACCumuicte? }

spoce H deluy-va(vajj

tm={ DELay? }

INSert e space

~.i MMODe ? |l

e CCONG i t0n ptel spoce [rm{ ENTer ing j

#{ OCONd i tion? }

—h@PMtern)——{ space H tebe |l ..name i lope tuputtern

—-—(GPATtern?H spoce]-'{ lgbe | nama }
—D-(C@Eurch H spoce |~i-l occurrense

-

el OSEsteh? }
—v(OTIMe)————b{ space H time.vaiue Il

]

Figure 18-1. TWAVeform Subsystem Syntax Diagram

Q1880509

HP 1652B/16538
Programming Reference

HP 1652B/1653B

v—b—@ANGe}—": spoce }—-ﬁl time..range } -

e={ REMove }
--#Q?UNT i I}—ﬂ:pccﬂ-hi run_until_spec E— -
e RUNT i £7 } -
{ SFER0d? }
[TAVErQgE? } -
-l TWAX i mum? -
e TMIN imom? } -
m{ YRUNS? } . -

—b(xCONdi HGM space E——;—*(Ehﬂ'er ing} -

! XCONdilion? } - -
- X0Time? } -
»——GPATtern}—'{ quceH labe ! name ; tabel pattern IUR—
—b(XPATtern?H space [-—-bl tabel.name } "~
—’(XSEGFCM space H occurrence o

—a~{ XSEarch? } -
_"'@"—"'E spece i—b{ time.vaive =) -
- WY Ihe? ¥

TIE50504

Figure 18-1. TWAVeform Subsystem Syntax Diagram (continued)

TWAVeform Subsystem

Programming Reference 19-3

delay_valne = real number between -2500 5 and + 25005 -

module_spec = {7{2]3]4]|5}

bit_id = integer from Oto 31

waveform = string containing < acquisition_spec > {12}

acquisition_spec = {4 |B|C|D|E} (slot where acquisition card is located)

label_name = string of up to 6 alphanumeric characters

label_pattern = "{#B{0{1[X}... |
#0{0/1|21314/5|6|7|X}... |
#H{0{1|2|13{4]5|617|8|9|4{B|C|D|E{F|X}... |
{01112|314/516]7|819}... }"

occurrence = integer

time_value = real number

label_id = string of one alpha and one numeric character

medile_num = slot number in which the timebase card is installed

time_range = real number between 100 ns and 10 ks

run_untll spec = {OFF|LT, <value> |GT, <value > |INRange <value >, <value> |
OUTRange<value>, <value>}

GT = greater than

LT = less than

value = real number

Figure 19-1. TWAVeform Subsystem Syntax Diagram (continued)

TWAVeform Subsystem - HP 1652B/1653B
19-4 Programming Reference

TWAVeform

Command Syntax:

Example:

HP 1652B/1653B
Programming Reference

TWAVeform

Selector

The TWAVeform selector is used as part of a compound header to access
the settings found in the Timing Waveforms menu. It always follows the
MACHine selector because it selects a branch below the MACHine level
in the command tree.

‘MACHIne{1]2}: TWAVetorm

OUTPUT XXX:™ :MACHINEL:TWAVEFORM:DELAY 100E-8"

TWAVetorm Subsystem
18-5

ACCumulate

ACCumulate

Command Syntax:

where:

<setting >

Example:

Query Syntax:
Returned Format:

Example:

TWAVetorm Subsystem

19-6

command/query

The ACCumulate command allows you to control whether the chart
display gets erased between each individual run or whether subsequent
waveforms are allowed to be displayed over the previous ones.

The ACCumulate guery returns the current setting. The query always
shows the setting as the character "0" (off) or "1" (on).

:MACHine{1]|2}: TWAVeform: ACCumulate <setting>

o= {O]OFF} or {1}ON}

QUTPUT XXX;":MACHINEL: TWAVEFORM: ACCUMULATE OR™
:MACHIne{1]2}: TWAVeform:ACCumutate?

[:MACHIne{1|2} TWAVeforn:ACCumulate] {0}1} <NL>

10 Di¥ P3 [100]

20 OUTPUT XXX;":MACHINEL : TWAVEFORM: ACCUMULATE?”
30 ENTER XXX; P§

40 PRINT P§

50 END

HP 1652B/1653B
Programming Relerence

DELay

Command Syntax:

where:

< delay_value>
Example:

Query Syntax:
Returned Format:

Exampile:

HP 1652B/1653B
Programming Reference

DELay

command/query

The DELay command specifies the amount of tine between the timing
trigger and the horizontal center of the the timing waveform display. The
allowable values for delay are —2500 s to +2500 s. In glitch acqguisition
mode, as delay becomes large in an absolute sense, the sample rate is
adjusted so that data will be acquired in the time window of interest. In
transitional acquisition mode, data may not fall in the time window since
the sample period is fixed at 10 ns and the amount of time covered in
memory is dependent on how frequent the input signal transitions occur.

The DELay query returns the current time offset (delay) value from the
trigger,
‘MACHine{1]2}: TWAVeform:DELay <delay_vaiue >

= real number between -2500 s and + 2500 &

OUTPUT XXX; " :MACHINED : TWAVEFORM:DELAY 1DDE-6”
:MACHIne{1|2}: TWAVeform: DELay?
[:MACHIne{1{2} . TWAvVeform:DELay] <time_value> <NL>

10 DIW 01§ [100] :
20 DUTPUT XXX;":MACHINEL:TWAVEFORM:DELAY?"
30 ENTER XXX; 018

40 PRINT D1

50 END

TWAVetorm Subsystem
19-7

INSert

INSert command

The INSert command inserts waveforms in the timing waveform display.
The waveforms are added from top to bottom. When 24 waveforms are
present, inserting additional waveforms replaces the last waveform |

The first parameter specifies the label name that will be inserted, The
second parameter specifies the Jabel bit aumber or overlay.

If OVERLAY is specified, all the bits of the label are displayed as a
composite overlaid waveform,

Command Syntax: :MACHine{1|2}: TWAVeform:INSert <iabel_name> {<blt id > |OVERiay}

where:

<iabei_name> &= siring of up to 6 alphanumeric characters
<bit i[d> = integerfrom 010 31

Example: OUTPUT XXX;™:MACHINEL: TWAVEFORM: INSERT "WAVE',10"

TWAVetorm Subsystem HP 1852B/1653B
18-8 Programming Reference

MMODe

Command Syntax:
Example:

Query Syntax:
Returned Format:

where:

<marker_mode >

Example:

HP 1652B/1653B

Programming Reference

MMODe

command/query

The MMODe (Marker Mode) command selects the mode controlling
marker movement and the display of the marker readouts. When
PATTern is selected, the markers will be placed on patterns. When
TIME is selected, the markers move on time. In MSTats, the markers are
placed on patterns, but the readouts will be time statistics,

The MMODe query returns the carrent marker mode.,

:MACHIne{1|2}: TWAVeform:MMODe {OFF|PATTern| TIME | MSTats)}
QUTPUT XXX; ":MACHINEL: TWAVEFORM:MMODE TIME"
:MACHIne{1}2}: TWAVeform:MMODe?

[:MACHIne (1|2} :TWAVeform:MMODe] <marker_mode > <NL>

::= {OFF|PATTerm | TIME|MSTats}

10 DIM M$§ [100]

20 OUTPUT XXX;":MACHINEL: TWAVEFORNM: MMODE?"
30 ENTER XXX; M3

40 PRINT M§

50 END

TWAVeform Subsystem
18-¢

OCONdition
R

OCONdition command/query

The OCONdition command specifies where the O marker is placed. The
O marker can be placed on the entry or exit point of the OPATtern when
in the PATTern marker mode.

The OCONdition query returns the current sefting,

Command Syntax: :MACHine{1|2} TWAVeform:OCONdition {ENTering!|EXTing}
Example: GUTPUT XXX; “:MACHINEL: TWAVEFORM:QCORDITION ENTERING"
Query Syﬁtax: :MACHine{1|2}: TWAVeform:OCONdition?
Returned Format, [:MACHIne{1|2}:TWAVeform:OCONditlon) {ENTering | EXITing} < NL>

Example: 10 DI¥ 0c$ [100]
20 QUTPUT XXX;":MACHIREL:TWAVEFORM:OCORDITION?™
3C ENTER XaX; Oc$
4G PRINT 0Dc$
50 END

TWAVeform Subsystem HP 1652B/16538
19-10 Programming Reference

OPATtern

C
OPATtern command/query

The OPATtern command allows you to construct a pattern recognizer
term for the O marker which is then used with the OSEarch criteria and
OCONdition when moving the marker on patterns. Since this command
deals with only one label at a time, a complete specification could require
several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base

is used, the value must be between 0 and 27 - 1, since a label may not have:
more than 32 bits. Because the < label_pattern> parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

The OPATtern query, in pattern marker mode, returns the pattern
specification for a given label name. In the time marker mode, the query
returns the pattern under the O marker for a given label. If the O marker
is not placed on valid data, don’t cares (XX...X) are returned.

Command Syntax: :MACHine{1] 2} TWAVeform:OPATtern «<label_name >, <iabel_pattern>

where:

<iabel_name> ;= string of up to § alphanumeric characters
<label_pattern> = "{#B{0|1(X}... |
#Q40]112|3]4|516{7[X} ... |
#H{0{1|2]314]5/6|7|Bi|9|A|B{CIDIE[F{X}... |
{0}t|2i3|4|5]6|7|8i%}... }"

Example: OUTPUT XXX; " MACHINEL : TWAVEFORM: OPATTERN 'A’,'511°"

HP 1652B/1653B TWAVeform Subsystem
Programming Reference 18-11

OPATtern

Query Syntax:

Returned Format:

Exampie:

TWAVeiorm Subsystem
19-12

:MACHine{1|2}: TWAVeform:OPATtern? <iabel_name>

{:MACHine {1]2}:TWAVeform:OPATiern] <iabel_name>,<label_pattern> <NiL>

10 DI¥ Op$ [100]

20 QUTPUT XXX;™:MACHINEL:TWAVEFORM:OPATTERNT "A'"
30 ENTER XXX; Op$

40 PRINT Op3

50 EXD

HP 1652B/16538
Programming Reference

OSEarch

Command Syntax:

where:

<orighn >
<OLGUITENCE >

Example:
Queery Syntax:
Returned Format:

Exampls:

HP 1652B/1853B
Programming Reference

OSEarch

command/query

The OSEarch comrmand defines the search criteria for the O marker
which is then used with the associated OPATtern recognizer specification
and the OCONdition when moving markers on patterns, The origin
parameter tells the marker to begin a search with the trigger or with the X
marker. The actual occurrence the marker searches for is determined by
the occurrence parameter of the OPATtern recognizer specification,
relative to the origin. An occurrence of 0 places a marker on the selected
otigin. With a negative occurrence, the marker searches before the origin.
With a positive occurrence, the marker searches after the origin.

The QSEarch query returns the search criteria for the O marker,

‘MACHIne{ 1|2} TWAVeform:O8Earch < occurrence >, < arigin >

e {mlﬁgm){MARker}
= integer from -9998 to +9999

QUTPUT XXX; ":MACHINEL:TWAVEFORM:QSEARCH +10,TRIGBER"
:MACHIne{ 1|2} TWAVeform:OSEarch?
[EMACHIne{1]2}: TWAVeform:OSEareh] <cteurtence >, <otigin> <NL>

10 OTM 0s$ [100] ‘
20 DUTPUT XXX;":MACHINEL:TWAYEFORM: OSEARCH?"
30 ENTER XXX; Os$

40 PRINT Ds$

50 END

TWAVetorm Subsystem
19-13

OTiMe

OTiMe command/query

The OTIMe command positions the O marker in time when the marker
mode is TIME. If data is not valid, the command performs no action,

The OTIMe query returns the O marker position in time. If data is not
valid, the query returns 9.9E37,

Command Syntax: :MACHine{1|2}:TWAVeform:OTIMe <time_value >

where:

<time_vaiue> &= real number -2.5Ks to +2.5Ks

Example: ouTPUT XXX; *:MACHINEL: TWAVEFORM:OTIME 30.0E-6"
Query Byniax: :MACHIne{1|2}: TWAVeform:OTiMe?
Returned Format: [:MACHine{1!2} TWAVeform:0TIMe] <time_value> <NL>

Example: 10 DIM 01§ [100]
20 DUTPUT XXX;':MACHINEL: TWAVEFORM: OTINES"
30 ENTER XXX; Dt$
40 PRINT Ot$
50 END

TWAVeform Subsystem HP 1652B/1653B
18-14 Programming Reference

RANGe

RANGe command/query

The RANGe command specifies the full-screen time in the timing
waveform menu. It is equivalent to ten times the seconds-per-division
setting on the display. The allowable values for RANGe are from 100 ns
to 10 ks,

The RANGe query returns the current full-screen time.

Command Syntax: :MACHine{1]2}:TWAVeform:RANGe <time_value >

where:

<time_range> .= real nurmnber between 100 ns and 10 ks

Exampie: GUTPUT XXX;":MACHINEI: TWAVEFORM:RANGE 100E-8
Query Symtax: :MACHIne{1|2}:TWAVeform:RANGa?
Returned Format: {{MACHine{1]2}:TWAVeform:RANGe] <time_velue > <NL>

Example: 10 DIM Rg$ [100]
20 QUTPUT XXX;":MACHINEL: TWAVEFURM:RANGE?"
30 ENTER XXX; Ro$
4 PRINT Rg$
50 END

HP 1652B/1653B TWAVeform Subsystem
Programming Reference 19-15

REMove
[

REMove command

The REMove command deletes all waveforms from the display.

Command Syntax: :MACHine{1]2}:TWAVeform:REMove

Example: OUTPUT XXX:":MACHINE1: TWAVEFORM:REMOVE®

TWAVetorm Subsystem HP 1652B/1653B
19-16 Programming Reference

RUNTII

I
RUNTIl command/query

The RUNT# (run until) command defines stop criteria based on the time
between the X and O markers when the trace mode is in repetitive. When
OFF is selected, the analyzer will run untif either the "STOP" touch screen
field is touched or the STOP command is sent. Run until the time
between X and O marker options are:

Less Than (LT) a specified time value

Greater Than (GT) a specified time value

In the range (INRange) between two time values

Out of the range (OUTRange) between two time values

2 8 0 0

End points for the INRange and OUTRange should be at least 10 ps apart
since this is the minimur time at which data is sampled.

This command affects the timing analyzer only, and has no relation to the
RUNTil commands in the SLISt and COMPare subsystems.

The RUNTiII query returns the current stop criteria.

Command Syntax: :MACHine{1}2}:TWAVeform:RUNTH <run_until_spec>

where:
<run_until_spec> 1= {OFF | LT, <valie> | GT,<value> | INRange <value> <value> |
DLfTRange < value >, <vajue > }
<value> = real number

Examples: OUTPUT XXX;":MACHINEL: TWAVEFORM:RUNTIL 6T, B0O.0E-6"
DUTPUT XXX:":MACHINEL: TWAVEFORM:RUNTIL INRANGE, 4.5, B.5"

HP 1652B/1653B TWAVeform Subsystem
Programming Reference 1917

RUNTIl

O
Query Syntax: :MACHIne{1|2}: TWAVeform:RUNTI?

Returned Format: [MACHIne{t |2} TWAVeforreRUNTI <run_until_spec> <NL>

Example: 10 DIM Ru$ [100]
20 OUTPUT XXX;™ :MACHINEL: TWAVEFORM:RUNTIL?"
30 ENTER XXX; Ru$
4D PRINT Ru$
5¢ END

TWAVeform Subsystem HP 1652B/1653B
19-18 Programming Reference

SPERiod

Y
SPERiod query

The SPERiod query returns the sample period of the last run,

Query Symtax: :MACHIne{1]2}:TWAVeform:;SPERiod?
Returned Format: [MACHIne{1|2}:TWAVeform:SPERiogd} <time_value> <NL>

where:

<time value> = real number

Example: 10 01K sp$ {100]
20 DUTPUT XXX:™:MACHINEL:TWAVEFORM:SPERIODT™
30 ENTER XXX: Sp$
40 PRINT Sp$
50 END

HP 1652B/1653B TWAVeform Subsystem
Programming Reference 19-19

TAVerage

TAVerage

Query Syntax:
Returned Format;
whaere:

<time_value >

Example:

TWAVeform Subsystem
18-20

query

The TAVerage query returns the value of the average time between the X
and O markers. If there is no valid data, the query returns 9. 9E37,

:MACHIne{1| 2} TWAVeform: TAVerage?

[MAGHine{1 |2} TWAVeform: TAVerage] <time_value> <NL>

e real number

10 DI¥ Tv$ [100]

20 OUTPUT XXX;":MACHINEL: TWAVEFORM: TAVERAGE?"
30 ENTER XXX; Tv§

43 PRINT Tv§

50 END

HP 1652B/1653B
Programming Reference

TMAXimum

TMAXimum query

The TMAXimum query returns the value of the maximum time between
the X and G markers, If there is no valid data, the query returns 9.9E37.

Query Syntax: :MACHIne{1|2}: TWAVeform: TMAXimum?
Returned Format: [:MACHIne{1 |2} TWAVeform: TMAImum] <time_value> <NL>

where

<tfime_value> = real numbst

Example: 12 0IM Tx$ f100]
20 OUTPUT - XXX;“:MACHINEL : TWAVEFORM: THAX IMUM?"
30 ENTER XxX; Txd
40 PRINT Tx$
50 END

HP 1652B/1653B TWAVeform Subsystem
Programming Reference 18-21

TMINimum
[y

TMINimum query

The TMINimum query returns the value of the minimum time between
the X and O markers. If there is no valid data, the query returns 9.9E37,

Guery Syntax: :MACHine{1]|2}: TWAVetorm: TMINimum?
Returned Format: [:MACHine{1{2}: TWAVeform:TMINImum] <time_valus > <NL >

where:

<time_value> :i= raal number -

Example: 10 DIM Tm$ [100]
20 OUTPUT XXX;":MACHINEL: TWAVEFORM:THINIMUM?"
30 ENTER XXX; Tm$
40 PRINT Tm$
50 END

TWAVeform Subsystem HP 1652B/18538
19-22 Programming Reference

VRUNs

Query Syntax:
Heturned Format;

where:

<vaild_runs >
«<total_rung >

Example:

HP 1652B/1653B
Programming Reference

VRUNSs

query

The VRUNs query returns the number of valid runs and total number of
runs made. Valid runs are those where the pattern search for both the X
and O markers was successful resulting in valid delta thme measurements.

:MACHina{1[2}: TWAVeform:VRUNs?

:MACHine{1]2}: TWAVelorm:VRUNs] <valid_runs>, <total_runs> <NL>

1= zero of positive integer
1= 20r0 or positive integer

10 DIM ¥r$ {100]

20 QUTPUT XXX;":MACHINEL: TWAVEFORM: VRUNST"
30 ENTER XXX; Vr$

40 PRINT Vr$

50 END

TWAVeform Subsystem
19-23

XCON(dition
I

XCONdition command/query

The XCONdition command specifies where the X marker is placed. The
X marker can be placed on the entry or exit point of the XPATtern when
in the PATTern marker mode.

The XCONdition query returns the current setting.

Command Syniax: :MACHine{1|2}:TWAVeform:XCONdition {ENTering]EXITing}
Example: OUTPUT XXX; ":MACHINEL:TWAVEFORM:XCONDITION ENTERING"
Query Syntax: :MACHine{1]2}: TWAVeform:XCONdition?
Returned Formal: [:MACHIne{1 [g}:MAVeform:xcoNdmon} {ENTering | EXITing} < NL>

Example: 10 DIM Xc§ [109)
20 OUTPUT XXX;™:HMACHINEL : TWAVEFORM: XCONDITION?™
30 ENTER XXX; Xc$
40 PRINT Xc$
50 END

TWAVeform Subsystem HP 1652B/15538
19-24 Programming Reference

XOTime

L
XOTime query

The XOTime query returns the time from the X marker to the O marker.
If data is not valid, the query returns 9.9E37,

Query Syntax: :MACHine{1|2}:TWAVeform:XOTime?
Returned Format: EMACHIne{1|2}: TWAVetorm:XOTime] <time_vaiue> <NL>

where:

<time _value> = real number

Example: 10 DIM Xot§ [100]
20 OUTPUT XXX:":MACHINEL: TWAVEFORM:XOTIMET"
30 ENTER XXX; Xot$
40 PRINT Xot$
50 END

HP 1652B/16538 TWAVeform Subsystem
Programming Reference 18-25

XPATtern
P

XPATtern command/query

The XPATtern command allows you to construct a pattern recognizer
term for the X marker which is then used with the XSEarch criteria and
XCONdition when moving the marker on patterns. Since this command
deals with only one label at a time, a complete specification could require
several invocations.

When the value of a pattern is expressed in binary, it represents the bit
valnes for the label inside the pattern recognizer term. In whatever base
is used, the value must be between 0 and 2°2 - 1, since a label may not have
more than 32 bits. Because the <label pattern> parameter may contain
dom’t cares, it is handled as a string of characters rather than a number.

The XPATtern query, in pattern marker mode, returns the pattern
specification for a given label name. In the time marker mode, the query
returns the pattern under the X marker for a given label, If the X marker
is not placed on valid data, don’t cares (XX...X) are returned.

Command Syntax: :MACHine{1|2)}:TWAVeform:XPATtern <label_name > ,<label_pattern »

where:

<label_name> = siring of up to & alphanumaeric characters
<label pattern> = “{4B{O[1}X}... |
#Q{0]112i314|51617iX} ... |
#H{O[1]218]415|6(7|8|9|AIBICIDIEIFI} ... |
{0]1{2i3|4{518]7|8/9} ... }"

Example: 0UTPUT XXK; ™ :MACHINEL:TWAVEFORM:XPATTERN 'A’, '511'"

TWAVeform Subsystem HP 1662B/18538
19-26 Programming Reference

XPATtern

Query Syntax: :MACHine{1|2}:TWAVeform:XPATtem? <label_name>

Returned Format: [MACHine{1|2}:TWAVeform:XPATtern] < label_name >, <iabel_pattern> <NL>

Example: 10 DIM Xp$ [100]
20 DUTPUT XXOU;":MACHINEL : TWAVEFORM: XPATTERNT 'A™"

30 ENTER X»X; Xp$
40 PRINT Xpt
50 ERD

HP 1852B/1653B TwAVeiorm Subsystem
18-27

Programming Relerence

XSEarch

XSEarch

Command Syntax:

where:

- < origin>
< CCoUrrence >

Exampie:
Query Syntax:
Retumed Format:

Example:

TWAVetorm Subsystemn
198-28

command/query

The XSEarch command defines the search criteria for the X marker

which is then used with the associated XPATtern recognizer specification

and the XCONdition when moving markers on patterns. The origin
parameter telis the marker to begin a search with the trigger, The
occurrence parameter determings which occurrence of the XPATtern
recognizer specification, relative to the origin, the marker actually

searches for. An occurrence of 0 {(zero) places a2 marker on the origin.

The XSEarch query returns the search criteria for the X marker.

‘MACHIne {12} TWAVeform XSEarch <oscurrence >, < origin>

= TRIGger
1= integer from -9999 to 49908

CUTPUT XXX; ":MACHINED :TWAVEFORM: XSEARCH,+10, TRIGGER™
:MACHIne{ 1|2} TWAVeform:XSEarch? < ooourrence >, <origin>
{:MACHIne{1| 2} TWAVelorm:XSEarch] «ocourrence >, <origin> <NL>

10 DIM Xs§ [i00]

. 20 QUTPUT XXX,":MACHINEI: TWAVEFORM:XSEARCH?"

30 ENTER XXX; Xs$
40 PRINT Xs$
50 END

HP 1652B/1653B
Programming Reference

XTiMe

Command Syntax:

where:

<time_value >
Example:

Query Syntax:
Returned Format:

Example:

HP 1652B/16538

Programming Reference

XTiMe

command/query

The XTIMe command positions the X marker in time when the marker
mode is TIME, If data is not valid, the command performs no action.

The XTIMe query returns the X marker position in time, If data is not
valid, the query returns 9.9E37,

:MACHIna{1|2}:TWAVeform:XTiMe <time_value>

1= real number from —2.5Ks to +2.5Ks

OUTPUT X0, ":MACHiNE!:TWAVEFORM:X!’ IME 40.0E-6"
MACHIne {1 |2} TWAVaform:XTiMe?

[:MACHIne{1 |2} TWAVeform:XTIMe] <time_vaiue> <NL>

10 DIM Xt$ [100]

20 QUTPUT X0(" MACHINE L TWAVEFORM XTIME?"
30 ENTER X0 Xt§

40 PRINT Xt$

80 END

TWAVeiorm Subsystem
19-29

SYMBol Subsystem 20
-

Introduction The SYMBol subsystem contains the commands that allow you to define
symbols on the controller and download them to the HP 1652B/53B logic
analyzer. The commands in this subsystem are:

BASE
PATTern
RANGe
REMove
WIDTh

@8 e Ry Ry rier Wey SC Ty
= PATTor n J#l spoce |-+ labeinome [,)

o petiern.voiue
RANGe snace }-—h-l Fabe | _nme o

O Ol
- REMove ¥

%\NIGTI\H spoce Hlabelaname ° ———
Figure 20-1. SYMBol Subsystem Diagram

. ® & ¢ &

HP 1652B/1653B SYMBo! Subsystem
Programming Reference 20-1

Inbel_name = string of up to 6 alphanumeric characters

symbol_name = siring of up to 16 alphanumeric characters

pattern_value = "{#B{0|1|X}... |
#0{01|12|3|4(5]6|7]X}... |
#H{0[1)|2|3|4|5|6]7|8|9|4|B|C|D|E|F|X}...]
{011121314[5]617]8{9}... }

start_value = "{#B{6]1}... |
#0{0|1|213{4!5(6|7}... |
#H{0|1|2{3]4]516]7|819|4|B|C|DIE|F}... |
{0i1]2|3]41516|7|8]9}... }"

stop_value = "{#B{0|1}... |
#01{01112|3]4!5[6{7}... |
#H{011|2(3)|4]5|6{7|8|9|4|B{C|D|E|F}... |
{01112|31415|617|8|9}... }"

width_value = integer from 1to 16

Figure 20-1. SYMBol Subsystem Syntax Diagram (continued)

SYMBol Subsystem HP 1652B/1653B
20-2 Programming Reference

SYMBol

Command Syntax:

Example:

HP 1652B/1653B
Programming Reterence

SYMBol

selector

The SYMBol selector is used as a part of a compound header to access
the commands used to create symbols. It always follows the MACHine
selector because it selects a branch directly below the MACHine level in
the command tree.

:MACHIne{1{2}:8YMBol

DUTPUT XXX;":MACHINEL:SYMBOL:BASE 'DATA", BINARY"

SYMBol Subsystem
20-3

BASE

BASE command

The BASE command sets the base in which symbols for the specified label
will be displayed in the symbol menu. It also specifies the base in which
the symbol offsets are displayed when symbols are used.

@ BINary is not available for labels with more than 20 bits assigned. In this
Note case the base will default to HEXadecimal.

Command Syntax: :MACHIne{1|2}:5YMBOLBASE «<iabel_name >, <base_value >

where:

<label name> = sting of up to 6 alphanumeric characters
<base_vaiue> uw= {BiNary | HEXadecimal | OCTal | DECimal | ASCH}

Example: OUTPUT XXX;":MACHINEL: SYMBOL :BASE °DATA’,HEXADECIMAL®

SYMBol Subsystem

HP 1652B/1653B
20-4

Programming Reference

PATTern

PATTern command

The PATTern command aflows you to create a pattern symbol for the
specified label.

Because don’t cares (X) are allowed in the pattern value, it must always be
expressed as a string. You may still use different bases, though don’t cares
cannot be used in a decimal number.

Command Syntax: :MACHine{1|2}:SYMBol:PATTein< label_name > ,<symbol_name >, <pattern_value >

where:
<label_name> 1= string of up to 6 alphanumeric characters
<symbol_name> = string of up to 16 aiphanumeric characters
<patiern_value> = "{#B{0|1[X}...{

#Q{01|213|4|518]71%K} ... |
#H{D|1|2]13|4|5|617i8|8|A|B|CIDIEIF|X}... |
{011]2/3/415/6(7/8(9} ... }*

Example: GUTPUT XXX:":MACHINEL:SYMBOL:PATTERK 'STAT', 'MEM_RD', #HOIXX™

HP 1652B/1653B SYMBoi Subsystem
Programming Reference 20-5

RANGe

RANGe

Command Syntax:

where;

<labsi_name>

<gymboi_name >
<start_vaiue >

<gtop_value >

Example:

SYMBoi Subsystem
20-6

command

The RANGe command allows you to create a range symbol containing a
start value and a stop value for the specified label. The values may be in
binary (#B), octal (#Q), hexadecimal (#H) or decimal (default). You
may not use "don’t cares” in any base.

‘MACHIne{1}2}:5YMBol.RANGe <label name:>,<symbol_name >, <start_value >,
< stop_value >

= g¥ing of up to 6 alphanumeric characters

::= string of up 1o 16 aiphanumeric characters

e “{H#B{OI1} ... |
#0O{0]|112i3]4]518]7} ... |
#H{0|112{3|4|5|6/7i8|9|A|BICIDIEIF}... |
{0[1]2|3]4{5!6{7|8]8}... }

u= "Y#B{0i1} ...
#Qi0}1]2{31415{6|7} ...}
#H{0|1]2{3|4|5|6|7|819]|A}B|C|DIE|F} ...}
{o|1i2{3|4]5i8]7|818} ... }"

QUTPUT XXX;":MACHINEL:SYMBOL :RANGE 'STAT', "I0_ACC','0', '$#HODOF'™

HP 1652B/1653B
Programming Reference

REMove

[
REMove command

The REMove command deletes all symbols from a specified machine.

Command Syntax: :MACHine{1)2}:8YMBol:REMove

Example: 0UTPUT XXX;":MACHINEI:SYMBOL :REMOVE"

HP 1852B/1653B SYMBol Subsystem
Programming Reference 20-7

WIDTh

WIDTh command

The WIDTh command specifies the width (aumber of characters) in
which the symbol names will be displayed when symbols are vsed.

llC' The WIDTh command does not affect the displayed length of the symbol
Note WP offset value.

Command Syniax: :MACHine{1i2}:8YMBol:WIDTh <label_name >, <width vajue >

where:
<label name> = string of up {0 § alphanumeric characters
<width_value> = integer from 110 16

Example: OUTPUT XXX;":MACHINET:SYMBOL :WIDTH 'DATA',9

SYMBol Subsystem

HP 18528/1653B
20-8

Programming Reference

SCOPe Subsystem 21
A0

Introduction The SCOPe subsystem provides access to the commands and the
oscilloscope subsystem commands that control the basic operation of the
oscilloscope. At the SCOPe subsystem leve! is a command that turns the
oscilioscope on or off (SMODe), specifies how the oscilloscope is Armed
(ARM), and the AUToscale command.

Additionally, the following subsystems are a part of the SCOPe subsystem.
Each is explained in a separate chapter.

CHANne! subsystem {chapter 22)
TRICGger subsystem {chapter 23)
ACQuire subsystem {chapter 24)
TIMebase subsystem {chapter 25)
WAVeform subsystem {chapter 26)
MEASure subsystem (chapter 27)

*® ® & & 2 @

Not all scope-related functions can be duplicated with programming
instructions. If you are unabie to get a desired configuration strictly
through programming instruction, try the following steps:

1. Manually configure the HP 1652B/53B through the front panel.

2. Save configuration to a disk {through the front panel or through the
:MMEM: STORE "CONFIG,"Setups” instruction).

Now you can use the command MIEM:LOAD "CONFIE" to load in the desired
configuration.

HP 1652B/1653B SCOPe Subsystem
Prograrmming Reference 214-1

o

f

spoce r—h-g OrMLSGUrce |

i OFF |8 ¥ 3
01852508

arm_source = {RUN | MACHine{1 |2} | BNC}
Figure 21-1. SCOPe Subsystem Syntax Diagram

SCOPe Subsystem HP 1652B/1653B
212 Programming Reference

SCOPe

Command Syntax:

Example:

HP 1652B/1653B
Programming Reference

SCOPe

selector

The SCOPe selector is used to indicate the beginning of a compound
command (or query) for a function within the SCOPe subsystemn. Since
SCOPe is a root-level command, it will normally appear as the first
element of a compound header.

1SCOPe

OUTPUT XXX; “:SCOPE:TRIGGER:SLOPE NEGATIVE™

SCOPe Subsystem
21-3

Arm

Arm

Command Syntax:

where:

<arm_source >

Examnple:
Query Syntax:
Returned Format:

Example:

SCOPe Subsystem
21-4

command/query

The ARM command specifies the arming source of the oscilloscope.
The ARM query returns the source that the oscilloscope is armed by.

:8COPe:ARM <arm_source >

i= {RUN | MACHIne{1/2} | BNC}
DUTPLT XXX;™:SCOPE - ARM:MACHIREZ"
:5C0OPe: ARM?

[:SCOPe:ARM] <arm_source >

10 DIM String$[100]

20 OUTPUT XXX;":SCOPL:ARMT™
30 ENTER XXX; String$

40 PRINT String$

50 END

HP 1652B/16538
Programming Reference

AUToscale

Command Syntax:

Example:

HP 1652B/1653B
. Programming Reference

AUToscale

command

The AUToscale command causes the oscilloscope to automatically select
the vertical sensitivity, vertical offset, trigger level and timebase settings
for a stable display on one or both channels. The input signal required for
Autoscale must have an amplitude above 10 mV peak, and a frequency
between 50 Hz and 100 MHz..

SCOPe:AlUToscale

QUTPUT XXX;™:SCOPEL:AUTOSCALE"

SCOPe Subsystem
21-5

SMODe

SMODe command/query

The SMODe command allows the oscilloscope to be turned on or off over
the bus.

The SMODe query returns the current status of the oscillosocpe.

Command Syntax: :8COPe:SMODe {ON|COFF}

Example: OUTPUT XXX.":500Pe:3$H0De ON"
Query Syntax: :5COPe:SMODe?

Returned Format: [:SCOPe:SMODe} {ON|OFF} <NL >

Example: 16 DIN m[1501
20 OUTRET XXX;":SCOPE: SMODET"
36 ENTER XXX:Sm$
40 PRINT m
50 END

SCOPe Subsystem HP 1652B/1653B
216 Programming Reference

CHANnRel Subsystem 22

Introduction The CHANnel subsystem commands control the channel display and the
vertical axis of the oscilloscope. Each channel must be programmed
independently for all offset, range and probe functions. The commands
are:

CHANRel
COUPling
QFFSet
PROBe
RANGe

*® & & & s

HP 1652B/18538 CHANnet Subsystem
Programming Reference 22-1

- D Nax
{:cHatne | Yl channel_number I——@JL-o(COuPI ing ol space - o} >
-——(SF“FSﬂH space H sffset.arg } -

01652802

channel number = {I |2}

offset_arg = req! number defining the voltage at the center of the display. The offset range depends on

the input impedance setting. The offset range for 1 MQ input is — 125 V'to +125 V. The offset range for

S0Qinputis ~5Vio+ SV. .

probe_arg = integer from 1 through 1000, specifving the probe attenuation with respect to 1.

range_arg = real number specifying vertical sensitivity. The allowable range is 15mV'to 10 ¥ fora
probe attenuation of 1. The specified range is equal to 4 times Volts/Div.

Figure 221, CHANnel Subsystem Syntax Diagram

CHANnRe! Subsystem HP 1652B/1653B
22.2 Programming Reference

CHANnel

Command Syntax:

where:

N>

Example:

HP 1652B/1653B
Programming Reference

CHANDNel

selector

The CHAN el selector is used as part of a compound command header to
aceess the settings found in oscilloscope’s CHANnel menu. 1t always
follows the SCOPe selector because it selects a branch below the SCOPe
level in the command tree.

1SCOPa:CHANNel < N>

= {1]2}

QUTPUT XXX; ":SCOPE:CHANNELZ:QFFSET 2.5"

CHANne! Subsystem
22-3

COUPling

COUPling

Command Syntax:
Example:

Query Syntax:
Returned Format:

Example:

CHANnel Subsystem
22-4

command/query

The COUPling command sets the input impedance for the selected
channel. The choices are either 1M Ohm (DC) or 50 Ohms (DCFifty).

The query returns the current input impedance for the specified channel,

:8COPe:CHANRel{1|21:COUPling {DC|DCFitty}
OUTPUT XXX;"™:S5COPE:CHAKNEL1:COUPLING DL
:8COPe:CHANNei{1]2}:COUPIIng?
[:5COPe:CHANne!{1|2}:COUPling] {DCIDCFifty} <NL>

10 DIM Ce${:00]

20 BUTPUT XXX;™:SCOPE:CHARNELY: COUPLING?”
30 ENTER XXX:Cc$

40 PRINT Cc$

50 END

HP 1652B/1653R
Programming Reference

OFFSet

Command Syntax:

where;

<value>
Example:

Query Syntax:
Returned Format:

Example:

HP 1652B/1653B
Programming Reference

OFFSet

command/query

The OFFSet command sets the voltage that is represented at center
screen for the selected channel. The allowable offsets for 1:1 probes are:

+ 2V < 4 mV/div

+ 10 V between 74 mV/div and 370 mV/div
+ 50V between 370 mV/div and 1.85 V/div
+ 125V > 1.85 Vidiv

When the input impedance is set to 50 Q the maximum offsetis 2 2 V for
V/Div settings less than 74 mV and is £5 V for V/Div settings greater
than 74 mV.

The offset value is recompensated whenever the probe attenuation factor
is changed.

The guery returns the current value for the selected channel.

‘SCOPe:CHANNnal{ 112}:OFFSet <value >

= {— 250Vic + 250 Vmax. &t 1 MQ | —~8Vto +5Vats50Q}

OUTPUT XXX;":SCOP:CHANL:OFFS 1.5"
:8COPe:CHANnel{1|2}:OFFSat?
[:SCOPe:CHANnel{1}2}:0FFSet] <value> <NL>

10 DIM Co${100]

20 CUTPUT XXX;":SCOPE:CHANNELI:OFFSET?"
30 ENTER XXX:Lo¥

40 PRINT Co$

50 ERD

CHANnel Subsystem
22-5

PROBe

PROBe

Command Syntax:

where:

<gtten

Example:
Query Syntax:
Returned Format:

Exarnple:

CHANnel Subsystem
2246

command/query

The PROBe command specifies the attenuation factor for an external
probe connected to a channel. The command changes the channel voltage
references such as range, offset, trigger levels and automatic
measurements. The actual sensitivity is not changed at the channel input,
The allowable probe attenuation factor is an integer from 1 to 1000,

The guery returns the probe attenuation factor for the selected channel,

:SCOPe:CHANNel{1|2}:PROBe <atten>

e integer from 1 to 1000

GUTRUT XXX;":5C0Pe:CHAN1:PROB 10"
:SC0OPe: CHANNSH 1]2}:PROBe?
[:8COPe:ChANNel{1{21:PROBe] <atten> <NL>

10 DIM At:3[100]

20 QUTPUT XXX;":SCOPE:CHANNEL]:PROBET™
30 ENTER XXX;Att}

40 PRINT Att$

50 END

HP 16528/1653B
Programming Reference

RANGe

RANGe command/query

The RANGe command defines the full-scale (4 x Volts/Div) vertical axis
of the selected channel. The values for the RANGe command are
dependent on the current probe attenuation factor for the selected
channel. The allowable range for a probe attenuation factor of 1:1 is

&) mV to 40 V. For a larger probe attenuation factor, multiply the range
Emit by the probe attenuation factor.

The RANGe query returns the current range setting.

Command Syntax: :SCOPe:CHANnel{1[2}:RANGe <range>

where:

<range> = BOmVto 40V for a probe attenuation fastor of 1:1

Example: CUTPUT XXX, " :SCOPE:CHANNELL :RANGE 4.8"

Query Syntax: :SCOPe;CHANnei{1]2}:RANGe?

Returned Format: [SCOPe:CHANnet{1/2}:RANGe] <range> <NL>

Example: 10 DIM Pr${100]
20 CUTPUT XXX:":SCOPE:CHANNEL] :RANGE?"
30 ENTER XXX;Fr$
a0 PRINT Pr§
50 END

HP 1652B/1653B CHANnel Subsystem
Programming Reference 22.7

TRIGger Subsystem 23
G R

Introduction The commands of the TRIGger subsystem allow vou to set all the trigger
conditions necessary for generating a trigger, There are two trigger
modes: Edge and Immediate. If a command is valid for the chosen trigger
mode, then that setting will be accepted by the oscilloscope. However, if
the command is ot valid for the trigger mode, an error will be generated.
None of the commands of this subsystem are used in conjunction with
Immediate trigger mode. See Figure 23-1 for the TRIGger subsystem
syntax diagram.

The Edge Inthe Edge trigger mode, the oscilloscope triggers on an edge of a
Trigger Mode waveform, specified by the SOURce, LEVel, and SLOPe commands, If a
source is not specified, then the current source is assumed.

The Immediate Inthe Immediate trigger mode, the oscilloscope will trigger by itself when
Trigger Mode the arming requirements are met.

HP 1652B/1653B TRIGger Subsystemn
Programming Relerence 23-1

{ ()) \/“"']
o L—Wspace f—hiéevai_vo!ue§ i
@ - £DGE } =

() .

apoce P{}Sitivej
NEGetiive

—*@—*{ space CHANRe |1) -
CHANneg {2

SOURce?
o%eELSt:

level _value = trigger level in volts

Figure 23-1. TRIGger Subsystem Syntax Diagram

TRIGger Subsystem HP 1652B/1653B
23.2 Programming Reference

TRiGger

A
TRIGger | selector

The TRIGger selector is used as part of a compound command header to
access the settings found in oscilloscope’s Trigger menu. It always follows
the SCOPe selector because it selects a branch below the SCOPe level in
the command tree.

Command Syntax: :SCOPe:TRIGger

Example: OUTPUT XXX; ":SCOPE :TRIGGER:CHAKNELI:LEVEL 2.0"

HP 1652B/1653B TRiGger Subsystem
Programming Reference 23-3

LEVEL

LEVEL command/query

The LEVEL command sets the trigger level voltage for the selected
source or path. This command cannot be used in the IMMEDIATE
trigger mods.

The query returns the trigger level for the current path or source.

rl There is no shortform for LEVEL, This is an intentional deviation from
Note %@

the normal truncation rule.

Command Syntax: :SCOPe:TRiGger:LEVEL <vaiue>

where:

<value> 1= Trigger jevel in volts

Example: 0UTPUT XXX;":SCOPE: TRIG:LEVEL 1.0"
Query Syntax: :SCOPs:TRIGgerLEVEL?

Returned Format: [:5COPeTRIGgerLEVEL] <value> <NL>

Example: 10 BIM £1§{100]
20 QUTPUT XXX:":SCDPE:TRIGGER:SOURCE CHANNEL1;LEVEL?"
30 ENTER XXX;E1$
40 PRINT E1$
50 END

TRIGger Subsystem HP 1652B/16538
23.4 Programming Reference

MODE

MODE command/query

The MODE command allows you to select the trigger mode for the
oscilloscope. The EDGE mode will trigger the oscilloscope on an edge
whose slope is determined by the SLOPe command at a voltage set by the
LEVEL command. In the IMMediate trigger mode, the oscilloscope goes
to a freeren mode and does not wait for a trigger. The IMMediate mode is
used in armed-by other machine applications.

The query returns the current mode.

Command Syntax: :SCOPe:TRIGger:MODE {EDGE |IMMediate}
Example: OUTPUT X%xXx;*:SCOPE:TRIGGER:MODE EDSE™
Query Syntax: :3COPe:TRIGger:MODE?
Returned Format: [:SCOPe:TRiGgenMODE] {EDGE{IMMediate} <NL>

Example: 10 DIM Ma$[100]
20 QUTPUT XXX;":SCOPE:TRIGBER:MODET"
30 ENTER XXX, Md3
40 PRINT Md$
50 END

HP 1652B/1653B TRIGger Subsystem
Programming Reference 23-5

SLOPe

SLOPe command/query

The SLOPe command selects the trigger slope for the previously
specified trigger source, This command can only be used in the EDGE
trigger mode.

The query returns the slope of the current trigger source.,

Command Symtax: :SCOPe:TRIGger:SLOPe {POSHiva|NEGative}

Example: OuTPUT XXX:":SCOP:TRIG:SOURCE CHANI;SLOPE POS™
Query Syntax: :SCOPe:TRIGger:SLOPe?
Returned Format: [:SCOPe:TRiGger:SLOPs] {POSitive| NEGative} <NL>

Example: 10 0IM Ts§[100]
20 OUTPUT XXX;™:SCOP:TRIG:SOUR CHANL:SLOP?"
30 ENTER XXX;Ts$
406 PRINT Ts$
50 END

TRIGger Subsystem HP 1652B/16535
23-6 Programming Reference

SOURce

I
SOURce command/query

The SOURce command is used to select the trigger source and is used for
any subsequent SLOPe and LEVEL commands. This command can only
be used in the EDGE trigger mode. '

The guery returns the current trigger source.

Command Syntax: :SCOPe:TRIGger:SOURce {CHANNeH{1}2}}
Example: OUTPUT XxX;™:SCOP:TRIG:SOUR CHANL"

Query Syntax: :SCOPe TRIGger: SOURce?
Returned Format: [:S8COPe:TRiGger:SOURce] {CHANnet{1]2}} <NL>

Example: 10 01% Tso${100)
20 OUTPUT XXX;":SCOPE : TRIGGER : SOURCET"
30 ENTER XXX;Tsa$
40 PRINT Tso$
50 END

HP 1652B/1653B TRIGger Subsystem
Programming Reference 237

ACQuire Subsystem 24
T

introduction The ACQuire subsystem commands are used to select the type of
acquisition and the number of averages to be taken if the average type is

chosen. The commands are:

o COUNt
« TYPE

ACQUITe . —b(COUNtH spoce H count_arg ;— ; -

==

TYPE? g
fall-redh]

count_arg = {2|4]|8|16]32|64]128|256} An integer that specifies the number of averages to be taken of
each time paoint.

Figure 24-1. ACQuire Subsystem Syntax Diagram

ACQuire Subsystem

HP 1652B/1653B
24-1

Programming Reference

Acquisition Type In the Normal mode, with the ACCumulate command OFF, the

Normal oscilloscope acquires waveform data and then displays the waveform.
When the oscilloscope makes a new acquisition, the previously acquired
waveform is erased from the display and replaced by the newly acquired
waveform,

When the ACCumulate command is ON, the oscilloscope displays all the
waveform acquisitions without erasing the previously acquired waveform,

IR

Acquisition Type In the Average mode, the oscilloscope averages the data points on the

Averag e waveform with previously acquired data. Averaging helps eliminate
random noise from the displayed waveform. In this mode the
ACCumulate command is OFF. When Average mode is selected, the
number of averages must also be specified using the COUNt command.
Previously averaged waveform data is erased from the display and the
newly averaged waveform is displayed.

ACQuire Subsystem HP 1652B/16538

24.2 Programming Reference

ACQuire

Command Syntax:

Example:

HP 1552B/16538
Programming Reference

ACQuire

selector

The ACQuire selector is used as part of a compound command header to
access the seitings found in oscilloscope’s Acquire menu. It always
folows the SCOPe selector because it selects a branch below the SCOPe
level in the command tree.

SCOPa:ACQuire

QUTPUT XXX; ":SCOPE:ACQUIRE:TYPE NORMAL"

ACQuire Subsystem
24-3

COUNt

COUNt

Command Syntax:

where

< oount >
Example

Query Syntax:
Returned Format

Example:

ACQuire Subsystem
24-4

command/query

The COUNt command specifies the number of acquisitions for the
running weighted average. This command generates an error if Normal
acquisition mode is specified.

The query returns the last specified count.

SCOPa:ACQuire;: COUNt <count>

= {2]4]8]16|32]64| 128|256}

CUTPUT XXX;” :SCOPE:ACQUIRE:COUNT 16"
:SCH)PB:AKZCNJ&&:CK)UhH?.

[:SCOPe: ACQuire: COUNt] <eour-at > <NL>

10 DIM Ac$[100]

20 OUTPUT XXX;™:SCOPE:ACQ:COUNT"
30 ENTER XXX;Ac$

40 PRINT 4c$

50 END

HP 1652B/1653B
Programmiing Reference

TYPE

Command Syntax
Example:

Query Syntax:
Returned Format:

Example:

HP 1652B/1653B
Programming Reference

TYPE

command/query

The TYPE command selects the type of acquisition that is to take place
when the STARt command is exccuted. One of three acquisition types
may be selected: the NORMal, AVERage, or ACCumulate mode.

The guery returns the last specified type.

:SCOPe:ACQuire TYPE {NORMat{AVERage |ACCumulate}
DUTPUT XXX;":SCOPE:ACQUIRE: TYPE NORMAL"

:SCOPe: ACQuire. TYPE?

[:8COPe: ACQuire: TYPE] {NORMaliAVERage} <NL>

10 DIM At$[100]

20 OUTPUT XXX;":SCOPE:ACGQUIRE:TYPET"
30 ENTER XXX;AtS$

40 PRINT AtS

50 END

ACQuire Subsystem
245

TiMebase Subsystem 25
L]

introduction The commands of the TIMebase subsystem control the Timebase, Tripger
Delay Time, and the Timebase Mode. If TRIGGERED mode is to be
used, ensure that the trigger specifications of the TRIGger subsystem have
been set. Refer to Figure 25-1 for the TIMebase subsystem syntax diagram.

& v

’ L@ space H delay. arg § -
= DELay? b -
{wooe } AUTO ; -

-—-{RANGD——D{ spice H range.arg ;
C152503

delay_arg = delay time in seconds, from -2500 seconds through + 2500 seconds
:_arg = g real number from 5 ns through 10s

Figure 25-1. TIMebase Subsystem Syntax Diagram

HP 1652B/1653B TiMebase Subsystem
Programming Reference 251

TiMebase
[

TiMebase selector

The TIMebase selector is used as part of a compound command header to
access the settings found in oscilloscope’s Timebase menu. It always
follows the SCOPe selector because it selects a branch below the SCOPe
level in the command tree.

Command Syntax: :SCOPeTIMebase

Example: OUTPUT XXX: ":SCOPE:TIMEBASE :MODE AUTO"

TiMebase Subsystem HP 1652B/16538
25-2 Programming Reference

DELAY

1
Note %

Command Syntax:

where:

<delay time>
Example:

QGuery Syntax:
Returned Farmat:

Example:

HP 1652B/1663B

Programming Reference

DELAY

command/query

The DELAY command sets the time between the trigger and the center
of the screen if the trigger events count is zero. If the trigger events count
is non-zero, the center of the screen is the trigger events count plus the
delay time.

The query returns the current delay setting,

The DELAY command in the TIMebase subsystem has no shortform.
This is an intentional deviation from the normal truncation rules.

:8C0Pe: TIMebase: DELAY <delay time >

1= delay time in ssconds

QUTPUT XXX;":5C0Pe:TIMebase:DELAY 2US"

:5COPe: TiMebase: DELAY?
[:SCOPe: TIMebase: DELAY] <value> <NL>

10 DIM Dt$[100]

20 OUTPUT XXX;":5COPe:TIMebase:DELAY?"
30 ENTER XXX;Dt$

40 PRINT Dt$

50 END

TiMebase Subsystem
25-3

MODE

MODE

1
Note %

Command Syntax:

Example:

TiMebase Subsystern
25-4

command/query

The MODE command sets the oscilloscope timebase to either Auto or
Triggered mode. When the AUTO mode is chosen, the oscilloscope waits
approximately one second for a trigger to occur. If a trigger is not
generated within that time, then auto trigger is executed. I 2 signal is not
applied to the input, a baseline is displayed. If there is a signal at the input
and the specified trigger conditions have not been met within one second,
the waveform display will not be synchronized to a trigger.

When the TRIGGERED mode is chosen, the oscilloscope waits until a
trigger is received before data is acquired. The TRIGGERED mode
should be used when the trigger source signal is less than at a 40 Hz
repetition rate.

The Auto-Trig On field in the trigger menu is the same as the AUTO
mode over HP-IB or RS-232C. Setting the mode to TRIGGERED is the
same as the Auto-Trig Off on the front panel.

The query returns the current TIMebase mode.

The TRIGGERED argument for MODE has 5o shortform, This is an
intentional deviation from the normal truncation rule.

:8COPe: TIMebase:MODE {TRIGGERED|AUTO}

OUTPUT X0 SCOPE: TIME:MODE AUTO"

HP 1652B/1653B
Programming Reference

MODE

Query Syntax: :5COPe:TIMebase:MODE?

Returned Format: [:SCOPe:TIMebase:MODE] {AUTO|TRIGGERED) <NL>

Exampie: 10 pI¥ Tm$[100]
20 DUTPUT XXX;":SCUPe:TIMEBASE :MODET"

30 ENTER XXX;Tm$
40 PRINT Tm3
50 END

HP 1652B/1653B TIMebase Subsystem
Programming Reference 25-5

RANGe

RANGe

Command syntax:

where:

<range>
Example:

Query Syntax:
Returned Format:

Example:

TiMebase Subsystem
25-6

command/query

The RANGE command sets the full-scale horizontal time in seconds. The
RANGE value is ten times the front panel field of s/div.

The query returns the current range.

:8C0OPe:TIVMebase:RANGe <range>

1= time in seconds

QUTPUT XXX;":SCOPE:TIMEBASE:RANGE 2us”
:8COPe:TIMebase:RANGe?

[:8COPe: TiMebase:RANGe] <range> <NL>

16 DIM Tr${100}

2¢ QUTPUT XXX;":SCOPE:TIMEBASE :RAKGE?"
30 ENTER XXX;Tr$

40 PRINT Tr§

50 END

HP 1652B/16538
Programming Reference

WAVeform Subsystem 26
T T

Introduction The commands of the WA Veform subsystem are used to transfer :‘
waveform data from the oscilloscope to a controller. The commands are:

COUNt
PATA
FORMat
POINts
PREamble
RECord
SOURce
TYPe
VALid
XINCrement
XORigin
XREFerence
YINCrement
YORigin
YREFerence

 ® @ & & ¢ & & BB 8 0 " e

HP 1652B/16538 WAVetorm Subsystem
Programming Reference 26-1

m 1
‘WAVeform . ! Ci

—»{FORMcL?)

S
- POIMES?T }

~— PREamp | c.::‘\ -

RECord?

—*(SOUR’ceHspuce]—h[chonnel_ 4 } -

SOURce? o>

¥

¥

TYPE? -

VALId?

XINCremeni? i

XORIgin? -

XREFerence? e

YINCrement?

L

YORIgin?

T

YREF&rence? ~
01632512

channel_# = {1]2}
Figure 26-1. WAVeform Subsystem Syntax Diagram

WAVetorm Subsystem HP 1652B/16538
26-2 Programming Reference

Waveform
Record

Data Acquisition
Types

Normat Mode

Average Mode

HP 1652B/1653B
Programming Reference

The waveform record is actually contained in two portions; the waveform
data and preamble. The waveform data is the actual data acquired for
each point. The preamble contains the information for interpreting
waveform data. Data in the preamble includes number of points acquired,
format of acquired data, average count and the type of acquired data.
The preamble also contains the X and Y increments, origins, and
references for the acquired data for translation to time and voltage values.

The values set in the preamble are based on the settings of the variables in
the ACQuire, WA Velorm, CHAN=nel, and TIMebase subsystems. The
ACQuire subsystem determines the acquisition type and the average
count, the WA Veform subsystem sets the number of points and the format
mode for sending waveform data over the remote interface and the
CHANe] and TIMebase subsystems set all the X - Y parameters.

The two acquisition types that may be chosen are Normal and Average.

In the Normal mode, with ACCumulate command OFF, the oscilloscope
acquires waveform data and then displays the waveform. When the
oscilloscope takes a new acquisition, the previously acquired waveform is
erased from the display and replaced by the newly acquired waveform.

When ACCumaulate is set ON, the oscilloscope displays all the waveform
acquisitions without erasing the previously acquired waveform.

In the Average mode, the oscilloscope averages the data points on the
waveform with previously acquired data. Averaging belps eliminate
random noise from the displayed waveform. In this mode ACCumulate is
set to OFF. When Average mode is selected the number of averages must
also be specified using the COUNt command. Previously displayed
waveform data is erased from the display and the newly averaged
waveform is displayed.

WAVeiorm Subsystem
26-3

Format for Data There are three formats for transferring waveform data over the remote
Transfer interface, The formats are WORD, BYTE, and ASCIL

WORD and BYTE formatted waveform records are transmitted using the
arbitrary block program data format specified in IEEE-488.2. When you
use this format, the ASCII character string "#8< DDDDDDDD > " is sent
before the actual data. Each D represents an ASCIH digit. The eight-digit
number represents the number of bytes to follow.

For example, if 2048 points of data are to be transmitted, the ASCII string
#800002048 would be sent.

BYTE Format In BYTE format, the six least significant bits represent the waveform data.
This means that the display is divided into 64 vertical increments. The
most significant bit is not used. The second most significant bit is the
overflow bit. If this bit is set to "1" and all data bits are set to "0" then the
waveform is clipped at the top of the screen. H all "0% are returned, then
the waveform is clipped on the bottom of the display {see figure 26-2).

NORMAL AND AVERAGE ACQUISITION TYPL
128 &4 32 16 8 4 2 1

wo| LT

NOT
USED ~ DATA 4

OVERFLOW 164530441.20
Figure 26-2. Byte Data Structure

The data returned in BYTE format are the same for either Normal or
Average acquisition types. The data transfer rate in this format is faster
than the other two formats,

WAVeform Subsystem HP 1652B/16538
26-4 Programming Reference

WORD Format Word data is two bytes wide with the most significant byte of each word
being transmitted first. Each 16-bit value effectively places a data point on
screen. The screen therefore is divided into 16384 vertical increments. The
WORD data structure for normal and average acquisition types are shown
in figure 26-3.

The relationship between BYTE and WORD formats are similar. Byte
data values equal word data values divided by 256. This is the reason that
the least significant byte in the normal acquisition mode always contains
"0"s. In the average acquisition mode, the extra bits of resolution gained by
averaging occupy the least significant byte of the word, However, this is
only true when RECord type is set to WINDow.

NORMAL ACQUISITION TYPE

MSE Ls2
32768 16384 8192 4006 2048 1924 512 256 128 64 32 16 5} 4 2 1
T]

B A A O

éSED . DATA s A ALL “Ps" sttt

OVERTLOW

AVERAGE ACQUISITION TYPE

M5B L58
3765 16384 8102 4906 2045 1824 512 256 16 64 3z ve 8 4 2.
| NN
ﬁo e DATA s DATA (FRACTION) wmmmmeirmiescrmns”
OVERF LOW S

Figure 26-3, Word Data Structure

ASCH Format ASCII formatted waveform records are transmitted one value at a time,
separated by a comma. The data values transmitted are the same as would
be sent in the WORD format except that they are converted to an integer
ASCII format (six or less characters) before being transmitted. The
header before the data is not inciuded in this format.

HP 1652B/16538 WAVeform Subsystem
Programming Reference 26-5

Data Conversion

Conversion from Data
Value to Voltage

Conversion from Data
Value to Time

Conversion from Data
Vaiue to Trigger Point

WAVeform Subsystem
26-8

Data sent from the HP 1652B/53B is raw data and must be scaled for
useful interpretation. The values used to interpret the data are the X and
Y references, X and Y origins, and X and Y increments. These values are
read from the waveform preambile or by the queries of these values.

The formula to convert a data value returned by the instrument toa
voltage is:

voltage = [(data value — yreference) X yincrement] + yorigin

The time value of a data point can be determined by the position of the
data point. As an example, the third data paint sent with XORIGIN =
16ns, XREFERENCE = 0 and XINCREMENT = 2ns. Using the
formula:

time = [{data point number — xreference} % xincrement] + xorigin
would result in the following calculation:
time = [(3-0) X 2ns] + 16ns = 22ns.

The trigger data point can be determined by calculating the closest data
point to time 0.

HP 1652B/16538
Programming Reference

WAVeform

Command Syntax:

Example:

HP 1652B/1653B
Programming Reference

WAVeform

selector

The WAVeform selector is used as part of a compound command header
to access the settings found in oscilloscope’s Waveform menu, 1t always
follows the SCOPe selecior because it selects a branch below the SCOPe
level in the command trec.

BCOPe:WAVeform

QUTPUT XXX; “:SCOPE:WAVEFORM:™

WAVeform Subsystem
26-7

COUNt

COUNt

Query Syntax:
Returned Format:

where:

< gount >

Example:

WAVeform Subsystem
26-8

query

The COUNt query returns the AVERage count that was last specified in
the Acguire subsystem. If the display mode is either NORMal or
ACCumulate, a 1 is returned. if the display mode is AVERage, the
average number is returned.

18C0OPe:WAVetorm: COUNt?

[:5C0OPe:WAVeform: COUN] <count> <L >

n= {2]4]8[16]32(64]128}256]

10 DIX Ac$l100]

20 DUTBUT XXX;":SCOPE :WAVEFORM COUNT?™
30 ENTER XXX:AcS

AD PRINT Ach

50 END .

HP 1652B/1653B
Programming Reference

DATA

Query Syntax:

Returned Format:

Example:

HP 1652B/1653B
Programming Reference

DATA

query

The DATA query returns the waveform record stored in a specified
channel buffer. The SOURce command of this subsystem has 1o be used
to select the specified channel. The data is transferred based on the
FORMAT (BYTE, WORD or ASCII) chosen and the RECORD
specified (FULL or WINDOW), Since WA Veform:DATA is a query
only, it can not be used to send 2 waveform record back to the
oscilloscope from the controller. If a waveform record is to be saved for
later reloading into the oscilloscope, the SYSTem:DATA command
should be used. See the DATA instruction in the SYSTem subsystem for
information concerning the <block data > parameter.

:3C0Pe:wWAVetorm:[S0URze CHANnel{1|2}:]DATA?
[:SCOPe:WAVeform: DATAJ#800004006 < block data> <NL>

The foliowing example program moves data from the HP 1652B/53B to a
controlier,

106 CLEAR XXX

1310 QUTPUT XXX;":SYSTEM:HEADER OFF™

120 OUTPUT XXX;“:SCOPE ACQUIRE:TYPE NORMAL"
130 QUTPUT XXX:":SCOPE:WAVEFORM:SOURCE CHANNEL1™
140 QUTPUT XXX;":SCOPE:WAVEFORM:FORMAT BYTE"
150 QUTPUT XXX;":SCOPE:WAVEFORM:RECORD FULL”
160 QUTPUT XXX:":SCOPE:AUTOSCALE"

170 DIM Header$[20]

180 Length=2048

190 ALLOCATE INTEGER WAVEFORM{l:length}

200 QUTPUT XXX;":SCOPE:WAVEFORM:DATAT™

210 ENTER XXX USING “#,10A";Header$

720 ENTER XXX USING "#.B™;¥Waveform{*)

230 ENTER XXX LSING "#,B";lLastchar

240 END

WAVetorm Subsystem
268

FORMat

FORMat command/query

The FORMat command specifies the data transmission mode of
waveform data over the remote interface.

The query returns the currently specified format.

Command Syntax: SCOPe:WAVeform:FORMat {BYTE |WORD{ASCI}
Example: OUTPUT XXX;":SCOPE :WAV:FORMAT"
Query Syntax; :SCOPe:WAVeform:FORMat?
Returned Format: [:SCOPe:WAVeform:FORMat] {BYTE{WORD | ASCii} < NL >

Example: 10 DIM Fo${100]
20 DUTPUT XXX;™:SCOPE:WAVEFORM: FORMAT?"
30 ENTER XXX:Fo$
40 PRINT Fo$
50 END

WAVeform Subsysiem HP 1652B/1653B
26-10 Programming Reference

POINts

IR
POINts query

When WA Veform RECord is set to FULL, the POINs query always
returns a value of 2048 points. When WAVeform RECord is set to
WINDow, then the query reterns the number of points displayed on
screen.

Query Syntax: :SCOPe:WAVeform:POINts?
Returnad Format: [:5COPe;WAVeiorm:POINts] <points > <MNL>

where;

<points> = number of points depending on setting ot WAVetferm RECord commandd

Example: 10 DIM Po${100]
20 OUTPUT XXX;™:SCOPE :WAVEFORM:POINTS?"
30 ENTER XXX;Po}
40 PRINT PoS
50 END

HP 16528/1653B WaAVeform Subsystem
Programming Reference 26-11

PREAmble

PREAmble

!
Note '

Query Syntax:

Returned Format:

Example:

WAVeform Subsystem
26-12

query

The PREAmble query returns the preamble of the specified channel. The
channel is specified using the SOURce command.

The short form for PREAMBLE is PREAmble, This is an intentional
deviation from the normal truncation rule.

:SCOPe:WAVeform: [SOURce GHANnel{1]2};1PREAmbie?

[:SCOPea:WAVeform: PREAMbie]

<format>,

<type>,

< points >,

<eount>,

< Xincrement >,
<Xorigin >,

< Xreference >,
<Yincrement >,

< Yorigin>,

< Yreference > «<NL>

10 DIM Pr§[300]

20 QUTPUT XXX;":SCOPE:WAVEFORM: PREAMBLE?D”
30 ENTER XXX;Pri

40 PRINT Prg

50 END

HP 1652B/1653B
Programming Reference

RECord

I
RECord command/query

The RECord command specifies the data you want to receive over the
bus. The choices are FULL or WINDOW. When FULL is chosen the
entire 2048 point record of the specified channel is transmitted over the
bus. In WINDOW mode, only the data displaved on screen will be
returned. Use the SOURcee command to select the channel of interest.
The query returns the present mode chosen.

Command Syntax: :SCOPe:WAVeform:RECord {FULL|WiNDow}
Example: OUTPUT XXX;":SCOPE:WAV:SOUR CHAXI:REC FUti”
Query Syntax: :SCOPe:WAVeform:RECord?
Returned Format; [:8COPe:WAVeform:RECord] {FULL{WINDow} <NL>

Example: 10 DI¥ Wr$[100]
20 OUTPUT XXX;™:SCOPE:WAVEFORM:SOURCE CHANMELL:RECORD?"
30 ERTER XXX:Wrd
a0 PRINT wr$
50 END

HP 1652B/16538 WAVeform Subsystem
Programming Reference 26-13

SOURce

SOURce

Command Syntax:
Exampile:

Query Syntax:
Returned Format:

Example:

WAVeform Subsystem
26-14

command/query

The SOURce command specifies the channel that is to be used for all

subsequent waveformm commands.
The query returns the presently selected channel,

:8C0OPe:WAVeform:SOURce CHANnel{1}2}

OUTPUT XXX;™:SCOPE :WAVEFORM: SOURCE CHANNEL1"
:8COPe:WAVeform: SOURce?
[:SCOPe:WAVeform:SOURecs] CHANnel <N> <NL>

10 DIM wWs§[100]

20 QUTPUT XXX;™:SCOPE : WAVEFORM: SQURCE "
30 ENTER XXX;¥s$

4D PRINT Ws$

50 END

HP 1652B/16538

Programming Reference

TYPE

TYPE query

The TYPE query returns the present acquisition type which was specified
in the ACQuire subsystem.

Query Syntax: :SCOPe:WAVeform: TYPE?

Returned Format: [[SCOPe:WAVetorm: TYPE]{NORmal | AVERage |ACCumulate} < NL»

Example: 10 DM wt${100]
20 OUTPET XXX;":SCOPE:WAVEFORM:TYPE?™
30 ENTER XXX;Wi$
40 PRINT Wt$
50 END

HP 1652B/1653B WAVeform Subsystem
Programming Reference 26-15

VALid

VALid query

The VALid query checks the oscilloscope for acquired data. If a
measurement is completed, and data has been acquired by all channels,
then the query reports a 1. A (is reported if no data has been acquired for
the last acquisition,

Query Syntax: :SCOPe:WAVeform:VALid?
Returned Format: [:SCOPe:WAVeform:VALId] {0]1} <NL>

where:

3 1= Nodsata aoguired
1. 1= Data has been acquired

Example: 10 0I¥ ba$[100]
20 QUTPUT XXX;":SCOPE:WAVEFORM:VALID?"
30 ENTER X3X:Da$
40 PRINT Da$
50 END

WAVeform Subsystem HP 1852B/1653B
26-16 Programming Reference

XINCrement

A
XINCrement query

The XINCrement query returns the X-increment currently in the
preamble. This value is the time between the consecutive data points.

Query Syntax: :SCOPe:WAVeform:XINCrement?

Returned Format: [:SCOPe:WAVeform:XINCrement] <value > <NL>

where:

<value> = Xdincrement value currently in preambie

Example: 10 DIM Xi$[100]
20 OUTPUT XXX;":SCOPE :WAVEFORM: X INCREMENT?"

30 ENTER XXX;Xi$
40 PRINT Xi$
50 END

HP 1652B/1653B WAVeform Subsystem
Programming Reference 26-17

XORigin

XORigin

Query Syntax:
Returned Format:

where:

<value>

Exampie:

WAVeform Subsystem
26-18

query

The XORigin query returns the X-origin value currently in the preamble.
The value represents the time of the first data point in memory with

respect to the trigger point,

:SCOPe:WAVetorm: XORigin?

[:SCOPe:WAVetorm: XORigin] <value > < N>

1= X-origin value currently in preambile

10 DIM Xo$[100]

20 OUTPUT XXX;™:SCOPE :WAVEFORM: XOR1igin?"
30 ENTER XXX;Xc$

4% PRINT Xo$

50 END

HP 165213/1653B
Programming Reference

XREFerence

XREFerence

Query Syntax:
Returned Format:

where:

<vaiue>

Example:

HP 1852B/1653B
Programming Reference

query

The XREFerence query returns the X-reference value in the preamble.
The value specifies the first data point in memory and is always 0.

1BCOPe:WAVeform: XREFerence?

[8COPeWAVeform:XREFerence] < value > <NL>

= Xreference value in preamble

10 DI Xo§1100]

20 QUTPUT XXX;":SCOPE:WAVEFORM: XREFerence?"
30 ENTER XXX;Xo$

40 PRINT Xo$

5C ERD

WAVeform Subsystem
26-19

YINCrement

YINCrement

Query Syntax:
Retuyrned Format:

where:

<valug>

Example:

WAVeform Subsystem
26-20

query

The YINCrement query returns the Y-increment currently in the
preamble. This value is the voltage difference between consecutive data

values,

:8COPe;WAVeform:YINCrement?

[:8COPe:WAVeTorm: YINCrement] < vaiue > <NL>

1= Yeinorament value currently in preamble

10 DIM ¥18[100]

20 QUTPUT XXX;":SCOPE:WAVEFQORM:Y INCREMENT "
30 ENTER XXX; Y43

40 PRINT vig

50 END

HP 1652B/1653B
Programming Reference

YORIigin

P
YORigin query

The YORigin query returns the Y-origin value currently in the preamble.
This value is the voltage at the center of the screen,

Query Syntax: :SCOPe:WAVeform:YORigin?
Returned Format: [:5COPa:WAVeform:YORigin] <value> <NL>

where:

<value> 1= Y-origin value currently in preambile

Example: 10 DIM Yo3{100]
20 OUTPUT XXX;":SCOPE:WAVEFORM:YORigin?"
30 ENTER XXX:Yo$
40 PRINT Yo$
50 £ND

HP 1652B/1653B WAVeform Subsystem
Programming Reference 26-21

YREFerence

YREFerence

Query Syntax:
Returned Format:

where:

<valug >

Example:

WAVeform Subsystemn
26-22

query

The YREFerence query returns the Y-reference value in the preamble.
The value specifies the data value at center screen where Y-origin occurs.

:SCOPe:WAVeform:YREFersnce?

[:8COPa:WAVeform YREFerence } < value > <NL.>

e Yereference value in preamble

10 DIK Yo$[100]

20 QUTPUT XXX;'":SCOPE:WAVEFORM: YREFerence?"”
30 ENTER XXX:Yo$

49 PRINT Yo$

5Q END

HP 1652B/16538
Programming Reference

MEASure Subsystem 27
00

Introduction The instructions in the MEASure subsystem are used to make automatic
parametric measurements on displayed waveforms. The instructions are:

ALL
FALLTime
FREQuency
NWIDth
OVERShoot
PERiod
PRESHoot
PWIDth
RISETime
SOURce
VAMPhtude
VBASe
VMAX
VMIN

VPP

VTOP

*® & & 6 & & 6 & 50 e 0 e s P

Before using any of the MEASure subsystem queries, be sure that you
have used to SOURce command to specify which channel is 1o be used.
All subsequent measurements will be made from that channel’s waveform,

If a waveform characteristic cannot be measured, the instrument responds
with 9.9E +37.

HP 1852B/1653B MEASure Subsystem
Programming Relference 27-1

Frequency

Period
Pezk-to-Peak

Positive Pulse Width
Negative Pulse Width

Risetime

Falltime

Preshoot and
Overshoot

Preshoot

Overshoot

MEASure Subsystem
272

The following characteristics can be measured:

The frequency of the first complete cycle displayed is measured using the
50% level.

The period of the first displayed waveform is measured at the 509 leval,

The absolute minimum and the maximum voltages for the selected source
are measured.

Pulse width is measured at the 509% level of the first displayed pulse.
Pulse width is measured at the 50% level of the first displayed pulse,

The risetime of the first displayed rising edge is measured. To obtain the
best possible measurement accuracy, select the fastest sweep speed while
keeping the rising edge on the display. The risctime is determined by
measuring time at the 10% and the 90% voltage points of the rising edge.,

Falltime is measured between the 10% and the 909 points of the first
displayed {alling edge. To obtain the best possible measurement accuracy,
select the fastest sweep speed possible while keeping the falling edge on
the display.

Preshoot and overshoot measure the perturbation on a waveform above or
below the top and base voltages.

is a perturbation before a rising or a falling edge and measured as a
percentage of the top-base voltage.

is a perturbation after a rising or falling edge and is measored as a
percentage of the top-base voltage.

For complete details of the measurement algorithms, refer to the
Front-panel Operating Reference Manual,

Refer to figure 27-1 for the MEASure subsystem syntax diagram.

HP 16528/1653B
Programming Reference

€)
!

LT

ALL? }

CEDE

FALLT ime? o

FREQuency? >

NNIDth? .

OVERShoot? -

PERiod?

PRESHus1?

PWIDtR? -

RISETime? o

—{SOUR:&H space }——h! channel_# { - -

SQURce? -

VAMP| itude?

VBASe? -

VMAX? o=

VMINT -

VPP? >

V1087 s

18530802

T

channel_# = an integer {1 | 2}.

Figure 27-1. MEASure Subsystem Syntax Diagram

HP 1652B/16538 MEASure Subsystem
Programming Reference 27-3

MEASure
R

MEASure : selector

The MEASure selector is used as part of a compound command header
to access the settings found in oscilloscope’s Measure menu, It always
follows the SCOPe selector because it seleets a branch below the SCOPe
level in the command tree.

Command Syntax; SCOPe:MEASure

Example: QUTPUT XXX; ":SCOPE:MEASURE :SOURCE CHANZ"

ﬁ All gueries in this subsystem return the measurement results of the last

Note channel specified by the SOURce command. If you want measurement
resulis from the other channel, you mast use the SOURce commmand
before using any of the queries.

MEASure Subsystem HP 1652B/16538
274 Programming Reference

ALL

Query Syntax:

Returned Format:

Example:

HP 1652B/1653B
Programming Reference

ALL

query

The ALL query makes a set of measurements on the displayed waveform
using the selected source.

:SCOPe:MEASure:[SOURce CHANna!{112};JALL?

[:SCCPe:MEASure ALL PERiod] <real number>;
[RISETime] «<real number>;

[FALLTime] <real number>;

[FREQuency] <real number>;

[PWIDtH] <real number>;

[NWIDtH] < real number>;

[VPP] <real number>;

[VAMPEtude] <real number>;

[PRESHoot] <real number>,

[OVERShoot] <real number> <NL>

10 DIM Query${3osi

2D IPRINTER IS 701 fTHIS LIKE SENDS RESULTS TO PRINTER
30 OUTPUT XXX;":SCOPE:MEASURE:SDUR CHANL™
40 GUTPUT XXX:":SCOPE MEASUREALL?™

50 ENTER XXX;Query$

60 Guery$=Query$ [POS{Query$,™;"}+1]

70 LOOP

80 1=POS(Query$,”:")

80 EXIT IF NOY 1

100 PRINT Query$[i, I-13

110 Query$=Query$ii+l]

120 END LOOP

130 PRINT Query$

140 PRINTER IS 1

150 END

MEASure Subsystem
27-5

FALLTime

FALLTime

ol
Note W

Query Syntax:
Returned Format:

where:

<value>

Example:

MEASure Subsystem
27-6

query

The FALLTime query makes a fall time measurement on the selected
channel. The measurement is made between the 90% to the 109 voltage
point of the first falling edge displayed on screen.

The short form of FALLTIME is FALLTime, This is an intentional
deviation of the normal truncation rule.

:8COPe:MEASUre: [SOURce CHANRe!{1|2}:1FALLTime?

[:8COPe:MEASure:FALLTIme] <value> <NL>

1= time in seconds between 10% and 90% voltage points

10 DIK Ft$[1007

20 OUTPUT XXX;™:SCOPL:MEASURE : SCURCE CHANNELZ;FALLTIME?"
30 ENTER XXX;Ft$

40 PRINT Fi§

50 END

HP 1652B/1653B
Programming Reference

FREQuency

Guery Syntax:
Returned Format:

where:

<vajue >

Example:

HP 1652B/1853B
Programming Reference

FREQuency

query

The FREQency query makes a frequency measurement on the selected
channel. The measurement is made using the first complete displayed
cycle at the 50% voltage level.

:SCOPe:MEASure: [SOURce CHANne{ 1|2}]FREQuency?

[MEAsure:FREGuency] «<value> <NL>

e frequency in Hertz

10 DIM Frey$ 100

20 QUTPUT XXX;":SCOPE:MEASURE :SOUR CHANI;EREQ?"
30 ENTER XXX;Frocy$

40 PRINT Freyd

50 END

MEASure Subsystem
27-7

NWIDth

NWIDth

Guery Syntax:

Returned Format:

where:

<value>

Example:

MEASure Subsystem
27-8

query

The NWIDth query makes a negative width time measurement on the
selected channel. The measurement is made beiween the 50% points of
the first falling and the next rising edge displayed on screen,

:SCOPe:MEASure:[SOURce CHANnal{1]2} INWIDth?

[:SCOPe:MEASuUre;:NWIDth] <value> <NL>

;1= negative pulse width in seconds

10 DIM Nw§ [100]

20 DUTPUT XXX;":SCOPE :MEASURE : SOURCE CHANZ; NWID?"
30 ENTER XXX;Hw$

40 PRINT Nw§

50 END

HP 1852B/1653B
Programming Reference

OVERShoot

D
OVERShoot query

The OVERShoot query makes an overshoot measurement on the selected
channel. The measurement is made by finding a distortion following the
first major transition. The result is the ratio of VMAX or VMIN vs,
VAMPlitude.

ad The short form of OVERSHOOT is OVERShoot. This is an intentional
Note W deviation from the norimal truncation rule.

Query Synfax: :SCOPe:MEASure: [SOURce CHANnel{1]2};]JOVERSheot?
Returned Format: pSCOPe:MEASure:OVERShoot] <value> <NL>

where;

<value> = ratio of overshoot to Vampiitude

Example: 10 DIM Ovs$[100]
20 QUTPUT XXX;":SCOPE:MEASURE SQURCE CHAN:;OVER?™
30 ENTER XXX;0vs§
4% PRINT Ovs$
50 ENB

HP 1652B/16538 MEASure Subsystem
Programming Reference 27-9

PERiod

PERiod

Guery Syntax:

Returned Format:

where:

<value >

Example:

MEASure Subsystem
27-10

query

The PERiod query makes a period measurement on the selected channel,
The measurement equivalent to the inverse of frequency.

18COPe:MEASUre: [SOURce CHANnel{12};]PERiod?

[:5C0OPe:MEASure:PEFiod] <value> <NL>

1= waveform period in seconds

10 DIM Pd$f100]

20 GUTPUT XXX;™:SCOPE:MEASURE : SOURCE CHANNELL;PERIODT"
30 ENTER XXX;Pd$

40 PRINT Pc$

50 END

HP 1652B/1653B
Programming Reference

PRESHoot

TR
PRESHoot query

The PRESHoot query makes the preshoot measurement on the selected
channel. The measurement is made by finding a distortion which precedes
the first major transition on screen. The result is the ratio of VMAX or
VMIN vs. VAMPlitude.

ﬁ The short form of PRESHOQOT is PRESHoot. This is an intentional
Note deviation of the normal truncation rule.

Query Symtax: :3COPe:MEASure: [SOURce CHANnel{t{2};1PRESHoot?

Returned Format [:SCOPe:MEASure:PRESHoot] <value> <NL>

wherg:

<value> = ratio of preshoot to Vamplitude

Example: 10 DIM Prs$(300]
20 QUTPUT XXX:":SCOPE :MEASURE : CHANNELZ; PRESH?"
30 ENTER XXX;Prs$ ’
40 PRINT Prs§
50 END

HP 1652B/1653B MEASure Subsystem
Programming Reference 27-11

PWIDth

PWIDth

Guery Syntax;
Retumed Format:

where:

< yajue >

Example;

MEASure Subsystemn
27-12

query

The PWIDth query makes a positive pulse width measurement on the
selected channel. The measurement is made by finding the time difference
between the 50% points of the first rising and the next falling edge
displayed on screen.

:SCOPe:MEASure: [SOURce CHANnel{ 112};1PWIDth?

[:SCOPe:MEASUre PWIDIh] <value> <NL>

1= positive pulse width in seconds

16 DIM Pw$[100}

20 OQUTPUT XXX;":SCOPE :MEASURE :SOURCE CHAMNELZ;PWIDTH?™
30 ENTER XXX;Pw$

40 PRINT Pwi

80 END

HP 1652B/1653B
Programming Reference

RISETime

]
Note “ﬁ

Guery Syntax:
Returned Format:

where:

<value >

Example:

HP 16528/1653B

Programming Reference

RISETime

query

The RISETime query makes a risetime measursment on the selected
channel by finding the 10% and $0% voltage ievels of the first rising edge
displayed on screen.

The short form of RISETIME is RISETime. This is an intentional
deviation from the normal truncation rule.

:8COPe:MEASure: [SOURce CHANnel{1| 2}, IRISETime?

[8C0OPe:MEASUre: RISETime] <value> <NL>

1= riselime in seconds

10 DIM Tr§[100]

20 QUTPUT XXX;":SCOPE :MEASURE : SOURCE CHANNEL1;RISETIMET"
30 ENTER XXX;Tr$

40 PRINT Tr$

50 NG

MEASure Subsystem
2713

SOURce

SOURce

Command Syntax:

where:

< Source >
Example:
Query Syntax:

Returned Format:

Example:

MEASure Subsystem
27-14

command/query

The SOURce command specifies the source to be used for subsequent
measurements, If the source is not specified, the last waveform source is
assumed.

The query returns the presently specified channel,

:SCOPe:MEASuUre:SOURce < source >

u= {1]2}
QUTPUT XXX;":SCOPE :MEASURE : SOURCE CHANL™
:SCOPe:MEASUre: SOURce?

[:8COPe:MEASure:SOURce] CHANnel<N> < NL>

10 DIM So$[100]

20 OUTPUT XXX;™:SCOPE :MEASURE : SOURCE?”
30 ENTER XXX;S0$

40 PRINT Sc$

50 ERD

HP 16528/16538
Programming Reference

VAMPIitude

Query Syntax:
Returned Format:

where:

<vajue >

Example:

HP 1652B/1653B
Programming Reference

VAMPIitude

query

The VAMPlitnde gquery makes a voltage measurement on the selected
channel, The measurement is made by finding the relative maximum and
minimum points on screen.

:8COPe:MEASure: [SOURce CHANNe!{1]2};IVAMPiitude?

ESCOPe:MEASUre VAMPlitude] <valug> <NL>

o= difference between top and base voltage

10 BI¥ vag[100]

20 OUTPUT XXX;":SCOPE:MEASURE:SOURCE CHANNELZVAMPT™
30 ENTER XXX;va$

40 PRIKT va$

50 END

MEASure Subsystem
27-15

VBASe

VBASe query

The VBASe query returns the base voltage (relative minimum) of a
displayed waveform. The measurement is made on the selected source.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{1 |2};]VBASe?
Returned Format: [:SCOPe:MEASure:VBASe] <value> <NL>

where:

<value> = voltage at base level of selected waveform

Example: 10 pIM Vb [100]
20 OUTPUT XXX;“:SCOPE:MEASURE: SOURCE CHANL;VBAS?"
30 ENTER XXX:Vb§
40 PRINT Vb3
50 END

MEASure Subsystem HP 1652B/16538
27-16 Programming Reference

VMAX

VMAX query

The VMAX guery returps the absolute maximum voltage of the selected
SOurce.

Query Syntax: :SCOPe:MEASure:[SOURce CHANnel{ 112} IVMAX?
Returned Formal: [:SCOPe:MEASure:VMAX] <vaiue> <NL>

where:

<valie> 1= maximum voltage of saiected waveform

Example: 10 DIM Vma$[100]
20 DUTPUT XXX:":SCOPE ;MEASURE : SOURCE CHANZ ; vMAX?"
30 ENTER XXX;Vma$
40 PRINT Vma$
50 END

HP 1652B/1653B MEASure Subsystem
Programming Reference 2717

VMIN

VMIN

Guéry Syntax:
Returned Format:

where:

< value >

Example:

MEASure Subsystem
27-18

query

The VMIN query returns the absolute minimum voltage present on the
selected source.

:3C0Pe:MEASure: [SOURce CHANnel{1[2};JVMIN?

[:SCOPe:MEASUre VMIN] <vaiue> <NL>

11+ minimum voltage of setected waveform

10 DI¥ vmi$ {1007

20 DUTPUT XXX;™:SCOPE:MEASURE : SOURCE CHAN1;VMIN?"
30 ENTER XXX;Vmi$

40 PRINT Vmi$

50 END

HP 1652B/1653B
Programming Reference

VPP

Query Syntax:

Returned Format:

whete:

<value>

Example:

HP 1652B/1653B
Programming Reference

VPP

query

The VPP guery makes a peak-to-peak voltage measurement on the
selected source. The measurement is made by finding the absolute
maximum and minimum points on the displayed waveform.

:8COPe; MEASure: [SOURce CHANReI{1]2);]vPP?

{:SCOPe:MEABUre:VPP] <value> <NL>

= pesk to peak voitage of seiected waveform

10 DIM vpp$i100]

20 ODUTPUT XXX:™:SCOPE:MEASURE :SOURCE CHANLYPP?"
30 ENTER XXX;V¥pp$

40 PRINT Vpp$

50 ENG

MEASure Subsystem
27-18

VTOP

VTOP

Query Syntax:

Returned Format:

where:

<value >

Example:

MEASure Subsystem
27-20

query

The VTOP query returns the voltage at the top (relative maximum}) of
waveform on the selected source.

:8C0Pe: MEASure: [SOURce CHANReH 1|2} IvIOP?

[:5C0OPe:MEASUre: VTOP] <value> <NL>

= voltage af the top of the selected waveform

10 DIM vi$iio0] .

20 OUTPYT XXX;*:SCOPE :MEASURE: SOURCE CHANZ;VTOP?™
30 ENTER XXX.Vt$

40 PRINT vi$

50 END

HP 1652B/1653B
Programming Reference

Message Communication A
and System Functions

Introduction

Note &

HP 1652B/1653B

Programming Relerence

This appendix describes the operation of instruments that operate in
compliance with the IEEE 488.2 (syntax) standard. Although the

HP 1652B and HP 1653B logic analyzers are RS-232C instruments, they
were designed to be compatible with other Hewlett-Packard IEEE 488.2
compatible instruments.

The IEEE 488.2 standard is a new standard. Instruments that are
compatible with IEEE 488.2 must also be compatible with IEEE 488.1
(HP-IB bus standard}; however, IEEE 488.1 compatible instruments may
or may not conform to the IEEE 488.2 standard. The IEEE 488.2
standard defines the message exchange protocols by which the instrument
and the controller will commugicate. It also defines some common
capabilities, which are found in all IEEE 488.2 instruments. This
appendix also contains a few items which are not specifically defined by
IEEE 488.2, but deal with message communication or system functions.

The syntax and protocol for RS-232C program messages and response
messages for the HP 1652B/1653B are structured very similar to those
described by 488.2. In most cases, the same structure shown in this
appendix for 488.2 will also work for R8-232C. Because of this, no
additional information has been incleded for RS-232C.

Message Communication and System Functions
A-1

Protocols

Functional Elements

The protocols of IEEE 488.2 define the overall scheme used by the
controller and the instrument to communicate. This includes defining
when it is appropriate for devices to talk or listen, and what happens when
the protocol is not followed.

Before proceeding with the description of the protocol, a few system
components should be understood.

Inpat Baffer. The input buffer of the instrument is the memory area
where commands and queries are stored prior to being parsed and
executed. It aliows a controller to send a string of commands to the
instroment which could take some time to execute, and then proceed to
talk to another instrument while the first instrument is parsing and
executing commands.

Qutput Quene. The output quene of the instrument is the memory area
where all output data (< response messages >) are stored until read by
the controller,

Parser. The instrument’s parser is the component that interprets the
commands sent to the instrument and decides what actions should be
taken. "Parsing” refers to the action taken by the parser to achieve this
goal. Parsing and executing of commands begins when either the
instrument recognizes a < program message terminator > {defined later
in this appendix) or the input buffer becomes full. If you wish tosend a
long sequence of commands to be executed and then talk to another
instrument while they are executing, you should send all the commands
before sending the < program message terminator >.

Message Communication and System Functions HP 1652B/1653B

A-2

Programming Reference

Protocol Overview The instrument and controller communicate using < program message > s

Protoco! Operation

HP 1652B/16538
Programming Reference

and <response message >s. These messages serve as the containers into
which sets of program commands or instrument responses are placed.

< program message > § are sent by the controller to the instrument, and
< response message > s are sent from the instrument to the controller in
response o a query message. A < query message > is defined as being a
< program message > which contains one or more queries. The
instrument will only tatk when it has received a valid query message, and
therefore has something to say. The controller should only attempt to
read a response after sending a complete query message, but before
sending another < program message >, The basic ruie to remember is
that the instrument will only talk when prompted to, and it then expects to
talk before being told to do something else.

When the ipstrument is turned on, the input buffer and output queune are
cleared, and the parser is reset to the root Ievel of the command tree.

The instrument and the controller communicate by exchanging complete
< program message >5 and < response message >s. This means that the
controller should always terminate a < program message > before
attempting to read a response. The instrument will terminate < response
message > s except during a hardcopy cutput.

If a query message is sent, the next message passing over the bus should
be the <response message >, The controller should always read the
complete < response message > associated with a query message before
sending another < program message > to the same instrument,

The instrument allows the controller to send multiple queries in one query
message. This is referred to as sending a "compound guery.” As will be
noted later in this appendix, multiple queries in a query message are
separated by semicolons. The responses to each of the queries in a
compound query will also be separated by semicolons.

Commands are executed in the order they are received.

Message Communication and System Functions
A-3

Protocol Exceptions I an error occurs during the information exchange, the exchange may not

be completed in 2 normal manner. Some of the protocol exceptions are
shown below.

Command Error. A command error will be reported if the instrument
detects a syntax error or an unrecognized command header.

Execution Error. An execution error will be repotted if a parameter is
found to be out of range, or if the current settings do not allow execution
of a requested command or query.

Device-specific Error. A device-specific error will be reported if the
instrument is unable to execute 2 command for a strictly device dependent
reason.

Query Error. A query error will be reported if the proper protocol for
reading a query is not followed. This includes the interrupted and
unterminated conditions described in the following paragraphs.

Message Communication and System Functions HP 1652B/1653B

A-4

Programming Reference

Syntax
Diagrams

Syntax
Overview

HP 1652B/16538
Programming Reference

The syntax diagrams in this appendix are similar to the syntax diagrams in
the TEEE 488.2 specification. Commands and queries are sent to the
instrument as a sequence of data bytes. The allowable byte sequence for
each functional element is defined by the syntax diagram that is shown
with the element description.

The allowable byte sequence can be determined by following a path in the
syntax diagram. The proper path through the syntax diagram is any path
that follows the direction of the arrows, If there is a path around an
element, that clement is optional. If there is a path from right to left
around one or more elements, that element or those elements may be
tepeated as many times as desired.

This overview is intended to give a quick glance at the syntax defined by
IEEE 488.2. It should allow you to understand many of the things about
the syntax you need to know. This appendix also contains the details of

the IEEE 483.2 defined syntax.

IEEE 488.2 defines the blocks used to build messages which are sent to
the instrument. A whole string 6f commands can therefore be broken up
into individual components.

Figure A-1 shows a breakdown of an example < program message> .
There are a few key items to notice:

1. A semicolon separates commands from one another. Each
< program message unit > serves as a container for one command.
The < program message unit >s are separated by 2 semicolon.

2. A < program message > is terminated by a < NL> (new line). The
recognition of the < program message terminator >, or <PMT >,
by the parser serves as a signal for the parser to begin execution of
commands, The < PMT > also affects command tree traversal (see
the Programming and Documentation Conventions chapter),

3. Multiple data parameters are separated by a comma.,

Message Communication and System Functions
A-S

4. The first data parameter is separated from the header with one or
more spaces.

5. The header MACHINE1:ASSIGN 2,3 is an example of a compound
header. It places the parser in the machine subsystem until the
<NL > is encountered.

6. A colon preceding the command header returns you to the top of the
command tree.

Message Communication and System Functions HP 1652B/1653B
A6 Programming Reference

cTWAVEFORM: OSEARCH 3@, TRIGGER & DELAY 3.8 ns <hL>

| T
—

<program messoge unit>
TWAVEF ORM : OSEARCH 3@, TRIGGER

<command program header> <progrom heoder separotor> <progrom dato»
FWAVEFORN : OSE ARCH SP 38 , TRIGGER

<white spoece> <white spoce> |[<white spoce>

Lpeouram mpemenic> : <program mremoric> <progrom dote> <program dots separator: <progrom doto>
TWAVEF ORM OSEARCH 30 ' TRIGGER
<gecimul numeric pregrom dote> <progrom deotax
30 TRIGGER

<progrom message unit separofor>
SP i SP E
<progrom message terminator’
5P <NL>

<program messoge unit>
awhite spoce> ; <wh|*e spoce> OELAY 3.B ns

// \

<progrom header> <prograom header separator> <progrom doetae>
DELAY 3.8 ns

<white spoce> <decimal progrom data> <suffix progrom doto>
3.8 3P ns

<white spacer «<suffix multiplier> <suffix unit>

16500/6L31 n §

Figure A-1. < program message > Parse Tree

HP 1652B/1653B ‘Message Communication and System Functions
Programming Reference A7

Device Listening The listening syntax of IEEE 488.2 is designed to be more forgiving than
Syntax the talking syntax. This allows greater flexibility in writing programs, as
well as allowing them to be easier 10 read.

Upper/Lewer Case Equivalence. Upper and lower case letters are
equivalent. The mnemonic SINGLE has the same semantic meaning as
the mnemonic single.

<white space >, <white space > is defined to be one or more characters
from the ASCII set of 0 - 32 decimal, excluding 10 decimal {NL). < white
space > is used by several instrument listening components of the syntax.
It is usually optional, and can be used to increase the readability of a

program.
% . #
b <white space
character>
S4170/8L38
Figure A-2. <white space >
Message Communication and System Functions HP 1652B/1853B

A-8 Programming Reference

< program message>. The < program message > is a complete message
to be sent to the instrument, The instrument will begin executing
commands once it has a complete <program message >, or when the
input buffer becomes full. The parser is also repositioned to the root of
the command tree after executing a complete < program message >.
Refer to "Tree Traversal Rules" in the "Programming and Documentation
Conventions,” chapter 4 for more details.

<program
message unit
seporator>

<progrom
message
terminctor>

| <program
message unii>

- 54120/8L38

Figure A-3. <program message >

< program message vnit >, The <program message unit > is the
container for individual commands within a < program message >.

(-*b <command message unil>

)

k—% <query messcge unit>

54120/9L40

Figure A-4. <program message unit>

HP 1652B/1653B Message Communication and System Functions
Programming Reference A8

<progrom data
seporator>

<conmand
program
header>

<program
header
separgtor>

<program dotla>

»- S4120/8L 41
Figure A-5. <command message unit >
<progrom date
! seporator>

<Query <prog:am

proegram header <program doto> [——b—

neader> zeparator>

l\ - 54 1207BLAZ

Figure A-6. <query message unit>

Message Communication and System Functions

A-10

HP 1652B/16538
Programming Reference

< program message unit separator >, A semicolon separates < program
message unit > s, or individual commands.

T <white spoce> .

S412C/BL43

Figure A-7. < program message unit separator>

< cemmand program header >/ < query program header >, These
elements serve as the headers of commands or queries. They represent

the action to be taken,

<simple command
i > ¥ N ™
<white spoce r program heoder>
|
J
-
o~
<compound command
—

program hegder>

< d -
) COomMmON comman
pragrom heoder>

54120/8L44

Figure A-8. <command program header >

HP 1652B/1653B Message Communication and System Functions
A-11

Programming Reference

Where < simple command program header> is defined as

<program
i pregr S——
fnemon i o>

B4 120/6L45

Where <compound command program header> is defined as

—"
-}

<hrogéam <progfam
progr S— prog. >
mnemonic> mRaman ¢

D4120/8L5

TN

Where <common command program header> is defined as

—(D)~= mmm -
MNemon &>

$4120/81 &5

Where < prograns mnemonic > is defined as

4

~

<upper/iower

; cose alpha>
<upper/iower [

7
¢gse alpho> \ =:\;:;/

wa-m <digit> —-—-J

.

v

SH120/BLAS

Where <upperilower case alpha > is defined as a single ASCII encaded
byte in the range 41 « 54, 61 - 74 (65 - 90, 97 - 122 decimal).

Where < digit> is defined as a single ASCII encoded byte in the range 30 -
39 (48 - 57 decimal).

Where (_) represents an "underscore’, a single ASCI-encoded byte with the
value 5F (95 decimal).

Figure A-8. <command program header> (continued)

Message Communication and System Functions HP 1852B/16538
A-12 ‘ Programming Reference

<gimple query

i .
T <white spoce> B rogrom header> =\
}

<compound query
- progrom header> T

4

S <common GueTy
program heoder>

5a125/BL46

Where < simple query program header> is defined as

<progrom @__
. omneman: o> !

54120/BL44

Where <compound query program header> is defined as

s
il

P rom <progrom
RrOgFa | progr |)
mnemonic> mnemonic>

S&120/0. 48

Where <common query program header > is defined as

| <progrem
b maemonic>

S10/B4E

Figure A-9, <query program header>

HP 1652B/16838 Message Communication and System Functions
Programming Reference A-13

< program data >, The <program data > clement represents the
possible types of data which may be sent to the instrument. The

HP 1652B/1653B wili accept the following data types: < character
program data >, < decimal numeric program data>, <suffix program
data>, <string program data>, and <arbitrary block program data>.

<chgrecter
pregrom daola>

‘“decimal numeric
program datod>

<guffix
progrom dota>

¥

progran dato>

<arhitrary
bleck

Togram dota>
) g

B4120/8L 47

Figure A-10. <program data>

<progrqm :
mpemen i o>

34 120/BL4E

Figure A-11. <character program data>

Message Communication and System Functions HP 1652B/16538
Programming Reference

A-14

E— emant isso> o <white -

t space> {) Lt <exponent> __r..
| |

H]

B
o

Where <mantissa> is defined as

h
E
O—-I <eptional ————»@Lr 2digits —
gigits>
L ; }

4

B4 L2070 49

<digits . <aptliongt

digits>
N J -) BIEC/BLAG

Where < optional digits > is defined as

-
o

<digit>

S4120/8L51

Where < exponent > is defined as

]

<digit> L

54 120/81.50

Ele <white space>

k)

Figure A-12. <decimal numeric program data>

HP 1652B/1653B Message Communication and System Functions
Programming Reference A-15

<white space> e <suffix muli> | <suffix unit>
:] SA120/BL52

.
o

Y

Figure A-13, <suffix program data >

Suffix Multiplier. The suffix multipliers that the instrument will accept
are shown in table A-1.

Table A-1. <suffix mult>

Value Muemonic

1E18 EX
1E15 PE
1E12
1E9
1E6
1E3
1E-3
1E-6
1E-9
1E-12
1E-15
1E-18

>

PUWZCZIRZ G

Suffix Unit. The suffix units that the instrument will accept are shown in .

table A-2.
Table A-2. < suffix unit>
Suffix Referenced Unit
v Volt
S Second
Message Communication and System Functions HP 1652B/1653B

A-16 Programming Reference

HP 1652B/1653B
Programming Reference

i

<inserted >

<non-single J

quote char>

A

<inserted"> “mﬁ

L

<nen—doubie
quote char®

i |

FR0/BLSD

Where <inserted > is defined as a single ASCII character with the value 27
(39 decimal).

Where <non-single quote char> is defined as a single ASCII character of
any value except 27 (39 decimal).

Witere <inserted "> is defined as a single ASCI character with the value 22
(34 decimal).

Where <non-double quote char> is defined as a single ASCII character of
any value except 22 (34 decimal)

Figure A-14. <string program data >

Message Communication and System Functions
A-17

4

<non—zero
digit»

<digit>

|

<8-bit

@

<B~bit
dotlo byte>

Y

data byte>

¥

CaGD

S4120/BL84

Where <non-zero digit> is defined as a single ASCI encoded byte in the
range 31 - 39 (46 - 57 decimal).

Where < 8-bit byte > is defined as an 8-bit byte in the range 00 - FF (0 - 255

decimal).

Figure A-15. <arbitrary block program data>

< program data separator>. A comma separates multiple data
parameters of a command from one another.

<white space>

L

e

<while spoce> ——*Irwlw

¥

5A120/BLES

Figure A-16. < program data separator>

Message Communication and System Functions

A-18

HP 1652B/16538
Programming Reference

< propram header separator>. A space separates the header from the
first or only parameter of the command.

el WP lE SDOCED

Figure A-17, <program header separator>

< program message terminator >. The < program message terminator >
or <PMT > serves as the terminator to a complete < program

message >>. When the parser sees a complete < program message > it
will begin execution of the commands within that message. The <PMT >

also resets the parser to the root of the command tree.

‘j——' - o

t
1

t
o - N>
v B4 120VELYY

Where <NL> is defined as a single ASCI-encoded byte 04 (10 decimai).

Figure A-18. <program message terminator >

HP 1652B/1653B Message Communication and System Functions
A-19

Programming Reference

:SYSTEM: ARMBNC 1

: TWAVEFORM:DELAY 3,8E-9 <NL>

; C

<response message uniti>
SEYSTEM: ARMBNC 1

<response hegder>
(SYSTEM: ARMBNG

<response mnemonic>
BYSTEM

Lresponse mnemobnie>
ARMBNC

<response heoder sepcrator>

<response messoge unit separator>

<response dotax
P

) !

<whiie space>» <NR?1 numeric response dota>
4

<responge megsage unit>
CTWAVEFORM:DELAY 3.BE-~S

<FeSpoONse messaqe terminotor>
NL

<response header>
: TWAVEFORM: DELAY

<response mnemonicr

TWAVEF QR DELAY

<respunse header separator>

<response mnemonic>

<response doto>
3.8£-9

sp
X |

<white space> <NR3 numeric response dota>
3.8E-2

18500/8 30

Figure A-18. <response message> Tree

Message Communication and System Functions
A-20

HP 1652B/16538
Programming Reference

Device Talking Syntax The talking syntax of IEEE 488.2 is designed to be more precise than the
listening syntax. This allows the programmer to write routines which can
easily interpret and use the data the instrument is sending. One of the
implications of this is the absence of < white space > in the talking
formats. The instrument will not pad messages which are being sent to the
controller with spaces.

< response message > . This element serves as a complete response from
the instrument. It is the result of the instrument executing and buffering
the results from a complete < program message>. The complete
<response message > should be read before sending another < program
message > 1o the instrument.

Craspoase
message urnis
separclor>

<response Aresponse message l

B4120/8L57

Figure A-20. <response message >

< response message unit>. This element serves as the container of
individual pieces of a response. Typically a < query message unit> will
generate one < response message unit >, although a < query message
unit > may generate multiple < response message unit >s.

< response beader>. The <response header >, when returned,
indicates what the response data represents.

HP 1652B/1653B Message Communication and System Functions
Programming Reference A-21

<simpte
———— response e,
heoder>

<compound
- response mm—
header>

<COMMon
— response
hegder>

55120/8.5¢2

Where <simple response mnemonic > is defined s

<response

. —a
mnemanic>

34 120/BL 8%

Where < compound response header > is defined as

A

|
<respongs <response
p . & . frrmem i
memenic> mOemen s>

%4120/8L60
Where <common response header > is defined as
* <response »
() mnemon i ¢>
. BATRO/ELE
Figure A-21. <response message unit>
Message Communication and System Functions HP 1652B/1653B

A-22 Programming Reference

Where <response mnemonic > is defined as

A

<upper

cgge alpha> 1
<upper N ;

o
case olpha> 'U
R <digit>

P
-

Y

SZQ/BLER

Where <uppercase alpha> is defined as a single ASCII encoded byte in the
range 41 - 34 (65 - 90 decimal),

Where (_) represents an "underscore", a single ASCil-encoded byte with the
vaiue 5F (95 decimal).

Figure A-21. <response message unit> (Continued)

<response data>. The <response data> clement represents the
various types of data which the mstrument may return. These types
inclnde: <character response data >, <nrl nomeric response data >,
< nr3 numeric response data >, < string response data >, <definite
length arbitrary block response data >, and <arbitrary ASCII response
data>,

<r
espor}se ’
EAGIMGn | LD

5412078163

Figure A-22, <character response data>

HP 1652B/1653B Message Communigation and System Functions
Programming Reference A-23

“+ ‘L
<digit> -

SNBSS

Figure A-23. <nri numeric response data>

— -
- g

<digit> <digit>

F)

‘/E\ ’i <digits —J—--

A 120rBLEY

<inser Led">

<nor—doub | e
quocte char>

541208168
Figure A-25. <string response data>

Message Communication and System Functions HP 1652B/16538
A-24 Programming Reference

ey
il

@+ Choh=Zere i l <diglt> - <B-bit J‘ »

digit> i E datln byte>

A

S4L20/BL 67

Figure A-26. <definite length arbitrary block response data >

il

<ABCII ~
data byte> @_»@

54120/BL63

§
RN -
Where <ASCIH data byte > represents any ASCll-encoded data byte except
<NL> (04, 10 decimal).

Notes

1. The END message provides an unambiguous termination to an
element that contains arbitrary ASCII characters.

2. The IEEE 488.1 END message serves the dual function of
terminating this element as well as terminating the <RESPONSE
MESSAGE >, Itis only sent once with the last byte of the indefinite
block data. The NL is present for consistency with the
<RESPONSE MESSAGE TERMINATOR >. Indefinite block
data format is not supported in the HP 1652B/1653B.

Figure A-27. <arbitrary ASCII response data >

HP 1652B/16538 Message Communication and System Functions
Programming Reference ' A-25

<response data separator >. A comma separates multiple pieces of
response data within a single < response message unit>.

—(—
54120/8.88
Figure A-28. <response data separator>

< response header separator >, A space (ASCII decimal 32) delimits the
response header, if returned, from the first or only piece of data.

W@*’

5q120-8L70
Figure A-29. <response heatder separator>

« pesponse message unit separator>, A semicolon delimits the
< response message unit > s if multiple responses are returned.

54 t20/BLTT
Figure A-30. <response message unit separator>
< response message terminator >, A <response message terminator >

(NL) terminates a complete < response message > . It should be read
from the instrument along with the respounse itself.

Message Communication and System Functions HP 1652B/1653B
A-26 Programming Reference

Common
Commands

HP 1652B/1653B
Programming Reference

IEEE 4882 defines a set of common commands. These commands

perform fanctions which are common to any type of instrument. They can

therefore be implemented in a standard way across a wide variety of

instrumentation. All the common commands of IEEE 488.2 begin with an
asterisk. There is one key difference between the IEEE 488.2 common
commands and the rest of the commands found in this instrument. The
IEEE 488.2 common commancs do not affect the parser’s position within
the command tree. More information about the command tree and tree
traversal can be found in the Programming and Documentation
Conventions chapter.

Table A-3, HP 1652B/53B's Common Commands

Command Command Name

*CLS Clear Status Command

*ESE Event Statas Enable Command
*ESE? Event Status Enable Query

*ESR? Event Status Register Query
*IDN? Identification Query

*OPC Operation Complete Command
*OPC? Operation Complete Query

*RST Reset (not implemented on HP 1652B/1653B)
*SRE Service Request Enable Command
*SRE? Service Request Enable Query
*STB? Read Status Byte Query

*WAI Wait-to-Continue Command

Message Communication and System Functions

A-27

Status Reporting B

Introduction - The status reporting feature available over the bus is the serial poll. IEEE
4882 defines data structures, commands, and common bit definitions.
There are also instrument defined structures and bits,

The bits in the status byte act as summary bits for the data structures
residing behind them. In the case of queues, the summary bit is set if the
queue is not empty. For registers, the summary bit is set if any enabled bit
in the event register is set. The events are enabled via the corresponding
event enable register. Events captured by an event register remain set
until the register is read or cleared. Registers are read with their
associated commands. The "™ CLS" command clears all event registers
and all queues except the output queuve. If "*CLS" is sent immediately
following a < program message terminator > , the output queue will also
be cleared.

HP 1652B/16538 Status Reporting
Programming Reference B-1

l EVENT REGISTER
(MESR:

ENABLE
REGISTER
(MESE)

L _LoGICAL OR |

¢
P
c

RQC NOT IMPLEMENTED

EVENT
REGISTERS
{ESR)

o
1=
mE O
£ 2 17

Q [mow

z

T

il

@2 foow

NOTE: UR

ENABLE
REGISTERS
{ESE>

=7

LOGICAL OR
QUEUVES:
C-OUTRUT
MeME SSAGE

—
-}

STATUS
BYTE
(578>

SERVICE
REQUEST
ENABLE
— REGIZTER
(+5RE>

<vzlg-— T]
Lol ad

[e S
(1T 0 Rerd

LT

L33 U &, Ll

0602

Figure B-1, Status Byte Structures and Concepts

Status Reporting HP 1652B/1653B
B-2 Programming Heference

Event Status Register

Service Reguest
Enable Register

Bit Definitions

Note 3

HP 1652B/1653B
Programming Reference

The Event Status Register is a 488.2 defined register. The bits in this
register are "latched.” That is, once an event happens which sets a bit, that
bit will only be cleared if the register is read,

The Service Request Enable Register is an 8-bit register. Each bit enables
the corresponding bit in the status byte to cause a service request. The
sixth bit does not logically exist and is always returned as a zero. To read
and write to this register use the *SRE? and *SRE commands.

The following mnemonics are used in figure B-1 and in the "Common
Commands® chapter:

MAYV - message available. Indicates whether there is a response in the
output queue.

ESB - event status bit. Indicates if any of the conditions in the Standard
Event Status Register are set and enabled.

MSS - master summary status. Indicates whether the device has a reason
for requesting service. This bit is returned for the *STB? query.

RQS - request service. Indicates if the device is requesting service. This
bit is returned during a serial poll. RQS will be set to 0 after being read
via a serial poll (MSS is not reset by *STB?).

MSG - message. Indicates whether there is a message in the message
queue (Not implemented in the HP 1652B/1653B).

PON - power on, Indicates power has been turned on.
URQ - user request. Always 0 on the HP 1652B/1653B.

CME - command ervor. Indicates whether the parser detected an error,

The error numbers and/or strings for CME, EXE, DDE, and QYE can be
read from a device defined queue (which is not part of 488.2) with the
query :SYSTEM:ERROR?.

Status Reporting
B-3

EXE - execution error. Indicates whether a parameter was out of range,
or inconsistent with current settings.

DDE - device specific error. Indicates whether the device was unable to
complete an operation for device dependent reasons.

QYE . query error. Indicates whether the protocol for queries has been
violated,

RQC - request control. Always 0 on the HP 1652B/1653B.

OFC - operation complete. Indicates whether the device has completed
all pending operations. OPC is controlled by the *OPC common
command. Because this command can appear after any other command,
it serves as a general purpose operation complete message generator,

LCL - remote to local. Indicates whether a remote to local transition has
occurred.

MSB - module summary bit. Indicates that an enable event in one of the
modules Status registers has occurred.

Key Features A few of the most important features of Status Reporting are listed in the
following paragraphs.

Operation Complete. The IEEE 488.2 structure provides one technique
which can be used to find out if any operation is finished. The *OPC
command, when sent to the instrument after the operation of interest, will
set the OPC bit in the Standard Event Status Register. If the OPC bit and
the RQS bit have been enabled a service request will be generated. The
commands which affect the OPC bit are the overlapped commands.

QUTPUT XXX "*SRE 32 ; *ESE 1" lenables an OPC service request

Status Reporting ' HP 1652B/16538
B-4 Programming Reference

Status Byte. The Status Byte contains the basic status information which
is sent over the bus in a serial poll. If the device is requesting service
(RQS set}, and the controller serial polls the device, the RQS bit is
cleared. The MSS (Master Summary Status) bit (read with *STB?) and
other bits of the Status Byte are not be cleared by reading them. Only the
RQS bit is cleared when read.

The Status Byte is cleared with the *CLS common command.

—5TATUS SUMMARY MESBAGES ——

|

SERVICE
REDUEST

{
i‘ —-—— READ BY SERIAL POLL
—— RYS Y

e —[; 750 esslmavl 3 [2 | 1| 8| | sTATUS BYTE REGISTER

f

HP 1652B/1€638
Programming Reference

GENERAT 10N L—us
f ’ -t RLAD BY +5TB?

% 1
;- ®
=4 ¥
§ - F f&) .
Py
- ®
iy
- C

{CXC LR TE] S e

*BRE <NRf>
s SRE?

MBI

Figure B-2. Service Request Enabling

Status Heporting
B-5

Serial Poll The HP 1652B/1653B supports the IEEE 488.1 serial poll feature. When
a serial poll of the instrument is requested, the ROS bit is returned on bit
6 of the status byte.

Using Serial Poll This example will show how to use the service request by conducting a
(HP-IB) serial poll of all instruments on the HP-IB bus. In this example, assume
that there are two instruments on the bus; a Logic Analyzer at address 7
and a printer at address 1,

The program command for serial poll using HP BASIC 4.0is Stat =
SPOLL(707). The address 707 is the address of the oscilloscope in the
this example, The command for checking the printer is Stat =
SPOLL{701) becausc the address of that instrument is 01 on bus address
7. This command reads the contents of the HP-IB Status Register into the
variable called Stat. At that time bit 6 of the variable Stat can be tested to
seeif it is set (bit6 = 1),

The serial poll operation can be conducted in the following manner:

1. Enable interrupts on the bus. This allows the controlier to "see” the
SRQ line.

2. Disable interrupts on the bus.

3. If the SRQ line is high (some instrument is requesting service) then
check the instrument at address 1 to see i bit 6 of its status register
is high.

Status Reporting HP 1652B/1653B
B-& : Programming Reference

4. To check whether bit 6 of an instruments status register is high, use
the following Basic statement:

IF BIT (Stat, 6) THEN

5. 1f' bit 6 of the instrument at address 1 is not high, then check the
instrument at address 7 to see if bit 6 of its status register is high.

6. As soon as the instrument with statns bit 6 high is found check the
rest of the status bits to determine what is required,

The SPOLL{707) command causes much more to happen oo the bus than
simply reading the register. This command clears the bus antomatically,
addresses the talker and listener, sends SPE (serial poll enable) and SPD
(serial poll disable) bus commands, and reads the data. For more
information about serial poll, refer to your controller manual, and
programming language reference manuals,

After the serial poll is completed, the RQS bit in the HP 1652B/1653B
Status Byte Register will be reset if it was set. Once a bit in the Status
Byte Register is set, it will remain set until the status is cleared with a
*CLS command, or the instrument is reset.

HP 1652B/16538 Status Reporting
Programming Reference B-7

Error Messages C

This section covers the error messages that relate to the HP 1652B/53B

Logic Analyzers.
Device 200 Label not found
Dependent
Errors 201 Patters string invalid
202 Qualifier invalid
203 Data not available
300 RS-232C error
HP 1652B/1653B Error Messages

Programming Reference C-1

Command -100 Command error (unknown command)(generic error)
Errors

~101 Invalid character received

110 Command header error

-111 Header delimiter error

-120 Numeric argument error

~-121 Wrong data type (numeric expected)

-123 Numeric overflow

-129 Missing numeric argument

-130 Non numeric argument error (character string, or block)

131 Wrong data type (character expected)

-132 Wrong data type (string expected)

~133 Wrong data type (block type #D required)

-134 Data overflow (string or block too long)

139 Missing non numeric argument

=142 Too many arguments

-143 Argument delimiter error

-144 Invalid message unit delimiter

Error Messages HP 1652B/1653B
C-2 Programming Reference

Execution 200 No Can Do (generic execution error)
Errors
-201 Not executable in Local Mode
-202 Settings lost due to return-to-local or power on
-203 Triggerignored
-211 Legal command, but settings conflict
-212 Argument out of range
-221 Busy doing something else
=222 Insufficient capability or configuration
-232 Output buffer full or overflow
-240 Mass Memory error {(generic)
-241 Mass storage device not present
-242 No media
-243 Bad media
-244 Media full

-245 Directory full

-246 File name not found

-247 Duplicate file name

-248 Media protected

HP 1652B/1653B Error Messages
Programming Reference C-3

internal Errors

Error Messages
c-4

-300 Device Failure (generic hardware error)
-301 Interrupt fault

-302 System Error

-303 Time out

-310 RAM error

-311 RAM failure (hardware error)

-312 RAM data loss (software error)

-313 Calibration data loss

-320 ROM error

321 ROM checksum

-322 Hardware and Firmware incémpatible
-330 Power on test failed

-340 Self Test failed

-350 Too Many Errors (Error queue overflow)

HP 1652B/1653B
Programming Reference

Query Errors

HP 1652B/1653B
Programming Reference

«400 Query Error (generic)

-410 Query INTERRUPTED

420 Query UNTERMINATED

-421 Query received. Indefinite block response in progress
-422 Addressed to Talk, Nothing to Say

-430 Query DEADLOCKED

Error Messages

C.5

Index
{00005

ASSign command/query 10-5

*CLS command 5-3 AUTeoload command/query 7-4
*ESE command 5-4 AUToscale 21-5

*ESR command 5-6 AUToscale command 10-6
*IDN command 5-8 Average Mode 24-Z,26-3
*OPC command 59

*RST command 5-10 : B

*SRE command 5-11
*$TB command 5-13
*WAI command 5-15

. 4.3 BASE command 20-4

St 42 e
99E +37 42
= 43 B‘andrat‘e. 35
43 Bit definitions B-3
[] 43 Block data 1-3, 1-16, 6-6
{} 43 Block length specifier 6-6
| 43 Block length specifier 6-7, 6-37
Braces 43
BRANch command/query 12-5-12-7
A BYTE Format 26-4
ACCumulate command/query 14-4, 15-4, 19-6 C
Acquisition data 6-11
Addressed talk/listen mode 2-1
ALL 27-5 Cable :
RS-232C 32

AMODe command/query 184
Analyzer 1 Data Information 6-9
Analyzer 2 Data Information 6-11
Angular brackets 4-3
Arguments 1-4

ARM command/query 10-4, 21-4
ARMBnc command 6-4

ASCII Format 26-5

CATalog query 7-5

chart display 15-1

Clear To Send (CTS) 3-4

CLOCkK command/query 11-4

CMASk command/query 16-4

CME B-3

COLumn command/query 83, 13-6-13.7

HP 1652B/1652B Index-1
Programming Reference

Combining commands 1-5 Command (continued)

Comma 1.7 KEY 823

Command 1-3,1-13 LABel 11-6,17-3
*CLS 5.3 LEVel 23-4
*ESE 5-4 LINE 8-5,13-9
*OPC 59 LOAD:CONFig 719
*RST 5-10 LOAD:IASSembler 7-10
*SRE 5-11 LOCKout 3-7,6-26
*WAI 5-15 LONGform 1-12, 627

ACCumulate 14-4, 15-4, 19-6
AMODe 184
ARM 10-4,21-4
ARMBnc 6-4
ASSign 10-5
AUToload 7-4
AUToscale 10-6, 21-5
BASE 204
BRANch 12-5
CLOCKk 114
CMASk 1564
COLumn §-3, 13-6
COMPare 16-3
CONFig 79,7-14
COPY 7-6,16-5
COUNt 24-4
COUPling 22-4
CPERiod 11-5
DATA 6-5,16-6
DELay 14-5, 19.7, 25.3
DOWNload 7-7
DSP 6-20
DURation 18-5
EDGE 18-6
FIND 12.8
FORMat 26-10
GLITch 18-8
HAXis 15-5
HEADer 1-12,6-22
IASSembler 7-10
INITialize 7-8
INSert 14-6, 19-8

Index-2

MACHine 10-3
MASTer 11-8

MENU 6-28

MESE 6-29

MMODe 13-10,15-9
MODE 23-5, 25-4
NAME 10-7
OCONdition 19-10
OFFSet 22-5
OPATtern 13-11, 19-11
0OSEarch 13-13,19-13
OTAG 13-15

OTIMe 9-5,19-14
FACK 7-11

PATTern 189, 20-5
PREstore 12-10
PRINt 6-34

PROBe 22-7

PURGe 7-12

RANGe 12-12, 147, 16-9, 19-15, 20-6, 22-8, 25-6
RECord 26-13
REMove 11-9, 14-8, 17-5, 19-16, 20-7
REName 7-13
RESTart 12-14
RMODe 6-35

Run Control 6-1
RUNTIl 13-16, 16-10, 19-17
SCHart 15-3
SEQuence 12-16
SETup 6-36
SFORmat 11-3
SLAVe 11-10

HP 1652B/1652B
Programming Reference

Command (continued)
SLISt 13-5
SLOPe 23-6
SMODe 21-6
SOURce 23-7,26-14,27-14
STARt 6-38
STOP 6-39
STORe 12-17
STORe:CONFig 7-14
STRace 12-4
SWAVeform 14-3
SYMBol 20-3
SYStem:DATA 6-3
SYStem:SETup 6-36
TAG 12-19
TERM 12-21
TFORmat 17-2
THReshold 11-11, 176
T¥Race 183
TWAVeform 19-5
TYPE 10-8,24-5
VAXis 15-7
WIDTh 20-8
WLISt 9-2
XCONdition 19-24
XPATtern 13-23,19-26
XSEarch 13-25,19-28
XTAG 13-27 '
XTIMe 9-6, 19-29
Command errors C-2
Command modé 2-1
Command set organization 4-10
Command structure 1-11
Command tree 4-4
Command types 4-4
Common commands 1-5, 44, 5-1, A-27
Communication 1-2
COMPare selector 16-3
COMPare Subsystem 16-1
Complex qualifier 12-7
Componnd commands 1-4

HP 1652B/1652B
Programming Reference

CONFig command 7-9,7-14
Configuration file 1-10-1-11
Controller mode 2-1
Controllers 1-2

Conventions 4-3

COPY command 7-6, 16-5
COUNt 24-4

COUNt query 26-8

COUPling 22-4

CPERiod command/query 11-5

D

DATA €-5,26-9
command 6-5
State (no tagsy 6-12
State (with either time or state tags) 6-12
Timing Glitch 6-14
Transitional Timing 6-15
Data bits 3-5-3-6
8-Bit mode 3-6
Data block
Acquisition data 6-11
Analyzer 1 data 6-9
Analyzer 2 data 6-11
Data preamble 6-8
Section data 6-8
Section header 6-8
Data Carrier Detect (DCD) 3-4
DATA command/query 6-5-6-19, 16-6 - 16-7
Data Communications Equipment 3-1
Datamode 2-1
Data preamble 6-8
DATA query 13-8
Data Set Ready (DSR) 34
Data Terminal Equipment 3-1
Data Terminal Ready (DTR) 3-3
DCE 31
DCL 23
DDE B-4

index-3

Definite-length block response data 1-16
Definitions 4-3
DELay 25-3
DELay command/query 14-5, 19-7
Device address 1-3

HP-IB 22

RS8-232C 3-6
Device clear 2-3
Device dependent errors C-1
DLISt

Command 8-2
DLISt selector 8-2
DLISt Subsystem 8-1
Documentation conventions 4-3
DOWNload command 7-7
DSP command 6-20
DTE 3-1
Duplicate keywords 1-5
DURation command/query 18-5

E

EDGE command/query 18-6 - 18-7
EDGE Trigger Mode 23-1
Ellipsis 4-3

Embedded strings 1-2-1-3
Enter statement 1-2

Error messages C-1
ERRor query 6-21

ESB B-3

Event Status Register B-3
EXE B-4

Execution errors C-3
Exponents 1-8

Extended interface 3-3

Index-4

F

FALLtime 27-6

FIND command/query 12-8 - 12-9
FIND query 16-8

FORMat 26-10

Fractional values 1-8
FREQuency 27-7

G

GET 23

GLITch command/guery 18-8
Glitch Timing Data 6-14
Group execute trigger 2-3

H

HAXis command/gquery 15-5-15-6
HEADer command 1-12
HEADer command/query 6-22
Headers 1-3-1-4, 1.7

Host language 1-3

HP-IB 2-1,B-6

HP-1B address 2-1

HP-IB device address 2-2
HP.IB interface 2-1

HP-IB interface code 2-2
HP-IB interface functions 2-1

IASSembler command 7-10
IEEE 488.1 2-1, A-1

HP 1652B/1652B
Programming Reference

IEEE 488.1 bus commands 2-3
IEEE 4882 A-1
IEEE 4882 Standard 1-1
IFC 2-3
Infinity 4-2
Initialization 1-10
INTTialize command 7-8
Input buffer A-2
INSert command 14-6, 19-8
Instruction headers 1-3
Instruction parameters 1-4
Instruction syntax 1-2
Instruction terminator 1.9
Instructions 1-3
Instrument address 2-2
Interface capabilities 2-1
RS-232C 35
Interface clear 2-3
Interface code
HP-IB 2.2
Interface select code
RS-232C 36
Internal errors C-4

K

KEY command/query 6-23
Keyword data 1-8
Keywords 4-1

L

LABel command/query 11-6-11-7,17-3-17-4
LCL B-4

LER query 6-25

LEVel 234

LINE command/query 85, 13-9

Linefeed 1-9,4-3

HP 1652B/1652B
Programming Reference

Listening syntax A-8
LOAD:CONFig command 7-9
LOAD:IASSembler command 7-10
Local 2-2

Local lockout 2-2

LOCKout command 3-7
LOCKout command/query 6-26
Longform 1-7

LONGform command 1-12
LONG{orm command/query 6-27
Lowercase 1-7

M

Machine selector 16-3
MACHine Subsystem 10-1
MASTer command/query 11-8
MAYVY B-3

MENU command/query 6-28
MESE command/query 6-29
MESR query 6-31-6-32
MMEMory subsystem 7-1
MMODe command/query 13-10, 19-9
Mnemonics 1-8,4-1

MODE 23-5,25-4-25-5
Module Level Commands 21-1
MSB B-4

MSG B-3

MSS B-3

Multiple numeric variables 1-17
Mutltiple program commands 1.9
Multiple queries 1-17

Multiple subsystems 1-9

N

NAME command/query 10-7
New Line character 1-9

Index-5

NL 1-9,4-3

Normal Mode 24-2, 26-3
Notation conventions 4-3
Numeric base 1-15
Numeric bases 1-8
Numeric data 1-8
Numeric variables 1-15
NWIDth 27-8

0]

OCONdition command/query 18-10
OFFSet 22-5-22-6

OFATtern command/query 13-11-13-12, 19-11 -
19-12

OPC B4

Operation Cotnplete . B-4

OR notation 4-3

oscilloscope 21-1

Oscilloscope Subsystem commands 21-1
OSEarch command/query 13-13, 19-13
O8Tate 13-14

OSTate query 9-3

OTAG command/query 13-15

OTIMe command/query 9-5, 19-14
Output buffer 1-6

Output command 1-3

Output quene A-2

OUTPUT statement 1-2

Overlapped command 5-9, 5-15, 6-38 - 6-39
Overlapped commands 4-2
OVERshoot 279

P

PACK command 7-11
Parameter syntax rules 1.7
Parameters 1-4

Index-6

Parity 3-5
Parse tree A-7
Parser A-2
PATTern command 20-5
PATTers command/query 18-9 - 18-10
PATTera Trigger Mode 23-1
PERiod 27-10
POINts query 26-11
PON B-3
PPOWer gquery 6-33
PREamble 26-12
Preamble description 6-8
PRESheot 27-11
PREstore command/query 12-10 - 12-11
PRINt command 6-34
Printer mode 2-1
PROBe 22-7
Programdata A-14
Program examples 4-11
Program message A-9
Program message syntax 1-2
Program message terminator 1-9
Program syntax 1-2
Programming conventions 4-3
Protocol 3-5,A-3

None 3-5

XON/XOFF 3-5
Protocol exceptions A-4
Protocols A-2
PURGe command 7-12
PWIDth 27-12

Q

Query 1-3,1-6,1-13
*ESE 54
*ESR 5-6
*IDN 3-8
*OPC 359
*SRE 5-11

HP 1552B/1652B
Programming Reference

Query {continued)

*STB 5-13
ACCumnulate 14-4, 15-4,19-6
ALL 27-5
AMODe 184
ARM 10-4,21-4
ARMBnc 6-4
ASSign 10-3
AUToload 7-4
BRAN¢h 12.5
CATalog 7-5
CLOCk 114
CMASk 164
COLumn 8.3, 13-6
COUNt 244,268
COUPling 22-4
CPERiod 11-5
DATA 6-5, 13-8, 16-6,26-9
DELay 14-5, 19-7,25-3
DURation 18-5
EDGE 18-6
ERRor 6-21
FALLtime 27-6
FIND 12-8, 16-8
FORMat 26-10
FREQuency 277
GLITch 18-8
HAXis 155
HEADer 6-22
KEY 6-23

LABel 11-6,17-3
LER 6-25

LEVel 23-4

LINE 8-5,13-9
LOCKout 6-26
LONGiorm 6-27
MASTer 11.8
MENU 6-28
MESE 6-29

MESR 6-31
MMODe 13-10, 19-9

HP 1852B/1652B
Programming Reference

Query (continued)
MODE 123-5, 254
NAME 10-7
NWIDth 27-8
OCONdition 19-10
OFFSet 22-5
OPATtern 13-11, 16-11
OSEarch 13-13,19-13
OSTate 9-3,13-14
OTAG 13-15
OTiMe 9-5,19-14
OVERshoot 27-9
PATTern 189
PERiod 27-10
POINts 26-11
PPOWer 6-33
PREamble 26-12
PREShoot 27-11
PROBe 22.7
PWIDth 27-12

RANGe 12-12,14-7, 16-9, 19-15, 22-8, 25-6

RECord 26-13

RESTart 12-14

RiSetime 27-13

RMODe 6-35

RUNTH 13-16, 16-10, 19-17
SEQuence 12-16

SETup 6-36

SLAVe 11-10

SLOPe 23-6

SMQDe 21-6

SOURce 23-7, 26-14, 27-14
SPERiod 19-19

STORe 12-17
SYSTem:DATA 65
SYStem:SETup 6-36
TAG 12-19

TAVerage 13-18, 19-20
TERM 12-21

THReshold 11-11,17-6
TMAXimum 13-19,19-21

index-7

Query (continued)
TMINimum 13-20, 19-22
TYPE 10-8,24-5, 26-15
UPLoad 7-15
VALid 26-16
VAMPlitude 27-15
VAXis 157
VBASe 27-18
VMAX 27-17
VMIN 27-18
VPP 27-19
VRUNs 13.21,19-23
VTOP 2720
XCONdition 19-24
XINCrement 26-17
XORigin 26-18
XQTag 13-22
XOTime 1925
XPATtern 13-23, 19-26
XREFerence 26-19
XSEarch 13-25, 19-28
XSTate 9-4,13-26
XTAG 13.27
XTiMe 9-6,19-20
YINCrement 26-20
YORigin 2621
YREFerence 26-22

Queryerrors C-5

Query responses 1-11, 4-2

Question mark 1-6

QYE B-4

R

RANGe 22-8,25-6
RANGe command 20-6

record 26-13
waveform 26-3
Remote 2-2
Remote enable 2-3
REMove command 11-9, 14-8, 17-§, 19-16, 20-7
REN 2-3
REName command 7-13
Request To Send (RTS) 3-4
Response data 1-16
Response message A-21
Responses 1-12
RESTart command/query 12-14 - 12-15
RISetime 27-13
RMODe command/query 6-35
Root 4-4
RQC B-4
RQS B-3
RS-232C 3-1,3-6, A-1
Run Control Commands 6-1
RUNTil command/query 13-16 - 13-17, 16-10 -
16-11, 19-17 - 19-18

S

SCHart selector 153
SCHart Subsystem 15-1
SCOPe Subsystem 21-1
SDC 23

Section data 6-8

Section data format 6-6
Section header 6-8
Selected deviee clear 2-3
Separator A-18
SEQuence command/query 12-16
Sequential commands 4-2
Serial poll B-6

RANGe command/query 12-12 - 12-13, 14-7, 16-9, Service Request Enable Register B-3

18-15

Receive Data (RD) 3-2-3-3

index-B

SETup 6-36
SETup command/query 6-36 - 6-37
SFORmat selector 11-3

HP 1652B/1652B
Programming Reference

SFORmat Subsystem 11-1
Shortform 1-7
Simple commands 1-4
SLAVe command/query 11-10
SLISt selector 13-5
SLISt Subsystem 13-1
SLOPe 23-6
SMODe command 21-6
SMODe query 21-6
SOURce 23-7,26-14,27-14
Spaces 1-4
SPERiod query 19-19
Square brackets 4-3
STARt command 6-38
State data
with either time or state tags 6-12
without tags 6-12
Status 1-17,5-2,B-1
Status byte B-5
Status registers 1-17
Status reporting B-1
Stop bits 3-5
STOP command 6-39
STORe command/query 12-17 - 12-18
STORe:CONFig command 7-14
STRace selector 12-4
STRace Subsystem 12-1
String data 1-8
String variables 1-14
Subsystem
ACQuire 24-1
CHANnel 22-1
COMPare 16-1
DLIST &-1
MACHine 16-1
MEASure 27-1
MMEMory 71
SCHart 15-1
SCOPe 21-1
SFORmat 11-1
SLISt 1341

HP 1652B/1652B
Programming Reference

Subsystem {continued)
STRace 12-1
SWAVeform 14-1
SYMBol 20-1
TFORmat 17-1
TiMebase 25-1
TRIGger 23-1
TTRace 18-1
TWAVeform 19-1
WAVeform 26-1
WLISt 6-1

Subsystem commands 4-4

Suffix multiplier A-16

Suffix units A-16

SWAVeform selector 14-3

SWAVeform Subsysten 14-1

SYMBol selector 20-3

SYMBol Subsystem 20-1

Syntax A-8

Syntax diagram
ACQuire Subsystem 24-1
CHANnel Subsystem 22-2
Common commands 5-2
COMPare Subsystem 16-2
DLISt Subsystem 8-1
MACHine Subsystem 10-2
MEASure Subsystem 27-3

MMEMory subsystem 7-2-7-3

SCHart Subsystem 15-2
SCOPe Subsystem 21.1
SFORmat Subsystem 11-1
SLISt Subsystem 13-2
STRace Subsystema 12-1
SWAVeform Subsystem 14-2
SYMBol Subsystem 20-2
System commands 6-3
TFORmat Subsystem 17-1
TiMebase Subsystem 25-1
TRIGger Subsystem 23-2
TTRace Subsystem 18-2

TWAVeform Subsystem 19-2

Index-9 .

Syntax diagram {continued)
WAVeform Subsystem 26-2
WLISt Subsystem 9-1

Syntax diagrams 4-2
IEEE 4882 A-5

System commands 4-4, 6-1

T

TAG command/query 12-19- 12-20
Talk only mode 2-1
Talking syntax A-21
TAVerage query 13-18, 19-20

. TERM command/guery 12-21-12-22
Terminator 1-9, A-26
TFORmat selector 17-2
TFORmat Subsystem 17-1
Three-wire Interface 3-2
Threshold command/query 11-11,17-6
Timing Glitch Data 6-14
TMAXimum query 13-19,19-21
TMINimum query 13.29, 19-22
Trailing dots 4-3
Transitional Timing Data 6-15
Transmit Data (TD) 3-2-3-3
Truncation rule 4.1
TTRace selector 18-3
TTRace Subsystem 18-1
TWAVeform selector 19-5
TWAVeform Subsystem 19-1
TYPE 24-5
TYPE command/query 10-8
TYPE query 26-15

U

Units 1-8
UPLoad query 7-15

“dex-10

Uppercase 1-7
URQ B-3

VALid 26-16

VAMPlitude 27-15

VAXis command/query 15-7
VBASe 27-16

VMAX 27-17

VMIN 27-18

VPP 27-19

VRUNs query 13-21,19-23
VTOP 27-20

w

waveform

record 26-3
White space 1-4
WIDTh command 20-8
WLISt selector 9-2
WILISt Subsystem 9-1
WORD Format 26-5

X

XCONdition commmand/query 15-24
XINCremsnt query 26-17

XORigin query 26-18

XOTag query 13-22

XOTime query 19-25

XPATtern command/query 13-23 - 13-24, 19-26 -
10-27

XREFerence query 26-19

XSEarch command/query 13-25,19-28

XSTate query 9-4, 13-26

HP 1652B/1652B
Programming Reference

XTAG command/qoery 13-27
XTIMe command/query 9-6, 19-29
XXX 43,45

XXX (meaning of} 1-3

Y

YINCrement query 26-20
YORigin query 26-21
YREFerence query 26-22

HP 1652B/16528
Programming Reference

Index-11

(ﬁﬂ HEWLETT

BACKARD

Printed in LL.S.A

