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SAFETY SUMMARY

The i‘ollowmg general safety precautions must be observed during all phases of operation, service,

and repair of this instrument. Failure to comply with these precautions or with specific warnings
" elsewhere in this manual viclates safety standards of design, manufacture, and intended use of the

instrument. Hewlett-Packard Company assumes no liability for the customer’s failure to comply

with these requirements. This is a Safety Class 1 instrument.

GROUND THE INSTRUMENT

To minimize shock hazard, the instrument chassis and cabinet must be connected to an
electrical ground. The instrument is equipped with a three-conductor ac power cable. The
power cable must either be piugged into an approved three-contact elactrical outlet or used
with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to
an electrical ground (safety ground) at the power outlet. The power jack and mating plug of
the power cable meet International Electrotechnical Commission (IEC) safety standards.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE

Do not operate the instrument in the presence of flammable gases or fumes. Operatlon of any
e!ectncai instrument in such an envnronment constitutes a definite safety hazard.

KEEP*"A’WAY FROM LIVE CIRCUITS

Operating personnel must not remove instrument covers. Component reptacemant and
internal adjustments must be made by qualified maintenance personnel.. Do not replace
compenents with power cable connected. Under certain conditions, dangerous voltages may
exist even with the power cable removed. To avoid injuries, always disconnect power and
discharge circuits before touching them. ;

DO NOT SERVICE OR ADJUST ALONE.

Do not attempt internal service or adjustment unless another person capabie of rendenng f rst
aid and resuscitation, is present. .

DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT ¥ S
Because of the danger of introducing additional hazards, do not znsta!l substntute parts or
perform any unauthorized modification to the instrument. Retumn theinstrumentto a G
Hewlett-Packard Sales and Service Office for service and repair to ensure the safety i features ,
ars maintained. T

¥

DANGEROUS PROCEDURE WARN%NGS

Warnings, such as the example below, pmcede potentially dangerous procedureﬁ throughout
th:s manual tnstructlons contained in the warnings must be fallowed. .. - A

Warning Dangerous voltages, capable of causing death, are present in this
Ry instrument. Use extreme caution when handling, testing, and ad]usting
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SAFETY SYMBOLS 1
General Definitions of Safety Symbols Used On Equipment or in Manuals. \

o - Instruction manual symbol: the product will be marked with this
A ' symbol when it is necessary for the user to refer to the instruction e
manual in order to protect against damage to the instrument.

Indicates dangerous voitage (terminals fed from the interior by voltage

5 - exceeding 1000 voits must be so marked.)
. : Protéctive conductor terminal. For protection against electrical shock
B - in case of a fauit. ' Used with field wiring terminals to indicate the
= OR terminal which must be connected to ground before operating
equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a

signal common, as well as providing protection against electrical
shock in case of a fault. A terminal marked with this symbol must be

connected to ground in the manner described in the instaliation
(operating) manual, and before operating the equipment.

i Frame or chassis terminal. A connection to the frame (chassis) of the
7 OR equipment which normally inciudes all exposed metal structures.

Alternating current (power line.) -

Direct current (power fine.)

= Alternating or direct current (power line.)

Warning The WARNING sign denotes a hazard. It calls attention to a procedure,
practice, condition or the like, which Iif not correctly performed or adhered
6 to, could result in injury or death to personnel.

Caution The CAUTION sign denotes a hazard. It calis attention to an operating
 procedure, practice, condition or the like, which, if not correctly performed or
‘ " adhersd to, could result in damage to or destruction of part or all of the product.

Note V'The NOTE sign denotes important information. It calls aftention to procedure,
s practice, condition or the like, which is essential to highlight.
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Instrument Overview

This chapter gives an overview of how the HP 3563A gathers data, processes it, and displays it, as
well as how the process is controlled by the front-panel keys. You can also refer to chapter 2;
“Measurement Overview,” in the HP 35634 Operating Manual. This overview should be the basis
for understanding the HP 3563A. '

Some Terms to Know

Hardkeys are all the keys on the front of the analyzer not including the eight keys at the right side of
the display screen (called softkeys). Most hardkeys exist only to display menus next to the softkeys.
The operation of the HP 3563A. is performed using hardkeys grouped in blocks outlined on the
analyzers front panel and eight softkeys located down the right side of the display screen. The
hardkeys are grouped by function and perform one of three functions:

s Enable an action (such as starting a measurement or turning on a marker)

m Enter data

s Display a softkey menu

Key Sequence is a listing of key presses required to either display a menu referred to in the text or to
execute a softkey command. They begin with a hardkey (shown in bold) and have slash marks
between key names.. T

Example: ~ MEAS DISP/FILTRD INPUT/LINEAR SPEC 1%

11



Instrument Overview
Some Terms to Know

Softkey Menus refer to the lists of softkey names shown on the screen down the right side. These
change when you pass a key that displays a new menu. '

Softkeys are the unlabeled keys aligned in a vertical column at the right side of the display screen.
See figure -. They coincide with items in the menus. Softkeys perform several functions:

. .

1-of-N selection (N items shown in 2 left-bracket with current selection bright and underlined)

Call other menus (has a right-pointing arrow in upper right-hand corner)

Begin data entry (a data-entry softkey has a large question mark (?) at upper-right of the key
name; it “expects” key presses in the numeric keypad; usually terminated by units selection)
Terminate data entry with selection of units

Toggle (a 1-of-2 selection with current selection bright and underlined)

SELECT C> Softkay Menu

; Th15
Data Entry SORKEYS —wumrg — 7

ARM

Toggie Sofikeys-—-—u....___, A MAN
—

T 0f N Selehons ———— et FREE

- (toracket marks tist L
CHAN 1
NPUT

Calls Other Merrss ———""1" Tracs

LUHO0000

Figure 1-1. Softkey Example: Select Trigger Menu
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Front-Panel Tour

Front-Panel Tour

The following summaries are an introduction to the basic function of each front-panel key groups or
blocks. These summaries are presented in the order that the blocks would typically be used to
perform a measurement.

x

Menu Area

Softkeys
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=l (=]
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(Omtebtbieices WALE A e}

Figure 1-2. HP 3563A Front Panel Introduction

Channel 1 and Channel 2 Input Connectors

/D The maximum input signal level allowed on the input connectors is = 42 Vo relative to chassis
ground. Larger voltages could damage the channel input circuitry."The outer conductors of the
BNC connectors are not connected to chassis ground. This allows the input signal to be floated. -
They can be individually grounded or floated with selections under the INPUT CONFIG hardkey.

URINRE CHANNEL 1 SRS CHANNEL 2

O YER FANGE et}
(s WALE RANGE s

9 I*©

S

Figure 1-3. input Connectors
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Front-Panel Tour

Measurement Block

This group of keys is used as follows:

FURIEMENE 1E A SUREMENT I

() (88) =)
) (=)=
() @) )|

Figure i-4. Measurement Block

MEAS MODE: selects the measurement mode :
SELECT MEAS: selects measurement to be calculated
WINDOW: selects the window used in the FFT analysis
AVG: selects averaging configuration

FREQ: selects the frequency configuration

SOURCE: used to configure the source

RANGE: selects input range configuration

INPUT CONFIG: selects analog /digital input conﬁgurat:on
SELECT TRIG: selects trigger configuration

ENGR UNITS: selects special engineering units

CAL: controls the analyzet’s internal calibration

TRIG DELAY: selects the trigger delay

1-4



Instrument Overview
Front-Panel Tour

. Display Block

A wide choice of display formats and coordinates enhances the analysis of measurements.
Depending on the selected measurement, several functions can be displayed. For example, if the

- selected measurement is FREQ RESP, the measurement display selections include power spectrum
and frequency response.

(SR )50 AY

r—-—-—-- ACTIVE TRACE — SELECT DATA ey
VEW STATE
FWAT DEFINE TRACE

e ﬁ =

thure 1«5 Digpiay Block

Active Trace Group: Three hardkeys used to select the active trace. You can have exther one
or both active. The active trace is used in conjunction with other keys to definc/conﬁgure the
trace data, coordinates, scale, active markers, etc.
Format Group: Three hardkeys used to select the display format. You can have one or both
traces displayed. If two are displayed, they can be overlaid with FRONT BACK or. displayed
separately with UPPER LOWER.. _ ‘
MEAS DISP: used to select the measurement data to dlsplay, depends on selected
measurement (configured with SELECT MEAS). This hardkey represents roughly half the
possible data display selections; the other selections are available under VIEW INPUT. See
“The Measurement Process” later in this chapter.

VIEW INPUT: used to display data that occurs before the measurement calculation. This is
particlarly useful for time-domain data. See “The Measurement Process” later in this chapter.
STATE/TRACE: used to toggle the display between showing the traces and displaying a table
containing the state (configuration) of the analyzer. This table may be two “pages” if a channel
is digital.

COORD: selects coordinates of measurement data display. Measurement data is complex (in
other words, containing both real and imaginary parts). Coordinate selections include
magnitude, phase, real, and imaginary, as well as logarithmic or linear and Nichols or Nyquist
formats.

SCALE: selects the scaling of the data on the screen.

UNITS: selects the units for both the horizontal and vertical axis. Also adds trace titles.

1-5
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Front-Panel Tour

Markers Block

Markers simplify the analysis of displayed data. Marker functions include single-point and band
(delta; A) cursor operation. Special markers {such as gain and phase margin, peak search, harmonic
and sideband markers), and slope readouts save time in network and spectrum analysis.

3

WMAF«ERSM R
I .
A e}
X Y SPCL
‘ oFE l oFF l ‘MARKER’
H | J

Figure 1-6. Markers Block

X: turns on or activates the horizontal axis marker(s).
X OFF: turns off the horizontal axis marker(s).
Y: turns on or activates the vertical axis marker(s).
Y OFF: turns off the vertical axis marker(s).
SPCL MARKER: selects special marker functions and calculations:
» Harmonic, sideband, slope ,and move-marker-to-peak
a Gain & phase margins, frequency and damping, power, average value, and data editing

1-8
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Front-Panel Tour

Entry Block

You can enter discrete frequencies and levels using the numeric keypad. If the X-axis marker is
active, the MARKER VALUE hardkey enters the displayed marker frequency value for the active
parameter. The up/down arrow keys and the knob are used for fast entry or adjustment of numerical
parameters. For example, the knob makes it easy to scroll through the available frequency spans
for rapid setup of zoom measurements. Manual selection of input range is simplified with the

arrow keys.

Figure 1-7. Entry Block
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Front-Panel Tour

Operators Block

These four hardkeys access softkeys that perform advanced analysis of measurement data.

PN OPERATORS H

AUTO
CURYE
( SYNTH I l e }
N 0

Figure 1.8. Operators Block

MATH: performs waveform math block operations such as a]gebfé, integration, differentiation,

forward and inverse Fourier transforms. i :
AUTO MATH: used to automate math calculations or perform repeated math on measurements

as data is collected (See AUTO MATH in the MEAS DISP menu). _
SYNTH: performs frequency response trace synthesis from data entered in the synthesis table,
CURVE FIT: performs curve fitting of measured or displayed data.

18
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Froqt_Panel Tour

Control Block

This group of keys helps control the analyzer’s operation.

NSNS CONTROL. IR
l PAUSE { AUTO
START CoNT SEQ
c 0 E
mzs'é\qu_a_ Satr PRESET
¥ L ™

Figure 1-9. Control Block

START: used with PAUSE/CONT to start, pause, and continue measurements.
PAUSE/CONT: used with START to start, pause, and continue measurements.
AUTO SEQ: used to set up and control auto sequence programs.
SAVE RECALL: used to save and recall analyzer state or data — there are five sto;:age
locations for each, numbered 1 through 5. You can also recall the state at last power shutdown.
SPCLFCTNS: accesses a number of the analyzer’s miscellaneous features, such as:

& Time and date settings

s Beeper control (on/off)

e Visual help features

w Self-tests and service tests -
PRESET: presets the analyzer to the current measurement mode and displays the special
preset menu. To perform a complete reset to power- on conditions, press the RESET softkey.
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HP-IB Block

These keys allow configuration of the analyzér to provide direct control of external HP-IB plotters
and disk drives, for documentation of measurement or analysis results.

PRGN -0

FEMOTE LISTEN

o O

TALK

.E

HP-E!
m@
- )

Figure 1-10. HP-IB Block

DISC: selects disk functions

PLOT: selects plotter functions

HP-1B FCTN: used to configure HP-IB (addresses, SRQs, and bus messages)
LOCAL: requests local (front-panel) operation when analyzer is under remote control

Status Block

The operating status of the analyzer is displayed by the LED:s in the Status block. Manuaiiy
triggered measurements are initiated with the ARM key. :

. STATUS I
MEASURNG  EXT SAMPLE

o O

TROGERING TRO ARMED

o o

Figure 1-11. Status Block

1-10



instrument Qverview
Front-Panel Tour

Help Key

The HELP hardkey provides quick, easy to find information shown on the analyzer's display. To get
help, press the HELP key for general information. Then press the key of interest to get help for that

specific key.

HELP

IIIE!HII

Figure 1-12. Help Block

As an example, press the HELP hardkey twice. This displays the help text for the HELP key (see
figure 1-13). Note, in the upper right-hand corner of the display, the “Page 1 of 24” callout. This
tells you where you are in the help text and how large the help “document” is. To see the next page,
press the down-arrow in the Entry Block.

HEL P Page 1 QFf 24
Arrews tao Pdage
ey HKELP
HP- 18 Commang. HELFP ey Type HARD KEY

PLURPOSE AND USE OF MELP

THe Heip mode rex? axpldiné emch of tha
MP F563a's Narckeys oand softikeys.

T ¢grispiagy & descriprron press HELP followed by
the desired hardkey ar softkay. Omce tma help

display is o the screen fhe front panel i
refurms 1O MAarmoi QpPeErariom.

Te page through muttiple pUges preass the arrow
keyw tocsated in the Entry group keypad. The - .-
down Qrrow displays the rext page T
displays TNé Drevious ROage .

To graose thne Nelp cdisplay press the A or 8 . ..
nardkey In tha Display @raup. - Thisg returns the
trace display . - . "

MORE )

Figure 1-13. Help Text fdr the HELP Key B

- .
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A First Measurement

A First Measurement

If you haven't used this analyzer before, take a few minutes to make this measurement. This
exercise lets you do the following:
~m  Look at the power spectrum of a 35 kHz sine wave

. w Use markers to analyze the signal

Connect a coaxial BNC cable between the analyzer’s source output and the Channel 1 input. Press

the following keys:

PRESEY
RESET

MEAS MODE
LINEAR RES

SELECT MEAS
FREQ RESP

MEAS DISP
POWER SPECH

SOURCE
SOURCE LEVEL?
1V
SOURCE TYPE
FIXED SINE?
35 kHz

AVG
STABLE (MEAN)

STATE/TRACE

1-12

The PRESET hardkey is the green key in the Control block.
This ensures that the measurement process begins from a known state.

Linear resolution is the default measurement mode. This step is included
because measurement mode should always be the first thing you set up.

Frequency response is the default selected measurement. This step is
included because selecting a measurement is the second thing you should

set up.

Power spectrum is also the default measurement display. This step is
included to show that the displayed measurement is not necessarily the
same as the selected measurement. When the selected measurement is
frequency response, many measurement displays are pessible.

This begins the source setup procedure. Select a source level. Any softkey
with a question mark is for data entry. Press 1 on the entry block keypad,
then the “V” softkey (terminates entry),

Select the type of source from a list of several softkeys.

The selection of a fixed sine source type requires entry of the frequency.
Press 35 in the entry block keypad, then the kHz softkey.

Next we turn on averaging. There are several kinds of averaging to choose
from. Choose stabie. Note that the analyzer takes ten averages and stops.
Use START to begin another measurement (which is actually a series of
averages).

Turn on the X marker. It automatically finds the largest value on the trace.
The frequency and signal strength values appear in the marker block at the
top left-hand corner of the grid. See figure 1-14.

This key aiternates the display between the instrument state table and the
measurement (trace) display. When one or both of the input channels are
digital, the state table is two pages long.



/'

Marker Data
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Figure 1-14. Sine Wave Measurement
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 Figure 1-15. The State Table
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The Measurement Process

The Measurement Process

The HP 3563A measurement process does three things:

= Takes data (makes measurements)
m Processes data
m Displays data

The data may be taken through one or two channels, either of which may be digital or analog, in
any combination. The process flow does not always include all the blocks shown in figure 1-16

(for example, swept sine doesn’t use the digital filters, windows, or FFT blocks). The displayed data
may be processed in any number of ways or not at all, as is shown by the display options on the right
side of figure 1-16.

Data displays available “before” digital filtering are selected from the VIEW INPUT menu. All data
displays available “after” the digital filter are selected from the MEAS DISP menu. You may display
two of these measurements simultaneously. You can view a simplified version of this process
diagram on the analyzer’s screen — see “Visual Help.”

Qualifiers

Formatting/ Dlsplays
Rounding @
Ranging & ‘ 1
anging % Instantanaous
Anti-Alias —-—| Sample/Hold H ADC I-»'% y
L.P. Filter Time
1
{nstantaneous)
. FET
1 - Linear Spectrum

1
{Instantanecus)
Input, Digital

Digital Digitat |
Input Pod

acldc.r,:ouphng

Fitered) ?
Time Record

Digital Fiiter l--—b‘{ Window HFFF}'—.—'—_’ {Filtered)

Linear Spectrum

Channet 2 Channel 1
vy Conversion to 2
‘ ) ! M . s Measurement
Averagmg easufef?eﬂt oo D|3p|ay Coords U—— .
Calculation T Bisplays
- and Units .
{-Under the VIEW INPUT hardkey

2~ Uinder the MEAS DISP hardiey

Figure 1-18. Measurement Process Diagram
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Basic Configuration

To configure the analyzer, there are five main areas of interest represented by six hardkeys. See
figures 1-2, 1-4, and 1-5 for a view of the front panel and location of these keys. Next, each area is
discussed in more detail.

Full hardkey name Abbreviated name
Measursment Mode MEAS MODE
Measurement Selection SELECT MEAS
input Configuration INPUT CONFiG
Frequency Selections FREQ
Display MEAS DISP

VIEW INPUT

Measurement Mode

The measurement mode is selected from a menu displayed by pressing the MEAS MODE hardkey.
The softkeys in this menu are used to select the analyzer’s fundamental configuration. The
measurement mode options are:

= Linear Resolution
= Log Resolution

= Swept Sine

a Time Capture

Linear Resolution is the measurement technique common to all fast-Fourier transform (FFT)
analyzers. Typically, an analog (time domain) signal is sampled until a data buffer (called the time
record) is filled with a fixed number of time samples. Then the FFT algorithm is performed on the
data. This creates a frequency spectrum that may be displayed or used as data for other processing.
When the measurement mode is Linear Resolution, the instrument is configured as shown in
figure 1-17.

Log Resolution uses linear resolution data to create proportional-bandwidth, logarithmically-spaced
measurements. Linear resolution data is combined (rather than redistributed), to produce frequency
spectrum or power spectrum data with a true log frequency scale. This technique provides less
measurement variance than linear resolution in less time than the swept sine technique. When the
measurement mode is Log Resolution, the instrument is configured as shown in figure 1-17.

Swept Sine is a measurement technique based on the single-point Fourier transform frequency
response analyzer. This mode performs time-domain integration of the input data to implement
narrow-band tracking filters. This technique provides excellent noise rejection, but sacrifices
measurement speed. [t is typically the favored method for control system analysis. When the
measurement mode is Swept Sine, the instrument is configured as shown in figure 1-17.
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. Time Capture is 2 measurement technique that performs waveform or time-domain analysis —
similar to making measurements with a storage or digitizing oscilloscope. It uses the data stored in
the time record (creating this data is one of the first steps of the standard FFT process). While the
sampling frequency of FFT analyzers is typicalily 80 times lower than that of waveform analyzers
(256 kHz versus 20 MHz) the dynamic range is usually 20 to 40 dB better than waveform analyzers.
Also, FFT analyzers provide filtering to prevent aliasing — this prevents data corruption from
frequencies greater than half the sampling frequency. When the measurement mode is Time
Capture, the instrument is conﬁgured as shown in figure 1-18.

See HP Application Note 243, I?ze Fundamentals of Signal Ana[ysw (in the Appendix) for more

information on FFT analysis.
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Figure 1-17. A Typical Flow Diagram
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Figure 1-18. The Time Capture Flow Diagram
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Measurement Selections

“Select Measurement” is one of the four columns in the flow diagrams of figures 1-17 and 1-18;
corresponding softkey selections appear in the SELECT MEAS menu. They define how the data is
processed in the measurement calculation block of figure 1-16 and the list of measurement
selections vary depending on the selected measurement mode. The complete list of selections
appears when Linear Resolution measurement mode is selected; they are: )

& Frequency Response Function (FRF)
a Power Spectrum

= Auto Correlation

a Cross Correlation

s Histogram

Selecting a measurement mode determines the general configuration of the analyzer’s various
measurement blocks. It also predefines some of the analyzer’s softkey menus because functions
necessary or available in one mode may not exist in another. For instance, in the Log Resolution
mode, triggering and time averaging are not applicable and windows are not selectable (a predefined
window function is used for all measurements), so these menus contain different entries when Log
Resolution is active than when Linear Resolution is active. '

Input Selections

The Input Configuration is controlled through the INPUT CONFIG menu shown in figure 2-1. If
both input channels are analog, the selections are very straightforward. When one or both of the
input channels are digital, there are many considerations to make and visual display screens to help
you make them. Chapter 2 is devoted to a discussion of the digital details of operation.
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Figure 1-19. Flow Diagram Shows A Digital Input Figure 1-20. Digitat Channe! Configuration
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There are several types of visual help available in the HP 3563A. In addition to illustrations in some
of the help text, there are “flow diagrams™ and input “channel configuration diagrams” that you can
- access through the Special Functions hardkey. The key-sequence that displays the visual help menu
is SPCL FCTN/Visual Help. (The upper-case, bold lettering indicates a hardkey name.)

Flow Diagrams

Flow diagrams show the internal configuration of the analyzer using an illustration shown in
figure 1-19. These illustrations are simplified versions of the measurement process diagram shown in

figure 1-16.

There are five things to consider first when configuring the analyzer. Thet are:

1. What blocks are used and how data flows through them (in MEAS MODE menu)
2. The measurement calculation (in SELECT MEAS menu)

3. The filtering selections (in the FREQ menu)

4. The display selection (in the MEAS DISP and VIEW INPUT menus)

3. The input configuration (in the INPUT CONFIG menu) '

List items 2 through 5 correspond to the four (vertical) areas of the visual help flow diagram shown
in figure 1-19. Note that there are two hardkey names at the top of the right-most area of this
figure. This indicates that display selections appear in two menus.

Note The display biocks at the right side of the screen (under MEAS DISP and VIEW
INPUT) are not as interactive as the rest of the diagram; when the configuration is
# changed they do not update until the START hardkey is pressed. This preserves

measurement data in the display traces as long as possible.

Channel Configuration Diagrams

Channel configuration diagrams help you visualize the digital input configuration. These diagrams
are available in two menus; one under the Special Functions hardkey and the other under the Input
Configuration bardkey (if an input channel is digital; press the INTERFACE softkey and the
CHANNEL CONFIG softkey). _

Figure 1-20 is an example configuration that has 16-bit data on an 8-bit bus. To do this we have to
monitor QO (the least significant qualifier bit) to determine which byte is on the data bus. In this
example, the most significant byte is read when QO = 0, and the most significant byte is read first
(indicated by the First/Last labels).

Other information illustrated by the Channel Diagram shows that the sample clock is provided on
the qualifier pod. Other options include channel clocks or the external sample BNC connector on
the rear panel. Also, notice that the analyzer word (13 bits) is taken from the most significant bits
and that the value of the remaining 3 bits is rounded into the value taken (not truncated). Rounding
effectively provides an additional half-bit of resolution.
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Displays

You can set up two displays (A and B traces) to display any of the results in the following lists. Their
coordinates are selected from the menu displayed under the COORD hardkey (to display phase,
select PHASE in this menu after setting the trace’s MEAS DISP to be MAG). The general
categories of display groups are shown down the right side of figure 1-16.

Specific selections are made from softkey menus under two hardkeys: MEAS DISP and VIEW
INPUT. The group under MEAS DISP are displays of data after the data has passed through the
digital filter block. Displays listed under the VIEW INPUT hardkey are used to display unfiltered

data.
Display Type Versus Domain

Dispiay Types Rouon | et | SRRt | Time Gapture
Time-Domain Measuramants

Filtered Time Record X X
Compressed Time Buffer (1-10 records, Ch 1 or 2} X
Orbits (Ch 1 versus Ch 2) X

Input Time Record {full span, Chs 1 and 2) X X X X
Auto Correlation (Chs 1 and 2) X

Cross Correlation X

Impulse Respense X

Frequency-Domain Measurements

Input Linear Spectrum (full span, Chs 1 and 2) X X X X
Filtered Linear Spectrum (Chs 1 and 2) X X
Power Spectrum (Chs 1 and 2) X X X X
Power Spectral Density (PSD, Chs 1 and 2) X X X
Square Root of PSD (Chs 1 and 2) X X X
Energy Spectral Density (ESD, Chs 1 and 2) X X
Cross Power Spectrum X X X

Frequency Response (linear frequency spacing) X X

Freguency Responss (log frequency spacing) X X

Coherence Function (with averaging) X X X

Amplitude-Domain Measuremants

Histogram (Chs 1 and 2) X X
Probability Density Function (PDF, Chs 1 and 2} X X
Cumuilative Density Function (CDF, Chs 1 and 2) X X
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Digital Details

This chapter covers the details specific to making connections and selections prior to using the
digital capabilities of the HP 3563A. If you haven't yet used this HP 3563A, you should read this
chapter before making your first digital measurement.
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Input Configuration

You configure the HP 3563A’s inputs with the INPUT CONFIG hardkey. Figure 2-1 show the
softkeys available under this key. Notice that the softkeys differ for analog and digital inputs. If an
‘input is analog, you need to configure only two things: ac or dc coupling, and floating or grounded
inputs. If an input is digital, you need to configure many things, such as number format (twos

. complement or offset binary), data size, data clock, and sample clock. This chapter shows you how
to use these softkeys to configure a digital input.
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Configuring an Input Channel for Digital Data

The softkeys in figure 2-1 allow you to configure the HP 3563A’s input channel. To configure an
input channel for digital data, toggle the channel’s AN DIG softkey to DIG. For example, to
configure channel 1 for digital data, toggle CHAN 1 AN DIG to DIG; to configure channel 2 for
digital data, toggle CHAN 2 AN DIG to DIG. Then use the other softkeys to select the data format,
data size, data clocks, and sample clock. ' e

The following sections briefly describe all softkeys used to configure a digital channel (see the
HP 35634 Operating Manual for complete details). o

CHAN 1 AN DIG

INTERFACE 1

FROM SOURCE

FROM POD 1

CHAN 2 ANDIG

INTERFACE 2
FROM POD 1

FROMPOD 2

Selects analog (default) or digital data for channel 1.

Pulls ilip the Interface menu for channel 1 (see “The Interface Menu™).
“ Connects Channel! 1 to receive digital data directly from the source.
‘Connects Channel 1 to receive digital data directly from Pod 1.

Selects analog (default) or digital data for channel 2.

Pulls up the Interface menu for channel 2 (see “The Interface Menu”).
Connects Channel 2 to receive digital data directly from Pod 1.

Connects Channel 2 to receive digital data directly from Pod 2.
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The interface Menu

The interface menu allows you to set up a channel’s digital interface. It allows you to select the
number format (twos-complement or offset-binary), data size, data clock, and sample clock. This
menu also allows you to see a visual picture of the current configuration for a channel.

The interface menu is the same for channel 1 and 2. To set up the digital interface for channel 1,
press INTERFACE 1; for channel 2, press INTERFACE 2. The softkeys in this menu do the following:

Note The following paragraphs describe the softkeys for INTERFACE 1. These softkeys
# operate the same for INTERFACE 2, except as noted.

TWOS COMPL -+ Sets the channel to treat input data as a twos-complement number.
OFFSET BINARY Sets the channel to treat input data as an offset-binary number.

DATA SIZE Displays the Data Size menu, allowing you to specify the parameters
associated with data and bus size, such as number of bits (8 or 16), size of
the Bus (8 or 16), and the significant byte. See “The Data Size Menu.”

DATA CLOCK Displays the Data Clock menu, allowing you to set parameters for an
input-pod’s CLK signal. The CLK signal and the sample clock are used to
clock digital data into the analyzer. See “The Data Clock Menu.”

SAMPLE CLOCK Displays the Sampie Clock menu. The data clocks are used to clock data
into a data buffer, one sample at a time. The sample clock signal is used to
clock digital data into the measurment channel(s). The sample clock is not
a unique signal; one of the existing clock signals is chosen to be the sample
clock. There are two possible sample clock menus; one if both channels
are digital and another if they are not (see figure 2-1). Both menus allow
you to choose the signal to use for the sample clock. See “The Sample
Clock Menu.”

CHAN 1 CONFIG Displays the channel-configuration diagram for channel 1. For
INTERFACE 2, this key reads CHAN 2 CONFIG,and the softkey displays
the channel-configuration diagram for channel 2. These softkeys are also
available under the SPCL FCTN hardkey (see chapter 1).
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This menu allows you to specify the parameters associated with data and bus size, such as number of
bits (8 or 16), size of the bus (8 or 16), and the significant byte. The following paragraphs give a
brief description of these softkeys. See “Data Size” later in this chapter for additional information.

#BITS 816

UPR 13 BITS

LOW 13 BITS

BUS §Z8 16

X OVFL ON OFF

The Data Clock Menu

This toggle softkey allows you to choose a data size of either 8 or 16 bits.

When the input data is 16 bits, the analyzer uses only 13 of the 16 bits. The
analyzer uses the upper 13 bits when this softkey is active. The lower 3 bits
are rounded.

When the input data is 16 bits, the analyzer uses only 13 of the 16 bits. The
analyzer uses the lower 13 bits when this softkey is active. The upper 3 bits
(most significant bits) are ignored. If they are not the same as the sign bit,
the message DIGITAL OVER RANGE # (Channel number) appears in the
status line.

Specifies the size of the data bus being used. Data may be read from a
16-bit bus or an 8-bit bus (see “Data Size” for details).

Enables or disables user overflow detection (see “Pod Q Signal
Definitions”).

The Data Clock menu allows you to specify the active clock edge and the qualifiers (on Pod Q)
necessary to select the data to be associated with the input channel. The following paragraphs
contain a brief description of these softkeys. See “Data Clock” later in this chapter for additional

information.

CEDGE + ~

CLOCK QUALFR

LAST 10

COMPUT DELAY

Selects the active edge for the data clock. The (+) selects the low-to-high
transition (the rising edge). The (- ) selects the high-to-low transition (the
falling edge).

Defines the state of the 8 qualifier bits on Pod Q, the qualifier pod, to
qualify the clock. Each bit can have the value of 0, 1 or X (don’t care). See
“Data Clock” and “Pod Q Signal Definitions” for details.

Specifies which of two bytes from an 8-bit bus will be the last one read when
using 16-bit data. See “Data Size” for additional details.

Sets a computational delay to correct the time lag associated with the
computations in your system from digital filters, microprocessors, 3and the
like. See “Computational Delay” for additional details.
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The Sample Clock Menu

The sample clock menu allows you to set up your sample clock. There are two possible Sample
Clock menus; one if both channels are digital and another if they are not (see figure 2-1 ). The
following paragraphs contain a brief description of these softkeys. See “Sample Clock” later in this
chapter for additional information.

PODQ CLOCK Selects the clock line on Pod Q to be the Sample Clock.

EXT SAMPLE ~ Selects the external sample, a BNC connector on the back panel, as the
sample clock.

CHAN 1 CLOCK Selects the qualified data clock for Channel 1 to be the sample clock.

CHAN 2 CLOCK Selects the qualified data clock for Channel 2 to be the sample clock.

CEDGE + - Selects the active edge for the scleétcd clock. (This choice is available only

if the Pod Q clock is the signal selected to be the sample clock.)

SAMPLE FREQ Allows you to enter the frequency of your external sample clock. This same
softkey is also located under the FREQ hardkey.

MIXED RATIO This softkey is used for mixed-domain systems (oee channel analog, the

other digital). It specifies the ratio between the analog and digital sample
rates. See “Mixed-Domain Setup” and “Mixed Ratio” for details.
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' Rear-Panel Cables

Digital data is transferred into and out of the analyzer with pods connected to the rear panel. See
figures 2-2, 2-3, 2-4, and 2-6. There are six cables that plug into the analyzer’s rear panel:

s« Pod1land Pod 2: two 16-bit input data pods

a Pod Q: 8 qualifier lines, plus a trigger, a clock, and an external overflow signal (all inputs)
" w Source MSB and Source LSB: two 8-bit source (output) pods

m» Pod X: abuffered sample clock signal, source clock, and source enable

The input cables must be connected to the device under test (DUT) with the pod tips; the pod tips
contain circuitry necessary for proper signal conditioning. The output cable impedance is 50Q and
does not require the vse of pod tips. Optional accessories that simplify connection to the_DUT are:

s HP 10346A 8-channel TTL tristate buffer
a HP 01650-63201 termination adapter: a 40-to-20 pin adaptcr containing the same signal

conditicning circuits as are in the standard pod This is used to connect the mpnt pods toa
20-pin connector.

Channel 1 <: Pod 1
Charmnel 2. fod 2
E 2 —)
$ & K7 Pod @ fquatifiers)
€ 5
Anaiog = & Source Pods
Source LS8 & MS8)
T Pod X
HP 3563A

Figure 2-2. HP 3563A Connections

: Pod tips
Pod tgs — cornea
to circuit 1o circult

— Pod
This end Tristate Pod il
Eea?:a ngl S not shown This end
- ] rrp+— Piugs into
‘ rear panel
Figure 2-3. Input Cable and Pod Figure 2-4. Qutput Cable and Pod
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Input Pods 1 and 2

Data is brought in through input pods 1 and 2. Each pod has 16 data lines and a clock which must be
used to clock in data on that pod. Pod 1 can bring in data for Channel 1 or Channel 2 or both
(useful for taking data for both channels from a common bus). Pod 2 can only bring in Channel 2
data. Thirteen of the sixteen data bits are used by the analyzer. You can select either the upper 13
bits of a 16-bit word (in which case the fower 3 are rounded) or the lower 13 (in which case the
upper 3 are truncated).” You can transfer eight-bit data or sixteen-bit data on an eight-bit bus. The
data format can be either two's-complement or offset binary. See figures 2-9 and 2-11 for
information on data timing versus the sample and data clocks.

CACO0BNGNCODIHINM0N

[ou-nvnonncgzazgl!a

Figuras 2-7. input Pod

Number Format

Twos-com;ilemeht: sddddddd dddddddd (MSBILSB) where
s = sign bit (0 = positive, 1 = negative) d = digits

Offsetbinary: - sddddddd dddddddd (MSB LSB) where
s = sign bit (1 = positive, 0 = negative) d = digits

Offset-binary number formats are most commonly used with DAC’s and ADC's.

Signed Intagar | Two's-Complement Offsat Binary
Humber™ ™~ (hex) (octal) (hex) (octal)
32787 TFFF orrire FFFF 177777

1 00 0C0001 8001 100001

0 120000 . {oooco © - B000 - 100000
-1 FFFF 177777 THFF orrrit

- 32768 8000 100000 0000 000000

1 In swept sine measurement mode, the analyzer can be configured to automatically switch between upper
and lower 13 bits to provide full 16-bit performance.
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Data Size

The number of data bits doesn’t always match the number of data lines on the bus, Use the
following configuration table to best set up the analyzer. When the (input) bus size is 8 bits and the

data size is 16 bits, the analyzer multi
In this case, QO is used to indicate most s
the data clock menu as

plexes the incoming data and reconstructs the data internally.
ignificant byte (MSB) by entering a clock qualifier word in
the address (1 or 0) of the MSB. It is assumed, then, that when that state

appears on the QO line, the data is the MSB. LAST 1/0 (softkey in the same menu) is the stare of Q0

which marks the last byte of the two

-byte transfer when that channel is providing the sample clock.

Otherwise, the last two bytes clocked in before the sample clocks will be taken as the data word.
These two settings (values of QO and Last) allow the two bytes to be read in either order as well as
allowing either state of QO to indicate MSB. See figure 2-8.

Bus Sizs

Data Size (# Bits)

8

16

8

Connect the 8 data lines to the 8
upper-most ped fines.

1. Gonnect the 8 data lines to the 8 upper-moast pod lines.

2. Connect Q0 on the qualifier pod to a signal to indicate which
byte shouid be clocked in first.

3. Go to Data Clock/Cleck Quaifr and set the valus of Q0
(1 er §; qualifier definition appears at the bottom of the display).

4. if that channel is providing the sample clock, use the LAST 1/0
key to select which byte is clocked in last, it may heip to turn on
the visual display of the digital interface.

5. Select the upper or lower 13 bits.

16

Connect the 8 data lines to the 8
upper-most pod lnes

Connect afl 16 fines to the pod; then select either the upper or lower
13 bits o be processed,

2-10
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Data Clock

Often, Channel 1 and Channel 2 data in a sampled data system is not available at the same time. For
this reason, separate clocks on input pods 1 and 2 (the CLK signal; see figure 2-7) are used to
transfer data into the analyzer. Each pod has a clock which must be used to clock in data from that
pod. This clock has the same function as the clock on a logic analyzer. Data is transferred into the
analyzer when a clock transition occurs while the qualifiers are in the defined state (transition
direction is configurable). This clock is referred to as either a data clock or a channel clock. If the
signal selected for the sample clock is not present, the message “Check External Clock” appears in
the lower right corner of the display. Refer to figure 2-11 for timing relationships between the
sample and data clocks.

Sample Clock

The analyzer expects sampled data points for each channel to be synchronized to one clock — the
sample clock. It is not a special input signal. Rather, it is chosen from among the various clock
signal inputs. The sample clock can be either Pod Q Clock, External Sample, Channel 1 CLK, or
Channel 2 CLK. The frequency range of the sample clock is 0.001 Hz to 256 kHz.

Sample clock is the main system clock — all other timing (and phase) relationships are referenced
to it. There can be only one sample clock selected for the analyzer. In the case where there are two
clocks in a system (implying that data occurs at different times within a sample period), the sample
clock is usually set to be the signal that last clocked in input data. However, a data clock can occur
up to 250 ns after the active edge of the sample clock and still have its data point associated with the
sample clock edge (see figure 2-9). If the data clock occurs after t; but before t, the data on that
pod may be associated with either sample edge (the relationship is not defined and the measurement
data is probably corrupt).

Sample
Clock /
Data ’, ”, ‘ y ,’/ l’/ ) \ . s iy
. Clock . ," !f ‘,r ’I J’ Jf )

input >< X
Data - : ‘

Y Minimum interval after Sampte Clock before the
next Data Clock transition shoutd occur; 700 ns

ts Maximum time after Sample Clock that the
Data Clock can oecur and still associate
pod data with that rising edge; 250 ns

Figure 2-9. Timing Between Sample and Data Clocks

2-11.
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Computational Delay

Computational delay is used to correct for physical delays in sampled data systems. (For example, to
accommodate the computation time of a digital filter and delays introduced in the measurement
process, such as clock skew),

If you know the delay time between the channels, you can enter this value as the computational
delay and an appropriate phase ramp is applied to the selected channel data. When it is appliedtoa
channel that is part of an FRF measurement, a positive value of computational delay added to
channel 2 results in a negative-going phase ramp. A positive value of computational delay added to
channel 1 results in a positive going phase ramp in the FRF. (FRF = Ch2/ Chl.)

Note A computational delay can be specified for each digital channel. This doesn’t
d usually make sense but may be used for special cases, like correcting the timing of
both channels relative to a clock that isn't related to either channel.

Example: Digital data is clocked into latches with the pod data clocks. Internally, the two digital
channels receive data simultaneously on the sample clock’s active transition. If there is a known
delay between the channels that you need to preserve, you may enter that value as the
computational delay. This value is used to adjust the phase calculations for frequency domain
measurement data.

Restrictions

1. When bringing in data for both channels on Pod 1, you must wait at least 700 ns after clocking
in a data sample on one channel before clocking in data for the second channel. Bringing in
data this way requires use of qualifiers for the clock. Also, the same clock edge must be used
for both channels on Pod 1.

2. There is a special case for which data may be lost for sample frequencies above 248 kHz. This
may occur when both channels are digital and one channel, whose channel clock is being used
as the sample clock, is transferring 16-bit data on an 8-bit bus and data is clocked into the other
channel within 700 ns of the sample (and channel) clock. When this occurs the error message
“MISSING SAMPLE” is displayed.

Note While all pods and channels meet published specifications, Pod 2 can handle a

somewhat higher data clock repetition rate and lower data clock pulse width that
# Pod 1. So if you need to take data on one channel from a faster data clock than the

HP 3563A is rated (10 MHz), use Pod 2.

Maximum sample rate is stilt 256 kHz, of course.
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Grounding

Ground (black wire) is a connection to all of the interlaced ground wires on a cable. You should
connect this ground to the digital ground of the device under test. Note also that each pod tip has a
provision for a ground connection, if the black wire connection is inadequate (due to noise or
ground loops). Usually, it isn’t necessary to connect both black wire ground and the individual pod
tip grounds. Either one should be sufficient.

Mixed-Domain Setup

Mixed-domain refers to the configuration where one channel is analog data and the other is digital
data. This requires some special considerations: :
s Always use View Input to check that you have the expected signals before taking a measurement
s If either channel is digitak:
- You must supply a sample clock (Fs) (see “Sampie Clock™)
- The analog channel is clocked by the sample clock (see “Mixed Ratio™)
w The digital channel is clocked at or before the analog channel (see “Mixed Ratio”)
» There is no anti-aliasing below 100 kHz for the analog channel

Mixed Ratio

If the measurement is mixed domain, mixed ratio can show the effects of a sampled system on the
analog portion of the circuit. A sampled system has its frequency response replicated at multiples of
the sample rate. These replications (or images) may or may not affect the analog portion of the
design. Mixed ratio allows you to measure the system at a sample rate comparable with the analog
system, and also simultaneously measure a digital system at a lower rate. This requires using the
faster clock as the analog clock, and the (slower) digital clock as a data clock. You enter the digital
clock rate (Fgq) as the sample frequency and a number between 1 and 512 as the mixed ratio value.
{For more information, see “Mixed Ratio” at the end of chapter 3 — particularly as the Mixed
Domain Example at the end of this chapter.)

For example, the digital part of a control system runs at 1 kHz. To measure the effects of the digital

system over an 8 kHz bandwidth, enter 1 kHz as the sample frequency and a ratio of 8. A1 kHz
clock would be connected as a channel clock and an 8 kHz clock connected to Pod Q clock.

2-13
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Qualifier Pod Q

Quailifiers

In some applications, data isn't valid at every transition of a given clock signal. For these
. applications, you can use the eight qualifier lines on Pod Q (Q0-Q7) to clock data into the analyzer.
The analyzer monitors the state of these lines and compares them to states you entered at the front
panel. When a clock edge occurs and the pattern matches the state of the qualifier lines that you
entered, data is clocked into the analyzer. This allows the use of Pod 1 to bring in data for both
channels; each channel is given a unique qualifier pattern (similar to an address). This method may
also be used to enable source data out of the analyzer when using a tri-state pod.

Qualifiers are not required, but provide flexibility for systems that transfer both input and output
data on a single bus (like a microprocessor data bus). For example, a digital filter reads data from a
memory-mapped I/O port on one bus cycle, makes a computation, and outputs data to a different
port on another cycle. Qualifier bits connected to address lines, used in conjunction with the
input-pod data clocks (either Pod 1 or Pod 2) can be used to acquire filter input data on one
chaneel, and output filter data on the other. The clock signals commonly used are address strobe
signals, read or write signals, or a CPU clock. To understand how qualifiers can be used to enable
source data, refer to the discussion on Pod X. For setup and hold-time information, see figure 2-11.

Other Pod Q Signals

TRIG (digital trigger) is another form of external trigger, but one where the front-panel signal
“External Trigger” except that the front panel signal is qualified by slope and level. TRIG is a TTL
signal that triggers on the rising edge.

Q-CLK is a clock input that is most commonly used as the sample clock in mixed analog/digital
configurations.

OVF is a user-enabled overflow/overload indicator for the system under test. A high TTL level

indicates an overload condition. If averload rejection is on (X OVFL is ON; see figure 2-1)while
averaging, that data is rejected when an overload condition occurs.
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Qualifier Pod Q
Figure 2-10. Pod Q Signal Lines
X X
[ [ ™
Data Clock N '
§ e be

Qualifiers >1< §<

1 Data set-up time relative to data clock: 20 ns

t,, Data hold time relative to data c%ock; Sns

' th Qualifier set-up time relative to data clock; 60 ns

t, - Qualifier hold time relative to data ciock; & ns

Figure 2-11. Setup and Hold Times for Digital Inputs
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Source Pods MSB/LSB

Sixteen bits of source data are available on two 8-bit pods — source MSB and source LSB. The
upper 8 bits appear on the source MSB pod; the lower 8 bits (where bit 0 is the least significant bit)
appear on the source LSB pod. These are TTL-level signals with 50 Q cutput impedance.

A new source value appears with every occurrence of the sample clock. Source data becomes valid
approximately 150 ns after the transition of the sample clock (+ transition of Ext. Sample, or either
transition of the Channel Clock or the Pod Q-Clk). A signal on Pod X (SRC-CLK) indicates valid
source data. See figure 2-14 and the SRC-CLK description under Pod X.

SOURCE POD-MSB
L. S—

I SOURCE POD-L58
[l L3 " B |

BUIREN0L S Tak43210

EE

Figure 2-12. Source Pod MSB Figure 2-13. Source Pod LSB
User - Supplied
Sample Clock —— o2 N Signal

——! I-—— = 150ns
SRC >< 22 ><
22 : Analyzer

DATA
;!5011% 350%ns*—-—-—-! Output
ww-—eg—l " { signais
SRC-CLK

* 3500ns is the minimem at a 256 kHz sample rate.
interval increases with decreasing sample rate,

Figure 2-14. Source Timing Diagram.
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Pod X

Pod X provides a buffered sample clock signal and two special source signals, as follows:

SRC-CLK (source clock) is an analyzer output that indicates (on its rising edge) when source data
becomes valid. The source clock signal becomes active (high) approximately 150 ns after the source
data is valid, this occurs 100 to 200 ns after the sample clock. The source clock signal transition
occurs once per sample period. See the figure 2-14 for setup and hold time information.

SRC-EN If you are using a tri-state bus, source data can be enabled onto the bus with the tri-state
pod accessory (HP 10346A). This pod has built-in tri-state buffers. It requires you to provide +5
volts, ground, and an active-low enable signal. If the system being tested does not have a convenient
enable signal, SRC-EN may be generated with qualifiers. SRC-EN should be connected to the
tri-state pod enable. Qualifier signals should be connected to Pod Q and configured with the
Source/Data Interface softkeys. When the qualified condition is satisfied, SRC-EN goes low and
turns on the tri-state pod signals.

SMP-OUT is a buffered version of the Sample Clock signal.

POD X

prssssssss QN[ mssssiciay

[ anp I &
-

$CE ENB

SCE (IK

Figure 2-15. Pod X Signal Lines



Digital Details
An All-Digital Example

An All-Digital Example

This section shows you how to interface the HP 3563A to a common signal-processing system.
Then, it shows you how to verify correct operation of the signal-processing system’s digital filter
algorithm. The block diagram for this example appears in figure 2-16.

System Operation

The circuit in figure 2-16 is a common signal-processing system, in this case a Texas Instruments
TMS320 Digital Signal Processor. The ADC performs analog-to-digital conversions at a rate F..
When it finishes a conversion the ADC clocks data into an input port (holding register) and signals
the TMS320 that data is ready by asserting ADCRDY*. (Signal names ending with an asterisk
denote signals which are active-low.)

The TMS320 reads input data from Input Port 6 and performs a digital filter calculation. When the
calculation is complete, the TMS320 writes the result to Output Port 2 by asserting OUTP2*.
Output Port 2 is another holding register. Its output is connected to a DAC that converts the digital
data back to an analog signal. After the write to Output Port 2, the TMS320 writes status
information to Output Port 3.

FMS320 System
Analog Input INPE* QUTP2# Output Analeg
i ADC =< Port & Port 2 sl DAC Out
- ADCROY* J}
rg
y
‘ INETE OUTE
Timing i } Cutput
Port 3
T
Decoder
)

i om

HEE

. §\ 3 - @qupou‘;"os}

aiifiar
Saurce Source Data Bus ™
Pods Tristate it e
Pods % Clock fpod 1) Pod 1
ADCHD Y Address Data
T™ME220

Figure 2-16. Example Digitai Filter Block Diagram
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The TMS320 I/O structure is designed to map address lines A0-AZ2 into eight input and output ports.

+ A decoder monitors these address lines and asserts control signals (INP6*, INP7*, or OUTP2*)
based on the port address plus DEN* or WE*. DEN* is asserted by the TMS320 during input
operations; WE* is asserted during output.

Signal Definitions

Signal Name Dascription
AQ, A, A2 Address lines: lowest three TMS320 address lines
ADCRDY* ADC Ready, active low: signals the TMS320 that a conversion is complete
DEN* Data Enable, active fow: controf signal generated by the TMS320 for data input
iNPE* Input port 6, active low: used to enable input data from ADC
INP7* input port 7, active low: used to enable input data from tri-state source pods
ouTR2* Output port 2, active fow: used to clock output data into the DAC
QuTP3* Output port 3, active fow: used to clock output data into a status register
Fs Sample clock: generated by timing circuit
WE* Writs enable, active low: control signai generated by the TMS320 for data output

———/ cmA\?ﬂfsion \ / \_...__.
ACCROYS I tme / \ / |

Read Write Write Read Yirite
Port 6 Port 2 Port 3 Pert 6 Port 2
ro-s2 A XX A X A A
(N N
DENF \ / \ N\ /
NPG®
N T/
oUTPIS ) \ /
HZ:ESA N X N+1
mﬁ X N X X I X X X X N+t
gt Qutput Status Input Cutput
Data Cata Data Data Data
Vatid Yahg Vaiic Yaiid Vaiid

Figure 2-17. TM$320 Timing Diagram
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Digitai Filter Frequency Response Function

For this exercise, we want to verify correct operation of the digital flter algorithm. We can verify
the digital filter algorithm by measuring the frequency response of the digital filter. To do this, we
will use the HP 3563A’s digital source and one digital channel. This type of measurement is called
digital-in/digital-out measurement.

Connecting the Digital Source

First, we must determine where to connect our digital source. From our block diagram, we know
that the TMS320 reads data from Input Port 6, performs its digital filter calculation, and then writes
the result to Output Port 2. To measure the frequency response of the digita] filter — in this case
the TMS320 — we need to inject our signal into the TMS320 and see the result of its digital filter
calculation. In other words, we need to connect-our digital source to the TMS320 data bus.

We must modify our block diagram before we can connect our digital source to the TMS320 data
bus. Looking at our block diagram, we see that Input Port 6 — the register that holds ADC data —
is tri-state. Furthermore, we see that the TMS320 enables this register after an ADC conversion by
asserting INP6*. We need to disable Input Port 6 to avoid bus contention. We can do this in one of
two ways:
s Hard-wire the tri-state enable on the ADC register (Input Port 6) inactive, and connect INP6*
to the tri-state enable on the source pod accessory.
w  Rewrite the TMS320 program to read from a port other than port 6; for example, port 7. Then
connect this new signal, INP7*, to the tri-state enable on the source pod accessory.

We will use the second method. In this case, the TMS320 is signaled at the end of an ADC
conversion. But instead of reading from Input Port 6, it reads from Input Port 7 (our digital source).
This requires a simple one-line change in the TMS320 program. Since the enable time and
propagation delay for the tri-state pod is approximately the same as that of the ADC register (18 ns
and 12 ns, respectively), we satisfy all timing requirements. Lastly, since the TMS320 data bus is a
tri-state bus, we must use the tri-state pod accessory for our digital source (HP 10346A).
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Connecting the Digitai Channels

Now we must determine where to connect our digital channels. This is easy. For a frequency
response measurement, we need to connect one channel to the input of the device-under-test
(DUT) and the other channel to its output. For frequency response measurements, the HP 3563A
expects the input of the DUT on channel 1 and the output on channel 2. So we must connect
channel 1 to the input of the DUT. Since the digital source is connected to the input of our DUT,
we can connect channel 1 to the digital source. To do this, we can take advantage of the HP 3563A’s
internal connection of the digital source to Channel 1 (see “Configuring the Analyzer”). In this
case, we don’t need to provide a clock for Channel 1 — it is also provided internally.

Now we must connect channel 2 to the output of the TMS320. We can use either Pod 1 or Pod 2 —
in this case we'll use Pod 1. Pod 1 can be connected directly to the 16-bit TMS320 data bus. We
must also connect a data clock to Pod 1. Looking at the TMS320 timing diagram, we see that output
data is valid when the TMS320 writes to port 2. Thus, we could use OUTP2* as the data clock. Or,
we could use WE* as the data clock. The TMS320 asserts WE* when it writes data. Note that WE*
is asserted twice during one sample period — first to Output Port 2, then to Qutput Port 3. Ifwe
use WE* as the data clock, we must use qualifiers (on Pod Q) to select the correct WE* assertion.

For this example, we will use WE* as the data clock to illustrate the use of qualifiers. We'll connect
qualifier lines QO0, Q1, and Q2 directly to address lines AQ, Al, and A2. Later, we'll configure the
analyzer to accept data when the data clock goes from low-to-high and the state of the qualifier lines
is 010 (Port 2).
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Selecting a Sample Clock

Now that we've connected our digital source and digital channels, we need to select a signal for the
sample clock. As a reminder, a sample clock must be used for all digital measurements. Itis
important to remember the difference between the data clock and the sample clock. The data clock
transfers data into the analyzer; the sample clock is the main system clock, to which all timing (and
phase) relationships are referenced. In other words, the data clock is referenced to the sample clock
(see “Sample Clock” earlier in this chapter). In the HP 3563 A, the digital source outputs a new
data-point with each active edge of the sample clock.

We need to look at the TMS320 timing diagram to determine the signal to use for our sample clock.
For this example, we decided to use the same clock for both the data clock and the sample clock.
This simplifies the connections to our circuit. Remember, for our data clock we selected the rising
edge of WE* qualified with address lines A0, A1, and A2 (same time as when OUTP2* goes high).
Since our data clock is qualified, our sample clock is also qualified. We can see in the timing diagram
the effect of using this same signal for both the data clock and the sample clock. Notice that when
both the address lines equal 010 (Port 2) and WE* goes from low-to-high, the following occurs:

s The TMS320 output data is valid
= The digital source changes state (the line labeled “HP 3563A Source” changes state)

In other words, we transfer data into the analyzer via Pod 1 and, at the same time, output new source
data via the source pods. Since the source data is fed into a tris-state pod, the source data won't be
read by the TMS320 until the TMS320 enables the tri-state pod.

By further examining the timing diagram, we can also see that when the qualified data clock goes
high, source point N is associated with response point N. Thus the phase of our FRF measurement
will not be affected.

Note Always examine timing relationships before making a measurement to understand
# any factors that could affect phase. Timing skew between channels can cause phase
artifacts. For example, if the output data for point N— 1 occurred when source

value N was present, then a phase ramp associated with this 1-sample-point delay
would be introduced in the FRF.
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Configuring the Analyzer

Now that we've made all the necessary connections to our circuit, we need to configure the analyzer.
We'll press the following keys to do this:

INPUT CONFIG
CH1 AN DIG
FROM SOURCE

INTERFACE 1

CHAN 1 CONFIG

CHz2 AN DIG

FROM POD 1

INTERFACE 2
CHAN 2 CONFIG

SAMPLE CLOCK
SAMPLE FREQ?

15.625 kHz
RETURN
DATA CLOCK
CLOCK QUALFR
300t X010
SAECEN
SOURCE LEVEL
30 my
SCURCE TYPE
BURST CHIRP

Selects digital data as input for channel 1.
Makes an internal connection between the source and Channel 1.

Displays the Channel 1 configuration diagram shown in figure 2-18.

Selects digital data as input for channel 2.

Selects Pod 1 as the source of the digital data for Channel 2.

Displays a visual picture of the Channel 2 configuration . This picture will
update as we continue to setup the analyzer (figure 2-19 shows final setup)
Notice that the default sample clock is Chan 2 Clock — this is what we want.
Sets the sample frequency to that of our system. '
Note that the positive (+) edge is default —3 this is what we want.

Selects 010 for qualifier bits Q2, Q1, and QO (respectively).
Press the DON'T CARE softkey to enter the X's.

Note that the source automatically changed to digital.
We'll select a source amplitude of 30 mV.

Burst chirp works best with this filter.

Chanmnet

] Digital Sowurce i

16 Bitw

[ sswupocooooooooo |

e
1 ROUND
e17TS ape

1 Comfig Chammnat 2 Config
ENPUT POD QUAL IR TER #00
™ i) (-3
/M0 4 8 & 2 O e re & & 2 4
l?n-nu---nauuuu----] [uuuuaaauuaununnoto]
18 Bite &
tNPUT PQD 1
.
s 14 12 0 8 & & 2 O
iTaunannccanﬂﬂunauu ;
S-S 10N CUAL I FIED f S+510N QUALIFIED
D=01GIT SAMPLE [ 3000000200000000 ID-DIGI? SAMPLE
CLix N Cuk
13 ROUND
L IRpyt mrs oms ifnpur
Qataq Qota

Figure 2-18. Digital Channel 1 Diagram

Figure 2-19. Digital Channel 2 Diagram

2-23



Digital Details
An All-Digital Example

WINDOW
UNIFORM
LINES 1024

SELECT TRIG
SOURCE TRIG

STATE/TRACE
STATE/TRACE

STATE/TRACE

MEAS DISP
FREQ RESP

SCALE
Y FIXED SCALE
40,— 80 dB

Burst chirp is self-windowing; no window needed.

Allows viewing up to FJ/2.

Acquires new time record when the source outputs its data.

Displays the analyzer state.

Displays digital setup state as shown in figure 2.20.

Puts the trace back on the display.

Selects the frequency-response measurement display.

Sets the maximum and minimum y-axis scale values to 40 dB and — 80 dB

(numeric values, including the minus and comma, are entered via the
numeric entry pad; units (dB) are entered via softkeys.)

‘We now see the frequency response of the digital filter, as shown in figure 2-21. The y-markers
indicate a dynamic range of about 80 dB. The digital filter was designed to have a dynamic range of
about 100 dB. Our measurement is limited because we can process only 13 bits of data on both
channels. To improve our measurement, we can switch to Swept Sine mode and take advantage of
the built-in range switching of the digital channels. The analyzer automatically changes to the lower
13 bits when it detects lower level signals. This feature is available only in Swept Sine mode.

224

ODigital Setup Page 2
I NRUT CHAN 1 CHAN 2
Digittat (FPod 5 Digital (Fog 1}
DATA : FORMAT = BiTS BUS S2Z AL i GNMENTY
Lol I | Twoa Cmp 14 16 Upr 13
tH 2 Twoe Cmp 16 16 Upr 13
CLOCK: ERGE QUAL IFIER DELAY
[« T Pam X IOXA KKK e.0 S5
cH 2 Pos XXXXXQIO .0 35
S5AMPLE FREQ
CH 2 15 . kM=

QUTRPUT: Digitat

SOURCE TYPE BURST LEVEL

Brat* Chirp 0% 2% BmVpic
OATA FORMAT QUAL IFIER RANGE
Twos Lmp KKK MK 5 12 Vpk

Figure 2-20. State Table, page 2
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To set up the analyzer for swept sine mode, we need to press the following keys:

MEAS MODE

SWEPT SINE Selects the Swept Sine measurement mode.

LINEAR SWEEP Selects linear sweep (instead of log sweep) for the swept sine measurement.
RANGE

AUTO 1 16 BIT Selects digital autorange for Channel 1.

AUTO 218 BIT Selects digital autorange for Channel 2.
START This measurement takes several minutes. See the results in figure 2-22.

Notice that in the completed swept-sine measurement the null region contains some noise, We
could improve the measurement in this region by increasing the gain of our source. To do this, we
could use the Swept Sine mode’s autogain feature to automatically vary the source level to maintain

a constant amplitude.

Conclusion

For systems that require digital frequency response measurements with approximately 100 dB
dynamic range, Swept Sine mode with digital autoranging is the best solution. Any measurement
mode will work for systems that require digital measurements with 80 to 85 dB dynamic range.

FREQ RESP CROw tp i f FREQ MESP
A#0.C 4#0.C

15 ¢ \ 18 .0 \
100 IDiv

N

- N | » N
I \ /

<

~80 @ -840 a
Pxg Y B ZX3 7 BGLFx Pwxd Y 1040 Hz 7 8125k

Figure 2-21. 13-Bit Measurement Figure 2.22, 16-bit Measurement
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Mixed-Domain Example

The control system shown in figure 2-23 has both analog and digital components. The sampled data
portion of the system (ADC, Digital Filter, and DAC) runs at a 31.25 kHz sample rate (Fgq is the
digital sample frequency). Energy at frequencies above Fsa/2 causes aliasing in this loop and can
potentially affect stability.

Sampling causes spectral images to appear at multiples of the sampling rate (see figure 2-24). These
higher frequency signals, if not filtered, will feed back and cause aliasing. An anti-alias filter
(low-pass filter) could be inserted before the ADC, but it is desirable to minimize cost in the design.

In general, the plant in a control loop has a low-pass filter characteristic. Also, the DAC has a zero
order hold characteristic that functions as a low-pass filter. It’s possible that, together, the DAC and
plant could provide enough attenuation to eliminate the need for an additional filter. Our objective
is to characterize the DAC-plant combination to see if it adequately filters the image frequencies
produced by sampling.

p— ! Cls}

ADC G2 L ] DAC ] Prant o~
Filter ’
Fy = 3125 iz |
RN NOGSE CCNEE RN YR AOTGE WEE EEOT GRS WX J

Figure 2.23. Sampled Data System Block Diagram

NN A

Figure 2-24. Sampling Causes Spectral Images To Repeat
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Scurce Ch i Ch?

Plant

Figure 2.25. Measurement Setup: Plant Characterization

We will first characterize the plant, then make the mixed-domain measurement of the DAC-plant
combination. Although it is not necessary to start with a plant charactermauon it’s useful when
explaining the details of a mixed-domain measurement. T

The measurement setup is shown in figure 2-25.

MEAS DISP
FREQ RESP

SCURCE
SCURCE LEVEL
5V

SCALE
Y FIXED SCALE
20, —~75dB

AVG
NUMBER AVGS?
25
STABLE
START

X

Selects the frequency response function display.

Sets the analog source output level ta 5 V.
Random noise is the default source type.

Sets the display scale to range from 20 dB to — 75 dB.

Turns on averaging.

Sets number of averages to 25.
Specifies stable averaging.

Begins the measurement.

Turns on the x-marker and moves it to the resonance peak.
See figure 2-26.

Note that although the plant response has a general low-pass characteristic, a fairly significant
resonance is present at around 17.5 kHz (see the marker values in figure 2-26). Energy from image
frequencies above 15.625 kHz (Fy4/2) excite the resonance and are amphfif:d, rather than

attenuated.
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|l AV QUHOvip Hey;n

- N

PAAL L b
WWIWM
;
-75,0 1

Exd Y © Hz 100k

Figure 2-26. Plant's Frequency Response

Now we know the response of the plant. Next we will model the DAC that precedes the plant, and
then combines the two responses to model expected response of the combination. The DAC can be
modeled by a ZOH (zero-order hold), which has a frequency response shown in figure 2-27. To
generate this response, press:

B This series of key presses synthesizes a filter response with no loss or gain at
SYNTH any frequency,; this is the filter characteristic of a piece of wire.

DOMAINS 2 Then we turn on the effects of a zero-order hold.

POLYNOMIAL The resulting response is due entirely to the ZOH sampling.

CLEAR TABLE

CLEAR TABLE Clears the table of any previous values. (Preset doesn't clear it.)

EDIT NUMER#? Edit numerator number? defaults to 1 if no entry is made.
ADD VALUE

1 ENTER
SYNTH FCTN

SAMPLE FREQ?

31.25 kHz

RETURN

RETURN
CREATE TRACE Synthesizes a trace in the z-domain with zero-order hold turned on in

OHOLD QN OFF  Trace B. We'll keep it in Trace B to compare with results displayed in A.
Z DOMAIN -

SCALE Set the y-axis scale to 2 100 dB range.
Y FIXD SCALE? .
25, ~75dB - Seefigure 2-27.

Note the generaiﬂ iéw;pass response. Also note the nulls at multiples of the sample frequency.
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- NN

-5 0

kL
Fxd Y O fat

100K

Figure 2-27. The Zero-Order Hold Response of a DAC

To see the effect the DAC response will have on the plant, press:

MATH Multiplies the active trace (B) with Trace A. This response is the predicted
MPY response of the DAC-plant combination. (Recall that Trace A contained
TRACE A the plant FRF.)
X OFF Turns of the x-marker. See figure 2-28.

We have an expected response. Next we will make the actual DAC-plant measurement and

compare it with our predicted response.

e; SENTHES!S Polymomial

S

12 s \\\
IDiv

" \

-75.0 \\ JJV

WY

Fxd Y Q nzZ

Figure 2-28. Predicted Response

100x
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Source Cht Q clock Ch2
{cigital) {digrtad {Ped Q} lanalog}
L FSG =31.25 kHz -—f
i
o DAC bemmd Plant

Figure 2-29. Mixed-Domain Measurement Diagram

The technique for making this mixed-domain measurement involves stimulating the DAC-plant
combination with the digital source (we’ll use random noise) and monitoring the analog response.
This type of measurement involves connecting 2 clocks — Fyq is used as the Data Clock on Pod 1,

and also as the Pod Q clock. See figure 2-29.

To set up this measurement, press:

INPUT CONFIG Changes Channel 1 to digital.
CHAN 1 ANDIG Note; default source is From Pod 1.
INTRFACE 1

CHAN 1 CONFIG  Display the configuration on the screen. See figure 2-30

Chammnel 1 Config

INPUT POD 1 QUAL TFIER PQD
- -~ o
M 120 8 & £ 2 O 2 & 2 2 o
[Tcn.u-auuna---n---% E‘Tncaamamannunnaunn}

Y /
16 Bits

[ soccoopooooonoss |3231EN SAMPLE

el LK
132 ROUND
Bits QP trou
H Data

Figure 2-30. Channei 1 Configuration
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SAMPLE CLOCK
SAMPLE FREQ?
31.25 kHz
MIXED RATIO?  Since the same clock is used for both the Data Clock and Sample Clock, the
1 ENTER Mixed Ratio is 1.
- SOURCE
- SOURCEANDIG
INTERFACE
SOURCE RANGE
5V (the DAC full-scale level is 5V.)
RETURN
SOURCE LEVEL The measurement is noisier if you use larger values.
1V '
A Selects Trace A to show the response.
START Starts the measurement. e
SCALE e Sets the y-axis scale. See figure 2-31.
Y FiXD SCALE?
20, —10dB -
. ;gﬁg RESP Z2BAvg QWOVvip M
3 7S ‘i\
T8iv \\
=1
..... ~J
-10 .
Fxd ¥ © mx 12.207x

Figure 2-31. Mixed Domain: Rat_!b_ = 11
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Since our sample frequency is 31.25 kHz, we only see up to Fu/2.56, or 12.207 kHz Fy/2 is

15.61 kHz but calibration is specified only to Fe/2.56, which corresponds to 801 lines (under the
WINDOW hardkey). To view all the way to Fsu/2, select 1024 lines instead of 801. To compare with
our synthesized measurement, we need to adjust the scaling:

A&B Sets the scale for both axes.
SCALE
X FIXED SCALE
0, 12.207 kHz 12.207 = 31.25 + 2.56
Y FIXED SCALE
20, -10dB
FRONT BACK Overlays the A and B traces for comparison.
FREQ RESF EBAvg O0%OvVIp Harmn
M. OESYNTHESIS Patlymam:al
20 © -
20 ©
N
wB \
\ Measured response,
Rise is due to aliasing
in the measurement.
e This can be eliminated
with the use of a mixed
I «—— ratio larger than 3.1.
e
10 | +— Predicted response
-0
FxoXxXyY C T 12,207k

Figure 2-32. Comparing Measurement and Synthesis

Note the differences in these two traces. We should check to see if we're making an alias-free
measurement. Refer to “Mixed Ratio” in chapter 3, or you can press HELP/MIXEDRATIO

to get the same explanation on the display. To make an alias-free mixed-domain measurement, we
can pick an analog sample frequency by

Fsa = Fstop + Ftop

where: Faop = the highest frequency for which energy is present in the analog signal.
Fiop = highest frequency to be measured; let’s chose 35 kHz
Foa = 35kHz + 62.5kHz = 97.5kHz
Fsa/Fsa = minimum Mixed Ratio = 97.5 kHz /31.25 kHz = 3.1

Referring back to the predicted response, figure 2-28, signal levels are below 80 dB (from fuil-scale)
at all frequencies above 62.5 kHz (even after the first null of the ZOH). So we will assume this is
enough attenuation to consider the signal bandlimited. Thus Fitop = 62.5 kHz. See figure 3-13.
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digital data clocked into Poa 1
{also into DACH

i»-——&ps-——t

{

analog data sampled
both channels synchronized 1o this edgel

Figure 2-33. A Comparison of Clocks

It appears that our 1:1 ratio measurement is contaminated by aliasing. This is indicated by the rise in
the response around 12 kHz due to the resonance of the plant aliasing into the measurement span.
To make an alias-free measurement, we need a clock at least 3.1 times faster than Feg. A clock at

4x Fsq (125 kHz) is available in the system. We connect this 125 kHz clock to Pod Q. The phase
relationships of these clocks is shown in figure 2-33.

To configure the analyzer, press:

INPUT CONFIG
INTERFACE 1
SAMPLE CLOCK
MIXED RATIO
4 ENTER
RETURN
DATA CLOCK

COMPUT DELAY

-4 ud

UPPER/LOWER &
A .
START

A&B
SCALE e
X FIXDSCALE
0, 48.828 kHz
Y FIXED SCALE
20, -75 dB

The clock polarity for Sample Clock is +; same as the Data Clock. Since
the positive edges on 4 Fgg and F; are out of phase, a phase ramp will
appear in the data. We could select the — edge for Q clock, but to illustrate
the use of computational delay, we will leave it +. :

A pegative value is entered because Fy; “leads” 4 Fog

Sets the display.
Selects Trace A to receive the measurement results.

Starts the measurement.

Sets up the display scaling.

Sets the frequency axis of both traces to match the digital measurement.
(Remember, the predicted measurement was over a 100 kHz span.)
See figure 2-34.

2-33



Digital Details
Mixed-Domain Example

FRONT BACK See figure 2-35,

Figures 2-34 and 2-35 compare the actual and the predicted measurements. The noise at the higher
frequencies is a signal-to-noise problem that could be reduced by changing to Swept Sine.

What have we accomplished? We made an alias-free measurement. Using the mixed-ratio feature
allowed us to look past Fyy/2 and examine circuit behavior. The conclusion to be drawn from these
measurements is that the DAC:plant combination is not a good anti-alias filter. Image frequencies
are not adequately attenuated — they alias back below 15.625 kHz (Fsa/2). This causes distortion in

the closed loop response.

To provide better alias rejection, two alternatives can be implemented:

» Design a dedicated anti-alias filter to proceed the ADC.
= Design a notch filter to attenuate image energy that could excite the resonance.

Summary

The mixed-domain measurement allowed us to measure the frequency response of a network that
contained both analog and digital signals. Using the mixed-ratio feature allowed us to measure above
the digital sample rate without the affects of aliasing. This was essential to determine the response
of a portion of a sampled-data control system.
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Figure 2-34. Upper/Lower Comparison Figure 2-35. Front/Back Comparison
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Control System Methods and Models

This chapter develops some standard control systems models and measurement methods. More
detail is provided in the three EDN articles in the last appendix. These methods and models are
used in chapter 4 “Control System Tutorial.”
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General Model of a Contro! System

The standard model of a single-loop control system consists of the following:

An input signal (1)

A device, process, or “plant” to control

A sensor to measure the response of the plant (c)

A feedback loop and summation block to give an indication (b) of the result so that they may be
combined with the original control signal to form an error signal ()

An error signal; that is sent to the plant such that ¢ is driven to minimize the error between ¢
and r. In figure 3-1, the plant’s system function is G; the feedback system function is H.

The goal is to optimize closed-loop performance. This is done by modifying the open-loop elements.
The ideal control loop output {c) tracks the input (r) perfectly in the time domain; the gain
(outputfinput) is 1 and there is no phase lag between input and output.

Figure 3-1 is a generic block diagram of a control or “servo” system. In a real environment, there are
external and internal disturbances that can affect the system’s performance. Compensation is added
to improve performance and ensure stability of an acceptable level. Figure 3-2 shows the
compensation block with a transfer function of G.. Many variations exist, out we can make
assumptions:

The control loop may be composed of mechanical devices and/or analog or digital electrical
elements. In a digital system, summing junctions may not perform addition.

Either no controller is necessary, or it is contained in the summation block.

Either no compensation exists (figure 3-1) or it is contained in another block.

C G

These systems have a closed-loop transfer function -2 e

Solving for the open-loop transfer function (-E»):
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General Model of a Control System

The open-loop transfer function is ‘2’ = GH

where: G = GGp
G. is the transfer function of the compensation network
Gy is the transfer function of the “plant” or process
H is the transfer function of the feedback network

For the derivation of the transfer function, see appendix B, Control System Development Using
Dynamic System Analyzers. ' '

_I5)eJa c g +@° G. G, c
b

b

Figure 3-1. An Uncompensated Control System Figure 3-2. Compensaticn Added to Forward Path
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Variations from the General Model

To analyze the performance of a control system, you must introduce a disturbance and monitor the
effect. Some control systems have special requirements for testing and analyzing the results — this
may limit how you approach setting up the measurement:
» Some systems have no access to the signals between blocks.
~ Printers and plotters that move a head around may have one chip that performs as a
summing junction, compensation block, and feedback block.
» Sometimes the signals of interest are in a form that is difficult to measure.
~ If the plant is a motor, the signal that drives it may be pulse-width modulated.
~ Inaswitching power supply, the output signal may be a very large voltage. -
- When the error signal (e) is analog, it may be so small that the signal-to-noise ratio is poor.
» Some systems require a stimulus signal r = Q.
— Testing disk drives requires that the disk be operating at all times; in this case so you cannot
assume r = 0. This affects the math and your approach. However, if r(t) is uncorrelated to

the stimulus signal, it can be treated as noise and averaging can be used to remove its effects.

Each situation can be solved by using variations of the general block diagram.

r T e 1T
—w—o{Z)—e—l»{Gpl"‘ Gp g High-V
Y
-

e e

]

Figure 3.3. Possible Power Supply Block Diagram
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Measurements

Here is a typical measurement sequence:
1. Draw a block diagram that represents your system, including signal path, types, and levels.
2. Work out the math that shows how to derive the open-loop response from the measurement.

3. Make the measurement.
4. Implement the HP 3563 A math that transforms the measurement into the open-loop response.

This section covers steps 1 and 2 of this sequence. The examples covered here include:

Finding the open-loop FRF using the reference input summing junction (measure b/e)
Finding the open-loop FRF using another summing junction (measure y/z)

Measuring the closed-loop FRF and calculate open-loop FRF (measure y/s)
Measuring closed-loop FRF (Vou: /Vin) and calculate open-loop FRF (measure c/r)

Measuring b/e

If you have access to signals at b and e, and the input node (r connection) is available, the best way
to derive the open-loop response is to connect Channel 2 to b and Channel 1 to e (see figure 3-4)
and display the frequency response function (referred to as either FREQ RESP or FRF). Thereis
no math to do beyond selecting the FREQ RESP measurement (under SELECT MEAS) and display
(under MEAS DISP). On the other hand, in a high-gain analog system this approach may not work,
since e may be so small that it approaches the noise floor of the system.

If the system is completely digital, a slight variation of this method is preferred. The digital stimulus
is connected to r and to Channel 1 (channel 1 can be connected to the digital source by pressing the

FROM SOURCE softkey in the INPUT CONFIG menu). Channel 2 is connected to the digital b

node. Then the b/r measurement can be used to calculate the open-loop response using the "imng"

math function found in the MATH menu.

Ch

Figure 3-4. Measurement Method With Minimal Overhead
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Solving for b yields: b = —bG1GaH + rG1GaH from which we find 2 = 5 S
from which we can solve for the open-loop response: G1GH = "I{i?,

which is of the form % , a math function built into the HP 3563 A.

Measuring y/z

See figure 3-5. A summing junction is used to add a stimulus signal (disturbance) to the loop.

Solving for the open-loop frequency response, ”2’ :

e= —eGiGaoH + r b = ~bGGHH + rGi1GH
e 1 b_ _GiGoH
r- 1+ GiG.H r 1+ GiGhH

- 6iGH

Figure 3-8. Summing Junction: Non-Inverting Inputs
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_ Using the block diagram shown in figure 3-5, we solve for }‘i (assuming r very small or constant)

y = —yG1G:H + sGiGH 2= —2G1G3H ~ 5

y_ _GiG:H z_ -1

s 1+ GhGoH g 14 Gi&aH
-§= -GG H

This is almost identical to the open-loop transfer function. The only difference is the sign «g = ——‘5.

The math necessary to derive the open-loop response simply negates the measured frequency
response. Or, you can use a summing junction like that in figure 3-8.
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Measuring y/s

Instead of measuring at y and z we can measure at y and s (connect Channel 1 to the source output).

This reduces the number of connections to the circuit under test. However, it requires a calculation

to obtain the open-loop frequency response. This measurement also demonstrates a math feature of
the HP 3563A.

Earlier we found: %f- = %; solving for the open-loop response: GyG2H =

-2
§

This is similar to the HP 3563A math feature «-1—_‘—’_{‘—1. where T is the FRF displayed trace {-
To display the open-loop transfer function, we use the FRF measurement display to get -;i and then
use 1—:_7:—7 in the math menu to do waveform math, Make sure %13 measured properly. At low

frequencies the gain of :‘-;‘ should be very nearly 1 (0 dB) and the phase should be approximately 0

degrees (see figure 3-7). As discussed in the previous measurement example, it’s easy to
inadvertently pick up a 180° phase offset in the measurement results. Also, gain offsets can be
picked up in the measurement. It's important to check the measurement results before math
operations are performed on intermediate measurements. The math functions can also be used to
“correct” a measurement containing phase and gain offsets.

Note Marker Values.

s
L NmeiETE e man. T ~ O
52275 szn / Gain = 1 (0 dB) and Phase =~ 0
2C O
aa y
TN
™~
e
Pl
-40 .0 // N
Fxg Y. 2 J g Mz Ik
brw SNAT TIMDag
FREQ RESP
180 I
He ]
Prass
Deg “""“"‘\
-180 LN
Fxg ¥ 2 Log M2 2k

Figure 3-7. Magnitude and Phase Reality Check
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Measuring c/r
Given the special case where H = 1, we can use another approach that doesn’t require the addition

of a summing junction. In this case, we can stimulate the circuit at r, measure r and c, display the
FRF (c/r), and calculate the open-loop transfer function with waveform math.

From figure 3-8 we can show that C = (R — CH)G and from this the FRF is

C -G _ -G . . TR
R"'T""EH u=1-"17 G then, solving for G in terms of Ck, G = 1+Ot’R

can be accomplished with the following math: SAVE RECALL, SAVE DATA 1, MATH, add 1, div by
SAVED 1, RECIP, NEGATE.

—IE)e—]a ¢
b

Figure 3-8. Simpiest Measurement is c/r
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Feedback Compensation

Compensation may also exist in the feedback loop. The system transfer function for figure 3-10 is

C G
K= 1+§PGC

Since stability is mostly dependent on the pole location of the system’s open loop transfer function,
the roots of the denominator are critical determinants for stability. These are values that satisfy

1+ GpGe = 0; where the open-loop gain approaches a value of 1 and the phase approaches — 180°,
Note that the compensator system function appears in the denominator whether the compensator is
in the feedback or forward path of the system.

5 G, < — &)Y—|a ¢

Figure 3-3. Compensation in the Feedback Path Figure 3-10. Feedback Compensation with H = 1
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Mixed Domain (Digital/Analog) Control System

The analog compensator in figure 3-10 can be replaced with a digital compensator as shown in
figure 3-11. The analog output signal is sampled with a sample-and-hold circuit, and then converted
to a digiial signal with a analog-to-digital converter {ADC). The digital compensator is a digital
filter. Then the compensator’s output is converted back to an analog signal with a digital-to-analog
converter (DAC) and, possibly, a reconstruction filter (a low-pass filter to reduce images that occur
on either side of multiples of the sampling frequency F;). There are many possible variations of
control loop design, with more or less of the loop being composed of digital elements.

plant
r +@ e G, c
- digital
b compensator -
DAC G ADC ‘———");“w*

Figure 3-11. Digital Compensation in an Anaiog System
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Mixed-Domain Measurements and Analysis

Now that we have created a system composed of analog and digital circuits, it's time to consider
measurements that span continuous-time and sampled-time data.

Mixed Ratio

The Mixed-Ratio value specifies the ratio between the analog and digital sample rates in a
mixed-domain measurement. Mixed ratio can be used to avoid measurement aliasing and to
measure beyond half the digital sampling frequency (Fs/2) on the analog channel. The default
mixed-ratio value is 1. Values must be an integer between 1 and 512.

For mixed ratios other than one, two clocks are used while making a mixed-ratio measurement. One
clock is used for the digital channel, and another faster clock is used for the analog channel. Only
one clock is needed if the ratio is 1:1. The clock for the digital channel is connected to one of the
input pod clocks (CHAN 1 CLOCK or CHAN 2 CLOCK). The digital sample rate, F, is entered as
the sample frequency for the measurement.

"The clock for the analog channel is connected to either the Pod Q clock (POD Q CLOCK) or
External Sample (EXT SAMPLE). (If the ratio is 1:1, the analog rate is the same as the digital rate.
The digital clock is selected for the sample clock.) The analog sample rate, Fa, is not entered. The
analyzer determines Fi, from the MIXED RATIO, which is an integer multiple from 1 to 512 of Fus.

Example
Digital Sample Rate = Fyg = 1 kHz (1 kHz clock connected to CHAN 1 or CHAN 2 CLOCK)

MIXED RATIO = 4

Analog Sample Rate = Fe, = 4kHz (4 kHz clock connected to POD Q or EXT SAMPLE)
It’s important to understand the phase relationship between the two clocks in a mixed ratio
measurement. Clocks that are skewed result in a phase ramp in any frequency-domain

measurements involving phase. However, this ramp can be corrected by manually entering a delay
value corresponding to the clock skew, using the COMPUT DELAY softkey (DATA CLOCK menu).
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Since the analog data is sampled at a higher rate than the digital data, the digital data is internally
resampled to match the analog rate. This resampling introduces zero amplitude samples between
the original sample points.

Note The number of non-zero points in the digital time record decreases as the mixed
# ratio value increases. A mixed ratio of 512 creates a digital time record with only
four non-zero samples.

This effect can be reduced by narrowing the measurement span using the FREQ SPAN softkey in the
FREQ hardkey menu. Decreasing the span by a factor of two increases the number of non-zero
points by a factor of two.

Note If viewing the source in a2 mixed-domain measurement and the mixed ratio is 1, the
d measurement process inserts zeros in the filtered time record. If the source
waveform already contains zeros, zero insertion (from the measurement process)

may cause all of the waveform to be 0.

o Lol L

data al0) alh a2 al® ald) al ald) alt al@d

digital l , * ‘e
data . . . iy N ’
dioy di) d2 d3 4 B oy ofn dis)

S e T
Qs inserted Os inserted
Mixed Ratio = 4

Figure 3-12. The Mixed Ratio’s Effect on Data

‘e
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Image

Ftoo Fsa Fstop Fsa

Ftop = Fsa —Fstop
Fsa = Fiop + Fstop
Figure 3-13. Calculating Fea

The appropriate analog sampling frequency, Fs,, is based on the range of frequencies to be
measured and on the potential for aliasing, The following formula is used to select Fy:

F. Fotop -~ F
__ﬁsf.x _5599_2__292.+ Fmp

This simplifies to:
E.a“Fstop + Ftop

Where:

Fsa = Analog Sample Frequency
Fsiop = The highest frequency for which energy is present in the analog signal

Fiop = The highest frequency be accurately measured

This formula places Fya/2 halfway between Fiop, and Fiop. Energy in the span from Fea/2 to Fygp will
alias into the span from Fiop to Fea/2. This leaves the span from 0 to Fiop alias-free.

The HP 3563A’s anti-alias filter (on the analog channel) bandlimits the analog signal to 156 kHz

Fitop Can always equal 156 kHz. If the analog signal is externally band-limited to a frequency lower
than 156 kHz, that lower frequency should be used instead.
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Example

This example explains how to measure the sin(x)/x response of a digital-to-analog converter (DAC)
operating at 44 kHz The highest frequency to be measured is 47 kHz.

Aliased Signals
64 to 110 kHz Anti-Alias
Filter
ﬂesponse
47 kHz 156 kMHz
Frop Fstop
i,.i‘. response;
Nuf[s are at
muitiples of Fsd
; 132 176 220 kHz

Figure 3-14. Digital-to-Analog Converter Hesponse

Channel 1 is in digital mode and is connected to the DAC input. Channel 2 is in analog mode and is
connected directly to the output of the DAC. There is no low pass filter on the DAC output so the
output of the DAC is not band-limited. This example, therefore, specifies 156 kHz for Faop and -
47 kHz for Fiop.

Use the formula, Fy = Fitop + Flop, to determine the minimum analog sampling frequency.
Fsa = 156 kHz + 47 kHz = 203 kHz

The analog-to~digital ratio (mixed ratio) is: £ = Z2KLE = 461

The mixed ratio must be an integer; 4.61 rounds up to 5. (Always round up.) Then:

1. Set the sample frequency, Fyq, to 44 kHz.

2. Connect a 44 kHz clock to the Channel 1 Input Pod Clock input.

3. Set MIXED RATIO to 5.

4. Connect a 220 kHz clock (Fsg x Mixed Ratio which is 44 kHz x 5) to either the EXT SAMP
or the POD Q CLOCK input.

Fzsa is 110 kHz (220/2). Anything in the frequency span between 110 kHz and 156 kHz will fold back

into the span between 65 kHz and 110 Khz. Energy above 156 kHz is removed by the HP 3563A’s
anti-alias filters and does not alias.
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To Channel 1 To Channe! 2
{\i Cigital~to j
> Analog
. Converter
Fs = 44KHz

Device Under Test

Figure 3-15. DAC Frequency Response Measurement

In the example, the maximum analyzer span is 85.94 kHz in 800-line mode.

800 Fg
MAX FREQ SPAN = TP

equivalent to: f%%' x Mixed Ratio = 4‘;??2 X 5 = 8594 kHz

To avoid the data above 64 kHz distorted by aliasing, the center frequency and span should be set so
the 800 lines of resolution are concentrated between 0 Hz to 64 kHz.

The analyzer’s frequency spans are based on the Fy,. As the mixed ratio increases, the maximum
displayed span increases. As the analyzer’s span increases, the resolution for the digital spectrum,

G to Feu/2, decreases.

Note If the math operations COMPRESS, EXPAND, or EXTRACT are used with mixed
# ratio, the mixed ratio value must be a power of 2.
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Control System Tutorial

This chapter presents measurement and analysis exercises that demonstrate the use of the
HP 3563A in the analysis and design of control system compensation. Methods and models that are
basie to these excercises were developed in chapter 3. 8

This tutorial shows how to add compensation to a known control system to improve performance
specifications. The objective is to implement compensation with a digital filter. The following steps
calculate analog compensation parameters. These are then converted to the z-domain for
implementation. Design calculations and program steps are shown below:

Measure the step response of the control system (time domain).

Measure the closed-loop response of the control system (frequency domain).
Calculate the open-loop response; find gain and phase margins.

Curve fit to get a pole-zero model of the system.

Design analog compensation (work shown).

Synthesize proposed compensation .

Combine compensation response with system response.

Check gain and phase margins of the combination response.

Use math features to synthesize compensated step response.

Adjust compensation design as necessary, and repeat steps 4 through 9.

. Curve fit the synthesized compensation design in the z domain (discuss transform optmns)

Design digital filter.

. Measure FRF of digital compensator (digital-digital) to ven.fy implementation.

Put digital compensator in control system feedback Ioop

. Measure closed-loop response.

Calculate the open-loop response; find gain and phase margins.
Compare with results obtained in step 8.

. Do a final check of the system step response.

Key-Press Conventions

The key presses are called out as follows:

HARDKEY A hardkey is any key other than the eight keys on the right side of the
1st-level softkey display. Hardkeys usually display a menu of softkey items adjacent to the
2nd-level eight display keys. Softkeys may change the configuration or call other
3rd-level softkey menus.

Each of the listed keys should be pressed. The amount of indent in the
keypress listing indicates relative level in the menu structure.
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Testing an Uncompensated System

Step Response

The step response is the measured reaction of the control system to a step change in the input. The
HP 3563A source has a step output that we’ll use here to measure a step response. Figure 4-1 shows
the connections you should use between the analyzer and the device under test (in this case, a simple
control system block diagram). Note that our model’s summing junction inputs are both inverting,

Take a measurement

This is an analog-in/analog-out measurement using an analog source. To configure the analyzer
from the turn-on or preset state, press the following keys:

SOURCE
LEVEL
1V
SOURCE TYPE
MORE TYPES
STEP

FREG
FREQ SPAN
20 kHz

RANGE
CHAN 1 RANGE
1.25V

Sets the source level to 1 volt. (Your system may require a different value.)

Selects the source type “step.”

Sets the frequency band to limit the response to frequencies between 0 Hz
and 20 kHz. This lengthens the time record from 8 ms (at span = 100 kHz)
to 40 ms.

Sets range on both channels. These values were determined by the source
level setting. Channel 1 is connected to the source, so its range can be set
to about the same value. Since some overshoot is likely on Channel 2, we

C"g;;fg %RANGE chose a range setting somewhat higher than that for Channel 1.
SELECT TRIG Selects the source as the trigger. 'You must select something other than
SOURCE TRIG FREE RUN for trigger delay to work.
Source " -@ e G c Channel 2
Channel 1 v—j )
b
H

4-2

Figure 4-1. Step Response Analyzer Hook Up
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Delays the trigger (of both Channels 1 and 2) 5 milliseconds, which allows

TRIG DELAY
~ 5 mSec easy viewing of the rising edge.
UPPER/LOWER Displays two traces, one above the other.
A
MEAS DISP This sets the display to show the Channel 1 time record on Trace A and the
FILTRD INPUT Channel 2 time record on Trace B.
TIME REC 1
B
TIME REC 2
AVG This step is used to stop the measurement process after one step.
STABLE (MEAN) To repeat the measurement, press START.
NUMBER AVGS
1 ENTER
A&B Selects both traces for the next configuration step.
SCALE Sets the vertical scale for both traces; the
Y E!;(E/D SCALE bottom of the scale is 0 V and the topis 2 V.
START Starts the measurement.
8 Activates only Trace B for the following math operation.
MATH Negates the active trace. This is necessary to offset the inversion caused by
NEGATE the summing junction reference input (r). The step response should appear
approximately as it does in figure 4-2.
FIT TIMEY o%Tvip The top trace shows the source step signal as
measured by Channel 1. Because the signai
Real passes through the Channel 1 anti-aliasing
{itar, the response has some ringing.
v
Ay H— . J=—  The lower trace shows the step response of the
MEILT_TIMEZ o%Ovip device under test. Points of interest include :
20 l 1. Settling time
Reat == ~ 2.Risetime
/ A\ E;()venshoot ] 3. % Overshoot
v 4, Steady-state error
Rise t 7 | - s[m (1, 2, and 3 should be measured on a
oo ettlinaitime Steady-state|error

Fxat Y  «5.0m

_normalized trace.)

Sec EEX-T

Figure 4-2. Source Step (top) and Step Response
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Use Markers to Measure Performance

Normalize Trace

X
Markers Knob

MATH
Div
MARKER VALUE

Find Settling Time

Y
HOLD Y CENTER
Markers Knob

SINGLE

X

Markers Knob
HOLD X LEFT

Markers Knob

Trigger point:
X=0ms

Turns on the x-marker on the active trace (in this case, trace B).

Rotate the markers knob clock wise to position the marker dot at the extreme
right edge of the trace. This places the marker in the steady-state region.
The difference between this value and the signal level of the source step is
the steady state error.

This step divides Trace B by the marker value (assumes Trace B is active).
The MARKER VALUE key is a hardkey in the ENTRY block.
Now the trace has been normalized to an amplitude of 1.

Turns on the y-marker. The marker appears at the center of the screen,

and reflects the normalized value,

Rotate the knob to set the value of AY at approximately 100 mV. This sets a
horizontal band or zone (= 5%) in which the response is said to be )
“settled,” the response stays within the boundaries.

Expands Trace B to fill the display area. This makes it easier to view.
(XMRKR SCALE can be used to “zoom” in more on fine details.)

Displays the x-marker menu.

Rotate the knob to position the x-marker at approximately time = 0.
Turns on the X “band” markers.

Rotate the knob to position the Ax- marker at the point where the step
response stays within the y-band markers. You can now read the settling

time value may directly from the Ax- marker readout.

FUER,T TIMED
2Q

250
m

/Div

Reat

4-4

aa

Fxgt ¥ -540m

AX =15 B2mS Ywl0 AY D2 IDMmV

HYW=10406 V¥V
0% 0wl

X Settling time:
\ AX=185ms
TR Settling reference:
; x\ 7 === ¥Y=10V
/ ™ V- mafkers Settling tolerance:
AY = 88.39 mv
| x| markbrs measure o final value ~ +5%0f1V
setthing tme
Sec 3% Om

-3.0mSec 39.0m

Figure 4-3. Measuring Settling Time



Find Rise Time

X OFF
Y OFF

b {

Markers Knob
HOLD Y LOWER

Markers Knob

X

Markers Knob
HOLD X LEFT

Markers Knob

Find % Overshoot

X OFF
Y OFF
X

Control System Tutorial
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Turns off both sets of markers. Turning the markers off and on againis a
good way to turn off the “band” markers.

Turns on the y-marker again.

Rotates the markers knob to position the y-marker line at 100 mV.

Turns on the y-band or A (delta) marker.

Rotates the markers knob to set the Ay-marker at 800 mV. The y-markers
are now positioned at the 10% and 90% levels of the step function.

Turns, on the x-marker again.

Rotate the knob to position the x-marker at the 10% value of the rise time
(where the lower y-marker crosses the trace). Turn on the AX marker.

Turn the knob to position the AX at the point where the upper y-marker
crosses the trace. The rise time value may now be read directly from the AX

marker readout. See figure 4-4.

Turns off the x- and y-markers.

Turns on the x-marker again. This appears at the largest value of the trace
— the peak of the overshoot. Since the trace has been normalized, the
marker value readout, minus one, is the percent overshoot. From a visual
inspection of figure 4-4, you can see that the overshoot is about 55 percent.

Step Response Summary

We have used the source output “step” to stimulate the control system and measured some of its
time-domain characteristics. Next we will examine its frequency-domain characteristics.

It’s good practice to display the stimulus signal on one trace as a reference. The digital filters will
affect the measurement if the span is set too low.

b -] S
e P

MAILT TIMED
2.0

ZT0
m
v

Raat

Q.0

AX=123mS Y100 &G6Mm AY=800 0mvV
AYD=808 1MV
0% Avip
Rise time:
\ % Overshook AX =123 ms
\ /\ oy AY = 100806 mV
\\ ‘/ SNl = +5%0f1V
/
N Y markers set at
markars - 10 %-and 80%]of
measury rise §me firtal vaiue
1G-pOife -
] |
Sec 35.0m

Fxag Y ~5.0m

Figure 3-4. Measuring Rise Time
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Swept Sine FRF

The system in figure 4-5 consists of a controller (Gy), plant (Gy), and feedback circuit (H = 1). The

6
open-loop transfer function is modeled as GH(s) = T 884§s):- 1-5.32) G186y (in Hz). We’re going

to use frequency-domain analysis to characterize its open-loop response. The goal is to add digital
compensation to improve the response and stability.

First, we need to verify the model. Then we will design an analog compensator. Finally, we will
convert the analog compensator to a digital compensator. These procedures determine the system
stability by measuring the gain crossover, gain margin and phase margin. The desired
frequency-domain specifications are: '

» Gain crossover: 265 Hz = 20 Hz
s Gain margin: 12dB % 2dB
s Phase margin: 40° = 5°

To test the system, we need to “disturb” it by injecting a signal between the controller and the plant.
This is done by adding a summing junction and connecting the HP 3563A source. Connect the
analyzer to the system as shown in figure 4-5 and perform the following key presses. We are going to
measure y/z as discussed in “Control Systems Methods and Models.”

from
source

Figure 4-5. Connecting Analyzer to Controt System
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Make the Measurement

MEAS MODE
SWEPT SINE

SOURCE
SOURCE LEVEL
300 mvV

AVG
AUTO INTGRT?

FREQ
RESLTN AU FIX
START FREQ
2Hz

A&B
MEAS DISP
FREQ RESP

A
SCALE
Y FIXD SCALE
- 40,40 dB

B
COGCRD
PHASE

START
(wait)

A&B
MATH

Negate

Selects swept sine as the measurement mode.

Sets the source level to 300 mV. Note that “300” are key presses in the
numeric key pad and “mV" is a softkey that terminates the data entry.
(This value varies with the system under test.)

Selects automatic integration time and allows entry of variance threshold.
This allows the analyzer to select the optimum integration time. If you
make no entry, the default value (5%} is used.

Sets the resolution to automatic. This allows the best measurement.
Sets the start frequency to 2 Hz. The default span is three decades, so the

stop frequency is 2 kHz.

Displays two traces in upper/lower format; selects both traces for next Step.
Changes the displayed data from power spectrum (the default) to
Frequency Response Function (sometimes called FRF).

Selects the A (upper) trace for configuration.

Displays the Scale softkey menu.

Begins data entry for fixing the scale.

Sets the scale for Trace A to extend from — 40 to +40 dB.

{The comma and — are hardkeys in the Entry block, beneath the key
labeled “ 3.™)

Selects the B (lower) trace for configuration.

Selects phase display for the currently selected trace.

Starts the measurement process.
Wait for the sweep to finish. This measurement should take about four

minutes.

Selects both traces for the next configuration step.

Negates the traces to compensate for the inverting input of the summing
junction. This changes the B (phase) trace (shifts data 180 degrees) and
makes both traces display data in memory (note the M:FREQ RESP). See
the discussion in “Control Systems Methods and Models” to learn why this
calculates the open-loop response.
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Find the Gain and Phase Margin Values

X OFF Make sure the X markers are off, since they limit the margins calculation.
SPCL MARKER Calculates the gain and phase margins and displays the data above the
Marker Calc active trace (at top of display if both traces active; frequencies are always

Gain & Ph Mgn displayed at the top of the screen). See figure 4-6.

(EpiZ@ae Mz Egetsea Hr e FOM the marker readouts we get:
[Ems102 a8 Pe2v27 Dy

?épg:eo RESS
‘ Gain margin (G) = - 102 dB
an R the magnitude below 0 dB
7] - {gain = 1) at the frequency at
4 which phase = — 180°
1] this occurs at Fp = 283 Hz
-40.0 ")
Faxd Y 2 Log HZ P .
MEREo RESE Phase margin (F) = 21.3° .
T the phase above — 1 80° at the
Phase frequency at which gain = 1
ees T Gain crossover = 154 Hz . .
Ceo g ‘ji& the frequency at which gain = 1
Frxd ¥ . 2 Lo g Hz 2k

Figure 4-8. Open-Loop Frequency Response Bode Piot
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Measure Gain and Phase at Desired Gain-Crossover Point

Our specification goal is to have a gain-crossover frequency of 265 Hz. At this frequency, we also
want a phase margin of 40° = 5°. We need to know the phase value at 265 Hz for the compensator
design problem we will soon encounter. The compensator gain will be determined by the gain

 required to achieve gain crossover at 265 Hz. The gain margin does not occur at 265 Hz; it is
measured at a frequency where the phase is ~ 180°. So next we will measure the existing gain and
phase at 265 Hz.

X Assuming both traces are selected, this turns the x-marker on both traces.
X VALUE? Activates the data entry to position the marker.
265 Hz Positions the x-markers at 265 Hz. The display now appears as in figure 4-7.

Marker measurements show the following values:
x Gain = ~9.15dB
g Phase = - 178°

From these numbers we can see that, at 265 Hz, the compensator will need 9.15 dB of gain and 38°
of phase shift (180 — 178 = 2; 40 — 2 = 38).

(ain at 265 Hy, = DAL TP

- 9.15 dB EE’.:OREO HESE

[=1=] [

-40.0 P

Fxa Y g Lmg Hz 2

Phase at 265 Hz e vBez17753 Deg

- 178° 180 Sy

Phiase

Deg

-1a0
Frxa Y 2 Log HZ 2

Figure 4-7. Gain and Phase Readings at 265 Hz
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Analyzing Test Results

In the preceeding steps we measured a gain margin of 10.6 dB and a phase margin of 22.2°. We also
measured a gain crossover of 150 Hz. Before designing the compensator, we need to verify that our
control system model is correct. We can do this by curve fitting to derive the poles and zeros of the
response and comparing them to our model.

Curve Fitting

Curve fitting is “the adjustment of the parameters of a mathematical model of a physical system, SO
the performance of the model matches the measured performance of the physical system in some
optimal manner.” (See the glossary in appendix C, Curve Fitting in the HP 3562A4.) The result of
curve fitting is a table of poles and zeros. There is much to know about curve fitting; more than can
be covered in a tutorial such as this in a reasonable amount of time. Appendix C reviews the most
important aspects of curve fitting and lists specific steps to obtain the best results.

To perform a curve fit, press the following keys:

X OFF Turns off the x-marker so that it doesn’t limit the range of data used.
CURVE FIT We select the curve fitting to be performed on traces A and B, instead of
A & B TRACES the last measurement, because the measurement is not the open-loop
NUMBER POLES response. Then we enter a limit of poles and zeros to use. Since we krow
ngfgggggﬁ 0s the transfer function, we already know what poles and zeros to expect.
% ENTER Setting limits like this can reduce the calculation time substantiaily.
CREATE FIT
START FIT . )
This step starts the curve fitter running.
{wait) After starting the fit, wait for the message “Fit Complete” to appear in the

lower-right corner of the display. It took about one minute to curve fit the
trace in figure 4-8. The resulting curve appears as the lower trace.
Note that the curve fit stopped at 190 Hz.

MEREGQ RESE
£0.0

ag “N""‘»-...,__‘
]
I~
-
-40.0 M
Fxyg ¥ 2 LRg M2 4%
MCURVE &7
40.0
=}
N‘"“N,‘_‘
.

~43.Q
Fxg Yy 2 Loy mz 2K

Figure 4-8. Magnitude and Curve Fit Results
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Weighting Function

The curve-fitting algorithm in the HP 3563A uses a weighting function. This is a function along the
frequency axs that “weights” the error in the curve fit so that some regions are given more influence
to determine the final quality of the fit. This emphasizes peaks and valleys and de-emphasizes
regions of the spectrum that have poor coherence. Weighting values range from 0 to 1 and may be
edited. The weighting function is calculated automatically when curve fitting is performed (it may
also be user-defined to emphasize a particular span of data). To view the weighting function used
for this curve fit exercise, press:

A Selects Trace A to display Weighting Function.
CURVECFIT This series of key presses displays the weighting function in Trace A.
FITFCTN
EDIT WEIGHT
VIEW WEIGHT
A&B Selects both traces so the x-marker will appear on both traces.
X Turn on the x-markers.
Markers Knob Rotates the knob to position the marker at the curve fit discontinuity.

This displays the weighting function as shown in figure 4-9. The markers
are set at the point where the curve fitter stopped using measurement data.
Note that the weighting value is 0.001 and the frequency at that point is
about 190 Hz. The curve fitter doesn't use data weighted < I mUnit.

Coherence is a function that represents the amount of output signal power that can be attributed to
the input signal. Its value ranges from one (1) which is perfect coherence, to zero (0) which is no
coherence (any value less than .9999 should not be considered “good”). Coherence is a function of
variance, which (normally) is derived from multiple measurements that occur during averaging (in
one of the FFT measurement modes, like linear resolution).

e

Weight Function e forii A2

M WE!C HT

Marker Values - -

Mergy \

Fxdxy 2 Log rmz 2k

The Curve Fit w8 ot
Display A

~40.0
Fxaxy 2 Lag Hz 2K

Figure 4-8. Magnitude and Weighting Displays
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Analyzing Test Resuilts

When the measurement mode is swept sine, there are no multiple measurements with which to
calculate variance. Instead, a three-point moving average is used. This results in an approximation
of the standard coherence results. For this reason, coherence data is not as reliable when
determining the weighting function in swept sine measurements as in linear or log resolution
measurements. A more thorough examination would include FFT analysis, which allows the use of
averaging, This would yield better coherence data for the curve fitter. For a technical definition of
coherernce, see appendix A.

Poor data from the curve fitter is often the result of giving it bad data. To learn how to get good
results from the curve fitter, see the “Curve Fitting Check List” in appendix E, Curve Fitting in the
HP 35624. -

The result of curve fitting is pole-zero data in the curve fit table. To view the curve fit table, press:

CURVE FIT ‘This displays the table shown in figure 4-10.
EDIT TABLE _

The table in figure 4-10 shows that the curve fitter found three poles and three zeros. The transfer
function on page 4-6 shows three poles. So the curve fitter found the poles — but it also found
some unexpected zeros.

S Curve Fit

POLES k-1 ZEROS 5
1 ~885 136 -9 . 48019k
2 ~72.623% 6. 46715k | 8 V3%98K
3 -13 9257

Time delaywd . 0 S Gaim+21. 2 Scalew1.0

Figure 4-10. Curve Fit Tahle
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Next we'll test the significance of the zeros. To do this, we copy the poles and zeros in the curve fit
' table to the synthesis table, remove the zeros, synthesize a spectrum from the remaining poles, and
compare the results with the original open-loop response. First, we'll display data in the A and B

{races:

A
MEAS DISP
FREQ RESP

MATH
NEGATE

B
CURVE FIT
FIT FCTN
FIT » SYNTH

SYNTH
POLE ZERO
EDIT ZERC#
(select a zero)
DELETE VALUE
DELETE VALUE
SYNTHFCTN
GAIN FACTOR
23.744 EXP
6 ENTER
RETURN
RETURN
CREATE TRACE
S DOMAIN
FRONT BACK

These key presses put the frequency response measurement back in
Trace A (the top trace).

These key presses changes the sign of the measurement data to compensate
for the inversion of the source signal at the summing junction. See figure
4-5 and discussion of measuring y/z in chapter 3. Don’t expect the trace to
change; this only affects phase and we are currently displaying gain. (The
math affects the complex data from which the displayed data is generated.)

We want the synthesized trace to appear in Trace B.
Displays the Curve Fit softkey menu.

Copies the curve fit data to the synthesis table.

Displays the synthesis softkey menu. Of the three forms that we could deal
with the curve fit data, select the pole/zero format.

We want to delete zeros, so we select the “edit zeros” softkey.

The pole and zero components are on lines which are numbered at the left.
Select a component with the up/down arrow key, the data entry knob, or by
entering the line number with the keypad. Selected components are bright.
We can't remove the zeros without putting their magnitudes back in the
numerator. The original gain factor was 21.2 x 10-6. We should multiply
this by the zeros’ magnitudes; 9480.19 x (6467.152 + 8735.982). The
resulting gain factor (23.744 x 100) is then entered in place of the original.
Now we have all the data in place. Pressing the Create Trace softkey
displays a softkey menu which allows us to select which domain to use.
Pressing the S Domain softkey starts the synthesis which displays its results.
Then we superimpose the synthesized trace with the open-loop response
for a critical comparison of the two, as shown in figure 4-11.

..



Control Systam Tutorial
Analyzing Test Results

Frequency Response Summary

The synthesized trace (without the zeros) is a very close match to the open-loop response that we

curve fit. To further examine the difference, you could divide one trace from the other and look at

the difference. Running the curve fit again with the number of zeros constrained to zero allows the

fitter to place the poles even more accurately. The results appear in figure 4-12. There is very little
- variation in the placement of the poles compared with the original table in figure 4-10.

Next, we will design the compensation. Then we will synthesize it, combine it with our measured
open-loop response, and look at the performance characteristics.

MFREQ RESP

SYNTHESIS Pole Zaroc
4.0

400

B8

aB

-4Q.0

~L0.0 J
FExgxyY 2 Log Mz 2

Figure 4-11. Measured and Synthesized Traces Overlaid

S Curve Fit

POLES ] ZEROS o

-283.3%
-7 2. &159
~15,9258

w2

Tima delay=0.0 5 Gain«23 oM Scoise=tQ

-

Figure 4-12. Curve Fit Table; Zeros Constrained to 0
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Designing the Compensation

Now that we have verified that the model is accurate and have collected some performance data, we
can design a compensator to improve performance to the new specifications. Our measured data
compares to the frequency-domain specifications as follows:

Paramealar Goal Spacificalion Measurad
gain crossover 265Hz = 20Hz 150 Hz

gain margin ~12dB x 248 ~10.8
phase margin 40° = 5° 22.2°

Qur design problem requires the characteristics of a phase-lead compensator. Figure 4-13 shows the
circuit configuration used to implement a phase-lead compensator. Figure 4-15 shows the response

of a phase-lead compensator.
L
Rt

gc_
AN
?@2

Figure 4-13. Compensation; a Phase-Lead Network

V% R R RX+RR q
VT Ry L R RX T X+ Ry+ KR VXT3
2T TR+ A 2 R +X:
R 1
3T+ R SCR:R: + R S+ g

N ' 1
substituting for X = 5C then G = = SCRR, + R+ R = o R+ &,

1
R1+ Rz) + RiR
SR+ Ra) + Rify -

andweletT= RiC and a= RT’-'}R; (ais the dc attenuation of the network)

1
S+
then the transfer function works out tobe G = T one pole at --1,—f and one zero at %.v
S+ =T @
l~a
From figure 4-14 the phase angle at w = wy is sinem = TS = %—:—Z s0a = -i—:—f;-v—-%"l
m
2 :
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im

wm

P \

0= a)
w=10 \ \ W= o
A

0 | @ 1
I S—

Figure 4-14. Polar Plot of a Phase-L.ead Network

From the measurement at 265 Hz the maximum phase: ¢ = 38° soa = % ; 82%57 = 0.2379.

Figure 4-15 shows the Bode diagram of a phase-lead network. The break frequencies occur at
w=1/T and @ = 1/(aT). oy is the geometric mean of the two break frequencies, so:

log wy = %[Iog%« + logglf—} and wy = 7'71"5
So the zero location% =2 265V a = 21 265vV".2379 = 2z (129.2 Hz) radians

.1 129.2 .
The pole location e = %79 = 27 (543.3 Hz) radians

The compensation gain (magnitude of the transfer function) at 265 Hz is 20 log Ve = — 6.2 dB.
The original gain reading at 265 Hz was — 9.15 dB. The gain needed to make the gain crossover
occur at 265 Hz is 9.15 + 6.2 = 15.35 dB. 15.35 dB converts to a gain factor = 5.85

(solving for x where: 15.35 dB = 20 log x).
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Ats = 0 the magnitude of Mag
the transfer function = a. @B

0dB

20logae = -12.5dBdB

 in radians/second

90
Phase ‘/',;LI‘\‘
Oo T ¥ L \
T al

Figure 4-15. Bode Diagram of a Phase-Lead Network

Compensator Design Summary

Our design has a pole at — 543.3 Hz, a zero at — 129.2 Hz, and a gain factor of 5.85. To combine it

with the measured response we can:

» Synthesize the compensator by itseif and multiply the trace with the open-loop response trace to

get the response of the combination of the two.

m Add the data to the synthesis table (which already contains data for the measurement) and

synthesize the combination trace.
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Checking the Design: Frequency Domain

We can synthesize the compensator and use trace math to multiply the compensator’s synthesized
response with the open-loop response. This gives us the open-loop response we would expect if we
built the compensator, added it to the system, and measured it.

Synthesize the Compensator Response

The last steps we took had the open-loop response in Trace A, and the synthesized trace of the
curve fit with the zeros removed in Trace B.

The traces were overlaid in the front/back display format. We want to enter the compensator design
values in the synthesis table, synthesize it, look at it and then examine it.

B
COCRD
PHASE

UPPER LOWER
A&B

SYNTH
POLE ZERO
CLEAR TABLE
CLEAR TABLE
EDIT POLE#
ADD VALUE
~543.3 Hz
EDIT ZERQ#
ADD VALUE
~ 1292 Hz
SYNTH FCTN
GAIN FACTOR
5.85 ENTER
AETURN
RETURN
CREATE TRACE
3 DOMAIN

{wait)

SCALE
Y AUTO SCALE

X
X VALUE?
265 Mz

418

Select sTrace B.
Sets the coordinates of the active trace to be phase.

Selects the display format having two traces displayed one above the other.
Selects both traces for the following configuration steps.

Selects synthesis menu.
Selects data format.
Clears old values from table. Must press key twice to clear the table.

We’re going to add a pole to the table.

Adds a pole at - 543.3 Hz.
Next, we add a zero.

Adds a zero at - 129.2 Hz,
Next, we add the gain factor.

Adds a gain factor of 5.85.

Creates a trace
in the s domain.

Waits for the trace to be synthesized. When it is complete its Bode diagram
is displayed (because of the trace configuration steps done before synthesis).

Auto-scales the results so they are easier to examine.

Positions the x-markers at 265 Hz so we can check the results of the design
exercise. See figure 4-16. Compare it with figure 4-15.
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From figure 4-16 we can see the compensator design parameters we need (compare this with the
Bode diagram in figure 4-15). The phase (bottom trace) peaks at 265 Hz with a maximum value of
38°. The gain runs from about 3 dB at low frequencies to 15 dB at 2 kHz, with 9.1 dB at 265 Hz.

Next we will use trace math to combine this trace (the compensator’s synthesized frequency
response) with the control system’s measured response. This yields the response of the control

system with the compensator installed.

Xu2&5 17 He
Yo=310%%L B

156YONTHES?S Pole Zero
I
/"
ag
P
/
—1/
o0
Fxat Y 2 Loy HT R
YH=380073 Deg
SYNTHESIS Poim Zero
L£0.0 ]
N
Pradse ¥
hJ
// \\
Dag L1
L
0.0 LT
2 LOg HZ 2k

Figure 4-16. Synthesized Compensator Response
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Combine Compensator Response with System Response

Set Up the Display Configuration

A Puts the system measurement in Trace A.
MEAS DISP
FREQ RESP
MATH Changes the sign of the measurement data to compensate for the inversion
NEGATE of the source signal at the summing junction. See figure 4-5 and discussion
of y/z in chapter 3. (If your conversion math is complicated, store the
open-loop response in one of the 5 data registers after the first conversion,
and recall it.)
B Changes the lower trace to dispiay magnitude of the synthesized
COCRD compensator response.
MAG (dB)
FRONT BACK Changes the display format so that the two traces overlay each other.
A&B Selects both traces. ‘
SCALE Changes the vertical scale to range from — 40 dB (bottom) to +40 dB (top).
Y FIXD SCALE? The display now appears as shown in figure 4-17.
40, - 40 dB
Do the Math
B Selects Trace B as first argument and to receive results of the math.
MATH Selects the math menu.
M?TKCE A Selects math operation; “multiply (active) trace data by .. .”

Selects Trace A as the second argument.

MFREQ RESF

Pole Zarc

EJNEHES!S
4£0.0
T
aB - Compensator response
M T T (Trace B)
25(/
o System open-loop
response
\\ (Trace A)
-40.0 "/
m &l G \
Bxg ¥ 2 Log Mz 2k

Figure 4-17. Compensator and System Responses Overlaid
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X OFF Make sure the x-markers are off; they limit the margins calculation.
SPCL MARKER Uses the marker calculation to measure the gain and phase margins of the
MARKER CALC response of the active trace; in this case, Trace B, which is the combined

GAIN PH MGN responses of the system and compensator. Results appear in figure 4-18.

Taking numbers from the marker readout, the results are:

Paramstar Goal Specification Results
Gain crossover 265Hz = 20 Hz 267 Hz

Gain margin ~12dB + 2dB —-12.6dB
Phase margin 40° = §° 39.8°

So it appears that this design almost exactly matches the goals for this system in the frequency

domain. Next we shall examine the results in the time domain.

MFREQ RESP

Eawdsas Hzl geds

Goet2.6 o8 .

Fa3 B b

(ain and Phase Margins
+——— Numbers for Trace B

(Trace A)

MSYNTHE SIS Pola Zero
40,0
400
(]
\‘::__\
o ]
[
R
T \
!
'
o8 \ \\ A’*
N N
N
N N
at
N
“h.0 \ﬁ
-40.0 M, \‘
Fxct ¥ 2 Log ™ Z 2K

Figure 4-18. Compensated and Uncompensated Traces

Compensated System
/ Response (Trace B)

System Open-ioop Response
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Checking the Design: Time Domain

To check our design in the time domain, we will add the compensator’s pole, zero and gain factor
data to that of the measured response. We will then synthesize the results with the analyzer
configured as it was when we did the original step function measurement. The results are
frequency-domain data that can be converted to time-domain with the inverse FFT (FFT™).

Synthesize the Compensated System Response

We'll add the poles of the system response to the compensator data in the synthesis table. Then we

will synthesize a trace.

MEAS MODE
LINEAR RES

FREQ
FREQ SPAN
20 kHz

A
SINGLE

SYNTH
POLE ZERO
EDIT POLE#
ADD VALUE
- 883.35 Hz
- 72.6159 Hz
~ 15.9258 Hz
SYNTH FCTN
GAIN FACTOR
1.38 EXP
8 ENTER
RETURN
RETURN
CREATE TRACE
S DOMAIN

SCALE

Y AUTO SCALE

4.22

Selects the linear resolution measurement mode.

Selects the frequency range from 0 Hz to 20 kHz.

Selects Trace A as the active trace.
Selects the display format to be one large grid showing only the active trace.

Adds the poles from the previous curve fit of the control system’s open-loop
response (see figure 4-12).

Changes the gain factor t0 23.6 x 10° x 5.85 = 1.38 x 10%. Thisis the
gain factor after we took out the zeros times the compensator’s design value
(see discussion with figure 4-11).

Creates trace in the s-domain.

Selects auto-scaling of the vertical axis.
The display now appears as shown in figure 4-19.
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THESIS Pole Zers

- D

-100 ' e
[} HZ 20k

Figure 4-19. Synthesized Response in Linear Resolution

Use Trace Math to Generate Step Function

To get the step response from the synthesized (compensated) system open-loop response we will:

1. Convert the open-loop response to the closed-locp response.
2. Perform the inverse FFT.
3. Integrate (yields the step response).

Then we will normalize the response and measure the settling time, rise time, and cvershoot.

SAVE RECALL Saves the synthesized response in data register #1. (There are five
SAVE DATA# . registers.) '
1 ENTER
MATH Converts the open-loop response to the closed-loop with math.
ADD
1 ENTER Adds 1 to the trace data; result becomes new trace data.
SE?(’P Divides 1 by trace data; result becomes new trace data.
Ngs)f‘TVED 1 Multiplies trace data by data saved in register #1 (the original trace).
.. T
N?g_, What we have done so far is: 3=
RETURN The inverse FFT converts FRF to impulse response.
INTGRT INiIT=0
Integrates the impulse response to get the step response.
X Now turn on the x-marker and rotate the knob to position it at the extreme
Markers Knob right side of the screen.
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Normalize the Trace

MATH Divides the active trace by the marker value.

DIVIDE
MARKER VALUE Now the trace is normalized.

SCALE This sets the scale so that the middle rule on the graticule is 1.

Y FIXED SCALE
0, 2 ENTER

Find the Settling Time

Y Turns on the y-marker.
HOLD Y CENTER Rotate the knob until the value of AY is approximately 100 mV, This sets a
Markers Knob horizontal band or zone (+ 5%) in which the response is said to be “settled”

when it stays within the boundaries.

X Displays the x-marker menu.
Markers Knob Rotate the knob to position the x-marker at the extreme left; time = 0.
HOLD X LEFT Turn on the X “band” markers. Now we're going to expand the time scale
Markers Knob to make it easier to see detail. Rotate the knob to position the x-marker on
X MRKR SCALE the right side of the ringing, where the trace has become flat.
Markers Knob This step expands the range between the markers to fill the display.
Rotate the knob until the Ax-marker is positioned at the point where the step

response stays within the y-band markers. The settling time value may now
be read directly from the Ax-marker readout. See figure 4-20.

¥al8o® A3535d55, vl 4785 39m e 4 §
HerrHEss pote Zers New settling time is 3.77 ms.
Qriginal was 16.5 ms
253
F v
“ N
Reaat ’r/ AN -
/ [
Y mgrkers set at
71T Seting Time * 5% of finalvalge
/
o0
0.0 Sec 8.0

Figure 4.20. Compensated System’s Settling Time
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Find Rise Time

X OFF
Y OFF

Y

Markers Knob

- HOLD Y LOWER
Markers Knob

X

Markers Knob
HOLD X LEFT

Markers Knob

X=3125 LS
Yu=103 sam

M:EYNTHESIS
2.0

Control System Tutorial
Checking the Design: Time Domain

Turns off both sets of markers. Turning the markers off and on again is a
good way to turn off the “band” markers.

Turn on the y-marker again .

Rotate the markers knob to position the y-marker line at 100 mV.

Turns on the y-band or A (delta) marker.

Rotate the markers knob until the AY setting is 800 mV. The y-markers are
now positioned at the 10% and 90% levels of the step function.

Turn the x-marker back on.

Rotate the knob to position the x-marker at the 10% value of the rise time
(where the lower y-marker crosses the trace). Turn on the AX marker.

Turn the knob to position the AX at the point where the upper y-marker
crosses the trace. The rise time value may now be read directly from the AX
marker readout. See figure 4-21.

AXaehda y S Y = 100.606m AYmBC0 O

AYo=203 0w . NBW l’iSB ﬁme ES 664#8-

Pole Zarg

Original was 1.23 ms

250
m
AT

Heol

A
AN
f Yorarkerssetat 10 %
| and 90% of final value
/ A THETRETS [TEas e TIsE]
time t crossing points
|

0.0

Sec B.05m

Figure 4-21. Compensated System’s Rise Time
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WKt 699m5§c

Yol 2406
M:SYNTHESIS Folte Zero
New overshoot is 250 X- marker
1.34 - 1= 34 /Div ;
4
Original was = .55 / % Overshoot
Reat / .
"]
.0 /

Fxaxy Q0 Sec 8 Qim

Figure 4-22, Compensated Systerm’s % Overshoot

Find % Qvershoot

X OFF Turn off the x-and y-markers.
Y OFF
X Turns on the x-marker again. It appears at the largest value of the trace,

which is the peak of the overshoot. Since the trace has been normalized,
the marker value readout, minus one — is the percent overshoot. From
a visual inspection of figure 4-4, you can see that the overshoot is about
35 percent.

Step Response Summary

Adding a phase-lead compensator has several effects:

a Improved rise time
s Reduced overshoot
m Reduced settling time
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Transform the Design to the Z-Domain

An application may require replacing the analog compensator with a digital filter. Digital circuits are
more reliable and are less susceptible to electronic noise and electromagnetic radiation. Systems
designers that are more familiar with the s domain may wish to design in the s domain and transform
the design results to the z domain. The HP 3563 A offers four transformation methods that convert
between the s domain and the z domain:

a Bilinear transformation

s Step-invariant transformation

» Impulse-invariant transformation
w Synthesize the trace in one domain and curve fit it in the other domain

Each method generates a different approximation of a continuous system digital filter. This section
briefly examines these and chooses one for our task. To do this, we will transform the compensator

design using these four methods and synthesize them in the z domain,

First, we’ll resynthesize the compensator response and store it. Then we can compare it with results
of the transformations,

Configure the Analyzer
MEAS MODE Changes back to the swept-sine measurement mode. (You could also do
SWEPT SINE this in linear resolution mode and select a log axis under Coordinates

hardkey. The computational time is longer for the swept sine because the
data is logarithmic. In linear resolution, the data is linear; choosing the log
axis displays the linear data on a log scale.)

FREQ Checks the starting frequency to ensure synthesis in the correct part of the
START FREQ spectrum.
2Hz
B Sets Trace B to display phase data.
COORD
PHASE
A&B Selects both traces to receive the results of the synthesis.
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Synthesize, then Save, the Original (S-Domain) Compensator Trace

SYNTH - We need to remove the poles of the measured response so that only the
POLE ZERO compensator’s pole and zero remain in the synthesis table.
EDIT POLE#
Down Amrow
DELETE VALUE
DELETE VALUE
DELETE VALUE
SYNTH FCTN
GAIN FACTOR? .
5.85 ENTER Changes the gain factor back to the compensator design value of 5.85.
RETURN
RETURN _
CREATE TRACE Creates the trace
S DOMAIN in the s-domain.
A&B
SCALE
Y AUTO SCALE The display now appears as shown in figure 4-23.
A Stores the data in storage register 1.
SAVE RECALL
SAVE DATA#
1 ENTER
285055 e
13@*%\1‘&'?—!5515 Pole Zoro
Juim—
[=]] | &
)z’
L]
Qo
5;33;,00273 Oeag bee Hz =
EJSTHESES Polm Zary g
Prase // b
/,/ \\\
Ceg //
Do AR
2 Log mz 2w

Figure 4-23. Synthesized Ccm?engator Hesponse
Thus is the “reference” datra for following comparisons.
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Bilinear Transformation

B

SYNTH

DOMAINS Z

CONVRTTO Z
SAMPLE FREQ

15.625 kHz
BI-LINEAR
{(wait =5 sec)

CREATE TRACE

Z DOMAIN

These key presses generate z-domain synthesis values used to create the
trace in the z domain.

The DOMAIN S Z softkey toggles between s and z domains each time you
press it; the “S™ should be bold and underlined in the display menu.
Refore the conversion, select the sampling frequency Fs = 15.625 kHz.

~This is the rate at which the digital system samples data. This value was

picked as part of the design of the digital filter. Generally, a sample rate is
selected by multiplying the highest frequency of interest by 10.

Yields a z-domain synthesis table with a pole at 803.041m, a zero at
949.361m, and a gain factor of 5.41.

Now synthesize a trace from the transform data and compare to reference.

A

CQORD
PHASE

FRONT BACK

A&B

COCRD

MAG (dB}

Discussion

In figure 4-24 we now have the phase of the original s-domain trace in
Trace A, overlaid with the phase of the trace that was synthesized in the z
domain from data that was converted to the z domain with the bilinear
transform. Notice the slight variation in the phase at the highest frequency.

Figure 4-25 now shows the magnitude of the original s-domain trace in
Trace A overlaid, with the magnitude of the data that was converted to the
z domain with the bilinear transform.

This method seems to provide a very good match for the original design. Looking at the marker
readout in the figures below we can see that at 2 kHz, the phase difference is about 0.6° and the

magnitude difference is insignificant.

il

2wz
Yo=11.5018 Owg

SYNTHESIS

TR0 20%8 Deg

SYNTHESIS
Q.8 T

40.0

Phose

Dag

Phose

Deg

og

eo
Bwxd X

Ko Zicite
Ya~13032 a8

Pole fero EYNTHESS Pola Zera
Yu=15.0818 B
Poim Zero %‘g&THESIS Fole Ters
AN 180 -
/ ) Nl
/ s
Vi
Y N
v
/ NI /]
4 Shignt Vergan it \, %4
Phasget T T
R o 4 ‘Go
L1 1T] Highgr Frequéncies o0
2 Lag Hx 2w HEwgXyY 2 Log HE Ik
Figure £-24. Bllinear Transform; Phase Figure 4-25. Bilinear Transform; Magnitude
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Step-Invariant Transformation

B

SYNTH

DOMAIN S Z

CONVRTTO Z
SAMPLE FREQ
15.626 kHz
STEP INVRNC

CREATE TRACE
Z DOMAIN

(wait)

A&B

COORD

PHASE

A&B
COORD
MAG (dB)

Discussion

These key presses generate pole and zero data in the z domain, and then

- synthesize the trace so we can compare the results against the reference.

See discussion under the bilinear transform example.
Make sure you enter the correct sample frequency value.

This key press performs the transformation. This yields a z-domain
synthesis table with a pole at 803.744m, a zero at $53.329m, and a gain

factor of 5.85.
Now we synthesize the response to compare with the reference.

Figure 4-26 shows the phase of the original s-domain trace in Trace A,
overlaid with the phase of the trace that was synthesized in the z domain
from data that was converted to the z domain with the step-invariant
transform.

Figure 4-27 shows the magnitude differences between the original design
and the step-invariant transform data synthesized into a trace.

This method doesn’t do as well as the bilinear transform in terms of FRF match. The phase
difference at 265 Hz is 1.7°. The largest magnitude error is 0.72 dB at 2 kHz (the highest measured

frequency).

Hu285 17 g

Ta~38.0073 Dag
SYNTHESIS

YR=AF.PE5L2 Deg

SYMNTHESIS
A0 O

0.9

Prasa

Cag
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Poia T ero SYMNYHMESIS #zia lero
THe1S.77I% B
Pola Xerg BYNTHESIS Piie Taro
T N 6.0 1T
A =Y 6.0 LT
A
(=13 L7
: /\ Refeience
g 3
Refdrence | | 1\ [tace
7 ace NE Vi
v
\ i
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— X
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o HE 28 Fxaxy 2 Log M 3

Fraxy 2

Figure 4-26. Step-invariant Transform; Phase Figure 4-27. Step-invariant Transform; Magnitude
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impuise-invarient Transformation

B These key presses generate z-domain synthesis values that are used to
SYNTH create the trace in the z domain.
DOMAINS Z
CONVRTTO Z
SAMPLE FREQ
15.625 kHz

IMPULS INVRNC
{wait =5 sec)

REATE TRACE . ..
Cz gﬁmm ~~ Yields a z-domain synthesis table in pole-residue form containing a pole at

803.744m with residue — 15.22k and a pole at 0 with a residue of 91.4k.

Now synthesize a trace from the transform data and compare to reference.

A&B In figure 4-28 we now have the phase of the original s-domain trace in

COGRD Trace A overlaid with the phase of the trace that was synthesized in the z
PHASE ~ domain from data that was converted to the z domain with the

FRONT BACK " impulse-invarient transform.

A&B ' Figure 4-29 now shows the magnitude of the original s-domain trace in

CCORD Trace A overlaid with the magnitude of the data that was converted to the z
MAG (dB) domain with the impulse-invarient transform.

Discussion

This transform varies significantly from the original data. This is due to the fact that the original data
is not bandlimited. As discussed in the transform summary following these exercises, the
impulse-invarient transform introduces distortion due to aliasing and, therefore, should not be used
on data that is not bandlimited.

Xnl8S 17 Mz XaZdS A7 Hz
Ya«38.0078 Dagy Ya=? 109%4 o8
SYNTHESIS Pola Jwro SYNTRESIS Polm Zera
YoO=-45.0778 Deg Yool 85394 B
SYNTHESIS Eol a LI STYNTHESIS Palg Rescue
S& 0 16.0 b T
s6 0 16.0 L]
3. Lt i
paiN Refefenge A
Pricsw ans
7= TFACE ~|_
4 NN ™~
Bag ~Y
N
z/\ AN ™~ //;
” N N
Proue // L Re’! .:‘re hep \ =8
o=
Deg // Trace N Lt t /
_.---"'::-"// L1
.80 -2.0 et
.
~8.Q -2.C
Bxg v 2 o X 2% Fxa ¥ 2 tog Hx B3

Figure 4-28. impulse-Invariant Transform; Phase Figure 4-29. Impulse-Invariant Transform;
Magnitude
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S-to-Z Transformation Using the Z-Domain Curve Fitter

Where the transform functions yield a fixed number of poles and zeros in the destination domain as

appeared in the source domain, the curve fitter allows more flexibility in the number of elements
used to yield a matching design. See the “Transform Summary” following this exercise.

Assuming that the s-domain compensator design values (pole, zero and gain factor) are still in the
- s-domain synthesis table, the following steps synthesize magnitude and phase into the A and B
traces, and then use the z-domain curve fitter to transform the data to the z domain.

A
COORD
MAG (dB)

B
PHASE
SAVE RECALL
RECALL DATA#7?
1 ENTER

XOFF

CURVEFIT
DOMAINS Z
A&B TRACES
NUMBER POLES?
1 ENTER
NUMBER ZEROS?
1 ENTER
EDIT TABLE
TABLE FCTNS
SAMPLE FREQ
15.625 kiHz
RETURN
RETURN
CREATE FIT
START FIT
{wait; = 1 min)

FRONT BACK
A&B
X

COORD
PHASE

4-32

Displays magnitude in Trace A (already contains the s-domain compensator

response).

Displays phase in Trace B (currently contains the last transform’s
synthesized response).

Recalls the s-domain compensator response into Trace B.
We now have the compensator response in the A and B traces.

Be sure the x-marker is off. When on, the curve fitter uses only data near

the marker position — here we want it to fit the entire response spectrum.

Configures the analyzer for curve fitting the s-domain response.
Select the z domain.

The data to curve fit is in A and B traces (not the last measurement).
Limits the number of poles to 1.

Limits the number of zeros to 1.

Enters the sample frequency specified by the digital filter design.

Begins the fit.
After the fit is complete, the response in Trace B is the best fit.

Overlays the traces.
Activates both traces.
Turn on the x-markers. See results in figure 4-31.

Changes the coordinates of both traces to display phase.
See the results in figure 4-30.
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Figure 4-30. Curve Fit “Transform”; Phase Figure 4-31. Curve Fit “Transform”; Magnitude

Now we'll take a look at the values in the curve fit table.

CURVE FIT These key presses display the curve fit table shown in figure 4-32
EDIT TABLE

Discussion

This method also seems to give very good results. The magnitude and phase differences, as well as
the pole and zero values, are very nearly identical to the bilinear transform results. Before recording
these results, we curve fit once with the number of poles and zeros set to five each. The results
included one unstable pole — magnitude larger than 1— outside the unit circle. Note that these
resuits are approximately the same as we found with the bilinear transform.

2 Curve Fit

POLES 1 ZEROS 1
1 BO0 8 1m FLDSGLm

Time dalay=-00 5 GoimeS.4 Sampl=15&k +Zpwr

Figure 4-32. Curve Fit “Transform” Resulis Table
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Transform Summary

The goal of transforming between the s and z domains is that the imaginary axis of the s-plane maps
into the unit circle of the z-plane. Also, transforming a stable filter in one domain should result in a
stable filter in the other domain — stable poles in the s-plane (in the left half of the plane) transform
to stable poles in the z domain (inside the unit circle).

Impulse-invariant Transform

The basis for this method is to choose a unit-sample response in the z domain filter that
approximates the impulse response of the analog filter. The impulse-invariant transform preserves
the relationship between analog and digital frequency response, but introduces distortion due to
aliasing. Thus, this method is only useful for bandlimited filters.

Step-Invariant Transform

This method is similar to the impulse-invariant approach. However, instead of approximating the
impulse response of the analog filter, the step-invariant transform preserves the step response
characteristics of the original filter,

Bilinear Transform

The bilinear transform yields stable digital filters from stable analog filters (and vice versa). It also
avoids the problem of aliasing characteristic of the impulse-invariant transform. It does, however,
introduce distortion in the frequency axis. The use of the bilinear transform is useful only when this
distortion can be tolerated or compensated.

Curve Fitting Between the S and Z Domains

None of the transforms listed above are completely accurate. Conversion from the s domain to the
z domain can often be done better by fitting the measured data directly using the z-domain curve
fitter. This approach generally gives a good £it over the entire frequency range of interest. Also, the
measured data can be manipulated (with trace math) to remove errors or to compensate for other
components in the system -— such as time delays or zero-order hold effects — before the fit is
calculated. In addition, you can use the weighting function to emphasize the more-important
regions of the response and to ignore or de-empbhasize less important regions.

The main disadvantages of this method are the potential for unstable poles (outside the unit circle),
and the possibility of obtaining a non-minimum phase-transfer function. Also, there is no explicit
control over the resultant filter time-response.

For more information, refer to appendix D, Z-Domain Curve Fitting in the HP 35634 Analyzer.
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Testing and Refining the Digital Filter Design

Sampled System Effects

plant
r +,’Z'\e G, ¢
- digital
b compensator -
DAC |l G }e—] ADC |+—e%-

S/H
Figurs 4-33. Digital Compensator Block Diagram

Computationai Delay

Our digital filter consists of a microprocessor that reads in sampled data, processes it, and outputs
data. The time it takes to process the data is called computational delay. In the frequency domain, -
this appears as a downward-sloping phase ramp. Increasing delay causes more rapid phase rolloff. -
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Zero-Order Hold | |
When the digital filter is placed in our mostly-analog system, it is followed by a digital-to-analog |

converter that has a filtering effect called zero-order hold (ZOH). We must consider its effects on
the signals coming from the digital filter, since it is part of the compensator.

The filter effect of the zero-order hold varies depending on the sampling rate chosen. You can see
the different phase responses of two sampling rates in figure 4-34. Figure 4-35 shows the familiar

2% magnitude responses of a ZOH where F, = 15.625 kHz and 31.25 kHz and the span is 100 kHz.

Note that raising the sample rate (Fs) rate reduces the effects of the ZOH over the 0 Hz— 2 kHz
span (markers are set at our 2 kHz span limit). Increasing F; also raises the cost of the design. A
general rule used to estimate the required sampling frequency is 10 x the highest frequency of
interest.

L S p— Nota magnitude variation at 2 kHz

Hede a2t :
SYNTHE SIS Potyromict CEYMTMESS : PolyMemind
Yheo SR a0 amas
BYNT et 55 oty mammat SYNTHESIS Pole Zarg
400 [= 33

% Fs £ 15525 Rz |
W ’FS = 31@; xHz [
— Fs = 9T 25 kAL - \ \"

1

<00 i

T

Geo / Trace A | / \ /A \
S e ~ T AT

P (T [ 1A
1 T RV
o |, APT o e, A T 1

| 15.625 iz

Figure 4-34. ZOH Phase at Two Sample Rates Figure 4-35. ZOH Magnitude Varies with Fs
2 Hz-to-2 kHz 0 Hz-t0-100 kHz
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. Synthesize the Transform Data

When we compared the transformed data to the reference, we synthesized it to get a response trace.
In the case of the curve fit “transform,” the curve fitter provided us with a trace —we didn’t have to
synthesize one. None of the comparisons took the computational delay and ZOH effects into
consideration. We will synthesize the curve fit data, with the delay and ZOH effects added, to get a
realistic simulation of the response of the digital filter section.

Assuming our earlier curve fit data is still in the curve fit table:

CURVE FIT " Moves the curve fit data to the synthesis table.
DOMAINS Z
FIT FCTN
FIT-» SYNTH
B Activates B so that the following synthesized trace is displayed there.
SYNTH ~ Enters a time delay of 12 us. We are estimating that the digital filter design
POLEZERO ' requires roughly 12 us for a 1-pole 1-zero solution. If more accurate data
SYNTH FCTN becomes available on a later design cycle, we’ll use it instead.
TIME DELAY
12 uSec
Sﬁ’g%ﬁ ;IEEQ Sets the sample frequency to 15.625 kHz.
RETURN
RETURN
CREATE TRACE Creates the trace
0 HOLD QN OFF  with zero-order hold turned on.
Z DOMAIN This synthesizes a trace with the ZOH effects included.
FRONT BACK Figure 4-36 compares the phase of the reference trace with that of the trace
A&B derived by transforming the reference data to the z-domain, and then
COORD synthesizing it with the effects of ZOH and delay added.
PHASE Figure 4-37 compares the magnitude of the two traces. You can see that
phase response was affected much more severely than the magnitude.
Yé;ﬁ?;i%‘»:!::ﬂaa - Pole Zero Yi?’%’:’g:;sfsﬂ . Pole Zero
Y;:ri?‘%?:Eos“lsueg Poie Zato YZ:‘-:‘:;-?;;:& : Pale Tera
500 6.0 BE
500 - Y- |
Fhase V/W‘-\ on ///
A w N ' /
oee A7 11| Refdfence | /!
Prasa -____/ race an : /
oo N ‘ %8
-300 . \ 0.0 ]
-35.0 0q
Fxg ¥ 2 Lfag Hz 2k F=g ¥ 2 Lag HMr 2

Figure 4-36. ZOH and Delay Effects on Phase Figure 4-37. Z0H and Delay Effect on Magnitude
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Check Results Against the Specifications
Now we will combine the digital filter data with the control system data and check the specifications
we are trying to achieve. To do this, we will put the control system poles and gain factor in the

s-domain synthesis table and synthesize it with the digital filter data already in the z-domain synthesis
table. With the “Z&S” synthesis capability, the data for the two do not have to be in the same table.

UI;PER LOWER We’ll put the combined response in both traces and make Trace A show

A&B magnitude and Trace B show phase.
SYNTH Adds the pole and gain factor values shown in figure 4-12 back into the
DOMAINS Z s-domain synthesis table.
POLE ZERO
gl[:gg };’:g;:g Clearing the table takes two key presses. This reduces the chance of
EDIT POLE# accidently deleting valuable data.
ADD VALUE '
— 884.303 Mz . . .
—72.6309Hz = 1nstead of entering this data again we could have curve fit a measurement;
— 15.9307Hz that is how we got the data in the first place.
SYNTH FCTN
GAIN FACTOR
23.7 EXP
6 ENTER
RETURN
RETURN . .
CREATE TRACE }(;J:ea—tes the trace. Other settings (under z-domain, synth fctn) assumed
0 HOLD ON OFF y
88 DO%ADAIAIN Sample frequency = 15.625 kHz
Time delay = 12 us
XOFF Make sure the x-marker is off. Ifit’s on this limits the range of calculations.
SPCL MARKER Calculates the gain and phase margins. Results shown in figure 4-38.
MARKER CALC
GAIN & PH MGN
B20R0%4 | BEIVAST e Special markers gain and
?&g‘rﬁgﬂs Fola Zars pf‘lasa margins:
< T~ - Crossover = 263 Hz
Sy Gain margin = - 10.0 dB
Ba Phase margin = 36.1°
-0
Fxg ¥ 2 Log Hz 2%
SYNTHESIS Pola Zero
180 P
Phcse
Oag —"'""""—-—-h____\m
-18G hk“h"“‘“"*:i.,__d
Fxa v 2 Leg Mz 2K

Figure 4-38. Checking Margin and Crossover Specs -
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Parameter Goal Spacification Results
Gain crossover 265Hz + 20 Hz 263 Hx
Gain margin -12dB+ 2dB -10.0
Phase margin 40 = &° 36.1°

Comparing the results in figure 4-38 (see speéiai marker settings) with the original specifications we
see that our present solution is very marginal. The gain crossover is very close to the goal of 265 Hz.
The phase margin is within tolerance, but only by 1.1°.

Conclusion: Replacing an analog compensator with a digital solution must take into account the

effects of sampling (ZOH) and computational delay. These effects can be reduced by sampling at
faster rates and using a faster microprocessor for the digital filter — but these solutions increase the

cost of the design.

Next we will try another method of compensating for the side effects of using a digital filter that does
not increase the order of the system (for example, trying try to find another 1-pole, 1-zero solution).
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Compensating tor Sampling Effects

One way to compensate for the phase and magnitude rolloff caused by ZOH and computational
delay is to synthesize these effects to create a trace, and then divide our reference trace by it. This
generates a “new response” that will cancel out the digital filter side effects. We'll put the reference
response data back in the s-domain synthesis table and create its response in the s domain. Then we
will synthesize the side effects response in the z domain.

A We're going to put the reference response in Trace A.
SYNTH
DOMAINS Z
POLE ZERQ
CLEAR TABLE
CLEAR TABLE
EDIT POLE#
ADD VALUE
—543.3Hz
EDIT ZERO#
ADD VALUE
~128.2 Hz
SYNTH FCTN
GAIN FACTOR
5.85 ENTER
RETURN
RETURN
CREATE TRACE
S DOMAIN

B These key presses create the side effects response in trace B.
SYNTH We've already had a look at the ZOH response in figures 4-34 and 4-35.
DOMAIN 8§ Z The delay effects are pure phase ramp.
P OELS;'SNEIMIAL This method creates a “wire filter” which has a perfectly flat response.
ADD V ;JL%ER# When we synthesize it with ZOH on, and a non-zero time delay value, we
1 ENTER get a response due to the side effects of computational delay and ZOH.
SYNTH FCTN
TIME DELAY
12 uSec
SAMPLE FREQ
15.625 kHz
RETURN
RETURN
CHEATE TRACE
0 HCOLD ON OFF
Z DOMAIN

A&B Since phase seems to be the problem area, we will monitor the phase
COORD response,
PHASE
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Figure 4-39. A New Response Phase

A
MATH
DIVIDE
TRACEB

SAVE RECALL
SAVE DATA#?
2 ENTER

X
- X VALUE?
100 Hz
HOLD X LEFT
Marker Knob

CURVE FIT
DOMAIN S &
A&B TRACES
NUMBER POLES

1 ENTER
NUMBER ZERQS
1 ENTER
EDIT TABLE
TABLE FCTNS

SAMPLE FREQ?

15.625 kHz
RETURN
RETURN
CURVE FIT
START FIT

Figure 4-40. A New Response Magnitude

This divides Trace A (the original reference) by trace B. When this
response is compared with the original, we see in figures 4-39 and 4-40 that
the phase of the new response is as advanced as the earlier comparison was
delayed. A digital filter with this response will cancel the sampled system
side effects.

Saves the new response in a data register. This will save time when we need
this trace later.

Turmns on the x-markers; we will use x-band markers to define the area over
where we want the curve fit to operate — from 100 Hz to 400 Hz.
This overrides the weighting function.

Rotate the knob until the AX marker is = 300 Hz.

Curve fit, constraining the number of poles and zeros to 1 each.
This makes sure we are in the z domain.

This curve fits the data in Trace A. (This uses Trace B if it contains
coherence data).

Sets number of poles to 1.

Sets number of zeros to 1.

Set the sample frequency to 15.625 kHz.

Starts the curve fitter,
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Figure 4-41. 1-Pole, 1-Zero Curve Fit Phase Figure 4-42. 1-Pole, 1-Zerc Curve Fit Magnitude

CURVE FIT Since the curve fit was limited by the x-band markers, the only part of the
FIT FCTNS new trace generated by the curve fitter was between the markers. To see
FIT-= SYNTH the response of the results over the entire span, we will synthesize it in
gYNTH Trace B. First, copy the data to the synthesis table. Then synthesize the
CREATE TRACE trace and compare with the new response we are trying to match.

gggkﬁ\&!\i OFF The comparison is shown in figures 4-41 and 4-42. Note the accuracy of the
fit between the vertical marker lines.

Next we will synthesize this result with the original system response to check specifications.

A Selects Trace A to receive synthesis results.
SYNTH Enters the system’s poles and gain factor in the s-domain synthesis table.
DOMAIN § Z See curve fit table in figure 4-12.
POLE ZERO
CLEAR TABLE
CLEAR TABLE
EDIT POLE#
ADD VALUE?
— 884.303 Mz
- 72.6399 Mz
— 15,8307 Hz
SYNTH FCIN
GAIN FACTOR?
2.37 EXP
6 ENTER
RETURN
RETURN
CREATE TRACE

S DOMAIN Synthesizes the s-domain response in Trace A for comparison.
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DOMAINS Z Next, we check the z-domain parameters.
POLE ZERO
SYNTH FCTN
TIME DELAY
12 uSec
SAMPLE FREQ
15.625 kHz
RETURN
RETURN
B
CREATE TRACE Selects Trace B to display the combination synthesis.
0 HOLD QN OFF
Z & S DOMAIN Synthesizes the two tables into one response (ZOH on and delay = 12us}.
X OFF Make sure the x-marker is off.
SPCL MARKER Checks the gain-crossover and margins against specifications.
MARKER CALC See the results in figure 4-43.
GAIN & PH MGN
Parameter Gioal Specification Rasults
Gain crossover 265 Hz = 20Hz 265.0 Hz
Gain margin ~12dB £ 24dB —-11.14d8
Phase margin 40° + 5° 40.1°

Conclusion: This design appears to meet the goal specifications. The only concern is the accuracy
of the computational delay. The next step is to implement the digital filter (write the program) and
test the results. When the filter is working, we can measure the system response and the actual
computational delay. If the implementation does not meet specifications, we should consider the
difference in assumed and measured computational delay, and run through the latter stages of this
design loop once again.

SYNTHESIS
0.0

=" mgezece mz o Special Markers Gain and
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~&0.0

Pole Zers N Phase Margins,
SREl Crossover = 264.4 Hz
[ L L Gain Margin = ~ 11.1 dB
T Phase Margin = 40.1°
2 Loy Mz 23
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Figure 4-43. Synthesized Trace of Final Design
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Final Resulis

The digital filter was constructed, programmed, and inserted in the feedback loop of the control
system as shown in figure 3-11. The measurement results appear below,

Figure 4-44 shows the measurement of the gain crossover and gain and phase margins. The special
marker values show that the implementation closely matches the design results. This measurement
was taken as described earlier, with the exception that the source level was reduced to 100 mV, to
compensate for the gain added to the feedback loop.

Figures 4-45 and 4-46 show the rise time and settling time of the system . These measurement were
taken as described earlier, except for the source level, which was 200 mV instead of 1 V. Note that
there is no overshoot. The marker values show a rise time of 265 us and a settling time of = 2.2 ms
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S 1
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i Crossover = 264.9 Hz
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Figure 4-44. Specifications Check of Digital Filter
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Figure 4-45. Rise Time Measurement Figure 4-46. Setiling Time Measurement
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Index

! Attention symbol  1-3

# BITS 8 16 softkey 2-5

1-of-N selection 1.1

16-bit resolution (swept sine) 2-24

A

Accessories  2-7
Active trace keys  1-5
Advanced analysis 1-8

Amplitude-domain measurement dlsplays 1-19

ARM hardkey 1.10

Arrowkeys 1.7

Auto correlation  1-19

AUTO SEQ hardkey 19
AUTOMATH hardkey 18
Average value (marker function) 1-6
AVG hardkey 14

B

Beeper control  1-9
Bilinear transform  4-29, 4-34
BUS SZ 8 16 softkey 2-5

c

CEDGE + - softkey 2.5.2-6
Caculating the mixed-ratio value 3-15
CAL hardkey 14
Calculating Fea  2-32,3-14 .
CHAN 1 AN DIG softkey 2.3
CHAN 1 CLOCK softkey 2-6 .
CHAN 2 AN DIG softkey 23
CHAN 2 CLOCK softkey .26 .. ..
Channel configuration d:agrams 1-18 -
CLOCK QUALFR softkcy 25 .
Clock, Q@ 2-14
Clocks 2-11
Coherence  1-19,4-11
Definition of “good” 4-11 .
Compressed time buffer . 1-19 .
COMPUT DELAY softkey 2-5
Computational delay 2-12
Configuration 1-15-1-20
Control block (key group) 1.9
Control system
General model 3-2-3.3
Theory 3-1-3-16

Tutorial 4-1-4-44
COORD hardkey 1-8
Cross correlation  1-19
Cross power spectrum  1-19
Cumulative density function (CDF) 1-19
CURVE FIT hardkey 1.8
Curve fitting
Examples 4-10, 4-41
To transform between domains  4-32

D

Data
Clock 2-5,2-11
Editing {(marker function) 1-6
Size 2-4.2.5,2-10
Storage registers 1through 5 1.9
DATA CLOCK softkey 2-4
DATA SIZE softkey 2-4
Date settings 1.9
Delay, computatiopal  2-12
Delta markers 1-6
Designing an analog cornpensator  4-15 - 4.17
Digital
Autoranging (16-bit resolution) 2-25
Channel configuration diagrams  1-18, 2-23
Data input channel 2-3
Data number format  2-9
Details 2-1.2-34
Filter FRF  2-20
Grounding 2-13
Input configuration 2-2 -2-6
Interface menue 24
Restrictions 2-12
Trigger 2-14
DISC hardkey 1-10
Disk drives 34
Display
Block (key group) 1.5
Format keys 1-5
Options  1-14
Types 1-19

E

Energy spectral density (ESD) 1-19
ENGR UNITS hardkey 14
Entry block (key group) 1-7
EXT SAMPLE softkey 26

i



Index (continued)

F‘

Fsa, analog sample frequency 3-14
Feedback compensation 3-10
Filtered linear spectrum 1-19
Filtered time record 1-19
First measurement example 1-12 - 1-13
Floating the inputs 1.3
Flow diagrams 1-18
FREQ hardkey 1-4
Frequency and damping (marker functmn) 1-6
Frequency response (linear or log) 119
Frequency-domain measurement dxsplays 1-19
FROM POD 1softkey 2.3
FROM POD 2 softkey 2-3
FROM SOURCE softkey 2-3
Front-panel key groups 1-3

Control block  1-9

Display block 1-5

Entry block 1-7

Help block 1-11

HP-IB block 1-10

Markers block 16

Measurement block 14

Operators block 1-8

Status block 1-10

G

Gain and phase margins 4.8, 4-38
Gain crossover 4-38
Gain margin  1-6
(Gain-crossover measurement  4-8
General model of a control system  3-2 - 3-3
Grounding
Analog 1-3
Digital 2-13

H

Hardkeys 1-1
ARM 1-19
AUTOSEQ 19
AUTOMATH 18
AVG (average) 1-4
CAL (calibration) 1-4
COORD 1-5
CURVEFIT 1-8
DISC 1-10
ENGR UNITS 14
FREQ 14
HELP 1-11
HP-IBFCTN 1-i0 o
INPUT CONFIG 14,1-17,2-2
LOCAL 1-10 2

il

MARKER VALUE 1.7

MATH 1-8

MEAS DISP 15

MEAS MODE 1.4, 1-15

PAUSE/CONT 19

PLOT 1-i0

PRESET 1i-8

RANGE 14

SAVERECALL 1.9

SCALE 18

SELECT MEAS 1-4

SELECT TRIG 14

SOURCE 14

SPCLFCTNS 1-9

SPCL MARKER 1-6

START 1-9 _

STATE/TRACE 1.5

SYNTH 1.8

TRIG DELAY 14

UNITS 1.8

VIEW INPUT 1-5

WINDOW 14

X (marker}) 1.6

XOFF 1.4

Y (marker) 16

Y OFF 1%
Harmonic markers 1-§
Help block (key group) 1.11
HELP hardkey 111
Histogram measurement 1-19
HP-IB block (key group) 1-10
HP-IB FCTN hardkey 110

Identifying last byte of a two-byte transfer 2-18
Impulse response  1-19
Impulse-invariant transform 4-31 4-34
Input

Front-panel connector groundmg 1-3

Linear spectrum '1-19

Maximum signal level (ana!og) 13

Pods 2.9.2.13

Selections 1-17

Time record 1-19
INPUT CONFIG hardkey 1-3- 1-4, 1-17 2.2
Instrument overview 1.1 1-20 '
INTERFACE 1 softkey * 2-3 °
INTERFACE 2 softkey 2.3
Introduction  1-1 - 1-20



K

Keygroups 1-3
Keysequence 1-2
Key-press conventions  4-1
Knob (entry block) 1-7

L

LAST 10 softkey 2.5, 2-10
Least-significant byte (LSB) 2-16

Linear resolution measurement mode  1-15
LOCAL hardkey - 1-10 ¥
Log resolution measurement mode 1 15
LOW 13 BITS softkey 2.5

M

Margins measurment example 4.8
MARKER VALUE hardkey 1-7
Markers block (key group) 16
Markers measurement example 4.4
Math example 4-23
MATH hardkey 1-8
Maximum input signal level 1-3
MEAS DISP hardkey 1-5
MEAS MODE hardkey 14, 1-15
Measurement

Block (key group) 14

Modes 1-15

Process 1-14

Selections 1-17

Sequence 3-8

Theory 3-1-3-i6
Measuring gain and phase margins  4-8
Menus {definition of term) 1-1
Mixed ratio  2-13, 3-12
MIXED RATIO softkey  2-6
Mixed-domain model 3-il
Mixed-domain setup 2-13
Most-significant byte (MSB) 2-10, 2-16

Moving 16-bit data on an 8-bit bus 2-10 -

N

Number format 2-4,2-9
Numeric keypad 1-7

o x

Offset binary number format 2-9
OFFSET BINARY softkey 24
Opern-loop calculatioin 3-8
Open-loop measurement 3.6
Operators block (key group) 1-8
Optional accessories 2-7

Index (continued)

Orbits measurement 1-19
Output cable impedance 2-7
Overflow signal 2.14

QOvershoot measurement  4-5, 4-26

P

PAUSE/CONT hardkey 1-9
Phase margin 1-6, 4-8
Phase-lead compensator  4-15-4-17
PLOT hardkey 1-18
Podl 2.9 _

Use for two channels of data - 2-14
Pod2 2-9
PodQ 2.14-2-15
Pod Q clock 2-14
POD Q CLOCK softkey 26
Pod tips 2-7
Pod X 2-17
Pods MSB and LSB (digital source) 2-16
Power {marker function) 1-6
Power spectral density (PSD)  1.19
Power spectrum  1-19
Power supply control system model  3-4
PRESET hardkey 1-9
Probability density function (PDF)  1-19
Process, measurement  1-14

Q

Q-CLK signal 2-14
Qualifier bit Q0 2-10
Qualifier pod 2-14-2-15
Qualifiers 2-14

R

RANGE hardkey 14

Reality check 3-8

Rear-panel cables 2-7-2-8

Recall data/state 19 . .

Recall state at last power shutdown 1.9
RESET softkey 1.9 :
Restrictions, digital 2-12

Rise time measurement 4-5, 4-258

S

Sample clock 2-6,2-11,2-22 -
SAMPLE CLOCK softkey 2-4
SAMPLE FREQ softkey 2-6
Sample frequency selection. 4-29
Sampie out (pod X signal) 2-17
Sampling effects 4-36 il
SAVE RECALL hardkey 1.9

s
L H ]



Index (continued)

Save state/data 19 Transforming between s and z domains  4-27 - 4-34
SCALE hardkey 1-5 Transforms
SELECT MEAS hardkey 1-4,1-17 Bilinear 4-29
SELECT TRIG hardkey 1-4 Curve fitter  4-32
Selecting a sample clock (example) 2-22 Impulse-invariant  4-31
Self-tests 19 : Step-invariant 4-30
See also Installation Guide Summary 4-34
Servo system mode! 3-2 Tri-state buffer accessory 2.7
Settling time measurement 44, 4-24 TRIG DELAY hardkey 14
Sideband markers 1-6 Tutorials
16-bit resolution (swept sine) 2-24 A first measurement  1-12-1-13
Slope (marker function) 1-6 Digital compensator in an analog loop  4-1 - 4-44
SMP-OUT (pod X signal) 2-17 Digital-in, digital-out 2-18 - 2-2§
Softkey menu (definition) 1-1 Mixed-domain; digital-in, analog-out  2-26 - 2-34
Softkey types 1-1 TWOS COMPL softkey 24
Softkeys 1-1 Twos-complement number format 2-9
Source Types of softkeys  1-1
Clock signal  2-17
Enable signal  2-17 u
Pods 2-16 UNITS bardkey 1-5
Step mgx;al 4-2 Up/down arrow keys  1-7
SOURCE hardkey 1-4 UPR 13 BITS softkey 2-5

SPCL FCTNS hardkey 1-9

SPCL MARKER hardkey 1-6 Using the digital source (example) 2-20

Special marker functions 1-6 v
Square root of PSD  1-19
SRC-CLK (pod X signal) 2-17 VIEW INPUT bardkey 1-5
SRC-EN (pod X signal) 217 Visualhelp 19
START hardkey 19 Digital channel configuration diagrams 1-18
State table 2-24 Flow diagrams 1-18
STATE/TRACE hardkey 1.5
Status block (key group) 1-10 w
gtcp function from FRF data 4-23 Weighting function 4-11

tep response measurement  4-2 WINDOW hardkey 1-4
Step-invariant transform  4-30, 4-34 ¥
Storage registers 1 through 5 1-9 oy
Summing junction schematic 36 :
Swept sine FRF example 4-6 - X (marker) hardkey 1-6
Swept sine measurement mode  1-15 : X OFF hardkey 16 . :
SYNTH hardkey 1-8 - - X OVFL ON OFF softkey 2-§
Synthesis example 2-28, 4-13, 4-18, 4-37, 4-40, 442 » X OVFL signal  2-14 '
T .Y
Termination adapter accessory  2-7 . Y (marker) hardkey 1-6
Terms 1.1.1-2 - Y OFF hardkey 1-6
Testing printers, plotters  3-4 . :
Theory, control system  3-1+3-16 ' Z
Time and date settings 19 Zero-order hold (ZOH) 228,436

Time capture measurement mode  1-16
Time-domain measurement displays 1-19
Timing between clocks  2-1%

Toggle key type  1-1

Trace math example 4-23

* Zero-order hold example 3-15

iy
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Designer’s Guide to:
Linear control-system theory—DPart ™

Apply control-system

closed-loop syster:

Dynamic signal analyzers (DSAs), which analyze
signals in both the time and frequency domains, aid
you in taking control-system measurements and in
performing other steps in system development, such
as analysis, modeling, and design. Part 1 of this
3-part article presents an overview of classical linear
control theory. Part 2 will examine both old and new
methods of taking the actual measurements, and part
2 will explore the expanded role of DSAs in the con-
trol-system design process.

Steve Asbjornsen and Owen Brown,
Hewlett-Packard Co

Control-system development is largely a study of the
operating characteristics of devices and the ways in
which the devices interact when combined in 2 system.
You can apply linear control-system theory to analyze
any system that uses deliberate guidance or manipula-
tion to achieve a specific value for some variable,
whether it’s electrical, mechanical, or biological, These
Systems can range from configurations as simple as
Watt’s flyball governor to networks whose analysis
requires calculations that only a computer ean handle

adequately. Examples of familiar control systems in-
clude motor-speed controls, pacemakers, voltage regu-
lators, switching power supplies, and phase-locked |
loops, T

The most fundamental distinction in control theory is
the classification of systems. Without exception, sys-
tems fall into two categories: open-loop and closed-loop
systems. Open-loop control systems (Fig 1a) are ones
that use a controller that has no feedback from the
output. These systems can't take corrective action to
alleviate undesired changes in the output. Closed-loop
systems (Fig 1b) are ones whose output is fed back and _
compared with the input in such a way as to maintain
the desired output. This series of articles will consider -
only closed-loop systems.

You can represent any closed-loop system with the j
standardized diagram shown in Fig 1b. In the diagram,
the output C (the directly controlled variable) feeds
back through a functional block with transfer function
H and is compared with reference signal R at a sum-
ming junction. The difference between R and tl
feedback signal (B) is the error, or actuating signal (E
The reaction of the components represented by G
response to error signal E maintains the output at the
desired level.

If controlled variable C is fed back to the summing



Easy to implement in a test system, the step
forcing function reveals a wealth of infor-
mation about a system’s speed, stability,
and settling time.

-27%

- 180"

NOTES: s
GAIN MARGIN = i

PHASE MARGIN = (180 - ~)°

Fig $-~Measuring gain and phase margin with ¢ Nyquist diagram
is easy. The guin margin is the additional guin needed to achieve
unity gain at 180° phase shift, and the phase margin is the additional
phase skhift needed to ackieve 180° at the unity-gain frequency.

achieve unity gain at the frequency where the phase of
the open-loop frequency response equals 180° as it
crosses the negative real axis (Fig 8). Simply stated,
the gain margin is the additional gain required to place
a closed-loop pole on the jo axis (GH(jw)=-1) and
produce instability.

Gain margin alone is not sufficient for you to deter-
mine how close GH(jw) is to the —1 point and, there-
fore, how close a closed-loop pole is to the jw axis, as
Fig 8 shows. You alsc need to use phase margin, which
is the additional phase shift required to achieve 180° of
phase shift at the highest frequency at which the
open-loop gain is unity. Typical target values are a gain
margin of not less than two (6 dB) and a phase margin of
not less than 30°. '

"The Nyquist diagram is a powerful tool for analyzing
all types of systems, but it is not without shortcomings.
Its primary limitation is that it lacks a convenient
graphical technique that you can use to predict how
changes in the system will affect the open-loop frequen-
cy response. Any time the system is changed, you must
remeasure the response or recalculate it from your
system’s model. Bode developed a diagram that allevi-
ates this problem. -

The Bode diagram (Fig 9) is also a plot of the
open-loop frequency response, except that Bode
treated gain and phase separately, plotting each as a
funetion of frequency {(w). This technique has several
advantages for the designer who must evaluate sys-
tems while developing them.

By expressing gain in logarithmic units (dB) and
phase in degrees, the Bode diagram allows you to-
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Fig 9—A Bode plot yields gain and phase margin and bandwidth.”
The open-loop bandwidth iz defined here as the frequency at which the
system has unity gain.

combine new data with already established measure-
ments through simple addition. The resulting trace is
equivalent to the frequency response you would obtain
by connecting the actual devices in cascade and physi-
cally measuring the composite.

" Because of certain techniques that Bode developed,
engineers could sketch an approximation of a device’s
frequency response from its transfer function—ie, they
could evaluate GH(jw) over a range of frequencies from
the equation for GH(s)—in a Bode diagram without
taking the physical measurements. Designers could
also perform the opposite function, that of approximat-
ing a transfer function from a measured response. For
the first time, engineers could link a system’s model to
measured data without having to resort to extremely
laborious calculations.

Bode plots like the ones in Fig 9 let you measure a
system'’s gain and phase margins. A third performance
parameter, the open-loop bandwidth, is also easy to



Mathematical techniques by Laplace and
Heaviside, and graphical-analysis methods
by Nyquist, Bode, and Nichols aid you in
prz‘dzcrmﬁ closed-loop system vesponse.

Dynamic signal analyzers

Dynamic signal analyzers

(DSAs) are low-frequency ana-
lyzers that sample signals ap-
plied to their inputs and then

DESIGN

A 4

use Fourier transforms to ana- L

T "
MOQEL PROTOTYRE BUILD -]
L

lyze the signals in both the time -
and frequency domains. Useful

to engineers who take mechani-
cal, acoustic, and audio-electron-
ics measurements, these analyz-
ers record waveforms and take
high-speed, single-channel fre-

i
| |
ANALYZE _-I TEST ‘—l
i 1

queney-spectrum and 2-channel
frequency-response measure-

Fig A—-In a typical product- or system-development cycle, these five processes all
play crucial roles. A dynamic signal analyzer {DSA) expands the traditional role of
test instruments from the analyzing and testing functions to include sigmificant

ments.

Because they've recently ac-
guired an array of advanced
measurement and analysis func-
tions that are directly applicable

to control-system measurements,

DSAs are replacing frequency-
response analyzers in measure-

contributions to the model and design processes.

ment and performance analysis.
However, DSAs are no longer
simply measurement instru-
ments; they have new analytical
capabilities that, in many re-
spects, equal those of work-

stations (Fig A). These capabili-
ties allow designers who use
DSAs to measure a device under
test and to model, revise, and

yet-unbuilt system.

perfect the response of the as- l

oped. A magnitude contour (Fig 7a) is a locus of points
on the Nyquist diagram for which the ratio Vy/V, has
the same magnitude. When you plot loci for several
values of magnitude, the loci form a family of circles.
When you plot the open-loop transfer function against
these contours, you can identify the gain of the closed-
loop trunsfer function by its intersection with or prox-
imity to a given magnitude contour (Fig 7b). You can
draw similar loci, cailed phase contours, for positions of
constant phase, and you can use them the same way you
use magnitude contours., -

- Gain; phase margins

The basic Nyquist dxagram generated several other
graphical measurement aids. Eight years after Nyquist
published his techniques, Hendrik Bode wrote a paper
in which he observed that systems should be designed
to be absolutely stable, one of two possible states for a
stable system. An sbsolutely stable system is one that
has some unique value of frequency-independent gain
(K, below which the system will always be stable, and
above which the system will always be unstable.

Alternatively, a conditionally stable system is one
with a gain (K;) above which the system will generally

become unstable. In a conditionally stable system,
there is also a band of gains greater than K; where the
system becomes stable again. However, operating in
this higher band requires careful control of gain levels; .
for this reason, Bode and others considered operating
in this band undesirable.

In an absolutely stable system, the open-loop fre-
quency response should cross the negative real axis
only between 0 and the —1 point. Bode's observations
simplified stability evaluations even further by elimi-
nating the need to plot the frequency response’s com-
piex conjugate. :

Bode also observed that as the plot of the open-loop
frequency response approaches the value of ~1, the .
real part of a closed-loop pole approaches the value of 0.
A system with such a response has longer settling times
and, in general, less stability. Therefore, Bode estab-
lished phase-margm and gain-margin parameters to
provide a ?;:antxﬁabie measure of the proximity of tl-
open-loop frequerncy response to this —1 point. -

Bode viewed the Nyquist diagram as a polar plot
which gain is the distance from the origin and phase i
measured as an angle with 0° as the posxtxve real axis.
The gain margin is the additional gain required to .



Polynomials within polynomials

The terms G(s) and H(s) in the

transfer function for a closed-

* loop system are themselves gen-
erally ratios of polynomials in s.

- You can thus define the terms by
using the following expressions:

_ Gy(s)
Gis) = Gals)
_ Huds)
H(s) = sy

where the subscripts n and d in-
dicate the numerator and de-
nominator pertions of G(s) and

H(s), respectively. If you refor-
mulate the closed-loop transfer
function in terms of the numera-
tor and denominator of G(s} and
H(s), you obtain the following
eXpression:

Gs)

Cs) __Gte ___ Gis)

R(s) 1 + GH(s)

1 Gals) Hyls)
Gn(s) Hd(S}
Gq(s) Hy(s)

Gu(s) Hy(s) + Gu(s) Huisy
Gyls) Hyls)

. Gafs) Huls)

You express the closed-loop
transfer function in this manner
to illustrate that the term
1+GH(s) itself has poles and
zeros, and that the zeros of this
term determine the poles of the
closed-loop transfer function.
Note also that the zeros of the
closed-loop transfer function are
the roots of the equation
Gu(sYHy(s)=0.

If you could measure GH at each value of s you could
simply determine when GH equals —1 and record those
values of 5. Unfortunately, the only values of GH you
can physically measure are those values of s for which
the real part equals 0-—ie, GH(0+jw), which is common-
ly expressed as GH{jw). All other values of s simply
provide an analytical model for understanding how a

system’s components will affect its time- and frequen-

cy-domain responses. Evaluating GH(jw) provides the
input/output relationship of the device, typically in the
form of gain and phase shift as a function of frequency.
GH(jw), therefore, is called a frequency response, and
it represents the frequency-domain characteristics of
the system.

Nyquist's stability criterion

Using only the information from evaluating GH(jw),
Nyquist had to determine whether there were any
values of s (having positive real parts) that satisfied the
equation GH(s)=—1. Of course, if GH{jw)=~1 at some
frequency w;, then it’s clear that a closed-loop pole
exists at s=(0+jw). But determining’ whether there
were other closed-loop poies having positive real parts
was not easy.

Nyquist’s contribution lay in his discovery of a tech-
nique in which the closed-loop system’s measured open-
leop frequency response could be used to determine the
existence of any closed-loop poles with positive real
parts. The mathematical proof behind Nyquist’s stabili-
ty criterion is not intuitively obvious. However, the
graphical representation of this discovery, known as a

Nyquist diagram, is simple to use, and it was soon
adopted by the engineering community.

In a Nyquist diagram, you plot a system’s open-loop
frequency response on a graph whose coordinates rep-
resent real and imaginary components. To derive this
trace, you measure device response at a number of
different frequencies. To complete the Nyquist dia-
gram, you also plot the complex conjugate of the
response on the same graph, typically using dashed
lines (Fig 5a).

Nyquist’s criterion states that if you affix the tail of a
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Fig 5—The Nyquist diagram fa), a tool for frequency-domain
analysiz of a system, is a plot of the system’s open-loop frequency
respoise and its complex conjugate. To determine the number of
closed-loop poles with positive real parts, count the nunber of net
rotations of vector V, in b.




vector to the point representing —1+j0, allow the head
of the vector to trace the entire path created by the
open-loop frequency response and its complex conju-
gate, and then count the net revolutions (N) of that
vector, you can determine whether the system has any
closed-loop poles with positive real parts (Fig 5b).

The stability criterion actually determines the differ-
ence (N) between the number of zeros (Z) and the
number of poles (P) of the term 1+GH(s), using the
equation N=Z-P,. In systems for which P=0 (which is
often the case), N=Z, which is the number of poles that
have positive real parts in the closed-loop transfer
function.

The most important aspect of Nyquist's criterion is
its usefuiness. This tool provides engineers with a way
to determine the stability of a control loop by simply
measuring the open-loop frequency response. No rigor-
ous mathematical analysis is necessary. Further, Ny-
quist’s criterion allows you to determine the stability of
a control loop before closing the loop, thus avoiding
possible damage to your system from reactions caused
by instability.

The unity-feedback case

For systems with unity feedback (H(s)=1), the Ny-
quist diagram (Fig 6) provides a technique for directly
calculating the closed-loop frequency response,

G(jw)1+G(jw)], from its measured open-loop frequen- .
cy response G(jw). In this case, two vectors are project-

-1+ He

Ve = 1+~ GH{jw)
V, = GH{ju)
FOR Hijw) = 1:
Vo= 1+ Gljw)

Vi = Gjes) ) .
V. Gijw)
THEREFORE, 3 = —od_ o | OSED-LOOP FREQUENCY RESPONSE
. Vi 1+ Gliwl FOR A UNITY-FEEDBACK CONTROL SYSTEM

Closed-loop systems compare input signals
with feedback signals in such a way as to
maintain a precisely controlled output/input
velationship.

ed-—one from point —1+30 (V) and the other from the
origin (Va)—to extend to the curve G(jw).

V, thus represents the term 1+G(jw), and V, repre-
sents G(jw). The vectors’ heads are placed on the
open-loop frequency response. You can use simple vec-
tor algebra (V/V)) to caleulate the input/output rela-
tionship of the closed-loop system at the corresponding
frequency.

As an alternative to calculating the ratio of the
vectors at many frequencies, graphical tools called
magnitude contours and phase contours were devel-
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Fig 670 evaluate unity-feedback closed-loop frequency response
from open-loop data, you use vector algebra with a Nyquist diagram.
The ratio V4V, is the outputiinput response of the closed-loop system
at any frequency.

Fig ?—Loci of constant transfer-function magnitude, or magnitude
contours (a), form a family of circles. By plotting an open-loop
transfer function againat the contours (bl, you can identify the gain

“of the closed-loop function by its intersection with the loci.




An understanding of classical wmeasurement
methods for control systems aids you in
using dynamic signal analvzers for design,
modeling, analysis, and test.

(&)

Fig I—The two basic configurations for a system are the open-loop
fa) and closed-loop (b) configurations. In an open-loop system,
varigtions in the outpui go undetected; in a closed-loop configura-
tion, feedback from the output maintains the desired output charac-
teristics.

junction without any modification, transfer function H
will equal one. A system in which H is I—called a
unity-feedback control system—is the easiest type of
system for designers to analyze. These block diagrams
will help you model a system. To evaluate the system’s
performance, however, you'll need criteria by which to
judge it.

You need to know, for example, how quickly the
system achieves the desired output level and whether
the system can maintain that level with little or no
variation. Control-system designers’ need for this basic
information led to the first serious study of negative-
feedback control systems and ultimately to the develop-
ment of classical linear control theory.

The first attempts to analyze systems, which were
speed regulators on steam engines, took place in the
19th century and involved the use of differential equa-
tions. To make the equations as easy as possible to
solve, engineers selected a small group of standard
inputs that were easy to express mathematically. Chief
among these inputs was the step forcing function. Not
only was this function simple to express, but it was easy
to implement physically, so it permitted the engineer to
compare analytical results with measured results.

By using infermation derived from this step-response
technique, you can measure both the speed with which
a system reacts to 2 change in input (rise time) and the
degree to which the system temporarily exceeds the
desired output level (maximum overshoot). The infor-
mation also indicates settling time, which is the time it
takes for a system to reach a new output level within a
given error band (Fig 2).
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Fig 2-~This output waveform, a typical response of a system 1o a
step forcing function, can help you evaluate the stability of the
systent. The overshoot and ringing are good indicators of the system’s
stability. Settling time to within a given error band is an important
parameter for linear amplifiers and D/A converters.

A system’s settling-time spec indicates the relative
stability of that system. For example, a system that
oscillates around the steady-state value for long periods
of time is considered to be less stable than a system
whose oscillations die out relatively quickly. A system
whose response oscillates indefinitely at either a con-
stant or an increasing amplitude after the system has
been excited by a step input is considered to be unstable
(Fig 3).

Although measuring time-domain responses allowed
engineers to verify system models and obtain useful,
easily extracted performance information, this method
provided few clues to how they could improve a sys-
tem’s performance. Further, as systems became more
complex, the solution of the integrodifferential equa-
tions used to model them grew correspondingly diffi-
cuit. Solving these equations became somewhat easier
in 1899, however, when Oliver Heaviside introduced
partial-fraction expansion techniques. Heaviside’s dis-
covery made it possible to use Laplace transforms to
simplify the solution of large differential equations.

The Laplace transform

The Lapiace transform is the integral of the product
of the variables f(t) and e ™. The variable s is complex;
it has a real component (o) and an imaginary component



(jw). The transformation of a system'’s transfer function
resuits in a ratio of polynomial expressions in s. In this
format, many of the time domain’s complex calculations
become simple algebra problems.

Of particular interest to engineers are values of s
that would cause either the ratio’s numerator or denom-
inator to equal zero. Values that set the numerator to
zero force the funetion represented by the ratio to equal
zero in the Laplace domain. These values of s are called
zeros. Values of s that cause the denominator to equal
zero force the function represented by the ratio to equal
infinity in the Laplace domain. These values are called
poles. Poles are of special significance: When you trans-
form a function back into the time domain to predict the

STABLE ’
Les smate —f\/\j\/\/—_

UNSTABLE

Fig 3—A system’s settling characteristic in response o a step-
function input shows how stable the system is, The more ringing
there is around the waveform's final value, the iess stable the system
is. [ an unstable gystem, the ringing never stops, but instead builds
up to oscillation. 7 °

system’s response, the real part of the pole determines
the exponents of the response. If an imaginary part of
the pole exists, it becomes a frequency component of at
least one term of the response.

In addition, you can use the real part of the poles to
determine the system’s stability without having to
transform the calculations back into the time domain,
Poles with positive real values indicate positive expo-
nents in the time domain; therefore, they indicate
instability of the control loop.

These Laplace-transform methods were sufficient to
solve control-system problems until the early part of
the 20th century. With the development of the vacuum
tube and large electronic systems, however, the compu-
tational aid of the Laplace transform became inade-

LOOP EQUATIONS:

C=EG

E=R-8 H
C=EG

C=GR-GB

C=GR-GCH

Ci1- GH) =GR

CR=G{1-GH)=CLOSED-LOCH TRANSFEA FUNCTION

Fig 4~Simple multiplication, addition, and subtraction yield the
transfer fusnction for a closed-loop control system. The model applies
equally well to locomotives and operational amplifiers,

quate for system evaluation. In particular, Harold S
Black’s use of negative feedback in electronic-amplifier
design in the late 1920s spurred engineers to look for
more powerful analytical tools.

From Lapiace to Nyquist

In the early 1930s, Harry Nyquist discovered that
the solution to the problem of analyzing complex sys-
tems lay in the frequency domain. His analysis was
built upon the extension of several familiar concepts.
By expressing the elements of the control loop as
transfer functions (ie, the Laplace transform of the
output divided by the Laplace transform of the input),
simple algebra could provide an expression for the
input/output relationship of a system.

By using the block diagram in Fig 1 and letting C, E,
R, and B represent the Laplace transforms of the
signals appearing at the lettered points in the system,
you can express the inpuf/output relationship of a
closed-loop system as C/R=G/(1+GH) (Fig 4). This
expression is known as the. closed-loop transfer func-
tion. Reduced to its simpiest form, the expression is
itself a ratio of polynommis in s, :

From previous work in the Laplace domain, engi-
neers already knew that the poles of this closed-loop
transfer function would determine the stability of the
system. If you look for the elosed-loop poles (ie, values
of s that force 1+GH to zero), you see that the GH term
contains all the information regarding the poles’ where-
abouts (see box, “Polynomials within polynomials™)
Therefore, the key to determining the stability of a
system is knowing whether any of the values of s that
make GH equal ~1 (ie, the closed-loop poles) have
positive real parts.



Graphical-analysis technigques allow you to
use a negative-feedback system’s open-loop
response to predict the system’s closed-loop
vesponse.

measure on a Bode plot. Open-loop bandwidth indicates
~ how fast a system can react to a change in input; this
* measurement is analogous to rise time in the time
domain. Specifically, open-loop bandwidth is the span
between 0 Hz and the frequency at which the open-loop
response has unity gain (0 dB). The greater the open-
loop bandwidth is, the faster the system will react.

No graphical technique using a Bode plot exists for
directly caleulating the closed-loop frequency response
of unity-feedback systems. Although such a technique
(the use of magnitude and phase contours) does exist
for the Nyquist diagram, this diagram’s linear scales
would seldom accommodate both the range of gain
values produced by a system and the level of detail
about the unity-gain point required to determine
stability,
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Fig 10--By plotting logarithmic gain against linear phase in a
Nichols diagram, you can calculate graphically a unity-gain sys-
tem's closed-loop frequency responge from the open-loop respomse.

The Nichols diagram, a third graphical analysis tool,
was developed specifically to accommodate the graphi-
cal calculation of the closed-loop frequency response of
2 unity-feedback system from the system’s measured
open-loop frequency response, The Nichols diagram
uses both the single-plot concept of the Nyquist dia-
gram, in which frequency is a varying parameter (but
not a coordinate), and the logarithmic gain and linear
phase scales of the Bode plot. Thus, the Nichols dia-
gram is a plot of logarithmic gain versus linear phase as
a function of frequency, as Fig 10 shows,

Because of the wide range of gains represented by
the logarithmic scale, however, the open-loop frequen-
cy response of almost any system could be plotted on a
standardized grid. It was practical, therefore, to super-
impose a second grid (of magnitude and phase contours)
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Fig 11—Magnitude and phase contours are superimposed on q
Nichols dingram, forming a Nichols chart. The chart allows you to
make a guick estimate of the closed-locp response of @ unity-feedback
system.

on the Nichols diagram for calculating the closed-loop
frequency response. The resulting Nichols chart (Fig
11) rapidly became a standard graphical tool for quickly
estimating the closed-loop frequeney response of a
unity-feedback system. Unfortunately, like the Nyquist
diagram, the Nichols chart doesn’t make it easy for you
to combine frequency responses, nor does it provide
graphical tools for linking system models and frequency
responses. EDN
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Dynamic signal analyzers
simphfy measurement of
linear control systems

Advanced dynamic signal analyzers (DSAs) give de-
signers a wide choice of techniques for measuring a
system's open-loop frequency response. This article,
part 2 of a 3-part series, considers the effect of DSAs
on the graphical measurement techniques of linear
control-system theory. Part I of the series presented
an overview of classical linear control theory. Part §
will explore the expanded role of DSAs in the control-

system design process.

Steve Asbjornsen and Owen Brown,
Hewlett-Packard Co

You can use a variety of graphical techniques to analyze
a negative-feedback, closed-loop control system (Ref
1). Bode plots, Nichols disgrams, and Nyquist dia-
grams are three distinet tools that allow you to deter-
mine a system’s amplitude and phase characteristics
(and, therefore, its stability) as functions of frequency.
Typical test instruments make use of these tools, and a
dynamic signal analyzer (DSA) is no exception—it
allows you to view and plot frequency-response data in
ali three formats.

The internal analysis functions of modern DSAs,

however, alter the relative usefulness of these three
graphical techniques, Understanding these DSA func-
tions gives you an idea of how a DSA’s computational
power can expand your test options,

Waveform math and Nyquist diagrams

A DSA’s waveform-math capability, for example,
limits the Nyquist diagram’s usefulness to providing a
complete check of a system's stability and a l-trace
representation of its frequency response. The wave-
form-math utility is a built-in calculator that allows you
to add, subtrsct, multiply, divide, or use any of the
other operators shown in Table 1 to manipulate fre-
quency responses, recorded waveforms, and complex
constants,

The Nyquist diagram lets you easily determine the
stability of all types of systems, including absolutely
and conditionally stable systems. You can also directly
calculate the closed-loop frequency response of a unity-
feedback control system. However, the diagram
doesn’t facilitate caleulation of composite frequency
responses, and its linear scales can’t accommodate both
adequate gain ranges and acceptable resolution around
the unity-gain point. Reading phase margin is more
difficult with the Nyquist diagram than with other
diagrams, snd reading the open-loop bandwidth is



A DSA’s built-in calculator uses waveform
math to perform arithmetic operations and
to manipulate frequency responses, wave-
fornis, and complex constants.

TABLE 1—WAVEFORM-MATH
FUNCTIONS IN A DSA

ADD SQUARE ROOY  MULTIPLY BY | LZRES S
SUATRACT RECHPROCAL FFY REAL PART
MULTIPLY NEGATE INVERSE FFT COMPLEX CONJUGATE

DIVIDE DIFFERENTIATE LOG DATA

impossible unless the frequency at which the gain
becomes unity is recorded on the plot. Finally, you can't
use the Nyquist diagram to estimate the transfer
function of a system from its measured frequency
response, or vice versa.

A DSA’s waveform-math utility, however, lets you
caleulate a system's closed-loop response precisely, in
any format, using the equation

Ciw)/R(jw)=G{w){1+G(jw)}.

Using waveform math, you can calculate closed-loop
frequency response independently of the display for-
mat. Linear scales are not a problem when you're using
a DSA, because the DSA's display can easily rescale the
data. The DSA’s marker readouts make the measure-
ment of gain margin, phase margin, and open-loop
bandwidth much easier.

Bode plots

DSAs also alter the usefulness of the Bode plot,
which designers have traditionally favored because
they could use it to estimate composite frequency
responses quickly. The Bode plot’s logarithmic units
offer a large dynamic range of gains, and the plot makes
it easy to measure gain margin, phase margin, and
open-loop bandwidth. Finally, uniike the Nyquist dia-
gram, the Bode diagram lets you estimate a transfer
function from a frequency response and vice-versa.

The Bode plot's major drawbacks are that you have
to plot traces for both gain and phase, and that you can't
estimate the closed-loop frequency response from the
open-loop frequency response. A DSA’s waveform-
math utility makes it easy to calculate the closed-loop
frequency response, however. Further, the DSA’s fre-
quency-response-synthesis and curve-fitting functions
automate the transition between frequency responses
and transfer functions. -

The Bode plot is still useful in that it helps you
intuitively understand the frequency-response/trans-
fer-function transition. The Bode plot alsc helps you

estimate composite waveforms, and its logarithmic gain
units provide beth range and resolution.

Although the Bode plot and Nyquist diagram are stili
useful to designers who perform system analysis on
DSAs, Nichols diagrams are not. The Nichols dia-
gram’s only advantage over the other diagrams is that
it lets you calculate closed-loop frequency responses.
Because the waveform-math capability of DSAs solves

" this probiem, it renders the Nichols diagram obsolete.

The root-locus plot

The newest method of making control-system meas-
urements is root-locus analysis, which was developed in
the late 1840s and early 1950s by Walter R Evans. All
previcus methods of analysis had used open-ioop fre-
quency response solely to determine whether closed-
loop poles with positive real parts existed. These
methods yielded no additional information concerning
the actual value of s for the poles. The root-iocus
technique, however, lets you examine the actual vaiues
of s for the closed-loop poles graphicaily, based on the
known values of s for the open-loop poles and zeros.

The root-locus diagram could not have been con-
ceived without the development (in the late 1940s) of
the s-plane. The s-plane is a 2-dimensional plane that
represents all possible values of the Laplace variable s.
The plane’s ordinate is the imaginary part (o of
s=g+jw), and its abscissa is the real part (¢ of
s=g+jw), of s (Fig 1).
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Fig 1—The s-plane represents all possible values of 8 in two
dimensions. This plot allows you to locate the poles and zeros of a
closed-loop transfer function and thereby determine the stability of
the system characterized by the transfer function.




Each value of s, therefore, has 2 unique position in
the s-plane. If you can determine the poles and zeros of
a ratio of polynomials (such as the open- and closed-loop
transfer functions of a control system) in s, you can plot
the location of these poles and zeros in the s-plane. Any
closed-loop pole that exists in the right half of the
s-plane represents poles with positive real parts and
therefore indicates an unstable system.

In measuring the open-loop frequency response of a
system, you're collecting the same data you would if you
were evaluating GH(s) for values of s that lie on the
positive ordinate of the s-plane {(s=0+jw for w=0 to
+infinity). From the open-loop information, Nyquist—
without using the idea of the s-plane—made the concep-
tual teap that allowed him to determine whether there
were any values of s with positive real parts that solved
the equation GH(s)=-1. His observation was not an
obvious one, to say the least,

Consider a control loop that has been opened so that
the open-loop frequency response (GH(jw)) is measura-
ble. If you alter just the gain of the loop, you won't
affect the value of the open-loop poles and zeros. As a
result, the open-loop transfer function can be expressed

as GH(s)=KGH(s), where K represents a proportional -

gain constant that's independent of s.

Although varying K has no effect on the position of
the open-loop poles and zeros, it can have a tremendous
effect on the closed-loop poles. This effect becomes
apparent if you substitute KGH(s) in the denominator
of the closed-loop transfer function G(s){1+GH(s)} and
soive the eguation for the poles. The resulting expres-
sion is 1+KGH(s)=0.

The closed-loop poles, therefore, are values of s that
are solutions to the equation GH({s)=—-V/K. To locate
the closed-loop poles, you must, whenever K changes,
find new wvalues of s that satisfy the equation
GH(s)=-1/K. It was this relationship—between the
stationary poles and zeros of the open-loop transfer
function, and the closed-loop poles that vary with pure
gain—that provided the basis for Evans’s root~locus
technique.

Using the root locus

The root-locus technique plots the open-loop poles
and zeros in the s-plane. You can obtain the open-loop
pole and zero locations from a mathematical derivation
of the open-loop transfer function or by using Bode’s
techniques to extract the transfer function from a
measured frequency response. If you plot the open-loop
poles and zeros on the s-plane (Figs 2a and 2b), you can
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use Evans's graphical technigues to draw a trace that
represents the migration of the closed-loop poles (or
root loci) as the frequency-independent gain varies
(Figs 2c and 2d).

The advantage of this technigue lies in its ability to
give the actual location of closed-loop poles without
actually measuring the closed-loop response. However,
using graphical techniques to determine the root loci
doesn’t give you the actual value of the frequency-
independent gain (K) at any particular point in a locus.
You must return to the equations and calculate the
closed-loop pole locations for several values of K until
vou discover the value of K that corresponds to some
point on a locus.

The root-locus technique also requires that you know
the number and location of the open-loop poles and
zeros before you can estimate the position of the
closed-loop poles. The technique is, therefore, less
flexible than the Nyquist or Bode diagrams, which let
you predict stability, measure performance, and obtain
design information, but aliow you to measure only the
open-loop frequency response. The root-locus method,
however, provides you with more information during
the initial design process, and it's better suited to the
design of the complex compensation networks typically
associated with complex systems. Also, because you
know the position of the closed-loop poles, you can
derive the time-domain response for a given value of
gain (K).

Almost all linear control-system analysis, and much
of the subsequent designs, depends on obtaining an
accurate estimate of a system's open-loop characteris-
tics, either in the form of a frequency response GH{jw)
ar the closed-loop transfer function GH(s). No matter
how these open-loop characteristics are expressed,
designers must always perform the actual physical
frequency-response measurements, whether to help
construct system models or to verify them.

Measurement techniques

In the past, engineers had to choose between two
types of analyzers for making low-frequency control-
system measurements. They could choose either the
classic frequency-response analyzers (FRA), which
provide swept-sine measurements, or fast-Fourier-
transform analyzers (FFTA), which can measure a
whole spectrum in one measurement.

The two analyzers have different advantages and
disadvantages. For example, although the FFTA has
the potential for faster measurement times, it entails

complex set-up procedures. And although the FRA is
familiar to engineers, who understand its swept-sine
method of measurement, its measurement times are
siow. However, because DSAs offer both measurement
techniques, designers no longer have to accept the
tradeoffs that accompany choosing an FFTA or an
FRA.

Frequency-response analyzers

FRAs operate in much the same way as do hetero-
dyne network analyzers, and they're limited to taking
measurements at low frequencies. They generally pos-
sess two channels, each of which uses a discrete Fourier
transform to emulate a single bandpass filter. The
Fourier integration time controls the filter’s bandwidth
to values in the low microhertz range, and an inte-
grated sine-wave source (Fig 3) synchronizes the fil-
ter’'s center frequency.

A stimulus signal from the FRA drives the device
under test, The analyzer’s two channels connect to the
input and output of the device, and the signal each
channel receives undergoes comparison with the stimu-
lus signal as a function of the discrete Fourier trans-
form. The result is a complex value containing the
magnitude and phase (with reference to the stimulus
signal) of the measured signal.

The FRA then compares the two channels’ resuits,
deriving the gain and phase-shift relationships between
the two channels’ signals. This process occurs several
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Fig 3-The integration time of a Fourier transform controls filter
bandicidth, and a sine-ware signal source sets the filter's center
frequency. Each discrete Fourier transform emulates a single band-

pass filter.




times between the start and stop frequencies being
analyzed, thereby producing a series of discrete gain
and phase wvalues. When you connhect these points
graphically, you obtain the gain and phase curves of the
frequency response. Note that this measurement pro-
cess has two impiementations, and the difference be-
tween them can be important to the designer who uses
computer-aided analysis.

The primary distinction between the two implemen-
tations lies in the sources. An FRA whose source
sweeps continuously can integrate the signal while the
source is actually sweeping. Each integration period,
therefore, covers a small part of the total measurement
span. The result of that integration is then available at
the end of each integration period.

This continuous-sweep technique creates a potential
ambiguity between the phase and magnitude values for
the displayed frequency, and the exact frequency at
which they occurred. The ambiguity becomes especially
serious when the integration period covers large fre-
quency spans. Because the integration period is typical-
ly fixed, you can generally minimize this problem by
reducing the sweep speed—and therefore the frequen-
¢y span covered—during integration. The ambiguity
won't interfere with graphical analysis, but it can
create difficulties in computer analysis.

Sweep-and-dwell sources -

The alternative to the continuous-sweep implementa-
tion is a sweep-and-dwell sine-wave source. In this type
of analyzer, the sine-wave source dwells at a discrete
frequency during the integration process and then
performs a phase-continuous sweep to the next analysis
frequency.

Because a sweep-and-dwell analysis occurs at a dis-
crete frequency, the phase and gain analyses apply only
for the frequency point at which the measurement was
made; therefore, no ambiguity exists. DSAs incorpo-
rate this sweep-and-dwell form of swept-sine analysis,
which optimizes the accuracy of their mtegrated com-
puter-aided-analysis functions.

One possible drawback to the sweep-and-dwell tech-
nique is that the analyzer might miss valuable informa-
tion between measurement points. However, by simply
decreasing the sweep rate of these analyzers, you
increase the number of measurement points between
the start and stop frequencies and provide better
resolution.

Newer analyzers offer an autoresolution function
that monitors the gain and phase shift between mea-

A root-locus diagram allows vou to examine
the values of s for a system’s closed-loop
poles, based on the Enown values of s for the
open-loop poles and zeros.

surement peints and automatically adjusts the resolu-
tion (ie, sweep rate) during the sweep, thereby pre-
venting the loss of valuable data. This function can also
minimize total sweep time by increasing the sweep rate
in portions of the frequency response that are relatively
flat in both gain and phase.

FFT analyzers

Fast-Fourier-transform analyzers (FFTAs) are simi-
lar to FRAs in that they use a type of Fourier transform
to achieve narrow analysis bandwidths. Their method
of signal generation and use of two channels to compare
a device's input and output are also the same as those of
the FRAs. However, instead of emulating a single
bandpass filter and tracking it over the spectrum of
interest, FFTAs emulate hundreds of bandpass filters
(Fig 4) and provide complete coverage of an entire
spectrum in one integration period. FFTAs can usually
perform measurements much more quickly than can
FRAs.

In addition to the increased number of analysis
bands, the FFT process can also use a wide range of
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Fig 4—FFT analyzers emulate hundreds of bandpass filters. One
integration period, therefore, provides complete coverage of an entire
spectrum. The FFTA can use a wide variety of stimulns signals,
including random noise.

stimulus signals. They typically use stimulus signals
(such as random noise) that provide energy over the
entire analysis span, thus taking full advantage of the
analysis power. '
FFTAs and FRAs use different methods to reduce
measurement neise. If you don’t know what the differ-
ences in the methods are and how they affect the
measurement process, you can very easily misuse an
FFT analyzer. Designers lacking this information have
sometimes concluded—mistakenly—that FFT analyz-
ers can't make control-system measurements,
Although the term “swept-sine analysis” describes
the FRA's stimulus signal, it doesn’t describe the



The sweep-and-dwell sine-wave stimulus is
better than any other type of stimulus for
MEASUTIIG NOLSY SVStems.

FRA's unique analysis process comprehensively (heter-
odyne analyzers also use a swept-sine stimulus). The
term “swept Fourier analysis” (SFA) describes the
FRA's measurement process more specifically. The
differences between FFT and SFA measurement pro-
cesses lie mainly in their stimulus signal, single- versus
multiple-band analysis, and noise-reduction techniques.

Stimulus signals in SFAs and FFTs

The SFA measurement process uses a swept-sine-
wave stimulus, and the FFT process uses stimuli that
produce energy at all the analysis frequencies within a
single integration period. When you're measuring ex-
tremely noisy systems, the type of stimulus itself can
have a profound effect upon the measurement.

The sweep-and-dwell sine-wave stimulus is better
than any other type of stimulus for measuring noisy
systems, because the power of the stimulus is concen-
trated at one discrete frequency. This concentrated-
power approach automatically provides the best possi-
ble signal-to-noise ratio without any signal processing,
A random-noise stimulus, on the other hand, must
distribute its energy over a wider bandwidth, provid-
ing less power at any one discrete frequency than would
a dwelling sine wave (e, its power spectral density is
much lower than a sinuseid’s) (Fig 3).

A random-noise stimulus also has advantages, how-
ever. One of the key strengths of this type of stimulus is
that it provides a linear estimate of the operation of a
nanlinear system. For example, many systems experi-
ence changes in their frequency response relative to the
drive level or relative to the direction of a sine-wave

sweep. Random noise, which has no sweep direction
and has random amplitudes at all frequency compo-
nents, provides an average of the drive-level and
sweep-direction effects, so it usually provides a good
approximation of a system’s operation.

In situations in which initial measurements indicate
that the energy level of the random-noise stimulus is
too low, you can improve the relative power spectral
density of the stimulus by reducing the frequency span
of the measurement (if the analyzer uses a band-limited
random-noise source). However, to cover the original
frequency span of interest, you must take more
measurements, '

Single- vs multipie-band analysis

The SFA’s single-filter measurement process is slow-
er than the FFT process, which provides hundreds of
filters. However, the use of a single filter does have its
advantages. If you use a single filter, you can make all
the signals produced by distortion products (such as
harmonic distortion and intermodulation distortion) lie
outside the analysis bandwidth of a single filter, thus
removing the products from the measurement.

By increasing the Fourier integration time, you can
always reduce the filter’s bandwidth to exclude distor-
tion products (Fig 6). The only time you can’t remove a
disturbance signal is when a spur at a fixed frequency
occurs at exactly the same frequency as that of the
SFA’s stimulus. Because of its many filters, the FFT"
process can be affected by distortion products, depend-
ing on the stimulus used.

For example, if you use a sine-wave stimulus in a
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Fig 6—Reducing the analysis band of an SFA's measurement
process excludes distortion products from the measurement. The
analysiz band iz inversely proportional to the Fourier integration
time,




A DSA combines the advantages of dassic
frequency-vesponse (swept-sine) analyzers
and fast-Fourier-transform analyzers.
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Fig 7—A sine-wave stimulus in g measurement using the FFT process can cause distortion products to appear within the filters produced
by the transforms. The products would thus be recorded as part of the system's response.
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Fig 8—Periodic stimuli allow harmonics to maintain a constant phase relationship with desired signals. It's impossible, therefore, to
average these components to zern, thereby reducing the effect of the nonlinearity on a mecsurement. A rundom stimulus eliminates this
distortion-induced problem; averaging causes the nonlinear portion of the response in each filter to dwindle to zero.

system that produces harmonic distortion, the distor-
tion products can appear within one or more of the
FFTs filters and be recorded as part of the system's
response (Fig 7).

Distortion products can also affect the FFT process
when you use a pseudorandom signal as a stimulus. You
can characterize this pseudorandom signal as a summa-
tion of discrete sine waves, each of which is tuned to the
center frequency of a unique filter. If you separate the
response in each filter into the portion of the response
that results from the intended stimulus (the desired
response) and the portion of the response that arises

from a harmonic product of a lower frequency, you'll
never see a change in the relationship between the
desired response and the distortion product from mea-
surement to measurement. Therefore, even if you were
to average the results of several measurements, you
wouldn't reduce the effect of the nonlinearity on the
measurement (Fig 8).

A random stimulus, however, eliminates this distor-
tion-induced problem by letting the nonlinear portion of
the response in each filter decay to zero with averag-
ing, even if the nonlinearity is a fixed spur at the center
frequency of a filter. A swept-sine-wave stimulus



An FFT analyzer uses two channels to
compare input and output and emulares
hundreds of bandpass filters to provide com-
plete coverage of an entive spectrum.

doesn’t permit such averaging. The explanation of
distortion phenomena leads directly to the topic of noise
reduction.

Noise reduction in SFAs and FFTs
The noise-reduction process of SFAs is fairly
straightforward. If you increase the integration time in

each channel, the analysis bandwidth in each channel .

becomes smaller and smaller while remaining centered
on the frequency of the stimulus. As the bandwidth
becomes smaller, the noise power (of the measured
system) within the filter lessens. Moreover, any spurs
close to the center frequeney become located farther
down the stop band of the analysis bandwidth until they
receive sufficient rejection.

The only type of distortion that can't be rejected is a
spur that has the same frequency as the stimulus and
that maintains a constant phase relationship with the
stimulus. In this case, the spur is said to be coherent
with the stimulus. A key aspect of this type of noise
reduction is that the noise in each channel is reduced
before the gain and phase relationship (ie, the frequen-

cy response) between channels is caleulated.

The FFT process makes two types of noise reduction
available: time averaging (a form of linear averaging)
and power-spectrum averaging. Time averaging is very
similar to the SFA's averaging process in that it im-
proves the S/N ratio of the signal in each channel before
the frequency response is calculated. The time-averag-
ing method gathers the samples of the signal normally
considered by the FFT into blocks of data called time
records, and then averages the time records.

To keep averaging from reducing the signal of inter-
est, you must make sure that the signal is a periodic one
(such as the pseudorandom signal menticned above)
and that the phase of the signal is the same in each time
record. You must also supply a trigger signal to the
analyzer to indicate when data collection should begin,

Power-spectrum averaging

The second, and more commonly used, form of noise
reduction in FFT measurements is power-spectrum
averaging. The fundamental difference between this
technique and time averaging is that relatively little
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noise reduction occurs in each channel. Instead, the
method removes noise by averaging frequency-re-
sponse data from each measurement.

The benefit of this noise-reduction technique is that it
doesn't matter how much the stimulus signal differs
from one measurement to the next, as long as the gain
and phase relationship from measurement to measure-
ment remains the same. You can thus use random noise
in an averaged measurement.

For example, assume you allow the random-noise
stimulus to maintain the same frequency components as
the pseudorandom-noise signal discussed earlier, but
let the phase of the discrete sine waves vary randomiy
{a poor representation of random noise, but useful for
this example). In this case, the stimulus signal within
each filter will have a different phase orientation in
each measursment.

If you were to examine a filter whose output is
composed of a linear response to the intended stimulus
signal and a nonlinearity-induced harmonic preduct,
you'd see a change from measurement to measurement
in the relationship between the linear response and the
harmonic. The disparity exists because the phase of the
harmonic’s fundamental and the intended stimulus
would have changed between measurements.

If, over severzl measurements, you examine a vector
representing the computed frequency-response data for
each measurement, you'll see that the distortion prod-
uct appears as a vector that rotates about the end of a
stationary frequency-response vector (Fig 9). When
you average several frequency-response vectors, the
contribution from the distortion product falls to zero.
The averaged frequency-response vector thus gives
you the best linear estimate of the device’s frequency
response. If you use a random-ncise stimulus in this
type of averaging scheme, you'll find that even a spur at
the center frequency of a filter would be noncoherent
with the stimulus and would average to zero.

Although power-spectrum averaging, combined with
a random-noise stimulus, reduces the affects of all
forms of distortion products from a measurement, you
wouldn’t benefit from using power-spectrum averaging
with a periodic stimulus. Using a periodic stimulus
would allow distortion products to be coherent with the
stimulus, so they'd be unaffected by averaging. Fur-
ther, certain control-system measurements don’t allow
the use of power-spectrum measurement.

The FFT analyzer is always better than a swept-
frequency analyzer for measuring a basically linear
system with poor to good S/N conditions. Both analyz-

If you don’t understand the diffevences in
the ways an FFTA and an FRA effect
measurement-noise veduction, you could
mususe the FFTA.

ers (FFTA and SFA) will provide the same response,
but the FFT process will provide it much more quickly.
The SFA, on the other hand, gives you the best possible
S/N ratio, so it's more suitable for use in difficult
measurement situations. Having both techniques avail-
able is clearly preferable, as in a DSA, so you can use
them to handle different measurement problems. EDM

5950-5739
Printed in U.S.A.



the design of

closed-loop systems

£ 1986 by CAHNERS PUBLISHING COMPANY



Designer’s Guide to:

Linear control-system theory—DPart 3 -

Analyzers aid in
the :.J N of

closed-loop systems

You can use the various functions of a dynamic sig-
nal analyzer to derive the open-loop frequency re-
sponse of a system from measurements taken at vari-
ous points in the system. This article, Part 3 of a
3-part series, discusses how to use DSAs to develop
and model a control system. Part 1 of the series
presented an overview of classical linear control the-
ory, and part 2 considered the role of DSAs in con-
trol-system measurement.

Steve Asbjornsen and Owen Brown,
Hewlett-Packard Co

By manipulating the classical graphieal-analysis tools of
linear control theory, a dynamic signal analyzer (DSA)
can greatly assist you in designing and modeling stable
closed-loop, negative-feedback control systems. You
can use a DSA’s internal waveform-math functions to
caleulate the frequency response of a elosed-icop con-
trol system by measuring its open-loop frequency re-
sponse (Refs 1 and 2). By analyzing a closed-loop
system’s open-loop response, you can tell whether the
system is stable or unstable, and you can design com-
pensation networks to stabilize an inherently unstable
system. _ -

DSAs allow you to use three separate techniques for
measuring the open-loop frequency response of a
closed-loop system: the loop-open direct method, the
loop-closed direct method, and the loop-closed caleu-
lated method. In the loop-open direct method (Fig 1),

“which is defined by the expression B(jo)E{jw), you

open the loop by removing the summing junction from
the system. You then inject a stimulus signal at point
E(jw) and measure the response at point B(w).

The ratio B(ju)/E(jw) provides the gain and phase
characteristics of GH(jw), the open-loop frequency re-
sponse. This technique lets you determine the stability
of the loop before you close it. Before taking this
measurement, however, you must take steps to avoid
four problems: overdriving the system, changing load-
ing conditions, system saturation, and loss of operation.

Overdriving the system

When you stimulate a high-gain system, you must be
careful not to overdrive the system, that is, to exceed
any part of the system's maximum operating range (a

situation that might arise, for exampie, when a sine-
wave stimulus sweeps through a resonance). If you -

exceed this range, you could introduce nonlinearities
into the measurement. Furthermore, if the stimulus
contains high-energy components, you could damage
the system.



Fortunately, vou can often avoid overdrive by using a
DSA's monitoring functions., The monitoring functions
provide source-level control that can vary the stimulus
level to maintain a specified input level to either
channe! of the analyzer.

You must pay attention to the system's loading
conditions. To obtain a measured frequency response
that’s an accurate representation of GH{(jw), you must
make sure the open-loop system is loaded with the same
impedances during testing that will exist when the loop
is closed.

You must also aveid system saturation, the condition
in which the output at B(jw) gets stuck at the maximum
output level when you open the control loop. Such a
condition is often caused by the reaction of extremely
high loop gains to very small de offsets—or to integrat-
ing components that naturally accumulate stray de
levels—in the absence of the countering effects of
negative feedback. When system saturation oceurs, you
must abandon the loop-open direct technique.

Finally, you must avoid loss of operation (ie, system
disruption to the point of failure}, which can occur when
you open the system’s control loop. For example, con-
sider a disk drive’s read/write-head-positioning system

and the magnetic interface between the head and a
prerecorded track on the disk platter. If you open the
loop. you won't be able to maintain the interface so that
it stays within normal operating conditions. If you stop
the disk so that you can position the head over a track
on the disk, the magnetic interface will disappear. If
vou rotate the disk, the slightest off-center condition
will cause the head to skip across several tracks, Even
the weakest stimulus signal will cause a similar effect.
You simply can’t test such a system with the loop open.

For a system that's suitable for loop-open direct
testing, you should preferably use the DSA's FFT
function with a nonperiodie stimulus signal. The FFT
function works well because it yields good signal-to-
noise performance and because, when you use a
nonperiodic stimulus, the DSA allows vou to average
out distortion products. Further, the FFT function's
speed can greatly reduce the total measurement time.
When you use a nonperiodic stimulus to reduce the
effects of system noise, you must use power-spectrum
averaging.

The loop-closed direct method, which is defined by
the transfer function Y(jw)/Z(jw), uses the connection
shown in Fig 2. The technique is a common one for
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Fig 1--To take a loap-open direct measurement, you remove the summing junction from the closed-loop system. You then inject a stimulus

signal at Efjw} and record the system's responge at Bf jw).




testing systems that can operate stably, though possi-
bly at a reduced performance level, with the control
loop closed. You can also use this technique to perform
maintenance tests on established control systems, as
well as to initiate testing of new systems.

When you test a new system, you should reduce its
loop gain to a level that’s low enough to ensure loop
stability. If the tests verify the system design, you can
increase the gain to standard operating levels and then
retest the system. To perform the loop-closed direct
test, you must monitor the signals that enter and exit
any summing junction within the main signal path of
the control loop. As long as you don't need to test the
control loop in the presence of actual operating signals
at the reference input, you can use the negative-
feedback summing junction.

When you do need to test the control loop in the
presence of actual operating signals at the reference
input, or when the system's feedback summing junction
is inaccessible (for example, when the head-to-disk
magnetic interface of a disk drive is the system’s
feedback summing junetion), you must add a2 summing
Jjunetion at some other point in the control loop. Note
the summing junction added between the two forward
blocks, G, and G, in the closed-loop system in Fig 2.
(See box, “Create summing junctions.”)

In the loop-closed direct method, you inject a stimu-
lus signal into the loop at point S(jw) and monitor the
signals at points Y(jw} and Z(jw), the inputs and
outputs of the summing junction. In this methed, the
signal at point Z(jw) is the reference signal. Assuming
that all the energy in the loop derives from the stimulus
signal S(jw), solving for the signals at Y(jw) and Z(jw)
in terms of S(jw) produces the expressions

G,GH(juw)

Y(jo) = S{jely— GiG-H(jw)

and

. . -1 .
= S(jh e
2jw) = S mm e

which is a reasonable assum jtion to make after you've

used averaging to reduce noi.e. If you take the ratio of

Y (jw)Z(jw), you obtain the equation
Y(jw)/Z(juw)=—G,GH{jw),

which is the negative of the open-loop frequency re-
sponse for the system. (The negation, the result of

The measurement technique you choose to
derive the open-loop response of your closed-
loop system depends on the system’s stability
and nodal accessibility.

inciuding the negative feedback in the measurement,
represents an additional 180° phase shift in the frequen-
cy response.} Some test instruments provide you with
either waveform-math capabilities or a calibration con-
stant to remove the additional phase shift.

The loop-closed direct technique is a practical one for
measuring the frequency response of any system that
can operate, at least minimaily, when the loop is closed.
In such systems, the loop-closed direct method avoids
the problems of changing loading conditions, system
saturation, and loss of operation that you encounter
when you use the loop-open direct method.

Note, however, that when you use the loop-open
direct method, you can’t use power-spectrum averaging
(the standard form of averaging of a DSA’s FFT
function) to reduce measurement noise. If you attempt
to do so, you'll almost always get the wrong frequency-
response measurement. Worse, increasing the number
of power-spectrum averages will only reduce the vari-
ance of the erroneous result, so the measurement will
appear to converge to a valid one.

You can’t use power-spectrum averaging because any
signais within the system not directly related to the
stimulus signal (inciuding system noise and any signals
applied to the reference input) would pass through the
summing junction unaltered. The signals would, there-
fore, appear in both channels and maintain constant
gain and phase relationships (predictably 0 dB and 0°)
from measurement to measurement, making it impossi-
ble to average them out. And unless you were to
compare your measurement with a known-good mea-
surement, you probably wouldn't notice the error.

In any case, a DSA’s signal-processing function re-
moves (from each channel) the nonstimulus-related
signals in the loop before the DSA caleulates the
frequency response. The DSA can be operating either
in its SFA (swept-frequency analysis) mode or its FFT
mode (using time averaging and a periodic stimulus). If
coherent distortion products exist in the nonstimulus-
related signals, however, the SFA mode is generally
the preferred one.

Loop-closed calculated measurement

The transfer function for the loop-closed caleulated
measurement technique (Fig 3) is Y(jw)S(jw). This

method resembles the loop-closed direct method except

that here the DSA uses the applied stimulus, instead ot
the signal at Z(jw), as the reference signal. With the
loop-closed calculated method, however, you can use an
FFT's power-spectrum averaging mode (and, there-



If a systew’s feedback summing junction is
inaccessible, you can take response measure-
ments by adding a summing junction at
another point in the contvol loop.
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Fig 2—You can use the loop-closed direct measurement method only for systems that are stable in the elosed-loop configuration. The
teelimique s wxeful for negative-feedback systems that need periodic maintenance checks.

fore, you can use random noise) to reject system noise
and provide the best linear estimate of a system's
frequency response.

You can use random noise because the stray noise in
the system appears in only one channel. If you average
the relationship between the monitored signals, there-
fore, eventually the variation (caused by stray noise) in
that relationship will drop to zero, as long as the stray
noise is not phase-coherent with the stimulus.

The loop-closed calculated technique doesn’t limit
your selection of an analysis tool. You can use either
SFA or FFT analysis with either time or spectrum
averaging; for FFT analysis, you can thus use both
periodic and nenperiedic stimuli. :

The loop-closed calculated method differs from the
loop-closed direct method mainly in that, in the loop-
closed calculated method, the ratio Y(w)/S(jw) does not
directly provide the open-loop frequency response,
GiG:H{jw). When you use the equation

GG H(jw)

Y = 8GN 6 G HGe

to solve for Y(w)'S(jw), and then declare the result to

be the quantity T(jw), you obtain

GngH(jw)

Y(jolSGe) = TG GlGe

If you solve for G,G:H(jw) from this measurement, you
obtain

_ N L )

G}G‘zH(jw) = """""""““‘“‘"‘"""1 — T(Jw)

Using graphical techniques to perform these calcula-
tions would be impractical. DSAs’ waveform-math funec-
tions, however, perform these calculations attomatical-
ly. In fact, some of these instruments offer the
T(w)[1-T(w)] caleulation as -a single-keystroke
operation. ool e

The primary disadvantage of the loop-closed calecu-
lated technique is that, theoretically, it limits the
maximum gain of the open-loop frequency response
that you can calculate (from the Y(jw)/S(jw) measure-
ment) to the dynamic range of one channel of the
analyzer. When you measure a signal with a sampling
instrument, the instrument’s dynamic range is directly



Create summing junctions

To put an electronic summing
Jjunetion into a control loop, you

can use two basic approaches. Sl

You can either add new circuitry Vi -

to the loop to realize the sum- - -

ming junction (Fig A), or you - ..,3 o T 2..__
can use an existing buffer ampli- N

fier (Fig B). In the first ap-
proach, you can calculate the
open-loop frequency response
from the measured transfer
functions Y{(jw)/Z(jw) and

Y (Ge)Sw):
Y(juw)
s = — (G H{(jw);
Z(Jw) 1 J
Y(jo)  GG.H{jw) TCiw)
SGw) ~ 1+ GiGeH(jw) W9
Therefore,
. T(jew) Fig A-~Thie circuit, a typical configuration for adding a summing junction to a
GngH(_}w) = i—:——;ﬁ-—s ' control system. allows you to use the measurements of YljwiiZjw) and Y1 jwiSl jw) in
Ju conjunction with a DSA to ealeulate the system’s open-loop frequency response.

When you're using an existing
amplifier (Fig B} to make a
Y{jw)S{jw) measurement, you Sjon) R
must account for both the gain EXISTING SYSTEM
of the amplifier and the fact that [T T T T T T T e e e o —
polarities between the Y{jw) and
S(jw) legs of the summing junc-
tion now match. The following
equations account for these fac-
tors:

Y{jw)

"Z“G;)f = - GleH(jw);

Y(J&J) _ - G]GQH(Jw) . s 8.
S ~ R+ GGHGa - Td@h |
Rz ———————— A S o — O — — T — W W e e

.G;GzH(jw) - (ﬁ%%ﬁ‘))(%)

In all cases, the amplifiers "i“" Zj)

used to implement the summing
Jjunction should have bandwidths
much greater than the band-
width of the control system, and
they should also have flat fre- connecting a resistor to the amplifier’s summing junction, Using this technigue, you
quency responses within the take Y(jw)iZljw) and Y(jw)S(ju) measurements and use the DSA's waveforn-math
bandwidth of the system. Junction to caleulate the system’s open-loop frequency response.

Fig B—You can take advantage of an existing amplifier in a control loop by simply




Loop-closed dirvect testing is practical for sys-
tems that ave stable in closed-loop connec-
tion, and it avoids the problems of loop-open
direct testing.

related to the number of bits of the sampling A/D
converter.

In practice, several factors prevent you from reach-
ing even the theoretical limit, For example, if the noise
power in the system is much larger than the power of
the signal of interest, you must adjust the input sensi-
tivity of the A/D converter to handle the neise. This
reduced sensitivity leaves fewer bits of the A/D con-
verter available for resolving the signal of interest.

Mismatch between the input channels of the analyzer
can also severely limit the accuracy of the measure-
ment. Unfortunately, the mentioned limitations will not
create an obvious distortion of the calculated gain. They
may simply produce an unexpected flat region of the
open-loop gain in portions of the curve that have very

high loop gains.

Design and modeling

Although you deveiop different control systems dif-
ferently, you can separate most development into two
categories: analytical design and design using frequen-
cy-response manipulation. Analytical design is useful

systems that must work the first time. In this method,
you find the location of the specific poles and zeros of
each system component and use frequency-response
data and known properties of the system components to
help identify those poles and zeros. Once you know the
pole/zero locations, you can calculate the system’s per-
formance from the models.

Frequency-response manipulation is useful for im-
proving the system’s performance. In this technique,
you must either alter the components so that their
pole/zero locations change or add compensation net-
works to provide the poles and zeros necessary to
generate the required performance. To use this pole/
zero-manipulation process, you must work with mathe-
matical representations of the system and obtain accu-
rate models of the system and its components.

When you add compensation networks, however, you
don’t need to know the exact location and cause of each
pole and zero. Instead, you characterize the system
completely by its open- and closed-loop frequency re-
sponses. You add compensation networks whose fre-
quency responses will constructively change the sys-

for determining the performance of large, expensive tem’'s overall frequency response. In effect, this
DYNAMK: SIGHAL ANALYZER
SQURCE EXT TRIGGER CHANNEL 1| W3 CHANNEL 2
@—OVER RANGE——8§
e HALF FLANGE
® ° —
@ @ é 42V pk MAX D
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.
S
Ajw) ~ Efje} > © Qi)
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Fig J—Loop-¢closed calculated measurement takes adventage of the FFT function's power-gpectrum averaging mode. Thizs mode of
weasurement, when used with a random-noise stintulis, provides the best possible linear estimate of a closed-loop system’s frequency

rexponse. 4 DEA's waveform-math capability helps you interpret the results you obtain with this measurement method.




approach lets you quickly calculate both the frequency
response of a compensation network and the network’s
effect on the system.

The analytical-design and frequency-response-ma-
nipulation techniques are similar; the first is simply
more concerned with designing with accurate analytical
models (typically because of the lack of actual hard-
ware), and the second is more concerned with the
measured response of a system.

Typically, you can generate models in two different
ways. First, if you have complete knowledge of a
device's physical characteristics-—such as its mass, frie-
tion levels, resistance, and other parameters—you can
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Fig 4—~A DSA’s curve fitter has an automatic weighting function,
which allows the instrument to fit noisy data without producing
incongequential poles and zeros. The DSA displays the system’s
estimated frequency response below the measured data (aj. The
edit-table key makes the DSA produce the table of poles and zeros (b}
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generates the compensation network’s frequency response {trace B).
Using waveform math, the DSA multiplies this response by the
system’s open-loop response (trace A); the resulls are the gain and
phase plots for the compensated system,




In loop-closed calculated measurement, a
DSA’s FFT function provides a linear esti-
mate of a system’s vesponse.

derive a model with them by using Lagrange’s equa-
tions and other equations. If you don't know the de-
vice’s physical characteristics, however, you can mea-
sure its frequency response and estimate the poles and
zZeros required to produce that response, When you're
developing a system, you'll often have to use both of
these techniques.

The most common technique for estimating the poles
and zeros required to generate a particular frequency
response is to examine a frequency response plotted on
a Bode diagram (Ref 1) and determine the @ of
resonances, the slope at which the system’s gain rolls
off, and the amount of phase shift through the system in
relation to the gain slope. Once you master the tech-
nique, you can derive an estimate of the mathematical
model for a simple system at a glance.

Using these techniques to estimate the model of a
complex system, however, is not easy. For systems
with many dominant complex poles, the task of analyz-
ing gain and phase relationships is tedious and cumber-
some, and it may result in inaccuracy, because you can’t
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Fig 8—A gharp resenance at 30 Hz is evident in this open-toop
Sfrequency response obtained from Fig 7's V.S measurement. The
resonance stems from an ercessively long drive shaft between the
motor and ifs load.
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Fig 6—This simple motor-speed controller has all the elements of a
negative-feedback, closed-loop system. The system provides an exam-
ple of how you can exploit a DSA's frequency-response synthesis and
waveform-math functions.
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Fig 7—To perform operational testing at reduced gain for the
normally unstable speed-control system, you add a summing june-
tion at a point in the system before the preamplifier. This test uses the
{oop-closed calculated technique (Fig 3) to obtain a YIS transfer
function. )

Fig 8—When you use the DSA’s Y-axis marker fo show the
system’s 0B level during normal operation, you can see that the
resonance causes the gystem fo become unstable when gain is
adjusted to the desired level. For stability, the system’s gain must not
exceed 0 dB when phase is more negative than —180°.




easily sort out the overlapping gain/phase relationships
of the many poles and zeros.

Historically, computer programs called curve fitters
could automatically analyze a frequency response and
produce a pole/zero model. These curve fitters, howev-
er, could not distinguish between good data and bad, or
noisy, data. If the data was bad, you either had to alter
it to remove noise before transferring the data to the
computer, or you had to wade through a great deal of
inconsequential pole/zero data, which the curve fitter
generaied to fit the noisy portion of the curve. The
computer programs were, therefore, of limited value to
designers.

Algorithms called weighting functions improved the
usefulness of curve fitters by allowing the computer to
analyze the quality of the data before attempting to fit
it. Because of these weighting funetions, modern curve
fitters can successfully process the noisy frequency-
response data associated with most control-system
measurements, so they can quickly and accurately
produce an estimate of a system's pole/zerc model.

DS8As contain state-of-the-art curve fitters that are
capable of using as many as 40 poles and 40 zeros to
estimate the pole/zero model] of a frequency response.
In a DSA, you can call up the curve fitter with enly two
keystrokes. When the curve fit is done, the DSA

NETWORK

COMPENSATION

PREAMPLIFIER MOTOR

TACHOMETER

Fig 10—A lowpass filter counteracts the resonance arising from the motor's long drive shaft. Without the filter, the 90-Hz resonance equses

instability when the system operates at its normal gain sefting.
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curve, which is displayed above the speed-conirol system’s frequency

regponse.




A DSA simplsfies the task of determining
the proper compensation network needed to
stabilize closed-loop contvol systems.

calculates a frequency response from the model and
displays that frequency response below the measured
frequency response for comparison (Fig 4a). Another
keystroke displays the table of poles, zeros, and gain
(Fig 4b) that the curve fit produces.

After you estimate the model of a system or a
compensation network, you must calculate the model’s
frequency response. If you do this calculation manually,
you should use Bode's graphical techniques. If you use a
DSA, however, you can obtain a higher degree of
accuracy for both simple and complex systems.

A DSA's frequency-response-synthesis program per-
forms the inverse function of an advanced dedicated
curve fitter, allowing you to enter transfer functions
that have as many as 40 poles and 40 zeros into the
analyzer. The DSA then calculates and displays the
frequency response, The programs also allow you to
enter gain and delay parameters.

The frequency-response-synthesis function lets you
immediately assess the effect a cascade compensation
network will have on your system. By displaying the
measured frequency response of a system on one trace
and the synthesized frequency response of a compensa-
tion network on another, the DSA lets you make either
a quick visual evaluation or a precise calculation of the
combined frequency response of the two (Fig 5). (To
make a precise caleulation of the responses, you multi-

ply the two frequency responses using the DSA's
waveform-math function).

Because curve fitters generate only linear models,
the result of the curve fit will be a linear approximation
of the device’s operation. Should a nonlinearity (other
than random noise) produce a large number of poles and
2eros, you can reduce the order of the model by simply
transferring the curve-fit data to the DSA’s frequency-
response-synthesis function and selectively subtracting
or adding poles and zeros to obtain the best model (with
the fewest poles and zeros).

You can then quickly assess the effects of your
modifications by synthesizing the frequency response of
the new model and comparing it with the measured
response. The initial estimate provided by the curve
fitter and the medifications handled by the frequency-
response-synthesis function greatly reduce the time
required to produce an adequate linear representation.

A case study

The system in Fig 6 provides an example of how you
can use frequency-response synthesis and waveform
math to develop a relatively simple motor-speed con-
troller. We constructed a prototype of the system and
found, upon power-up, that the motor’s speed was
unstable.

Reducing the gain of the preamplifier by 8 dB stabi-
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Fig 12—To obtain these curves, which are products of the responges
of the system and the lowpass filter, you use the DSA's waveform.
math function to perform the multiplication. The curves indicate
that the use of the filter stabilizes the speed-control system.
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The curve-fitter function in a DSA auto-
matically analyzes a system’s frequency re-
sponse and produces a pole/zero plot.
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Fig 14—The frequency response of the compensated speed-control
system shows fhat the lowpass-filter compensation network com-
pletely stabilizes the system. The DSA gives direct readouts of gain
margin and phase margin.

Fig I3—A final check on the speed-control system shows that the
system's measured frequency response (upper trace; closely matches
the response predicted (lower trace) by the DSA's frequency-response
synthesis and waveform-math function.

lized the system, but degraded its performance below
acceptable levels. While the system was at the reduced-
gain level, we measured the open-loop frequency re-
sponse by adding a summing junction to the system just
before the preamplifier (Fig 7) and by using the loop-
closed calculated (Y/S) measurement technique. Fig 8
shows the open-loop frequency response calculated
from the Y/S measurement.

The measurement revealed a sharp resonance at
approximately 90 Hz. When we placed the Y-axis
marker at -8 dB to indicate the umnity-gain (0-dB)
location during normal system operation (Fig %), we
saw that the resonance did indeed cause the system to
become unstable when gain was adjusted to the desired
level.

The source of the resonance was a relatively long
drive shaft attached between the motor and the antici-
pated system load. Redesigning the system would be
too expensive, so we decided not to alter the drive
shaft, but to find an electronic solution.

Because the problem was occurring at a relatively
high frequency, we added compensation to the system
in the form of a lJowpass filter (Fig 10}. Using the DSA’s
frequency-response-synthesis function, we entered the
pole locations for a simple lowpass filter into the analyz-
er and synthesized and displayed the frequency re-

sponse above the system’s measured frequency re-
sponse (Fig 11).

By using its waveform-math function to multiply the
two frequency responses, the DSA predicted the effect
of adding the lowpass filter to the system’s loop. Fig 12
shows the gain and phase of the modified system. The
predicted response of the modified system indicated
that the lowpass filter would be a good sclution to the
resonance problem, so we constructed a prototype of
the filter. :

To ensure that the design was correct, we measured
and compared the frequency response of the filter
prototype to its synthesized frequency response {Fig
13). Once we had confirmed its design, we added the
filter to the system and increased the preamplifier’s
gain by 8 dB to its previous level. The system remained
stable, but we measured the open-loop frequency re-
sponse again to make sure that the gain and phase
margins were sufficient to maintain stability.

The measurement indicated that the resonance had
indeed been attenuated far below any leve! of concern

and, using the analyzer's markers, we quickly recorded
the gain margin, phase margin, and open-loop band- ~

width (Fig 14). To evaluate the integrity of the design
approach, we compared the measured open-loop fre-
quency response of the modified system with the pre-
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Control System Development Using
Dynamic Signal Analyzers

Dynamic Sigral Analyzers (DSAs) represent a new generation of microprocessor-based
fest instruments designed to support the development of control systems. By combining
the computational resources of microprocessors with the accuracy of precision
measurement hardware, DSAs combine high-performance measurements and pawerful
computer-aided-engineering. By consolidating this much pewer into a single instrument,
DSAs have expanded the rofe of test instruments beyond traditional testing functions to
include contributions in the areas of modeling, design and analysis.

The purpose of this application note is to examine how the advanced measurement and
analysis capabilities of a DSA can be applied to the development and production of
control systems to reduce testing time, reduce analysis time, provide more information
from measurements and, in general, enhance the overall development and production
process.

Using This Application Note
This application note i designed for both the experienced control systems engineer who
may be unfamiliar with DSAs and the experienced DSA user entering the fieid of control
systems. To accommodate this broad range cf readers, the note is divided into two parts.
Part 1 is a review of the basic concepts associated with controb systems and linear control
theory. This section serves as a general resource and may be considered optiona
reading for the experienced control system engineer.
Part 2 is an introduction to the features and functions of DSA’s which directly contribute
to the development of control systems. Each feature or function is briefly described with
example applications provided.

A glossary of control systern terms is provided in Appendix A.
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¢ An Introduction to Control Systems and Classical Control Theory.

Cﬁer 1: Basic Terms and Definltions

& control system has been formally described as, ""A system in which deliberate
guidance or manipulation is used to achieve a prescribed value of a variable.”! With a
variabie further defined as, "'a quantity or condition which is subject to change,” it
becomes apparent that the components of a control system may be virtually any
definable entity, be # electrical, mechanical, biclogical, organizational or otherwise.

The human circulatory system, pacemakers, motor speed contols, clothes dryers,
automobile cruise controls and voftage regulators are a few examples of the vast number
of contral systems in existence. The diversity of control systems may at first seem a
barrier against the development of a common analysis and design strategy. Fortunately, if
the compenents of a system can be represented through a common mathematical
symbolism, then there exists a collection of concepis and methods for studying the
physical properties of controf systems known as controf theory,

While a thorough study of control theory is far beyond the socpe of this application note,
the following paragraphs present the basic concepts associated with classic control
theory as applied to continuous linear controf systems.?

To categorize control systems with common traits or functions, several subclasses of
control systems have been defined. One of the basic categories of control systermns are
those systerns which operate without human intervention. Control systems in this category
are called autornatic control systems. An example of an automatic control systern is an
automobile cruise control which maintains the speed of the vehicle without attention from
the driver. If the driver disengages the cruise control, he then becomes part of the control
system regulating the speed of the car and, therefore, part of a nonautomatic contro
system,

Ancther category involves those automatic control systems which involve mechanical
motion as the controlied variable. These control systems are called servomechanisms
{commanly referred to as servos) and are defined as, "An automatic feedback control
systemn in which the controlled variabie is mechanical position or any of its time
derivatives.” While this definition seems straightforward, general usage has diluted the
literal meaning 1o include virtually any electronic, electro-mechanical or mechanical control
system.

Control systems are also categorized as being either open-loop or closed-loop. The
difference batween these two categories, the use of feedback, becomes easier to
understand when viewing the basic model of a control system. Formal definitions of
operriccp and closed-loocp contrel systems have therefore been incorporated into the
foliowing chapter on control system modeling,

Chaﬁsr 2 Modeilw

The first step in the design or analysis of a control system is to develop an analytical
modei of the systern. This is done by dividing the control system info functional biocks.
Each block may represent any portion of the control system from an individual
component to a group of components which performn an identifiable function.

¥ Amercan National Siandards Institute spacification MC85.1M-1881, Terminology for Autornatic Control,

2 Referarces for further study of modern or classic control theory as applied to linear, nonlinear, confinuous
and discrete control systems are listed at the end of this note,




2-1: The Open-Loop Modal

FIGURE 1-1.

Figure 1-1a is a block diagram which represents a very basic control system. The letters
r and ¢ represent the directly controlled variable and the reference input respectively. The
letter g represents an equation which describes the influence of the elements within the
functional biock on a signat or action compared at the input and output of the functional
block. Al lower case letters generally denote functions in the time domain unless
otherwise specified (for example, ¢ = off)). The upper case variables R and Cin

Figure 1-1a represent the Laplace transform of r and ¢ expressed as functions of the
complex variable 5'. The upper case G represents the Laplace franstorm of g and is
generally referred to as a transfer function?,

A simple exampie of the type of controf system shown in Figure 1-1a is a potentiometer
connected as a voliage divider, as shown in Figure 1-1b. For this example the reference
input R would have units of radians, the directly controlled variable C units of volts, and
the transfer function G would be a constant with units of volts per radian (as shown in
Figure 1-1¢). A drawback of this type of a control system is its inabiiity to respond to
dynamic changes in the systern. For example, if a load resistance was connected fo the
cutput, there would be an undesirable change in the output voltage. This type of control
systemn, which cannot take corrective action to alleviate undesirable changes of the
directly controlied variable, is called an open-loop controf system.

R
R, 6 < 5

r £ ¢

a. Control System Biock Disgram (Open-Loop).

- +15¥
Vour

b. Control Systermn Corresponciing (o Block Disgram of Figure 1a.

G
R VOLTS C >
RADIANS RADIAN VOLTS

R « FUNCTION WITH UNITS OF RADIANS.
G = TRANSFER FUNCTION WITH UNITS OF VOLTS/RADIAN.
C = FUNCTION WITH UNITS OF VOLTS.

¢. Dutalied Block Diagrem of Control System Shown in Figure 1b.

1 In generat, capital ietters dancte transtormad quantities. The quantities may be either Laplace transformed as
a function of the compiex variabie 1. (e.0., G{s)), or Fourier transtormed as a function of the frequency
variable jw, (8.0., G(jw}). Functions of 3 are generally abbreviated to ther capial letter only (Le.. Gis}is
abbraviated to G). Functions of jw, however, are never abbreviated.

2 A transfer furiction is defined as the ratic of the Lepiace transform of the output to the Laplace transtorm of
the input in the absence of all other signals, and with all intial conditions Zero. Input and output refer o the
signals or variables applied o and delivered from a system or element. respectively.



FIGURE 1-2.
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8. Control System Block Diagram (Closad-Loop).
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2.2: The Closed-Loop Model

Ancther basic form of control system is shown in Figure 1-2a. In this system the output C
is fed back through a functional block with a feedback transfer function H and compared
to the reference signal R via a summing junction. The signal resuting from the difference
petween R and the feedback signai B is calied the error or actuating signal E. The
principal advantage of this form of system is that any change in C, with R remaining
constant, causes a change in E, (E = R-B = R-CH). If the system is operating properly,
the change in E forces C to return to the point where the vaiue of B approaches the
value of R. The effect is that the output is maintained at a desired value despite
disturbances to the system. This type of control system is called a closed-loop control
system and is defined as any control system in which the directly controlled variable has
an effect upon the input quantity in such a manner as to maintain the desired output
level,

An example of this second form of control system is illustrated by the pressure regulator
shown in Figure 1-2b. The objective of this system is to adjust the pressure in Tank 2 (Py)
untit it is equal to the pressure in Tank 1 (P4). _
Figure 1-2¢ is one possible block diagram for this system. In this block diagram the
function of the differential pressure actuator is represented by & summing junction and a
forward transfer function Gi. The action of the sliding valve is then represented by the
forward transfer function Ga. A perfectly valid alternative would be to combine Gy and G2
into a single forward transfer function G. The resultant block diagram would then have
the same form as Figure 1-2a.

This control systern is also an example of a system in which the controlled variable is fed
tack to the summing junction without any modification; the transfer function, H, is simply
squal to 1. This type of controt system is called a unity feedback control system.

A general biock diagram iilustrating moest of the elements of an automatic closed-ioop
control system is shown in Figure 1-31%,
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Chaﬁer 3: Measurini Performance

The primary objective in designing a contro! system is to construct a system that
achieves the desired output level as fast as possible angd maintains that output with little or

no variation. One of the first techniques developed to measure a control system’s
compiiance with these design goals was the step response.

31: Time Domain Performance

Step Response
The step response is the measured reaction of the control system to a step change in the
input. A typical step response and #ts associated parameters are #lustrated in Figure 1-44,
The step respense has several favorable characteristics which have maintained its
universal acceptance and popularity:

the step stimulus is easy (0 generate
the stimulus is easly modeled [u{f)] making the solution to the differential equation
{used to predict the system's tirne domain response) much less complicated
several measuremeryt techniques are available for recording the time domain

response o the step input

key aspects of the controf system's performance can be derived from the step

response.
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There are several measures of performance which can be derived from the step
response. The rise time of the step response provides a measure of how fast a system
can inttially achieve the desired output level. The maximum overshoot {(shown in Figure
1.4 in terms of either peak value or maximum value of ransient deviation) provides a
relative measure of the maximum output level resutting from a specific input. The steady-
state deviation indicates a constant error in achieving a desired output. Settling time,
perhaps the most significant parameter, is a measure of how long it takes the system to
settle to its steady-state value.

If the system never settles to its steady-state value (for example, it constantly oscilates
about a desired output], the system is considered unstable. Taken one step further, the
settling time can be interpreted as a refative measure of stability, with a short settling time
considered more stable than a jong settling time.

in addition to the step response, there were two other early stimulus signals: the ramp
function ftu{)] and the parabaiic function [f2u(f)]. These signals provided the same
simpiicty in modeling as the step response and alse provided a means of measuring a
control systems abifity to track dynamic signals.

3-2: Frequency Domain Performance

The time domain responses to the step, ramp and parabolic forcing functions were the
only universally acceptad techniques for measuring the performance of a control system
until the early 1930s. It was during this period that three Bell Laboratories scientists, H.S.
Black, M.W. Bode and H. Nyquist, were doing pioneering work on the characterization of
control systems in the frequency domain. In an attempt to provide ampfifiers with better
lineartty, Black began a rigoraus study of the effects of negative feedback on electronic
amplifiers (a basic form of autornatic closed-loop control systermn). Early experiments
resulted in several observations including improved linearity and, in some cases,
unexpected oscillations in the ampiifier's output. it was the unexpected osciliations which
inspired Nyquist to study the cause of such instabilties in closed-loop controt systems.
From his studies, Nyquist discovered that the stabifty of a closed-loop systern could be
determined from a simple frequency response plot. Before discussing Nyquist's
discovery, it is helpiut to review a few of the basic definitions and concepts associated
with the frequency domain aspects of a control system.

Domain Termms and Definitions
One of the most imporant transfer functions associated with a closed-loop control system
relates the directly controlied variable C o the reference input. The ratio C/R is referred to
as either the control ratio or the closed-loop transfer function, this note refers o #t as the
latter. By solving for C/R in terms of G and H we have: C/R = GH1+GH), as shown in
Figure 1-5. As previcusly mentioned, capital letters with no subscripts represent
transformed quantities expressed as a function of s. The closed-loop transfer function can
therefore be expressed as:

C6 _ __ Gy _ _ G

Ris} 1 + Gis)His) 1 + GH(s)
Important values of s are these values which set the numerator andfor denominator of the
closed-loop transfer function equal to zero. Vaiues of s which set the numerator 1o zero
are called zeros of the closed-loop ransfer function or closed-loop zeros. Values of s
which set the denominator equal to zero e, s such that 1 + GH(s) = 0) are called
poles of the closed-loop transter function or closed-loop poles.
At this pomnt it is important to note that the complex variable s can be further expressed in
terms of the variables ¢ and jw. Thatis, s = o + jw where ¢ represents the reat or
damping component of s, and jw represents the imaginary or frequency component of 5.

kR



A common tool used o study control systems is a graph called the s-plane. The s-plane is
a two-dimensional Cartesian graph which represents values of 5. The ordinate of the
s-plane represents the imaginary part of s (Le., jw), and the abscissa represents the real
part of s (l.e., o). If values of 5 which constitute the clesed-locp poles are plotted with X's
on the s-plane and the values which constitute closed-loop zeros are plotted with O's, the
resutt is a pole/zero plot of the closed-loop transfer function as showr in Figure 1-6.

When the magnitude of the closed-loop transfer function is plotted as a third axis of the
s-plane, the effects of the poles and zeros on the magnitude of the closed-loop transfer
function at any value of s can be quickly realized as shown in Figure 1-7.

Figure 1-7 shows only the left half of the s-plane to illustrate the contour of |C/R] for
values of s along the ju axis (i.e., for values of s equal to 0 + jw). This contour is
significant in that it represents the same curve produced by evaluating the magnitude of
the Fourter transform of ¢ divided by the Fourier transform of r for positive values of
{ie., |C{jwYR{jw) for vaiues ofw = 0). Therefore, this contour also represents the gain-
versus-frequency plot obtained by physically measuring the gain of a control system
between its input and output.
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A similar diagram can be drawn for the phase of C{sVR(s} as shown in Figure 1-8. Again
the contour presented by the vaiues of £ C(sVR(s) along the s = 0 + ju axis represent
£C(jw)R{jw) for postive values of w. This contour also represents the pnase-versus-
frequency plot obiained by physically measuring the phase shift of a control system
batween its input and output.

The information provided by the highlighted contours in Figuras 1-7 and 1-8 represents
the frequency-dependent relation between steady-state sinusoidal input signais {R{jw}}
and the resulting steady-state sinusoidal output signals (C{jw}}, that is, they represent the
frequency response of the device characterized by C/R.

For transfer functons in general, the information produced by evaluating the Fourier -
transform for all vaiues of jw can be regarded as a subset of the overall contour
produced by evaluating the Lapiace transform for all values of s. The Fourier transform of
a transfer function evaluated for positive vaites of « aiso represents the physically
measured gain and phase relationship (.., frequency response) Detween the input and
output of the device madeled by the transfer function.

FIGURE 1.7,
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3.2.2: Nyquist’s Stability Criterion (s-plane)

With the evaluation of transfer functions over the s-piane well established, the fundamental
condition for stability discovered by Nyquist, can now be presented. Simply stated, for a
control system to be stabte. there can be no clesed-loop poles in the right half of the
s-plane. (Poles on the jw axis are not directly addressed but are generally considered to
represent instability.) This refationship between closed-loop pole focations and system
stability constitutes Nyquist's Stability Criterion as applied to the s-plane. This relationship
can be extremely useful in predicting the stability of a system if the position of each
closed-loop poie is known. Trying to determine the exact location of closed-loop poles
from measured data without a computer, however, can often be a difficult task.
Fortunately, Nyquist's original work inciuded a very useful technique for evaluating the
presence of closed-loop toles in the right-half plane without necessarily knowing their
exact locations. To examine this technique closely, however, we will need a few more
terms and definitions. .

in the preceding paragraphs it was established that the roots of the equaticn

. 1 + GHls) = 0 {i.e. values of s for which GH{s) = ~1) were the closed-loop poles and the

sole factor in determining # the system would be stable. Because of its influence on the
stability of the system and, uttimately, the character of the time domain respense, the
equation 1 + GH(s) = 0 is known as the characteristic equation.

From the characteristic equation it is apparent that the term GH({s) contains all the
information concerning the locaticn of the closed-loop poles (GH(s) is understood to
represent the transfer function of ali of the elements in the loop between the error signal
(E) and the feedback signal (B)). The function GHi(s} is called the joop transfer function or
open-loop transfer function and is denoted by ether GH(s) or B{s)/E(s), as shown in
Figure 1-9. This note uses the notation GH{s) and refers to # as the open-loop transfer
function.

FIGURE 1-6.
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At this point it is worthwhile to recognize that Gis) and H{s} are themseives generally ratios
of polynomials in s. G(s) and His) can therefore be represented by:

Gals) - H.is)
G{s) mGd(s) and His} -———de{s)

where the subscripts n and d indicate the numerator and denominator portions of Gis)
and His). respectively. If the closed-loop transfer function is reformulated in terms of the
numerator and dencminator of G{s) and H{s) we have:

Gnfs) GA{s)H.(s)

a _ 69 Gl GAJHA(S)

Re) ~ T+ GHE , , GloHAS)  GalolHals) + GlsH.(S)
GulsiHals) GaisiHals)

The abjective of expressing the closed-oop transfer function in this manner is to iustrate
that the term 1+ GH(s) 1self has poles and zeros, and that it is the zeres of this term that
determine the poles of the closed-loop transfer function. it is also worth noticing that the

zeros of the closed-loop transfer function are the roots of the equation GaJ{s)Hais) = 0.

3-2.3: Nyguist Diagrams

It was Nyquist's observation that the frequency respense of the open-loop transfer
function fi.e. GH{jw)) can be used o determine if there are any zercs of the term

1+ GHi{s) (and therefore poles of the closed-loop transfer function) in the right half of the
s-plane. To make this determination, GH{jw} is first ploted on a two-dimensional
Cartesian coordinate system whose ordinate is the imaginary part of GH{jw) and
abscissa is the real part of GH{jw). The complex conjugate of the frequency response
curve i then plotted on the same graph, as shown by the dashed line in Figure 1-10a.

The next step is 1o establish a vector Vi whose tait s affixed to the point -1 + JO. if the
head of the vector is then piaced anywhere aiong the curve of GH{jw), the vector then
represents the quantity 1 + GH(jw), as ilustrated in Figure 1-10b. :

FIGURE 1-10.
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FIGURE 1-11.
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3-2.4: Nyquist's Stability Criterion (Nyguist diagram)

At this point, Nyquist's Stability Criterion states that as the head of the vector traces the
GH{jw) curve in the direction of increasing positive frequency, the net number of
complete rotations N is equat to the number of poles P, of the term 1 + GHis) in the
right half of the s-plane minus the number of zeros Z, of the term 1 + GH{s}) in the right
half of the s-plane. That is:

N=2-P

where N is positive for clockwise rotations and negative for counterclockwise rotations.
We therefore know that a system is stable only N = -F,. It is a general consensus that
for most real systems P, = 0 and, therefore, N = Z,. When this assumption is true, the
condition for stabiiity can be restated as: a system is stable if and oniy f N = 0.

Figure 1-11 illustrates examples of systemns which are stable, conditionally stable, and
unstable.

3-2.5: Magnitude and Phase Contours

FIGURE 1412,

The Nyguist diagram can also be used to evaluate the closed-loop frequency response
from the openvioop frequency response if the system being anaiyzed has unily feedback.
For H(jw) = 1 the closed-loop transfer function for real frequencies becomes:

Cljw) ___Gljw)
R{jw) 1+ Gljw)
# anather vector ¥y is added to the Nyquist diagram so that it projects from the origin

and meets with the vector Yy at the curve of G{jw), then the closed-loop transfer function
can be represented by the ratio of Va/Vy, as shown in Figure 1-12.

Usetul tools for evaluating the performance of a unity-feedback control system are
magnitude contours {often referred to as M-contours). A magnitude contour is a locus of
points for which the ratio of the magnitudes of V4 and Vz is a constant. When plotted on
the Nyquist diagram. a magnitude contour will appear as a circle (except when

IVa|/IVy} = 1.0}, as shown in Figure 1-13. When the open-loop transfer function is ploted
on a Nyguist diagram with magnitude contours, the maximum gain of the closed-oop
transfer function can be identfied as the value of the magnitude contour which is tangent
to the plotted curve, as shown in Figure 1-14. A similar diagram can also be constructed
for constant values of phase difference between Vy and Vy. Plots of constant phase are
called phase contours or N-contours.
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3-2.7: Giain Margin and Phase Margin
Bode also explained that an open-loop frequency response curve which just met this
criterion would rarely produce a stable system since any smai variaticns in the system's
performance would piace the response in an unstable region. He thersfore suggested
that a certain amount of margin should be allotted for both the phase and gain values as
they approached the point representing a magnitude of 1 and a phase shift of -180
degrees. These margins are now standard performance parameters known as the phase
margin and gain margin.
Phase margin is defined as 180 degrees minus the absolute vaiue of the phase of the
spen-oop frequency response at the point where the magnitude of the open-loop
frequency response (i.e., the open-lcop gain) is equal to one. That i
phase margin = 180 < | £ GH{jw)| where |GH{ju)| = 1
Gain margin: is defined as the reciprocal of the open-oep frequency response gain at the
point where the phase of the open-locop frequency response is equal 1o minus 180
degrees. That is:

1

ain margin = ———  where £ GH{jw) = -180 degrees
aan maen = GG ve) % |
The gain margin therefore represents the amount the cpen-loop gain can be increased
before it reaches a magnitude of 1. Examples of gain margin and phase marginare =~
shown in Figure 1-16.
The importance of the gain and phase margin can be fully appreciated when they are
compared with, and shown 1o correlate with, the time domain paramesars of the step
response. For example, for a system whose response characteristics are dominated by a
pair of complex poles {a very common case), the following relationships can be
observed. An increase or decrease in the system's frequency independent gain' wil
cause both the gain margin and phase margin o decrease or increase, respectively. For
the case in which the gain is increased, the following events will ocour:
s the gain margin and ghase margin will decrease
& {he maximum overshoot will increase
« the rise time will decrease
¢ and, in some cases, the steady-state deviation will decrease

From this series of interactions it can be seen that the development of 2 controf system is
generally a trade-off between the desired performance characteristics. Atthough each
control system has unique reguirements, minimum accaptable levels of gain margin and
phase margin are typically 2 {or 6 dB}Y and 30 degrees, respectively.

1 Frequency independent gain is aiso referred 10 as proportional amplification and is represented by the
vanabis K. A more detaied expianabon s provided in the discussion of the roo! locus diagram, Section 4-4,

* dB represents a unit of comparison known as the decibel. i is caiculated for both voltage and power ratios
with respective formulas for each being: dB = 10 iog (power ratic) and dB8 = 20 log (voltage ratio). See
Hewlett-Packarg Application Note 243, The Fundarnentals of Signal Analysis, p. 5. for further details,
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In addition to gain margin and phase margin, there are several other performance
guantities such as the system type and steady-state error coefficients which can be
extracted from a Nyquist diagram. Unfortunately, a complete description of these
guantities is beyond the scope of this document (several references for further study are
listed at the end of this note). It can be assumed, however, that the key performance
characteristics of a control system can be adequately characterized with a Nyquist
diagram.

One shortfall of the Nyquist diagram is the difficulty encountered when attempting to
predict the effects of changes to a control system. Most alterations (other than a change
in frequency independent gain) require a significant number of caiculations, or a new
measurement, {0 accurately obtain the correct Nyquist diagram. As a result, several other
analysis technigues were developed to make the design and analysis of a control system
easier. These are discussed in detail in the following chapter.

Chaﬂer 4: More Tools for Desiin and Analisis

There is perhaps no design tool which has gained as much popularity as the diagram
which Bode presented in his 1940 paper, "Relations Between Attenuation and Phase in
Feedback Amplifiers.” This chapter looks at the famous Bode diagram and two other
popular design and analysis tools: the Nichols diagram and root locus diagram.

4-1: The Bode Diagram

The Bode diagram is simiar to the Nyquist diagram in that # also represents a plot of the
open-ioop frequency response. However, the Bode diagram considers the gain and
phasa of the response separately by providing a piot of each versus frequency. The piot
of open-icop gain versus frequency is called the foop gain characteristic and the plot of
open-loop phase versus frequency is called the bop phase charactenstic, as shown in
Figure 1-17.

Bode diagrams use iogarithmic units f.e., dB) for gain and fogarithmic scales for
frequency, phase is the only parameter represented linearly. The use of logarithmic scales
and units provides the Bode diagrarn with three key advantages. First, by displaying gain
in units of dB, a much wider range of gain levels can be displayed on a single plot.
Second, the effect on the cpen-lcop frequency response of adding a new component in
a control loop can be calculated through simple addition rather than multiplication. That
is, by plotiing the frequency response of a new component on the same Bode diagram
as the original response, the frequency response of the new system can be calculated by
graphically adding the two plots. Third, the logarithmic scales and units facilitate a
technique for quickly estimating the frequency response of an analytic transfer function.
This last point is a major topic of Bode's paper. In his paper, Bode presented a refatively
simple set of procedures for constructing a set of curves which would closely estimate the
actual frequency response of a franster function without ever actually calculating or
measuring the response.

An equally powerfut tool was the abilty to apply Bode's construction procedures in
reverse. That is, to obtain information about the analytic transfer ?unctton from the
measured frequency response.
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4-2: Stability snd the Bode Dlagram

The Bode diagram also prowides a simple check for stabiity. According to Bode's
interpretation of Nyquist's Stabifity Criterion, for a system to be absolutely siabie, the lcop
gain characteristic must be 'ess than cone before the loop phase characteristic exceeds
{becomes more negative than) 180 degrees. On a Bode diagram, this means the
frequency at which the loop gain characteristic becomes equal 1o 0 dB (i.e., the gain
crossover frequency) must be lower than the freguency at which the lcop phase
characteristic becomes equal to -180 degrees (i.e., the phase crossover frequency).

The phase margin, gain margin, and open-loop bandwidth! of a system can also be read
directly from the Bode diagram, as shown in Figure 1-17.

One of two disadvantages of the Bode diagram is that there is no technique for directly
refating the open-loop frequency response to the closed-loop frequency response (as was
possible with the magnitude and phase contours of the Nyquist diagram). However, the
frequency response informaton from a Bode diagram can be directly transferred to a
Nyquist or Nichols diagram 1o evaluate the closed-loop frequency response. (It is
important to note that a reverse exchangs of information, that is, from a Nichois or
Nyquist diagram to a Bode diagram, may not be possible due tc the loss of frequency
information in both the Nichels and Nyquist diagrams.}

A second disadvantage of the Bode diagram is #ts limited ability to verify the stabifity of
control systems which are conditionally stabie. Fortunately, conditionally stable systems
are rarely designed intertionally and can be analyzed by transferring the frequency
response data to a Nyquist ciagrarn if necessary.

4-3: The Nichols Diagram

24

The Nichols diagram {also known as the log magnitude-angle diagram) is essentially a
combination of the Nyquist and Bode diagrams. It is conceptually similar to the Nyquist
ciagram in that it plots the magnitude of GH(jw) versus the angle of GH{jw) as a
function of frequency (w) on a single graph, as shown in Figure 1-18. ts structure,
however, more closely resembles a Bode diagram in that it uses a rectangular coordinate
systern and scales gain in units of dB.

The Nichols diagram incorporates some of the advantages provided by the Bode and
Nyquist diagrams into a singie graph. By plotting gain versus phase, the Nichols diagram
aflows the construction of magnitude and phase contours similar to those used on the
Nyquist diagram. However, by scaling the gain in units of dB, a singie set of contours
can be appiled over a much broader range of gain levels. A single Nichols diagram can
therefore provide a direct readout of the closed-loop frequency response (of a unity
feedback control system) for & much broader range of open-loop gains. Nichols diagrams
which have a large set of magnitude and phase contours drawn on them are often called
Nichols charts.

' Opendoop bandwidth is defined as the fraquency span betwsen O Kz and frequency at which the gatin of the
opendoog frequency responsa is egual 1o 1.



FIGURE 1-18.

Gain margin and phase margin can also be read directly from the Nichols diagram.
However, 1o obtain the open-loop bandwidth, the gain crossover frequency must be
evaluated while the plot is being constructed, and then marked on the graph, as shown
in Figure 1-18.

The main disadvantage of the Nichols diagrarmn is the difficulty in plotting GH{ jw) directly
from the transfer function. Uniike the Bode diagram, there is no simple set of rnules which
provides & quick estimation of a transfer functior’s frequency response. It is therefore
difficult to predict the effect of a compensation circuit on the system’s performance.

The Nichols diagram is also fimited in its ability to verify the stability of conditionally stable
systems. However, like the Bode diagram, the frequency response information can be
transferred to the Nyquist diagram for analysis.
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4-4: The Root Locus Diagram

The root iocus diagram {or root locus plot) was developed by W.R. Evans and presented
in his 1950 paper, "Contro! Systern Synthesis by Root Locus Method™. The root locus
diagram s a departure from the frequency response plotting techniques used by the
Bode, Nichols and Nyquist diagrams. Al three cf the fatter techniques use the frequency
response of the open-ioop transfer function, GH{j«), 1o gain information about the relative
location of the closed-loop poles in the s-plane. The root locus diagram, however, uses
the location of the open-loop poles and zercs in the s-plane to predict the actual location
of the closed-oop poles. Before discussing the root focus diagram further, it is again
necessary to introduce another concept.

The symbol G was previously defined as a transfer function whose gain and phase
characteristics change with respect to the variable s or jw. it can, however, be divided
into two factors: 1) a proportionial amplification often denoted as X, which is independent
of 5 or jw and associated with a dimensioned scaie factor relating the units of input and
output; 2) a dimensioniess factor often denoted as G which is dependent on s of ju.
Theretore. if K is used as a prefix when expressing a transfer function, it is understood
that K represents a gain value extracted from the transfer function which is independent
of s or jw. For example, if the open-lcop transfer function is expressed as KGH{jw), it is
undersiced that K is the gain portion of GH(jw) which is independent of ju.

The obiective of the root locus diagram is to graphically locate values of s which set the
open-oop frequency response equal to -1, that is s such that GHis) = -1. These values
of s will trerefore aiso represent rocts of the characteristic equation 1 + GH(s) = 0 and,
further, represent the location of the ciosed-locop poles.

The power of the roct locus technique is its recognition of the frequency independent
gain of the open-loop transfer function, X of KGH(s). The root locus technique recognizes
that for each value of K there is a unique set of values for s which satisfy the equation
KGHis) = -1. For examgie, if X is set equal to 3 in the open-iocp transfer function:

K
s{1+0.125s)1 + 0.8s)

then there exists a unique set of values of 5, in this case those shown in Figure 1-19a, for
which 3GH(s) = -1 (or attematively, GH(s) = —1/3). If K'is set equal to 4, then there
exists another set of values of s for which GH(s) = -1/4, as Hlustrated in Figure 1-18b.
This new set of values for s represents the new locations of the ciosed-oop poles when K
is increased from 3 to 4.

If the unique set of values for s were calcuiated for each value of K from zero to infinity
and plotted on the same graph, the result wouid be a set of lines which represent a locus
of roots to the equation 1 + KGFH(s) = O for ail possible vaiues of K, as shown in Figure
1-19¢. This plot is calied a root locus diagram.

If root locus diagrams were constructed in this fashion, it would require many calculations
and make the construction of the diagram much too involved to be of practical value, at
least without the aid of a computer. Fortunately, Evans also presented a technique for
graphicaly estimating the root locus diagram based on the locaton of the opern-ioop
poles and zeros in the s-plane. The procedure is relatively simple and it is not uncommon
for people who have mastered the root locus technigue to quickly sketch the root locus
diagram based soleiy on the location of the open-loop poles and zeros (i.e., with virtually
no calculations). A root locus diagram will therefore generally inciude designators
indicating the position of the open-loop poles and zeros as shown in Figure 1-20.

The root locus diagram is a very powerful design tool since 1 works directly with the
location of the clased-oop poles in-the s-plane. However, the root locus technique can
only be used if the number and location of the openvloop poles and zeros are knowrn. It
is therefere less flexible than the Nyquist or Bode diagrams which need only the
measured open-oop frequency response to predict performance and provide design
information. It does, however, provide more information during the initial design process
and is better sufted for the design of compiex compensation networks.

KGHis) =

1 “Control Systern Synthesis by Root Locus Method,” Trans, AIEE. 63, 1-4 (Mar 10, 1950),
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Chaﬁer 5: Nonlinear Sistems

28

The design and analysis tools presented so far have all assumed that the control system
or subsystem being analyzed is linear. Unfortunately. the vast majority of control systems
are actually nonfinear, either by design or by virtue of the companents within the system.

There are some very compiex analysis tools which deal directly with nonlinearities;
however, a very common practice is to obtain an approximation of the system's nonlinear
operation which best conforms to a linear response. The approximation can then be used
with the tools presented in the previous chapters.

Eor example, Figure 1-21a shows 2 typical gain curve (Vo,, /V,,) which is essentially
finear for input voltages less than V. and nonlinear for input voltages greater than V..

i the system characterized by Figure 1-21a is operated within a narrow range of vollages
centered about a voltage V., as shown in Figure 1-21b, then the system will operate over
a linear region of the curve and can be modeled with the linear equation:

Vaur = aVu
V.
of ouT a
Vi

where g is a constant.

if, however, the system operates under the same conditions except at a higher average
voltage V, as shown in Figure 1-21c, then the system is not operating in a finear region
and & linear approximation is required.

Graphically, a finear approximation could be obtained by simply drawing a straight line
through the operating region which best fits the gain curve. This approximation, however,
would not address the distribution of energy throughout the response spectrum due 1o
the distortion of the cutput waveform, as shown in Figure 1-21c.

For this type of nonlinearity, a better technique for obtaining a linear approximation of the
system’s gain is to measure only that part of the response spectrum which is at the same
frequency as the input. That is, measure the system gain at the fundamental frequency of
the stimulus and ignore all the other frequency companents, including those created by
systern nonlinearities. if a series of both gain and phase measurements are made over a
range of frequencies, the results can be plotted to produce a graph of the system’s
frequency response. The resulting frequency response can then be used to generate a
transfer function based solely on the fundamental. Such a transfer function is often called
a describing function and is generally considered a good finearized approximation of a
system with nonlfinearities such as harmonic distortion and intermoduiation distortion.



FIGURE 1-21.
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A common technique used to make the measurement described i to stimulate the
system with a swept sine wave source and measure both the stimulus and the response
with narrow bandpass filters which track the frequency of the source. Test instruments
capabie of making this type of measurement include network analyzers, frequency
response analyzers, and properly equipped Dynamic Signal Analyzers (DSAs).

it is important to note that for any small change in either the mean voltage V, or the
amplitude of the sine wave tself, the measured frequency response will also change. This
change in measurement resull due to changes in the testing conditions is a common
phenomenon associated with most nonlinear devices.

If a nonlingar systemn is both sensitive to changes in the stimulus signal (as described
above) and operated over a wide range of stimulus levels, then there is typically no one
urtique frequency response or describing function which can accurately model the
operation of the systern.

As a practical solution to this problem, a nonlinear device is typically tested under
conditions which ciosely approximate the actual operating conditions of the system. If the
operating conditions themselves do not vary widely, and they can be adequately
simulated during testing, then the resutting measurements are generally assumed to be a
linearized estimation of the device's operation.

To previde maximum flexibility in obtaining a linearized estimation of a device's operation,
advanced DSAs provide two separate analysis functions for measaring the frequency
response of both linear and nonlfinear devices: Swept Fourier Analysis (SFA) and Fast
Fourier Transform (FFT) analysis. More information concerning SFA and FFT analysis as
wel as many of the other measurement capabilites provided by DSAs are presented in
Part 2 of this application note.






¢ Measurement and Analysis Tools Applied to the Development Process

Historically, a test instrument's primary contribution to the development of a control
systemn has been the collection of stimulus and response data. While this is stil true,
microprocessor-based Dynamic Signal Analyzers {DSAs) have expanded the role of the
test instrument to include significant contributions in other areas of control system
development, such as modeling and design.

The purpose of the following chapters is to provide a basic intraduction to the
measurement andg analysis capabilities provided by high performance DSAs, and to
suggest how these tools can be used in the various phases of control system
development.

Chapter 1: Modeling the Development Process

In general, it is recognized that the deveiopment of a control system typically involves

some unique combination of five distinct processes: model, design, build, test and

analyze. For the purpose of this application note, these five processes are defined as

foliows:

Design  determining the combination of physical or theoretical components or
parameters that will produce a desired action or result.

Model  the process of transforming the observed charactenstics of some device or

process into theoretical representations consistent with the analysis/design

technique being used,

Build the physical construction of a systemn and/or fts components.
Test the collection of stimulus and/or response data.
Analyze determining the value of parameters, either physical or theoretical used (o

characterize the action or function of a device. Also establishing the
refationships, If any, between those parameters.

When grouped into a process fliowchart, these five processes can be used to model the
development of a control system. A generalized example of a “development process”
modetflowchart is shown in Figure 2-1.

To emphasize the DSA's abilty to contribute throughout the development of a control
systemn, the following chapters examine the tasks associated with each development
process (with the exception of build) and present the tools provided by DSAs for
accomplishing those tasks. To provide a structured introduction, the chapters are
presented in the following order: Test, Analyze, Model and Design.

FIGURE 2-1.
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Chaﬁer 2: Test

Test: the collection of stimulus and/or response data.

There are many tests which conform with the above defintion; however, the most
common control system fests are the measurement of a systern's response to a step
change in the input (e, the step response) and the frequency response of the system
and/or any of its components.

Instruments which have commonly been used to perform these tests include frequency
response analyzers, network analyzers, waveform recorders, strip-chart recorders, and
storage oscilloscopes. Typical control system tests often required at least two of these
instruments: one instrument 1o record time domain data {e.g., the impulse response or
step response) and another to record frequency domain data (e.g., the open-locp or
closed-loop frequency response).

The high performance DSA, however, is a single instrument capable of providing af the
measurernent capatility needed in the de to 100 kiz frequency range. Technological
advances allow DSA to assurme 1 to 3 basic configurations: a waveform recorder for
direct measurement of time domain data, & frequency response analyzer (ie. Swept
Fourier Analyzer for providing frequency dornain data, or a Fast Fourier Transform (FFT)
analyzer which also provides frequency domain information. '
In adidition to providing three analyzers within one test insirument, the DSA also provides
several signal monitoring functions. These functions allow the DSA to automatically
optimize measurement conditions during a test, reducing the need for operator
interaction.

The remainder of this chapter presents the DSA's basic capabilities for measuring both
time domain and frequency domain data.

2-1: Time Domain Measurements

Time domain measurements require the test instrument o record the reaction of a device
in response o some controlled change in the system's input. A measurement is generally
considered successful if it records the entire response and allows the operator to examine
both the long term trend of the response and the details of any short term events, |

DSAs provide this measurement capability by sampiing the signals applied to their inputs
and recording the samples as blocks of contiguous data called time records. How the
time records are stored and how the data within them can be accessed depends on
which of two measuremnent modes, time capture or time throughput, is used {o coliect the
data.

2-1.1: Time Capture

Responses which decay to a Steady state value within a tew time records can easdy be
recorded using the DSA’'s time capture mode. The time capture mode stores a fimited
number of contiguous time records within the DSA’s internal memory. Once collected, al
the data can be compressad onto a single trace on the DSA’s display. Segments of the
compressed data can then be expanded and closely exarnined on the second trace of
the display, as shown in Figure 2-2. :
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2-1.2: Time Throughptnt

Occasionaliy, a device with a very long settling time will require very large amounts of
data to be recorded. In these situations, the DSA’s time throughput mode can be used to
stere contiguous time records! directly 10 & mass storage disc without the need for an
instrument controller. To study a recorded evert, time records are recalled from the disc
and presanted on the DSA’s display.

To ensure that an entire response can be recorded, both time capture and time
throughput provide pre- and pest-trigger data recording functions. The pre-trigger
function allows a specified amount of data obtained before a trigger occurs 1o be
recorded. The post-trigger function allows a specified amount of data to be ignored when
obtained after a trigger ocours.

For systems with very fast response times, the pre-trigger function can be used to record
the steady-state operation of a sysiem just before a step change is introduced.
Alternatively, the post-trigger function can be used to ignore the large amounts of dead
time in systerns with very slow response times.

in addition ta recording and displaying time domain data, DSAs are also capable of
recalling recorded data and processing # through a Fast Fourier Transform algorithm.
This aliows the DSA to provide both time and frequency domain information from one set
of recorded data. This capability can be especially valuabie for extracting the maximum
amcunt of information from tests which can be performed only once, such as destructive
tests.

2.2: Frequency Domain Measurements

Virtually alt closed-loon contral system development requires the frequency response of

the system andior some of its compenents to be evaluated by experiment. Unlike most

conventional test instruments, advanced DSAs provide two independent techniques for

measuring the frequency response cf a device: Swept Fourier Analysis and Fast Fourier
Transiorm analysis,

t if the DSA collects data much faster than the connected disc can record data, or the DSA coltects cata faster
than it can process the data through its own ¥O section. then the tme records will not be contiguous. The
rate a3 which lime records can be transterred in @ cortiguous fashion is referred 1o as the “realtane
bandwidth” of the throughout functon. More informaton on reaklime tandwidths is available in
Hewien-Packard Applicabon Note 243, The Fundamentals of Signal Analyss,



2-2.1: Swept Fourier Analysis

Swept Fourier Analysis (SFA) is a very common measurement technique involving a
swept sine wave source and an integration process which emuiates a racking bandpass
fiter, as shown in Figure 2-3. The primary objective of this measuremens technique is to
measure the gain and phase shift of a device by measuring only the fundamental
component of the stimulus signat and only the fundamental component of the device's
response signal {the frequencies of the fundamentals are assumed 1o be the same). A
series of measurements are made at different frequencies to provide a frequency
response based on the fundamentat of the stimulus and response signals {i.e. ignoring
any other spectral components including those generated by nonlinearties such as
harmonic distorton).

By using very namow bandwidths, the effects of nonlinearities such as harmonic
distortion, dc offset and random noise can be minimized. This measurement technique
also allows those types of nonlinearities which are not affected by narrow fiter bandwicths
(such as level saturation angd frequency shifting of resonances) to be characterized by
gither making several measuremenis at different stimulus levels or by sweeping in both
directions.

‘To achieve the rarrow fiter bandwidths required to measure low frequency systems,
DSAs utiize a Discrete Fourier Transform 1o evaluate the energy within a narrow
frequency span. The transform is evaluated at several points during a sweep with the
center frequency of the analysis corresponding to the frequency of the swept sine source
{thus the term Swept Fourier Analysis). This technique emuiates a tracking bandpass filtter
with very narrow bandwidths, very good harmenic rejection and excellent dc rejection.

An added advantage of using a DSA to make SFA measuremenis is the availability of
automated measurement functions. By constantly monioring the signals apptied to its
inputs and referencing past measurements, the DSA can automatically:

o adjust its input sensitivity

e+ reject measurements in which input overloads occurred

¢ adjust the frequency resolution of the measurement relative to the rate of change in
gain and phase

s repeat a measurement at a given frequency and average the results until an
acceptable variance in the measurerment is obtained

» adiust the source level to maintain a constant stimulus or response level

e aliow the operator 1o simultanecusly monitor the signals applied to the analyzer (in
gither the time or frequency domains) and view the current measurement.

2-2.2: Fast Fouriet Transform Analysis

Compared to SFA, FFT analysis represents more of a parallel approach to measuring a
device's frequency response. Rather than sweeping a single bandpass fiter as the SFA
technique does, the FFT process uses a different form of Fourier integration to create
many adjacent bandpass filters (up to 800 in advanced DSAs), as shown in Figure 24.
These fitters selectively and simuitaneously measure the energy distributed over an entire
frequency span.

A useful analogy is to think of each fiter as the bandpass fiter of an SFA analyzer.
However, rather than collect new data for sach measurement point sweep, the FFT
process uses time records to collect time domain data and then processes the data
through 800 fiters simultaneousty. This form of parallel processing provides exceptional
measurement speeds. It is worth noting, however, that uniike an SFA measurement, an
EFT measurement does not fiter out energy converted to other frequencies by
nonlinearities in the system. Instead, these frequency components (ff they are not
coherent with the stimulus) are removed by averaging several measurements.
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Cne of the most powerful attributes of the FFT measurement technique is that it allows
virtually any type of signal to be used as a stimulus. Common stimulus signals used with
FET measurements include: actual operating signals, sine wave chirps, fixed sine waves,
random noise, burst random noise, step functions and impulse functions.

This broad range of stimulus signals increases the resources available for characterizing
the operation of a system. Often, selecting the right stimulus signaf can provide a better
understanding of nonlinearities present in the system and, in some cases, even reduce
the overall testing time. The following paragraphs cite some of the benefits offered by
certain source fypes.

An important class of stimulus signals are those stimuli which produce energy at all of the
frequencies being analyzed by the FFT algorithm and do so within one time record.
Stimuli which meet this criteria (such as the sine chirp, random noise, burst chirp and
burst random noise stimuli provided by advanced DSAs) allow the FFT algorithm to
provide frequency response information over the entire frequency span being analyzed
with just one measurement. If any of these stimuli (with the exception of random noise}
are used 1o test a system which is relétively noise-free and linear, a single time record is
often sufficient data to produce an accurate frequency response.

When testing a nenlinear system, selecting a stimulus signal which approximates the
signals present during normal operation can provide results which more accurately
predict the system’s operation. The ability to use a random noise stimulus can be very
usefut in this respect. For example, random neise superimposed on a dc level often
resembles the signals present in a servo system rmuch more than a sine wave
superimposed on a dc level.

Signals with random amplitude distribution, such as true random and burst randlem, can
be used to provide an approximation of the frequency response of a system with
ampliiude nonlinearities. Because random noise is characterized by a random level
distribution at a given frequency, a random noise measurement produces a frequency
response which represents an average of responses taken at several stimulus levels.
When attempting to measure the frequency response of a device with an amplitude
nonlinearity such as gain compression, a random noise measurement may provide a
better approximation of the device's actual operation than a single swept sine
measurement.

A random stimulus signal can also reduce the effects of nonfinearities influenced by the
direction of a sine sweep. Such noniinearities often show up as a change in resonance
frequencies corresponding to a change in sweep direction {not to be confused with
skewed responses caused by excessive sweep speed). Since random neise continuously
praduces energy over an entire frequency spectrum, the measurement is not affected by
transferring energy from one frequency to another. .

Some forms of nonlinearities preciude the use of centain stimulus types. For example,
when lesting systems with a significant amount of dead zone or hysteresis, such as large
gear trains, signals such as random noise can be inappropriate. The waveform of a
random signal is typically characterized by many changes in slope and a greater ..
concentration of lower level voliages than high level voltages. This would create a lot of
noise in a gear train while producing littie output. instead, a sine wave stimulus which
spends more time at higher voltiage levels and makes fewer slope transitions may be a
much better overall stimulus choice. :

The decision of which stimulus/analysis combination should be used is driven in part by
the known attributes of the device being tested and the kind of information being sought.
For example, several swept sine measurements made at different stimulus levels can be
used to characterize the operation of a device with an amplitude nonlinearity. Atternatively,
an FFT measurement using random noise and averaging can be used to prowide a single
frequency response which approximates the cevice's operation over a range of stimulus
levels.
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If the device being tested is essentially linear (at least within the range of amplitudes and
frequencies being tested), the selection of a stimulus/analysis comixnation is simply &
matier of measurement speed. Any stimulus/analysis combination would be able to
produce accurate results.

It is important to note, however, that before any assumption can be made about a
system's linearity, at least two measurements {with variances in the stumuli between them)
must be compared. If the system is found to be nonlinear, t may take several more
measurements to characterize the nonlinearity so that its effect on the operation of the
systern can be understood.

it is in response to these measurement needs that advanced DSAs have incorporated the
ability to make time domain measurements, traditional swept sine frequency response
measurements and nontraditionat frequency response measurements utilizing virtually any
type of stimuius signal and FFT analysis. With these measurement capabiiities, the DSA
provides a total measurement soiution for fully characterizing the operation of control
systems.

Chaiter 3: Anage

Analyze: determining the value of parameters, efther physical or theorelical, used o
characterize the action or function of a device. Also, estabiishing the
refationships, if any, between those parameters.

This definition of analysis, when applied to classical control theory, generally implies the
evaluation of parameters such as gain margin, phase margin and settling time.

Typically, these parameters are not evaluated by the test instrument. More often than not,
they must be derived from the measured data and, in some cases, derived from several
sets of data. Wih respect to extracting useful information from measured data, the
Dynamic Signal Analyzer represents one of the most poweriul measurement and analysis
tools avallable to the contral systems engineer.

The DSA's major contributions toward analyzing data center around three major
functions: waveform math, curve fitting and coherence. The following sections briefly
describe each function and present typical applications.

3-1: Waveform Math

38

Waveform math provides the ability to use standard math operators such as +, -, X and
~+ between two displayed data traces, or perform any of the cther math functions shown
in Table 2-1 on individual traces, Waveform math therefore aliows many of the control
systern calouiations which have historically been done graphically, with plotted data, to be
performed within the analyzer. This not only reduces calculation times, but also preserves
the full resciution and accuracy of the original data, The following examples present only
a few of the many possible applications for the waveform math function.

A very straightforward application of waveform math is the extraction of the normalized
value of maximum overshoot from a step response measurement. The left half of Figure
2-5 shows a measured step response with a Y-axis marker positioned on the steady-state
value. Using waveform math, the display can be normalized by simply specifying the +
operator and entering the response’s steady-state value. The normalized value of
maximum overshoot can then be read directly from the X-axis marker as shown in the
right-half of Figure 2-5.
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Using the normalized dispiay, the settling time can also be quickly evaluated. The upper
and fower boundries relative to the steady-state value can be ciearly marked by simply
programming the Y-axis markers to those values (i.e., for a restriction of +5% of final
value, the markers can be set to 1.05 and 0.95). The X-axis marker can then be used (o
dispiay the settiing time, as shown in Figure 2-6. The information shown on the display of
the DSA, including trace, display grid and annotation, can then be sent directly to &
digital plotter to provide hardcopy documentation.

The DSA’s waveform math function can also be used with frequency domain data to
execute much more complex calculations. For example, two sets of frequency response
data representing the forward gain path and feedback path of & system could be quickly
combined to predict the system's open-ioep frequency response.

Combining frequency responses can be accompiished by simply dispiaying one set of
frequency response data in one display trace and a second set of frequency response
data in the cther display trace. The operator then selects an active trace. the multiply
operator and the second operand (in this case the nonactive display trace)'. The result of
the calculation is then dispiayed in the active trace, as shown in Figure 2-7.
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FIGURE 2-8.

The resultant frequency response can then be presented in virtually any desired scaie
and in one of many display formats. For example, the derived frequency response can
be disptayed in a Bode piot, as shown in Figure 2-8a, to allow the gain margin, phase
margin and open-loop bandwidih to be quickly read from the X-axis markers. The
frequency response can then be displayed on a Nyquist piot, as shown in Figure 2-8b, to
provide a quick check of the systern's absolute stability.

Since either display trace may contain either current measurement dala, calculated data,
or data recalied from a mass storage device (such as a magnetic disc or tape drive),
waveform math can be used tc combine many frequency response data sets. This
capabilty could be used to predict the frequency response of a system from a library of
previously stored component frequency response data, :

Waveform math also makes it possible to easily calculate the open-foop frequency
response of a system from a ciosed-loop measurement. Typically, a stimulus signal i
injected into the loop and, when using FFT analysist, the frequency response between
the stimulus signal § and the response 1o the stimufus signal at the point Y is measured
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' When using an FFT analyzer 1o denve the open-loop frequency response of a closed-ioop systern, the rato
Y(jw)S(jw) of Z{w)S(jw) is measured rather than Y{jw)Z{jw} (the rano commonly measured with
frequency fesponse anaiyzers) 1o [revent a bias error from degrading the calculaton. The tias error can be
avoided and is typically not a significant factor when using SFA analysss.
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FIGURE 2-9.
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3-2: Curve Fitting

as shown in Figure 2-9. The open-loop frequency response of the system can then be
caiculated by evaluating the equation:

open-loop frequency response = M
1= T(jw)
where T{jw) is the measured frequency response Y{jw)/S{jw).

This equation can be easily evaluated using either a series of waveform math caiculations
or by using the single waveform math operator T/(1-T) as shown in Figure 2-10.

Curve fitting is & function which estirmates an equation whose solution, when plotted, wil
be identical to the measured frequency response. Depending on the curve fitter available
with a given DSA, the derived equation may be expressed to the operator in one of three
formats: & table of poles and zeros, a table of poles and residues (Le., partial fraction
expansion formy, or a ratio of polyriomaals.

Advanced DSAs are usually equipped with one of two curve fitters, either a basic single-
degree-ch-freedom (SDOF) curve fitter or a multiple-degree-of-freedom (MDOF) curve fitter.
SDOF curve fitters provide poie/residue information for each resonance identified by the
operatar, as shown in Figure 2-11a. MDOF curve fitters represent a more versatile
generation of curve fitters which can autornatically process an entire spectrum; using up
to 40 poles and 40 zeros in the estirmation process (see Figure 2-11b). The latter curve
fitters are typically accompanied by a synthesis capability which allows the polefzero
information 1o be quickly converted to a polafresidue format or a polynomial format as
shown in Figure 2-12.

For extracting information from measured data, the curve fitting function 3 an
exceptionally powerful analysis tool. lts applications, however, lie mostly in the area of
modeling and design and are discussed in chapters 4 and 5, in Part Two, respectively.
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FIGURE 2-13.
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3-3: Coherence

The coherence function is a statistical quantity whose dimensionless values represent the
fraction of system output power directly related tc the input. Values of coherence are
used in two primary applications: 1) as a measure of the quality of a frequency respense
measurement and 2. to discriminate between those response signais which are directly
related to (coherent with) the stimuius signat and those response signals which are not
directly related to {not coherent with) the stmulus signal.

When more than one average is taken per measurement point, the coherence function
produces a vaiue from 0.0 to 1.0 for each point. {For example, when using SFA, a vaiue
of coherence will be produced for each step in the sweep if the analyzer is programmed
to average two or more measurements per step.} A coherence vaiue of t indicates that
all of the output power (respense) is coherent with the input power (stimulus) but not
necessarily a result of the input power. A coherence vaiue of O indicates that virtually
rnone of the output power is coherent with the input power.

Since a low value of coherence indicates that only a smail percentage of the response is
directly related to the stimulus, it is reascnable to assume that the corresponding
measurement data may not accurately reflect the transfer of energy through the tested
device. In this respect, the coherence functior: acts as a qualitative 100l which can be
used to verify the general quality or credibility of a measurement. Typical causes of low
coherence include very poor signal-to-noise ratios, the presence of noncoherent signals
generated within the tested device or, when using FFT analysis, leakage due to improper
window seiection or insufficient time record length?,

Coherence can also be used o separate the output power spectrum into two power
spectra: the coherent power spectrum which represents the output power directly related
to the input and the noncoherent power spectrum which represents the cutput power not
refated to the input.

Both the coherent and noncoherent power spectra have been used in several interesting
applications. One example is the use of the noncoherent power spectrum by a disc drive
manufacturer o monitor the disturbance signals within the readfwrite head positioning
servo. By using a random stimulus signal, the periodic signais within the control loop
{such as those caused by coofing fan vibration, power supply rippie bleeding into the
controt loop or an off-centered reference track on the disc) appear in the response as
noncoherent signals. By correlating the known characteristic fraquencies of these signals
with the spectral components of the noncoherent power spectrum, the amplitudes of
these noncoherent signals were effectively monitored, providing maore information about
the overall health of the positioning system. A simplified drawing of the measurement
setup and an actual plot of the noncoherent power spectrum are shown in Figure 2-13.

+ Complete definitions of leakage. window furctions and time records are available in Hewleft-Packard
Apptication Note 243, The Fundamentals of Signal Analysis.
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Chapter 4:

Since all of the data needed to calculate the noncoherent power spactrum is provided
with each frequency response measuremeant, it can be provided withou! increasing
measurerment time. The ability to increase the information obtained from each
measurement can be especially valuable in situations where testing time 15 considered a
valuable commadity, such as production line testing. A copy of a production test report
dumped directly {o a digital ploter by a DSA is shown in Figure 2-14.

The coherent and noncoherent power spectra mentioned above can easily be obtained
by using waveform math to caiculate the following formuias:

coherent power spectrum = (output power spectrum) x (coherence spectrum)
noncoherent power spectrum = (output power spectrum) x (1 - coherence spectrum)

where: coherence spectrum refers to the coilective set of coherence values which exist
when more than one average is taken and (1 - coherence spectrum) implies the
subtraction of each value of coherence in the coherence spectrum from 1.

The output power spectrurm, like the coherence function, is a normal by-product of a

DSA's frequancy response calculations and can be viewed al any time.

More applications for the coherence function (as well as a detailed cefinition} are

provided in Hewiett-Packard Application Note 245-2, Measuring the Coherence Function

with the HP 3582A Spectrum Analyzer,

Model

Model:  the process of ransforming the observed characlenstics of some device or
process into theoretical representations consistent with the analysis/design
technique being used.

This defintion, when applied to classical control theory, generally implies the creation of
equations which accurately predict the action or function of some device in the frequency
or tme domains. Since most design work is done in the frequency domain, the modeling
process can further be generalized as the development of frequency domain equations,
typically in a polefzero format, which accurately predict a device's frequency response,

4-1: Curve Fitting Applied to the Modeling Process

48

As an aid in accomplishing this task, the MDOF curve fitter offered with high performance
DSAs represents one of the most poweriut tools ever offered by a test nstrument.

By simply displaying a measured frequency response and activating the MDOF curve
fitter, the DSA automatically provides an estimate of the s-plane poles and zeros and the
gain required to produce the displayed response, as shown in Figure 2-15.

The use of a curve fitter to extract pole/zero information from a measured frequency
response represents a significant advancement over the graphic techniques commonly
used fo derive polefzero information. The curve fitter has the advantage of utilizing the full
frequency and amplitude resoiution of the measured data and, in many cases, provides
the polefzero information in the time normally required to obtain and prepare hardcopy
plots for graphic interpretation.
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EIGURE 2-16,
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FIGURE 2-16. (CONT.)
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d. Completed Block Diagram.

Amongst other applications, the pole/zero data obtained from frequency response
measurements can be used to either verify the poles and zeros used in an existing
analytical moded or create an initial model of a device with unknown characteristics. An
example of the latter application is Hustrated in Figure 2-16. In this example, a transfer
function is generated for a combination armature controlled motor and pre-ampliier (of a
position control system) whose specifications, such as motor inertia and forward gain, are
unknown,

To obtain the motor/pre-amp’s transfer function, the frequency response of the motor/pre-

amp is first measured using a-DSA equipped with a MDOF curve fitter. The curve fitter is
then activated resulting in a table of poles and zeros. The palefzero information is
automatically synthesized to provide a frequency response which can be compared with
the measured frequency response, as shown in Figure 2-16b. The pole/zero data is then
used to generate a transter function of the motor/pre-amp as illustrated in Figure 2-16¢.
The derived transfer function can now be added to the system biock diagram to
complete the system model, as shown in Figure 2-16d.
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4.2: Freguency Response Synthesis Applied to the Modeling Process

Another useful modeling tool provided with advanced DSAs is the frequency response
synthesis function (commonly referred to as the synthesis function). DSAs equipped with
this function aliow analytical equations {e.g., transfer functions) io be entered directly into
the analyzer. The DSA then calculates and displays the frequency response associated
with the transfer function, as shown in Figure 2-17.

Equations may be entered in cne of three formats: pole/zerc, pole/residue (i.e., partial
fraction expansion), or ratic of polynomials in s. in addition to providing a conversion
functior: for transferring data from one format to anather, high performance DSAs also
provide direct transfer of data between the synthesis and curve fitting functions.

in the modeling process, the synthesis function is commonly used in conjuncton with the
curve fitter. For example, if the curve fitter produces more detailed information than
required for & given application, the pole/zero data can be transferred 1o the synthesis
function where insignificant poles and zeros can be deleted. The frequency response of
the remaining poles and zeros can then be synthesized and compared to the measured
frequency response. This allows the engineer to verify that the remaining poles and zeros
sufficiently model the measured freguency response.

Ancther use of the synthesis function utilizes medeling information to optimize the initiat
testing of systems. By synthesizing the frequency response of a system which has never
been tested (i.e. the modet has been developed from data sheet information or initial
design parameters), an initial estimate of the systern’s frequency response can be
obtained. This information can then be used 10 estimate the transducers and stimulus
levels required to properly test the systerm, reducing test time and, in many cases,
preventing damage to the system or device being tested.
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These examples #lustrate only a few of the applications in which the DSA's precision
measurement hardware and computational power contribute to the modeling process. By
providing analysis tools such as frequency response synthesis and curve fitting, the DSA
provides a new level of suppeon for meeting the complex as well 2s the routine chalienges
of modeling today’s control systems.

Chﬁer 5: ﬂesiin

Design: determining the combination of physical or theoretical components or parameters
that will produce a desired action or resutt.

The design process, as defined above, occurs throughout the development of control
systems. It begins with the initial conception of a system and becomes one of an
unpredictable sequence of development processes which uftimately result in a refined,
fully operational control system. Typically, the purpose of most design work (after
conceiving the initial system) is to generate modifications to the inftial system which will
allow # to comply with the original design goals or specifications. Modifications can range
from simple changes in component values to the design and adction of complex
compensation networks.

5-1: Applying Frequency Hesponse Synthesis, Waveform #ath and Curve Fitting
to the Design Process

As a design tool, DSAs offer several data processing functions which canr: aid the
engineer in choosing combinations of components which will accomplish a desired task.
For exampie, the frequency response synthesis function' can be used to predict the
frequency response of compensation networks before they are aciually built. The
waveform math function? can then be used to predic: the effiects of a synthesized
compensation network on a system’s open-loop frequency response or predict the
systern's new ciosed-oop frequency response. it can even be used to estimate the step
or impuise response of the modified system before the compensation network is built.

To Hustrate the use of the DSA's data processing functions in the design process, the
following case study examines the development of a simpie compensation network for a
motor speed controfier,

Inital measurements on the motor speed control were taken with the control ioop closed
and the system’s open-loop gain set approximately 8 dB below the desired operating
fevel. The closed-loop measurement indicated a sharp resonance at approximately 87.5
Hz, as shown in Figure 2-18a. The opendoop frequency response was then calculated
from the measurement of ¥{jw )/S{jw) using the T/(1-T) calculation, as shown in Figure
2-18b.

The magnitude of the resonance at 87.5 Hz indicated that an 8 dB increase in the gain
would cause the open-oop gain at 90 Mz to exceed 0 db with the phase less thar -180
degrees, creating an unstable operating condition, as shown in Figure 2-19. Therefore, to
achieve the desired increase in the system's open-loop gain, a compensation network
was added to the system to reduce the level of the 87.5 Hz resonance.

The compensation network, in this case a two-pole low-pass fiter, was developed by
entering an intial estimate of the pole locations, gain and delay info the polefzero tabie of
the DSA’s requency response synthesis function. The synthesized frequency response of
the jow-pass fiter was then displayed on the CRT of the DSA, as shown in Figure 2-20.

1 See section 4-2 for & brief description of the frequency response synthasis function.
7 See section 3-1 for a brie! description of the wavelorm math funclion.
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The frequency response of the speed control system and the synthesized frequency
response of the low-pass fitter were then displayed adjacently, as shown in Figure 2-21.
By displaying both frequency responses in this fashion, the low-pass filter pole locations
which provided the best trade-off between level rejection and phase shift could quickly be

determined.
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To verfy the visual approximation, the synthesized frequency response of the low-pass
fiter was combined with the open-loop frequency response of the speed control system
using waveform math, as shown in Figure 2-22.

Using the information provided by the polefzero table and a passive filter design guide,
the component values for the low-pass fiter were determined and a prototype filter
constructed. The frequency response of the prototype was then measured and compared
to the synthesized frequency response, as shown in Figure 2-23.
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With the lew-pass fiter instailed in the forward signal path of the motor speed control, the
open-icop frequency response was again measured and compared to the predicted
response, as shown in Figure 2-24. Finally, the gain of the speed control was raised by 8
dB to provide the desired performance while maintaining reasonable gain margin and
phase margin, as shown in Figure 2-25,
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in this exampie, the low-pass fiter provided encugh compensation to achieve the desired
system perforrmance. However, for more demanding applications, a lag-lead network
could be added to the system to further improve the system’s performance.

When buiiding compensation networks such as the lag-lead network mentioned above,
the DSA's curve fitter can be used to locate the dominant poles and zeros of & system'’s
open-loop frequency response, as shown in Figure 2-26. This information can then be
used with design tocis such as a root locus plot to select the most advantageous position
for the poles and zeros of the compensation network.

The DSA's curve fitter function can also be used to suggest the location of a
compensation network's poles and zeros. For example, the pole/zero model of a
“perfect” compensation network can be derived using a combination of the frequency
response Synthesis, waveform math and curve fiting functions. First, the frequency
response synthesis function is used t0 synthesize the "ideal” frequency response fora
systemn. Waveiorm math is then used 10 divide the synthesized response by the system's
measured frequency response. The result is the frequency response of the cascade
compensation network needed to achieve the “ideal” frequency response for the system.
By curve fitting this resultant frequency response, the DSA supplies the designer with a
table of poles and zeros which will produce that response.
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5-2: Using Display Formats Other Than the Bode Plot

FIGURE 2.27.

By providing a wide choice of coordinate formats. advanced DSAs allow the operator t0
observe frequency response data in the display format which best conforms with the
design technique being used. For example, the open-loop frequency response of the
motor speed controlier can be displayed in either the Nichols or Nyquist formats as
shawn in Figure 2-27. .

This rapid exchange of data between display formats not only allows the engineer to
capitaiize on the advantages of each display format, it also serves as a convenient way to
bridge communication gaps between engineers accustomed to different display formats.
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Chaﬁer &: Summai

By combining the computational power of the microprocessor with the accuracy of
precision measurement hardware, the Dynamic Signal Analyzer has expanded its
tunctional scope to include contributions in virtuafly all aspects of control system
development.

In the area of testing, the DSA has provided the facilites for making both time domain
and frequency domain measurements. Using either the time capture or time throughput
measurement modes, the DSA can store large guantities of ime domain data, The data
can then be efther displayed in the time domain or routed to the FFT processor and
transformed into frequency domain data.

For making frequency domain measurements, the DSA provides both FFT analysis and
Swept Fourier Analysis. This combination of measurement capabilities aflows the DSA 1o
analyze a control systern’s response 10 a wide range of stimulus signals. This capability
can often be used to gain greater insight into the operation of a control system as well as
minimize measurement times.

In addttion to providing multiple measurement capabilities, the DSA utilizes the power of
the microprocessor 10 provide a host of autemated measurement aids capable of
optimizing measurement conditions and rejecting undesirable data.

In the area of analysis, the DSA provides functions such as coherence, waveform math,
curve fitting and advanced display formatting as tonls for reducing raw data to valuable
information.

I the areas of modeling and design, the DSA’s frequency response synthesis and
advanced anaiysis functions can be utifzed in the deveiopment of accurate system
madels and effective systern designs.

Perhaps the DSA's most significant contribution s that it has brought both advanced
measurement capabilities and powertul analysis tools together in a single instrument. This
consolidation of development tools allows the DSA to provide a great deal of vaiuable
information—not just data.



Appendix A: ¢ Glossary

Bandwidth. The interval separating two
frequencies between which both the gain and
the phase difference {of sinuscidal output
referred t¢ sinusoidal ingut) remain within
specified limits.

Bode diagram. A plot of log-gain and phase-
angle vaiues on a log-frequency base, for an
element transfer function G{jw), a loop
transfer function GH{jw}. The generatized
Bede diagram comprises similar plots of
functions of the complex vanable s = o + ja.
Characteristic equation. Of a feedback
control system, the relation formed by
equating to zero the denominator of a
rationalized transfer function ¢f a closed Ioop,
Cilosed loop (feedback loop). A signal path
which includes a forward path, a feedback
path and a summing point, and forms a
closed circuit.

Compensation. A modifying or supple-
mentary action {(also, the effect of such action)
intended to improve performance with raspect
10 some specified characteristic.

Control system. A system in which deliberate
guidance or manipulation is used {o achieve a
orescribed value of & vanable.

NOTE: it may be subdivided into a controlling
system and a controlled systern.

Control system, automatic. A controi
systemn which operates without human
intervention,

Control system, feedback. A control system
which operates 1o achieve prescribed
relationships between selected systern
variables by comparing functions of these
variables and using the difference to effect
control.

Control gystem, open-loop. One which does
not utilize feedback of measured variables.
Critically damped. Describing a linear
second-order system which is damped just
enough to prevent any overshoot of the output
following an abrupt stimulus. See aiso
damping.

Critical polnt. (1) In a Nyquist diagram for a
control systern, the bound of stability for the
focus of the foop transfer function GH{jw), the
{~1, ja)point. (2) In a4 Nichois chart, the bound
of stability for the GH{jw) plot; the intersection
of |GH] = 1 with <GH = ~180 degrees.
Damping. (1) {noun) The progressive
reduction o supression of the oscillation of a
system. (2} (adj.) Pertaining to or productive of
damping.

Declbel. In control usage, a logarithmic scale
unit relating a variable x (e.g., angular;
displacement) {o a specified reference level xg;
dB = 20 tog x/xo.

NOTE: The relation is sirictly applicable ¢nly
whare the ratic x/x; is the square root of the
power ratio P/Py, as is true for voitage or
current ratios. The vaiue dB = 10 log P/Pg
originated in telephone engineenng, and i
approxirmately equivalent 1o the old
"transrnission unit’’.

Dither. A useful oscillation of small amplitude
infroduced to overcome the effects of friction,
hysteresis or clogging.

Error constant., In a feedback control system,
the real number K by which the nth derivative
of the reference input signal is divided to give
the resufting nth component of the actuating
signal.

Frequency, damped. The apparent
frequency of a damped oscillatory time
response of a system resufting from a non-
osciliatary stimuius.

Frequency, gain crossover. On a Sode
diagram of the loop transfer function of a
systern, the frequency at which the gain
becomes unity {(and its decibel value zero}.
Frequency, phase crossover. Of a loop
transfer function the frequency at which the
phase angle reaches = 180 degrees.
Frequency response. In a linear system, the
frequency-dependent relation in both gain and
phase difference, between steady-state
sinusoidal inputs and the resulting steady-state
sinusoidal outputs.

Functlon describing. Of a nonlinear element
under periodic input, a transter function based
solely on the fundamental, ignoring other
frequencies.

Function, loop transfer. For a closed loop,
the transfer function obtained by taking the
ratio of the Laplace transform of the return
signal to the Laplace transform of its
comesponding error signal.

Function, output transfer. For a closed
loop, the transfer function obtained by taking
the ratio of the Laplace fransform of the output
signal 1o the laplace transform of the input
sigriat,

Function, retum transter, For a closed ioop,
the transfer function obtaineg by taking the
ratio of the Laplace transform of the retum
signal 1o the Laplace transforrn of its
corresponding input signal.

Function, system transfer. The fransfer
function chtained by taking the ratio of the
Laplace tfranstorm of the signal corresponding
{0 the uitimately controlled variable to the
Laplace tranesform of the signal corresponding
10 the command.

Function, transfer. A mathematical,
graphical. or tabular statement of the influence
which a system or glement has on a signal or
action compared at input and at output
terminals.

Gain (magnitude ratic). For a iinear system
or element, the ratic of the magnitude
(amplitude} of a steady-state sinusoidal output
refative 1o the causal input; the length of a
phasor from the origin 10 a point of the
transter locus in a complex plane.

NOTE: The gquantity may be separated into
two factors: (1) a propertional amplification
often denoted as K which is frequency-
independent, and associated with a
dimensioned scale factor relating the units of
input and output; (2) a dimensionless factor
often denoted as G(jw) which is frequency-
dependent. Frequency, conditions of
operation, and conditions of measurement
must be specified A loop gain characteristic is
a plot of log gain vs. fog frequency. in
nonlingar systems, gains are often amplitude-
dependent; see aiso transfer function.

Gain characteristic, loop. Of a closed loop,
the magnitude of the loop transfer function for
real frequencies.

Gain, closed-loop. The gain of a closed-oop
systemn, expressed as the ratio of output to
inout.

Gain, loop. The absolute magnitude of the
loop gain characteristic at a spectfied
frequency. i
Gain margin. Of the loop transfer function for
a stabie feedback system, the reciprocal of the
gain at the frequency at which the phase
angle reaches minus 180 degrees.

NOTE: Gain margin, sometimes expressed in
decibels is a convenient way of estimating
refative stability by Nyquist, Bode, or Nichols
diagrams, for systemns with similar gain and
phase characteristics. In a conditionally stable
feedback system, gain margin is understood
to refer 10 the highest frequency at which the
phase angle is minus 180 degrees.

M-peak. Of a closed loop, the maximum
value of the magnitude of the return transfer
function for real frequencies, the value at zero
frequency being nomalized to unity.

Nichols chart (Nichols diagram). A plot
showing magnitude contours and phase
contours of the retum transfer function referred
to ordinates of logarithmic loop gain and 1o
abscissae of loop phase angle.
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Nyquist diagram. A poiar plot of the loop
transier tunction.

NOTE: The inverse Nyquist diagram' is a
polar plot of the reciprocat function. The
generalized Nyquist diagram comprises plots
of the loop transfer function of the complex
variables, wheres = o + jwand v andw
ate arbitrary constants, inclucing zero.
Overdamped. Damped sufficiently 10 prevent
any oscillation of the output following a step or
impulse input.

NOTE: For a linear second-orcier systern the
roets of the characteristic eguation are real
and unequal.

Phase angie, loop. Of a closed lcop, the
value of the icop phase charactenstic at a
specified frequercy.

Phase characteristic, loop. Of a ciosed
loop. the phase angie of the loop transfer
function for real frequences.

Phase margin. O the iocop transfer function
for a stable feedback contra! system, 180 deg.
minus the absohute value of the loop phase
angle at a frequency where the loop gain is
unity,

NOTE: Phase margin is a convenient way of
expressing refative stability of a linear system
ungler parameter changes in Nyquist, Bede or
Nichols diagrams. in a condtionally stable
feedback control system where the loop gain
tecormes unity at several frequencies, the term
is understood to apply o the value of phase
margin at the highest of these frequencies.
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Pole. (1) Of a transter function in the complex
variable s, a value of s which makes the
function infinite. (2) The corresponding point in
the s-plane.

NOTE: It the same value is repeated n trmes, #
is caliecd a pole of nth order; f it occurs only
once, a simple pole.

Resonance. Of a system or element, &
condition evidenced by large osciflatory
amglitude which results when a small
amplitude of a periodic input has a frequency
approaching one of the natural frequencies of
the driven system.

NOTE: in a feechack control systemn, this
oceurs near the stability limit,

HAesponse, steady-state. Of a stable system
or element, that part of the lime response
remaining after transients have expired.
NOTE: The term steady-state may also be
appiied to any of the forced response terms:
for example, “steady-state sine-forced
response’’.

Root locus. For a closed loop whose
characteristic equation is KG(s)H{s}+ 1=0, a
plot in the s-plane of all those values of s
which make G(s}H(s) a negalive real number;
those points which make the loop transfer
function KG{s)H(s} = -1 are roots.

- NOTE: The locus is conveniently sketched

from the factored form of KG{s)F{s); each
branch stans at a pole of that function, with
K = 0. With increasing K, the locus proceeds
along tts several branches toward a zero of
that function and, ofien asymptotic to one of
several equi-anguiar radial lines, toward
infinity. Roots lie at points on the locus for
which (1} the sum of the phase angles of
component G{s\H{s} vectors totais 18C deg.,
and for which (2) 1/K = |G{s)H{s)|. Critcal
damping of the closed ivop oocurs when the
locus breaks away from the reaf axs;
instability when it crosses the imaginary axis,
Servomechanism. An automatic feedback
controt system in which the controfled variable
is mechanical position of any of its time
derivatives.

Servomechanism type number. In control
systerns in which the loop transier function is:
K{1 +aws+apst+ .. +ags')

ST+ bis+bys?+ .. + bt
where K, a, b etC. are constant coeflicients,
the value of the integer n.
Stabillity. For a control system, the property
that sufficiently bounded input or initia state
periurbation result in bounded state or output
perturbations.
Time, rise. The time required for the output
of a system {other than first-order) to make the
change from a smait specified percentage
{ofien 5 or 10} of the steady-state increment to
a iarge specified percentage (often 90 or 95),
either before overshoot or in the absence of
overshoot.
NCTE: If the term is unqguaiified, response to a
unit-step stimuius is understood, otherwise the
pattern and magnitude of the stimuius should
be specified.
Time, settling {correction time). The time
required following the initiation of a specified
stimuius to a Hnear system for the output to
enter and remain within a specified narrow
band centered on its steady-state value.
NOTE: The stimulus may be a step, impuise,
ramp, paraboia, or sinusoid. For a step or
impulse, the band is often specified as £ 2%.
For nonlinear behavicr, both magnitude and
pattern of the stimudus should be spacified.
Underdamped. Damped insufficientiy to
prevent oscillation of the output following an
abrupt stimuius.
Zero. (1) of a transfer function in the compilex
variabie s, a value of s which makes the
tunction zero. (2) The corresponding point in
the s-plane.
NOTE: 1t the same value is repeated n times, i
is called a zero of nth order; if it occurs only
once, a simple zero.
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A A A
Preface

There are numerous applications
involving mixed analog and digi-
tal signals in the same system.
In order to make measurements
on mixed systems of this sort, it
is helpful to use the z-transform
for the digital part in conjunc-
tion with the Laplace transform
(s-domain) for the analog part.
In this note, the z-transform is
defined and various transfor-
mations between the s and z do-
mains are discussed. The Appen-
dix is devoted to a discussion of
matching the impulse responses
of multiple poles in both the s
and z domains.

The key characteristics of mixed
domain measurements are also
discussed in this note. For exam-
ple, multiple images occur in the
spectrum of a sampled signal. To
measure the higher order
images of the digital transfer
function with a dynamic signal
analyzer, the analog sampling
rate is generally some integer
multiple of the digital rate. To
accurately measure the frequen-
¢y response of a mixed system,
these two sampling rates must
be carefully locked together in
both frequency and phase. There
is also the need to handle time
delays, both in the signal path
and in the sampling pulse path.
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Introduction

There are many applications in
which signals are represented in
both analog and digital form at
different nodes in a system. For
instance, control systems in
which some part of the control
loop is implemented in digital
form, such as the loop compensa-
tion, are becoming more com-
mon. Figure 1 shows a simple
block diagram of a mixed
domain system which contains
analog filters, data converters,
and a digital filter. Measure-
ments in mixed systems of this
sort are somewhat more compli-
cated than those for strictly
analog systems since at least one
of the time waveforms is only
available in sampled form.

The frequency response function
of a sampled data system is
periodic along the frequency
axis, with images spaced at
multiples of the sampling rate
(see figure 8 for an example
showing four images). This
implies that poles and zeros in
the original s-domain are also
replicated along the frequency
axis, resulting in an infinity of
new poles and zeres at multiples
of the sampling frequency. The
analog part of a mixed domain
system is generally designed to
suppress frequencies
corresponding to these higher
order images in the digital
domain. This is the purpose of
the analog anti-aliasing and
output filters in figure 1.

The z-transform is used to char-
acterize the transfer function of
a sampled data system. This
transform will be derived later,
but it is simply a technique for
representing a periodic frequen-
¢y response function around a
circle instead of along the linear
frequency axis in the s-plane. #~
Each frequency image is mapped

Analog
input

_ Analog
Output

Digitat
Signals

Figure 1:

Block diagram for
a mixed analog/
digital system.

Half of Sampling
+=5 Freguency(z = 1)

Frequency
All polesin Response Aleng
left haif piane Imaginary Axis
s=04{z=1%
Llz=-1)
Figure 2:

The s-domain,
showing the
frequency (imagi-
nary} axis.

onto one cycle around the unit
circle. The values of the z-trans-
form around the unit circle cor-
respond to the measured fre-
quency response function {(at
least below half of the sampling
frequency), just as the values of
the Laplace transform along the
imaginary axis correspond to the
measured frequency response
function. All poles and zeros in
the left half of the s-plane map
into the interior of the unit ¢ircle
in the z-plane, and the entire
right half of the s-plane maps
into the exterior of the unit
circle.

Frequency
Response On
Unit Cirgle

All poles inside
af unit circle

7=~ 2=0 r=1
~ Half of s =0)
Sampling
Frequency

Figure 3:

The z-domain,
showing the unit
circle that corre-
sponds to the fre-
quency axis in the
s-plane.
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A plot of the fre.

quency response
function illustra-
ted in figure 4.

As a brief review and compari-
son, figure 2 shows the conven-
tional s-domain, and figure 3
shows the z-domain with the
unit circle drawn. Figure 4
shows a three-dimensicnal view
of an analog filter in the s-do-
main, with the right half of the
plane removed, showing the
frequency response function
along the imaginary axis. Fig-
ure 5 is a plot of this frequency
response function, This filter
comprises a pair of poles in the
left half plane, along with 4
zeros along the frequency axis.

=
s
s o

e
s
et
.::: et asanes

Figure € shows a three-dimen-
sional z-domain view of a digital
filter with characteristics similar
to those of the analog filter.

_ Here, the outside of the unit
;i;g‘i‘:::iéﬂ:::f the p . circle has been removed to show
transfer function AN the frequency response function
having two poles around this circle. Figure 7
?}?3 rt;c;}:l; ﬁ?lf‘:;ff shows a plot of: this fr?quency
plane cut away to response function. This filter
show the frequency comprises a pair of poles inside
:'fsﬁ?lii iﬁ’i&iﬁzry of the unit circle forming the
axis, filter pass-band, and three zeros

on the unit circle forming the

stop-band.

A three dimensional
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domain to the other are discus-
sed. In the final section, the dif-
ferences between the two do-
mains will be discussed, along
with some of the problems that
are encountered in mixed do-
main measurements,

Figure 6:
A three-dimensional z-do-
main plot of the magni-
tude of a transfer function
having two poles and
three zeros, with the ex-
terior of the unit circle cut
away to show the frequen-
¢y response characteristic.



Chapter 1: Derivation of
the z-Transform from
the Laplace Transform

The Laplace transform H{s) of
some system whose impulse
response is hit) is given by

His)= fh (the *d¢
o

(1)

where s is the Laplace variable.
The impulse response is as-
sumed to be zero for negative
time values.

In a sampled data system with a
sampling rate of f_, the sample
interval in the time domain is
At = 1/f;. A sampled version of
h(t) can be obtained by multipli-
cation by the “Shah” function
(see reference [1]) defined hy

III(t/At)=AtZ Sit-kati (2)
PR

where 3(t-kAt} is the unit im-
pulse or deita function centered
at t = kAt. The area under this
delta function is unity. If this
sampled version of h(t) is
inserted into (1), and the orders
of integration and summation
are interchanged, the resulting
s-domain transfer function for
this sampled system becomes

H(s)mAtEh(kAt)e’ks‘“ (3
k=0

Make the substitution

=g 542

{4)
Then the z-transform of the sys-
tem impulse response is

H (z)= Hi(s) =2 hikAt)z™k
: At (5)
k=0

The quantity z°¥ is the Laplace
transform of a delta function
delayed by kAt in the time
domain. The coefficient on the
kth power of 1/z is simply the

kth sample of the impulse re-
sponse. Note that the sampling
interval At has been removed as
an amplitude multiplying factor
from the definition of the
z-transform in (5). This factor
must be restored to evaluate the
frequency response along the
unit ¢irele.

The periodic nature of the trans-
form of sampled time data along
the frequency axis can be seen
from (3), where an exponential
in continuous time has been re-
placed by an exponential invol-
ving multiples of the sampling
interval At. Whenever s is re-
placed by s+i2x n/at, for any
integer n, the value of the trans-
form is unchanged. Figure §
shows the frequency response for
a simple pole at s = — 0.1 (solid
curve), and the four images ob-
tained by evaluating the z-trans-
form of the impulse response
around the unit circle (dashed
curvel.

Equation {4} completely defines
the z-domain in terms of the
s-domain, and it is apparent that
there is no new information
about the transfer function con-
tained in the z-domain repre-
sentation. In fact, the z-domain
form actually contains less infor-
mation than the original s-do-
main form, to the extent that the
original frequency response
bandwidth exceeds half of the
sampling rate. Any higher fre-
quency components have been
replaced by periodic replication
of the lowest order image or,
from another perspective, con-
tinuous time data has been re-
placed by sampled data. The loss
of infoermation is also apparent
from equation (4), where a value
for z is always uniquely deter-
mined for any given value of s,

£
_.,xe'"’w

but the converse is not true,
Thus, the merit of the z-domain
is that it only shows the availa-
ble infermation about the trans-
fer function, whereas the s-do-
main may show redundant
information.

Unfortunately, if equation (4) is
used to chiain the z-transform
directly from the Laplace trans-
form, a rational fraction in s
(comprising poles and zeros in
the s-domain) becomes a trans-
cendental function in z. For
example, a simple pole in the
s-domain can be written in the
z-domain as

1 At
s+a In{zl+adt

(6)

Any hardware implementation
of a z-domain digital filter com-
prises various combinations of
adders, muitipliers, and sample
delays represented by integer
powers of 1/z. Thus, the z-do-
main form of the system transfer
function must comprise {inite
order polynomials in z, and
hence can be represented either
as a rational fraction or a partial
fraction in z. The transcendental
form shown in (6) cannot be
easily implemented physically.
This argument implies that any
practical transformation be-
tween the s and z domains must
be only approximate. This raises
the question as to the amount of
error introduced by the approxi-
mation. Some of the more com-
mon transformations between
these two domains will be dis-
cussed next, and some examples
of the associated errors will be
given.
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Figure 8: Freguency

The frequency re-
sponse function ef a
simple pole in the
s-domain (solid line),
compared with the
frequency response of
the impulse invariant
form of the z-trans-
form (dashed line),
Note the four images
introduced by the
sampling operation.
Also note the error in
peak amplitude.

Chapter 2:
Transformations
Betweens and z
Domains

There are two generic types of
transforms between the s and
z domains, with numerous varia-
tions on each method. The first
type involves matching time
waveforms, usually either the
system impulse response or the
step response. The second type
involves rational fraction ap-
proximations to equation (4),
such as given by the bilinear
transformation.

None of the above methods are
exact, and the choice hetween
them depends upon the applica-
tion at hand. The common link
between analog and digital parts
of a mixed system is either the
frequency response function or
the impulse response in the time
domain. Thus, the significance of
any errors introduced by approx-
imations between the s and z do-
mains will ultimately be viewed
along either the frequency or the
time axis. Because of aliaging in
sampled systems, it is often not
possible to match both the fre-
gquency response function and
the impulse response simultan-
eously. In general, either the
impulse invariant or the step
invariant methods are best when
the time response is of interest,
The bilinear transform is used
for frequency response match-
ing, but is only accurate for very
low frequencies, relative to the
sampling frequency .



2.1: Impulse Invariant
Transformation

The impulse response can be
matched by decomposing the
transfer function in either the

s or the z domain into partial
fractions, then matching the im-
pulse response of each term.
This is easy to do if the multipli-
cities of all poles are unity, but
becomes more complicated for
multiple poles. The multiple pole
case is discussed in the Appen-
dix. A simple pole is represented
int the s-domain by

1 (7

&+ o

H(s) =

and the corresponding impuise
response is
hit)=e"% fort>0 (8)

From (5), the z-transform can be
written as

Hz (2) = 2 e—akdtaﬁk (9)
k=0 :
_ z
- - ewadt (10)

Thus, each partial fraction term
in the s-domain with a pole at

5 = —a yields a partial fraction
term in the z-domain, with a
zero at the origin and a pole at
z = exp(—aat). The sampled val-
ues of the impulse response be-
come the coefficients on an infi-
nite series in 1/z, as shown in
equation (9), which can be writ-
ten in closed form (10).

The frequency response corre-
sponding to the z-domain trans-
fer function is obtained by multi-
plying H, by At, for z=exp{i2nfAt).
If At is sufficiently small, then
this becomes

H(iZnf) a+i2nf

which is the same as obtained
from the s-domain via (7). How-
ever, when At is not sufficiently
small, the z-domain frequency
response is different from the
s-domain response. This is a
direct result of the aliasing that
occurs in the frequency domain
when images of the frequency
response function are replicated
at muitiples of the sampling
frequency.

2.2: Step Invariant
Transformation

In a similar manner, it is pos-
sible to match the response to a
unit step. The s-domain transfer
function is multiplied by 1/s, and
the result is expressed in partial
fraction form. Then, each term is
converted to the z-domain, as in-
dicated above, and multiplied by
(z-1)/z to remove the input step.

If this technique is used to match
the step response for a simple
pole, as given by (7), the result is

- A (12)
H (z)= ekt
where
A - 1 - p-adt as
N adtl

Compared to (10), this transfer
function has only a pole at
z = expl—aAt}, and no finite zeros.

1 (11)

None of these techniques that
match responses in the time
domain consider the effects of
aliasing caused by undersamp-
ling. Thus, even though the time
response is matched at the
sample values, any waveform
details that may occur between
samples, such as fast level tran-
sitions or narrow pulses, are
lost. This implies that the higher
frequencies in the frequency re-
sponse function may be in error
to some degree, This is a direct
consequence of the potential
overlap between the replicated
frequency images that result
from time domain sampling.

Only partial fraction terms that
involve poles or a constant can
be precisely converted from one
domain to another. Thug, any
higher order polynomial compon-
ents that result from the partial
fraction expansion cannot be
converted. This means that the
order of the numerator of the
rational fraction form must be
no greater than the order of the
denominator for either an im-
pulse invariant or a step invari-
ant conversion to exist. An ex-
ception to this rule can be made
for any powers of z that can be
removed from the rational frac-
tion before conversion, since
these powers of z can be repre-
sented as time advances. This i
also true for powers of 1/z which
can be represented as time
delays.



2.3: Bilinear Transformation

The second type of transforma-
tion between the s and z do-
mains is used when frequency
response function matching is
needed at low frequencies, and
involves some sort of rational
fraction approximation to equa-
tion (4}. The most common ap-
proximation is called the bilin-
ear transform, which is obtained
from the quotient of two first
order polynomials in 5. Equation
{4) can be written as
e“ ¢ 14)

p—salf2

If only the first two terms in the
Taylor’s series expansion of the
numerator and the denominator
are retained, then z can be
approximated by

_1l+s4t/2
1-3s54A¢/2

This can be inverted to obtain

(15)

z-~1
z+1

Equation (16) is called the bilin-
ear transform (the quotient of
two linear expressions), and (15) -
is sometimes called the inverse
bilinear transform. This form
has the advantage of Hmiting
the orders of the z-domain poly-
nomials to the maximum order
of the s-domain polynomials.
Obviously, there are many other
possible polynomial approx-
imations to (4), but this is the
one most often used in practice.

(16)

3 =Z2/A¢

The bilinear form also has the

- property of mapping the entire
s-domain frequency axis onto the
unit circle in the z-domain, in
contrast to the exact definition of
z, in which only frequencies up
to half of the sampling rate are

mapped onto the unit circle. Un-
fortunately, this mapping results
in a considerable amount of fre-
quency “warping”, especially for
frequencies near the point z = —1,
This warping is described by

tan (mnfAt)
nAt

f= amn
where {' is the frequency after
the bilinear transform has been
imposed, and f is the frequency
around the unit circle in the
z-domain at which {” is mapped.
Note that " becomes infinite
when f = 1/2At) = half of the
sampling frequency.

For purposes of comparison, the
expression for s in (16) can be
substituted into (7} to obtain the
bilinear form for a simple s-do-
main pole. The result is

,,.,H(S)_ z+1 (18)
H,(z) = oy —Bz—b
where
B —3*1 (19)

2radt
bzm

2+adt (20)

Thus, a pole is placed atz=b
and a zero is placed at z = -1, If
the sampling interval At is suffi-
ciently small, z can be replaced
by 1+i2nfAt and b is approxi-
mately 1-aAt, so H(i2xrf) be-
comes 1/{a+i2nf), as expected.
However, a comparison of (18)
with (10) shows that these equa-
tions are not equivalent and,
therefore, the frequency re-
sponse and the impulse response
will be different,

These transformation technigues
that involve approximations to
(4) tend to include the effects of
aliasing to some extent, but the

resulting responses in the time
domain may not be very accu-
rate. These approximations are
only good for small values of 5,
for which z is near unity.

2.4: Representation of Time
Delays

Any time delay in the s-domain
representation of a system must
be carried as a separate parame-
ter since there is no finite ration-
al fraction representation of this
delay. However, in the z-domain,
integer multiples of the samp-
ling interval At are represented
ag powers of 1/z, which are sim-
ply poles at the origin in the
z-plane. Thus, these diserete
time delay values can be repre-
sented as part of a z polynomial.
Unfortunately, this technique
does not work for time delays
that are fractions of the samp-
ling interval, so it is still neces-
sary to carry a time delay pa-
rameter separately. One possible
convention is to always repre-
sent the integer time delay mul-
tiples of At as z-domain poles at
the origin, and to represent only
the fractional part of the delay
as a separate parameter. How-
ever, this is an arbitrary choice,
and other conventions for repre-
senting delay are equally valid.

In any case, when a z-domain
transfer function is converted
into an s-domain representation,
the resulting time delay is the
sum of the part represented by a
multiple pole at the origin of the
z-domain, and the part repre-
sented as a separate delay
parameter.



2.5: Comparison of Different
Transformation Techniques

The results of each transforma-
tion technique can be compared
by viewing the amplitude and
phase response in the frequency
domain, and/or the impulse re-
sponse in the time domain. Fig-
ure 9 shows the amplitude fre-
quency response of a simple pole
in the s-domain for a = 0.1 (solid
curve), along with curves evalu-
ated from three z-domain ap-
proximations (dashed curves).
The upper dashed curve is for
the impulse invariant transfor-
mation, and the middle dashed
curve is for the step invariant
case. The lower dashed curve is
for the bilinear transform. No-
tice the zero at z = -1 for the
bilinear case. Also note that the
dec value of the response is not
correct for the impulse invariant
case, although when this is nor-
malized away, this curve coin-
cides with the step invariant
curve,

Figure 10 shows the phase re-
sponse for the same four cases
illustrated in figure 9. The solid
line represents the phase for the
s-domain representation of a
simple pole, while the dashed
lines represent the phase for
three different z-domain approx-
imations. It is only necessary to
consider the phase angle for pos-
itive frequencies below half of
the sampling rate (left half of
the figure) since the negative
frequency interval will be sym-
metric. The best phase match to
the solid line is obtained by
means of the bilinear transform
(middle dashed line). This is ex-
pected since the bilinear trans-
form incorporates, to some ex-
tent, the effects of aliasing. The
upper dashed line is for the

impulse invariant case, and the
lower dashed line is for the step
invariant case. The step invari-
ant case incorporates an extra
phase slope that corresponds to
one sample of delay. If this delay
is removed, this case is identical
to the impulse invariant case.

Figure 11 shows the impulse re-
sponses in the time domain for
these same four cases. The solid
line is the continuous time im-
pulse response for a simple pole,
and the labels =, 0, and x show
the sampled versions of this im-
pulse response for the impulise
invartant method (=), the step
invariant method (o), and the
bilinear transformation {x). The
impulse invariant method gives
exact sample values. If the step
invariant results were re-scaled
in amplitude, they would also be
correct except for one sample of
delay. The bilinear transform
results need to be scaled in am-
plitude, and the decay time con-
stant is also slightly in error (too
smalil by 1.348%, for this case).

a=01 Dt=4

0

i

Frequency

Figure 9:

The frequency response
function of a simple
pole in the s-domain
(solid line}, compared
with the frequency re-
sponses for three dif-
ferent z-domain repre-

" sentations. The upper

dashed line is for the
impulse invariant case,
and the middle dashed
line is for the step in-
variant case. The bilin-
ear transform case is
shown by the lower
dashed line. When the
upper line is scaled to
be correct at dc, it mat-
ches the middle line at
other points, as well
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Figure 10:

The phase response of 2
simple pole in the s-do-
main (solid line), com-~
pared with the phase
responses of three differ-
ent z-domain representa-
tiens. Oniy the left half of
the plot is useful for this
eomparisen. The upper
dashed line is for the im-
pulse invariant case, and
the lower dashed line is
for the step invariant case.
The middle line is for the
bilinear transformation.
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# Matched Impuise Response
O Matched Step Response
X Bilinear Transformation

Time

Figure I1:

The impulse response of a
simple pole in continuous
time (solid line), and for
sampled times correspond-
ing to the impulse invariant
method (x symbol), the step
invariant method (o sym-
bol), and the bilinear trans. -
form technique (x symbol).

Chapter 3:
Characteristics of
Mixed Domain
Measurements

When continuous time and
sampled time systems are con-
nected together as shown in
figure 1, there arises the need to
make frequency response mea-
surements across the interface
between the two domains. When
making measurements in a
mixed analog/digital system, the
key characteristics to be aware
of are:

The occurrence of multiple spec-
tral images of sampled signals

The need to synchronize analog
and digital sampling rates

The possible presence of two
types of time delays

In mixed domain systems, multi-
ple images oceur in the spectra
of sampled signals. It is gener-
ally necessary to filter the input
signals to reduce aliasing, and to
filter the output signals to atten-
uate the spectral images, The
bandwidth of the measurements
of analog signals must extend
beyond the frequency of the
highest image of concern.

There is also a need to synchron-
ize the analog and digital samp-
ling rates to avoid errors due to
leakage. In addition, these
sampling signals must be phase
locked so that transfer functions
between digital and analog parts

of a system can be measured

accurately. If there is any rela-
tive jitter between these two
sampling signals, then addition-
al errors will be introduced.

Two types of time delay appear
in a mixed mode measurement,
in contrast to only one type of
delay in an analog measure-
ment. In either case there can be
a delay in the system impulse



response, but there can be an
additional delay in the sampling
pulses for the digital part of a
system. These two delays affect
the results in different ways.

3.1: Images and Analog
Filtering

The distinguishing feature of
mixed domain measurements is
the occurrence of multiple ima-
ges in the spectrum of a sampled
signal. Generally, a designer is
interested in the effect that an
analog filter circuit has upon the
multiple images introduced by
the digital portion of a system.
An ADC is an example in which
aliasing is introduced into the
primary spectral image if any
input signal components occur at
frequencies above half of the
sampling rate. Attenuating such
unwanted signals is the purpose
of the low-pass anti-aliasing fil-
ter in figure 1. To observe higher
frequency signal components,
the bandwidth of a measure-
ment on the analog input to an
ADC must extend beyond the
frequency encompassed by the
highest image of concern in the
sampled signal.

In a similar manner, the analog
fiiter on the output of the DAC
in figure 1 is designed to attenu-
ate the higher order images com-
ing out of the mixed system.
This filter also serves to convert
the discrete samples of the DAC
output into a continuous analog
signal. To show all of the attenu-
ated images of interest, it is ne-
cessary to make analog mea-
surements at frequencies higher
than the digital sampling rate.

This latter filter must be de-
signed to attenuate all of the
frequency domain images of the
spectrum except the one of

interest. One common filter type
is that obtained by means of a
zero order hold circuit. The im-
pulse response of this filter is a
rectangle having a unit area and
a width equal to the sample in-
terval At. This gives a filter
shape of sin(rfat)/(zfAt}, which
has nulls at the center of each
image except the one centered at
the origin. This filter shape is
shown as a dashed line in fig-
ure 12 and its effect upon the
frequency images (of figure 8) is
shown as a solid line. In addi-
tion, there will be a linear phase
shift versus frequency corres-
ponding to a delay of At/2.

Other filters must generally be
added to further reduce the sizes
of the unwanted images. It is ap-
parent from figure 12 that these
reduced images can still be rela-
tively large. 1t is possible to use
higher order hold circuits, cor-
responding to triangular or par-
abolic impulse responses, but it
is usually easier fo design one of
the standard analog low-pass
filters such as either the
Chebyshev or elliptic types.

Often, mixed mode systems are
designed so that the digital filter
part complements the analog
part to obtain better overall
characteristics than could be ob-
tained with either technique
separately. For example, the
digital filter might be designed
with a narrow pass-band rela-
tive to the sampling frequency,
or the sampling frequency might
be multiplied, so that the subse-
quent analog filter can have a
wider transition band between
the desired image and the re-
maining rejected images. This
oversampling allows use of a
simple analog filter design, hav-
ing well controlled phase and
amplitude characteristics.

3.2: Synchronization of
Sampling Pulses

The second key characteristic of
mixed domain measurements is
the need for synchronized samp-
ling pulses between the two do-
mains. Not only should the sam-
ple rates he related by simple
integers, but the relative phases
between the two sampling sig-
nals must be known or mea-
sured so that mixed domain
transfer functions can be
determined.

Generally, the analog sampling
rate will be some integer multi-
ple of the digital rate. However,
the digital rate is often deter-
mined by the device under test,
so the analog sampling signal
must be derived from the digital
rate in some manner. To mini-
mize leakage effects when work-
ing with periodic signals, the
analog sampling rate must be a
very accurate multiple of the
digital rate. Thus, the digital
rate must be known or measured
very accurately, and the analog
sampling rate must be very ac-
curate and stable in frequency.

There are two types of errors
that can occur when timing dif-
ferences exist between the ana-
log and digital sampling signals.
The first type of error is due to a
discrepancy in the average ana-
log sampling rate {not exactly an
integer multiple of the digital
rate). In this situation, a peri-
odic digital signal will not re-
main exactly periodic after being
sampled at the analog rate.
When using a control systems
analyzer or dynamic signal ana-
Iyzer to make measurements in
this situation, the sampling de-
lays can cause leakage errors in
the frequency spectrum, espe-
cially if the user selects a



rectangular or “uniform” win-
dow. For example, when making
distortion measurements using a
sinusoidal input, a uniform win-
dow is generally used and all
harmonics are expected to be
exzactly periodic in the time win-
dow. Any leakage that occurs
will directly affect the accuracy
of measurements of the higher
order harmenics.

The second type of error is due
to jitter on the digital sampling
signal. There are times when
this same jitter should also occur
on the analog sampling signal.
For example, if the transfer
function of a DAC is being mea-
sured, then any jitter on the dig-
ital samples should be exactly
duplicated on the analog sam-
ples so that the measured trans-
fer function is independent of
this jitter. However, if a digital
compensator is embedded in a
control system and there is some
amount of jitter on the internal
digital clock, then the analog
sampling rate should probably
be uniform in time so that the
effects of the digital jitter can be
observed.

Jitter on the digital sampling
signal can also result in leakage
errors, especially if a uniform
time window is used in the mea-
surement. For example, if the
transfer function of a DAC with
zero order hold is being mea-
sured using a uniform window
and there i3 jitter on the digital
clock, then leakage contributions
from the higher order images
will gecur in the baseband fre-
quency region, even if the analog
sampling rate is much higher
than the digital rate (negligible
aliasing).

a=0.1 Bt=4

Figure 12:

The eqguivalent fil-
ter of a zero order
hold isshown as a
dashed line, and
the effect of this
filter on the multi-
ple frequency ima-
ges of figure 8 is
shown as a solid
line. Note the nulls
in this filter at the
center of each
image.
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Figure 13:

Phase versus fre-
quency due to a
time delay in the
impulse response,
and due to a time
delay in the samp-
ling pulses.
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3.3: Time Delays

The third major characteristic of
mixed measurements that must
be considered is the occurrence
of time delays in the system. In
the analog part of a system, a
time delay results in a linear
phase slope in the frequency re-
sponse function and can be ap-
proximated by a rational frac-
tion in the s-domain. In the
z-domain, there are two types of
time delays that must be treated
separately. There can be time
delays in the signal path, just as
for analog systems, and there
can be time delays in the samp-
ling pulses, without any signal
delay. In addition, both kinds of
delay may occur simultaneously.
Delays in the sampling pulses
can oceur if multi-phase clocks
are used to perform several oper-
ations within one clock period,
particuiarly if the output is
clocked with a different phase
than the input.

If there is a delay in the signal
path, then the result is the same
as for an ordinary analog delay.
A linear phase slope is introdu-
ced into the frequency response
function (see figure 13). A modi-
fied z-transform can be defined
(see reference [2]) that matches
the delayed impulse response,
although the linear phase slope
in the frequency response may
not be correctly represented due
to aliasing. Alternatively, a ra-
tional fraction in z can be used
to approximate the phase slope,
just as in the s-domain.

A delay in the sampling pulses
only affects the phases of the
higher order images of the fre-
quency spectrum, and hence
only affects the errors due to ali-
asing. If the original spectrum is

band limited to half of the samp-
ling frequency, then a delay in
the sampling pulses has no ef-
fect upon the baseband spectral
image (see figure 13). In the
z-domain, the coefficients on the
powers of 1/z are obtained from
delayed samples of the impulse
response, so the actual z-trans-
form is modified by the sample
delay. In addition, there is a fac-
tor of z9, where d is the sample
time delay normalized by the
sample interval At, which ac-
counts for the phase differences
among the frequency images.

When both the sampling pulses
and the impulse response are
delayed, the result is a combina-
tion of the effects discussed
above for each separate delay.
However, if both signals are de-
layed by the same amount, then
the samples of the impulse re-
sponse are the same as for no
delay, and the resulting z-trans-
form only differs by the z™ factor
defined above.

These time delay effects are best
summarized by re-writing equa-
tion (5} for the z-transform,
where h(t) has been replaced by
h(t-7), te represent a delay of 1
in the impulse response, and t
has been replaced by t-t, in the
Shah function (equation (2)) to
indicate a sampling pulse delay
of t,. The resulting z-transform
can be expressed as

H,(z) = Zh(kA b+t~ t)z7R e
k=0 (21)

fy

At

Notice that these two types of
delay enter into the equation in
different ways, so their effects
must be considered separately.

Chapter 4: Summary

There are numerous applications
involving mixed analog and digi-
tal signals in the same system.
It is helpful to use the z-trans-
form for the digital part, in con-
Junction with the Laplace trans-
form (s-domain) for the analog
part when making measure-
ments on these mixed systems.
The z-transform is defined and
the impulse invariant, step in-
variant and bilinear transfor-
mations between the s and

z domains are discussed and
compared. The Appendix diseus-
ses the matching of the impulse
responses of muitiple poles in
both the s and z domains.

Three key characteristics of
mixed domain measurements
are discussed: images and ana-
log filtering; synchronized samp-
ling; and time delay effects. Most
mixed analog/digital systems
contain analog filters on the in-
put of ADCs to prevent aliasing
and on the output of DACSs to at-
tenuate images. When using a
control systems analyzer or dy-
namic signal analyzer to mea-
sure the higher order images in
a mixed transfer function, the
analog sampling rate should be
some integer multiple of the dig-
ital rate. To make accurate fre-
quency response measurements,
these two sampling rates must
be carefully locked together in
both frequency and phase. There
is also the need to handle time
delays, both in the signal path
and in the sampling pulse path.



Appendix: Multiple Pole
Impulse Invariance

The transfer function of a multi-
ple pole in the s-domain is

mm___l_mmmw {Al)

H(s) = k+1
(s+a)

The pole is located at s = -a, and
it has a multiplicity of k+1. The
corresponding impulse response
is given by

- ££ —al
hit) = k!e , for £20,

k=012, (A2)
The goal is to derive a z-domain
representation that will exactly
reproduce this impulse response
at times sampled at At intervals.
In particular, the sampled
impulse response is given by

k
_{nat)
hinat) = 7

forr n =0,1,2,.

-anat
e

1

(A3)

This sampled impulse response
can be generated from a z-do-
main formulation involving the
sum of poles having all multipli-
cities from unity to k+1. The de-
tailed derivation will not be giv-
en here, but the results for poles
of multiplicity one through four
will be shown. In general, when-
ever a pole of a given multiplici-
ty occurs, all poles of lower order
also oceur. Thus, a matriz repre-
sentation of this impulse invari-
ant transformation is useful.

Define a normalized z-domain

variable called x, as follows
e—aAt

(A4)

X = pe
Define a four element vector 5
whose elements are the s-do-
main peles for each multiplicity.
Define Z as 4-vector of z-domain
poles of the form 1/(1-x)**! for
each multiplicity. The elements

for each of these vectors are Hlist-
ed in order of decreasing multi-
plicity. Then, the impuise invari-
ant transformation between
these two domains can be writ-
ten in matrix form as

S & RZ {A5)

where R is the 4x4 matrix

i -

AP 0 0 01 -2 % -y
Rl 0ARO 010 1 %y |
0 0 At O ooz-zJ

0o 001/i0 0 01
(AB)

If a row vector A of s-domain co-
efficients on each element of S is
defined as

a=[4, A, A Al @AD

then the final result can be writ-
ten as

AS @ ARZ (A8)

In a similar manner, equation
(A5) ean be inverted to give

7o RS (A9)
where the inverse of R is
1 2 W 1 /(a0 0 0
R-|0 1 % 1 0At20 O
0 01 1|0 0At'O
0 0018 0 01
(A10)

If a row vector B of z-domain co-
efﬁqients on each element of Z is
defined as

B=1[B, B, B BJ@AW

then the result can be written as

BZ < BR 'S (A12)
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These row vectors of coefficients
are related by
B=AR (A13)
If the multiplicity of the original
pole is reduced by one, then the
topmost row and the leftmost
column of R (and of R™) are dis-
carded to form a 3x3 R (and B
matrix.

As for the unity multiplicity
case, it is necessary to multiply
the z-domain form of the multi-
ple pole by At before attempting
to ealeulate the frequency
response function around the
unit circle,
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z-Domain Curve Fitting
in the HP 3563A Analyzer

HP 3563A-1 Product Note

Introduction

This product note is a supple-
ment to HP product note
3562A-3, entitled “Curve Fitting
in the HP 3562A." That previ-
ous note described the s-domain
curve fitter, used in both the
HP 3562A and the HP 3563A.
However, the HP 3563A has the
additional capability of accept-
ing digital input signals, and
hence must be able to represent
transfer functions of digital
systems in the z-domain.

HP application note 243-4
entitled “Fundamentals of the
z-Domain and Mixed Analog/
Digital Measurements,”
describes the z-domain and
discusses the nature of mixed
measurements involving both

s and z domain representations.
One of the new capabilities in
the HP 3563A is a z-domain
curve fitter that can be used to
determine a z-domain represen-
tation of a system from a
measured frequency response
function.

ie's

Haif of Sampling
" S Frequency {z=-1)

Frequency

Allpolesin = * |5 Response Along
left haif plane Imaginary Axis
s=0{z=1)

L {z=-1)

Figure 1 shows a representation
of the s-plane used to display
poles and zeros of transfer
functions of analog filters. All
poles must lie in the left half of
this plane for a stable system.
The frequency response is
represented along the imaginary
axis. Figure 2 shows the z-plane,
with the frequency response
represented around the unit
circle. In this domain, all poles
must lie inside of the unit circle
for system stability. The z
variable is related to s by

z=exp (sAt), where At is the time
interval between sample points
in a digital measurement. The
z-plane is used to display poles
and zeros of transfer functions
of digital filters.

Figure 1:

The s-plane, showing
the imaginary fre-
quency axis and half
of the sampling fre-
gquency for a digital
system. All poles
must be in the left
half of this plane for
a stable system.

"Frequanéy
- Response On -
" Unit Circle”

All péle__s i)nsi:d'e \
. ofunitcirela”

-‘1‘1 eniig =

Figure 2:

The z-plane, showing
the frequency axis
arcund the unit
circle, with half of
the sampling fre-
guency at z=-1. Al
poles must lie inside
of the unit circle for
a stable system.



Some of the key points to
remember are:

The basic theory of curve fitting
in the s-plane is described in ref-

erence {11
+ A curve fitter is used to estimate

the coefficients of a rational
fraction representation (in
either the s or z domain) of a
measured frequency response
function. The resulting poles,
zeros, and gain factor can be
obtained from these coefficients.

In general, curve fitting com-
prises the calculation of the
coefficients needed to multiply a
set of basis functions so that the
sum of these weighted basis
functions fits the measured data
in some optimum way. These
basis functions are selected to
represent some mathematical
model of the physical system in
question and are often selected
to be mutually orthogonal,
which means that the coefficient
for each function of the set can
be calculated independentiy of
all of the other coefficients. In
reference [1}, the basis functions
are Chebyshev polynomials as
functions of frequency. The
theory behind z-domain curve
fitting is very similar except
that the basis functions are
complex exponentials as func-
tions of frequency, correspond-
ing to powers of z around the
unit circle. These basis functions
are periodic along the frequency
axis, with a period equal to the
sampling frequency.

* Curve fitting will be very difficult
and inaccurate unless a rational
fraction model of the system is
essentially valid,

» The coefficients (and hence the
poles, zeros, and gain factor) are
random guantities to some
extent, depending upon the
amount of noise or uncertainty
it the measured data.

+ A weighting function is applied
to the measured data, to empha-
size regions near peaks and
valleys, and to de-emphasize
regions having poor signal-to-
noise ratio, or regions having
excessive distortion, aliasing or
interference.

¢ Curve fitting is still somewhat

The general nature of estima- of an art, so a strict “cookbook”
tion techniques, and of curve approach is not very practical.
fitting in particular, is discussed  There are numerous factors that
in HP Product Note 3562A-3, can cause the fitter some degree
and will not be repeated here. of difficulty and the user should
However, the points made in be aware of these.

that note are equally applicable

to the z-domain curve fitting

process, so it will be assumed .

that this introductory material

has been consulted.

Just as an s-domain curve fitter
is used to obtain an analytical
model of some measured trans-
fer characteristic in the
g-domain, a z-domain curve
fitter is used to obtain an
analytical model of some meas-
ured transfer characteristic in
the z-domain. Ideally, to obtain
the best results from a z-domain
fitter, the measured characteris-
tic should be the frequency
response of a digital filter.
However, there are cases when a
digital representation of an
analog filter is desired. For ex-
ample, a digital filter might be
required to replace an existing
analog compensator in a closed-
loop contro! system. Fitting a
z-domain model to an analog
frequency response is more
difficult than fitting to a digital
response, but it can be done if
extra poles and zeros are
allowed.

It is possible to use the s-domain
fitter on a measured frequency
response to obtain an s-domain
model, and then to use one of
the standard transformations to
convert this model into the
z-domain. The HP 3563A
analyzer supports three conver-
sion transformations: the
impulse invariant, the step
invariant, and the bilinear
transformation. Unfortunately,
none of these transformations
are completely accurate, so some
errors will result.



This conversion from the
s-domain to the z-domain can
often be done better by fitting
the measured data directly,
using the z-domain curve fitter.
This approach will generally
give good fit quality over the
entire frequency range of
interest. In addition, the meas-
ured data can be manipulated
{via MATH operations) to
remove errors or to compensate
for other components in the
system, such as time delays or
zero order hold characteristics,
before the fit is calculated. Also,
the weighting function in the
fitter can be used to emphasize
frequency regions of interest,
and to ignore regions that are
not important. It might even be
possible to obtain a good fit with
reduced polynomial orders. The
main disadvantages to this
method are the potential for
poles outside of the unit circle,
and the possibility of obtaining a
non-minimum phase transfer
function. There is also no
explicit control over the result-
ing filter time response.

The remainder of this note will
be devoted primarily to a de-
scription of how to use the
z-domain curve fitter in the
HP 35634 analyzer, and will
show several examples of the
results.

Characteristics
Unigue to z-Domain
Curve Fitting

The most obvious characteristic
of z-domain curve fitting is the
use of periodic basis functions,
resulting in a periodic frequency
domain fit to the measured
data. Thus, the basis functions
should ideally have the same
period as the original spectral
data (or an integer multiple
thereof), or else should span less
than half of one period of the
original data. This implies that
the sampling rate for the curve
fitter should ideally be some
integer multiple of the digital
data rate, so that an integer
number of frequency response
images occur within one period
of the fitted result.

If some other fitter sample rate
is required, then the z-cursors
shouid be used to restrict the
region of fit to no more than half
of the data sampling rate. The
fitter sample rate is often
dictated by the system charac-
teristics in which the resulting
filter will be used, and thus may
not be arbitrary. If the z-domain
fitter is used on data obtained
from an analog input, then the
span of the analog spectrum
should be less than half of the
sampling rate of the fitter, or
else the x-cursors should be
used to restrict the fitting _
interval to be smaller than half
of the fitter sample rate. '

The span of an analog spectrum
is given by the width of the
display when in the 801 line
mode (a 1024 line display mode
can be selected under the
WINDOW hard key). This 801
line boundary is indicated by
vertical dashed lines when in
the 1024 line mode. When these
dashed lines are displayed, the
fitting interval should be re-
stricted to the interior region,

due to the possibility of aliased
components cutside of this inter-
val. This is done automatically
by the curve fitter if x-cursors
are turned off.

Time delays that are multiples
of the sampling interval can be
represented by poles at the
origin in the z-domain. Thus, it
is common to have multiple
poles at the origin. Also, it is
very convenient to cascade
several identical digital filter
sections together to obtain a
composite transfer function,
resulting in multiple poles or
zeros at other locations, as well.
Although multiple poles and
zeros can also occur in the
s-domain, it is relatively difficult
to construct identical analog
filter sections, so multiple poles
and zeros are seldom measured
in practice. Thus, muitiple poles
and/or zeros tend to be more
common in the z-domain than in
the s-domain.

Analog filters tend to be de-
signed with more poles than
zeros, or at least with some non-
zero number of poles. However,
all-zero digital filters are very
common, All finite impulse
response (FIR) filters comprise
only zeros in their transfer
functions. It is common to have
more zeros than polesin a
digital filter. This implies that
the automatic polynomial order
selection algorithm used in the
curve fitter should behave
differently in the z-domain than
in the s-domain. Higher order
filters tend to have more poles
than zeros in the s-domain, but
poles and zeros are treated
equally in the z-domain.



Examples of z-Domain

Curve Fitting in the
HP 3563A Analyzer

A few examples will be given to
illustrate the results that can be
obtained from the curve fitter,
and then some of the unique
characteristics of the fitter in
the HP 3563A analyzer will be
discussed. The z-domain fitter
works best when the measured
frequency respense is that of a
digital filter having the same
sampling rate as the one used by
the fitting algorithm. However,
it is possible to use a different
effective sampling rate in the
fitter, so that the same filter
shape can be obtained based
upon a new sampling rate. This
might be useful if a new digital
filter design having the same
shape but a different sample
rate were needed.

It is also possible to use the
z-domain fitter on a measured
frequency response from an
analog filter. This allows a
digital filter to be designed that
matches an existing analog
filter, at least out to half of the
digital sampling rate. The
sampling rate used in the fitting
procedure determines the period
of the orthogonal basis functions
used in the fit. The following
examples will show some of
these curve fitting possibilities.

The digital filter used in these
examples is part of a test acces-
sory called the Hewlett-Packard
ET 025379 signal processing
subsystem, which is designed to
train users in the use of the

HY 3563A analyzer.

Figure 3 shows the magnitude of
the frequency response of filter
#1 (top trace), along with the
output of the z-domain curve
fitter {lower trace). The sam-
pling rate of the actual digital
filter is 7812.5 Hz, and this same
rate is used in the fitting
procedure.

Table 1 shows the poles and
zeros calculated in the z-domain
by the curve fitter. There is a
pair of complex conjugate poles
at a distance of 0.8992 from the
origin, making an angle of
+17.945 degrees. The actual
digital filter was designed with
a patr of poles at a distance of
6.9 from the origin, making an
angle of £18 degrees. The
measured zercs are at a distance
of 0.8499 with an angle of
+35.880 degrees, and the correct
results are a distance of §.95
and angles of +36 degrees. Refer
to figure 2 for a view of the
z-domain in which these poles
and zeros can be located. Even
though rectangular coordinates
are given in the z-domain table,
it is often convenient to visual-
ize these numbers in polar
coordinates, since the magni-
tudes of the poles must be less
than unity and the natural
frequency of each pole or zero is
proportional to phase angle. Any
poles that lie outside of the unit
circle will be highlighted in the
curve fit table.

The measured
frequency response
magnitude of digital
filter #1 (upper
trace) having two
poles and two zeros,
and the result of the
z-domain curve
fitting algorithm
(lower trace). The
curve fitter sample
rate is the same as
the data sample
rate, This example
uses the full 1024
line interval for the
fit, as well as for
display.
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Table 13
The list of poles
and zeros ob-
tained in figure 3.
Also note the gain
constant and the
curve fitter
sampling rate.



Figure 4 shows the general state
of the analyzer for linear fre-
quency resolution measure-
ments, and figure 5 shows the
~extra information needed to set
up a digital measurement. Note
that a digital burst random
source was used to make these
frequency response measure-
ments, and that 100 source
triggered averages were used.
Digital quantization errors
appear as distortion on the spec-
trum, but this can be converted
to random notse and averaged to
a smaller value by using the
triggered burst random source
and averaging over several
measurements.

The above results were obtained
using a curve fitter sampling
rate that matched that of the
measured data. In case the same
filter shape is needed with a
different sampling rate, the
curve fitter can be used to refit
the measured frequency re-
sponse with the new sample rate
specified. Figure 6 shows the fit
to digital filter #1, using a curve
fitter sample rate of 5000 Hz
instead of 7812.5 Hz. Notice that
both x-cursors are used to
restriet the fitting interval to
less than half of the digital
sample rate. The markers show
slight errors in the magnitude of
the fit, which amount to about
0.1 dB in the filter passband.
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Figure 4:

The state of the
analyzer for
making linear
frequency
response meas-
urements, using
100 triggered
averages with a
burst random
source.

Figure 5:
Additional state
information con-
cerning the set up
for digital inputs
on both channels,

Figure 6:

The frequency
response magni-
tude of digital
filter #1 (upper
trace) and the
result of a
z-domain curve
fit using a lower
sampling rate of
5 kHz (lower
trace). Note the
positions of the
X-cursors in
limiting the
region of the fit.



Table 2 gives the new locations
of the poles and zeros in the _ _ s
z-domain. Compare these values EECEEoPTESE n=T NN SRS St F
to those given in table 1. Since : .

the fitter sample rate has been
reduced, the angles of the poles
and zeros have increased. The
pole angle has increased from 18
degrees to about 28.2 degrees,
and the zero angle has increased
from 36 degrees to about 56 - 7 7
degrees. The magnitudes of Tamia da;z'.jax.-e.q. 0§ CoinsBa:Gm Sanplws, ok
these quantities have also : .
changed somewhat.

Z Curva Fig

Tahle 2;

The list of poles
and zeros
obtained in
figure 8. The
fitter sampling
rate is shown.

Figure 7 shows the fit to filter

#1 with a curve fitter sample e E PR Figure T:
rate of 10 kHz. The correspond- | £8P, . 180k | oovinl e The frequency
response

ing new poles and zeros are
listed in table 3. In this case, the
angles are smaller than those
given in table 1 (where the
sample rate was 7812.5 Hz).
Note that x-cursors are not
needed here, since the span of
the data is less than half of the
curve fitter sample rate (al-
though these cursors can be
used to further reduce the
fitting interval if desired).

magnitude of
digital filter #1
(upper trace) and
the result of using
the z-domain curve
fitter having a
higher sampling
rate of 10 kHz.
Here, the entire
frequency span is
used for the fit
{with x-cursors

off).

Z Clrve Fit
.. POMES  ® . G . zemas  z
8835, 12Bn% 2R 372m T eRalereme; 447185 Table 3:
i : The list of poles
and zeros
obtained in
figure 7.
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It is also possible to use the
s-domain curve fitter in the

HP 3563A analyzertofita
z-domain frequency response
funetion. This is a handy way to
obtain an s-domain filter that
matches a digital filter, for use
in an equivalent s-domain
model. This is one way to include
digital components in an
s-domain description of a control
system, and might be used in
making an s-domain root locus
plot as a function of some loop
parameter, Keep in mind that
any aliasing components in the
z-domain representation will in-
troduce errors into the locations
of the new s-domain zeros (and
possibly peles as well).

Figure 8 shows this type of fit to
the #1 digital filter response.
The s-domain fit is fairly good
except at the valley (789.6 Hz),
where the error amounts to
about 3 dB. Table 4 gives the
resulting s-domain poles and
zeros. If one additional pole is
used in the fit, the valley point
also fits well (with an error of
only 0.16 dB). In general, do
not use a single x-cursor during
the fit, or else the fitting inter-
val will only be £20 data points
around the cursor. Either turn
x-cursors off, or else set them
to the desired boundaries for
the fit.
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Figure 8:

The frequency
response magni-
tude of digital filter
#1 (upper trace)
and the result of
using the s-domain
curve fitter on this
digital response
function. Note that
the valley fit is
somewhat in error.
One additional pole
produces a goed fit.
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Table 4:

The s-demain poles
and zeros obtained
in figure 8.



An analog filter is shown in
figure 9, along with an s-domain
fit to the magnitude, with
x-cursors set to the range
between 100 and 400 Hz.

Figure 10 shows the passband of
this filter, expanded. The
resulting curve fit poles and
zeros are listed in table 5. Notice
that the three zeros were fixed
at the origin during the fitting
procedure (as indicated by the
arrows after each fixed entry).
This is accomplished by entering
values of fixed zeros (or poles)
into the curve fit table. Editing
keys are provided for this
purpose (CURVE FIT hard key
and EDIT TABLE soft key).

The values used in the original
synthesis of this filter are given
in table 6. The fitter results
exactly match those used in the
original synthesis.
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Figure 9:

A synthesized
analog filter
response
magnitude having
six poles and
three zeros
{upper trace), and
the result of using
the s-domain
curve fitter
(lower trace).

Figure 10:

An expanded plot
of the filter
passband in
figure 9, showing
the accuracy of
the s-domain fit.

Table 5:

The list of the
measured
s-domain poles
and zeros for this
analoyg filter of
figure 9.



Next, the z-domain fitter is used
to fit this analog filter shape.

This would be of interest if a ‘ _roves B .
digital filter implementation of - -a7.gaei o S EES
an existing analog filter were
desired.
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Figure 11 shows the results of
the fit using a fitter sample rate
of 2000 Hz. In this case, the
markers are used to limit the
fitting interval to a range be-
tween 100 and 400 Hz. The
passband is shown expanded in
figure 12. There is a small error
of 0.008 dB in the passband mag-
nitude. The curve fit table can be
transferred to the synthesis table
and a new trace can be con-
structed to show the fitted shape
throughout the original fre-

guency range. e ) :
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Table 6:

The list of poles
and zeros used to
synthesize the
upper trace of
figure 9.

Note that the
curve fit results in
table 5 are exactly
the same,

Figure 11:

The upper trace is
the same analog
filter as shown in
figure 9, but the
lower trace is the
result of using the
z-domain fitter
with a sample rate
of 2 kHz. The fitting
range is from 100 to
400 Hz.

Figure 12;

An expanded
version of

" figure 11, showing

the accuracy of
the fit in the
passband region,



The result of this z-domain syn-
thesis is shown on the lower
trace in figure 13.

The z-domain results of this fit
to an analog filter are shown in
table 7. The arrows indicate that
three of the z-domain zeros were
fixed at unity (by entering their
values into the curve fit table) to
account for the third order zero
at the frequency origin. Also, the
number of poles is limited to six,
and only the number of zeros are
allowed to change. This is a good
way to prevent extra poles from
appearing outside of the unit
circle, while trying to compen-
sate for the aliasing that has
been introduced into the shape
by sampling. The automatic
order selection feature of the
curve fitter can be used in this
example by setting the maxi-
murm number of poles to six, and
the maximum number of zeros to
some sufficiently large number
(up through 40j. Press the
CURVE FIT hard key, and the
FIT FCTN soft key to show the
AUTO ORDER soft key.

As the effective sampling rate
used by the curve fitter is
reduced, the fitting job becomes
more difficult. In figure 14, the
fitter sampling rate has been
reduced to 900 Hz, which means
that the negative image will
alias into the band between 450
and 900 Hz. The fitting range is
restricted to the region between
100 and 400 Hz.
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Figure 13:

If the curve fit
table is
transferred to the
synthesis table,
the complete
curve fit trace can
be reconstructed,
as shown in the
lower trace.

Table 7:

The list of z-domain
poles and zeros
that corresponds to
the fit shown in
figure 11 Arrows
highlight the three
zeros fixed before
fitting, to account
for the three zeres
at the frequency
origin in the
original filter.

Figure 14:

The upper trace is
the same analog
filter as shown in
figure 9, but the
lower trace shows
the result of using
the z-domain fitter
with a much lower
sample rate of

900 Hz. The fitted
region is still
bhetween 100 and
400 Hz.



Figure 135:

An expanded
version of

figure 14, showing
the accuracy of
the fit in the
passband.

Figure 16:

The lower trace is a
resynthesized shape
obtained from the
synthesis table after
transfer from the
curve fit table. Note
the negative fre-
quency passband
region that has
aliased into the
original frequency
range due to the low
sampling frequency.
This illustrates why
the fitting region
must be restricted to
iess than half of the
curve fitter sample
rate, when using the
z-domain fitter.

Table 8:

The list of z-domain
poles and zeros that
correspond to the fit
shown in figure 14,
The three zeros
were fixed at the
frequency origin as
before, but there are
six additional zeros
in the list. These are
needed to
compensate for the
aliasing that has
occurred due to the
low sampling rate.
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Figure 15 shows an expanded
view of the filter passhand, and
shows that the fitting error is
less than 0.1 dB. When the fit is
transferred to the synthesis
table, the reconstructed fit
throughout the original range is
shown in figure 16. The presence
of the aliased negative image is
apparent. If the fitting interval
had not been restricted, then the
fitter would have attempted to
fit with the shape shown on the
lower trace. It is easy to predict
that this would fail.

Table 8 indicates the difficulty
in fitting to an analog filter
when the assumed sampling
rate is too low. The number of
poles has been held constant,
and the three zeros at the
frequency origin have been
fixed. However, six additional
zeros are required to compen-
sate for the heavy amount of
aliasing that is present in the
digital representation. Many of
these extra zeros are outside of
the unit circle, indicating that
the resulting digital filter does
not have the minimum phase
property, even though the
original analog filter was of
minimum phase form.



Tips on Using the
HP 3563A Curve Fitter

The general behavior of both the
z-domain and the s-domain
curve fitting algorithms in the
HP 35634 analyzer is very
similar to the s-damain curve
fitter in the HP 3562A, except
that the automatic order selec-
tion algorithm has been im-
proved, and a new technigque
has been added to eliminate
coincident pole/zero pairs after
the fitting process is completed.
These improvements tend to
reduce the number of extrane-
ous poles and zeros that are
sometimes calculated. [n addi-
tion, there are a few differences
in using the HP 3563A analyzer
{compared to the HP 3562A)
that will be discussed below,
along with a few tips on getting
the best results from the curve
fitter in the HP 3563A.

Select 801 or 1024 Line
Display —

Under the WINDOW hard key,
there is a softkey selection of
either an 801 line or a 1024 line
dispiay. For analog measure-
ments, the 801 line mode should
be used, since the remainder of
the data may be contaminated
by aliasing components. How-
ever, there is no aliasing for all-
digital measurements, so the
1024 line mode will often be
needed. When the external
digital sampling rate has been
correctly specified, then the
1024 line display will show all
frequencies up to (but exclud-
ing) half of the sampling rate.
Note that the frequency span
parameter always refers to the
span in the 801 line mode.

The point at half of the sample
rate (z=-1) is not displayed in
the HP 3563A, even in the 1024
line mode. In addition, it is
neither measured nor synthe-
sized. Thus, the ealculated
impulse response of a digital
filter will be missing this fre-
quency component. This will
often cause every other time
point to alternate in sign around
the correct mean value. To
obtain the impulse response of a
digital filter, use the PULSE
soft key selection under the
SOURCE hard key (after
pressing SQOURCE TYPE, and
MORE TYPES), and measure
the response in the time
domain.

In the 1024 line display mode,
when curve fitting zoomed data,
or data where the span has been
reduced encugh for the digital
anti-aliasing filters to be acti-
vated, there will be vertical
dashed lines on the display
screen, indicating the 801 line
boundary. It is important to
restrict the curve fitting region
to the interior of these bounds
to avoid contamination of the

fit by aliased components.

This is done automatically if the
x-cursors are turned off,

Enter the Analog/Digital
Sample Ratio —

For mixed domain measure-
ments (one digital input and one
analog input), an external
analog sampling clock must be
provided by the user, and the
frequency must be a positive
(non-zero} integer times the

digital clock frequency (the
maximum ratio is 512), This
frequency ratio must be specified
during the set up phase. Press
the INPUT CONFIG (hard key),
and set channel I (2) to digital
and channel 2 (1) to analog.
Then press the INTERFACE 1
(2} soft key, followed by
SAMPLE CLOCK, and MIXED
RATIO. Type the mixed ratio
value on the numeric keypad,
and press ENTER. The digital
channel will be oversampled by
the specified ratio, producing
that number of images in the
digital frequency response. The
z-domain curve fitter will fit
multiple images as long as the
curve fitter sample rate is some
integer multiple of the digital
data sampling rate.

The selection of span values is
limited to 100 kHz divided by 1,
2, 5 factors within each decade,
when sampling internally in the
HP 3563A. This same 1, 2, 5
sequence is also used to divide
the external sampling frequency,
whenever it is used. The avail-
able span values for digital or
mixed domain measurements
will be the digital sample rate
divided by 2.56 and then divided
by some member of this 1, 2, 5
number sequence. The factor of
2.56 allows for a factor of two to
get half of the sample rate, and
an additional factor of 1.28 to
produce the 801 line span from
the 1024 samples in the data
block.



Limit the Fit Order —

If the optimum numbers of poles
and zeros are known, the fitter
works somewhat faster if these
values are entered, and the
USER ORDER mode is selected
(CURVE FIT hard key and FIT
FCTN soft key). However, it is
often best te use the AUTO
ORDER mode, in which the
analyzer tries increasing orders
until an adequate fit is obtained.
The default maximum order
values that are allowed are 40
poles and 40 zeros. These large
numbers are seldom needed, and
the fitter will work faster if these
maximum values are set to
smaller numbers (say 10 and 10).

When using the z-demain fitter
to fit an analeg frequency re-
sponse function, it is usually best
to keep the number of z-domain
poles the same as the number
of s-domain poles, if this number
1s known. Allow the number of
z-domain zeros to climb as
needed to compensate for the
aliasing that is assumed by the
fitter. This strategy reduces the
probability that extraneous poles
might fall outside of the unit
circle in the z-plane.

Fix Known Pole/Zero
Values —

If there are known values of any
poles or zeros {(such as poles or
zeros at the frequency origin),
then these should be fixed by
entering them into the curve fit
table before the fit is started. In
the z-domain, if there are any
poles or zeros at z=0, these can
be fixed in the curve fit table or
they can be removed and re-
placed by the equivalent time
delay {or advance) before curve
fitting begins. Poles and zeros
can be fixed by pressing the
EDIT TABLE soft key after the
CURVE FIT hard key is
pressed. Then the soft keys can
be used to add new poles and/or
zeres to the table, or existing
poles and/or zeros can be fixed.
Time delays or advances can be
entered by pressing the TABLE
FCTNS soft key and the TIME
DELAY soft key, and then
typing the desired delay via the
numeric key pad.

When any z-domain poles or
zeros are fixed in value, the
period is assumed to be the
curve fitter sample rate. This
rate should match that of the
measured data, since the effects
of any fixed poles or zeros are
removed from the original data
before the curve fitting proce-
dure is initiated.

Be careful not to confuse poles/
zeros at the z-domain origin
{representing time delays/ad-
vances) with poles/zeros at
unity, representing poles/zeros
at the frequency origin. This
tends to be difficult to remem-
ber, since s-domain poles/zeros
at the origin behave differently.

Set Digital Sample Rate and
Curve Fitter Sample Rate —

When at least one of the signal
inputs is digital, there will be a
digital sampling clock that is
provided by the user. In order to
obtain the correct frequency axis
scaling, it is important to accu-
rately specify this external
digital sampling rate (simply
called the sample frequency)
during instrument set up.

The z-domain curve fitter
requires the selection of a curve
fitter sample rate, which deter-
mines the period of all of the
basis functions that are used in
the fitting process. Press the
CURVE FIT hard key, and then
press EDIT TABLE, and TABLE
FCTNS. This curve fitter sample
rate does not need to be the
same as the actual data sample
rate, as long as there are no
fixed poles or zeros, although
the fit tends to be best when
these two rates are equal. Ifthe
curve fitter sample rate is less
than that of the digital data,
then it is necessary to use the
x-cursors to limit the fitting
region to sgmething less than
half of the curve fitter sampling
rate. If there are fixed poles or
zeros, the curve fitter sample
rate must be chosen to be the
same as that of the data. The
default choice is for the curve
fitter sample rate to match that
of the measured data,



Fitting Analog Data in the
z-Domain —

As a rule of thumb when fitting
to analog data, set the z-domain
curve fitter sampling rate to
around 10 times the highest
frequency chosen for the fit, if
this sort of choice is possible.
The fit quality will be best when
the fitter sampling rate is much
higher thar the fitting interval,
but not so high that the filter
passband is a very small portion
of the interval of orthogonality of
the basis functions used by the
fitter (see reference {2) for more
discussion),

If this rule of thumb is used,
then try allowing two or three
extra zeros to compensate for
aliasing components. More zeros
will be needed as the fitter
sampling rate is reduced,
relative to the fitting interval.
It does not usually matter if the
extra zeros are outside of the
unit cirele in the z-plane, al-
though such z-domain filters
will not have the minimum
phase property.

Fitting With All-Poles or
All-Zeros —

It is theoretically possible to fit
any frequency response function
with etther all poles or all zeros.
If the actual measured frequency
response corresponds to either of
these models, then the fitter will
work fine using either poles only
or zeros only. However, in
general, it is very difficult to fit
an arbitrary shape with either
an all-pole or an all-zero filter,
unless a very high polynomial
order is used. In contrast, it is
often relatively easy to fit an
arbitrary shape with a relatively
small number of poles and zeros
combined. In the z-domain, anv
number of poles or zeros at the
origin can be used to represent
time delays or advances without
violating the all-pole or all-zero
assumption,

After curve fitting, it is possible
that some poles may lie outside
of the unit circle in the z-plane,
signifying an unstable filter.
This can often be corrected by
adding extra zeros, and reducing
the number of poles. The extra
zeros may correct for excess
phase in the data (due to ali-
asing), which otherwise can only
be handled using poles outside of
the unit circle. It is generally
best to allow both poles and
zeros in the fit, but to restrict the
number of poles to a minimum,
and to allow as many extra zeros
as needed to give a good fit. The
minimum number of poles may
be known from the shape under
consideration, or else it may be
determined by a trial and error
procedure.
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Removing Time Delay —

If there is some time delay be-
tween the input and output
signals from some device under
test, this must be removed
before curve fitting is at-
tempted. This is true in both
the s-domain and the z-domain,
as well as for mixed domain
measurements, However, time
delays that are integer mul-
tiples of the curve fitter sam-
pling interval At can also be
removed by fixing that multiple
number of poles (at z=0) in the
z-domain curve fit table, if the
z-domain curve fitter is being
used. Otherwise, set the time
delay (or advance) through the
CURVE FIT hard key, and then
EDIT TABLE, and TARLE
FCTNS soft keys. Press TIME
DELAY and then type the
desired delay value on the
numeric keypad and press
ENTER.
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Summary

This product note is a supple-
ment to HP product note
3562A-3, entitled “Curve Fitting
in the HP 3562A,” which de-
scribes curve fitting in the
s-plane to analog frequency
response functions. In this note,
the HP 35634 z-domain curve
fitter is described for fitting to
digital frequency response
functions. In addition, this
z-domain fitter can be used to fit
analog responses, thereby obtain-
ing an equivalent digital filter
design that has the same fre-
quency response function as an
analog filter. It is also possible to
fit a digital filter using a different
sampling clock rate in the fitter.

The basis functions for the
z-domain fitter are periodic com-
plex exponentials, in contrast to
the Chebyshev polynomials used
in the s-domain fitter. All-digital
frequency response functions are
periodic, with the period equal to
the sampling frequency, and the
basis functions are chosen to
match this periodicity.

Mixed mode measurements can
be made where one of the inputs
is a digital signal and the other
is an analog signal. To make
such measurements, two differ-
ent sampling rates are often
needed. The analog sample rate
can be any non-zero positive
integer times the digital sam-
pling rate (up to 512). Either
the s-domain or the z-domain
curve fitter can be used on the
resulting mixed frequency
response functions, although
extra poles and/or zeros may be
needed in some cases to create a
good fit. Refer to HP application
note 243-4, entitled “Fundamen-
tals of the z-Domain and Mixed
Analog/Digital Measurements”
for more discussion of mixed
mode testing.

Several examples of fits to these
various types of response func-
tions are illustrated, and the
resulting lists of poles and zeros
are given. In addition, there is a
list of tips that can help the user
obtain good quality results from
the curve fitting algorithm.
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Curve Fitting

1in the HP 3562A

Product Note HP 3562A-3

Figure I: A measurement
comprises the estimation of
parameter values in a mental model
of some physical system, using large
amounts of "raw"” input and output
data collected from that system.

Introduction

This product note is intended to
facilitate the use of the curve
fitter in the HP 3562A dynamic
signal analyzer. Curve fitting is
used to estimate the s-plane
parameters {poles and zeros) of
a measured transfer function.
The basic theory behind the
curve fitting algorithm has been
previcusly published in papers
{see references {1} and [2] at the
end of this product note}, and
most of the detailed instructions
for cperating the instrument
are contained in the operating
manual for the HP 3562A.
However, curve fitting is still
somewhat of an art, and there
are many things that the user
should know in order to obtain
the best results. In most cases,
a strict “cookbook™ approach is
not very practical. The bulk of
this note is devoted to a review
of the most important aspects of
curve fitting beginning with a
general discussion of transfer
functions and curve fitters, and
ending with a more specific
listing of steps to take to obtain
the best results from the

HP 3562A.

Figure 1 illustrates the reduc-
tion of large amounts of “raw”
data to a few simple numbers,
or parameters, selected to
describe the “information”
contained in the original data
set. When the raw data is
collected from the inputs and
outputs of seme physical system,
these parameters are called
measurements.

In general, anyone making a
measurement on a physical
system has a mental model of
the way the physical system
works, and of the unknown
parameter values that
ultimately “maich” the model
inputs and cutputs with those
actually obtained from the
physical system. This user
wants an instrument that will
estimate these model parameter
values from the mass of raw
data that is available.

There are two very important
assumptions that are always
made in this procedure. First,
the results are not valid unless
the assumed model is essentially
correct. Second, there will be
noise superimposed upon the
raw data, so all estimated
parameter values will also be
noisy. The parameters are



randorm: variables that will never
be quite “right,” so there will
always be some error in the
results.

The behavior of many physical
systems can be modeled by a set
of linear differential equations
(with constant coefficients) with
respect to time. The solutions to
these equations comprise a set of
characteristic functions (com-
plex exponentials), along with a
set of characteristic parameter
values {natural frequencies and
damping coefficients).

One standard procedure for
obtaining the values of these
characteristic parameters is to
calculate the Laplace transform
of the differential equations and
then to solve the resulting
system of algebraic equations for
the system variables. When the
system input is a unit impulse,
then the solution will be a
rational fraction in the Laplace
variable 5 , and is called the
system transfer function. The
roots of the numerator (zeros)
and the denominator (poles),
along with a constant gain
factor, compietely describe this
solution.

A curve fitter is used to estimate
poles, zeros, and gain factor
from data that is collected at the
input and output terminals of
the physical system under test.
The s-plane is then used as a
catalog for these linear system
parameters,

Where is Curve Fitting
Useful?

To refine models —

Figure 2 shows the closed foop
frequency response function
measured on a control system.
Many designers think in terms
of pole and zero locations in the
s-plane when they are designing
a control system, especially
when they are working on loop
compensation networks. Thus,
good estimates of pole and zero
locations are helpful in deter-
mining how closely the physical
system agrees with the original
design. See reference [3] for a
discussion of control systems.

To “troubleshoot”
design problems —

The curve fitter is also very
useful to characterize the
individual parts of a contro}
systern. For example, the actual
ohject being controlled is often
preceeded by some network
(often called the “plani”) and it
is important to know the
transfer characteristics of this
component. The load on the
control system may also change
with frequency, so it can often
be modeled as a separate
component. Sometimes there
are feedback sensors that
involve amplifiers and filters,
and thus have their own sets of
poles and zeros. Finally, a
special loop compensation
network is generally needed to
guarantee the stability of the
loop under a variety of
conditions.

To verify a design —

Figure 3 shows the frequency
response of an elliptic filter.
Lowpass filters of this type are
generally built by cascading
several stages, each of which
comprises one or two poles, and
some small number of zeros,
The goal is to compare the
measured parameters with
those used in the original
design.

To characterize mechanical
structures —

Many mechanical systems have
a number of lightly damped
resonances that can cause
various problems. These often
account for acoustical emissions
(such as squeals), and they can
greatly affect the stability of
any control loop of which they
are a part. Figure 4 shows

the frequency response of a
mechanical structure, and illus-
trates the small amount of
damping that is often found.

To simplify complex
networks —

Sometimes a network (either
mechanical or electrical) is very
complicated and comprises a
large number of poles and ZEros,
but a simpler model is desired.
A curve fitter can be used to
approximate a transfer function
in a selected frequency band,
and fo obtain a reduced set of
poles and zeros that still give an
adequate representation of the
physical system in that band.



Figure 2:
Closed-loop
frequency response
of control system

Figure 3:
8th order
elliptic filter

Figure 4:
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General Characteristics
of Transfer Functions

Since the curve fitter in the

HP 3562A is designed to
estimate parameters of transfer
functions in the s-domain, it is
helpful to understand some of
the general characteristics of
such transfer functions.

The response of a linear
physical system to an impulse
can be expressed as a linear
summation of contributions
from each characteristic fune-
tion of that system. The
strength of each component is
called the residue. Thus, a
partial fraction representation
of the transfer function, in
which all components are
summed together, is most
intuitively related to the
physical world. The indepen-
dent physical parameters are
pole locations and residue
values.

When this partial fraction form
is converted to a rational
fraction form, the resulting
numerator zeros are defined by
a rather complicated combina-
tion of all of the poles and
residues of the entire system.
Thus, if the poles and residues
are not determined correctly,
then the zero locations will also
be in error.

This triangular relationship
between poles, zeros, and
residues is both good news and
bad news. A good curve fit will
give correct values to all three
sets of parameters, but any
contamination of the original
data will cause inconsistencies
that prevent all three sets of
parameter estimates from being
simultaneously correct.

A frequency response function
gives values of the transfer
function along the imaginary
(frequency) axis in the s-plane.
The existence of the remainder
of the s-plane can only be
inferred. All we know is that
“analytic” functions exist that
can be described throughout the
s-plane if their values are
known only along the imaginary
axis. Thus, we deduce the
locations of s-plane poles and
zeros from the measured
frequency response data (via a
curve fitting procedure}.

Variations in pole and residue
values have a small effect upon
the data along the imaginary
axis if the pole is a great
distance from this axis. Con-
versely, any disturbances in the
measured data will result in
lfarge uncertainties in pole
locations and residue values for
poles that ave far from the
lmaginary axis. The same
argument can be applied to zero
locations. The net effect is that
for any given amount of con-
tamination on the measured
data, it is easier to make
accurate estimates of pole and
zero values that are close to the
imaginary axis than to estimate
those values that are far away.

For the same reasons, it is very
difficult to resolve the effeets of
a closely spaced cluster of poles
and zeros, if they are located far
from the imaginary axis. Within
the noise level, many different
cluster configurations can give
essentially the same result
along the frequency axis. Thus,
it can become difficult or impos-
sible to correctly determine the
true cluster configuration.

By the same argument, if the
exact nature of such clusters
cannot be measured, then they
can often be replaced with a
simpler configuration that gives
the same measurements on the
imaginary axis. For example, if
the curve fitter calculates a very
closely spaced pole-zero pair,
then (depending upon the level
of noise) they can both be
eliminated. It doesn’t matter
whether this pole-zero pair is in
the left or right half of the
s-plane. Similarly, roots that
are far away from the frequency
axis can often be dropped, as
long as the gain constant for the
transfer function is adjusted

properly.

Even though linear systems are
generally assumed, this is
seldom completely true in
practice. There are many types
of distortion, but typically, the
largest signal components
generate the most distortion.
However, the effects of this
distortion are most pronounced
on the small signal components.
Thus, distortion components are
often generated by signals in the
passband of a filter (nearest the
system poles), but the effects are
most noticeable in the stopband
(near the zeros). In addition,
since stopband signals tend to
be relatively small, the effects of
noise and interference may be
more apparent near the zero
locations. These factors often
make the estimates of zero
focations more difficult than
those of poles located at similar
distances from the frequency
axis.



General Characteristics
of Curve Fitters

There are two basic types of data
manipulation procedures: data
transformation operations and
data reduction operations.
Transformations maintain the
original information content,
and hence are generally revers-
ible. They simply rearrange the
data to accentuate certain
characteristics of interest. In
contrast, data reduction algo-
rithms are explicitly designed to
reduce the original information
content, and are based upon the
assumption that the original
data can be generated from a
relatively simple mathematical
model, with the addition of some
sort of random noise or other
external interference.

A curve fitting algorithm
assumes a particular model and
adjusts the internal parameters
of that model so that the
predicted output matches the
actual putput in some “best”
manner. Often, a weighted sum
of the squares of the errors
between the original data and
the fit is minimized. These are
called weighted least-squares
fitting algorithms.

There are several requirements
that must be satisfied to produce
good results from any curve
fitting algorithm. For example:

{1) The mathematical model
must be essentially correct or
else results will be meaningless,

{2) Contamination of the data
by noise and interference must
be minimized. The estimated
parameters will be random
variables, but their variances
will be determined by the
amount of random noise on the
original data. Also, non-random
interference on the original data
can introduce biases in the
estimated parameter values.

{3) The resolution of the data
samples along the frequency
axis must be adequate to
accurately represent both mag-
nitude and phase information in
the frequency response function.
This 1s especially important
when poles and/or zeros are very
close together, or are near the
imaginary axis. This is some-
times a problem at high frequen-
cies when data samples are
logarithmically spaced.

{4) The choice of weighting
function that is applied to the
fitting error is ¢rucial in obtain-
ing good results. Generaily,
data in regions having poor
signal-to-noise ratio are
de-emphasized, so fits tend to
be poor in these regions.

(5) When some range of model
parameter vatues all give very
nearly the same degree of fit to
the raw data, it is very difficult
for the curve fitting algorithm
to determine which combina-
tion of parameter values is the
best. Thus, depending upon
the noise on the original data,
the selected parameter values
can vary over a wide range,
while still producing a “good”
fit to the original data.
Generally, some parameters are.
more sensitive to noise than
others. Thus, good fits do not
necessarily mean correct
parameter values,

(6) If there are sources of
interference or non-linear
distortion, or if the data is
contaminated in any way (such
as by window leakage or
aliasing), then it may be
necessary to use a more compli-
cated model to abtain a good
quality fit. Subsequent inter-
pretation of the results may be
confusing, but the fault lies
with “bad” original data.
Generally, curve fitters work
perfectly when the raw data is
perfect, and the fit quality
degrades as more contamina-
tion is added to the data.



(1) Even with clean data, the
complexity of the required model
is often unknown, so the fitting
algorithm may need to try
several orders of complexity
before good results are obtained.
For example, extra poles and
zeros are often needed to obtain
a good fit, but they subsequently
tend to cancel one another.
These extra roots act much like
a catalyst in a chemical reaction.
They enhance the fit and give
better estimates of the actual
root values, but then cancel
themselves out of the final
result.

{8} There are usually a number
of out-of-band poles whose tails
may be partially within the
frequency band of the fitter.
Extra poles and zeros will be
needed to account for these tails,
even though the out-of-band
poles may not be accurately
represented.

(9) Excess phase shift due to
time delay may require a num-
ber of extra poles and/or zeros
for an adequate representation.
This delay will also tend to
intreduce errors in the true
pole-zero values. Any known
time delays should be removed
before fitting is attempted.

{10} A curve fit is obtained by
adjusting the coefficients on a
set of “basis” functions until the
best fit is found (to the meas-
ured transfer function). Even
though the set of basis functions
used in the curve fit may be
mutuaily orthogonal, they lose
that property when a weighting
function is applied to the error,
The measured frequency
response data appears in the
fitting equations as a second
weighting function. The result-
ing weighted basis functions
tend to lose much of their
relative orthogonality if the
measured data is concentrated
in a narrow frequency band
relative to the total band being
fitted. In these cases, the fitting
algorithm has trouble allocating
the correct proportion of each
basis function to the fit. This
results in lower quality fits and
in reduced tolerance to noise,
interference, and distortion.

(11) Itis best to break a re-
sponse function into segments in
which the data looks similar in
each segment, and also spans
most of the segment. For
instance, it is generally best to
fit a narrow passband
separately, rather than to try

to include a wide stopband.

(12) Fits are generally allowed
to be poor in regions where the
coherence is low (poor signal-to-
noise ratio), on the theory that
the best data should be used in
the fit.

There is often a dichotomy
between the user’s view of the
data, and the data actuaily used
by the curve fitter,

The curve fitter uses data based
upon a linear amplitude repre-
sentation, whereas the user
often prefers to view the data on
a logarithmic vertical scale (say
in dB). The curve fitter also
uses both magnitude and phase
(actually, real and imaginary
parts} of the data, while users
often judge the quality of fit
based upon a display of magni-
tude only.

Actual curve fitting errors tend
to have similar absolute magni-
tudes (depending upon the
weighting function that is used),
regardless of the magnitude of
the spectrum in that region.
Thus, relative fitting errors tend
to be larger in the stopband
region around the zeros, and
this effect is greatly magnified
by the logarithmic display.

The basis functions used in the
curve fit (Chebyshev poly-
nomials) can be sampled along
the frequency axis with
arbitrary spacing, as long as
samples are close enough
together to distinguish one basis
function from another.

However, when a logarithmic
frequency scale is used (in
either log resolution mode, or
log swept sine mode}, the
frequency sample spacing in the
high frequency region may be
too coarse, relative to the basis
function requirements. The
quality of the fit degrades when
this oceurs.



It is perfectly acceptable to use
logarithmic scales for displaying
the curve fit results, but the
behavior of the fitter is often
easier to understand if the data
is viewed using linear scales in
both magnitude and frequency.
Also, remember that phase is
Just as important as magnitude,
as far as the fitter is concerned.

It should be apparent that even
the best curve fitters cannot
perform magic. When the raw
data is clean, then curve fitting
results are generally very good
and are very repeatable. When
data quality is poor, the curve
fitter may need all the help that
the user can give. Curve fitters
work best witha sympathetic
and cooperative user and cannot
be considered to work auto-
matically or infallibly.

Curve Fitting in the
HP 3562A

The mathematical theory behind
the curve fitting algorithm used
in the HP 3562A is discussed in
references [1} and [2], and will
not be repeated here. Also, refer
to the HP 3562A operating
manual for operating details.
The internal model assumes a
transfer function that is a
rational fraction (quotient of two
polynomials) in the Laplace
variable 5. The results are
either in terms of the coefficients
of these polynomials, or are

in terms of the roots (poles and
zeros} of these polynomials,
along with an overall gain
constant.

A weighting function is auto-
matically generated from the
raw data and from the measured
coherence function. The user
can change this weighting
function via front panel editing
softkeys. Sometimes the quality
of the it can be improved by
adjusting the shape of the
weighting function.

An automatic polynomial order
selection algorithm is included
for cases where the appropriate
orders are not known. This auto-
matic mode can be overridden by
fixed orders, whenever desired.

Known time delays in measured
transfer functions should be
removed before curve fitting is
attempted.

The basis functions used in the
HP 3562A curve fitter are
Chebyshev polynomials,
although the user is not aware
of this during normal cperation.
However, a general knowledge of
the nature of these functions can

often help in understanding the
behavior of the fitting algo-
rithm. For example, at very low
frequencies, all even order
Chebyshev polynomials look like
constants, and all odd order
polynomials look like sloping
straight lines through the
frequency origin. Thus, if the
data is restricted to this region,
it is very difficult for the eurve
fitter to determine the optimum
strength of each polynomial to
produce the best fit to the data.
Consequently, it is best to scale
the measurement so that the
data covers as much of the
selected frequency span as
possible.

The performance of the curve
fitter on “clean” data can be
readily tested by means of the
synthesis capability in the

HP 3562A. The frequency
response function, resulting
from any desired set of peles and
zeros, can be synthesized in the
instrument, and then the curve
fitter can be applied to this data.
The pole and zero values from
the curve fitting algorithm can
be directly compared to the
original set.

Tables of poles and zeros can be
transferred between the Curve
Fit table and the Synthesis
table. In the Synthesis mode,
the transfer function can be
converted between pole-zero
form (times a gain constant),
partial fraction form (pole-
residue), and rational fraction
form, comprising the coefficients
of both numerator and
denominator polynomials. Time
delays can also be included,

if desired.



Figure 8 shows the fit to the
control system frequency
response function illustrated in
figure 2. This closed-loop
response comprises a pair of
complex conjugate poles and a
single real pole, with all zeros at
infinity. Table 4 lists the curve
fit results. The fitter ignores
the point at zero frequency so
that dc offsets have no effect.

Figure 9 shows the fit to the
frequency response of a
mechanical structure (rectan-
gular plate) excited by a
hammer and monitored with an
accelerometer. The correspond-
ing coherence function and
welghting function (generated
automatically from the data) are
shown in figure 10. Notice the
poor coherence near the zero.
The weighting function is
designed to enhance the fits
around both peaks and valleys,
unless the valleys are too noisy.

The automatic order selection
feature was used in both of
these last two examples. For
the control system, the correct
orders were found. For the
mechanical structure, the fits
were never good enough for the
order selection iteration to
terminate. However, all fits
involving an identical even
number of poles and zeros above

&
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Figure 8:
Curve fit to
closed loop
frequency
response of
control systems

Table 4:

Poles and
zeros from
curve fit to
control system



Figure 9:
Curve fit to
mechanical
resonances in
rectangular
plate

Figure 10:
Weighting
function and
coherence
function used
in above fit
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five seemed to give an adequate
visual fit. Fixed orders of six
poles and six zeros were selected
for the final plot in figure 9.
Even if the aute-order procedure
does not stop, it is still possible
to watch its many tries and to
select suitable orders for sub-
sequent use. There is often a
preference for either even or odd
numbers of poles and/or zeros.

Even though the fit may be poor
for one particular choice of
orders, it may be very good for
the next choice {and poor for the
next!). There will generally be a
minimum order, below which
none of the fits will be good.
Then there will be a range
where fits tend to be reasonably
good. Finally, for very high
orders, the fitter will begin to
try to fit noise, etc., and the fit
quality will begin to deteriorate.
Whenever a data reduction
algorithm is used, there is
generally a fine line between
estimating too few parameters,
and estimating too many.



The effects of time delay on the
original data is iflustrated in

tables 5 through 8, and figures

11 and 12. Table 5 lists the

parameters of a two pole synthe-

sized frequency response func-

tion. Figure 11 shows the phase

plot of both the synthesized
function and the subsequent
curve fit to that function. Time
delay is zero, so the phase
simply changes by 180 degrees

in the negative direction as each

pole is passed in the positive
frequency direction.

When 1 microsecond of delay is
introduced into the synthesized
shape without informing the
curve fitter, an extra pair of
right half-plane zeros is added
by the curve fitter (table 6) to
compensate for the extra phase.
When 10 microseconds of delay
are introduced. tahle 7 shows
the extra roots that are added.
In this case there are four extra

zeros In the right half-plane and

two extra poles in the left
half-plane.

However, when the curve fitter
is given a time delay of 10
microseconds, the fit only
requires the original pair of
poles, as indicated in table 8.
The phase plots for this case are
illustrated in figure 12. Note
the negative phase slope result-
ing from the time delay.
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Table 5:
Synthesized
pole pair
without time
delay

Table 6:
Curve fit
results for
pole pair
having 1
microsecond
of delay

Table 7:
Curve fit
results for
pole pair
having 10
mieroseconds
of delay



Table 8:
Curve fit
results for
pole pair
with 10
microseconds
of delay
removed
prior to
fitting

Figure 11:
Phase of
curve fit to
pole pairs
without time
delay

Figure 12;

Phase of curve
fit to pole pair
with 10 micro-
seconds of

delay removed
prior to fitting
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Curve Fitting Check
List for the HP 3562A

To obtain the best curve fit
results, follow the procedures
below:

(1) Start by making the best
frequency response measure-
ment possible. This is very
important.

(a) Select a source type and
time window to minimize
leakage and distortion. Usea
Burst Chirp or Burst Random
source with a Uniform (rectan-
gular) window, or 2 hammer
with a Forece-Exponential
window, or Swept Sine. Adjust
source magnitude for the most
linear operating region.

(b1 In all but the Swept Sine
mode, use as many averages as
possible.  Ideally, the coherence
function should be nearly unity
at all frequencies of interest,

(¢} Choose the frequency span
to cover the smallest range of
interest. Make separate
measurements on each region of
interest, if possible. Avoid cases
where the band of interest is in
a very narrow region of the
chosen span, if at all possible.
Also, avoid large zoom factors.
Baseband measurements are
easiest to fit,

(2} Unless previous experience -
indicates otherwise, use the
Auto Weighting function and the

Auto Order selection mode.

Then watch the fit quality and
the corresponding orders. Note
the orders that give the best fit,
and then specify these in the
User Order mode for a closer
inspection.






(3) Always allow a few more
poles and zeros than the
expected number, to help take
care of tails from out-of-band
poles, and from other sources of
noise, distortion, and interfer-
ence. These extra roots will
often cancel one another in the
curve fit table. The valid roots
are usually fairly cbvious by
comparing the table entries to
the original data. Don'tbe
concerned about right half-plane
poles if there are matching right
half-plane zeros. If a pole is
removed, the gain constant must
be readjusted by dividing by the
negative of the pole value.
Likewise, if a zero is removed,
multiply the gain constant by
the negative of the zero value.

If matching pole-zero pairs are
removed, the gain constant is
not affected. If poles or zeros
are removed, it is good practice
to resynthesize the fit, to be sure
that it is still acceptable (trans-
fer the Curve fit table to the
Synthesis table and adjust the
gain constant, if necessary).

(4) It is important to specify
any pure time delay that exists
in the measured data, so that
the curve fitter can remove this
delay before attempting a fit.
Otherwise, it may be difficult to
obtain a good fit, even with a
large number of poles and zeros.
Excess phase due to right half-
plane zeros should not cause
any fitting problems, as long as
enough zeros are allowed in the
order selection step.

{8) Occasionally, the weighting
function can be modified by the
user to improve the quality of
the fit. However, the fit does
not always improve in regions
where the weighting function is
increased. Generally, the
cleanest data should be
weighted the most, and this is
often near the peaks of the
frequency response function.

(6) If some of the pole and/or
zero values are known, like
those at'the origin, for example,
then those should be prespeci-
fied and fixed. However, be
certain that they are correct, or
else the fitter will be confused.

(7) 1t is possiblé for the fit to be
good, but for some of the poles
and/or zeros to be incorrect.
This can happen if more than -
one pole-zero configuration gives
the same frequency response
function, within the limits of the
noise level.
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(8) It is necessary to have
sufficient frequency resolution
to adequately represent the true
response function. The
frequency resolution should be
less than the reciprocal of the
time duration of the impulse
response of the system under
test. Thus, the minimum
spacing between poles and zeros
should be several frequency
sampling intervals, or else the
fitter does not have adequate
information for a good fit. The
solution is either to make a
cleaner measurement, or to
reduce the frequency span to
improve frequency resolution.

{9) In order to reduce the range
of numbers that must be
handled in the processor it is
best to choose a frequency scale
factor so that ffequency
numbers are near unity, Thisg is
not a problem for low arder fits,
but can become important if the
orders are very large. For
example, if the span of interest
ranges between 10 Hz and

100 kHz, then set the frequency
scale factor to 1 kHz. The
resulting scaled frequency
numbers will range hetween

.01 and 100.







There are a few HP 3562A
operating details that should be
.emphasized, to help the first-
“time user:

{1) When generating a synthe-
sized trace from a table of poles
and zeros, the gain constant
should be selected so that the
passhand gain is near unity.
This helps keep the range of
numbers under control in the
curve fitting step.

"{2) In the curve fit mode, using
synthesized data, choose A& B
traces for the fit, where the
synthesized trace is in A. The
contents of trace B are not

, actually used in this case. Also,

* a weighting function of unity is

assumed at all frequencies.

" (3) If the Aato,Order mode is

_ selected, any non-zero entries

" represent the maximum orders

" that the curve fitter is allowed

" to use. However, a zero order
value is not an upper limit, so
the order is allowed to increase,
up to 40. .
(4) When the x-cursor is turned
off, the right-most boundary of
the curve fitting interval is
automatically set to where the
weighting function drops (and
remains) below .001. This choice
can be overridden by using two
x-cursors to define the desired
frequency interval. A single
x-cursor specifies a fitting
interval that is only £20
frequency bins in width. In all
cases, the Chebyshev poly-
nomial basis functions are
scaled o span the range indicat-
ed by the right-most frequency
bin that is used'in the fit.

Summary and
Conclusions

The curve fitter in the

HP 3562A is used to estimate
the coefficients of a rational
fraction representation (in the
s-plane; of a measured
frequency response function.
The resulting poles and zeros of
the transfer function can be
readily obtained from these
coefficients.

For best resulits, the original
measured data must be as
“clean” as possible. Any con-
tamination by noise, distortion,
or interference will degrade the
result. In addition, any known
time delay must be removed
before attempting a fit.

An error weighting function

is automatically calculated
talthough the user can edit this
function), and. an automatic
order selection algorithm is
included. The user can set the
orders manually, but extra poles
and zeros should be allowed, to
facilitate the fit to out-of-band
tails, and to various sources of
distortion.

There are numerous factors that
can cause the fitter some degree
of difficulty and the user should
be aware of these. In general,
the fitting algorithm works very
well, but there is no magic. The
fitter should not be used blindly,
or in a completely automatic
mode.
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Glossary

Aliasing: When a time record is
sampled at regular intervals,
any frequencies above half of
the sampling rate are converted
to lower frequencies. This
frequency conversion process is
called aliasing.

Basis functions: These com-
prise a set of functions into
which any arbitrary function
can be decomposed. Thus, any
arbitrary function can be repre-
sented as the sum of these basis
functions, each multiplied by
some suitable coefficient.

Characteristic functions:

A class of functions that are
solutions to some differential
equation. '

Characteristic values: Para-
meters that determine the exact -
characteristic function to be
used, out of the entire class of
these functions.






Chebyshev polynomials: A set
of polynomials that are mutually
orthogonal over the real interval
1,1}

Coherence: The coherence
between an output signal and
an input signal is that propor-
tion of the total output power
that can be attributed to the
input signal.

Compensation network: In
order to stabilize a control
system (so that it does not_
oscillate), it is often neeessary to
insert a network into the control
loop to adjust the loop gain and
phase margins.

Curve fitting: The adjustment
of the parameters of a mathe-
matical mode! of a physical
system, so the performance of
the model matches the
measured performance of the
physical system in some
optimum manner.

Frequency response function:
A transfer function evaluated
along the frequency (or
imaginary) axis in the s-plane.

Multiple pole: A root of the
denominator of a transfer
function that appears multiple
times.

Orthogonality: Two functions
are orthogonal if the integral of
their product is zero, over some
interval.

Partial fraction: The sumof -
terms, each of which comprises
either a coefficient times a
power of the independent
variable, or a coefficient (called
the residue) divided by a
monomial in the independent
variable. The monomial root is
called a pole.

Poles: Roots of the denomina-
tor polyntomial of a transfer
function.
Rational fraction: The quotient
of two polynomials.

Residue: A coefficient multiply-
ing each term in a partial
fraction representation of a pole
of a transfer function.

s-plane: s is the independent
variable in the Laplace trans-
form of a time waveform. The
s-plane isia representation of

this complex variable.

TFransfer function: An s-plane

' representation of the relation

between the input and the
output of a linear system. It
can be represented as the
quotient of two polynemials, or

. in partial fraction form.

Weighting function: A function
along the frequency axis that
“weights” the error in the curve
fit, so that some regions are
given more influence than
others in the final quality of the

fit.

Window leakage: When a time

- record is multiplied by a time
window, the frequency spectrum

of the original signal is
“smecred,” and new sidebands
appear around the original
signal. This smearing process is
called leakage.
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