© Copyright Agilent Technologies 2000

All rights reserved. Reproduction, adaption, or translation without prior written permission is prohibited, except as allowed under the copyright laws.

Agilent Part No. 37718-90218

Printed in U.K. September 2000.

Warranty

The information contained in this document is subject to change without notice.

Agilent Technologies makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties or merchantability and fitness for a particular purpose.

Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

WARNING

Warning Symbols Used on the Product

The product is marked with this symbol when the user should refer to the instruction manual in order to protect the apparatus against damage.

The product is marked with this symbol to indicate that hazardous voltages are present

The product is marked with this symbol to indicate that a laser is fitted. The user should refer to the laser safety information in the Verification Manual.

User Guide DSn/SONET/ATM/POS Operation

OmniBER 718 SONET User Guide

About This Book

This book tells you how to select the features that you want to use for your test.

The selections available are presented in the following groups:

- Transmit and receive interfaces
- Test features, for example, the addition of errors and alarms to the test signal
- Measurements including test timing
- Storing, logging and printing results with general printer information
- Using instrument and disk storage
- Using the "Other" features.

The selections available will depend on the options fitted to your instrument. The examples given in this book cover all options and therefore may include selections which are not available on your instrument.

Contents

1 Introduction

Product Description 14 Conventions 15 Connecting to the Network 16 Connecting Accessories 20 Front Panel Soft Recovery (Cold Start) 21 OmniBER 718 Option Guide 22

2 Setting the Interfaces

Setting PDH/DSn Transmit Interface (Option 012) 26 Setting DSn THRU Mode 28 Setting SONET Transmit Interface 29 Setting Jitter Transmit Interface 33 Setting Wander Transmit Interface 35 Setting SONET THRU Mode 37 Using Smart Test 40 Setting PDH/DSn Receive Interface 45 Setting SONET Receive Interface 47 Setting Jitter Receive Interface 48 Setting Extended Jitter Receive Interface 49 Setting Wander Receive Interface 50

3 Selecting Test Features

Using Transmit Overhead Setup 52 Using Receive Overhead Monitor 54 Setting Overhead Trace Messages 56 Setting Overhead Labels 57 Generating Overhead Sequences 58 Using Receive Overhead Capture 60 Adding Frequency Offset to SONET Signal 62 Adding Frequency Offset to the DSn Signal 64 Setting up Signaling Bits 65 Setting Transmit Structured Payload/Test Signal 68 Setting Receive Structured Payload/Test Signal 70 Setting Transmit N x 64 kb/s/N x 56 kb/s Structured Payload/Test Signal 71 Setting Receive N x 64 kb/s/N x 56 kb/s Structured Payload/Test Signal 73 Inserting an External DSn Payload/Test Signal 74 Dropping an External Payload/Test Signal 77 Adding Errors and Alarms at the SONET Interface 80 Adding Errors and Alarms to a DSn Signal 81 Using FEAC Codes 82 Setting DSn Spare Bits 84 Adding Pointer Adjustments 85 Using Pointer Graph Test Function 93 Stressing Optical Clock Recovery Circuits 95 Generating Automatic Protection Switch (APS) Messages 97 Inserting and Dropping the Data Communications Channel 102 Using DS1 LOOP Codes 103

4 Making Measurements

Using Overhead BER Test Function 108 Performing a Trouble Scan 109 Test Timing 111 Making SONET Analysis Measurements 112 Making DSn Analysis Measurements 113 Measuring Frequency 114 Measuring Optical Power 115 Measuring Round Trip Delay 116 Monitoring Signaling Bits 118 Measuring Service Disruption Time 119 Performing a SONET Tributary Scan 122 Performing a SONET Alarm Scan 125 Performing a DSn Alarm Scan 126 Measuring Jitter 127 Measuring Extended Jitter 129 Measuring Wander 131 Measuring Jitter Tolerance 134 Measuring Jitter Transfer 138 Measuring Pointer Adjustment (Tributary) Jitter 144

5 ATM Operation

Setting up the Transmitter for ATM Payloads 150 Setting up the Convergence Sublayer 153 Setting Foreground Traffic 155 Setting Background Traffic 157 Setting Foreground and Background Distributions 158 Transmitting ATM Alarms 161 Adding ATM Errors 163 Viewing ATM Results 165 Setting up the Receiver for ATM Payloads 166 Setting up the Receiver ATM signal 168 Contents

Policing ATM Traffic 170 Measuring ATM Delay Performance 172 Measuring ATM Alarms 175 ATM Service Disruption 176

6 Packet over SONET (POS)

POS Protocol Stack 180 Setting up the Transmitter for POS Payloads 181 Setting HDLC Framing, Scrambling and HDLC Frame Check Sequence 183 Setting IP Packet (Datagram) Length and Inter-Packet Gap 186 Setting IP Header 188 Setting IP Addresses 189 Setting IP Payload 190 Adding POS Alarms 191 Adding POS Errors 192 Setting up the Receiver for POS Operation 193 Setting up the Receiver POS signal 195 Viewing POS Results 196 **POS Applications 197** Channelized Testing 198 Fully Exercising POS Hardware Architecture 200 Throughput Testing 204 Continuity Test 208 POS Service Disruption 211 HDLC Frame Stuffing 214 Jitter Tolerance Testing of POS Equipment 217

Contents

7 Storing, Logging and Printing

Saving Graphics Results to Instrument Store 222 **Recalling Stored Graph Results 223** Viewing the Bar Graph Display 225 Viewing the Graphics Error and Alarm Summaries 227 Logging Graph Displays 229 Logging Results 231 Logging on Demand 241 Logging Jitter Tolerance Results 245 Logging Jitter Transfer Results 247 Logging Results to Parallel (Centronics) Printer 249 Logging Results to GP-IB Printer 250 Logging Results to Internal Printer 251 Logging Results to RS-232-C Printer 252 Printing Results from Disk 253 Connecting a Printer to a Parallel Port 254 **Changing Internal Printer Paper 255 Cleaning Internal Printer Print Head 258**

8 Using Instrument and Disk Storage

Storing Configurations in Instrument Store 260 Titling Configuration in Instrument Store 261 Recalling Configurations from Instrument Store 262 Formatting a Disk 263 Labeling a Disk 264 Managing Files and Directories on Disk 265 Saving a Screen Dump to Disk 272 Saving Graphical Results to Disk 274 Saving Data Logging to Disk 276 Saving Configurations to Disk 277 Recalling Configuration from Disk 278 Recalling Graphics Results from Disk 279 Copying Configuration from Instrument Store to Disk 280 Copying Configuration from Disk to Instrument Store 282 Copying Graphics Results from Instrument Store to Disk 284

9 Selecting and Using "Other" Features

Coupling Transmit and Receive Settings 288 Setting Time & Date 289 Enabling Keyboard Lock 290 Enabling Beep on Received Error 291 In-Band DS1 Loopcode 156MTS Compatibility 292 Suspending Test on Signal Loss 293 REI-L Result/Enable 294 AIS-L Result/Enable 295 Graph Storage Resolution 296 Setting Error Threshold Indication 297 Setting Screen Brightness and Color 298 To Generate a New Jitter Mask 299 To change the parameters of a User-defined jitter mask 301 Running Self Test 303 **Trigger Output 306**

10 STS-1 SPE Background Patterns

11 ETSI/ANSI Terminology

ETSI/ANSI Conversion and Equivalent Terms 312

12 Glossary of Terms

Contents

1

"Product Description " page 14
"Conventions " page 15
"Connecting to the Network " page 16
"Connecting Accessories " page 20
"Front Panel Soft Recovery (Cold Start) " page 21
"OmniBER 718 Option Guide " page 22

Introduction

Product Description

Product Description

The OmniBER Communications Performance Analyzer provides all the test capability you need to fully verify the performance of today's high-capacity transmission systems and networks.

The main features of a dual standard (SDH/SONET) instrument are as follows:

- Multi-rate transmission testing from DS0 to OC-48.
- Supports concatenated payloads of VT 1.5 to STS-48c.
- Full PDH/T-carrier testing.
- Direct measurement of protection switching time.
- Powerful thru-mode testing for SONET ring turn-up.
- Comprehensive SONET overhead testing.
- Packet over SONET/SDH (POS) and ATM payloads up to 2.5 Gb/s.
- Fast access to key measurement tasks via Smart Test.
- Optical power and line frequency measurements.
- J0 section trace for DWDM testing
- J1 and J2 path trace for network path testing
- Optional integrated graphical printer.
- Transmit and Receive can be independently configured.

Conventions

Conventions

The conventions used in this manual to illustrate instrument keys and display information are as follows:

TRANSMIT This is an example of a hardkey. Hardkeys (located to the right of the display) are used to give access to different sets of instrument settings, or select dedicated instrument functions. The key shown here displays the transmit settings.

PARALLEL

This is an example of a softkey. Softkeys (located below the display) are used to select instrument settings. The values associated with softkeys change as you move the display cursor from one instrument setting to another.

These are the cursor control keys. They are used to move the display cursor from one instrument setting to another.

This is an example of a pop-up menu. Pop-up menus are an alternative way of selecting instruments settings (instead of using softkeys). To access a pop-up menu, highlight an instrument setting, then use the **SET** key.

+

This symbol (when it appears next to settings on the display) indicates that there is a pop-up application associated with the instrument setting. To access a pop-up application, highlight the instrument setting which has this symbol, then use the **SET** key.

This symbol appears at the bottom right of the display when an optical transmit module is fitted to the instrument. The symbol's background changes from black to yellow when the optical output goes active.

The network connectors are located on the modules at the side of the instrument. The connections available depend on the options fitted to your instrument.

Before Connecting, note the Warning and Caution information given.

Removing/Inserting Modules

Modules should only be removed or inserted by trained personnel.

All Connectors

CAUTION

When connecting or disconnecting, ensure that you are grounded or, make contact with the metal surface of the Mainframe with your free hand to bring you, the module, and the mainframe to the same static potential. Modules remain susceptible to ESD damage while the module is installed in the Mainframe Additional ESD information is required when servicing, see your Verification

manual for further information.

Optical Interface Connectors

For your protection, review all laser information given in this manual and the Verification manual before installing or using the instrument.

WARNING To prevent personal injury, avoid use that may be hazardous to others, and maintain the module in a safe condition Ensure the information given below is reviewed before operating the module.

Laser Product Classification

All optical modules are classified as Class I (non-hazardous) laser product in the USA which complies with the United States Food and Drug Administration (FDA) Standard 21 CFR Ch.1 1040.10, and are classified as Class 1 (non-hazardous) laser products in Europe which complies with EN 60825-1 (1994).

To avoid hazardous exposure to laser radiation, it is recommended that the following practices are observed during system operation:

• ALWAYS DEACTIVATE THE LASER BEFORE CONNECTING OR DISCONNECTING OPTICAL CABLES.

• When connecting or disconnecting optical cables between the module and device-under-test, observe the connection sequences given below.

Connecting: Connect the optical cable to the input of the device-under-test **before** connecting to the module's *Optical Out* connector.

- **Disconnecting:** Disconnect the optical cable from the module's *Optical Out* connector **before** disconnecting from the device-under-test. Always fit the fibre optic connector dust caps over the laser aperture.
- NEVER examine or stare into the open end of a broken, severed, or disconnected optical cable when it is connected to the module's *Optical Out* connector.
- Arrange for service-trained personnel, who are aware of the hazards involved, to repair optical cables.

	 Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure. Always fit the fibre optic connector dust caps on each connector when not in use. Before connection is made, <i>always</i> clean the connector ferrule tip with acetone or alcohol and a cotton swab. Dry the connector with compressed air. Failure to maintain cleanliness of connectors is liable to cause excessive insertion loss.
	Laser Warning Symbols
	The front panel of the optical module has the following label:
	CLASS 1 LASER PRODUCT
NOTE	CLASS 1 LASER PRODUCT translates as follows:
	Finnish - LUOKAN 1 LASERLAITE
	Finnish/Swedish - KLASS 1 LASER APPARAT
	This label indicates that the radiant energy present in this instrument is non- hazardous.
OPTICAL IN	Allows connection of an optical signal, wavelength 1200 to 1600 nm, at a maximum input power level of -8 dBm. NEVER EXCEED +3 dBm . Accepts SONET signals OC-1, OC-3, OC-12 and OC-48 and SDH signals STM-0, STM-1, STM-4 and STM-16 depending on the instrument options fitted.
OPTICAL OUT	Provides optical signals OC-1, OC-3, OC-12 or OC-48 at wavelength 1290 nm to 1330 nm, at a typical power level of +1 dBm. Also provides SDH signals STM-0, STM-1, STM-4 and STM-16 depending on the instrument options fitted.

Cleaning Optical Connectors

It is recommended that the optical connectors be cleaned at regular intervals using the following materials:

Description	Part Number	
Blow Brush	9300-1131	
Isopropyl Alcohol	8500-5344	
Lens Cleaning Paper	9300-0761	
Adhesive Tape Kit	15475-68701	

CAUTION Do not insert any tool or object into the IN or OUT ports of the instrument as damage to or contamination of the optical fibre may result.

- 1 Recall Default settings (STORED SETTINGS 0) and remove the power from the OmniBER 718.
- **2** Remove the adapters from the IN and OUT ports. Use an 11 mm spanner to slacken the nut securing the adapter. On re-assembly tighten the nut using a torque spanner to 1.5 Nm.
- **3** Using the blow brush with the brush removed blow through the ferrule of the standard flexible connector and the adapter.

CAUTION

If the optical fibre of the fixed connector requires further cleaning this entails disassembly of the module which should only be carried out by suitably trained service personnel.

- 4 Apply some isopropyl alcohol to a piece of the cleaning paper and clean the barrel of the adapter. Using a new piece of cleaning paper, clean the face of the adapter. Repeat this operation, using a new piece of cleaning paper each time.
- **5** Lightly press the adhesive side of the tape provided against the front of the adapter, then remove it quickly repeat twice. This removes any particles of cleaning paper which may be present.
- **6** Replace the adapters on the flexible connector.

Connecting Accessories

LID	Provides the output for the option 602 printer which is fitted in the cover (LID) of the instrument.
VGA	Provides the output for a display monitor.
HANDSET	Allows connection of a telephone handset for communication across the network.
Printer HP-IB (GPIB), RS232, PARALLEL ONLY	The port selected for external printer use is not available for remote control. See "Connecting a Printer to a Parallel Port " page 254.
Remote Control HP-IB (GPIB), RS232, 10 BASE T	Remote control connection is given in the Remote Control Manual. The port selected for remote control use is not available for an external printer.
10 BASE -T	10 Base-T Lan Connection Radiated Emissions
	To ensure compliance with EN 55011 (1991) a category 5, STP patch lead, RJ45 ashle should be used to connect the LAN port on the processor module marked

cable should be used to connect the LAN port on the processor module marked "10 Base-T".

Front Panel Soft Recovery (Cold Start)

Use the following procedure if you need to perform a front panel soft recovery (i.e. cold start) of the instrument.

Soft Recovery Procedure

- **1** Switch off the instrument.
- **2** On the instrument front panel press and hold softkeys 0 and 4 simultaneously (the softkeys immediately below the display; key 0 is on the extreme left).
- **3** Power up the OmniBER 718 while holding the softkeys pressed.
- **4** When the LOS LED has flashed OFF and then ON again, the keys can be released.
- **5** The LOS LED will flash OFF/ON again several times (7), followed by an audible 'beep' and the display indicating 'Initializing Instrument'.
- 6 Once the initialization is complete the display will indicate:'Firmware Revision Update''Default settings assumed'Hit any key to attempt restart'
- 7 Hit any key, then wait approximately 10 seconds. The instrument should return to its default settings and normal operation.

OmniBER 718 Option Guide

This guide explains the features offered with each OmniBER Mainframe and its associated options. There are three mainframes as follows:

- The 37718A
- The 37718B
- The 37718C

The instrument test interfaces are:

2.5 Gb/s, 622 Mb/s, 155 Mb/s, 52 Mb/s, DS1 (1.5 Mb/s), DS3 (45 Mb/s), E1 (2 Mb/s), E2 (8Mb/s), E3 (34 Mb/s).

Mainframe test rate capability

Mainframe	Test Rate Capability	
37718A	A 2.5 Gb/s, 622 Mb/s, 155 Mb/s and 52 Mb/s	
37718B	622 Mb/s, 155 Mb/s and 52 Mb/s	
37718C 155 Mb/s and 52 Mb/s		
Note that 52 Mb/s and 155 Mb/s electrical testing is included in the base mainframe.		

SDH/SONET Interface

Interface	Option
SDH only	001
Dual standard SDH/SONET (ANSI/ITU- T)	002

OmniBER 718 Option Guide

Tributary test options

	Option
PDH/T-carrier DS1, DS3, 2 Mb/s, 8 Mb/s, 34 Mb/s and 140 Mb/s	012
2 Mb/s into DS3 mapping (also requires option 012)	014
Replaces BNC connector with WECO 560	620

Optical interface

An optical interface must be ordered if an 37718A or 37718B is required.

	Option
1310 nm only	104
1550 nm only	105
Dual wavelength 1310 nm/1550 nm	106
Replaces FC/PC adapters with SC	610
Replaces FC/PC adapters with ST	611

Jitter

	Option
Adds jitter to all rates	200

OmniBER 718 Option Guide

ATM/POS

	Option
ATM payloads (requires option 350)	300
POS payloads (requires option 350)	310
Advanced payload engine	350

Please note that in earlier versions of the OmniBER the list of ATM options included options 300, 301 and 302. These options have now been merged into one ATM option 300 (as listed above). A new Advanced payload engine option 350 has been added which must be ordered with an ATM or POS option.

Accessory options

	Option
Remote Omnibook controller	600
RS-232-C, GPIB and LAN remote control interfaces	601
80-column in-lid printer	602

2

"Setting PDH/DSn Transmit Interface (Option 012)" page 26 "Setting DSn THRU Mode" page 28 "Setting SONET Transmit Interface" page 29 "Setting Jitter Transmit Interface" page 33 "Setting Wander Transmit Interface" page 35 "Setting SONET THRU Mode" page 37 "Using Smart Test" page 40 "Setting PDH/DSn Receive Interface" page 45 "Setting SONET Receive Interface" page 47 "Setting Jitter Receive Interface" page 48 "Setting Extended Jitter Receive Interface" page 49 "Setting Wander Receive Interface" page 50

Setting the Interfaces

This chapter tells you how to set the instrument interfaces to match the network being tested.

Setting the Interfaces

Setting PDH/DSn Transmit Interface (Option 012)

Description DSn transmit interface settings should match network equipment settings of Rate, Termination and Line Code and determine the Payload to be tested.

 TIP:
 To set the Transmitter and Receiver to the same interface settings choose OTHER

 SETTINGS CONTROL
 COUPLED

TRANSMITTER OUTPUT	PDH/DSn TEST FUNCTION	
SIGNAL 140 Mb/s CLOCK INTERNAL	INTERNAL	
TERMINATION LINE CODE FREQUENCY OFFSET	75Ω UNBAL CMI OFF	
PAYLOAD TYPE UNFRAMED PATTERN PRBS POLARITY	UNSTRUCTURED 2^23-1 PRBS INU ITU	
STATUS:		

HOW TO:

- 1 Choose the required SIGNAL rate from 2 Mb/s, 8 Mb/s, 34 Mb/s, 140 Mb/s PDH, plus DS1, DS3 T-carrier interfaces.
- **2** Choose the required CLOCK SYNC source, internally generated, externally generated or recovered from the received PDH/DSn signal. If you select an external clock source, connect the external source to the appropriate port on the OmniBER clock module.
- 3 If DS1 or DS3 is chosen, choose the required OUTPUT LEVEL.
- **4** If you have chosen 2 Mb/s as the SIGNAL rate, choose the required TERMINATION. (At all other signal rates the impedance is fixed).

Setting the Interfaces Setting PDH/DSn Transmit Interface (Option 012)

- **5** If you have chosen 8 Mb/s, 2 Mb/s or DS1 as the SIGNAL rate, choose the required LINE CODE. (At 140 Mb/s, 34 Mb/s and DS3 coding is fixed).
- 6 If required, choose the FREQUENCY OFFSET value. See "Adding Frequency Offset to the DSn Signal" page 64.
- 7 Choose the required PAYLOAD TYPE.
 - If **STRUCTURED** is required **FRAMED** must be chosen. If **STRUCTURED** is chosen the DSn test signal must be set up. See "Setting Transmit Structured Payload/Test Signal" page 68. If you have chosen 2 Mb/s, DS1 or DS3 as the DSn SIGNAL rate, the Framed choice is expanded to provide a menu of framing types.
- 8 Choose the PATTERN type and the PRBS POLARITY.

Tabla 1

Additional Patterns at DS1

9 If you select a DS1 SIGNAL, two 8-bit patterns and a 55 Octet pattern are added to the list of available patterns. The 8-bit patterns are as follows:

	o-Dil Falleriis
Туре	Pattern
1-in-8	F01000000
2-in-8	F01100000

8-Rit Dattorne

Note 1: F indicates the position of the framing bit with respect to the 8-bit pattern when the framed data is generated

Note 2: Both 8-bit patterns and the 55 Octet pattern can only be selected as a payload for the whole DS1, i.e. they can not be selected as a pattern for an individual 64 kb/s channel.

Note 3: Bit errors can be added to both 8-Bit and 55 Octet test patterns as with the other available test patterns.

The 55 Octet pattern uses the Daly pattern as per ANSI T1.403

Setting DSn THRU Mode

Description

THRU mode is used to non-intrusively monitor DSn lines where no protected monitor points are available. Note that since THRU mode locks some user settings, you must set SIGNAL RATE (DS1 or DS3), before selecting THRU mode. Two modes of operation are possible:

Monitor Mode: This is when the Entire Frame Error Rate field is set to **OFF**. In this mode the received signal is passed through or transmitted unchanged, and the instrument monitors errors and alarms as normal DS1 operation.

Full Frame Overwrite Mode: In this mode any bit in the entire frame can be errorred at a user defined rate. The bit that is errorred can be any bit in the frame, including the frame bit (hence the title of "Full Frame Overwrite"). The error rates available are:

Data error rates: 1.0E-3, 1.0E-4, 1.0E-5, 1.0E-6, 1.0-E-7 and user programmable in 0.1 steps from 1.1E-3 to 1.0E-9

TRANSMITTE	UCT'D TES	PDH/DSn T I ON		
SIGNAL	DS1	THRU MODE		
ENTIRE FRA	ME ERROR RA	1E-3		
				*
STATUS: OFF	1E-3	1E-4 1E-5	MORE	MULTIPLE

HOW TO:

- 1 Make the required SIGNAL RATE choice on the PDH/DSn **TRANSMIT** and **RECEIVE** displays.
- **2** Select THRU MODE as shown in the figure above.
- **3** Select an entire frame error rate from the choices given or use the USER softkey to program an error rate.

Setting the Interfaces Setting SONET Transmit Interface

Setting SONET Transmit Interface

Payload Selection

One of the key features of the OmniBER 718 is the ability to test concatenated payloads. The following gives a brief description of concatenated payloads, and the benefits of using them.

Concatenated Payloads

Bulk filled or contiguous payload structures e.g. (STS-48c) are designed for carrying broadband services. The entire payload area is used to carry the service with no structured mapping or channelization.

In the case of a concatenated STS-48 (denoted STS-48c), the virtual container area is entirely filled by a single STS-48c SPE. This STS-48c SPE consists one Path Overhead and a single container capable of carrying a tributary signal operating at rates up to approximately 2.5 Gb/s. Once assembled a STS-48c SPE is multiplexed, switched and transported through the network as a single entity.

Benefits: Test the entire bandwidth in one go, and reduce test times. The following table illustrates the reduced test times using concatenated payloads.

	Test Time (based on 100 errors)	
Performance test limit	STS-48c SPE payload	STS-3c SPE payload
10- ¹⁴	48 days	>2 years
10- ¹³	4.8 days	77 days
10- ¹²	11.6 hours	7.7 days
10- ¹¹	1.2 hour	18.5 hour
10- ¹⁰	7 minutes	1.9 hours

	Setting the Interfaces Setting SONET Transmit Interface			
Description	SONET transmit interface settings should match the network equipment settings of Rate, Wavelength and Mapping, determine the payload to be tested and set background conditions to prevent alarms while testing.			
TIP:	If you wish to set the OmniBER 718 transmitter and receiver to the same interface settings choose OTHER SETTINGS CONTROL COUPLED			

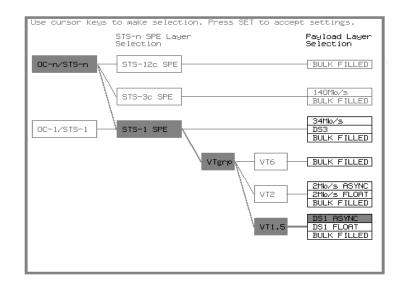
Laser On/Off Control

.

If you wish to switch off the laser when connecting/disconnecting cables, set the field between the wavelength and INTERNAL selections to OFF. When the laser is on the laser symbol at the bottom right of the display is illuminated (yellow).

TRANSMITTER OUTPUT SONET	
MAIN STRUCT'D TEST OVERHEAD SETTINGS PAYLOAD FUNCTION SETUP	
SIGNAL OC-12 1310 DIM INTERNAL CLOCK INTERNAL	
FREQUENCY OFFSET OFF	
FOREGROUND MRPPING STS-1 UTI.5 BSYNC DS1	
DS1 OFFSET 0 PPM STS-3# 1 STS-1# 1 UTGRP# 1 UT# 1	
UT PAYLOAD ESF UNSTRUCTURED PATTERN 1-IN-8	
STATUS:	
LASER LASER OFF ON	WINDOW

HOW TO:


 Make your choice of SIGNAL rate. If Option 106, Dual Wavelength optical module, is fitted and an optical rate is chosen, choose the required wavelength (1550 or 1310). If STS-1 is chosen, choose the required interface level. Choose **INTERNAL** unless **THRU MODE** is required. If **THRU MODE** is chosen, see "Setting SONET THRU Mode" page 37.

2 Make your choice of CLOCK synchronization source. The clock can be internally sourced from the instrument, recovered from the signal at the optical RECEIVE port or externally sourced from the CLOCK REF IN ports (MTS 64 kb/s, BITS 1.5 Mb/s or 10 MHz REF).

Setting the Interfaces Setting SONET Transmit Interface

- **3** If required choose the FREQUENCY OFFSET value. See "Adding Frequency Offset to SONET Signal" page 62.
- 4 Choose the required **F/G MAPPING** and PAYLOAD TYPE, then **B/G MAPPING** and BACKGROUND selection. The FOREGROUND selection is the channel that is chosen for test purposes. The BACKGROUND patterns are not used for test purposes and are either the same as the test channel or set to UNEQUIPPED.

Mapping may be selected from a pictorial display by moving the cursor to MAPPING and pressing **SET**.

Use \rightarrow and \leftarrow to move between STS Layer choice, VT Layer choice and Payload Layer choice. Use \uparrow and \checkmark to choose the mapping. Use **SET** to confirm your choice and return to the **SONET MAIN SETTINGS** display.

If VT-6 mapping is chosen, VT CONCATENATION selection is enabled, choose
 OFF or the tributary at which the concatenation begins, VT6-2C through VT6-6C.

The BACKGROUND, PATTERN IN OTHER VT-6s is fixed at NUMBERED, that is, each VT-6 contains a unique number to allow identification in case of routing problems.

6 If required, choose DS1/2M/34M/DS3 OFFSET value. See "Adding Frequency Offset to SONET Signal" page 62

Setting the Interfaces Setting SONET Transmit Interface

- 7 If FULL SPE, VT-6, VT-2 or VT-1.5 mapping is chosen, choose the test tributary, including the STS-3 for an OC-12/OC-48 signal.
- **8** Choose the payload framing under PAYLOAD TYPE or VT PAYLOAD.

If **STRUCTURED** is required **FRAMED** must be chosen.

If **STRUCTURED** is chosen, the Payload test signal must be set up. See "Setting Transmit Structured Payload/Test Signal" page 68.

If **INSERT** is chosen, see "Inserting an External DSn Payload/Test Signal" page 74.

If you have chosen 2 Mb/s, DS1 or DS3 under Mapping, the Framed choice is expanded to provide a menu of framing types.

9 Choose the PATTERN type and PRBS polarity.

TRANSMITTER OUT MAIN STRUCT'D SETTINGS PAYLOAD	JITTER	SONET EST OVERHEAD	
SIGNAL DC-48 CLOCK EXTERNAL FREQUENCY OFFSE	1310nm	INTERNAL MTS 2M CLK	
	E	ACKGROUND	
BACKGROUND STS-1	l's	UNEQUIPPED	
PATTERN IN OTHER	R VT-1.5s	2^15-1 PRBS	
STATUS:			
			MULTIPLE

- **10** Choose the mapping required in the background (non-test) STS's. Refer to Appendix A for a table of background patterns for STS-1 SPE.
- **11** If VT mapping is chosen for the test STS, choose the PATTERN IN OTHER VT's.

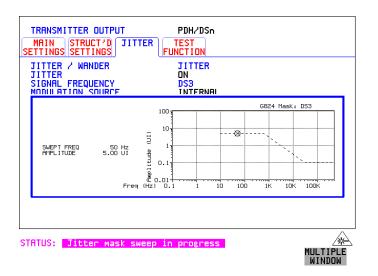
Setting Jitter Transmit Interface

Description: Option 200 required for jitter and option 012 for PDH/DSn. You can add jitter to the transmitted DSn or SONET signal at DS1, DS3, 2 Mb/s, 34 Mb/s, STS-3, OC-3, OC-12, and OC-48. You can source the jitter modulation internally or from an external source. Jitter measurement up to 2.5 Gb/s is available when ATM or POS is selected as a payload.

TRANSMITTER OUTPUT MAIN STRUCT'D JITTER SETTINGS PAYLOAD	SONET TEST OVERHEAD FUNCTION SETUP	
JITTER / WANDER JITTER SIGNAL FREQUENCY MODULATION SOURCE JITTER CONTROL	JITTER DN 622Mb/s INTERNAL OFF	
RANGE MODULATION FREQUENCY AMPLITUDE	20.0 UI 2 Hz 1.00 UI	
STATUS:		MULTIPLE WINDOW

- HOW TO:
- 1 If you are adding jitter to the DSn signal, set up the DSn transmit interface. See Chapter "Setting PDH/DSn Transmit Interface (Option 012)".
 - 2 If you are adding jitter to the SONET signal, set up the SONET transmit interface. See "Setting SONET Transmit Interface" page 29.
 - 3 Choose JITTER/WANDER JITTER. If you wish to add wander to the DSn or SONET signal, See "Setting Wander Transmit Interface" page 35.
 - Choose JITTER ON .
 If you wish to perform a Jitter Tolerance measurement, choose
 AUTO TOLERANCE . See "Measuring Jitter Tolerance" page 134.
 If you wish to perform a Jitter Transfer measurement choose
 TRANSFER FUNCTION . See "Measuring Jitter Transfer" page 138.

Setting the Interfaces Setting Jitter Transmit Interface


Choose the modulation source.

If adding jitter to the DSn signal and **EXTERNAL** is chosen, connect the external source to the MOD IN port of the DSn Jitter TX module. Up to 10 UI of external jitter modulation can be added at the MOD IN port. If adding jitter to the SONET signal and **EXTERNAL** is chosen, connect the external source to the MOD IN port of the SONET Clock module. Up to 20 UI of external jitter modulation can be added at the MOD IN port.

5 If you have selected an **INTERNAL** Modulation Source, choose the JITTER CONTROL setting required.

You can choose the jitter range, jitter modulating frequency and jitter amplitude if **OFF** is chosen.

If you choose **SWEPT**, the OmniBER 718 will "sweep" through the ITU-T jitter mask (G.823 for PDH, GR-499 or G.824 for DSn, G.958, G.825 or GR-253 for SONET) adjusting the jitter amplitude according to the jitter frequency. With the **SWEPT** field selected, press SET on the instrument front panel for a display of the jitter mask sweep (an example is given below).

If you choose **SPOT**, you can choose the "spot" jitter frequency. The jitter amplitude is adjusted and controlled according to your jitter frequency choice.

If, when using the SWEPT MASK capability, a problem occurs around a certain frequency, this may require closer examination. Stop the sweep at that point by choosing **SPOT**. You can then control the "spot" jitter frequency to make closer examination of the problem.

TIP:

Setting the Interfaces Setting Wander Transmit Interface

Setting Wander Transmit Interface

Description: You can add Wander to the 2 Mb/s DSn signal and the STS-3, OC-3, OC-12 or OC-48 SONET signal. Wander is also available when you select an ATM

or POS payload.

TRANSMITTER OUTPUT MAIN STRUCT'D JITTER SETTINGS SETTINGS JITTER / WANDER WANDER SIGNAL FREQUENCY	PDH/DSn TEST FUNCTION WRNDER ON DS1	
WANDER MASK	OFF	I
MODULATION FREQUENCY RMPLITUDE	125000 µHz 18.00 UI	
STATUS:		MULTIPLE WINDOW

HOW TO: DSn Wander (2 Mb/s)

1 Set up the PDH transmit interface, choose CLOCK and select the SOURCE required from the menu. If you select EXTERNAL connect the external source to the REF IN port on the CLOCK module. See "Setting PDH/DSn Transmit Interface (Option 012)" page 26.

2 Choose JITTER/WANDER WANDER . If you wish to add jitter to the DSn signal, See "Setting Jitter Transmit Interface" page 33.

- 3 Choose WANDER ON .
- Choose the WANDER MASK setting required.
 You can choose the wander modulating frequency and wander amplitude if
 OFF is chosen.

If you choose **SPOT**, you can choose the "spot" wander frequency. The wander amplitude is adjusted and controlled according to your wander frequency choice.

Setting the Interfaces Setting Wander Transmit Interface

SONET Wander (STS-3, OC-3, OC-12, OC-48)

- **5** Set up the SONET transmit interface. See "Setting SONET Transmit Interface" page 29.
- 6 Choose JITTER/WANDER WANDER. If you wish to add jitter to the SONET signal, see "Setting Jitter Transmit Interface" page 33.
- 7 Choose WANDER **ON**.
- 8 Choose the WANDER MASK setting required. You can choose the wander modulating frequency and wander amplitude if OFF is chosen.

If you choose **SPOT**, you can choose the "spot" wander frequency. The wander amplitude is adjusted and controlled according to your wander frequency choice.

Setting the Interfaces Setting SONET THRU Mode

Setting SONET THRU Mode

DescriptionTHRU mode is used to non-intrusively monitor SONET lines where no protected
monitor points are available. To enable THRU mode select the **TRANSMIT**MAIN SETTINGSpage. Select SIGNAL RATE before selecting THRU mode.

The entire frame can be errorred at a user defined rate if PAYLOAD OVERWRITE and TOH+POH CHANNEL OVERWRITE are both set to **OFF**. If either overwrite is enabled the ENTIRE FRAME ERROR RATE function is disabled.

There are nominally three modes of operation as follows:

1. Transparent mode: This is the case when the PAYLOAD OVERWRITE field is set to OFF. The received signal is passed through the transmitter completely unchanged. The figure below illustrates the settings for this mode.

SIGNAL STS-3 THRU MODE CLOCK STS-3 RX PAYLOAD OUERWRITE OFF TOH+POH CHANNEL OVERWRITE OFF ENTIRE FRAME ERROR RATE OFF RX SIGNAL RE-TRANSMITTED UNCHANGED.	TRANSMITTER OUTPUT MAIN SETTINGS PAYLOAD	SONET TEST OVERHEAD UNCTION SETUP	
	CLOCK STS-3 RX PRYLORD OVERWRITE	OFF	
RX SIGNEL RE-IRENSMITTED UNCHENGED.			
	RX SIGNHL RE-TRHNSMITTED	UNCHHNGED.	
STRTUS: Loss OF Frame alarm			

2. Hitless THRU Mode:

This mode enables you to change the channel under test and the payload mapping without causing errors in the line signal or any other payload channel, or having to switch out of THRU mode. When you select a Payload Overwrite choice (other than OFF) an additional field is displayed which allows you to enable/disable Payload Overwrite. If Payload Overwrite is disabled the instrument remains transmitting while you select another channel/tributary (see figure on next page). In this mode any Section or Line CV errors are recalculated before transmission.

Setting the Interfaces Setting SONET THRU Mode

3. Payload Overwrite: In this mode you can overwrite the payload as explained in the following text. Any Path CV errors are recalculated before transmission. Use the *HOW TO* procedure to setup your instrument for THRU Mode operation.

OC-1/STS-1, OC-3/STS-3

You can substitute a new payload, Section and Line Overhead (TOH) and Path overhead (POH) in the received OC-1/STS-1 or OC-3/STS-3 signal for testing.

OC-12, OC-48

The overhead and payload may be overwritten for STS-3c SPE and STS-1. PAYLOAD OVERWRITE is not available for STS-12C or STS-48C. TOH+POH CHANNEL overwrite is available for STS-12C and STS-48C.

TRANSMITTER DUTPUT SONET MAIN STRUCT'D TEST OVERHEAD SETTINGS PAYLORD FUNCTION SETUP	
SIGNAL STS-3 THRU MODE	
PRYLORD OVERWRITE STS-1 DFF TOH+POH CHANNEL OVERWRITE DFF	
MRPPING STS-1 FULL SPE DS3	
DS3 DFFSET 0 ppm STS-1# 3	
PRYLOAD TYPE M13 STRUCTURED TO SET TEST SIGNAL, FIRST SELECT THE 'STRUCT'D PRYLOAD' FOLDER ABOVE.	
STATUS:	æ
OFF ON	MULTIPLE

HOW TO:

- 1 Make the required SIGNAL RATE choice, and select THRU MODE on the SONET TRANSMIT display, See "Setting SONET Transmit Interface " page 29.
- 2 Make the PAYLOAD OVERWRITE choice required. Hitless Mode: The Payload Overwrite enable/disable field (next to the PAYLOAD OVERWRITE field) defaults to OFF.

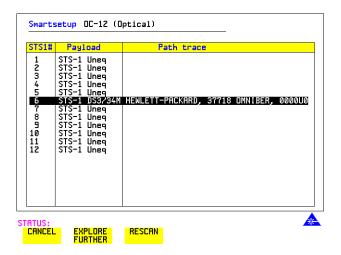
If STS-3c SPE, STS-1 SPE, VT-6, VT-2 or VT-1.5 is chosen, the Section, Line and Path CVs are recalculated before transmission and the Mapping, Selected VT, VT Payload, Pattern, Tributary Offset and Pattern in other VT's settings are displayed. To choose the settings in these, See "Setting SONET Transmit Interface " page 29, steps 4 through 10.

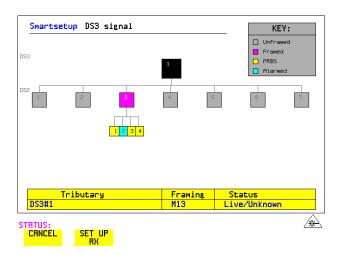
Setting the Interfaces Setting SONET THRU Mode

- **3** Switch the PAYLOAD OVERWRITE enable/disable field to ON. Test functions are available whilst Payload Overwrite is enabled. Select the **TEST FUNCTION** folder and setup as required.
- **4** Make the TOH+POH CHANNEL OVERWRITE choice required. The Section, Line and Path CVs are recalculated before transmission.

Using Smart Test

Smart Setup	The Smart Setup feature simplifies instrument operation by:
	 Allowing the instrument to auto-configure on the incoming signal. It will attempt to identify signal structure, and detect mixed payload signal structures and alarms. The OmniBER 718 automatically displays all of the J1 trace identifiers. Once the received signal has been identified you can select a channel of interest and explore further into the payload.
Smart Tests	Allows you to quickly access the most commonly used instrument features such as:
	Signal quality
	Functional tests
	• Jitter tests
	• ATM tests
	POS tests
	• Settings (stored, logging, Tx/Rx coupling and trigger output enable)
HOW TO:	 Connect the 37718A to the network and choose if necessary the required SONET (RECEIVE) interface on the 37718A (Smartsetup will select PDH or SDH/ SONET, but can not select between SDH and SONET).


2 Press **SMART TEST**.


Stendsetup Signal Quality Functional tests ATM payload setup ATM tests POS Setup / Tests Settings	Run Smartsetup	

Setting the Interfaces Using Smart Test

3 With Smartsetup highlighted, press **START** to auto-discover information about the receive signal. Or press **CANCEL** to exit Smart Tests.

An example of a typical display after choosing to RUN Smartsetup is shown below. **Note:** The channel information displayed is the one obtained the last time a SCAN was performed. If you have changed the input signal since the last Smartsetup you must perform a RESCAN now. If you have selected a PDH/DSn interface and a PDH/DSn signal is received, a channel mapping display indicating the framing and status of each channel is given, see below.

Setting the Interfaces Using Smart Test

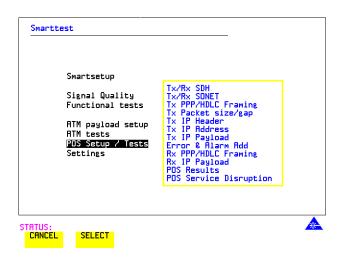
SET UP RX key If you select an individual channel using the cursor control keys, and then select **SET UP RX**, the instrument exits smartsetup and sets the receiver to the test pattern detected in the selected channel.

To run a Smart Test (Signal Quality - Frequency Measurement):

- 1 Ensure a valid signal is connected to the instrument's Receive port.
- 2 Press **SMART TEST**.
- **3** Use the up and down cursor control keys to select Signal quality.
- 4 Use the left and right cursor control keys to access the tests.
- **5** Use the up and down cursor control keys to select Frequency Measurement.

Signa Funct ATM F ATM t	Setup / Tests	Optical power Frequency measurement	

6 Press **START** to display the frequency screen. Or press **CANCEL** to exit Smart Tests.


To run an ATM Smart Test

- 1 Ensure a valid signal is connected to one of the instrument's Receive ports.
- 2 Press **SMART TEST**.
- **3** Use the down cursor control key to select ATM payload setup or ATM tests.
- **4** Use the right cursor control key to access the setups/tests.

Setting the Interfaces Using Smart Test

5 Use the down cursor control key to select required setup/test.

Note: It is not possible for OmniBER to find ATM in a PDH payload in Smartsetup.

To run a POS Smart Test

- 1 Ensure a valid signal is connected to one of the instrument's Receive ports.
- 2 Press **SMART TEST**.
- **3** Use the down cursor control key to select POS Setup/Tests.
- **4** Use the right cursor control key to access the setups/tests.
- **5** Use the down cursor control key to select required setup/test.
- 6 Press **SELECT** to display the required Setup screen. Or press **CANCEL** to exit Smart Tests.

Setting PDH/DSn Receive Interface

Description DSn Receive interface settings should match the network equipment settings of Rate, Termination and Line Code and determine the Payload to be tested.

 TIP:
 To set the transmitter and receiver to the same interface settings choose OTHER

 SETTINGS CONTROL
 COUPLED

RECEIVER INPUT	PDH/DSn JITTER TEST FUNCTION	
SIGNAL	DS3	
TERMINATION LINE CODE LEVEL	75Ω UNBAL B32S TERMINATE	
PAYLOAD TYPE UN PATTERN PRBS POLARITY	FRAMED UNSTRUCTURED 2°23-1 PRBS INV	
STATUS: PDH/DSn SDH	SONET	MULTIPLE WINDOW

- *HOW TO:* **1** Choose the required SIGNAL rate.
 - 2 If you have chosen 2 Mb/s as the SIGNAL rate, choose the required TERMINATION. (At all other rates the impedance is fixed.)
 - **3** If you have chosen 8 Mb/s, 2 Mb/s or DS1 as the SIGNAL rate, choose the required LINE CODE. (At 140 Mb/s, 34Mb/s and DS3 coding is fixed.)
 - 4 If you are measuring at the network equipment monitor point, set the LEVEL field to MONITOR. In this case the received signal will be 20 to 30 dB below the normal level.
 Choose the GAIN required to return the received signal to normal.
 Choose EQUALIZATION ON to compensate for cable losses if required.
 - **5** Choose the PAYLOAD TYPE.

Setting the Interfaces Setting PDH/DSn Receive Interface

If **STRUCTURED** is required **FRAMED** must be chosen.

If **STRUCTURED** is chosen, the PDH/DSn test signal must be set up. See "Setting Transmit Structured Payload/Test Signal" page 68. If you chose 2 Mb/s, DS1 or DS3 as the PDH/DSn SIGNAL rate, the FRAMED choice is expanded to provide a menu of framing types.

6 Choose the PATTERN type and the PRBS POLARITY required.

Additional Patterns at DS1

7 If you select a DS1 SIGNAL, two 8-bit patterns and a 55 Octet pattern are added to the list of available patterns. They are as follows:

Table 2	8-Bit Patterns
Туре	Pattern
1-in-8	F01000000
2-in-8	F01100000

Note 1: F indicates the position of the framing bit with respect to the 8-bit pattern when the framed data is generated

Note 2: Both 8-bit patterns and the 55 Octet pattern can only be selected as a payload for the whole DS1, i.e. they can not be selected as a pattern for an individual 64 kb/s channel.

The 55 Octet pattern uses Daly pattern as per ANSI T1.403.

Setting SONET Receive Interface

Description SONET Receive interface settings should match the network equipment settings of Rate and Mapping, and determine the payload to be tested.

TIP: If you wish to set the OmniBER 718 transmitter and receiver to the same interface settings, choose **OTHER SETTINGS CONTROL COUPLED**. This causes the receiver to be configured to the same settings as the transmitter.

RECEIVER INF MRIN SETTINGS	CT'D TEST	SONET Overherd On Monitor		
SIGNAL LEVEL		STS-3 TERMI		
MAPPING 🖭	STS-1	UT1.5 ASYNC I	051	
	STS-1# 1	VTGRP# 1	UT# 1	
UT PAYLOAD PATTERN QF	ESF ISS	UNSTRL	JCTURED	
STATUS: PDH/DSn	SDH S	ONET		MULTIPLE WINDOW

- HOW TO:1 Choose the required SIGNAL source either electrical or optical. If STS-1 or STS-3 is chosen, choose the required LEVEL. If the LEVEL chosen is MONITOR choose the required GAIN.
 - **2** Choose mapping and type of payload.
 - If VT-6 mapping is chosen, and CONCATENATION is enabled, choose the tributary at which the concatenation begins.
 If VT-6, VT-2 or VT-1.5 mapping is chosen, choose the test tributary, including the STS-3 for an OC-12/OC-48 signal.
 - 4 Choose the payload framing under PAYLOAD TYPE or VT PAYLOAD.
 - If **STRUCTURED** is required **FRAMED** must be chosen.

If **STRUCTURED** is chosen the Payload test signal must be set up. See "Setting Receive Structured Payload/Test Signal" page 70.

If DROP is chosen, see "Dropping an External Payload/Test Signal" page 77.

5 Choose the PATTERN type and PRBS polarity.

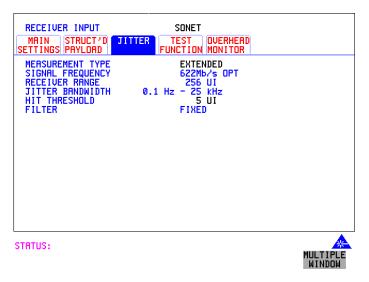
Setting Jitter Receive Interface

Description: Option 200 required for Jitter operation.

Jitter and error measurements are made simultaneously when a jitter option is fitted. Jitter measurement up to 2.5 Gb/s is also available when ATM or POS is selected as a payload. The jitter receive interface is selected with **RECEIVE PDH/DSN JITTER** or **RECEIVE SONET JITTER** MEASUREMENT TYPE **JITTER**.

The choices made on the jitter receive interface determine the jitter measurement range, the threshold level for determining a jitter hit and which filters are used in the jitter measurement.

RECEIVER INPUT MAIN STRUCT'D JITT SETTINGS SETTINGS MERSUREMENT TYPE SIGNAL FREQUENCY RECEIVER RANGE HIT THRESHOLD	PDH/DSn TEST FUNCTION JITTER DS3 16 UI 1.0 UI	
FILTER FILTER VERSION FILTER VALUES	HP1 D.172/GR-499 10 Hz HP1	
STATUS:		
		MULTIPLE

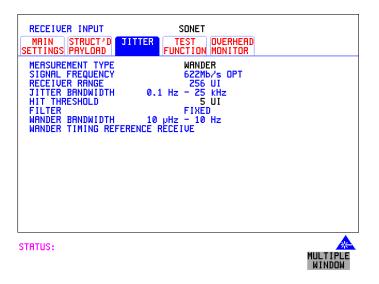

HOW TO:

- 1 Choose the RECEIVER RANGE the jitter measurement range.
- **2** Choose the HIT THRESHOLD level if the received jitter exceeds the value chosen a jitter hit is recorded.
- Choose the FILTER you wish to include in the peak to peak and RMS jitter measurement. The choices are: OFF, LP, HP1, HP2, 12kHz HP, LP+HP1, LP+HP2, LP+12kHz HP
- **4** If you have selected a PDH/DSn Receive Interface you can also select FILTER VERSION, O.171 or O.172/GR-499. The selection is not available with a SONET Receive Interface.

Setting Extended Jitter Receive Interface

Description:Extended Jitter measurements are made in a jitter bandwidth of 0.1 Hz to 25 kHz.
These measurements are made at the upper end of the standard wander frequency
range and the lower end of the standard jitter frequency range. The extended jitter
receive interface is selected with **RECEIVE PDH/DSn JITTER** or **RECEIVE**
SONET JITTER MEASUREMENT TYPE **EXTENDED**.

The choices made on the jitter receive interface determine the threshold level for determining a jitter hit. The measurement Range and the Filters are not selectable.



- *HOW TO:* **1** Choose MEASUREMENT TYPE **EXTENDED**
 - **2** Choose the HIT THRESHOLD level if the received jitter exceeds the value chosen a jitter hit is recorded.

Setting Wander Receive Interface

Description:

You can measure Wander at all DSn and SONET rates. An external timing reference should be selected on the **TRANSMIT PDH/DSn** or **SONET MAIN SETTINGS** display to ensure accurate Wander results.

HOW TO:

- 1 Choose an external timing reference on the **TRANSMIT SONET** MAIN SETTINGS display. See, "Setting SONET Transmit Interface" page 29.
- 2 If you intend to measure wander on a DSn signal, set up the DSn receive interface. See, "Setting PDH/DSn Receive Interface" page 45.
- **3** If you intend to measure wander on a SONET signal, set up the SONET receive interface. See, "Setting SONET Receive Interface" page 47.
- 4 Choose MEASUREMENT TYPE WANDER.
- **5** Choose the wander HIT THRESHOLD if the received wander exceeds the value chosen a wander hit is recorded.

3

"Using Transmit Overhead Setup" page 52 "Using Receive Overhead Monitor" page 54 "Setting Overhead Trace Messages" page 56 "Setting Overhead Labels" page 57 "Generating Overhead Sequences" page 58 "Using Receive Overhead Capture" page 60 "Adding Frequency Offset to SONET Signal" page 62 "Adding Frequency Offset to the DSn Signal" page 64 "Setting up Signaling Bits" page 65 "Setting Transmit Structured Payload/Test Signal" page 68 "Setting Receive Structured Payload/Test Signal" page 70 "Setting Transmit N x 64 kb/s/N x 56 kb/s Structured Payload/Test Signal" page 71 "Setting Receive N x 64 kb/s/N x 56 kb/s Structured Payload/Test Signal" page 73 "Inserting an External DSn Payload/Test Signal" page 74 "Dropping an External Payload/Test Signal" page 77 "Adding Errors and Alarms at the SONET Interface" page 80 "Adding Errors and Alarms to a DSn Signal" page 81 "Using FEAC Codes" page 82 "Setting DSn Spare Bits" page 84 "Adding Pointer Adjustments" page 85 "Using Pointer Graph Test Function" page 93 "Stressing Optical Clock Recovery Circuits" page 95 "Generating Automatic Protection Switch (APS) Messages" page 97 "Inserting and Dropping the Data Communications Channel" page 102 "Using DS1 LOOP Codes" page 103

Selecting Test Features

Selecting Test Features

Using Transmit Overhead Setup

Description

You can set an overhead byte to a known static state to aid troubleshooting, for example to quickly check for "stuck bits" in path overhead bytes. Transport Overhead, Path Overhead, Trace Messages and Labels can be set using this feature.

|--|--|

HOW TO:

1 Set up the SONET transmit interface and payload required. See "Setting SONET Transmit Interface " page 29.

MULTIPLE WINDOW

2 Choose the type of overhead to SETUP.

If OC-12 or OC-48 is chosen as the SONET interface, choose the STS-3# and STS-1# you wish to set up.

If STS-3 is chosen as the SONET interface, choose the STS-1# you wish to set up. DEFAULT - Use to set all overhead bytes to the standard values defined by Bellcore/ANSI.

If a test function is active then the overhead byte value is determined by the choices made in the Test Function.

If **TOH** (Transport Overhead) is chosen, choose the STS-1 to be displayed. Many bytes in **STS-1#2** and **STS-1#3** are unlabeled as the other overhead functions have not yet been defined.

Selecting Test Features Using Transmit Overhead Setup

	If STS-1#1,2,3 is chosen, the hexadecimal value of all 81 bytes of the STS-3 section & line overhead selected are displayed (all 324 bytes of an OC-12 or 1,296 bytes of an OC-48 are displayed 81 bytes at a time by selecting each STS-3 in turn). The value of the bytes can be set using DECREASE DIGIT INCREASE DIGIT (A) (A) . If BYTE NAMES is chosen, the labels for the STS-1#1,2,3 overhead bytes are displayed.
	 3 If POH (Path Overhead) is chosen, choose the TYPE of overhead within STS-1 under test to be setup. J1 and J2 bytes can be set under Path Overhead or Trace Messages. H4 byte has a choice of sequences for VT-2, VT-1.5 and VT-6 mapping: Full Sequence - 48 byte binary sequence. Reduced Sequence - Binary count sequence of 0 to 3 i.e. 111111(00 to 11). COC1 Sequence - Binary count sequence of 0 to 3 i.e. 110000(00 to 11). H4 byte is transmitted as all zero's for 34 Mb/s and DS3.
	4 If TRACE MESSAGES is chosen, see "Setting Overhead Trace Messages " page 56.
ΝΟΤΕ	Any bit of an overhead byte which is displayed as x or s cannot be set at any time. All other bits can be set to 0 or 1.
TIP:	You can set all overhead bytes to the default state by selecting SETUP DEFAULT .
	You can set all overhead bytes and test functions to the default state by recalling Stored Settings [0] on the OTHER display.

Using Receive Overhead Monitor

Description When first connecting to a SONET network, a start up confidence check can be made by viewing the behavior of all the overhead bytes. If the SONET network shows alarm indications, some diagnosis of the problem may be gained from viewing all the overhead bytes. The OVERHEAD MONITOR display is updated once per second (once per 8000 frames) approximately.

TIP: A snapshot of the received overhead can be logged to the chosen logging device. See "Logging on Demand " page 241.

MONITOR TOH S	SONET TEST OVERHEAD UNCTION MONITOR TS-3# 1 STS-1# 1 STRATUM3 TRACEABLE	
R1 11110110 R2 B1 10111001 E1 D1 00000000 D2 H1 01100000 H2 B2 10100101 K1 D4 00000000 D5 D7 00000000 D5 D10 00000000 D11 S1 00001010 Z2	00101000 J0 00000001 00000000 F1 00000000 00000000 D3 0000000 00000000 H3 0000000 00000000 H3 0000000 00000000 B5 0000000 00000000 D6 0000000 00000000 D9 0000000 00000000 D12 00000000 00000000 E2 00000000	
STATUS: Toh Poh	TRACE LABELS	APS MUMBIPHA

HOW TO:

- 1 Set up the receive SONET interface and payload as required. See "Setting SONET Receive Interface" page 47.
- **2** Choose the type of overhead to MONITOR.
- **3** If **TOH** (Transport Overhead) is chosen, choose the STS-3 # and STS-1# to be displayed.

Many bytes in **STS-1#2** and **STS-1#3** are unlabeled because the other overhead functions have not yet been defined.

If **STS-1#1,2,3** is chosen, the hexadecimal value of all 81 bytes of section overhead is displayed (all 324 bytes of an OC-12 or 1,296 bytes of an OC-48 are displayed 81 bytes at a time by selecting each STS-3 in turn).

If BYTE NAMES is chosen, the labels for the **STS-1# 1,2,3** overhead bytes are displayed.

Selecting Test Features Using Receive Overhead Monitor

4 If POH (Path Overhead) is chosen, choose the source of the overhead, SPE or VTSPE.

J1 and J2 bytes can be monitored under Path Overhead or Trace Messages

5 If TRACE MESSAGES is chosen, you can monitor a data message to verify portions of the network.If the 16 byte CRC7 message structure is detected, the 15 characters within the

message are displayed. If the CRC7 structure is not detected in J1, the 64 byte message format is assumed and displayed.

If the CRC7 structure is not detected for J0 or J2, all 16 bytes are displayed.

- **6** If LABELS is chosen, the S1 sync status, STS path label (C2) and the VT Path label (V5) are monitored.
- 7 If APS MESSAGES is chosen, choose the TOPOLOGY, LINEAR (GR-253) or RING (GR-1230). The K1 and K2 bytes are monitored.
- TIP:If any abnormal behavior is observed on a particular path or section overhead byte,
or an associated group of bytes (3XA1,3XA2; D1 D3, D4 D12), the RECEIVETEST FUNCTIONdisplay ofOVERHEAD CAPTUREcan be used to "Zoom" in
on the suspect byte or bytes on a frame by frame basis. See "Using Receive
Overhead Capture " page 60.

Setting Overhead Trace Messages

Description

You can insert a data message to verify portions of the network:

J0 verifies the section overhead.

J1 verifies the STS-1 SPE or STS-3c SPE path connection.

J2 verifies the VT SPE path connection.

TRANSMITTER OUTPUT SONET MAIN STRUCT'D TEST OVERHEAD SETTINGS PAYLOAD FUNCTION SETUP SETUP TRACE	
WITHIN ALL STS-3's ALL STS-1's	
J0 FIXED→ 00000001	
J1 TEST 64 → "HP37718A COMMUNI (SPE) CATIONS PERFORMA NCE RNALYZER, GB00000109 %;"	
J2 TEST → "HP:- GB00000109" (UT-SPE)	
STATUS:	1

WINDOW

HOW TO:

1 Choose the message for insertion in the chosen trace channel.

How to Edit User Messages

There are two ways you can edit a user message as follows;

- Use the edit keys at the bottom of the display JUMP, PREVIOUS CHAR, NEXT CHAR (and) that are displayed when you position the cursor on a User message or:
- Use the POP UP alphanumerical keypad that is displayed when you press the front panel **SET** key. Detailed instructions on how to change instrument settings using the POP UP keypad is given in the Quick Start Guide (page 13) under the heading "Changing Instrument Settings".

Selecting Test Features Setting Overhead Labels

Setting Overhead Labels

Description Choosing LABELS in TRACE MESSAGES allows the setting of the S1 SYNC STATUS, STS PATH LABEL (C2) and VT PATH LABEL (V5).

TRANSMITTER OUT MAIN STRUCT' SETTINGS PAYLOAD	TEST OVERHEAD	
SETUP LABELS		
S1 SYNC STATUS	: 00001010 STRATUM3 TRACEABLE	
STS PATH LABEL (C2)	: 00010010 Rsync Ds4nr Mrpping	
VT PATH LABEL (V5)	: 011 BIT SYNCHRONOUS	
STATUS:		
TOH POH	TRACE LABELS I Messages	DEFRULT MULTIPLE WINDOW

How to Edit User Defined Labels

- **1** Choose the overhead label that you want to edit.
- 2 Edit the label using the softkeys at the bottom of the display. If you select USER, use the softkeys at the bottom of the display to edit the label key, or press SET, then use the softkeys and pop-up keypad to edit the label. Detailed instructions on how to change instrument settings using the pop-up keypad is given in the Quick Start Guide (page 13) under the heading "Changing Instrument Settings".

Generating Overhead Sequences

Description

You may insert a sequence of patterns into a functional group of overhead bytes for testing or troubleshooting purposes.

SETTINGS PRYLOAD FUNCTION SET TEST FUNCTION SONET SINGLE RUN STOPPED -SEQUE SOH 3×A1, 3×A2 STS-3# R F6F6F6282828 B D3B124292520 C 162626F42453 D BTC844F80856 D BTC844F808566 E 1929B2F55556 SEQUENCE 64000 FRMES OF F	SONET RHERD SEQUENCES INCE STOPPED 2 THEN
STATUS:	MULTIPLE WINDOW

HOW TO:

- 1 Set up the SONET transmit interface and payload required. See "Setting SONET Transmit Interface" page 29.
- **2** Select **TEST FUNCTION**, SONET, SEQUENCES as shown above.
- Choose the type of sequence required.SINGLE RUN runs the sequence once and then stops.REPEAT RUN runs the sequence repeatedly until STOPPED is chosen.
- Choose the overhead type as required. SOH- Section Overhead LOH- Line Overhead
 POH - Path Overhead
- **5** Choose the byte or bytes of overhead required.
- 6 Set up the required number of data patterns and the number of frames in which each data pattern should appear.
 Your sequence is derived from up to 5 blocks of hexadecimal data. Each block can be transmitted in up to 64,000 frames.
 The data and the number of frames are set using DECREASE DIGIT

INCREASE DIGIT (+).

Selecting Test Features Generating Overhead Sequences

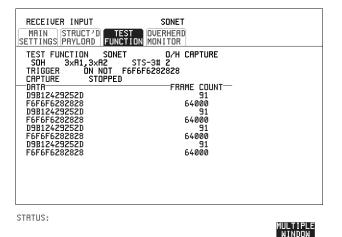
7 Start the sequence by choosing **START**.

NOTE When you start the sequence illustrated, one Out of Frame alarm and one Loss of Frame alarm should occur every eight seconds.

A1A2 Boundary Function

A1A2 provide a frame alignment pattern (A1=F6 H, A2=28 H). Use A1A2 to test the 6 framing bytes at the A1A2 boundary in the section overhead (see display on previous page). The 6 bytes across the boundary are:

STS-n


STS-3 channel:	#n-2	#n-1	#n	#1	#2	#3
Overhead byte:	A1 #3	A1 #3	A1 #3	A2 #1	A2 #1	A2 #1

A network element, typically only uses three of these bytes (which ones are not defined in the standards, so will vary between manufacturers) to gain and maintain frame synchronization. In many cases the A1A2 bytes selected are those at the A1A2 boundary (i.e. the A1 bytes in the last STS-1 channel and the A2 bytes in the first STS-1 channel). Therefore, the ability to stress test across the boundary is necessary to verify a correct synchronization algorithm within a network element.

Using Receive Overhead Capture

Description Section, Line and Path overhead provide network support functions, responding dynamically to network conditions and needs. It is therefore useful to capture overhead activity on a frame by frame basis.

TIP: The Overhead Capture display can be logged to the chosen logging device. See "Logging on Demand " page 241.

HOW TO:

- 1 Set up the receive SONET interface and payload as required. See "Setting SONET Receive Interface" page 47.
- 2 Select **TEST FUNCTION**, SONET, O/H CAPTURE as shown above.
- Choose the overhead type as required. SOH- Section Overhead LOH- Line Overhead POH- Path Overhead
- **4** Choose the Byte or bytes of overhead to be captured.

Choose the TRIGGER to determine the start point of the capture.

OFF - starts immediately the capture is initiated. Can be used to provide a frame by frame monitor of the chosen byte or bytes.

ON -captures activity after your specified overhead state has occurred. Can be used for transient detection from a specified expected state.

Selecting Test Features Using Receive Overhead Capture

ON NOT - captures activity after the first occurrence of a deviation from your specified overhead state. Can be used for transient detection from a specified expected state.

5 Up to 16 records of overhead state are provided. Each record will represent between 1 and 64,000 frames. A capture is started by pressing CAPTURE
 START and terminates when up to 16 records have been captured. The capture can be terminated earlier by pressing CAPTURE STOP.

Adding Frequency Offset to SONET Signal

Description

Frequency offset can be added to the SONET interface rate signal and to the payload signal.

TRANSMITTER OUTPUT SONET	
MAIN STRUCT'D JITTER TEST OVERHEAD SETTINGS PAYLOAD FUNCTION SETUP	
SIGNAL OC-12 1310 ON INTERNAL CLOCK INTERNAL	
FREQUENCY OFFSET ON +42.0 PPM	
FOREGROUND MRPPING STS-1 UT2	
FL BYTE 2Mb/s 2M CRS ABCD BITS 1111 STS-3# 1 STS-1# 1 UTGRP# 1 UT# 1	
VT PAYLORD PCM30 UNSTRUCTURED	
PATTERN 2^15-1 PRBS INVERT ITU	
STATUS:	<u>*</u>
	MULTIPLE WINDOW

HOW TO: SONET Line Rate Offset

- Choose the amount of frequency offset required. You can set the Frequency Offset in the range -999 ppm to +999 ppm in 1 ppm steps using DECREASE DIGIT INCREASE DIGIT ← and → or press
 - **SET** for a pop-up numerical keypad.

The amount of applied Frequency Offset can be varied while measurements are taking place.

If the value of the SONET line rate offset chosen is sufficient to cause the maximum stuff rate to be exceeded, the asynchronous payload is offset to prevent bit errors occurring and the maximum stuff rate is maintained. When Floating Byte 2 Mb/s is chosen, in conjunction with SONET line rate offset, the chosen tributary will be offset as the line rate is offset. (No pointer movements).

Selecting Test Features Adding Frequency Offset to SONET Signal

Tributary Offset ±100 ppm

1 Choose the amount of tributary offset required.

You can set the Offset in the range -100 ppm to +100 ppm in 1 ppm steps using **DECREASE DIGIT** (\blacksquare and \bigcirc or press **SET** for a pop-

up numerical keypad. The amount of applied Frequency Offset can be varied while measurements are taking place.

Tributary offset affects the stuff rate but does not cause pointer movements and can be used to test mapping jitter. If the combined value of SONET line rate offset and tributary offset chosen is sufficient to cause the maximum stuff rate to be exceeded the payload is offset to prevent bit errors occurring and the maximum stuff rate is maintained.

Adding Frequency Offset to the DSn Signal

Description Option 012 required. You can add frequency offset to the interface DSn SIGNAL at all rates. Frequency Offset can be added at preset ITU-T/ANSI values or as User defined values in the range ± 100 ppm. The preset values change with the SIGNAL rate chosen as shown:

DS-1 (1.544 Mb/s)	±32 ppm	-32 ppm
2 Mb/s (E1)	±50 ppm	-50 ppm
8 Mb/s	±30 ppm	-30 ppm
34 Mb/s (E3)	±20 ppm	-20 ppm
DS-3 (44.736 Mb/s)	±20 ppm	-20 ppm
140 Mb/s	±15 ppm	-15 ppm

TRANSMITTER OUTPUT	PDH/DSn	
MAIN STRUCT'D JITTER SETTINGS SETTINGS	TEST FUNCTION	
SIGNAL 34 Mb/s CLOCK INTERNAL	INTERNAL	
TERMINATION	750 UNBAL	
LINE CODE FREQUENCY OFFSET	HDB3 USER OFFSET	
PAYLOAD TYPE UNFRAMED PATTERN	+32 PPM UNSTRUCTURED 2^23-1 PRBS	
PRBS POLARITY	INU ITU	
STATUS:		æ
		MULTIPLE WINDOW

HOW TO:

- 1 Choose the FREQUENCY OFFSET required.
- If you choose USER OFFSET, you can set the frequency offset to be between 100 ppm and +100 ppm in 1 ppm steps.
 Select the field immediately below USER OFFSET and use
 DECREASE DIGIT
 INCREASE DIGIT
 INCREASE DIGIT
 INCREASE DIGIT
 INCREASE DIGIT

Setting up Signaling Bits

Description When transmitting 2.048 Mb/s signals with timeslot-16 CAS (PCM30 or PCM30CRC) multiframing the state of A,B,C,D signaling bits can be set. The signaling bits of all timeslots are set to the user-defined 4-bit value.

When transmitting a DS1 framed, structured signal the values of the A,B signaling bits for D4 and SLC-96 payloads, and A,B,C,D signaling bits for ESF payloads can be defined.

HOW TO Transmit a DS1 payload signal with user-defined signaling bits

DSn Operation

TRANSMITTER OUTPUT MAIN STRUCT'D TES SETTINGS SETTINGS FUNCT	PDH/DSn ST FION	
TEST SIGNAL DS1 PAYLOAD	56 kb/s ESE DS2 DS1 56kb 1 1 1	
PATTERN PRBS POLARITY B/G PATTERN B/G PATTERN 56 kb/s DS1 ESF ABCD BITS	2^11-1 PRBS NORM AIS NUMBERED 1111	
STATUS: D4 ESF	SLC-96	MULTIPLE WINDOW

- Choose PDH/DSn on the TRANSMIT display. Choose SIGNAL DS1 or DS3, and PAYLOAD TYPE STRUCTURED on the MAIN SETTINGS display
- 2 Choose TEST SIGNAL 56 kb/s or Nx56 kb/s on the STRUCTURED SETTINGS display.
- **3** Set the A,B bits (for D4 and SLC-96) and A,B,C,D bits (for ESF) as required.

SONET Operation

- 1 Choose **SONET** on the **TRANSMIT** display.
- **2** Set MAPPING to VT-1.5.
- 3 Choose MAPPING **FL BYTE DS1**, **ASYNC DS1** or **DS3** and VT PAYLOAD **STRUCTURED** on the **MAIN SETTINGS** display. If you choose

Selecting Test Features Setting up Signaling Bits

FL BYTE DS1 proceed to step 5.

- 4 Choose TEST SIGNAL **56 kb/s** or **Nx56 kb/s** on the **STRUCTURED SETTINGS** display.
- 5 Set the A,B bits (for D4 and SLC-96) and A,B,C,D bits (for ESF) as required.
- 6 Floating Byte DS1 selection: Set the ABCD bits for NO-F-BIT or ESF framing and/or the AB bits for D4 VT PAYLOAD framing as required.

HOW TOTransmit a 2 Mb/s signal with user-defined signaling bitsDSn Operation

TRANSMITTER OUTPUT MAIN STRUCT'D TEST SETTINGS SETTINGS FUNCTION SIGNAL	PDH/DSn 2 Mb/s
CLOCK SYNC INTERNAL TERMINATION LINE CODE FREQUENCY OFFSET	75Ω UNBAL HDB3 DFF
PAYLOAD TYPE PCM30CRC Pattern PRBS Polarity 2M CRS ABCD BITS	UNSTRUCTURED 2^15-1 PRBS INV ITU 1111
STATUS: UNFRAMED PCM30 PCM31	PCM30CRC PCM31CRC MULTIPLE NINDOW

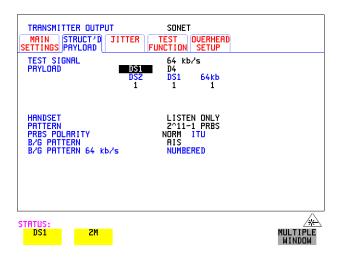
- **1** Choose **PDH/DSn** on the **TRANSMIT** display.
- 2 Choose SIGNAL 2 Mb/s and PAYLOAD TYPE PCM30 or PCM30CRC on the MAIN SETTINGS display.
- If UNSTRUCTURED is chosen set the 2M CAS ABCD bits value on the MAIN SETTINGS display.
 If STRUCTURED is chosen set the 2M CAS ABCD bits value on the STRUCTURED SETTINGS display.

Selecting Test Features Setting up Signaling Bits

TRANSMITTER OUTPUT MAIN STRUCT'D J SETTINGS PAYLOAD	SONET ITTER TEST OVERHEF FUNCTION SETUP	D	
SIGNAL OC-12 CLOCK INTERNAL FREQUENCY OFFSET	1310 ON INTERNAL OFF		
MRPPING STS 2M CRS RBCD BITS STS-3# 2 STS-1:	FL BYTE 2Mb/s 1111		
UT PAYLOAD PATTERN 2^15-1			
STATUS: PCM30 PCM31	PCM30CRC PCM31CRC	INSERT 2Mb/s	MULTIPLE WINDOW

SONET Operation

- 1 Choose **SONET** on the **TRANSMIT** display.
- **2** Set MAPPING to VT-2.
- 3 Choose MAPPING ASYNC 2Mb/s or FL BYTE 2Mb/s and VT PAYLOAD PCM30 or PCM30CRC on the MAIN SETTINGS display.
- If UNSTRUCTURED is chosen set the 2M CAS ABCD bits value on the MAIN SETTINGS display.
 If STRUCTURED is chosen set the 2M CAS ABCD bits value on the STRUCTURED SETTINGS display.


Setting Transmit Structured Payload/Test Signal

Description Structured DSn Payload/Test Signal settings determine the payload or the DSn test signal to be tested and set any background (non test) conditions to prevent alarms while testing.

TIP:If you wish to set the OmniBER 718 transmitter and receiver to the same Payload
settings, choose OTHER SETTINGS CONTROL COUPLED.

Interested in International Gateway Testing?

If your instrument has option 014 fitted you can map an E1 or 2Mb/s signal into DS3 as shown below:

HOW TO:

- 1 Choose the required TEST SIGNAL rate. If Nx64 kb/s or N X 56 kb/s is chosen, see "Setting Transmit N x 64 kb/s/N x 56 kb/s Structured Payload/Test Signal " page 71.
- Choose the PAYLOAD framing pattern. If TEST SIGNAL 2Mb/s is chosen INSERT 2 Mb/s is added to the PAYLOAD menu. See "Inserting an External DSn Payload/Test Signal " page 74. If TEST SIGNAL DS1 is chosen INSERT DS1 is added to the menu. See "Inserting an External DSn Payload/Test Signal " page 74.
- **3** Choose the test tributary in the structured payload, under 34Mb, 8Mb, 2Mb, 64 kb/s or DS2, DS1, 56 kb/s.

Selecting Test Features Setting Transmit Structured Payload/Test Signal

- 4 Choose the PATTERN type and PRBS POLARITY.
- **5** Choose the B/G PATTERN. (background) The B/G PATTERN in the non test 56/64 kb/s timeslots is fixed as NUMBERED, that is, each timeslot contains a unique number to allow identification in case of routing problems.

Signaling

6 If a 2 Mb/s PAYLOAD with PCM30 or PCM30CRC framing, or 56 kb/s or Nx56kb/s Test Signal is chosen. See, "Setting up Signaling Bits" page 65.

Setting Receive Structured Payload/Test Signal

Description Structured DSn Payload/Test Signal settings determine the payload or the DSn test signal to be tested.

TIP: If you wish to set the OmniBER 718 transmitter and receiver to the same Payload settings, choose **OTHER SETTINGS CONTROL**, **COUPLED**.

RECEIVER INPUT	SONET	
	JITTER TEST OVERHEAD	
MAIN SETTINGS PAYLOAD	FUNCTION MONITOR	
TEST SIGNAL DS1 PAYLOAD	DS1 D4	
DSI FITLUND	DSZ DS1	
	1 1	
DOTTERN	2^9-1 PRBS	
PATTERN PRBS POLARITY	NORM	
STATUS:		*
511105.		MULTIPLE
		WINDOW

HOW TO:

- 1 Choose the required Test Signal rate. If N x 64 kb/s or N x 56 kb/s is chosen, see "Setting Receive N x 64 kb/s/N x 56 kb/s Structured Payload/Test Signal " page 73.
- Choose the Framing pattern of the PAYLOAD. If TEST SIGNAL 2 Mb/s is chosen, DROP 2 Mb/s is added to the menu. See "Dropping an External Payload/Test Signal " page 77. If TEST SIGNAL DS1 is chosen, DROP DS1 is added to the menu. See "Dropping an External Payload/Test Signal " page 77.
- **3** Choose the test tributary within the structured payload, under 34Mb, 8Mb, 2Mb, 64 kb or DS2, DS1, 56 kb/s.
- 4 Choose the PATTERN type and PRBS polarity.

Setting Transmit N x 64 kb/s/N x 56 kb/s Structured Payload/Test Signal

DescriptionWideband services such as high speed data links and LAN interconnection require a
bandwidth greater than 56/64 kb/s but less than DS1/2 Mb/s for example 112 kb/s or
336 kb/s. These wide band signals are sent in a DS1/2 Mb/s frame by sharing the
signal across multiple timeslots.

N x 64kb/s/N x 56 kb/s structured payload allows a test pattern to be inserted across a number of timeslots even if the chosen timeslots are non-contiguous.

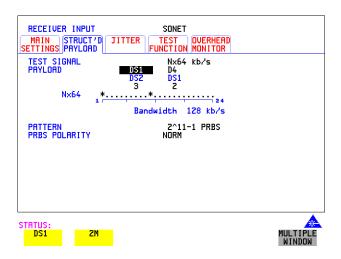
TRANSMITTER OUTPUT SONET	
SETTINGS PRYLORD FUNCTION SETUP TEST SIGNAL Nx64 kb/s PAYLORD DS1 D4	
DS2 DS1 1 1 Nx64 *	4
Bandwidth 64 Kb2	s
PRTTERN 2^11-1 PRBS PRBS POLARITY NORM B/G PRTTERN RIS B/G PRTTERN NX64 kb/s NUMBERED	
STATUS:	
	MULTIPLE

HOW TO:

- **1** Choose the required Test Signal rate.
- 2 If your instrument has option 014 fitted you can map an E1 or 2Mb/s signal into DS3. Select DS1 or 2M as shown in the figure above.
- **3** Choose the Framing pattern of the 2M or DS1 PAYLOAD.
- 4 Choose the test timeslots within the structured payload using DESELECT ALL
 DESELECT SELECT ← and → softkeys. As each timeslot is selected, an
 * marks the chosen timeslot.
- **5** Choose the PATTERN type and PRBS polarity.
- **6** Choose the B/G PATTERN.

Selecting Test Features Setting Transmit N x 64 kb/s/N x 56 kb/s Structured Payload/Test Signal

7 The B/G PATTERN in the non-test 56/64 kb/s timeslots is fixed as NUMBERED, that is, each timeslot contains a unique identification number.


Signaling

8 If a 2 Mb/s PAYLOAD with PCM30 or PCM30CRC framing, or 56 kb/s or Nx56kb/s Test Signal is chosen. See, "Setting up Signaling Bits" page 65.

Setting Receive N x 64 kb/s/N x 56 kb/s Structured Payload/Test Signal

DescriptionWideband services such as high speed data links and LAN interconnection require a
bandwidth greater than 56/64 kb/s but less than DS1/2 Mb/s e.g. 112 kb/s or
336 kb/s. These wide band signals are sent in a DS1/2 Mb/s frame by sharing the
signal across multiple timeslots.

N x 64kb/s and N x 56 kb/s structured payload/test signal allows the test Timeslots to be chosen for error measurement even when the Timeslots are non contiguous.

HOW TO: **1** Choose the required Test Signal rate.

- 2 If your instrument has option 014 fitted you can map an E1 or 2Mb/s signal into DS3. Select DS1 or 2M as shown in the figure above.
- **3** Choose the Framing pattern of the 2M or DS1 PAYLOAD.
- 4 Choose the test timeslots within the structured payload using DESELECT ALL DESELECT SELECT ← and → softkeys. As each timeslot is chosen an * marks the chosen timeslot. In the example above Timeslots 3, 5, 9, 21, 22, 23 are chosen for test.
- **5** Choose the PATTERN type and PRBS polarity.

Inserting an External DSn Payload/Test Signal

Description You can insert 2 Mb/s 34 Mb/s or 140 Mb/s into an STS-N line signal when option 012 is fitted. DS3, DS1, E3 and E1 can be inserted when option 014 is fitted.

RATE	Availability	Option
DS3	SDH & SONET	001, 012, 002
34Mb/s	SDH & SONET	001, 012,002
2Mb/s	PDH, SDH & SONET	001, 012, 002
DS1	DSn, SDH & SONET	001, 012, 002

HOW TO:

Insert 34 Mb/s, 140 Mb/s & DS3

TRANSMITTER OUTPUT SONET MRIN STRUCT'D JITTER TEST OVERHEAD SETTINGS PRYLOAD JITTER FUNCTION SETUP SIGNAL DC-12 1310 ON INTERNAL CLOCK INTERNAL FREQUENCY OFF	
MRPPING STS-1 FOREGROUND FULL SPE DS3 STS-3# 4 STS-1# 2	
PAYLORD TYPE DINSERT DSS USE 750 UNBAL 'IN' PORT ON PDH RECEIVE MODULE.	
STATUS: UNFRAMED M13 C-BIT INSERT	MULTIPLE

- 1 Press **TRANSMIT**, select **SONET** and the **MAIN SETTINGS** page.
- 2 Set up the required transmit SONET interface, set appropriate MAPPING then choose VT PAYLOAD INSERT 34 Mb/s, INSERT DS3 or INSERT 140 Mb/s as required. Connect your external source to the appropriate port as indicated on the instrument display (when you position the cursor on the PAYLOAD TYPE field and select INSERT).

Selecting Test Features Inserting an External DSn Payload/Test Signal

Insert 2 Mb/s or DS1 (Unstructured SONET Payload)

STS-3# 2 STS-1# 3 UTGRP# 7 UT# 1 UT PAYLORD INSERT DS1	MAPPING	. ∎ S	TS-1	FOREGROU VT1.5 ASYNC D:		
	STS-3# 3	z sts	-1#3 U			
LINE CODE AMI USE MUX' PORT ON PDH TX MODULE.	LINE CO	DE A	MI	TX MODULE.		

- 1 Connect the external payload to the MUX port of the PDH/DSn Transmit module. If 2 Mb/s connect to 75Ω MUX port. If DS1 connect to 100Ω MUX port.
- 2 Set up the required transmit SONET interface, and choose VT-2 or VT-1.5 MAPPING and VT PAYLOAD INSERT 2 Mb/s or INSERT DS1.

Insert 2 Mb/s or DS1 (Structured SONET Payload or Structured DSn)

TRANSMITTER OUTPUT MAIN STRUCT'D SETTINGS PAYLOAD FL	TEST OUE	Sonet Rhead Tup		
TEST SIGNAL DS1 PAYLOAD LINE CODE	DS2 5	DS1 Insert DS1 Ami DS1 1	I	
B/G PATTERN		RS F/G		
STATUS: UNFRAMED D4	ESF	SLC-96	INSERT DS1	MULTIPLE WINDOW

1 Connect the external payload to the MUX port of the DSn Transmit module. If 2 Mb/s connect to 75Ω MUX port. If DS1 connect to 100Ω MUX port.

Structured SONET Payload

- **2** Set up the required transmit SONET interface. See "Setting SONET Transmit Interface " page 29.
- **3** Set up the SONET structured payload. See "Setting Transmit Structured Payload/Test Signal " page 68.
- 4 Choose 2M PAYLOAD/DS1 PAYLOAD INSERT 2 Mb/s or INSERT DS1.
- **5** Choose the LINE CODE.

Structured DSn

- 6 Set up, the required transmit DSn interface, See "Setting PDH/DSn Transmit Interface (Option 012)" page 26.
- 7 Set up the DSn Test Signal interface. See "Setting Transmit Structured Payload/ Test Signal " page 68
- 8 Choose 2M PAYLOAD/DS1 PAYLOAD INSERT 2 Mb/s or INSERT DS1.
- **9** Choose the LINE CODE.

Dropping an External Payload/Test Signal

Description You can drop 2Mb/s 34 Mb/s or 140 Mb/s from an STS-N line signal when option 012 is fitted. DS3, DS1, E3 and E1 can be dropped when option 014 is fitted

HOW TO: Drop 34 Mb/s, DS3 and 140 Mb/s

RECEIVER INPUT SONET
SIGNAL DC-12
MAPPING I STS-1 FULL SPE
DS3
STS-3# 2 STS-1# 3
PRYLORD TYPE DROP DS3 DSX-3 USE 750 UNBAL YOUT? PORT ON PDH TRANSMIT MODULE.
STATUS:
UNFRRMED M13 C-BIT DROP MULTIPLE DS3 WINDOW

- 1 Connect the 75 Ω OUT port of the DSn Transmit module to the external equipment.
- Set up the receive SONET interface, and choose PAYLOAD, DROP 34 Mb/s
 DROP DS3, or DROP 140 Mb/s as required.
 If DROP DS3 is chosen, choose the DS3 output level.

Selecting Test Features Dropping an External Payload/Test Signal

RECEIVER IN MAIN SETTINGS PAY	JCT'D JITTE	SONET R TEST FUNCTION	OVERHEAI Monitor	Ď	
SIGNAL		OC-12			
MAPPING 🖿	STS-1	UT1.5 Async D	S1		
STS-3# 2	STS-1# 3	VTGRP# 1	UT# 1		
UT PAYLOAD DROP DS1 LINE CODE AMI USE 'DEMUX' PORT ON PDH RX MODULE					

Drop 2 Mb/s /DS1 (Unstructured SONET Payload)

- 1 Connect the DEMUX port of the DSn module to the external equipment.
- 2 Set up the required receive SONET interface, and choose VT-2 or VT-1.5 MAPPING and VT PAYLOAD DROP 2 Mb/s or DROP DS1.
- **3** Choose the required LINE CODE.

Drop 2 Mb/s/DS1 (Structured SONET Payload or Structured DSn)

RECEIVER INF MAIN STRU SETTINGS PAYL TEST SIGNAL DS1 PAYLOAD LINE CODE	ד מידכ	EST OVE CTION MOP DS2 7	SONET ERHEAD NITOR DS1 DROP DS1 B82S DS1 3	1	
		ſ	3		
Status: UNFRAMED	D4	ESF	SLC-96	DROP DS1	MULTIPLE WINDOW

1 Connect the DEMUX port of the Receive DSn module to the external equipment. If 2 Mb/s connect to 75Ω DEMUX port. If DS1 connect to 100Ω DEMUX port.

Selecting Test Features Dropping an External Payload/Test Signal

Structured SONET Payload

- **2** Set up the required receive SONET interface. See "Setting SONET Receive Interface " page 47.
- **3** Set up the SONET structured payload. See "Setting Receive Structured Payload/ Test Signal " page 70.
- 4 Choose 2M PAYLOAD DROP 2 Mb/s or DS1 PAYLOAD DROP DS1.
- **5** Choose the LINE CODE.

Structured DSn

- **6** Set up, the required receive DSn interface, See "Setting PDH/DSn Receive Interface " page 45.
- 7 Set up the DSn Test Signal interface. See "Setting Receive Structured Payload/ Test Signal " page 70
- 8 Choose 2M PAYLOAD DROP 2 Mb/s or DS1 PAYLOAD DROP DS1.
- **9** Choose the LINE CODE.

Adding Errors and Alarms at the SONET Interface

Description

Errors and alarms can be added to an SONET signal during testing.

	SONET RHEAD TUP
TEST FUNCTION SONET	ERR & ALARM
ERROR ADD TYPE RATE 7680 ERRORS I	CU-L (B2) MSP THRESHLD N 1 s
ALARM TYPE	RDI-L
STATUS:	MULTIPLE Window

HOW TO:

- 1 Set up the SONET transmit interface and payload required. See "Setting SONET Transmit Interface" page 29.
- 2 Select **TEST FUNCTION**, SONET, ERR & ALARM as shown above.
- 3 Choose the ERROR ADD TYPE and RATE required. Errors can be added at preset rates and at USER programmable rate. With the exception of ENTIRE FRAME, A1A2 FRAME and BIT, errors can be added at ERROR ALL rate. If CV-L errors are chosen errors can be added to trigger an APS THRESHOLD.

This takes the form of N errors in T time period. N and T are both selectable.

4 Choose the ALARM TYPE Errors and Alarms can be added at the same time.

Adding Errors and Alarms to a DSn Signal

Description Errors and alarms can be added to a DSn signal during testing. TRANSMITTER OUTPUT SONET MAIN STRUCT'D TEST OVERHEI SETTINGS PAYLOAD FUNCTION SETUP OVERHEAD TEST FUNCTION DSn PAYLD ERR & ALARM ERROR ADD TYPE FRM + MFRM RATE USER 1.0E-3 ON ALARM TYPE DS3 RAI/XBIT STATUS: Remote / X-bit alarm at DS3 DS3 RAI/ DS3 MORE MULTIPLE WINDOW X-BIT FEAC HOW TO: 1 If SONET interface is chosen, set up the SONET transmit interface and payload required. See "Setting SONET Transmit Interface" page 29. If DSn interface is chosen, set up the DSn interface and payload required. See

- 2 Select **TEST FUNCTION**, DSn PAYLD, ERR & ALARM as shown above.
- Choose the ERROR ADD TYPE and RATE on the Transmitter
 TEST FUNCTION display.
 The RATE can be selected from a fixed value or is user programmable. If you

"Setting PDH/DSn Transmit Interface (Option 012)" page 26.

select USER PROGRAM you can select the error rate before enabling the errors. This feature is useful for error threshold testing.

4 Choose the ALARM TYPE. Errors and Alarms can be added at the same time.

Using FEAC Codes

Description

The third C-Bit in subframe 1 is used as a FEAC channel, where alarm or status information from the far-end terminal can be sent back to the near-end terminal. The channel is also used to initiate DS3 and DS1 line loopbacks at the far-end terminal from the near-end terminal.

The codes are six digits long and are embedded in a 16 bit code word; the format is 0XXXXX011111111.

There are two types of code, Loopback and Alarm Status.

Loopback provides a choice of two DS1 messages and two DS3 Messages. The DS1 Messages can be sent in ALL DS1 channels or in a SINGLE channel. The message can be repeated up to 15 times.

Alarm Status provides 13 preset codes and a USER programmable code function. These codes can be transmitted continuously or in bursts.

The new code is transmitted by choosing **BURST** or **ON**.

MAIN	TTER OUTPUT	TEST	DH/DSn		
TEST FU	NCTION DS	in I	ERR & ALAR	М	
ERROR A	DD TYPE RATE		BIT (TEST) JFF		
MESSAGE REPEAT	DE TYPE	ACTIVATE 15 LOOP	DS3 FEAD Dopback DS1 . 15 Mess DFF	2	
STATUS:					
OFF	LOS	DS3	DS3	MORE	MULTIPLE

HOW TO: Transmit an FEAC code

- 1 Choose SIGNAL **DS3** and PAYLOAD TYPE **CBIT** on the **TRANSMIT** MAIN SETTINGS display.
- 2 Choose TRANSMIT TEST FUNCTION, DSn PAYLD and ALARM TYPE DS3 FEAC. When a FEAC code is not being transmitted, an all ones pattern is transmitted.

Selecting Test Features Using FEAC Codes

- **3** Choose the FEAC CODE TYPE.
- 4 Choose the MESSAGE from the choices displayed. If you chose a DS1 message an additional field to the right of the DS1 MESSAGE is displayed. Position the cursor on this field and choose ALL or SINGLE CHANNEL.
 If you choose SINGLE CHANNEL use the EDIT keys to select a channel from 1 to 28. Press END EDIT when finished.
- 5 If **LOOPBACK** is chosen, choose the REPEAT (TIMES) LOOP and MESS, in the range 1 to 15.
- 6 If ALARM/ STATUS is chosen, choose the BURST LENGTH (TIMES).
- 7 Choose TRANSMIT NEW CODE **BURST** or **ON** to transmit the selected FEAC message.

TIP: To View FEAC Messages

The received FEAC message can be viewed on the **RESULTS** display.

RESULTS	DSn	FE	AC MESSAGE		
IDLE LAST NON- 000000	EAC MESSAG All Ones) IDLE FEAC It of Frame	MESSAGE			
ELAPSED 1	TIME	00d 0	0h 00m 03s		
STATUS: ERROR SUMMARY	CUMUL- ATIVE	SHORT	ERROR	MORE	MULTIPLE WINDOW

Setting DSn Spare Bits

Description Certain Spare Bits will cause the occurrence of a minor alarm when received as a logical "0".:

8 Mb/s & 34 Mb/s - FAS Bit 12 2 Mb/s - NFAS Timeslot (timeslot 0 of NFAS frame) Bit 0

TRANSMITTER OUTPUT SONET MAIN STRUCT'D TEST OVERHEAD SETTINGS PAYLOAD FUNCTION SETUP	
TEST FUNCTION DSn PRYLD SPRRE BITS	
2M: Si BIT (T/S-0 BIT 1) 1 Sa BITS (NFRS T/S BITS 4-8) 11111	
CAS MFM T/S-16 BITS 5,7,8 111	
STATUS:	
511105.	MULTIPLE

HOW TO:

- If SONET interface is chosen, set up the SONET transmit interface and payload required. See "Setting SONET Transmit Interface " page 29.
 If DSn interface is chosen, set up the DSn transmit interface and payload required. See "Setting PDH/DSn Transmit Interface (Option 012)" page 26.
- 2 Set the value of the spare bits required for testing. If a BIT SEQUENCE is required, choose SEND SEQUENCE **ON** to transmit the sequence.

Adding Pointer Adjustments

Introduction Pointers perform a critical role in the error free transmission of payload data (subscriber data) through a SONET network. They also enable individual payload channels to be inserted or extracted from a high speed OC-n line signal (for example the functionality provided by ADMs).

Pointer adjustments are often necessary to compensate for asynchronous operation between different nodes within an SONET network. These adjustments however can result in jitter being added to a DSn signal output from a SONET network element.

Jitter caused by Pointer Adjustments

Pointer adjustments are the mechanisms within SONET to compensate for frequency and phase differences between STS-n SPE channels and the outgoing SONET frames. These pointer adjustments are byte wide and since they can occur randomly, they may cause significant amounts of payload signal jitter. It is therefore necessary to control the jitter on payload signals that is due to pointer adjustments.

Pointer adjustment activity within a network can be randomly spaced individual pointer adjustments, pointer bursts or periodic pointer adjustments.

The Bellcore GR-253 and ANSI T1.105 standards defines a set of pointer sequences to be used when evaluating an NE's pointer adjustment jitter performance.

The OmniBER 718 generates a set of test sequences which can be used to simulate network pointer adjustment activity. This allows the amount of tributary jitter due to different types of pointer adjustment to be measured in the OmniBER 718.

Description

The transmitted SPE or VT pointer value can be adjusted for testing purposes.

TRANSMITTER OUTPUT MAIN STRUCT'D TEST SETTINGS PAYLOAD FUNCTION	SONET OUERHEAD SETUP
TEST FUNCTION SONET	ADJUST PTR
POINTER TYPE	UT POINTER T1.105 / GR-253
ADJUSTMENT TYPE A4 PATTERN POLARITY INTERVAL	ILIUS / GRESS PERIDDIC NORMAL 26-1 NEGATIVE 200 ms
POINTER SEQUENCES	STOPPED
CTOTUC	
STATUS:	

HOW TO:

- **1** Set up the SONET transmit interface and payload required. See "Setting SONET Transmit Interface " page 29.
- **2** Choose the POINTER TYPE.
- **3** Choose the ADJUSTMENT TYPE required.

BURST - You determine the size of the burst by the number of PLACES chosen. If, for example, you choose 5 PLACES the pointer value will be stepped 5 times in unit steps e.g. 0 (start value), 1, 2, 3, 4, 5 (final value). The interval between steps is as follows:

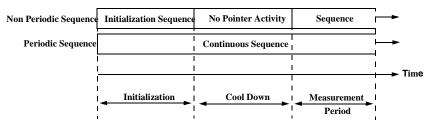
For STS-SPE the minimum spacing between adjustments is 4 frames (500 us). For VT, the minimum spacing between adjustments is 4 multiframes (2ms). Choose ADJUST POINTER [ON] to add the chosen burst.

NEW POINTER - You can choose any pointer value in the defined range (0 to 782 For an STS-1 pointer) with or without a New Data Flag, and transmit it. The current pointer value is displayed for information purposes. Choose ADJUST POINTER [ON] to transmit the new pointer value.

OFFSET - You can frequency offset the line rate or the SPE/VT rate, relative to each other, thus producing pointer movements. If you offset the SPE pointer, an 87:3 sequence of pointer movements is generated. The available configurations are listed in the following table.

If you are currently adding Frequency Offset to the SONET interface or payload, pointer OFFSET is not available.

Pointer Type	Line Rate	SPE Rate	VT Rate
SPE	Constant	Offset	Tracks STS Payload
SPE	Offset	Constant	Constant
VT	Constant	Constant	Offset
VT	Offset	Tracks Line Rate	Constant


T1.105/GR-253 - Provides pointer movements according to T1.105 and GR-253:

- 4 Choose the T1.105/GR-253 ADJUSTMENT TYPE.
- **5** Choose the POLARITY, INTERVAL and PATTERN (where applicable) for the selected sequence.
- 6 Choose POINTER SEQUENCES **START INIT** to generate the selected sequence and **STOP INIT** to stop the pointer sequences.

T1.105/GR-253 Pointer Sequences Explained

In addition to the BURST, NEW POINTER and OFFSET pointer movements described, the OmniBER 718 can also generate pointer sequences (pointer movements) according to T1.105.03 and GR-253.

Before running a pointer sequence you can elect to run an initialization sequence, followed by a cool down period, and then run the chosen sequence. This is selected using the START INIT softkey shown in the display on the previous page. Initialized pointer sequences are made up of three periods: the *Initialization Period*, the *Cool Down Period*, and the *Sequence (Measurement) Period*, an example is given in the following figure:

Note: SINGLE (A1), BURST (A2) and PHASE TRANSIENT(A3) are Non Periodic Sequences.

Initialization Period

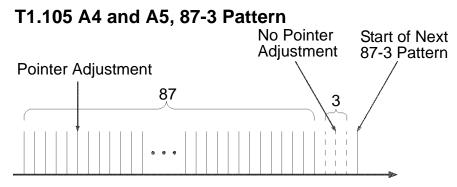
For SINGLE A1, BURST A2 and PHASE TRANSIENT A3 sequences the initialization sequence consists of 60 seconds of pointer adjustments applied at a rate of 2 adjustments per second and in the same direction as the specified pointer sequence.

Cool Down Period

A period following the initialization period which for SINGLE e), BURST f) and PHASE TRANSIENT sequences is 30 seconds long when no pointer activity is present.

Sequence (Measurement) Period

The period following the Cool Down period where the specified pointer sequence runs continuously.


Periodic Test Sequences

For periodic test sequences (for example PERIODIC ADD) both the 60 second initialization and 30 second cool down periods consist of the same sequence as used for the subsequent measurement sequence. If the product of the period T and the selected Optional background pattern (87+3 or 26+1) exceeds 60 seconds then the longer period is used for the initialization. For example, if T is set for 10 seconds then the initialization period may be extended to 900 seconds.

The OmniBER 718 displays a message indicating which phase (initialization, cool down or measurement) the transmitter is currently generating.

NOTEThe following conditions apply for pointer sequence generation:
The sequences can only be applied to the SPE pointer when the SPE does not contain
a VT structure, otherwise it is applied to the VT pointer. Pointer sequence generation
is not available when a frequency offset is being applied to the Line Rate.

The following figure gives an example of a T1.105/GR-253, 87-3 Pointer Sequence.

An Example of a Pointer Sequence

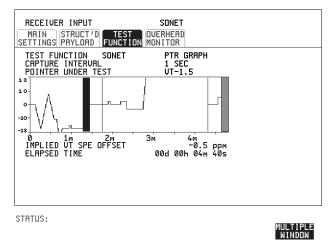
Pointer Sequence	Description	
T1.105 A1 SINGLE GR-253 5-29	Periodic Single adjustments, all of the same polarity which is selectable. Separation between pointer adjustments is fixed at approximately 30 seconds.	
T1.105 A2 BURST OF 3 GR-253 5-30	Periodic bursts of 3 adjustments, all of the same polarity which is selectable. The interval between bursts is fixed at approximately 30 seconds. The interval between adjustments within a burst is set to the minimum.	
T1.105 A3 PHASE TRANSIENT GR-253 5031	Phase transient pointer adjustment burst test sequence. All adjustments are of the same polarity, which is selectable. The interval between bursts is fixed at 30 seconds. Each burst consists of 7 pointer movement. The first 3 in each burst are 0.25 s apart, and the interval between the 3 and 4 movement, and each remaining movement 0.5 seconds.	
T1.105 A4 PERIODIC NORMAL (87-3 Pattern) GR-253 5-33(b)	An 87-3 pattern is selected. The sequence pattern is 87 pointer movements followed by 3 missing pointer movements. Pointer polarity is selectable and the time interval between pointer adjustments settable.	
T1.105 A4 PERIODIC NORMAL (Continuous Pattern) GR-253 5-34(b)	Provides a continuous sequence of pointer adjustments. The polarity of the adjustments is selectable, and the time interval between adjustments can be set (see Note 1).	

Pointer Sequence	Description
GR-253 5-32(b) PERIODIC NORMAL (26-1 Pattern)	This selection is only available if you have selected VT1.5 mapping. The sequence pattern is 26 pointer movements followed by 1 missing pointer movement. Pointer polarity is selectable and the time interval between pointer adjustments programmable to 200 ms, 500 ms, 1 s, 2 s, 5 s or 10 seconds.
T1.105 A5 PERIODIC ADD (87-3 Pattern) GR-253 5-33(c)	An 87-3 pattern is selected. The sequence pattern is 87 pointer movements followed by 3 missing pointer movements with an added pointer movement after the 43rd pointer. The spacing between the added adjustment and the previous adjustment is set to the minimum. Pointer polarity is selectable. The time interval between pointer adjustments can be set (see Note 1). Added adjustments occur every 30 seconds or every repeat of the 87-3 pattern, whichever is longer.
T1.105 A5 PERIODIC ADD (Continuous Pattern) GR-253 5-34(c)	Periodic Single adjustments, with selectable polarity and added adjustment (1 extra). The spacing between the added adjustment and the previous adjustment is set to the minimum, (see Note 2). The time interval between pointer adjustments can be set (see Note 1). Added adjustments occur every 30 seconds or every repeat of the 87-3 pattern, whichever is longer.
GR-253 5-32(c) PERIODIC ADD (26-1 Pattern)	This selection is only available if you have selected VT1.5 mapping. The sequence pattern is 26 pointer movements followed by 1 missing pointer movement. The added adjustment occurs 2 ms after the 13th pointer adjustment. Pointer polarity is selectable and the time interval between pointer adjustments programmable to 200 ms, 500 ms, 1 s, 2 s, 5 s or 10 s. Added adjustments occur every 30 seconds or every repeat of the 26-1 pattern, whichever is longer.
T1.105 A5 PERIODIC CANCEL (87-3 pattern) GR-253 5-33(d)	An 87-3 pattern is selected. The sequence pattern is 87 pointer movements followed by 3 missing pointer movements with a cancelled pointer movement at the 87th pointer. Pointer polarity is selectable, and the time interval between pointer adjustments can be set (see Note 1). Cancelled adjustments occur every 30 seconds or every repeat of the 87-3 pattern, whichever is longer.

eriodic Single adjustments, with selectable polarity and cancelled adjustment
1 less). The time interval between pointer adjustments can be set (see Note 1). Cancelled adjustments occur every 30 seconds or every repeat of the 87-3 attern, whichever is longer.
This selection is only available if you have selected VT1.5 mapping. The equence pattern is 26 pointer movements followed by 1 missing pointer novement. The cancelled adjustment is the 26th pointer adjustment, that is the ne before the regular gap of 1. Pointer polarity is selectable and the time nterval between pointer adjustments programmable to 200 ms, 500 ms, 1 s, 2 , 5 s or 10s. Cancelled adjustments occur every 30 seconds or every repeat of ne 26-1 pattern, whichever is longer.
rl a rl r r

OTEFor SPE pointers the sequence interval is selectable from 7.5 ms, 10, 20, 30, 34 ms;
40 to 100 ms in 10 ms steps, 100 to 1000 ms in 100 ms steps, 1, 2, 5, 10 seconds.
For VT pointers the sequence interval is selectable from: 200 ms, 500 ms, 1, 2, 5 and
10 seconds.
For SPE pointers the minimum spacing between adjustments is 500 us.
For VT pointers the minimum spacing between adjustments is 2 ms.

	Pointer Sequences Available with Selected Mapping			
		MAPPING		
POINTER SEQUENCE	SPE	VT6, VT2	VT1.5	
A1 SINGLE				
A2 BURST OF 3		√ 3	\checkmark	
A3 PHASE TRANSIENT			\checkmark	
A4 PERIODIC NORMAL(87-	3) √			
A4 PERIODIC NORMAL (Continuous)			\checkmark	


Table 3	Pointer Sequences Available with Selected
	Mapping

	MAPPING		
POINTER SEQUENCE	SPE	VT6, VT2	VT1.5
PERIODIC NORMAL (26-1)			
A5 PERIODIC ADD (87-3)	\checkmark		
A5 PERIODIC ADD (Continuous)	\checkmark		
PERIODIC ADD (26-1)			\checkmark
A5 PERIODIC CANCEL (g) 87- 3	\checkmark		
A5 PERIODIC CANCEL (Continuous)			
PERIODIC CANCEL 26-1			

Using Pointer Graph Test Function

Pointer Graph shows the relative offset during the measurement period. This allows the time relationship of SPE or VT pointer movements to be observed. Up to 4 days of storage allows long term effects such as Wander to be observed. If an alarm occurs during the measurement period, a new graph starts at the centre of the display (offset zero) after recovery from the alarm.

The Pointer Graph display can be logged to the chosen logging device. See "Logging on Demand" page 241.

TIP:	The graph can also be viewed on the RESULTS SONET RESULTS display at the end of the measurement.
HOW TO:	1 Set up the receive SONET interface and payload as required. See "Setting SONET Receive Interface" page 47.
	 2 On the RECEIVE Test Function page, select PTR GRAPH then choose the CAPTURE INTERVAL required. The capture interval determines the time between captures. Low values of capture interval should be chosen when a high degree of pointer movements is expected. High values of capture interval should be chosen when a low degree of pointer movements is expected, for example Wander over 1 day, use 5 MINS and Wander over 4 days, use 20 MINS. If, during a long term measurement (4 days), an event occurs at a particular time each day, then the instrument can be set to log the results graph of that event.

TIP:

Selecting Test Features Using Pointer Graph Test Function

TIP:

- **3** Choose the POINTER UNDER TEST type.
- 4 Press **RUN/STOP** to start the measurement.

If the event occurs outside normal working hours, a Timed Start measurement can be made.

The values of capture interval available and the approximate total capture window is as follows:

SEC - display window of approximately 5 minutes.
 SECS - display window of approximately 25 minutes.
 SECS - display window of approximately 1 hour 40 minutes.
 MIN - display window of approximately 5 hours.
 MIN - display window of approximately 1 day.
 MIN - display window of approximately 4 days.

Stressing Optical Clock Recovery Circuits

DescriptionThis test is essentially designed for testing optical clock recovery circuits in the
presence of long runs of zero's or one's (after scrambling). The test function page
allows control of the test pattern and the block length. The maximum block length is
2 bytes less than the width of the SPE.

When the test is enabled, the instrument applies the selected pattern immediately after the first row of Section Overhead bytes **after scrambling**. The location of the start of the pattern is byte 4 at 52 Mb/s (i.e. after the first three bytes of overhead), byte 10 at 155 Mb/s, byte 37 at 622 Mb/s and byte 145 at 2488 Mb/s. The remainder of the SPE will contain the signal structure and pattern as defined on the TRANSMITTER, MAIN SETTINGS page.

The payload is overwritten in such a way that the transmitted B1 and B2 values are correct.

When using this feature to test network equipment clock recovery, long runs of zero's may be inserted at the input of the UUT (unit under test) and by monitoring B1 and B2 at the UUT output, error free transmission can be verified.

The stress test is available at all optical rates.

TRANSMITTER OUTPUT	SONET	
MAIN STRUCT'D JITTER SETTINGS PAYLOAD	TEST OVERHEAD FUNCTION SETUP	
TEST FUNCTION SONET	STRESS TEST	
STRESSING PATTERN BLOCK LENGTH	ALL ZEROS 2 Bytes	
TATUS:		
		MULTIPLE WINDOW

HOW TO:

1 Set up the SONET transmit interface and payload required. See "Setting SONET Transmit Interface" page 29.

Selecting Test Features Stressing Optical Clock Recovery Circuits

Choose the required STRESSING PATTERN.

The G.958 test pattern consists of 7 consecutive blocks of data as follows: the first row of section overhead bytes, ALL ONES, a PRBS, the first row of section overhead bytes, ALL ZEROS, a PRBS and the first row of section overhead bytes.

2 If you choose ALL ONES or ALL ZEROS as the stressing pattern, choose the number of bytes in the BLOCK LENGTH.

Generating Automatic Protection Switch (APS) Messages

Description You can program the K1 and K2 bytes to exercise the APS functions for both LINEAR (GR-253) and RING (GR-1230) topologies.

The APS Message types are:-

- PASSIVE
- ACTIVE

The following table shows the APS message type availability.

ТХ	RX	TOPOLOGY	APS Message Types
SONET	PDH/DSn	LINEAR	PASSIVE
SONET	PDH/DSn	RING	PASSIVE
SONET	SONET	LINEAR	PASSIVE or ACTIVE
SONET	SONET	RING	PASSIVE

GENERAL
HOWTO:1Set up the SONET transmit interface and payload required. See "Setting SONET
Transmit Interface " page 29.

- **2** Choose the TOPOLOGY required.
- **3** Follow the appropriate HOWTO, listed in the following pages.

Selecting Test Features Generating Automatic Protection Switch (APS) Messages

PASSIVE APSThe default APS message type is PASSIVE. The APS message is only transmitted**HOWTO:DOWNLOAD** key is pressed.

TRANSMITTER OUTPUT SONET MAIN STRUCT'D TEST OVERHEAD SETTINGS PAYLOAD FUNCTION SETUP	
SETUP APS NEW TX TOPOLOGY LINEAR PASSIUE BITS 1->4 0000:NO REQUEST BITS 5->8 0000:NULL CHANNEL K2 BITS 1->4 0000 BRIDGED CHANNEL NO. BIT 5 0: 1+1 ARCHITECTURE BITS 6->8 000: RESERVED	
CURRENT TX CURRENT RX K1 0000000 K1 00000011 K2 00000000 K2 00000000	
TRANSMIT NEW K1/K2 SELECT	
STATUS: PRSSIVE ACTIVE	MULTIPLE WINDOW

HOW TO: **1** Select PASSIVE APS message type.

NOTE This step does not apply to RING TOPOLOGY.

- 2 Choose the message to be transmitted. If LINEAR topology is chosen, choose the CHANNEL, the BRIDGED CHANNEL NO., the ARCHITECTURE and the RESERVED bits you require. If RING topology is chosen, choose the DESTINATION NODE ID, the SOURCE NODE ID, the type of PATH and the status code (K2 Bits 6->8) The current TX and RX, K1 and K2, values are displayed for reference only.
- **3** Choose **DOWNLOAD** to transmit the new K1/K2 values.

Selecting Test Features Generating Automatic Protection Switch (APS) Messages

BITS 5->8 0000:N K2 BITS 1->4 0000	TION SETUP LINEAR PASSIVE O REQUEST ULL CHANNEL BRIDGED CHANNEL NO. 1:N ARCHITECTURE	
CURRENT TX K1 00000000 K2 00001000	CURRENT RX K1 00000011 K2 00000000	
TRANSMIT NEW K1/K2	SELECT	
STATUS: Select Down Load		MULTIPLE WINDOW

ACTIVE APS Message Type This message type only applies to LINEAR topology. The ACTIVE APS message type gives real-time response keep-alive capability. The instrument will not initiate a

The ACTIVE APS message type gives real-time response to provide switching keep-alive capability. The instrument will not initiate any changes, but will respond to change requests that appear on the input K1/K2 byte values.

The ACTIVE APS message type offers two modes:-

- UNIDIRECTIONAL
- BIDIRECTIONAL

The behavior for each mode is as shown in the following table.

APS MODE	RX K1 (b5-b8) [*]					TX K2 (b6-b8) [*]
UNIDIRECTIONAL	xxxx	0000	0000	хххх	user	100
BIDIRECTIONAL	0000	0000	0000	0000	user	101
BIDIRECTIONAL	уууу	0010	уууу	уууу	user	101

GR bit numbering convention

where:

xxxx = any 4-bit binary value.

user = user programmable bit, corresponding to APS ARCHITECTURE.

yyyy = any non-zero 4-bit binary value.

TRANSMITTER OUTPUT SONET MRIN STRUCT'D TEST OVERHEAD SETTINGS PAYLORD FUNCTION SETUP	
SETUP APS NEW TX TOPOLOGY LINEAR CITIVE K1 BITS 1->8 SET TO 0000000 K2 BITS 1->4 SET IN RESPONSE TO RX UALUE K2 BIT 5 0: 1+1 ARCHITECTURE BITS 6->8 100: UNIDIRECTIONAL	
CURRENT TX CURRENT RX K1 00000000 K1 00000011 K2 00110100 K2 00000000 TRRNSMIT NEW K2 SELECT	
STATUS: PASSIVE ACTIVE	MULTIPLE WINDOW

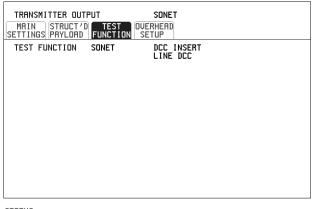
HOW TO:

- **1** Select ACTIVE APS message type.
- **2** Select ACTIVE APS message mode.

TRANSMITTER OUTPUT SONET MAIN STRUCT'D TEST OVERHEAD SETTINGS PAYLOAD FUNCTION SETUP	
SETUP APS NEW TX TOPOLOGY LINEAR ACTIVE UNDORCOTIONAL K1 BITS 1->8 SET TO 00000000 K2 BITS 1->4 SET IN RESPONSE TO RX VALUE K2 BIT 5 0: 1+1 ARCHITECTURE BITS 6->8 100: UNIDIRECTIONAL	
CURRENT TX CURRENT RX K1 0000000 K1 00000011 K2 00110100 K2 0000000	
TRANSMIT NEW K2 SELECT	
STATUS: UNI- BI- DIRECT DIRECT	MULTIPLE WINDOW

- **3** Select the required APS ARCHITECTURE.
- **4** Choose **DOWNLOAD** to transmit the new K1/K2 values.

TRANSMITTER OUTPUT SONE MAIN STRUCT'D TEST SETTINGS PAYLOAD FUNCTION SETUP SETUP APS NEW TX TOPOLOGY LINEAR AC UNIDIRECTION K1 BITS 1->8 SET TO 00000000 K2 BITS 1->4 SET IN RESPONSE TO	TIVE AL
K2 BIT 5 1: 1:N ARCHITECT BITS 6->8 100: UNIDIRECTIONAL	URE
	00000011 000000000
STATUS: Select Down Load	MULTIPLE WINDOW


Inserting and Dropping the Data Communications Channel

Description

The Data Communications Channel (DCC) of the regenerator and multiplexer section overhead can be verified by protocol testing. The Insert and Drop capability provides access to the DCC via the RS-449 connector on the front panel of the Multirate Analyser module.

DCC INSERT is available on the **TRANSMIT**, **SONET**, **TEST FUNCTION** display.

DCC DROP is available on the **RECEIVE** SONET **TEST FUNCTION** display.

STRTUS:

HOW TO:

1 Connect the Protocol Analyzer to the DCC port on the Multirate Analyzer module.

WINNOW

2 Choose the required DCC.

Using DS1 LOOP Codes

Description A loopback code causes the far end equipment to return a signal to the sender, so that the sender can verify signal integrity. Loop codes are used by carriers of the T1 signal and users of the transport medium as a maintenance tool to aid in fault location. Loopback commands are in-band (that is they use the payload space), and out-band (they use an ESF data link).

The OmniBER 718 provides both In-band and Out-band loop codes as follows:

Out-band LoopOut-band codes are transmitted in an ESF data link, in addition to transmitting the
in-band signal in the payload. They are only available when ESF framing is selected
on the Transmitter OutputMAIN SETTINGS
page.

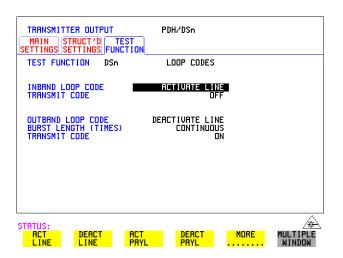
Loop type	Activate	Deactivate	
Line	11111111 01110000	111111100011100	
Payload	11111111 00101111	11111111 01001100	
Network	11111111 01001000	n/a	
Universal	n/a	11111111 00100100	
User Code	11111110xxxxx0		

Note that when switching from an idle message to a loop-back message, the loopback message will start following the idle message and not part way through it.

Note that the left most bit is transmitted first, and that when a loop code is not being sent, the idle data link sequence is sent. This is a continuous repetition of the pattern 01111110

In-band LoopWith in-band codes, the transmitted signal comprises the entire payload of the signal,
overwriting whatever signal was there before. The signal may be framed or
unframed. When framed the framing bits overwrite the loopback code (see "In-Band
DS1 Loopcode 156MTS Compatibility" on next page).

Note the user word can be set to any length, between 3 and 8 bits. The left most bit is transmitted first.


Selecting Test Features Using DS1 LOOP Codes

Loop type	Activate	Deactivate
Line	00001	001
Payload	1100	1110
Network	11111111 01001000	n/a
User Code	XXXXXXXX	XXXXXXXX

The following in-band codes can be selected .

In-Band DS1 Loopcode 156MTS Compatibility

Normal operation is such that DS1 framing bit overwrites the DS1 Loopcode pattern. A selection on the **OTHER MISCELLANEOUS** page enables you to change operation such that DS1 Loopcode is gapped in order to prevent the DS1 framing bit overwriting the DS1 Loopcode pattern. See page 292 In-Band DS1 Loopcode 156MTS Compatibility.

HOW TO:

Transmit an In-band loop code

- 1 Choose SIGNAL **DS1** and set LINE CODE and PAYLOAD TYPE as required on the **[TRANSMIT] MAIN SETTINGS** display.
- 2 Choose **TRANSMIT TEST FUNCTION** and set the TEST FUNCTION field to **DSn** and **LOOP CODES**.

Selecting Test Features Using DS1 LOOP Codes

- **3** Choose the INBAND LOOP CODE from the choices given.
- 4 To transmit a code select the TRANSMIT CODE field on the **TRANSMIT TEST FUNCTION**, **DSn**, **LOOP CODES** display and select **BURST**. The code is sent for nominally eight seconds.

HOW TO: Monitor/view received loop codes

- 5 Choose SIGNAL **DS1** on the **RECEIVE MAIN SETTINGS** display. Also set the LINE CODE to match the setting on the Transmitter display.
- 6 Choose **DSn RESULTS** and **LOOP CODES** on the **RESULTS** display.
- 7 Set the INBAND LOOPUP and LOOPDOWN fields to the required codes. Note the instrument receiver only detects the codes you have chosen. It does not detect other codes in the background. If you wish to view other codes, then you must select them in the appropriate fields.
- 8 View the results in the RESULTS window.

TRANSHITTER OUTPUT PDH/DSn HATIN STRUCT JD JITTER FUNCTION SETTINGS SETTINGS TEST FUNCTION DSn LOOP CODES INDAND LOOP CODE ACTIVATE NETWORK TRANSHIT CODE ACTIVATE LINE BURST LOOP CODE ACTIVATE LINE SURST LOOP CODE ACTIVATE LINE SURST LOOP CODE ON ACTIVATE LINE SURST LOOP CODE ACTIVATE LINE SURST LOOP CODE ON ACTIVATE LINE	RECEIVER INPUT PDH/DSn FHIN STRUCT/D JITTER TEST JETTINS JETTINS DSI TEST STGHA DSI TEST TEST LINE CODE HIL TEST TEST LIVE CODE HIL TEST TEST PAYLORD TYPE ESF UNSTRUCTURED PATTERN ORSS ORSS
RESULTS DSn LOOP CODES INSPRID LOOP DOWN DEPOTIVATE LINE DETECTED LOOP DOWN DEPOTIVATE LINE LAST VALID CODE 1000 OURBAND CURRENT CODE 111000 ACTIVATE LINE CURRENT CODE 00100 HOW 105 ELAPSED TIME 000 00h 00w 105 STATUS: Transmitting inband bur ACT HCT ACT LINE PRYL N/WORK	PUNCTION HISCELLANEOUS KEYBORED LOOK BEEP ON RECEIVED ERROR OFF ISARTS COMPRIBELITY OFF SUSPEND TEST ON SIGNEL LOSS OFF MS-REI RESULT ENRELE ON GRAPH STORREE RESOLUTION GRAPH STORREE RESOLUTION GRAPH STORREE RESOLUTION UII reduce storage capacity by SO: SINGLE SINGLE SINGLE

HOW TO: Transmit an Out-band loop code

- 1 Choose SIGNAL **DS1** and set LINE CODE as required, and PAYLOAD TYPE to **ESF** on the **TRANSMIT MAIN SETTINGS** display.
- 2 Choose **TRANSMIT TEST FUNCTION** and set the TEST FUNCTION field to **DSn** and **LOOP CODES**.

- **3** Choose the OUTBAND LOOP CODE from the choices given.
- **4** Set the BURST LENGTH to **CONTINUOUS** or **BURST**. The BURST length can be set from 1 to 15 times .
- 5 To transmit the code set the TRANSMIT CODE field on the **TRANSMIT TEST FUNCTION** field to **ON** or **BURST** as required.

HOW TO: Monitor/view received loop codes

- 6 Choose SIGNAL **DS1** and PAYLOAD TYPE **ESF** on the **RECEIVE** MAIN SETTINGS display. Also set the LINE CODE to match the setting on the Transmitter display.
- 7 Choose **DSn RESULTS** and **LOOP CODES** on the **RESULTS** display.
- 8 View the CURRENT CODE and LAST CODE results in the RESULTS window.

4

"Using Overhead BER Test Function" page 108 "Performing a Trouble Scan" page 109 "Test Timing" page 111 "Making SONET Analysis Measurements" page 112 "Making DSn Analysis Measurements" page 113 "Measuring Frequency" page 114 "Measuring Optical Power" page 115 "Measuring Round Trip Delay" page 116 "Monitoring Signaling Bits" page 118 "Measuring Service Disruption Time" page 119 "Performing a SONET Tributary Scan" page 122 "Performing a SONET Alarm Scan" page 125 "Performing a DSn Alarm Scan" page 126 "Measuring Jitter" page 127 "Measuring Extended Jitter" page 129 "Measuring Wander" page 131 "Measuring Jitter Tolerance" page 134 "Measuring Jitter Transfer" page 138 "Measuring Pointer Adjustment (Tributary) Jitter" page 144

Making Measurements

Using Overhead BER Test Function

Description

.

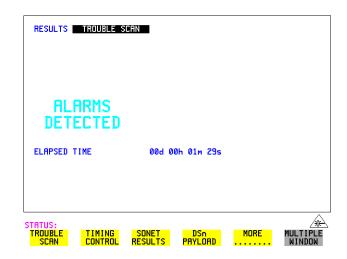
You can perform a Bit Error Rate test on chosen bytes of the section, line and path overhead bytes.

The OVERHEAD BER controls are located under **TEST FUNCTION** in the TRANSMITTER and RECEIVER windows.

RECEIVER INPUT MAIN STRUCT'D TEST SETTINGS PAYLOAD FUNCTIO		
TEST FUNCTION SONET MEASURE PRBS FROM BYTE	OVERHEAD BER	
ERROR COUNT ERROR RATIO ERROR FREE SECONDS %ERROR FREE SECONDS	19 6.071E-06 42 87.500	
PRTTERN LOSS SECONDS	0	
ELAPSED TIME	00d 00h 00m 48s	

STATUS:

MULTIPLE WINDOW


HOW TO:

- 1 Set up the SONET transmit interface and payload required. See "Setting SONET Transmit Interface" page 29.
- **2** Set up the receive SONET interface and payload as required. See "Setting SONET Receive Interface " page 47.
- 3 Choose the overhead byte to be tested on the **RECEIVE** SONET TEST FUNCTION display.
- 4 Choose the overhead byte to be tested on the **TRANSMIT SONET TEST FUNCTION** display.
- **5** Press **RUN/STOP** to start the test.
- 6 The PRBS pattern can be errored by pressing **SINGLE**.

Performing a Trouble Scan

When first connecting to the network it can be useful to have an indication of any problems that exist before starting testing. In the OmniBER 718 this feature is provided by Trouble Scan.

All possible error sources and alarms are scanned simultaneously. If any error counts are not zero then these are displayed. Up to 4 non-zero error counts are displayed in priority order.

If all error counts are zero and any alarms are detected "ALARMS DETECTED" is displayed.

SHOW and the alarm led's can be used to determine which alarms were detected.

If no alarms are detected and all error counts are zero then "NO TROUBLE" is displayed.

Error Count Priority - see the Table on the following page for a list of error count priority.

Making Measurements Performing a Trouble Scan

Error Count Priority

DSn	SONET	АТМ	POS
CRC CODE DS3FR (DS1FR) P-BIT C-BIT FEBE BIT	CV-S CV-L CV-P CV-V FRAME CRC DS3FR (DS1FR, FAS2) REI-L REI-P REI-V P-BIT C-BIT REBE (FEBE) BIT	Non corrected HEC	FCS Errors IP Header Errors IP Payload Errors

Making Measurements Test Timing

Test Timing

Description There are two aspects to test timing:

- Error results may be displayed as short term or cumulative over the measurement period. If short term error measurements are required, the short term period may be selected.
- The period of the test may be defined or controlled manually.

RESULTS TINI SHORT TERM PEI TEST TIMING START GRAPH STORAGE		24 HOURS 23:05		
	11NG SONET ITROL RESULTS	DSn PAYLOAD	MORE	MULTIPLE WINDOW

HOW TO:

- 1 Choose **TIMING CONTROL** on the **RESULTS** display.
- 2 Set the SHORT TERM PERIOD to the timing required for short term results.
- Choose the type of TEST TIMING required:
 For manual control with RUN/STOP choose MANUAL.
 For a single timed measurement period started with RUN/STOP, choose SINGLE and choose the Test duration.
 For a timed period starting at a specified time, choose TIMED, choose the Test duration and the test START date and time.

Making SONET Analysis Measurements

Description G.826, M.2101, M.2110 and M.2120 analysis results are provided for all relevant SONET error sources.

In addition the following results are provided:

Cumulative error count and error ratio. Short Term error count and error ratio. Alarm Seconds. Frequency and optical power. Pointer Values and pointer adjustment counts. Pointer Graph.

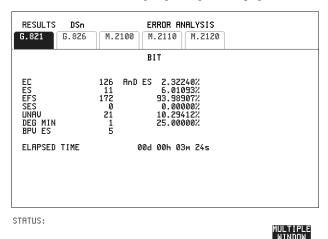
RESULTS SONET ERROR ANALYSIS G.826 M.2101 M.2110 M.2120
ERROR TYPE CU-L(B2)
CU-L(B2) ANALYSIS (G.826)
EB 426612 ES 0 SES 0 URS 57 PURS 57 BBE 0 ESR 0 SESR 0 BBER 0
ELAPSED TIME 00d 00h 03m 20s
STRTUS.

STATUS:

MULTIPLE WINDOW

HOW TO:

- 1 Set up the receive SONET interface and payload required. See "Setting SONET Receive Interface " page 47.
 - **2** If required set up the SONET transmit interface and payload. See "Setting SONET Transmit Interface " page 29.
- **3** Press **RUN/STOP** to start the measurement.
- 4 You can view the analysis results on the **RESULTS** SONET ANALYSIS display.


TIP: The measurement will not be affected if you switch between the different results provided.

Making DSn Analysis Measurements

Description G.821, G.826, M.2100, M.2110 and M.2120 analysis results are provided for all relevant DSn and DSn Payload error sources.

In addition the following results are provided:

Cumulative error count and error ratio Short Term error count and error ratio Alarm Seconds SIG/BIT Monitor. See "Monitoring Signaling Bits " page 118.

HOW TO:1 If SONET is chosen as the interface, set up the Receive Interface and Payload required. See "Setting SONET Receive Interface" page 47. If required set up the Transmit Interface and Payload. See "Setting SONET Transmit Interface" page 29.

- **2** If DSn is chosen as the interface, set up the DSn receive interface. See "Setting PDH/DSn Receive Interface" page 45. If required set up the DSn transmit interface. See "Setting PDH/DSn Transmit Interface (Option 012)" page 26.
- **3** Press **RUN/STOP** to start the measurement.
- If SONET is chosen as the interface, you can view the analysis results on the RESULTS DSn PAYLOAD ERROR ANALYSIS display
 If DSn is chosen as the interface, you can view the analysis results on the RESULTS DSn ERROR ANALYSIS display.

Measuring Frequency

Description The signal frequency and the amount of offset from the standard rate can be measured to give an indication of probability of errors.

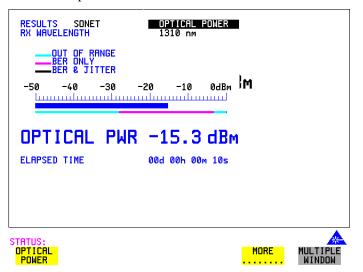
RESULTS	SONET	FREG	UENCY		
	ET	62208	0000 H +0 H +0.0pp	z	
ELAPSED	TIME	00d 00)h 00m 10s		
STATUS:					
ALARM	FREQ- UENCY	POINTER VALUES	POINTER GRAPH	MORE	MULTIPLE

HOW TO:

1 Connect the signal to be measured to the IN port of the DSN Receive module or the IN port of the Multirate Analyzer module (SONET electrical) or the IN port of the Optical Interface module (SONET optical).

2 Choose the required SIGNAL rate and LEVEL on the PDH/DSn [RECEIVE] MAIN SETTINGS or SONET [RECEIVE] MAIN SETTINGS display.

ΝΟΤΕ


Frequency measurement is always available even if test timing is off.
 The result is only valid if a complete sweep of the highlighted bar has occurred since the input was applied.

Test Period

Two counter gate periods, selected in the **GATE** field are provided simultaneously, 1s and 16s. For the 16s gate period a "Fuel Gauge" indicates progress towards the next update.

Measuring Optical Power

Description Optical power measurement can be performed on the SONET signal connected to the Optical module IN port.

HOW TO: **1** Connect the SONET optical signal to the IN port of the Optical Interface module.

- 2 Choose the received input signal rate on the **RECEIVE SONET** display.
- 3 Select [RESULTS], SONET, OPTICAL POWER as shown above.

NOTE

Optical power measurement is always available even if test timing is off.
 The white portion of the colored bar shows the power range for accurate jitter measurement (only displayed if a jitter option is fitted). The green portion of the colored bar shows the power range for accurate BER measurement.

Measuring Round Trip Delay

Description:The time taken for voice traffic to pass through the network is very important.
Excessive delay can make speech difficult to understand.
The Round Trip Delay feature of the OmniBER 718 measures the delay in a 64 kb/s
timeslot.

A test pattern is transmitted in the 64 kb/s timeslot and a timer is set running. A loopback is applied to the network equipment to return the test signal. The received pattern stops the timer and the Round Trip Delay is calculated.

RESULTS PDH ACTION	TRIP DELAY
DELAY	0.0 msec
ELAPSED TIME	00d 00h 00m 19s
STATUS: ERROR CUMUL- SUMMARY ATIVE	SHORT ERROR MORE MULTIPLE TERM ANALYSIS WINDOW

NOTE	You can only measure Round Trip Delay on a 64 kb/s test signal obtained from a 140 Mb/s, 34 Mb/s, 8Mb/s or 2 Mb/s DSn interface or DSn payload signal.
HOW TO:	1 If measuring on an SONET interface, set up the SONET transmit and receive interfaces and payloads required. See "Setting SONET Transmit Interface" page 29 and "Setting SONET Receive Interface" page 47.
	2 If measuring on a DSn interface, set up the DSn transmit and receive interfaces and payloads required. See "Setting PDH/DSn Transmit Interface (Option 012)" page 26 and "Setting PDH/DSn Receive Interface" page 45.
	3 Connect a loopback to the network equipment.
	4 Choose ACTION ON to start the measurement. If measuring on an SONET interface, the results are available on the RESULTS

Making Measurements Measuring Round Trip Delay

DSn PAYLOAD display.

If measuring on a DSn interface, the results are available on the **RESULTS DSn** display.

The Round Trip delay measurement range is up to 2 seconds. The resolution varies with the received interface signal rate:

2 Mb/s	1 microsecond
8,34, 140 Mb/s	110 microseconds
STS-1, STS-3	0.5 milliseconds
OC-12, OC-48	0.5 milliseconds

Monitoring Signaling Bits

Description The OmniBER 718 receiver can be used to monitor the state of signaling bits in received 2 Mb/s signals with timeslot-16 CAS multiframing (PCM30 or PCM30CRC) and DS1 structured signals.
 2.048 Mb/s Results For 2 Mb/s signals with timeslot-16 CAS multiframing a table showing the values of

A,B,C,D signaling bits in all 30 channels is given.

DS1 Results D4 and SLC-96 payloads

A table simultaneously showing the state of the A and B signaling bits in the 6th and 12th frames of a superframe is given. Each frame contains 24 timeslots. In SLC-96 mode A and B choices are 0, 1 or alternating. If you set bit A or B to alternate, the displayed bit changes to an A, to indicate that the bit is alternating from 1 to 0. The same signaling is transmitted in all channels.

ESF Payloads

A table simultaneously showing the state of the A, B, C and D signaling bits in the 6th, 12th, 18th and 24th frames of a superframe is given. Each frame contains 24 timeslots.

	RESU	LTS	DSn	PAYLOA	D	SIG/B	IT M	ONITOR		
	DS1	ESF AB	CD B	ITS						
[TS	ABCD	TS	ABCD	TS	ABCD	TS	ABCD		
	1 2 3 4 5	1100 1111 1111 1111 1111 1111	7 8 9 10 11	$1111 \\ 11111 \\ 11111 \\ 11111 \\ 1111 \\ 1111 \\ 1111 \\ 1111 \\ 1111 \\ 1111 \\ 1111$	13 14 15 16 17	$1111 \\ 11111 \\ 11111 \\ 11111 \\ 1111 \\ 1111 \\ 1111 \\ 1111 \\ 1111 \\ 1111 \\ 1111$	19 20 21 22 23	$1111 \\ 11111 \\ 11111 \\ 11111 \\ 1111 \\ 1111 \\ 1111 \\ 1111 \\ 1111 \\ 1111 \\ 1111$		
l	6	1111	ĪŻ	1111	18	1111	24	1111		
	rtus Erro Ummf	IR	CUM Ati			iort Erm		ROR Lysis	MORE	MULTIPLE WINDOW

Measuring Service Disruption Time

Description: Protection switching ensures that data integrity is maintained and revenue protected when equipment failure occurs. The speed of operation of the protection switch can be measured.

The sequence of events involved in measuring the switching time is:

- Pattern Synchronization (no errors) is achieved.
- The protection switch is invoked Pattern Synchronization is lost.
- The standby line is in place Pattern Synchronization is regained.

The time interval between pattern sync loss and pattern sync gain is a measure of the disruption of service due to protection switching. For information on measuring service disruption on ATM refer to "ATM Service Disruption" page 169 and for POS operation refer to "POS Service Disruption" page 211.

RESULTS SRUC DISE	UPT	
LONGEST SHORTEST	0.000ms 0.000ms	
LRST	0.000ms	
ELAPSED TIME	00d 00h 00m 20s	
STATUS: PDH SERVICE	SONET SONET MORE	MULTIPLE

Service Disruption is chosen on the **RESULTS** page except for the following configuration:

• If you choose a DSn or SONET interface and an ANSI (DS1, DS3) framed, unstructured payload you must select Service Disruption on the Transmitter and Receiver **TEST FUNCTION** display.

Making Measurements Measuring Service Disruption Time

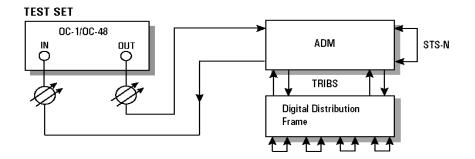
RECEIVER INPUT MAIN STRUCT'D TEST SETTINGS SETTINGS FUNCTION	PDH/DSn
TEST FUNCTION SERV DISR	
DSn SERVICE DISRUPTION MOD	DE ON
STATUS:	MULTIPLE Window

NOTE	At DS1 and DS3 Service Disruption results are only available for Unstructured payloads.				
	Error Burst Definition				
	Error bursts start and finish with an error. Bursts of less than 10 us are ignored. Bursts are assumed to have completed when >200ms elapses without any errors being received. The longest burst detected is 2 seconds.				
	Accuracy: <= 50us for bulk filled PDH/T-Carrier tributary test signals.				
NOTE	Note To measure Service Disruption your instrument must have a PDH/DSn module fitted as the measurement takes place within the PDH/DSn module.				
HOW TO:	1 If interfacing at SONET set up the SONET transmit and receive interfaces and payloads required. See "Setting SONET Transmit Interface " page 29 and "Setting SONET Receive Interface " page 47.				
	2 If interfacing at DSn set up the DSn transmit and receive interfaces and payloads as required. See "Setting PDH/DSn Transmit Interface (Option 012)" page 26 and "Setting PDH/DSn Receive Interface" page 45.				

Making Measurements Measuring Service Disruption Time

- 3 If you choose a DS1 or DS3 framed unstructured payload, choose SERVICE DISRUPT on the TRANSMIT and RECEIVE TEST FUNCTION displays.
- 4 Press **RUN/STOP**) to start the measurement.
- **5** Invoke the protection switch.
- **6** View the results on the **RESULTS SRVC DISRUPT** display.

Results Displayed

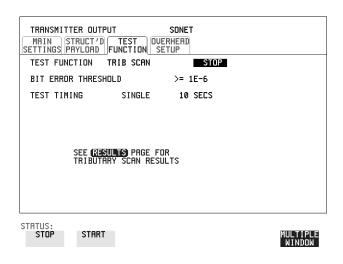

LONGEST - Longest burst of errors during measurement.
 SHORTEST - Shortest burst of errors during measurement.
 LAST - Length of last burst of errors detected during measurement.

Performing a SONET Tributary Scan

Description

Verifying an ADM Installation

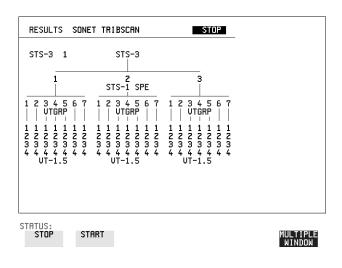
The OmniBER 718's tributary scan feature allows you to quickly test the routing of VC-n/STS-1 paths through digital cross connects and ADMs (when the tributary interfaces are synchronous). It does this by automatically testing each path through the network element for bit errors or a pattern loss. The example given below is applicable for both SONET and SDH applications



Tributary Scan tests each tributary for error free operation and no occurrence of Pattern Loss. A failure is indicated by highlighting the tributary in which the failure occurred. The **TRANSMIT SONET MAIN SETTINGS**, mapping setup determines the tributary structure. The OmniBER 718 will configure the Transmitter to the Receiver and the PATTERN is forced to the payload it will fill.

The SONET Tributary Scan display can be logged to the chosen logging device. See "Logging on Demand" page 241.

TIP:


Making Measurements Performing a SONET Tributary Scan

HOW TO:	1 Set up the transmit and receive SONET interfaces and payload as required. See "Setting SONET Transmit Interface " page 29 and "Setting SONET Receive Interface " page 47.
	2 Choose the required BIT ERROR THRESHOLD. This determines the error rate above which a failure is declared.
	 Choose the required TEST TIMING. The value you choose is the test time for each individual tributary and not the total test time. For example, 28 VT-1.5 tributaries in an STS-1 SPE - the time taken to complete the Tributary Scan will be 28 X TEST TIMING choice.
	 4 The Tributary Scan results can be viewed on the RESULTS SONET TRIBSCAN display. The Scan can be started on the TRANSMIT SONET TEST FUNCTION display or the RESULTS display by choosing START. If the Scan is started on the TRANSMIT SONET TEST FUNCTION display, the OmniBER 718 changes to the RESULTS display. If a full-bandwidth concatenated payload is selected (e.g. an STS-48c within an OC-48), then Tributary Scan is disabled.
NOTE	The keyboard is locked during tributary scan.

The keyboard is locked during tributary scan.

Making Measurements Performing a SONET Tributary Scan

Performing a SONET Alarm Scan

 Description
 SONET Alarm Scan tests each channel for alarm free operation and identifies and indicates any Unequipped channels.
You can configure the Scan to check for the occurrence of any Path layer CV errors above a chosen threshold.
The channel in which an alarm occurred is highlighted if any of the following alarms occur:
STS SPE: LOP-P, RDI-P, AIS-P,
VT-1.5: LOP-P, AIS-P, RDI-P, H4 LOM, LOP-V, AIS-V, RDI-V

TIP: The SONET Alarm Scan display can be logged to the chosen logging device. See "Logging on Demand " page 241.

RESULTS SONE	r alm scan	AUTO	
CU > 0 STS-3 1	STS-З	STOP	
1 	UNEQ STS-1 SPE	UNEQ	
1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 UT-1.5			
STATUS: Stop Stf	IRT		MULTIPLE WINDOW

- *HOW TO:* **1** Set up the receive SONET interface and payload as required. See "Setting SONET Receive Interface" page 47.
 - 2 Choose **SONET ALM SCAN** on the **RESULTS** display.
 - Choose AUTO or RX SETTINGS.
 RX SETTINGS: The scan checks the structure set on the RECEIVE SONET display.
 AUTO: The scan checks the structure being received. This can be particularly useful when receiving mixed payloads.
 - **4** Choose the CV error threshold.
 - **5** Choose **START** to start the Alarm Scan.

Performing a DSn Alarm Scan

Description

DSn Alarm Scan tests each channel for the following alarms:

Frame Loss RAI AIS

The channel in which an alarm occurs is highlighted.

RESULT	5	DSn ALM	SC	CAN	OFF			
DS3	_		I	INTERFACE				
DS2	1 	2	8	4 5 	6 	7		
DS1	1 2034	1 2 3 4	1234	1 1 2 2 3 3 4 4	1 2 3 4	1 2 3 4		
	4	4	4	4 4 4	4	4		
TATUS: TROUBLE SCAN		TIMING CONTROL		DSn RESULTS	DS Alm	n SCRN	MORE	MULTIPL WINDOW

HOW TO:

- 1 Set up the receive DSn interface as required. See "Setting PDH/DSn Receive Interface" page 45.
- **2** Choose **ON** to start the Alarm Scan.

Making Measurements Measuring Jitter

Measuring Jitter

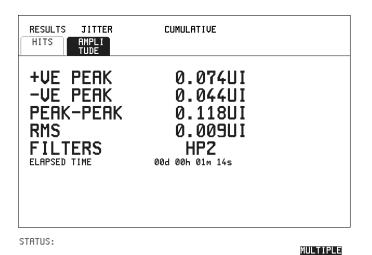
Description: Option 200 is required for Jitter operation. Jitter and error measurements are made simultaneously when a jitter option is fitted. Jitter measurements are also available when ATM or POS is selected as a payload.

Cumulative and Short Term results of Jitter Amplitude and Jitter Hits are provided on the **[RESULTS] JITTER** display.

Graph and Text results for Jitter Transfer and Jitter Tolerance are also provided.

LP, HP1 and HP2 filters to ITU-T O.171 and O.172 /Bellcore GR-499.

Jitter Measurement Filters


Bit Rate (kb/s)	HP1 (Hz)	HP2 (kHz)	LP (kHz)	HP rms (kHz)
1.544	10	8	40	12
2048	20	18	100	12
8448	20	80	400	12
34368	100	10	800	12
44736	10	30	400	12
51840	100	20	400	12
155520	500	65	1300	12
622080	1000	250	5000	12
2488320	5000	1000	20000	12

Please note that the instrument measurement bandwidth varies depending on the Receiver Range selected (i.e. the bandwidth is reduced when not on the 1.6 UI range). If you change the Receiver Range selection check the Filter Values displayed at the bottom right of the display meet you measurement requirements.

Rms jitter measurements settling time

If you select a PDH/DSn receiver interface and choose a O.172 /GR-499 Filter on the Receiver Input, Jitter page, please allow approximately 20 seconds settling time before performing a measurement.

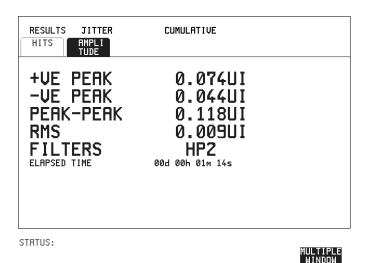
NOTE To obtain optimum performance while measuring jitter on optical signals ensure the signal optical power level is within the measurement window. See "Measuring Optical Power" page 115.

HOW TO:

- 1 If measuring Jitter on a DSn signal, set up the receive DSn interface and the receive Jitter interface. See "Setting PDH/DSn Receive Interface" page 45 and "Setting Jitter Receive Interface" page 48.
- 2 If measuring jitter on an SONET Optical signal, check on the **RESULTS SONET RESULTS OPTICAL POWER** display that the measured optical power level falls within the white portion of the colored bar. This ensures the accuracy of the Jitter results
- **3** If measuring Jitter on an SONET signal, set up the receive SONET interface and the receive Jitter interface. See "Setting SONET Receive Interface" page 47 and "Setting Jitter Receive Interface" page 48
- **4** If performing a Jitter Tolerance measurement, See "Measuring Jitter Tolerance" page 134. If performing a Jitter Transfer measurement, See "Measuring Jitter Transfer" page 138.
- **5** Press **RUN/STOP** to start the measurement.
- **6** You can view the Jitter hits and Amplitude results on the **RESULTS JITTER** display.

Making Measurements Measuring Extended Jitter

Measuring Extended Jitter


Description: Option 200 required for Jitter measurements. Extended Jitter measurements are made at the upper end of the standard wander frequency range and the lower end of the standard jitter frequency range.

When **EXTENDED** is chosen (on the Receiver Input Jitter page) Jitter results are provided. Cumulative and Short Term results of Jitter Amplitude and Jitter Hits are provided on the **RESULTS JITTER** display. The following Table gives the Extended range receiver measurement bandwidth.

		Jitter measurement bandwidth [*]					
Bit Rate (kb/s)	Range	F _L (Hz) lower 3dB point**	F _{MIN} (Hz)	F _{MAX} (kHz)	F _U (kHz) upper 3dB point		
1544	256	0.15	1	0.2	0.25		
2048	256	0.15	1	0.2	0.25		
8448	256	0.15	1	0.2	0.625		
34368	256	0.15	1	2	2.5		
44736	256	0.15	1	5	6.25		
51840	64	0.15	1	20	25		
139264	256	0.15	1	5	6.25		
155520	64	0.15	1	20	25		
622080	256	0.15	1	20	25		
2488320	1024	0.15	1	20	20		

 $^{\ast}\,$ The measurement accuracy is specified between F_{MIN} and F_{MAX} only.

** Nominal value.

HOW TO:

- 1 If measuring Extended Jitter on a DSn signal, set up the receive DSn interface and the receive Jitter interface. See "Setting PDH/DSn Receive Interface" page 45 and "Setting Extended Jitter Receive Interface " page 49.
- 2 If measuring Extended jitter on an SONET Optical signal, check on the **RESULTS SONET RESULTS OPTICAL POWER** display that the measured optical power level falls within the white portion of the colored bar. This ensures the accuracy of the Jitter results.
- **3** If measuring Extended Jitter on an SONET signal, set up the receive SONET interface and the receive Jitter interface. See "Setting SONET Receive Interface" page 47 and "Setting Extended Jitter Receive Interface " page 49.
- 4 Press **RUN/STOP** to start the measurement.

Making Measurements Measuring Wander

Measuring Wander

Description: Wander is defined as the long- term variations of the significant instants of a digital signal from their ideal positions in time, where long-term implies phase oscillations of frequency less than or equal to a demarcation point that is specified for each interface rate. Refer to ANSI T1.102 for the demarcation frequencies for each digital signal.

Accurate Wander measurements require a Wander reference derived from a master timing external source. Connect your external timing source to the appropriate port on the instrument clock module. Wander results are displayed in UI or nanoseconds. Jitter Amplitude and Jitter Hits results are also available.

Problems may arise due to wrongly configured equipment running on internal clocks or at the junction of different operator's network equipment. Since the timing sources may operate at slightly different frequencies and exhibit long term frequency drift, phase difference (Wander) may occur between the incoming data and the network equipment. This causes "Bit Slips" in the network equipment buffers and results in frames being repeated or deleted thus reducing the efficiency of data transfer.

When wander is measured at DS1 or 2 Mb/s, Estimated Bit and Frame slips are calculated and a Bar Graph shows the cumulative Wander over the measurement period.

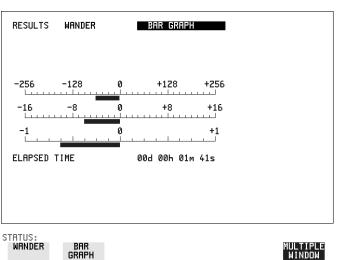
RECEIVER INPUT MRIN STRUCT'D J SETTINGS SETTINGS	PDH/DSn TEST FUNCTION	
MEASUREMENT TYPE SIGNAL FREQUENCY RECEIVER RANGE JITTER BANDWIDTH HIT THRESHOLD FILTER WANDER BANDWIDTH WANDER TIMING REFE	WRNDER DS3 256 UI 0.1 Hz - 6.25 KHz 5 UI FIXED 10 µHz - 10 Hz RENCE MTS 2M CLOCK	
STATUS:		MULTIPLE WINDOW

Making Measurements Measuring Wander

HOW TO: Make the Measurement

1 PDH/DSn Operation Wander Reference:

Select the **TRANSMIT PDH/DSN MAIN SETTINGS** display, and set the CLOCK field to **EXTERNAL**. Choose the CLOCK SOURCE required from the menu provided (i.e. MTS 2M CLOCK/DATA, MTS 64k CLOCK, BITS 1.5Mb/s and 10MHz REF). Connect your external timing source to the appropriate port on the instrument clock module. See "Setting PDH/DSn Transmit Interface (Option 012)" page 26.


2 SONET Operation Wander Reference

Select the **TRANSMIT SONET MAIN SETTINGS** display. and set the CLOCK field to **EXTERNAL**. Choose the CLOCK SOURCE required from the menu provided (i.e. MTS 2M CLOCK/DATA, MTS 64k CLOCK, BITS 1.5Mb/ s and 10MHz REF). Connect your external timing source to the appropriate port on the instrument clock module. See, "Setting SONET Transmit Interface" page 29.

- **3** If measuring wander at a DSn rate set up the DSn receive interface. See, "Setting PDH/DSn Receive Interface" page 45.
- 4 If measuring wander on an SONET Optical signal, check on the **RESULTS** SONET RESULTS OPTICAL POWER display that the measured optical power level falls within the white portion of the colored bar. This ensures the accuracy of the Wander results.
- **5** If measuring wander at a SONET rate set up the SONET receive interface. See, "Setting SONET Receive Interface" page 47.
- 6 Choose MEASUREMENT TYPE WANDER.
- 7 Choose the WANDER HIT THRESHOLD level if the received wander exceeds the value chosen a wander hit is recorded.
- 8 Press **RUN/STOP** to start the measurement.

Making Measurements Measuring Wander

1 Choose **WANDER** on the **RESULTS** display and choose the display units required:

TIME displays the wander results in nanoseconds.

UI displays the wander results in Unit Intervals

If you are measuring wander at 2 Mb/s Estimated Bit slips and Estimated Frame slip results are provided and a **GRAPH** choice is added to the menu.

If **GRAPH** is chosen the cumulative wander results are displayed in graphical form. The Graphs are additive and in the example shown above the Wander is - 76.5 BITS. Graph is only available when a DS1 or 2Mb/s signal is selected.

NOTE

Estimated Bit Slips signify the slippage from the start of the measurement. One Estimated Frame Slip corresponds to 256 Bit Slips. Implied Frequency Offset is calculated from the Wander results.

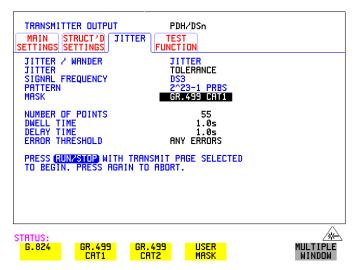
Measuring Jitter Tolerance

Description:	The jitter auto tolerance feature provides jitter tolerance measurements within the
Option 200 is	relevant DS1 and DS3 masks taken from Bellcore GR.499, Category 1 and Category
required for Jitter	2 equipment and ITU-T G.824.
measurement and	SONET masks are taken from BELLCORE GR-253 -CORE.
012 for PDH/DSn	For SDH the masks provided are those specified in ITU-T G.958, type A or B, and in
operation.	ITU-T G.825.
	G.823 low and high Q systems are provided for PDH (2, 8, 34, 140 Mb/s).
	The jitter auto tolerance feature is also available when ATM or POS is selected as a
	payload.

PDH/DSn User Selectable Masks

Line Rate	GR.499 CAT 1	GR.499 CAT 2	G.823	G.823 High Q	G.823 Low Q	G.824
2 Mb/s						
8 Mb/s						
34 Mb/s						
140 Mb/s						
DS1	\checkmark					\checkmark
DS3						

SONET User Selectable Masks


Line Rate	GR.253	G.825	G.958 Type A	G.958 Type B
STS-1	\checkmark			
STS-3	\checkmark	\checkmark		
STS-12	\checkmark	\checkmark		
STS-48	\checkmark			

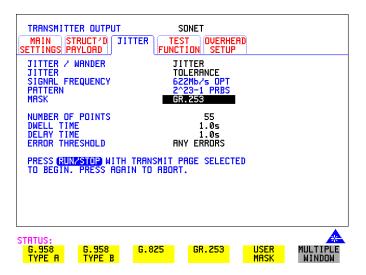
Jitter is generated at a range of frequencies within the mask and an error measurement is made. If no errors occur (PASS), the jitter amplitude at that frequency point is increased until errors occur (FAIL) or the maximum jitter amplitude is reached. The highest jitter amplitude at which PASS occurs is plotted on the graph as the Jitter Tolerance for that jitter frequency.

User-Programmable Masks

There are 5 user programmable masks provided allowing you to create, edit and title up to 5 jitter masks. Please refer to "To Generate a New Jitter Mask" on page 299 and "To change the parameters of a User Defined Jitter Mask" on page 301 for instructions on how to generate or edit a user programmable mask.

TIP: The transmitter and receiver can be set to different rates to allow testing across multiplexers, for example transmitter set to STS-3 with embedded DS-3 and receiver set to DS-3.

HOW TO: Make the Measurement

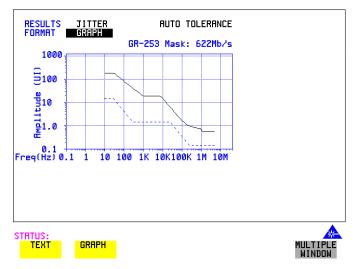

PDH/DSn Interface

- 1 If you are performing jitter tolerance on the DSn signal, set up the DSn transmit and receive interfaces, including the test PATTERN. See "Setting PDH/DSn Transmit Interface (Option 012)" page 26 and "Setting PDH/DSn Receive Interface" page 45.
- 2 If you have chosen a PDH/DSn interface now select the JITTER page and select

AUTO TOLERANCE and a MASK (see display above). Proceed to step 6.

SONET Interface

- 3 If you are performing jitter tolerance on an SONET Optical signal, check on the **RESULTS SONET RESULTS OPTICAL POWER** display that the measured optical power level falls within the white portion of the colored bar. This ensures the accuracy of the Jitter results.
- **4** If you are performing jitter tolerance on the SONET signal, set up the SONET transmit and receive interfaces, including the required test PATTERN. See "Setting SONET Transmit Interface" page 29 and "Setting SONET Receive Interface" page 47.



5 If you have chosen an SONET interface now select the JITTER page and select AUTO TOLERANCE and a MASK (see display above).

Steps common to PDH/DSn and SONET operation

- 6 Choose the NUMBER OF POINTS at which jitter is transmitted (3 to 55)
- 7 Choose the DWELL TIME the time jitter is generated at each jitter frequency point (0.1 to 99.9 seconds).
- 8 Choose the DELAY TIME the time delay between the jitter frequency/ amplitude being applied and the error measurement being made. This allows the network equipment to settle as jitter frequency is changed. (0.1 to 99.9 seconds).

- 9 Choose the ERROR THRESHOLD.
 If ANY ERRORS is chosen, any BIP or BIT error will result in a FAIL.
 If BIT ERRORS is chosen, choose a value between 1 and 1,000,000 to determine the bit error threshold for the jitter tolerance PASS/FAIL decision.
 BER>= shows the bit error ratio calculated from the bit error threshold choice and the dwell time choice.
- 10 Press RUN/STOP to start the jitter auto tolerance measurement. The measurements progress can be monitored on the TRANSMIT display. At the end of the test the results can be viewed on the TRANSMIT or RESULTS displays. The TRANSMIT display is cleared when TRANSMIT is pressed but the results remain on the RESULTS display until the next jitter tolerance measurement is made.

HOW TO: View the Results

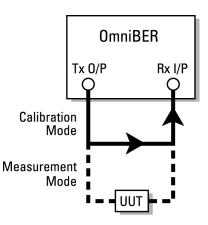
1 Choose the results FORMAT.

If **GRAPH** is chosen, a plot of the jitter tolerance results against the ITU-T mask is displayed.

If **TEXT** is chosen, the results from which the graph is constructed are displayed, Point number, Frequency, Mask amplitude, Tolerance, Result. If applicable, points 13 through 55 can be viewed on pages 2 through 5.

If you wish to log the jitter tolerance results to a printer, See "Logging Jitter Tolerance Results" page 245.

Measuring Jitter Transfer


Description:Perform vital jitter transfer (gain) measurements using the OmniBER 718.
With the OmniBER 718 you can perform Jitter transfer measurements at DS1, DS3
and each of the four PDH rates 2, 8, 34, 140 Mb/s, and also STS-1, STS-3, OC-1,
OC-3, OC-12 and OC-48. Jitter Transfer measurements are also available when
ATM or POS is selected as a payload.Jitter transfer defines the ratio of output jitter amplitude to input jitter amplitude
versus jitter frequency for a given bit rate. In network equipment some of the jitter
present at the input port of a regenerator will be transmitted to the output port. On
networks with cascaded equipment on long trunk routes it is important to limit jitter
transfer.The jitter generator provides the stimulus for the jitter receiver this provides selection
and measurement of the relevant jitter components to ensure accurate and repeatable
results.

The jitter transfer results are presented in graphical and tabular form. Graphical results are plotted as Gain versus Frequency. The relevant Pass Mask for PDH/DSn or SONET is also displayed on the graph. Please refer to the OmniBER 718 Specifications book provided with your instrument for detailed information on Jitter Transfer input and pass masks.

NOTE 1.The Transmitter and Receiver must be set to the same interface rate.

HOW TO: Achieve the required accuracy:

1 The OmniBER 718 must be connected back to back in order to perform a calibration cycle before making a Jitter Transfer measurement (see figure on next page). Use an optical attenuator to keep optical power at optimum level if you are performing tests on optical signals.

- **2** The OmniBER 718 must have been switched on for 1 hour before starting a calibration cycle.
- **3** The climatic conditions must remain stable from switch-on to end of measurement.
- **4** The Jitter Transfer measurement must be started within 10 minutes of completion of the Calibration.
- **5** If maximum Delay time, maximum Dwell time and maximum number of Points is selected, the accuracy specification cannot be guaranteed as the time from start of calibration to end of measurement (test period) will be approximately two hours. It is recommended that the maximum test period does not exceed 90 minutes.

Test Period = (Delay Time + Dwell Time + 5 Seconds) X Number of Points X 2 (Calibration + Measurement).

NOTE For best results, a Dwell Time of 20 seconds and a Delay Time of 10 seconds, are recommended.

TRANSMITTER DUTPUT	PDH/DSn	
MAIN STRUCT'D JITTER SETTINGS SETTINGS	TEST FUNCTION	
JITTER / WANDER JITTER	<mark>JITTER</mark> TRANSFER FN	
SIGNAL FREQUENCY	DS3 CALIB	
INPUT MASK	GR.499 CAT1	
NUMBER OF POINTS DELRY TIME	55 5s	
DWELL TIME	5s	
PASS MASK PASS MASK OFFSET	GR-253 DFF	
PRESS (RUNZSTOP) WITH TRANSP TO BEGIN CALIBRATION.	1IT PAGE SELECTED	
TO BEBIN CHEIBSHITON.		
STATUS: G.824 GR.499 GR.4	99 USER	

HOW TO: Perform Jitter Transfer Calibration

NOTE

If a PDH/DSn interface is selected the CALIBRATION should always be carried out with LEVEL **TERMINATE** selected on the **RECEIVE MAIN SETTINGS** display.

- 1 If DSn Jitter Transfer is required, set up the DSn transmit and receive interfaces, the receive jitter interface and connect DSn IN to DSn OUT. See "Setting PDH/ DSn Transmit Interface (Option 012)" page 26, "Setting PDH/DSn Receive Interface" page 45 and "Setting Jitter Receive Interface" page 48.
- 2 If you are performing jitter transfer on an SONET Optical signal, check on the <u>RESULTS</u> <u>SONET RESULTS</u> <u>OPTICAL POWER</u> display that the measured optical power level falls within the white portion of the colored bar. This ensures the accuracy of the Jitter results.
- **3** If OC-3, OC-12 or OC-48 Optical Jitter Transfer is required, set up the SONET transmit and receive interfaces, the receive jitter interface and connect the OUT port of the Optical module to the IN port of the Optical module. See "Setting SONET Transmit Interface" page 29, "Setting SONET Receive Interface" page 47 and "Setting Jitter Receive Interface" page 48.

CAUTION If OC-3/12/48 SONET Jitter Transfer is required, a 15 dB attenuator must be connected between the IN and OUT ports of the Optical module.

- **4** If you wish to measure STS-1 or STS-3 electrical jitter transfer, set up the SONET transmit/ receive interfaces and the receive jitter interface and connect IN port to OUT port on the SDH module. See "Setting SONET Transmit Interface" page 29, "Setting SONET Receive Interface" page 47 and "Setting Jitter Receive Interface" page 48.
- 5 Choose JITTER **TRANSFER FUNCTION** on the **TRANSMIT JITTER** display.
- **6** Choose the INPUT MASK.

SONET operation

If measuring SONET jitter transfer, the Bellcore GR-253 mask can be High or Low. You can also select from 1 of 5 user programmable jitter masks see

(**USER**) paragraph below.

GR-253 Low masks cover the lower frequency band.

GR-253 High masks cover the upper frequency band.

PDH/DSn operation

At DS1 and DS3 G.824 and GR.499 Cat1 and GR.499 Cat2 are provided. If measuring PDH jitter transfer at 2 Mb/s or 8 Mb/s a Q Factor choice is provided (G.823, High Q and G.823 Low Q). Your Q Factor choice should match the network equipment regenerator Q Factor.

At 34 and 140 Mb/s a G.823 jitter transfer input mask is offered.

If **USER** is chosen, choose the mask jitter frequencies, F1, F2, F3 and F4, and mask jitter amplitudes A1 and A2, see "To change the parameters of a User-defined jitter mask" page 301 for instructions on how to change the parameters of a user mask and "To Generate a New Jitter Mask" on page page 299.

- 7 Choose the NUMBER OF POINTS at which jitter is transmitted (1 to 55)
- 8 Choose the DELAY TIME the time delay between the jitter frequency/ amplitude being applied and the error measurement being made. This allows the network equipment to settle as jitter frequency is changed (5 to 30 seconds).
- **9** Choose the DWELL TIME the Dwell Time is the test period spent at each amplitude/frequency point (5 to 30 seconds). The result recorded is the maximum peak-to-peak jitter detected during the Dwell Time test period.
- **10** Select a PASS MASK if a choice is given.

Pass Mask Offset

11 An offset in the range -2.00 dB to +2.00 dB in steps of 0.01 dB can be added to the selected Pass Mask. Select PASS MASK OFFSET and use the edit keys to select an offset. Select **END EDIT** when finished selecting an offset.

12 With MODE set to **CALIB** press **RUN/STOP** to start the calibration. The Jitter Transfer display is replaced by an information display for the duration of the Calibration.

A bar graph showing the progress of the calibration will appear on the display. When the Calibration is complete, the display will revert to the **TRANSMIT UTTER** display.

Transfer Function Calibration In Progress Press Run/Stop to Abort
Proportion complete : 5%

STATUS: Jitter transfer function in progress

MULTIPLE WINDOW

HOW TO: Start the Jitter Transfer Measurement

NOTE The Jitter Transfer measurement must be started within 10 minutes of the completion of calibration.

1 After the CALIBRATION is completed, remove the back to back connection from the DSn or SONET or optical interfaces, and connect to the system under test.

If the measurement is to be made at a network equipment monitor point, choose **MONITOR** on the DSn or SONET **RECEIVE MAIN SETTINGS** display before making the jitter transfer measurement.

2 Choose MODE MEASURE on the TRANSMIT JITTER display and press RUN/STOP.

The measurement's progress can be monitored on the **TRANSMIT** display.

HOW TO: View the Results

1 Select **RESULTS**, **JITTER** and **TRANSFER FN**, then choose the results FORMAT.

If **GRAPH** is chosen, a plot of the jitter transfer results against the ITU-T mask is displayed.

If **TEXT** is chosen, the results from which the graph is constructed are displayed: Point number, Frequency, Mask amplitude (dB), Jitter Gain (dB), Result. If applicable, points 13 through 55 can be viewed on pages 2 through 5.

FOR G82	33	GE 4	NSFER FN ain(dB) 0.00 0.01 0.00 0.01 0.02 0.01 0.01 0.01 0.00 0.00 0.00	Reit FRIL FRIL FRIL FRIL FRIL FRIS PRSS PRSS PRSS PRSS PRSS PRSS	
STATU	APH				MULTIPLE WINDOW

2 If **GRAPH** is chosen, choose the SCALE required.

WIDE provides a vertical axis range of +5 to -60 dB and is recommended for viewing the high frequency portion of the graph. This allows a clearer view of the difference between the actual result and the ITU-T pass mask.

NARROW provides a vertical axis range of +3 to -3 dB and is recommended for viewing the low frequency portion of the graph. This allows a clearer view of the difference between the actual result and the ITU-T pass mask.

3 If you wish to log the jitter tolerance results to a printer, See "Logging Jitter Transfer Results" page 247.

Measuring Pointer Adjustment (Tributary) Jitter

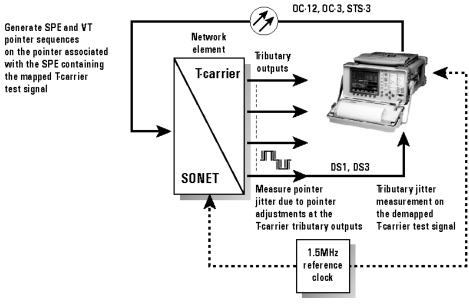
Introduction During the transition from a PDH network to mixed PDH/SONET networks new sources of jitter emerge, caused by the mapping process and network synchronization problems. This new jitter may result in pointer adjustments which in turn cause tributary jitter at the PDH output ports of the network element.

Pointer Adjustment Jitter

Jitter resulting from pointer adjustments is transient in nature, relatively high in amplitude, and most of the energy is contained in low frequency components.

GR-253 CORE recommendations define a set of pointer sequences when evaluating NE's pointer adjustment jitter performance. These sequences are designed to emulate the pointer activity that results from incorrect synchronization within a network element.

The OmniBER Transmitter can generate the test sequences recommended by ANSI T1.105.03, Bellcore GR-253-CORE and ITU-T G.783. Use these sequences to stress the system under test for correct levels of tributary jitter.

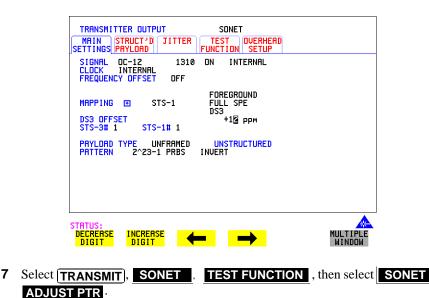

Refer to "Adding Pointer Adjustments" on page 85 for instructions on how to add pointer adjustments and detailed explanations of the pointer sequences provided by the OmniBER.

Making Measurements Measuring Pointer Adjustment (Tributary) Jitter

Payload	Pointer	Sequence		Max. Jitter (UI p-p)
1.5 Mb/s	VT 1.5	E, F	0.01 to 40 kHz*	1.5
2 Mb/s	VT 2	A, B, C A, B, C	0.02 to 100 kHz * 18 to 100 kHz **	0.4 0.075
34 Mb/s	STS-1 SPE	A, B, C D A, B, C, D	0.1 to 800 kHz * 0.1 to 800 kHz * 10 to 800 kHz **	0.4 0.75 0.075
45 Mb/s	STS-1 SPE	E, F, G, H	Note 1.	Note 1.
140 Mb/s	STS-3c SPE	D, G	0.02 to 3500 kHz * 0.02 to 3500 kHz* 10 to 3500 kHz **	0.4 0.75 0.075

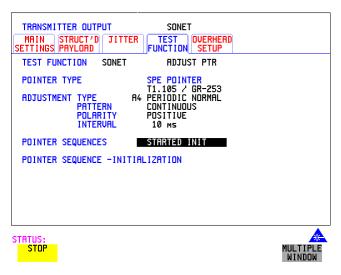
I Bellcore GR-253/T1.105.03 Jitter Specification

*denotes LP + HP1 filters. ** Denotes LP + HP2 filters; Note 1 These values are for further study by ITU-T.



Typical tributary jitter test setup

Making Measurements Measuring Pointer Adjustment (Tributary) Jitter


HOW TO:

- 1 Connect the OmniBER to the Network Element as shown in the previous Figure. Ensure the OmniBER and the NE are synchronized.
- 2 Select the **OTHER SETTINGS CONTROL** page and choose TRANSMITTER AND RECEIVER **INDEPENDENT**.
- **3** Select **RECEIVE**, **MAIN SETTINGS**, **PDH/DSn** and select a PDH/DSn SIGNAL rate (DS1, DS3, 140, 34, 8, 2 Mb/s).
- **4** On the same page set the required test pattern from the PATTERN field.
- **5** On the **TRANSMIT**, **SONET**, **MAIN SETTINGS** page select a SIGNAL rate (the rates available depend on the options fitted to your instrument). In this example we have selected OC-48.
- 6 On the same page, now set the Transmitter DSn payload offset (DS3 OFFSET field in figure below) to any in-range value.

8 Setup and run pointer sequence A (see page 85 for information on the pointer sequences available). When the pointer sequence initialization and cool-down periods are finished and the display indicates "POINTER SEQUENCE - IN PROGRESS" proceed to step 9.

Making Measurements Measuring Pointer Adjustment (Tributary) Jitter

- 9 Select **[RESULTS**], **TIMING CONTROL** and set TEST TIMING to **SINGLE** and a period of 20 seconds.
- **10** Set the jitter measurement range to 1.6 UI and measurement filter to LP+HP1, as shown below.
- **11** Press **RUN/STOP** to start the measurement.

RECEIVER INPUT MAIN STRUCT'D JITT SETTINGS PAYLOAD MEASUREMENT TYPE SIGNAL FREQUENCY RECEIVER RANGE HIT THRESHOLD FILTER	SONET TEST OVERHEAD FUNCTION MONITOR JITTER 622Mb/s OPT 1.6 UI 1.60 UI LP+HP1	
FILTER VALUES	1kHz HP1 SMHz LP	
STATUS:		MULTIPLE WINDOW

12 Verify that no alarms or errors are detected by the OmniBER receiver.

- **13** Set the **RESULTS**, **JITTER** page to **CUMULATIVE** and AMPLITUDE.
- **14** Measure and record peak-to-peak jitter from ten consecutive measurement periods.
- **15** Change the filter setting to LP+HP2, and repeat step 13.
- **16** Repeat the above procedure for pointer sequences B, C, D, E, F and G as required.

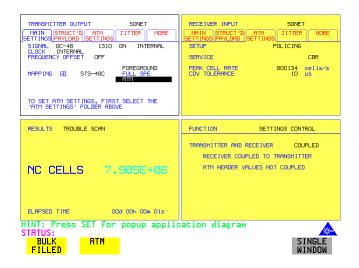
5

"Setting up the Transmitter for ATM Payloads " page 150
"Setting up the Convergence Sublayer " page 153
"Setting Foreground Traffic " page 155
"Transmitting ATM Alarms " page 161
"Adding ATM Errors " page 163
"Viewing ATM Results " page 165
"Setting up the Receiver for ATM Payloads " page 166
"Setting up the Receiver ATM signal " page 168
"Policing ATM Traffic " page 170
"Measuring ATM Delay Performance " page 172
"Measuring ATM Alarms " page 175
"ATM Service Disruption " page 176

ATM Operation

For ATM operation you must have option 300 installed. Option 300 offers ATM up to 2.5 Gb/s.

Setting up the	Transmitter for	ATM Payloads
----------------	------------------------	---------------------


Description	The transmitter rate and mapping can be set up to match the requirements of the
	ATM network under test. Select a SONET rate from STS-1 to OC-48 or a DSn rate
	of DS-3 or DS-1.

 TIP
 To set the Transmitter and Receiver to the same interface settings choose OTHER

 SETTINGS CONTROL
 COUPLED

NOTE For ATM in PDH/DSn you must select ATM in the Receiver before it can be selected in the Transmitter (unless the instrument is coupled).

Note ATM Mappings are performed using ITU-T Recommendation G.707 and G.804 and ATM Forum physical layer specifications.

How to

- 1 On the **TRANSMIT** page select from **PDH/DSn**, **SONET** or **SDH**.
- **2** Select the SIGNAL rate. (If you selected a PDH/DSn interface and have not coupled the Transmitter and Receiver, have you selected ATM in the Receiver first?).
- **3** Select required MAPPING and then select **ATM**.

ATM Operation Setting up the Transmitter for ATM Payloads

Use **SET** to bring up the popup application diagram (only applies to SDH/ SONET mapping). This allows an alternative way of selecting the appropriate mapping.

RI M	Use cursor Keys to make selection. Press SET to accept STS-n SPE Layer Selection	settings. Payload Layer Selection
ET S	OC-n/STS-n STS-12c SPE	ATM BULK FILLED
MI	OC-1/STS-1 SPE	140Mb/s BULK FILLED ATM 34Mb/s DS3 BULK FILLED
$J_{\rm f}^{\rm i}$		BULK FILLED 2Mb/s ASYNC 2Mb/s FLOAT BULK FILLED
	VT1.5	DS1 ASYNC DS1 FLOAT BULK FILLED

Table 4

ATM availability with PDH/DSn and SONET Signal Rates and Framing

Signal Rate	Framing Type	Is ATM available?	
DS3	CBIT M13	yes no	
DS1	ESF D4 SLC96	yes no no	
2 Mb/s	PCM30 PCM30CRC PCM31 PCM31CRC	yes yes no no	
8Mb/s		no	
34 Mb/s	G.832 Framed	yes no	
SONET	ATM is available into all SPE mappings, but not into a VT structure.		

Setting up the Convergence Sublayer

Description Setting up the Convergence Sublayer allows the test signal to be set to suit the ATM network under test.

- How to1 Set up the Transmitter for ATM in the MAIN SETTINGS folder (See "Setting up the Transmitter for ATM Payloads " page 150").
 - 2 Select the **ATM SETTINGS** folder.

TRANSMITTER OUTPUT	SONET ATM TEST OVERHEAD TTINGS FUNCTION SETUP	
SETUP	CONV SUBLAYER	
NETWORK INTERFACE SCRAMBLING	UN I DN	
STATUS: CONV FORE SUBLAYER GROUND	BACK GROUND	MULTIPLE WINDOW

- **3** Select SETUP as required.
- 4 If CONV SUBLAYER is selected then the NETWORK INTERFACE can be selected as UN or NNI and the SCRAMBLING can be turned on or off. For most applications ATM scrambling should be left on. If a DS3 interface and CBIT framing is selected an additional field CONVERGENCE SUBLAYER can be set to DIRECT or PLCP.
- **Network Interface** The cell header format used at the User Network Interface (UNI) and Network Node Interface (NNI) differs. The UNI has a Generic Flow Control field which can be used for Media Access Control (MAC) functions to transmit cells over shared media systems, while the NNI uses these four extra bits for extra path addressing.

ATM Operation Setting up the Convergence Sublayer

Cell Header at UNI

Bits								
8	7	6	5	4	3	2	1	Bytes
	GFC VPI						1	
	VPI VCI						2	
	VCI						3	
VCI PTI CLP						4		
HEC						5		

Cell Header at NNI

Bits								
8	7	6	5	4	3	2	1	Bytes
	VPI							1
	VPI VCI						2	
	VCI							3
VCI PTI CLP						4		
HEC					5			

GFC - Generic Flow Control

VPI - Virtual Path Identifier

VCI - Virtual Channel Identifier

PTI - Payload Type

CLP - Cell Loss Priority

HEC - Header Error Control

ATM Operation Setting Foreground Traffic

Setting Foreground Traffic

Description There are one foreground and seven background ATM channels available for testing. The backgrounds are used to simulate real traffic which can be routed differently to the foreground channel. The foreground is the test channel you use to stress the system under test.

Refer to page 157 for a description of how to set up background traffic. The relative distribution of background and foreground is described on page 158.

MRIN SETTIN SETUF	GS PAYLO	T'D R		SONET JITTER MO FOREGROUND DERS/PAYLOAD	RE
GFC Ø	UP I Ø	UC I 32	PT I 000	CLP Ø	
ATM F	PAYLOAD			2^23-1 PRB	S
TATUS:		tude Set	ttling		MULTI

How To

Foreground Setup

- 1 Set up the Transmitter for ATM in the MAIN SETTINGS folder (See "Setting up the Transmitter for ATM Payloads " page 150").
- 2 Select **TRANSMIT** and the **ATM SETTINGS** folder as shown above, and set the SETUP field to **FOREGROUND**. Set the ATM header as required using the cursor keys.
- Select an ATM Payload from the choices offered. To make a range of error measurements on your connection, select **TEST CELL** as the payload in the transmitter and the receiver. This allows the measurement of cell errors, cell loss, cell misinsertion and cell delay simultaneously. For a simple BER measurement you can select **PRBS** or **USER** byte. When making a jitter tolerance measurement, select **PRBS**.

ATM Operation Setting Foreground Traffic

Test Cell Explanation

Simultaneous measurement of all ATM performance parameters can be made using a special-purpose test cell. The test cell is described in ITU 0.191. The cell payload consists of a 4-byte sequence number (SN) which is used to detect lost or misinserted cells, a 4-byte timestamp (TS) which is used for cell delay and CDV measurements, a 1 byte test cell payload type (TCPT) and a 2-byte CRC-16 which is used for error detection and protection of the sequence number and timestamp.

An example of the test cell is given below.

Test Cell

header	SN	TS	Unused	TCPT	CRC-16
5 bytes	4 bytes	4 bytes	37 bytes	1 byte	2 bytes

Setting Background Traffic

Description You can select up to seven background channels which can be used to represent typical ATM traffic. The background channels are non-test channels and are used to fully load the element under test.

	SONET TEST OVERHEAD FUNCTION SETUP	
SETUP CELL STREAM	BACKGROUND HEADERS	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PTI CLP 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0	
	ack Jund	MULTIPLE WINDOW

How To

- **1** Set the SETUP field to **BACKGROUND**.
- 2 Set CELL STREAM to **HEADERS** and set up the Background Headers as required, using the cursor keys to navigate through the header fields.

Setting Foreground and Background Distributions

Description

The ATM Forum has defined the following Service Categories:

- Constant Bit Rate (CBR)
- Variable Bit rate (VBR)
- Unspecified Bit Rate (UBR)
- Available Bit Rate (ABR)

Data carried within each of these Service Categories will be policed within the network to ensure that the traffic does not exceed the bandwidth negotiated. This ensures that the quality of service can be met and that other traffic is not degraded.

In the OmniBER 718 the distribution of the ATM cells in the data stream can be set up to give CBR, VBR and single burst to simulate typical ATM traffic. Note that Background distributions are CBR. You can select the transmit cell rate in steps of 1 cell per second up to the maximum cell rate, giving you precise and accurate cell rates for performance tests and verifying ATM policing functions. Because UBR is policed in a similar manner to CBR, a CBR signal can be used to represent UBR data. In ABR, dynamic control of the signal bandwidth is provided by resource management cells. However, a limited error performance test may be performed using a fixed bandwidth CBR signal.

TRANSMITTER OUTPUT MAIN STRUCT'D F SETTINGS PAYLOAD SE	SONET RTM JITTER MORE	
SETUP CELL STREAM SERVICE	FOREGROUND DISTRIBUTION CBR	
	CELLS/S KBITS/S	
PEAK CELL RATE	114114 <mark>48384</mark>	
CDV TOLERANCE	24 0S	
STATUS: CONV FORE SUBLAYER GROUND	BACK Ground	MULTIPLE WINDOW

	ATM Operation Setting Foreground and Background Distributions				
	Setting up foreground				
How to	1 Set up the Transmitter for ATM (See "Setting up the Transmitter for ATM Payloads " page 150).				
	2 In the ATM SETTINGS folder select SETUP as FOREGROUND , CELL STREAM as DISTRIBUTION and then the traffic parameters for the Virtual Channel (VC) under test can be set up.				
	 Service Selections: For Constant Bit Rate (CBR) traffic, select the PEAK CELL RATE and CDV tolerance. For Variable Bit Rate (VBR) traffic, select the SUSTAINABLE CELL RATE, PEAK CELL RATE, MAXIMUM BURST SIZE and CDV tolerance. The OmniBER then automatically generates worst case user traffic for the VC under test using the 0.191 enhanced traffic generator algorithm. For error performance measurement, set the CDV tolerance value to its minimum value. Select SINGLE BURST to transmit a burst of cells at the selected cell rate. 				
NOTE	The CDV tolerance value cannot be set to zero. The minimum value reflects the inherent CDV that is generated due to the segmentation and mapping of the ATM cell stream into the physical interface.				

To fully stress the policing functions of the VC under test, the CDV tolerance can be set to the value used in the policing function.

Peak Cell Rate

For CBR, the peak cell rate is the average rate at which cells will be transmitted. Because the selected cell rate is implemented by a series of discrete cell events, for arithmetical reasons there will be some unavoidable deviation from ideal periodic timing. This effect is small.

Cell Delay Variation Tolerance (CDVT)

The transmitter will generate a signal which has a cell delay variation as set by the user in order to test a receiver's cell delay variation tolerance.

Sustainable Cell Rate

For VBR, this is the long term average cell rate being transmitted.

ATM Operation Setting Foreground and Background Distributions

Burst Size

This is the number of cells transmitted at the peak cell rate a value which may vary from the selected value due to cell delay variation.

Setting up background

How To

1 Selecting the SETUP as **BACKGROUND** and CELL STREAM as **PAYLOAD/DISTRIBUTION** allows the 7 backgrounds to be set up. The payload can be set up as an 8-bit user-selectable pattern for each background. The number of cells per second on each background can also be set. This is limited by the bandwidth which is occupied by the foreground. Setting a unique value in the payload byte for each background can help you to trace and identify cell streams later.

TRANSMITTER OUTPUT SONET MAIN STRUCT'D RTM TEST OVERHERD SETTINGS PRYLOAD SETUP SETUP BACKGROUND	
CELL STREAM PAYLORDZDISTRIBUTION FOREGROUND ZBW 99.9 BG PAYLORD CELLS/S KBITS/S	
1 0000001 0 0 2 0000010 0 0 3 0000011 0 0 4 00000100 0 0 5 00000101 0 0 6 00000101 0 0 7 00000111 0 0	
5 00000110 0 0 7 00000111 0 0 FILL IDLE 2BW 0.1	
STATUS: HEADERS PAYLD/ DISTR	MULTIPLE WINDOW

Note

If there is any extra bandwidth left over after the foreground and background are filled with FILL CELLS, you can select between IDLE or UNASSIGNED Cells to fill the remaining cells.

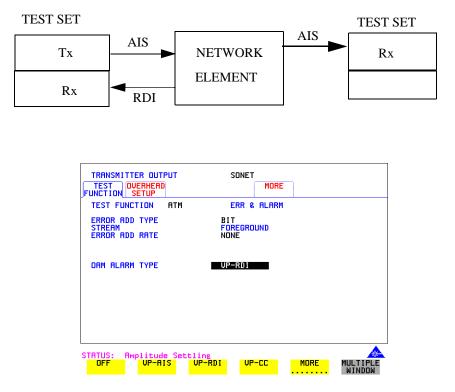
Transmitting ATM Alarms

Description You can generate VP and VC AIS and RDI alarms to verify the response of the ATM Network under test, and also generate VP and VC Continuity check cells to keep the circuit alive during bursty traffic conditions.

Types of alarms available are: VP-AIS, VP-RDI, VP-CC, VC-AIS, VC-RDI and VC-CC. The following tables show the expected responses of ATM VP and VC switches to input conditions.

Stimulus	Response: VP switch	Response: VC switch
LOS, LOF, LOP	VP-AIS	VC-AIS
MS-AIS, Path AIS	VP-AIS	VC-AIS
LCD	VP-AIS	VC-AIS
VP-LOC	VP-AIS	VC-AIS
VP-AIS	VP-AIS	VC-AIS
VC-LOC	none	VC-AIS
VC-AIS	none	VC-AIS

Downstream Alarms


Upstream Alarms

Stimulus	Response: VP switch	Response: VC switch	Response: VC end point
LOS, LOF, LOP	MS-RDI	MS-RDI	MS-RDI
MS-AIS, Path AIS	Path RDI	Path RDI	Path RDI
LCD	Path RDI	Path RDI	Path RDI
VP-LOC	none	VP-RDI	VP-RDI
VP-AIS	none	VP-RDI	VP-RDI
VC-LOC	none	none	VC-RDI
VC-AIS	none	none	VC-RDI

ATM Operation Transmitting ATM Alarms

The following figure illustrates an example where the ability of a network element to recognize and respond to AIS and RDI alarms is tested.

AIS/RDI Alarm Testing

How to

- **1** Set up the Transmitter for ATM (See "Setting up the Transmitter for ATM Payloads " page 150).
- 2 Select the Transmitter **TEST FUNCTION** folder, and select TEST FUNCTION as **ATM**.
- **3** Move the down cursor to OAM ALARM TYPE and select the alarm you require to test your network element.

OAM cells are transmitted when the OAM ALARM TYPE has an alarm selected. For VP or VC AIS any channel with the same VP or VC is suspended and the OAM cell is transmitted once per second. For VP or VC RDI the OAM cell is interspersed with the foreground channel.

ATM Operation Adding ATM Errors

Adding ATM Errors

Description Errors can be added to the ATM payload and to the cell headers. To stress ATM header alignment, you can add bursts of single or double header errors. To simulate ATM impairments, you can add bit errors, cell loss, cell misinsertion or cell errors.

Cell loss may be caused by transmission errors on the ATM header or more importantly may arise due to congestion in ATM switches. *Cell misinsertion* may also be caused by transmission errors on the ATM overhead. If errors cause the VP/ VC to be changed to another valid value, this will cause a cell to be misinserted into another channel. Also, faults within the routing tables or management system of an ATM switch may cause cells to be routed to the wrong output port, appearing as misinserted cell. *Cell errors* caused by transmission impairments or faults within Network Equipment need to be measured in a different way from bit errors to ensure that lost or misinserted cells do not corrupt the measurement.

In order to make the necessary ATM measurements a different kind of test signal than that traditionally used to measure BER is required. This test signal is known as the *test cell and* has been designed and endorsed by the ATM Forum and standardized in the ITU-T in Recommendation 0.191. OmniBER uses the test cell to make simultaneous ATM error measurements.

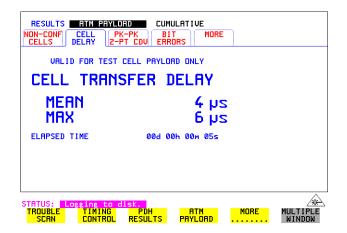
TRANSMITTER OUTPUT TEST FUNCTION SETUP	SDH MORE	
TEST FUNCTION ATM	ERR & ALARM	
ERROR ADD TYPE Stream Error add rate	DOUBLE HEC Foreground None	
ORM ALARM TYPE	OFF	
STATUS: SINGLE HEC HEC	BIT ERRORED CELL	MORE MULTIPLE

- 1 Set up the **TRANSMIT** page for ATM (See "Setting up the Transmitter for ATM Payloads" page 150).
- 2 Move to the **TEST FUNCTION** folder and select TEST FUNCTION to be

ATM ·

3 Move the down cursor to ERROR ADD TYPE and select the Error Type you require.

Note When you select **ALL** in the STREAM field an additional field appears which allows you to introduce a burst of errors.


To Verify HEC Function

- **1** Add SINGLE HEC errors and verify that the Network Element corrects these errors
 - **2** Add DOUBLE HEC errors and verify that a lost cell is recorded for each Double HEC error. (To measure lost cells, select TESTCELL as the payload.
 - **3** Add a burst of 2 SINGLE HEC errors and verify that one lost cell is recorded. The first error is corrected; the second is not.
 - **4** Add a burst of 7 DOUBLE HEC errors and verify that LCD occurs in the Network Element.

ATM Operation Viewing ATM Results

Viewing ATM Results

Description The ATM results can be viewed in a variety of ways on the RESULTS page.

How to **1** Press the **RESULTS** key.

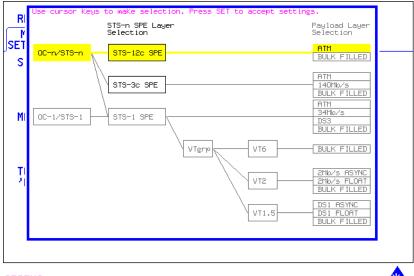
- 2 Select **ATM PAYLOAD** in the RESULTS field.
- **3** Move the right cursor to select the different types of errors and alarms.
- **4 ERROR SUMMARY** gives a summary of all possible ATM errors and can be set up to be read as counts (total in measurement interval) or ratios/rates.
- 5 **CUMULATIVE** errors give the number of errors which have occurred in total since the last time **RUN/STOP** was pressed. **SHORT TERM** errors give the number of errors which have occurred in the last measurement interval. This measurement interval is set up on the results page when **TIMING CONTROL** has been selected in the RESULTS field.
- **6 ALARM SECONDS** is used to look at ATM alarms.

Setting up the Receiver for ATM Payloads

Description The receiver rate and mapping can be set up to match the requirements of the ATM network under test. Select a SONET rate from STS-1 to OC-48 or a DSn rate of DS-3 or DS-1.

 TIP
 To set the Transmitter and Receiver to the same interface settings choose OTHER

 SETTINGS CONTROL
 COUPLED.


RECEIVER INPUT SONET	
SIGNAL DC-48	
MAPPING 🗉 STS-48C FULL SPE	
TO SET ATM SETTINGS, FIRST SELECT THE 'ATM SETTINGS' FOLDER ABOVE	
HINT: Press SET for popup application diagram STATUS: BULK ATM	
FILLED	WINDOW

How to

ATM Operation Setting up the Receiver for ATM Payloads

- **2** Select the SIGNAL rate.
- 3 Select required MAPPING with ATM as a payload. Use <u>SET</u> to bring up the popup application diagram (only applies to SDH/ SONET mapping). This allows an alternative way of selecting the appropriate mapping. Use the cursor keys to navigate through the popup application diagram.

MULTIPLE WINDOW

Setting up the Receiver ATM signal

Description The setup of the ATM settings allow the user to tailor the test signal to suit the network under test.

RECEIVER INPUT MRIN STRUCT'D ATM SETTINGS PAYLOAD SETTINGS	SONET	
SETUP	HEADERS/PAYLOAD	
CELLS SELECTED FOR TEST CELL HERDER VPI 0	UP UCI PTI CLP USER ØXX X	
ATM PAYLORD	2^15-1 PRBS	
STATUS:		
	ICING	MULTIPLE WINDOW

How to

- 1 Select the Receive rate and mapping. (See "Setting up the Receiver for ATM Payloads" page 166).
- 2 Select the **ATM SETTINGS** folder.
- 3 Select SETUP as **CONV SUBLAYER**, **HEADERS/PAYLOAL** or **POLICING** (See "Policing ATM Traffic " page 170).
- 4 If **CONV SUBLAYER** is selected then the network interface can be selected as UNI or NNI and the SCRAMBLING can be turned on or off. For most applications ATM scrambling should be left on. The HEC CORRECTION can be enabled/disabled at this point. Header error correction (HEC) allows the correction of a single header error. To simulate a typical ATM receiver it should be switched ON.
- 5 If HEADERS/PAYLOAD is selected the CELLS SELECTED FOR TEST can be set up. To test a Virtual Path, select VP and set the VPI value. To test a VC, select VC and set the VPI and VCI. For specialist applications, you can select EXPERT mode to give complete flexibility in setting up the receiver.
 ALL USER cells is used to give a quick indicator of the total cells bandwidth being used.

ATM Operation Setting up the Receiver ATM signal

NOTE Select VP or VC for most test applications. ATM alarms are only monitored if VP or VC is selected.

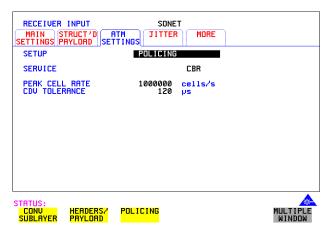
6 To measure error or delay performance of the ATM connection, select TEST CELL as the payload in the transmitter and the receiver. This allows the measurement of cell errors, cell loss, cell misinsertion and cell delay simultaneously. For a simple BER measurement you can select PRBS or USER BYTE. When making a jitter tolerance measurement, select PRES.

Cell Header at UNI

Bits								
8	7	6	5	4	3	2	1	Bytes
	G	FC				VPI		1
	VPI VCI					2		
	VCI						3	
VCI PTI CLP					CLP	4		
HEC					5			

Cell Header at NNI

Bits								
8	7	6	5	4	3	2	1	Bytes
		<u>.</u>	-	VPI				1
		VPI				VCI		2
	VCI				3			
	VCI PTI CLP				4			
	HEC					5		


GFC - Generic Flow Control, VPI - Virtual Path Identifier

VCI - Virtual Channel Identifier, PTI - Payload Type

CLP - Cell Loss Priority, HEC - Header Error Control

Policing ATM Traffic

Description Policing ATM traffic allows the user to check whether the incoming ATM service complies with the traffic contract.

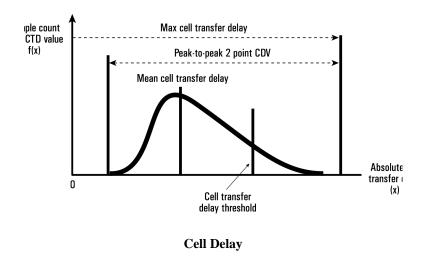
How to

- 1 Set up the Transmitter for ATM (See "Setting up the Transmitter for ATM Payloads" page 150).
- **2** Set up the Receiver for ATM (See "Setting up the Receiver ATM signal " page 168).
- **3** Select the **ATM SETTINGS** folder.
- 4 Select SETUP as **POLICING**.
- **5** To test a Continuous Bit Rate (CBR) service select the service **CBR**. Then set up the PEAK CELL RATE and CDVT. Any incoming signal which violates the peak cell rate or cell delay variation will result in NON-CONFORMING CELLS error. Because UBR traffic is policed in a similar manner to CBR, you can select CBR to police UBR traffic. In ABR dynamic control of the signal bandwidth is provided by resource management cells. However ABR is policed in a similar manner to CBR and so you can select CBR to police ABR traffic that is not changing.
- 6 To test a Variable Bit Rate (VBR) service select **VBR**. Then set up the SUSTAINABLE CELL RATE, the PEAK CELL RATE, the MAXIMUM BURST SIZE and the CDV TOLERANCE (See page 159 for definitions).
- 7 If the received cell stream does not conform to the policing parameters set up,

ATM Operation Policing ATM Traffic

non-conforming cells are recorded. To view these cells, see "Viewing ATM Results" page 165.

Measuring ATM Delay Performance


Description

Cell delay can be a problem in any two-way communication system, for example in voice communications, conversation becomes increasingly difficult as path delays increase. In a similar manner, data communications throughput is decreased if significant delay (or latency) slows down the speed that messages can be acknowledged by the receiving terminal.

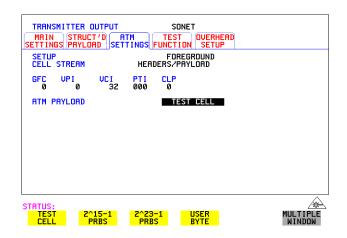
Cell delay variation (CDV) is caused by dynamic changes in the delay characteristic of an ATM connection. CDV causes problems in buffer underflow and overflow in play-out buffers used to recreate a CBR service. (This results in cell loss and the corresponding corruption of the data being carried. If the clock used to generate the CBR data is derived from the incoming data (adaptive clock method), excessive CDV may cause the PLL to lose lock). CDV may also be a problem for data carried on rt-VBR connections, like VBR video, where accurate timing recovery is critical to the observed quality of the decoded video signal (accumulation of CDV can increase the probability of cell loss due to switch congestion).

During design and verification, it may be necessary to test the delay and CDV of an ATM Network Element under load conditions to ensure that delay performance parameters can be guaranteed.

ATM Operation Measuring ATM Delay Performance

ATM delay measurements

Each cell transmitted may experience a different delay through the ATM network. The delay calculated for each cell can be analyzed over a period of time to produce delay measurements. The following ATM cell delay measurements have been standardized by the ATM Forum and also in ITU-T Recommendation 0.191.


- Mean cell transfer delay: the average of the delays calculated for each cell over the measurement time.
- Maximum cell transfer delay: the maximum value of delay calculated over the measurement time.
- Peak to peak two point CDV: the difference between the maximum delay and the minimum delay calculated over the measurement time.

These measurements are made using the timestamp field within the O.191 test cell.

ATM Operation Measuring ATM Delay Performance

How to 1 Set up the **TRANSMIT** page for ATM see "Setting up the Transmitter for ATM

Payloads " page 150.

- 2 Select TEST CELL as the transmit and receive payload as shown above.
- **3** Select RESULTS and view the Delay and CDV results, an example is given below.

RESULTS		ERROR	Summary S	
MEAN CELL	ECTED HEC SELLS TED CELLS DRMING CELLS TRANSFER DE TRANSFER DEL	LAY AY	N/A 0 0 2 0 4.622E+06 12 13 13 13 1 00m 40s	
STATUS: ERROR SUMMARY		SHORT TERM	ALARM	MULTIPLE WINDOW

Note: Delay measurements such as mean cell transfer delay are only valid if you perform a round trip measurement, that is, when a transmitter and receiver are in the same instrument. You can perform a CDV measurement end to end, that is, using two separate instruments to transmit and receive.

ATM Operation Measuring ATM Alarms

Measuring ATM Alarms

Description You can generate VP and VC AIS and RDI alarms to verify the response of the ATM Network under test, and also generate VP and VC Continuity check cells to keep the circuit alive during bursty traffic conditions. Set up the OmniBER 718 to generate AIS or RDI alarms and check the ability of your network element to recognize and respond to alarms.

TRANSHITTER OUTPUT SONET TEST OVERHEND MORE TEST FUNCTION BETUP TEST FUNCTION ATM ERR & RLARM ERROR ADD TYPE BIT STREAM ERROR ADD RATE NONE ORM ALARM TYPE VP-RDI	RECEIVER INPUT SONET
RESULTS ATH PAYLORD ALARH SECONDS POMER LOSS 0 VP-RD1 0 LOSS DF 0 VP-RD1 0 SEL DELL DF VV-RD1 0 TEST-DELL SVC-R1S L/R VV-RD1 VF TEST-DELL SVC-R1S L/R VV-RD1 VR PLOP R01 SVC VV-RD1 L/R VP-RD1 V/R PLOP R01 IVR VV-LOS IVR VV-LOS IVR VP-LOP R1 IVR ELAPSED T1HE 000 00h 00m 07s SVC SVC SVC SVC SVC SVC	FUNCTION SETTINGS CONTROL TRANSHITTER AND RECEIVER COUPLED RECEIVER COUPLED TO TRANSHITTER ATH HERDER VALUES NOT COUPLED
STATUS: UP LOC alarm ALL UP UC	EXPERT SINGLE MODE WINDOW

- How To1 Set up the TRANSMIT page for ATM (see "Setting up the Transmitter for ATM Payloads" page 150).
 - 2 Set up the Transmitter to generate ATM alarms (see "Transmitting ATM Alarms " page 161).

NOTE VP ALARMS WILL ONLY BE DETECTED IF THE CELL SELECTED FOR TEST IS VP OR VC. VC ALARMS WILL ONLY BE DETECTED IF THE CELL SELECTED FOR TEST IS VC.

- **3** Check that the appropriate LED illuminates on the instrument front panel when alarms are generated.
- 4 On the **RESULTS** page select RESULTS as **ATM PAYLOAD**, **ALARM SECONDS**.

ATM Service Disruption

Description

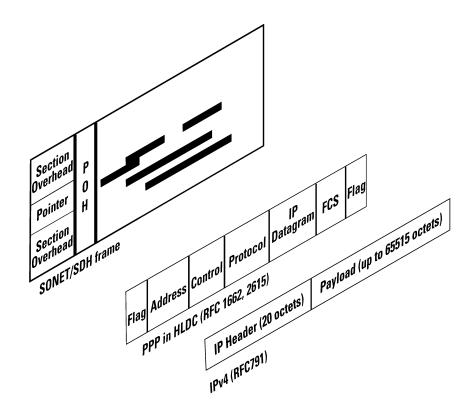
The ATM service disruption test is a measurement of the time that cells are lost or errored while they pass through a network element. There are a number of reasons for such a disruption, from a break in the line which may activate a protection switch to an ESD discharge which causes a temporary interruption to the ATM service.

To make valid Quality of Service measurements the actual time that traffic is lost must be measured. To do this OmniBER uses the test cell as a payload. The test cell is a special cell, defined in ITU-T Recommendation 0.191, which allows the detection of lost, mis-inserted and errored cells, simultaneously. These key parameters are input to the ATM service disruption measurement. The measurement time starts at the last good cell before the disruption and finishes whenever the first good cell arrives, following a disruption. To ensure that the disruption has completely finished, 200ms of error free cells are required before the measurement is recorded. For maximum accuracy ensure the gap between cells does not exceed one second.

TRANSHITTER OUTPUT SONET MAIN STRUCTO ATH SETUP SETUP CELL STREAM HEADERS/FAV.OND GFC VPI VCI PTI CLP 0 S2 000 0 ATH PAYLOAD TEST CELL	RECEIVER INPUT SONET
RESULTS SRVC DISRUPT	FUNCTION SETTINGS CONTROL
LONGEST 0.037ms SHORTEST 0.009ms	TRANSHITTER AND RECEIVER COUPLED RECEIVER COUPLED TO TRANSMITTER ATH HEADER VALUES NOT COUPLED
LAST 0.009ms	
ELAPSED TIME 00d 00h 00m 46s	
STATUS: TROUBLE TIMING SONET SCAN CONTROL RESULTS	ATM MORE SINGLE PRYLORD WINDOW

How To

To perform a service disruption measurement, set up the OmniBER as follows:


- 1 Set up the Transmitter for ATM, select the highest cell rate possible to ensure maximum accuracy (See "Setting up the Transmitter for ATM Payloads " page 150).
- 2 In the ATM SETTINGS folder set up the required service and traffic distributions. (See "Setting Foreground Traffic" page 155, "Setting

ATM Operation **ATM Service Disruption**

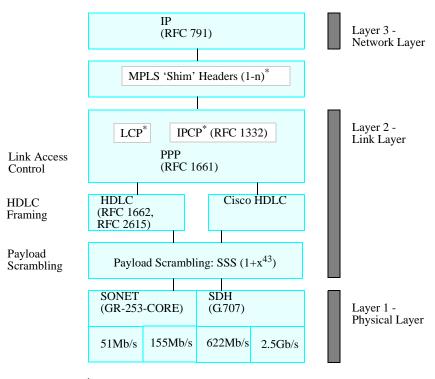
Background Traffic " page 157 & "Setting Foreground and Background Distributions " page 158).

- **3** Set up the Receiver for ATM. (See "Setting up the Receiver for ATM Payloads " page 166).
- **4** In the Receiver ATM SETTINGS folder set up the service and filter required.
- **5** Verify that no errors/alarms are received (no red LEDs and the RESULTS page is clear of errors).
- **6** In the system under test, activate the protection switch or generate some kind of temporary system failure.
- 7 Go to the RESULTS page. In the first RESULTS field select **SRVC DISRUPT** and note the duration of the service disruption. Available measurements are LONGEST burst, SHORTEST burst and LAST burst.

ATM Operation **ATM Service Disruption**

Packet over SONET (POS)

6


For POS operation you must have option 310 installed. Option 310 offers POS up to 2.5 Gb/s with a 37718A Mainframe, up to 622 Mb/s with a 37718B mainframe and up to 155 Mb/s with a 37718C mainframe.

Further information on POS technology/applications is supplied on the CD-ROM shipped with your instrument.

POS Protocol Stack

POS technology can be found in the line cards of high speed routers. It is a layer 2 protocol that maps IP packets into the SONET/SDH frame. Data is first of all segmented into an IP datagram that includes the 20-byte header. This datagram is encapsulated via PPP packets and framing information is added with HDLC-like framing. Gaps between frames are filled with flags (7E). The resulting data is scrambled, and mapped octet synchronously into the SONET/SDH frame. POS is described by the Internet Engineering Task Force (IETF) in the following 'Request for Comment' (RFC) documents:

RFC-1661 (Point- to- Point Protocol), RFC-1662 (PPP in HDLC-like framing) and RFC-2615 (PPP over SONET/SDH).

^{*}MPLS supported on Rx but not on Tx ^{*}LCP, IPCP not supported

Setting up the Transmitter for POS Payloads

Description The transmitter rate and mapping can be set up to match the requirements of the equipment under test. At SONET, select a rate from OC-1 to OC-48.

CAUTION Laser On/Off selection. Always switch off the laser before connecting or disconnecting optical cables.

 TIP
 To set the Transmitter and Receiver to the same interface settings choose OTHER

 SETTINGS CONTROL
 COUPLED
 This causes the receiver to be configured to the same settings as the transmitter.

TRANSHITTER OUTPUT SONET HAIN STRUCT D SATH SETTINGS PAYLORD SETTINGS FOR STONE OC-49 STONE OC-49 HAPPING ED STS-49C FOREGROUND HAPPING ED STS-49C FOREGROUND FOR SETTINGS / FOLDER ABOVE	RECEIVER INPUT SONET HIN STRUCT'D ATH SETTINGS PAYLOND SETTINGS FOR STONE 0C-49 HAPPING (B) STS-48C FULL SPE POS TO SET POS SETTINGS, FIRST SELECT THE "POS SETTINGS' FOLDER ABOVE
RESULTS POS PAYLORD RESULT SUMMARY RESULT TYPE COUNTS HDLC FRAMES N/A HDLC FRAMES N/A HDLC FRAMES N/A IP DETORNES N/A IP HEMER FRAMES N/A IV REMER FRAMES N/A ELREPSED TIME ODd ODh DOW 155	FUNCTION SETTINGS CONTROL TRANSHITTER AND RECEIVER COUPLED RECEIVER COUPLED TO TRANSHITTER
HINT: Press SET For popup applic STATUS: BULK ATM POS FILLED	cation diagram SINGLE WINDOW

How to

1 Press the **TRANSMIT** key and select **SONET**.

- **2** Select the SIGNAL rate.
- If Option 106, Dual Wavelength optical module, is fitted and an optical rate is chosen, choose the required wavelength (1550 or 1310).
 If STS-1 is chosen, choose the required interface level (CROSS-CONNECT, HIGH or LOW).
 Choose INTERNAL unless THRU MODE is required. If THRU MODE is

chosen, see "Setting SONET THRU Mode" page 37.

- **4** Make your choice of CLOCK synchronization source. The clock can be internally sourced from the instrument, recovered from the signal at the optical RECEIVE port or externally sourced from the CLOCK REF IN ports (MTS 64 kb/s, BITS 1.5 Mb/s or 10 MHz REF).
- **5** If required choose the FREQUENCY OFFSET value. See "Adding Frequency Offset to SONET Signal" page 62.

Payload Mappings

The payload mappings available for POS in SONET are: STS-48c SPE, STS-12c SPE, STS-3c SPE and STS-1 SPE.

6 Select required MAPPING and then select **POS**. Alternatively, use **SET** to bring up the popup application diagram:

Use cursor keys to make selection. Press SET to accept settin	gs.
STS-n SPE Layer Selection	Payload Layer Selection
OC-n/STS-n STS-48c SPE	POS ATM BULK FILLED
STS-12c SPE	POS ATM BULK FILLED
STS-3c SPE	POS ATM BULK FILLED
OC-1/STS-1 SPE	POS ATM BULK FILLED
VTGrp VTG	- BULK FILLED
	BULK FILLED
VT1.5	BULK FILLED

Use \rightarrow and \leftarrow to move between STS Layer Selection and Payload Layer Selection. Use \uparrow and \checkmark to set the mapping and **SET** to set your selection.

- 7 Select the STS-n channel under test.
- 8 Select the **POS SETTINGS** page and set up as described in the following pages:

Setting HDLC Framing, Scrambling and HDLC Frame Check Sequence

Description PPP in HDLC-like framing

PPP encapsulated packets are mapped into frames. HDLC-like framing is used to delineate the packet boundaries so that the receiver can extract them from the SONET/SDH frame. Gaps between packets are filled with standard HDLC flags of 7E.

Two framing formats are provided.

- PPP in HDLC framing as per RFC 1662.
- CISCO HDLC Cisco's proprietary frame structure.

The HDLC-like frame includes address, control, and protocol fields followed by the IP datagram.

The frame structure is common to both formats, with values shown below.

Table 5

Frame Structure for PPP in HDLC and Cisco HDLC

	Flag	Address	Control	Protocol	IP datagram	FCS	Flag
;	8 bits	8 bits	8 bits	16 bits	variable	16/32 bits	8 bits

PPP in HDLC	0x7E	0xFF	0x03	0x0021		0x7E
Cisco HDLC	0x7E	0x0F	0x00	0x0800		0x7E

Packet over SONET (POS) Setting HDLC Framing, Scrambling and HDLC Frame Check Sequence

Scrambling

The purpose of POS scrambling is to ensure that malicious users cannot bring down a network by transmitting patterns which disrupt/confuse SONET/SDH synchronization or framing. See Packet over SONET/SDH white paper (on your OmniBER CD-ROM) for more details.

The addition of payload scrambling occurs when inserting the HDLC-like framed PPP packets into the SONET/SDH frame

Frame Check Sequence

The FCS (Frame Check Sequence) is a CRC checksum and is used to protect the entire frame and give an indication of traffic integrity.

The FCS value is calculated over all bits of the address, control, protocol, datagram and padding fields. It does not include the flag fields or the FCS field itself.

- How To
- 1 This procedure assumes you have already selected a POS payload on the MAIN SETTING page, see "Setting up the Transmitter for POS Payloads" page 181.
 - 2 Select the **POS SETTINGS** folder as shown below:

TRANSMITTER OUTPUT MAIN STRUCT'D AT SETTINGS PAYLOAD SET	SONET Ings Settings	
HDLC FRAMING SCRAMBLING HDLC FCS	PPP 2 HDLC ON CRC-32	
PPP PROTOCOL SETUP	IP PAYLOAD	
PAYLOAD	RA55	
STATUS:		
PPP/ CISCO HDLC HDLC		MULTIPLE WINDOW

3 Set the HDLC FRAMING field to **PPP/HDLC** or **CISCO HDLC** as required.

Packet over SONET (POS)

Setting HDLC Framing, Scrambling and HDLC Frame Check Sequence

- Set SCRAMBLING to ON or OFF as required. If you select ON then scrambling is performed during insertion into the SONET using an x⁴³+ 1 polynomial. Note that the Scrambling OFF/ON selection affects the value of the C2 Overhead Byte as follows:
- Path Signal Label C2 set to 0x16 to indicate PPP when Scrambling set ON.
- Path Signal Label C2 set to 0xCF to indicate PPP when Scrambling set OFF.
- 5 Set the HDLC FCS (Frame Check Sequence) field to CRC-16 or CRC-32 as required. Note that CRC-16 is not available for STS-48c at 2.5Gb/s. CRC-32 is usually the recommended selection.

Setting IP Packet (Datagram) Length and Inter-Packet Gap

Description Both the IP datagram length and the Inter-packet gap are settable

TRANSMITTER OUTPUT MAIN ATM F SETTINGS SETTINGS SET		MORE
HDLC FRAMING SCRAMBLING HDLC FCS	PPP / CR	HDLC ON C-32
PPP PROTOCOL SETUP	PACKET SIZE	IP /GAP
IP DATAGRAM LENGTH		USER TETS
INTER PACKET GAP		USER TETS
PACKET RATE	6089356 PACKE	TS/S
STATUS:		<u></u>
PKT IP SIZE/GAP HEADER	IP ADDRESS PAYLO	AD MULTIPLE WINDOW

How To

- **1** This procedure assumes you have already selected a POS payload on the MAIN SETTING page, see "Setting up the Transmitter for POS Payloads" page 181.
- **2** Select the **POS SETTINGS** folder as shown above.
- **3** Set the SETUP field to **PACKET SIZE/GAP** .

Setting IP Datagram Length

- **4** Select the IP DATAGRAM LENGTH field.
- 5 Choose the IP DATAGRAM LENGTH. There is a choice of: USER, RANDOM or 7:4:1

Note: The IP datagram length is the value placed in the IP header 'Total Length' field. No padding is implemented: the datagram is immediately followed by the end of the HDLC frame (FCS and closing flag).

User Length: Settable between 20 and 65535 octets. Step size 1 octet. This is the size of the entire datagram, including the 20 octet header, before any HDLC octet stuffing. When the size is set to 20 only a header is transmitted.

Packet over SONET (POS) Setting IP Packet (Datagram) Length and Inter-Packet Gap

Random Lengths: The IP datagram size is varied randomly between minimum & maximum limits.

The minimum datagram size is settable between 20 and 63 octets. The maximum datagram size can be set to one of the following values:

- 127
- 511
- 1023
- 8191
- 65535

7,4,1 Lengths: Emulates real traffic patterns by sending a repeating sequence of 12 packets in which 7 have size 40 octets, 4 have size 552 octets, and 1 has size 1500 octets.

Setting Inter-Packet Gap

6 Choose the INTER PACKET GAP required, you can select either USER or RANDOM .

USER: Settable between 1 to 2^{30} -1 octets. Step size: 1 octet.

RANDOM: The Inter-packet gap is varied randomly between minimum & maximum limits.

The minimum Inter-packet gap size is fixed at 1.

The maximum Inter-packet gap size can be set to one of the following values:

- 4
- 32
- 1024
- 2²⁰
- 2³⁰-1

Packet Rate

The PACKET RATE displayed at the bottom of the display is the number of packets per second and is determined by the following:

- Channel Bandwidth (OC-1/OC-3/OC-12/OC-48).
- Packet (datagram) size.
- HDLC byte stuffing.
- Inter packet gap

Please refer to "What determines the packet rate?" page 205 for a detailed description on how Packet Rate is calculated.

Setting IP Header

Description

How To

Note that the IP Header is sent in every packet.

- 1 This procedure assumes you have already selected a POS payload on the MAIN SETTING page, see "Setting up the Transmitter for POS Payloads" page 181.
- 2 Select the **POS SETTINGS** folder as shown below:
- **3** Set the SETUP field to **IP HEADER** .

TRANSMITTER OUTPUT MAIN STRUCT'D SETTINGS PAYLOAD SE HDLC FRAMING SCRANBLING HDLC FCS	SONET ATM POS MORE TTINGS SETTINGS PPP / HDLC PPP / HDLC CRC-32]
PPP PROTOCOL SETUP TYPE OF SERVICE FLRGS TIME TO LIVE	IP IP HEADER 00000000 000 64	
PROTOCOL	TCP (6)	
STATUS: PKT IP Size/gap Header	IP IP Address Pryload	MULTIPLE WINDOW

- **4** Select the TYPE OF SERVICE (TOS) field and set up the 8 bits as required. This field is used to specify the service precedence of datagrams during their transmission through the internet system.
- **5** Select the FLAGS field to control fragmentation of packets and using the edit keys set each flag to 0 or 1.
- **6** Select the TIME TO LIVE (TTL) field and select a value from 0 to 255 (instrument default value is 64). Each Router will decrement the TTL value as it passes through. When it reaches zero the packet is destroyed.
- 7 Select the PROTOCOL field and choose from the following preset values: ICMP (1), IP (4), TCP (6), UDP (17), ICMP or program the USER PROGRAM value (0 to 255). The instrument default choice is TCP. This field indicates the next level protocol used in the data portion of the internet datagram (the value in brackets indicates the value of the byte in decimal (i.e. (6) indicates binary 00000110).

Setting IP Addresses

- How To1 This procedure assumes you have already selected a POS payload on the MAIN SETTING page, see "Setting up the Transmitter for POS Payloads" page 181.
 - 2 Select the **POS SETTINGS** folder as shown below:

TRANSMITTER OUTPUT MAIN STRUCT'D R SETTINGS PAYLORD SET HOLC FRAMING HOLC FCS	SONET TM FOS MORE TINGS SETTINGS PPP / HDLC ON CRC-32]
PPP PROTOCOL SETUP	IP IP RDDRESSES	
SOURCE ADDRESS DESTINATION ADDRESS	15.144.180.205 15.144.180.205	
STATUS: PKT IP Size/gap Header	IP Address Pryload	MULTIPLE WINDOW

3 Set the SETUP field to **IP ADDRESS** and set up the Source and Destination Addresses.

Setting IP Payload

How To

- 1 This procedure assumes you have already selected a POS payload on the MAIN SETTING page, see "Setting up the Transmitter for POS Payloads" page 181.
 - 2 Select the **POS SETTINGS** folder as shown below.

	· · · · · · · · · · · · · · · · · · ·	
TRANSMITTER OUTPUT	SONET	
MAIN STRUCT'D I SETTINGS PAYLOAD SE	RTM POS MORE	
HDLC FRAMING SCRAMBLING HDLC FCS	PPP / HDLC ON CRC-32	
PPP PROTOCOL Setup	IP IP PAYLOAD	
PAYLOAD	AR55	
		•
STATUS: PKT IP SIZE/GAP HEADER	IP ADDRESS PAYLOAD	MULTIPLE

3 Set the SETUP field to **IP PAYLOAD**.

The IP Payload selections offered are:

- 2²³-1 PRBS. (The PRBS can be non-inverted or inverted.)
- All Ones.
- All Zeros.
- 0xAA55 pattern
- 16-bit or 32 bit (BIN or HEX) user selectable word.
- **4** Set the PAYLOAD FIELD as required. Note that your choice of payload can affect the stability of the Packet Rate value (due to HDLC stuffing). To eliminate any uncertainty due to stuffing you should choose carefully the IP header and payload so that no stuffing takes place. Selecting a fixed word instead of a PRBS is recommended.

Adding POS Alarms

Description In the OmniBER receiver the front panel HDLC LOSS LED illuminates whenever there are no valid HDLC frames and no HDLC flags. The HDLC LINK LOSS alarm provided here allows you to simulate the condition when no valid HDLC frames/ flags are present.

How To1 This procedure assumes you have already selected a POS payload on the MAIN SETTING page, see "Setting up the Transmitter for POS Payloads" page 181.

- 2 Press the **TRANSMIT** key and select **SONET**.
- **3** Select the **TEST FUNCTION** folder as shown.
- **4** Set the TEST FUNCTION field to POS.
- Set the ALARM TYPE field to OFF or LINK LOSS .
 Selecting LINK LOSS logically inverts the 7E hex flag by transmitting the value 0x81 in all octets.

TRANSMITTER OUTPUT JITTER TEST OVERHEAD FUNCTION SETUP	SONET	
TEST FUNCTION POS	ERR & ALARM	
ERROR ADD TYPE RATE	BIT None	
ALARM TYPE	HDLC LINK LOSS	
STATUS: OFF LOSS		MULTIPLE WINDOW

Adding POS Errors

How To

- 1 This procedure assumes you have already selected a POS payload on the MAIN SETTING page, see "Setting up the Transmitter for POS Payloads" page 181.
- 2 Press the **TRANSMIT** key and select **SONET**
- **3** Select the **TEST FUNCTION** folder as shown:
- 4 Set the TEST FUNCTION field to **POS**

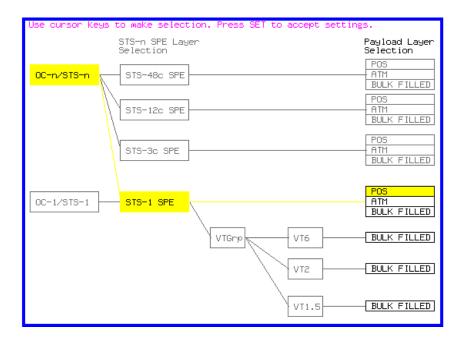
TRANSMITTER OUTPUT JITTER TEST OVERHEAD FUNCTION SETUP	SONET
TEST FUNCTION POS	ERR & ALARM
ERROR ADD TYPE RATE	BIT 1E-5
ALARM TYPE	OFF
STATUS: HDLC IP BIT FCS CHECKSUM	

- **5** Select the ERROR ADD TYPE field and choose an Error Type, also select the Error Rate. The Error Add Types and Rates available are as follows:
- HDLC FCS (CRC-16/CRC-32) errors. Mode: Single (via front panel SINGLE key) or Rate (1E-3).
- IP Header CHECKSUM Errors. Mode: Single or Rate (1E-3).
- BIT (IP Data) Errors Mode:- Single or Rate Rate = 1E-n where n= 3 to 9 Note: BIT is disabled when IP datagram length is set to 20 octets (Header only).

Setting up the Receiver for POS Operation

Description The receiver rate and mapping can be set up to match the requirements of the equipment under test. For SONET, select a rate from STS-1/OC-1 to OC-48 Optical.

 TIP
 To set the Transmitter and Receiver to the same interface settings choose OTHER


 SETTINGS CONTROL
 COUPLED. This causes the receiver to be configured to the same settings as the transmitter.

RECEIVER INPUT	SONET D RTM POS MORE SETTINGS SETTINGS	
SIGNAL	OC-48	
MAPPING 🖭	STS-48C Full SPE Pos	
TO SET POS SETT	INGS, FIRST SELECT THE FOLDER ABOVE	
'POS SETTINGS'	FOLDER ABOVE	
	or popup application diagram	^
STATUS: BULK ATM FILLED	PDS	MULTIPLE WINDOW

How To 1 Press [RECEIVE] and select SONET.

- 2 Select the MAIN SETTINGS folder.
- **3** Select the SIGNAL rate.
- 4 Select required MAPPING with POS as a payload. As an alternative, use SET to bring up the popup application diagram. Use the cursor keys to navigate through the popup application diagram (see next page).

Packet over SONET (POS) Setting up the Receiver for POS Operation

5 Continue to the next task "Setting up the Receiver POS signal" page 195 for advice on setting up the receiver POS signal.

Setting up the Receiver POS signal

Description You can set up the POS receiver signal to suit the equipment under test.

	RECEIVER INPUT SONET
	MAIN STRUCT'D ATM POS MORE SETTINGS PRYLORD SETTINGS SETTINGS
	HDLC FRAMING PPP / HDLC DESCRAMBLING DN
	HDLC FCS CRC-32 PPP PROTOCOL IP
	PAYLOAD 2^23-1 PRBS POLARITY INVERT
	STATUS:
	2^23-1 ALL ALL AR55 MORE MULTIPLE PRBS ONES ZEROS WINDOW
How To	1 Select the Receive rate and mapping, see "Setting up the Receiver for POS
now to	Operation " page 193.
	2 Select the POS SETTINGS folder.
	3 Set HDLC FRAMING to PPP/HDLC or CISCO HDLC as required.
	4 Set DESCRAMBLING to ON or OFF.
	5 Set HDLC FCS field to CRC-16 or CRC-32
	6 Set the PAYLOAD field to one of the following:
	• 2^23-1 PRBS
	• ALL ONES
	• ALL ZEROS
	• AA55
	USER WORD
	LIVE TRAFFIC

Viewing POS Results

Description The POS results can be viewed in a variety of ways on the RESULTS page.

RESULTS POS PRYLOAD Result type	RESULT SUMMARY		
HDLC FRAMES HDLC FCS ERRORS	7.551E+07 0		
IP DATAGRAMS IP HEADER ERRORS BIT ERRORS	7.551E+07 0 120813		
ELAPSED TIME	00d 00h 00m 12s		
	ONET POS Sults Prylord	MORE	MULTIPLE WINDOW

How To

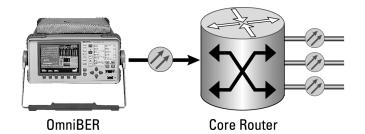
- **1** Press the **RESULTS** key.
- **2** Select **POS PAYLOAD** in the RESULTS field.
- **3 RESULT SUMMARY** gives a summary of all possible POS measurements and errors/counts and can be set up to be read as counts (total in measurement interval) or ratios/rates.
- 4 **CUMULATIVE** gives the number of errors and counts which have occurred in total since the last time **RUN/STOP** was pressed.
- 5 **SHORT TERM** give the number of errors and counts which have occurred in the last measurement interval. This measurement interval is set up on the results page when **TIMING CONTROL** has been selected in the RESULTS field.
- 6 ALARM SECONDS is used to look at POS and Power Loss alarms.

Packet over SONET (POS) **POS Applications**

POS Applications

The following pages give typical test applications.

Channelized Testing

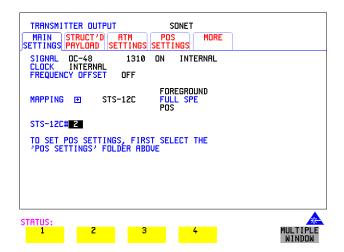

Description Channelized testing is the ability to perform tests on individual channels within SONET.

Many L1/L2 chipsets and line cards support SONET channelization. Typical configurations are:

- 3 STS-1 channels in an OC-3
- 4 STS-3c channels in an OC-12
- 4 STS-12c channels in an OC-48
- 16 STS-3c channels in an OC-48.

An important feature of the OmniBER is the ability to perform channelized testing using a POS payload.

With the OmniBER you can perform tests either in a single channel (with the other channels filled with a background payload) or over the full SDH bandwidth (concatenated mode).



How to

- Set the Transmitter and Receiver to the same interface settings by choosing
 OTHER SETTINGS CONTROL COUPLED. This causes the receiver to be configured to the same settings as the transmitter.
- 2 Press the **TRANSMIT** key and select **SONET**.
- **3** Select the **MAIN SETTINGS** folder.
- 4 Select the SIGNAL rate, CLOCK and FREQUENCY OFFSET as required.

Packet over SONET (POS) Channelized Testing

- 5 Select required MAPPING with POS as a payload. Use SET to bring up the popup application diagram. This allows an alternative way of selecting the appropriate mapping. Use the cursor keys to navigate through the popup application diagram.
- 6 Select the channel under test. The figure below gives an example where the channel under test is STS-12c (2) in an OC-48 signal.

Fully Exercising POS Hardware Architecture

Description

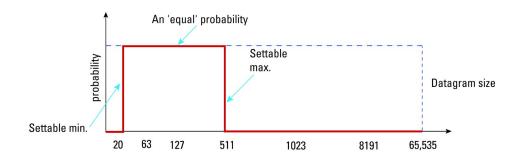
POS hardware operating at high speeds uses wide bus architectures (that is, internal buses which are several bytes wide). To ensure correct operation the hardware needs to be fully exercised (stressed) so that all 'corner cases' are caught. This is done by generating traffic with varying packet and gap sizes, sending the smallest packets at highest speed, longest packets, scrambling and exercise of the octet stuffing and destuffing. It may also include sending packet sizes rarely encountered in live networks (such as packet sizes which are not rounded to 4-byte boundaries).

With the OmniBER 718 you generate traffic profiles to successfully exercise POS hardware using the methods described. The following figure illustrates the traffic profiles offered in the OmniBER 718.

Uniform	
Random gap	
Random pkt size	
Random pkt size & gap	
7, 4, 1 distribution	

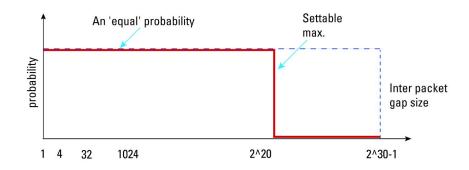
Fixed packet size and gap

If you select a fixed packet and gap you can check different phases of the wide-bus architecture. For example selecting gap sizes of 1, 2, 3 and 4 will test all 4 byte phases of a 4-byte architecture.


Random packet size

With random packet sizes, the maximum and minimum size can be set.

Packet over SONET (POS) Fully Exercising POS Hardware Architecture


Minimum sizes are particularly important for stress testing hardware. This minimum size can be set equal to the minimum allowed by the hardware.

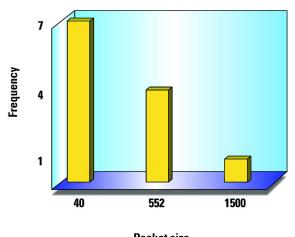
The probability of a packet with a particular size (between max and min.) is roughly equal for all packet sizes (see following figure).

Random packet gap

Random packet gaps can be generated with roughly equal probability between 1 octet and maximum. Setting a lower maximum value will increase the average packet rate.

Transmit an IP packet that generates maximum stress on the circuit under test.

An ideal way to generate the maximum stress on circuits under test is to transmit an IP packet which has both a random packet size and gap. You can do this with the OmniBER, and an example is given below.


How To

- 1 This procedure assumes you have already selected a POS payload on the MAIN SETTING page, see "Setting up the Transmitter for POS Payloads" page 181.
- **2** Select the **POS SETTINGS** folder.
- **3** Set up the POS SETTINGS page, an example is given below.

TRANSMITTER OUTPUT	SONET	n.
SETTINGS PAYLOAD SETTI HDLC FRAMING SCRAMBLING HDLC FCS	NGS SETTINGS PPP / HDLC ON CRC-32	
PPP PROTOCOL Setup	IP PACKET SIZE/GAP	
IP DATAGRAM LENGTH RANGE FROM 40 INTER PACKET GAP RANGE FROM 1	TO 8191 OCTETS RANDOM TO 4 OCTETS	
PACKET RATE	72405 PRCKETS/S	
STATUS: USER Random Length Lengths	7:4:1 LENGTHS	MULTIPLE WINDOW

Packet over SONET (POS) Fully Exercising POS Hardware Architecture

Transmit IP data that more closely resembles real traffic (7:4:1 distribution)

Packet size

With internet traffic any of the definable packet sizes (and gaps) may be transmitted. In practise it is more common to see fewer variations in the packet size the more packets there are transmitted. The OmniBER 718 provides a packet stream that closely approximates to this type of distribution, there are three packet sizes; they are 1500, 552 and 40 octets (see Figure above). The distribution is 7 small packets (40), 4 medium sized packets (552) and 1 big packet (1500) in every group of 12.

TRANSMITTER OUTPUT	SONET	
MAIN STRUCT'D A SETTINGS PAYLOAD SET	TM POS MORE	
HDLC FRAMING SCRAMBLING HDLC FCS	PPP / HDLC ON CRC-32	
PPP PROTOCOL SETUP	IP PRCKET SIZE/GRP	
IP DATAGRAM LENGTH	7:4:1	
INTER PACKET GAP RANGE FROM	RANDOM L TO 4 OCTETS	
PACKET RATE	867409 PRCKETS/S	
STRTUS:		<u> </u>
USER RANDOM LENGTH LENGTHS	7:4:1 LENGTHS	MULTIPLE WINDOW

Throughput Testing

Description

Packet over SONET chipsets and line cards will have performance limits imposed by the hardware architecture and by the size and management of buffers. To test these components it will be necessary to check that IP packets can be passed at the following:

- Minimum packet size and/or
- Maximum packet rate.

Using the OmniBER you can generate a continuous stream of packets of any size, and with any inter-packet gap.

In the following example the OmniBER is set up to generate a packet stream of 75-byte IP packets with a 17-byte gap between packets. The instrument displays (at the bottom of the screen) the actual transmitted packet rate in packets/s (2995200). To obtain the desired packet rate it is necessary to understand the factors determining packet rate, this is explained in the following text.

TRANSMITTER OUTPUT MAIN STRUCT'D F SETTINGS PAYLOAD SET HDLC FRAMING HDLC FCS	SONET ITM POS MORE TINGS SETTINGS PPP / HDLC ON CRC-32	
PPP PROTOCOL SETUP	IP PRCKET SIZE/GRP	
IP DATAGRAM LENGTH	USER	
INTER PACKET GAP	75 OCTETS USER 17 OCTETS	
PACKET RATE	2995200 PRCKETS/S	
STATUS: PKT IP Size/gap Header	IP Address Payload	MULTIPLE WINDOW

Packet over SONET (POS) Throughput Testing

What determines the packet rate?

- Channel bandwidth (STS-1 SPE, STS-3c SPE, STS-12c SPE or STS-48c SPE).
- Packet size.
- HDLC byte stuffing.
- Inter packet gap.

Available bandwidth

The available bandwidth (in bytes/second) for packet transmission for each channel is as follows:

- STS-1 SPE 6048000
- STS-3c SPE 18720000
- STS-12c 74880000
- STS-48c SPE 299520000

Packet Size

For IP, the packet size is specified in terms of the IP datagram size including the 20 byte IP header. The actual packet size transmitted includes 4 bytes of PPP/HDLC overhead plus the FCS (HDLC Frame Check Sum) which is 2 bytes for FCS16 or 4 bytes for FCS32. Hence, for a 75 byte IP datagram with FCS32 the actual packet size is 75 + 4 + 4 = 83 bytes.

The packet size may be further modified by HDLC stuffing. This will add one extra byte every time the flag (7E) or escape (7D) octet appears in the packet.

The actual transmitted packet rate (in packets/second) will then be:

channel bandwidth ÷ (packet size (including overhead and stuffing) + gap size).

For our example (see display on previous page), ignoring the effect of HDLC byte stuffing, we would expect a packet rate of $299520000 \div (83 + 17) = 2995200$ pkts/ sec. However, due to the effects of HDLC stuffing, this figure may be slightly reduced. To eliminate the uncertainty due to stuffing, it is possible to choose carefully the IP header and payload so that no stuffing takes place. The procedure given on the next page shows how this can be done:

To Transmit a packet rate of 2995200 packets/second

The following procedure shows how to set up the OmniBER to generate a packet stream of 75-byte IP packets with a 17-byte gap between packets and with a packet rate of 2995200 packets/s.

How To

- 1 Press the TRANSMIT key and select SONET
- 2 Select the **MAIN SETTINGS** folder and set up the page as shown below, with a POS payload selected.

TRANSMITTER OUTPUT SONET MAIN STRUCT'D ATM POS SETTINGS PAYLOAD SETTINGS SETTINGS	
SIGNAL DC-48 1310 DN INTERNAL CLOCK INTERNAL	
FREQUENCY OFFSET OFF FOREGROUND	
MRPPING STS-48C FULL SPE	
TO SET POS SETTINGS, FIRST SELECT THE 'POS SETTINGS' FOLDER RBOVE	
HINT: Press SET For popup application diagram STATUS: BULK ATM PDS FILLED	MULTIPLE WINDOW

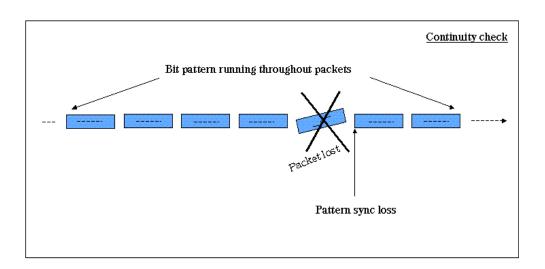
- **3** Select the **POS SETTINGS** folder.
- **4** Set the SETUP field to **IP PAYLOAD**
- **5** Select a fixed word pattern as the payload (AA55 for this example).

TRANSMITTER O MAIN SETTINGS PAYLOF	D ATM	SONET POS More TTINGS]	
HDLC FRAMING SCRAMBLING HDLC FCS		PPP / HDLC ON CRC-32		
PPP PROTOCOL Setup		IP IP PAYLOAD		
PRYLORD		AA55		
	L ALL Nes Zeros	AR55	USER WORD	MULTIPLE WINDOW

- 6 Set the SETUP field to **PACKET SIZE/GAP**.
- 7 Set the IP datagram length and inter packet gap as shown below.

	SONET ATM POS MORE TTINGS SETTINGS	
HDLC FRAMING SCRAMBLING HDLC FCS	PPP / HDLC ON CRC-32	
PPP PROTOCOL SETUP	IP PRCKET SIZE/GRP	
IP DATAGRAM LENGTH INTER PACKET GAP	USER 75 OCTETS USER 17 OCTETS	
PACKET RATE	2995200 PRCKETS/S	
STATUS: PKT IP Size/gap Header	IP Address Payload	MULTIPLE

Note the PACKETS/S rate displayed is what we expected (2995200).


If however you are setting up the transmitter to transmit a different packet rate and the value displayed is not what you expect, you may need to vary the word pattern (IP payload) and/or the IPdatagram header bytes until the expected packet rate is displayed.

Continuity Test

Description

A continuity check is a simple and effective way of checking for missing packets or corrupted packets that are dropped. The method used is to transmit a PRBS in the POS payload part of all the IP packets and check that the PRBS arrives at the receiving port error free. A lost or corrupted packet will result in a burst of errors at the OmniBER receiver.

The figure below illustrates a packet stream with a bit pattern running through the packets and shows that when a packet is lost pattern sync loss occurs. Pattern sync loss will result in errors which can be measured in the OmniBER.

Setting up the OmniBER to perform a Continuity Test

How To

- 1 Set the Transmitter and Receiver to the same interface settings by choosing **OTHER**, **SETTINGS CONTROL**, **COUPLED**.
- 2 Press the TRANSMIT key and select SONET
- **3** Select a POS payload on the **MAIN SETTINGS** page, see "Setting up the Transmitter for POS Payloads" page 181

Packet over SONET (POS) Continuity Test

- 4 Select the **POS SETTINGS** folder.
- **5** Set the SETUP field to **IP PAYLOAD** and select a suitable payload, for this example we have chosen a 2^23-1 PRBS as shown below.

TRANSMITTER OUTPUT MAIN STRUCT'D F SETTINGS PAYLOAD SET	SONET ITM POS MORE TINGS SETTINGS		
HDLC FRAMING SCRAMBLING HDLC FCS	PPP / HDLC ON CRC-32		
PPP PROTOCOL Setup	IP IP PAYLOAD		
PAYLOAD POLARITY	2^23-1 PRBS Invert		
STATUS:			
2^23-1 ALL PRBS ONES	ALL AA55 ZEROS	USER Word	MULTIPLE WINDOW

Check continuity by adding POS errors and verifying that the correct alarms and errors are received by the OmniBER.

6 Select the **TEST FUNCTION** folder and set up as shown below.

TRANSMITTER OUTPUT JITTER TEST OVERHEAD FUNCTION SETUP	SONET
TEST FUNCTION POS	ERR & ALARM
ERROR ADD TYPE RATE	BIT 1E=5
ALARM TYPE	OFF
STATUS: None 1E-3 1E-	4 1E-5 MORE MULTIPLE WINDOW

- **7** Press **RUN/STOP** to start the measurement.
- 8 View the results on the **RESULTS**, **POS PAYLOAD** page. An example is given below.

In our example we introduced POS bit errors at 1E-5, this is reflected in the Results page shown in the display above.

POS Service Disruption

Description

A common feature of modern secure networks is the ability to switch the user traffic to a backup path when the main path fails, or under administrative control. This can happen at the SONET layer, or at higher protocol layers (for example MPLS). The switching will usually only disrupt the traffic briefly, and the OmniBER can measure this disruption using the method described below.

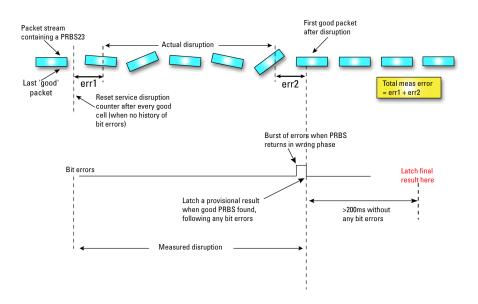
Service disruption can be measured on a POS signal on the disrupted path or virtual path.

Measurement method

The measurement is made by sending and receiving a PRBS pattern at the IP layer. The detection of a service disruption is based on the detection of bit errors on the received PRBS. The disruption period is the time from the end of a received error-free packet to the occurrence of the next error-free word (32-bits) after any bit errors have been detected. The measurement is recorded only if 200ms of no bit errors occur after the disruption period.

POS Service Disruption measurement is only available when PRBS is chosen as the payload.

Measurement accuracy


Measurement accuracy is proportional to the packet rate. The packet rate in turn is dependent on 4 factors: packet size, inter-packet gap, stuffing ratio and bandwidth (see "What determines the packet rate?" page 205).

To maximize the accuracy of this measurement, the inter-packet gap should be kept to a minimum and the packets should be kept small. However, the resulting packet rate should not exceed the specification of the system under test. The measurement accuracy is typically $\pm 2 \times (1 \div$ packet rate). For example a packet rate of 10,000 packets/s gives an accuracy of typically ± 0.2 milliseconds, which is accurate enough to measure typical disruptions of many milliseconds

Hence it is only practical to approximate the accuracy. For best results, the smallest possible inter-packet gap should be chosen along with the smallest possible packet size.

The figure on the next page illustrates the measurement technique and also shows how the packet size and rate affects the measurement accuracy.

Packet over SONET (POS) **POS Service Disruption**

Set up the OmniBer to measure service disruption

- How To
- 1 Set the Transmitter and Receiver to the same interface settings by choosing OTHER SETTINGS CONTROL COUPLED.
- **2** Set up the OmniBER to transmit a POS payload (see "Setting up the Transmitter for POS Payloads" page 181).
- **3** Select the **POS SETTINGS** folder.
- 4 Set the SETUP field to IP PAYLOAD and select 2^23-1 PRBS
- **5** Set the SETUP field to **PACKET SIZE/GAP** and set the IP datagram length and inter packet gap to suit your equipment under test. In the following example (on next page) we have set the datagram length and inter packet gap to give a packet rate of approximately 10,000 packets per second.

Packet over SONET (POS) **POS Service Disruption**

ETTINGS PAYLOAD SETT HDLC FRAMING SCRAMBLING HDLC FCS	INUS SETTINUS PPP / HDLC ON CRC-32	
PPP PROTOCOL Setup	IP PRCKET SIZE/GAP	
IP DATAGRAM LENGTH INTER PACKET GAP	USER 4096 OCTETS USER 258 0 1 OCTETS	
PACKET RATE	10002 PRCKETS/S	

- 6 Press **RUN/STOP** to start the measurement.
- 7 Invoke the protection switch.
- 8 View the results on the **[RESULTS]**, **SERVICE DISRUPT** display.

RESULTS SRUC DISR	UPT	
LONGEST SHORTEST	0.000ms 0.000ms	
LRST	0.000ms	
ELAPSED TIME	00d 00h 01m 10s	
STATUS: SERVICE SONET DISRUPT ALM SCAN	SONET MORE Tribscan	MULTIPLE WINDOW

HDLC Frame Stuffing

Description Each HDLC-like frame begins and ends with a flag sequence, which is the binary sequence 011111110 (hexadecimal 7E).

The IP data is examined on an octet by octet basis for the value 7E. If it occurs an escape sequence is used to replace any 7E octet with 7D-5E. The 7D character is considered to be the 'escape' character so it to needs to be replaced. 7D is converted to 7D-5D. The entire process is reversed at the receiver

Checking HDLC byte stuffing

To fully exercise the HDLC byte stuffing, patterns can be generated which deliberately contain a lot of stuff bytes. The IP payload can be set to a repeating 16-bit or 32-bit word pattern. Any byte of this word can be set to 7E (to emulate the flag sequence) or 7D (to emulate the escape sequence). OmniBer will 'escape' these bytes wherever they occur. For example, setting the user word pattern to 7E FF 7D FF will result in two extra escape bytes being stuffed into every 4-byte sequence during the payload.

A pattern such as 7E 7D 7D 7E will exercise the worst case stuffing rate.

Setting up the OmniBER to exercise HDLC byte stuffing

In the following example we set the PACKET SIZE/GAP to the instrument default settings (with 40 octet datagram length and 1 octet gap) and then select a User Word to create maximum stuffing, and note the change in Packet Rate due to stuffing.

How To

- 1 Set the Transmitter and Receiver to the same interface settings by choosing OTHER SETTINGS CONTROL COUPLED.
- **2** Set up the OmniBER to transmit a POS payload (see "Setting up the Transmitter for POS Payloads" page 181).
- **3** Select the **POS SETTINGS** folder.
- 4 Set the SETUP field to IP PAYLOAD and select 2^23-1 PRBS

Packet over SONET (POS) HDLC Frame Stuffing

5 Set the SETUP field to **PACKET SIZE/GAP** and set the IP datagram length and inter packet gap to suit your equipment under test. In the following example we have set the datagram length and inter packet gap to the instrument default settings (see figure below).

TRANSMITTER OUTPUT MAIN ATM SETTINGS SETTINGS SET		SONET TER More	
HDLC FRAMING SCRAMBLING HDLC FCS		PPP / HDLC ON CRC-32	
PPP PROTOCOL Setup	PRCK	IP ET SIZE/GAP	
IP DATAGRAM LENGTH INTER PACKET GAP		USER 40 OCTETS USER 1 OCTETS	
PACKET RATE	6089352	PRCKETS/S	
STATUS:			_
PKT IP SIZE/GAP HEADER		IP PAYLOAD	MULTIPLE WINDOW

6 Set the SETUP field to **IP PAYLOAD** and select **USER WORD**. Set the User Word to 32 BIT (HEX) 7E7D7D7E as shown below.

TRANSMITTER OUTPUT MAIN ATM POS SETTINGS SETTINGS SETTIN	SONET JITTER MORE	
HDLC FRAMING SCRAMBLING HDLC FCS	PPP / HDLC ON CRC-32	
PPP PROTOCOL SETUP	IP IP PAYLOAD	
PAYLOAD USER WORD LAYOUT	USER WORD 32 BIT (HEX) 7E7D7D71	
STATUS: DECREASE INCREASE DIGIT DIGIT	← →	

7 Set the SETUP field to **PACKET SIZE/GAP** and note that the PACKET/S rate has dropped due to stuffing caused by the selection of the User Word 7E7D7E7D.

TRANSMITTER OUTPUT MAIN SETTINGS SETTINGS SET HDLC FRAMING SCRAMBLING HDLC FCS		SONET TER MORE PPP / HDLC ON CRC-32	
PPP PROTOCOL SETUP	РЯСК	IP ET SIZE/GAP	
IP DATAGRAM LENGTH INTER PACKET GAP		USER 40 OCTETS USER 1 OCTETS	
PACKET RATE	4340870	PRCKETS/S	
CTRTUC			
STATUS: PKT IP SIZE/GAP HEADER	IP ADDRESS	IP PAYLOAD	MULTIPLE WINDOW

Jitter Tolerance Testing of POS Equipment

Jitter is present to a certain extent in all telecommunication networks, and can be defined simply as the movement in time of parts of a clock or data stream relative to where we expect to find them. Bit errors or data loss will occur in a digital signal if jitter at the input port of a network element exceeds a threshold value. It is important therefore that the network element be designed to tolerate a sufficient level of jitter, that is, does not introduce errors when certain values of jitter are present. The ITU-T specifies the lower limit of maximum tolerable input jitter (MTIJ) in the form of an ITU-T jitter tolerance mask. The OmniBER provides a number of ITU-T masks for Jitter Tolerance testing, see "Measuring Jitter Tolerance" page 134.

Use the Jitter generation and measurement features of the OmniBER to verify the jitter tolerance of POS line cards.

Jitter/Wander Generation and Jitter Tolerance and Jitter Transfer tests are available at all SONET rates when a POS payload is selected. Automatic Jitter Tolerance measurement is only available with a POS payload when the payload selected is 2^23-1PRBS.

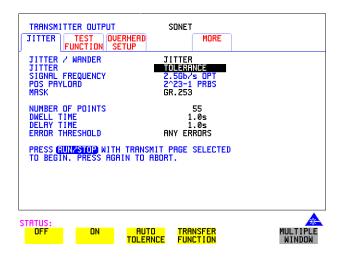
Only a Jitter Tolerance example is given here, for information on Jitter Transfer and Wander measurements refer to "Measuring Jitter Transfer" page 138 and "Measuring Wander" page 131.

Jitter Tolerance method

Jitter is generated at a range of frequencies within the mask and an error measurement is made. If no errors occur (PASS), the jitter amplitude at that frequency point is increased until errors occur (FAIL) or the maximum jitter amplitude is reached. The highest jitter amplitude at which PASS occurs is plotted on the graph as the Jitter Tolerance for that jitter frequency.

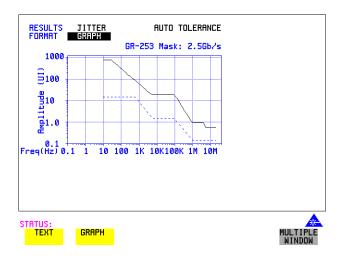
User-Programmable Masks

There are 5 user programmable masks provided allowing you to create, edit and title up to 5 jitter masks. Please refer to "To Generate a New Jitter Mask" on page 299 and "To change the parameters of a User Defined Jitter Mask" on page 301 for instructions on how to generate or edit a user programmable mask.


How To Perform a Jitter Tolerance Measurement

- 1 Set up the transmitter and select a POS payload with a fixed 2^23-1 PRBS (see "Setting up the Transmitter for POS Payloads" page 181) and "Setting IP Payload" page 190.
- **2** Select the **POS SETTINGS** folder as shown below.

TRANSMITTER OUTPUT MAIN ATM SETTINGS SETTINGS SET	SONET	
HDLC FRAMING SCRAMBLING HDLC FCS	PPP / HDLC ON CRC-32	
PPP PROTOCOL SETUP	IP PACKET SIZE/GAP	
IP DATAGRAM LENGTH	USER 4096 DCTETS	
INTER PACKET GAP	USER 1 OCTETS	
PACKET RATE	72403 PRCKETS/S	
STATUS:		
PKT IP SIZE/GAP HEADER	ADDRESS PAYLOAD	MULTIPLE WINDOW


- 3 Set the SETUP field to **PACKET SIZE/GAP** and select a size as large as practical for the system under test (this gives better coverage for error detection). For this example we selected a length of 4096 and a gap of 1.
- **4** Select the IP DATAGRAM LENGTH field as required.
- **5** Set the INTER PACKET GAP as required (the smaller the better for increased coverage).
- 6 If you are performing jitter tolerance on a SONET Optical signal, check on the **RESULTS SONET RESULTS OPTICAL POWER** display that the measured optical power level falls within the white portion of the coloured bar. This ensures the accuracy of the Jitter results.
- 7 Set up the receiver for POS operation, see "Setting up the Receiver for POS Operation" page 193 and "Setting up the Receiver POS signal" page 195. Set the receiver payload to 2^23-1PRBS

Packet over SONET (POS) Jitter Tolerance Testing of POS Equipment

- 8 Select the **JITTER** folder and select AUTO TOLERANCE and a MASK (see display above).
- **9** Choose the NUMBER OF POINTS at which jitter is transmitted (3 to 55)
- **10** Choose the DWELL TIME the time jitter is generated at each jitter frequency point (0.1 to 99.9 seconds).
- **11** Choose the DELAY TIME the time delay between the jitter frequency/ amplitude being applied and the error measurement being made. This allows the network equipment to settle as jitter frequency is changed. (0.1 to 99.9 seconds).
- **12** Set the ERROR THRESHOLD field to ANY ERRORS. Any BIT, BIP, FCS or header errors will result in a FAIL.
- 13 Press RUN/STOP to start the jitter auto tolerance measurement. The measurements progress can be monitored on the TRANSMIT display. At the end of the test the results can be viewed on the TRANSMIT or RESULTS displays. The TRANSMIT display is cleared when TRANSMIT is pressed but the results remain on the RESULTS display until the next jitter tolerance measurement is made.

Packet over SONET (POS) Jitter Tolerance Testing of POS Equipment

View the Results

14 Choose the results FORMAT.

If **GRAPH** is chosen, a plot of the jitter tolerance results against the ITU-T mask is displayed.

If **TEXT** is chosen, the results from which the graph is constructed are displayed, Point number, Frequency, Mask amplitude, Tolerance, Result.

If applicable, points 13 through 55 can be viewed on pages 2 through 5.

If you wish to log the jitter tolerance results to a printer, See "Logging Jitter Tolerance Results" page 245.

7

"Saving Graphics Results to Instrument Store" page 222 "Recalling Stored Graph Results" page 223 "Viewing the Bar Graph Display" page 225 "Viewing the Graphics Error and Alarm Summaries" page 227 "Logging Graph Displays" page 229 "Logging Results" page 231 "Logging on Demand" page 241 "Logging Jitter Tolerance Results" page 245 "Logging Jitter Transfer Results" page 247 "Logging Results to Parallel (Centronics) Printer" page 249 "Logging Results to GP-IB Printer" page 250 "Logging Results to Internal Printer" page 251 "Logging Results to RS-232-C Printer" page 252 "Printing Results from Disk" page 253 "Connecting a Printer to a Parallel Port" page 254 "Changing Internal Printer Paper" page 255 "Cleaning Internal Printer Print Head" page 258

Storing, Logging and Printing

Saving Graphics Results to Instrument Store

Description Graphical representation of measurement results is very useful particularly during a long measurement period. It provides an overview of the results and can be printed for record keeping.

Graphics results can be stored in instrument graph storage or on floppy disk.

RESULTS TIMING CO	INTROL
SHORT TERM PERIOD TEST TIMING	1 SECOND MANUAL
GRAPH STORAGE	1 MIN RESOL'N INTERNAL
STATUS:	
OFF 1 SEC RESOL'N	1 MIN 15 MIN 1 HR MULTIPLE Resol'n Resol'n Resol'n Window

HOW TO:

1 Before starting your measurement, choose the GRAPH STORAGE resolution and location.

The resolution chosen affects the ZOOM capability when viewing the bar graphs. If 1 MIN is selected, 1 MIN/BAR, 15 MINS/BAR and 60 MINS/BAR are available. If 15 MINS is selected, 15 MINS/BAR and 60 MINS/BAR are available. If 1 HOUR is selected, 60 MINS/BAR is available. The graphics results can be stored in the instrument - INTERNAL or stored on DISK. Storage to disk will use a default file name unless a file name is specified on the **OTHER FLOPPY DISK** display. See "Saving Graphical Results to Disk" page 274.

2 Press **RUN/STOP** to start the measurement. Graphical results will be stored in the chosen location.

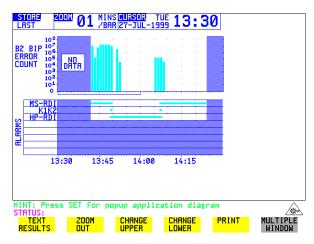
Recalling Stored Graph Results

Description Results stored from a previous measurement can be recalled to the graphics displays for viewing and printing.

STORE	start Date	START TIME	TEST DURATION	U	store Ise
DISK -9					
-7					
-8 -7 -5 -4 -3 -1					
-2 -1 LRST	10-JUL-1997 11-JUL-1997 12-JUL-1997	15:20 07:50 07:51	16h 28m 3 00h 01m 0 00h 01m 1	04s	2% <1% Nil
	N COMPRESSED			SED	2% 98%
FREE S	TORE 19626 E	VENTS			
STATUS GRAP		DE	LETE D	ELETE	E
RESUL	TS RESULTS	ST	ORE	ALL	

HOW TO:

- **1** Press **GRAPH** to view the bar graph display.
- 2 If currently viewing the bar graph display, select **TEXT RESULTS** then **STORE STATUS**. If currently viewing the error or alarm summary, select **STORE STATUS**.
- 3 Using ↑ and ↓, move the highlighted cursor to the store location which contains the required results. If the required results are stored on Disk, move the highlighted cursor to DISK and choose RECALL GRAPHICS on the FLOPPY DISK display. See "Recalling Graphics Results from Disk" page 279.
- 4 Choose **GRAPH RESULTS** if you wish to view the bar graphs. The display will change to the bar graph display of the highlighted results.
- 5 Choose TEXTRESULTS if you wish to view the error and alarm Summaries. The display will change to the text results display of the highlighted results.
 DELETE STORE deletes the results in the highlighted store.
 If DELETE ALL is chosen, a CONFIRM DELETE; ABORT DELETE choice prevents accidental deletion of all the stored results.


Storing, Logging and Printing Recalling Stored Graph Results

The top row of the display comprises five fields:

Store	Memory location in which the displayed bar graph data is stored. Move the highlighted cursor, to the STORE location desired, using () and).
Start Date	The start date of the test, which produced the stored results.
Start Time	The start time of the test, which produced the stored results.
Test Duration	The duration of the test, which produced the stored results.
Store Use	The percentage (%) of the overall storage capacity occupied by each set of stored results. The TOTAL percentage used and the percentage still FREE is provided at the bottom of the STORE USE column.

Viewing the Bar Graph Display

Description All the graphic results obtained during the measurement are available for viewing. Identify a period of interest and zoom in for more detailed examination.

HOW TO: 1 To view the current bar graphs, press **GRAPH** and use **CHANGE UPPER** and **CHANGE LOWER** to obtain the bar graphs required.

- **2** To view previously stored graphs, see "Recalling Stored Graph Results " page 223.
- 3 For more detailed inspection of the bar graph, position the cursor centrally within the area of interest using →, ← and select **ZOOMIN** to reduce the time axis to 15 MINS/BAR. This is only possible if the graphics results were stored with a STORAGE resolution of 1 SEC,1 MINS or 15 MINS.

For further reduction of the time axis to 01 MINS/BAR or 01 SECS/BAR, position the cursor centrally within the area of interest and select **ZOOMIN** until the required time axis is obtained.

The top row of the display comprises three fields:

StoreMemory location in which the displayed bar graph data is
stored. Store can only be changed when the status of stored
results is displayed. See "Recalling Stored Graph Results "
page 223.

Zoom The width, in minutes, of each "bar" in the bar graph, controlled by ZOOM IN / ZOOM OUT.

Storing, Logging and Printing Viewing the Bar Graph Display

Cursor The cursor position in terms of time and date, controlled by → and →. The cursor position changes in steps of 1 second, 1 minute, 15 minutes or 60 minutes dependent upon the ZOOM setting. The cursor is physically located between the two graphs.

Viewing the Graphics Error and Alarm Summaries

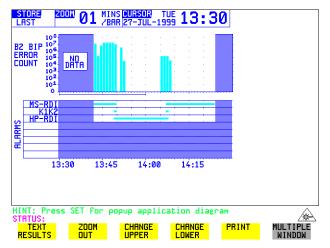
Description The error and alarm summaries of the measurement chosen are displayed on the **TEXT RESULTS** display. The error summary or alarm summary can be viewed at any time.

14:28 STOP 8-SEP-1998 TUE start Tue 14:48 8-SEP-1998 STORE DSn ERROR SUMMARY COUNT RATIO BIT BPV 261865 423E-04 202187 3.715E-06 DS3 FRAME DS1 FRAME P-BIT C-BIT 838 .369E-06 12 1.877E-06 224151 . 197F 50271 9.424F-07 FEBE CRC 16981 3.202E-07 NZA NZB STRTUS: GRAPH RESULTS STORE STRTUS PRINT NEXT SUMMARY alarm Summary MULTIPLE WINDOW

- HOW TO:
- 1 To view the error or alarm summary associated with the current bar graphs, press **GRAPH** then **TEXT RESULTS**.
- **2** To view the error or alarm summary associated with previously stored bar graphs, see "Recalling Stored Graph Results " page 223.
- **3** To view the Alarms which have occurred during the measurement, select **ALARM SUMMARY**. Use **NEXT SUMMARY** to view the PDH/DSn; and SDH Alarm Summaries in turn if applicable.
- 4 To view the Errors which have occurred during the measurement select **ERROR SUMMARY**. Use **NEXT SUMMARY** to view the PDH/DSn; and SDH Error Summaries in turn if applicable.

The top row of the display comprises three fields:

StoreMemory location in which the bar graphs, error summary and
alarm summary are stored.Store can only be changed when the status of stored results is
displayed. See "Recalling Stored Graph Results" page 223.


Storing, Logging and Printing Viewing the Graphics Error and Alarm Summaries

StartThe start time and date of the test, that produced the displayed
results.StopThe stop time and date of the test, that produced the displayed
results.

Logging Graph Displays

Description

The bar graphs and error and alarm summaries can be logged to the disk for printing at a later date or logged to an internal printer if Option 602 is fitted. If Option 601, Remote Control, is fitted, the bar graphs and error and alarm summary can be logged to an external Printer at the end of the test period. If a Printer is not immediately available, the graphics results remain in memory and can be logged at a later time when a Printer becomes available. Suitable HP Printers are the HP 660, HP 690C, HP 500 or HP 400.

HOW TO:

Log to a Printer

- Choose the logging DEVICE. The logging device can be selected on the **OTHER LOGGING** display when SETUP is set to **LOGGING DEVICE**. For more details on the choice of devices and how to setup the instrument to interface with them please refer to the following sections:
- RS232: "Logging Results to RS-232-C Printer" page 252.
- GPIB: "Logging Results to GP-IB Printer" page 250
- PARALLEL: "Logging Results to Parallel (Centronics) Printer" page 249.
- INTERNAL (only if Option 602, Internal Printer, is fitted): "Logging Results to Internal Printer" page 251.

- 2 Press GRAPH to view the bar graph display. To log the Error and Alarm summaries, the displayed Bar graphs and the Alarm graph to the printer, choose PRINT on the bar graph display.
- Choose to confirm or abort the print. To confirm the print and only print the portion of the graph displayed and the summaries choose THIS SCREEN To confirm the print and print the graph for the whole measurement period and the summaries choose CURSOR TO END To abort the print choose ABORT.
- **4** To log the selected Error and Alarm summaries to the printer, choose **PRINT** on the Text Results display.

HOW TO: Log to the Internal Disk Drive

- **1** Insert a floppy disk in the disk drive.
- 2 Choose LOGGING PORT DISK on the OTHER LOGGING display. Enter a filename on the OTHER FLOPPY DISK display. See "Saving Data Logging to Disk " page 276.
- 3 Press GRAPH to view the bar graph display. To log the Error and Alarm summaries, the displayed Bar graphs and the Alarm graph to the disk, choose PRINT on the bar graph display.
- Choose to confirm or abort the print. To confirm the print and only print the portion of the graph displayed and the summaries choose <u>THIS SCREEN</u>. To confirm the print and print the graph for the whole measurement period and the summaries choose <u>CURSOR TO END</u>. To abort the print choose <u>ABORT</u>.
- **5** To log the selected Error and Alarm summaries to the disk, choose **PRINT** on the Text Results display.

Logging Results

Description Test Period Logging

If degradations in system performance can be observed at an early stage, then the appropriate remedial action can be taken to maximize circuit availability and avoid system crashes.

Test period logging allows you to monitor the error performance of your circuit over a user defined test period. If required, results can be logged at regular intervals during this test period but, regardless of whether or not Periodic Logging is selected, the results will be logged at the end of the test period. An instant summary of the results can also be demanded by pressing **PRINT NOW**. This will not affect any test period in progress.

The user can choose to log all available results or else a subset of the available results (e.g. Errors, Jitter, G.826, M.2100 etc.). This means the logging output can be tailored to contain only the results that are of particular interest.

Error Event Logging

Manual tracing of intermittent faults is time consuming. Error event logging allows you to carry out unattended long term monitoring of the circuit. Each occurrence of an error event is logged.

Any Alarm occurrence results in a timed and dated message being logged.

Logging Output

The results can be logged to the following devices:

- Optional Internal printer fitted into the instrument front cover (Option 602)
- External GP-IB printer (option 601)
- External RS-232-C printer (option 601)
- External Parallel Port printer (option 601)
- Internal Disk Drive

HOW TO: Selecting Logging Device

The logging device can be selected on the **OTHER LOGGING** display when SETUP is set to **LOGGING DEVICE**. For more details on the choice of devices

and how to setup the instrument to interface with them please refer to the following sections:

- RS232: "Logging Results to RS-232-C Printer" page 252.
- GPIB: "Logging Results to GP-IB Printer" page 250
- PARALLEL: "Logging Results to Parallel (Centronics) Printer" page 249.
- DISK: "Saving Data Logging to Disk" page 276.
- INTERNAL (only if Option 602, Internal Printer, is fitted): "Logging Results to Internal Printer" page 251.

Enabling Test Period Logging

To enable Test Period Logging first select the **OTHER LOGGING** display and then set TEST PERIOD LOGGING to be **ON**. For more information on setting up the actual Test Period (i.e. Gating Period) please refer to the "Test Timing" page 111 Section.

FUNCTION	LOGGING	
TEST PERIOD LOGGING SETUP	ON Content	
LOG ERROR RESULTS LOG JITTER RESULTS LOG G.821 RESULTS LOG M.2100 RESULTS LOG M.2100 RESULTS LOG M.2110 RESULTS LOG M.2120 RESULTS	DN DN DN DN DN DN DN DN	
LOG ERROR SECONDS	DFF	
STATUS: LOGGING LOGGING DEVICE CONTENT	LOGGING LOG ON PERIOD DEMAND	MULTIPLE WINDOW

Selecting Logging Content

The SETUP **LOGGING CONTENT** selection on the **OTHER LOGGING** display allows the user to choose which type of results they wish to log. For example if they only wished to log the G.821 and G.826 Analysis Results then they would simply set LOG G.821 RESULTS and LOG G.826 RESULTS to be **ON** while setting all the other selections to be **OFF**. There is no restriction as to what

result selection is made but please note that the selections all default to be **ON** so that all results are logged by default.

When TEST PERIOD LOGGING is set to **ON** then there is a LOG ERROR SECONDS selection on the SETUP **LOGGING CONTENT** display. Setting LOG ERROR SECONDS to be **ON** means that, if errors are detected during the Test Period, then a timed and dated message is logged each time an error second occurs. The message will contain the type of error detected and the number of errors of that type which were received in the error second. Note that if there are excessive occurrences of error seconds during a Test Period then having this selection switched **ON** will result in heavy use of printer paper.

Selecting Logging Period

FUNCTION	
TEST PERIOD LOGGING SETUP	ON PERIOD
LOGGING PERIOD	OFF
STATUS:	1 HOUR 24 HOURS USER MULTIPLE PROGRAM WINDOW

As well as logging results at the end of the Test Period, the user can also select a logging period. The logging period is setup via SETUP **LOGGING PERIOD** on the **OTHER LOGGING** display. At the end of each of these logging periods results will be logged. Note that this selection is only offered when TEST PERIOD LOGGING is set to **ON**.

The length of the logging period is setup using the LOGGING PERIOD selection. This offers a number of preset intervals along with a USER PROGRAM choice which provides a choice of 10 minutes to 99 hours. The actual logging period chosen by the user should be of a shorter duration than the test period in order that results can be logged periodically within the test period.

When a logging period is selected, then the user can choose whether **ALL** results are to be logged at the end of each period or a **SELECTED** subset. Note that this selection is in addition to that already made on the SETUP **LOGGING CONTENT** page.

The WHEN selection allows the user to have results logged **ALWAYS** at the end of each logging period or only when the error count for the logging period is greater than 0 i.e. **PERIOD EC>0**. If the error count is 0 then the message NO BIT ERRORS is displayed.

The TYPE selection allows the user to choose whether the results logged at the end of each period are the Cumulative Results, Period Results or both. The definitions for these two result types are as follows:

Period Results: The Results obtained over a set period of time during the test i.e. the logging period.

Cumulative Results: The results obtained over the elapsed time since the start of the test period.

Logging Results Examples

There are four phases of results logging:

- Start of measurement Header is logged
- During the measurement Alarm events and if enabled error events
- End of logging period Complete set of period and cumulative results
- End of measurement Complete set of cumulative results.

Logging Header

When the measurement is started the logging header provides a record of the instrument configuration that produced the results (see following pages).

1	OmniBER 37718							
1	Instrument Configuration							
Receive Signal	: OC-48	STS-3 under test	: 1					
Mapping	: STS-1	VT2 ASYNC 2Mb/s	1					
Selected STS-1	: STS-1[1]							
Selected VT	: VTGRP[1] V	VT[1]	1					
Payload (Struct)	: PCM30CRC							
Test Signal	: 64kb/s							
Tributaries	:		64kb [1]					
Pattern	: 2^11-1	Polarity	: NORMAL					
Range	: 64 UI	Filter	: HP1					
Hit Threshold	: 1.0 UI		1					
1			1					
	-	10:01:17 Print Per						

Logging During Measurement

During the measurement a timed and dated message is logged each time an alarm occurs, and if LOG ERROR SECONDS [ON] is chosen a timed and dated message is logged each time an error second occurs (excessive occurrences of error seconds during the logging period will result in heavy use of printer paper).

10:03:35	CV-S (B1)	500
10:03:36	CV-S (B1)	900
10:03:38	CV-L (B2)	300
10:03:39	CV-L (B2)	600
10:03:41	CV-P (B3)	900
10:03:42	CV-P (B3)	1000
10:03:44	CV-P (B3)	300
10:03:45	A1A2 FRAME	700
10:03:46	A1A2 FRAME	100
10:03:48	REI-L	100
10:03:50	REI-L	1000
10:03:51	REI-L	1000
10:03:53	REI-P	300
10:03:5	4 REI-P	1000
10:03:5	6 REI-P	700
10:04:00	CV-V	1000

10:04:01	CV-V	1000	I
10:04:03	CV-V	200	
10:04:07	RDI-V	SET	
10:04:09	RDI-P	SET	I
10:04:10	Pattern Loss	SET	I
10:04:11	SEF	SET	I
10:04:17	RDI-V	CLEAR	I
10:04:19	RDI-P	CLEAR	I
10:04:21	Pattern Loss	CLEAR	I
10:04:22	SEF	CLEAR	I
10:04:22		ALL ALARMS CLEAR	1

Logging at the End of Measurement

At the end of the measurement a complete set of cumulative results are logged. At the end of each LOGGING PERIOD a complete set of Period results and a full set of cumulative results are logged.

					===============
MEASUREMENT COMPLE	TE 07 Sep	00 10:05:57	Elapse	d Time 00d	00h 00m 01s
1		Cumulative R	esults		
1					
Error Results :					
	A1A2 FRAME	CV-S (B1)	CV-L (B2)	REI-L	CV-P (B3)
Error Count	0	0	0	0	0
Error Ratio	0	0	0	0	0
	REI-P	CV-V	REI-V		
Error Count	0	0	0		
Error Ratio	0	0	0		
		FAS 140M	FAS 34M	FAS 8M	FAS 2M
Error Count		N/A	N/A	N/A	0
Error Ratio		N/A	N/A	N/A	0
		BIT	CODE	CRC	REBE
Error Count		0	N/A	0	0
Error Ratio		0	N/A	0	0

JITTER		I			
Hit Count				0	
Hit Seconds				0	
Hit Free Seconds				1	
Positive Peak				0.010	
Negative Peak				0.010	
Peak-to-Peak				0.020	
RMS				0.006	
1					
Analysis Results :					
	G.826 ANALY	SIS			
	CV-S (B1)	CV-L (B2)	REI-L	CV-P (B3)	
Errored Blocks	0	0	0	0	
Errored Seconds	0	0	0	0	
Severely Errored Seconds	0	0	0	0	
Unavailable Seconds	0	0	0	0	
Path Unavailable Seconds	N/A	0	0	0	
Background Block Errors	0	0	0	0	
Errored Second Ratio	0	0	0	0	
Severely Errored Sec Ratio	0	0	0	0	
Background Block Err Ratio	0	0	0	0	
	REI-P	CV-V	REI-V		
Errored Blocks	0	0	0		
Errored Seconds	0	0	0		
Severely Errored Seconds	0	0	0		
Unavailable Seconds	0	0	0		
Path Unavailable Seconds	0	0	0		
Background Block Errors	0	0	0		
Errored Second Ratio	0	0	0		
Severely Errored Sec Ratio	0	0	0		
Background Block Err Ratio	0	0	0		
1					I
1					I

I Errored Seconds 0 0 0 0 Severely Errored Seconds 0 0 0 0 0 I Low Order Path Rx Tx 1	RxTxRxTxErrored Seconds000Severely Errored Seconds000Unavailable Seconds000Errored Seconds000Imavailable Seconds000Unavailable Seconds000Unavailable Seconds00Unavailable Seconds00Errored Sec0N/AN/AErrored Sec0N/AN/AErrored Sec0N/AN/AErrored Sec0N/AN/AError Free Sec1N/AN/AError Free Sec100N/AN/AError Free Sec100N/AN/ASeverely Err Sec0N/AN/ASeverely Err Sec0N/AN/AUnavailable Sec0N/AN/AUnavailable Sec0N/AN/AUnavailable Sec0N/AN/AUnavailable Sec0N/AN/AErrored SecN/A0.00000Error Free SecN/A100Errored SecN/A100Errored SecN/A1Error Free SecN/A0Error Free SecN/A0Error Free SecN/A0Error Free SecN/A0Errored SecN/A0Error Free SecN/A0Error Free SecN/A0Error Free Sec	I	М	1.2101 ANALY	SIS		
. Errored Seconds 0 0 0 0 ! Severely Errored Seconds 0 0 0 0 0 ! Low Order Path Rx Tx	Errored Seconds 0 0 0 Severely Errored Seconds 0 0 0 Unavailable Seconds 0 0 0 Errored Seconds 0 0 0 Errored Seconds 0 0 0 Severely Errored Seconds 0 0 0 Unavailable Seconds 0 0 0 Errored Sec 0 N/A N/A 0 *Errored Sec 0 N/A N/A N/A *Error Free Sec 1 N/A N/A N/A *Error Free Sec 100 N/A N/A N/A *Severely Err Sec 0 N/A N/A 0 *Bergaded Minutes 0.00000 N/A N/A 0 *Degraded Minutes 0.000000 N/A N/A	1		S	ection	High Orde	er Path
· · · 0	Severely Errored Seconds 0 0 0 0 Inavailable Seconds 0 0 0 0 Errored Seconds 0 0 0 0 Severely Errored Seconds 0 0 0 0 Unavailable Seconds 0 0 0 0 Unavailable Seconds 0 0 0 0 Errored Sec 0 N/A N/A N/A Errored Sec 0 0/A N/A N/A 0.00000 *ES (Annex D) 0.00000 N/A N/A N/A 100 *Error Free Sec 100 N/A N/A N/A 100 *Error Free Sec 100 N/A N/A N/A 0.00000 *Error Free Sec 100 N/A N/A 0.00000 0.00000 *Errored Sec 0 N/A N/A 0.00000 0.00000 *Errored Sec 0 N/A N/A 0.00000 0.00000 *Unavailable Sec 0.00000 N/A N/A 0 0.00000	1		Rx	Tx	Rx	Tx
Unavailable Seconds 0 0 0 0 0 Unavailable Seconds 0 0 Severely Errored Seconds 0 0 Unavailable Seconds 0 0 Severely Errored Sec 0 N/A N/A N/A 0.00000 N/A N/A N/A 0.00000 N/A N/A N/A 0.00000 N/A N/A N/A 0.00000 N/A N/A N/A 10 Severely Err Sec 1 N/A N/A N/A 100 Severely Err Sec 0 N/A N/A N/A 0.00000 Unavailable Sec 0 N/A N/A N/A 0.00000 Unavailable Sec 0 N/A N/A N/A 0 Severely Err Sec 0 N/A N/A N/A 0.00000 Unavailable Sec 0 N/A N/A N/A 0 Severely Err Sec 0 N/A N/A N/A 0.00000 Unavailable Sec 0 N/A N/A N/A 0 Severely Err Sec 0 N/A N/A N/A 0 Severely Err Sec 0 N/A N/A N/A 0.00000 Unavailable Sec 0 N/A N/A N/A 0 Severely Err Sec 0 N/A N/A N/A 0 Severely Err Sec 0 N/A N/A N/A 0.00000 Severely Err Sec 0 N/A N/A N/A 0 Severely Err Sec 0 N/A N/A N/A 0.00000 Severely Err Sec 0 N/A N/A N/A 0 Severely Err Sec 0 N/A N/A N/A 0 Severely Err Sec 0 N/A N/A 0 Severely Err Sec 0 N/A N/A 0 Severely Err Sec 0 N/A 0 Severely Err Sec N/A 0	Unavailable Seconds 0 0 0 0 Low Order Path Rx Tx Errored Seconds 0 0 Severely Errored Seconds 0 0 Unavailable Seconds 0 0 Unavailable Seconds 0 0 Unavailable Seconds 0 0 Unavailable Seconds 0 0 Errored Sec 0 N/A N/A Errored Sec 0 N/A N/A 0.00000 *Errored Sec 0.00000 N/A N/A N/A 0.00000 *Error Free Sec 1 N/A N/A N/A 100 Severely Err Sec 0 N/A N/A N/A 0.00000 'Severely Err Sec 0 N/A N/A N/A 0.00000 'Begraded Minutes 0.00000 N/A N/A N/A 0.00000 'Unavailable Sec 0 N/A N/A 0 0 'Errored Sec N/A 1 1 'Errored Sec N/A	Errored Seconds		0	0	0	0
Image: constraint of the second sec	Low Order Path Rx Tx Errored Seconds 0 0 Severely Errored Seconds 0 0 Unavailable Seconds 0 0 Unavailable Seconds 0 0 Errored Seconds 0 0 Errored Sec 0 N/A FAS 8M FAS 2M Errored Sec 0.00000 N/A N/A 0.00000 %Errored Sec 0.00000 N/A N/A N/A Error Free Sec 1 N/A N/A 10 %Error Free Sec 100 N/A N/A N/A 100 Severely Err Sec 0 N/A N/A N/A 0.00000 %Error Free Sec 0 N/A N/A N/A 0 %Error Free Sec 0.00000 N/A N/A N/A 0 %Error Free Sec 0 N/A N/A 0.00000 W/A N/A N/A 0 0.00000 Wibavailable Sec	Severely Errored Se	conds	0	0	0	0
. Errored Seconds 0 0 Severely Errored Seconds 0 0 Unavailable Seconds 0 0 Image: C.821 ANALYSIS G.821 ANALYSIS Errored Sec 0 N/A N/A PAS 2M Errored Sec 0 N/A N/A N/A 0.00000 % Errored Sec 0.00000 N/A N/A N/A 0.00000 % Error Free Sec 1 N/A N/A N/A N/A Error Free Sec 100 N/A N/A N/A 100 Severely Err Sec 0.00000 N/A N/A N/A 0 % Severely Err Sec 0.00000 N/A N/A N/A 0 % Degraded Minutes 0.00000 N/A N/A N/A 0 % Unavailable Sec 0.00000 N/A N/A N/A 0 Unavailable Sec 0.00000 N/A N/A 0 0 Errored Sec N/A 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	Errored Seconds 0 0 Severely Errored Seconds 0 0 Unavailable Seconds 0 0 G.821 ANALYSIS G.821 ANALYSIS Errored Sec 0 N/A N/A N/A Errored Sec 0 N/A N/A N/A 0.00000 *Errored Sec 0.00000 N/A N/A N/A 0.00000 *Error Free Sec 1 N/A N/A N/A N/A Error Free Sec 100 N/A N/A N/A 100 Severely Err Sec 100 N/A N/A N/A 0 VESeverely Err Sec 0.00000 N/A N/A N/A 0 Vegraded Minutes 0.00000 N/A N/A N/A 0 Vegraded Minutes 0.00000 N/A N/A N/A 0 Vegraded Minutes 0.00000 N/A N/A 0 0 Vegraded Minutes 0.00000 N/A N/A 0 0 Vegraded Sec 0.00000 N/A N/A	Unavailable Seconds	i -	0	0	0	0
. Errored Seconds 0 0 Severely Errored Seconds 0 0 Unavailable Seconds 0 0 Image: C.821 ANALYSIS G.821 ANALYSIS Errored Sec 0 N/A N/A PAS 2M Errored Sec 0 N/A N/A N/A 0.00000 % Errored Sec 0.00000 N/A N/A N/A 0.00000 % Error Free Sec 1 N/A N/A N/A N/A Error Free Sec 100 N/A N/A N/A 100 Severely Err Sec 0.00000 N/A N/A N/A 0 % Severely Err Sec 0.00000 N/A N/A N/A 0 % Degraded Minutes 0.00000 N/A N/A N/A 0 % Unavailable Sec 0.00000 N/A N/A N/A 0 Unavailable Sec 0.00000 N/A N/A 0 0 Errored Sec N/A 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	Errored Seconds 0 0 Severely Errored Seconds 0 0 Unavailable Seconds 0 0 G.821 ANALYSIS G.821 ANALYSIS Errored Sec 0 N/A N/A N/A Errored Sec 0 N/A N/A N/A 0.00000 *Errored Sec 0.00000 N/A N/A N/A 0.00000 *Error Free Sec 1 N/A N/A N/A N/A Error Free Sec 100 N/A N/A N/A 100 Severely Err Sec 100 N/A N/A N/A 0 VESeverely Err Sec 0.00000 N/A N/A N/A 0 Vegraded Minutes 0.00000 N/A N/A N/A 0 Vegraded Minutes 0.00000 N/A N/A N/A 0 Vegraded Minutes 0.00000 N/A N/A 0 0 Vegraded Minutes 0.00000 N/A N/A 0 0 Vegraded Sec 0.00000 N/A N/A	I					
Severely Errored Seconds 0 0 Unavailable Seconds 0 0 Imaxilable Seconds 0 N/A N/A Imaxilable Seconds 0 N/A N/A N/A Imaxilable Seconds 0 N/A N/A N/A 0 Imaxilable Seconds 0 N/A N/A N/A N/A N/A Imaxilable Seconds 0 N/A N/A N/A N/A 0 Imaxilable Seconds 0 N/A N/A N/A 0 0 Imaxilable Seconds 0 N/A N/A N/A 0 0 Imaxilable Seconds 0 N/A N/A N/A 0 0 Imaxilable Seconds 0 N/A <td< td=""><td>Severely Errored Seconds 0 0 Unavailable Seconds 0 0 G.821 ANALYSIS G.821 ANALYSIS ET FAS 140M FAS 34M FAS 8M FAS 2M Errored Sec 0 N/A N/A 0 *Errored Sec 0.00000 N/A N/A N/A 0.00000 *ES (Annex D) 0.00000 N/A N/A N/A N/A Error Free Sec 1 N/A N/A N/A 1 *Error Free Sec 100 N/A N/A N/A 100 Severely Err Sec 0 N/A N/A N/A 0 Severely Err Sec 0.00000 N/A N/A N/A 0 'Begraded Minutes 0.00000 N/A N/A N/A 0 'Unavailable Sec 0.00000 N/A N/A 0 0 'Unavailable Sec 0.00000 N/A N/A 0 0 'Errored Sec N/A N/A</td><td>I</td><td>Low Order</td><td>Path Rx</td><td>Tx</td><td></td><td></td></td<>	Severely Errored Seconds 0 0 Unavailable Seconds 0 0 G.821 ANALYSIS G.821 ANALYSIS ET FAS 140M FAS 34M FAS 8M FAS 2M Errored Sec 0 N/A N/A 0 *Errored Sec 0.00000 N/A N/A N/A 0.00000 *ES (Annex D) 0.00000 N/A N/A N/A N/A Error Free Sec 1 N/A N/A N/A 1 *Error Free Sec 100 N/A N/A N/A 100 Severely Err Sec 0 N/A N/A N/A 0 Severely Err Sec 0.00000 N/A N/A N/A 0 'Begraded Minutes 0.00000 N/A N/A N/A 0 'Unavailable Sec 0.00000 N/A N/A 0 0 'Unavailable Sec 0.00000 N/A N/A 0 0 'Errored Sec N/A N/A	I	Low Order	Path Rx	Tx		
Unavailable Seconds 0 0 Unavailable Seconds 0 0 G.821 ANALYSIS G.821 ANALYSIS Errored Sec 0 N/A N/A PAS &M Errored Sec 0.00000 N/A N/A N/A 0 *Errored Sec 0.00000 N/A N/A N/A 0.00000 *Error Free Sec 1 N/A N/A N/A 1 *Error Free Sec 100 N/A N/A N/A 100 Severely Err Sec 0.00000 N/A N/A N/A 0.00000 Severely Err Sec 0.00000 N/A N/A N/A 0 @ Begraded Minutes 0.00000 N/A N/A N/A 0.00000 Whavailable Sec 0 N/A N/A N/A 0 0 @ Winavailable Sec 0.00000 N/A N/A 0 0 0 # Errored Sec N/A 100 100 100 100 100	Unavailable Seconds 0 0 Unavailable Seconds 0 0 Sc.821 ANALYSIS G.821 ANALYSIS Errored Sec 0 N/A N/A PAS 8M FAS 2M Errored Sec 0.00000 N/A N/A N/A 0.00000 %ES (Annex D) 0.00000 N/A N/A N/A N/A Error Free Sec 1 N/A N/A N/A 100 Severely Err Sec 100 N/A N/A N/A 0.00000 Severely Err Sec 0.00000 N/A N/A N/A 0.00000 %Degraded Minutes 0.00000 N/A N/A N/A 0.00000 Wavailable Sec 0.00000 N/A N/A N/A 0.00000 Wavailable Sec 0.00000 N/A N/A 0.00000 0.00000 Wavailable Sec 0.00000 N/A N/A 0 0 %Errore Sec N/A 0.00000 0.00000 0.00000 0.00000	Errored Seconds		0	0		
. G.821 ANALYSIS I EIT FAS 140M FAS 34M FAS 8M FAS 2M I Errored Sec 0 N/A N/A N/A 0 I Errored Sec 0.00000 N/A N/A N/A 0.00000 I & Errored Sec 0.00000 N/A N/A N/A N/A I Error Free Sec 1 N/A N/A N/A 100 Severely Err Sec 100 N/A N/A N/A 100 Severely Err Sec 0.00000 N/A N/A N/A 0 I Severely Err Sec 0.00000 N/A N/A N/A 0 I Degraded Minutes 0.00000 N/A N/A N/A 0 I Unavailable Sec 0 N/A N/A N/A 0 I Errored Sec N/A 1 1 1 I & Error Free Sec N/A 0 0 0 I Errored Sec N/A 100 100 100 I & Error Free Sec N/A 0 0 0	G.821 ANALYSIS BIT FAS 140M FAS 34M FAS 8M FAS 2M Errored Sec 0 N/A N/A N/A 0 *Errored Sec 0.00000 N/A N/A N/A 0.00000 *Errored Sec 0.00000 N/A N/A N/A 0.00000 *ES (Annex D) 0.00000 N/A N/A N/A N/A Error Free Sec 1 N/A N/A N/A 100 Severely Err Sec 0 N/A N/A N/A 0 *Severely Err Sec 0.00000 N/A N/A N/A 0 *Severely Err Sec 0.00000 N/A N/A N/A 0 *Begraded Minutes 0.00000 N/A N/A 0 0 *Unavailable Sec 0.00000 N/A N/A 0 0 *Errored Sec N/A 0 0 0 0 *Error Free Sec N/A 1 1 1	Severely Errored Se	conds	0	0		
BIT FAS 140M FAS 34M FAS 8M FAS 2M Errored Sec 0 N/A N/A N/A 0 *Errored Sec 0.00000 N/A N/A N/A 0.00000 *Errored Sec 0.00000 N/A N/A N/A 0.00000 *Es (Annex D) 0.00000 N/A N/A N/A N/A Error Free Sec 1 N/A N/A N/A 1 *Error Free Sec 100 N/A N/A N/A 100 Severely Err Sec 0.00000 N/A N/A N/A 0 *Severely Err Sec 0.00000 N/A N/A N/A 0 *Begraded Minutes 0.00000 N/A N/A N/A 0 *Unavailable Sec 0.00000 N/A N/A 0 0 *Unavailable Sec 0.00000 N/A N/A 0 0 *Errored Sec N/A 1 1 1 1 <td< td=""><td>BIT FAS 140M FAS 34M FAS 8M FAS 2M Errored Sec 0 N/A N/A N/A 0 %Errored Sec 0.00000 N/A N/A N/A 0.00000 %ES (Annex D) 0.00000 N/A N/A N/A N/A Error Free Sec 1 N/A N/A N/A 1 %Error Free Sec 100 N/A N/A N/A 100 Severely Err Sec 0 N/A N/A N/A 0 %Severely Err Sec 0.00000 N/A N/A N/A 0 %Degraded Minutes 0.00000 N/A N/A N/A 0 %Degraded Minutes 0.00000 N/A N/A N/A 0 %Unavailable Sec 0.00000 N/A N/A 0 0 %Errored Sec N/A 0.00000 0.00000 0.00000 0.00000 %Errored Sec N/A 1 1 1 1 1 <!--</td--><td> Unavailable Seconds</td><td></td><td>0</td><td>0</td><td></td><td></td></td></td<>	BIT FAS 140M FAS 34M FAS 8M FAS 2M Errored Sec 0 N/A N/A N/A 0 %Errored Sec 0.00000 N/A N/A N/A 0.00000 %ES (Annex D) 0.00000 N/A N/A N/A N/A Error Free Sec 1 N/A N/A N/A 1 %Error Free Sec 100 N/A N/A N/A 100 Severely Err Sec 0 N/A N/A N/A 0 %Severely Err Sec 0.00000 N/A N/A N/A 0 %Degraded Minutes 0.00000 N/A N/A N/A 0 %Degraded Minutes 0.00000 N/A N/A N/A 0 %Unavailable Sec 0.00000 N/A N/A 0 0 %Errored Sec N/A 0.00000 0.00000 0.00000 0.00000 %Errored Sec N/A 1 1 1 1 1 </td <td> Unavailable Seconds</td> <td></td> <td>0</td> <td>0</td> <td></td> <td></td>	Unavailable Seconds		0	0		
BIT FAS 140M FAS 34M FAS 8M FAS 2M Errored Sec 0 N/A N/A N/A 0 *Errored Sec 0.00000 N/A N/A N/A 0.00000 *Errored Sec 0.00000 N/A N/A N/A 0.00000 *Es (Annex D) 0.00000 N/A N/A N/A N/A Error Free Sec 1 N/A N/A N/A 1 *Error Free Sec 100 N/A N/A N/A 100 Severely Err Sec 0.00000 N/A N/A N/A 0 *Severely Err Sec 0.00000 N/A N/A N/A 0 *Begraded Minutes 0.00000 N/A N/A N/A 0 *Unavailable Sec 0.00000 N/A N/A 0 0 *Unavailable Sec 0.00000 N/A N/A 0 0 *Errored Sec N/A 1 1 1 1 <td< td=""><td>BIT FAS 140M FAS 34M FAS 8M FAS 2M Errored Sec 0 N/A N/A N/A 0 %Errored Sec 0.00000 N/A N/A N/A 0.00000 %ES (Annex D) 0.00000 N/A N/A N/A N/A Error Free Sec 1 N/A N/A N/A 1 %Error Free Sec 100 N/A N/A N/A 100 Severely Err Sec 0 N/A N/A N/A 0 %Severely Err Sec 0.00000 N/A N/A N/A 0 %Degraded Minutes 0.00000 N/A N/A N/A 0 %Degraded Minutes 0.00000 N/A N/A N/A 0 %Unavailable Sec 0.00000 N/A N/A 0 0 %Errored Sec N/A 0.00000 0.00000 0.00000 0.00000 %Errored Sec N/A 1 1 1 1 1 <!--</td--><td>I</td><td></td><td></td><td></td><td></td><td></td></td></td<>	BIT FAS 140M FAS 34M FAS 8M FAS 2M Errored Sec 0 N/A N/A N/A 0 %Errored Sec 0.00000 N/A N/A N/A 0.00000 %ES (Annex D) 0.00000 N/A N/A N/A N/A Error Free Sec 1 N/A N/A N/A 1 %Error Free Sec 100 N/A N/A N/A 100 Severely Err Sec 0 N/A N/A N/A 0 %Severely Err Sec 0.00000 N/A N/A N/A 0 %Degraded Minutes 0.00000 N/A N/A N/A 0 %Degraded Minutes 0.00000 N/A N/A N/A 0 %Unavailable Sec 0.00000 N/A N/A 0 0 %Errored Sec N/A 0.00000 0.00000 0.00000 0.00000 %Errored Sec N/A 1 1 1 1 1 </td <td>I</td> <td></td> <td></td> <td></td> <td></td> <td></td>	I					
Image: Section of the sectio	Errored Sec 0 N/A N/A N/A N/A 0 %Errored Sec 0.00000 N/A N/A N/A N/A 0.00000 %ES (Annex D) 0.00000 N/A N/A N/A N/A N/A Error Free Sec 1 N/A N/A N/A N/A 1 %Error Free Sec 100 N/A N/A N/A N/A 100 Severely Err Sec 0 N/A N/A N/A 0 0 %Severely Err Sec 0.00000 N/A N/A N/A 0 0 %Degraded Minutes 0.00000 N/A N/A N/A 0 0 %Unavailable Sec 0.00000 N/A N/A N/A 0 0 %Errored Sec 0.00000 N/A N/A 1 1 %Errored Sec N/A 0 0 0 0 %Errored Sec N/A 0 0 0 0	l		G.821 ANALY	SIS		
*Errored Sec 0.00000 N/A N/A N/A 0.00000 *ES (Annex D) 0.00000 N/A N/A N/A N/A Error Free Sec 1 N/A N/A N/A N/A *Error Free Sec 100 N/A N/A N/A 1 *Error Free Sec 100 N/A N/A N/A 100 Severely Err Sec 0 N/A N/A N/A 0 *Severely Err Sec 0.00000 N/A N/A N/A 0 *Degraded Minutes 0.00000 N/A N/A N/A 0 *Degraded Minutes 0.00000 N/A N/A N/A 0 *Unavailable Sec 0.00000 N/A N/A N/A 0.00000 *Errored Sec N/A 0.00000 0.00000 0.00000 *Error Free Sec N/A 1 1 1 *Error Free Sec N/A 0 0 0 *Severely Err Sec	*Errored Sec 0.00000 N/A N/A N/A 0.00000 *ES (Annex D) 0.00000 N/A N/A N/A N/A Error Free Sec 1 N/A N/A N/A N/A *Error Free Sec 100 N/A N/A N/A 1 *Error Free Sec 100 N/A N/A N/A 100 Severely Err Sec 0 N/A N/A N/A 0 *Severely Err Sec 0.00000 N/A N/A N/A 0 *Degraded Minutes 0.00000 N/A N/A N/A 0 *Degraded Minutes 0.00000 N/A N/A N/A 0 *Degraded Minutes 0.00000 N/A N/A N/A 0 *Unavailable Sec 0.00000 N/A N/A 0 0 *Errored Sec N/A 0 0 0 0 *Error Free Sec N/A 100 100 100 <t< td=""><td>I</td><td>BIT</td><td>FAS 140M</td><td>FAS 34M</td><td>FAS 8M</td><td>FAS 2M</td></t<>	I	BIT	FAS 140M	FAS 34M	FAS 8M	FAS 2M
%ES (Annex D) 0.00000 N/A N/A N/A N/A Error Free Sec 1 N/A N/A N/A 1 %Error Free Sec 100 N/A N/A N/A 100 Severely Err Sec 0 N/A N/A N/A 0 %Eseverely Err Sec 0.00000 N/A N/A N/A 0 %Degraded Minutes 0.00000 N/A N/A N/A 0 %Degraded Minutes 0.00000 N/A N/A N/A 0 %Degraded Minutes 0.00000 N/A N/A N/A 0 %Unavailable Sec 0 N/A N/A N/A 0 %Errored Sec 0.00000 N/A N/A 0 0 %Error Free Sec N/A 1 1 1 %Error Free Sec N/A 100 100 100 Severely Err Sec N/A 0 0 0 %Severely Err Sec N/A 0 0 0 %Severely Err Sec N/A 0.00000	%ES (Annex D) 0.00000 N/A N/A N/A N/A Error Free Sec 1 N/A N/A N/A 1 %Error Free Sec 100 N/A N/A N/A 100 Severely Err Sec 0 N/A N/A N/A 100 %Everely Err Sec 0 N/A N/A N/A 0 %Degraded Minutes 0.00000 N/A N/A N/A 0 %Degraded Minutes 0.00000 N/A N/A N/A 0 %Degraded Minutes 0.00000 N/A N/A N/A 0 %Unavailable Sec 0 N/A N/A N/A 0 %Unavailable Sec 0.00000 N/A N/A 0 0 %Errored Sec N/A 0 0 0 %Error Free Sec N/A 1 1 1 %Error Free Sec N/A 100 100 100 Severely Err Sec N/A 0 0 0 %Severely Err Sec N/A 0 0	Errored Sec	0	N/A	N/A	N/A	0
. Error Free Sec 1 N/A N/A N/A 1 * Error Free Sec 100 N/A N/A N/A N/A 100 Severely Err Sec 0 N/A N/A N/A N/A 0 * Severely Err Sec 0.00000 N/A N/A N/A 0.00000 Degraded Minutes 0.00000 N/A N/A N/A 0 * Degraded Minutes 0.00000 N/A N/A N/A 0 * Unavailable Sec 0 N/A N/A N/A 0.00000 * Wuavailable Sec 0.00000 N/A N/A N/A 0.00000 * Errored Sec 0.00000 N/A N/A 0 0 * Error Free Sec N/A 1 1 1 * Error Free Sec N/A 100 100 100 Severely Err Sec N/A 0 0 0 * Severely Err Sec N/A 0 0 0 * Severely Err Sec N/A 0 0 0 * Severely Err S	Error Free Sec 1 N/A N/A N/A 1 *Error Free Sec 100 N/A N/A N/A 100 Severely Err Sec 0 N/A N/A N/A 0 *Severely Err Sec 0.00000 N/A N/A N/A 0 *Degraded Minutes 0.00000 N/A N/A N/A 0 *Unavailable Sec 0 N/A N/A N/A 0 *Unavailable Sec 0.00000 N/A N/A 0 0 *Errored Sec N/A 0 0 0 0 *Error Free Sec N/A 100 100 100 Severely Err Sec N/A 0 0 0 *Severely Err Sec N/A 0 0 0 *Severely Err Sec N/A	%Errored Sec	0.00000	N/A	N/A	N/A	0.00000
'*Error Free Sec 100 N/A N/A N/A 100 '*Severely Err Sec 0 N/A N/A N/A 0 '*Severely Err Sec 0.00000 N/A N/A N/A 0 '*Severely Err Sec 0.00000 N/A N/A N/A 0 Degraded Minutes 0.00000 N/A N/A N/A 0 '*Degraded Minutes 0.00000 N/A N/A N/A 0 '*Unavailable Sec 0 N/A N/A N/A 0 '*Unavailable Sec 0.00000 N/A N/A N/A 0.00000 '*Unavailable Sec 0.00000 N/A N/A 0 0 '*Unavailable Sec 0.00000 N/A N/A 0 0 '*Errored Sec N/A 0 0 0 0 '*Error Free Sec N/A 100 100 100 '*Severely Err Sec N/A 0 0 0 '*Severely Err Sec N/A 0 0 0 '*Degraded Minutes	*Error Free Sec 100 N/A N/A N/A 100 Severely Err Sec 0 N/A N/A N/A 0 *Severely Err Sec 0.00000 N/A N/A N/A 0 Degraded Minutes 0 N/A N/A N/A 0 *Degraded Minutes 0.00000 N/A N/A N/A 0 *Degraded Minutes 0.00000 N/A N/A N/A 0 *Unavailable Sec 0 N/A N/A N/A 0 *Unavailable Sec 0.00000 N/A N/A N/A 0.00000 *Errored Sec 0.00000 N/A 1 1 *Error Free Sec N/A 100 100 *Error Free Sec N/A 0 0 *Severely Err Sec N/A 0 0 *Severely Err Sec N/A 0 0 *Degraded Minutes N/A 0 0 *Degraded Minutes N/A 0 0 *Degraded Minutes N/A 0 0 </td <td> %ES (Annex D)</td> <td>0.00000</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>N/A</td>	%ES (Annex D)	0.00000	N/A	N/A	N/A	N/A
. Severely Err Sec 0 N/A N/A N/A N/A 0 ! \$Severely Err Sec 0.00000 N/A N/A N/A N/A 0.00000 begraded Minutes 0 N/A N/A N/A N/A 0 ! \$Degraded Minutes 0.00000 N/A N/A N/A 0 0 ! Unavailable Sec 0 N/A N/A N/A 0 0 ! Unavailable Sec 0.00000 N/A N/A N/A 0.00000 ! Unavailable Sec 0.00000 N/A N/A 0 0 ! CODE CRC4 REBE ! Errored Sec N/A 0 0 0 ! & Error Free Sec N/A 1 1 1 ! & Error Free Sec N/A 0 0 0 ! & Severely Err Sec N/A 0 0 0 ! & Severely Err Sec N/A 0 0 0 ! & Degraded Minutes N/A 0.00000 0.00000 0.00000 ! Unavailable S	Severely Err Sec 0 N/A N/A N/A N/A 0 *Severely Err Sec 0.00000 N/A N/A N/A N/A 0.00000 Degraded Minutes 0 N/A N/A N/A N/A 0 *Degraded Minutes 0.00000 N/A N/A N/A 0 0 *Degraded Minutes 0.00000 N/A N/A N/A 0.00000 Unavailable Sec 0 N/A N/A N/A 0 *Unavailable Sec 0.00000 N/A N/A N/A 0.00000 *Unavailable Sec 0.00000 N/A N/A 0 0 *Errored Sec N/A 0 0 0 *Error Free Sec N/A 100 100 *Error Free Sec N/A 0 0 *Severely Err Sec N/A 0 0 *Severely Err Sec N/A 0 0 *Degraded Minutes N/A 0.00000 0	Error Free Sec	1	N/A	N/A	N/A	1
%Severely Err Sec 0.00000 N/A N/A N/A N/A 0.00000 Degraded Minutes 0 N/A N/A N/A N/A 0 %Degraded Minutes 0.00000 N/A N/A N/A 0 %Degraded Minutes 0.00000 N/A N/A N/A 0 %Unavailable Sec 0 N/A N/A N/A 0 %Unavailable Sec 0.00000 N/A N/A N/A 0 %Unavailable Sec 0.00000 N/A N/A 0.00000 %Unavailable Sec 0.00000 N/A N/A 0 0 %Errored Sec N/A 0 0 0 0 %Error Free Sec N/A 1 1 1 %Error Free Sec N/A 0 0 0 %Severely Err Sec N/A 0 0 0 %Severely Err Sec N/A 0 0 0 %Ergraded Minutes N/A 0 0 0 %Degraded Minutes N/A 0.00000	*Severely Err Sec 0.00000 N/A N/A N/A N/A 0.00000 Degraded Minutes 0 N/A N/A N/A N/A 0 *Degraded Minutes 0.00000 N/A N/A N/A 0 *Degraded Minutes 0.00000 N/A N/A N/A 0.00000 Unavailable Sec 0 N/A N/A N/A 0 *Unavailable Sec 0.00000 N/A N/A N/A 0 *Unavailable Sec 0.00000 N/A N/A 0.00000 *Errored Sec N/A 0 0 0 *Error Free Sec N/A 1 1 *Error Free Sec N/A 100 100 Severely Err Sec N/A 0 0 *Severely Err Sec N/A 0 0 *Degraded Minutes N/A 0 0 *Degraded Minutes N/A 0 0	%Error Free Sec	100	N/A	N/A	N/A	100
Degraded Minutes 0 N/A N/A N/A 0 & Degraded Minutes 0.00000 N/A N/A N/A 0.00000 Unavailable Sec 0 N/A N/A N/A 0.00000 Wunavailable Sec 0.00000 N/A N/A N/A 0.00000 %Unavailable Sec 0.00000 N/A N/A N/A 0.00000 %Unavailable Sec 0.00000 N/A N/A 0.00000 %Unavailable Sec 0.00000 N/A 0 0 CODE CRC4 REBE Errored Sec N/A 0 0 0 %Error Free Sec N/A 1 1 1 %Error Free Sec N/A 100 100 100 Severely Err Sec N/A 0 0 0 %Severely Err Sec N/A 0 0 0 %Degraded Minutes N/A 0.00000 0.00000 0.00000 %Degraded Minutes <td>Degraded Minutes 0 N/A N/A N/A N/A 0 %Degraded Minutes 0.00000 N/A N/A N/A N/A 0.00000 Unavailable Sec 0 N/A N/A N/A 0 0 %Unavailable Sec 0.00000 N/A N/A N/A 0.00000 %Unavailable Sec 0.00000 N/A N/A 0.00000 %Unavailable Sec 0.00000 N/A N/A 0.00000 %Errored Sec N/A 0 0 0 %Error Free Sec N/A 1 1 1 %Error Free Sec N/A 0 0 0 Severely Err Sec N/A 0 0 0 %Severely Err Sec N/A 0 0 0 %Degraded Minutes N/A 0.00000 0.00000</td> <td> Severely Err Sec</td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td>0</td>	Degraded Minutes 0 N/A N/A N/A N/A 0 %Degraded Minutes 0.00000 N/A N/A N/A N/A 0.00000 Unavailable Sec 0 N/A N/A N/A 0 0 %Unavailable Sec 0.00000 N/A N/A N/A 0.00000 %Unavailable Sec 0.00000 N/A N/A 0.00000 %Unavailable Sec 0.00000 N/A N/A 0.00000 %Errored Sec N/A 0 0 0 %Error Free Sec N/A 1 1 1 %Error Free Sec N/A 0 0 0 Severely Err Sec N/A 0 0 0 %Severely Err Sec N/A 0 0 0 %Degraded Minutes N/A 0.00000 0.00000	Severely Err Sec	0	N/A	N/A	N/A	0
NA N/A N/A N/A 0.00000 Unavailable Sec 0 N/A N/A N/A 0 Wnavailable Sec 0.00000 N/A N/A N/A 0 Wnavailable Sec 0.00000 N/A N/A N/A 0 Wnavailable Sec 0.00000 N/A N/A N/A 0.00000 Errored Sec N/A 0 0 0 Error Free Sec N/A 1 1 Werror Free Sec N/A 0 0 Severely Err Sec N/A 0 0 Severely Err Sec N/A 0 0 Severely Err Sec N/A 0 0 Vegraded Minutes N/A 0 0 Warailable Sec N/A 0 0	*Degraded Minutes 0.00000 N/A N/A N/A 0.00000 Unavailable Sec 0 N/A N/A N/A 0 *Unavailable Sec 0.00000 N/A N/A N/A 0 *Unavailable Sec 0.00000 N/A N/A N/A 0 *Unavailable Sec 0.00000 N/A N/A 0.00000 *Errored Sec N/A 0 0 *Error Free Sec N/A 1 1 *Error Free Sec N/A 0 0 Severely Err Sec N/A 0 0 Severely Err Sec N/A 0 0 Degraded Minutes N/A 0 0 Waradiable Sec N/A 0 0	%Severely Err Sec	0.00000	N/A	N/A	N/A	0.00000
Unavailable Sec 0 N/A N/A N/A 0 & Unavailable Sec 0.00000 N/A N/A N/A 0.00000 & Unavailable Sec 0.00000 N/A N/A N/A 0.00000 CODE CRC4 REBE Errored Sec N/A 0 0 & Error Free Sec N/A 1 1 & Error Free Sec N/A 100 100 Severely Err Sec N/A 0 0 & Severely Err Sec N/A 0 0 & Degraded Minutes N/A 0 0 & Unavailable Sec N/A 0 0	Unavailable Sec 0 N/A N/A N/A 0 %Unavailable Sec 0.00000 N/A N/A N/A 0.00000 %Unavailable Sec 0.00000 N/A N/A N/A 0.00000 %Errored Sec N/A 0 0 0 %Error Sec N/A 1 1 %Error Free Sec N/A 100 100 Severely Err Sec N/A 0 0 %Severely Err Sec N/A 0 0 Degraded Minutes N/A 0 0 %Degraded Minutes N/A 0 0	Degraded Minutes	0	N/A	N/A	N/A	0
*Unavailable Sec 0.00000 N/A N/A N/A 0.00000 CODE CRC4 REBE Errored Sec N/A 0 0 %Errored Sec N/A 0.00000 0.00000 %Error Free Sec N/A 1 1 %Error Free Sec N/A 100 100 Severely Err Sec N/A 0 0 %Severely Err Sec N/A 0 0 begraded Minutes N/A 0 0 Unavailable Sec N/A 0 0	*Unavailable Sec 0.00000 N/A N/A N/A 0.00000 *Unavailable Sec 0.00000 CCOE CRC4 REBE Errored Sec N/A 0 0 *Error Free Sec N/A 1 1 *Error Free Sec N/A 100 100 Severely Err Sec N/A 0 0 *Severely Err Sec N/A 0 0 Degraded Minutes N/A 0 0 Unavailable Sec N/A 0 0	%Degraded Minutes	0.00000	N/A	N/A	N/A	0.00000
. CODE CRC4 REBE CODE CRC4 REBE Errored Sec N/A 0 0 %Errored Sec N/A 0.00000 0.00000 Error Free Sec N/A 1 1 %Error Free Sec N/A 100 100 Severely Err Sec N/A 0 0 %Severely Err Sec N/A 0.00000 0.00000 Degraded Minutes N/A 0 0 Unavailable Sec N/A 0 0	CODE CRC4 REBE Errored Sec N/A 0 0 %Errored Sec N/A 0.00000 0.00000 Error Free Sec N/A 1 1 %Error Free Sec N/A 100 100 Severely Err Sec N/A 0 0 %Severely Err Sec N/A 0.00000 0.00000 Degraded Minutes N/A 0 0 %Degraded Minutes N/A 0 0	Unavailable Sec	0	N/A	N/A	N/A	0
Frrored Sec N/A 0 0 & Errored Sec N/A 0.00000 0.00000 & Error Free Sec N/A 1 1 & Error Free Sec N/A 100 100 Severely Err Sec N/A 0 0 & Severely Err Sec N/A 0 0 Degraded Minutes N/A 0 0 & Unavailable Sec N/A 0 0	Frrored Sec N/A 0 0 *Errored Sec N/A 0.00000 0.00000 *Error Free Sec N/A 1 1 *Error Free Sec N/A 100 100 Severely Err Sec N/A 0 0 *Severely Err Sec N/A 0.00000 0.00000 Degraded Minutes N/A 0 0 *Degraded Minutes N/A 0.00000 0.00000 Unavailable Sec N/A 0 0	%Unavailable Sec	0.00000	N/A	N/A	N/A	0.00000
Frrored Sec N/A 0 0 & Errored Sec N/A 0.00000 0.00000 & Error Free Sec N/A 1 1 & Error Free Sec N/A 100 100 Severely Err Sec N/A 0 0 & Severely Err Sec N/A 0.00000 0.00000 Degraded Minutes N/A 0 0 & Degraded Minutes N/A 0.00000 0.00000 Unavailable Sec N/A 0 0	Frrored Sec N/A 0 0 *Errored Sec N/A 0.00000 0.00000 Error Free Sec N/A 1 1 *Error Free Sec N/A 100 100 Severely Err Sec N/A 0 0 *Severely Err Sec N/A 0 0 Degraded Minutes N/A 0 0 *Degraded Minutes N/A 0.00000 0.00000 Unavailable Sec N/A 0 0	I					
%Errored Sec N/A 0.00000 %Error Free Sec N/A 1 1 %Error Free Sec N/A 100 100 %Error Free Sec N/A 0 0 %Error Free Sec N/A 0 0 %Everely Err Sec N/A 0.00000 0.00000 %Severely Err Sec N/A 0 0 Degraded Minutes N/A 0 0 %Degraded Minutes N/A 0 0 Unavailable Sec N/A 0 0	*Errored Sec N/A 0.00000 Error Free Sec N/A 1 1 *Error Free Sec N/A 100 100 Severely Err Sec N/A 0 0 *Severely Err Sec N/A 0.00000 0.00000 Degraded Minutes N/A 0 0 *Degraded Minutes N/A 0.00000 0.00000 Unavailable Sec N/A 0 0				CODE	CRC4	REBE
· · Error Free Sec N/A 1 1 %Error Free Sec N/A 100 100 %Error Free Sec N/A 0 0 Severely Err Sec N/A 0.00000 0.00000 %Severely Err Sec N/A 0 0 Degraded Minutes N/A 0 0 %Degraded Minutes N/A 0.00000 0.00000 Unavailable Sec N/A 0 0	Image: box with the sec N/A 1 1 *Error Free Sec N/A 100 100 *Error Free Sec N/A 100 100 Severely Err Sec N/A 0 0 *Severely Err Sec N/A 0.00000 0.00000 Degraded Minutes N/A 0 0 *Degraded Minutes N/A 0.00000 0.00000 Unavailable Sec N/A 0 0	Errored Sec			N/A	0	0
· · %Error Free Sec N/A 100 100 Severely Err Sec N/A 0 0 %Severely Err Sec N/A 0.00000 0.00000 Degraded Minutes N/A 0 0 %Degraded Minutes N/A 0.00000 0.00000 Unavailable Sec N/A 0 0	*Error Free Sec N/A 100 100 Severely Err Sec N/A 0 0 *Severely Err Sec N/A 0.00000 0.00000 Degraded Minutes N/A 0 0 *Degraded Minutes N/A 0.00000 0.00000 Unavailable Sec N/A 0 0	%Errored Sec			N/A	0.00000	0.00000
· · Severely Err Sec N/A 0 0 *Severely Err Sec N/A 0.00000 0.00000 Degraded Minutes N/A 0 0 *Degraded Minutes N/A 0.00000 0.00000 Unavailable Sec N/A 0 0	· · Severely Err Sec N/A 0 0 %Severely Err Sec N/A 0.00000 0.00000 Degraded Minutes N/A 0 0 %Degraded Minutes N/A 0.00000 0.00000 Unavailable Sec N/A 0 0	Error Free Sec			N/A	1	1
*Severely Err Sec N/A 0.00000 0.00000 Degraded Minutes N/A 0 0 *Degraded Minutes N/A 0.00000 0.00000 Unavailable Sec N/A 0 0	*Severely Err Sec N/A 0.00000 0.00000 Degraded Minutes N/A 0 0 *Degraded Minutes N/A 0.00000 0.00000 Unavailable Sec N/A 0 0	%Error Free Sec			N/A	100	100
Degraded Minutes N/A 0 0 % Degraded Minutes N/A 0.00000 0.00000 Unavailable Sec N/A 0 0	Degraded Minutes N/A 0 0 %Degraded Minutes N/A 0.00000 0.00000 Unavailable Sec N/A 0 0	Severely Err Sec			N/A	0	0
%Degraded Minutes N/A 0.00000 0.00000 Unavailable Sec N/A 0 0	%Degraded Minutes N/A 0.00000 0.00000 Unavailable Sec N/A 0 0	%Severely Err Sec			N/A	0.00000	0.00000
Unavailable Sec N/A 0 0	Unavailable Sec N/A 0 0	Degraded Minutes			N/A	0	0
	•	%Degraded Minutes			N/A	0.00000	0.00000
%Unavailable Sec N/A 0.00000 0.00000	%Unavailable Sec N/A 0.00000 0.00000	Unavailable Sec			N/A	0	0
	I	%Unavailable Sec			N/A	0.00000	0.00000

Í		G.826 ANAL	YSIS		I
I		Near	8Mb/s Far	Near	2Mb/s Far
Errored Blo	cks	N/A	N/A	0	0
Errored Sec	onds	N/A	N/A	0	0
Severely Er	rored Seconds	N/A	N/A	0	0
Unavailable	Seconds	N/A	N/A	0	0
Path Unavai	lable Seconds	N/A	N/A	0	0
Background	Block Errors	N/A	N/A	0	0
Errored Sec	ond Ratio	N/A	N/A	0	0
Severely Er	rored Sec Ratio	N/A	N/A	0	0
Background	Block Err Ratio	N/A	N/A	0	0
I					
I		BIT Errors			
Errored Blo	cks	0			
Errored Sec	onds	0			I
Severely Er	rored Seconds	0			I
Unavailable	Seconds	0			
Background	Block Errors	0			
Errored Sec	ond Ratio	0			
Severely Er	rored Sec Ratio	0			
Background	Block Err Ratio	0			
I					
		M.2100 ANAL			
		Rx	8Mb/s Tx	Rx	2Mb/s Tx
Errored Sec		N/A	N/A	0	0
	rored Seconds	N/A	N/A	0	0
Unavailable	Seconds	N/A	N/A	0	0
1					
 Errored Sec	anda	64k Rx 0			
	rored Seconds	0			I
Unavailable		0			1
	Seconds	0			I
		M.2110 ANAL	YSIS		I
	15-m			24-hr	7-day
 BIS Results				WAIT	WAIT
'					I

Frequency : 0.0 kHz	Offset	: O/R kHz	Offset :	O/Rppm
Power Level : -13.9 dBm	STM-160	OPTICAL		
Pointer Results :	SPE F	OINTER	VT P	OINTER
	Count	Seconds	Count	Seconds
NDF		0		0
Missing NDF		0		0
+ve Pointer Adjustments	0	0	0	0
-ve Pointer Adjustments	0	0	0	0
Implied VC Offset	0.0		0.0	
Pointer Value	0		664	

Logging on Demand

Description When **PRINT NOW** is pressed the chosen results are logged to the chosen logging device. The choice of results for logging is:

RESULTS SNAPSHOT - last recorded measurement results OVERHEAD SNAPSHOT - last recorded overhead values of the chosen STM-N OVERHEAD CAPTURE - Overhead Capture display POINTER GRAPH - Pointer Graph display SONET TRIBUTARY SCAN - SONET Tributary Scan display SONET ALARM SCAN - SONET Alarm Scan display SCREEN DUMP - allows logging of the chosen display

FUNCTION		LOGGING			
TEST PERI SETUP	OD LOGGING		off Demand		
SCREEN DU	MAND IMP DESTINA IMPRESSION	TION (RLE)	SCREEN DUMP <mark>DISK</mark> OFF		
status: Results Snapshot	overherd Snapshot	overhead Capture	SCREEN DUMP	MORE	MULTIPLE WINDOW

HOW TO: 1 Choose LOG ON DEMAND to determine results to be logged when PRINT NOW is pressed. SCREEN DUMP allows you to log the selected display when PRINT NO

SCREEN DUMP allows you to log the selected display when (**PRINT NOW**) is pressed. (Logging or Disk displays cannot be logged using this feature).

2 Choose the logging DEVICE. The logging device can be selected on the **OTHER LOGGING** display when SETUP is set to **LOGGING DEVICE**. For more details on the choice of devices and how to setup the instrument to interface with them please refer to the following sections:

• RS232: "Logging Results to RS-232-C Printer" page 252.

- GPIB: "Logging Results to GP-IB Printer" page 250.
- PARALLEL: "Logging Results to Parallel (Centronics) Printer" page 249.
- DISK: "Saving Data Logging to Disk" page 276. If SCREEN DUMP is chosen then please refer to "Saving a Screen Dump to Disk" page 272.
- INTERNAL (only if Option 602, Internal Printer, is fitted):"Logging Results to Internal Printer" page 251.

Log on Demand Examples

Overhead Capture, Pointer Graph, SONET Tributary Scan and SONET Alarm Scan logging are copies of the relevant display. Screen Dump logs a copy of the selected display (not Logging or Disk displays).

Overhead Snapshot

Overhead Snapshot provides the value of each byte of overhead in the STS-3 chosen for test.

========			
10:07:29	PRINT DEMANDED- O/H	SNAPSHOT	Elapsed Time 00d 00h 00m 01s
========			
	Setup : OC-48		I
SOH (STS-3 #1)		1
+	++		
A1 41			00 00 J0 Path Trace:
B1 00	00 00 E1 00 00	00 F1 00	00 00 "
D1 00	00 00 D2 00 00	00 D3 00	00 00 E.164 CRC NOT FOUND
H1 00	00 00 H2 00 00	00 НЗ 00	00 00 S1 Sync Status:
B2 00	00 00 K1 00 00	00 K2 00	00 00 SYNCHRONIZED TRACE UNKN
D4 00	00 00 D5 00 00	00 D6 00	00 00
D7 00	00 00 D8 00 00	00 D9 00	00 00
D10 00	00 00 D11 00 00	00 D12 00	00 00
S1 00	00 00 Z2 00 00	00 E2 00	00 00
+		++	
STS POR	TYPE SPE	VT POH	TYPE VTSPE
WITHIN	STS-3 #1	I	1
+		++	
	STS Path Label (C2):		VT Path Label (V5):
J1 00	"UNEQUIPPED	" V5 00	"000 UNEQUIPPED "
B3 00		J2 00	1

C2 00	Jl Path Trace:		Z6 00	J2 Path Trace:
G1 00	"~~~~~~~~~~~~~~~~~	~ "	Z7 00	"~~~~~"
F2 00	"	"		E.164 CRC NOT FOUND
H4 00	" U	"		
Z3 00		"		
Z4 00				
N1 00				

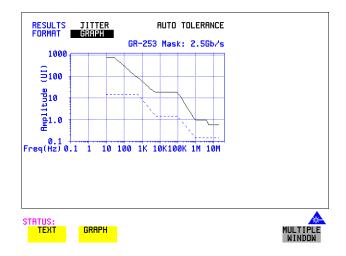
Results Snapshot

Results Snapshot provides a Header listing the instrument settings that produced the results and the last recorded, complete set of cumulative measurement results.

|

1

|------|

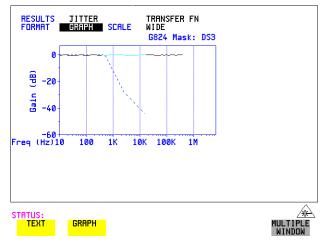

10:08:20 PRINT	DEMANDED- RESU	JLTS SNAPSHOT	Elapsed	Time 00d	00h 00m 01s
I	(Cumulative Re	sults		1
1					1
Error Results :					1
1	A1A2 FRAME	CV-S (B1)	CV-L (B2)	REI-L	CV-P (B3)
Error Count	0	0	0	0	0
Error Ratio	0	0	0	0	0
1					1
1	REI-P	CV-V	REI-V		1
Error Count	0	0	0		1
Error Ratio	0	0	0		1
					1
1					1
1		FAS 140M	FAS 34M	FAS 8M	FAS 2M
Error Count		N/A	N/A	N/A	0
Error Ratio		N/A	N/A	N/A	0
1					1
1		BIT	CODE	CRC	REBE
Error Count		0	N/A	0	0
Error Ratio		0	N/A	0	0
					1
					1
Frequency :	0.0 kHz	Offset :	O/R kHz	Offset :	O/Rppm
Power Level :	-13.9 dBm	STM-160 OPT	TICAL		1
					1

Pointer Results :	SPE P	OINTER	VT PO	DINTER	
	Count	Seconds	Count	Seconds	
NDF		0		0	
Missing NDF		0		0	
+ve Pointer Adjustments	0	0	0	0	
-ve Pointer Adjustments	0	0	0	0	I
Implied VC Offset	0.0		0.0		
Pointer Value	0		664		

Logging Jitter Tolerance Results

Description The jitter auto tolerance feature provides jitter tolerance measurements within the relevant mask, BELLCORE GR-253 and GR-499 for SONET.

You can log the jitter auto tolerance results to a printer for record keeping purposes. The **GRAPH** version and the **TEXT** version of the jitter tolerance results can be logged to a printer.


- HOW TO: 1 Choose the logging DEVICE. The logging device can be selected on the OTHER LOGGING display when SETUP is set to LOGGING DEVICE. For more details on the choice of devices and how to setup the instrument to interface with them please refer to the following sections:
 - RS232: "Logging Results to RS-232-C Printer" page 252.
 - GPIB: "Logging Results to GP-IB Printer" page 250
 - PARALLEL: "Logging Results to Parallel (Centronics) Printer" page 249.
 - INTERNAL (only if Option 602, Internal Printer, is fitted): "Logging Results to Internal Printer" page 251.

- Choose GRAPH on the [RESULTS] AUTO TOLER display or choose TEXT on the [RESULTS] AUTO TOLER display, if you wish to log the graph and text results to the printer.
- **3** Press **PRINT NOW** to log the chosen results to the printer.

Logging Jitter Transfer Results

Description The jitter transfer feature provides jitter transfer measurements within the relevant mask, GR-499/G.824 for DSn and GR.253 for SONET.

You can log the jitter transfer results to a printer for record keeping purposes. The **GRAPH** version and the **TEXT** version of the jitter transfer results can be logged to a printer.

- HOW TO: 1 Choose the logging DEVICE. The logging device can be selected on the OTHER LOGGING display when SETUP is set to LOGGING DEVICE . For more details on the choice of devices and how to setup the instrument to interface with them please refer to the following sections:
 - RS232: "Logging Results to RS-232-C Printer" page 252.
 - GPIB: "Logging Results to GP-IB Printer" page 250
 - PARALLEL: "Logging Results to Parallel (Centronics) Printer" page 249.
 - INTERNAL (only if Option 602, Internal Printer, is fitted): "Logging Results to Internal Printer" page 251.
 - Choose GRAPH on the RESULTS JITTER TN FUNCTION display or choose TEXT on the RESULTS JITTER TN FUNCTION display if you wish to log the graph and text results to the printer.

Storing, Logging and Printing Logging Jitter Transfer Results

3 Press **PRINT NOW** to log the chosen results to the printer.

Logging Results to Parallel (Centronics) Printer

Description If Option 601, Remote Control Interface, is fitted, you can log the results and alarms to an external Parallel printer connected to the PARALLEL port. The Parallel port provides a standard IEEE 1284-A compatible interface.

FUNCTION	LOGGING		
TEST PERIOD LOGGING SETUP		OFF DEVICE	
LOGGING PORT REMOTE CONTROL PORT		PARALLEL GP I B	•
PRINTER TYPE		HP PRINTER	
STATUS: RS232 GPIB	DISK	PARALLEL	MULTIPLE WINDOW

CAUTION	Damage to the instrument may result if a serial connection is made to the	his port.
---------	---	-----------

HOW TO: **1** Connect the Parallel printer to the PARALLEL port. See "Connecting a Printer to a Parallel Port " page 254.

- If a non HP printer is connected then set PRINTER TYPE to be
 ALT. PRINTER . Set MODE to be NORMAL (80 character column width) or
 COMPRESS (40 character column width) according to the capabilities of your printer.
- **3** See "Logging Results" page 231 or "Logging on Demand" page 241 for more details on selecting the type of Results you wish to log.

Logging Results to GP-IB Printer

Description If Option 601, Remote Control Interface, is fitted, you can log the results and alarms to an external GP-IB printer connected to the GP-IB port.

FUNCTION	LOGGING			
TEST PERIOD LOGGING SETUP		OFF DEVICE		
LOGGING PORT REMOTE CONTROL PORT		GPIB RS232	I	
STATUS:				æ
RS232 GPIB	DISK	PARALLEL		MULTIPLE WINDOW

HOW TO: **1** Connect an GP-IB printer to the GPIB port.

NOTE Choosing GP-IB external printer for logging prevents the use of GP-IB remote control.

2 See "Logging Results" page 225 or "Logging on Demand" page 233 for more details on selecting the type of Results you wish to log.

Logging Results to Internal Printer

Description If Option 602, Internal Printer is fitted, you can log the results and alarms to the inlid printer.

FUNCTION	LOGGING			
TEST PERIOD LOGGING SETUP		ON DEVICE		
LOGGING PORT REMOTE CONTROL PORT		INTERNAL GP I B	I	
STATUS:				
INTERNAL RS232	GPIB	DISK	PARALLEL	MULTIPLE WINDOW

HOW TO: 1 See "Logging Results" page 225 or "Logging on Demand" page 233 for more details on selecting the type of Results you wish to log.

Logging Results to RS-232-C Printer

Description If Option 601, Remote Control Interface, is fitted, you can log the results and alarms to an external RS-232-C printer connected to the RS-232-C port.

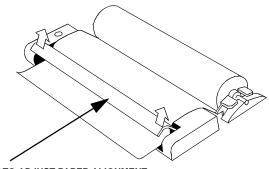
FUNCTION	LOGGING		
TEST PERIOD LOGGING SETUP	3	OFF DEVICE	
LOGGING PORT REMOTE CONTROL PORT		rs232 Lan	I
PRINTER TYPE		HP PRINTER	
SPEED PROTOCOL		9600 BAUD Xon/Xoff	
STATUS: RS232 GPIB	DISK	PARALLEL	MULTIPLE WINDOW

HOW TO: **1** Connect an RS-232-C printer to the RS-232-C port.

NOTE Choosing RS232 external printer for logging prevents the use of RS-232-C remote control.

- If a non HP printer is connected then set PRINTER TYPE to be
 ALT. PRINTER . Set MODE to be NORMAL (80 character column width) or
 COMPRESS (40 character column width) according to the capabilities of your printer.
- **3** Set SPEED to match the Baud Rate chosen on your printer.
- **4** Set PROTOCOL to match that required by your printer.
- **5** See "Logging Results" page 225 or "Logging on Demand" page 233 for more details on selecting the type of Results you wish to log.

Printing Results from Disk

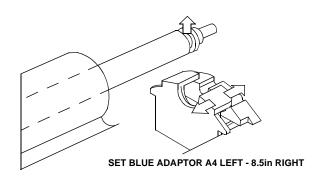

DescriptionIf you have inserted a disk into the internal disk drive and saved data to disk, you
can print the contents of the disk using a PC and Printer as follows:
Remove the Disk from the OmniBER 718 and insert it into a personal computer
(PC).PC InstructionsPC InstructionsHOW TO:Print from DOS Prompt
copy/b a:\<filename> <printer name>HOW TO:Print from Windows
1 Choose the required file from Filemanager.2 Choose FILE - COPY FILE TO
<printer name>

Connecting a Printer to a Parallel Port

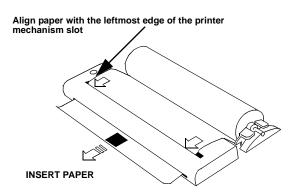
Description	If Remote Control Option, 601, is fitted, the OmniBER 718 has the capability of interfacing with a Printer, via the PARALLEL port.
CAUTION	Do not connect a serial printer e.g. RS-232-C or GPIB to the HP 37718A Parallel port as this will damage the interface.
HOW TO:	1 Connect the OmniBER 718 Parallel port to your Printer Parallel port using printer cable HP 24542D.

Changing Internal Printer Paper

Description Option 602 is required	The printer accepts rolls of thermal	paper with the following dimensions: :	
	Width:	216 mm (8.5 in) or 210 mm (8.27 in) (A4) tolerance +2.0 mm - 1.0 mm	
	Maximum Outside Diameter:	40 mm	
	Inside Core Diameter:	Between 12.5 mm and 13.2 mm	
	Suitable rolls of paper are available	from Hewlett Packard, Part Number 9270-1360.	
WARNING		P. This edge is exposed when the printer cover SHARP EDGE label on the cover.	
HOW TO:	1 Raise the two locking tabs on th cover.	e sides of the printer cover and then raise the	
	-	ont cover. This releases the paper drive. Remove ront (in the normal direction of operation).	



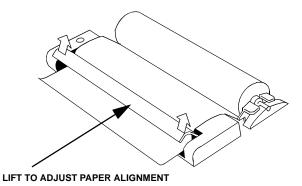
LIFT TO ADJUST PAPER ALIGNMENT


3 Lift out the spindle. Adjust the paper width adaptor to the width of the paper being used.

- **4** Put the paper roll on the spindle such that the sensitive side (slightly shiny) will be on the underside of the print mechanism. Ensure that the relocation of the spindle locks the blue width adaptor in position.
- **NOTE** The paper must be installed such that when it is in the print mechanism, the sensitive side (slightly shiny) is the underside.

The illustrations here show the correct fitting for HP 9270-1360 paper which has the sensitive side on the outside of the roll.

5 Feed the paper into the upper entry of the print mechanism. When the front cover of the print mechanism is closed, the printer should automatically feed the paper through until there is approximately 2.5 cm (1 in) clear at the front of the print mechanism.



CAUTION

Do not close the outer cover until the automatic paper feed is complete.

Storing, Logging and Printing Changing Internal Printer Paper

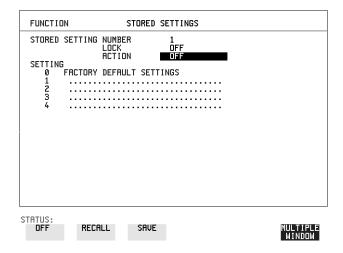
6 If the printer paper is incorrectly aligned, raise the printer mechanism front cover to releases the paper drive and realign the paper.

Cleaning Internal Printer Print Head

Description	The print head should be cleaned when broken or light characters occur in a vertical line on the page. To maintain a high quality print, clean the print head after 200 to 300 prints. The print head is cleaned with a special cleaning paper which is supplied with the instrument.
WARNING	The paper tear-off edge is SHARP. This edge is exposed when the printer cover is raised. Note the $\underline{\land}$ CAUTION SHARP EDGE label on the cover.
HOW TO:	Open the printer as for changing the paper see "Changing Internal Printer Paper" page 255.If printer paper is fitted, remove it from the printer.
	2 Feed the cleaning paper into the top entry of the print mechanism with the rough black side, which contains the cleaning material, towards the rear of the printer.
	3 When the automatic feed is complete and the paper stops moving use the instrument front panel key PAPER FEED to move the cleaning paper through the print mechanism.
	4 Remove the cleaning paper and replace the normal printer paper. See "Changing Internal Printer Paper " page 255.
NOTE	Retain the cleaning paper. It is designed to last for the life of the printer.

8

"Storing Configurations in Instrument Store" page 260 "Titling Configuration in Instrument Store" page 261 "Recalling Configurations from Instrument Store" page 262 "Formatting a Disk" page 263 "Labeling a Disk" page 264 "Managing Files and Directories on Disk" page 265 "Saving a Screen Dump to Disk" page 272 "Saving Graphical Results to Disk" page 274 "Saving Data Logging to Disk" page 276 "Saving Configurations to Disk" page 277 "Recalling Configuration from Disk" page 278 "Recalling Graphics Results from Disk" page 279 "Copying Configuration from Instrument Store to Disk" page 282 "Copying Graphics Results from Instrument Store to Disk" page 284


Using Instrument and Disk Storage

Storing Configurations in Instrument Store

Description

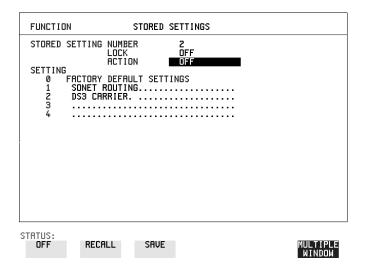
You can store measurement settings which are used regularly and recall them with a single operation.

One preset store is provided which cannot be overwritten, STORED SETTING NUMBER [0]. This store is used to set the instrument to a known state, the FACTORY DEFAULT SETTINGS.

- **1** Set the OmniBER 718 to the configuration you wish to store.
- **2** Choose the STORED SETTING NUMBER to receive the configuration.
- **3** Choose LOCK **OFF**.
- 4 Choose ACTION **SAVE** to store the configuration in the chosen store.
- **5** To add a descriptive title see "Titling Configuration in Instrument Store " page 261.

Titling Configuration in Instrument Store

Description When storing configurations, you can give them an easily remembered title for identification at a later date.


FUNCTION	STORED	SETTINGS		
1 SONET	LOCK ACTION DEFAULT SET ROUTING	2 OFF OFF		
STATUS: JUMP PREVI		+	→	MULTIPLE WINDOW

- *HOW TO:* **1** Choose the STORED SETTING NUMBER which contains the stored configuration.
 - 2 Choose LOCK OFF.
 - 3 Use JUMP; NEXT CHAR; PREVIOUS CHAR; → and ← to title the settings.

Recalling Configurations from Instrument Store

Description

Having stored a configuration for future use, you must be able to recall that configuration in the future.

- 1 Choose the STORED SETTING NUMBER which contains the stored configuration.
- 2 Choose ACTION **RECALL** to recall the stored configuration. The recall operation can be verified by checking the relevant display settings.

Formatting a Disk

Description Only 1.44M, MS-DOS compatible disks can be used in the OmniBER 718. Any other format or capacity will result in a disk access error being displayed.

FUNCTION	FLOPPY DISK	
DISK OPERATION	DISK Format	
Insert Disk Select OK to perfo	rm operation OFF	
A:\ LABEL:no label	FREE: unknown Bytes	
STATUS: OFF OK		MULTIPLE WINDOW

NOTE Disks can be formatted in an IBM compatible PC but it is recommended that the disk is formatted in the OmniBER 718 as this will ensure full compatibility with the Floppy Disk power fail recovery included in the OmniBER 718.

- 1 Choose DISK OPERATION **DISK FORMAT**.
- **2** Insert the Disk into the Disk drive.
- 3 Choose OK to Format the disk.
 A warning that this operation will erase all data is displayed and asks "do you wish to continue".
 If YES is selected, all the data on the Disk will be erased and the disk will be formatted.
 If NO is selected, the operation is aborted. This allows you to view the data on the Disk and verify that it is no longer needed.

Labeling a Disk

HOW TO:

You can label your disks for ease of identification.

FUNCTION	FLOPPY DISK		
LABEL	LABEL My disk		
Select OK to perf	form operation	OFF	
R:\ LRBEL: MY DISK	FREE:	Bytes	
STATUS:			MULTIPLE
	ON DISK LABE		WINDOW

- 2 Label the Disk using PREVIOUS CHAR NEXT CHAR → ← or press
 SET and use the pop-up keypad.
- 3 Choose **OK** to confirm the label is correct. The label is displayed at the bottom of the display to confirm the operation has taken place.

Managing Files and Directories on Disk

DescriptionFile and Directory structures can be important in speeding up the transfer of data
between the instrument and the disk drive.
It is recommended that you create a directory structure as an aid to efficient file
management particularly when the disk is moved to a PC.

Creating a Directory on Disk

FUNCTION	FLOPPY DISK	
DISK OPERATION	FILE CREATE DIRECTORY	
NRME	SONET	-
Select OK to perfo	rm operation	1
A:\ LABEL:	FREE: By	tes
STATUS: OFF OK		MULTIPLE WINDOW

- HOW TO:
 1
 Choose DISK OPERATION FILE
 CREATE DIRECTORY on the OTHER

 FLOPPY DISK display,
 - 2 Enter the directory name using PREVIOUS CHAR NEXT CHAR → ← or press SET and use the pop-up keypad. The directory name can contain up to 8 alphanumeric characters.

3 To create the directory choose **OK**. This will create a sub directory of the directory displayed at the bottom of the display. In this example A:\SONET will be created.

	Using Instrument and Disk Storage Managing Files and Directories on Disk
	Accessing Directories and Files
	1 Choose DISK OPERATION SAVE.
	 Choose FILE TYPE you wish to view. This acts as a filter on the filename extension: CONFIGURATIONCNF filter, GRAPHICSSMG filter, DATA LOGGINGPRN filter, SCREEN DUMPBMP filter.
	3 Move the highlighted cursor to the NAME field and press SET .
ΝΟΤΕ	 <dir> - Current Directory.</dir> <dir> - Parent directory. Move highlighted cursor to this line and press SET to move to parent directory.</dir>

- 4 Move the highlighted cursor to
 - .. **<DIR>** and press **SET** to move to parent directory.
- 5 Move the highlighted cursor to the directory required and press SET to move to that directory. (The directory name will appear on the display). Only the files with the file extension chosen in FILE TYPE will be displayed.

Bitmap F:	iles – A:∖*.BMP	רו חספע הזפע		
		ter new file name) 0 SEP-09-1998 0 SEP-09-1998 0 SEP-09-1998 0 SEP-09-1998	10:40:12 10:40:46	
F				
BI BI				
A Li				
ATUS:				MULTIPLE WINDOW

6 Move the highlighted cursor up and down the display using and .

	Using Instrument and Disk Storage Managing Files and Directories on Disk
NOTE	 Title Bar - File types displayed and current directory. (cannot be highlighted). <dir> - Current Directory.</dir> <dir> - Parent directory. Move highlighted cursor to this line and press SET to move to parent directory.</dir>
	 SONET1.PRN - File (with named extension) in current directory. Move highlighted cursor to this line and press SET to select the file. The display will return to the SAVE display and the selected file name will appear in the FILE NAME field. NEXT - Move highlighted cursor to this line and press SET to access the next page of file names. PREV - Move highlighted cursor to this line and press SET to access the previous page of file names.

		g Files - I ss SET to (- 1
	1.PRN .PRN 4.PRN 1.PRN 8.PRN K3.PRN K3.PRN 2.PRN 3.PRN	CDIR)	0 0 8452 8616 11158 16888 10584 6156 7878 8662 11076 5254 7632 2135 8101 2135 8101 2135	SEP-09-1998 SEP-09-	$\begin{array}{c} 10:33:46\\ 11:05:16\\ 10:45:22\\ 11:1:1:20\\ 11:1:1:20\\ 11:1:1:20\\ 11:1:1:20\\ 11:1:1:20\\ 11:1:1:20\\ 11:1:1:20\\ 11:1:2$		
PDH-	t PAGE -	>	6871	SEP-09-1998	13:26:32	MUI	TIPL

- NEW. Allows entry of new file name using pop-up keypad. Press SET to obtain the pop-up keypad display. Enter the new filename, Choose END and press SET to return to the file manager display.
- 8 Press CANCEL to return to the SAVE display.
 The filename entered via the keypad appears on the SAVE display.
 The file extension is added automatically.
 The Directory name and the disk Label appear at the bottom of the display.

Using Instrument and Disk Storage Managing Files and Directories on Disk

Renaming a File on Disk

DISK OPERATION		
FROM:NAME	RENAME FILENAME.CNF	
TO: DIRECTORY NAME	A:∖ FILENAME.CNF	
Select OK to p	erform operation	DFF
A:∖ LABEL:	FREE: By	ytes

Description Files can be renamed as an aid to efficient file management.

HOW TO:

- 1 Choose DISK OPERATION FILE RENAME.
- 2 Enter the FROM filename using PREVIOUS CHAR NEXT CHAR → C or Choose the directory which contains the file to be renamed. See "Accessing Directories and Files " page 266. Move the highlighted cursor to the file to be renamed and press SET to return to the FILE RENAME display. The filename, with extension, can contain up to 12 alphanumeric characters.
- **3** Choose the directory in which to locate the renamed file (it will appear on the display). See "Accessing Directories and Files " page 266.
- 4 Enter the TO filename using PREVIOUS CHAR NEXT CHAR → or press SET twice and use the pop-up keypad. The filename can contain up to 8 alphanumeric characters. The file extension is fixed to the FROM filename extension.

5 To rename the file choose OK. If you have entered a filename which already exists, a warning "File exists - are you sure" you wish to continue is displayed. If YES is selected, the data in the file will be overwritten. If NO is selected, the operation is aborted. This allows you the opportunity to verify before renaming.

Using Instrument and Disk Storage Managing Files and Directories on Disk

Deleting a File on Disk

Description Obsolete files can be deleted as an aid to efficient file management.

FUNCTION	FLOPPY DISK		
DISK OPERATION	FILE DELETE DELETE FILE		
NRME	FILENAME.EXT		
Select OK to perf	orm operation	OFF	
A:\ LABEL:	FREE:	Bytes	
STATUS: OFF OK			MULTIPLE WINDOW

HOW TO: 1 Choose DISK OPERATION FILE DELETE FILE.

- **2** Choose the directory containing the file to be deleted. See "Accessing Directories and Files " page 266.
- 3 Enter the filename to be deleted using PREVIOUS CHAR NEXT CHAR
 or press SET, highlight the file to be deleted on the file manager display, and press SET.
 The file name can contain up to 12 alphanumeric characters, including the filename extension.
- 4 To delete the file choose OK.
 A warning "Are you sure you wish to continue" is displayed.
 If YES is selected, the file is deleted.
 If NO is selected, the operation is aborted.
 This prevents accidental deletion of a wanted file.

Using Instrument and Disk Storage Managing Files and Directories on Disk

Deleting a Directory on Disk

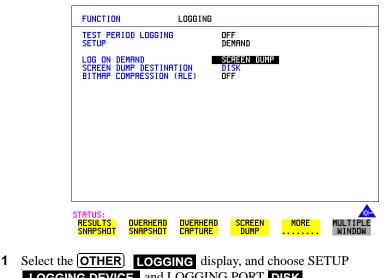
Description Obsolete Directories should be deleted as an aid to efficient file management.

FUNCTION	FLOPPY DISK		
DISK OPERATION	FILE DELETE DELETE DIREC	CTORY	
Select OK to perfo	orm operation	OFF	
A:\ LABEL:	FREE:	Bytes	
STATUS: OFF OK			MULTIPLE WINDOW

NOTE	A directory cannot be deleted until all the files within the directory have been deleted. See "Deleting a File on Disk " page 269.
HOW TO:	1 Choose the directory you wish to delete (it will appear on the display). See "Accessing Directories and Files " page 266.
	2 Choose DISK OPERATION FILE DELETE DELETE DIRECTORY
	 3 To delete the directory choose OK. A warning "Are you sure you wish to continue" is displayed. If YES is selected, the directory is deleted. If NO is selected, the operation is aborted. This prevents accidental deletion of a wanted directory. If the directory is not empty the messages "delete directory failed" "directory is not empty" are displayed.
	4 If files need to be deleted to prepare the directory for deletion. See "Deleting a File on Disk " page 269.

Adding Descriptors to Disk Files

Description When storing configurations or graphics on disk, you can give them an easily remembered descriptor for identification at a later date.


Descriptors can be added to .CNF and .SMG files.

FUNCTION	FLOPPY DISK		
DISK OPERATION DISPLAY OPTION	FILE PROPERTIES FILE DESCRIPTO	JR	
FILE NAME DESCRIPTOR Press SET to select	FILENAME.CNF : filename popus		
Select OK to perfor	rm operation	OFF	
A:\ LABEL:	FREE:	Bytes	
STATUS: Time File & Date Desc			MULTIPLE WINDOW

- *HOW TO:* 1 Choose the directory containing the file you wish to add the descriptor to. See "Accessing Directories and Files" page 266.
 - 2 Choose DISK OPERATION **FILE PROPERTIES** and DISPLAY OPTION **FILE DESCRIPTOR**.
 - 3 Move the highlighted cursor to the FILE NAME DESCRIPTOR field. Enter the file descriptor using **PREVIOUS CHAR NEXT CHAR** → **o** or press **SET**, highlight the file required on the file manager display, and press **SET**.
 - **4** Move the highlighted cursor to Select OK to perform operation and choose OK. The File List will show the descriptor instead of the TIME and DATE information as long as FILE DESCRIPTOR is selected.
- **NOTE** This slows down the updating of the display.

Saving a Screen Dump to Disk

DescriptionThe chosen display may be stored on disk in bitmap format using the Screen Dump
feature of the OmniBER. Logging and Floppy Disk must be set up for screen dump.
The current display is stored on disk when (PRINT NOW). is pressed.

- **LOGGING DEVICE** and LOGGING PORT **DISK**. **2** Now set SETUP to **LOG ON DEMAND** and LOG ON DEMAND to
- 2 Now set SETUP to **LOG ON DEMAND** and LOG ON DEMAND to **SCREEN DUMP**.
- 3 If compression is required to save disk space, select BITMAP COMPRESSION (RLE) **ON**.

4

FUNCTION	FLOPPY DISK
DISK OPERATION	SRVE
FILE TYPE NAME	SCREEN DUMP FILENRME.BMP
BMP DIR : A:\ BMP FILE: SDUMP029	.BMP
A:\ LABEL:no label	FREE: unknown Bytes
STATUS:	FLOPPY LOGGING MORE MULTICLE

- **5** Choose the directory in which to save the Screen Dump. See "Accessing Directories and Files " page 266.
- 6 If you wish to enter your own choice of filename, choose DISK OPERATION SAVE FILE TYPE SCREEN DUMP.
- NOTE

You have the option of an auto generated filename or entering your chosen filname. The file name can have a maximum of 8 characters. The file extension is fixed as .BMP.

The file name must satisfy DOS requirements, that is, there must be no spaces or other illegal characters.

- 7 Move the highlighted cursor to NAME and enter the filename using
 PREVIOUS CHAR NEXT CHAR → or press SET twice and use the pop-up keypad.
- 8 Choose the display you want to store on disk and press **PRINT NOW**. After a few second the message "SAVING SCREEN DUMP . . . (XX% COMPLETE)" is displayed.

Saving Graphical Results to Disk

Description Graphical results can be saved to a file on disk. Two methods of naming the file, which is created when the measurement is started, are available:

Automatic A filename in the form meas001 is created automatically without any action from you.

Your Choice You can input a filename of your choice which will override the automatically generated filename. This must be entered before the measurement is started. If the filename you enter already exists, graphics results will be saved to the automatically generated filename. This prevents existing files from being overwritten each time the measurement is started.

0	
RESULTS TIMING CO	NTROL
SHORT TERM PERIOD TEST TIMING	1 SECOND MANUAL
GRAPH STORAGE	15 MIN RESOL'N DISK
STATUS:	MULTIPLE
INTERNAL DISK	MULTIPLE WINDOW

HOW TO:

1 Choose GRAPH STORAGE **DISK** and the Graph Storage resolution required on the **RESULTS** display. See "Saving Graphics Results to Instrument Store" page 222.

If you wish to use the automatically generated filename no further action is required and the graphics results will be saved on Disk when the measurement is completed.

Using Instrument and Disk Storage **Saving Graphical Results to Disk**

FUNCTION	FLOPPY DISK		
DISK OPERATION	SAVE		
FILE TYPE NAME	GRAPHICS FILENAME.SMG		
0.1			
A:\ LABEL:	FREE:	Bytes	
STATUS: CONFIG- URATION	DATA Logging		MULTIPLE WINDOW

- **2** Choose the directory in which to save the graphics results. See "Accessing Directories and Files " page 266.
- 3 If you wish to enter your own choice of filename, choose DISK OPERATION **SAVE** FILE TYPE **GRAPHICS**.
- 4 Move the highlighted cursor to NAME and enter the filename using **PREVIOUS CHAR** NEXT CHAR \longrightarrow or press SET twice and use the pop-up keypad.

The filename can contain up to 8 alphanumeric characters.

The filename extension is fixed as .SMG.

The graphics results will be saved on Disk at the end of the measurement.

Saving Data Logging to Disk

Description

Data Logging can be saved to a file on disk. The disk can be transferred to a personal computer (PC) and the logging investigated at a later date.

FUNCTION	FLOPPY DISK		
DISK OPERATION	SRVE		
FILE TYPE NAME	DATA LOGGING FILENAME.PRN APPEND TO FIL	E	
A:\ LABEL:	FREE:	Bytes	
STATUS: OVER- APPEND WRITE TO FILE			MULTIPLE Window

HOW TO:

1 Choose the directory in which to save the logging results. See "Accessing Directories and Files" page 266.

Choose DISK OPERATION SAVE FILE TYPE DATA LOGGING and enter your choice of filename using PREVIOUS CHAR NEXT CHAR → c or press SET twice and use the pop-up keypad. The filename can contain up to 8 alphanumeric characters. The filename extension is fixed as .PRN.

3 If you wish to add the data logging to a file which already exists, choose APPEND TO FILE. The data logging is added to the named file on Disk in the available free space.

If you wish to overwrite the contents of the named file with the data logging, choose OVERWRITE.

4 Set up the **OTHER LOGGING** display. See "Logging Results" page 231. When the named file is opened, data logging is saved on the disk: As each logging output occurs during the measurement or when **PRINT NOW** is pressed.

Saving Configurations to Disk

Description You can store a large number of measurement settings which are used regularly and recall them when required.

Configurations can be stored to a file on the floppy disk. The floppy disk can be used in other instruments which have the same option structure.

FUNCTION	FLOPPY DISK	
DISK OPERATION	SAVE	
FILE TYPE NAME	Configuration Sdhanal .CNF	
Select OK to perfo	rm operation OFF	
A:\ LABEL:no label	FREE: 1148928 Bytes	
0707110		
STATUS: CONFIG- GRAPHICS URATION	DATA SCREEN Logging Dump	MULTIPLE WINDOW

- **1** Set the OmniBER 718 to the configuration you wish to store.
- 2 Choose the directory in which you wish to save the OmniBER 718 configuration. See "Accessing Directories and Files" page 266.
- Choose DISK OPERATION SAVE, FILE TYPE CONFIGURATION and enter the filename using PREVIOUS CHAR NEXT CHAR → ← or press SET twice and use the pop-up keypad. The filename extension is fixed as .CNF. The filename can contain up to 8 alphanumeric characters.
- 4 Choose OK to save the current configuration to disk. If you have entered a filename which already exists, a warning "File exists - are you sure you wish to continue" is displayed. If YES is selected, the configuration will be saved. To cancel, change OK to OFF and enter new filename. See "Accessing Directories and Files " page 266.

Recalling Configuration from Disk

Description

If a configuration has been stored on disk, you will need to recall it at some time in the future to configure the instrument.

FUNCTION	FLOPPY DISK		
DISK OPERATION	RECALL		
FILE TYPE NAME	CONFIGURATION ∎ILENAME.CNF		
Select OK to perfo	rm operation	OFF	
A:∖ LABEL:	FREE:	Bytes	
STATUS: CONFIG- GRAPHICS URATION			MULTIPLE WINDOW

HOW TO:

- 1 Choose the directory that contains the configuration file to be recalled. See "Accessing Directories and Files " page 266.
- 2 Choose DISK OPERATION **RECALL** FILE TYPE **CONFIGURATION** and enter your choice of filename using **PREVIOUS CHAR NEXT CHAR** → .

The filename can contain up to 8 alphanumeric characters. The filename extension is fixed as .CNF.

3 To recall the configuration from disk to instrument, choose **OK**. The recall operation can be verified by checking the relevant display settings.

Recalling Graphics Results from Disk

Description If graphic results have been stored on disk, you will need to recall them in able to view the results on the **(GRAPH)**. display.

FUNCTION	FLOPPY DISK		
DISK OPERATION	RECALL		
FILE TYPE NAME	GRAPHICS FILENAME.SMG		
Select OK to perfo	orm operation	OFF	
A:\ LABEL:	FREE:	Bytes	
STATUS: Off Ok			MULTIPLE

- *HOW TO:* **1** Choose the directory that contains the graphics file to be recalled. See "Accessing Directories and Files " page 266.
 - Choose DISK OPERATION RECALL FILE TYPE GRAPHICS and enter your choice of filename using PREVIOUS CHAR NEXT CHAR → C The filename can contain up to 8 alphanumeric characters. The filename extension is fixed as .SMG.
 - **3** To recall the graphics results from disk to instrument, choose **OK**.
 - 4 To view the graphics results, see "Recalling Stored Graph Results" page 223.

Copying Configuration from Instrument Store to Disk

Description

If you have a configuration stored in the instrument store that you wish to use on another instrument, you can copy it to disk. The configuration can then be downloaded from the disk in to another OmniBER 718 with the same options as the original instrument.

FUNCTION	FLOPPY DIS	ĸ	
DISK OPERATION FROM: TO: NAME Select OK to pe	COPY CONFIGURAT FILENAME.CI	NF	
A:\ LABEL:	FREE:	Bytes	
STATUS: OFF OK			MULTIPLE WINDOW

- **1** Choose the directory to receive the configuration file. See "Accessing Directories and Files " page 266.
- Choose DISK OPERATION FILE COPY CONFIGURATION and enter the Instrument Store number using DECREASE DIGIT and INCREASE DIGIT or press SET and use the pop-up keypad.
 The Stored Settings description appears alongside the store number. If required the description can be modified using JUMP NEXT CHAR
 PREVIOUS CHAR or press SET and use the pop-up keypad. The description can contain up to 24 alphanumeric characters.
- 3 Enter the chosen filename using PREVIOUS CHAR NEXT CHAR → ← or press SET twice and use the pop-up keypad. The file name can contain up to 8 alphanumeric characters. The filename extension is fixed as .CNF.

Using Instrument and Disk Storage Copying Configuration from Instrument Store to Disk

4 To copy the configuration from instrument to Disk choose OK.
If you have entered a filename which already exists, a warning "File exists - are you sure you wish to continue" is displayed.
If YES is selected, the data on the Disk will be overwritten.
If NO is selected, the operation is aborted.

Copying Configuration from Disk to Instrument Store

Description

If you have a configuration stored in the instrument store that you wish to use on another instrument, you can copy it to Disk. The configuration can then be downloaded from the disk in another OmniBER 718 with the same options as the original instrument.

FUNCTION	FLOPPY DIS	ĸ	
DISK OPERATION TO: 4 ATMTES FROM: NAME Select OK to pe	FILE COPY CONFIGURAT T FILENAME.CI	NF	
A:\ LABEL:	FREE:	Bytes	
STATUS: OFF OK			MULTIPLE WINDOW

- 1 Choose the directory containing the configuration file. See "Accessing Directories and Files " page 266.
- Choose DISK OPERATION FILE COPY CONFIGURATION and enter the Instrument Store number using DECREASE DIGIT and INCREASE DIGIT or press SET and use the pop-up keypad.
 Enter a description of the configuration using PREVIOUS CHAR
 NEXT CHAR → ← or press SET and use the pop-up keypad.
 The description can contain up to 24 alphanumeric characters.
- Enter the filename the configuration is to be copied from using
 PREVIOUS CHAR NEXT CHAR ref or press SET, highlight the file to be copied on the file manager display and press SET. The file name can contain up to 8 alphanumeric characters. The filename extension is fixed as .CNF.

Using Instrument and Disk Storage Copying Configuration from Disk to Instrument Store

4 To copy the configuration from Disk to instrument, choose OK. If you have entered a instrument store number which already contains a configuration, a warning "Are you sure you wish to continue" is displayed. If YES is selected, the data in the instrument store will be overwritten. If NO is selected, the operation is aborted.

Copying Graphics Results from Instrument Store to Disk

Description

You can copy Graphics Results from the instrument store to the Disk. This is useful under the following conditions:

- If you have graphics results stored in the instrument that you wish to prevent from being overwritten by a future measurement (only 10 store locations in the instrument)
- If you wish to retrieve the graphics results for viewing via a spreadsheet.

FUNC	TION	FLOPPY DISK		
DISK FROM TO:	COPERATION 1: STORE NAME FORMAT	FILE COPY GRAPHICS -9 FILENAME.SMG NORMAL		
Sele	ct OK to perfor	rm operation	OFF	
A:\ Labe	ïL:	FREE:	Bytes	
STATUS				MULTIPLE WINDOW

HOW TO:

- 1 Choose the directory to receive the graphics file. See "Accessing Directories and Files " page 266.
- 2 Choose DISK OPERATION **FILE COPY GRAPHICS** and enter the Instrument Store number using **DECREASE DIGIT** and **INCREASE DIGIT** or press **(SET)** and use the pop-up keypad.
- Enter the filename the graphic results are to be copied to using
 PREVIOUS CHAR NEXT CHAR or press SET twice and use the pop-up keypad.

The file name can contain up to 8 alphanumeric characters. The filename extension is fixed as .SMG.

Using Instrument and Disk Storage Copying Graphics Results from Instrument Store to Disk

- 4 If you wish to view the graphic results at a later date via a spreadsheet, choose FORMAT CSV. CSV is Comma Separated Variable.
 If you wish to view the graphic results at a later date on an OmniBER 718, choose FORMAT NORMAL.
- 5 To copy the configuration from instrument to Disk, choose OK. If you have entered a filename which already exists, a warning "File exists are you sure you wish to continue" is displayed. If YES is selected, the data on the Disk will be overwritten. If NO is selected, the operation is aborted. This allows you the opportunity to view the data on the Disk and verify that it is no longer needed.

Using Instrument and Disk Storage Copying Graphics Results from Instrument Store to Disk

9

"Coupling Transmit and Receive Settings" page 288 "Setting Time & Date" page 289 "Enabling Keyboard Lock" page 290 "Enabling Beep on Received Error" page 291 "In-Band DS1 Loopcode 156MTS Compatibility" page 292 "Suspending Test on Signal Loss" page 293 "REI-L Result/Enable" page 294 "Graph Storage Resolution" page 296 "Setting Error Threshold Indication" page 297 "Setting Screen Brightness and Color" page 298 "To Generate a New Jitter Mask" page 299 "To change the parameters of a User-defined jitter mask" page 301 "Running Self Test" page 303

Selecting and Using "Other" Features

Coupling Transmit and Receive Settings

DescriptionWhen generating and measuring at the same interface level, you can have the
transmit and receive settings coupled together. Any settings change made on the
transmit display will automatically occur on the receive display. Any settings
change made on the receive display will automatically occur on the transmit display.

This function is available on the **OTHER SETTINGS CONTROL** display.

SETTINGS CONTROL	
RECEIVER	
PLED TO TRANSMITTER	
D	MULTIPLE WINDOW

1 Choose TRANSMITTER AND RECEIVER COUPLED

Setting Time & Date

DescriptionWhen making Bit error measurements and recording results you can have certain
events timed chronologically, for example, Alarms; Error Seconds.
The capability to set the Time and Date is provided on the OTHER TIME & DATE
display.

HOW TO:	1	Choose CLOCK MODE SETUP and set the Time and Date using (\uparrow) ; (\downarrow) ;
		\leftarrow ; \rightarrow ; INCREASE DIGIT and DECREASE DIGIT

2 Choose CLOCK MODE **RUN** to complete the setting of Time and Date.

Enabling Keyboard Lock

Description

You can protect the measurement settings from interference during a test.

This function is provided in the OmniBER 718 on the **OTHER MISCELLANEOUS** display.

The following keys are not affected by Keyboard Lock:

- Display keys (TRANSMIT); (RECEIVE); (RESULTS); (GRAPH); (OTHER)
- cursor keys
 the state of t
- SHOW PAPER FEED LOCAL SMART TEST

The following display functions are not affected by Keyboard Lock:

- RESULTS type on the **RESULTS** display
- KEYBOARD LOCK on the **OTHER** display

FUNCTION	MISCELLAN	IEOUS		
KEYBOARD LOCK BEEP ON RECEIVE	D ERROR	ON OFF	I	
INBAND DS1 LOOP 156MTS COMPATIB		OFF		
SUSPEND TEST ON REI-L RESULT EN RIS-L RESULT EN	ABLE	OFF ON ON		
GRAPH STORAGE R NOTE: storing g resolution will by 50%	raph results w	COMPRESS with Full e capacity		
STATUS:				LTIPLE INDOW

1 Choose KEYBOARD LOCK ON .

Enabling Beep on Received Error

Description You can have an audible indication of an error which is particularly useful when the display on the test set is hidden from view.

This function is provided in the OmniBER 718 on the **OTHER MISCELLANEOUS** display.

FUNCTION	MISCELLANEOUS	
KEYBOARD LOCK BEEP ON RECEIVED ER	ON ROR OF F	I
INBAND DS1 LOOPCODE 156MTS COMPATIBILIT		
SUSPEND TEST ON SIG Rei-l result enrele Ris-l result enrele	ON	
GRAPH STORAGE RESOL NOTE: storing graph resolution will red by 50%		
STATUS:		MULTIPLE WINDOW

- HOW TO: 1 Choose
- 1 Choose BEEP ON RECEIVED ERROR ON .

In-Band DS1 Loopcode 156MTS Compatibility

Description

The instrument default state is with the INBAND DS1 LOOPCODE 156MTS COMPATIBILITY field set to **OFF**. In this mode the instrument operates as per the T1.403.CORE standard which states that the DS1 framing bit should overwrite the DS1 Loopcode pattern. When **ON** is selected the instrument operation changes such that DS1 Loopcode is gapped in order to prevent the DS1 framing bit overwriting the DS1 Loopcode pattern. This is compatible with HP's 156MTS T-Carrier and SONET tester.

FUNCTION MISC	ELLANEOUS
KEYBOARD LOCK BEEP ON RECEIVED ERROR	ON OFF
INBAND DS1 LOOPCODE 156MTS COMPATIBILITY	OFF
SUSPEND TEST ON SIGNAL L Rei-l result enable AIS-l result enable	OSS OFF ON ON
GRAPH STORAGE RESOLUTION NOTE: storing graph resu resolution will reduce s by 50%	lts with Full
STATUS:	

Suspending Test on Signal Loss

When running a test, you can choose to suspend the test during periods of signal loss.

This function is available on the **OTHER MISCELLANEOUS** display.

FUNCTION	MISCELLAN	EOUS		
KEYBOARD LOCK BEEP ON RECEIV	ED ERROR	ON OFF		
INBAND DS1 LOO 156MTS COMPATI		OFF		
SUSPEND TEST O REI-L RESULT E AIS-L RESULT E		OFF ON ON	I	
	RESOLUTION graph results w l reduce storag			
STATUS:	N		ľ	ULTIPLE WINDOW

HOW TO: 1 Choose SUSPEND TEST ON SIGNAL LOSS ON .

REI-L Result/Enable

Description Before running a test, you can choose to enable or disable the SONET measurement of REI-L.

This function is available on the **OTHER MISCELLANEOUS** display.

FUNCTION MI	SCELLANEOUS
KEYBOARD LOCK BEEP ON RECEIVED ERROF	ON OFF
INBAND DS1 LOOPCODE 156MTS COMPATIBILITY	OFF
SUSPEND TEST ON SIGNAL Rei-l Result Enable AIS-l Result Enable	. LOSS OFF ON ON ON
GRAPH STORAGE RESOLUTI NOTE: storing graph re resolution will reduce by 50%	sults with full
	A
STATUS:	MULTIPLE WINDOW

1 Choose REI-L ENABLE **ON** or **OFF** as required.

When set to **OFF**, the REI-L measurement is suppressed. Cumulative, Short Term and Analysis measurements are affected alike.

AIS-L Result/Enable

Description Before running a test, you can choose to enable or disable the SONET measurement of AIS-L.

This function is available on the **OTHER MISCELLANEOUS** display.

FUNCTION MIS	CELLANEOUS	
KEYBOARD LOCK BEEP ON RECEIVED ERROR	ON OFF	
INBAND DS1 LOOPCODE 156MTS COMPATIBILITY	OFF	
SUSPEND TEST ON SIGNAL REI-L RESULT ENABLE AIS-L RESULT ENABLE	LOSS OFF OFF OFF	
GRAPH STORAGE RESOLUTIO NOTE: storing graph res resolution will reduce by 50%	ults with Full	
STATUS: Off On		

HOW TO: 1 Choose AIS-L ENABLE **ON** or **OFF** as required.

When set to **OFF**, the AIS-L measurement is suppressed. Cumulative, Short Term and Analysis measurements are affected alike.

Graph Storage Resolution

DescriptionThe total graphics store capacity is normally 20.000 events. If GRAPH STORAGE
RESOLUTION FULL is selected the capacity reduces to 10,000 events.

FUNCTION MISCELL	INEOUS
KEYBOARD LOCK BEEP ON RECEIVED ERROR	ON OFF
INBAND DS1 LOOPCODE 156MTS COMPATIBILITY	OFF
SUSPEND TEST ON SIGNAL LOSS Rei-l Result enable AIS-l Result enable	OFF OFF OFF
GRAPH STORAGE RESOLUTION NOTE: storing graph results resolution will reduce stora by 50%	
STATUS: Compress Full	

Setting Error Threshold Indication

Description

When making error measurements, you can have an indication of when an error count or error ratio threshold has been exceeded. You can set the OmniBER 718 to indicate this by a color change, from yellow to red, of the bar on the **GRAPH** display and the result on the **RESULTS** display. You can choose the thresholds at which the color change occurs.

The Count and Ratio selections are independent.

This function is available on the **OTHER COLOR CONTROL** display.

FUNCTION	COLOR CONTROL
COLOR ENHANCE RESULTS COUNT THRESHOLD RATIO THRESHOLD	DN 10000 10™-3
COLOR PALETTE	TWD
DISPLAY BRIGHTNESS	FULL
STATUS: 10^-3 10^-6	10^-7 10^-8 10^-9 MULTIPLE Window

HOW TO:

1

- Choose COLOR ENHANCE RESULTS ON .
- **2** Choose the COUNT THRESHOLD and RATIO THRESHOLD.

Setting Screen Brightness and Color

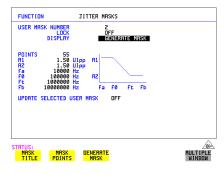
DescriptionThe OmniBER 718 screen can be set to single or two color using the COLOR
PALETTE selection on the **OTHER**, **COLOR CONTROL** display.

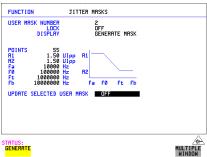
The screen brightness can be set to full or half brightness. The half brightness setting is used when the room brightness is such that half brightness is desirable and will also prolong the life of the screen.

If the brightness is set to FULL and there have been no key presses in the last hour, then the screen automatically dims to the half brightness level and the status message "Display set to half brightness" is shown. Any key press will return the screen to full brightness.

This function is available on the **OTHER COLOR CONTROL** display.

FUNCTION	COLOR CONTROL	
Color Enhance Result Count Threshold Ratio Threshold	S DN 10000 10^-3	
COLOR PALETTE	TWD	
DISPLAY BRIGHTNESS	FULL	
STATUS: HALF FULL		MULTIPLE WINDOW



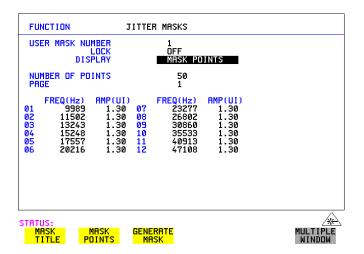

1 Choose the DISPLAY BRIGHTNESS to suit the operating environment.

To Generate a New Jitter Mask

This feature enables the user to quickly generate a new mask, without having to set each point in the mask. The procedure is as follows:

- 1 Select **OTHER**, **JITTER MASKS**, you will have to select **MORE** to access the JITTER MASKS key.
- 2 Check the mask LOCK is set to **OFF**, then select a USER MASK NUMBER (from 1 to 5). Note that it is not possible to edit a User Mask when there is a User Mask currently in use (i.e. when running a measurement). When this occurs the LOCK field displays "ON (IN USE)".
- 3 Position the cursor on DISPLAY and select **GENERATE MASK**.
- **4** Position the cursor on POINTS and set the required number of points in the mask.
- 5 Using the ↑, ↓ and edit keys setup the amplitude and frequency of the user-selectable points given on the display (i.e. A1, A2 fa, f0, ft, fb).
- 6 Position the cursor on the UPDATE SELECTED USER MASK field and select **GENERATE**.

ΝΟΤΕ


A status message "Illegal mask parameters" will occur if the specified frequency and amplitude points are invalid. Check that the frequency points are in ascending order and that the A1 and A2 amplitudes are valid for the specified frequencies.

Selecting and Using "Other" Features To Generate a New Jitter Mask

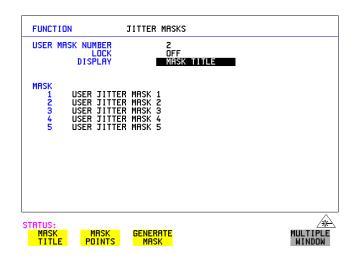
7 Select DISPLAY MASK POINTS.

Note that the GENERATE action has resulted in a new mask being calculated and placed into the frequency and amplitude fields. Further editing can now take place as required, using the edit keys.

For example, selecting NUMBER OF POINTS will allow you to change the number of points in the mask, while selecting PAGE enables you to select pages 1 to 5 and edit the frequency and amplitude of each point on the mask.

8 The new edits are automatically saved into the mask selected, there is no need to generate a new mask.

Locking the Mask


To prevent accidental changes to the masks when finished set the LOCK to **ON**.

To change the parameters of a User-defined jitter mask

1 Select **OTHER**, and set FUNCTION to **JITTER MASKS**; you will have to select **MORE** to access the JITTER MASKS key.

To Edit a User Mask Title

- 2 Check the mask LOCK is set to **OFF**, then select USER MASK NUMBER, and select the appropriate user mask (1 to 5).
- **3** Position the cursor on DISPLAY, then select **MASK TITLE**.
- **4** Position the cursor on the MASK (1 to 5) to be edited, and enter a new title using the edit keys.

Selecting and Using "Other" Features To change the parameters of a User-defined jitter mask

To Edit Mask Points

- 1 Position the cursor on DISPLAY and select MASK POINTS.
- 2 Select NUMBER OF POINTS and using the →, keys, and edit keys (INCREASE/DECREASE DIGIT) select the number of points in the mask (maximum 55) and the frequency and amplitude at each point. Use the PAGE field to switch between pages to access all 55 points in the mask.

FUNCTION	JITTER MASKS	
USER MASK NUMBER Lock Display	2 OFF MRSK POINTS	
NUMBER OF POINTS PRGE	55 1	
FREQ(Hz) AMP(U 01 200 1.5 02 240 1.5 03 287 1.5 04 344 1.5 05 412 1.5 06 494 1.5	50 07 592 1.27 50 08 710 1.06 50 09 850 0.89 50 10 1019 0.75 50 11 1221 0.63	
STATUS: MASK MASK TITLE POINTS	GENERATE MASK	MULTIPLE WINDOW

- **3** Note that it is not possible to edit a user mask when a user mask is currently in use (i.e. a measurement is running). When this occurs the LOCK field displays "ON (IN USE)".
- **4** The new edits are automatically saved into the mask selected, there is no need to generate a new mask.

Selecting and Using "Other" Features Running Self Test

Running Self Test

DescriptionBefore using the OmniBER 718 to make measurements, you can run Self Test ALL
TESTS to ascertain the integrity of the OmniBER 718. These tests take between at
least 1 hour to complete depending on the options fitted.
Alternatively you can run Confidence Tests which only takes 2 to 3 minutes to
complete. This is not a full verification but performs BER measurements with
internal and external loopbacks fitted.

FUNCTION	SELF TEST			
TEST TYPE TEST NUMBER SUBTEST NUMBER TEST STATUS	READY	,	•	
PRESS THE RUN/S	op key to star	T TESTING.		
CABLING INFO	1 ALL			
STATUS: ALL CPU TESTS TESTS	CONF. TESTS	PDH Tests	MORE	MULTIPLE WINDOW

HOW TO: Run ALL TESTS

- 1 Choose TEST TYPE **ALL TESTS** on the **OTHER SELF TEST** display.
- **2** Insert a formatted disk into the instrument disk drive.

NOTE If any or all of these connections are not made the OmniBER 718 will FAIL Self Test.

Selecting and Using "Other" Features **Running Self Test**

4 Press **RUN/STOP** to activate the Self Test. TEST STATUS RUNNING will be displayed.

The information pertaining to TEST TYPE, TEST NUMBER and SUBTEST NUMBER will change as the Self Test progresses.

If the OmniBER 718 is functioning correctly, after a time of at least 1 hour, TEST STATUS PASSED is displayed.

If TEST STATUS [FAIL nnn] is displayed, the OmniBER 718 should be returned to a service office for repair.

FUNCTION	SELF TEST			
TEST TYPE CONFIDENCE TEST TEST NUMBER 2 SUBTEST NUMBER TEST STRTUS PRSSED				
PRESS THE (RUNASTOP) KEY TO START TESTING.				
CRBLING INFO I CONF. TEST				
STATUS: ALL CPU TESTS TESTS	CONF. TESTS	PDH TESTS	MORE	MULTIPLE WINDOW

HOW TO: Run Confidence TESTS

- 1 Choose TEST TYPE **CONF. TESTS** on the **OTHER SELF TEST** display.
- **2** Insert a formatted disk into the instrument disk drive.
- **3** Make the loopback connections listed below:

Connect Transmit module 75Ω OUT to Receive module 75Ω IN Connect Transmit module $100/120\Omega$ OUT to Receive module $100/120\Omega$ IN Connect Transmit module 75Ω MUX to Receive module 75Ω DEMUX Connect Transmit module $100/120\Omega$ MUX to Receive module $100/120\Omega$ DEMUX

Connect Multirate Analyzer IN to OUT

Connect Optical OUT to Optical IN via a 15 dB attenuator.

4 Press **RUN/STOP** to activate the Self Test. TEST STATUS RUNNING will be displayed.

The information pertaining to TEST TYPE, TEST NUMBER and SUBTEST NUMBER will change as the Self Test progresses.

If the OmniBER 718 is functioning correctly, after a time of 2 to 3minutes, TEST STATUS PASSED is displayed.

If TEST STATUS [FAIL nnn] is displayed, the OmniBER 718 should be returned to a service office for repair.

NOTE Each individual self test requires unique loopback connections. To obtain a list of the connections required move the highlighted cursor to CABLING INFO and press **SET**. The Loopbacks list will appear on the display.

FUNCTION	SELF	TEST
TEST TYPE TEST NUMBER SUBTEST NUMBE TEST STATUS	ER	
PAYLOAD MODULE CONNECT PDH CONNECT PDH	CABLING INFORMATI CONNECTIONS : OUT TO PDH IN UN OUT TO PDH IN UN OUT TO PDH IN UN TO DEPLY (UNBRIGHT TO DEPLY (UNBRIGHT	

STRTUS:

Trigger Output

Description Use the pulse output from the TRIG OUT port on the OmniBER Multirate Analyzer module to trigger external equipment. A pulse is output whenever the condition selected in the TRIGGER SOURCE field occurs.

TRIGGER SOURCE TX FRAME
STATUS:
NONE TX RX RX MORE MULTIF
1 Select OTHER , and set FUNCTION to TRIGGER OUTPUT .
2 Set the TRIGGER SOURCE filed as required from the following
NONE
TX FRAME
RX FRAME RX B1
RX B2 and
RX B3
TTL Levels. Termination can be 75 ohm or 10 k ilohms.
RZ with active high pulse of 60usec (Nominal). Note that a single pu if a frame contains one or more errors giving a maximum frequency
BNC.

Appendix A

STS-1 SPE Background Patterns

The following tables list the background patterns available when selecting specific foregrounds.

Table 6

STS-1 SPE	Background Patterns
-----------	----------------------------

Foreground	Background choice in Foreground TUG-3	Background choice in other AU-3
STS-1 SPE		VT-1.5, VT-2 Mapping or SPE Word (8 bit user programmable word).
VT-6	Pattern in other VT-6s is numbered. They contain the word 11NNNNNx, where NNNNN is the binary number of the TU.	VT-1.5, VT-2 Mapping or SPE Word (8 bit user programmable word).
VT-2 (2 Mb/s) Unframed	VT-2 structure, unframed with 2E15-1, 2E9-1 PRBS or 1100 word pattern in all information bits.	VT-2, VT-1.5 Mapping or SPE Word (8 bit user programmable word).
VT-2 (2 Mb/s) Framed	VT-2 structure, framed with 2E15-1, 2E9-1 PRBS, NUMBERED or 1100 word pattern. In Numbered mode, each timeslot contains the pattern 0NNNNNX where NNNNNN is the binary number of the TU. The least significant digit (X) is alternated between 0 and 1 in successive frames.	VT-2, VT-1.5 Mapping or SPE Word (8 bit user programmable word).
VT-1.5 (DS1) Unframed	VT-1.5 structure, D4 framed with 2E15- 1, 2E9-1 PRBS or 1100 Word pattern in other TU-11s.	VT-2, VT-1.5 Mapping or SPE Word (8 bit user programmable word).

Table 6	STS-1 SPE Background Patterns, continued		
Foreground	Background choice in Foreground TUG-3	Background choice in other AU-3	
VT-1.5 (DS1) Framed	VT-1.5 structure, DS1, D4 framed with 2E15-1, 2E9-1 PRBS, NUMBERED or 1100 word pattern in other TU-11s. In Numbered mode, each timeslot contains the pattern 1NNNNNN1 where NNNNN is the binary number of the TU. Framing type will be the same as the foreground except when SLC96 is selected. In this case, D4 framing is inserted in the background	VT-2, VT-1.5 Mapping or SPE Word (8 bit user programmable word).	

STS-1 SPE Background Patterns

Appendix B

ETSI/ANSI Terminology

A table of ETSI terms with their ANSI equivalents.

ETSI/ANSI Conversion and Equivalent Terms

Introduction

The terminology used on the instrument display can be ETSI (SDH) or ANSI (SONET) terminology. Refer to the table given in this appendix for an explanation of equivalent SDH/SONET terms.

ETSI: European Telecommunications Standards Institute.

ANSI: American National Standards Institute.

ETSI Term	ANSI Term			
AU-3	STS-1 SPE + H1, H2, H3			
AU-4	STS-3c SPE + H1, H2, H3			
BIP (Bit Interleaved parity)	CV (Code Violation)			
High Order Path (HP / HO)	STS Path			
I-n Intra Office, (n=STM-n level)	Intermediate Reach (IR)			
L-n.1 or L-n.2 long haul	LR long reach			
Low Order Path (LP / LO)	VT Path			
LP-REI	REI-V			
M.S.P	A.P.S			
Multiplexer Section (MS)	Line			
Multiplexer Section Protection	Automatic Protection Switching			
MS-AIS	Line AIS / AIS-L			
MS-BIP	Line CV / CV-L			
MS-DCC	Line DCC / DCC-L			
MS-REI	Line FEBE / REI-L			

Table 7ETSI / ANSI Terminology

ETSI/ANSI Terminology ETSI/ANSI Conversion and Equivalent Terms

ETSI / ANSI Terminology , continued

ETSI Term	ANSI Term
MS-RDI	Line FERF / RDI-L
Multiplexer Section Overhead	Line Overhead
Network Node Interface	Line Interface
OOF	SEF (severely errored frame defect)
Path AIS / AU-AIS	AIS-P
Path REI / HP REI	REI-P
Path FERF / HP RDI	RDI-P
Path IEC / AU-IEC	IEC-P
Path Overhead	Path Overhead
Regenerator	Repeater
Regenerator Section (RS)	Section
Regenerator Section Overhead	Section Overhead
Remote Alarm Indicator	RAI
RS-DCC	Section DCC (DCC-S)
Section Overhead (SOH)	Transport Overhead (TOH)
S-n.1 or S-n.2 short haul	Short Reach (SR)
SOH	тон
STM-m	OC-n / STS-n (where m= n+ 3 for m \geq 1
STM-0	STS-1
STM-1	OC3c / STS-3c
STM-4	OC-12 / STS-12
STM-16	OC-48 / STS-48
Tributary Unit (TU)	Virtual Tributary (VT)

ETSI/ANSI Terminology ETSI/ANSI Conversion and Equivalent Terms

Table 7	ETSI / ANSI Terminology , continued		
ETSI Term	ANSI Term		
TU	VT		
TU-11	VT 1.5		
TU-12	VT 2		
TU-2	VT 6		
TU-3	NONE		
TU BIP	VT BIP (CV-V)		
TU RDI / LP-RDI	RDI-V		
TUG	VT Group		
TUG2	VT Group (12 columns)		
TUG3	VT Group (86 columns)		
TU multiframe	VT superframe		
TU PATH AIS	VT AIS (AIS-V)		
VC	SPE		
VC4	STS3C SPE		
Virtual Container (VC)	Synchronous Payload Envelope (SPE)		

NOTE: VC is an ETSI abbreviation for Virtual Container and an ETSI / ANSI abbreviation for (ATM) Virtual Channel. The context of VC must therefore be taken into account when converting between standards.

Appendix C

Glossary of Terms

A brief explanation of terms and abbreviations used in the OmniBER 718.

Glossary

Α		BPV	Bipolar Violation
AAL	ATM Adaptation Layer	С	
ABR	Available Bit Rate	CAS	Channel Associated
ADDF	Automatic Digital Distribution Frame	erib	Signaling
ADM	Add Drop Multiplexer	CBR	Constant Bit Rate
ADPCM	Adaptive Differential Pulse Coded Modula- tion	CCITT	Consultative Committee on Interna- tional Telegraphy and Telephony
AIM	ATM Inverse Multi- plexer	CCS	Common Channel Signaling
AIS	Alarm Indication Signal	CDT	Cell Delay Tolerance
AMI	Alternate Mark Inver- sion	CDV	Cell Delay Variation
ANSI	American National Standards Institute	CEPT	Committee of Euro- pean PTTs
APS	Automatic Protection	CMI	Coded Mark Inversion
	Switching	CO	Central Office
ASCII	American Standard Code for Information	CPE	Customer Premises Equipment
ATM	Interchange Asynchronous Transfer	CRC	Cyclic Redundancy Check
	Mode	CSES	Consecutive Severely Errored Seconds
AU	Administrative Unit		Errored Seconds
AU-AIS	AU Pointer Justification Event	D	
AU-LOP	Loss of AU Pointer	D/I	Drop and Insert
AU-NDF	AU Pointer New Data Flag	DACS	Digital Access and Cross-connect Switches
В		dB	Decibel
D BBER	Background Block	DCC	Data Communications Channel
BC	Error Ratio Background Channel	DCS	Digital Cross-connect Switches
BCD	Binary Coded Decimal	DDF	Digital Distribution Frame
BER BERT	Bit Error Rate Bit Error Rate Testing	DDN	Digital Data Network
BIP	Bit Interleaved Parity	DTMF	Dual Tone Multi
BPS	Bits Per Second		frequency Signaling

Glossary of Terms

DWDM	Dense Wave Division Multiplexing	HO PTE	High Order Path Termi- nating Equipment
DXC	Digital Cross Connect	НО	High Order
Ε		HP-IB	Hewlett-Packard Inter- face Bus (IEEE 488)
EB	Error Block	HP-PLM	High Path Payload
EOW	Engineering Orderwire	HP-RDI	Label Mismatch
ES	Error Seconds	ПР-КDI	High Path Remote Defect Indication
ESF	Extended Superframe Format	HP-REI	High Path Remote Error Indication
ESR ETSI	Errored Second Ratio European Telecommu-	HP-TIM	High Path Trace Identi- fier Mismatch
	nications Standards Institute	HP-UNEQ	High Path Unequipped
F	histitute	Hz	Hertz (cycles per second)
FAS	Frame Alignment	т	
IAS	Signal	Ι	
FC	Foreground Channel	IP	Internet Protocol (layer 3)
FCS FDDI	Frame Check Sequence Fiber Distributed Data	ISDN	Integrated Services Digital Network
FEAC	Interface Far End Alarm Channel	ISO	International Standards Organization
FEBE	Far End Block Error	ITU	International Telecom-
FEC	Forward Error Connec- tion		munications Union
FERF	Far End Receive Failure	L	
G		LAN	Local Area Network
-		LCP	Link Control Protocol
GUI	Graphical User Inter- face	LO	Low Order
	Tace	LOF	Loss of Frame
Н		LOP	Loss of Path
HDB3	High Density Bipolar 3	LOS	Loss of Signal
HDLC	High-level Data Link	LP-PLM	Low Path Payload Label Mismatch
HEC	Control (layer 2) Header Error Control	LP-RDI	Low Path Remote Defect Indication
HO Path RAI	High Order Path Remote Alarm Indica- tion	LP-REI	Low Path Remote Error Indication

LP-RFI	Low Path Remote Failure Indication	OS	Operations System
LP-TIM	Low Path Trace Identi-	Р	
	fier Mismatch	P/AR	Peak-to-Average Ratio
LP-UNEQ	Low Path Unequipped	PBX	Private Branch
LSB	Least Significant Bit		Exchange
LTE	Line Terminal Equip-	PC	Personal Computer
LTM	ment Line Terminal Multi-	PCM	Pulse Code Modulation
	plexer	PCN	Personal Communica- tions Network
Μ		PCR	Peak Cell Rate
MS	Multiplex Section	PDH	Plesiochronous Digital Hierarchy
MS-AIS	Multiplex Section AIS	PES	Percentage Error
MSOH	Multiplex Section		Second
	Overhead	POH	Path Overhead
MS-RDI	Multiplex Section Remote Defect Indica-	POS	Packet Over SONET/ SDH
	tion	POTS	Plain Old Telephone
MS-REI	Multiplex Section		Service
	Remote Error Indica- tion	PPP	Point-to-Point Protocol
MTBF	Mean Time Between		(for transmission of
MIDI	Failures		multiprotocol data- grams over point-to-
MTIJ	Maximum Tolerance		point links)
	Input Jitter	PRBS	Pseudo Random Binary
MUX	Multiplexer		Sequence
Ν		PSN	Packet Switched
	Nam Data Elas		Network
NDF	New Data Flag Network Element	PSTN	Public Switched Tele-
NE NFAS			phone Network
NFA5	Non Frame Alignment Signal	PT	Payload Type
0	Signar	PTT	Public Telephone and Telegraph
U		PTE	Path Terminating
OAM	Operations, Adminis-		Equipment
	tration and Maintenance	PU	Physical Unit
OC	Optical Carrier	0	
OH	Overhead	Q	
OLTU	Optical Line Terminal Unit	QoS	Quality of Service
OOF	Out of Frame		

R		STE	Section Terminating
RAI	Remote Alarm Indica- tion	STM	Equipment Synchronous Transport Module
RDI	Remote Defect Indica- tion	STS	Synchronous Transport Signal
REBE	Remote End Block Error	SUT	System Under Test
REI	Remote Error Indica- tion	Т	
RF	Radio Frequency	TDM	Time Division Multi-
RS	Regenerator Section		plexing
RSOH	Regenerator Section Overhead	TDMA	Time Division Multiple Access
RSTE	Regenerator Section	TE	Terminal Equipment
RS-TIM	Terminating Equipment Regenerator Section	TMN	Telecommunications Management Network
KD-1 IVI	Trace Identifier	ТОН	Transport Overhead
	Mismatch	TU	Tributary Unit
RX	Receiver	TU-AIS	TU Alarm Indication Signal
S		TUG	Tributary Unit Group
S/N	Signal to Noise Ratio	TU-LOM	TU Loss of Multiframe
SCPI	Standard Commands	TU-LOP	Loss of TU Pointer
5011	for Programmable Instrumentation	TU-NDF	TU Pointer New Data Flag
SDH	Synchronous Digital Hierarchy	TX	Transmitter
SDXC	Synchronous Digital	U	
SEF	Cross Connect	UI	Unit Interval
SEF	Severely Errored Frame Severely Errored	V	
SES	Second		
SESR	Severely Errored	VBR	Variable Bit Rate
	Seconds Ratio	VC	Virtual Channel
SF	Super Frame	VC-n	Virtual Container
SOH	Section Overhead	VP	Virtual Path
SONET	Synchronous Optical	VT	Virtual Tributary
	Network	VXI	VMEbus Extensions for
SPE	Synchronous Payload Envelope		Instrumentation

Glossary of Terms

WAN Wide Area Network WDM Wave Division Multiplexing

Numerics

156MTS compatibility, 292 7,4,1 Lengths IP datagram, 187

A

A1A2 Boundary Function, 59 Accessories, 20 Connection, 20 Alarm scan DSn, 126 SONET, 125 Alarms ATM measuring, 175 POS, 191 Alarms & errors DSn add, 81 DSn payload add, 81 SONET add, 80 Analysis measurement DSn, 113 DSn payload, 113 **SONET**, 112 APS messages generation, 97 monitoring, 55 test function, 97 ATM Alarms, 161, 175 ATM Delay Performance, 172 ATM Errors, 163 ATM Operation, 149 ATM Payloads Receiver, 166 ATM payloads transmitter, 150 ATM Results, 165 ATM Service Disruption, 176 ATM signal Receiver, 168 Automatic protection switch message generation, 97 Autotolerance, 134

B

B/G mapping selection SDH, 31 B/G mapping selection SONET, 31 Background Distributions ATM, 158 Background mapping selection SDH, 31 Background mapping selection SONET, 31 Background Patterns, 308 Background Traffic ATM, 157 Beep on received error, 291

,

Capture overhead, 60 Centronics printer, 249 Channelized Testing, 198 Cleaning Optical Connectors Optical Connector cleaning, 19 Cold Start Front Panel Soft Recovery, 21 Color control for error threshold indication. 297 Confidence tests, 304 Configuration copy from disk to instrument, 282 copy from instrument to disk. 280 recall from disk. 278 recall from instrument, 262 store in instrument, 260 store on disk, 277 Connecting Accessories, 20 ESD Precautions Necessary, 16 To the Network, 16 Connectors Optical Interface, 17 Continuity Test, 208 Conventions, 15 Convergence Sublayer, 153 Copy configuration from disk to instrument, 282 from instrument to disk, 280 Coupling, 288 Create directory, 265

D

Datagram Length, 186 Date & time, 289 DCC drop, 102 insert, 102 DCC Insert test function, 102 Delay Measurement ATM. 173 Delay Performance ATM. 172 Delay time, jitter tolerance, 136, 219 Delete directory, 270 file. 269 Directory create, 265 delete, 270 management, 265 Disk accessing a directory, 266 accessing files, 266 adding descriptors to files, 271 copy configuration from instrument, 280 copy configuration to instrument, 282 copy graphics results from instrument, 284 create directory, 265 delete directory, 270 delete file, 269 format a disk. 263 label a disk, 264 managing directories, 265 managing files, 265 recall configuration, 278 recall graphics results, 279 rename a file, 268 save data logging, 276 save graphics results, 274 Drop DCC. 102 external payload/test signal, 77 DS1 Loop Codes, 103 DSn alarm scan. 126 analysis measurement, 113 errors & alarms, 81 external test signal drop, 77 external test signal insert, 74 frequency measurement, 114 frequency offset, 64 N X 64 kb/s payload transmit, 71 N X 64 kb/s test signal receive, 73 N X 64 kb/s test signal transmit, 71 payload, receive, 45

payload, transmit, 27 receive interface, 45 spare bits, 84 structured test signal receive, 70 structured test signal transmit, 68 transmit interface, 26 Dumping display to disk, 272 Dwell time, jitter tolerance, 136, 219

Е

Error Burst Definition Service Disruption, 120 Error Indication Audio setting, 291 Error threshold indication setting, 297 Error threshold, jitter tolerance, 137, 219 Errors ATM 163 Errors & alarms DSn add, 81 DSn payload add, 81 SONET add, 80 Errors and alarms DSn test function, 81 Errors and alarms SONET test function, 80 ESD Precautions For the Service Engineer, 16 Exercising POS Hardware, 200 Extended jitter measurement, 129 receive interface, 49 External payload/test signal drop, 77 payload/test signal insert, 74 External printer connecting to parallel port, 254

F

F/G mapping selection SDH, 31 F/G mapping selection SONET, 31 File accessing, 266 delete, 269 descriptors, 271 management, 265 rename, 268 Foreground Distributions ATM, 158 Foreground mapping selection SDH, 31 Foreground mapping selection SONET, 31 Foreground Traffic ATM, 155 Format a disk, 263 Frame Check Sequence, 183 Frequency measurement, 114 Frequency offset DSn, 64 SONET, 62 SONET line rate, 62 SONET tributary, 63 Functional Tests (Smart Test), 40

G

G.821 analysis measurement, 113 G.826 analysis measurement, 113 Glossary of Terms, 315 Glossary of terms, 315 graph storage, 296 Graph storage resolution, 296 Graphics copy results from instrument to disk, 284 logging displays, 229 recall results from disk, 279 recall stored results, 223 saving results to disk, 274 saving to instrument, 222 storage resolution, 222 viewing error & alarm summaries, 227 viewing the bar graphs, 225

H H4 byte

sequence setting, 53 HANDSET Connector, 20 HDLC Frame Stuffing, 214 HDLC Framing, 183 Header IP, 188 HP path label monitoring, 55 HP-IB printer, 250

Ι

In-band DS1 Loopcode, 292 In-band DS1 loopcode, 292 In-band Loop codes, 103 Insert DCC, 102 external payload/test signal, 74 Inserting Modules, 16 Internal printer change paper, 255 logging, 251 print head cleaning, 258 IP addresses, 189 IP Header, 188 IP Packet Length, 186 IP Payload, 190

J

J1, J2 bytes setting, 53 Jitter, 144 measurement, 127, 129 receive interface, 48, 49 transmit interface, 33 Jitter mask. 299. 301 Jitter Tests (Smart Test), 40 Jitter tolerance delay time, 136, 219 dwell time, 136, 219 error threshold, 137, 219 graph result, 137, 220 logging results, 245 measurement, 134 number of points, 136, 219 text result, 137, 220 Jitter transfer accuracy, 138 calibration, 140 delay time, 141 dwell time, 141 graph results, 143 input mask, 141 logging results, 247 measurement, 138 number of points, 141 O factor, 141

K

Keyboard lock, 290

L

Labeling a disk, 264 Labels, overhead monitoring, 55

Laser apertures Location. 18 Laser warning, 17 LID Connector, 20 Line overhead insertion 58 Location of Laser Apertures, 18 Lock keyboard, 290 Locking the Mask Jitter, 300 Logging device, 229, 241, 245, 247 error event, 231 graph displays, 229 jitter tolerance results, 245 jitter transfer results, 247 on Demand, 241 Overhead Capture, 241 overhead snapshot, 241 Pointer Graph, 241 results, 231 results snapshot, 241 SONET Tributary Scan, 241 test period, 231 to Centronics printer, 249 to disk. 276 to HP-IB printer, 250 to internal printer, 251 to RS-232-C printer, 252 LOH insertion, 58 Loop Codes, 103

М

M2100 analysis measurement, 113 M2110 analysis measurement, 113 M2120 analysis measurement, 113 Managing disk directories, 265 disk files, 265 Measuring DSn analysis, 113 extended jitter, 129 frequency, 114 jitter, 127 jitter tolerance, 134 jitter transfer, 138 optical power, 115 overhead BER, 108 round trip delay, 116 service disruption, 119 SONET analysis, 112 wander, 131 Monitor equalizer, 45 indicator, 45 receive overhead, 54 MSP messages generation, 97 monitoring, 55 test function, 97

0

Optical clock stress, 95 power measurement, 115 **OPTICAL IN Connector**, 18 Optical In port, 18 Optical Interface Connectors, 17 **OPTICAL OUT Connector**, 18 Optical Out port, 18 Out-of Band Loop Code, 103 Overhead all labels, 53 APS messages monitoring, 55 BER test. 108 capture, 60 default transmit, 52 H4 byte sequences, 53 Labels monitoring, 55 monitor receive, 54 path monitor, 55 path transmit, 53 sequence generation, 58 TOH transmit, 52 trace messages, 56 transmit, 52 Overhead capture trigger, 60 Overhead capture test function, 60 Overhead sequence repeat run, 58 single run, 58

P

Packet Rate, 187

Packet Size, 205 Paper change internal printer, 255 Parallel port connecting Centronics printer, 254 Path overhead capture and display, 60 insertion, 58 Payload analysis measurement, 113 DSn receive, 45 DSn transmit. 27 errors & alarms, 81 framing SONET transmit, 32 framing, SONET receive, 47 insert external, 74 N X 64 kb/s receive, 73 N X 64 kb/s transmit, 71 SONET receive, 47, 70 SONET transmit, 32, 68 spare bits, 84 Payload PoS, 181 Pavloads ATM transmitter, 150 POH capture and display, 60 insertion, 58 monitor, 55 setting, 53 Pointer adjustments burst, 86 new pointer, 86 offset, 86 Pointer adjustments test function, 85 Pointer graph, 93 Pointer graph test function, 93 Policing ATM Traffic, 170 POS Alarms, 191 POS Errors, 192 PoS Operation, 179 POS Payload Mappings, 182 POS Payloads, 181 receiver, 193 POS Smart Test, 44 PPP in HDLC-like framing, 183 Precautions ESD when connecting, 16 Print head cleaning, 258

Printer

Centronics, 249 Centronics, connecting to parallel port, 254 Centronics, logging to, 249 HP-IB, logging to, 250 internal, changing paper, 255 internal, cleaning print head, 258 internal, logging to, 251 RS-232-C, logging to, 252 Printer HP-IB, RS232, PARALLEL ONLY Connector, 20 Printing results from disk, 253 Protocol Stack, 180

R

Random Lengths IP datagram, 187 Random packet gap, 201 Recall configuration from disk, 278 configuration from instrument, 262 graphics results from disk, 279 stored graph results, 223 Receive interface DSn. 45 extended jitter, 49 iitter, 48, 49 SONET. 47 wander, 50 Receive settings Coupled to transmit, 288 Receiver ATM Payloads, 166 Receiver ATM signal setup, 168 REI-L enable/disable, 294, 295 REI-L result enable, 294, 295 Remote Control HP-IB, RS232, 10 BASE -T Connector, 20 Removing Modules, 16 Rename a file, 268 Resolution, 296 Result, 294, 295 Results ATM. 165 POS. 196 Results Definitions Trouble Scan, 109 Round trip delay, 116

RS-232-C logging to printer, 252

S

S1 sync status monitoring, 55 Save configuration to disk, 277 data logging to disk, 276 graphics results to disk, 274 graphics results to instrument, 222 Scrambling, 183, 184 Screen dump to disk, 272 SDH APS messages, 97 Mapping selection, 31 MSP messages, 97 Self Test confidence tests, 304 Self test, 303 Sequence generation test function, 58 Sequences Overhead generation, 58 Service Disruption, 211 ATM, 176 service disruption DS1 and DS3, 120 Service disruption measurement, 119 Setting DSn THRU Mode, 28 Setting Foreground and Background Distributions, 158 Setting up Signaling Bits, 65 Settings (Smart Test), 40 Short term period selection, 111 Signal, 42 Signal Loss suspending test on, 293 Signal Quality (Smart Test), 40, 42, 44 Signaling Bits D4 and SLC-96 payloads, 118 ESF Payload, 118 Monitoring, 118 Signaling bits setting up, 65 Smart Setup, 40 Smart Test, 40 SONET alarm scan. 125 analysis measurement, 112

DCC insert. 102 errors & alarms add, 80 external payload drop, 77 frequency measurement, 114 frequency offset, 62 line rate offset, 62 Mapping selection, 31 N X 64 kb/s payload receive, 73 optical clock stress, 95 optical power measurement, 115 overhead BER test, 108 overhead capture, 60 overhead monitor, 54 overhead sequences, 58 overhead trace messages, 56 overhead transmit, 52 pavload, receive, 47 payload, transmit, 32 pointer adjustments, 85 pointer graph, 93 receive interface, 47 service disruption measurement, 119 structured payload receive, 70 structured payload transmit, 68 thru mode, 37 transmit interface, 29 tributary rate offset, 63 tributary scan, 122 Spare bits, 84 Spare bits test function, 84 Store configuration in instrument, 260 configuration on disk, 277 Stress test test function, 95 STS-1 SPE Background Patterns, 308 Suspending Test on Signal Loss, 293 Suspending test on signal loss, 293 Synchronization source SDH. 182 SONET. 30

Г

Test Cell Explanation, 156 Test function APS messages, 97 DCC insert, 102 errors & alarms DSn, 81 errors & alarms SONET, 80

MSP messages, 97 overhead BER test, 108 overhead capture, 60 pointer adjustments, 85 pointer graph, 93 sequence generation, 58 spare bits, 84 stress test, 95 tributary scan, 122 Test period selection, 111 Test signal drop external, 77 insert external, 74 N X 64kb/s receive, 73 N X 64kb/s transmit, 71 Test Timing, 111 Threshold indication setting, 297 Throughput Testing, 204 THRU mode DSn, 28 Thru mode SONET, 37 Time & date, 289 TOH Setting, 52 Trace messages, 56 Traffic Policing, 170 Transmit ATM Alarms, 161 Transmit interface DSn. 26 jitter, 33 SONET, 29 wander, 35 Transmit settings Coupled to Receive, 288 Tributary, 144 Tributary Jitter, 144 Tributary scan, 122 Trigger Output, 306 Trouble Scan, 109 U User defined, 301 User Length

v

VGA Connector, 20 Viewing bar graphs, 225

IP datagram, 186

graphics error & alarm summaries, 227 Voice channel round trip delay, 116

W

Wander bar graph, 133 measurement, 131 receive interface, 50 transmit interface, 35 Wander reference SDH, 182 warning symbols, 18

About This Edition

This edition of the OmniBER 718 SONET User Guide documents the product as of September 2000.

© Copyright Agilent Technologies. All rights reserved. Reproduction, adaption, or translation without prior written permission is prohibited, except as allowed under the copyright laws.

Sales and Service Offices

An up-to-date list of Agilent Offices is available through the Agilent Website at URL: http://www.agilent.com

Product Notes/White Papers on ATM/POS operation

Refer to the Agilent Website at URL. http://www.agilent.com/tmo/Notes/English/index.htm. for access to the following Product Notes.

- ATM error performance testing, 5968-9885E.
- Verifying the policing functions in the ATM network, 5968-9884E.
- Physical layer jitter testing in an ATM environment, 5968-9883E.
- Measuring service disruption times in high speed ATM networks, 5968-9137E.
- Packet Over SONET/SDH (White Paper), 5980-2027E.
- Packet Over SONET/SDH Functional Testing, 5980-2376E.

In This Book

This book tells you how to select and use the various instrument functions available.

Printed in U.K.09/00 37718-90218